1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic hugetlb support. 4 * (C) Nadia Yvette Chambers, April 2004 5 */ 6 #include <linux/list.h> 7 #include <linux/init.h> 8 #include <linux/mm.h> 9 #include <linux/seq_file.h> 10 #include <linux/sysctl.h> 11 #include <linux/highmem.h> 12 #include <linux/mmu_notifier.h> 13 #include <linux/nodemask.h> 14 #include <linux/pagemap.h> 15 #include <linux/mempolicy.h> 16 #include <linux/compiler.h> 17 #include <linux/cpuset.h> 18 #include <linux/mutex.h> 19 #include <linux/memblock.h> 20 #include <linux/sysfs.h> 21 #include <linux/slab.h> 22 #include <linux/sched/mm.h> 23 #include <linux/mmdebug.h> 24 #include <linux/sched/signal.h> 25 #include <linux/rmap.h> 26 #include <linux/string_helpers.h> 27 #include <linux/swap.h> 28 #include <linux/swapops.h> 29 #include <linux/jhash.h> 30 #include <linux/numa.h> 31 #include <linux/llist.h> 32 #include <linux/cma.h> 33 #include <linux/migrate.h> 34 #include <linux/nospec.h> 35 #include <linux/delayacct.h> 36 #include <linux/memory.h> 37 #include <linux/mm_inline.h> 38 #include <linux/padata.h> 39 40 #include <asm/page.h> 41 #include <asm/pgalloc.h> 42 #include <asm/tlb.h> 43 44 #include <linux/io.h> 45 #include <linux/hugetlb.h> 46 #include <linux/hugetlb_cgroup.h> 47 #include <linux/node.h> 48 #include <linux/page_owner.h> 49 #include "internal.h" 50 #include "hugetlb_vmemmap.h" 51 52 int hugetlb_max_hstate __read_mostly; 53 unsigned int default_hstate_idx; 54 struct hstate hstates[HUGE_MAX_HSTATE]; 55 56 #ifdef CONFIG_CMA 57 static struct cma *hugetlb_cma[MAX_NUMNODES]; 58 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata; 59 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order) 60 { 61 return cma_pages_valid(hugetlb_cma[folio_nid(folio)], &folio->page, 62 1 << order); 63 } 64 #else 65 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order) 66 { 67 return false; 68 } 69 #endif 70 static unsigned long hugetlb_cma_size __initdata; 71 72 __initdata struct list_head huge_boot_pages[MAX_NUMNODES]; 73 74 /* for command line parsing */ 75 static struct hstate * __initdata parsed_hstate; 76 static unsigned long __initdata default_hstate_max_huge_pages; 77 static bool __initdata parsed_valid_hugepagesz = true; 78 static bool __initdata parsed_default_hugepagesz; 79 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata; 80 81 /* 82 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages, 83 * free_huge_pages, and surplus_huge_pages. 84 */ 85 DEFINE_SPINLOCK(hugetlb_lock); 86 87 /* 88 * Serializes faults on the same logical page. This is used to 89 * prevent spurious OOMs when the hugepage pool is fully utilized. 90 */ 91 static int num_fault_mutexes; 92 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp; 93 94 /* Forward declaration */ 95 static int hugetlb_acct_memory(struct hstate *h, long delta); 96 static void hugetlb_vma_lock_free(struct vm_area_struct *vma); 97 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma); 98 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma); 99 static void hugetlb_unshare_pmds(struct vm_area_struct *vma, 100 unsigned long start, unsigned long end); 101 static struct resv_map *vma_resv_map(struct vm_area_struct *vma); 102 103 static inline bool subpool_is_free(struct hugepage_subpool *spool) 104 { 105 if (spool->count) 106 return false; 107 if (spool->max_hpages != -1) 108 return spool->used_hpages == 0; 109 if (spool->min_hpages != -1) 110 return spool->rsv_hpages == spool->min_hpages; 111 112 return true; 113 } 114 115 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool, 116 unsigned long irq_flags) 117 { 118 spin_unlock_irqrestore(&spool->lock, irq_flags); 119 120 /* If no pages are used, and no other handles to the subpool 121 * remain, give up any reservations based on minimum size and 122 * free the subpool */ 123 if (subpool_is_free(spool)) { 124 if (spool->min_hpages != -1) 125 hugetlb_acct_memory(spool->hstate, 126 -spool->min_hpages); 127 kfree(spool); 128 } 129 } 130 131 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages, 132 long min_hpages) 133 { 134 struct hugepage_subpool *spool; 135 136 spool = kzalloc(sizeof(*spool), GFP_KERNEL); 137 if (!spool) 138 return NULL; 139 140 spin_lock_init(&spool->lock); 141 spool->count = 1; 142 spool->max_hpages = max_hpages; 143 spool->hstate = h; 144 spool->min_hpages = min_hpages; 145 146 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) { 147 kfree(spool); 148 return NULL; 149 } 150 spool->rsv_hpages = min_hpages; 151 152 return spool; 153 } 154 155 void hugepage_put_subpool(struct hugepage_subpool *spool) 156 { 157 unsigned long flags; 158 159 spin_lock_irqsave(&spool->lock, flags); 160 BUG_ON(!spool->count); 161 spool->count--; 162 unlock_or_release_subpool(spool, flags); 163 } 164 165 /* 166 * Subpool accounting for allocating and reserving pages. 167 * Return -ENOMEM if there are not enough resources to satisfy the 168 * request. Otherwise, return the number of pages by which the 169 * global pools must be adjusted (upward). The returned value may 170 * only be different than the passed value (delta) in the case where 171 * a subpool minimum size must be maintained. 172 */ 173 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool, 174 long delta) 175 { 176 long ret = delta; 177 178 if (!spool) 179 return ret; 180 181 spin_lock_irq(&spool->lock); 182 183 if (spool->max_hpages != -1) { /* maximum size accounting */ 184 if ((spool->used_hpages + delta) <= spool->max_hpages) 185 spool->used_hpages += delta; 186 else { 187 ret = -ENOMEM; 188 goto unlock_ret; 189 } 190 } 191 192 /* minimum size accounting */ 193 if (spool->min_hpages != -1 && spool->rsv_hpages) { 194 if (delta > spool->rsv_hpages) { 195 /* 196 * Asking for more reserves than those already taken on 197 * behalf of subpool. Return difference. 198 */ 199 ret = delta - spool->rsv_hpages; 200 spool->rsv_hpages = 0; 201 } else { 202 ret = 0; /* reserves already accounted for */ 203 spool->rsv_hpages -= delta; 204 } 205 } 206 207 unlock_ret: 208 spin_unlock_irq(&spool->lock); 209 return ret; 210 } 211 212 /* 213 * Subpool accounting for freeing and unreserving pages. 214 * Return the number of global page reservations that must be dropped. 215 * The return value may only be different than the passed value (delta) 216 * in the case where a subpool minimum size must be maintained. 217 */ 218 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool, 219 long delta) 220 { 221 long ret = delta; 222 unsigned long flags; 223 224 if (!spool) 225 return delta; 226 227 spin_lock_irqsave(&spool->lock, flags); 228 229 if (spool->max_hpages != -1) /* maximum size accounting */ 230 spool->used_hpages -= delta; 231 232 /* minimum size accounting */ 233 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) { 234 if (spool->rsv_hpages + delta <= spool->min_hpages) 235 ret = 0; 236 else 237 ret = spool->rsv_hpages + delta - spool->min_hpages; 238 239 spool->rsv_hpages += delta; 240 if (spool->rsv_hpages > spool->min_hpages) 241 spool->rsv_hpages = spool->min_hpages; 242 } 243 244 /* 245 * If hugetlbfs_put_super couldn't free spool due to an outstanding 246 * quota reference, free it now. 247 */ 248 unlock_or_release_subpool(spool, flags); 249 250 return ret; 251 } 252 253 static inline struct hugepage_subpool *subpool_inode(struct inode *inode) 254 { 255 return HUGETLBFS_SB(inode->i_sb)->spool; 256 } 257 258 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma) 259 { 260 return subpool_inode(file_inode(vma->vm_file)); 261 } 262 263 /* 264 * hugetlb vma_lock helper routines 265 */ 266 void hugetlb_vma_lock_read(struct vm_area_struct *vma) 267 { 268 if (__vma_shareable_lock(vma)) { 269 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 270 271 down_read(&vma_lock->rw_sema); 272 } else if (__vma_private_lock(vma)) { 273 struct resv_map *resv_map = vma_resv_map(vma); 274 275 down_read(&resv_map->rw_sema); 276 } 277 } 278 279 void hugetlb_vma_unlock_read(struct vm_area_struct *vma) 280 { 281 if (__vma_shareable_lock(vma)) { 282 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 283 284 up_read(&vma_lock->rw_sema); 285 } else if (__vma_private_lock(vma)) { 286 struct resv_map *resv_map = vma_resv_map(vma); 287 288 up_read(&resv_map->rw_sema); 289 } 290 } 291 292 void hugetlb_vma_lock_write(struct vm_area_struct *vma) 293 { 294 if (__vma_shareable_lock(vma)) { 295 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 296 297 down_write(&vma_lock->rw_sema); 298 } else if (__vma_private_lock(vma)) { 299 struct resv_map *resv_map = vma_resv_map(vma); 300 301 down_write(&resv_map->rw_sema); 302 } 303 } 304 305 void hugetlb_vma_unlock_write(struct vm_area_struct *vma) 306 { 307 if (__vma_shareable_lock(vma)) { 308 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 309 310 up_write(&vma_lock->rw_sema); 311 } else if (__vma_private_lock(vma)) { 312 struct resv_map *resv_map = vma_resv_map(vma); 313 314 up_write(&resv_map->rw_sema); 315 } 316 } 317 318 int hugetlb_vma_trylock_write(struct vm_area_struct *vma) 319 { 320 321 if (__vma_shareable_lock(vma)) { 322 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 323 324 return down_write_trylock(&vma_lock->rw_sema); 325 } else if (__vma_private_lock(vma)) { 326 struct resv_map *resv_map = vma_resv_map(vma); 327 328 return down_write_trylock(&resv_map->rw_sema); 329 } 330 331 return 1; 332 } 333 334 void hugetlb_vma_assert_locked(struct vm_area_struct *vma) 335 { 336 if (__vma_shareable_lock(vma)) { 337 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 338 339 lockdep_assert_held(&vma_lock->rw_sema); 340 } else if (__vma_private_lock(vma)) { 341 struct resv_map *resv_map = vma_resv_map(vma); 342 343 lockdep_assert_held(&resv_map->rw_sema); 344 } 345 } 346 347 void hugetlb_vma_lock_release(struct kref *kref) 348 { 349 struct hugetlb_vma_lock *vma_lock = container_of(kref, 350 struct hugetlb_vma_lock, refs); 351 352 kfree(vma_lock); 353 } 354 355 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock) 356 { 357 struct vm_area_struct *vma = vma_lock->vma; 358 359 /* 360 * vma_lock structure may or not be released as a result of put, 361 * it certainly will no longer be attached to vma so clear pointer. 362 * Semaphore synchronizes access to vma_lock->vma field. 363 */ 364 vma_lock->vma = NULL; 365 vma->vm_private_data = NULL; 366 up_write(&vma_lock->rw_sema); 367 kref_put(&vma_lock->refs, hugetlb_vma_lock_release); 368 } 369 370 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma) 371 { 372 if (__vma_shareable_lock(vma)) { 373 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 374 375 __hugetlb_vma_unlock_write_put(vma_lock); 376 } else if (__vma_private_lock(vma)) { 377 struct resv_map *resv_map = vma_resv_map(vma); 378 379 /* no free for anon vmas, but still need to unlock */ 380 up_write(&resv_map->rw_sema); 381 } 382 } 383 384 static void hugetlb_vma_lock_free(struct vm_area_struct *vma) 385 { 386 /* 387 * Only present in sharable vmas. 388 */ 389 if (!vma || !__vma_shareable_lock(vma)) 390 return; 391 392 if (vma->vm_private_data) { 393 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 394 395 down_write(&vma_lock->rw_sema); 396 __hugetlb_vma_unlock_write_put(vma_lock); 397 } 398 } 399 400 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma) 401 { 402 struct hugetlb_vma_lock *vma_lock; 403 404 /* Only establish in (flags) sharable vmas */ 405 if (!vma || !(vma->vm_flags & VM_MAYSHARE)) 406 return; 407 408 /* Should never get here with non-NULL vm_private_data */ 409 if (vma->vm_private_data) 410 return; 411 412 vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL); 413 if (!vma_lock) { 414 /* 415 * If we can not allocate structure, then vma can not 416 * participate in pmd sharing. This is only a possible 417 * performance enhancement and memory saving issue. 418 * However, the lock is also used to synchronize page 419 * faults with truncation. If the lock is not present, 420 * unlikely races could leave pages in a file past i_size 421 * until the file is removed. Warn in the unlikely case of 422 * allocation failure. 423 */ 424 pr_warn_once("HugeTLB: unable to allocate vma specific lock\n"); 425 return; 426 } 427 428 kref_init(&vma_lock->refs); 429 init_rwsem(&vma_lock->rw_sema); 430 vma_lock->vma = vma; 431 vma->vm_private_data = vma_lock; 432 } 433 434 /* Helper that removes a struct file_region from the resv_map cache and returns 435 * it for use. 436 */ 437 static struct file_region * 438 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to) 439 { 440 struct file_region *nrg; 441 442 VM_BUG_ON(resv->region_cache_count <= 0); 443 444 resv->region_cache_count--; 445 nrg = list_first_entry(&resv->region_cache, struct file_region, link); 446 list_del(&nrg->link); 447 448 nrg->from = from; 449 nrg->to = to; 450 451 return nrg; 452 } 453 454 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg, 455 struct file_region *rg) 456 { 457 #ifdef CONFIG_CGROUP_HUGETLB 458 nrg->reservation_counter = rg->reservation_counter; 459 nrg->css = rg->css; 460 if (rg->css) 461 css_get(rg->css); 462 #endif 463 } 464 465 /* Helper that records hugetlb_cgroup uncharge info. */ 466 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg, 467 struct hstate *h, 468 struct resv_map *resv, 469 struct file_region *nrg) 470 { 471 #ifdef CONFIG_CGROUP_HUGETLB 472 if (h_cg) { 473 nrg->reservation_counter = 474 &h_cg->rsvd_hugepage[hstate_index(h)]; 475 nrg->css = &h_cg->css; 476 /* 477 * The caller will hold exactly one h_cg->css reference for the 478 * whole contiguous reservation region. But this area might be 479 * scattered when there are already some file_regions reside in 480 * it. As a result, many file_regions may share only one css 481 * reference. In order to ensure that one file_region must hold 482 * exactly one h_cg->css reference, we should do css_get for 483 * each file_region and leave the reference held by caller 484 * untouched. 485 */ 486 css_get(&h_cg->css); 487 if (!resv->pages_per_hpage) 488 resv->pages_per_hpage = pages_per_huge_page(h); 489 /* pages_per_hpage should be the same for all entries in 490 * a resv_map. 491 */ 492 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h)); 493 } else { 494 nrg->reservation_counter = NULL; 495 nrg->css = NULL; 496 } 497 #endif 498 } 499 500 static void put_uncharge_info(struct file_region *rg) 501 { 502 #ifdef CONFIG_CGROUP_HUGETLB 503 if (rg->css) 504 css_put(rg->css); 505 #endif 506 } 507 508 static bool has_same_uncharge_info(struct file_region *rg, 509 struct file_region *org) 510 { 511 #ifdef CONFIG_CGROUP_HUGETLB 512 return rg->reservation_counter == org->reservation_counter && 513 rg->css == org->css; 514 515 #else 516 return true; 517 #endif 518 } 519 520 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg) 521 { 522 struct file_region *nrg, *prg; 523 524 prg = list_prev_entry(rg, link); 525 if (&prg->link != &resv->regions && prg->to == rg->from && 526 has_same_uncharge_info(prg, rg)) { 527 prg->to = rg->to; 528 529 list_del(&rg->link); 530 put_uncharge_info(rg); 531 kfree(rg); 532 533 rg = prg; 534 } 535 536 nrg = list_next_entry(rg, link); 537 if (&nrg->link != &resv->regions && nrg->from == rg->to && 538 has_same_uncharge_info(nrg, rg)) { 539 nrg->from = rg->from; 540 541 list_del(&rg->link); 542 put_uncharge_info(rg); 543 kfree(rg); 544 } 545 } 546 547 static inline long 548 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from, 549 long to, struct hstate *h, struct hugetlb_cgroup *cg, 550 long *regions_needed) 551 { 552 struct file_region *nrg; 553 554 if (!regions_needed) { 555 nrg = get_file_region_entry_from_cache(map, from, to); 556 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg); 557 list_add(&nrg->link, rg); 558 coalesce_file_region(map, nrg); 559 } else 560 *regions_needed += 1; 561 562 return to - from; 563 } 564 565 /* 566 * Must be called with resv->lock held. 567 * 568 * Calling this with regions_needed != NULL will count the number of pages 569 * to be added but will not modify the linked list. And regions_needed will 570 * indicate the number of file_regions needed in the cache to carry out to add 571 * the regions for this range. 572 */ 573 static long add_reservation_in_range(struct resv_map *resv, long f, long t, 574 struct hugetlb_cgroup *h_cg, 575 struct hstate *h, long *regions_needed) 576 { 577 long add = 0; 578 struct list_head *head = &resv->regions; 579 long last_accounted_offset = f; 580 struct file_region *iter, *trg = NULL; 581 struct list_head *rg = NULL; 582 583 if (regions_needed) 584 *regions_needed = 0; 585 586 /* In this loop, we essentially handle an entry for the range 587 * [last_accounted_offset, iter->from), at every iteration, with some 588 * bounds checking. 589 */ 590 list_for_each_entry_safe(iter, trg, head, link) { 591 /* Skip irrelevant regions that start before our range. */ 592 if (iter->from < f) { 593 /* If this region ends after the last accounted offset, 594 * then we need to update last_accounted_offset. 595 */ 596 if (iter->to > last_accounted_offset) 597 last_accounted_offset = iter->to; 598 continue; 599 } 600 601 /* When we find a region that starts beyond our range, we've 602 * finished. 603 */ 604 if (iter->from >= t) { 605 rg = iter->link.prev; 606 break; 607 } 608 609 /* Add an entry for last_accounted_offset -> iter->from, and 610 * update last_accounted_offset. 611 */ 612 if (iter->from > last_accounted_offset) 613 add += hugetlb_resv_map_add(resv, iter->link.prev, 614 last_accounted_offset, 615 iter->from, h, h_cg, 616 regions_needed); 617 618 last_accounted_offset = iter->to; 619 } 620 621 /* Handle the case where our range extends beyond 622 * last_accounted_offset. 623 */ 624 if (!rg) 625 rg = head->prev; 626 if (last_accounted_offset < t) 627 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset, 628 t, h, h_cg, regions_needed); 629 630 return add; 631 } 632 633 /* Must be called with resv->lock acquired. Will drop lock to allocate entries. 634 */ 635 static int allocate_file_region_entries(struct resv_map *resv, 636 int regions_needed) 637 __must_hold(&resv->lock) 638 { 639 LIST_HEAD(allocated_regions); 640 int to_allocate = 0, i = 0; 641 struct file_region *trg = NULL, *rg = NULL; 642 643 VM_BUG_ON(regions_needed < 0); 644 645 /* 646 * Check for sufficient descriptors in the cache to accommodate 647 * the number of in progress add operations plus regions_needed. 648 * 649 * This is a while loop because when we drop the lock, some other call 650 * to region_add or region_del may have consumed some region_entries, 651 * so we keep looping here until we finally have enough entries for 652 * (adds_in_progress + regions_needed). 653 */ 654 while (resv->region_cache_count < 655 (resv->adds_in_progress + regions_needed)) { 656 to_allocate = resv->adds_in_progress + regions_needed - 657 resv->region_cache_count; 658 659 /* At this point, we should have enough entries in the cache 660 * for all the existing adds_in_progress. We should only be 661 * needing to allocate for regions_needed. 662 */ 663 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress); 664 665 spin_unlock(&resv->lock); 666 for (i = 0; i < to_allocate; i++) { 667 trg = kmalloc(sizeof(*trg), GFP_KERNEL); 668 if (!trg) 669 goto out_of_memory; 670 list_add(&trg->link, &allocated_regions); 671 } 672 673 spin_lock(&resv->lock); 674 675 list_splice(&allocated_regions, &resv->region_cache); 676 resv->region_cache_count += to_allocate; 677 } 678 679 return 0; 680 681 out_of_memory: 682 list_for_each_entry_safe(rg, trg, &allocated_regions, link) { 683 list_del(&rg->link); 684 kfree(rg); 685 } 686 return -ENOMEM; 687 } 688 689 /* 690 * Add the huge page range represented by [f, t) to the reserve 691 * map. Regions will be taken from the cache to fill in this range. 692 * Sufficient regions should exist in the cache due to the previous 693 * call to region_chg with the same range, but in some cases the cache will not 694 * have sufficient entries due to races with other code doing region_add or 695 * region_del. The extra needed entries will be allocated. 696 * 697 * regions_needed is the out value provided by a previous call to region_chg. 698 * 699 * Return the number of new huge pages added to the map. This number is greater 700 * than or equal to zero. If file_region entries needed to be allocated for 701 * this operation and we were not able to allocate, it returns -ENOMEM. 702 * region_add of regions of length 1 never allocate file_regions and cannot 703 * fail; region_chg will always allocate at least 1 entry and a region_add for 704 * 1 page will only require at most 1 entry. 705 */ 706 static long region_add(struct resv_map *resv, long f, long t, 707 long in_regions_needed, struct hstate *h, 708 struct hugetlb_cgroup *h_cg) 709 { 710 long add = 0, actual_regions_needed = 0; 711 712 spin_lock(&resv->lock); 713 retry: 714 715 /* Count how many regions are actually needed to execute this add. */ 716 add_reservation_in_range(resv, f, t, NULL, NULL, 717 &actual_regions_needed); 718 719 /* 720 * Check for sufficient descriptors in the cache to accommodate 721 * this add operation. Note that actual_regions_needed may be greater 722 * than in_regions_needed, as the resv_map may have been modified since 723 * the region_chg call. In this case, we need to make sure that we 724 * allocate extra entries, such that we have enough for all the 725 * existing adds_in_progress, plus the excess needed for this 726 * operation. 727 */ 728 if (actual_regions_needed > in_regions_needed && 729 resv->region_cache_count < 730 resv->adds_in_progress + 731 (actual_regions_needed - in_regions_needed)) { 732 /* region_add operation of range 1 should never need to 733 * allocate file_region entries. 734 */ 735 VM_BUG_ON(t - f <= 1); 736 737 if (allocate_file_region_entries( 738 resv, actual_regions_needed - in_regions_needed)) { 739 return -ENOMEM; 740 } 741 742 goto retry; 743 } 744 745 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL); 746 747 resv->adds_in_progress -= in_regions_needed; 748 749 spin_unlock(&resv->lock); 750 return add; 751 } 752 753 /* 754 * Examine the existing reserve map and determine how many 755 * huge pages in the specified range [f, t) are NOT currently 756 * represented. This routine is called before a subsequent 757 * call to region_add that will actually modify the reserve 758 * map to add the specified range [f, t). region_chg does 759 * not change the number of huge pages represented by the 760 * map. A number of new file_region structures is added to the cache as a 761 * placeholder, for the subsequent region_add call to use. At least 1 762 * file_region structure is added. 763 * 764 * out_regions_needed is the number of regions added to the 765 * resv->adds_in_progress. This value needs to be provided to a follow up call 766 * to region_add or region_abort for proper accounting. 767 * 768 * Returns the number of huge pages that need to be added to the existing 769 * reservation map for the range [f, t). This number is greater or equal to 770 * zero. -ENOMEM is returned if a new file_region structure or cache entry 771 * is needed and can not be allocated. 772 */ 773 static long region_chg(struct resv_map *resv, long f, long t, 774 long *out_regions_needed) 775 { 776 long chg = 0; 777 778 spin_lock(&resv->lock); 779 780 /* Count how many hugepages in this range are NOT represented. */ 781 chg = add_reservation_in_range(resv, f, t, NULL, NULL, 782 out_regions_needed); 783 784 if (*out_regions_needed == 0) 785 *out_regions_needed = 1; 786 787 if (allocate_file_region_entries(resv, *out_regions_needed)) 788 return -ENOMEM; 789 790 resv->adds_in_progress += *out_regions_needed; 791 792 spin_unlock(&resv->lock); 793 return chg; 794 } 795 796 /* 797 * Abort the in progress add operation. The adds_in_progress field 798 * of the resv_map keeps track of the operations in progress between 799 * calls to region_chg and region_add. Operations are sometimes 800 * aborted after the call to region_chg. In such cases, region_abort 801 * is called to decrement the adds_in_progress counter. regions_needed 802 * is the value returned by the region_chg call, it is used to decrement 803 * the adds_in_progress counter. 804 * 805 * NOTE: The range arguments [f, t) are not needed or used in this 806 * routine. They are kept to make reading the calling code easier as 807 * arguments will match the associated region_chg call. 808 */ 809 static void region_abort(struct resv_map *resv, long f, long t, 810 long regions_needed) 811 { 812 spin_lock(&resv->lock); 813 VM_BUG_ON(!resv->region_cache_count); 814 resv->adds_in_progress -= regions_needed; 815 spin_unlock(&resv->lock); 816 } 817 818 /* 819 * Delete the specified range [f, t) from the reserve map. If the 820 * t parameter is LONG_MAX, this indicates that ALL regions after f 821 * should be deleted. Locate the regions which intersect [f, t) 822 * and either trim, delete or split the existing regions. 823 * 824 * Returns the number of huge pages deleted from the reserve map. 825 * In the normal case, the return value is zero or more. In the 826 * case where a region must be split, a new region descriptor must 827 * be allocated. If the allocation fails, -ENOMEM will be returned. 828 * NOTE: If the parameter t == LONG_MAX, then we will never split 829 * a region and possibly return -ENOMEM. Callers specifying 830 * t == LONG_MAX do not need to check for -ENOMEM error. 831 */ 832 static long region_del(struct resv_map *resv, long f, long t) 833 { 834 struct list_head *head = &resv->regions; 835 struct file_region *rg, *trg; 836 struct file_region *nrg = NULL; 837 long del = 0; 838 839 retry: 840 spin_lock(&resv->lock); 841 list_for_each_entry_safe(rg, trg, head, link) { 842 /* 843 * Skip regions before the range to be deleted. file_region 844 * ranges are normally of the form [from, to). However, there 845 * may be a "placeholder" entry in the map which is of the form 846 * (from, to) with from == to. Check for placeholder entries 847 * at the beginning of the range to be deleted. 848 */ 849 if (rg->to <= f && (rg->to != rg->from || rg->to != f)) 850 continue; 851 852 if (rg->from >= t) 853 break; 854 855 if (f > rg->from && t < rg->to) { /* Must split region */ 856 /* 857 * Check for an entry in the cache before dropping 858 * lock and attempting allocation. 859 */ 860 if (!nrg && 861 resv->region_cache_count > resv->adds_in_progress) { 862 nrg = list_first_entry(&resv->region_cache, 863 struct file_region, 864 link); 865 list_del(&nrg->link); 866 resv->region_cache_count--; 867 } 868 869 if (!nrg) { 870 spin_unlock(&resv->lock); 871 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 872 if (!nrg) 873 return -ENOMEM; 874 goto retry; 875 } 876 877 del += t - f; 878 hugetlb_cgroup_uncharge_file_region( 879 resv, rg, t - f, false); 880 881 /* New entry for end of split region */ 882 nrg->from = t; 883 nrg->to = rg->to; 884 885 copy_hugetlb_cgroup_uncharge_info(nrg, rg); 886 887 INIT_LIST_HEAD(&nrg->link); 888 889 /* Original entry is trimmed */ 890 rg->to = f; 891 892 list_add(&nrg->link, &rg->link); 893 nrg = NULL; 894 break; 895 } 896 897 if (f <= rg->from && t >= rg->to) { /* Remove entire region */ 898 del += rg->to - rg->from; 899 hugetlb_cgroup_uncharge_file_region(resv, rg, 900 rg->to - rg->from, true); 901 list_del(&rg->link); 902 kfree(rg); 903 continue; 904 } 905 906 if (f <= rg->from) { /* Trim beginning of region */ 907 hugetlb_cgroup_uncharge_file_region(resv, rg, 908 t - rg->from, false); 909 910 del += t - rg->from; 911 rg->from = t; 912 } else { /* Trim end of region */ 913 hugetlb_cgroup_uncharge_file_region(resv, rg, 914 rg->to - f, false); 915 916 del += rg->to - f; 917 rg->to = f; 918 } 919 } 920 921 spin_unlock(&resv->lock); 922 kfree(nrg); 923 return del; 924 } 925 926 /* 927 * A rare out of memory error was encountered which prevented removal of 928 * the reserve map region for a page. The huge page itself was free'ed 929 * and removed from the page cache. This routine will adjust the subpool 930 * usage count, and the global reserve count if needed. By incrementing 931 * these counts, the reserve map entry which could not be deleted will 932 * appear as a "reserved" entry instead of simply dangling with incorrect 933 * counts. 934 */ 935 void hugetlb_fix_reserve_counts(struct inode *inode) 936 { 937 struct hugepage_subpool *spool = subpool_inode(inode); 938 long rsv_adjust; 939 bool reserved = false; 940 941 rsv_adjust = hugepage_subpool_get_pages(spool, 1); 942 if (rsv_adjust > 0) { 943 struct hstate *h = hstate_inode(inode); 944 945 if (!hugetlb_acct_memory(h, 1)) 946 reserved = true; 947 } else if (!rsv_adjust) { 948 reserved = true; 949 } 950 951 if (!reserved) 952 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n"); 953 } 954 955 /* 956 * Count and return the number of huge pages in the reserve map 957 * that intersect with the range [f, t). 958 */ 959 static long region_count(struct resv_map *resv, long f, long t) 960 { 961 struct list_head *head = &resv->regions; 962 struct file_region *rg; 963 long chg = 0; 964 965 spin_lock(&resv->lock); 966 /* Locate each segment we overlap with, and count that overlap. */ 967 list_for_each_entry(rg, head, link) { 968 long seg_from; 969 long seg_to; 970 971 if (rg->to <= f) 972 continue; 973 if (rg->from >= t) 974 break; 975 976 seg_from = max(rg->from, f); 977 seg_to = min(rg->to, t); 978 979 chg += seg_to - seg_from; 980 } 981 spin_unlock(&resv->lock); 982 983 return chg; 984 } 985 986 /* 987 * Convert the address within this vma to the page offset within 988 * the mapping, huge page units here. 989 */ 990 static pgoff_t vma_hugecache_offset(struct hstate *h, 991 struct vm_area_struct *vma, unsigned long address) 992 { 993 return ((address - vma->vm_start) >> huge_page_shift(h)) + 994 (vma->vm_pgoff >> huge_page_order(h)); 995 } 996 997 /** 998 * vma_kernel_pagesize - Page size granularity for this VMA. 999 * @vma: The user mapping. 1000 * 1001 * Folios in this VMA will be aligned to, and at least the size of the 1002 * number of bytes returned by this function. 1003 * 1004 * Return: The default size of the folios allocated when backing a VMA. 1005 */ 1006 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) 1007 { 1008 if (vma->vm_ops && vma->vm_ops->pagesize) 1009 return vma->vm_ops->pagesize(vma); 1010 return PAGE_SIZE; 1011 } 1012 EXPORT_SYMBOL_GPL(vma_kernel_pagesize); 1013 1014 /* 1015 * Return the page size being used by the MMU to back a VMA. In the majority 1016 * of cases, the page size used by the kernel matches the MMU size. On 1017 * architectures where it differs, an architecture-specific 'strong' 1018 * version of this symbol is required. 