1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic hugetlb support. 4 * (C) Nadia Yvette Chambers, April 2004 5 */ 6 #include <linux/list.h> 7 #include <linux/init.h> 8 #include <linux/mm.h> 9 #include <linux/seq_file.h> 10 #include <linux/sysctl.h> 11 #include <linux/highmem.h> 12 #include <linux/mmu_notifier.h> 13 #include <linux/nodemask.h> 14 #include <linux/pagemap.h> 15 #include <linux/mempolicy.h> 16 #include <linux/compiler.h> 17 #include <linux/cpuset.h> 18 #include <linux/mutex.h> 19 #include <linux/memblock.h> 20 #include <linux/sysfs.h> 21 #include <linux/slab.h> 22 #include <linux/sched/mm.h> 23 #include <linux/mmdebug.h> 24 #include <linux/sched/signal.h> 25 #include <linux/rmap.h> 26 #include <linux/string_helpers.h> 27 #include <linux/swap.h> 28 #include <linux/swapops.h> 29 #include <linux/jhash.h> 30 #include <linux/numa.h> 31 #include <linux/llist.h> 32 #include <linux/cma.h> 33 #include <linux/migrate.h> 34 #include <linux/nospec.h> 35 #include <linux/delayacct.h> 36 #include <linux/memory.h> 37 #include <linux/mm_inline.h> 38 #include <linux/padata.h> 39 40 #include <asm/page.h> 41 #include <asm/pgalloc.h> 42 #include <asm/tlb.h> 43 44 #include <linux/io.h> 45 #include <linux/hugetlb.h> 46 #include <linux/hugetlb_cgroup.h> 47 #include <linux/node.h> 48 #include <linux/page_owner.h> 49 #include "internal.h" 50 #include "hugetlb_vmemmap.h" 51 52 int hugetlb_max_hstate __read_mostly; 53 unsigned int default_hstate_idx; 54 struct hstate hstates[HUGE_MAX_HSTATE]; 55 56 #ifdef CONFIG_CMA 57 static struct cma *hugetlb_cma[MAX_NUMNODES]; 58 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata; 59 #endif 60 static unsigned long hugetlb_cma_size __initdata; 61 62 __initdata struct list_head huge_boot_pages[MAX_NUMNODES]; 63 64 /* for command line parsing */ 65 static struct hstate * __initdata parsed_hstate; 66 static unsigned long __initdata default_hstate_max_huge_pages; 67 static bool __initdata parsed_valid_hugepagesz = true; 68 static bool __initdata parsed_default_hugepagesz; 69 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata; 70 71 /* 72 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages, 73 * free_huge_pages, and surplus_huge_pages. 74 */ 75 __cacheline_aligned_in_smp DEFINE_SPINLOCK(hugetlb_lock); 76 77 /* 78 * Serializes faults on the same logical page. This is used to 79 * prevent spurious OOMs when the hugepage pool is fully utilized. 80 */ 81 static int num_fault_mutexes __ro_after_init; 82 struct mutex *hugetlb_fault_mutex_table __ro_after_init; 83 84 /* Forward declaration */ 85 static int hugetlb_acct_memory(struct hstate *h, long delta); 86 static void hugetlb_vma_lock_free(struct vm_area_struct *vma); 87 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma); 88 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma); 89 static void hugetlb_unshare_pmds(struct vm_area_struct *vma, 90 unsigned long start, unsigned long end); 91 static struct resv_map *vma_resv_map(struct vm_area_struct *vma); 92 93 static void hugetlb_free_folio(struct folio *folio) 94 { 95 #ifdef CONFIG_CMA 96 int nid = folio_nid(folio); 97 98 if (cma_free_folio(hugetlb_cma[nid], folio)) 99 return; 100 #endif 101 folio_put(folio); 102 } 103 104 static inline bool subpool_is_free(struct hugepage_subpool *spool) 105 { 106 if (spool->count) 107 return false; 108 if (spool->max_hpages != -1) 109 return spool->used_hpages == 0; 110 if (spool->min_hpages != -1) 111 return spool->rsv_hpages == spool->min_hpages; 112 113 return true; 114 } 115 116 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool, 117 unsigned long irq_flags) 118 { 119 spin_unlock_irqrestore(&spool->lock, irq_flags); 120 121 /* If no pages are used, and no other handles to the subpool 122 * remain, give up any reservations based on minimum size and 123 * free the subpool */ 124 if (subpool_is_free(spool)) { 125 if (spool->min_hpages != -1) 126 hugetlb_acct_memory(spool->hstate, 127 -spool->min_hpages); 128 kfree(spool); 129 } 130 } 131 132 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages, 133 long min_hpages) 134 { 135 struct hugepage_subpool *spool; 136 137 spool = kzalloc(sizeof(*spool), GFP_KERNEL); 138 if (!spool) 139 return NULL; 140 141 spin_lock_init(&spool->lock); 142 spool->count = 1; 143 spool->max_hpages = max_hpages; 144 spool->hstate = h; 145 spool->min_hpages = min_hpages; 146 147 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) { 148 kfree(spool); 149 return NULL; 150 } 151 spool->rsv_hpages = min_hpages; 152 153 return spool; 154 } 155 156 void hugepage_put_subpool(struct hugepage_subpool *spool) 157 { 158 unsigned long flags; 159 160 spin_lock_irqsave(&spool->lock, flags); 161 BUG_ON(!spool->count); 162 spool->count--; 163 unlock_or_release_subpool(spool, flags); 164 } 165 166 /* 167 * Subpool accounting for allocating and reserving pages. 168 * Return -ENOMEM if there are not enough resources to satisfy the 169 * request. Otherwise, return the number of pages by which the 170 * global pools must be adjusted (upward). The returned value may 171 * only be different than the passed value (delta) in the case where 172 * a subpool minimum size must be maintained. 173 */ 174 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool, 175 long delta) 176 { 177 long ret = delta; 178 179 if (!spool) 180 return ret; 181 182 spin_lock_irq(&spool->lock); 183 184 if (spool->max_hpages != -1) { /* maximum size accounting */ 185 if ((spool->used_hpages + delta) <= spool->max_hpages) 186 spool->used_hpages += delta; 187 else { 188 ret = -ENOMEM; 189 goto unlock_ret; 190 } 191 } 192 193 /* minimum size accounting */ 194 if (spool->min_hpages != -1 && spool->rsv_hpages) { 195 if (delta > spool->rsv_hpages) { 196 /* 197 * Asking for more reserves than those already taken on 198 * behalf of subpool. Return difference. 199 */ 200 ret = delta - spool->rsv_hpages; 201 spool->rsv_hpages = 0; 202 } else { 203 ret = 0; /* reserves already accounted for */ 204 spool->rsv_hpages -= delta; 205 } 206 } 207 208 unlock_ret: 209 spin_unlock_irq(&spool->lock); 210 return ret; 211 } 212 213 /* 214 * Subpool accounting for freeing and unreserving pages. 215 * Return the number of global page reservations that must be dropped. 216 * The return value may only be different than the passed value (delta) 217 * in the case where a subpool minimum size must be maintained. 218 */ 219 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool, 220 long delta) 221 { 222 long ret = delta; 223 unsigned long flags; 224 225 if (!spool) 226 return delta; 227 228 spin_lock_irqsave(&spool->lock, flags); 229 230 if (spool->max_hpages != -1) /* maximum size accounting */ 231 spool->used_hpages -= delta; 232 233 /* minimum size accounting */ 234 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) { 235 if (spool->rsv_hpages + delta <= spool->min_hpages) 236 ret = 0; 237 else 238 ret = spool->rsv_hpages + delta - spool->min_hpages; 239 240 spool->rsv_hpages += delta; 241 if (spool->rsv_hpages > spool->min_hpages) 242 spool->rsv_hpages = spool->min_hpages; 243 } 244 245 /* 246 * If hugetlbfs_put_super couldn't free spool due to an outstanding 247 * quota reference, free it now. 248 */ 249 unlock_or_release_subpool(spool, flags); 250 251 return ret; 252 } 253 254 static inline struct hugepage_subpool *subpool_inode(struct inode *inode) 255 { 256 return HUGETLBFS_SB(inode->i_sb)->spool; 257 } 258 259 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma) 260 { 261 return subpool_inode(file_inode(vma->vm_file)); 262 } 263 264 /* 265 * hugetlb vma_lock helper routines 266 */ 267 void hugetlb_vma_lock_read(struct vm_area_struct *vma) 268 { 269 if (__vma_shareable_lock(vma)) { 270 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 271 272 down_read(&vma_lock->rw_sema); 273 } else if (__vma_private_lock(vma)) { 274 struct resv_map *resv_map = vma_resv_map(vma); 275 276 down_read(&resv_map->rw_sema); 277 } 278 } 279 280 void hugetlb_vma_unlock_read(struct vm_area_struct *vma) 281 { 282 if (__vma_shareable_lock(vma)) { 283 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 284 285 up_read(&vma_lock->rw_sema); 286 } else if (__vma_private_lock(vma)) { 287 struct resv_map *resv_map = vma_resv_map(vma); 288 289 up_read(&resv_map->rw_sema); 290 } 291 } 292 293 void hugetlb_vma_lock_write(struct vm_area_struct *vma) 294 { 295 if (__vma_shareable_lock(vma)) { 296 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 297 298 down_write(&vma_lock->rw_sema); 299 } else if (__vma_private_lock(vma)) { 300 struct resv_map *resv_map = vma_resv_map(vma); 301 302 down_write(&resv_map->rw_sema); 303 } 304 } 305 306 void hugetlb_vma_unlock_write(struct vm_area_struct *vma) 307 { 308 if (__vma_shareable_lock(vma)) { 309 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 310 311 up_write(&vma_lock->rw_sema); 312 } else if (__vma_private_lock(vma)) { 313 struct resv_map *resv_map = vma_resv_map(vma); 314 315 up_write(&resv_map->rw_sema); 316 } 317 } 318 319 int hugetlb_vma_trylock_write(struct vm_area_struct *vma) 320 { 321 322 if (__vma_shareable_lock(vma)) { 323 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 324 325 return down_write_trylock(&vma_lock->rw_sema); 326 } else if (__vma_private_lock(vma)) { 327 struct resv_map *resv_map = vma_resv_map(vma); 328 329 return down_write_trylock(&resv_map->rw_sema); 330 } 331 332 return 1; 333 } 334 335 void hugetlb_vma_assert_locked(struct vm_area_struct *vma) 336 { 337 if (__vma_shareable_lock(vma)) { 338 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 339 340 lockdep_assert_held(&vma_lock->rw_sema); 341 } else if (__vma_private_lock(vma)) { 342 struct resv_map *resv_map = vma_resv_map(vma); 343 344 lockdep_assert_held(&resv_map->rw_sema); 345 } 346 } 347 348 void hugetlb_vma_lock_release(struct kref *kref) 349 { 350 struct hugetlb_vma_lock *vma_lock = container_of(kref, 351 struct hugetlb_vma_lock, refs); 352 353 kfree(vma_lock); 354 } 355 356 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock) 357 { 358 struct vm_area_struct *vma = vma_lock->vma; 359 360 /* 361 * vma_lock structure may or not be released as a result of put, 362 * it certainly will no longer be attached to vma so clear pointer. 363 * Semaphore synchronizes access to vma_lock->vma field. 364 */ 365 vma_lock->vma = NULL; 366 vma->vm_private_data = NULL; 367 up_write(&vma_lock->rw_sema); 368 kref_put(&vma_lock->refs, hugetlb_vma_lock_release); 369 } 370 371 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma) 372 { 373 if (__vma_shareable_lock(vma)) { 374 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 375 376 __hugetlb_vma_unlock_write_put(vma_lock); 377 } else if (__vma_private_lock(vma)) { 378 struct resv_map *resv_map = vma_resv_map(vma); 379 380 /* no free for anon vmas, but still need to unlock */ 381 up_write(&resv_map->rw_sema); 382 } 383 } 384 385 static void hugetlb_vma_lock_free(struct vm_area_struct *vma) 386 { 387 /* 388 * Only present in sharable vmas. 389 */ 390 if (!vma || !__vma_shareable_lock(vma)) 391 return; 392 393 if (vma->vm_private_data) { 394 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 395 396 down_write(&vma_lock->rw_sema); 397 __hugetlb_vma_unlock_write_put(vma_lock); 398 } 399 } 400 401 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma) 402 { 403 struct hugetlb_vma_lock *vma_lock; 404 405 /* Only establish in (flags) sharable vmas */ 406 if (!vma || !(vma->vm_flags & VM_MAYSHARE)) 407 return; 408 409 /* Should never get here with non-NULL vm_private_data */ 410 if (vma->vm_private_data) 411 return; 412 413 vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL); 414 if (!vma_lock) { 415 /* 416 * If we can not allocate structure, then vma can not 417 * participate in pmd sharing. This is only a possible 418 * performance enhancement and memory saving issue. 419 * However, the lock is also used to synchronize page 420 * faults with truncation. If the lock is not present, 421 * unlikely races could leave pages in a file past i_size 422 * until the file is removed. Warn in the unlikely case of 423 * allocation failure. 424 */ 425 pr_warn_once("HugeTLB: unable to allocate vma specific lock\n"); 426 return; 427 } 428 429 kref_init(&vma_lock->refs); 430 init_rwsem(&vma_lock->rw_sema); 431 vma_lock->vma = vma; 432 vma->vm_private_data = vma_lock; 433 } 434 435 /* Helper that removes a struct file_region from the resv_map cache and returns 436 * it for use. 437 */ 438 static struct file_region * 439 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to) 440 { 441 struct file_region *nrg; 442 443 VM_BUG_ON(resv->region_cache_count <= 0); 444 445 resv->region_cache_count--; 446 nrg = list_first_entry(&resv->region_cache, struct file_region, link); 447 list_del(&nrg->link); 448 449 nrg->from = from; 450 nrg->to = to; 451 452 return nrg; 453 } 454 455 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg, 456 struct file_region *rg) 457 { 458 #ifdef CONFIG_CGROUP_HUGETLB 459 nrg->reservation_counter = rg->reservation_counter; 460 nrg->css = rg->css; 461 if (rg->css) 462 css_get(rg->css); 463 #endif 464 } 465 466 /* Helper that records hugetlb_cgroup uncharge info. */ 467 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg, 468 struct hstate *h, 469 struct resv_map *resv, 470 struct file_region *nrg) 471 { 472 #ifdef CONFIG_CGROUP_HUGETLB 473 if (h_cg) { 474 nrg->reservation_counter = 475 &h_cg->rsvd_hugepage[hstate_index(h)]; 476 nrg->css = &h_cg->css; 477 /* 478 * The caller will hold exactly one h_cg->css reference for the 479 * whole contiguous reservation region. But this area might be 480 * scattered when there are already some file_regions reside in 481 * it. As a result, many file_regions may share only one css 482 * reference. In order to ensure that one file_region must hold 483 * exactly one h_cg->css reference, we should do css_get for 484 * each file_region and leave the reference held by caller 485 * untouched. 486 */ 487 css_get(&h_cg->css); 488 if (!resv->pages_per_hpage) 489 resv->pages_per_hpage = pages_per_huge_page(h); 490 /* pages_per_hpage should be the same for all entries in 491 * a resv_map. 492 */ 493 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h)); 494 } else { 495 nrg->reservation_counter = NULL; 496 nrg->css = NULL; 497 } 498 #endif 499 } 500 501 static void put_uncharge_info(struct file_region *rg) 502 { 503 #ifdef CONFIG_CGROUP_HUGETLB 504 if (rg->css) 505 css_put(rg->css); 506 #endif 507 } 508 509 static bool has_same_uncharge_info(struct file_region *rg, 510 struct file_region *org) 511 { 512 #ifdef CONFIG_CGROUP_HUGETLB 513 return rg->reservation_counter == org->reservation_counter && 514 rg->css == org->css; 515 516 #else 517 return true; 518 #endif 519 } 520 521 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg) 522 { 523 struct file_region *nrg, *prg; 524 525 prg = list_prev_entry(rg, link); 526 if (&prg->link != &resv->regions && prg->to == rg->from && 527 has_same_uncharge_info(prg, rg)) { 528 prg->to = rg->to; 529 530 list_del(&rg->link); 531 put_uncharge_info(rg); 532 kfree(rg); 533 534 rg = prg; 535 } 536 537 nrg = list_next_entry(rg, link); 538 if (&nrg->link != &resv->regions && nrg->from == rg->to && 539 has_same_uncharge_info(nrg, rg)) { 540 nrg->from = rg->from; 541 542 list_del(&rg->link); 543 put_uncharge_info(rg); 544 kfree(rg); 545 } 546 } 547 548 static inline long 549 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from, 550 long to, struct hstate *h, struct hugetlb_cgroup *cg, 551 long *regions_needed) 552 { 553 struct file_region *nrg; 554 555 if (!regions_needed) { 556 nrg = get_file_region_entry_from_cache(map, from, to); 557 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg); 558 list_add(&nrg->link, rg); 559 coalesce_file_region(map, nrg); 560 } else 561 *regions_needed += 1; 562 563 return to - from; 564 } 565 566 /* 567 * Must be called with resv->lock held. 568 * 569 * Calling this with regions_needed != NULL will count the number of pages 570 * to be added but will not modify the linked list. And regions_needed will 571 * indicate the number of file_regions needed in the cache to carry out to add 572 * the regions for this range. 573 */ 574 static long add_reservation_in_range(struct resv_map *resv, long f, long t, 575 struct hugetlb_cgroup *h_cg, 576 struct hstate *h, long *regions_needed) 577 { 578 long add = 0; 579 struct list_head *head = &resv->regions; 580 long last_accounted_offset = f; 581 struct file_region *iter, *trg = NULL; 582 struct list_head *rg = NULL; 583 584 if (regions_needed) 585 *regions_needed = 0; 586 587 /* In this loop, we essentially handle an entry for the range 588 * [last_accounted_offset, iter->from), at every iteration, with some 589 * bounds checking. 590 */ 591 list_for_each_entry_safe(iter, trg, head, link) { 592 /* Skip irrelevant regions that start before our range. */ 593 if (iter->from < f) { 594 /* If this region ends after the last accounted offset, 595 * then we need to update last_accounted_offset. 596 */ 597 if (iter->to > last_accounted_offset) 598 last_accounted_offset = iter->to; 599 continue; 600 } 601 602 /* When we find a region that starts beyond our range, we've 603 * finished. 604 */ 605 if (iter->from >= t) { 606 rg = iter->link.prev; 607 break; 608 } 609 610 /* Add an entry for last_accounted_offset -> iter->from, and 611 * update last_accounted_offset. 612 */ 613 if (iter->from > last_accounted_offset) 614 add += hugetlb_resv_map_add(resv, iter->link.prev, 615 last_accounted_offset, 616 iter->from, h, h_cg, 617 regions_needed); 618 619 last_accounted_offset = iter->to; 620 } 621 622 /* Handle the case where our range extends beyond 623 * last_accounted_offset. 624 */ 625 if (!rg) 626 rg = head->prev; 627 if (last_accounted_offset < t) 628 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset, 629 t, h, h_cg, regions_needed); 630 631 return add; 632 } 633 634 /* Must be called with resv->lock acquired. Will drop lock to allocate entries. 635 */ 636 static int allocate_file_region_entries(struct resv_map *resv, 637 int regions_needed) 638 __must_hold(&resv->lock) 639 { 640 LIST_HEAD(allocated_regions); 641 int to_allocate = 0, i = 0; 642 struct file_region *trg = NULL, *rg = NULL; 643 644 VM_BUG_ON(regions_needed < 0); 645 646 /* 647 * Check for sufficient descriptors in the cache to accommodate 648 * the number of in progress add operations plus regions_needed. 649 * 650 * This is a while loop because when we drop the lock, some other call 651 * to region_add or region_del may have consumed some region_entries, 652 * so we keep looping here until we finally have enough entries for 653 * (adds_in_progress + regions_needed). 654 */ 655 while (resv->region_cache_count < 656 (resv->adds_in_progress + regions_needed)) { 657 to_allocate = resv->adds_in_progress + regions_needed - 658 resv->region_cache_count; 659 660 /* At this point, we should have enough entries in the cache 661 * for all the existing adds_in_progress. We should only be 662 * needing to allocate for regions_needed. 663 */ 664 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress); 665 666 spin_unlock(&resv->lock); 667 for (i = 0; i < to_allocate; i++) { 668 trg = kmalloc(sizeof(*trg), GFP_KERNEL); 669 if (!trg) 670 goto out_of_memory; 671 list_add(&trg->link, &allocated_regions); 672 } 673 674 spin_lock(&resv->lock); 675 676 list_splice(&allocated_regions, &resv->region_cache); 677 resv->region_cache_count += to_allocate; 678 } 679 680 return 0; 681 682 out_of_memory: 683 list_for_each_entry_safe(rg, trg, &allocated_regions, link) { 684 list_del(&rg->link); 685 kfree(rg); 686 } 687 return -ENOMEM; 688 } 689 690 /* 691 * Add the huge page range represented by [f, t) to the reserve 692 * map. Regions will be taken from the cache to fill in this range. 693 * Sufficient regions should exist in the cache due to the previous 694 * call to region_chg with the same range, but in some cases the cache will not 695 * have sufficient entries due to races with other code doing region_add or 696 * region_del. The extra needed entries will be allocated. 697 * 698 * regions_needed is the out value provided by a previous call to region_chg. 699 * 700 * Return the number of new huge pages added to the map. This number is greater 701 * than or equal to zero. If file_region entries needed to be allocated for 702 * this operation and we were not able to allocate, it returns -ENOMEM. 703 * region_add of regions of length 1 never allocate file_regions and cannot 704 * fail; region_chg will always allocate at least 1 entry and a region_add for 705 * 1 page will only require at most 1 entry. 706 */ 707 static long region_add(struct resv_map *resv, long f, long t, 708 long in_regions_needed, struct hstate *h, 709 struct hugetlb_cgroup *h_cg) 710 { 711 long add = 0, actual_regions_needed = 0; 712 713 spin_lock(&resv->lock); 714 retry: 715 716 /* Count how many regions are actually needed to execute this add. */ 717 add_reservation_in_range(resv, f, t, NULL, NULL, 718 &actual_regions_needed); 719 720 /* 721 * Check for sufficient descriptors in the cache to accommodate 722 * this add operation. Note that actual_regions_needed may be greater 723 * than in_regions_needed, as the resv_map may have been modified since 724 * the region_chg call. In this case, we need to make sure that we 725 * allocate extra entries, such that we have enough for all the 726 * existing adds_in_progress, plus the excess needed for this 727 * operation. 728 */ 729 if (actual_regions_needed > in_regions_needed && 730 resv->region_cache_count < 731 resv->adds_in_progress + 732 (actual_regions_needed - in_regions_needed)) { 733 /* region_add operation of range 1 should never need to 734 * allocate file_region entries. 735 */ 736 VM_BUG_ON(t - f <= 1); 737 738 if (allocate_file_region_entries( 739 resv, actual_regions_needed - in_regions_needed)) { 740 return -ENOMEM; 741 } 742 743 goto retry; 744 } 745 746 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL); 747 748 resv->adds_in_progress -= in_regions_needed; 749 750 spin_unlock(&resv->lock); 751 return add; 752 } 753 754 /* 755 * Examine the existing reserve map and determine how many 756 * huge pages in the specified range [f, t) are NOT currently 757 * represented. This routine is called before a subsequent 758 * call to region_add that will actually modify the reserve 759 * map to add the specified range [f, t). region_chg does 760 * not change the number of huge pages represented by the 761 * map. A number of new file_region structures is added to the cache as a 762 * placeholder, for the subsequent region_add call to use. At least 1 763 * file_region structure is added. 764 * 765 * out_regions_needed is the number of regions added to the 766 * resv->adds_in_progress. This value needs to be provided to a follow up call 767 * to region_add or region_abort for proper accounting. 768 * 769 * Returns the number of huge pages that need to be added to the existing 770 * reservation map for the range [f, t). This number is greater or equal to 771 * zero. -ENOMEM is returned if a new file_region structure or cache entry 772 * is needed and can not be allocated. 773 */ 774 static long region_chg(struct resv_map *resv, long f, long t, 775 long *out_regions_needed) 776 { 777 long chg = 0; 778 779 spin_lock(&resv->lock); 780 781 /* Count how many hugepages in this range are NOT represented. */ 782 chg = add_reservation_in_range(resv, f, t, NULL, NULL, 783 out_regions_needed); 784 785 if (*out_regions_needed == 0) 786 *out_regions_needed = 1; 787 788 if (allocate_file_region_entries(resv, *out_regions_needed)) 789 return -ENOMEM; 790 791 resv->adds_in_progress += *out_regions_needed; 792 793 spin_unlock(&resv->lock); 794 return chg; 795 } 796 797 /* 798 * Abort the in progress add operation. The adds_in_progress field 799 * of the resv_map keeps track of the operations in progress between 800 * calls to region_chg and region_add. Operations are sometimes 801 * aborted after the call to region_chg. In such cases, region_abort 802 * is called to decrement the adds_in_progress counter. regions_needed 803 * is the value returned by the region_chg call, it is used to decrement 804 * the adds_in_progress counter. 805 * 806 * NOTE: The range arguments [f, t) are not needed or used in this 807 * routine. They are kept to make reading the calling code easier as 808 * arguments will match the associated region_chg call. 809 */ 810 static void region_abort(struct resv_map *resv, long f, long t, 811 long regions_needed) 812 { 813 spin_lock(&resv->lock); 814 VM_BUG_ON(!resv->region_cache_count); 815 resv->adds_in_progress -= regions_needed; 816 spin_unlock(&resv->lock); 817 } 818 819 /* 820 * Delete the specified range [f, t) from the reserve map. If the 821 * t parameter is LONG_MAX, this indicates that ALL regions after f 822 * should be deleted. Locate the regions which intersect [f, t) 823 * and either trim, delete or split the existing regions. 824 * 825 * Returns the number of huge pages deleted from the reserve map. 826 * In the normal case, the return value is zero or more. In the 827 * case where a region must be split, a new region descriptor must 828 * be allocated. If the allocation fails, -ENOMEM will be returned. 829 * NOTE: If the parameter t == LONG_MAX, then we will never split 830 * a region and possibly return -ENOMEM. Callers specifying 831 * t == LONG_MAX do not need to check for -ENOMEM error. 832 */ 833 static long region_del(struct resv_map *resv, long f, long t) 834 { 835 struct list_head *head = &resv->regions; 836 struct file_region *rg, *trg; 837 struct file_region *nrg = NULL; 838 long del = 0; 839 840 retry: 841 spin_lock(&resv->lock); 842 list_for_each_entry_safe(rg, trg, head, link) { 843 /* 844 * Skip regions before the range to be deleted. file_region 845 * ranges are normally of the form [from, to). However, there 846 * may be a "placeholder" entry in the map which is of the form 847 * (from, to) with from == to. Check for placeholder entries 848 * at the beginning of the range to be deleted. 849 */ 850 if (rg->to <= f && (rg->to != rg->from || rg->to != f)) 851 continue; 852 853 if (rg->from >= t) 854 break; 855 856 if (f > rg->from && t < rg->to) { /* Must split region */ 857 /* 858 * Check for an entry in the cache before dropping 859 * lock and attempting allocation. 860 */ 861 if (!nrg && 862 resv->region_cache_count > resv->adds_in_progress) { 863 nrg = list_first_entry(&resv->region_cache, 864 struct file_region, 865 link); 866 list_del(&nrg->link); 867 resv->region_cache_count--; 868 } 869 870 if (!nrg) { 871 spin_unlock(&resv->lock); 872 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 873 if (!nrg) 874 return -ENOMEM; 875 goto retry; 876 } 877 878 del += t - f; 879 hugetlb_cgroup_uncharge_file_region( 880 resv, rg, t - f, false); 881 882 /* New entry for end of split region */ 883 nrg->from = t; 884 nrg->to = rg->to; 885 886 copy_hugetlb_cgroup_uncharge_info(nrg, rg); 887 888 INIT_LIST_HEAD(&nrg->link); 889 890 /* Original entry is trimmed */ 891 rg->to = f; 892 893 list_add(&nrg->link, &rg->link); 894 nrg = NULL; 895 break; 896 } 897 898 if (f <= rg->from && t >= rg->to) { /* Remove entire region */ 899 del += rg->to - rg->from; 900 hugetlb_cgroup_uncharge_file_region(resv, rg, 901 rg->to - rg->from, true); 902 list_del(&rg->link); 903 kfree(rg); 904 continue; 905 } 906 907 if (f <= rg->from) { /* Trim beginning of region */ 908 hugetlb_cgroup_uncharge_file_region(resv, rg, 909 t - rg->from, false); 910 911 del += t - rg->from; 912 rg->from = t; 913 } else { /* Trim end of region */ 914 hugetlb_cgroup_uncharge_file_region(resv, rg, 915 rg->to - f, false); 916 917 del += rg->to - f; 918 rg->to = f; 919 } 920 } 921 922 spin_unlock(&resv->lock); 923 kfree(nrg); 924 return del; 925 } 926 927 /* 928 * A rare out of memory error was encountered which prevented removal of 929 * the reserve map region for a page. The huge page itself was free'ed 930 * and removed from the page cache. This routine will adjust the subpool 931 * usage count, and the global reserve count if needed. By incrementing 932 * these counts, the reserve map entry which could not be deleted will 933 * appear as a "reserved" entry instead of simply dangling with incorrect 934 * counts. 935 */ 936 void hugetlb_fix_reserve_counts(struct inode *inode) 937 { 938 struct hugepage_subpool *spool = subpool_inode(inode); 939 long rsv_adjust; 940 bool reserved = false; 941 942 rsv_adjust = hugepage_subpool_get_pages(spool, 1); 943 if (rsv_adjust > 0) { 944 struct hstate *h = hstate_inode(inode); 945 946 if (!hugetlb_acct_memory(h, 1)) 947 reserved = true; 948 } else if (!rsv_adjust) { 949 reserved = true; 950 } 951 952 if (!reserved) 953 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n"); 954 } 955 956 /* 957 * Count and return the number of huge pages in the reserve map 958 * that intersect with the range [f, t). 959 */ 960 static long region_count(struct resv_map *resv, long f, long t) 961 { 962 struct list_head *head = &resv->regions; 963 struct file_region *rg; 964 long chg = 0; 965 966 spin_lock(&resv->lock); 967 /* Locate each segment we overlap with, and count that overlap. */ 968 list_for_each_entry(rg, head, link) { 969 long seg_from; 970 long seg_to; 971 972 if (rg->to <= f) 973 continue; 974 if (rg->from >= t) 975 break; 976 977 seg_from = max(rg->from, f); 978 seg_to = min(rg->to, t); 979 980 chg += seg_to - seg_from; 981 } 982 spin_unlock(&resv->lock); 983 984 return chg; 985 } 986 987 /* 988 * Convert the address within this vma to the page offset within 989 * the mapping, huge page units here. 990 */ 991 static pgoff_t vma_hugecache_offset(struct hstate *h, 992 struct vm_area_struct *vma, unsigned long address) 993 { 994 return ((address - vma->vm_start) >> huge_page_shift(h)) + 995 (vma->vm_pgoff >> huge_page_order(h)); 996 } 997 998 /** 999 * vma_kernel_pagesize - Page size granularity for this VMA. 1000 * @vma: The user mapping. 1001 * 1002 * Folios in this VMA will be aligned to, and at least the size of the 1003 * number of bytes returned by this function. 