1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic hugetlb support. 4 * (C) Nadia Yvette Chambers, April 2004 5 */ 6 #include <linux/list.h> 7 #include <linux/init.h> 8 #include <linux/mm.h> 9 #include <linux/seq_file.h> 10 #include <linux/sysctl.h> 11 #include <linux/highmem.h> 12 #include <linux/mmu_notifier.h> 13 #include <linux/nodemask.h> 14 #include <linux/pagemap.h> 15 #include <linux/mempolicy.h> 16 #include <linux/compiler.h> 17 #include <linux/cpumask.h> 18 #include <linux/cpuset.h> 19 #include <linux/mutex.h> 20 #include <linux/memblock.h> 21 #include <linux/minmax.h> 22 #include <linux/sysfs.h> 23 #include <linux/slab.h> 24 #include <linux/sched/mm.h> 25 #include <linux/mmdebug.h> 26 #include <linux/sched/signal.h> 27 #include <linux/rmap.h> 28 #include <linux/string_helpers.h> 29 #include <linux/swap.h> 30 #include <linux/swapops.h> 31 #include <linux/jhash.h> 32 #include <linux/numa.h> 33 #include <linux/llist.h> 34 #include <linux/cma.h> 35 #include <linux/migrate.h> 36 #include <linux/nospec.h> 37 #include <linux/delayacct.h> 38 #include <linux/memory.h> 39 #include <linux/mm_inline.h> 40 #include <linux/padata.h> 41 42 #include <asm/page.h> 43 #include <asm/pgalloc.h> 44 #include <asm/tlb.h> 45 #include <asm/setup.h> 46 47 #include <linux/io.h> 48 #include <linux/hugetlb.h> 49 #include <linux/hugetlb_cgroup.h> 50 #include <linux/node.h> 51 #include <linux/page_owner.h> 52 #include "internal.h" 53 #include "hugetlb_vmemmap.h" 54 #include "hugetlb_cma.h" 55 #include <linux/page-isolation.h> 56 57 int hugetlb_max_hstate __read_mostly; 58 unsigned int default_hstate_idx; 59 struct hstate hstates[HUGE_MAX_HSTATE]; 60 61 __initdata nodemask_t hugetlb_bootmem_nodes; 62 __initdata struct list_head huge_boot_pages[MAX_NUMNODES]; 63 static unsigned long hstate_boot_nrinvalid[HUGE_MAX_HSTATE] __initdata; 64 65 /* 66 * Due to ordering constraints across the init code for various 67 * architectures, hugetlb hstate cmdline parameters can't simply 68 * be early_param. early_param might call the setup function 69 * before valid hugetlb page sizes are determined, leading to 70 * incorrect rejection of valid hugepagesz= options. 71 * 72 * So, record the parameters early and consume them whenever the 73 * init code is ready for them, by calling hugetlb_parse_params(). 74 */ 75 76 /* one (hugepagesz=,hugepages=) pair per hstate, one default_hugepagesz */ 77 #define HUGE_MAX_CMDLINE_ARGS (2 * HUGE_MAX_HSTATE + 1) 78 struct hugetlb_cmdline { 79 char *val; 80 int (*setup)(char *val); 81 }; 82 83 /* for command line parsing */ 84 static struct hstate * __initdata parsed_hstate; 85 static unsigned long __initdata default_hstate_max_huge_pages; 86 static bool __initdata parsed_valid_hugepagesz = true; 87 static bool __initdata parsed_default_hugepagesz; 88 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata; 89 static unsigned long hugepage_allocation_threads __initdata; 90 91 static char hstate_cmdline_buf[COMMAND_LINE_SIZE] __initdata; 92 static int hstate_cmdline_index __initdata; 93 static struct hugetlb_cmdline hugetlb_params[HUGE_MAX_CMDLINE_ARGS] __initdata; 94 static int hugetlb_param_index __initdata; 95 static __init int hugetlb_add_param(char *s, int (*setup)(char *val)); 96 static __init void hugetlb_parse_params(void); 97 98 #define hugetlb_early_param(str, func) \ 99 static __init int func##args(char *s) \ 100 { \ 101 return hugetlb_add_param(s, func); \ 102 } \ 103 early_param(str, func##args) 104 105 /* 106 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages, 107 * free_huge_pages, and surplus_huge_pages. 108 */ 109 __cacheline_aligned_in_smp DEFINE_SPINLOCK(hugetlb_lock); 110 111 /* 112 * Serializes faults on the same logical page. This is used to 113 * prevent spurious OOMs when the hugepage pool is fully utilized. 114 */ 115 static int num_fault_mutexes __ro_after_init; 116 struct mutex *hugetlb_fault_mutex_table __ro_after_init; 117 118 /* Forward declaration */ 119 static int hugetlb_acct_memory(struct hstate *h, long delta); 120 static void hugetlb_vma_lock_free(struct vm_area_struct *vma); 121 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma); 122 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma); 123 static void hugetlb_unshare_pmds(struct vm_area_struct *vma, 124 unsigned long start, unsigned long end, bool take_locks); 125 static struct resv_map *vma_resv_map(struct vm_area_struct *vma); 126 127 static void hugetlb_free_folio(struct folio *folio) 128 { 129 if (folio_test_hugetlb_cma(folio)) { 130 hugetlb_cma_free_folio(folio); 131 return; 132 } 133 134 folio_put(folio); 135 } 136 137 static inline bool subpool_is_free(struct hugepage_subpool *spool) 138 { 139 if (spool->count) 140 return false; 141 if (spool->max_hpages != -1) 142 return spool->used_hpages == 0; 143 if (spool->min_hpages != -1) 144 return spool->rsv_hpages == spool->min_hpages; 145 146 return true; 147 } 148 149 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool, 150 unsigned long irq_flags) 151 { 152 spin_unlock_irqrestore(&spool->lock, irq_flags); 153 154 /* If no pages are used, and no other handles to the subpool 155 * remain, give up any reservations based on minimum size and 156 * free the subpool */ 157 if (subpool_is_free(spool)) { 158 if (spool->min_hpages != -1) 159 hugetlb_acct_memory(spool->hstate, 160 -spool->min_hpages); 161 kfree(spool); 162 } 163 } 164 165 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages, 166 long min_hpages) 167 { 168 struct hugepage_subpool *spool; 169 170 spool = kzalloc(sizeof(*spool), GFP_KERNEL); 171 if (!spool) 172 return NULL; 173 174 spin_lock_init(&spool->lock); 175 spool->count = 1; 176 spool->max_hpages = max_hpages; 177 spool->hstate = h; 178 spool->min_hpages = min_hpages; 179 180 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) { 181 kfree(spool); 182 return NULL; 183 } 184 spool->rsv_hpages = min_hpages; 185 186 return spool; 187 } 188 189 void hugepage_put_subpool(struct hugepage_subpool *spool) 190 { 191 unsigned long flags; 192 193 spin_lock_irqsave(&spool->lock, flags); 194 BUG_ON(!spool->count); 195 spool->count--; 196 unlock_or_release_subpool(spool, flags); 197 } 198 199 /* 200 * Subpool accounting for allocating and reserving pages. 201 * Return -ENOMEM if there are not enough resources to satisfy the 202 * request. Otherwise, return the number of pages by which the 203 * global pools must be adjusted (upward). The returned value may 204 * only be different than the passed value (delta) in the case where 205 * a subpool minimum size must be maintained. 206 */ 207 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool, 208 long delta) 209 { 210 long ret = delta; 211 212 if (!spool) 213 return ret; 214 215 spin_lock_irq(&spool->lock); 216 217 if (spool->max_hpages != -1) { /* maximum size accounting */ 218 if ((spool->used_hpages + delta) <= spool->max_hpages) 219 spool->used_hpages += delta; 220 else { 221 ret = -ENOMEM; 222 goto unlock_ret; 223 } 224 } 225 226 /* minimum size accounting */ 227 if (spool->min_hpages != -1 && spool->rsv_hpages) { 228 if (delta > spool->rsv_hpages) { 229 /* 230 * Asking for more reserves than those already taken on 231 * behalf of subpool. Return difference. 232 */ 233 ret = delta - spool->rsv_hpages; 234 spool->rsv_hpages = 0; 235 } else { 236 ret = 0; /* reserves already accounted for */ 237 spool->rsv_hpages -= delta; 238 } 239 } 240 241 unlock_ret: 242 spin_unlock_irq(&spool->lock); 243 return ret; 244 } 245 246 /* 247 * Subpool accounting for freeing and unreserving pages. 248 * Return the number of global page reservations that must be dropped. 249 * The return value may only be different than the passed value (delta) 250 * in the case where a subpool minimum size must be maintained. 251 */ 252 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool, 253 long delta) 254 { 255 long ret = delta; 256 unsigned long flags; 257 258 if (!spool) 259 return delta; 260 261 spin_lock_irqsave(&spool->lock, flags); 262 263 if (spool->max_hpages != -1) /* maximum size accounting */ 264 spool->used_hpages -= delta; 265 266 /* minimum size accounting */ 267 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) { 268 if (spool->rsv_hpages + delta <= spool->min_hpages) 269 ret = 0; 270 else 271 ret = spool->rsv_hpages + delta - spool->min_hpages; 272 273 spool->rsv_hpages += delta; 274 if (spool->rsv_hpages > spool->min_hpages) 275 spool->rsv_hpages = spool->min_hpages; 276 } 277 278 /* 279 * If hugetlbfs_put_super couldn't free spool due to an outstanding 280 * quota reference, free it now. 281 */ 282 unlock_or_release_subpool(spool, flags); 283 284 return ret; 285 } 286 287 static inline struct hugepage_subpool *subpool_inode(struct inode *inode) 288 { 289 return HUGETLBFS_SB(inode->i_sb)->spool; 290 } 291 292 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma) 293 { 294 return subpool_inode(file_inode(vma->vm_file)); 295 } 296 297 /* 298 * hugetlb vma_lock helper routines 299 */ 300 void hugetlb_vma_lock_read(struct vm_area_struct *vma) 301 { 302 if (__vma_shareable_lock(vma)) { 303 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 304 305 down_read(&vma_lock->rw_sema); 306 } else if (__vma_private_lock(vma)) { 307 struct resv_map *resv_map = vma_resv_map(vma); 308 309 down_read(&resv_map->rw_sema); 310 } 311 } 312 313 void hugetlb_vma_unlock_read(struct vm_area_struct *vma) 314 { 315 if (__vma_shareable_lock(vma)) { 316 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 317 318 up_read(&vma_lock->rw_sema); 319 } else if (__vma_private_lock(vma)) { 320 struct resv_map *resv_map = vma_resv_map(vma); 321 322 up_read(&resv_map->rw_sema); 323 } 324 } 325 326 void hugetlb_vma_lock_write(struct vm_area_struct *vma) 327 { 328 if (__vma_shareable_lock(vma)) { 329 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 330 331 down_write(&vma_lock->rw_sema); 332 } else if (__vma_private_lock(vma)) { 333 struct resv_map *resv_map = vma_resv_map(vma); 334 335 down_write(&resv_map->rw_sema); 336 } 337 } 338 339 void hugetlb_vma_unlock_write(struct vm_area_struct *vma) 340 { 341 if (__vma_shareable_lock(vma)) { 342 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 343 344 up_write(&vma_lock->rw_sema); 345 } else if (__vma_private_lock(vma)) { 346 struct resv_map *resv_map = vma_resv_map(vma); 347 348 up_write(&resv_map->rw_sema); 349 } 350 } 351 352 int hugetlb_vma_trylock_write(struct vm_area_struct *vma) 353 { 354 355 if (__vma_shareable_lock(vma)) { 356 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 357 358 return down_write_trylock(&vma_lock->rw_sema); 359 } else if (__vma_private_lock(vma)) { 360 struct resv_map *resv_map = vma_resv_map(vma); 361 362 return down_write_trylock(&resv_map->rw_sema); 363 } 364 365 return 1; 366 } 367 368 void hugetlb_vma_assert_locked(struct vm_area_struct *vma) 369 { 370 if (__vma_shareable_lock(vma)) { 371 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 372 373 lockdep_assert_held(&vma_lock->rw_sema); 374 } else if (__vma_private_lock(vma)) { 375 struct resv_map *resv_map = vma_resv_map(vma); 376 377 lockdep_assert_held(&resv_map->rw_sema); 378 } 379 } 380 381 void hugetlb_vma_lock_release(struct kref *kref) 382 { 383 struct hugetlb_vma_lock *vma_lock = container_of(kref, 384 struct hugetlb_vma_lock, refs); 385 386 kfree(vma_lock); 387 } 388 389 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock) 390 { 391 struct vm_area_struct *vma = vma_lock->vma; 392 393 /* 394 * vma_lock structure may or not be released as a result of put, 395 * it certainly will no longer be attached to vma so clear pointer. 396 * Semaphore synchronizes access to vma_lock->vma field. 397 */ 398 vma_lock->vma = NULL; 399 vma->vm_private_data = NULL; 400 up_write(&vma_lock->rw_sema); 401 kref_put(&vma_lock->refs, hugetlb_vma_lock_release); 402 } 403 404 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma) 405 { 406 if (__vma_shareable_lock(vma)) { 407 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 408 409 __hugetlb_vma_unlock_write_put(vma_lock); 410 } else if (__vma_private_lock(vma)) { 411 struct resv_map *resv_map = vma_resv_map(vma); 412 413 /* no free for anon vmas, but still need to unlock */ 414 up_write(&resv_map->rw_sema); 415 } 416 } 417 418 static void hugetlb_vma_lock_free(struct vm_area_struct *vma) 419 { 420 /* 421 * Only present in sharable vmas. 422 */ 423 if (!vma || !__vma_shareable_lock(vma)) 424 return; 425 426 if (vma->vm_private_data) { 427 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 428 429 down_write(&vma_lock->rw_sema); 430 __hugetlb_vma_unlock_write_put(vma_lock); 431 } 432 } 433 434 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma) 435 { 436 struct hugetlb_vma_lock *vma_lock; 437 438 /* Only establish in (flags) sharable vmas */ 439 if (!vma || !(vma->vm_flags & VM_MAYSHARE)) 440 return; 441 442 /* Should never get here with non-NULL vm_private_data */ 443 if (vma->vm_private_data) 444 return; 445 446 vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL); 447 if (!vma_lock) { 448 /* 449 * If we can not allocate structure, then vma can not 450 * participate in pmd sharing. This is only a possible 451 * performance enhancement and memory saving issue. 452 * However, the lock is also used to synchronize page 453 * faults with truncation. If the lock is not present, 454 * unlikely races could leave pages in a file past i_size 455 * until the file is removed. Warn in the unlikely case of 456 * allocation failure. 457 */ 458 pr_warn_once("HugeTLB: unable to allocate vma specific lock\n"); 459 return; 460 } 461 462 kref_init(&vma_lock->refs); 463 init_rwsem(&vma_lock->rw_sema); 464 vma_lock->vma = vma; 465 vma->vm_private_data = vma_lock; 466 } 467 468 /* Helper that removes a struct file_region from the resv_map cache and returns 469 * it for use. 470 */ 471 static struct file_region * 472 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to) 473 { 474 struct file_region *nrg; 475 476 VM_BUG_ON(resv->region_cache_count <= 0); 477 478 resv->region_cache_count--; 479 nrg = list_first_entry(&resv->region_cache, struct file_region, link); 480 list_del(&nrg->link); 481 482 nrg->from = from; 483 nrg->to = to; 484 485 return nrg; 486 } 487 488 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg, 489 struct file_region *rg) 490 { 491 #ifdef CONFIG_CGROUP_HUGETLB 492 nrg->reservation_counter = rg->reservation_counter; 493 nrg->css = rg->css; 494 if (rg->css) 495 css_get(rg->css); 496 #endif 497 } 498 499 /* Helper that records hugetlb_cgroup uncharge info. */ 500 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg, 501 struct hstate *h, 502 struct resv_map *resv, 503 struct file_region *nrg) 504 { 505 #ifdef CONFIG_CGROUP_HUGETLB 506 if (h_cg) { 507 nrg->reservation_counter = 508 &h_cg->rsvd_hugepage[hstate_index(h)]; 509 nrg->css = &h_cg->css; 510 /* 511 * The caller will hold exactly one h_cg->css reference for the 512 * whole contiguous reservation region. But this area might be 513 * scattered when there are already some file_regions reside in 514 * it. As a result, many file_regions may share only one css 515 * reference. In order to ensure that one file_region must hold 516 * exactly one h_cg->css reference, we should do css_get for 517 * each file_region and leave the reference held by caller 518 * untouched. 519 */ 520 css_get(&h_cg->css); 521 if (!resv->pages_per_hpage) 522 resv->pages_per_hpage = pages_per_huge_page(h); 523 /* pages_per_hpage should be the same for all entries in 524 * a resv_map. 525 */ 526 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h)); 527 } else { 528 nrg->reservation_counter = NULL; 529 nrg->css = NULL; 530 } 531 #endif 532 } 533 534 static void put_uncharge_info(struct file_region *rg) 535 { 536 #ifdef CONFIG_CGROUP_HUGETLB 537 if (rg->css) 538 css_put(rg->css); 539 #endif 540 } 541 542 static bool has_same_uncharge_info(struct file_region *rg, 543 struct file_region *org) 544 { 545 #ifdef CONFIG_CGROUP_HUGETLB 546 return rg->reservation_counter == org->reservation_counter && 547 rg->css == org->css; 548 549 #else 550 return true; 551 #endif 552 } 553 554 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg) 555 { 556 struct file_region *nrg, *prg; 557 558 prg = list_prev_entry(rg, link); 559 if (&prg->link != &resv->regions && prg->to == rg->from && 560 has_same_uncharge_info(prg, rg)) { 561 prg->to = rg->to; 562 563 list_del(&rg->link); 564 put_uncharge_info(rg); 565 kfree(rg); 566 567 rg = prg; 568 } 569 570 nrg = list_next_entry(rg, link); 571 if (&nrg->link != &resv->regions && nrg->from == rg->to && 572 has_same_uncharge_info(nrg, rg)) { 573 nrg->from = rg->from; 574 575 list_del(&rg->link); 576 put_uncharge_info(rg); 577 kfree(rg); 578 } 579 } 580 581 static inline long 582 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from, 583 long to, struct hstate *h, struct hugetlb_cgroup *cg, 584 long *regions_needed) 585 { 586 struct file_region *nrg; 587 588 if (!regions_needed) { 589 nrg = get_file_region_entry_from_cache(map, from, to); 590 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg); 591 list_add(&nrg->link, rg); 592 coalesce_file_region(map, nrg); 593 } else 594 *regions_needed += 1; 595 596 return to - from; 597 } 598 599 /* 600 * Must be called with resv->lock held. 601 * 602 * Calling this with regions_needed != NULL will count the number of pages 603 * to be added but will not modify the linked list. And regions_needed will 604 * indicate the number of file_regions needed in the cache to carry out to add 605 * the regions for this range. 606 */ 607 static long add_reservation_in_range(struct resv_map *resv, long f, long t, 608 struct hugetlb_cgroup *h_cg, 609 struct hstate *h, long *regions_needed) 610 { 611 long add = 0; 612 struct list_head *head = &resv->regions; 613 long last_accounted_offset = f; 614 struct file_region *iter, *trg = NULL; 615 struct list_head *rg = NULL; 616 617 if (regions_needed) 618 *regions_needed = 0; 619 620 /* In this loop, we essentially handle an entry for the range 621 * [last_accounted_offset, iter->from), at every iteration, with some 622 * bounds checking. 623 */ 624 list_for_each_entry_safe(iter, trg, head, link) { 625 /* Skip irrelevant regions that start before our range. */ 626 if (iter->from < f) { 627 /* If this region ends after the last accounted offset, 628 * then we need to update last_accounted_offset. 629 */ 630 if (iter->to > last_accounted_offset) 631 last_accounted_offset = iter->to; 632 continue; 633 } 634 635 /* When we find a region that starts beyond our range, we've 636 * finished. 637 */ 638 if (iter->from >= t) { 639 rg = iter->link.prev; 640 break; 641 } 642 643 /* Add an entry for last_accounted_offset -> iter->from, and 644 * update last_accounted_offset. 645 */ 646 if (iter->from > last_accounted_offset) 647 add += hugetlb_resv_map_add(resv, iter->link.prev, 648 last_accounted_offset, 649 iter->from, h, h_cg, 650 regions_needed); 651 652 last_accounted_offset = iter->to; 653 } 654 655 /* Handle the case where our range extends beyond 656 * last_accounted_offset. 657 */ 658 if (!rg) 659 rg = head->prev; 660 if (last_accounted_offset < t) 661 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset, 662 t, h, h_cg, regions_needed); 663 664 return add; 665 } 666 667 /* Must be called with resv->lock acquired. Will drop lock to allocate entries. 668 */ 669 static int allocate_file_region_entries(struct resv_map *resv, 670 int regions_needed) 671 __must_hold(&resv->lock) 672 { 673 LIST_HEAD(allocated_regions); 674 int to_allocate = 0, i = 0; 675 struct file_region *trg = NULL, *rg = NULL; 676 677 VM_BUG_ON(regions_needed < 0); 678 679 /* 680 * Check for sufficient descriptors in the cache to accommodate 681 * the number of in progress add operations plus regions_needed. 682 * 683 * This is a while loop because when we drop the lock, some other call 684 * to region_add or region_del may have consumed some region_entries, 685 * so we keep looping here until we finally have enough entries for 686 * (adds_in_progress + regions_needed). 687 */ 688 while (resv->region_cache_count < 689 (resv->adds_in_progress + regions_needed)) { 690 to_allocate = resv->adds_in_progress + regions_needed - 691 resv->region_cache_count; 692 693 /* At this point, we should have enough entries in the cache 694 * for all the existing adds_in_progress. We should only be 695 * needing to allocate for regions_needed. 696 */ 697 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress); 698 699 spin_unlock(&resv->lock); 700 for (i = 0; i < to_allocate; i++) { 701 trg = kmalloc(sizeof(*trg), GFP_KERNEL); 702 if (!trg) 703 goto out_of_memory; 704 list_add(&trg->link, &allocated_regions); 705 } 706 707 spin_lock(&resv->lock); 708 709 list_splice(&allocated_regions, &resv->region_cache); 710 resv->region_cache_count += to_allocate; 711 } 712 713 return 0; 714 715 out_of_memory: 716 list_for_each_entry_safe(rg, trg, &allocated_regions, link) { 717 list_del(&rg->link); 718 kfree(rg); 719 } 720 return -ENOMEM; 721 } 722 723 /* 724 * Add the huge page range represented by [f, t) to the reserve 725 * map. Regions will be taken from the cache to fill in this range. 726 * Sufficient regions should exist in the cache due to the previous 727 * call to region_chg with the same range, but in some cases the cache will not 728 * have sufficient entries due to races with other code doing region_add or 729 * region_del. The extra needed entries will be allocated. 730 * 731 * regions_needed is the out value provided by a previous call to region_chg. 732 * 733 * Return the number of new huge pages added to the map. This number is greater 734 * than or equal to zero. If file_region entries needed to be allocated for 735 * this operation and we were not able to allocate, it returns -ENOMEM. 736 * region_add of regions of length 1 never allocate file_regions and cannot 737 * fail; region_chg will always allocate at least 1 entry and a region_add for 738 * 1 page will only require at most 1 entry. 739 */ 740 static long region_add(struct resv_map *resv, long f, long t, 741 long in_regions_needed, struct hstate *h, 742 struct hugetlb_cgroup *h_cg) 743 { 744 long add = 0, actual_regions_needed = 0; 745 746 spin_lock(&resv->lock); 747 retry: 748 749 /* Count how many regions are actually needed to execute this add. */ 750 add_reservation_in_range(resv, f, t, NULL, NULL, 751 &actual_regions_needed); 752 753 /* 754 * Check for sufficient descriptors in the cache to accommodate 755 * this add operation. Note that actual_regions_needed may be greater 756 * than in_regions_needed, as the resv_map may have been modified since 757 * the region_chg call. In this case, we need to make sure that we 758 * allocate extra entries, such that we have enough for all the 759 * existing adds_in_progress, plus the excess needed for this 760 * operation. 761 */ 762 if (actual_regions_needed > in_regions_needed && 763 resv->region_cache_count < 764 resv->adds_in_progress + 765 (actual_regions_needed - in_regions_needed)) { 766 /* region_add operation of range 1 should never need to 767 * allocate file_region entries. 768 */ 769 VM_BUG_ON(t - f <= 1); 770 771 if (allocate_file_region_entries( 772 resv, actual_regions_needed - in_regions_needed)) { 773 return -ENOMEM; 774 } 775 776 goto retry; 777 } 778 779 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL); 780 781 resv->adds_in_progress -= in_regions_needed; 782 783 spin_unlock(&resv->lock); 784 return add; 785 } 786 787 /* 788 * Examine the existing reserve map and determine how many 789 * huge pages in the specified range [f, t) are NOT currently 790 * represented. This routine is called before a subsequent 791 * call to region_add that will actually modify the reserve 792 * map to add the specified range [f, t). region_chg does 793 * not change the number of huge pages represented by the 794 * map. A number of new file_region structures is added to the cache as a 795 * placeholder, for the subsequent region_add call to use. At least 1 796 * file_region structure is added. 797 * 798 * out_regions_needed is the number of regions added to the 799 * resv->adds_in_progress. This value needs to be provided to a follow up call 800 * to region_add or region_abort for proper accounting. 801 * 802 * Returns the number of huge pages that need to be added to the existing 803 * reservation map for the range [f, t). This number is greater or equal to 804 * zero. -ENOMEM is returned if a new file_region structure or cache entry 805 * is needed and can not be allocated. 806 */ 807 static long region_chg(struct resv_map *resv, long f, long t, 808 long *out_regions_needed) 809 { 810 long chg = 0; 811 812 spin_lock(&resv->lock); 813 814 /* Count how many hugepages in this range are NOT represented. */ 815 chg = add_reservation_in_range(resv, f, t, NULL, NULL, 816 out_regions_needed); 817 818 if (*out_regions_needed == 0) 819 *out_regions_needed = 1; 820 821 if (allocate_file_region_entries(resv, *out_regions_needed)) 822 return -ENOMEM; 823 824 resv->adds_in_progress += *out_regions_needed; 825 826 spin_unlock(&resv->lock); 827 return chg; 828 } 829 830 /* 831 * Abort the in progress add operation. The adds_in_progress field 832 * of the resv_map keeps track of the operations in progress between 833 * calls to region_chg and region_add. Operations are sometimes 834 * aborted after the call to region_chg. In such cases, region_abort 835 * is called to decrement the adds_in_progress counter. regions_needed 836 * is the value returned by the region_chg call, it is used to decrement 837 * the adds_in_progress counter. 838 * 839 * NOTE: The range arguments [f, t) are not needed or used in this 840 * routine. They are kept to make reading the calling code easier as 841 * arguments will match the associated region_chg call. 842 */ 843 static void region_abort(struct resv_map *resv, long f, long t, 844 long regions_needed) 845 { 846 spin_lock(&resv->lock); 847 VM_BUG_ON(!resv->region_cache_count); 848 resv->adds_in_progress -= regions_needed; 849 spin_unlock(&resv->lock); 850 } 851 852 /* 853 * Delete the specified range [f, t) from the reserve map. If the 854 * t parameter is LONG_MAX, this indicates that ALL regions after f 855 * should be deleted. Locate the regions which intersect [f, t) 856 * and either trim, delete or split the existing regions. 857 * 858 * Returns the number of huge pages deleted from the reserve map. 859 * In the normal case, the return value is zero or more. In the 860 * case where a region must be split, a new region descriptor must 861 * be allocated. If the allocation fails, -ENOMEM will be returned. 862 * NOTE: If the parameter t == LONG_MAX, then we will never split 863 * a region and possibly return -ENOMEM. Callers specifying 864 * t == LONG_MAX do not need to check for -ENOMEM error. 865 */ 866 static long region_del(struct resv_map *resv, long f, long t) 867 { 868 struct list_head *head = &resv->regions; 869 struct file_region *rg, *trg; 870 struct file_region *nrg = NULL; 871 long del = 0; 872 873 retry: 874 spin_lock(&resv->lock); 875 list_for_each_entry_safe(rg, trg, head, link) { 876 /* 877 * Skip regions before the range to be deleted. file_region 878 * ranges are normally of the form [from, to). However, there 879 * may be a "placeholder" entry in the map which is of the form 880 * (from, to) with from == to. Check for placeholder entries 881 * at the beginning of the range to be deleted. 882 */ 883 if (rg->to <= f && (rg->to != rg->from || rg->to != f)) 884 continue; 885 886 if (rg->from >= t) 887 break; 888 889 if (f > rg->from && t < rg->to) { /* Must split region */ 890 /* 891 * Check for an entry in the cache before dropping 892 * lock and attempting allocation. 893 */ 894 if (!nrg && 895 resv->region_cache_count > resv->adds_in_progress) { 896 nrg = list_first_entry(&resv->region_cache, 897 struct file_region, 898 link); 899 list_del(&nrg->link); 900 resv->region_cache_count--; 901 } 902 903 if (!nrg) { 904 spin_unlock(&resv->lock); 905 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 906 if (!nrg) 907 return -ENOMEM; 908 goto retry; 909 } 910 911 del += t - f; 912 hugetlb_cgroup_uncharge_file_region( 913 resv, rg, t - f, false); 914 915 /* New entry for end of split region */ 916 nrg->from = t; 917 nrg->to = rg->to; 918 919 copy_hugetlb_cgroup_uncharge_info(nrg, rg); 920 921 INIT_LIST_HEAD(&nrg->link); 922 923 /* Original entry is trimmed */ 924 rg->to = f; 925 926 list_add(&nrg->link, &rg->link); 927 nrg = NULL; 928 break; 929 } 930 931 if (f <= rg->from && t >= rg->to) { /* Remove entire region */ 932 del += rg->to - rg->from; 933 hugetlb_cgroup_uncharge_file_region(resv, rg, 934 rg->to - rg->from, true); 935 list_del(&rg->link); 936 kfree(rg); 937 continue; 938 } 939 940 if (f <= rg->from) { /* Trim beginning of region */ 941 hugetlb_cgroup_uncharge_file_region(resv, rg, 942 t - rg->from, false); 943 944 del += t - rg->from; 945 rg->from = t; 946 } else { /* Trim end of region */ 947 hugetlb_cgroup_uncharge_file_region(resv, rg, 948 rg->to - f, false); 949 950 del += rg->to - f; 951 rg->to = f; 952 } 953 } 954 955 spin_unlock(&resv->lock); 956 kfree(nrg); 957 return del; 958 } 959 960 /* 961 * A rare out of memory error was encountered which prevented removal of 962 * the reserve map region for a page. The huge page itself was free'ed 963 * and removed from the page cache. This routine will adjust the subpool 964 * usage count, and the global reserve count if needed. By incrementing 965 * these counts, the reserve map entry which could not be deleted will 966 * appear as a "reserved" entry instead of simply dangling with incorrect 967 * counts. 968 */ 969 void hugetlb_fix_reserve_counts(struct inode *inode) 970 { 971 struct hugepage_subpool *spool = subpool_inode(inode); 972 long rsv_adjust; 973 bool reserved = false; 974 975 rsv_adjust = hugepage_subpool_get_pages(spool, 1); 976 if (rsv_adjust > 0) { 977 struct hstate *h = hstate_inode(inode); 978 979 if (!hugetlb_acct_memory(h, 1)) 980 reserved = true; 981 } else if (!rsv_adjust) { 982 reserved = true; 983 } 984 985 if (!reserved) 986 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n"); 987 } 988 989 /* 990 * Count and return the number of huge pages in the reserve map 991 * that intersect with the range [f, t). 992 */ 993 static long region_count(struct resv_map *resv, long f, long t) 994 { 995 struct list_head *head = &resv->regions; 996 struct file_region *rg; 997 long chg = 0; 998 999 spin_lock(&resv->lock); 1000 /* Locate each segment we overlap with, and count that overlap. */ 1001 list_for_each_entry(rg, head, link) { 1002 long seg_from; 1003 long seg_to; 1004 1005 if (rg->to <= f) 1006 continue; 1007 if (rg->from >= t) 1008 break; 1009 1010 seg_from = max(rg->from, f); 1011 seg_to = min(rg->to, t); 1012 1013 chg += seg_to - seg_from; 1014 } 1015 spin_unlock(&resv->lock); 1016 1017 return chg; 1018 } 1019 1020 /* 1021 * Convert the address within this vma to the page offset within 1022 * the mapping, huge page units here. 1023 */ 1024 static pgoff_t vma_hugecache_offset(struct hstate *h, 1025 struct vm_area_struct *vma, unsigned long address) 1026 { 1027 return ((address - vma->vm_start) >> huge_page_shift(h)) + 1028 (vma->vm_pgoff >> huge_page_order(h)); 1029 } 1030 1031 /** 1032 * vma_kernel_pagesize - Page size granularity for this VMA. 1033 * @vma: The user mapping. 