1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic hugetlb support. 4 * (C) Nadia Yvette Chambers, April 2004 5 */ 6 #include <linux/list.h> 7 #include <linux/init.h> 8 #include <linux/mm.h> 9 #include <linux/seq_file.h> 10 #include <linux/sysctl.h> 11 #include <linux/highmem.h> 12 #include <linux/mmu_notifier.h> 13 #include <linux/nodemask.h> 14 #include <linux/pagemap.h> 15 #include <linux/mempolicy.h> 16 #include <linux/compiler.h> 17 #include <linux/cpuset.h> 18 #include <linux/mutex.h> 19 #include <linux/memblock.h> 20 #include <linux/sysfs.h> 21 #include <linux/slab.h> 22 #include <linux/sched/mm.h> 23 #include <linux/mmdebug.h> 24 #include <linux/sched/signal.h> 25 #include <linux/rmap.h> 26 #include <linux/string_helpers.h> 27 #include <linux/swap.h> 28 #include <linux/swapops.h> 29 #include <linux/jhash.h> 30 #include <linux/numa.h> 31 #include <linux/llist.h> 32 #include <linux/cma.h> 33 #include <linux/migrate.h> 34 #include <linux/nospec.h> 35 #include <linux/delayacct.h> 36 37 #include <asm/page.h> 38 #include <asm/pgalloc.h> 39 #include <asm/tlb.h> 40 41 #include <linux/io.h> 42 #include <linux/hugetlb.h> 43 #include <linux/hugetlb_cgroup.h> 44 #include <linux/node.h> 45 #include <linux/page_owner.h> 46 #include "internal.h" 47 #include "hugetlb_vmemmap.h" 48 49 int hugetlb_max_hstate __read_mostly; 50 unsigned int default_hstate_idx; 51 struct hstate hstates[HUGE_MAX_HSTATE]; 52 53 #ifdef CONFIG_CMA 54 static struct cma *hugetlb_cma[MAX_NUMNODES]; 55 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata; 56 static bool hugetlb_cma_page(struct page *page, unsigned int order) 57 { 58 return cma_pages_valid(hugetlb_cma[page_to_nid(page)], page, 59 1 << order); 60 } 61 #else 62 static bool hugetlb_cma_page(struct page *page, unsigned int order) 63 { 64 return false; 65 } 66 #endif 67 static unsigned long hugetlb_cma_size __initdata; 68 69 __initdata LIST_HEAD(huge_boot_pages); 70 71 /* for command line parsing */ 72 static struct hstate * __initdata parsed_hstate; 73 static unsigned long __initdata default_hstate_max_huge_pages; 74 static bool __initdata parsed_valid_hugepagesz = true; 75 static bool __initdata parsed_default_hugepagesz; 76 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata; 77 78 /* 79 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages, 80 * free_huge_pages, and surplus_huge_pages. 81 */ 82 DEFINE_SPINLOCK(hugetlb_lock); 83 84 /* 85 * Serializes faults on the same logical page. This is used to 86 * prevent spurious OOMs when the hugepage pool is fully utilized. 87 */ 88 static int num_fault_mutexes; 89 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp; 90 91 /* Forward declaration */ 92 static int hugetlb_acct_memory(struct hstate *h, long delta); 93 94 static inline bool subpool_is_free(struct hugepage_subpool *spool) 95 { 96 if (spool->count) 97 return false; 98 if (spool->max_hpages != -1) 99 return spool->used_hpages == 0; 100 if (spool->min_hpages != -1) 101 return spool->rsv_hpages == spool->min_hpages; 102 103 return true; 104 } 105 106 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool, 107 unsigned long irq_flags) 108 { 109 spin_unlock_irqrestore(&spool->lock, irq_flags); 110 111 /* If no pages are used, and no other handles to the subpool 112 * remain, give up any reservations based on minimum size and 113 * free the subpool */ 114 if (subpool_is_free(spool)) { 115 if (spool->min_hpages != -1) 116 hugetlb_acct_memory(spool->hstate, 117 -spool->min_hpages); 118 kfree(spool); 119 } 120 } 121 122 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages, 123 long min_hpages) 124 { 125 struct hugepage_subpool *spool; 126 127 spool = kzalloc(sizeof(*spool), GFP_KERNEL); 128 if (!spool) 129 return NULL; 130 131 spin_lock_init(&spool->lock); 132 spool->count = 1; 133 spool->max_hpages = max_hpages; 134 spool->hstate = h; 135 spool->min_hpages = min_hpages; 136 137 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) { 138 kfree(spool); 139 return NULL; 140 } 141 spool->rsv_hpages = min_hpages; 142 143 return spool; 144 } 145 146 void hugepage_put_subpool(struct hugepage_subpool *spool) 147 { 148 unsigned long flags; 149 150 spin_lock_irqsave(&spool->lock, flags); 151 BUG_ON(!spool->count); 152 spool->count--; 153 unlock_or_release_subpool(spool, flags); 154 } 155 156 /* 157 * Subpool accounting for allocating and reserving pages. 158 * Return -ENOMEM if there are not enough resources to satisfy the 159 * request. Otherwise, return the number of pages by which the 160 * global pools must be adjusted (upward). The returned value may 161 * only be different than the passed value (delta) in the case where 162 * a subpool minimum size must be maintained. 163 */ 164 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool, 165 long delta) 166 { 167 long ret = delta; 168 169 if (!spool) 170 return ret; 171 172 spin_lock_irq(&spool->lock); 173 174 if (spool->max_hpages != -1) { /* maximum size accounting */ 175 if ((spool->used_hpages + delta) <= spool->max_hpages) 176 spool->used_hpages += delta; 177 else { 178 ret = -ENOMEM; 179 goto unlock_ret; 180 } 181 } 182 183 /* minimum size accounting */ 184 if (spool->min_hpages != -1 && spool->rsv_hpages) { 185 if (delta > spool->rsv_hpages) { 186 /* 187 * Asking for more reserves than those already taken on 188 * behalf of subpool. Return difference. 189 */ 190 ret = delta - spool->rsv_hpages; 191 spool->rsv_hpages = 0; 192 } else { 193 ret = 0; /* reserves already accounted for */ 194 spool->rsv_hpages -= delta; 195 } 196 } 197 198 unlock_ret: 199 spin_unlock_irq(&spool->lock); 200 return ret; 201 } 202 203 /* 204 * Subpool accounting for freeing and unreserving pages. 205 * Return the number of global page reservations that must be dropped. 206 * The return value may only be different than the passed value (delta) 207 * in the case where a subpool minimum size must be maintained. 208 */ 209 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool, 210 long delta) 211 { 212 long ret = delta; 213 unsigned long flags; 214 215 if (!spool) 216 return delta; 217 218 spin_lock_irqsave(&spool->lock, flags); 219 220 if (spool->max_hpages != -1) /* maximum size accounting */ 221 spool->used_hpages -= delta; 222 223 /* minimum size accounting */ 224 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) { 225 if (spool->rsv_hpages + delta <= spool->min_hpages) 226 ret = 0; 227 else 228 ret = spool->rsv_hpages + delta - spool->min_hpages; 229 230 spool->rsv_hpages += delta; 231 if (spool->rsv_hpages > spool->min_hpages) 232 spool->rsv_hpages = spool->min_hpages; 233 } 234 235 /* 236 * If hugetlbfs_put_super couldn't free spool due to an outstanding 237 * quota reference, free it now. 238 */ 239 unlock_or_release_subpool(spool, flags); 240 241 return ret; 242 } 243 244 static inline struct hugepage_subpool *subpool_inode(struct inode *inode) 245 { 246 return HUGETLBFS_SB(inode->i_sb)->spool; 247 } 248 249 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma) 250 { 251 return subpool_inode(file_inode(vma->vm_file)); 252 } 253 254 /* Helper that removes a struct file_region from the resv_map cache and returns 255 * it for use. 256 */ 257 static struct file_region * 258 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to) 259 { 260 struct file_region *nrg = NULL; 261 262 VM_BUG_ON(resv->region_cache_count <= 0); 263 264 resv->region_cache_count--; 265 nrg = list_first_entry(&resv->region_cache, struct file_region, link); 266 list_del(&nrg->link); 267 268 nrg->from = from; 269 nrg->to = to; 270 271 return nrg; 272 } 273 274 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg, 275 struct file_region *rg) 276 { 277 #ifdef CONFIG_CGROUP_HUGETLB 278 nrg->reservation_counter = rg->reservation_counter; 279 nrg->css = rg->css; 280 if (rg->css) 281 css_get(rg->css); 282 #endif 283 } 284 285 /* Helper that records hugetlb_cgroup uncharge info. */ 286 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg, 287 struct hstate *h, 288 struct resv_map *resv, 289 struct file_region *nrg) 290 { 291 #ifdef CONFIG_CGROUP_HUGETLB 292 if (h_cg) { 293 nrg->reservation_counter = 294 &h_cg->rsvd_hugepage[hstate_index(h)]; 295 nrg->css = &h_cg->css; 296 /* 297 * The caller will hold exactly one h_cg->css reference for the 298 * whole contiguous reservation region. But this area might be 299 * scattered when there are already some file_regions reside in 300 * it. As a result, many file_regions may share only one css 301 * reference. In order to ensure that one file_region must hold 302 * exactly one h_cg->css reference, we should do css_get for 303 * each file_region and leave the reference held by caller 304 * untouched. 305 */ 306 css_get(&h_cg->css); 307 if (!resv->pages_per_hpage) 308 resv->pages_per_hpage = pages_per_huge_page(h); 309 /* pages_per_hpage should be the same for all entries in 310 * a resv_map. 311 */ 312 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h)); 313 } else { 314 nrg->reservation_counter = NULL; 315 nrg->css = NULL; 316 } 317 #endif 318 } 319 320 static void put_uncharge_info(struct file_region *rg) 321 { 322 #ifdef CONFIG_CGROUP_HUGETLB 323 if (rg->css) 324 css_put(rg->css); 325 #endif 326 } 327 328 static bool has_same_uncharge_info(struct file_region *rg, 329 struct file_region *org) 330 { 331 #ifdef CONFIG_CGROUP_HUGETLB 332 return rg->reservation_counter == org->reservation_counter && 333 rg->css == org->css; 334 335 #else 336 return true; 337 #endif 338 } 339 340 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg) 341 { 342 struct file_region *nrg = NULL, *prg = NULL; 343 344 prg = list_prev_entry(rg, link); 345 if (&prg->link != &resv->regions && prg->to == rg->from && 346 has_same_uncharge_info(prg, rg)) { 347 prg->to = rg->to; 348 349 list_del(&rg->link); 350 put_uncharge_info(rg); 351 kfree(rg); 352 353 rg = prg; 354 } 355 356 nrg = list_next_entry(rg, link); 357 if (&nrg->link != &resv->regions && nrg->from == rg->to && 358 has_same_uncharge_info(nrg, rg)) { 359 nrg->from = rg->from; 360 361 list_del(&rg->link); 362 put_uncharge_info(rg); 363 kfree(rg); 364 } 365 } 366 367 static inline long 368 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from, 369 long to, struct hstate *h, struct hugetlb_cgroup *cg, 370 long *regions_needed) 371 { 372 struct file_region *nrg; 373 374 if (!regions_needed) { 375 nrg = get_file_region_entry_from_cache(map, from, to); 376 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg); 377 list_add(&nrg->link, rg); 378 coalesce_file_region(map, nrg); 379 } else 380 *regions_needed += 1; 381 382 return to - from; 383 } 384 385 /* 386 * Must be called with resv->lock held. 387 * 388 * Calling this with regions_needed != NULL will count the number of pages 389 * to be added but will not modify the linked list. And regions_needed will 390 * indicate the number of file_regions needed in the cache to carry out to add 391 * the regions for this range. 392 */ 393 static long add_reservation_in_range(struct resv_map *resv, long f, long t, 394 struct hugetlb_cgroup *h_cg, 395 struct hstate *h, long *regions_needed) 396 { 397 long add = 0; 398 struct list_head *head = &resv->regions; 399 long last_accounted_offset = f; 400 struct file_region *iter, *trg = NULL; 401 struct list_head *rg = NULL; 402 403 if (regions_needed) 404 *regions_needed = 0; 405 406 /* In this loop, we essentially handle an entry for the range 407 * [last_accounted_offset, iter->from), at every iteration, with some 408 * bounds checking. 409 */ 410 list_for_each_entry_safe(iter, trg, head, link) { 411 /* Skip irrelevant regions that start before our range. */ 412 if (iter->from < f) { 413 /* If this region ends after the last accounted offset, 414 * then we need to update last_accounted_offset. 415 */ 416 if (iter->to > last_accounted_offset) 417 last_accounted_offset = iter->to; 418 continue; 419 } 420 421 /* When we find a region that starts beyond our range, we've 422 * finished. 423 */ 424 if (iter->from >= t) { 425 rg = iter->link.prev; 426 break; 427 } 428 429 /* Add an entry for last_accounted_offset -> iter->from, and 430 * update last_accounted_offset. 431 */ 432 if (iter->from > last_accounted_offset) 433 add += hugetlb_resv_map_add(resv, iter->link.prev, 434 last_accounted_offset, 435 iter->from, h, h_cg, 436 regions_needed); 437 438 last_accounted_offset = iter->to; 439 } 440 441 /* Handle the case where our range extends beyond 442 * last_accounted_offset. 443 */ 444 if (!rg) 445 rg = head->prev; 446 if (last_accounted_offset < t) 447 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset, 448 t, h, h_cg, regions_needed); 449 450 return add; 451 } 452 453 /* Must be called with resv->lock acquired. Will drop lock to allocate entries. 454 */ 455 static int allocate_file_region_entries(struct resv_map *resv, 456 int regions_needed) 457 __must_hold(&resv->lock) 458 { 459 struct list_head allocated_regions; 460 int to_allocate = 0, i = 0; 461 struct file_region *trg = NULL, *rg = NULL; 462 463 VM_BUG_ON(regions_needed < 0); 464 465 INIT_LIST_HEAD(&allocated_regions); 466 467 /* 468 * Check for sufficient descriptors in the cache to accommodate 469 * the number of in progress add operations plus regions_needed. 470 * 471 * This is a while loop because when we drop the lock, some other call 472 * to region_add or region_del may have consumed some region_entries, 473 * so we keep looping here until we finally have enough entries for 474 * (adds_in_progress + regions_needed). 475 */ 476 while (resv->region_cache_count < 477 (resv->adds_in_progress + regions_needed)) { 478 to_allocate = resv->adds_in_progress + regions_needed - 479 resv->region_cache_count; 480 481 /* At this point, we should have enough entries in the cache 482 * for all the existing adds_in_progress. We should only be 483 * needing to allocate for regions_needed. 484 */ 485 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress); 486 487 spin_unlock(&resv->lock); 488 for (i = 0; i < to_allocate; i++) { 489 trg = kmalloc(sizeof(*trg), GFP_KERNEL); 490 if (!trg) 491 goto out_of_memory; 492 list_add(&trg->link, &allocated_regions); 493 } 494 495 spin_lock(&resv->lock); 496 497 list_splice(&allocated_regions, &resv->region_cache); 498 resv->region_cache_count += to_allocate; 499 } 500 501 return 0; 502 503 out_of_memory: 504 list_for_each_entry_safe(rg, trg, &allocated_regions, link) { 505 list_del(&rg->link); 506 kfree(rg); 507 } 508 return -ENOMEM; 509 } 510 511 /* 512 * Add the huge page range represented by [f, t) to the reserve 513 * map. Regions will be taken from the cache to fill in this range. 514 * Sufficient regions should exist in the cache due to the previous 515 * call to region_chg with the same range, but in some cases the cache will not 516 * have sufficient entries due to races with other code doing region_add or 517 * region_del. The extra needed entries will be allocated. 518 * 519 * regions_needed is the out value provided by a previous call to region_chg. 520 * 521 * Return the number of new huge pages added to the map. This number is greater 522 * than or equal to zero. If file_region entries needed to be allocated for 523 * this operation and we were not able to allocate, it returns -ENOMEM. 524 * region_add of regions of length 1 never allocate file_regions and cannot 525 * fail; region_chg will always allocate at least 1 entry and a region_add for 526 * 1 page will only require at most 1 entry. 527 */ 528 static long region_add(struct resv_map *resv, long f, long t, 529 long in_regions_needed, struct hstate *h, 530 struct hugetlb_cgroup *h_cg) 531 { 532 long add = 0, actual_regions_needed = 0; 533 534 spin_lock(&resv->lock); 535 retry: 536 537 /* Count how many regions are actually needed to execute this add. */ 538 add_reservation_in_range(resv, f, t, NULL, NULL, 539 &actual_regions_needed); 540 541 /* 542 * Check for sufficient descriptors in the cache to accommodate 543 * this add operation. Note that actual_regions_needed may be greater 544 * than in_regions_needed, as the resv_map may have been modified since 545 * the region_chg call. In this case, we need to make sure that we 546 * allocate extra entries, such that we have enough for all the 547 * existing adds_in_progress, plus the excess needed for this 548 * operation. 549 */ 550 if (actual_regions_needed > in_regions_needed && 551 resv->region_cache_count < 552 resv->adds_in_progress + 553 (actual_regions_needed - in_regions_needed)) { 554 /* region_add operation of range 1 should never need to 555 * allocate file_region entries. 556 */ 557 VM_BUG_ON(t - f <= 1); 558 559 if (allocate_file_region_entries( 560 resv, actual_regions_needed - in_regions_needed)) { 561 return -ENOMEM; 562 } 563 564 goto retry; 565 } 566 567 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL); 568 569 resv->adds_in_progress -= in_regions_needed; 570 571 spin_unlock(&resv->lock); 572 return add; 573 } 574 575 /* 576 * Examine the existing reserve map and determine how many 577 * huge pages in the specified range [f, t) are NOT currently 578 * represented. This routine is called before a subsequent 579 * call to region_add that will actually modify the reserve 580 * map to add the specified range [f, t). region_chg does 581 * not change the number of huge pages represented by the 582 * map. A number of new file_region structures is added to the cache as a 583 * placeholder, for the subsequent region_add call to use. At least 1 584 * file_region structure is added. 585 * 586 * out_regions_needed is the number of regions added to the 587 * resv->adds_in_progress. This value needs to be provided to a follow up call 588 * to region_add or region_abort for proper accounting. 589 * 590 * Returns the number of huge pages that need to be added to the existing 591 * reservation map for the range [f, t). This number is greater or equal to 592 * zero. -ENOMEM is returned if a new file_region structure or cache entry 593 * is needed and can not be allocated. 594 */ 595 static long region_chg(struct resv_map *resv, long f, long t, 596 long *out_regions_needed) 597 { 598 long chg = 0; 599 600 spin_lock(&resv->lock); 601 602 /* Count how many hugepages in this range are NOT represented. */ 603 chg = add_reservation_in_range(resv, f, t, NULL, NULL, 604 out_regions_needed); 605 606 if (*out_regions_needed == 0) 607 *out_regions_needed = 1; 608 609 if (allocate_file_region_entries(resv, *out_regions_needed)) 610 return -ENOMEM; 611 612 resv->adds_in_progress += *out_regions_needed; 613 614 spin_unlock(&resv->lock); 615 return chg; 616 } 617 618 /* 619 * Abort the in progress add operation. The adds_in_progress field 620 * of the resv_map keeps track of the operations in progress between 621 * calls to region_chg and region_add. Operations are sometimes 622 * aborted after the call to region_chg. In such cases, region_abort 623 * is called to decrement the adds_in_progress counter. regions_needed 624 * is the value returned by the region_chg call, it is used to decrement 625 * the adds_in_progress counter. 626 * 627 * NOTE: The range arguments [f, t) are not needed or used in this 628 * routine. They are kept to make reading the calling code easier as 629 * arguments will match the associated region_chg call. 630 */ 631 static void region_abort(struct resv_map *resv, long f, long t, 632 long regions_needed) 633 { 634 spin_lock(&resv->lock); 635 VM_BUG_ON(!resv->region_cache_count); 636 resv->adds_in_progress -= regions_needed; 637 spin_unlock(&resv->lock); 638 } 639 640 /* 641 * Delete the specified range [f, t) from the reserve map. If the 642 * t parameter is LONG_MAX, this indicates that ALL regions after f 643 * should be deleted. Locate the regions which intersect [f, t) 644 * and either trim, delete or split the existing regions. 645 * 646 * Returns the number of huge pages deleted from the reserve map. 647 * In the normal case, the return value is zero or more. In the 648 * case where a region must be split, a new region descriptor must 649 * be allocated. If the allocation fails, -ENOMEM will be returned. 650 * NOTE: If the parameter t == LONG_MAX, then we will never split 651 * a region and possibly return -ENOMEM. Callers specifying 652 * t == LONG_MAX do not need to check for -ENOMEM error. 653 */ 654 static long region_del(struct resv_map *resv, long f, long t) 655 { 656 struct list_head *head = &resv->regions; 657 struct file_region *rg, *trg; 658 struct file_region *nrg = NULL; 659 long del = 0; 660 661 retry: 662 spin_lock(&resv->lock); 663 list_for_each_entry_safe(rg, trg, head, link) { 664 /* 665 * Skip regions before the range to be deleted. file_region 666 * ranges are normally of the form [from, to). However, there 667 * may be a "placeholder" entry in the map which is of the form 668 * (from, to) with from == to. Check for placeholder entries 669 * at the beginning of the range to be deleted. 670 */ 671 if (rg->to <= f && (rg->to != rg->from || rg->to != f)) 672 continue; 673 674 if (rg->from >= t) 675 break; 676 677 if (f > rg->from && t < rg->to) { /* Must split region */ 678 /* 679 * Check for an entry in the cache before dropping 680 * lock and attempting allocation. 681 */ 682 if (!nrg && 683 resv->region_cache_count > resv->adds_in_progress) { 684 nrg = list_first_entry(&resv->region_cache, 685 struct file_region, 686 link); 687 list_del(&nrg->link); 688 resv->region_cache_count--; 689 } 690 691 if (!nrg) { 692 spin_unlock(&resv->lock); 693 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 694 if (!nrg) 695 return -ENOMEM; 696 goto retry; 697 } 698 699 del += t - f; 700 hugetlb_cgroup_uncharge_file_region( 701 resv, rg, t - f, false); 702 703 /* New entry for end of split region */ 704 nrg->from = t; 705 nrg->to = rg->to; 706 707 copy_hugetlb_cgroup_uncharge_info(nrg, rg); 708 709 INIT_LIST_HEAD(&nrg->link); 710 711 /* Original entry is trimmed */ 712 rg->to = f; 713 714 list_add(&nrg->link, &rg->link); 715 nrg = NULL; 716 break; 717 } 718 719 if (f <= rg->from && t >= rg->to) { /* Remove entire region */ 720 del += rg->to - rg->from; 721 hugetlb_cgroup_uncharge_file_region(resv, rg, 722 rg->to - rg->from, true); 723 list_del(&rg->link); 724 kfree(rg); 725 continue; 726 } 727 728 if (f <= rg->from) { /* Trim beginning of region */ 729 hugetlb_cgroup_uncharge_file_region(resv, rg, 730 t - rg->from, false); 731 732 del += t - rg->from; 733 rg->from = t; 734 } else { /* Trim end of region */ 735 hugetlb_cgroup_uncharge_file_region(resv, rg, 736 rg->to - f, false); 737 738 del += rg->to - f; 739 rg->to = f; 740 } 741 } 742 743 spin_unlock(&resv->lock); 744 kfree(nrg); 745 return del; 746 } 747 748 /* 749 * A rare out of memory error was encountered which prevented removal of 750 * the reserve map region for a page. The huge page itself was free'ed 751 * and removed from the page cache. This routine will adjust the subpool 752 * usage count, and the global reserve count if needed. By incrementing 753 * these counts, the reserve map entry which could not be deleted will 754 * appear as a "reserved" entry instead of simply dangling with incorrect 755 * counts. 756 */ 757 void hugetlb_fix_reserve_counts(struct inode *inode) 758 { 759 struct hugepage_subpool *spool = subpool_inode(inode); 760 long rsv_adjust; 761 bool reserved = false; 762 763 rsv_adjust = hugepage_subpool_get_pages(spool, 1); 764 if (rsv_adjust > 0) { 765 struct hstate *h = hstate_inode(inode); 766 767 if (!hugetlb_acct_memory(h, 1)) 768 reserved = true; 769 } else if (!rsv_adjust) { 770 reserved = true; 771 } 772 773 if (!reserved) 774 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n"); 775 } 776 777 /* 778 * Count and return the number of huge pages in the reserve map 779 * that intersect with the range [f, t). 780 */ 781 static long region_count(struct resv_map *resv, long f, long t) 782 { 783 struct list_head *head = &resv->regions; 784 struct file_region *rg; 785 long chg = 0; 786 787 spin_lock(&resv->lock); 788 /* Locate each segment we overlap with, and count that overlap. */ 789 list_for_each_entry(rg, head, link) { 790 long seg_from; 791 long seg_to; 792 793 if (rg->to <= f) 794 continue; 795 if (rg->from >= t) 796 break; 797 798 seg_from = max(rg->from, f); 799 seg_to = min(rg->to, t); 800 801 chg += seg_to - seg_from; 802 } 803 spin_unlock(&resv->lock); 804 805 return chg; 806 } 807 808 /* 809 * Convert the address within this vma to the page offset within 810 * the mapping, in pagecache page units; huge pages here. 811 */ 812 static pgoff_t vma_hugecache_offset(struct hstate *h, 813 struct vm_area_struct *vma, unsigned long address) 814 { 815 return ((address - vma->vm_start) >> huge_page_shift(h)) + 816 (vma->vm_pgoff >> huge_page_order(h)); 817 } 818 819 pgoff_t linear_hugepage_index(struct vm_area_struct *vma, 820 unsigned long address) 821 { 822 return vma_hugecache_offset(hstate_vma(vma), vma, address); 823 } 824 EXPORT_SYMBOL_GPL(linear_hugepage_index); 825 826 /* 827 * Return the size of the pages allocated when backing a VMA. In the majority 828 * cases this will be same size as used by the page table entries. 829 */ 830 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) 831 { 832 if (vma->vm_ops && vma->vm_ops->pagesize) 833 return vma->vm_ops->pagesize(vma); 834 return PAGE_SIZE; 835 } 836 EXPORT_SYMBOL_GPL(vma_kernel_pagesize); 837 838 /* 839 * Return the page size being used by the MMU to back a VMA. In the majority 840 * of cases, the page size used by the kernel matches the MMU size. On 841 * architectures where it differs, an architecture-specific 'strong' 842 * version of this symbol is required. 843 */ 844 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 845 { 846 return vma_kernel_pagesize(vma); 847 } 848 849 /* 850 * Flags for MAP_PRIVATE reservations. These are stored in the bottom 851 * bits of the reservation map pointer, which are always clear due to 852 * alignment. 853 */ 854 #define HPAGE_RESV_OWNER (1UL << 0) 855 #define HPAGE_RESV_UNMAPPED (1UL << 1) 856 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) 857 858 /* 859 * These helpers are used to track how many pages are reserved for 860 * faults in a MAP_PRIVATE mapping. Only the process that called mmap() 861 * is guaranteed to have their future faults succeed. 862 * 863 * With the exception of reset_vma_resv_huge_pages() which is called at fork(), 864 * the reserve counters are updated with the hugetlb_lock held. It is safe 865 * to reset the VMA at fork() time as it is not in use yet and there is no 866 * chance of the global counters getting corrupted as a result of the values. 867 * 868 * The private mapping reservation is represented in a subtly different 869 * manner to a shared mapping. A shared mapping has a region map associated 870 * with the underlying file, this region map represents the backing file 871 * pages which have ever had a reservation assigned which this persists even 872 * after the page is instantiated. A private mapping has a region map 873 * associated with the original mmap which is attached to all VMAs which 874 * reference it, this region map represents those offsets which have consumed 875 * reservation ie. where pages have been instantiated. 