xref: /linux/mm/hugetlb.c (revision c0e297dc61f8d4453e07afbea1fa8d0e67cd4a34)
1 /*
2  * Generic hugetlb support.
3  * (C) Nadia Yvette Chambers, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/bootmem.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/rmap.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/page-isolation.h>
26 #include <linux/jhash.h>
27 
28 #include <asm/page.h>
29 #include <asm/pgtable.h>
30 #include <asm/tlb.h>
31 
32 #include <linux/io.h>
33 #include <linux/hugetlb.h>
34 #include <linux/hugetlb_cgroup.h>
35 #include <linux/node.h>
36 #include "internal.h"
37 
38 int hugepages_treat_as_movable;
39 
40 int hugetlb_max_hstate __read_mostly;
41 unsigned int default_hstate_idx;
42 struct hstate hstates[HUGE_MAX_HSTATE];
43 /*
44  * Minimum page order among possible hugepage sizes, set to a proper value
45  * at boot time.
46  */
47 static unsigned int minimum_order __read_mostly = UINT_MAX;
48 
49 __initdata LIST_HEAD(huge_boot_pages);
50 
51 /* for command line parsing */
52 static struct hstate * __initdata parsed_hstate;
53 static unsigned long __initdata default_hstate_max_huge_pages;
54 static unsigned long __initdata default_hstate_size;
55 
56 /*
57  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
58  * free_huge_pages, and surplus_huge_pages.
59  */
60 DEFINE_SPINLOCK(hugetlb_lock);
61 
62 /*
63  * Serializes faults on the same logical page.  This is used to
64  * prevent spurious OOMs when the hugepage pool is fully utilized.
65  */
66 static int num_fault_mutexes;
67 static struct mutex *htlb_fault_mutex_table ____cacheline_aligned_in_smp;
68 
69 /* Forward declaration */
70 static int hugetlb_acct_memory(struct hstate *h, long delta);
71 
72 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
73 {
74 	bool free = (spool->count == 0) && (spool->used_hpages == 0);
75 
76 	spin_unlock(&spool->lock);
77 
78 	/* If no pages are used, and no other handles to the subpool
79 	 * remain, give up any reservations mased on minimum size and
80 	 * free the subpool */
81 	if (free) {
82 		if (spool->min_hpages != -1)
83 			hugetlb_acct_memory(spool->hstate,
84 						-spool->min_hpages);
85 		kfree(spool);
86 	}
87 }
88 
89 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
90 						long min_hpages)
91 {
92 	struct hugepage_subpool *spool;
93 
94 	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
95 	if (!spool)
96 		return NULL;
97 
98 	spin_lock_init(&spool->lock);
99 	spool->count = 1;
100 	spool->max_hpages = max_hpages;
101 	spool->hstate = h;
102 	spool->min_hpages = min_hpages;
103 
104 	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
105 		kfree(spool);
106 		return NULL;
107 	}
108 	spool->rsv_hpages = min_hpages;
109 
110 	return spool;
111 }
112 
113 void hugepage_put_subpool(struct hugepage_subpool *spool)
114 {
115 	spin_lock(&spool->lock);
116 	BUG_ON(!spool->count);
117 	spool->count--;
118 	unlock_or_release_subpool(spool);
119 }
120 
121 /*
122  * Subpool accounting for allocating and reserving pages.
123  * Return -ENOMEM if there are not enough resources to satisfy the
124  * the request.  Otherwise, return the number of pages by which the
125  * global pools must be adjusted (upward).  The returned value may
126  * only be different than the passed value (delta) in the case where
127  * a subpool minimum size must be manitained.
128  */
129 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
130 				      long delta)
131 {
132 	long ret = delta;
133 
134 	if (!spool)
135 		return ret;
136 
137 	spin_lock(&spool->lock);
138 
139 	if (spool->max_hpages != -1) {		/* maximum size accounting */
140 		if ((spool->used_hpages + delta) <= spool->max_hpages)
141 			spool->used_hpages += delta;
142 		else {
143 			ret = -ENOMEM;
144 			goto unlock_ret;
145 		}
146 	}
147 
148 	if (spool->min_hpages != -1) {		/* minimum size accounting */
149 		if (delta > spool->rsv_hpages) {
150 			/*
151 			 * Asking for more reserves than those already taken on
152 			 * behalf of subpool.  Return difference.
153 			 */
154 			ret = delta - spool->rsv_hpages;
155 			spool->rsv_hpages = 0;
156 		} else {
157 			ret = 0;	/* reserves already accounted for */
158 			spool->rsv_hpages -= delta;
159 		}
160 	}
161 
162 unlock_ret:
163 	spin_unlock(&spool->lock);
164 	return ret;
165 }
166 
167 /*
168  * Subpool accounting for freeing and unreserving pages.
169  * Return the number of global page reservations that must be dropped.
170  * The return value may only be different than the passed value (delta)
171  * in the case where a subpool minimum size must be maintained.
172  */
173 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
174 				       long delta)
175 {
176 	long ret = delta;
177 
178 	if (!spool)
179 		return delta;
180 
181 	spin_lock(&spool->lock);
182 
183 	if (spool->max_hpages != -1)		/* maximum size accounting */
184 		spool->used_hpages -= delta;
185 
186 	if (spool->min_hpages != -1) {		/* minimum size accounting */
187 		if (spool->rsv_hpages + delta <= spool->min_hpages)
188 			ret = 0;
189 		else
190 			ret = spool->rsv_hpages + delta - spool->min_hpages;
191 
192 		spool->rsv_hpages += delta;
193 		if (spool->rsv_hpages > spool->min_hpages)
194 			spool->rsv_hpages = spool->min_hpages;
195 	}
196 
197 	/*
198 	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
199 	 * quota reference, free it now.
200 	 */
201 	unlock_or_release_subpool(spool);
202 
203 	return ret;
204 }
205 
206 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
207 {
208 	return HUGETLBFS_SB(inode->i_sb)->spool;
209 }
210 
211 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
212 {
213 	return subpool_inode(file_inode(vma->vm_file));
214 }
215 
216 /*
217  * Region tracking -- allows tracking of reservations and instantiated pages
218  *                    across the pages in a mapping.
219  *
220  * The region data structures are embedded into a resv_map and protected
221  * by a resv_map's lock.  The set of regions within the resv_map represent
222  * reservations for huge pages, or huge pages that have already been
223  * instantiated within the map.  The from and to elements are huge page
224  * indicies into the associated mapping.  from indicates the starting index
225  * of the region.  to represents the first index past the end of  the region.
226  *
227  * For example, a file region structure with from == 0 and to == 4 represents
228  * four huge pages in a mapping.  It is important to note that the to element
229  * represents the first element past the end of the region. This is used in
230  * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
231  *
232  * Interval notation of the form [from, to) will be used to indicate that
233  * the endpoint from is inclusive and to is exclusive.
234  */
235 struct file_region {
236 	struct list_head link;
237 	long from;
238 	long to;
239 };
240 
241 /*
242  * Add the huge page range represented by [f, t) to the reserve
243  * map.  Existing regions will be expanded to accommodate the
244  * specified range.  We know only existing regions need to be
245  * expanded, because region_add is only called after region_chg
246  * with the same range.  If a new file_region structure must
247  * be allocated, it is done in region_chg.
248  *
249  * Return the number of new huge pages added to the map.  This
250  * number is greater than or equal to zero.
251  */
252 static long region_add(struct resv_map *resv, long f, long t)
253 {
254 	struct list_head *head = &resv->regions;
255 	struct file_region *rg, *nrg, *trg;
256 	long add = 0;
257 
258 	spin_lock(&resv->lock);
259 	/* Locate the region we are either in or before. */
260 	list_for_each_entry(rg, head, link)
261 		if (f <= rg->to)
262 			break;
263 
264 	/* Round our left edge to the current segment if it encloses us. */
265 	if (f > rg->from)
266 		f = rg->from;
267 
268 	/* Check for and consume any regions we now overlap with. */
269 	nrg = rg;
270 	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
271 		if (&rg->link == head)
272 			break;
273 		if (rg->from > t)
274 			break;
275 
276 		/* If this area reaches higher then extend our area to
277 		 * include it completely.  If this is not the first area
278 		 * which we intend to reuse, free it. */
279 		if (rg->to > t)
280 			t = rg->to;
281 		if (rg != nrg) {
282 			/* Decrement return value by the deleted range.
283 			 * Another range will span this area so that by
284 			 * end of routine add will be >= zero
285 			 */
286 			add -= (rg->to - rg->from);
287 			list_del(&rg->link);
288 			kfree(rg);
289 		}
290 	}
291 
292 	add += (nrg->from - f);		/* Added to beginning of region */
293 	nrg->from = f;
294 	add += t - nrg->to;		/* Added to end of region */
295 	nrg->to = t;
296 
297 	spin_unlock(&resv->lock);
298 	VM_BUG_ON(add < 0);
299 	return add;
300 }
301 
302 /*
303  * Examine the existing reserve map and determine how many
304  * huge pages in the specified range [f, t) are NOT currently
305  * represented.  This routine is called before a subsequent
306  * call to region_add that will actually modify the reserve
307  * map to add the specified range [f, t).  region_chg does
308  * not change the number of huge pages represented by the
309  * map.  However, if the existing regions in the map can not
310  * be expanded to represent the new range, a new file_region
311  * structure is added to the map as a placeholder.  This is
312  * so that the subsequent region_add call will have all the
313  * regions it needs and will not fail.
314  *
315  * Returns the number of huge pages that need to be added
316  * to the existing reservation map for the range [f, t).
317  * This number is greater or equal to zero.  -ENOMEM is
318  * returned if a new file_region structure is needed and can
319  * not be allocated.
320  */
321 static long region_chg(struct resv_map *resv, long f, long t)
322 {
323 	struct list_head *head = &resv->regions;
324 	struct file_region *rg, *nrg = NULL;
325 	long chg = 0;
326 
327 retry:
328 	spin_lock(&resv->lock);
329 	/* Locate the region we are before or in. */
330 	list_for_each_entry(rg, head, link)
331 		if (f <= rg->to)
332 			break;
333 
334 	/* If we are below the current region then a new region is required.
335 	 * Subtle, allocate a new region at the position but make it zero
336 	 * size such that we can guarantee to record the reservation. */
337 	if (&rg->link == head || t < rg->from) {
338 		if (!nrg) {
339 			spin_unlock(&resv->lock);
340 			nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
341 			if (!nrg)
342 				return -ENOMEM;
343 
344 			nrg->from = f;
345 			nrg->to   = f;
346 			INIT_LIST_HEAD(&nrg->link);
347 			goto retry;
348 		}
349 
350 		list_add(&nrg->link, rg->link.prev);
351 		chg = t - f;
352 		goto out_nrg;
353 	}
354 
355 	/* Round our left edge to the current segment if it encloses us. */
356 	if (f > rg->from)
357 		f = rg->from;
358 	chg = t - f;
359 
360 	/* Check for and consume any regions we now overlap with. */
361 	list_for_each_entry(rg, rg->link.prev, link) {
362 		if (&rg->link == head)
363 			break;
364 		if (rg->from > t)
365 			goto out;
366 
367 		/* We overlap with this area, if it extends further than
368 		 * us then we must extend ourselves.  Account for its
369 		 * existing reservation. */
370 		if (rg->to > t) {
371 			chg += rg->to - t;
372 			t = rg->to;
373 		}
374 		chg -= rg->to - rg->from;
375 	}
376 
377 out:
378 	spin_unlock(&resv->lock);
379 	/*  We already know we raced and no longer need the new region */
380 	kfree(nrg);
381 	return chg;
382 out_nrg:
383 	spin_unlock(&resv->lock);
384 	return chg;
385 }
386 
387 /*
388  * Truncate the reserve map at index 'end'.  Modify/truncate any
389  * region which contains end.  Delete any regions past end.
390  * Return the number of huge pages removed from the map.
391  */
392 static long region_truncate(struct resv_map *resv, long end)
393 {
394 	struct list_head *head = &resv->regions;
395 	struct file_region *rg, *trg;
396 	long chg = 0;
397 
398 	spin_lock(&resv->lock);
399 	/* Locate the region we are either in or before. */
400 	list_for_each_entry(rg, head, link)
401 		if (end <= rg->to)
402 			break;
403 	if (&rg->link == head)
404 		goto out;
405 
406 	/* If we are in the middle of a region then adjust it. */
407 	if (end > rg->from) {
408 		chg = rg->to - end;
409 		rg->to = end;
410 		rg = list_entry(rg->link.next, typeof(*rg), link);
411 	}
412 
413 	/* Drop any remaining regions. */
414 	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
415 		if (&rg->link == head)
416 			break;
417 		chg += rg->to - rg->from;
418 		list_del(&rg->link);
419 		kfree(rg);
420 	}
421 
422 out:
423 	spin_unlock(&resv->lock);
424 	return chg;
425 }
426 
427 /*
428  * Count and return the number of huge pages in the reserve map
429  * that intersect with the range [f, t).
430  */
431 static long region_count(struct resv_map *resv, long f, long t)
432 {
433 	struct list_head *head = &resv->regions;
434 	struct file_region *rg;
435 	long chg = 0;
436 
437 	spin_lock(&resv->lock);
438 	/* Locate each segment we overlap with, and count that overlap. */
439 	list_for_each_entry(rg, head, link) {
440 		long seg_from;
441 		long seg_to;
442 
443 		if (rg->to <= f)
444 			continue;
445 		if (rg->from >= t)
446 			break;
447 
448 		seg_from = max(rg->from, f);
449 		seg_to = min(rg->to, t);
450 
451 		chg += seg_to - seg_from;
452 	}
453 	spin_unlock(&resv->lock);
454 
455 	return chg;
456 }
457 
458 /*
459  * Convert the address within this vma to the page offset within
460  * the mapping, in pagecache page units; huge pages here.
461  */
462 static pgoff_t vma_hugecache_offset(struct hstate *h,
463 			struct vm_area_struct *vma, unsigned long address)
464 {
465 	return ((address - vma->vm_start) >> huge_page_shift(h)) +
466 			(vma->vm_pgoff >> huge_page_order(h));
467 }
468 
469 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
470 				     unsigned long address)
471 {
472 	return vma_hugecache_offset(hstate_vma(vma), vma, address);
473 }
474 
475 /*
476  * Return the size of the pages allocated when backing a VMA. In the majority
477  * cases this will be same size as used by the page table entries.
478  */
479 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
480 {
481 	struct hstate *hstate;
482 
483 	if (!is_vm_hugetlb_page(vma))
484 		return PAGE_SIZE;
485 
486 	hstate = hstate_vma(vma);
487 
488 	return 1UL << huge_page_shift(hstate);
489 }
490 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
491 
492 /*
493  * Return the page size being used by the MMU to back a VMA. In the majority
494  * of cases, the page size used by the kernel matches the MMU size. On
495  * architectures where it differs, an architecture-specific version of this
496  * function is required.
497  */
498 #ifndef vma_mmu_pagesize
499 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
500 {
501 	return vma_kernel_pagesize(vma);
502 }
503 #endif
504 
505 /*
506  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
507  * bits of the reservation map pointer, which are always clear due to
508  * alignment.
509  */
510 #define HPAGE_RESV_OWNER    (1UL << 0)
511 #define HPAGE_RESV_UNMAPPED (1UL << 1)
512 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
513 
514 /*
515  * These helpers are used to track how many pages are reserved for
516  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
517  * is guaranteed to have their future faults succeed.
518  *
519  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
520  * the reserve counters are updated with the hugetlb_lock held. It is safe
521  * to reset the VMA at fork() time as it is not in use yet and there is no
522  * chance of the global counters getting corrupted as a result of the values.
523  *
524  * The private mapping reservation is represented in a subtly different
525  * manner to a shared mapping.  A shared mapping has a region map associated
526  * with the underlying file, this region map represents the backing file
527  * pages which have ever had a reservation assigned which this persists even
528  * after the page is instantiated.  A private mapping has a region map
529  * associated with the original mmap which is attached to all VMAs which
530  * reference it, this region map represents those offsets which have consumed
531  * reservation ie. where pages have been instantiated.