1034 * 1035 * Folios in this VMA will be aligned to, and at least the size of the 1036 * number of bytes returned by this function. 1037 * 1038 * Return: The default size of the folios allocated when backing a VMA. 1039 */ 1040 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) 1041 { 1042 if (vma->vm_ops && vma->vm_ops->pagesize) 1043 return vma->vm_ops->pagesize(vma); 1044 return PAGE_SIZE; 1045 } 1046 EXPORT_SYMBOL_GPL(vma_kernel_pagesize); 1047 1048 /* 1049 * Return the page size being used by the MMU to back a VMA. In the majority 1050 * of cases, the page size used by the kernel matches the MMU size. On 1051 * architectures where it differs, an architecture-specific 'strong' 1052 * version of this symbol is required. 1053 */ 1054 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 1055 { 1056 return vma_kernel_pagesize(vma); 1057 } 1058 1059 /* 1060 * Flags for MAP_PRIVATE reservations. These are stored in the bottom 1061 * bits of the reservation map pointer, which are always clear due to 1062 * alignment. 1063 */ 1064 #define HPAGE_RESV_OWNER (1UL << 0) 1065 #define HPAGE_RESV_UNMAPPED (1UL << 1) 1066 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) 1067 1068 /* 1069 * These helpers are used to track how many pages are reserved for 1070 * faults in a MAP_PRIVATE mapping. Only the process that called mmap() 1071 * is guaranteed to have their future faults succeed. 1072 * 1073 * With the exception of hugetlb_dup_vma_private() which is called at fork(), 1074 * the reserve counters are updated with the hugetlb_lock held. It is safe 1075 * to reset the VMA at fork() time as it is not in use yet and there is no 1076 * chance of the global counters getting corrupted as a result of the values. 1077 * 1078 * The private mapping reservation is represented in a subtly different 1079 * manner to a shared mapping. A shared mapping has a region map associated 1080 * with the underlying file, this region map represents the backing file 1081 * pages which have ever had a reservation assigned which this persists even 1082 * after the page is instantiated. A private mapping has a region map 1083 * associated with the original mmap which is attached to all VMAs which 1084 * reference it, this region map represents those offsets which have consumed 1085 * reservation ie. where pages have been instantiated. 1086 */ 1087 static unsigned long get_vma_private_data(struct vm_area_struct *vma) 1088 { 1089 return (unsigned long)vma->vm_private_data; 1090 } 1091 1092 static void set_vma_private_data(struct vm_area_struct *vma, 1093 unsigned long value) 1094 { 1095 vma->vm_private_data = (void *)value; 1096 } 1097 1098 static void 1099 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map, 1100 struct hugetlb_cgroup *h_cg, 1101 struct hstate *h) 1102 { 1103 #ifdef CONFIG_CGROUP_HUGETLB 1104 if (!h_cg || !h) { 1105 resv_map->reservation_counter = NULL; 1106 resv_map->pages_per_hpage = 0; 1107 resv_map->css = NULL; 1108 } else { 1109 resv_map->reservation_counter = 1110 &h_cg->rsvd_hugepage[hstate_index(h)]; 1111 resv_map->pages_per_hpage = pages_per_huge_page(h); 1112 resv_map->css = &h_cg->css; 1113 } 1114 #endif 1115 } 1116 1117 struct resv_map *resv_map_alloc(void) 1118 { 1119 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); 1120 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL); 1121 1122 if (!resv_map || !rg) { 1123 kfree(resv_map); 1124 kfree(rg); 1125 return NULL; 1126 } 1127 1128 kref_init(&resv_map->refs); 1129 spin_lock_init(&resv_map->lock); 1130 INIT_LIST_HEAD(&resv_map->regions); 1131 init_rwsem(&resv_map->rw_sema); 1132 1133 resv_map->adds_in_progress = 0; 1134 /* 1135 * Initialize these to 0. On shared mappings, 0's here indicate these 1136 * fields don't do cgroup accounting. On private mappings, these will be 1137 * re-initialized to the proper values, to indicate that hugetlb cgroup 1138 * reservations are to be un-charged from here. 1139 */ 1140 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL); 1141 1142 INIT_LIST_HEAD(&resv_map->region_cache); 1143 list_add(&rg->link, &resv_map->region_cache); 1144 resv_map->region_cache_count = 1; 1145 1146 return resv_map; 1147 } 1148 1149 void resv_map_release(struct kref *ref) 1150 { 1151 struct resv_map *resv_map = container_of(ref, struct resv_map, refs); 1152 struct list_head *head = &resv_map->region_cache; 1153 struct file_region *rg, *trg; 1154 1155 /* Clear out any active regions before we release the map. */ 1156 region_del(resv_map, 0, LONG_MAX); 1157 1158 /* ... and any entries left in the cache */ 1159 list_for_each_entry_safe(rg, trg, head, link) { 1160 list_del(&rg->link); 1161 kfree(rg); 1162 } 1163 1164 VM_BUG_ON(resv_map->adds_in_progress); 1165 1166 kfree(resv_map); 1167 } 1168 1169 static inline struct resv_map *inode_resv_map(struct inode *inode) 1170 { 1171 /* 1172 * At inode evict time, i_mapping may not point to the original 1173 * address space within the inode. This original address space 1174 * contains the pointer to the resv_map. So, always use the 1175 * address space embedded within the inode. 1176 * The VERY common case is inode->mapping == &inode->i_data but, 1177 * this may not be true for device special inodes. 1178 */ 1179 return (struct resv_map *)(&inode->i_data)->i_private_data; 1180 } 1181 1182 static struct resv_map *vma_resv_map(struct vm_area_struct *vma) 1183 { 1184 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1185 if (vma->vm_flags & VM_MAYSHARE) { 1186 struct address_space *mapping = vma->vm_file->f_mapping; 1187 struct inode *inode = mapping->host; 1188 1189 return inode_resv_map(inode); 1190 1191 } else { 1192 return (struct resv_map *)(get_vma_private_data(vma) & 1193 ~HPAGE_RESV_MASK); 1194 } 1195 } 1196 1197 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) 1198 { 1199 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1200 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 1201 1202 set_vma_private_data(vma, (unsigned long)map); 1203 } 1204 1205 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) 1206 { 1207 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1208 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 1209 1210 set_vma_private_data(vma, get_vma_private_data(vma) | flags); 1211 } 1212 1213 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) 1214 { 1215 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1216 1217 return (get_vma_private_data(vma) & flag) != 0; 1218 } 1219 1220 bool __vma_private_lock(struct vm_area_struct *vma) 1221 { 1222 return !(vma->vm_flags & VM_MAYSHARE) && 1223 get_vma_private_data(vma) & ~HPAGE_RESV_MASK && 1224 is_vma_resv_set(vma, HPAGE_RESV_OWNER); 1225 } 1226 1227 void hugetlb_dup_vma_private(struct vm_area_struct *vma) 1228 { 1229 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1230 /* 1231 * Clear vm_private_data 1232 * - For shared mappings this is a per-vma semaphore that may be 1233 * allocated in a subsequent call to hugetlb_vm_op_open. 1234 * Before clearing, make sure pointer is not associated with vma 1235 * as this will leak the structure. This is the case when called 1236 * via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already 1237 * been called to allocate a new structure. 1238 * - For MAP_PRIVATE mappings, this is the reserve map which does 1239 * not apply to children. Faults generated by the children are 1240 * not guaranteed to succeed, even if read-only. 1241 */ 1242 if (vma->vm_flags & VM_MAYSHARE) { 1243 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 1244 1245 if (vma_lock && vma_lock->vma != vma) 1246 vma->vm_private_data = NULL; 1247 } else 1248 vma->vm_private_data = NULL; 1249 } 1250 1251 /* 1252 * Reset and decrement one ref on hugepage private reservation. 1253 * Called with mm->mmap_lock writer semaphore held. 1254 * This function should be only used by mremap and operate on 1255 * same sized vma. It should never come here with last ref on the 1256 * reservation. 1257 */ 1258 void clear_vma_resv_huge_pages(struct vm_area_struct *vma) 1259 { 1260 /* 1261 * Clear the old hugetlb private page reservation. 1262 * It has already been transferred to new_vma. 1263 * 1264 * During a mremap() operation of a hugetlb vma we call move_vma() 1265 * which copies vma into new_vma and unmaps vma. After the copy 1266 * operation both new_vma and vma share a reference to the resv_map 1267 * struct, and at that point vma is about to be unmapped. We don't 1268 * want to return the reservation to the pool at unmap of vma because 1269 * the reservation still lives on in new_vma, so simply decrement the 1270 * ref here and remove the resv_map reference from this vma. 1271 */ 1272 struct resv_map *reservations = vma_resv_map(vma); 1273 1274 if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 1275 resv_map_put_hugetlb_cgroup_uncharge_info(reservations); 1276 kref_put(&reservations->refs, resv_map_release); 1277 } 1278 1279 hugetlb_dup_vma_private(vma); 1280 } 1281 1282 static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio) 1283 { 1284 int nid = folio_nid(folio); 1285 1286 lockdep_assert_held(&hugetlb_lock); 1287 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio); 1288 1289 list_move(&folio->lru, &h->hugepage_freelists[nid]); 1290 h->free_huge_pages++; 1291 h->free_huge_pages_node[nid]++; 1292 folio_set_hugetlb_freed(folio); 1293 } 1294 1295 static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h, 1296 int nid) 1297 { 1298 struct folio *folio; 1299 bool pin = !!(current->flags & PF_MEMALLOC_PIN); 1300 1301 lockdep_assert_held(&hugetlb_lock); 1302 list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) { 1303 if (pin && !folio_is_longterm_pinnable(folio)) 1304 continue; 1305 1306 if (folio_test_hwpoison(folio)) 1307 continue; 1308 1309 if (is_migrate_isolate_page(&folio->page)) 1310 continue; 1311 1312 list_move(&folio->lru, &h->hugepage_activelist); 1313 folio_ref_unfreeze(folio, 1); 1314 folio_clear_hugetlb_freed(folio); 1315 h->free_huge_pages--; 1316 h->free_huge_pages_node[nid]--; 1317 return folio; 1318 } 1319 1320 return NULL; 1321 } 1322 1323 static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask, 1324 int nid, nodemask_t *nmask) 1325 { 1326 unsigned int cpuset_mems_cookie; 1327 struct zonelist *zonelist; 1328 struct zone *zone; 1329 struct zoneref *z; 1330 int node = NUMA_NO_NODE; 1331 1332 /* 'nid' should not be NUMA_NO_NODE. Try to catch any misuse of it and rectifiy. */ 1333 if (nid == NUMA_NO_NODE) 1334 nid = numa_node_id(); 1335 1336 zonelist = node_zonelist(nid, gfp_mask); 1337 1338 retry_cpuset: 1339 cpuset_mems_cookie = read_mems_allowed_begin(); 1340 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) { 1341 struct folio *folio; 1342 1343 if (!cpuset_zone_allowed(zone, gfp_mask)) 1344 continue; 1345 /* 1346 * no need to ask again on the same node. Pool is node rather than 1347 * zone aware 1348 */ 1349 if (zone_to_nid(zone) == node) 1350 continue; 1351 node = zone_to_nid(zone); 1352 1353 folio = dequeue_hugetlb_folio_node_exact(h, node); 1354 if (folio) 1355 return folio; 1356 } 1357 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie))) 1358 goto retry_cpuset; 1359 1360 return NULL; 1361 } 1362 1363 static unsigned long available_huge_pages(struct hstate *h) 1364 { 1365 return h->free_huge_pages - h->resv_huge_pages; 1366 } 1367 1368 static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h, 1369 struct vm_area_struct *vma, 1370 unsigned long address, long gbl_chg) 1371 { 1372 struct folio *folio = NULL; 1373 struct mempolicy *mpol; 1374 gfp_t gfp_mask; 1375 nodemask_t *nodemask; 1376 int nid; 1377 1378 /* 1379 * gbl_chg==1 means the allocation requires a new page that was not 1380 * reserved before. Making sure there's at least one free page. 1381 */ 1382 if (gbl_chg && !available_huge_pages(h)) 1383 goto err; 1384 1385 gfp_mask = htlb_alloc_mask(h); 1386 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 1387 1388 if (mpol_is_preferred_many(mpol)) { 1389 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, 1390 nid, nodemask); 1391 1392 /* Fallback to all nodes if page==NULL */ 1393 nodemask = NULL; 1394 } 1395 1396 if (!folio) 1397 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, 1398 nid, nodemask); 1399 1400 mpol_cond_put(mpol); 1401 return folio; 1402 1403 err: 1404 return NULL; 1405 } 1406 1407 /* 1408 * common helper functions for hstate_next_node_to_{alloc|free}. 1409 * We may have allocated or freed a huge page based on a different 1410 * nodes_allowed previously, so h->next_node_to_{alloc|free} might 1411 * be outside of *nodes_allowed. Ensure that we use an allowed 1412 * node for alloc or free. 1413 */ 1414 static int next_node_allowed(int nid, nodemask_t *nodes_allowed) 1415 { 1416 nid = next_node_in(nid, *nodes_allowed); 1417 VM_BUG_ON(nid >= MAX_NUMNODES); 1418 1419 return nid; 1420 } 1421 1422 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed) 1423 { 1424 if (!node_isset(nid, *nodes_allowed)) 1425 nid = next_node_allowed(nid, nodes_allowed); 1426 return nid; 1427 } 1428 1429 /* 1430 * returns the previously saved node ["this node"] from which to 1431 * allocate a persistent huge page for the pool and advance the 1432 * next node from which to allocate, handling wrap at end of node 1433 * mask. 1434 */ 1435 static int hstate_next_node_to_alloc(int *next_node, 1436 nodemask_t *nodes_allowed) 1437 { 1438 int nid; 1439 1440 VM_BUG_ON(!nodes_allowed); 1441 1442 nid = get_valid_node_allowed(*next_node, nodes_allowed); 1443 *next_node = next_node_allowed(nid, nodes_allowed); 1444 1445 return nid; 1446 } 1447 1448 /* 1449 * helper for remove_pool_hugetlb_folio() - return the previously saved 1450 * node ["this node"] from which to free a huge page. Advance the 1451 * next node id whether or not we find a free huge page to free so 1452 * that the next attempt to free addresses the next node. 1453 */ 1454 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed) 1455 { 1456 int nid; 1457 1458 VM_BUG_ON(!nodes_allowed); 1459 1460 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed); 1461 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed); 1462 1463 return nid; 1464 } 1465 1466 #define for_each_node_mask_to_alloc(next_node, nr_nodes, node, mask) \ 1467 for (nr_nodes = nodes_weight(*mask); \ 1468 nr_nodes > 0 && \ 1469 ((node = hstate_next_node_to_alloc(next_node, mask)) || 1); \ 1470 nr_nodes--) 1471 1472 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \ 1473 for (nr_nodes = nodes_weight(*mask); \ 1474 nr_nodes > 0 && \ 1475 ((node = hstate_next_node_to_free(hs, mask)) || 1); \ 1476 nr_nodes--) 1477 1478 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE 1479 #ifdef CONFIG_CONTIG_ALLOC 1480 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask, 1481 int nid, nodemask_t *nodemask) 1482 { 1483 struct folio *folio; 1484 int order = huge_page_order(h); 1485 bool retried = false; 1486 1487 if (nid == NUMA_NO_NODE) 1488 nid = numa_mem_id(); 1489 retry: 1490 folio = hugetlb_cma_alloc_folio(h, gfp_mask, nid, nodemask); 1491 if (!folio) { 1492 if (hugetlb_cma_exclusive_alloc()) 1493 return NULL; 1494 1495 folio = folio_alloc_gigantic(order, gfp_mask, nid, nodemask); 1496 if (!folio) 1497 return NULL; 1498 } 1499 1500 if (folio_ref_freeze(folio, 1)) 1501 return folio; 1502 1503 pr_warn("HugeTLB: unexpected refcount on PFN %lu\n", folio_pfn(folio)); 1504 hugetlb_free_folio(folio); 1505 if (!retried) { 1506 retried = true; 1507 goto retry; 1508 } 1509 return NULL; 1510 } 1511 1512 #else /* !CONFIG_CONTIG_ALLOC */ 1513 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask, 1514 int nid, nodemask_t *nodemask) 1515 { 1516 return NULL; 1517 } 1518 #endif /* CONFIG_CONTIG_ALLOC */ 1519 1520 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */ 1521 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask, 1522 int nid, nodemask_t *nodemask) 1523 { 1524 return NULL; 1525 } 1526 #endif 1527 1528 /* 1529 * Remove hugetlb folio from lists. 1530 * If vmemmap exists for the folio, clear the hugetlb flag so that the 1531 * folio appears as just a compound page. Otherwise, wait until after 1532 * allocating vmemmap to clear the flag. 1533 * 1534 * Must be called with hugetlb lock held. 1535 */ 1536 static void remove_hugetlb_folio(struct hstate *h, struct folio *folio, 1537 bool adjust_surplus) 1538 { 1539 int nid = folio_nid(folio); 1540 1541 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio); 1542 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio); 1543 1544 lockdep_assert_held(&hugetlb_lock); 1545 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 1546 return; 1547 1548 list_del(&folio->lru); 1549 1550 if (folio_test_hugetlb_freed(folio)) { 1551 folio_clear_hugetlb_freed(folio); 1552 h->free_huge_pages--; 1553 h->free_huge_pages_node[nid]--; 1554 } 1555 if (adjust_surplus) { 1556 h->surplus_huge_pages--; 1557 h->surplus_huge_pages_node[nid]--; 1558 } 1559 1560 /* 1561 * We can only clear the hugetlb flag after allocating vmemmap 1562 * pages. Otherwise, someone (memory error handling) may try to write 1563 * to tail struct pages. 1564 */ 1565 if (!folio_test_hugetlb_vmemmap_optimized(folio)) 1566 __folio_clear_hugetlb(folio); 1567 1568 h->nr_huge_pages--; 1569 h->nr_huge_pages_node[nid]--; 1570 } 1571 1572 static void add_hugetlb_folio(struct hstate *h, struct folio *folio, 1573 bool adjust_surplus) 1574 { 1575 int nid = folio_nid(folio); 1576 1577 VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio); 1578 1579 lockdep_assert_held(&hugetlb_lock); 1580 1581 INIT_LIST_HEAD(&folio->lru); 1582 h->nr_huge_pages++; 1583 h->nr_huge_pages_node[nid]++; 1584 1585 if (adjust_surplus) { 1586 h->surplus_huge_pages++; 1587 h->surplus_huge_pages_node[nid]++; 1588 } 1589 1590 __folio_set_hugetlb(folio); 1591 folio_change_private(folio, NULL); 1592 /* 1593 * We have to set hugetlb_vmemmap_optimized again as above 1594 * folio_change_private(folio, NULL) cleared it. 1595 */ 1596 folio_set_hugetlb_vmemmap_optimized(folio); 1597 1598 arch_clear_hugetlb_flags(folio); 1599 enqueue_hugetlb_folio(h, folio); 1600 } 1601 1602 static void __update_and_free_hugetlb_folio(struct hstate *h, 1603 struct folio *folio) 1604 { 1605 bool clear_flag = folio_test_hugetlb_vmemmap_optimized(folio); 1606 1607 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 1608 return; 1609 1610 /* 1611 * If we don't know which subpages are hwpoisoned, we can't free 1612 * the hugepage, so it's leaked intentionally. 1613 */ 1614 if (folio_test_hugetlb_raw_hwp_unreliable(folio)) 1615 return; 1616 1617 /* 1618 * If folio is not vmemmap optimized (!clear_flag), then the folio 1619 * is no longer identified as a hugetlb page. hugetlb_vmemmap_restore_folio 1620 * can only be passed hugetlb pages and will BUG otherwise. 1621 */ 1622 if (clear_flag && hugetlb_vmemmap_restore_folio(h, folio)) { 1623 spin_lock_irq(&hugetlb_lock); 1624 /* 1625 * If we cannot allocate vmemmap pages, just refuse to free the 1626 * page and put the page back on the hugetlb free list and treat 1627 * as a surplus page. 1628 */ 1629 add_hugetlb_folio(h, folio, true); 1630 spin_unlock_irq(&hugetlb_lock); 1631 return; 1632 } 1633 1634 /* 1635 * If vmemmap pages were allocated above, then we need to clear the 1636 * hugetlb flag under the hugetlb lock. 1637 */ 1638 if (folio_test_hugetlb(folio)) { 1639 spin_lock_irq(&hugetlb_lock); 1640 __folio_clear_hugetlb(folio); 1641 spin_unlock_irq(&hugetlb_lock); 1642 } 1643 1644 /* 1645 * Move PageHWPoison flag from head page to the raw error pages, 1646 * which makes any healthy subpages reusable. 1647 */ 1648 if (unlikely(folio_test_hwpoison(folio))) 1649 folio_clear_hugetlb_hwpoison(folio); 1650 1651 folio_ref_unfreeze(folio, 1); 1652 1653 hugetlb_free_folio(folio); 1654 } 1655 1656 /* 1657 * As update_and_free_hugetlb_folio() can be called under any context, so we cannot 1658 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the 1659 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate 1660 * the vmemmap pages. 1661 * 1662 * free_hpage_workfn() locklessly retrieves the linked list of pages to be 1663 * freed and frees them one-by-one. As the page->mapping pointer is going 1664 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node 1665 * structure of a lockless linked list of huge pages to be freed. 1666 */ 1667 static LLIST_HEAD(hpage_freelist); 1668 1669 static void free_hpage_workfn(struct work_struct *work) 1670 { 1671 struct llist_node *node; 1672 1673 node = llist_del_all(&hpage_freelist); 1674 1675 while (node) { 1676 struct folio *folio; 1677 struct hstate *h; 1678 1679 folio = container_of((struct address_space **)node, 1680 struct folio, mapping); 1681 node = node->next; 1682 folio->mapping = NULL; 1683 /* 1684 * The VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio) in 1685 * folio_hstate() is going to trigger because a previous call to 1686 * remove_hugetlb_folio() will clear the hugetlb bit, so do 1687 * not use folio_hstate() directly. 1688 */ 1689 h = size_to_hstate(folio_size(folio)); 1690 1691 __update_and_free_hugetlb_folio(h, folio); 1692 1693 cond_resched(); 1694 } 1695 } 1696 static DECLARE_WORK(free_hpage_work, free_hpage_workfn); 1697 1698 static inline void flush_free_hpage_work(struct hstate *h) 1699 { 1700 if (hugetlb_vmemmap_optimizable(h)) 1701 flush_work(&free_hpage_work); 1702 } 1703 1704 static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio, 1705 bool atomic) 1706 { 1707 if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) { 1708 __update_and_free_hugetlb_folio(h, folio); 1709 return; 1710 } 1711 1712 /* 1713 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages. 1714 * 1715 * Only call schedule_work() if hpage_freelist is previously 1716 * empty. Otherwise, schedule_work() had been called but the workfn 1717 * hasn't retrieved the list yet. 1718 */ 1719 if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist)) 1720 schedule_work(&free_hpage_work); 1721 } 1722 1723 static void bulk_vmemmap_restore_error(struct hstate *h, 1724 struct list_head *folio_list, 1725 struct list_head *non_hvo_folios) 1726 { 1727 struct folio *folio, *t_folio; 1728 1729 if (!list_empty(non_hvo_folios)) { 1730 /* 1731 * Free any restored hugetlb pages so that restore of the 1732 * entire list can be retried. 1733 * The idea is that in the common case of ENOMEM errors freeing 1734 * hugetlb pages with vmemmap we will free up memory so that we 1735 * can allocate vmemmap for more hugetlb pages. 1736 */ 1737 list_for_each_entry_safe(folio, t_folio, non_hvo_folios, lru) { 1738 list_del(&folio->lru); 1739 spin_lock_irq(&hugetlb_lock); 1740 __folio_clear_hugetlb(folio); 1741 spin_unlock_irq(&hugetlb_lock); 1742 update_and_free_hugetlb_folio(h, folio, false); 1743 cond_resched(); 1744 } 1745 } else { 1746 /* 1747 * In the case where there are no folios which can be 1748 * immediately freed, we loop through the list trying to restore 1749 * vmemmap individually in the hope that someone elsewhere may 1750 * have done something to cause success (such as freeing some 1751 * memory). If unable to restore a hugetlb page, the hugetlb 1752 * page is made a surplus page and removed from the list. 1753 * If are able to restore vmemmap and free one hugetlb page, we 1754 * quit processing the list to retry the bulk operation. 1755 */ 1756 list_for_each_entry_safe(folio, t_folio, folio_list, lru) 1757 if (hugetlb_vmemmap_restore_folio(h, folio)) { 1758 list_del(&folio->lru); 1759 spin_lock_irq(&hugetlb_lock); 1760 add_hugetlb_folio(h, folio, true); 1761 spin_unlock_irq(&hugetlb_lock); 1762 } else { 1763 list_del(&folio->lru); 1764 spin_lock_irq(&hugetlb_lock); 1765 __folio_clear_hugetlb(folio); 1766 spin_unlock_irq(&hugetlb_lock); 1767 update_and_free_hugetlb_folio(h, folio, false); 1768 cond_resched(); 1769 break; 1770 } 1771 } 1772 } 1773 1774 static void update_and_free_pages_bulk(struct hstate *h, 1775 struct list_head *folio_list) 1776 { 1777 long ret; 1778 struct folio *folio, *t_folio; 1779 LIST_HEAD(non_hvo_folios); 1780 1781 /* 1782 * First allocate required vmemmmap (if necessary) for all folios. 1783 * Carefully handle errors and free up any available hugetlb pages 1784 * in an effort to make forward progress. 1785 */ 1786 retry: 1787 ret = hugetlb_vmemmap_restore_folios(h, folio_list, &non_hvo_folios); 1788 if (ret < 0) { 1789 bulk_vmemmap_restore_error(h, folio_list, &non_hvo_folios); 1790 goto retry; 1791 } 1792 1793 /* 1794 * At this point, list should be empty, ret should be >= 0 and there 1795 * should only be pages on the non_hvo_folios list. 1796 * Do note that the non_hvo_folios list could be empty. 1797 * Without HVO enabled, ret will be 0 and there is no need to call 1798 * __folio_clear_hugetlb as this was done previously. 1799 */ 1800 VM_WARN_ON(!list_empty(folio_list)); 1801 VM_WARN_ON(ret < 0); 1802 if (!list_empty(&non_hvo_folios) && ret) { 1803 spin_lock_irq(&hugetlb_lock); 1804 list_for_each_entry(folio, &non_hvo_folios, lru) 1805 __folio_clear_hugetlb(folio); 1806 spin_unlock_irq(&hugetlb_lock); 1807 } 1808 1809 list_for_each_entry_safe(folio, t_folio, &non_hvo_folios, lru) { 1810 update_and_free_hugetlb_folio(h, folio, false); 1811 cond_resched(); 1812 } 1813 } 1814 1815 struct hstate *size_to_hstate(unsigned long size) 1816 { 1817 struct hstate *h; 1818 1819 for_each_hstate(h) { 1820 if (huge_page_size(h) == size) 1821 return h; 1822 } 1823 return NULL; 1824 } 1825 1826 void free_huge_folio(struct folio *folio) 1827 { 1828 /* 1829 * Can't pass hstate in here because it is called from the 1830 * generic mm code. 1831 */ 1832 struct hstate *h = folio_hstate(folio); 1833 int nid = folio_nid(folio); 1834 struct hugepage_subpool *spool = hugetlb_folio_subpool(folio); 1835 bool restore_reserve; 1836 unsigned long flags; 1837 1838 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio); 1839 VM_BUG_ON_FOLIO(folio_mapcount(folio), folio); 1840 1841 hugetlb_set_folio_subpool(folio, NULL); 1842 if (folio_test_anon(folio)) 1843 __ClearPageAnonExclusive(&folio->page); 1844 folio->mapping = NULL; 1845 restore_reserve = folio_test_hugetlb_restore_reserve(folio); 1846 folio_clear_hugetlb_restore_reserve(folio); 1847 1848 /* 1849 * If HPageRestoreReserve was set on page, page allocation consumed a 1850 * reservation. If the page was associated with a subpool, there 1851 * would have been a page reserved in the subpool before allocation 1852 * via hugepage_subpool_get_pages(). Since we are 'restoring' the 1853 * reservation, do not call hugepage_subpool_put_pages() as this will 1854 * remove the reserved page from the subpool. 1855 */ 1856 if (!restore_reserve) { 1857 /* 1858 * A return code of zero implies that the subpool will be 1859 * under its minimum size if the reservation is not restored 1860 * after page is free. Therefore, force restore_reserve 1861 * operation. 1862 */ 1863 if (hugepage_subpool_put_pages(spool, 1) == 0) 1864 restore_reserve = true; 1865 } 1866 1867 spin_lock_irqsave(&hugetlb_lock, flags); 1868 folio_clear_hugetlb_migratable(folio); 1869 hugetlb_cgroup_uncharge_folio(hstate_index(h), 1870 pages_per_huge_page(h), folio); 1871 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h), 1872 pages_per_huge_page(h), folio); 1873 lruvec_stat_mod_folio(folio, NR_HUGETLB, -pages_per_huge_page(h)); 1874 mem_cgroup_uncharge(folio); 1875 if (restore_reserve) 1876 h->resv_huge_pages++; 1877 1878 if (folio_test_hugetlb_temporary(folio)) { 1879 remove_hugetlb_folio(h, folio, false); 1880 spin_unlock_irqrestore(&hugetlb_lock, flags); 1881 update_and_free_hugetlb_folio(h, folio, true); 1882 } else if (h->surplus_huge_pages_node[nid]) { 1883 /* remove the page from active list */ 1884 remove_hugetlb_folio(h, folio, true); 1885 spin_unlock_irqrestore(&hugetlb_lock, flags); 1886 update_and_free_hugetlb_folio(h, folio, true); 1887 } else { 1888 arch_clear_hugetlb_flags(folio); 1889 enqueue_hugetlb_folio(h, folio); 1890 spin_unlock_irqrestore(&hugetlb_lock, flags); 1891 } 1892 } 1893 1894 /* 1895 * Must be called with the hugetlb lock held 1896 */ 1897 static void __prep_account_new_huge_page(struct hstate *h, int nid) 1898 { 1899 lockdep_assert_held(&hugetlb_lock); 1900 h->nr_huge_pages++; 1901 h->nr_huge_pages_node[nid]++; 1902 } 1903 1904 static void init_new_hugetlb_folio(struct hstate *h, struct folio *folio) 1905 { 1906 __folio_set_hugetlb(folio); 1907 INIT_LIST_HEAD(&folio->lru); 1908 hugetlb_set_folio_subpool(folio, NULL); 1909 set_hugetlb_cgroup(folio, NULL); 1910 set_hugetlb_cgroup_rsvd(folio, NULL); 1911 } 1912 1913 static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio) 1914 { 1915 init_new_hugetlb_folio(h, folio); 1916 hugetlb_vmemmap_optimize_folio(h, folio); 1917 } 1918 1919 static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid) 1920 { 1921 __prep_new_hugetlb_folio(h, folio); 1922 spin_lock_irq(&hugetlb_lock); 1923 __prep_account_new_huge_page(h, nid); 1924 spin_unlock_irq(&hugetlb_lock); 1925 } 1926 1927 /* 1928 * Find and lock address space (mapping) in write mode. 1929 * 1930 * Upon entry, the folio is locked which means that folio_mapping() is 1931 * stable. Due to locking order, we can only trylock_write. If we can 1932 * not get the lock, simply return NULL to caller. 1933 */ 1934 struct address_space *hugetlb_folio_mapping_lock_write(struct folio *folio) 1935 { 1936 struct address_space *mapping = folio_mapping(folio); 1937 1938 if (!mapping) 1939 return mapping; 1940 1941 if (i_mmap_trylock_write(mapping)) 1942 return mapping; 1943 1944 return NULL; 1945 } 1946 1947 static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h, 1948 gfp_t gfp_mask, int nid, nodemask_t *nmask, 1949 nodemask_t *node_alloc_noretry) 1950 { 1951 int order = huge_page_order(h); 1952 struct folio *folio; 1953 bool alloc_try_hard = true; 1954 1955 /* 1956 * By default we always try hard to allocate the folio with 1957 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating folios in 1958 * a loop (to adjust global huge page counts) and previous allocation 1959 * failed, do not continue to try hard on the same node. Use the 1960 * node_alloc_noretry bitmap to manage this state information. 1961 */ 1962 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry)) 1963 alloc_try_hard = false; 1964 if (alloc_try_hard) 1965 gfp_mask |= __GFP_RETRY_MAYFAIL; 1966 if (nid == NUMA_NO_NODE) 1967 nid = numa_mem_id(); 1968 1969 folio = (struct folio *)__alloc_frozen_pages(gfp_mask, order, nid, nmask); 1970 1971 /* 1972 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a 1973 * folio this indicates an overall state change. Clear bit so 1974 * that we resume normal 'try hard' allocations. 1975 */ 1976 if (node_alloc_noretry && folio && !alloc_try_hard) 1977 node_clear(nid, *node_alloc_noretry); 1978 1979 /* 1980 * If we tried hard to get a folio but failed, set bit so that 1981 * subsequent attempts will not try as hard until there is an 1982 * overall state change. 