876 */ 877 static unsigned long get_vma_private_data(struct vm_area_struct *vma) 878 { 879 return (unsigned long)vma->vm_private_data; 880 } 881 882 static void set_vma_private_data(struct vm_area_struct *vma, 883 unsigned long value) 884 { 885 vma->vm_private_data = (void *)value; 886 } 887 888 static void 889 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map, 890 struct hugetlb_cgroup *h_cg, 891 struct hstate *h) 892 { 893 #ifdef CONFIG_CGROUP_HUGETLB 894 if (!h_cg || !h) { 895 resv_map->reservation_counter = NULL; 896 resv_map->pages_per_hpage = 0; 897 resv_map->css = NULL; 898 } else { 899 resv_map->reservation_counter = 900 &h_cg->rsvd_hugepage[hstate_index(h)]; 901 resv_map->pages_per_hpage = pages_per_huge_page(h); 902 resv_map->css = &h_cg->css; 903 } 904 #endif 905 } 906 907 struct resv_map *resv_map_alloc(void) 908 { 909 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); 910 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL); 911 912 if (!resv_map || !rg) { 913 kfree(resv_map); 914 kfree(rg); 915 return NULL; 916 } 917 918 kref_init(&resv_map->refs); 919 spin_lock_init(&resv_map->lock); 920 INIT_LIST_HEAD(&resv_map->regions); 921 922 resv_map->adds_in_progress = 0; 923 /* 924 * Initialize these to 0. On shared mappings, 0's here indicate these 925 * fields don't do cgroup accounting. On private mappings, these will be 926 * re-initialized to the proper values, to indicate that hugetlb cgroup 927 * reservations are to be un-charged from here. 928 */ 929 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL); 930 931 INIT_LIST_HEAD(&resv_map->region_cache); 932 list_add(&rg->link, &resv_map->region_cache); 933 resv_map->region_cache_count = 1; 934 935 return resv_map; 936 } 937 938 void resv_map_release(struct kref *ref) 939 { 940 struct resv_map *resv_map = container_of(ref, struct resv_map, refs); 941 struct list_head *head = &resv_map->region_cache; 942 struct file_region *rg, *trg; 943 944 /* Clear out any active regions before we release the map. */ 945 region_del(resv_map, 0, LONG_MAX); 946 947 /* ... and any entries left in the cache */ 948 list_for_each_entry_safe(rg, trg, head, link) { 949 list_del(&rg->link); 950 kfree(rg); 951 } 952 953 VM_BUG_ON(resv_map->adds_in_progress); 954 955 kfree(resv_map); 956 } 957 958 static inline struct resv_map *inode_resv_map(struct inode *inode) 959 { 960 /* 961 * At inode evict time, i_mapping may not point to the original 962 * address space within the inode. This original address space 963 * contains the pointer to the resv_map. So, always use the 964 * address space embedded within the inode. 965 * The VERY common case is inode->mapping == &inode->i_data but, 966 * this may not be true for device special inodes. 967 */ 968 return (struct resv_map *)(&inode->i_data)->private_data; 969 } 970 971 static struct resv_map *vma_resv_map(struct vm_area_struct *vma) 972 { 973 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 974 if (vma->vm_flags & VM_MAYSHARE) { 975 struct address_space *mapping = vma->vm_file->f_mapping; 976 struct inode *inode = mapping->host; 977 978 return inode_resv_map(inode); 979 980 } else { 981 return (struct resv_map *)(get_vma_private_data(vma) & 982 ~HPAGE_RESV_MASK); 983 } 984 } 985 986 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) 987 { 988 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 989 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 990 991 set_vma_private_data(vma, (get_vma_private_data(vma) & 992 HPAGE_RESV_MASK) | (unsigned long)map); 993 } 994 995 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) 996 { 997 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 998 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 999 1000 set_vma_private_data(vma, get_vma_private_data(vma) | flags); 1001 } 1002 1003 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) 1004 { 1005 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1006 1007 return (get_vma_private_data(vma) & flag) != 0; 1008 } 1009 1010 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */ 1011 void reset_vma_resv_huge_pages(struct vm_area_struct *vma) 1012 { 1013 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1014 if (!(vma->vm_flags & VM_MAYSHARE)) 1015 vma->vm_private_data = (void *)0; 1016 } 1017 1018 /* 1019 * Reset and decrement one ref on hugepage private reservation. 1020 * Called with mm->mmap_sem writer semaphore held. 1021 * This function should be only used by move_vma() and operate on 1022 * same sized vma. It should never come here with last ref on the 1023 * reservation. 1024 */ 1025 void clear_vma_resv_huge_pages(struct vm_area_struct *vma) 1026 { 1027 /* 1028 * Clear the old hugetlb private page reservation. 1029 * It has already been transferred to new_vma. 1030 * 1031 * During a mremap() operation of a hugetlb vma we call move_vma() 1032 * which copies vma into new_vma and unmaps vma. After the copy 1033 * operation both new_vma and vma share a reference to the resv_map 1034 * struct, and at that point vma is about to be unmapped. We don't 1035 * want to return the reservation to the pool at unmap of vma because 1036 * the reservation still lives on in new_vma, so simply decrement the 1037 * ref here and remove the resv_map reference from this vma. 1038 */ 1039 struct resv_map *reservations = vma_resv_map(vma); 1040 1041 if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 1042 resv_map_put_hugetlb_cgroup_uncharge_info(reservations); 1043 kref_put(&reservations->refs, resv_map_release); 1044 } 1045 1046 reset_vma_resv_huge_pages(vma); 1047 } 1048 1049 /* Returns true if the VMA has associated reserve pages */ 1050 static bool vma_has_reserves(struct vm_area_struct *vma, long chg) 1051 { 1052 if (vma->vm_flags & VM_NORESERVE) { 1053 /* 1054 * This address is already reserved by other process(chg == 0), 1055 * so, we should decrement reserved count. Without decrementing, 1056 * reserve count remains after releasing inode, because this 1057 * allocated page will go into page cache and is regarded as 1058 * coming from reserved pool in releasing step. Currently, we 1059 * don't have any other solution to deal with this situation 1060 * properly, so add work-around here. 1061 */ 1062 if (vma->vm_flags & VM_MAYSHARE && chg == 0) 1063 return true; 1064 else 1065 return false; 1066 } 1067 1068 /* Shared mappings always use reserves */ 1069 if (vma->vm_flags & VM_MAYSHARE) { 1070 /* 1071 * We know VM_NORESERVE is not set. Therefore, there SHOULD 1072 * be a region map for all pages. The only situation where 1073 * there is no region map is if a hole was punched via 1074 * fallocate. In this case, there really are no reserves to 1075 * use. This situation is indicated if chg != 0. 1076 */ 1077 if (chg) 1078 return false; 1079 else 1080 return true; 1081 } 1082 1083 /* 1084 * Only the process that called mmap() has reserves for 1085 * private mappings. 1086 */ 1087 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 1088 /* 1089 * Like the shared case above, a hole punch or truncate 1090 * could have been performed on the private mapping. 1091 * Examine the value of chg to determine if reserves 1092 * actually exist or were previously consumed. 1093 * Very Subtle - The value of chg comes from a previous 1094 * call to vma_needs_reserves(). The reserve map for 1095 * private mappings has different (opposite) semantics 1096 * than that of shared mappings. vma_needs_reserves() 1097 * has already taken this difference in semantics into 1098 * account. Therefore, the meaning of chg is the same 1099 * as in the shared case above. Code could easily be 1100 * combined, but keeping it separate draws attention to 1101 * subtle differences. 1102 */ 1103 if (chg) 1104 return false; 1105 else 1106 return true; 1107 } 1108 1109 return false; 1110 } 1111 1112 static void enqueue_huge_page(struct hstate *h, struct page *page) 1113 { 1114 int nid = page_to_nid(page); 1115 1116 lockdep_assert_held(&hugetlb_lock); 1117 VM_BUG_ON_PAGE(page_count(page), page); 1118 1119 list_move(&page->lru, &h->hugepage_freelists[nid]); 1120 h->free_huge_pages++; 1121 h->free_huge_pages_node[nid]++; 1122 SetHPageFreed(page); 1123 } 1124 1125 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid) 1126 { 1127 struct page *page; 1128 bool pin = !!(current->flags & PF_MEMALLOC_PIN); 1129 1130 lockdep_assert_held(&hugetlb_lock); 1131 list_for_each_entry(page, &h->hugepage_freelists[nid], lru) { 1132 if (pin && !is_longterm_pinnable_page(page)) 1133 continue; 1134 1135 if (PageHWPoison(page)) 1136 continue; 1137 1138 list_move(&page->lru, &h->hugepage_activelist); 1139 set_page_refcounted(page); 1140 ClearHPageFreed(page); 1141 h->free_huge_pages--; 1142 h->free_huge_pages_node[nid]--; 1143 return page; 1144 } 1145 1146 return NULL; 1147 } 1148 1149 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid, 1150 nodemask_t *nmask) 1151 { 1152 unsigned int cpuset_mems_cookie; 1153 struct zonelist *zonelist; 1154 struct zone *zone; 1155 struct zoneref *z; 1156 int node = NUMA_NO_NODE; 1157 1158 zonelist = node_zonelist(nid, gfp_mask); 1159 1160 retry_cpuset: 1161 cpuset_mems_cookie = read_mems_allowed_begin(); 1162 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) { 1163 struct page *page; 1164 1165 if (!cpuset_zone_allowed(zone, gfp_mask)) 1166 continue; 1167 /* 1168 * no need to ask again on the same node. Pool is node rather than 1169 * zone aware 1170 */ 1171 if (zone_to_nid(zone) == node) 1172 continue; 1173 node = zone_to_nid(zone); 1174 1175 page = dequeue_huge_page_node_exact(h, node); 1176 if (page) 1177 return page; 1178 } 1179 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie))) 1180 goto retry_cpuset; 1181 1182 return NULL; 1183 } 1184 1185 static struct page *dequeue_huge_page_vma(struct hstate *h, 1186 struct vm_area_struct *vma, 1187 unsigned long address, int avoid_reserve, 1188 long chg) 1189 { 1190 struct page *page = NULL; 1191 struct mempolicy *mpol; 1192 gfp_t gfp_mask; 1193 nodemask_t *nodemask; 1194 int nid; 1195 1196 /* 1197 * A child process with MAP_PRIVATE mappings created by their parent 1198 * have no page reserves. This check ensures that reservations are 1199 * not "stolen". The child may still get SIGKILLed 1200 */ 1201 if (!vma_has_reserves(vma, chg) && 1202 h->free_huge_pages - h->resv_huge_pages == 0) 1203 goto err; 1204 1205 /* If reserves cannot be used, ensure enough pages are in the pool */ 1206 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0) 1207 goto err; 1208 1209 gfp_mask = htlb_alloc_mask(h); 1210 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 1211 1212 if (mpol_is_preferred_many(mpol)) { 1213 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask); 1214 1215 /* Fallback to all nodes if page==NULL */ 1216 nodemask = NULL; 1217 } 1218 1219 if (!page) 1220 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask); 1221 1222 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) { 1223 SetHPageRestoreReserve(page); 1224 h->resv_huge_pages--; 1225 } 1226 1227 mpol_cond_put(mpol); 1228 return page; 1229 1230 err: 1231 return NULL; 1232 } 1233 1234 /* 1235 * common helper functions for hstate_next_node_to_{alloc|free}. 1236 * We may have allocated or freed a huge page based on a different 1237 * nodes_allowed previously, so h->next_node_to_{alloc|free} might 1238 * be outside of *nodes_allowed. Ensure that we use an allowed 1239 * node for alloc or free. 1240 */ 1241 static int next_node_allowed(int nid, nodemask_t *nodes_allowed) 1242 { 1243 nid = next_node_in(nid, *nodes_allowed); 1244 VM_BUG_ON(nid >= MAX_NUMNODES); 1245 1246 return nid; 1247 } 1248 1249 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed) 1250 { 1251 if (!node_isset(nid, *nodes_allowed)) 1252 nid = next_node_allowed(nid, nodes_allowed); 1253 return nid; 1254 } 1255 1256 /* 1257 * returns the previously saved node ["this node"] from which to 1258 * allocate a persistent huge page for the pool and advance the 1259 * next node from which to allocate, handling wrap at end of node 1260 * mask. 1261 */ 1262 static int hstate_next_node_to_alloc(struct hstate *h, 1263 nodemask_t *nodes_allowed) 1264 { 1265 int nid; 1266 1267 VM_BUG_ON(!nodes_allowed); 1268 1269 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed); 1270 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed); 1271 1272 return nid; 1273 } 1274 1275 /* 1276 * helper for remove_pool_huge_page() - return the previously saved 1277 * node ["this node"] from which to free a huge page. Advance the 1278 * next node id whether or not we find a free huge page to free so 1279 * that the next attempt to free addresses the next node. 1280 */ 1281 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed) 1282 { 1283 int nid; 1284 1285 VM_BUG_ON(!nodes_allowed); 1286 1287 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed); 1288 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed); 1289 1290 return nid; 1291 } 1292 1293 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \ 1294 for (nr_nodes = nodes_weight(*mask); \ 1295 nr_nodes > 0 && \ 1296 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \ 1297 nr_nodes--) 1298 1299 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \ 1300 for (nr_nodes = nodes_weight(*mask); \ 1301 nr_nodes > 0 && \ 1302 ((node = hstate_next_node_to_free(hs, mask)) || 1); \ 1303 nr_nodes--) 1304 1305 /* used to demote non-gigantic_huge pages as well */ 1306 static void __destroy_compound_gigantic_page(struct page *page, 1307 unsigned int order, bool demote) 1308 { 1309 int i; 1310 int nr_pages = 1 << order; 1311 struct page *p = page + 1; 1312 1313 atomic_set(compound_mapcount_ptr(page), 0); 1314 atomic_set(compound_pincount_ptr(page), 0); 1315 1316 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { 1317 p->mapping = NULL; 1318 clear_compound_head(p); 1319 if (!demote) 1320 set_page_refcounted(p); 1321 } 1322 1323 set_compound_order(page, 0); 1324 #ifdef CONFIG_64BIT 1325 page[1].compound_nr = 0; 1326 #endif 1327 __ClearPageHead(page); 1328 } 1329 1330 static void destroy_compound_hugetlb_page_for_demote(struct page *page, 1331 unsigned int order) 1332 { 1333 __destroy_compound_gigantic_page(page, order, true); 1334 } 1335 1336 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE 1337 static void destroy_compound_gigantic_page(struct page *page, 1338 unsigned int order) 1339 { 1340 __destroy_compound_gigantic_page(page, order, false); 1341 } 1342 1343 static void free_gigantic_page(struct page *page, unsigned int order) 1344 { 1345 /* 1346 * If the page isn't allocated using the cma allocator, 1347 * cma_release() returns false. 1348 */ 1349 #ifdef CONFIG_CMA 1350 if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order)) 1351 return; 1352 #endif 1353 1354 free_contig_range(page_to_pfn(page), 1 << order); 1355 } 1356 1357 #ifdef CONFIG_CONTIG_ALLOC 1358 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, 1359 int nid, nodemask_t *nodemask) 1360 { 1361 unsigned long nr_pages = pages_per_huge_page(h); 1362 if (nid == NUMA_NO_NODE) 1363 nid = numa_mem_id(); 1364 1365 #ifdef CONFIG_CMA 1366 { 1367 struct page *page; 1368 int node; 1369 1370 if (hugetlb_cma[nid]) { 1371 page = cma_alloc(hugetlb_cma[nid], nr_pages, 1372 huge_page_order(h), true); 1373 if (page) 1374 return page; 1375 } 1376 1377 if (!(gfp_mask & __GFP_THISNODE)) { 1378 for_each_node_mask(node, *nodemask) { 1379 if (node == nid || !hugetlb_cma[node]) 1380 continue; 1381 1382 page = cma_alloc(hugetlb_cma[node], nr_pages, 1383 huge_page_order(h), true); 1384 if (page) 1385 return page; 1386 } 1387 } 1388 } 1389 #endif 1390 1391 return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask); 1392 } 1393 1394 #else /* !CONFIG_CONTIG_ALLOC */ 1395 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, 1396 int nid, nodemask_t *nodemask) 1397 { 1398 return NULL; 1399 } 1400 #endif /* CONFIG_CONTIG_ALLOC */ 1401 1402 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */ 1403 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, 1404 int nid, nodemask_t *nodemask) 1405 { 1406 return NULL; 1407 } 1408 static inline void free_gigantic_page(struct page *page, unsigned int order) { } 1409 static inline void destroy_compound_gigantic_page(struct page *page, 1410 unsigned int order) { } 1411 #endif 1412 1413 /* 1414 * Remove hugetlb page from lists, and update dtor so that page appears 1415 * as just a compound page. 1416 * 1417 * A reference is held on the page, except in the case of demote. 1418 * 1419 * Must be called with hugetlb lock held. 1420 */ 1421 static void __remove_hugetlb_page(struct hstate *h, struct page *page, 1422 bool adjust_surplus, 1423 bool demote) 1424 { 1425 int nid = page_to_nid(page); 1426 1427 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page); 1428 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page); 1429 1430 lockdep_assert_held(&hugetlb_lock); 1431 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 1432 return; 1433 1434 list_del(&page->lru); 1435 1436 if (HPageFreed(page)) { 1437 h->free_huge_pages--; 1438 h->free_huge_pages_node[nid]--; 1439 } 1440 if (adjust_surplus) { 1441 h->surplus_huge_pages--; 1442 h->surplus_huge_pages_node[nid]--; 1443 } 1444 1445 /* 1446 * Very subtle 1447 * 1448 * For non-gigantic pages set the destructor to the normal compound 1449 * page dtor. This is needed in case someone takes an additional 1450 * temporary ref to the page, and freeing is delayed until they drop 1451 * their reference. 1452 * 1453 * For gigantic pages set the destructor to the null dtor. This 1454 * destructor will never be called. Before freeing the gigantic 1455 * page destroy_compound_gigantic_page will turn the compound page 1456 * into a simple group of pages. After this the destructor does not 1457 * apply. 1458 * 1459 * This handles the case where more than one ref is held when and 1460 * after update_and_free_page is called. 1461 * 1462 * In the case of demote we do not ref count the page as it will soon 1463 * be turned into a page of smaller size. 1464 */ 1465 if (!demote) 1466 set_page_refcounted(page); 1467 if (hstate_is_gigantic(h)) 1468 set_compound_page_dtor(page, NULL_COMPOUND_DTOR); 1469 else 1470 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR); 1471 1472 h->nr_huge_pages--; 1473 h->nr_huge_pages_node[nid]--; 1474 } 1475 1476 static void remove_hugetlb_page(struct hstate *h, struct page *page, 1477 bool adjust_surplus) 1478 { 1479 __remove_hugetlb_page(h, page, adjust_surplus, false); 1480 } 1481 1482 static void remove_hugetlb_page_for_demote(struct hstate *h, struct page *page, 1483 bool adjust_surplus) 1484 { 1485 __remove_hugetlb_page(h, page, adjust_surplus, true); 1486 } 1487 1488 static void add_hugetlb_page(struct hstate *h, struct page *page, 1489 bool adjust_surplus) 1490 { 1491 int zeroed; 1492 int nid = page_to_nid(page); 1493 1494 VM_BUG_ON_PAGE(!HPageVmemmapOptimized(page), page); 1495 1496 lockdep_assert_held(&hugetlb_lock); 1497 1498 INIT_LIST_HEAD(&page->lru); 1499 h->nr_huge_pages++; 1500 h->nr_huge_pages_node[nid]++; 1501 1502 if (adjust_surplus) { 1503 h->surplus_huge_pages++; 1504 h->surplus_huge_pages_node[nid]++; 1505 } 1506 1507 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR); 1508 set_page_private(page, 0); 1509 SetHPageVmemmapOptimized(page); 1510 1511 /* 1512 * This page is about to be managed by the hugetlb allocator and 1513 * should have no users. Drop our reference, and check for others 1514 * just in case. 1515 */ 1516 zeroed = put_page_testzero(page); 1517 if (!zeroed) 1518 /* 1519 * It is VERY unlikely soneone else has taken a ref on 1520 * the page. In this case, we simply return as the 1521 * hugetlb destructor (free_huge_page) will be called 1522 * when this other ref is dropped. 1523 */ 1524 return; 1525 1526 arch_clear_hugepage_flags(page); 1527 enqueue_huge_page(h, page); 1528 } 1529 1530 static void __update_and_free_page(struct hstate *h, struct page *page) 1531 { 1532 int i; 1533 struct page *subpage = page; 1534 1535 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 1536 return; 1537 1538 /* 1539 * If we don't know which subpages are hwpoisoned, we can't free 1540 * the hugepage, so it's leaked intentionally. 1541 */ 1542 if (HPageRawHwpUnreliable(page)) 1543 return; 1544 1545 if (hugetlb_vmemmap_restore(h, page)) { 1546 spin_lock_irq(&hugetlb_lock); 1547 /* 1548 * If we cannot allocate vmemmap pages, just refuse to free the 1549 * page and put the page back on the hugetlb free list and treat 1550 * as a surplus page. 1551 */ 1552 add_hugetlb_page(h, page, true); 1553 spin_unlock_irq(&hugetlb_lock); 1554 return; 1555 } 1556 1557 /* 1558 * Move PageHWPoison flag from head page to the raw error pages, 1559 * which makes any healthy subpages reusable. 1560 */ 1561 if (unlikely(PageHWPoison(page))) 1562 hugetlb_clear_page_hwpoison(page); 1563 1564 for (i = 0; i < pages_per_huge_page(h); 1565 i++, subpage = mem_map_next(subpage, page, i)) { 1566 subpage->flags &= ~(1 << PG_locked | 1 << PG_error | 1567 1 << PG_referenced | 1 << PG_dirty | 1568 1 << PG_active | 1 << PG_private | 1569 1 << PG_writeback); 1570 } 1571 1572 /* 1573 * Non-gigantic pages demoted from CMA allocated gigantic pages 1574 * need to be given back to CMA in free_gigantic_page. 1575 */ 1576 if (hstate_is_gigantic(h) || 1577 hugetlb_cma_page(page, huge_page_order(h))) { 1578 destroy_compound_gigantic_page(page, huge_page_order(h)); 1579 free_gigantic_page(page, huge_page_order(h)); 1580 } else { 1581 __free_pages(page, huge_page_order(h)); 1582 } 1583 } 1584 1585 /* 1586 * As update_and_free_page() can be called under any context, so we cannot 1587 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the 1588 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate 1589 * the vmemmap pages. 1590 * 1591 * free_hpage_workfn() locklessly retrieves the linked list of pages to be 1592 * freed and frees them one-by-one. As the page->mapping pointer is going 1593 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node 1594 * structure of a lockless linked list of huge pages to be freed. 1595 */ 1596 static LLIST_HEAD(hpage_freelist); 1597 1598 static void free_hpage_workfn(struct work_struct *work) 1599 { 1600 struct llist_node *node; 1601 1602 node = llist_del_all(&hpage_freelist); 1603 1604 while (node) { 1605 struct page *page; 1606 struct hstate *h; 1607 1608 page = container_of((struct address_space **)node, 1609 struct page, mapping); 1610 node = node->next; 1611 page->mapping = NULL; 1612 /* 1613 * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate() 1614 * is going to trigger because a previous call to 1615 * remove_hugetlb_page() will set_compound_page_dtor(page, 1616 * NULL_COMPOUND_DTOR), so do not use page_hstate() directly. 1617 */ 1618 h = size_to_hstate(page_size(page)); 1619 1620 __update_and_free_page(h, page); 1621 1622 cond_resched(); 1623 } 1624 } 1625 static DECLARE_WORK(free_hpage_work, free_hpage_workfn); 1626 1627 static inline void flush_free_hpage_work(struct hstate *h) 1628 { 1629 if (hugetlb_vmemmap_optimizable(h)) 1630 flush_work(&free_hpage_work); 1631 } 1632 1633 static void update_and_free_page(struct hstate *h, struct page *page, 1634 bool atomic) 1635 { 1636 if (!HPageVmemmapOptimized(page) || !atomic) { 1637 __update_and_free_page(h, page); 1638 return; 1639 } 1640 1641 /* 1642 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages. 1643 * 1644 * Only call schedule_work() if hpage_freelist is previously 1645 * empty. Otherwise, schedule_work() had been called but the workfn 1646 * hasn't retrieved the list yet. 1647 */ 1648 if (llist_add((struct llist_node *)&page->mapping, &hpage_freelist)) 1649 schedule_work(&free_hpage_work); 1650 } 1651 1652 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list) 1653 { 1654 struct page *page, *t_page; 1655 1656 list_for_each_entry_safe(page, t_page, list, lru) { 1657 update_and_free_page(h, page, false); 1658 cond_resched(); 1659 } 1660 } 1661 1662 struct hstate *size_to_hstate(unsigned long size) 1663 { 1664 struct hstate *h; 1665 1666 for_each_hstate(h) { 1667 if (huge_page_size(h) == size) 1668 return h; 1669 } 1670 return NULL; 1671 } 1672 1673 void free_huge_page(struct page *page) 1674 { 1675 /* 1676 * Can't pass hstate in here because it is called from the 1677 * compound page destructor. 1678 */ 1679 struct hstate *h = page_hstate(page); 1680 int nid = page_to_nid(page); 1681 struct hugepage_subpool *spool = hugetlb_page_subpool(page); 1682 bool restore_reserve; 1683 unsigned long flags; 1684 1685 VM_BUG_ON_PAGE(page_count(page), page); 1686 VM_BUG_ON_PAGE(page_mapcount(page), page); 1687 1688 hugetlb_set_page_subpool(page, NULL); 1689 if (PageAnon(page)) 1690 __ClearPageAnonExclusive(page); 1691 page->mapping = NULL; 1692 restore_reserve = HPageRestoreReserve(page); 1693 ClearHPageRestoreReserve(page); 1694 1695 /* 1696 * If HPageRestoreReserve was set on page, page allocation consumed a 1697 * reservation. If the page was associated with a subpool, there 1698 * would have been a page reserved in the subpool before allocation 1699 * via hugepage_subpool_get_pages(). Since we are 'restoring' the 1700 * reservation, do not call hugepage_subpool_put_pages() as this will 1701 * remove the reserved page from the subpool. 1702 */ 1703 if (!restore_reserve) { 1704 /* 1705 * A return code of zero implies that the subpool will be 1706 * under its minimum size if the reservation is not restored 1707 * after page is free. Therefore, force restore_reserve 1708 * operation. 1709 */ 1710 if (hugepage_subpool_put_pages(spool, 1) == 0) 1711 restore_reserve = true; 1712 } 1713 1714 spin_lock_irqsave(&hugetlb_lock, flags); 1715 ClearHPageMigratable(page); 1716 hugetlb_cgroup_uncharge_page(hstate_index(h), 1717 pages_per_huge_page(h), page); 1718 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h), 1719 pages_per_huge_page(h), page); 1720 if (restore_reserve) 1721 h->resv_huge_pages++; 1722 1723 if (HPageTemporary(page)) { 1724 remove_hugetlb_page(h, page, false); 1725 spin_unlock_irqrestore(&hugetlb_lock, flags); 1726 update_and_free_page(h, page, true); 1727 } else if (h->surplus_huge_pages_node[nid]) { 1728 /* remove the page from active list */ 1729 remove_hugetlb_page(h, page, true); 1730 spin_unlock_irqrestore(&hugetlb_lock, flags); 1731 update_and_free_page(h, page, true); 1732 } else { 1733 arch_clear_hugepage_flags(page); 1734 enqueue_huge_page(h, page); 1735 spin_unlock_irqrestore(&hugetlb_lock, flags); 1736 } 1737 } 1738 1739 /* 1740 * Must be called with the hugetlb lock held 1741 */ 1742 static void __prep_account_new_huge_page(struct hstate *h, int nid) 1743 { 1744 lockdep_assert_held(&hugetlb_lock); 1745 h->nr_huge_pages++; 1746 h->nr_huge_pages_node[nid]++; 1747 } 1748 1749 static void __prep_new_huge_page(struct hstate *h, struct page *page) 1750 { 1751 hugetlb_vmemmap_optimize(h, page); 1752 INIT_LIST_HEAD(&page->lru); 1753 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR); 1754 hugetlb_set_page_subpool(page, NULL); 1755 set_hugetlb_cgroup(page, NULL); 1756 set_hugetlb_cgroup_rsvd(page, NULL); 1757 } 1758 1759 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid) 1760 { 1761 __prep_new_huge_page(h, page); 1762 spin_lock_irq(&hugetlb_lock); 1763 __prep_account_new_huge_page(h, nid); 1764 spin_unlock_irq(&hugetlb_lock); 1765 } 1766 1767 static bool __prep_compound_gigantic_page(struct page *page, unsigned int order, 1768 bool demote) 1769 { 1770 int i, j; 1771 int nr_pages = 1 << order; 1772 struct page *p = page + 1; 1773 1774 /* we rely on prep_new_huge_page to set the destructor */ 1775 set_compound_order(page, order); 1776 __ClearPageReserved(page); 1777 __SetPageHead(page); 1778 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { 1779 /* 1780 * For gigantic hugepages allocated through bootmem at 1781 * boot, it's safer to be consistent with the not-gigantic 1782 * hugepages and clear the PG_reserved bit from all tail pages 1783 * too. Otherwise drivers using get_user_pages() to access tail 1784 * pages may get the reference counting wrong if they see 1785 * PG_reserved set on a tail page (despite the head page not 1786 * having PG_reserved set). Enforcing this consistency between 1787 * head and tail pages allows drivers to optimize away a check 1788 * on the head page when they need know if put_page() is needed 1789 * after get_user_pages(). 1790 */ 1791 __ClearPageReserved(p); 1792 /* 1793 * Subtle and very unlikely 1794 * 1795 * Gigantic 'page allocators' such as memblock or cma will 1796 * return a set of pages with each page ref counted. We need 1797 * to turn this set of pages into a compound page with tail 1798 * page ref counts set to zero. Code such as speculative page 1799 * cache adding could take a ref on a 'to be' tail page. 1800 * We need to respect any increased ref count, and only set 1801 * the ref count to zero if count is currently 1. If count 1802 * is not 1, we return an error. An error return indicates 1803 * the set of pages can not be converted to a gigantic page. 1804 * The caller who allocated the pages should then discard the 1805 * pages using the appropriate free interface. 