1019 */ 1020 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 1021 { 1022 return vma_kernel_pagesize(vma); 1023 } 1024 1025 /* 1026 * Flags for MAP_PRIVATE reservations. These are stored in the bottom 1027 * bits of the reservation map pointer, which are always clear due to 1028 * alignment. 1029 */ 1030 #define HPAGE_RESV_OWNER (1UL << 0) 1031 #define HPAGE_RESV_UNMAPPED (1UL << 1) 1032 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) 1033 1034 /* 1035 * These helpers are used to track how many pages are reserved for 1036 * faults in a MAP_PRIVATE mapping. Only the process that called mmap() 1037 * is guaranteed to have their future faults succeed. 1038 * 1039 * With the exception of hugetlb_dup_vma_private() which is called at fork(), 1040 * the reserve counters are updated with the hugetlb_lock held. It is safe 1041 * to reset the VMA at fork() time as it is not in use yet and there is no 1042 * chance of the global counters getting corrupted as a result of the values. 1043 * 1044 * The private mapping reservation is represented in a subtly different 1045 * manner to a shared mapping. A shared mapping has a region map associated 1046 * with the underlying file, this region map represents the backing file 1047 * pages which have ever had a reservation assigned which this persists even 1048 * after the page is instantiated. A private mapping has a region map 1049 * associated with the original mmap which is attached to all VMAs which 1050 * reference it, this region map represents those offsets which have consumed 1051 * reservation ie. where pages have been instantiated. 1052 */ 1053 static unsigned long get_vma_private_data(struct vm_area_struct *vma) 1054 { 1055 return (unsigned long)vma->vm_private_data; 1056 } 1057 1058 static void set_vma_private_data(struct vm_area_struct *vma, 1059 unsigned long value) 1060 { 1061 vma->vm_private_data = (void *)value; 1062 } 1063 1064 static void 1065 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map, 1066 struct hugetlb_cgroup *h_cg, 1067 struct hstate *h) 1068 { 1069 #ifdef CONFIG_CGROUP_HUGETLB 1070 if (!h_cg || !h) { 1071 resv_map->reservation_counter = NULL; 1072 resv_map->pages_per_hpage = 0; 1073 resv_map->css = NULL; 1074 } else { 1075 resv_map->reservation_counter = 1076 &h_cg->rsvd_hugepage[hstate_index(h)]; 1077 resv_map->pages_per_hpage = pages_per_huge_page(h); 1078 resv_map->css = &h_cg->css; 1079 } 1080 #endif 1081 } 1082 1083 struct resv_map *resv_map_alloc(void) 1084 { 1085 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); 1086 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL); 1087 1088 if (!resv_map || !rg) { 1089 kfree(resv_map); 1090 kfree(rg); 1091 return NULL; 1092 } 1093 1094 kref_init(&resv_map->refs); 1095 spin_lock_init(&resv_map->lock); 1096 INIT_LIST_HEAD(&resv_map->regions); 1097 init_rwsem(&resv_map->rw_sema); 1098 1099 resv_map->adds_in_progress = 0; 1100 /* 1101 * Initialize these to 0. On shared mappings, 0's here indicate these 1102 * fields don't do cgroup accounting. On private mappings, these will be 1103 * re-initialized to the proper values, to indicate that hugetlb cgroup 1104 * reservations are to be un-charged from here. 1105 */ 1106 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL); 1107 1108 INIT_LIST_HEAD(&resv_map->region_cache); 1109 list_add(&rg->link, &resv_map->region_cache); 1110 resv_map->region_cache_count = 1; 1111 1112 return resv_map; 1113 } 1114 1115 void resv_map_release(struct kref *ref) 1116 { 1117 struct resv_map *resv_map = container_of(ref, struct resv_map, refs); 1118 struct list_head *head = &resv_map->region_cache; 1119 struct file_region *rg, *trg; 1120 1121 /* Clear out any active regions before we release the map. */ 1122 region_del(resv_map, 0, LONG_MAX); 1123 1124 /* ... and any entries left in the cache */ 1125 list_for_each_entry_safe(rg, trg, head, link) { 1126 list_del(&rg->link); 1127 kfree(rg); 1128 } 1129 1130 VM_BUG_ON(resv_map->adds_in_progress); 1131 1132 kfree(resv_map); 1133 } 1134 1135 static inline struct resv_map *inode_resv_map(struct inode *inode) 1136 { 1137 /* 1138 * At inode evict time, i_mapping may not point to the original 1139 * address space within the inode. This original address space 1140 * contains the pointer to the resv_map. So, always use the 1141 * address space embedded within the inode. 1142 * The VERY common case is inode->mapping == &inode->i_data but, 1143 * this may not be true for device special inodes. 1144 */ 1145 return (struct resv_map *)(&inode->i_data)->i_private_data; 1146 } 1147 1148 static struct resv_map *vma_resv_map(struct vm_area_struct *vma) 1149 { 1150 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1151 if (vma->vm_flags & VM_MAYSHARE) { 1152 struct address_space *mapping = vma->vm_file->f_mapping; 1153 struct inode *inode = mapping->host; 1154 1155 return inode_resv_map(inode); 1156 1157 } else { 1158 return (struct resv_map *)(get_vma_private_data(vma) & 1159 ~HPAGE_RESV_MASK); 1160 } 1161 } 1162 1163 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) 1164 { 1165 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1166 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 1167 1168 set_vma_private_data(vma, (unsigned long)map); 1169 } 1170 1171 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) 1172 { 1173 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1174 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 1175 1176 set_vma_private_data(vma, get_vma_private_data(vma) | flags); 1177 } 1178 1179 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) 1180 { 1181 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1182 1183 return (get_vma_private_data(vma) & flag) != 0; 1184 } 1185 1186 bool __vma_private_lock(struct vm_area_struct *vma) 1187 { 1188 return !(vma->vm_flags & VM_MAYSHARE) && 1189 get_vma_private_data(vma) & ~HPAGE_RESV_MASK && 1190 is_vma_resv_set(vma, HPAGE_RESV_OWNER); 1191 } 1192 1193 void hugetlb_dup_vma_private(struct vm_area_struct *vma) 1194 { 1195 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1196 /* 1197 * Clear vm_private_data 1198 * - For shared mappings this is a per-vma semaphore that may be 1199 * allocated in a subsequent call to hugetlb_vm_op_open. 1200 * Before clearing, make sure pointer is not associated with vma 1201 * as this will leak the structure. This is the case when called 1202 * via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already 1203 * been called to allocate a new structure. 1204 * - For MAP_PRIVATE mappings, this is the reserve map which does 1205 * not apply to children. Faults generated by the children are 1206 * not guaranteed to succeed, even if read-only. 1207 */ 1208 if (vma->vm_flags & VM_MAYSHARE) { 1209 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 1210 1211 if (vma_lock && vma_lock->vma != vma) 1212 vma->vm_private_data = NULL; 1213 } else 1214 vma->vm_private_data = NULL; 1215 } 1216 1217 /* 1218 * Reset and decrement one ref on hugepage private reservation. 1219 * Called with mm->mmap_lock writer semaphore held. 1220 * This function should be only used by move_vma() and operate on 1221 * same sized vma. It should never come here with last ref on the 1222 * reservation. 1223 */ 1224 void clear_vma_resv_huge_pages(struct vm_area_struct *vma) 1225 { 1226 /* 1227 * Clear the old hugetlb private page reservation. 1228 * It has already been transferred to new_vma. 1229 * 1230 * During a mremap() operation of a hugetlb vma we call move_vma() 1231 * which copies vma into new_vma and unmaps vma. After the copy 1232 * operation both new_vma and vma share a reference to the resv_map 1233 * struct, and at that point vma is about to be unmapped. We don't 1234 * want to return the reservation to the pool at unmap of vma because 1235 * the reservation still lives on in new_vma, so simply decrement the 1236 * ref here and remove the resv_map reference from this vma. 1237 */ 1238 struct resv_map *reservations = vma_resv_map(vma); 1239 1240 if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 1241 resv_map_put_hugetlb_cgroup_uncharge_info(reservations); 1242 kref_put(&reservations->refs, resv_map_release); 1243 } 1244 1245 hugetlb_dup_vma_private(vma); 1246 } 1247 1248 /* Returns true if the VMA has associated reserve pages */ 1249 static bool vma_has_reserves(struct vm_area_struct *vma, long chg) 1250 { 1251 if (vma->vm_flags & VM_NORESERVE) { 1252 /* 1253 * This address is already reserved by other process(chg == 0), 1254 * so, we should decrement reserved count. Without decrementing, 1255 * reserve count remains after releasing inode, because this 1256 * allocated page will go into page cache and is regarded as 1257 * coming from reserved pool in releasing step. Currently, we 1258 * don't have any other solution to deal with this situation 1259 * properly, so add work-around here. 1260 */ 1261 if (vma->vm_flags & VM_MAYSHARE && chg == 0) 1262 return true; 1263 else 1264 return false; 1265 } 1266 1267 /* Shared mappings always use reserves */ 1268 if (vma->vm_flags & VM_MAYSHARE) { 1269 /* 1270 * We know VM_NORESERVE is not set. Therefore, there SHOULD 1271 * be a region map for all pages. The only situation where 1272 * there is no region map is if a hole was punched via 1273 * fallocate. In this case, there really are no reserves to 1274 * use. This situation is indicated if chg != 0. 1275 */ 1276 if (chg) 1277 return false; 1278 else 1279 return true; 1280 } 1281 1282 /* 1283 * Only the process that called mmap() has reserves for 1284 * private mappings. 1285 */ 1286 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 1287 /* 1288 * Like the shared case above, a hole punch or truncate 1289 * could have been performed on the private mapping. 1290 * Examine the value of chg to determine if reserves 1291 * actually exist or were previously consumed. 1292 * Very Subtle - The value of chg comes from a previous 1293 * call to vma_needs_reserves(). The reserve map for 1294 * private mappings has different (opposite) semantics 1295 * than that of shared mappings. vma_needs_reserves() 1296 * has already taken this difference in semantics into 1297 * account. Therefore, the meaning of chg is the same 1298 * as in the shared case above. Code could easily be 1299 * combined, but keeping it separate draws attention to 1300 * subtle differences. 1301 */ 1302 if (chg) 1303 return false; 1304 else 1305 return true; 1306 } 1307 1308 return false; 1309 } 1310 1311 static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio) 1312 { 1313 int nid = folio_nid(folio); 1314 1315 lockdep_assert_held(&hugetlb_lock); 1316 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio); 1317 1318 list_move(&folio->lru, &h->hugepage_freelists[nid]); 1319 h->free_huge_pages++; 1320 h->free_huge_pages_node[nid]++; 1321 folio_set_hugetlb_freed(folio); 1322 } 1323 1324 static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h, 1325 int nid) 1326 { 1327 struct folio *folio; 1328 bool pin = !!(current->flags & PF_MEMALLOC_PIN); 1329 1330 lockdep_assert_held(&hugetlb_lock); 1331 list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) { 1332 if (pin && !folio_is_longterm_pinnable(folio)) 1333 continue; 1334 1335 if (folio_test_hwpoison(folio)) 1336 continue; 1337 1338 list_move(&folio->lru, &h->hugepage_activelist); 1339 folio_ref_unfreeze(folio, 1); 1340 folio_clear_hugetlb_freed(folio); 1341 h->free_huge_pages--; 1342 h->free_huge_pages_node[nid]--; 1343 return folio; 1344 } 1345 1346 return NULL; 1347 } 1348 1349 static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask, 1350 int nid, nodemask_t *nmask) 1351 { 1352 unsigned int cpuset_mems_cookie; 1353 struct zonelist *zonelist; 1354 struct zone *zone; 1355 struct zoneref *z; 1356 int node = NUMA_NO_NODE; 1357 1358 zonelist = node_zonelist(nid, gfp_mask); 1359 1360 retry_cpuset: 1361 cpuset_mems_cookie = read_mems_allowed_begin(); 1362 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) { 1363 struct folio *folio; 1364 1365 if (!cpuset_zone_allowed(zone, gfp_mask)) 1366 continue; 1367 /* 1368 * no need to ask again on the same node. Pool is node rather than 1369 * zone aware 1370 */ 1371 if (zone_to_nid(zone) == node) 1372 continue; 1373 node = zone_to_nid(zone); 1374 1375 folio = dequeue_hugetlb_folio_node_exact(h, node); 1376 if (folio) 1377 return folio; 1378 } 1379 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie))) 1380 goto retry_cpuset; 1381 1382 return NULL; 1383 } 1384 1385 static unsigned long available_huge_pages(struct hstate *h) 1386 { 1387 return h->free_huge_pages - h->resv_huge_pages; 1388 } 1389 1390 static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h, 1391 struct vm_area_struct *vma, 1392 unsigned long address, int avoid_reserve, 1393 long chg) 1394 { 1395 struct folio *folio = NULL; 1396 struct mempolicy *mpol; 1397 gfp_t gfp_mask; 1398 nodemask_t *nodemask; 1399 int nid; 1400 1401 /* 1402 * A child process with MAP_PRIVATE mappings created by their parent 1403 * have no page reserves. This check ensures that reservations are 1404 * not "stolen". The child may still get SIGKILLed 1405 */ 1406 if (!vma_has_reserves(vma, chg) && !available_huge_pages(h)) 1407 goto err; 1408 1409 /* If reserves cannot be used, ensure enough pages are in the pool */ 1410 if (avoid_reserve && !available_huge_pages(h)) 1411 goto err; 1412 1413 gfp_mask = htlb_alloc_mask(h); 1414 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 1415 1416 if (mpol_is_preferred_many(mpol)) { 1417 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, 1418 nid, nodemask); 1419 1420 /* Fallback to all nodes if page==NULL */ 1421 nodemask = NULL; 1422 } 1423 1424 if (!folio) 1425 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, 1426 nid, nodemask); 1427 1428 if (folio && !avoid_reserve && vma_has_reserves(vma, chg)) { 1429 folio_set_hugetlb_restore_reserve(folio); 1430 h->resv_huge_pages--; 1431 } 1432 1433 mpol_cond_put(mpol); 1434 return folio; 1435 1436 err: 1437 return NULL; 1438 } 1439 1440 /* 1441 * common helper functions for hstate_next_node_to_{alloc|free}. 1442 * We may have allocated or freed a huge page based on a different 1443 * nodes_allowed previously, so h->next_node_to_{alloc|free} might 1444 * be outside of *nodes_allowed. Ensure that we use an allowed 1445 * node for alloc or free. 1446 */ 1447 static int next_node_allowed(int nid, nodemask_t *nodes_allowed) 1448 { 1449 nid = next_node_in(nid, *nodes_allowed); 1450 VM_BUG_ON(nid >= MAX_NUMNODES); 1451 1452 return nid; 1453 } 1454 1455 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed) 1456 { 1457 if (!node_isset(nid, *nodes_allowed)) 1458 nid = next_node_allowed(nid, nodes_allowed); 1459 return nid; 1460 } 1461 1462 /* 1463 * returns the previously saved node ["this node"] from which to 1464 * allocate a persistent huge page for the pool and advance the 1465 * next node from which to allocate, handling wrap at end of node 1466 * mask. 1467 */ 1468 static int hstate_next_node_to_alloc(int *next_node, 1469 nodemask_t *nodes_allowed) 1470 { 1471 int nid; 1472 1473 VM_BUG_ON(!nodes_allowed); 1474 1475 nid = get_valid_node_allowed(*next_node, nodes_allowed); 1476 *next_node = next_node_allowed(nid, nodes_allowed); 1477 1478 return nid; 1479 } 1480 1481 /* 1482 * helper for remove_pool_hugetlb_folio() - return the previously saved 1483 * node ["this node"] from which to free a huge page. Advance the 1484 * next node id whether or not we find a free huge page to free so 1485 * that the next attempt to free addresses the next node. 1486 */ 1487 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed) 1488 { 1489 int nid; 1490 1491 VM_BUG_ON(!nodes_allowed); 1492 1493 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed); 1494 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed); 1495 1496 return nid; 1497 } 1498 1499 #define for_each_node_mask_to_alloc(next_node, nr_nodes, node, mask) \ 1500 for (nr_nodes = nodes_weight(*mask); \ 1501 nr_nodes > 0 && \ 1502 ((node = hstate_next_node_to_alloc(next_node, mask)) || 1); \ 1503 nr_nodes--) 1504 1505 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \ 1506 for (nr_nodes = nodes_weight(*mask); \ 1507 nr_nodes > 0 && \ 1508 ((node = hstate_next_node_to_free(hs, mask)) || 1); \ 1509 nr_nodes--) 1510 1511 /* used to demote non-gigantic_huge pages as well */ 1512 static void __destroy_compound_gigantic_folio(struct folio *folio, 1513 unsigned int order, bool demote) 1514 { 1515 int i; 1516 int nr_pages = 1 << order; 1517 struct page *p; 1518 1519 atomic_set(&folio->_entire_mapcount, 0); 1520 atomic_set(&folio->_large_mapcount, 0); 1521 atomic_set(&folio->_pincount, 0); 1522 1523 for (i = 1; i < nr_pages; i++) { 1524 p = folio_page(folio, i); 1525 p->flags &= ~PAGE_FLAGS_CHECK_AT_FREE; 1526 p->mapping = NULL; 1527 clear_compound_head(p); 1528 if (!demote) 1529 set_page_refcounted(p); 1530 } 1531 1532 __folio_clear_head(folio); 1533 } 1534 1535 static void destroy_compound_hugetlb_folio_for_demote(struct folio *folio, 1536 unsigned int order) 1537 { 1538 __destroy_compound_gigantic_folio(folio, order, true); 1539 } 1540 1541 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE 1542 static void destroy_compound_gigantic_folio(struct folio *folio, 1543 unsigned int order) 1544 { 1545 __destroy_compound_gigantic_folio(folio, order, false); 1546 } 1547 1548 static void free_gigantic_folio(struct folio *folio, unsigned int order) 1549 { 1550 /* 1551 * If the page isn't allocated using the cma allocator, 1552 * cma_release() returns false. 1553 */ 1554 #ifdef CONFIG_CMA 1555 int nid = folio_nid(folio); 1556 1557 if (cma_release(hugetlb_cma[nid], &folio->page, 1 << order)) 1558 return; 1559 #endif 1560 1561 free_contig_range(folio_pfn(folio), 1 << order); 1562 } 1563 1564 #ifdef CONFIG_CONTIG_ALLOC 1565 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask, 1566 int nid, nodemask_t *nodemask) 1567 { 1568 struct page *page; 1569 unsigned long nr_pages = pages_per_huge_page(h); 1570 if (nid == NUMA_NO_NODE) 1571 nid = numa_mem_id(); 1572 1573 #ifdef CONFIG_CMA 1574 { 1575 int node; 1576 1577 if (hugetlb_cma[nid]) { 1578 page = cma_alloc(hugetlb_cma[nid], nr_pages, 1579 huge_page_order(h), true); 1580 if (page) 1581 return page_folio(page); 1582 } 1583 1584 if (!(gfp_mask & __GFP_THISNODE)) { 1585 for_each_node_mask(node, *nodemask) { 1586 if (node == nid || !hugetlb_cma[node]) 1587 continue; 1588 1589 page = cma_alloc(hugetlb_cma[node], nr_pages, 1590 huge_page_order(h), true); 1591 if (page) 1592 return page_folio(page); 1593 } 1594 } 1595 } 1596 #endif 1597 1598 page = alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask); 1599 return page ? page_folio(page) : NULL; 1600 } 1601 1602 #else /* !CONFIG_CONTIG_ALLOC */ 1603 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask, 1604 int nid, nodemask_t *nodemask) 1605 { 1606 return NULL; 1607 } 1608 #endif /* CONFIG_CONTIG_ALLOC */ 1609 1610 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */ 1611 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask, 1612 int nid, nodemask_t *nodemask) 1613 { 1614 return NULL; 1615 } 1616 static inline void free_gigantic_folio(struct folio *folio, 1617 unsigned int order) { } 1618 static inline void destroy_compound_gigantic_folio(struct folio *folio, 1619 unsigned int order) { } 1620 #endif 1621 1622 /* 1623 * Remove hugetlb folio from lists. 1624 * If vmemmap exists for the folio, clear the hugetlb flag so that the 1625 * folio appears as just a compound page. Otherwise, wait until after 1626 * allocating vmemmap to clear the flag. 1627 * 1628 * A reference is held on the folio, except in the case of demote. 1629 * 1630 * Must be called with hugetlb lock held. 1631 */ 1632 static void __remove_hugetlb_folio(struct hstate *h, struct folio *folio, 1633 bool adjust_surplus, 1634 bool demote) 1635 { 1636 int nid = folio_nid(folio); 1637 1638 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio); 1639 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio); 1640 1641 lockdep_assert_held(&hugetlb_lock); 1642 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 1643 return; 1644 1645 list_del(&folio->lru); 1646 1647 if (folio_test_hugetlb_freed(folio)) { 1648 h->free_huge_pages--; 1649 h->free_huge_pages_node[nid]--; 1650 } 1651 if (adjust_surplus) { 1652 h->surplus_huge_pages--; 1653 h->surplus_huge_pages_node[nid]--; 1654 } 1655 1656 /* 1657 * We can only clear the hugetlb flag after allocating vmemmap 1658 * pages. Otherwise, someone (memory error handling) may try to write 1659 * to tail struct pages. 1660 */ 1661 if (!folio_test_hugetlb_vmemmap_optimized(folio)) 1662 __folio_clear_hugetlb(folio); 1663 1664 /* 1665 * In the case of demote we do not ref count the page as it will soon 1666 * be turned into a page of smaller size. 1667 */ 1668 if (!demote) 1669 folio_ref_unfreeze(folio, 1); 1670 1671 h->nr_huge_pages--; 1672 h->nr_huge_pages_node[nid]--; 1673 } 1674 1675 static void remove_hugetlb_folio(struct hstate *h, struct folio *folio, 1676 bool adjust_surplus) 1677 { 1678 __remove_hugetlb_folio(h, folio, adjust_surplus, false); 1679 } 1680 1681 static void remove_hugetlb_folio_for_demote(struct hstate *h, struct folio *folio, 1682 bool adjust_surplus) 1683 { 1684 __remove_hugetlb_folio(h, folio, adjust_surplus, true); 1685 } 1686 1687 static void add_hugetlb_folio(struct hstate *h, struct folio *folio, 1688 bool adjust_surplus) 1689 { 1690 int zeroed; 1691 int nid = folio_nid(folio); 1692 1693 VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio); 1694 1695 lockdep_assert_held(&hugetlb_lock); 1696 1697 INIT_LIST_HEAD(&folio->lru); 1698 h->nr_huge_pages++; 1699 h->nr_huge_pages_node[nid]++; 1700 1701 if (adjust_surplus) { 1702 h->surplus_huge_pages++; 1703 h->surplus_huge_pages_node[nid]++; 1704 } 1705 1706 __folio_set_hugetlb(folio); 1707 folio_change_private(folio, NULL); 1708 /* 1709 * We have to set hugetlb_vmemmap_optimized again as above 1710 * folio_change_private(folio, NULL) cleared it. 1711 */ 1712 folio_set_hugetlb_vmemmap_optimized(folio); 1713 1714 /* 1715 * This folio is about to be managed by the hugetlb allocator and 1716 * should have no users. Drop our reference, and check for others 1717 * just in case. 1718 */ 1719 zeroed = folio_put_testzero(folio); 1720 if (unlikely(!zeroed)) 1721 /* 1722 * It is VERY unlikely soneone else has taken a ref 1723 * on the folio. In this case, we simply return as 1724 * free_huge_folio() will be called when this other ref 1725 * is dropped. 1726 */ 1727 return; 1728 1729 arch_clear_hugetlb_flags(folio); 1730 enqueue_hugetlb_folio(h, folio); 1731 } 1732 1733 static void __update_and_free_hugetlb_folio(struct hstate *h, 1734 struct folio *folio) 1735 { 1736 bool clear_flag = folio_test_hugetlb_vmemmap_optimized(folio); 1737 1738 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 1739 return; 1740 1741 /* 1742 * If we don't know which subpages are hwpoisoned, we can't free 1743 * the hugepage, so it's leaked intentionally. 1744 */ 1745 if (folio_test_hugetlb_raw_hwp_unreliable(folio)) 1746 return; 1747 1748 /* 1749 * If folio is not vmemmap optimized (!clear_flag), then the folio 1750 * is no longer identified as a hugetlb page. hugetlb_vmemmap_restore_folio 1751 * can only be passed hugetlb pages and will BUG otherwise. 1752 */ 1753 if (clear_flag && hugetlb_vmemmap_restore_folio(h, folio)) { 1754 spin_lock_irq(&hugetlb_lock); 1755 /* 1756 * If we cannot allocate vmemmap pages, just refuse to free the 1757 * page and put the page back on the hugetlb free list and treat 1758 * as a surplus page. 1759 */ 1760 add_hugetlb_folio(h, folio, true); 1761 spin_unlock_irq(&hugetlb_lock); 1762 return; 1763 } 1764 1765 /* 1766 * Move PageHWPoison flag from head page to the raw error pages, 1767 * which makes any healthy subpages reusable. 1768 */ 1769 if (unlikely(folio_test_hwpoison(folio))) 1770 folio_clear_hugetlb_hwpoison(folio); 1771 1772 /* 1773 * If vmemmap pages were allocated above, then we need to clear the 1774 * hugetlb flag under the hugetlb lock. 1775 */ 1776 if (folio_test_hugetlb(folio)) { 1777 spin_lock_irq(&hugetlb_lock); 1778 __folio_clear_hugetlb(folio); 1779 spin_unlock_irq(&hugetlb_lock); 1780 } 1781 1782 /* 1783 * Non-gigantic pages demoted from CMA allocated gigantic pages 1784 * need to be given back to CMA in free_gigantic_folio. 1785 */ 1786 if (hstate_is_gigantic(h) || 1787 hugetlb_cma_folio(folio, huge_page_order(h))) { 1788 destroy_compound_gigantic_folio(folio, huge_page_order(h)); 1789 free_gigantic_folio(folio, huge_page_order(h)); 1790 } else { 1791 INIT_LIST_HEAD(&folio->_deferred_list); 1792 folio_put(folio); 1793 } 1794 } 1795 1796 /* 1797 * As update_and_free_hugetlb_folio() can be called under any context, so we cannot 1798 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the 1799 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate 1800 * the vmemmap pages. 1801 * 1802 * free_hpage_workfn() locklessly retrieves the linked list of pages to be 1803 * freed and frees them one-by-one. As the page->mapping pointer is going 1804 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node 1805 * structure of a lockless linked list of huge pages to be freed. 1806 */ 1807 static LLIST_HEAD(hpage_freelist); 1808 1809 static void free_hpage_workfn(struct work_struct *work) 1810 { 1811 struct llist_node *node; 1812 1813 node = llist_del_all(&hpage_freelist); 1814 1815 while (node) { 1816 struct folio *folio; 1817 struct hstate *h; 1818 1819 folio = container_of((struct address_space **)node, 1820 struct folio, mapping); 1821 node = node->next; 1822 folio->mapping = NULL; 1823 /* 1824 * The VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio) in 1825 * folio_hstate() is going to trigger because a previous call to 1826 * remove_hugetlb_folio() will clear the hugetlb bit, so do 1827 * not use folio_hstate() directly. 1828 */ 1829 h = size_to_hstate(folio_size(folio)); 1830 1831 __update_and_free_hugetlb_folio(h, folio); 1832 1833 cond_resched(); 1834 } 1835 } 1836 static DECLARE_WORK(free_hpage_work, free_hpage_workfn); 1837 1838 static inline void flush_free_hpage_work(struct hstate *h) 1839 { 1840 if (hugetlb_vmemmap_optimizable(h)) 1841 flush_work(&free_hpage_work); 1842 } 1843 1844 static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio, 1845 bool atomic) 1846 { 1847 if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) { 1848 __update_and_free_hugetlb_folio(h, folio); 1849 return; 1850 } 1851 1852 /* 1853 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages. 1854 * 1855 * Only call schedule_work() if hpage_freelist is previously 1856 * empty. Otherwise, schedule_work() had been called but the workfn 1857 * hasn't retrieved the list yet. 1858 */ 1859 if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist)) 1860 schedule_work(&free_hpage_work); 1861 } 1862 1863 static void bulk_vmemmap_restore_error(struct hstate *h, 1864 struct list_head *folio_list, 1865 struct list_head *non_hvo_folios) 1866 { 1867 struct folio *folio, *t_folio; 1868 1869 if (!list_empty(non_hvo_folios)) { 1870 /* 1871 * Free any restored hugetlb pages so that restore of the 1872 * entire list can be retried. 1873 * The idea is that in the common case of ENOMEM errors freeing 1874 * hugetlb pages with vmemmap we will free up memory so that we 1875 * can allocate vmemmap for more hugetlb pages. 1876 */ 1877 list_for_each_entry_safe(folio, t_folio, non_hvo_folios, lru) { 1878 list_del(&folio->lru); 1879 spin_lock_irq(&hugetlb_lock); 1880 __folio_clear_hugetlb(folio); 1881 spin_unlock_irq(&hugetlb_lock); 1882 update_and_free_hugetlb_folio(h, folio, false); 1883 cond_resched(); 1884 } 1885 } else { 1886 /* 1887 * In the case where there are no folios which can be 1888 * immediately freed, we loop through the list trying to restore 1889 * vmemmap individually in the hope that someone elsewhere may 1890 * have done something to cause success (such as freeing some 1891 * memory). If unable to restore a hugetlb page, the hugetlb 1892 * page is made a surplus page and removed from the list. 1893 * If are able to restore vmemmap and free one hugetlb page, we 1894 * quit processing the list to retry the bulk operation. 1895 */ 1896 list_for_each_entry_safe(folio, t_folio, folio_list, lru) 1897 if (hugetlb_vmemmap_restore_folio(h, folio)) { 1898 list_del(&folio->lru); 1899 spin_lock_irq(&hugetlb_lock); 1900 add_hugetlb_folio(h, folio, true); 1901 spin_unlock_irq(&hugetlb_lock); 1902 } else { 1903 list_del(&folio->lru); 1904 spin_lock_irq(&hugetlb_lock); 1905 __folio_clear_hugetlb(folio); 1906 spin_unlock_irq(&hugetlb_lock); 1907 update_and_free_hugetlb_folio(h, folio, false); 1908 cond_resched(); 1909 break; 1910 } 1911 } 1912 } 1913 1914 static void update_and_free_pages_bulk(struct hstate *h, 1915 struct list_head *folio_list) 1916 { 1917 long ret; 1918 struct folio *folio, *t_folio; 1919 LIST_HEAD(non_hvo_folios); 1920 1921 /* 1922 * First allocate required vmemmmap (if necessary) for all folios. 1923 * Carefully handle errors and free up any available hugetlb pages 1924 * in an effort to make forward progress. 1925 */ 1926 retry: 1927 ret = hugetlb_vmemmap_restore_folios(h, folio_list, &non_hvo_folios); 1928 if (ret < 0) { 1929 bulk_vmemmap_restore_error(h, folio_list, &non_hvo_folios); 1930 goto retry; 1931 } 1932 1933 /* 1934 * At this point, list should be empty, ret should be >= 0 and there 1935 * should only be pages on the non_hvo_folios list. 1936 * Do note that the non_hvo_folios list could be empty. 1937 * Without HVO enabled, ret will be 0 and there is no need to call 1938 * __folio_clear_hugetlb as this was done previously. 1939 */ 1940 VM_WARN_ON(!list_empty(folio_list)); 1941 VM_WARN_ON(ret < 0); 1942 if (!list_empty(&non_hvo_folios) && ret) { 1943 spin_lock_irq(&hugetlb_lock); 1944 list_for_each_entry(folio, &non_hvo_folios, lru) 1945 __folio_clear_hugetlb(folio); 1946 spin_unlock_irq(&hugetlb_lock); 1947 } 1948 1949 list_for_each_entry_safe(folio, t_folio, &non_hvo_folios, lru) { 1950 update_and_free_hugetlb_folio(h, folio, false); 1951 cond_resched(); 1952 } 1953 } 1954 1955 struct hstate *size_to_hstate(unsigned long size) 1956 { 1957 struct hstate *h; 1958 1959 for_each_hstate(h) { 1960 if (huge_page_size(h) == size) 1961 return h; 1962 } 1963 return NULL; 1964 } 1965 1966 void free_huge_folio(struct folio *folio) 1967 { 1968 /* 1969 * Can't pass hstate in here because it is called from the 1970 * generic mm code. 1971 */ 1972 struct hstate *h = folio_hstate(folio); 1973 int nid = folio_nid(folio); 1974 struct hugepage_subpool *spool = hugetlb_folio_subpool(folio); 1975 bool restore_reserve; 1976 unsigned long flags; 1977 1978 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio); 1979 VM_BUG_ON_FOLIO(folio_mapcount(folio), folio); 1980 1981 hugetlb_set_folio_subpool(folio, NULL); 1982 if (folio_test_anon(folio)) 1983 __ClearPageAnonExclusive(&folio->page); 1984 folio->mapping = NULL; 1985 restore_reserve = folio_test_hugetlb_restore_reserve(folio); 1986 folio_clear_hugetlb_restore_reserve(folio); 1987 1988 /* 1989 * If HPageRestoreReserve was set on page, page allocation consumed a 1990 * reservation. If the page was associated with a subpool, there 1991 * would have been a page reserved in the subpool before allocation 1992 * via hugepage_subpool_get_pages(). Since we are 'restoring' the 1993 * reservation, do not call hugepage_subpool_put_pages() as this will 1994 * remove the reserved page from the subpool. 