1 /* 2 * Generic hugetlb support. 3 * (C) William Irwin, April 2004 4 */ 5 #include <linux/gfp.h> 6 #include <linux/list.h> 7 #include <linux/init.h> 8 #include <linux/module.h> 9 #include <linux/mm.h> 10 #include <linux/sysctl.h> 11 #include <linux/highmem.h> 12 #include <linux/nodemask.h> 13 #include <linux/pagemap.h> 14 #include <linux/mempolicy.h> 15 #include <linux/cpuset.h> 16 #include <linux/mutex.h> 17 18 #include <asm/page.h> 19 #include <asm/pgtable.h> 20 21 #include <linux/hugetlb.h> 22 #include "internal.h" 23 24 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL; 25 static unsigned long nr_huge_pages, free_huge_pages, resv_huge_pages; 26 unsigned long max_huge_pages; 27 static struct list_head hugepage_freelists[MAX_NUMNODES]; 28 static unsigned int nr_huge_pages_node[MAX_NUMNODES]; 29 static unsigned int free_huge_pages_node[MAX_NUMNODES]; 30 /* 31 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages 32 */ 33 static DEFINE_SPINLOCK(hugetlb_lock); 34 35 static void clear_huge_page(struct page *page, unsigned long addr) 36 { 37 int i; 38 39 might_sleep(); 40 for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); i++) { 41 cond_resched(); 42 clear_user_highpage(page + i, addr); 43 } 44 } 45 46 static void copy_huge_page(struct page *dst, struct page *src, 47 unsigned long addr, struct vm_area_struct *vma) 48 { 49 int i; 50 51 might_sleep(); 52 for (i = 0; i < HPAGE_SIZE/PAGE_SIZE; i++) { 53 cond_resched(); 54 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma); 55 } 56 } 57 58 static void enqueue_huge_page(struct page *page) 59 { 60 int nid = page_to_nid(page); 61 list_add(&page->lru, &hugepage_freelists[nid]); 62 free_huge_pages++; 63 free_huge_pages_node[nid]++; 64 } 65 66 static struct page *dequeue_huge_page(struct vm_area_struct *vma, 67 unsigned long address) 68 { 69 int nid = numa_node_id(); 70 struct page *page = NULL; 71 struct zonelist *zonelist = huge_zonelist(vma, address); 72 struct zone **z; 73 74 for (z = zonelist->zones; *z; z++) { 75 nid = zone_to_nid(*z); 76 if (cpuset_zone_allowed_softwall(*z, GFP_HIGHUSER) && 77 !list_empty(&hugepage_freelists[nid])) 78 break; 79 } 80 81 if (*z) { 82 page = list_entry(hugepage_freelists[nid].next, 83 struct page, lru); 84 list_del(&page->lru); 85 free_huge_pages--; 86 free_huge_pages_node[nid]--; 87 } 88 return page; 89 } 90 91 static void free_huge_page(struct page *page) 92 { 93 BUG_ON(page_count(page)); 94 95 INIT_LIST_HEAD(&page->lru); 96 97 spin_lock(&hugetlb_lock); 98 enqueue_huge_page(page); 99 spin_unlock(&hugetlb_lock); 100 } 101 102 static int alloc_fresh_huge_page(void) 103 { 104 static int nid = 0; 105 struct page *page; 106 page = alloc_pages_node(nid, GFP_HIGHUSER|__GFP_COMP|__GFP_NOWARN, 107 HUGETLB_PAGE_ORDER); 108 nid = next_node(nid, node_online_map); 109 if (nid == MAX_NUMNODES) 110 nid = first_node(node_online_map); 111 if (page) { 112 set_compound_page_dtor(page, free_huge_page); 113 spin_lock(&hugetlb_lock); 114 nr_huge_pages++; 115 nr_huge_pages_node[page_to_nid(page)]++; 116 spin_unlock(&hugetlb_lock); 117 put_page(page); /* free it into the hugepage allocator */ 118 return 1; 119 } 120 return 0; 121 } 122 123 static struct page *alloc_huge_page(struct vm_area_struct *vma, 124 unsigned long addr) 125 { 126 struct page *page; 127 128 spin_lock(&hugetlb_lock); 129 if (vma->vm_flags & VM_MAYSHARE) 130 resv_huge_pages--; 131 else if (free_huge_pages <= resv_huge_pages) 132 goto fail; 133 134 page = dequeue_huge_page(vma, addr); 135 if (!page) 136 goto fail; 137 138 spin_unlock(&hugetlb_lock); 139 set_page_refcounted(page); 140 return page; 141 142 