1806 * 1807 * In the case of demote, the ref count will be zero. 1808 */ 1809 if (!demote) { 1810 if (!page_ref_freeze(p, 1)) { 1811 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n"); 1812 goto out_error; 1813 } 1814 } else { 1815 VM_BUG_ON_PAGE(page_count(p), p); 1816 } 1817 set_compound_head(p, page); 1818 } 1819 atomic_set(compound_mapcount_ptr(page), -1); 1820 atomic_set(compound_pincount_ptr(page), 0); 1821 return true; 1822 1823 out_error: 1824 /* undo tail page modifications made above */ 1825 p = page + 1; 1826 for (j = 1; j < i; j++, p = mem_map_next(p, page, j)) { 1827 clear_compound_head(p); 1828 set_page_refcounted(p); 1829 } 1830 /* need to clear PG_reserved on remaining tail pages */ 1831 for (; j < nr_pages; j++, p = mem_map_next(p, page, j)) 1832 __ClearPageReserved(p); 1833 set_compound_order(page, 0); 1834 #ifdef CONFIG_64BIT 1835 page[1].compound_nr = 0; 1836 #endif 1837 __ClearPageHead(page); 1838 return false; 1839 } 1840 1841 static bool prep_compound_gigantic_page(struct page *page, unsigned int order) 1842 { 1843 return __prep_compound_gigantic_page(page, order, false); 1844 } 1845 1846 static bool prep_compound_gigantic_page_for_demote(struct page *page, 1847 unsigned int order) 1848 { 1849 return __prep_compound_gigantic_page(page, order, true); 1850 } 1851 1852 /* 1853 * PageHuge() only returns true for hugetlbfs pages, but not for normal or 1854 * transparent huge pages. See the PageTransHuge() documentation for more 1855 * details. 1856 */ 1857 int PageHuge(struct page *page) 1858 { 1859 if (!PageCompound(page)) 1860 return 0; 1861 1862 page = compound_head(page); 1863 return page[1].compound_dtor == HUGETLB_PAGE_DTOR; 1864 } 1865 EXPORT_SYMBOL_GPL(PageHuge); 1866 1867 /* 1868 * PageHeadHuge() only returns true for hugetlbfs head page, but not for 1869 * normal or transparent huge pages. 1870 */ 1871 int PageHeadHuge(struct page *page_head) 1872 { 1873 if (!PageHead(page_head)) 1874 return 0; 1875 1876 return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR; 1877 } 1878 EXPORT_SYMBOL_GPL(PageHeadHuge); 1879 1880 /* 1881 * Find and lock address space (mapping) in write mode. 1882 * 1883 * Upon entry, the page is locked which means that page_mapping() is 1884 * stable. Due to locking order, we can only trylock_write. If we can 1885 * not get the lock, simply return NULL to caller. 1886 */ 1887 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage) 1888 { 1889 struct address_space *mapping = page_mapping(hpage); 1890 1891 if (!mapping) 1892 return mapping; 1893 1894 if (i_mmap_trylock_write(mapping)) 1895 return mapping; 1896 1897 return NULL; 1898 } 1899 1900 pgoff_t hugetlb_basepage_index(struct page *page) 1901 { 1902 struct page *page_head = compound_head(page); 1903 pgoff_t index = page_index(page_head); 1904 unsigned long compound_idx; 1905 1906 if (compound_order(page_head) >= MAX_ORDER) 1907 compound_idx = page_to_pfn(page) - page_to_pfn(page_head); 1908 else 1909 compound_idx = page - page_head; 1910 1911 return (index << compound_order(page_head)) + compound_idx; 1912 } 1913 1914 static struct page *alloc_buddy_huge_page(struct hstate *h, 1915 gfp_t gfp_mask, int nid, nodemask_t *nmask, 1916 nodemask_t *node_alloc_noretry) 1917 { 1918 int order = huge_page_order(h); 1919 struct page *page; 1920 bool alloc_try_hard = true; 1921 1922 /* 1923 * By default we always try hard to allocate the page with 1924 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in 1925 * a loop (to adjust global huge page counts) and previous allocation 1926 * failed, do not continue to try hard on the same node. Use the 1927 * node_alloc_noretry bitmap to manage this state information. 1928 */ 1929 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry)) 1930 alloc_try_hard = false; 1931 gfp_mask |= __GFP_COMP|__GFP_NOWARN; 1932 if (alloc_try_hard) 1933 gfp_mask |= __GFP_RETRY_MAYFAIL; 1934 if (nid == NUMA_NO_NODE) 1935 nid = numa_mem_id(); 1936 page = __alloc_pages(gfp_mask, order, nid, nmask); 1937 if (page) 1938 __count_vm_event(HTLB_BUDDY_PGALLOC); 1939 else 1940 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 1941 1942 /* 1943 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this 1944 * indicates an overall state change. Clear bit so that we resume 1945 * normal 'try hard' allocations. 1946 */ 1947 if (node_alloc_noretry && page && !alloc_try_hard) 1948 node_clear(nid, *node_alloc_noretry); 1949 1950 /* 1951 * If we tried hard to get a page but failed, set bit so that 1952 * subsequent attempts will not try as hard until there is an 1953 * overall state change. 1954 */ 1955 if (node_alloc_noretry && !page && alloc_try_hard) 1956 node_set(nid, *node_alloc_noretry); 1957 1958 return page; 1959 } 1960 1961 /* 1962 * Common helper to allocate a fresh hugetlb page. All specific allocators 1963 * should use this function to get new hugetlb pages 1964 */ 1965 static struct page *alloc_fresh_huge_page(struct hstate *h, 1966 gfp_t gfp_mask, int nid, nodemask_t *nmask, 1967 nodemask_t *node_alloc_noretry) 1968 { 1969 struct page *page; 1970 bool retry = false; 1971 1972 retry: 1973 if (hstate_is_gigantic(h)) 1974 page = alloc_gigantic_page(h, gfp_mask, nid, nmask); 1975 else 1976 page = alloc_buddy_huge_page(h, gfp_mask, 1977 nid, nmask, node_alloc_noretry); 1978 if (!page) 1979 return NULL; 1980 1981 if (hstate_is_gigantic(h)) { 1982 if (!prep_compound_gigantic_page(page, huge_page_order(h))) { 1983 /* 1984 * Rare failure to convert pages to compound page. 1985 * Free pages and try again - ONCE! 1986 */ 1987 free_gigantic_page(page, huge_page_order(h)); 1988 if (!retry) { 1989 retry = true; 1990 goto retry; 1991 } 1992 return NULL; 1993 } 1994 } 1995 prep_new_huge_page(h, page, page_to_nid(page)); 1996 1997 return page; 1998 } 1999 2000 /* 2001 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved 2002 * manner. 2003 */ 2004 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed, 2005 nodemask_t *node_alloc_noretry) 2006 { 2007 struct page *page; 2008 int nr_nodes, node; 2009 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 2010 2011 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 2012 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed, 2013 node_alloc_noretry); 2014 if (page) 2015 break; 2016 } 2017 2018 if (!page) 2019 return 0; 2020 2021 put_page(page); /* free it into the hugepage allocator */ 2022 2023 return 1; 2024 } 2025 2026 /* 2027 * Remove huge page from pool from next node to free. Attempt to keep 2028 * persistent huge pages more or less balanced over allowed nodes. 2029 * This routine only 'removes' the hugetlb page. The caller must make 2030 * an additional call to free the page to low level allocators. 2031 * Called with hugetlb_lock locked. 2032 */ 2033 static struct page *remove_pool_huge_page(struct hstate *h, 2034 nodemask_t *nodes_allowed, 2035 bool acct_surplus) 2036 { 2037 int nr_nodes, node; 2038 struct page *page = NULL; 2039 2040 lockdep_assert_held(&hugetlb_lock); 2041 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 2042 /* 2043 * If we're returning unused surplus pages, only examine 2044 * nodes with surplus pages. 2045 */ 2046 if ((!acct_surplus || h->surplus_huge_pages_node[node]) && 2047 !list_empty(&h->hugepage_freelists[node])) { 2048 page = list_entry(h->hugepage_freelists[node].next, 2049 struct page, lru); 2050 remove_hugetlb_page(h, page, acct_surplus); 2051 break; 2052 } 2053 } 2054 2055 return page; 2056 } 2057 2058 /* 2059 * Dissolve a given free hugepage into free buddy pages. This function does 2060 * nothing for in-use hugepages and non-hugepages. 2061 * This function returns values like below: 2062 * 2063 * -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages 2064 * when the system is under memory pressure and the feature of 2065 * freeing unused vmemmap pages associated with each hugetlb page 2066 * is enabled. 2067 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use 2068 * (allocated or reserved.) 2069 * 0: successfully dissolved free hugepages or the page is not a 2070 * hugepage (considered as already dissolved) 2071 */ 2072 int dissolve_free_huge_page(struct page *page) 2073 { 2074 int rc = -EBUSY; 2075 2076 retry: 2077 /* Not to disrupt normal path by vainly holding hugetlb_lock */ 2078 if (!PageHuge(page)) 2079 return 0; 2080 2081 spin_lock_irq(&hugetlb_lock); 2082 if (!PageHuge(page)) { 2083 rc = 0; 2084 goto out; 2085 } 2086 2087 if (!page_count(page)) { 2088 struct page *head = compound_head(page); 2089 struct hstate *h = page_hstate(head); 2090 if (h->free_huge_pages - h->resv_huge_pages == 0) 2091 goto out; 2092 2093 /* 2094 * We should make sure that the page is already on the free list 2095 * when it is dissolved. 2096 */ 2097 if (unlikely(!HPageFreed(head))) { 2098 spin_unlock_irq(&hugetlb_lock); 2099 cond_resched(); 2100 2101 /* 2102 * Theoretically, we should return -EBUSY when we 2103 * encounter this race. In fact, we have a chance 2104 * to successfully dissolve the page if we do a 2105 * retry. Because the race window is quite small. 2106 * If we seize this opportunity, it is an optimization 2107 * for increasing the success rate of dissolving page. 2108 */ 2109 goto retry; 2110 } 2111 2112 remove_hugetlb_page(h, head, false); 2113 h->max_huge_pages--; 2114 spin_unlock_irq(&hugetlb_lock); 2115 2116 /* 2117 * Normally update_and_free_page will allocate required vmemmmap 2118 * before freeing the page. update_and_free_page will fail to 2119 * free the page if it can not allocate required vmemmap. We 2120 * need to adjust max_huge_pages if the page is not freed. 2121 * Attempt to allocate vmemmmap here so that we can take 2122 * appropriate action on failure. 2123 */ 2124 rc = hugetlb_vmemmap_restore(h, head); 2125 if (!rc) { 2126 update_and_free_page(h, head, false); 2127 } else { 2128 spin_lock_irq(&hugetlb_lock); 2129 add_hugetlb_page(h, head, false); 2130 h->max_huge_pages++; 2131 spin_unlock_irq(&hugetlb_lock); 2132 } 2133 2134 return rc; 2135 } 2136 out: 2137 spin_unlock_irq(&hugetlb_lock); 2138 return rc; 2139 } 2140 2141 /* 2142 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to 2143 * make specified memory blocks removable from the system. 2144 * Note that this will dissolve a free gigantic hugepage completely, if any 2145 * part of it lies within the given range. 2146 * Also note that if dissolve_free_huge_page() returns with an error, all 2147 * free hugepages that were dissolved before that error are lost. 2148 */ 2149 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn) 2150 { 2151 unsigned long pfn; 2152 struct page *page; 2153 int rc = 0; 2154 unsigned int order; 2155 struct hstate *h; 2156 2157 if (!hugepages_supported()) 2158 return rc; 2159 2160 order = huge_page_order(&default_hstate); 2161 for_each_hstate(h) 2162 order = min(order, huge_page_order(h)); 2163 2164 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) { 2165 page = pfn_to_page(pfn); 2166 rc = dissolve_free_huge_page(page); 2167 if (rc) 2168 break; 2169 } 2170 2171 return rc; 2172 } 2173 2174 /* 2175 * Allocates a fresh surplus page from the page allocator. 2176 */ 2177 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask, 2178 int nid, nodemask_t *nmask, bool zero_ref) 2179 { 2180 struct page *page = NULL; 2181 bool retry = false; 2182 2183 if (hstate_is_gigantic(h)) 2184 return NULL; 2185 2186 spin_lock_irq(&hugetlb_lock); 2187 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) 2188 goto out_unlock; 2189 spin_unlock_irq(&hugetlb_lock); 2190 2191 retry: 2192 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL); 2193 if (!page) 2194 return NULL; 2195 2196 spin_lock_irq(&hugetlb_lock); 2197 /* 2198 * We could have raced with the pool size change. 2199 * Double check that and simply deallocate the new page 2200 * if we would end up overcommiting the surpluses. Abuse 2201 * temporary page to workaround the nasty free_huge_page 2202 * codeflow 2203 */ 2204 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { 2205 SetHPageTemporary(page); 2206 spin_unlock_irq(&hugetlb_lock); 2207 put_page(page); 2208 return NULL; 2209 } 2210 2211 if (zero_ref) { 2212 /* 2213 * Caller requires a page with zero ref count. 2214 * We will drop ref count here. If someone else is holding 2215 * a ref, the page will be freed when they drop it. Abuse 2216 * temporary page flag to accomplish this. 2217 */ 2218 SetHPageTemporary(page); 2219 if (!put_page_testzero(page)) { 2220 /* 2221 * Unexpected inflated ref count on freshly allocated 2222 * huge. Retry once. 2223 */ 2224 pr_info("HugeTLB unexpected inflated ref count on freshly allocated page\n"); 2225 spin_unlock_irq(&hugetlb_lock); 2226 if (retry) 2227 return NULL; 2228 2229 retry = true; 2230 goto retry; 2231 } 2232 ClearHPageTemporary(page); 2233 } 2234 2235 h->surplus_huge_pages++; 2236 h->surplus_huge_pages_node[page_to_nid(page)]++; 2237 2238 out_unlock: 2239 spin_unlock_irq(&hugetlb_lock); 2240 2241 return page; 2242 } 2243 2244 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask, 2245 int nid, nodemask_t *nmask) 2246 { 2247 struct page *page; 2248 2249 if (hstate_is_gigantic(h)) 2250 return NULL; 2251 2252 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL); 2253 if (!page) 2254 return NULL; 2255 2256 /* 2257 * We do not account these pages as surplus because they are only 2258 * temporary and will be released properly on the last reference 2259 */ 2260 SetHPageTemporary(page); 2261 2262 return page; 2263 } 2264 2265 /* 2266 * Use the VMA's mpolicy to allocate a huge page from the buddy. 2267 */ 2268 static 2269 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h, 2270 struct vm_area_struct *vma, unsigned long addr) 2271 { 2272 struct page *page = NULL; 2273 struct mempolicy *mpol; 2274 gfp_t gfp_mask = htlb_alloc_mask(h); 2275 int nid; 2276 nodemask_t *nodemask; 2277 2278 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask); 2279 if (mpol_is_preferred_many(mpol)) { 2280 gfp_t gfp = gfp_mask | __GFP_NOWARN; 2281 2282 gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL); 2283 page = alloc_surplus_huge_page(h, gfp, nid, nodemask, false); 2284 2285 /* Fallback to all nodes if page==NULL */ 2286 nodemask = NULL; 2287 } 2288 2289 if (!page) 2290 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask, false); 2291 mpol_cond_put(mpol); 2292 return page; 2293 } 2294 2295 /* page migration callback function */ 2296 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid, 2297 nodemask_t *nmask, gfp_t gfp_mask) 2298 { 2299 spin_lock_irq(&hugetlb_lock); 2300 if (h->free_huge_pages - h->resv_huge_pages > 0) { 2301 struct page *page; 2302 2303 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask); 2304 if (page) { 2305 spin_unlock_irq(&hugetlb_lock); 2306 return page; 2307 } 2308 } 2309 spin_unlock_irq(&hugetlb_lock); 2310 2311 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask); 2312 } 2313 2314 /* mempolicy aware migration callback */ 2315 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma, 2316 unsigned long address) 2317 { 2318 struct mempolicy *mpol; 2319 nodemask_t *nodemask; 2320 struct page *page; 2321 gfp_t gfp_mask; 2322 int node; 2323 2324 gfp_mask = htlb_alloc_mask(h); 2325 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 2326 page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask); 2327 mpol_cond_put(mpol); 2328 2329 return page; 2330 } 2331 2332 /* 2333 * Increase the hugetlb pool such that it can accommodate a reservation 2334 * of size 'delta'. 2335 */ 2336 static int gather_surplus_pages(struct hstate *h, long delta) 2337 __must_hold(&hugetlb_lock) 2338 { 2339 struct list_head surplus_list; 2340 struct page *page, *tmp; 2341 int ret; 2342 long i; 2343 long needed, allocated; 2344 bool alloc_ok = true; 2345 2346 lockdep_assert_held(&hugetlb_lock); 2347 needed = (h->resv_huge_pages + delta) - h->free_huge_pages; 2348 if (needed <= 0) { 2349 h->resv_huge_pages += delta; 2350 return 0; 2351 } 2352 2353 allocated = 0; 2354 INIT_LIST_HEAD(&surplus_list); 2355 2356 ret = -ENOMEM; 2357 retry: 2358 spin_unlock_irq(&hugetlb_lock); 2359 for (i = 0; i < needed; i++) { 2360 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h), 2361 NUMA_NO_NODE, NULL, true); 2362 if (!page) { 2363 alloc_ok = false; 2364 break; 2365 } 2366 list_add(&page->lru, &surplus_list); 2367 cond_resched(); 2368 } 2369 allocated += i; 2370 2371 /* 2372 * After retaking hugetlb_lock, we need to recalculate 'needed' 2373 * because either resv_huge_pages or free_huge_pages may have changed. 2374 */ 2375 spin_lock_irq(&hugetlb_lock); 2376 needed = (h->resv_huge_pages + delta) - 2377 (h->free_huge_pages + allocated); 2378 if (needed > 0) { 2379 if (alloc_ok) 2380 goto retry; 2381 /* 2382 * We were not able to allocate enough pages to 2383 * satisfy the entire reservation so we free what 2384 * we've allocated so far. 2385 */ 2386 goto free; 2387 } 2388 /* 2389 * The surplus_list now contains _at_least_ the number of extra pages 2390 * needed to accommodate the reservation. Add the appropriate number 2391 * of pages to the hugetlb pool and free the extras back to the buddy 2392 * allocator. Commit the entire reservation here to prevent another 2393 * process from stealing the pages as they are added to the pool but 2394 * before they are reserved. 2395 */ 2396 needed += allocated; 2397 h->resv_huge_pages += delta; 2398 ret = 0; 2399 2400 /* Free the needed pages to the hugetlb pool */ 2401 list_for_each_entry_safe(page, tmp, &surplus_list, lru) { 2402 if ((--needed) < 0) 2403 break; 2404 /* Add the page to the hugetlb allocator */ 2405 enqueue_huge_page(h, page); 2406 } 2407 free: 2408 spin_unlock_irq(&hugetlb_lock); 2409 2410 /* 2411 * Free unnecessary surplus pages to the buddy allocator. 2412 * Pages have no ref count, call free_huge_page directly. 2413 */ 2414 list_for_each_entry_safe(page, tmp, &surplus_list, lru) 2415 free_huge_page(page); 2416 spin_lock_irq(&hugetlb_lock); 2417 2418 return ret; 2419 } 2420 2421 /* 2422 * This routine has two main purposes: 2423 * 1) Decrement the reservation count (resv_huge_pages) by the value passed 2424 * in unused_resv_pages. This corresponds to the prior adjustments made 2425 * to the associated reservation map. 2426 * 2) Free any unused surplus pages that may have been allocated to satisfy 2427 * the reservation. As many as unused_resv_pages may be freed. 2428 */ 2429 static void return_unused_surplus_pages(struct hstate *h, 2430 unsigned long unused_resv_pages) 2431 { 2432 unsigned long nr_pages; 2433 struct page *page; 2434 LIST_HEAD(page_list); 2435 2436 lockdep_assert_held(&hugetlb_lock); 2437 /* Uncommit the reservation */ 2438 h->resv_huge_pages -= unused_resv_pages; 2439 2440 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 2441 goto out; 2442 2443 /* 2444 * Part (or even all) of the reservation could have been backed 2445 * by pre-allocated pages. Only free surplus pages. 2446 */ 2447 nr_pages = min(unused_resv_pages, h->surplus_huge_pages); 2448 2449 /* 2450 * We want to release as many surplus pages as possible, spread 2451 * evenly across all nodes with memory. Iterate across these nodes 2452 * until we can no longer free unreserved surplus pages. This occurs 2453 * when the nodes with surplus pages have no free pages. 2454 * remove_pool_huge_page() will balance the freed pages across the 2455 * on-line nodes with memory and will handle the hstate accounting. 2456 */ 2457 while (nr_pages--) { 2458 page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1); 2459 if (!page) 2460 goto out; 2461 2462 list_add(&page->lru, &page_list); 2463 } 2464 2465 out: 2466 spin_unlock_irq(&hugetlb_lock); 2467 update_and_free_pages_bulk(h, &page_list); 2468 spin_lock_irq(&hugetlb_lock); 2469 } 2470 2471 2472 /* 2473 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation 2474 * are used by the huge page allocation routines to manage reservations. 2475 * 2476 * vma_needs_reservation is called to determine if the huge page at addr 2477 * within the vma has an associated reservation. If a reservation is 2478 * needed, the value 1 is returned. The caller is then responsible for 2479 * managing the global reservation and subpool usage counts. After 2480 * the huge page has been allocated, vma_commit_reservation is called 2481 * to add the page to the reservation map. If the page allocation fails, 2482 * the reservation must be ended instead of committed. vma_end_reservation 2483 * is called in such cases. 2484 * 2485 * In the normal case, vma_commit_reservation returns the same value 2486 * as the preceding vma_needs_reservation call. The only time this 2487 * is not the case is if a reserve map was changed between calls. It 2488 * is the responsibility of the caller to notice the difference and 2489 * take appropriate action. 2490 * 2491 * vma_add_reservation is used in error paths where a reservation must 2492 * be restored when a newly allocated huge page must be freed. It is 2493 * to be called after calling vma_needs_reservation to determine if a 2494 * reservation exists. 2495 * 2496 * vma_del_reservation is used in error paths where an entry in the reserve 2497 * map was created during huge page allocation and must be removed. It is to 2498 * be called after calling vma_needs_reservation to determine if a reservation 2499 * exists. 2500 */ 2501 enum vma_resv_mode { 2502 VMA_NEEDS_RESV, 2503 VMA_COMMIT_RESV, 2504 VMA_END_RESV, 2505 VMA_ADD_RESV, 2506 VMA_DEL_RESV, 2507 }; 2508 static long __vma_reservation_common(struct hstate *h, 2509 struct vm_area_struct *vma, unsigned long addr, 2510 enum vma_resv_mode mode) 2511 { 2512 struct resv_map *resv; 2513 pgoff_t idx; 2514 long ret; 2515 long dummy_out_regions_needed; 2516 2517 resv = vma_resv_map(vma); 2518 if (!resv) 2519 return 1; 2520 2521 idx = vma_hugecache_offset(h, vma, addr); 2522 switch (mode) { 2523 case VMA_NEEDS_RESV: 2524 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed); 2525 /* We assume that vma_reservation_* routines always operate on 2526 * 1 page, and that adding to resv map a 1 page entry can only 2527 * ever require 1 region. 2528 */ 2529 VM_BUG_ON(dummy_out_regions_needed != 1); 2530 break; 2531 case VMA_COMMIT_RESV: 2532 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2533 /* region_add calls of range 1 should never fail. */ 2534 VM_BUG_ON(ret < 0); 2535 break; 2536 case VMA_END_RESV: 2537 region_abort(resv, idx, idx + 1, 1); 2538 ret = 0; 2539 break; 2540 case VMA_ADD_RESV: 2541 if (vma->vm_flags & VM_MAYSHARE) { 2542 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2543 /* region_add calls of range 1 should never fail. */ 2544 VM_BUG_ON(ret < 0); 2545 } else { 2546 region_abort(resv, idx, idx + 1, 1); 2547 ret = region_del(resv, idx, idx + 1); 2548 } 2549 break; 2550 case VMA_DEL_RESV: 2551 if (vma->vm_flags & VM_MAYSHARE) { 2552 region_abort(resv, idx, idx + 1, 1); 2553 ret = region_del(resv, idx, idx + 1); 2554 } else { 2555 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2556 /* region_add calls of range 1 should never fail. */ 2557 VM_BUG_ON(ret < 0); 2558 } 2559 break; 2560 default: 2561 BUG(); 2562 } 2563 2564 if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV) 2565 return ret; 2566 /* 2567 * We know private mapping must have HPAGE_RESV_OWNER set. 2568 * 2569 * In most cases, reserves always exist for private mappings. 2570 * However, a file associated with mapping could have been 2571 * hole punched or truncated after reserves were consumed. 2572 * As subsequent fault on such a range will not use reserves. 2573 * Subtle - The reserve map for private mappings has the 2574 * opposite meaning than that of shared mappings. If NO 2575 * entry is in the reserve map, it means a reservation exists. 2576 * If an entry exists in the reserve map, it means the 2577 * reservation has already been consumed. As a result, the 2578 * return value of this routine is the opposite of the 2579 * value returned from reserve map manipulation routines above. 2580 */ 2581 if (ret > 0) 2582 return 0; 2583 if (ret == 0) 2584 return 1; 2585 return ret; 2586 } 2587 2588 static long vma_needs_reservation(struct hstate *h, 2589 struct vm_area_struct *vma, unsigned long addr) 2590 { 2591 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV); 2592 } 2593 2594 static long vma_commit_reservation(struct hstate *h, 2595 struct vm_area_struct *vma, unsigned long addr) 2596 { 2597 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV); 2598 } 2599 2600 static void vma_end_reservation(struct hstate *h, 2601 struct vm_area_struct *vma, unsigned long addr) 2602 { 2603 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV); 2604 } 2605 2606 static long vma_add_reservation(struct hstate *h, 2607 struct vm_area_struct *vma, unsigned long addr) 2608 { 2609 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV); 2610 } 2611 2612 static long vma_del_reservation(struct hstate *h, 2613 struct vm_area_struct *vma, unsigned long addr) 2614 { 2615 return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV); 2616 } 2617 2618 /* 2619 * This routine is called to restore reservation information on error paths. 2620 * It should ONLY be called for pages allocated via alloc_huge_page(), and 2621 * the hugetlb mutex should remain held when calling this routine. 2622 * 2623 * It handles two specific cases: 2624 * 1) A reservation was in place and the page consumed the reservation. 2625 * HPageRestoreReserve is set in the page. 2626 * 2) No reservation was in place for the page, so HPageRestoreReserve is 2627 * not set. However, alloc_huge_page always updates the reserve map. 2628 * 2629 * In case 1, free_huge_page later in the error path will increment the 2630 * global reserve count. But, free_huge_page does not have enough context 2631 * to adjust the reservation map. This case deals primarily with private 2632 * mappings. Adjust the reserve map here to be consistent with global 2633 * reserve count adjustments to be made by free_huge_page. Make sure the 2634 * reserve map indicates there is a reservation present. 2635 * 2636 * In case 2, simply undo reserve map modifications done by alloc_huge_page. 2637 */ 2638 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma, 2639 unsigned long address, struct page *page) 2640 { 2641 long rc = vma_needs_reservation(h, vma, address); 2642 2643 if (HPageRestoreReserve(page)) { 2644 if (unlikely(rc < 0)) 2645 /* 2646 * Rare out of memory condition in reserve map 2647 * manipulation. Clear HPageRestoreReserve so that 2648 * global reserve count will not be incremented 2649 * by free_huge_page. This will make it appear 2650 * as though the reservation for this page was 2651 * consumed. This may prevent the task from 2652 * faulting in the page at a later time. This 2653 * is better than inconsistent global huge page 2654 * accounting of reserve counts. 2655 */ 2656 ClearHPageRestoreReserve(page); 2657 else if (rc) 2658 (void)vma_add_reservation(h, vma, address); 2659 else 2660 vma_end_reservation(h, vma, address); 2661 } else { 2662 if (!rc) { 2663 /* 2664 * This indicates there is an entry in the reserve map 2665 * not added by alloc_huge_page. We know it was added 2666 * before the alloc_huge_page call, otherwise 2667 * HPageRestoreReserve would be set on the page. 2668 * Remove the entry so that a subsequent allocation 2669 * does not consume a reservation. 2670 */ 2671 rc = vma_del_reservation(h, vma, address); 2672 if (rc < 0) 2673 /* 2674 * VERY rare out of memory condition. Since 2675 * we can not delete the entry, set 2676 * HPageRestoreReserve so that the reserve 2677 * count will be incremented when the page 2678 * is freed. This reserve will be consumed 2679 * on a subsequent allocation. 2680 */ 2681 SetHPageRestoreReserve(page); 2682 } else if (rc < 0) { 2683 /* 2684 * Rare out of memory condition from 2685 * vma_needs_reservation call. Memory allocation is 2686 * only attempted if a new entry is needed. Therefore, 2687 * this implies there is not an entry in the 2688 * reserve map. 2689 * 2690 * For shared mappings, no entry in the map indicates 2691 * no reservation. We are done. 2692 */ 2693 if (!(vma->vm_flags & VM_MAYSHARE)) 2694 /* 2695 * For private mappings, no entry indicates 2696 * a reservation is present. Since we can 2697 * not add an entry, set SetHPageRestoreReserve 2698 * on the page so reserve count will be 2699 * incremented when freed. This reserve will 2700 * be consumed on a subsequent allocation. 