1995 */ 1996 if (!restore_reserve) { 1997 /* 1998 * A return code of zero implies that the subpool will be 1999 * under its minimum size if the reservation is not restored 2000 * after page is free. Therefore, force restore_reserve 2001 * operation. 2002 */ 2003 if (hugepage_subpool_put_pages(spool, 1) == 0) 2004 restore_reserve = true; 2005 } 2006 2007 spin_lock_irqsave(&hugetlb_lock, flags); 2008 folio_clear_hugetlb_migratable(folio); 2009 hugetlb_cgroup_uncharge_folio(hstate_index(h), 2010 pages_per_huge_page(h), folio); 2011 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h), 2012 pages_per_huge_page(h), folio); 2013 mem_cgroup_uncharge(folio); 2014 if (restore_reserve) 2015 h->resv_huge_pages++; 2016 2017 if (folio_test_hugetlb_temporary(folio)) { 2018 remove_hugetlb_folio(h, folio, false); 2019 spin_unlock_irqrestore(&hugetlb_lock, flags); 2020 update_and_free_hugetlb_folio(h, folio, true); 2021 } else if (h->surplus_huge_pages_node[nid]) { 2022 /* remove the page from active list */ 2023 remove_hugetlb_folio(h, folio, true); 2024 spin_unlock_irqrestore(&hugetlb_lock, flags); 2025 update_and_free_hugetlb_folio(h, folio, true); 2026 } else { 2027 arch_clear_hugetlb_flags(folio); 2028 enqueue_hugetlb_folio(h, folio); 2029 spin_unlock_irqrestore(&hugetlb_lock, flags); 2030 } 2031 } 2032 2033 /* 2034 * Must be called with the hugetlb lock held 2035 */ 2036 static void __prep_account_new_huge_page(struct hstate *h, int nid) 2037 { 2038 lockdep_assert_held(&hugetlb_lock); 2039 h->nr_huge_pages++; 2040 h->nr_huge_pages_node[nid]++; 2041 } 2042 2043 static void init_new_hugetlb_folio(struct hstate *h, struct folio *folio) 2044 { 2045 __folio_set_hugetlb(folio); 2046 INIT_LIST_HEAD(&folio->lru); 2047 hugetlb_set_folio_subpool(folio, NULL); 2048 set_hugetlb_cgroup(folio, NULL); 2049 set_hugetlb_cgroup_rsvd(folio, NULL); 2050 } 2051 2052 static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio) 2053 { 2054 init_new_hugetlb_folio(h, folio); 2055 hugetlb_vmemmap_optimize_folio(h, folio); 2056 } 2057 2058 static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid) 2059 { 2060 __prep_new_hugetlb_folio(h, folio); 2061 spin_lock_irq(&hugetlb_lock); 2062 __prep_account_new_huge_page(h, nid); 2063 spin_unlock_irq(&hugetlb_lock); 2064 } 2065 2066 static bool __prep_compound_gigantic_folio(struct folio *folio, 2067 unsigned int order, bool demote) 2068 { 2069 int i, j; 2070 int nr_pages = 1 << order; 2071 struct page *p; 2072 2073 __folio_clear_reserved(folio); 2074 for (i = 0; i < nr_pages; i++) { 2075 p = folio_page(folio, i); 2076 2077 /* 2078 * For gigantic hugepages allocated through bootmem at 2079 * boot, it's safer to be consistent with the not-gigantic 2080 * hugepages and clear the PG_reserved bit from all tail pages 2081 * too. Otherwise drivers using get_user_pages() to access tail 2082 * pages may get the reference counting wrong if they see 2083 * PG_reserved set on a tail page (despite the head page not 2084 * having PG_reserved set). Enforcing this consistency between 2085 * head and tail pages allows drivers to optimize away a check 2086 * on the head page when they need know if put_page() is needed 2087 * after get_user_pages(). 2088 */ 2089 if (i != 0) /* head page cleared above */ 2090 __ClearPageReserved(p); 2091 /* 2092 * Subtle and very unlikely 2093 * 2094 * Gigantic 'page allocators' such as memblock or cma will 2095 * return a set of pages with each page ref counted. We need 2096 * to turn this set of pages into a compound page with tail 2097 * page ref counts set to zero. Code such as speculative page 2098 * cache adding could take a ref on a 'to be' tail page. 2099 * We need to respect any increased ref count, and only set 2100 * the ref count to zero if count is currently 1. If count 2101 * is not 1, we return an error. An error return indicates 2102 * the set of pages can not be converted to a gigantic page. 2103 * The caller who allocated the pages should then discard the 2104 * pages using the appropriate free interface. 2105 * 2106 * In the case of demote, the ref count will be zero. 2107 */ 2108 if (!demote) { 2109 if (!page_ref_freeze(p, 1)) { 2110 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n"); 2111 goto out_error; 2112 } 2113 } else { 2114 VM_BUG_ON_PAGE(page_count(p), p); 2115 } 2116 if (i != 0) 2117 set_compound_head(p, &folio->page); 2118 } 2119 __folio_set_head(folio); 2120 /* we rely on prep_new_hugetlb_folio to set the hugetlb flag */ 2121 folio_set_order(folio, order); 2122 atomic_set(&folio->_entire_mapcount, -1); 2123 atomic_set(&folio->_large_mapcount, -1); 2124 atomic_set(&folio->_pincount, 0); 2125 return true; 2126 2127 out_error: 2128 /* undo page modifications made above */ 2129 for (j = 0; j < i; j++) { 2130 p = folio_page(folio, j); 2131 if (j != 0) 2132 clear_compound_head(p); 2133 set_page_refcounted(p); 2134 } 2135 /* need to clear PG_reserved on remaining tail pages */ 2136 for (; j < nr_pages; j++) { 2137 p = folio_page(folio, j); 2138 __ClearPageReserved(p); 2139 } 2140 return false; 2141 } 2142 2143 static bool prep_compound_gigantic_folio(struct folio *folio, 2144 unsigned int order) 2145 { 2146 return __prep_compound_gigantic_folio(folio, order, false); 2147 } 2148 2149 static bool prep_compound_gigantic_folio_for_demote(struct folio *folio, 2150 unsigned int order) 2151 { 2152 return __prep_compound_gigantic_folio(folio, order, true); 2153 } 2154 2155 /* 2156 * Find and lock address space (mapping) in write mode. 2157 * 2158 * Upon entry, the folio is locked which means that folio_mapping() is 2159 * stable. Due to locking order, we can only trylock_write. If we can 2160 * not get the lock, simply return NULL to caller. 2161 */ 2162 struct address_space *hugetlb_folio_mapping_lock_write(struct folio *folio) 2163 { 2164 struct address_space *mapping = folio_mapping(folio); 2165 2166 if (!mapping) 2167 return mapping; 2168 2169 if (i_mmap_trylock_write(mapping)) 2170 return mapping; 2171 2172 return NULL; 2173 } 2174 2175 static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h, 2176 gfp_t gfp_mask, int nid, nodemask_t *nmask, 2177 nodemask_t *node_alloc_noretry) 2178 { 2179 int order = huge_page_order(h); 2180 struct folio *folio; 2181 bool alloc_try_hard = true; 2182 bool retry = true; 2183 2184 /* 2185 * By default we always try hard to allocate the folio with 2186 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating folios in 2187 * a loop (to adjust global huge page counts) and previous allocation 2188 * failed, do not continue to try hard on the same node. Use the 2189 * node_alloc_noretry bitmap to manage this state information. 2190 */ 2191 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry)) 2192 alloc_try_hard = false; 2193 gfp_mask |= __GFP_COMP|__GFP_NOWARN; 2194 if (alloc_try_hard) 2195 gfp_mask |= __GFP_RETRY_MAYFAIL; 2196 if (nid == NUMA_NO_NODE) 2197 nid = numa_mem_id(); 2198 retry: 2199 folio = __folio_alloc(gfp_mask, order, nid, nmask); 2200 2201 if (folio && !folio_ref_freeze(folio, 1)) { 2202 folio_put(folio); 2203 if (retry) { /* retry once */ 2204 retry = false; 2205 goto retry; 2206 } 2207 /* WOW! twice in a row. */ 2208 pr_warn("HugeTLB unexpected inflated folio ref count\n"); 2209 folio = NULL; 2210 } 2211 2212 /* 2213 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a 2214 * folio this indicates an overall state change. Clear bit so 2215 * that we resume normal 'try hard' allocations. 2216 */ 2217 if (node_alloc_noretry && folio && !alloc_try_hard) 2218 node_clear(nid, *node_alloc_noretry); 2219 2220 /* 2221 * If we tried hard to get a folio but failed, set bit so that 2222 * subsequent attempts will not try as hard until there is an 2223 * overall state change. 2224 */ 2225 if (node_alloc_noretry && !folio && alloc_try_hard) 2226 node_set(nid, *node_alloc_noretry); 2227 2228 if (!folio) { 2229 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 2230 return NULL; 2231 } 2232 2233 __count_vm_event(HTLB_BUDDY_PGALLOC); 2234 return folio; 2235 } 2236 2237 static struct folio *__alloc_fresh_hugetlb_folio(struct hstate *h, 2238 gfp_t gfp_mask, int nid, nodemask_t *nmask, 2239 nodemask_t *node_alloc_noretry) 2240 { 2241 struct folio *folio; 2242 bool retry = false; 2243 2244 retry: 2245 if (hstate_is_gigantic(h)) 2246 folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask); 2247 else 2248 folio = alloc_buddy_hugetlb_folio(h, gfp_mask, 2249 nid, nmask, node_alloc_noretry); 2250 if (!folio) 2251 return NULL; 2252 2253 if (hstate_is_gigantic(h)) { 2254 if (!prep_compound_gigantic_folio(folio, huge_page_order(h))) { 2255 /* 2256 * Rare failure to convert pages to compound page. 2257 * Free pages and try again - ONCE! 2258 */ 2259 free_gigantic_folio(folio, huge_page_order(h)); 2260 if (!retry) { 2261 retry = true; 2262 goto retry; 2263 } 2264 return NULL; 2265 } 2266 } 2267 2268 return folio; 2269 } 2270 2271 static struct folio *only_alloc_fresh_hugetlb_folio(struct hstate *h, 2272 gfp_t gfp_mask, int nid, nodemask_t *nmask, 2273 nodemask_t *node_alloc_noretry) 2274 { 2275 struct folio *folio; 2276 2277 folio = __alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, 2278 node_alloc_noretry); 2279 if (folio) 2280 init_new_hugetlb_folio(h, folio); 2281 return folio; 2282 } 2283 2284 /* 2285 * Common helper to allocate a fresh hugetlb page. All specific allocators 2286 * should use this function to get new hugetlb pages 2287 * 2288 * Note that returned page is 'frozen': ref count of head page and all tail 2289 * pages is zero. 2290 */ 2291 static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h, 2292 gfp_t gfp_mask, int nid, nodemask_t *nmask, 2293 nodemask_t *node_alloc_noretry) 2294 { 2295 struct folio *folio; 2296 2297 folio = __alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, 2298 node_alloc_noretry); 2299 if (!folio) 2300 return NULL; 2301 2302 prep_new_hugetlb_folio(h, folio, folio_nid(folio)); 2303 return folio; 2304 } 2305 2306 static void prep_and_add_allocated_folios(struct hstate *h, 2307 struct list_head *folio_list) 2308 { 2309 unsigned long flags; 2310 struct folio *folio, *tmp_f; 2311 2312 /* Send list for bulk vmemmap optimization processing */ 2313 hugetlb_vmemmap_optimize_folios(h, folio_list); 2314 2315 /* Add all new pool pages to free lists in one lock cycle */ 2316 spin_lock_irqsave(&hugetlb_lock, flags); 2317 list_for_each_entry_safe(folio, tmp_f, folio_list, lru) { 2318 __prep_account_new_huge_page(h, folio_nid(folio)); 2319 enqueue_hugetlb_folio(h, folio); 2320 } 2321 spin_unlock_irqrestore(&hugetlb_lock, flags); 2322 } 2323 2324 /* 2325 * Allocates a fresh hugetlb page in a node interleaved manner. The page 2326 * will later be added to the appropriate hugetlb pool. 2327 */ 2328 static struct folio *alloc_pool_huge_folio(struct hstate *h, 2329 nodemask_t *nodes_allowed, 2330 nodemask_t *node_alloc_noretry, 2331 int *next_node) 2332 { 2333 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 2334 int nr_nodes, node; 2335 2336 for_each_node_mask_to_alloc(next_node, nr_nodes, node, nodes_allowed) { 2337 struct folio *folio; 2338 2339 folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, node, 2340 nodes_allowed, node_alloc_noretry); 2341 if (folio) 2342 return folio; 2343 } 2344 2345 return NULL; 2346 } 2347 2348 /* 2349 * Remove huge page from pool from next node to free. Attempt to keep 2350 * persistent huge pages more or less balanced over allowed nodes. 2351 * This routine only 'removes' the hugetlb page. The caller must make 2352 * an additional call to free the page to low level allocators. 2353 * Called with hugetlb_lock locked. 2354 */ 2355 static struct folio *remove_pool_hugetlb_folio(struct hstate *h, 2356 nodemask_t *nodes_allowed, bool acct_surplus) 2357 { 2358 int nr_nodes, node; 2359 struct folio *folio = NULL; 2360 2361 lockdep_assert_held(&hugetlb_lock); 2362 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 2363 /* 2364 * If we're returning unused surplus pages, only examine 2365 * nodes with surplus pages. 2366 */ 2367 if ((!acct_surplus || h->surplus_huge_pages_node[node]) && 2368 !list_empty(&h->hugepage_freelists[node])) { 2369 folio = list_entry(h->hugepage_freelists[node].next, 2370 struct folio, lru); 2371 remove_hugetlb_folio(h, folio, acct_surplus); 2372 break; 2373 } 2374 } 2375 2376 return folio; 2377 } 2378 2379 /* 2380 * Dissolve a given free hugetlb folio into free buddy pages. This function 2381 * does nothing for in-use hugetlb folios and non-hugetlb folios. 2382 * This function returns values like below: 2383 * 2384 * -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages 2385 * when the system is under memory pressure and the feature of 2386 * freeing unused vmemmap pages associated with each hugetlb page 2387 * is enabled. 2388 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use 2389 * (allocated or reserved.) 2390 * 0: successfully dissolved free hugepages or the page is not a 2391 * hugepage (considered as already dissolved) 2392 */ 2393 int dissolve_free_hugetlb_folio(struct folio *folio) 2394 { 2395 int rc = -EBUSY; 2396 2397 retry: 2398 /* Not to disrupt normal path by vainly holding hugetlb_lock */ 2399 if (!folio_test_hugetlb(folio)) 2400 return 0; 2401 2402 spin_lock_irq(&hugetlb_lock); 2403 if (!folio_test_hugetlb(folio)) { 2404 rc = 0; 2405 goto out; 2406 } 2407 2408 if (!folio_ref_count(folio)) { 2409 struct hstate *h = folio_hstate(folio); 2410 if (!available_huge_pages(h)) 2411 goto out; 2412 2413 /* 2414 * We should make sure that the page is already on the free list 2415 * when it is dissolved. 2416 */ 2417 if (unlikely(!folio_test_hugetlb_freed(folio))) { 2418 spin_unlock_irq(&hugetlb_lock); 2419 cond_resched(); 2420 2421 /* 2422 * Theoretically, we should return -EBUSY when we 2423 * encounter this race. In fact, we have a chance 2424 * to successfully dissolve the page if we do a 2425 * retry. Because the race window is quite small. 2426 * If we seize this opportunity, it is an optimization 2427 * for increasing the success rate of dissolving page. 2428 */ 2429 goto retry; 2430 } 2431 2432 remove_hugetlb_folio(h, folio, false); 2433 h->max_huge_pages--; 2434 spin_unlock_irq(&hugetlb_lock); 2435 2436 /* 2437 * Normally update_and_free_hugtlb_folio will allocate required vmemmmap 2438 * before freeing the page. update_and_free_hugtlb_folio will fail to 2439 * free the page if it can not allocate required vmemmap. We 2440 * need to adjust max_huge_pages if the page is not freed. 2441 * Attempt to allocate vmemmmap here so that we can take 2442 * appropriate action on failure. 2443 * 2444 * The folio_test_hugetlb check here is because 2445 * remove_hugetlb_folio will clear hugetlb folio flag for 2446 * non-vmemmap optimized hugetlb folios. 2447 */ 2448 if (folio_test_hugetlb(folio)) { 2449 rc = hugetlb_vmemmap_restore_folio(h, folio); 2450 if (rc) { 2451 spin_lock_irq(&hugetlb_lock); 2452 add_hugetlb_folio(h, folio, false); 2453 h->max_huge_pages++; 2454 goto out; 2455 } 2456 } else 2457 rc = 0; 2458 2459 update_and_free_hugetlb_folio(h, folio, false); 2460 return rc; 2461 } 2462 out: 2463 spin_unlock_irq(&hugetlb_lock); 2464 return rc; 2465 } 2466 2467 /* 2468 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to 2469 * make specified memory blocks removable from the system. 2470 * Note that this will dissolve a free gigantic hugepage completely, if any 2471 * part of it lies within the given range. 2472 * Also note that if dissolve_free_hugetlb_folio() returns with an error, all 2473 * free hugetlb folios that were dissolved before that error are lost. 2474 */ 2475 int dissolve_free_hugetlb_folios(unsigned long start_pfn, unsigned long end_pfn) 2476 { 2477 unsigned long pfn; 2478 struct folio *folio; 2479 int rc = 0; 2480 unsigned int order; 2481 struct hstate *h; 2482 2483 if (!hugepages_supported()) 2484 return rc; 2485 2486 order = huge_page_order(&default_hstate); 2487 for_each_hstate(h) 2488 order = min(order, huge_page_order(h)); 2489 2490 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) { 2491 folio = pfn_folio(pfn); 2492 rc = dissolve_free_hugetlb_folio(folio); 2493 if (rc) 2494 break; 2495 } 2496 2497 return rc; 2498 } 2499 2500 /* 2501 * Allocates a fresh surplus page from the page allocator. 2502 */ 2503 static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h, 2504 gfp_t gfp_mask, int nid, nodemask_t *nmask) 2505 { 2506 struct folio *folio = NULL; 2507 2508 if (hstate_is_gigantic(h)) 2509 return NULL; 2510 2511 spin_lock_irq(&hugetlb_lock); 2512 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) 2513 goto out_unlock; 2514 spin_unlock_irq(&hugetlb_lock); 2515 2516 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL); 2517 if (!folio) 2518 return NULL; 2519 2520 spin_lock_irq(&hugetlb_lock); 2521 /* 2522 * We could have raced with the pool size change. 2523 * Double check that and simply deallocate the new page 2524 * if we would end up overcommiting the surpluses. Abuse 2525 * temporary page to workaround the nasty free_huge_folio 2526 * codeflow 2527 */ 2528 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { 2529 folio_set_hugetlb_temporary(folio); 2530 spin_unlock_irq(&hugetlb_lock); 2531 free_huge_folio(folio); 2532 return NULL; 2533 } 2534 2535 h->surplus_huge_pages++; 2536 h->surplus_huge_pages_node[folio_nid(folio)]++; 2537 2538 out_unlock: 2539 spin_unlock_irq(&hugetlb_lock); 2540 2541 return folio; 2542 } 2543 2544 static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask, 2545 int nid, nodemask_t *nmask) 2546 { 2547 struct folio *folio; 2548 2549 if (hstate_is_gigantic(h)) 2550 return NULL; 2551 2552 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL); 2553 if (!folio) 2554 return NULL; 2555 2556 /* fresh huge pages are frozen */ 2557 folio_ref_unfreeze(folio, 1); 2558 /* 2559 * We do not account these pages as surplus because they are only 2560 * temporary and will be released properly on the last reference 2561 */ 2562 folio_set_hugetlb_temporary(folio); 2563 2564 return folio; 2565 } 2566 2567 /* 2568 * Use the VMA's mpolicy to allocate a huge page from the buddy. 2569 */ 2570 static 2571 struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h, 2572 struct vm_area_struct *vma, unsigned long addr) 2573 { 2574 struct folio *folio = NULL; 2575 struct mempolicy *mpol; 2576 gfp_t gfp_mask = htlb_alloc_mask(h); 2577 int nid; 2578 nodemask_t *nodemask; 2579 2580 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask); 2581 if (mpol_is_preferred_many(mpol)) { 2582 gfp_t gfp = gfp_mask | __GFP_NOWARN; 2583 2584 gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL); 2585 folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask); 2586 2587 /* Fallback to all nodes if page==NULL */ 2588 nodemask = NULL; 2589 } 2590 2591 if (!folio) 2592 folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask); 2593 mpol_cond_put(mpol); 2594 return folio; 2595 } 2596 2597 /* folio migration callback function */ 2598 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid, 2599 nodemask_t *nmask, gfp_t gfp_mask, bool allow_alloc_fallback) 2600 { 2601 spin_lock_irq(&hugetlb_lock); 2602 if (available_huge_pages(h)) { 2603 struct folio *folio; 2604 2605 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, 2606 preferred_nid, nmask); 2607 if (folio) { 2608 spin_unlock_irq(&hugetlb_lock); 2609 return folio; 2610 } 2611 } 2612 spin_unlock_irq(&hugetlb_lock); 2613 2614 /* We cannot fallback to other nodes, as we could break the per-node pool. */ 2615 if (!allow_alloc_fallback) 2616 gfp_mask |= __GFP_THISNODE; 2617 2618 return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask); 2619 } 2620 2621 /* 2622 * Increase the hugetlb pool such that it can accommodate a reservation 2623 * of size 'delta'. 2624 */ 2625 static int gather_surplus_pages(struct hstate *h, long delta) 2626 __must_hold(&hugetlb_lock) 2627 { 2628 LIST_HEAD(surplus_list); 2629 struct folio *folio, *tmp; 2630 int ret; 2631 long i; 2632 long needed, allocated; 2633 bool alloc_ok = true; 2634 2635 lockdep_assert_held(&hugetlb_lock); 2636 needed = (h->resv_huge_pages + delta) - h->free_huge_pages; 2637 if (needed <= 0) { 2638 h->resv_huge_pages += delta; 2639 return 0; 2640 } 2641 2642 allocated = 0; 2643 2644 ret = -ENOMEM; 2645 retry: 2646 spin_unlock_irq(&hugetlb_lock); 2647 for (i = 0; i < needed; i++) { 2648 folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h), 2649 NUMA_NO_NODE, NULL); 2650 if (!folio) { 2651 alloc_ok = false; 2652 break; 2653 } 2654 list_add(&folio->lru, &surplus_list); 2655 cond_resched(); 2656 } 2657 allocated += i; 2658 2659 /* 2660 * After retaking hugetlb_lock, we need to recalculate 'needed' 2661 * because either resv_huge_pages or free_huge_pages may have changed. 2662 */ 2663 spin_lock_irq(&hugetlb_lock); 2664 needed = (h->resv_huge_pages + delta) - 2665 (h->free_huge_pages + allocated); 2666 if (needed > 0) { 2667 if (alloc_ok) 2668 goto retry; 2669 /* 2670 * We were not able to allocate enough pages to 2671 * satisfy the entire reservation so we free what 2672 * we've allocated so far. 2673 */ 2674 goto free; 2675 } 2676 /* 2677 * The surplus_list now contains _at_least_ the number of extra pages 2678 * needed to accommodate the reservation. Add the appropriate number 2679 * of pages to the hugetlb pool and free the extras back to the buddy 2680 * allocator. Commit the entire reservation here to prevent another 2681 * process from stealing the pages as they are added to the pool but 2682 * before they are reserved. 2683 */ 2684 needed += allocated; 2685 h->resv_huge_pages += delta; 2686 ret = 0; 2687 2688 /* Free the needed pages to the hugetlb pool */ 2689 list_for_each_entry_safe(folio, tmp, &surplus_list, lru) { 2690 if ((--needed) < 0) 2691 break; 2692 /* Add the page to the hugetlb allocator */ 2693 enqueue_hugetlb_folio(h, folio); 2694 } 2695 free: 2696 spin_unlock_irq(&hugetlb_lock); 2697 2698 /* 2699 * Free unnecessary surplus pages to the buddy allocator. 2700 * Pages have no ref count, call free_huge_folio directly. 2701 */ 2702 list_for_each_entry_safe(folio, tmp, &surplus_list, lru) 2703 free_huge_folio(folio); 2704 spin_lock_irq(&hugetlb_lock); 2705 2706 return ret; 2707 } 2708 2709 /* 2710 * This routine has two main purposes: 2711 * 1) Decrement the reservation count (resv_huge_pages) by the value passed 2712 * in unused_resv_pages. This corresponds to the prior adjustments made 2713 * to the associated reservation map. 2714 * 2) Free any unused surplus pages that may have been allocated to satisfy 2715 * the reservation. As many as unused_resv_pages may be freed. 2716 */ 2717 static void return_unused_surplus_pages(struct hstate *h, 2718 unsigned long unused_resv_pages) 2719 { 2720 unsigned long nr_pages; 2721 LIST_HEAD(page_list); 2722 2723 lockdep_assert_held(&hugetlb_lock); 2724 /* Uncommit the reservation */ 2725 h->resv_huge_pages -= unused_resv_pages; 2726 2727 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 2728 goto out; 2729 2730 /* 2731 * Part (or even all) of the reservation could have been backed 2732 * by pre-allocated pages. Only free surplus pages. 2733 */ 2734 nr_pages = min(unused_resv_pages, h->surplus_huge_pages); 2735 2736 /* 2737 * We want to release as many surplus pages as possible, spread 2738 * evenly across all nodes with memory. Iterate across these nodes 2739 * until we can no longer free unreserved surplus pages. This occurs 2740 * when the nodes with surplus pages have no free pages. 2741 * remove_pool_hugetlb_folio() will balance the freed pages across the 2742 * on-line nodes with memory and will handle the hstate accounting. 2743 */ 2744 while (nr_pages--) { 2745 struct folio *folio; 2746 2747 folio = remove_pool_hugetlb_folio(h, &node_states[N_MEMORY], 1); 2748 if (!folio) 2749 goto out; 2750 2751 list_add(&folio->lru, &page_list); 2752 } 2753 2754 out: 2755 spin_unlock_irq(&hugetlb_lock); 2756 update_and_free_pages_bulk(h, &page_list); 2757 spin_lock_irq(&hugetlb_lock); 2758 } 2759 2760 2761 /* 2762 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation 2763 * are used by the huge page allocation routines to manage reservations. 2764 * 2765 * vma_needs_reservation is called to determine if the huge page at addr 2766 * within the vma has an associated reservation. If a reservation is 2767 * needed, the value 1 is returned. The caller is then responsible for 2768 * managing the global reservation and subpool usage counts. After 2769 * the huge page has been allocated, vma_commit_reservation is called 2770 * to add the page to the reservation map. If the page allocation fails, 2771 * the reservation must be ended instead of committed. vma_end_reservation 2772 * is called in such cases. 2773 * 2774 * In the normal case, vma_commit_reservation returns the same value 2775 * as the preceding vma_needs_reservation call. The only time this 2776 * is not the case is if a reserve map was changed between calls. It 2777 * is the responsibility of the caller to notice the difference and 2778 * take appropriate action. 2779 * 2780 * vma_add_reservation is used in error paths where a reservation must 2781 * be restored when a newly allocated huge page must be freed. It is 2782 * to be called after calling vma_needs_reservation to determine if a 2783 * reservation exists. 2784 * 2785 * vma_del_reservation is used in error paths where an entry in the reserve 2786 * map was created during huge page allocation and must be removed. It is to 2787 * be called after calling vma_needs_reservation to determine if a reservation 2788 * exists. 2789 */ 2790 enum vma_resv_mode { 2791 VMA_NEEDS_RESV, 2792 VMA_COMMIT_RESV, 2793 VMA_END_RESV, 2794 VMA_ADD_RESV, 2795 VMA_DEL_RESV, 2796 }; 2797 static long __vma_reservation_common(struct hstate *h, 2798 struct vm_area_struct *vma, unsigned long addr, 2799 enum vma_resv_mode mode) 2800 { 2801 struct resv_map *resv; 2802 pgoff_t idx; 2803 long ret; 2804 long dummy_out_regions_needed; 2805 2806 resv = vma_resv_map(vma); 2807 if (!resv) 2808 return 1; 2809 2810 idx = vma_hugecache_offset(h, vma, addr); 2811 switch (mode) { 2812 case VMA_NEEDS_RESV: 2813 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed); 2814 /* We assume that vma_reservation_* routines always operate on 2815 * 1 page, and that adding to resv map a 1 page entry can only 2816 * ever require 1 region. 2817 */ 2818 VM_BUG_ON(dummy_out_regions_needed != 1); 2819 break; 2820 case VMA_COMMIT_RESV: 2821 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2822 /* region_add calls of range 1 should never fail. */ 2823 VM_BUG_ON(ret < 0); 2824 break; 2825 case VMA_END_RESV: 2826 region_abort(resv, idx, idx + 1, 1); 2827 ret = 0; 2828 break; 2829 case VMA_ADD_RESV: 2830 if (vma->vm_flags & VM_MAYSHARE) { 2831 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2832 /* region_add calls of range 1 should never fail. */ 2833 VM_BUG_ON(ret < 0); 2834 } else { 2835 region_abort(resv, idx, idx + 1, 1); 2836 ret = region_del(resv, idx, idx + 1); 2837 } 2838 break; 2839 case VMA_DEL_RESV: 2840 if (vma->vm_flags & VM_MAYSHARE) { 2841 region_abort(resv, idx, idx + 1, 1); 2842 ret = region_del(resv, idx, idx + 1); 2843 } else { 2844 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2845 /* region_add calls of range 1 should never fail. */ 2846 VM_BUG_ON(ret < 0); 2847 } 2848 break; 2849 default: 2850 BUG(); 2851 } 2852 2853 if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV) 2854 return ret; 2855 /* 2856 * We know private mapping must have HPAGE_RESV_OWNER set. 2857 * 2858 * In most cases, reserves always exist for private mappings. 2859 * However, a file associated with mapping could have been 2860 * hole punched or truncated after reserves were consumed. 2861 * As subsequent fault on such a range will not use reserves. 2862 * Subtle - The reserve map for private mappings has the 2863 * opposite meaning than that of shared mappings. If NO 2864 * entry is in the reserve map, it means a reservation exists. 2865 * If an entry exists in the reserve map, it means the 2866 * reservation has already been consumed. As a result, the 2867 * return value of this routine is the opposite of the 2868 * value returned from reserve map manipulation routines above. 2869 */ 2870 if (ret > 0) 2871 return 0; 2872 if (ret == 0) 2873 return 1; 2874 return ret; 2875 } 2876 2877 static long vma_needs_reservation(struct hstate *h, 2878 struct vm_area_struct *vma, unsigned long addr) 2879 { 2880 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV); 2881 } 2882 2883 static long vma_commit_reservation(struct hstate *h, 2884 struct vm_area_struct *vma, unsigned long addr) 2885 { 2886 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV); 2887 } 2888 2889 static void vma_end_reservation(struct hstate *h, 2890 struct vm_area_struct *vma, unsigned long addr) 2891 { 2892 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV); 2893 } 2894 2895 static long vma_add_reservation(struct hstate *h, 2896 struct vm_area_struct *vma, unsigned long addr) 2897 { 2898 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV); 2899 } 2900 2901 static long vma_del_reservation(struct hstate *h, 2902 struct vm_area_struct *vma, unsigned long addr) 2903 { 2904 return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV); 2905 } 2906 2907 /* 2908 * This routine is called to restore reservation information on error paths. 2909 * It should ONLY be called for folios allocated via alloc_hugetlb_folio(), 2910 * and the hugetlb mutex should remain held when calling this routine. 2911 * 2912 * It handles two specific cases: 2913 * 1) A reservation was in place and the folio consumed the reservation. 2914 * hugetlb_restore_reserve is set in the folio. 