1004 * 1005 * Return: The default size of the folios allocated when backing a VMA. 1006 */ 1007 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) 1008 { 1009 if (vma->vm_ops && vma->vm_ops->pagesize) 1010 return vma->vm_ops->pagesize(vma); 1011 return PAGE_SIZE; 1012 } 1013 EXPORT_SYMBOL_GPL(vma_kernel_pagesize); 1014 1015 /* 1016 * Return the page size being used by the MMU to back a VMA. In the majority 1017 * of cases, the page size used by the kernel matches the MMU size. On 1018 * architectures where it differs, an architecture-specific 'strong' 1019 * version of this symbol is required. 1020 */ 1021 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 1022 { 1023 return vma_kernel_pagesize(vma); 1024 } 1025 1026 /* 1027 * Flags for MAP_PRIVATE reservations. These are stored in the bottom 1028 * bits of the reservation map pointer, which are always clear due to 1029 * alignment. 1030 */ 1031 #define HPAGE_RESV_OWNER (1UL << 0) 1032 #define HPAGE_RESV_UNMAPPED (1UL << 1) 1033 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) 1034 1035 /* 1036 * These helpers are used to track how many pages are reserved for 1037 * faults in a MAP_PRIVATE mapping. Only the process that called mmap() 1038 * is guaranteed to have their future faults succeed. 1039 * 1040 * With the exception of hugetlb_dup_vma_private() which is called at fork(), 1041 * the reserve counters are updated with the hugetlb_lock held. It is safe 1042 * to reset the VMA at fork() time as it is not in use yet and there is no 1043 * chance of the global counters getting corrupted as a result of the values. 1044 * 1045 * The private mapping reservation is represented in a subtly different 1046 * manner to a shared mapping. A shared mapping has a region map associated 1047 * with the underlying file, this region map represents the backing file 1048 * pages which have ever had a reservation assigned which this persists even 1049 * after the page is instantiated. A private mapping has a region map 1050 * associated with the original mmap which is attached to all VMAs which 1051 * reference it, this region map represents those offsets which have consumed 1052 * reservation ie. where pages have been instantiated. 1053 */ 1054 static unsigned long get_vma_private_data(struct vm_area_struct *vma) 1055 { 1056 return (unsigned long)vma->vm_private_data; 1057 } 1058 1059 static void set_vma_private_data(struct vm_area_struct *vma, 1060 unsigned long value) 1061 { 1062 vma->vm_private_data = (void *)value; 1063 } 1064 1065 static void 1066 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map, 1067 struct hugetlb_cgroup *h_cg, 1068 struct hstate *h) 1069 { 1070 #ifdef CONFIG_CGROUP_HUGETLB 1071 if (!h_cg || !h) { 1072 resv_map->reservation_counter = NULL; 1073 resv_map->pages_per_hpage = 0; 1074 resv_map->css = NULL; 1075 } else { 1076 resv_map->reservation_counter = 1077 &h_cg->rsvd_hugepage[hstate_index(h)]; 1078 resv_map->pages_per_hpage = pages_per_huge_page(h); 1079 resv_map->css = &h_cg->css; 1080 } 1081 #endif 1082 } 1083 1084 struct resv_map *resv_map_alloc(void) 1085 { 1086 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); 1087 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL); 1088 1089 if (!resv_map || !rg) { 1090 kfree(resv_map); 1091 kfree(rg); 1092 return NULL; 1093 } 1094 1095 kref_init(&resv_map->refs); 1096 spin_lock_init(&resv_map->lock); 1097 INIT_LIST_HEAD(&resv_map->regions); 1098 init_rwsem(&resv_map->rw_sema); 1099 1100 resv_map->adds_in_progress = 0; 1101 /* 1102 * Initialize these to 0. On shared mappings, 0's here indicate these 1103 * fields don't do cgroup accounting. On private mappings, these will be 1104 * re-initialized to the proper values, to indicate that hugetlb cgroup 1105 * reservations are to be un-charged from here. 1106 */ 1107 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL); 1108 1109 INIT_LIST_HEAD(&resv_map->region_cache); 1110 list_add(&rg->link, &resv_map->region_cache); 1111 resv_map->region_cache_count = 1; 1112 1113 return resv_map; 1114 } 1115 1116 void resv_map_release(struct kref *ref) 1117 { 1118 struct resv_map *resv_map = container_of(ref, struct resv_map, refs); 1119 struct list_head *head = &resv_map->region_cache; 1120 struct file_region *rg, *trg; 1121 1122 /* Clear out any active regions before we release the map. */ 1123 region_del(resv_map, 0, LONG_MAX); 1124 1125 /* ... and any entries left in the cache */ 1126 list_for_each_entry_safe(rg, trg, head, link) { 1127 list_del(&rg->link); 1128 kfree(rg); 1129 } 1130 1131 VM_BUG_ON(resv_map->adds_in_progress); 1132 1133 kfree(resv_map); 1134 } 1135 1136 static inline struct resv_map *inode_resv_map(struct inode *inode) 1137 { 1138 /* 1139 * At inode evict time, i_mapping may not point to the original 1140 * address space within the inode. This original address space 1141 * contains the pointer to the resv_map. So, always use the 1142 * address space embedded within the inode. 1143 * The VERY common case is inode->mapping == &inode->i_data but, 1144 * this may not be true for device special inodes. 1145 */ 1146 return (struct resv_map *)(&inode->i_data)->i_private_data; 1147 } 1148 1149 static struct resv_map *vma_resv_map(struct vm_area_struct *vma) 1150 { 1151 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1152 if (vma->vm_flags & VM_MAYSHARE) { 1153 struct address_space *mapping = vma->vm_file->f_mapping; 1154 struct inode *inode = mapping->host; 1155 1156 return inode_resv_map(inode); 1157 1158 } else { 1159 return (struct resv_map *)(get_vma_private_data(vma) & 1160 ~HPAGE_RESV_MASK); 1161 } 1162 } 1163 1164 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) 1165 { 1166 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1167 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 1168 1169 set_vma_private_data(vma, (unsigned long)map); 1170 } 1171 1172 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) 1173 { 1174 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1175 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 1176 1177 set_vma_private_data(vma, get_vma_private_data(vma) | flags); 1178 } 1179 1180 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) 1181 { 1182 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1183 1184 return (get_vma_private_data(vma) & flag) != 0; 1185 } 1186 1187 bool __vma_private_lock(struct vm_area_struct *vma) 1188 { 1189 return !(vma->vm_flags & VM_MAYSHARE) && 1190 get_vma_private_data(vma) & ~HPAGE_RESV_MASK && 1191 is_vma_resv_set(vma, HPAGE_RESV_OWNER); 1192 } 1193 1194 void hugetlb_dup_vma_private(struct vm_area_struct *vma) 1195 { 1196 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1197 /* 1198 * Clear vm_private_data 1199 * - For shared mappings this is a per-vma semaphore that may be 1200 * allocated in a subsequent call to hugetlb_vm_op_open. 1201 * Before clearing, make sure pointer is not associated with vma 1202 * as this will leak the structure. This is the case when called 1203 * via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already 1204 * been called to allocate a new structure. 1205 * - For MAP_PRIVATE mappings, this is the reserve map which does 1206 * not apply to children. Faults generated by the children are 1207 * not guaranteed to succeed, even if read-only. 1208 */ 1209 if (vma->vm_flags & VM_MAYSHARE) { 1210 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 1211 1212 if (vma_lock && vma_lock->vma != vma) 1213 vma->vm_private_data = NULL; 1214 } else 1215 vma->vm_private_data = NULL; 1216 } 1217 1218 /* 1219 * Reset and decrement one ref on hugepage private reservation. 1220 * Called with mm->mmap_lock writer semaphore held. 1221 * This function should be only used by move_vma() and operate on 1222 * same sized vma. It should never come here with last ref on the 1223 * reservation. 1224 */ 1225 void clear_vma_resv_huge_pages(struct vm_area_struct *vma) 1226 { 1227 /* 1228 * Clear the old hugetlb private page reservation. 1229 * It has already been transferred to new_vma. 1230 * 1231 * During a mremap() operation of a hugetlb vma we call move_vma() 1232 * which copies vma into new_vma and unmaps vma. After the copy 1233 * operation both new_vma and vma share a reference to the resv_map 1234 * struct, and at that point vma is about to be unmapped. We don't 1235 * want to return the reservation to the pool at unmap of vma because 1236 * the reservation still lives on in new_vma, so simply decrement the 1237 * ref here and remove the resv_map reference from this vma. 1238 */ 1239 struct resv_map *reservations = vma_resv_map(vma); 1240 1241 if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 1242 resv_map_put_hugetlb_cgroup_uncharge_info(reservations); 1243 kref_put(&reservations->refs, resv_map_release); 1244 } 1245 1246 hugetlb_dup_vma_private(vma); 1247 } 1248 1249 /* Returns true if the VMA has associated reserve pages */ 1250 static bool vma_has_reserves(struct vm_area_struct *vma, long chg) 1251 { 1252 if (vma->vm_flags & VM_NORESERVE) { 1253 /* 1254 * This address is already reserved by other process(chg == 0), 1255 * so, we should decrement reserved count. Without decrementing, 1256 * reserve count remains after releasing inode, because this 1257 * allocated page will go into page cache and is regarded as 1258 * coming from reserved pool in releasing step. Currently, we 1259 * don't have any other solution to deal with this situation 1260 * properly, so add work-around here. 1261 */ 1262 if (vma->vm_flags & VM_MAYSHARE && chg == 0) 1263 return true; 1264 else 1265 return false; 1266 } 1267 1268 /* Shared mappings always use reserves */ 1269 if (vma->vm_flags & VM_MAYSHARE) { 1270 /* 1271 * We know VM_NORESERVE is not set. Therefore, there SHOULD 1272 * be a region map for all pages. The only situation where 1273 * there is no region map is if a hole was punched via 1274 * fallocate. In this case, there really are no reserves to 1275 * use. This situation is indicated if chg != 0. 1276 */ 1277 if (chg) 1278 return false; 1279 else 1280 return true; 1281 } 1282 1283 /* 1284 * Only the process that called mmap() has reserves for 1285 * private mappings. 1286 */ 1287 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 1288 /* 1289 * Like the shared case above, a hole punch or truncate 1290 * could have been performed on the private mapping. 1291 * Examine the value of chg to determine if reserves 1292 * actually exist or were previously consumed. 1293 * Very Subtle - The value of chg comes from a previous 1294 * call to vma_needs_reserves(). The reserve map for 1295 * private mappings has different (opposite) semantics 1296 * than that of shared mappings. vma_needs_reserves() 1297 * has already taken this difference in semantics into 1298 * account. Therefore, the meaning of chg is the same 1299 * as in the shared case above. Code could easily be 1300 * combined, but keeping it separate draws attention to 1301 * subtle differences. 1302 */ 1303 if (chg) 1304 return false; 1305 else 1306 return true; 1307 } 1308 1309 return false; 1310 } 1311 1312 static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio) 1313 { 1314 int nid = folio_nid(folio); 1315 1316 lockdep_assert_held(&hugetlb_lock); 1317 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio); 1318 1319 list_move(&folio->lru, &h->hugepage_freelists[nid]); 1320 h->free_huge_pages++; 1321 h->free_huge_pages_node[nid]++; 1322 folio_set_hugetlb_freed(folio); 1323 } 1324 1325 static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h, 1326 int nid) 1327 { 1328 struct folio *folio; 1329 bool pin = !!(current->flags & PF_MEMALLOC_PIN); 1330 1331 lockdep_assert_held(&hugetlb_lock); 1332 list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) { 1333 if (pin && !folio_is_longterm_pinnable(folio)) 1334 continue; 1335 1336 if (folio_test_hwpoison(folio)) 1337 continue; 1338 1339 list_move(&folio->lru, &h->hugepage_activelist); 1340 folio_ref_unfreeze(folio, 1); 1341 folio_clear_hugetlb_freed(folio); 1342 h->free_huge_pages--; 1343 h->free_huge_pages_node[nid]--; 1344 return folio; 1345 } 1346 1347 return NULL; 1348 } 1349 1350 static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask, 1351 int nid, nodemask_t *nmask) 1352 { 1353 unsigned int cpuset_mems_cookie; 1354 struct zonelist *zonelist; 1355 struct zone *zone; 1356 struct zoneref *z; 1357 int node = NUMA_NO_NODE; 1358 1359 /* 'nid' should not be NUMA_NO_NODE. Try to catch any misuse of it and rectifiy. */ 1360 if (nid == NUMA_NO_NODE) 1361 nid = numa_node_id(); 1362 1363 zonelist = node_zonelist(nid, gfp_mask); 1364 1365 retry_cpuset: 1366 cpuset_mems_cookie = read_mems_allowed_begin(); 1367 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) { 1368 struct folio *folio; 1369 1370 if (!cpuset_zone_allowed(zone, gfp_mask)) 1371 continue; 1372 /* 1373 * no need to ask again on the same node. Pool is node rather than 1374 * zone aware 1375 */ 1376 if (zone_to_nid(zone) == node) 1377 continue; 1378 node = zone_to_nid(zone); 1379 1380 folio = dequeue_hugetlb_folio_node_exact(h, node); 1381 if (folio) 1382 return folio; 1383 } 1384 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie))) 1385 goto retry_cpuset; 1386 1387 return NULL; 1388 } 1389 1390 static unsigned long available_huge_pages(struct hstate *h) 1391 { 1392 return h->free_huge_pages - h->resv_huge_pages; 1393 } 1394 1395 static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h, 1396 struct vm_area_struct *vma, 1397 unsigned long address, int avoid_reserve, 1398 long chg) 1399 { 1400 struct folio *folio = NULL; 1401 struct mempolicy *mpol; 1402 gfp_t gfp_mask; 1403 nodemask_t *nodemask; 1404 int nid; 1405 1406 /* 1407 * A child process with MAP_PRIVATE mappings created by their parent 1408 * have no page reserves. This check ensures that reservations are 1409 * not "stolen". The child may still get SIGKILLed 1410 */ 1411 if (!vma_has_reserves(vma, chg) && !available_huge_pages(h)) 1412 goto err; 1413 1414 /* If reserves cannot be used, ensure enough pages are in the pool */ 1415 if (avoid_reserve && !available_huge_pages(h)) 1416 goto err; 1417 1418 gfp_mask = htlb_alloc_mask(h); 1419 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 1420 1421 if (mpol_is_preferred_many(mpol)) { 1422 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, 1423 nid, nodemask); 1424 1425 /* Fallback to all nodes if page==NULL */ 1426 nodemask = NULL; 1427 } 1428 1429 if (!folio) 1430 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, 1431 nid, nodemask); 1432 1433 if (folio && !avoid_reserve && vma_has_reserves(vma, chg)) { 1434 folio_set_hugetlb_restore_reserve(folio); 1435 h->resv_huge_pages--; 1436 } 1437 1438 mpol_cond_put(mpol); 1439 return folio; 1440 1441 err: 1442 return NULL; 1443 } 1444 1445 /* 1446 * common helper functions for hstate_next_node_to_{alloc|free}. 1447 * We may have allocated or freed a huge page based on a different 1448 * nodes_allowed previously, so h->next_node_to_{alloc|free} might 1449 * be outside of *nodes_allowed. Ensure that we use an allowed 1450 * node for alloc or free. 1451 */ 1452 static int next_node_allowed(int nid, nodemask_t *nodes_allowed) 1453 { 1454 nid = next_node_in(nid, *nodes_allowed); 1455 VM_BUG_ON(nid >= MAX_NUMNODES); 1456 1457 return nid; 1458 } 1459 1460 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed) 1461 { 1462 if (!node_isset(nid, *nodes_allowed)) 1463 nid = next_node_allowed(nid, nodes_allowed); 1464 return nid; 1465 } 1466 1467 /* 1468 * returns the previously saved node ["this node"] from which to 1469 * allocate a persistent huge page for the pool and advance the 1470 * next node from which to allocate, handling wrap at end of node 1471 * mask. 1472 */ 1473 static int hstate_next_node_to_alloc(int *next_node, 1474 nodemask_t *nodes_allowed) 1475 { 1476 int nid; 1477 1478 VM_BUG_ON(!nodes_allowed); 1479 1480 nid = get_valid_node_allowed(*next_node, nodes_allowed); 1481 *next_node = next_node_allowed(nid, nodes_allowed); 1482 1483 return nid; 1484 } 1485 1486 /* 1487 * helper for remove_pool_hugetlb_folio() - return the previously saved 1488 * node ["this node"] from which to free a huge page. Advance the 1489 * next node id whether or not we find a free huge page to free so 1490 * that the next attempt to free addresses the next node. 1491 */ 1492 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed) 1493 { 1494 int nid; 1495 1496 VM_BUG_ON(!nodes_allowed); 1497 1498 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed); 1499 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed); 1500 1501 return nid; 1502 } 1503 1504 #define for_each_node_mask_to_alloc(next_node, nr_nodes, node, mask) \ 1505 for (nr_nodes = nodes_weight(*mask); \ 1506 nr_nodes > 0 && \ 1507 ((node = hstate_next_node_to_alloc(next_node, mask)) || 1); \ 1508 nr_nodes--) 1509 1510 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \ 1511 for (nr_nodes = nodes_weight(*mask); \ 1512 nr_nodes > 0 && \ 1513 ((node = hstate_next_node_to_free(hs, mask)) || 1); \ 1514 nr_nodes--) 1515 1516 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE 1517 #ifdef CONFIG_CONTIG_ALLOC 1518 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask, 1519 int nid, nodemask_t *nodemask) 1520 { 1521 struct folio *folio; 1522 int order = huge_page_order(h); 1523 bool retried = false; 1524 1525 if (nid == NUMA_NO_NODE) 1526 nid = numa_mem_id(); 1527 retry: 1528 folio = NULL; 1529 #ifdef CONFIG_CMA 1530 { 1531 int node; 1532 1533 if (hugetlb_cma[nid]) 1534 folio = cma_alloc_folio(hugetlb_cma[nid], order, gfp_mask); 1535 1536 if (!folio && !(gfp_mask & __GFP_THISNODE)) { 1537 for_each_node_mask(node, *nodemask) { 1538 if (node == nid || !hugetlb_cma[node]) 1539 continue; 1540 1541 folio = cma_alloc_folio(hugetlb_cma[node], order, gfp_mask); 1542 if (folio) 1543 break; 1544 } 1545 } 1546 } 1547 #endif 1548 if (!folio) { 1549 folio = folio_alloc_gigantic(order, gfp_mask, nid, nodemask); 1550 if (!folio) 1551 return NULL; 1552 } 1553 1554 if (folio_ref_freeze(folio, 1)) 1555 return folio; 1556 1557 pr_warn("HugeTLB: unexpected refcount on PFN %lu\n", folio_pfn(folio)); 1558 hugetlb_free_folio(folio); 1559 if (!retried) { 1560 retried = true; 1561 goto retry; 1562 } 1563 return NULL; 1564 } 1565 1566 #else /* !CONFIG_CONTIG_ALLOC */ 1567 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask, 1568 int nid, nodemask_t *nodemask) 1569 { 1570 return NULL; 1571 } 1572 #endif /* CONFIG_CONTIG_ALLOC */ 1573 1574 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */ 1575 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask, 1576 int nid, nodemask_t *nodemask) 1577 { 1578 return NULL; 1579 } 1580 #endif 1581 1582 /* 1583 * Remove hugetlb folio from lists. 1584 * If vmemmap exists for the folio, clear the hugetlb flag so that the 1585 * folio appears as just a compound page. Otherwise, wait until after 1586 * allocating vmemmap to clear the flag. 1587 * 1588 * Must be called with hugetlb lock held. 1589 */ 1590 static void remove_hugetlb_folio(struct hstate *h, struct folio *folio, 1591 bool adjust_surplus) 1592 { 1593 int nid = folio_nid(folio); 1594 1595 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio); 1596 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio); 1597 1598 lockdep_assert_held(&hugetlb_lock); 1599 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 1600 return; 1601 1602 list_del(&folio->lru); 1603 1604 if (folio_test_hugetlb_freed(folio)) { 1605 folio_clear_hugetlb_freed(folio); 1606 h->free_huge_pages--; 1607 h->free_huge_pages_node[nid]--; 1608 } 1609 if (adjust_surplus) { 1610 h->surplus_huge_pages--; 1611 h->surplus_huge_pages_node[nid]--; 1612 } 1613 1614 /* 1615 * We can only clear the hugetlb flag after allocating vmemmap 1616 * pages. Otherwise, someone (memory error handling) may try to write 1617 * to tail struct pages. 1618 */ 1619 if (!folio_test_hugetlb_vmemmap_optimized(folio)) 1620 __folio_clear_hugetlb(folio); 1621 1622 h->nr_huge_pages--; 1623 h->nr_huge_pages_node[nid]--; 1624 } 1625 1626 static void add_hugetlb_folio(struct hstate *h, struct folio *folio, 1627 bool adjust_surplus) 1628 { 1629 int nid = folio_nid(folio); 1630 1631 VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio); 1632 1633 lockdep_assert_held(&hugetlb_lock); 1634 1635 INIT_LIST_HEAD(&folio->lru); 1636 h->nr_huge_pages++; 1637 h->nr_huge_pages_node[nid]++; 1638 1639 if (adjust_surplus) { 1640 h->surplus_huge_pages++; 1641 h->surplus_huge_pages_node[nid]++; 1642 } 1643 1644 __folio_set_hugetlb(folio); 1645 folio_change_private(folio, NULL); 1646 /* 1647 * We have to set hugetlb_vmemmap_optimized again as above 1648 * folio_change_private(folio, NULL) cleared it. 1649 */ 1650 folio_set_hugetlb_vmemmap_optimized(folio); 1651 1652 arch_clear_hugetlb_flags(folio); 1653 enqueue_hugetlb_folio(h, folio); 1654 } 1655 1656 static void __update_and_free_hugetlb_folio(struct hstate *h, 1657 struct folio *folio) 1658 { 1659 bool clear_flag = folio_test_hugetlb_vmemmap_optimized(folio); 1660 1661 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 1662 return; 1663 1664 /* 1665 * If we don't know which subpages are hwpoisoned, we can't free 1666 * the hugepage, so it's leaked intentionally. 1667 */ 1668 if (folio_test_hugetlb_raw_hwp_unreliable(folio)) 1669 return; 1670 1671 /* 1672 * If folio is not vmemmap optimized (!clear_flag), then the folio 1673 * is no longer identified as a hugetlb page. hugetlb_vmemmap_restore_folio 1674 * can only be passed hugetlb pages and will BUG otherwise. 1675 */ 1676 if (clear_flag && hugetlb_vmemmap_restore_folio(h, folio)) { 1677 spin_lock_irq(&hugetlb_lock); 1678 /* 1679 * If we cannot allocate vmemmap pages, just refuse to free the 1680 * page and put the page back on the hugetlb free list and treat 1681 * as a surplus page. 1682 */ 1683 add_hugetlb_folio(h, folio, true); 1684 spin_unlock_irq(&hugetlb_lock); 1685 return; 1686 } 1687 1688 /* 1689 * If vmemmap pages were allocated above, then we need to clear the 1690 * hugetlb flag under the hugetlb lock. 1691 */ 1692 if (folio_test_hugetlb(folio)) { 1693 spin_lock_irq(&hugetlb_lock); 1694 __folio_clear_hugetlb(folio); 1695 spin_unlock_irq(&hugetlb_lock); 1696 } 1697 1698 /* 1699 * Move PageHWPoison flag from head page to the raw error pages, 1700 * which makes any healthy subpages reusable. 1701 */ 1702 if (unlikely(folio_test_hwpoison(folio))) 1703 folio_clear_hugetlb_hwpoison(folio); 1704 1705 folio_ref_unfreeze(folio, 1); 1706 1707 INIT_LIST_HEAD(&folio->_deferred_list); 1708 hugetlb_free_folio(folio); 1709 } 1710 1711 /* 1712 * As update_and_free_hugetlb_folio() can be called under any context, so we cannot 1713 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the 1714 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate 1715 * the vmemmap pages. 1716 * 1717 * free_hpage_workfn() locklessly retrieves the linked list of pages to be 1718 * freed and frees them one-by-one. As the page->mapping pointer is going 1719 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node 1720 * structure of a lockless linked list of huge pages to be freed. 1721 */ 1722 static LLIST_HEAD(hpage_freelist); 1723 1724 static void free_hpage_workfn(struct work_struct *work) 1725 { 1726 struct llist_node *node; 1727 1728 node = llist_del_all(&hpage_freelist); 1729 1730 while (node) { 1731 struct folio *folio; 1732 struct hstate *h; 1733 1734 folio = container_of((struct address_space **)node, 1735 struct folio, mapping); 1736 node = node->next; 1737 folio->mapping = NULL; 1738 /* 1739 * The VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio) in 1740 * folio_hstate() is going to trigger because a previous call to 1741 * remove_hugetlb_folio() will clear the hugetlb bit, so do 1742 * not use folio_hstate() directly. 1743 */ 1744 h = size_to_hstate(folio_size(folio)); 1745 1746 __update_and_free_hugetlb_folio(h, folio); 1747 1748 cond_resched(); 1749 } 1750 } 1751 static DECLARE_WORK(free_hpage_work, free_hpage_workfn); 1752 1753 static inline void flush_free_hpage_work(struct hstate *h) 1754 { 1755 if (hugetlb_vmemmap_optimizable(h)) 1756 flush_work(&free_hpage_work); 1757 } 1758 1759 static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio, 1760 bool atomic) 1761 { 1762 if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) { 1763 __update_and_free_hugetlb_folio(h, folio); 1764 return; 1765 } 1766 1767 /* 1768 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages. 1769 * 1770 * Only call schedule_work() if hpage_freelist is previously 1771 * empty. Otherwise, schedule_work() had been called but the workfn 1772 * hasn't retrieved the list yet. 1773 */ 1774 if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist)) 1775 schedule_work(&free_hpage_work); 1776 } 1777 1778 static void bulk_vmemmap_restore_error(struct hstate *h, 1779 struct list_head *folio_list, 1780 struct list_head *non_hvo_folios) 1781 { 1782 struct folio *folio, *t_folio; 1783 1784 if (!list_empty(non_hvo_folios)) { 1785 /* 1786 * Free any restored hugetlb pages so that restore of the 1787 * entire list can be retried. 1788 * The idea is that in the common case of ENOMEM errors freeing 1789 * hugetlb pages with vmemmap we will free up memory so that we 1790 * can allocate vmemmap for more hugetlb pages. 1791 */ 1792 list_for_each_entry_safe(folio, t_folio, non_hvo_folios, lru) { 1793 list_del(&folio->lru); 1794 spin_lock_irq(&hugetlb_lock); 1795 __folio_clear_hugetlb(folio); 1796 spin_unlock_irq(&hugetlb_lock); 1797 update_and_free_hugetlb_folio(h, folio, false); 1798 cond_resched(); 1799 } 1800 } else { 1801 /* 1802 * In the case where there are no folios which can be 1803 * immediately freed, we loop through the list trying to restore 1804 * vmemmap individually in the hope that someone elsewhere may 1805 * have done something to cause success (such as freeing some 1806 * memory). If unable to restore a hugetlb page, the hugetlb 1807 * page is made a surplus page and removed from the list. 1808 * If are able to restore vmemmap and free one hugetlb page, we 1809 * quit processing the list to retry the bulk operation. 1810 */ 1811 list_for_each_entry_safe(folio, t_folio, folio_list, lru) 1812 if (hugetlb_vmemmap_restore_folio(h, folio)) { 1813 list_del(&folio->lru); 1814 spin_lock_irq(&hugetlb_lock); 1815 add_hugetlb_folio(h, folio, true); 1816 spin_unlock_irq(&hugetlb_lock); 1817 } else { 1818 list_del(&folio->lru); 1819 spin_lock_irq(&hugetlb_lock); 1820 __folio_clear_hugetlb(folio); 1821 spin_unlock_irq(&hugetlb_lock); 1822 update_and_free_hugetlb_folio(h, folio, false); 1823 cond_resched(); 1824 break; 1825 } 1826 } 1827 } 1828 1829 static void update_and_free_pages_bulk(struct hstate *h, 1830 struct list_head *folio_list) 1831 { 1832 long ret; 1833 struct folio *folio, *t_folio; 1834 LIST_HEAD(non_hvo_folios); 1835 1836 /* 1837 * First allocate required vmemmmap (if necessary) for all folios. 1838 * Carefully handle errors and free up any available hugetlb pages 1839 * in an effort to make forward progress. 1840 */ 1841 retry: 1842 ret = hugetlb_vmemmap_restore_folios(h, folio_list, &non_hvo_folios); 1843 if (ret < 0) { 1844 bulk_vmemmap_restore_error(h, folio_list, &non_hvo_folios); 1845 goto retry; 1846 } 1847 1848 /* 1849 * At this point, list should be empty, ret should be >= 0 and there 1850 * should only be pages on the non_hvo_folios list. 1851 * Do note that the non_hvo_folios list could be empty. 1852 * Without HVO enabled, ret will be 0 and there is no need to call 1853 * __folio_clear_hugetlb as this was done previously. 1854 */ 1855 VM_WARN_ON(!list_empty(folio_list)); 1856 VM_WARN_ON(ret < 0); 1857 if (!list_empty(&non_hvo_folios) && ret) { 1858 spin_lock_irq(&hugetlb_lock); 1859 list_for_each_entry(folio, &non_hvo_folios, lru) 1860 __folio_clear_hugetlb(folio); 1861 spin_unlock_irq(&hugetlb_lock); 1862 } 1863 1864 list_for_each_entry_safe(folio, t_folio, &non_hvo_folios, lru) { 1865 update_and_free_hugetlb_folio(h, folio, false); 1866 cond_resched(); 1867 } 1868 } 1869 1870 struct hstate *size_to_hstate(unsigned long size) 1871 { 1872 struct hstate *h; 1873 1874 for_each_hstate(h) { 1875 if (huge_page_size(h) == size) 1876 return h; 1877 } 1878 return NULL; 1879 } 1880 1881 void free_huge_folio(struct folio *folio) 1882 { 1883 /* 1884 * Can't pass hstate in here because it is called from the 1885 * generic mm code. 1886 */ 1887 struct hstate *h = folio_hstate(folio); 1888 int nid = folio_nid(folio); 1889 struct hugepage_subpool *spool = hugetlb_folio_subpool(folio); 1890 bool restore_reserve; 1891 unsigned long flags; 1892 1893 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio); 1894 VM_BUG_ON_FOLIO(folio_mapcount(folio), folio); 1895 1896 hugetlb_set_folio_subpool(folio, NULL); 1897 if (folio_test_anon(folio)) 1898 __ClearPageAnonExclusive(&folio->page); 1899 folio->mapping = NULL; 1900 restore_reserve = folio_test_hugetlb_restore_reserve(folio); 1901 folio_clear_hugetlb_restore_reserve(folio); 1902 1903 /* 1904 * If HPageRestoreReserve was set on page, page allocation consumed a 1905 * reservation. If the page was associated with a subpool, there 1906 * would have been a page reserved in the subpool before allocation 1907 * via hugepage_subpool_get_pages(). Since we are 'restoring' the 1908 * reservation, do not call hugepage_subpool_put_pages() as this will 1909 * remove the reserved page from the subpool. 1910 */ 1911 if (!restore_reserve) { 1912 /* 1913 * A return code of zero implies that the subpool will be 1914 * under its minimum size if the reservation is not restored 1915 * after page is free. Therefore, force restore_reserve 1916 * operation. 