1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic hugetlb support. 4 * (C) Nadia Yvette Chambers, April 2004 5 */ 6 #include <linux/list.h> 7 #include <linux/init.h> 8 #include <linux/mm.h> 9 #include <linux/seq_file.h> 10 #include <linux/sysctl.h> 11 #include <linux/highmem.h> 12 #include <linux/mmu_notifier.h> 13 #include <linux/nodemask.h> 14 #include <linux/pagemap.h> 15 #include <linux/mempolicy.h> 16 #include <linux/compiler.h> 17 #include <linux/cpuset.h> 18 #include <linux/mutex.h> 19 #include <linux/memblock.h> 20 #include <linux/sysfs.h> 21 #include <linux/slab.h> 22 #include <linux/sched/mm.h> 23 #include <linux/mmdebug.h> 24 #include <linux/sched/signal.h> 25 #include <linux/rmap.h> 26 #include <linux/string_helpers.h> 27 #include <linux/swap.h> 28 #include <linux/swapops.h> 29 #include <linux/jhash.h> 30 #include <linux/numa.h> 31 #include <linux/llist.h> 32 #include <linux/cma.h> 33 #include <linux/migrate.h> 34 #include <linux/nospec.h> 35 #include <linux/delayacct.h> 36 37 #include <asm/page.h> 38 #include <asm/pgalloc.h> 39 #include <asm/tlb.h> 40 41 #include <linux/io.h> 42 #include <linux/hugetlb.h> 43 #include <linux/hugetlb_cgroup.h> 44 #include <linux/node.h> 45 #include <linux/page_owner.h> 46 #include "internal.h" 47 #include "hugetlb_vmemmap.h" 48 49 int hugetlb_max_hstate __read_mostly; 50 unsigned int default_hstate_idx; 51 struct hstate hstates[HUGE_MAX_HSTATE]; 52 53 #ifdef CONFIG_CMA 54 static struct cma *hugetlb_cma[MAX_NUMNODES]; 55 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata; 56 static bool hugetlb_cma_page(struct page *page, unsigned int order) 57 { 58 return cma_pages_valid(hugetlb_cma[page_to_nid(page)], page, 59 1 << order); 60 } 61 #else 62 static bool hugetlb_cma_page(struct page *page, unsigned int order) 63 { 64 return false; 65 } 66 #endif 67 static unsigned long hugetlb_cma_size __initdata; 68 69 __initdata LIST_HEAD(huge_boot_pages); 70 71 /* for command line parsing */ 72 static struct hstate * __initdata parsed_hstate; 73 static unsigned long __initdata default_hstate_max_huge_pages; 74 static bool __initdata parsed_valid_hugepagesz = true; 75 static bool __initdata parsed_default_hugepagesz; 76 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata; 77 78 /* 79 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages, 80 * free_huge_pages, and surplus_huge_pages. 81 */ 82 DEFINE_SPINLOCK(hugetlb_lock); 83 84 /* 85 * Serializes faults on the same logical page. This is used to 86 * prevent spurious OOMs when the hugepage pool is fully utilized. 87 */ 88 static int num_fault_mutexes; 89 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp; 90 91 /* Forward declaration */ 92 static int hugetlb_acct_memory(struct hstate *h, long delta); 93 94 static inline bool subpool_is_free(struct hugepage_subpool *spool) 95 { 96 if (spool->count) 97 return false; 98 if (spool->max_hpages != -1) 99 return spool->used_hpages == 0; 100 if (spool->min_hpages != -1) 101 return spool->rsv_hpages == spool->min_hpages; 102 103 return true; 104 } 105 106 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool, 107 unsigned long irq_flags) 108 { 109 spin_unlock_irqrestore(&spool->lock, irq_flags); 110 111 /* If no pages are used, and no other handles to the subpool 112 * remain, give up any reservations based on minimum size and 113 * free the subpool */ 114 if (subpool_is_free(spool)) { 115 if (spool->min_hpages != -1) 116 hugetlb_acct_memory(spool->hstate, 117 -spool->min_hpages); 118 kfree(spool); 119 } 120 } 121 122 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages, 123 long min_hpages) 124 { 125 struct hugepage_subpool *spool; 126 127 spool = kzalloc(sizeof(*spool), GFP_KERNEL); 128 if (!spool) 129 return NULL; 130 131 spin_lock_init(&spool->lock); 132 spool->count = 1; 133 spool->max_hpages = max_hpages; 134 spool->hstate = h; 135 spool->min_hpages = min_hpages; 136 137 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) { 138 kfree(spool); 139 return NULL; 140 } 141 spool->rsv_hpages = min_hpages; 142 143 return spool; 144 } 145 146 void hugepage_put_subpool(struct hugepage_subpool *spool) 147 { 148 unsigned long flags; 149 150 spin_lock_irqsave(&spool->lock, flags); 151 BUG_ON(!spool->count); 152 spool->count--; 153 unlock_or_release_subpool(spool, flags); 154 } 155 156 /* 157 * Subpool accounting for allocating and reserving pages. 158 * Return -ENOMEM if there are not enough resources to satisfy the 159 * request. Otherwise, return the number of pages by which the 160 * global pools must be adjusted (upward). The returned value may 161 * only be different than the passed value (delta) in the case where 162 * a subpool minimum size must be maintained. 163 */ 164 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool, 165 long delta) 166 { 167 long ret = delta; 168 169 if (!spool) 170 return ret; 171 172 spin_lock_irq(&spool->lock); 173 174 if (spool->max_hpages != -1) { /* maximum size accounting */ 175 if ((spool->used_hpages + delta) <= spool->max_hpages) 176 spool->used_hpages += delta; 177 else { 178 ret = -ENOMEM; 179 goto unlock_ret; 180 } 181 } 182 183 /* minimum size accounting */ 184 if (spool->min_hpages != -1 && spool->rsv_hpages) { 185 if (delta > spool->rsv_hpages) { 186 /* 187 * Asking for more reserves than those already taken on 188 * behalf of subpool. Return difference. 189 */ 190 ret = delta - spool->rsv_hpages; 191 spool->rsv_hpages = 0; 192 } else { 193 ret = 0; /* reserves already accounted for */ 194 spool->rsv_hpages -= delta; 195 } 196 } 197 198 unlock_ret: 199 spin_unlock_irq(&spool->lock); 200 return ret; 201 } 202 203 /* 204 * Subpool accounting for freeing and unreserving pages. 205 * Return the number of global page reservations that must be dropped. 206 * The return value may only be different than the passed value (delta) 207 * in the case where a subpool minimum size must be maintained. 208 */ 209 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool, 210 long delta) 211 { 212 long ret = delta; 213 unsigned long flags; 214 215 if (!spool) 216 return delta; 217 218 spin_lock_irqsave(&spool->lock, flags); 219 220 if (spool->max_hpages != -1) /* maximum size accounting */ 221 spool->used_hpages -= delta; 222 223 /* minimum size accounting */ 224 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) { 225 if (spool->rsv_hpages + delta <= spool->min_hpages) 226 ret = 0; 227 else 228 ret = spool->rsv_hpages + delta - spool->min_hpages; 229 230 spool->rsv_hpages += delta; 231 if (spool->rsv_hpages > spool->min_hpages) 232 spool->rsv_hpages = spool->min_hpages; 233 } 234 235 /* 236 * If hugetlbfs_put_super couldn't free spool due to an outstanding 237 * quota reference, free it now. 238 */ 239 unlock_or_release_subpool(spool, flags); 240 241 return ret; 242 } 243 244 static inline struct hugepage_subpool *subpool_inode(struct inode *inode) 245 { 246 return HUGETLBFS_SB(inode->i_sb)->spool; 247 } 248 249 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma) 250 { 251 return subpool_inode(file_inode(vma->vm_file)); 252 } 253 254 /* Helper that removes a struct file_region from the resv_map cache and returns 255 * it for use. 256 */ 257 static struct file_region * 258 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to) 259 { 260 struct file_region *nrg = NULL; 261 262 VM_BUG_ON(resv->region_cache_count <= 0); 263 264 resv->region_cache_count--; 265 nrg = list_first_entry(&resv->region_cache, struct file_region, link); 266 list_del(&nrg->link); 267 268 nrg->from = from; 269 nrg->to = to; 270 271 return nrg; 272 } 273 274 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg, 275 struct file_region *rg) 276 { 277 #ifdef CONFIG_CGROUP_HUGETLB 278 nrg->reservation_counter = rg->reservation_counter; 279 nrg->css = rg->css; 280 if (rg->css) 281 css_get(rg->css); 282 #endif 283 } 284 285 /* Helper that records hugetlb_cgroup uncharge info. */ 286 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg, 287 struct hstate *h, 288 struct resv_map *resv, 289 struct file_region *nrg) 290 { 291 #ifdef CONFIG_CGROUP_HUGETLB 292 if (h_cg) { 293 nrg->reservation_counter = 294 &h_cg->rsvd_hugepage[hstate_index(h)]; 295 nrg->css = &h_cg->css; 296 /* 297 * The caller will hold exactly one h_cg->css reference for the 298 * whole contiguous reservation region. But this area might be 299 * scattered when there are already some file_regions reside in 300 * it. As a result, many file_regions may share only one css 301 * reference. In order to ensure that one file_region must hold 302 * exactly one h_cg->css reference, we should do css_get for 303 * each file_region and leave the reference held by caller 304 * untouched. 305 */ 306 css_get(&h_cg->css); 307 if (!resv->pages_per_hpage) 308 resv->pages_per_hpage = pages_per_huge_page(h); 309 /* pages_per_hpage should be the same for all entries in 310 * a resv_map. 311 */ 312 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h)); 313 } else { 314 nrg->reservation_counter = NULL; 315 nrg->css = NULL; 316 } 317 #endif 318 } 319 320 static void put_uncharge_info(struct file_region *rg) 321 { 322 #ifdef CONFIG_CGROUP_HUGETLB 323 if (rg->css) 324 css_put(rg->css); 325 #endif 326 } 327 328 static bool has_same_uncharge_info(struct file_region *rg, 329 struct file_region *org) 330 { 331 #ifdef CONFIG_CGROUP_HUGETLB 332 return rg->reservation_counter == org->reservation_counter && 333 rg->css == org->css; 334 335 #else 336 return true; 337 #endif 338 } 339 340 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg) 341 { 342 struct file_region *nrg = NULL, *prg = NULL; 343 344 prg = list_prev_entry(rg, link); 345 if (&prg->link != &resv->regions && prg->to == rg->from && 346 has_same_uncharge_info(prg, rg)) { 347 prg->to = rg->to; 348 349 list_del(&rg->link); 350 put_uncharge_info(rg); 351 kfree(rg); 352 353 rg = prg; 354 } 355 356 nrg = list_next_entry(rg, link); 357 if (&nrg->link != &resv->regions && nrg->from == rg->to && 358 has_same_uncharge_info(nrg, rg)) { 359 nrg->from = rg->from; 360 361 list_del(&rg->link); 362 put_uncharge_info(rg); 363 kfree(rg); 364 } 365 } 366 367 static inline long 368 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from, 369 long to, struct hstate *h, struct hugetlb_cgroup *cg, 370 long *regions_needed) 371 { 372 struct file_region *nrg; 373 374 if (!regions_needed) { 375 nrg = get_file_region_entry_from_cache(map, from, to); 376 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg); 377 list_add(&nrg->link, rg); 378 coalesce_file_region(map, nrg); 379 } else 380 *regions_needed += 1; 381 382 return to - from; 383 } 384 385 /* 386 * Must be called with resv->lock held. 387 * 388 * Calling this with regions_needed != NULL will count the number of pages 389 * to be added but will not modify the linked list. And regions_needed will 390 * indicate the number of file_regions needed in the cache to carry out to add 391 * the regions for this range. 392 */ 393 static long add_reservation_in_range(struct resv_map *resv, long f, long t, 394 struct hugetlb_cgroup *h_cg, 395 struct hstate *h, long *regions_needed) 396 { 397 long add = 0; 398 struct list_head *head = &resv->regions; 399 long last_accounted_offset = f; 400 struct file_region *iter, *trg = NULL; 401 struct list_head *rg = NULL; 402 403 if (regions_needed) 404 *regions_needed = 0; 405 406 /* In this loop, we essentially handle an entry for the range 407 * [last_accounted_offset, iter->from), at every iteration, with some 408 * bounds checking. 409 */ 410 list_for_each_entry_safe(iter, trg, head, link) { 411 /* Skip irrelevant regions that start before our range. */ 412 if (iter->from < f) { 413 /* If this region ends after the last accounted offset, 414 * then we need to update last_accounted_offset. 415 */ 416 if (iter->to > last_accounted_offset) 417 last_accounted_offset = iter->to; 418 continue; 419 } 420 421 /* When we find a region that starts beyond our range, we've 422 * finished. 423 */ 424 if (iter->from >= t) { 425 rg = iter->link.prev; 426 break; 427 } 428 429 /* Add an entry for last_accounted_offset -> iter->from, and 430 * update last_accounted_offset. 431 */ 432 if (iter->from > last_accounted_offset) 433 add += hugetlb_resv_map_add(resv, iter->link.prev, 434 last_accounted_offset, 435 iter->from, h, h_cg, 436 regions_needed); 437 438 last_accounted_offset = iter->to; 439 } 440 441 /* Handle the case where our range extends beyond 442 * last_accounted_offset. 443 */ 444 if (!rg) 445 rg = head->prev; 446 if (last_accounted_offset < t) 447 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset, 448 t, h, h_cg, regions_needed); 449 450 return add; 451 } 452 453 /* Must be called with resv->lock acquired. Will drop lock to allocate entries. 454 */ 455 static int allocate_file_region_entries(struct resv_map *resv, 456 int regions_needed) 457 __must_hold(&resv->lock) 458 { 459 struct list_head allocated_regions; 460 int to_allocate = 0, i = 0; 461 struct file_region *trg = NULL, *rg = NULL; 462 463 VM_BUG_ON(regions_needed < 0); 464 465 INIT_LIST_HEAD(&allocated_regions); 466 467 /* 468 * Check for sufficient descriptors in the cache to accommodate 469 * the number of in progress add operations plus regions_needed. 470 * 471 * This is a while loop because when we drop the lock, some other call 472 * to region_add or region_del may have consumed some region_entries, 473 * so we keep looping here until we finally have enough entries for 474 * (adds_in_progress + regions_needed). 475 */ 476 while (resv->region_cache_count < 477 (resv->adds_in_progress + regions_needed)) { 478 to_allocate = resv->adds_in_progress + regions_needed - 479 resv->region_cache_count; 480 481 /* At this point, we should have enough entries in the cache 482 * for all the existing adds_in_progress. We should only be 483 * needing to allocate for regions_needed. 484 */ 485 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress); 486 487 spin_unlock(&resv->lock); 488 for (i = 0; i < to_allocate; i++) { 489 trg = kmalloc(sizeof(*trg), GFP_KERNEL); 490 if (!trg) 491 goto out_of_memory; 492 list_add(&trg->link, &allocated_regions); 493 } 494 495 spin_lock(&resv->lock); 496 497 list_splice(&allocated_regions, &resv->region_cache); 498 resv->region_cache_count += to_allocate; 499 } 500 501 return 0; 502 503 out_of_memory: 504 list_for_each_entry_safe(rg, trg, &allocated_regions, link) { 505 list_del(&rg->link); 506 kfree(rg); 507 } 508 return -ENOMEM; 509 } 510 511 /* 512 * Add the huge page range represented by [f, t) to the reserve 513 * map. Regions will be taken from the cache to fill in this range. 514 * Sufficient regions should exist in the cache due to the previous 515 * call to region_chg with the same range, but in some cases the cache will not 516 * have sufficient entries due to races with other code doing region_add or 517 * region_del. The extra needed entries will be allocated. 518 * 519 * regions_needed is the out value provided by a previous call to region_chg. 520 * 521 * Return the number of new huge pages added to the map. This number is greater 522 * than or equal to zero. If file_region entries needed to be allocated for 523 * this operation and we were not able to allocate, it returns -ENOMEM. 524 * region_add of regions of length 1 never allocate file_regions and cannot 525 * fail; region_chg will always allocate at least 1 entry and a region_add for 526 * 1 page will only require at most 1 entry. 527 */ 528 static long region_add(struct resv_map *resv, long f, long t, 529 long in_regions_needed, struct hstate *h, 530 struct hugetlb_cgroup *h_cg) 531 { 532 long add = 0, actual_regions_needed = 0; 533 534 spin_lock(&resv->lock); 535 retry: 536 537 /* Count how many regions are actually needed to execute this add. */ 538 add_reservation_in_range(resv, f, t, NULL, NULL, 539 &actual_regions_needed); 540 541 /* 542 * Check for sufficient descriptors in the cache to accommodate 543 * this add operation. Note that actual_regions_needed may be greater 544 * than in_regions_needed, as the resv_map may have been modified since 545 * the region_chg call. In this case, we need to make sure that we 546 * allocate extra entries, such that we have enough for all the 547 * existing adds_in_progress, plus the excess needed for this 548 * operation. 549 */ 550 if (actual_regions_needed > in_regions_needed && 551 resv->region_cache_count < 552 resv->adds_in_progress + 553 (actual_regions_needed - in_regions_needed)) { 554 /* region_add operation of range 1 should never need to 555 * allocate file_region entries. 556 */ 557 VM_BUG_ON(t - f <= 1); 558 559 if (allocate_file_region_entries( 560 resv, actual_regions_needed - in_regions_needed)) { 561 return -ENOMEM; 562 } 563 564 goto retry; 565 } 566 567 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL); 568 569 resv->adds_in_progress -= in_regions_needed; 570 571 spin_unlock(&resv->lock); 572 return add; 573 } 574 575 /* 576 * Examine the existing reserve map and determine how many 577 * huge pages in the specified range [f, t) are NOT currently 578 * represented. This routine is called before a subsequent 579 * call to region_add that will actually modify the reserve 580 * map to add the specified range [f, t). region_chg does 581 * not change the number of huge pages represented by the 582 * map. A number of new file_region structures is added to the cache as a 583 * placeholder, for the subsequent region_add call to use. At least 1 584 * file_region structure is added. 585 * 586 * out_regions_needed is the number of regions added to the 587 * resv->adds_in_progress. This value needs to be provided to a follow up call 588 * to region_add or region_abort for proper accounting. 589 * 590 * Returns the number of huge pages that need to be added to the existing 591 * reservation map for the range [f, t). This number is greater or equal to 592 * zero. -ENOMEM is returned if a new file_region structure or cache entry 593 * is needed and can not be allocated. 594 */ 595 static long region_chg(struct resv_map *resv, long f, long t, 596 long *out_regions_needed) 597 { 598 long chg = 0; 599 600 spin_lock(&resv->lock); 601 602 /* Count how many hugepages in this range are NOT represented. */ 603 chg = add_reservation_in_range(resv, f, t, NULL, NULL, 604 out_regions_needed); 605 606 if (*out_regions_needed == 0) 607 *out_regions_needed = 1; 608 609 if (allocate_file_region_entries(resv, *out_regions_needed)) 610 return -ENOMEM; 611 612 resv->adds_in_progress += *out_regions_needed; 613 614 spin_unlock(&resv->lock); 615 return chg; 616 } 617 618 /* 619 * Abort the in progress add operation. The adds_in_progress field 620 * of the resv_map keeps track of the operations in progress between 621 * calls to region_chg and region_add. Operations are sometimes 622 * aborted after the call to region_chg. In such cases, region_abort 623 * is called to decrement the adds_in_progress counter. regions_needed 624 * is the value returned by the region_chg call, it is used to decrement 625 * the adds_in_progress counter. 626 * 627 * NOTE: The range arguments [f, t) are not needed or used in this 628 * routine. They are kept to make reading the calling code easier as 629 * arguments will match the associated region_chg call. 630 */ 631 static void region_abort(struct resv_map *resv, long f, long t, 632 long regions_needed) 633 { 634 spin_lock(&resv->lock); 635 VM_BUG_ON(!resv->region_cache_count); 636 resv->adds_in_progress -= regions_needed; 637 spin_unlock(&resv->lock); 638 } 639 640 /* 641 * Delete the specified range [f, t) from the reserve map. If the 642 * t parameter is LONG_MAX, this indicates that ALL regions after f 643 * should be deleted. Locate the regions which intersect [f, t) 644 * and either trim, delete or split the existing regions. 645 * 646 * Returns the number of huge pages deleted from the reserve map. 647 * In the normal case, the return value is zero or more. In the 648 * case where a region must be split, a new region descriptor must 649 * be allocated. If the allocation fails, -ENOMEM will be returned. 650 * NOTE: If the parameter t == LONG_MAX, then we will never split 651 * a region and possibly return -ENOMEM. Callers specifying 652 * t == LONG_MAX do not need to check for -ENOMEM error. 653 */ 654 static long region_del(struct resv_map *resv, long f, long t) 655 { 656 struct list_head *head = &resv->regions; 657 struct file_region *rg, *trg; 658 struct file_region *nrg = NULL; 659 long del = 0; 660 661 retry: 662 spin_lock(&resv->lock); 663 list_for_each_entry_safe(rg, trg, head, link) { 664 /* 665 * Skip regions before the range to be deleted. file_region 666 * ranges are normally of the form [from, to). However, there 667 * may be a "placeholder" entry in the map which is of the form 668 * (from, to) with from == to. Check for placeholder entries 669 * at the beginning of the range to be deleted. 670 */ 671 if (rg->to <= f && (rg->to != rg->from || rg->to != f)) 672 continue; 673 674 if (rg->from >= t) 675 break; 676 677 if (f > rg->from && t < rg->to) { /* Must split region */ 678 /* 679 * Check for an entry in the cache before dropping 680 * lock and attempting allocation. 681 */ 682 if (!nrg && 683 resv->region_cache_count > resv->adds_in_progress) { 684 nrg = list_first_entry(&resv->region_cache, 685 struct file_region, 686 link); 687 list_del(&nrg->link); 688 resv->region_cache_count--; 689 } 690 691 if (!nrg) { 692 spin_unlock(&resv->lock); 693 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 694 if (!nrg) 695 return -ENOMEM; 696 goto retry; 697 } 698 699 del += t - f; 700 hugetlb_cgroup_uncharge_file_region( 701 resv, rg, t - f, false); 702 703 /* New entry for end of split region */ 704 nrg->from = t; 705 nrg->to = rg->to; 706 707 copy_hugetlb_cgroup_uncharge_info(nrg, rg); 708 709 INIT_LIST_HEAD(&nrg->link); 710 711 /* Original entry is trimmed */ 712 rg->to = f; 713 714 list_add(&nrg->link, &rg->link); 715 nrg = NULL; 716 break; 717 } 718 719 if (f <= rg->from && t >= rg->to) { /* Remove entire region */ 720 del += rg->to - rg->from; 721 hugetlb_cgroup_uncharge_file_region(resv, rg, 722 rg->to - rg->from, true); 723 list_del(&rg->link); 724 kfree(rg); 725 continue; 726 } 727 728 if (f <= rg->from) { /* Trim beginning of region */ 729 hugetlb_cgroup_uncharge_file_region(resv, rg, 730 t - rg->from, false); 731 732 del += t - rg->from; 733 rg->from = t; 734 } else { /* Trim end of region */ 735 hugetlb_cgroup_uncharge_file_region(resv, rg, 736 rg->to - f, false); 737 738 del += rg->to - f; 739 rg->to = f; 740 } 741 } 742 743 spin_unlock(&resv->lock); 744 kfree(nrg); 745 return del; 746 } 747 748 /* 749 * A rare out of memory error was encountered which prevented removal of 750 * the reserve map region for a page. The huge page itself was free'ed 751 * and removed from the page cache. This routine will adjust the subpool 752 * usage count, and the global reserve count if needed. By incrementing 753 * these counts, the reserve map entry which could not be deleted will 754 * appear as a "reserved" entry instead of simply dangling with incorrect 755 * counts. 756 */ 757 void hugetlb_fix_reserve_counts(struct inode *inode) 758 { 759 struct hugepage_subpool *spool = subpool_inode(inode); 760 long rsv_adjust; 761 bool reserved = false; 762 763 rsv_adjust = hugepage_subpool_get_pages(spool, 1); 764 if (rsv_adjust > 0) { 765 struct hstate *h = hstate_inode(inode); 766 767 if (!hugetlb_acct_memory(h, 1)) 768 reserved = true; 769 } else if (!rsv_adjust) { 770 reserved = true; 771 } 772 773 if (!reserved) 774 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n"); 775 } 776 777 /* 778 * Count and return the number of huge pages in the reserve map 779 * that intersect with the range [f, t). 780 */ 781 static long region_count(struct resv_map *resv, long f, long t) 782 { 783 struct list_head *head = &resv->regions; 784 struct file_region *rg; 785 long chg = 0; 786 787 spin_lock(&resv->lock); 788 /* Locate each segment we overlap with, and count that overlap. */ 789 list_for_each_entry(rg, head, link) { 790 long seg_from; 791 long seg_to; 792 793 if (rg->to <= f) 794 continue; 795 if (rg->from >= t) 796 break; 797 798 seg_from = max(rg->from, f); 799 seg_to = min(rg->to, t); 800 801 chg += seg_to - seg_from; 802 } 803 spin_unlock(&resv->lock); 804 805 return chg; 806 } 807 808 /* 809 * Convert the address within this vma to the page offset within 810 * the mapping, in pagecache page units; huge pages here. 811 */ 812 static pgoff_t vma_hugecache_offset(struct hstate *h, 813 struct vm_area_struct *vma, unsigned long address) 814 { 815 return ((address - vma->vm_start) >> huge_page_shift(h)) + 816 (vma->vm_pgoff >> huge_page_order(h)); 817 } 818 819 pgoff_t linear_hugepage_index(struct vm_area_struct *vma, 820 unsigned long address) 821 { 822 return vma_hugecache_offset(hstate_vma(vma), vma, address); 823 } 824 EXPORT_SYMBOL_GPL(linear_hugepage_index); 825 826 /* 827 * Return the size of the pages allocated when backing a VMA. In the majority 828 * cases this will be same size as used by the page table entries. 829 */ 830 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) 831 { 832 if (vma->vm_ops && vma->vm_ops->pagesize) 833 return vma->vm_ops->pagesize(vma); 834 return PAGE_SIZE; 835 } 836 EXPORT_SYMBOL_GPL(vma_kernel_pagesize); 837 838 /* 839 * Return the page size being used by the MMU to back a VMA. In the majority 840 * of cases, the page size used by the kernel matches the MMU size. On 841 * architectures where it differs, an architecture-specific 'strong' 842 * version of this symbol is required. 843 */ 844 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 845 { 846 return vma_kernel_pagesize(vma); 847 } 848 849 /* 850 * Flags for MAP_PRIVATE reservations. These are stored in the bottom 851 * bits of the reservation map pointer, which are always clear due to 852 * alignment. 853 */ 854 #define HPAGE_RESV_OWNER (1UL << 0) 855 #define HPAGE_RESV_UNMAPPED (1UL << 1) 856 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) 857 858 /* 859 * These helpers are used to track how many pages are reserved for 860 * faults in a MAP_PRIVATE mapping. Only the process that called mmap() 861 * is guaranteed to have their future faults succeed. 862 * 863 * With the exception of reset_vma_resv_huge_pages() which is called at fork(), 864 * the reserve counters are updated with the hugetlb_lock held. It is safe 865 * to reset the VMA at fork() time as it is not in use yet and there is no 866 * chance of the global counters getting corrupted as a result of the values. 867 * 868 * The private mapping reservation is represented in a subtly different 869 * manner to a shared mapping. A shared mapping has a region map associated 870 * with the underlying file, this region map represents the backing file 871 * pages which have ever had a reservation assigned which this persists even 872 * after the page is instantiated. A private mapping has a region map 873 * associated with the original mmap which is attached to all VMAs which 874 * reference it, this region map represents those offsets which have consumed 875 * reservation ie. where pages have been instantiated. 