xref: /linux/mm/hugetlb.c (revision bf070bb0e6c62ba3075db0a666763ba52c677102)
1 /*
2  * Generic hugetlb support.
3  * (C) Nadia Yvette Chambers, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/mm.h>
8 #include <linux/seq_file.h>
9 #include <linux/sysctl.h>
10 #include <linux/highmem.h>
11 #include <linux/mmu_notifier.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/compiler.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/sched/signal.h>
22 #include <linux/rmap.h>
23 #include <linux/string_helpers.h>
24 #include <linux/swap.h>
25 #include <linux/swapops.h>
26 #include <linux/jhash.h>
27 
28 #include <asm/page.h>
29 #include <asm/pgtable.h>
30 #include <asm/tlb.h>
31 
32 #include <linux/io.h>
33 #include <linux/hugetlb.h>
34 #include <linux/hugetlb_cgroup.h>
35 #include <linux/node.h>
36 #include <linux/userfaultfd_k.h>
37 #include "internal.h"
38 
39 int hugepages_treat_as_movable;
40 
41 int hugetlb_max_hstate __read_mostly;
42 unsigned int default_hstate_idx;
43 struct hstate hstates[HUGE_MAX_HSTATE];
44 /*
45  * Minimum page order among possible hugepage sizes, set to a proper value
46  * at boot time.
47  */
48 static unsigned int minimum_order __read_mostly = UINT_MAX;
49 
50 __initdata LIST_HEAD(huge_boot_pages);
51 
52 /* for command line parsing */
53 static struct hstate * __initdata parsed_hstate;
54 static unsigned long __initdata default_hstate_max_huge_pages;
55 static unsigned long __initdata default_hstate_size;
56 static bool __initdata parsed_valid_hugepagesz = true;
57 
58 /*
59  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
60  * free_huge_pages, and surplus_huge_pages.
61  */
62 DEFINE_SPINLOCK(hugetlb_lock);
63 
64 /*
65  * Serializes faults on the same logical page.  This is used to
66  * prevent spurious OOMs when the hugepage pool is fully utilized.
67  */
68 static int num_fault_mutexes;
69 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
70 
71 /* Forward declaration */
72 static int hugetlb_acct_memory(struct hstate *h, long delta);
73 
74 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
75 {
76 	bool free = (spool->count == 0) && (spool->used_hpages == 0);
77 
78 	spin_unlock(&spool->lock);
79 
80 	/* If no pages are used, and no other handles to the subpool
81 	 * remain, give up any reservations mased on minimum size and
82 	 * free the subpool */
83 	if (free) {
84 		if (spool->min_hpages != -1)
85 			hugetlb_acct_memory(spool->hstate,
86 						-spool->min_hpages);
87 		kfree(spool);
88 	}
89 }
90 
91 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
92 						long min_hpages)
93 {
94 	struct hugepage_subpool *spool;
95 
96 	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
97 	if (!spool)
98 		return NULL;
99 
100 	spin_lock_init(&spool->lock);
101 	spool->count = 1;
102 	spool->max_hpages = max_hpages;
103 	spool->hstate = h;
104 	spool->min_hpages = min_hpages;
105 
106 	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
107 		kfree(spool);
108 		return NULL;
109 	}
110 	spool->rsv_hpages = min_hpages;
111 
112 	return spool;
113 }
114 
115 void hugepage_put_subpool(struct hugepage_subpool *spool)
116 {
117 	spin_lock(&spool->lock);
118 	BUG_ON(!spool->count);
119 	spool->count--;
120 	unlock_or_release_subpool(spool);
121 }
122 
123 /*
124  * Subpool accounting for allocating and reserving pages.
125  * Return -ENOMEM if there are not enough resources to satisfy the
126  * the request.  Otherwise, return the number of pages by which the
127  * global pools must be adjusted (upward).  The returned value may
128  * only be different than the passed value (delta) in the case where
129  * a subpool minimum size must be manitained.
130  */
131 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
132 				      long delta)
133 {
134 	long ret = delta;
135 
136 	if (!spool)
137 		return ret;
138 
139 	spin_lock(&spool->lock);
140 
141 	if (spool->max_hpages != -1) {		/* maximum size accounting */
142 		if ((spool->used_hpages + delta) <= spool->max_hpages)
143 			spool->used_hpages += delta;
144 		else {
145 			ret = -ENOMEM;
146 			goto unlock_ret;
147 		}
148 	}
149 
150 	/* minimum size accounting */
151 	if (spool->min_hpages != -1 && spool->rsv_hpages) {
152 		if (delta > spool->rsv_hpages) {
153 			/*
154 			 * Asking for more reserves than those already taken on
155 			 * behalf of subpool.  Return difference.
156 			 */
157 			ret = delta - spool->rsv_hpages;
158 			spool->rsv_hpages = 0;
159 		} else {
160 			ret = 0;	/* reserves already accounted for */
161 			spool->rsv_hpages -= delta;
162 		}
163 	}
164 
165 unlock_ret:
166 	spin_unlock(&spool->lock);
167 	return ret;
168 }
169 
170 /*
171  * Subpool accounting for freeing and unreserving pages.
172  * Return the number of global page reservations that must be dropped.
173  * The return value may only be different than the passed value (delta)
174  * in the case where a subpool minimum size must be maintained.
175  */
176 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
177 				       long delta)
178 {
179 	long ret = delta;
180 
181 	if (!spool)
182 		return delta;
183 
184 	spin_lock(&spool->lock);
185 
186 	if (spool->max_hpages != -1)		/* maximum size accounting */
187 		spool->used_hpages -= delta;
188 
189 	 /* minimum size accounting */
190 	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
191 		if (spool->rsv_hpages + delta <= spool->min_hpages)
192 			ret = 0;
193 		else
194 			ret = spool->rsv_hpages + delta - spool->min_hpages;
195 
196 		spool->rsv_hpages += delta;
197 		if (spool->rsv_hpages > spool->min_hpages)
198 			spool->rsv_hpages = spool->min_hpages;
199 	}
200 
201 	/*
202 	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
203 	 * quota reference, free it now.
204 	 */
205 	unlock_or_release_subpool(spool);
206 
207 	return ret;
208 }
209 
210 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
211 {
212 	return HUGETLBFS_SB(inode->i_sb)->spool;
213 }
214 
215 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
216 {
217 	return subpool_inode(file_inode(vma->vm_file));
218 }
219 
220 /*
221  * Region tracking -- allows tracking of reservations and instantiated pages
222  *                    across the pages in a mapping.
223  *
224  * The region data structures are embedded into a resv_map and protected
225  * by a resv_map's lock.  The set of regions within the resv_map represent
226  * reservations for huge pages, or huge pages that have already been
227  * instantiated within the map.  The from and to elements are huge page
228  * indicies into the associated mapping.  from indicates the starting index
229  * of the region.  to represents the first index past the end of  the region.
230  *
231  * For example, a file region structure with from == 0 and to == 4 represents
232  * four huge pages in a mapping.  It is important to note that the to element
233  * represents the first element past the end of the region. This is used in
234  * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
235  *
236  * Interval notation of the form [from, to) will be used to indicate that
237  * the endpoint from is inclusive and to is exclusive.
238  */
239 struct file_region {
240 	struct list_head link;
241 	long from;
242 	long to;
243 };
244 
245 /*
246  * Add the huge page range represented by [f, t) to the reserve
247  * map.  In the normal case, existing regions will be expanded
248  * to accommodate the specified range.  Sufficient regions should
249  * exist for expansion due to the previous call to region_chg
250  * with the same range.  However, it is possible that region_del
251  * could have been called after region_chg and modifed the map
252  * in such a way that no region exists to be expanded.  In this
253  * case, pull a region descriptor from the cache associated with
254  * the map and use that for the new range.
255  *
256  * Return the number of new huge pages added to the map.  This
257  * number is greater than or equal to zero.
258  */
259 static long region_add(struct resv_map *resv, long f, long t)
260 {
261 	struct list_head *head = &resv->regions;
262 	struct file_region *rg, *nrg, *trg;
263 	long add = 0;
264 
265 	spin_lock(&resv->lock);
266 	/* Locate the region we are either in or before. */
267 	list_for_each_entry(rg, head, link)
268 		if (f <= rg->to)
269 			break;
270 
271 	/*
272 	 * If no region exists which can be expanded to include the
273 	 * specified range, the list must have been modified by an
274 	 * interleving call to region_del().  Pull a region descriptor
275 	 * from the cache and use it for this range.
276 	 */
277 	if (&rg->link == head || t < rg->from) {
278 		VM_BUG_ON(resv->region_cache_count <= 0);
279 
280 		resv->region_cache_count--;
281 		nrg = list_first_entry(&resv->region_cache, struct file_region,
282 					link);
283 		list_del(&nrg->link);
284 
285 		nrg->from = f;
286 		nrg->to = t;
287 		list_add(&nrg->link, rg->link.prev);
288 
289 		add += t - f;
290 		goto out_locked;
291 	}
292 
293 	/* Round our left edge to the current segment if it encloses us. */
294 	if (f > rg->from)
295 		f = rg->from;
296 
297 	/* Check for and consume any regions we now overlap with. */
298 	nrg = rg;
299 	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
300 		if (&rg->link == head)
301 			break;
302 		if (rg->from > t)
303 			break;
304 
305 		/* If this area reaches higher then extend our area to
306 		 * include it completely.  If this is not the first area
307 		 * which we intend to reuse, free it. */
308 		if (rg->to > t)
309 			t = rg->to;
310 		if (rg != nrg) {
311 			/* Decrement return value by the deleted range.
312 			 * Another range will span this area so that by
313 			 * end of routine add will be >= zero
314 			 */
315 			add -= (rg->to - rg->from);
316 			list_del(&rg->link);
317 			kfree(rg);
318 		}
319 	}
320 
321 	add += (nrg->from - f);		/* Added to beginning of region */
322 	nrg->from = f;
323 	add += t - nrg->to;		/* Added to end of region */
324 	nrg->to = t;
325 
326 out_locked:
327 	resv->adds_in_progress--;
328 	spin_unlock(&resv->lock);
329 	VM_BUG_ON(add < 0);
330 	return add;
331 }
332 
333 /*
334  * Examine the existing reserve map and determine how many
335  * huge pages in the specified range [f, t) are NOT currently
336  * represented.  This routine is called before a subsequent
337  * call to region_add that will actually modify the reserve
338  * map to add the specified range [f, t).  region_chg does
339  * not change the number of huge pages represented by the
340  * map.  However, if the existing regions in the map can not
341  * be expanded to represent the new range, a new file_region
342  * structure is added to the map as a placeholder.  This is
343  * so that the subsequent region_add call will have all the
344  * regions it needs and will not fail.
345  *
346  * Upon entry, region_chg will also examine the cache of region descriptors
347  * associated with the map.  If there are not enough descriptors cached, one
348  * will be allocated for the in progress add operation.
349  *
350  * Returns the number of huge pages that need to be added to the existing
351  * reservation map for the range [f, t).  This number is greater or equal to
352  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
353  * is needed and can not be allocated.
354  */
355 static long region_chg(struct resv_map *resv, long f, long t)
356 {
357 	struct list_head *head = &resv->regions;
358 	struct file_region *rg, *nrg = NULL;
359 	long chg = 0;
360 
361 retry:
362 	spin_lock(&resv->lock);
363 retry_locked:
364 	resv->adds_in_progress++;
365 
366 	/*
367 	 * Check for sufficient descriptors in the cache to accommodate
368 	 * the number of in progress add operations.
369 	 */
370 	if (resv->adds_in_progress > resv->region_cache_count) {
371 		struct file_region *trg;
372 
373 		VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
374 		/* Must drop lock to allocate a new descriptor. */
375 		resv->adds_in_progress--;
376 		spin_unlock(&resv->lock);
377 
378 		trg = kmalloc(sizeof(*trg), GFP_KERNEL);
379 		if (!trg) {
380 			kfree(nrg);
381 			return -ENOMEM;
382 		}
383 
384 		spin_lock(&resv->lock);
385 		list_add(&trg->link, &resv->region_cache);
386 		resv->region_cache_count++;
387 		goto retry_locked;
388 	}
389 
390 	/* Locate the region we are before or in. */
391 	list_for_each_entry(rg, head, link)
392 		if (f <= rg->to)
393 			break;
394 
395 	/* If we are below the current region then a new region is required.
396 	 * Subtle, allocate a new region at the position but make it zero
397 	 * size such that we can guarantee to record the reservation. */
398 	if (&rg->link == head || t < rg->from) {
399 		if (!nrg) {
400 			resv->adds_in_progress--;
401 			spin_unlock(&resv->lock);
402 			nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
403 			if (!nrg)
404 				return -ENOMEM;
405 
406 			nrg->from = f;
407 			nrg->to   = f;
408 			INIT_LIST_HEAD(&nrg->link);
409 			goto retry;
410 		}
411 
412 		list_add(&nrg->link, rg->link.prev);
413 		chg = t - f;
414 		goto out_nrg;
415 	}
416 
417 	/* Round our left edge to the current segment if it encloses us. */
418 	if (f > rg->from)
419 		f = rg->from;
420 	chg = t - f;
421 
422 	/* Check for and consume any regions we now overlap with. */
423 	list_for_each_entry(rg, rg->link.prev, link) {
424 		if (&rg->link == head)
425 			break;
426 		if (rg->from > t)
427 			goto out;
428 
429 		/* We overlap with this area, if it extends further than
430 		 * us then we must extend ourselves.  Account for its
431 		 * existing reservation. */
432 		if (rg->to > t) {
433 			chg += rg->to - t;
434 			t = rg->to;
435 		}
436 		chg -= rg->to - rg->from;
437 	}
438 
439 out:
440 	spin_unlock(&resv->lock);
441 	/*  We already know we raced and no longer need the new region */
442 	kfree(nrg);
443 	return chg;
444 out_nrg:
445 	spin_unlock(&resv->lock);
446 	return chg;
447 }
448 
449 /*
450  * Abort the in progress add operation.  The adds_in_progress field
451  * of the resv_map keeps track of the operations in progress between
452  * calls to region_chg and region_add.  Operations are sometimes
453  * aborted after the call to region_chg.  In such cases, region_abort
454  * is called to decrement the adds_in_progress counter.
455  *
456  * NOTE: The range arguments [f, t) are not needed or used in this
457  * routine.  They are kept to make reading the calling code easier as
458  * arguments will match the associated region_chg call.
459  */
460 static void region_abort(struct resv_map *resv, long f, long t)
461 {
462 	spin_lock(&resv->lock);
463 	VM_BUG_ON(!resv->region_cache_count);
464 	resv->adds_in_progress--;
465 	spin_unlock(&resv->lock);
466 }
467 
468 /*
469  * Delete the specified range [f, t) from the reserve map.  If the
470  * t parameter is LONG_MAX, this indicates that ALL regions after f
471  * should be deleted.  Locate the regions which intersect [f, t)
472  * and either trim, delete or split the existing regions.
473  *
474  * Returns the number of huge pages deleted from the reserve map.
475  * In the normal case, the return value is zero or more.  In the
476  * case where a region must be split, a new region descriptor must
477  * be allocated.  If the allocation fails, -ENOMEM will be returned.
478  * NOTE: If the parameter t == LONG_MAX, then we will never split
479  * a region and possibly return -ENOMEM.  Callers specifying
480  * t == LONG_MAX do not need to check for -ENOMEM error.
481  */
482 static long region_del(struct resv_map *resv, long f, long t)
483 {
484 	struct list_head *head = &resv->regions;
485 	struct file_region *rg, *trg;
486 	struct file_region *nrg = NULL;
487 	long del = 0;
488 
489 retry:
490 	spin_lock(&resv->lock);
491 	list_for_each_entry_safe(rg, trg, head, link) {
492 		/*
493 		 * Skip regions before the range to be deleted.  file_region
494 		 * ranges are normally of the form [from, to).  However, there
495 		 * may be a "placeholder" entry in the map which is of the form
496 		 * (from, to) with from == to.  Check for placeholder entries
497 		 * at the beginning of the range to be deleted.
498 		 */
499 		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
500 			continue;
501 
502 		if (rg->from >= t)
503 			break;
504 
505 		if (f > rg->from && t < rg->to) { /* Must split region */
506 			/*
507 			 * Check for an entry in the cache before dropping
508 			 * lock and attempting allocation.
509 			 */
510 			if (!nrg &&
511 			    resv->region_cache_count > resv->adds_in_progress) {
512 				nrg = list_first_entry(&resv->region_cache,
513 							struct file_region,
514 							link);
515 				list_del(&nrg->link);
516 				resv->region_cache_count--;
517 			}
518 
519 			if (!nrg) {
520 				spin_unlock(&resv->lock);
521 				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
522 				if (!nrg)
523 					return -ENOMEM;
524 				goto retry;
525 			}
526 
527 			del += t - f;
528 
529 			/* New entry for end of split region */
530 			nrg->from = t;
531 			nrg->to = rg->to;
532 			INIT_LIST_HEAD(&nrg->link);
533 
534 			/* Original entry is trimmed */
535 			rg->to = f;
536 
537 			list_add(&nrg->link, &rg->link);
538 			nrg = NULL;
539 			break;
540 		}
541 
542 		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
543 			del += rg->to - rg->from;
544 			list_del(&rg->link);
545 			kfree(rg);
546 			continue;
547 		}
548 
549 		if (f <= rg->from) {	/* Trim beginning of region */
550 			del += t - rg->from;
551 			rg->from = t;
552 		} else {		/* Trim end of region */
553 			del += rg->to - f;
554 			rg->to = f;
555 		}
556 	}
557 
558 	spin_unlock(&resv->lock);
559 	kfree(nrg);
560 	return del;
561 }
562 
563 /*
564  * A rare out of memory error was encountered which prevented removal of
565  * the reserve map region for a page.  The huge page itself was free'ed
566  * and removed from the page cache.  This routine will adjust the subpool
567  * usage count, and the global reserve count if needed.  By incrementing
568  * these counts, the reserve map entry which could not be deleted will
569  * appear as a "reserved" entry instead of simply dangling with incorrect
570  * counts.
571  */
572 void hugetlb_fix_reserve_counts(struct inode *inode)
573 {
574 	struct hugepage_subpool *spool = subpool_inode(inode);
575 	long rsv_adjust;
576 
577 	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
578 	if (rsv_adjust) {
579 		struct hstate *h = hstate_inode(inode);
580 
581 		hugetlb_acct_memory(h, 1);
582 	}
583 }
584 
585 /*
586  * Count and return the number of huge pages in the reserve map
587  * that intersect with the range [f, t).
588  */
589 static long region_count(struct resv_map *resv, long f, long t)
590 {
591 	struct list_head *head = &resv->regions;
592 	struct file_region *rg;
593 	long chg = 0;
594 
595 	spin_lock(&resv->lock);
596 	/* Locate each segment we overlap with, and count that overlap. */
597 	list_for_each_entry(rg, head, link) {
598 		long seg_from;
599 		long seg_to;
600 
601 		if (rg->to <= f)
602 			continue;
603 		if (rg->from >= t)
604 			break;
605 
606 		seg_from = max(rg->from, f);
607 		seg_to = min(rg->to, t);
608 
609 		chg += seg_to - seg_from;
610 	}
611 	spin_unlock(&resv->lock);
612 
613 	return chg;
614 }
615 
616 /*
617  * Convert the address within this vma to the page offset within
618  * the mapping, in pagecache page units; huge pages here.
619  */
620 static pgoff_t vma_hugecache_offset(struct hstate *h,
621 			struct vm_area_struct *vma, unsigned long address)
622 {
623 	return ((address - vma->vm_start) >> huge_page_shift(h)) +
624 			(vma->vm_pgoff >> huge_page_order(h));
625 }
626 
627 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
628 				     unsigned long address)
629 {
630 	return vma_hugecache_offset(hstate_vma(vma), vma, address);
631 }
632 EXPORT_SYMBOL_GPL(linear_hugepage_index);
633 
634 /*
635  * Return the size of the pages allocated when backing a VMA. In the majority
636  * cases this will be same size as used by the page table entries.