532  */
533 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
534 {
535 	return (unsigned long)vma->vm_private_data;
536 }
537 
538 static void set_vma_private_data(struct vm_area_struct *vma,
539 							unsigned long value)
540 {
541 	vma->vm_private_data = (void *)value;
542 }
543 
544 struct resv_map *resv_map_alloc(void)
545 {
546 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
547 	if (!resv_map)
548 		return NULL;
549 
550 	kref_init(&resv_map->refs);
551 	spin_lock_init(&resv_map->lock);
552 	INIT_LIST_HEAD(&resv_map->regions);
553 
554 	return resv_map;
555 }
556 
557 void resv_map_release(struct kref *ref)
558 {
559 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
560 
561 	/* Clear out any active regions before we release the map. */
562 	region_truncate(resv_map, 0);
563 	kfree(resv_map);
564 }
565 
566 static inline struct resv_map *inode_resv_map(struct inode *inode)
567 {
568 	return inode->i_mapping->private_data;
569 }
570 
571 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
572 {
573 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
574 	if (vma->vm_flags & VM_MAYSHARE) {
575 		struct address_space *mapping = vma->vm_file->f_mapping;
576 		struct inode *inode = mapping->host;
577 
578 		return inode_resv_map(inode);
579 
580 	} else {
581 		return (struct resv_map *)(get_vma_private_data(vma) &
582 							~HPAGE_RESV_MASK);
583 	}
584 }
585 
586 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
587 {
588 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
589 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
590 
591 	set_vma_private_data(vma, (get_vma_private_data(vma) &
592 				HPAGE_RESV_MASK) | (unsigned long)map);
593 }
594 
595 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
596 {
597 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
598 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
599 
600 	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
601 }
602 
603 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
604 {
605 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
606 
607 	return (get_vma_private_data(vma) & flag) != 0;
608 }
609 
610 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
611 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
612 {
613 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
614 	if (!(vma->vm_flags & VM_MAYSHARE))
615 		vma->vm_private_data = (void *)0;
616 }
617 
618 /* Returns true if the VMA has associated reserve pages */
619 static int vma_has_reserves(struct vm_area_struct *vma, long chg)
620 {
621 	if (vma->vm_flags & VM_NORESERVE) {
622 		/*
623 		 * This address is already reserved by other process(chg == 0),
624 		 * so, we should decrement reserved count. Without decrementing,
625 		 * reserve count remains after releasing inode, because this
626 		 * allocated page will go into page cache and is regarded as
627 		 * coming from reserved pool in releasing step.  Currently, we
628 		 * don't have any other solution to deal with this situation
629 		 * properly, so add work-around here.
630 		 */
631 		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
632 			return 1;
633 		else
634 			return 0;
635 	}
636 
637 	/* Shared mappings always use reserves */
638 	if (vma->vm_flags & VM_MAYSHARE)
639 		return 1;
640 
641 	/*
642 	 * Only the process that called mmap() has reserves for
643 	 * private mappings.
644 	 */
645 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
646 		return 1;
647 
648 	return 0;
649 }
650 
651 static void enqueue_huge_page(struct hstate *h, struct page *page)
652 {
653 	int nid = page_to_nid(page);
654 	list_move(&page->lru, &h->hugepage_freelists[nid]);
655 	h->free_huge_pages++;
656 	h->free_huge_pages_node[nid]++;
657 }
658 
659 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
660 {
661 	struct page *page;
662 
663 	list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
664 		if (!is_migrate_isolate_page(page))
665 			break;
666 	/*
667 	 * if 'non-isolated free hugepage' not found on the list,
668 	 * the allocation fails.
669 	 */
670 	if (&h->hugepage_freelists[nid] == &page->lru)
671 		return NULL;
672 	list_move(&page->lru, &h->hugepage_activelist);
673 	set_page_refcounted(page);
674 	h->free_huge_pages--;
675 	h->free_huge_pages_node[nid]--;
676 	return page;
677 }
678 
679 /* Movability of hugepages depends on migration support. */
680 static inline gfp_t htlb_alloc_mask(struct hstate *h)
681 {
682 	if (hugepages_treat_as_movable || hugepage_migration_supported(h))
683 		return GFP_HIGHUSER_MOVABLE;
684 	else
685 		return GFP_HIGHUSER;
686 }
687 
688 static struct page *dequeue_huge_page_vma(struct hstate *h,
689 				struct vm_area_struct *vma,
690 				unsigned long address, int avoid_reserve,
691 				long chg)
692 {
693 	struct page *page = NULL;
694 	struct mempolicy *mpol;
695 	nodemask_t *nodemask;
696 	struct zonelist *zonelist;
697 	struct zone *zone;
698 	struct zoneref *z;
699 	unsigned int cpuset_mems_cookie;
700 
701 	/*
702 	 * A child process with MAP_PRIVATE mappings created by their parent
703 	 * have no page reserves. This check ensures that reservations are
704 	 * not "stolen". The child may still get SIGKILLed
705 	 */
706 	if (!vma_has_reserves(vma, chg) &&
707 			h->free_huge_pages - h->resv_huge_pages == 0)
708 		goto err;
709 
710 	/* If reserves cannot be used, ensure enough pages are in the pool */
711 	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
712 		goto err;
713 
714 retry_cpuset:
715 	cpuset_mems_cookie = read_mems_allowed_begin();
716 	zonelist = huge_zonelist(vma, address,
717 					htlb_alloc_mask(h), &mpol, &nodemask);
718 
719 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
720 						MAX_NR_ZONES - 1, nodemask) {
721 		if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) {
722 			page = dequeue_huge_page_node(h, zone_to_nid(zone));
723 			if (page) {
724 				if (avoid_reserve)
725 					break;
726 				if (!vma_has_reserves(vma, chg))
727 					break;
728 
729 				SetPagePrivate(page);
730 				h->resv_huge_pages--;
731 				break;
732 			}
733 		}
734 	}
735 
736 	mpol_cond_put(mpol);
737 	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
738 		goto retry_cpuset;
739 	return page;
740 
741 err:
742 	return NULL;
743 }
744 
745 /*
746  * common helper functions for hstate_next_node_to_{alloc|free}.
747  * We may have allocated or freed a huge page based on a different
748  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
749  * be outside of *nodes_allowed.  Ensure that we use an allowed
750  * node for alloc or free.
751  */
752 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
753 {
754 	nid = next_node(nid, *nodes_allowed);
755 	if (nid == MAX_NUMNODES)
756 		nid = first_node(*nodes_allowed);
757 	VM_BUG_ON(nid >= MAX_NUMNODES);
758 
759 	return nid;
760 }
761 
762 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
763 {
764 	if (!node_isset(nid, *nodes_allowed))
765 		nid = next_node_allowed(nid, nodes_allowed);
766 	return nid;
767 }
768 
769 /*
770  * returns the previously saved node ["this node"] from which to
771  * allocate a persistent huge page for the pool and advance the
772  * next node from which to allocate, handling wrap at end of node
773  * mask.
774  */
775 static int hstate_next_node_to_alloc(struct hstate *h,
776 					nodemask_t *nodes_allowed)
777 {
778 	int nid;
779 
780 	VM_BUG_ON(!nodes_allowed);
781 
782 	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
783 	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
784 
785 	return nid;
786 }
787 
788 /*
789  * helper for free_pool_huge_page() - return the previously saved
790  * node ["this node"] from which to free a huge page.  Advance the
791  * next node id whether or not we find a free huge page to free so
792  * that the next attempt to free addresses the next node.
793  */
794 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
795 {
796 	int nid;
797 
798 	VM_BUG_ON(!nodes_allowed);
799 
800 	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
801 	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
802 
803 	return nid;
804 }
805 
806 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
807 	for (nr_nodes = nodes_weight(*mask);				\
808 		nr_nodes > 0 &&						\
809 		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
810 		nr_nodes--)
811 
812 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
813 	for (nr_nodes = nodes_weight(*mask);				\
814 		nr_nodes > 0 &&						\
815 		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
816 		nr_nodes--)
817 
818 #if defined(CONFIG_CMA) && defined(CONFIG_X86_64)
819 static void destroy_compound_gigantic_page(struct page *page,
820 					unsigned long order)
821 {
822 	int i;
823 	int nr_pages = 1 << order;
824 	struct page *p = page + 1;
825 
826 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
827 		__ClearPageTail(p);
828 		set_page_refcounted(p);
829 		p->first_page = NULL;
830 	}
831 
832 	set_compound_order(page, 0);
833 	__ClearPageHead(page);
834 }
835 
836 static void free_gigantic_page(struct page *page, unsigned order)
837 {
838 	free_contig_range(page_to_pfn(page), 1 << order);
839 }
840 
841 static int __alloc_gigantic_page(unsigned long start_pfn,
842 				unsigned long nr_pages)
843 {
844 	unsigned long end_pfn = start_pfn + nr_pages;
845 	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
846 }
847 
848 static bool pfn_range_valid_gigantic(unsigned long start_pfn,
849 				unsigned long nr_pages)
850 {
851 	unsigned long i, end_pfn = start_pfn + nr_pages;
852 	struct page *page;
853 
854 	for (i = start_pfn; i < end_pfn; i++) {
855 		if (!pfn_valid(i))
856 			return false;
857 
858 		page = pfn_to_page(i);
859 
860 		if (PageReserved(page))
861 			return false;
862 
863 		if (page_count(page) > 0)
864 			return false;
865 
866 		if (PageHuge(page))
867 			return false;
868 	}
869 
870 	return true;
871 }
872 
873 static bool zone_spans_last_pfn(const struct zone *zone,
874 			unsigned long start_pfn, unsigned long nr_pages)
875 {
876 	unsigned long last_pfn = start_pfn + nr_pages - 1;
877 	return zone_spans_pfn(zone, last_pfn);
878 }
879 
880 static struct page *alloc_gigantic_page(int nid, unsigned order)
881 {
882 	unsigned long nr_pages = 1 << order;
883 	unsigned long ret, pfn, flags;
884 	struct zone *z;
885 
886 	z = NODE_DATA(nid)->node_zones;
887 	for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
888 		spin_lock_irqsave(&z->lock, flags);
889 
890 		pfn = ALIGN(z->zone_start_pfn, nr_pages);
891 		while (zone_spans_last_pfn(z, pfn, nr_pages)) {
892 			if (pfn_range_valid_gigantic(pfn, nr_pages)) {
893 				/*
894 				 * We release the zone lock here because
895 				 * alloc_contig_range() will also lock the zone
896 				 * at some point. If there's an allocation
897 				 * spinning on this lock, it may win the race
898 				 * and cause alloc_contig_range() to fail...
899 				 */
900 				spin_unlock_irqrestore(&z->lock, flags);
901 				ret = __alloc_gigantic_page(pfn, nr_pages);
902 				if (!ret)
903 					return pfn_to_page(pfn);
904 				spin_lock_irqsave(&z->lock, flags);
905 			}
906 			pfn += nr_pages;
907 		}
908 
909 		spin_unlock_irqrestore(&z->lock, flags);
910 	}
911 
912 	return NULL;
913 }
914 
915 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
916 static void prep_compound_gigantic_page(struct page *page, unsigned long order);
917 
918 static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
919 {
920 	struct page *page;
921 
922 	page = alloc_gigantic_page(nid, huge_page_order(h));
923 	if (page) {
924 		prep_compound_gigantic_page(page, huge_page_order(h));
925 		prep_new_huge_page(h, page, nid);
926 	}
927 
928 	return page;
929 }
930 
931 static int alloc_fresh_gigantic_page(struct hstate *h,
932 				nodemask_t *nodes_allowed)
933 {
934 	struct page *page = NULL;
935 	int nr_nodes, node;
936 
937 	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
938 		page = alloc_fresh_gigantic_page_node(h, node);
939 		if (page)
940 			return 1;
941 	}
942 
943 	return 0;
944 }
945 
946 static inline bool gigantic_page_supported(void) { return true; }
947 #else
948 static inline bool gigantic_page_supported(void) { return false; }
949 static inline void free_gigantic_page(struct page *page, unsigned order) { }
950 static inline void destroy_compound_gigantic_page(struct page *page,
951 						unsigned long order) { }
952 static inline int alloc_fresh_gigantic_page(struct hstate *h,
953 					nodemask_t *nodes_allowed) { return 0; }
954 #endif
955 
956 static void update_and_free_page(struct hstate *h, struct page *page)
957 {
958 	int i;
959 
960 	if (hstate_is_gigantic(h) && !gigantic_page_supported())
961 		return;
962 
963 	h->nr_huge_pages--;
964 	h->nr_huge_pages_node[page_to_nid(page)]--;
965 	for (i = 0; i < pages_per_huge_page(h); i++) {
966 		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
967 				1 << PG_referenced | 1 << PG_dirty |
968 				1 << PG_active | 1 << PG_private |
969 				1 << PG_writeback);
970 	}
971 	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
972 	set_compound_page_dtor(page, NULL);
973 	set_page_refcounted(page);
974 	if (hstate_is_gigantic(h)) {
975 		destroy_compound_gigantic_page(page, huge_page_order(h));
976 		free_gigantic_page(page, huge_page_order(h));
977 	} else {
978 		__free_pages(page, huge_page_order(h));
979 	}
980 }
981 
982 struct hstate *size_to_hstate(unsigned long size)
983 {
984 	struct hstate *h;
985 
986 	for_each_hstate(h) {
987 		if (huge_page_size(h) == size)
988 			return h;
989 	}
990 	return NULL;
991 }
992 
993 /*
994  * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
995  * to hstate->hugepage_activelist.)
996  *
997  * This function can be called for tail pages, but never returns true for them.
998  */
999 bool page_huge_active(struct page *page)
1000 {
1001 	VM_BUG_ON_PAGE(!PageHuge(page), page);
1002 	return PageHead(page) && PagePrivate(&page[1]);
1003 }
1004 
1005 /* never called for tail page */
1006 static void set_page_huge_active(struct page *page)
1007 {
1008 	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1009 	SetPagePrivate(&page[1]);
1010 }
1011 
1012 static void clear_page_huge_active(struct page *page)
1013 {
1014 	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1015 	ClearPagePrivate(&page[1]);
1016 }
1017 
1018 void free_huge_page(struct page *page)
1019 {
1020 	/*
1021 	 * Can't pass hstate in here because it is called from the
1022 	 * compound page destructor.
1023 	 */
1024 	struct hstate *h = page_hstate(page);
1025 	int nid = page_to_nid(page);
1026 	struct hugepage_subpool *spool =
1027 		(struct hugepage_subpool *)page_private(page);
1028 	bool restore_reserve;
1029 
1030 	set_page_private(page, 0);
1031 	page->mapping = NULL;
1032 	BUG_ON(page_count(page));
1033 	BUG_ON(page_mapcount(page));
1034 	restore_reserve = PagePrivate(page);
1035 	ClearPagePrivate(page);
1036 
1037 	/*
1038 	 * A return code of zero implies that the subpool will be under its
1039 	 * minimum size if the reservation is not restored after page is free.
1040 	 * Therefore, force restore_reserve operation.
1041 	 */
1042 	if (hugepage_subpool_put_pages(spool, 1) == 0)
1043 		restore_reserve = true;
1044 
1045 	spin_lock(&hugetlb_lock);
1046 	clear_page_huge_active(page);
1047 	hugetlb_cgroup_uncharge_page(hstate_index(h),
1048 				     pages_per_huge_page(h), page);
1049 	if (restore_reserve)
1050 		h->resv_huge_pages++;
1051 
1052 	if (h->surplus_huge_pages_node[nid]) {
1053 		/* remove the page from active list */
1054 		list_del(&page->lru);
1055 		update_and_free_page(h, page);
1056 		h->surplus_huge_pages--;
1057 		h->surplus_huge_pages_node[nid]--;
1058 	} else {
1059 		arch_clear_hugepage_flags(page);
1060 		enqueue_huge_page(h, page);
1061 	}
1062 	spin_unlock(&hugetlb_lock);
1063 }
1064 
1065 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1066 {
1067 	INIT_LIST_HEAD(&page->lru);
1068 	set_compound_page_dtor(page, free_huge_page);
1069 	spin_lock(&hugetlb_lock);
1070 	set_hugetlb_cgroup(page, NULL);
1071 	h->nr_huge_pages++;
1072 	h->nr_huge_pages_node[nid]++;
1073 	spin_unlock(&hugetlb_lock);
1074 	put_page(page); /* free it into the hugepage allocator */
1075 }
1076 
1077 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
1078 {
1079 	int i;
1080 	int nr_pages = 1 << order;
1081 	struct page *p = page + 1;
1082 
1083 	/* we rely on prep_new_huge_page to set the destructor */
1084 	set_compound_order(page, order);
1085 	__SetPageHead(page);
1086 	__ClearPageReserved(page);
1087 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1088 		/*
1089 		 * For gigantic hugepages allocated through bootmem at
1090 		 * boot, it's safer to be consistent with the not-gigantic
1091 		 * hugepages and clear the PG_reserved bit from all tail pages
1092 		 * too.  Otherwse drivers using get_user_pages() to access tail
1093 		 * pages may get the reference counting wrong if they see
1094 		 * PG_reserved set on a tail page (despite the head page not
1095 		 * having PG_reserved set).  Enforcing this consistency between
1096 		 * head and tail pages allows drivers to optimize away a check
1097 		 * on the head page when they need know if put_page() is needed
1098 		 * after get_user_pages().