fail: 143 spin_unlock(&hugetlb_lock); 144 return NULL; 145 } 146 147 static int __init hugetlb_init(void) 148 { 149 unsigned long i; 150 151 if (HPAGE_SHIFT == 0) 152 return 0; 153 154 for (i = 0; i < MAX_NUMNODES; ++i) 155 INIT_LIST_HEAD(&hugepage_freelists[i]); 156 157 for (i = 0; i < max_huge_pages; ++i) { 158 if (!alloc_fresh_huge_page()) 159 break; 160 } 161 max_huge_pages = free_huge_pages = nr_huge_pages = i; 162 printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages); 163 return 0; 164 } 165 module_init(hugetlb_init); 166 167 static int __init hugetlb_setup(char *s) 168 { 169 if (sscanf(s, "%lu", &max_huge_pages) <= 0) 170 max_huge_pages = 0; 171 return 1; 172 } 173 __setup("hugepages=", hugetlb_setup); 174 175 #ifdef CONFIG_SYSCTL 176 static void update_and_free_page(struct page *page) 177 { 178 int i; 179 nr_huge_pages--; 180 nr_huge_pages_node[page_to_nid(page)]--; 181 for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) { 182 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced | 183 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved | 184 1 << PG_private | 1<< PG_writeback); 185 } 186 page[1].lru.next = NULL; 187 set_page_refcounted(page); 188 __free_pages(page, HUGETLB_PAGE_ORDER); 189 } 190 191 #ifdef CONFIG_HIGHMEM 192 static void try_to_free_low(unsigned long count) 193 { 194 int i; 195 196 for (i = 0; i < MAX_NUMNODES; ++i) { 197 struct page *page, *next; 198 list_for_each_entry_safe(page, next, &hugepage_freelists[i], lru) { 199 if (PageHighMem(page)) 200 continue; 201 list_del(&page->lru); 202 update_and_free_page(page); 203 free_huge_pages--; 204 free_huge_pages_node[page_to_nid(page)]--; 205 if (count >= nr_huge_pages) 206 return; 207 } 208 } 209 } 210 #else 211 static inline void try_to_free_low(unsigned long count) 212 { 213 } 214 #endif 215 216 static unsigned long set_max_huge_pages(unsigned long count) 217 { 218 while (count > nr_huge_pages) { 219 if (!alloc_fresh_huge_page()) 220 return nr_huge_pages; 221 } 222 if (count >= nr_huge_pages) 223 return nr_huge_pages; 224 225 spin_lock(&hugetlb_lock); 226 count = max(count, resv_huge_pages); 227 try_to_free_low(count); 228 while (count < nr_huge_pages) { 229 struct page *page = dequeue_huge_page(NULL, 0); 230 if (!page) 231 break; 232 update_and_free_page(page); 233 } 234 spin_unlock(&hugetlb_lock); 235 return nr_huge_pages; 236 } 237 238 int hugetlb_sysctl_handler(struct ctl_table *table, int write, 239 struct file *file, void __user *buffer, 240 size_t *length, loff_t *ppos) 241 { 242 proc_doulongvec_minmax(table, write, file, buffer, length, ppos); 243 max_huge_pages = set_max_huge_pages(max_huge_pages); 244 return 0; 245 } 246 #endif /* CONFIG_SYSCTL */ 247 248 int hugetlb_report_meminfo(char *buf) 249 { 250 return sprintf(buf, 251 "HugePages_Total: %5lu\n" 252 "HugePages_Free: %5lu\n" 253 "HugePages_Rsvd: %5lu\n" 254 "Hugepagesize: %5lu kB\n", 255 nr_huge_pages, 256 free_huge_pages, 257 resv_huge_pages, 258 HPAGE_SIZE/1024); 259 } 260 261 int hugetlb_report_node_meminfo(int nid, char *buf) 262 { 263 return sprintf(buf, 264 "Node %d HugePages_Total: %5u\n" 265 "Node %d HugePages_Free: %5u\n", 266 nid, nr_huge_pages_node[nid], 267 nid, free_huge_pages_node[nid]); 268 } 269 270 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ 271 unsigned long hugetlb_total_pages(void) 272 { 273 return nr_huge_pages * (HPAGE_SIZE / PAGE_SIZE); 274 } 275 276 /* 277 * We cannot handle pagefaults against hugetlb pages at all. They cause 278 * handle_mm_fault() to try to instantiate regular-sized pages in the 279 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get 