637  */
638 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
639 {
640 	struct hstate *hstate;
641 
642 	if (!is_vm_hugetlb_page(vma))
643 		return PAGE_SIZE;
644 
645 	hstate = hstate_vma(vma);
646 
647 	return 1UL << huge_page_shift(hstate);
648 }
649 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
650 
651 /*
652  * Return the page size being used by the MMU to back a VMA. In the majority
653  * of cases, the page size used by the kernel matches the MMU size. On
654  * architectures where it differs, an architecture-specific version of this
655  * function is required.
656  */
657 #ifndef vma_mmu_pagesize
658 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
659 {
660 	return vma_kernel_pagesize(vma);
661 }
662 #endif
663 
664 /*
665  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
666  * bits of the reservation map pointer, which are always clear due to
667  * alignment.
668  */
669 #define HPAGE_RESV_OWNER    (1UL << 0)
670 #define HPAGE_RESV_UNMAPPED (1UL << 1)
671 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
672 
673 /*
674  * These helpers are used to track how many pages are reserved for
675  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
676  * is guaranteed to have their future faults succeed.
677  *
678  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
679  * the reserve counters are updated with the hugetlb_lock held. It is safe
680  * to reset the VMA at fork() time as it is not in use yet and there is no
681  * chance of the global counters getting corrupted as a result of the values.
682  *
683  * The private mapping reservation is represented in a subtly different
684  * manner to a shared mapping.  A shared mapping has a region map associated
685  * with the underlying file, this region map represents the backing file
686  * pages which have ever had a reservation assigned which this persists even
687  * after the page is instantiated.  A private mapping has a region map
688  * associated with the original mmap which is attached to all VMAs which
689  * reference it, this region map represents those offsets which have consumed
690  * reservation ie. where pages have been instantiated.
691  */
692 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
693 {
694 	return (unsigned long)vma->vm_private_data;
695 }
696 
697 static void set_vma_private_data(struct vm_area_struct *vma,
698 							unsigned long value)
699 {
700 	vma->vm_private_data = (void *)value;
701 }
702 
703 struct resv_map *resv_map_alloc(void)
704 {
705 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
706 	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
707 
708 	if (!resv_map || !rg) {
709 		kfree(resv_map);
710 		kfree(rg);
711 		return NULL;
712 	}
713 
714 	kref_init(&resv_map->refs);
715 	spin_lock_init(&resv_map->lock);
716 	INIT_LIST_HEAD(&resv_map->regions);
717 
718 	resv_map->adds_in_progress = 0;
719 
720 	INIT_LIST_HEAD(&resv_map->region_cache);
721 	list_add(&rg->link, &resv_map->region_cache);
722 	resv_map->region_cache_count = 1;
723 
724 	return resv_map;
725 }
726 
727 void resv_map_release(struct kref *ref)
728 {
729 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
730 	struct list_head *head = &resv_map->region_cache;
731 	struct file_region *rg, *trg;
732 
733 	/* Clear out any active regions before we release the map. */
734 	region_del(resv_map, 0, LONG_MAX);
735 
736 	/* ... and any entries left in the cache */
737 	list_for_each_entry_safe(rg, trg, head, link) {
738 		list_del(&rg->link);
739 		kfree(rg);
740 	}
741 
742 	VM_BUG_ON(resv_map->adds_in_progress);
743 
744 	kfree(resv_map);
745 }
746 
747 static inline struct resv_map *inode_resv_map(struct inode *inode)
748 {
749 	return inode->i_mapping->private_data;
750 }
751 
752 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
753 {
754 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
755 	if (vma->vm_flags & VM_MAYSHARE) {
756 		struct address_space *mapping = vma->vm_file->f_mapping;
757 		struct inode *inode = mapping->host;
758 
759 		return inode_resv_map(inode);
760 
761 	} else {
762 		return (struct resv_map *)(get_vma_private_data(vma) &
763 							~HPAGE_RESV_MASK);
764 	}
765 }
766 
767 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
768 {
769 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
770 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
771 
772 	set_vma_private_data(vma, (get_vma_private_data(vma) &
773 				HPAGE_RESV_MASK) | (unsigned long)map);
774 }
775 
776 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
777 {
778 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
779 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
780 
781 	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
782 }
783 
784 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
785 {
786 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
787 
788 	return (get_vma_private_data(vma) & flag) != 0;
789 }
790 
791 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
792 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
793 {
794 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
795 	if (!(vma->vm_flags & VM_MAYSHARE))
796 		vma->vm_private_data = (void *)0;
797 }
798 
799 /* Returns true if the VMA has associated reserve pages */
800 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
801 {
802 	if (vma->vm_flags & VM_NORESERVE) {
803 		/*
804 		 * This address is already reserved by other process(chg == 0),
805 		 * so, we should decrement reserved count. Without decrementing,
806 		 * reserve count remains after releasing inode, because this
807 		 * allocated page will go into page cache and is regarded as
808 		 * coming from reserved pool in releasing step.  Currently, we
809 		 * don't have any other solution to deal with this situation
810 		 * properly, so add work-around here.
811 		 */
812 		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
813 			return true;
814 		else
815 			return false;
816 	}
817 
818 	/* Shared mappings always use reserves */
819 	if (vma->vm_flags & VM_MAYSHARE) {
820 		/*
821 		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
822 		 * be a region map for all pages.  The only situation where
823 		 * there is no region map is if a hole was punched via
824 		 * fallocate.  In this case, there really are no reverves to
825 		 * use.  This situation is indicated if chg != 0.
826 		 */
827 		if (chg)
828 			return false;
829 		else
830 			return true;
831 	}
832 
833 	/*
834 	 * Only the process that called mmap() has reserves for
835 	 * private mappings.
836 	 */
837 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
838 		/*
839 		 * Like the shared case above, a hole punch or truncate
840 		 * could have been performed on the private mapping.
841 		 * Examine the value of chg to determine if reserves
842 		 * actually exist or were previously consumed.
843 		 * Very Subtle - The value of chg comes from a previous
844 		 * call to vma_needs_reserves().  The reserve map for
845 		 * private mappings has different (opposite) semantics
846 		 * than that of shared mappings.  vma_needs_reserves()
847 		 * has already taken this difference in semantics into
848 		 * account.  Therefore, the meaning of chg is the same
849 		 * as in the shared case above.  Code could easily be
850 		 * combined, but keeping it separate draws attention to
851 		 * subtle differences.
852 		 */
853 		if (chg)
854 			return false;
855 		else
856 			return true;
857 	}
858 
859 	return false;
860 }
861 
862 static void enqueue_huge_page(struct hstate *h, struct page *page)
863 {
864 	int nid = page_to_nid(page);
865 	list_move(&page->lru, &h->hugepage_freelists[nid]);
866 	h->free_huge_pages++;
867 	h->free_huge_pages_node[nid]++;
868 }
869 
870 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
871 {
872 	struct page *page;
873 
874 	list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
875 		if (!PageHWPoison(page))
876 			break;
877 	/*
878 	 * if 'non-isolated free hugepage' not found on the list,
879 	 * the allocation fails.
880 	 */
881 	if (&h->hugepage_freelists[nid] == &page->lru)
882 		return NULL;
883 	list_move(&page->lru, &h->hugepage_activelist);
884 	set_page_refcounted(page);
885 	h->free_huge_pages--;
886 	h->free_huge_pages_node[nid]--;
887 	return page;
888 }
889 
890 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
891 		nodemask_t *nmask)
892 {
893 	unsigned int cpuset_mems_cookie;
894 	struct zonelist *zonelist;
895 	struct zone *zone;
896 	struct zoneref *z;
897 	int node = -1;
898 
899 	zonelist = node_zonelist(nid, gfp_mask);
900 
901 retry_cpuset:
902 	cpuset_mems_cookie = read_mems_allowed_begin();
903 	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
904 		struct page *page;
905 
906 		if (!cpuset_zone_allowed(zone, gfp_mask))
907 			continue;
908 		/*
909 		 * no need to ask again on the same node. Pool is node rather than
910 		 * zone aware
911 		 */
912 		if (zone_to_nid(zone) == node)
913 			continue;
914 		node = zone_to_nid(zone);
915 
916 		page = dequeue_huge_page_node_exact(h, node);
917 		if (page)
918 			return page;
919 	}
920 	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
921 		goto retry_cpuset;
922 
923 	return NULL;
924 }
925 
926 /* Movability of hugepages depends on migration support. */
927 static inline gfp_t htlb_alloc_mask(struct hstate *h)
928 {
929 	if (hugepages_treat_as_movable || hugepage_migration_supported(h))
930 		return GFP_HIGHUSER_MOVABLE;
931 	else
932 		return GFP_HIGHUSER;
933 }
934 
935 static struct page *dequeue_huge_page_vma(struct hstate *h,
936 				struct vm_area_struct *vma,
937 				unsigned long address, int avoid_reserve,
938 				long chg)
939 {
940 	struct page *page;
941 	struct mempolicy *mpol;
942 	gfp_t gfp_mask;
943 	nodemask_t *nodemask;
944 	int nid;
945 
946 	/*
947 	 * A child process with MAP_PRIVATE mappings created by their parent
948 	 * have no page reserves. This check ensures that reservations are
949 	 * not "stolen". The child may still get SIGKILLed
950 	 */
951 	if (!vma_has_reserves(vma, chg) &&
952 			h->free_huge_pages - h->resv_huge_pages == 0)
953 		goto err;
954 
955 	/* If reserves cannot be used, ensure enough pages are in the pool */
956 	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
957 		goto err;
958 
959 	gfp_mask = htlb_alloc_mask(h);
960 	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
961 	page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
962 	if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
963 		SetPagePrivate(page);
964 		h->resv_huge_pages--;
965 	}
966 
967 	mpol_cond_put(mpol);
968 	return page;
969 
970 err:
971 	return NULL;
972 }
973 
974 /*
975  * common helper functions for hstate_next_node_to_{alloc|free}.
976  * We may have allocated or freed a huge page based on a different
977  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
978  * be outside of *nodes_allowed.  Ensure that we use an allowed
979  * node for alloc or free.
980  */
981 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
982 {
983 	nid = next_node_in(nid, *nodes_allowed);
984 	VM_BUG_ON(nid >= MAX_NUMNODES);
985 
986 	return nid;
987 }
988 
989 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
990 {
991 	if (!node_isset(nid, *nodes_allowed))
992 		nid = next_node_allowed(nid, nodes_allowed);
993 	return nid;
994 }
995 
996 /*
997  * returns the previously saved node ["this node"] from which to
998  * allocate a persistent huge page for the pool and advance the
999  * next node from which to allocate, handling wrap at end of node
1000  * mask.
1001  */
1002 static int hstate_next_node_to_alloc(struct hstate *h,
1003 					nodemask_t *nodes_allowed)
1004 {
1005 	int nid;
1006 
1007 	VM_BUG_ON(!nodes_allowed);
1008 
1009 	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1010 	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1011 
1012 	return nid;
1013 }
1014 
1015 /*
1016  * helper for free_pool_huge_page() - return the previously saved
1017  * node ["this node"] from which to free a huge page.  Advance the
1018  * next node id whether or not we find a free huge page to free so
1019  * that the next attempt to free addresses the next node.
1020  */
1021 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1022 {
1023 	int nid;
1024 
1025 	VM_BUG_ON(!nodes_allowed);
1026 
1027 	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1028 	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1029 
1030 	return nid;
1031 }
1032 
1033 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
1034 	for (nr_nodes = nodes_weight(*mask);				\
1035 		nr_nodes > 0 &&						\
1036 		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
1037 		nr_nodes--)
1038 
1039 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
1040 	for (nr_nodes = nodes_weight(*mask);				\
1041 		nr_nodes > 0 &&						\
1042 		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
1043 		nr_nodes--)
1044 
1045 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1046 static void destroy_compound_gigantic_page(struct page *page,
1047 					unsigned int order)
1048 {
1049 	int i;
1050 	int nr_pages = 1 << order;
1051 	struct page *p = page + 1;
1052 
1053 	atomic_set(compound_mapcount_ptr(page), 0);
1054 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1055 		clear_compound_head(p);
1056 		set_page_refcounted(p);
1057 	}
1058 
1059 	set_compound_order(page, 0);
1060 	__ClearPageHead(page);
1061 }
1062 
1063 static void free_gigantic_page(struct page *page, unsigned int order)
1064 {
1065 	free_contig_range(page_to_pfn(page), 1 << order);
1066 }
1067 
1068 static int __alloc_gigantic_page(unsigned long start_pfn,
1069 				unsigned long nr_pages, gfp_t gfp_mask)
1070 {
1071 	unsigned long end_pfn = start_pfn + nr_pages;
1072 	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
1073 				  gfp_mask);
1074 }
1075 
1076 static bool pfn_range_valid_gigantic(struct zone *z,
1077 			unsigned long start_pfn, unsigned long nr_pages)
1078 {
1079 	unsigned long i, end_pfn = start_pfn + nr_pages;
1080 	struct page *page;
1081 
1082 	for (i = start_pfn; i < end_pfn; i++) {
1083 		if (!pfn_valid(i))
1084 			return false;
1085 
1086 		page = pfn_to_page(i);
1087 
1088 		if (page_zone(page) != z)
1089 			return false;
1090 
1091 		if (PageReserved(page))
1092 			return false;
1093 
1094 		if (page_count(page) > 0)
1095 			return false;
1096 
1097 		if (PageHuge(page))
1098 			return false;
1099 	}
1100 
1101 	return true;
1102 }
1103 
1104 static bool zone_spans_last_pfn(const struct zone *zone,
1105 			unsigned long start_pfn, unsigned long nr_pages)
1106 {
1107 	unsigned long last_pfn = start_pfn + nr_pages - 1;
1108 	return zone_spans_pfn(zone, last_pfn);
1109 }
1110 
1111 static struct page *alloc_gigantic_page(int nid, struct hstate *h)
1112 {
1113 	unsigned int order = huge_page_order(h);
1114 	unsigned long nr_pages = 1 << order;
1115 	unsigned long ret, pfn, flags;
1116 	struct zonelist *zonelist;
1117 	struct zone *zone;
1118 	struct zoneref *z;
1119 	gfp_t gfp_mask;
1120 
1121 	gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1122 	zonelist = node_zonelist(nid, gfp_mask);
1123 	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), NULL) {
1124 		spin_lock_irqsave(&zone->lock, flags);
1125 
1126 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
1127 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
1128 			if (pfn_range_valid_gigantic(zone, pfn, nr_pages)) {
1129 				/*
1130 				 * We release the zone lock here because
1131 				 * alloc_contig_range() will also lock the zone
1132 				 * at some point. If there's an allocation
1133 				 * spinning on this lock, it may win the race
1134 				 * and cause alloc_contig_range() to fail...
1135 				 */
1136 				spin_unlock_irqrestore(&zone->lock, flags);
1137 				ret = __alloc_gigantic_page(pfn, nr_pages, gfp_mask);
1138 				if (!ret)
1139 					return pfn_to_page(pfn);
1140 				spin_lock_irqsave(&zone->lock, flags);
1141 			}
1142 			pfn += nr_pages;
1143 		}
1144 
1145 		spin_unlock_irqrestore(&zone->lock, flags);
1146 	}
1147 
1148 	return NULL;
1149 }
1150 
1151 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1152 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1153 
1154 static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
1155 {
1156 	struct page *page;
1157 
1158 	page = alloc_gigantic_page(nid, h);
1159 	if (page) {
1160 		prep_compound_gigantic_page(page, huge_page_order(h));
1161 		prep_new_huge_page(h, page, nid);
1162 	}
1163 
1164 	return page;
1165 }
1166 
1167 static int alloc_fresh_gigantic_page(struct hstate *h,
1168 				nodemask_t *nodes_allowed)
1169 {
1170 	struct page *page = NULL;
1171 	int nr_nodes, node;
1172 
1173 	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1174 		page = alloc_fresh_gigantic_page_node(h, node);
1175 		if (page)
1176 			return 1;
1177 	}
1178 
1179 	return 0;
1180 }
1181 
1182 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1183 static inline bool gigantic_page_supported(void) { return false; }
1184 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1185 static inline void destroy_compound_gigantic_page(struct page *page,
1186 						unsigned int order) { }
1187 static inline int alloc_fresh_gigantic_page(struct hstate *h,
1188 					nodemask_t *nodes_allowed) { return 0; }
1189 #endif
1190 
1191 static void update_and_free_page(struct hstate *h, struct page *page)
1192 {
1193 	int i;
1194 
1195 	if (hstate_is_gigantic(h) && !gigantic_page_supported())
1196 		return;
1197 
1198 	h->nr_huge_pages--;
1199 	h->nr_huge_pages_node[page_to_nid(page)]--;
1200 	for (i = 0; i < pages_per_huge_page(h); i++) {
1201 		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1202 				1 << PG_referenced | 1 << PG_dirty |
1203 				1 << PG_active | 1 << PG_private |
1204 				1 << PG_writeback);
1205 	}
1206 	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1207 	set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1208 	set_page_refcounted(page);
1209 	if (hstate_is_gigantic(h)) {
1210 		destroy_compound_gigantic_page(page, huge_page_order(h));
1211 		free_gigantic_page(page, huge_page_order(h));
1212 	} else {
1213 		__free_pages(page, huge_page_order(h));
1214 	}
1215 }
1216 
1217 struct hstate *size_to_hstate(unsigned long size)
1218 {
1219 	struct hstate *h;
1220 
1221 	for_each_hstate(h) {
1222 		if (huge_page_size(h) == size)
1223 			return h;
1224 	}
1225 	return NULL;
1226 }
1227 
1228 /*
1229  * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1230  * to hstate->hugepage_activelist.)
1231  *
1232  * This function can be called for tail pages, but never returns true for them.
1233  */
1234 bool page_huge_active(struct page *page)
1235 {
1236 	VM_BUG_ON_PAGE(!PageHuge(page), page);
1237 	return PageHead(page) && PagePrivate(&page[1]);
1238 }
1239 
1240 /* never called for tail page */
1241 static void set_page_huge_active(struct page *page)
1242 {
1243 	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1244 	SetPagePrivate(&page[1]);
1245 }
1246 
1247 static void clear_page_huge_active(struct page *page)
1248 {
1249 	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1250 	ClearPagePrivate(&page[1]);
1251 }
1252 
1253 void free_huge_page(struct page *page)
1254 {
1255 	/*
1256 	 * Can't pass hstate in here because it is called from the
1257 	 * compound page destructor.
1258 	 */
1259 	struct hstate *h = page_hstate(page);
1260 	int nid = page_to_nid(page);
1261 	struct hugepage_subpool *spool =
1262 		(struct hugepage_subpool *)page_private(page);
1263 	bool restore_reserve;
1264 
1265 	set_page_private(page, 0);
1266 	page->mapping = NULL;
1267 	VM_BUG_ON_PAGE(page_count(page), page);
1268 	VM_BUG_ON_PAGE(page_mapcount(page), page);
1269 	restore_reserve = PagePrivate(page);
1270 	ClearPagePrivate(page);
1271 
1272 	/*
1273 	 * A return code of zero implies that the subpool will be under its
1274 	 * minimum size if the reservation is not restored after page is free.
1275 	 * Therefore, force restore_reserve operation.
