1 /* 2 * Generic hugetlb support. 3 * (C) Nadia Yvette Chambers, April 2004 4 */ 5 #include <linux/list.h> 6 #include <linux/init.h> 7 #include <linux/mm.h> 8 #include <linux/seq_file.h> 9 #include <linux/sysctl.h> 10 #include <linux/highmem.h> 11 #include <linux/mmu_notifier.h> 12 #include <linux/nodemask.h> 13 #include <linux/pagemap.h> 14 #include <linux/mempolicy.h> 15 #include <linux/compiler.h> 16 #include <linux/cpuset.h> 17 #include <linux/mutex.h> 18 #include <linux/memblock.h> 19 #include <linux/sysfs.h> 20 #include <linux/slab.h> 21 #include <linux/mmdebug.h> 22 #include <linux/sched/signal.h> 23 #include <linux/rmap.h> 24 #include <linux/string_helpers.h> 25 #include <linux/swap.h> 26 #include <linux/swapops.h> 27 #include <linux/jhash.h> 28 29 #include <asm/page.h> 30 #include <asm/pgtable.h> 31 #include <asm/tlb.h> 32 33 #include <linux/io.h> 34 #include <linux/hugetlb.h> 35 #include <linux/hugetlb_cgroup.h> 36 #include <linux/node.h> 37 #include <linux/userfaultfd_k.h> 38 #include <linux/page_owner.h> 39 #include "internal.h" 40 41 int hugetlb_max_hstate __read_mostly; 42 unsigned int default_hstate_idx; 43 struct hstate hstates[HUGE_MAX_HSTATE]; 44 /* 45 * Minimum page order among possible hugepage sizes, set to a proper value 46 * at boot time. 47 */ 48 static unsigned int minimum_order __read_mostly = UINT_MAX; 49 50 __initdata LIST_HEAD(huge_boot_pages); 51 52 /* for command line parsing */ 53 static struct hstate * __initdata parsed_hstate; 54 static unsigned long __initdata default_hstate_max_huge_pages; 55 static unsigned long __initdata default_hstate_size; 56 static bool __initdata parsed_valid_hugepagesz = true; 57 58 /* 59 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages, 60 * free_huge_pages, and surplus_huge_pages. 61 */ 62 DEFINE_SPINLOCK(hugetlb_lock); 63 64 /* 65 * Serializes faults on the same logical page. This is used to 66 * prevent spurious OOMs when the hugepage pool is fully utilized. 67 */ 68 static int num_fault_mutexes; 69 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp; 70 71 /* Forward declaration */ 72 static int hugetlb_acct_memory(struct hstate *h, long delta); 73 74 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool) 75 { 76 bool free = (spool->count == 0) && (spool->used_hpages == 0); 77 78 spin_unlock(&spool->lock); 79 80 /* If no pages are used, and no other handles to the subpool 81 * remain, give up any reservations mased on minimum size and 82 * free the subpool */ 83 if (free) { 84 if (spool->min_hpages != -1) 85 hugetlb_acct_memory(spool->hstate, 86 -spool->min_hpages); 87 kfree(spool); 88 } 89 } 90 91 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages, 92 long min_hpages) 93 { 94 struct hugepage_subpool *spool; 95 96 spool = kzalloc(sizeof(*spool), GFP_KERNEL); 97 if (!spool) 98 return NULL; 99 100 spin_lock_init(&spool->lock); 101 spool->count = 1; 102 spool->max_hpages = max_hpages; 103 spool->hstate = h; 104 spool->min_hpages = min_hpages; 105 106 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) { 107 kfree(spool); 108 return NULL; 109 } 110 spool->rsv_hpages = min_hpages; 111 112 return spool; 113 } 114 115 void hugepage_put_subpool(struct hugepage_subpool *spool) 116 { 117 spin_lock(&spool->lock); 118 BUG_ON(!spool->count); 119 spool->count--; 120 unlock_or_release_subpool(spool); 121 } 122 123 /* 124 * Subpool accounting for allocating and reserving pages. 125 * Return -ENOMEM if there are not enough resources to satisfy the 126 * the request. Otherwise, return the number of pages by which the 127 * global pools must be adjusted (upward). The returned value may 128 * only be different than the passed value (delta) in the case where 129 * a subpool minimum size must be manitained. 130 */ 131 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool, 132 long delta) 133 { 134 long ret = delta; 135 136 if (!spool) 137 return ret; 138 139 spin_lock(&spool->lock); 140 141 if (spool->max_hpages != -1) { /* maximum size accounting */ 142 if ((spool->used_hpages + delta) <= spool->max_hpages) 143 spool->used_hpages += delta; 144 else { 145 ret = -ENOMEM; 146 goto unlock_ret; 147 } 148 } 149 150 /* minimum size accounting */ 151 if (spool->min_hpages != -1 && spool->rsv_hpages) { 152 if (delta > spool->rsv_hpages) { 153 /* 154 * Asking for more reserves than those already taken on 155 * behalf of subpool. Return difference. 156 */ 157 ret = delta - spool->rsv_hpages; 158 spool->rsv_hpages = 0; 159 } else { 160 ret = 0; /* reserves already accounted for */ 161 spool->rsv_hpages -= delta; 162 } 163 } 164 165 unlock_ret: 166 spin_unlock(&spool->lock); 167 return ret; 168 } 169 170 /* 171 * Subpool accounting for freeing and unreserving pages. 172 * Return the number of global page reservations that must be dropped. 173 * The return value may only be different than the passed value (delta) 174 * in the case where a subpool minimum size must be maintained. 175 */ 176 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool, 177 long delta) 178 { 179 long ret = delta; 180 181 if (!spool) 182 return delta; 183 184 spin_lock(&spool->lock); 185 186 if (spool->max_hpages != -1) /* maximum size accounting */ 187 spool->used_hpages -= delta; 188 189 /* minimum size accounting */ 190 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) { 191 if (spool->rsv_hpages + delta <= spool->min_hpages) 192 ret = 0; 193 else 194 ret = spool->rsv_hpages + delta - spool->min_hpages; 195 196 spool->rsv_hpages += delta; 197 if (spool->rsv_hpages > spool->min_hpages) 198 spool->rsv_hpages = spool->min_hpages; 199 } 200 201 /* 202 * If hugetlbfs_put_super couldn't free spool due to an outstanding 203 * quota reference, free it now. 204 */ 205 unlock_or_release_subpool(spool); 206 207 return ret; 208 } 209 210 static inline struct hugepage_subpool *subpool_inode(struct inode *inode) 211 { 212 return HUGETLBFS_SB(inode->i_sb)->spool; 213 } 214 215 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma) 216 { 217 return subpool_inode(file_inode(vma->vm_file)); 218 } 219 220 /* 221 * Region tracking -- allows tracking of reservations and instantiated pages 222 * across the pages in a mapping. 223 * 224 * The region data structures are embedded into a resv_map and protected 225 * by a resv_map's lock. The set of regions within the resv_map represent 226 * reservations for huge pages, or huge pages that have already been 227 * instantiated within the map. The from and to elements are huge page 228 * indicies into the associated mapping. from indicates the starting index 229 * of the region. to represents the first index past the end of the region. 230 * 231 * For example, a file region structure with from == 0 and to == 4 represents 232 * four huge pages in a mapping. It is important to note that the to element 233 * represents the first element past the end of the region. This is used in 234 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region. 235 * 236 * Interval notation of the form [from, to) will be used to indicate that 237 * the endpoint from is inclusive and to is exclusive. 238 */ 239 struct file_region { 240 struct list_head link; 241 long from; 242 long to; 243 }; 244 245 /* 246 * Add the huge page range represented by [f, t) to the reserve 247 * map. In the normal case, existing regions will be expanded 248 * to accommodate the specified range. Sufficient regions should 249 * exist for expansion due to the previous call to region_chg 250 * with the same range. However, it is possible that region_del 251 * could have been called after region_chg and modifed the map 252 * in such a way that no region exists to be expanded. In this 253 * case, pull a region descriptor from the cache associated with 254 * the map and use that for the new range. 255 * 256 * Return the number of new huge pages added to the map. This 257 * number is greater than or equal to zero. 258 */ 259 static long region_add(struct resv_map *resv, long f, long t) 260 { 261 struct list_head *head = &resv->regions; 262 struct file_region *rg, *nrg, *trg; 263 long add = 0; 264 265 spin_lock(&resv->lock); 266 /* Locate the region we are either in or before. */ 267 list_for_each_entry(rg, head, link) 268 if (f <= rg->to) 269 break; 270 271 /* 272 * If no region exists which can be expanded to include the 273 * specified range, the list must have been modified by an 274 * interleving call to region_del(). Pull a region descriptor 275 * from the cache and use it for this range. 276 */ 277 if (&rg->link == head || t < rg->from) { 278 VM_BUG_ON(resv->region_cache_count <= 0); 279 280 resv->region_cache_count--; 281 nrg = list_first_entry(&resv->region_cache, struct file_region, 282 link); 283 list_del(&nrg->link); 284 285 nrg->from = f; 286 nrg->to = t; 287 list_add(&nrg->link, rg->link.prev); 288 289 add += t - f; 290 goto out_locked; 291 } 292 293 /* Round our left edge to the current segment if it encloses us. */ 294 if (f > rg->from) 295 f = rg->from; 296 297 /* Check for and consume any regions we now overlap with. */ 298 nrg = rg; 299 list_for_each_entry_safe(rg, trg, rg->link.prev, link) { 300 if (&rg->link == head) 301 break; 302 if (rg->from > t) 303 break; 304 305 /* If this area reaches higher then extend our area to 306 * include it completely. If this is not the first area 307 * which we intend to reuse, free it. */ 308 if (rg->to > t) 309 t = rg->to; 310 if (rg != nrg) { 311 /* Decrement return value by the deleted range. 312 * Another range will span this area so that by 313 * end of routine add will be >= zero 314 */ 315 add -= (rg->to - rg->from); 316 list_del(&rg->link); 317 kfree(rg); 318 } 319 } 320 321 add += (nrg->from - f); /* Added to beginning of region */ 322 nrg->from = f; 323 add += t - nrg->to; /* Added to end of region */ 324 nrg->to = t; 325 326 out_locked: 327 resv->adds_in_progress--; 328 spin_unlock(&resv->lock); 329 VM_BUG_ON(add < 0); 330 return add; 331 } 332 333 /* 334 * Examine the existing reserve map and determine how many 335 * huge pages in the specified range [f, t) are NOT currently 336 * represented. This routine is called before a subsequent 337 * call to region_add that will actually modify the reserve 338 * map to add the specified range [f, t). region_chg does 339 * not change the number of huge pages represented by the 340 * map. However, if the existing regions in the map can not 341 * be expanded to represent the new range, a new file_region 342 * structure is added to the map as a placeholder. This is 343 * so that the subsequent region_add call will have all the 344 * regions it needs and will not fail. 345 * 346 * Upon entry, region_chg will also examine the cache of region descriptors 347 * associated with the map. If there are not enough descriptors cached, one 348 * will be allocated for the in progress add operation. 349 * 350 * Returns the number of huge pages that need to be added to the existing 351 * reservation map for the range [f, t). This number is greater or equal to 352 * zero. -ENOMEM is returned if a new file_region structure or cache entry 353 * is needed and can not be allocated. 354 */ 355 static long region_chg(struct resv_map *resv, long f, long t) 356 { 357 struct list_head *head = &resv->regions; 358 struct file_region *rg, *nrg = NULL; 359 long chg = 0; 360 361 retry: 362 spin_lock(&resv->lock); 363 retry_locked: 364 resv->adds_in_progress++; 365 366 /* 367 * Check for sufficient descriptors in the cache to accommodate 368 * the number of in progress add operations. 369 */ 370 if (resv->adds_in_progress > resv->region_cache_count) { 371 struct file_region *trg; 372 373 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1); 374 /* Must drop lock to allocate a new descriptor. */ 375 resv->adds_in_progress--; 376 spin_unlock(&resv->lock); 377 378 trg = kmalloc(sizeof(*trg), GFP_KERNEL); 379 if (!trg) { 380 kfree(nrg); 381 return -ENOMEM; 382 } 383 384 spin_lock(&resv->lock); 385 list_add(&trg->link, &resv->region_cache); 386 resv->region_cache_count++; 387 goto retry_locked; 388 } 389 390 /* Locate the region we are before or in. */ 391 list_for_each_entry(rg, head, link) 392 if (f <= rg->to) 393 break; 394 395 /* If we are below the current region then a new region is required. 396 * Subtle, allocate a new region at the position but make it zero 397 * size such that we can guarantee to record the reservation. */ 398 if (&rg->link == head || t < rg->from) { 399 if (!nrg) { 400 resv->adds_in_progress--; 401 spin_unlock(&resv->lock); 402 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 403 if (!nrg) 404 return -ENOMEM; 405 406 nrg->from = f; 407 nrg->to = f; 408 INIT_LIST_HEAD(&nrg->link); 409 goto retry; 410 } 411 412 list_add(&nrg->link, rg->link.prev); 413 chg = t - f; 414 goto out_nrg; 415 } 416 417 /* Round our left edge to the current segment if it encloses us. */ 418 if (f > rg->from) 419 f = rg->from; 420 chg = t - f; 421 422 /* Check for and consume any regions we now overlap with. */ 423 list_for_each_entry(rg, rg->link.prev, link) { 424 if (&rg->link == head) 425 break; 426 if (rg->from > t) 427 goto out; 428 429 /* We overlap with this area, if it extends further than 430 * us then we must extend ourselves. Account for its 431 * existing reservation. */ 432 if (rg->to > t) { 433 chg += rg->to - t; 434 t = rg->to; 435 } 436 chg -= rg->to - rg->from; 437 } 438 439 out: 440 spin_unlock(&resv->lock); 441 /* We already know we raced and no longer need the new region */ 442 kfree(nrg); 443 return chg; 444 out_nrg: 445 spin_unlock(&resv->lock); 446 return chg; 447 } 448 449 /* 450 * Abort the in progress add operation. The adds_in_progress field 451 * of the resv_map keeps track of the operations in progress between 452 * calls to region_chg and region_add. Operations are sometimes 453 * aborted after the call to region_chg. In such cases, region_abort 454 * is called to decrement the adds_in_progress counter. 455 * 456 * NOTE: The range arguments [f, t) are not needed or used in this 457 * routine. They are kept to make reading the calling code easier as 458 * arguments will match the associated region_chg call. 459 */ 460 static void region_abort(struct resv_map *resv, long f, long t) 461 { 462 spin_lock(&resv->lock); 463 VM_BUG_ON(!resv->region_cache_count); 464 resv->adds_in_progress--; 465 spin_unlock(&resv->lock); 466 } 467 468 /* 469 * Delete the specified range [f, t) from the reserve map. If the 470 * t parameter is LONG_MAX, this indicates that ALL regions after f 471 * should be deleted. Locate the regions which intersect [f, t) 472 * and either trim, delete or split the existing regions. 473 * 474 * Returns the number of huge pages deleted from the reserve map. 475 * In the normal case, the return value is zero or more. In the 476 * case where a region must be split, a new region descriptor must 477 * be allocated. If the allocation fails, -ENOMEM will be returned. 478 * NOTE: If the parameter t == LONG_MAX, then we will never split 479 * a region and possibly return -ENOMEM. Callers specifying 480 * t == LONG_MAX do not need to check for -ENOMEM error. 481 */ 482 static long region_del(struct resv_map *resv, long f, long t) 483 { 484 struct list_head *head = &resv->regions; 485 struct file_region *rg, *trg; 486 struct file_region *nrg = NULL; 487 long del = 0; 488 489 retry: 490 spin_lock(&resv->lock); 491 list_for_each_entry_safe(rg, trg, head, link) { 492 /* 493 * Skip regions before the range to be deleted. file_region 494 * ranges are normally of the form [from, to). However, there 495 * may be a "placeholder" entry in the map which is of the form 496 * (from, to) with from == to. Check for placeholder entries 497 * at the beginning of the range to be deleted. 498 */ 499 if (rg->to <= f && (rg->to != rg->from || rg->to != f)) 500 continue; 501 502 if (rg->from >= t) 503 break; 504 505 if (f > rg->from && t < rg->to) { /* Must split region */ 506 /* 507 * Check for an entry in the cache before dropping 508 * lock and attempting allocation. 509 */ 510 if (!nrg && 511 resv->region_cache_count > resv->adds_in_progress) { 512 nrg = list_first_entry(&resv->region_cache, 513 struct file_region, 514 link); 515 list_del(&nrg->link); 516 resv->region_cache_count--; 517 } 518 519 if (!nrg) { 520 spin_unlock(&resv->lock); 521 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 522 if (!nrg) 523 return -ENOMEM; 524 goto retry; 525 } 526 527 del += t - f; 528 529 /* New entry for end of split region */ 530 nrg->from = t; 531 nrg->to = rg->to; 532 INIT_LIST_HEAD(&nrg->link); 533 534 /* Original entry is trimmed */ 535 rg->to = f; 536 537 list_add(&nrg->link, &rg->link); 538 nrg = NULL; 539 break; 540 } 541 542 if (f <= rg->from && t >= rg->to) { /* Remove entire region */ 543 del += rg->to - rg->from; 544 list_del(&rg->link); 545 kfree(rg); 546 continue; 547 } 548 549 if (f <= rg->from) { /* Trim beginning of region */ 550 del += t - rg->from; 551 rg->from = t; 552 } else { /* Trim end of region */ 553 del += rg->to - f; 554 rg->to = f; 555 } 556 } 557 558 spin_unlock(&resv->lock); 559 kfree(nrg); 560 return del; 561 } 562 563 /* 564 * A rare out of memory error was encountered which prevented removal of 565 * the reserve map region for a page. The huge page itself was free'ed 566 * and removed from the page cache. This routine will adjust the subpool 567 * usage count, and the global reserve count if needed. By incrementing 568 * these counts, the reserve map entry which could not be deleted will 569 * appear as a "reserved" entry instead of simply dangling with incorrect 570 * counts. 571 */ 572 void hugetlb_fix_reserve_counts(struct inode *inode) 573 { 574 struct hugepage_subpool *spool = subpool_inode(inode); 575 long rsv_adjust; 576 577 rsv_adjust = hugepage_subpool_get_pages(spool, 1); 578 if (rsv_adjust) { 579 struct hstate *h = hstate_inode(inode); 580 581 hugetlb_acct_memory(h, 1); 582 } 583 } 584 585 /* 586 * Count and return the number of huge pages in the reserve map 587 * that intersect with the range [f, t). 588 */ 589 static long region_count(struct resv_map *resv, long f, long t) 590 { 591 struct list_head *head = &resv->regions; 592 struct file_region *rg; 593 long chg = 0; 594 595 spin_lock(&resv->lock); 596 /* Locate each segment we overlap with, and count that overlap. */ 597 list_for_each_entry(rg, head, link) { 598 long seg_from; 599 long seg_to; 600 601 if (rg->to <= f) 602 continue; 603 if (rg->from >= t) 604 break; 605 606 seg_from = max(rg->from, f); 607 seg_to = min(rg->to, t); 608 609 chg += seg_to - seg_from; 610 } 611 spin_unlock(&resv->lock); 612 613 return chg; 614 } 615 616 /* 617 * Convert the address within this vma to the page offset within 618 * the mapping, in pagecache page units; huge pages here. 619 */ 620 static pgoff_t vma_hugecache_offset(struct hstate *h, 621 struct vm_area_struct *vma, unsigned long address) 622 { 623 return ((address - vma->vm_start) >> huge_page_shift(h)) + 624 (vma->vm_pgoff >> huge_page_order(h)); 625 } 626 627 pgoff_t linear_hugepage_index(struct vm_area_struct *vma, 628 unsigned long address) 629 { 630 return vma_hugecache_offset(hstate_vma(vma), vma, address); 631 } 632 EXPORT_SYMBOL_GPL(linear_hugepage_index); 633 634 /* 635 * Return the size of the pages allocated when backing a VMA. In the majority 636 * cases this will be same size as used by the page table entries. 