1983 */ 1984 if (node_alloc_noretry && !folio && alloc_try_hard) 1985 node_set(nid, *node_alloc_noretry); 1986 1987 if (!folio) { 1988 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 1989 return NULL; 1990 } 1991 1992 __count_vm_event(HTLB_BUDDY_PGALLOC); 1993 return folio; 1994 } 1995 1996 static struct folio *only_alloc_fresh_hugetlb_folio(struct hstate *h, 1997 gfp_t gfp_mask, int nid, nodemask_t *nmask, 1998 nodemask_t *node_alloc_noretry) 1999 { 2000 struct folio *folio; 2001 2002 if (hstate_is_gigantic(h)) 2003 folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask); 2004 else 2005 folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, nmask, node_alloc_noretry); 2006 if (folio) 2007 init_new_hugetlb_folio(h, folio); 2008 return folio; 2009 } 2010 2011 /* 2012 * Common helper to allocate a fresh hugetlb page. All specific allocators 2013 * should use this function to get new hugetlb pages 2014 * 2015 * Note that returned page is 'frozen': ref count of head page and all tail 2016 * pages is zero. 2017 */ 2018 static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h, 2019 gfp_t gfp_mask, int nid, nodemask_t *nmask) 2020 { 2021 struct folio *folio; 2022 2023 if (hstate_is_gigantic(h)) 2024 folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask); 2025 else 2026 folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, nmask, NULL); 2027 if (!folio) 2028 return NULL; 2029 2030 prep_new_hugetlb_folio(h, folio, folio_nid(folio)); 2031 return folio; 2032 } 2033 2034 static void prep_and_add_allocated_folios(struct hstate *h, 2035 struct list_head *folio_list) 2036 { 2037 unsigned long flags; 2038 struct folio *folio, *tmp_f; 2039 2040 /* Send list for bulk vmemmap optimization processing */ 2041 hugetlb_vmemmap_optimize_folios(h, folio_list); 2042 2043 /* Add all new pool pages to free lists in one lock cycle */ 2044 spin_lock_irqsave(&hugetlb_lock, flags); 2045 list_for_each_entry_safe(folio, tmp_f, folio_list, lru) { 2046 __prep_account_new_huge_page(h, folio_nid(folio)); 2047 enqueue_hugetlb_folio(h, folio); 2048 } 2049 spin_unlock_irqrestore(&hugetlb_lock, flags); 2050 } 2051 2052 /* 2053 * Allocates a fresh hugetlb page in a node interleaved manner. The page 2054 * will later be added to the appropriate hugetlb pool. 2055 */ 2056 static struct folio *alloc_pool_huge_folio(struct hstate *h, 2057 nodemask_t *nodes_allowed, 2058 nodemask_t *node_alloc_noretry, 2059 int *next_node) 2060 { 2061 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 2062 int nr_nodes, node; 2063 2064 for_each_node_mask_to_alloc(next_node, nr_nodes, node, nodes_allowed) { 2065 struct folio *folio; 2066 2067 folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, node, 2068 nodes_allowed, node_alloc_noretry); 2069 if (folio) 2070 return folio; 2071 } 2072 2073 return NULL; 2074 } 2075 2076 /* 2077 * Remove huge page from pool from next node to free. Attempt to keep 2078 * persistent huge pages more or less balanced over allowed nodes. 2079 * This routine only 'removes' the hugetlb page. The caller must make 2080 * an additional call to free the page to low level allocators. 2081 * Called with hugetlb_lock locked. 2082 */ 2083 static struct folio *remove_pool_hugetlb_folio(struct hstate *h, 2084 nodemask_t *nodes_allowed, bool acct_surplus) 2085 { 2086 int nr_nodes, node; 2087 struct folio *folio = NULL; 2088 2089 lockdep_assert_held(&hugetlb_lock); 2090 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 2091 /* 2092 * If we're returning unused surplus pages, only examine 2093 * nodes with surplus pages. 2094 */ 2095 if ((!acct_surplus || h->surplus_huge_pages_node[node]) && 2096 !list_empty(&h->hugepage_freelists[node])) { 2097 folio = list_entry(h->hugepage_freelists[node].next, 2098 struct folio, lru); 2099 remove_hugetlb_folio(h, folio, acct_surplus); 2100 break; 2101 } 2102 } 2103 2104 return folio; 2105 } 2106 2107 /* 2108 * Dissolve a given free hugetlb folio into free buddy pages. This function 2109 * does nothing for in-use hugetlb folios and non-hugetlb folios. 2110 * This function returns values like below: 2111 * 2112 * -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages 2113 * when the system is under memory pressure and the feature of 2114 * freeing unused vmemmap pages associated with each hugetlb page 2115 * is enabled. 2116 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use 2117 * (allocated or reserved.) 2118 * 0: successfully dissolved free hugepages or the page is not a 2119 * hugepage (considered as already dissolved) 2120 */ 2121 int dissolve_free_hugetlb_folio(struct folio *folio) 2122 { 2123 int rc = -EBUSY; 2124 2125 retry: 2126 /* Not to disrupt normal path by vainly holding hugetlb_lock */ 2127 if (!folio_test_hugetlb(folio)) 2128 return 0; 2129 2130 spin_lock_irq(&hugetlb_lock); 2131 if (!folio_test_hugetlb(folio)) { 2132 rc = 0; 2133 goto out; 2134 } 2135 2136 if (!folio_ref_count(folio)) { 2137 struct hstate *h = folio_hstate(folio); 2138 bool adjust_surplus = false; 2139 2140 if (!available_huge_pages(h)) 2141 goto out; 2142 2143 /* 2144 * We should make sure that the page is already on the free list 2145 * when it is dissolved. 2146 */ 2147 if (unlikely(!folio_test_hugetlb_freed(folio))) { 2148 spin_unlock_irq(&hugetlb_lock); 2149 cond_resched(); 2150 2151 /* 2152 * Theoretically, we should return -EBUSY when we 2153 * encounter this race. In fact, we have a chance 2154 * to successfully dissolve the page if we do a 2155 * retry. Because the race window is quite small. 2156 * If we seize this opportunity, it is an optimization 2157 * for increasing the success rate of dissolving page. 2158 */ 2159 goto retry; 2160 } 2161 2162 if (h->surplus_huge_pages_node[folio_nid(folio)]) 2163 adjust_surplus = true; 2164 remove_hugetlb_folio(h, folio, adjust_surplus); 2165 h->max_huge_pages--; 2166 spin_unlock_irq(&hugetlb_lock); 2167 2168 /* 2169 * Normally update_and_free_hugtlb_folio will allocate required vmemmmap 2170 * before freeing the page. update_and_free_hugtlb_folio will fail to 2171 * free the page if it can not allocate required vmemmap. We 2172 * need to adjust max_huge_pages if the page is not freed. 2173 * Attempt to allocate vmemmmap here so that we can take 2174 * appropriate action on failure. 2175 * 2176 * The folio_test_hugetlb check here is because 2177 * remove_hugetlb_folio will clear hugetlb folio flag for 2178 * non-vmemmap optimized hugetlb folios. 2179 */ 2180 if (folio_test_hugetlb(folio)) { 2181 rc = hugetlb_vmemmap_restore_folio(h, folio); 2182 if (rc) { 2183 spin_lock_irq(&hugetlb_lock); 2184 add_hugetlb_folio(h, folio, adjust_surplus); 2185 h->max_huge_pages++; 2186 goto out; 2187 } 2188 } else 2189 rc = 0; 2190 2191 update_and_free_hugetlb_folio(h, folio, false); 2192 return rc; 2193 } 2194 out: 2195 spin_unlock_irq(&hugetlb_lock); 2196 return rc; 2197 } 2198 2199 /* 2200 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to 2201 * make specified memory blocks removable from the system. 2202 * Note that this will dissolve a free gigantic hugepage completely, if any 2203 * part of it lies within the given range. 2204 * Also note that if dissolve_free_hugetlb_folio() returns with an error, all 2205 * free hugetlb folios that were dissolved before that error are lost. 2206 */ 2207 int dissolve_free_hugetlb_folios(unsigned long start_pfn, unsigned long end_pfn) 2208 { 2209 unsigned long pfn; 2210 struct folio *folio; 2211 int rc = 0; 2212 unsigned int order; 2213 struct hstate *h; 2214 2215 if (!hugepages_supported()) 2216 return rc; 2217 2218 order = huge_page_order(&default_hstate); 2219 for_each_hstate(h) 2220 order = min(order, huge_page_order(h)); 2221 2222 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) { 2223 folio = pfn_folio(pfn); 2224 rc = dissolve_free_hugetlb_folio(folio); 2225 if (rc) 2226 break; 2227 } 2228 2229 return rc; 2230 } 2231 2232 /* 2233 * Allocates a fresh surplus page from the page allocator. 2234 */ 2235 static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h, 2236 gfp_t gfp_mask, int nid, nodemask_t *nmask) 2237 { 2238 struct folio *folio = NULL; 2239 2240 if (hstate_is_gigantic(h)) 2241 return NULL; 2242 2243 spin_lock_irq(&hugetlb_lock); 2244 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) 2245 goto out_unlock; 2246 spin_unlock_irq(&hugetlb_lock); 2247 2248 folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL); 2249 if (!folio) 2250 return NULL; 2251 2252 hugetlb_vmemmap_optimize_folio(h, folio); 2253 2254 spin_lock_irq(&hugetlb_lock); 2255 /* 2256 * nr_huge_pages needs to be adjusted within the same lock cycle 2257 * as surplus_pages, otherwise it might confuse 2258 * persistent_huge_pages() momentarily. 2259 */ 2260 __prep_account_new_huge_page(h, folio_nid(folio)); 2261 2262 /* 2263 * We could have raced with the pool size change. 2264 * Double check that and simply deallocate the new page 2265 * if we would end up overcommiting the surpluses. Abuse 2266 * temporary page to workaround the nasty free_huge_folio 2267 * codeflow 2268 */ 2269 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { 2270 folio_set_hugetlb_temporary(folio); 2271 spin_unlock_irq(&hugetlb_lock); 2272 free_huge_folio(folio); 2273 return NULL; 2274 } 2275 2276 h->surplus_huge_pages++; 2277 h->surplus_huge_pages_node[folio_nid(folio)]++; 2278 2279 out_unlock: 2280 spin_unlock_irq(&hugetlb_lock); 2281 2282 return folio; 2283 } 2284 2285 static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask, 2286 int nid, nodemask_t *nmask) 2287 { 2288 struct folio *folio; 2289 2290 if (hstate_is_gigantic(h)) 2291 return NULL; 2292 2293 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask); 2294 if (!folio) 2295 return NULL; 2296 2297 /* fresh huge pages are frozen */ 2298 folio_ref_unfreeze(folio, 1); 2299 /* 2300 * We do not account these pages as surplus because they are only 2301 * temporary and will be released properly on the last reference 2302 */ 2303 folio_set_hugetlb_temporary(folio); 2304 2305 return folio; 2306 } 2307 2308 /* 2309 * Use the VMA's mpolicy to allocate a huge page from the buddy. 2310 */ 2311 static 2312 struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h, 2313 struct vm_area_struct *vma, unsigned long addr) 2314 { 2315 struct folio *folio = NULL; 2316 struct mempolicy *mpol; 2317 gfp_t gfp_mask = htlb_alloc_mask(h); 2318 int nid; 2319 nodemask_t *nodemask; 2320 2321 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask); 2322 if (mpol_is_preferred_many(mpol)) { 2323 gfp_t gfp = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL); 2324 2325 folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask); 2326 2327 /* Fallback to all nodes if page==NULL */ 2328 nodemask = NULL; 2329 } 2330 2331 if (!folio) 2332 folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask); 2333 mpol_cond_put(mpol); 2334 return folio; 2335 } 2336 2337 struct folio *alloc_hugetlb_folio_reserve(struct hstate *h, int preferred_nid, 2338 nodemask_t *nmask, gfp_t gfp_mask) 2339 { 2340 struct folio *folio; 2341 2342 spin_lock_irq(&hugetlb_lock); 2343 if (!h->resv_huge_pages) { 2344 spin_unlock_irq(&hugetlb_lock); 2345 return NULL; 2346 } 2347 2348 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, preferred_nid, 2349 nmask); 2350 if (folio) 2351 h->resv_huge_pages--; 2352 2353 spin_unlock_irq(&hugetlb_lock); 2354 return folio; 2355 } 2356 2357 /* folio migration callback function */ 2358 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid, 2359 nodemask_t *nmask, gfp_t gfp_mask, bool allow_alloc_fallback) 2360 { 2361 spin_lock_irq(&hugetlb_lock); 2362 if (available_huge_pages(h)) { 2363 struct folio *folio; 2364 2365 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, 2366 preferred_nid, nmask); 2367 if (folio) { 2368 spin_unlock_irq(&hugetlb_lock); 2369 return folio; 2370 } 2371 } 2372 spin_unlock_irq(&hugetlb_lock); 2373 2374 /* We cannot fallback to other nodes, as we could break the per-node pool. */ 2375 if (!allow_alloc_fallback) 2376 gfp_mask |= __GFP_THISNODE; 2377 2378 return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask); 2379 } 2380 2381 static nodemask_t *policy_mbind_nodemask(gfp_t gfp) 2382 { 2383 #ifdef CONFIG_NUMA 2384 struct mempolicy *mpol = get_task_policy(current); 2385 2386 /* 2387 * Only enforce MPOL_BIND policy which overlaps with cpuset policy 2388 * (from policy_nodemask) specifically for hugetlb case 2389 */ 2390 if (mpol->mode == MPOL_BIND && 2391 (apply_policy_zone(mpol, gfp_zone(gfp)) && 2392 cpuset_nodemask_valid_mems_allowed(&mpol->nodes))) 2393 return &mpol->nodes; 2394 #endif 2395 return NULL; 2396 } 2397 2398 /* 2399 * Increase the hugetlb pool such that it can accommodate a reservation 2400 * of size 'delta'. 2401 */ 2402 static int gather_surplus_pages(struct hstate *h, long delta) 2403 __must_hold(&hugetlb_lock) 2404 { 2405 LIST_HEAD(surplus_list); 2406 struct folio *folio, *tmp; 2407 int ret; 2408 long i; 2409 long needed, allocated; 2410 bool alloc_ok = true; 2411 nodemask_t *mbind_nodemask, alloc_nodemask; 2412 2413 mbind_nodemask = policy_mbind_nodemask(htlb_alloc_mask(h)); 2414 if (mbind_nodemask) 2415 nodes_and(alloc_nodemask, *mbind_nodemask, cpuset_current_mems_allowed); 2416 else 2417 alloc_nodemask = cpuset_current_mems_allowed; 2418 2419 lockdep_assert_held(&hugetlb_lock); 2420 needed = (h->resv_huge_pages + delta) - h->free_huge_pages; 2421 if (needed <= 0) { 2422 h->resv_huge_pages += delta; 2423 return 0; 2424 } 2425 2426 allocated = 0; 2427 2428 ret = -ENOMEM; 2429 retry: 2430 spin_unlock_irq(&hugetlb_lock); 2431 for (i = 0; i < needed; i++) { 2432 folio = NULL; 2433 2434 /* 2435 * It is okay to use NUMA_NO_NODE because we use numa_mem_id() 2436 * down the road to pick the current node if that is the case. 2437 */ 2438 folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h), 2439 NUMA_NO_NODE, &alloc_nodemask); 2440 if (!folio) { 2441 alloc_ok = false; 2442 break; 2443 } 2444 list_add(&folio->lru, &surplus_list); 2445 cond_resched(); 2446 } 2447 allocated += i; 2448 2449 /* 2450 * After retaking hugetlb_lock, we need to recalculate 'needed' 2451 * because either resv_huge_pages or free_huge_pages may have changed. 2452 */ 2453 spin_lock_irq(&hugetlb_lock); 2454 needed = (h->resv_huge_pages + delta) - 2455 (h->free_huge_pages + allocated); 2456 if (needed > 0) { 2457 if (alloc_ok) 2458 goto retry; 2459 /* 2460 * We were not able to allocate enough pages to 2461 * satisfy the entire reservation so we free what 2462 * we've allocated so far. 2463 */ 2464 goto free; 2465 } 2466 /* 2467 * The surplus_list now contains _at_least_ the number of extra pages 2468 * needed to accommodate the reservation. Add the appropriate number 2469 * of pages to the hugetlb pool and free the extras back to the buddy 2470 * allocator. Commit the entire reservation here to prevent another 2471 * process from stealing the pages as they are added to the pool but 2472 * before they are reserved. 2473 */ 2474 needed += allocated; 2475 h->resv_huge_pages += delta; 2476 ret = 0; 2477 2478 /* Free the needed pages to the hugetlb pool */ 2479 list_for_each_entry_safe(folio, tmp, &surplus_list, lru) { 2480 if ((--needed) < 0) 2481 break; 2482 /* Add the page to the hugetlb allocator */ 2483 enqueue_hugetlb_folio(h, folio); 2484 } 2485 free: 2486 spin_unlock_irq(&hugetlb_lock); 2487 2488 /* 2489 * Free unnecessary surplus pages to the buddy allocator. 2490 * Pages have no ref count, call free_huge_folio directly. 2491 */ 2492 list_for_each_entry_safe(folio, tmp, &surplus_list, lru) 2493 free_huge_folio(folio); 2494 spin_lock_irq(&hugetlb_lock); 2495 2496 return ret; 2497 } 2498 2499 /* 2500 * This routine has two main purposes: 2501 * 1) Decrement the reservation count (resv_huge_pages) by the value passed 2502 * in unused_resv_pages. This corresponds to the prior adjustments made 2503 * to the associated reservation map. 2504 * 2) Free any unused surplus pages that may have been allocated to satisfy 2505 * the reservation. As many as unused_resv_pages may be freed. 2506 */ 2507 static void return_unused_surplus_pages(struct hstate *h, 2508 unsigned long unused_resv_pages) 2509 { 2510 unsigned long nr_pages; 2511 LIST_HEAD(page_list); 2512 2513 lockdep_assert_held(&hugetlb_lock); 2514 /* Uncommit the reservation */ 2515 h->resv_huge_pages -= unused_resv_pages; 2516 2517 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 2518 goto out; 2519 2520 /* 2521 * Part (or even all) of the reservation could have been backed 2522 * by pre-allocated pages. Only free surplus pages. 2523 */ 2524 nr_pages = min(unused_resv_pages, h->surplus_huge_pages); 2525 2526 /* 2527 * We want to release as many surplus pages as possible, spread 2528 * evenly across all nodes with memory. Iterate across these nodes 2529 * until we can no longer free unreserved surplus pages. This occurs 2530 * when the nodes with surplus pages have no free pages. 2531 * remove_pool_hugetlb_folio() will balance the freed pages across the 2532 * on-line nodes with memory and will handle the hstate accounting. 2533 */ 2534 while (nr_pages--) { 2535 struct folio *folio; 2536 2537 folio = remove_pool_hugetlb_folio(h, &node_states[N_MEMORY], 1); 2538 if (!folio) 2539 goto out; 2540 2541 list_add(&folio->lru, &page_list); 2542 } 2543 2544 out: 2545 spin_unlock_irq(&hugetlb_lock); 2546 update_and_free_pages_bulk(h, &page_list); 2547 spin_lock_irq(&hugetlb_lock); 2548 } 2549 2550 2551 /* 2552 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation 2553 * are used by the huge page allocation routines to manage reservations. 2554 * 2555 * vma_needs_reservation is called to determine if the huge page at addr 2556 * within the vma has an associated reservation. If a reservation is 2557 * needed, the value 1 is returned. The caller is then responsible for 2558 * managing the global reservation and subpool usage counts. After 2559 * the huge page has been allocated, vma_commit_reservation is called 2560 * to add the page to the reservation map. If the page allocation fails, 2561 * the reservation must be ended instead of committed. vma_end_reservation 2562 * is called in such cases. 2563 * 2564 * In the normal case, vma_commit_reservation returns the same value 2565 * as the preceding vma_needs_reservation call. The only time this 2566 * is not the case is if a reserve map was changed between calls. It 2567 * is the responsibility of the caller to notice the difference and 2568 * take appropriate action. 2569 * 2570 * vma_add_reservation is used in error paths where a reservation must 2571 * be restored when a newly allocated huge page must be freed. It is 2572 * to be called after calling vma_needs_reservation to determine if a 2573 * reservation exists. 2574 * 2575 * vma_del_reservation is used in error paths where an entry in the reserve 2576 * map was created during huge page allocation and must be removed. It is to 2577 * be called after calling vma_needs_reservation to determine if a reservation 2578 * exists. 2579 */ 2580 enum vma_resv_mode { 2581 VMA_NEEDS_RESV, 2582 VMA_COMMIT_RESV, 2583 VMA_END_RESV, 2584 VMA_ADD_RESV, 2585 VMA_DEL_RESV, 2586 }; 2587 static long __vma_reservation_common(struct hstate *h, 2588 struct vm_area_struct *vma, unsigned long addr, 2589 enum vma_resv_mode mode) 2590 { 2591 struct resv_map *resv; 2592 pgoff_t idx; 2593 long ret; 2594 long dummy_out_regions_needed; 2595 2596 resv = vma_resv_map(vma); 2597 if (!resv) 2598 return 1; 2599 2600 idx = vma_hugecache_offset(h, vma, addr); 2601 switch (mode) { 2602 case VMA_NEEDS_RESV: 2603 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed); 2604 /* We assume that vma_reservation_* routines always operate on 2605 * 1 page, and that adding to resv map a 1 page entry can only 2606 * ever require 1 region. 2607 */ 2608 VM_BUG_ON(dummy_out_regions_needed != 1); 2609 break; 2610 case VMA_COMMIT_RESV: 2611 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2612 /* region_add calls of range 1 should never fail. */ 2613 VM_BUG_ON(ret < 0); 2614 break; 2615 case VMA_END_RESV: 2616 region_abort(resv, idx, idx + 1, 1); 2617 ret = 0; 2618 break; 2619 case VMA_ADD_RESV: 2620 if (vma->vm_flags & VM_MAYSHARE) { 2621 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2622 /* region_add calls of range 1 should never fail. */ 2623 VM_BUG_ON(ret < 0); 2624 } else { 2625 region_abort(resv, idx, idx + 1, 1); 2626 ret = region_del(resv, idx, idx + 1); 2627 } 2628 break; 2629 case VMA_DEL_RESV: 2630 if (vma->vm_flags & VM_MAYSHARE) { 2631 region_abort(resv, idx, idx + 1, 1); 2632 ret = region_del(resv, idx, idx + 1); 2633 } else { 2634 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2635 /* region_add calls of range 1 should never fail. */ 2636 VM_BUG_ON(ret < 0); 2637 } 2638 break; 2639 default: 2640 BUG(); 2641 } 2642 2643 if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV) 2644 return ret; 2645 /* 2646 * We know private mapping must have HPAGE_RESV_OWNER set. 2647 * 2648 * In most cases, reserves always exist for private mappings. 2649 * However, a file associated with mapping could have been 2650 * hole punched or truncated after reserves were consumed. 2651 * As subsequent fault on such a range will not use reserves. 2652 * Subtle - The reserve map for private mappings has the 2653 * opposite meaning than that of shared mappings. If NO 2654 * entry is in the reserve map, it means a reservation exists. 2655 * If an entry exists in the reserve map, it means the 2656 * reservation has already been consumed. As a result, the 2657 * return value of this routine is the opposite of the 2658 * value returned from reserve map manipulation routines above. 2659 */ 2660 if (ret > 0) 2661 return 0; 2662 if (ret == 0) 2663 return 1; 2664 return ret; 2665 } 2666 2667 static long vma_needs_reservation(struct hstate *h, 2668 struct vm_area_struct *vma, unsigned long addr) 2669 { 2670 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV); 2671 } 2672 2673 static long vma_commit_reservation(struct hstate *h, 2674 struct vm_area_struct *vma, unsigned long addr) 2675 { 2676 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV); 2677 } 2678 2679 static void vma_end_reservation(struct hstate *h, 2680 struct vm_area_struct *vma, unsigned long addr) 2681 { 2682 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV); 2683 } 2684 2685 static long vma_add_reservation(struct hstate *h, 2686 struct vm_area_struct *vma, unsigned long addr) 2687 { 2688 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV); 2689 } 2690 2691 static long vma_del_reservation(struct hstate *h, 2692 struct vm_area_struct *vma, unsigned long addr) 2693 { 2694 return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV); 2695 } 2696 2697 /* 2698 * This routine is called to restore reservation information on error paths. 2699 * It should ONLY be called for folios allocated via alloc_hugetlb_folio(), 2700 * and the hugetlb mutex should remain held when calling this routine. 2701 * 2702 * It handles two specific cases: 2703 * 1) A reservation was in place and the folio consumed the reservation. 2704 * hugetlb_restore_reserve is set in the folio. 2705 * 2) No reservation was in place for the page, so hugetlb_restore_reserve is 2706 * not set. However, alloc_hugetlb_folio always updates the reserve map. 2707 * 2708 * In case 1, free_huge_folio later in the error path will increment the 2709 * global reserve count. But, free_huge_folio does not have enough context 2710 * to adjust the reservation map. This case deals primarily with private 2711 * mappings. Adjust the reserve map here to be consistent with global 2712 * reserve count adjustments to be made by free_huge_folio. Make sure the 2713 * reserve map indicates there is a reservation present. 2714 * 2715 * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio. 2716 */ 2717 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma, 2718 unsigned long address, struct folio *folio) 2719 { 2720 long rc = vma_needs_reservation(h, vma, address); 2721 2722 if (folio_test_hugetlb_restore_reserve(folio)) { 2723 if (unlikely(rc < 0)) 2724 /* 2725 * Rare out of memory condition in reserve map 2726 * manipulation. Clear hugetlb_restore_reserve so 2727 * that global reserve count will not be incremented 2728 * by free_huge_folio. This will make it appear 2729 * as though the reservation for this folio was 2730 * consumed. This may prevent the task from 2731 * faulting in the folio at a later time. This 2732 * is better than inconsistent global huge page 2733 * accounting of reserve counts. 2734 */ 2735 folio_clear_hugetlb_restore_reserve(folio); 2736 else if (rc) 2737 (void)vma_add_reservation(h, vma, address); 2738 else 2739 vma_end_reservation(h, vma, address); 2740 } else { 2741 if (!rc) { 2742 /* 2743 * This indicates there is an entry in the reserve map 2744 * not added by alloc_hugetlb_folio. We know it was added 2745 * before the alloc_hugetlb_folio call, otherwise 2746 * hugetlb_restore_reserve would be set on the folio. 2747 * Remove the entry so that a subsequent allocation 2748 * does not consume a reservation. 2749 */ 2750 rc = vma_del_reservation(h, vma, address); 2751 if (rc < 0) 2752 /* 2753 * VERY rare out of memory condition. Since 2754 * we can not delete the entry, set 2755 * hugetlb_restore_reserve so that the reserve 2756 * count will be incremented when the folio 2757 * is freed. This reserve will be consumed 2758 * on a subsequent allocation. 2759 */ 2760 folio_set_hugetlb_restore_reserve(folio); 2761 } else if (rc < 0) { 2762 /* 2763 * Rare out of memory condition from 2764 * vma_needs_reservation call. Memory allocation is 2765 * only attempted if a new entry is needed. Therefore, 2766 * this implies there is not an entry in the 2767 * reserve map. 2768 * 2769 * For shared mappings, no entry in the map indicates 2770 * no reservation. We are done. 2771 */ 2772 if (!(vma->vm_flags & VM_MAYSHARE)) 2773 /* 2774 * For private mappings, no entry indicates 2775 * a reservation is present. Since we can 2776 * not add an entry, set hugetlb_restore_reserve 2777 * on the folio so reserve count will be 2778 * incremented when freed. This reserve will 2779 * be consumed on a subsequent allocation. 2780 */ 2781 folio_set_hugetlb_restore_reserve(folio); 2782 } else 2783 /* 2784 * No reservation present, do nothing 2785 */ 2786 vma_end_reservation(h, vma, address); 2787 } 2788 } 2789 2790 /* 2791 * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve 2792 * the old one 2793 * @old_folio: Old folio to dissolve 2794 * @list: List to isolate the page in case we need to 2795 * Returns 0 on success, otherwise negated error. 2796 */ 2797 static int alloc_and_dissolve_hugetlb_folio(struct folio *old_folio, 2798 struct list_head *list) 2799 { 2800 gfp_t gfp_mask; 2801 struct hstate *h; 2802 int nid = folio_nid(old_folio); 2803 struct folio *new_folio = NULL; 2804 int ret = 0; 2805 2806 retry: 2807 /* 2808 * The old_folio might have been dissolved from under our feet, so make sure 2809 * to carefully check the state under the lock. 2810 */ 2811 spin_lock_irq(&hugetlb_lock); 2812 if (!folio_test_hugetlb(old_folio)) { 2813 /* 2814 * Freed from under us. Drop new_folio too. 2815 */ 2816 goto free_new; 2817 } else if (folio_ref_count(old_folio)) { 2818 bool isolated; 2819 2820 /* 2821 * Someone has grabbed the folio, try to isolate it here. 2822 * Fail with -EBUSY if not possible. 2823 */ 2824 spin_unlock_irq(&hugetlb_lock); 2825 isolated = folio_isolate_hugetlb(old_folio, list); 2826 ret = isolated ? 0 : -EBUSY; 2827 spin_lock_irq(&hugetlb_lock); 2828 goto free_new; 2829 } else if (!folio_test_hugetlb_freed(old_folio)) { 2830 /* 2831 * Folio's refcount is 0 but it has not been enqueued in the 2832 * freelist yet. Race window is small, so we can succeed here if 2833 * we retry. 2834 */ 2835 spin_unlock_irq(&hugetlb_lock); 2836 cond_resched(); 2837 goto retry; 2838 } else { 2839 h = folio_hstate(old_folio); 2840 if (!new_folio) { 2841 spin_unlock_irq(&hugetlb_lock); 2842 gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 2843 new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, 2844 NULL, NULL); 2845 if (!new_folio) 2846 return -ENOMEM; 2847 __prep_new_hugetlb_folio(h, new_folio); 2848 goto retry; 2849 } 2850 2851 /* 2852 * Ok, old_folio is still a genuine free hugepage. Remove it from 2853 * the freelist and decrease the counters. These will be 2854 * incremented again when calling __prep_account_new_huge_page() 2855 * and enqueue_hugetlb_folio() for new_folio. The counters will 2856 * remain stable since this happens under the lock. 2857 */ 2858 remove_hugetlb_folio(h, old_folio, false); 2859 2860 /* 2861 * Ref count on new_folio is already zero as it was dropped 2862 * earlier. It can be directly added to the pool free list. 2863 */ 2864 __prep_account_new_huge_page(h, nid); 2865 enqueue_hugetlb_folio(h, new_folio); 2866 2867 /* 2868 * Folio has been replaced, we can safely free the old one. 2869 */ 2870 spin_unlock_irq(&hugetlb_lock); 2871 update_and_free_hugetlb_folio(h, old_folio, false); 2872 } 2873 2874 return ret; 2875 2876 free_new: 2877 spin_unlock_irq(&hugetlb_lock); 2878 if (new_folio) 2879 update_and_free_hugetlb_folio(h, new_folio, false); 2880 2881 return ret; 2882 } 2883 2884 int isolate_or_dissolve_huge_folio(struct folio *folio, struct list_head *list) 2885 { 2886 int ret = -EBUSY; 2887 2888 /* Not to disrupt normal path by vainly holding hugetlb_lock */ 2889 if (!folio_test_hugetlb(folio)) 2890 return 0; 2891 2892 /* 2893 * Fence off gigantic pages as there is a cyclic dependency between 2894 * alloc_contig_range and them. Return -ENOMEM as this has the effect 2895 * of bailing out right away without further retrying. 2896 */ 2897 if (folio_order(folio) > MAX_PAGE_ORDER) 2898 return -ENOMEM; 2899 2900 if (folio_ref_count(folio) && folio_isolate_hugetlb(folio, list)) 2901 ret = 0; 2902 else if (!folio_ref_count(folio)) 2903 ret = alloc_and_dissolve_hugetlb_folio(folio, list); 2904 2905 return ret; 2906 } 2907 2908 /* 2909 * replace_free_hugepage_folios - Replace free hugepage folios in a given pfn 2910 * range with new folios. 2911 * @start_pfn: start pfn of the given pfn range 2912 * @end_pfn: end pfn of the given pfn range 2913 * Returns 0 on success, otherwise negated error. 2914 */ 2915 int replace_free_hugepage_folios(unsigned long start_pfn, unsigned long end_pfn) 2916 { 2917 struct folio *folio; 2918 int ret = 0; 2919 2920 LIST_HEAD(isolate_list); 2921 2922 while (start_pfn < end_pfn) { 2923 folio = pfn_folio(start_pfn); 2924 2925 /* Not to disrupt normal path by vainly holding hugetlb_lock */ 2926 if (folio_test_hugetlb(folio) && !folio_ref_count(folio)) { 2927 ret = alloc_and_dissolve_hugetlb_folio(folio, &isolate_list); 2928 if (ret) 2929 break; 2930 2931 putback_movable_pages(&isolate_list); 2932 } 2933 start_pfn++; 2934 } 2935 2936 return ret; 2937 } 2938 2939 void wait_for_freed_hugetlb_folios(void) 2940 { 2941 if (llist_empty(&hpage_freelist)) 2942 return; 2943 2944 flush_work(&free_hpage_work); 2945 } 2946 2947 typedef enum { 2948 /* 2949 * For either 0/1: we checked the per-vma resv map, and one resv 2950 * count either can be reused (0), or an extra needed (1). 2951 */ 2952 MAP_CHG_REUSE = 0, 2953 MAP_CHG_NEEDED = 1, 2954 /* 2955 * Cannot use per-vma resv count can be used, hence a new resv 2956 * count is enforced. 