1917 */ 1918 if (hugepage_subpool_put_pages(spool, 1) == 0) 1919 restore_reserve = true; 1920 } 1921 1922 spin_lock_irqsave(&hugetlb_lock, flags); 1923 folio_clear_hugetlb_migratable(folio); 1924 hugetlb_cgroup_uncharge_folio(hstate_index(h), 1925 pages_per_huge_page(h), folio); 1926 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h), 1927 pages_per_huge_page(h), folio); 1928 mem_cgroup_uncharge(folio); 1929 if (restore_reserve) 1930 h->resv_huge_pages++; 1931 1932 if (folio_test_hugetlb_temporary(folio)) { 1933 remove_hugetlb_folio(h, folio, false); 1934 spin_unlock_irqrestore(&hugetlb_lock, flags); 1935 update_and_free_hugetlb_folio(h, folio, true); 1936 } else if (h->surplus_huge_pages_node[nid]) { 1937 /* remove the page from active list */ 1938 remove_hugetlb_folio(h, folio, true); 1939 spin_unlock_irqrestore(&hugetlb_lock, flags); 1940 update_and_free_hugetlb_folio(h, folio, true); 1941 } else { 1942 arch_clear_hugetlb_flags(folio); 1943 enqueue_hugetlb_folio(h, folio); 1944 spin_unlock_irqrestore(&hugetlb_lock, flags); 1945 } 1946 } 1947 1948 /* 1949 * Must be called with the hugetlb lock held 1950 */ 1951 static void __prep_account_new_huge_page(struct hstate *h, int nid) 1952 { 1953 lockdep_assert_held(&hugetlb_lock); 1954 h->nr_huge_pages++; 1955 h->nr_huge_pages_node[nid]++; 1956 } 1957 1958 static void init_new_hugetlb_folio(struct hstate *h, struct folio *folio) 1959 { 1960 __folio_set_hugetlb(folio); 1961 INIT_LIST_HEAD(&folio->lru); 1962 hugetlb_set_folio_subpool(folio, NULL); 1963 set_hugetlb_cgroup(folio, NULL); 1964 set_hugetlb_cgroup_rsvd(folio, NULL); 1965 } 1966 1967 static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio) 1968 { 1969 init_new_hugetlb_folio(h, folio); 1970 hugetlb_vmemmap_optimize_folio(h, folio); 1971 } 1972 1973 static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid) 1974 { 1975 __prep_new_hugetlb_folio(h, folio); 1976 spin_lock_irq(&hugetlb_lock); 1977 __prep_account_new_huge_page(h, nid); 1978 spin_unlock_irq(&hugetlb_lock); 1979 } 1980 1981 /* 1982 * Find and lock address space (mapping) in write mode. 1983 * 1984 * Upon entry, the folio is locked which means that folio_mapping() is 1985 * stable. Due to locking order, we can only trylock_write. If we can 1986 * not get the lock, simply return NULL to caller. 1987 */ 1988 struct address_space *hugetlb_folio_mapping_lock_write(struct folio *folio) 1989 { 1990 struct address_space *mapping = folio_mapping(folio); 1991 1992 if (!mapping) 1993 return mapping; 1994 1995 if (i_mmap_trylock_write(mapping)) 1996 return mapping; 1997 1998 return NULL; 1999 } 2000 2001 static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h, 2002 gfp_t gfp_mask, int nid, nodemask_t *nmask, 2003 nodemask_t *node_alloc_noretry) 2004 { 2005 int order = huge_page_order(h); 2006 struct folio *folio; 2007 bool alloc_try_hard = true; 2008 bool retry = true; 2009 2010 /* 2011 * By default we always try hard to allocate the folio with 2012 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating folios in 2013 * a loop (to adjust global huge page counts) and previous allocation 2014 * failed, do not continue to try hard on the same node. Use the 2015 * node_alloc_noretry bitmap to manage this state information. 2016 */ 2017 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry)) 2018 alloc_try_hard = false; 2019 if (alloc_try_hard) 2020 gfp_mask |= __GFP_RETRY_MAYFAIL; 2021 if (nid == NUMA_NO_NODE) 2022 nid = numa_mem_id(); 2023 retry: 2024 folio = __folio_alloc(gfp_mask, order, nid, nmask); 2025 /* Ensure hugetlb folio won't have large_rmappable flag set. */ 2026 if (folio) 2027 folio_clear_large_rmappable(folio); 2028 2029 if (folio && !folio_ref_freeze(folio, 1)) { 2030 folio_put(folio); 2031 if (retry) { /* retry once */ 2032 retry = false; 2033 goto retry; 2034 } 2035 /* WOW! twice in a row. */ 2036 pr_warn("HugeTLB unexpected inflated folio ref count\n"); 2037 folio = NULL; 2038 } 2039 2040 /* 2041 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a 2042 * folio this indicates an overall state change. Clear bit so 2043 * that we resume normal 'try hard' allocations. 2044 */ 2045 if (node_alloc_noretry && folio && !alloc_try_hard) 2046 node_clear(nid, *node_alloc_noretry); 2047 2048 /* 2049 * If we tried hard to get a folio but failed, set bit so that 2050 * subsequent attempts will not try as hard until there is an 2051 * overall state change. 2052 */ 2053 if (node_alloc_noretry && !folio && alloc_try_hard) 2054 node_set(nid, *node_alloc_noretry); 2055 2056 if (!folio) { 2057 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 2058 return NULL; 2059 } 2060 2061 __count_vm_event(HTLB_BUDDY_PGALLOC); 2062 return folio; 2063 } 2064 2065 static struct folio *only_alloc_fresh_hugetlb_folio(struct hstate *h, 2066 gfp_t gfp_mask, int nid, nodemask_t *nmask, 2067 nodemask_t *node_alloc_noretry) 2068 { 2069 struct folio *folio; 2070 2071 if (hstate_is_gigantic(h)) 2072 folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask); 2073 else 2074 folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, nmask, node_alloc_noretry); 2075 if (folio) 2076 init_new_hugetlb_folio(h, folio); 2077 return folio; 2078 } 2079 2080 /* 2081 * Common helper to allocate a fresh hugetlb page. All specific allocators 2082 * should use this function to get new hugetlb pages 2083 * 2084 * Note that returned page is 'frozen': ref count of head page and all tail 2085 * pages is zero. 2086 */ 2087 static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h, 2088 gfp_t gfp_mask, int nid, nodemask_t *nmask) 2089 { 2090 struct folio *folio; 2091 2092 if (hstate_is_gigantic(h)) 2093 folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask); 2094 else 2095 folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, nmask, NULL); 2096 if (!folio) 2097 return NULL; 2098 2099 prep_new_hugetlb_folio(h, folio, folio_nid(folio)); 2100 return folio; 2101 } 2102 2103 static void prep_and_add_allocated_folios(struct hstate *h, 2104 struct list_head *folio_list) 2105 { 2106 unsigned long flags; 2107 struct folio *folio, *tmp_f; 2108 2109 /* Send list for bulk vmemmap optimization processing */ 2110 hugetlb_vmemmap_optimize_folios(h, folio_list); 2111 2112 /* Add all new pool pages to free lists in one lock cycle */ 2113 spin_lock_irqsave(&hugetlb_lock, flags); 2114 list_for_each_entry_safe(folio, tmp_f, folio_list, lru) { 2115 __prep_account_new_huge_page(h, folio_nid(folio)); 2116 enqueue_hugetlb_folio(h, folio); 2117 } 2118 spin_unlock_irqrestore(&hugetlb_lock, flags); 2119 } 2120 2121 /* 2122 * Allocates a fresh hugetlb page in a node interleaved manner. The page 2123 * will later be added to the appropriate hugetlb pool. 2124 */ 2125 static struct folio *alloc_pool_huge_folio(struct hstate *h, 2126 nodemask_t *nodes_allowed, 2127 nodemask_t *node_alloc_noretry, 2128 int *next_node) 2129 { 2130 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 2131 int nr_nodes, node; 2132 2133 for_each_node_mask_to_alloc(next_node, nr_nodes, node, nodes_allowed) { 2134 struct folio *folio; 2135 2136 folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, node, 2137 nodes_allowed, node_alloc_noretry); 2138 if (folio) 2139 return folio; 2140 } 2141 2142 return NULL; 2143 } 2144 2145 /* 2146 * Remove huge page from pool from next node to free. Attempt to keep 2147 * persistent huge pages more or less balanced over allowed nodes. 2148 * This routine only 'removes' the hugetlb page. The caller must make 2149 * an additional call to free the page to low level allocators. 2150 * Called with hugetlb_lock locked. 2151 */ 2152 static struct folio *remove_pool_hugetlb_folio(struct hstate *h, 2153 nodemask_t *nodes_allowed, bool acct_surplus) 2154 { 2155 int nr_nodes, node; 2156 struct folio *folio = NULL; 2157 2158 lockdep_assert_held(&hugetlb_lock); 2159 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 2160 /* 2161 * If we're returning unused surplus pages, only examine 2162 * nodes with surplus pages. 2163 */ 2164 if ((!acct_surplus || h->surplus_huge_pages_node[node]) && 2165 !list_empty(&h->hugepage_freelists[node])) { 2166 folio = list_entry(h->hugepage_freelists[node].next, 2167 struct folio, lru); 2168 remove_hugetlb_folio(h, folio, acct_surplus); 2169 break; 2170 } 2171 } 2172 2173 return folio; 2174 } 2175 2176 /* 2177 * Dissolve a given free hugetlb folio into free buddy pages. This function 2178 * does nothing for in-use hugetlb folios and non-hugetlb folios. 2179 * This function returns values like below: 2180 * 2181 * -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages 2182 * when the system is under memory pressure and the feature of 2183 * freeing unused vmemmap pages associated with each hugetlb page 2184 * is enabled. 2185 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use 2186 * (allocated or reserved.) 2187 * 0: successfully dissolved free hugepages or the page is not a 2188 * hugepage (considered as already dissolved) 2189 */ 2190 int dissolve_free_hugetlb_folio(struct folio *folio) 2191 { 2192 int rc = -EBUSY; 2193 2194 retry: 2195 /* Not to disrupt normal path by vainly holding hugetlb_lock */ 2196 if (!folio_test_hugetlb(folio)) 2197 return 0; 2198 2199 spin_lock_irq(&hugetlb_lock); 2200 if (!folio_test_hugetlb(folio)) { 2201 rc = 0; 2202 goto out; 2203 } 2204 2205 if (!folio_ref_count(folio)) { 2206 struct hstate *h = folio_hstate(folio); 2207 if (!available_huge_pages(h)) 2208 goto out; 2209 2210 /* 2211 * We should make sure that the page is already on the free list 2212 * when it is dissolved. 2213 */ 2214 if (unlikely(!folio_test_hugetlb_freed(folio))) { 2215 spin_unlock_irq(&hugetlb_lock); 2216 cond_resched(); 2217 2218 /* 2219 * Theoretically, we should return -EBUSY when we 2220 * encounter this race. In fact, we have a chance 2221 * to successfully dissolve the page if we do a 2222 * retry. Because the race window is quite small. 2223 * If we seize this opportunity, it is an optimization 2224 * for increasing the success rate of dissolving page. 2225 */ 2226 goto retry; 2227 } 2228 2229 remove_hugetlb_folio(h, folio, false); 2230 h->max_huge_pages--; 2231 spin_unlock_irq(&hugetlb_lock); 2232 2233 /* 2234 * Normally update_and_free_hugtlb_folio will allocate required vmemmmap 2235 * before freeing the page. update_and_free_hugtlb_folio will fail to 2236 * free the page if it can not allocate required vmemmap. We 2237 * need to adjust max_huge_pages if the page is not freed. 2238 * Attempt to allocate vmemmmap here so that we can take 2239 * appropriate action on failure. 2240 * 2241 * The folio_test_hugetlb check here is because 2242 * remove_hugetlb_folio will clear hugetlb folio flag for 2243 * non-vmemmap optimized hugetlb folios. 2244 */ 2245 if (folio_test_hugetlb(folio)) { 2246 rc = hugetlb_vmemmap_restore_folio(h, folio); 2247 if (rc) { 2248 spin_lock_irq(&hugetlb_lock); 2249 add_hugetlb_folio(h, folio, false); 2250 h->max_huge_pages++; 2251 goto out; 2252 } 2253 } else 2254 rc = 0; 2255 2256 update_and_free_hugetlb_folio(h, folio, false); 2257 return rc; 2258 } 2259 out: 2260 spin_unlock_irq(&hugetlb_lock); 2261 return rc; 2262 } 2263 2264 /* 2265 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to 2266 * make specified memory blocks removable from the system. 2267 * Note that this will dissolve a free gigantic hugepage completely, if any 2268 * part of it lies within the given range. 2269 * Also note that if dissolve_free_hugetlb_folio() returns with an error, all 2270 * free hugetlb folios that were dissolved before that error are lost. 2271 */ 2272 int dissolve_free_hugetlb_folios(unsigned long start_pfn, unsigned long end_pfn) 2273 { 2274 unsigned long pfn; 2275 struct folio *folio; 2276 int rc = 0; 2277 unsigned int order; 2278 struct hstate *h; 2279 2280 if (!hugepages_supported()) 2281 return rc; 2282 2283 order = huge_page_order(&default_hstate); 2284 for_each_hstate(h) 2285 order = min(order, huge_page_order(h)); 2286 2287 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) { 2288 folio = pfn_folio(pfn); 2289 rc = dissolve_free_hugetlb_folio(folio); 2290 if (rc) 2291 break; 2292 } 2293 2294 return rc; 2295 } 2296 2297 /* 2298 * Allocates a fresh surplus page from the page allocator. 2299 */ 2300 static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h, 2301 gfp_t gfp_mask, int nid, nodemask_t *nmask) 2302 { 2303 struct folio *folio = NULL; 2304 2305 if (hstate_is_gigantic(h)) 2306 return NULL; 2307 2308 spin_lock_irq(&hugetlb_lock); 2309 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) 2310 goto out_unlock; 2311 spin_unlock_irq(&hugetlb_lock); 2312 2313 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask); 2314 if (!folio) 2315 return NULL; 2316 2317 spin_lock_irq(&hugetlb_lock); 2318 /* 2319 * We could have raced with the pool size change. 2320 * Double check that and simply deallocate the new page 2321 * if we would end up overcommiting the surpluses. Abuse 2322 * temporary page to workaround the nasty free_huge_folio 2323 * codeflow 2324 */ 2325 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { 2326 folio_set_hugetlb_temporary(folio); 2327 spin_unlock_irq(&hugetlb_lock); 2328 free_huge_folio(folio); 2329 return NULL; 2330 } 2331 2332 h->surplus_huge_pages++; 2333 h->surplus_huge_pages_node[folio_nid(folio)]++; 2334 2335 out_unlock: 2336 spin_unlock_irq(&hugetlb_lock); 2337 2338 return folio; 2339 } 2340 2341 static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask, 2342 int nid, nodemask_t *nmask) 2343 { 2344 struct folio *folio; 2345 2346 if (hstate_is_gigantic(h)) 2347 return NULL; 2348 2349 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask); 2350 if (!folio) 2351 return NULL; 2352 2353 /* fresh huge pages are frozen */ 2354 folio_ref_unfreeze(folio, 1); 2355 /* 2356 * We do not account these pages as surplus because they are only 2357 * temporary and will be released properly on the last reference 2358 */ 2359 folio_set_hugetlb_temporary(folio); 2360 2361 return folio; 2362 } 2363 2364 /* 2365 * Use the VMA's mpolicy to allocate a huge page from the buddy. 2366 */ 2367 static 2368 struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h, 2369 struct vm_area_struct *vma, unsigned long addr) 2370 { 2371 struct folio *folio = NULL; 2372 struct mempolicy *mpol; 2373 gfp_t gfp_mask = htlb_alloc_mask(h); 2374 int nid; 2375 nodemask_t *nodemask; 2376 2377 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask); 2378 if (mpol_is_preferred_many(mpol)) { 2379 gfp_t gfp = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL); 2380 2381 folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask); 2382 2383 /* Fallback to all nodes if page==NULL */ 2384 nodemask = NULL; 2385 } 2386 2387 if (!folio) 2388 folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask); 2389 mpol_cond_put(mpol); 2390 return folio; 2391 } 2392 2393 struct folio *alloc_hugetlb_folio_reserve(struct hstate *h, int preferred_nid, 2394 nodemask_t *nmask, gfp_t gfp_mask) 2395 { 2396 struct folio *folio; 2397 2398 spin_lock_irq(&hugetlb_lock); 2399 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, preferred_nid, 2400 nmask); 2401 if (folio) { 2402 VM_BUG_ON(!h->resv_huge_pages); 2403 h->resv_huge_pages--; 2404 } 2405 2406 spin_unlock_irq(&hugetlb_lock); 2407 return folio; 2408 } 2409 2410 /* folio migration callback function */ 2411 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid, 2412 nodemask_t *nmask, gfp_t gfp_mask, bool allow_alloc_fallback) 2413 { 2414 spin_lock_irq(&hugetlb_lock); 2415 if (available_huge_pages(h)) { 2416 struct folio *folio; 2417 2418 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, 2419 preferred_nid, nmask); 2420 if (folio) { 2421 spin_unlock_irq(&hugetlb_lock); 2422 return folio; 2423 } 2424 } 2425 spin_unlock_irq(&hugetlb_lock); 2426 2427 /* We cannot fallback to other nodes, as we could break the per-node pool. */ 2428 if (!allow_alloc_fallback) 2429 gfp_mask |= __GFP_THISNODE; 2430 2431 return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask); 2432 } 2433 2434 static nodemask_t *policy_mbind_nodemask(gfp_t gfp) 2435 { 2436 #ifdef CONFIG_NUMA 2437 struct mempolicy *mpol = get_task_policy(current); 2438 2439 /* 2440 * Only enforce MPOL_BIND policy which overlaps with cpuset policy 2441 * (from policy_nodemask) specifically for hugetlb case 2442 */ 2443 if (mpol->mode == MPOL_BIND && 2444 (apply_policy_zone(mpol, gfp_zone(gfp)) && 2445 cpuset_nodemask_valid_mems_allowed(&mpol->nodes))) 2446 return &mpol->nodes; 2447 #endif 2448 return NULL; 2449 } 2450 2451 /* 2452 * Increase the hugetlb pool such that it can accommodate a reservation 2453 * of size 'delta'. 2454 */ 2455 static int gather_surplus_pages(struct hstate *h, long delta) 2456 __must_hold(&hugetlb_lock) 2457 { 2458 LIST_HEAD(surplus_list); 2459 struct folio *folio, *tmp; 2460 int ret; 2461 long i; 2462 long needed, allocated; 2463 bool alloc_ok = true; 2464 int node; 2465 nodemask_t *mbind_nodemask = policy_mbind_nodemask(htlb_alloc_mask(h)); 2466 2467 lockdep_assert_held(&hugetlb_lock); 2468 needed = (h->resv_huge_pages + delta) - h->free_huge_pages; 2469 if (needed <= 0) { 2470 h->resv_huge_pages += delta; 2471 return 0; 2472 } 2473 2474 allocated = 0; 2475 2476 ret = -ENOMEM; 2477 retry: 2478 spin_unlock_irq(&hugetlb_lock); 2479 for (i = 0; i < needed; i++) { 2480 folio = NULL; 2481 for_each_node_mask(node, cpuset_current_mems_allowed) { 2482 if (!mbind_nodemask || node_isset(node, *mbind_nodemask)) { 2483 folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h), 2484 node, NULL); 2485 if (folio) 2486 break; 2487 } 2488 } 2489 if (!folio) { 2490 alloc_ok = false; 2491 break; 2492 } 2493 list_add(&folio->lru, &surplus_list); 2494 cond_resched(); 2495 } 2496 allocated += i; 2497 2498 /* 2499 * After retaking hugetlb_lock, we need to recalculate 'needed' 2500 * because either resv_huge_pages or free_huge_pages may have changed. 2501 */ 2502 spin_lock_irq(&hugetlb_lock); 2503 needed = (h->resv_huge_pages + delta) - 2504 (h->free_huge_pages + allocated); 2505 if (needed > 0) { 2506 if (alloc_ok) 2507 goto retry; 2508 /* 2509 * We were not able to allocate enough pages to 2510 * satisfy the entire reservation so we free what 2511 * we've allocated so far. 2512 */ 2513 goto free; 2514 } 2515 /* 2516 * The surplus_list now contains _at_least_ the number of extra pages 2517 * needed to accommodate the reservation. Add the appropriate number 2518 * of pages to the hugetlb pool and free the extras back to the buddy 2519 * allocator. Commit the entire reservation here to prevent another 2520 * process from stealing the pages as they are added to the pool but 2521 * before they are reserved. 2522 */ 2523 needed += allocated; 2524 h->resv_huge_pages += delta; 2525 ret = 0; 2526 2527 /* Free the needed pages to the hugetlb pool */ 2528 list_for_each_entry_safe(folio, tmp, &surplus_list, lru) { 2529 if ((--needed) < 0) 2530 break; 2531 /* Add the page to the hugetlb allocator */ 2532 enqueue_hugetlb_folio(h, folio); 2533 } 2534 free: 2535 spin_unlock_irq(&hugetlb_lock); 2536 2537 /* 2538 * Free unnecessary surplus pages to the buddy allocator. 2539 * Pages have no ref count, call free_huge_folio directly. 2540 */ 2541 list_for_each_entry_safe(folio, tmp, &surplus_list, lru) 2542 free_huge_folio(folio); 2543 spin_lock_irq(&hugetlb_lock); 2544 2545 return ret; 2546 } 2547 2548 /* 2549 * This routine has two main purposes: 2550 * 1) Decrement the reservation count (resv_huge_pages) by the value passed 2551 * in unused_resv_pages. This corresponds to the prior adjustments made 2552 * to the associated reservation map. 2553 * 2) Free any unused surplus pages that may have been allocated to satisfy 2554 * the reservation. As many as unused_resv_pages may be freed. 2555 */ 2556 static void return_unused_surplus_pages(struct hstate *h, 2557 unsigned long unused_resv_pages) 2558 { 2559 unsigned long nr_pages; 2560 LIST_HEAD(page_list); 2561 2562 lockdep_assert_held(&hugetlb_lock); 2563 /* Uncommit the reservation */ 2564 h->resv_huge_pages -= unused_resv_pages; 2565 2566 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 2567 goto out; 2568 2569 /* 2570 * Part (or even all) of the reservation could have been backed 2571 * by pre-allocated pages. Only free surplus pages. 2572 */ 2573 nr_pages = min(unused_resv_pages, h->surplus_huge_pages); 2574 2575 /* 2576 * We want to release as many surplus pages as possible, spread 2577 * evenly across all nodes with memory. Iterate across these nodes 2578 * until we can no longer free unreserved surplus pages. This occurs 2579 * when the nodes with surplus pages have no free pages. 2580 * remove_pool_hugetlb_folio() will balance the freed pages across the 2581 * on-line nodes with memory and will handle the hstate accounting. 2582 */ 2583 while (nr_pages--) { 2584 struct folio *folio; 2585 2586 folio = remove_pool_hugetlb_folio(h, &node_states[N_MEMORY], 1); 2587 if (!folio) 2588 goto out; 2589 2590 list_add(&folio->lru, &page_list); 2591 } 2592 2593 out: 2594 spin_unlock_irq(&hugetlb_lock); 2595 update_and_free_pages_bulk(h, &page_list); 2596 spin_lock_irq(&hugetlb_lock); 2597 } 2598 2599 2600 /* 2601 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation 2602 * are used by the huge page allocation routines to manage reservations. 2603 * 2604 * vma_needs_reservation is called to determine if the huge page at addr 2605 * within the vma has an associated reservation. If a reservation is 2606 * needed, the value 1 is returned. The caller is then responsible for 2607 * managing the global reservation and subpool usage counts. After 2608 * the huge page has been allocated, vma_commit_reservation is called 2609 * to add the page to the reservation map. If the page allocation fails, 2610 * the reservation must be ended instead of committed. vma_end_reservation 2611 * is called in such cases. 2612 * 2613 * In the normal case, vma_commit_reservation returns the same value 2614 * as the preceding vma_needs_reservation call. The only time this 2615 * is not the case is if a reserve map was changed between calls. It 2616 * is the responsibility of the caller to notice the difference and 2617 * take appropriate action. 2618 * 2619 * vma_add_reservation is used in error paths where a reservation must 2620 * be restored when a newly allocated huge page must be freed. It is 2621 * to be called after calling vma_needs_reservation to determine if a 2622 * reservation exists. 2623 * 2624 * vma_del_reservation is used in error paths where an entry in the reserve 2625 * map was created during huge page allocation and must be removed. It is to 2626 * be called after calling vma_needs_reservation to determine if a reservation 2627 * exists. 2628 */ 2629 enum vma_resv_mode { 2630 VMA_NEEDS_RESV, 2631 VMA_COMMIT_RESV, 2632 VMA_END_RESV, 2633 VMA_ADD_RESV, 2634 VMA_DEL_RESV, 2635 }; 2636 static long __vma_reservation_common(struct hstate *h, 2637 struct vm_area_struct *vma, unsigned long addr, 2638 enum vma_resv_mode mode) 2639 { 2640 struct resv_map *resv; 2641 pgoff_t idx; 2642 long ret; 2643 long dummy_out_regions_needed; 2644 2645 resv = vma_resv_map(vma); 2646 if (!resv) 2647 return 1; 2648 2649 idx = vma_hugecache_offset(h, vma, addr); 2650 switch (mode) { 2651 case VMA_NEEDS_RESV: 2652 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed); 2653 /* We assume that vma_reservation_* routines always operate on 2654 * 1 page, and that adding to resv map a 1 page entry can only 2655 * ever require 1 region. 2656 */ 2657 VM_BUG_ON(dummy_out_regions_needed != 1); 2658 break; 2659 case VMA_COMMIT_RESV: 2660 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2661 /* region_add calls of range 1 should never fail. */ 2662 VM_BUG_ON(ret < 0); 2663 break; 2664 case VMA_END_RESV: 2665 region_abort(resv, idx, idx + 1, 1); 2666 ret = 0; 2667 break; 2668 case VMA_ADD_RESV: 2669 if (vma->vm_flags & VM_MAYSHARE) { 2670 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2671 /* region_add calls of range 1 should never fail. */ 2672 VM_BUG_ON(ret < 0); 2673 } else { 2674 region_abort(resv, idx, idx + 1, 1); 2675 ret = region_del(resv, idx, idx + 1); 2676 } 2677 break; 2678 case VMA_DEL_RESV: 2679 if (vma->vm_flags & VM_MAYSHARE) { 2680 region_abort(resv, idx, idx + 1, 1); 2681 ret = region_del(resv, idx, idx + 1); 2682 } else { 2683 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2684 /* region_add calls of range 1 should never fail. */ 2685 VM_BUG_ON(ret < 0); 2686 } 2687 break; 2688 default: 2689 BUG(); 2690 } 2691 2692 if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV) 2693 return ret; 2694 /* 2695 * We know private mapping must have HPAGE_RESV_OWNER set. 2696 * 2697 * In most cases, reserves always exist for private mappings. 2698 * However, a file associated with mapping could have been 2699 * hole punched or truncated after reserves were consumed. 2700 * As subsequent fault on such a range will not use reserves. 2701 * Subtle - The reserve map for private mappings has the 2702 * opposite meaning than that of shared mappings. If NO 2703 * entry is in the reserve map, it means a reservation exists. 2704 * If an entry exists in the reserve map, it means the 2705 * reservation has already been consumed. As a result, the 2706 * return value of this routine is the opposite of the 2707 * value returned from reserve map manipulation routines above. 2708 */ 2709 if (ret > 0) 2710 return 0; 2711 if (ret == 0) 2712 return 1; 2713 return ret; 2714 } 2715 2716 static long vma_needs_reservation(struct hstate *h, 2717 struct vm_area_struct *vma, unsigned long addr) 2718 { 2719 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV); 2720 } 2721 2722 static long vma_commit_reservation(struct hstate *h, 2723 struct vm_area_struct *vma, unsigned long addr) 2724 { 2725 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV); 2726 } 2727 2728 static void vma_end_reservation(struct hstate *h, 2729 struct vm_area_struct *vma, unsigned long addr) 2730 { 2731 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV); 2732 } 2733 2734 static long vma_add_reservation(struct hstate *h, 2735 struct vm_area_struct *vma, unsigned long addr) 2736 { 2737 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV); 2738 } 2739 2740 static long vma_del_reservation(struct hstate *h, 2741 struct vm_area_struct *vma, unsigned long addr) 2742 { 2743 return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV); 2744 } 2745 2746 /* 2747 * This routine is called to restore reservation information on error paths. 2748 * It should ONLY be called for folios allocated via alloc_hugetlb_folio(), 2749 * and the hugetlb mutex should remain held when calling this routine. 2750 * 2751 * It handles two specific cases: 2752 * 1) A reservation was in place and the folio consumed the reservation. 2753 * hugetlb_restore_reserve is set in the folio. 2754 * 2) No reservation was in place for the page, so hugetlb_restore_reserve is 2755 * not set. However, alloc_hugetlb_folio always updates the reserve map. 2756 * 2757 * In case 1, free_huge_folio later in the error path will increment the 2758 * global reserve count. But, free_huge_folio does not have enough context 2759 * to adjust the reservation map. This case deals primarily with private 2760 * mappings. Adjust the reserve map here to be consistent with global 2761 * reserve count adjustments to be made by free_huge_folio. Make sure the 2762 * reserve map indicates there is a reservation present. 2763 * 2764 * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio. 2765 */ 2766 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma, 2767 unsigned long address, struct folio *folio) 2768 { 2769 long rc = vma_needs_reservation(h, vma, address); 2770 2771 if (folio_test_hugetlb_restore_reserve(folio)) { 2772 if (unlikely(rc < 0)) 2773 /* 2774 * Rare out of memory condition in reserve map 2775 * manipulation. Clear hugetlb_restore_reserve so 2776 * that global reserve count will not be incremented 2777 * by free_huge_folio. This will make it appear 2778 * as though the reservation for this folio was 2779 * consumed. This may prevent the task from 2780 * faulting in the folio at a later time. This 2781 * is better than inconsistent global huge page 2782 * accounting of reserve counts. 2783 */ 2784 folio_clear_hugetlb_restore_reserve(folio); 2785 else if (rc) 2786 (void)vma_add_reservation(h, vma, address); 2787 else 2788 vma_end_reservation(h, vma, address); 2789 } else { 2790 if (!rc) { 2791 /* 2792 * This indicates there is an entry in the reserve map 2793 * not added by alloc_hugetlb_folio. We know it was added 2794 * before the alloc_hugetlb_folio call, otherwise 2795 * hugetlb_restore_reserve would be set on the folio. 2796 * Remove the entry so that a subsequent allocation 2797 * does not consume a reservation. 2798 */ 2799 rc = vma_del_reservation(h, vma, address); 2800 if (rc < 0) 2801 /* 2802 * VERY rare out of memory condition. Since 2803 * we can not delete the entry, set 2804 * hugetlb_restore_reserve so that the reserve 2805 * count will be incremented when the folio 2806 * is freed. This reserve will be consumed 2807 * on a subsequent allocation. 2808 */ 2809 folio_set_hugetlb_restore_reserve(folio); 2810 } else if (rc < 0) { 2811 /* 2812 * Rare out of memory condition from 2813 * vma_needs_reservation call. Memory allocation is 2814 * only attempted if a new entry is needed. Therefore, 2815 * this implies there is not an entry in the 2816 * reserve map. 2817 * 2818 * For shared mappings, no entry in the map indicates 2819 * no reservation. We are done. 2820 */ 2821 if (!(vma->vm_flags & VM_MAYSHARE)) 2822 /* 2823 * For private mappings, no entry indicates 2824 * a reservation is present. Since we can 2825 * not add an entry, set hugetlb_restore_reserve 2826 * on the folio so reserve count will be 2827 * incremented when freed. This reserve will 2828 * be consumed on a subsequent allocation. 2829 */ 2830 folio_set_hugetlb_restore_reserve(folio); 2831 } else 2832 /* 2833 * No reservation present, do nothing 2834 */ 2835 vma_end_reservation(h, vma, address); 2836 } 2837 } 2838 2839 /* 2840 * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve 2841 * the old one 2842 * @h: struct hstate old page belongs to 2843 * @old_folio: Old folio to dissolve 2844 * @list: List to isolate the page in case we need to 2845 * Returns 0 on success, otherwise negated error. 