876 */ 877 static unsigned long get_vma_private_data(struct vm_area_struct *vma) 878 { 879 return (unsigned long)vma->vm_private_data; 880 } 881 882 static void set_vma_private_data(struct vm_area_struct *vma, 883 unsigned long value) 884 { 885 vma->vm_private_data = (void *)value; 886 } 887 888 static void 889 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map, 890 struct hugetlb_cgroup *h_cg, 891 struct hstate *h) 892 { 893 #ifdef CONFIG_CGROUP_HUGETLB 894 if (!h_cg || !h) { 895 resv_map->reservation_counter = NULL; 896 resv_map->pages_per_hpage = 0; 897 resv_map->css = NULL; 898 } else { 899 resv_map->reservation_counter = 900 &h_cg->rsvd_hugepage[hstate_index(h)]; 901 resv_map->pages_per_hpage = pages_per_huge_page(h); 902 resv_map->css = &h_cg->css; 903 } 904 #endif 905 } 906 907 struct resv_map *resv_map_alloc(void) 908 { 909 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); 910 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL); 911 912 if (!resv_map || !rg) { 913 kfree(resv_map); 914 kfree(rg); 915 return NULL; 916 } 917 918 kref_init(&resv_map->refs); 919 spin_lock_init(&resv_map->lock); 920 INIT_LIST_HEAD(&resv_map->regions); 921 922 resv_map->adds_in_progress = 0; 923 /* 924 * Initialize these to 0. On shared mappings, 0's here indicate these 925 * fields don't do cgroup accounting. On private mappings, these will be 926 * re-initialized to the proper values, to indicate that hugetlb cgroup 927 * reservations are to be un-charged from here. 928 */ 929 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL); 930 931 INIT_LIST_HEAD(&resv_map->region_cache); 932 list_add(&rg->link, &resv_map->region_cache); 933 resv_map->region_cache_count = 1; 934 935 return resv_map; 936 } 937 938 void resv_map_release(struct kref *ref) 939 { 940 struct resv_map *resv_map = container_of(ref, struct resv_map, refs); 941 struct list_head *head = &resv_map->region_cache; 942 struct file_region *rg, *trg; 943 944 /* Clear out any active regions before we release the map. */ 945 region_del(resv_map, 0, LONG_MAX); 946 947 /* ... and any entries left in the cache */ 948 list_for_each_entry_safe(rg, trg, head, link) { 949 list_del(&rg->link); 950 kfree(rg); 951 } 952 953 VM_BUG_ON(resv_map->adds_in_progress); 954 955 kfree(resv_map); 956 } 957 958 static inline struct resv_map *inode_resv_map(struct inode *inode) 959 { 960 /* 961 * At inode evict time, i_mapping may not point to the original 962 * address space within the inode. This original address space 963 * contains the pointer to the resv_map. So, always use the 964 * address space embedded within the inode. 965 * The VERY common case is inode->mapping == &inode->i_data but, 966 * this may not be true for device special inodes. 967 */ 968 return (struct resv_map *)(&inode->i_data)->private_data; 969 } 970 971 static struct resv_map *vma_resv_map(struct vm_area_struct *vma) 972 { 973 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 974 if (vma->vm_flags & VM_MAYSHARE) { 975 struct address_space *mapping = vma->vm_file->f_mapping; 976 struct inode *inode = mapping->host; 977 978 return inode_resv_map(inode); 979 980 } else { 981 return (struct resv_map *)(get_vma_private_data(vma) & 982 ~HPAGE_RESV_MASK); 983 } 984 } 985 986 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) 987 { 988 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 989 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 990 991 set_vma_private_data(vma, (get_vma_private_data(vma) & 992 HPAGE_RESV_MASK) | (unsigned long)map); 993 } 994 995 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) 996 { 997 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 998 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 999 1000 set_vma_private_data(vma, get_vma_private_data(vma) | flags); 1001 } 1002 1003 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) 1004 { 1005 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1006 1007 return (get_vma_private_data(vma) & flag) != 0; 1008 } 1009 1010 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */ 1011 void reset_vma_resv_huge_pages(struct vm_area_struct *vma) 1012 { 1013 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1014 if (!(vma->vm_flags & VM_MAYSHARE)) 1015 vma->vm_private_data = (void *)0; 1016 } 1017 1018 /* 1019 * Reset and decrement one ref on hugepage private reservation. 1020 * Called with mm->mmap_sem writer semaphore held. 1021 * This function should be only used by move_vma() and operate on 1022 * same sized vma. It should never come here with last ref on the 1023 * reservation. 1024 */ 1025 void clear_vma_resv_huge_pages(struct vm_area_struct *vma) 1026 { 1027 /* 1028 * Clear the old hugetlb private page reservation. 1029 * It has already been transferred to new_vma. 1030 * 1031 * During a mremap() operation of a hugetlb vma we call move_vma() 1032 * which copies vma into new_vma and unmaps vma. After the copy 1033 * operation both new_vma and vma share a reference to the resv_map 1034 * struct, and at that point vma is about to be unmapped. We don't 1035 * want to return the reservation to the pool at unmap of vma because 1036 * the reservation still lives on in new_vma, so simply decrement the 1037 * ref here and remove the resv_map reference from this vma. 1038 */ 1039 struct resv_map *reservations = vma_resv_map(vma); 1040 1041 if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 1042 resv_map_put_hugetlb_cgroup_uncharge_info(reservations); 1043 kref_put(&reservations->refs, resv_map_release); 1044 } 1045 1046 reset_vma_resv_huge_pages(vma); 1047 } 1048 1049 /* Returns true if the VMA has associated reserve pages */ 1050 static bool vma_has_reserves(struct vm_area_struct *vma, long chg) 1051 { 1052 if (vma->vm_flags & VM_NORESERVE) { 1053 /* 1054 * This address is already reserved by other process(chg == 0), 1055 * so, we should decrement reserved count. Without decrementing, 1056 * reserve count remains after releasing inode, because this 1057 * allocated page will go into page cache and is regarded as 1058 * coming from reserved pool in releasing step. Currently, we 1059 * don't have any other solution to deal with this situation 1060 * properly, so add work-around here. 1061 */ 1062 if (vma->vm_flags & VM_MAYSHARE && chg == 0) 1063 return true; 1064 else 1065 return false; 1066 } 1067 1068 /* Shared mappings always use reserves */ 1069 if (vma->vm_flags & VM_MAYSHARE) { 1070 /* 1071 * We know VM_NORESERVE is not set. Therefore, there SHOULD 1072 * be a region map for all pages. The only situation where 1073 * there is no region map is if a hole was punched via 1074 * fallocate. In this case, there really are no reserves to 1075 * use. This situation is indicated if chg != 0. 1076 */ 1077 if (chg) 1078 return false; 1079 else 1080 return true; 1081 } 1082 1083 /* 1084 * Only the process that called mmap() has reserves for 1085 * private mappings. 1086 */ 1087 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 1088 /* 1089 * Like the shared case above, a hole punch or truncate 1090 * could have been performed on the private mapping. 1091 * Examine the value of chg to determine if reserves 1092 * actually exist or were previously consumed. 1093 * Very Subtle - The value of chg comes from a previous 1094 * call to vma_needs_reserves(). The reserve map for 1095 * private mappings has different (opposite) semantics 1096 * than that of shared mappings. vma_needs_reserves() 1097 * has already taken this difference in semantics into 1098 * account. Therefore, the meaning of chg is the same 1099 * as in the shared case above. Code could easily be 1100 * combined, but keeping it separate draws attention to 1101 * subtle differences. 1102 */ 1103 if (chg) 1104 return false; 1105 else 1106 return true; 1107 } 1108 1109 return false; 1110 } 1111 1112 static void enqueue_huge_page(struct hstate *h, struct page *page) 1113 { 1114 int nid = page_to_nid(page); 1115 1116 lockdep_assert_held(&hugetlb_lock); 1117 VM_BUG_ON_PAGE(page_count(page), page); 1118 1119 list_move(&page->lru, &h->hugepage_freelists[nid]); 1120 h->free_huge_pages++; 1121 h->free_huge_pages_node[nid]++; 1122 SetHPageFreed(page); 1123 } 1124 1125 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid) 1126 { 1127 struct page *page; 1128 bool pin = !!(current->flags & PF_MEMALLOC_PIN); 1129 1130 lockdep_assert_held(&hugetlb_lock); 1131 list_for_each_entry(page, &h->hugepage_freelists[nid], lru) { 1132 if (pin && !is_longterm_pinnable_page(page)) 1133 continue; 1134 1135 if (PageHWPoison(page)) 1136 continue; 1137 1138 list_move(&page->lru, &h->hugepage_activelist); 1139 set_page_refcounted(page); 1140 ClearHPageFreed(page); 1141 h->free_huge_pages--; 1142 h->free_huge_pages_node[nid]--; 1143 return page; 1144 } 1145 1146 return NULL; 1147 } 1148 1149 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid, 1150 nodemask_t *nmask) 1151 { 1152 unsigned int cpuset_mems_cookie; 1153 struct zonelist *zonelist; 1154 struct zone *zone; 1155 struct zoneref *z; 1156 int node = NUMA_NO_NODE; 1157 1158 zonelist = node_zonelist(nid, gfp_mask); 1159 1160 retry_cpuset: 1161 cpuset_mems_cookie = read_mems_allowed_begin(); 1162 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) { 1163 struct page *page; 1164 1165 if (!cpuset_zone_allowed(zone, gfp_mask)) 1166 continue; 1167 /* 1168 * no need to ask again on the same node. Pool is node rather than 1169 * zone aware 1170 */ 1171 if (zone_to_nid(zone) == node) 1172 continue; 1173 node = zone_to_nid(zone); 1174 1175 page = dequeue_huge_page_node_exact(h, node); 1176 if (page) 1177 return page; 1178 } 1179 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie))) 1180 goto retry_cpuset; 1181 1182 return NULL; 1183 } 1184 1185 static struct page *dequeue_huge_page_vma(struct hstate *h, 1186 struct vm_area_struct *vma, 1187 unsigned long address, int avoid_reserve, 1188 long chg) 1189 { 1190 struct page *page = NULL; 1191 struct mempolicy *mpol; 1192 gfp_t gfp_mask; 1193 nodemask_t *nodemask; 1194 int nid; 1195 1196 /* 1197 * A child process with MAP_PRIVATE mappings created by their parent 1198 * have no page reserves. This check ensures that reservations are 1199 * not "stolen". The child may still get SIGKILLed 1200 */ 1201 if (!vma_has_reserves(vma, chg) && 1202 h->free_huge_pages - h->resv_huge_pages == 0) 1203 goto err; 1204 1205 /* If reserves cannot be used, ensure enough pages are in the pool */ 1206 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0) 1207 goto err; 1208 1209 gfp_mask = htlb_alloc_mask(h); 1210 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 1211 1212 if (mpol_is_preferred_many(mpol)) { 1213 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask); 1214 1215 /* Fallback to all nodes if page==NULL */ 1216 nodemask = NULL; 1217 } 1218 1219 if (!page) 1220 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask); 1221 1222 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) { 1223 SetHPageRestoreReserve(page); 1224 h->resv_huge_pages--; 1225 } 1226 1227 mpol_cond_put(mpol); 1228 return page; 1229 1230 err: 1231 return NULL; 1232 } 1233 1234 /* 1235 * common helper functions for hstate_next_node_to_{alloc|free}. 1236 * We may have allocated or freed a huge page based on a different 1237 * nodes_allowed previously, so h->next_node_to_{alloc|free} might 1238 * be outside of *nodes_allowed. Ensure that we use an allowed 1239 * node for alloc or free. 1240 */ 1241 static int next_node_allowed(int nid, nodemask_t *nodes_allowed) 1242 { 1243 nid = next_node_in(nid, *nodes_allowed); 1244 VM_BUG_ON(nid >= MAX_NUMNODES); 1245 1246 return nid; 1247 } 1248 1249 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed) 1250 { 1251 if (!node_isset(nid, *nodes_allowed)) 1252 nid = next_node_allowed(nid, nodes_allowed); 1253 return nid; 1254 } 1255 1256 /* 1257 * returns the previously saved node ["this node"] from which to 1258 * allocate a persistent huge page for the pool and advance the 1259 * next node from which to allocate, handling wrap at end of node 1260 * mask. 1261 */ 1262 static int hstate_next_node_to_alloc(struct hstate *h, 1263 nodemask_t *nodes_allowed) 1264 { 1265 int nid; 1266 1267 VM_BUG_ON(!nodes_allowed); 1268 1269 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed); 1270 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed); 1271 1272 return nid; 1273 } 1274 1275 /* 1276 * helper for remove_pool_huge_page() - return the previously saved 1277 * node ["this node"] from which to free a huge page. Advance the 1278 * next node id whether or not we find a free huge page to free so 1279 * that the next attempt to free addresses the next node. 1280 */ 1281 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed) 1282 { 1283 int nid; 1284 1285 VM_BUG_ON(!nodes_allowed); 1286 1287 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed); 1288 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed); 1289 1290 return nid; 1291 } 1292 1293 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \ 1294 for (nr_nodes = nodes_weight(*mask); \ 1295 nr_nodes > 0 && \ 1296 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \ 1297 nr_nodes--) 1298 1299 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \ 1300 for (nr_nodes = nodes_weight(*mask); \ 1301 nr_nodes > 0 && \ 1302 ((node = hstate_next_node_to_free(hs, mask)) || 1); \ 1303 nr_nodes--) 1304 1305 /* used to demote non-gigantic_huge pages as well */ 1306 static void __destroy_compound_gigantic_page(struct page *page, 1307 unsigned int order, bool demote) 1308 { 1309 int i; 1310 int nr_pages = 1 << order; 1311 struct page *p = page + 1; 1312 1313 atomic_set(compound_mapcount_ptr(page), 0); 1314 atomic_set(compound_pincount_ptr(page), 0); 1315 1316 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { 1317 p->mapping = NULL; 1318 clear_compound_head(p); 1319 if (!demote) 1320 set_page_refcounted(p); 1321 } 1322 1323 set_compound_order(page, 0); 1324 #ifdef CONFIG_64BIT 1325 page[1].compound_nr = 0; 1326 #endif 1327 __ClearPageHead(page); 1328 } 1329 1330 static void destroy_compound_hugetlb_page_for_demote(struct page *page, 1331 unsigned int order) 1332 { 1333 __destroy_compound_gigantic_page(page, order, true); 1334 } 1335 1336 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE 1337 static void destroy_compound_gigantic_page(struct page *page, 1338 unsigned int order) 1339 { 1340 __destroy_compound_gigantic_page(page, order, false); 1341 } 1342 1343 static void free_gigantic_page(struct page *page, unsigned int order) 1344 { 1345 /* 1346 * If the page isn't allocated using the cma allocator, 1347 * cma_release() returns false. 1348 */ 1349 #ifdef CONFIG_CMA 1350 if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order)) 1351 return; 1352 #endif 1353 1354 free_contig_range(page_to_pfn(page), 1 << order); 1355 } 1356 1357 #ifdef CONFIG_CONTIG_ALLOC 1358 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, 1359 int nid, nodemask_t *nodemask) 1360 { 1361 unsigned long nr_pages = pages_per_huge_page(h); 1362 if (nid == NUMA_NO_NODE) 1363 nid = numa_mem_id(); 1364 1365 #ifdef CONFIG_CMA 1366 { 1367 struct page *page; 1368 int node; 1369 1370 if (hugetlb_cma[nid]) { 1371 page = cma_alloc(hugetlb_cma[nid], nr_pages, 1372 huge_page_order(h), true); 1373 if (page) 1374 return page; 1375 } 1376 1377 if (!(gfp_mask & __GFP_THISNODE)) { 1378 for_each_node_mask(node, *nodemask) { 1379 if (node == nid || !hugetlb_cma[node]) 1380 continue; 1381 1382 page = cma_alloc(hugetlb_cma[node], nr_pages, 1383 huge_page_order(h), true); 1384 if (page) 1385 return page; 1386 } 1387 } 1388 } 1389 #endif 1390 1391 return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask); 1392 } 1393 1394 #else /* !CONFIG_CONTIG_ALLOC */ 1395 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, 1396 int nid, nodemask_t *nodemask) 1397 { 1398 return NULL; 1399 } 1400 #endif /* CONFIG_CONTIG_ALLOC */ 1401 1402 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */ 1403 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, 1404 int nid, nodemask_t *nodemask) 1405 { 1406 return NULL; 1407 } 1408 static inline void free_gigantic_page(struct page *page, unsigned int order) { } 1409 static inline void destroy_compound_gigantic_page(struct page *page, 1410 unsigned int order) { } 1411 #endif 1412 1413 /* 1414 * Remove hugetlb page from lists, and update dtor so that page appears 1415 * as just a compound page. 1416 * 1417 * A reference is held on the page, except in the case of demote. 1418 * 1419 * Must be called with hugetlb lock held. 1420 */ 1421 static void __remove_hugetlb_page(struct hstate *h, struct page *page, 1422 bool adjust_surplus, 1423 bool demote) 1424 { 1425 int nid = page_to_nid(page); 1426 1427 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page); 1428 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page); 1429 1430 lockdep_assert_held(&hugetlb_lock); 1431 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 1432 return; 1433 1434 list_del(&page->lru); 1435 1436 if (HPageFreed(page)) { 1437 h->free_huge_pages--; 1438 h->free_huge_pages_node[nid]--; 1439 } 1440 if (adjust_surplus) { 1441 h->surplus_huge_pages--; 1442 h->surplus_huge_pages_node[nid]--; 1443 } 1444 1445 /* 1446 * Very subtle 1447 * 1448 * For non-gigantic pages set the destructor to the normal compound 1449 * page dtor. This is needed in case someone takes an additional 1450 * temporary ref to the page, and freeing is delayed until they drop 1451 * their reference. 1452 * 1453 * For gigantic pages set the destructor to the null dtor. This 1454 * destructor will never be called. Before freeing the gigantic 1455 * page destroy_compound_gigantic_page will turn the compound page 1456 * into a simple group of pages. After this the destructor does not 1457 * apply. 1458 * 1459 * This handles the case where more than one ref is held when and 1460 * after update_and_free_page is called. 1461 * 1462 * In the case of demote we do not ref count the page as it will soon 1463 * be turned into a page of smaller size. 1464 */ 1465 if (!demote) 1466 set_page_refcounted(page); 1467 if (hstate_is_gigantic(h)) 1468 set_compound_page_dtor(page, NULL_COMPOUND_DTOR); 1469 else 1470 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR); 1471 1472 h->nr_huge_pages--; 1473 h->nr_huge_pages_node[nid]--; 1474 } 1475 1476 static void remove_hugetlb_page(struct hstate *h, struct page *page, 1477 bool adjust_surplus) 1478 { 1479 __remove_hugetlb_page(h, page, adjust_surplus, false); 1480 } 1481 1482 static void remove_hugetlb_page_for_demote(struct hstate *h, struct page *page, 1483 bool adjust_surplus) 1484 { 1485 __remove_hugetlb_page(h, page, adjust_surplus, true); 1486 } 1487 1488 static void add_hugetlb_page(struct hstate *h, struct page *page, 1489 bool adjust_surplus) 1490 { 1491 int zeroed; 1492 int nid = page_to_nid(page); 1493 1494 VM_BUG_ON_PAGE(!HPageVmemmapOptimized(page), page); 1495 1496 lockdep_assert_held(&hugetlb_lock); 1497 1498 INIT_LIST_HEAD(&page->lru); 1499 h->nr_huge_pages++; 1500 h->nr_huge_pages_node[nid]++; 1501 1502 if (adjust_surplus) { 1503 h->surplus_huge_pages++; 1504 h->surplus_huge_pages_node[nid]++; 1505 } 1506 1507 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR); 1508 set_page_private(page, 0); 1509 SetHPageVmemmapOptimized(page); 1510 1511 /* 1512 * This page is about to be managed by the hugetlb allocator and 1513 * should have no users. Drop our reference, and check for others 1514 * just in case. 1515 */ 1516 zeroed = put_page_testzero(page); 1517 if (!zeroed) 1518 /* 1519 * It is VERY unlikely soneone else has taken a ref on 1520 * the page. In this case, we simply return as the 1521 * hugetlb destructor (free_huge_page) will be called 1522 * when this other ref is dropped. 1523 */ 1524 return; 1525 1526 arch_clear_hugepage_flags(page); 1527 enqueue_huge_page(h, page); 1528 } 1529 1530 static void __update_and_free_page(struct hstate *h, struct page *page) 1531 { 1532 int i; 1533 struct page *subpage = page; 1534 1535 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 1536 return; 1537 1538 /* 1539 * If we don't know which subpages are hwpoisoned, we can't free 1540 * the hugepage, so it's leaked intentionally. 1541 */ 1542 if (HPageRawHwpUnreliable(page)) 1543 return; 1544 1545 if (hugetlb_vmemmap_restore(h, page)) { 1546 spin_lock_irq(&hugetlb_lock); 1547 /* 1548 * If we cannot allocate vmemmap pages, just refuse to free the 1549 * page and put the page back on the hugetlb free list and treat 1550 * as a surplus page. 1551 */ 1552 add_hugetlb_page(h, page, true); 1553 spin_unlock_irq(&hugetlb_lock); 1554 return; 1555 } 1556 1557 /* 1558 * Move PageHWPoison flag from head page to the raw error pages, 1559 * which makes any healthy subpages reusable. 1560 */ 1561 if (unlikely(PageHWPoison(page))) 1562 hugetlb_clear_page_hwpoison(page); 1563 1564 for (i = 0; i < pages_per_huge_page(h); 1565 i++, subpage = mem_map_next(subpage, page, i)) { 1566 subpage->flags &= ~(1 << PG_locked | 1 << PG_error | 1567 1 << PG_referenced | 1 << PG_dirty | 1568 1 << PG_active | 1 << PG_private | 1569 1 << PG_writeback); 1570 } 1571 1572 /* 1573 * Non-gigantic pages demoted from CMA allocated gigantic pages 1574 * need to be given back to CMA in free_gigantic_page. 1575 */ 1576 if (hstate_is_gigantic(h) || 1577 hugetlb_cma_page(page, huge_page_order(h))) { 1578 destroy_compound_gigantic_page(page, huge_page_order(h)); 1579 free_gigantic_page(page, huge_page_order(h)); 1580 } else { 1581 __free_pages(page, huge_page_order(h)); 1582 } 1583 } 1584 1585 /* 1586 * As update_and_free_page() can be called under any context, so we cannot 1587 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the 1588 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate 1589 * the vmemmap pages. 1590 * 1591 * free_hpage_workfn() locklessly retrieves the linked list of pages to be 1592 * freed and frees them one-by-one. As the page->mapping pointer is going 1593 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node 1594 * structure of a lockless linked list of huge pages to be freed. 1595 */ 1596 static LLIST_HEAD(hpage_freelist); 1597 1598 static void free_hpage_workfn(struct work_struct *work) 1599 { 1600 struct llist_node *node; 1601 1602 node = llist_del_all(&hpage_freelist); 1603 1604 while (node) { 1605 struct page *page; 1606 struct hstate *h; 1607 1608 page = container_of((struct address_space **)node, 1609 struct page, mapping); 1610 node = node->next; 1611 page->mapping = NULL; 1612 /* 1613 * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate() 1614 * is going to trigger because a previous call to 1615 * remove_hugetlb_page() will set_compound_page_dtor(page, 1616 * NULL_COMPOUND_DTOR), so do not use page_hstate() directly. 1617 */ 1618 h = size_to_hstate(page_size(page)); 1619 1620 __update_and_free_page(h, page); 1621 1622 cond_resched(); 1623 } 1624 } 1625 static DECLARE_WORK(free_hpage_work, free_hpage_workfn); 1626 1627 static inline void flush_free_hpage_work(struct hstate *h) 1628 { 1629 if (hugetlb_vmemmap_optimizable(h)) 1630 flush_work(&free_hpage_work); 1631 } 1632 1633 static void update_and_free_page(struct hstate *h, struct page *page, 1634 bool atomic) 1635 { 1636 if (!HPageVmemmapOptimized(page) || !atomic) { 1637 __update_and_free_page(h, page); 1638 return; 1639 } 1640 1641 /* 1642 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages. 1643 * 1644 * Only call schedule_work() if hpage_freelist is previously 1645 * empty. Otherwise, schedule_work() had been called but the workfn 1646 * hasn't retrieved the list yet. 1647 */ 1648 if (llist_add((struct llist_node *)&page->mapping, &hpage_freelist)) 1649 schedule_work(&free_hpage_work); 1650 } 1651 1652 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list) 1653 { 1654 struct page *page, *t_page; 1655 1656 list_for_each_entry_safe(page, t_page, list, lru) { 1657 update_and_free_page(h, page, false); 1658 cond_resched(); 1659 } 1660 } 1661 1662 struct hstate *size_to_hstate(unsigned long size) 1663 { 1664 struct hstate *h; 1665 1666 for_each_hstate(h) { 1667 if (huge_page_size(h) == size) 1668 return h; 1669 } 1670 return NULL; 1671 } 1672 1673 void free_huge_page(struct page *page) 1674 { 1675 /* 1676 * Can't pass hstate in here because it is called from the 1677 * compound page destructor. 1678 */ 1679 struct hstate *h = page_hstate(page); 1680 int nid = page_to_nid(page); 1681 struct hugepage_subpool *spool = hugetlb_page_subpool(page); 1682 bool restore_reserve; 1683 unsigned long flags; 1684 1685 VM_BUG_ON_PAGE(page_count(page), page); 1686 VM_BUG_ON_PAGE(page_mapcount(page), page); 1687 1688 hugetlb_set_page_subpool(page, NULL); 1689 if (PageAnon(page)) 1690 __ClearPageAnonExclusive(page); 1691 page->mapping = NULL; 1692 restore_reserve = HPageRestoreReserve(page); 1693 ClearHPageRestoreReserve(page); 1694 1695 /* 1696 * If HPageRestoreReserve was set on page, page allocation consumed a 1697 * reservation. If the page was associated with a subpool, there 1698 * would have been a page reserved in the subpool before allocation 1699 * via hugepage_subpool_get_pages(). Since we are 'restoring' the 1700 * reservation, do not call hugepage_subpool_put_pages() as this will 1701 * remove the reserved page from the subpool. 1702 */ 1703 if (!restore_reserve) { 1704 /* 1705 * A return code of zero implies that the subpool will be 1706 * under its minimum size if the reservation is not restored 1707 * after page is free. Therefore, force restore_reserve 1708 * operation. 1709 */ 1710 if (hugepage_subpool_put_pages(spool, 1) == 0) 1711 restore_reserve = true; 1712 } 1713 1714 spin_lock_irqsave(&hugetlb_lock, flags); 1715 ClearHPageMigratable(page); 1716 hugetlb_cgroup_uncharge_page(hstate_index(h), 1717 pages_per_huge_page(h), page); 1718 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h), 1719 pages_per_huge_page(h), page); 1720 if (restore_reserve) 1721 h->resv_huge_pages++; 1722 1723 if (HPageTemporary(page)) { 1724 remove_hugetlb_page(h, page, false); 1725 spin_unlock_irqrestore(&hugetlb_lock, flags); 1726 update_and_free_page(h, page, true); 1727 } else if (h->surplus_huge_pages_node[nid]) { 1728 /* remove the page from active list */ 1729 remove_hugetlb_page(h, page, true); 1730 spin_unlock_irqrestore(&hugetlb_lock, flags); 1731 update_and_free_page(h, page, true); 1732 } else { 1733 arch_clear_hugepage_flags(page); 1734 enqueue_huge_page(h, page); 1735 spin_unlock_irqrestore(&hugetlb_lock, flags); 1736 } 1737 } 1738 1739 /* 1740 * Must be called with the hugetlb lock held 1741 */ 1742 static void __prep_account_new_huge_page(struct hstate *h, int nid) 1743 { 1744 lockdep_assert_held(&hugetlb_lock); 1745 h->nr_huge_pages++; 1746 h->nr_huge_pages_node[nid]++; 1747 } 1748 1749 static void __prep_new_huge_page(struct hstate *h, struct page *page) 1750 { 1751 hugetlb_vmemmap_optimize(h, page); 1752 INIT_LIST_HEAD(&page->lru); 1753 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR); 1754 hugetlb_set_page_subpool(page, NULL); 1755 set_hugetlb_cgroup(page, NULL); 1756 set_hugetlb_cgroup_rsvd(page, NULL); 1757 } 1758 1759 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid) 1760 { 1761 __prep_new_huge_page(h, page); 1762 spin_lock_irq(&hugetlb_lock); 1763 __prep_account_new_huge_page(h, nid); 1764 spin_unlock_irq(&hugetlb_lock); 1765 } 1766 1767 static bool __prep_compound_gigantic_page(struct page *page, unsigned int order, 1768 bool demote) 1769 { 1770 int i, j; 1771 int nr_pages = 1 << order; 1772 struct page *p = page + 1; 1773 1774 /* we rely on prep_new_huge_page to set the destructor */ 1775 set_compound_order(page, order); 1776 __ClearPageReserved(page); 1777 __SetPageHead(page); 1778 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { 1779 /* 1780 * For gigantic hugepages allocated through bootmem at 1781 * boot, it's safer to be consistent with the not-gigantic 1782 * hugepages and clear the PG_reserved bit from all tail pages 1783 * too. Otherwise drivers using get_user_pages() to access tail 1784 * pages may get the reference counting wrong if they see 1785 * PG_reserved set on a tail page (despite the head page not 1786 * having PG_reserved set). Enforcing this consistency between 1787 * head and tail pages allows drivers to optimize away a check 1788 * on the head page when they need know if put_page() is needed 1789 * after get_user_pages(). 1790 */ 1791 __ClearPageReserved(p); 1792 /* 1793 * Subtle and very unlikely 1794 * 1795 * Gigantic 'page allocators' such as memblock or cma will 1796 * return a set of pages with each page ref counted. We need 1797 * to turn this set of pages into a compound page with tail 1798 * page ref counts set to zero. Code such as speculative page 1799 * cache adding could take a ref on a 'to be' tail page. 1800 * We need to respect any increased ref count, and only set 1801 * the ref count to zero if count is currently 1. If count 1802 * is not 1, we return an error. An error return indicates 1803 * the set of pages can not be converted to a gigantic page. 1804 * The caller who allocated the pages should then discard the 1805 * pages using the appropriate free interface. 