2957 * 2958 * NOTE: This is mostly identical to MAP_CHG_NEEDED, except 2959 * that currently vma_needs_reservation() has an unwanted side 2960 * effect to either use end() or commit() to complete the 2961 * transaction. Hence it needs to differenciate from NEEDED. 2962 */ 2963 MAP_CHG_ENFORCED = 2, 2964 } map_chg_state; 2965 2966 /* 2967 * NOTE! "cow_from_owner" represents a very hacky usage only used in CoW 2968 * faults of hugetlb private mappings on top of a non-page-cache folio (in 2969 * which case even if there's a private vma resv map it won't cover such 2970 * allocation). New call sites should (probably) never set it to true!! 2971 * When it's set, the allocation will bypass all vma level reservations. 2972 */ 2973 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma, 2974 unsigned long addr, bool cow_from_owner) 2975 { 2976 struct hugepage_subpool *spool = subpool_vma(vma); 2977 struct hstate *h = hstate_vma(vma); 2978 struct folio *folio; 2979 long retval, gbl_chg, gbl_reserve; 2980 map_chg_state map_chg; 2981 int ret, idx; 2982 struct hugetlb_cgroup *h_cg = NULL; 2983 gfp_t gfp = htlb_alloc_mask(h) | __GFP_RETRY_MAYFAIL; 2984 2985 idx = hstate_index(h); 2986 2987 /* Whether we need a separate per-vma reservation? */ 2988 if (cow_from_owner) { 2989 /* 2990 * Special case! Since it's a CoW on top of a reserved 2991 * page, the private resv map doesn't count. So it cannot 2992 * consume the per-vma resv map even if it's reserved. 2993 */ 2994 map_chg = MAP_CHG_ENFORCED; 2995 } else { 2996 /* 2997 * Examine the region/reserve map to determine if the process 2998 * has a reservation for the page to be allocated. A return 2999 * code of zero indicates a reservation exists (no change). 3000 */ 3001 retval = vma_needs_reservation(h, vma, addr); 3002 if (retval < 0) 3003 return ERR_PTR(-ENOMEM); 3004 map_chg = retval ? MAP_CHG_NEEDED : MAP_CHG_REUSE; 3005 } 3006 3007 /* 3008 * Whether we need a separate global reservation? 3009 * 3010 * Processes that did not create the mapping will have no 3011 * reserves as indicated by the region/reserve map. Check 3012 * that the allocation will not exceed the subpool limit. 3013 * Or if it can get one from the pool reservation directly. 3014 */ 3015 if (map_chg) { 3016 gbl_chg = hugepage_subpool_get_pages(spool, 1); 3017 if (gbl_chg < 0) 3018 goto out_end_reservation; 3019 } else { 3020 /* 3021 * If we have the vma reservation ready, no need for extra 3022 * global reservation. 3023 */ 3024 gbl_chg = 0; 3025 } 3026 3027 /* 3028 * If this allocation is not consuming a per-vma reservation, 3029 * charge the hugetlb cgroup now. 3030 */ 3031 if (map_chg) { 3032 ret = hugetlb_cgroup_charge_cgroup_rsvd( 3033 idx, pages_per_huge_page(h), &h_cg); 3034 if (ret) 3035 goto out_subpool_put; 3036 } 3037 3038 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg); 3039 if (ret) 3040 goto out_uncharge_cgroup_reservation; 3041 3042 spin_lock_irq(&hugetlb_lock); 3043 /* 3044 * glb_chg is passed to indicate whether or not a page must be taken 3045 * from the global free pool (global change). gbl_chg == 0 indicates 3046 * a reservation exists for the allocation. 3047 */ 3048 folio = dequeue_hugetlb_folio_vma(h, vma, addr, gbl_chg); 3049 if (!folio) { 3050 spin_unlock_irq(&hugetlb_lock); 3051 folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr); 3052 if (!folio) 3053 goto out_uncharge_cgroup; 3054 spin_lock_irq(&hugetlb_lock); 3055 list_add(&folio->lru, &h->hugepage_activelist); 3056 folio_ref_unfreeze(folio, 1); 3057 /* Fall through */ 3058 } 3059 3060 /* 3061 * Either dequeued or buddy-allocated folio needs to add special 3062 * mark to the folio when it consumes a global reservation. 3063 */ 3064 if (!gbl_chg) { 3065 folio_set_hugetlb_restore_reserve(folio); 3066 h->resv_huge_pages--; 3067 } 3068 3069 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio); 3070 /* If allocation is not consuming a reservation, also store the 3071 * hugetlb_cgroup pointer on the page. 3072 */ 3073 if (map_chg) { 3074 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h), 3075 h_cg, folio); 3076 } 3077 3078 spin_unlock_irq(&hugetlb_lock); 3079 3080 hugetlb_set_folio_subpool(folio, spool); 3081 3082 if (map_chg != MAP_CHG_ENFORCED) { 3083 /* commit() is only needed if the map_chg is not enforced */ 3084 retval = vma_commit_reservation(h, vma, addr); 3085 /* 3086 * Check for possible race conditions. When it happens.. 3087 * The page was added to the reservation map between 3088 * vma_needs_reservation and vma_commit_reservation. 3089 * This indicates a race with hugetlb_reserve_pages. 3090 * Adjust for the subpool count incremented above AND 3091 * in hugetlb_reserve_pages for the same page. Also, 3092 * the reservation count added in hugetlb_reserve_pages 3093 * no longer applies. 3094 */ 3095 if (unlikely(map_chg == MAP_CHG_NEEDED && retval == 0)) { 3096 long rsv_adjust; 3097 3098 rsv_adjust = hugepage_subpool_put_pages(spool, 1); 3099 hugetlb_acct_memory(h, -rsv_adjust); 3100 if (map_chg) { 3101 spin_lock_irq(&hugetlb_lock); 3102 hugetlb_cgroup_uncharge_folio_rsvd( 3103 hstate_index(h), pages_per_huge_page(h), 3104 folio); 3105 spin_unlock_irq(&hugetlb_lock); 3106 } 3107 } 3108 } 3109 3110 ret = mem_cgroup_charge_hugetlb(folio, gfp); 3111 /* 3112 * Unconditionally increment NR_HUGETLB here. If it turns out that 3113 * mem_cgroup_charge_hugetlb failed, then immediately free the page and 3114 * decrement NR_HUGETLB. 3115 */ 3116 lruvec_stat_mod_folio(folio, NR_HUGETLB, pages_per_huge_page(h)); 3117 3118 if (ret == -ENOMEM) { 3119 free_huge_folio(folio); 3120 return ERR_PTR(-ENOMEM); 3121 } 3122 3123 return folio; 3124 3125 out_uncharge_cgroup: 3126 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg); 3127 out_uncharge_cgroup_reservation: 3128 if (map_chg) 3129 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h), 3130 h_cg); 3131 out_subpool_put: 3132 /* 3133 * put page to subpool iff the quota of subpool's rsv_hpages is used 3134 * during hugepage_subpool_get_pages. 3135 */ 3136 if (map_chg && !gbl_chg) { 3137 gbl_reserve = hugepage_subpool_put_pages(spool, 1); 3138 hugetlb_acct_memory(h, -gbl_reserve); 3139 } 3140 3141 3142 out_end_reservation: 3143 if (map_chg != MAP_CHG_ENFORCED) 3144 vma_end_reservation(h, vma, addr); 3145 return ERR_PTR(-ENOSPC); 3146 } 3147 3148 static __init void *alloc_bootmem(struct hstate *h, int nid, bool node_exact) 3149 { 3150 struct huge_bootmem_page *m; 3151 int listnode = nid; 3152 3153 if (hugetlb_early_cma(h)) 3154 m = hugetlb_cma_alloc_bootmem(h, &listnode, node_exact); 3155 else { 3156 if (node_exact) 3157 m = memblock_alloc_exact_nid_raw(huge_page_size(h), 3158 huge_page_size(h), 0, 3159 MEMBLOCK_ALLOC_ACCESSIBLE, nid); 3160 else { 3161 m = memblock_alloc_try_nid_raw(huge_page_size(h), 3162 huge_page_size(h), 0, 3163 MEMBLOCK_ALLOC_ACCESSIBLE, nid); 3164 /* 3165 * For pre-HVO to work correctly, pages need to be on 3166 * the list for the node they were actually allocated 3167 * from. That node may be different in the case of 3168 * fallback by memblock_alloc_try_nid_raw. So, 3169 * extract the actual node first. 3170 */ 3171 if (m) 3172 listnode = early_pfn_to_nid(PHYS_PFN(virt_to_phys(m))); 3173 } 3174 3175 if (m) { 3176 m->flags = 0; 3177 m->cma = NULL; 3178 } 3179 } 3180 3181 if (m) { 3182 /* 3183 * Use the beginning of the huge page to store the 3184 * huge_bootmem_page struct (until gather_bootmem 3185 * puts them into the mem_map). 3186 * 3187 * Put them into a private list first because mem_map 3188 * is not up yet. 3189 */ 3190 INIT_LIST_HEAD(&m->list); 3191 list_add(&m->list, &huge_boot_pages[listnode]); 3192 m->hstate = h; 3193 } 3194 3195 return m; 3196 } 3197 3198 int alloc_bootmem_huge_page(struct hstate *h, int nid) 3199 __attribute__ ((weak, alias("__alloc_bootmem_huge_page"))); 3200 int __alloc_bootmem_huge_page(struct hstate *h, int nid) 3201 { 3202 struct huge_bootmem_page *m = NULL; /* initialize for clang */ 3203 int nr_nodes, node = nid; 3204 3205 /* do node specific alloc */ 3206 if (nid != NUMA_NO_NODE) { 3207 m = alloc_bootmem(h, node, true); 3208 if (!m) 3209 return 0; 3210 goto found; 3211 } 3212 3213 /* allocate from next node when distributing huge pages */ 3214 for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, 3215 &hugetlb_bootmem_nodes) { 3216 m = alloc_bootmem(h, node, false); 3217 if (!m) 3218 return 0; 3219 goto found; 3220 } 3221 3222 found: 3223 3224 /* 3225 * Only initialize the head struct page in memmap_init_reserved_pages, 3226 * rest of the struct pages will be initialized by the HugeTLB 3227 * subsystem itself. 3228 * The head struct page is used to get folio information by the HugeTLB 3229 * subsystem like zone id and node id. 3230 */ 3231 memblock_reserved_mark_noinit(virt_to_phys((void *)m + PAGE_SIZE), 3232 huge_page_size(h) - PAGE_SIZE); 3233 3234 return 1; 3235 } 3236 3237 /* Initialize [start_page:end_page_number] tail struct pages of a hugepage */ 3238 static void __init hugetlb_folio_init_tail_vmemmap(struct folio *folio, 3239 unsigned long start_page_number, 3240 unsigned long end_page_number) 3241 { 3242 enum zone_type zone = zone_idx(folio_zone(folio)); 3243 int nid = folio_nid(folio); 3244 unsigned long head_pfn = folio_pfn(folio); 3245 unsigned long pfn, end_pfn = head_pfn + end_page_number; 3246 int ret; 3247 3248 for (pfn = head_pfn + start_page_number; pfn < end_pfn; pfn++) { 3249 struct page *page = pfn_to_page(pfn); 3250 3251 __init_single_page(page, pfn, zone, nid); 3252 prep_compound_tail((struct page *)folio, pfn - head_pfn); 3253 ret = page_ref_freeze(page, 1); 3254 VM_BUG_ON(!ret); 3255 } 3256 } 3257 3258 static void __init hugetlb_folio_init_vmemmap(struct folio *folio, 3259 struct hstate *h, 3260 unsigned long nr_pages) 3261 { 3262 int ret; 3263 3264 /* Prepare folio head */ 3265 __folio_clear_reserved(folio); 3266 __folio_set_head(folio); 3267 ret = folio_ref_freeze(folio, 1); 3268 VM_BUG_ON(!ret); 3269 /* Initialize the necessary tail struct pages */ 3270 hugetlb_folio_init_tail_vmemmap(folio, 1, nr_pages); 3271 prep_compound_head((struct page *)folio, huge_page_order(h)); 3272 } 3273 3274 static bool __init hugetlb_bootmem_page_prehvo(struct huge_bootmem_page *m) 3275 { 3276 return m->flags & HUGE_BOOTMEM_HVO; 3277 } 3278 3279 static bool __init hugetlb_bootmem_page_earlycma(struct huge_bootmem_page *m) 3280 { 3281 return m->flags & HUGE_BOOTMEM_CMA; 3282 } 3283 3284 /* 3285 * memblock-allocated pageblocks might not have the migrate type set 3286 * if marked with the 'noinit' flag. Set it to the default (MIGRATE_MOVABLE) 3287 * here, or MIGRATE_CMA if this was a page allocated through an early CMA 3288 * reservation. 3289 * 3290 * In case of vmemmap optimized folios, the tail vmemmap pages are mapped 3291 * read-only, but that's ok - for sparse vmemmap this does not write to 3292 * the page structure. 3293 */ 3294 static void __init hugetlb_bootmem_init_migratetype(struct folio *folio, 3295 struct hstate *h) 3296 { 3297 unsigned long nr_pages = pages_per_huge_page(h), i; 3298 3299 WARN_ON_ONCE(!pageblock_aligned(folio_pfn(folio))); 3300 3301 for (i = 0; i < nr_pages; i += pageblock_nr_pages) { 3302 if (folio_test_hugetlb_cma(folio)) 3303 init_cma_pageblock(folio_page(folio, i)); 3304 else 3305 set_pageblock_migratetype(folio_page(folio, i), 3306 MIGRATE_MOVABLE); 3307 } 3308 } 3309 3310 static void __init prep_and_add_bootmem_folios(struct hstate *h, 3311 struct list_head *folio_list) 3312 { 3313 unsigned long flags; 3314 struct folio *folio, *tmp_f; 3315 3316 /* Send list for bulk vmemmap optimization processing */ 3317 hugetlb_vmemmap_optimize_bootmem_folios(h, folio_list); 3318 3319 list_for_each_entry_safe(folio, tmp_f, folio_list, lru) { 3320 if (!folio_test_hugetlb_vmemmap_optimized(folio)) { 3321 /* 3322 * If HVO fails, initialize all tail struct pages 3323 * We do not worry about potential long lock hold 3324 * time as this is early in boot and there should 3325 * be no contention. 3326 */ 3327 hugetlb_folio_init_tail_vmemmap(folio, 3328 HUGETLB_VMEMMAP_RESERVE_PAGES, 3329 pages_per_huge_page(h)); 3330 } 3331 hugetlb_bootmem_init_migratetype(folio, h); 3332 /* Subdivide locks to achieve better parallel performance */ 3333 spin_lock_irqsave(&hugetlb_lock, flags); 3334 __prep_account_new_huge_page(h, folio_nid(folio)); 3335 enqueue_hugetlb_folio(h, folio); 3336 spin_unlock_irqrestore(&hugetlb_lock, flags); 3337 } 3338 } 3339 3340 bool __init hugetlb_bootmem_page_zones_valid(int nid, 3341 struct huge_bootmem_page *m) 3342 { 3343 unsigned long start_pfn; 3344 bool valid; 3345 3346 if (m->flags & HUGE_BOOTMEM_ZONES_VALID) { 3347 /* 3348 * Already validated, skip check. 3349 */ 3350 return true; 3351 } 3352 3353 if (hugetlb_bootmem_page_earlycma(m)) { 3354 valid = cma_validate_zones(m->cma); 3355 goto out; 3356 } 3357 3358 start_pfn = virt_to_phys(m) >> PAGE_SHIFT; 3359 3360 valid = !pfn_range_intersects_zones(nid, start_pfn, 3361 pages_per_huge_page(m->hstate)); 3362 out: 3363 if (!valid) 3364 hstate_boot_nrinvalid[hstate_index(m->hstate)]++; 3365 3366 return valid; 3367 } 3368 3369 /* 3370 * Free a bootmem page that was found to be invalid (intersecting with 3371 * multiple zones). 3372 * 3373 * Since it intersects with multiple zones, we can't just do a free 3374 * operation on all pages at once, but instead have to walk all 3375 * pages, freeing them one by one. 3376 */ 3377 static void __init hugetlb_bootmem_free_invalid_page(int nid, struct page *page, 3378 struct hstate *h) 3379 { 3380 unsigned long npages = pages_per_huge_page(h); 3381 unsigned long pfn; 3382 3383 while (npages--) { 3384 pfn = page_to_pfn(page); 3385 __init_page_from_nid(pfn, nid); 3386 free_reserved_page(page); 3387 page++; 3388 } 3389 } 3390 3391 /* 3392 * Put bootmem huge pages into the standard lists after mem_map is up. 3393 * Note: This only applies to gigantic (order > MAX_PAGE_ORDER) pages. 3394 */ 3395 static void __init gather_bootmem_prealloc_node(unsigned long nid) 3396 { 3397 LIST_HEAD(folio_list); 3398 struct huge_bootmem_page *m, *tm; 3399 struct hstate *h = NULL, *prev_h = NULL; 3400 3401 list_for_each_entry_safe(m, tm, &huge_boot_pages[nid], list) { 3402 struct page *page = virt_to_page(m); 3403 struct folio *folio = (void *)page; 3404 3405 h = m->hstate; 3406 if (!hugetlb_bootmem_page_zones_valid(nid, m)) { 3407 /* 3408 * Can't use this page. Initialize the 3409 * page structures if that hasn't already 3410 * been done, and give them to the page 3411 * allocator. 3412 */ 3413 hugetlb_bootmem_free_invalid_page(nid, page, h); 3414 continue; 3415 } 3416 3417 /* 3418 * It is possible to have multiple huge page sizes (hstates) 3419 * in this list. If so, process each size separately. 3420 */ 3421 if (h != prev_h && prev_h != NULL) 3422 prep_and_add_bootmem_folios(prev_h, &folio_list); 3423 prev_h = h; 3424 3425 VM_BUG_ON(!hstate_is_gigantic(h)); 3426 WARN_ON(folio_ref_count(folio) != 1); 3427 3428 hugetlb_folio_init_vmemmap(folio, h, 3429 HUGETLB_VMEMMAP_RESERVE_PAGES); 3430 init_new_hugetlb_folio(h, folio); 3431 3432 if (hugetlb_bootmem_page_prehvo(m)) 3433 /* 3434 * If pre-HVO was done, just set the 3435 * flag, the HVO code will then skip 3436 * this folio. 3437 */ 3438 folio_set_hugetlb_vmemmap_optimized(folio); 3439 3440 if (hugetlb_bootmem_page_earlycma(m)) 3441 folio_set_hugetlb_cma(folio); 3442 3443 list_add(&folio->lru, &folio_list); 3444 3445 /* 3446 * We need to restore the 'stolen' pages to totalram_pages 3447 * in order to fix confusing memory reports from free(1) and 3448 * other side-effects, like CommitLimit going negative. 3449 * 3450 * For CMA pages, this is done in init_cma_pageblock 3451 * (via hugetlb_bootmem_init_migratetype), so skip it here. 3452 */ 3453 if (!folio_test_hugetlb_cma(folio)) 3454 adjust_managed_page_count(page, pages_per_huge_page(h)); 3455 cond_resched(); 3456 } 3457 3458 prep_and_add_bootmem_folios(h, &folio_list); 3459 } 3460 3461 static void __init gather_bootmem_prealloc_parallel(unsigned long start, 3462 unsigned long end, void *arg) 3463 { 3464 int nid; 3465 3466 for (nid = start; nid < end; nid++) 3467 gather_bootmem_prealloc_node(nid); 3468 } 3469 3470 static void __init gather_bootmem_prealloc(void) 3471 { 3472 struct padata_mt_job job = { 3473 .thread_fn = gather_bootmem_prealloc_parallel, 3474 .fn_arg = NULL, 3475 .start = 0, 3476 .size = nr_node_ids, 3477 .align = 1, 3478 .min_chunk = 1, 3479 .max_threads = num_node_state(N_MEMORY), 3480 .numa_aware = true, 3481 }; 3482 3483 padata_do_multithreaded(&job); 3484 } 3485 3486 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid) 3487 { 3488 unsigned long i; 3489 char buf[32]; 3490 LIST_HEAD(folio_list); 3491 3492 for (i = 0; i < h->max_huge_pages_node[nid]; ++i) { 3493 if (hstate_is_gigantic(h)) { 3494 if (!alloc_bootmem_huge_page(h, nid)) 3495 break; 3496 } else { 3497 struct folio *folio; 3498 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 3499 3500 folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, nid, 3501 &node_states[N_MEMORY], NULL); 3502 if (!folio) 3503 break; 3504 list_add(&folio->lru, &folio_list); 3505 } 3506 cond_resched(); 3507 } 3508 3509 if (!list_empty(&folio_list)) 3510 prep_and_add_allocated_folios(h, &folio_list); 3511 3512 if (i == h->max_huge_pages_node[nid]) 3513 return; 3514 3515 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3516 pr_warn("HugeTLB: allocating %u of page size %s failed node%d. Only allocated %lu hugepages.\n", 3517 h->max_huge_pages_node[nid], buf, nid, i); 3518 h->max_huge_pages -= (h->max_huge_pages_node[nid] - i); 3519 h->max_huge_pages_node[nid] = i; 3520 } 3521 3522 static bool __init hugetlb_hstate_alloc_pages_specific_nodes(struct hstate *h) 3523 { 3524 int i; 3525 bool node_specific_alloc = false; 3526 3527 for_each_online_node(i) { 3528 if (h->max_huge_pages_node[i] > 0) { 3529 hugetlb_hstate_alloc_pages_onenode(h, i); 3530 node_specific_alloc = true; 3531 } 3532 } 3533 3534 return node_specific_alloc; 3535 } 3536 3537 static void __init hugetlb_hstate_alloc_pages_errcheck(unsigned long allocated, struct hstate *h) 3538 { 3539 if (allocated < h->max_huge_pages) { 3540 char buf[32]; 3541 3542 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3543 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n", 3544 h->max_huge_pages, buf, allocated); 3545 h->max_huge_pages = allocated; 3546 } 3547 } 3548 3549 static void __init hugetlb_pages_alloc_boot_node(unsigned long start, unsigned long end, void *arg) 3550 { 3551 struct hstate *h = (struct hstate *)arg; 3552 int i, num = end - start; 3553 nodemask_t node_alloc_noretry; 3554 LIST_HEAD(folio_list); 3555 int next_node = first_online_node; 3556 3557 /* Bit mask controlling how hard we retry per-node allocations.*/ 3558 nodes_clear(node_alloc_noretry); 3559 3560 for (i = 0; i < num; ++i) { 3561 struct folio *folio = alloc_pool_huge_folio(h, &node_states[N_MEMORY], 3562 &node_alloc_noretry, &next_node); 3563 if (!folio) 3564 break; 3565 3566 list_move(&folio->lru, &folio_list); 3567 cond_resched(); 3568 } 3569 3570 prep_and_add_allocated_folios(h, &folio_list); 3571 } 3572 3573 static unsigned long __init hugetlb_gigantic_pages_alloc_boot(struct hstate *h) 3574 { 3575 unsigned long i; 3576 3577 for (i = 0; i < h->max_huge_pages; ++i) { 3578 if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE)) 3579 break; 3580 cond_resched(); 3581 } 3582 3583 return i; 3584 } 3585 3586 static unsigned long __init hugetlb_pages_alloc_boot(struct hstate *h) 3587 { 3588 struct padata_mt_job job = { 3589 .fn_arg = h, 3590 .align = 1, 3591 .numa_aware = true 3592 }; 3593 3594 unsigned long jiffies_start; 3595 unsigned long jiffies_end; 3596 3597 job.thread_fn = hugetlb_pages_alloc_boot_node; 3598 job.start = 0; 3599 job.size = h->max_huge_pages; 3600 3601 /* 3602 * job.max_threads is 25% of the available cpu threads by default. 3603 * 3604 * On large servers with terabytes of memory, huge page allocation 3605 * can consume a considerably amount of time. 3606 * 3607 * Tests below show how long it takes to allocate 1 TiB of memory with 2MiB huge pages. 3608 * 2MiB huge pages. Using more threads can significantly improve allocation time. 3609 * 3610 * +-----------------------+-------+-------+-------+-------+-------+ 3611 * | threads | 8 | 16 | 32 | 64 | 128 | 3612 * +-----------------------+-------+-------+-------+-------+-------+ 3613 * | skylake 144 cpus | 44s | 22s | 16s | 19s | 20s | 3614 * | cascade lake 192 cpus | 39s | 20s | 11s | 10s | 9s | 3615 * +-----------------------+-------+-------+-------+-------+-------+ 3616 */ 3617 if (hugepage_allocation_threads == 0) { 3618 hugepage_allocation_threads = num_online_cpus() / 4; 3619 hugepage_allocation_threads = max(hugepage_allocation_threads, 1); 3620 } 3621 3622 job.max_threads = hugepage_allocation_threads; 3623 job.min_chunk = h->max_huge_pages / hugepage_allocation_threads; 3624 3625 jiffies_start = jiffies; 3626 padata_do_multithreaded(&job); 3627 jiffies_end = jiffies; 3628 3629 pr_info("HugeTLB: allocation took %dms with hugepage_allocation_threads=%ld\n", 3630 jiffies_to_msecs(jiffies_end - jiffies_start), 3631 hugepage_allocation_threads); 3632 3633 return h->nr_huge_pages; 3634 } 3635 3636 /* 3637 * NOTE: this routine is called in different contexts for gigantic and 3638 * non-gigantic pages. 3639 * - For gigantic pages, this is called early in the boot process and 3640 * pages are allocated from memblock allocated or something similar. 3641 * Gigantic pages are actually added to pools later with the routine 3642 * gather_bootmem_prealloc. 3643 * - For non-gigantic pages, this is called later in the boot process after 3644 * all of mm is up and functional. Pages are allocated from buddy and 3645 * then added to hugetlb pools. 3646 */ 3647 static void __init hugetlb_hstate_alloc_pages(struct hstate *h) 3648 { 3649 unsigned long allocated; 3650 3651 /* 3652 * Skip gigantic hugepages allocation if early CMA 3653 * reservations are not available. 3654 */ 3655 if (hstate_is_gigantic(h) && hugetlb_cma_total_size() && 3656 !hugetlb_early_cma(h)) { 3657 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n"); 3658 return; 3659 } 3660 3661 /* do node specific alloc */ 3662 if (hugetlb_hstate_alloc_pages_specific_nodes(h)) 3663 return; 3664 3665 /* below will do all node balanced alloc */ 3666 if (hstate_is_gigantic(h)) 3667 allocated = hugetlb_gigantic_pages_alloc_boot(h); 3668 else 3669 allocated = hugetlb_pages_alloc_boot(h); 3670 3671 hugetlb_hstate_alloc_pages_errcheck(allocated, h); 3672 } 3673 3674 static void __init hugetlb_init_hstates(void) 3675 { 3676 struct hstate *h, *h2; 3677 3678 for_each_hstate(h) { 3679 /* 3680 * Always reset to first_memory_node here, even if 3681 * next_nid_to_alloc was set before - we can't 3682 * reference hugetlb_bootmem_nodes after init, and 3683 * first_memory_node is right for all further allocations. 3684 */ 3685 h->next_nid_to_alloc = first_memory_node; 3686 h->next_nid_to_free = first_memory_node; 3687 3688 /* oversize hugepages were init'ed in early boot */ 3689 if (!hstate_is_gigantic(h)) 3690 hugetlb_hstate_alloc_pages(h); 3691 3692 /* 3693 * Set demote order for each hstate. Note that 3694 * h->demote_order is initially 0. 3695 * - We can not demote gigantic pages if runtime freeing 3696 * is not supported, so skip this. 3697 * - If CMA allocation is possible, we can not demote 3698 * HUGETLB_PAGE_ORDER or smaller size pages. 3699 */ 3700 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 3701 continue; 3702 if (hugetlb_cma_total_size() && h->order <= HUGETLB_PAGE_ORDER) 3703 continue; 3704 for_each_hstate(h2) { 3705 if (h2 == h) 3706 continue; 3707 if (h2->order < h->order && 3708 h2->order > h->demote_order) 3709 h->demote_order = h2->order; 3710 } 3711 } 3712 } 3713 3714 static void __init report_hugepages(void) 3715 { 3716 struct hstate *h; 3717 unsigned long nrinvalid; 3718 3719 for_each_hstate(h) { 3720 char buf[32]; 3721 3722 nrinvalid = hstate_boot_nrinvalid[hstate_index(h)]; 3723 h->max_huge_pages -= nrinvalid; 3724 3725 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3726 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n", 3727 buf, h->nr_huge_pages); 3728 if (nrinvalid) 3729 pr_info("HugeTLB: %s page size: %lu invalid page%s discarded\n", 3730 buf, nrinvalid, nrinvalid > 1 ? "s" : ""); 3731 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n", 3732 hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf); 3733 } 3734 } 3735 3736 #ifdef CONFIG_HIGHMEM 3737 static void try_to_free_low(struct hstate *h, unsigned long count, 3738 nodemask_t *nodes_allowed) 3739 { 3740 int i; 3741 LIST_HEAD(page_list); 3742 3743 lockdep_assert_held(&hugetlb_lock); 3744 if (hstate_is_gigantic(h)) 3745 return; 3746 3747 /* 3748 * Collect pages to be freed on a list, and free after dropping lock 3749 */ 3750 for_each_node_mask(i, *nodes_allowed) { 3751 struct folio *folio, *next; 3752 struct list_head *freel = &h->hugepage_freelists[i]; 3753 list_for_each_entry_safe(folio, next, freel, lru) { 3754 if (count >= h->nr_huge_pages) 3755 goto out; 3756 if (folio_test_highmem(folio)) 3757 continue; 3758 remove_hugetlb_folio(h, folio, false); 3759 list_add(&folio->lru, &page_list); 3760 } 3761 } 3762 3763 out: 3764 spin_unlock_irq(&hugetlb_lock); 3765 update_and_free_pages_bulk(h, &page_list); 3766 spin_lock_irq(&hugetlb_lock); 3767 } 3768 #else 3769 static inline void try_to_free_low(struct hstate *h, unsigned long count, 3770 nodemask_t *nodes_allowed) 3771 { 3772 } 3773 #endif 3774 3775 /* 3776 * Increment or decrement surplus_huge_pages. Keep node-specific counters 3777 * balanced by operating on them in a round-robin fashion. 3778 * Returns 1 if an adjustment was made. 3779 */ 3780 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed, 3781 int delta) 3782 { 3783 int nr_nodes, node; 3784 3785 lockdep_assert_held(&hugetlb_lock); 3786 VM_BUG_ON(delta != -1 && delta != 1); 3787 3788 if (delta < 0) { 3789 for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, nodes_allowed) { 3790 if (h->surplus_huge_pages_node[node]) 3791 goto found; 3792 } 3793 } else { 3794 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 3795 if (h->surplus_huge_pages_node[node] < 3796 h->nr_huge_pages_node[node]) 3797 goto found; 3798 } 3799 } 3800 return 0; 3801 3802 found: 3803 h->surplus_huge_pages += delta; 3804 h->surplus_huge_pages_node[node] += delta; 3805 return 1; 3806 } 3807 3808 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) 3809 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid, 3810 nodemask_t *nodes_allowed) 3811 { 3812 unsigned long persistent_free_count; 3813 unsigned long min_count; 3814 unsigned long allocated; 3815 struct folio *folio; 3816 LIST_HEAD(page_list); 3817 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL); 3818 3819 /* 3820 * Bit mask controlling how hard we retry per-node allocations. 3821 * If we can not allocate the bit mask, do not attempt to allocate 3822 * the requested huge pages. 3823 */ 3824 if (node_alloc_noretry) 3825 nodes_clear(*node_alloc_noretry); 3826 else 3827 return -ENOMEM; 3828 3829 /* 3830 * resize_lock mutex prevents concurrent adjustments to number of 3831 * pages in hstate via the proc/sysfs interfaces. 3832 */ 3833 mutex_lock(&h->resize_lock); 3834 flush_free_hpage_work(h); 3835 spin_lock_irq(&hugetlb_lock); 3836 3837 /* 3838 * Check for a node specific request. 3839 * Changing node specific huge page count may require a corresponding 3840 * change to the global count. In any case, the passed node mask 3841 * (nodes_allowed) will restrict alloc/free to the specified node. 3842 */ 3843 if (nid != NUMA_NO_NODE) { 3844 unsigned long old_count = count; 3845 3846 count += persistent_huge_pages(h) - 3847 (h->nr_huge_pages_node[nid] - 3848 h->surplus_huge_pages_node[nid]); 3849 /* 3850 * User may have specified a large count value which caused the 3851 * above calculation to overflow. In this case, they wanted 3852 * to allocate as many huge pages as possible. Set count to 3853 * largest possible value to align with their intention. 3854 */ 3855 if (count < old_count) 3856 count = ULONG_MAX; 3857 } 3858 3859 /* 3860 * Gigantic pages runtime allocation depend on the capability for large 3861 * page range allocation. 3862 * If the system does not provide this feature, return an error when 3863 * the user tries to allocate gigantic pages but let the user free the 3864 * boottime allocated gigantic pages. 3865 */ 3866 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) { 3867 if (count > persistent_huge_pages(h)) { 3868 spin_unlock_irq(&hugetlb_lock); 3869 mutex_unlock(&h->resize_lock); 3870 NODEMASK_FREE(node_alloc_noretry); 3871 return -EINVAL; 3872 } 3873 /* Fall through to decrease pool */ 3874 } 3875 3876 /* 3877 * Increase the pool size 3878 * First take pages out of surplus state. Then make up the 3879 * remaining difference by allocating fresh huge pages. 3880 * 3881 * We might race with alloc_surplus_hugetlb_folio() here and be unable 3882 * to convert a surplus huge page to a normal huge page. That is 3883 * not critical, though, it just means the overall size of the 3884 * pool might be one hugepage larger than it needs to be, but 3885 * within all the constraints specified by the sysctls. 3886 */ 3887 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { 3888 if (!adjust_pool_surplus(h, nodes_allowed, -1)) 3889 break; 3890 } 3891 3892 allocated = 0; 3893 while (count > (persistent_huge_pages(h) + allocated)) { 3894 /* 3895 * If this allocation races such that we no longer need the 3896 * page, free_huge_folio will handle it by freeing the page 3897 * and reducing the surplus. 3898 */ 3899 spin_unlock_irq(&hugetlb_lock); 3900 3901 /* yield cpu to avoid soft lockup */ 3902 cond_resched(); 3903 3904 folio = alloc_pool_huge_folio(h, nodes_allowed, 3905 node_alloc_noretry, 3906 &h->next_nid_to_alloc); 3907 if (!folio) { 3908 prep_and_add_allocated_folios(h, &page_list); 3909 spin_lock_irq(&hugetlb_lock); 3910 goto out; 3911 } 3912 3913 list_add(&folio->lru, &page_list); 3914 allocated++; 3915 3916 /* Bail for signals. Probably ctrl-c from user */ 3917 if (signal_pending(current)) { 3918 prep_and_add_allocated_folios(h, &page_list); 3919 spin_lock_irq(&hugetlb_lock); 3920 goto out; 3921 } 3922 3923 spin_lock_irq(&hugetlb_lock); 3924 } 3925 3926 /* Add allocated pages to the pool */ 3927 if (!list_empty(&page_list)) { 3928 spin_unlock_irq(&hugetlb_lock); 3929 prep_and_add_allocated_folios(h, &page_list); 3930 spin_lock_irq(&hugetlb_lock); 3931 } 3932 3933 /* 3934 * Decrease the pool size 3935 * First return free pages to the buddy allocator (being careful 3936 * to keep enough around to satisfy reservations). Then place 3937 * pages into surplus state as needed so the pool will shrink 3938 * to the desired size as pages become free. 3939 * 3940 * By placing pages into the surplus state independent of the 3941 * overcommit value, we are allowing the surplus pool size to 3942 * exceed overcommit. There are few sane options here. Since 3943 * alloc_surplus_hugetlb_folio() is checking the global counter, 3944 * though, we'll note that we're not allowed to exceed surplus 3945 * and won't grow the pool anywhere else. Not until one of the 3946 * sysctls are changed, or the surplus pages go out of use. 3947 * 3948 * min_count is the expected number of persistent pages, we 3949 * shouldn't calculate min_count by using 3950 * resv_huge_pages + persistent_huge_pages() - free_huge_pages, 3951 * because there may exist free surplus huge pages, and this will 3952 * lead to subtracting twice. Free surplus huge pages come from HVO 3953 * failing to restore vmemmap, see comments in the callers of 3954 * hugetlb_vmemmap_restore_folio(). Thus, we should calculate 3955 * persistent free count first. 