637 */ 638 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) 639 { 640 if (vma->vm_ops && vma->vm_ops->pagesize) 641 return vma->vm_ops->pagesize(vma); 642 return PAGE_SIZE; 643 } 644 EXPORT_SYMBOL_GPL(vma_kernel_pagesize); 645 646 /* 647 * Return the page size being used by the MMU to back a VMA. In the majority 648 * of cases, the page size used by the kernel matches the MMU size. On 649 * architectures where it differs, an architecture-specific 'strong' 650 * version of this symbol is required. 651 */ 652 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 653 { 654 return vma_kernel_pagesize(vma); 655 } 656 657 /* 658 * Flags for MAP_PRIVATE reservations. These are stored in the bottom 659 * bits of the reservation map pointer, which are always clear due to 660 * alignment. 661 */ 662 #define HPAGE_RESV_OWNER (1UL << 0) 663 #define HPAGE_RESV_UNMAPPED (1UL << 1) 664 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) 665 666 /* 667 * These helpers are used to track how many pages are reserved for 668 * faults in a MAP_PRIVATE mapping. Only the process that called mmap() 669 * is guaranteed to have their future faults succeed. 670 * 671 * With the exception of reset_vma_resv_huge_pages() which is called at fork(), 672 * the reserve counters are updated with the hugetlb_lock held. It is safe 673 * to reset the VMA at fork() time as it is not in use yet and there is no 674 * chance of the global counters getting corrupted as a result of the values. 675 * 676 * The private mapping reservation is represented in a subtly different 677 * manner to a shared mapping. A shared mapping has a region map associated 678 * with the underlying file, this region map represents the backing file 679 * pages which have ever had a reservation assigned which this persists even 680 * after the page is instantiated. A private mapping has a region map 681 * associated with the original mmap which is attached to all VMAs which 682 * reference it, this region map represents those offsets which have consumed 683 * reservation ie. where pages have been instantiated. 684 */ 685 static unsigned long get_vma_private_data(struct vm_area_struct *vma) 686 { 687 return (unsigned long)vma->vm_private_data; 688 } 689 690 static void set_vma_private_data(struct vm_area_struct *vma, 691 unsigned long value) 692 { 693 vma->vm_private_data = (void *)value; 694 } 695 696 struct resv_map *resv_map_alloc(void) 697 { 698 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); 699 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL); 700 701 if (!resv_map || !rg) { 702 kfree(resv_map); 703 kfree(rg); 704 return NULL; 705 } 706 707 kref_init(&resv_map->refs); 708 spin_lock_init(&resv_map->lock); 709 INIT_LIST_HEAD(&resv_map->regions); 710 711 resv_map->adds_in_progress = 0; 712 713 INIT_LIST_HEAD(&resv_map->region_cache); 714 list_add(&rg->link, &resv_map->region_cache); 715 resv_map->region_cache_count = 1; 716 717 return resv_map; 718 } 719 720 void resv_map_release(struct kref *ref) 721 { 722 struct resv_map *resv_map = container_of(ref, struct resv_map, refs); 723 struct list_head *head = &resv_map->region_cache; 724 struct file_region *rg, *trg; 725 726 /* Clear out any active regions before we release the map. */ 727 region_del(resv_map, 0, LONG_MAX); 728 729 /* ... and any entries left in the cache */ 730 list_for_each_entry_safe(rg, trg, head, link) { 731 list_del(&rg->link); 732 kfree(rg); 733 } 734 735 VM_BUG_ON(resv_map->adds_in_progress); 736 737 kfree(resv_map); 738 } 739 740 static inline struct resv_map *inode_resv_map(struct inode *inode) 741 { 742 return inode->i_mapping->private_data; 743 } 744 745 static struct resv_map *vma_resv_map(struct vm_area_struct *vma) 746 { 747 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 748 if (vma->vm_flags & VM_MAYSHARE) { 749 struct address_space *mapping = vma->vm_file->f_mapping; 750 struct inode *inode = mapping->host; 751 752 return inode_resv_map(inode); 753 754 } else { 755 return (struct resv_map *)(get_vma_private_data(vma) & 756 ~HPAGE_RESV_MASK); 757 } 758 } 759 760 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) 761 { 762 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 763 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 764 765 set_vma_private_data(vma, (get_vma_private_data(vma) & 766 HPAGE_RESV_MASK) | (unsigned long)map); 767 } 768 769 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) 770 { 771 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 772 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 773 774 set_vma_private_data(vma, get_vma_private_data(vma) | flags); 775 } 776 777 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) 778 { 779 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 780 781 return (get_vma_private_data(vma) & flag) != 0; 782 } 783 784 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */ 785 void reset_vma_resv_huge_pages(struct vm_area_struct *vma) 786 { 787 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 788 if (!(vma->vm_flags & VM_MAYSHARE)) 789 vma->vm_private_data = (void *)0; 790 } 791 792 /* Returns true if the VMA has associated reserve pages */ 793 static bool vma_has_reserves(struct vm_area_struct *vma, long chg) 794 { 795 if (vma->vm_flags & VM_NORESERVE) { 796 /* 797 * This address is already reserved by other process(chg == 0), 798 * so, we should decrement reserved count. Without decrementing, 799 * reserve count remains after releasing inode, because this 800 * allocated page will go into page cache and is regarded as 801 * coming from reserved pool in releasing step. Currently, we 802 * don't have any other solution to deal with this situation 803 * properly, so add work-around here. 804 */ 805 if (vma->vm_flags & VM_MAYSHARE && chg == 0) 806 return true; 807 else 808 return false; 809 } 810 811 /* Shared mappings always use reserves */ 812 if (vma->vm_flags & VM_MAYSHARE) { 813 /* 814 * We know VM_NORESERVE is not set. Therefore, there SHOULD 815 * be a region map for all pages. The only situation where 816 * there is no region map is if a hole was punched via 817 * fallocate. In this case, there really are no reverves to 818 * use. This situation is indicated if chg != 0. 819 */ 820 if (chg) 821 return false; 822 else 823 return true; 824 } 825 826 /* 827 * Only the process that called mmap() has reserves for 828 * private mappings. 829 */ 830 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 831 /* 832 * Like the shared case above, a hole punch or truncate 833 * could have been performed on the private mapping. 834 * Examine the value of chg to determine if reserves 835 * actually exist or were previously consumed. 836 * Very Subtle - The value of chg comes from a previous 837 * call to vma_needs_reserves(). The reserve map for 838 * private mappings has different (opposite) semantics 839 * than that of shared mappings. vma_needs_reserves() 840 * has already taken this difference in semantics into 841 * account. Therefore, the meaning of chg is the same 842 * as in the shared case above. Code could easily be 843 * combined, but keeping it separate draws attention to 844 * subtle differences. 845 */ 846 if (chg) 847 return false; 848 else 849 return true; 850 } 851 852 return false; 853 } 854 855 static void enqueue_huge_page(struct hstate *h, struct page *page) 856 { 857 int nid = page_to_nid(page); 858 list_move(&page->lru, &h->hugepage_freelists[nid]); 859 h->free_huge_pages++; 860 h->free_huge_pages_node[nid]++; 861 } 862 863 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid) 864 { 865 struct page *page; 866 867 list_for_each_entry(page, &h->hugepage_freelists[nid], lru) 868 if (!PageHWPoison(page)) 869 break; 870 /* 871 * if 'non-isolated free hugepage' not found on the list, 872 * the allocation fails. 873 */ 874 if (&h->hugepage_freelists[nid] == &page->lru) 875 return NULL; 876 list_move(&page->lru, &h->hugepage_activelist); 877 set_page_refcounted(page); 878 h->free_huge_pages--; 879 h->free_huge_pages_node[nid]--; 880 return page; 881 } 882 883 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid, 884 nodemask_t *nmask) 885 { 886 unsigned int cpuset_mems_cookie; 887 struct zonelist *zonelist; 888 struct zone *zone; 889 struct zoneref *z; 890 int node = -1; 891 892 zonelist = node_zonelist(nid, gfp_mask); 893 894 retry_cpuset: 895 cpuset_mems_cookie = read_mems_allowed_begin(); 896 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) { 897 struct page *page; 898 899 if (!cpuset_zone_allowed(zone, gfp_mask)) 900 continue; 901 /* 902 * no need to ask again on the same node. Pool is node rather than 903 * zone aware 904 */ 905 if (zone_to_nid(zone) == node) 906 continue; 907 node = zone_to_nid(zone); 908 909 page = dequeue_huge_page_node_exact(h, node); 910 if (page) 911 return page; 912 } 913 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie))) 914 goto retry_cpuset; 915 916 return NULL; 917 } 918 919 /* Movability of hugepages depends on migration support. */ 920 static inline gfp_t htlb_alloc_mask(struct hstate *h) 921 { 922 if (hugepage_migration_supported(h)) 923 return GFP_HIGHUSER_MOVABLE; 924 else 925 return GFP_HIGHUSER; 926 } 927 928 static struct page *dequeue_huge_page_vma(struct hstate *h, 929 struct vm_area_struct *vma, 930 unsigned long address, int avoid_reserve, 931 long chg) 932 { 933 struct page *page; 934 struct mempolicy *mpol; 935 gfp_t gfp_mask; 936 nodemask_t *nodemask; 937 int nid; 938 939 /* 940 * A child process with MAP_PRIVATE mappings created by their parent 941 * have no page reserves. This check ensures that reservations are 942 * not "stolen". The child may still get SIGKILLed 943 */ 944 if (!vma_has_reserves(vma, chg) && 945 h->free_huge_pages - h->resv_huge_pages == 0) 946 goto err; 947 948 /* If reserves cannot be used, ensure enough pages are in the pool */ 949 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0) 950 goto err; 951 952 gfp_mask = htlb_alloc_mask(h); 953 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 954 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask); 955 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) { 956 SetPagePrivate(page); 957 h->resv_huge_pages--; 958 } 959 960 mpol_cond_put(mpol); 961 return page; 962 963 err: 964 return NULL; 965 } 966 967 /* 968 * common helper functions for hstate_next_node_to_{alloc|free}. 969 * We may have allocated or freed a huge page based on a different 970 * nodes_allowed previously, so h->next_node_to_{alloc|free} might 971 * be outside of *nodes_allowed. Ensure that we use an allowed 972 * node for alloc or free. 973 */ 974 static int next_node_allowed(int nid, nodemask_t *nodes_allowed) 975 { 976 nid = next_node_in(nid, *nodes_allowed); 977 VM_BUG_ON(nid >= MAX_NUMNODES); 978 979 return nid; 980 } 981 982 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed) 983 { 984 if (!node_isset(nid, *nodes_allowed)) 985 nid = next_node_allowed(nid, nodes_allowed); 986 return nid; 987 } 988 989 /* 990 * returns the previously saved node ["this node"] from which to 991 * allocate a persistent huge page for the pool and advance the 992 * next node from which to allocate, handling wrap at end of node 993 * mask. 994 */ 995 static int hstate_next_node_to_alloc(struct hstate *h, 996 nodemask_t *nodes_allowed) 997 { 998 int nid; 999 1000 VM_BUG_ON(!nodes_allowed); 1001 1002 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed); 1003 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed); 1004 1005 return nid; 1006 } 1007 1008 /* 1009 * helper for free_pool_huge_page() - return the previously saved 1010 * node ["this node"] from which to free a huge page. Advance the 1011 * next node id whether or not we find a free huge page to free so 1012 * that the next attempt to free addresses the next node. 1013 */ 1014 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed) 1015 { 1016 int nid; 1017 1018 VM_BUG_ON(!nodes_allowed); 1019 1020 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed); 1021 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed); 1022 1023 return nid; 1024 } 1025 1026 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \ 1027 for (nr_nodes = nodes_weight(*mask); \ 1028 nr_nodes > 0 && \ 1029 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \ 1030 nr_nodes--) 1031 1032 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \ 1033 for (nr_nodes = nodes_weight(*mask); \ 1034 nr_nodes > 0 && \ 1035 ((node = hstate_next_node_to_free(hs, mask)) || 1); \ 1036 nr_nodes--) 1037 1038 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE 1039 static void destroy_compound_gigantic_page(struct page *page, 1040 unsigned int order) 1041 { 1042 int i; 1043 int nr_pages = 1 << order; 1044 struct page *p = page + 1; 1045 1046 atomic_set(compound_mapcount_ptr(page), 0); 1047 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { 1048 clear_compound_head(p); 1049 set_page_refcounted(p); 1050 } 1051 1052 set_compound_order(page, 0); 1053 __ClearPageHead(page); 1054 } 1055 1056 static void free_gigantic_page(struct page *page, unsigned int order) 1057 { 1058 free_contig_range(page_to_pfn(page), 1 << order); 1059 } 1060 1061 static int __alloc_gigantic_page(unsigned long start_pfn, 1062 unsigned long nr_pages, gfp_t gfp_mask) 1063 { 1064 unsigned long end_pfn = start_pfn + nr_pages; 1065 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE, 1066 gfp_mask); 1067 } 1068 1069 static bool pfn_range_valid_gigantic(struct zone *z, 1070 unsigned long start_pfn, unsigned long nr_pages) 1071 { 1072 unsigned long i, end_pfn = start_pfn + nr_pages; 1073 struct page *page; 1074 1075 for (i = start_pfn; i < end_pfn; i++) { 1076 if (!pfn_valid(i)) 1077 return false; 1078 1079 page = pfn_to_page(i); 1080 1081 if (page_zone(page) != z) 1082 return false; 1083 1084 if (PageReserved(page)) 1085 return false; 1086 1087 if (page_count(page) > 0) 1088 return false; 1089 1090 if (PageHuge(page)) 1091 return false; 1092 } 1093 1094 return true; 1095 } 1096 1097 static bool zone_spans_last_pfn(const struct zone *zone, 1098 unsigned long start_pfn, unsigned long nr_pages) 1099 { 1100 unsigned long last_pfn = start_pfn + nr_pages - 1; 1101 return zone_spans_pfn(zone, last_pfn); 1102 } 1103 1104 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, 1105 int nid, nodemask_t *nodemask) 1106 { 1107 unsigned int order = huge_page_order(h); 1108 unsigned long nr_pages = 1 << order; 1109 unsigned long ret, pfn, flags; 1110 struct zonelist *zonelist; 1111 struct zone *zone; 1112 struct zoneref *z; 1113 1114 zonelist = node_zonelist(nid, gfp_mask); 1115 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nodemask) { 1116 spin_lock_irqsave(&zone->lock, flags); 1117 1118 pfn = ALIGN(zone->zone_start_pfn, nr_pages); 1119 while (zone_spans_last_pfn(zone, pfn, nr_pages)) { 1120 if (pfn_range_valid_gigantic(zone, pfn, nr_pages)) { 1121 /* 1122 * We release the zone lock here because 1123 * alloc_contig_range() will also lock the zone 1124 * at some point. If there's an allocation 1125 * spinning on this lock, it may win the race 1126 * and cause alloc_contig_range() to fail... 1127 */ 1128 spin_unlock_irqrestore(&zone->lock, flags); 1129 ret = __alloc_gigantic_page(pfn, nr_pages, gfp_mask); 1130 if (!ret) 1131 return pfn_to_page(pfn); 1132 spin_lock_irqsave(&zone->lock, flags); 1133 } 1134 pfn += nr_pages; 1135 } 1136 1137 spin_unlock_irqrestore(&zone->lock, flags); 1138 } 1139 1140 return NULL; 1141 } 1142 1143 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid); 1144 static void prep_compound_gigantic_page(struct page *page, unsigned int order); 1145 1146 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */ 1147 static inline bool gigantic_page_supported(void) { return false; } 1148 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, 1149 int nid, nodemask_t *nodemask) { return NULL; } 1150 static inline void free_gigantic_page(struct page *page, unsigned int order) { } 1151 static inline void destroy_compound_gigantic_page(struct page *page, 1152 unsigned int order) { } 1153 #endif 1154 1155 static void update_and_free_page(struct hstate *h, struct page *page) 1156 { 1157 int i; 1158 1159 if (hstate_is_gigantic(h) && !gigantic_page_supported()) 1160 return; 1161 1162 h->nr_huge_pages--; 1163 h->nr_huge_pages_node[page_to_nid(page)]--; 1164 for (i = 0; i < pages_per_huge_page(h); i++) { 1165 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1166 1 << PG_referenced | 1 << PG_dirty | 1167 1 << PG_active | 1 << PG_private | 1168 1 << PG_writeback); 1169 } 1170 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page); 1171 set_compound_page_dtor(page, NULL_COMPOUND_DTOR); 1172 set_page_refcounted(page); 1173 if (hstate_is_gigantic(h)) { 1174 destroy_compound_gigantic_page(page, huge_page_order(h)); 1175 free_gigantic_page(page, huge_page_order(h)); 1176 } else { 1177 __free_pages(page, huge_page_order(h)); 1178 } 1179 } 1180 1181 struct hstate *size_to_hstate(unsigned long size) 1182 { 1183 struct hstate *h; 1184 1185 for_each_hstate(h) { 1186 if (huge_page_size(h) == size) 1187 return h; 1188 } 1189 return NULL; 1190 } 1191 1192 /* 1193 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked 1194 * to hstate->hugepage_activelist.) 1195 * 1196 * This function can be called for tail pages, but never returns true for them. 1197 */ 1198 bool page_huge_active(struct page *page) 1199 { 1200 VM_BUG_ON_PAGE(!PageHuge(page), page); 1201 return PageHead(page) && PagePrivate(&page[1]); 1202 } 1203 1204 /* never called for tail page */ 1205 static void set_page_huge_active(struct page *page) 1206 { 1207 VM_BUG_ON_PAGE(!PageHeadHuge(page), page); 1208 SetPagePrivate(&page[1]); 1209 } 1210 1211 static void clear_page_huge_active(struct page *page) 1212 { 1213 VM_BUG_ON_PAGE(!PageHeadHuge(page), page); 1214 ClearPagePrivate(&page[1]); 1215 } 1216 1217 /* 1218 * Internal hugetlb specific page flag. Do not use outside of the hugetlb 1219 * code 1220 */ 1221 static inline bool PageHugeTemporary(struct page *page) 1222 { 1223 if (!PageHuge(page)) 1224 return false; 1225 1226 return (unsigned long)page[2].mapping == -1U; 1227 } 1228 1229 static inline void SetPageHugeTemporary(struct page *page) 1230 { 1231 page[2].mapping = (void *)-1U; 1232 } 1233 1234 static inline void ClearPageHugeTemporary(struct page *page) 1235 { 1236 page[2].mapping = NULL; 1237 } 1238 1239 void free_huge_page(struct page *page) 1240 { 1241 /* 1242 * Can't pass hstate in here because it is called from the 1243 * compound page destructor. 