1276 	 */
1277 	if (hugepage_subpool_put_pages(spool, 1) == 0)
1278 		restore_reserve = true;
1279 
1280 	spin_lock(&hugetlb_lock);
1281 	clear_page_huge_active(page);
1282 	hugetlb_cgroup_uncharge_page(hstate_index(h),
1283 				     pages_per_huge_page(h), page);
1284 	if (restore_reserve)
1285 		h->resv_huge_pages++;
1286 
1287 	if (h->surplus_huge_pages_node[nid]) {
1288 		/* remove the page from active list */
1289 		list_del(&page->lru);
1290 		update_and_free_page(h, page);
1291 		h->surplus_huge_pages--;
1292 		h->surplus_huge_pages_node[nid]--;
1293 	} else {
1294 		arch_clear_hugepage_flags(page);
1295 		enqueue_huge_page(h, page);
1296 	}
1297 	spin_unlock(&hugetlb_lock);
1298 }
1299 
1300 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1301 {
1302 	INIT_LIST_HEAD(&page->lru);
1303 	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1304 	spin_lock(&hugetlb_lock);
1305 	set_hugetlb_cgroup(page, NULL);
1306 	h->nr_huge_pages++;
1307 	h->nr_huge_pages_node[nid]++;
1308 	spin_unlock(&hugetlb_lock);
1309 	put_page(page); /* free it into the hugepage allocator */
1310 }
1311 
1312 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1313 {
1314 	int i;
1315 	int nr_pages = 1 << order;
1316 	struct page *p = page + 1;
1317 
1318 	/* we rely on prep_new_huge_page to set the destructor */
1319 	set_compound_order(page, order);
1320 	__ClearPageReserved(page);
1321 	__SetPageHead(page);
1322 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1323 		/*
1324 		 * For gigantic hugepages allocated through bootmem at
1325 		 * boot, it's safer to be consistent with the not-gigantic
1326 		 * hugepages and clear the PG_reserved bit from all tail pages
1327 		 * too.  Otherwse drivers using get_user_pages() to access tail
1328 		 * pages may get the reference counting wrong if they see
1329 		 * PG_reserved set on a tail page (despite the head page not
1330 		 * having PG_reserved set).  Enforcing this consistency between
1331 		 * head and tail pages allows drivers to optimize away a check
1332 		 * on the head page when they need know if put_page() is needed
1333 		 * after get_user_pages().
1334 		 */
1335 		__ClearPageReserved(p);
1336 		set_page_count(p, 0);
1337 		set_compound_head(p, page);
1338 	}
1339 	atomic_set(compound_mapcount_ptr(page), -1);
1340 }
1341 
1342 /*
1343  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1344  * transparent huge pages.  See the PageTransHuge() documentation for more
1345  * details.
1346  */
1347 int PageHuge(struct page *page)
1348 {
1349 	if (!PageCompound(page))
1350 		return 0;
1351 
1352 	page = compound_head(page);
1353 	return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1354 }
1355 EXPORT_SYMBOL_GPL(PageHuge);
1356 
1357 /*
1358  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1359  * normal or transparent huge pages.
1360  */
1361 int PageHeadHuge(struct page *page_head)
1362 {
1363 	if (!PageHead(page_head))
1364 		return 0;
1365 
1366 	return get_compound_page_dtor(page_head) == free_huge_page;
1367 }
1368 
1369 pgoff_t __basepage_index(struct page *page)
1370 {
1371 	struct page *page_head = compound_head(page);
1372 	pgoff_t index = page_index(page_head);
1373 	unsigned long compound_idx;
1374 
1375 	if (!PageHuge(page_head))
1376 		return page_index(page);
1377 
1378 	if (compound_order(page_head) >= MAX_ORDER)
1379 		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1380 	else
1381 		compound_idx = page - page_head;
1382 
1383 	return (index << compound_order(page_head)) + compound_idx;
1384 }
1385 
1386 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1387 {
1388 	struct page *page;
1389 
1390 	page = __alloc_pages_node(nid,
1391 		htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1392 						__GFP_RETRY_MAYFAIL|__GFP_NOWARN,
1393 		huge_page_order(h));
1394 	if (page) {
1395 		prep_new_huge_page(h, page, nid);
1396 	}
1397 
1398 	return page;
1399 }
1400 
1401 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1402 {
1403 	struct page *page;
1404 	int nr_nodes, node;
1405 	int ret = 0;
1406 
1407 	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1408 		page = alloc_fresh_huge_page_node(h, node);
1409 		if (page) {
1410 			ret = 1;
1411 			break;
1412 		}
1413 	}
1414 
1415 	if (ret)
1416 		count_vm_event(HTLB_BUDDY_PGALLOC);
1417 	else
1418 		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1419 
1420 	return ret;
1421 }
1422 
1423 /*
1424  * Free huge page from pool from next node to free.
1425  * Attempt to keep persistent huge pages more or less
1426  * balanced over allowed nodes.
1427  * Called with hugetlb_lock locked.
1428  */
1429 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1430 							 bool acct_surplus)
1431 {
1432 	int nr_nodes, node;
1433 	int ret = 0;
1434 
1435 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1436 		/*
1437 		 * If we're returning unused surplus pages, only examine
1438 		 * nodes with surplus pages.
1439 		 */
1440 		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1441 		    !list_empty(&h->hugepage_freelists[node])) {
1442 			struct page *page =
1443 				list_entry(h->hugepage_freelists[node].next,
1444 					  struct page, lru);
1445 			list_del(&page->lru);
1446 			h->free_huge_pages--;
1447 			h->free_huge_pages_node[node]--;
1448 			if (acct_surplus) {
1449 				h->surplus_huge_pages--;
1450 				h->surplus_huge_pages_node[node]--;
1451 			}
1452 			update_and_free_page(h, page);
1453 			ret = 1;
1454 			break;
1455 		}
1456 	}
1457 
1458 	return ret;
1459 }
1460 
1461 /*
1462  * Dissolve a given free hugepage into free buddy pages. This function does
1463  * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the
1464  * number of free hugepages would be reduced below the number of reserved
1465  * hugepages.
1466  */
1467 int dissolve_free_huge_page(struct page *page)
1468 {
1469 	int rc = 0;
1470 
1471 	spin_lock(&hugetlb_lock);
1472 	if (PageHuge(page) && !page_count(page)) {
1473 		struct page *head = compound_head(page);
1474 		struct hstate *h = page_hstate(head);
1475 		int nid = page_to_nid(head);
1476 		if (h->free_huge_pages - h->resv_huge_pages == 0) {
1477 			rc = -EBUSY;
1478 			goto out;
1479 		}
1480 		/*
1481 		 * Move PageHWPoison flag from head page to the raw error page,
1482 		 * which makes any subpages rather than the error page reusable.
1483 		 */
1484 		if (PageHWPoison(head) && page != head) {
1485 			SetPageHWPoison(page);
1486 			ClearPageHWPoison(head);
1487 		}
1488 		list_del(&head->lru);
1489 		h->free_huge_pages--;
1490 		h->free_huge_pages_node[nid]--;
1491 		h->max_huge_pages--;
1492 		update_and_free_page(h, head);
1493 	}
1494 out:
1495 	spin_unlock(&hugetlb_lock);
1496 	return rc;
1497 }
1498 
1499 /*
1500  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1501  * make specified memory blocks removable from the system.
1502  * Note that this will dissolve a free gigantic hugepage completely, if any
1503  * part of it lies within the given range.
1504  * Also note that if dissolve_free_huge_page() returns with an error, all
1505  * free hugepages that were dissolved before that error are lost.
1506  */
1507 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1508 {
1509 	unsigned long pfn;
1510 	struct page *page;
1511 	int rc = 0;
1512 
1513 	if (!hugepages_supported())
1514 		return rc;
1515 
1516 	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1517 		page = pfn_to_page(pfn);
1518 		if (PageHuge(page) && !page_count(page)) {
1519 			rc = dissolve_free_huge_page(page);
1520 			if (rc)
1521 				break;
1522 		}
1523 	}
1524 
1525 	return rc;
1526 }
1527 
1528 static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h,
1529 		gfp_t gfp_mask, int nid, nodemask_t *nmask)
1530 {
1531 	int order = huge_page_order(h);
1532 
1533 	gfp_mask |= __GFP_COMP|__GFP_RETRY_MAYFAIL|__GFP_NOWARN;
1534 	if (nid == NUMA_NO_NODE)
1535 		nid = numa_mem_id();
1536 	return __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1537 }
1538 
1539 static struct page *__alloc_buddy_huge_page(struct hstate *h, gfp_t gfp_mask,
1540 		int nid, nodemask_t *nmask)
1541 {
1542 	struct page *page;
1543 	unsigned int r_nid;
1544 
1545 	if (hstate_is_gigantic(h))
1546 		return NULL;
1547 
1548 	/*
1549 	 * Assume we will successfully allocate the surplus page to
1550 	 * prevent racing processes from causing the surplus to exceed
1551 	 * overcommit
1552 	 *
1553 	 * This however introduces a different race, where a process B
1554 	 * tries to grow the static hugepage pool while alloc_pages() is
1555 	 * called by process A. B will only examine the per-node
1556 	 * counters in determining if surplus huge pages can be
1557 	 * converted to normal huge pages in adjust_pool_surplus(). A
1558 	 * won't be able to increment the per-node counter, until the
1559 	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
1560 	 * no more huge pages can be converted from surplus to normal
1561 	 * state (and doesn't try to convert again). Thus, we have a
1562 	 * case where a surplus huge page exists, the pool is grown, and
1563 	 * the surplus huge page still exists after, even though it
1564 	 * should just have been converted to a normal huge page. This
1565 	 * does not leak memory, though, as the hugepage will be freed
1566 	 * once it is out of use. It also does not allow the counters to
1567 	 * go out of whack in adjust_pool_surplus() as we don't modify
1568 	 * the node values until we've gotten the hugepage and only the
1569 	 * per-node value is checked there.
1570 	 */
1571 	spin_lock(&hugetlb_lock);
1572 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1573 		spin_unlock(&hugetlb_lock);
1574 		return NULL;
1575 	} else {
1576 		h->nr_huge_pages++;
1577 		h->surplus_huge_pages++;
1578 	}
1579 	spin_unlock(&hugetlb_lock);
1580 
1581 	page = __hugetlb_alloc_buddy_huge_page(h, gfp_mask, nid, nmask);
1582 
1583 	spin_lock(&hugetlb_lock);
1584 	if (page) {
1585 		INIT_LIST_HEAD(&page->lru);
1586 		r_nid = page_to_nid(page);
1587 		set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1588 		set_hugetlb_cgroup(page, NULL);
1589 		/*
1590 		 * We incremented the global counters already
1591 		 */
1592 		h->nr_huge_pages_node[r_nid]++;
1593 		h->surplus_huge_pages_node[r_nid]++;
1594 		__count_vm_event(HTLB_BUDDY_PGALLOC);
1595 	} else {
1596 		h->nr_huge_pages--;
1597 		h->surplus_huge_pages--;
1598 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1599 	}
1600 	spin_unlock(&hugetlb_lock);
1601 
1602 	return page;
1603 }
1604 
1605 /*
1606  * Use the VMA's mpolicy to allocate a huge page from the buddy.
1607  */
1608 static
1609 struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h,
1610 		struct vm_area_struct *vma, unsigned long addr)
1611 {
1612 	struct page *page;
1613 	struct mempolicy *mpol;
1614 	gfp_t gfp_mask = htlb_alloc_mask(h);
1615 	int nid;
1616 	nodemask_t *nodemask;
1617 
1618 	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1619 	page = __alloc_buddy_huge_page(h, gfp_mask, nid, nodemask);
1620 	mpol_cond_put(mpol);
1621 
1622 	return page;
1623 }
1624 
1625 /*
1626  * This allocation function is useful in the context where vma is irrelevant.
1627  * E.g. soft-offlining uses this function because it only cares physical
1628  * address of error page.
1629  */
1630 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1631 {
1632 	gfp_t gfp_mask = htlb_alloc_mask(h);
1633 	struct page *page = NULL;
1634 
1635 	if (nid != NUMA_NO_NODE)
1636 		gfp_mask |= __GFP_THISNODE;
1637 
1638 	spin_lock(&hugetlb_lock);
1639 	if (h->free_huge_pages - h->resv_huge_pages > 0)
1640 		page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL);
1641 	spin_unlock(&hugetlb_lock);
1642 
1643 	if (!page)
1644 		page = __alloc_buddy_huge_page(h, gfp_mask, nid, NULL);
1645 
1646 	return page;
1647 }
1648 
1649 
1650 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1651 		nodemask_t *nmask)
1652 {
1653 	gfp_t gfp_mask = htlb_alloc_mask(h);
1654 
1655 	spin_lock(&hugetlb_lock);
1656 	if (h->free_huge_pages - h->resv_huge_pages > 0) {
1657 		struct page *page;
1658 
1659 		page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1660 		if (page) {
1661 			spin_unlock(&hugetlb_lock);
1662 			return page;
1663 		}
1664 	}
1665 	spin_unlock(&hugetlb_lock);
1666 
1667 	/* No reservations, try to overcommit */
1668 
1669 	return __alloc_buddy_huge_page(h, gfp_mask, preferred_nid, nmask);
1670 }
1671 
1672 /*
1673  * Increase the hugetlb pool such that it can accommodate a reservation
1674  * of size 'delta'.
1675  */
1676 static int gather_surplus_pages(struct hstate *h, int delta)
1677 {
1678 	struct list_head surplus_list;
1679 	struct page *page, *tmp;
1680 	int ret, i;
1681 	int needed, allocated;
1682 	bool alloc_ok = true;
1683 
1684 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1685 	if (needed <= 0) {
1686 		h->resv_huge_pages += delta;
1687 		return 0;
1688 	}
1689 
1690 	allocated = 0;
1691 	INIT_LIST_HEAD(&surplus_list);
1692 
1693 	ret = -ENOMEM;
1694 retry:
1695 	spin_unlock(&hugetlb_lock);
1696 	for (i = 0; i < needed; i++) {
1697 		page = __alloc_buddy_huge_page(h, htlb_alloc_mask(h),
1698 				NUMA_NO_NODE, NULL);
1699 		if (!page) {
1700 			alloc_ok = false;
1701 			break;
1702 		}
1703 		list_add(&page->lru, &surplus_list);
1704 		cond_resched();
1705 	}
1706 	allocated += i;
1707 
1708 	/*
1709 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
1710 	 * because either resv_huge_pages or free_huge_pages may have changed.
1711 	 */
1712 	spin_lock(&hugetlb_lock);
1713 	needed = (h->resv_huge_pages + delta) -
1714 			(h->free_huge_pages + allocated);
1715 	if (needed > 0) {
1716 		if (alloc_ok)
1717 			goto retry;
1718 		/*
1719 		 * We were not able to allocate enough pages to
1720 		 * satisfy the entire reservation so we free what
1721 		 * we've allocated so far.
1722 		 */
1723 		goto free;
1724 	}
1725 	/*
1726 	 * The surplus_list now contains _at_least_ the number of extra pages
1727 	 * needed to accommodate the reservation.  Add the appropriate number
1728 	 * of pages to the hugetlb pool and free the extras back to the buddy
1729 	 * allocator.  Commit the entire reservation here to prevent another
1730 	 * process from stealing the pages as they are added to the pool but
1731 	 * before they are reserved.
1732 	 */
1733 	needed += allocated;
1734 	h->resv_huge_pages += delta;
1735 	ret = 0;
1736 
1737 	/* Free the needed pages to the hugetlb pool */
1738 	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1739 		if ((--needed) < 0)
1740 			break;
1741 		/*
1742 		 * This page is now managed by the hugetlb allocator and has
1743 		 * no users -- drop the buddy allocator's reference.
1744 		 */
1745 		put_page_testzero(page);
1746 		VM_BUG_ON_PAGE(page_count(page), page);
1747 		enqueue_huge_page(h, page);
1748 	}
1749 free:
1750 	spin_unlock(&hugetlb_lock);
1751 
1752 	/* Free unnecessary surplus pages to the buddy allocator */
1753 	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1754 		put_page(page);
1755 	spin_lock(&hugetlb_lock);
1756 
1757 	return ret;
1758 }
1759 
1760 /*
1761  * This routine has two main purposes:
1762  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1763  *    in unused_resv_pages.  This corresponds to the prior adjustments made
1764  *    to the associated reservation map.
1765  * 2) Free any unused surplus pages that may have been allocated to satisfy
1766  *    the reservation.  As many as unused_resv_pages may be freed.
1767  *
1768  * Called with hugetlb_lock held.  However, the lock could be dropped (and
1769  * reacquired) during calls to cond_resched_lock.  Whenever dropping the lock,
1770  * we must make sure nobody else can claim pages we are in the process of
1771  * freeing.  Do this by ensuring resv_huge_page always is greater than the
1772  * number of huge pages we plan to free when dropping the lock.
1773  */
1774 static void return_unused_surplus_pages(struct hstate *h,
1775 					unsigned long unused_resv_pages)
1776 {
1777 	unsigned long nr_pages;
1778 
1779 	/* Cannot return gigantic pages currently */
1780 	if (hstate_is_gigantic(h))
1781 		goto out;
1782 
1783 	/*
1784 	 * Part (or even all) of the reservation could have been backed
1785 	 * by pre-allocated pages. Only free surplus pages.
1786 	 */
1787 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1788 
1789 	/*
1790 	 * We want to release as many surplus pages as possible, spread
1791 	 * evenly across all nodes with memory. Iterate across these nodes
1792 	 * until we can no longer free unreserved surplus pages. This occurs
1793 	 * when the nodes with surplus pages have no free pages.
1794 	 * free_pool_huge_page() will balance the the freed pages across the
1795 	 * on-line nodes with memory and will handle the hstate accounting.
1796 	 *
1797 	 * Note that we decrement resv_huge_pages as we free the pages.  If
1798 	 * we drop the lock, resv_huge_pages will still be sufficiently large
1799 	 * to cover subsequent pages we may free.
1800 	 */
1801 	while (nr_pages--) {
1802 		h->resv_huge_pages--;
1803 		unused_resv_pages--;
1804 		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1805 			goto out;
1806 		cond_resched_lock(&hugetlb_lock);
1807 	}
1808 
1809 out:
1810 	/* Fully uncommit the reservation */
1811 	h->resv_huge_pages -= unused_resv_pages;
1812 }
1813 
1814 
1815 /*
1816  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1817  * are used by the huge page allocation routines to manage reservations.
1818  *
1819  * vma_needs_reservation is called to determine if the huge page at addr
1820  * within the vma has an associated reservation.  If a reservation is
1821  * needed, the value 1 is returned.  The caller is then responsible for
1822  * managing the global reservation and subpool usage counts.  After
1823  * the huge page has been allocated, vma_commit_reservation is called
1824  * to add the page to the reservation map.  If the page allocation fails,
1825  * the reservation must be ended instead of committed.  vma_end_reservation
1826  * is called in such cases.
1827  *
1828  * In the normal case, vma_commit_reservation returns the same value
1829  * as the preceding vma_needs_reservation call.  The only time this
1830  * is not the case is if a reserve map was changed between calls.  It
1831  * is the responsibility of the caller to notice the difference and
1832  * take appropriate action.
1833  *
1834  * vma_add_reservation is used in error paths where a reservation must
1835  * be restored when a newly allocated huge page must be freed.  It is
1836  * to be called after calling vma_needs_reservation to determine if a
1837  * reservation exists.
1838  */
1839 enum vma_resv_mode {
1840 	VMA_NEEDS_RESV,
1841 	VMA_COMMIT_RESV,
1842 	VMA_END_RESV,
1843 	VMA_ADD_RESV,
1844 };
1845 static long __vma_reservation_common(struct hstate *h,
1846 				struct vm_area_struct *vma, unsigned long addr,
1847 				enum vma_resv_mode mode)
1848 {
1849 	struct resv_map *resv;
1850 	pgoff_t idx;
1851 	long ret;
1852 
1853 	resv = vma_resv_map(vma);
1854 	if (!resv)
1855 		return 1;
1856 
1857 	idx = vma_hugecache_offset(h, vma, addr);
1858 	switch (mode) {
1859 	case VMA_NEEDS_RESV:
1860 		ret = region_chg(resv, idx, idx + 1);
1861 		break;
1862 	case VMA_COMMIT_RESV:
1863 		ret = region_add(resv, idx, idx + 1);
1864 		break;
1865 	case VMA_END_RESV:
1866 		region_abort(resv, idx, idx + 1);
1867 		ret = 0;
1868 		break;
1869 	case VMA_ADD_RESV:
1870 		if (vma->vm_flags & VM_MAYSHARE)
1871 			ret = region_add(resv, idx, idx + 1);
1872 		else {
1873 			region_abort(resv, idx, idx + 1);
1874 			ret = region_del(resv, idx, idx + 1);
1875 		}
1876 		break;
1877 	default:
1878 		BUG();
1879 	}
1880 
1881 	if (vma->vm_flags & VM_MAYSHARE)
1882 		return ret;
1883 	else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1884 		/*
1885 		 * In most cases, reserves always exist for private mappings.