1099 		 */
1100 		__ClearPageReserved(p);
1101 		set_page_count(p, 0);
1102 		p->first_page = page;
1103 		/* Make sure p->first_page is always valid for PageTail() */
1104 		smp_wmb();
1105 		__SetPageTail(p);
1106 	}
1107 }
1108 
1109 /*
1110  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1111  * transparent huge pages.  See the PageTransHuge() documentation for more
1112  * details.
1113  */
1114 int PageHuge(struct page *page)
1115 {
1116 	if (!PageCompound(page))
1117 		return 0;
1118 
1119 	page = compound_head(page);
1120 	return get_compound_page_dtor(page) == free_huge_page;
1121 }
1122 EXPORT_SYMBOL_GPL(PageHuge);
1123 
1124 /*
1125  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1126  * normal or transparent huge pages.
1127  */
1128 int PageHeadHuge(struct page *page_head)
1129 {
1130 	if (!PageHead(page_head))
1131 		return 0;
1132 
1133 	return get_compound_page_dtor(page_head) == free_huge_page;
1134 }
1135 
1136 pgoff_t __basepage_index(struct page *page)
1137 {
1138 	struct page *page_head = compound_head(page);
1139 	pgoff_t index = page_index(page_head);
1140 	unsigned long compound_idx;
1141 
1142 	if (!PageHuge(page_head))
1143 		return page_index(page);
1144 
1145 	if (compound_order(page_head) >= MAX_ORDER)
1146 		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1147 	else
1148 		compound_idx = page - page_head;
1149 
1150 	return (index << compound_order(page_head)) + compound_idx;
1151 }
1152 
1153 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1154 {
1155 	struct page *page;
1156 
1157 	page = alloc_pages_exact_node(nid,
1158 		htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1159 						__GFP_REPEAT|__GFP_NOWARN,
1160 		huge_page_order(h));
1161 	if (page) {
1162 		prep_new_huge_page(h, page, nid);
1163 	}
1164 
1165 	return page;
1166 }
1167 
1168 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1169 {
1170 	struct page *page;
1171 	int nr_nodes, node;
1172 	int ret = 0;
1173 
1174 	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1175 		page = alloc_fresh_huge_page_node(h, node);
1176 		if (page) {
1177 			ret = 1;
1178 			break;
1179 		}
1180 	}
1181 
1182 	if (ret)
1183 		count_vm_event(HTLB_BUDDY_PGALLOC);
1184 	else
1185 		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1186 
1187 	return ret;
1188 }
1189 
1190 /*
1191  * Free huge page from pool from next node to free.
1192  * Attempt to keep persistent huge pages more or less
1193  * balanced over allowed nodes.
1194  * Called with hugetlb_lock locked.
1195  */
1196 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1197 							 bool acct_surplus)
1198 {
1199 	int nr_nodes, node;
1200 	int ret = 0;
1201 
1202 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1203 		/*
1204 		 * If we're returning unused surplus pages, only examine
1205 		 * nodes with surplus pages.
1206 		 */
1207 		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1208 		    !list_empty(&h->hugepage_freelists[node])) {
1209 			struct page *page =
1210 				list_entry(h->hugepage_freelists[node].next,
1211 					  struct page, lru);
1212 			list_del(&page->lru);
1213 			h->free_huge_pages--;
1214 			h->free_huge_pages_node[node]--;
1215 			if (acct_surplus) {
1216 				h->surplus_huge_pages--;
1217 				h->surplus_huge_pages_node[node]--;
1218 			}
1219 			update_and_free_page(h, page);
1220 			ret = 1;
1221 			break;
1222 		}
1223 	}
1224 
1225 	return ret;
1226 }
1227 
1228 /*
1229  * Dissolve a given free hugepage into free buddy pages. This function does
1230  * nothing for in-use (including surplus) hugepages.
1231  */
1232 static void dissolve_free_huge_page(struct page *page)
1233 {
1234 	spin_lock(&hugetlb_lock);
1235 	if (PageHuge(page) && !page_count(page)) {
1236 		struct hstate *h = page_hstate(page);
1237 		int nid = page_to_nid(page);
1238 		list_del(&page->lru);
1239 		h->free_huge_pages--;
1240 		h->free_huge_pages_node[nid]--;
1241 		update_and_free_page(h, page);
1242 	}
1243 	spin_unlock(&hugetlb_lock);
1244 }
1245 
1246 /*
1247  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1248  * make specified memory blocks removable from the system.
1249  * Note that start_pfn should aligned with (minimum) hugepage size.
1250  */
1251 void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1252 {
1253 	unsigned long pfn;
1254 
1255 	if (!hugepages_supported())
1256 		return;
1257 
1258 	VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << minimum_order));
1259 	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order)
1260 		dissolve_free_huge_page(pfn_to_page(pfn));
1261 }
1262 
1263 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
1264 {
1265 	struct page *page;
1266 	unsigned int r_nid;
1267 
1268 	if (hstate_is_gigantic(h))
1269 		return NULL;
1270 
1271 	/*
1272 	 * Assume we will successfully allocate the surplus page to
1273 	 * prevent racing processes from causing the surplus to exceed
1274 	 * overcommit
1275 	 *
1276 	 * This however introduces a different race, where a process B
1277 	 * tries to grow the static hugepage pool while alloc_pages() is
1278 	 * called by process A. B will only examine the per-node
1279 	 * counters in determining if surplus huge pages can be
1280 	 * converted to normal huge pages in adjust_pool_surplus(). A
1281 	 * won't be able to increment the per-node counter, until the
1282 	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
1283 	 * no more huge pages can be converted from surplus to normal
1284 	 * state (and doesn't try to convert again). Thus, we have a
1285 	 * case where a surplus huge page exists, the pool is grown, and
1286 	 * the surplus huge page still exists after, even though it
1287 	 * should just have been converted to a normal huge page. This
1288 	 * does not leak memory, though, as the hugepage will be freed
1289 	 * once it is out of use. It also does not allow the counters to
1290 	 * go out of whack in adjust_pool_surplus() as we don't modify
1291 	 * the node values until we've gotten the hugepage and only the
1292 	 * per-node value is checked there.
1293 	 */
1294 	spin_lock(&hugetlb_lock);
1295 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1296 		spin_unlock(&hugetlb_lock);
1297 		return NULL;
1298 	} else {
1299 		h->nr_huge_pages++;
1300 		h->surplus_huge_pages++;
1301 	}
1302 	spin_unlock(&hugetlb_lock);
1303 
1304 	if (nid == NUMA_NO_NODE)
1305 		page = alloc_pages(htlb_alloc_mask(h)|__GFP_COMP|
1306 				   __GFP_REPEAT|__GFP_NOWARN,
1307 				   huge_page_order(h));
1308 	else
1309 		page = alloc_pages_exact_node(nid,
1310 			htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1311 			__GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
1312 
1313 	spin_lock(&hugetlb_lock);
1314 	if (page) {
1315 		INIT_LIST_HEAD(&page->lru);
1316 		r_nid = page_to_nid(page);
1317 		set_compound_page_dtor(page, free_huge_page);
1318 		set_hugetlb_cgroup(page, NULL);
1319 		/*
1320 		 * We incremented the global counters already
1321 		 */
1322 		h->nr_huge_pages_node[r_nid]++;
1323 		h->surplus_huge_pages_node[r_nid]++;
1324 		__count_vm_event(HTLB_BUDDY_PGALLOC);
1325 	} else {
1326 		h->nr_huge_pages--;
1327 		h->surplus_huge_pages--;
1328 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1329 	}
1330 	spin_unlock(&hugetlb_lock);
1331 
1332 	return page;
1333 }
1334 
1335 /*
1336  * This allocation function is useful in the context where vma is irrelevant.
1337  * E.g. soft-offlining uses this function because it only cares physical
1338  * address of error page.
1339  */
1340 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1341 {
1342 	struct page *page = NULL;
1343 
1344 	spin_lock(&hugetlb_lock);
1345 	if (h->free_huge_pages - h->resv_huge_pages > 0)
1346 		page = dequeue_huge_page_node(h, nid);
1347 	spin_unlock(&hugetlb_lock);
1348 
1349 	if (!page)
1350 		page = alloc_buddy_huge_page(h, nid);
1351 
1352 	return page;
1353 }
1354 
1355 /*
1356  * Increase the hugetlb pool such that it can accommodate a reservation
1357  * of size 'delta'.
1358  */
1359 static int gather_surplus_pages(struct hstate *h, int delta)
1360 {
1361 	struct list_head surplus_list;
1362 	struct page *page, *tmp;
1363 	int ret, i;
1364 	int needed, allocated;
1365 	bool alloc_ok = true;
1366 
1367 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1368 	if (needed <= 0) {
1369 		h->resv_huge_pages += delta;
1370 		return 0;
1371 	}
1372 
1373 	allocated = 0;
1374 	INIT_LIST_HEAD(&surplus_list);
1375 
1376 	ret = -ENOMEM;
1377 retry:
1378 	spin_unlock(&hugetlb_lock);
1379 	for (i = 0; i < needed; i++) {
1380 		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1381 		if (!page) {
1382 			alloc_ok = false;
1383 			break;
1384 		}
1385 		list_add(&page->lru, &surplus_list);
1386 	}
1387 	allocated += i;
1388 
1389 	/*
1390 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
1391 	 * because either resv_huge_pages or free_huge_pages may have changed.
1392 	 */
1393 	spin_lock(&hugetlb_lock);
1394 	needed = (h->resv_huge_pages + delta) -
1395 			(h->free_huge_pages + allocated);
1396 	if (needed > 0) {
1397 		if (alloc_ok)
1398 			goto retry;
1399 		/*
1400 		 * We were not able to allocate enough pages to
1401 		 * satisfy the entire reservation so we free what
1402 		 * we've allocated so far.
1403 		 */
1404 		goto free;
1405 	}
1406 	/*
1407 	 * The surplus_list now contains _at_least_ the number of extra pages
1408 	 * needed to accommodate the reservation.  Add the appropriate number
1409 	 * of pages to the hugetlb pool and free the extras back to the buddy
1410 	 * allocator.  Commit the entire reservation here to prevent another
1411 	 * process from stealing the pages as they are added to the pool but
1412 	 * before they are reserved.
1413 	 */
1414 	needed += allocated;
1415 	h->resv_huge_pages += delta;
1416 	ret = 0;
1417 
1418 	/* Free the needed pages to the hugetlb pool */
1419 	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1420 		if ((--needed) < 0)
1421 			break;
1422 		/*
1423 		 * This page is now managed by the hugetlb allocator and has
1424 		 * no users -- drop the buddy allocator's reference.
1425 		 */
1426 		put_page_testzero(page);
1427 		VM_BUG_ON_PAGE(page_count(page), page);
1428 		enqueue_huge_page(h, page);
1429 	}
1430 free:
1431 	spin_unlock(&hugetlb_lock);
1432 
1433 	/* Free unnecessary surplus pages to the buddy allocator */
1434 	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1435 		put_page(page);
1436 	spin_lock(&hugetlb_lock);
1437 
1438 	return ret;
1439 }
1440 
1441 /*
1442  * When releasing a hugetlb pool reservation, any surplus pages that were
1443  * allocated to satisfy the reservation must be explicitly freed if they were
1444  * never used.
1445  * Called with hugetlb_lock held.
1446  */
1447 static void return_unused_surplus_pages(struct hstate *h,
1448 					unsigned long unused_resv_pages)
1449 {
1450 	unsigned long nr_pages;
1451 
1452 	/* Uncommit the reservation */
1453 	h->resv_huge_pages -= unused_resv_pages;
1454 
1455 	/* Cannot return gigantic pages currently */
1456 	if (hstate_is_gigantic(h))
1457 		return;
1458 
1459 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1460 
1461 	/*
1462 	 * We want to release as many surplus pages as possible, spread
1463 	 * evenly across all nodes with memory. Iterate across these nodes
1464 	 * until we can no longer free unreserved surplus pages. This occurs
1465 	 * when the nodes with surplus pages have no free pages.
1466 	 * free_pool_huge_page() will balance the the freed pages across the
1467 	 * on-line nodes with memory and will handle the hstate accounting.
1468 	 */
1469 	while (nr_pages--) {
1470 		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1471 			break;
1472 		cond_resched_lock(&hugetlb_lock);
1473 	}
1474 }
1475 
1476 /*
1477  * vma_needs_reservation and vma_commit_reservation are used by the huge
1478  * page allocation routines to manage reservations.
1479  *
1480  * vma_needs_reservation is called to determine if the huge page at addr
1481  * within the vma has an associated reservation.  If a reservation is
1482  * needed, the value 1 is returned.  The caller is then responsible for
1483  * managing the global reservation and subpool usage counts.  After
1484  * the huge page has been allocated, vma_commit_reservation is called
1485  * to add the page to the reservation map.
1486  *
1487  * In the normal case, vma_commit_reservation returns the same value
1488  * as the preceding vma_needs_reservation call.  The only time this
1489  * is not the case is if a reserve map was changed between calls.  It
1490  * is the responsibility of the caller to notice the difference and
1491  * take appropriate action.
1492  */
1493 static long __vma_reservation_common(struct hstate *h,
1494 				struct vm_area_struct *vma, unsigned long addr,
1495 				bool commit)
1496 {
1497 	struct resv_map *resv;
1498 	pgoff_t idx;
1499 	long ret;
1500 
1501 	resv = vma_resv_map(vma);
1502 	if (!resv)
1503 		return 1;
1504 
1505 	idx = vma_hugecache_offset(h, vma, addr);
1506 	if (commit)
1507 		ret = region_add(resv, idx, idx + 1);
1508 	else
1509 		ret = region_chg(resv, idx, idx + 1);
1510 
1511 	if (vma->vm_flags & VM_MAYSHARE)
1512 		return ret;
1513 	else
1514 		return ret < 0 ? ret : 0;
1515 }
1516 
1517 static long vma_needs_reservation(struct hstate *h,
1518 			struct vm_area_struct *vma, unsigned long addr)
1519 {
1520 	return __vma_reservation_common(h, vma, addr, false);
1521 }
1522 
1523 static long vma_commit_reservation(struct hstate *h,
1524 			struct vm_area_struct *vma, unsigned long addr)
1525 {
1526 	return __vma_reservation_common(h, vma, addr, true);
1527 }
1528 
1529 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1530 				    unsigned long addr, int avoid_reserve)
1531 {
1532 	struct hugepage_subpool *spool = subpool_vma(vma);
1533 	struct hstate *h = hstate_vma(vma);
1534 	struct page *page;
1535 	long chg, commit;
1536 	int ret, idx;
1537 	struct hugetlb_cgroup *h_cg;
1538 
1539 	idx = hstate_index(h);
1540 	/*
1541 	 * Processes that did not create the mapping will have no
1542 	 * reserves and will not have accounted against subpool
1543 	 * limit. Check that the subpool limit can be made before
1544 	 * satisfying the allocation MAP_NORESERVE mappings may also
1545 	 * need pages and subpool limit allocated allocated if no reserve
1546 	 * mapping overlaps.
1547 	 */
1548 	chg = vma_needs_reservation(h, vma, addr);
1549 	if (chg < 0)
1550 		return ERR_PTR(-ENOMEM);
1551 	if (chg || avoid_reserve)
1552 		if (hugepage_subpool_get_pages(spool, 1) < 0)
1553 			return ERR_PTR(-ENOSPC);
1554 
1555 	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1556 	if (ret)
1557 		goto out_subpool_put;
1558 
1559 	spin_lock(&hugetlb_lock);
1560 	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg);
1561 	if (!page) {
1562 		spin_unlock(&hugetlb_lock);
1563 		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1564 		if (!page)
1565 			goto out_uncharge_cgroup;
1566 
1567 		spin_lock(&hugetlb_lock);
1568 		list_move(&page->lru, &h->hugepage_activelist);
1569 		/* Fall through */
1570 	}
1571 	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1572 	spin_unlock(&hugetlb_lock);
1573 
1574 	set_page_private(page, (unsigned long)spool);
1575 
1576 	commit = vma_commit_reservation(h, vma, addr);
1577 	if (unlikely(chg > commit)) {
1578 		/*
1579 		 * The page was added to the reservation map between
1580 		 * vma_needs_reservation and vma_commit_reservation.
1581 		 * This indicates a race with hugetlb_reserve_pages.
1582 		 * Adjust for the subpool count incremented above AND
1583 		 * in hugetlb_reserve_pages for the same page.  Also,
1584 		 * the reservation count added in hugetlb_reserve_pages
1585 		 * no longer applies.
1586 		 */
1587 		long rsv_adjust;
1588 
1589 		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
1590 		hugetlb_acct_memory(h, -rsv_adjust);
1591 	}
1592 	return page;
1593 
1594 out_uncharge_cgroup:
1595 	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
1596 out_subpool_put:
1597 	if (chg || avoid_reserve)
1598 		hugepage_subpool_put_pages(spool, 1);
1599 	return ERR_PTR(-ENOSPC);
1600 }
1601 
1602 /*
1603  * alloc_huge_page()'s wrapper which simply returns the page if allocation
1604  * succeeds, otherwise NULL. This function is called from new_vma_page(),
1605  * where no ERR_VALUE is expected to be returned.