1244 */ 1245 struct hstate *h = page_hstate(page); 1246 int nid = page_to_nid(page); 1247 struct hugepage_subpool *spool = 1248 (struct hugepage_subpool *)page_private(page); 1249 bool restore_reserve; 1250 1251 VM_BUG_ON_PAGE(page_count(page), page); 1252 VM_BUG_ON_PAGE(page_mapcount(page), page); 1253 1254 set_page_private(page, 0); 1255 page->mapping = NULL; 1256 restore_reserve = PagePrivate(page); 1257 ClearPagePrivate(page); 1258 1259 /* 1260 * A return code of zero implies that the subpool will be under its 1261 * minimum size if the reservation is not restored after page is free. 1262 * Therefore, force restore_reserve operation. 1263 */ 1264 if (hugepage_subpool_put_pages(spool, 1) == 0) 1265 restore_reserve = true; 1266 1267 spin_lock(&hugetlb_lock); 1268 clear_page_huge_active(page); 1269 hugetlb_cgroup_uncharge_page(hstate_index(h), 1270 pages_per_huge_page(h), page); 1271 if (restore_reserve) 1272 h->resv_huge_pages++; 1273 1274 if (PageHugeTemporary(page)) { 1275 list_del(&page->lru); 1276 ClearPageHugeTemporary(page); 1277 update_and_free_page(h, page); 1278 } else if (h->surplus_huge_pages_node[nid]) { 1279 /* remove the page from active list */ 1280 list_del(&page->lru); 1281 update_and_free_page(h, page); 1282 h->surplus_huge_pages--; 1283 h->surplus_huge_pages_node[nid]--; 1284 } else { 1285 arch_clear_hugepage_flags(page); 1286 enqueue_huge_page(h, page); 1287 } 1288 spin_unlock(&hugetlb_lock); 1289 } 1290 1291 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid) 1292 { 1293 INIT_LIST_HEAD(&page->lru); 1294 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR); 1295 spin_lock(&hugetlb_lock); 1296 set_hugetlb_cgroup(page, NULL); 1297 h->nr_huge_pages++; 1298 h->nr_huge_pages_node[nid]++; 1299 spin_unlock(&hugetlb_lock); 1300 } 1301 1302 static void prep_compound_gigantic_page(struct page *page, unsigned int order) 1303 { 1304 int i; 1305 int nr_pages = 1 << order; 1306 struct page *p = page + 1; 1307 1308 /* we rely on prep_new_huge_page to set the destructor */ 1309 set_compound_order(page, order); 1310 __ClearPageReserved(page); 1311 __SetPageHead(page); 1312 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { 1313 /* 1314 * For gigantic hugepages allocated through bootmem at 1315 * boot, it's safer to be consistent with the not-gigantic 1316 * hugepages and clear the PG_reserved bit from all tail pages 1317 * too. Otherwse drivers using get_user_pages() to access tail 1318 * pages may get the reference counting wrong if they see 1319 * PG_reserved set on a tail page (despite the head page not 1320 * having PG_reserved set). Enforcing this consistency between 1321 * head and tail pages allows drivers to optimize away a check 1322 * on the head page when they need know if put_page() is needed 1323 * after get_user_pages(). 1324 */ 1325 __ClearPageReserved(p); 1326 set_page_count(p, 0); 1327 set_compound_head(p, page); 1328 } 1329 atomic_set(compound_mapcount_ptr(page), -1); 1330 } 1331 1332 /* 1333 * PageHuge() only returns true for hugetlbfs pages, but not for normal or 1334 * transparent huge pages. See the PageTransHuge() documentation for more 1335 * details. 1336 */ 1337 int PageHuge(struct page *page) 1338 { 1339 if (!PageCompound(page)) 1340 return 0; 1341 1342 page = compound_head(page); 1343 return page[1].compound_dtor == HUGETLB_PAGE_DTOR; 1344 } 1345 EXPORT_SYMBOL_GPL(PageHuge); 1346 1347 /* 1348 * PageHeadHuge() only returns true for hugetlbfs head page, but not for 1349 * normal or transparent huge pages. 1350 */ 1351 int PageHeadHuge(struct page *page_head) 1352 { 1353 if (!PageHead(page_head)) 1354 return 0; 1355 1356 return get_compound_page_dtor(page_head) == free_huge_page; 1357 } 1358 1359 pgoff_t __basepage_index(struct page *page) 1360 { 1361 struct page *page_head = compound_head(page); 1362 pgoff_t index = page_index(page_head); 1363 unsigned long compound_idx; 1364 1365 if (!PageHuge(page_head)) 1366 return page_index(page); 1367 1368 if (compound_order(page_head) >= MAX_ORDER) 1369 compound_idx = page_to_pfn(page) - page_to_pfn(page_head); 1370 else 1371 compound_idx = page - page_head; 1372 1373 return (index << compound_order(page_head)) + compound_idx; 1374 } 1375 1376 static struct page *alloc_buddy_huge_page(struct hstate *h, 1377 gfp_t gfp_mask, int nid, nodemask_t *nmask) 1378 { 1379 int order = huge_page_order(h); 1380 struct page *page; 1381 1382 gfp_mask |= __GFP_COMP|__GFP_RETRY_MAYFAIL|__GFP_NOWARN; 1383 if (nid == NUMA_NO_NODE) 1384 nid = numa_mem_id(); 1385 page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask); 1386 if (page) 1387 __count_vm_event(HTLB_BUDDY_PGALLOC); 1388 else 1389 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 1390 1391 return page; 1392 } 1393 1394 /* 1395 * Common helper to allocate a fresh hugetlb page. All specific allocators 1396 * should use this function to get new hugetlb pages 1397 */ 1398 static struct page *alloc_fresh_huge_page(struct hstate *h, 1399 gfp_t gfp_mask, int nid, nodemask_t *nmask) 1400 { 1401 struct page *page; 1402 1403 if (hstate_is_gigantic(h)) 1404 page = alloc_gigantic_page(h, gfp_mask, nid, nmask); 1405 else 1406 page = alloc_buddy_huge_page(h, gfp_mask, 1407 nid, nmask); 1408 if (!page) 1409 return NULL; 1410 1411 if (hstate_is_gigantic(h)) 1412 prep_compound_gigantic_page(page, huge_page_order(h)); 1413 prep_new_huge_page(h, page, page_to_nid(page)); 1414 1415 return page; 1416 } 1417 1418 /* 1419 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved 1420 * manner. 1421 */ 1422 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed) 1423 { 1424 struct page *page; 1425 int nr_nodes, node; 1426 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 1427 1428 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 1429 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed); 1430 if (page) 1431 break; 1432 } 1433 1434 if (!page) 1435 return 0; 1436 1437 put_page(page); /* free it into the hugepage allocator */ 1438 1439 return 1; 1440 } 1441 1442 /* 1443 * Free huge page from pool from next node to free. 1444 * Attempt to keep persistent huge pages more or less 1445 * balanced over allowed nodes. 1446 * Called with hugetlb_lock locked. 1447 */ 1448 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed, 1449 bool acct_surplus) 1450 { 1451 int nr_nodes, node; 1452 int ret = 0; 1453 1454 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 1455 /* 1456 * If we're returning unused surplus pages, only examine 1457 * nodes with surplus pages. 1458 */ 1459 if ((!acct_surplus || h->surplus_huge_pages_node[node]) && 1460 !list_empty(&h->hugepage_freelists[node])) { 1461 struct page *page = 1462 list_entry(h->hugepage_freelists[node].next, 1463 struct page, lru); 1464 list_del(&page->lru); 1465 h->free_huge_pages--; 1466 h->free_huge_pages_node[node]--; 1467 if (acct_surplus) { 1468 h->surplus_huge_pages--; 1469 h->surplus_huge_pages_node[node]--; 1470 } 1471 update_and_free_page(h, page); 1472 ret = 1; 1473 break; 1474 } 1475 } 1476 1477 return ret; 1478 } 1479 1480 /* 1481 * Dissolve a given free hugepage into free buddy pages. This function does 1482 * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the 1483 * dissolution fails because a give page is not a free hugepage, or because 1484 * free hugepages are fully reserved. 1485 */ 1486 int dissolve_free_huge_page(struct page *page) 1487 { 1488 int rc = -EBUSY; 1489 1490 spin_lock(&hugetlb_lock); 1491 if (PageHuge(page) && !page_count(page)) { 1492 struct page *head = compound_head(page); 1493 struct hstate *h = page_hstate(head); 1494 int nid = page_to_nid(head); 1495 if (h->free_huge_pages - h->resv_huge_pages == 0) 1496 goto out; 1497 /* 1498 * Move PageHWPoison flag from head page to the raw error page, 1499 * which makes any subpages rather than the error page reusable. 1500 */ 1501 if (PageHWPoison(head) && page != head) { 1502 SetPageHWPoison(page); 1503 ClearPageHWPoison(head); 1504 } 1505 list_del(&head->lru); 1506 h->free_huge_pages--; 1507 h->free_huge_pages_node[nid]--; 1508 h->max_huge_pages--; 1509 update_and_free_page(h, head); 1510 rc = 0; 1511 } 1512 out: 1513 spin_unlock(&hugetlb_lock); 1514 return rc; 1515 } 1516 1517 /* 1518 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to 1519 * make specified memory blocks removable from the system. 1520 * Note that this will dissolve a free gigantic hugepage completely, if any 1521 * part of it lies within the given range. 1522 * Also note that if dissolve_free_huge_page() returns with an error, all 1523 * free hugepages that were dissolved before that error are lost. 1524 */ 1525 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn) 1526 { 1527 unsigned long pfn; 1528 struct page *page; 1529 int rc = 0; 1530 1531 if (!hugepages_supported()) 1532 return rc; 1533 1534 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) { 1535 page = pfn_to_page(pfn); 1536 if (PageHuge(page) && !page_count(page)) { 1537 rc = dissolve_free_huge_page(page); 1538 if (rc) 1539 break; 1540 } 1541 } 1542 1543 return rc; 1544 } 1545 1546 /* 1547 * Allocates a fresh surplus page from the page allocator. 1548 */ 1549 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask, 1550 int nid, nodemask_t *nmask) 1551 { 1552 struct page *page = NULL; 1553 1554 if (hstate_is_gigantic(h)) 1555 return NULL; 1556 1557 spin_lock(&hugetlb_lock); 1558 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) 1559 goto out_unlock; 1560 spin_unlock(&hugetlb_lock); 1561 1562 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask); 1563 if (!page) 1564 return NULL; 1565 1566 spin_lock(&hugetlb_lock); 1567 /* 1568 * We could have raced with the pool size change. 1569 * Double check that and simply deallocate the new page 1570 * if we would end up overcommiting the surpluses. Abuse 1571 * temporary page to workaround the nasty free_huge_page 1572 * codeflow 1573 */ 1574 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { 1575 SetPageHugeTemporary(page); 1576 put_page(page); 1577 page = NULL; 1578 } else { 1579 h->surplus_huge_pages++; 1580 h->surplus_huge_pages_node[page_to_nid(page)]++; 1581 } 1582 1583 out_unlock: 1584 spin_unlock(&hugetlb_lock); 1585 1586 return page; 1587 } 1588 1589 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask, 1590 int nid, nodemask_t *nmask) 1591 { 1592 struct page *page; 1593 1594 if (hstate_is_gigantic(h)) 1595 return NULL; 1596 1597 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask); 1598 if (!page) 1599 return NULL; 1600 1601 /* 1602 * We do not account these pages as surplus because they are only 1603 * temporary and will be released properly on the last reference 1604 */ 1605 SetPageHugeTemporary(page); 1606 1607 return page; 1608 } 1609 1610 /* 1611 * Use the VMA's mpolicy to allocate a huge page from the buddy. 1612 */ 1613 static 1614 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h, 1615 struct vm_area_struct *vma, unsigned long addr) 1616 { 1617 struct page *page; 1618 struct mempolicy *mpol; 1619 gfp_t gfp_mask = htlb_alloc_mask(h); 1620 int nid; 1621 nodemask_t *nodemask; 1622 1623 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask); 1624 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask); 1625 mpol_cond_put(mpol); 1626 1627 return page; 1628 } 1629 1630 /* page migration callback function */ 1631 struct page *alloc_huge_page_node(struct hstate *h, int nid) 1632 { 1633 gfp_t gfp_mask = htlb_alloc_mask(h); 1634 struct page *page = NULL; 1635 1636 if (nid != NUMA_NO_NODE) 1637 gfp_mask |= __GFP_THISNODE; 1638 1639 spin_lock(&hugetlb_lock); 1640 if (h->free_huge_pages - h->resv_huge_pages > 0) 1641 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL); 1642 spin_unlock(&hugetlb_lock); 1643 1644 if (!page) 1645 page = alloc_migrate_huge_page(h, gfp_mask, nid, NULL); 1646 1647 return page; 1648 } 1649 1650 /* page migration callback function */ 1651 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid, 1652 nodemask_t *nmask) 1653 { 1654 gfp_t gfp_mask = htlb_alloc_mask(h); 1655 1656 spin_lock(&hugetlb_lock); 1657 if (h->free_huge_pages - h->resv_huge_pages > 0) { 1658 struct page *page; 1659 1660 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask); 1661 if (page) { 1662 spin_unlock(&hugetlb_lock); 1663 return page; 1664 } 1665 } 1666 spin_unlock(&hugetlb_lock); 1667 1668 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask); 1669 } 1670 1671 /* mempolicy aware migration callback */ 1672 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma, 1673 unsigned long address) 1674 { 1675 struct mempolicy *mpol; 1676 nodemask_t *nodemask; 1677 struct page *page; 1678 gfp_t gfp_mask; 1679 int node; 1680 1681 gfp_mask = htlb_alloc_mask(h); 1682 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 1683 page = alloc_huge_page_nodemask(h, node, nodemask); 1684 mpol_cond_put(mpol); 1685 1686 return page; 1687 } 1688 1689 /* 1690 * Increase the hugetlb pool such that it can accommodate a reservation 1691 * of size 'delta'. 1692 */ 1693 static int gather_surplus_pages(struct hstate *h, int delta) 1694 { 1695 struct list_head surplus_list; 1696 struct page *page, *tmp; 1697 int ret, i; 1698 int needed, allocated; 1699 bool alloc_ok = true; 1700 1701 needed = (h->resv_huge_pages + delta) - h->free_huge_pages; 1702 if (needed <= 0) { 1703 h->resv_huge_pages += delta; 1704 return 0; 1705 } 1706 1707 allocated = 0; 1708 INIT_LIST_HEAD(&surplus_list); 1709 1710 ret = -ENOMEM; 1711 retry: 1712 spin_unlock(&hugetlb_lock); 1713 for (i = 0; i < needed; i++) { 1714 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h), 1715 NUMA_NO_NODE, NULL); 1716 if (!page) { 1717 alloc_ok = false; 1718 break; 1719 } 1720 list_add(&page->lru, &surplus_list); 1721 cond_resched(); 1722 } 1723 allocated += i; 1724 1725 /* 1726 * After retaking hugetlb_lock, we need to recalculate 'needed' 1727 * because either resv_huge_pages or free_huge_pages may have changed. 1728 */ 1729 spin_lock(&hugetlb_lock); 1730 needed = (h->resv_huge_pages + delta) - 1731 (h->free_huge_pages + allocated); 1732 if (needed > 0) { 1733 if (alloc_ok) 1734 goto retry; 1735 /* 1736 * We were not able to allocate enough pages to 1737 * satisfy the entire reservation so we free what 1738 * we've allocated so far. 1739 */ 1740 goto free; 1741 } 1742 /* 1743 * The surplus_list now contains _at_least_ the number of extra pages 1744 * needed to accommodate the reservation. Add the appropriate number 1745 * of pages to the hugetlb pool and free the extras back to the buddy 1746 * allocator. Commit the entire reservation here to prevent another 1747 * process from stealing the pages as they are added to the pool but 1748 * before they are reserved. 1749 */ 1750 needed += allocated; 1751 h->resv_huge_pages += delta; 1752 ret = 0; 1753 1754 /* Free the needed pages to the hugetlb pool */ 1755 list_for_each_entry_safe(page, tmp, &surplus_list, lru) { 1756 if ((--needed) < 0) 1757 break; 1758 /* 1759 * This page is now managed by the hugetlb allocator and has 1760 * no users -- drop the buddy allocator's reference. 1761 */ 1762 put_page_testzero(page); 1763 VM_BUG_ON_PAGE(page_count(page), page); 1764 enqueue_huge_page(h, page); 1765 } 1766 free: 1767 spin_unlock(&hugetlb_lock); 1768 1769 /* Free unnecessary surplus pages to the buddy allocator */ 1770 list_for_each_entry_safe(page, tmp, &surplus_list, lru) 1771 put_page(page); 1772 spin_lock(&hugetlb_lock); 1773 1774 return ret; 1775 } 1776 1777 /* 1778 * This routine has two main purposes: 1779 * 1) Decrement the reservation count (resv_huge_pages) by the value passed 1780 * in unused_resv_pages. This corresponds to the prior adjustments made 1781 * to the associated reservation map. 1782 * 2) Free any unused surplus pages that may have been allocated to satisfy 1783 * the reservation. As many as unused_resv_pages may be freed. 1784 * 1785 * Called with hugetlb_lock held. However, the lock could be dropped (and 1786 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock, 1787 * we must make sure nobody else can claim pages we are in the process of 1788 * freeing. Do this by ensuring resv_huge_page always is greater than the 1789 * number of huge pages we plan to free when dropping the lock. 1790 */ 1791 static void return_unused_surplus_pages(struct hstate *h, 1792 unsigned long unused_resv_pages) 1793 { 1794 unsigned long nr_pages; 1795 1796 /* Cannot return gigantic pages currently */ 1797 if (hstate_is_gigantic(h)) 1798 goto out; 1799 1800 /* 1801 * Part (or even all) of the reservation could have been backed 1802 * by pre-allocated pages. Only free surplus pages. 1803 */ 1804 nr_pages = min(unused_resv_pages, h->surplus_huge_pages); 1805 1806 /* 1807 * We want to release as many surplus pages as possible, spread 1808 * evenly across all nodes with memory. Iterate across these nodes 1809 * until we can no longer free unreserved surplus pages. This occurs 1810 * when the nodes with surplus pages have no free pages. 1811 * free_pool_huge_page() will balance the the freed pages across the 1812 * on-line nodes with memory and will handle the hstate accounting. 1813 * 1814 * Note that we decrement resv_huge_pages as we free the pages. If 1815 * we drop the lock, resv_huge_pages will still be sufficiently large 1816 * to cover subsequent pages we may free. 1817 */ 1818 while (nr_pages--) { 1819 h->resv_huge_pages--; 1820 unused_resv_pages--; 1821 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1)) 1822 goto out; 1823 cond_resched_lock(&hugetlb_lock); 1824 } 1825 1826 out: 1827 /* Fully uncommit the reservation */ 1828 h->resv_huge_pages -= unused_resv_pages; 1829 } 1830 1831 1832 /* 1833 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation 1834 * are used by the huge page allocation routines to manage reservations. 1835 * 1836 * vma_needs_reservation is called to determine if the huge page at addr 1837 * within the vma has an associated reservation. If a reservation is 1838 * needed, the value 1 is returned. The caller is then responsible for 1839 * managing the global reservation and subpool usage counts. After 1840 * the huge page has been allocated, vma_commit_reservation is called 1841 * to add the page to the reservation map. If the page allocation fails, 1842 * the reservation must be ended instead of committed. vma_end_reservation 1843 * is called in such cases. 1844 * 1845 * In the normal case, vma_commit_reservation returns the same value 1846 * as the preceding vma_needs_reservation call. The only time this 1847 * is not the case is if a reserve map was changed between calls. It 1848 * is the responsibility of the caller to notice the difference and 1849 * take appropriate action. 