1806 * 1807 * In the case of demote, the ref count will be zero. 1808 */ 1809 if (!demote) { 1810 if (!page_ref_freeze(p, 1)) { 1811 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n"); 1812 goto out_error; 1813 } 1814 } else { 1815 VM_BUG_ON_PAGE(page_count(p), p); 1816 } 1817 set_compound_head(p, page); 1818 } 1819 atomic_set(compound_mapcount_ptr(page), -1); 1820 atomic_set(compound_pincount_ptr(page), 0); 1821 return true; 1822 1823 out_error: 1824 /* undo tail page modifications made above */ 1825 p = page + 1; 1826 for (j = 1; j < i; j++, p = mem_map_next(p, page, j)) { 1827 clear_compound_head(p); 1828 set_page_refcounted(p); 1829 } 1830 /* need to clear PG_reserved on remaining tail pages */ 1831 for (; j < nr_pages; j++, p = mem_map_next(p, page, j)) 1832 __ClearPageReserved(p); 1833 set_compound_order(page, 0); 1834 #ifdef CONFIG_64BIT 1835 page[1].compound_nr = 0; 1836 #endif 1837 __ClearPageHead(page); 1838 return false; 1839 } 1840 1841 static bool prep_compound_gigantic_page(struct page *page, unsigned int order) 1842 { 1843 return __prep_compound_gigantic_page(page, order, false); 1844 } 1845 1846 static bool prep_compound_gigantic_page_for_demote(struct page *page, 1847 unsigned int order) 1848 { 1849 return __prep_compound_gigantic_page(page, order, true); 1850 } 1851 1852 /* 1853 * PageHuge() only returns true for hugetlbfs pages, but not for normal or 1854 * transparent huge pages. See the PageTransHuge() documentation for more 1855 * details. 1856 */ 1857 int PageHuge(struct page *page) 1858 { 1859 if (!PageCompound(page)) 1860 return 0; 1861 1862 page = compound_head(page); 1863 return page[1].compound_dtor == HUGETLB_PAGE_DTOR; 1864 } 1865 EXPORT_SYMBOL_GPL(PageHuge); 1866 1867 /* 1868 * PageHeadHuge() only returns true for hugetlbfs head page, but not for 1869 * normal or transparent huge pages. 1870 */ 1871 int PageHeadHuge(struct page *page_head) 1872 { 1873 if (!PageHead(page_head)) 1874 return 0; 1875 1876 return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR; 1877 } 1878 EXPORT_SYMBOL_GPL(PageHeadHuge); 1879 1880 /* 1881 * Find and lock address space (mapping) in write mode. 1882 * 1883 * Upon entry, the page is locked which means that page_mapping() is 1884 * stable. Due to locking order, we can only trylock_write. If we can 1885 * not get the lock, simply return NULL to caller. 1886 */ 1887 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage) 1888 { 1889 struct address_space *mapping = page_mapping(hpage); 1890 1891 if (!mapping) 1892 return mapping; 1893 1894 if (i_mmap_trylock_write(mapping)) 1895 return mapping; 1896 1897 return NULL; 1898 } 1899 1900 pgoff_t hugetlb_basepage_index(struct page *page) 1901 { 1902 struct page *page_head = compound_head(page); 1903 pgoff_t index = page_index(page_head); 1904 unsigned long compound_idx; 1905 1906 if (compound_order(page_head) >= MAX_ORDER) 1907 compound_idx = page_to_pfn(page) - page_to_pfn(page_head); 1908 else 1909 compound_idx = page - page_head; 1910 1911 return (index << compound_order(page_head)) + compound_idx; 1912 } 1913 1914 static struct page *alloc_buddy_huge_page(struct hstate *h, 1915 gfp_t gfp_mask, int nid, nodemask_t *nmask, 1916 nodemask_t *node_alloc_noretry) 1917 { 1918 int order = huge_page_order(h); 1919 struct page *page; 1920 bool alloc_try_hard = true; 1921 1922 /* 1923 * By default we always try hard to allocate the page with 1924 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in 1925 * a loop (to adjust global huge page counts) and previous allocation 1926 * failed, do not continue to try hard on the same node. Use the 1927 * node_alloc_noretry bitmap to manage this state information. 1928 */ 1929 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry)) 1930 alloc_try_hard = false; 1931 gfp_mask |= __GFP_COMP|__GFP_NOWARN; 1932 if (alloc_try_hard) 1933 gfp_mask |= __GFP_RETRY_MAYFAIL; 1934 if (nid == NUMA_NO_NODE) 1935 nid = numa_mem_id(); 1936 page = __alloc_pages(gfp_mask, order, nid, nmask); 1937 if (page) 1938 __count_vm_event(HTLB_BUDDY_PGALLOC); 1939 else 1940 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 1941 1942 /* 1943 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this 1944 * indicates an overall state change. Clear bit so that we resume 1945 * normal 'try hard' allocations. 1946 */ 1947 if (node_alloc_noretry && page && !alloc_try_hard) 1948 node_clear(nid, *node_alloc_noretry); 1949 1950 /* 1951 * If we tried hard to get a page but failed, set bit so that 1952 * subsequent attempts will not try as hard until there is an 1953 * overall state change. 1954 */ 1955 if (node_alloc_noretry && !page && alloc_try_hard) 1956 node_set(nid, *node_alloc_noretry); 1957 1958 return page; 1959 } 1960 1961 /* 1962 * Common helper to allocate a fresh hugetlb page. All specific allocators 1963 * should use this function to get new hugetlb pages 1964 */ 1965 static struct page *alloc_fresh_huge_page(struct hstate *h, 1966 gfp_t gfp_mask, int nid, nodemask_t *nmask, 1967 nodemask_t *node_alloc_noretry) 1968 { 1969 struct page *page; 1970 bool retry = false; 1971 1972 retry: 1973 if (hstate_is_gigantic(h)) 1974 page = alloc_gigantic_page(h, gfp_mask, nid, nmask); 1975 else 1976 page = alloc_buddy_huge_page(h, gfp_mask, 1977 nid, nmask, node_alloc_noretry); 1978 if (!page) 1979 return NULL; 1980 1981 if (hstate_is_gigantic(h)) { 1982 if (!prep_compound_gigantic_page(page, huge_page_order(h))) { 1983 /* 1984 * Rare failure to convert pages to compound page. 1985 * Free pages and try again - ONCE! 1986 */ 1987 free_gigantic_page(page, huge_page_order(h)); 1988 if (!retry) { 1989 retry = true; 1990 goto retry; 1991 } 1992 return NULL; 1993 } 1994 } 1995 prep_new_huge_page(h, page, page_to_nid(page)); 1996 1997 return page; 1998 } 1999 2000 /* 2001 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved 2002 * manner. 2003 */ 2004 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed, 2005 nodemask_t *node_alloc_noretry) 2006 { 2007 struct page *page; 2008 int nr_nodes, node; 2009 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 2010 2011 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 2012 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed, 2013 node_alloc_noretry); 2014 if (page) 2015 break; 2016 } 2017 2018 if (!page) 2019 return 0; 2020 2021 put_page(page); /* free it into the hugepage allocator */ 2022 2023 return 1; 2024 } 2025 2026 /* 2027 * Remove huge page from pool from next node to free. Attempt to keep 2028 * persistent huge pages more or less balanced over allowed nodes. 2029 * This routine only 'removes' the hugetlb page. The caller must make 2030 * an additional call to free the page to low level allocators. 2031 * Called with hugetlb_lock locked. 2032 */ 2033 static struct page *remove_pool_huge_page(struct hstate *h, 2034 nodemask_t *nodes_allowed, 2035 bool acct_surplus) 2036 { 2037 int nr_nodes, node; 2038 struct page *page = NULL; 2039 2040 lockdep_assert_held(&hugetlb_lock); 2041 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 2042 /* 2043 * If we're returning unused surplus pages, only examine 2044 * nodes with surplus pages. 2045 */ 2046 if ((!acct_surplus || h->surplus_huge_pages_node[node]) && 2047 !list_empty(&h->hugepage_freelists[node])) { 2048 page = list_entry(h->hugepage_freelists[node].next, 2049 struct page, lru); 2050 remove_hugetlb_page(h, page, acct_surplus); 2051 break; 2052 } 2053 } 2054 2055 return page; 2056 } 2057 2058 /* 2059 * Dissolve a given free hugepage into free buddy pages. This function does 2060 * nothing for in-use hugepages and non-hugepages. 2061 * This function returns values like below: 2062 * 2063 * -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages 2064 * when the system is under memory pressure and the feature of 2065 * freeing unused vmemmap pages associated with each hugetlb page 2066 * is enabled. 2067 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use 2068 * (allocated or reserved.) 2069 * 0: successfully dissolved free hugepages or the page is not a 2070 * hugepage (considered as already dissolved) 2071 */ 2072 int dissolve_free_huge_page(struct page *page) 2073 { 2074 int rc = -EBUSY; 2075 2076 retry: 2077 /* Not to disrupt normal path by vainly holding hugetlb_lock */ 2078 if (!PageHuge(page)) 2079 return 0; 2080 2081 spin_lock_irq(&hugetlb_lock); 2082 if (!PageHuge(page)) { 2083 rc = 0; 2084 goto out; 2085 } 2086 2087 if (!page_count(page)) { 2088 struct page *head = compound_head(page); 2089 struct hstate *h = page_hstate(head); 2090 if (h->free_huge_pages - h->resv_huge_pages == 0) 2091 goto out; 2092 2093 /* 2094 * We should make sure that the page is already on the free list 2095 * when it is dissolved. 2096 */ 2097 if (unlikely(!HPageFreed(head))) { 2098 spin_unlock_irq(&hugetlb_lock); 2099 cond_resched(); 2100 2101 /* 2102 * Theoretically, we should return -EBUSY when we 2103 * encounter this race. In fact, we have a chance 2104 * to successfully dissolve the page if we do a 2105 * retry. Because the race window is quite small. 2106 * If we seize this opportunity, it is an optimization 2107 * for increasing the success rate of dissolving page. 2108 */ 2109 goto retry; 2110 } 2111 2112 remove_hugetlb_page(h, head, false); 2113 h->max_huge_pages--; 2114 spin_unlock_irq(&hugetlb_lock); 2115 2116 /* 2117 * Normally update_and_free_page will allocate required vmemmmap 2118 * before freeing the page. update_and_free_page will fail to 2119 * free the page if it can not allocate required vmemmap. We 2120 * need to adjust max_huge_pages if the page is not freed. 2121 * Attempt to allocate vmemmmap here so that we can take 2122 * appropriate action on failure. 2123 */ 2124 rc = hugetlb_vmemmap_restore(h, head); 2125 if (!rc) { 2126 update_and_free_page(h, head, false); 2127 } else { 2128 spin_lock_irq(&hugetlb_lock); 2129 add_hugetlb_page(h, head, false); 2130 h->max_huge_pages++; 2131 spin_unlock_irq(&hugetlb_lock); 2132 } 2133 2134 return rc; 2135 } 2136 out: 2137 spin_unlock_irq(&hugetlb_lock); 2138 return rc; 2139 } 2140 2141 /* 2142 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to 2143 * make specified memory blocks removable from the system. 2144 * Note that this will dissolve a free gigantic hugepage completely, if any 2145 * part of it lies within the given range. 2146 * Also note that if dissolve_free_huge_page() returns with an error, all 2147 * free hugepages that were dissolved before that error are lost. 2148 */ 2149 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn) 2150 { 2151 unsigned long pfn; 2152 struct page *page; 2153 int rc = 0; 2154 unsigned int order; 2155 struct hstate *h; 2156 2157 if (!hugepages_supported()) 2158 return rc; 2159 2160 order = huge_page_order(&default_hstate); 2161 for_each_hstate(h) 2162 order = min(order, huge_page_order(h)); 2163 2164 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) { 2165 page = pfn_to_page(pfn); 2166 rc = dissolve_free_huge_page(page); 2167 if (rc) 2168 break; 2169 } 2170 2171 return rc; 2172 } 2173 2174 /* 2175 * Allocates a fresh surplus page from the page allocator. 2176 */ 2177 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask, 2178 int nid, nodemask_t *nmask, bool zero_ref) 2179 { 2180 struct page *page = NULL; 2181 bool retry = false; 2182 2183 if (hstate_is_gigantic(h)) 2184 return NULL; 2185 2186 spin_lock_irq(&hugetlb_lock); 2187 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) 2188 goto out_unlock; 2189 spin_unlock_irq(&hugetlb_lock); 2190 2191 retry: 2192 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL); 2193 if (!page) 2194 return NULL; 2195 2196 spin_lock_irq(&hugetlb_lock); 2197 /* 2198 * We could have raced with the pool size change. 2199 * Double check that and simply deallocate the new page 2200 * if we would end up overcommiting the surpluses. Abuse 2201 * temporary page to workaround the nasty free_huge_page 2202 * codeflow 2203 */ 2204 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { 2205 SetHPageTemporary(page); 2206 spin_unlock_irq(&hugetlb_lock); 2207 put_page(page); 2208 return NULL; 2209 } 2210 2211 if (zero_ref) { 2212 /* 2213 * Caller requires a page with zero ref count. 2214 * We will drop ref count here. If someone else is holding 2215 * a ref, the page will be freed when they drop it. Abuse 2216 * temporary page flag to accomplish this. 2217 */ 2218 SetHPageTemporary(page); 2219 if (!put_page_testzero(page)) { 2220 /* 2221 * Unexpected inflated ref count on freshly allocated 2222 * huge. Retry once. 2223 */ 2224 pr_info("HugeTLB unexpected inflated ref count on freshly allocated page\n"); 2225 spin_unlock_irq(&hugetlb_lock); 2226 if (retry) 2227 return NULL; 2228 2229 retry = true; 2230 goto retry; 2231 } 2232 ClearHPageTemporary(page); 2233 } 2234 2235 h->surplus_huge_pages++; 2236 h->surplus_huge_pages_node[page_to_nid(page)]++; 2237 2238 out_unlock: 2239 spin_unlock_irq(&hugetlb_lock); 2240 2241 return page; 2242 } 2243 2244 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask, 2245 int nid, nodemask_t *nmask) 2246 { 2247 struct page *page; 2248 2249 if (hstate_is_gigantic(h)) 2250 return NULL; 2251 2252 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL); 2253 if (!page) 2254 return NULL; 2255 2256 /* 2257 * We do not account these pages as surplus because they are only 2258 * temporary and will be released properly on the last reference 2259 */ 2260 SetHPageTemporary(page); 2261 2262 return page; 2263 } 2264 2265 /* 2266 * Use the VMA's mpolicy to allocate a huge page from the buddy. 2267 */ 2268 static 2269 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h, 2270 struct vm_area_struct *vma, unsigned long addr) 2271 { 2272 struct page *page = NULL; 2273 struct mempolicy *mpol; 2274 gfp_t gfp_mask = htlb_alloc_mask(h); 2275 int nid; 2276 nodemask_t *nodemask; 2277 2278 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask); 2279 if (mpol_is_preferred_many(mpol)) { 2280 gfp_t gfp = gfp_mask | __GFP_NOWARN; 2281 2282 gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL); 2283 page = alloc_surplus_huge_page(h, gfp, nid, nodemask, false); 2284 2285 /* Fallback to all nodes if page==NULL */ 2286 nodemask = NULL; 2287 } 2288 2289 if (!page) 2290 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask, false); 2291 mpol_cond_put(mpol); 2292 return page; 2293 } 2294 2295 /* page migration callback function */ 2296 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid, 2297 nodemask_t *nmask, gfp_t gfp_mask) 2298 { 2299 spin_lock_irq(&hugetlb_lock); 2300 if (h->free_huge_pages - h->resv_huge_pages > 0) { 2301 struct page *page; 2302 2303 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask); 2304 if (page) { 2305 spin_unlock_irq(&hugetlb_lock); 2306 return page; 2307 } 2308 } 2309 spin_unlock_irq(&hugetlb_lock); 2310 2311 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask); 2312 } 2313 2314 /* mempolicy aware migration callback */ 2315 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma, 2316 unsigned long address) 2317 { 2318 struct mempolicy *mpol; 2319 nodemask_t *nodemask; 2320 struct page *page; 2321 gfp_t gfp_mask; 2322 int node; 2323 2324 gfp_mask = htlb_alloc_mask(h); 2325 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 2326 page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask); 2327 mpol_cond_put(mpol); 2328 2329 return page; 2330 } 2331 2332 /* 2333 * Increase the hugetlb pool such that it can accommodate a reservation 2334 * of size 'delta'. 2335 */ 2336 static int gather_surplus_pages(struct hstate *h, long delta) 2337 __must_hold(&hugetlb_lock) 2338 { 2339 struct list_head surplus_list; 2340 struct page *page, *tmp; 2341 int ret; 2342 long i; 2343 long needed, allocated; 2344 bool alloc_ok = true; 2345 2346 lockdep_assert_held(&hugetlb_lock); 2347 needed = (h->resv_huge_pages + delta) - h->free_huge_pages; 2348 if (needed <= 0) { 2349 h->resv_huge_pages += delta; 2350 return 0; 2351 } 2352 2353 allocated = 0; 2354 INIT_LIST_HEAD(&surplus_list); 2355 2356 ret = -ENOMEM; 2357 retry: 2358 spin_unlock_irq(&hugetlb_lock); 2359 for (i = 0; i < needed; i++) { 2360 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h), 2361 NUMA_NO_NODE, NULL, true); 2362 if (!page) { 2363 alloc_ok = false; 2364 break; 2365 } 2366 list_add(&page->lru, &surplus_list); 2367 cond_resched(); 2368 } 2369 allocated += i; 2370 2371 /* 2372 * After retaking hugetlb_lock, we need to recalculate 'needed' 2373 * because either resv_huge_pages or free_huge_pages may have changed. 2374 */ 2375 spin_lock_irq(&hugetlb_lock); 2376 needed = (h->resv_huge_pages + delta) - 2377 (h->free_huge_pages + allocated); 2378 if (needed > 0) { 2379 if (alloc_ok) 2380 goto retry; 2381 /* 2382 * We were not able to allocate enough pages to 2383 * satisfy the entire reservation so we free what 2384 * we've allocated so far. 2385 */ 2386 goto free; 2387 } 2388 /* 2389 * The surplus_list now contains _at_least_ the number of extra pages 2390 * needed to accommodate the reservation. Add the appropriate number 2391 * of pages to the hugetlb pool and free the extras back to the buddy 2392 * allocator. Commit the entire reservation here to prevent another 2393 * process from stealing the pages as they are added to the pool but 2394 * before they are reserved. 2395 */ 2396 needed += allocated; 2397 h->resv_huge_pages += delta; 2398 ret = 0; 2399 2400 /* Free the needed pages to the hugetlb pool */ 2401 list_for_each_entry_safe(page, tmp, &surplus_list, lru) { 2402 if ((--needed) < 0) 2403 break; 2404 /* Add the page to the hugetlb allocator */ 2405 enqueue_huge_page(h, page); 2406 } 2407 free: 2408 spin_unlock_irq(&hugetlb_lock); 2409 2410 /* 2411 * Free unnecessary surplus pages to the buddy allocator. 2412 * Pages have no ref count, call free_huge_page directly. 2413 */ 2414 list_for_each_entry_safe(page, tmp, &surplus_list, lru) 2415 free_huge_page(page); 2416 spin_lock_irq(&hugetlb_lock); 2417 2418 return ret; 2419 } 2420 2421 /* 2422 * This routine has two main purposes: 2423 * 1) Decrement the reservation count (resv_huge_pages) by the value passed 2424 * in unused_resv_pages. This corresponds to the prior adjustments made 2425 * to the associated reservation map. 2426 * 2) Free any unused surplus pages that may have been allocated to satisfy 2427 * the reservation. As many as unused_resv_pages may be freed. 2428 */ 2429 static void return_unused_surplus_pages(struct hstate *h, 2430 unsigned long unused_resv_pages) 2431 { 2432 unsigned long nr_pages; 2433 struct page *page; 2434 LIST_HEAD(page_list); 2435 2436 lockdep_assert_held(&hugetlb_lock); 2437 /* Uncommit the reservation */ 2438 h->resv_huge_pages -= unused_resv_pages; 2439 2440 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 2441 goto out; 2442 2443 /* 2444 * Part (or even all) of the reservation could have been backed 2445 * by pre-allocated pages. Only free surplus pages. 2446 */ 2447 nr_pages = min(unused_resv_pages, h->surplus_huge_pages); 2448 2449 /* 2450 * We want to release as many surplus pages as possible, spread 2451 * evenly across all nodes with memory. Iterate across these nodes 2452 * until we can no longer free unreserved surplus pages. This occurs 2453 * when the nodes with surplus pages have no free pages. 2454 * remove_pool_huge_page() will balance the freed pages across the 2455 * on-line nodes with memory and will handle the hstate accounting. 2456 */ 2457 while (nr_pages--) { 2458 page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1); 2459 if (!page) 2460 goto out; 2461 2462 list_add(&page->lru, &page_list); 2463 } 2464 2465 out: 2466 spin_unlock_irq(&hugetlb_lock); 2467 update_and_free_pages_bulk(h, &page_list); 2468 spin_lock_irq(&hugetlb_lock); 2469 } 2470 2471 2472 /* 2473 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation 2474 * are used by the huge page allocation routines to manage reservations. 2475 * 2476 * vma_needs_reservation is called to determine if the huge page at addr 2477 * within the vma has an associated reservation. If a reservation is 2478 * needed, the value 1 is returned. The caller is then responsible for 2479 * managing the global reservation and subpool usage counts. After 2480 * the huge page has been allocated, vma_commit_reservation is called 2481 * to add the page to the reservation map. If the page allocation fails, 2482 * the reservation must be ended instead of committed. vma_end_reservation 2483 * is called in such cases. 2484 * 2485 * In the normal case, vma_commit_reservation returns the same value 2486 * as the preceding vma_needs_reservation call. The only time this 2487 * is not the case is if a reserve map was changed between calls. It 2488 * is the responsibility of the caller to notice the difference and 2489 * take appropriate action. 2490 * 2491 * vma_add_reservation is used in error paths where a reservation must 2492 * be restored when a newly allocated huge page must be freed. It is 2493 * to be called after calling vma_needs_reservation to determine if a 2494 * reservation exists. 2495 * 2496 * vma_del_reservation is used in error paths where an entry in the reserve 2497 * map was created during huge page allocation and must be removed. It is to 2498 * be called after calling vma_needs_reservation to determine if a reservation 2499 * exists. 2500 */ 2501 enum vma_resv_mode { 2502 VMA_NEEDS_RESV, 2503 VMA_COMMIT_RESV, 2504 VMA_END_RESV, 2505 VMA_ADD_RESV, 2506 VMA_DEL_RESV, 2507 }; 2508 static long __vma_reservation_common(struct hstate *h, 2509 struct vm_area_struct *vma, unsigned long addr, 2510 enum vma_resv_mode mode) 2511 { 2512 struct resv_map *resv; 2513 pgoff_t idx; 2514 long ret; 2515 long dummy_out_regions_needed; 2516 2517 resv = vma_resv_map(vma); 2518 if (!resv) 2519 return 1; 2520 2521 idx = vma_hugecache_offset(h, vma, addr); 2522 switch (mode) { 2523 case VMA_NEEDS_RESV: 2524 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed); 2525 /* We assume that vma_reservation_* routines always operate on 2526 * 1 page, and that adding to resv map a 1 page entry can only 2527 * ever require 1 region. 2528 */ 2529 VM_BUG_ON(dummy_out_regions_needed != 1); 2530 break; 2531 case VMA_COMMIT_RESV: 2532 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2533 /* region_add calls of range 1 should never fail. */ 2534 VM_BUG_ON(ret < 0); 2535 break; 2536 case VMA_END_RESV: 2537 region_abort(resv, idx, idx + 1, 1); 2538 ret = 0; 2539 break; 2540 case VMA_ADD_RESV: 2541 if (vma->vm_flags & VM_MAYSHARE) { 2542 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2543 /* region_add calls of range 1 should never fail. */ 2544 VM_BUG_ON(ret < 0); 2545 } else { 2546 region_abort(resv, idx, idx + 1, 1); 2547 ret = region_del(resv, idx, idx + 1); 2548 } 2549 break; 2550 case VMA_DEL_RESV: 2551 if (vma->vm_flags & VM_MAYSHARE) { 2552 region_abort(resv, idx, idx + 1, 1); 2553 ret = region_del(resv, idx, idx + 1); 2554 } else { 2555 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2556 /* region_add calls of range 1 should never fail. */ 2557 VM_BUG_ON(ret < 0); 2558 } 2559 break; 2560 default: 2561 BUG(); 2562 } 2563 2564 if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV) 2565 return ret; 2566 /* 2567 * We know private mapping must have HPAGE_RESV_OWNER set. 2568 * 2569 * In most cases, reserves always exist for private mappings. 2570 * However, a file associated with mapping could have been 2571 * hole punched or truncated after reserves were consumed. 2572 * As subsequent fault on such a range will not use reserves. 2573 * Subtle - The reserve map for private mappings has the 2574 * opposite meaning than that of shared mappings. If NO 2575 * entry is in the reserve map, it means a reservation exists. 2576 * If an entry exists in the reserve map, it means the 2577 * reservation has already been consumed. As a result, the 2578 * return value of this routine is the opposite of the 2579 * value returned from reserve map manipulation routines above. 2580 */ 2581 if (ret > 0) 2582 return 0; 2583 if (ret == 0) 2584 return 1; 2585 return ret; 2586 } 2587 2588 static long vma_needs_reservation(struct hstate *h, 2589 struct vm_area_struct *vma, unsigned long addr) 2590 { 2591 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV); 2592 } 2593 2594 static long vma_commit_reservation(struct hstate *h, 2595 struct vm_area_struct *vma, unsigned long addr) 2596 { 2597 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV); 2598 } 2599 2600 static void vma_end_reservation(struct hstate *h, 2601 struct vm_area_struct *vma, unsigned long addr) 2602 { 2603 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV); 2604 } 2605 2606 static long vma_add_reservation(struct hstate *h, 2607 struct vm_area_struct *vma, unsigned long addr) 2608 { 2609 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV); 2610 } 2611 2612 static long vma_del_reservation(struct hstate *h, 2613 struct vm_area_struct *vma, unsigned long addr) 2614 { 2615 return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV); 2616 } 2617 2618 /* 2619 * This routine is called to restore reservation information on error paths. 2620 * It should ONLY be called for pages allocated via alloc_huge_page(), and 2621 * the hugetlb mutex should remain held when calling this routine. 2622 * 2623 * It handles two specific cases: 2624 * 1) A reservation was in place and the page consumed the reservation. 2625 * HPageRestoreReserve is set in the page. 2626 * 2) No reservation was in place for the page, so HPageRestoreReserve is 2627 * not set. However, alloc_huge_page always updates the reserve map. 2628 * 2629 * In case 1, free_huge_page later in the error path will increment the 2630 * global reserve count. But, free_huge_page does not have enough context 2631 * to adjust the reservation map. This case deals primarily with private 2632 * mappings. Adjust the reserve map here to be consistent with global 2633 * reserve count adjustments to be made by free_huge_page. Make sure the 2634 * reserve map indicates there is a reservation present. 2635 * 2636 * In case 2, simply undo reserve map modifications done by alloc_huge_page. 2637 */ 2638 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma, 2639 unsigned long address, struct page *page) 2640 { 2641 long rc = vma_needs_reservation(h, vma, address); 2642 2643 if (HPageRestoreReserve(page)) { 2644 if (unlikely(rc < 0)) 2645 /* 2646 * Rare out of memory condition in reserve map 2647 * manipulation. Clear HPageRestoreReserve so that 2648 * global reserve count will not be incremented 2649 * by free_huge_page. This will make it appear 2650 * as though the reservation for this page was 2651 * consumed. This may prevent the task from 2652 * faulting in the page at a later time. This 2653 * is better than inconsistent global huge page 2654 * accounting of reserve counts. 2655 */ 2656 ClearHPageRestoreReserve(page); 2657 else if (rc) 2658 (void)vma_add_reservation(h, vma, address); 2659 else 2660 vma_end_reservation(h, vma, address); 2661 } else { 2662 if (!rc) { 2663 /* 2664 * This indicates there is an entry in the reserve map 2665 * not added by alloc_huge_page. We know it was added 2666 * before the alloc_huge_page call, otherwise 2667 * HPageRestoreReserve would be set on the page. 2668 * Remove the entry so that a subsequent allocation 2669 * does not consume a reservation. 2670 */ 2671 rc = vma_del_reservation(h, vma, address); 2672 if (rc < 0) 2673 /* 2674 * VERY rare out of memory condition. Since 2675 * we can not delete the entry, set 2676 * HPageRestoreReserve so that the reserve 2677 * count will be incremented when the page 2678 * is freed. This reserve will be consumed 2679 * on a subsequent allocation. 2680 */ 2681 SetHPageRestoreReserve(page); 2682 } else if (rc < 0) { 2683 /* 2684 * Rare out of memory condition from 2685 * vma_needs_reservation call. Memory allocation is 2686 * only attempted if a new entry is needed. Therefore, 2687 * this implies there is not an entry in the 2688 * reserve map. 2689 * 2690 * For shared mappings, no entry in the map indicates 2691 * no reservation. We are done. 2692 */ 2693 if (!(vma->vm_flags & VM_MAYSHARE)) 2694 /* 2695 * For private mappings, no entry indicates 2696 * a reservation is present. Since we can 2697 * not add an entry, set SetHPageRestoreReserve 2698 * on the page so reserve count will be 2699 * incremented when freed. This reserve will 2700 * be consumed on a subsequent allocation. 