1606  */
1607 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1608 				unsigned long addr, int avoid_reserve)
1609 {
1610 	struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1611 	if (IS_ERR(page))
1612 		page = NULL;
1613 	return page;
1614 }
1615 
1616 int __weak alloc_bootmem_huge_page(struct hstate *h)
1617 {
1618 	struct huge_bootmem_page *m;
1619 	int nr_nodes, node;
1620 
1621 	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1622 		void *addr;
1623 
1624 		addr = memblock_virt_alloc_try_nid_nopanic(
1625 				huge_page_size(h), huge_page_size(h),
1626 				0, BOOTMEM_ALLOC_ACCESSIBLE, node);
1627 		if (addr) {
1628 			/*
1629 			 * Use the beginning of the huge page to store the
1630 			 * huge_bootmem_page struct (until gather_bootmem
1631 			 * puts them into the mem_map).
1632 			 */
1633 			m = addr;
1634 			goto found;
1635 		}
1636 	}
1637 	return 0;
1638 
1639 found:
1640 	BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
1641 	/* Put them into a private list first because mem_map is not up yet */
1642 	list_add(&m->list, &huge_boot_pages);
1643 	m->hstate = h;
1644 	return 1;
1645 }
1646 
1647 static void __init prep_compound_huge_page(struct page *page, int order)
1648 {
1649 	if (unlikely(order > (MAX_ORDER - 1)))
1650 		prep_compound_gigantic_page(page, order);
1651 	else
1652 		prep_compound_page(page, order);
1653 }
1654 
1655 /* Put bootmem huge pages into the standard lists after mem_map is up */
1656 static void __init gather_bootmem_prealloc(void)
1657 {
1658 	struct huge_bootmem_page *m;
1659 
1660 	list_for_each_entry(m, &huge_boot_pages, list) {
1661 		struct hstate *h = m->hstate;
1662 		struct page *page;
1663 
1664 #ifdef CONFIG_HIGHMEM
1665 		page = pfn_to_page(m->phys >> PAGE_SHIFT);
1666 		memblock_free_late(__pa(m),
1667 				   sizeof(struct huge_bootmem_page));
1668 #else
1669 		page = virt_to_page(m);
1670 #endif
1671 		WARN_ON(page_count(page) != 1);
1672 		prep_compound_huge_page(page, h->order);
1673 		WARN_ON(PageReserved(page));
1674 		prep_new_huge_page(h, page, page_to_nid(page));
1675 		/*
1676 		 * If we had gigantic hugepages allocated at boot time, we need
1677 		 * to restore the 'stolen' pages to totalram_pages in order to
1678 		 * fix confusing memory reports from free(1) and another
1679 		 * side-effects, like CommitLimit going negative.
1680 		 */
1681 		if (hstate_is_gigantic(h))
1682 			adjust_managed_page_count(page, 1 << h->order);
1683 	}
1684 }
1685 
1686 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1687 {
1688 	unsigned long i;
1689 
1690 	for (i = 0; i < h->max_huge_pages; ++i) {
1691 		if (hstate_is_gigantic(h)) {
1692 			if (!alloc_bootmem_huge_page(h))
1693 				break;
1694 		} else if (!alloc_fresh_huge_page(h,
1695 					 &node_states[N_MEMORY]))
1696 			break;
1697 	}
1698 	h->max_huge_pages = i;
1699 }
1700 
1701 static void __init hugetlb_init_hstates(void)
1702 {
1703 	struct hstate *h;
1704 
1705 	for_each_hstate(h) {
1706 		if (minimum_order > huge_page_order(h))
1707 			minimum_order = huge_page_order(h);
1708 
1709 		/* oversize hugepages were init'ed in early boot */
1710 		if (!hstate_is_gigantic(h))
1711 			hugetlb_hstate_alloc_pages(h);
1712 	}
1713 	VM_BUG_ON(minimum_order == UINT_MAX);
1714 }
1715 
1716 static char * __init memfmt(char *buf, unsigned long n)
1717 {
1718 	if (n >= (1UL << 30))
1719 		sprintf(buf, "%lu GB", n >> 30);
1720 	else if (n >= (1UL << 20))
1721 		sprintf(buf, "%lu MB", n >> 20);
1722 	else
1723 		sprintf(buf, "%lu KB", n >> 10);
1724 	return buf;
1725 }
1726 
1727 static void __init report_hugepages(void)
1728 {
1729 	struct hstate *h;
1730 
1731 	for_each_hstate(h) {
1732 		char buf[32];
1733 		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
1734 			memfmt(buf, huge_page_size(h)),
1735 			h->free_huge_pages);
1736 	}
1737 }
1738 
1739 #ifdef CONFIG_HIGHMEM
1740 static void try_to_free_low(struct hstate *h, unsigned long count,
1741 						nodemask_t *nodes_allowed)
1742 {
1743 	int i;
1744 
1745 	if (hstate_is_gigantic(h))
1746 		return;
1747 
1748 	for_each_node_mask(i, *nodes_allowed) {
1749 		struct page *page, *next;
1750 		struct list_head *freel = &h->hugepage_freelists[i];
1751 		list_for_each_entry_safe(page, next, freel, lru) {
1752 			if (count >= h->nr_huge_pages)
1753 				return;
1754 			if (PageHighMem(page))
1755 				continue;
1756 			list_del(&page->lru);
1757 			update_and_free_page(h, page);
1758 			h->free_huge_pages--;
1759 			h->free_huge_pages_node[page_to_nid(page)]--;
1760 		}
1761 	}
1762 }
1763 #else
1764 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1765 						nodemask_t *nodes_allowed)
1766 {
1767 }
1768 #endif
1769 
1770 /*
1771  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
1772  * balanced by operating on them in a round-robin fashion.
1773  * Returns 1 if an adjustment was made.
1774  */
1775 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1776 				int delta)
1777 {
1778 	int nr_nodes, node;
1779 
1780 	VM_BUG_ON(delta != -1 && delta != 1);
1781 
1782 	if (delta < 0) {
1783 		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1784 			if (h->surplus_huge_pages_node[node])
1785 				goto found;
1786 		}
1787 	} else {
1788 		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1789 			if (h->surplus_huge_pages_node[node] <
1790 					h->nr_huge_pages_node[node])
1791 				goto found;
1792 		}
1793 	}
1794 	return 0;
1795 
1796 found:
1797 	h->surplus_huge_pages += delta;
1798 	h->surplus_huge_pages_node[node] += delta;
1799 	return 1;
1800 }
1801 
1802 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1803 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1804 						nodemask_t *nodes_allowed)
1805 {
1806 	unsigned long min_count, ret;
1807 
1808 	if (hstate_is_gigantic(h) && !gigantic_page_supported())
1809 		return h->max_huge_pages;
1810 
1811 	/*
1812 	 * Increase the pool size
1813 	 * First take pages out of surplus state.  Then make up the
1814 	 * remaining difference by allocating fresh huge pages.
1815 	 *
1816 	 * We might race with alloc_buddy_huge_page() here and be unable
1817 	 * to convert a surplus huge page to a normal huge page. That is
1818 	 * not critical, though, it just means the overall size of the
1819 	 * pool might be one hugepage larger than it needs to be, but
1820 	 * within all the constraints specified by the sysctls.
1821 	 */
1822 	spin_lock(&hugetlb_lock);
1823 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1824 		if (!adjust_pool_surplus(h, nodes_allowed, -1))
1825 			break;
1826 	}
1827 
1828 	while (count > persistent_huge_pages(h)) {
1829 		/*
1830 		 * If this allocation races such that we no longer need the
1831 		 * page, free_huge_page will handle it by freeing the page
1832 		 * and reducing the surplus.
1833 		 */
1834 		spin_unlock(&hugetlb_lock);
1835 		if (hstate_is_gigantic(h))
1836 			ret = alloc_fresh_gigantic_page(h, nodes_allowed);
1837 		else
1838 			ret = alloc_fresh_huge_page(h, nodes_allowed);
1839 		spin_lock(&hugetlb_lock);
1840 		if (!ret)
1841 			goto out;
1842 
1843 		/* Bail for signals. Probably ctrl-c from user */
1844 		if (signal_pending(current))
1845 			goto out;
1846 	}
1847 
1848 	/*
1849 	 * Decrease the pool size
1850 	 * First return free pages to the buddy allocator (being careful
1851 	 * to keep enough around to satisfy reservations).  Then place
1852 	 * pages into surplus state as needed so the pool will shrink
1853 	 * to the desired size as pages become free.
1854 	 *
1855 	 * By placing pages into the surplus state independent of the
1856 	 * overcommit value, we are allowing the surplus pool size to
1857 	 * exceed overcommit. There are few sane options here. Since
1858 	 * alloc_buddy_huge_page() is checking the global counter,
1859 	 * though, we'll note that we're not allowed to exceed surplus
1860 	 * and won't grow the pool anywhere else. Not until one of the
1861 	 * sysctls are changed, or the surplus pages go out of use.
1862 	 */
1863 	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1864 	min_count = max(count, min_count);
1865 	try_to_free_low(h, min_count, nodes_allowed);
1866 	while (min_count < persistent_huge_pages(h)) {
1867 		if (!free_pool_huge_page(h, nodes_allowed, 0))
1868 			break;
1869 		cond_resched_lock(&hugetlb_lock);
1870 	}
1871 	while (count < persistent_huge_pages(h)) {
1872 		if (!adjust_pool_surplus(h, nodes_allowed, 1))
1873 			break;
1874 	}
1875 out:
1876 	ret = persistent_huge_pages(h);
1877 	spin_unlock(&hugetlb_lock);
1878 	return ret;
1879 }
1880 
1881 #define HSTATE_ATTR_RO(_name) \
1882 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1883 
1884 #define HSTATE_ATTR(_name) \
1885 	static struct kobj_attribute _name##_attr = \
1886 		__ATTR(_name, 0644, _name##_show, _name##_store)
1887 
1888 static struct kobject *hugepages_kobj;
1889 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1890 
1891 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1892 
1893 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1894 {
1895 	int i;
1896 
1897 	for (i = 0; i < HUGE_MAX_HSTATE; i++)
1898 		if (hstate_kobjs[i] == kobj) {
1899 			if (nidp)
1900 				*nidp = NUMA_NO_NODE;
1901 			return &hstates[i];
1902 		}
1903 
1904 	return kobj_to_node_hstate(kobj, nidp);
1905 }
1906 
1907 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1908 					struct kobj_attribute *attr, char *buf)
1909 {
1910 	struct hstate *h;
1911 	unsigned long nr_huge_pages;
1912 	int nid;
1913 
1914 	h = kobj_to_hstate(kobj, &nid);
1915 	if (nid == NUMA_NO_NODE)
1916 		nr_huge_pages = h->nr_huge_pages;
1917 	else
1918 		nr_huge_pages = h->nr_huge_pages_node[nid];
1919 
1920 	return sprintf(buf, "%lu\n", nr_huge_pages);
1921 }
1922 
1923 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
1924 					   struct hstate *h, int nid,
1925 					   unsigned long count, size_t len)
1926 {
1927 	int err;
1928 	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1929 
1930 	if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
1931 		err = -EINVAL;
1932 		goto out;
1933 	}
1934 
1935 	if (nid == NUMA_NO_NODE) {
1936 		/*
1937 		 * global hstate attribute
1938 		 */
1939 		if (!(obey_mempolicy &&
1940 				init_nodemask_of_mempolicy(nodes_allowed))) {
1941 			NODEMASK_FREE(nodes_allowed);
1942 			nodes_allowed = &node_states[N_MEMORY];
1943 		}
1944 	} else if (nodes_allowed) {
1945 		/*
1946 		 * per node hstate attribute: adjust count to global,
1947 		 * but restrict alloc/free to the specified node.
1948 		 */
1949 		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1950 		init_nodemask_of_node(nodes_allowed, nid);
1951 	} else
1952 		nodes_allowed = &node_states[N_MEMORY];
1953 
1954 	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1955 
1956 	if (nodes_allowed != &node_states[N_MEMORY])
1957 		NODEMASK_FREE(nodes_allowed);
1958 
1959 	return len;
1960 out:
1961 	NODEMASK_FREE(nodes_allowed);
1962 	return err;
1963 }
1964 
1965 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1966 					 struct kobject *kobj, const char *buf,
1967 					 size_t len)
1968 {
1969 	struct hstate *h;
1970 	unsigned long count;
1971 	int nid;
1972 	int err;
1973 
1974 	err = kstrtoul(buf, 10, &count);
1975 	if (err)
1976 		return err;
1977 
1978 	h = kobj_to_hstate(kobj, &nid);
1979 	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
1980 }
1981 
1982 static ssize_t nr_hugepages_show(struct kobject *kobj,
1983 				       struct kobj_attribute *attr, char *buf)
1984 {
1985 	return nr_hugepages_show_common(kobj, attr, buf);
1986 }
1987 
1988 static ssize_t nr_hugepages_store(struct kobject *kobj,
1989 	       struct kobj_attribute *attr, const char *buf, size_t len)
1990 {
1991 	return nr_hugepages_store_common(false, kobj, buf, len);
1992 }
1993 HSTATE_ATTR(nr_hugepages);
1994 
1995 #ifdef CONFIG_NUMA
1996 
1997 /*
1998  * hstate attribute for optionally mempolicy-based constraint on persistent
1999  * huge page alloc/free.
2000  */
2001 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2002 				       struct kobj_attribute *attr, char *buf)
2003 {
2004 	return nr_hugepages_show_common(kobj, attr, buf);
2005 }
2006 
2007 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2008 	       struct kobj_attribute *attr, const char *buf, size_t len)
2009 {
2010 	return nr_hugepages_store_common(true, kobj, buf, len);
2011 }
2012 HSTATE_ATTR(nr_hugepages_mempolicy);
2013 #endif
2014 
2015 
2016 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2017 					struct kobj_attribute *attr, char *buf)
2018 {
2019 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2020 	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2021 }
2022 
2023 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2024 		struct kobj_attribute *attr, const char *buf, size_t count)
2025 {
2026 	int err;
2027 	unsigned long input;
2028 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2029 
2030 	if (hstate_is_gigantic(h))
2031 		return -EINVAL;
2032 
2033 	err = kstrtoul(buf, 10, &input);
2034 	if (err)
2035 		return err;
2036 
2037 	spin_lock(&hugetlb_lock);
2038 	h->nr_overcommit_huge_pages = input;
2039 	spin_unlock(&hugetlb_lock);
2040 
2041 	return count;
2042 }
2043 HSTATE_ATTR(nr_overcommit_hugepages);
2044 
2045 static ssize_t free_hugepages_show(struct kobject *kobj,
2046 					struct kobj_attribute *attr, char *buf)
2047 {
2048 	struct hstate *h;
2049 	unsigned long free_huge_pages;
2050 	int nid;
2051 
2052 	h = kobj_to_hstate(kobj, &nid);
2053 	if (nid == NUMA_NO_NODE)
2054 		free_huge_pages = h->free_huge_pages;
2055 	else
2056 		free_huge_pages = h->free_huge_pages_node[nid];
2057 
2058 	return sprintf(buf, "%lu\n", free_huge_pages);
2059 }
2060 HSTATE_ATTR_RO(free_hugepages);
2061 
2062 static ssize_t resv_hugepages_show(struct kobject *kobj,
2063 					struct kobj_attribute *attr, char *buf)
2064 {
2065 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2066 	return sprintf(buf, "%lu\n", h->resv_huge_pages);
2067 }
2068 HSTATE_ATTR_RO(resv_hugepages);
2069 
2070 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2071 					struct kobj_attribute *attr, char *buf)
2072 {
2073 	struct hstate *h;
2074 	unsigned long surplus_huge_pages;
2075 	int nid;
2076 
2077 	h = kobj_to_hstate(kobj, &nid);
2078 	if (nid == NUMA_NO_NODE)
2079 		surplus_huge_pages = h->surplus_huge_pages;
2080 	else
2081 		surplus_huge_pages = h->surplus_huge_pages_node[nid];
2082 
2083 	return sprintf(buf, "%lu\n", surplus_huge_pages);
2084 }
2085 HSTATE_ATTR_RO(surplus_hugepages);
2086 
2087 static struct attribute *hstate_attrs[] = {
2088 	&nr_hugepages_attr.attr,
2089 	&nr_overcommit_hugepages_attr.attr,
2090 	&free_hugepages_attr.attr,
2091 	&resv_hugepages_attr.attr,
2092 	&surplus_hugepages_attr.attr,
2093 #ifdef CONFIG_NUMA
2094 	&nr_hugepages_mempolicy_attr.attr,
2095 #endif
2096 	NULL,
2097 };
2098 
2099 static struct attribute_group hstate_attr_group = {
2100 	.attrs = hstate_attrs,
2101 };
2102 
2103 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2104 				    struct kobject **hstate_kobjs,
2105 				    struct attribute_group *hstate_attr_group)
2106 {
2107 	int retval;
2108 	int hi = hstate_index(h);
2109 
2110 	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2111 	if (!hstate_kobjs[hi])
2112 		return -ENOMEM;
2113 
2114 	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2115 	if (retval)
2116 		kobject_put(hstate_kobjs[hi]);
2117 
2118 	return retval;
2119 }
2120 
2121 static void __init hugetlb_sysfs_init(void)
2122 {
2123 	struct hstate *h;
2124 	int err;
2125 
2126 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2127 	if (!hugepages_kobj)
2128 		return;
2129 
2130 	for_each_hstate(h) {
2131 		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2132 					 hstate_kobjs, &hstate_attr_group);
2133 		if (err)
2134 			pr_err("Hugetlb: Unable to add hstate %s", h->name);
2135 	}
2136 }
2137 
2138 #ifdef CONFIG_NUMA
2139 
2140 /*
2141  * node_hstate/s - associate per node hstate attributes, via their kobjects,
2142  * with node devices in node_devices[] using a parallel array.  The array
2143  * index of a node device or _hstate == node id.