2701 */ 2702 SetHPageRestoreReserve(page); 2703 } else 2704 /* 2705 * No reservation present, do nothing 2706 */ 2707 vma_end_reservation(h, vma, address); 2708 } 2709 } 2710 2711 /* 2712 * alloc_and_dissolve_huge_page - Allocate a new page and dissolve the old one 2713 * @h: struct hstate old page belongs to 2714 * @old_page: Old page to dissolve 2715 * @list: List to isolate the page in case we need to 2716 * Returns 0 on success, otherwise negated error. 2717 */ 2718 static int alloc_and_dissolve_huge_page(struct hstate *h, struct page *old_page, 2719 struct list_head *list) 2720 { 2721 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 2722 int nid = page_to_nid(old_page); 2723 bool alloc_retry = false; 2724 struct page *new_page; 2725 int ret = 0; 2726 2727 /* 2728 * Before dissolving the page, we need to allocate a new one for the 2729 * pool to remain stable. Here, we allocate the page and 'prep' it 2730 * by doing everything but actually updating counters and adding to 2731 * the pool. This simplifies and let us do most of the processing 2732 * under the lock. 2733 */ 2734 alloc_retry: 2735 new_page = alloc_buddy_huge_page(h, gfp_mask, nid, NULL, NULL); 2736 if (!new_page) 2737 return -ENOMEM; 2738 /* 2739 * If all goes well, this page will be directly added to the free 2740 * list in the pool. For this the ref count needs to be zero. 2741 * Attempt to drop now, and retry once if needed. It is VERY 2742 * unlikely there is another ref on the page. 2743 * 2744 * If someone else has a reference to the page, it will be freed 2745 * when they drop their ref. Abuse temporary page flag to accomplish 2746 * this. Retry once if there is an inflated ref count. 2747 */ 2748 SetHPageTemporary(new_page); 2749 if (!put_page_testzero(new_page)) { 2750 if (alloc_retry) 2751 return -EBUSY; 2752 2753 alloc_retry = true; 2754 goto alloc_retry; 2755 } 2756 ClearHPageTemporary(new_page); 2757 2758 __prep_new_huge_page(h, new_page); 2759 2760 retry: 2761 spin_lock_irq(&hugetlb_lock); 2762 if (!PageHuge(old_page)) { 2763 /* 2764 * Freed from under us. Drop new_page too. 2765 */ 2766 goto free_new; 2767 } else if (page_count(old_page)) { 2768 /* 2769 * Someone has grabbed the page, try to isolate it here. 2770 * Fail with -EBUSY if not possible. 2771 */ 2772 spin_unlock_irq(&hugetlb_lock); 2773 ret = isolate_hugetlb(old_page, list); 2774 spin_lock_irq(&hugetlb_lock); 2775 goto free_new; 2776 } else if (!HPageFreed(old_page)) { 2777 /* 2778 * Page's refcount is 0 but it has not been enqueued in the 2779 * freelist yet. Race window is small, so we can succeed here if 2780 * we retry. 2781 */ 2782 spin_unlock_irq(&hugetlb_lock); 2783 cond_resched(); 2784 goto retry; 2785 } else { 2786 /* 2787 * Ok, old_page is still a genuine free hugepage. Remove it from 2788 * the freelist and decrease the counters. These will be 2789 * incremented again when calling __prep_account_new_huge_page() 2790 * and enqueue_huge_page() for new_page. The counters will remain 2791 * stable since this happens under the lock. 2792 */ 2793 remove_hugetlb_page(h, old_page, false); 2794 2795 /* 2796 * Ref count on new page is already zero as it was dropped 2797 * earlier. It can be directly added to the pool free list. 2798 */ 2799 __prep_account_new_huge_page(h, nid); 2800 enqueue_huge_page(h, new_page); 2801 2802 /* 2803 * Pages have been replaced, we can safely free the old one. 2804 */ 2805 spin_unlock_irq(&hugetlb_lock); 2806 update_and_free_page(h, old_page, false); 2807 } 2808 2809 return ret; 2810 2811 free_new: 2812 spin_unlock_irq(&hugetlb_lock); 2813 /* Page has a zero ref count, but needs a ref to be freed */ 2814 set_page_refcounted(new_page); 2815 update_and_free_page(h, new_page, false); 2816 2817 return ret; 2818 } 2819 2820 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list) 2821 { 2822 struct hstate *h; 2823 struct page *head; 2824 int ret = -EBUSY; 2825 2826 /* 2827 * The page might have been dissolved from under our feet, so make sure 2828 * to carefully check the state under the lock. 2829 * Return success when racing as if we dissolved the page ourselves. 2830 */ 2831 spin_lock_irq(&hugetlb_lock); 2832 if (PageHuge(page)) { 2833 head = compound_head(page); 2834 h = page_hstate(head); 2835 } else { 2836 spin_unlock_irq(&hugetlb_lock); 2837 return 0; 2838 } 2839 spin_unlock_irq(&hugetlb_lock); 2840 2841 /* 2842 * Fence off gigantic pages as there is a cyclic dependency between 2843 * alloc_contig_range and them. Return -ENOMEM as this has the effect 2844 * of bailing out right away without further retrying. 2845 */ 2846 if (hstate_is_gigantic(h)) 2847 return -ENOMEM; 2848 2849 if (page_count(head) && !isolate_hugetlb(head, list)) 2850 ret = 0; 2851 else if (!page_count(head)) 2852 ret = alloc_and_dissolve_huge_page(h, head, list); 2853 2854 return ret; 2855 } 2856 2857 struct page *alloc_huge_page(struct vm_area_struct *vma, 2858 unsigned long addr, int avoid_reserve) 2859 { 2860 struct hugepage_subpool *spool = subpool_vma(vma); 2861 struct hstate *h = hstate_vma(vma); 2862 struct page *page; 2863 long map_chg, map_commit; 2864 long gbl_chg; 2865 int ret, idx; 2866 struct hugetlb_cgroup *h_cg; 2867 bool deferred_reserve; 2868 2869 idx = hstate_index(h); 2870 /* 2871 * Examine the region/reserve map to determine if the process 2872 * has a reservation for the page to be allocated. A return 2873 * code of zero indicates a reservation exists (no change). 2874 */ 2875 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr); 2876 if (map_chg < 0) 2877 return ERR_PTR(-ENOMEM); 2878 2879 /* 2880 * Processes that did not create the mapping will have no 2881 * reserves as indicated by the region/reserve map. Check 2882 * that the allocation will not exceed the subpool limit. 2883 * Allocations for MAP_NORESERVE mappings also need to be 2884 * checked against any subpool limit. 2885 */ 2886 if (map_chg || avoid_reserve) { 2887 gbl_chg = hugepage_subpool_get_pages(spool, 1); 2888 if (gbl_chg < 0) { 2889 vma_end_reservation(h, vma, addr); 2890 return ERR_PTR(-ENOSPC); 2891 } 2892 2893 /* 2894 * Even though there was no reservation in the region/reserve 2895 * map, there could be reservations associated with the 2896 * subpool that can be used. This would be indicated if the 2897 * return value of hugepage_subpool_get_pages() is zero. 2898 * However, if avoid_reserve is specified we still avoid even 2899 * the subpool reservations. 2900 */ 2901 if (avoid_reserve) 2902 gbl_chg = 1; 2903 } 2904 2905 /* If this allocation is not consuming a reservation, charge it now. 2906 */ 2907 deferred_reserve = map_chg || avoid_reserve; 2908 if (deferred_reserve) { 2909 ret = hugetlb_cgroup_charge_cgroup_rsvd( 2910 idx, pages_per_huge_page(h), &h_cg); 2911 if (ret) 2912 goto out_subpool_put; 2913 } 2914 2915 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg); 2916 if (ret) 2917 goto out_uncharge_cgroup_reservation; 2918 2919 spin_lock_irq(&hugetlb_lock); 2920 /* 2921 * glb_chg is passed to indicate whether or not a page must be taken 2922 * from the global free pool (global change). gbl_chg == 0 indicates 2923 * a reservation exists for the allocation. 2924 */ 2925 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg); 2926 if (!page) { 2927 spin_unlock_irq(&hugetlb_lock); 2928 page = alloc_buddy_huge_page_with_mpol(h, vma, addr); 2929 if (!page) 2930 goto out_uncharge_cgroup; 2931 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) { 2932 SetHPageRestoreReserve(page); 2933 h->resv_huge_pages--; 2934 } 2935 spin_lock_irq(&hugetlb_lock); 2936 list_add(&page->lru, &h->hugepage_activelist); 2937 /* Fall through */ 2938 } 2939 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page); 2940 /* If allocation is not consuming a reservation, also store the 2941 * hugetlb_cgroup pointer on the page. 2942 */ 2943 if (deferred_reserve) { 2944 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h), 2945 h_cg, page); 2946 } 2947 2948 spin_unlock_irq(&hugetlb_lock); 2949 2950 hugetlb_set_page_subpool(page, spool); 2951 2952 map_commit = vma_commit_reservation(h, vma, addr); 2953 if (unlikely(map_chg > map_commit)) { 2954 /* 2955 * The page was added to the reservation map between 2956 * vma_needs_reservation and vma_commit_reservation. 2957 * This indicates a race with hugetlb_reserve_pages. 2958 * Adjust for the subpool count incremented above AND 2959 * in hugetlb_reserve_pages for the same page. Also, 2960 * the reservation count added in hugetlb_reserve_pages 2961 * no longer applies. 2962 */ 2963 long rsv_adjust; 2964 2965 rsv_adjust = hugepage_subpool_put_pages(spool, 1); 2966 hugetlb_acct_memory(h, -rsv_adjust); 2967 if (deferred_reserve) 2968 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h), 2969 pages_per_huge_page(h), page); 2970 } 2971 return page; 2972 2973 out_uncharge_cgroup: 2974 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg); 2975 out_uncharge_cgroup_reservation: 2976 if (deferred_reserve) 2977 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h), 2978 h_cg); 2979 out_subpool_put: 2980 if (map_chg || avoid_reserve) 2981 hugepage_subpool_put_pages(spool, 1); 2982 vma_end_reservation(h, vma, addr); 2983 return ERR_PTR(-ENOSPC); 2984 } 2985 2986 int alloc_bootmem_huge_page(struct hstate *h, int nid) 2987 __attribute__ ((weak, alias("__alloc_bootmem_huge_page"))); 2988 int __alloc_bootmem_huge_page(struct hstate *h, int nid) 2989 { 2990 struct huge_bootmem_page *m = NULL; /* initialize for clang */ 2991 int nr_nodes, node; 2992 2993 /* do node specific alloc */ 2994 if (nid != NUMA_NO_NODE) { 2995 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h), 2996 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid); 2997 if (!m) 2998 return 0; 2999 goto found; 3000 } 3001 /* allocate from next node when distributing huge pages */ 3002 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) { 3003 m = memblock_alloc_try_nid_raw( 3004 huge_page_size(h), huge_page_size(h), 3005 0, MEMBLOCK_ALLOC_ACCESSIBLE, node); 3006 /* 3007 * Use the beginning of the huge page to store the 3008 * huge_bootmem_page struct (until gather_bootmem 3009 * puts them into the mem_map). 3010 */ 3011 if (!m) 3012 return 0; 3013 goto found; 3014 } 3015 3016 found: 3017 /* Put them into a private list first because mem_map is not up yet */ 3018 INIT_LIST_HEAD(&m->list); 3019 list_add(&m->list, &huge_boot_pages); 3020 m->hstate = h; 3021 return 1; 3022 } 3023 3024 /* 3025 * Put bootmem huge pages into the standard lists after mem_map is up. 3026 * Note: This only applies to gigantic (order > MAX_ORDER) pages. 3027 */ 3028 static void __init gather_bootmem_prealloc(void) 3029 { 3030 struct huge_bootmem_page *m; 3031 3032 list_for_each_entry(m, &huge_boot_pages, list) { 3033 struct page *page = virt_to_page(m); 3034 struct hstate *h = m->hstate; 3035 3036 VM_BUG_ON(!hstate_is_gigantic(h)); 3037 WARN_ON(page_count(page) != 1); 3038 if (prep_compound_gigantic_page(page, huge_page_order(h))) { 3039 WARN_ON(PageReserved(page)); 3040 prep_new_huge_page(h, page, page_to_nid(page)); 3041 put_page(page); /* add to the hugepage allocator */ 3042 } else { 3043 /* VERY unlikely inflated ref count on a tail page */ 3044 free_gigantic_page(page, huge_page_order(h)); 3045 } 3046 3047 /* 3048 * We need to restore the 'stolen' pages to totalram_pages 3049 * in order to fix confusing memory reports from free(1) and 3050 * other side-effects, like CommitLimit going negative. 3051 */ 3052 adjust_managed_page_count(page, pages_per_huge_page(h)); 3053 cond_resched(); 3054 } 3055 } 3056 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid) 3057 { 3058 unsigned long i; 3059 char buf[32]; 3060 3061 for (i = 0; i < h->max_huge_pages_node[nid]; ++i) { 3062 if (hstate_is_gigantic(h)) { 3063 if (!alloc_bootmem_huge_page(h, nid)) 3064 break; 3065 } else { 3066 struct page *page; 3067 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 3068 3069 page = alloc_fresh_huge_page(h, gfp_mask, nid, 3070 &node_states[N_MEMORY], NULL); 3071 if (!page) 3072 break; 3073 put_page(page); /* free it into the hugepage allocator */ 3074 } 3075 cond_resched(); 3076 } 3077 if (i == h->max_huge_pages_node[nid]) 3078 return; 3079 3080 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3081 pr_warn("HugeTLB: allocating %u of page size %s failed node%d. Only allocated %lu hugepages.\n", 3082 h->max_huge_pages_node[nid], buf, nid, i); 3083 h->max_huge_pages -= (h->max_huge_pages_node[nid] - i); 3084 h->max_huge_pages_node[nid] = i; 3085 } 3086 3087 static void __init hugetlb_hstate_alloc_pages(struct hstate *h) 3088 { 3089 unsigned long i; 3090 nodemask_t *node_alloc_noretry; 3091 bool node_specific_alloc = false; 3092 3093 /* skip gigantic hugepages allocation if hugetlb_cma enabled */ 3094 if (hstate_is_gigantic(h) && hugetlb_cma_size) { 3095 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n"); 3096 return; 3097 } 3098 3099 /* do node specific alloc */ 3100 for_each_online_node(i) { 3101 if (h->max_huge_pages_node[i] > 0) { 3102 hugetlb_hstate_alloc_pages_onenode(h, i); 3103 node_specific_alloc = true; 3104 } 3105 } 3106 3107 if (node_specific_alloc) 3108 return; 3109 3110 /* below will do all node balanced alloc */ 3111 if (!hstate_is_gigantic(h)) { 3112 /* 3113 * Bit mask controlling how hard we retry per-node allocations. 3114 * Ignore errors as lower level routines can deal with 3115 * node_alloc_noretry == NULL. If this kmalloc fails at boot 3116 * time, we are likely in bigger trouble. 3117 */ 3118 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry), 3119 GFP_KERNEL); 3120 } else { 3121 /* allocations done at boot time */ 3122 node_alloc_noretry = NULL; 3123 } 3124 3125 /* bit mask controlling how hard we retry per-node allocations */ 3126 if (node_alloc_noretry) 3127 nodes_clear(*node_alloc_noretry); 3128 3129 for (i = 0; i < h->max_huge_pages; ++i) { 3130 if (hstate_is_gigantic(h)) { 3131 if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE)) 3132 break; 3133 } else if (!alloc_pool_huge_page(h, 3134 &node_states[N_MEMORY], 3135 node_alloc_noretry)) 3136 break; 3137 cond_resched(); 3138 } 3139 if (i < h->max_huge_pages) { 3140 char buf[32]; 3141 3142 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3143 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n", 3144 h->max_huge_pages, buf, i); 3145 h->max_huge_pages = i; 3146 } 3147 kfree(node_alloc_noretry); 3148 } 3149 3150 static void __init hugetlb_init_hstates(void) 3151 { 3152 struct hstate *h, *h2; 3153 3154 for_each_hstate(h) { 3155 /* oversize hugepages were init'ed in early boot */ 3156 if (!hstate_is_gigantic(h)) 3157 hugetlb_hstate_alloc_pages(h); 3158 3159 /* 3160 * Set demote order for each hstate. Note that 3161 * h->demote_order is initially 0. 3162 * - We can not demote gigantic pages if runtime freeing 3163 * is not supported, so skip this. 3164 * - If CMA allocation is possible, we can not demote 3165 * HUGETLB_PAGE_ORDER or smaller size pages. 3166 */ 3167 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 3168 continue; 3169 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER) 3170 continue; 3171 for_each_hstate(h2) { 3172 if (h2 == h) 3173 continue; 3174 if (h2->order < h->order && 3175 h2->order > h->demote_order) 3176 h->demote_order = h2->order; 3177 } 3178 } 3179 } 3180 3181 static void __init report_hugepages(void) 3182 { 3183 struct hstate *h; 3184 3185 for_each_hstate(h) { 3186 char buf[32]; 3187 3188 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3189 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n", 3190 buf, h->free_huge_pages); 3191 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n", 3192 hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf); 3193 } 3194 } 3195 3196 #ifdef CONFIG_HIGHMEM 3197 static void try_to_free_low(struct hstate *h, unsigned long count, 3198 nodemask_t *nodes_allowed) 3199 { 3200 int i; 3201 LIST_HEAD(page_list); 3202 3203 lockdep_assert_held(&hugetlb_lock); 3204 if (hstate_is_gigantic(h)) 3205 return; 3206 3207 /* 3208 * Collect pages to be freed on a list, and free after dropping lock 3209 */ 3210 for_each_node_mask(i, *nodes_allowed) { 3211 struct page *page, *next; 3212 struct list_head *freel = &h->hugepage_freelists[i]; 3213 list_for_each_entry_safe(page, next, freel, lru) { 3214 if (count >= h->nr_huge_pages) 3215 goto out; 3216 if (PageHighMem(page)) 3217 continue; 3218 remove_hugetlb_page(h, page, false); 3219 list_add(&page->lru, &page_list); 3220 } 3221 } 3222 3223 out: 3224 spin_unlock_irq(&hugetlb_lock); 3225 update_and_free_pages_bulk(h, &page_list); 3226 spin_lock_irq(&hugetlb_lock); 3227 } 3228 #else 3229 static inline void try_to_free_low(struct hstate *h, unsigned long count, 3230 nodemask_t *nodes_allowed) 3231 { 3232 } 3233 #endif 3234 3235 /* 3236 * Increment or decrement surplus_huge_pages. Keep node-specific counters 3237 * balanced by operating on them in a round-robin fashion. 3238 * Returns 1 if an adjustment was made. 3239 */ 3240 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed, 3241 int delta) 3242 { 3243 int nr_nodes, node; 3244 3245 lockdep_assert_held(&hugetlb_lock); 3246 VM_BUG_ON(delta != -1 && delta != 1); 3247 3248 if (delta < 0) { 3249 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 3250 if (h->surplus_huge_pages_node[node]) 3251 goto found; 3252 } 3253 } else { 3254 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 3255 if (h->surplus_huge_pages_node[node] < 3256 h->nr_huge_pages_node[node]) 3257 goto found; 3258 } 3259 } 3260 return 0; 3261 3262 found: 3263 h->surplus_huge_pages += delta; 3264 h->surplus_huge_pages_node[node] += delta; 3265 return 1; 3266 } 3267 3268 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) 3269 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid, 3270 nodemask_t *nodes_allowed) 3271 { 3272 unsigned long min_count, ret; 3273 struct page *page; 3274 LIST_HEAD(page_list); 3275 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL); 3276 3277 /* 3278 * Bit mask controlling how hard we retry per-node allocations. 3279 * If we can not allocate the bit mask, do not attempt to allocate 3280 * the requested huge pages. 3281 */ 3282 if (node_alloc_noretry) 3283 nodes_clear(*node_alloc_noretry); 3284 else 3285 return -ENOMEM; 3286 3287 /* 3288 * resize_lock mutex prevents concurrent adjustments to number of 3289 * pages in hstate via the proc/sysfs interfaces. 3290 */ 3291 mutex_lock(&h->resize_lock); 3292 flush_free_hpage_work(h); 3293 spin_lock_irq(&hugetlb_lock); 3294 3295 /* 3296 * Check for a node specific request. 3297 * Changing node specific huge page count may require a corresponding 3298 * change to the global count. In any case, the passed node mask 3299 * (nodes_allowed) will restrict alloc/free to the specified node. 3300 */ 3301 if (nid != NUMA_NO_NODE) { 3302 unsigned long old_count = count; 3303 3304 count += h->nr_huge_pages - h->nr_huge_pages_node[nid]; 3305 /* 3306 * User may have specified a large count value which caused the 3307 * above calculation to overflow. In this case, they wanted 3308 * to allocate as many huge pages as possible. Set count to 3309 * largest possible value to align with their intention. 3310 */ 3311 if (count < old_count) 3312 count = ULONG_MAX; 3313 } 3314 3315 /* 3316 * Gigantic pages runtime allocation depend on the capability for large 3317 * page range allocation. 3318 * If the system does not provide this feature, return an error when 3319 * the user tries to allocate gigantic pages but let the user free the 3320 * boottime allocated gigantic pages. 3321 */ 3322 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) { 3323 if (count > persistent_huge_pages(h)) { 3324 spin_unlock_irq(&hugetlb_lock); 3325 mutex_unlock(&h->resize_lock); 3326 NODEMASK_FREE(node_alloc_noretry); 3327 return -EINVAL; 3328 } 3329 /* Fall through to decrease pool */ 3330 } 3331 3332 /* 3333 * Increase the pool size 3334 * First take pages out of surplus state. Then make up the 3335 * remaining difference by allocating fresh huge pages. 3336 * 3337 * We might race with alloc_surplus_huge_page() here and be unable 3338 * to convert a surplus huge page to a normal huge page. That is 3339 * not critical, though, it just means the overall size of the 3340 * pool might be one hugepage larger than it needs to be, but 3341 * within all the constraints specified by the sysctls. 3342 */ 3343 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { 3344 if (!adjust_pool_surplus(h, nodes_allowed, -1)) 3345 break; 3346 } 3347 3348 while (count > persistent_huge_pages(h)) { 3349 /* 3350 * If this allocation races such that we no longer need the 3351 * page, free_huge_page will handle it by freeing the page 3352 * and reducing the surplus. 3353 */ 3354 spin_unlock_irq(&hugetlb_lock); 3355 3356 /* yield cpu to avoid soft lockup */ 3357 cond_resched(); 3358 3359 ret = alloc_pool_huge_page(h, nodes_allowed, 3360 node_alloc_noretry); 3361 spin_lock_irq(&hugetlb_lock); 3362 if (!ret) 3363 goto out; 3364 3365 /* Bail for signals. Probably ctrl-c from user */ 3366 if (signal_pending(current)) 3367 goto out; 3368 } 3369 3370 /* 3371 * Decrease the pool size 3372 * First return free pages to the buddy allocator (being careful 3373 * to keep enough around to satisfy reservations). Then place 3374 * pages into surplus state as needed so the pool will shrink 3375 * to the desired size as pages become free. 3376 * 3377 * By placing pages into the surplus state independent of the 3378 * overcommit value, we are allowing the surplus pool size to 3379 * exceed overcommit. There are few sane options here. Since 3380 * alloc_surplus_huge_page() is checking the global counter, 3381 * though, we'll note that we're not allowed to exceed surplus 3382 * and won't grow the pool anywhere else. Not until one of the 3383 * sysctls are changed, or the surplus pages go out of use. 3384 */ 3385 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages; 3386 min_count = max(count, min_count); 3387 try_to_free_low(h, min_count, nodes_allowed); 3388 3389 /* 3390 * Collect pages to be removed on list without dropping lock 3391 */ 3392 while (min_count < persistent_huge_pages(h)) { 3393 page = remove_pool_huge_page(h, nodes_allowed, 0); 3394 if (!page) 3395 break; 3396 3397 list_add(&page->lru, &page_list); 3398 } 3399 /* free the pages after dropping lock */ 3400 spin_unlock_irq(&hugetlb_lock); 3401 update_and_free_pages_bulk(h, &page_list); 3402 flush_free_hpage_work(h); 3403 spin_lock_irq(&hugetlb_lock); 3404 3405 while (count < persistent_huge_pages(h)) { 3406 if (!adjust_pool_surplus(h, nodes_allowed, 1)) 3407 break; 3408 } 3409 out: 3410 h->max_huge_pages = persistent_huge_pages(h); 3411 spin_unlock_irq(&hugetlb_lock); 3412 mutex_unlock(&h->resize_lock); 3413 3414 NODEMASK_FREE(node_alloc_noretry); 3415 3416 return 0; 3417 } 3418 3419 static int demote_free_huge_page(struct hstate *h, struct page *page) 3420 { 3421 int i, nid = page_to_nid(page); 3422 struct hstate *target_hstate; 3423 struct page *subpage; 3424 int rc = 0; 3425 3426 target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order); 3427 3428 remove_hugetlb_page_for_demote(h, page, false); 3429 spin_unlock_irq(&hugetlb_lock); 3430 3431 rc = hugetlb_vmemmap_restore(h, page); 3432 if (rc) { 3433 /* Allocation of vmemmmap failed, we can not demote page */ 3434 spin_lock_irq(&hugetlb_lock); 3435 set_page_refcounted(page); 3436 add_hugetlb_page(h, page, false); 3437 return rc; 3438 } 3439 3440 /* 3441 * Use destroy_compound_hugetlb_page_for_demote for all huge page 3442 * sizes as it will not ref count pages. 3443 */ 3444 destroy_compound_hugetlb_page_for_demote(page, huge_page_order(h)); 3445 3446 /* 3447 * Taking target hstate mutex synchronizes with set_max_huge_pages. 3448 * Without the mutex, pages added to target hstate could be marked 3449 * as surplus. 3450 * 3451 * Note that we already hold h->resize_lock. To prevent deadlock, 3452 * use the convention of always taking larger size hstate mutex first. 3453 */ 3454 mutex_lock(&target_hstate->resize_lock); 3455 for (i = 0; i < pages_per_huge_page(h); 3456 i += pages_per_huge_page(target_hstate)) { 3457 subpage = nth_page(page, i); 3458 if (hstate_is_gigantic(target_hstate)) 3459 prep_compound_gigantic_page_for_demote(subpage, 3460 target_hstate->order); 3461 else 3462 prep_compound_page(subpage, target_hstate->order); 3463 set_page_private(subpage, 0); 3464 set_page_refcounted(subpage); 3465 prep_new_huge_page(target_hstate, subpage, nid); 3466 put_page(subpage); 3467 } 3468 mutex_unlock(&target_hstate->resize_lock); 3469 3470 spin_lock_irq(&hugetlb_lock); 3471 3472 /* 3473 * Not absolutely necessary, but for consistency update max_huge_pages 3474 * based on pool changes for the demoted page. 3475 */ 3476 h->max_huge_pages--; 3477 target_hstate->max_huge_pages += pages_per_huge_page(h); 3478 3479 return rc; 3480 } 3481 3482 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed) 3483 __must_hold(&hugetlb_lock) 3484 { 3485 int nr_nodes, node; 3486 struct page *page; 3487 3488 lockdep_assert_held(&hugetlb_lock); 3489 3490 /* We should never get here if no demote order */ 3491 if (!h->demote_order) { 3492 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n"); 3493 return -EINVAL; /* internal error */ 3494 } 3495 3496 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 3497 list_for_each_entry(page, &h->hugepage_freelists[node], lru) { 3498 if (PageHWPoison(page)) 3499 continue; 3500 3501 return demote_free_huge_page(h, page); 3502 } 3503 } 3504 3505 /* 3506 * Only way to get here is if all pages on free lists are poisoned. 3507 * Return -EBUSY so that caller will not retry. 3508 */ 3509 return -EBUSY; 3510 } 3511 3512 #define HSTATE_ATTR_RO(_name) \ 3513 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 3514 3515 #define HSTATE_ATTR_WO(_name) \ 3516 static struct kobj_attribute _name##_attr = __ATTR_WO(_name) 3517 3518 #define HSTATE_ATTR(_name) \ 3519 static struct kobj_attribute _name##_attr = __ATTR_RW(_name) 3520 3521 static struct kobject *hugepages_kobj; 3522 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 3523 3524 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp); 3525 3526 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp) 3527 { 3528 int i; 3529 3530 for (i = 0; i < HUGE_MAX_HSTATE; i++) 3531 if (hstate_kobjs[i] == kobj) { 3532 if (nidp) 3533 *nidp = NUMA_NO_NODE; 3534 return &hstates[i]; 3535 } 3536 3537 return kobj_to_node_hstate(kobj, nidp); 3538 } 3539 3540 static ssize_t nr_hugepages_show_common(struct kobject *kobj, 3541 struct kobj_attribute *attr, char *buf) 3542 { 3543 struct hstate *h; 3544 unsigned long nr_huge_pages; 3545 int nid; 3546 3547 h = kobj_to_hstate(kobj, &nid); 3548 if (nid == NUMA_NO_NODE) 3549 nr_huge_pages = h->nr_huge_pages; 3550 else 3551 nr_huge_pages = h->nr_huge_pages_node[nid]; 3552 3553 return sysfs_emit(buf, "%lu\n", nr_huge_pages); 3554 } 3555 3556 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy, 3557 struct hstate *h, int nid, 3558 unsigned long count, size_t len) 3559 { 3560 int err; 3561 nodemask_t nodes_allowed, *n_mask; 3562 3563 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 3564 return -EINVAL; 3565 3566 if (nid == NUMA_NO_NODE) { 3567 /* 3568 * global hstate attribute 3569 */ 3570 if (!