2701 */ 2702 SetHPageRestoreReserve(page); 2703 } else 2704 /* 2705 * No reservation present, do nothing 2706 */ 2707 vma_end_reservation(h, vma, address); 2708 } 2709 } 2710 2711 /* 2712 * alloc_and_dissolve_huge_page - Allocate a new page and dissolve the old one 2713 * @h: struct hstate old page belongs to 2714 * @old_page: Old page to dissolve 2715 * @list: List to isolate the page in case we need to 2716 * Returns 0 on success, otherwise negated error. 2717 */ 2718 static int alloc_and_dissolve_huge_page(struct hstate *h, struct page *old_page, 2719 struct list_head *list) 2720 { 2721 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 2722 int nid = page_to_nid(old_page); 2723 bool alloc_retry = false; 2724 struct page *new_page; 2725 int ret = 0; 2726 2727 /* 2728 * Before dissolving the page, we need to allocate a new one for the 2729 * pool to remain stable. Here, we allocate the page and 'prep' it 2730 * by doing everything but actually updating counters and adding to 2731 * the pool. This simplifies and let us do most of the processing 2732 * under the lock. 2733 */ 2734 alloc_retry: 2735 new_page = alloc_buddy_huge_page(h, gfp_mask, nid, NULL, NULL); 2736 if (!new_page) 2737 return -ENOMEM; 2738 /* 2739 * If all goes well, this page will be directly added to the free 2740 * list in the pool. For this the ref count needs to be zero. 2741 * Attempt to drop now, and retry once if needed. It is VERY 2742 * unlikely there is another ref on the page. 2743 * 2744 * If someone else has a reference to the page, it will be freed 2745 * when they drop their ref. Abuse temporary page flag to accomplish 2746 * this. Retry once if there is an inflated ref count. 2747 */ 2748 SetHPageTemporary(new_page); 2749 if (!put_page_testzero(new_page)) { 2750 if (alloc_retry) 2751 return -EBUSY; 2752 2753 alloc_retry = true; 2754 goto alloc_retry; 2755 } 2756 ClearHPageTemporary(new_page); 2757 2758 __prep_new_huge_page(h, new_page); 2759 2760 retry: 2761 spin_lock_irq(&hugetlb_lock); 2762 if (!PageHuge(old_page)) { 2763 /* 2764 * Freed from under us. Drop new_page too. 2765 */ 2766 goto free_new; 2767 } else if (page_count(old_page)) { 2768 /* 2769 * Someone has grabbed the page, try to isolate it here. 2770 * Fail with -EBUSY if not possible. 2771 */ 2772 spin_unlock_irq(&hugetlb_lock); 2773 ret = isolate_hugetlb(old_page, list); 2774 spin_lock_irq(&hugetlb_lock); 2775 goto free_new; 2776 } else if (!HPageFreed(old_page)) { 2777 /* 2778 * Page's refcount is 0 but it has not been enqueued in the 2779 * freelist yet. Race window is small, so we can succeed here if 2780 * we retry. 2781 */ 2782 spin_unlock_irq(&hugetlb_lock); 2783 cond_resched(); 2784 goto retry; 2785 } else { 2786 /* 2787 * Ok, old_page is still a genuine free hugepage. Remove it from 2788 * the freelist and decrease the counters. These will be 2789 * incremented again when calling __prep_account_new_huge_page() 2790 * and enqueue_huge_page() for new_page. The counters will remain 2791 * stable since this happens under the lock. 2792 */ 2793 remove_hugetlb_page(h, old_page, false); 2794 2795 /* 2796 * Ref count on new page is already zero as it was dropped 2797 * earlier. It can be directly added to the pool free list. 2798 */ 2799 __prep_account_new_huge_page(h, nid); 2800 enqueue_huge_page(h, new_page); 2801 2802 /* 2803 * Pages have been replaced, we can safely free the old one. 2804 */ 2805 spin_unlock_irq(&hugetlb_lock); 2806 update_and_free_page(h, old_page, false); 2807 } 2808 2809 return ret; 2810 2811 free_new: 2812 spin_unlock_irq(&hugetlb_lock); 2813 /* Page has a zero ref count, but needs a ref to be freed */ 2814 set_page_refcounted(new_page); 2815 update_and_free_page(h, new_page, false); 2816 2817 return ret; 2818 } 2819 2820 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list) 2821 { 2822 struct hstate *h; 2823 struct page *head; 2824 int ret = -EBUSY; 2825 2826 /* 2827 * The page might have been dissolved from under our feet, so make sure 2828 * to carefully check the state under the lock. 2829 * Return success when racing as if we dissolved the page ourselves. 2830 */ 2831 spin_lock_irq(&hugetlb_lock); 2832 if (PageHuge(page)) { 2833 head = compound_head(page); 2834 h = page_hstate(head); 2835 } else { 2836 spin_unlock_irq(&hugetlb_lock); 2837 return 0; 2838 } 2839 spin_unlock_irq(&hugetlb_lock); 2840 2841 /* 2842 * Fence off gigantic pages as there is a cyclic dependency between 2843 * alloc_contig_range and them. Return -ENOMEM as this has the effect 2844 * of bailing out right away without further retrying. 2845 */ 2846 if (hstate_is_gigantic(h)) 2847 return -ENOMEM; 2848 2849 if (page_count(head) && !isolate_hugetlb(head, list)) 2850 ret = 0; 2851 else if (!page_count(head)) 2852 ret = alloc_and_dissolve_huge_page(h, head, list); 2853 2854 return ret; 2855 } 2856 2857 struct page *alloc_huge_page(struct vm_area_struct *vma, 2858 unsigned long addr, int avoid_reserve) 2859 { 2860 struct hugepage_subpool *spool = subpool_vma(vma); 2861 struct hstate *h = hstate_vma(vma); 2862 struct page *page; 2863 long map_chg, map_commit; 2864 long gbl_chg; 2865 int ret, idx; 2866 struct hugetlb_cgroup *h_cg; 2867 bool deferred_reserve; 2868 2869 idx = hstate_index(h); 2870 /* 2871 * Examine the region/reserve map to determine if the process 2872 * has a reservation for the page to be allocated. A return 2873 * code of zero indicates a reservation exists (no change). 2874 */ 2875 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr); 2876 if (map_chg < 0) 2877 return ERR_PTR(-ENOMEM); 2878 2879 /* 2880 * Processes that did not create the mapping will have no 2881 * reserves as indicated by the region/reserve map. Check 2882 * that the allocation will not exceed the subpool limit. 2883 * Allocations for MAP_NORESERVE mappings also need to be 2884 * checked against any subpool limit. 2885 */ 2886 if (map_chg || avoid_reserve) { 2887 gbl_chg = hugepage_subpool_get_pages(spool, 1); 2888 if (gbl_chg < 0) { 2889 vma_end_reservation(h, vma, addr); 2890 return ERR_PTR(-ENOSPC); 2891 } 2892 2893 /* 2894 * Even though there was no reservation in the region/reserve 2895 * map, there could be reservations associated with the 2896 * subpool that can be used. This would be indicated if the 2897 * return value of hugepage_subpool_get_pages() is zero. 2898 * However, if avoid_reserve is specified we still avoid even 2899 * the subpool reservations. 2900 */ 2901 if (avoid_reserve) 2902 gbl_chg = 1; 2903 } 2904 2905 /* If this allocation is not consuming a reservation, charge it now. 2906 */ 2907 deferred_reserve = map_chg || avoid_reserve; 2908 if (deferred_reserve) { 2909 ret = hugetlb_cgroup_charge_cgroup_rsvd( 2910 idx, pages_per_huge_page(h), &h_cg); 2911 if (ret) 2912 goto out_subpool_put; 2913 } 2914 2915 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg); 2916 if (ret) 2917 goto out_uncharge_cgroup_reservation; 2918 2919 spin_lock_irq(&hugetlb_lock); 2920 /* 2921 * glb_chg is passed to indicate whether or not a page must be taken 2922 * from the global free pool (global change). gbl_chg == 0 indicates 2923 * a reservation exists for the allocation. 2924 */ 2925 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg); 2926 if (!page) { 2927 spin_unlock_irq(&hugetlb_lock); 2928 page = alloc_buddy_huge_page_with_mpol(h, vma, addr); 2929 if (!page) 2930 goto out_uncharge_cgroup; 2931 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) { 2932 SetHPageRestoreReserve(page); 2933 h->resv_huge_pages--; 2934 } 2935 spin_lock_irq(&hugetlb_lock); 2936 list_add(&page->lru, &h->hugepage_activelist); 2937 /* Fall through */ 2938 } 2939 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page); 2940 /* If allocation is not consuming a reservation, also store the 2941 * hugetlb_cgroup pointer on the page. 2942 */ 2943 if (deferred_reserve) { 2944 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h), 2945 h_cg, page); 2946 } 2947 2948 spin_unlock_irq(&hugetlb_lock); 2949 2950 hugetlb_set_page_subpool(page, spool); 2951 2952 map_commit = vma_commit_reservation(h, vma, addr); 2953 if (unlikely(map_chg > map_commit)) { 2954 /* 2955 * The page was added to the reservation map between 2956 * vma_needs_reservation and vma_commit_reservation. 2957 * This indicates a race with hugetlb_reserve_pages. 2958 * Adjust for the subpool count incremented above AND 2959 * in hugetlb_reserve_pages for the same page. Also, 2960 * the reservation count added in hugetlb_reserve_pages 2961 * no longer applies. 2962 */ 2963 long rsv_adjust; 2964 2965 rsv_adjust = hugepage_subpool_put_pages(spool, 1); 2966 hugetlb_acct_memory(h, -rsv_adjust); 2967 if (deferred_reserve) 2968 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h), 2969 pages_per_huge_page(h), page); 2970 } 2971 return page; 2972 2973 out_uncharge_cgroup: 2974 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg); 2975 out_uncharge_cgroup_reservation: 2976 if (deferred_reserve) 2977 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h), 2978 h_cg); 2979 out_subpool_put: 2980 if (map_chg || avoid_reserve) 2981 hugepage_subpool_put_pages(spool, 1); 2982 vma_end_reservation(h, vma, addr); 2983 return ERR_PTR(-ENOSPC); 2984 } 2985 2986 int alloc_bootmem_huge_page(struct hstate *h, int nid) 2987 __attribute__ ((weak, alias("__alloc_bootmem_huge_page"))); 2988 int __alloc_bootmem_huge_page(struct hstate *h, int nid) 2989 { 2990 struct huge_bootmem_page *m = NULL; /* initialize for clang */ 2991 int nr_nodes, node; 2992 2993 /* do node specific alloc */ 2994 if (nid != NUMA_NO_NODE) { 2995 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h), 2996 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid); 2997 if (!m) 2998 return 0; 2999 goto found; 3000 } 3001 /* allocate from next node when distributing huge pages */ 3002 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) { 3003 m = memblock_alloc_try_nid_raw( 3004 huge_page_size(h), huge_page_size(h), 3005 0, MEMBLOCK_ALLOC_ACCESSIBLE, node); 3006 /* 3007 * Use the beginning of the huge page to store the 3008 * huge_bootmem_page struct (until gather_bootmem 3009 * puts them into the mem_map). 3010 */ 3011 if (!m) 3012 return 0; 3013 goto found; 3014 } 3015 3016 found: 3017 /* Put them into a private list first because mem_map is not up yet */ 3018 INIT_LIST_HEAD(&m->list); 3019 list_add(&m->list, &huge_boot_pages); 3020 m->hstate = h; 3021 return 1; 3022 } 3023 3024 /* 3025 * Put bootmem huge pages into the standard lists after mem_map is up. 3026 * Note: This only applies to gigantic (order > MAX_ORDER) pages. 3027 */ 3028 static void __init gather_bootmem_prealloc(void) 3029 { 3030 struct huge_bootmem_page *m; 3031 3032 list_for_each_entry(m, &huge_boot_pages, list) { 3033 struct page *page = virt_to_page(m); 3034 struct hstate *h = m->hstate; 3035 3036 VM_BUG_ON(!hstate_is_gigantic(h)); 3037 WARN_ON(page_count(page) != 1); 3038 if (prep_compound_gigantic_page(page, huge_page_order(h))) { 3039 WARN_ON(PageReserved(page)); 3040 prep_new_huge_page(h, page, page_to_nid(page)); 3041 put_page(page); /* add to the hugepage allocator */ 3042 } else { 3043 /* VERY unlikely inflated ref count on a tail page */ 3044 free_gigantic_page(page, huge_page_order(h)); 3045 } 3046 3047 /* 3048 * We need to restore the 'stolen' pages to totalram_pages 3049 * in order to fix confusing memory reports from free(1) and 3050 * other side-effects, like CommitLimit going negative. 3051 */ 3052 adjust_managed_page_count(page, pages_per_huge_page(h)); 3053 cond_resched(); 3054 } 3055 } 3056 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid) 3057 { 3058 unsigned long i; 3059 char buf[32]; 3060 3061 for (i = 0; i < h->max_huge_pages_node[nid]; ++i) { 3062 if (hstate_is_gigantic(h)) { 3063 if (!alloc_bootmem_huge_page(h, nid)) 3064 break; 3065 } else { 3066 struct page *page; 3067 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 3068 3069 page = alloc_fresh_huge_page(h, gfp_mask, nid, 3070 &node_states[N_MEMORY], NULL); 3071 if (!page) 3072 break; 3073 put_page(page); /* free it into the hugepage allocator */ 3074 } 3075 cond_resched(); 3076 } 3077 if (i == h->max_huge_pages_node[nid]) 3078 return; 3079 3080 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3081 pr_warn("HugeTLB: allocating %u of page size %s failed node%d. Only allocated %lu hugepages.\n", 3082 h->max_huge_pages_node[nid], buf, nid, i); 3083 h->max_huge_pages -= (h->max_huge_pages_node[nid] - i); 3084 h->max_huge_pages_node[nid] = i; 3085 } 3086 3087 static void __init hugetlb_hstate_alloc_pages(struct hstate *h) 3088 { 3089 unsigned long i; 3090 nodemask_t *node_alloc_noretry; 3091 bool node_specific_alloc = false; 3092 3093 /* skip gigantic hugepages allocation if hugetlb_cma enabled */ 3094 if (hstate_is_gigantic(h) && hugetlb_cma_size) { 3095 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n"); 3096 return; 3097 } 3098 3099 /* do node specific alloc */ 3100 for_each_online_node(i) { 3101 if (h->max_huge_pages_node[i] > 0) { 3102 hugetlb_hstate_alloc_pages_onenode(h, i); 3103 node_specific_alloc = true; 3104 } 3105 } 3106 3107 if (node_specific_alloc) 3108 return; 3109 3110 /* below will do all node balanced alloc */ 3111 if (!hstate_is_gigantic(h)) { 3112 /* 3113 * Bit mask controlling how hard we retry per-node allocations. 3114 * Ignore errors as lower level routines can deal with 3115 * node_alloc_noretry == NULL. If this kmalloc fails at boot 3116 * time, we are likely in bigger trouble. 3117 */ 3118 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry), 3119 GFP_KERNEL); 3120 } else { 3121 /* allocations done at boot time */ 3122 node_alloc_noretry = NULL; 3123 } 3124 3125 /* bit mask controlling how hard we retry per-node allocations */ 3126 if (node_alloc_noretry) 3127 nodes_clear(*node_alloc_noretry); 3128 3129 for (i = 0; i < h->max_huge_pages; ++i) { 3130 if (hstate_is_gigantic(h)) { 3131 if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE)) 3132 break; 3133 } else if (!alloc_pool_huge_page(h, 3134 &node_states[N_MEMORY], 3135 node_alloc_noretry)) 3136 break; 3137 cond_resched(); 3138 } 3139 if (i < h->max_huge_pages) { 3140 char buf[32]; 3141 3142 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3143 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n", 3144 h->max_huge_pages, buf, i); 3145 h->max_huge_pages = i; 3146 } 3147 kfree(node_alloc_noretry); 3148 } 3149 3150 static void __init hugetlb_init_hstates(void) 3151 { 3152 struct hstate *h, *h2; 3153 3154 for_each_hstate(h) { 3155 /* oversize hugepages were init'ed in early boot */ 3156 if (!hstate_is_gigantic(h)) 3157 hugetlb_hstate_alloc_pages(h); 3158 3159 /* 3160 * Set demote order for each hstate. Note that 3161 * h->demote_order is initially 0. 3162 * - We can not demote gigantic pages if runtime freeing 3163 * is not supported, so skip this. 3164 * - If CMA allocation is possible, we can not demote 3165 * HUGETLB_PAGE_ORDER or smaller size pages. 3166 */ 3167 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 3168 continue; 3169 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER) 3170 continue; 3171 for_each_hstate(h2) { 3172 if (h2 == h) 3173 continue; 3174 if (h2->order < h->order && 3175 h2->order > h->demote_order) 3176 h->demote_order = h2->order; 3177 } 3178 } 3179 } 3180 3181 static void __init report_hugepages(void) 3182 { 3183 struct hstate *h; 3184 3185 for_each_hstate(h) { 3186 char buf[32]; 3187 3188 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3189 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n", 3190 buf, h->free_huge_pages); 3191 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n", 3192 hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf); 3193 } 3194 } 3195 3196 #ifdef CONFIG_HIGHMEM 3197 static void try_to_free_low(struct hstate *h, unsigned long count, 3198 nodemask_t *nodes_allowed) 3199 { 3200 int i; 3201 LIST_HEAD(page_list); 3202 3203 lockdep_assert_held(&hugetlb_lock); 3204 if (hstate_is_gigantic(h)) 3205 return; 3206 3207 /* 3208 * Collect pages to be freed on a list, and free after dropping lock 3209 */ 3210 for_each_node_mask(i, *nodes_allowed) { 3211 struct page *page, *next; 3212 struct list_head *freel = &h->hugepage_freelists[i]; 3213 list_for_each_entry_safe(page, next, freel, lru) { 3214 if (count >= h->nr_huge_pages) 3215 goto out; 3216 if (PageHighMem(page)) 3217 continue; 3218 remove_hugetlb_page(h, page, false); 3219 list_add(&page->lru, &page_list); 3220 } 3221 } 3222 3223 out: 3224 spin_unlock_irq(&hugetlb_lock); 3225 update_and_free_pages_bulk(h, &page_list); 3226 spin_lock_irq(&hugetlb_lock); 3227 } 3228 #else 3229 static inline void try_to_free_low(struct hstate *h, unsigned long count, 3230 nodemask_t *nodes_allowed) 3231 { 3232 } 3233 #endif 3234 3235 /* 3236 * Increment or decrement surplus_huge_pages. Keep node-specific counters 3237 * balanced by operating on them in a round-robin fashion. 3238 * Returns 1 if an adjustment was made. 3239 */ 3240 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed, 3241 int delta) 3242 { 3243 int nr_nodes, node; 3244 3245 lockdep_assert_held(&hugetlb_lock); 3246 VM_BUG_ON(delta != -1 && delta != 1); 3247 3248 if (delta < 0) { 3249 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 3250 if (h->surplus_huge_pages_node[node]) 3251 goto found; 3252 } 3253 } else { 3254 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 3255 if (h->surplus_huge_pages_node[node] < 3256 h->nr_huge_pages_node[node]) 3257 goto found; 3258 } 3259 } 3260 return 0; 3261 3262 found: 3263 h->surplus_huge_pages += delta; 3264 h->surplus_huge_pages_node[node] += delta; 3265 return 1; 3266 } 3267 3268 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) 3269 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid, 3270 nodemask_t *nodes_allowed) 3271 { 3272 unsigned long min_count, ret; 3273 struct page *page; 3274 LIST_HEAD(page_list); 3275 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL); 3276 3277 /* 3278 * Bit mask controlling how hard we retry per-node allocations. 3279 * If we can not allocate the bit mask, do not attempt to allocate 3280 * the requested huge pages. 3281 */ 3282 if (node_alloc_noretry) 3283 nodes_clear(*node_alloc_noretry); 3284 else 3285 return -ENOMEM; 3286 3287 /* 3288 * resize_lock mutex prevents concurrent adjustments to number of 3289 * pages in hstate via the proc/sysfs interfaces. 3290 */ 3291 mutex_lock(&h->resize_lock); 3292 flush_free_hpage_work(h); 3293 spin_lock_irq(&hugetlb_lock); 3294 3295 /* 3296 * Check for a node specific request. 3297 * Changing node specific huge page count may require a corresponding 3298 * change to the global count. In any case, the passed node mask 3299 * (nodes_allowed) will restrict alloc/free to the specified node. 3300 */ 3301 if (nid != NUMA_NO_NODE) { 3302 unsigned long old_count = count; 3303 3304 count += h->nr_huge_pages - h->nr_huge_pages_node[nid]; 3305 /* 3306 * User may have specified a large count value which caused the 3307 * above calculation to overflow. In this case, they wanted 3308 * to allocate as many huge pages as possible. Set count to 3309 * largest possible value to align with their intention. 3310 */ 3311 if (count < old_count) 3312 count = ULONG_MAX; 3313 } 3314 3315 /* 3316 * Gigantic pages runtime allocation depend on the capability for large 3317 * page range allocation. 3318 * If the system does not provide this feature, return an error when 3319 * the user tries to allocate gigantic pages but let the user free the 3320 * boottime allocated gigantic pages. 3321 */ 3322 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) { 3323 if (count > persistent_huge_pages(h)) { 3324 spin_unlock_irq(&hugetlb_lock); 3325 mutex_unlock(&h->resize_lock); 3326 NODEMASK_FREE(node_alloc_noretry); 3327 return -EINVAL; 3328 } 3329 /* Fall through to decrease pool */ 3330 } 3331 3332 /* 3333 * Increase the pool size 3334 * First take pages out of surplus state. Then make up the 3335 * remaining difference by allocating fresh huge pages. 3336 * 3337 * We might race with alloc_surplus_huge_page() here and be unable 3338 * to convert a surplus huge page to a normal huge page. That is 3339 * not critical, though, it just means the overall size of the 3340 * pool might be one hugepage larger than it needs to be, but 3341 * within all the constraints specified by the sysctls. 3342 */ 3343 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { 3344 if (!adjust_pool_surplus(h, nodes_allowed, -1)) 3345 break; 3346 } 3347 3348 while (count > persistent_huge_pages(h)) { 3349 /* 3350 * If this allocation races such that we no longer need the 3351 * page, free_huge_page will handle it by freeing the page 3352 * and reducing the surplus. 3353 */ 3354 spin_unlock_irq(&hugetlb_lock); 3355 3356 /* yield cpu to avoid soft lockup */ 3357 cond_resched(); 3358 3359 ret = alloc_pool_huge_page(h, nodes_allowed, 3360 node_alloc_noretry); 3361 spin_lock_irq(&hugetlb_lock); 3362 if (!ret) 3363 goto out; 3364 3365 /* Bail for signals. Probably ctrl-c from user */ 3366 if (signal_pending(current)) 3367 goto out; 3368 } 3369 3370 /* 3371 * Decrease the pool size 3372 * First return free pages to the buddy allocator (being careful 3373 * to keep enough around to satisfy reservations). Then place 3374 * pages into surplus state as needed so the pool will shrink 3375 * to the desired size as pages become free. 3376 * 3377 * By placing pages into the surplus state independent of the 3378 * overcommit value, we are allowing the surplus pool size to 3379 * exceed overcommit. There are few sane options here. Since 3380 * alloc_surplus_huge_page() is checking the global counter, 3381 * though, we'll note that we're not allowed to exceed surplus 3382 * and won't grow the pool anywhere else. Not until one of the 3383 * sysctls are changed, or the surplus pages go out of use. 3384 */ 3385 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages; 3386 min_count = max(count, min_count); 3387 try_to_free_low(h, min_count, nodes_allowed); 3388 3389 /* 3390 * Collect pages to be removed on list without dropping lock 3391 */ 3392 while (min_count < persistent_huge_pages(h)) { 3393 page = remove_pool_huge_page(h, nodes_allowed, 0); 3394 if (!page) 3395 break; 3396 3397 list_add(&page->lru, &page_list); 3398 } 3399 /* free the pages after dropping lock */ 3400 spin_unlock_irq(&hugetlb_lock); 3401 update_and_free_pages_bulk(h, &page_list); 3402 flush_free_hpage_work(h); 3403 spin_lock_irq(&hugetlb_lock); 3404 3405 while (count < persistent_huge_pages(h)) { 3406 if (!adjust_pool_surplus(h, nodes_allowed, 1)) 3407 break; 3408 } 3409 out: 3410 h->max_huge_pages = persistent_huge_pages(h); 3411 spin_unlock_irq(&hugetlb_lock); 3412 mutex_unlock(&h->resize_lock); 3413 3414 NODEMASK_FREE(node_alloc_noretry); 3415 3416 return 0; 3417 } 3418 3419 static int demote_free_huge_page(struct hstate *h, struct page *page) 3420 { 3421 int i, nid = page_to_nid(page); 3422 struct hstate *target_hstate; 3423 int rc = 0; 3424 3425 target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order); 3426 3427 remove_hugetlb_page_for_demote(h, page, false); 3428 spin_unlock_irq(&hugetlb_lock); 3429 3430 rc = hugetlb_vmemmap_restore(h, page); 3431 if (rc) { 3432 /* Allocation of vmemmmap failed, we can not demote page */ 3433 spin_lock_irq(&hugetlb_lock); 3434 set_page_refcounted(page); 3435 add_hugetlb_page(h, page, false); 3436 return rc; 3437 } 3438 3439 /* 3440 * Use destroy_compound_hugetlb_page_for_demote for all huge page 3441 * sizes as it will not ref count pages. 3442 */ 3443 destroy_compound_hugetlb_page_for_demote(page, huge_page_order(h)); 3444 3445 /* 3446 * Taking target hstate mutex synchronizes with set_max_huge_pages. 3447 * Without the mutex, pages added to target hstate could be marked 3448 * as surplus. 3449 * 3450 * Note that we already hold h->resize_lock. To prevent deadlock, 3451 * use the convention of always taking larger size hstate mutex first. 3452 */ 3453 mutex_lock(&target_hstate->resize_lock); 3454 for (i = 0; i < pages_per_huge_page(h); 3455 i += pages_per_huge_page(target_hstate)) { 3456 if (hstate_is_gigantic(target_hstate)) 3457 prep_compound_gigantic_page_for_demote(page + i, 3458 target_hstate->order); 3459 else 3460 prep_compound_page(page + i, target_hstate->order); 3461 set_page_private(page + i, 0); 3462 set_page_refcounted(page + i); 3463 prep_new_huge_page(target_hstate, page + i, nid); 3464 put_page(page + i); 3465 } 3466 mutex_unlock(&target_hstate->resize_lock); 3467 3468 spin_lock_irq(&hugetlb_lock); 3469 3470 /* 3471 * Not absolutely necessary, but for consistency update max_huge_pages 3472 * based on pool changes for the demoted page. 3473 */ 3474 h->max_huge_pages--; 3475 target_hstate->max_huge_pages += pages_per_huge_page(h); 3476 3477 return rc; 3478 } 3479 3480 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed) 3481 __must_hold(&hugetlb_lock) 3482 { 3483 int nr_nodes, node; 3484 struct page *page; 3485 3486 lockdep_assert_held(&hugetlb_lock); 3487 3488 /* We should never get here if no demote order */ 3489 if (!h->demote_order) { 3490 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n"); 3491 return -EINVAL; /* internal error */ 3492 } 3493 3494 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 3495 list_for_each_entry(page, &h->hugepage_freelists[node], lru) { 3496 if (PageHWPoison(page)) 3497 continue; 3498 3499 return demote_free_huge_page(h, page); 3500 } 3501 } 3502 3503 /* 3504 * Only way to get here is if all pages on free lists are poisoned. 3505 * Return -EBUSY so that caller will not retry. 3506 */ 3507 return -EBUSY; 3508 } 3509 3510 #define HSTATE_ATTR_RO(_name) \ 3511 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 3512 3513 #define HSTATE_ATTR_WO(_name) \ 3514 static struct kobj_attribute _name##_attr = __ATTR_WO(_name) 3515 3516 #define HSTATE_ATTR(_name) \ 3517 static struct kobj_attribute _name##_attr = __ATTR_RW(_name) 3518 3519 static struct kobject *hugepages_kobj; 3520 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 3521 3522 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp); 3523 3524 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp) 3525 { 3526 int i; 3527 3528 for (i = 0; i < HUGE_MAX_HSTATE; i++) 3529 if (hstate_kobjs[i] == kobj) { 3530 if (nidp) 3531 *nidp = NUMA_NO_NODE; 3532 return &hstates[i]; 3533 } 3534 3535 return kobj_to_node_hstate(kobj, nidp); 3536 } 3537 3538 static ssize_t nr_hugepages_show_common(struct kobject *kobj, 3539 struct kobj_attribute *attr, char *buf) 3540 { 3541 struct hstate *h; 3542 unsigned long nr_huge_pages; 3543 int nid; 3544 3545 h = kobj_to_hstate(kobj, &nid); 3546 if (nid == NUMA_NO_NODE) 3547 nr_huge_pages = h->nr_huge_pages; 3548 else 3549 nr_huge_pages = h->nr_huge_pages_node[nid]; 3550 3551 return sysfs_emit(buf, "%lu\n", nr_huge_pages); 3552 } 3553 3554 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy, 3555 struct hstate *h, int nid, 3556 unsigned long count, size_t len) 3557 { 3558 int err; 3559 nodemask_t nodes_allowed, *n_mask; 3560 3561 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 3562 return -EINVAL; 3563 3564 if (nid == NUMA_NO_NODE) { 3565 /* 3566 * global hstate attribute 3567 */ 3568 if (!