2144  * This is here to avoid any static dependency of the node device driver, in
2145  * the base kernel, on the hugetlb module.
2146  */
2147 struct node_hstate {
2148 	struct kobject		*hugepages_kobj;
2149 	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
2150 };
2151 struct node_hstate node_hstates[MAX_NUMNODES];
2152 
2153 /*
2154  * A subset of global hstate attributes for node devices
2155  */
2156 static struct attribute *per_node_hstate_attrs[] = {
2157 	&nr_hugepages_attr.attr,
2158 	&free_hugepages_attr.attr,
2159 	&surplus_hugepages_attr.attr,
2160 	NULL,
2161 };
2162 
2163 static struct attribute_group per_node_hstate_attr_group = {
2164 	.attrs = per_node_hstate_attrs,
2165 };
2166 
2167 /*
2168  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2169  * Returns node id via non-NULL nidp.
2170  */
2171 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2172 {
2173 	int nid;
2174 
2175 	for (nid = 0; nid < nr_node_ids; nid++) {
2176 		struct node_hstate *nhs = &node_hstates[nid];
2177 		int i;
2178 		for (i = 0; i < HUGE_MAX_HSTATE; i++)
2179 			if (nhs->hstate_kobjs[i] == kobj) {
2180 				if (nidp)
2181 					*nidp = nid;
2182 				return &hstates[i];
2183 			}
2184 	}
2185 
2186 	BUG();
2187 	return NULL;
2188 }
2189 
2190 /*
2191  * Unregister hstate attributes from a single node device.
2192  * No-op if no hstate attributes attached.
2193  */
2194 static void hugetlb_unregister_node(struct node *node)
2195 {
2196 	struct hstate *h;
2197 	struct node_hstate *nhs = &node_hstates[node->dev.id];
2198 
2199 	if (!nhs->hugepages_kobj)
2200 		return;		/* no hstate attributes */
2201 
2202 	for_each_hstate(h) {
2203 		int idx = hstate_index(h);
2204 		if (nhs->hstate_kobjs[idx]) {
2205 			kobject_put(nhs->hstate_kobjs[idx]);
2206 			nhs->hstate_kobjs[idx] = NULL;
2207 		}
2208 	}
2209 
2210 	kobject_put(nhs->hugepages_kobj);
2211 	nhs->hugepages_kobj = NULL;
2212 }
2213 
2214 /*
2215  * hugetlb module exit:  unregister hstate attributes from node devices
2216  * that have them.
2217  */
2218 static void hugetlb_unregister_all_nodes(void)
2219 {
2220 	int nid;
2221 
2222 	/*
2223 	 * disable node device registrations.
2224 	 */
2225 	register_hugetlbfs_with_node(NULL, NULL);
2226 
2227 	/*
2228 	 * remove hstate attributes from any nodes that have them.
2229 	 */
2230 	for (nid = 0; nid < nr_node_ids; nid++)
2231 		hugetlb_unregister_node(node_devices[nid]);
2232 }
2233 
2234 /*
2235  * Register hstate attributes for a single node device.
2236  * No-op if attributes already registered.
2237  */
2238 static void hugetlb_register_node(struct node *node)
2239 {
2240 	struct hstate *h;
2241 	struct node_hstate *nhs = &node_hstates[node->dev.id];
2242 	int err;
2243 
2244 	if (nhs->hugepages_kobj)
2245 		return;		/* already allocated */
2246 
2247 	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2248 							&node->dev.kobj);
2249 	if (!nhs->hugepages_kobj)
2250 		return;
2251 
2252 	for_each_hstate(h) {
2253 		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2254 						nhs->hstate_kobjs,
2255 						&per_node_hstate_attr_group);
2256 		if (err) {
2257 			pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2258 				h->name, node->dev.id);
2259 			hugetlb_unregister_node(node);
2260 			break;
2261 		}
2262 	}
2263 }
2264 
2265 /*
2266  * hugetlb init time:  register hstate attributes for all registered node
2267  * devices of nodes that have memory.  All on-line nodes should have
2268  * registered their associated device by this time.
2269  */
2270 static void __init hugetlb_register_all_nodes(void)
2271 {
2272 	int nid;
2273 
2274 	for_each_node_state(nid, N_MEMORY) {
2275 		struct node *node = node_devices[nid];
2276 		if (node->dev.id == nid)
2277 			hugetlb_register_node(node);
2278 	}
2279 
2280 	/*
2281 	 * Let the node device driver know we're here so it can
2282 	 * [un]register hstate attributes on node hotplug.
2283 	 */
2284 	register_hugetlbfs_with_node(hugetlb_register_node,
2285 				     hugetlb_unregister_node);
2286 }
2287 #else	/* !CONFIG_NUMA */
2288 
2289 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2290 {
2291 	BUG();
2292 	if (nidp)
2293 		*nidp = -1;
2294 	return NULL;
2295 }
2296 
2297 static void hugetlb_unregister_all_nodes(void) { }
2298 
2299 static void hugetlb_register_all_nodes(void) { }
2300 
2301 #endif
2302 
2303 static void __exit hugetlb_exit(void)
2304 {
2305 	struct hstate *h;
2306 
2307 	hugetlb_unregister_all_nodes();
2308 
2309 	for_each_hstate(h) {
2310 		kobject_put(hstate_kobjs[hstate_index(h)]);
2311 	}
2312 
2313 	kobject_put(hugepages_kobj);
2314 	kfree(htlb_fault_mutex_table);
2315 }
2316 module_exit(hugetlb_exit);
2317 
2318 static int __init hugetlb_init(void)
2319 {
2320 	int i;
2321 
2322 	if (!hugepages_supported())
2323 		return 0;
2324 
2325 	if (!size_to_hstate(default_hstate_size)) {
2326 		default_hstate_size = HPAGE_SIZE;
2327 		if (!size_to_hstate(default_hstate_size))
2328 			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2329 	}
2330 	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2331 	if (default_hstate_max_huge_pages)
2332 		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2333 
2334 	hugetlb_init_hstates();
2335 	gather_bootmem_prealloc();
2336 	report_hugepages();
2337 
2338 	hugetlb_sysfs_init();
2339 	hugetlb_register_all_nodes();
2340 	hugetlb_cgroup_file_init();
2341 
2342 #ifdef CONFIG_SMP
2343 	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2344 #else
2345 	num_fault_mutexes = 1;
2346 #endif
2347 	htlb_fault_mutex_table =
2348 		kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2349 	BUG_ON(!htlb_fault_mutex_table);
2350 
2351 	for (i = 0; i < num_fault_mutexes; i++)
2352 		mutex_init(&htlb_fault_mutex_table[i]);
2353 	return 0;
2354 }
2355 module_init(hugetlb_init);
2356 
2357 /* Should be called on processing a hugepagesz=... option */
2358 void __init hugetlb_add_hstate(unsigned order)
2359 {
2360 	struct hstate *h;
2361 	unsigned long i;
2362 
2363 	if (size_to_hstate(PAGE_SIZE << order)) {
2364 		pr_warning("hugepagesz= specified twice, ignoring\n");
2365 		return;
2366 	}
2367 	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2368 	BUG_ON(order == 0);
2369 	h = &hstates[hugetlb_max_hstate++];
2370 	h->order = order;
2371 	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2372 	h->nr_huge_pages = 0;
2373 	h->free_huge_pages = 0;
2374 	for (i = 0; i < MAX_NUMNODES; ++i)
2375 		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2376 	INIT_LIST_HEAD(&h->hugepage_activelist);
2377 	h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
2378 	h->next_nid_to_free = first_node(node_states[N_MEMORY]);
2379 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2380 					huge_page_size(h)/1024);
2381 
2382 	parsed_hstate = h;
2383 }
2384 
2385 static int __init hugetlb_nrpages_setup(char *s)
2386 {
2387 	unsigned long *mhp;
2388 	static unsigned long *last_mhp;
2389 
2390 	/*
2391 	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2392 	 * so this hugepages= parameter goes to the "default hstate".
2393 	 */
2394 	if (!hugetlb_max_hstate)
2395 		mhp = &default_hstate_max_huge_pages;
2396 	else
2397 		mhp = &parsed_hstate->max_huge_pages;
2398 
2399 	if (mhp == last_mhp) {
2400 		pr_warning("hugepages= specified twice without "
2401 			   "interleaving hugepagesz=, ignoring\n");
2402 		return 1;
2403 	}
2404 
2405 	if (sscanf(s, "%lu", mhp) <= 0)
2406 		*mhp = 0;
2407 
2408 	/*
2409 	 * Global state is always initialized later in hugetlb_init.
2410 	 * But we need to allocate >= MAX_ORDER hstates here early to still
2411 	 * use the bootmem allocator.
2412 	 */
2413 	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2414 		hugetlb_hstate_alloc_pages(parsed_hstate);
2415 
2416 	last_mhp = mhp;
2417 
2418 	return 1;
2419 }
2420 __setup("hugepages=", hugetlb_nrpages_setup);
2421 
2422 static int __init hugetlb_default_setup(char *s)
2423 {
2424 	default_hstate_size = memparse(s, &s);
2425 	return 1;
2426 }
2427 __setup("default_hugepagesz=", hugetlb_default_setup);
2428 
2429 static unsigned int cpuset_mems_nr(unsigned int *array)
2430 {
2431 	int node;
2432 	unsigned int nr = 0;
2433 
2434 	for_each_node_mask(node, cpuset_current_mems_allowed)
2435 		nr += array[node];
2436 
2437 	return nr;
2438 }
2439 
2440 #ifdef CONFIG_SYSCTL
2441 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2442 			 struct ctl_table *table, int write,
2443 			 void __user *buffer, size_t *length, loff_t *ppos)
2444 {
2445 	struct hstate *h = &default_hstate;
2446 	unsigned long tmp = h->max_huge_pages;
2447 	int ret;
2448 
2449 	if (!hugepages_supported())
2450 		return -ENOTSUPP;
2451 
2452 	table->data = &tmp;
2453 	table->maxlen = sizeof(unsigned long);
2454 	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2455 	if (ret)
2456 		goto out;
2457 
2458 	if (write)
2459 		ret = __nr_hugepages_store_common(obey_mempolicy, h,
2460 						  NUMA_NO_NODE, tmp, *length);
2461 out:
2462 	return ret;
2463 }
2464 
2465 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2466 			  void __user *buffer, size_t *length, loff_t *ppos)
2467 {
2468 
2469 	return hugetlb_sysctl_handler_common(false, table, write,
2470 							buffer, length, ppos);
2471 }
2472 
2473 #ifdef CONFIG_NUMA
2474 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2475 			  void __user *buffer, size_t *length, loff_t *ppos)
2476 {
2477 	return hugetlb_sysctl_handler_common(true, table, write,
2478 							buffer, length, ppos);
2479 }
2480 #endif /* CONFIG_NUMA */
2481 
2482 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2483 			void __user *buffer,
2484 			size_t *length, loff_t *ppos)
2485 {
2486 	struct hstate *h = &default_hstate;
2487 	unsigned long tmp;
2488 	int ret;
2489 
2490 	if (!hugepages_supported())
2491 		return -ENOTSUPP;
2492 
2493 	tmp = h->nr_overcommit_huge_pages;
2494 
2495 	if (write && hstate_is_gigantic(h))
2496 		return -EINVAL;
2497 
2498 	table->data = &tmp;
2499 	table->maxlen = sizeof(unsigned long);
2500 	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2501 	if (ret)
2502 		goto out;
2503 
2504 	if (write) {
2505 		spin_lock(&hugetlb_lock);
2506 		h->nr_overcommit_huge_pages = tmp;
2507 		spin_unlock(&hugetlb_lock);
2508 	}
2509 out:
2510 	return ret;
2511 }
2512 
2513 #endif /* CONFIG_SYSCTL */
2514 
2515 void hugetlb_report_meminfo(struct seq_file *m)
2516 {
2517 	struct hstate *h = &default_hstate;
2518 	if (!hugepages_supported())
2519 		return;
2520 	seq_printf(m,
2521 			"HugePages_Total:   %5lu\n"
2522 			"HugePages_Free:    %5lu\n"
2523 			"HugePages_Rsvd:    %5lu\n"
2524 			"HugePages_Surp:    %5lu\n"
2525 			"Hugepagesize:   %8lu kB\n",
2526 			h->nr_huge_pages,
2527 			h->free_huge_pages,
2528 			h->resv_huge_pages,
2529 			h->surplus_huge_pages,
2530 			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2531 }
2532 
2533 int hugetlb_report_node_meminfo(int nid, char *buf)
2534 {
2535 	struct hstate *h = &default_hstate;
2536 	if (!hugepages_supported())
2537 		return 0;
2538 	return sprintf(buf,
2539 		"Node %d HugePages_Total: %5u\n"
2540 		"Node %d HugePages_Free:  %5u\n"
2541 		"Node %d HugePages_Surp:  %5u\n",
2542 		nid, h->nr_huge_pages_node[nid],
2543 		nid, h->free_huge_pages_node[nid],
2544 		nid, h->surplus_huge_pages_node[nid]);
2545 }
2546 
2547 void hugetlb_show_meminfo(void)
2548 {
2549 	struct hstate *h;
2550 	int nid;
2551 
2552 	if (!hugepages_supported())
2553 		return;
2554 
2555 	for_each_node_state(nid, N_MEMORY)
2556 		for_each_hstate(h)
2557 			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2558 				nid,
2559 				h->nr_huge_pages_node[nid],
2560 				h->free_huge_pages_node[nid],
2561 				h->surplus_huge_pages_node[nid],
2562 				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2563 }
2564 
2565 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2566 unsigned long hugetlb_total_pages(void)
2567 {
2568 	struct hstate *h;
2569 	unsigned long nr_total_pages = 0;
2570 
2571 	for_each_hstate(h)
2572 		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2573 	return nr_total_pages;
2574 }
2575 
2576 static int hugetlb_acct_memory(struct hstate *h, long delta)
2577 {
2578 	int ret = -ENOMEM;
2579 
2580 	spin_lock(&hugetlb_lock);
2581 	/*
2582 	 * When cpuset is configured, it breaks the strict hugetlb page
2583 	 * reservation as the accounting is done on a global variable. Such
2584 	 * reservation is completely rubbish in the presence of cpuset because
2585 	 * the reservation is not checked against page availability for the
2586 	 * current cpuset. Application can still potentially OOM'ed by kernel
2587 	 * with lack of free htlb page in cpuset that the task is in.
2588 	 * Attempt to enforce strict accounting with cpuset is almost
2589 	 * impossible (or too ugly) because cpuset is too fluid that
2590 	 * task or memory node can be dynamically moved between cpusets.
2591 	 *
2592 	 * The change of semantics for shared hugetlb mapping with cpuset is
2593 	 * undesirable. However, in order to preserve some of the semantics,
2594 	 * we fall back to check against current free page availability as
2595 	 * a best attempt and hopefully to minimize the impact of changing
2596 	 * semantics that cpuset has.
2597 	 */
2598 	if (delta > 0) {
2599 		if (gather_surplus_pages(h, delta) < 0)
2600 			goto out;
2601 
2602 		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2603 			return_unused_surplus_pages(h, delta);
2604 			goto out;
2605 		}
2606 	}
2607 
2608 	ret = 0;
2609 	if (delta < 0)
2610 		return_unused_surplus_pages(h, (unsigned long) -delta);
2611 
2612 out:
2613 	spin_unlock(&hugetlb_lock);
2614 	return ret;
2615 }
2616 
2617 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2618 {
2619 	struct resv_map *resv = vma_resv_map(vma);
2620 
2621 	/*
2622 	 * This new VMA should share its siblings reservation map if present.