3956 */ 3957 persistent_free_count = h->free_huge_pages; 3958 if (h->free_huge_pages > persistent_huge_pages(h)) { 3959 if (h->free_huge_pages > h->surplus_huge_pages) 3960 persistent_free_count -= h->surplus_huge_pages; 3961 else 3962 persistent_free_count = 0; 3963 } 3964 min_count = h->resv_huge_pages + persistent_huge_pages(h) - persistent_free_count; 3965 min_count = max(count, min_count); 3966 try_to_free_low(h, min_count, nodes_allowed); 3967 3968 /* 3969 * Collect pages to be removed on list without dropping lock 3970 */ 3971 while (min_count < persistent_huge_pages(h)) { 3972 folio = remove_pool_hugetlb_folio(h, nodes_allowed, 0); 3973 if (!folio) 3974 break; 3975 3976 list_add(&folio->lru, &page_list); 3977 } 3978 /* free the pages after dropping lock */ 3979 spin_unlock_irq(&hugetlb_lock); 3980 update_and_free_pages_bulk(h, &page_list); 3981 flush_free_hpage_work(h); 3982 spin_lock_irq(&hugetlb_lock); 3983 3984 while (count < persistent_huge_pages(h)) { 3985 if (!adjust_pool_surplus(h, nodes_allowed, 1)) 3986 break; 3987 } 3988 out: 3989 h->max_huge_pages = persistent_huge_pages(h); 3990 spin_unlock_irq(&hugetlb_lock); 3991 mutex_unlock(&h->resize_lock); 3992 3993 NODEMASK_FREE(node_alloc_noretry); 3994 3995 return 0; 3996 } 3997 3998 static long demote_free_hugetlb_folios(struct hstate *src, struct hstate *dst, 3999 struct list_head *src_list) 4000 { 4001 long rc; 4002 struct folio *folio, *next; 4003 LIST_HEAD(dst_list); 4004 LIST_HEAD(ret_list); 4005 4006 rc = hugetlb_vmemmap_restore_folios(src, src_list, &ret_list); 4007 list_splice_init(&ret_list, src_list); 4008 4009 /* 4010 * Taking target hstate mutex synchronizes with set_max_huge_pages. 4011 * Without the mutex, pages added to target hstate could be marked 4012 * as surplus. 4013 * 4014 * Note that we already hold src->resize_lock. To prevent deadlock, 4015 * use the convention of always taking larger size hstate mutex first. 4016 */ 4017 mutex_lock(&dst->resize_lock); 4018 4019 list_for_each_entry_safe(folio, next, src_list, lru) { 4020 int i; 4021 bool cma; 4022 4023 if (folio_test_hugetlb_vmemmap_optimized(folio)) 4024 continue; 4025 4026 cma = folio_test_hugetlb_cma(folio); 4027 4028 list_del(&folio->lru); 4029 4030 split_page_owner(&folio->page, huge_page_order(src), huge_page_order(dst)); 4031 pgalloc_tag_split(folio, huge_page_order(src), huge_page_order(dst)); 4032 4033 for (i = 0; i < pages_per_huge_page(src); i += pages_per_huge_page(dst)) { 4034 struct page *page = folio_page(folio, i); 4035 /* Careful: see __split_huge_page_tail() */ 4036 struct folio *new_folio = (struct folio *)page; 4037 4038 clear_compound_head(page); 4039 prep_compound_page(page, dst->order); 4040 4041 new_folio->mapping = NULL; 4042 init_new_hugetlb_folio(dst, new_folio); 4043 /* Copy the CMA flag so that it is freed correctly */ 4044 if (cma) 4045 folio_set_hugetlb_cma(new_folio); 4046 list_add(&new_folio->lru, &dst_list); 4047 } 4048 } 4049 4050 prep_and_add_allocated_folios(dst, &dst_list); 4051 4052 mutex_unlock(&dst->resize_lock); 4053 4054 return rc; 4055 } 4056 4057 static long demote_pool_huge_page(struct hstate *src, nodemask_t *nodes_allowed, 4058 unsigned long nr_to_demote) 4059 __must_hold(&hugetlb_lock) 4060 { 4061 int nr_nodes, node; 4062 struct hstate *dst; 4063 long rc = 0; 4064 long nr_demoted = 0; 4065 4066 lockdep_assert_held(&hugetlb_lock); 4067 4068 /* We should never get here if no demote order */ 4069 if (!src->demote_order) { 4070 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n"); 4071 return -EINVAL; /* internal error */ 4072 } 4073 dst = size_to_hstate(PAGE_SIZE << src->demote_order); 4074 4075 for_each_node_mask_to_free(src, nr_nodes, node, nodes_allowed) { 4076 LIST_HEAD(list); 4077 struct folio *folio, *next; 4078 4079 list_for_each_entry_safe(folio, next, &src->hugepage_freelists[node], lru) { 4080 if (folio_test_hwpoison(folio)) 4081 continue; 4082 4083 remove_hugetlb_folio(src, folio, false); 4084 list_add(&folio->lru, &list); 4085 4086 if (++nr_demoted == nr_to_demote) 4087 break; 4088 } 4089 4090 spin_unlock_irq(&hugetlb_lock); 4091 4092 rc = demote_free_hugetlb_folios(src, dst, &list); 4093 4094 spin_lock_irq(&hugetlb_lock); 4095 4096 list_for_each_entry_safe(folio, next, &list, lru) { 4097 list_del(&folio->lru); 4098 add_hugetlb_folio(src, folio, false); 4099 4100 nr_demoted--; 4101 } 4102 4103 if (rc < 0 || nr_demoted == nr_to_demote) 4104 break; 4105 } 4106 4107 /* 4108 * Not absolutely necessary, but for consistency update max_huge_pages 4109 * based on pool changes for the demoted page. 4110 */ 4111 src->max_huge_pages -= nr_demoted; 4112 dst->max_huge_pages += nr_demoted << (huge_page_order(src) - huge_page_order(dst)); 4113 4114 if (rc < 0) 4115 return rc; 4116 4117 if (nr_demoted) 4118 return nr_demoted; 4119 /* 4120 * Only way to get here is if all pages on free lists are poisoned. 4121 * Return -EBUSY so that caller will not retry. 4122 */ 4123 return -EBUSY; 4124 } 4125 4126 #define HSTATE_ATTR_RO(_name) \ 4127 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 4128 4129 #define HSTATE_ATTR_WO(_name) \ 4130 static struct kobj_attribute _name##_attr = __ATTR_WO(_name) 4131 4132 #define HSTATE_ATTR(_name) \ 4133 static struct kobj_attribute _name##_attr = __ATTR_RW(_name) 4134 4135 static struct kobject *hugepages_kobj; 4136 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 4137 4138 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp); 4139 4140 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp) 4141 { 4142 int i; 4143 4144 for (i = 0; i < HUGE_MAX_HSTATE; i++) 4145 if (hstate_kobjs[i] == kobj) { 4146 if (nidp) 4147 *nidp = NUMA_NO_NODE; 4148 return &hstates[i]; 4149 } 4150 4151 return kobj_to_node_hstate(kobj, nidp); 4152 } 4153 4154 static ssize_t nr_hugepages_show_common(struct kobject *kobj, 4155 struct kobj_attribute *attr, char *buf) 4156 { 4157 struct hstate *h; 4158 unsigned long nr_huge_pages; 4159 int nid; 4160 4161 h = kobj_to_hstate(kobj, &nid); 4162 if (nid == NUMA_NO_NODE) 4163 nr_huge_pages = h->nr_huge_pages; 4164 else 4165 nr_huge_pages = h->nr_huge_pages_node[nid]; 4166 4167 return sysfs_emit(buf, "%lu\n", nr_huge_pages); 4168 } 4169 4170 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy, 4171 struct hstate *h, int nid, 4172 unsigned long count, size_t len) 4173 { 4174 int err; 4175 nodemask_t nodes_allowed, *n_mask; 4176 4177 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 4178 return -EINVAL; 4179 4180 if (nid == NUMA_NO_NODE) { 4181 /* 4182 * global hstate attribute 4183 */ 4184 if (!(obey_mempolicy && 4185 init_nodemask_of_mempolicy(&nodes_allowed))) 4186 n_mask = &node_states[N_MEMORY]; 4187 else 4188 n_mask = &nodes_allowed; 4189 } else { 4190 /* 4191 * Node specific request. count adjustment happens in 4192 * set_max_huge_pages() after acquiring hugetlb_lock. 4193 */ 4194 init_nodemask_of_node(&nodes_allowed, nid); 4195 n_mask = &nodes_allowed; 4196 } 4197 4198 err = set_max_huge_pages(h, count, nid, n_mask); 4199 4200 return err ? err : len; 4201 } 4202 4203 static ssize_t nr_hugepages_store_common(bool obey_mempolicy, 4204 struct kobject *kobj, const char *buf, 4205 size_t len) 4206 { 4207 struct hstate *h; 4208 unsigned long count; 4209 int nid; 4210 int err; 4211 4212 err = kstrtoul(buf, 10, &count); 4213 if (err) 4214 return err; 4215 4216 h = kobj_to_hstate(kobj, &nid); 4217 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len); 4218 } 4219 4220 static ssize_t nr_hugepages_show(struct kobject *kobj, 4221 struct kobj_attribute *attr, char *buf) 4222 { 4223 return nr_hugepages_show_common(kobj, attr, buf); 4224 } 4225 4226 static ssize_t nr_hugepages_store(struct kobject *kobj, 4227 struct kobj_attribute *attr, const char *buf, size_t len) 4228 { 4229 return nr_hugepages_store_common(false, kobj, buf, len); 4230 } 4231 HSTATE_ATTR(nr_hugepages); 4232 4233 #ifdef CONFIG_NUMA 4234 4235 /* 4236 * hstate attribute for optionally mempolicy-based constraint on persistent 4237 * huge page alloc/free. 4238 */ 4239 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj, 4240 struct kobj_attribute *attr, 4241 char *buf) 4242 { 4243 return nr_hugepages_show_common(kobj, attr, buf); 4244 } 4245 4246 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj, 4247 struct kobj_attribute *attr, const char *buf, size_t len) 4248 { 4249 return nr_hugepages_store_common(true, kobj, buf, len); 4250 } 4251 HSTATE_ATTR(nr_hugepages_mempolicy); 4252 #endif 4253 4254 4255 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, 4256 struct kobj_attribute *attr, char *buf) 4257 { 4258 struct hstate *h = kobj_to_hstate(kobj, NULL); 4259 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages); 4260 } 4261 4262 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, 4263 struct kobj_attribute *attr, const char *buf, size_t count) 4264 { 4265 int err; 4266 unsigned long input; 4267 struct hstate *h = kobj_to_hstate(kobj, NULL); 4268 4269 if (hstate_is_gigantic(h)) 4270 return -EINVAL; 4271 4272 err = kstrtoul(buf, 10, &input); 4273 if (err) 4274 return err; 4275 4276 spin_lock_irq(&hugetlb_lock); 4277 h->nr_overcommit_huge_pages = input; 4278 spin_unlock_irq(&hugetlb_lock); 4279 4280 return count; 4281 } 4282 HSTATE_ATTR(nr_overcommit_hugepages); 4283 4284 static ssize_t free_hugepages_show(struct kobject *kobj, 4285 struct kobj_attribute *attr, char *buf) 4286 { 4287 struct hstate *h; 4288 unsigned long free_huge_pages; 4289 int nid; 4290 4291 h = kobj_to_hstate(kobj, &nid); 4292 if (nid == NUMA_NO_NODE) 4293 free_huge_pages = h->free_huge_pages; 4294 else 4295 free_huge_pages = h->free_huge_pages_node[nid]; 4296 4297 return sysfs_emit(buf, "%lu\n", free_huge_pages); 4298 } 4299 HSTATE_ATTR_RO(free_hugepages); 4300 4301 static ssize_t resv_hugepages_show(struct kobject *kobj, 4302 struct kobj_attribute *attr, char *buf) 4303 { 4304 struct hstate *h = kobj_to_hstate(kobj, NULL); 4305 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages); 4306 } 4307 HSTATE_ATTR_RO(resv_hugepages); 4308 4309 static ssize_t surplus_hugepages_show(struct kobject *kobj, 4310 struct kobj_attribute *attr, char *buf) 4311 { 4312 struct hstate *h; 4313 unsigned long surplus_huge_pages; 4314 int nid; 4315 4316 h = kobj_to_hstate(kobj, &nid); 4317 if (nid == NUMA_NO_NODE) 4318 surplus_huge_pages = h->surplus_huge_pages; 4319 else 4320 surplus_huge_pages = h->surplus_huge_pages_node[nid]; 4321 4322 return sysfs_emit(buf, "%lu\n", surplus_huge_pages); 4323 } 4324 HSTATE_ATTR_RO(surplus_hugepages); 4325 4326 static ssize_t demote_store(struct kobject *kobj, 4327 struct kobj_attribute *attr, const char *buf, size_t len) 4328 { 4329 unsigned long nr_demote; 4330 unsigned long nr_available; 4331 nodemask_t nodes_allowed, *n_mask; 4332 struct hstate *h; 4333 int err; 4334 int nid; 4335 4336 err = kstrtoul(buf, 10, &nr_demote); 4337 if (err) 4338 return err; 4339 h = kobj_to_hstate(kobj, &nid); 4340 4341 if (nid != NUMA_NO_NODE) { 4342 init_nodemask_of_node(&nodes_allowed, nid); 4343 n_mask = &nodes_allowed; 4344 } else { 4345 n_mask = &node_states[N_MEMORY]; 4346 } 4347 4348 /* Synchronize with other sysfs operations modifying huge pages */ 4349 mutex_lock(&h->resize_lock); 4350 spin_lock_irq(&hugetlb_lock); 4351 4352 while (nr_demote) { 4353 long rc; 4354 4355 /* 4356 * Check for available pages to demote each time thorough the 4357 * loop as demote_pool_huge_page will drop hugetlb_lock. 4358 */ 4359 if (nid != NUMA_NO_NODE) 4360 nr_available = h->free_huge_pages_node[nid]; 4361 else 4362 nr_available = h->free_huge_pages; 4363 nr_available -= h->resv_huge_pages; 4364 if (!nr_available) 4365 break; 4366 4367 rc = demote_pool_huge_page(h, n_mask, nr_demote); 4368 if (rc < 0) { 4369 err = rc; 4370 break; 4371 } 4372 4373 nr_demote -= rc; 4374 } 4375 4376 spin_unlock_irq(&hugetlb_lock); 4377 mutex_unlock(&h->resize_lock); 4378 4379 if (err) 4380 return err; 4381 return len; 4382 } 4383 HSTATE_ATTR_WO(demote); 4384 4385 static ssize_t demote_size_show(struct kobject *kobj, 4386 struct kobj_attribute *attr, char *buf) 4387 { 4388 struct hstate *h = kobj_to_hstate(kobj, NULL); 4389 unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K; 4390 4391 return sysfs_emit(buf, "%lukB\n", demote_size); 4392 } 4393 4394 static ssize_t demote_size_store(struct kobject *kobj, 4395 struct kobj_attribute *attr, 4396 const char *buf, size_t count) 4397 { 4398 struct hstate *h, *demote_hstate; 4399 unsigned long demote_size; 4400 unsigned int demote_order; 4401 4402 demote_size = (unsigned long)memparse(buf, NULL); 4403 4404 demote_hstate = size_to_hstate(demote_size); 4405 if (!demote_hstate) 4406 return -EINVAL; 4407 demote_order = demote_hstate->order; 4408 if (demote_order < HUGETLB_PAGE_ORDER) 4409 return -EINVAL; 4410 4411 /* demote order must be smaller than hstate order */ 4412 h = kobj_to_hstate(kobj, NULL); 4413 if (demote_order >= h->order) 4414 return -EINVAL; 4415 4416 /* resize_lock synchronizes access to demote size and writes */ 4417 mutex_lock(&h->resize_lock); 4418 h->demote_order = demote_order; 4419 mutex_unlock(&h->resize_lock); 4420 4421 return count; 4422 } 4423 HSTATE_ATTR(demote_size); 4424 4425 static struct attribute *hstate_attrs[] = { 4426 &nr_hugepages_attr.attr, 4427 &nr_overcommit_hugepages_attr.attr, 4428 &free_hugepages_attr.attr, 4429 &resv_hugepages_attr.attr, 4430 &surplus_hugepages_attr.attr, 4431 #ifdef CONFIG_NUMA 4432 &nr_hugepages_mempolicy_attr.attr, 4433 #endif 4434 NULL, 4435 }; 4436 4437 static const struct attribute_group hstate_attr_group = { 4438 .attrs = hstate_attrs, 4439 }; 4440 4441 static struct attribute *hstate_demote_attrs[] = { 4442 &demote_size_attr.attr, 4443 &demote_attr.attr, 4444 NULL, 4445 }; 4446 4447 static const struct attribute_group hstate_demote_attr_group = { 4448 .attrs = hstate_demote_attrs, 4449 }; 4450 4451 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent, 4452 struct kobject **hstate_kobjs, 4453 const struct attribute_group *hstate_attr_group) 4454 { 4455 int retval; 4456 int hi = hstate_index(h); 4457 4458 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent); 4459 if (!hstate_kobjs[hi]) 4460 return -ENOMEM; 4461 4462 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group); 4463 if (retval) { 4464 kobject_put(hstate_kobjs[hi]); 4465 hstate_kobjs[hi] = NULL; 4466 return retval; 4467 } 4468 4469 if (h->demote_order) { 4470 retval = sysfs_create_group(hstate_kobjs[hi], 4471 &hstate_demote_attr_group); 4472 if (retval) { 4473 pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name); 4474 sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group); 4475 kobject_put(hstate_kobjs[hi]); 4476 hstate_kobjs[hi] = NULL; 4477 return retval; 4478 } 4479 } 4480 4481 return 0; 4482 } 4483 4484 #ifdef CONFIG_NUMA 4485 static bool hugetlb_sysfs_initialized __ro_after_init; 4486 4487 /* 4488 * node_hstate/s - associate per node hstate attributes, via their kobjects, 4489 * with node devices in node_devices[] using a parallel array. The array 4490 * index of a node device or _hstate == node id. 4491 * This is here to avoid any static dependency of the node device driver, in 4492 * the base kernel, on the hugetlb module. 4493 */ 4494 struct node_hstate { 4495 struct kobject *hugepages_kobj; 4496 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 4497 }; 4498 static struct node_hstate node_hstates[MAX_NUMNODES]; 4499 4500 /* 4501 * A subset of global hstate attributes for node devices 4502 */ 4503 static struct attribute *per_node_hstate_attrs[] = { 4504 &nr_hugepages_attr.attr, 4505 &free_hugepages_attr.attr, 4506 &surplus_hugepages_attr.attr, 4507 NULL, 4508 }; 4509 4510 static const struct attribute_group per_node_hstate_attr_group = { 4511 .attrs = per_node_hstate_attrs, 4512 }; 4513 4514 /* 4515 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj. 4516 * Returns node id via non-NULL nidp. 4517 */ 4518 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 4519 { 4520 int nid; 4521 4522 for (nid = 0; nid < nr_node_ids; nid++) { 4523 struct node_hstate *nhs = &node_hstates[nid]; 4524 int i; 4525 for (i = 0; i < HUGE_MAX_HSTATE; i++) 4526 if (nhs->hstate_kobjs[i] == kobj) { 4527 if (nidp) 4528 *nidp = nid; 4529 return &hstates[i]; 4530 } 4531 } 4532 4533 BUG(); 4534 return NULL; 4535 } 4536 4537 /* 4538 * Unregister hstate attributes from a single node device. 4539 * No-op if no hstate attributes attached. 4540 */ 4541 void hugetlb_unregister_node(struct node *node) 4542 { 4543 struct hstate *h; 4544 struct node_hstate *nhs = &node_hstates[node->dev.id]; 4545 4546 if (!nhs->hugepages_kobj) 4547 return; /* no hstate attributes */ 4548 4549 for_each_hstate(h) { 4550 int idx = hstate_index(h); 4551 struct kobject *hstate_kobj = nhs->hstate_kobjs[idx]; 4552 4553 if (!hstate_kobj) 4554 continue; 4555 if (h->demote_order) 4556 sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group); 4557 sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group); 4558 kobject_put(hstate_kobj); 4559 nhs->hstate_kobjs[idx] = NULL; 4560 } 4561 4562 kobject_put(nhs->hugepages_kobj); 4563 nhs->hugepages_kobj = NULL; 4564 } 4565 4566 4567 /* 4568 * Register hstate attributes for a single node device. 4569 * No-op if attributes already registered. 4570 */ 4571 void hugetlb_register_node(struct node *node) 4572 { 4573 struct hstate *h; 4574 struct node_hstate *nhs = &node_hstates[node->dev.id]; 4575 int err; 4576 4577 if (!hugetlb_sysfs_initialized) 4578 return; 4579 4580 if (nhs->hugepages_kobj) 4581 return; /* already allocated */ 4582 4583 nhs->hugepages_kobj = kobject_create_and_add("hugepages", 4584 &node->dev.kobj); 4585 if (!nhs->hugepages_kobj) 4586 return; 4587 4588 for_each_hstate(h) { 4589 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj, 4590 nhs->hstate_kobjs, 4591 &per_node_hstate_attr_group); 4592 if (err) { 4593 pr_err("HugeTLB: Unable to add hstate %s for node %d\n", 4594 h->name, node->dev.id); 4595 hugetlb_unregister_node(node); 4596 break; 4597 } 4598 } 4599 } 4600 4601 /* 4602 * hugetlb init time: register hstate attributes for all registered node 4603 * devices of nodes that have memory. All on-line nodes should have 4604 * registered their associated device by this time. 4605 */ 4606 static void __init hugetlb_register_all_nodes(void) 4607 { 4608 int nid; 4609 4610 for_each_online_node(nid) 4611 hugetlb_register_node(node_devices[nid]); 4612 } 4613 #else /* !CONFIG_NUMA */ 4614 4615 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 4616 { 4617 BUG(); 4618 if (nidp) 4619 *nidp = -1; 4620 return NULL; 4621 } 4622 4623 static void hugetlb_register_all_nodes(void) { } 4624 4625 #endif 4626 4627 static void __init hugetlb_sysfs_init(void) 4628 { 4629 struct hstate *h; 4630 int err; 4631 4632 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); 4633 if (!hugepages_kobj) 4634 return; 4635 4636 for_each_hstate(h) { 4637 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj, 4638 hstate_kobjs, &hstate_attr_group); 4639 if (err) 4640 pr_err("HugeTLB: Unable to add hstate %s\n", h->name); 4641 } 4642 4643 #ifdef CONFIG_NUMA 4644 hugetlb_sysfs_initialized = true; 4645 #endif 4646 hugetlb_register_all_nodes(); 4647 } 4648 4649 #ifdef CONFIG_SYSCTL 4650 static void hugetlb_sysctl_init(void); 4651 #else 4652 static inline void hugetlb_sysctl_init(void) { } 4653 #endif 4654 4655 static int __init hugetlb_init(void) 4656 { 4657 int i; 4658 4659 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE < 4660 __NR_HPAGEFLAGS); 4661 4662 if (!hugepages_supported()) { 4663 if (hugetlb_max_hstate || default_hstate_max_huge_pages) 4664 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n"); 4665 return 0; 4666 } 4667 4668 /* 4669 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some 4670 * architectures depend on setup being done here. 4671 */ 4672 hugetlb_add_hstate(HUGETLB_PAGE_ORDER); 4673 if (!parsed_default_hugepagesz) { 4674 /* 4675 * If we did not parse a default huge page size, set 4676 * default_hstate_idx to HPAGE_SIZE hstate. And, if the 4677 * number of huge pages for this default size was implicitly 4678 * specified, set that here as well. 4679 * Note that the implicit setting will overwrite an explicit 4680 * setting. A warning will be printed in this case. 4681 */ 4682 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE)); 4683 if (default_hstate_max_huge_pages) { 4684 if (default_hstate.max_huge_pages) { 4685 char buf[32]; 4686 4687 string_get_size(huge_page_size(&default_hstate), 4688 1, STRING_UNITS_2, buf, 32); 4689 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n", 4690 default_hstate.max_huge_pages, buf); 4691 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n", 4692 default_hstate_max_huge_pages); 4693 } 4694 default_hstate.max_huge_pages = 4695 default_hstate_max_huge_pages; 4696 4697 for_each_online_node(i) 4698 default_hstate.max_huge_pages_node[i] = 4699 default_hugepages_in_node[i]; 4700 } 4701 } 4702 4703 hugetlb_cma_check(); 4704 hugetlb_init_hstates(); 4705 gather_bootmem_prealloc(); 4706 report_hugepages(); 4707 4708 hugetlb_sysfs_init(); 4709 hugetlb_cgroup_file_init(); 4710 hugetlb_sysctl_init(); 4711 4712 #ifdef CONFIG_SMP 4713 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus()); 4714 #else 4715 num_fault_mutexes = 1; 4716 #endif 4717 hugetlb_fault_mutex_table = 4718 kmalloc_array(num_fault_mutexes, sizeof(struct mutex), 4719 GFP_KERNEL); 4720 BUG_ON(!hugetlb_fault_mutex_table); 4721 4722 for (i = 0; i < num_fault_mutexes; i++) 4723 mutex_init(&hugetlb_fault_mutex_table[i]); 4724 return 0; 4725 } 4726 subsys_initcall(hugetlb_init); 4727 4728 /* Overwritten by architectures with more huge page sizes */ 4729 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size) 4730 { 4731 return size == HPAGE_SIZE; 4732 } 4733 4734 void __init hugetlb_add_hstate(unsigned int order) 4735 { 4736 struct hstate *h; 4737 unsigned long i; 4738 4739 if (size_to_hstate(PAGE_SIZE << order)) { 4740 return; 4741 } 4742 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE); 4743 BUG_ON(order < order_base_2(__NR_USED_SUBPAGE)); 4744 h = &hstates[hugetlb_max_hstate++]; 4745 __mutex_init(&h->resize_lock, "resize mutex", &h->resize_key); 4746 h->order = order; 4747 h->mask = ~(huge_page_size(h) - 1); 4748 for (i = 0; i < MAX_NUMNODES; ++i) 4749 INIT_LIST_HEAD(&h->hugepage_freelists[i]); 4750 INIT_LIST_HEAD(&h->hugepage_activelist); 4751 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", 4752 huge_page_size(h)/SZ_1K); 4753 4754 parsed_hstate = h; 4755 } 4756 4757 bool __init __weak hugetlb_node_alloc_supported(void) 4758 { 4759 return true; 4760 } 4761 4762 static void __init hugepages_clear_pages_in_node(void) 4763 { 4764 if (!hugetlb_max_hstate) { 4765 default_hstate_max_huge_pages = 0; 4766 memset(default_hugepages_in_node, 0, 4767 sizeof(default_hugepages_in_node)); 4768 } else { 4769 parsed_hstate->max_huge_pages = 0; 4770 memset(parsed_hstate->max_huge_pages_node, 0, 4771 sizeof(parsed_hstate->max_huge_pages_node)); 4772 } 4773 } 4774 4775 static __init int hugetlb_add_param(char *s, int (*setup)(char *)) 4776 { 4777 size_t len; 4778 char *p; 4779 4780 if (hugetlb_param_index >= HUGE_MAX_CMDLINE_ARGS) 4781 return -EINVAL; 4782 4783 len = strlen(s) + 1; 4784 if (len + hstate_cmdline_index > sizeof(hstate_cmdline_buf)) 4785 return -EINVAL; 4786 4787 p = &hstate_cmdline_buf[hstate_cmdline_index]; 4788 memcpy(p, s, len); 4789 hstate_cmdline_index += len; 4790 4791 hugetlb_params[hugetlb_param_index].val = p; 4792 hugetlb_params[hugetlb_param_index].setup = setup; 4793 4794 hugetlb_param_index++; 4795 4796 return 0; 4797 } 4798 4799 static __init void hugetlb_parse_params(void) 4800 { 4801 int i; 4802 struct hugetlb_cmdline *hcp; 4803 4804 for (i = 0; i < hugetlb_param_index; i++) { 4805 hcp = &hugetlb_params[i]; 4806 4807 hcp->setup(hcp->val); 4808 } 4809 4810 hugetlb_cma_validate_params(); 4811 } 4812 4813 /* 4814 * hugepages command line processing 4815 * hugepages normally follows a valid hugepagsz or default_hugepagsz 4816 * specification. If not, ignore the hugepages value. hugepages can also 4817 * be the first huge page command line option in which case it implicitly 4818 * specifies the number of huge pages for the default size. 4819 */ 4820 static int __init hugepages_setup(char *s) 4821 { 4822 unsigned long *mhp; 4823 static unsigned long *last_mhp; 4824 int node = NUMA_NO_NODE; 4825 int count; 4826 unsigned long tmp; 4827 char *p = s; 4828 4829 if (!parsed_valid_hugepagesz) { 4830 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s); 4831 parsed_valid_hugepagesz = true; 4832 return -EINVAL; 4833 } 4834 4835 /* 4836 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter 4837 * yet, so this hugepages= parameter goes to the "default hstate". 4838 * Otherwise, it goes with the previously parsed hugepagesz or 4839 * default_hugepagesz. 4840 */ 4841 else if (!hugetlb_max_hstate) 4842 mhp = &default_hstate_max_huge_pages; 4843 else 4844 mhp = &parsed_hstate->max_huge_pages; 4845 4846 if (mhp == last_mhp) { 4847 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s); 4848 return 1; 4849 } 4850 4851 while (*p) { 4852 count = 0; 4853 if (sscanf(p, "%lu%n", &tmp, &count) != 1) 4854 goto invalid; 4855 /* Parameter is node format */ 4856 if (p[count] == ':') { 4857 if (!hugetlb_node_alloc_supported()) { 4858 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n"); 4859 return 1; 4860 } 4861 if (tmp >= MAX_NUMNODES || !node_online(tmp)) 4862 goto invalid; 4863 node = array_index_nospec(tmp, MAX_NUMNODES); 4864 p += count + 1; 4865 /* Parse hugepages */ 4866 if (sscanf(p, "%lu%n", &tmp, &count) != 1) 4867 goto invalid; 4868 if (!hugetlb_max_hstate) 4869 default_hugepages_in_node[node] = tmp; 4870 else 4871 parsed_hstate->max_huge_pages_node[node] = tmp; 4872 *mhp += tmp; 4873 /* Go to parse next node*/ 4874 if (p[count] == ',') 4875 p += count + 1; 4876 else 4877 break; 4878 } else { 4879 if (p != s) 4880 goto invalid; 4881 *mhp = tmp; 4882 break; 4883 } 4884 } 4885 4886 last_mhp = mhp; 4887 4888 return 0; 4889 4890 invalid: 4891 pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p); 4892 hugepages_clear_pages_in_node(); 4893 return -EINVAL; 4894 } 4895 hugetlb_early_param("hugepages", hugepages_setup); 4896 4897 /* 4898 * hugepagesz command line processing 4899 * A specific huge page size can only be specified once with hugepagesz. 4900 * hugepagesz is followed by hugepages on the command line. The global 4901 * variable 'parsed_valid_hugepagesz' is used to determine if prior 4902 * hugepagesz argument was valid. 4903 */ 4904 static int __init hugepagesz_setup(char *s) 4905 { 4906 unsigned long size; 4907 struct hstate *h; 4908 4909 parsed_valid_hugepagesz = false; 4910 size = (unsigned long)memparse(s, NULL); 4911 4912 if (!arch_hugetlb_valid_size(size)) { 4913 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s); 4914 return -EINVAL; 4915 } 4916 4917 h = size_to_hstate(size); 4918 if (h) { 4919 /* 4920 * hstate for this size already exists. This is normally 4921 * an error, but is allowed if the existing hstate is the 4922 * default hstate. More specifically, it is only allowed if 4923 * the number of huge pages for the default hstate was not 4924 * previously specified. 4925 */ 4926 if (!parsed_default_hugepagesz || h != &default_hstate || 4927 default_hstate.max_huge_pages) { 4928 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s); 4929 return -EINVAL; 4930 } 4931 4932 /* 4933 * No need to call hugetlb_add_hstate() as hstate already 4934 * exists. But, do set parsed_hstate so that a following 4935 * hugepages= parameter will be applied to this hstate. 4936 */ 4937 parsed_hstate = h; 4938 parsed_valid_hugepagesz = true; 4939 return 0; 4940 } 4941 4942 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); 4943 parsed_valid_hugepagesz = true; 4944 return 0; 4945 } 4946 hugetlb_early_param("hugepagesz", hugepagesz_setup); 4947 4948 /* 4949 * default_hugepagesz command line input 4950 * Only one instance of default_hugepagesz allowed on command line. 4951 */ 4952 static int __init default_hugepagesz_setup(char *s) 4953 { 4954 unsigned long size; 4955 int i; 4956 4957 parsed_valid_hugepagesz = false; 4958 if (parsed_default_hugepagesz) { 4959 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s); 4960 return -EINVAL; 4961 } 4962 4963 size = (unsigned long)memparse(s, NULL); 4964 4965 if (!arch_hugetlb_valid_size(size)) { 4966 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s); 4967 return -EINVAL; 4968 } 4969 4970 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); 4971 parsed_valid_hugepagesz = true; 4972 parsed_default_hugepagesz = true; 4973 default_hstate_idx = hstate_index(size_to_hstate(size)); 4974 4975 /* 4976 * The number of default huge pages (for this size) could have been 4977 * specified as the first hugetlb parameter: hugepages=X. If so, 4978 * then default_hstate_max_huge_pages is set. If the default huge 4979 * page size is gigantic (> MAX_PAGE_ORDER), then the pages must be 4980 * allocated here from bootmem allocator. 4981 */ 4982 if (default_hstate_max_huge_pages) { 4983 default_hstate.max_huge_pages = default_hstate_max_huge_pages; 4984 /* 4985 * Since this is an early parameter, we can't check 4986 * NUMA node state yet, so loop through MAX_NUMNODES. 4987 */ 4988 for (i = 0; i < MAX_NUMNODES; i++) { 4989 if (default_hugepages_in_node[i] != 0) 4990 default_hstate.max_huge_pages_node[i] = 4991 default_hugepages_in_node[i]; 4992 } 4993 default_hstate_max_huge_pages = 0; 4994 } 4995 4996 return 0; 4997 } 4998 hugetlb_early_param("default_hugepagesz", default_hugepagesz_setup); 4999 5000 void __init hugetlb_bootmem_set_nodes(void) 5001 { 5002 int i, nid; 5003 unsigned long start_pfn, end_pfn; 5004 5005 if (!nodes_empty(hugetlb_bootmem_nodes)) 5006 return; 5007 5008 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 5009 if (end_pfn > start_pfn) 5010 node_set(nid, hugetlb_bootmem_nodes); 5011 } 5012 } 5013 5014 static bool __hugetlb_bootmem_allocated __initdata; 5015 5016 bool __init hugetlb_bootmem_allocated(void) 5017 { 5018 return __hugetlb_bootmem_allocated; 5019 } 5020 5021 void __init hugetlb_bootmem_alloc(void) 5022 { 5023 struct hstate *h; 5024 int i; 5025 5026 if (__hugetlb_bootmem_allocated) 5027 return; 5028 5029 hugetlb_bootmem_set_nodes(); 5030 5031 for (i = 0; i < MAX_NUMNODES; i++) 5032 INIT_LIST_HEAD(&huge_boot_pages[i]); 5033 5034 hugetlb_parse_params(); 5035 5036 for_each_hstate(h) { 5037 h->next_nid_to_alloc = first_online_node; 5038 5039 if (hstate_is_gigantic(h)) 5040 hugetlb_hstate_alloc_pages(h); 5041 } 5042 5043 __hugetlb_bootmem_allocated = true; 5044 } 5045 5046 /* 5047 * hugepage_alloc_threads command line parsing. 