(obey_mempolicy && 3569 init_nodemask_of_mempolicy(&nodes_allowed))) 3570 n_mask = &node_states[N_MEMORY]; 3571 else 3572 n_mask = &nodes_allowed; 3573 } else { 3574 /* 3575 * Node specific request. count adjustment happens in 3576 * set_max_huge_pages() after acquiring hugetlb_lock. 3577 */ 3578 init_nodemask_of_node(&nodes_allowed, nid); 3579 n_mask = &nodes_allowed; 3580 } 3581 3582 err = set_max_huge_pages(h, count, nid, n_mask); 3583 3584 return err ? err : len; 3585 } 3586 3587 static ssize_t nr_hugepages_store_common(bool obey_mempolicy, 3588 struct kobject *kobj, const char *buf, 3589 size_t len) 3590 { 3591 struct hstate *h; 3592 unsigned long count; 3593 int nid; 3594 int err; 3595 3596 err = kstrtoul(buf, 10, &count); 3597 if (err) 3598 return err; 3599 3600 h = kobj_to_hstate(kobj, &nid); 3601 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len); 3602 } 3603 3604 static ssize_t nr_hugepages_show(struct kobject *kobj, 3605 struct kobj_attribute *attr, char *buf) 3606 { 3607 return nr_hugepages_show_common(kobj, attr, buf); 3608 } 3609 3610 static ssize_t nr_hugepages_store(struct kobject *kobj, 3611 struct kobj_attribute *attr, const char *buf, size_t len) 3612 { 3613 return nr_hugepages_store_common(false, kobj, buf, len); 3614 } 3615 HSTATE_ATTR(nr_hugepages); 3616 3617 #ifdef CONFIG_NUMA 3618 3619 /* 3620 * hstate attribute for optionally mempolicy-based constraint on persistent 3621 * huge page alloc/free. 3622 */ 3623 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj, 3624 struct kobj_attribute *attr, 3625 char *buf) 3626 { 3627 return nr_hugepages_show_common(kobj, attr, buf); 3628 } 3629 3630 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj, 3631 struct kobj_attribute *attr, const char *buf, size_t len) 3632 { 3633 return nr_hugepages_store_common(true, kobj, buf, len); 3634 } 3635 HSTATE_ATTR(nr_hugepages_mempolicy); 3636 #endif 3637 3638 3639 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, 3640 struct kobj_attribute *attr, char *buf) 3641 { 3642 struct hstate *h = kobj_to_hstate(kobj, NULL); 3643 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages); 3644 } 3645 3646 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, 3647 struct kobj_attribute *attr, const char *buf, size_t count) 3648 { 3649 int err; 3650 unsigned long input; 3651 struct hstate *h = kobj_to_hstate(kobj, NULL); 3652 3653 if (hstate_is_gigantic(h)) 3654 return -EINVAL; 3655 3656 err = kstrtoul(buf, 10, &input); 3657 if (err) 3658 return err; 3659 3660 spin_lock_irq(&hugetlb_lock); 3661 h->nr_overcommit_huge_pages = input; 3662 spin_unlock_irq(&hugetlb_lock); 3663 3664 return count; 3665 } 3666 HSTATE_ATTR(nr_overcommit_hugepages); 3667 3668 static ssize_t free_hugepages_show(struct kobject *kobj, 3669 struct kobj_attribute *attr, char *buf) 3670 { 3671 struct hstate *h; 3672 unsigned long free_huge_pages; 3673 int nid; 3674 3675 h = kobj_to_hstate(kobj, &nid); 3676 if (nid == NUMA_NO_NODE) 3677 free_huge_pages = h->free_huge_pages; 3678 else 3679 free_huge_pages = h->free_huge_pages_node[nid]; 3680 3681 return sysfs_emit(buf, "%lu\n", free_huge_pages); 3682 } 3683 HSTATE_ATTR_RO(free_hugepages); 3684 3685 static ssize_t resv_hugepages_show(struct kobject *kobj, 3686 struct kobj_attribute *attr, char *buf) 3687 { 3688 struct hstate *h = kobj_to_hstate(kobj, NULL); 3689 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages); 3690 } 3691 HSTATE_ATTR_RO(resv_hugepages); 3692 3693 static ssize_t surplus_hugepages_show(struct kobject *kobj, 3694 struct kobj_attribute *attr, char *buf) 3695 { 3696 struct hstate *h; 3697 unsigned long surplus_huge_pages; 3698 int nid; 3699 3700 h = kobj_to_hstate(kobj, &nid); 3701 if (nid == NUMA_NO_NODE) 3702 surplus_huge_pages = h->surplus_huge_pages; 3703 else 3704 surplus_huge_pages = h->surplus_huge_pages_node[nid]; 3705 3706 return sysfs_emit(buf, "%lu\n", surplus_huge_pages); 3707 } 3708 HSTATE_ATTR_RO(surplus_hugepages); 3709 3710 static ssize_t demote_store(struct kobject *kobj, 3711 struct kobj_attribute *attr, const char *buf, size_t len) 3712 { 3713 unsigned long nr_demote; 3714 unsigned long nr_available; 3715 nodemask_t nodes_allowed, *n_mask; 3716 struct hstate *h; 3717 int err = 0; 3718 int nid; 3719 3720 err = kstrtoul(buf, 10, &nr_demote); 3721 if (err) 3722 return err; 3723 h = kobj_to_hstate(kobj, &nid); 3724 3725 if (nid != NUMA_NO_NODE) { 3726 init_nodemask_of_node(&nodes_allowed, nid); 3727 n_mask = &nodes_allowed; 3728 } else { 3729 n_mask = &node_states[N_MEMORY]; 3730 } 3731 3732 /* Synchronize with other sysfs operations modifying huge pages */ 3733 mutex_lock(&h->resize_lock); 3734 spin_lock_irq(&hugetlb_lock); 3735 3736 while (nr_demote) { 3737 /* 3738 * Check for available pages to demote each time thorough the 3739 * loop as demote_pool_huge_page will drop hugetlb_lock. 3740 */ 3741 if (nid != NUMA_NO_NODE) 3742 nr_available = h->free_huge_pages_node[nid]; 3743 else 3744 nr_available = h->free_huge_pages; 3745 nr_available -= h->resv_huge_pages; 3746 if (!nr_available) 3747 break; 3748 3749 err = demote_pool_huge_page(h, n_mask); 3750 if (err) 3751 break; 3752 3753 nr_demote--; 3754 } 3755 3756 spin_unlock_irq(&hugetlb_lock); 3757 mutex_unlock(&h->resize_lock); 3758 3759 if (err) 3760 return err; 3761 return len; 3762 } 3763 HSTATE_ATTR_WO(demote); 3764 3765 static ssize_t demote_size_show(struct kobject *kobj, 3766 struct kobj_attribute *attr, char *buf) 3767 { 3768 int nid; 3769 struct hstate *h = kobj_to_hstate(kobj, &nid); 3770 unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K; 3771 3772 return sysfs_emit(buf, "%lukB\n", demote_size); 3773 } 3774 3775 static ssize_t demote_size_store(struct kobject *kobj, 3776 struct kobj_attribute *attr, 3777 const char *buf, size_t count) 3778 { 3779 struct hstate *h, *demote_hstate; 3780 unsigned long demote_size; 3781 unsigned int demote_order; 3782 int nid; 3783 3784 demote_size = (unsigned long)memparse(buf, NULL); 3785 3786 demote_hstate = size_to_hstate(demote_size); 3787 if (!demote_hstate) 3788 return -EINVAL; 3789 demote_order = demote_hstate->order; 3790 if (demote_order < HUGETLB_PAGE_ORDER) 3791 return -EINVAL; 3792 3793 /* demote order must be smaller than hstate order */ 3794 h = kobj_to_hstate(kobj, &nid); 3795 if (demote_order >= h->order) 3796 return -EINVAL; 3797 3798 /* resize_lock synchronizes access to demote size and writes */ 3799 mutex_lock(&h->resize_lock); 3800 h->demote_order = demote_order; 3801 mutex_unlock(&h->resize_lock); 3802 3803 return count; 3804 } 3805 HSTATE_ATTR(demote_size); 3806 3807 static struct attribute *hstate_attrs[] = { 3808 &nr_hugepages_attr.attr, 3809 &nr_overcommit_hugepages_attr.attr, 3810 &free_hugepages_attr.attr, 3811 &resv_hugepages_attr.attr, 3812 &surplus_hugepages_attr.attr, 3813 #ifdef CONFIG_NUMA 3814 &nr_hugepages_mempolicy_attr.attr, 3815 #endif 3816 NULL, 3817 }; 3818 3819 static const struct attribute_group hstate_attr_group = { 3820 .attrs = hstate_attrs, 3821 }; 3822 3823 static struct attribute *hstate_demote_attrs[] = { 3824 &demote_size_attr.attr, 3825 &demote_attr.attr, 3826 NULL, 3827 }; 3828 3829 static const struct attribute_group hstate_demote_attr_group = { 3830 .attrs = hstate_demote_attrs, 3831 }; 3832 3833 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent, 3834 struct kobject **hstate_kobjs, 3835 const struct attribute_group *hstate_attr_group) 3836 { 3837 int retval; 3838 int hi = hstate_index(h); 3839 3840 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent); 3841 if (!hstate_kobjs[hi]) 3842 return -ENOMEM; 3843 3844 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group); 3845 if (retval) { 3846 kobject_put(hstate_kobjs[hi]); 3847 hstate_kobjs[hi] = NULL; 3848 } 3849 3850 if (h->demote_order) { 3851 if (sysfs_create_group(hstate_kobjs[hi], 3852 &hstate_demote_attr_group)) 3853 pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name); 3854 } 3855 3856 return retval; 3857 } 3858 3859 static void __init hugetlb_sysfs_init(void) 3860 { 3861 struct hstate *h; 3862 int err; 3863 3864 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); 3865 if (!hugepages_kobj) 3866 return; 3867 3868 for_each_hstate(h) { 3869 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj, 3870 hstate_kobjs, &hstate_attr_group); 3871 if (err) 3872 pr_err("HugeTLB: Unable to add hstate %s", h->name); 3873 } 3874 } 3875 3876 #ifdef CONFIG_NUMA 3877 3878 /* 3879 * node_hstate/s - associate per node hstate attributes, via their kobjects, 3880 * with node devices in node_devices[] using a parallel array. The array 3881 * index of a node device or _hstate == node id. 3882 * This is here to avoid any static dependency of the node device driver, in 3883 * the base kernel, on the hugetlb module. 3884 */ 3885 struct node_hstate { 3886 struct kobject *hugepages_kobj; 3887 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 3888 }; 3889 static struct node_hstate node_hstates[MAX_NUMNODES]; 3890 3891 /* 3892 * A subset of global hstate attributes for node devices 3893 */ 3894 static struct attribute *per_node_hstate_attrs[] = { 3895 &nr_hugepages_attr.attr, 3896 &free_hugepages_attr.attr, 3897 &surplus_hugepages_attr.attr, 3898 NULL, 3899 }; 3900 3901 static const struct attribute_group per_node_hstate_attr_group = { 3902 .attrs = per_node_hstate_attrs, 3903 }; 3904 3905 /* 3906 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj. 3907 * Returns node id via non-NULL nidp. 3908 */ 3909 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 3910 { 3911 int nid; 3912 3913 for (nid = 0; nid < nr_node_ids; nid++) { 3914 struct node_hstate *nhs = &node_hstates[nid]; 3915 int i; 3916 for (i = 0; i < HUGE_MAX_HSTATE; i++) 3917 if (nhs->hstate_kobjs[i] == kobj) { 3918 if (nidp) 3919 *nidp = nid; 3920 return &hstates[i]; 3921 } 3922 } 3923 3924 BUG(); 3925 return NULL; 3926 } 3927 3928 /* 3929 * Unregister hstate attributes from a single node device. 3930 * No-op if no hstate attributes attached. 3931 */ 3932 static void hugetlb_unregister_node(struct node *node) 3933 { 3934 struct hstate *h; 3935 struct node_hstate *nhs = &node_hstates[node->dev.id]; 3936 3937 if (!nhs->hugepages_kobj) 3938 return; /* no hstate attributes */ 3939 3940 for_each_hstate(h) { 3941 int idx = hstate_index(h); 3942 if (nhs->hstate_kobjs[idx]) { 3943 kobject_put(nhs->hstate_kobjs[idx]); 3944 nhs->hstate_kobjs[idx] = NULL; 3945 } 3946 } 3947 3948 kobject_put(nhs->hugepages_kobj); 3949 nhs->hugepages_kobj = NULL; 3950 } 3951 3952 3953 /* 3954 * Register hstate attributes for a single node device. 3955 * No-op if attributes already registered. 3956 */ 3957 static void hugetlb_register_node(struct node *node) 3958 { 3959 struct hstate *h; 3960 struct node_hstate *nhs = &node_hstates[node->dev.id]; 3961 int err; 3962 3963 if (nhs->hugepages_kobj) 3964 return; /* already allocated */ 3965 3966 nhs->hugepages_kobj = kobject_create_and_add("hugepages", 3967 &node->dev.kobj); 3968 if (!nhs->hugepages_kobj) 3969 return; 3970 3971 for_each_hstate(h) { 3972 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj, 3973 nhs->hstate_kobjs, 3974 &per_node_hstate_attr_group); 3975 if (err) { 3976 pr_err("HugeTLB: Unable to add hstate %s for node %d\n", 3977 h->name, node->dev.id); 3978 hugetlb_unregister_node(node); 3979 break; 3980 } 3981 } 3982 } 3983 3984 /* 3985 * hugetlb init time: register hstate attributes for all registered node 3986 * devices of nodes that have memory. All on-line nodes should have 3987 * registered their associated device by this time. 3988 */ 3989 static void __init hugetlb_register_all_nodes(void) 3990 { 3991 int nid; 3992 3993 for_each_node_state(nid, N_MEMORY) { 3994 struct node *node = node_devices[nid]; 3995 if (node->dev.id == nid) 3996 hugetlb_register_node(node); 3997 } 3998 3999 /* 4000 * Let the node device driver know we're here so it can 4001 * [un]register hstate attributes on node hotplug. 4002 */ 4003 register_hugetlbfs_with_node(hugetlb_register_node, 4004 hugetlb_unregister_node); 4005 } 4006 #else /* !CONFIG_NUMA */ 4007 4008 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 4009 { 4010 BUG(); 4011 if (nidp) 4012 *nidp = -1; 4013 return NULL; 4014 } 4015 4016 static void hugetlb_register_all_nodes(void) { } 4017 4018 #endif 4019 4020 static int __init hugetlb_init(void) 4021 { 4022 int i; 4023 4024 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE < 4025 __NR_HPAGEFLAGS); 4026 4027 if (!hugepages_supported()) { 4028 if (hugetlb_max_hstate || default_hstate_max_huge_pages) 4029 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n"); 4030 return 0; 4031 } 4032 4033 /* 4034 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some 4035 * architectures depend on setup being done here. 4036 */ 4037 hugetlb_add_hstate(HUGETLB_PAGE_ORDER); 4038 if (!parsed_default_hugepagesz) { 4039 /* 4040 * If we did not parse a default huge page size, set 4041 * default_hstate_idx to HPAGE_SIZE hstate. And, if the 4042 * number of huge pages for this default size was implicitly 4043 * specified, set that here as well. 4044 * Note that the implicit setting will overwrite an explicit 4045 * setting. A warning will be printed in this case. 4046 */ 4047 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE)); 4048 if (default_hstate_max_huge_pages) { 4049 if (default_hstate.max_huge_pages) { 4050 char buf[32]; 4051 4052 string_get_size(huge_page_size(&default_hstate), 4053 1, STRING_UNITS_2, buf, 32); 4054 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n", 4055 default_hstate.max_huge_pages, buf); 4056 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n", 4057 default_hstate_max_huge_pages); 4058 } 4059 default_hstate.max_huge_pages = 4060 default_hstate_max_huge_pages; 4061 4062 for_each_online_node(i) 4063 default_hstate.max_huge_pages_node[i] = 4064 default_hugepages_in_node[i]; 4065 } 4066 } 4067 4068 hugetlb_cma_check(); 4069 hugetlb_init_hstates(); 4070 gather_bootmem_prealloc(); 4071 report_hugepages(); 4072 4073 hugetlb_sysfs_init(); 4074 hugetlb_register_all_nodes(); 4075 hugetlb_cgroup_file_init(); 4076 4077 #ifdef CONFIG_SMP 4078 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus()); 4079 #else 4080 num_fault_mutexes = 1; 4081 #endif 4082 hugetlb_fault_mutex_table = 4083 kmalloc_array(num_fault_mutexes, sizeof(struct mutex), 4084 GFP_KERNEL); 4085 BUG_ON(!hugetlb_fault_mutex_table); 4086 4087 for (i = 0; i < num_fault_mutexes; i++) 4088 mutex_init(&hugetlb_fault_mutex_table[i]); 4089 return 0; 4090 } 4091 subsys_initcall(hugetlb_init); 4092 4093 /* Overwritten by architectures with more huge page sizes */ 4094 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size) 4095 { 4096 return size == HPAGE_SIZE; 4097 } 4098 4099 void __init hugetlb_add_hstate(unsigned int order) 4100 { 4101 struct hstate *h; 4102 unsigned long i; 4103 4104 if (size_to_hstate(PAGE_SIZE << order)) { 4105 return; 4106 } 4107 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE); 4108 BUG_ON(order == 0); 4109 h = &hstates[hugetlb_max_hstate++]; 4110 mutex_init(&h->resize_lock); 4111 h->order = order; 4112 h->mask = ~(huge_page_size(h) - 1); 4113 for (i = 0; i < MAX_NUMNODES; ++i) 4114 INIT_LIST_HEAD(&h->hugepage_freelists[i]); 4115 INIT_LIST_HEAD(&h->hugepage_activelist); 4116 h->next_nid_to_alloc = first_memory_node; 4117 h->next_nid_to_free = first_memory_node; 4118 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", 4119 huge_page_size(h)/1024); 4120 4121 parsed_hstate = h; 4122 } 4123 4124 bool __init __weak hugetlb_node_alloc_supported(void) 4125 { 4126 return true; 4127 } 4128 4129 static void __init hugepages_clear_pages_in_node(void) 4130 { 4131 if (!hugetlb_max_hstate) { 4132 default_hstate_max_huge_pages = 0; 4133 memset(default_hugepages_in_node, 0, 4134 MAX_NUMNODES * sizeof(unsigned int)); 4135 } else { 4136 parsed_hstate->max_huge_pages = 0; 4137 memset(parsed_hstate->max_huge_pages_node, 0, 4138 MAX_NUMNODES * sizeof(unsigned int)); 4139 } 4140 } 4141 4142 /* 4143 * hugepages command line processing 4144 * hugepages normally follows a valid hugepagsz or default_hugepagsz 4145 * specification. If not, ignore the hugepages value. hugepages can also 4146 * be the first huge page command line option in which case it implicitly 4147 * specifies the number of huge pages for the default size. 4148 */ 4149 static int __init hugepages_setup(char *s) 4150 { 4151 unsigned long *mhp; 4152 static unsigned long *last_mhp; 4153 int node = NUMA_NO_NODE; 4154 int count; 4155 unsigned long tmp; 4156 char *p = s; 4157 4158 if (!parsed_valid_hugepagesz) { 4159 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s); 4160 parsed_valid_hugepagesz = true; 4161 return 1; 4162 } 4163 4164 /* 4165 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter 4166 * yet, so this hugepages= parameter goes to the "default hstate". 4167 * Otherwise, it goes with the previously parsed hugepagesz or 4168 * default_hugepagesz. 4169 */ 4170 else if (!hugetlb_max_hstate) 4171 mhp = &default_hstate_max_huge_pages; 4172 else 4173 mhp = &parsed_hstate->max_huge_pages; 4174 4175 if (mhp == last_mhp) { 4176 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s); 4177 return 1; 4178 } 4179 4180 while (*p) { 4181 count = 0; 4182 if (sscanf(p, "%lu%n", &tmp, &count) != 1) 4183 goto invalid; 4184 /* Parameter is node format */ 4185 if (p[count] == ':') { 4186 if (!hugetlb_node_alloc_supported()) { 4187 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n"); 4188 return 1; 4189 } 4190 if (tmp >= MAX_NUMNODES || !node_online(tmp)) 4191 goto invalid; 4192 node = array_index_nospec(tmp, MAX_NUMNODES); 4193 p += count + 1; 4194 /* Parse hugepages */ 4195 if (sscanf(p, "%lu%n", &tmp, &count) != 1) 4196 goto invalid; 4197 if (!hugetlb_max_hstate) 4198 default_hugepages_in_node[node] = tmp; 4199 else 4200 parsed_hstate->max_huge_pages_node[node] = tmp; 4201 *mhp += tmp; 4202 /* Go to parse next node*/ 4203 if (p[count] == ',') 4204 p += count + 1; 4205 else 4206 break; 4207 } else { 4208 if (p != s) 4209 goto invalid; 4210 *mhp = tmp; 4211 break; 4212 } 4213 } 4214 4215 /* 4216 * Global state is always initialized later in hugetlb_init. 4217 * But we need to allocate gigantic hstates here early to still 4218 * use the bootmem allocator. 4219 */ 4220 if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate)) 4221 hugetlb_hstate_alloc_pages(parsed_hstate); 4222 4223 last_mhp = mhp; 4224 4225 return 1; 4226 4227 invalid: 4228 pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p); 4229 hugepages_clear_pages_in_node(); 4230 return 1; 4231 } 4232 __setup("hugepages=", hugepages_setup); 4233 4234 /* 4235 * hugepagesz command line processing 4236 * A specific huge page size can only be specified once with hugepagesz. 4237 * hugepagesz is followed by hugepages on the command line. The global 4238 * variable 'parsed_valid_hugepagesz' is used to determine if prior 4239 * hugepagesz argument was valid. 4240 */ 4241 static int __init hugepagesz_setup(char *s) 4242 { 4243 unsigned long size; 4244 struct hstate *h; 4245 4246 parsed_valid_hugepagesz = false; 4247 size = (unsigned long)memparse(s, NULL); 4248 4249 if (!arch_hugetlb_valid_size(size)) { 4250 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s); 4251 return 1; 4252 } 4253 4254 h = size_to_hstate(size); 4255 if (h) { 4256 /* 4257 * hstate for this size already exists. This is normally 4258 * an error, but is allowed if the existing hstate is the 4259 * default hstate. More specifically, it is only allowed if 4260 * the number of huge pages for the default hstate was not 4261 * previously specified. 4262 */ 4263 if (!parsed_default_hugepagesz || h != &default_hstate || 4264 default_hstate.max_huge_pages) { 4265 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s); 4266 return 1; 4267 } 4268 4269 /* 4270 * No need to call hugetlb_add_hstate() as hstate already 4271 * exists. But, do set parsed_hstate so that a following 4272 * hugepages= parameter will be applied to this hstate. 4273 */ 4274 parsed_hstate = h; 4275 parsed_valid_hugepagesz = true; 4276 return 1; 4277 } 4278 4279 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); 4280 parsed_valid_hugepagesz = true; 4281 return 1; 4282 } 4283 __setup("hugepagesz=", hugepagesz_setup); 4284 4285 /* 4286 * default_hugepagesz command line input 4287 * Only one instance of default_hugepagesz allowed on command line. 4288 */ 4289 static int __init default_hugepagesz_setup(char *s) 4290 { 4291 unsigned long size; 4292 int i; 4293 4294 parsed_valid_hugepagesz = false; 4295 if (parsed_default_hugepagesz) { 4296 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s); 4297 return 1; 4298 } 4299 4300 size = (unsigned long)memparse(s, NULL); 4301 4302 if (!arch_hugetlb_valid_size(size)) { 4303 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s); 4304 return 1; 4305 } 4306 4307 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); 4308 parsed_valid_hugepagesz = true; 4309 parsed_default_hugepagesz = true; 4310 default_hstate_idx = hstate_index(size_to_hstate(size)); 4311 4312 /* 4313 * The number of default huge pages (for this size) could have been 4314 * specified as the first hugetlb parameter: hugepages=X. If so, 4315 * then default_hstate_max_huge_pages is set. If the default huge 4316 * page size is gigantic (>= MAX_ORDER), then the pages must be 4317 * allocated here from bootmem allocator. 4318 */ 4319 if (default_hstate_max_huge_pages) { 4320 default_hstate.max_huge_pages = default_hstate_max_huge_pages; 4321 for_each_online_node(i) 4322 default_hstate.max_huge_pages_node[i] = 4323 default_hugepages_in_node[i]; 4324 if (hstate_is_gigantic(&default_hstate)) 4325 hugetlb_hstate_alloc_pages(&default_hstate); 4326 default_hstate_max_huge_pages = 0; 4327 } 4328 4329 return 1; 4330 } 4331 __setup("default_hugepagesz=", default_hugepagesz_setup); 4332 4333 static unsigned int allowed_mems_nr(struct hstate *h) 4334 { 4335 int node; 4336 unsigned int nr = 0; 4337 nodemask_t *mpol_allowed; 4338 unsigned int *array = h->free_huge_pages_node; 4339 gfp_t gfp_mask = htlb_alloc_mask(h); 4340 4341 mpol_allowed = policy_nodemask_current(gfp_mask); 4342 4343 for_each_node_mask(node, cpuset_current_mems_allowed) { 4344 if (!mpol_allowed || node_isset(node, *mpol_allowed)) 4345 nr += array[node]; 4346 } 4347 4348 return nr; 4349 } 4350 4351 #ifdef CONFIG_SYSCTL 4352 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write, 4353 void *buffer, size_t *length, 4354 loff_t *ppos, unsigned long *out) 4355 { 4356 struct ctl_table dup_table; 4357 4358 /* 4359 * In order to avoid races with __do_proc_doulongvec_minmax(), we 4360 * can duplicate the @table and alter the duplicate of it. 4361 */ 4362 dup_table = *table; 4363 dup_table.data = out; 4364 4365 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos); 4366 } 4367 4368 static int hugetlb_sysctl_handler_common(bool obey_mempolicy, 4369 struct ctl_table *table, int write, 4370 void *buffer, size_t *length, loff_t *ppos) 4371 { 4372 struct hstate *h = &default_hstate; 4373 unsigned long tmp = h->max_huge_pages; 4374 int ret; 4375 4376 if (!hugepages_supported()) 4377 return -EOPNOTSUPP; 4378 4379 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, 4380 &tmp); 4381 if (ret) 4382 goto out; 4383 4384 if (write) 4385 ret = __nr_hugepages_store_common(obey_mempolicy, h, 4386 NUMA_NO_NODE, tmp, *length); 4387 out: 4388 return ret; 4389 } 4390 4391 int hugetlb_sysctl_handler(struct ctl_table *table, int write, 4392 void *buffer, size_t *length, loff_t *ppos) 4393 { 4394 4395 return hugetlb_sysctl_handler_common(false, table, write, 4396 buffer, length, ppos); 4397 } 4398 4399 #ifdef CONFIG_NUMA 4400 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write, 4401 void *buffer, size_t *length, loff_t *ppos) 4402 { 4403 return hugetlb_sysctl_handler_common(true, table, write, 4404 buffer, length, ppos); 4405 } 4406 #endif /* CONFIG_NUMA */ 4407 4408 int hugetlb_overcommit_handler(struct ctl_table *table, int write, 4409 void *buffer, size_t *length, loff_t *ppos) 4410 { 4411 struct hstate *h = &default_hstate; 4412 unsigned long tmp; 4413 int ret; 4414 4415 if (!hugepages_supported()) 4416 return -EOPNOTSUPP; 4417 4418 tmp = h->nr_overcommit_huge_pages; 4419 4420 if (write && hstate_is_gigantic(h)) 4421 return -EINVAL; 4422 4423 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, 4424 &tmp); 4425 if (ret) 4426 goto out; 4427 4428 if (write) { 4429 spin_lock_irq(&hugetlb_lock); 4430 h->nr_overcommit_huge_pages = tmp; 4431 spin_unlock_irq(&hugetlb_lock); 4432 } 4433 out: 4434 return ret; 4435 } 4436 4437 #endif /* CONFIG_SYSCTL */ 4438 4439 void hugetlb_report_meminfo(struct seq_file *m) 4440 { 4441 struct hstate *h; 4442 unsigned long total = 0; 4443 4444 if (!hugepages_supported()) 4445 return; 4446 4447 for_each_hstate(h) { 4448 unsigned long count = h->nr_huge_pages; 4449 4450 total += huge_page_size(h) * count; 4451 4452 if (h == &default_hstate) 4453 seq_printf(m, 4454 "HugePages_Total: %5lu\n" 4455 "HugePages_Free: %5lu\n" 4456 "HugePages_Rsvd: %5lu\n" 4457 "HugePages_Surp: %5lu\n" 4458 "Hugepagesize: %8lu kB\n", 4459 count, 4460 h->free_huge_pages, 4461 h->resv_huge_pages, 4462 h->surplus_huge_pages, 4463 huge_page_size(h) / SZ_1K); 4464 } 4465 4466 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K); 4467 } 4468 4469 int hugetlb_report_node_meminfo(char *buf, int len, int nid) 4470 { 4471 struct hstate *h = &default_hstate; 4472 4473 if (!hugepages_supported()) 4474 return 0; 4475 4476 return sysfs_emit_at(buf, len, 4477 "Node %d HugePages_Total: %5u\n" 4478 "Node %d HugePages_Free: %5u\n" 4479 "Node %d HugePages_Surp: %5u\n", 4480 nid, h->nr_huge_pages_node[nid], 4481 nid, h->free_huge_pages_node[nid], 4482 nid, h->surplus_huge_pages_node[nid]); 4483 } 4484 4485 void hugetlb_show_meminfo_node(int nid) 4486 { 4487 struct hstate *h; 4488 4489 if (!hugepages_supported()) 4490 return; 4491 4492 for_each_hstate(h) 4493 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n", 4494 nid, 4495 h->nr_huge_pages_node[nid], 4496 h->free_huge_pages_node[nid], 4497 h->surplus_huge_pages_node[nid], 4498 huge_page_size(h) / SZ_1K); 4499 } 4500 4501 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm) 4502 { 4503 seq_printf(m, "HugetlbPages:\t%8lu kB\n", 4504 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10)); 4505 } 4506 4507 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ 4508 unsigned long hugetlb_total_pages(void) 4509 { 4510 struct hstate *h; 4511 unsigned long nr_total_pages = 0; 4512 4513 for_each_hstate(h) 4514 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h); 4515 return nr_total_pages; 4516 } 4517 4518 static int hugetlb_acct_memory(struct hstate *h, long delta) 4519 { 4520 int ret = -ENOMEM; 4521 4522 if (!delta) 4523 return 0; 4524 4525 spin_lock_irq(&hugetlb_lock); 4526 /* 4527 * When cpuset is configured, it breaks the strict hugetlb page 4528 * reservation as the accounting is done on a global variable. Such 4529 * reservation is completely rubbish in the presence of cpuset because 4530 * the reservation is not checked against page availability for the 4531 * current cpuset. Application can still potentially OOM'ed by kernel 4532 * with lack of free htlb page in cpuset that the task is in. 4533 * Attempt to enforce strict accounting with cpuset is almost 4534 * impossible (or too ugly) because cpuset is too fluid that 4535 * task or memory node can be dynamically moved between cpusets. 4536 * 4537 * The change of semantics for shared hugetlb mapping with cpuset is 4538 * undesirable. However, in order to preserve some of the semantics, 4539 * we fall back to check against current free page availability as 4540 * a best attempt and hopefully to minimize the impact of changing 4541 * semantics that cpuset has. 4542 * 4543 * Apart from cpuset, we also have memory policy mechanism that 4544 * also determines from which node the kernel will allocate memory 4545 * in a NUMA system. So similar to cpuset, we also should consider 4546 * the memory policy of the current task. Similar to the description 4547 * above. 4548 */ 4549 if (delta > 0) { 4550 if (gather_surplus_pages(h, delta) < 0) 4551 goto out; 4552 4553 if (delta > allowed_mems_nr(h)) { 4554 return_unused_surplus_pages(h, delta); 4555 goto out; 4556 } 4557 } 4558 4559 ret = 0; 4560 if (delta < 0) 4561 return_unused_surplus_pages(h, (unsigned long) -delta); 4562 4563 out: 4564 spin_unlock_irq(&hugetlb_lock); 4565 return ret; 4566 } 4567 4568 static void hugetlb_vm_op_open(struct vm_area_struct *vma) 4569 { 4570 struct resv_map *resv = vma_resv_map(vma); 4571 4572 /* 4573 * This new VMA should share its siblings reservation map if present. 4574 * The VMA will only ever have a valid reservation map pointer where 4575 * it is being copied for another still existing VMA. As that VMA 4576 * has a reference to the reservation map it cannot disappear until 4577 * after this open call completes. It is therefore safe to take a 4578 * new reference here without additional locking. 