2915 * 2) No reservation was in place for the page, so hugetlb_restore_reserve is 2916 * not set. However, alloc_hugetlb_folio always updates the reserve map. 2917 * 2918 * In case 1, free_huge_folio later in the error path will increment the 2919 * global reserve count. But, free_huge_folio does not have enough context 2920 * to adjust the reservation map. This case deals primarily with private 2921 * mappings. Adjust the reserve map here to be consistent with global 2922 * reserve count adjustments to be made by free_huge_folio. Make sure the 2923 * reserve map indicates there is a reservation present. 2924 * 2925 * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio. 2926 */ 2927 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma, 2928 unsigned long address, struct folio *folio) 2929 { 2930 long rc = vma_needs_reservation(h, vma, address); 2931 2932 if (folio_test_hugetlb_restore_reserve(folio)) { 2933 if (unlikely(rc < 0)) 2934 /* 2935 * Rare out of memory condition in reserve map 2936 * manipulation. Clear hugetlb_restore_reserve so 2937 * that global reserve count will not be incremented 2938 * by free_huge_folio. This will make it appear 2939 * as though the reservation for this folio was 2940 * consumed. This may prevent the task from 2941 * faulting in the folio at a later time. This 2942 * is better than inconsistent global huge page 2943 * accounting of reserve counts. 2944 */ 2945 folio_clear_hugetlb_restore_reserve(folio); 2946 else if (rc) 2947 (void)vma_add_reservation(h, vma, address); 2948 else 2949 vma_end_reservation(h, vma, address); 2950 } else { 2951 if (!rc) { 2952 /* 2953 * This indicates there is an entry in the reserve map 2954 * not added by alloc_hugetlb_folio. We know it was added 2955 * before the alloc_hugetlb_folio call, otherwise 2956 * hugetlb_restore_reserve would be set on the folio. 2957 * Remove the entry so that a subsequent allocation 2958 * does not consume a reservation. 2959 */ 2960 rc = vma_del_reservation(h, vma, address); 2961 if (rc < 0) 2962 /* 2963 * VERY rare out of memory condition. Since 2964 * we can not delete the entry, set 2965 * hugetlb_restore_reserve so that the reserve 2966 * count will be incremented when the folio 2967 * is freed. This reserve will be consumed 2968 * on a subsequent allocation. 2969 */ 2970 folio_set_hugetlb_restore_reserve(folio); 2971 } else if (rc < 0) { 2972 /* 2973 * Rare out of memory condition from 2974 * vma_needs_reservation call. Memory allocation is 2975 * only attempted if a new entry is needed. Therefore, 2976 * this implies there is not an entry in the 2977 * reserve map. 2978 * 2979 * For shared mappings, no entry in the map indicates 2980 * no reservation. We are done. 2981 */ 2982 if (!(vma->vm_flags & VM_MAYSHARE)) 2983 /* 2984 * For private mappings, no entry indicates 2985 * a reservation is present. Since we can 2986 * not add an entry, set hugetlb_restore_reserve 2987 * on the folio so reserve count will be 2988 * incremented when freed. This reserve will 2989 * be consumed on a subsequent allocation. 2990 */ 2991 folio_set_hugetlb_restore_reserve(folio); 2992 } else 2993 /* 2994 * No reservation present, do nothing 2995 */ 2996 vma_end_reservation(h, vma, address); 2997 } 2998 } 2999 3000 /* 3001 * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve 3002 * the old one 3003 * @h: struct hstate old page belongs to 3004 * @old_folio: Old folio to dissolve 3005 * @list: List to isolate the page in case we need to 3006 * Returns 0 on success, otherwise negated error. 3007 */ 3008 static int alloc_and_dissolve_hugetlb_folio(struct hstate *h, 3009 struct folio *old_folio, struct list_head *list) 3010 { 3011 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 3012 int nid = folio_nid(old_folio); 3013 struct folio *new_folio = NULL; 3014 int ret = 0; 3015 3016 retry: 3017 spin_lock_irq(&hugetlb_lock); 3018 if (!folio_test_hugetlb(old_folio)) { 3019 /* 3020 * Freed from under us. Drop new_folio too. 3021 */ 3022 goto free_new; 3023 } else if (folio_ref_count(old_folio)) { 3024 bool isolated; 3025 3026 /* 3027 * Someone has grabbed the folio, try to isolate it here. 3028 * Fail with -EBUSY if not possible. 3029 */ 3030 spin_unlock_irq(&hugetlb_lock); 3031 isolated = isolate_hugetlb(old_folio, list); 3032 ret = isolated ? 0 : -EBUSY; 3033 spin_lock_irq(&hugetlb_lock); 3034 goto free_new; 3035 } else if (!folio_test_hugetlb_freed(old_folio)) { 3036 /* 3037 * Folio's refcount is 0 but it has not been enqueued in the 3038 * freelist yet. Race window is small, so we can succeed here if 3039 * we retry. 3040 */ 3041 spin_unlock_irq(&hugetlb_lock); 3042 cond_resched(); 3043 goto retry; 3044 } else { 3045 if (!new_folio) { 3046 spin_unlock_irq(&hugetlb_lock); 3047 new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, 3048 NULL, NULL); 3049 if (!new_folio) 3050 return -ENOMEM; 3051 __prep_new_hugetlb_folio(h, new_folio); 3052 goto retry; 3053 } 3054 3055 /* 3056 * Ok, old_folio is still a genuine free hugepage. Remove it from 3057 * the freelist and decrease the counters. These will be 3058 * incremented again when calling __prep_account_new_huge_page() 3059 * and enqueue_hugetlb_folio() for new_folio. The counters will 3060 * remain stable since this happens under the lock. 3061 */ 3062 remove_hugetlb_folio(h, old_folio, false); 3063 3064 /* 3065 * Ref count on new_folio is already zero as it was dropped 3066 * earlier. It can be directly added to the pool free list. 3067 */ 3068 __prep_account_new_huge_page(h, nid); 3069 enqueue_hugetlb_folio(h, new_folio); 3070 3071 /* 3072 * Folio has been replaced, we can safely free the old one. 3073 */ 3074 spin_unlock_irq(&hugetlb_lock); 3075 update_and_free_hugetlb_folio(h, old_folio, false); 3076 } 3077 3078 return ret; 3079 3080 free_new: 3081 spin_unlock_irq(&hugetlb_lock); 3082 if (new_folio) { 3083 /* Folio has a zero ref count, but needs a ref to be freed */ 3084 folio_ref_unfreeze(new_folio, 1); 3085 update_and_free_hugetlb_folio(h, new_folio, false); 3086 } 3087 3088 return ret; 3089 } 3090 3091 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list) 3092 { 3093 struct hstate *h; 3094 struct folio *folio = page_folio(page); 3095 int ret = -EBUSY; 3096 3097 /* 3098 * The page might have been dissolved from under our feet, so make sure 3099 * to carefully check the state under the lock. 3100 * Return success when racing as if we dissolved the page ourselves. 3101 */ 3102 spin_lock_irq(&hugetlb_lock); 3103 if (folio_test_hugetlb(folio)) { 3104 h = folio_hstate(folio); 3105 } else { 3106 spin_unlock_irq(&hugetlb_lock); 3107 return 0; 3108 } 3109 spin_unlock_irq(&hugetlb_lock); 3110 3111 /* 3112 * Fence off gigantic pages as there is a cyclic dependency between 3113 * alloc_contig_range and them. Return -ENOMEM as this has the effect 3114 * of bailing out right away without further retrying. 3115 */ 3116 if (hstate_is_gigantic(h)) 3117 return -ENOMEM; 3118 3119 if (folio_ref_count(folio) && isolate_hugetlb(folio, list)) 3120 ret = 0; 3121 else if (!folio_ref_count(folio)) 3122 ret = alloc_and_dissolve_hugetlb_folio(h, folio, list); 3123 3124 return ret; 3125 } 3126 3127 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma, 3128 unsigned long addr, int avoid_reserve) 3129 { 3130 struct hugepage_subpool *spool = subpool_vma(vma); 3131 struct hstate *h = hstate_vma(vma); 3132 struct folio *folio; 3133 long map_chg, map_commit, nr_pages = pages_per_huge_page(h); 3134 long gbl_chg; 3135 int memcg_charge_ret, ret, idx; 3136 struct hugetlb_cgroup *h_cg = NULL; 3137 struct mem_cgroup *memcg; 3138 bool deferred_reserve; 3139 gfp_t gfp = htlb_alloc_mask(h) | __GFP_RETRY_MAYFAIL; 3140 3141 memcg = get_mem_cgroup_from_current(); 3142 memcg_charge_ret = mem_cgroup_hugetlb_try_charge(memcg, gfp, nr_pages); 3143 if (memcg_charge_ret == -ENOMEM) { 3144 mem_cgroup_put(memcg); 3145 return ERR_PTR(-ENOMEM); 3146 } 3147 3148 idx = hstate_index(h); 3149 /* 3150 * Examine the region/reserve map to determine if the process 3151 * has a reservation for the page to be allocated. A return 3152 * code of zero indicates a reservation exists (no change). 3153 */ 3154 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr); 3155 if (map_chg < 0) { 3156 if (!memcg_charge_ret) 3157 mem_cgroup_cancel_charge(memcg, nr_pages); 3158 mem_cgroup_put(memcg); 3159 return ERR_PTR(-ENOMEM); 3160 } 3161 3162 /* 3163 * Processes that did not create the mapping will have no 3164 * reserves as indicated by the region/reserve map. Check 3165 * that the allocation will not exceed the subpool limit. 3166 * Allocations for MAP_NORESERVE mappings also need to be 3167 * checked against any subpool limit. 3168 */ 3169 if (map_chg || avoid_reserve) { 3170 gbl_chg = hugepage_subpool_get_pages(spool, 1); 3171 if (gbl_chg < 0) 3172 goto out_end_reservation; 3173 3174 /* 3175 * Even though there was no reservation in the region/reserve 3176 * map, there could be reservations associated with the 3177 * subpool that can be used. This would be indicated if the 3178 * return value of hugepage_subpool_get_pages() is zero. 3179 * However, if avoid_reserve is specified we still avoid even 3180 * the subpool reservations. 3181 */ 3182 if (avoid_reserve) 3183 gbl_chg = 1; 3184 } 3185 3186 /* If this allocation is not consuming a reservation, charge it now. 3187 */ 3188 deferred_reserve = map_chg || avoid_reserve; 3189 if (deferred_reserve) { 3190 ret = hugetlb_cgroup_charge_cgroup_rsvd( 3191 idx, pages_per_huge_page(h), &h_cg); 3192 if (ret) 3193 goto out_subpool_put; 3194 } 3195 3196 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg); 3197 if (ret) 3198 goto out_uncharge_cgroup_reservation; 3199 3200 spin_lock_irq(&hugetlb_lock); 3201 /* 3202 * glb_chg is passed to indicate whether or not a page must be taken 3203 * from the global free pool (global change). gbl_chg == 0 indicates 3204 * a reservation exists for the allocation. 3205 */ 3206 folio = dequeue_hugetlb_folio_vma(h, vma, addr, avoid_reserve, gbl_chg); 3207 if (!folio) { 3208 spin_unlock_irq(&hugetlb_lock); 3209 folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr); 3210 if (!folio) 3211 goto out_uncharge_cgroup; 3212 spin_lock_irq(&hugetlb_lock); 3213 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) { 3214 folio_set_hugetlb_restore_reserve(folio); 3215 h->resv_huge_pages--; 3216 } 3217 list_add(&folio->lru, &h->hugepage_activelist); 3218 folio_ref_unfreeze(folio, 1); 3219 /* Fall through */ 3220 } 3221 3222 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio); 3223 /* If allocation is not consuming a reservation, also store the 3224 * hugetlb_cgroup pointer on the page. 3225 */ 3226 if (deferred_reserve) { 3227 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h), 3228 h_cg, folio); 3229 } 3230 3231 spin_unlock_irq(&hugetlb_lock); 3232 3233 hugetlb_set_folio_subpool(folio, spool); 3234 3235 map_commit = vma_commit_reservation(h, vma, addr); 3236 if (unlikely(map_chg > map_commit)) { 3237 /* 3238 * The page was added to the reservation map between 3239 * vma_needs_reservation and vma_commit_reservation. 3240 * This indicates a race with hugetlb_reserve_pages. 3241 * Adjust for the subpool count incremented above AND 3242 * in hugetlb_reserve_pages for the same page. Also, 3243 * the reservation count added in hugetlb_reserve_pages 3244 * no longer applies. 3245 */ 3246 long rsv_adjust; 3247 3248 rsv_adjust = hugepage_subpool_put_pages(spool, 1); 3249 hugetlb_acct_memory(h, -rsv_adjust); 3250 if (deferred_reserve) { 3251 spin_lock_irq(&hugetlb_lock); 3252 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h), 3253 pages_per_huge_page(h), folio); 3254 spin_unlock_irq(&hugetlb_lock); 3255 } 3256 } 3257 3258 if (!memcg_charge_ret) 3259 mem_cgroup_commit_charge(folio, memcg); 3260 mem_cgroup_put(memcg); 3261 3262 return folio; 3263 3264 out_uncharge_cgroup: 3265 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg); 3266 out_uncharge_cgroup_reservation: 3267 if (deferred_reserve) 3268 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h), 3269 h_cg); 3270 out_subpool_put: 3271 if (map_chg || avoid_reserve) 3272 hugepage_subpool_put_pages(spool, 1); 3273 out_end_reservation: 3274 vma_end_reservation(h, vma, addr); 3275 if (!memcg_charge_ret) 3276 mem_cgroup_cancel_charge(memcg, nr_pages); 3277 mem_cgroup_put(memcg); 3278 return ERR_PTR(-ENOSPC); 3279 } 3280 3281 int alloc_bootmem_huge_page(struct hstate *h, int nid) 3282 __attribute__ ((weak, alias("__alloc_bootmem_huge_page"))); 3283 int __alloc_bootmem_huge_page(struct hstate *h, int nid) 3284 { 3285 struct huge_bootmem_page *m = NULL; /* initialize for clang */ 3286 int nr_nodes, node = nid; 3287 3288 /* do node specific alloc */ 3289 if (nid != NUMA_NO_NODE) { 3290 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h), 3291 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid); 3292 if (!m) 3293 return 0; 3294 goto found; 3295 } 3296 /* allocate from next node when distributing huge pages */ 3297 for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, &node_states[N_MEMORY]) { 3298 m = memblock_alloc_try_nid_raw( 3299 huge_page_size(h), huge_page_size(h), 3300 0, MEMBLOCK_ALLOC_ACCESSIBLE, node); 3301 /* 3302 * Use the beginning of the huge page to store the 3303 * huge_bootmem_page struct (until gather_bootmem 3304 * puts them into the mem_map). 3305 */ 3306 if (!m) 3307 return 0; 3308 goto found; 3309 } 3310 3311 found: 3312 3313 /* 3314 * Only initialize the head struct page in memmap_init_reserved_pages, 3315 * rest of the struct pages will be initialized by the HugeTLB 3316 * subsystem itself. 3317 * The head struct page is used to get folio information by the HugeTLB 3318 * subsystem like zone id and node id. 3319 */ 3320 memblock_reserved_mark_noinit(virt_to_phys((void *)m + PAGE_SIZE), 3321 huge_page_size(h) - PAGE_SIZE); 3322 /* Put them into a private list first because mem_map is not up yet */ 3323 INIT_LIST_HEAD(&m->list); 3324 list_add(&m->list, &huge_boot_pages[node]); 3325 m->hstate = h; 3326 return 1; 3327 } 3328 3329 /* Initialize [start_page:end_page_number] tail struct pages of a hugepage */ 3330 static void __init hugetlb_folio_init_tail_vmemmap(struct folio *folio, 3331 unsigned long start_page_number, 3332 unsigned long end_page_number) 3333 { 3334 enum zone_type zone = zone_idx(folio_zone(folio)); 3335 int nid = folio_nid(folio); 3336 unsigned long head_pfn = folio_pfn(folio); 3337 unsigned long pfn, end_pfn = head_pfn + end_page_number; 3338 int ret; 3339 3340 for (pfn = head_pfn + start_page_number; pfn < end_pfn; pfn++) { 3341 struct page *page = pfn_to_page(pfn); 3342 3343 __init_single_page(page, pfn, zone, nid); 3344 prep_compound_tail((struct page *)folio, pfn - head_pfn); 3345 ret = page_ref_freeze(page, 1); 3346 VM_BUG_ON(!ret); 3347 } 3348 } 3349 3350 static void __init hugetlb_folio_init_vmemmap(struct folio *folio, 3351 struct hstate *h, 3352 unsigned long nr_pages) 3353 { 3354 int ret; 3355 3356 /* Prepare folio head */ 3357 __folio_clear_reserved(folio); 3358 __folio_set_head(folio); 3359 ret = folio_ref_freeze(folio, 1); 3360 VM_BUG_ON(!ret); 3361 /* Initialize the necessary tail struct pages */ 3362 hugetlb_folio_init_tail_vmemmap(folio, 1, nr_pages); 3363 prep_compound_head((struct page *)folio, huge_page_order(h)); 3364 } 3365 3366 static void __init prep_and_add_bootmem_folios(struct hstate *h, 3367 struct list_head *folio_list) 3368 { 3369 unsigned long flags; 3370 struct folio *folio, *tmp_f; 3371 3372 /* Send list for bulk vmemmap optimization processing */ 3373 hugetlb_vmemmap_optimize_folios(h, folio_list); 3374 3375 list_for_each_entry_safe(folio, tmp_f, folio_list, lru) { 3376 if (!folio_test_hugetlb_vmemmap_optimized(folio)) { 3377 /* 3378 * If HVO fails, initialize all tail struct pages 3379 * We do not worry about potential long lock hold 3380 * time as this is early in boot and there should 3381 * be no contention. 3382 */ 3383 hugetlb_folio_init_tail_vmemmap(folio, 3384 HUGETLB_VMEMMAP_RESERVE_PAGES, 3385 pages_per_huge_page(h)); 3386 } 3387 /* Subdivide locks to achieve better parallel performance */ 3388 spin_lock_irqsave(&hugetlb_lock, flags); 3389 __prep_account_new_huge_page(h, folio_nid(folio)); 3390 enqueue_hugetlb_folio(h, folio); 3391 spin_unlock_irqrestore(&hugetlb_lock, flags); 3392 } 3393 } 3394 3395 /* 3396 * Put bootmem huge pages into the standard lists after mem_map is up. 3397 * Note: This only applies to gigantic (order > MAX_PAGE_ORDER) pages. 3398 */ 3399 static void __init gather_bootmem_prealloc_node(unsigned long nid) 3400 { 3401 LIST_HEAD(folio_list); 3402 struct huge_bootmem_page *m; 3403 struct hstate *h = NULL, *prev_h = NULL; 3404 3405 list_for_each_entry(m, &huge_boot_pages[nid], list) { 3406 struct page *page = virt_to_page(m); 3407 struct folio *folio = (void *)page; 3408 3409 h = m->hstate; 3410 /* 3411 * It is possible to have multiple huge page sizes (hstates) 3412 * in this list. If so, process each size separately. 3413 */ 3414 if (h != prev_h && prev_h != NULL) 3415 prep_and_add_bootmem_folios(prev_h, &folio_list); 3416 prev_h = h; 3417 3418 VM_BUG_ON(!hstate_is_gigantic(h)); 3419 WARN_ON(folio_ref_count(folio) != 1); 3420 3421 hugetlb_folio_init_vmemmap(folio, h, 3422 HUGETLB_VMEMMAP_RESERVE_PAGES); 3423 init_new_hugetlb_folio(h, folio); 3424 list_add(&folio->lru, &folio_list); 3425 3426 /* 3427 * We need to restore the 'stolen' pages to totalram_pages 3428 * in order to fix confusing memory reports from free(1) and 3429 * other side-effects, like CommitLimit going negative. 3430 */ 3431 adjust_managed_page_count(page, pages_per_huge_page(h)); 3432 cond_resched(); 3433 } 3434 3435 prep_and_add_bootmem_folios(h, &folio_list); 3436 } 3437 3438 static void __init gather_bootmem_prealloc_parallel(unsigned long start, 3439 unsigned long end, void *arg) 3440 { 3441 int nid; 3442 3443 for (nid = start; nid < end; nid++) 3444 gather_bootmem_prealloc_node(nid); 3445 } 3446 3447 static void __init gather_bootmem_prealloc(void) 3448 { 3449 struct padata_mt_job job = { 3450 .thread_fn = gather_bootmem_prealloc_parallel, 3451 .fn_arg = NULL, 3452 .start = 0, 3453 .size = num_node_state(N_MEMORY), 3454 .align = 1, 3455 .min_chunk = 1, 3456 .max_threads = num_node_state(N_MEMORY), 3457 .numa_aware = true, 3458 }; 3459 3460 padata_do_multithreaded(&job); 3461 } 3462 3463 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid) 3464 { 3465 unsigned long i; 3466 char buf[32]; 3467 3468 for (i = 0; i < h->max_huge_pages_node[nid]; ++i) { 3469 if (hstate_is_gigantic(h)) { 3470 if (!alloc_bootmem_huge_page(h, nid)) 3471 break; 3472 } else { 3473 struct folio *folio; 3474 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 3475 3476 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, 3477 &node_states[N_MEMORY], NULL); 3478 if (!folio) 3479 break; 3480 free_huge_folio(folio); /* free it into the hugepage allocator */ 3481 } 3482 cond_resched(); 3483 } 3484 if (i == h->max_huge_pages_node[nid]) 3485 return; 3486 3487 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3488 pr_warn("HugeTLB: allocating %u of page size %s failed node%d. Only allocated %lu hugepages.\n", 3489 h->max_huge_pages_node[nid], buf, nid, i); 3490 h->max_huge_pages -= (h->max_huge_pages_node[nid] - i); 3491 h->max_huge_pages_node[nid] = i; 3492 } 3493 3494 static bool __init hugetlb_hstate_alloc_pages_specific_nodes(struct hstate *h) 3495 { 3496 int i; 3497 bool node_specific_alloc = false; 3498 3499 for_each_online_node(i) { 3500 if (h->max_huge_pages_node[i] > 0) { 3501 hugetlb_hstate_alloc_pages_onenode(h, i); 3502 node_specific_alloc = true; 3503 } 3504 } 3505 3506 return node_specific_alloc; 3507 } 3508 3509 static void __init hugetlb_hstate_alloc_pages_errcheck(unsigned long allocated, struct hstate *h) 3510 { 3511 if (allocated < h->max_huge_pages) { 3512 char buf[32]; 3513 3514 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3515 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n", 3516 h->max_huge_pages, buf, allocated); 3517 h->max_huge_pages = allocated; 3518 } 3519 } 3520 3521 static void __init hugetlb_pages_alloc_boot_node(unsigned long start, unsigned long end, void *arg) 3522 { 3523 struct hstate *h = (struct hstate *)arg; 3524 int i, num = end - start; 3525 nodemask_t node_alloc_noretry; 3526 LIST_HEAD(folio_list); 3527 int next_node = first_online_node; 3528 3529 /* Bit mask controlling how hard we retry per-node allocations.*/ 3530 nodes_clear(node_alloc_noretry); 3531 3532 for (i = 0; i < num; ++i) { 3533 struct folio *folio = alloc_pool_huge_folio(h, &node_states[N_MEMORY], 3534 &node_alloc_noretry, &next_node); 3535 if (!folio) 3536 break; 3537 3538 list_move(&folio->lru, &folio_list); 3539 cond_resched(); 3540 } 3541 3542 prep_and_add_allocated_folios(h, &folio_list); 3543 } 3544 3545 static unsigned long __init hugetlb_gigantic_pages_alloc_boot(struct hstate *h) 3546 { 3547 unsigned long i; 3548 3549 for (i = 0; i < h->max_huge_pages; ++i) { 3550 if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE)) 3551 break; 3552 cond_resched(); 3553 } 3554 3555 return i; 3556 } 3557 3558 static unsigned long __init hugetlb_pages_alloc_boot(struct hstate *h) 3559 { 3560 struct padata_mt_job job = { 3561 .fn_arg = h, 3562 .align = 1, 3563 .numa_aware = true 3564 }; 3565 3566 job.thread_fn = hugetlb_pages_alloc_boot_node; 3567 job.start = 0; 3568 job.size = h->max_huge_pages; 3569 3570 /* 3571 * job.max_threads is twice the num_node_state(N_MEMORY), 3572 * 3573 * Tests below indicate that a multiplier of 2 significantly improves 3574 * performance, and although larger values also provide improvements, 3575 * the gains are marginal. 3576 * 3577 * Therefore, choosing 2 as the multiplier strikes a good balance between 3578 * enhancing parallel processing capabilities and maintaining efficient 3579 * resource management. 3580 * 3581 * +------------+-------+-------+-------+-------+-------+ 3582 * | multiplier | 1 | 2 | 3 | 4 | 5 | 3583 * +------------+-------+-------+-------+-------+-------+ 3584 * | 256G 2node | 358ms | 215ms | 157ms | 134ms | 126ms | 3585 * | 2T 4node | 979ms | 679ms | 543ms | 489ms | 481ms | 3586 * | 50G 2node | 71ms | 44ms | 37ms | 30ms | 31ms | 3587 * +------------+-------+-------+-------+-------+-------+ 3588 */ 3589 job.max_threads = num_node_state(N_MEMORY) * 2; 3590 job.min_chunk = h->max_huge_pages / num_node_state(N_MEMORY) / 2; 3591 padata_do_multithreaded(&job); 3592 3593 return h->nr_huge_pages; 3594 } 3595 3596 /* 3597 * NOTE: this routine is called in different contexts for gigantic and 3598 * non-gigantic pages. 3599 * - For gigantic pages, this is called early in the boot process and 3600 * pages are allocated from memblock allocated or something similar. 3601 * Gigantic pages are actually added to pools later with the routine 3602 * gather_bootmem_prealloc. 3603 * - For non-gigantic pages, this is called later in the boot process after 3604 * all of mm is up and functional. Pages are allocated from buddy and 3605 * then added to hugetlb pools. 3606 */ 3607 static void __init hugetlb_hstate_alloc_pages(struct hstate *h) 3608 { 3609 unsigned long allocated; 3610 static bool initialized __initdata; 3611 3612 /* skip gigantic hugepages allocation if hugetlb_cma enabled */ 3613 if (hstate_is_gigantic(h) && hugetlb_cma_size) { 3614 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n"); 3615 return; 3616 } 3617 3618 /* hugetlb_hstate_alloc_pages will be called many times, initialize huge_boot_pages once */ 3619 if (!initialized) { 3620 int i = 0; 3621 3622 for (i = 0; i < MAX_NUMNODES; i++) 3623 INIT_LIST_HEAD(&huge_boot_pages[i]); 3624 initialized = true; 3625 } 3626 3627 /* do node specific alloc */ 3628 if (hugetlb_hstate_alloc_pages_specific_nodes(h)) 3629 return; 3630 3631 /* below will do all node balanced alloc */ 3632 if (hstate_is_gigantic(h)) 3633 allocated = hugetlb_gigantic_pages_alloc_boot(h); 3634 else 3635 allocated = hugetlb_pages_alloc_boot(h); 3636 3637 hugetlb_hstate_alloc_pages_errcheck(allocated, h); 3638 } 3639 3640 static void __init hugetlb_init_hstates(void) 3641 { 3642 struct hstate *h, *h2; 3643 3644 for_each_hstate(h) { 3645 /* oversize hugepages were init'ed in early boot */ 3646 if (!hstate_is_gigantic(h)) 3647 hugetlb_hstate_alloc_pages(h); 3648 3649 /* 3650 * Set demote order for each hstate. Note that 3651 * h->demote_order is initially 0. 3652 * - We can not demote gigantic pages if runtime freeing 3653 * is not supported, so skip this. 3654 * - If CMA allocation is possible, we can not demote 3655 * HUGETLB_PAGE_ORDER or smaller size pages. 3656 */ 3657 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 3658 continue; 3659 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER) 3660 continue; 3661 for_each_hstate(h2) { 3662 if (h2 == h) 3663 continue; 3664 if (h2->order < h->order && 3665 h2->order > h->demote_order) 3666 h->demote_order = h2->order; 3667 } 3668 } 3669 } 3670 3671 static void __init report_hugepages(void) 3672 { 3673 struct hstate *h; 3674 3675 for_each_hstate(h) { 3676 char buf[32]; 3677 3678 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3679 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n", 3680 buf, h->free_huge_pages); 3681 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n", 3682 hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf); 3683 } 3684 } 3685 3686 #ifdef CONFIG_HIGHMEM 3687 static void try_to_free_low(struct hstate *h, unsigned long count, 3688 nodemask_t *nodes_allowed) 3689 { 3690 int i; 3691 LIST_HEAD(page_list); 3692 3693 lockdep_assert_held(&hugetlb_lock); 3694 if (hstate_is_gigantic(h)) 3695 return; 3696 3697 /* 3698 * Collect pages to be freed on a list, and free after dropping lock 3699 */ 3700 for_each_node_mask(i, *nodes_allowed) { 3701 struct folio *folio, *next; 3702 struct list_head *freel = &h->hugepage_freelists[i]; 3703 list_for_each_entry_safe(folio, next, freel, lru) { 3704 if (count >= h->nr_huge_pages) 3705 goto out; 3706 if (folio_test_highmem(folio)) 3707 continue; 3708 remove_hugetlb_folio(h, folio, false); 3709 list_add(&folio->lru, &page_list); 3710 } 3711 } 3712 3713 out: 3714 spin_unlock_irq(&hugetlb_lock); 3715 update_and_free_pages_bulk(h, &page_list); 3716 spin_lock_irq(&hugetlb_lock); 3717 } 3718 #else 3719 static inline void try_to_free_low(struct hstate *h, unsigned long count, 3720 nodemask_t *nodes_allowed) 3721 { 3722 } 3723 #endif 3724 3725 /* 3726 * Increment or decrement surplus_huge_pages. Keep node-specific counters 3727 * balanced by operating on them in a round-robin fashion. 3728 * Returns 1 if an adjustment was made. 3729 */ 3730 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed, 3731 int delta) 3732 { 3733 int nr_nodes, node; 3734 3735 lockdep_assert_held(&hugetlb_lock); 3736 VM_BUG_ON(delta != -1 && delta != 1); 3737 3738 if (delta < 0) { 3739 for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, nodes_allowed) { 3740 if (h->surplus_huge_pages_node[node]) 3741 goto found; 3742 } 3743 } else { 3744 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 3745 if (h->surplus_huge_pages_node[node] < 3746 h->nr_huge_pages_node[node]) 3747 goto found; 3748 } 3749 } 3750 return 0; 3751 3752 found: 3753 h->surplus_huge_pages += delta; 3754 h->surplus_huge_pages_node[node] += delta; 3755 return 1; 3756 } 3757 3758 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) 3759 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid, 3760 nodemask_t *nodes_allowed) 3761 { 3762 unsigned long min_count; 3763 unsigned long allocated; 3764 struct folio *folio; 3765 LIST_HEAD(page_list); 3766 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL); 3767 3768 /* 3769 * Bit mask controlling how hard we retry per-node allocations. 3770 * If we can not allocate the bit mask, do not attempt to allocate 3771 * the requested huge pages. 3772 */ 3773 if (node_alloc_noretry) 3774 nodes_clear(*node_alloc_noretry); 3775 else 3776 return -ENOMEM; 3777 3778 /* 3779 * resize_lock mutex prevents concurrent adjustments to number of 3780 * pages in hstate via the proc/sysfs interfaces. 3781 */ 3782 mutex_lock(&h->resize_lock); 3783 flush_free_hpage_work(h); 3784 spin_lock_irq(&hugetlb_lock); 3785 3786 /* 3787 * Check for a node specific request. 3788 * Changing node specific huge page count may require a corresponding 3789 * change to the global count. In any case, the passed node mask 3790 * (nodes_allowed) will restrict alloc/free to the specified node. 3791 */ 3792 if (nid != NUMA_NO_NODE) { 3793 unsigned long old_count = count; 3794 3795 count += persistent_huge_pages(h) - 3796 (h->nr_huge_pages_node[nid] - 3797 h->surplus_huge_pages_node[nid]); 3798 /* 3799 * User may have specified a large count value which caused the 3800 * above calculation to overflow. In this case, they wanted 3801 * to allocate as many huge pages as possible. Set count to 3802 * largest possible value to align with their intention. 3803 */ 3804 if (count < old_count) 3805 count = ULONG_MAX; 3806 } 3807 3808 /* 3809 * Gigantic pages runtime allocation depend on the capability for large 3810 * page range allocation. 3811 * If the system does not provide this feature, return an error when 3812 * the user tries to allocate gigantic pages but let the user free the 3813 * boottime allocated gigantic pages. 3814 */ 3815 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) { 3816 if (count > persistent_huge_pages(h)) { 3817 spin_unlock_irq(&hugetlb_lock); 3818 mutex_unlock(&h->resize_lock); 3819 NODEMASK_FREE(node_alloc_noretry); 3820 return -EINVAL; 3821 } 3822 /* Fall through to decrease pool */ 3823 } 3824 3825 /* 3826 * Increase the pool size 3827 * First take pages out of surplus state. Then make up the 3828 * remaining difference by allocating fresh huge pages. 3829 * 3830 * We might race with alloc_surplus_hugetlb_folio() here and be unable 3831 * to convert a surplus huge page to a normal huge page. That is 3832 * not critical, though, it just means the overall size of the 3833 * pool might be one hugepage larger than it needs to be, but 3834 * within all the constraints specified by the sysctls. 3835 */ 3836 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { 3837 if (!adjust_pool_surplus(h, nodes_allowed, -1)) 3838 break; 3839 } 3840 3841 allocated = 0; 3842 while (count > (persistent_huge_pages(h) + allocated)) { 3843 /* 3844 * If this allocation races such that we no longer need the 3845 * page, free_huge_folio will handle it by freeing the page 3846 * and reducing the surplus. 