2623 	 * The VMA will only ever have a valid reservation map pointer where
2624 	 * it is being copied for another still existing VMA.  As that VMA
2625 	 * has a reference to the reservation map it cannot disappear until
2626 	 * after this open call completes.  It is therefore safe to take a
2627 	 * new reference here without additional locking.
2628 	 */
2629 	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2630 		kref_get(&resv->refs);
2631 }
2632 
2633 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2634 {
2635 	struct hstate *h = hstate_vma(vma);
2636 	struct resv_map *resv = vma_resv_map(vma);
2637 	struct hugepage_subpool *spool = subpool_vma(vma);
2638 	unsigned long reserve, start, end;
2639 	long gbl_reserve;
2640 
2641 	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2642 		return;
2643 
2644 	start = vma_hugecache_offset(h, vma, vma->vm_start);
2645 	end = vma_hugecache_offset(h, vma, vma->vm_end);
2646 
2647 	reserve = (end - start) - region_count(resv, start, end);
2648 
2649 	kref_put(&resv->refs, resv_map_release);
2650 
2651 	if (reserve) {
2652 		/*
2653 		 * Decrement reserve counts.  The global reserve count may be
2654 		 * adjusted if the subpool has a minimum size.
2655 		 */
2656 		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
2657 		hugetlb_acct_memory(h, -gbl_reserve);
2658 	}
2659 }
2660 
2661 /*
2662  * We cannot handle pagefaults against hugetlb pages at all.  They cause
2663  * handle_mm_fault() to try to instantiate regular-sized pages in the
2664  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
2665  * this far.
2666  */
2667 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2668 {
2669 	BUG();
2670 	return 0;
2671 }
2672 
2673 const struct vm_operations_struct hugetlb_vm_ops = {
2674 	.fault = hugetlb_vm_op_fault,
2675 	.open = hugetlb_vm_op_open,
2676 	.close = hugetlb_vm_op_close,
2677 };
2678 
2679 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2680 				int writable)
2681 {
2682 	pte_t entry;
2683 
2684 	if (writable) {
2685 		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2686 					 vma->vm_page_prot)));
2687 	} else {
2688 		entry = huge_pte_wrprotect(mk_huge_pte(page,
2689 					   vma->vm_page_prot));
2690 	}
2691 	entry = pte_mkyoung(entry);
2692 	entry = pte_mkhuge(entry);
2693 	entry = arch_make_huge_pte(entry, vma, page, writable);
2694 
2695 	return entry;
2696 }
2697 
2698 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2699 				   unsigned long address, pte_t *ptep)
2700 {
2701 	pte_t entry;
2702 
2703 	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
2704 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2705 		update_mmu_cache(vma, address, ptep);
2706 }
2707 
2708 static int is_hugetlb_entry_migration(pte_t pte)
2709 {
2710 	swp_entry_t swp;
2711 
2712 	if (huge_pte_none(pte) || pte_present(pte))
2713 		return 0;
2714 	swp = pte_to_swp_entry(pte);
2715 	if (non_swap_entry(swp) && is_migration_entry(swp))
2716 		return 1;
2717 	else
2718 		return 0;
2719 }
2720 
2721 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2722 {
2723 	swp_entry_t swp;
2724 
2725 	if (huge_pte_none(pte) || pte_present(pte))
2726 		return 0;
2727 	swp = pte_to_swp_entry(pte);
2728 	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2729 		return 1;
2730 	else
2731 		return 0;
2732 }
2733 
2734 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2735 			    struct vm_area_struct *vma)
2736 {
2737 	pte_t *src_pte, *dst_pte, entry;
2738 	struct page *ptepage;
2739 	unsigned long addr;
2740 	int cow;
2741 	struct hstate *h = hstate_vma(vma);
2742 	unsigned long sz = huge_page_size(h);
2743 	unsigned long mmun_start;	/* For mmu_notifiers */
2744 	unsigned long mmun_end;		/* For mmu_notifiers */
2745 	int ret = 0;
2746 
2747 	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2748 
2749 	mmun_start = vma->vm_start;
2750 	mmun_end = vma->vm_end;
2751 	if (cow)
2752 		mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
2753 
2754 	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2755 		spinlock_t *src_ptl, *dst_ptl;
2756 		src_pte = huge_pte_offset(src, addr);
2757 		if (!src_pte)
2758 			continue;
2759 		dst_pte = huge_pte_alloc(dst, addr, sz);
2760 		if (!dst_pte) {
2761 			ret = -ENOMEM;
2762 			break;
2763 		}
2764 
2765 		/* If the pagetables are shared don't copy or take references */
2766 		if (dst_pte == src_pte)
2767 			continue;
2768 
2769 		dst_ptl = huge_pte_lock(h, dst, dst_pte);
2770 		src_ptl = huge_pte_lockptr(h, src, src_pte);
2771 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
2772 		entry = huge_ptep_get(src_pte);
2773 		if (huge_pte_none(entry)) { /* skip none entry */
2774 			;
2775 		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
2776 				    is_hugetlb_entry_hwpoisoned(entry))) {
2777 			swp_entry_t swp_entry = pte_to_swp_entry(entry);
2778 
2779 			if (is_write_migration_entry(swp_entry) && cow) {
2780 				/*
2781 				 * COW mappings require pages in both
2782 				 * parent and child to be set to read.
2783 				 */
2784 				make_migration_entry_read(&swp_entry);
2785 				entry = swp_entry_to_pte(swp_entry);
2786 				set_huge_pte_at(src, addr, src_pte, entry);
2787 			}
2788 			set_huge_pte_at(dst, addr, dst_pte, entry);
2789 		} else {
2790 			if (cow) {
2791 				huge_ptep_set_wrprotect(src, addr, src_pte);
2792 				mmu_notifier_invalidate_range(src, mmun_start,
2793 								   mmun_end);
2794 			}
2795 			entry = huge_ptep_get(src_pte);
2796 			ptepage = pte_page(entry);
2797 			get_page(ptepage);
2798 			page_dup_rmap(ptepage);
2799 			set_huge_pte_at(dst, addr, dst_pte, entry);
2800 		}
2801 		spin_unlock(src_ptl);
2802 		spin_unlock(dst_ptl);
2803 	}
2804 
2805 	if (cow)
2806 		mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
2807 
2808 	return ret;
2809 }
2810 
2811 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2812 			    unsigned long start, unsigned long end,
2813 			    struct page *ref_page)
2814 {
2815 	int force_flush = 0;
2816 	struct mm_struct *mm = vma->vm_mm;
2817 	unsigned long address;
2818 	pte_t *ptep;
2819 	pte_t pte;
2820 	spinlock_t *ptl;
2821 	struct page *page;
2822 	struct hstate *h = hstate_vma(vma);
2823 	unsigned long sz = huge_page_size(h);
2824 	const unsigned long mmun_start = start;	/* For mmu_notifiers */
2825 	const unsigned long mmun_end   = end;	/* For mmu_notifiers */
2826 
2827 	WARN_ON(!is_vm_hugetlb_page(vma));
2828 	BUG_ON(start & ~huge_page_mask(h));
2829 	BUG_ON(end & ~huge_page_mask(h));
2830 
2831 	tlb_start_vma(tlb, vma);
2832 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2833 	address = start;
2834 again:
2835 	for (; address < end; address += sz) {
2836 		ptep = huge_pte_offset(mm, address);
2837 		if (!ptep)
2838 			continue;
2839 
2840 		ptl = huge_pte_lock(h, mm, ptep);
2841 		if (huge_pmd_unshare(mm, &address, ptep))
2842 			goto unlock;
2843 
2844 		pte = huge_ptep_get(ptep);
2845 		if (huge_pte_none(pte))
2846 			goto unlock;
2847 
2848 		/*
2849 		 * Migrating hugepage or HWPoisoned hugepage is already
2850 		 * unmapped and its refcount is dropped, so just clear pte here.
2851 		 */
2852 		if (unlikely(!pte_present(pte))) {
2853 			huge_pte_clear(mm, address, ptep);
2854 			goto unlock;
2855 		}
2856 
2857 		page = pte_page(pte);
2858 		/*
2859 		 * If a reference page is supplied, it is because a specific
2860 		 * page is being unmapped, not a range. Ensure the page we
2861 		 * are about to unmap is the actual page of interest.
2862 		 */
2863 		if (ref_page) {
2864 			if (page != ref_page)
2865 				goto unlock;
2866 
2867 			/*
2868 			 * Mark the VMA as having unmapped its page so that
2869 			 * future faults in this VMA will fail rather than
2870 			 * looking like data was lost
2871 			 */
2872 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2873 		}
2874 
2875 		pte = huge_ptep_get_and_clear(mm, address, ptep);
2876 		tlb_remove_tlb_entry(tlb, ptep, address);
2877 		if (huge_pte_dirty(pte))
2878 			set_page_dirty(page);
2879 
2880 		page_remove_rmap(page);
2881 		force_flush = !__tlb_remove_page(tlb, page);
2882 		if (force_flush) {
2883 			address += sz;
2884 			spin_unlock(ptl);
2885 			break;
2886 		}
2887 		/* Bail out after unmapping reference page if supplied */
2888 		if (ref_page) {
2889 			spin_unlock(ptl);
2890 			break;
2891 		}
2892 unlock:
2893 		spin_unlock(ptl);
2894 	}
2895 	/*
2896 	 * mmu_gather ran out of room to batch pages, we break out of
2897 	 * the PTE lock to avoid doing the potential expensive TLB invalidate
2898 	 * and page-free while holding it.
2899 	 */
2900 	if (force_flush) {
2901 		force_flush = 0;
2902 		tlb_flush_mmu(tlb);
2903 		if (address < end && !ref_page)
2904 			goto again;
2905 	}
2906 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2907 	tlb_end_vma(tlb, vma);
2908 }
2909 
2910 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
2911 			  struct vm_area_struct *vma, unsigned long start,
2912 			  unsigned long end, struct page *ref_page)
2913 {
2914 	__unmap_hugepage_range(tlb, vma, start, end, ref_page);
2915 
2916 	/*
2917 	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
2918 	 * test will fail on a vma being torn down, and not grab a page table
2919 	 * on its way out.  We're lucky that the flag has such an appropriate
2920 	 * name, and can in fact be safely cleared here. We could clear it
2921 	 * before the __unmap_hugepage_range above, but all that's necessary
2922 	 * is to clear it before releasing the i_mmap_rwsem. This works
2923 	 * because in the context this is called, the VMA is about to be
2924 	 * destroyed and the i_mmap_rwsem is held.
2925 	 */
2926 	vma->vm_flags &= ~VM_MAYSHARE;
2927 }
2928 
2929 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2930 			  unsigned long end, struct page *ref_page)
2931 {
2932 	struct mm_struct *mm;
2933 	struct mmu_gather tlb;
2934 
2935 	mm = vma->vm_mm;
2936 
2937 	tlb_gather_mmu(&tlb, mm, start, end);
2938 	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2939 	tlb_finish_mmu(&tlb, start, end);
2940 }
2941 
2942 /*
2943  * This is called when the original mapper is failing to COW a MAP_PRIVATE
2944  * mappping it owns the reserve page for. The intention is to unmap the page
2945  * from other VMAs and let the children be SIGKILLed if they are faulting the
2946  * same region.
2947  */
2948 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2949 			      struct page *page, unsigned long address)
2950 {
2951 	struct hstate *h = hstate_vma(vma);
2952 	struct vm_area_struct *iter_vma;
2953 	struct address_space *mapping;
2954 	pgoff_t pgoff;
2955 
2956 	/*
2957 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2958 	 * from page cache lookup which is in HPAGE_SIZE units.
2959 	 */
2960 	address = address & huge_page_mask(h);
2961 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2962 			vma->vm_pgoff;
2963 	mapping = file_inode(vma->vm_file)->i_mapping;
2964 
2965 	/*
2966 	 * Take the mapping lock for the duration of the table walk. As
2967 	 * this mapping should be shared between all the VMAs,
2968 	 * __unmap_hugepage_range() is called as the lock is already held
2969 	 */
2970 	i_mmap_lock_write(mapping);
2971 	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
2972 		/* Do not unmap the current VMA */
2973 		if (iter_vma == vma)
2974 			continue;
2975 
2976 		/*
2977 		 * Unmap the page from other VMAs without their own reserves.
2978 		 * They get marked to be SIGKILLed if they fault in these
2979 		 * areas. This is because a future no-page fault on this VMA
2980 		 * could insert a zeroed page instead of the data existing
2981 		 * from the time of fork. This would look like data corruption
2982 		 */
2983 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2984 			unmap_hugepage_range(iter_vma, address,
2985 					     address + huge_page_size(h), page);
2986 	}
2987 	i_mmap_unlock_write(mapping);
2988 }
2989 
2990 /*
2991  * Hugetlb_cow() should be called with page lock of the original hugepage held.
2992  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2993  * cannot race with other handlers or page migration.
2994  * Keep the pte_same checks anyway to make transition from the mutex easier.
2995  */
2996 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2997 			unsigned long address, pte_t *ptep, pte_t pte,
2998 			struct page *pagecache_page, spinlock_t *ptl)
2999 {
3000 	struct hstate *h = hstate_vma(vma);
3001 	struct page *old_page, *new_page;
3002 	int ret = 0, outside_reserve = 0;
3003 	unsigned long mmun_start;	/* For mmu_notifiers */
3004 	unsigned long mmun_end;		/* For mmu_notifiers */
3005 
3006 	old_page = pte_page(pte);
3007 
3008 retry_avoidcopy:
3009 	/* If no-one else is actually using this page, avoid the copy
3010 	 * and just make the page writable */
3011 	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3012 		page_move_anon_rmap(old_page, vma, address);
3013 		set_huge_ptep_writable(vma, address, ptep);
3014 		return 0;
3015 	}
3016 
3017 	/*
3018 	 * If the process that created a MAP_PRIVATE mapping is about to
3019 	 * perform a COW due to a shared page count, attempt to satisfy
3020 	 * the allocation without using the existing reserves. The pagecache
3021 	 * page is used to determine if the reserve at this address was
3022 	 * consumed or not. If reserves were used, a partial faulted mapping
3023 	 * at the time of fork() could consume its reserves on COW instead
3024 	 * of the full address range.
3025 	 */
3026 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3027 			old_page != pagecache_page)
3028 		outside_reserve = 1;
3029 
3030 	page_cache_get(old_page);
3031 
3032 	/*
3033 	 * Drop page table lock as buddy allocator may be called. It will
3034 	 * be acquired again before returning to the caller, as expected.
3035 	 */
3036 	spin_unlock(ptl);
3037 	new_page = alloc_huge_page(vma, address, outside_reserve);
3038 
3039 	if (IS_ERR(new_page)) {
3040 		/*
3041 		 * If a process owning a MAP_PRIVATE mapping fails to COW,
3042 		 * it is due to references held by a child and an insufficient
3043 		 * huge page pool. To guarantee the original mappers
3044 		 * reliability, unmap the page from child processes. The child
3045 		 * may get SIGKILLed if it later faults.
3046 		 */
3047 		if (outside_reserve) {
3048 			page_cache_release(old_page);
3049 			BUG_ON(huge_pte_none(pte));
3050 			unmap_ref_private(mm, vma, old_page, address);
3051 			BUG_ON(huge_pte_none(pte));
3052 			spin_lock(ptl);
3053 			ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3054 			if (likely(ptep &&
3055 				   pte_same(huge_ptep_get(ptep), pte)))
3056 				goto retry_avoidcopy;
3057 			/*
3058 			 * race occurs while re-acquiring page table
3059 			 * lock, and our job is done.
3060 			 */
3061 			return 0;
3062 		}
3063 
3064 		ret = (PTR_ERR(new_page) == -ENOMEM) ?
3065 			VM_FAULT_OOM : VM_FAULT_SIGBUS;
3066 		goto out_release_old;
3067 	}
3068 
3069 	/*
3070 	 * When the original hugepage is shared one, it does not have
3071 	 * anon_vma prepared.