1886 		 * However, a file associated with mapping could have been
1887 		 * hole punched or truncated after reserves were consumed.
1888 		 * As subsequent fault on such a range will not use reserves.
1889 		 * Subtle - The reserve map for private mappings has the
1890 		 * opposite meaning than that of shared mappings.  If NO
1891 		 * entry is in the reserve map, it means a reservation exists.
1892 		 * If an entry exists in the reserve map, it means the
1893 		 * reservation has already been consumed.  As a result, the
1894 		 * return value of this routine is the opposite of the
1895 		 * value returned from reserve map manipulation routines above.
1896 		 */
1897 		if (ret)
1898 			return 0;
1899 		else
1900 			return 1;
1901 	}
1902 	else
1903 		return ret < 0 ? ret : 0;
1904 }
1905 
1906 static long vma_needs_reservation(struct hstate *h,
1907 			struct vm_area_struct *vma, unsigned long addr)
1908 {
1909 	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1910 }
1911 
1912 static long vma_commit_reservation(struct hstate *h,
1913 			struct vm_area_struct *vma, unsigned long addr)
1914 {
1915 	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1916 }
1917 
1918 static void vma_end_reservation(struct hstate *h,
1919 			struct vm_area_struct *vma, unsigned long addr)
1920 {
1921 	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1922 }
1923 
1924 static long vma_add_reservation(struct hstate *h,
1925 			struct vm_area_struct *vma, unsigned long addr)
1926 {
1927 	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
1928 }
1929 
1930 /*
1931  * This routine is called to restore a reservation on error paths.  In the
1932  * specific error paths, a huge page was allocated (via alloc_huge_page)
1933  * and is about to be freed.  If a reservation for the page existed,
1934  * alloc_huge_page would have consumed the reservation and set PagePrivate
1935  * in the newly allocated page.  When the page is freed via free_huge_page,
1936  * the global reservation count will be incremented if PagePrivate is set.
1937  * However, free_huge_page can not adjust the reserve map.  Adjust the
1938  * reserve map here to be consistent with global reserve count adjustments
1939  * to be made by free_huge_page.
1940  */
1941 static void restore_reserve_on_error(struct hstate *h,
1942 			struct vm_area_struct *vma, unsigned long address,
1943 			struct page *page)
1944 {
1945 	if (unlikely(PagePrivate(page))) {
1946 		long rc = vma_needs_reservation(h, vma, address);
1947 
1948 		if (unlikely(rc < 0)) {
1949 			/*
1950 			 * Rare out of memory condition in reserve map
1951 			 * manipulation.  Clear PagePrivate so that
1952 			 * global reserve count will not be incremented
1953 			 * by free_huge_page.  This will make it appear
1954 			 * as though the reservation for this page was
1955 			 * consumed.  This may prevent the task from
1956 			 * faulting in the page at a later time.  This
1957 			 * is better than inconsistent global huge page
1958 			 * accounting of reserve counts.
1959 			 */
1960 			ClearPagePrivate(page);
1961 		} else if (rc) {
1962 			rc = vma_add_reservation(h, vma, address);
1963 			if (unlikely(rc < 0))
1964 				/*
1965 				 * See above comment about rare out of
1966 				 * memory condition.
1967 				 */
1968 				ClearPagePrivate(page);
1969 		} else
1970 			vma_end_reservation(h, vma, address);
1971 	}
1972 }
1973 
1974 struct page *alloc_huge_page(struct vm_area_struct *vma,
1975 				    unsigned long addr, int avoid_reserve)
1976 {
1977 	struct hugepage_subpool *spool = subpool_vma(vma);
1978 	struct hstate *h = hstate_vma(vma);
1979 	struct page *page;
1980 	long map_chg, map_commit;
1981 	long gbl_chg;
1982 	int ret, idx;
1983 	struct hugetlb_cgroup *h_cg;
1984 
1985 	idx = hstate_index(h);
1986 	/*
1987 	 * Examine the region/reserve map to determine if the process
1988 	 * has a reservation for the page to be allocated.  A return
1989 	 * code of zero indicates a reservation exists (no change).
1990 	 */
1991 	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
1992 	if (map_chg < 0)
1993 		return ERR_PTR(-ENOMEM);
1994 
1995 	/*
1996 	 * Processes that did not create the mapping will have no
1997 	 * reserves as indicated by the region/reserve map. Check
1998 	 * that the allocation will not exceed the subpool limit.
1999 	 * Allocations for MAP_NORESERVE mappings also need to be
2000 	 * checked against any subpool limit.
2001 	 */
2002 	if (map_chg || avoid_reserve) {
2003 		gbl_chg = hugepage_subpool_get_pages(spool, 1);
2004 		if (gbl_chg < 0) {
2005 			vma_end_reservation(h, vma, addr);
2006 			return ERR_PTR(-ENOSPC);
2007 		}
2008 
2009 		/*
2010 		 * Even though there was no reservation in the region/reserve
2011 		 * map, there could be reservations associated with the
2012 		 * subpool that can be used.  This would be indicated if the
2013 		 * return value of hugepage_subpool_get_pages() is zero.
2014 		 * However, if avoid_reserve is specified we still avoid even
2015 		 * the subpool reservations.
2016 		 */
2017 		if (avoid_reserve)
2018 			gbl_chg = 1;
2019 	}
2020 
2021 	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2022 	if (ret)
2023 		goto out_subpool_put;
2024 
2025 	spin_lock(&hugetlb_lock);
2026 	/*
2027 	 * glb_chg is passed to indicate whether or not a page must be taken
2028 	 * from the global free pool (global change).  gbl_chg == 0 indicates
2029 	 * a reservation exists for the allocation.
2030 	 */
2031 	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2032 	if (!page) {
2033 		spin_unlock(&hugetlb_lock);
2034 		page = __alloc_buddy_huge_page_with_mpol(h, vma, addr);
2035 		if (!page)
2036 			goto out_uncharge_cgroup;
2037 		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2038 			SetPagePrivate(page);
2039 			h->resv_huge_pages--;
2040 		}
2041 		spin_lock(&hugetlb_lock);
2042 		list_move(&page->lru, &h->hugepage_activelist);
2043 		/* Fall through */
2044 	}
2045 	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2046 	spin_unlock(&hugetlb_lock);
2047 
2048 	set_page_private(page, (unsigned long)spool);
2049 
2050 	map_commit = vma_commit_reservation(h, vma, addr);
2051 	if (unlikely(map_chg > map_commit)) {
2052 		/*
2053 		 * The page was added to the reservation map between
2054 		 * vma_needs_reservation and vma_commit_reservation.
2055 		 * This indicates a race with hugetlb_reserve_pages.
2056 		 * Adjust for the subpool count incremented above AND
2057 		 * in hugetlb_reserve_pages for the same page.  Also,
2058 		 * the reservation count added in hugetlb_reserve_pages
2059 		 * no longer applies.
2060 		 */
2061 		long rsv_adjust;
2062 
2063 		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2064 		hugetlb_acct_memory(h, -rsv_adjust);
2065 	}
2066 	return page;
2067 
2068 out_uncharge_cgroup:
2069 	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2070 out_subpool_put:
2071 	if (map_chg || avoid_reserve)
2072 		hugepage_subpool_put_pages(spool, 1);
2073 	vma_end_reservation(h, vma, addr);
2074 	return ERR_PTR(-ENOSPC);
2075 }
2076 
2077 /*
2078  * alloc_huge_page()'s wrapper which simply returns the page if allocation
2079  * succeeds, otherwise NULL. This function is called from new_vma_page(),
2080  * where no ERR_VALUE is expected to be returned.
2081  */
2082 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
2083 				unsigned long addr, int avoid_reserve)
2084 {
2085 	struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
2086 	if (IS_ERR(page))
2087 		page = NULL;
2088 	return page;
2089 }
2090 
2091 int alloc_bootmem_huge_page(struct hstate *h)
2092 	__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2093 int __alloc_bootmem_huge_page(struct hstate *h)
2094 {
2095 	struct huge_bootmem_page *m;
2096 	int nr_nodes, node;
2097 
2098 	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2099 		void *addr;
2100 
2101 		addr = memblock_virt_alloc_try_nid_nopanic(
2102 				huge_page_size(h), huge_page_size(h),
2103 				0, BOOTMEM_ALLOC_ACCESSIBLE, node);
2104 		if (addr) {
2105 			/*
2106 			 * Use the beginning of the huge page to store the
2107 			 * huge_bootmem_page struct (until gather_bootmem
2108 			 * puts them into the mem_map).
2109 			 */
2110 			m = addr;
2111 			goto found;
2112 		}
2113 	}
2114 	return 0;
2115 
2116 found:
2117 	BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2118 	/* Put them into a private list first because mem_map is not up yet */
2119 	list_add(&m->list, &huge_boot_pages);
2120 	m->hstate = h;
2121 	return 1;
2122 }
2123 
2124 static void __init prep_compound_huge_page(struct page *page,
2125 		unsigned int order)
2126 {
2127 	if (unlikely(order > (MAX_ORDER - 1)))
2128 		prep_compound_gigantic_page(page, order);
2129 	else
2130 		prep_compound_page(page, order);
2131 }
2132 
2133 /* Put bootmem huge pages into the standard lists after mem_map is up */
2134 static void __init gather_bootmem_prealloc(void)
2135 {
2136 	struct huge_bootmem_page *m;
2137 
2138 	list_for_each_entry(m, &huge_boot_pages, list) {
2139 		struct hstate *h = m->hstate;
2140 		struct page *page;
2141 
2142 #ifdef CONFIG_HIGHMEM
2143 		page = pfn_to_page(m->phys >> PAGE_SHIFT);
2144 		memblock_free_late(__pa(m),
2145 				   sizeof(struct huge_bootmem_page));
2146 #else
2147 		page = virt_to_page(m);
2148 #endif
2149 		WARN_ON(page_count(page) != 1);
2150 		prep_compound_huge_page(page, h->order);
2151 		WARN_ON(PageReserved(page));
2152 		prep_new_huge_page(h, page, page_to_nid(page));
2153 		/*
2154 		 * If we had gigantic hugepages allocated at boot time, we need
2155 		 * to restore the 'stolen' pages to totalram_pages in order to
2156 		 * fix confusing memory reports from free(1) and another
2157 		 * side-effects, like CommitLimit going negative.
2158 		 */
2159 		if (hstate_is_gigantic(h))
2160 			adjust_managed_page_count(page, 1 << h->order);
2161 	}
2162 }
2163 
2164 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2165 {
2166 	unsigned long i;
2167 
2168 	for (i = 0; i < h->max_huge_pages; ++i) {
2169 		if (hstate_is_gigantic(h)) {
2170 			if (!alloc_bootmem_huge_page(h))
2171 				break;
2172 		} else if (!alloc_fresh_huge_page(h,
2173 					 &node_states[N_MEMORY]))
2174 			break;
2175 		cond_resched();
2176 	}
2177 	if (i < h->max_huge_pages) {
2178 		char buf[32];
2179 
2180 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2181 		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
2182 			h->max_huge_pages, buf, i);
2183 		h->max_huge_pages = i;
2184 	}
2185 }
2186 
2187 static void __init hugetlb_init_hstates(void)
2188 {
2189 	struct hstate *h;
2190 
2191 	for_each_hstate(h) {
2192 		if (minimum_order > huge_page_order(h))
2193 			minimum_order = huge_page_order(h);
2194 
2195 		/* oversize hugepages were init'ed in early boot */
2196 		if (!hstate_is_gigantic(h))
2197 			hugetlb_hstate_alloc_pages(h);
2198 	}
2199 	VM_BUG_ON(minimum_order == UINT_MAX);
2200 }
2201 
2202 static void __init report_hugepages(void)
2203 {
2204 	struct hstate *h;
2205 
2206 	for_each_hstate(h) {
2207 		char buf[32];
2208 
2209 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2210 		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2211 			buf, h->free_huge_pages);
2212 	}
2213 }
2214 
2215 #ifdef CONFIG_HIGHMEM
2216 static void try_to_free_low(struct hstate *h, unsigned long count,
2217 						nodemask_t *nodes_allowed)
2218 {
2219 	int i;
2220 
2221 	if (hstate_is_gigantic(h))
2222 		return;
2223 
2224 	for_each_node_mask(i, *nodes_allowed) {
2225 		struct page *page, *next;
2226 		struct list_head *freel = &h->hugepage_freelists[i];
2227 		list_for_each_entry_safe(page, next, freel, lru) {
2228 			if (count >= h->nr_huge_pages)
2229 				return;
2230 			if (PageHighMem(page))
2231 				continue;
2232 			list_del(&page->lru);
2233 			update_and_free_page(h, page);
2234 			h->free_huge_pages--;
2235 			h->free_huge_pages_node[page_to_nid(page)]--;
2236 		}
2237 	}
2238 }
2239 #else
2240 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2241 						nodemask_t *nodes_allowed)
2242 {
2243 }
2244 #endif
2245 
2246 /*
2247  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2248  * balanced by operating on them in a round-robin fashion.
2249  * Returns 1 if an adjustment was made.
2250  */
2251 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2252 				int delta)
2253 {
2254 	int nr_nodes, node;
2255 
2256 	VM_BUG_ON(delta != -1 && delta != 1);
2257 
2258 	if (delta < 0) {
2259 		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2260 			if (h->surplus_huge_pages_node[node])
2261 				goto found;
2262 		}
2263 	} else {
2264 		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2265 			if (h->surplus_huge_pages_node[node] <
2266 					h->nr_huge_pages_node[node])
2267 				goto found;
2268 		}
2269 	}
2270 	return 0;
2271 
2272 found:
2273 	h->surplus_huge_pages += delta;
2274 	h->surplus_huge_pages_node[node] += delta;
2275 	return 1;
2276 }
2277 
2278 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2279 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2280 						nodemask_t *nodes_allowed)
2281 {
2282 	unsigned long min_count, ret;
2283 
2284 	if (hstate_is_gigantic(h) && !gigantic_page_supported())
2285 		return h->max_huge_pages;
2286 
2287 	/*
2288 	 * Increase the pool size
2289 	 * First take pages out of surplus state.  Then make up the
2290 	 * remaining difference by allocating fresh huge pages.
2291 	 *
2292 	 * We might race with __alloc_buddy_huge_page() here and be unable
2293 	 * to convert a surplus huge page to a normal huge page. That is
2294 	 * not critical, though, it just means the overall size of the
2295 	 * pool might be one hugepage larger than it needs to be, but
2296 	 * within all the constraints specified by the sysctls.
2297 	 */
2298 	spin_lock(&hugetlb_lock);
2299 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2300 		if (!adjust_pool_surplus(h, nodes_allowed, -1))
2301 			break;
2302 	}
2303 
2304 	while (count > persistent_huge_pages(h)) {
2305 		/*
2306 		 * If this allocation races such that we no longer need the
2307 		 * page, free_huge_page will handle it by freeing the page
2308 		 * and reducing the surplus.
2309 		 */
2310 		spin_unlock(&hugetlb_lock);
2311 
2312 		/* yield cpu to avoid soft lockup */
2313 		cond_resched();
2314 
2315 		if (hstate_is_gigantic(h))
2316 			ret = alloc_fresh_gigantic_page(h, nodes_allowed);
2317 		else
2318 			ret = alloc_fresh_huge_page(h, nodes_allowed);
2319 		spin_lock(&hugetlb_lock);
2320 		if (!ret)
2321 			goto out;
2322 
2323 		/* Bail for signals. Probably ctrl-c from user */
2324 		if (signal_pending(current))
2325 			goto out;
2326 	}
2327 
2328 	/*
2329 	 * Decrease the pool size
2330 	 * First return free pages to the buddy allocator (being careful
2331 	 * to keep enough around to satisfy reservations).  Then place
2332 	 * pages into surplus state as needed so the pool will shrink
2333 	 * to the desired size as pages become free.
2334 	 *
2335 	 * By placing pages into the surplus state independent of the
2336 	 * overcommit value, we are allowing the surplus pool size to
2337 	 * exceed overcommit. There are few sane options here. Since
2338 	 * __alloc_buddy_huge_page() is checking the global counter,
2339 	 * though, we'll note that we're not allowed to exceed surplus
2340 	 * and won't grow the pool anywhere else. Not until one of the
2341 	 * sysctls are changed, or the surplus pages go out of use.
2342 	 */
2343 	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2344 	min_count = max(count, min_count);
2345 	try_to_free_low(h, min_count, nodes_allowed);
2346 	while (min_count < persistent_huge_pages(h)) {
2347 		if (!free_pool_huge_page(h, nodes_allowed, 0))
2348 			break;
2349 		cond_resched_lock(&hugetlb_lock);
2350 	}
2351 	while (count < persistent_huge_pages(h)) {
2352 		if (!adjust_pool_surplus(h, nodes_allowed, 1))
2353 			break;
2354 	}
2355 out:
2356 	ret = persistent_huge_pages(h);
2357 	spin_unlock(&hugetlb_lock);
2358 	return ret;
2359 }
2360 
2361 #define HSTATE_ATTR_RO(_name) \
2362 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2363 
2364 #define HSTATE_ATTR(_name) \
2365 	static struct kobj_attribute _name##_attr = \
2366 		__ATTR(_name, 0644, _name##_show, _name##_store)
2367 
2368 static struct kobject *hugepages_kobj;
2369 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2370 
2371 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2372 
2373 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2374 {
2375 	int i;
2376 
2377 	for (i = 0; i < HUGE_MAX_HSTATE; i++)
2378 		if (hstate_kobjs[i] == kobj) {
2379 			if (nidp)
2380 				*nidp = NUMA_NO_NODE;
2381 			return &hstates[i];
2382 		}
2383 
2384 	return kobj_to_node_hstate(kobj, nidp);
2385 }
2386 
2387 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2388 					struct kobj_attribute *attr, char *buf)
2389 {
2390 	struct hstate *h;
2391 	unsigned long nr_huge_pages;
2392 	int nid;
2393 
2394 	h = kobj_to_hstate(kobj, &nid);
2395 	if (nid == NUMA_NO_NODE)
2396 		nr_huge_pages = h->nr_huge_pages;
2397 	else
2398 		nr_huge_pages = h->nr_huge_pages_node[nid];
2399 
2400 	return sprintf(buf, "%lu\n", nr_huge_pages);
2401 }
2402 
2403 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2404 					   struct hstate *h, int nid,
2405 					   unsigned long count, size_t len)
2406 {
2407 	int err;
2408 	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2409 
2410 	if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2411 		err = -EINVAL;
2412 		goto out;
2413 	}
2414 
2415 	if (nid == NUMA_NO_NODE) {
2416 		/*
2417 		 * global hstate attribute
2418 		 */
2419 		if (!(obey_mempolicy &&
2420 				init_nodemask_of_mempolicy(nodes_allowed))) {
2421 			NODEMASK_FREE(nodes_allowed);
2422 			nodes_allowed = &node_states[N_MEMORY];
2423 		}
2424 	} else if (nodes_allowed) {
2425 		/*
2426 		 * per node hstate attribute: adjust count to global,
2427 		 * but restrict alloc/free to the specified node.