(obey_mempolicy && 3571 init_nodemask_of_mempolicy(&nodes_allowed))) 3572 n_mask = &node_states[N_MEMORY]; 3573 else 3574 n_mask = &nodes_allowed; 3575 } else { 3576 /* 3577 * Node specific request. count adjustment happens in 3578 * set_max_huge_pages() after acquiring hugetlb_lock. 3579 */ 3580 init_nodemask_of_node(&nodes_allowed, nid); 3581 n_mask = &nodes_allowed; 3582 } 3583 3584 err = set_max_huge_pages(h, count, nid, n_mask); 3585 3586 return err ? err : len; 3587 } 3588 3589 static ssize_t nr_hugepages_store_common(bool obey_mempolicy, 3590 struct kobject *kobj, const char *buf, 3591 size_t len) 3592 { 3593 struct hstate *h; 3594 unsigned long count; 3595 int nid; 3596 int err; 3597 3598 err = kstrtoul(buf, 10, &count); 3599 if (err) 3600 return err; 3601 3602 h = kobj_to_hstate(kobj, &nid); 3603 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len); 3604 } 3605 3606 static ssize_t nr_hugepages_show(struct kobject *kobj, 3607 struct kobj_attribute *attr, char *buf) 3608 { 3609 return nr_hugepages_show_common(kobj, attr, buf); 3610 } 3611 3612 static ssize_t nr_hugepages_store(struct kobject *kobj, 3613 struct kobj_attribute *attr, const char *buf, size_t len) 3614 { 3615 return nr_hugepages_store_common(false, kobj, buf, len); 3616 } 3617 HSTATE_ATTR(nr_hugepages); 3618 3619 #ifdef CONFIG_NUMA 3620 3621 /* 3622 * hstate attribute for optionally mempolicy-based constraint on persistent 3623 * huge page alloc/free. 3624 */ 3625 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj, 3626 struct kobj_attribute *attr, 3627 char *buf) 3628 { 3629 return nr_hugepages_show_common(kobj, attr, buf); 3630 } 3631 3632 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj, 3633 struct kobj_attribute *attr, const char *buf, size_t len) 3634 { 3635 return nr_hugepages_store_common(true, kobj, buf, len); 3636 } 3637 HSTATE_ATTR(nr_hugepages_mempolicy); 3638 #endif 3639 3640 3641 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, 3642 struct kobj_attribute *attr, char *buf) 3643 { 3644 struct hstate *h = kobj_to_hstate(kobj, NULL); 3645 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages); 3646 } 3647 3648 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, 3649 struct kobj_attribute *attr, const char *buf, size_t count) 3650 { 3651 int err; 3652 unsigned long input; 3653 struct hstate *h = kobj_to_hstate(kobj, NULL); 3654 3655 if (hstate_is_gigantic(h)) 3656 return -EINVAL; 3657 3658 err = kstrtoul(buf, 10, &input); 3659 if (err) 3660 return err; 3661 3662 spin_lock_irq(&hugetlb_lock); 3663 h->nr_overcommit_huge_pages = input; 3664 spin_unlock_irq(&hugetlb_lock); 3665 3666 return count; 3667 } 3668 HSTATE_ATTR(nr_overcommit_hugepages); 3669 3670 static ssize_t free_hugepages_show(struct kobject *kobj, 3671 struct kobj_attribute *attr, char *buf) 3672 { 3673 struct hstate *h; 3674 unsigned long free_huge_pages; 3675 int nid; 3676 3677 h = kobj_to_hstate(kobj, &nid); 3678 if (nid == NUMA_NO_NODE) 3679 free_huge_pages = h->free_huge_pages; 3680 else 3681 free_huge_pages = h->free_huge_pages_node[nid]; 3682 3683 return sysfs_emit(buf, "%lu\n", free_huge_pages); 3684 } 3685 HSTATE_ATTR_RO(free_hugepages); 3686 3687 static ssize_t resv_hugepages_show(struct kobject *kobj, 3688 struct kobj_attribute *attr, char *buf) 3689 { 3690 struct hstate *h = kobj_to_hstate(kobj, NULL); 3691 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages); 3692 } 3693 HSTATE_ATTR_RO(resv_hugepages); 3694 3695 static ssize_t surplus_hugepages_show(struct kobject *kobj, 3696 struct kobj_attribute *attr, char *buf) 3697 { 3698 struct hstate *h; 3699 unsigned long surplus_huge_pages; 3700 int nid; 3701 3702 h = kobj_to_hstate(kobj, &nid); 3703 if (nid == NUMA_NO_NODE) 3704 surplus_huge_pages = h->surplus_huge_pages; 3705 else 3706 surplus_huge_pages = h->surplus_huge_pages_node[nid]; 3707 3708 return sysfs_emit(buf, "%lu\n", surplus_huge_pages); 3709 } 3710 HSTATE_ATTR_RO(surplus_hugepages); 3711 3712 static ssize_t demote_store(struct kobject *kobj, 3713 struct kobj_attribute *attr, const char *buf, size_t len) 3714 { 3715 unsigned long nr_demote; 3716 unsigned long nr_available; 3717 nodemask_t nodes_allowed, *n_mask; 3718 struct hstate *h; 3719 int err = 0; 3720 int nid; 3721 3722 err = kstrtoul(buf, 10, &nr_demote); 3723 if (err) 3724 return err; 3725 h = kobj_to_hstate(kobj, &nid); 3726 3727 if (nid != NUMA_NO_NODE) { 3728 init_nodemask_of_node(&nodes_allowed, nid); 3729 n_mask = &nodes_allowed; 3730 } else { 3731 n_mask = &node_states[N_MEMORY]; 3732 } 3733 3734 /* Synchronize with other sysfs operations modifying huge pages */ 3735 mutex_lock(&h->resize_lock); 3736 spin_lock_irq(&hugetlb_lock); 3737 3738 while (nr_demote) { 3739 /* 3740 * Check for available pages to demote each time thorough the 3741 * loop as demote_pool_huge_page will drop hugetlb_lock. 3742 */ 3743 if (nid != NUMA_NO_NODE) 3744 nr_available = h->free_huge_pages_node[nid]; 3745 else 3746 nr_available = h->free_huge_pages; 3747 nr_available -= h->resv_huge_pages; 3748 if (!nr_available) 3749 break; 3750 3751 err = demote_pool_huge_page(h, n_mask); 3752 if (err) 3753 break; 3754 3755 nr_demote--; 3756 } 3757 3758 spin_unlock_irq(&hugetlb_lock); 3759 mutex_unlock(&h->resize_lock); 3760 3761 if (err) 3762 return err; 3763 return len; 3764 } 3765 HSTATE_ATTR_WO(demote); 3766 3767 static ssize_t demote_size_show(struct kobject *kobj, 3768 struct kobj_attribute *attr, char *buf) 3769 { 3770 int nid; 3771 struct hstate *h = kobj_to_hstate(kobj, &nid); 3772 unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K; 3773 3774 return sysfs_emit(buf, "%lukB\n", demote_size); 3775 } 3776 3777 static ssize_t demote_size_store(struct kobject *kobj, 3778 struct kobj_attribute *attr, 3779 const char *buf, size_t count) 3780 { 3781 struct hstate *h, *demote_hstate; 3782 unsigned long demote_size; 3783 unsigned int demote_order; 3784 int nid; 3785 3786 demote_size = (unsigned long)memparse(buf, NULL); 3787 3788 demote_hstate = size_to_hstate(demote_size); 3789 if (!demote_hstate) 3790 return -EINVAL; 3791 demote_order = demote_hstate->order; 3792 if (demote_order < HUGETLB_PAGE_ORDER) 3793 return -EINVAL; 3794 3795 /* demote order must be smaller than hstate order */ 3796 h = kobj_to_hstate(kobj, &nid); 3797 if (demote_order >= h->order) 3798 return -EINVAL; 3799 3800 /* resize_lock synchronizes access to demote size and writes */ 3801 mutex_lock(&h->resize_lock); 3802 h->demote_order = demote_order; 3803 mutex_unlock(&h->resize_lock); 3804 3805 return count; 3806 } 3807 HSTATE_ATTR(demote_size); 3808 3809 static struct attribute *hstate_attrs[] = { 3810 &nr_hugepages_attr.attr, 3811 &nr_overcommit_hugepages_attr.attr, 3812 &free_hugepages_attr.attr, 3813 &resv_hugepages_attr.attr, 3814 &surplus_hugepages_attr.attr, 3815 #ifdef CONFIG_NUMA 3816 &nr_hugepages_mempolicy_attr.attr, 3817 #endif 3818 NULL, 3819 }; 3820 3821 static const struct attribute_group hstate_attr_group = { 3822 .attrs = hstate_attrs, 3823 }; 3824 3825 static struct attribute *hstate_demote_attrs[] = { 3826 &demote_size_attr.attr, 3827 &demote_attr.attr, 3828 NULL, 3829 }; 3830 3831 static const struct attribute_group hstate_demote_attr_group = { 3832 .attrs = hstate_demote_attrs, 3833 }; 3834 3835 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent, 3836 struct kobject **hstate_kobjs, 3837 const struct attribute_group *hstate_attr_group) 3838 { 3839 int retval; 3840 int hi = hstate_index(h); 3841 3842 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent); 3843 if (!hstate_kobjs[hi]) 3844 return -ENOMEM; 3845 3846 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group); 3847 if (retval) { 3848 kobject_put(hstate_kobjs[hi]); 3849 hstate_kobjs[hi] = NULL; 3850 } 3851 3852 if (h->demote_order) { 3853 if (sysfs_create_group(hstate_kobjs[hi], 3854 &hstate_demote_attr_group)) 3855 pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name); 3856 } 3857 3858 return retval; 3859 } 3860 3861 static void __init hugetlb_sysfs_init(void) 3862 { 3863 struct hstate *h; 3864 int err; 3865 3866 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); 3867 if (!hugepages_kobj) 3868 return; 3869 3870 for_each_hstate(h) { 3871 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj, 3872 hstate_kobjs, &hstate_attr_group); 3873 if (err) 3874 pr_err("HugeTLB: Unable to add hstate %s", h->name); 3875 } 3876 } 3877 3878 #ifdef CONFIG_NUMA 3879 3880 /* 3881 * node_hstate/s - associate per node hstate attributes, via their kobjects, 3882 * with node devices in node_devices[] using a parallel array. The array 3883 * index of a node device or _hstate == node id. 3884 * This is here to avoid any static dependency of the node device driver, in 3885 * the base kernel, on the hugetlb module. 3886 */ 3887 struct node_hstate { 3888 struct kobject *hugepages_kobj; 3889 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 3890 }; 3891 static struct node_hstate node_hstates[MAX_NUMNODES]; 3892 3893 /* 3894 * A subset of global hstate attributes for node devices 3895 */ 3896 static struct attribute *per_node_hstate_attrs[] = { 3897 &nr_hugepages_attr.attr, 3898 &free_hugepages_attr.attr, 3899 &surplus_hugepages_attr.attr, 3900 NULL, 3901 }; 3902 3903 static const struct attribute_group per_node_hstate_attr_group = { 3904 .attrs = per_node_hstate_attrs, 3905 }; 3906 3907 /* 3908 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj. 3909 * Returns node id via non-NULL nidp. 3910 */ 3911 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 3912 { 3913 int nid; 3914 3915 for (nid = 0; nid < nr_node_ids; nid++) { 3916 struct node_hstate *nhs = &node_hstates[nid]; 3917 int i; 3918 for (i = 0; i < HUGE_MAX_HSTATE; i++) 3919 if (nhs->hstate_kobjs[i] == kobj) { 3920 if (nidp) 3921 *nidp = nid; 3922 return &hstates[i]; 3923 } 3924 } 3925 3926 BUG(); 3927 return NULL; 3928 } 3929 3930 /* 3931 * Unregister hstate attributes from a single node device. 3932 * No-op if no hstate attributes attached. 3933 */ 3934 static void hugetlb_unregister_node(struct node *node) 3935 { 3936 struct hstate *h; 3937 struct node_hstate *nhs = &node_hstates[node->dev.id]; 3938 3939 if (!nhs->hugepages_kobj) 3940 return; /* no hstate attributes */ 3941 3942 for_each_hstate(h) { 3943 int idx = hstate_index(h); 3944 if (nhs->hstate_kobjs[idx]) { 3945 kobject_put(nhs->hstate_kobjs[idx]); 3946 nhs->hstate_kobjs[idx] = NULL; 3947 } 3948 } 3949 3950 kobject_put(nhs->hugepages_kobj); 3951 nhs->hugepages_kobj = NULL; 3952 } 3953 3954 3955 /* 3956 * Register hstate attributes for a single node device. 3957 * No-op if attributes already registered. 3958 */ 3959 static void hugetlb_register_node(struct node *node) 3960 { 3961 struct hstate *h; 3962 struct node_hstate *nhs = &node_hstates[node->dev.id]; 3963 int err; 3964 3965 if (nhs->hugepages_kobj) 3966 return; /* already allocated */ 3967 3968 nhs->hugepages_kobj = kobject_create_and_add("hugepages", 3969 &node->dev.kobj); 3970 if (!nhs->hugepages_kobj) 3971 return; 3972 3973 for_each_hstate(h) { 3974 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj, 3975 nhs->hstate_kobjs, 3976 &per_node_hstate_attr_group); 3977 if (err) { 3978 pr_err("HugeTLB: Unable to add hstate %s for node %d\n", 3979 h->name, node->dev.id); 3980 hugetlb_unregister_node(node); 3981 break; 3982 } 3983 } 3984 } 3985 3986 /* 3987 * hugetlb init time: register hstate attributes for all registered node 3988 * devices of nodes that have memory. All on-line nodes should have 3989 * registered their associated device by this time. 3990 */ 3991 static void __init hugetlb_register_all_nodes(void) 3992 { 3993 int nid; 3994 3995 for_each_node_state(nid, N_MEMORY) { 3996 struct node *node = node_devices[nid]; 3997 if (node->dev.id == nid) 3998 hugetlb_register_node(node); 3999 } 4000 4001 /* 4002 * Let the node device driver know we're here so it can 4003 * [un]register hstate attributes on node hotplug. 4004 */ 4005 register_hugetlbfs_with_node(hugetlb_register_node, 4006 hugetlb_unregister_node); 4007 } 4008 #else /* !CONFIG_NUMA */ 4009 4010 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 4011 { 4012 BUG(); 4013 if (nidp) 4014 *nidp = -1; 4015 return NULL; 4016 } 4017 4018 static void hugetlb_register_all_nodes(void) { } 4019 4020 #endif 4021 4022 static int __init hugetlb_init(void) 4023 { 4024 int i; 4025 4026 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE < 4027 __NR_HPAGEFLAGS); 4028 4029 if (!hugepages_supported()) { 4030 if (hugetlb_max_hstate || default_hstate_max_huge_pages) 4031 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n"); 4032 return 0; 4033 } 4034 4035 /* 4036 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some 4037 * architectures depend on setup being done here. 4038 */ 4039 hugetlb_add_hstate(HUGETLB_PAGE_ORDER); 4040 if (!parsed_default_hugepagesz) { 4041 /* 4042 * If we did not parse a default huge page size, set 4043 * default_hstate_idx to HPAGE_SIZE hstate. And, if the 4044 * number of huge pages for this default size was implicitly 4045 * specified, set that here as well. 4046 * Note that the implicit setting will overwrite an explicit 4047 * setting. A warning will be printed in this case. 4048 */ 4049 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE)); 4050 if (default_hstate_max_huge_pages) { 4051 if (default_hstate.max_huge_pages) { 4052 char buf[32]; 4053 4054 string_get_size(huge_page_size(&default_hstate), 4055 1, STRING_UNITS_2, buf, 32); 4056 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n", 4057 default_hstate.max_huge_pages, buf); 4058 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n", 4059 default_hstate_max_huge_pages); 4060 } 4061 default_hstate.max_huge_pages = 4062 default_hstate_max_huge_pages; 4063 4064 for_each_online_node(i) 4065 default_hstate.max_huge_pages_node[i] = 4066 default_hugepages_in_node[i]; 4067 } 4068 } 4069 4070 hugetlb_cma_check(); 4071 hugetlb_init_hstates(); 4072 gather_bootmem_prealloc(); 4073 report_hugepages(); 4074 4075 hugetlb_sysfs_init(); 4076 hugetlb_register_all_nodes(); 4077 hugetlb_cgroup_file_init(); 4078 4079 #ifdef CONFIG_SMP 4080 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus()); 4081 #else 4082 num_fault_mutexes = 1; 4083 #endif 4084 hugetlb_fault_mutex_table = 4085 kmalloc_array(num_fault_mutexes, sizeof(struct mutex), 4086 GFP_KERNEL); 4087 BUG_ON(!hugetlb_fault_mutex_table); 4088 4089 for (i = 0; i < num_fault_mutexes; i++) 4090 mutex_init(&hugetlb_fault_mutex_table[i]); 4091 return 0; 4092 } 4093 subsys_initcall(hugetlb_init); 4094 4095 /* Overwritten by architectures with more huge page sizes */ 4096 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size) 4097 { 4098 return size == HPAGE_SIZE; 4099 } 4100 4101 void __init hugetlb_add_hstate(unsigned int order) 4102 { 4103 struct hstate *h; 4104 unsigned long i; 4105 4106 if (size_to_hstate(PAGE_SIZE << order)) { 4107 return; 4108 } 4109 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE); 4110 BUG_ON(order == 0); 4111 h = &hstates[hugetlb_max_hstate++]; 4112 mutex_init(&h->resize_lock); 4113 h->order = order; 4114 h->mask = ~(huge_page_size(h) - 1); 4115 for (i = 0; i < MAX_NUMNODES; ++i) 4116 INIT_LIST_HEAD(&h->hugepage_freelists[i]); 4117 INIT_LIST_HEAD(&h->hugepage_activelist); 4118 h->next_nid_to_alloc = first_memory_node; 4119 h->next_nid_to_free = first_memory_node; 4120 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", 4121 huge_page_size(h)/1024); 4122 4123 parsed_hstate = h; 4124 } 4125 4126 bool __init __weak hugetlb_node_alloc_supported(void) 4127 { 4128 return true; 4129 } 4130 4131 static void __init hugepages_clear_pages_in_node(void) 4132 { 4133 if (!hugetlb_max_hstate) { 4134 default_hstate_max_huge_pages = 0; 4135 memset(default_hugepages_in_node, 0, 4136 MAX_NUMNODES * sizeof(unsigned int)); 4137 } else { 4138 parsed_hstate->max_huge_pages = 0; 4139 memset(parsed_hstate->max_huge_pages_node, 0, 4140 MAX_NUMNODES * sizeof(unsigned int)); 4141 } 4142 } 4143 4144 /* 4145 * hugepages command line processing 4146 * hugepages normally follows a valid hugepagsz or default_hugepagsz 4147 * specification. If not, ignore the hugepages value. hugepages can also 4148 * be the first huge page command line option in which case it implicitly 4149 * specifies the number of huge pages for the default size. 4150 */ 4151 static int __init hugepages_setup(char *s) 4152 { 4153 unsigned long *mhp; 4154 static unsigned long *last_mhp; 4155 int node = NUMA_NO_NODE; 4156 int count; 4157 unsigned long tmp; 4158 char *p = s; 4159 4160 if (!parsed_valid_hugepagesz) { 4161 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s); 4162 parsed_valid_hugepagesz = true; 4163 return 1; 4164 } 4165 4166 /* 4167 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter 4168 * yet, so this hugepages= parameter goes to the "default hstate". 4169 * Otherwise, it goes with the previously parsed hugepagesz or 4170 * default_hugepagesz. 4171 */ 4172 else if (!hugetlb_max_hstate) 4173 mhp = &default_hstate_max_huge_pages; 4174 else 4175 mhp = &parsed_hstate->max_huge_pages; 4176 4177 if (mhp == last_mhp) { 4178 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s); 4179 return 1; 4180 } 4181 4182 while (*p) { 4183 count = 0; 4184 if (sscanf(p, "%lu%n", &tmp, &count) != 1) 4185 goto invalid; 4186 /* Parameter is node format */ 4187 if (p[count] == ':') { 4188 if (!hugetlb_node_alloc_supported()) { 4189 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n"); 4190 return 1; 4191 } 4192 if (tmp >= MAX_NUMNODES || !node_online(tmp)) 4193 goto invalid; 4194 node = array_index_nospec(tmp, MAX_NUMNODES); 4195 p += count + 1; 4196 /* Parse hugepages */ 4197 if (sscanf(p, "%lu%n", &tmp, &count) != 1) 4198 goto invalid; 4199 if (!hugetlb_max_hstate) 4200 default_hugepages_in_node[node] = tmp; 4201 else 4202 parsed_hstate->max_huge_pages_node[node] = tmp; 4203 *mhp += tmp; 4204 /* Go to parse next node*/ 4205 if (p[count] == ',') 4206 p += count + 1; 4207 else 4208 break; 4209 } else { 4210 if (p != s) 4211 goto invalid; 4212 *mhp = tmp; 4213 break; 4214 } 4215 } 4216 4217 /* 4218 * Global state is always initialized later in hugetlb_init. 4219 * But we need to allocate gigantic hstates here early to still 4220 * use the bootmem allocator. 4221 */ 4222 if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate)) 4223 hugetlb_hstate_alloc_pages(parsed_hstate); 4224 4225 last_mhp = mhp; 4226 4227 return 1; 4228 4229 invalid: 4230 pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p); 4231 hugepages_clear_pages_in_node(); 4232 return 1; 4233 } 4234 __setup("hugepages=", hugepages_setup); 4235 4236 /* 4237 * hugepagesz command line processing 4238 * A specific huge page size can only be specified once with hugepagesz. 4239 * hugepagesz is followed by hugepages on the command line. The global 4240 * variable 'parsed_valid_hugepagesz' is used to determine if prior 4241 * hugepagesz argument was valid. 4242 */ 4243 static int __init hugepagesz_setup(char *s) 4244 { 4245 unsigned long size; 4246 struct hstate *h; 4247 4248 parsed_valid_hugepagesz = false; 4249 size = (unsigned long)memparse(s, NULL); 4250 4251 if (!arch_hugetlb_valid_size(size)) { 4252 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s); 4253 return 1; 4254 } 4255 4256 h = size_to_hstate(size); 4257 if (h) { 4258 /* 4259 * hstate for this size already exists. This is normally 4260 * an error, but is allowed if the existing hstate is the 4261 * default hstate. More specifically, it is only allowed if 4262 * the number of huge pages for the default hstate was not 4263 * previously specified. 4264 */ 4265 if (!parsed_default_hugepagesz || h != &default_hstate || 4266 default_hstate.max_huge_pages) { 4267 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s); 4268 return 1; 4269 } 4270 4271 /* 4272 * No need to call hugetlb_add_hstate() as hstate already 4273 * exists. But, do set parsed_hstate so that a following 4274 * hugepages= parameter will be applied to this hstate. 4275 */ 4276 parsed_hstate = h; 4277 parsed_valid_hugepagesz = true; 4278 return 1; 4279 } 4280 4281 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); 4282 parsed_valid_hugepagesz = true; 4283 return 1; 4284 } 4285 __setup("hugepagesz=", hugepagesz_setup); 4286 4287 /* 4288 * default_hugepagesz command line input 4289 * Only one instance of default_hugepagesz allowed on command line. 4290 */ 4291 static int __init default_hugepagesz_setup(char *s) 4292 { 4293 unsigned long size; 4294 int i; 4295 4296 parsed_valid_hugepagesz = false; 4297 if (parsed_default_hugepagesz) { 4298 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s); 4299 return 1; 4300 } 4301 4302 size = (unsigned long)memparse(s, NULL); 4303 4304 if (!arch_hugetlb_valid_size(size)) { 4305 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s); 4306 return 1; 4307 } 4308 4309 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); 4310 parsed_valid_hugepagesz = true; 4311 parsed_default_hugepagesz = true; 4312 default_hstate_idx = hstate_index(size_to_hstate(size)); 4313 4314 /* 4315 * The number of default huge pages (for this size) could have been 4316 * specified as the first hugetlb parameter: hugepages=X. If so, 4317 * then default_hstate_max_huge_pages is set. If the default huge 4318 * page size is gigantic (>= MAX_ORDER), then the pages must be 4319 * allocated here from bootmem allocator. 4320 */ 4321 if (default_hstate_max_huge_pages) { 4322 default_hstate.max_huge_pages = default_hstate_max_huge_pages; 4323 for_each_online_node(i) 4324 default_hstate.max_huge_pages_node[i] = 4325 default_hugepages_in_node[i]; 4326 if (hstate_is_gigantic(&default_hstate)) 4327 hugetlb_hstate_alloc_pages(&default_hstate); 4328 default_hstate_max_huge_pages = 0; 4329 } 4330 4331 return 1; 4332 } 4333 __setup("default_hugepagesz=", default_hugepagesz_setup); 4334 4335 static unsigned int allowed_mems_nr(struct hstate *h) 4336 { 4337 int node; 4338 unsigned int nr = 0; 4339 nodemask_t *mpol_allowed; 4340 unsigned int *array = h->free_huge_pages_node; 4341 gfp_t gfp_mask = htlb_alloc_mask(h); 4342 4343 mpol_allowed = policy_nodemask_current(gfp_mask); 4344 4345 for_each_node_mask(node, cpuset_current_mems_allowed) { 4346 if (!mpol_allowed || node_isset(node, *mpol_allowed)) 4347 nr += array[node]; 4348 } 4349 4350 return nr; 4351 } 4352 4353 #ifdef CONFIG_SYSCTL 4354 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write, 4355 void *buffer, size_t *length, 4356 loff_t *ppos, unsigned long *out) 4357 { 4358 struct ctl_table dup_table; 4359 4360 /* 4361 * In order to avoid races with __do_proc_doulongvec_minmax(), we 4362 * can duplicate the @table and alter the duplicate of it. 4363 */ 4364 dup_table = *table; 4365 dup_table.data = out; 4366 4367 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos); 4368 } 4369 4370 static int hugetlb_sysctl_handler_common(bool obey_mempolicy, 4371 struct ctl_table *table, int write, 4372 void *buffer, size_t *length, loff_t *ppos) 4373 { 4374 struct hstate *h = &default_hstate; 4375 unsigned long tmp = h->max_huge_pages; 4376 int ret; 4377 4378 if (!hugepages_supported()) 4379 return -EOPNOTSUPP; 4380 4381 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, 4382 &tmp); 4383 if (ret) 4384 goto out; 4385 4386 if (write) 4387 ret = __nr_hugepages_store_common(obey_mempolicy, h, 4388 NUMA_NO_NODE, tmp, *length); 4389 out: 4390 return ret; 4391 } 4392 4393 int hugetlb_sysctl_handler(struct ctl_table *table, int write, 4394 void *buffer, size_t *length, loff_t *ppos) 4395 { 4396 4397 return hugetlb_sysctl_handler_common(false, table, write, 4398 buffer, length, ppos); 4399 } 4400 4401 #ifdef CONFIG_NUMA 4402 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write, 4403 void *buffer, size_t *length, loff_t *ppos) 4404 { 4405 return hugetlb_sysctl_handler_common(true, table, write, 4406 buffer, length, ppos); 4407 } 4408 #endif /* CONFIG_NUMA */ 4409 4410 int hugetlb_overcommit_handler(struct ctl_table *table, int write, 4411 void *buffer, size_t *length, loff_t *ppos) 4412 { 4413 struct hstate *h = &default_hstate; 4414 unsigned long tmp; 4415 int ret; 4416 4417 if (!hugepages_supported()) 4418 return -EOPNOTSUPP; 4419 4420 tmp = h->nr_overcommit_huge_pages; 4421 4422 if (write && hstate_is_gigantic(h)) 4423 return -EINVAL; 4424 4425 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, 4426 &tmp); 4427 if (ret) 4428 goto out; 4429 4430 if (write) { 4431 spin_lock_irq(&hugetlb_lock); 4432 h->nr_overcommit_huge_pages = tmp; 4433 spin_unlock_irq(&hugetlb_lock); 4434 } 4435 out: 4436 return ret; 4437 } 4438 4439 #endif /* CONFIG_SYSCTL */ 4440 4441 void hugetlb_report_meminfo(struct seq_file *m) 4442 { 4443 struct hstate *h; 4444 unsigned long total = 0; 4445 4446 if (!hugepages_supported()) 4447 return; 4448 4449 for_each_hstate(h) { 4450 unsigned long count = h->nr_huge_pages; 4451 4452 total += huge_page_size(h) * count; 4453 4454 if (h == &default_hstate) 4455 seq_printf(m, 4456 "HugePages_Total: %5lu\n" 4457 "HugePages_Free: %5lu\n" 4458 "HugePages_Rsvd: %5lu\n" 4459 "HugePages_Surp: %5lu\n" 4460 "Hugepagesize: %8lu kB\n", 4461 count, 4462 h->free_huge_pages, 4463 h->resv_huge_pages, 4464 h->surplus_huge_pages, 4465 huge_page_size(h) / SZ_1K); 4466 } 4467 4468 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K); 4469 } 4470 4471 int hugetlb_report_node_meminfo(char *buf, int len, int nid) 4472 { 4473 struct hstate *h = &default_hstate; 4474 4475 if (!hugepages_supported()) 4476 return 0; 4477 4478 return sysfs_emit_at(buf, len, 4479 "Node %d HugePages_Total: %5u\n" 4480 "Node %d HugePages_Free: %5u\n" 4481 "Node %d HugePages_Surp: %5u\n", 4482 nid, h->nr_huge_pages_node[nid], 4483 nid, h->free_huge_pages_node[nid], 4484 nid, h->surplus_huge_pages_node[nid]); 4485 } 4486 4487 void hugetlb_show_meminfo_node(int nid) 4488 { 4489 struct hstate *h; 4490 4491 if (!hugepages_supported()) 4492 return; 4493 4494 for_each_hstate(h) 4495 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n", 4496 nid, 4497 h->nr_huge_pages_node[nid], 4498 h->free_huge_pages_node[nid], 4499 h->surplus_huge_pages_node[nid], 4500 huge_page_size(h) / SZ_1K); 4501 } 4502 4503 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm) 4504 { 4505 seq_printf(m, "HugetlbPages:\t%8lu kB\n", 4506 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10)); 4507 } 4508 4509 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ 4510 unsigned long hugetlb_total_pages(void) 4511 { 4512 struct hstate *h; 4513 unsigned long nr_total_pages = 0; 4514 4515 for_each_hstate(h) 4516 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h); 4517 return nr_total_pages; 4518 } 4519 4520 static int hugetlb_acct_memory(struct hstate *h, long delta) 4521 { 4522 int ret = -ENOMEM; 4523 4524 if (!delta) 4525 return 0; 4526 4527 spin_lock_irq(&hugetlb_lock); 4528 /* 4529 * When cpuset is configured, it breaks the strict hugetlb page 4530 * reservation as the accounting is done on a global variable. Such 4531 * reservation is completely rubbish in the presence of cpuset because 4532 * the reservation is not checked against page availability for the 4533 * current cpuset. Application can still potentially OOM'ed by kernel 4534 * with lack of free htlb page in cpuset that the task is in. 4535 * Attempt to enforce strict accounting with cpuset is almost 4536 * impossible (or too ugly) because cpuset is too fluid that 4537 * task or memory node can be dynamically moved between cpusets. 4538 * 4539 * The change of semantics for shared hugetlb mapping with cpuset is 4540 * undesirable. However, in order to preserve some of the semantics, 4541 * we fall back to check against current free page availability as 4542 * a best attempt and hopefully to minimize the impact of changing 4543 * semantics that cpuset has. 4544 * 4545 * Apart from cpuset, we also have memory policy mechanism that 4546 * also determines from which node the kernel will allocate memory 4547 * in a NUMA system. So similar to cpuset, we also should consider 4548 * the memory policy of the current task. Similar to the description 4549 * above. 4550 */ 4551 if (delta > 0) { 4552 if (gather_surplus_pages(h, delta) < 0) 4553 goto out; 4554 4555 if (delta > allowed_mems_nr(h)) { 4556 return_unused_surplus_pages(h, delta); 4557 goto out; 4558 } 4559 } 4560 4561 ret = 0; 4562 if (delta < 0) 4563 return_unused_surplus_pages(h, (unsigned long) -delta); 4564 4565 out: 4566 spin_unlock_irq(&hugetlb_lock); 4567 return ret; 4568 } 4569 4570 static void hugetlb_vm_op_open(struct vm_area_struct *vma) 4571 { 4572 struct resv_map *resv = vma_resv_map(vma); 4573 4574 /* 4575 * This new VMA should share its siblings reservation map if present. 4576 * The VMA will only ever have a valid reservation map pointer where 4577 * it is being copied for another still existing VMA. As that VMA 4578 * has a reference to the reservation map it cannot disappear until 4579 * after this open call completes. It is therefore safe to take a 4580 * new reference here without additional locking. 