280 * this far. 281 */ 282 static struct page *hugetlb_nopage(struct vm_area_struct *vma, 283 unsigned long address, int *unused) 284 { 285 BUG(); 286 return NULL; 287 } 288 289 struct vm_operations_struct hugetlb_vm_ops = { 290 .nopage = hugetlb_nopage, 291 }; 292 293 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, 294 int writable) 295 { 296 pte_t entry; 297 298 if (writable) { 299 entry = 300 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot))); 301 } else { 302 entry = pte_wrprotect(mk_pte(page, vma->vm_page_prot)); 303 } 304 entry = pte_mkyoung(entry); 305 entry = pte_mkhuge(entry); 306 307 return entry; 308 } 309 310 static void set_huge_ptep_writable(struct vm_area_struct *vma, 311 unsigned long address, pte_t *ptep) 312 { 313 pte_t entry; 314 315 entry = pte_mkwrite(pte_mkdirty(*ptep)); 316 ptep_set_access_flags(vma, address, ptep, entry, 1); 317 update_mmu_cache(vma, address, entry); 318 lazy_mmu_prot_update(entry); 319 } 320 321 322 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, 323 struct vm_area_struct *vma) 324 { 325 pte_t *src_pte, *dst_pte, entry; 326 struct page *ptepage; 327 unsigned long addr; 328 int cow; 329 330 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 331 332 for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) { 333 src_pte = huge_pte_offset(src, addr); 334 if (!src_pte) 335 continue; 336 dst_pte = huge_pte_alloc(dst, addr); 337 if (!dst_pte) 338 goto nomem; 339 spin_lock(&dst->page_table_lock); 340 spin_lock(&src->page_table_lock); 341 if (!pte_none(*src_pte)) { 342 if (cow) 343 ptep_set_wrprotect(src, addr, src_pte); 344 entry = *src_pte; 345 ptepage = pte_page(entry); 346 get_page(ptepage); 347 set_huge_pte_at(dst, addr, dst_pte, entry); 348 } 349 spin_unlock(&src->page_table_lock); 350 spin_unlock(&dst->page_table_lock); 351 } 352 return 0; 353 354 nomem: 355 return -ENOMEM; 356 } 357 358 void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, 359 unsigned long end) 360 { 361 struct mm_struct *mm = vma->vm_mm; 362 unsigned long address; 363 pte_t *ptep; 364 pte_t pte; 365 struct page *page; 366 struct page *tmp; 367 /* 368 * A page gathering list, protected by per file i_mmap_lock. The 369 * lock is used to avoid list corruption from multiple unmapping 370 * of the same page since we are using page->lru. 371 */ 372 LIST_HEAD(page_list); 373 374 WARN_ON(!is_vm_hugetlb_page(vma)); 375 BUG_ON(start & ~HPAGE_MASK); 376 BUG_ON(end & ~HPAGE_MASK); 377 378 spin_lock(&mm->page_table_lock); 379 for (address = start; address < end; address += HPAGE_SIZE) { 380 ptep = huge_pte_offset(mm, address); 381 if (!ptep) 382 continue; 383 384 if (huge_pmd_unshare(mm, &address, ptep)) 385 continue; 386 387 pte = huge_ptep_get_and_clear(mm, address, ptep); 388 if (pte_none(pte)) 389 continue; 390 391 page = pte_page(pte); 392 if (pte_dirty(pte)) 393 set_page_dirty(page); 394 list_add(&page->lru, &page_list); 395 } 396 spin_unlock(&mm->page_table_lock); 397 flush_tlb_range(vma, start, end); 398 list_for_each_entry_safe(page, tmp, &page_list, lru) { 399 list_del(&page->lru); 400 put_page(page); 401 } 402 } 403 404 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, 405 unsigned long end) 406 { 407 /* 408 * It is undesirable to test vma->vm_file as it should be non-null 409 * for valid hugetlb area. However, vm_file will be NULL in the error 410 * cleanup path of do_mmap_pgoff. When hugetlbfs ->mmap method fails, 411 * do_mmap_pgoff() nullifies vma->vm_file before calling this function 412 * to clean up. Since no pte has actually been setup, it is safe to 413 * do nothing in this case. 414 */ 415 if (vma->vm_file) { 416 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock); 417 __unmap_hugepage_range(vma, start, end); 418 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock); 419 } 420 } 421 422 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma, 423 unsigned long address, pte_t *ptep, pte_t pte) 424 { 425 struct page *old_page, *new_page; 426 int avoidcopy; 427 428 old_page = pte_page(pte); 429 430 /* If no-one else is actually using this page, avoid the copy 431 * and just make the page writable */ 432 avoidcopy = (page_count(old_page) == 1); 433 if (avoidcopy) { 434 set_huge_ptep_writable(vma, address, ptep); 435 return VM_FAULT_MINOR; 436 } 437 438 page_cache_get(old_page); 439 new_page = alloc_huge_page(vma, address); 440 441 if (!new_page) { 442 page_cache_release(old_page); 443 return VM_FAULT_OOM; 444 } 445 446 spin_unlock(&mm->page_table_lock); 447 copy_huge_page(new_page, old_page, address, vma); 448 spin_lock(&mm->page_table_lock); 449 450 ptep = huge_pte_offset(mm, address & HPAGE_MASK); 451 if (likely(pte_same(*ptep, pte))) { 452 /* Break COW */ 453 set_huge_pte_at(mm, address, ptep, 454 make_huge_pte(vma, new_page, 1)); 455 /* Make the old page be freed below */ 456 new_page = old_page; 457 } 458 page_cache_release(new_page); 459 page_cache_release(old_page); 460 return VM_FAULT_MINOR; 461 } 462 463 int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma, 464 unsigned long address, pte_t *ptep, int write_access) 465 { 466 int ret = VM_FAULT_SIGBUS; 467 unsigned long idx; 468 unsigned long size; 469 struct page *page; 470 struct address_space *mapping; 471 pte_t new_pte; 472 473 mapping = vma->vm_file->f_mapping; 474 idx = ((address - vma->vm_start) >> HPAGE_SHIFT) 475 + (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT)); 476 477 /* 478 * Use page lock to guard against racing truncation 479 * before we get page_table_lock. 480 */ 481 retry: 482 page = find_lock_page(mapping, idx); 483 if (!page) { 484 size = i_size_read(mapping->host) >> HPAGE_SHIFT; 485 if (idx >= size) 486 goto out; 487 if (hugetlb_get_quota(mapping)) 488 goto out; 489 page = alloc_huge_page(vma, address); 490 if (!page) { 491 hugetlb_put_quota(mapping); 492 ret = VM_FAULT_OOM; 493 goto out; 494 } 495 clear_huge_page(page, address); 496 497 if (vma->vm_flags & VM_SHARED) { 498 int err; 499 500 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL); 501 if (err) { 502 put_page(page); 503 hugetlb_put_quota(mapping); 504 if (err == -EEXIST) 505 goto retry; 506 goto out; 507 } 508 } else 509 lock_page(page); 510 } 511 512 spin_lock(&mm->page_table_lock); 513 size = i_size_read(mapping->host) >> HPAGE_SHIFT; 514 if (idx >= size) 515 goto backout; 516 517 ret = VM_FAULT_MINOR; 518 if (!pte_none(*ptep)) 519 goto backout; 520 521 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE) 522 && (vma->vm_flags & VM_SHARED))); 523 set_huge_pte_at(mm, address, ptep, new_pte); 524 525 if (write_access && !(vma->vm_flags & VM_SHARED)) { 526 /* Optimization, do the COW without a second fault */ 527 ret = hugetlb_cow(mm, vma, address, ptep, new_pte); 528 } 529 530 spin_unlock(&mm->page_table_lock); 531 unlock_page(page); 532 out: 533 return ret; 534 535 backout: 536 spin_unlock(&mm->page_table_lock); 537 hugetlb_put_quota(mapping); 538 unlock_page(page); 539 put_page(page); 540 goto out; 541 } 542 543 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, 544 unsigned long address, int write_access) 545 { 546 pte_t *ptep; 547 pte_t entry; 548 int ret; 549 static DEFINE_MUTEX(hugetlb_instantiation_mutex); 550 551 ptep = huge_pte_alloc(mm, address); 552 if (!ptep) 553 return VM_FAULT_OOM; 554 555 /* 556 * Serialize hugepage allocation and instantiation, so that we don't 557 * get spurious allocation failures if two CPUs race to instantiate 558 * the same page in the page cache. 