3847 */ 3848 spin_unlock_irq(&hugetlb_lock); 3849 3850 /* yield cpu to avoid soft lockup */ 3851 cond_resched(); 3852 3853 folio = alloc_pool_huge_folio(h, nodes_allowed, 3854 node_alloc_noretry, 3855 &h->next_nid_to_alloc); 3856 if (!folio) { 3857 prep_and_add_allocated_folios(h, &page_list); 3858 spin_lock_irq(&hugetlb_lock); 3859 goto out; 3860 } 3861 3862 list_add(&folio->lru, &page_list); 3863 allocated++; 3864 3865 /* Bail for signals. Probably ctrl-c from user */ 3866 if (signal_pending(current)) { 3867 prep_and_add_allocated_folios(h, &page_list); 3868 spin_lock_irq(&hugetlb_lock); 3869 goto out; 3870 } 3871 3872 spin_lock_irq(&hugetlb_lock); 3873 } 3874 3875 /* Add allocated pages to the pool */ 3876 if (!list_empty(&page_list)) { 3877 spin_unlock_irq(&hugetlb_lock); 3878 prep_and_add_allocated_folios(h, &page_list); 3879 spin_lock_irq(&hugetlb_lock); 3880 } 3881 3882 /* 3883 * Decrease the pool size 3884 * First return free pages to the buddy allocator (being careful 3885 * to keep enough around to satisfy reservations). Then place 3886 * pages into surplus state as needed so the pool will shrink 3887 * to the desired size as pages become free. 3888 * 3889 * By placing pages into the surplus state independent of the 3890 * overcommit value, we are allowing the surplus pool size to 3891 * exceed overcommit. There are few sane options here. Since 3892 * alloc_surplus_hugetlb_folio() is checking the global counter, 3893 * though, we'll note that we're not allowed to exceed surplus 3894 * and won't grow the pool anywhere else. Not until one of the 3895 * sysctls are changed, or the surplus pages go out of use. 3896 */ 3897 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages; 3898 min_count = max(count, min_count); 3899 try_to_free_low(h, min_count, nodes_allowed); 3900 3901 /* 3902 * Collect pages to be removed on list without dropping lock 3903 */ 3904 while (min_count < persistent_huge_pages(h)) { 3905 folio = remove_pool_hugetlb_folio(h, nodes_allowed, 0); 3906 if (!folio) 3907 break; 3908 3909 list_add(&folio->lru, &page_list); 3910 } 3911 /* free the pages after dropping lock */ 3912 spin_unlock_irq(&hugetlb_lock); 3913 update_and_free_pages_bulk(h, &page_list); 3914 flush_free_hpage_work(h); 3915 spin_lock_irq(&hugetlb_lock); 3916 3917 while (count < persistent_huge_pages(h)) { 3918 if (!adjust_pool_surplus(h, nodes_allowed, 1)) 3919 break; 3920 } 3921 out: 3922 h->max_huge_pages = persistent_huge_pages(h); 3923 spin_unlock_irq(&hugetlb_lock); 3924 mutex_unlock(&h->resize_lock); 3925 3926 NODEMASK_FREE(node_alloc_noretry); 3927 3928 return 0; 3929 } 3930 3931 static int demote_free_hugetlb_folio(struct hstate *h, struct folio *folio) 3932 { 3933 int i, nid = folio_nid(folio); 3934 struct hstate *target_hstate; 3935 struct page *subpage; 3936 struct folio *inner_folio; 3937 int rc = 0; 3938 3939 target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order); 3940 3941 remove_hugetlb_folio_for_demote(h, folio, false); 3942 spin_unlock_irq(&hugetlb_lock); 3943 3944 /* 3945 * If vmemmap already existed for folio, the remove routine above would 3946 * have cleared the hugetlb folio flag. Hence the folio is technically 3947 * no longer a hugetlb folio. hugetlb_vmemmap_restore_folio can only be 3948 * passed hugetlb folios and will BUG otherwise. 3949 */ 3950 if (folio_test_hugetlb(folio)) { 3951 rc = hugetlb_vmemmap_restore_folio(h, folio); 3952 if (rc) { 3953 /* Allocation of vmemmmap failed, we can not demote folio */ 3954 spin_lock_irq(&hugetlb_lock); 3955 folio_ref_unfreeze(folio, 1); 3956 add_hugetlb_folio(h, folio, false); 3957 return rc; 3958 } 3959 } 3960 3961 /* 3962 * Use destroy_compound_hugetlb_folio_for_demote for all huge page 3963 * sizes as it will not ref count folios. 3964 */ 3965 destroy_compound_hugetlb_folio_for_demote(folio, huge_page_order(h)); 3966 3967 /* 3968 * Taking target hstate mutex synchronizes with set_max_huge_pages. 3969 * Without the mutex, pages added to target hstate could be marked 3970 * as surplus. 3971 * 3972 * Note that we already hold h->resize_lock. To prevent deadlock, 3973 * use the convention of always taking larger size hstate mutex first. 3974 */ 3975 mutex_lock(&target_hstate->resize_lock); 3976 for (i = 0; i < pages_per_huge_page(h); 3977 i += pages_per_huge_page(target_hstate)) { 3978 subpage = folio_page(folio, i); 3979 inner_folio = page_folio(subpage); 3980 if (hstate_is_gigantic(target_hstate)) 3981 prep_compound_gigantic_folio_for_demote(inner_folio, 3982 target_hstate->order); 3983 else 3984 prep_compound_page(subpage, target_hstate->order); 3985 folio_change_private(inner_folio, NULL); 3986 prep_new_hugetlb_folio(target_hstate, inner_folio, nid); 3987 free_huge_folio(inner_folio); 3988 } 3989 mutex_unlock(&target_hstate->resize_lock); 3990 3991 spin_lock_irq(&hugetlb_lock); 3992 3993 /* 3994 * Not absolutely necessary, but for consistency update max_huge_pages 3995 * based on pool changes for the demoted page. 3996 */ 3997 h->max_huge_pages--; 3998 target_hstate->max_huge_pages += 3999 pages_per_huge_page(h) / pages_per_huge_page(target_hstate); 4000 4001 return rc; 4002 } 4003 4004 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed) 4005 __must_hold(&hugetlb_lock) 4006 { 4007 int nr_nodes, node; 4008 struct folio *folio; 4009 4010 lockdep_assert_held(&hugetlb_lock); 4011 4012 /* We should never get here if no demote order */ 4013 if (!h->demote_order) { 4014 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n"); 4015 return -EINVAL; /* internal error */ 4016 } 4017 4018 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 4019 list_for_each_entry(folio, &h->hugepage_freelists[node], lru) { 4020 if (folio_test_hwpoison(folio)) 4021 continue; 4022 return demote_free_hugetlb_folio(h, folio); 4023 } 4024 } 4025 4026 /* 4027 * Only way to get here is if all pages on free lists are poisoned. 4028 * Return -EBUSY so that caller will not retry. 4029 */ 4030 return -EBUSY; 4031 } 4032 4033 #define HSTATE_ATTR_RO(_name) \ 4034 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 4035 4036 #define HSTATE_ATTR_WO(_name) \ 4037 static struct kobj_attribute _name##_attr = __ATTR_WO(_name) 4038 4039 #define HSTATE_ATTR(_name) \ 4040 static struct kobj_attribute _name##_attr = __ATTR_RW(_name) 4041 4042 static struct kobject *hugepages_kobj; 4043 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 4044 4045 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp); 4046 4047 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp) 4048 { 4049 int i; 4050 4051 for (i = 0; i < HUGE_MAX_HSTATE; i++) 4052 if (hstate_kobjs[i] == kobj) { 4053 if (nidp) 4054 *nidp = NUMA_NO_NODE; 4055 return &hstates[i]; 4056 } 4057 4058 return kobj_to_node_hstate(kobj, nidp); 4059 } 4060 4061 static ssize_t nr_hugepages_show_common(struct kobject *kobj, 4062 struct kobj_attribute *attr, char *buf) 4063 { 4064 struct hstate *h; 4065 unsigned long nr_huge_pages; 4066 int nid; 4067 4068 h = kobj_to_hstate(kobj, &nid); 4069 if (nid == NUMA_NO_NODE) 4070 nr_huge_pages = h->nr_huge_pages; 4071 else 4072 nr_huge_pages = h->nr_huge_pages_node[nid]; 4073 4074 return sysfs_emit(buf, "%lu\n", nr_huge_pages); 4075 } 4076 4077 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy, 4078 struct hstate *h, int nid, 4079 unsigned long count, size_t len) 4080 { 4081 int err; 4082 nodemask_t nodes_allowed, *n_mask; 4083 4084 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 4085 return -EINVAL; 4086 4087 if (nid == NUMA_NO_NODE) { 4088 /* 4089 * global hstate attribute 4090 */ 4091 if (!(obey_mempolicy && 4092 init_nodemask_of_mempolicy(&nodes_allowed))) 4093 n_mask = &node_states[N_MEMORY]; 4094 else 4095 n_mask = &nodes_allowed; 4096 } else { 4097 /* 4098 * Node specific request. count adjustment happens in 4099 * set_max_huge_pages() after acquiring hugetlb_lock. 4100 */ 4101 init_nodemask_of_node(&nodes_allowed, nid); 4102 n_mask = &nodes_allowed; 4103 } 4104 4105 err = set_max_huge_pages(h, count, nid, n_mask); 4106 4107 return err ? err : len; 4108 } 4109 4110 static ssize_t nr_hugepages_store_common(bool obey_mempolicy, 4111 struct kobject *kobj, const char *buf, 4112 size_t len) 4113 { 4114 struct hstate *h; 4115 unsigned long count; 4116 int nid; 4117 int err; 4118 4119 err = kstrtoul(buf, 10, &count); 4120 if (err) 4121 return err; 4122 4123 h = kobj_to_hstate(kobj, &nid); 4124 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len); 4125 } 4126 4127 static ssize_t nr_hugepages_show(struct kobject *kobj, 4128 struct kobj_attribute *attr, char *buf) 4129 { 4130 return nr_hugepages_show_common(kobj, attr, buf); 4131 } 4132 4133 static ssize_t nr_hugepages_store(struct kobject *kobj, 4134 struct kobj_attribute *attr, const char *buf, size_t len) 4135 { 4136 return nr_hugepages_store_common(false, kobj, buf, len); 4137 } 4138 HSTATE_ATTR(nr_hugepages); 4139 4140 #ifdef CONFIG_NUMA 4141 4142 /* 4143 * hstate attribute for optionally mempolicy-based constraint on persistent 4144 * huge page alloc/free. 4145 */ 4146 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj, 4147 struct kobj_attribute *attr, 4148 char *buf) 4149 { 4150 return nr_hugepages_show_common(kobj, attr, buf); 4151 } 4152 4153 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj, 4154 struct kobj_attribute *attr, const char *buf, size_t len) 4155 { 4156 return nr_hugepages_store_common(true, kobj, buf, len); 4157 } 4158 HSTATE_ATTR(nr_hugepages_mempolicy); 4159 #endif 4160 4161 4162 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, 4163 struct kobj_attribute *attr, char *buf) 4164 { 4165 struct hstate *h = kobj_to_hstate(kobj, NULL); 4166 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages); 4167 } 4168 4169 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, 4170 struct kobj_attribute *attr, const char *buf, size_t count) 4171 { 4172 int err; 4173 unsigned long input; 4174 struct hstate *h = kobj_to_hstate(kobj, NULL); 4175 4176 if (hstate_is_gigantic(h)) 4177 return -EINVAL; 4178 4179 err = kstrtoul(buf, 10, &input); 4180 if (err) 4181 return err; 4182 4183 spin_lock_irq(&hugetlb_lock); 4184 h->nr_overcommit_huge_pages = input; 4185 spin_unlock_irq(&hugetlb_lock); 4186 4187 return count; 4188 } 4189 HSTATE_ATTR(nr_overcommit_hugepages); 4190 4191 static ssize_t free_hugepages_show(struct kobject *kobj, 4192 struct kobj_attribute *attr, char *buf) 4193 { 4194 struct hstate *h; 4195 unsigned long free_huge_pages; 4196 int nid; 4197 4198 h = kobj_to_hstate(kobj, &nid); 4199 if (nid == NUMA_NO_NODE) 4200 free_huge_pages = h->free_huge_pages; 4201 else 4202 free_huge_pages = h->free_huge_pages_node[nid]; 4203 4204 return sysfs_emit(buf, "%lu\n", free_huge_pages); 4205 } 4206 HSTATE_ATTR_RO(free_hugepages); 4207 4208 static ssize_t resv_hugepages_show(struct kobject *kobj, 4209 struct kobj_attribute *attr, char *buf) 4210 { 4211 struct hstate *h = kobj_to_hstate(kobj, NULL); 4212 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages); 4213 } 4214 HSTATE_ATTR_RO(resv_hugepages); 4215 4216 static ssize_t surplus_hugepages_show(struct kobject *kobj, 4217 struct kobj_attribute *attr, char *buf) 4218 { 4219 struct hstate *h; 4220 unsigned long surplus_huge_pages; 4221 int nid; 4222 4223 h = kobj_to_hstate(kobj, &nid); 4224 if (nid == NUMA_NO_NODE) 4225 surplus_huge_pages = h->surplus_huge_pages; 4226 else 4227 surplus_huge_pages = h->surplus_huge_pages_node[nid]; 4228 4229 return sysfs_emit(buf, "%lu\n", surplus_huge_pages); 4230 } 4231 HSTATE_ATTR_RO(surplus_hugepages); 4232 4233 static ssize_t demote_store(struct kobject *kobj, 4234 struct kobj_attribute *attr, const char *buf, size_t len) 4235 { 4236 unsigned long nr_demote; 4237 unsigned long nr_available; 4238 nodemask_t nodes_allowed, *n_mask; 4239 struct hstate *h; 4240 int err; 4241 int nid; 4242 4243 err = kstrtoul(buf, 10, &nr_demote); 4244 if (err) 4245 return err; 4246 h = kobj_to_hstate(kobj, &nid); 4247 4248 if (nid != NUMA_NO_NODE) { 4249 init_nodemask_of_node(&nodes_allowed, nid); 4250 n_mask = &nodes_allowed; 4251 } else { 4252 n_mask = &node_states[N_MEMORY]; 4253 } 4254 4255 /* Synchronize with other sysfs operations modifying huge pages */ 4256 mutex_lock(&h->resize_lock); 4257 spin_lock_irq(&hugetlb_lock); 4258 4259 while (nr_demote) { 4260 /* 4261 * Check for available pages to demote each time thorough the 4262 * loop as demote_pool_huge_page will drop hugetlb_lock. 4263 */ 4264 if (nid != NUMA_NO_NODE) 4265 nr_available = h->free_huge_pages_node[nid]; 4266 else 4267 nr_available = h->free_huge_pages; 4268 nr_available -= h->resv_huge_pages; 4269 if (!nr_available) 4270 break; 4271 4272 err = demote_pool_huge_page(h, n_mask); 4273 if (err) 4274 break; 4275 4276 nr_demote--; 4277 } 4278 4279 spin_unlock_irq(&hugetlb_lock); 4280 mutex_unlock(&h->resize_lock); 4281 4282 if (err) 4283 return err; 4284 return len; 4285 } 4286 HSTATE_ATTR_WO(demote); 4287 4288 static ssize_t demote_size_show(struct kobject *kobj, 4289 struct kobj_attribute *attr, char *buf) 4290 { 4291 struct hstate *h = kobj_to_hstate(kobj, NULL); 4292 unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K; 4293 4294 return sysfs_emit(buf, "%lukB\n", demote_size); 4295 } 4296 4297 static ssize_t demote_size_store(struct kobject *kobj, 4298 struct kobj_attribute *attr, 4299 const char *buf, size_t count) 4300 { 4301 struct hstate *h, *demote_hstate; 4302 unsigned long demote_size; 4303 unsigned int demote_order; 4304 4305 demote_size = (unsigned long)memparse(buf, NULL); 4306 4307 demote_hstate = size_to_hstate(demote_size); 4308 if (!demote_hstate) 4309 return -EINVAL; 4310 demote_order = demote_hstate->order; 4311 if (demote_order < HUGETLB_PAGE_ORDER) 4312 return -EINVAL; 4313 4314 /* demote order must be smaller than hstate order */ 4315 h = kobj_to_hstate(kobj, NULL); 4316 if (demote_order >= h->order) 4317 return -EINVAL; 4318 4319 /* resize_lock synchronizes access to demote size and writes */ 4320 mutex_lock(&h->resize_lock); 4321 h->demote_order = demote_order; 4322 mutex_unlock(&h->resize_lock); 4323 4324 return count; 4325 } 4326 HSTATE_ATTR(demote_size); 4327 4328 static struct attribute *hstate_attrs[] = { 4329 &nr_hugepages_attr.attr, 4330 &nr_overcommit_hugepages_attr.attr, 4331 &free_hugepages_attr.attr, 4332 &resv_hugepages_attr.attr, 4333 &surplus_hugepages_attr.attr, 4334 #ifdef CONFIG_NUMA 4335 &nr_hugepages_mempolicy_attr.attr, 4336 #endif 4337 NULL, 4338 }; 4339 4340 static const struct attribute_group hstate_attr_group = { 4341 .attrs = hstate_attrs, 4342 }; 4343 4344 static struct attribute *hstate_demote_attrs[] = { 4345 &demote_size_attr.attr, 4346 &demote_attr.attr, 4347 NULL, 4348 }; 4349 4350 static const struct attribute_group hstate_demote_attr_group = { 4351 .attrs = hstate_demote_attrs, 4352 }; 4353 4354 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent, 4355 struct kobject **hstate_kobjs, 4356 const struct attribute_group *hstate_attr_group) 4357 { 4358 int retval; 4359 int hi = hstate_index(h); 4360 4361 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent); 4362 if (!hstate_kobjs[hi]) 4363 return -ENOMEM; 4364 4365 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group); 4366 if (retval) { 4367 kobject_put(hstate_kobjs[hi]); 4368 hstate_kobjs[hi] = NULL; 4369 return retval; 4370 } 4371 4372 if (h->demote_order) { 4373 retval = sysfs_create_group(hstate_kobjs[hi], 4374 &hstate_demote_attr_group); 4375 if (retval) { 4376 pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name); 4377 sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group); 4378 kobject_put(hstate_kobjs[hi]); 4379 hstate_kobjs[hi] = NULL; 4380 return retval; 4381 } 4382 } 4383 4384 return 0; 4385 } 4386 4387 #ifdef CONFIG_NUMA 4388 static bool hugetlb_sysfs_initialized __ro_after_init; 4389 4390 /* 4391 * node_hstate/s - associate per node hstate attributes, via their kobjects, 4392 * with node devices in node_devices[] using a parallel array. The array 4393 * index of a node device or _hstate == node id. 4394 * This is here to avoid any static dependency of the node device driver, in 4395 * the base kernel, on the hugetlb module. 4396 */ 4397 struct node_hstate { 4398 struct kobject *hugepages_kobj; 4399 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 4400 }; 4401 static struct node_hstate node_hstates[MAX_NUMNODES]; 4402 4403 /* 4404 * A subset of global hstate attributes for node devices 4405 */ 4406 static struct attribute *per_node_hstate_attrs[] = { 4407 &nr_hugepages_attr.attr, 4408 &free_hugepages_attr.attr, 4409 &surplus_hugepages_attr.attr, 4410 NULL, 4411 }; 4412 4413 static const struct attribute_group per_node_hstate_attr_group = { 4414 .attrs = per_node_hstate_attrs, 4415 }; 4416 4417 /* 4418 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj. 4419 * Returns node id via non-NULL nidp. 4420 */ 4421 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 4422 { 4423 int nid; 4424 4425 for (nid = 0; nid < nr_node_ids; nid++) { 4426 struct node_hstate *nhs = &node_hstates[nid]; 4427 int i; 4428 for (i = 0; i < HUGE_MAX_HSTATE; i++) 4429 if (nhs->hstate_kobjs[i] == kobj) { 4430 if (nidp) 4431 *nidp = nid; 4432 return &hstates[i]; 4433 } 4434 } 4435 4436 BUG(); 4437 return NULL; 4438 } 4439 4440 /* 4441 * Unregister hstate attributes from a single node device. 4442 * No-op if no hstate attributes attached. 4443 */ 4444 void hugetlb_unregister_node(struct node *node) 4445 { 4446 struct hstate *h; 4447 struct node_hstate *nhs = &node_hstates[node->dev.id]; 4448 4449 if (!nhs->hugepages_kobj) 4450 return; /* no hstate attributes */ 4451 4452 for_each_hstate(h) { 4453 int idx = hstate_index(h); 4454 struct kobject *hstate_kobj = nhs->hstate_kobjs[idx]; 4455 4456 if (!hstate_kobj) 4457 continue; 4458 if (h->demote_order) 4459 sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group); 4460 sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group); 4461 kobject_put(hstate_kobj); 4462 nhs->hstate_kobjs[idx] = NULL; 4463 } 4464 4465 kobject_put(nhs->hugepages_kobj); 4466 nhs->hugepages_kobj = NULL; 4467 } 4468 4469 4470 /* 4471 * Register hstate attributes for a single node device. 4472 * No-op if attributes already registered. 4473 */ 4474 void hugetlb_register_node(struct node *node) 4475 { 4476 struct hstate *h; 4477 struct node_hstate *nhs = &node_hstates[node->dev.id]; 4478 int err; 4479 4480 if (!hugetlb_sysfs_initialized) 4481 return; 4482 4483 if (nhs->hugepages_kobj) 4484 return; /* already allocated */ 4485 4486 nhs->hugepages_kobj = kobject_create_and_add("hugepages", 4487 &node->dev.kobj); 4488 if (!nhs->hugepages_kobj) 4489 return; 4490 4491 for_each_hstate(h) { 4492 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj, 4493 nhs->hstate_kobjs, 4494 &per_node_hstate_attr_group); 4495 if (err) { 4496 pr_err("HugeTLB: Unable to add hstate %s for node %d\n", 4497 h->name, node->dev.id); 4498 hugetlb_unregister_node(node); 4499 break; 4500 } 4501 } 4502 } 4503 4504 /* 4505 * hugetlb init time: register hstate attributes for all registered node 4506 * devices of nodes that have memory. All on-line nodes should have 4507 * registered their associated device by this time. 4508 */ 4509 static void __init hugetlb_register_all_nodes(void) 4510 { 4511 int nid; 4512 4513 for_each_online_node(nid) 4514 hugetlb_register_node(node_devices[nid]); 4515 } 4516 #else /* !CONFIG_NUMA */ 4517 4518 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 4519 { 4520 BUG(); 4521 if (nidp) 4522 *nidp = -1; 4523 return NULL; 4524 } 4525 4526 static void hugetlb_register_all_nodes(void) { } 4527 4528 #endif 4529 4530 #ifdef CONFIG_CMA 4531 static void __init hugetlb_cma_check(void); 4532 #else 4533 static inline __init void hugetlb_cma_check(void) 4534 { 4535 } 4536 #endif 4537 4538 static void __init hugetlb_sysfs_init(void) 4539 { 4540 struct hstate *h; 4541 int err; 4542 4543 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); 4544 if (!hugepages_kobj) 4545 return; 4546 4547 for_each_hstate(h) { 4548 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj, 4549 hstate_kobjs, &hstate_attr_group); 4550 if (err) 4551 pr_err("HugeTLB: Unable to add hstate %s", h->name); 4552 } 4553 4554 #ifdef CONFIG_NUMA 4555 hugetlb_sysfs_initialized = true; 4556 #endif 4557 hugetlb_register_all_nodes(); 4558 } 4559 4560 #ifdef CONFIG_SYSCTL 4561 static void hugetlb_sysctl_init(void); 4562 #else 4563 static inline void hugetlb_sysctl_init(void) { } 4564 #endif 4565 4566 static int __init hugetlb_init(void) 4567 { 4568 int i; 4569 4570 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE < 4571 __NR_HPAGEFLAGS); 4572 4573 if (!hugepages_supported()) { 4574 if (hugetlb_max_hstate || default_hstate_max_huge_pages) 4575 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n"); 4576 return 0; 4577 } 4578 4579 /* 4580 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some 4581 * architectures depend on setup being done here. 4582 */ 4583 hugetlb_add_hstate(HUGETLB_PAGE_ORDER); 4584 if (!parsed_default_hugepagesz) { 4585 /* 4586 * If we did not parse a default huge page size, set 4587 * default_hstate_idx to HPAGE_SIZE hstate. And, if the 4588 * number of huge pages for this default size was implicitly 4589 * specified, set that here as well. 4590 * Note that the implicit setting will overwrite an explicit 4591 * setting. A warning will be printed in this case. 4592 */ 4593 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE)); 4594 if (default_hstate_max_huge_pages) { 4595 if (default_hstate.max_huge_pages) { 4596 char buf[32]; 4597 4598 string_get_size(huge_page_size(&default_hstate), 4599 1, STRING_UNITS_2, buf, 32); 4600 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n", 4601 default_hstate.max_huge_pages, buf); 4602 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n", 4603 default_hstate_max_huge_pages); 4604 } 4605 default_hstate.max_huge_pages = 4606 default_hstate_max_huge_pages; 4607 4608 for_each_online_node(i) 4609 default_hstate.max_huge_pages_node[i] = 4610 default_hugepages_in_node[i]; 4611 } 4612 } 4613 4614 hugetlb_cma_check(); 4615 hugetlb_init_hstates(); 4616 gather_bootmem_prealloc(); 4617 report_hugepages(); 4618 4619 hugetlb_sysfs_init(); 4620 hugetlb_cgroup_file_init(); 4621 hugetlb_sysctl_init(); 4622 4623 #ifdef CONFIG_SMP 4624 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus()); 4625 #else 4626 num_fault_mutexes = 1; 4627 #endif 4628 hugetlb_fault_mutex_table = 4629 kmalloc_array(num_fault_mutexes, sizeof(struct mutex), 4630 GFP_KERNEL); 4631 BUG_ON(!hugetlb_fault_mutex_table); 4632 4633 for (i = 0; i < num_fault_mutexes; i++) 4634 mutex_init(&hugetlb_fault_mutex_table[i]); 4635 return 0; 4636 } 4637 subsys_initcall(hugetlb_init); 4638 4639 /* Overwritten by architectures with more huge page sizes */ 4640 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size) 4641 { 4642 return size == HPAGE_SIZE; 4643 } 4644 4645 void __init hugetlb_add_hstate(unsigned int order) 4646 { 4647 struct hstate *h; 4648 unsigned long i; 4649 4650 if (size_to_hstate(PAGE_SIZE << order)) { 4651 return; 4652 } 4653 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE); 4654 BUG_ON(order < order_base_2(__NR_USED_SUBPAGE)); 4655 h = &hstates[hugetlb_max_hstate++]; 4656 mutex_init(&h->resize_lock); 4657 h->order = order; 4658 h->mask = ~(huge_page_size(h) - 1); 4659 for (i = 0; i < MAX_NUMNODES; ++i) 4660 INIT_LIST_HEAD(&h->hugepage_freelists[i]); 4661 INIT_LIST_HEAD(&h->hugepage_activelist); 4662 h->next_nid_to_alloc = first_memory_node; 4663 h->next_nid_to_free = first_memory_node; 4664 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", 4665 huge_page_size(h)/SZ_1K); 4666 4667 parsed_hstate = h; 4668 } 4669 4670 bool __init __weak hugetlb_node_alloc_supported(void) 4671 { 4672 return true; 4673 } 4674 4675 static void __init hugepages_clear_pages_in_node(void) 4676 { 4677 if (!hugetlb_max_hstate) { 4678 default_hstate_max_huge_pages = 0; 4679 memset(default_hugepages_in_node, 0, 4680 sizeof(default_hugepages_in_node)); 4681 } else { 4682 parsed_hstate->max_huge_pages = 0; 4683 memset(parsed_hstate->max_huge_pages_node, 0, 4684 sizeof(parsed_hstate->max_huge_pages_node)); 4685 } 4686 } 4687 4688 /* 4689 * hugepages command line processing 4690 * hugepages normally follows a valid hugepagsz or default_hugepagsz 4691 * specification. If not, ignore the hugepages value. hugepages can also 4692 * be the first huge page command line option in which case it implicitly 4693 * specifies the number of huge pages for the default size. 4694 */ 4695 static int __init hugepages_setup(char *s) 4696 { 4697 unsigned long *mhp; 4698 static unsigned long *last_mhp; 4699 int node = NUMA_NO_NODE; 4700 int count; 4701 unsigned long tmp; 4702 char *p = s; 4703 4704 if (!parsed_valid_hugepagesz) { 4705 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s); 4706 parsed_valid_hugepagesz = true; 4707 return 1; 4708 } 4709 4710 /* 4711 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter 4712 * yet, so this hugepages= parameter goes to the "default hstate". 4713 * Otherwise, it goes with the previously parsed hugepagesz or 4714 * default_hugepagesz. 4715 */ 4716 else if (!hugetlb_max_hstate) 4717 mhp = &default_hstate_max_huge_pages; 4718 else 4719 mhp = &parsed_hstate->max_huge_pages; 4720 4721 if (mhp == last_mhp) { 4722 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s); 4723 return 1; 4724 } 4725 4726 while (*p) { 4727 count = 0; 4728 if (sscanf(p, "%lu%n", &tmp, &count) != 1) 4729 goto invalid; 4730 /* Parameter is node format */ 4731 if (p[count] == ':') { 4732 if (!hugetlb_node_alloc_supported()) { 4733 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n"); 4734 return 1; 4735 } 4736 if (tmp >= MAX_NUMNODES || !node_online(tmp)) 4737 goto invalid; 4738 node = array_index_nospec(tmp, MAX_NUMNODES); 4739 p += count + 1; 4740 /* Parse hugepages */ 4741 if (sscanf(p, "%lu%n", &tmp, &count) != 1) 4742 goto invalid; 4743 if (!hugetlb_max_hstate) 4744 default_hugepages_in_node[node] = tmp; 4745 else 4746 parsed_hstate->max_huge_pages_node[node] = tmp; 4747 *mhp += tmp; 4748 /* Go to parse next node*/ 4749 if (p[count] == ',') 4750 p += count + 1; 4751 else 4752 break; 4753 } else { 4754 if (p != s) 4755 goto invalid; 4756 *mhp = tmp; 4757 break; 4758 } 4759 } 4760 4761 /* 4762 * Global state is always initialized later in hugetlb_init. 4763 * But we need to allocate gigantic hstates here early to still 4764 * use the bootmem allocator. 4765 */ 4766 if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate)) 4767 hugetlb_hstate_alloc_pages(parsed_hstate); 4768 4769 last_mhp = mhp; 4770 4771 return 1; 4772 4773 invalid: 4774 pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p); 4775 hugepages_clear_pages_in_node(); 4776 return 1; 4777 } 4778 __setup("hugepages=", hugepages_setup); 4779 4780 /* 4781 * hugepagesz command line processing 4782 * A specific huge page size can only be specified once with hugepagesz. 4783 * hugepagesz is followed by hugepages on the command line. The global 4784 * variable 'parsed_valid_hugepagesz' is used to determine if prior 4785 * hugepagesz argument was valid. 4786 */ 4787 static int __init hugepagesz_setup(char *s) 4788 { 4789 unsigned long size; 4790 struct hstate *h; 4791 4792 parsed_valid_hugepagesz = false; 4793 size = (unsigned long)memparse(s, NULL); 4794 4795 if (!arch_hugetlb_valid_size(size)) { 4796 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s); 4797 return 1; 4798 } 4799 4800 h = size_to_hstate(size); 4801 if (h) { 4802 /* 4803 * hstate for this size already exists. This is normally 4804 * an error, but is allowed if the existing hstate is the 4805 * default hstate. More specifically, it is only allowed if 4806 * the number of huge pages for the default hstate was not 4807 * previously specified. 4808 */ 4809 if (!parsed_default_hugepagesz || h != &default_hstate || 4810 default_hstate.max_huge_pages) { 4811 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s); 4812 return 1; 4813 } 4814 4815 /* 4816 * No need to call hugetlb_add_hstate() as hstate already 4817 * exists. But, do set parsed_hstate so that a following 4818 * hugepages= parameter will be applied to this hstate. 4819 */ 4820 parsed_hstate = h; 4821 parsed_valid_hugepagesz = true; 4822 return 1; 4823 } 4824 4825 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); 4826 parsed_valid_hugepagesz = true; 4827 return 1; 4828 } 4829 __setup("hugepagesz=", hugepagesz_setup); 4830 4831 /* 4832 * default_hugepagesz command line input 4833 * Only one instance of default_hugepagesz allowed on command line. 4834 */ 4835 static int __init default_hugepagesz_setup(char *s) 4836 { 4837 unsigned long size; 4838 int i; 4839 4840 parsed_valid_hugepagesz = false; 4841 if (parsed_default_hugepagesz) { 4842 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s); 4843 return 1; 4844 } 4845 4846 size = (unsigned long)memparse(s, NULL); 4847 4848 if (!arch_hugetlb_valid_size(size)) { 4849 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s); 4850 return 1; 4851 } 4852 4853 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); 4854 parsed_valid_hugepagesz = true; 4855 parsed_default_hugepagesz = true; 4856 default_hstate_idx = hstate_index(size_to_hstate(size)); 4857 4858 /* 4859 * The number of default huge pages (for this size) could have been 4860 * specified as the first hugetlb parameter: hugepages=X. If so, 4861 * then default_hstate_max_huge_pages is set. If the default huge 4862 * page size is gigantic (> MAX_PAGE_ORDER), then the pages must be 4863 * allocated here from bootmem allocator. 