5048 * 5049 * When set, use this specific number of threads for the boot 5050 * allocation of hugepages. 5051 */ 5052 static int __init hugepage_alloc_threads_setup(char *s) 5053 { 5054 unsigned long allocation_threads; 5055 5056 if (kstrtoul(s, 0, &allocation_threads) != 0) 5057 return 1; 5058 5059 if (allocation_threads == 0) 5060 return 1; 5061 5062 hugepage_allocation_threads = allocation_threads; 5063 5064 return 1; 5065 } 5066 __setup("hugepage_alloc_threads=", hugepage_alloc_threads_setup); 5067 5068 static unsigned int allowed_mems_nr(struct hstate *h) 5069 { 5070 int node; 5071 unsigned int nr = 0; 5072 nodemask_t *mbind_nodemask; 5073 unsigned int *array = h->free_huge_pages_node; 5074 gfp_t gfp_mask = htlb_alloc_mask(h); 5075 5076 mbind_nodemask = policy_mbind_nodemask(gfp_mask); 5077 for_each_node_mask(node, cpuset_current_mems_allowed) { 5078 if (!mbind_nodemask || node_isset(node, *mbind_nodemask)) 5079 nr += array[node]; 5080 } 5081 5082 return nr; 5083 } 5084 5085 #ifdef CONFIG_SYSCTL 5086 static int proc_hugetlb_doulongvec_minmax(const struct ctl_table *table, int write, 5087 void *buffer, size_t *length, 5088 loff_t *ppos, unsigned long *out) 5089 { 5090 struct ctl_table dup_table; 5091 5092 /* 5093 * In order to avoid races with __do_proc_doulongvec_minmax(), we 5094 * can duplicate the @table and alter the duplicate of it. 5095 */ 5096 dup_table = *table; 5097 dup_table.data = out; 5098 5099 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos); 5100 } 5101 5102 static int hugetlb_sysctl_handler_common(bool obey_mempolicy, 5103 const struct ctl_table *table, int write, 5104 void *buffer, size_t *length, loff_t *ppos) 5105 { 5106 struct hstate *h = &default_hstate; 5107 unsigned long tmp = h->max_huge_pages; 5108 int ret; 5109 5110 if (!hugepages_supported()) 5111 return -EOPNOTSUPP; 5112 5113 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, 5114 &tmp); 5115 if (ret) 5116 goto out; 5117 5118 if (write) 5119 ret = __nr_hugepages_store_common(obey_mempolicy, h, 5120 NUMA_NO_NODE, tmp, *length); 5121 out: 5122 return ret; 5123 } 5124 5125 static int hugetlb_sysctl_handler(const struct ctl_table *table, int write, 5126 void *buffer, size_t *length, loff_t *ppos) 5127 { 5128 5129 return hugetlb_sysctl_handler_common(false, table, write, 5130 buffer, length, ppos); 5131 } 5132 5133 #ifdef CONFIG_NUMA 5134 static int hugetlb_mempolicy_sysctl_handler(const struct ctl_table *table, int write, 5135 void *buffer, size_t *length, loff_t *ppos) 5136 { 5137 return hugetlb_sysctl_handler_common(true, table, write, 5138 buffer, length, ppos); 5139 } 5140 #endif /* CONFIG_NUMA */ 5141 5142 static int hugetlb_overcommit_handler(const struct ctl_table *table, int write, 5143 void *buffer, size_t *length, loff_t *ppos) 5144 { 5145 struct hstate *h = &default_hstate; 5146 unsigned long tmp; 5147 int ret; 5148 5149 if (!hugepages_supported()) 5150 return -EOPNOTSUPP; 5151 5152 tmp = h->nr_overcommit_huge_pages; 5153 5154 if (write && hstate_is_gigantic(h)) 5155 return -EINVAL; 5156 5157 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, 5158 &tmp); 5159 if (ret) 5160 goto out; 5161 5162 if (write) { 5163 spin_lock_irq(&hugetlb_lock); 5164 h->nr_overcommit_huge_pages = tmp; 5165 spin_unlock_irq(&hugetlb_lock); 5166 } 5167 out: 5168 return ret; 5169 } 5170 5171 static const struct ctl_table hugetlb_table[] = { 5172 { 5173 .procname = "nr_hugepages", 5174 .data = NULL, 5175 .maxlen = sizeof(unsigned long), 5176 .mode = 0644, 5177 .proc_handler = hugetlb_sysctl_handler, 5178 }, 5179 #ifdef CONFIG_NUMA 5180 { 5181 .procname = "nr_hugepages_mempolicy", 5182 .data = NULL, 5183 .maxlen = sizeof(unsigned long), 5184 .mode = 0644, 5185 .proc_handler = &hugetlb_mempolicy_sysctl_handler, 5186 }, 5187 #endif 5188 { 5189 .procname = "hugetlb_shm_group", 5190 .data = &sysctl_hugetlb_shm_group, 5191 .maxlen = sizeof(gid_t), 5192 .mode = 0644, 5193 .proc_handler = proc_dointvec, 5194 }, 5195 { 5196 .procname = "nr_overcommit_hugepages", 5197 .data = NULL, 5198 .maxlen = sizeof(unsigned long), 5199 .mode = 0644, 5200 .proc_handler = hugetlb_overcommit_handler, 5201 }, 5202 }; 5203 5204 static void __init hugetlb_sysctl_init(void) 5205 { 5206 register_sysctl_init("vm", hugetlb_table); 5207 } 5208 #endif /* CONFIG_SYSCTL */ 5209 5210 void hugetlb_report_meminfo(struct seq_file *m) 5211 { 5212 struct hstate *h; 5213 unsigned long total = 0; 5214 5215 if (!hugepages_supported()) 5216 return; 5217 5218 for_each_hstate(h) { 5219 unsigned long count = h->nr_huge_pages; 5220 5221 total += huge_page_size(h) * count; 5222 5223 if (h == &default_hstate) 5224 seq_printf(m, 5225 "HugePages_Total: %5lu\n" 5226 "HugePages_Free: %5lu\n" 5227 "HugePages_Rsvd: %5lu\n" 5228 "HugePages_Surp: %5lu\n" 5229 "Hugepagesize: %8lu kB\n", 5230 count, 5231 h->free_huge_pages, 5232 h->resv_huge_pages, 5233 h->surplus_huge_pages, 5234 huge_page_size(h) / SZ_1K); 5235 } 5236 5237 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K); 5238 } 5239 5240 int hugetlb_report_node_meminfo(char *buf, int len, int nid) 5241 { 5242 struct hstate *h = &default_hstate; 5243 5244 if (!hugepages_supported()) 5245 return 0; 5246 5247 return sysfs_emit_at(buf, len, 5248 "Node %d HugePages_Total: %5u\n" 5249 "Node %d HugePages_Free: %5u\n" 5250 "Node %d HugePages_Surp: %5u\n", 5251 nid, h->nr_huge_pages_node[nid], 5252 nid, h->free_huge_pages_node[nid], 5253 nid, h->surplus_huge_pages_node[nid]); 5254 } 5255 5256 void hugetlb_show_meminfo_node(int nid) 5257 { 5258 struct hstate *h; 5259 5260 if (!hugepages_supported()) 5261 return; 5262 5263 for_each_hstate(h) 5264 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n", 5265 nid, 5266 h->nr_huge_pages_node[nid], 5267 h->free_huge_pages_node[nid], 5268 h->surplus_huge_pages_node[nid], 5269 huge_page_size(h) / SZ_1K); 5270 } 5271 5272 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm) 5273 { 5274 seq_printf(m, "HugetlbPages:\t%8lu kB\n", 5275 K(atomic_long_read(&mm->hugetlb_usage))); 5276 } 5277 5278 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ 5279 unsigned long hugetlb_total_pages(void) 5280 { 5281 struct hstate *h; 5282 unsigned long nr_total_pages = 0; 5283 5284 for_each_hstate(h) 5285 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h); 5286 return nr_total_pages; 5287 } 5288 5289 static int hugetlb_acct_memory(struct hstate *h, long delta) 5290 { 5291 int ret = -ENOMEM; 5292 5293 if (!delta) 5294 return 0; 5295 5296 spin_lock_irq(&hugetlb_lock); 5297 /* 5298 * When cpuset is configured, it breaks the strict hugetlb page 5299 * reservation as the accounting is done on a global variable. Such 5300 * reservation is completely rubbish in the presence of cpuset because 5301 * the reservation is not checked against page availability for the 5302 * current cpuset. Application can still potentially OOM'ed by kernel 5303 * with lack of free htlb page in cpuset that the task is in. 5304 * Attempt to enforce strict accounting with cpuset is almost 5305 * impossible (or too ugly) because cpuset is too fluid that 5306 * task or memory node can be dynamically moved between cpusets. 5307 * 5308 * The change of semantics for shared hugetlb mapping with cpuset is 5309 * undesirable. However, in order to preserve some of the semantics, 5310 * we fall back to check against current free page availability as 5311 * a best attempt and hopefully to minimize the impact of changing 5312 * semantics that cpuset has. 5313 * 5314 * Apart from cpuset, we also have memory policy mechanism that 5315 * also determines from which node the kernel will allocate memory 5316 * in a NUMA system. So similar to cpuset, we also should consider 5317 * the memory policy of the current task. Similar to the description 5318 * above. 5319 */ 5320 if (delta > 0) { 5321 if (gather_surplus_pages(h, delta) < 0) 5322 goto out; 5323 5324 if (delta > allowed_mems_nr(h)) { 5325 return_unused_surplus_pages(h, delta); 5326 goto out; 5327 } 5328 } 5329 5330 ret = 0; 5331 if (delta < 0) 5332 return_unused_surplus_pages(h, (unsigned long) -delta); 5333 5334 out: 5335 spin_unlock_irq(&hugetlb_lock); 5336 return ret; 5337 } 5338 5339 static void hugetlb_vm_op_open(struct vm_area_struct *vma) 5340 { 5341 struct resv_map *resv = vma_resv_map(vma); 5342 5343 /* 5344 * HPAGE_RESV_OWNER indicates a private mapping. 5345 * This new VMA should share its siblings reservation map if present. 5346 * The VMA will only ever have a valid reservation map pointer where 5347 * it is being copied for another still existing VMA. As that VMA 5348 * has a reference to the reservation map it cannot disappear until 5349 * after this open call completes. It is therefore safe to take a 5350 * new reference here without additional locking. 5351 */ 5352 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 5353 resv_map_dup_hugetlb_cgroup_uncharge_info(resv); 5354 kref_get(&resv->refs); 5355 } 5356 5357 /* 5358 * vma_lock structure for sharable mappings is vma specific. 5359 * Clear old pointer (if copied via vm_area_dup) and allocate 5360 * new structure. Before clearing, make sure vma_lock is not 5361 * for this vma. 5362 */ 5363 if (vma->vm_flags & VM_MAYSHARE) { 5364 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 5365 5366 if (vma_lock) { 5367 if (vma_lock->vma != vma) { 5368 vma->vm_private_data = NULL; 5369 hugetlb_vma_lock_alloc(vma); 5370 } else 5371 pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__); 5372 } else 5373 hugetlb_vma_lock_alloc(vma); 5374 } 5375 } 5376 5377 static void hugetlb_vm_op_close(struct vm_area_struct *vma) 5378 { 5379 struct hstate *h = hstate_vma(vma); 5380 struct resv_map *resv; 5381 struct hugepage_subpool *spool = subpool_vma(vma); 5382 unsigned long reserve, start, end; 5383 long gbl_reserve; 5384 5385 hugetlb_vma_lock_free(vma); 5386 5387 resv = vma_resv_map(vma); 5388 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 5389 return; 5390 5391 start = vma_hugecache_offset(h, vma, vma->vm_start); 5392 end = vma_hugecache_offset(h, vma, vma->vm_end); 5393 5394 reserve = (end - start) - region_count(resv, start, end); 5395 hugetlb_cgroup_uncharge_counter(resv, start, end); 5396 if (reserve) { 5397 /* 5398 * Decrement reserve counts. The global reserve count may be 5399 * adjusted if the subpool has a minimum size. 5400 */ 5401 gbl_reserve = hugepage_subpool_put_pages(spool, reserve); 5402 hugetlb_acct_memory(h, -gbl_reserve); 5403 } 5404 5405 kref_put(&resv->refs, resv_map_release); 5406 } 5407 5408 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr) 5409 { 5410 if (addr & ~(huge_page_mask(hstate_vma(vma)))) 5411 return -EINVAL; 5412 return 0; 5413 } 5414 5415 void hugetlb_split(struct vm_area_struct *vma, unsigned long addr) 5416 { 5417 /* 5418 * PMD sharing is only possible for PUD_SIZE-aligned address ranges 5419 * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this 5420 * split, unshare PMDs in the PUD_SIZE interval surrounding addr now. 5421 * This function is called in the middle of a VMA split operation, with 5422 * MM, VMA and rmap all write-locked to prevent concurrent page table 5423 * walks (except hardware and gup_fast()). 5424 */ 5425 vma_assert_write_locked(vma); 5426 i_mmap_assert_write_locked(vma->vm_file->f_mapping); 5427 5428 if (addr & ~PUD_MASK) { 5429 unsigned long floor = addr & PUD_MASK; 5430 unsigned long ceil = floor + PUD_SIZE; 5431 5432 if (floor >= vma->vm_start && ceil <= vma->vm_end) { 5433 /* 5434 * Locking: 5435 * Use take_locks=false here. 5436 * The file rmap lock is already held. 5437 * The hugetlb VMA lock can't be taken when we already 5438 * hold the file rmap lock, and we don't need it because 5439 * its purpose is to synchronize against concurrent page 5440 * table walks, which are not possible thanks to the 5441 * locks held by our caller. 5442 */ 5443 hugetlb_unshare_pmds(vma, floor, ceil, /* take_locks = */ false); 5444 } 5445 } 5446 } 5447 5448 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma) 5449 { 5450 return huge_page_size(hstate_vma(vma)); 5451 } 5452 5453 /* 5454 * We cannot handle pagefaults against hugetlb pages at all. They cause 5455 * handle_mm_fault() to try to instantiate regular-sized pages in the 5456 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get 5457 * this far. 5458 */ 5459 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf) 5460 { 5461 BUG(); 5462 return 0; 5463 } 5464 5465 /* 5466 * When a new function is introduced to vm_operations_struct and added 5467 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops. 5468 * This is because under System V memory model, mappings created via 5469 * shmget/shmat with "huge page" specified are backed by hugetlbfs files, 5470 * their original vm_ops are overwritten with shm_vm_ops. 5471 */ 5472 const struct vm_operations_struct hugetlb_vm_ops = { 5473 .fault = hugetlb_vm_op_fault, 5474 .open = hugetlb_vm_op_open, 5475 .close = hugetlb_vm_op_close, 5476 .may_split = hugetlb_vm_op_split, 5477 .pagesize = hugetlb_vm_op_pagesize, 5478 }; 5479 5480 static pte_t make_huge_pte(struct vm_area_struct *vma, struct folio *folio, 5481 bool try_mkwrite) 5482 { 5483 pte_t entry = folio_mk_pte(folio, vma->vm_page_prot); 5484 unsigned int shift = huge_page_shift(hstate_vma(vma)); 5485 5486 if (try_mkwrite && (vma->vm_flags & VM_WRITE)) { 5487 entry = pte_mkwrite_novma(pte_mkdirty(entry)); 5488 } else { 5489 entry = pte_wrprotect(entry); 5490 } 5491 entry = pte_mkyoung(entry); 5492 entry = arch_make_huge_pte(entry, shift, vma->vm_flags); 5493 5494 return entry; 5495 } 5496 5497 static void set_huge_ptep_writable(struct vm_area_struct *vma, 5498 unsigned long address, pte_t *ptep) 5499 { 5500 pte_t entry; 5501 5502 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(vma->vm_mm, address, ptep))); 5503 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) 5504 update_mmu_cache(vma, address, ptep); 5505 } 5506 5507 static void set_huge_ptep_maybe_writable(struct vm_area_struct *vma, 5508 unsigned long address, pte_t *ptep) 5509 { 5510 if (vma->vm_flags & VM_WRITE) 5511 set_huge_ptep_writable(vma, address, ptep); 5512 } 5513 5514 bool is_hugetlb_entry_migration(pte_t pte) 5515 { 5516 swp_entry_t swp; 5517 5518 if (huge_pte_none(pte) || pte_present(pte)) 5519 return false; 5520 swp = pte_to_swp_entry(pte); 5521 if (is_migration_entry(swp)) 5522 return true; 5523 else 5524 return false; 5525 } 5526 5527 bool is_hugetlb_entry_hwpoisoned(pte_t pte) 5528 { 5529 swp_entry_t swp; 5530 5531 if (huge_pte_none(pte) || pte_present(pte)) 5532 return false; 5533 swp = pte_to_swp_entry(pte); 5534 if (is_hwpoison_entry(swp)) 5535 return true; 5536 else 5537 return false; 5538 } 5539 5540 static void 5541 hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr, 5542 struct folio *new_folio, pte_t old, unsigned long sz) 5543 { 5544 pte_t newpte = make_huge_pte(vma, new_folio, true); 5545 5546 __folio_mark_uptodate(new_folio); 5547 hugetlb_add_new_anon_rmap(new_folio, vma, addr); 5548 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(old)) 5549 newpte = huge_pte_mkuffd_wp(newpte); 5550 set_huge_pte_at(vma->vm_mm, addr, ptep, newpte, sz); 5551 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm); 5552 folio_set_hugetlb_migratable(new_folio); 5553 } 5554 5555 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, 5556 struct vm_area_struct *dst_vma, 5557 struct vm_area_struct *src_vma) 5558 { 5559 pte_t *src_pte, *dst_pte, entry; 5560 struct folio *pte_folio; 5561 unsigned long addr; 5562 bool cow = is_cow_mapping(src_vma->vm_flags); 5563 struct hstate *h = hstate_vma(src_vma); 5564 unsigned long sz = huge_page_size(h); 5565 unsigned long npages = pages_per_huge_page(h); 5566 struct mmu_notifier_range range; 5567 unsigned long last_addr_mask; 5568 int ret = 0; 5569 5570 if (cow) { 5571 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src, 5572 src_vma->vm_start, 5573 src_vma->vm_end); 5574 mmu_notifier_invalidate_range_start(&range); 5575 vma_assert_write_locked(src_vma); 5576 raw_write_seqcount_begin(&src->write_protect_seq); 5577 } else { 5578 /* 5579 * For shared mappings the vma lock must be held before 5580 * calling hugetlb_walk() in the src vma. Otherwise, the 5581 * returned ptep could go away if part of a shared pmd and 5582 * another thread calls huge_pmd_unshare. 5583 */ 5584 hugetlb_vma_lock_read(src_vma); 5585 } 5586 5587 last_addr_mask = hugetlb_mask_last_page(h); 5588 for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) { 5589 spinlock_t *src_ptl, *dst_ptl; 5590 src_pte = hugetlb_walk(src_vma, addr, sz); 5591 if (!src_pte) { 5592 addr |= last_addr_mask; 5593 continue; 5594 } 5595 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz); 5596 if (!dst_pte) { 5597 ret = -ENOMEM; 5598 break; 5599 } 5600 5601 /* 5602 * If the pagetables are shared don't copy or take references. 5603 * 5604 * dst_pte == src_pte is the common case of src/dest sharing. 5605 * However, src could have 'unshared' and dst shares with 5606 * another vma. So page_count of ptep page is checked instead 5607 * to reliably determine whether pte is shared. 5608 */ 5609 if (page_count(virt_to_page(dst_pte)) > 1) { 5610 addr |= last_addr_mask; 5611 continue; 5612 } 5613 5614 dst_ptl = huge_pte_lock(h, dst, dst_pte); 5615 src_ptl = huge_pte_lockptr(h, src, src_pte); 5616 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 5617 entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte); 5618 again: 5619 if (huge_pte_none(entry)) { 5620 /* 5621 * Skip if src entry none. 5622 */ 5623 ; 5624 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) { 5625 if (!userfaultfd_wp(dst_vma)) 5626 entry = huge_pte_clear_uffd_wp(entry); 5627 set_huge_pte_at(dst, addr, dst_pte, entry, sz); 5628 } else if (unlikely(is_hugetlb_entry_migration(entry))) { 5629 swp_entry_t swp_entry = pte_to_swp_entry(entry); 5630 bool uffd_wp = pte_swp_uffd_wp(entry); 5631 5632 if (!is_readable_migration_entry(swp_entry) && cow) { 5633 /* 5634 * COW mappings require pages in both 5635 * parent and child to be set to read. 5636 */ 5637 swp_entry = make_readable_migration_entry( 5638 swp_offset(swp_entry)); 5639 entry = swp_entry_to_pte(swp_entry); 5640 if (userfaultfd_wp(src_vma) && uffd_wp) 5641 entry = pte_swp_mkuffd_wp(entry); 5642 set_huge_pte_at(src, addr, src_pte, entry, sz); 5643 } 5644 if (!userfaultfd_wp(dst_vma)) 5645 entry = huge_pte_clear_uffd_wp(entry); 5646 set_huge_pte_at(dst, addr, dst_pte, entry, sz); 5647 } else if (unlikely(is_pte_marker(entry))) { 5648 pte_marker marker = copy_pte_marker( 5649 pte_to_swp_entry(entry), dst_vma); 5650 5651 if (marker) 5652 set_huge_pte_at(dst, addr, dst_pte, 5653 make_pte_marker(marker), sz); 5654 } else { 5655 entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte); 5656 pte_folio = page_folio(pte_page(entry)); 5657 folio_get(pte_folio); 5658 5659 /* 5660 * Failing to duplicate the anon rmap is a rare case 5661 * where we see pinned hugetlb pages while they're 5662 * prone to COW. We need to do the COW earlier during 5663 * fork. 5664 * 5665 * When pre-allocating the page or copying data, we 5666 * need to be without the pgtable locks since we could 5667 * sleep during the process. 5668 */ 5669 if (!folio_test_anon(pte_folio)) { 5670 hugetlb_add_file_rmap(pte_folio); 5671 } else if (hugetlb_try_dup_anon_rmap(pte_folio, src_vma)) { 5672 pte_t src_pte_old = entry; 5673 struct folio *new_folio; 5674 5675 spin_unlock(src_ptl); 5676 spin_unlock(dst_ptl); 5677 /* Do not use reserve as it's private owned */ 5678 new_folio = alloc_hugetlb_folio(dst_vma, addr, false); 5679 if (IS_ERR(new_folio)) { 5680 folio_put(pte_folio); 5681 ret = PTR_ERR(new_folio); 5682 break; 5683 } 5684 ret = copy_user_large_folio(new_folio, pte_folio, 5685 addr, dst_vma); 5686 folio_put(pte_folio); 5687 if (ret) { 5688 folio_put(new_folio); 5689 break; 5690 } 5691 5692 /* Install the new hugetlb folio if src pte stable */ 5693 dst_ptl = huge_pte_lock(h, dst, dst_pte); 5694 src_ptl = huge_pte_lockptr(h, src, src_pte); 5695 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 5696 entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte); 5697 if (!pte_same(src_pte_old, entry)) { 5698 restore_reserve_on_error(h, dst_vma, addr, 5699 new_folio); 5700 folio_put(new_folio); 5701 /* huge_ptep of dst_pte won't change as in child */ 5702 goto again; 5703 } 5704 hugetlb_install_folio(dst_vma, dst_pte, addr, 5705 new_folio, src_pte_old, sz); 5706 spin_unlock(src_ptl); 5707 spin_unlock(dst_ptl); 5708 continue; 5709 } 5710 5711 if (cow) { 5712 /* 5713 * No need to notify as we are downgrading page 5714 * table protection not changing it to point 5715 * to a new page. 5716 * 5717 * See Documentation/mm/mmu_notifier.rst 5718 */ 5719 huge_ptep_set_wrprotect(src, addr, src_pte); 5720 entry = huge_pte_wrprotect(entry); 5721 } 5722 5723 if (!userfaultfd_wp(dst_vma)) 5724 entry = huge_pte_clear_uffd_wp(entry); 5725 5726 set_huge_pte_at(dst, addr, dst_pte, entry, sz); 5727 hugetlb_count_add(npages, dst); 5728 } 5729 spin_unlock(src_ptl); 5730 spin_unlock(dst_ptl); 5731 } 5732 5733 if (cow) { 5734 raw_write_seqcount_end(&src->write_protect_seq); 5735 mmu_notifier_invalidate_range_end(&range); 5736 } else { 5737 hugetlb_vma_unlock_read(src_vma); 5738 } 5739 5740 return ret; 5741 } 5742 5743 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr, 5744 unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte, 5745 unsigned long sz) 5746 { 5747 bool need_clear_uffd_wp = vma_has_uffd_without_event_remap(vma); 5748 struct hstate *h = hstate_vma(vma); 5749 struct mm_struct *mm = vma->vm_mm; 5750 spinlock_t *src_ptl, *dst_ptl; 5751 pte_t pte; 5752 5753 dst_ptl = huge_pte_lock(h, mm, dst_pte); 5754 src_ptl = huge_pte_lockptr(h, mm, src_pte); 5755 5756 /* 5757 * We don't have to worry about the ordering of src and dst ptlocks 5758 * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock. 5759 */ 5760 if (src_ptl != dst_ptl) 5761 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 5762 5763 pte = huge_ptep_get_and_clear(mm, old_addr, src_pte, sz); 5764 5765 if (need_clear_uffd_wp && pte_marker_uffd_wp(pte)) 5766 huge_pte_clear(mm, new_addr, dst_pte, sz); 5767 else { 5768 if (need_clear_uffd_wp) { 5769 if (pte_present(pte)) 5770 pte = huge_pte_clear_uffd_wp(pte); 5771 else if (is_swap_pte(pte)) 5772 pte = pte_swp_clear_uffd_wp(pte); 5773 } 5774 set_huge_pte_at(mm, new_addr, dst_pte, pte, sz); 5775 } 5776 5777 if (src_ptl != dst_ptl) 5778 spin_unlock(src_ptl); 5779 spin_unlock(dst_ptl); 5780 } 5781 5782 int move_hugetlb_page_tables(struct vm_area_struct *vma, 5783 struct vm_area_struct *new_vma, 5784 unsigned long old_addr, unsigned long new_addr, 5785 unsigned long len) 5786 { 5787 struct hstate *h = hstate_vma(vma); 5788 struct address_space *mapping = vma->vm_file->f_mapping; 5789 unsigned long sz = huge_page_size(h); 5790 struct mm_struct *mm = vma->vm_mm; 5791 unsigned long old_end = old_addr + len; 5792 unsigned long last_addr_mask; 5793 pte_t *src_pte, *dst_pte; 5794 struct mmu_notifier_range range; 5795 bool shared_pmd = false; 5796 5797 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr, 5798 old_end); 5799 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 5800 /* 5801 * In case of shared PMDs, we should cover the maximum possible 5802 * range. 5803 */ 5804 flush_cache_range(vma, range.start, range.end); 5805 5806 mmu_notifier_invalidate_range_start(&range); 5807 last_addr_mask = hugetlb_mask_last_page(h); 5808 /* Prevent race with file truncation */ 5809 hugetlb_vma_lock_write(vma); 5810 i_mmap_lock_write(mapping); 5811 for (; old_addr < old_end; old_addr += sz, new_addr += sz) { 5812 src_pte = hugetlb_walk(vma, old_addr, sz); 5813 if (!src_pte) { 5814 old_addr |= last_addr_mask; 5815 new_addr |= last_addr_mask; 5816 continue; 5817 } 5818 if (huge_pte_none(huge_ptep_get(mm, old_addr, src_pte))) 5819 continue; 5820 5821 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) { 5822 shared_pmd = true; 5823 old_addr |= last_addr_mask; 5824 new_addr |= last_addr_mask; 5825 continue; 5826 } 5827 5828 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz); 5829 if (!dst_pte) 5830 break; 5831 5832 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte, sz); 5833 } 5834 5835 if (shared_pmd) 5836 flush_hugetlb_tlb_range(vma, range.start, range.end); 5837 else 5838 flush_hugetlb_tlb_range(vma, old_end - len, old_end); 5839 mmu_notifier_invalidate_range_end(&range); 5840 i_mmap_unlock_write(mapping); 5841 hugetlb_vma_unlock_write(vma); 5842 5843 return len + old_addr - old_end; 5844 } 5845 5846 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma, 5847 unsigned long start, unsigned long end, 5848 struct folio *folio, zap_flags_t zap_flags) 5849 { 5850 struct mm_struct *mm = vma->vm_mm; 5851 const bool folio_provided = !!folio; 5852 unsigned long address; 5853 pte_t *ptep; 5854 pte_t pte; 5855 spinlock_t *ptl; 5856 struct hstate *h = hstate_vma(vma); 5857 unsigned long sz = huge_page_size(h); 5858 bool adjust_reservation = false; 5859 unsigned long last_addr_mask; 5860 bool force_flush = false; 5861 5862 WARN_ON(!is_vm_hugetlb_page(vma)); 5863 BUG_ON(start & ~huge_page_mask(h)); 5864 BUG_ON(end & ~huge_page_mask(h)); 5865 5866 /* 5867 * This is a hugetlb vma, all the pte entries should point 5868 * to huge page. 5869 */ 5870 tlb_change_page_size(tlb, sz); 5871 tlb_start_vma(tlb, vma); 5872 5873 last_addr_mask = hugetlb_mask_last_page(h); 5874 address = start; 5875 for (; address < end; address += sz) { 5876 ptep = hugetlb_walk(vma, address, sz); 5877 if (!ptep) { 5878 address |= last_addr_mask; 5879 continue; 5880 } 5881 5882 ptl = huge_pte_lock(h, mm, ptep); 5883 if (huge_pmd_unshare(mm, vma, address, ptep)) { 5884 spin_unlock(ptl); 5885 tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE); 5886 force_flush = true; 5887 address |= last_addr_mask; 5888 continue; 5889 } 5890 5891 pte = huge_ptep_get(mm, address, ptep); 5892 if (huge_pte_none(pte)) { 5893 spin_unlock(ptl); 5894 continue; 5895 } 5896 5897 /* 5898 * Migrating hugepage or HWPoisoned hugepage is already 5899 * unmapped and its refcount is dropped, so just clear pte here. 5900 */ 5901 if (unlikely(!pte_present(pte))) { 5902 /* 5903 * If the pte was wr-protected by uffd-wp in any of the 5904 * swap forms, meanwhile the caller does not want to 5905 * drop the uffd-wp bit in this zap, then replace the 5906 * pte with a marker. 5907 */ 5908 if (pte_swp_uffd_wp_any(pte) && 5909 !(zap_flags & ZAP_FLAG_DROP_MARKER)) 5910 set_huge_pte_at(mm, address, ptep, 5911 make_pte_marker(PTE_MARKER_UFFD_WP), 5912 sz); 5913 else 5914 huge_pte_clear(mm, address, ptep, sz); 5915 spin_unlock(ptl); 5916 continue; 5917 } 5918 5919 /* 5920 * If a folio is supplied, it is because a specific 5921 * folio is being unmapped, not a range. Ensure the folio we 5922 * are about to unmap is the actual folio of interest. 5923 */ 5924 if (folio_provided) { 5925 if (folio != page_folio(pte_page(pte))) { 5926 spin_unlock(ptl); 5927 continue; 5928 } 5929 /* 5930 * Mark the VMA as having unmapped its page so that 5931 * future faults in this VMA will fail rather than 5932 * looking like data was lost 5933 */ 5934 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); 5935 } else { 5936 folio = page_folio(pte_page(pte)); 5937 } 5938 5939 pte = huge_ptep_get_and_clear(mm, address, ptep, sz); 5940 tlb_remove_huge_tlb_entry(h, tlb, ptep, address); 5941 if (huge_pte_dirty(pte)) 5942 folio_mark_dirty(folio); 5943 /* Leave a uffd-wp pte marker if needed */ 5944 if (huge_pte_uffd_wp(pte) && 5945 !(zap_flags & ZAP_FLAG_DROP_MARKER)) 5946 set_huge_pte_at(mm, address, ptep, 5947 make_pte_marker(PTE_MARKER_UFFD_WP), 5948 sz); 5949 hugetlb_count_sub(pages_per_huge_page(h), mm); 5950 hugetlb_remove_rmap(folio); 5951 5952 /* 5953 * Restore the reservation for anonymous page, otherwise the 5954 * backing page could be stolen by someone. 5955 * If there we are freeing a surplus, do not set the restore 5956 * reservation bit. 5957 */ 5958 if (!h->surplus_huge_pages && __vma_private_lock(vma) && 5959 folio_test_anon(folio)) { 5960 folio_set_hugetlb_restore_reserve(folio); 5961 /* Reservation to be adjusted after the spin lock */ 5962 adjust_reservation = true; 5963 } 5964 5965 spin_unlock(ptl); 5966 5967 /* 5968 * Adjust the reservation for the region that will have the 5969 * reserve restored. Keep in mind that vma_needs_reservation() changes 5970 * resv->adds_in_progress if it succeeds. If this is not done, 5971 * do_exit() will not see it, and will keep the reservation 5972 * forever. 5973 */ 5974 if (adjust_reservation) { 5975 int rc = vma_needs_reservation(h, vma, address); 5976 5977 if (rc < 0) 5978 /* Pressumably allocate_file_region_entries failed 5979 * to allocate a file_region struct. Clear 5980 * hugetlb_restore_reserve so that global reserve 5981 * count will not be incremented by free_huge_folio. 5982 * Act as if we consumed the reservation. 5983 */ 5984 folio_clear_hugetlb_restore_reserve(folio); 5985 else if (rc) 5986 vma_add_reservation(h, vma, address); 5987 } 5988 5989 tlb_remove_page_size(tlb, folio_page(folio, 0), 5990 folio_size(folio)); 5991 /* 5992 * If we were instructed to unmap a specific folio, we're done. 5993 */ 5994 if (folio_provided) 5995 break; 5996 } 5997 tlb_end_vma(tlb, vma); 5998 5999 /* 6000 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We 6001 * could defer the flush until now, since by holding i_mmap_rwsem we 6002 * guaranteed that the last refernece would not be dropped. But we must 6003 * do the flushing before we return, as otherwise i_mmap_rwsem will be 6004 * dropped and the last reference to the shared PMDs page might be 6005 * dropped as well. 6006 * 6007 * In theory we could defer the freeing of the PMD pages as well, but 6008 * huge_pmd_unshare() relies on the exact page_count for the PMD page to 6009 * detect sharing, so we cannot defer the release of the page either. 6010 * Instead, do flush now. 6011 */ 6012 if (force_flush) 6013 tlb_flush_mmu_tlbonly(tlb); 6014 } 6015 6016 void __hugetlb_zap_begin(struct vm_area_struct *vma, 6017 unsigned long *start, unsigned long *end) 6018 { 6019 if (!vma->vm_file) /* hugetlbfs_file_mmap error */ 6020 return; 6021 6022 adjust_range_if_pmd_sharing_possible(vma, start, end); 6023 hugetlb_vma_lock_write(vma); 6024 if (vma->vm_file) 6025 i_mmap_lock_write(vma->vm_file->f_mapping); 6026 } 6027 6028 void __hugetlb_zap_end(struct vm_area_struct *vma, 6029 struct zap_details *details) 6030 { 6031 zap_flags_t zap_flags = details ? details->zap_flags : 0; 6032 6033 if (!vma->vm_file) /* hugetlbfs_file_mmap error */ 6034 return; 6035 6036 if (zap_flags & ZAP_FLAG_UNMAP) { /* final unmap */ 6037 /* 6038 * Unlock and free the vma lock before releasing i_mmap_rwsem. 