2846 */ 2847 static int alloc_and_dissolve_hugetlb_folio(struct hstate *h, 2848 struct folio *old_folio, struct list_head *list) 2849 { 2850 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 2851 int nid = folio_nid(old_folio); 2852 struct folio *new_folio = NULL; 2853 int ret = 0; 2854 2855 retry: 2856 spin_lock_irq(&hugetlb_lock); 2857 if (!folio_test_hugetlb(old_folio)) { 2858 /* 2859 * Freed from under us. Drop new_folio too. 2860 */ 2861 goto free_new; 2862 } else if (folio_ref_count(old_folio)) { 2863 bool isolated; 2864 2865 /* 2866 * Someone has grabbed the folio, try to isolate it here. 2867 * Fail with -EBUSY if not possible. 2868 */ 2869 spin_unlock_irq(&hugetlb_lock); 2870 isolated = isolate_hugetlb(old_folio, list); 2871 ret = isolated ? 0 : -EBUSY; 2872 spin_lock_irq(&hugetlb_lock); 2873 goto free_new; 2874 } else if (!folio_test_hugetlb_freed(old_folio)) { 2875 /* 2876 * Folio's refcount is 0 but it has not been enqueued in the 2877 * freelist yet. Race window is small, so we can succeed here if 2878 * we retry. 2879 */ 2880 spin_unlock_irq(&hugetlb_lock); 2881 cond_resched(); 2882 goto retry; 2883 } else { 2884 if (!new_folio) { 2885 spin_unlock_irq(&hugetlb_lock); 2886 new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, 2887 NULL, NULL); 2888 if (!new_folio) 2889 return -ENOMEM; 2890 __prep_new_hugetlb_folio(h, new_folio); 2891 goto retry; 2892 } 2893 2894 /* 2895 * Ok, old_folio is still a genuine free hugepage. Remove it from 2896 * the freelist and decrease the counters. These will be 2897 * incremented again when calling __prep_account_new_huge_page() 2898 * and enqueue_hugetlb_folio() for new_folio. The counters will 2899 * remain stable since this happens under the lock. 2900 */ 2901 remove_hugetlb_folio(h, old_folio, false); 2902 2903 /* 2904 * Ref count on new_folio is already zero as it was dropped 2905 * earlier. It can be directly added to the pool free list. 2906 */ 2907 __prep_account_new_huge_page(h, nid); 2908 enqueue_hugetlb_folio(h, new_folio); 2909 2910 /* 2911 * Folio has been replaced, we can safely free the old one. 2912 */ 2913 spin_unlock_irq(&hugetlb_lock); 2914 update_and_free_hugetlb_folio(h, old_folio, false); 2915 } 2916 2917 return ret; 2918 2919 free_new: 2920 spin_unlock_irq(&hugetlb_lock); 2921 if (new_folio) 2922 update_and_free_hugetlb_folio(h, new_folio, false); 2923 2924 return ret; 2925 } 2926 2927 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list) 2928 { 2929 struct hstate *h; 2930 struct folio *folio = page_folio(page); 2931 int ret = -EBUSY; 2932 2933 /* 2934 * The page might have been dissolved from under our feet, so make sure 2935 * to carefully check the state under the lock. 2936 * Return success when racing as if we dissolved the page ourselves. 2937 */ 2938 spin_lock_irq(&hugetlb_lock); 2939 if (folio_test_hugetlb(folio)) { 2940 h = folio_hstate(folio); 2941 } else { 2942 spin_unlock_irq(&hugetlb_lock); 2943 return 0; 2944 } 2945 spin_unlock_irq(&hugetlb_lock); 2946 2947 /* 2948 * Fence off gigantic pages as there is a cyclic dependency between 2949 * alloc_contig_range and them. Return -ENOMEM as this has the effect 2950 * of bailing out right away without further retrying. 2951 */ 2952 if (hstate_is_gigantic(h)) 2953 return -ENOMEM; 2954 2955 if (folio_ref_count(folio) && isolate_hugetlb(folio, list)) 2956 ret = 0; 2957 else if (!folio_ref_count(folio)) 2958 ret = alloc_and_dissolve_hugetlb_folio(h, folio, list); 2959 2960 return ret; 2961 } 2962 2963 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma, 2964 unsigned long addr, int avoid_reserve) 2965 { 2966 struct hugepage_subpool *spool = subpool_vma(vma); 2967 struct hstate *h = hstate_vma(vma); 2968 struct folio *folio; 2969 long map_chg, map_commit, nr_pages = pages_per_huge_page(h); 2970 long gbl_chg; 2971 int memcg_charge_ret, ret, idx; 2972 struct hugetlb_cgroup *h_cg = NULL; 2973 struct mem_cgroup *memcg; 2974 bool deferred_reserve; 2975 gfp_t gfp = htlb_alloc_mask(h) | __GFP_RETRY_MAYFAIL; 2976 2977 memcg = get_mem_cgroup_from_current(); 2978 memcg_charge_ret = mem_cgroup_hugetlb_try_charge(memcg, gfp, nr_pages); 2979 if (memcg_charge_ret == -ENOMEM) { 2980 mem_cgroup_put(memcg); 2981 return ERR_PTR(-ENOMEM); 2982 } 2983 2984 idx = hstate_index(h); 2985 /* 2986 * Examine the region/reserve map to determine if the process 2987 * has a reservation for the page to be allocated. A return 2988 * code of zero indicates a reservation exists (no change). 2989 */ 2990 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr); 2991 if (map_chg < 0) { 2992 if (!memcg_charge_ret) 2993 mem_cgroup_cancel_charge(memcg, nr_pages); 2994 mem_cgroup_put(memcg); 2995 return ERR_PTR(-ENOMEM); 2996 } 2997 2998 /* 2999 * Processes that did not create the mapping will have no 3000 * reserves as indicated by the region/reserve map. Check 3001 * that the allocation will not exceed the subpool limit. 3002 * Allocations for MAP_NORESERVE mappings also need to be 3003 * checked against any subpool limit. 3004 */ 3005 if (map_chg || avoid_reserve) { 3006 gbl_chg = hugepage_subpool_get_pages(spool, 1); 3007 if (gbl_chg < 0) 3008 goto out_end_reservation; 3009 3010 /* 3011 * Even though there was no reservation in the region/reserve 3012 * map, there could be reservations associated with the 3013 * subpool that can be used. This would be indicated if the 3014 * return value of hugepage_subpool_get_pages() is zero. 3015 * However, if avoid_reserve is specified we still avoid even 3016 * the subpool reservations. 3017 */ 3018 if (avoid_reserve) 3019 gbl_chg = 1; 3020 } 3021 3022 /* If this allocation is not consuming a reservation, charge it now. 3023 */ 3024 deferred_reserve = map_chg || avoid_reserve; 3025 if (deferred_reserve) { 3026 ret = hugetlb_cgroup_charge_cgroup_rsvd( 3027 idx, pages_per_huge_page(h), &h_cg); 3028 if (ret) 3029 goto out_subpool_put; 3030 } 3031 3032 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg); 3033 if (ret) 3034 goto out_uncharge_cgroup_reservation; 3035 3036 spin_lock_irq(&hugetlb_lock); 3037 /* 3038 * glb_chg is passed to indicate whether or not a page must be taken 3039 * from the global free pool (global change). gbl_chg == 0 indicates 3040 * a reservation exists for the allocation. 3041 */ 3042 folio = dequeue_hugetlb_folio_vma(h, vma, addr, avoid_reserve, gbl_chg); 3043 if (!folio) { 3044 spin_unlock_irq(&hugetlb_lock); 3045 folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr); 3046 if (!folio) 3047 goto out_uncharge_cgroup; 3048 spin_lock_irq(&hugetlb_lock); 3049 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) { 3050 folio_set_hugetlb_restore_reserve(folio); 3051 h->resv_huge_pages--; 3052 } 3053 list_add(&folio->lru, &h->hugepage_activelist); 3054 folio_ref_unfreeze(folio, 1); 3055 /* Fall through */ 3056 } 3057 3058 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio); 3059 /* If allocation is not consuming a reservation, also store the 3060 * hugetlb_cgroup pointer on the page. 3061 */ 3062 if (deferred_reserve) { 3063 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h), 3064 h_cg, folio); 3065 } 3066 3067 spin_unlock_irq(&hugetlb_lock); 3068 3069 hugetlb_set_folio_subpool(folio, spool); 3070 3071 map_commit = vma_commit_reservation(h, vma, addr); 3072 if (unlikely(map_chg > map_commit)) { 3073 /* 3074 * The page was added to the reservation map between 3075 * vma_needs_reservation and vma_commit_reservation. 3076 * This indicates a race with hugetlb_reserve_pages. 3077 * Adjust for the subpool count incremented above AND 3078 * in hugetlb_reserve_pages for the same page. Also, 3079 * the reservation count added in hugetlb_reserve_pages 3080 * no longer applies. 3081 */ 3082 long rsv_adjust; 3083 3084 rsv_adjust = hugepage_subpool_put_pages(spool, 1); 3085 hugetlb_acct_memory(h, -rsv_adjust); 3086 if (deferred_reserve) { 3087 spin_lock_irq(&hugetlb_lock); 3088 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h), 3089 pages_per_huge_page(h), folio); 3090 spin_unlock_irq(&hugetlb_lock); 3091 } 3092 } 3093 3094 if (!memcg_charge_ret) 3095 mem_cgroup_commit_charge(folio, memcg); 3096 mem_cgroup_put(memcg); 3097 3098 return folio; 3099 3100 out_uncharge_cgroup: 3101 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg); 3102 out_uncharge_cgroup_reservation: 3103 if (deferred_reserve) 3104 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h), 3105 h_cg); 3106 out_subpool_put: 3107 if (map_chg || avoid_reserve) 3108 hugepage_subpool_put_pages(spool, 1); 3109 out_end_reservation: 3110 vma_end_reservation(h, vma, addr); 3111 if (!memcg_charge_ret) 3112 mem_cgroup_cancel_charge(memcg, nr_pages); 3113 mem_cgroup_put(memcg); 3114 return ERR_PTR(-ENOSPC); 3115 } 3116 3117 int alloc_bootmem_huge_page(struct hstate *h, int nid) 3118 __attribute__ ((weak, alias("__alloc_bootmem_huge_page"))); 3119 int __alloc_bootmem_huge_page(struct hstate *h, int nid) 3120 { 3121 struct huge_bootmem_page *m = NULL; /* initialize for clang */ 3122 int nr_nodes, node = nid; 3123 3124 /* do node specific alloc */ 3125 if (nid != NUMA_NO_NODE) { 3126 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h), 3127 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid); 3128 if (!m) 3129 return 0; 3130 goto found; 3131 } 3132 /* allocate from next node when distributing huge pages */ 3133 for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, &node_states[N_MEMORY]) { 3134 m = memblock_alloc_try_nid_raw( 3135 huge_page_size(h), huge_page_size(h), 3136 0, MEMBLOCK_ALLOC_ACCESSIBLE, node); 3137 /* 3138 * Use the beginning of the huge page to store the 3139 * huge_bootmem_page struct (until gather_bootmem 3140 * puts them into the mem_map). 3141 */ 3142 if (!m) 3143 return 0; 3144 goto found; 3145 } 3146 3147 found: 3148 3149 /* 3150 * Only initialize the head struct page in memmap_init_reserved_pages, 3151 * rest of the struct pages will be initialized by the HugeTLB 3152 * subsystem itself. 3153 * The head struct page is used to get folio information by the HugeTLB 3154 * subsystem like zone id and node id. 3155 */ 3156 memblock_reserved_mark_noinit(virt_to_phys((void *)m + PAGE_SIZE), 3157 huge_page_size(h) - PAGE_SIZE); 3158 /* Put them into a private list first because mem_map is not up yet */ 3159 INIT_LIST_HEAD(&m->list); 3160 list_add(&m->list, &huge_boot_pages[node]); 3161 m->hstate = h; 3162 return 1; 3163 } 3164 3165 /* Initialize [start_page:end_page_number] tail struct pages of a hugepage */ 3166 static void __init hugetlb_folio_init_tail_vmemmap(struct folio *folio, 3167 unsigned long start_page_number, 3168 unsigned long end_page_number) 3169 { 3170 enum zone_type zone = zone_idx(folio_zone(folio)); 3171 int nid = folio_nid(folio); 3172 unsigned long head_pfn = folio_pfn(folio); 3173 unsigned long pfn, end_pfn = head_pfn + end_page_number; 3174 int ret; 3175 3176 for (pfn = head_pfn + start_page_number; pfn < end_pfn; pfn++) { 3177 struct page *page = pfn_to_page(pfn); 3178 3179 __ClearPageReserved(folio_page(folio, pfn - head_pfn)); 3180 __init_single_page(page, pfn, zone, nid); 3181 prep_compound_tail((struct page *)folio, pfn - head_pfn); 3182 ret = page_ref_freeze(page, 1); 3183 VM_BUG_ON(!ret); 3184 } 3185 } 3186 3187 static void __init hugetlb_folio_init_vmemmap(struct folio *folio, 3188 struct hstate *h, 3189 unsigned long nr_pages) 3190 { 3191 int ret; 3192 3193 /* Prepare folio head */ 3194 __folio_clear_reserved(folio); 3195 __folio_set_head(folio); 3196 ret = folio_ref_freeze(folio, 1); 3197 VM_BUG_ON(!ret); 3198 /* Initialize the necessary tail struct pages */ 3199 hugetlb_folio_init_tail_vmemmap(folio, 1, nr_pages); 3200 prep_compound_head((struct page *)folio, huge_page_order(h)); 3201 } 3202 3203 static void __init prep_and_add_bootmem_folios(struct hstate *h, 3204 struct list_head *folio_list) 3205 { 3206 unsigned long flags; 3207 struct folio *folio, *tmp_f; 3208 3209 /* Send list for bulk vmemmap optimization processing */ 3210 hugetlb_vmemmap_optimize_folios(h, folio_list); 3211 3212 list_for_each_entry_safe(folio, tmp_f, folio_list, lru) { 3213 if (!folio_test_hugetlb_vmemmap_optimized(folio)) { 3214 /* 3215 * If HVO fails, initialize all tail struct pages 3216 * We do not worry about potential long lock hold 3217 * time as this is early in boot and there should 3218 * be no contention. 3219 */ 3220 hugetlb_folio_init_tail_vmemmap(folio, 3221 HUGETLB_VMEMMAP_RESERVE_PAGES, 3222 pages_per_huge_page(h)); 3223 } 3224 /* Subdivide locks to achieve better parallel performance */ 3225 spin_lock_irqsave(&hugetlb_lock, flags); 3226 __prep_account_new_huge_page(h, folio_nid(folio)); 3227 enqueue_hugetlb_folio(h, folio); 3228 spin_unlock_irqrestore(&hugetlb_lock, flags); 3229 } 3230 } 3231 3232 /* 3233 * Put bootmem huge pages into the standard lists after mem_map is up. 3234 * Note: This only applies to gigantic (order > MAX_PAGE_ORDER) pages. 3235 */ 3236 static void __init gather_bootmem_prealloc_node(unsigned long nid) 3237 { 3238 LIST_HEAD(folio_list); 3239 struct huge_bootmem_page *m; 3240 struct hstate *h = NULL, *prev_h = NULL; 3241 3242 list_for_each_entry(m, &huge_boot_pages[nid], list) { 3243 struct page *page = virt_to_page(m); 3244 struct folio *folio = (void *)page; 3245 3246 h = m->hstate; 3247 /* 3248 * It is possible to have multiple huge page sizes (hstates) 3249 * in this list. If so, process each size separately. 3250 */ 3251 if (h != prev_h && prev_h != NULL) 3252 prep_and_add_bootmem_folios(prev_h, &folio_list); 3253 prev_h = h; 3254 3255 VM_BUG_ON(!hstate_is_gigantic(h)); 3256 WARN_ON(folio_ref_count(folio) != 1); 3257 3258 hugetlb_folio_init_vmemmap(folio, h, 3259 HUGETLB_VMEMMAP_RESERVE_PAGES); 3260 init_new_hugetlb_folio(h, folio); 3261 list_add(&folio->lru, &folio_list); 3262 3263 /* 3264 * We need to restore the 'stolen' pages to totalram_pages 3265 * in order to fix confusing memory reports from free(1) and 3266 * other side-effects, like CommitLimit going negative. 3267 */ 3268 adjust_managed_page_count(page, pages_per_huge_page(h)); 3269 cond_resched(); 3270 } 3271 3272 prep_and_add_bootmem_folios(h, &folio_list); 3273 } 3274 3275 static void __init gather_bootmem_prealloc_parallel(unsigned long start, 3276 unsigned long end, void *arg) 3277 { 3278 int nid; 3279 3280 for (nid = start; nid < end; nid++) 3281 gather_bootmem_prealloc_node(nid); 3282 } 3283 3284 static void __init gather_bootmem_prealloc(void) 3285 { 3286 struct padata_mt_job job = { 3287 .thread_fn = gather_bootmem_prealloc_parallel, 3288 .fn_arg = NULL, 3289 .start = 0, 3290 .size = num_node_state(N_MEMORY), 3291 .align = 1, 3292 .min_chunk = 1, 3293 .max_threads = num_node_state(N_MEMORY), 3294 .numa_aware = true, 3295 }; 3296 3297 padata_do_multithreaded(&job); 3298 } 3299 3300 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid) 3301 { 3302 unsigned long i; 3303 char buf[32]; 3304 3305 for (i = 0; i < h->max_huge_pages_node[nid]; ++i) { 3306 if (hstate_is_gigantic(h)) { 3307 if (!alloc_bootmem_huge_page(h, nid)) 3308 break; 3309 } else { 3310 struct folio *folio; 3311 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 3312 3313 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, 3314 &node_states[N_MEMORY]); 3315 if (!folio) 3316 break; 3317 free_huge_folio(folio); /* free it into the hugepage allocator */ 3318 } 3319 cond_resched(); 3320 } 3321 if (i == h->max_huge_pages_node[nid]) 3322 return; 3323 3324 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3325 pr_warn("HugeTLB: allocating %u of page size %s failed node%d. Only allocated %lu hugepages.\n", 3326 h->max_huge_pages_node[nid], buf, nid, i); 3327 h->max_huge_pages -= (h->max_huge_pages_node[nid] - i); 3328 h->max_huge_pages_node[nid] = i; 3329 } 3330 3331 static bool __init hugetlb_hstate_alloc_pages_specific_nodes(struct hstate *h) 3332 { 3333 int i; 3334 bool node_specific_alloc = false; 3335 3336 for_each_online_node(i) { 3337 if (h->max_huge_pages_node[i] > 0) { 3338 hugetlb_hstate_alloc_pages_onenode(h, i); 3339 node_specific_alloc = true; 3340 } 3341 } 3342 3343 return node_specific_alloc; 3344 } 3345 3346 static void __init hugetlb_hstate_alloc_pages_errcheck(unsigned long allocated, struct hstate *h) 3347 { 3348 if (allocated < h->max_huge_pages) { 3349 char buf[32]; 3350 3351 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3352 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n", 3353 h->max_huge_pages, buf, allocated); 3354 h->max_huge_pages = allocated; 3355 } 3356 } 3357 3358 static void __init hugetlb_pages_alloc_boot_node(unsigned long start, unsigned long end, void *arg) 3359 { 3360 struct hstate *h = (struct hstate *)arg; 3361 int i, num = end - start; 3362 nodemask_t node_alloc_noretry; 3363 LIST_HEAD(folio_list); 3364 int next_node = first_online_node; 3365 3366 /* Bit mask controlling how hard we retry per-node allocations.*/ 3367 nodes_clear(node_alloc_noretry); 3368 3369 for (i = 0; i < num; ++i) { 3370 struct folio *folio = alloc_pool_huge_folio(h, &node_states[N_MEMORY], 3371 &node_alloc_noretry, &next_node); 3372 if (!folio) 3373 break; 3374 3375 list_move(&folio->lru, &folio_list); 3376 cond_resched(); 3377 } 3378 3379 prep_and_add_allocated_folios(h, &folio_list); 3380 } 3381 3382 static unsigned long __init hugetlb_gigantic_pages_alloc_boot(struct hstate *h) 3383 { 3384 unsigned long i; 3385 3386 for (i = 0; i < h->max_huge_pages; ++i) { 3387 if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE)) 3388 break; 3389 cond_resched(); 3390 } 3391 3392 return i; 3393 } 3394 3395 static unsigned long __init hugetlb_pages_alloc_boot(struct hstate *h) 3396 { 3397 struct padata_mt_job job = { 3398 .fn_arg = h, 3399 .align = 1, 3400 .numa_aware = true 3401 }; 3402 3403 job.thread_fn = hugetlb_pages_alloc_boot_node; 3404 job.start = 0; 3405 job.size = h->max_huge_pages; 3406 3407 /* 3408 * job.max_threads is twice the num_node_state(N_MEMORY), 3409 * 3410 * Tests below indicate that a multiplier of 2 significantly improves 3411 * performance, and although larger values also provide improvements, 3412 * the gains are marginal. 3413 * 3414 * Therefore, choosing 2 as the multiplier strikes a good balance between 3415 * enhancing parallel processing capabilities and maintaining efficient 3416 * resource management. 3417 * 3418 * +------------+-------+-------+-------+-------+-------+ 3419 * | multiplier | 1 | 2 | 3 | 4 | 5 | 3420 * +------------+-------+-------+-------+-------+-------+ 3421 * | 256G 2node | 358ms | 215ms | 157ms | 134ms | 126ms | 3422 * | 2T 4node | 979ms | 679ms | 543ms | 489ms | 481ms | 3423 * | 50G 2node | 71ms | 44ms | 37ms | 30ms | 31ms | 3424 * +------------+-------+-------+-------+-------+-------+ 3425 */ 3426 job.max_threads = num_node_state(N_MEMORY) * 2; 3427 job.min_chunk = h->max_huge_pages / num_node_state(N_MEMORY) / 2; 3428 padata_do_multithreaded(&job); 3429 3430 return h->nr_huge_pages; 3431 } 3432 3433 /* 3434 * NOTE: this routine is called in different contexts for gigantic and 3435 * non-gigantic pages. 3436 * - For gigantic pages, this is called early in the boot process and 3437 * pages are allocated from memblock allocated or something similar. 3438 * Gigantic pages are actually added to pools later with the routine 3439 * gather_bootmem_prealloc. 3440 * - For non-gigantic pages, this is called later in the boot process after 3441 * all of mm is up and functional. Pages are allocated from buddy and 3442 * then added to hugetlb pools. 3443 */ 3444 static void __init hugetlb_hstate_alloc_pages(struct hstate *h) 3445 { 3446 unsigned long allocated; 3447 static bool initialized __initdata; 3448 3449 /* skip gigantic hugepages allocation if hugetlb_cma enabled */ 3450 if (hstate_is_gigantic(h) && hugetlb_cma_size) { 3451 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n"); 3452 return; 3453 } 3454 3455 /* hugetlb_hstate_alloc_pages will be called many times, initialize huge_boot_pages once */ 3456 if (!initialized) { 3457 int i = 0; 3458 3459 for (i = 0; i < MAX_NUMNODES; i++) 3460 INIT_LIST_HEAD(&huge_boot_pages[i]); 3461 initialized = true; 3462 } 3463 3464 /* do node specific alloc */ 3465 if (hugetlb_hstate_alloc_pages_specific_nodes(h)) 3466 return; 3467 3468 /* below will do all node balanced alloc */ 3469 if (hstate_is_gigantic(h)) 3470 allocated = hugetlb_gigantic_pages_alloc_boot(h); 3471 else 3472 allocated = hugetlb_pages_alloc_boot(h); 3473 3474 hugetlb_hstate_alloc_pages_errcheck(allocated, h); 3475 } 3476 3477 static void __init hugetlb_init_hstates(void) 3478 { 3479 struct hstate *h, *h2; 3480 3481 for_each_hstate(h) { 3482 /* oversize hugepages were init'ed in early boot */ 3483 if (!hstate_is_gigantic(h)) 3484 hugetlb_hstate_alloc_pages(h); 3485 3486 /* 3487 * Set demote order for each hstate. Note that 3488 * h->demote_order is initially 0. 3489 * - We can not demote gigantic pages if runtime freeing 3490 * is not supported, so skip this. 3491 * - If CMA allocation is possible, we can not demote 3492 * HUGETLB_PAGE_ORDER or smaller size pages. 3493 */ 3494 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 3495 continue; 3496 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER) 3497 continue; 3498 for_each_hstate(h2) { 3499 if (h2 == h) 3500 continue; 3501 if (h2->order < h->order && 3502 h2->order > h->demote_order) 3503 h->demote_order = h2->order; 3504 } 3505 } 3506 } 3507 3508 static void __init report_hugepages(void) 3509 { 3510 struct hstate *h; 3511 3512 for_each_hstate(h) { 3513 char buf[32]; 3514 3515 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3516 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n", 3517 buf, h->free_huge_pages); 3518 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n", 3519 hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf); 3520 } 3521 } 3522 3523 #ifdef CONFIG_HIGHMEM 3524 static void try_to_free_low(struct hstate *h, unsigned long count, 3525 nodemask_t *nodes_allowed) 3526 { 3527 int i; 3528 LIST_HEAD(page_list); 3529 3530 lockdep_assert_held(&hugetlb_lock); 3531 if (hstate_is_gigantic(h)) 3532 return; 3533 3534 /* 3535 * Collect pages to be freed on a list, and free after dropping lock 3536 */ 3537 for_each_node_mask(i, *nodes_allowed) { 3538 struct folio *folio, *next; 3539 struct list_head *freel = &h->hugepage_freelists[i]; 3540 list_for_each_entry_safe(folio, next, freel, lru) { 3541 if (count >= h->nr_huge_pages) 3542 goto out; 3543 if (folio_test_highmem(folio)) 3544 continue; 3545 remove_hugetlb_folio(h, folio, false); 3546 list_add(&folio->lru, &page_list); 3547 } 3548 } 3549 3550 out: 3551 spin_unlock_irq(&hugetlb_lock); 3552 update_and_free_pages_bulk(h, &page_list); 3553 spin_lock_irq(&hugetlb_lock); 3554 } 3555 #else 3556 static inline void try_to_free_low(struct hstate *h, unsigned long count, 3557 nodemask_t *nodes_allowed) 3558 { 3559 } 3560 #endif 3561 3562 /* 3563 * Increment or decrement surplus_huge_pages. Keep node-specific counters 3564 * balanced by operating on them in a round-robin fashion. 3565 * Returns 1 if an adjustment was made. 3566 */ 3567 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed, 3568 int delta) 3569 { 3570 int nr_nodes, node; 3571 3572 lockdep_assert_held(&hugetlb_lock); 3573 VM_BUG_ON(delta != -1 && delta != 1); 3574 3575 if (delta < 0) { 3576 for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, nodes_allowed) { 3577 if (h->surplus_huge_pages_node[node]) 3578 goto found; 3579 } 3580 } else { 3581 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 3582 if (h->surplus_huge_pages_node[node] < 3583 h->nr_huge_pages_node[node]) 3584 goto found; 3585 } 3586 } 3587 return 0; 3588 3589 found: 3590 h->surplus_huge_pages += delta; 3591 h->surplus_huge_pages_node[node] += delta; 3592 return 1; 3593 } 3594 3595 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) 3596 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid, 3597 nodemask_t *nodes_allowed) 3598 { 3599 unsigned long min_count; 3600 unsigned long allocated; 3601 struct folio *folio; 3602 LIST_HEAD(page_list); 3603 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL); 3604 3605 /* 3606 * Bit mask controlling how hard we retry per-node allocations. 3607 * If we can not allocate the bit mask, do not attempt to allocate 3608 * the requested huge pages. 3609 */ 3610 if (node_alloc_noretry) 3611 nodes_clear(*node_alloc_noretry); 3612 else 3613 return -ENOMEM; 3614 3615 /* 3616 * resize_lock mutex prevents concurrent adjustments to number of 3617 * pages in hstate via the proc/sysfs interfaces. 3618 */ 3619 mutex_lock(&h->resize_lock); 3620 flush_free_hpage_work(h); 3621 spin_lock_irq(&hugetlb_lock); 3622 3623 /* 3624 * Check for a node specific request. 3625 * Changing node specific huge page count may require a corresponding 3626 * change to the global count. In any case, the passed node mask 3627 * (nodes_allowed) will restrict alloc/free to the specified node. 3628 */ 3629 if (nid != NUMA_NO_NODE) { 3630 unsigned long old_count = count; 3631 3632 count += persistent_huge_pages(h) - 3633 (h->nr_huge_pages_node[nid] - 3634 h->surplus_huge_pages_node[nid]); 3635 /* 3636 * User may have specified a large count value which caused the 3637 * above calculation to overflow. In this case, they wanted 3638 * to allocate as many huge pages as possible. Set count to 3639 * largest possible value to align with their intention. 3640 */ 3641 if (count < old_count) 3642 count = ULONG_MAX; 3643 } 3644 3645 /* 3646 * Gigantic pages runtime allocation depend on the capability for large 3647 * page range allocation. 3648 * If the system does not provide this feature, return an error when 3649 * the user tries to allocate gigantic pages but let the user free the 3650 * boottime allocated gigantic pages. 3651 */ 3652 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) { 3653 if (count > persistent_huge_pages(h)) { 3654 spin_unlock_irq(&hugetlb_lock); 3655 mutex_unlock(&h->resize_lock); 3656 NODEMASK_FREE(node_alloc_noretry); 3657 return -EINVAL; 3658 } 3659 /* Fall through to decrease pool */ 3660 } 3661 3662 /* 3663 * Increase the pool size 3664 * First take pages out of surplus state. Then make up the 3665 * remaining difference by allocating fresh huge pages. 3666 * 3667 * We might race with alloc_surplus_hugetlb_folio() here and be unable 3668 * to convert a surplus huge page to a normal huge page. That is 3669 * not critical, though, it just means the overall size of the 3670 * pool might be one hugepage larger than it needs to be, but 3671 * within all the constraints specified by the sysctls. 3672 */ 3673 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { 3674 if (!adjust_pool_surplus(h, nodes_allowed, -1)) 3675 break; 3676 } 3677 3678 allocated = 0; 3679 while (count > (persistent_huge_pages(h) + allocated)) { 3680 /* 3681 * If this allocation races such that we no longer need the 3682 * page, free_huge_folio will handle it by freeing the page 3683 * and reducing the surplus. 3684 */ 3685 spin_unlock_irq(&hugetlb_lock); 3686 3687 /* yield cpu to avoid soft lockup */ 3688 cond_resched(); 3689 3690 folio = alloc_pool_huge_folio(h, nodes_allowed, 3691 node_alloc_noretry, 3692 &h->next_nid_to_alloc); 3693 if (!folio) { 3694 prep_and_add_allocated_folios(h, &page_list); 3695 spin_lock_irq(&hugetlb_lock); 3696 goto out; 3697 } 3698 3699 list_add(&folio->lru, &page_list); 3700 allocated++; 3701 3702 /* Bail for signals. Probably ctrl-c from user */ 3703 if (signal_pending(current)) { 3704 prep_and_add_allocated_folios(h, &page_list); 3705 spin_lock_irq(&hugetlb_lock); 3706 goto out; 3707 } 3708 3709 spin_lock_irq(&hugetlb_lock); 3710 } 3711 3712 /* Add allocated pages to the pool */ 3713 if (!list_empty(&page_list)) { 3714 spin_unlock_irq(&hugetlb_lock); 3715 prep_and_add_allocated_folios(h, &page_list); 3716 spin_lock_irq(&hugetlb_lock); 3717 } 3718 3719 /* 3720 * Decrease the pool size 3721 * First return free pages to the buddy allocator (being careful 3722 * to keep enough around to satisfy reservations). Then place 3723 * pages into surplus state as needed so the pool will shrink 3724 * to the desired size as pages become free. 3725 * 3726 * By placing pages into the surplus state independent of the 3727 * overcommit value, we are allowing the surplus pool size to 3728 * exceed overcommit. There are few sane options here. Since 3729 * alloc_surplus_hugetlb_folio() is checking the global counter, 3730 * though, we'll note that we're not allowed to exceed surplus 3731 * and won't grow the pool anywhere else. Not until one of the 3732 * sysctls are changed, or the surplus pages go out of use. 3733 */ 3734 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages; 3735 min_count = max(count, min_count); 3736 try_to_free_low(h, min_count, nodes_allowed); 3737 3738 /* 3739 * Collect pages to be removed on list without dropping lock 3740 */ 3741 while (min_count < persistent_huge_pages(h)) { 3742 folio = remove_pool_hugetlb_folio(h, nodes_allowed, 0); 3743 if (!folio) 3744 break; 3745 3746 list_add(&folio->lru, &page_list); 3747 } 3748 /* free the pages after dropping lock */ 3749 spin_unlock_irq(&hugetlb_lock); 3750 update_and_free_pages_bulk(h, &page_list); 3751 flush_free_hpage_work(h); 3752 spin_lock_irq(&hugetlb_lock); 3753 3754 while (count < persistent_huge_pages(h)) { 3755 if (!adjust_pool_surplus(h, nodes_allowed, 1)) 3756 break; 3757 } 3758 out: 3759 h->max_huge_pages = persistent_huge_pages(h); 3760 spin_unlock_irq(&hugetlb_lock); 3761 mutex_unlock(&h->resize_lock); 3762 3763 NODEMASK_FREE(node_alloc_noretry); 3764 3765 return 0; 3766 } 3767 3768 static long demote_free_hugetlb_folios(struct hstate *src, struct hstate *dst, 3769 struct list_head *src_list) 3770 { 3771 long rc; 3772 struct folio *folio, *next; 3773 LIST_HEAD(dst_list); 3774 LIST_HEAD(ret_list); 3775 3776 rc = hugetlb_vmemmap_restore_folios(src, src_list, &ret_list); 3777 list_splice_init(&ret_list, src_list); 3778 3779 /* 3780 * Taking target hstate mutex synchronizes with set_max_huge_pages. 3781 * Without the mutex, pages added to target hstate could be marked 3782 * as surplus. 3783 * 3784 * Note that we already hold src->resize_lock. To prevent deadlock, 3785 * use the convention of always taking larger size hstate mutex first. 