2428 		 */
2429 		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2430 		init_nodemask_of_node(nodes_allowed, nid);
2431 	} else
2432 		nodes_allowed = &node_states[N_MEMORY];
2433 
2434 	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2435 
2436 	if (nodes_allowed != &node_states[N_MEMORY])
2437 		NODEMASK_FREE(nodes_allowed);
2438 
2439 	return len;
2440 out:
2441 	NODEMASK_FREE(nodes_allowed);
2442 	return err;
2443 }
2444 
2445 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2446 					 struct kobject *kobj, const char *buf,
2447 					 size_t len)
2448 {
2449 	struct hstate *h;
2450 	unsigned long count;
2451 	int nid;
2452 	int err;
2453 
2454 	err = kstrtoul(buf, 10, &count);
2455 	if (err)
2456 		return err;
2457 
2458 	h = kobj_to_hstate(kobj, &nid);
2459 	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2460 }
2461 
2462 static ssize_t nr_hugepages_show(struct kobject *kobj,
2463 				       struct kobj_attribute *attr, char *buf)
2464 {
2465 	return nr_hugepages_show_common(kobj, attr, buf);
2466 }
2467 
2468 static ssize_t nr_hugepages_store(struct kobject *kobj,
2469 	       struct kobj_attribute *attr, const char *buf, size_t len)
2470 {
2471 	return nr_hugepages_store_common(false, kobj, buf, len);
2472 }
2473 HSTATE_ATTR(nr_hugepages);
2474 
2475 #ifdef CONFIG_NUMA
2476 
2477 /*
2478  * hstate attribute for optionally mempolicy-based constraint on persistent
2479  * huge page alloc/free.
2480  */
2481 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2482 				       struct kobj_attribute *attr, char *buf)
2483 {
2484 	return nr_hugepages_show_common(kobj, attr, buf);
2485 }
2486 
2487 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2488 	       struct kobj_attribute *attr, const char *buf, size_t len)
2489 {
2490 	return nr_hugepages_store_common(true, kobj, buf, len);
2491 }
2492 HSTATE_ATTR(nr_hugepages_mempolicy);
2493 #endif
2494 
2495 
2496 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2497 					struct kobj_attribute *attr, char *buf)
2498 {
2499 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2500 	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2501 }
2502 
2503 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2504 		struct kobj_attribute *attr, const char *buf, size_t count)
2505 {
2506 	int err;
2507 	unsigned long input;
2508 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2509 
2510 	if (hstate_is_gigantic(h))
2511 		return -EINVAL;
2512 
2513 	err = kstrtoul(buf, 10, &input);
2514 	if (err)
2515 		return err;
2516 
2517 	spin_lock(&hugetlb_lock);
2518 	h->nr_overcommit_huge_pages = input;
2519 	spin_unlock(&hugetlb_lock);
2520 
2521 	return count;
2522 }
2523 HSTATE_ATTR(nr_overcommit_hugepages);
2524 
2525 static ssize_t free_hugepages_show(struct kobject *kobj,
2526 					struct kobj_attribute *attr, char *buf)
2527 {
2528 	struct hstate *h;
2529 	unsigned long free_huge_pages;
2530 	int nid;
2531 
2532 	h = kobj_to_hstate(kobj, &nid);
2533 	if (nid == NUMA_NO_NODE)
2534 		free_huge_pages = h->free_huge_pages;
2535 	else
2536 		free_huge_pages = h->free_huge_pages_node[nid];
2537 
2538 	return sprintf(buf, "%lu\n", free_huge_pages);
2539 }
2540 HSTATE_ATTR_RO(free_hugepages);
2541 
2542 static ssize_t resv_hugepages_show(struct kobject *kobj,
2543 					struct kobj_attribute *attr, char *buf)
2544 {
2545 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2546 	return sprintf(buf, "%lu\n", h->resv_huge_pages);
2547 }
2548 HSTATE_ATTR_RO(resv_hugepages);
2549 
2550 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2551 					struct kobj_attribute *attr, char *buf)
2552 {
2553 	struct hstate *h;
2554 	unsigned long surplus_huge_pages;
2555 	int nid;
2556 
2557 	h = kobj_to_hstate(kobj, &nid);
2558 	if (nid == NUMA_NO_NODE)
2559 		surplus_huge_pages = h->surplus_huge_pages;
2560 	else
2561 		surplus_huge_pages = h->surplus_huge_pages_node[nid];
2562 
2563 	return sprintf(buf, "%lu\n", surplus_huge_pages);
2564 }
2565 HSTATE_ATTR_RO(surplus_hugepages);
2566 
2567 static struct attribute *hstate_attrs[] = {
2568 	&nr_hugepages_attr.attr,
2569 	&nr_overcommit_hugepages_attr.attr,
2570 	&free_hugepages_attr.attr,
2571 	&resv_hugepages_attr.attr,
2572 	&surplus_hugepages_attr.attr,
2573 #ifdef CONFIG_NUMA
2574 	&nr_hugepages_mempolicy_attr.attr,
2575 #endif
2576 	NULL,
2577 };
2578 
2579 static const struct attribute_group hstate_attr_group = {
2580 	.attrs = hstate_attrs,
2581 };
2582 
2583 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2584 				    struct kobject **hstate_kobjs,
2585 				    const struct attribute_group *hstate_attr_group)
2586 {
2587 	int retval;
2588 	int hi = hstate_index(h);
2589 
2590 	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2591 	if (!hstate_kobjs[hi])
2592 		return -ENOMEM;
2593 
2594 	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2595 	if (retval)
2596 		kobject_put(hstate_kobjs[hi]);
2597 
2598 	return retval;
2599 }
2600 
2601 static void __init hugetlb_sysfs_init(void)
2602 {
2603 	struct hstate *h;
2604 	int err;
2605 
2606 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2607 	if (!hugepages_kobj)
2608 		return;
2609 
2610 	for_each_hstate(h) {
2611 		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2612 					 hstate_kobjs, &hstate_attr_group);
2613 		if (err)
2614 			pr_err("Hugetlb: Unable to add hstate %s", h->name);
2615 	}
2616 }
2617 
2618 #ifdef CONFIG_NUMA
2619 
2620 /*
2621  * node_hstate/s - associate per node hstate attributes, via their kobjects,
2622  * with node devices in node_devices[] using a parallel array.  The array
2623  * index of a node device or _hstate == node id.
2624  * This is here to avoid any static dependency of the node device driver, in
2625  * the base kernel, on the hugetlb module.
2626  */
2627 struct node_hstate {
2628 	struct kobject		*hugepages_kobj;
2629 	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
2630 };
2631 static struct node_hstate node_hstates[MAX_NUMNODES];
2632 
2633 /*
2634  * A subset of global hstate attributes for node devices
2635  */
2636 static struct attribute *per_node_hstate_attrs[] = {
2637 	&nr_hugepages_attr.attr,
2638 	&free_hugepages_attr.attr,
2639 	&surplus_hugepages_attr.attr,
2640 	NULL,
2641 };
2642 
2643 static const struct attribute_group per_node_hstate_attr_group = {
2644 	.attrs = per_node_hstate_attrs,
2645 };
2646 
2647 /*
2648  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2649  * Returns node id via non-NULL nidp.
2650  */
2651 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2652 {
2653 	int nid;
2654 
2655 	for (nid = 0; nid < nr_node_ids; nid++) {
2656 		struct node_hstate *nhs = &node_hstates[nid];
2657 		int i;
2658 		for (i = 0; i < HUGE_MAX_HSTATE; i++)
2659 			if (nhs->hstate_kobjs[i] == kobj) {
2660 				if (nidp)
2661 					*nidp = nid;
2662 				return &hstates[i];
2663 			}
2664 	}
2665 
2666 	BUG();
2667 	return NULL;
2668 }
2669 
2670 /*
2671  * Unregister hstate attributes from a single node device.
2672  * No-op if no hstate attributes attached.
2673  */
2674 static void hugetlb_unregister_node(struct node *node)
2675 {
2676 	struct hstate *h;
2677 	struct node_hstate *nhs = &node_hstates[node->dev.id];
2678 
2679 	if (!nhs->hugepages_kobj)
2680 		return;		/* no hstate attributes */
2681 
2682 	for_each_hstate(h) {
2683 		int idx = hstate_index(h);
2684 		if (nhs->hstate_kobjs[idx]) {
2685 			kobject_put(nhs->hstate_kobjs[idx]);
2686 			nhs->hstate_kobjs[idx] = NULL;
2687 		}
2688 	}
2689 
2690 	kobject_put(nhs->hugepages_kobj);
2691 	nhs->hugepages_kobj = NULL;
2692 }
2693 
2694 
2695 /*
2696  * Register hstate attributes for a single node device.
2697  * No-op if attributes already registered.
2698  */
2699 static void hugetlb_register_node(struct node *node)
2700 {
2701 	struct hstate *h;
2702 	struct node_hstate *nhs = &node_hstates[node->dev.id];
2703 	int err;
2704 
2705 	if (nhs->hugepages_kobj)
2706 		return;		/* already allocated */
2707 
2708 	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2709 							&node->dev.kobj);
2710 	if (!nhs->hugepages_kobj)
2711 		return;
2712 
2713 	for_each_hstate(h) {
2714 		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2715 						nhs->hstate_kobjs,
2716 						&per_node_hstate_attr_group);
2717 		if (err) {
2718 			pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2719 				h->name, node->dev.id);
2720 			hugetlb_unregister_node(node);
2721 			break;
2722 		}
2723 	}
2724 }
2725 
2726 /*
2727  * hugetlb init time:  register hstate attributes for all registered node
2728  * devices of nodes that have memory.  All on-line nodes should have
2729  * registered their associated device by this time.
2730  */
2731 static void __init hugetlb_register_all_nodes(void)
2732 {
2733 	int nid;
2734 
2735 	for_each_node_state(nid, N_MEMORY) {
2736 		struct node *node = node_devices[nid];
2737 		if (node->dev.id == nid)
2738 			hugetlb_register_node(node);
2739 	}
2740 
2741 	/*
2742 	 * Let the node device driver know we're here so it can
2743 	 * [un]register hstate attributes on node hotplug.
2744 	 */
2745 	register_hugetlbfs_with_node(hugetlb_register_node,
2746 				     hugetlb_unregister_node);
2747 }
2748 #else	/* !CONFIG_NUMA */
2749 
2750 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2751 {
2752 	BUG();
2753 	if (nidp)
2754 		*nidp = -1;
2755 	return NULL;
2756 }
2757 
2758 static void hugetlb_register_all_nodes(void) { }
2759 
2760 #endif
2761 
2762 static int __init hugetlb_init(void)
2763 {
2764 	int i;
2765 
2766 	if (!hugepages_supported())
2767 		return 0;
2768 
2769 	if (!size_to_hstate(default_hstate_size)) {
2770 		if (default_hstate_size != 0) {
2771 			pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
2772 			       default_hstate_size, HPAGE_SIZE);
2773 		}
2774 
2775 		default_hstate_size = HPAGE_SIZE;
2776 		if (!size_to_hstate(default_hstate_size))
2777 			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2778 	}
2779 	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2780 	if (default_hstate_max_huge_pages) {
2781 		if (!default_hstate.max_huge_pages)
2782 			default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2783 	}
2784 
2785 	hugetlb_init_hstates();
2786 	gather_bootmem_prealloc();
2787 	report_hugepages();
2788 
2789 	hugetlb_sysfs_init();
2790 	hugetlb_register_all_nodes();
2791 	hugetlb_cgroup_file_init();
2792 
2793 #ifdef CONFIG_SMP
2794 	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2795 #else
2796 	num_fault_mutexes = 1;
2797 #endif
2798 	hugetlb_fault_mutex_table =
2799 		kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2800 	BUG_ON(!hugetlb_fault_mutex_table);
2801 
2802 	for (i = 0; i < num_fault_mutexes; i++)
2803 		mutex_init(&hugetlb_fault_mutex_table[i]);
2804 	return 0;
2805 }
2806 subsys_initcall(hugetlb_init);
2807 
2808 /* Should be called on processing a hugepagesz=... option */
2809 void __init hugetlb_bad_size(void)
2810 {
2811 	parsed_valid_hugepagesz = false;
2812 }
2813 
2814 void __init hugetlb_add_hstate(unsigned int order)
2815 {
2816 	struct hstate *h;
2817 	unsigned long i;
2818 
2819 	if (size_to_hstate(PAGE_SIZE << order)) {
2820 		pr_warn("hugepagesz= specified twice, ignoring\n");
2821 		return;
2822 	}
2823 	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2824 	BUG_ON(order == 0);
2825 	h = &hstates[hugetlb_max_hstate++];
2826 	h->order = order;
2827 	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2828 	h->nr_huge_pages = 0;
2829 	h->free_huge_pages = 0;
2830 	for (i = 0; i < MAX_NUMNODES; ++i)
2831 		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2832 	INIT_LIST_HEAD(&h->hugepage_activelist);
2833 	h->next_nid_to_alloc = first_memory_node;
2834 	h->next_nid_to_free = first_memory_node;
2835 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2836 					huge_page_size(h)/1024);
2837 
2838 	parsed_hstate = h;
2839 }
2840 
2841 static int __init hugetlb_nrpages_setup(char *s)
2842 {
2843 	unsigned long *mhp;
2844 	static unsigned long *last_mhp;
2845 
2846 	if (!parsed_valid_hugepagesz) {
2847 		pr_warn("hugepages = %s preceded by "
2848 			"an unsupported hugepagesz, ignoring\n", s);
2849 		parsed_valid_hugepagesz = true;
2850 		return 1;
2851 	}
2852 	/*
2853 	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2854 	 * so this hugepages= parameter goes to the "default hstate".
2855 	 */
2856 	else if (!hugetlb_max_hstate)
2857 		mhp = &default_hstate_max_huge_pages;
2858 	else
2859 		mhp = &parsed_hstate->max_huge_pages;
2860 
2861 	if (mhp == last_mhp) {
2862 		pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2863 		return 1;
2864 	}
2865 
2866 	if (sscanf(s, "%lu", mhp) <= 0)
2867 		*mhp = 0;
2868 
2869 	/*
2870 	 * Global state is always initialized later in hugetlb_init.
2871 	 * But we need to allocate >= MAX_ORDER hstates here early to still
2872 	 * use the bootmem allocator.
2873 	 */
2874 	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2875 		hugetlb_hstate_alloc_pages(parsed_hstate);
2876 
2877 	last_mhp = mhp;
2878 
2879 	return 1;
2880 }
2881 __setup("hugepages=", hugetlb_nrpages_setup);
2882 
2883 static int __init hugetlb_default_setup(char *s)
2884 {
2885 	default_hstate_size = memparse(s, &s);
2886 	return 1;
2887 }
2888 __setup("default_hugepagesz=", hugetlb_default_setup);
2889 
2890 static unsigned int cpuset_mems_nr(unsigned int *array)
2891 {
2892 	int node;
2893 	unsigned int nr = 0;
2894 
2895 	for_each_node_mask(node, cpuset_current_mems_allowed)
2896 		nr += array[node];
2897 
2898 	return nr;
2899 }
2900 
2901 #ifdef CONFIG_SYSCTL
2902 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2903 			 struct ctl_table *table, int write,
2904 			 void __user *buffer, size_t *length, loff_t *ppos)
2905 {
2906 	struct hstate *h = &default_hstate;
2907 	unsigned long tmp = h->max_huge_pages;
2908 	int ret;
2909 
2910 	if (!hugepages_supported())
2911 		return -EOPNOTSUPP;
2912 
2913 	table->data = &tmp;
2914 	table->maxlen = sizeof(unsigned long);
2915 	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2916 	if (ret)
2917 		goto out;
2918 
2919 	if (write)
2920 		ret = __nr_hugepages_store_common(obey_mempolicy, h,
2921 						  NUMA_NO_NODE, tmp, *length);
2922 out:
2923 	return ret;
2924 }
2925 
2926 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2927 			  void __user *buffer, size_t *length, loff_t *ppos)
2928 {
2929 
2930 	return hugetlb_sysctl_handler_common(false, table, write,
2931 							buffer, length, ppos);
2932 }
2933 
2934 #ifdef CONFIG_NUMA
2935 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2936 			  void __user *buffer, size_t *length, loff_t *ppos)
2937 {
2938 	return hugetlb_sysctl_handler_common(true, table, write,
2939 							buffer, length, ppos);
2940 }
2941 #endif /* CONFIG_NUMA */
2942 
2943 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2944 			void __user *buffer,
2945 			size_t *length, loff_t *ppos)
2946 {
2947 	struct hstate *h = &default_hstate;
2948 	unsigned long tmp;
2949 	int ret;
2950 
2951 	if (!hugepages_supported())
2952 		return -EOPNOTSUPP;
2953 
2954 	tmp = h->nr_overcommit_huge_pages;
2955 
2956 	if (write && hstate_is_gigantic(h))
2957 		return -EINVAL;
2958 
2959 	table->data = &tmp;
2960 	table->maxlen = sizeof(unsigned long);
2961 	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2962 	if (ret)
2963 		goto out;
2964 
2965 	if (write) {
2966 		spin_lock(&hugetlb_lock);
2967 		h->nr_overcommit_huge_pages = tmp;
2968 		spin_unlock(&hugetlb_lock);
2969 	}
2970 out:
2971 	return ret;
2972 }
2973 
2974 #endif /* CONFIG_SYSCTL */
2975 
2976 void hugetlb_report_meminfo(struct seq_file *m)
2977 {
2978 	struct hstate *h = &default_hstate;
2979 	if (!hugepages_supported())
2980 		return;
2981 	seq_printf(m,
2982 			"HugePages_Total:   %5lu\n"
2983 			"HugePages_Free:    %5lu\n"
2984 			"HugePages_Rsvd:    %5lu\n"
2985 			"HugePages_Surp:    %5lu\n"
2986 			"Hugepagesize:   %8lu kB\n",
2987 			h->nr_huge_pages,
2988 			h->free_huge_pages,
2989 			h->resv_huge_pages,
2990 			h->surplus_huge_pages,
2991 			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2992 }
2993 
2994 int hugetlb_report_node_meminfo(int nid, char *buf)
2995 {
2996 	struct hstate *h = &default_hstate;
2997 	if (!hugepages_supported())
2998 		return 0;
2999 	return sprintf(buf,
3000 		"Node %d HugePages_Total: %5u\n"
3001 		"Node %d HugePages_Free:  %5u\n"
3002 		"Node %d HugePages_Surp:  %5u\n",
3003 		nid, h->nr_huge_pages_node[nid],
3004 		nid, h->free_huge_pages_node[nid],
3005 		nid, h->surplus_huge_pages_node[nid]);
3006 }
3007 
3008 void hugetlb_show_meminfo(void)
3009 {
3010 	struct hstate *h;
3011 	int nid;
3012 
3013 	if (!hugepages_supported())
3014 		return;
3015 
3016 	for_each_node_state(nid, N_MEMORY)
3017 		for_each_hstate(h)
3018 			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3019 				nid,
3020 				h->nr_huge_pages_node[nid],
3021 				h->free_huge_pages_node[nid],
3022 				h->surplus_huge_pages_node[nid],
3023 				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3024 }
3025 
3026 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3027 {
3028 	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3029 		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3030 }
3031 
3032 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3033 unsigned long hugetlb_total_pages(void)
3034 {
3035 	struct hstate *h;
3036 	unsigned long nr_total_pages = 0;
3037 
3038 	for_each_hstate(h)
3039 		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3040 	return nr_total_pages;
3041 }
3042 
3043 static int hugetlb_acct_memory(struct hstate *h, long delta)
3044 {
3045 	int ret = -ENOMEM;
3046 
3047 	spin_lock(&hugetlb_lock);
3048 	/*
3049 	 * When cpuset is configured, it breaks the strict hugetlb page
3050 	 * reservation as the accounting is done on a global variable. Such
3051 	 * reservation is completely rubbish in the presence of cpuset because
3052 	 * the reservation is not checked against page availability for the
3053 	 * current cpuset. Application can still potentially OOM'ed by kernel
3054 	 * with lack of free htlb page in cpuset that the task is in.
3055 	 * Attempt to enforce strict accounting with cpuset is almost
3056 	 * impossible (or too ugly) because cpuset is too fluid that
3057 	 * task or memory node can be dynamically moved between cpusets.