6039 * When the vma_lock is freed, this makes the vma ineligible 6040 * for pmd sharing. And, i_mmap_rwsem is required to set up 6041 * pmd sharing. This is important as page tables for this 6042 * unmapped range will be asynchrously deleted. If the page 6043 * tables are shared, there will be issues when accessed by 6044 * someone else. 6045 */ 6046 __hugetlb_vma_unlock_write_free(vma); 6047 } else { 6048 hugetlb_vma_unlock_write(vma); 6049 } 6050 6051 if (vma->vm_file) 6052 i_mmap_unlock_write(vma->vm_file->f_mapping); 6053 } 6054 6055 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, 6056 unsigned long end, struct folio *folio, 6057 zap_flags_t zap_flags) 6058 { 6059 struct mmu_notifier_range range; 6060 struct mmu_gather tlb; 6061 6062 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 6063 start, end); 6064 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 6065 mmu_notifier_invalidate_range_start(&range); 6066 tlb_gather_mmu(&tlb, vma->vm_mm); 6067 6068 __unmap_hugepage_range(&tlb, vma, start, end, 6069 folio, zap_flags); 6070 6071 mmu_notifier_invalidate_range_end(&range); 6072 tlb_finish_mmu(&tlb); 6073 } 6074 6075 /* 6076 * This is called when the original mapper is failing to COW a MAP_PRIVATE 6077 * mapping it owns the reserve page for. The intention is to unmap the page 6078 * from other VMAs and let the children be SIGKILLed if they are faulting the 6079 * same region. 6080 */ 6081 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, 6082 struct folio *folio, unsigned long address) 6083 { 6084 struct hstate *h = hstate_vma(vma); 6085 struct vm_area_struct *iter_vma; 6086 struct address_space *mapping; 6087 pgoff_t pgoff; 6088 6089 /* 6090 * vm_pgoff is in PAGE_SIZE units, hence the different calculation 6091 * from page cache lookup which is in HPAGE_SIZE units. 6092 */ 6093 address = address & huge_page_mask(h); 6094 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + 6095 vma->vm_pgoff; 6096 mapping = vma->vm_file->f_mapping; 6097 6098 /* 6099 * Take the mapping lock for the duration of the table walk. As 6100 * this mapping should be shared between all the VMAs, 6101 * __unmap_hugepage_range() is called as the lock is already held 6102 */ 6103 i_mmap_lock_write(mapping); 6104 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) { 6105 /* Do not unmap the current VMA */ 6106 if (iter_vma == vma) 6107 continue; 6108 6109 /* 6110 * Shared VMAs have their own reserves and do not affect 6111 * MAP_PRIVATE accounting but it is possible that a shared 6112 * VMA is using the same page so check and skip such VMAs. 6113 */ 6114 if (iter_vma->vm_flags & VM_MAYSHARE) 6115 continue; 6116 6117 /* 6118 * Unmap the page from other VMAs without their own reserves. 6119 * They get marked to be SIGKILLed if they fault in these 6120 * areas. This is because a future no-page fault on this VMA 6121 * could insert a zeroed page instead of the data existing 6122 * from the time of fork. This would look like data corruption 6123 */ 6124 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) 6125 unmap_hugepage_range(iter_vma, address, 6126 address + huge_page_size(h), 6127 folio, 0); 6128 } 6129 i_mmap_unlock_write(mapping); 6130 } 6131 6132 /* 6133 * hugetlb_wp() should be called with page lock of the original hugepage held. 6134 * Called with hugetlb_fault_mutex_table held and pte_page locked so we 6135 * cannot race with other handlers or page migration. 6136 * Keep the pte_same checks anyway to make transition from the mutex easier. 6137 */ 6138 static vm_fault_t hugetlb_wp(struct folio *pagecache_folio, 6139 struct vm_fault *vmf) 6140 { 6141 struct vm_area_struct *vma = vmf->vma; 6142 struct mm_struct *mm = vma->vm_mm; 6143 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 6144 pte_t pte = huge_ptep_get(mm, vmf->address, vmf->pte); 6145 struct hstate *h = hstate_vma(vma); 6146 struct folio *old_folio; 6147 struct folio *new_folio; 6148 bool cow_from_owner = 0; 6149 vm_fault_t ret = 0; 6150 struct mmu_notifier_range range; 6151 6152 /* 6153 * Never handle CoW for uffd-wp protected pages. It should be only 6154 * handled when the uffd-wp protection is removed. 6155 * 6156 * Note that only the CoW optimization path (in hugetlb_no_page()) 6157 * can trigger this, because hugetlb_fault() will always resolve 6158 * uffd-wp bit first. 6159 */ 6160 if (!unshare && huge_pte_uffd_wp(pte)) 6161 return 0; 6162 6163 /* Let's take out MAP_SHARED mappings first. */ 6164 if (vma->vm_flags & VM_MAYSHARE) { 6165 set_huge_ptep_writable(vma, vmf->address, vmf->pte); 6166 return 0; 6167 } 6168 6169 old_folio = page_folio(pte_page(pte)); 6170 6171 delayacct_wpcopy_start(); 6172 6173 retry_avoidcopy: 6174 /* 6175 * If no-one else is actually using this page, we're the exclusive 6176 * owner and can reuse this page. 6177 * 6178 * Note that we don't rely on the (safer) folio refcount here, because 6179 * copying the hugetlb folio when there are unexpected (temporary) 6180 * folio references could harm simple fork()+exit() users when 6181 * we run out of free hugetlb folios: we would have to kill processes 6182 * in scenarios that used to work. As a side effect, there can still 6183 * be leaks between processes, for example, with FOLL_GET users. 6184 */ 6185 if (folio_mapcount(old_folio) == 1 && folio_test_anon(old_folio)) { 6186 if (!PageAnonExclusive(&old_folio->page)) { 6187 folio_move_anon_rmap(old_folio, vma); 6188 SetPageAnonExclusive(&old_folio->page); 6189 } 6190 if (likely(!unshare)) 6191 set_huge_ptep_maybe_writable(vma, vmf->address, 6192 vmf->pte); 6193 6194 delayacct_wpcopy_end(); 6195 return 0; 6196 } 6197 VM_BUG_ON_PAGE(folio_test_anon(old_folio) && 6198 PageAnonExclusive(&old_folio->page), &old_folio->page); 6199 6200 /* 6201 * If the process that created a MAP_PRIVATE mapping is about to 6202 * perform a COW due to a shared page count, attempt to satisfy 6203 * the allocation without using the existing reserves. The pagecache 6204 * page is used to determine if the reserve at this address was 6205 * consumed or not. If reserves were used, a partial faulted mapping 6206 * at the time of fork() could consume its reserves on COW instead 6207 * of the full address range. 6208 */ 6209 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && 6210 old_folio != pagecache_folio) 6211 cow_from_owner = true; 6212 6213 folio_get(old_folio); 6214 6215 /* 6216 * Drop page table lock as buddy allocator may be called. It will 6217 * be acquired again before returning to the caller, as expected. 6218 */ 6219 spin_unlock(vmf->ptl); 6220 new_folio = alloc_hugetlb_folio(vma, vmf->address, cow_from_owner); 6221 6222 if (IS_ERR(new_folio)) { 6223 /* 6224 * If a process owning a MAP_PRIVATE mapping fails to COW, 6225 * it is due to references held by a child and an insufficient 6226 * huge page pool. To guarantee the original mappers 6227 * reliability, unmap the page from child processes. The child 6228 * may get SIGKILLed if it later faults. 6229 */ 6230 if (cow_from_owner) { 6231 struct address_space *mapping = vma->vm_file->f_mapping; 6232 pgoff_t idx; 6233 u32 hash; 6234 6235 folio_put(old_folio); 6236 /* 6237 * Drop hugetlb_fault_mutex and vma_lock before 6238 * unmapping. unmapping needs to hold vma_lock 6239 * in write mode. Dropping vma_lock in read mode 6240 * here is OK as COW mappings do not interact with 6241 * PMD sharing. 6242 * 6243 * Reacquire both after unmap operation. 6244 */ 6245 idx = vma_hugecache_offset(h, vma, vmf->address); 6246 hash = hugetlb_fault_mutex_hash(mapping, idx); 6247 hugetlb_vma_unlock_read(vma); 6248 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6249 6250 unmap_ref_private(mm, vma, old_folio, vmf->address); 6251 6252 mutex_lock(&hugetlb_fault_mutex_table[hash]); 6253 hugetlb_vma_lock_read(vma); 6254 spin_lock(vmf->ptl); 6255 vmf->pte = hugetlb_walk(vma, vmf->address, 6256 huge_page_size(h)); 6257 if (likely(vmf->pte && 6258 pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), pte))) 6259 goto retry_avoidcopy; 6260 /* 6261 * race occurs while re-acquiring page table 6262 * lock, and our job is done. 6263 */ 6264 delayacct_wpcopy_end(); 6265 return 0; 6266 } 6267 6268 ret = vmf_error(PTR_ERR(new_folio)); 6269 goto out_release_old; 6270 } 6271 6272 /* 6273 * When the original hugepage is shared one, it does not have 6274 * anon_vma prepared. 6275 */ 6276 ret = __vmf_anon_prepare(vmf); 6277 if (unlikely(ret)) 6278 goto out_release_all; 6279 6280 if (copy_user_large_folio(new_folio, old_folio, vmf->real_address, vma)) { 6281 ret = VM_FAULT_HWPOISON_LARGE | VM_FAULT_SET_HINDEX(hstate_index(h)); 6282 goto out_release_all; 6283 } 6284 __folio_mark_uptodate(new_folio); 6285 6286 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, vmf->address, 6287 vmf->address + huge_page_size(h)); 6288 mmu_notifier_invalidate_range_start(&range); 6289 6290 /* 6291 * Retake the page table lock to check for racing updates 6292 * before the page tables are altered 6293 */ 6294 spin_lock(vmf->ptl); 6295 vmf->pte = hugetlb_walk(vma, vmf->address, huge_page_size(h)); 6296 if (likely(vmf->pte && pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), pte))) { 6297 pte_t newpte = make_huge_pte(vma, new_folio, !unshare); 6298 6299 /* Break COW or unshare */ 6300 huge_ptep_clear_flush(vma, vmf->address, vmf->pte); 6301 hugetlb_remove_rmap(old_folio); 6302 hugetlb_add_new_anon_rmap(new_folio, vma, vmf->address); 6303 if (huge_pte_uffd_wp(pte)) 6304 newpte = huge_pte_mkuffd_wp(newpte); 6305 set_huge_pte_at(mm, vmf->address, vmf->pte, newpte, 6306 huge_page_size(h)); 6307 folio_set_hugetlb_migratable(new_folio); 6308 /* Make the old page be freed below */ 6309 new_folio = old_folio; 6310 } 6311 spin_unlock(vmf->ptl); 6312 mmu_notifier_invalidate_range_end(&range); 6313 out_release_all: 6314 /* 6315 * No restore in case of successful pagetable update (Break COW or 6316 * unshare) 6317 */ 6318 if (new_folio != old_folio) 6319 restore_reserve_on_error(h, vma, vmf->address, new_folio); 6320 folio_put(new_folio); 6321 out_release_old: 6322 folio_put(old_folio); 6323 6324 spin_lock(vmf->ptl); /* Caller expects lock to be held */ 6325 6326 delayacct_wpcopy_end(); 6327 return ret; 6328 } 6329 6330 /* 6331 * Return whether there is a pagecache page to back given address within VMA. 6332 */ 6333 bool hugetlbfs_pagecache_present(struct hstate *h, 6334 struct vm_area_struct *vma, unsigned long address) 6335 { 6336 struct address_space *mapping = vma->vm_file->f_mapping; 6337 pgoff_t idx = linear_page_index(vma, address); 6338 struct folio *folio; 6339 6340 folio = filemap_get_folio(mapping, idx); 6341 if (IS_ERR(folio)) 6342 return false; 6343 folio_put(folio); 6344 return true; 6345 } 6346 6347 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping, 6348 pgoff_t idx) 6349 { 6350 struct inode *inode = mapping->host; 6351 struct hstate *h = hstate_inode(inode); 6352 int err; 6353 6354 idx <<= huge_page_order(h); 6355 __folio_set_locked(folio); 6356 err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL); 6357 6358 if (unlikely(err)) { 6359 __folio_clear_locked(folio); 6360 return err; 6361 } 6362 folio_clear_hugetlb_restore_reserve(folio); 6363 6364 /* 6365 * mark folio dirty so that it will not be removed from cache/file 6366 * by non-hugetlbfs specific code paths. 6367 */ 6368 folio_mark_dirty(folio); 6369 6370 spin_lock(&inode->i_lock); 6371 inode->i_blocks += blocks_per_huge_page(h); 6372 spin_unlock(&inode->i_lock); 6373 return 0; 6374 } 6375 6376 static inline vm_fault_t hugetlb_handle_userfault(struct vm_fault *vmf, 6377 struct address_space *mapping, 6378 unsigned long reason) 6379 { 6380 u32 hash; 6381 6382 /* 6383 * vma_lock and hugetlb_fault_mutex must be dropped before handling 6384 * userfault. Also mmap_lock could be dropped due to handling 6385 * userfault, any vma operation should be careful from here. 6386 */ 6387 hugetlb_vma_unlock_read(vmf->vma); 6388 hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff); 6389 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6390 return handle_userfault(vmf, reason); 6391 } 6392 6393 /* 6394 * Recheck pte with pgtable lock. Returns true if pte didn't change, or 6395 * false if pte changed or is changing. 6396 */ 6397 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm, unsigned long addr, 6398 pte_t *ptep, pte_t old_pte) 6399 { 6400 spinlock_t *ptl; 6401 bool same; 6402 6403 ptl = huge_pte_lock(h, mm, ptep); 6404 same = pte_same(huge_ptep_get(mm, addr, ptep), old_pte); 6405 spin_unlock(ptl); 6406 6407 return same; 6408 } 6409 6410 static vm_fault_t hugetlb_no_page(struct address_space *mapping, 6411 struct vm_fault *vmf) 6412 { 6413 struct vm_area_struct *vma = vmf->vma; 6414 struct mm_struct *mm = vma->vm_mm; 6415 struct hstate *h = hstate_vma(vma); 6416 vm_fault_t ret = VM_FAULT_SIGBUS; 6417 int anon_rmap = 0; 6418 unsigned long size; 6419 struct folio *folio; 6420 pte_t new_pte; 6421 bool new_folio, new_pagecache_folio = false; 6422 u32 hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff); 6423 6424 /* 6425 * Currently, we are forced to kill the process in the event the 6426 * original mapper has unmapped pages from the child due to a failed 6427 * COW/unsharing. Warn that such a situation has occurred as it may not 6428 * be obvious. 6429 */ 6430 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { 6431 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n", 6432 current->pid); 6433 goto out; 6434 } 6435 6436 /* 6437 * Use page lock to guard against racing truncation 6438 * before we get page_table_lock. 6439 */ 6440 new_folio = false; 6441 folio = filemap_lock_hugetlb_folio(h, mapping, vmf->pgoff); 6442 if (IS_ERR(folio)) { 6443 size = i_size_read(mapping->host) >> huge_page_shift(h); 6444 if (vmf->pgoff >= size) 6445 goto out; 6446 /* Check for page in userfault range */ 6447 if (userfaultfd_missing(vma)) { 6448 /* 6449 * Since hugetlb_no_page() was examining pte 6450 * without pgtable lock, we need to re-test under 6451 * lock because the pte may not be stable and could 6452 * have changed from under us. Try to detect 6453 * either changed or during-changing ptes and retry 6454 * properly when needed. 6455 * 6456 * Note that userfaultfd is actually fine with 6457 * false positives (e.g. caused by pte changed), 6458 * but not wrong logical events (e.g. caused by 6459 * reading a pte during changing). The latter can 6460 * confuse the userspace, so the strictness is very 6461 * much preferred. E.g., MISSING event should 6462 * never happen on the page after UFFDIO_COPY has 6463 * correctly installed the page and returned. 6464 */ 6465 if (!hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte)) { 6466 ret = 0; 6467 goto out; 6468 } 6469 6470 return hugetlb_handle_userfault(vmf, mapping, 6471 VM_UFFD_MISSING); 6472 } 6473 6474 if (!(vma->vm_flags & VM_MAYSHARE)) { 6475 ret = __vmf_anon_prepare(vmf); 6476 if (unlikely(ret)) 6477 goto out; 6478 } 6479 6480 folio = alloc_hugetlb_folio(vma, vmf->address, false); 6481 if (IS_ERR(folio)) { 6482 /* 6483 * Returning error will result in faulting task being 6484 * sent SIGBUS. The hugetlb fault mutex prevents two 6485 * tasks from racing to fault in the same page which 6486 * could result in false unable to allocate errors. 6487 * Page migration does not take the fault mutex, but 6488 * does a clear then write of pte's under page table 6489 * lock. Page fault code could race with migration, 6490 * notice the clear pte and try to allocate a page 6491 * here. Before returning error, get ptl and make 6492 * sure there really is no pte entry. 6493 */ 6494 if (hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte)) 6495 ret = vmf_error(PTR_ERR(folio)); 6496 else 6497 ret = 0; 6498 goto out; 6499 } 6500 folio_zero_user(folio, vmf->real_address); 6501 __folio_mark_uptodate(folio); 6502 new_folio = true; 6503 6504 if (vma->vm_flags & VM_MAYSHARE) { 6505 int err = hugetlb_add_to_page_cache(folio, mapping, 6506 vmf->pgoff); 6507 if (err) { 6508 /* 6509 * err can't be -EEXIST which implies someone 6510 * else consumed the reservation since hugetlb 6511 * fault mutex is held when add a hugetlb page 6512 * to the page cache. So it's safe to call 6513 * restore_reserve_on_error() here. 6514 */ 6515 restore_reserve_on_error(h, vma, vmf->address, 6516 folio); 6517 folio_put(folio); 6518 ret = VM_FAULT_SIGBUS; 6519 goto out; 6520 } 6521 new_pagecache_folio = true; 6522 } else { 6523 folio_lock(folio); 6524 anon_rmap = 1; 6525 } 6526 } else { 6527 /* 6528 * If memory error occurs between mmap() and fault, some process 6529 * don't have hwpoisoned swap entry for errored virtual address. 6530 * So we need to block hugepage fault by PG_hwpoison bit check. 6531 */ 6532 if (unlikely(folio_test_hwpoison(folio))) { 6533 ret = VM_FAULT_HWPOISON_LARGE | 6534 VM_FAULT_SET_HINDEX(hstate_index(h)); 6535 goto backout_unlocked; 6536 } 6537 6538 /* Check for page in userfault range. */ 6539 if (userfaultfd_minor(vma)) { 6540 folio_unlock(folio); 6541 folio_put(folio); 6542 /* See comment in userfaultfd_missing() block above */ 6543 if (!hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte)) { 6544 ret = 0; 6545 goto out; 6546 } 6547 return hugetlb_handle_userfault(vmf, mapping, 6548 VM_UFFD_MINOR); 6549 } 6550 } 6551 6552 /* 6553 * If we are going to COW a private mapping later, we examine the 6554 * pending reservations for this page now. This will ensure that 6555 * any allocations necessary to record that reservation occur outside 6556 * the spinlock. 6557 */ 6558 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 6559 if (vma_needs_reservation(h, vma, vmf->address) < 0) { 6560 ret = VM_FAULT_OOM; 6561 goto backout_unlocked; 6562 } 6563 /* Just decrements count, does not deallocate */ 6564 vma_end_reservation(h, vma, vmf->address); 6565 } 6566 6567 vmf->ptl = huge_pte_lock(h, mm, vmf->pte); 6568 ret = 0; 6569 /* If pte changed from under us, retry */ 6570 if (!pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), vmf->orig_pte)) 6571 goto backout; 6572 6573 if (anon_rmap) 6574 hugetlb_add_new_anon_rmap(folio, vma, vmf->address); 6575 else 6576 hugetlb_add_file_rmap(folio); 6577 new_pte = make_huge_pte(vma, folio, vma->vm_flags & VM_SHARED); 6578 /* 6579 * If this pte was previously wr-protected, keep it wr-protected even 6580 * if populated. 6581 */ 6582 if (unlikely(pte_marker_uffd_wp(vmf->orig_pte))) 6583 new_pte = huge_pte_mkuffd_wp(new_pte); 6584 set_huge_pte_at(mm, vmf->address, vmf->pte, new_pte, huge_page_size(h)); 6585 6586 hugetlb_count_add(pages_per_huge_page(h), mm); 6587 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 6588 /* Optimization, do the COW without a second fault */ 6589 ret = hugetlb_wp(folio, vmf); 6590 } 6591 6592 spin_unlock(vmf->ptl); 6593 6594 /* 6595 * Only set hugetlb_migratable in newly allocated pages. Existing pages 6596 * found in the pagecache may not have hugetlb_migratable if they have 6597 * been isolated for migration. 6598 */ 6599 if (new_folio) 6600 folio_set_hugetlb_migratable(folio); 6601 6602 folio_unlock(folio); 6603 out: 6604 hugetlb_vma_unlock_read(vma); 6605 6606 /* 6607 * We must check to release the per-VMA lock. __vmf_anon_prepare() is 6608 * the only way ret can be set to VM_FAULT_RETRY. 6609 */ 6610 if (unlikely(ret & VM_FAULT_RETRY)) 6611 vma_end_read(vma); 6612 6613 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6614 return ret; 6615 6616 backout: 6617 spin_unlock(vmf->ptl); 6618 backout_unlocked: 6619 if (new_folio && !new_pagecache_folio) 6620 restore_reserve_on_error(h, vma, vmf->address, folio); 6621 6622 folio_unlock(folio); 6623 folio_put(folio); 6624 goto out; 6625 } 6626 6627 #ifdef CONFIG_SMP 6628 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 6629 { 6630 unsigned long key[2]; 6631 u32 hash; 6632 6633 key[0] = (unsigned long) mapping; 6634 key[1] = idx; 6635 6636 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0); 6637 6638 return hash & (num_fault_mutexes - 1); 6639 } 6640 #else 6641 /* 6642 * For uniprocessor systems we always use a single mutex, so just 6643 * return 0 and avoid the hashing overhead. 6644 */ 6645 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 6646 { 6647 return 0; 6648 } 6649 #endif 6650 6651 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, 6652 unsigned long address, unsigned int flags) 6653 { 6654 vm_fault_t ret; 6655 u32 hash; 6656 struct folio *folio = NULL; 6657 struct folio *pagecache_folio = NULL; 6658 struct hstate *h = hstate_vma(vma); 6659 struct address_space *mapping; 6660 int need_wait_lock = 0; 6661 struct vm_fault vmf = { 6662 .vma = vma, 6663 .address = address & huge_page_mask(h), 6664 .real_address = address, 6665 .flags = flags, 6666 .pgoff = vma_hugecache_offset(h, vma, 6667 address & huge_page_mask(h)), 6668 /* TODO: Track hugetlb faults using vm_fault */ 6669 6670 /* 6671 * Some fields may not be initialized, be careful as it may 6672 * be hard to debug if called functions make assumptions 6673 */ 6674 }; 6675 6676 /* 6677 * Serialize hugepage allocation and instantiation, so that we don't 6678 * get spurious allocation failures if two CPUs race to instantiate 6679 * the same page in the page cache. 6680 */ 6681 mapping = vma->vm_file->f_mapping; 6682 hash = hugetlb_fault_mutex_hash(mapping, vmf.pgoff); 6683 mutex_lock(&hugetlb_fault_mutex_table[hash]); 6684 6685 /* 6686 * Acquire vma lock before calling huge_pte_alloc and hold 6687 * until finished with vmf.pte. This prevents huge_pmd_unshare from 6688 * being called elsewhere and making the vmf.pte no longer valid. 6689 */ 6690 hugetlb_vma_lock_read(vma); 6691 vmf.pte = huge_pte_alloc(mm, vma, vmf.address, huge_page_size(h)); 6692 if (!vmf.pte) { 6693 hugetlb_vma_unlock_read(vma); 6694 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6695 return VM_FAULT_OOM; 6696 } 6697 6698 vmf.orig_pte = huge_ptep_get(mm, vmf.address, vmf.pte); 6699 if (huge_pte_none_mostly(vmf.orig_pte)) { 6700 if (is_pte_marker(vmf.orig_pte)) { 6701 pte_marker marker = 6702 pte_marker_get(pte_to_swp_entry(vmf.orig_pte)); 6703 6704 if (marker & PTE_MARKER_POISONED) { 6705 ret = VM_FAULT_HWPOISON_LARGE | 6706 VM_FAULT_SET_HINDEX(hstate_index(h)); 6707 goto out_mutex; 6708 } else if (WARN_ON_ONCE(marker & PTE_MARKER_GUARD)) { 6709 /* This isn't supported in hugetlb. */ 6710 ret = VM_FAULT_SIGSEGV; 6711 goto out_mutex; 6712 } 6713 } 6714 6715 /* 6716 * Other PTE markers should be handled the same way as none PTE. 6717 * 6718 * hugetlb_no_page will drop vma lock and hugetlb fault 6719 * mutex internally, which make us return immediately. 6720 */ 6721 return hugetlb_no_page(mapping, &vmf); 6722 } 6723 6724 ret = 0; 6725 6726 /* 6727 * vmf.orig_pte could be a migration/hwpoison vmf.orig_pte at this 6728 * point, so this check prevents the kernel from going below assuming 6729 * that we have an active hugepage in pagecache. This goto expects 6730 * the 2nd page fault, and is_hugetlb_entry_(migration|hwpoisoned) 6731 * check will properly handle it. 6732 */ 6733 if (!pte_present(vmf.orig_pte)) { 6734 if (unlikely(is_hugetlb_entry_migration(vmf.orig_pte))) { 6735 /* 6736 * Release the hugetlb fault lock now, but retain 6737 * the vma lock, because it is needed to guard the 6738 * huge_pte_lockptr() later in 6739 * migration_entry_wait_huge(). The vma lock will 6740 * be released there. 6741 */ 6742 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6743 migration_entry_wait_huge(vma, vmf.address, vmf.pte); 6744 return 0; 6745 } else if (unlikely(is_hugetlb_entry_hwpoisoned(vmf.orig_pte))) 6746 ret = VM_FAULT_HWPOISON_LARGE | 6747 VM_FAULT_SET_HINDEX(hstate_index(h)); 6748 goto out_mutex; 6749 } 6750 6751 /* 6752 * If we are going to COW/unshare the mapping later, we examine the 6753 * pending reservations for this page now. This will ensure that any 6754 * allocations necessary to record that reservation occur outside the 6755 * spinlock. Also lookup the pagecache page now as it is used to 6756 * determine if a reservation has been consumed. 6757 */ 6758 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) && 6759 !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(vmf.orig_pte)) { 6760 if (vma_needs_reservation(h, vma, vmf.address) < 0) { 6761 ret = VM_FAULT_OOM; 6762 goto out_mutex; 6763 } 6764 /* Just decrements count, does not deallocate */ 6765 vma_end_reservation(h, vma, vmf.address); 6766 6767 pagecache_folio = filemap_lock_hugetlb_folio(h, mapping, 6768 vmf.pgoff); 6769 if (IS_ERR(pagecache_folio)) 6770 pagecache_folio = NULL; 6771 } 6772 6773 vmf.ptl = huge_pte_lock(h, mm, vmf.pte); 6774 6775 /* Check for a racing update before calling hugetlb_wp() */ 6776 if (unlikely(!pte_same(vmf.orig_pte, huge_ptep_get(mm, vmf.address, vmf.pte)))) 6777 goto out_ptl; 6778 6779 /* Handle userfault-wp first, before trying to lock more pages */ 6780 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(mm, vmf.address, vmf.pte)) && 6781 (flags & FAULT_FLAG_WRITE) && !huge_pte_write(vmf.orig_pte)) { 6782 if (!userfaultfd_wp_async(vma)) { 6783 spin_unlock(vmf.ptl); 6784 if (pagecache_folio) { 6785 folio_unlock(pagecache_folio); 6786 folio_put(pagecache_folio); 6787 } 6788 hugetlb_vma_unlock_read(vma); 6789 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6790 return handle_userfault(&vmf, VM_UFFD_WP); 6791 } 6792 6793 vmf.orig_pte = huge_pte_clear_uffd_wp(vmf.orig_pte); 6794 set_huge_pte_at(mm, vmf.address, vmf.pte, vmf.orig_pte, 6795 huge_page_size(hstate_vma(vma))); 6796 /* Fallthrough to CoW */ 6797 } 6798 6799 /* 6800 * hugetlb_wp() requires page locks of pte_page(vmf.orig_pte) and 6801 * pagecache_folio, so here we need take the former one 6802 * when folio != pagecache_folio or !pagecache_folio. 6803 */ 6804 folio = page_folio(pte_page(vmf.orig_pte)); 6805 if (folio != pagecache_folio) 6806 if (!folio_trylock(folio)) { 6807 need_wait_lock = 1; 6808 goto out_ptl; 6809 } 6810 6811 folio_get(folio); 6812 6813 if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) { 6814 if (!huge_pte_write(vmf.orig_pte)) { 6815 ret = hugetlb_wp(pagecache_folio, &vmf); 6816 goto out_put_page; 6817 } else if (likely(flags & FAULT_FLAG_WRITE)) { 6818 vmf.orig_pte = huge_pte_mkdirty(vmf.orig_pte); 6819 } 6820 } 6821 vmf.orig_pte = pte_mkyoung(vmf.orig_pte); 6822 if (huge_ptep_set_access_flags(vma, vmf.address, vmf.pte, vmf.orig_pte, 6823 flags & FAULT_FLAG_WRITE)) 6824 update_mmu_cache(vma, vmf.address, vmf.pte); 6825 out_put_page: 6826 if (folio != pagecache_folio) 6827 folio_unlock(folio); 6828 folio_put(folio); 6829 out_ptl: 6830 spin_unlock(vmf.ptl); 6831 6832 if (pagecache_folio) { 6833 folio_unlock(pagecache_folio); 6834 folio_put(pagecache_folio); 6835 } 6836 out_mutex: 6837 hugetlb_vma_unlock_read(vma); 6838 6839 /* 6840 * We must check to release the per-VMA lock. __vmf_anon_prepare() in 6841 * hugetlb_wp() is the only way ret can be set to VM_FAULT_RETRY. 6842 */ 6843 if (unlikely(ret & VM_FAULT_RETRY)) 6844 vma_end_read(vma); 6845 6846 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6847 /* 6848 * Generally it's safe to hold refcount during waiting page lock. But 6849 * here we just wait to defer the next page fault to avoid busy loop and 6850 * the page is not used after unlocked before returning from the current 6851 * page fault. So we are safe from accessing freed page, even if we wait 6852 * here without taking refcount. 6853 */ 6854 if (need_wait_lock) 6855 folio_wait_locked(folio); 6856 return ret; 6857 } 6858 6859 #ifdef CONFIG_USERFAULTFD 6860 /* 6861 * Can probably be eliminated, but still used by hugetlb_mfill_atomic_pte(). 6862 */ 6863 static struct folio *alloc_hugetlb_folio_vma(struct hstate *h, 6864 struct vm_area_struct *vma, unsigned long address) 6865 { 6866 struct mempolicy *mpol; 6867 nodemask_t *nodemask; 6868 struct folio *folio; 6869 gfp_t gfp_mask; 6870 int node; 6871 6872 gfp_mask = htlb_alloc_mask(h); 6873 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 6874 /* 6875 * This is used to allocate a temporary hugetlb to hold the copied 6876 * content, which will then be copied again to the final hugetlb 6877 * consuming a reservation. Set the alloc_fallback to false to indicate 6878 * that breaking the per-node hugetlb pool is not allowed in this case. 6879 */ 6880 folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask, false); 6881 mpol_cond_put(mpol); 6882 6883 return folio; 6884 } 6885 6886 /* 6887 * Used by userfaultfd UFFDIO_* ioctls. Based on userfaultfd's mfill_atomic_pte 6888 * with modifications for hugetlb pages. 6889 */ 6890 int hugetlb_mfill_atomic_pte(pte_t *dst_pte, 6891 struct vm_area_struct *dst_vma, 6892 unsigned long dst_addr, 6893 unsigned long src_addr, 6894 uffd_flags_t flags, 6895 struct folio **foliop) 6896 { 6897 struct mm_struct *dst_mm = dst_vma->vm_mm; 6898 bool is_continue = uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE); 6899 bool wp_enabled = (flags & MFILL_ATOMIC_WP); 6900 struct hstate *h = hstate_vma(dst_vma); 6901 struct address_space *mapping = dst_vma->vm_file->f_mapping; 6902 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr); 6903 unsigned long size = huge_page_size(h); 6904 int vm_shared = dst_vma->vm_flags & VM_SHARED; 6905 pte_t _dst_pte; 6906 spinlock_t *ptl; 6907 int ret = -ENOMEM; 6908 struct folio *folio; 6909 bool folio_in_pagecache = false; 6910 6911 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_POISON)) { 6912 ptl = huge_pte_lock(h, dst_mm, dst_pte); 6913 6914 /* Don't overwrite any existing PTEs (even markers) */ 6915 if (!huge_pte_none(huge_ptep_get(dst_mm, dst_addr, dst_pte))) { 6916 spin_unlock(ptl); 6917 return -EEXIST; 6918 } 6919 6920 _dst_pte = make_pte_marker(PTE_MARKER_POISONED); 6921 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, size); 6922 6923 /* No need to invalidate - it was non-present before */ 6924 update_mmu_cache(dst_vma, dst_addr, dst_pte); 6925 6926 spin_unlock(ptl); 6927 return 0; 6928 } 6929 6930 if (is_continue) { 6931 ret = -EFAULT; 6932 folio = filemap_lock_hugetlb_folio(h, mapping, idx); 6933 if (IS_ERR(folio)) 6934 goto out; 6935 folio_in_pagecache = true; 6936 } else if (!*foliop) { 6937 /* If a folio already exists, then it's UFFDIO_COPY for 6938 * a non-missing case. Return -EEXIST. 6939 */ 6940 if (vm_shared && 6941 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) { 6942 ret = -EEXIST; 6943 goto out; 6944 } 6945 6946 folio = alloc_hugetlb_folio(dst_vma, dst_addr, false); 6947 if (IS_ERR(folio)) { 6948 ret = -ENOMEM; 6949 goto out; 6950 } 6951 6952 ret = copy_folio_from_user(folio, (const void __user *) src_addr, 6953 false); 6954 6955 /* fallback to copy_from_user outside mmap_lock */ 6956 if (unlikely(ret)) { 6957 ret = -ENOENT; 6958 /* Free the allocated folio which may have 6959 * consumed a reservation. 6960 */ 6961 restore_reserve_on_error(h, dst_vma, dst_addr, folio); 6962 folio_put(folio); 6963 6964 /* Allocate a temporary folio to hold the copied 6965 * contents. 6966 */ 6967 folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr); 6968 if (!folio) { 6969 ret = -ENOMEM; 6970 goto out; 6971 } 6972 *foliop = folio; 6973 /* Set the outparam foliop and return to the caller to 6974 * copy the contents outside the lock. Don't free the 6975 * folio. 