3786 */ 3787 mutex_lock(&dst->resize_lock); 3788 3789 list_for_each_entry_safe(folio, next, src_list, lru) { 3790 int i; 3791 3792 if (folio_test_hugetlb_vmemmap_optimized(folio)) 3793 continue; 3794 3795 list_del(&folio->lru); 3796 3797 split_page_owner(&folio->page, huge_page_order(src), huge_page_order(dst)); 3798 pgalloc_tag_split(folio, huge_page_order(src), huge_page_order(dst)); 3799 3800 for (i = 0; i < pages_per_huge_page(src); i += pages_per_huge_page(dst)) { 3801 struct page *page = folio_page(folio, i); 3802 3803 page->mapping = NULL; 3804 clear_compound_head(page); 3805 prep_compound_page(page, dst->order); 3806 3807 init_new_hugetlb_folio(dst, page_folio(page)); 3808 list_add(&page->lru, &dst_list); 3809 } 3810 } 3811 3812 prep_and_add_allocated_folios(dst, &dst_list); 3813 3814 mutex_unlock(&dst->resize_lock); 3815 3816 return rc; 3817 } 3818 3819 static long demote_pool_huge_page(struct hstate *src, nodemask_t *nodes_allowed, 3820 unsigned long nr_to_demote) 3821 __must_hold(&hugetlb_lock) 3822 { 3823 int nr_nodes, node; 3824 struct hstate *dst; 3825 long rc = 0; 3826 long nr_demoted = 0; 3827 3828 lockdep_assert_held(&hugetlb_lock); 3829 3830 /* We should never get here if no demote order */ 3831 if (!src->demote_order) { 3832 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n"); 3833 return -EINVAL; /* internal error */ 3834 } 3835 dst = size_to_hstate(PAGE_SIZE << src->demote_order); 3836 3837 for_each_node_mask_to_free(src, nr_nodes, node, nodes_allowed) { 3838 LIST_HEAD(list); 3839 struct folio *folio, *next; 3840 3841 list_for_each_entry_safe(folio, next, &src->hugepage_freelists[node], lru) { 3842 if (folio_test_hwpoison(folio)) 3843 continue; 3844 3845 remove_hugetlb_folio(src, folio, false); 3846 list_add(&folio->lru, &list); 3847 3848 if (++nr_demoted == nr_to_demote) 3849 break; 3850 } 3851 3852 spin_unlock_irq(&hugetlb_lock); 3853 3854 rc = demote_free_hugetlb_folios(src, dst, &list); 3855 3856 spin_lock_irq(&hugetlb_lock); 3857 3858 list_for_each_entry_safe(folio, next, &list, lru) { 3859 list_del(&folio->lru); 3860 add_hugetlb_folio(src, folio, false); 3861 3862 nr_demoted--; 3863 } 3864 3865 if (rc < 0 || nr_demoted == nr_to_demote) 3866 break; 3867 } 3868 3869 /* 3870 * Not absolutely necessary, but for consistency update max_huge_pages 3871 * based on pool changes for the demoted page. 3872 */ 3873 src->max_huge_pages -= nr_demoted; 3874 dst->max_huge_pages += nr_demoted << (huge_page_order(src) - huge_page_order(dst)); 3875 3876 if (rc < 0) 3877 return rc; 3878 3879 if (nr_demoted) 3880 return nr_demoted; 3881 /* 3882 * Only way to get here is if all pages on free lists are poisoned. 3883 * Return -EBUSY so that caller will not retry. 3884 */ 3885 return -EBUSY; 3886 } 3887 3888 #define HSTATE_ATTR_RO(_name) \ 3889 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 3890 3891 #define HSTATE_ATTR_WO(_name) \ 3892 static struct kobj_attribute _name##_attr = __ATTR_WO(_name) 3893 3894 #define HSTATE_ATTR(_name) \ 3895 static struct kobj_attribute _name##_attr = __ATTR_RW(_name) 3896 3897 static struct kobject *hugepages_kobj; 3898 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 3899 3900 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp); 3901 3902 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp) 3903 { 3904 int i; 3905 3906 for (i = 0; i < HUGE_MAX_HSTATE; i++) 3907 if (hstate_kobjs[i] == kobj) { 3908 if (nidp) 3909 *nidp = NUMA_NO_NODE; 3910 return &hstates[i]; 3911 } 3912 3913 return kobj_to_node_hstate(kobj, nidp); 3914 } 3915 3916 static ssize_t nr_hugepages_show_common(struct kobject *kobj, 3917 struct kobj_attribute *attr, char *buf) 3918 { 3919 struct hstate *h; 3920 unsigned long nr_huge_pages; 3921 int nid; 3922 3923 h = kobj_to_hstate(kobj, &nid); 3924 if (nid == NUMA_NO_NODE) 3925 nr_huge_pages = h->nr_huge_pages; 3926 else 3927 nr_huge_pages = h->nr_huge_pages_node[nid]; 3928 3929 return sysfs_emit(buf, "%lu\n", nr_huge_pages); 3930 } 3931 3932 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy, 3933 struct hstate *h, int nid, 3934 unsigned long count, size_t len) 3935 { 3936 int err; 3937 nodemask_t nodes_allowed, *n_mask; 3938 3939 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 3940 return -EINVAL; 3941 3942 if (nid == NUMA_NO_NODE) { 3943 /* 3944 * global hstate attribute 3945 */ 3946 if (!(obey_mempolicy && 3947 init_nodemask_of_mempolicy(&nodes_allowed))) 3948 n_mask = &node_states[N_MEMORY]; 3949 else 3950 n_mask = &nodes_allowed; 3951 } else { 3952 /* 3953 * Node specific request. count adjustment happens in 3954 * set_max_huge_pages() after acquiring hugetlb_lock. 3955 */ 3956 init_nodemask_of_node(&nodes_allowed, nid); 3957 n_mask = &nodes_allowed; 3958 } 3959 3960 err = set_max_huge_pages(h, count, nid, n_mask); 3961 3962 return err ? err : len; 3963 } 3964 3965 static ssize_t nr_hugepages_store_common(bool obey_mempolicy, 3966 struct kobject *kobj, const char *buf, 3967 size_t len) 3968 { 3969 struct hstate *h; 3970 unsigned long count; 3971 int nid; 3972 int err; 3973 3974 err = kstrtoul(buf, 10, &count); 3975 if (err) 3976 return err; 3977 3978 h = kobj_to_hstate(kobj, &nid); 3979 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len); 3980 } 3981 3982 static ssize_t nr_hugepages_show(struct kobject *kobj, 3983 struct kobj_attribute *attr, char *buf) 3984 { 3985 return nr_hugepages_show_common(kobj, attr, buf); 3986 } 3987 3988 static ssize_t nr_hugepages_store(struct kobject *kobj, 3989 struct kobj_attribute *attr, const char *buf, size_t len) 3990 { 3991 return nr_hugepages_store_common(false, kobj, buf, len); 3992 } 3993 HSTATE_ATTR(nr_hugepages); 3994 3995 #ifdef CONFIG_NUMA 3996 3997 /* 3998 * hstate attribute for optionally mempolicy-based constraint on persistent 3999 * huge page alloc/free. 4000 */ 4001 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj, 4002 struct kobj_attribute *attr, 4003 char *buf) 4004 { 4005 return nr_hugepages_show_common(kobj, attr, buf); 4006 } 4007 4008 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj, 4009 struct kobj_attribute *attr, const char *buf, size_t len) 4010 { 4011 return nr_hugepages_store_common(true, kobj, buf, len); 4012 } 4013 HSTATE_ATTR(nr_hugepages_mempolicy); 4014 #endif 4015 4016 4017 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, 4018 struct kobj_attribute *attr, char *buf) 4019 { 4020 struct hstate *h = kobj_to_hstate(kobj, NULL); 4021 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages); 4022 } 4023 4024 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, 4025 struct kobj_attribute *attr, const char *buf, size_t count) 4026 { 4027 int err; 4028 unsigned long input; 4029 struct hstate *h = kobj_to_hstate(kobj, NULL); 4030 4031 if (hstate_is_gigantic(h)) 4032 return -EINVAL; 4033 4034 err = kstrtoul(buf, 10, &input); 4035 if (err) 4036 return err; 4037 4038 spin_lock_irq(&hugetlb_lock); 4039 h->nr_overcommit_huge_pages = input; 4040 spin_unlock_irq(&hugetlb_lock); 4041 4042 return count; 4043 } 4044 HSTATE_ATTR(nr_overcommit_hugepages); 4045 4046 static ssize_t free_hugepages_show(struct kobject *kobj, 4047 struct kobj_attribute *attr, char *buf) 4048 { 4049 struct hstate *h; 4050 unsigned long free_huge_pages; 4051 int nid; 4052 4053 h = kobj_to_hstate(kobj, &nid); 4054 if (nid == NUMA_NO_NODE) 4055 free_huge_pages = h->free_huge_pages; 4056 else 4057 free_huge_pages = h->free_huge_pages_node[nid]; 4058 4059 return sysfs_emit(buf, "%lu\n", free_huge_pages); 4060 } 4061 HSTATE_ATTR_RO(free_hugepages); 4062 4063 static ssize_t resv_hugepages_show(struct kobject *kobj, 4064 struct kobj_attribute *attr, char *buf) 4065 { 4066 struct hstate *h = kobj_to_hstate(kobj, NULL); 4067 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages); 4068 } 4069 HSTATE_ATTR_RO(resv_hugepages); 4070 4071 static ssize_t surplus_hugepages_show(struct kobject *kobj, 4072 struct kobj_attribute *attr, char *buf) 4073 { 4074 struct hstate *h; 4075 unsigned long surplus_huge_pages; 4076 int nid; 4077 4078 h = kobj_to_hstate(kobj, &nid); 4079 if (nid == NUMA_NO_NODE) 4080 surplus_huge_pages = h->surplus_huge_pages; 4081 else 4082 surplus_huge_pages = h->surplus_huge_pages_node[nid]; 4083 4084 return sysfs_emit(buf, "%lu\n", surplus_huge_pages); 4085 } 4086 HSTATE_ATTR_RO(surplus_hugepages); 4087 4088 static ssize_t demote_store(struct kobject *kobj, 4089 struct kobj_attribute *attr, const char *buf, size_t len) 4090 { 4091 unsigned long nr_demote; 4092 unsigned long nr_available; 4093 nodemask_t nodes_allowed, *n_mask; 4094 struct hstate *h; 4095 int err; 4096 int nid; 4097 4098 err = kstrtoul(buf, 10, &nr_demote); 4099 if (err) 4100 return err; 4101 h = kobj_to_hstate(kobj, &nid); 4102 4103 if (nid != NUMA_NO_NODE) { 4104 init_nodemask_of_node(&nodes_allowed, nid); 4105 n_mask = &nodes_allowed; 4106 } else { 4107 n_mask = &node_states[N_MEMORY]; 4108 } 4109 4110 /* Synchronize with other sysfs operations modifying huge pages */ 4111 mutex_lock(&h->resize_lock); 4112 spin_lock_irq(&hugetlb_lock); 4113 4114 while (nr_demote) { 4115 long rc; 4116 4117 /* 4118 * Check for available pages to demote each time thorough the 4119 * loop as demote_pool_huge_page will drop hugetlb_lock. 4120 */ 4121 if (nid != NUMA_NO_NODE) 4122 nr_available = h->free_huge_pages_node[nid]; 4123 else 4124 nr_available = h->free_huge_pages; 4125 nr_available -= h->resv_huge_pages; 4126 if (!nr_available) 4127 break; 4128 4129 rc = demote_pool_huge_page(h, n_mask, nr_demote); 4130 if (rc < 0) { 4131 err = rc; 4132 break; 4133 } 4134 4135 nr_demote -= rc; 4136 } 4137 4138 spin_unlock_irq(&hugetlb_lock); 4139 mutex_unlock(&h->resize_lock); 4140 4141 if (err) 4142 return err; 4143 return len; 4144 } 4145 HSTATE_ATTR_WO(demote); 4146 4147 static ssize_t demote_size_show(struct kobject *kobj, 4148 struct kobj_attribute *attr, char *buf) 4149 { 4150 struct hstate *h = kobj_to_hstate(kobj, NULL); 4151 unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K; 4152 4153 return sysfs_emit(buf, "%lukB\n", demote_size); 4154 } 4155 4156 static ssize_t demote_size_store(struct kobject *kobj, 4157 struct kobj_attribute *attr, 4158 const char *buf, size_t count) 4159 { 4160 struct hstate *h, *demote_hstate; 4161 unsigned long demote_size; 4162 unsigned int demote_order; 4163 4164 demote_size = (unsigned long)memparse(buf, NULL); 4165 4166 demote_hstate = size_to_hstate(demote_size); 4167 if (!demote_hstate) 4168 return -EINVAL; 4169 demote_order = demote_hstate->order; 4170 if (demote_order < HUGETLB_PAGE_ORDER) 4171 return -EINVAL; 4172 4173 /* demote order must be smaller than hstate order */ 4174 h = kobj_to_hstate(kobj, NULL); 4175 if (demote_order >= h->order) 4176 return -EINVAL; 4177 4178 /* resize_lock synchronizes access to demote size and writes */ 4179 mutex_lock(&h->resize_lock); 4180 h->demote_order = demote_order; 4181 mutex_unlock(&h->resize_lock); 4182 4183 return count; 4184 } 4185 HSTATE_ATTR(demote_size); 4186 4187 static struct attribute *hstate_attrs[] = { 4188 &nr_hugepages_attr.attr, 4189 &nr_overcommit_hugepages_attr.attr, 4190 &free_hugepages_attr.attr, 4191 &resv_hugepages_attr.attr, 4192 &surplus_hugepages_attr.attr, 4193 #ifdef CONFIG_NUMA 4194 &nr_hugepages_mempolicy_attr.attr, 4195 #endif 4196 NULL, 4197 }; 4198 4199 static const struct attribute_group hstate_attr_group = { 4200 .attrs = hstate_attrs, 4201 }; 4202 4203 static struct attribute *hstate_demote_attrs[] = { 4204 &demote_size_attr.attr, 4205 &demote_attr.attr, 4206 NULL, 4207 }; 4208 4209 static const struct attribute_group hstate_demote_attr_group = { 4210 .attrs = hstate_demote_attrs, 4211 }; 4212 4213 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent, 4214 struct kobject **hstate_kobjs, 4215 const struct attribute_group *hstate_attr_group) 4216 { 4217 int retval; 4218 int hi = hstate_index(h); 4219 4220 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent); 4221 if (!hstate_kobjs[hi]) 4222 return -ENOMEM; 4223 4224 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group); 4225 if (retval) { 4226 kobject_put(hstate_kobjs[hi]); 4227 hstate_kobjs[hi] = NULL; 4228 return retval; 4229 } 4230 4231 if (h->demote_order) { 4232 retval = sysfs_create_group(hstate_kobjs[hi], 4233 &hstate_demote_attr_group); 4234 if (retval) { 4235 pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name); 4236 sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group); 4237 kobject_put(hstate_kobjs[hi]); 4238 hstate_kobjs[hi] = NULL; 4239 return retval; 4240 } 4241 } 4242 4243 return 0; 4244 } 4245 4246 #ifdef CONFIG_NUMA 4247 static bool hugetlb_sysfs_initialized __ro_after_init; 4248 4249 /* 4250 * node_hstate/s - associate per node hstate attributes, via their kobjects, 4251 * with node devices in node_devices[] using a parallel array. The array 4252 * index of a node device or _hstate == node id. 4253 * This is here to avoid any static dependency of the node device driver, in 4254 * the base kernel, on the hugetlb module. 4255 */ 4256 struct node_hstate { 4257 struct kobject *hugepages_kobj; 4258 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 4259 }; 4260 static struct node_hstate node_hstates[MAX_NUMNODES]; 4261 4262 /* 4263 * A subset of global hstate attributes for node devices 4264 */ 4265 static struct attribute *per_node_hstate_attrs[] = { 4266 &nr_hugepages_attr.attr, 4267 &free_hugepages_attr.attr, 4268 &surplus_hugepages_attr.attr, 4269 NULL, 4270 }; 4271 4272 static const struct attribute_group per_node_hstate_attr_group = { 4273 .attrs = per_node_hstate_attrs, 4274 }; 4275 4276 /* 4277 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj. 4278 * Returns node id via non-NULL nidp. 4279 */ 4280 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 4281 { 4282 int nid; 4283 4284 for (nid = 0; nid < nr_node_ids; nid++) { 4285 struct node_hstate *nhs = &node_hstates[nid]; 4286 int i; 4287 for (i = 0; i < HUGE_MAX_HSTATE; i++) 4288 if (nhs->hstate_kobjs[i] == kobj) { 4289 if (nidp) 4290 *nidp = nid; 4291 return &hstates[i]; 4292 } 4293 } 4294 4295 BUG(); 4296 return NULL; 4297 } 4298 4299 /* 4300 * Unregister hstate attributes from a single node device. 4301 * No-op if no hstate attributes attached. 4302 */ 4303 void hugetlb_unregister_node(struct node *node) 4304 { 4305 struct hstate *h; 4306 struct node_hstate *nhs = &node_hstates[node->dev.id]; 4307 4308 if (!nhs->hugepages_kobj) 4309 return; /* no hstate attributes */ 4310 4311 for_each_hstate(h) { 4312 int idx = hstate_index(h); 4313 struct kobject *hstate_kobj = nhs->hstate_kobjs[idx]; 4314 4315 if (!hstate_kobj) 4316 continue; 4317 if (h->demote_order) 4318 sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group); 4319 sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group); 4320 kobject_put(hstate_kobj); 4321 nhs->hstate_kobjs[idx] = NULL; 4322 } 4323 4324 kobject_put(nhs->hugepages_kobj); 4325 nhs->hugepages_kobj = NULL; 4326 } 4327 4328 4329 /* 4330 * Register hstate attributes for a single node device. 4331 * No-op if attributes already registered. 4332 */ 4333 void hugetlb_register_node(struct node *node) 4334 { 4335 struct hstate *h; 4336 struct node_hstate *nhs = &node_hstates[node->dev.id]; 4337 int err; 4338 4339 if (!hugetlb_sysfs_initialized) 4340 return; 4341 4342 if (nhs->hugepages_kobj) 4343 return; /* already allocated */ 4344 4345 nhs->hugepages_kobj = kobject_create_and_add("hugepages", 4346 &node->dev.kobj); 4347 if (!nhs->hugepages_kobj) 4348 return; 4349 4350 for_each_hstate(h) { 4351 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj, 4352 nhs->hstate_kobjs, 4353 &per_node_hstate_attr_group); 4354 if (err) { 4355 pr_err("HugeTLB: Unable to add hstate %s for node %d\n", 4356 h->name, node->dev.id); 4357 hugetlb_unregister_node(node); 4358 break; 4359 } 4360 } 4361 } 4362 4363 /* 4364 * hugetlb init time: register hstate attributes for all registered node 4365 * devices of nodes that have memory. All on-line nodes should have 4366 * registered their associated device by this time. 4367 */ 4368 static void __init hugetlb_register_all_nodes(void) 4369 { 4370 int nid; 4371 4372 for_each_online_node(nid) 4373 hugetlb_register_node(node_devices[nid]); 4374 } 4375 #else /* !CONFIG_NUMA */ 4376 4377 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 4378 { 4379 BUG(); 4380 if (nidp) 4381 *nidp = -1; 4382 return NULL; 4383 } 4384 4385 static void hugetlb_register_all_nodes(void) { } 4386 4387 #endif 4388 4389 #ifdef CONFIG_CMA 4390 static void __init hugetlb_cma_check(void); 4391 #else 4392 static inline __init void hugetlb_cma_check(void) 4393 { 4394 } 4395 #endif 4396 4397 static void __init hugetlb_sysfs_init(void) 4398 { 4399 struct hstate *h; 4400 int err; 4401 4402 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); 4403 if (!hugepages_kobj) 4404 return; 4405 4406 for_each_hstate(h) { 4407 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj, 4408 hstate_kobjs, &hstate_attr_group); 4409 if (err) 4410 pr_err("HugeTLB: Unable to add hstate %s", h->name); 4411 } 4412 4413 #ifdef CONFIG_NUMA 4414 hugetlb_sysfs_initialized = true; 4415 #endif 4416 hugetlb_register_all_nodes(); 4417 } 4418 4419 #ifdef CONFIG_SYSCTL 4420 static void hugetlb_sysctl_init(void); 4421 #else 4422 static inline void hugetlb_sysctl_init(void) { } 4423 #endif 4424 4425 static int __init hugetlb_init(void) 4426 { 4427 int i; 4428 4429 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE < 4430 __NR_HPAGEFLAGS); 4431 4432 if (!hugepages_supported()) { 4433 if (hugetlb_max_hstate || default_hstate_max_huge_pages) 4434 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n"); 4435 return 0; 4436 } 4437 4438 /* 4439 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some 4440 * architectures depend on setup being done here. 4441 */ 4442 hugetlb_add_hstate(HUGETLB_PAGE_ORDER); 4443 if (!parsed_default_hugepagesz) { 4444 /* 4445 * If we did not parse a default huge page size, set 4446 * default_hstate_idx to HPAGE_SIZE hstate. And, if the 4447 * number of huge pages for this default size was implicitly 4448 * specified, set that here as well. 4449 * Note that the implicit setting will overwrite an explicit 4450 * setting. A warning will be printed in this case. 4451 */ 4452 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE)); 4453 if (default_hstate_max_huge_pages) { 4454 if (default_hstate.max_huge_pages) { 4455 char buf[32]; 4456 4457 string_get_size(huge_page_size(&default_hstate), 4458 1, STRING_UNITS_2, buf, 32); 4459 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n", 4460 default_hstate.max_huge_pages, buf); 4461 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n", 4462 default_hstate_max_huge_pages); 4463 } 4464 default_hstate.max_huge_pages = 4465 default_hstate_max_huge_pages; 4466 4467 for_each_online_node(i) 4468 default_hstate.max_huge_pages_node[i] = 4469 default_hugepages_in_node[i]; 4470 } 4471 } 4472 4473 hugetlb_cma_check(); 4474 hugetlb_init_hstates(); 4475 gather_bootmem_prealloc(); 4476 report_hugepages(); 4477 4478 hugetlb_sysfs_init(); 4479 hugetlb_cgroup_file_init(); 4480 hugetlb_sysctl_init(); 4481 4482 #ifdef CONFIG_SMP 4483 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus()); 4484 #else 4485 num_fault_mutexes = 1; 4486 #endif 4487 hugetlb_fault_mutex_table = 4488 kmalloc_array(num_fault_mutexes, sizeof(struct mutex), 4489 GFP_KERNEL); 4490 BUG_ON(!hugetlb_fault_mutex_table); 4491 4492 for (i = 0; i < num_fault_mutexes; i++) 4493 mutex_init(&hugetlb_fault_mutex_table[i]); 4494 return 0; 4495 } 4496 subsys_initcall(hugetlb_init); 4497 4498 /* Overwritten by architectures with more huge page sizes */ 4499 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size) 4500 { 4501 return size == HPAGE_SIZE; 4502 } 4503 4504 void __init hugetlb_add_hstate(unsigned int order) 4505 { 4506 struct hstate *h; 4507 unsigned long i; 4508 4509 if (size_to_hstate(PAGE_SIZE << order)) { 4510 return; 4511 } 4512 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE); 4513 BUG_ON(order < order_base_2(__NR_USED_SUBPAGE)); 4514 h = &hstates[hugetlb_max_hstate++]; 4515 __mutex_init(&h->resize_lock, "resize mutex", &h->resize_key); 4516 h->order = order; 4517 h->mask = ~(huge_page_size(h) - 1); 4518 for (i = 0; i < MAX_NUMNODES; ++i) 4519 INIT_LIST_HEAD(&h->hugepage_freelists[i]); 4520 INIT_LIST_HEAD(&h->hugepage_activelist); 4521 h->next_nid_to_alloc = first_memory_node; 4522 h->next_nid_to_free = first_memory_node; 4523 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", 4524 huge_page_size(h)/SZ_1K); 4525 4526 parsed_hstate = h; 4527 } 4528 4529 bool __init __weak hugetlb_node_alloc_supported(void) 4530 { 4531 return true; 4532 } 4533 4534 static void __init hugepages_clear_pages_in_node(void) 4535 { 4536 if (!hugetlb_max_hstate) { 4537 default_hstate_max_huge_pages = 0; 4538 memset(default_hugepages_in_node, 0, 4539 sizeof(default_hugepages_in_node)); 4540 } else { 4541 parsed_hstate->max_huge_pages = 0; 4542 memset(parsed_hstate->max_huge_pages_node, 0, 4543 sizeof(parsed_hstate->max_huge_pages_node)); 4544 } 4545 } 4546 4547 /* 4548 * hugepages command line processing 4549 * hugepages normally follows a valid hugepagsz or default_hugepagsz 4550 * specification. If not, ignore the hugepages value. hugepages can also 4551 * be the first huge page command line option in which case it implicitly 4552 * specifies the number of huge pages for the default size. 4553 */ 4554 static int __init hugepages_setup(char *s) 4555 { 4556 unsigned long *mhp; 4557 static unsigned long *last_mhp; 4558 int node = NUMA_NO_NODE; 4559 int count; 4560 unsigned long tmp; 4561 char *p = s; 4562 4563 if (!parsed_valid_hugepagesz) { 4564 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s); 4565 parsed_valid_hugepagesz = true; 4566 return 1; 4567 } 4568 4569 /* 4570 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter 4571 * yet, so this hugepages= parameter goes to the "default hstate". 4572 * Otherwise, it goes with the previously parsed hugepagesz or 4573 * default_hugepagesz. 4574 */ 4575 else if (!hugetlb_max_hstate) 4576 mhp = &default_hstate_max_huge_pages; 4577 else 4578 mhp = &parsed_hstate->max_huge_pages; 4579 4580 if (mhp == last_mhp) { 4581 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s); 4582 return 1; 4583 } 4584 4585 while (*p) { 4586 count = 0; 4587 if (sscanf(p, "%lu%n", &tmp, &count) != 1) 4588 goto invalid; 4589 /* Parameter is node format */ 4590 if (p[count] == ':') { 4591 if (!hugetlb_node_alloc_supported()) { 4592 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n"); 4593 return 1; 4594 } 4595 if (tmp >= MAX_NUMNODES || !node_online(tmp)) 4596 goto invalid; 4597 node = array_index_nospec(tmp, MAX_NUMNODES); 4598 p += count + 1; 4599 /* Parse hugepages */ 4600 if (sscanf(p, "%lu%n", &tmp, &count) != 1) 4601 goto invalid; 4602 if (!hugetlb_max_hstate) 4603 default_hugepages_in_node[node] = tmp; 4604 else 4605 parsed_hstate->max_huge_pages_node[node] = tmp; 4606 *mhp += tmp; 4607 /* Go to parse next node*/ 4608 if (p[count] == ',') 4609 p += count + 1; 4610 else 4611 break; 4612 } else { 4613 if (p != s) 4614 goto invalid; 4615 *mhp = tmp; 4616 break; 4617 } 4618 } 4619 4620 /* 4621 * Global state is always initialized later in hugetlb_init. 4622 * But we need to allocate gigantic hstates here early to still 4623 * use the bootmem allocator. 4624 */ 4625 if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate)) 4626 hugetlb_hstate_alloc_pages(parsed_hstate); 4627 4628 last_mhp = mhp; 4629 4630 return 1; 4631 4632 invalid: 4633 pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p); 4634 hugepages_clear_pages_in_node(); 4635 return 1; 4636 } 4637 __setup("hugepages=", hugepages_setup); 4638 4639 /* 4640 * hugepagesz command line processing 4641 * A specific huge page size can only be specified once with hugepagesz. 4642 * hugepagesz is followed by hugepages on the command line. The global 4643 * variable 'parsed_valid_hugepagesz' is used to determine if prior 4644 * hugepagesz argument was valid. 4645 */ 4646 static int __init hugepagesz_setup(char *s) 4647 { 4648 unsigned long size; 4649 struct hstate *h; 4650 4651 parsed_valid_hugepagesz = false; 4652 size = (unsigned long)memparse(s, NULL); 4653 4654 if (!arch_hugetlb_valid_size(size)) { 4655 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s); 4656 return 1; 4657 } 4658 4659 h = size_to_hstate(size); 4660 if (h) { 4661 /* 4662 * hstate for this size already exists. This is normally 4663 * an error, but is allowed if the existing hstate is the 4664 * default hstate. More specifically, it is only allowed if 4665 * the number of huge pages for the default hstate was not 4666 * previously specified. 4667 */ 4668 if (!parsed_default_hugepagesz || h != &default_hstate || 4669 default_hstate.max_huge_pages) { 4670 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s); 4671 return 1; 4672 } 4673 4674 /* 4675 * No need to call hugetlb_add_hstate() as hstate already 4676 * exists. But, do set parsed_hstate so that a following 4677 * hugepages= parameter will be applied to this hstate. 4678 */ 4679 parsed_hstate = h; 4680 parsed_valid_hugepagesz = true; 4681 return 1; 4682 } 4683 4684 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); 4685 parsed_valid_hugepagesz = true; 4686 return 1; 4687 } 4688 __setup("hugepagesz=", hugepagesz_setup); 4689 4690 /* 4691 * default_hugepagesz command line input 4692 * Only one instance of default_hugepagesz allowed on command line. 4693 */ 4694 static int __init default_hugepagesz_setup(char *s) 4695 { 4696 unsigned long size; 4697 int i; 4698 4699 parsed_valid_hugepagesz = false; 4700 if (parsed_default_hugepagesz) { 4701 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s); 4702 return 1; 4703 } 4704 4705 size = (unsigned long)memparse(s, NULL); 4706 4707 if (!arch_hugetlb_valid_size(size)) { 4708 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s); 4709 return 1; 4710 } 4711 4712 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); 4713 parsed_valid_hugepagesz = true; 4714 parsed_default_hugepagesz = true; 4715 default_hstate_idx = hstate_index(size_to_hstate(size)); 4716 4717 /* 4718 * The number of default huge pages (for this size) could have been 4719 * specified as the first hugetlb parameter: hugepages=X. If so, 4720 * then default_hstate_max_huge_pages is set. If the default huge 4721 * page size is gigantic (> MAX_PAGE_ORDER), then the pages must be 4722 * allocated here from bootmem allocator. 4723 */ 4724 if (default_hstate_max_huge_pages) { 4725 default_hstate.max_huge_pages = default_hstate_max_huge_pages; 4726 for_each_online_node(i) 4727 default_hstate.max_huge_pages_node[i] = 4728 default_hugepages_in_node[i]; 4729 if (hstate_is_gigantic(&default_hstate)) 4730 hugetlb_hstate_alloc_pages(&default_hstate); 4731 default_hstate_max_huge_pages = 0; 4732 } 4733 4734 return 1; 4735 } 4736 __setup("default_hugepagesz=", default_hugepagesz_setup); 4737 4738 static unsigned int allowed_mems_nr(struct hstate *h) 4739 { 4740 int node; 4741 unsigned int nr = 0; 4742 nodemask_t *mbind_nodemask; 4743 unsigned int *array = h->free_huge_pages_node; 4744 gfp_t gfp_mask = htlb_alloc_mask(h); 4745 4746 mbind_nodemask = policy_mbind_nodemask(gfp_mask); 4747 for_each_node_mask(node, cpuset_current_mems_allowed) { 4748 if (!mbind_nodemask || node_isset(node, *mbind_nodemask)) 4749 nr += array[node]; 4750 } 4751 4752 return nr; 4753 } 4754 4755 #ifdef CONFIG_SYSCTL 4756 static int proc_hugetlb_doulongvec_minmax(const struct ctl_table *table, int write, 4757 void *buffer, size_t *length, 4758 loff_t *ppos, unsigned long *out) 4759 { 4760 struct ctl_table dup_table; 4761 4762 /* 4763 * In order to avoid races with __do_proc_doulongvec_minmax(), we 4764 * can duplicate the @table and alter the duplicate of it. 4765 */ 4766 dup_table = *table; 4767 dup_table.data = out; 4768 4769 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos); 4770 } 4771 4772 static int hugetlb_sysctl_handler_common(bool obey_mempolicy, 4773 const struct ctl_table *table, int write, 4774 void *buffer, size_t *length, loff_t *ppos) 4775 { 4776 struct hstate *h = &default_hstate; 4777 unsigned long tmp = h->max_huge_pages; 4778 int ret; 4779 4780 if (!hugepages_supported()) 4781 return -EOPNOTSUPP; 4782 4783 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, 4784 &tmp); 4785 if (ret) 4786 goto out; 4787 4788 if (write) 4789 ret = __nr_hugepages_store_common(obey_mempolicy, h, 4790 NUMA_NO_NODE, tmp, *length); 4791 out: 4792 return ret; 4793 } 4794 4795 static int hugetlb_sysctl_handler(const struct ctl_table *table, int write, 4796 void *buffer, size_t *length, loff_t *ppos) 4797 { 4798 4799 return hugetlb_sysctl_handler_common(false, table, write, 4800 buffer, length, ppos); 4801 } 4802 4803 #ifdef CONFIG_NUMA 4804 static int hugetlb_mempolicy_sysctl_handler(const struct ctl_table *table, int write, 4805 void *buffer, size_t *length, loff_t *ppos) 4806 { 4807 return hugetlb_sysctl_handler_common(true, table, write, 4808 buffer, length, ppos); 4809 } 4810 #endif /* CONFIG_NUMA */ 4811 4812 static int hugetlb_overcommit_handler(const struct ctl_table *table, int write, 4813 void *buffer, size_t *length, loff_t *ppos) 4814 { 4815 struct hstate *h = &default_hstate; 4816 unsigned long tmp; 4817 int ret; 4818 4819 if (!hugepages_supported()) 4820 return -EOPNOTSUPP; 4821 4822 tmp = h->nr_overcommit_huge_pages; 4823 4824 if (write && hstate_is_gigantic(h)) 4825 return -EINVAL; 4826 4827 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, 4828 &tmp); 4829 if (ret) 4830 goto out; 4831 4832 if (write) { 4833 spin_lock_irq(&hugetlb_lock); 4834 h->nr_overcommit_huge_pages = tmp; 4835 spin_unlock_irq(&hugetlb_lock); 4836 } 4837 out: 4838 return ret; 4839 } 4840 4841 static struct ctl_table hugetlb_table[] = { 4842 { 4843 .procname = "nr_hugepages", 4844 .data = NULL, 4845 .maxlen = sizeof(unsigned long), 4846 .mode = 0644, 4847 .proc_handler = hugetlb_sysctl_handler, 4848 }, 4849 #ifdef CONFIG_NUMA 4850 { 4851 .procname = "nr_hugepages_mempolicy", 4852 .data = NULL, 4853 .maxlen = sizeof(unsigned long), 4854 .mode = 0644, 4855 .proc_handler = &hugetlb_mempolicy_sysctl_handler, 4856 }, 4857 #endif 4858 { 4859 .procname = "hugetlb_shm_group", 4860 .data = &sysctl_hugetlb_shm_group, 4861 .maxlen = sizeof(gid_t), 4862 .mode = 0644, 4863 .proc_handler = proc_dointvec, 4864 }, 4865 { 4866 .procname = "nr_overcommit_hugepages", 4867 .data = NULL, 4868 .maxlen = sizeof(unsigned long), 4869 .mode = 0644, 4870 .proc_handler = hugetlb_overcommit_handler, 4871 }, 4872 }; 4873 4874 static void hugetlb_sysctl_init(void) 4875 { 4876 register_sysctl_init("vm", hugetlb_table); 4877 } 4878 #endif /* CONFIG_SYSCTL */ 4879 4880 void hugetlb_report_meminfo(struct seq_file *m) 4881 { 4882 struct hstate *h; 4883 unsigned long total = 0; 4884 4885 if (!hugepages_supported()) 4886 return; 4887 4888 for_each_hstate(h) { 4889 unsigned long count = h->nr_huge_pages; 4890 4891 total += huge_page_size(h) * count; 4892 4893 if (h == &default_hstate) 4894 seq_printf(m, 4895 "HugePages_Total: %5lu\n" 4896 "HugePages_Free: %5lu\n" 4897 "HugePages_Rsvd: %5lu\n" 4898 "HugePages_Surp: %5lu\n" 4899 "Hugepagesize: %8lu kB\n", 4900 count, 4901 h->free_huge_pages, 4902 h->resv_huge_pages, 4903 h->surplus_huge_pages, 4904 huge_page_size(h) / SZ_1K); 4905 } 4906 4907 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K); 4908 } 4909 4910 int hugetlb_report_node_meminfo(char *buf, int len, int nid) 4911 { 4912 struct hstate *h = &default_hstate; 4913 4914 if (!hugepages_supported()) 4915 return 0; 4916 4917 return sysfs_emit_at(buf, len, 4918 "Node %d HugePages_Total: %5u\n" 4919 "Node %d HugePages_Free: %5u\n" 4920 "Node %d HugePages_Surp: %5u\n", 4921 nid, h->nr_huge_pages_node[nid], 4922 nid, h->free_huge_pages_node[nid], 4923 nid, h->surplus_huge_pages_node[nid]); 4924 } 4925 4926 void hugetlb_show_meminfo_node(int nid) 4927 { 4928 struct hstate *h; 4929 4930 if (!hugepages_supported()) 4931 return; 4932 4933 for_each_hstate(h) 4934 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n", 4935 nid, 4936 h->nr_huge_pages_node[nid], 4937 h->free_huge_pages_node[nid], 4938 h->surplus_huge_pages_node[nid], 4939 huge_page_size(h) / SZ_1K); 4940 } 4941 4942 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm) 4943 { 4944 seq_printf(m, "HugetlbPages:\t%8lu kB\n", 4945 K(atomic_long_read(&mm->hugetlb_usage))); 4946 } 4947 4948 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ 4949 unsigned long hugetlb_total_pages(void) 4950 { 4951 struct hstate *h; 4952 unsigned long nr_total_pages = 0; 4953 4954 for_each_hstate(h) 4955 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h); 4956 return nr_total_pages; 4957 } 4958 4959 static int hugetlb_acct_memory(struct hstate *h, long delta) 4960 { 4961 int ret = -ENOMEM; 4962 4963 if (!delta) 4964 return 0; 4965 4966 spin_lock_irq(&hugetlb_lock); 4967 /* 4968 * When cpuset is configured, it breaks the strict hugetlb page 4969 * reservation as the accounting is done on a global variable. Such 4970 * reservation is completely rubbish in the presence of cpuset because 4971 * the reservation is not checked against page availability for the 4972 * current cpuset. Application can still potentially OOM'ed by kernel 4973 * with lack of free htlb page in cpuset that the task is in. 4974 * Attempt to enforce strict accounting with cpuset is almost 4975 * impossible (or too ugly) because cpuset is too fluid that 4976 * task or memory node can be dynamically moved between cpusets. 