4864 */ 4865 if (default_hstate_max_huge_pages) { 4866 default_hstate.max_huge_pages = default_hstate_max_huge_pages; 4867 for_each_online_node(i) 4868 default_hstate.max_huge_pages_node[i] = 4869 default_hugepages_in_node[i]; 4870 if (hstate_is_gigantic(&default_hstate)) 4871 hugetlb_hstate_alloc_pages(&default_hstate); 4872 default_hstate_max_huge_pages = 0; 4873 } 4874 4875 return 1; 4876 } 4877 __setup("default_hugepagesz=", default_hugepagesz_setup); 4878 4879 static nodemask_t *policy_mbind_nodemask(gfp_t gfp) 4880 { 4881 #ifdef CONFIG_NUMA 4882 struct mempolicy *mpol = get_task_policy(current); 4883 4884 /* 4885 * Only enforce MPOL_BIND policy which overlaps with cpuset policy 4886 * (from policy_nodemask) specifically for hugetlb case 4887 */ 4888 if (mpol->mode == MPOL_BIND && 4889 (apply_policy_zone(mpol, gfp_zone(gfp)) && 4890 cpuset_nodemask_valid_mems_allowed(&mpol->nodes))) 4891 return &mpol->nodes; 4892 #endif 4893 return NULL; 4894 } 4895 4896 static unsigned int allowed_mems_nr(struct hstate *h) 4897 { 4898 int node; 4899 unsigned int nr = 0; 4900 nodemask_t *mbind_nodemask; 4901 unsigned int *array = h->free_huge_pages_node; 4902 gfp_t gfp_mask = htlb_alloc_mask(h); 4903 4904 mbind_nodemask = policy_mbind_nodemask(gfp_mask); 4905 for_each_node_mask(node, cpuset_current_mems_allowed) { 4906 if (!mbind_nodemask || node_isset(node, *mbind_nodemask)) 4907 nr += array[node]; 4908 } 4909 4910 return nr; 4911 } 4912 4913 #ifdef CONFIG_SYSCTL 4914 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write, 4915 void *buffer, size_t *length, 4916 loff_t *ppos, unsigned long *out) 4917 { 4918 struct ctl_table dup_table; 4919 4920 /* 4921 * In order to avoid races with __do_proc_doulongvec_minmax(), we 4922 * can duplicate the @table and alter the duplicate of it. 4923 */ 4924 dup_table = *table; 4925 dup_table.data = out; 4926 4927 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos); 4928 } 4929 4930 static int hugetlb_sysctl_handler_common(bool obey_mempolicy, 4931 struct ctl_table *table, int write, 4932 void *buffer, size_t *length, loff_t *ppos) 4933 { 4934 struct hstate *h = &default_hstate; 4935 unsigned long tmp = h->max_huge_pages; 4936 int ret; 4937 4938 if (!hugepages_supported()) 4939 return -EOPNOTSUPP; 4940 4941 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, 4942 &tmp); 4943 if (ret) 4944 goto out; 4945 4946 if (write) 4947 ret = __nr_hugepages_store_common(obey_mempolicy, h, 4948 NUMA_NO_NODE, tmp, *length); 4949 out: 4950 return ret; 4951 } 4952 4953 static int hugetlb_sysctl_handler(struct ctl_table *table, int write, 4954 void *buffer, size_t *length, loff_t *ppos) 4955 { 4956 4957 return hugetlb_sysctl_handler_common(false, table, write, 4958 buffer, length, ppos); 4959 } 4960 4961 #ifdef CONFIG_NUMA 4962 static int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write, 4963 void *buffer, size_t *length, loff_t *ppos) 4964 { 4965 return hugetlb_sysctl_handler_common(true, table, write, 4966 buffer, length, ppos); 4967 } 4968 #endif /* CONFIG_NUMA */ 4969 4970 static int hugetlb_overcommit_handler(struct ctl_table *table, int write, 4971 void *buffer, size_t *length, loff_t *ppos) 4972 { 4973 struct hstate *h = &default_hstate; 4974 unsigned long tmp; 4975 int ret; 4976 4977 if (!hugepages_supported()) 4978 return -EOPNOTSUPP; 4979 4980 tmp = h->nr_overcommit_huge_pages; 4981 4982 if (write && hstate_is_gigantic(h)) 4983 return -EINVAL; 4984 4985 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, 4986 &tmp); 4987 if (ret) 4988 goto out; 4989 4990 if (write) { 4991 spin_lock_irq(&hugetlb_lock); 4992 h->nr_overcommit_huge_pages = tmp; 4993 spin_unlock_irq(&hugetlb_lock); 4994 } 4995 out: 4996 return ret; 4997 } 4998 4999 static struct ctl_table hugetlb_table[] = { 5000 { 5001 .procname = "nr_hugepages", 5002 .data = NULL, 5003 .maxlen = sizeof(unsigned long), 5004 .mode = 0644, 5005 .proc_handler = hugetlb_sysctl_handler, 5006 }, 5007 #ifdef CONFIG_NUMA 5008 { 5009 .procname = "nr_hugepages_mempolicy", 5010 .data = NULL, 5011 .maxlen = sizeof(unsigned long), 5012 .mode = 0644, 5013 .proc_handler = &hugetlb_mempolicy_sysctl_handler, 5014 }, 5015 #endif 5016 { 5017 .procname = "hugetlb_shm_group", 5018 .data = &sysctl_hugetlb_shm_group, 5019 .maxlen = sizeof(gid_t), 5020 .mode = 0644, 5021 .proc_handler = proc_dointvec, 5022 }, 5023 { 5024 .procname = "nr_overcommit_hugepages", 5025 .data = NULL, 5026 .maxlen = sizeof(unsigned long), 5027 .mode = 0644, 5028 .proc_handler = hugetlb_overcommit_handler, 5029 }, 5030 }; 5031 5032 static void hugetlb_sysctl_init(void) 5033 { 5034 register_sysctl_init("vm", hugetlb_table); 5035 } 5036 #endif /* CONFIG_SYSCTL */ 5037 5038 void hugetlb_report_meminfo(struct seq_file *m) 5039 { 5040 struct hstate *h; 5041 unsigned long total = 0; 5042 5043 if (!hugepages_supported()) 5044 return; 5045 5046 for_each_hstate(h) { 5047 unsigned long count = h->nr_huge_pages; 5048 5049 total += huge_page_size(h) * count; 5050 5051 if (h == &default_hstate) 5052 seq_printf(m, 5053 "HugePages_Total: %5lu\n" 5054 "HugePages_Free: %5lu\n" 5055 "HugePages_Rsvd: %5lu\n" 5056 "HugePages_Surp: %5lu\n" 5057 "Hugepagesize: %8lu kB\n", 5058 count, 5059 h->free_huge_pages, 5060 h->resv_huge_pages, 5061 h->surplus_huge_pages, 5062 huge_page_size(h) / SZ_1K); 5063 } 5064 5065 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K); 5066 } 5067 5068 int hugetlb_report_node_meminfo(char *buf, int len, int nid) 5069 { 5070 struct hstate *h = &default_hstate; 5071 5072 if (!hugepages_supported()) 5073 return 0; 5074 5075 return sysfs_emit_at(buf, len, 5076 "Node %d HugePages_Total: %5u\n" 5077 "Node %d HugePages_Free: %5u\n" 5078 "Node %d HugePages_Surp: %5u\n", 5079 nid, h->nr_huge_pages_node[nid], 5080 nid, h->free_huge_pages_node[nid], 5081 nid, h->surplus_huge_pages_node[nid]); 5082 } 5083 5084 void hugetlb_show_meminfo_node(int nid) 5085 { 5086 struct hstate *h; 5087 5088 if (!hugepages_supported()) 5089 return; 5090 5091 for_each_hstate(h) 5092 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n", 5093 nid, 5094 h->nr_huge_pages_node[nid], 5095 h->free_huge_pages_node[nid], 5096 h->surplus_huge_pages_node[nid], 5097 huge_page_size(h) / SZ_1K); 5098 } 5099 5100 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm) 5101 { 5102 seq_printf(m, "HugetlbPages:\t%8lu kB\n", 5103 K(atomic_long_read(&mm->hugetlb_usage))); 5104 } 5105 5106 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ 5107 unsigned long hugetlb_total_pages(void) 5108 { 5109 struct hstate *h; 5110 unsigned long nr_total_pages = 0; 5111 5112 for_each_hstate(h) 5113 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h); 5114 return nr_total_pages; 5115 } 5116 5117 static int hugetlb_acct_memory(struct hstate *h, long delta) 5118 { 5119 int ret = -ENOMEM; 5120 5121 if (!delta) 5122 return 0; 5123 5124 spin_lock_irq(&hugetlb_lock); 5125 /* 5126 * When cpuset is configured, it breaks the strict hugetlb page 5127 * reservation as the accounting is done on a global variable. Such 5128 * reservation is completely rubbish in the presence of cpuset because 5129 * the reservation is not checked against page availability for the 5130 * current cpuset. Application can still potentially OOM'ed by kernel 5131 * with lack of free htlb page in cpuset that the task is in. 5132 * Attempt to enforce strict accounting with cpuset is almost 5133 * impossible (or too ugly) because cpuset is too fluid that 5134 * task or memory node can be dynamically moved between cpusets. 5135 * 5136 * The change of semantics for shared hugetlb mapping with cpuset is 5137 * undesirable. However, in order to preserve some of the semantics, 5138 * we fall back to check against current free page availability as 5139 * a best attempt and hopefully to minimize the impact of changing 5140 * semantics that cpuset has. 5141 * 5142 * Apart from cpuset, we also have memory policy mechanism that 5143 * also determines from which node the kernel will allocate memory 5144 * in a NUMA system. So similar to cpuset, we also should consider 5145 * the memory policy of the current task. Similar to the description 5146 * above. 5147 */ 5148 if (delta > 0) { 5149 if (gather_surplus_pages(h, delta) < 0) 5150 goto out; 5151 5152 if (delta > allowed_mems_nr(h)) { 5153 return_unused_surplus_pages(h, delta); 5154 goto out; 5155 } 5156 } 5157 5158 ret = 0; 5159 if (delta < 0) 5160 return_unused_surplus_pages(h, (unsigned long) -delta); 5161 5162 out: 5163 spin_unlock_irq(&hugetlb_lock); 5164 return ret; 5165 } 5166 5167 static void hugetlb_vm_op_open(struct vm_area_struct *vma) 5168 { 5169 struct resv_map *resv = vma_resv_map(vma); 5170 5171 /* 5172 * HPAGE_RESV_OWNER indicates a private mapping. 5173 * This new VMA should share its siblings reservation map if present. 5174 * The VMA will only ever have a valid reservation map pointer where 5175 * it is being copied for another still existing VMA. As that VMA 5176 * has a reference to the reservation map it cannot disappear until 5177 * after this open call completes. It is therefore safe to take a 5178 * new reference here without additional locking. 5179 */ 5180 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 5181 resv_map_dup_hugetlb_cgroup_uncharge_info(resv); 5182 kref_get(&resv->refs); 5183 } 5184 5185 /* 5186 * vma_lock structure for sharable mappings is vma specific. 5187 * Clear old pointer (if copied via vm_area_dup) and allocate 5188 * new structure. Before clearing, make sure vma_lock is not 5189 * for this vma. 5190 */ 5191 if (vma->vm_flags & VM_MAYSHARE) { 5192 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 5193 5194 if (vma_lock) { 5195 if (vma_lock->vma != vma) { 5196 vma->vm_private_data = NULL; 5197 hugetlb_vma_lock_alloc(vma); 5198 } else 5199 pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__); 5200 } else 5201 hugetlb_vma_lock_alloc(vma); 5202 } 5203 } 5204 5205 static void hugetlb_vm_op_close(struct vm_area_struct *vma) 5206 { 5207 struct hstate *h = hstate_vma(vma); 5208 struct resv_map *resv; 5209 struct hugepage_subpool *spool = subpool_vma(vma); 5210 unsigned long reserve, start, end; 5211 long gbl_reserve; 5212 5213 hugetlb_vma_lock_free(vma); 5214 5215 resv = vma_resv_map(vma); 5216 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 5217 return; 5218 5219 start = vma_hugecache_offset(h, vma, vma->vm_start); 5220 end = vma_hugecache_offset(h, vma, vma->vm_end); 5221 5222 reserve = (end - start) - region_count(resv, start, end); 5223 hugetlb_cgroup_uncharge_counter(resv, start, end); 5224 if (reserve) { 5225 /* 5226 * Decrement reserve counts. The global reserve count may be 5227 * adjusted if the subpool has a minimum size. 5228 */ 5229 gbl_reserve = hugepage_subpool_put_pages(spool, reserve); 5230 hugetlb_acct_memory(h, -gbl_reserve); 5231 } 5232 5233 kref_put(&resv->refs, resv_map_release); 5234 } 5235 5236 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr) 5237 { 5238 if (addr & ~(huge_page_mask(hstate_vma(vma)))) 5239 return -EINVAL; 5240 5241 /* 5242 * PMD sharing is only possible for PUD_SIZE-aligned address ranges 5243 * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this 5244 * split, unshare PMDs in the PUD_SIZE interval surrounding addr now. 5245 */ 5246 if (addr & ~PUD_MASK) { 5247 /* 5248 * hugetlb_vm_op_split is called right before we attempt to 5249 * split the VMA. We will need to unshare PMDs in the old and 5250 * new VMAs, so let's unshare before we split. 5251 */ 5252 unsigned long floor = addr & PUD_MASK; 5253 unsigned long ceil = floor + PUD_SIZE; 5254 5255 if (floor >= vma->vm_start && ceil <= vma->vm_end) 5256 hugetlb_unshare_pmds(vma, floor, ceil); 5257 } 5258 5259 return 0; 5260 } 5261 5262 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma) 5263 { 5264 return huge_page_size(hstate_vma(vma)); 5265 } 5266 5267 /* 5268 * We cannot handle pagefaults against hugetlb pages at all. They cause 5269 * handle_mm_fault() to try to instantiate regular-sized pages in the 5270 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get 5271 * this far. 5272 */ 5273 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf) 5274 { 5275 BUG(); 5276 return 0; 5277 } 5278 5279 /* 5280 * When a new function is introduced to vm_operations_struct and added 5281 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops. 5282 * This is because under System V memory model, mappings created via 5283 * shmget/shmat with "huge page" specified are backed by hugetlbfs files, 5284 * their original vm_ops are overwritten with shm_vm_ops. 5285 */ 5286 const struct vm_operations_struct hugetlb_vm_ops = { 5287 .fault = hugetlb_vm_op_fault, 5288 .open = hugetlb_vm_op_open, 5289 .close = hugetlb_vm_op_close, 5290 .may_split = hugetlb_vm_op_split, 5291 .pagesize = hugetlb_vm_op_pagesize, 5292 }; 5293 5294 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, 5295 int writable) 5296 { 5297 pte_t entry; 5298 unsigned int shift = huge_page_shift(hstate_vma(vma)); 5299 5300 if (writable) { 5301 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page, 5302 vma->vm_page_prot))); 5303 } else { 5304 entry = huge_pte_wrprotect(mk_huge_pte(page, 5305 vma->vm_page_prot)); 5306 } 5307 entry = pte_mkyoung(entry); 5308 entry = arch_make_huge_pte(entry, shift, vma->vm_flags); 5309 5310 return entry; 5311 } 5312 5313 static void set_huge_ptep_writable(struct vm_area_struct *vma, 5314 unsigned long address, pte_t *ptep) 5315 { 5316 pte_t entry; 5317 5318 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep))); 5319 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) 5320 update_mmu_cache(vma, address, ptep); 5321 } 5322 5323 bool is_hugetlb_entry_migration(pte_t pte) 5324 { 5325 swp_entry_t swp; 5326 5327 if (huge_pte_none(pte) || pte_present(pte)) 5328 return false; 5329 swp = pte_to_swp_entry(pte); 5330 if (is_migration_entry(swp)) 5331 return true; 5332 else 5333 return false; 5334 } 5335 5336 bool is_hugetlb_entry_hwpoisoned(pte_t pte) 5337 { 5338 swp_entry_t swp; 5339 5340 if (huge_pte_none(pte) || pte_present(pte)) 5341 return false; 5342 swp = pte_to_swp_entry(pte); 5343 if (is_hwpoison_entry(swp)) 5344 return true; 5345 else 5346 return false; 5347 } 5348 5349 static void 5350 hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr, 5351 struct folio *new_folio, pte_t old, unsigned long sz) 5352 { 5353 pte_t newpte = make_huge_pte(vma, &new_folio->page, 1); 5354 5355 __folio_mark_uptodate(new_folio); 5356 hugetlb_add_new_anon_rmap(new_folio, vma, addr); 5357 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(old)) 5358 newpte = huge_pte_mkuffd_wp(newpte); 5359 set_huge_pte_at(vma->vm_mm, addr, ptep, newpte, sz); 5360 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm); 5361 folio_set_hugetlb_migratable(new_folio); 5362 } 5363 5364 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, 5365 struct vm_area_struct *dst_vma, 5366 struct vm_area_struct *src_vma) 5367 { 5368 pte_t *src_pte, *dst_pte, entry; 5369 struct folio *pte_folio; 5370 unsigned long addr; 5371 bool cow = is_cow_mapping(src_vma->vm_flags); 5372 struct hstate *h = hstate_vma(src_vma); 5373 unsigned long sz = huge_page_size(h); 5374 unsigned long npages = pages_per_huge_page(h); 5375 struct mmu_notifier_range range; 5376 unsigned long last_addr_mask; 5377 int ret = 0; 5378 5379 if (cow) { 5380 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src, 5381 src_vma->vm_start, 5382 src_vma->vm_end); 5383 mmu_notifier_invalidate_range_start(&range); 5384 vma_assert_write_locked(src_vma); 5385 raw_write_seqcount_begin(&src->write_protect_seq); 5386 } else { 5387 /* 5388 * For shared mappings the vma lock must be held before 5389 * calling hugetlb_walk() in the src vma. Otherwise, the 5390 * returned ptep could go away if part of a shared pmd and 5391 * another thread calls huge_pmd_unshare. 5392 */ 5393 hugetlb_vma_lock_read(src_vma); 5394 } 5395 5396 last_addr_mask = hugetlb_mask_last_page(h); 5397 for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) { 5398 spinlock_t *src_ptl, *dst_ptl; 5399 src_pte = hugetlb_walk(src_vma, addr, sz); 5400 if (!src_pte) { 5401 addr |= last_addr_mask; 5402 continue; 5403 } 5404 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz); 5405 if (!dst_pte) { 5406 ret = -ENOMEM; 5407 break; 5408 } 5409 5410 /* 5411 * If the pagetables are shared don't copy or take references. 5412 * 5413 * dst_pte == src_pte is the common case of src/dest sharing. 5414 * However, src could have 'unshared' and dst shares with 5415 * another vma. So page_count of ptep page is checked instead 5416 * to reliably determine whether pte is shared. 5417 */ 5418 if (page_count(virt_to_page(dst_pte)) > 1) { 5419 addr |= last_addr_mask; 5420 continue; 5421 } 5422 5423 dst_ptl = huge_pte_lock(h, dst, dst_pte); 5424 src_ptl = huge_pte_lockptr(h, src, src_pte); 5425 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 5426 entry = huge_ptep_get(src_pte); 5427 again: 5428 if (huge_pte_none(entry)) { 5429 /* 5430 * Skip if src entry none. 5431 */ 5432 ; 5433 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) { 5434 if (!userfaultfd_wp(dst_vma)) 5435 entry = huge_pte_clear_uffd_wp(entry); 5436 set_huge_pte_at(dst, addr, dst_pte, entry, sz); 5437 } else if (unlikely(is_hugetlb_entry_migration(entry))) { 5438 swp_entry_t swp_entry = pte_to_swp_entry(entry); 5439 bool uffd_wp = pte_swp_uffd_wp(entry); 5440 5441 if (!is_readable_migration_entry(swp_entry) && cow) { 5442 /* 5443 * COW mappings require pages in both 5444 * parent and child to be set to read. 5445 */ 5446 swp_entry = make_readable_migration_entry( 5447 swp_offset(swp_entry)); 5448 entry = swp_entry_to_pte(swp_entry); 5449 if (userfaultfd_wp(src_vma) && uffd_wp) 5450 entry = pte_swp_mkuffd_wp(entry); 5451 set_huge_pte_at(src, addr, src_pte, entry, sz); 5452 } 5453 if (!userfaultfd_wp(dst_vma)) 5454 entry = huge_pte_clear_uffd_wp(entry); 5455 set_huge_pte_at(dst, addr, dst_pte, entry, sz); 5456 } else if (unlikely(is_pte_marker(entry))) { 5457 pte_marker marker = copy_pte_marker( 5458 pte_to_swp_entry(entry), dst_vma); 5459 5460 if (marker) 5461 set_huge_pte_at(dst, addr, dst_pte, 5462 make_pte_marker(marker), sz); 5463 } else { 5464 entry = huge_ptep_get(src_pte); 5465 pte_folio = page_folio(pte_page(entry)); 5466 folio_get(pte_folio); 5467 5468 /* 5469 * Failing to duplicate the anon rmap is a rare case 5470 * where we see pinned hugetlb pages while they're 5471 * prone to COW. We need to do the COW earlier during 5472 * fork. 5473 * 5474 * When pre-allocating the page or copying data, we 5475 * need to be without the pgtable locks since we could 5476 * sleep during the process. 5477 */ 5478 if (!folio_test_anon(pte_folio)) { 5479 hugetlb_add_file_rmap(pte_folio); 5480 } else if (hugetlb_try_dup_anon_rmap(pte_folio, src_vma)) { 5481 pte_t src_pte_old = entry; 5482 struct folio *new_folio; 5483 5484 spin_unlock(src_ptl); 5485 spin_unlock(dst_ptl); 5486 /* Do not use reserve as it's private owned */ 5487 new_folio = alloc_hugetlb_folio(dst_vma, addr, 1); 5488 if (IS_ERR(new_folio)) { 5489 folio_put(pte_folio); 5490 ret = PTR_ERR(new_folio); 5491 break; 5492 } 5493 ret = copy_user_large_folio(new_folio, 5494 pte_folio, 5495 addr, dst_vma); 5496 folio_put(pte_folio); 5497 if (ret) { 5498 folio_put(new_folio); 5499 break; 5500 } 5501 5502 /* Install the new hugetlb folio if src pte stable */ 5503 dst_ptl = huge_pte_lock(h, dst, dst_pte); 5504 src_ptl = huge_pte_lockptr(h, src, src_pte); 5505 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 5506 entry = huge_ptep_get(src_pte); 5507 if (!pte_same(src_pte_old, entry)) { 5508 restore_reserve_on_error(h, dst_vma, addr, 5509 new_folio); 5510 folio_put(new_folio); 5511 /* huge_ptep of dst_pte won't change as in child */ 5512 goto again; 5513 } 5514 hugetlb_install_folio(dst_vma, dst_pte, addr, 5515 new_folio, src_pte_old, sz); 5516 spin_unlock(src_ptl); 5517 spin_unlock(dst_ptl); 5518 continue; 5519 } 5520 5521 if (cow) { 5522 /* 5523 * No need to notify as we are downgrading page 5524 * table protection not changing it to point 5525 * to a new page. 5526 * 5527 * See Documentation/mm/mmu_notifier.rst 5528 */ 5529 huge_ptep_set_wrprotect(src, addr, src_pte); 5530 entry = huge_pte_wrprotect(entry); 5531 } 5532 5533 if (!userfaultfd_wp(dst_vma)) 5534 entry = huge_pte_clear_uffd_wp(entry); 5535 5536 set_huge_pte_at(dst, addr, dst_pte, entry, sz); 5537 hugetlb_count_add(npages, dst); 5538 } 5539 spin_unlock(src_ptl); 5540 spin_unlock(dst_ptl); 5541 } 5542 5543 if (cow) { 5544 raw_write_seqcount_end(&src->write_protect_seq); 5545 mmu_notifier_invalidate_range_end(&range); 5546 } else { 5547 hugetlb_vma_unlock_read(src_vma); 5548 } 5549 5550 return ret; 5551 } 5552 5553 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr, 5554 unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte, 5555 unsigned long sz) 5556 { 5557 struct hstate *h = hstate_vma(vma); 5558 struct mm_struct *mm = vma->vm_mm; 5559 spinlock_t *src_ptl, *dst_ptl; 5560 pte_t pte; 5561 5562 dst_ptl = huge_pte_lock(h, mm, dst_pte); 5563 src_ptl = huge_pte_lockptr(h, mm, src_pte); 5564 5565 /* 5566 * We don't have to worry about the ordering of src and dst ptlocks 5567 * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock. 5568 */ 5569 if (src_ptl != dst_ptl) 5570 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 5571 5572 pte = huge_ptep_get_and_clear(mm, old_addr, src_pte); 5573 set_huge_pte_at(mm, new_addr, dst_pte, pte, sz); 5574 5575 if (src_ptl != dst_ptl) 5576 spin_unlock(src_ptl); 5577 spin_unlock(dst_ptl); 5578 } 5579 5580 int move_hugetlb_page_tables(struct vm_area_struct *vma, 5581 struct vm_area_struct *new_vma, 5582 unsigned long old_addr, unsigned long new_addr, 5583 unsigned long len) 5584 { 5585 struct hstate *h = hstate_vma(vma); 5586 struct address_space *mapping = vma->vm_file->f_mapping; 5587 unsigned long sz = huge_page_size(h); 5588 struct mm_struct *mm = vma->vm_mm; 5589 unsigned long old_end = old_addr + len; 5590 unsigned long last_addr_mask; 5591 pte_t *src_pte, *dst_pte; 5592 struct mmu_notifier_range range; 5593 bool shared_pmd = false; 5594 5595 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr, 5596 old_end); 5597 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 5598 /* 5599 * In case of shared PMDs, we should cover the maximum possible 5600 * range. 5601 */ 5602 flush_cache_range(vma, range.start, range.end); 5603 5604 mmu_notifier_invalidate_range_start(&range); 5605 last_addr_mask = hugetlb_mask_last_page(h); 5606 /* Prevent race with file truncation */ 5607 hugetlb_vma_lock_write(vma); 5608 i_mmap_lock_write(mapping); 5609 for (; old_addr < old_end; old_addr += sz, new_addr += sz) { 5610 src_pte = hugetlb_walk(vma, old_addr, sz); 5611 if (!src_pte) { 5612 old_addr |= last_addr_mask; 5613 new_addr |= last_addr_mask; 5614 continue; 5615 } 5616 if (huge_pte_none(huge_ptep_get(src_pte))) 5617 continue; 5618 5619 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) { 5620 shared_pmd = true; 5621 old_addr |= last_addr_mask; 5622 new_addr |= last_addr_mask; 5623 continue; 5624 } 5625 5626 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz); 5627 if (!dst_pte) 5628 break; 5629 5630 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte, sz); 5631 } 5632 5633 if (shared_pmd) 5634 flush_hugetlb_tlb_range(vma, range.start, range.end); 5635 else 5636 flush_hugetlb_tlb_range(vma, old_end - len, old_end); 5637 mmu_notifier_invalidate_range_end(&range); 5638 i_mmap_unlock_write(mapping); 5639 hugetlb_vma_unlock_write(vma); 5640 5641 return len + old_addr - old_end; 5642 } 5643 5644 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma, 5645 unsigned long start, unsigned long end, 5646 struct page *ref_page, zap_flags_t zap_flags) 5647 { 5648 struct mm_struct *mm = vma->vm_mm; 5649 unsigned long address; 5650 pte_t *ptep; 5651 pte_t pte; 5652 spinlock_t *ptl; 5653 struct page *page; 5654 struct hstate *h = hstate_vma(vma); 5655 unsigned long sz = huge_page_size(h); 5656 bool adjust_reservation = false; 5657 unsigned long last_addr_mask; 5658 bool force_flush = false; 5659 5660 WARN_ON(!is_vm_hugetlb_page(vma)); 5661 BUG_ON(start & ~huge_page_mask(h)); 5662 BUG_ON(end & ~huge_page_mask(h)); 5663 5664 /* 5665 * This is a hugetlb vma, all the pte entries should point 5666 * to huge page. 5667 */ 5668 tlb_change_page_size(tlb, sz); 5669 tlb_start_vma(tlb, vma); 5670 5671 last_addr_mask = hugetlb_mask_last_page(h); 5672 address = start; 5673 for (; address < end; address += sz) { 5674 ptep = hugetlb_walk(vma, address, sz); 5675 if (!ptep) { 5676 address |= last_addr_mask; 5677 continue; 5678 } 5679 5680 ptl = huge_pte_lock(h, mm, ptep); 5681 if (huge_pmd_unshare(mm, vma, address, ptep)) { 5682 spin_unlock(ptl); 5683 tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE); 5684 force_flush = true; 5685 address |= last_addr_mask; 5686 continue; 5687 } 5688 5689 pte = huge_ptep_get(ptep); 5690 if (huge_pte_none(pte)) { 5691 spin_unlock(ptl); 5692 continue; 5693 } 5694 5695 /* 5696 * Migrating hugepage or HWPoisoned hugepage is already 5697 * unmapped and its refcount is dropped, so just clear pte here. 5698 */ 5699 if (unlikely(!pte_present(pte))) { 5700 /* 5701 * If the pte was wr-protected by uffd-wp in any of the 5702 * swap forms, meanwhile the caller does not want to 5703 * drop the uffd-wp bit in this zap, then replace the 5704 * pte with a marker. 5705 */ 5706 if (pte_swp_uffd_wp_any(pte) && 5707 !(zap_flags & ZAP_FLAG_DROP_MARKER)) 5708 set_huge_pte_at(mm, address, ptep, 5709 make_pte_marker(PTE_MARKER_UFFD_WP), 5710 sz); 5711 else 5712 huge_pte_clear(mm, address, ptep, sz); 5713 spin_unlock(ptl); 5714 continue; 5715 } 5716 5717 page = pte_page(pte); 5718 /* 5719 * If a reference page is supplied, it is because a specific 5720 * page is being unmapped, not a range. Ensure the page we 5721 * are about to unmap is the actual page of interest. 5722 */ 5723 if (ref_page) { 5724 if (page != ref_page) { 5725 spin_unlock(ptl); 5726 continue; 5727 } 5728 /* 5729 * Mark the VMA as having unmapped its page so that 5730 * future faults in this VMA will fail rather than 5731 * looking like data was lost 5732 */ 5733 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); 5734 } 5735 5736 pte = huge_ptep_get_and_clear(mm, address, ptep); 5737 tlb_remove_huge_tlb_entry(h, tlb, ptep, address); 5738 if (huge_pte_dirty(pte)) 5739 set_page_dirty(page); 5740 /* Leave a uffd-wp pte marker if needed */ 5741 if (huge_pte_uffd_wp(pte) && 5742 !(zap_flags & ZAP_FLAG_DROP_MARKER)) 5743 set_huge_pte_at(mm, address, ptep, 5744 make_pte_marker(PTE_MARKER_UFFD_WP), 5745 sz); 5746 hugetlb_count_sub(pages_per_huge_page(h), mm); 5747 hugetlb_remove_rmap(page_folio(page)); 5748 5749 /* 5750 * Restore the reservation for anonymous page, otherwise the 5751 * backing page could be stolen by someone. 5752 * If there we are freeing a surplus, do not set the restore 5753 * reservation bit. 5754 */ 5755 if (!h->surplus_huge_pages && __vma_private_lock(vma) && 5756 folio_test_anon(page_folio(page))) { 5757 folio_set_hugetlb_restore_reserve(page_folio(page)); 5758 /* Reservation to be adjusted after the spin lock */ 5759 adjust_reservation = true; 5760 } 5761 5762 spin_unlock(ptl); 5763 5764 /* 5765 * Adjust the reservation for the region that will have the 5766 * reserve restored. Keep in mind that vma_needs_reservation() changes 5767 * resv->adds_in_progress if it succeeds. If this is not done, 5768 * do_exit() will not see it, and will keep the reservation 5769 * forever. 5770 */ 5771 if (adjust_reservation && vma_needs_reservation(h, vma, address)) 5772 vma_add_reservation(h, vma, address); 5773 5774 tlb_remove_page_size(tlb, page, huge_page_size(h)); 5775 /* 5776 * Bail out after unmapping reference page if supplied 5777 */ 5778 if (ref_page) 5779 break; 5780 } 5781 tlb_end_vma(tlb, vma); 5782 5783 /* 5784 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We 5785 * could defer the flush until now, since by holding i_mmap_rwsem we 5786 * guaranteed that the last refernece would not be dropped. But we must 5787 * do the flushing before we return, as otherwise i_mmap_rwsem will be 5788 * dropped and the last reference to the shared PMDs page might be 5789 * dropped as well. 5790 * 5791 * In theory we could defer the freeing of the PMD pages as well, but 5792 * huge_pmd_unshare() relies on the exact page_count for the PMD page to 5793 * detect sharing, so we cannot defer the release of the page either. 5794 * Instead, do flush now. 5795 */ 5796 if (force_flush) 5797 tlb_flush_mmu_tlbonly(tlb); 5798 } 5799 5800 void __hugetlb_zap_begin(struct vm_area_struct *vma, 5801 unsigned long *start, unsigned long *end) 5802 { 5803 if (!vma->vm_file) /* hugetlbfs_file_mmap error */ 5804 return; 5805 5806 adjust_range_if_pmd_sharing_possible(vma, start, end); 5807 hugetlb_vma_lock_write(vma); 5808 if (vma->vm_file) 5809 i_mmap_lock_write(vma->vm_file->f_mapping); 5810 } 5811 5812 void __hugetlb_zap_end(struct vm_area_struct *vma, 5813 struct zap_details *details) 5814 { 5815 zap_flags_t zap_flags = details ? details->zap_flags : 0; 5816 5817 if (!vma->vm_file) /* hugetlbfs_file_mmap error */ 5818 return; 5819 5820 if (zap_flags & ZAP_FLAG_UNMAP) { /* final unmap */ 5821 /* 5822 * Unlock and free the vma lock before releasing i_mmap_rwsem. 5823 * When the vma_lock is freed, this makes the vma ineligible 5824 * for pmd sharing. And, i_mmap_rwsem is required to set up 5825 * pmd sharing. This is important as page tables for this 5826 * unmapped range will be asynchrously deleted. If the page 5827 * tables are shared, there will be issues when accessed by 5828 * someone else. 5829 */ 5830 __hugetlb_vma_unlock_write_free(vma); 5831 } else { 5832 hugetlb_vma_unlock_write(vma); 5833 } 5834 5835 if (vma->vm_file) 5836 i_mmap_unlock_write(vma->vm_file->f_mapping); 5837 } 5838 5839 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, 5840 unsigned long end, struct page *ref_page, 5841 zap_flags_t zap_flags) 5842 { 5843 struct mmu_notifier_range range; 5844 struct mmu_gather tlb; 5845 5846 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 5847 start, end); 5848 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 5849 mmu_notifier_invalidate_range_start(&range); 5850 tlb_gather_mmu(&tlb, vma->vm_mm); 5851 5852 __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags); 5853 5854 mmu_notifier_invalidate_range_end(&range); 5855 tlb_finish_mmu(&tlb); 5856 } 5857 5858 /* 5859 * This is called when the original mapper is failing to COW a MAP_PRIVATE 5860 * mapping it owns the reserve page for. The intention is to unmap the page 5861 * from other VMAs and let the children be SIGKILLed if they are faulting the 5862 * same region. 5863 */ 5864 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, 5865 struct page *page, unsigned long address) 5866 { 5867 struct hstate *h = hstate_vma(vma); 5868 struct vm_area_struct *iter_vma; 5869 struct address_space *mapping; 5870 pgoff_t pgoff; 5871 5872 /* 5873 * vm_pgoff is in PAGE_SIZE units, hence the different calculation 5874 * from page cache lookup which is in HPAGE_SIZE units. 5875 */ 5876 address = address & huge_page_mask(h); 5877 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + 5878 vma->vm_pgoff; 5879 mapping = vma->vm_file->f_mapping; 5880 5881 /* 5882 * Take the mapping lock for the duration of the table walk. As 5883 * this mapping should be shared between all the VMAs, 5884 * __unmap_hugepage_range() is called as the lock is already held 5885 */ 5886 i_mmap_lock_write(mapping); 5887 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) { 5888 /* Do not unmap the current VMA */ 5889 if (iter_vma == vma) 5890 continue; 5891 5892 /* 5893 * Shared VMAs have their own reserves and do not affect 5894 * MAP_PRIVATE accounting but it is possible that a shared 5895 * VMA is using the same page so check and skip such VMAs. 5896 */ 5897 if (iter_vma->vm_flags & VM_MAYSHARE) 5898 continue; 5899 5900 /* 5901 * Unmap the page from other VMAs without their own reserves. 