6976 */ 6977 goto out; 6978 } 6979 } else { 6980 if (vm_shared && 6981 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) { 6982 folio_put(*foliop); 6983 ret = -EEXIST; 6984 *foliop = NULL; 6985 goto out; 6986 } 6987 6988 folio = alloc_hugetlb_folio(dst_vma, dst_addr, false); 6989 if (IS_ERR(folio)) { 6990 folio_put(*foliop); 6991 ret = -ENOMEM; 6992 *foliop = NULL; 6993 goto out; 6994 } 6995 ret = copy_user_large_folio(folio, *foliop, dst_addr, dst_vma); 6996 folio_put(*foliop); 6997 *foliop = NULL; 6998 if (ret) { 6999 folio_put(folio); 7000 goto out; 7001 } 7002 } 7003 7004 /* 7005 * If we just allocated a new page, we need a memory barrier to ensure 7006 * that preceding stores to the page become visible before the 7007 * set_pte_at() write. The memory barrier inside __folio_mark_uptodate 7008 * is what we need. 7009 * 7010 * In the case where we have not allocated a new page (is_continue), 7011 * the page must already be uptodate. UFFDIO_CONTINUE already includes 7012 * an earlier smp_wmb() to ensure that prior stores will be visible 7013 * before the set_pte_at() write. 7014 */ 7015 if (!is_continue) 7016 __folio_mark_uptodate(folio); 7017 else 7018 WARN_ON_ONCE(!folio_test_uptodate(folio)); 7019 7020 /* Add shared, newly allocated pages to the page cache. */ 7021 if (vm_shared && !is_continue) { 7022 ret = -EFAULT; 7023 if (idx >= (i_size_read(mapping->host) >> huge_page_shift(h))) 7024 goto out_release_nounlock; 7025 7026 /* 7027 * Serialization between remove_inode_hugepages() and 7028 * hugetlb_add_to_page_cache() below happens through the 7029 * hugetlb_fault_mutex_table that here must be hold by 7030 * the caller. 7031 */ 7032 ret = hugetlb_add_to_page_cache(folio, mapping, idx); 7033 if (ret) 7034 goto out_release_nounlock; 7035 folio_in_pagecache = true; 7036 } 7037 7038 ptl = huge_pte_lock(h, dst_mm, dst_pte); 7039 7040 ret = -EIO; 7041 if (folio_test_hwpoison(folio)) 7042 goto out_release_unlock; 7043 7044 /* 7045 * We allow to overwrite a pte marker: consider when both MISSING|WP 7046 * registered, we firstly wr-protect a none pte which has no page cache 7047 * page backing it, then access the page. 7048 */ 7049 ret = -EEXIST; 7050 if (!huge_pte_none_mostly(huge_ptep_get(dst_mm, dst_addr, dst_pte))) 7051 goto out_release_unlock; 7052 7053 if (folio_in_pagecache) 7054 hugetlb_add_file_rmap(folio); 7055 else 7056 hugetlb_add_new_anon_rmap(folio, dst_vma, dst_addr); 7057 7058 /* 7059 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY 7060 * with wp flag set, don't set pte write bit. 7061 */ 7062 _dst_pte = make_huge_pte(dst_vma, folio, 7063 !wp_enabled && !(is_continue && !vm_shared)); 7064 /* 7065 * Always mark UFFDIO_COPY page dirty; note that this may not be 7066 * extremely important for hugetlbfs for now since swapping is not 7067 * supported, but we should still be clear in that this page cannot be 7068 * thrown away at will, even if write bit not set. 7069 */ 7070 _dst_pte = huge_pte_mkdirty(_dst_pte); 7071 _dst_pte = pte_mkyoung(_dst_pte); 7072 7073 if (wp_enabled) 7074 _dst_pte = huge_pte_mkuffd_wp(_dst_pte); 7075 7076 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, size); 7077 7078 hugetlb_count_add(pages_per_huge_page(h), dst_mm); 7079 7080 /* No need to invalidate - it was non-present before */ 7081 update_mmu_cache(dst_vma, dst_addr, dst_pte); 7082 7083 spin_unlock(ptl); 7084 if (!is_continue) 7085 folio_set_hugetlb_migratable(folio); 7086 if (vm_shared || is_continue) 7087 folio_unlock(folio); 7088 ret = 0; 7089 out: 7090 return ret; 7091 out_release_unlock: 7092 spin_unlock(ptl); 7093 if (vm_shared || is_continue) 7094 folio_unlock(folio); 7095 out_release_nounlock: 7096 if (!folio_in_pagecache) 7097 restore_reserve_on_error(h, dst_vma, dst_addr, folio); 7098 folio_put(folio); 7099 goto out; 7100 } 7101 #endif /* CONFIG_USERFAULTFD */ 7102 7103 long hugetlb_change_protection(struct vm_area_struct *vma, 7104 unsigned long address, unsigned long end, 7105 pgprot_t newprot, unsigned long cp_flags) 7106 { 7107 struct mm_struct *mm = vma->vm_mm; 7108 unsigned long start = address; 7109 pte_t *ptep; 7110 pte_t pte; 7111 struct hstate *h = hstate_vma(vma); 7112 long pages = 0, psize = huge_page_size(h); 7113 bool shared_pmd = false; 7114 struct mmu_notifier_range range; 7115 unsigned long last_addr_mask; 7116 bool uffd_wp = cp_flags & MM_CP_UFFD_WP; 7117 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE; 7118 7119 /* 7120 * In the case of shared PMDs, the area to flush could be beyond 7121 * start/end. Set range.start/range.end to cover the maximum possible 7122 * range if PMD sharing is possible. 7123 */ 7124 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA, 7125 0, mm, start, end); 7126 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 7127 7128 BUG_ON(address >= end); 7129 flush_cache_range(vma, range.start, range.end); 7130 7131 mmu_notifier_invalidate_range_start(&range); 7132 hugetlb_vma_lock_write(vma); 7133 i_mmap_lock_write(vma->vm_file->f_mapping); 7134 last_addr_mask = hugetlb_mask_last_page(h); 7135 for (; address < end; address += psize) { 7136 spinlock_t *ptl; 7137 ptep = hugetlb_walk(vma, address, psize); 7138 if (!ptep) { 7139 if (!uffd_wp) { 7140 address |= last_addr_mask; 7141 continue; 7142 } 7143 /* 7144 * Userfaultfd wr-protect requires pgtable 7145 * pre-allocations to install pte markers. 7146 */ 7147 ptep = huge_pte_alloc(mm, vma, address, psize); 7148 if (!ptep) { 7149 pages = -ENOMEM; 7150 break; 7151 } 7152 } 7153 ptl = huge_pte_lock(h, mm, ptep); 7154 if (huge_pmd_unshare(mm, vma, address, ptep)) { 7155 /* 7156 * When uffd-wp is enabled on the vma, unshare 7157 * shouldn't happen at all. Warn about it if it 7158 * happened due to some reason. 7159 */ 7160 WARN_ON_ONCE(uffd_wp || uffd_wp_resolve); 7161 pages++; 7162 spin_unlock(ptl); 7163 shared_pmd = true; 7164 address |= last_addr_mask; 7165 continue; 7166 } 7167 pte = huge_ptep_get(mm, address, ptep); 7168 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) { 7169 /* Nothing to do. */ 7170 } else if (unlikely(is_hugetlb_entry_migration(pte))) { 7171 swp_entry_t entry = pte_to_swp_entry(pte); 7172 struct page *page = pfn_swap_entry_to_page(entry); 7173 pte_t newpte = pte; 7174 7175 if (is_writable_migration_entry(entry)) { 7176 if (PageAnon(page)) 7177 entry = make_readable_exclusive_migration_entry( 7178 swp_offset(entry)); 7179 else 7180 entry = make_readable_migration_entry( 7181 swp_offset(entry)); 7182 newpte = swp_entry_to_pte(entry); 7183 pages++; 7184 } 7185 7186 if (uffd_wp) 7187 newpte = pte_swp_mkuffd_wp(newpte); 7188 else if (uffd_wp_resolve) 7189 newpte = pte_swp_clear_uffd_wp(newpte); 7190 if (!pte_same(pte, newpte)) 7191 set_huge_pte_at(mm, address, ptep, newpte, psize); 7192 } else if (unlikely(is_pte_marker(pte))) { 7193 /* 7194 * Do nothing on a poison marker; page is 7195 * corrupted, permissons do not apply. Here 7196 * pte_marker_uffd_wp()==true implies !poison 7197 * because they're mutual exclusive. 7198 */ 7199 if (pte_marker_uffd_wp(pte) && uffd_wp_resolve) 7200 /* Safe to modify directly (non-present->none). */ 7201 huge_pte_clear(mm, address, ptep, psize); 7202 } else if (!huge_pte_none(pte)) { 7203 pte_t old_pte; 7204 unsigned int shift = huge_page_shift(hstate_vma(vma)); 7205 7206 old_pte = huge_ptep_modify_prot_start(vma, address, ptep); 7207 pte = huge_pte_modify(old_pte, newprot); 7208 pte = arch_make_huge_pte(pte, shift, vma->vm_flags); 7209 if (uffd_wp) 7210 pte = huge_pte_mkuffd_wp(pte); 7211 else if (uffd_wp_resolve) 7212 pte = huge_pte_clear_uffd_wp(pte); 7213 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte); 7214 pages++; 7215 } else { 7216 /* None pte */ 7217 if (unlikely(uffd_wp)) 7218 /* Safe to modify directly (none->non-present). */ 7219 set_huge_pte_at(mm, address, ptep, 7220 make_pte_marker(PTE_MARKER_UFFD_WP), 7221 psize); 7222 } 7223 spin_unlock(ptl); 7224 } 7225 /* 7226 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare 7227 * may have cleared our pud entry and done put_page on the page table: 7228 * once we release i_mmap_rwsem, another task can do the final put_page 7229 * and that page table be reused and filled with junk. If we actually 7230 * did unshare a page of pmds, flush the range corresponding to the pud. 7231 */ 7232 if (shared_pmd) 7233 flush_hugetlb_tlb_range(vma, range.start, range.end); 7234 else 7235 flush_hugetlb_tlb_range(vma, start, end); 7236 /* 7237 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs() we are 7238 * downgrading page table protection not changing it to point to a new 7239 * page. 7240 * 7241 * See Documentation/mm/mmu_notifier.rst 7242 */ 7243 i_mmap_unlock_write(vma->vm_file->f_mapping); 7244 hugetlb_vma_unlock_write(vma); 7245 mmu_notifier_invalidate_range_end(&range); 7246 7247 return pages > 0 ? (pages << h->order) : pages; 7248 } 7249 7250 /* Return true if reservation was successful, false otherwise. */ 7251 bool hugetlb_reserve_pages(struct inode *inode, 7252 long from, long to, 7253 struct vm_area_struct *vma, 7254 vm_flags_t vm_flags) 7255 { 7256 long chg = -1, add = -1, spool_resv, gbl_resv; 7257 struct hstate *h = hstate_inode(inode); 7258 struct hugepage_subpool *spool = subpool_inode(inode); 7259 struct resv_map *resv_map; 7260 struct hugetlb_cgroup *h_cg = NULL; 7261 long gbl_reserve, regions_needed = 0; 7262 7263 /* This should never happen */ 7264 if (from > to) { 7265 VM_WARN(1, "%s called with a negative range\n", __func__); 7266 return false; 7267 } 7268 7269 /* 7270 * vma specific semaphore used for pmd sharing and fault/truncation 7271 * synchronization 7272 */ 7273 hugetlb_vma_lock_alloc(vma); 7274 7275 /* 7276 * Only apply hugepage reservation if asked. At fault time, an 7277 * attempt will be made for VM_NORESERVE to allocate a page 7278 * without using reserves 7279 */ 7280 if (vm_flags & VM_NORESERVE) 7281 return true; 7282 7283 /* 7284 * Shared mappings base their reservation on the number of pages that 7285 * are already allocated on behalf of the file. Private mappings need 7286 * to reserve the full area even if read-only as mprotect() may be 7287 * called to make the mapping read-write. Assume !vma is a shm mapping 7288 */ 7289 if (!vma || vma->vm_flags & VM_MAYSHARE) { 7290 /* 7291 * resv_map can not be NULL as hugetlb_reserve_pages is only 7292 * called for inodes for which resv_maps were created (see 7293 * hugetlbfs_get_inode). 7294 */ 7295 resv_map = inode_resv_map(inode); 7296 7297 chg = region_chg(resv_map, from, to, ®ions_needed); 7298 } else { 7299 /* Private mapping. */ 7300 resv_map = resv_map_alloc(); 7301 if (!resv_map) 7302 goto out_err; 7303 7304 chg = to - from; 7305 7306 set_vma_resv_map(vma, resv_map); 7307 set_vma_resv_flags(vma, HPAGE_RESV_OWNER); 7308 } 7309 7310 if (chg < 0) 7311 goto out_err; 7312 7313 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h), 7314 chg * pages_per_huge_page(h), &h_cg) < 0) 7315 goto out_err; 7316 7317 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) { 7318 /* For private mappings, the hugetlb_cgroup uncharge info hangs 7319 * of the resv_map. 7320 */ 7321 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h); 7322 } 7323 7324 /* 7325 * There must be enough pages in the subpool for the mapping. If 7326 * the subpool has a minimum size, there may be some global 7327 * reservations already in place (gbl_reserve). 7328 */ 7329 gbl_reserve = hugepage_subpool_get_pages(spool, chg); 7330 if (gbl_reserve < 0) 7331 goto out_uncharge_cgroup; 7332 7333 /* 7334 * Check enough hugepages are available for the reservation. 7335 * Hand the pages back to the subpool if there are not 7336 */ 7337 if (hugetlb_acct_memory(h, gbl_reserve) < 0) 7338 goto out_put_pages; 7339 7340 /* 7341 * Account for the reservations made. Shared mappings record regions 7342 * that have reservations as they are shared by multiple VMAs. 7343 * When the last VMA disappears, the region map says how much 7344 * the reservation was and the page cache tells how much of 7345 * the reservation was consumed. Private mappings are per-VMA and 7346 * only the consumed reservations are tracked. When the VMA 7347 * disappears, the original reservation is the VMA size and the 7348 * consumed reservations are stored in the map. Hence, nothing 7349 * else has to be done for private mappings here 7350 */ 7351 if (!vma || vma->vm_flags & VM_MAYSHARE) { 7352 add = region_add(resv_map, from, to, regions_needed, h, h_cg); 7353 7354 if (unlikely(add < 0)) { 7355 hugetlb_acct_memory(h, -gbl_reserve); 7356 goto out_put_pages; 7357 } else if (unlikely(chg > add)) { 7358 /* 7359 * pages in this range were added to the reserve 7360 * map between region_chg and region_add. This 7361 * indicates a race with alloc_hugetlb_folio. Adjust 7362 * the subpool and reserve counts modified above 7363 * based on the difference. 7364 */ 7365 long rsv_adjust; 7366 7367 /* 7368 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the 7369 * reference to h_cg->css. See comment below for detail. 7370 */ 7371 hugetlb_cgroup_uncharge_cgroup_rsvd( 7372 hstate_index(h), 7373 (chg - add) * pages_per_huge_page(h), h_cg); 7374 7375 rsv_adjust = hugepage_subpool_put_pages(spool, 7376 chg - add); 7377 hugetlb_acct_memory(h, -rsv_adjust); 7378 } else if (h_cg) { 7379 /* 7380 * The file_regions will hold their own reference to 7381 * h_cg->css. So we should release the reference held 7382 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are 7383 * done. 7384 */ 7385 hugetlb_cgroup_put_rsvd_cgroup(h_cg); 7386 } 7387 } 7388 return true; 7389 7390 out_put_pages: 7391 spool_resv = chg - gbl_reserve; 7392 if (spool_resv) { 7393 /* put sub pool's reservation back, chg - gbl_reserve */ 7394 gbl_resv = hugepage_subpool_put_pages(spool, spool_resv); 7395 /* 7396 * subpool's reserved pages can not be put back due to race, 7397 * return to hstate. 7398 */ 7399 hugetlb_acct_memory(h, -gbl_resv); 7400 } 7401 out_uncharge_cgroup: 7402 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h), 7403 chg * pages_per_huge_page(h), h_cg); 7404 out_err: 7405 hugetlb_vma_lock_free(vma); 7406 if (!vma || vma->vm_flags & VM_MAYSHARE) 7407 /* Only call region_abort if the region_chg succeeded but the 7408 * region_add failed or didn't run. 7409 */ 7410 if (chg >= 0 && add < 0) 7411 region_abort(resv_map, from, to, regions_needed); 7412 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 7413 kref_put(&resv_map->refs, resv_map_release); 7414 set_vma_resv_map(vma, NULL); 7415 } 7416 return false; 7417 } 7418 7419 long hugetlb_unreserve_pages(struct inode *inode, long start, long end, 7420 long freed) 7421 { 7422 struct hstate *h = hstate_inode(inode); 7423 struct resv_map *resv_map = inode_resv_map(inode); 7424 long chg = 0; 7425 struct hugepage_subpool *spool = subpool_inode(inode); 7426 long gbl_reserve; 7427 7428 /* 7429 * Since this routine can be called in the evict inode path for all 7430 * hugetlbfs inodes, resv_map could be NULL. 7431 */ 7432 if (resv_map) { 7433 chg = region_del(resv_map, start, end); 7434 /* 7435 * region_del() can fail in the rare case where a region 7436 * must be split and another region descriptor can not be 7437 * allocated. If end == LONG_MAX, it will not fail. 7438 */ 7439 if (chg < 0) 7440 return chg; 7441 } 7442 7443 spin_lock(&inode->i_lock); 7444 inode->i_blocks -= (blocks_per_huge_page(h) * freed); 7445 spin_unlock(&inode->i_lock); 7446 7447 /* 7448 * If the subpool has a minimum size, the number of global 7449 * reservations to be released may be adjusted. 7450 * 7451 * Note that !resv_map implies freed == 0. So (chg - freed) 7452 * won't go negative. 7453 */ 7454 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed)); 7455 hugetlb_acct_memory(h, -gbl_reserve); 7456 7457 return 0; 7458 } 7459 7460 #ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING 7461 static unsigned long page_table_shareable(struct vm_area_struct *svma, 7462 struct vm_area_struct *vma, 7463 unsigned long addr, pgoff_t idx) 7464 { 7465 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) + 7466 svma->vm_start; 7467 unsigned long sbase = saddr & PUD_MASK; 7468 unsigned long s_end = sbase + PUD_SIZE; 7469 7470 /* Allow segments to share if only one is marked locked */ 7471 unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED_MASK; 7472 unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED_MASK; 7473 7474 /* 7475 * match the virtual addresses, permission and the alignment of the 7476 * page table page. 7477 * 7478 * Also, vma_lock (vm_private_data) is required for sharing. 7479 */ 7480 if (pmd_index(addr) != pmd_index(saddr) || 7481 vm_flags != svm_flags || 7482 !range_in_vma(svma, sbase, s_end) || 7483 !svma->vm_private_data) 7484 return 0; 7485 7486 return saddr; 7487 } 7488 7489 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr) 7490 { 7491 unsigned long start = addr & PUD_MASK; 7492 unsigned long end = start + PUD_SIZE; 7493 7494 #ifdef CONFIG_USERFAULTFD 7495 if (uffd_disable_huge_pmd_share(vma)) 7496 return false; 7497 #endif 7498 /* 7499 * check on proper vm_flags and page table alignment 7500 */ 7501 if (!(vma->vm_flags & VM_MAYSHARE)) 7502 return false; 7503 if (!vma->vm_private_data) /* vma lock required for sharing */ 7504 return false; 7505 if (!range_in_vma(vma, start, end)) 7506 return false; 7507 return true; 7508 } 7509 7510 /* 7511 * Determine if start,end range within vma could be mapped by shared pmd. 7512 * If yes, adjust start and end to cover range associated with possible 7513 * shared pmd mappings. 7514 */ 7515 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 7516 unsigned long *start, unsigned long *end) 7517 { 7518 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE), 7519 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE); 7520 7521 /* 7522 * vma needs to span at least one aligned PUD size, and the range 7523 * must be at least partially within in. 7524 */ 7525 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) || 7526 (*end <= v_start) || (*start >= v_end)) 7527 return; 7528 7529 /* Extend the range to be PUD aligned for a worst case scenario */ 7530 if (*start > v_start) 7531 *start = ALIGN_DOWN(*start, PUD_SIZE); 7532 7533 if (*end < v_end) 7534 *end = ALIGN(*end, PUD_SIZE); 7535 } 7536 7537 /* 7538 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc() 7539 * and returns the corresponding pte. While this is not necessary for the 7540 * !shared pmd case because we can allocate the pmd later as well, it makes the 7541 * code much cleaner. pmd allocation is essential for the shared case because 7542 * pud has to be populated inside the same i_mmap_rwsem section - otherwise 7543 * racing tasks could either miss the sharing (see huge_pte_offset) or select a 7544 * bad pmd for sharing. 7545 */ 7546 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, 7547 unsigned long addr, pud_t *pud) 7548 { 7549 struct address_space *mapping = vma->vm_file->f_mapping; 7550 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + 7551 vma->vm_pgoff; 7552 struct vm_area_struct *svma; 7553 unsigned long saddr; 7554 pte_t *spte = NULL; 7555 pte_t *pte; 7556 7557 i_mmap_lock_read(mapping); 7558 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) { 7559 if (svma == vma) 7560 continue; 7561 7562 saddr = page_table_shareable(svma, vma, addr, idx); 7563 if (saddr) { 7564 spte = hugetlb_walk(svma, saddr, 7565 vma_mmu_pagesize(svma)); 7566 if (spte) { 7567 ptdesc_pmd_pts_inc(virt_to_ptdesc(spte)); 7568 break; 7569 } 7570 } 7571 } 7572 7573 if (!spte) 7574 goto out; 7575 7576 spin_lock(&mm->page_table_lock); 7577 if (pud_none(*pud)) { 7578 pud_populate(mm, pud, 7579 (pmd_t *)((unsigned long)spte & PAGE_MASK)); 7580 mm_inc_nr_pmds(mm); 7581 } else { 7582 ptdesc_pmd_pts_dec(virt_to_ptdesc(spte)); 7583 } 7584 spin_unlock(&mm->page_table_lock); 7585 out: 7586 pte = (pte_t *)pmd_alloc(mm, pud, addr); 7587 i_mmap_unlock_read(mapping); 7588 return pte; 7589 } 7590 7591 /* 7592 * unmap huge page backed by shared pte. 7593 * 7594 * Called with page table lock held. 7595 * 7596 * returns: 1 successfully unmapped a shared pte page 7597 * 0 the underlying pte page is not shared, or it is the last user 7598 */ 7599 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, 7600 unsigned long addr, pte_t *ptep) 7601 { 7602 unsigned long sz = huge_page_size(hstate_vma(vma)); 7603 pgd_t *pgd = pgd_offset(mm, addr); 7604 p4d_t *p4d = p4d_offset(pgd, addr); 7605 pud_t *pud = pud_offset(p4d, addr); 7606 7607 i_mmap_assert_write_locked(vma->vm_file->f_mapping); 7608 hugetlb_vma_assert_locked(vma); 7609 if (sz != PMD_SIZE) 7610 return 0; 7611 if (!ptdesc_pmd_pts_count(virt_to_ptdesc(ptep))) 7612 return 0; 7613 7614 pud_clear(pud); 7615 /* 7616 * Once our caller drops the rmap lock, some other process might be 7617 * using this page table as a normal, non-hugetlb page table. 7618 * Wait for pending gup_fast() in other threads to finish before letting 7619 * that happen. 7620 */ 7621 tlb_remove_table_sync_one(); 7622 ptdesc_pmd_pts_dec(virt_to_ptdesc(ptep)); 7623 mm_dec_nr_pmds(mm); 7624 return 1; 7625 } 7626 7627 #else /* !CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING */ 7628 7629 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, 7630 unsigned long addr, pud_t *pud) 7631 { 7632 return NULL; 7633 } 7634 7635 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, 7636 unsigned long addr, pte_t *ptep) 7637 { 7638 return 0; 7639 } 7640 7641 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 7642 unsigned long *start, unsigned long *end) 7643 { 7644 } 7645 7646 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr) 7647 { 7648 return false; 7649 } 7650 #endif /* CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING */ 7651 7652 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB 7653 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 7654 unsigned long addr, unsigned long sz) 7655 { 7656 pgd_t *pgd; 7657 p4d_t *p4d; 7658 pud_t *pud; 7659 pte_t *pte = NULL; 7660 7661 pgd = pgd_offset(mm, addr); 7662 p4d = p4d_alloc(mm, pgd, addr); 7663 if (!p4d) 7664 return NULL; 7665 pud = pud_alloc(mm, p4d, addr); 7666 if (pud) { 7667 if (sz == PUD_SIZE) { 7668 pte = (pte_t *)pud; 7669 } else { 7670 BUG_ON(sz != PMD_SIZE); 7671 if (want_pmd_share(vma, addr) && pud_none(*pud)) 7672 pte = huge_pmd_share(mm, vma, addr, pud); 7673 else 7674 pte = (pte_t *)pmd_alloc(mm, pud, addr); 7675 } 7676 } 7677 7678 if (pte) { 7679 pte_t pteval = ptep_get_lockless(pte); 7680 7681 BUG_ON(pte_present(pteval) && !pte_huge(pteval)); 7682 } 7683 7684 return pte; 7685 } 7686 7687 /* 7688 * huge_pte_offset() - Walk the page table to resolve the hugepage 7689 * entry at address @addr 7690 * 7691 * Return: Pointer to page table entry (PUD or PMD) for 7692 * address @addr, or NULL if a !p*d_present() entry is encountered and the 7693 * size @sz doesn't match the hugepage size at this level of the page 7694 * table. 7695 */ 7696 pte_t *huge_pte_offset(struct mm_struct *mm, 7697 unsigned long addr, unsigned long sz) 7698 { 7699 pgd_t *pgd; 7700 p4d_t *p4d; 7701 pud_t *pud; 7702 pmd_t *pmd; 7703 7704 pgd = pgd_offset(mm, addr); 7705 if (!pgd_present(*pgd)) 7706 return NULL; 7707 p4d = p4d_offset(pgd, addr); 7708 if (!p4d_present(*p4d)) 7709 return NULL; 7710 7711 pud = pud_offset(p4d, addr); 7712 if (sz == PUD_SIZE) 7713 /* must be pud huge, non-present or none */ 7714 return (pte_t *)pud; 7715 if (!pud_present(*pud)) 7716 return NULL; 7717 /* must have a valid entry and size to go further */ 7718 7719 pmd = pmd_offset(pud, addr); 7720 /* must be pmd huge, non-present or none */ 7721 return (pte_t *)pmd; 7722 } 7723 7724 /* 7725 * Return a mask that can be used to update an address to the last huge 7726 * page in a page table page mapping size. Used to skip non-present 7727 * page table entries when linearly scanning address ranges. Architectures 7728 * with unique huge page to page table relationships can define their own 7729 * version of this routine. 7730 */ 7731 unsigned long hugetlb_mask_last_page(struct hstate *h) 7732 { 7733 unsigned long hp_size = huge_page_size(h); 7734 7735 if (hp_size == PUD_SIZE) 7736 return P4D_SIZE - PUD_SIZE; 7737 else if (hp_size == PMD_SIZE) 7738 return PUD_SIZE - PMD_SIZE; 7739 else 7740 return 0UL; 7741 } 7742 7743 #else 7744 7745 /* See description above. Architectures can provide their own version. */ 7746 __weak unsigned long hugetlb_mask_last_page(struct hstate *h) 7747 { 7748 #ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING 7749 if (huge_page_size(h) == PMD_SIZE) 7750 return PUD_SIZE - PMD_SIZE; 7751 #endif 7752 return 0UL; 7753 } 7754 7755 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */ 7756 7757 /** 7758 * folio_isolate_hugetlb - try to isolate an allocated hugetlb folio 7759 * @folio: the folio to isolate 7760 * @list: the list to add the folio to on success 7761 * 7762 * Isolate an allocated (refcount > 0) hugetlb folio, marking it as 7763 * isolated/non-migratable, and moving it from the active list to the 7764 * given list. 7765 * 7766 * Isolation will fail if @folio is not an allocated hugetlb folio, or if 7767 * it is already isolated/non-migratable. 7768 * 7769 * On success, an additional folio reference is taken that must be dropped 7770 * using folio_putback_hugetlb() to undo the isolation. 7771 * 7772 * Return: True if isolation worked, otherwise False. 7773 */ 7774 bool folio_isolate_hugetlb(struct folio *folio, struct list_head *list) 7775 { 7776 bool ret = true; 7777 7778 spin_lock_irq(&hugetlb_lock); 7779 if (!folio_test_hugetlb(folio) || 7780 !folio_test_hugetlb_migratable(folio) || 7781 !folio_try_get(folio)) { 7782 ret = false; 7783 goto unlock; 7784 } 7785 folio_clear_hugetlb_migratable(folio); 7786 list_move_tail(&folio->lru, list); 7787 unlock: 7788 spin_unlock_irq(&hugetlb_lock); 7789 return ret; 7790 } 7791 7792 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison) 7793 { 7794 int ret = 0; 7795 7796 *hugetlb = false; 7797 spin_lock_irq(&hugetlb_lock); 7798 if (folio_test_hugetlb(folio)) { 7799 *hugetlb = true; 7800 if (folio_test_hugetlb_freed(folio)) 7801 ret = 0; 7802 else if (folio_test_hugetlb_migratable(folio) || unpoison) 7803 ret = folio_try_get(folio); 7804 else 7805 ret = -EBUSY; 7806 } 7807 spin_unlock_irq(&hugetlb_lock); 7808 return ret; 7809 } 7810 7811 int get_huge_page_for_hwpoison(unsigned long pfn, int flags, 7812 bool *migratable_cleared) 7813 { 7814 int ret; 7815 7816 spin_lock_irq(&hugetlb_lock); 7817 ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared); 7818 spin_unlock_irq(&hugetlb_lock); 7819 return ret; 7820 } 7821 7822 /** 7823 * folio_putback_hugetlb - unisolate a hugetlb folio 7824 * @folio: the isolated hugetlb folio 7825 * 7826 * Putback/un-isolate the hugetlb folio that was previous isolated using 7827 * folio_isolate_hugetlb(): marking it non-isolated/migratable and putting it 7828 * back onto the active list. 7829 * 7830 * Will drop the additional folio reference obtained through 7831 * folio_isolate_hugetlb(). 7832 */ 7833 void folio_putback_hugetlb(struct folio *folio) 7834 { 7835 spin_lock_irq(&hugetlb_lock); 7836 folio_set_hugetlb_migratable(folio); 7837 list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist); 7838 spin_unlock_irq(&hugetlb_lock); 7839 folio_put(folio); 7840 } 7841 7842 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason) 7843 { 7844 struct hstate *h = folio_hstate(old_folio); 7845 7846 hugetlb_cgroup_migrate(old_folio, new_folio); 7847 set_page_owner_migrate_reason(&new_folio->page, reason); 7848 7849 /* 7850 * transfer temporary state of the new hugetlb folio. This is 7851 * reverse to other transitions because the newpage is going to 7852 * be final while the old one will be freed so it takes over 7853 * the temporary status. 7854 * 7855 * Also note that we have to transfer the per-node surplus state 7856 * here as well otherwise the global surplus count will not match 7857 * the per-node's. 7858 */ 7859 if (folio_test_hugetlb_temporary(new_folio)) { 7860 int old_nid = folio_nid(old_folio); 7861 int new_nid = folio_nid(new_folio); 7862 7863 folio_set_hugetlb_temporary(old_folio); 7864 folio_clear_hugetlb_temporary(new_folio); 7865 7866 7867 /* 7868 * There is no need to transfer the per-node surplus state 7869 * when we do not cross the node. 7870 */ 7871 if (new_nid == old_nid) 7872 return; 7873 spin_lock_irq(&hugetlb_lock); 7874 if (h->surplus_huge_pages_node[old_nid]) { 7875 h->surplus_huge_pages_node[old_nid]--; 7876 h->surplus_huge_pages_node[new_nid]++; 7877 } 7878 spin_unlock_irq(&hugetlb_lock); 7879 } 7880 7881 /* 7882 * Our old folio is isolated and has "migratable" cleared until it 7883 * is putback. As migration succeeded, set the new folio "migratable" 7884 * and add it to the active list. 7885 */ 7886 spin_lock_irq(&hugetlb_lock); 7887 folio_set_hugetlb_migratable(new_folio); 7888 list_move_tail(&new_folio->lru, &(folio_hstate(new_folio))->hugepage_activelist); 7889 spin_unlock_irq(&hugetlb_lock); 7890 } 7891 7892 /* 7893 * If @take_locks is false, the caller must ensure that no concurrent page table 7894 * access can happen (except for gup_fast() and hardware page walks). 7895 * If @take_locks is true, we take the hugetlb VMA lock (to lock out things like 7896 * concurrent page fault handling) and the file rmap lock. 7897 */ 7898 static void hugetlb_unshare_pmds(struct vm_area_struct *vma, 7899 unsigned long start, 7900 unsigned long end, 7901 bool take_locks) 7902 { 7903 struct hstate *h = hstate_vma(vma); 7904 unsigned long sz = huge_page_size(h); 7905 struct mm_struct *mm = vma->vm_mm; 7906 struct mmu_notifier_range range; 7907 unsigned long address; 7908 spinlock_t *ptl; 7909 pte_t *ptep; 7910 7911 if (!(vma->vm_flags & VM_MAYSHARE)) 7912 return; 7913 7914 if (start >= end) 7915 return; 7916 7917 flush_cache_range(vma, start, end); 7918 /* 7919 * No need to call adjust_range_if_pmd_sharing_possible(), because 7920 * we have already done the PUD_SIZE alignment. 7921 */ 7922 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 7923 start, end); 7924 mmu_notifier_invalidate_range_start(&range); 7925 if (take_locks) { 7926 hugetlb_vma_lock_write(vma); 7927 i_mmap_lock_write(vma->vm_file->f_mapping); 7928 } else { 7929 i_mmap_assert_write_locked(vma->vm_file->f_mapping); 7930 } 7931 for (address = start; address < end; address += PUD_SIZE) { 7932 ptep = hugetlb_walk(vma, address, sz); 7933 if (!ptep) 7934 continue; 7935 ptl = huge_pte_lock(h, mm, ptep); 7936 huge_pmd_unshare(mm, vma, address, ptep); 7937 spin_unlock(ptl); 7938 } 7939 flush_hugetlb_tlb_range(vma, start, end); 7940 if (take_locks) { 7941 i_mmap_unlock_write(vma->vm_file->f_mapping); 7942 hugetlb_vma_unlock_write(vma); 7943 } 7944 /* 7945 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs(), see 7946 * Documentation/mm/mmu_notifier.rst. 7947 */ 7948 mmu_notifier_invalidate_range_end(&range); 7949 } 7950 7951 /* 7952 * This function will unconditionally remove all the shared pmd pgtable entries 7953 * within the specific vma for a hugetlbfs memory range. 7954 */ 7955 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma) 7956 { 7957 hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE), 7958 ALIGN_DOWN(vma->vm_end, PUD_SIZE), 7959 /* take_locks = */ true); 7960 } 7961 7962 /* 7963 * For hugetlb, mremap() is an odd edge case - while the VMA copying is 7964 * performed, we permit both the old and new VMAs to reference the same 7965 * reservation. 7966 * 7967 * We fix this up after the operation succeeds, or if a newly allocated VMA 7968 * is closed as a result of a failure to allocate memory. 7969 */ 7970 void fixup_hugetlb_reservations(struct vm_area_struct *vma) 7971 { 7972 if (is_vm_hugetlb_page(vma)) 7973 clear_vma_resv_huge_pages(vma); 7974 } 7975