4579 */ 4580 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 4581 resv_map_dup_hugetlb_cgroup_uncharge_info(resv); 4582 kref_get(&resv->refs); 4583 } 4584 } 4585 4586 static void hugetlb_vm_op_close(struct vm_area_struct *vma) 4587 { 4588 struct hstate *h = hstate_vma(vma); 4589 struct resv_map *resv = vma_resv_map(vma); 4590 struct hugepage_subpool *spool = subpool_vma(vma); 4591 unsigned long reserve, start, end; 4592 long gbl_reserve; 4593 4594 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 4595 return; 4596 4597 start = vma_hugecache_offset(h, vma, vma->vm_start); 4598 end = vma_hugecache_offset(h, vma, vma->vm_end); 4599 4600 reserve = (end - start) - region_count(resv, start, end); 4601 hugetlb_cgroup_uncharge_counter(resv, start, end); 4602 if (reserve) { 4603 /* 4604 * Decrement reserve counts. The global reserve count may be 4605 * adjusted if the subpool has a minimum size. 4606 */ 4607 gbl_reserve = hugepage_subpool_put_pages(spool, reserve); 4608 hugetlb_acct_memory(h, -gbl_reserve); 4609 } 4610 4611 kref_put(&resv->refs, resv_map_release); 4612 } 4613 4614 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr) 4615 { 4616 if (addr & ~(huge_page_mask(hstate_vma(vma)))) 4617 return -EINVAL; 4618 return 0; 4619 } 4620 4621 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma) 4622 { 4623 return huge_page_size(hstate_vma(vma)); 4624 } 4625 4626 /* 4627 * We cannot handle pagefaults against hugetlb pages at all. They cause 4628 * handle_mm_fault() to try to instantiate regular-sized pages in the 4629 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get 4630 * this far. 4631 */ 4632 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf) 4633 { 4634 BUG(); 4635 return 0; 4636 } 4637 4638 /* 4639 * When a new function is introduced to vm_operations_struct and added 4640 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops. 4641 * This is because under System V memory model, mappings created via 4642 * shmget/shmat with "huge page" specified are backed by hugetlbfs files, 4643 * their original vm_ops are overwritten with shm_vm_ops. 4644 */ 4645 const struct vm_operations_struct hugetlb_vm_ops = { 4646 .fault = hugetlb_vm_op_fault, 4647 .open = hugetlb_vm_op_open, 4648 .close = hugetlb_vm_op_close, 4649 .may_split = hugetlb_vm_op_split, 4650 .pagesize = hugetlb_vm_op_pagesize, 4651 }; 4652 4653 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, 4654 int writable) 4655 { 4656 pte_t entry; 4657 unsigned int shift = huge_page_shift(hstate_vma(vma)); 4658 4659 if (writable) { 4660 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page, 4661 vma->vm_page_prot))); 4662 } else { 4663 entry = huge_pte_wrprotect(mk_huge_pte(page, 4664 vma->vm_page_prot)); 4665 } 4666 entry = pte_mkyoung(entry); 4667 entry = arch_make_huge_pte(entry, shift, vma->vm_flags); 4668 4669 return entry; 4670 } 4671 4672 static void set_huge_ptep_writable(struct vm_area_struct *vma, 4673 unsigned long address, pte_t *ptep) 4674 { 4675 pte_t entry; 4676 4677 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep))); 4678 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) 4679 update_mmu_cache(vma, address, ptep); 4680 } 4681 4682 bool is_hugetlb_entry_migration(pte_t pte) 4683 { 4684 swp_entry_t swp; 4685 4686 if (huge_pte_none(pte) || pte_present(pte)) 4687 return false; 4688 swp = pte_to_swp_entry(pte); 4689 if (is_migration_entry(swp)) 4690 return true; 4691 else 4692 return false; 4693 } 4694 4695 static bool is_hugetlb_entry_hwpoisoned(pte_t pte) 4696 { 4697 swp_entry_t swp; 4698 4699 if (huge_pte_none(pte) || pte_present(pte)) 4700 return false; 4701 swp = pte_to_swp_entry(pte); 4702 if (is_hwpoison_entry(swp)) 4703 return true; 4704 else 4705 return false; 4706 } 4707 4708 static void 4709 hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr, 4710 struct page *new_page) 4711 { 4712 __SetPageUptodate(new_page); 4713 hugepage_add_new_anon_rmap(new_page, vma, addr); 4714 set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1)); 4715 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm); 4716 ClearHPageRestoreReserve(new_page); 4717 SetHPageMigratable(new_page); 4718 } 4719 4720 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, 4721 struct vm_area_struct *dst_vma, 4722 struct vm_area_struct *src_vma) 4723 { 4724 pte_t *src_pte, *dst_pte, entry, dst_entry; 4725 struct page *ptepage; 4726 unsigned long addr; 4727 bool cow = is_cow_mapping(src_vma->vm_flags); 4728 struct hstate *h = hstate_vma(src_vma); 4729 unsigned long sz = huge_page_size(h); 4730 unsigned long npages = pages_per_huge_page(h); 4731 struct address_space *mapping = src_vma->vm_file->f_mapping; 4732 struct mmu_notifier_range range; 4733 unsigned long last_addr_mask; 4734 int ret = 0; 4735 4736 if (cow) { 4737 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src_vma, src, 4738 src_vma->vm_start, 4739 src_vma->vm_end); 4740 mmu_notifier_invalidate_range_start(&range); 4741 mmap_assert_write_locked(src); 4742 raw_write_seqcount_begin(&src->write_protect_seq); 4743 } else { 4744 /* 4745 * For shared mappings i_mmap_rwsem must be held to call 4746 * huge_pte_alloc, otherwise the returned ptep could go 4747 * away if part of a shared pmd and another thread calls 4748 * huge_pmd_unshare. 4749 */ 4750 i_mmap_lock_read(mapping); 4751 } 4752 4753 last_addr_mask = hugetlb_mask_last_page(h); 4754 for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) { 4755 spinlock_t *src_ptl, *dst_ptl; 4756 src_pte = huge_pte_offset(src, addr, sz); 4757 if (!src_pte) { 4758 addr |= last_addr_mask; 4759 continue; 4760 } 4761 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz); 4762 if (!dst_pte) { 4763 ret = -ENOMEM; 4764 break; 4765 } 4766 4767 /* 4768 * If the pagetables are shared don't copy or take references. 4769 * dst_pte == src_pte is the common case of src/dest sharing. 4770 * 4771 * However, src could have 'unshared' and dst shares with 4772 * another vma. If dst_pte !none, this implies sharing. 4773 * Check here before taking page table lock, and once again 4774 * after taking the lock below. 4775 */ 4776 dst_entry = huge_ptep_get(dst_pte); 4777 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry)) { 4778 addr |= last_addr_mask; 4779 continue; 4780 } 4781 4782 dst_ptl = huge_pte_lock(h, dst, dst_pte); 4783 src_ptl = huge_pte_lockptr(h, src, src_pte); 4784 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 4785 entry = huge_ptep_get(src_pte); 4786 dst_entry = huge_ptep_get(dst_pte); 4787 again: 4788 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) { 4789 /* 4790 * Skip if src entry none. Also, skip in the 4791 * unlikely case dst entry !none as this implies 4792 * sharing with another vma. 4793 */ 4794 ; 4795 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) { 4796 bool uffd_wp = huge_pte_uffd_wp(entry); 4797 4798 if (!userfaultfd_wp(dst_vma) && uffd_wp) 4799 entry = huge_pte_clear_uffd_wp(entry); 4800 set_huge_pte_at(dst, addr, dst_pte, entry); 4801 } else if (unlikely(is_hugetlb_entry_migration(entry))) { 4802 swp_entry_t swp_entry = pte_to_swp_entry(entry); 4803 bool uffd_wp = huge_pte_uffd_wp(entry); 4804 4805 if (!is_readable_migration_entry(swp_entry) && cow) { 4806 /* 4807 * COW mappings require pages in both 4808 * parent and child to be set to read. 4809 */ 4810 swp_entry = make_readable_migration_entry( 4811 swp_offset(swp_entry)); 4812 entry = swp_entry_to_pte(swp_entry); 4813 if (userfaultfd_wp(src_vma) && uffd_wp) 4814 entry = huge_pte_mkuffd_wp(entry); 4815 set_huge_pte_at(src, addr, src_pte, entry); 4816 } 4817 if (!userfaultfd_wp(dst_vma) && uffd_wp) 4818 entry = huge_pte_clear_uffd_wp(entry); 4819 set_huge_pte_at(dst, addr, dst_pte, entry); 4820 } else if (unlikely(is_pte_marker(entry))) { 4821 /* 4822 * We copy the pte marker only if the dst vma has 4823 * uffd-wp enabled. 4824 */ 4825 if (userfaultfd_wp(dst_vma)) 4826 set_huge_pte_at(dst, addr, dst_pte, entry); 4827 } else { 4828 entry = huge_ptep_get(src_pte); 4829 ptepage = pte_page(entry); 4830 get_page(ptepage); 4831 4832 /* 4833 * Failing to duplicate the anon rmap is a rare case 4834 * where we see pinned hugetlb pages while they're 4835 * prone to COW. We need to do the COW earlier during 4836 * fork. 4837 * 4838 * When pre-allocating the page or copying data, we 4839 * need to be without the pgtable locks since we could 4840 * sleep during the process. 4841 */ 4842 if (!PageAnon(ptepage)) { 4843 page_dup_file_rmap(ptepage, true); 4844 } else if (page_try_dup_anon_rmap(ptepage, true, 4845 src_vma)) { 4846 pte_t src_pte_old = entry; 4847 struct page *new; 4848 4849 spin_unlock(src_ptl); 4850 spin_unlock(dst_ptl); 4851 /* Do not use reserve as it's private owned */ 4852 new = alloc_huge_page(dst_vma, addr, 1); 4853 if (IS_ERR(new)) { 4854 put_page(ptepage); 4855 ret = PTR_ERR(new); 4856 break; 4857 } 4858 copy_user_huge_page(new, ptepage, addr, dst_vma, 4859 npages); 4860 put_page(ptepage); 4861 4862 /* Install the new huge page if src pte stable */ 4863 dst_ptl = huge_pte_lock(h, dst, dst_pte); 4864 src_ptl = huge_pte_lockptr(h, src, src_pte); 4865 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 4866 entry = huge_ptep_get(src_pte); 4867 if (!pte_same(src_pte_old, entry)) { 4868 restore_reserve_on_error(h, dst_vma, addr, 4869 new); 4870 put_page(new); 4871 /* dst_entry won't change as in child */ 4872 goto again; 4873 } 4874 hugetlb_install_page(dst_vma, dst_pte, addr, new); 4875 spin_unlock(src_ptl); 4876 spin_unlock(dst_ptl); 4877 continue; 4878 } 4879 4880 if (cow) { 4881 /* 4882 * No need to notify as we are downgrading page 4883 * table protection not changing it to point 4884 * to a new page. 4885 * 4886 * See Documentation/mm/mmu_notifier.rst 4887 */ 4888 huge_ptep_set_wrprotect(src, addr, src_pte); 4889 entry = huge_pte_wrprotect(entry); 4890 } 4891 4892 set_huge_pte_at(dst, addr, dst_pte, entry); 4893 hugetlb_count_add(npages, dst); 4894 } 4895 spin_unlock(src_ptl); 4896 spin_unlock(dst_ptl); 4897 } 4898 4899 if (cow) { 4900 raw_write_seqcount_end(&src->write_protect_seq); 4901 mmu_notifier_invalidate_range_end(&range); 4902 } else { 4903 i_mmap_unlock_read(mapping); 4904 } 4905 4906 return ret; 4907 } 4908 4909 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr, 4910 unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte) 4911 { 4912 struct hstate *h = hstate_vma(vma); 4913 struct mm_struct *mm = vma->vm_mm; 4914 spinlock_t *src_ptl, *dst_ptl; 4915 pte_t pte; 4916 4917 dst_ptl = huge_pte_lock(h, mm, dst_pte); 4918 src_ptl = huge_pte_lockptr(h, mm, src_pte); 4919 4920 /* 4921 * We don't have to worry about the ordering of src and dst ptlocks 4922 * because exclusive mmap_sem (or the i_mmap_lock) prevents deadlock. 4923 */ 4924 if (src_ptl != dst_ptl) 4925 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 4926 4927 pte = huge_ptep_get_and_clear(mm, old_addr, src_pte); 4928 set_huge_pte_at(mm, new_addr, dst_pte, pte); 4929 4930 if (src_ptl != dst_ptl) 4931 spin_unlock(src_ptl); 4932 spin_unlock(dst_ptl); 4933 } 4934 4935 int move_hugetlb_page_tables(struct vm_area_struct *vma, 4936 struct vm_area_struct *new_vma, 4937 unsigned long old_addr, unsigned long new_addr, 4938 unsigned long len) 4939 { 4940 struct hstate *h = hstate_vma(vma); 4941 struct address_space *mapping = vma->vm_file->f_mapping; 4942 unsigned long sz = huge_page_size(h); 4943 struct mm_struct *mm = vma->vm_mm; 4944 unsigned long old_end = old_addr + len; 4945 unsigned long last_addr_mask; 4946 pte_t *src_pte, *dst_pte; 4947 struct mmu_notifier_range range; 4948 bool shared_pmd = false; 4949 4950 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, old_addr, 4951 old_end); 4952 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 4953 /* 4954 * In case of shared PMDs, we should cover the maximum possible 4955 * range. 4956 */ 4957 flush_cache_range(vma, range.start, range.end); 4958 4959 mmu_notifier_invalidate_range_start(&range); 4960 last_addr_mask = hugetlb_mask_last_page(h); 4961 /* Prevent race with file truncation */ 4962 i_mmap_lock_write(mapping); 4963 for (; old_addr < old_end; old_addr += sz, new_addr += sz) { 4964 src_pte = huge_pte_offset(mm, old_addr, sz); 4965 if (!src_pte) { 4966 old_addr |= last_addr_mask; 4967 new_addr |= last_addr_mask; 4968 continue; 4969 } 4970 if (huge_pte_none(huge_ptep_get(src_pte))) 4971 continue; 4972 4973 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) { 4974 shared_pmd = true; 4975 old_addr |= last_addr_mask; 4976 new_addr |= last_addr_mask; 4977 continue; 4978 } 4979 4980 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz); 4981 if (!dst_pte) 4982 break; 4983 4984 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte); 4985 } 4986 4987 if (shared_pmd) 4988 flush_tlb_range(vma, range.start, range.end); 4989 else 4990 flush_tlb_range(vma, old_end - len, old_end); 4991 mmu_notifier_invalidate_range_end(&range); 4992 i_mmap_unlock_write(mapping); 4993 4994 return len + old_addr - old_end; 4995 } 4996 4997 static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma, 4998 unsigned long start, unsigned long end, 4999 struct page *ref_page, zap_flags_t zap_flags) 5000 { 5001 struct mm_struct *mm = vma->vm_mm; 5002 unsigned long address; 5003 pte_t *ptep; 5004 pte_t pte; 5005 spinlock_t *ptl; 5006 struct page *page; 5007 struct hstate *h = hstate_vma(vma); 5008 unsigned long sz = huge_page_size(h); 5009 struct mmu_notifier_range range; 5010 unsigned long last_addr_mask; 5011 bool force_flush = false; 5012 5013 WARN_ON(!is_vm_hugetlb_page(vma)); 5014 BUG_ON(start & ~huge_page_mask(h)); 5015 BUG_ON(end & ~huge_page_mask(h)); 5016 5017 /* 5018 * This is a hugetlb vma, all the pte entries should point 5019 * to huge page. 5020 */ 5021 tlb_change_page_size(tlb, sz); 5022 tlb_start_vma(tlb, vma); 5023 5024 /* 5025 * If sharing possible, alert mmu notifiers of worst case. 5026 */ 5027 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start, 5028 end); 5029 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 5030 mmu_notifier_invalidate_range_start(&range); 5031 last_addr_mask = hugetlb_mask_last_page(h); 5032 address = start; 5033 for (; address < end; address += sz) { 5034 ptep = huge_pte_offset(mm, address, sz); 5035 if (!ptep) { 5036 address |= last_addr_mask; 5037 continue; 5038 } 5039 5040 ptl = huge_pte_lock(h, mm, ptep); 5041 if (huge_pmd_unshare(mm, vma, address, ptep)) { 5042 spin_unlock(ptl); 5043 tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE); 5044 force_flush = true; 5045 address |= last_addr_mask; 5046 continue; 5047 } 5048 5049 pte = huge_ptep_get(ptep); 5050 if (huge_pte_none(pte)) { 5051 spin_unlock(ptl); 5052 continue; 5053 } 5054 5055 /* 5056 * Migrating hugepage or HWPoisoned hugepage is already 5057 * unmapped and its refcount is dropped, so just clear pte here. 5058 */ 5059 if (unlikely(!pte_present(pte))) { 5060 /* 5061 * If the pte was wr-protected by uffd-wp in any of the 5062 * swap forms, meanwhile the caller does not want to 5063 * drop the uffd-wp bit in this zap, then replace the 5064 * pte with a marker. 5065 */ 5066 if (pte_swp_uffd_wp_any(pte) && 5067 !(zap_flags & ZAP_FLAG_DROP_MARKER)) 5068 set_huge_pte_at(mm, address, ptep, 5069 make_pte_marker(PTE_MARKER_UFFD_WP)); 5070 else 5071 huge_pte_clear(mm, address, ptep, sz); 5072 spin_unlock(ptl); 5073 continue; 5074 } 5075 5076 page = pte_page(pte); 5077 /* 5078 * If a reference page is supplied, it is because a specific 5079 * page is being unmapped, not a range. Ensure the page we 5080 * are about to unmap is the actual page of interest. 5081 */ 5082 if (ref_page) { 5083 if (page != ref_page) { 5084 spin_unlock(ptl); 5085 continue; 5086 } 5087 /* 5088 * Mark the VMA as having unmapped its page so that 5089 * future faults in this VMA will fail rather than 5090 * looking like data was lost 5091 */ 5092 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); 5093 } 5094 5095 pte = huge_ptep_get_and_clear(mm, address, ptep); 5096 tlb_remove_huge_tlb_entry(h, tlb, ptep, address); 5097 if (huge_pte_dirty(pte)) 5098 set_page_dirty(page); 5099 /* Leave a uffd-wp pte marker if needed */ 5100 if (huge_pte_uffd_wp(pte) && 5101 !(zap_flags & ZAP_FLAG_DROP_MARKER)) 5102 set_huge_pte_at(mm, address, ptep, 5103 make_pte_marker(PTE_MARKER_UFFD_WP)); 5104 hugetlb_count_sub(pages_per_huge_page(h), mm); 5105 page_remove_rmap(page, vma, true); 5106 5107 spin_unlock(ptl); 5108 tlb_remove_page_size(tlb, page, huge_page_size(h)); 5109 /* 5110 * Bail out after unmapping reference page if supplied 5111 */ 5112 if (ref_page) 5113 break; 5114 } 5115 mmu_notifier_invalidate_range_end(&range); 5116 tlb_end_vma(tlb, vma); 5117 5118 /* 5119 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We 5120 * could defer the flush until now, since by holding i_mmap_rwsem we 5121 * guaranteed that the last refernece would not be dropped. But we must 5122 * do the flushing before we return, as otherwise i_mmap_rwsem will be 5123 * dropped and the last reference to the shared PMDs page might be 5124 * dropped as well. 5125 * 5126 * In theory we could defer the freeing of the PMD pages as well, but 5127 * huge_pmd_unshare() relies on the exact page_count for the PMD page to 5128 * detect sharing, so we cannot defer the release of the page either. 5129 * Instead, do flush now. 5130 */ 5131 if (force_flush) 5132 tlb_flush_mmu_tlbonly(tlb); 5133 } 5134 5135 void __unmap_hugepage_range_final(struct mmu_gather *tlb, 5136 struct vm_area_struct *vma, unsigned long start, 5137 unsigned long end, struct page *ref_page, 5138 zap_flags_t zap_flags) 5139 { 5140 __unmap_hugepage_range(tlb, vma, start, end, ref_page, zap_flags); 5141 5142 /* 5143 * Clear this flag so that x86's huge_pmd_share page_table_shareable 5144 * test will fail on a vma being torn down, and not grab a page table 5145 * on its way out. We're lucky that the flag has such an appropriate 5146 * name, and can in fact be safely cleared here. We could clear it 5147 * before the __unmap_hugepage_range above, but all that's necessary 5148 * is to clear it before releasing the i_mmap_rwsem. This works 5149 * because in the context this is called, the VMA is about to be 5150 * destroyed and the i_mmap_rwsem is held. 5151 */ 5152 vma->vm_flags &= ~VM_MAYSHARE; 5153 } 5154 5155 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, 5156 unsigned long end, struct page *ref_page, 5157 zap_flags_t zap_flags) 5158 { 5159 struct mmu_gather tlb; 5160 5161 tlb_gather_mmu(&tlb, vma->vm_mm); 5162 __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags); 5163 tlb_finish_mmu(&tlb); 5164 } 5165 5166 /* 5167 * This is called when the original mapper is failing to COW a MAP_PRIVATE 5168 * mapping it owns the reserve page for. The intention is to unmap the page 5169 * from other VMAs and let the children be SIGKILLed if they are faulting the 5170 * same region. 5171 */ 5172 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, 5173 struct page *page, unsigned long address) 5174 { 5175 struct hstate *h = hstate_vma(vma); 5176 struct vm_area_struct *iter_vma; 5177 struct address_space *mapping; 5178 pgoff_t pgoff; 5179 5180 /* 5181 * vm_pgoff is in PAGE_SIZE units, hence the different calculation 5182 * from page cache lookup which is in HPAGE_SIZE units. 5183 */ 5184 address = address & huge_page_mask(h); 5185 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + 5186 vma->vm_pgoff; 5187 mapping = vma->vm_file->f_mapping; 5188 5189 /* 5190 * Take the mapping lock for the duration of the table walk. As 5191 * this mapping should be shared between all the VMAs, 5192 * __unmap_hugepage_range() is called as the lock is already held 5193 */ 5194 i_mmap_lock_write(mapping); 5195 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) { 5196 /* Do not unmap the current VMA */ 5197 if (iter_vma == vma) 5198 continue; 5199 5200 /* 5201 * Shared VMAs have their own reserves and do not affect 5202 * MAP_PRIVATE accounting but it is possible that a shared 5203 * VMA is using the same page so check and skip such VMAs. 5204 */ 5205 if (iter_vma->vm_flags & VM_MAYSHARE) 5206 continue; 5207 5208 /* 5209 * Unmap the page from other VMAs without their own reserves. 5210 * They get marked to be SIGKILLed if they fault in these 5211 * areas. This is because a future no-page fault on this VMA 5212 * could insert a zeroed page instead of the data existing 5213 * from the time of fork. This would look like data corruption 5214 */ 5215 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) 5216 unmap_hugepage_range(iter_vma, address, 5217 address + huge_page_size(h), page, 0); 5218 } 5219 i_mmap_unlock_write(mapping); 5220 } 5221 5222 /* 5223 * hugetlb_wp() should be called with page lock of the original hugepage held. 5224 * Called with hugetlb_fault_mutex_table held and pte_page locked so we 5225 * cannot race with other handlers or page migration. 5226 * Keep the pte_same checks anyway to make transition from the mutex easier. 5227 */ 5228 static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma, 5229 unsigned long address, pte_t *ptep, unsigned int flags, 5230 struct page *pagecache_page, spinlock_t *ptl) 5231 { 5232 const bool unshare = flags & FAULT_FLAG_UNSHARE; 5233 pte_t pte; 5234 struct hstate *h = hstate_vma(vma); 5235 struct page *old_page, *new_page; 5236 int outside_reserve = 0; 5237 vm_fault_t ret = 0; 5238 unsigned long haddr = address & huge_page_mask(h); 5239 struct mmu_notifier_range range; 5240 5241 VM_BUG_ON(unshare && (flags & FOLL_WRITE)); 5242 VM_BUG_ON(!unshare && !(flags & FOLL_WRITE)); 5243 5244 pte = huge_ptep_get(ptep); 5245 old_page = pte_page(pte); 5246 5247 delayacct_wpcopy_start(); 5248 5249 retry_avoidcopy: 5250 /* 5251 * If no-one else is actually using this page, we're the exclusive 5252 * owner and can reuse this page. 5253 */ 5254 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) { 5255 if (!PageAnonExclusive(old_page)) 5256 page_move_anon_rmap(old_page, vma); 5257 if (likely(!unshare)) 5258 set_huge_ptep_writable(vma, haddr, ptep); 5259 5260 delayacct_wpcopy_end(); 5261 return 0; 5262 } 5263 VM_BUG_ON_PAGE(PageAnon(old_page) && PageAnonExclusive(old_page), 5264 old_page); 5265 5266 /* 5267 * If the process that created a MAP_PRIVATE mapping is about to 5268 * perform a COW due to a shared page count, attempt to satisfy 5269 * the allocation without using the existing reserves. The pagecache 5270 * page is used to determine if the reserve at this address was 5271 * consumed or not. If reserves were used, a partial faulted mapping 5272 * at the time of fork() could consume its reserves on COW instead 5273 * of the full address range. 5274 */ 5275 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && 5276 old_page != pagecache_page) 5277 outside_reserve = 1; 5278 5279 get_page(old_page); 5280 5281 /* 5282 * Drop page table lock as buddy allocator may be called. It will 5283 * be acquired again before returning to the caller, as expected. 5284 */ 5285 spin_unlock(ptl); 5286 new_page = alloc_huge_page(vma, haddr, outside_reserve); 5287 5288 if (IS_ERR(new_page)) { 5289 /* 5290 * If a process owning a MAP_PRIVATE mapping fails to COW, 5291 * it is due to references held by a child and an insufficient 5292 * huge page pool. To guarantee the original mappers 5293 * reliability, unmap the page from child processes. The child 5294 * may get SIGKILLed if it later faults. 5295 */ 5296 if (outside_reserve) { 5297 struct address_space *mapping = vma->vm_file->f_mapping; 5298 pgoff_t idx; 5299 u32 hash; 5300 5301 put_page(old_page); 5302 BUG_ON(huge_pte_none(pte)); 5303 /* 5304 * Drop hugetlb_fault_mutex and i_mmap_rwsem before 5305 * unmapping. unmapping needs to hold i_mmap_rwsem 5306 * in write mode. Dropping i_mmap_rwsem in read mode 5307 * here is OK as COW mappings do not interact with 5308 * PMD sharing. 5309 * 5310 * Reacquire both after unmap operation. 5311 */ 5312 idx = vma_hugecache_offset(h, vma, haddr); 5313 hash = hugetlb_fault_mutex_hash(mapping, idx); 5314 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 5315 i_mmap_unlock_read(mapping); 5316 5317 unmap_ref_private(mm, vma, old_page, haddr); 5318 5319 i_mmap_lock_read(mapping); 5320 mutex_lock(&hugetlb_fault_mutex_table[hash]); 5321 spin_lock(ptl); 5322 ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); 5323 if (likely(ptep && 5324 pte_same(huge_ptep_get(ptep), pte))) 5325 goto retry_avoidcopy; 5326 /* 5327 * race occurs while re-acquiring page table 5328 * lock, and our job is done. 5329 */ 5330 delayacct_wpcopy_end(); 5331 return 0; 5332 } 5333 5334 ret = vmf_error(PTR_ERR(new_page)); 5335 goto out_release_old; 5336 } 5337 5338 /* 5339 * When the original hugepage is shared one, it does not have 5340 * anon_vma prepared. 5341 */ 5342 if (unlikely(anon_vma_prepare(vma))) { 5343 ret = VM_FAULT_OOM; 5344 goto out_release_all; 5345 } 5346 5347 copy_user_huge_page(new_page, old_page, address, vma, 5348 pages_per_huge_page(h)); 5349 __SetPageUptodate(new_page); 5350 5351 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr, 5352 haddr + huge_page_size(h)); 5353 mmu_notifier_invalidate_range_start(&range); 5354 5355 /* 5356 * Retake the page table lock to check for racing updates 5357 * before the page tables are altered 5358 */ 5359 spin_lock(ptl); 5360 ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); 5361 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) { 5362 ClearHPageRestoreReserve(new_page); 5363 5364 /* Break COW or unshare */ 5365 huge_ptep_clear_flush(vma, haddr, ptep); 5366 mmu_notifier_invalidate_range(mm, range.start, range.end); 5367 page_remove_rmap(old_page, vma, true); 5368 hugepage_add_new_anon_rmap(new_page, vma, haddr); 5369 set_huge_pte_at(mm, haddr, ptep, 5370 make_huge_pte(vma, new_page, !unshare)); 5371 SetHPageMigratable(new_page); 5372 /* Make the old page be freed below */ 5373 new_page = old_page; 5374 } 5375 spin_unlock(ptl); 5376 mmu_notifier_invalidate_range_end(&range); 5377 out_release_all: 5378 /* 5379 * No restore in case of successful pagetable update (Break COW or 5380 * unshare) 5381 */ 5382 if (new_page != old_page) 5383 restore_reserve_on_error(h, vma, haddr, new_page); 5384 put_page(new_page); 5385 out_release_old: 5386 put_page(old_page); 5387 5388 spin_lock(ptl); /* Caller expects lock to be held */ 5389 5390 delayacct_wpcopy_end(); 5391 return ret; 5392 } 5393 5394 /* Return the pagecache page at a given address within a VMA */ 5395 static struct page *hugetlbfs_pagecache_page(struct hstate *h, 5396 struct vm_area_struct *vma, unsigned long address) 5397 { 5398 struct address_space *mapping; 5399 pgoff_t idx; 5400 5401 mapping = vma->vm_file->f_mapping; 5402 idx = vma_hugecache_offset(h, vma, address); 5403 5404 return find_lock_page(mapping, idx); 5405 } 5406 5407 /* 5408 * Return whether there is a pagecache page to back given address within VMA. 5409 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page. 5410 */ 5411 static bool hugetlbfs_pagecache_present(struct hstate *h, 5412 struct vm_area_struct *vma, unsigned long address) 5413 { 5414 struct address_space *mapping; 5415 pgoff_t idx; 5416 struct page *page; 5417 5418 mapping = vma->vm_file->f_mapping; 5419 idx = vma_hugecache_offset(h, vma, address); 5420 5421 page = find_get_page(mapping, idx); 5422 if (page) 5423 put_page(page); 5424 return page != NULL; 5425 } 5426 5427 int huge_add_to_page_cache(struct page *page, struct address_space *mapping, 5428 pgoff_t idx) 5429 { 5430 struct folio *folio = page_folio(page); 5431 struct inode *inode = mapping->host; 5432 struct hstate *h = hstate_inode(inode); 5433 int err; 5434 5435 __folio_set_locked(folio); 5436 err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL); 5437 5438 if (unlikely(err)) { 5439 __folio_clear_locked(folio); 5440 return err; 5441 } 5442 ClearHPageRestoreReserve(page); 5443 5444 /* 5445 * mark folio dirty so that it will not be removed from cache/file 5446 * by non-hugetlbfs specific code paths. 