4581 */ 4582 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 4583 resv_map_dup_hugetlb_cgroup_uncharge_info(resv); 4584 kref_get(&resv->refs); 4585 } 4586 } 4587 4588 static void hugetlb_vm_op_close(struct vm_area_struct *vma) 4589 { 4590 struct hstate *h = hstate_vma(vma); 4591 struct resv_map *resv = vma_resv_map(vma); 4592 struct hugepage_subpool *spool = subpool_vma(vma); 4593 unsigned long reserve, start, end; 4594 long gbl_reserve; 4595 4596 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 4597 return; 4598 4599 start = vma_hugecache_offset(h, vma, vma->vm_start); 4600 end = vma_hugecache_offset(h, vma, vma->vm_end); 4601 4602 reserve = (end - start) - region_count(resv, start, end); 4603 hugetlb_cgroup_uncharge_counter(resv, start, end); 4604 if (reserve) { 4605 /* 4606 * Decrement reserve counts. The global reserve count may be 4607 * adjusted if the subpool has a minimum size. 4608 */ 4609 gbl_reserve = hugepage_subpool_put_pages(spool, reserve); 4610 hugetlb_acct_memory(h, -gbl_reserve); 4611 } 4612 4613 kref_put(&resv->refs, resv_map_release); 4614 } 4615 4616 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr) 4617 { 4618 if (addr & ~(huge_page_mask(hstate_vma(vma)))) 4619 return -EINVAL; 4620 return 0; 4621 } 4622 4623 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma) 4624 { 4625 return huge_page_size(hstate_vma(vma)); 4626 } 4627 4628 /* 4629 * We cannot handle pagefaults against hugetlb pages at all. They cause 4630 * handle_mm_fault() to try to instantiate regular-sized pages in the 4631 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get 4632 * this far. 4633 */ 4634 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf) 4635 { 4636 BUG(); 4637 return 0; 4638 } 4639 4640 /* 4641 * When a new function is introduced to vm_operations_struct and added 4642 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops. 4643 * This is because under System V memory model, mappings created via 4644 * shmget/shmat with "huge page" specified are backed by hugetlbfs files, 4645 * their original vm_ops are overwritten with shm_vm_ops. 4646 */ 4647 const struct vm_operations_struct hugetlb_vm_ops = { 4648 .fault = hugetlb_vm_op_fault, 4649 .open = hugetlb_vm_op_open, 4650 .close = hugetlb_vm_op_close, 4651 .may_split = hugetlb_vm_op_split, 4652 .pagesize = hugetlb_vm_op_pagesize, 4653 }; 4654 4655 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, 4656 int writable) 4657 { 4658 pte_t entry; 4659 unsigned int shift = huge_page_shift(hstate_vma(vma)); 4660 4661 if (writable) { 4662 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page, 4663 vma->vm_page_prot))); 4664 } else { 4665 entry = huge_pte_wrprotect(mk_huge_pte(page, 4666 vma->vm_page_prot)); 4667 } 4668 entry = pte_mkyoung(entry); 4669 entry = arch_make_huge_pte(entry, shift, vma->vm_flags); 4670 4671 return entry; 4672 } 4673 4674 static void set_huge_ptep_writable(struct vm_area_struct *vma, 4675 unsigned long address, pte_t *ptep) 4676 { 4677 pte_t entry; 4678 4679 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep))); 4680 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) 4681 update_mmu_cache(vma, address, ptep); 4682 } 4683 4684 bool is_hugetlb_entry_migration(pte_t pte) 4685 { 4686 swp_entry_t swp; 4687 4688 if (huge_pte_none(pte) || pte_present(pte)) 4689 return false; 4690 swp = pte_to_swp_entry(pte); 4691 if (is_migration_entry(swp)) 4692 return true; 4693 else 4694 return false; 4695 } 4696 4697 static bool is_hugetlb_entry_hwpoisoned(pte_t pte) 4698 { 4699 swp_entry_t swp; 4700 4701 if (huge_pte_none(pte) || pte_present(pte)) 4702 return false; 4703 swp = pte_to_swp_entry(pte); 4704 if (is_hwpoison_entry(swp)) 4705 return true; 4706 else 4707 return false; 4708 } 4709 4710 static void 4711 hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr, 4712 struct page *new_page) 4713 { 4714 __SetPageUptodate(new_page); 4715 hugepage_add_new_anon_rmap(new_page, vma, addr); 4716 set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1)); 4717 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm); 4718 ClearHPageRestoreReserve(new_page); 4719 SetHPageMigratable(new_page); 4720 } 4721 4722 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, 4723 struct vm_area_struct *dst_vma, 4724 struct vm_area_struct *src_vma) 4725 { 4726 pte_t *src_pte, *dst_pte, entry, dst_entry; 4727 struct page *ptepage; 4728 unsigned long addr; 4729 bool cow = is_cow_mapping(src_vma->vm_flags); 4730 struct hstate *h = hstate_vma(src_vma); 4731 unsigned long sz = huge_page_size(h); 4732 unsigned long npages = pages_per_huge_page(h); 4733 struct address_space *mapping = src_vma->vm_file->f_mapping; 4734 struct mmu_notifier_range range; 4735 unsigned long last_addr_mask; 4736 int ret = 0; 4737 4738 if (cow) { 4739 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src_vma, src, 4740 src_vma->vm_start, 4741 src_vma->vm_end); 4742 mmu_notifier_invalidate_range_start(&range); 4743 mmap_assert_write_locked(src); 4744 raw_write_seqcount_begin(&src->write_protect_seq); 4745 } else { 4746 /* 4747 * For shared mappings i_mmap_rwsem must be held to call 4748 * huge_pte_alloc, otherwise the returned ptep could go 4749 * away if part of a shared pmd and another thread calls 4750 * huge_pmd_unshare. 4751 */ 4752 i_mmap_lock_read(mapping); 4753 } 4754 4755 last_addr_mask = hugetlb_mask_last_page(h); 4756 for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) { 4757 spinlock_t *src_ptl, *dst_ptl; 4758 src_pte = huge_pte_offset(src, addr, sz); 4759 if (!src_pte) { 4760 addr |= last_addr_mask; 4761 continue; 4762 } 4763 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz); 4764 if (!dst_pte) { 4765 ret = -ENOMEM; 4766 break; 4767 } 4768 4769 /* 4770 * If the pagetables are shared don't copy or take references. 4771 * dst_pte == src_pte is the common case of src/dest sharing. 4772 * 4773 * However, src could have 'unshared' and dst shares with 4774 * another vma. If dst_pte !none, this implies sharing. 4775 * Check here before taking page table lock, and once again 4776 * after taking the lock below. 4777 */ 4778 dst_entry = huge_ptep_get(dst_pte); 4779 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry)) { 4780 addr |= last_addr_mask; 4781 continue; 4782 } 4783 4784 dst_ptl = huge_pte_lock(h, dst, dst_pte); 4785 src_ptl = huge_pte_lockptr(h, src, src_pte); 4786 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 4787 entry = huge_ptep_get(src_pte); 4788 dst_entry = huge_ptep_get(dst_pte); 4789 again: 4790 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) { 4791 /* 4792 * Skip if src entry none. Also, skip in the 4793 * unlikely case dst entry !none as this implies 4794 * sharing with another vma. 4795 */ 4796 ; 4797 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) { 4798 bool uffd_wp = huge_pte_uffd_wp(entry); 4799 4800 if (!userfaultfd_wp(dst_vma) && uffd_wp) 4801 entry = huge_pte_clear_uffd_wp(entry); 4802 set_huge_pte_at(dst, addr, dst_pte, entry); 4803 } else if (unlikely(is_hugetlb_entry_migration(entry))) { 4804 swp_entry_t swp_entry = pte_to_swp_entry(entry); 4805 bool uffd_wp = huge_pte_uffd_wp(entry); 4806 4807 if (!is_readable_migration_entry(swp_entry) && cow) { 4808 /* 4809 * COW mappings require pages in both 4810 * parent and child to be set to read. 4811 */ 4812 swp_entry = make_readable_migration_entry( 4813 swp_offset(swp_entry)); 4814 entry = swp_entry_to_pte(swp_entry); 4815 if (userfaultfd_wp(src_vma) && uffd_wp) 4816 entry = huge_pte_mkuffd_wp(entry); 4817 set_huge_pte_at(src, addr, src_pte, entry); 4818 } 4819 if (!userfaultfd_wp(dst_vma) && uffd_wp) 4820 entry = huge_pte_clear_uffd_wp(entry); 4821 set_huge_pte_at(dst, addr, dst_pte, entry); 4822 } else if (unlikely(is_pte_marker(entry))) { 4823 /* 4824 * We copy the pte marker only if the dst vma has 4825 * uffd-wp enabled. 4826 */ 4827 if (userfaultfd_wp(dst_vma)) 4828 set_huge_pte_at(dst, addr, dst_pte, entry); 4829 } else { 4830 entry = huge_ptep_get(src_pte); 4831 ptepage = pte_page(entry); 4832 get_page(ptepage); 4833 4834 /* 4835 * Failing to duplicate the anon rmap is a rare case 4836 * where we see pinned hugetlb pages while they're 4837 * prone to COW. We need to do the COW earlier during 4838 * fork. 4839 * 4840 * When pre-allocating the page or copying data, we 4841 * need to be without the pgtable locks since we could 4842 * sleep during the process. 4843 */ 4844 if (!PageAnon(ptepage)) { 4845 page_dup_file_rmap(ptepage, true); 4846 } else if (page_try_dup_anon_rmap(ptepage, true, 4847 src_vma)) { 4848 pte_t src_pte_old = entry; 4849 struct page *new; 4850 4851 spin_unlock(src_ptl); 4852 spin_unlock(dst_ptl); 4853 /* Do not use reserve as it's private owned */ 4854 new = alloc_huge_page(dst_vma, addr, 1); 4855 if (IS_ERR(new)) { 4856 put_page(ptepage); 4857 ret = PTR_ERR(new); 4858 break; 4859 } 4860 copy_user_huge_page(new, ptepage, addr, dst_vma, 4861 npages); 4862 put_page(ptepage); 4863 4864 /* Install the new huge page if src pte stable */ 4865 dst_ptl = huge_pte_lock(h, dst, dst_pte); 4866 src_ptl = huge_pte_lockptr(h, src, src_pte); 4867 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 4868 entry = huge_ptep_get(src_pte); 4869 if (!pte_same(src_pte_old, entry)) { 4870 restore_reserve_on_error(h, dst_vma, addr, 4871 new); 4872 put_page(new); 4873 /* dst_entry won't change as in child */ 4874 goto again; 4875 } 4876 hugetlb_install_page(dst_vma, dst_pte, addr, new); 4877 spin_unlock(src_ptl); 4878 spin_unlock(dst_ptl); 4879 continue; 4880 } 4881 4882 if (cow) { 4883 /* 4884 * No need to notify as we are downgrading page 4885 * table protection not changing it to point 4886 * to a new page. 4887 * 4888 * See Documentation/mm/mmu_notifier.rst 4889 */ 4890 huge_ptep_set_wrprotect(src, addr, src_pte); 4891 entry = huge_pte_wrprotect(entry); 4892 } 4893 4894 set_huge_pte_at(dst, addr, dst_pte, entry); 4895 hugetlb_count_add(npages, dst); 4896 } 4897 spin_unlock(src_ptl); 4898 spin_unlock(dst_ptl); 4899 } 4900 4901 if (cow) { 4902 raw_write_seqcount_end(&src->write_protect_seq); 4903 mmu_notifier_invalidate_range_end(&range); 4904 } else { 4905 i_mmap_unlock_read(mapping); 4906 } 4907 4908 return ret; 4909 } 4910 4911 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr, 4912 unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte) 4913 { 4914 struct hstate *h = hstate_vma(vma); 4915 struct mm_struct *mm = vma->vm_mm; 4916 spinlock_t *src_ptl, *dst_ptl; 4917 pte_t pte; 4918 4919 dst_ptl = huge_pte_lock(h, mm, dst_pte); 4920 src_ptl = huge_pte_lockptr(h, mm, src_pte); 4921 4922 /* 4923 * We don't have to worry about the ordering of src and dst ptlocks 4924 * because exclusive mmap_sem (or the i_mmap_lock) prevents deadlock. 4925 */ 4926 if (src_ptl != dst_ptl) 4927 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 4928 4929 pte = huge_ptep_get_and_clear(mm, old_addr, src_pte); 4930 set_huge_pte_at(mm, new_addr, dst_pte, pte); 4931 4932 if (src_ptl != dst_ptl) 4933 spin_unlock(src_ptl); 4934 spin_unlock(dst_ptl); 4935 } 4936 4937 int move_hugetlb_page_tables(struct vm_area_struct *vma, 4938 struct vm_area_struct *new_vma, 4939 unsigned long old_addr, unsigned long new_addr, 4940 unsigned long len) 4941 { 4942 struct hstate *h = hstate_vma(vma); 4943 struct address_space *mapping = vma->vm_file->f_mapping; 4944 unsigned long sz = huge_page_size(h); 4945 struct mm_struct *mm = vma->vm_mm; 4946 unsigned long old_end = old_addr + len; 4947 unsigned long last_addr_mask; 4948 pte_t *src_pte, *dst_pte; 4949 struct mmu_notifier_range range; 4950 bool shared_pmd = false; 4951 4952 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, old_addr, 4953 old_end); 4954 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 4955 /* 4956 * In case of shared PMDs, we should cover the maximum possible 4957 * range. 4958 */ 4959 flush_cache_range(vma, range.start, range.end); 4960 4961 mmu_notifier_invalidate_range_start(&range); 4962 last_addr_mask = hugetlb_mask_last_page(h); 4963 /* Prevent race with file truncation */ 4964 i_mmap_lock_write(mapping); 4965 for (; old_addr < old_end; old_addr += sz, new_addr += sz) { 4966 src_pte = huge_pte_offset(mm, old_addr, sz); 4967 if (!src_pte) { 4968 old_addr |= last_addr_mask; 4969 new_addr |= last_addr_mask; 4970 continue; 4971 } 4972 if (huge_pte_none(huge_ptep_get(src_pte))) 4973 continue; 4974 4975 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) { 4976 shared_pmd = true; 4977 old_addr |= last_addr_mask; 4978 new_addr |= last_addr_mask; 4979 continue; 4980 } 4981 4982 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz); 4983 if (!dst_pte) 4984 break; 4985 4986 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte); 4987 } 4988 4989 if (shared_pmd) 4990 flush_tlb_range(vma, range.start, range.end); 4991 else 4992 flush_tlb_range(vma, old_end - len, old_end); 4993 mmu_notifier_invalidate_range_end(&range); 4994 i_mmap_unlock_write(mapping); 4995 4996 return len + old_addr - old_end; 4997 } 4998 4999 static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma, 5000 unsigned long start, unsigned long end, 5001 struct page *ref_page, zap_flags_t zap_flags) 5002 { 5003 struct mm_struct *mm = vma->vm_mm; 5004 unsigned long address; 5005 pte_t *ptep; 5006 pte_t pte; 5007 spinlock_t *ptl; 5008 struct page *page; 5009 struct hstate *h = hstate_vma(vma); 5010 unsigned long sz = huge_page_size(h); 5011 struct mmu_notifier_range range; 5012 unsigned long last_addr_mask; 5013 bool force_flush = false; 5014 5015 WARN_ON(!is_vm_hugetlb_page(vma)); 5016 BUG_ON(start & ~huge_page_mask(h)); 5017 BUG_ON(end & ~huge_page_mask(h)); 5018 5019 /* 5020 * This is a hugetlb vma, all the pte entries should point 5021 * to huge page. 5022 */ 5023 tlb_change_page_size(tlb, sz); 5024 tlb_start_vma(tlb, vma); 5025 5026 /* 5027 * If sharing possible, alert mmu notifiers of worst case. 5028 */ 5029 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start, 5030 end); 5031 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 5032 mmu_notifier_invalidate_range_start(&range); 5033 last_addr_mask = hugetlb_mask_last_page(h); 5034 address = start; 5035 for (; address < end; address += sz) { 5036 ptep = huge_pte_offset(mm, address, sz); 5037 if (!ptep) { 5038 address |= last_addr_mask; 5039 continue; 5040 } 5041 5042 ptl = huge_pte_lock(h, mm, ptep); 5043 if (huge_pmd_unshare(mm, vma, address, ptep)) { 5044 spin_unlock(ptl); 5045 tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE); 5046 force_flush = true; 5047 address |= last_addr_mask; 5048 continue; 5049 } 5050 5051 pte = huge_ptep_get(ptep); 5052 if (huge_pte_none(pte)) { 5053 spin_unlock(ptl); 5054 continue; 5055 } 5056 5057 /* 5058 * Migrating hugepage or HWPoisoned hugepage is already 5059 * unmapped and its refcount is dropped, so just clear pte here. 5060 */ 5061 if (unlikely(!pte_present(pte))) { 5062 /* 5063 * If the pte was wr-protected by uffd-wp in any of the 5064 * swap forms, meanwhile the caller does not want to 5065 * drop the uffd-wp bit in this zap, then replace the 5066 * pte with a marker. 5067 */ 5068 if (pte_swp_uffd_wp_any(pte) && 5069 !(zap_flags & ZAP_FLAG_DROP_MARKER)) 5070 set_huge_pte_at(mm, address, ptep, 5071 make_pte_marker(PTE_MARKER_UFFD_WP)); 5072 else 5073 huge_pte_clear(mm, address, ptep, sz); 5074 spin_unlock(ptl); 5075 continue; 5076 } 5077 5078 page = pte_page(pte); 5079 /* 5080 * If a reference page is supplied, it is because a specific 5081 * page is being unmapped, not a range. Ensure the page we 5082 * are about to unmap is the actual page of interest. 5083 */ 5084 if (ref_page) { 5085 if (page != ref_page) { 5086 spin_unlock(ptl); 5087 continue; 5088 } 5089 /* 5090 * Mark the VMA as having unmapped its page so that 5091 * future faults in this VMA will fail rather than 5092 * looking like data was lost 5093 */ 5094 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); 5095 } 5096 5097 pte = huge_ptep_get_and_clear(mm, address, ptep); 5098 tlb_remove_huge_tlb_entry(h, tlb, ptep, address); 5099 if (huge_pte_dirty(pte)) 5100 set_page_dirty(page); 5101 /* Leave a uffd-wp pte marker if needed */ 5102 if (huge_pte_uffd_wp(pte) && 5103 !(zap_flags & ZAP_FLAG_DROP_MARKER)) 5104 set_huge_pte_at(mm, address, ptep, 5105 make_pte_marker(PTE_MARKER_UFFD_WP)); 5106 hugetlb_count_sub(pages_per_huge_page(h), mm); 5107 page_remove_rmap(page, vma, true); 5108 5109 spin_unlock(ptl); 5110 tlb_remove_page_size(tlb, page, huge_page_size(h)); 5111 /* 5112 * Bail out after unmapping reference page if supplied 5113 */ 5114 if (ref_page) 5115 break; 5116 } 5117 mmu_notifier_invalidate_range_end(&range); 5118 tlb_end_vma(tlb, vma); 5119 5120 /* 5121 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We 5122 * could defer the flush until now, since by holding i_mmap_rwsem we 5123 * guaranteed that the last refernece would not be dropped. But we must 5124 * do the flushing before we return, as otherwise i_mmap_rwsem will be 5125 * dropped and the last reference to the shared PMDs page might be 5126 * dropped as well. 5127 * 5128 * In theory we could defer the freeing of the PMD pages as well, but 5129 * huge_pmd_unshare() relies on the exact page_count for the PMD page to 5130 * detect sharing, so we cannot defer the release of the page either. 5131 * Instead, do flush now. 5132 */ 5133 if (force_flush) 5134 tlb_flush_mmu_tlbonly(tlb); 5135 } 5136 5137 void __unmap_hugepage_range_final(struct mmu_gather *tlb, 5138 struct vm_area_struct *vma, unsigned long start, 5139 unsigned long end, struct page *ref_page, 5140 zap_flags_t zap_flags) 5141 { 5142 __unmap_hugepage_range(tlb, vma, start, end, ref_page, zap_flags); 5143 5144 /* 5145 * Clear this flag so that x86's huge_pmd_share page_table_shareable 5146 * test will fail on a vma being torn down, and not grab a page table 5147 * on its way out. We're lucky that the flag has such an appropriate 5148 * name, and can in fact be safely cleared here. We could clear it 5149 * before the __unmap_hugepage_range above, but all that's necessary 5150 * is to clear it before releasing the i_mmap_rwsem. This works 5151 * because in the context this is called, the VMA is about to be 5152 * destroyed and the i_mmap_rwsem is held. 5153 */ 5154 vma->vm_flags &= ~VM_MAYSHARE; 5155 } 5156 5157 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, 5158 unsigned long end, struct page *ref_page, 5159 zap_flags_t zap_flags) 5160 { 5161 struct mmu_gather tlb; 5162 5163 tlb_gather_mmu(&tlb, vma->vm_mm); 5164 __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags); 5165 tlb_finish_mmu(&tlb); 5166 } 5167 5168 /* 5169 * This is called when the original mapper is failing to COW a MAP_PRIVATE 5170 * mapping it owns the reserve page for. The intention is to unmap the page 5171 * from other VMAs and let the children be SIGKILLed if they are faulting the 5172 * same region. 5173 */ 5174 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, 5175 struct page *page, unsigned long address) 5176 { 5177 struct hstate *h = hstate_vma(vma); 5178 struct vm_area_struct *iter_vma; 5179 struct address_space *mapping; 5180 pgoff_t pgoff; 5181 5182 /* 5183 * vm_pgoff is in PAGE_SIZE units, hence the different calculation 5184 * from page cache lookup which is in HPAGE_SIZE units. 5185 */ 5186 address = address & huge_page_mask(h); 5187 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + 5188 vma->vm_pgoff; 5189 mapping = vma->vm_file->f_mapping; 5190 5191 /* 5192 * Take the mapping lock for the duration of the table walk. As 5193 * this mapping should be shared between all the VMAs, 5194 * __unmap_hugepage_range() is called as the lock is already held 5195 */ 5196 i_mmap_lock_write(mapping); 5197 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) { 5198 /* Do not unmap the current VMA */ 5199 if (iter_vma == vma) 5200 continue; 5201 5202 /* 5203 * Shared VMAs have their own reserves and do not affect 5204 * MAP_PRIVATE accounting but it is possible that a shared 5205 * VMA is using the same page so check and skip such VMAs. 5206 */ 5207 if (iter_vma->vm_flags & VM_MAYSHARE) 5208 continue; 5209 5210 /* 5211 * Unmap the page from other VMAs without their own reserves. 5212 * They get marked to be SIGKILLed if they fault in these 5213 * areas. This is because a future no-page fault on this VMA 5214 * could insert a zeroed page instead of the data existing 5215 * from the time of fork. This would look like data corruption 5216 */ 5217 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) 5218 unmap_hugepage_range(iter_vma, address, 5219 address + huge_page_size(h), page, 0); 5220 } 5221 i_mmap_unlock_write(mapping); 5222 } 5223 5224 /* 5225 * hugetlb_wp() should be called with page lock of the original hugepage held. 5226 * Called with hugetlb_fault_mutex_table held and pte_page locked so we 5227 * cannot race with other handlers or page migration. 5228 * Keep the pte_same checks anyway to make transition from the mutex easier. 5229 */ 5230 static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma, 5231 unsigned long address, pte_t *ptep, unsigned int flags, 5232 struct page *pagecache_page, spinlock_t *ptl) 5233 { 5234 const bool unshare = flags & FAULT_FLAG_UNSHARE; 5235 pte_t pte; 5236 struct hstate *h = hstate_vma(vma); 5237 struct page *old_page, *new_page; 5238 int outside_reserve = 0; 5239 vm_fault_t ret = 0; 5240 unsigned long haddr = address & huge_page_mask(h); 5241 struct mmu_notifier_range range; 5242 5243 VM_BUG_ON(unshare && (flags & FOLL_WRITE)); 5244 VM_BUG_ON(!unshare && !(flags & FOLL_WRITE)); 5245 5246 /* 5247 * hugetlb does not support FOLL_FORCE-style write faults that keep the 5248 * PTE mapped R/O such as maybe_mkwrite() would do. 5249 */ 5250 if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE))) 5251 return VM_FAULT_SIGSEGV; 5252 5253 /* Let's take out MAP_SHARED mappings first. */ 5254 if (vma->vm_flags & VM_MAYSHARE) { 5255 if (unlikely(unshare)) 5256 return 0; 5257 set_huge_ptep_writable(vma, haddr, ptep); 5258 return 0; 5259 } 5260 5261 pte = huge_ptep_get(ptep); 5262 old_page = pte_page(pte); 5263 5264 delayacct_wpcopy_start(); 5265 5266 retry_avoidcopy: 5267 /* 5268 * If no-one else is actually using this page, we're the exclusive 5269 * owner and can reuse this page. 5270 */ 5271 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) { 5272 if (!PageAnonExclusive(old_page)) 5273 page_move_anon_rmap(old_page, vma); 5274 if (likely(!unshare)) 5275 set_huge_ptep_writable(vma, haddr, ptep); 5276 5277 delayacct_wpcopy_end(); 5278 return 0; 5279 } 5280 VM_BUG_ON_PAGE(PageAnon(old_page) && PageAnonExclusive(old_page), 5281 old_page); 5282 5283 /* 5284 * If the process that created a MAP_PRIVATE mapping is about to 5285 * perform a COW due to a shared page count, attempt to satisfy 5286 * the allocation without using the existing reserves. The pagecache 5287 * page is used to determine if the reserve at this address was 5288 * consumed or not. If reserves were used, a partial faulted mapping 5289 * at the time of fork() could consume its reserves on COW instead 5290 * of the full address range. 5291 */ 5292 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && 5293 old_page != pagecache_page) 5294 outside_reserve = 1; 5295 5296 get_page(old_page); 5297 5298 /* 5299 * Drop page table lock as buddy allocator may be called. It will 5300 * be acquired again before returning to the caller, as expected. 5301 */ 5302 spin_unlock(ptl); 5303 new_page = alloc_huge_page(vma, haddr, outside_reserve); 5304 5305 if (IS_ERR(new_page)) { 5306 /* 5307 * If a process owning a MAP_PRIVATE mapping fails to COW, 5308 * it is due to references held by a child and an insufficient 5309 * huge page pool. To guarantee the original mappers 5310 * reliability, unmap the page from child processes. The child 5311 * may get SIGKILLed if it later faults. 5312 */ 5313 if (outside_reserve) { 5314 struct address_space *mapping = vma->vm_file->f_mapping; 5315 pgoff_t idx; 5316 u32 hash; 5317 5318 put_page(old_page); 5319 BUG_ON(huge_pte_none(pte)); 5320 /* 5321 * Drop hugetlb_fault_mutex and i_mmap_rwsem before 5322 * unmapping. unmapping needs to hold i_mmap_rwsem 5323 * in write mode. Dropping i_mmap_rwsem in read mode 5324 * here is OK as COW mappings do not interact with 5325 * PMD sharing. 5326 * 5327 * Reacquire both after unmap operation. 5328 */ 5329 idx = vma_hugecache_offset(h, vma, haddr); 5330 hash = hugetlb_fault_mutex_hash(mapping, idx); 5331 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 5332 i_mmap_unlock_read(mapping); 5333 5334 unmap_ref_private(mm, vma, old_page, haddr); 5335 5336 i_mmap_lock_read(mapping); 5337 mutex_lock(&hugetlb_fault_mutex_table[hash]); 5338 spin_lock(ptl); 5339 ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); 5340 if (likely(ptep && 5341 pte_same(huge_ptep_get(ptep), pte))) 5342 goto retry_avoidcopy; 5343 /* 5344 * race occurs while re-acquiring page table 5345 * lock, and our job is done. 5346 */ 5347 delayacct_wpcopy_end(); 5348 return 0; 5349 } 5350 5351 ret = vmf_error(PTR_ERR(new_page)); 5352 goto out_release_old; 5353 } 5354 5355 /* 5356 * When the original hugepage is shared one, it does not have 5357 * anon_vma prepared. 5358 */ 5359 if (unlikely(anon_vma_prepare(vma))) { 5360 ret = VM_FAULT_OOM; 5361 goto out_release_all; 5362 } 5363 5364 copy_user_huge_page(new_page, old_page, address, vma, 5365 pages_per_huge_page(h)); 5366 __SetPageUptodate(new_page); 5367 5368 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr, 5369 haddr + huge_page_size(h)); 5370 mmu_notifier_invalidate_range_start(&range); 5371 5372 /* 5373 * Retake the page table lock to check for racing updates 5374 * before the page tables are altered 5375 */ 5376 spin_lock(ptl); 5377 ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); 5378 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) { 5379 ClearHPageRestoreReserve(new_page); 5380 5381 /* Break COW or unshare */ 5382 huge_ptep_clear_flush(vma, haddr, ptep); 5383 mmu_notifier_invalidate_range(mm, range.start, range.end); 5384 page_remove_rmap(old_page, vma, true); 5385 hugepage_add_new_anon_rmap(new_page, vma, haddr); 5386 set_huge_pte_at(mm, haddr, ptep, 5387 make_huge_pte(vma, new_page, !unshare)); 5388 SetHPageMigratable(new_page); 5389 /* Make the old page be freed below */ 5390 new_page = old_page; 5391 } 5392 spin_unlock(ptl); 5393 mmu_notifier_invalidate_range_end(&range); 5394 out_release_all: 5395 /* 5396 * No restore in case of successful pagetable update (Break COW or 5397 * unshare) 5398 */ 5399 if (new_page != old_page) 5400 restore_reserve_on_error(h, vma, haddr, new_page); 5401 put_page(new_page); 5402 out_release_old: 5403 put_page(old_page); 5404 5405 spin_lock(ptl); /* Caller expects lock to be held */ 5406 5407 delayacct_wpcopy_end(); 5408 return ret; 5409 } 5410 5411 /* Return the pagecache page at a given address within a VMA */ 5412 static struct page *hugetlbfs_pagecache_page(struct hstate *h, 5413 struct vm_area_struct *vma, unsigned long address) 5414 { 5415 struct address_space *mapping; 5416 pgoff_t idx; 5417 5418 mapping = vma->vm_file->f_mapping; 5419 idx = vma_hugecache_offset(h, vma, address); 5420 5421 return find_lock_page(mapping, idx); 5422 } 5423 5424 /* 5425 * Return whether there is a pagecache page to back given address within VMA. 5426 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page. 5427 */ 5428 static bool hugetlbfs_pagecache_present(struct hstate *h, 5429 struct vm_area_struct *vma, unsigned long address) 5430 { 5431 struct address_space *mapping; 5432 pgoff_t idx; 5433 struct page *page; 5434 5435 mapping = vma->vm_file->f_mapping; 5436 idx = vma_hugecache_offset(h, vma, address); 5437 5438 page = find_get_page(mapping, idx); 5439 if (page) 5440 put_page(page); 5441 return page != NULL; 5442 } 5443 5444 int huge_add_to_page_cache(struct page *page, struct address_space *mapping, 5445 pgoff_t idx) 5446 { 5447 struct folio *folio = page_folio(page); 5448 struct inode *inode = mapping->host; 5449 struct hstate *h = hstate_inode(inode); 5450 int err; 5451 5452 __folio_set_locked(folio); 5453 err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL); 5454 5455 if (unlikely(err)) { 5456 __folio_clear_locked(folio); 5457 return err; 5458 } 5459 ClearHPageRestoreReserve(page); 5460 5461 /* 5462 * mark folio dirty so that it will not be removed from cache/file 5463 * by non-hugetlbfs specific code paths. 