3058 	 *
3059 	 * The change of semantics for shared hugetlb mapping with cpuset is
3060 	 * undesirable. However, in order to preserve some of the semantics,
3061 	 * we fall back to check against current free page availability as
3062 	 * a best attempt and hopefully to minimize the impact of changing
3063 	 * semantics that cpuset has.
3064 	 */
3065 	if (delta > 0) {
3066 		if (gather_surplus_pages(h, delta) < 0)
3067 			goto out;
3068 
3069 		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3070 			return_unused_surplus_pages(h, delta);
3071 			goto out;
3072 		}
3073 	}
3074 
3075 	ret = 0;
3076 	if (delta < 0)
3077 		return_unused_surplus_pages(h, (unsigned long) -delta);
3078 
3079 out:
3080 	spin_unlock(&hugetlb_lock);
3081 	return ret;
3082 }
3083 
3084 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3085 {
3086 	struct resv_map *resv = vma_resv_map(vma);
3087 
3088 	/*
3089 	 * This new VMA should share its siblings reservation map if present.
3090 	 * The VMA will only ever have a valid reservation map pointer where
3091 	 * it is being copied for another still existing VMA.  As that VMA
3092 	 * has a reference to the reservation map it cannot disappear until
3093 	 * after this open call completes.  It is therefore safe to take a
3094 	 * new reference here without additional locking.
3095 	 */
3096 	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3097 		kref_get(&resv->refs);
3098 }
3099 
3100 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3101 {
3102 	struct hstate *h = hstate_vma(vma);
3103 	struct resv_map *resv = vma_resv_map(vma);
3104 	struct hugepage_subpool *spool = subpool_vma(vma);
3105 	unsigned long reserve, start, end;
3106 	long gbl_reserve;
3107 
3108 	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3109 		return;
3110 
3111 	start = vma_hugecache_offset(h, vma, vma->vm_start);
3112 	end = vma_hugecache_offset(h, vma, vma->vm_end);
3113 
3114 	reserve = (end - start) - region_count(resv, start, end);
3115 
3116 	kref_put(&resv->refs, resv_map_release);
3117 
3118 	if (reserve) {
3119 		/*
3120 		 * Decrement reserve counts.  The global reserve count may be
3121 		 * adjusted if the subpool has a minimum size.
3122 		 */
3123 		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3124 		hugetlb_acct_memory(h, -gbl_reserve);
3125 	}
3126 }
3127 
3128 /*
3129  * We cannot handle pagefaults against hugetlb pages at all.  They cause
3130  * handle_mm_fault() to try to instantiate regular-sized pages in the
3131  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
3132  * this far.
3133  */
3134 static int hugetlb_vm_op_fault(struct vm_fault *vmf)
3135 {
3136 	BUG();
3137 	return 0;
3138 }
3139 
3140 const struct vm_operations_struct hugetlb_vm_ops = {
3141 	.fault = hugetlb_vm_op_fault,
3142 	.open = hugetlb_vm_op_open,
3143 	.close = hugetlb_vm_op_close,
3144 };
3145 
3146 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3147 				int writable)
3148 {
3149 	pte_t entry;
3150 
3151 	if (writable) {
3152 		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3153 					 vma->vm_page_prot)));
3154 	} else {
3155 		entry = huge_pte_wrprotect(mk_huge_pte(page,
3156 					   vma->vm_page_prot));
3157 	}
3158 	entry = pte_mkyoung(entry);
3159 	entry = pte_mkhuge(entry);
3160 	entry = arch_make_huge_pte(entry, vma, page, writable);
3161 
3162 	return entry;
3163 }
3164 
3165 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3166 				   unsigned long address, pte_t *ptep)
3167 {
3168 	pte_t entry;
3169 
3170 	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3171 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3172 		update_mmu_cache(vma, address, ptep);
3173 }
3174 
3175 bool is_hugetlb_entry_migration(pte_t pte)
3176 {
3177 	swp_entry_t swp;
3178 
3179 	if (huge_pte_none(pte) || pte_present(pte))
3180 		return false;
3181 	swp = pte_to_swp_entry(pte);
3182 	if (non_swap_entry(swp) && is_migration_entry(swp))
3183 		return true;
3184 	else
3185 		return false;
3186 }
3187 
3188 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3189 {
3190 	swp_entry_t swp;
3191 
3192 	if (huge_pte_none(pte) || pte_present(pte))
3193 		return 0;
3194 	swp = pte_to_swp_entry(pte);
3195 	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3196 		return 1;
3197 	else
3198 		return 0;
3199 }
3200 
3201 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3202 			    struct vm_area_struct *vma)
3203 {
3204 	pte_t *src_pte, *dst_pte, entry;
3205 	struct page *ptepage;
3206 	unsigned long addr;
3207 	int cow;
3208 	struct hstate *h = hstate_vma(vma);
3209 	unsigned long sz = huge_page_size(h);
3210 	unsigned long mmun_start;	/* For mmu_notifiers */
3211 	unsigned long mmun_end;		/* For mmu_notifiers */
3212 	int ret = 0;
3213 
3214 	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3215 
3216 	mmun_start = vma->vm_start;
3217 	mmun_end = vma->vm_end;
3218 	if (cow)
3219 		mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
3220 
3221 	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3222 		spinlock_t *src_ptl, *dst_ptl;
3223 		src_pte = huge_pte_offset(src, addr, sz);
3224 		if (!src_pte)
3225 			continue;
3226 		dst_pte = huge_pte_alloc(dst, addr, sz);
3227 		if (!dst_pte) {
3228 			ret = -ENOMEM;
3229 			break;
3230 		}
3231 
3232 		/* If the pagetables are shared don't copy or take references */
3233 		if (dst_pte == src_pte)
3234 			continue;
3235 
3236 		dst_ptl = huge_pte_lock(h, dst, dst_pte);
3237 		src_ptl = huge_pte_lockptr(h, src, src_pte);
3238 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3239 		entry = huge_ptep_get(src_pte);
3240 		if (huge_pte_none(entry)) { /* skip none entry */
3241 			;
3242 		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
3243 				    is_hugetlb_entry_hwpoisoned(entry))) {
3244 			swp_entry_t swp_entry = pte_to_swp_entry(entry);
3245 
3246 			if (is_write_migration_entry(swp_entry) && cow) {
3247 				/*
3248 				 * COW mappings require pages in both
3249 				 * parent and child to be set to read.
3250 				 */
3251 				make_migration_entry_read(&swp_entry);
3252 				entry = swp_entry_to_pte(swp_entry);
3253 				set_huge_swap_pte_at(src, addr, src_pte,
3254 						     entry, sz);
3255 			}
3256 			set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3257 		} else {
3258 			if (cow) {
3259 				/*
3260 				 * No need to notify as we are downgrading page
3261 				 * table protection not changing it to point
3262 				 * to a new page.
3263 				 *
3264 				 * See Documentation/vm/mmu_notifier.txt
3265 				 */
3266 				huge_ptep_set_wrprotect(src, addr, src_pte);
3267 			}
3268 			entry = huge_ptep_get(src_pte);
3269 			ptepage = pte_page(entry);
3270 			get_page(ptepage);
3271 			page_dup_rmap(ptepage, true);
3272 			set_huge_pte_at(dst, addr, dst_pte, entry);
3273 			hugetlb_count_add(pages_per_huge_page(h), dst);
3274 		}
3275 		spin_unlock(src_ptl);
3276 		spin_unlock(dst_ptl);
3277 	}
3278 
3279 	if (cow)
3280 		mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3281 
3282 	return ret;
3283 }
3284 
3285 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3286 			    unsigned long start, unsigned long end,
3287 			    struct page *ref_page)
3288 {
3289 	struct mm_struct *mm = vma->vm_mm;
3290 	unsigned long address;
3291 	pte_t *ptep;
3292 	pte_t pte;
3293 	spinlock_t *ptl;
3294 	struct page *page;
3295 	struct hstate *h = hstate_vma(vma);
3296 	unsigned long sz = huge_page_size(h);
3297 	const unsigned long mmun_start = start;	/* For mmu_notifiers */
3298 	const unsigned long mmun_end   = end;	/* For mmu_notifiers */
3299 
3300 	WARN_ON(!is_vm_hugetlb_page(vma));
3301 	BUG_ON(start & ~huge_page_mask(h));
3302 	BUG_ON(end & ~huge_page_mask(h));
3303 
3304 	/*
3305 	 * This is a hugetlb vma, all the pte entries should point
3306 	 * to huge page.
3307 	 */
3308 	tlb_remove_check_page_size_change(tlb, sz);
3309 	tlb_start_vma(tlb, vma);
3310 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3311 	address = start;
3312 	for (; address < end; address += sz) {
3313 		ptep = huge_pte_offset(mm, address, sz);
3314 		if (!ptep)
3315 			continue;
3316 
3317 		ptl = huge_pte_lock(h, mm, ptep);
3318 		if (huge_pmd_unshare(mm, &address, ptep)) {
3319 			spin_unlock(ptl);
3320 			continue;
3321 		}
3322 
3323 		pte = huge_ptep_get(ptep);
3324 		if (huge_pte_none(pte)) {
3325 			spin_unlock(ptl);
3326 			continue;
3327 		}
3328 
3329 		/*
3330 		 * Migrating hugepage or HWPoisoned hugepage is already
3331 		 * unmapped and its refcount is dropped, so just clear pte here.
3332 		 */
3333 		if (unlikely(!pte_present(pte))) {
3334 			huge_pte_clear(mm, address, ptep, sz);
3335 			spin_unlock(ptl);
3336 			continue;
3337 		}
3338 
3339 		page = pte_page(pte);
3340 		/*
3341 		 * If a reference page is supplied, it is because a specific
3342 		 * page is being unmapped, not a range. Ensure the page we
3343 		 * are about to unmap is the actual page of interest.
3344 		 */
3345 		if (ref_page) {
3346 			if (page != ref_page) {
3347 				spin_unlock(ptl);
3348 				continue;
3349 			}
3350 			/*
3351 			 * Mark the VMA as having unmapped its page so that
3352 			 * future faults in this VMA will fail rather than
3353 			 * looking like data was lost
3354 			 */
3355 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3356 		}
3357 
3358 		pte = huge_ptep_get_and_clear(mm, address, ptep);
3359 		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3360 		if (huge_pte_dirty(pte))
3361 			set_page_dirty(page);
3362 
3363 		hugetlb_count_sub(pages_per_huge_page(h), mm);
3364 		page_remove_rmap(page, true);
3365 
3366 		spin_unlock(ptl);
3367 		tlb_remove_page_size(tlb, page, huge_page_size(h));
3368 		/*
3369 		 * Bail out after unmapping reference page if supplied
3370 		 */
3371 		if (ref_page)
3372 			break;
3373 	}
3374 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3375 	tlb_end_vma(tlb, vma);
3376 }
3377 
3378 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3379 			  struct vm_area_struct *vma, unsigned long start,
3380 			  unsigned long end, struct page *ref_page)
3381 {
3382 	__unmap_hugepage_range(tlb, vma, start, end, ref_page);
3383 
3384 	/*
3385 	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3386 	 * test will fail on a vma being torn down, and not grab a page table
3387 	 * on its way out.  We're lucky that the flag has such an appropriate
3388 	 * name, and can in fact be safely cleared here. We could clear it
3389 	 * before the __unmap_hugepage_range above, but all that's necessary
3390 	 * is to clear it before releasing the i_mmap_rwsem. This works
3391 	 * because in the context this is called, the VMA is about to be
3392 	 * destroyed and the i_mmap_rwsem is held.
3393 	 */
3394 	vma->vm_flags &= ~VM_MAYSHARE;
3395 }
3396 
3397 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3398 			  unsigned long end, struct page *ref_page)
3399 {
3400 	struct mm_struct *mm;
3401 	struct mmu_gather tlb;
3402 
3403 	mm = vma->vm_mm;
3404 
3405 	tlb_gather_mmu(&tlb, mm, start, end);
3406 	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3407 	tlb_finish_mmu(&tlb, start, end);
3408 }
3409 
3410 /*
3411  * This is called when the original mapper is failing to COW a MAP_PRIVATE
3412  * mappping it owns the reserve page for. The intention is to unmap the page
3413  * from other VMAs and let the children be SIGKILLed if they are faulting the
3414  * same region.
3415  */
3416 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3417 			      struct page *page, unsigned long address)
3418 {
3419 	struct hstate *h = hstate_vma(vma);
3420 	struct vm_area_struct *iter_vma;
3421 	struct address_space *mapping;
3422 	pgoff_t pgoff;
3423 
3424 	/*
3425 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3426 	 * from page cache lookup which is in HPAGE_SIZE units.
3427 	 */
3428 	address = address & huge_page_mask(h);
3429 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3430 			vma->vm_pgoff;
3431 	mapping = vma->vm_file->f_mapping;
3432 
3433 	/*
3434 	 * Take the mapping lock for the duration of the table walk. As
3435 	 * this mapping should be shared between all the VMAs,
3436 	 * __unmap_hugepage_range() is called as the lock is already held
3437 	 */
3438 	i_mmap_lock_write(mapping);
3439 	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3440 		/* Do not unmap the current VMA */
3441 		if (iter_vma == vma)
3442 			continue;
3443 
3444 		/*
3445 		 * Shared VMAs have their own reserves and do not affect
3446 		 * MAP_PRIVATE accounting but it is possible that a shared
3447 		 * VMA is using the same page so check and skip such VMAs.
3448 		 */
3449 		if (iter_vma->vm_flags & VM_MAYSHARE)
3450 			continue;
3451 
3452 		/*
3453 		 * Unmap the page from other VMAs without their own reserves.
3454 		 * They get marked to be SIGKILLed if they fault in these
3455 		 * areas. This is because a future no-page fault on this VMA
3456 		 * could insert a zeroed page instead of the data existing
3457 		 * from the time of fork. This would look like data corruption
3458 		 */
3459 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3460 			unmap_hugepage_range(iter_vma, address,
3461 					     address + huge_page_size(h), page);
3462 	}
3463 	i_mmap_unlock_write(mapping);
3464 }
3465 
3466 /*
3467  * Hugetlb_cow() should be called with page lock of the original hugepage held.
3468  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3469  * cannot race with other handlers or page migration.
3470  * Keep the pte_same checks anyway to make transition from the mutex easier.
3471  */
3472 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3473 		       unsigned long address, pte_t *ptep,
3474 		       struct page *pagecache_page, spinlock_t *ptl)
3475 {
3476 	pte_t pte;
3477 	struct hstate *h = hstate_vma(vma);
3478 	struct page *old_page, *new_page;
3479 	int ret = 0, outside_reserve = 0;
3480 	unsigned long mmun_start;	/* For mmu_notifiers */
3481 	unsigned long mmun_end;		/* For mmu_notifiers */
3482 
3483 	pte = huge_ptep_get(ptep);
3484 	old_page = pte_page(pte);
3485 
3486 retry_avoidcopy:
3487 	/* If no-one else is actually using this page, avoid the copy
3488 	 * and just make the page writable */
3489 	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3490 		page_move_anon_rmap(old_page, vma);
3491 		set_huge_ptep_writable(vma, address, ptep);
3492 		return 0;
3493 	}
3494 
3495 	/*
3496 	 * If the process that created a MAP_PRIVATE mapping is about to
3497 	 * perform a COW due to a shared page count, attempt to satisfy
3498 	 * the allocation without using the existing reserves. The pagecache
3499 	 * page is used to determine if the reserve at this address was
3500 	 * consumed or not. If reserves were used, a partial faulted mapping
3501 	 * at the time of fork() could consume its reserves on COW instead
3502 	 * of the full address range.
3503 	 */
3504 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3505 			old_page != pagecache_page)
3506 		outside_reserve = 1;
3507 
3508 	get_page(old_page);
3509 
3510 	/*
3511 	 * Drop page table lock as buddy allocator may be called. It will
3512 	 * be acquired again before returning to the caller, as expected.
3513 	 */
3514 	spin_unlock(ptl);
3515 	new_page = alloc_huge_page(vma, address, outside_reserve);
3516 
3517 	if (IS_ERR(new_page)) {
3518 		/*
3519 		 * If a process owning a MAP_PRIVATE mapping fails to COW,
3520 		 * it is due to references held by a child and an insufficient
3521 		 * huge page pool. To guarantee the original mappers
3522 		 * reliability, unmap the page from child processes. The child
3523 		 * may get SIGKILLed if it later faults.
3524 		 */
3525 		if (outside_reserve) {
3526 			put_page(old_page);
3527 			BUG_ON(huge_pte_none(pte));
3528 			unmap_ref_private(mm, vma, old_page, address);
3529 			BUG_ON(huge_pte_none(pte));
3530 			spin_lock(ptl);
3531 			ptep = huge_pte_offset(mm, address & huge_page_mask(h),
3532 					       huge_page_size(h));
3533 			if (likely(ptep &&
3534 				   pte_same(huge_ptep_get(ptep), pte)))
3535 				goto retry_avoidcopy;
3536 			/*
3537 			 * race occurs while re-acquiring page table
3538 			 * lock, and our job is done.
3539 			 */
3540 			return 0;
3541 		}
3542 
3543 		ret = (PTR_ERR(new_page) == -ENOMEM) ?
3544 			VM_FAULT_OOM : VM_FAULT_SIGBUS;
3545 		goto out_release_old;
3546 	}
3547 
3548 	/*
3549 	 * When the original hugepage is shared one, it does not have
3550 	 * anon_vma prepared.
3551 	 */
3552 	if (unlikely(anon_vma_prepare(vma))) {
3553 		ret = VM_FAULT_OOM;
3554 		goto out_release_all;
3555 	}
3556 
3557 	copy_user_huge_page(new_page, old_page, address, vma,
3558 			    pages_per_huge_page(h));
3559 	__SetPageUptodate(new_page);
3560 	set_page_huge_active(new_page);
3561 
3562 	mmun_start = address & huge_page_mask(h);
3563 	mmun_end = mmun_start + huge_page_size(h);
3564 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3565 
3566 	/*
3567 	 * Retake the page table lock to check for racing updates
3568 	 * before the page tables are altered
3569 	 */
3570 	spin_lock(ptl);
3571 	ptep = huge_pte_offset(mm, address & huge_page_mask(h),
3572 			       huge_page_size(h));
3573 	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3574 		ClearPagePrivate(new_page);
3575 
3576 		/* Break COW */
3577 		huge_ptep_clear_flush(vma, address, ptep);
3578 		mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3579 		set_huge_pte_at(mm, address, ptep,
3580 				make_huge_pte(vma, new_page, 1));
3581 		page_remove_rmap(old_page, true);
3582 		hugepage_add_new_anon_rmap(new_page, vma, address);
3583 		/* Make the old page be freed below */
3584 		new_page = old_page;
3585 	}
3586 	spin_unlock(ptl);
3587 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3588 out_release_all:
3589 	restore_reserve_on_error(h, vma, address, new_page);
3590 	put_page(new_page);
3591 out_release_old:
3592 	put_page(old_page);
3593 
3594 	spin_lock(ptl); /* Caller expects lock to be held */
3595 	return ret;
3596 }
3597 
3598 /* Return the pagecache page at a given address within a VMA */
3599 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3600 			struct vm_area_struct *vma, unsigned long address)
3601 {
3602 	struct address_space *mapping;
3603 	pgoff_t idx;
3604 
3605 	mapping = vma->vm_file->f_mapping;
3606 	idx = vma_hugecache_offset(h, vma, address);
3607 
3608 	return find_lock_page(mapping, idx);
3609 }
3610 
3611 /*
3612  * Return whether there is a pagecache page to back given address within VMA.