559 */ 560 mutex_lock(&hugetlb_instantiation_mutex); 561 entry = *ptep; 562 if (pte_none(entry)) { 563 ret = hugetlb_no_page(mm, vma, address, ptep, write_access); 564 mutex_unlock(&hugetlb_instantiation_mutex); 565 return ret; 566 } 567 568 ret = VM_FAULT_MINOR; 569 570 spin_lock(&mm->page_table_lock); 571 /* Check for a racing update before calling hugetlb_cow */ 572 if (likely(pte_same(entry, *ptep))) 573 if (write_access && !pte_write(entry)) 574 ret = hugetlb_cow(mm, vma, address, ptep, entry); 575 spin_unlock(&mm->page_table_lock); 576 mutex_unlock(&hugetlb_instantiation_mutex); 577 578 return ret; 579 } 580 581 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, 582 struct page **pages, struct vm_area_struct **vmas, 583 unsigned long *position, int *length, int i) 584 { 585 unsigned long pfn_offset; 586 unsigned long vaddr = *position; 587 int remainder = *length; 588 589 spin_lock(&mm->page_table_lock); 590 while (vaddr < vma->vm_end && remainder) { 591 pte_t *pte; 592 struct page *page; 593 594 /* 595 * Some archs (sparc64, sh*) have multiple pte_ts to 596 * each hugepage. We have to make * sure we get the 597 * first, for the page indexing below to work. 598 */ 599 pte = huge_pte_offset(mm, vaddr & HPAGE_MASK); 600 601 if (!pte || pte_none(*pte)) { 602 int ret; 603 604 spin_unlock(&mm->page_table_lock); 605 ret = hugetlb_fault(mm, vma, vaddr, 0); 606 spin_lock(&mm->page_table_lock); 607 if (ret == VM_FAULT_MINOR) 608 continue; 609 610 remainder = 0; 611 if (!i) 612 i = -EFAULT; 613 break; 614 } 615 616 pfn_offset = (vaddr & ~HPAGE_MASK) >> PAGE_SHIFT; 617 page = pte_page(*pte); 618 same_page: 619 if (pages) { 620 get_page(page); 621 pages[i] = page + pfn_offset; 622 } 623 624 if (vmas) 625 vmas[i] = vma; 626 627 vaddr += PAGE_SIZE; 628 ++pfn_offset; 629 --remainder; 630 ++i; 631 if (vaddr < vma->vm_end && remainder && 632 pfn_offset < HPAGE_SIZE/PAGE_SIZE) { 633 /* 634 * We use pfn_offset to avoid touching the pageframes 635 * of this compound page. 636 */ 637 goto same_page; 638 } 639 } 640 spin_unlock(&mm->page_table_lock); 641 *length = remainder; 642 *position = vaddr; 643 644 return i; 645 } 646 647 void hugetlb_change_protection(struct vm_area_struct *vma, 648 unsigned long address, unsigned long end, pgprot_t newprot) 649 { 650 struct mm_struct *mm = vma->vm_mm; 651 unsigned long start = address; 652 pte_t *ptep; 653 pte_t pte; 654 655 BUG_ON(address >= end); 656 flush_cache_range(vma, address, end); 657 658 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock); 659 spin_lock(&mm->page_table_lock); 660 for (; address < end; address += HPAGE_SIZE) { 661 ptep = huge_pte_offset(mm, address); 662 if (!ptep) 663 continue; 664 if (huge_pmd_unshare(mm, &address, ptep)) 665 continue; 666 if (!pte_none(*ptep)) { 667 pte = huge_ptep_get_and_clear(mm, address, ptep); 668 pte = pte_mkhuge(pte_modify(pte, newprot)); 669 set_huge_pte_at(mm, address, ptep, pte); 670 lazy_mmu_prot_update(pte); 671 } 672 } 673 spin_unlock(&mm->page_table_lock); 674 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock); 675 676 flush_tlb_range(vma, start, end); 677 } 678 679 struct file_region { 680 struct list_head link; 681 long from; 682 long to; 683 }; 684 685 static long region_add(struct list_head *head, long f, long t) 686 { 687 struct file_region *rg, *nrg, *trg; 688 689 /* Locate the region we are either in or before. */ 690 