5464 */ 5465 folio_mark_dirty(folio); 5466 5467 spin_lock(&inode->i_lock); 5468 inode->i_blocks += blocks_per_huge_page(h); 5469 spin_unlock(&inode->i_lock); 5470 return 0; 5471 } 5472 5473 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma, 5474 struct address_space *mapping, 5475 pgoff_t idx, 5476 unsigned int flags, 5477 unsigned long haddr, 5478 unsigned long addr, 5479 unsigned long reason) 5480 { 5481 vm_fault_t ret; 5482 u32 hash; 5483 struct vm_fault vmf = { 5484 .vma = vma, 5485 .address = haddr, 5486 .real_address = addr, 5487 .flags = flags, 5488 5489 /* 5490 * Hard to debug if it ends up being 5491 * used by a callee that assumes 5492 * something about the other 5493 * uninitialized fields... same as in 5494 * memory.c 5495 */ 5496 }; 5497 5498 /* 5499 * hugetlb_fault_mutex and i_mmap_rwsem must be 5500 * dropped before handling userfault. Reacquire 5501 * after handling fault to make calling code simpler. 5502 */ 5503 hash = hugetlb_fault_mutex_hash(mapping, idx); 5504 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 5505 i_mmap_unlock_read(mapping); 5506 ret = handle_userfault(&vmf, reason); 5507 i_mmap_lock_read(mapping); 5508 mutex_lock(&hugetlb_fault_mutex_table[hash]); 5509 5510 return ret; 5511 } 5512 5513 static vm_fault_t hugetlb_no_page(struct mm_struct *mm, 5514 struct vm_area_struct *vma, 5515 struct address_space *mapping, pgoff_t idx, 5516 unsigned long address, pte_t *ptep, 5517 pte_t old_pte, unsigned int flags) 5518 { 5519 struct hstate *h = hstate_vma(vma); 5520 vm_fault_t ret = VM_FAULT_SIGBUS; 5521 int anon_rmap = 0; 5522 unsigned long size; 5523 struct page *page; 5524 pte_t new_pte; 5525 spinlock_t *ptl; 5526 unsigned long haddr = address & huge_page_mask(h); 5527 bool new_page, new_pagecache_page = false; 5528 5529 /* 5530 * Currently, we are forced to kill the process in the event the 5531 * original mapper has unmapped pages from the child due to a failed 5532 * COW/unsharing. Warn that such a situation has occurred as it may not 5533 * be obvious. 5534 */ 5535 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { 5536 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n", 5537 current->pid); 5538 return ret; 5539 } 5540 5541 /* 5542 * We can not race with truncation due to holding i_mmap_rwsem. 5543 * i_size is modified when holding i_mmap_rwsem, so check here 5544 * once for faults beyond end of file. 5545 */ 5546 size = i_size_read(mapping->host) >> huge_page_shift(h); 5547 if (idx >= size) 5548 goto out; 5549 5550 retry: 5551 new_page = false; 5552 page = find_lock_page(mapping, idx); 5553 if (!page) { 5554 /* Check for page in userfault range */ 5555 if (userfaultfd_missing(vma)) { 5556 ret = hugetlb_handle_userfault(vma, mapping, idx, 5557 flags, haddr, address, 5558 VM_UFFD_MISSING); 5559 goto out; 5560 } 5561 5562 page = alloc_huge_page(vma, haddr, 0); 5563 if (IS_ERR(page)) { 5564 /* 5565 * Returning error will result in faulting task being 5566 * sent SIGBUS. The hugetlb fault mutex prevents two 5567 * tasks from racing to fault in the same page which 5568 * could result in false unable to allocate errors. 5569 * Page migration does not take the fault mutex, but 5570 * does a clear then write of pte's under page table 5571 * lock. Page fault code could race with migration, 5572 * notice the clear pte and try to allocate a page 5573 * here. Before returning error, get ptl and make 5574 * sure there really is no pte entry. 5575 */ 5576 ptl = huge_pte_lock(h, mm, ptep); 5577 ret = 0; 5578 if (huge_pte_none(huge_ptep_get(ptep))) 5579 ret = vmf_error(PTR_ERR(page)); 5580 spin_unlock(ptl); 5581 goto out; 5582 } 5583 clear_huge_page(page, address, pages_per_huge_page(h)); 5584 __SetPageUptodate(page); 5585 new_page = true; 5586 5587 if (vma->vm_flags & VM_MAYSHARE) { 5588 int err = huge_add_to_page_cache(page, mapping, idx); 5589 if (err) { 5590 put_page(page); 5591 if (err == -EEXIST) 5592 goto retry; 5593 goto out; 5594 } 5595 new_pagecache_page = true; 5596 } else { 5597 lock_page(page); 5598 if (unlikely(anon_vma_prepare(vma))) { 5599 ret = VM_FAULT_OOM; 5600 goto backout_unlocked; 5601 } 5602 anon_rmap = 1; 5603 } 5604 } else { 5605 /* 5606 * If memory error occurs between mmap() and fault, some process 5607 * don't have hwpoisoned swap entry for errored virtual address. 5608 * So we need to block hugepage fault by PG_hwpoison bit check. 5609 */ 5610 if (unlikely(PageHWPoison(page))) { 5611 ret = VM_FAULT_HWPOISON_LARGE | 5612 VM_FAULT_SET_HINDEX(hstate_index(h)); 5613 goto backout_unlocked; 5614 } 5615 5616 /* Check for page in userfault range. */ 5617 if (userfaultfd_minor(vma)) { 5618 unlock_page(page); 5619 put_page(page); 5620 ret = hugetlb_handle_userfault(vma, mapping, idx, 5621 flags, haddr, address, 5622 VM_UFFD_MINOR); 5623 goto out; 5624 } 5625 } 5626 5627 /* 5628 * If we are going to COW a private mapping later, we examine the 5629 * pending reservations for this page now. This will ensure that 5630 * any allocations necessary to record that reservation occur outside 5631 * the spinlock. 5632 */ 5633 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 5634 if (vma_needs_reservation(h, vma, haddr) < 0) { 5635 ret = VM_FAULT_OOM; 5636 goto backout_unlocked; 5637 } 5638 /* Just decrements count, does not deallocate */ 5639 vma_end_reservation(h, vma, haddr); 5640 } 5641 5642 ptl = huge_pte_lock(h, mm, ptep); 5643 ret = 0; 5644 /* If pte changed from under us, retry */ 5645 if (!pte_same(huge_ptep_get(ptep), old_pte)) 5646 goto backout; 5647 5648 if (anon_rmap) { 5649 ClearHPageRestoreReserve(page); 5650 hugepage_add_new_anon_rmap(page, vma, haddr); 5651 } else 5652 page_dup_file_rmap(page, true); 5653 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE) 5654 && (vma->vm_flags & VM_SHARED))); 5655 /* 5656 * If this pte was previously wr-protected, keep it wr-protected even 5657 * if populated. 5658 */ 5659 if (unlikely(pte_marker_uffd_wp(old_pte))) 5660 new_pte = huge_pte_wrprotect(huge_pte_mkuffd_wp(new_pte)); 5661 set_huge_pte_at(mm, haddr, ptep, new_pte); 5662 5663 hugetlb_count_add(pages_per_huge_page(h), mm); 5664 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 5665 /* Optimization, do the COW without a second fault */ 5666 ret = hugetlb_wp(mm, vma, address, ptep, flags, page, ptl); 5667 } 5668 5669 spin_unlock(ptl); 5670 5671 /* 5672 * Only set HPageMigratable in newly allocated pages. Existing pages 5673 * found in the pagecache may not have HPageMigratableset if they have 5674 * been isolated for migration. 5675 */ 5676 if (new_page) 5677 SetHPageMigratable(page); 5678 5679 unlock_page(page); 5680 out: 5681 return ret; 5682 5683 backout: 5684 spin_unlock(ptl); 5685 backout_unlocked: 5686 unlock_page(page); 5687 /* restore reserve for newly allocated pages not in page cache */ 5688 if (new_page && !new_pagecache_page) 5689 restore_reserve_on_error(h, vma, haddr, page); 5690 put_page(page); 5691 goto out; 5692 } 5693 5694 #ifdef CONFIG_SMP 5695 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 5696 { 5697 unsigned long key[2]; 5698 u32 hash; 5699 5700 key[0] = (unsigned long) mapping; 5701 key[1] = idx; 5702 5703 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0); 5704 5705 return hash & (num_fault_mutexes - 1); 5706 } 5707 #else 5708 /* 5709 * For uniprocessor systems we always use a single mutex, so just 5710 * return 0 and avoid the hashing overhead. 5711 */ 5712 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 5713 { 5714 return 0; 5715 } 5716 #endif 5717 5718 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, 5719 unsigned long address, unsigned int flags) 5720 { 5721 pte_t *ptep, entry; 5722 spinlock_t *ptl; 5723 vm_fault_t ret; 5724 u32 hash; 5725 pgoff_t idx; 5726 struct page *page = NULL; 5727 struct page *pagecache_page = NULL; 5728 struct hstate *h = hstate_vma(vma); 5729 struct address_space *mapping; 5730 int need_wait_lock = 0; 5731 unsigned long haddr = address & huge_page_mask(h); 5732 5733 ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); 5734 if (ptep) { 5735 /* 5736 * Since we hold no locks, ptep could be stale. That is 5737 * OK as we are only making decisions based on content and 5738 * not actually modifying content here. 5739 */ 5740 entry = huge_ptep_get(ptep); 5741 if (unlikely(is_hugetlb_entry_migration(entry))) { 5742 migration_entry_wait_huge(vma, ptep); 5743 return 0; 5744 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) 5745 return VM_FAULT_HWPOISON_LARGE | 5746 VM_FAULT_SET_HINDEX(hstate_index(h)); 5747 } 5748 5749 /* 5750 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold 5751 * until finished with ptep. This serves two purposes: 5752 * 1) It prevents huge_pmd_unshare from being called elsewhere 5753 * and making the ptep no longer valid. 5754 * 2) It synchronizes us with i_size modifications during truncation. 5755 * 5756 * ptep could have already be assigned via huge_pte_offset. That 5757 * is OK, as huge_pte_alloc will return the same value unless 5758 * something has changed. 5759 */ 5760 mapping = vma->vm_file->f_mapping; 5761 i_mmap_lock_read(mapping); 5762 ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h)); 5763 if (!ptep) { 5764 i_mmap_unlock_read(mapping); 5765 return VM_FAULT_OOM; 5766 } 5767 5768 /* 5769 * Serialize hugepage allocation and instantiation, so that we don't 5770 * get spurious allocation failures if two CPUs race to instantiate 5771 * the same page in the page cache. 5772 */ 5773 idx = vma_hugecache_offset(h, vma, haddr); 5774 hash = hugetlb_fault_mutex_hash(mapping, idx); 5775 mutex_lock(&hugetlb_fault_mutex_table[hash]); 5776 5777 entry = huge_ptep_get(ptep); 5778 /* PTE markers should be handled the same way as none pte */ 5779 if (huge_pte_none_mostly(entry)) { 5780 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, 5781 entry, flags); 5782 goto out_mutex; 5783 } 5784 5785 ret = 0; 5786 5787 /* 5788 * entry could be a migration/hwpoison entry at this point, so this 5789 * check prevents the kernel from going below assuming that we have 5790 * an active hugepage in pagecache. This goto expects the 2nd page 5791 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will 5792 * properly handle it. 5793 */ 5794 if (!pte_present(entry)) 5795 goto out_mutex; 5796 5797 /* 5798 * If we are going to COW/unshare the mapping later, we examine the 5799 * pending reservations for this page now. This will ensure that any 5800 * allocations necessary to record that reservation occur outside the 5801 * spinlock. Also lookup the pagecache page now as it is used to 5802 * determine if a reservation has been consumed. 5803 */ 5804 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) && 5805 !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) { 5806 if (vma_needs_reservation(h, vma, haddr) < 0) { 5807 ret = VM_FAULT_OOM; 5808 goto out_mutex; 5809 } 5810 /* Just decrements count, does not deallocate */ 5811 vma_end_reservation(h, vma, haddr); 5812 5813 pagecache_page = hugetlbfs_pagecache_page(h, vma, haddr); 5814 } 5815 5816 ptl = huge_pte_lock(h, mm, ptep); 5817 5818 /* Check for a racing update before calling hugetlb_wp() */ 5819 if (unlikely(!pte_same(entry, huge_ptep_get(ptep)))) 5820 goto out_ptl; 5821 5822 /* Handle userfault-wp first, before trying to lock more pages */ 5823 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) && 5824 (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) { 5825 struct vm_fault vmf = { 5826 .vma = vma, 5827 .address = haddr, 5828 .real_address = address, 5829 .flags = flags, 5830 }; 5831 5832 spin_unlock(ptl); 5833 if (pagecache_page) { 5834 unlock_page(pagecache_page); 5835 put_page(pagecache_page); 5836 } 5837 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 5838 i_mmap_unlock_read(mapping); 5839 return handle_userfault(&vmf, VM_UFFD_WP); 5840 } 5841 5842 /* 5843 * hugetlb_wp() requires page locks of pte_page(entry) and 5844 * pagecache_page, so here we need take the former one 5845 * when page != pagecache_page or !pagecache_page. 5846 */ 5847 page = pte_page(entry); 5848 if (page != pagecache_page) 5849 if (!trylock_page(page)) { 5850 need_wait_lock = 1; 5851 goto out_ptl; 5852 } 5853 5854 get_page(page); 5855 5856 if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) { 5857 if (!huge_pte_write(entry)) { 5858 ret = hugetlb_wp(mm, vma, address, ptep, flags, 5859 pagecache_page, ptl); 5860 goto out_put_page; 5861 } else if (likely(flags & FAULT_FLAG_WRITE)) { 5862 entry = huge_pte_mkdirty(entry); 5863 } 5864 } 5865 entry = pte_mkyoung(entry); 5866 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry, 5867 flags & FAULT_FLAG_WRITE)) 5868 update_mmu_cache(vma, haddr, ptep); 5869 out_put_page: 5870 if (page != pagecache_page) 5871 unlock_page(page); 5872 put_page(page); 5873 out_ptl: 5874 spin_unlock(ptl); 5875 5876 if (pagecache_page) { 5877 unlock_page(pagecache_page); 5878 put_page(pagecache_page); 5879 } 5880 out_mutex: 5881 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 5882 i_mmap_unlock_read(mapping); 5883 /* 5884 * Generally it's safe to hold refcount during waiting page lock. But 5885 * here we just wait to defer the next page fault to avoid busy loop and 5886 * the page is not used after unlocked before returning from the current 5887 * page fault. So we are safe from accessing freed page, even if we wait 5888 * here without taking refcount. 5889 */ 5890 if (need_wait_lock) 5891 wait_on_page_locked(page); 5892 return ret; 5893 } 5894 5895 #ifdef CONFIG_USERFAULTFD 5896 /* 5897 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with 5898 * modifications for huge pages. 5899 */ 5900 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm, 5901 pte_t *dst_pte, 5902 struct vm_area_struct *dst_vma, 5903 unsigned long dst_addr, 5904 unsigned long src_addr, 5905 enum mcopy_atomic_mode mode, 5906 struct page **pagep, 5907 bool wp_copy) 5908 { 5909 bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE); 5910 struct hstate *h = hstate_vma(dst_vma); 5911 struct address_space *mapping = dst_vma->vm_file->f_mapping; 5912 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr); 5913 unsigned long size; 5914 int vm_shared = dst_vma->vm_flags & VM_SHARED; 5915 pte_t _dst_pte; 5916 spinlock_t *ptl; 5917 int ret = -ENOMEM; 5918 struct page *page; 5919 int writable; 5920 bool page_in_pagecache = false; 5921 5922 if (is_continue) { 5923 ret = -EFAULT; 5924 page = find_lock_page(mapping, idx); 5925 if (!page) 5926 goto out; 5927 page_in_pagecache = true; 5928 } else if (!*pagep) { 5929 /* If a page already exists, then it's UFFDIO_COPY for 5930 * a non-missing case. Return -EEXIST. 5931 */ 5932 if (vm_shared && 5933 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) { 5934 ret = -EEXIST; 5935 goto out; 5936 } 5937 5938 page = alloc_huge_page(dst_vma, dst_addr, 0); 5939 if (IS_ERR(page)) { 5940 ret = -ENOMEM; 5941 goto out; 5942 } 5943 5944 ret = copy_huge_page_from_user(page, 5945 (const void __user *) src_addr, 5946 pages_per_huge_page(h), false); 5947 5948 /* fallback to copy_from_user outside mmap_lock */ 5949 if (unlikely(ret)) { 5950 ret = -ENOENT; 5951 /* Free the allocated page which may have 5952 * consumed a reservation. 5953 */ 5954 restore_reserve_on_error(h, dst_vma, dst_addr, page); 5955 put_page(page); 5956 5957 /* Allocate a temporary page to hold the copied 5958 * contents. 5959 */ 5960 page = alloc_huge_page_vma(h, dst_vma, dst_addr); 5961 if (!page) { 5962 ret = -ENOMEM; 5963 goto out; 5964 } 5965 *pagep = page; 5966 /* Set the outparam pagep and return to the caller to 5967 * copy the contents outside the lock. Don't free the 5968 * page. 5969 */ 5970 goto out; 5971 } 5972 } else { 5973 if (vm_shared && 5974 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) { 5975 put_page(*pagep); 5976 ret = -EEXIST; 5977 *pagep = NULL; 5978 goto out; 5979 } 5980 5981 page = alloc_huge_page(dst_vma, dst_addr, 0); 5982 if (IS_ERR(page)) { 5983 put_page(*pagep); 5984 ret = -ENOMEM; 5985 *pagep = NULL; 5986 goto out; 5987 } 5988 copy_user_huge_page(page, *pagep, dst_addr, dst_vma, 5989 pages_per_huge_page(h)); 5990 put_page(*pagep); 5991 *pagep = NULL; 5992 } 5993 5994 /* 5995 * The memory barrier inside __SetPageUptodate makes sure that 5996 * preceding stores to the page contents become visible before 5997 * the set_pte_at() write. 5998 */ 5999 __SetPageUptodate(page); 6000 6001 /* Add shared, newly allocated pages to the page cache. */ 6002 if (vm_shared && !is_continue) { 6003 size = i_size_read(mapping->host) >> huge_page_shift(h); 6004 ret = -EFAULT; 6005 if (idx >= size) 6006 goto out_release_nounlock; 6007 6008 /* 6009 * Serialization between remove_inode_hugepages() and 6010 * huge_add_to_page_cache() below happens through the 6011 * hugetlb_fault_mutex_table that here must be hold by 6012 * the caller. 6013 */ 6014 ret = huge_add_to_page_cache(page, mapping, idx); 6015 if (ret) 6016 goto out_release_nounlock; 6017 page_in_pagecache = true; 6018 } 6019 6020 ptl = huge_pte_lockptr(h, dst_mm, dst_pte); 6021 spin_lock(ptl); 6022 6023 /* 6024 * Recheck the i_size after holding PT lock to make sure not 6025 * to leave any page mapped (as page_mapped()) beyond the end 6026 * of the i_size (remove_inode_hugepages() is strict about 6027 * enforcing that). If we bail out here, we'll also leave a 6028 * page in the radix tree in the vm_shared case beyond the end 6029 * of the i_size, but remove_inode_hugepages() will take care 6030 * of it as soon as we drop the hugetlb_fault_mutex_table. 6031 */ 6032 size = i_size_read(mapping->host) >> huge_page_shift(h); 6033 ret = -EFAULT; 6034 if (idx >= size) 6035 goto out_release_unlock; 6036 6037 ret = -EEXIST; 6038 /* 6039 * We allow to overwrite a pte marker: consider when both MISSING|WP 6040 * registered, we firstly wr-protect a none pte which has no page cache 6041 * page backing it, then access the page. 6042 */ 6043 if (!huge_pte_none_mostly(huge_ptep_get(dst_pte))) 6044 goto out_release_unlock; 6045 6046 if (page_in_pagecache) { 6047 page_dup_file_rmap(page, true); 6048 } else { 6049 ClearHPageRestoreReserve(page); 6050 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr); 6051 } 6052 6053 /* 6054 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY 6055 * with wp flag set, don't set pte write bit. 6056 */ 6057 if (wp_copy || (is_continue && !vm_shared)) 6058 writable = 0; 6059 else 6060 writable = dst_vma->vm_flags & VM_WRITE; 6061 6062 _dst_pte = make_huge_pte(dst_vma, page, writable); 6063 /* 6064 * Always mark UFFDIO_COPY page dirty; note that this may not be 6065 * extremely important for hugetlbfs for now since swapping is not 6066 * supported, but we should still be clear in that this page cannot be 6067 * thrown away at will, even if write bit not set. 6068 */ 6069 _dst_pte = huge_pte_mkdirty(_dst_pte); 6070 _dst_pte = pte_mkyoung(_dst_pte); 6071 6072 if (wp_copy) 6073 _dst_pte = huge_pte_mkuffd_wp(_dst_pte); 6074 6075 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte); 6076 6077 hugetlb_count_add(pages_per_huge_page(h), dst_mm); 6078 6079 /* No need to invalidate - it was non-present before */ 6080 update_mmu_cache(dst_vma, dst_addr, dst_pte); 6081 6082 spin_unlock(ptl); 6083 if (!is_continue) 6084 SetHPageMigratable(page); 6085 if (vm_shared || is_continue) 6086 unlock_page(page); 6087 ret = 0; 6088 out: 6089 return ret; 6090 out_release_unlock: 6091 spin_unlock(ptl); 6092 if (vm_shared || is_continue) 6093 unlock_page(page); 6094 out_release_nounlock: 6095 if (!page_in_pagecache) 6096 restore_reserve_on_error(h, dst_vma, dst_addr, page); 6097 put_page(page); 6098 goto out; 6099 } 6100 #endif /* CONFIG_USERFAULTFD */ 6101 6102 static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma, 6103 int refs, struct page **pages, 6104 struct vm_area_struct **vmas) 6105 { 6106 int nr; 6107 6108 for (nr = 0; nr < refs; nr++) { 6109 if (likely(pages)) 6110 pages[nr] = mem_map_offset(page, nr); 6111 if (vmas) 6112 vmas[nr] = vma; 6113 } 6114 } 6115 6116 static inline bool __follow_hugetlb_must_fault(unsigned int flags, pte_t *pte, 6117 bool *unshare) 6118 { 6119 pte_t pteval = huge_ptep_get(pte); 6120 6121 *unshare = false; 6122 if (is_swap_pte(pteval)) 6123 return true; 6124 if (huge_pte_write(pteval)) 6125 return false; 6126 if (flags & FOLL_WRITE) 6127 return true; 6128 if (gup_must_unshare(flags, pte_page(pteval))) { 6129 *unshare = true; 6130 return true; 6131 } 6132 return false; 6133 } 6134 6135 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, 6136 struct page **pages, struct vm_area_struct **vmas, 6137 unsigned long *position, unsigned long *nr_pages, 6138 long i, unsigned int flags, int *locked) 6139 { 6140 unsigned long pfn_offset; 6141 unsigned long vaddr = *position; 6142 unsigned long remainder = *nr_pages; 6143 struct hstate *h = hstate_vma(vma); 6144 int err = -EFAULT, refs; 6145 6146 while (vaddr < vma->vm_end && remainder) { 6147 pte_t *pte; 6148 spinlock_t *ptl = NULL; 6149 bool unshare = false; 6150 int absent; 6151 struct page *page; 6152 6153 /* 6154 * If we have a pending SIGKILL, don't keep faulting pages and 6155 * potentially allocating memory. 6156 */ 6157 if (fatal_signal_pending(current)) { 6158 remainder = 0; 6159 break; 6160 } 6161 6162 /* 6163 * Some archs (sparc64, sh*) have multiple pte_ts to 6164 * each hugepage. We have to make sure we get the 6165 * first, for the page indexing below to work. 6166 * 6167 * Note that page table lock is not held when pte is null. 6168 */ 6169 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h), 6170 huge_page_size(h)); 6171 if (pte) 6172 ptl = huge_pte_lock(h, mm, pte); 6173 absent = !pte || huge_pte_none(huge_ptep_get(pte)); 6174 6175 /* 6176 * When coredumping, it suits get_dump_page if we just return 6177 * an error where there's an empty slot with no huge pagecache 6178 * to back it. This way, we avoid allocating a hugepage, and 6179 * the sparse dumpfile avoids allocating disk blocks, but its 6180 * huge holes still show up with zeroes where they need to be. 6181 */ 6182 if (absent && (flags & FOLL_DUMP) && 6183 !hugetlbfs_pagecache_present(h, vma, vaddr)) { 6184 if (pte) 6185 spin_unlock(ptl); 6186 remainder = 0; 6187 break; 6188 } 6189 6190 /* 6191 * We need call hugetlb_fault for both hugepages under migration 6192 * (in which case hugetlb_fault waits for the migration,) and 6193 * hwpoisoned hugepages (in which case we need to prevent the 6194 * caller from accessing to them.) In order to do this, we use 6195 * here is_swap_pte instead of is_hugetlb_entry_migration and 6196 * is_hugetlb_entry_hwpoisoned. This is because it simply covers 6197 * both cases, and because we can't follow correct pages 6198 * directly from any kind of swap entries. 6199 */ 6200 if (absent || 6201 __follow_hugetlb_must_fault(flags, pte, &unshare)) { 6202 vm_fault_t ret; 6203 unsigned int fault_flags = 0; 6204 6205 if (pte) 6206 spin_unlock(ptl); 6207 if (flags & FOLL_WRITE) 6208 fault_flags |= FAULT_FLAG_WRITE; 6209 else if (unshare) 6210 fault_flags |= FAULT_FLAG_UNSHARE; 6211 if (locked) 6212 fault_flags |= FAULT_FLAG_ALLOW_RETRY | 6213 FAULT_FLAG_KILLABLE; 6214 if (flags & FOLL_NOWAIT) 6215 fault_flags |= FAULT_FLAG_ALLOW_RETRY | 6216 FAULT_FLAG_RETRY_NOWAIT; 6217 if (flags & FOLL_TRIED) { 6218 /* 6219 * Note: FAULT_FLAG_ALLOW_RETRY and 6220 * FAULT_FLAG_TRIED can co-exist 6221 */ 6222 fault_flags |= FAULT_FLAG_TRIED; 6223 } 6224 ret = hugetlb_fault(mm, vma, vaddr, fault_flags); 6225 if (ret & VM_FAULT_ERROR) { 6226 err = vm_fault_to_errno(ret, flags); 6227 remainder = 0; 6228 break; 6229 } 6230 if (ret & VM_FAULT_RETRY) { 6231 if (locked && 6232 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) 6233 *locked = 0; 6234 *nr_pages = 0; 6235 /* 6236 * VM_FAULT_RETRY must not return an 6237 * error, it will return zero 6238 * instead. 6239 * 6240 * No need to update "position" as the 6241 * caller will not check it after 6242 * *nr_pages is set to 0. 6243 */ 6244 return i; 6245 } 6246 continue; 6247 } 6248 6249 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT; 6250 page = pte_page(huge_ptep_get(pte)); 6251 6252 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) && 6253 !PageAnonExclusive(page), page); 6254 6255 /* 6256 * If subpage information not requested, update counters 6257 * and skip the same_page loop below. 6258 */ 6259 if (!pages && !vmas && !pfn_offset && 6260 (vaddr + huge_page_size(h) < vma->vm_end) && 6261 (remainder >= pages_per_huge_page(h))) { 6262 vaddr += huge_page_size(h); 6263 remainder -= pages_per_huge_page(h); 6264 i += pages_per_huge_page(h); 6265 spin_unlock(ptl); 6266 continue; 6267 } 6268 6269 /* vaddr may not be aligned to PAGE_SIZE */ 6270 refs = min3(pages_per_huge_page(h) - pfn_offset, remainder, 6271 (vma->vm_end - ALIGN_DOWN(vaddr, PAGE_SIZE)) >> PAGE_SHIFT); 6272 6273 if (pages || vmas) 6274 record_subpages_vmas(mem_map_offset(page, pfn_offset), 6275 vma, refs, 6276 likely(pages) ? pages + i : NULL, 6277 vmas ? vmas + i : NULL); 6278 6279 if (pages) { 6280 /* 6281 * try_grab_folio() should always succeed here, 6282 * because: a) we hold the ptl lock, and b) we've just 6283 * checked that the huge page is present in the page 6284 * tables. If the huge page is present, then the tail 6285 * pages must also be present. The ptl prevents the 6286 * head page and tail pages from being rearranged in 6287 * any way. So this page must be available at this 6288 * point, unless the page refcount overflowed: 6289 */ 6290 if (WARN_ON_ONCE(!try_grab_folio(pages[i], refs, 6291 flags))) { 6292 spin_unlock(ptl); 6293 remainder = 0; 6294 err = -ENOMEM; 6295 break; 6296 } 6297 } 6298 6299 vaddr += (refs << PAGE_SHIFT); 6300 remainder -= refs; 6301 i += refs; 6302 6303 spin_unlock(ptl); 6304 } 6305 *nr_pages = remainder; 6306 /* 6307 * setting position is actually required only if remainder is 6308 * not zero but it's faster not to add a "if (remainder)" 6309 * branch. 6310 */ 6311 *position = vaddr; 6312 6313 return i ? i : err; 6314 } 6315 6316 unsigned long hugetlb_change_protection(struct vm_area_struct *vma, 6317 unsigned long address, unsigned long end, 6318 pgprot_t newprot, unsigned long cp_flags) 6319 { 6320 struct mm_struct *mm = vma->vm_mm; 6321 unsigned long start = address; 6322 pte_t *ptep; 6323 pte_t pte; 6324 struct hstate *h = hstate_vma(vma); 6325 unsigned long pages = 0, psize = huge_page_size(h); 6326 bool shared_pmd = false; 6327 struct mmu_notifier_range range; 6328 unsigned long last_addr_mask; 6329 bool uffd_wp = cp_flags & MM_CP_UFFD_WP; 6330 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE; 6331 6332 /* 6333 * In the case of shared PMDs, the area to flush could be beyond 6334 * start/end. Set range.start/range.end to cover the maximum possible 6335 * range if PMD sharing is possible. 6336 */ 6337 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA, 6338 0, vma, mm, start, end); 6339 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 6340 6341 BUG_ON(address >= end); 6342 flush_cache_range(vma, range.start, range.end); 6343 6344 mmu_notifier_invalidate_range_start(&range); 6345 last_addr_mask = hugetlb_mask_last_page(h); 6346 i_mmap_lock_write(vma->vm_file->f_mapping); 6347 for (; address < end; address += psize) { 6348 spinlock_t *ptl; 6349 ptep = huge_pte_offset(mm, address, psize); 6350 if (!ptep) { 6351 address |= last_addr_mask; 6352 continue; 6353 } 6354 ptl = huge_pte_lock(h, mm, ptep); 6355 if (huge_pmd_unshare(mm, vma, address, ptep)) { 6356 /* 6357 * When uffd-wp is enabled on the vma, unshare 6358 * shouldn't happen at all. Warn about it if it 6359 * happened due to some reason. 6360 */ 6361 WARN_ON_ONCE(uffd_wp || uffd_wp_resolve); 6362 pages++; 6363 spin_unlock(ptl); 6364 shared_pmd = true; 6365 address |= last_addr_mask; 6366 continue; 6367 } 6368 pte = huge_ptep_get(ptep); 6369 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) { 6370 spin_unlock(ptl); 6371 continue; 6372 } 6373 if (unlikely(is_hugetlb_entry_migration(pte))) { 6374 swp_entry_t entry = pte_to_swp_entry(pte); 6375 struct page *page = pfn_swap_entry_to_page(entry); 6376 6377 if (!is_readable_migration_entry(entry)) { 6378 pte_t newpte; 6379 6380 if (PageAnon(page)) 6381 entry = make_readable_exclusive_migration_entry( 6382 swp_offset(entry)); 6383 else 6384 entry = make_readable_migration_entry( 6385 swp_offset(entry)); 6386 newpte = swp_entry_to_pte(entry); 6387 if (uffd_wp) 6388 newpte = pte_swp_mkuffd_wp(newpte); 6389 else if (uffd_wp_resolve) 6390 newpte = pte_swp_clear_uffd_wp(newpte); 6391 set_huge_pte_at(mm, address, ptep, newpte); 6392 pages++; 6393 } 6394 spin_unlock(ptl); 6395 continue; 6396 } 6397 if (unlikely(pte_marker_uffd_wp(pte))) { 6398 /* 6399 * This is changing a non-present pte into a none pte, 6400 * no need for huge_ptep_modify_prot_start/commit(). 