3072 	 */
3073 	if (unlikely(anon_vma_prepare(vma))) {
3074 		ret = VM_FAULT_OOM;
3075 		goto out_release_all;
3076 	}
3077 
3078 	copy_user_huge_page(new_page, old_page, address, vma,
3079 			    pages_per_huge_page(h));
3080 	__SetPageUptodate(new_page);
3081 	set_page_huge_active(new_page);
3082 
3083 	mmun_start = address & huge_page_mask(h);
3084 	mmun_end = mmun_start + huge_page_size(h);
3085 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3086 
3087 	/*
3088 	 * Retake the page table lock to check for racing updates
3089 	 * before the page tables are altered
3090 	 */
3091 	spin_lock(ptl);
3092 	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3093 	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3094 		ClearPagePrivate(new_page);
3095 
3096 		/* Break COW */
3097 		huge_ptep_clear_flush(vma, address, ptep);
3098 		mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3099 		set_huge_pte_at(mm, address, ptep,
3100 				make_huge_pte(vma, new_page, 1));
3101 		page_remove_rmap(old_page);
3102 		hugepage_add_new_anon_rmap(new_page, vma, address);
3103 		/* Make the old page be freed below */
3104 		new_page = old_page;
3105 	}
3106 	spin_unlock(ptl);
3107 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3108 out_release_all:
3109 	page_cache_release(new_page);
3110 out_release_old:
3111 	page_cache_release(old_page);
3112 
3113 	spin_lock(ptl); /* Caller expects lock to be held */
3114 	return ret;
3115 }
3116 
3117 /* Return the pagecache page at a given address within a VMA */
3118 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3119 			struct vm_area_struct *vma, unsigned long address)
3120 {
3121 	struct address_space *mapping;
3122 	pgoff_t idx;
3123 
3124 	mapping = vma->vm_file->f_mapping;
3125 	idx = vma_hugecache_offset(h, vma, address);
3126 
3127 	return find_lock_page(mapping, idx);
3128 }
3129 
3130 /*
3131  * Return whether there is a pagecache page to back given address within VMA.
3132  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3133  */
3134 static bool hugetlbfs_pagecache_present(struct hstate *h,
3135 			struct vm_area_struct *vma, unsigned long address)
3136 {
3137 	struct address_space *mapping;
3138 	pgoff_t idx;
3139 	struct page *page;
3140 
3141 	mapping = vma->vm_file->f_mapping;
3142 	idx = vma_hugecache_offset(h, vma, address);
3143 
3144 	page = find_get_page(mapping, idx);
3145 	if (page)
3146 		put_page(page);
3147 	return page != NULL;
3148 }
3149 
3150 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3151 			   struct address_space *mapping, pgoff_t idx,
3152 			   unsigned long address, pte_t *ptep, unsigned int flags)
3153 {
3154 	struct hstate *h = hstate_vma(vma);
3155 	int ret = VM_FAULT_SIGBUS;
3156 	int anon_rmap = 0;
3157 	unsigned long size;
3158 	struct page *page;
3159 	pte_t new_pte;
3160 	spinlock_t *ptl;
3161 
3162 	/*
3163 	 * Currently, we are forced to kill the process in the event the
3164 	 * original mapper has unmapped pages from the child due to a failed
3165 	 * COW. Warn that such a situation has occurred as it may not be obvious
3166 	 */
3167 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3168 		pr_warning("PID %d killed due to inadequate hugepage pool\n",
3169 			   current->pid);
3170 		return ret;
3171 	}
3172 
3173 	/*
3174 	 * Use page lock to guard against racing truncation
3175 	 * before we get page_table_lock.
3176 	 */
3177 retry:
3178 	page = find_lock_page(mapping, idx);
3179 	if (!page) {
3180 		size = i_size_read(mapping->host) >> huge_page_shift(h);
3181 		if (idx >= size)
3182 			goto out;
3183 		page = alloc_huge_page(vma, address, 0);
3184 		if (IS_ERR(page)) {
3185 			ret = PTR_ERR(page);
3186 			if (ret == -ENOMEM)
3187 				ret = VM_FAULT_OOM;
3188 			else
3189 				ret = VM_FAULT_SIGBUS;
3190 			goto out;
3191 		}
3192 		clear_huge_page(page, address, pages_per_huge_page(h));
3193 		__SetPageUptodate(page);
3194 		set_page_huge_active(page);
3195 
3196 		if (vma->vm_flags & VM_MAYSHARE) {
3197 			int err;
3198 			struct inode *inode = mapping->host;
3199 
3200 			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3201 			if (err) {
3202 				put_page(page);
3203 				if (err == -EEXIST)
3204 					goto retry;
3205 				goto out;
3206 			}
3207 			ClearPagePrivate(page);
3208 
3209 			spin_lock(&inode->i_lock);
3210 			inode->i_blocks += blocks_per_huge_page(h);
3211 			spin_unlock(&inode->i_lock);
3212 		} else {
3213 			lock_page(page);
3214 			if (unlikely(anon_vma_prepare(vma))) {
3215 				ret = VM_FAULT_OOM;
3216 				goto backout_unlocked;
3217 			}
3218 			anon_rmap = 1;
3219 		}
3220 	} else {
3221 		/*
3222 		 * If memory error occurs between mmap() and fault, some process
3223 		 * don't have hwpoisoned swap entry for errored virtual address.
3224 		 * So we need to block hugepage fault by PG_hwpoison bit check.
3225 		 */
3226 		if (unlikely(PageHWPoison(page))) {
3227 			ret = VM_FAULT_HWPOISON |
3228 				VM_FAULT_SET_HINDEX(hstate_index(h));
3229 			goto backout_unlocked;
3230 		}
3231 	}
3232 
3233 	/*
3234 	 * If we are going to COW a private mapping later, we examine the
3235 	 * pending reservations for this page now. This will ensure that
3236 	 * any allocations necessary to record that reservation occur outside
3237 	 * the spinlock.
3238 	 */
3239 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
3240 		if (vma_needs_reservation(h, vma, address) < 0) {
3241 			ret = VM_FAULT_OOM;
3242 			goto backout_unlocked;
3243 		}
3244 
3245 	ptl = huge_pte_lockptr(h, mm, ptep);
3246 	spin_lock(ptl);
3247 	size = i_size_read(mapping->host) >> huge_page_shift(h);
3248 	if (idx >= size)
3249 		goto backout;
3250 
3251 	ret = 0;
3252 	if (!huge_pte_none(huge_ptep_get(ptep)))
3253 		goto backout;
3254 
3255 	if (anon_rmap) {
3256 		ClearPagePrivate(page);
3257 		hugepage_add_new_anon_rmap(page, vma, address);
3258 	} else
3259 		page_dup_rmap(page);
3260 	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3261 				&& (vma->vm_flags & VM_SHARED)));
3262 	set_huge_pte_at(mm, address, ptep, new_pte);
3263 
3264 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3265 		/* Optimization, do the COW without a second fault */
3266 		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
3267 	}
3268 
3269 	spin_unlock(ptl);
3270 	unlock_page(page);
3271 out:
3272 	return ret;
3273 
3274 backout:
3275 	spin_unlock(ptl);
3276 backout_unlocked:
3277 	unlock_page(page);
3278 	put_page(page);
3279 	goto out;
3280 }
3281 
3282 #ifdef CONFIG_SMP
3283 static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3284 			    struct vm_area_struct *vma,
3285 			    struct address_space *mapping,
3286 			    pgoff_t idx, unsigned long address)
3287 {
3288 	unsigned long key[2];
3289 	u32 hash;
3290 
3291 	if (vma->vm_flags & VM_SHARED) {
3292 		key[0] = (unsigned long) mapping;
3293 		key[1] = idx;
3294 	} else {
3295 		key[0] = (unsigned long) mm;
3296 		key[1] = address >> huge_page_shift(h);
3297 	}
3298 
3299 	hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3300 
3301 	return hash & (num_fault_mutexes - 1);
3302 }
3303 #else
3304 /*
3305  * For uniprocesor systems we always use a single mutex, so just
3306  * return 0 and avoid the hashing overhead.
3307  */
3308 static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3309 			    struct vm_area_struct *vma,
3310 			    struct address_space *mapping,
3311 			    pgoff_t idx, unsigned long address)
3312 {
3313 	return 0;
3314 }
3315 #endif
3316 
3317 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3318 			unsigned long address, unsigned int flags)
3319 {
3320 	pte_t *ptep, entry;
3321 	spinlock_t *ptl;
3322 	int ret;
3323 	u32 hash;
3324 	pgoff_t idx;
3325 	struct page *page = NULL;
3326 	struct page *pagecache_page = NULL;
3327 	struct hstate *h = hstate_vma(vma);
3328 	struct address_space *mapping;
3329 	int need_wait_lock = 0;
3330 
3331 	address &= huge_page_mask(h);
3332 
3333 	ptep = huge_pte_offset(mm, address);
3334 	if (ptep) {
3335 		entry = huge_ptep_get(ptep);
3336 		if (unlikely(is_hugetlb_entry_migration(entry))) {
3337 			migration_entry_wait_huge(vma, mm, ptep);
3338 			return 0;
3339 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3340 			return VM_FAULT_HWPOISON_LARGE |
3341 				VM_FAULT_SET_HINDEX(hstate_index(h));
3342 	}
3343 
3344 	ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3345 	if (!ptep)
3346 		return VM_FAULT_OOM;
3347 
3348 	mapping = vma->vm_file->f_mapping;
3349 	idx = vma_hugecache_offset(h, vma, address);
3350 
3351 	/*
3352 	 * Serialize hugepage allocation and instantiation, so that we don't
3353 	 * get spurious allocation failures if two CPUs race to instantiate
3354 	 * the same page in the page cache.
3355 	 */
3356 	hash = fault_mutex_hash(h, mm, vma, mapping, idx, address);
3357 	mutex_lock(&htlb_fault_mutex_table[hash]);
3358 
3359 	entry = huge_ptep_get(ptep);
3360 	if (huge_pte_none(entry)) {
3361 		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3362 		goto out_mutex;
3363 	}
3364 
3365 	ret = 0;
3366 
3367 	/*
3368 	 * entry could be a migration/hwpoison entry at this point, so this
3369 	 * check prevents the kernel from going below assuming that we have
3370 	 * a active hugepage in pagecache. This goto expects the 2nd page fault,
3371 	 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3372 	 * handle it.
3373 	 */
3374 	if (!pte_present(entry))
3375 		goto out_mutex;
3376 
3377 	/*
3378 	 * If we are going to COW the mapping later, we examine the pending
3379 	 * reservations for this page now. This will ensure that any
3380 	 * allocations necessary to record that reservation occur outside the
3381 	 * spinlock. For private mappings, we also lookup the pagecache
3382 	 * page now as it is used to determine if a reservation has been
3383 	 * consumed.
3384 	 */
3385 	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3386 		if (vma_needs_reservation(h, vma, address) < 0) {
3387 			ret = VM_FAULT_OOM;
3388 			goto out_mutex;
3389 		}
3390 
3391 		if (!(vma->vm_flags & VM_MAYSHARE))
3392 			pagecache_page = hugetlbfs_pagecache_page(h,
3393 								vma, address);
3394 	}
3395 
3396 	ptl = huge_pte_lock(h, mm, ptep);
3397 
3398 	/* Check for a racing update before calling hugetlb_cow */
3399 	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3400 		goto out_ptl;
3401 
3402 	/*
3403 	 * hugetlb_cow() requires page locks of pte_page(entry) and
3404 	 * pagecache_page, so here we need take the former one
3405 	 * when page != pagecache_page or !pagecache_page.
3406 	 */
3407 	page = pte_page(entry);
3408 	if (page != pagecache_page)
3409 		if (!trylock_page(page)) {
3410 			need_wait_lock = 1;
3411 			goto out_ptl;
3412 		}
3413 
3414 	get_page(page);
3415 
3416 	if (flags & FAULT_FLAG_WRITE) {
3417 		if (!huge_pte_write(entry)) {
3418 			ret = hugetlb_cow(mm, vma, address, ptep, entry,
3419 					pagecache_page, ptl);
3420 			goto out_put_page;
3421 		}
3422 		entry = huge_pte_mkdirty(entry);
3423 	}
3424 	entry = pte_mkyoung(entry);
3425 	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3426 						flags & FAULT_FLAG_WRITE))
3427 		update_mmu_cache(vma, address, ptep);
3428 out_put_page:
3429 	if (page != pagecache_page)
3430 		unlock_page(page);
3431 	put_page(page);
3432 out_ptl:
3433 	spin_unlock(ptl);
3434 
3435 	if (pagecache_page) {
3436 		unlock_page(pagecache_page);
3437 		put_page(pagecache_page);
3438 	}
3439 out_mutex:
3440 	mutex_unlock(&htlb_fault_mutex_table[hash]);
3441 	/*
3442 	 * Generally it's safe to hold refcount during waiting page lock. But
3443 	 * here we just wait to defer the next page fault to avoid busy loop and
3444 	 * the page is not used after unlocked before returning from the current
3445 	 * page fault. So we are safe from accessing freed page, even if we wait
3446 	 * here without taking refcount.
3447 	 */
3448 	if (need_wait_lock)
3449 		wait_on_page_locked(page);
3450 	return ret;
3451 }
3452 
3453 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3454 			 struct page **pages, struct vm_area_struct **vmas,
3455 			 unsigned long *position, unsigned long *nr_pages,
3456 			 long i, unsigned int flags)
3457 {
3458 	unsigned long pfn_offset;
3459 	unsigned long vaddr = *position;
3460 	unsigned long remainder = *nr_pages;
3461 	struct hstate *h = hstate_vma(vma);
3462 
3463 	while (vaddr < vma->vm_end && remainder) {
3464 		pte_t *pte;
3465 		spinlock_t *ptl = NULL;
3466 		int absent;
3467 		struct page *page;
3468 
3469 		/*
3470 		 * If we have a pending SIGKILL, don't keep faulting pages and
3471 		 * potentially allocating memory.
3472 		 */
3473 		if (unlikely(fatal_signal_pending(current))) {
3474 			remainder = 0;
3475 			break;
3476 		}
3477 
3478 		/*
3479 		 * Some archs (sparc64, sh*) have multiple pte_ts to
3480 		 * each hugepage.  We have to make sure we get the
3481 		 * first, for the page indexing below to work.
3482 		 *
3483 		 * Note that page table lock is not held when pte is null.
3484 		 */
3485 		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3486 		if (pte)
3487 			ptl = huge_pte_lock(h, mm, pte);
3488 		absent = !pte || huge_pte_none(huge_ptep_get(pte));
3489 
3490 		/*
3491 		 * When coredumping, it suits get_dump_page if we just return
3492 		 * an error where there's an empty slot with no huge pagecache
3493 		 * to back it.  This way, we avoid allocating a hugepage, and
3494 		 * the sparse dumpfile avoids allocating disk blocks, but its
3495 		 * huge holes still show up with zeroes where they need to be.
3496 		 */
3497 		if (absent && (flags & FOLL_DUMP) &&
3498 		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3499 			if (pte)
3500 				spin_unlock(ptl);
3501 			remainder = 0;
3502 			break;
3503 		}
3504 
3505 		/*
3506 		 * We need call hugetlb_fault for both hugepages under migration
3507 		 * (in which case hugetlb_fault waits for the migration,) and
3508 		 * hwpoisoned hugepages (in which case we need to prevent the
3509 		 * caller from accessing to them.) In order to do this, we use
3510 		 * here is_swap_pte instead of is_hugetlb_entry_migration and
3511 		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3512 		 * both cases, and because we can't follow correct pages
3513 		 * directly from any kind of swap entries.
3514 		 */
3515 		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3516 		    ((flags & FOLL_WRITE) &&
3517 		      !huge_pte_write(huge_ptep_get(pte)))) {
3518 			int ret;
3519 
3520 			if (pte)
3521 				spin_unlock(ptl);
3522 			ret = hugetlb_fault(mm, vma, vaddr,
3523 				(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3524 			if (!(ret & VM_FAULT_ERROR))
3525 				continue;
3526 
3527 			remainder = 0;
3528 			break;
3529 		}
3530 
3531 		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3532 		page = pte_page(huge_ptep_get(pte));
3533 same_page:
3534 		if (pages) {
3535 			pages[i] = mem_map_offset(page, pfn_offset);
3536 			get_page_foll(pages[i]);
3537 		}
3538 
3539 		if (vmas)
3540 			vmas[i] = vma;
3541 
3542 		vaddr += PAGE_SIZE;
3543 		++pfn_offset;
3544 		--remainder;
3545 		++i;
3546 		if (vaddr < vma->vm_end && remainder &&
3547 				pfn_offset < pages_per_huge_page(h)) {
3548 			/*
3549 			 * We use pfn_offset to avoid touching the pageframes
3550 			 * of this compound page.