list_for_each_entry(rg, head, link) 691 if (f <= rg->to) 692 break; 693 694 /* Round our left edge to the current segment if it encloses us. */ 695 if (f > rg->from) 696 f = rg->from; 697 698 /* Check for and consume any regions we now overlap with. */ 699 nrg = rg; 700 list_for_each_entry_safe(rg, trg, rg->link.prev, link) { 701 if (&rg->link == head) 702 break; 703 if (rg->from > t) 704 break; 705 706 /* If this area reaches higher then extend our area to 707 * include it completely. If this is not the first area 708 * which we intend to reuse, free it. */ 709 if (rg->to > t) 710 t = rg->to; 711 if (rg != nrg) { 712 list_del(&rg->link); 713 kfree(rg); 714 } 715 } 716 nrg->from = f; 717 nrg->to = t; 718 return 0; 719 } 720 721 static long region_chg(struct list_head *head, long f, long t) 722 { 723 struct file_region *rg, *nrg; 724 long chg = 0; 725 726 /* Locate the region we are before or in. */ 727 list_for_each_entry(rg, head, link) 728 if (f <= rg->to) 729 break; 730 731 /* If we are below the current region then a new region is required. 732 * Subtle, allocate a new region at the position but make it zero 733 * size such that we can guarentee to record the reservation. */ 734 if (&rg->link == head || t < rg->from) { 735 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 736 if (nrg == 0) 737 return -ENOMEM; 738 nrg->from = f; 739 nrg->to = f; 740 INIT_LIST_HEAD(&nrg->link); 741 list_add(&nrg->link, rg->link.prev); 742 743 return t - f; 744 } 745 746 /* Round our left edge to the current segment if it encloses us. */ 747 if (f > rg->from) 748 f = rg->from; 749 chg = t - f; 750 751 /* Check for and consume any regions we now overlap with. */ 752 list_for_each_entry(rg, rg->link.prev, link) { 753 if (&rg->link == head) 754 break; 755 if (rg->from > t) 756 return chg; 757 758 /* We overlap with this area, if it extends futher than 759 * us then we must extend ourselves. Account for its 760 * existing reservation. */ 761 if (rg->to > t) { 762 chg += rg->to - t; 763 t = rg->to; 764 } 765 chg -= rg->to - rg->from; 766 } 767 return chg; 768 } 769 770 static long region_truncate(struct list_head *head, long end) 771 { 772 struct file_region *rg, *trg; 773 long chg = 0; 774 775 /* Locate the region we are either in or before. */ 776 list_for_each_entry(rg, head, link) 777 if (end <= rg->to) 778 break; 779 if (&rg->link == head) 780 return 0; 781 782 /* If we are in the middle of a region then adjust it. */ 783 if (end > rg->from) { 784 chg = rg->to - end; 785 rg->to = end; 786 rg = list_entry(rg->link.next, typeof(*rg), link); 787 } 788 789 /* Drop any remaining regions. */ 790 list_for_each_entry_safe(rg, trg, rg->link.prev, link) { 791 if (&rg->link == head) 792 break; 793 chg += rg->to - rg->from; 794 list_del(&rg->link); 795 kfree(rg); 796 } 797 return chg; 798 } 799 800 static int hugetlb_acct_memory(long delta) 801 { 802 int ret = -ENOMEM; 803 804 spin_lock(&hugetlb_lock); 805 if ((delta + resv_huge_pages) <= free_huge_pages) { 806 resv_huge_pages += delta; 807 ret = 0; 808 } 809 spin_unlock(&hugetlb_lock); 810 return ret; 811 } 812 813 int hugetlb_reserve_pages(struct inode *inode, long from, long to) 814 { 815 long ret, chg; 816 817 chg = region_chg(&inode->i_mapping->private_list, from, to); 818 if (chg < 0) 819 return chg; 820 ret = hugetlb_acct_memory(chg); 821 if (ret < 0) 822 return ret; 823 region_add(&inode->i_mapping->private_list, from, to); 824 return 0; 825 } 826 827 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed) 828 { 829 long chg = region_truncate(&inode->i_mapping->private_list, offset); 830 hugetlb_acct_memory(freed - chg); 831 } 832