5902 * They get marked to be SIGKILLed if they fault in these 5903 * areas. This is because a future no-page fault on this VMA 5904 * could insert a zeroed page instead of the data existing 5905 * from the time of fork. This would look like data corruption 5906 */ 5907 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) 5908 unmap_hugepage_range(iter_vma, address, 5909 address + huge_page_size(h), page, 0); 5910 } 5911 i_mmap_unlock_write(mapping); 5912 } 5913 5914 /* 5915 * hugetlb_wp() should be called with page lock of the original hugepage held. 5916 * Called with hugetlb_fault_mutex_table held and pte_page locked so we 5917 * cannot race with other handlers or page migration. 5918 * Keep the pte_same checks anyway to make transition from the mutex easier. 5919 */ 5920 static vm_fault_t hugetlb_wp(struct folio *pagecache_folio, 5921 struct vm_fault *vmf) 5922 { 5923 struct vm_area_struct *vma = vmf->vma; 5924 struct mm_struct *mm = vma->vm_mm; 5925 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 5926 pte_t pte = huge_ptep_get(vmf->pte); 5927 struct hstate *h = hstate_vma(vma); 5928 struct folio *old_folio; 5929 struct folio *new_folio; 5930 int outside_reserve = 0; 5931 vm_fault_t ret = 0; 5932 struct mmu_notifier_range range; 5933 5934 /* 5935 * Never handle CoW for uffd-wp protected pages. It should be only 5936 * handled when the uffd-wp protection is removed. 5937 * 5938 * Note that only the CoW optimization path (in hugetlb_no_page()) 5939 * can trigger this, because hugetlb_fault() will always resolve 5940 * uffd-wp bit first. 5941 */ 5942 if (!unshare && huge_pte_uffd_wp(pte)) 5943 return 0; 5944 5945 /* 5946 * hugetlb does not support FOLL_FORCE-style write faults that keep the 5947 * PTE mapped R/O such as maybe_mkwrite() would do. 5948 */ 5949 if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE))) 5950 return VM_FAULT_SIGSEGV; 5951 5952 /* Let's take out MAP_SHARED mappings first. */ 5953 if (vma->vm_flags & VM_MAYSHARE) { 5954 set_huge_ptep_writable(vma, vmf->address, vmf->pte); 5955 return 0; 5956 } 5957 5958 old_folio = page_folio(pte_page(pte)); 5959 5960 delayacct_wpcopy_start(); 5961 5962 retry_avoidcopy: 5963 /* 5964 * If no-one else is actually using this page, we're the exclusive 5965 * owner and can reuse this page. 5966 * 5967 * Note that we don't rely on the (safer) folio refcount here, because 5968 * copying the hugetlb folio when there are unexpected (temporary) 5969 * folio references could harm simple fork()+exit() users when 5970 * we run out of free hugetlb folios: we would have to kill processes 5971 * in scenarios that used to work. As a side effect, there can still 5972 * be leaks between processes, for example, with FOLL_GET users. 5973 */ 5974 if (folio_mapcount(old_folio) == 1 && folio_test_anon(old_folio)) { 5975 if (!PageAnonExclusive(&old_folio->page)) { 5976 folio_move_anon_rmap(old_folio, vma); 5977 SetPageAnonExclusive(&old_folio->page); 5978 } 5979 if (likely(!unshare)) 5980 set_huge_ptep_writable(vma, vmf->address, vmf->pte); 5981 5982 delayacct_wpcopy_end(); 5983 return 0; 5984 } 5985 VM_BUG_ON_PAGE(folio_test_anon(old_folio) && 5986 PageAnonExclusive(&old_folio->page), &old_folio->page); 5987 5988 /* 5989 * If the process that created a MAP_PRIVATE mapping is about to 5990 * perform a COW due to a shared page count, attempt to satisfy 5991 * the allocation without using the existing reserves. The pagecache 5992 * page is used to determine if the reserve at this address was 5993 * consumed or not. If reserves were used, a partial faulted mapping 5994 * at the time of fork() could consume its reserves on COW instead 5995 * of the full address range. 5996 */ 5997 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && 5998 old_folio != pagecache_folio) 5999 outside_reserve = 1; 6000 6001 folio_get(old_folio); 6002 6003 /* 6004 * Drop page table lock as buddy allocator may be called. It will 6005 * be acquired again before returning to the caller, as expected. 6006 */ 6007 spin_unlock(vmf->ptl); 6008 new_folio = alloc_hugetlb_folio(vma, vmf->address, outside_reserve); 6009 6010 if (IS_ERR(new_folio)) { 6011 /* 6012 * If a process owning a MAP_PRIVATE mapping fails to COW, 6013 * it is due to references held by a child and an insufficient 6014 * huge page pool. To guarantee the original mappers 6015 * reliability, unmap the page from child processes. The child 6016 * may get SIGKILLed if it later faults. 6017 */ 6018 if (outside_reserve) { 6019 struct address_space *mapping = vma->vm_file->f_mapping; 6020 pgoff_t idx; 6021 u32 hash; 6022 6023 folio_put(old_folio); 6024 /* 6025 * Drop hugetlb_fault_mutex and vma_lock before 6026 * unmapping. unmapping needs to hold vma_lock 6027 * in write mode. Dropping vma_lock in read mode 6028 * here is OK as COW mappings do not interact with 6029 * PMD sharing. 6030 * 6031 * Reacquire both after unmap operation. 6032 */ 6033 idx = vma_hugecache_offset(h, vma, vmf->address); 6034 hash = hugetlb_fault_mutex_hash(mapping, idx); 6035 hugetlb_vma_unlock_read(vma); 6036 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6037 6038 unmap_ref_private(mm, vma, &old_folio->page, 6039 vmf->address); 6040 6041 mutex_lock(&hugetlb_fault_mutex_table[hash]); 6042 hugetlb_vma_lock_read(vma); 6043 spin_lock(vmf->ptl); 6044 vmf->pte = hugetlb_walk(vma, vmf->address, 6045 huge_page_size(h)); 6046 if (likely(vmf->pte && 6047 pte_same(huge_ptep_get(vmf->pte), pte))) 6048 goto retry_avoidcopy; 6049 /* 6050 * race occurs while re-acquiring page table 6051 * lock, and our job is done. 6052 */ 6053 delayacct_wpcopy_end(); 6054 return 0; 6055 } 6056 6057 ret = vmf_error(PTR_ERR(new_folio)); 6058 goto out_release_old; 6059 } 6060 6061 /* 6062 * When the original hugepage is shared one, it does not have 6063 * anon_vma prepared. 6064 */ 6065 ret = vmf_anon_prepare(vmf); 6066 if (unlikely(ret)) 6067 goto out_release_all; 6068 6069 if (copy_user_large_folio(new_folio, old_folio, vmf->real_address, vma)) { 6070 ret = VM_FAULT_HWPOISON_LARGE | VM_FAULT_SET_HINDEX(hstate_index(h)); 6071 goto out_release_all; 6072 } 6073 __folio_mark_uptodate(new_folio); 6074 6075 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, vmf->address, 6076 vmf->address + huge_page_size(h)); 6077 mmu_notifier_invalidate_range_start(&range); 6078 6079 /* 6080 * Retake the page table lock to check for racing updates 6081 * before the page tables are altered 6082 */ 6083 spin_lock(vmf->ptl); 6084 vmf->pte = hugetlb_walk(vma, vmf->address, huge_page_size(h)); 6085 if (likely(vmf->pte && pte_same(huge_ptep_get(vmf->pte), pte))) { 6086 pte_t newpte = make_huge_pte(vma, &new_folio->page, !unshare); 6087 6088 /* Break COW or unshare */ 6089 huge_ptep_clear_flush(vma, vmf->address, vmf->pte); 6090 hugetlb_remove_rmap(old_folio); 6091 hugetlb_add_new_anon_rmap(new_folio, vma, vmf->address); 6092 if (huge_pte_uffd_wp(pte)) 6093 newpte = huge_pte_mkuffd_wp(newpte); 6094 set_huge_pte_at(mm, vmf->address, vmf->pte, newpte, 6095 huge_page_size(h)); 6096 folio_set_hugetlb_migratable(new_folio); 6097 /* Make the old page be freed below */ 6098 new_folio = old_folio; 6099 } 6100 spin_unlock(vmf->ptl); 6101 mmu_notifier_invalidate_range_end(&range); 6102 out_release_all: 6103 /* 6104 * No restore in case of successful pagetable update (Break COW or 6105 * unshare) 6106 */ 6107 if (new_folio != old_folio) 6108 restore_reserve_on_error(h, vma, vmf->address, new_folio); 6109 folio_put(new_folio); 6110 out_release_old: 6111 folio_put(old_folio); 6112 6113 spin_lock(vmf->ptl); /* Caller expects lock to be held */ 6114 6115 delayacct_wpcopy_end(); 6116 return ret; 6117 } 6118 6119 /* 6120 * Return whether there is a pagecache page to back given address within VMA. 6121 */ 6122 bool hugetlbfs_pagecache_present(struct hstate *h, 6123 struct vm_area_struct *vma, unsigned long address) 6124 { 6125 struct address_space *mapping = vma->vm_file->f_mapping; 6126 pgoff_t idx = linear_page_index(vma, address); 6127 struct folio *folio; 6128 6129 folio = filemap_get_folio(mapping, idx); 6130 if (IS_ERR(folio)) 6131 return false; 6132 folio_put(folio); 6133 return true; 6134 } 6135 6136 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping, 6137 pgoff_t idx) 6138 { 6139 struct inode *inode = mapping->host; 6140 struct hstate *h = hstate_inode(inode); 6141 int err; 6142 6143 idx <<= huge_page_order(h); 6144 __folio_set_locked(folio); 6145 err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL); 6146 6147 if (unlikely(err)) { 6148 __folio_clear_locked(folio); 6149 return err; 6150 } 6151 folio_clear_hugetlb_restore_reserve(folio); 6152 6153 /* 6154 * mark folio dirty so that it will not be removed from cache/file 6155 * by non-hugetlbfs specific code paths. 6156 */ 6157 folio_mark_dirty(folio); 6158 6159 spin_lock(&inode->i_lock); 6160 inode->i_blocks += blocks_per_huge_page(h); 6161 spin_unlock(&inode->i_lock); 6162 return 0; 6163 } 6164 6165 static inline vm_fault_t hugetlb_handle_userfault(struct vm_fault *vmf, 6166 struct address_space *mapping, 6167 unsigned long reason) 6168 { 6169 u32 hash; 6170 6171 /* 6172 * vma_lock and hugetlb_fault_mutex must be dropped before handling 6173 * userfault. Also mmap_lock could be dropped due to handling 6174 * userfault, any vma operation should be careful from here. 6175 */ 6176 hugetlb_vma_unlock_read(vmf->vma); 6177 hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff); 6178 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6179 return handle_userfault(vmf, reason); 6180 } 6181 6182 /* 6183 * Recheck pte with pgtable lock. Returns true if pte didn't change, or 6184 * false if pte changed or is changing. 6185 */ 6186 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm, 6187 pte_t *ptep, pte_t old_pte) 6188 { 6189 spinlock_t *ptl; 6190 bool same; 6191 6192 ptl = huge_pte_lock(h, mm, ptep); 6193 same = pte_same(huge_ptep_get(ptep), old_pte); 6194 spin_unlock(ptl); 6195 6196 return same; 6197 } 6198 6199 static vm_fault_t hugetlb_no_page(struct address_space *mapping, 6200 struct vm_fault *vmf) 6201 { 6202 struct vm_area_struct *vma = vmf->vma; 6203 struct mm_struct *mm = vma->vm_mm; 6204 struct hstate *h = hstate_vma(vma); 6205 vm_fault_t ret = VM_FAULT_SIGBUS; 6206 int anon_rmap = 0; 6207 unsigned long size; 6208 struct folio *folio; 6209 pte_t new_pte; 6210 bool new_folio, new_pagecache_folio = false; 6211 u32 hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff); 6212 6213 /* 6214 * Currently, we are forced to kill the process in the event the 6215 * original mapper has unmapped pages from the child due to a failed 6216 * COW/unsharing. Warn that such a situation has occurred as it may not 6217 * be obvious. 6218 */ 6219 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { 6220 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n", 6221 current->pid); 6222 goto out; 6223 } 6224 6225 /* 6226 * Use page lock to guard against racing truncation 6227 * before we get page_table_lock. 6228 */ 6229 new_folio = false; 6230 folio = filemap_lock_hugetlb_folio(h, mapping, vmf->pgoff); 6231 if (IS_ERR(folio)) { 6232 size = i_size_read(mapping->host) >> huge_page_shift(h); 6233 if (vmf->pgoff >= size) 6234 goto out; 6235 /* Check for page in userfault range */ 6236 if (userfaultfd_missing(vma)) { 6237 /* 6238 * Since hugetlb_no_page() was examining pte 6239 * without pgtable lock, we need to re-test under 6240 * lock because the pte may not be stable and could 6241 * have changed from under us. Try to detect 6242 * either changed or during-changing ptes and retry 6243 * properly when needed. 6244 * 6245 * Note that userfaultfd is actually fine with 6246 * false positives (e.g. caused by pte changed), 6247 * but not wrong logical events (e.g. caused by 6248 * reading a pte during changing). The latter can 6249 * confuse the userspace, so the strictness is very 6250 * much preferred. E.g., MISSING event should 6251 * never happen on the page after UFFDIO_COPY has 6252 * correctly installed the page and returned. 6253 */ 6254 if (!hugetlb_pte_stable(h, mm, vmf->pte, vmf->orig_pte)) { 6255 ret = 0; 6256 goto out; 6257 } 6258 6259 return hugetlb_handle_userfault(vmf, mapping, 6260 VM_UFFD_MISSING); 6261 } 6262 6263 if (!(vma->vm_flags & VM_MAYSHARE)) { 6264 ret = vmf_anon_prepare(vmf); 6265 if (unlikely(ret)) 6266 goto out; 6267 } 6268 6269 folio = alloc_hugetlb_folio(vma, vmf->address, 0); 6270 if (IS_ERR(folio)) { 6271 /* 6272 * Returning error will result in faulting task being 6273 * sent SIGBUS. The hugetlb fault mutex prevents two 6274 * tasks from racing to fault in the same page which 6275 * could result in false unable to allocate errors. 6276 * Page migration does not take the fault mutex, but 6277 * does a clear then write of pte's under page table 6278 * lock. Page fault code could race with migration, 6279 * notice the clear pte and try to allocate a page 6280 * here. Before returning error, get ptl and make 6281 * sure there really is no pte entry. 6282 */ 6283 if (hugetlb_pte_stable(h, mm, vmf->pte, vmf->orig_pte)) 6284 ret = vmf_error(PTR_ERR(folio)); 6285 else 6286 ret = 0; 6287 goto out; 6288 } 6289 clear_huge_page(&folio->page, vmf->real_address, 6290 pages_per_huge_page(h)); 6291 __folio_mark_uptodate(folio); 6292 new_folio = true; 6293 6294 if (vma->vm_flags & VM_MAYSHARE) { 6295 int err = hugetlb_add_to_page_cache(folio, mapping, 6296 vmf->pgoff); 6297 if (err) { 6298 /* 6299 * err can't be -EEXIST which implies someone 6300 * else consumed the reservation since hugetlb 6301 * fault mutex is held when add a hugetlb page 6302 * to the page cache. So it's safe to call 6303 * restore_reserve_on_error() here. 6304 */ 6305 restore_reserve_on_error(h, vma, vmf->address, 6306 folio); 6307 folio_put(folio); 6308 ret = VM_FAULT_SIGBUS; 6309 goto out; 6310 } 6311 new_pagecache_folio = true; 6312 } else { 6313 folio_lock(folio); 6314 anon_rmap = 1; 6315 } 6316 } else { 6317 /* 6318 * If memory error occurs between mmap() and fault, some process 6319 * don't have hwpoisoned swap entry for errored virtual address. 6320 * So we need to block hugepage fault by PG_hwpoison bit check. 6321 */ 6322 if (unlikely(folio_test_hwpoison(folio))) { 6323 ret = VM_FAULT_HWPOISON_LARGE | 6324 VM_FAULT_SET_HINDEX(hstate_index(h)); 6325 goto backout_unlocked; 6326 } 6327 6328 /* Check for page in userfault range. */ 6329 if (userfaultfd_minor(vma)) { 6330 folio_unlock(folio); 6331 folio_put(folio); 6332 /* See comment in userfaultfd_missing() block above */ 6333 if (!hugetlb_pte_stable(h, mm, vmf->pte, vmf->orig_pte)) { 6334 ret = 0; 6335 goto out; 6336 } 6337 return hugetlb_handle_userfault(vmf, mapping, 6338 VM_UFFD_MINOR); 6339 } 6340 } 6341 6342 /* 6343 * If we are going to COW a private mapping later, we examine the 6344 * pending reservations for this page now. This will ensure that 6345 * any allocations necessary to record that reservation occur outside 6346 * the spinlock. 6347 */ 6348 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 6349 if (vma_needs_reservation(h, vma, vmf->address) < 0) { 6350 ret = VM_FAULT_OOM; 6351 goto backout_unlocked; 6352 } 6353 /* Just decrements count, does not deallocate */ 6354 vma_end_reservation(h, vma, vmf->address); 6355 } 6356 6357 vmf->ptl = huge_pte_lock(h, mm, vmf->pte); 6358 ret = 0; 6359 /* If pte changed from under us, retry */ 6360 if (!pte_same(huge_ptep_get(vmf->pte), vmf->orig_pte)) 6361 goto backout; 6362 6363 if (anon_rmap) 6364 hugetlb_add_new_anon_rmap(folio, vma, vmf->address); 6365 else 6366 hugetlb_add_file_rmap(folio); 6367 new_pte = make_huge_pte(vma, &folio->page, ((vma->vm_flags & VM_WRITE) 6368 && (vma->vm_flags & VM_SHARED))); 6369 /* 6370 * If this pte was previously wr-protected, keep it wr-protected even 6371 * if populated. 6372 */ 6373 if (unlikely(pte_marker_uffd_wp(vmf->orig_pte))) 6374 new_pte = huge_pte_mkuffd_wp(new_pte); 6375 set_huge_pte_at(mm, vmf->address, vmf->pte, new_pte, huge_page_size(h)); 6376 6377 hugetlb_count_add(pages_per_huge_page(h), mm); 6378 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 6379 /* Optimization, do the COW without a second fault */ 6380 ret = hugetlb_wp(folio, vmf); 6381 } 6382 6383 spin_unlock(vmf->ptl); 6384 6385 /* 6386 * Only set hugetlb_migratable in newly allocated pages. Existing pages 6387 * found in the pagecache may not have hugetlb_migratable if they have 6388 * been isolated for migration. 6389 */ 6390 if (new_folio) 6391 folio_set_hugetlb_migratable(folio); 6392 6393 folio_unlock(folio); 6394 out: 6395 hugetlb_vma_unlock_read(vma); 6396 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6397 return ret; 6398 6399 backout: 6400 spin_unlock(vmf->ptl); 6401 backout_unlocked: 6402 if (new_folio && !new_pagecache_folio) 6403 restore_reserve_on_error(h, vma, vmf->address, folio); 6404 6405 folio_unlock(folio); 6406 folio_put(folio); 6407 goto out; 6408 } 6409 6410 #ifdef CONFIG_SMP 6411 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 6412 { 6413 unsigned long key[2]; 6414 u32 hash; 6415 6416 key[0] = (unsigned long) mapping; 6417 key[1] = idx; 6418 6419 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0); 6420 6421 return hash & (num_fault_mutexes - 1); 6422 } 6423 #else 6424 /* 6425 * For uniprocessor systems we always use a single mutex, so just 6426 * return 0 and avoid the hashing overhead. 6427 */ 6428 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 6429 { 6430 return 0; 6431 } 6432 #endif 6433 6434 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, 6435 unsigned long address, unsigned int flags) 6436 { 6437 vm_fault_t ret; 6438 u32 hash; 6439 struct folio *folio = NULL; 6440 struct folio *pagecache_folio = NULL; 6441 struct hstate *h = hstate_vma(vma); 6442 struct address_space *mapping; 6443 int need_wait_lock = 0; 6444 struct vm_fault vmf = { 6445 .vma = vma, 6446 .address = address & huge_page_mask(h), 6447 .real_address = address, 6448 .flags = flags, 6449 .pgoff = vma_hugecache_offset(h, vma, 6450 address & huge_page_mask(h)), 6451 /* TODO: Track hugetlb faults using vm_fault */ 6452 6453 /* 6454 * Some fields may not be initialized, be careful as it may 6455 * be hard to debug if called functions make assumptions 6456 */ 6457 }; 6458 6459 /* 6460 * Serialize hugepage allocation and instantiation, so that we don't 6461 * get spurious allocation failures if two CPUs race to instantiate 6462 * the same page in the page cache. 6463 */ 6464 mapping = vma->vm_file->f_mapping; 6465 hash = hugetlb_fault_mutex_hash(mapping, vmf.pgoff); 6466 mutex_lock(&hugetlb_fault_mutex_table[hash]); 6467 6468 /* 6469 * Acquire vma lock before calling huge_pte_alloc and hold 6470 * until finished with vmf.pte. This prevents huge_pmd_unshare from 6471 * being called elsewhere and making the vmf.pte no longer valid. 6472 */ 6473 hugetlb_vma_lock_read(vma); 6474 vmf.pte = huge_pte_alloc(mm, vma, vmf.address, huge_page_size(h)); 6475 if (!vmf.pte) { 6476 hugetlb_vma_unlock_read(vma); 6477 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6478 return VM_FAULT_OOM; 6479 } 6480 6481 vmf.orig_pte = huge_ptep_get(vmf.pte); 6482 if (huge_pte_none_mostly(vmf.orig_pte)) { 6483 if (is_pte_marker(vmf.orig_pte)) { 6484 pte_marker marker = 6485 pte_marker_get(pte_to_swp_entry(vmf.orig_pte)); 6486 6487 if (marker & PTE_MARKER_POISONED) { 6488 ret = VM_FAULT_HWPOISON_LARGE | 6489 VM_FAULT_SET_HINDEX(hstate_index(h)); 6490 goto out_mutex; 6491 } 6492 } 6493 6494 /* 6495 * Other PTE markers should be handled the same way as none PTE. 6496 * 6497 * hugetlb_no_page will drop vma lock and hugetlb fault 6498 * mutex internally, which make us return immediately. 6499 */ 6500 return hugetlb_no_page(mapping, &vmf); 6501 } 6502 6503 ret = 0; 6504 6505 /* 6506 * vmf.orig_pte could be a migration/hwpoison vmf.orig_pte at this 6507 * point, so this check prevents the kernel from going below assuming 6508 * that we have an active hugepage in pagecache. This goto expects 6509 * the 2nd page fault, and is_hugetlb_entry_(migration|hwpoisoned) 6510 * check will properly handle it. 6511 */ 6512 if (!pte_present(vmf.orig_pte)) { 6513 if (unlikely(is_hugetlb_entry_migration(vmf.orig_pte))) { 6514 /* 6515 * Release the hugetlb fault lock now, but retain 6516 * the vma lock, because it is needed to guard the 6517 * huge_pte_lockptr() later in 6518 * migration_entry_wait_huge(). The vma lock will 6519 * be released there. 6520 */ 6521 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6522 migration_entry_wait_huge(vma, vmf.pte); 6523 return 0; 6524 } else if (unlikely(is_hugetlb_entry_hwpoisoned(vmf.orig_pte))) 6525 ret = VM_FAULT_HWPOISON_LARGE | 6526 VM_FAULT_SET_HINDEX(hstate_index(h)); 6527 goto out_mutex; 6528 } 6529 6530 /* 6531 * If we are going to COW/unshare the mapping later, we examine the 6532 * pending reservations for this page now. This will ensure that any 6533 * allocations necessary to record that reservation occur outside the 6534 * spinlock. Also lookup the pagecache page now as it is used to 6535 * determine if a reservation has been consumed. 6536 */ 6537 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) && 6538 !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(vmf.orig_pte)) { 6539 if (vma_needs_reservation(h, vma, vmf.address) < 0) { 6540 ret = VM_FAULT_OOM; 6541 goto out_mutex; 6542 } 6543 /* Just decrements count, does not deallocate */ 6544 vma_end_reservation(h, vma, vmf.address); 6545 6546 pagecache_folio = filemap_lock_hugetlb_folio(h, mapping, 6547 vmf.pgoff); 6548 if (IS_ERR(pagecache_folio)) 6549 pagecache_folio = NULL; 6550 } 6551 6552 vmf.ptl = huge_pte_lock(h, mm, vmf.pte); 6553 6554 /* Check for a racing update before calling hugetlb_wp() */ 6555 if (unlikely(!pte_same(vmf.orig_pte, huge_ptep_get(vmf.pte)))) 6556 goto out_ptl; 6557 6558 /* Handle userfault-wp first, before trying to lock more pages */ 6559 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(vmf.pte)) && 6560 (flags & FAULT_FLAG_WRITE) && !huge_pte_write(vmf.orig_pte)) { 6561 if (!userfaultfd_wp_async(vma)) { 6562 spin_unlock(vmf.ptl); 6563 if (pagecache_folio) { 6564 folio_unlock(pagecache_folio); 6565 folio_put(pagecache_folio); 6566 } 6567 hugetlb_vma_unlock_read(vma); 6568 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6569 return handle_userfault(&vmf, VM_UFFD_WP); 6570 } 6571 6572 vmf.orig_pte = huge_pte_clear_uffd_wp(vmf.orig_pte); 6573 set_huge_pte_at(mm, vmf.address, vmf.pte, vmf.orig_pte, 6574 huge_page_size(hstate_vma(vma))); 6575 /* Fallthrough to CoW */ 6576 } 6577 6578 /* 6579 * hugetlb_wp() requires page locks of pte_page(vmf.orig_pte) and 6580 * pagecache_folio, so here we need take the former one 6581 * when folio != pagecache_folio or !pagecache_folio. 6582 */ 6583 folio = page_folio(pte_page(vmf.orig_pte)); 6584 if (folio != pagecache_folio) 6585 if (!folio_trylock(folio)) { 6586 need_wait_lock = 1; 6587 goto out_ptl; 6588 } 6589 6590 folio_get(folio); 6591 6592 if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) { 6593 if (!huge_pte_write(vmf.orig_pte)) { 6594 ret = hugetlb_wp(pagecache_folio, &vmf); 6595 goto out_put_page; 6596 } else if (likely(flags & FAULT_FLAG_WRITE)) { 6597 vmf.orig_pte = huge_pte_mkdirty(vmf.orig_pte); 6598 } 6599 } 6600 vmf.orig_pte = pte_mkyoung(vmf.orig_pte); 6601 if (huge_ptep_set_access_flags(vma, vmf.address, vmf.pte, vmf.orig_pte, 6602 flags & FAULT_FLAG_WRITE)) 6603 update_mmu_cache(vma, vmf.address, vmf.pte); 6604 out_put_page: 6605 if (folio != pagecache_folio) 6606 folio_unlock(folio); 6607 folio_put(folio); 6608 out_ptl: 6609 spin_unlock(vmf.ptl); 6610 6611 if (pagecache_folio) { 6612 folio_unlock(pagecache_folio); 6613 folio_put(pagecache_folio); 6614 } 6615 out_mutex: 6616 hugetlb_vma_unlock_read(vma); 6617 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6618 /* 6619 * Generally it's safe to hold refcount during waiting page lock. But 6620 * here we just wait to defer the next page fault to avoid busy loop and 6621 * the page is not used after unlocked before returning from the current 6622 * page fault. So we are safe from accessing freed page, even if we wait 6623 * here without taking refcount. 6624 */ 6625 if (need_wait_lock) 6626 folio_wait_locked(folio); 6627 return ret; 6628 } 6629 6630 #ifdef CONFIG_USERFAULTFD 6631 /* 6632 * Can probably be eliminated, but still used by hugetlb_mfill_atomic_pte(). 6633 */ 6634 static struct folio *alloc_hugetlb_folio_vma(struct hstate *h, 6635 struct vm_area_struct *vma, unsigned long address) 6636 { 6637 struct mempolicy *mpol; 6638 nodemask_t *nodemask; 6639 struct folio *folio; 6640 gfp_t gfp_mask; 6641 int node; 6642 6643 gfp_mask = htlb_alloc_mask(h); 6644 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 6645 /* 6646 * This is used to allocate a temporary hugetlb to hold the copied 6647 * content, which will then be copied again to the final hugetlb 6648 * consuming a reservation. Set the alloc_fallback to false to indicate 6649 * that breaking the per-node hugetlb pool is not allowed in this case. 6650 */ 6651 folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask, false); 6652 mpol_cond_put(mpol); 6653 6654 return folio; 6655 } 6656 6657 /* 6658 * Used by userfaultfd UFFDIO_* ioctls. Based on userfaultfd's mfill_atomic_pte 6659 * with modifications for hugetlb pages. 6660 */ 6661 int hugetlb_mfill_atomic_pte(pte_t *dst_pte, 6662 struct vm_area_struct *dst_vma, 6663 unsigned long dst_addr, 6664 unsigned long src_addr, 6665 uffd_flags_t flags, 6666 struct folio **foliop) 6667 { 6668 struct mm_struct *dst_mm = dst_vma->vm_mm; 6669 bool is_continue = uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE); 6670 bool wp_enabled = (flags & MFILL_ATOMIC_WP); 6671 struct hstate *h = hstate_vma(dst_vma); 6672 struct address_space *mapping = dst_vma->vm_file->f_mapping; 6673 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr); 6674 unsigned long size; 6675 int vm_shared = dst_vma->vm_flags & VM_SHARED; 6676 pte_t _dst_pte; 6677 spinlock_t *ptl; 6678 int ret = -ENOMEM; 6679 struct folio *folio; 6680 int writable; 6681 bool folio_in_pagecache = false; 6682 6683 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_POISON)) { 6684 ptl = huge_pte_lock(h, dst_mm, dst_pte); 6685 6686 /* Don't overwrite any existing PTEs (even markers) */ 6687 if (!huge_pte_none(huge_ptep_get(dst_pte))) { 6688 spin_unlock(ptl); 6689 return -EEXIST; 6690 } 6691 6692 _dst_pte = make_pte_marker(PTE_MARKER_POISONED); 6693 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, 6694 huge_page_size(h)); 6695 6696 /* No need to invalidate - it was non-present before */ 6697 update_mmu_cache(dst_vma, dst_addr, dst_pte); 6698 6699 spin_unlock(ptl); 6700 return 0; 6701 } 6702 6703 if (is_continue) { 6704 ret = -EFAULT; 6705 folio = filemap_lock_hugetlb_folio(h, mapping, idx); 6706 if (IS_ERR(folio)) 6707 goto out; 6708 folio_in_pagecache = true; 6709 } else if (!*foliop) { 6710 /* If a folio already exists, then it's UFFDIO_COPY for 6711 * a non-missing case. Return -EEXIST. 6712 */ 6713 if (vm_shared && 6714 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) { 6715 ret = -EEXIST; 6716 goto out; 6717 } 6718 6719 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0); 6720 if (IS_ERR(folio)) { 6721 ret = -ENOMEM; 6722 goto out; 6723 } 6724 6725 ret = copy_folio_from_user(folio, (const void __user *) src_addr, 6726 false); 6727 6728 /* fallback to copy_from_user outside mmap_lock */ 6729 if (unlikely(ret)) { 6730 ret = -ENOENT; 6731 /* Free the allocated folio which may have 6732 * consumed a reservation. 6733 */ 6734 restore_reserve_on_error(h, dst_vma, dst_addr, folio); 6735 folio_put(folio); 6736 6737 /* Allocate a temporary folio to hold the copied 6738 * contents. 6739 */ 6740 folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr); 6741 if (!folio) { 6742 ret = -ENOMEM; 6743 goto out; 6744 } 6745 *foliop = folio; 6746 /* Set the outparam foliop and return to the caller to 6747 * copy the contents outside the lock. Don't free the 6748 * folio. 6749 */ 6750 goto out; 6751 } 6752 } else { 6753 if (vm_shared && 6754 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) { 6755 folio_put(*foliop); 6756 ret = -EEXIST; 6757 *foliop = NULL; 6758 goto out; 6759 } 6760 6761 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0); 6762 if (IS_ERR(folio)) { 6763 folio_put(*foliop); 6764 ret = -ENOMEM; 6765 *foliop = NULL; 6766 goto out; 6767 } 6768 ret = copy_user_large_folio(folio, *foliop, dst_addr, dst_vma); 6769 folio_put(*foliop); 6770 *foliop = NULL; 6771 if (ret) { 6772 folio_put(folio); 6773 goto out; 6774 } 6775 } 6776 6777 /* 6778 * If we just allocated a new page, we need a memory barrier to ensure 6779 * that preceding stores to the page become visible before the 6780 * set_pte_at() write. The memory barrier inside __folio_mark_uptodate 6781 * is what we need. 6782 * 6783 * In the case where we have not allocated a new page (is_continue), 6784 * the page must already be uptodate. UFFDIO_CONTINUE already includes 6785 * an earlier smp_wmb() to ensure that prior stores will be visible 6786 * before the set_pte_at() write. 6787 */ 6788 if (!is_continue) 6789 __folio_mark_uptodate(folio); 6790 else 6791 WARN_ON_ONCE(!folio_test_uptodate(folio)); 6792 6793 /* Add shared, newly allocated pages to the page cache. */ 6794 if (vm_shared && !is_continue) { 6795 size = i_size_read(mapping->host) >> huge_page_shift(h); 6796 ret = -EFAULT; 6797 if (idx >= size) 6798 goto out_release_nounlock; 6799 6800 /* 6801 * Serialization between remove_inode_hugepages() and 6802 * hugetlb_add_to_page_cache() below happens through the 6803 * hugetlb_fault_mutex_table that here must be hold by 6804 * the caller. 