4977 * 4978 * The change of semantics for shared hugetlb mapping with cpuset is 4979 * undesirable. However, in order to preserve some of the semantics, 4980 * we fall back to check against current free page availability as 4981 * a best attempt and hopefully to minimize the impact of changing 4982 * semantics that cpuset has. 4983 * 4984 * Apart from cpuset, we also have memory policy mechanism that 4985 * also determines from which node the kernel will allocate memory 4986 * in a NUMA system. So similar to cpuset, we also should consider 4987 * the memory policy of the current task. Similar to the description 4988 * above. 4989 */ 4990 if (delta > 0) { 4991 if (gather_surplus_pages(h, delta) < 0) 4992 goto out; 4993 4994 if (delta > allowed_mems_nr(h)) { 4995 return_unused_surplus_pages(h, delta); 4996 goto out; 4997 } 4998 } 4999 5000 ret = 0; 5001 if (delta < 0) 5002 return_unused_surplus_pages(h, (unsigned long) -delta); 5003 5004 out: 5005 spin_unlock_irq(&hugetlb_lock); 5006 return ret; 5007 } 5008 5009 static void hugetlb_vm_op_open(struct vm_area_struct *vma) 5010 { 5011 struct resv_map *resv = vma_resv_map(vma); 5012 5013 /* 5014 * HPAGE_RESV_OWNER indicates a private mapping. 5015 * This new VMA should share its siblings reservation map if present. 5016 * The VMA will only ever have a valid reservation map pointer where 5017 * it is being copied for another still existing VMA. As that VMA 5018 * has a reference to the reservation map it cannot disappear until 5019 * after this open call completes. It is therefore safe to take a 5020 * new reference here without additional locking. 5021 */ 5022 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 5023 resv_map_dup_hugetlb_cgroup_uncharge_info(resv); 5024 kref_get(&resv->refs); 5025 } 5026 5027 /* 5028 * vma_lock structure for sharable mappings is vma specific. 5029 * Clear old pointer (if copied via vm_area_dup) and allocate 5030 * new structure. Before clearing, make sure vma_lock is not 5031 * for this vma. 5032 */ 5033 if (vma->vm_flags & VM_MAYSHARE) { 5034 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 5035 5036 if (vma_lock) { 5037 if (vma_lock->vma != vma) { 5038 vma->vm_private_data = NULL; 5039 hugetlb_vma_lock_alloc(vma); 5040 } else 5041 pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__); 5042 } else 5043 hugetlb_vma_lock_alloc(vma); 5044 } 5045 } 5046 5047 static void hugetlb_vm_op_close(struct vm_area_struct *vma) 5048 { 5049 struct hstate *h = hstate_vma(vma); 5050 struct resv_map *resv; 5051 struct hugepage_subpool *spool = subpool_vma(vma); 5052 unsigned long reserve, start, end; 5053 long gbl_reserve; 5054 5055 hugetlb_vma_lock_free(vma); 5056 5057 resv = vma_resv_map(vma); 5058 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 5059 return; 5060 5061 start = vma_hugecache_offset(h, vma, vma->vm_start); 5062 end = vma_hugecache_offset(h, vma, vma->vm_end); 5063 5064 reserve = (end - start) - region_count(resv, start, end); 5065 hugetlb_cgroup_uncharge_counter(resv, start, end); 5066 if (reserve) { 5067 /* 5068 * Decrement reserve counts. The global reserve count may be 5069 * adjusted if the subpool has a minimum size. 5070 */ 5071 gbl_reserve = hugepage_subpool_put_pages(spool, reserve); 5072 hugetlb_acct_memory(h, -gbl_reserve); 5073 } 5074 5075 kref_put(&resv->refs, resv_map_release); 5076 } 5077 5078 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr) 5079 { 5080 if (addr & ~(huge_page_mask(hstate_vma(vma)))) 5081 return -EINVAL; 5082 5083 /* 5084 * PMD sharing is only possible for PUD_SIZE-aligned address ranges 5085 * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this 5086 * split, unshare PMDs in the PUD_SIZE interval surrounding addr now. 5087 */ 5088 if (addr & ~PUD_MASK) { 5089 /* 5090 * hugetlb_vm_op_split is called right before we attempt to 5091 * split the VMA. We will need to unshare PMDs in the old and 5092 * new VMAs, so let's unshare before we split. 5093 */ 5094 unsigned long floor = addr & PUD_MASK; 5095 unsigned long ceil = floor + PUD_SIZE; 5096 5097 if (floor >= vma->vm_start && ceil <= vma->vm_end) 5098 hugetlb_unshare_pmds(vma, floor, ceil); 5099 } 5100 5101 return 0; 5102 } 5103 5104 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma) 5105 { 5106 return huge_page_size(hstate_vma(vma)); 5107 } 5108 5109 /* 5110 * We cannot handle pagefaults against hugetlb pages at all. They cause 5111 * handle_mm_fault() to try to instantiate regular-sized pages in the 5112 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get 5113 * this far. 5114 */ 5115 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf) 5116 { 5117 BUG(); 5118 return 0; 5119 } 5120 5121 /* 5122 * When a new function is introduced to vm_operations_struct and added 5123 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops. 5124 * This is because under System V memory model, mappings created via 5125 * shmget/shmat with "huge page" specified are backed by hugetlbfs files, 5126 * their original vm_ops are overwritten with shm_vm_ops. 5127 */ 5128 const struct vm_operations_struct hugetlb_vm_ops = { 5129 .fault = hugetlb_vm_op_fault, 5130 .open = hugetlb_vm_op_open, 5131 .close = hugetlb_vm_op_close, 5132 .may_split = hugetlb_vm_op_split, 5133 .pagesize = hugetlb_vm_op_pagesize, 5134 }; 5135 5136 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, 5137 int writable) 5138 { 5139 pte_t entry; 5140 unsigned int shift = huge_page_shift(hstate_vma(vma)); 5141 5142 if (writable) { 5143 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page, 5144 vma->vm_page_prot))); 5145 } else { 5146 entry = huge_pte_wrprotect(mk_huge_pte(page, 5147 vma->vm_page_prot)); 5148 } 5149 entry = pte_mkyoung(entry); 5150 entry = arch_make_huge_pte(entry, shift, vma->vm_flags); 5151 5152 return entry; 5153 } 5154 5155 static void set_huge_ptep_writable(struct vm_area_struct *vma, 5156 unsigned long address, pte_t *ptep) 5157 { 5158 pte_t entry; 5159 5160 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(vma->vm_mm, address, ptep))); 5161 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) 5162 update_mmu_cache(vma, address, ptep); 5163 } 5164 5165 bool is_hugetlb_entry_migration(pte_t pte) 5166 { 5167 swp_entry_t swp; 5168 5169 if (huge_pte_none(pte) || pte_present(pte)) 5170 return false; 5171 swp = pte_to_swp_entry(pte); 5172 if (is_migration_entry(swp)) 5173 return true; 5174 else 5175 return false; 5176 } 5177 5178 bool is_hugetlb_entry_hwpoisoned(pte_t pte) 5179 { 5180 swp_entry_t swp; 5181 5182 if (huge_pte_none(pte) || pte_present(pte)) 5183 return false; 5184 swp = pte_to_swp_entry(pte); 5185 if (is_hwpoison_entry(swp)) 5186 return true; 5187 else 5188 return false; 5189 } 5190 5191 static void 5192 hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr, 5193 struct folio *new_folio, pte_t old, unsigned long sz) 5194 { 5195 pte_t newpte = make_huge_pte(vma, &new_folio->page, 1); 5196 5197 __folio_mark_uptodate(new_folio); 5198 hugetlb_add_new_anon_rmap(new_folio, vma, addr); 5199 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(old)) 5200 newpte = huge_pte_mkuffd_wp(newpte); 5201 set_huge_pte_at(vma->vm_mm, addr, ptep, newpte, sz); 5202 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm); 5203 folio_set_hugetlb_migratable(new_folio); 5204 } 5205 5206 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, 5207 struct vm_area_struct *dst_vma, 5208 struct vm_area_struct *src_vma) 5209 { 5210 pte_t *src_pte, *dst_pte, entry; 5211 struct folio *pte_folio; 5212 unsigned long addr; 5213 bool cow = is_cow_mapping(src_vma->vm_flags); 5214 struct hstate *h = hstate_vma(src_vma); 5215 unsigned long sz = huge_page_size(h); 5216 unsigned long npages = pages_per_huge_page(h); 5217 struct mmu_notifier_range range; 5218 unsigned long last_addr_mask; 5219 int ret = 0; 5220 5221 if (cow) { 5222 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src, 5223 src_vma->vm_start, 5224 src_vma->vm_end); 5225 mmu_notifier_invalidate_range_start(&range); 5226 vma_assert_write_locked(src_vma); 5227 raw_write_seqcount_begin(&src->write_protect_seq); 5228 } else { 5229 /* 5230 * For shared mappings the vma lock must be held before 5231 * calling hugetlb_walk() in the src vma. Otherwise, the 5232 * returned ptep could go away if part of a shared pmd and 5233 * another thread calls huge_pmd_unshare. 5234 */ 5235 hugetlb_vma_lock_read(src_vma); 5236 } 5237 5238 last_addr_mask = hugetlb_mask_last_page(h); 5239 for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) { 5240 spinlock_t *src_ptl, *dst_ptl; 5241 src_pte = hugetlb_walk(src_vma, addr, sz); 5242 if (!src_pte) { 5243 addr |= last_addr_mask; 5244 continue; 5245 } 5246 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz); 5247 if (!dst_pte) { 5248 ret = -ENOMEM; 5249 break; 5250 } 5251 5252 /* 5253 * If the pagetables are shared don't copy or take references. 5254 * 5255 * dst_pte == src_pte is the common case of src/dest sharing. 5256 * However, src could have 'unshared' and dst shares with 5257 * another vma. So page_count of ptep page is checked instead 5258 * to reliably determine whether pte is shared. 5259 */ 5260 if (page_count(virt_to_page(dst_pte)) > 1) { 5261 addr |= last_addr_mask; 5262 continue; 5263 } 5264 5265 dst_ptl = huge_pte_lock(h, dst, dst_pte); 5266 src_ptl = huge_pte_lockptr(h, src, src_pte); 5267 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 5268 entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte); 5269 again: 5270 if (huge_pte_none(entry)) { 5271 /* 5272 * Skip if src entry none. 5273 */ 5274 ; 5275 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) { 5276 if (!userfaultfd_wp(dst_vma)) 5277 entry = huge_pte_clear_uffd_wp(entry); 5278 set_huge_pte_at(dst, addr, dst_pte, entry, sz); 5279 } else if (unlikely(is_hugetlb_entry_migration(entry))) { 5280 swp_entry_t swp_entry = pte_to_swp_entry(entry); 5281 bool uffd_wp = pte_swp_uffd_wp(entry); 5282 5283 if (!is_readable_migration_entry(swp_entry) && cow) { 5284 /* 5285 * COW mappings require pages in both 5286 * parent and child to be set to read. 5287 */ 5288 swp_entry = make_readable_migration_entry( 5289 swp_offset(swp_entry)); 5290 entry = swp_entry_to_pte(swp_entry); 5291 if (userfaultfd_wp(src_vma) && uffd_wp) 5292 entry = pte_swp_mkuffd_wp(entry); 5293 set_huge_pte_at(src, addr, src_pte, entry, sz); 5294 } 5295 if (!userfaultfd_wp(dst_vma)) 5296 entry = huge_pte_clear_uffd_wp(entry); 5297 set_huge_pte_at(dst, addr, dst_pte, entry, sz); 5298 } else if (unlikely(is_pte_marker(entry))) { 5299 pte_marker marker = copy_pte_marker( 5300 pte_to_swp_entry(entry), dst_vma); 5301 5302 if (marker) 5303 set_huge_pte_at(dst, addr, dst_pte, 5304 make_pte_marker(marker), sz); 5305 } else { 5306 entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte); 5307 pte_folio = page_folio(pte_page(entry)); 5308 folio_get(pte_folio); 5309 5310 /* 5311 * Failing to duplicate the anon rmap is a rare case 5312 * where we see pinned hugetlb pages while they're 5313 * prone to COW. We need to do the COW earlier during 5314 * fork. 5315 * 5316 * When pre-allocating the page or copying data, we 5317 * need to be without the pgtable locks since we could 5318 * sleep during the process. 5319 */ 5320 if (!folio_test_anon(pte_folio)) { 5321 hugetlb_add_file_rmap(pte_folio); 5322 } else if (hugetlb_try_dup_anon_rmap(pte_folio, src_vma)) { 5323 pte_t src_pte_old = entry; 5324 struct folio *new_folio; 5325 5326 spin_unlock(src_ptl); 5327 spin_unlock(dst_ptl); 5328 /* Do not use reserve as it's private owned */ 5329 new_folio = alloc_hugetlb_folio(dst_vma, addr, 1); 5330 if (IS_ERR(new_folio)) { 5331 folio_put(pte_folio); 5332 ret = PTR_ERR(new_folio); 5333 break; 5334 } 5335 ret = copy_user_large_folio(new_folio, pte_folio, 5336 ALIGN_DOWN(addr, sz), dst_vma); 5337 folio_put(pte_folio); 5338 if (ret) { 5339 folio_put(new_folio); 5340 break; 5341 } 5342 5343 /* Install the new hugetlb folio if src pte stable */ 5344 dst_ptl = huge_pte_lock(h, dst, dst_pte); 5345 src_ptl = huge_pte_lockptr(h, src, src_pte); 5346 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 5347 entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte); 5348 if (!pte_same(src_pte_old, entry)) { 5349 restore_reserve_on_error(h, dst_vma, addr, 5350 new_folio); 5351 folio_put(new_folio); 5352 /* huge_ptep of dst_pte won't change as in child */ 5353 goto again; 5354 } 5355 hugetlb_install_folio(dst_vma, dst_pte, addr, 5356 new_folio, src_pte_old, sz); 5357 spin_unlock(src_ptl); 5358 spin_unlock(dst_ptl); 5359 continue; 5360 } 5361 5362 if (cow) { 5363 /* 5364 * No need to notify as we are downgrading page 5365 * table protection not changing it to point 5366 * to a new page. 5367 * 5368 * See Documentation/mm/mmu_notifier.rst 5369 */ 5370 huge_ptep_set_wrprotect(src, addr, src_pte); 5371 entry = huge_pte_wrprotect(entry); 5372 } 5373 5374 if (!userfaultfd_wp(dst_vma)) 5375 entry = huge_pte_clear_uffd_wp(entry); 5376 5377 set_huge_pte_at(dst, addr, dst_pte, entry, sz); 5378 hugetlb_count_add(npages, dst); 5379 } 5380 spin_unlock(src_ptl); 5381 spin_unlock(dst_ptl); 5382 } 5383 5384 if (cow) { 5385 raw_write_seqcount_end(&src->write_protect_seq); 5386 mmu_notifier_invalidate_range_end(&range); 5387 } else { 5388 hugetlb_vma_unlock_read(src_vma); 5389 } 5390 5391 return ret; 5392 } 5393 5394 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr, 5395 unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte, 5396 unsigned long sz) 5397 { 5398 struct hstate *h = hstate_vma(vma); 5399 struct mm_struct *mm = vma->vm_mm; 5400 spinlock_t *src_ptl, *dst_ptl; 5401 pte_t pte; 5402 5403 dst_ptl = huge_pte_lock(h, mm, dst_pte); 5404 src_ptl = huge_pte_lockptr(h, mm, src_pte); 5405 5406 /* 5407 * We don't have to worry about the ordering of src and dst ptlocks 5408 * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock. 5409 */ 5410 if (src_ptl != dst_ptl) 5411 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 5412 5413 pte = huge_ptep_get_and_clear(mm, old_addr, src_pte); 5414 set_huge_pte_at(mm, new_addr, dst_pte, pte, sz); 5415 5416 if (src_ptl != dst_ptl) 5417 spin_unlock(src_ptl); 5418 spin_unlock(dst_ptl); 5419 } 5420 5421 int move_hugetlb_page_tables(struct vm_area_struct *vma, 5422 struct vm_area_struct *new_vma, 5423 unsigned long old_addr, unsigned long new_addr, 5424 unsigned long len) 5425 { 5426 struct hstate *h = hstate_vma(vma); 5427 struct address_space *mapping = vma->vm_file->f_mapping; 5428 unsigned long sz = huge_page_size(h); 5429 struct mm_struct *mm = vma->vm_mm; 5430 unsigned long old_end = old_addr + len; 5431 unsigned long last_addr_mask; 5432 pte_t *src_pte, *dst_pte; 5433 struct mmu_notifier_range range; 5434 bool shared_pmd = false; 5435 5436 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr, 5437 old_end); 5438 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 5439 /* 5440 * In case of shared PMDs, we should cover the maximum possible 5441 * range. 5442 */ 5443 flush_cache_range(vma, range.start, range.end); 5444 5445 mmu_notifier_invalidate_range_start(&range); 5446 last_addr_mask = hugetlb_mask_last_page(h); 5447 /* Prevent race with file truncation */ 5448 hugetlb_vma_lock_write(vma); 5449 i_mmap_lock_write(mapping); 5450 for (; old_addr < old_end; old_addr += sz, new_addr += sz) { 5451 src_pte = hugetlb_walk(vma, old_addr, sz); 5452 if (!src_pte) { 5453 old_addr |= last_addr_mask; 5454 new_addr |= last_addr_mask; 5455 continue; 5456 } 5457 if (huge_pte_none(huge_ptep_get(mm, old_addr, src_pte))) 5458 continue; 5459 5460 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) { 5461 shared_pmd = true; 5462 old_addr |= last_addr_mask; 5463 new_addr |= last_addr_mask; 5464 continue; 5465 } 5466 5467 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz); 5468 if (!dst_pte) 5469 break; 5470 5471 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte, sz); 5472 } 5473 5474 if (shared_pmd) 5475 flush_hugetlb_tlb_range(vma, range.start, range.end); 5476 else 5477 flush_hugetlb_tlb_range(vma, old_end - len, old_end); 5478 mmu_notifier_invalidate_range_end(&range); 5479 i_mmap_unlock_write(mapping); 5480 hugetlb_vma_unlock_write(vma); 5481 5482 return len + old_addr - old_end; 5483 } 5484 5485 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma, 5486 unsigned long start, unsigned long end, 5487 struct page *ref_page, zap_flags_t zap_flags) 5488 { 5489 struct mm_struct *mm = vma->vm_mm; 5490 unsigned long address; 5491 pte_t *ptep; 5492 pte_t pte; 5493 spinlock_t *ptl; 5494 struct page *page; 5495 struct hstate *h = hstate_vma(vma); 5496 unsigned long sz = huge_page_size(h); 5497 bool adjust_reservation = false; 5498 unsigned long last_addr_mask; 5499 bool force_flush = false; 5500 5501 WARN_ON(!is_vm_hugetlb_page(vma)); 5502 BUG_ON(start & ~huge_page_mask(h)); 5503 BUG_ON(end & ~huge_page_mask(h)); 5504 5505 /* 5506 * This is a hugetlb vma, all the pte entries should point 5507 * to huge page. 5508 */ 5509 tlb_change_page_size(tlb, sz); 5510 tlb_start_vma(tlb, vma); 5511 5512 last_addr_mask = hugetlb_mask_last_page(h); 5513 address = start; 5514 for (; address < end; address += sz) { 5515 ptep = hugetlb_walk(vma, address, sz); 5516 if (!ptep) { 5517 address |= last_addr_mask; 5518 continue; 5519 } 5520 5521 ptl = huge_pte_lock(h, mm, ptep); 5522 if (huge_pmd_unshare(mm, vma, address, ptep)) { 5523 spin_unlock(ptl); 5524 tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE); 5525 force_flush = true; 5526 address |= last_addr_mask; 5527 continue; 5528 } 5529 5530 pte = huge_ptep_get(mm, address, ptep); 5531 if (huge_pte_none(pte)) { 5532 spin_unlock(ptl); 5533 continue; 5534 } 5535 5536 /* 5537 * Migrating hugepage or HWPoisoned hugepage is already 5538 * unmapped and its refcount is dropped, so just clear pte here. 5539 */ 5540 if (unlikely(!pte_present(pte))) { 5541 /* 5542 * If the pte was wr-protected by uffd-wp in any of the 5543 * swap forms, meanwhile the caller does not want to 5544 * drop the uffd-wp bit in this zap, then replace the 5545 * pte with a marker. 5546 */ 5547 if (pte_swp_uffd_wp_any(pte) && 5548 !(zap_flags & ZAP_FLAG_DROP_MARKER)) 5549 set_huge_pte_at(mm, address, ptep, 5550 make_pte_marker(PTE_MARKER_UFFD_WP), 5551 sz); 5552 else 5553 huge_pte_clear(mm, address, ptep, sz); 5554 spin_unlock(ptl); 5555 continue; 5556 } 5557 5558 page = pte_page(pte); 5559 /* 5560 * If a reference page is supplied, it is because a specific 5561 * page is being unmapped, not a range. Ensure the page we 5562 * are about to unmap is the actual page of interest. 5563 */ 5564 if (ref_page) { 5565 if (page != ref_page) { 5566 spin_unlock(ptl); 5567 continue; 5568 } 5569 /* 5570 * Mark the VMA as having unmapped its page so that 5571 * future faults in this VMA will fail rather than 5572 * looking like data was lost 5573 */ 5574 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); 5575 } 5576 5577 pte = huge_ptep_get_and_clear(mm, address, ptep); 5578 tlb_remove_huge_tlb_entry(h, tlb, ptep, address); 5579 if (huge_pte_dirty(pte)) 5580 set_page_dirty(page); 5581 /* Leave a uffd-wp pte marker if needed */ 5582 if (huge_pte_uffd_wp(pte) && 5583 !(zap_flags & ZAP_FLAG_DROP_MARKER)) 5584 set_huge_pte_at(mm, address, ptep, 5585 make_pte_marker(PTE_MARKER_UFFD_WP), 5586 sz); 5587 hugetlb_count_sub(pages_per_huge_page(h), mm); 5588 hugetlb_remove_rmap(page_folio(page)); 5589 5590 /* 5591 * Restore the reservation for anonymous page, otherwise the 5592 * backing page could be stolen by someone. 5593 * If there we are freeing a surplus, do not set the restore 5594 * reservation bit. 5595 */ 5596 if (!h->surplus_huge_pages && __vma_private_lock(vma) && 5597 folio_test_anon(page_folio(page))) { 5598 folio_set_hugetlb_restore_reserve(page_folio(page)); 5599 /* Reservation to be adjusted after the spin lock */ 5600 adjust_reservation = true; 5601 } 5602 5603 spin_unlock(ptl); 5604 5605 /* 5606 * Adjust the reservation for the region that will have the 5607 * reserve restored. Keep in mind that vma_needs_reservation() changes 5608 * resv->adds_in_progress if it succeeds. If this is not done, 5609 * do_exit() will not see it, and will keep the reservation 5610 * forever. 5611 */ 5612 if (adjust_reservation) { 5613 int rc = vma_needs_reservation(h, vma, address); 5614 5615 if (rc < 0) 5616 /* Pressumably allocate_file_region_entries failed 5617 * to allocate a file_region struct. Clear 5618 * hugetlb_restore_reserve so that global reserve 5619 * count will not be incremented by free_huge_folio. 5620 * Act as if we consumed the reservation. 5621 */ 5622 folio_clear_hugetlb_restore_reserve(page_folio(page)); 5623 else if (rc) 5624 vma_add_reservation(h, vma, address); 5625 } 5626 5627 tlb_remove_page_size(tlb, page, huge_page_size(h)); 5628 /* 5629 * Bail out after unmapping reference page if supplied 5630 */ 5631 if (ref_page) 5632 break; 5633 } 5634 tlb_end_vma(tlb, vma); 5635 5636 /* 5637 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We 5638 * could defer the flush until now, since by holding i_mmap_rwsem we 5639 * guaranteed that the last refernece would not be dropped. But we must 5640 * do the flushing before we return, as otherwise i_mmap_rwsem will be 5641 * dropped and the last reference to the shared PMDs page might be 5642 * dropped as well. 5643 * 5644 * In theory we could defer the freeing of the PMD pages as well, but 5645 * huge_pmd_unshare() relies on the exact page_count for the PMD page to 5646 * detect sharing, so we cannot defer the release of the page either. 5647 * Instead, do flush now. 5648 */ 5649 if (force_flush) 5650 tlb_flush_mmu_tlbonly(tlb); 5651 } 5652 5653 void __hugetlb_zap_begin(struct vm_area_struct *vma, 5654 unsigned long *start, unsigned long *end) 5655 { 5656 if (!vma->vm_file) /* hugetlbfs_file_mmap error */ 5657 return; 5658 5659 adjust_range_if_pmd_sharing_possible(vma, start, end); 5660 hugetlb_vma_lock_write(vma); 5661 if (vma->vm_file) 5662 i_mmap_lock_write(vma->vm_file->f_mapping); 5663 } 5664 5665 void __hugetlb_zap_end(struct vm_area_struct *vma, 5666 struct zap_details *details) 5667 { 5668 zap_flags_t zap_flags = details ? details->zap_flags : 0; 5669 5670 if (!vma->vm_file) /* hugetlbfs_file_mmap error */ 5671 return; 5672 5673 if (zap_flags & ZAP_FLAG_UNMAP) { /* final unmap */ 5674 /* 5675 * Unlock and free the vma lock before releasing i_mmap_rwsem. 5676 * When the vma_lock is freed, this makes the vma ineligible 5677 * for pmd sharing. And, i_mmap_rwsem is required to set up 5678 * pmd sharing. This is important as page tables for this 5679 * unmapped range will be asynchrously deleted. If the page 5680 * tables are shared, there will be issues when accessed by 5681 * someone else. 5682 */ 5683 __hugetlb_vma_unlock_write_free(vma); 5684 } else { 5685 hugetlb_vma_unlock_write(vma); 5686 } 5687 5688 if (vma->vm_file) 5689 i_mmap_unlock_write(vma->vm_file->f_mapping); 5690 } 5691 5692 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, 5693 unsigned long end, struct page *ref_page, 5694 zap_flags_t zap_flags) 5695 { 5696 struct mmu_notifier_range range; 5697 struct mmu_gather tlb; 5698 5699 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 5700 start, end); 5701 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 5702 mmu_notifier_invalidate_range_start(&range); 5703 tlb_gather_mmu(&tlb, vma->vm_mm); 5704 5705 __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags); 5706 5707 mmu_notifier_invalidate_range_end(&range); 5708 tlb_finish_mmu(&tlb); 5709 } 5710 5711 /* 5712 * This is called when the original mapper is failing to COW a MAP_PRIVATE 5713 * mapping it owns the reserve page for. The intention is to unmap the page 5714 * from other VMAs and let the children be SIGKILLed if they are faulting the 5715 * same region. 5716 */ 5717 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, 5718 struct page *page, unsigned long address) 5719 { 5720 struct hstate *h = hstate_vma(vma); 5721 struct vm_area_struct *iter_vma; 5722 struct address_space *mapping; 5723 pgoff_t pgoff; 5724 5725 /* 5726 * vm_pgoff is in PAGE_SIZE units, hence the different calculation 5727 * from page cache lookup which is in HPAGE_SIZE units. 5728 */ 5729 address = address & huge_page_mask(h); 5730 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + 5731 vma->vm_pgoff; 5732 mapping = vma->vm_file->f_mapping; 5733 5734 /* 5735 * Take the mapping lock for the duration of the table walk. As 5736 * this mapping should be shared between all the VMAs, 5737 * __unmap_hugepage_range() is called as the lock is already held 5738 */ 5739 i_mmap_lock_write(mapping); 5740 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) { 5741 /* Do not unmap the current VMA */ 5742 if (iter_vma == vma) 5743 continue; 5744 5745 /* 5746 * Shared VMAs have their own reserves and do not affect 5747 * MAP_PRIVATE accounting but it is possible that a shared 5748 * VMA is using the same page so check and skip such VMAs. 5749 */ 5750 if (iter_vma->vm_flags & VM_MAYSHARE) 5751 continue; 5752 5753 /* 5754 * Unmap the page from other VMAs without their own reserves. 5755 * They get marked to be SIGKILLed if they fault in these 5756 * areas. This is because a future no-page fault on this VMA 5757 * could insert a zeroed page instead of the data existing 5758 * from the time of fork. This would look like data corruption 5759 */ 5760 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) 5761 unmap_hugepage_range(iter_vma, address, 5762 address + huge_page_size(h), page, 0); 5763 } 5764 i_mmap_unlock_write(mapping); 5765 } 5766 5767 /* 5768 * hugetlb_wp() should be called with page lock of the original hugepage held. 5769 * Called with hugetlb_fault_mutex_table held and pte_page locked so we 5770 * cannot race with other handlers or page migration. 5771 * Keep the pte_same checks anyway to make transition from the mutex easier. 5772 */ 5773 static vm_fault_t hugetlb_wp(struct folio *pagecache_folio, 5774 struct vm_fault *vmf) 5775 { 5776 struct vm_area_struct *vma = vmf->vma; 5777 struct mm_struct *mm = vma->vm_mm; 5778 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 5779 pte_t pte = huge_ptep_get(mm, vmf->address, vmf->pte); 5780 struct hstate *h = hstate_vma(vma); 5781 struct folio *old_folio; 5782 struct folio *new_folio; 5783 int outside_reserve = 0; 5784 vm_fault_t ret = 0; 5785 struct mmu_notifier_range range; 5786 5787 /* 5788 * Never handle CoW for uffd-wp protected pages. It should be only 5789 * handled when the uffd-wp protection is removed. 5790 * 5791 * Note that only the CoW optimization path (in hugetlb_no_page()) 5792 * can trigger this, because hugetlb_fault() will always resolve 5793 * uffd-wp bit first. 