1850 * 1851 * vma_add_reservation is used in error paths where a reservation must 1852 * be restored when a newly allocated huge page must be freed. It is 1853 * to be called after calling vma_needs_reservation to determine if a 1854 * reservation exists. 1855 */ 1856 enum vma_resv_mode { 1857 VMA_NEEDS_RESV, 1858 VMA_COMMIT_RESV, 1859 VMA_END_RESV, 1860 VMA_ADD_RESV, 1861 }; 1862 static long __vma_reservation_common(struct hstate *h, 1863 struct vm_area_struct *vma, unsigned long addr, 1864 enum vma_resv_mode mode) 1865 { 1866 struct resv_map *resv; 1867 pgoff_t idx; 1868 long ret; 1869 1870 resv = vma_resv_map(vma); 1871 if (!resv) 1872 return 1; 1873 1874 idx = vma_hugecache_offset(h, vma, addr); 1875 switch (mode) { 1876 case VMA_NEEDS_RESV: 1877 ret = region_chg(resv, idx, idx + 1); 1878 break; 1879 case VMA_COMMIT_RESV: 1880 ret = region_add(resv, idx, idx + 1); 1881 break; 1882 case VMA_END_RESV: 1883 region_abort(resv, idx, idx + 1); 1884 ret = 0; 1885 break; 1886 case VMA_ADD_RESV: 1887 if (vma->vm_flags & VM_MAYSHARE) 1888 ret = region_add(resv, idx, idx + 1); 1889 else { 1890 region_abort(resv, idx, idx + 1); 1891 ret = region_del(resv, idx, idx + 1); 1892 } 1893 break; 1894 default: 1895 BUG(); 1896 } 1897 1898 if (vma->vm_flags & VM_MAYSHARE) 1899 return ret; 1900 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) { 1901 /* 1902 * In most cases, reserves always exist for private mappings. 1903 * However, a file associated with mapping could have been 1904 * hole punched or truncated after reserves were consumed. 1905 * As subsequent fault on such a range will not use reserves. 1906 * Subtle - The reserve map for private mappings has the 1907 * opposite meaning than that of shared mappings. If NO 1908 * entry is in the reserve map, it means a reservation exists. 1909 * If an entry exists in the reserve map, it means the 1910 * reservation has already been consumed. As a result, the 1911 * return value of this routine is the opposite of the 1912 * value returned from reserve map manipulation routines above. 1913 */ 1914 if (ret) 1915 return 0; 1916 else 1917 return 1; 1918 } 1919 else 1920 return ret < 0 ? ret : 0; 1921 } 1922 1923 static long vma_needs_reservation(struct hstate *h, 1924 struct vm_area_struct *vma, unsigned long addr) 1925 { 1926 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV); 1927 } 1928 1929 static long vma_commit_reservation(struct hstate *h, 1930 struct vm_area_struct *vma, unsigned long addr) 1931 { 1932 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV); 1933 } 1934 1935 static void vma_end_reservation(struct hstate *h, 1936 struct vm_area_struct *vma, unsigned long addr) 1937 { 1938 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV); 1939 } 1940 1941 static long vma_add_reservation(struct hstate *h, 1942 struct vm_area_struct *vma, unsigned long addr) 1943 { 1944 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV); 1945 } 1946 1947 /* 1948 * This routine is called to restore a reservation on error paths. In the 1949 * specific error paths, a huge page was allocated (via alloc_huge_page) 1950 * and is about to be freed. If a reservation for the page existed, 1951 * alloc_huge_page would have consumed the reservation and set PagePrivate 1952 * in the newly allocated page. When the page is freed via free_huge_page, 1953 * the global reservation count will be incremented if PagePrivate is set. 1954 * However, free_huge_page can not adjust the reserve map. Adjust the 1955 * reserve map here to be consistent with global reserve count adjustments 1956 * to be made by free_huge_page. 1957 */ 1958 static void restore_reserve_on_error(struct hstate *h, 1959 struct vm_area_struct *vma, unsigned long address, 1960 struct page *page) 1961 { 1962 if (unlikely(PagePrivate(page))) { 1963 long rc = vma_needs_reservation(h, vma, address); 1964 1965 if (unlikely(rc < 0)) { 1966 /* 1967 * Rare out of memory condition in reserve map 1968 * manipulation. Clear PagePrivate so that 1969 * global reserve count will not be incremented 1970 * by free_huge_page. This will make it appear 1971 * as though the reservation for this page was 1972 * consumed. This may prevent the task from 1973 * faulting in the page at a later time. This 1974 * is better than inconsistent global huge page 1975 * accounting of reserve counts. 1976 */ 1977 ClearPagePrivate(page); 1978 } else if (rc) { 1979 rc = vma_add_reservation(h, vma, address); 1980 if (unlikely(rc < 0)) 1981 /* 1982 * See above comment about rare out of 1983 * memory condition. 1984 */ 1985 ClearPagePrivate(page); 1986 } else 1987 vma_end_reservation(h, vma, address); 1988 } 1989 } 1990 1991 struct page *alloc_huge_page(struct vm_area_struct *vma, 1992 unsigned long addr, int avoid_reserve) 1993 { 1994 struct hugepage_subpool *spool = subpool_vma(vma); 1995 struct hstate *h = hstate_vma(vma); 1996 struct page *page; 1997 long map_chg, map_commit; 1998 long gbl_chg; 1999 int ret, idx; 2000 struct hugetlb_cgroup *h_cg; 2001 2002 idx = hstate_index(h); 2003 /* 2004 * Examine the region/reserve map to determine if the process 2005 * has a reservation for the page to be allocated. A return 2006 * code of zero indicates a reservation exists (no change). 2007 */ 2008 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr); 2009 if (map_chg < 0) 2010 return ERR_PTR(-ENOMEM); 2011 2012 /* 2013 * Processes that did not create the mapping will have no 2014 * reserves as indicated by the region/reserve map. Check 2015 * that the allocation will not exceed the subpool limit. 2016 * Allocations for MAP_NORESERVE mappings also need to be 2017 * checked against any subpool limit. 2018 */ 2019 if (map_chg || avoid_reserve) { 2020 gbl_chg = hugepage_subpool_get_pages(spool, 1); 2021 if (gbl_chg < 0) { 2022 vma_end_reservation(h, vma, addr); 2023 return ERR_PTR(-ENOSPC); 2024 } 2025 2026 /* 2027 * Even though there was no reservation in the region/reserve 2028 * map, there could be reservations associated with the 2029 * subpool that can be used. This would be indicated if the 2030 * return value of hugepage_subpool_get_pages() is zero. 2031 * However, if avoid_reserve is specified we still avoid even 2032 * the subpool reservations. 2033 */ 2034 if (avoid_reserve) 2035 gbl_chg = 1; 2036 } 2037 2038 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg); 2039 if (ret) 2040 goto out_subpool_put; 2041 2042 spin_lock(&hugetlb_lock); 2043 /* 2044 * glb_chg is passed to indicate whether or not a page must be taken 2045 * from the global free pool (global change). gbl_chg == 0 indicates 2046 * a reservation exists for the allocation. 2047 */ 2048 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg); 2049 if (!page) { 2050 spin_unlock(&hugetlb_lock); 2051 page = alloc_buddy_huge_page_with_mpol(h, vma, addr); 2052 if (!page) 2053 goto out_uncharge_cgroup; 2054 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) { 2055 SetPagePrivate(page); 2056 h->resv_huge_pages--; 2057 } 2058 spin_lock(&hugetlb_lock); 2059 list_move(&page->lru, &h->hugepage_activelist); 2060 /* Fall through */ 2061 } 2062 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page); 2063 spin_unlock(&hugetlb_lock); 2064 2065 set_page_private(page, (unsigned long)spool); 2066 2067 map_commit = vma_commit_reservation(h, vma, addr); 2068 if (unlikely(map_chg > map_commit)) { 2069 /* 2070 * The page was added to the reservation map between 2071 * vma_needs_reservation and vma_commit_reservation. 2072 * This indicates a race with hugetlb_reserve_pages. 2073 * Adjust for the subpool count incremented above AND 2074 * in hugetlb_reserve_pages for the same page. Also, 2075 * the reservation count added in hugetlb_reserve_pages 2076 * no longer applies. 2077 */ 2078 long rsv_adjust; 2079 2080 rsv_adjust = hugepage_subpool_put_pages(spool, 1); 2081 hugetlb_acct_memory(h, -rsv_adjust); 2082 } 2083 return page; 2084 2085 out_uncharge_cgroup: 2086 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg); 2087 out_subpool_put: 2088 if (map_chg || avoid_reserve) 2089 hugepage_subpool_put_pages(spool, 1); 2090 vma_end_reservation(h, vma, addr); 2091 return ERR_PTR(-ENOSPC); 2092 } 2093 2094 int alloc_bootmem_huge_page(struct hstate *h) 2095 __attribute__ ((weak, alias("__alloc_bootmem_huge_page"))); 2096 int __alloc_bootmem_huge_page(struct hstate *h) 2097 { 2098 struct huge_bootmem_page *m; 2099 int nr_nodes, node; 2100 2101 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) { 2102 void *addr; 2103 2104 addr = memblock_alloc_try_nid_raw( 2105 huge_page_size(h), huge_page_size(h), 2106 0, MEMBLOCK_ALLOC_ACCESSIBLE, node); 2107 if (addr) { 2108 /* 2109 * Use the beginning of the huge page to store the 2110 * huge_bootmem_page struct (until gather_bootmem 2111 * puts them into the mem_map). 2112 */ 2113 m = addr; 2114 goto found; 2115 } 2116 } 2117 return 0; 2118 2119 found: 2120 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h))); 2121 /* Put them into a private list first because mem_map is not up yet */ 2122 INIT_LIST_HEAD(&m->list); 2123 list_add(&m->list, &huge_boot_pages); 2124 m->hstate = h; 2125 return 1; 2126 } 2127 2128 static void __init prep_compound_huge_page(struct page *page, 2129 unsigned int order) 2130 { 2131 if (unlikely(order > (MAX_ORDER - 1))) 2132 prep_compound_gigantic_page(page, order); 2133 else 2134 prep_compound_page(page, order); 2135 } 2136 2137 /* Put bootmem huge pages into the standard lists after mem_map is up */ 2138 static void __init gather_bootmem_prealloc(void) 2139 { 2140 struct huge_bootmem_page *m; 2141 2142 list_for_each_entry(m, &huge_boot_pages, list) { 2143 struct page *page = virt_to_page(m); 2144 struct hstate *h = m->hstate; 2145 2146 WARN_ON(page_count(page) != 1); 2147 prep_compound_huge_page(page, h->order); 2148 WARN_ON(PageReserved(page)); 2149 prep_new_huge_page(h, page, page_to_nid(page)); 2150 put_page(page); /* free it into the hugepage allocator */ 2151 2152 /* 2153 * If we had gigantic hugepages allocated at boot time, we need 2154 * to restore the 'stolen' pages to totalram_pages in order to 2155 * fix confusing memory reports from free(1) and another 2156 * side-effects, like CommitLimit going negative. 2157 */ 2158 if (hstate_is_gigantic(h)) 2159 adjust_managed_page_count(page, 1 << h->order); 2160 cond_resched(); 2161 } 2162 } 2163 2164 static void __init hugetlb_hstate_alloc_pages(struct hstate *h) 2165 { 2166 unsigned long i; 2167 2168 for (i = 0; i < h->max_huge_pages; ++i) { 2169 if (hstate_is_gigantic(h)) { 2170 if (!alloc_bootmem_huge_page(h)) 2171 break; 2172 } else if (!alloc_pool_huge_page(h, 2173 &node_states[N_MEMORY])) 2174 break; 2175 cond_resched(); 2176 } 2177 if (i < h->max_huge_pages) { 2178 char buf[32]; 2179 2180 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 2181 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n", 2182 h->max_huge_pages, buf, i); 2183 h->max_huge_pages = i; 2184 } 2185 } 2186 2187 static void __init hugetlb_init_hstates(void) 2188 { 2189 struct hstate *h; 2190 2191 for_each_hstate(h) { 2192 if (minimum_order > huge_page_order(h)) 2193 minimum_order = huge_page_order(h); 2194 2195 /* oversize hugepages were init'ed in early boot */ 2196 if (!hstate_is_gigantic(h)) 2197 hugetlb_hstate_alloc_pages(h); 2198 } 2199 VM_BUG_ON(minimum_order == UINT_MAX); 2200 } 2201 2202 static void __init report_hugepages(void) 2203 { 2204 struct hstate *h; 2205 2206 for_each_hstate(h) { 2207 char buf[32]; 2208 2209 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 2210 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n", 2211 buf, h->free_huge_pages); 2212 } 2213 } 2214 2215 #ifdef CONFIG_HIGHMEM 2216 static void try_to_free_low(struct hstate *h, unsigned long count, 2217 nodemask_t *nodes_allowed) 2218 { 2219 int i; 2220 2221 if (hstate_is_gigantic(h)) 2222 return; 2223 2224 for_each_node_mask(i, *nodes_allowed) { 2225 struct page *page, *next; 2226 struct list_head *freel = &h->hugepage_freelists[i]; 2227 list_for_each_entry_safe(page, next, freel, lru) { 2228 if (count >= h->nr_huge_pages) 2229 return; 2230 if (PageHighMem(page)) 2231 continue; 2232 list_del(&page->lru); 2233 update_and_free_page(h, page); 2234 h->free_huge_pages--; 2235 h->free_huge_pages_node[page_to_nid(page)]--; 2236 } 2237 } 2238 } 2239 #else 2240 static inline void try_to_free_low(struct hstate *h, unsigned long count, 2241 nodemask_t *nodes_allowed) 2242 { 2243 } 2244 #endif 2245 2246 /* 2247 * Increment or decrement surplus_huge_pages. Keep node-specific counters 2248 * balanced by operating on them in a round-robin fashion. 2249 * Returns 1 if an adjustment was made. 2250 */ 2251 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed, 2252 int delta) 2253 { 2254 int nr_nodes, node; 2255 2256 VM_BUG_ON(delta != -1 && delta != 1); 2257 2258 if (delta < 0) { 2259 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 2260 if (h->surplus_huge_pages_node[node]) 2261 goto found; 2262 } 2263 } else { 2264 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 2265 if (h->surplus_huge_pages_node[node] < 2266 h->nr_huge_pages_node[node]) 2267 goto found; 2268 } 2269 } 2270 return 0; 2271 2272 found: 2273 h->surplus_huge_pages += delta; 2274 h->surplus_huge_pages_node[node] += delta; 2275 return 1; 2276 } 2277 2278 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) 2279 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count, 2280 nodemask_t *nodes_allowed) 2281 { 2282 unsigned long min_count, ret; 2283 2284 if (hstate_is_gigantic(h) && !gigantic_page_supported()) 2285 return h->max_huge_pages; 2286 2287 /* 2288 * Increase the pool size 2289 * First take pages out of surplus state. Then make up the 2290 * remaining difference by allocating fresh huge pages. 2291 * 2292 * We might race with alloc_surplus_huge_page() here and be unable 2293 * to convert a surplus huge page to a normal huge page. That is 2294 * not critical, though, it just means the overall size of the 2295 * pool might be one hugepage larger than it needs to be, but 2296 * within all the constraints specified by the sysctls. 2297 */ 2298 spin_lock(&hugetlb_lock); 2299 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { 2300 if (!adjust_pool_surplus(h, nodes_allowed, -1)) 2301 break; 2302 } 2303 2304 while (count > persistent_huge_pages(h)) { 2305 /* 2306 * If this allocation races such that we no longer need the 2307 * page, free_huge_page will handle it by freeing the page 2308 * and reducing the surplus. 2309 */ 2310 spin_unlock(&hugetlb_lock); 2311 2312 /* yield cpu to avoid soft lockup */ 2313 cond_resched(); 2314 2315 ret = alloc_pool_huge_page(h, nodes_allowed); 2316 spin_lock(&hugetlb_lock); 2317 if (!ret) 2318 goto out; 2319 2320 /* Bail for signals. Probably ctrl-c from user */ 2321 if (signal_pending(current)) 2322 goto out; 2323 } 2324 2325 /* 2326 * Decrease the pool size 2327 * First return free pages to the buddy allocator (being careful 2328 * to keep enough around to satisfy reservations). Then place 2329 * pages into surplus state as needed so the pool will shrink 2330 * to the desired size as pages become free. 2331 * 2332 * By placing pages into the surplus state independent of the 2333 * overcommit value, we are allowing the surplus pool size to 2334 * exceed overcommit. There are few sane options here. Since 2335 * alloc_surplus_huge_page() is checking the global counter, 2336 * though, we'll note that we're not allowed to exceed surplus 2337 * and won't grow the pool anywhere else. Not until one of the 2338 * sysctls are changed, or the surplus pages go out of use. 2339 */ 2340 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages; 2341 min_count = max(count, min_count); 2342 try_to_free_low(h, min_count, nodes_allowed); 2343 while (min_count < persistent_huge_pages(h)) { 2344 if (!free_pool_huge_page(h, nodes_allowed, 0)) 2345 break; 2346 cond_resched_lock(&hugetlb_lock); 2347 } 2348 while (count < persistent_huge_pages(h)) { 2349 if (!adjust_pool_surplus(h, nodes_allowed, 1)) 2350 break; 2351 } 2352 out: 2353 ret = persistent_huge_pages(h); 2354 spin_unlock(&hugetlb_lock); 2355 return ret; 2356 } 2357 2358 #define HSTATE_ATTR_RO(_name) \ 2359 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 2360 2361 #define HSTATE_ATTR(_name) \ 2362 static struct kobj_attribute _name##_attr = \ 2363 __ATTR(_name, 0644, _name##_show, _name##_store) 2364 2365 static struct kobject *hugepages_kobj; 2366 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 2367 2368 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp); 2369 2370 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp) 2371 { 2372 int i; 2373 2374 for (i = 0; i < HUGE_MAX_HSTATE; i++) 2375 if (hstate_kobjs[i] == kobj) { 2376 if (nidp) 2377 *nidp = NUMA_NO_NODE; 2378 return &hstates[i]; 2379 } 2380 2381 return kobj_to_node_hstate(kobj, nidp); 2382 } 2383 2384 static ssize_t nr_hugepages_show_common(struct kobject *kobj, 2385 struct kobj_attribute *attr, char *buf) 2386 { 2387 struct hstate *h; 2388 unsigned long nr_huge_pages; 2389 int nid; 2390 2391 h = kobj_to_hstate(kobj, &nid); 2392 if (nid == NUMA_NO_NODE) 2393 nr_huge_pages = h->nr_huge_pages; 2394 else 2395 nr_huge_pages = h->nr_huge_pages_node[nid]; 2396 2397 return sprintf(buf, "%lu\n", nr_huge_pages); 2398 } 2399 2400 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy, 2401 struct hstate *h, int nid, 2402 unsigned long count, size_t len) 2403 { 2404 int err; 2405 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY); 2406 2407 if (hstate_is_gigantic(h) && !gigantic_page_supported()) { 2408 err = -EINVAL; 2409 goto out; 2410 } 2411 2412 if (nid == NUMA_NO_NODE) { 2413 /* 2414 * global hstate attribute 2415 */ 2416 if (!