3613  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3614  */
3615 static bool hugetlbfs_pagecache_present(struct hstate *h,
3616 			struct vm_area_struct *vma, unsigned long address)
3617 {
3618 	struct address_space *mapping;
3619 	pgoff_t idx;
3620 	struct page *page;
3621 
3622 	mapping = vma->vm_file->f_mapping;
3623 	idx = vma_hugecache_offset(h, vma, address);
3624 
3625 	page = find_get_page(mapping, idx);
3626 	if (page)
3627 		put_page(page);
3628 	return page != NULL;
3629 }
3630 
3631 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3632 			   pgoff_t idx)
3633 {
3634 	struct inode *inode = mapping->host;
3635 	struct hstate *h = hstate_inode(inode);
3636 	int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3637 
3638 	if (err)
3639 		return err;
3640 	ClearPagePrivate(page);
3641 
3642 	spin_lock(&inode->i_lock);
3643 	inode->i_blocks += blocks_per_huge_page(h);
3644 	spin_unlock(&inode->i_lock);
3645 	return 0;
3646 }
3647 
3648 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3649 			   struct address_space *mapping, pgoff_t idx,
3650 			   unsigned long address, pte_t *ptep, unsigned int flags)
3651 {
3652 	struct hstate *h = hstate_vma(vma);
3653 	int ret = VM_FAULT_SIGBUS;
3654 	int anon_rmap = 0;
3655 	unsigned long size;
3656 	struct page *page;
3657 	pte_t new_pte;
3658 	spinlock_t *ptl;
3659 
3660 	/*
3661 	 * Currently, we are forced to kill the process in the event the
3662 	 * original mapper has unmapped pages from the child due to a failed
3663 	 * COW. Warn that such a situation has occurred as it may not be obvious
3664 	 */
3665 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3666 		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3667 			   current->pid);
3668 		return ret;
3669 	}
3670 
3671 	/*
3672 	 * Use page lock to guard against racing truncation
3673 	 * before we get page_table_lock.
3674 	 */
3675 retry:
3676 	page = find_lock_page(mapping, idx);
3677 	if (!page) {
3678 		size = i_size_read(mapping->host) >> huge_page_shift(h);
3679 		if (idx >= size)
3680 			goto out;
3681 
3682 		/*
3683 		 * Check for page in userfault range
3684 		 */
3685 		if (userfaultfd_missing(vma)) {
3686 			u32 hash;
3687 			struct vm_fault vmf = {
3688 				.vma = vma,
3689 				.address = address,
3690 				.flags = flags,
3691 				/*
3692 				 * Hard to debug if it ends up being
3693 				 * used by a callee that assumes
3694 				 * something about the other
3695 				 * uninitialized fields... same as in
3696 				 * memory.c
3697 				 */
3698 			};
3699 
3700 			/*
3701 			 * hugetlb_fault_mutex must be dropped before
3702 			 * handling userfault.  Reacquire after handling
3703 			 * fault to make calling code simpler.
3704 			 */
3705 			hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping,
3706 							idx, address);
3707 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3708 			ret = handle_userfault(&vmf, VM_UFFD_MISSING);
3709 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
3710 			goto out;
3711 		}
3712 
3713 		page = alloc_huge_page(vma, address, 0);
3714 		if (IS_ERR(page)) {
3715 			ret = PTR_ERR(page);
3716 			if (ret == -ENOMEM)
3717 				ret = VM_FAULT_OOM;
3718 			else
3719 				ret = VM_FAULT_SIGBUS;
3720 			goto out;
3721 		}
3722 		clear_huge_page(page, address, pages_per_huge_page(h));
3723 		__SetPageUptodate(page);
3724 		set_page_huge_active(page);
3725 
3726 		if (vma->vm_flags & VM_MAYSHARE) {
3727 			int err = huge_add_to_page_cache(page, mapping, idx);
3728 			if (err) {
3729 				put_page(page);
3730 				if (err == -EEXIST)
3731 					goto retry;
3732 				goto out;
3733 			}
3734 		} else {
3735 			lock_page(page);
3736 			if (unlikely(anon_vma_prepare(vma))) {
3737 				ret = VM_FAULT_OOM;
3738 				goto backout_unlocked;
3739 			}
3740 			anon_rmap = 1;
3741 		}
3742 	} else {
3743 		/*
3744 		 * If memory error occurs between mmap() and fault, some process
3745 		 * don't have hwpoisoned swap entry for errored virtual address.
3746 		 * So we need to block hugepage fault by PG_hwpoison bit check.
3747 		 */
3748 		if (unlikely(PageHWPoison(page))) {
3749 			ret = VM_FAULT_HWPOISON |
3750 				VM_FAULT_SET_HINDEX(hstate_index(h));
3751 			goto backout_unlocked;
3752 		}
3753 	}
3754 
3755 	/*
3756 	 * If we are going to COW a private mapping later, we examine the
3757 	 * pending reservations for this page now. This will ensure that
3758 	 * any allocations necessary to record that reservation occur outside
3759 	 * the spinlock.
3760 	 */
3761 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3762 		if (vma_needs_reservation(h, vma, address) < 0) {
3763 			ret = VM_FAULT_OOM;
3764 			goto backout_unlocked;
3765 		}
3766 		/* Just decrements count, does not deallocate */
3767 		vma_end_reservation(h, vma, address);
3768 	}
3769 
3770 	ptl = huge_pte_lock(h, mm, ptep);
3771 	size = i_size_read(mapping->host) >> huge_page_shift(h);
3772 	if (idx >= size)
3773 		goto backout;
3774 
3775 	ret = 0;
3776 	if (!huge_pte_none(huge_ptep_get(ptep)))
3777 		goto backout;
3778 
3779 	if (anon_rmap) {
3780 		ClearPagePrivate(page);
3781 		hugepage_add_new_anon_rmap(page, vma, address);
3782 	} else
3783 		page_dup_rmap(page, true);
3784 	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3785 				&& (vma->vm_flags & VM_SHARED)));
3786 	set_huge_pte_at(mm, address, ptep, new_pte);
3787 
3788 	hugetlb_count_add(pages_per_huge_page(h), mm);
3789 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3790 		/* Optimization, do the COW without a second fault */
3791 		ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
3792 	}
3793 
3794 	spin_unlock(ptl);
3795 	unlock_page(page);
3796 out:
3797 	return ret;
3798 
3799 backout:
3800 	spin_unlock(ptl);
3801 backout_unlocked:
3802 	unlock_page(page);
3803 	restore_reserve_on_error(h, vma, address, page);
3804 	put_page(page);
3805 	goto out;
3806 }
3807 
3808 #ifdef CONFIG_SMP
3809 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3810 			    struct vm_area_struct *vma,
3811 			    struct address_space *mapping,
3812 			    pgoff_t idx, unsigned long address)
3813 {
3814 	unsigned long key[2];
3815 	u32 hash;
3816 
3817 	if (vma->vm_flags & VM_SHARED) {
3818 		key[0] = (unsigned long) mapping;
3819 		key[1] = idx;
3820 	} else {
3821 		key[0] = (unsigned long) mm;
3822 		key[1] = address >> huge_page_shift(h);
3823 	}
3824 
3825 	hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3826 
3827 	return hash & (num_fault_mutexes - 1);
3828 }
3829 #else
3830 /*
3831  * For uniprocesor systems we always use a single mutex, so just
3832  * return 0 and avoid the hashing overhead.
3833  */
3834 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3835 			    struct vm_area_struct *vma,
3836 			    struct address_space *mapping,
3837 			    pgoff_t idx, unsigned long address)
3838 {
3839 	return 0;
3840 }
3841 #endif
3842 
3843 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3844 			unsigned long address, unsigned int flags)
3845 {
3846 	pte_t *ptep, entry;
3847 	spinlock_t *ptl;
3848 	int ret;
3849 	u32 hash;
3850 	pgoff_t idx;
3851 	struct page *page = NULL;
3852 	struct page *pagecache_page = NULL;
3853 	struct hstate *h = hstate_vma(vma);
3854 	struct address_space *mapping;
3855 	int need_wait_lock = 0;
3856 
3857 	address &= huge_page_mask(h);
3858 
3859 	ptep = huge_pte_offset(mm, address, huge_page_size(h));
3860 	if (ptep) {
3861 		entry = huge_ptep_get(ptep);
3862 		if (unlikely(is_hugetlb_entry_migration(entry))) {
3863 			migration_entry_wait_huge(vma, mm, ptep);
3864 			return 0;
3865 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3866 			return VM_FAULT_HWPOISON_LARGE |
3867 				VM_FAULT_SET_HINDEX(hstate_index(h));
3868 	} else {
3869 		ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3870 		if (!ptep)
3871 			return VM_FAULT_OOM;
3872 	}
3873 
3874 	mapping = vma->vm_file->f_mapping;
3875 	idx = vma_hugecache_offset(h, vma, address);
3876 
3877 	/*
3878 	 * Serialize hugepage allocation and instantiation, so that we don't
3879 	 * get spurious allocation failures if two CPUs race to instantiate
3880 	 * the same page in the page cache.
3881 	 */
3882 	hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
3883 	mutex_lock(&hugetlb_fault_mutex_table[hash]);
3884 
3885 	entry = huge_ptep_get(ptep);
3886 	if (huge_pte_none(entry)) {
3887 		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3888 		goto out_mutex;
3889 	}
3890 
3891 	ret = 0;
3892 
3893 	/*
3894 	 * entry could be a migration/hwpoison entry at this point, so this
3895 	 * check prevents the kernel from going below assuming that we have
3896 	 * a active hugepage in pagecache. This goto expects the 2nd page fault,
3897 	 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3898 	 * handle it.
3899 	 */
3900 	if (!pte_present(entry))
3901 		goto out_mutex;
3902 
3903 	/*
3904 	 * If we are going to COW the mapping later, we examine the pending
3905 	 * reservations for this page now. This will ensure that any
3906 	 * allocations necessary to record that reservation occur outside the
3907 	 * spinlock. For private mappings, we also lookup the pagecache
3908 	 * page now as it is used to determine if a reservation has been
3909 	 * consumed.
3910 	 */
3911 	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3912 		if (vma_needs_reservation(h, vma, address) < 0) {
3913 			ret = VM_FAULT_OOM;
3914 			goto out_mutex;
3915 		}
3916 		/* Just decrements count, does not deallocate */
3917 		vma_end_reservation(h, vma, address);
3918 
3919 		if (!(vma->vm_flags & VM_MAYSHARE))
3920 			pagecache_page = hugetlbfs_pagecache_page(h,
3921 								vma, address);
3922 	}
3923 
3924 	ptl = huge_pte_lock(h, mm, ptep);
3925 
3926 	/* Check for a racing update before calling hugetlb_cow */
3927 	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3928 		goto out_ptl;
3929 
3930 	/*
3931 	 * hugetlb_cow() requires page locks of pte_page(entry) and
3932 	 * pagecache_page, so here we need take the former one
3933 	 * when page != pagecache_page or !pagecache_page.
3934 	 */
3935 	page = pte_page(entry);
3936 	if (page != pagecache_page)
3937 		if (!trylock_page(page)) {
3938 			need_wait_lock = 1;
3939 			goto out_ptl;
3940 		}
3941 
3942 	get_page(page);
3943 
3944 	if (flags & FAULT_FLAG_WRITE) {
3945 		if (!huge_pte_write(entry)) {
3946 			ret = hugetlb_cow(mm, vma, address, ptep,
3947 					  pagecache_page, ptl);
3948 			goto out_put_page;
3949 		}
3950 		entry = huge_pte_mkdirty(entry);
3951 	}
3952 	entry = pte_mkyoung(entry);
3953 	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3954 						flags & FAULT_FLAG_WRITE))
3955 		update_mmu_cache(vma, address, ptep);
3956 out_put_page:
3957 	if (page != pagecache_page)
3958 		unlock_page(page);
3959 	put_page(page);
3960 out_ptl:
3961 	spin_unlock(ptl);
3962 
3963 	if (pagecache_page) {
3964 		unlock_page(pagecache_page);
3965 		put_page(pagecache_page);
3966 	}
3967 out_mutex:
3968 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3969 	/*
3970 	 * Generally it's safe to hold refcount during waiting page lock. But
3971 	 * here we just wait to defer the next page fault to avoid busy loop and
3972 	 * the page is not used after unlocked before returning from the current
3973 	 * page fault. So we are safe from accessing freed page, even if we wait
3974 	 * here without taking refcount.
3975 	 */
3976 	if (need_wait_lock)
3977 		wait_on_page_locked(page);
3978 	return ret;
3979 }
3980 
3981 /*
3982  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
3983  * modifications for huge pages.
3984  */
3985 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
3986 			    pte_t *dst_pte,
3987 			    struct vm_area_struct *dst_vma,
3988 			    unsigned long dst_addr,
3989 			    unsigned long src_addr,
3990 			    struct page **pagep)
3991 {
3992 	struct address_space *mapping;
3993 	pgoff_t idx;
3994 	unsigned long size;
3995 	int vm_shared = dst_vma->vm_flags & VM_SHARED;
3996 	struct hstate *h = hstate_vma(dst_vma);
3997 	pte_t _dst_pte;
3998 	spinlock_t *ptl;
3999 	int ret;
4000 	struct page *page;
4001 
4002 	if (!*pagep) {
4003 		ret = -ENOMEM;
4004 		page = alloc_huge_page(dst_vma, dst_addr, 0);
4005 		if (IS_ERR(page))
4006 			goto out;
4007 
4008 		ret = copy_huge_page_from_user(page,
4009 						(const void __user *) src_addr,
4010 						pages_per_huge_page(h), false);
4011 
4012 		/* fallback to copy_from_user outside mmap_sem */
4013 		if (unlikely(ret)) {
4014 			ret = -EFAULT;
4015 			*pagep = page;
4016 			/* don't free the page */
4017 			goto out;
4018 		}
4019 	} else {
4020 		page = *pagep;
4021 		*pagep = NULL;
4022 	}
4023 
4024 	/*
4025 	 * The memory barrier inside __SetPageUptodate makes sure that
4026 	 * preceding stores to the page contents become visible before
4027 	 * the set_pte_at() write.
4028 	 */
4029 	__SetPageUptodate(page);
4030 	set_page_huge_active(page);
4031 
4032 	mapping = dst_vma->vm_file->f_mapping;
4033 	idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4034 
4035 	/*
4036 	 * If shared, add to page cache
4037 	 */
4038 	if (vm_shared) {
4039 		size = i_size_read(mapping->host) >> huge_page_shift(h);
4040 		ret = -EFAULT;
4041 		if (idx >= size)
4042 			goto out_release_nounlock;
4043 
4044 		/*
4045 		 * Serialization between remove_inode_hugepages() and
4046 		 * huge_add_to_page_cache() below happens through the
4047 		 * hugetlb_fault_mutex_table that here must be hold by
4048 		 * the caller.
4049 		 */
4050 		ret = huge_add_to_page_cache(page, mapping, idx);
4051 		if (ret)
4052 			goto out_release_nounlock;
4053 	}
4054 
4055 	ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4056 	spin_lock(ptl);
4057 
4058 	/*
4059 	 * Recheck the i_size after holding PT lock to make sure not
4060 	 * to leave any page mapped (as page_mapped()) beyond the end
4061 	 * of the i_size (remove_inode_hugepages() is strict about
4062 	 * enforcing that). If we bail out here, we'll also leave a
4063 	 * page in the radix tree in the vm_shared case beyond the end
4064 	 * of the i_size, but remove_inode_hugepages() will take care
4065 	 * of it as soon as we drop the hugetlb_fault_mutex_table.
4066 	 */
4067 	size = i_size_read(mapping->host) >> huge_page_shift(h);
4068 	ret = -EFAULT;
4069 	if (idx >= size)
4070 		goto out_release_unlock;
4071 
4072 	ret = -EEXIST;
4073 	if (!huge_pte_none(huge_ptep_get(dst_pte)))
4074 		goto out_release_unlock;
4075 
4076 	if (vm_shared) {
4077 		page_dup_rmap(page, true);
4078 	} else {
4079 		ClearPagePrivate(page);
4080 		hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4081 	}
4082 
4083 	_dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4084 	if (dst_vma->vm_flags & VM_WRITE)
4085 		_dst_pte = huge_pte_mkdirty(_dst_pte);
4086 	_dst_pte = pte_mkyoung(_dst_pte);
4087 
4088 	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4089 
4090 	(void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4091 					dst_vma->vm_flags & VM_WRITE);
4092 	hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4093 
4094 	/* No need to invalidate - it was non-present before */
4095 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
4096 
4097 	spin_unlock(ptl);
4098 	if (vm_shared)
4099 		unlock_page(page);
4100 	ret = 0;
4101 out:
4102 	return ret;
4103 out_release_unlock:
4104 	spin_unlock(ptl);
4105 	if (vm_shared)
4106 		unlock_page(page);
4107 out_release_nounlock:
4108 	put_page(page);
4109 	goto out;
4110 }
4111 
4112 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4113 			 struct page **pages, struct vm_area_struct **vmas,
4114 			 unsigned long *position, unsigned long *nr_pages,
4115 			 long i, unsigned int flags, int *nonblocking)
4116 {
4117 	unsigned long pfn_offset;
4118 	unsigned long vaddr = *position;
4119 	unsigned long remainder = *nr_pages;
4120 	struct hstate *h = hstate_vma(vma);
4121 	int err = -EFAULT;
4122 
4123 	while (vaddr < vma->vm_end && remainder) {
4124 		pte_t *pte;
4125 		spinlock_t *ptl = NULL;
4126 		int absent;
4127 		struct page *page;
4128 
4129 		/*
4130 		 * If we have a pending SIGKILL, don't keep faulting pages and
4131 		 * potentially allocating memory.
4132 		 */
4133 		if (unlikely(fatal_signal_pending(current))) {
4134 			remainder = 0;
4135 			break;
4136 		}
4137 
4138 		/*
4139 		 * Some archs (sparc64, sh*) have multiple pte_ts to
4140 		 * each hugepage.  We have to make sure we get the
4141 		 * first, for the page indexing below to work.
4142 		 *
4143 		 * Note that page table lock is not held when pte is null.
4144 		 */
4145 		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4146 				      huge_page_size(h));
4147 		if (pte)
4148 			ptl = huge_pte_lock(h, mm, pte);
4149 		absent = !pte || huge_pte_none(huge_ptep_get(pte));
4150 
4151 		/*
4152 		 * When coredumping, it suits get_dump_page if we just return
4153 		 * an error where there's an empty slot with no huge pagecache
4154 		 * to back it.  This way, we avoid allocating a hugepage, and
4155 		 * the sparse dumpfile avoids allocating disk blocks, but its
4156 		 * huge holes still show up with zeroes where they need to be.
4157 		 */
4158 		if (absent && (flags & FOLL_DUMP) &&
4159 		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4160 			if (pte)
4161 				spin_unlock(ptl);
4162 			remainder = 0;
4163 			break;
4164 		}
4165 
4166 		/*
4167 		 * We need call hugetlb_fault for both hugepages under migration
4168 		 * (in which case hugetlb_fault waits for the migration,) and
4169 		 * hwpoisoned hugepages (in which case we need to prevent the
4170 		 * caller from accessing to them.) In order to do this, we use
4171 		 * here is_swap_pte instead of is_hugetlb_entry_migration and
4172 		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4173 		 * both cases, and because we can't follow correct pages
4174 		 * directly from any kind of swap entries.
4175 		 */
4176 		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4177 		    ((flags & FOLL_WRITE) &&
4178 		      !huge_pte_write(huge_ptep_get(pte)))) {
4179 			int ret;
4180 			unsigned int fault_flags = 0;
4181 
4182 			if (pte)
4183 				spin_unlock(ptl);
4184 			if (flags & FOLL_WRITE)
4185 				fault_flags |= FAULT_FLAG_WRITE;
4186 			if (nonblocking)
4187 				fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4188 			if (flags & FOLL_NOWAIT)
4189 				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4190 					FAULT_FLAG_RETRY_NOWAIT;
4191 			if (flags & FOLL_TRIED) {
4192 				VM_WARN_ON_ONCE(fault_flags &
4193 						FAULT_FLAG_ALLOW_RETRY);
4194 				fault_flags |= FAULT_FLAG_TRIED;
4195 			}
4196 			ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4197 			if (ret & VM_FAULT_ERROR) {
4198 				err = vm_fault_to_errno(ret, flags);
4199 				remainder = 0;
4200 				break;
4201 			}
4202 			if (ret & VM_FAULT_RETRY) {
4203 				if (nonblocking)
4204 					*nonblocking = 0;
4205 				*nr_pages = 0;
4206 				/*
4207 				 * VM_FAULT_RETRY must not return an
4208 				 * error, it will return zero
4209 				 * instead.