5794 */ 5795 if (!unshare && huge_pte_uffd_wp(pte)) 5796 return 0; 5797 5798 /* 5799 * hugetlb does not support FOLL_FORCE-style write faults that keep the 5800 * PTE mapped R/O such as maybe_mkwrite() would do. 5801 */ 5802 if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE))) 5803 return VM_FAULT_SIGSEGV; 5804 5805 /* Let's take out MAP_SHARED mappings first. */ 5806 if (vma->vm_flags & VM_MAYSHARE) { 5807 set_huge_ptep_writable(vma, vmf->address, vmf->pte); 5808 return 0; 5809 } 5810 5811 old_folio = page_folio(pte_page(pte)); 5812 5813 delayacct_wpcopy_start(); 5814 5815 retry_avoidcopy: 5816 /* 5817 * If no-one else is actually using this page, we're the exclusive 5818 * owner and can reuse this page. 5819 * 5820 * Note that we don't rely on the (safer) folio refcount here, because 5821 * copying the hugetlb folio when there are unexpected (temporary) 5822 * folio references could harm simple fork()+exit() users when 5823 * we run out of free hugetlb folios: we would have to kill processes 5824 * in scenarios that used to work. As a side effect, there can still 5825 * be leaks between processes, for example, with FOLL_GET users. 5826 */ 5827 if (folio_mapcount(old_folio) == 1 && folio_test_anon(old_folio)) { 5828 if (!PageAnonExclusive(&old_folio->page)) { 5829 folio_move_anon_rmap(old_folio, vma); 5830 SetPageAnonExclusive(&old_folio->page); 5831 } 5832 if (likely(!unshare)) 5833 set_huge_ptep_writable(vma, vmf->address, vmf->pte); 5834 5835 delayacct_wpcopy_end(); 5836 return 0; 5837 } 5838 VM_BUG_ON_PAGE(folio_test_anon(old_folio) && 5839 PageAnonExclusive(&old_folio->page), &old_folio->page); 5840 5841 /* 5842 * If the process that created a MAP_PRIVATE mapping is about to 5843 * perform a COW due to a shared page count, attempt to satisfy 5844 * the allocation without using the existing reserves. The pagecache 5845 * page is used to determine if the reserve at this address was 5846 * consumed or not. If reserves were used, a partial faulted mapping 5847 * at the time of fork() could consume its reserves on COW instead 5848 * of the full address range. 5849 */ 5850 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && 5851 old_folio != pagecache_folio) 5852 outside_reserve = 1; 5853 5854 folio_get(old_folio); 5855 5856 /* 5857 * Drop page table lock as buddy allocator may be called. It will 5858 * be acquired again before returning to the caller, as expected. 5859 */ 5860 spin_unlock(vmf->ptl); 5861 new_folio = alloc_hugetlb_folio(vma, vmf->address, outside_reserve); 5862 5863 if (IS_ERR(new_folio)) { 5864 /* 5865 * If a process owning a MAP_PRIVATE mapping fails to COW, 5866 * it is due to references held by a child and an insufficient 5867 * huge page pool. To guarantee the original mappers 5868 * reliability, unmap the page from child processes. The child 5869 * may get SIGKILLed if it later faults. 5870 */ 5871 if (outside_reserve) { 5872 struct address_space *mapping = vma->vm_file->f_mapping; 5873 pgoff_t idx; 5874 u32 hash; 5875 5876 folio_put(old_folio); 5877 /* 5878 * Drop hugetlb_fault_mutex and vma_lock before 5879 * unmapping. unmapping needs to hold vma_lock 5880 * in write mode. Dropping vma_lock in read mode 5881 * here is OK as COW mappings do not interact with 5882 * PMD sharing. 5883 * 5884 * Reacquire both after unmap operation. 5885 */ 5886 idx = vma_hugecache_offset(h, vma, vmf->address); 5887 hash = hugetlb_fault_mutex_hash(mapping, idx); 5888 hugetlb_vma_unlock_read(vma); 5889 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 5890 5891 unmap_ref_private(mm, vma, &old_folio->page, 5892 vmf->address); 5893 5894 mutex_lock(&hugetlb_fault_mutex_table[hash]); 5895 hugetlb_vma_lock_read(vma); 5896 spin_lock(vmf->ptl); 5897 vmf->pte = hugetlb_walk(vma, vmf->address, 5898 huge_page_size(h)); 5899 if (likely(vmf->pte && 5900 pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), pte))) 5901 goto retry_avoidcopy; 5902 /* 5903 * race occurs while re-acquiring page table 5904 * lock, and our job is done. 5905 */ 5906 delayacct_wpcopy_end(); 5907 return 0; 5908 } 5909 5910 ret = vmf_error(PTR_ERR(new_folio)); 5911 goto out_release_old; 5912 } 5913 5914 /* 5915 * When the original hugepage is shared one, it does not have 5916 * anon_vma prepared. 5917 */ 5918 ret = __vmf_anon_prepare(vmf); 5919 if (unlikely(ret)) 5920 goto out_release_all; 5921 5922 if (copy_user_large_folio(new_folio, old_folio, vmf->real_address, vma)) { 5923 ret = VM_FAULT_HWPOISON_LARGE | VM_FAULT_SET_HINDEX(hstate_index(h)); 5924 goto out_release_all; 5925 } 5926 __folio_mark_uptodate(new_folio); 5927 5928 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, vmf->address, 5929 vmf->address + huge_page_size(h)); 5930 mmu_notifier_invalidate_range_start(&range); 5931 5932 /* 5933 * Retake the page table lock to check for racing updates 5934 * before the page tables are altered 5935 */ 5936 spin_lock(vmf->ptl); 5937 vmf->pte = hugetlb_walk(vma, vmf->address, huge_page_size(h)); 5938 if (likely(vmf->pte && pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), pte))) { 5939 pte_t newpte = make_huge_pte(vma, &new_folio->page, !unshare); 5940 5941 /* Break COW or unshare */ 5942 huge_ptep_clear_flush(vma, vmf->address, vmf->pte); 5943 hugetlb_remove_rmap(old_folio); 5944 hugetlb_add_new_anon_rmap(new_folio, vma, vmf->address); 5945 if (huge_pte_uffd_wp(pte)) 5946 newpte = huge_pte_mkuffd_wp(newpte); 5947 set_huge_pte_at(mm, vmf->address, vmf->pte, newpte, 5948 huge_page_size(h)); 5949 folio_set_hugetlb_migratable(new_folio); 5950 /* Make the old page be freed below */ 5951 new_folio = old_folio; 5952 } 5953 spin_unlock(vmf->ptl); 5954 mmu_notifier_invalidate_range_end(&range); 5955 out_release_all: 5956 /* 5957 * No restore in case of successful pagetable update (Break COW or 5958 * unshare) 5959 */ 5960 if (new_folio != old_folio) 5961 restore_reserve_on_error(h, vma, vmf->address, new_folio); 5962 folio_put(new_folio); 5963 out_release_old: 5964 folio_put(old_folio); 5965 5966 spin_lock(vmf->ptl); /* Caller expects lock to be held */ 5967 5968 delayacct_wpcopy_end(); 5969 return ret; 5970 } 5971 5972 /* 5973 * Return whether there is a pagecache page to back given address within VMA. 5974 */ 5975 bool hugetlbfs_pagecache_present(struct hstate *h, 5976 struct vm_area_struct *vma, unsigned long address) 5977 { 5978 struct address_space *mapping = vma->vm_file->f_mapping; 5979 pgoff_t idx = linear_page_index(vma, address); 5980 struct folio *folio; 5981 5982 folio = filemap_get_folio(mapping, idx); 5983 if (IS_ERR(folio)) 5984 return false; 5985 folio_put(folio); 5986 return true; 5987 } 5988 5989 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping, 5990 pgoff_t idx) 5991 { 5992 struct inode *inode = mapping->host; 5993 struct hstate *h = hstate_inode(inode); 5994 int err; 5995 5996 idx <<= huge_page_order(h); 5997 __folio_set_locked(folio); 5998 err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL); 5999 6000 if (unlikely(err)) { 6001 __folio_clear_locked(folio); 6002 return err; 6003 } 6004 folio_clear_hugetlb_restore_reserve(folio); 6005 6006 /* 6007 * mark folio dirty so that it will not be removed from cache/file 6008 * by non-hugetlbfs specific code paths. 6009 */ 6010 folio_mark_dirty(folio); 6011 6012 spin_lock(&inode->i_lock); 6013 inode->i_blocks += blocks_per_huge_page(h); 6014 spin_unlock(&inode->i_lock); 6015 return 0; 6016 } 6017 6018 static inline vm_fault_t hugetlb_handle_userfault(struct vm_fault *vmf, 6019 struct address_space *mapping, 6020 unsigned long reason) 6021 { 6022 u32 hash; 6023 6024 /* 6025 * vma_lock and hugetlb_fault_mutex must be dropped before handling 6026 * userfault. Also mmap_lock could be dropped due to handling 6027 * userfault, any vma operation should be careful from here. 6028 */ 6029 hugetlb_vma_unlock_read(vmf->vma); 6030 hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff); 6031 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6032 return handle_userfault(vmf, reason); 6033 } 6034 6035 /* 6036 * Recheck pte with pgtable lock. Returns true if pte didn't change, or 6037 * false if pte changed or is changing. 6038 */ 6039 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm, unsigned long addr, 6040 pte_t *ptep, pte_t old_pte) 6041 { 6042 spinlock_t *ptl; 6043 bool same; 6044 6045 ptl = huge_pte_lock(h, mm, ptep); 6046 same = pte_same(huge_ptep_get(mm, addr, ptep), old_pte); 6047 spin_unlock(ptl); 6048 6049 return same; 6050 } 6051 6052 static vm_fault_t hugetlb_no_page(struct address_space *mapping, 6053 struct vm_fault *vmf) 6054 { 6055 struct vm_area_struct *vma = vmf->vma; 6056 struct mm_struct *mm = vma->vm_mm; 6057 struct hstate *h = hstate_vma(vma); 6058 vm_fault_t ret = VM_FAULT_SIGBUS; 6059 int anon_rmap = 0; 6060 unsigned long size; 6061 struct folio *folio; 6062 pte_t new_pte; 6063 bool new_folio, new_pagecache_folio = false; 6064 u32 hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff); 6065 6066 /* 6067 * Currently, we are forced to kill the process in the event the 6068 * original mapper has unmapped pages from the child due to a failed 6069 * COW/unsharing. Warn that such a situation has occurred as it may not 6070 * be obvious. 6071 */ 6072 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { 6073 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n", 6074 current->pid); 6075 goto out; 6076 } 6077 6078 /* 6079 * Use page lock to guard against racing truncation 6080 * before we get page_table_lock. 6081 */ 6082 new_folio = false; 6083 folio = filemap_lock_hugetlb_folio(h, mapping, vmf->pgoff); 6084 if (IS_ERR(folio)) { 6085 size = i_size_read(mapping->host) >> huge_page_shift(h); 6086 if (vmf->pgoff >= size) 6087 goto out; 6088 /* Check for page in userfault range */ 6089 if (userfaultfd_missing(vma)) { 6090 /* 6091 * Since hugetlb_no_page() was examining pte 6092 * without pgtable lock, we need to re-test under 6093 * lock because the pte may not be stable and could 6094 * have changed from under us. Try to detect 6095 * either changed or during-changing ptes and retry 6096 * properly when needed. 6097 * 6098 * Note that userfaultfd is actually fine with 6099 * false positives (e.g. caused by pte changed), 6100 * but not wrong logical events (e.g. caused by 6101 * reading a pte during changing). The latter can 6102 * confuse the userspace, so the strictness is very 6103 * much preferred. E.g., MISSING event should 6104 * never happen on the page after UFFDIO_COPY has 6105 * correctly installed the page and returned. 6106 */ 6107 if (!hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte)) { 6108 ret = 0; 6109 goto out; 6110 } 6111 6112 return hugetlb_handle_userfault(vmf, mapping, 6113 VM_UFFD_MISSING); 6114 } 6115 6116 if (!(vma->vm_flags & VM_MAYSHARE)) { 6117 ret = __vmf_anon_prepare(vmf); 6118 if (unlikely(ret)) 6119 goto out; 6120 } 6121 6122 folio = alloc_hugetlb_folio(vma, vmf->address, 0); 6123 if (IS_ERR(folio)) { 6124 /* 6125 * Returning error will result in faulting task being 6126 * sent SIGBUS. The hugetlb fault mutex prevents two 6127 * tasks from racing to fault in the same page which 6128 * could result in false unable to allocate errors. 6129 * Page migration does not take the fault mutex, but 6130 * does a clear then write of pte's under page table 6131 * lock. Page fault code could race with migration, 6132 * notice the clear pte and try to allocate a page 6133 * here. Before returning error, get ptl and make 6134 * sure there really is no pte entry. 6135 */ 6136 if (hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte)) 6137 ret = vmf_error(PTR_ERR(folio)); 6138 else 6139 ret = 0; 6140 goto out; 6141 } 6142 folio_zero_user(folio, vmf->real_address); 6143 __folio_mark_uptodate(folio); 6144 new_folio = true; 6145 6146 if (vma->vm_flags & VM_MAYSHARE) { 6147 int err = hugetlb_add_to_page_cache(folio, mapping, 6148 vmf->pgoff); 6149 if (err) { 6150 /* 6151 * err can't be -EEXIST which implies someone 6152 * else consumed the reservation since hugetlb 6153 * fault mutex is held when add a hugetlb page 6154 * to the page cache. So it's safe to call 6155 * restore_reserve_on_error() here. 6156 */ 6157 restore_reserve_on_error(h, vma, vmf->address, 6158 folio); 6159 folio_put(folio); 6160 ret = VM_FAULT_SIGBUS; 6161 goto out; 6162 } 6163 new_pagecache_folio = true; 6164 } else { 6165 folio_lock(folio); 6166 anon_rmap = 1; 6167 } 6168 } else { 6169 /* 6170 * If memory error occurs between mmap() and fault, some process 6171 * don't have hwpoisoned swap entry for errored virtual address. 6172 * So we need to block hugepage fault by PG_hwpoison bit check. 6173 */ 6174 if (unlikely(folio_test_hwpoison(folio))) { 6175 ret = VM_FAULT_HWPOISON_LARGE | 6176 VM_FAULT_SET_HINDEX(hstate_index(h)); 6177 goto backout_unlocked; 6178 } 6179 6180 /* Check for page in userfault range. */ 6181 if (userfaultfd_minor(vma)) { 6182 folio_unlock(folio); 6183 folio_put(folio); 6184 /* See comment in userfaultfd_missing() block above */ 6185 if (!hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte)) { 6186 ret = 0; 6187 goto out; 6188 } 6189 return hugetlb_handle_userfault(vmf, mapping, 6190 VM_UFFD_MINOR); 6191 } 6192 } 6193 6194 /* 6195 * If we are going to COW a private mapping later, we examine the 6196 * pending reservations for this page now. This will ensure that 6197 * any allocations necessary to record that reservation occur outside 6198 * the spinlock. 6199 */ 6200 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 6201 if (vma_needs_reservation(h, vma, vmf->address) < 0) { 6202 ret = VM_FAULT_OOM; 6203 goto backout_unlocked; 6204 } 6205 /* Just decrements count, does not deallocate */ 6206 vma_end_reservation(h, vma, vmf->address); 6207 } 6208 6209 vmf->ptl = huge_pte_lock(h, mm, vmf->pte); 6210 ret = 0; 6211 /* If pte changed from under us, retry */ 6212 if (!pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), vmf->orig_pte)) 6213 goto backout; 6214 6215 if (anon_rmap) 6216 hugetlb_add_new_anon_rmap(folio, vma, vmf->address); 6217 else 6218 hugetlb_add_file_rmap(folio); 6219 new_pte = make_huge_pte(vma, &folio->page, ((vma->vm_flags & VM_WRITE) 6220 && (vma->vm_flags & VM_SHARED))); 6221 /* 6222 * If this pte was previously wr-protected, keep it wr-protected even 6223 * if populated. 6224 */ 6225 if (unlikely(pte_marker_uffd_wp(vmf->orig_pte))) 6226 new_pte = huge_pte_mkuffd_wp(new_pte); 6227 set_huge_pte_at(mm, vmf->address, vmf->pte, new_pte, huge_page_size(h)); 6228 6229 hugetlb_count_add(pages_per_huge_page(h), mm); 6230 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 6231 /* Optimization, do the COW without a second fault */ 6232 ret = hugetlb_wp(folio, vmf); 6233 } 6234 6235 spin_unlock(vmf->ptl); 6236 6237 /* 6238 * Only set hugetlb_migratable in newly allocated pages. Existing pages 6239 * found in the pagecache may not have hugetlb_migratable if they have 6240 * been isolated for migration. 6241 */ 6242 if (new_folio) 6243 folio_set_hugetlb_migratable(folio); 6244 6245 folio_unlock(folio); 6246 out: 6247 hugetlb_vma_unlock_read(vma); 6248 6249 /* 6250 * We must check to release the per-VMA lock. __vmf_anon_prepare() is 6251 * the only way ret can be set to VM_FAULT_RETRY. 6252 */ 6253 if (unlikely(ret & VM_FAULT_RETRY)) 6254 vma_end_read(vma); 6255 6256 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6257 return ret; 6258 6259 backout: 6260 spin_unlock(vmf->ptl); 6261 backout_unlocked: 6262 if (new_folio && !new_pagecache_folio) 6263 restore_reserve_on_error(h, vma, vmf->address, folio); 6264 6265 folio_unlock(folio); 6266 folio_put(folio); 6267 goto out; 6268 } 6269 6270 #ifdef CONFIG_SMP 6271 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 6272 { 6273 unsigned long key[2]; 6274 u32 hash; 6275 6276 key[0] = (unsigned long) mapping; 6277 key[1] = idx; 6278 6279 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0); 6280 6281 return hash & (num_fault_mutexes - 1); 6282 } 6283 #else 6284 /* 6285 * For uniprocessor systems we always use a single mutex, so just 6286 * return 0 and avoid the hashing overhead. 6287 */ 6288 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 6289 { 6290 return 0; 6291 } 6292 #endif 6293 6294 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, 6295 unsigned long address, unsigned int flags) 6296 { 6297 vm_fault_t ret; 6298 u32 hash; 6299 struct folio *folio = NULL; 6300 struct folio *pagecache_folio = NULL; 6301 struct hstate *h = hstate_vma(vma); 6302 struct address_space *mapping; 6303 int need_wait_lock = 0; 6304 struct vm_fault vmf = { 6305 .vma = vma, 6306 .address = address & huge_page_mask(h), 6307 .real_address = address, 6308 .flags = flags, 6309 .pgoff = vma_hugecache_offset(h, vma, 6310 address & huge_page_mask(h)), 6311 /* TODO: Track hugetlb faults using vm_fault */ 6312 6313 /* 6314 * Some fields may not be initialized, be careful as it may 6315 * be hard to debug if called functions make assumptions 6316 */ 6317 }; 6318 6319 /* 6320 * Serialize hugepage allocation and instantiation, so that we don't 6321 * get spurious allocation failures if two CPUs race to instantiate 6322 * the same page in the page cache. 6323 */ 6324 mapping = vma->vm_file->f_mapping; 6325 hash = hugetlb_fault_mutex_hash(mapping, vmf.pgoff); 6326 mutex_lock(&hugetlb_fault_mutex_table[hash]); 6327 6328 /* 6329 * Acquire vma lock before calling huge_pte_alloc and hold 6330 * until finished with vmf.pte. This prevents huge_pmd_unshare from 6331 * being called elsewhere and making the vmf.pte no longer valid. 6332 */ 6333 hugetlb_vma_lock_read(vma); 6334 vmf.pte = huge_pte_alloc(mm, vma, vmf.address, huge_page_size(h)); 6335 if (!vmf.pte) { 6336 hugetlb_vma_unlock_read(vma); 6337 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6338 return VM_FAULT_OOM; 6339 } 6340 6341 vmf.orig_pte = huge_ptep_get(mm, vmf.address, vmf.pte); 6342 if (huge_pte_none_mostly(vmf.orig_pte)) { 6343 if (is_pte_marker(vmf.orig_pte)) { 6344 pte_marker marker = 6345 pte_marker_get(pte_to_swp_entry(vmf.orig_pte)); 6346 6347 if (marker & PTE_MARKER_POISONED) { 6348 ret = VM_FAULT_HWPOISON_LARGE | 6349 VM_FAULT_SET_HINDEX(hstate_index(h)); 6350 goto out_mutex; 6351 } 6352 } 6353 6354 /* 6355 * Other PTE markers should be handled the same way as none PTE. 6356 * 6357 * hugetlb_no_page will drop vma lock and hugetlb fault 6358 * mutex internally, which make us return immediately. 6359 */ 6360 return hugetlb_no_page(mapping, &vmf); 6361 } 6362 6363 ret = 0; 6364 6365 /* 6366 * vmf.orig_pte could be a migration/hwpoison vmf.orig_pte at this 6367 * point, so this check prevents the kernel from going below assuming 6368 * that we have an active hugepage in pagecache. This goto expects 6369 * the 2nd page fault, and is_hugetlb_entry_(migration|hwpoisoned) 6370 * check will properly handle it. 6371 */ 6372 if (!pte_present(vmf.orig_pte)) { 6373 if (unlikely(is_hugetlb_entry_migration(vmf.orig_pte))) { 6374 /* 6375 * Release the hugetlb fault lock now, but retain 6376 * the vma lock, because it is needed to guard the 6377 * huge_pte_lockptr() later in 6378 * migration_entry_wait_huge(). The vma lock will 6379 * be released there. 6380 */ 6381 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6382 migration_entry_wait_huge(vma, vmf.address, vmf.pte); 6383 return 0; 6384 } else if (unlikely(is_hugetlb_entry_hwpoisoned(vmf.orig_pte))) 6385 ret = VM_FAULT_HWPOISON_LARGE | 6386 VM_FAULT_SET_HINDEX(hstate_index(h)); 6387 goto out_mutex; 6388 } 6389 6390 /* 6391 * If we are going to COW/unshare the mapping later, we examine the 6392 * pending reservations for this page now. This will ensure that any 6393 * allocations necessary to record that reservation occur outside the 6394 * spinlock. Also lookup the pagecache page now as it is used to 6395 * determine if a reservation has been consumed. 6396 */ 6397 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) && 6398 !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(vmf.orig_pte)) { 6399 if (vma_needs_reservation(h, vma, vmf.address) < 0) { 6400 ret = VM_FAULT_OOM; 6401 goto out_mutex; 6402 } 6403 /* Just decrements count, does not deallocate */ 6404 vma_end_reservation(h, vma, vmf.address); 6405 6406 pagecache_folio = filemap_lock_hugetlb_folio(h, mapping, 6407 vmf.pgoff); 6408 if (IS_ERR(pagecache_folio)) 6409 pagecache_folio = NULL; 6410 } 6411 6412 vmf.ptl = huge_pte_lock(h, mm, vmf.pte); 6413 6414 /* Check for a racing update before calling hugetlb_wp() */ 6415 if (unlikely(!pte_same(vmf.orig_pte, huge_ptep_get(mm, vmf.address, vmf.pte)))) 6416 goto out_ptl; 6417 6418 /* Handle userfault-wp first, before trying to lock more pages */ 6419 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(mm, vmf.address, vmf.pte)) && 6420 (flags & FAULT_FLAG_WRITE) && !huge_pte_write(vmf.orig_pte)) { 6421 if (!userfaultfd_wp_async(vma)) { 6422 spin_unlock(vmf.ptl); 6423 if (pagecache_folio) { 6424 folio_unlock(pagecache_folio); 6425 folio_put(pagecache_folio); 6426 } 6427 hugetlb_vma_unlock_read(vma); 6428 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6429 return handle_userfault(&vmf, VM_UFFD_WP); 6430 } 6431 6432 vmf.orig_pte = huge_pte_clear_uffd_wp(vmf.orig_pte); 6433 set_huge_pte_at(mm, vmf.address, vmf.pte, vmf.orig_pte, 6434 huge_page_size(hstate_vma(vma))); 6435 /* Fallthrough to CoW */ 6436 } 6437 6438 /* 6439 * hugetlb_wp() requires page locks of pte_page(vmf.orig_pte) and 6440 * pagecache_folio, so here we need take the former one 6441 * when folio != pagecache_folio or !pagecache_folio. 6442 */ 6443 folio = page_folio(pte_page(vmf.orig_pte)); 6444 if (folio != pagecache_folio) 6445 if (!folio_trylock(folio)) { 6446 need_wait_lock = 1; 6447 goto out_ptl; 6448 } 6449 6450 folio_get(folio); 6451 6452 if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) { 6453 if (!huge_pte_write(vmf.orig_pte)) { 6454 ret = hugetlb_wp(pagecache_folio, &vmf); 6455 goto out_put_page; 6456 } else if (likely(flags & FAULT_FLAG_WRITE)) { 6457 vmf.orig_pte = huge_pte_mkdirty(vmf.orig_pte); 6458 } 6459 } 6460 vmf.orig_pte = pte_mkyoung(vmf.orig_pte); 6461 if (huge_ptep_set_access_flags(vma, vmf.address, vmf.pte, vmf.orig_pte, 6462 flags & FAULT_FLAG_WRITE)) 6463 update_mmu_cache(vma, vmf.address, vmf.pte); 6464 out_put_page: 6465 if (folio != pagecache_folio) 6466 folio_unlock(folio); 6467 folio_put(folio); 6468 out_ptl: 6469 spin_unlock(vmf.ptl); 6470 6471 if (pagecache_folio) { 6472 folio_unlock(pagecache_folio); 6473 folio_put(pagecache_folio); 6474 } 6475 out_mutex: 6476 hugetlb_vma_unlock_read(vma); 6477 6478 /* 6479 * We must check to release the per-VMA lock. __vmf_anon_prepare() in 6480 * hugetlb_wp() is the only way ret can be set to VM_FAULT_RETRY. 6481 */ 6482 if (unlikely(ret & VM_FAULT_RETRY)) 6483 vma_end_read(vma); 6484 6485 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6486 /* 6487 * Generally it's safe to hold refcount during waiting page lock. But 6488 * here we just wait to defer the next page fault to avoid busy loop and 6489 * the page is not used after unlocked before returning from the current 6490 * page fault. So we are safe from accessing freed page, even if we wait 6491 * here without taking refcount. 6492 */ 6493 if (need_wait_lock) 6494 folio_wait_locked(folio); 6495 return ret; 6496 } 6497 6498 #ifdef CONFIG_USERFAULTFD 6499 /* 6500 * Can probably be eliminated, but still used by hugetlb_mfill_atomic_pte(). 6501 */ 6502 static struct folio *alloc_hugetlb_folio_vma(struct hstate *h, 6503 struct vm_area_struct *vma, unsigned long address) 6504 { 6505 struct mempolicy *mpol; 6506 nodemask_t *nodemask; 6507 struct folio *folio; 6508 gfp_t gfp_mask; 6509 int node; 6510 6511 gfp_mask = htlb_alloc_mask(h); 6512 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 6513 /* 6514 * This is used to allocate a temporary hugetlb to hold the copied 6515 * content, which will then be copied again to the final hugetlb 6516 * consuming a reservation. Set the alloc_fallback to false to indicate 6517 * that breaking the per-node hugetlb pool is not allowed in this case. 6518 */ 6519 folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask, false); 6520 mpol_cond_put(mpol); 6521 6522 return folio; 6523 } 6524 6525 /* 6526 * Used by userfaultfd UFFDIO_* ioctls. Based on userfaultfd's mfill_atomic_pte 6527 * with modifications for hugetlb pages. 6528 */ 6529 int hugetlb_mfill_atomic_pte(pte_t *dst_pte, 6530 struct vm_area_struct *dst_vma, 6531 unsigned long dst_addr, 6532 unsigned long src_addr, 6533 uffd_flags_t flags, 6534 struct folio **foliop) 6535 { 6536 struct mm_struct *dst_mm = dst_vma->vm_mm; 6537 bool is_continue = uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE); 6538 bool wp_enabled = (flags & MFILL_ATOMIC_WP); 6539 struct hstate *h = hstate_vma(dst_vma); 6540 struct address_space *mapping = dst_vma->vm_file->f_mapping; 6541 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr); 6542 unsigned long size = huge_page_size(h); 6543 int vm_shared = dst_vma->vm_flags & VM_SHARED; 6544 pte_t _dst_pte; 6545 spinlock_t *ptl; 6546 int ret = -ENOMEM; 6547 struct folio *folio; 6548 int writable; 6549 bool folio_in_pagecache = false; 6550 6551 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_POISON)) { 6552 ptl = huge_pte_lock(h, dst_mm, dst_pte); 6553 6554 /* Don't overwrite any existing PTEs (even markers) */ 6555 if (!huge_pte_none(huge_ptep_get(dst_mm, dst_addr, dst_pte))) { 6556 spin_unlock(ptl); 6557 return -EEXIST; 6558 } 6559 6560 _dst_pte = make_pte_marker(PTE_MARKER_POISONED); 6561 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, size); 6562 6563 /* No need to invalidate - it was non-present before */ 6564 update_mmu_cache(dst_vma, dst_addr, dst_pte); 6565 6566 spin_unlock(ptl); 6567 return 0; 6568 } 6569 6570 if (is_continue) { 6571 ret = -EFAULT; 6572 folio = filemap_lock_hugetlb_folio(h, mapping, idx); 6573 if (IS_ERR(folio)) 6574 goto out; 6575 folio_in_pagecache = true; 6576 } else if (!*foliop) { 6577 /* If a folio already exists, then it's UFFDIO_COPY for 6578 * a non-missing case. Return -EEXIST. 6579 */ 6580 if (vm_shared && 6581 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) { 6582 ret = -EEXIST; 6583 goto out; 6584 } 6585 6586 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0); 6587 if (IS_ERR(folio)) { 6588 ret = -ENOMEM; 6589 goto out; 6590 } 6591 6592 ret = copy_folio_from_user(folio, (const void __user *) src_addr, 6593 false); 6594 6595 /* fallback to copy_from_user outside mmap_lock */ 6596 if (unlikely(ret)) { 6597 ret = -ENOENT; 6598 /* Free the allocated folio which may have 6599 * consumed a reservation. 6600 */ 6601 restore_reserve_on_error(h, dst_vma, dst_addr, folio); 6602 folio_put(folio); 6603 6604 /* Allocate a temporary folio to hold the copied 6605 * contents. 6606 */ 6607 folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr); 6608 if (!folio) { 6609 ret = -ENOMEM; 6610 goto out; 6611 } 6612 *foliop = folio; 6613 /* Set the outparam foliop and return to the caller to 6614 * copy the contents outside the lock. Don't free the 6615 * folio. 6616 */ 6617 goto out; 6618 } 6619 } else { 6620 if (vm_shared && 6621 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) { 6622 folio_put(*foliop); 6623 ret = -EEXIST; 6624 *foliop = NULL; 6625 goto out; 6626 } 6627 6628 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0); 6629 if (IS_ERR(folio)) { 6630 folio_put(*foliop); 6631 ret = -ENOMEM; 6632 *foliop = NULL; 6633 goto out; 6634 } 6635 ret = copy_user_large_folio(folio, *foliop, 6636 ALIGN_DOWN(dst_addr, size), dst_vma); 6637 folio_put(*foliop); 6638 *foliop = NULL; 6639 if (ret) { 6640 folio_put(folio); 6641 goto out; 6642 } 6643 } 6644 6645 /* 6646 * If we just allocated a new page, we need a memory barrier to ensure 6647 * that preceding stores to the page become visible before the 6648 * set_pte_at() write. The memory barrier inside __folio_mark_uptodate 6649 * is what we need. 6650 * 6651 * In the case where we have not allocated a new page (is_continue), 6652 * the page must already be uptodate. UFFDIO_CONTINUE already includes 6653 * an earlier smp_wmb() to ensure that prior stores will be visible 6654 * before the set_pte_at() write. 6655 */ 6656 if (!is_continue) 6657 __folio_mark_uptodate(folio); 6658 else 6659 WARN_ON_ONCE(!folio_test_uptodate(folio)); 6660 6661 /* Add shared, newly allocated pages to the page cache. */ 6662 if (vm_shared && !is_continue) { 6663 ret = -EFAULT; 6664 if (idx >= (i_size_read(mapping->host) >> huge_page_shift(h))) 6665 goto out_release_nounlock; 6666 6667 /* 6668 * Serialization between remove_inode_hugepages() and 6669 * hugetlb_add_to_page_cache() below happens through the 6670 * hugetlb_fault_mutex_table that here must be hold by 6671 * the caller. 