(obey_mempolicy && 2417 init_nodemask_of_mempolicy(nodes_allowed))) { 2418 NODEMASK_FREE(nodes_allowed); 2419 nodes_allowed = &node_states[N_MEMORY]; 2420 } 2421 } else if (nodes_allowed) { 2422 /* 2423 * per node hstate attribute: adjust count to global, 2424 * but restrict alloc/free to the specified node. 2425 */ 2426 count += h->nr_huge_pages - h->nr_huge_pages_node[nid]; 2427 init_nodemask_of_node(nodes_allowed, nid); 2428 } else 2429 nodes_allowed = &node_states[N_MEMORY]; 2430 2431 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed); 2432 2433 if (nodes_allowed != &node_states[N_MEMORY]) 2434 NODEMASK_FREE(nodes_allowed); 2435 2436 return len; 2437 out: 2438 NODEMASK_FREE(nodes_allowed); 2439 return err; 2440 } 2441 2442 static ssize_t nr_hugepages_store_common(bool obey_mempolicy, 2443 struct kobject *kobj, const char *buf, 2444 size_t len) 2445 { 2446 struct hstate *h; 2447 unsigned long count; 2448 int nid; 2449 int err; 2450 2451 err = kstrtoul(buf, 10, &count); 2452 if (err) 2453 return err; 2454 2455 h = kobj_to_hstate(kobj, &nid); 2456 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len); 2457 } 2458 2459 static ssize_t nr_hugepages_show(struct kobject *kobj, 2460 struct kobj_attribute *attr, char *buf) 2461 { 2462 return nr_hugepages_show_common(kobj, attr, buf); 2463 } 2464 2465 static ssize_t nr_hugepages_store(struct kobject *kobj, 2466 struct kobj_attribute *attr, const char *buf, size_t len) 2467 { 2468 return nr_hugepages_store_common(false, kobj, buf, len); 2469 } 2470 HSTATE_ATTR(nr_hugepages); 2471 2472 #ifdef CONFIG_NUMA 2473 2474 /* 2475 * hstate attribute for optionally mempolicy-based constraint on persistent 2476 * huge page alloc/free. 2477 */ 2478 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj, 2479 struct kobj_attribute *attr, char *buf) 2480 { 2481 return nr_hugepages_show_common(kobj, attr, buf); 2482 } 2483 2484 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj, 2485 struct kobj_attribute *attr, const char *buf, size_t len) 2486 { 2487 return nr_hugepages_store_common(true, kobj, buf, len); 2488 } 2489 HSTATE_ATTR(nr_hugepages_mempolicy); 2490 #endif 2491 2492 2493 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, 2494 struct kobj_attribute *attr, char *buf) 2495 { 2496 struct hstate *h = kobj_to_hstate(kobj, NULL); 2497 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages); 2498 } 2499 2500 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, 2501 struct kobj_attribute *attr, const char *buf, size_t count) 2502 { 2503 int err; 2504 unsigned long input; 2505 struct hstate *h = kobj_to_hstate(kobj, NULL); 2506 2507 if (hstate_is_gigantic(h)) 2508 return -EINVAL; 2509 2510 err = kstrtoul(buf, 10, &input); 2511 if (err) 2512 return err; 2513 2514 spin_lock(&hugetlb_lock); 2515 h->nr_overcommit_huge_pages = input; 2516 spin_unlock(&hugetlb_lock); 2517 2518 return count; 2519 } 2520 HSTATE_ATTR(nr_overcommit_hugepages); 2521 2522 static ssize_t free_hugepages_show(struct kobject *kobj, 2523 struct kobj_attribute *attr, char *buf) 2524 { 2525 struct hstate *h; 2526 unsigned long free_huge_pages; 2527 int nid; 2528 2529 h = kobj_to_hstate(kobj, &nid); 2530 if (nid == NUMA_NO_NODE) 2531 free_huge_pages = h->free_huge_pages; 2532 else 2533 free_huge_pages = h->free_huge_pages_node[nid]; 2534 2535 return sprintf(buf, "%lu\n", free_huge_pages); 2536 } 2537 HSTATE_ATTR_RO(free_hugepages); 2538 2539 static ssize_t resv_hugepages_show(struct kobject *kobj, 2540 struct kobj_attribute *attr, char *buf) 2541 { 2542 struct hstate *h = kobj_to_hstate(kobj, NULL); 2543 return sprintf(buf, "%lu\n", h->resv_huge_pages); 2544 } 2545 HSTATE_ATTR_RO(resv_hugepages); 2546 2547 static ssize_t surplus_hugepages_show(struct kobject *kobj, 2548 struct kobj_attribute *attr, char *buf) 2549 { 2550 struct hstate *h; 2551 unsigned long surplus_huge_pages; 2552 int nid; 2553 2554 h = kobj_to_hstate(kobj, &nid); 2555 if (nid == NUMA_NO_NODE) 2556 surplus_huge_pages = h->surplus_huge_pages; 2557 else 2558 surplus_huge_pages = h->surplus_huge_pages_node[nid]; 2559 2560 return sprintf(buf, "%lu\n", surplus_huge_pages); 2561 } 2562 HSTATE_ATTR_RO(surplus_hugepages); 2563 2564 static struct attribute *hstate_attrs[] = { 2565 &nr_hugepages_attr.attr, 2566 &nr_overcommit_hugepages_attr.attr, 2567 &free_hugepages_attr.attr, 2568 &resv_hugepages_attr.attr, 2569 &surplus_hugepages_attr.attr, 2570 #ifdef CONFIG_NUMA 2571 &nr_hugepages_mempolicy_attr.attr, 2572 #endif 2573 NULL, 2574 }; 2575 2576 static const struct attribute_group hstate_attr_group = { 2577 .attrs = hstate_attrs, 2578 }; 2579 2580 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent, 2581 struct kobject **hstate_kobjs, 2582 const struct attribute_group *hstate_attr_group) 2583 { 2584 int retval; 2585 int hi = hstate_index(h); 2586 2587 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent); 2588 if (!hstate_kobjs[hi]) 2589 return -ENOMEM; 2590 2591 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group); 2592 if (retval) 2593 kobject_put(hstate_kobjs[hi]); 2594 2595 return retval; 2596 } 2597 2598 static void __init hugetlb_sysfs_init(void) 2599 { 2600 struct hstate *h; 2601 int err; 2602 2603 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); 2604 if (!hugepages_kobj) 2605 return; 2606 2607 for_each_hstate(h) { 2608 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj, 2609 hstate_kobjs, &hstate_attr_group); 2610 if (err) 2611 pr_err("Hugetlb: Unable to add hstate %s", h->name); 2612 } 2613 } 2614 2615 #ifdef CONFIG_NUMA 2616 2617 /* 2618 * node_hstate/s - associate per node hstate attributes, via their kobjects, 2619 * with node devices in node_devices[] using a parallel array. The array 2620 * index of a node device or _hstate == node id. 2621 * This is here to avoid any static dependency of the node device driver, in 2622 * the base kernel, on the hugetlb module. 2623 */ 2624 struct node_hstate { 2625 struct kobject *hugepages_kobj; 2626 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 2627 }; 2628 static struct node_hstate node_hstates[MAX_NUMNODES]; 2629 2630 /* 2631 * A subset of global hstate attributes for node devices 2632 */ 2633 static struct attribute *per_node_hstate_attrs[] = { 2634 &nr_hugepages_attr.attr, 2635 &free_hugepages_attr.attr, 2636 &surplus_hugepages_attr.attr, 2637 NULL, 2638 }; 2639 2640 static const struct attribute_group per_node_hstate_attr_group = { 2641 .attrs = per_node_hstate_attrs, 2642 }; 2643 2644 /* 2645 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj. 2646 * Returns node id via non-NULL nidp. 2647 */ 2648 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 2649 { 2650 int nid; 2651 2652 for (nid = 0; nid < nr_node_ids; nid++) { 2653 struct node_hstate *nhs = &node_hstates[nid]; 2654 int i; 2655 for (i = 0; i < HUGE_MAX_HSTATE; i++) 2656 if (nhs->hstate_kobjs[i] == kobj) { 2657 if (nidp) 2658 *nidp = nid; 2659 return &hstates[i]; 2660 } 2661 } 2662 2663 BUG(); 2664 return NULL; 2665 } 2666 2667 /* 2668 * Unregister hstate attributes from a single node device. 2669 * No-op if no hstate attributes attached. 2670 */ 2671 static void hugetlb_unregister_node(struct node *node) 2672 { 2673 struct hstate *h; 2674 struct node_hstate *nhs = &node_hstates[node->dev.id]; 2675 2676 if (!nhs->hugepages_kobj) 2677 return; /* no hstate attributes */ 2678 2679 for_each_hstate(h) { 2680 int idx = hstate_index(h); 2681 if (nhs->hstate_kobjs[idx]) { 2682 kobject_put(nhs->hstate_kobjs[idx]); 2683 nhs->hstate_kobjs[idx] = NULL; 2684 } 2685 } 2686 2687 kobject_put(nhs->hugepages_kobj); 2688 nhs->hugepages_kobj = NULL; 2689 } 2690 2691 2692 /* 2693 * Register hstate attributes for a single node device. 2694 * No-op if attributes already registered. 2695 */ 2696 static void hugetlb_register_node(struct node *node) 2697 { 2698 struct hstate *h; 2699 struct node_hstate *nhs = &node_hstates[node->dev.id]; 2700 int err; 2701 2702 if (nhs->hugepages_kobj) 2703 return; /* already allocated */ 2704 2705 nhs->hugepages_kobj = kobject_create_and_add("hugepages", 2706 &node->dev.kobj); 2707 if (!nhs->hugepages_kobj) 2708 return; 2709 2710 for_each_hstate(h) { 2711 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj, 2712 nhs->hstate_kobjs, 2713 &per_node_hstate_attr_group); 2714 if (err) { 2715 pr_err("Hugetlb: Unable to add hstate %s for node %d\n", 2716 h->name, node->dev.id); 2717 hugetlb_unregister_node(node); 2718 break; 2719 } 2720 } 2721 } 2722 2723 /* 2724 * hugetlb init time: register hstate attributes for all registered node 2725 * devices of nodes that have memory. All on-line nodes should have 2726 * registered their associated device by this time. 2727 */ 2728 static void __init hugetlb_register_all_nodes(void) 2729 { 2730 int nid; 2731 2732 for_each_node_state(nid, N_MEMORY) { 2733 struct node *node = node_devices[nid]; 2734 if (node->dev.id == nid) 2735 hugetlb_register_node(node); 2736 } 2737 2738 /* 2739 * Let the node device driver know we're here so it can 2740 * [un]register hstate attributes on node hotplug. 2741 */ 2742 register_hugetlbfs_with_node(hugetlb_register_node, 2743 hugetlb_unregister_node); 2744 } 2745 #else /* !CONFIG_NUMA */ 2746 2747 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 2748 { 2749 BUG(); 2750 if (nidp) 2751 *nidp = -1; 2752 return NULL; 2753 } 2754 2755 static void hugetlb_register_all_nodes(void) { } 2756 2757 #endif 2758 2759 static int __init hugetlb_init(void) 2760 { 2761 int i; 2762 2763 if (!hugepages_supported()) 2764 return 0; 2765 2766 if (!size_to_hstate(default_hstate_size)) { 2767 if (default_hstate_size != 0) { 2768 pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n", 2769 default_hstate_size, HPAGE_SIZE); 2770 } 2771 2772 default_hstate_size = HPAGE_SIZE; 2773 if (!size_to_hstate(default_hstate_size)) 2774 hugetlb_add_hstate(HUGETLB_PAGE_ORDER); 2775 } 2776 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size)); 2777 if (default_hstate_max_huge_pages) { 2778 if (!default_hstate.max_huge_pages) 2779 default_hstate.max_huge_pages = default_hstate_max_huge_pages; 2780 } 2781 2782 hugetlb_init_hstates(); 2783 gather_bootmem_prealloc(); 2784 report_hugepages(); 2785 2786 hugetlb_sysfs_init(); 2787 hugetlb_register_all_nodes(); 2788 hugetlb_cgroup_file_init(); 2789 2790 #ifdef CONFIG_SMP 2791 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus()); 2792 #else 2793 num_fault_mutexes = 1; 2794 #endif 2795 hugetlb_fault_mutex_table = 2796 kmalloc_array(num_fault_mutexes, sizeof(struct mutex), 2797 GFP_KERNEL); 2798 BUG_ON(!hugetlb_fault_mutex_table); 2799 2800 for (i = 0; i < num_fault_mutexes; i++) 2801 mutex_init(&hugetlb_fault_mutex_table[i]); 2802 return 0; 2803 } 2804 subsys_initcall(hugetlb_init); 2805 2806 /* Should be called on processing a hugepagesz=... option */ 2807 void __init hugetlb_bad_size(void) 2808 { 2809 parsed_valid_hugepagesz = false; 2810 } 2811 2812 void __init hugetlb_add_hstate(unsigned int order) 2813 { 2814 struct hstate *h; 2815 unsigned long i; 2816 2817 if (size_to_hstate(PAGE_SIZE << order)) { 2818 pr_warn("hugepagesz= specified twice, ignoring\n"); 2819 return; 2820 } 2821 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE); 2822 BUG_ON(order == 0); 2823 h = &hstates[hugetlb_max_hstate++]; 2824 h->order = order; 2825 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1); 2826 h->nr_huge_pages = 0; 2827 h->free_huge_pages = 0; 2828 for (i = 0; i < MAX_NUMNODES; ++i) 2829 INIT_LIST_HEAD(&h->hugepage_freelists[i]); 2830 INIT_LIST_HEAD(&h->hugepage_activelist); 2831 h->next_nid_to_alloc = first_memory_node; 2832 h->next_nid_to_free = first_memory_node; 2833 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", 2834 huge_page_size(h)/1024); 2835 2836 parsed_hstate = h; 2837 } 2838 2839 static int __init hugetlb_nrpages_setup(char *s) 2840 { 2841 unsigned long *mhp; 2842 static unsigned long *last_mhp; 2843 2844 if (!parsed_valid_hugepagesz) { 2845 pr_warn("hugepages = %s preceded by " 2846 "an unsupported hugepagesz, ignoring\n", s); 2847 parsed_valid_hugepagesz = true; 2848 return 1; 2849 } 2850 /* 2851 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet, 2852 * so this hugepages= parameter goes to the "default hstate". 2853 */ 2854 else if (!hugetlb_max_hstate) 2855 mhp = &default_hstate_max_huge_pages; 2856 else 2857 mhp = &parsed_hstate->max_huge_pages; 2858 2859 if (mhp == last_mhp) { 2860 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n"); 2861 return 1; 2862 } 2863 2864 if (sscanf(s, "%lu", mhp) <= 0) 2865 *mhp = 0; 2866 2867 /* 2868 * Global state is always initialized later in hugetlb_init. 2869 * But we need to allocate >= MAX_ORDER hstates here early to still 2870 * use the bootmem allocator. 2871 */ 2872 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER) 2873 hugetlb_hstate_alloc_pages(parsed_hstate); 2874 2875 last_mhp = mhp; 2876 2877 return 1; 2878 } 2879 __setup("hugepages=", hugetlb_nrpages_setup); 2880 2881 static int __init hugetlb_default_setup(char *s) 2882 { 2883 default_hstate_size = memparse(s, &s); 2884 return 1; 2885 } 2886 __setup("default_hugepagesz=", hugetlb_default_setup); 2887 2888 static unsigned int cpuset_mems_nr(unsigned int *array) 2889 { 2890 int node; 2891 unsigned int nr = 0; 2892 2893 for_each_node_mask(node, cpuset_current_mems_allowed) 2894 nr += array[node]; 2895 2896 return nr; 2897 } 2898 2899 #ifdef CONFIG_SYSCTL 2900 static int hugetlb_sysctl_handler_common(bool obey_mempolicy, 2901 struct ctl_table *table, int write, 2902 void __user *buffer, size_t *length, loff_t *ppos) 2903 { 2904 struct hstate *h = &default_hstate; 2905 unsigned long tmp = h->max_huge_pages; 2906 int ret; 2907 2908 if (!hugepages_supported()) 2909 return -EOPNOTSUPP; 2910 2911 table->data = &tmp; 2912 table->maxlen = sizeof(unsigned long); 2913 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos); 2914 if (ret) 2915 goto out; 2916 2917 if (write) 2918 ret = __nr_hugepages_store_common(obey_mempolicy, h, 2919 NUMA_NO_NODE, tmp, *length); 2920 out: 2921 return ret; 2922 } 2923 2924 int hugetlb_sysctl_handler(struct ctl_table *table, int write, 2925 void __user *buffer, size_t *length, loff_t *ppos) 2926 { 2927 2928 return hugetlb_sysctl_handler_common(false, table, write, 2929 buffer, length, ppos); 2930 } 2931 2932 #ifdef CONFIG_NUMA 2933 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write, 2934 void __user *buffer, size_t *length, loff_t *ppos) 2935 { 2936 return hugetlb_sysctl_handler_common(true, table, write, 2937 buffer, length, ppos); 2938 } 2939 #endif /* CONFIG_NUMA */ 2940 2941 int hugetlb_overcommit_handler(struct ctl_table *table, int write, 2942 void __user *buffer, 2943 size_t *length, loff_t *ppos) 2944 { 2945 struct hstate *h = &default_hstate; 2946 unsigned long tmp; 2947 int ret; 2948 2949 if (!hugepages_supported()) 2950 return -EOPNOTSUPP; 2951 2952 tmp = h->nr_overcommit_huge_pages; 2953 2954 if (write && hstate_is_gigantic(h)) 2955 return -EINVAL; 2956 2957 table->data = &tmp; 2958 table->maxlen = sizeof(unsigned long); 2959 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos); 2960 if (ret) 2961 goto out; 2962 2963 if (write) { 2964 spin_lock(&hugetlb_lock); 2965 h->nr_overcommit_huge_pages = tmp; 2966 spin_unlock(&hugetlb_lock); 2967 } 2968 out: 2969 return ret; 2970 } 2971 2972 #endif /* CONFIG_SYSCTL */ 2973 2974 void hugetlb_report_meminfo(struct seq_file *m) 2975 { 2976 struct hstate *h; 2977 unsigned long total = 0; 2978 2979 if (!hugepages_supported()) 2980 return; 2981 2982 for_each_hstate(h) { 2983 unsigned long count = h->nr_huge_pages; 2984 2985 total += (PAGE_SIZE << huge_page_order(h)) * count; 2986 2987 if (h == &default_hstate) 2988 seq_printf(m, 2989 "HugePages_Total: %5lu\n" 2990 "HugePages_Free: %5lu\n" 2991 "HugePages_Rsvd: %5lu\n" 2992 "HugePages_Surp: %5lu\n" 2993 "Hugepagesize: %8lu kB\n", 2994 count, 2995 h->free_huge_pages, 2996 h->resv_huge_pages, 2997 h->surplus_huge_pages, 2998 (PAGE_SIZE << huge_page_order(h)) / 1024); 2999 } 3000 3001 seq_printf(m, "Hugetlb: %8lu kB\n", total / 1024); 3002 } 3003 3004 int hugetlb_report_node_meminfo(int nid, char *buf) 3005 { 3006 struct hstate *h = &default_hstate; 3007 if (!hugepages_supported()) 3008 return 0; 3009 return sprintf(buf, 3010 "Node %d HugePages_Total: %5u\n" 3011 "Node %d HugePages_Free: %5u\n" 3012 "Node %d HugePages_Surp: %5u\n", 3013 nid, h->nr_huge_pages_node[nid], 3014 nid, h->free_huge_pages_node[nid], 3015 nid, h->surplus_huge_pages_node[nid]); 3016 } 3017 3018 void hugetlb_show_meminfo(void) 3019 { 3020 struct hstate *h; 3021 int nid; 3022 3023 if (!hugepages_supported()) 3024 return; 3025 3026 for_each_node_state(nid, N_MEMORY) 3027 for_each_hstate(h) 3028 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n", 3029 nid, 3030 h->nr_huge_pages_node[nid], 3031 h->free_huge_pages_node[nid], 3032 h->surplus_huge_pages_node[nid], 3033 1UL << (huge_page_order(h) + PAGE_SHIFT - 10)); 3034 } 3035 3036 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm) 3037 { 3038 seq_printf(m, "HugetlbPages:\t%8lu kB\n", 3039 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10)); 3040 } 3041 3042 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ 3043 unsigned long hugetlb_total_pages(void) 3044 { 3045 struct hstate *h; 3046 unsigned long nr_total_pages = 0; 3047 3048 for_each_hstate(h) 3049 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h); 3050 return nr_total_pages; 3051 } 3052 3053 static int hugetlb_acct_memory(struct hstate *h, long delta) 3054 { 3055 int ret = -ENOMEM; 3056 3057 spin_lock(&hugetlb_lock); 3058 /* 3059 * When cpuset is configured, it breaks the strict hugetlb page 3060 * reservation as the accounting is done on a global variable. Such 3061 * reservation is completely rubbish in the presence of cpuset because 3062 * the reservation is not checked against page availability for the 3063 * current cpuset. Application can still potentially OOM'ed by kernel 3064 * with lack of free htlb page in cpuset that the task is in. 3065 * Attempt to enforce strict accounting with cpuset is almost 3066 * impossible (or too ugly) because cpuset is too fluid that 3067 * task or memory node can be dynamically moved between cpusets. 3068 * 3069 * The change of semantics for shared hugetlb mapping with cpuset is 3070 * undesirable. However, in order to preserve some of the semantics, 3071 * we fall back to check against current free page availability as 3072 * a best attempt and hopefully to minimize the impact of changing 3073 * semantics that cpuset has. 3074 */ 3075 if (delta > 0) { 3076 if (gather_surplus_pages(h, delta) < 0) 3077 goto out; 3078 3079 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) { 3080 return_unused_surplus_pages(h, delta); 3081 goto out; 3082 } 3083 } 3084 3085 ret = 0; 3086 if (delta < 0) 3087 return_unused_surplus_pages(h, (unsigned long) -delta); 3088 3089 out: 3090 spin_unlock(&hugetlb_lock); 3091 return ret; 3092 } 3093 3094 static void hugetlb_vm_op_open(struct vm_area_struct *vma) 3095 { 3096 struct resv_map *resv = vma_resv_map(vma); 3097 3098 /* 3099 * This new VMA should share its siblings reservation map if present. 3100 * The VMA will only ever have a valid reservation map pointer where 3101 * it is being copied for another still existing VMA. As that VMA 3102 * has a reference to the reservation map it cannot disappear until 3103 * after this open call completes. It is therefore safe to take a 3104 * new reference here without additional locking. 