4210 				 *
4211 				 * No need to update "position" as the
4212 				 * caller will not check it after
4213 				 * *nr_pages is set to 0.
4214 				 */
4215 				return i;
4216 			}
4217 			continue;
4218 		}
4219 
4220 		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4221 		page = pte_page(huge_ptep_get(pte));
4222 same_page:
4223 		if (pages) {
4224 			pages[i] = mem_map_offset(page, pfn_offset);
4225 			get_page(pages[i]);
4226 		}
4227 
4228 		if (vmas)
4229 			vmas[i] = vma;
4230 
4231 		vaddr += PAGE_SIZE;
4232 		++pfn_offset;
4233 		--remainder;
4234 		++i;
4235 		if (vaddr < vma->vm_end && remainder &&
4236 				pfn_offset < pages_per_huge_page(h)) {
4237 			/*
4238 			 * We use pfn_offset to avoid touching the pageframes
4239 			 * of this compound page.
4240 			 */
4241 			goto same_page;
4242 		}
4243 		spin_unlock(ptl);
4244 	}
4245 	*nr_pages = remainder;
4246 	/*
4247 	 * setting position is actually required only if remainder is
4248 	 * not zero but it's faster not to add a "if (remainder)"
4249 	 * branch.
4250 	 */
4251 	*position = vaddr;
4252 
4253 	return i ? i : err;
4254 }
4255 
4256 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4257 /*
4258  * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4259  * implement this.
4260  */
4261 #define flush_hugetlb_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
4262 #endif
4263 
4264 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4265 		unsigned long address, unsigned long end, pgprot_t newprot)
4266 {
4267 	struct mm_struct *mm = vma->vm_mm;
4268 	unsigned long start = address;
4269 	pte_t *ptep;
4270 	pte_t pte;
4271 	struct hstate *h = hstate_vma(vma);
4272 	unsigned long pages = 0;
4273 
4274 	BUG_ON(address >= end);
4275 	flush_cache_range(vma, address, end);
4276 
4277 	mmu_notifier_invalidate_range_start(mm, start, end);
4278 	i_mmap_lock_write(vma->vm_file->f_mapping);
4279 	for (; address < end; address += huge_page_size(h)) {
4280 		spinlock_t *ptl;
4281 		ptep = huge_pte_offset(mm, address, huge_page_size(h));
4282 		if (!ptep)
4283 			continue;
4284 		ptl = huge_pte_lock(h, mm, ptep);
4285 		if (huge_pmd_unshare(mm, &address, ptep)) {
4286 			pages++;
4287 			spin_unlock(ptl);
4288 			continue;
4289 		}
4290 		pte = huge_ptep_get(ptep);
4291 		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4292 			spin_unlock(ptl);
4293 			continue;
4294 		}
4295 		if (unlikely(is_hugetlb_entry_migration(pte))) {
4296 			swp_entry_t entry = pte_to_swp_entry(pte);
4297 
4298 			if (is_write_migration_entry(entry)) {
4299 				pte_t newpte;
4300 
4301 				make_migration_entry_read(&entry);
4302 				newpte = swp_entry_to_pte(entry);
4303 				set_huge_swap_pte_at(mm, address, ptep,
4304 						     newpte, huge_page_size(h));
4305 				pages++;
4306 			}
4307 			spin_unlock(ptl);
4308 			continue;
4309 		}
4310 		if (!huge_pte_none(pte)) {
4311 			pte = huge_ptep_get_and_clear(mm, address, ptep);
4312 			pte = pte_mkhuge(huge_pte_modify(pte, newprot));
4313 			pte = arch_make_huge_pte(pte, vma, NULL, 0);
4314 			set_huge_pte_at(mm, address, ptep, pte);
4315 			pages++;
4316 		}
4317 		spin_unlock(ptl);
4318 	}
4319 	/*
4320 	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4321 	 * may have cleared our pud entry and done put_page on the page table:
4322 	 * once we release i_mmap_rwsem, another task can do the final put_page
4323 	 * and that page table be reused and filled with junk.
4324 	 */
4325 	flush_hugetlb_tlb_range(vma, start, end);
4326 	/*
4327 	 * No need to call mmu_notifier_invalidate_range() we are downgrading
4328 	 * page table protection not changing it to point to a new page.
4329 	 *
4330 	 * See Documentation/vm/mmu_notifier.txt
4331 	 */
4332 	i_mmap_unlock_write(vma->vm_file->f_mapping);
4333 	mmu_notifier_invalidate_range_end(mm, start, end);
4334 
4335 	return pages << h->order;
4336 }
4337 
4338 int hugetlb_reserve_pages(struct inode *inode,
4339 					long from, long to,
4340 					struct vm_area_struct *vma,
4341 					vm_flags_t vm_flags)
4342 {
4343 	long ret, chg;
4344 	struct hstate *h = hstate_inode(inode);
4345 	struct hugepage_subpool *spool = subpool_inode(inode);
4346 	struct resv_map *resv_map;
4347 	long gbl_reserve;
4348 
4349 	/*
4350 	 * Only apply hugepage reservation if asked. At fault time, an
4351 	 * attempt will be made for VM_NORESERVE to allocate a page
4352 	 * without using reserves
4353 	 */
4354 	if (vm_flags & VM_NORESERVE)
4355 		return 0;
4356 
4357 	/*
4358 	 * Shared mappings base their reservation on the number of pages that
4359 	 * are already allocated on behalf of the file. Private mappings need
4360 	 * to reserve the full area even if read-only as mprotect() may be
4361 	 * called to make the mapping read-write. Assume !vma is a shm mapping
4362 	 */
4363 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
4364 		resv_map = inode_resv_map(inode);
4365 
4366 		chg = region_chg(resv_map, from, to);
4367 
4368 	} else {
4369 		resv_map = resv_map_alloc();
4370 		if (!resv_map)
4371 			return -ENOMEM;
4372 
4373 		chg = to - from;
4374 
4375 		set_vma_resv_map(vma, resv_map);
4376 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4377 	}
4378 
4379 	if (chg < 0) {
4380 		ret = chg;
4381 		goto out_err;
4382 	}
4383 
4384 	/*
4385 	 * There must be enough pages in the subpool for the mapping. If
4386 	 * the subpool has a minimum size, there may be some global
4387 	 * reservations already in place (gbl_reserve).
4388 	 */
4389 	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4390 	if (gbl_reserve < 0) {
4391 		ret = -ENOSPC;
4392 		goto out_err;
4393 	}
4394 
4395 	/*
4396 	 * Check enough hugepages are available for the reservation.
4397 	 * Hand the pages back to the subpool if there are not
4398 	 */
4399 	ret = hugetlb_acct_memory(h, gbl_reserve);
4400 	if (ret < 0) {
4401 		/* put back original number of pages, chg */
4402 		(void)hugepage_subpool_put_pages(spool, chg);
4403 		goto out_err;
4404 	}
4405 
4406 	/*
4407 	 * Account for the reservations made. Shared mappings record regions
4408 	 * that have reservations as they are shared by multiple VMAs.
4409 	 * When the last VMA disappears, the region map says how much
4410 	 * the reservation was and the page cache tells how much of
4411 	 * the reservation was consumed. Private mappings are per-VMA and
4412 	 * only the consumed reservations are tracked. When the VMA
4413 	 * disappears, the original reservation is the VMA size and the
4414 	 * consumed reservations are stored in the map. Hence, nothing
4415 	 * else has to be done for private mappings here
4416 	 */
4417 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
4418 		long add = region_add(resv_map, from, to);
4419 
4420 		if (unlikely(chg > add)) {
4421 			/*
4422 			 * pages in this range were added to the reserve
4423 			 * map between region_chg and region_add.  This
4424 			 * indicates a race with alloc_huge_page.  Adjust
4425 			 * the subpool and reserve counts modified above
4426 			 * based on the difference.
4427 			 */
4428 			long rsv_adjust;
4429 
4430 			rsv_adjust = hugepage_subpool_put_pages(spool,
4431 								chg - add);
4432 			hugetlb_acct_memory(h, -rsv_adjust);
4433 		}
4434 	}
4435 	return 0;
4436 out_err:
4437 	if (!vma || vma->vm_flags & VM_MAYSHARE)
4438 		/* Don't call region_abort if region_chg failed */
4439 		if (chg >= 0)
4440 			region_abort(resv_map, from, to);
4441 	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4442 		kref_put(&resv_map->refs, resv_map_release);
4443 	return ret;
4444 }
4445 
4446 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4447 								long freed)
4448 {
4449 	struct hstate *h = hstate_inode(inode);
4450 	struct resv_map *resv_map = inode_resv_map(inode);
4451 	long chg = 0;
4452 	struct hugepage_subpool *spool = subpool_inode(inode);
4453 	long gbl_reserve;
4454 
4455 	if (resv_map) {
4456 		chg = region_del(resv_map, start, end);
4457 		/*
4458 		 * region_del() can fail in the rare case where a region
4459 		 * must be split and another region descriptor can not be
4460 		 * allocated.  If end == LONG_MAX, it will not fail.
4461 		 */
4462 		if (chg < 0)
4463 			return chg;
4464 	}
4465 
4466 	spin_lock(&inode->i_lock);
4467 	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4468 	spin_unlock(&inode->i_lock);
4469 
4470 	/*
4471 	 * If the subpool has a minimum size, the number of global
4472 	 * reservations to be released may be adjusted.
4473 	 */
4474 	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4475 	hugetlb_acct_memory(h, -gbl_reserve);
4476 
4477 	return 0;
4478 }
4479 
4480 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4481 static unsigned long page_table_shareable(struct vm_area_struct *svma,
4482 				struct vm_area_struct *vma,
4483 				unsigned long addr, pgoff_t idx)
4484 {
4485 	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4486 				svma->vm_start;
4487 	unsigned long sbase = saddr & PUD_MASK;
4488 	unsigned long s_end = sbase + PUD_SIZE;
4489 
4490 	/* Allow segments to share if only one is marked locked */
4491 	unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4492 	unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4493 
4494 	/*
4495 	 * match the virtual addresses, permission and the alignment of the
4496 	 * page table page.
4497 	 */
4498 	if (pmd_index(addr) != pmd_index(saddr) ||
4499 	    vm_flags != svm_flags ||
4500 	    sbase < svma->vm_start || svma->vm_end < s_end)
4501 		return 0;
4502 
4503 	return saddr;
4504 }
4505 
4506 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4507 {
4508 	unsigned long base = addr & PUD_MASK;
4509 	unsigned long end = base + PUD_SIZE;
4510 
4511 	/*
4512 	 * check on proper vm_flags and page table alignment
4513 	 */
4514 	if (vma->vm_flags & VM_MAYSHARE &&
4515 	    vma->vm_start <= base && end <= vma->vm_end)
4516 		return true;
4517 	return false;
4518 }
4519 
4520 /*
4521  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4522  * and returns the corresponding pte. While this is not necessary for the
4523  * !shared pmd case because we can allocate the pmd later as well, it makes the
4524  * code much cleaner. pmd allocation is essential for the shared case because
4525  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4526  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4527  * bad pmd for sharing.
4528  */
4529 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4530 {
4531 	struct vm_area_struct *vma = find_vma(mm, addr);
4532 	struct address_space *mapping = vma->vm_file->f_mapping;
4533 	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4534 			vma->vm_pgoff;
4535 	struct vm_area_struct *svma;
4536 	unsigned long saddr;
4537 	pte_t *spte = NULL;
4538 	pte_t *pte;
4539 	spinlock_t *ptl;
4540 
4541 	if (!vma_shareable(vma, addr))
4542 		return (pte_t *)pmd_alloc(mm, pud, addr);
4543 
4544 	i_mmap_lock_write(mapping);
4545 	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4546 		if (svma == vma)
4547 			continue;
4548 
4549 		saddr = page_table_shareable(svma, vma, addr, idx);
4550 		if (saddr) {
4551 			spte = huge_pte_offset(svma->vm_mm, saddr,
4552 					       vma_mmu_pagesize(svma));
4553 			if (spte) {
4554 				get_page(virt_to_page(spte));
4555 				break;
4556 			}
4557 		}
4558 	}
4559 
4560 	if (!spte)
4561 		goto out;
4562 
4563 	ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
4564 	if (pud_none(*pud)) {
4565 		pud_populate(mm, pud,
4566 				(pmd_t *)((unsigned long)spte & PAGE_MASK));
4567 		mm_inc_nr_pmds(mm);
4568 	} else {
4569 		put_page(virt_to_page(spte));
4570 	}
4571 	spin_unlock(ptl);
4572 out:
4573 	pte = (pte_t *)pmd_alloc(mm, pud, addr);
4574 	i_mmap_unlock_write(mapping);
4575 	return pte;
4576 }
4577 
4578 /*
4579  * unmap huge page backed by shared pte.
4580  *
4581  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
4582  * indicated by page_count > 1, unmap is achieved by clearing pud and
4583  * decrementing the ref count. If count == 1, the pte page is not shared.
4584  *
4585  * called with page table lock held.
4586  *
4587  * returns: 1 successfully unmapped a shared pte page
4588  *	    0 the underlying pte page is not shared, or it is the last user
4589  */
4590 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4591 {
4592 	pgd_t *pgd = pgd_offset(mm, *addr);
4593 	p4d_t *p4d = p4d_offset(pgd, *addr);
4594 	pud_t *pud = pud_offset(p4d, *addr);
4595 
4596 	BUG_ON(page_count(virt_to_page(ptep)) == 0);
4597 	if (page_count(virt_to_page(ptep)) == 1)
4598 		return 0;
4599 
4600 	pud_clear(pud);
4601 	put_page(virt_to_page(ptep));
4602 	mm_dec_nr_pmds(mm);
4603 	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4604 	return 1;
4605 }
4606 #define want_pmd_share()	(1)
4607 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4608 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4609 {
4610 	return NULL;
4611 }
4612 
4613 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4614 {
4615 	return 0;
4616 }
4617 #define want_pmd_share()	(0)
4618 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4619 
4620 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4621 pte_t *huge_pte_alloc(struct mm_struct *mm,
4622 			unsigned long addr, unsigned long sz)
4623 {
4624 	pgd_t *pgd;
4625 	p4d_t *p4d;
4626 	pud_t *pud;
4627 	pte_t *pte = NULL;
4628 
4629 	pgd = pgd_offset(mm, addr);
4630 	p4d = p4d_offset(pgd, addr);
4631 	pud = pud_alloc(mm, p4d, addr);
4632 	if (pud) {
4633 		if (sz == PUD_SIZE) {
4634 			pte = (pte_t *)pud;
4635 		} else {
4636 			BUG_ON(sz != PMD_SIZE);
4637 			if (want_pmd_share() && pud_none(*pud))
4638 				pte = huge_pmd_share(mm, addr, pud);
4639 			else
4640 				pte = (pte_t *)pmd_alloc(mm, pud, addr);
4641 		}
4642 	}
4643 	BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
4644 
4645 	return pte;
4646 }
4647 
4648 /*
4649  * huge_pte_offset() - Walk the page table to resolve the hugepage
4650  * entry at address @addr
4651  *
4652  * Return: Pointer to page table or swap entry (PUD or PMD) for
4653  * address @addr, or NULL if a p*d_none() entry is encountered and the
4654  * size @sz doesn't match the hugepage size at this level of the page
4655  * table.
4656  */
4657 pte_t *huge_pte_offset(struct mm_struct *mm,
4658 		       unsigned long addr, unsigned long sz)
4659 {
4660 	pgd_t *pgd;
4661 	p4d_t *p4d;
4662 	pud_t *pud;
4663 	pmd_t *pmd;
4664 
4665 	pgd = pgd_offset(mm, addr);
4666 	if (!pgd_present(*pgd))
4667 		return NULL;
4668 	p4d = p4d_offset(pgd, addr);
4669 	if (!p4d_present(*p4d))
4670 		return NULL;
4671 
4672 	pud = pud_offset(p4d, addr);
4673 	if (sz != PUD_SIZE && pud_none(*pud))
4674 		return NULL;
4675 	/* hugepage or swap? */
4676 	if (pud_huge(*pud) || !pud_present(*pud))
4677 		return (pte_t *)pud;
4678 
4679 	pmd = pmd_offset(pud, addr);
4680 	if (sz != PMD_SIZE && pmd_none(*pmd))
4681 		return NULL;
4682 	/* hugepage or swap? */
4683 	if (pmd_huge(*pmd) || !pmd_present(*pmd))
4684 		return (pte_t *)pmd;
4685 
4686 	return NULL;
4687 }
4688 
4689 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4690 
4691 /*
4692  * These functions are overwritable if your architecture needs its own
4693  * behavior.
4694  */
4695 struct page * __weak
4696 follow_huge_addr(struct mm_struct *mm, unsigned long address,
4697 			      int write)
4698 {
4699 	return ERR_PTR(-EINVAL);
4700 }
4701 
4702 struct page * __weak
4703 follow_huge_pd(struct vm_area_struct *vma,
4704 	       unsigned long address, hugepd_t hpd, int flags, int pdshift)
4705 {
4706 	WARN(1, "hugepd follow called with no support for hugepage directory format\n");
4707 	return NULL;
4708 }
4709 
4710 struct page * __weak
4711 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4712 		pmd_t *pmd, int flags)
4713 {
4714 	struct page *page = NULL;
4715 	spinlock_t *ptl;
4716 	pte_t pte;
4717 retry:
4718 	ptl = pmd_lockptr(mm, pmd);
4719 	spin_lock(ptl);
4720 	/*
4721 	 * make sure that the address range covered by this pmd is not
4722 	 * unmapped from other threads.
4723 	 */
4724 	if (!pmd_huge(*pmd))
4725 		goto out;
4726 	pte = huge_ptep_get((pte_t *)pmd);
4727 	if (pte_present(pte)) {
4728 		page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4729 		if (flags & FOLL_GET)
4730 			get_page(page);
4731 	} else {
4732 		if (is_hugetlb_entry_migration(pte)) {
4733 			spin_unlock(ptl);
4734 			__migration_entry_wait(mm, (pte_t *)pmd, ptl);
4735 			goto retry;
4736 		}
4737 		/*
4738 		 * hwpoisoned entry is treated as no_page_table in
4739 		 * follow_page_mask().
4740 		 */
4741 	}
4742 out:
4743 	spin_unlock(ptl);
4744 	return page;
4745 }
4746 
4747 struct page * __weak
4748 follow_huge_pud(struct mm_struct *mm, unsigned long address,
4749 		pud_t *pud, int flags)
4750 {
4751 	if (flags & FOLL_GET)
4752 		return NULL;
4753 
4754 	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4755 }
4756 
4757 struct page * __weak
4758 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
4759 {
4760 	if (flags & FOLL_GET)
4761 		return NULL;
4762 
4763 	return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
4764 }
4765 
4766 bool isolate_huge_page(struct page *page, struct list_head *list)
4767 {
4768 	bool ret = true;
4769 
4770 	VM_BUG_ON_PAGE(!PageHead(page), page);
4771 	spin_lock(&hugetlb_lock);
4772 	if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4773 		ret = false;
4774 		goto unlock;
4775 	}
4776 	clear_page_huge_active(page);
4777 	list_move_tail(&page->lru, list);
4778 unlock:
4779 	spin_unlock(&hugetlb_lock);
4780 	return ret;
4781 }
4782 
4783 void putback_active_hugepage(struct page *page)
4784 {
4785 	VM_BUG_ON_PAGE(!PageHead(page), page);
4786 	spin_lock(&hugetlb_lock);
4787 	set_page_huge_active(page);
4788 	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4789 	spin_unlock(&hugetlb_lock);
4790 	put_page(page);
4791 }
4792