5447 */ 5448 folio_mark_dirty(folio); 5449 5450 spin_lock(&inode->i_lock); 5451 inode->i_blocks += blocks_per_huge_page(h); 5452 spin_unlock(&inode->i_lock); 5453 return 0; 5454 } 5455 5456 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma, 5457 struct address_space *mapping, 5458 pgoff_t idx, 5459 unsigned int flags, 5460 unsigned long haddr, 5461 unsigned long addr, 5462 unsigned long reason) 5463 { 5464 vm_fault_t ret; 5465 u32 hash; 5466 struct vm_fault vmf = { 5467 .vma = vma, 5468 .address = haddr, 5469 .real_address = addr, 5470 .flags = flags, 5471 5472 /* 5473 * Hard to debug if it ends up being 5474 * used by a callee that assumes 5475 * something about the other 5476 * uninitialized fields... same as in 5477 * memory.c 5478 */ 5479 }; 5480 5481 /* 5482 * hugetlb_fault_mutex and i_mmap_rwsem must be 5483 * dropped before handling userfault. Reacquire 5484 * after handling fault to make calling code simpler. 5485 */ 5486 hash = hugetlb_fault_mutex_hash(mapping, idx); 5487 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 5488 i_mmap_unlock_read(mapping); 5489 ret = handle_userfault(&vmf, reason); 5490 i_mmap_lock_read(mapping); 5491 mutex_lock(&hugetlb_fault_mutex_table[hash]); 5492 5493 return ret; 5494 } 5495 5496 static vm_fault_t hugetlb_no_page(struct mm_struct *mm, 5497 struct vm_area_struct *vma, 5498 struct address_space *mapping, pgoff_t idx, 5499 unsigned long address, pte_t *ptep, 5500 pte_t old_pte, unsigned int flags) 5501 { 5502 struct hstate *h = hstate_vma(vma); 5503 vm_fault_t ret = VM_FAULT_SIGBUS; 5504 int anon_rmap = 0; 5505 unsigned long size; 5506 struct page *page; 5507 pte_t new_pte; 5508 spinlock_t *ptl; 5509 unsigned long haddr = address & huge_page_mask(h); 5510 bool new_page, new_pagecache_page = false; 5511 5512 /* 5513 * Currently, we are forced to kill the process in the event the 5514 * original mapper has unmapped pages from the child due to a failed 5515 * COW/unsharing. Warn that such a situation has occurred as it may not 5516 * be obvious. 5517 */ 5518 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { 5519 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n", 5520 current->pid); 5521 return ret; 5522 } 5523 5524 /* 5525 * We can not race with truncation due to holding i_mmap_rwsem. 5526 * i_size is modified when holding i_mmap_rwsem, so check here 5527 * once for faults beyond end of file. 5528 */ 5529 size = i_size_read(mapping->host) >> huge_page_shift(h); 5530 if (idx >= size) 5531 goto out; 5532 5533 retry: 5534 new_page = false; 5535 page = find_lock_page(mapping, idx); 5536 if (!page) { 5537 /* Check for page in userfault range */ 5538 if (userfaultfd_missing(vma)) { 5539 ret = hugetlb_handle_userfault(vma, mapping, idx, 5540 flags, haddr, address, 5541 VM_UFFD_MISSING); 5542 goto out; 5543 } 5544 5545 page = alloc_huge_page(vma, haddr, 0); 5546 if (IS_ERR(page)) { 5547 /* 5548 * Returning error will result in faulting task being 5549 * sent SIGBUS. The hugetlb fault mutex prevents two 5550 * tasks from racing to fault in the same page which 5551 * could result in false unable to allocate errors. 5552 * Page migration does not take the fault mutex, but 5553 * does a clear then write of pte's under page table 5554 * lock. Page fault code could race with migration, 5555 * notice the clear pte and try to allocate a page 5556 * here. Before returning error, get ptl and make 5557 * sure there really is no pte entry. 5558 */ 5559 ptl = huge_pte_lock(h, mm, ptep); 5560 ret = 0; 5561 if (huge_pte_none(huge_ptep_get(ptep))) 5562 ret = vmf_error(PTR_ERR(page)); 5563 spin_unlock(ptl); 5564 goto out; 5565 } 5566 clear_huge_page(page, address, pages_per_huge_page(h)); 5567 __SetPageUptodate(page); 5568 new_page = true; 5569 5570 if (vma->vm_flags & VM_MAYSHARE) { 5571 int err = huge_add_to_page_cache(page, mapping, idx); 5572 if (err) { 5573 put_page(page); 5574 if (err == -EEXIST) 5575 goto retry; 5576 goto out; 5577 } 5578 new_pagecache_page = true; 5579 } else { 5580 lock_page(page); 5581 if (unlikely(anon_vma_prepare(vma))) { 5582 ret = VM_FAULT_OOM; 5583 goto backout_unlocked; 5584 } 5585 anon_rmap = 1; 5586 } 5587 } else { 5588 /* 5589 * If memory error occurs between mmap() and fault, some process 5590 * don't have hwpoisoned swap entry for errored virtual address. 5591 * So we need to block hugepage fault by PG_hwpoison bit check. 5592 */ 5593 if (unlikely(PageHWPoison(page))) { 5594 ret = VM_FAULT_HWPOISON_LARGE | 5595 VM_FAULT_SET_HINDEX(hstate_index(h)); 5596 goto backout_unlocked; 5597 } 5598 5599 /* Check for page in userfault range. */ 5600 if (userfaultfd_minor(vma)) { 5601 unlock_page(page); 5602 put_page(page); 5603 ret = hugetlb_handle_userfault(vma, mapping, idx, 5604 flags, haddr, address, 5605 VM_UFFD_MINOR); 5606 goto out; 5607 } 5608 } 5609 5610 /* 5611 * If we are going to COW a private mapping later, we examine the 5612 * pending reservations for this page now. This will ensure that 5613 * any allocations necessary to record that reservation occur outside 5614 * the spinlock. 5615 */ 5616 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 5617 if (vma_needs_reservation(h, vma, haddr) < 0) { 5618 ret = VM_FAULT_OOM; 5619 goto backout_unlocked; 5620 } 5621 /* Just decrements count, does not deallocate */ 5622 vma_end_reservation(h, vma, haddr); 5623 } 5624 5625 ptl = huge_pte_lock(h, mm, ptep); 5626 ret = 0; 5627 /* If pte changed from under us, retry */ 5628 if (!pte_same(huge_ptep_get(ptep), old_pte)) 5629 goto backout; 5630 5631 if (anon_rmap) { 5632 ClearHPageRestoreReserve(page); 5633 hugepage_add_new_anon_rmap(page, vma, haddr); 5634 } else 5635 page_dup_file_rmap(page, true); 5636 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE) 5637 && (vma->vm_flags & VM_SHARED))); 5638 /* 5639 * If this pte was previously wr-protected, keep it wr-protected even 5640 * if populated. 5641 */ 5642 if (unlikely(pte_marker_uffd_wp(old_pte))) 5643 new_pte = huge_pte_wrprotect(huge_pte_mkuffd_wp(new_pte)); 5644 set_huge_pte_at(mm, haddr, ptep, new_pte); 5645 5646 hugetlb_count_add(pages_per_huge_page(h), mm); 5647 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 5648 /* Optimization, do the COW without a second fault */ 5649 ret = hugetlb_wp(mm, vma, address, ptep, flags, page, ptl); 5650 } 5651 5652 spin_unlock(ptl); 5653 5654 /* 5655 * Only set HPageMigratable in newly allocated pages. Existing pages 5656 * found in the pagecache may not have HPageMigratableset if they have 5657 * been isolated for migration. 5658 */ 5659 if (new_page) 5660 SetHPageMigratable(page); 5661 5662 unlock_page(page); 5663 out: 5664 return ret; 5665 5666 backout: 5667 spin_unlock(ptl); 5668 backout_unlocked: 5669 unlock_page(page); 5670 /* restore reserve for newly allocated pages not in page cache */ 5671 if (new_page && !new_pagecache_page) 5672 restore_reserve_on_error(h, vma, haddr, page); 5673 put_page(page); 5674 goto out; 5675 } 5676 5677 #ifdef CONFIG_SMP 5678 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 5679 { 5680 unsigned long key[2]; 5681 u32 hash; 5682 5683 key[0] = (unsigned long) mapping; 5684 key[1] = idx; 5685 5686 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0); 5687 5688 return hash & (num_fault_mutexes - 1); 5689 } 5690 #else 5691 /* 5692 * For uniprocessor systems we always use a single mutex, so just 5693 * return 0 and avoid the hashing overhead. 5694 */ 5695 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 5696 { 5697 return 0; 5698 } 5699 #endif 5700 5701 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, 5702 unsigned long address, unsigned int flags) 5703 { 5704 pte_t *ptep, entry; 5705 spinlock_t *ptl; 5706 vm_fault_t ret; 5707 u32 hash; 5708 pgoff_t idx; 5709 struct page *page = NULL; 5710 struct page *pagecache_page = NULL; 5711 struct hstate *h = hstate_vma(vma); 5712 struct address_space *mapping; 5713 int need_wait_lock = 0; 5714 unsigned long haddr = address & huge_page_mask(h); 5715 5716 ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); 5717 if (ptep) { 5718 /* 5719 * Since we hold no locks, ptep could be stale. That is 5720 * OK as we are only making decisions based on content and 5721 * not actually modifying content here. 5722 */ 5723 entry = huge_ptep_get(ptep); 5724 if (unlikely(is_hugetlb_entry_migration(entry))) { 5725 migration_entry_wait_huge(vma, ptep); 5726 return 0; 5727 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) 5728 return VM_FAULT_HWPOISON_LARGE | 5729 VM_FAULT_SET_HINDEX(hstate_index(h)); 5730 } 5731 5732 /* 5733 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold 5734 * until finished with ptep. This serves two purposes: 5735 * 1) It prevents huge_pmd_unshare from being called elsewhere 5736 * and making the ptep no longer valid. 5737 * 2) It synchronizes us with i_size modifications during truncation. 5738 * 5739 * ptep could have already be assigned via huge_pte_offset. That 5740 * is OK, as huge_pte_alloc will return the same value unless 5741 * something has changed. 5742 */ 5743 mapping = vma->vm_file->f_mapping; 5744 i_mmap_lock_read(mapping); 5745 ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h)); 5746 if (!ptep) { 5747 i_mmap_unlock_read(mapping); 5748 return VM_FAULT_OOM; 5749 } 5750 5751 /* 5752 * Serialize hugepage allocation and instantiation, so that we don't 5753 * get spurious allocation failures if two CPUs race to instantiate 5754 * the same page in the page cache. 5755 */ 5756 idx = vma_hugecache_offset(h, vma, haddr); 5757 hash = hugetlb_fault_mutex_hash(mapping, idx); 5758 mutex_lock(&hugetlb_fault_mutex_table[hash]); 5759 5760 entry = huge_ptep_get(ptep); 5761 /* PTE markers should be handled the same way as none pte */ 5762 if (huge_pte_none_mostly(entry)) { 5763 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, 5764 entry, flags); 5765 goto out_mutex; 5766 } 5767 5768 ret = 0; 5769 5770 /* 5771 * entry could be a migration/hwpoison entry at this point, so this 5772 * check prevents the kernel from going below assuming that we have 5773 * an active hugepage in pagecache. This goto expects the 2nd page 5774 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will 5775 * properly handle it. 5776 */ 5777 if (!pte_present(entry)) 5778 goto out_mutex; 5779 5780 /* 5781 * If we are going to COW/unshare the mapping later, we examine the 5782 * pending reservations for this page now. This will ensure that any 5783 * allocations necessary to record that reservation occur outside the 5784 * spinlock. For private mappings, we also lookup the pagecache 5785 * page now as it is used to determine if a reservation has been 5786 * consumed. 5787 */ 5788 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) && 5789 !huge_pte_write(entry)) { 5790 if (vma_needs_reservation(h, vma, haddr) < 0) { 5791 ret = VM_FAULT_OOM; 5792 goto out_mutex; 5793 } 5794 /* Just decrements count, does not deallocate */ 5795 vma_end_reservation(h, vma, haddr); 5796 5797 if (!(vma->vm_flags & VM_MAYSHARE)) 5798 pagecache_page = hugetlbfs_pagecache_page(h, 5799 vma, haddr); 5800 } 5801 5802 ptl = huge_pte_lock(h, mm, ptep); 5803 5804 /* Check for a racing update before calling hugetlb_wp() */ 5805 if (unlikely(!pte_same(entry, huge_ptep_get(ptep)))) 5806 goto out_ptl; 5807 5808 /* Handle userfault-wp first, before trying to lock more pages */ 5809 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) && 5810 (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) { 5811 struct vm_fault vmf = { 5812 .vma = vma, 5813 .address = haddr, 5814 .real_address = address, 5815 .flags = flags, 5816 }; 5817 5818 spin_unlock(ptl); 5819 if (pagecache_page) { 5820 unlock_page(pagecache_page); 5821 put_page(pagecache_page); 5822 } 5823 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 5824 i_mmap_unlock_read(mapping); 5825 return handle_userfault(&vmf, VM_UFFD_WP); 5826 } 5827 5828 /* 5829 * hugetlb_wp() requires page locks of pte_page(entry) and 5830 * pagecache_page, so here we need take the former one 5831 * when page != pagecache_page or !pagecache_page. 5832 */ 5833 page = pte_page(entry); 5834 if (page != pagecache_page) 5835 if (!trylock_page(page)) { 5836 need_wait_lock = 1; 5837 goto out_ptl; 5838 } 5839 5840 get_page(page); 5841 5842 if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) { 5843 if (!huge_pte_write(entry)) { 5844 ret = hugetlb_wp(mm, vma, address, ptep, flags, 5845 pagecache_page, ptl); 5846 goto out_put_page; 5847 } else if (likely(flags & FAULT_FLAG_WRITE)) { 5848 entry = huge_pte_mkdirty(entry); 5849 } 5850 } 5851 entry = pte_mkyoung(entry); 5852 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry, 5853 flags & FAULT_FLAG_WRITE)) 5854 update_mmu_cache(vma, haddr, ptep); 5855 out_put_page: 5856 if (page != pagecache_page) 5857 unlock_page(page); 5858 put_page(page); 5859 out_ptl: 5860 spin_unlock(ptl); 5861 5862 if (pagecache_page) { 5863 unlock_page(pagecache_page); 5864 put_page(pagecache_page); 5865 } 5866 out_mutex: 5867 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 5868 i_mmap_unlock_read(mapping); 5869 /* 5870 * Generally it's safe to hold refcount during waiting page lock. But 5871 * here we just wait to defer the next page fault to avoid busy loop and 5872 * the page is not used after unlocked before returning from the current 5873 * page fault. So we are safe from accessing freed page, even if we wait 5874 * here without taking refcount. 5875 */ 5876 if (need_wait_lock) 5877 wait_on_page_locked(page); 5878 return ret; 5879 } 5880 5881 #ifdef CONFIG_USERFAULTFD 5882 /* 5883 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with 5884 * modifications for huge pages. 5885 */ 5886 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm, 5887 pte_t *dst_pte, 5888 struct vm_area_struct *dst_vma, 5889 unsigned long dst_addr, 5890 unsigned long src_addr, 5891 enum mcopy_atomic_mode mode, 5892 struct page **pagep, 5893 bool wp_copy) 5894 { 5895 bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE); 5896 struct hstate *h = hstate_vma(dst_vma); 5897 struct address_space *mapping = dst_vma->vm_file->f_mapping; 5898 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr); 5899 unsigned long size; 5900 int vm_shared = dst_vma->vm_flags & VM_SHARED; 5901 pte_t _dst_pte; 5902 spinlock_t *ptl; 5903 int ret = -ENOMEM; 5904 struct page *page; 5905 int writable; 5906 bool page_in_pagecache = false; 5907 5908 if (is_continue) { 5909 ret = -EFAULT; 5910 page = find_lock_page(mapping, idx); 5911 if (!page) 5912 goto out; 5913 page_in_pagecache = true; 5914 } else if (!*pagep) { 5915 /* If a page already exists, then it's UFFDIO_COPY for 5916 * a non-missing case. Return -EEXIST. 5917 */ 5918 if (vm_shared && 5919 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) { 5920 ret = -EEXIST; 5921 goto out; 5922 } 5923 5924 page = alloc_huge_page(dst_vma, dst_addr, 0); 5925 if (IS_ERR(page)) { 5926 ret = -ENOMEM; 5927 goto out; 5928 } 5929 5930 ret = copy_huge_page_from_user(page, 5931 (const void __user *) src_addr, 5932 pages_per_huge_page(h), false); 5933 5934 /* fallback to copy_from_user outside mmap_lock */ 5935 if (unlikely(ret)) { 5936 ret = -ENOENT; 5937 /* Free the allocated page which may have 5938 * consumed a reservation. 5939 */ 5940 restore_reserve_on_error(h, dst_vma, dst_addr, page); 5941 put_page(page); 5942 5943 /* Allocate a temporary page to hold the copied 5944 * contents. 5945 */ 5946 page = alloc_huge_page_vma(h, dst_vma, dst_addr); 5947 if (!page) { 5948 ret = -ENOMEM; 5949 goto out; 5950 } 5951 *pagep = page; 5952 /* Set the outparam pagep and return to the caller to 5953 * copy the contents outside the lock. Don't free the 5954 * page. 5955 */ 5956 goto out; 5957 } 5958 } else { 5959 if (vm_shared && 5960 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) { 5961 put_page(*pagep); 5962 ret = -EEXIST; 5963 *pagep = NULL; 5964 goto out; 5965 } 5966 5967 page = alloc_huge_page(dst_vma, dst_addr, 0); 5968 if (IS_ERR(page)) { 5969 put_page(*pagep); 5970 ret = -ENOMEM; 5971 *pagep = NULL; 5972 goto out; 5973 } 5974 copy_user_huge_page(page, *pagep, dst_addr, dst_vma, 5975 pages_per_huge_page(h)); 5976 put_page(*pagep); 5977 *pagep = NULL; 5978 } 5979 5980 /* 5981 * The memory barrier inside __SetPageUptodate makes sure that 5982 * preceding stores to the page contents become visible before 5983 * the set_pte_at() write. 5984 */ 5985 __SetPageUptodate(page); 5986 5987 /* Add shared, newly allocated pages to the page cache. */ 5988 if (vm_shared && !is_continue) { 5989 size = i_size_read(mapping->host) >> huge_page_shift(h); 5990 ret = -EFAULT; 5991 if (idx >= size) 5992 goto out_release_nounlock; 5993 5994 /* 5995 * Serialization between remove_inode_hugepages() and 5996 * huge_add_to_page_cache() below happens through the 5997 * hugetlb_fault_mutex_table that here must be hold by 5998 * the caller. 5999 */ 6000 ret = huge_add_to_page_cache(page, mapping, idx); 6001 if (ret) 6002 goto out_release_nounlock; 6003 page_in_pagecache = true; 6004 } 6005 6006 ptl = huge_pte_lockptr(h, dst_mm, dst_pte); 6007 spin_lock(ptl); 6008 6009 /* 6010 * Recheck the i_size after holding PT lock to make sure not 6011 * to leave any page mapped (as page_mapped()) beyond the end 6012 * of the i_size (remove_inode_hugepages() is strict about 6013 * enforcing that). If we bail out here, we'll also leave a 6014 * page in the radix tree in the vm_shared case beyond the end 6015 * of the i_size, but remove_inode_hugepages() will take care 6016 * of it as soon as we drop the hugetlb_fault_mutex_table. 6017 */ 6018 size = i_size_read(mapping->host) >> huge_page_shift(h); 6019 ret = -EFAULT; 6020 if (idx >= size) 6021 goto out_release_unlock; 6022 6023 ret = -EEXIST; 6024 /* 6025 * We allow to overwrite a pte marker: consider when both MISSING|WP 6026 * registered, we firstly wr-protect a none pte which has no page cache 6027 * page backing it, then access the page. 6028 */ 6029 if (!huge_pte_none_mostly(huge_ptep_get(dst_pte))) 6030 goto out_release_unlock; 6031 6032 if (vm_shared) { 6033 page_dup_file_rmap(page, true); 6034 } else { 6035 ClearHPageRestoreReserve(page); 6036 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr); 6037 } 6038 6039 /* 6040 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY 6041 * with wp flag set, don't set pte write bit. 6042 */ 6043 if (wp_copy || (is_continue && !vm_shared)) 6044 writable = 0; 6045 else 6046 writable = dst_vma->vm_flags & VM_WRITE; 6047 6048 _dst_pte = make_huge_pte(dst_vma, page, writable); 6049 /* 6050 * Always mark UFFDIO_COPY page dirty; note that this may not be 6051 * extremely important for hugetlbfs for now since swapping is not 6052 * supported, but we should still be clear in that this page cannot be 6053 * thrown away at will, even if write bit not set. 6054 */ 6055 _dst_pte = huge_pte_mkdirty(_dst_pte); 6056 _dst_pte = pte_mkyoung(_dst_pte); 6057 6058 if (wp_copy) 6059 _dst_pte = huge_pte_mkuffd_wp(_dst_pte); 6060 6061 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte); 6062 6063 hugetlb_count_add(pages_per_huge_page(h), dst_mm); 6064 6065 /* No need to invalidate - it was non-present before */ 6066 update_mmu_cache(dst_vma, dst_addr, dst_pte); 6067 6068 spin_unlock(ptl); 6069 if (!is_continue) 6070 SetHPageMigratable(page); 6071 if (vm_shared || is_continue) 6072 unlock_page(page); 6073 ret = 0; 6074 out: 6075 return ret; 6076 out_release_unlock: 6077 spin_unlock(ptl); 6078 if (vm_shared || is_continue) 6079 unlock_page(page); 6080 out_release_nounlock: 6081 if (!page_in_pagecache) 6082 restore_reserve_on_error(h, dst_vma, dst_addr, page); 6083 put_page(page); 6084 goto out; 6085 } 6086 #endif /* CONFIG_USERFAULTFD */ 6087 6088 static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma, 6089 int refs, struct page **pages, 6090 struct vm_area_struct **vmas) 6091 { 6092 int nr; 6093 6094 for (nr = 0; nr < refs; nr++) { 6095 if (likely(pages)) 6096 pages[nr] = mem_map_offset(page, nr); 6097 if (vmas) 6098 vmas[nr] = vma; 6099 } 6100 } 6101 6102 static inline bool __follow_hugetlb_must_fault(unsigned int flags, pte_t *pte, 6103 bool *unshare) 6104 { 6105 pte_t pteval = huge_ptep_get(pte); 6106 6107 *unshare = false; 6108 if (is_swap_pte(pteval)) 6109 return true; 6110 if (huge_pte_write(pteval)) 6111 return false; 6112 if (flags & FOLL_WRITE) 6113 return true; 6114 if (gup_must_unshare(flags, pte_page(pteval))) { 6115 *unshare = true; 6116 return true; 6117 } 6118 return false; 6119 } 6120 6121 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, 6122 struct page **pages, struct vm_area_struct **vmas, 6123 unsigned long *position, unsigned long *nr_pages, 6124 long i, unsigned int flags, int *locked) 6125 { 6126 unsigned long pfn_offset; 6127 unsigned long vaddr = *position; 6128 unsigned long remainder = *nr_pages; 6129 struct hstate *h = hstate_vma(vma); 6130 int err = -EFAULT, refs; 6131 6132 while (vaddr < vma->vm_end && remainder) { 6133 pte_t *pte; 6134 spinlock_t *ptl = NULL; 6135 bool unshare = false; 6136 int absent; 6137 struct page *page; 6138 6139 /* 6140 * If we have a pending SIGKILL, don't keep faulting pages and 6141 * potentially allocating memory. 6142 */ 6143 if (fatal_signal_pending(current)) { 6144 remainder = 0; 6145 break; 6146 } 6147 6148 /* 6149 * Some archs (sparc64, sh*) have multiple pte_ts to 6150 * each hugepage. We have to make sure we get the 6151 * first, for the page indexing below to work. 6152 * 6153 * Note that page table lock is not held when pte is null. 6154 */ 6155 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h), 6156 huge_page_size(h)); 6157 if (pte) 6158 ptl = huge_pte_lock(h, mm, pte); 6159 absent = !pte || huge_pte_none(huge_ptep_get(pte)); 6160 6161 /* 6162 * When coredumping, it suits get_dump_page if we just return 6163 * an error where there's an empty slot with no huge pagecache 6164 * to back it. This way, we avoid allocating a hugepage, and 6165 * the sparse dumpfile avoids allocating disk blocks, but its 6166 * huge holes still show up with zeroes where they need to be. 6167 */ 6168 if (absent && (flags & FOLL_DUMP) && 6169 !hugetlbfs_pagecache_present(h, vma, vaddr)) { 6170 if (pte) 6171 spin_unlock(ptl); 6172 remainder = 0; 6173 break; 6174 } 6175 6176 /* 6177 * We need call hugetlb_fault for both hugepages under migration 6178 * (in which case hugetlb_fault waits for the migration,) and 6179 * hwpoisoned hugepages (in which case we need to prevent the 6180 * caller from accessing to them.) In order to do this, we use 6181 * here is_swap_pte instead of is_hugetlb_entry_migration and 6182 * is_hugetlb_entry_hwpoisoned. This is because it simply covers 6183 * both cases, and because we can't follow correct pages 6184 * directly from any kind of swap entries. 6185 */ 6186 if (absent || 6187 __follow_hugetlb_must_fault(flags, pte, &unshare)) { 6188 vm_fault_t ret; 6189 unsigned int fault_flags = 0; 6190 6191 if (pte) 6192 spin_unlock(ptl); 6193 if (flags & FOLL_WRITE) 6194 fault_flags |= FAULT_FLAG_WRITE; 6195 else if (unshare) 6196 fault_flags |= FAULT_FLAG_UNSHARE; 6197 if (locked) 6198 fault_flags |= FAULT_FLAG_ALLOW_RETRY | 6199 FAULT_FLAG_KILLABLE; 6200 if (flags & FOLL_NOWAIT) 6201 fault_flags |= FAULT_FLAG_ALLOW_RETRY | 6202 FAULT_FLAG_RETRY_NOWAIT; 6203 if (flags & FOLL_TRIED) { 6204 /* 6205 * Note: FAULT_FLAG_ALLOW_RETRY and 6206 * FAULT_FLAG_TRIED can co-exist 6207 */ 6208 fault_flags |= FAULT_FLAG_TRIED; 6209 } 6210 ret = hugetlb_fault(mm, vma, vaddr, fault_flags); 6211 if (ret & VM_FAULT_ERROR) { 6212 err = vm_fault_to_errno(ret, flags); 6213 remainder = 0; 6214 break; 6215 } 6216 if (ret & VM_FAULT_RETRY) { 6217 if (locked && 6218 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) 6219 *locked = 0; 6220 *nr_pages = 0; 6221 /* 6222 * VM_FAULT_RETRY must not return an 6223 * error, it will return zero 6224 * instead. 6225 * 6226 * No need to update "position" as the 6227 * caller will not check it after 6228 * *nr_pages is set to 0. 6229 */ 6230 return i; 6231 } 6232 continue; 6233 } 6234 6235 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT; 6236 page = pte_page(huge_ptep_get(pte)); 6237 6238 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) && 6239 !PageAnonExclusive(page), page); 6240 6241 /* 6242 * If subpage information not requested, update counters 6243 * and skip the same_page loop below. 6244 */ 6245 if (!pages && !vmas && !pfn_offset && 6246 (vaddr + huge_page_size(h) < vma->vm_end) && 6247 (remainder >= pages_per_huge_page(h))) { 6248 vaddr += huge_page_size(h); 6249 remainder -= pages_per_huge_page(h); 6250 i += pages_per_huge_page(h); 6251 spin_unlock(ptl); 6252 continue; 6253 } 6254 6255 /* vaddr may not be aligned to PAGE_SIZE */ 6256 refs = min3(pages_per_huge_page(h) - pfn_offset, remainder, 6257 (vma->vm_end - ALIGN_DOWN(vaddr, PAGE_SIZE)) >> PAGE_SHIFT); 6258 6259 if (pages || vmas) 6260 record_subpages_vmas(mem_map_offset(page, pfn_offset), 6261 vma, refs, 6262 likely(pages) ? pages + i : NULL, 6263 vmas ? vmas + i : NULL); 6264 6265 if (pages) { 6266 /* 6267 * try_grab_folio() should always succeed here, 6268 * because: a) we hold the ptl lock, and b) we've just 6269 * checked that the huge page is present in the page 6270 * tables. If the huge page is present, then the tail 6271 * pages must also be present. The ptl prevents the 6272 * head page and tail pages from being rearranged in 6273 * any way. So this page must be available at this 6274 * point, unless the page refcount overflowed: 6275 */ 6276 if (WARN_ON_ONCE(!try_grab_folio(pages[i], refs, 6277 flags))) { 6278 spin_unlock(ptl); 6279 remainder = 0; 6280 err = -ENOMEM; 6281 break; 6282 } 6283 } 6284 6285 vaddr += (refs << PAGE_SHIFT); 6286 remainder -= refs; 6287 i += refs; 6288 6289 spin_unlock(ptl); 6290 } 6291 *nr_pages = remainder; 6292 /* 6293 * setting position is actually required only if remainder is 6294 * not zero but it's faster not to add a "if (remainder)" 6295 * branch. 6296 */ 6297 *position = vaddr; 6298 6299 return i ? i : err; 6300 } 6301 6302 unsigned long hugetlb_change_protection(struct vm_area_struct *vma, 6303 unsigned long address, unsigned long end, 6304 pgprot_t newprot, unsigned long cp_flags) 6305 { 6306 struct mm_struct *mm = vma->vm_mm; 6307 unsigned long start = address; 6308 pte_t *ptep; 6309 pte_t pte; 6310 struct hstate *h = hstate_vma(vma); 6311 unsigned long pages = 0, psize = huge_page_size(h); 6312 bool shared_pmd = false; 6313 struct mmu_notifier_range range; 6314 unsigned long last_addr_mask; 6315 bool uffd_wp = cp_flags & MM_CP_UFFD_WP; 6316 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE; 6317 6318 /* 6319 * In the case of shared PMDs, the area to flush could be beyond 6320 * start/end. Set range.start/range.end to cover the maximum possible 6321 * range if PMD sharing is possible. 6322 */ 6323 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA, 6324 0, vma, mm, start, end); 6325 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 6326 6327 BUG_ON(address >= end); 6328 flush_cache_range(vma, range.start, range.end); 6329 6330 mmu_notifier_invalidate_range_start(&range); 6331 last_addr_mask = hugetlb_mask_last_page(h); 6332 i_mmap_lock_write(vma->vm_file->f_mapping); 6333 for (; address < end; address += psize) { 6334 spinlock_t *ptl; 6335 ptep = huge_pte_offset(mm, address, psize); 6336 if (!ptep) { 6337 address |= last_addr_mask; 6338 continue; 6339 } 6340 ptl = huge_pte_lock(h, mm, ptep); 6341 if (huge_pmd_unshare(mm, vma, address, ptep)) { 6342 /* 6343 * When uffd-wp is enabled on the vma, unshare 6344 * shouldn't happen at all. Warn about it if it 6345 * happened due to some reason. 6346 */ 6347 WARN_ON_ONCE(uffd_wp || uffd_wp_resolve); 6348 pages++; 6349 spin_unlock(ptl); 6350 shared_pmd = true; 6351 address |= last_addr_mask; 6352 continue; 6353 } 6354 pte = huge_ptep_get(ptep); 6355 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) { 6356 spin_unlock(ptl); 6357 continue; 6358 } 6359 if (unlikely(is_hugetlb_entry_migration(pte))) { 6360 swp_entry_t entry = pte_to_swp_entry(pte); 6361 struct page *page = pfn_swap_entry_to_page(entry); 6362 6363 if (!is_readable_migration_entry(entry)) { 6364 pte_t newpte; 6365 6366 if (PageAnon(page)) 6367 entry = make_readable_exclusive_migration_entry( 6368 swp_offset(entry)); 6369 else 6370 entry = make_readable_migration_entry( 6371 swp_offset(entry)); 6372 newpte = swp_entry_to_pte(entry); 6373 if (uffd_wp) 6374 newpte = pte_swp_mkuffd_wp(newpte); 6375 else if (uffd_wp_resolve) 6376 newpte = pte_swp_clear_uffd_wp(newpte); 6377 set_huge_pte_at(mm, address, ptep, newpte); 6378 pages++; 6379 } 6380 spin_unlock(ptl); 6381 continue; 6382 } 6383 if (unlikely(pte_marker_uffd_wp(pte))) { 6384 /* 6385 * This is changing a non-present pte into a none pte, 6386 * no need for huge_ptep_modify_prot_start/commit(). 