6805 */ 6806 ret = hugetlb_add_to_page_cache(folio, mapping, idx); 6807 if (ret) 6808 goto out_release_nounlock; 6809 folio_in_pagecache = true; 6810 } 6811 6812 ptl = huge_pte_lock(h, dst_mm, dst_pte); 6813 6814 ret = -EIO; 6815 if (folio_test_hwpoison(folio)) 6816 goto out_release_unlock; 6817 6818 /* 6819 * We allow to overwrite a pte marker: consider when both MISSING|WP 6820 * registered, we firstly wr-protect a none pte which has no page cache 6821 * page backing it, then access the page. 6822 */ 6823 ret = -EEXIST; 6824 if (!huge_pte_none_mostly(huge_ptep_get(dst_pte))) 6825 goto out_release_unlock; 6826 6827 if (folio_in_pagecache) 6828 hugetlb_add_file_rmap(folio); 6829 else 6830 hugetlb_add_new_anon_rmap(folio, dst_vma, dst_addr); 6831 6832 /* 6833 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY 6834 * with wp flag set, don't set pte write bit. 6835 */ 6836 if (wp_enabled || (is_continue && !vm_shared)) 6837 writable = 0; 6838 else 6839 writable = dst_vma->vm_flags & VM_WRITE; 6840 6841 _dst_pte = make_huge_pte(dst_vma, &folio->page, writable); 6842 /* 6843 * Always mark UFFDIO_COPY page dirty; note that this may not be 6844 * extremely important for hugetlbfs for now since swapping is not 6845 * supported, but we should still be clear in that this page cannot be 6846 * thrown away at will, even if write bit not set. 6847 */ 6848 _dst_pte = huge_pte_mkdirty(_dst_pte); 6849 _dst_pte = pte_mkyoung(_dst_pte); 6850 6851 if (wp_enabled) 6852 _dst_pte = huge_pte_mkuffd_wp(_dst_pte); 6853 6854 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, huge_page_size(h)); 6855 6856 hugetlb_count_add(pages_per_huge_page(h), dst_mm); 6857 6858 /* No need to invalidate - it was non-present before */ 6859 update_mmu_cache(dst_vma, dst_addr, dst_pte); 6860 6861 spin_unlock(ptl); 6862 if (!is_continue) 6863 folio_set_hugetlb_migratable(folio); 6864 if (vm_shared || is_continue) 6865 folio_unlock(folio); 6866 ret = 0; 6867 out: 6868 return ret; 6869 out_release_unlock: 6870 spin_unlock(ptl); 6871 if (vm_shared || is_continue) 6872 folio_unlock(folio); 6873 out_release_nounlock: 6874 if (!folio_in_pagecache) 6875 restore_reserve_on_error(h, dst_vma, dst_addr, folio); 6876 folio_put(folio); 6877 goto out; 6878 } 6879 #endif /* CONFIG_USERFAULTFD */ 6880 6881 long hugetlb_change_protection(struct vm_area_struct *vma, 6882 unsigned long address, unsigned long end, 6883 pgprot_t newprot, unsigned long cp_flags) 6884 { 6885 struct mm_struct *mm = vma->vm_mm; 6886 unsigned long start = address; 6887 pte_t *ptep; 6888 pte_t pte; 6889 struct hstate *h = hstate_vma(vma); 6890 long pages = 0, psize = huge_page_size(h); 6891 bool shared_pmd = false; 6892 struct mmu_notifier_range range; 6893 unsigned long last_addr_mask; 6894 bool uffd_wp = cp_flags & MM_CP_UFFD_WP; 6895 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE; 6896 6897 /* 6898 * In the case of shared PMDs, the area to flush could be beyond 6899 * start/end. Set range.start/range.end to cover the maximum possible 6900 * range if PMD sharing is possible. 6901 */ 6902 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA, 6903 0, mm, start, end); 6904 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 6905 6906 BUG_ON(address >= end); 6907 flush_cache_range(vma, range.start, range.end); 6908 6909 mmu_notifier_invalidate_range_start(&range); 6910 hugetlb_vma_lock_write(vma); 6911 i_mmap_lock_write(vma->vm_file->f_mapping); 6912 last_addr_mask = hugetlb_mask_last_page(h); 6913 for (; address < end; address += psize) { 6914 spinlock_t *ptl; 6915 ptep = hugetlb_walk(vma, address, psize); 6916 if (!ptep) { 6917 if (!uffd_wp) { 6918 address |= last_addr_mask; 6919 continue; 6920 } 6921 /* 6922 * Userfaultfd wr-protect requires pgtable 6923 * pre-allocations to install pte markers. 6924 */ 6925 ptep = huge_pte_alloc(mm, vma, address, psize); 6926 if (!ptep) { 6927 pages = -ENOMEM; 6928 break; 6929 } 6930 } 6931 ptl = huge_pte_lock(h, mm, ptep); 6932 if (huge_pmd_unshare(mm, vma, address, ptep)) { 6933 /* 6934 * When uffd-wp is enabled on the vma, unshare 6935 * shouldn't happen at all. Warn about it if it 6936 * happened due to some reason. 6937 */ 6938 WARN_ON_ONCE(uffd_wp || uffd_wp_resolve); 6939 pages++; 6940 spin_unlock(ptl); 6941 shared_pmd = true; 6942 address |= last_addr_mask; 6943 continue; 6944 } 6945 pte = huge_ptep_get(ptep); 6946 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) { 6947 /* Nothing to do. */ 6948 } else if (unlikely(is_hugetlb_entry_migration(pte))) { 6949 swp_entry_t entry = pte_to_swp_entry(pte); 6950 struct page *page = pfn_swap_entry_to_page(entry); 6951 pte_t newpte = pte; 6952 6953 if (is_writable_migration_entry(entry)) { 6954 if (PageAnon(page)) 6955 entry = make_readable_exclusive_migration_entry( 6956 swp_offset(entry)); 6957 else 6958 entry = make_readable_migration_entry( 6959 swp_offset(entry)); 6960 newpte = swp_entry_to_pte(entry); 6961 pages++; 6962 } 6963 6964 if (uffd_wp) 6965 newpte = pte_swp_mkuffd_wp(newpte); 6966 else if (uffd_wp_resolve) 6967 newpte = pte_swp_clear_uffd_wp(newpte); 6968 if (!pte_same(pte, newpte)) 6969 set_huge_pte_at(mm, address, ptep, newpte, psize); 6970 } else if (unlikely(is_pte_marker(pte))) { 6971 /* 6972 * Do nothing on a poison marker; page is 6973 * corrupted, permissons do not apply. Here 6974 * pte_marker_uffd_wp()==true implies !poison 6975 * because they're mutual exclusive. 6976 */ 6977 if (pte_marker_uffd_wp(pte) && uffd_wp_resolve) 6978 /* Safe to modify directly (non-present->none). */ 6979 huge_pte_clear(mm, address, ptep, psize); 6980 } else if (!huge_pte_none(pte)) { 6981 pte_t old_pte; 6982 unsigned int shift = huge_page_shift(hstate_vma(vma)); 6983 6984 old_pte = huge_ptep_modify_prot_start(vma, address, ptep); 6985 pte = huge_pte_modify(old_pte, newprot); 6986 pte = arch_make_huge_pte(pte, shift, vma->vm_flags); 6987 if (uffd_wp) 6988 pte = huge_pte_mkuffd_wp(pte); 6989 else if (uffd_wp_resolve) 6990 pte = huge_pte_clear_uffd_wp(pte); 6991 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte); 6992 pages++; 6993 } else { 6994 /* None pte */ 6995 if (unlikely(uffd_wp)) 6996 /* Safe to modify directly (none->non-present). */ 6997 set_huge_pte_at(mm, address, ptep, 6998 make_pte_marker(PTE_MARKER_UFFD_WP), 6999 psize); 7000 } 7001 spin_unlock(ptl); 7002 } 7003 /* 7004 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare 7005 * may have cleared our pud entry and done put_page on the page table: 7006 * once we release i_mmap_rwsem, another task can do the final put_page 7007 * and that page table be reused and filled with junk. If we actually 7008 * did unshare a page of pmds, flush the range corresponding to the pud. 7009 */ 7010 if (shared_pmd) 7011 flush_hugetlb_tlb_range(vma, range.start, range.end); 7012 else 7013 flush_hugetlb_tlb_range(vma, start, end); 7014 /* 7015 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs() we are 7016 * downgrading page table protection not changing it to point to a new 7017 * page. 7018 * 7019 * See Documentation/mm/mmu_notifier.rst 7020 */ 7021 i_mmap_unlock_write(vma->vm_file->f_mapping); 7022 hugetlb_vma_unlock_write(vma); 7023 mmu_notifier_invalidate_range_end(&range); 7024 7025 return pages > 0 ? (pages << h->order) : pages; 7026 } 7027 7028 /* Return true if reservation was successful, false otherwise. */ 7029 bool hugetlb_reserve_pages(struct inode *inode, 7030 long from, long to, 7031 struct vm_area_struct *vma, 7032 vm_flags_t vm_flags) 7033 { 7034 long chg = -1, add = -1; 7035 struct hstate *h = hstate_inode(inode); 7036 struct hugepage_subpool *spool = subpool_inode(inode); 7037 struct resv_map *resv_map; 7038 struct hugetlb_cgroup *h_cg = NULL; 7039 long gbl_reserve, regions_needed = 0; 7040 7041 /* This should never happen */ 7042 if (from > to) { 7043 VM_WARN(1, "%s called with a negative range\n", __func__); 7044 return false; 7045 } 7046 7047 /* 7048 * vma specific semaphore used for pmd sharing and fault/truncation 7049 * synchronization 7050 */ 7051 hugetlb_vma_lock_alloc(vma); 7052 7053 /* 7054 * Only apply hugepage reservation if asked. At fault time, an 7055 * attempt will be made for VM_NORESERVE to allocate a page 7056 * without using reserves 7057 */ 7058 if (vm_flags & VM_NORESERVE) 7059 return true; 7060 7061 /* 7062 * Shared mappings base their reservation on the number of pages that 7063 * are already allocated on behalf of the file. Private mappings need 7064 * to reserve the full area even if read-only as mprotect() may be 7065 * called to make the mapping read-write. Assume !vma is a shm mapping 7066 */ 7067 if (!vma || vma->vm_flags & VM_MAYSHARE) { 7068 /* 7069 * resv_map can not be NULL as hugetlb_reserve_pages is only 7070 * called for inodes for which resv_maps were created (see 7071 * hugetlbfs_get_inode). 7072 */ 7073 resv_map = inode_resv_map(inode); 7074 7075 chg = region_chg(resv_map, from, to, ®ions_needed); 7076 } else { 7077 /* Private mapping. */ 7078 resv_map = resv_map_alloc(); 7079 if (!resv_map) 7080 goto out_err; 7081 7082 chg = to - from; 7083 7084 set_vma_resv_map(vma, resv_map); 7085 set_vma_resv_flags(vma, HPAGE_RESV_OWNER); 7086 } 7087 7088 if (chg < 0) 7089 goto out_err; 7090 7091 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h), 7092 chg * pages_per_huge_page(h), &h_cg) < 0) 7093 goto out_err; 7094 7095 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) { 7096 /* For private mappings, the hugetlb_cgroup uncharge info hangs 7097 * of the resv_map. 7098 */ 7099 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h); 7100 } 7101 7102 /* 7103 * There must be enough pages in the subpool for the mapping. If 7104 * the subpool has a minimum size, there may be some global 7105 * reservations already in place (gbl_reserve). 7106 */ 7107 gbl_reserve = hugepage_subpool_get_pages(spool, chg); 7108 if (gbl_reserve < 0) 7109 goto out_uncharge_cgroup; 7110 7111 /* 7112 * Check enough hugepages are available for the reservation. 7113 * Hand the pages back to the subpool if there are not 7114 */ 7115 if (hugetlb_acct_memory(h, gbl_reserve) < 0) 7116 goto out_put_pages; 7117 7118 /* 7119 * Account for the reservations made. Shared mappings record regions 7120 * that have reservations as they are shared by multiple VMAs. 7121 * When the last VMA disappears, the region map says how much 7122 * the reservation was and the page cache tells how much of 7123 * the reservation was consumed. Private mappings are per-VMA and 7124 * only the consumed reservations are tracked. When the VMA 7125 * disappears, the original reservation is the VMA size and the 7126 * consumed reservations are stored in the map. Hence, nothing 7127 * else has to be done for private mappings here 7128 */ 7129 if (!vma || vma->vm_flags & VM_MAYSHARE) { 7130 add = region_add(resv_map, from, to, regions_needed, h, h_cg); 7131 7132 if (unlikely(add < 0)) { 7133 hugetlb_acct_memory(h, -gbl_reserve); 7134 goto out_put_pages; 7135 } else if (unlikely(chg > add)) { 7136 /* 7137 * pages in this range were added to the reserve 7138 * map between region_chg and region_add. This 7139 * indicates a race with alloc_hugetlb_folio. Adjust 7140 * the subpool and reserve counts modified above 7141 * based on the difference. 7142 */ 7143 long rsv_adjust; 7144 7145 /* 7146 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the 7147 * reference to h_cg->css. See comment below for detail. 7148 */ 7149 hugetlb_cgroup_uncharge_cgroup_rsvd( 7150 hstate_index(h), 7151 (chg - add) * pages_per_huge_page(h), h_cg); 7152 7153 rsv_adjust = hugepage_subpool_put_pages(spool, 7154 chg - add); 7155 hugetlb_acct_memory(h, -rsv_adjust); 7156 } else if (h_cg) { 7157 /* 7158 * The file_regions will hold their own reference to 7159 * h_cg->css. So we should release the reference held 7160 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are 7161 * done. 7162 */ 7163 hugetlb_cgroup_put_rsvd_cgroup(h_cg); 7164 } 7165 } 7166 return true; 7167 7168 out_put_pages: 7169 /* put back original number of pages, chg */ 7170 (void)hugepage_subpool_put_pages(spool, chg); 7171 out_uncharge_cgroup: 7172 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h), 7173 chg * pages_per_huge_page(h), h_cg); 7174 out_err: 7175 hugetlb_vma_lock_free(vma); 7176 if (!vma || vma->vm_flags & VM_MAYSHARE) 7177 /* Only call region_abort if the region_chg succeeded but the 7178 * region_add failed or didn't run. 7179 */ 7180 if (chg >= 0 && add < 0) 7181 region_abort(resv_map, from, to, regions_needed); 7182 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 7183 kref_put(&resv_map->refs, resv_map_release); 7184 set_vma_resv_map(vma, NULL); 7185 } 7186 return false; 7187 } 7188 7189 long hugetlb_unreserve_pages(struct inode *inode, long start, long end, 7190 long freed) 7191 { 7192 struct hstate *h = hstate_inode(inode); 7193 struct resv_map *resv_map = inode_resv_map(inode); 7194 long chg = 0; 7195 struct hugepage_subpool *spool = subpool_inode(inode); 7196 long gbl_reserve; 7197 7198 /* 7199 * Since this routine can be called in the evict inode path for all 7200 * hugetlbfs inodes, resv_map could be NULL. 7201 */ 7202 if (resv_map) { 7203 chg = region_del(resv_map, start, end); 7204 /* 7205 * region_del() can fail in the rare case where a region 7206 * must be split and another region descriptor can not be 7207 * allocated. If end == LONG_MAX, it will not fail. 7208 */ 7209 if (chg < 0) 7210 return chg; 7211 } 7212 7213 spin_lock(&inode->i_lock); 7214 inode->i_blocks -= (blocks_per_huge_page(h) * freed); 7215 spin_unlock(&inode->i_lock); 7216 7217 /* 7218 * If the subpool has a minimum size, the number of global 7219 * reservations to be released may be adjusted. 7220 * 7221 * Note that !resv_map implies freed == 0. So (chg - freed) 7222 * won't go negative. 7223 */ 7224 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed)); 7225 hugetlb_acct_memory(h, -gbl_reserve); 7226 7227 return 0; 7228 } 7229 7230 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE 7231 static unsigned long page_table_shareable(struct vm_area_struct *svma, 7232 struct vm_area_struct *vma, 7233 unsigned long addr, pgoff_t idx) 7234 { 7235 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) + 7236 svma->vm_start; 7237 unsigned long sbase = saddr & PUD_MASK; 7238 unsigned long s_end = sbase + PUD_SIZE; 7239 7240 /* Allow segments to share if only one is marked locked */ 7241 unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED_MASK; 7242 unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED_MASK; 7243 7244 /* 7245 * match the virtual addresses, permission and the alignment of the 7246 * page table page. 7247 * 7248 * Also, vma_lock (vm_private_data) is required for sharing. 7249 */ 7250 if (pmd_index(addr) != pmd_index(saddr) || 7251 vm_flags != svm_flags || 7252 !range_in_vma(svma, sbase, s_end) || 7253 !svma->vm_private_data) 7254 return 0; 7255 7256 return saddr; 7257 } 7258 7259 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr) 7260 { 7261 unsigned long start = addr & PUD_MASK; 7262 unsigned long end = start + PUD_SIZE; 7263 7264 #ifdef CONFIG_USERFAULTFD 7265 if (uffd_disable_huge_pmd_share(vma)) 7266 return false; 7267 #endif 7268 /* 7269 * check on proper vm_flags and page table alignment 7270 */ 7271 if (!(vma->vm_flags & VM_MAYSHARE)) 7272 return false; 7273 if (!vma->vm_private_data) /* vma lock required for sharing */ 7274 return false; 7275 if (!range_in_vma(vma, start, end)) 7276 return false; 7277 return true; 7278 } 7279 7280 /* 7281 * Determine if start,end range within vma could be mapped by shared pmd. 7282 * If yes, adjust start and end to cover range associated with possible 7283 * shared pmd mappings. 7284 */ 7285 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 7286 unsigned long *start, unsigned long *end) 7287 { 7288 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE), 7289 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE); 7290 7291 /* 7292 * vma needs to span at least one aligned PUD size, and the range 7293 * must be at least partially within in. 7294 */ 7295 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) || 7296 (*end <= v_start) || (*start >= v_end)) 7297 return; 7298 7299 /* Extend the range to be PUD aligned for a worst case scenario */ 7300 if (*start > v_start) 7301 *start = ALIGN_DOWN(*start, PUD_SIZE); 7302 7303 if (*end < v_end) 7304 *end = ALIGN(*end, PUD_SIZE); 7305 } 7306 7307 /* 7308 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc() 7309 * and returns the corresponding pte. While this is not necessary for the 7310 * !shared pmd case because we can allocate the pmd later as well, it makes the 7311 * code much cleaner. pmd allocation is essential for the shared case because 7312 * pud has to be populated inside the same i_mmap_rwsem section - otherwise 7313 * racing tasks could either miss the sharing (see huge_pte_offset) or select a 7314 * bad pmd for sharing. 7315 */ 7316 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, 7317 unsigned long addr, pud_t *pud) 7318 { 7319 struct address_space *mapping = vma->vm_file->f_mapping; 7320 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + 7321 vma->vm_pgoff; 7322 struct vm_area_struct *svma; 7323 unsigned long saddr; 7324 pte_t *spte = NULL; 7325 pte_t *pte; 7326 7327 i_mmap_lock_read(mapping); 7328 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) { 7329 if (svma == vma) 7330 continue; 7331 7332 saddr = page_table_shareable(svma, vma, addr, idx); 7333 if (saddr) { 7334 spte = hugetlb_walk(svma, saddr, 7335 vma_mmu_pagesize(svma)); 7336 if (spte) { 7337 get_page(virt_to_page(spte)); 7338 break; 7339 } 7340 } 7341 } 7342 7343 if (!spte) 7344 goto out; 7345 7346 spin_lock(&mm->page_table_lock); 7347 if (pud_none(*pud)) { 7348 pud_populate(mm, pud, 7349 (pmd_t *)((unsigned long)spte & PAGE_MASK)); 7350 mm_inc_nr_pmds(mm); 7351 } else { 7352 put_page(virt_to_page(spte)); 7353 } 7354 spin_unlock(&mm->page_table_lock); 7355 out: 7356 pte = (pte_t *)pmd_alloc(mm, pud, addr); 7357 i_mmap_unlock_read(mapping); 7358 return pte; 7359 } 7360 7361 /* 7362 * unmap huge page backed by shared pte. 7363 * 7364 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared 7365 * indicated by page_count > 1, unmap is achieved by clearing pud and 7366 * decrementing the ref count. If count == 1, the pte page is not shared. 7367 * 7368 * Called with page table lock held. 7369 * 7370 * returns: 1 successfully unmapped a shared pte page 7371 * 0 the underlying pte page is not shared, or it is the last user 7372 */ 7373 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, 7374 unsigned long addr, pte_t *ptep) 7375 { 7376 pgd_t *pgd = pgd_offset(mm, addr); 7377 p4d_t *p4d = p4d_offset(pgd, addr); 7378 pud_t *pud = pud_offset(p4d, addr); 7379 7380 i_mmap_assert_write_locked(vma->vm_file->f_mapping); 7381 hugetlb_vma_assert_locked(vma); 7382 BUG_ON(page_count(virt_to_page(ptep)) == 0); 7383 if (page_count(virt_to_page(ptep)) == 1) 7384 return 0; 7385 7386 pud_clear(pud); 7387 put_page(virt_to_page(ptep)); 7388 mm_dec_nr_pmds(mm); 7389 return 1; 7390 } 7391 7392 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 7393 7394 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, 7395 unsigned long addr, pud_t *pud) 7396 { 7397 return NULL; 7398 } 7399 7400 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, 7401 unsigned long addr, pte_t *ptep) 7402 { 7403 return 0; 7404 } 7405 7406 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 7407 unsigned long *start, unsigned long *end) 7408 { 7409 } 7410 7411 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr) 7412 { 7413 return false; 7414 } 7415 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 7416 7417 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB 7418 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 7419 unsigned long addr, unsigned long sz) 7420 { 7421 pgd_t *pgd; 7422 p4d_t *p4d; 7423 pud_t *pud; 7424 pte_t *pte = NULL; 7425 7426 pgd = pgd_offset(mm, addr); 7427 p4d = p4d_alloc(mm, pgd, addr); 7428 if (!p4d) 7429 return NULL; 7430 pud = pud_alloc(mm, p4d, addr); 7431 if (pud) { 7432 if (sz == PUD_SIZE) { 7433 pte = (pte_t *)pud; 7434 } else { 7435 BUG_ON(sz != PMD_SIZE); 7436 if (want_pmd_share(vma, addr) && pud_none(*pud)) 7437 pte = huge_pmd_share(mm, vma, addr, pud); 7438 else 7439 pte = (pte_t *)pmd_alloc(mm, pud, addr); 7440 } 7441 } 7442 7443 if (pte) { 7444 pte_t pteval = ptep_get_lockless(pte); 7445 7446 BUG_ON(pte_present(pteval) && !pte_huge(pteval)); 7447 } 7448 7449 return pte; 7450 } 7451 7452 /* 7453 * huge_pte_offset() - Walk the page table to resolve the hugepage 7454 * entry at address @addr 7455 * 7456 * Return: Pointer to page table entry (PUD or PMD) for 7457 * address @addr, or NULL if a !p*d_present() entry is encountered and the 7458 * size @sz doesn't match the hugepage size at this level of the page 7459 * table. 7460 */ 7461 pte_t *huge_pte_offset(struct mm_struct *mm, 7462 unsigned long addr, unsigned long sz) 7463 { 7464 pgd_t *pgd; 7465 p4d_t *p4d; 7466 pud_t *pud; 7467 pmd_t *pmd; 7468 7469 pgd = pgd_offset(mm, addr); 7470 if (!pgd_present(*pgd)) 7471 return NULL; 7472 p4d = p4d_offset(pgd, addr); 7473 if (!p4d_present(*p4d)) 7474 return NULL; 7475 7476 pud = pud_offset(p4d, addr); 7477 if (sz == PUD_SIZE) 7478 /* must be pud huge, non-present or none */ 7479 return (pte_t *)pud; 7480 if (!pud_present(*pud)) 7481 return NULL; 7482 /* must have a valid entry and size to go further */ 7483 7484 pmd = pmd_offset(pud, addr); 7485 /* must be pmd huge, non-present or none */ 7486 return (pte_t *)pmd; 7487 } 7488 7489 /* 7490 * Return a mask that can be used to update an address to the last huge 7491 * page in a page table page mapping size. Used to skip non-present 7492 * page table entries when linearly scanning address ranges. Architectures 7493 * with unique huge page to page table relationships can define their own 7494 * version of this routine. 7495 */ 7496 unsigned long hugetlb_mask_last_page(struct hstate *h) 7497 { 7498 unsigned long hp_size = huge_page_size(h); 7499 7500 if (hp_size == PUD_SIZE) 7501 return P4D_SIZE - PUD_SIZE; 7502 else if (hp_size == PMD_SIZE) 7503 return PUD_SIZE - PMD_SIZE; 7504 else 7505 return 0UL; 7506 } 7507 7508 #else 7509 7510 /* See description above. Architectures can provide their own version. */ 7511 __weak unsigned long hugetlb_mask_last_page(struct hstate *h) 7512 { 7513 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE 7514 if (huge_page_size(h) == PMD_SIZE) 7515 return PUD_SIZE - PMD_SIZE; 7516 #endif 7517 return 0UL; 7518 } 7519 7520 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */ 7521 7522 /* 7523 * These functions are overwritable if your architecture needs its own 7524 * behavior. 7525 */ 7526 bool isolate_hugetlb(struct folio *folio, struct list_head *list) 7527 { 7528 bool ret = true; 7529 7530 spin_lock_irq(&hugetlb_lock); 7531 if (!folio_test_hugetlb(folio) || 7532 !folio_test_hugetlb_migratable(folio) || 7533 !folio_try_get(folio)) { 7534 ret = false; 7535 goto unlock; 7536 } 7537 folio_clear_hugetlb_migratable(folio); 7538 list_move_tail(&folio->lru, list); 7539 unlock: 7540 spin_unlock_irq(&hugetlb_lock); 7541 return ret; 7542 } 7543 7544 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison) 7545 { 7546 int ret = 0; 7547 7548 *hugetlb = false; 7549 spin_lock_irq(&hugetlb_lock); 7550 if (folio_test_hugetlb(folio)) { 7551 *hugetlb = true; 7552 if (folio_test_hugetlb_freed(folio)) 7553 ret = 0; 7554 else if (folio_test_hugetlb_migratable(folio) || unpoison) 7555 ret = folio_try_get(folio); 7556 else 7557 ret = -EBUSY; 7558 } 7559 spin_unlock_irq(&hugetlb_lock); 7560 return ret; 7561 } 7562 7563 int get_huge_page_for_hwpoison(unsigned long pfn, int flags, 7564 bool *migratable_cleared) 7565 { 7566 int ret; 7567 7568 spin_lock_irq(&hugetlb_lock); 7569 ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared); 7570 spin_unlock_irq(&hugetlb_lock); 7571 return ret; 7572 } 7573 7574 void folio_putback_active_hugetlb(struct folio *folio) 7575 { 7576 spin_lock_irq(&hugetlb_lock); 7577 folio_set_hugetlb_migratable(folio); 7578 list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist); 7579 spin_unlock_irq(&hugetlb_lock); 7580 folio_put(folio); 7581 } 7582 7583 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason) 7584 { 7585 struct hstate *h = folio_hstate(old_folio); 7586 7587 hugetlb_cgroup_migrate(old_folio, new_folio); 7588 set_page_owner_migrate_reason(&new_folio->page, reason); 7589 7590 /* 7591 * transfer temporary state of the new hugetlb folio. This is 7592 * reverse to other transitions because the newpage is going to 7593 * be final while the old one will be freed so it takes over 7594 * the temporary status. 7595 * 7596 * Also note that we have to transfer the per-node surplus state 7597 * here as well otherwise the global surplus count will not match 7598 * the per-node's. 7599 */ 7600 if (folio_test_hugetlb_temporary(new_folio)) { 7601 int old_nid = folio_nid(old_folio); 7602 int new_nid = folio_nid(new_folio); 7603 7604 folio_set_hugetlb_temporary(old_folio); 7605 folio_clear_hugetlb_temporary(new_folio); 7606 7607 7608 /* 7609 * There is no need to transfer the per-node surplus state 7610 * when we do not cross the node. 7611 */ 7612 if (new_nid == old_nid) 7613 return; 7614 spin_lock_irq(&hugetlb_lock); 7615 if (h->surplus_huge_pages_node[old_nid]) { 7616 h->surplus_huge_pages_node[old_nid]--; 7617 h->surplus_huge_pages_node[new_nid]++; 7618 } 7619 spin_unlock_irq(&hugetlb_lock); 7620 } 7621 } 7622 7623 static void hugetlb_unshare_pmds(struct vm_area_struct *vma, 7624 unsigned long start, 7625 unsigned long end) 7626 { 7627 struct hstate *h = hstate_vma(vma); 7628 unsigned long sz = huge_page_size(h); 7629 struct mm_struct *mm = vma->vm_mm; 7630 struct mmu_notifier_range range; 7631 unsigned long address; 7632 spinlock_t *ptl; 7633 pte_t *ptep; 7634 7635 if (!(vma->vm_flags & VM_MAYSHARE)) 7636 return; 7637 7638 if (start >= end) 7639 return; 7640 7641 flush_cache_range(vma, start, end); 7642 /* 7643 * No need to call adjust_range_if_pmd_sharing_possible(), because 7644 * we have already done the PUD_SIZE alignment. 7645 */ 7646 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 7647 start, end); 7648 mmu_notifier_invalidate_range_start(&range); 7649 hugetlb_vma_lock_write(vma); 7650 i_mmap_lock_write(vma->vm_file->f_mapping); 7651 for (address = start; address < end; address += PUD_SIZE) { 7652 ptep = hugetlb_walk(vma, address, sz); 7653 if (!ptep) 7654 continue; 7655 ptl = huge_pte_lock(h, mm, ptep); 7656 huge_pmd_unshare(mm, vma, address, ptep); 7657 spin_unlock(ptl); 7658 } 7659 flush_hugetlb_tlb_range(vma, start, end); 7660 i_mmap_unlock_write(vma->vm_file->f_mapping); 7661 hugetlb_vma_unlock_write(vma); 7662 /* 7663 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs(), see 7664 * Documentation/mm/mmu_notifier.rst. 7665 */ 7666 mmu_notifier_invalidate_range_end(&range); 7667 } 7668 7669 /* 7670 * This function will unconditionally remove all the shared pmd pgtable entries 7671 * within the specific vma for a hugetlbfs memory range. 7672 */ 7673 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma) 7674 { 7675 hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE), 7676 ALIGN_DOWN(vma->vm_end, PUD_SIZE)); 7677 } 7678 7679 #ifdef CONFIG_CMA 7680 static bool cma_reserve_called __initdata; 7681 7682 static int __init cmdline_parse_hugetlb_cma(char *p) 7683 { 7684 int nid, count = 0; 7685 unsigned long tmp; 7686 char *s = p; 7687 7688 while (*s) { 7689 if (sscanf(s, "%lu%n", &tmp, &count) != 1) 7690 break; 7691 7692 if (s[count] == ':') { 7693 if (tmp >= MAX_NUMNODES) 7694 break; 7695 nid = array_index_nospec(tmp, MAX_NUMNODES); 7696 7697 s += count + 1; 7698 tmp = memparse(s, &s); 7699 hugetlb_cma_size_in_node[nid] = tmp; 7700 hugetlb_cma_size += tmp; 7701 7702 /* 7703 * Skip the separator if have one, otherwise 7704 * break the parsing. 7705 */ 7706 if (*s == ',') 7707 s++; 7708 else 7709 break; 7710 } else { 7711 hugetlb_cma_size = memparse(p, &p); 7712 break; 7713 } 7714 } 7715 7716 return 0; 7717 } 7718 7719 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma); 7720 7721 void __init hugetlb_cma_reserve(int order) 7722 { 7723 unsigned long size, reserved, per_node; 7724 bool node_specific_cma_alloc = false; 7725 int nid; 7726 7727 /* 7728 * HugeTLB CMA reservation is required for gigantic 7729 * huge pages which could not be allocated via the 7730 * page allocator. Just warn if there is any change 7731 * breaking this assumption. 7732 */ 7733 VM_WARN_ON(order <= MAX_PAGE_ORDER); 7734 cma_reserve_called = true; 7735 7736 if (!hugetlb_cma_size) 7737 return; 7738 7739 for (nid = 0; nid < MAX_NUMNODES; nid++) { 7740 if (hugetlb_cma_size_in_node[nid] == 0) 7741 continue; 7742 7743 if (!node_online(nid)) { 7744 pr_warn("hugetlb_cma: invalid node %d specified\n", nid); 7745 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid]; 7746 hugetlb_cma_size_in_node[nid] = 0; 7747 continue; 7748 } 7749 7750 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) { 7751 pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n", 7752 nid, (PAGE_SIZE << order) / SZ_1M); 7753 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid]; 7754 hugetlb_cma_size_in_node[nid] = 0; 7755 } else { 7756 node_specific_cma_alloc = true; 7757 } 7758 } 7759 7760 /* Validate the CMA size again in case some invalid nodes specified. */ 7761 if (!hugetlb_cma_size) 7762 return; 7763 7764 if (hugetlb_cma_size < (PAGE_SIZE << order)) { 7765 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n", 7766 (PAGE_SIZE << order) / SZ_1M); 7767 hugetlb_cma_size = 0; 7768 return; 7769 } 7770 7771 if (!node_specific_cma_alloc) { 7772 /* 7773 * If 3 GB area is requested on a machine with 4 numa nodes, 7774 * let's allocate 1 GB on first three nodes and ignore the last one. 7775 */ 7776 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes); 7777 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n", 7778 hugetlb_cma_size / SZ_1M, per_node / SZ_1M); 7779 } 7780 7781 reserved = 0; 7782 for_each_online_node(nid) { 7783 int res; 7784 char name[CMA_MAX_NAME]; 7785 7786 if (node_specific_cma_alloc) { 7787 if (hugetlb_cma_size_in_node[nid] == 0) 7788 continue; 7789 7790 size = hugetlb_cma_size_in_node[nid]; 7791 } else { 7792 size = min(per_node, hugetlb_cma_size - reserved); 7793 } 7794 7795 size = round_up(size, PAGE_SIZE << order); 7796 7797 snprintf(name, sizeof(name), "hugetlb%d", nid); 7798 /* 7799 * Note that 'order per bit' is based on smallest size that 7800 * may be returned to CMA allocator in the case of 7801 * huge page demotion. 7802 */ 7803 res = cma_declare_contiguous_nid(0, size, 0, 7804 PAGE_SIZE << order, 7805 HUGETLB_PAGE_ORDER, false, name, 7806 &hugetlb_cma[nid], nid); 7807 if (res) { 7808 pr_warn("hugetlb_cma: reservation failed: err %d, node %d", 7809 res, nid); 7810 continue; 7811 } 7812 7813 reserved += size; 7814 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n", 7815 size / SZ_1M, nid); 7816 7817 if (reserved >= hugetlb_cma_size) 7818 break; 7819 } 7820 7821 if (!reserved) 7822 /* 7823 * hugetlb_cma_size is used to determine if allocations from 7824 * cma are possible. Set to zero if no cma regions are set up. 7825 */ 7826 hugetlb_cma_size = 0; 7827 } 7828 7829 static void __init hugetlb_cma_check(void) 7830 { 7831 if (!hugetlb_cma_size || cma_reserve_called) 7832 return; 7833 7834 pr_warn("hugetlb_cma: the option isn't supported by current arch\n"); 7835 } 7836 7837 #endif /* CONFIG_CMA */ 7838