3105 */ 3106 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 3107 kref_get(&resv->refs); 3108 } 3109 3110 static void hugetlb_vm_op_close(struct vm_area_struct *vma) 3111 { 3112 struct hstate *h = hstate_vma(vma); 3113 struct resv_map *resv = vma_resv_map(vma); 3114 struct hugepage_subpool *spool = subpool_vma(vma); 3115 unsigned long reserve, start, end; 3116 long gbl_reserve; 3117 3118 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 3119 return; 3120 3121 start = vma_hugecache_offset(h, vma, vma->vm_start); 3122 end = vma_hugecache_offset(h, vma, vma->vm_end); 3123 3124 reserve = (end - start) - region_count(resv, start, end); 3125 3126 kref_put(&resv->refs, resv_map_release); 3127 3128 if (reserve) { 3129 /* 3130 * Decrement reserve counts. The global reserve count may be 3131 * adjusted if the subpool has a minimum size. 3132 */ 3133 gbl_reserve = hugepage_subpool_put_pages(spool, reserve); 3134 hugetlb_acct_memory(h, -gbl_reserve); 3135 } 3136 } 3137 3138 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr) 3139 { 3140 if (addr & ~(huge_page_mask(hstate_vma(vma)))) 3141 return -EINVAL; 3142 return 0; 3143 } 3144 3145 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma) 3146 { 3147 struct hstate *hstate = hstate_vma(vma); 3148 3149 return 1UL << huge_page_shift(hstate); 3150 } 3151 3152 /* 3153 * We cannot handle pagefaults against hugetlb pages at all. They cause 3154 * handle_mm_fault() to try to instantiate regular-sized pages in the 3155 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get 3156 * this far. 3157 */ 3158 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf) 3159 { 3160 BUG(); 3161 return 0; 3162 } 3163 3164 /* 3165 * When a new function is introduced to vm_operations_struct and added 3166 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops. 3167 * This is because under System V memory model, mappings created via 3168 * shmget/shmat with "huge page" specified are backed by hugetlbfs files, 3169 * their original vm_ops are overwritten with shm_vm_ops. 3170 */ 3171 const struct vm_operations_struct hugetlb_vm_ops = { 3172 .fault = hugetlb_vm_op_fault, 3173 .open = hugetlb_vm_op_open, 3174 .close = hugetlb_vm_op_close, 3175 .split = hugetlb_vm_op_split, 3176 .pagesize = hugetlb_vm_op_pagesize, 3177 }; 3178 3179 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, 3180 int writable) 3181 { 3182 pte_t entry; 3183 3184 if (writable) { 3185 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page, 3186 vma->vm_page_prot))); 3187 } else { 3188 entry = huge_pte_wrprotect(mk_huge_pte(page, 3189 vma->vm_page_prot)); 3190 } 3191 entry = pte_mkyoung(entry); 3192 entry = pte_mkhuge(entry); 3193 entry = arch_make_huge_pte(entry, vma, page, writable); 3194 3195 return entry; 3196 } 3197 3198 static void set_huge_ptep_writable(struct vm_area_struct *vma, 3199 unsigned long address, pte_t *ptep) 3200 { 3201 pte_t entry; 3202 3203 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep))); 3204 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) 3205 update_mmu_cache(vma, address, ptep); 3206 } 3207 3208 bool is_hugetlb_entry_migration(pte_t pte) 3209 { 3210 swp_entry_t swp; 3211 3212 if (huge_pte_none(pte) || pte_present(pte)) 3213 return false; 3214 swp = pte_to_swp_entry(pte); 3215 if (non_swap_entry(swp) && is_migration_entry(swp)) 3216 return true; 3217 else 3218 return false; 3219 } 3220 3221 static int is_hugetlb_entry_hwpoisoned(pte_t pte) 3222 { 3223 swp_entry_t swp; 3224 3225 if (huge_pte_none(pte) || pte_present(pte)) 3226 return 0; 3227 swp = pte_to_swp_entry(pte); 3228 if (non_swap_entry(swp) && is_hwpoison_entry(swp)) 3229 return 1; 3230 else 3231 return 0; 3232 } 3233 3234 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, 3235 struct vm_area_struct *vma) 3236 { 3237 pte_t *src_pte, *dst_pte, entry, dst_entry; 3238 struct page *ptepage; 3239 unsigned long addr; 3240 int cow; 3241 struct address_space *mapping = vma->vm_file->f_mapping; 3242 struct hstate *h = hstate_vma(vma); 3243 unsigned long sz = huge_page_size(h); 3244 struct mmu_notifier_range range; 3245 int ret = 0; 3246 3247 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 3248 3249 if (cow) { 3250 mmu_notifier_range_init(&range, src, vma->vm_start, 3251 vma->vm_end); 3252 mmu_notifier_invalidate_range_start(&range); 3253 } else { 3254 /* 3255 * For shared mappings i_mmap_rwsem must be held to call 3256 * huge_pte_alloc, otherwise the returned ptep could go 3257 * away if part of a shared pmd and another thread calls 3258 * huge_pmd_unshare. 3259 */ 3260 i_mmap_lock_read(mapping); 3261 } 3262 3263 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) { 3264 spinlock_t *src_ptl, *dst_ptl; 3265 3266 src_pte = huge_pte_offset(src, addr, sz); 3267 if (!src_pte) 3268 continue; 3269 3270 dst_pte = huge_pte_alloc(dst, addr, sz); 3271 if (!dst_pte) { 3272 ret = -ENOMEM; 3273 break; 3274 } 3275 3276 /* 3277 * If the pagetables are shared don't copy or take references. 3278 * dst_pte == src_pte is the common case of src/dest sharing. 3279 * 3280 * However, src could have 'unshared' and dst shares with 3281 * another vma. If dst_pte !none, this implies sharing. 3282 * Check here before taking page table lock, and once again 3283 * after taking the lock below. 3284 */ 3285 dst_entry = huge_ptep_get(dst_pte); 3286 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry)) 3287 continue; 3288 3289 dst_ptl = huge_pte_lock(h, dst, dst_pte); 3290 src_ptl = huge_pte_lockptr(h, src, src_pte); 3291 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 3292 entry = huge_ptep_get(src_pte); 3293 dst_entry = huge_ptep_get(dst_pte); 3294 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) { 3295 /* 3296 * Skip if src entry none. Also, skip in the 3297 * unlikely case dst entry !none as this implies 3298 * sharing with another vma. 3299 */ 3300 ; 3301 } else if (unlikely(is_hugetlb_entry_migration(entry) || 3302 is_hugetlb_entry_hwpoisoned(entry))) { 3303 swp_entry_t swp_entry = pte_to_swp_entry(entry); 3304 3305 if (is_write_migration_entry(swp_entry) && cow) { 3306 /* 3307 * COW mappings require pages in both 3308 * parent and child to be set to read. 3309 */ 3310 make_migration_entry_read(&swp_entry); 3311 entry = swp_entry_to_pte(swp_entry); 3312 set_huge_swap_pte_at(src, addr, src_pte, 3313 entry, sz); 3314 } 3315 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz); 3316 } else { 3317 if (cow) { 3318 /* 3319 * No need to notify as we are downgrading page 3320 * table protection not changing it to point 3321 * to a new page. 3322 * 3323 * See Documentation/vm/mmu_notifier.rst 3324 */ 3325 huge_ptep_set_wrprotect(src, addr, src_pte); 3326 } 3327 entry = huge_ptep_get(src_pte); 3328 ptepage = pte_page(entry); 3329 get_page(ptepage); 3330 page_dup_rmap(ptepage, true); 3331 set_huge_pte_at(dst, addr, dst_pte, entry); 3332 hugetlb_count_add(pages_per_huge_page(h), dst); 3333 } 3334 spin_unlock(src_ptl); 3335 spin_unlock(dst_ptl); 3336 } 3337 3338 if (cow) 3339 mmu_notifier_invalidate_range_end(&range); 3340 else 3341 i_mmap_unlock_read(mapping); 3342 3343 return ret; 3344 } 3345 3346 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma, 3347 unsigned long start, unsigned long end, 3348 struct page *ref_page) 3349 { 3350 struct mm_struct *mm = vma->vm_mm; 3351 unsigned long address; 3352 pte_t *ptep; 3353 pte_t pte; 3354 spinlock_t *ptl; 3355 struct page *page; 3356 struct hstate *h = hstate_vma(vma); 3357 unsigned long sz = huge_page_size(h); 3358 struct mmu_notifier_range range; 3359 3360 WARN_ON(!is_vm_hugetlb_page(vma)); 3361 BUG_ON(start & ~huge_page_mask(h)); 3362 BUG_ON(end & ~huge_page_mask(h)); 3363 3364 /* 3365 * This is a hugetlb vma, all the pte entries should point 3366 * to huge page. 3367 */ 3368 tlb_remove_check_page_size_change(tlb, sz); 3369 tlb_start_vma(tlb, vma); 3370 3371 /* 3372 * If sharing possible, alert mmu notifiers of worst case. 3373 */ 3374 mmu_notifier_range_init(&range, mm, start, end); 3375 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 3376 mmu_notifier_invalidate_range_start(&range); 3377 address = start; 3378 for (; address < end; address += sz) { 3379 ptep = huge_pte_offset(mm, address, sz); 3380 if (!ptep) 3381 continue; 3382 3383 ptl = huge_pte_lock(h, mm, ptep); 3384 if (huge_pmd_unshare(mm, &address, ptep)) { 3385 spin_unlock(ptl); 3386 /* 3387 * We just unmapped a page of PMDs by clearing a PUD. 3388 * The caller's TLB flush range should cover this area. 3389 */ 3390 continue; 3391 } 3392 3393 pte = huge_ptep_get(ptep); 3394 if (huge_pte_none(pte)) { 3395 spin_unlock(ptl); 3396 continue; 3397 } 3398 3399 /* 3400 * Migrating hugepage or HWPoisoned hugepage is already 3401 * unmapped and its refcount is dropped, so just clear pte here. 3402 */ 3403 if (unlikely(!pte_present(pte))) { 3404 huge_pte_clear(mm, address, ptep, sz); 3405 spin_unlock(ptl); 3406 continue; 3407 } 3408 3409 page = pte_page(pte); 3410 /* 3411 * If a reference page is supplied, it is because a specific 3412 * page is being unmapped, not a range. Ensure the page we 3413 * are about to unmap is the actual page of interest. 3414 */ 3415 if (ref_page) { 3416 if (page != ref_page) { 3417 spin_unlock(ptl); 3418 continue; 3419 } 3420 /* 3421 * Mark the VMA as having unmapped its page so that 3422 * future faults in this VMA will fail rather than 3423 * looking like data was lost 3424 */ 3425 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); 3426 } 3427 3428 pte = huge_ptep_get_and_clear(mm, address, ptep); 3429 tlb_remove_huge_tlb_entry(h, tlb, ptep, address); 3430 if (huge_pte_dirty(pte)) 3431 set_page_dirty(page); 3432 3433 hugetlb_count_sub(pages_per_huge_page(h), mm); 3434 page_remove_rmap(page, true); 3435 3436 spin_unlock(ptl); 3437 tlb_remove_page_size(tlb, page, huge_page_size(h)); 3438 /* 3439 * Bail out after unmapping reference page if supplied 3440 */ 3441 if (ref_page) 3442 break; 3443 } 3444 mmu_notifier_invalidate_range_end(&range); 3445 tlb_end_vma(tlb, vma); 3446 } 3447 3448 void __unmap_hugepage_range_final(struct mmu_gather *tlb, 3449 struct vm_area_struct *vma, unsigned long start, 3450 unsigned long end, struct page *ref_page) 3451 { 3452 __unmap_hugepage_range(tlb, vma, start, end, ref_page); 3453 3454 /* 3455 * Clear this flag so that x86's huge_pmd_share page_table_shareable 3456 * test will fail on a vma being torn down, and not grab a page table 3457 * on its way out. We're lucky that the flag has such an appropriate 3458 * name, and can in fact be safely cleared here. We could clear it 3459 * before the __unmap_hugepage_range above, but all that's necessary 3460 * is to clear it before releasing the i_mmap_rwsem. This works 3461 * because in the context this is called, the VMA is about to be 3462 * destroyed and the i_mmap_rwsem is held. 3463 */ 3464 vma->vm_flags &= ~VM_MAYSHARE; 3465 } 3466 3467 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, 3468 unsigned long end, struct page *ref_page) 3469 { 3470 struct mm_struct *mm; 3471 struct mmu_gather tlb; 3472 unsigned long tlb_start = start; 3473 unsigned long tlb_end = end; 3474 3475 /* 3476 * If shared PMDs were possibly used within this vma range, adjust 3477 * start/end for worst case tlb flushing. 3478 * Note that we can not be sure if PMDs are shared until we try to 3479 * unmap pages. However, we want to make sure TLB flushing covers 3480 * the largest possible range. 3481 */ 3482 adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end); 3483 3484 mm = vma->vm_mm; 3485 3486 tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end); 3487 __unmap_hugepage_range(&tlb, vma, start, end, ref_page); 3488 tlb_finish_mmu(&tlb, tlb_start, tlb_end); 3489 } 3490 3491 /* 3492 * This is called when the original mapper is failing to COW a MAP_PRIVATE 3493 * mappping it owns the reserve page for. The intention is to unmap the page 3494 * from other VMAs and let the children be SIGKILLed if they are faulting the 3495 * same region. 3496 */ 3497 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, 3498 struct page *page, unsigned long address) 3499 { 3500 struct hstate *h = hstate_vma(vma); 3501 struct vm_area_struct *iter_vma; 3502 struct address_space *mapping; 3503 pgoff_t pgoff; 3504 3505 /* 3506 * vm_pgoff is in PAGE_SIZE units, hence the different calculation 3507 * from page cache lookup which is in HPAGE_SIZE units. 3508 */ 3509 address = address & huge_page_mask(h); 3510 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + 3511 vma->vm_pgoff; 3512 mapping = vma->vm_file->f_mapping; 3513 3514 /* 3515 * Take the mapping lock for the duration of the table walk. As 3516 * this mapping should be shared between all the VMAs, 3517 * __unmap_hugepage_range() is called as the lock is already held 3518 */ 3519 i_mmap_lock_write(mapping); 3520 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) { 3521 /* Do not unmap the current VMA */ 3522 if (iter_vma == vma) 3523 continue; 3524 3525 /* 3526 * Shared VMAs have their own reserves and do not affect 3527 * MAP_PRIVATE accounting but it is possible that a shared 3528 * VMA is using the same page so check and skip such VMAs. 3529 */ 3530 if (iter_vma->vm_flags & VM_MAYSHARE) 3531 continue; 3532 3533 /* 3534 * Unmap the page from other VMAs without their own reserves. 3535 * They get marked to be SIGKILLed if they fault in these 3536 * areas. This is because a future no-page fault on this VMA 3537 * could insert a zeroed page instead of the data existing 3538 * from the time of fork. This would look like data corruption 3539 */ 3540 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) 3541 unmap_hugepage_range(iter_vma, address, 3542 address + huge_page_size(h), page); 3543 } 3544 i_mmap_unlock_write(mapping); 3545 } 3546 3547 /* 3548 * Hugetlb_cow() should be called with page lock of the original hugepage held. 3549 * Called with hugetlb_instantiation_mutex held and pte_page locked so we 3550 * cannot race with other handlers or page migration. 3551 * Keep the pte_same checks anyway to make transition from the mutex easier. 3552 */ 3553 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma, 3554 unsigned long address, pte_t *ptep, 3555 struct page *pagecache_page, spinlock_t *ptl) 3556 { 3557 pte_t pte; 3558 struct hstate *h = hstate_vma(vma); 3559 struct page *old_page, *new_page; 3560 int outside_reserve = 0; 3561 vm_fault_t ret = 0; 3562 unsigned long haddr = address & huge_page_mask(h); 3563 struct mmu_notifier_range range; 3564 3565 pte = huge_ptep_get(ptep); 3566 old_page = pte_page(pte); 3567 3568 retry_avoidcopy: 3569 /* If no-one else is actually using this page, avoid the copy 3570 * and just make the page writable */ 3571 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) { 3572 page_move_anon_rmap(old_page, vma); 3573 set_huge_ptep_writable(vma, haddr, ptep); 3574 return 0; 3575 } 3576 3577 /* 3578 * If the process that created a MAP_PRIVATE mapping is about to 3579 * perform a COW due to a shared page count, attempt to satisfy 3580 * the allocation without using the existing reserves. The pagecache 3581 * page is used to determine if the reserve at this address was 3582 * consumed or not. If reserves were used, a partial faulted mapping 3583 * at the time of fork() could consume its reserves on COW instead 3584 * of the full address range. 3585 */ 3586 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && 3587 old_page != pagecache_page) 3588 outside_reserve = 1; 3589 3590 get_page(old_page); 3591 3592 /* 3593 * Drop page table lock as buddy allocator may be called. It will 3594 * be acquired again before returning to the caller, as expected. 3595 */ 3596 spin_unlock(ptl); 3597 new_page = alloc_huge_page(vma, haddr, outside_reserve); 3598 3599 if (IS_ERR(new_page)) { 3600 /* 3601 * If a process owning a MAP_PRIVATE mapping fails to COW, 3602 * it is due to references held by a child and an insufficient 3603 * huge page pool. To guarantee the original mappers 3604 * reliability, unmap the page from child processes. The child 3605 * may get SIGKILLed if it later faults. 3606 */ 3607 if (outside_reserve) { 3608 put_page(old_page); 3609 BUG_ON(huge_pte_none(pte)); 3610 unmap_ref_private(mm, vma, old_page, haddr); 3611 BUG_ON(huge_pte_none(pte)); 3612 spin_lock(ptl); 3613 ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); 3614 if (likely(ptep && 3615 pte_same(huge_ptep_get(ptep), pte))) 3616 goto retry_avoidcopy; 3617 /* 3618 * race occurs while re-acquiring page table 3619 * lock, and our job is done. 3620 */ 3621 return 0; 3622 } 3623 3624 ret = vmf_error(PTR_ERR(new_page)); 3625 goto out_release_old; 3626 } 3627 3628 /* 3629 * When the original hugepage is shared one, it does not have 3630 * anon_vma prepared. 3631 */ 3632 if (unlikely(anon_vma_prepare(vma))) { 3633 ret = VM_FAULT_OOM; 3634 goto out_release_all; 3635 } 3636 3637 copy_user_huge_page(new_page, old_page, address, vma, 3638 pages_per_huge_page(h)); 3639 __SetPageUptodate(new_page); 3640 set_page_huge_active(new_page); 3641 3642 mmu_notifier_range_init(&range, mm, haddr, haddr + huge_page_size(h)); 3643 mmu_notifier_invalidate_range_start(&range); 3644 3645 /* 3646 * Retake the page table lock to check for racing updates 3647 * before the page tables are altered 3648 */ 3649 spin_lock(ptl); 3650 ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); 3651 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) { 3652 ClearPagePrivate(new_page); 3653 3654 /* Break COW */ 3655 huge_ptep_clear_flush(vma, haddr, ptep); 3656 mmu_notifier_invalidate_range(mm, range.start, range.end); 3657 set_huge_pte_at(mm, haddr, ptep, 3658 make_huge_pte(vma, new_page, 1)); 3659 page_remove_rmap(old_page, true); 3660 hugepage_add_new_anon_rmap(new_page, vma, haddr); 3661 /* Make the old page be freed below */ 3662 new_page = old_page; 3663 } 3664 spin_unlock(ptl); 3665 mmu_notifier_invalidate_range_end(&range); 3666 out_release_all: 3667 restore_reserve_on_error(h, vma, haddr, new_page); 3668 put_page(new_page); 3669 out_release_old: 3670 put_page(old_page); 3671 3672 spin_lock(ptl); /* Caller expects lock to be held */ 3673 return ret; 3674 } 3675 3676 /* Return the pagecache page at a given address within a VMA */ 3677 static struct page *hugetlbfs_pagecache_page(struct hstate *h, 3678 struct vm_area_struct *vma, unsigned long address) 3679 { 3680 struct address_space *mapping; 3681 pgoff_t idx; 3682 3683 mapping = vma->vm_file->f_mapping; 3684 idx = vma_hugecache_offset(h, vma, address); 3685 3686 return find_lock_page(mapping, idx); 3687 } 3688 3689 /* 3690 * Return whether there is a pagecache page to back given address within VMA. 3691 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page. 3692 */ 3693 static bool hugetlbfs_pagecache_present(struct hstate *h, 3694 struct vm_area_struct *vma, unsigned long address) 3695 { 3696 struct address_space *mapping; 3697 pgoff_t idx; 3698 struct page *page; 3699 3700 mapping = vma->vm_file->f_mapping; 3701 idx = vma_hugecache_offset(h, vma, address); 3702 3703 page = find_get_page(mapping, idx); 3704 if (page) 3705 put_page(page); 3706 return page != NULL; 3707 } 3708 3709 int huge_add_to_page_cache(struct page *page, struct address_space *mapping, 3710 pgoff_t idx) 3711 { 3712 struct inode *inode = mapping->host; 3713 struct hstate *h = hstate_inode(inode); 3714 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL); 3715 3716 if (err) 3717 return err; 3718 ClearPagePrivate(page); 3719 3720 /* 3721 * set page dirty so that it will not be removed from cache/file 3722 * by non-hugetlbfs specific code paths. 