6672 */ 6673 ret = hugetlb_add_to_page_cache(folio, mapping, idx); 6674 if (ret) 6675 goto out_release_nounlock; 6676 folio_in_pagecache = true; 6677 } 6678 6679 ptl = huge_pte_lock(h, dst_mm, dst_pte); 6680 6681 ret = -EIO; 6682 if (folio_test_hwpoison(folio)) 6683 goto out_release_unlock; 6684 6685 /* 6686 * We allow to overwrite a pte marker: consider when both MISSING|WP 6687 * registered, we firstly wr-protect a none pte which has no page cache 6688 * page backing it, then access the page. 6689 */ 6690 ret = -EEXIST; 6691 if (!huge_pte_none_mostly(huge_ptep_get(dst_mm, dst_addr, dst_pte))) 6692 goto out_release_unlock; 6693 6694 if (folio_in_pagecache) 6695 hugetlb_add_file_rmap(folio); 6696 else 6697 hugetlb_add_new_anon_rmap(folio, dst_vma, dst_addr); 6698 6699 /* 6700 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY 6701 * with wp flag set, don't set pte write bit. 6702 */ 6703 if (wp_enabled || (is_continue && !vm_shared)) 6704 writable = 0; 6705 else 6706 writable = dst_vma->vm_flags & VM_WRITE; 6707 6708 _dst_pte = make_huge_pte(dst_vma, &folio->page, writable); 6709 /* 6710 * Always mark UFFDIO_COPY page dirty; note that this may not be 6711 * extremely important for hugetlbfs for now since swapping is not 6712 * supported, but we should still be clear in that this page cannot be 6713 * thrown away at will, even if write bit not set. 6714 */ 6715 _dst_pte = huge_pte_mkdirty(_dst_pte); 6716 _dst_pte = pte_mkyoung(_dst_pte); 6717 6718 if (wp_enabled) 6719 _dst_pte = huge_pte_mkuffd_wp(_dst_pte); 6720 6721 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, size); 6722 6723 hugetlb_count_add(pages_per_huge_page(h), dst_mm); 6724 6725 /* No need to invalidate - it was non-present before */ 6726 update_mmu_cache(dst_vma, dst_addr, dst_pte); 6727 6728 spin_unlock(ptl); 6729 if (!is_continue) 6730 folio_set_hugetlb_migratable(folio); 6731 if (vm_shared || is_continue) 6732 folio_unlock(folio); 6733 ret = 0; 6734 out: 6735 return ret; 6736 out_release_unlock: 6737 spin_unlock(ptl); 6738 if (vm_shared || is_continue) 6739 folio_unlock(folio); 6740 out_release_nounlock: 6741 if (!folio_in_pagecache) 6742 restore_reserve_on_error(h, dst_vma, dst_addr, folio); 6743 folio_put(folio); 6744 goto out; 6745 } 6746 #endif /* CONFIG_USERFAULTFD */ 6747 6748 long hugetlb_change_protection(struct vm_area_struct *vma, 6749 unsigned long address, unsigned long end, 6750 pgprot_t newprot, unsigned long cp_flags) 6751 { 6752 struct mm_struct *mm = vma->vm_mm; 6753 unsigned long start = address; 6754 pte_t *ptep; 6755 pte_t pte; 6756 struct hstate *h = hstate_vma(vma); 6757 long pages = 0, psize = huge_page_size(h); 6758 bool shared_pmd = false; 6759 struct mmu_notifier_range range; 6760 unsigned long last_addr_mask; 6761 bool uffd_wp = cp_flags & MM_CP_UFFD_WP; 6762 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE; 6763 6764 /* 6765 * In the case of shared PMDs, the area to flush could be beyond 6766 * start/end. Set range.start/range.end to cover the maximum possible 6767 * range if PMD sharing is possible. 6768 */ 6769 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA, 6770 0, mm, start, end); 6771 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 6772 6773 BUG_ON(address >= end); 6774 flush_cache_range(vma, range.start, range.end); 6775 6776 mmu_notifier_invalidate_range_start(&range); 6777 hugetlb_vma_lock_write(vma); 6778 i_mmap_lock_write(vma->vm_file->f_mapping); 6779 last_addr_mask = hugetlb_mask_last_page(h); 6780 for (; address < end; address += psize) { 6781 spinlock_t *ptl; 6782 ptep = hugetlb_walk(vma, address, psize); 6783 if (!ptep) { 6784 if (!uffd_wp) { 6785 address |= last_addr_mask; 6786 continue; 6787 } 6788 /* 6789 * Userfaultfd wr-protect requires pgtable 6790 * pre-allocations to install pte markers. 6791 */ 6792 ptep = huge_pte_alloc(mm, vma, address, psize); 6793 if (!ptep) { 6794 pages = -ENOMEM; 6795 break; 6796 } 6797 } 6798 ptl = huge_pte_lock(h, mm, ptep); 6799 if (huge_pmd_unshare(mm, vma, address, ptep)) { 6800 /* 6801 * When uffd-wp is enabled on the vma, unshare 6802 * shouldn't happen at all. Warn about it if it 6803 * happened due to some reason. 6804 */ 6805 WARN_ON_ONCE(uffd_wp || uffd_wp_resolve); 6806 pages++; 6807 spin_unlock(ptl); 6808 shared_pmd = true; 6809 address |= last_addr_mask; 6810 continue; 6811 } 6812 pte = huge_ptep_get(mm, address, ptep); 6813 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) { 6814 /* Nothing to do. */ 6815 } else if (unlikely(is_hugetlb_entry_migration(pte))) { 6816 swp_entry_t entry = pte_to_swp_entry(pte); 6817 struct page *page = pfn_swap_entry_to_page(entry); 6818 pte_t newpte = pte; 6819 6820 if (is_writable_migration_entry(entry)) { 6821 if (PageAnon(page)) 6822 entry = make_readable_exclusive_migration_entry( 6823 swp_offset(entry)); 6824 else 6825 entry = make_readable_migration_entry( 6826 swp_offset(entry)); 6827 newpte = swp_entry_to_pte(entry); 6828 pages++; 6829 } 6830 6831 if (uffd_wp) 6832 newpte = pte_swp_mkuffd_wp(newpte); 6833 else if (uffd_wp_resolve) 6834 newpte = pte_swp_clear_uffd_wp(newpte); 6835 if (!pte_same(pte, newpte)) 6836 set_huge_pte_at(mm, address, ptep, newpte, psize); 6837 } else if (unlikely(is_pte_marker(pte))) { 6838 /* 6839 * Do nothing on a poison marker; page is 6840 * corrupted, permissons do not apply. Here 6841 * pte_marker_uffd_wp()==true implies !poison 6842 * because they're mutual exclusive. 6843 */ 6844 if (pte_marker_uffd_wp(pte) && uffd_wp_resolve) 6845 /* Safe to modify directly (non-present->none). */ 6846 huge_pte_clear(mm, address, ptep, psize); 6847 } else if (!huge_pte_none(pte)) { 6848 pte_t old_pte; 6849 unsigned int shift = huge_page_shift(hstate_vma(vma)); 6850 6851 old_pte = huge_ptep_modify_prot_start(vma, address, ptep); 6852 pte = huge_pte_modify(old_pte, newprot); 6853 pte = arch_make_huge_pte(pte, shift, vma->vm_flags); 6854 if (uffd_wp) 6855 pte = huge_pte_mkuffd_wp(pte); 6856 else if (uffd_wp_resolve) 6857 pte = huge_pte_clear_uffd_wp(pte); 6858 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte); 6859 pages++; 6860 } else { 6861 /* None pte */ 6862 if (unlikely(uffd_wp)) 6863 /* Safe to modify directly (none->non-present). */ 6864 set_huge_pte_at(mm, address, ptep, 6865 make_pte_marker(PTE_MARKER_UFFD_WP), 6866 psize); 6867 } 6868 spin_unlock(ptl); 6869 } 6870 /* 6871 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare 6872 * may have cleared our pud entry and done put_page on the page table: 6873 * once we release i_mmap_rwsem, another task can do the final put_page 6874 * and that page table be reused and filled with junk. If we actually 6875 * did unshare a page of pmds, flush the range corresponding to the pud. 6876 */ 6877 if (shared_pmd) 6878 flush_hugetlb_tlb_range(vma, range.start, range.end); 6879 else 6880 flush_hugetlb_tlb_range(vma, start, end); 6881 /* 6882 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs() we are 6883 * downgrading page table protection not changing it to point to a new 6884 * page. 6885 * 6886 * See Documentation/mm/mmu_notifier.rst 6887 */ 6888 i_mmap_unlock_write(vma->vm_file->f_mapping); 6889 hugetlb_vma_unlock_write(vma); 6890 mmu_notifier_invalidate_range_end(&range); 6891 6892 return pages > 0 ? (pages << h->order) : pages; 6893 } 6894 6895 /* Return true if reservation was successful, false otherwise. */ 6896 bool hugetlb_reserve_pages(struct inode *inode, 6897 long from, long to, 6898 struct vm_area_struct *vma, 6899 vm_flags_t vm_flags) 6900 { 6901 long chg = -1, add = -1; 6902 struct hstate *h = hstate_inode(inode); 6903 struct hugepage_subpool *spool = subpool_inode(inode); 6904 struct resv_map *resv_map; 6905 struct hugetlb_cgroup *h_cg = NULL; 6906 long gbl_reserve, regions_needed = 0; 6907 6908 /* This should never happen */ 6909 if (from > to) { 6910 VM_WARN(1, "%s called with a negative range\n", __func__); 6911 return false; 6912 } 6913 6914 /* 6915 * vma specific semaphore used for pmd sharing and fault/truncation 6916 * synchronization 6917 */ 6918 hugetlb_vma_lock_alloc(vma); 6919 6920 /* 6921 * Only apply hugepage reservation if asked. At fault time, an 6922 * attempt will be made for VM_NORESERVE to allocate a page 6923 * without using reserves 6924 */ 6925 if (vm_flags & VM_NORESERVE) 6926 return true; 6927 6928 /* 6929 * Shared mappings base their reservation on the number of pages that 6930 * are already allocated on behalf of the file. Private mappings need 6931 * to reserve the full area even if read-only as mprotect() may be 6932 * called to make the mapping read-write. Assume !vma is a shm mapping 6933 */ 6934 if (!vma || vma->vm_flags & VM_MAYSHARE) { 6935 /* 6936 * resv_map can not be NULL as hugetlb_reserve_pages is only 6937 * called for inodes for which resv_maps were created (see 6938 * hugetlbfs_get_inode). 6939 */ 6940 resv_map = inode_resv_map(inode); 6941 6942 chg = region_chg(resv_map, from, to, ®ions_needed); 6943 } else { 6944 /* Private mapping. */ 6945 resv_map = resv_map_alloc(); 6946 if (!resv_map) 6947 goto out_err; 6948 6949 chg = to - from; 6950 6951 set_vma_resv_map(vma, resv_map); 6952 set_vma_resv_flags(vma, HPAGE_RESV_OWNER); 6953 } 6954 6955 if (chg < 0) 6956 goto out_err; 6957 6958 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h), 6959 chg * pages_per_huge_page(h), &h_cg) < 0) 6960 goto out_err; 6961 6962 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) { 6963 /* For private mappings, the hugetlb_cgroup uncharge info hangs 6964 * of the resv_map. 6965 */ 6966 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h); 6967 } 6968 6969 /* 6970 * There must be enough pages in the subpool for the mapping. If 6971 * the subpool has a minimum size, there may be some global 6972 * reservations already in place (gbl_reserve). 6973 */ 6974 gbl_reserve = hugepage_subpool_get_pages(spool, chg); 6975 if (gbl_reserve < 0) 6976 goto out_uncharge_cgroup; 6977 6978 /* 6979 * Check enough hugepages are available for the reservation. 6980 * Hand the pages back to the subpool if there are not 6981 */ 6982 if (hugetlb_acct_memory(h, gbl_reserve) < 0) 6983 goto out_put_pages; 6984 6985 /* 6986 * Account for the reservations made. Shared mappings record regions 6987 * that have reservations as they are shared by multiple VMAs. 6988 * When the last VMA disappears, the region map says how much 6989 * the reservation was and the page cache tells how much of 6990 * the reservation was consumed. Private mappings are per-VMA and 6991 * only the consumed reservations are tracked. When the VMA 6992 * disappears, the original reservation is the VMA size and the 6993 * consumed reservations are stored in the map. Hence, nothing 6994 * else has to be done for private mappings here 6995 */ 6996 if (!vma || vma->vm_flags & VM_MAYSHARE) { 6997 add = region_add(resv_map, from, to, regions_needed, h, h_cg); 6998 6999 if (unlikely(add < 0)) { 7000 hugetlb_acct_memory(h, -gbl_reserve); 7001 goto out_put_pages; 7002 } else if (unlikely(chg > add)) { 7003 /* 7004 * pages in this range were added to the reserve 7005 * map between region_chg and region_add. This 7006 * indicates a race with alloc_hugetlb_folio. Adjust 7007 * the subpool and reserve counts modified above 7008 * based on the difference. 7009 */ 7010 long rsv_adjust; 7011 7012 /* 7013 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the 7014 * reference to h_cg->css. See comment below for detail. 7015 */ 7016 hugetlb_cgroup_uncharge_cgroup_rsvd( 7017 hstate_index(h), 7018 (chg - add) * pages_per_huge_page(h), h_cg); 7019 7020 rsv_adjust = hugepage_subpool_put_pages(spool, 7021 chg - add); 7022 hugetlb_acct_memory(h, -rsv_adjust); 7023 } else if (h_cg) { 7024 /* 7025 * The file_regions will hold their own reference to 7026 * h_cg->css. So we should release the reference held 7027 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are 7028 * done. 7029 */ 7030 hugetlb_cgroup_put_rsvd_cgroup(h_cg); 7031 } 7032 } 7033 return true; 7034 7035 out_put_pages: 7036 /* put back original number of pages, chg */ 7037 (void)hugepage_subpool_put_pages(spool, chg); 7038 out_uncharge_cgroup: 7039 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h), 7040 chg * pages_per_huge_page(h), h_cg); 7041 out_err: 7042 hugetlb_vma_lock_free(vma); 7043 if (!vma || vma->vm_flags & VM_MAYSHARE) 7044 /* Only call region_abort if the region_chg succeeded but the 7045 * region_add failed or didn't run. 7046 */ 7047 if (chg >= 0 && add < 0) 7048 region_abort(resv_map, from, to, regions_needed); 7049 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 7050 kref_put(&resv_map->refs, resv_map_release); 7051 set_vma_resv_map(vma, NULL); 7052 } 7053 return false; 7054 } 7055 7056 long hugetlb_unreserve_pages(struct inode *inode, long start, long end, 7057 long freed) 7058 { 7059 struct hstate *h = hstate_inode(inode); 7060 struct resv_map *resv_map = inode_resv_map(inode); 7061 long chg = 0; 7062 struct hugepage_subpool *spool = subpool_inode(inode); 7063 long gbl_reserve; 7064 7065 /* 7066 * Since this routine can be called in the evict inode path for all 7067 * hugetlbfs inodes, resv_map could be NULL. 7068 */ 7069 if (resv_map) { 7070 chg = region_del(resv_map, start, end); 7071 /* 7072 * region_del() can fail in the rare case where a region 7073 * must be split and another region descriptor can not be 7074 * allocated. If end == LONG_MAX, it will not fail. 7075 */ 7076 if (chg < 0) 7077 return chg; 7078 } 7079 7080 spin_lock(&inode->i_lock); 7081 inode->i_blocks -= (blocks_per_huge_page(h) * freed); 7082 spin_unlock(&inode->i_lock); 7083 7084 /* 7085 * If the subpool has a minimum size, the number of global 7086 * reservations to be released may be adjusted. 7087 * 7088 * Note that !resv_map implies freed == 0. So (chg - freed) 7089 * won't go negative. 7090 */ 7091 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed)); 7092 hugetlb_acct_memory(h, -gbl_reserve); 7093 7094 return 0; 7095 } 7096 7097 #ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING 7098 static unsigned long page_table_shareable(struct vm_area_struct *svma, 7099 struct vm_area_struct *vma, 7100 unsigned long addr, pgoff_t idx) 7101 { 7102 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) + 7103 svma->vm_start; 7104 unsigned long sbase = saddr & PUD_MASK; 7105 unsigned long s_end = sbase + PUD_SIZE; 7106 7107 /* Allow segments to share if only one is marked locked */ 7108 unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED_MASK; 7109 unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED_MASK; 7110 7111 /* 7112 * match the virtual addresses, permission and the alignment of the 7113 * page table page. 7114 * 7115 * Also, vma_lock (vm_private_data) is required for sharing. 7116 */ 7117 if (pmd_index(addr) != pmd_index(saddr) || 7118 vm_flags != svm_flags || 7119 !range_in_vma(svma, sbase, s_end) || 7120 !svma->vm_private_data) 7121 return 0; 7122 7123 return saddr; 7124 } 7125 7126 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr) 7127 { 7128 unsigned long start = addr & PUD_MASK; 7129 unsigned long end = start + PUD_SIZE; 7130 7131 #ifdef CONFIG_USERFAULTFD 7132 if (uffd_disable_huge_pmd_share(vma)) 7133 return false; 7134 #endif 7135 /* 7136 * check on proper vm_flags and page table alignment 7137 */ 7138 if (!(vma->vm_flags & VM_MAYSHARE)) 7139 return false; 7140 if (!vma->vm_private_data) /* vma lock required for sharing */ 7141 return false; 7142 if (!range_in_vma(vma, start, end)) 7143 return false; 7144 return true; 7145 } 7146 7147 /* 7148 * Determine if start,end range within vma could be mapped by shared pmd. 7149 * If yes, adjust start and end to cover range associated with possible 7150 * shared pmd mappings. 7151 */ 7152 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 7153 unsigned long *start, unsigned long *end) 7154 { 7155 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE), 7156 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE); 7157 7158 /* 7159 * vma needs to span at least one aligned PUD size, and the range 7160 * must be at least partially within in. 7161 */ 7162 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) || 7163 (*end <= v_start) || (*start >= v_end)) 7164 return; 7165 7166 /* Extend the range to be PUD aligned for a worst case scenario */ 7167 if (*start > v_start) 7168 *start = ALIGN_DOWN(*start, PUD_SIZE); 7169 7170 if (*end < v_end) 7171 *end = ALIGN(*end, PUD_SIZE); 7172 } 7173 7174 /* 7175 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc() 7176 * and returns the corresponding pte. While this is not necessary for the 7177 * !shared pmd case because we can allocate the pmd later as well, it makes the 7178 * code much cleaner. pmd allocation is essential for the shared case because 7179 * pud has to be populated inside the same i_mmap_rwsem section - otherwise 7180 * racing tasks could either miss the sharing (see huge_pte_offset) or select a 7181 * bad pmd for sharing. 7182 */ 7183 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, 7184 unsigned long addr, pud_t *pud) 7185 { 7186 struct address_space *mapping = vma->vm_file->f_mapping; 7187 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + 7188 vma->vm_pgoff; 7189 struct vm_area_struct *svma; 7190 unsigned long saddr; 7191 pte_t *spte = NULL; 7192 pte_t *pte; 7193 7194 i_mmap_lock_read(mapping); 7195 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) { 7196 if (svma == vma) 7197 continue; 7198 7199 saddr = page_table_shareable(svma, vma, addr, idx); 7200 if (saddr) { 7201 spte = hugetlb_walk(svma, saddr, 7202 vma_mmu_pagesize(svma)); 7203 if (spte) { 7204 get_page(virt_to_page(spte)); 7205 break; 7206 } 7207 } 7208 } 7209 7210 if (!spte) 7211 goto out; 7212 7213 spin_lock(&mm->page_table_lock); 7214 if (pud_none(*pud)) { 7215 pud_populate(mm, pud, 7216 (pmd_t *)((unsigned long)spte & PAGE_MASK)); 7217 mm_inc_nr_pmds(mm); 7218 } else { 7219 put_page(virt_to_page(spte)); 7220 } 7221 spin_unlock(&mm->page_table_lock); 7222 out: 7223 pte = (pte_t *)pmd_alloc(mm, pud, addr); 7224 i_mmap_unlock_read(mapping); 7225 return pte; 7226 } 7227 7228 /* 7229 * unmap huge page backed by shared pte. 7230 * 7231 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared 7232 * indicated by page_count > 1, unmap is achieved by clearing pud and 7233 * decrementing the ref count. If count == 1, the pte page is not shared. 7234 * 7235 * Called with page table lock held. 7236 * 7237 * returns: 1 successfully unmapped a shared pte page 7238 * 0 the underlying pte page is not shared, or it is the last user 7239 */ 7240 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, 7241 unsigned long addr, pte_t *ptep) 7242 { 7243 pgd_t *pgd = pgd_offset(mm, addr); 7244 p4d_t *p4d = p4d_offset(pgd, addr); 7245 pud_t *pud = pud_offset(p4d, addr); 7246 7247 i_mmap_assert_write_locked(vma->vm_file->f_mapping); 7248 hugetlb_vma_assert_locked(vma); 7249 BUG_ON(page_count(virt_to_page(ptep)) == 0); 7250 if (page_count(virt_to_page(ptep)) == 1) 7251 return 0; 7252 7253 pud_clear(pud); 7254 put_page(virt_to_page(ptep)); 7255 mm_dec_nr_pmds(mm); 7256 return 1; 7257 } 7258 7259 #else /* !CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING */ 7260 7261 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, 7262 unsigned long addr, pud_t *pud) 7263 { 7264 return NULL; 7265 } 7266 7267 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, 7268 unsigned long addr, pte_t *ptep) 7269 { 7270 return 0; 7271 } 7272 7273 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 7274 unsigned long *start, unsigned long *end) 7275 { 7276 } 7277 7278 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr) 7279 { 7280 return false; 7281 } 7282 #endif /* CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING */ 7283 7284 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB 7285 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 7286 unsigned long addr, unsigned long sz) 7287 { 7288 pgd_t *pgd; 7289 p4d_t *p4d; 7290 pud_t *pud; 7291 pte_t *pte = NULL; 7292 7293 pgd = pgd_offset(mm, addr); 7294 p4d = p4d_alloc(mm, pgd, addr); 7295 if (!p4d) 7296 return NULL; 7297 pud = pud_alloc(mm, p4d, addr); 7298 if (pud) { 7299 if (sz == PUD_SIZE) { 7300 pte = (pte_t *)pud; 7301 } else { 7302 BUG_ON(sz != PMD_SIZE); 7303 if (want_pmd_share(vma, addr) && pud_none(*pud)) 7304 pte = huge_pmd_share(mm, vma, addr, pud); 7305 else 7306 pte = (pte_t *)pmd_alloc(mm, pud, addr); 7307 } 7308 } 7309 7310 if (pte) { 7311 pte_t pteval = ptep_get_lockless(pte); 7312 7313 BUG_ON(pte_present(pteval) && !pte_huge(pteval)); 7314 } 7315 7316 return pte; 7317 } 7318 7319 /* 7320 * huge_pte_offset() - Walk the page table to resolve the hugepage 7321 * entry at address @addr 7322 * 7323 * Return: Pointer to page table entry (PUD or PMD) for 7324 * address @addr, or NULL if a !p*d_present() entry is encountered and the 7325 * size @sz doesn't match the hugepage size at this level of the page 7326 * table. 7327 */ 7328 pte_t *huge_pte_offset(struct mm_struct *mm, 7329 unsigned long addr, unsigned long sz) 7330 { 7331 pgd_t *pgd; 7332 p4d_t *p4d; 7333 pud_t *pud; 7334 pmd_t *pmd; 7335 7336 pgd = pgd_offset(mm, addr); 7337 if (!pgd_present(*pgd)) 7338 return NULL; 7339 p4d = p4d_offset(pgd, addr); 7340 if (!p4d_present(*p4d)) 7341 return NULL; 7342 7343 pud = pud_offset(p4d, addr); 7344 if (sz == PUD_SIZE) 7345 /* must be pud huge, non-present or none */ 7346 return (pte_t *)pud; 7347 if (!pud_present(*pud)) 7348 return NULL; 7349 /* must have a valid entry and size to go further */ 7350 7351 pmd = pmd_offset(pud, addr); 7352 /* must be pmd huge, non-present or none */ 7353 return (pte_t *)pmd; 7354 } 7355 7356 /* 7357 * Return a mask that can be used to update an address to the last huge 7358 * page in a page table page mapping size. Used to skip non-present 7359 * page table entries when linearly scanning address ranges. Architectures 7360 * with unique huge page to page table relationships can define their own 7361 * version of this routine. 7362 */ 7363 unsigned long hugetlb_mask_last_page(struct hstate *h) 7364 { 7365 unsigned long hp_size = huge_page_size(h); 7366 7367 if (hp_size == PUD_SIZE) 7368 return P4D_SIZE - PUD_SIZE; 7369 else if (hp_size == PMD_SIZE) 7370 return PUD_SIZE - PMD_SIZE; 7371 else 7372 return 0UL; 7373 } 7374 7375 #else 7376 7377 /* See description above. Architectures can provide their own version. */ 7378 __weak unsigned long hugetlb_mask_last_page(struct hstate *h) 7379 { 7380 #ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING 7381 if (huge_page_size(h) == PMD_SIZE) 7382 return PUD_SIZE - PMD_SIZE; 7383 #endif 7384 return 0UL; 7385 } 7386 7387 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */ 7388 7389 bool isolate_hugetlb(struct folio *folio, struct list_head *list) 7390 { 7391 bool ret = true; 7392 7393 spin_lock_irq(&hugetlb_lock); 7394 if (!folio_test_hugetlb(folio) || 7395 !folio_test_hugetlb_migratable(folio) || 7396 !folio_try_get(folio)) { 7397 ret = false; 7398 goto unlock; 7399 } 7400 folio_clear_hugetlb_migratable(folio); 7401 list_move_tail(&folio->lru, list); 7402 unlock: 7403 spin_unlock_irq(&hugetlb_lock); 7404 return ret; 7405 } 7406 7407 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison) 7408 { 7409 int ret = 0; 7410 7411 *hugetlb = false; 7412 spin_lock_irq(&hugetlb_lock); 7413 if (folio_test_hugetlb(folio)) { 7414 *hugetlb = true; 7415 if (folio_test_hugetlb_freed(folio)) 7416 ret = 0; 7417 else if (folio_test_hugetlb_migratable(folio) || unpoison) 7418 ret = folio_try_get(folio); 7419 else 7420 ret = -EBUSY; 7421 } 7422 spin_unlock_irq(&hugetlb_lock); 7423 return ret; 7424 } 7425 7426 int get_huge_page_for_hwpoison(unsigned long pfn, int flags, 7427 bool *migratable_cleared) 7428 { 7429 int ret; 7430 7431 spin_lock_irq(&hugetlb_lock); 7432 ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared); 7433 spin_unlock_irq(&hugetlb_lock); 7434 return ret; 7435 } 7436 7437 void folio_putback_active_hugetlb(struct folio *folio) 7438 { 7439 spin_lock_irq(&hugetlb_lock); 7440 folio_set_hugetlb_migratable(folio); 7441 list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist); 7442 spin_unlock_irq(&hugetlb_lock); 7443 folio_put(folio); 7444 } 7445 7446 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason) 7447 { 7448 struct hstate *h = folio_hstate(old_folio); 7449 7450 hugetlb_cgroup_migrate(old_folio, new_folio); 7451 set_page_owner_migrate_reason(&new_folio->page, reason); 7452 7453 /* 7454 * transfer temporary state of the new hugetlb folio. This is 7455 * reverse to other transitions because the newpage is going to 7456 * be final while the old one will be freed so it takes over 7457 * the temporary status. 7458 * 7459 * Also note that we have to transfer the per-node surplus state 7460 * here as well otherwise the global surplus count will not match 7461 * the per-node's. 7462 */ 7463 if (folio_test_hugetlb_temporary(new_folio)) { 7464 int old_nid = folio_nid(old_folio); 7465 int new_nid = folio_nid(new_folio); 7466 7467 folio_set_hugetlb_temporary(old_folio); 7468 folio_clear_hugetlb_temporary(new_folio); 7469 7470 7471 /* 7472 * There is no need to transfer the per-node surplus state 7473 * when we do not cross the node. 7474 */ 7475 if (new_nid == old_nid) 7476 return; 7477 spin_lock_irq(&hugetlb_lock); 7478 if (h->surplus_huge_pages_node[old_nid]) { 7479 h->surplus_huge_pages_node[old_nid]--; 7480 h->surplus_huge_pages_node[new_nid]++; 7481 } 7482 spin_unlock_irq(&hugetlb_lock); 7483 } 7484 } 7485 7486 static void hugetlb_unshare_pmds(struct vm_area_struct *vma, 7487 unsigned long start, 7488 unsigned long end) 7489 { 7490 struct hstate *h = hstate_vma(vma); 7491 unsigned long sz = huge_page_size(h); 7492 struct mm_struct *mm = vma->vm_mm; 7493 struct mmu_notifier_range range; 7494 unsigned long address; 7495 spinlock_t *ptl; 7496 pte_t *ptep; 7497 7498 if (!(vma->vm_flags & VM_MAYSHARE)) 7499 return; 7500 7501 if (start >= end) 7502 return; 7503 7504 flush_cache_range(vma, start, end); 7505 /* 7506 * No need to call adjust_range_if_pmd_sharing_possible(), because 7507 * we have already done the PUD_SIZE alignment. 7508 */ 7509 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 7510 start, end); 7511 mmu_notifier_invalidate_range_start(&range); 7512 hugetlb_vma_lock_write(vma); 7513 i_mmap_lock_write(vma->vm_file->f_mapping); 7514 for (address = start; address < end; address += PUD_SIZE) { 7515 ptep = hugetlb_walk(vma, address, sz); 7516 if (!ptep) 7517 continue; 7518 ptl = huge_pte_lock(h, mm, ptep); 7519 huge_pmd_unshare(mm, vma, address, ptep); 7520 spin_unlock(ptl); 7521 } 7522 flush_hugetlb_tlb_range(vma, start, end); 7523 i_mmap_unlock_write(vma->vm_file->f_mapping); 7524 hugetlb_vma_unlock_write(vma); 7525 /* 7526 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs(), see 7527 * Documentation/mm/mmu_notifier.rst. 7528 */ 7529 mmu_notifier_invalidate_range_end(&range); 7530 } 7531 7532 /* 7533 * This function will unconditionally remove all the shared pmd pgtable entries 7534 * within the specific vma for a hugetlbfs memory range. 7535 */ 7536 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma) 7537 { 7538 hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE), 7539 ALIGN_DOWN(vma->vm_end, PUD_SIZE)); 7540 } 7541 7542 #ifdef CONFIG_CMA 7543 static bool cma_reserve_called __initdata; 7544 7545 static int __init cmdline_parse_hugetlb_cma(char *p) 7546 { 7547 int nid, count = 0; 7548 unsigned long tmp; 7549 char *s = p; 7550 7551 while (*s) { 7552 if (sscanf(s, "%lu%n", &tmp, &count) != 1) 7553 break; 7554 7555 if (s[count] == ':') { 7556 if (tmp >= MAX_NUMNODES) 7557 break; 7558 nid = array_index_nospec(tmp, MAX_NUMNODES); 7559 7560 s += count + 1; 7561 tmp = memparse(s, &s); 7562 hugetlb_cma_size_in_node[nid] = tmp; 7563 hugetlb_cma_size += tmp; 7564 7565 /* 7566 * Skip the separator if have one, otherwise 7567 * break the parsing. 7568 */ 7569 if (*s == ',') 7570 s++; 7571 else 7572 break; 7573 } else { 7574 hugetlb_cma_size = memparse(p, &p); 7575 break; 7576 } 7577 } 7578 7579 return 0; 7580 } 7581 7582 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma); 7583 7584 void __init hugetlb_cma_reserve(int order) 7585 { 7586 unsigned long size, reserved, per_node; 7587 bool node_specific_cma_alloc = false; 7588 int nid; 7589 7590 /* 7591 * HugeTLB CMA reservation is required for gigantic 7592 * huge pages which could not be allocated via the 7593 * page allocator. Just warn if there is any change 7594 * breaking this assumption. 7595 */ 7596 VM_WARN_ON(order <= MAX_PAGE_ORDER); 7597 cma_reserve_called = true; 7598 7599 if (!hugetlb_cma_size) 7600 return; 7601 7602 for (nid = 0; nid < MAX_NUMNODES; nid++) { 7603 if (hugetlb_cma_size_in_node[nid] == 0) 7604 continue; 7605 7606 if (!node_online(nid)) { 7607 pr_warn("hugetlb_cma: invalid node %d specified\n", nid); 7608 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid]; 7609 hugetlb_cma_size_in_node[nid] = 0; 7610 continue; 7611 } 7612 7613 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) { 7614 pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n", 7615 nid, (PAGE_SIZE << order) / SZ_1M); 7616 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid]; 7617 hugetlb_cma_size_in_node[nid] = 0; 7618 } else { 7619 node_specific_cma_alloc = true; 7620 } 7621 } 7622 7623 /* Validate the CMA size again in case some invalid nodes specified. */ 7624 if (!hugetlb_cma_size) 7625 return; 7626 7627 if (hugetlb_cma_size < (PAGE_SIZE << order)) { 7628 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n", 7629 (PAGE_SIZE << order) / SZ_1M); 7630 hugetlb_cma_size = 0; 7631 return; 7632 } 7633 7634 if (!node_specific_cma_alloc) { 7635 /* 7636 * If 3 GB area is requested on a machine with 4 numa nodes, 7637 * let's allocate 1 GB on first three nodes and ignore the last one. 7638 */ 7639 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes); 7640 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n", 7641 hugetlb_cma_size / SZ_1M, per_node / SZ_1M); 7642 } 7643 7644 reserved = 0; 7645 for_each_online_node(nid) { 7646 int res; 7647 char name[CMA_MAX_NAME]; 7648 7649 if (node_specific_cma_alloc) { 7650 if (hugetlb_cma_size_in_node[nid] == 0) 7651 continue; 7652 7653 size = hugetlb_cma_size_in_node[nid]; 7654 } else { 7655 size = min(per_node, hugetlb_cma_size - reserved); 7656 } 7657 7658 size = round_up(size, PAGE_SIZE << order); 7659 7660 snprintf(name, sizeof(name), "hugetlb%d", nid); 7661 /* 7662 * Note that 'order per bit' is based on smallest size that 7663 * may be returned to CMA allocator in the case of 7664 * huge page demotion. 7665 */ 7666 res = cma_declare_contiguous_nid(0, size, 0, 7667 PAGE_SIZE << order, 7668 HUGETLB_PAGE_ORDER, false, name, 7669 &hugetlb_cma[nid], nid); 7670 if (res) { 7671 pr_warn("hugetlb_cma: reservation failed: err %d, node %d", 7672 res, nid); 7673 continue; 7674 } 7675 7676 reserved += size; 7677 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n", 7678 size / SZ_1M, nid); 7679 7680 if (reserved >= hugetlb_cma_size) 7681 break; 7682 } 7683 7684 if (!reserved) 7685 /* 7686 * hugetlb_cma_size is used to determine if allocations from 7687 * cma are possible. Set to zero if no cma regions are set up. 7688 */ 7689 hugetlb_cma_size = 0; 7690 } 7691 7692 static void __init hugetlb_cma_check(void) 7693 { 7694 if (!hugetlb_cma_size || cma_reserve_called) 7695 return; 7696 7697 pr_warn("hugetlb_cma: the option isn't supported by current arch\n"); 7698 } 7699 7700 #endif /* CONFIG_CMA */ 7701