6387 */ 6388 if (uffd_wp_resolve) 6389 huge_pte_clear(mm, address, ptep, psize); 6390 } 6391 if (!huge_pte_none(pte)) { 6392 pte_t old_pte; 6393 unsigned int shift = huge_page_shift(hstate_vma(vma)); 6394 6395 old_pte = huge_ptep_modify_prot_start(vma, address, ptep); 6396 pte = huge_pte_modify(old_pte, newprot); 6397 pte = arch_make_huge_pte(pte, shift, vma->vm_flags); 6398 if (uffd_wp) 6399 pte = huge_pte_mkuffd_wp(huge_pte_wrprotect(pte)); 6400 else if (uffd_wp_resolve) 6401 pte = huge_pte_clear_uffd_wp(pte); 6402 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte); 6403 pages++; 6404 } else { 6405 /* None pte */ 6406 if (unlikely(uffd_wp)) 6407 /* Safe to modify directly (none->non-present). */ 6408 set_huge_pte_at(mm, address, ptep, 6409 make_pte_marker(PTE_MARKER_UFFD_WP)); 6410 } 6411 spin_unlock(ptl); 6412 } 6413 /* 6414 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare 6415 * may have cleared our pud entry and done put_page on the page table: 6416 * once we release i_mmap_rwsem, another task can do the final put_page 6417 * and that page table be reused and filled with junk. If we actually 6418 * did unshare a page of pmds, flush the range corresponding to the pud. 6419 */ 6420 if (shared_pmd) 6421 flush_hugetlb_tlb_range(vma, range.start, range.end); 6422 else 6423 flush_hugetlb_tlb_range(vma, start, end); 6424 /* 6425 * No need to call mmu_notifier_invalidate_range() we are downgrading 6426 * page table protection not changing it to point to a new page. 6427 * 6428 * See Documentation/mm/mmu_notifier.rst 6429 */ 6430 i_mmap_unlock_write(vma->vm_file->f_mapping); 6431 mmu_notifier_invalidate_range_end(&range); 6432 6433 return pages << h->order; 6434 } 6435 6436 /* Return true if reservation was successful, false otherwise. */ 6437 bool hugetlb_reserve_pages(struct inode *inode, 6438 long from, long to, 6439 struct vm_area_struct *vma, 6440 vm_flags_t vm_flags) 6441 { 6442 long chg, add = -1; 6443 struct hstate *h = hstate_inode(inode); 6444 struct hugepage_subpool *spool = subpool_inode(inode); 6445 struct resv_map *resv_map; 6446 struct hugetlb_cgroup *h_cg = NULL; 6447 long gbl_reserve, regions_needed = 0; 6448 6449 /* This should never happen */ 6450 if (from > to) { 6451 VM_WARN(1, "%s called with a negative range\n", __func__); 6452 return false; 6453 } 6454 6455 /* 6456 * Only apply hugepage reservation if asked. At fault time, an 6457 * attempt will be made for VM_NORESERVE to allocate a page 6458 * without using reserves 6459 */ 6460 if (vm_flags & VM_NORESERVE) 6461 return true; 6462 6463 /* 6464 * Shared mappings base their reservation on the number of pages that 6465 * are already allocated on behalf of the file. Private mappings need 6466 * to reserve the full area even if read-only as mprotect() may be 6467 * called to make the mapping read-write. Assume !vma is a shm mapping 6468 */ 6469 if (!vma || vma->vm_flags & VM_MAYSHARE) { 6470 /* 6471 * resv_map can not be NULL as hugetlb_reserve_pages is only 6472 * called for inodes for which resv_maps were created (see 6473 * hugetlbfs_get_inode). 6474 */ 6475 resv_map = inode_resv_map(inode); 6476 6477 chg = region_chg(resv_map, from, to, ®ions_needed); 6478 6479 } else { 6480 /* Private mapping. */ 6481 resv_map = resv_map_alloc(); 6482 if (!resv_map) 6483 return false; 6484 6485 chg = to - from; 6486 6487 set_vma_resv_map(vma, resv_map); 6488 set_vma_resv_flags(vma, HPAGE_RESV_OWNER); 6489 } 6490 6491 if (chg < 0) 6492 goto out_err; 6493 6494 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h), 6495 chg * pages_per_huge_page(h), &h_cg) < 0) 6496 goto out_err; 6497 6498 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) { 6499 /* For private mappings, the hugetlb_cgroup uncharge info hangs 6500 * of the resv_map. 6501 */ 6502 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h); 6503 } 6504 6505 /* 6506 * There must be enough pages in the subpool for the mapping. If 6507 * the subpool has a minimum size, there may be some global 6508 * reservations already in place (gbl_reserve). 6509 */ 6510 gbl_reserve = hugepage_subpool_get_pages(spool, chg); 6511 if (gbl_reserve < 0) 6512 goto out_uncharge_cgroup; 6513 6514 /* 6515 * Check enough hugepages are available for the reservation. 6516 * Hand the pages back to the subpool if there are not 6517 */ 6518 if (hugetlb_acct_memory(h, gbl_reserve) < 0) 6519 goto out_put_pages; 6520 6521 /* 6522 * Account for the reservations made. Shared mappings record regions 6523 * that have reservations as they are shared by multiple VMAs. 6524 * When the last VMA disappears, the region map says how much 6525 * the reservation was and the page cache tells how much of 6526 * the reservation was consumed. Private mappings are per-VMA and 6527 * only the consumed reservations are tracked. When the VMA 6528 * disappears, the original reservation is the VMA size and the 6529 * consumed reservations are stored in the map. Hence, nothing 6530 * else has to be done for private mappings here 6531 */ 6532 if (!vma || vma->vm_flags & VM_MAYSHARE) { 6533 add = region_add(resv_map, from, to, regions_needed, h, h_cg); 6534 6535 if (unlikely(add < 0)) { 6536 hugetlb_acct_memory(h, -gbl_reserve); 6537 goto out_put_pages; 6538 } else if (unlikely(chg > add)) { 6539 /* 6540 * pages in this range were added to the reserve 6541 * map between region_chg and region_add. This 6542 * indicates a race with alloc_huge_page. Adjust 6543 * the subpool and reserve counts modified above 6544 * based on the difference. 6545 */ 6546 long rsv_adjust; 6547 6548 /* 6549 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the 6550 * reference to h_cg->css. See comment below for detail. 6551 */ 6552 hugetlb_cgroup_uncharge_cgroup_rsvd( 6553 hstate_index(h), 6554 (chg - add) * pages_per_huge_page(h), h_cg); 6555 6556 rsv_adjust = hugepage_subpool_put_pages(spool, 6557 chg - add); 6558 hugetlb_acct_memory(h, -rsv_adjust); 6559 } else if (h_cg) { 6560 /* 6561 * The file_regions will hold their own reference to 6562 * h_cg->css. So we should release the reference held 6563 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are 6564 * done. 6565 */ 6566 hugetlb_cgroup_put_rsvd_cgroup(h_cg); 6567 } 6568 } 6569 return true; 6570 6571 out_put_pages: 6572 /* put back original number of pages, chg */ 6573 (void)hugepage_subpool_put_pages(spool, chg); 6574 out_uncharge_cgroup: 6575 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h), 6576 chg * pages_per_huge_page(h), h_cg); 6577 out_err: 6578 if (!vma || vma->vm_flags & VM_MAYSHARE) 6579 /* Only call region_abort if the region_chg succeeded but the 6580 * region_add failed or didn't run. 6581 */ 6582 if (chg >= 0 && add < 0) 6583 region_abort(resv_map, from, to, regions_needed); 6584 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 6585 kref_put(&resv_map->refs, resv_map_release); 6586 return false; 6587 } 6588 6589 long hugetlb_unreserve_pages(struct inode *inode, long start, long end, 6590 long freed) 6591 { 6592 struct hstate *h = hstate_inode(inode); 6593 struct resv_map *resv_map = inode_resv_map(inode); 6594 long chg = 0; 6595 struct hugepage_subpool *spool = subpool_inode(inode); 6596 long gbl_reserve; 6597 6598 /* 6599 * Since this routine can be called in the evict inode path for all 6600 * hugetlbfs inodes, resv_map could be NULL. 6601 */ 6602 if (resv_map) { 6603 chg = region_del(resv_map, start, end); 6604 /* 6605 * region_del() can fail in the rare case where a region 6606 * must be split and another region descriptor can not be 6607 * allocated. If end == LONG_MAX, it will not fail. 6608 */ 6609 if (chg < 0) 6610 return chg; 6611 } 6612 6613 spin_lock(&inode->i_lock); 6614 inode->i_blocks -= (blocks_per_huge_page(h) * freed); 6615 spin_unlock(&inode->i_lock); 6616 6617 /* 6618 * If the subpool has a minimum size, the number of global 6619 * reservations to be released may be adjusted. 6620 * 6621 * Note that !resv_map implies freed == 0. So (chg - freed) 6622 * won't go negative. 6623 */ 6624 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed)); 6625 hugetlb_acct_memory(h, -gbl_reserve); 6626 6627 return 0; 6628 } 6629 6630 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE 6631 static unsigned long page_table_shareable(struct vm_area_struct *svma, 6632 struct vm_area_struct *vma, 6633 unsigned long addr, pgoff_t idx) 6634 { 6635 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) + 6636 svma->vm_start; 6637 unsigned long sbase = saddr & PUD_MASK; 6638 unsigned long s_end = sbase + PUD_SIZE; 6639 6640 /* Allow segments to share if only one is marked locked */ 6641 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK; 6642 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK; 6643 6644 /* 6645 * match the virtual addresses, permission and the alignment of the 6646 * page table page. 6647 */ 6648 if (pmd_index(addr) != pmd_index(saddr) || 6649 vm_flags != svm_flags || 6650 !range_in_vma(svma, sbase, s_end)) 6651 return 0; 6652 6653 return saddr; 6654 } 6655 6656 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr) 6657 { 6658 unsigned long base = addr & PUD_MASK; 6659 unsigned long end = base + PUD_SIZE; 6660 6661 /* 6662 * check on proper vm_flags and page table alignment 6663 */ 6664 if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end)) 6665 return true; 6666 return false; 6667 } 6668 6669 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr) 6670 { 6671 #ifdef CONFIG_USERFAULTFD 6672 if (uffd_disable_huge_pmd_share(vma)) 6673 return false; 6674 #endif 6675 return vma_shareable(vma, addr); 6676 } 6677 6678 /* 6679 * Determine if start,end range within vma could be mapped by shared pmd. 6680 * If yes, adjust start and end to cover range associated with possible 6681 * shared pmd mappings. 6682 */ 6683 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 6684 unsigned long *start, unsigned long *end) 6685 { 6686 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE), 6687 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE); 6688 6689 /* 6690 * vma needs to span at least one aligned PUD size, and the range 6691 * must be at least partially within in. 6692 */ 6693 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) || 6694 (*end <= v_start) || (*start >= v_end)) 6695 return; 6696 6697 /* Extend the range to be PUD aligned for a worst case scenario */ 6698 if (*start > v_start) 6699 *start = ALIGN_DOWN(*start, PUD_SIZE); 6700 6701 if (*end < v_end) 6702 *end = ALIGN(*end, PUD_SIZE); 6703 } 6704 6705 /* 6706 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc() 6707 * and returns the corresponding pte. While this is not necessary for the 6708 * !shared pmd case because we can allocate the pmd later as well, it makes the 6709 * code much cleaner. 6710 * 6711 * This routine must be called with i_mmap_rwsem held in at least read mode if 6712 * sharing is possible. For hugetlbfs, this prevents removal of any page 6713 * table entries associated with the address space. This is important as we 6714 * are setting up sharing based on existing page table entries (mappings). 6715 */ 6716 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, 6717 unsigned long addr, pud_t *pud) 6718 { 6719 struct address_space *mapping = vma->vm_file->f_mapping; 6720 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + 6721 vma->vm_pgoff; 6722 struct vm_area_struct *svma; 6723 unsigned long saddr; 6724 pte_t *spte = NULL; 6725 pte_t *pte; 6726 spinlock_t *ptl; 6727 6728 i_mmap_assert_locked(mapping); 6729 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) { 6730 if (svma == vma) 6731 continue; 6732 6733 saddr = page_table_shareable(svma, vma, addr, idx); 6734 if (saddr) { 6735 spte = huge_pte_offset(svma->vm_mm, saddr, 6736 vma_mmu_pagesize(svma)); 6737 if (spte) { 6738 get_page(virt_to_page(spte)); 6739 break; 6740 } 6741 } 6742 } 6743 6744 if (!spte) 6745 goto out; 6746 6747 ptl = huge_pte_lock(hstate_vma(vma), mm, spte); 6748 if (pud_none(*pud)) { 6749 pud_populate(mm, pud, 6750 (pmd_t *)((unsigned long)spte & PAGE_MASK)); 6751 mm_inc_nr_pmds(mm); 6752 } else { 6753 put_page(virt_to_page(spte)); 6754 } 6755 spin_unlock(ptl); 6756 out: 6757 pte = (pte_t *)pmd_alloc(mm, pud, addr); 6758 return pte; 6759 } 6760 6761 /* 6762 * unmap huge page backed by shared pte. 6763 * 6764 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared 6765 * indicated by page_count > 1, unmap is achieved by clearing pud and 6766 * decrementing the ref count. If count == 1, the pte page is not shared. 6767 * 6768 * Called with page table lock held and i_mmap_rwsem held in write mode. 6769 * 6770 * returns: 1 successfully unmapped a shared pte page 6771 * 0 the underlying pte page is not shared, or it is the last user 6772 */ 6773 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, 6774 unsigned long addr, pte_t *ptep) 6775 { 6776 pgd_t *pgd = pgd_offset(mm, addr); 6777 p4d_t *p4d = p4d_offset(pgd, addr); 6778 pud_t *pud = pud_offset(p4d, addr); 6779 6780 i_mmap_assert_write_locked(vma->vm_file->f_mapping); 6781 BUG_ON(page_count(virt_to_page(ptep)) == 0); 6782 if (page_count(virt_to_page(ptep)) == 1) 6783 return 0; 6784 6785 pud_clear(pud); 6786 put_page(virt_to_page(ptep)); 6787 mm_dec_nr_pmds(mm); 6788 return 1; 6789 } 6790 6791 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 6792 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, 6793 unsigned long addr, pud_t *pud) 6794 { 6795 return NULL; 6796 } 6797 6798 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, 6799 unsigned long addr, pte_t *ptep) 6800 { 6801 return 0; 6802 } 6803 6804 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 6805 unsigned long *start, unsigned long *end) 6806 { 6807 } 6808 6809 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr) 6810 { 6811 return false; 6812 } 6813 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 6814 6815 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB 6816 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 6817 unsigned long addr, unsigned long sz) 6818 { 6819 pgd_t *pgd; 6820 p4d_t *p4d; 6821 pud_t *pud; 6822 pte_t *pte = NULL; 6823 6824 pgd = pgd_offset(mm, addr); 6825 p4d = p4d_alloc(mm, pgd, addr); 6826 if (!p4d) 6827 return NULL; 6828 pud = pud_alloc(mm, p4d, addr); 6829 if (pud) { 6830 if (sz == PUD_SIZE) { 6831 pte = (pte_t *)pud; 6832 } else { 6833 BUG_ON(sz != PMD_SIZE); 6834 if (want_pmd_share(vma, addr) && pud_none(*pud)) 6835 pte = huge_pmd_share(mm, vma, addr, pud); 6836 else 6837 pte = (pte_t *)pmd_alloc(mm, pud, addr); 6838 } 6839 } 6840 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte)); 6841 6842 return pte; 6843 } 6844 6845 /* 6846 * huge_pte_offset() - Walk the page table to resolve the hugepage 6847 * entry at address @addr 6848 * 6849 * Return: Pointer to page table entry (PUD or PMD) for 6850 * address @addr, or NULL if a !p*d_present() entry is encountered and the 6851 * size @sz doesn't match the hugepage size at this level of the page 6852 * table. 6853 */ 6854 pte_t *huge_pte_offset(struct mm_struct *mm, 6855 unsigned long addr, unsigned long sz) 6856 { 6857 pgd_t *pgd; 6858 p4d_t *p4d; 6859 pud_t *pud; 6860 pmd_t *pmd; 6861 6862 pgd = pgd_offset(mm, addr); 6863 if (!pgd_present(*pgd)) 6864 return NULL; 6865 p4d = p4d_offset(pgd, addr); 6866 if (!p4d_present(*p4d)) 6867 return NULL; 6868 6869 pud = pud_offset(p4d, addr); 6870 if (sz == PUD_SIZE) 6871 /* must be pud huge, non-present or none */ 6872 return (pte_t *)pud; 6873 if (!pud_present(*pud)) 6874 return NULL; 6875 /* must have a valid entry and size to go further */ 6876 6877 pmd = pmd_offset(pud, addr); 6878 /* must be pmd huge, non-present or none */ 6879 return (pte_t *)pmd; 6880 } 6881 6882 /* 6883 * Return a mask that can be used to update an address to the last huge 6884 * page in a page table page mapping size. Used to skip non-present 6885 * page table entries when linearly scanning address ranges. Architectures 6886 * with unique huge page to page table relationships can define their own 6887 * version of this routine. 6888 */ 6889 unsigned long hugetlb_mask_last_page(struct hstate *h) 6890 { 6891 unsigned long hp_size = huge_page_size(h); 6892 6893 if (hp_size == PUD_SIZE) 6894 return P4D_SIZE - PUD_SIZE; 6895 else if (hp_size == PMD_SIZE) 6896 return PUD_SIZE - PMD_SIZE; 6897 else 6898 return 0UL; 6899 } 6900 6901 #else 6902 6903 /* See description above. Architectures can provide their own version. */ 6904 __weak unsigned long hugetlb_mask_last_page(struct hstate *h) 6905 { 6906 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE 6907 if (huge_page_size(h) == PMD_SIZE) 6908 return PUD_SIZE - PMD_SIZE; 6909 #endif 6910 return 0UL; 6911 } 6912 6913 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */ 6914 6915 /* 6916 * These functions are overwritable if your architecture needs its own 6917 * behavior. 6918 */ 6919 struct page * __weak 6920 follow_huge_addr(struct mm_struct *mm, unsigned long address, 6921 int write) 6922 { 6923 return ERR_PTR(-EINVAL); 6924 } 6925 6926 struct page * __weak 6927 follow_huge_pd(struct vm_area_struct *vma, 6928 unsigned long address, hugepd_t hpd, int flags, int pdshift) 6929 { 6930 WARN(1, "hugepd follow called with no support for hugepage directory format\n"); 6931 return NULL; 6932 } 6933 6934 struct page * __weak 6935 follow_huge_pmd(struct mm_struct *mm, unsigned long address, 6936 pmd_t *pmd, int flags) 6937 { 6938 struct page *page = NULL; 6939 spinlock_t *ptl; 6940 pte_t pte; 6941 6942 /* 6943 * FOLL_PIN is not supported for follow_page(). Ordinary GUP goes via 6944 * follow_hugetlb_page(). 6945 */ 6946 if (WARN_ON_ONCE(flags & FOLL_PIN)) 6947 return NULL; 6948 6949 retry: 6950 ptl = pmd_lockptr(mm, pmd); 6951 spin_lock(ptl); 6952 /* 6953 * make sure that the address range covered by this pmd is not 6954 * unmapped from other threads. 6955 */ 6956 if (!pmd_huge(*pmd)) 6957 goto out; 6958 pte = huge_ptep_get((pte_t *)pmd); 6959 if (pte_present(pte)) { 6960 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT); 6961 /* 6962 * try_grab_page() should always succeed here, because: a) we 6963 * hold the pmd (ptl) lock, and b) we've just checked that the 6964 * huge pmd (head) page is present in the page tables. The ptl 6965 * prevents the head page and tail pages from being rearranged 6966 * in any way. So this page must be available at this point, 6967 * unless the page refcount overflowed: 6968 */ 6969 if (WARN_ON_ONCE(!try_grab_page(page, flags))) { 6970 page = NULL; 6971 goto out; 6972 } 6973 } else { 6974 if (is_hugetlb_entry_migration(pte)) { 6975 spin_unlock(ptl); 6976 __migration_entry_wait_huge((pte_t *)pmd, ptl); 6977 goto retry; 6978 } 6979 /* 6980 * hwpoisoned entry is treated as no_page_table in 6981 * follow_page_mask(). 6982 */ 6983 } 6984 out: 6985 spin_unlock(ptl); 6986 return page; 6987 } 6988 6989 struct page * __weak 6990 follow_huge_pud(struct mm_struct *mm, unsigned long address, 6991 pud_t *pud, int flags) 6992 { 6993 struct page *page = NULL; 6994 spinlock_t *ptl; 6995 pte_t pte; 6996 6997 if (WARN_ON_ONCE(flags & FOLL_PIN)) 6998 return NULL; 6999 7000 retry: 7001 ptl = huge_pte_lock(hstate_sizelog(PUD_SHIFT), mm, (pte_t *)pud); 7002 if (!pud_huge(*pud)) 7003 goto out; 7004 pte = huge_ptep_get((pte_t *)pud); 7005 if (pte_present(pte)) { 7006 page = pud_page(*pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT); 7007 if (WARN_ON_ONCE(!try_grab_page(page, flags))) { 7008 page = NULL; 7009 goto out; 7010 } 7011 } else { 7012 if (is_hugetlb_entry_migration(pte)) { 7013 spin_unlock(ptl); 7014 __migration_entry_wait(mm, (pte_t *)pud, ptl); 7015 goto retry; 7016 } 7017 /* 7018 * hwpoisoned entry is treated as no_page_table in 7019 * follow_page_mask(). 7020 */ 7021 } 7022 out: 7023 spin_unlock(ptl); 7024 return page; 7025 } 7026 7027 struct page * __weak 7028 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags) 7029 { 7030 if (flags & (FOLL_GET | FOLL_PIN)) 7031 return NULL; 7032 7033 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT); 7034 } 7035 7036 int isolate_hugetlb(struct page *page, struct list_head *list) 7037 { 7038 int ret = 0; 7039 7040 spin_lock_irq(&hugetlb_lock); 7041 if (!PageHeadHuge(page) || 7042 !HPageMigratable(page) || 7043 !get_page_unless_zero(page)) { 7044 ret = -EBUSY; 7045 goto unlock; 7046 } 7047 ClearHPageMigratable(page); 7048 list_move_tail(&page->lru, list); 7049 unlock: 7050 spin_unlock_irq(&hugetlb_lock); 7051 return ret; 7052 } 7053 7054 int get_hwpoison_huge_page(struct page *page, bool *hugetlb) 7055 { 7056 int ret = 0; 7057 7058 *hugetlb = false; 7059 spin_lock_irq(&hugetlb_lock); 7060 if (PageHeadHuge(page)) { 7061 *hugetlb = true; 7062 if (HPageFreed(page)) 7063 ret = 0; 7064 else if (HPageMigratable(page)) 7065 ret = get_page_unless_zero(page); 7066 else 7067 ret = -EBUSY; 7068 } 7069 spin_unlock_irq(&hugetlb_lock); 7070 return ret; 7071 } 7072 7073 int get_huge_page_for_hwpoison(unsigned long pfn, int flags) 7074 { 7075 int ret; 7076 7077 spin_lock_irq(&hugetlb_lock); 7078 ret = __get_huge_page_for_hwpoison(pfn, flags); 7079 spin_unlock_irq(&hugetlb_lock); 7080 return ret; 7081 } 7082 7083 void putback_active_hugepage(struct page *page) 7084 { 7085 spin_lock_irq(&hugetlb_lock); 7086 SetHPageMigratable(page); 7087 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist); 7088 spin_unlock_irq(&hugetlb_lock); 7089 put_page(page); 7090 } 7091 7092 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason) 7093 { 7094 struct hstate *h = page_hstate(oldpage); 7095 7096 hugetlb_cgroup_migrate(oldpage, newpage); 7097 set_page_owner_migrate_reason(newpage, reason); 7098 7099 /* 7100 * transfer temporary state of the new huge page. This is 7101 * reverse to other transitions because the newpage is going to 7102 * be final while the old one will be freed so it takes over 7103 * the temporary status. 7104 * 7105 * Also note that we have to transfer the per-node surplus state 7106 * here as well otherwise the global surplus count will not match 7107 * the per-node's. 7108 */ 7109 if (HPageTemporary(newpage)) { 7110 int old_nid = page_to_nid(oldpage); 7111 int new_nid = page_to_nid(newpage); 7112 7113 SetHPageTemporary(oldpage); 7114 ClearHPageTemporary(newpage); 7115 7116 /* 7117 * There is no need to transfer the per-node surplus state 7118 * when we do not cross the node. 7119 */ 7120 if (new_nid == old_nid) 7121 return; 7122 spin_lock_irq(&hugetlb_lock); 7123 if (h->surplus_huge_pages_node[old_nid]) { 7124 h->surplus_huge_pages_node[old_nid]--; 7125 h->surplus_huge_pages_node[new_nid]++; 7126 } 7127 spin_unlock_irq(&hugetlb_lock); 7128 } 7129 } 7130 7131 /* 7132 * This function will unconditionally remove all the shared pmd pgtable entries 7133 * within the specific vma for a hugetlbfs memory range. 7134 */ 7135 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma) 7136 { 7137 struct hstate *h = hstate_vma(vma); 7138 unsigned long sz = huge_page_size(h); 7139 struct mm_struct *mm = vma->vm_mm; 7140 struct mmu_notifier_range range; 7141 unsigned long address, start, end; 7142 spinlock_t *ptl; 7143 pte_t *ptep; 7144 7145 if (!(vma->vm_flags & VM_MAYSHARE)) 7146 return; 7147 7148 start = ALIGN(vma->vm_start, PUD_SIZE); 7149 end = ALIGN_DOWN(vma->vm_end, PUD_SIZE); 7150 7151 if (start >= end) 7152 return; 7153 7154 flush_cache_range(vma, start, end); 7155 /* 7156 * No need to call adjust_range_if_pmd_sharing_possible(), because 7157 * we have already done the PUD_SIZE alignment. 7158 */ 7159 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, 7160 start, end); 7161 mmu_notifier_invalidate_range_start(&range); 7162 i_mmap_lock_write(vma->vm_file->f_mapping); 7163 for (address = start; address < end; address += PUD_SIZE) { 7164 ptep = huge_pte_offset(mm, address, sz); 7165 if (!ptep) 7166 continue; 7167 ptl = huge_pte_lock(h, mm, ptep); 7168 huge_pmd_unshare(mm, vma, address, ptep); 7169 spin_unlock(ptl); 7170 } 7171 flush_hugetlb_tlb_range(vma, start, end); 7172 i_mmap_unlock_write(vma->vm_file->f_mapping); 7173 /* 7174 * No need to call mmu_notifier_invalidate_range(), see 7175 * Documentation/mm/mmu_notifier.rst. 7176 */ 7177 mmu_notifier_invalidate_range_end(&range); 7178 } 7179 7180 #ifdef CONFIG_CMA 7181 static bool cma_reserve_called __initdata; 7182 7183 static int __init cmdline_parse_hugetlb_cma(char *p) 7184 { 7185 int nid, count = 0; 7186 unsigned long tmp; 7187 char *s = p; 7188 7189 while (*s) { 7190 if (sscanf(s, "%lu%n", &tmp, &count) != 1) 7191 break; 7192 7193 if (s[count] == ':') { 7194 if (tmp >= MAX_NUMNODES) 7195 break; 7196 nid = array_index_nospec(tmp, MAX_NUMNODES); 7197 7198 s += count + 1; 7199 tmp = memparse(s, &s); 7200 hugetlb_cma_size_in_node[nid] = tmp; 7201 hugetlb_cma_size += tmp; 7202 7203 /* 7204 * Skip the separator if have one, otherwise 7205 * break the parsing. 7206 */ 7207 if (*s == ',') 7208 s++; 7209 else 7210 break; 7211 } else { 7212 hugetlb_cma_size = memparse(p, &p); 7213 break; 7214 } 7215 } 7216 7217 return 0; 7218 } 7219 7220 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma); 7221 7222 void __init hugetlb_cma_reserve(int order) 7223 { 7224 unsigned long size, reserved, per_node; 7225 bool node_specific_cma_alloc = false; 7226 int nid; 7227 7228 cma_reserve_called = true; 7229 7230 if (!hugetlb_cma_size) 7231 return; 7232 7233 for (nid = 0; nid < MAX_NUMNODES; nid++) { 7234 if (hugetlb_cma_size_in_node[nid] == 0) 7235 continue; 7236 7237 if (!node_online(nid)) { 7238 pr_warn("hugetlb_cma: invalid node %d specified\n", nid); 7239 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid]; 7240 hugetlb_cma_size_in_node[nid] = 0; 7241 continue; 7242 } 7243 7244 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) { 7245 pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n", 7246 nid, (PAGE_SIZE << order) / SZ_1M); 7247 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid]; 7248 hugetlb_cma_size_in_node[nid] = 0; 7249 } else { 7250 node_specific_cma_alloc = true; 7251 } 7252 } 7253 7254 /* Validate the CMA size again in case some invalid nodes specified. */ 7255 if (!hugetlb_cma_size) 7256 return; 7257 7258 if (hugetlb_cma_size < (PAGE_SIZE << order)) { 7259 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n", 7260 (PAGE_SIZE << order) / SZ_1M); 7261 hugetlb_cma_size = 0; 7262 return; 7263 } 7264 7265 if (!node_specific_cma_alloc) { 7266 /* 7267 * If 3 GB area is requested on a machine with 4 numa nodes, 7268 * let's allocate 1 GB on first three nodes and ignore the last one. 7269 */ 7270 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes); 7271 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n", 7272 hugetlb_cma_size / SZ_1M, per_node / SZ_1M); 7273 } 7274 7275 reserved = 0; 7276 for_each_online_node(nid) { 7277 int res; 7278 char name[CMA_MAX_NAME]; 7279 7280 if (node_specific_cma_alloc) { 7281 if (hugetlb_cma_size_in_node[nid] == 0) 7282 continue; 7283 7284 size = hugetlb_cma_size_in_node[nid]; 7285 } else { 7286 size = min(per_node, hugetlb_cma_size - reserved); 7287 } 7288 7289 size = round_up(size, PAGE_SIZE << order); 7290 7291 snprintf(name, sizeof(name), "hugetlb%d", nid); 7292 /* 7293 * Note that 'order per bit' is based on smallest size that 7294 * may be returned to CMA allocator in the case of 7295 * huge page demotion. 7296 */ 7297 res = cma_declare_contiguous_nid(0, size, 0, 7298 PAGE_SIZE << HUGETLB_PAGE_ORDER, 7299 0, false, name, 7300 &hugetlb_cma[nid], nid); 7301 if (res) { 7302 pr_warn("hugetlb_cma: reservation failed: err %d, node %d", 7303 res, nid); 7304 continue; 7305 } 7306 7307 reserved += size; 7308 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n", 7309 size / SZ_1M, nid); 7310 7311 if (reserved >= hugetlb_cma_size) 7312 break; 7313 } 7314 7315 if (!reserved) 7316 /* 7317 * hugetlb_cma_size is used to determine if allocations from 7318 * cma are possible. Set to zero if no cma regions are set up. 7319 */ 7320 hugetlb_cma_size = 0; 7321 } 7322 7323 void __init hugetlb_cma_check(void) 7324 { 7325 if (!hugetlb_cma_size || cma_reserve_called) 7326 return; 7327 7328 pr_warn("hugetlb_cma: the option isn't supported by current arch\n"); 7329 } 7330 7331 #endif /* CONFIG_CMA */ 7332