3723 */ 3724 set_page_dirty(page); 3725 3726 spin_lock(&inode->i_lock); 3727 inode->i_blocks += blocks_per_huge_page(h); 3728 spin_unlock(&inode->i_lock); 3729 return 0; 3730 } 3731 3732 static vm_fault_t hugetlb_no_page(struct mm_struct *mm, 3733 struct vm_area_struct *vma, 3734 struct address_space *mapping, pgoff_t idx, 3735 unsigned long address, pte_t *ptep, unsigned int flags) 3736 { 3737 struct hstate *h = hstate_vma(vma); 3738 vm_fault_t ret = VM_FAULT_SIGBUS; 3739 int anon_rmap = 0; 3740 unsigned long size; 3741 struct page *page; 3742 pte_t new_pte; 3743 spinlock_t *ptl; 3744 unsigned long haddr = address & huge_page_mask(h); 3745 3746 /* 3747 * Currently, we are forced to kill the process in the event the 3748 * original mapper has unmapped pages from the child due to a failed 3749 * COW. Warn that such a situation has occurred as it may not be obvious 3750 */ 3751 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { 3752 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n", 3753 current->pid); 3754 return ret; 3755 } 3756 3757 /* 3758 * We can not race with truncation due to holding i_mmap_rwsem. 3759 * Check once here for faults beyond end of file. 3760 */ 3761 size = i_size_read(mapping->host) >> huge_page_shift(h); 3762 if (idx >= size) 3763 goto out; 3764 3765 retry: 3766 page = find_lock_page(mapping, idx); 3767 if (!page) { 3768 /* 3769 * Check for page in userfault range 3770 */ 3771 if (userfaultfd_missing(vma)) { 3772 u32 hash; 3773 struct vm_fault vmf = { 3774 .vma = vma, 3775 .address = haddr, 3776 .flags = flags, 3777 /* 3778 * Hard to debug if it ends up being 3779 * used by a callee that assumes 3780 * something about the other 3781 * uninitialized fields... same as in 3782 * memory.c 3783 */ 3784 }; 3785 3786 /* 3787 * hugetlb_fault_mutex and i_mmap_rwsem must be 3788 * dropped before handling userfault. Reacquire 3789 * after handling fault to make calling code simpler. 3790 */ 3791 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, 3792 idx, haddr); 3793 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 3794 i_mmap_unlock_read(mapping); 3795 3796 ret = handle_userfault(&vmf, VM_UFFD_MISSING); 3797 3798 i_mmap_lock_read(mapping); 3799 mutex_lock(&hugetlb_fault_mutex_table[hash]); 3800 goto out; 3801 } 3802 3803 page = alloc_huge_page(vma, haddr, 0); 3804 if (IS_ERR(page)) { 3805 ret = vmf_error(PTR_ERR(page)); 3806 goto out; 3807 } 3808 clear_huge_page(page, address, pages_per_huge_page(h)); 3809 __SetPageUptodate(page); 3810 set_page_huge_active(page); 3811 3812 if (vma->vm_flags & VM_MAYSHARE) { 3813 int err = huge_add_to_page_cache(page, mapping, idx); 3814 if (err) { 3815 put_page(page); 3816 if (err == -EEXIST) 3817 goto retry; 3818 goto out; 3819 } 3820 } else { 3821 lock_page(page); 3822 if (unlikely(anon_vma_prepare(vma))) { 3823 ret = VM_FAULT_OOM; 3824 goto backout_unlocked; 3825 } 3826 anon_rmap = 1; 3827 } 3828 } else { 3829 /* 3830 * If memory error occurs between mmap() and fault, some process 3831 * don't have hwpoisoned swap entry for errored virtual address. 3832 * So we need to block hugepage fault by PG_hwpoison bit check. 3833 */ 3834 if (unlikely(PageHWPoison(page))) { 3835 ret = VM_FAULT_HWPOISON | 3836 VM_FAULT_SET_HINDEX(hstate_index(h)); 3837 goto backout_unlocked; 3838 } 3839 } 3840 3841 /* 3842 * If we are going to COW a private mapping later, we examine the 3843 * pending reservations for this page now. This will ensure that 3844 * any allocations necessary to record that reservation occur outside 3845 * the spinlock. 3846 */ 3847 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 3848 if (vma_needs_reservation(h, vma, haddr) < 0) { 3849 ret = VM_FAULT_OOM; 3850 goto backout_unlocked; 3851 } 3852 /* Just decrements count, does not deallocate */ 3853 vma_end_reservation(h, vma, haddr); 3854 } 3855 3856 ptl = huge_pte_lock(h, mm, ptep); 3857 3858 ret = 0; 3859 if (!huge_pte_none(huge_ptep_get(ptep))) 3860 goto backout; 3861 3862 if (anon_rmap) { 3863 ClearPagePrivate(page); 3864 hugepage_add_new_anon_rmap(page, vma, haddr); 3865 } else 3866 page_dup_rmap(page, true); 3867 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE) 3868 && (vma->vm_flags & VM_SHARED))); 3869 set_huge_pte_at(mm, haddr, ptep, new_pte); 3870 3871 hugetlb_count_add(pages_per_huge_page(h), mm); 3872 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 3873 /* Optimization, do the COW without a second fault */ 3874 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl); 3875 } 3876 3877 spin_unlock(ptl); 3878 unlock_page(page); 3879 out: 3880 return ret; 3881 3882 backout: 3883 spin_unlock(ptl); 3884 backout_unlocked: 3885 unlock_page(page); 3886 restore_reserve_on_error(h, vma, haddr, page); 3887 put_page(page); 3888 goto out; 3889 } 3890 3891 #ifdef CONFIG_SMP 3892 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm, 3893 struct vm_area_struct *vma, 3894 struct address_space *mapping, 3895 pgoff_t idx, unsigned long address) 3896 { 3897 unsigned long key[2]; 3898 u32 hash; 3899 3900 if (vma->vm_flags & VM_SHARED) { 3901 key[0] = (unsigned long) mapping; 3902 key[1] = idx; 3903 } else { 3904 key[0] = (unsigned long) mm; 3905 key[1] = address >> huge_page_shift(h); 3906 } 3907 3908 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0); 3909 3910 return hash & (num_fault_mutexes - 1); 3911 } 3912 #else 3913 /* 3914 * For uniprocesor systems we always use a single mutex, so just 3915 * return 0 and avoid the hashing overhead. 3916 */ 3917 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm, 3918 struct vm_area_struct *vma, 3919 struct address_space *mapping, 3920 pgoff_t idx, unsigned long address) 3921 { 3922 return 0; 3923 } 3924 #endif 3925 3926 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3927 unsigned long address, unsigned int flags) 3928 { 3929 pte_t *ptep, entry; 3930 spinlock_t *ptl; 3931 vm_fault_t ret; 3932 u32 hash; 3933 pgoff_t idx; 3934 struct page *page = NULL; 3935 struct page *pagecache_page = NULL; 3936 struct hstate *h = hstate_vma(vma); 3937 struct address_space *mapping; 3938 int need_wait_lock = 0; 3939 unsigned long haddr = address & huge_page_mask(h); 3940 3941 ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); 3942 if (ptep) { 3943 /* 3944 * Since we hold no locks, ptep could be stale. That is 3945 * OK as we are only making decisions based on content and 3946 * not actually modifying content here. 3947 */ 3948 entry = huge_ptep_get(ptep); 3949 if (unlikely(is_hugetlb_entry_migration(entry))) { 3950 migration_entry_wait_huge(vma, mm, ptep); 3951 return 0; 3952 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) 3953 return VM_FAULT_HWPOISON_LARGE | 3954 VM_FAULT_SET_HINDEX(hstate_index(h)); 3955 } 3956 3957 /* 3958 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold 3959 * until finished with ptep. This serves two purposes: 3960 * 1) It prevents huge_pmd_unshare from being called elsewhere 3961 * and making the ptep no longer valid. 3962 * 2) It synchronizes us with file truncation. 3963 * 3964 * ptep could have already be assigned via huge_pte_offset. That 3965 * is OK, as huge_pte_alloc will return the same value unless 3966 * something changed. 3967 */ 3968 mapping = vma->vm_file->f_mapping; 3969 i_mmap_lock_read(mapping); 3970 ptep = huge_pte_alloc(mm, haddr, huge_page_size(h)); 3971 if (!ptep) { 3972 i_mmap_unlock_read(mapping); 3973 return VM_FAULT_OOM; 3974 } 3975 3976 /* 3977 * Serialize hugepage allocation and instantiation, so that we don't 3978 * get spurious allocation failures if two CPUs race to instantiate 3979 * the same page in the page cache. 3980 */ 3981 idx = vma_hugecache_offset(h, vma, haddr); 3982 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, haddr); 3983 mutex_lock(&hugetlb_fault_mutex_table[hash]); 3984 3985 entry = huge_ptep_get(ptep); 3986 if (huge_pte_none(entry)) { 3987 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags); 3988 goto out_mutex; 3989 } 3990 3991 ret = 0; 3992 3993 /* 3994 * entry could be a migration/hwpoison entry at this point, so this 3995 * check prevents the kernel from going below assuming that we have 3996 * a active hugepage in pagecache. This goto expects the 2nd page fault, 3997 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly 3998 * handle it. 3999 */ 4000 if (!pte_present(entry)) 4001 goto out_mutex; 4002 4003 /* 4004 * If we are going to COW the mapping later, we examine the pending 4005 * reservations for this page now. This will ensure that any 4006 * allocations necessary to record that reservation occur outside the 4007 * spinlock. For private mappings, we also lookup the pagecache 4008 * page now as it is used to determine if a reservation has been 4009 * consumed. 4010 */ 4011 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) { 4012 if (vma_needs_reservation(h, vma, haddr) < 0) { 4013 ret = VM_FAULT_OOM; 4014 goto out_mutex; 4015 } 4016 /* Just decrements count, does not deallocate */ 4017 vma_end_reservation(h, vma, haddr); 4018 4019 if (!(vma->vm_flags & VM_MAYSHARE)) 4020 pagecache_page = hugetlbfs_pagecache_page(h, 4021 vma, haddr); 4022 } 4023 4024 ptl = huge_pte_lock(h, mm, ptep); 4025 4026 /* Check for a racing update before calling hugetlb_cow */ 4027 if (unlikely(!pte_same(entry, huge_ptep_get(ptep)))) 4028 goto out_ptl; 4029 4030 /* 4031 * hugetlb_cow() requires page locks of pte_page(entry) and 4032 * pagecache_page, so here we need take the former one 4033 * when page != pagecache_page or !pagecache_page. 4034 */ 4035 page = pte_page(entry); 4036 if (page != pagecache_page) 4037 if (!trylock_page(page)) { 4038 need_wait_lock = 1; 4039 goto out_ptl; 4040 } 4041 4042 get_page(page); 4043 4044 if (flags & FAULT_FLAG_WRITE) { 4045 if (!huge_pte_write(entry)) { 4046 ret = hugetlb_cow(mm, vma, address, ptep, 4047 pagecache_page, ptl); 4048 goto out_put_page; 4049 } 4050 entry = huge_pte_mkdirty(entry); 4051 } 4052 entry = pte_mkyoung(entry); 4053 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry, 4054 flags & FAULT_FLAG_WRITE)) 4055 update_mmu_cache(vma, haddr, ptep); 4056 out_put_page: 4057 if (page != pagecache_page) 4058 unlock_page(page); 4059 put_page(page); 4060 out_ptl: 4061 spin_unlock(ptl); 4062 4063 if (pagecache_page) { 4064 unlock_page(pagecache_page); 4065 put_page(pagecache_page); 4066 } 4067 out_mutex: 4068 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 4069 i_mmap_unlock_read(mapping); 4070 /* 4071 * Generally it's safe to hold refcount during waiting page lock. But 4072 * here we just wait to defer the next page fault to avoid busy loop and 4073 * the page is not used after unlocked before returning from the current 4074 * page fault. So we are safe from accessing freed page, even if we wait 4075 * here without taking refcount. 4076 */ 4077 if (need_wait_lock) 4078 wait_on_page_locked(page); 4079 return ret; 4080 } 4081 4082 /* 4083 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with 4084 * modifications for huge pages. 4085 */ 4086 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm, 4087 pte_t *dst_pte, 4088 struct vm_area_struct *dst_vma, 4089 unsigned long dst_addr, 4090 unsigned long src_addr, 4091 struct page **pagep) 4092 { 4093 struct address_space *mapping; 4094 pgoff_t idx; 4095 unsigned long size; 4096 int vm_shared = dst_vma->vm_flags & VM_SHARED; 4097 struct hstate *h = hstate_vma(dst_vma); 4098 pte_t _dst_pte; 4099 spinlock_t *ptl; 4100 int ret; 4101 struct page *page; 4102 4103 if (!*pagep) { 4104 ret = -ENOMEM; 4105 page = alloc_huge_page(dst_vma, dst_addr, 0); 4106 if (IS_ERR(page)) 4107 goto out; 4108 4109 ret = copy_huge_page_from_user(page, 4110 (const void __user *) src_addr, 4111 pages_per_huge_page(h), false); 4112 4113 /* fallback to copy_from_user outside mmap_sem */ 4114 if (unlikely(ret)) { 4115 ret = -ENOENT; 4116 *pagep = page; 4117 /* don't free the page */ 4118 goto out; 4119 } 4120 } else { 4121 page = *pagep; 4122 *pagep = NULL; 4123 } 4124 4125 /* 4126 * The memory barrier inside __SetPageUptodate makes sure that 4127 * preceding stores to the page contents become visible before 4128 * the set_pte_at() write. 4129 */ 4130 __SetPageUptodate(page); 4131 set_page_huge_active(page); 4132 4133 mapping = dst_vma->vm_file->f_mapping; 4134 idx = vma_hugecache_offset(h, dst_vma, dst_addr); 4135 4136 /* 4137 * If shared, add to page cache 4138 */ 4139 if (vm_shared) { 4140 size = i_size_read(mapping->host) >> huge_page_shift(h); 4141 ret = -EFAULT; 4142 if (idx >= size) 4143 goto out_release_nounlock; 4144 4145 /* 4146 * Serialization between remove_inode_hugepages() and 4147 * huge_add_to_page_cache() below happens through the 4148 * hugetlb_fault_mutex_table that here must be hold by 4149 * the caller. 4150 */ 4151 ret = huge_add_to_page_cache(page, mapping, idx); 4152 if (ret) 4153 goto out_release_nounlock; 4154 } 4155 4156 ptl = huge_pte_lockptr(h, dst_mm, dst_pte); 4157 spin_lock(ptl); 4158 4159 /* 4160 * Recheck the i_size after holding PT lock to make sure not 4161 * to leave any page mapped (as page_mapped()) beyond the end 4162 * of the i_size (remove_inode_hugepages() is strict about 4163 * enforcing that). If we bail out here, we'll also leave a 4164 * page in the radix tree in the vm_shared case beyond the end 4165 * of the i_size, but remove_inode_hugepages() will take care 4166 * of it as soon as we drop the hugetlb_fault_mutex_table. 4167 */ 4168 size = i_size_read(mapping->host) >> huge_page_shift(h); 4169 ret = -EFAULT; 4170 if (idx >= size) 4171 goto out_release_unlock; 4172 4173 ret = -EEXIST; 4174 if (!huge_pte_none(huge_ptep_get(dst_pte))) 4175 goto out_release_unlock; 4176 4177 if (vm_shared) { 4178 page_dup_rmap(page, true); 4179 } else { 4180 ClearPagePrivate(page); 4181 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr); 4182 } 4183 4184 _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE); 4185 if (dst_vma->vm_flags & VM_WRITE) 4186 _dst_pte = huge_pte_mkdirty(_dst_pte); 4187 _dst_pte = pte_mkyoung(_dst_pte); 4188 4189 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte); 4190 4191 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte, 4192 dst_vma->vm_flags & VM_WRITE); 4193 hugetlb_count_add(pages_per_huge_page(h), dst_mm); 4194 4195 /* No need to invalidate - it was non-present before */ 4196 update_mmu_cache(dst_vma, dst_addr, dst_pte); 4197 4198 spin_unlock(ptl); 4199 if (vm_shared) 4200 unlock_page(page); 4201 ret = 0; 4202 out: 4203 return ret; 4204 out_release_unlock: 4205 spin_unlock(ptl); 4206 if (vm_shared) 4207 unlock_page(page); 4208 out_release_nounlock: 4209 put_page(page); 4210 goto out; 4211 } 4212 4213 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, 4214 struct page **pages, struct vm_area_struct **vmas, 4215 unsigned long *position, unsigned long *nr_pages, 4216 long i, unsigned int flags, int *nonblocking) 4217 { 4218 unsigned long pfn_offset; 4219 unsigned long vaddr = *position; 4220 unsigned long remainder = *nr_pages; 4221 struct hstate *h = hstate_vma(vma); 4222 int err = -EFAULT; 4223 4224 while (vaddr < vma->vm_end && remainder) { 4225 pte_t *pte; 4226 spinlock_t *ptl = NULL; 4227 int absent; 4228 struct page *page; 4229 4230 /* 4231 * If we have a pending SIGKILL, don't keep faulting pages and 4232 * potentially allocating memory. 4233 */ 4234 if (fatal_signal_pending(current)) { 4235 remainder = 0; 4236 break; 4237 } 4238 4239 /* 4240 * Some archs (sparc64, sh*) have multiple pte_ts to 4241 * each hugepage. We have to make sure we get the 4242 * first, for the page indexing below to work. 4243 * 4244 * Note that page table lock is not held when pte is null. 4245 */ 4246 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h), 4247 huge_page_size(h)); 4248 if (pte) 4249 ptl = huge_pte_lock(h, mm, pte); 4250 absent = !pte || huge_pte_none(huge_ptep_get(pte)); 4251 4252 /* 4253 * When coredumping, it suits get_dump_page if we just return 4254 * an error where there's an empty slot with no huge pagecache 4255 * to back it. This way, we avoid allocating a hugepage, and 4256 * the sparse dumpfile avoids allocating disk blocks, but its 4257 * huge holes still show up with zeroes where they need to be. 4258 */ 4259 if (absent && (flags & FOLL_DUMP) && 4260 !hugetlbfs_pagecache_present(h, vma, vaddr)) { 4261 if (pte) 4262 spin_unlock(ptl); 4263 remainder = 0; 4264 break; 4265 } 4266 4267 /* 4268 * We need call hugetlb_fault for both hugepages under migration 4269 * (in which case hugetlb_fault waits for the migration,) and 4270 * hwpoisoned hugepages (in which case we need to prevent the 4271 * caller from accessing to them.) In order to do this, we use 4272 * here is_swap_pte instead of is_hugetlb_entry_migration and 4273 * is_hugetlb_entry_hwpoisoned. This is because it simply covers 4274 * both cases, and because we can't follow correct pages 4275 * directly from any kind of swap entries. 4276 */ 4277 if (absent || is_swap_pte(huge_ptep_get(pte)) || 4278 ((flags & FOLL_WRITE) && 4279 !huge_pte_write(huge_ptep_get(pte)))) { 4280 vm_fault_t ret; 4281 unsigned int fault_flags = 0; 4282 4283 if (pte) 4284 spin_unlock(ptl); 4285 if (flags & FOLL_WRITE) 4286 fault_flags |= FAULT_FLAG_WRITE; 4287 if (nonblocking) 4288 fault_flags |= FAULT_FLAG_ALLOW_RETRY; 4289 if (flags & FOLL_NOWAIT) 4290 fault_flags |= FAULT_FLAG_ALLOW_RETRY | 4291 FAULT_FLAG_RETRY_NOWAIT; 4292 if (flags & FOLL_TRIED) { 4293 VM_WARN_ON_ONCE(fault_flags & 4294 FAULT_FLAG_ALLOW_RETRY); 4295 fault_flags |= FAULT_FLAG_TRIED; 4296 } 4297 ret = hugetlb_fault(mm, vma, vaddr, fault_flags); 4298 if (ret & VM_FAULT_ERROR) { 4299 err = vm_fault_to_errno(ret, flags); 4300 remainder = 0; 4301 break; 4302 } 4303 if (ret & VM_FAULT_RETRY) { 4304 if (nonblocking) 4305 *nonblocking = 0; 4306 *nr_pages = 0; 4307 /* 4308 * VM_FAULT_RETRY must not return an 4309 * error, it will return zero 4310 * instead. 4311 * 4312 * No need to update "position" as the 4313 * caller will not check it after 4314 * *nr_pages is set to 0. 4315 */ 4316 return i; 4317 } 4318 continue; 4319 } 4320 4321 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT; 4322 page = pte_page(huge_ptep_get(pte)); 4323 same_page: 4324 if (pages) { 4325 pages[i] = mem_map_offset(page, pfn_offset); 4326 get_page(pages[i]); 4327 } 4328 4329 if (vmas) 4330 vmas[i] = vma; 4331 4332 vaddr += PAGE_SIZE; 4333 ++pfn_offset; 4334 --remainder; 4335 ++i; 4336 if (vaddr < vma->vm_end && remainder && 4337 pfn_offset < pages_per_huge_page(h)) { 4338 /* 4339 * We use pfn_offset to avoid touching the pageframes 4340 * of this compound page. 4341 */ 4342 goto same_page; 4343 } 4344 spin_unlock(ptl); 4345 } 4346 *nr_pages = remainder; 4347 /* 4348 * setting position is actually required only if remainder is 4349 * not zero but it's faster not to add a "if (remainder)" 4350 * branch. 