6401 */ 6402 if (uffd_wp_resolve) 6403 huge_pte_clear(mm, address, ptep, psize); 6404 } 6405 if (!huge_pte_none(pte)) { 6406 pte_t old_pte; 6407 unsigned int shift = huge_page_shift(hstate_vma(vma)); 6408 6409 old_pte = huge_ptep_modify_prot_start(vma, address, ptep); 6410 pte = huge_pte_modify(old_pte, newprot); 6411 pte = arch_make_huge_pte(pte, shift, vma->vm_flags); 6412 if (uffd_wp) 6413 pte = huge_pte_mkuffd_wp(huge_pte_wrprotect(pte)); 6414 else if (uffd_wp_resolve) 6415 pte = huge_pte_clear_uffd_wp(pte); 6416 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte); 6417 pages++; 6418 } else { 6419 /* None pte */ 6420 if (unlikely(uffd_wp)) 6421 /* Safe to modify directly (none->non-present). */ 6422 set_huge_pte_at(mm, address, ptep, 6423 make_pte_marker(PTE_MARKER_UFFD_WP)); 6424 } 6425 spin_unlock(ptl); 6426 } 6427 /* 6428 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare 6429 * may have cleared our pud entry and done put_page on the page table: 6430 * once we release i_mmap_rwsem, another task can do the final put_page 6431 * and that page table be reused and filled with junk. If we actually 6432 * did unshare a page of pmds, flush the range corresponding to the pud. 6433 */ 6434 if (shared_pmd) 6435 flush_hugetlb_tlb_range(vma, range.start, range.end); 6436 else 6437 flush_hugetlb_tlb_range(vma, start, end); 6438 /* 6439 * No need to call mmu_notifier_invalidate_range() we are downgrading 6440 * page table protection not changing it to point to a new page. 6441 * 6442 * See Documentation/mm/mmu_notifier.rst 6443 */ 6444 i_mmap_unlock_write(vma->vm_file->f_mapping); 6445 mmu_notifier_invalidate_range_end(&range); 6446 6447 return pages << h->order; 6448 } 6449 6450 /* Return true if reservation was successful, false otherwise. */ 6451 bool hugetlb_reserve_pages(struct inode *inode, 6452 long from, long to, 6453 struct vm_area_struct *vma, 6454 vm_flags_t vm_flags) 6455 { 6456 long chg, add = -1; 6457 struct hstate *h = hstate_inode(inode); 6458 struct hugepage_subpool *spool = subpool_inode(inode); 6459 struct resv_map *resv_map; 6460 struct hugetlb_cgroup *h_cg = NULL; 6461 long gbl_reserve, regions_needed = 0; 6462 6463 /* This should never happen */ 6464 if (from > to) { 6465 VM_WARN(1, "%s called with a negative range\n", __func__); 6466 return false; 6467 } 6468 6469 /* 6470 * Only apply hugepage reservation if asked. At fault time, an 6471 * attempt will be made for VM_NORESERVE to allocate a page 6472 * without using reserves 6473 */ 6474 if (vm_flags & VM_NORESERVE) 6475 return true; 6476 6477 /* 6478 * Shared mappings base their reservation on the number of pages that 6479 * are already allocated on behalf of the file. Private mappings need 6480 * to reserve the full area even if read-only as mprotect() may be 6481 * called to make the mapping read-write. Assume !vma is a shm mapping 6482 */ 6483 if (!vma || vma->vm_flags & VM_MAYSHARE) { 6484 /* 6485 * resv_map can not be NULL as hugetlb_reserve_pages is only 6486 * called for inodes for which resv_maps were created (see 6487 * hugetlbfs_get_inode). 6488 */ 6489 resv_map = inode_resv_map(inode); 6490 6491 chg = region_chg(resv_map, from, to, ®ions_needed); 6492 6493 } else { 6494 /* Private mapping. */ 6495 resv_map = resv_map_alloc(); 6496 if (!resv_map) 6497 return false; 6498 6499 chg = to - from; 6500 6501 set_vma_resv_map(vma, resv_map); 6502 set_vma_resv_flags(vma, HPAGE_RESV_OWNER); 6503 } 6504 6505 if (chg < 0) 6506 goto out_err; 6507 6508 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h), 6509 chg * pages_per_huge_page(h), &h_cg) < 0) 6510 goto out_err; 6511 6512 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) { 6513 /* For private mappings, the hugetlb_cgroup uncharge info hangs 6514 * of the resv_map. 6515 */ 6516 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h); 6517 } 6518 6519 /* 6520 * There must be enough pages in the subpool for the mapping. If 6521 * the subpool has a minimum size, there may be some global 6522 * reservations already in place (gbl_reserve). 6523 */ 6524 gbl_reserve = hugepage_subpool_get_pages(spool, chg); 6525 if (gbl_reserve < 0) 6526 goto out_uncharge_cgroup; 6527 6528 /* 6529 * Check enough hugepages are available for the reservation. 6530 * Hand the pages back to the subpool if there are not 6531 */ 6532 if (hugetlb_acct_memory(h, gbl_reserve) < 0) 6533 goto out_put_pages; 6534 6535 /* 6536 * Account for the reservations made. Shared mappings record regions 6537 * that have reservations as they are shared by multiple VMAs. 6538 * When the last VMA disappears, the region map says how much 6539 * the reservation was and the page cache tells how much of 6540 * the reservation was consumed. Private mappings are per-VMA and 6541 * only the consumed reservations are tracked. When the VMA 6542 * disappears, the original reservation is the VMA size and the 6543 * consumed reservations are stored in the map. Hence, nothing 6544 * else has to be done for private mappings here 6545 */ 6546 if (!vma || vma->vm_flags & VM_MAYSHARE) { 6547 add = region_add(resv_map, from, to, regions_needed, h, h_cg); 6548 6549 if (unlikely(add < 0)) { 6550 hugetlb_acct_memory(h, -gbl_reserve); 6551 goto out_put_pages; 6552 } else if (unlikely(chg > add)) { 6553 /* 6554 * pages in this range were added to the reserve 6555 * map between region_chg and region_add. This 6556 * indicates a race with alloc_huge_page. Adjust 6557 * the subpool and reserve counts modified above 6558 * based on the difference. 6559 */ 6560 long rsv_adjust; 6561 6562 /* 6563 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the 6564 * reference to h_cg->css. See comment below for detail. 6565 */ 6566 hugetlb_cgroup_uncharge_cgroup_rsvd( 6567 hstate_index(h), 6568 (chg - add) * pages_per_huge_page(h), h_cg); 6569 6570 rsv_adjust = hugepage_subpool_put_pages(spool, 6571 chg - add); 6572 hugetlb_acct_memory(h, -rsv_adjust); 6573 } else if (h_cg) { 6574 /* 6575 * The file_regions will hold their own reference to 6576 * h_cg->css. So we should release the reference held 6577 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are 6578 * done. 6579 */ 6580 hugetlb_cgroup_put_rsvd_cgroup(h_cg); 6581 } 6582 } 6583 return true; 6584 6585 out_put_pages: 6586 /* put back original number of pages, chg */ 6587 (void)hugepage_subpool_put_pages(spool, chg); 6588 out_uncharge_cgroup: 6589 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h), 6590 chg * pages_per_huge_page(h), h_cg); 6591 out_err: 6592 if (!vma || vma->vm_flags & VM_MAYSHARE) 6593 /* Only call region_abort if the region_chg succeeded but the 6594 * region_add failed or didn't run. 6595 */ 6596 if (chg >= 0 && add < 0) 6597 region_abort(resv_map, from, to, regions_needed); 6598 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 6599 kref_put(&resv_map->refs, resv_map_release); 6600 return false; 6601 } 6602 6603 long hugetlb_unreserve_pages(struct inode *inode, long start, long end, 6604 long freed) 6605 { 6606 struct hstate *h = hstate_inode(inode); 6607 struct resv_map *resv_map = inode_resv_map(inode); 6608 long chg = 0; 6609 struct hugepage_subpool *spool = subpool_inode(inode); 6610 long gbl_reserve; 6611 6612 /* 6613 * Since this routine can be called in the evict inode path for all 6614 * hugetlbfs inodes, resv_map could be NULL. 6615 */ 6616 if (resv_map) { 6617 chg = region_del(resv_map, start, end); 6618 /* 6619 * region_del() can fail in the rare case where a region 6620 * must be split and another region descriptor can not be 6621 * allocated. If end == LONG_MAX, it will not fail. 6622 */ 6623 if (chg < 0) 6624 return chg; 6625 } 6626 6627 spin_lock(&inode->i_lock); 6628 inode->i_blocks -= (blocks_per_huge_page(h) * freed); 6629 spin_unlock(&inode->i_lock); 6630 6631 /* 6632 * If the subpool has a minimum size, the number of global 6633 * reservations to be released may be adjusted. 6634 * 6635 * Note that !resv_map implies freed == 0. So (chg - freed) 6636 * won't go negative. 6637 */ 6638 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed)); 6639 hugetlb_acct_memory(h, -gbl_reserve); 6640 6641 return 0; 6642 } 6643 6644 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE 6645 static unsigned long page_table_shareable(struct vm_area_struct *svma, 6646 struct vm_area_struct *vma, 6647 unsigned long addr, pgoff_t idx) 6648 { 6649 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) + 6650 svma->vm_start; 6651 unsigned long sbase = saddr & PUD_MASK; 6652 unsigned long s_end = sbase + PUD_SIZE; 6653 6654 /* Allow segments to share if only one is marked locked */ 6655 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK; 6656 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK; 6657 6658 /* 6659 * match the virtual addresses, permission and the alignment of the 6660 * page table page. 6661 */ 6662 if (pmd_index(addr) != pmd_index(saddr) || 6663 vm_flags != svm_flags || 6664 !range_in_vma(svma, sbase, s_end)) 6665 return 0; 6666 6667 return saddr; 6668 } 6669 6670 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr) 6671 { 6672 unsigned long base = addr & PUD_MASK; 6673 unsigned long end = base + PUD_SIZE; 6674 6675 /* 6676 * check on proper vm_flags and page table alignment 6677 */ 6678 if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end)) 6679 return true; 6680 return false; 6681 } 6682 6683 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr) 6684 { 6685 #ifdef CONFIG_USERFAULTFD 6686 if (uffd_disable_huge_pmd_share(vma)) 6687 return false; 6688 #endif 6689 return vma_shareable(vma, addr); 6690 } 6691 6692 /* 6693 * Determine if start,end range within vma could be mapped by shared pmd. 6694 * If yes, adjust start and end to cover range associated with possible 6695 * shared pmd mappings. 6696 */ 6697 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 6698 unsigned long *start, unsigned long *end) 6699 { 6700 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE), 6701 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE); 6702 6703 /* 6704 * vma needs to span at least one aligned PUD size, and the range 6705 * must be at least partially within in. 6706 */ 6707 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) || 6708 (*end <= v_start) || (*start >= v_end)) 6709 return; 6710 6711 /* Extend the range to be PUD aligned for a worst case scenario */ 6712 if (*start > v_start) 6713 *start = ALIGN_DOWN(*start, PUD_SIZE); 6714 6715 if (*end < v_end) 6716 *end = ALIGN(*end, PUD_SIZE); 6717 } 6718 6719 /* 6720 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc() 6721 * and returns the corresponding pte. While this is not necessary for the 6722 * !shared pmd case because we can allocate the pmd later as well, it makes the 6723 * code much cleaner. 6724 * 6725 * This routine must be called with i_mmap_rwsem held in at least read mode if 6726 * sharing is possible. For hugetlbfs, this prevents removal of any page 6727 * table entries associated with the address space. This is important as we 6728 * are setting up sharing based on existing page table entries (mappings). 6729 */ 6730 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, 6731 unsigned long addr, pud_t *pud) 6732 { 6733 struct address_space *mapping = vma->vm_file->f_mapping; 6734 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + 6735 vma->vm_pgoff; 6736 struct vm_area_struct *svma; 6737 unsigned long saddr; 6738 pte_t *spte = NULL; 6739 pte_t *pte; 6740 spinlock_t *ptl; 6741 6742 i_mmap_assert_locked(mapping); 6743 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) { 6744 if (svma == vma) 6745 continue; 6746 6747 saddr = page_table_shareable(svma, vma, addr, idx); 6748 if (saddr) { 6749 spte = huge_pte_offset(svma->vm_mm, saddr, 6750 vma_mmu_pagesize(svma)); 6751 if (spte) { 6752 get_page(virt_to_page(spte)); 6753 break; 6754 } 6755 } 6756 } 6757 6758 if (!spte) 6759 goto out; 6760 6761 ptl = huge_pte_lock(hstate_vma(vma), mm, spte); 6762 if (pud_none(*pud)) { 6763 pud_populate(mm, pud, 6764 (pmd_t *)((unsigned long)spte & PAGE_MASK)); 6765 mm_inc_nr_pmds(mm); 6766 } else { 6767 put_page(virt_to_page(spte)); 6768 } 6769 spin_unlock(ptl); 6770 out: 6771 pte = (pte_t *)pmd_alloc(mm, pud, addr); 6772 return pte; 6773 } 6774 6775 /* 6776 * unmap huge page backed by shared pte. 6777 * 6778 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared 6779 * indicated by page_count > 1, unmap is achieved by clearing pud and 6780 * decrementing the ref count. If count == 1, the pte page is not shared. 6781 * 6782 * Called with page table lock held and i_mmap_rwsem held in write mode. 6783 * 6784 * returns: 1 successfully unmapped a shared pte page 6785 * 0 the underlying pte page is not shared, or it is the last user 6786 */ 6787 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, 6788 unsigned long addr, pte_t *ptep) 6789 { 6790 pgd_t *pgd = pgd_offset(mm, addr); 6791 p4d_t *p4d = p4d_offset(pgd, addr); 6792 pud_t *pud = pud_offset(p4d, addr); 6793 6794 i_mmap_assert_write_locked(vma->vm_file->f_mapping); 6795 BUG_ON(page_count(virt_to_page(ptep)) == 0); 6796 if (page_count(virt_to_page(ptep)) == 1) 6797 return 0; 6798 6799 pud_clear(pud); 6800 put_page(virt_to_page(ptep)); 6801 mm_dec_nr_pmds(mm); 6802 return 1; 6803 } 6804 6805 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 6806 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, 6807 unsigned long addr, pud_t *pud) 6808 { 6809 return NULL; 6810 } 6811 6812 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, 6813 unsigned long addr, pte_t *ptep) 6814 { 6815 return 0; 6816 } 6817 6818 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 6819 unsigned long *start, unsigned long *end) 6820 { 6821 } 6822 6823 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr) 6824 { 6825 return false; 6826 } 6827 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 6828 6829 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB 6830 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 6831 unsigned long addr, unsigned long sz) 6832 { 6833 pgd_t *pgd; 6834 p4d_t *p4d; 6835 pud_t *pud; 6836 pte_t *pte = NULL; 6837 6838 pgd = pgd_offset(mm, addr); 6839 p4d = p4d_alloc(mm, pgd, addr); 6840 if (!p4d) 6841 return NULL; 6842 pud = pud_alloc(mm, p4d, addr); 6843 if (pud) { 6844 if (sz == PUD_SIZE) { 6845 pte = (pte_t *)pud; 6846 } else { 6847 BUG_ON(sz != PMD_SIZE); 6848 if (want_pmd_share(vma, addr) && pud_none(*pud)) 6849 pte = huge_pmd_share(mm, vma, addr, pud); 6850 else 6851 pte = (pte_t *)pmd_alloc(mm, pud, addr); 6852 } 6853 } 6854 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte)); 6855 6856 return pte; 6857 } 6858 6859 /* 6860 * huge_pte_offset() - Walk the page table to resolve the hugepage 6861 * entry at address @addr 6862 * 6863 * Return: Pointer to page table entry (PUD or PMD) for 6864 * address @addr, or NULL if a !p*d_present() entry is encountered and the 6865 * size @sz doesn't match the hugepage size at this level of the page 6866 * table. 6867 */ 6868 pte_t *huge_pte_offset(struct mm_struct *mm, 6869 unsigned long addr, unsigned long sz) 6870 { 6871 pgd_t *pgd; 6872 p4d_t *p4d; 6873 pud_t *pud; 6874 pmd_t *pmd; 6875 6876 pgd = pgd_offset(mm, addr); 6877 if (!pgd_present(*pgd)) 6878 return NULL; 6879 p4d = p4d_offset(pgd, addr); 6880 if (!p4d_present(*p4d)) 6881 return NULL; 6882 6883 pud = pud_offset(p4d, addr); 6884 if (sz == PUD_SIZE) 6885 /* must be pud huge, non-present or none */ 6886 return (pte_t *)pud; 6887 if (!pud_present(*pud)) 6888 return NULL; 6889 /* must have a valid entry and size to go further */ 6890 6891 pmd = pmd_offset(pud, addr); 6892 /* must be pmd huge, non-present or none */ 6893 return (pte_t *)pmd; 6894 } 6895 6896 /* 6897 * Return a mask that can be used to update an address to the last huge 6898 * page in a page table page mapping size. Used to skip non-present 6899 * page table entries when linearly scanning address ranges. Architectures 6900 * with unique huge page to page table relationships can define their own 6901 * version of this routine. 6902 */ 6903 unsigned long hugetlb_mask_last_page(struct hstate *h) 6904 { 6905 unsigned long hp_size = huge_page_size(h); 6906 6907 if (hp_size == PUD_SIZE) 6908 return P4D_SIZE - PUD_SIZE; 6909 else if (hp_size == PMD_SIZE) 6910 return PUD_SIZE - PMD_SIZE; 6911 else 6912 return 0UL; 6913 } 6914 6915 #else 6916 6917 /* See description above. Architectures can provide their own version. */ 6918 __weak unsigned long hugetlb_mask_last_page(struct hstate *h) 6919 { 6920 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE 6921 if (huge_page_size(h) == PMD_SIZE) 6922 return PUD_SIZE - PMD_SIZE; 6923 #endif 6924 return 0UL; 6925 } 6926 6927 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */ 6928 6929 /* 6930 * These functions are overwritable if your architecture needs its own 6931 * behavior. 6932 */ 6933 struct page * __weak 6934 follow_huge_addr(struct mm_struct *mm, unsigned long address, 6935 int write) 6936 { 6937 return ERR_PTR(-EINVAL); 6938 } 6939 6940 struct page * __weak 6941 follow_huge_pd(struct vm_area_struct *vma, 6942 unsigned long address, hugepd_t hpd, int flags, int pdshift) 6943 { 6944 WARN(1, "hugepd follow called with no support for hugepage directory format\n"); 6945 return NULL; 6946 } 6947 6948 struct page * __weak 6949 follow_huge_pmd(struct mm_struct *mm, unsigned long address, 6950 pmd_t *pmd, int flags) 6951 { 6952 struct page *page = NULL; 6953 spinlock_t *ptl; 6954 pte_t pte; 6955 6956 /* 6957 * FOLL_PIN is not supported for follow_page(). Ordinary GUP goes via 6958 * follow_hugetlb_page(). 6959 */ 6960 if (WARN_ON_ONCE(flags & FOLL_PIN)) 6961 return NULL; 6962 6963 retry: 6964 ptl = pmd_lockptr(mm, pmd); 6965 spin_lock(ptl); 6966 /* 6967 * make sure that the address range covered by this pmd is not 6968 * unmapped from other threads. 6969 */ 6970 if (!pmd_huge(*pmd)) 6971 goto out; 6972 pte = huge_ptep_get((pte_t *)pmd); 6973 if (pte_present(pte)) { 6974 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT); 6975 /* 6976 * try_grab_page() should always succeed here, because: a) we 6977 * hold the pmd (ptl) lock, and b) we've just checked that the 6978 * huge pmd (head) page is present in the page tables. The ptl 6979 * prevents the head page and tail pages from being rearranged 6980 * in any way. So this page must be available at this point, 6981 * unless the page refcount overflowed: 6982 */ 6983 if (WARN_ON_ONCE(!try_grab_page(page, flags))) { 6984 page = NULL; 6985 goto out; 6986 } 6987 } else { 6988 if (is_hugetlb_entry_migration(pte)) { 6989 spin_unlock(ptl); 6990 __migration_entry_wait_huge((pte_t *)pmd, ptl); 6991 goto retry; 6992 } 6993 /* 6994 * hwpoisoned entry is treated as no_page_table in 6995 * follow_page_mask(). 6996 */ 6997 } 6998 out: 6999 spin_unlock(ptl); 7000 return page; 7001 } 7002 7003 struct page * __weak 7004 follow_huge_pud(struct mm_struct *mm, unsigned long address, 7005 pud_t *pud, int flags) 7006 { 7007 struct page *page = NULL; 7008 spinlock_t *ptl; 7009 pte_t pte; 7010 7011 if (WARN_ON_ONCE(flags & FOLL_PIN)) 7012 return NULL; 7013 7014 retry: 7015 ptl = huge_pte_lock(hstate_sizelog(PUD_SHIFT), mm, (pte_t *)pud); 7016 if (!pud_huge(*pud)) 7017 goto out; 7018 pte = huge_ptep_get((pte_t *)pud); 7019 if (pte_present(pte)) { 7020 page = pud_page(*pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT); 7021 if (WARN_ON_ONCE(!try_grab_page(page, flags))) { 7022 page = NULL; 7023 goto out; 7024 } 7025 } else { 7026 if (is_hugetlb_entry_migration(pte)) { 7027 spin_unlock(ptl); 7028 __migration_entry_wait(mm, (pte_t *)pud, ptl); 7029 goto retry; 7030 } 7031 /* 7032 * hwpoisoned entry is treated as no_page_table in 7033 * follow_page_mask(). 7034 */ 7035 } 7036 out: 7037 spin_unlock(ptl); 7038 return page; 7039 } 7040 7041 struct page * __weak 7042 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags) 7043 { 7044 if (flags & (FOLL_GET | FOLL_PIN)) 7045 return NULL; 7046 7047 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT); 7048 } 7049 7050 int isolate_hugetlb(struct page *page, struct list_head *list) 7051 { 7052 int ret = 0; 7053 7054 spin_lock_irq(&hugetlb_lock); 7055 if (!PageHeadHuge(page) || 7056 !HPageMigratable(page) || 7057 !get_page_unless_zero(page)) { 7058 ret = -EBUSY; 7059 goto unlock; 7060 } 7061 ClearHPageMigratable(page); 7062 list_move_tail(&page->lru, list); 7063 unlock: 7064 spin_unlock_irq(&hugetlb_lock); 7065 return ret; 7066 } 7067 7068 int get_hwpoison_huge_page(struct page *page, bool *hugetlb) 7069 { 7070 int ret = 0; 7071 7072 *hugetlb = false; 7073 spin_lock_irq(&hugetlb_lock); 7074 if (PageHeadHuge(page)) { 7075 *hugetlb = true; 7076 if (HPageFreed(page)) 7077 ret = 0; 7078 else if (HPageMigratable(page)) 7079 ret = get_page_unless_zero(page); 7080 else 7081 ret = -EBUSY; 7082 } 7083 spin_unlock_irq(&hugetlb_lock); 7084 return ret; 7085 } 7086 7087 int get_huge_page_for_hwpoison(unsigned long pfn, int flags) 7088 { 7089 int ret; 7090 7091 spin_lock_irq(&hugetlb_lock); 7092 ret = __get_huge_page_for_hwpoison(pfn, flags); 7093 spin_unlock_irq(&hugetlb_lock); 7094 return ret; 7095 } 7096 7097 void putback_active_hugepage(struct page *page) 7098 { 7099 spin_lock_irq(&hugetlb_lock); 7100 SetHPageMigratable(page); 7101 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist); 7102 spin_unlock_irq(&hugetlb_lock); 7103 put_page(page); 7104 } 7105 7106 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason) 7107 { 7108 struct hstate *h = page_hstate(oldpage); 7109 7110 hugetlb_cgroup_migrate(oldpage, newpage); 7111 set_page_owner_migrate_reason(newpage, reason); 7112 7113 /* 7114 * transfer temporary state of the new huge page. This is 7115 * reverse to other transitions because the newpage is going to 7116 * be final while the old one will be freed so it takes over 7117 * the temporary status. 7118 * 7119 * Also note that we have to transfer the per-node surplus state 7120 * here as well otherwise the global surplus count will not match 7121 * the per-node's. 7122 */ 7123 if (HPageTemporary(newpage)) { 7124 int old_nid = page_to_nid(oldpage); 7125 int new_nid = page_to_nid(newpage); 7126 7127 SetHPageTemporary(oldpage); 7128 ClearHPageTemporary(newpage); 7129 7130 /* 7131 * There is no need to transfer the per-node surplus state 7132 * when we do not cross the node. 7133 */ 7134 if (new_nid == old_nid) 7135 return; 7136 spin_lock_irq(&hugetlb_lock); 7137 if (h->surplus_huge_pages_node[old_nid]) { 7138 h->surplus_huge_pages_node[old_nid]--; 7139 h->surplus_huge_pages_node[new_nid]++; 7140 } 7141 spin_unlock_irq(&hugetlb_lock); 7142 } 7143 } 7144 7145 /* 7146 * This function will unconditionally remove all the shared pmd pgtable entries 7147 * within the specific vma for a hugetlbfs memory range. 7148 */ 7149 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma) 7150 { 7151 struct hstate *h = hstate_vma(vma); 7152 unsigned long sz = huge_page_size(h); 7153 struct mm_struct *mm = vma->vm_mm; 7154 struct mmu_notifier_range range; 7155 unsigned long address, start, end; 7156 spinlock_t *ptl; 7157 pte_t *ptep; 7158 7159 if (!(vma->vm_flags & VM_MAYSHARE)) 7160 return; 7161 7162 start = ALIGN(vma->vm_start, PUD_SIZE); 7163 end = ALIGN_DOWN(vma->vm_end, PUD_SIZE); 7164 7165 if (start >= end) 7166 return; 7167 7168 flush_cache_range(vma, start, end); 7169 /* 7170 * No need to call adjust_range_if_pmd_sharing_possible(), because 7171 * we have already done the PUD_SIZE alignment. 7172 */ 7173 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, 7174 start, end); 7175 mmu_notifier_invalidate_range_start(&range); 7176 i_mmap_lock_write(vma->vm_file->f_mapping); 7177 for (address = start; address < end; address += PUD_SIZE) { 7178 ptep = huge_pte_offset(mm, address, sz); 7179 if (!ptep) 7180 continue; 7181 ptl = huge_pte_lock(h, mm, ptep); 7182 huge_pmd_unshare(mm, vma, address, ptep); 7183 spin_unlock(ptl); 7184 } 7185 flush_hugetlb_tlb_range(vma, start, end); 7186 i_mmap_unlock_write(vma->vm_file->f_mapping); 7187 /* 7188 * No need to call mmu_notifier_invalidate_range(), see 7189 * Documentation/mm/mmu_notifier.rst. 7190 */ 7191 mmu_notifier_invalidate_range_end(&range); 7192 } 7193 7194 #ifdef CONFIG_CMA 7195 static bool cma_reserve_called __initdata; 7196 7197 static int __init cmdline_parse_hugetlb_cma(char *p) 7198 { 7199 int nid, count = 0; 7200 unsigned long tmp; 7201 char *s = p; 7202 7203 while (*s) { 7204 if (sscanf(s, "%lu%n", &tmp, &count) != 1) 7205 break; 7206 7207 if (s[count] == ':') { 7208 if (tmp >= MAX_NUMNODES) 7209 break; 7210 nid = array_index_nospec(tmp, MAX_NUMNODES); 7211 7212 s += count + 1; 7213 tmp = memparse(s, &s); 7214 hugetlb_cma_size_in_node[nid] = tmp; 7215 hugetlb_cma_size += tmp; 7216 7217 /* 7218 * Skip the separator if have one, otherwise 7219 * break the parsing. 7220 */ 7221 if (*s == ',') 7222 s++; 7223 else 7224 break; 7225 } else { 7226 hugetlb_cma_size = memparse(p, &p); 7227 break; 7228 } 7229 } 7230 7231 return 0; 7232 } 7233 7234 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma); 7235 7236 void __init hugetlb_cma_reserve(int order) 7237 { 7238 unsigned long size, reserved, per_node; 7239 bool node_specific_cma_alloc = false; 7240 int nid; 7241 7242 cma_reserve_called = true; 7243 7244 if (!hugetlb_cma_size) 7245 return; 7246 7247 for (nid = 0; nid < MAX_NUMNODES; nid++) { 7248 if (hugetlb_cma_size_in_node[nid] == 0) 7249 continue; 7250 7251 if (!node_online(nid)) { 7252 pr_warn("hugetlb_cma: invalid node %d specified\n", nid); 7253 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid]; 7254 hugetlb_cma_size_in_node[nid] = 0; 7255 continue; 7256 } 7257 7258 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) { 7259 pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n", 7260 nid, (PAGE_SIZE << order) / SZ_1M); 7261 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid]; 7262 hugetlb_cma_size_in_node[nid] = 0; 7263 } else { 7264 node_specific_cma_alloc = true; 7265 } 7266 } 7267 7268 /* Validate the CMA size again in case some invalid nodes specified. */ 7269 if (!hugetlb_cma_size) 7270 return; 7271 7272 if (hugetlb_cma_size < (PAGE_SIZE << order)) { 7273 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n", 7274 (PAGE_SIZE << order) / SZ_1M); 7275 hugetlb_cma_size = 0; 7276 return; 7277 } 7278 7279 if (!node_specific_cma_alloc) { 7280 /* 7281 * If 3 GB area is requested on a machine with 4 numa nodes, 7282 * let's allocate 1 GB on first three nodes and ignore the last one. 7283 */ 7284 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes); 7285 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n", 7286 hugetlb_cma_size / SZ_1M, per_node / SZ_1M); 7287 } 7288 7289 reserved = 0; 7290 for_each_online_node(nid) { 7291 int res; 7292 char name[CMA_MAX_NAME]; 7293 7294 if (node_specific_cma_alloc) { 7295 if (hugetlb_cma_size_in_node[nid] == 0) 7296 continue; 7297 7298 size = hugetlb_cma_size_in_node[nid]; 7299 } else { 7300 size = min(per_node, hugetlb_cma_size - reserved); 7301 } 7302 7303 size = round_up(size, PAGE_SIZE << order); 7304 7305 snprintf(name, sizeof(name), "hugetlb%d", nid); 7306 /* 7307 * Note that 'order per bit' is based on smallest size that 7308 * may be returned to CMA allocator in the case of 7309 * huge page demotion. 7310 */ 7311 res = cma_declare_contiguous_nid(0, size, 0, 7312 PAGE_SIZE << HUGETLB_PAGE_ORDER, 7313 0, false, name, 7314 &hugetlb_cma[nid], nid); 7315 if (res) { 7316 pr_warn("hugetlb_cma: reservation failed: err %d, node %d", 7317 res, nid); 7318 continue; 7319 } 7320 7321 reserved += size; 7322 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n", 7323 size / SZ_1M, nid); 7324 7325 if (reserved >= hugetlb_cma_size) 7326 break; 7327 } 7328 7329 if (!reserved) 7330 /* 7331 * hugetlb_cma_size is used to determine if allocations from 7332 * cma are possible. Set to zero if no cma regions are set up. 7333 */ 7334 hugetlb_cma_size = 0; 7335 } 7336 7337 void __init hugetlb_cma_check(void) 7338 { 7339 if (!hugetlb_cma_size || cma_reserve_called) 7340 return; 7341 7342 pr_warn("hugetlb_cma: the option isn't supported by current arch\n"); 7343 } 7344 7345 #endif /* CONFIG_CMA */ 7346