3551 			 */
3552 			goto same_page;
3553 		}
3554 		spin_unlock(ptl);
3555 	}
3556 	*nr_pages = remainder;
3557 	*position = vaddr;
3558 
3559 	return i ? i : -EFAULT;
3560 }
3561 
3562 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3563 		unsigned long address, unsigned long end, pgprot_t newprot)
3564 {
3565 	struct mm_struct *mm = vma->vm_mm;
3566 	unsigned long start = address;
3567 	pte_t *ptep;
3568 	pte_t pte;
3569 	struct hstate *h = hstate_vma(vma);
3570 	unsigned long pages = 0;
3571 
3572 	BUG_ON(address >= end);
3573 	flush_cache_range(vma, address, end);
3574 
3575 	mmu_notifier_invalidate_range_start(mm, start, end);
3576 	i_mmap_lock_write(vma->vm_file->f_mapping);
3577 	for (; address < end; address += huge_page_size(h)) {
3578 		spinlock_t *ptl;
3579 		ptep = huge_pte_offset(mm, address);
3580 		if (!ptep)
3581 			continue;
3582 		ptl = huge_pte_lock(h, mm, ptep);
3583 		if (huge_pmd_unshare(mm, &address, ptep)) {
3584 			pages++;
3585 			spin_unlock(ptl);
3586 			continue;
3587 		}
3588 		pte = huge_ptep_get(ptep);
3589 		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
3590 			spin_unlock(ptl);
3591 			continue;
3592 		}
3593 		if (unlikely(is_hugetlb_entry_migration(pte))) {
3594 			swp_entry_t entry = pte_to_swp_entry(pte);
3595 
3596 			if (is_write_migration_entry(entry)) {
3597 				pte_t newpte;
3598 
3599 				make_migration_entry_read(&entry);
3600 				newpte = swp_entry_to_pte(entry);
3601 				set_huge_pte_at(mm, address, ptep, newpte);
3602 				pages++;
3603 			}
3604 			spin_unlock(ptl);
3605 			continue;
3606 		}
3607 		if (!huge_pte_none(pte)) {
3608 			pte = huge_ptep_get_and_clear(mm, address, ptep);
3609 			pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3610 			pte = arch_make_huge_pte(pte, vma, NULL, 0);
3611 			set_huge_pte_at(mm, address, ptep, pte);
3612 			pages++;
3613 		}
3614 		spin_unlock(ptl);
3615 	}
3616 	/*
3617 	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
3618 	 * may have cleared our pud entry and done put_page on the page table:
3619 	 * once we release i_mmap_rwsem, another task can do the final put_page
3620 	 * and that page table be reused and filled with junk.
3621 	 */
3622 	flush_tlb_range(vma, start, end);
3623 	mmu_notifier_invalidate_range(mm, start, end);
3624 	i_mmap_unlock_write(vma->vm_file->f_mapping);
3625 	mmu_notifier_invalidate_range_end(mm, start, end);
3626 
3627 	return pages << h->order;
3628 }
3629 
3630 int hugetlb_reserve_pages(struct inode *inode,
3631 					long from, long to,
3632 					struct vm_area_struct *vma,
3633 					vm_flags_t vm_flags)
3634 {
3635 	long ret, chg;
3636 	struct hstate *h = hstate_inode(inode);
3637 	struct hugepage_subpool *spool = subpool_inode(inode);
3638 	struct resv_map *resv_map;
3639 	long gbl_reserve;
3640 
3641 	/*
3642 	 * Only apply hugepage reservation if asked. At fault time, an
3643 	 * attempt will be made for VM_NORESERVE to allocate a page
3644 	 * without using reserves
3645 	 */
3646 	if (vm_flags & VM_NORESERVE)
3647 		return 0;
3648 
3649 	/*
3650 	 * Shared mappings base their reservation on the number of pages that
3651 	 * are already allocated on behalf of the file. Private mappings need
3652 	 * to reserve the full area even if read-only as mprotect() may be
3653 	 * called to make the mapping read-write. Assume !vma is a shm mapping
3654 	 */
3655 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
3656 		resv_map = inode_resv_map(inode);
3657 
3658 		chg = region_chg(resv_map, from, to);
3659 
3660 	} else {
3661 		resv_map = resv_map_alloc();
3662 		if (!resv_map)
3663 			return -ENOMEM;
3664 
3665 		chg = to - from;
3666 
3667 		set_vma_resv_map(vma, resv_map);
3668 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3669 	}
3670 
3671 	if (chg < 0) {
3672 		ret = chg;
3673 		goto out_err;
3674 	}
3675 
3676 	/*
3677 	 * There must be enough pages in the subpool for the mapping. If
3678 	 * the subpool has a minimum size, there may be some global
3679 	 * reservations already in place (gbl_reserve).
3680 	 */
3681 	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
3682 	if (gbl_reserve < 0) {
3683 		ret = -ENOSPC;
3684 		goto out_err;
3685 	}
3686 
3687 	/*
3688 	 * Check enough hugepages are available for the reservation.
3689 	 * Hand the pages back to the subpool if there are not
3690 	 */
3691 	ret = hugetlb_acct_memory(h, gbl_reserve);
3692 	if (ret < 0) {
3693 		/* put back original number of pages, chg */
3694 		(void)hugepage_subpool_put_pages(spool, chg);
3695 		goto out_err;
3696 	}
3697 
3698 	/*
3699 	 * Account for the reservations made. Shared mappings record regions
3700 	 * that have reservations as they are shared by multiple VMAs.
3701 	 * When the last VMA disappears, the region map says how much
3702 	 * the reservation was and the page cache tells how much of
3703 	 * the reservation was consumed. Private mappings are per-VMA and
3704 	 * only the consumed reservations are tracked. When the VMA
3705 	 * disappears, the original reservation is the VMA size and the
3706 	 * consumed reservations are stored in the map. Hence, nothing
3707 	 * else has to be done for private mappings here
3708 	 */
3709 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
3710 		long add = region_add(resv_map, from, to);
3711 
3712 		if (unlikely(chg > add)) {
3713 			/*
3714 			 * pages in this range were added to the reserve
3715 			 * map between region_chg and region_add.  This
3716 			 * indicates a race with alloc_huge_page.  Adjust
3717 			 * the subpool and reserve counts modified above
3718 			 * based on the difference.
3719 			 */
3720 			long rsv_adjust;
3721 
3722 			rsv_adjust = hugepage_subpool_put_pages(spool,
3723 								chg - add);
3724 			hugetlb_acct_memory(h, -rsv_adjust);
3725 		}
3726 	}
3727 	return 0;
3728 out_err:
3729 	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3730 		kref_put(&resv_map->refs, resv_map_release);
3731 	return ret;
3732 }
3733 
3734 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3735 {
3736 	struct hstate *h = hstate_inode(inode);
3737 	struct resv_map *resv_map = inode_resv_map(inode);
3738 	long chg = 0;
3739 	struct hugepage_subpool *spool = subpool_inode(inode);
3740 	long gbl_reserve;
3741 
3742 	if (resv_map)
3743 		chg = region_truncate(resv_map, offset);
3744 	spin_lock(&inode->i_lock);
3745 	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
3746 	spin_unlock(&inode->i_lock);
3747 
3748 	/*
3749 	 * If the subpool has a minimum size, the number of global
3750 	 * reservations to be released may be adjusted.
3751 	 */
3752 	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
3753 	hugetlb_acct_memory(h, -gbl_reserve);
3754 }
3755 
3756 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
3757 static unsigned long page_table_shareable(struct vm_area_struct *svma,
3758 				struct vm_area_struct *vma,
3759 				unsigned long addr, pgoff_t idx)
3760 {
3761 	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
3762 				svma->vm_start;
3763 	unsigned long sbase = saddr & PUD_MASK;
3764 	unsigned long s_end = sbase + PUD_SIZE;
3765 
3766 	/* Allow segments to share if only one is marked locked */
3767 	unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
3768 	unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
3769 
3770 	/*
3771 	 * match the virtual addresses, permission and the alignment of the
3772 	 * page table page.
3773 	 */
3774 	if (pmd_index(addr) != pmd_index(saddr) ||
3775 	    vm_flags != svm_flags ||
3776 	    sbase < svma->vm_start || svma->vm_end < s_end)
3777 		return 0;
3778 
3779 	return saddr;
3780 }
3781 
3782 static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3783 {
3784 	unsigned long base = addr & PUD_MASK;
3785 	unsigned long end = base + PUD_SIZE;
3786 
3787 	/*
3788 	 * check on proper vm_flags and page table alignment
3789 	 */
3790 	if (vma->vm_flags & VM_MAYSHARE &&
3791 	    vma->vm_start <= base && end <= vma->vm_end)
3792 		return 1;
3793 	return 0;
3794 }
3795 
3796 /*
3797  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
3798  * and returns the corresponding pte. While this is not necessary for the
3799  * !shared pmd case because we can allocate the pmd later as well, it makes the
3800  * code much cleaner. pmd allocation is essential for the shared case because
3801  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
3802  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
3803  * bad pmd for sharing.
3804  */
3805 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3806 {
3807 	struct vm_area_struct *vma = find_vma(mm, addr);
3808 	struct address_space *mapping = vma->vm_file->f_mapping;
3809 	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
3810 			vma->vm_pgoff;
3811 	struct vm_area_struct *svma;
3812 	unsigned long saddr;
3813 	pte_t *spte = NULL;
3814 	pte_t *pte;
3815 	spinlock_t *ptl;
3816 
3817 	if (!vma_shareable(vma, addr))
3818 		return (pte_t *)pmd_alloc(mm, pud, addr);
3819 
3820 	i_mmap_lock_write(mapping);
3821 	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
3822 		if (svma == vma)
3823 			continue;
3824 
3825 		saddr = page_table_shareable(svma, vma, addr, idx);
3826 		if (saddr) {
3827 			spte = huge_pte_offset(svma->vm_mm, saddr);
3828 			if (spte) {
3829 				mm_inc_nr_pmds(mm);
3830 				get_page(virt_to_page(spte));
3831 				break;
3832 			}
3833 		}
3834 	}
3835 
3836 	if (!spte)
3837 		goto out;
3838 
3839 	ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
3840 	spin_lock(ptl);
3841 	if (pud_none(*pud)) {
3842 		pud_populate(mm, pud,
3843 				(pmd_t *)((unsigned long)spte & PAGE_MASK));
3844 	} else {
3845 		put_page(virt_to_page(spte));
3846 		mm_inc_nr_pmds(mm);
3847 	}
3848 	spin_unlock(ptl);
3849 out:
3850 	pte = (pte_t *)pmd_alloc(mm, pud, addr);
3851 	i_mmap_unlock_write(mapping);
3852 	return pte;
3853 }
3854 
3855 /*
3856  * unmap huge page backed by shared pte.
3857  *
3858  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
3859  * indicated by page_count > 1, unmap is achieved by clearing pud and
3860  * decrementing the ref count. If count == 1, the pte page is not shared.
3861  *
3862  * called with page table lock held.
3863  *
3864  * returns: 1 successfully unmapped a shared pte page
3865  *	    0 the underlying pte page is not shared, or it is the last user
3866  */
3867 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
3868 {
3869 	pgd_t *pgd = pgd_offset(mm, *addr);
3870 	pud_t *pud = pud_offset(pgd, *addr);
3871 
3872 	BUG_ON(page_count(virt_to_page(ptep)) == 0);
3873 	if (page_count(virt_to_page(ptep)) == 1)
3874 		return 0;
3875 
3876 	pud_clear(pud);
3877 	put_page(virt_to_page(ptep));
3878 	mm_dec_nr_pmds(mm);
3879 	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
3880 	return 1;
3881 }
3882 #define want_pmd_share()	(1)
3883 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3884 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3885 {
3886 	return NULL;
3887 }
3888 
3889 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
3890 {
3891 	return 0;
3892 }
3893 #define want_pmd_share()	(0)
3894 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3895 
3896 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
3897 pte_t *huge_pte_alloc(struct mm_struct *mm,
3898 			unsigned long addr, unsigned long sz)
3899 {
3900 	pgd_t *pgd;
3901 	pud_t *pud;
3902 	pte_t *pte = NULL;
3903 
3904 	pgd = pgd_offset(mm, addr);
3905 	pud = pud_alloc(mm, pgd, addr);
3906 	if (pud) {
3907 		if (sz == PUD_SIZE) {
3908 			pte = (pte_t *)pud;
3909 		} else {
3910 			BUG_ON(sz != PMD_SIZE);
3911 			if (want_pmd_share() && pud_none(*pud))
3912 				pte = huge_pmd_share(mm, addr, pud);
3913 			else
3914 				pte = (pte_t *)pmd_alloc(mm, pud, addr);
3915 		}
3916 	}
3917 	BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
3918 
3919 	return pte;
3920 }
3921 
3922 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
3923 {
3924 	pgd_t *pgd;
3925 	pud_t *pud;
3926 	pmd_t *pmd = NULL;
3927 
3928 	pgd = pgd_offset(mm, addr);
3929 	if (pgd_present(*pgd)) {
3930 		pud = pud_offset(pgd, addr);
3931 		if (pud_present(*pud)) {
3932 			if (pud_huge(*pud))
3933 				return (pte_t *)pud;
3934 			pmd = pmd_offset(pud, addr);
3935 		}
3936 	}
3937 	return (pte_t *) pmd;
3938 }
3939 
3940 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3941 
3942 /*
3943  * These functions are overwritable if your architecture needs its own
3944  * behavior.
3945  */
3946 struct page * __weak
3947 follow_huge_addr(struct mm_struct *mm, unsigned long address,
3948 			      int write)
3949 {
3950 	return ERR_PTR(-EINVAL);
3951 }
3952 
3953 struct page * __weak
3954 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
3955 		pmd_t *pmd, int flags)
3956 {
3957 	struct page *page = NULL;
3958 	spinlock_t *ptl;
3959 retry:
3960 	ptl = pmd_lockptr(mm, pmd);
3961 	spin_lock(ptl);
3962 	/*
3963 	 * make sure that the address range covered by this pmd is not
3964 	 * unmapped from other threads.
3965 	 */
3966 	if (!pmd_huge(*pmd))
3967 		goto out;
3968 	if (pmd_present(*pmd)) {
3969 		page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
3970 		if (flags & FOLL_GET)
3971 			get_page(page);
3972 	} else {
3973 		if (is_hugetlb_entry_migration(huge_ptep_get((pte_t *)pmd))) {
3974 			spin_unlock(ptl);
3975 			__migration_entry_wait(mm, (pte_t *)pmd, ptl);
3976 			goto retry;
3977 		}
3978 		/*
3979 		 * hwpoisoned entry is treated as no_page_table in
3980 		 * follow_page_mask().
3981 		 */
3982 	}
3983 out:
3984 	spin_unlock(ptl);
3985 	return page;
3986 }
3987 
3988 struct page * __weak
3989 follow_huge_pud(struct mm_struct *mm, unsigned long address,
3990 		pud_t *pud, int flags)
3991 {
3992 	if (flags & FOLL_GET)
3993 		return NULL;
3994 
3995 	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
3996 }
3997 
3998 #ifdef CONFIG_MEMORY_FAILURE
3999 
4000 /*
4001  * This function is called from memory failure code.
4002  * Assume the caller holds page lock of the head page.
4003  */
4004 int dequeue_hwpoisoned_huge_page(struct page *hpage)
4005 {
4006 	struct hstate *h = page_hstate(hpage);
4007 	int nid = page_to_nid(hpage);
4008 	int ret = -EBUSY;
4009 
4010 	spin_lock(&hugetlb_lock);
4011 	/*
4012 	 * Just checking !page_huge_active is not enough, because that could be
4013 	 * an isolated/hwpoisoned hugepage (which have >0 refcount).
4014 	 */
4015 	if (!page_huge_active(hpage) && !page_count(hpage)) {
4016 		/*
4017 		 * Hwpoisoned hugepage isn't linked to activelist or freelist,
4018 		 * but dangling hpage->lru can trigger list-debug warnings
4019 		 * (this happens when we call unpoison_memory() on it),
4020 		 * so let it point to itself with list_del_init().
4021 		 */
4022 		list_del_init(&hpage->lru);
4023 		set_page_refcounted(hpage);
4024 		h->free_huge_pages--;
4025 		h->free_huge_pages_node[nid]--;
4026 		ret = 0;
4027 	}
4028 	spin_unlock(&hugetlb_lock);
4029 	return ret;
4030 }
4031 #endif
4032 
4033 bool isolate_huge_page(struct page *page, struct list_head *list)
4034 {
4035 	bool ret = true;
4036 
4037 	VM_BUG_ON_PAGE(!PageHead(page), page);
4038 	spin_lock(&hugetlb_lock);
4039 	if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4040 		ret = false;
4041 		goto unlock;
4042 	}
4043 	clear_page_huge_active(page);
4044 	list_move_tail(&page->lru, list);
4045 unlock:
4046 	spin_unlock(&hugetlb_lock);
4047 	return ret;
4048 }
4049 
4050 void putback_active_hugepage(struct page *page)
4051 {
4052 	VM_BUG_ON_PAGE(!PageHead(page), page);
4053 	spin_lock(&hugetlb_lock);
4054 	set_page_huge_active(page);
4055 	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4056 	spin_unlock(&hugetlb_lock);
4057 	put_page(page);
4058 }
4059