4351 */ 4352 *position = vaddr; 4353 4354 return i ? i : err; 4355 } 4356 4357 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE 4358 /* 4359 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can 4360 * implement this. 4361 */ 4362 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end) 4363 #endif 4364 4365 unsigned long hugetlb_change_protection(struct vm_area_struct *vma, 4366 unsigned long address, unsigned long end, pgprot_t newprot) 4367 { 4368 struct mm_struct *mm = vma->vm_mm; 4369 unsigned long start = address; 4370 pte_t *ptep; 4371 pte_t pte; 4372 struct hstate *h = hstate_vma(vma); 4373 unsigned long pages = 0; 4374 bool shared_pmd = false; 4375 struct mmu_notifier_range range; 4376 4377 /* 4378 * In the case of shared PMDs, the area to flush could be beyond 4379 * start/end. Set range.start/range.end to cover the maximum possible 4380 * range if PMD sharing is possible. 4381 */ 4382 mmu_notifier_range_init(&range, mm, start, end); 4383 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 4384 4385 BUG_ON(address >= end); 4386 flush_cache_range(vma, range.start, range.end); 4387 4388 mmu_notifier_invalidate_range_start(&range); 4389 i_mmap_lock_write(vma->vm_file->f_mapping); 4390 for (; address < end; address += huge_page_size(h)) { 4391 spinlock_t *ptl; 4392 ptep = huge_pte_offset(mm, address, huge_page_size(h)); 4393 if (!ptep) 4394 continue; 4395 ptl = huge_pte_lock(h, mm, ptep); 4396 if (huge_pmd_unshare(mm, &address, ptep)) { 4397 pages++; 4398 spin_unlock(ptl); 4399 shared_pmd = true; 4400 continue; 4401 } 4402 pte = huge_ptep_get(ptep); 4403 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) { 4404 spin_unlock(ptl); 4405 continue; 4406 } 4407 if (unlikely(is_hugetlb_entry_migration(pte))) { 4408 swp_entry_t entry = pte_to_swp_entry(pte); 4409 4410 if (is_write_migration_entry(entry)) { 4411 pte_t newpte; 4412 4413 make_migration_entry_read(&entry); 4414 newpte = swp_entry_to_pte(entry); 4415 set_huge_swap_pte_at(mm, address, ptep, 4416 newpte, huge_page_size(h)); 4417 pages++; 4418 } 4419 spin_unlock(ptl); 4420 continue; 4421 } 4422 if (!huge_pte_none(pte)) { 4423 pte = huge_ptep_get_and_clear(mm, address, ptep); 4424 pte = pte_mkhuge(huge_pte_modify(pte, newprot)); 4425 pte = arch_make_huge_pte(pte, vma, NULL, 0); 4426 set_huge_pte_at(mm, address, ptep, pte); 4427 pages++; 4428 } 4429 spin_unlock(ptl); 4430 } 4431 /* 4432 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare 4433 * may have cleared our pud entry and done put_page on the page table: 4434 * once we release i_mmap_rwsem, another task can do the final put_page 4435 * and that page table be reused and filled with junk. If we actually 4436 * did unshare a page of pmds, flush the range corresponding to the pud. 4437 */ 4438 if (shared_pmd) 4439 flush_hugetlb_tlb_range(vma, range.start, range.end); 4440 else 4441 flush_hugetlb_tlb_range(vma, start, end); 4442 /* 4443 * No need to call mmu_notifier_invalidate_range() we are downgrading 4444 * page table protection not changing it to point to a new page. 4445 * 4446 * See Documentation/vm/mmu_notifier.rst 4447 */ 4448 i_mmap_unlock_write(vma->vm_file->f_mapping); 4449 mmu_notifier_invalidate_range_end(&range); 4450 4451 return pages << h->order; 4452 } 4453 4454 int hugetlb_reserve_pages(struct inode *inode, 4455 long from, long to, 4456 struct vm_area_struct *vma, 4457 vm_flags_t vm_flags) 4458 { 4459 long ret, chg; 4460 struct hstate *h = hstate_inode(inode); 4461 struct hugepage_subpool *spool = subpool_inode(inode); 4462 struct resv_map *resv_map; 4463 long gbl_reserve; 4464 4465 /* This should never happen */ 4466 if (from > to) { 4467 VM_WARN(1, "%s called with a negative range\n", __func__); 4468 return -EINVAL; 4469 } 4470 4471 /* 4472 * Only apply hugepage reservation if asked. At fault time, an 4473 * attempt will be made for VM_NORESERVE to allocate a page 4474 * without using reserves 4475 */ 4476 if (vm_flags & VM_NORESERVE) 4477 return 0; 4478 4479 /* 4480 * Shared mappings base their reservation on the number of pages that 4481 * are already allocated on behalf of the file. Private mappings need 4482 * to reserve the full area even if read-only as mprotect() may be 4483 * called to make the mapping read-write. Assume !vma is a shm mapping 4484 */ 4485 if (!vma || vma->vm_flags & VM_MAYSHARE) { 4486 resv_map = inode_resv_map(inode); 4487 4488 chg = region_chg(resv_map, from, to); 4489 4490 } else { 4491 resv_map = resv_map_alloc(); 4492 if (!resv_map) 4493 return -ENOMEM; 4494 4495 chg = to - from; 4496 4497 set_vma_resv_map(vma, resv_map); 4498 set_vma_resv_flags(vma, HPAGE_RESV_OWNER); 4499 } 4500 4501 if (chg < 0) { 4502 ret = chg; 4503 goto out_err; 4504 } 4505 4506 /* 4507 * There must be enough pages in the subpool for the mapping. If 4508 * the subpool has a minimum size, there may be some global 4509 * reservations already in place (gbl_reserve). 4510 */ 4511 gbl_reserve = hugepage_subpool_get_pages(spool, chg); 4512 if (gbl_reserve < 0) { 4513 ret = -ENOSPC; 4514 goto out_err; 4515 } 4516 4517 /* 4518 * Check enough hugepages are available for the reservation. 4519 * Hand the pages back to the subpool if there are not 4520 */ 4521 ret = hugetlb_acct_memory(h, gbl_reserve); 4522 if (ret < 0) { 4523 /* put back original number of pages, chg */ 4524 (void)hugepage_subpool_put_pages(spool, chg); 4525 goto out_err; 4526 } 4527 4528 /* 4529 * Account for the reservations made. Shared mappings record regions 4530 * that have reservations as they are shared by multiple VMAs. 4531 * When the last VMA disappears, the region map says how much 4532 * the reservation was and the page cache tells how much of 4533 * the reservation was consumed. Private mappings are per-VMA and 4534 * only the consumed reservations are tracked. When the VMA 4535 * disappears, the original reservation is the VMA size and the 4536 * consumed reservations are stored in the map. Hence, nothing 4537 * else has to be done for private mappings here 4538 */ 4539 if (!vma || vma->vm_flags & VM_MAYSHARE) { 4540 long add = region_add(resv_map, from, to); 4541 4542 if (unlikely(chg > add)) { 4543 /* 4544 * pages in this range were added to the reserve 4545 * map between region_chg and region_add. This 4546 * indicates a race with alloc_huge_page. Adjust 4547 * the subpool and reserve counts modified above 4548 * based on the difference. 4549 */ 4550 long rsv_adjust; 4551 4552 rsv_adjust = hugepage_subpool_put_pages(spool, 4553 chg - add); 4554 hugetlb_acct_memory(h, -rsv_adjust); 4555 } 4556 } 4557 return 0; 4558 out_err: 4559 if (!vma || vma->vm_flags & VM_MAYSHARE) 4560 /* Don't call region_abort if region_chg failed */ 4561 if (chg >= 0) 4562 region_abort(resv_map, from, to); 4563 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 4564 kref_put(&resv_map->refs, resv_map_release); 4565 return ret; 4566 } 4567 4568 long hugetlb_unreserve_pages(struct inode *inode, long start, long end, 4569 long freed) 4570 { 4571 struct hstate *h = hstate_inode(inode); 4572 struct resv_map *resv_map = inode_resv_map(inode); 4573 long chg = 0; 4574 struct hugepage_subpool *spool = subpool_inode(inode); 4575 long gbl_reserve; 4576 4577 if (resv_map) { 4578 chg = region_del(resv_map, start, end); 4579 /* 4580 * region_del() can fail in the rare case where a region 4581 * must be split and another region descriptor can not be 4582 * allocated. If end == LONG_MAX, it will not fail. 4583 */ 4584 if (chg < 0) 4585 return chg; 4586 } 4587 4588 spin_lock(&inode->i_lock); 4589 inode->i_blocks -= (blocks_per_huge_page(h) * freed); 4590 spin_unlock(&inode->i_lock); 4591 4592 /* 4593 * If the subpool has a minimum size, the number of global 4594 * reservations to be released may be adjusted. 4595 */ 4596 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed)); 4597 hugetlb_acct_memory(h, -gbl_reserve); 4598 4599 return 0; 4600 } 4601 4602 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE 4603 static unsigned long page_table_shareable(struct vm_area_struct *svma, 4604 struct vm_area_struct *vma, 4605 unsigned long addr, pgoff_t idx) 4606 { 4607 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) + 4608 svma->vm_start; 4609 unsigned long sbase = saddr & PUD_MASK; 4610 unsigned long s_end = sbase + PUD_SIZE; 4611 4612 /* Allow segments to share if only one is marked locked */ 4613 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK; 4614 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK; 4615 4616 /* 4617 * match the virtual addresses, permission and the alignment of the 4618 * page table page. 4619 */ 4620 if (pmd_index(addr) != pmd_index(saddr) || 4621 vm_flags != svm_flags || 4622 sbase < svma->vm_start || svma->vm_end < s_end) 4623 return 0; 4624 4625 return saddr; 4626 } 4627 4628 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr) 4629 { 4630 unsigned long base = addr & PUD_MASK; 4631 unsigned long end = base + PUD_SIZE; 4632 4633 /* 4634 * check on proper vm_flags and page table alignment 4635 */ 4636 if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end)) 4637 return true; 4638 return false; 4639 } 4640 4641 /* 4642 * Determine if start,end range within vma could be mapped by shared pmd. 4643 * If yes, adjust start and end to cover range associated with possible 4644 * shared pmd mappings. 4645 */ 4646 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 4647 unsigned long *start, unsigned long *end) 4648 { 4649 unsigned long check_addr = *start; 4650 4651 if (!(vma->vm_flags & VM_MAYSHARE)) 4652 return; 4653 4654 for (check_addr = *start; check_addr < *end; check_addr += PUD_SIZE) { 4655 unsigned long a_start = check_addr & PUD_MASK; 4656 unsigned long a_end = a_start + PUD_SIZE; 4657 4658 /* 4659 * If sharing is possible, adjust start/end if necessary. 4660 */ 4661 if (range_in_vma(vma, a_start, a_end)) { 4662 if (a_start < *start) 4663 *start = a_start; 4664 if (a_end > *end) 4665 *end = a_end; 4666 } 4667 } 4668 } 4669 4670 /* 4671 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc() 4672 * and returns the corresponding pte. While this is not necessary for the 4673 * !shared pmd case because we can allocate the pmd later as well, it makes the 4674 * code much cleaner. 4675 * 4676 * This routine must be called with i_mmap_rwsem held in at least read mode. 4677 * For hugetlbfs, this prevents removal of any page table entries associated 4678 * with the address space. This is important as we are setting up sharing 4679 * based on existing page table entries (mappings). 4680 */ 4681 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud) 4682 { 4683 struct vm_area_struct *vma = find_vma(mm, addr); 4684 struct address_space *mapping = vma->vm_file->f_mapping; 4685 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + 4686 vma->vm_pgoff; 4687 struct vm_area_struct *svma; 4688 unsigned long saddr; 4689 pte_t *spte = NULL; 4690 pte_t *pte; 4691 spinlock_t *ptl; 4692 4693 if (!vma_shareable(vma, addr)) 4694 return (pte_t *)pmd_alloc(mm, pud, addr); 4695 4696 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) { 4697 if (svma == vma) 4698 continue; 4699 4700 saddr = page_table_shareable(svma, vma, addr, idx); 4701 if (saddr) { 4702 spte = huge_pte_offset(svma->vm_mm, saddr, 4703 vma_mmu_pagesize(svma)); 4704 if (spte) { 4705 get_page(virt_to_page(spte)); 4706 break; 4707 } 4708 } 4709 } 4710 4711 if (!spte) 4712 goto out; 4713 4714 ptl = huge_pte_lock(hstate_vma(vma), mm, spte); 4715 if (pud_none(*pud)) { 4716 pud_populate(mm, pud, 4717 (pmd_t *)((unsigned long)spte & PAGE_MASK)); 4718 mm_inc_nr_pmds(mm); 4719 } else { 4720 put_page(virt_to_page(spte)); 4721 } 4722 spin_unlock(ptl); 4723 out: 4724 pte = (pte_t *)pmd_alloc(mm, pud, addr); 4725 return pte; 4726 } 4727 4728 /* 4729 * unmap huge page backed by shared pte. 4730 * 4731 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared 4732 * indicated by page_count > 1, unmap is achieved by clearing pud and 4733 * decrementing the ref count. If count == 1, the pte page is not shared. 4734 * 4735 * Called with page table lock held and i_mmap_rwsem held in write mode. 4736 * 4737 * returns: 1 successfully unmapped a shared pte page 4738 * 0 the underlying pte page is not shared, or it is the last user 4739 */ 4740 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep) 4741 { 4742 pgd_t *pgd = pgd_offset(mm, *addr); 4743 p4d_t *p4d = p4d_offset(pgd, *addr); 4744 pud_t *pud = pud_offset(p4d, *addr); 4745 4746 BUG_ON(page_count(virt_to_page(ptep)) == 0); 4747 if (page_count(virt_to_page(ptep)) == 1) 4748 return 0; 4749 4750 pud_clear(pud); 4751 put_page(virt_to_page(ptep)); 4752 mm_dec_nr_pmds(mm); 4753 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE; 4754 return 1; 4755 } 4756 #define want_pmd_share() (1) 4757 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 4758 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud) 4759 { 4760 return NULL; 4761 } 4762 4763 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep) 4764 { 4765 return 0; 4766 } 4767 4768 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 4769 unsigned long *start, unsigned long *end) 4770 { 4771 } 4772 #define want_pmd_share() (0) 4773 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 4774 4775 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB 4776 pte_t *huge_pte_alloc(struct mm_struct *mm, 4777 unsigned long addr, unsigned long sz) 4778 { 4779 pgd_t *pgd; 4780 p4d_t *p4d; 4781 pud_t *pud; 4782 pte_t *pte = NULL; 4783 4784 pgd = pgd_offset(mm, addr); 4785 p4d = p4d_alloc(mm, pgd, addr); 4786 if (!p4d) 4787 return NULL; 4788 pud = pud_alloc(mm, p4d, addr); 4789 if (pud) { 4790 if (sz == PUD_SIZE) { 4791 pte = (pte_t *)pud; 4792 } else { 4793 BUG_ON(sz != PMD_SIZE); 4794 if (want_pmd_share() && pud_none(*pud)) 4795 pte = huge_pmd_share(mm, addr, pud); 4796 else 4797 pte = (pte_t *)pmd_alloc(mm, pud, addr); 4798 } 4799 } 4800 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte)); 4801 4802 return pte; 4803 } 4804 4805 /* 4806 * huge_pte_offset() - Walk the page table to resolve the hugepage 4807 * entry at address @addr 4808 * 4809 * Return: Pointer to page table or swap entry (PUD or PMD) for 4810 * address @addr, or NULL if a p*d_none() entry is encountered and the 4811 * size @sz doesn't match the hugepage size at this level of the page 4812 * table. 4813 */ 4814 pte_t *huge_pte_offset(struct mm_struct *mm, 4815 unsigned long addr, unsigned long sz) 4816 { 4817 pgd_t *pgd; 4818 p4d_t *p4d; 4819 pud_t *pud; 4820 pmd_t *pmd; 4821 4822 pgd = pgd_offset(mm, addr); 4823 if (!pgd_present(*pgd)) 4824 return NULL; 4825 p4d = p4d_offset(pgd, addr); 4826 if (!p4d_present(*p4d)) 4827 return NULL; 4828 4829 pud = pud_offset(p4d, addr); 4830 if (sz != PUD_SIZE && pud_none(*pud)) 4831 return NULL; 4832 /* hugepage or swap? */ 4833 if (pud_huge(*pud) || !pud_present(*pud)) 4834 return (pte_t *)pud; 4835 4836 pmd = pmd_offset(pud, addr); 4837 if (sz != PMD_SIZE && pmd_none(*pmd)) 4838 return NULL; 4839 /* hugepage or swap? */ 4840 if (pmd_huge(*pmd) || !pmd_present(*pmd)) 4841 return (pte_t *)pmd; 4842 4843 return NULL; 4844 } 4845 4846 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */ 4847 4848 /* 4849 * These functions are overwritable if your architecture needs its own 4850 * behavior. 4851 */ 4852 struct page * __weak 4853 follow_huge_addr(struct mm_struct *mm, unsigned long address, 4854 int write) 4855 { 4856 return ERR_PTR(-EINVAL); 4857 } 4858 4859 struct page * __weak 4860 follow_huge_pd(struct vm_area_struct *vma, 4861 unsigned long address, hugepd_t hpd, int flags, int pdshift) 4862 { 4863 WARN(1, "hugepd follow called with no support for hugepage directory format\n"); 4864 return NULL; 4865 } 4866 4867 struct page * __weak 4868 follow_huge_pmd(struct mm_struct *mm, unsigned long address, 4869 pmd_t *pmd, int flags) 4870 { 4871 struct page *page = NULL; 4872 spinlock_t *ptl; 4873 pte_t pte; 4874 retry: 4875 ptl = pmd_lockptr(mm, pmd); 4876 spin_lock(ptl); 4877 /* 4878 * make sure that the address range covered by this pmd is not 4879 * unmapped from other threads. 4880 */ 4881 if (!pmd_huge(*pmd)) 4882 goto out; 4883 pte = huge_ptep_get((pte_t *)pmd); 4884 if (pte_present(pte)) { 4885 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT); 4886 if (flags & FOLL_GET) 4887 get_page(page); 4888 } else { 4889 if (is_hugetlb_entry_migration(pte)) { 4890 spin_unlock(ptl); 4891 __migration_entry_wait(mm, (pte_t *)pmd, ptl); 4892 goto retry; 4893 } 4894 /* 4895 * hwpoisoned entry is treated as no_page_table in 4896 * follow_page_mask(). 4897 */ 4898 } 4899 out: 4900 spin_unlock(ptl); 4901 return page; 4902 } 4903 4904 struct page * __weak 4905 follow_huge_pud(struct mm_struct *mm, unsigned long address, 4906 pud_t *pud, int flags) 4907 { 4908 if (flags & FOLL_GET) 4909 return NULL; 4910 4911 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT); 4912 } 4913 4914 struct page * __weak 4915 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags) 4916 { 4917 if (flags & FOLL_GET) 4918 return NULL; 4919 4920 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT); 4921 } 4922 4923 bool isolate_huge_page(struct page *page, struct list_head *list) 4924 { 4925 bool ret = true; 4926 4927 VM_BUG_ON_PAGE(!PageHead(page), page); 4928 spin_lock(&hugetlb_lock); 4929 if (!page_huge_active(page) || !get_page_unless_zero(page)) { 4930 ret = false; 4931 goto unlock; 4932 } 4933 clear_page_huge_active(page); 4934 list_move_tail(&page->lru, list); 4935 unlock: 4936 spin_unlock(&hugetlb_lock); 4937 return ret; 4938 } 4939 4940 void putback_active_hugepage(struct page *page) 4941 { 4942 VM_BUG_ON_PAGE(!PageHead(page), page); 4943 spin_lock(&hugetlb_lock); 4944 set_page_huge_active(page); 4945 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist); 4946 spin_unlock(&hugetlb_lock); 4947 put_page(page); 4948 } 4949 4950 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason) 4951 { 4952 struct hstate *h = page_hstate(oldpage); 4953 4954 hugetlb_cgroup_migrate(oldpage, newpage); 4955 set_page_owner_migrate_reason(newpage, reason); 4956 4957 /* 4958 * transfer temporary state of the new huge page. This is 4959 * reverse to other transitions because the newpage is going to 4960 * be final while the old one will be freed so it takes over 4961 * the temporary status. 4962 * 4963 * Also note that we have to transfer the per-node surplus state 4964 * here as well otherwise the global surplus count will not match 4965 * the per-node's. 4966 */ 4967 if (PageHugeTemporary(newpage)) { 4968 int old_nid = page_to_nid(oldpage); 4969 int new_nid = page_to_nid(newpage); 4970 4971 SetPageHugeTemporary(oldpage); 4972 ClearPageHugeTemporary(newpage); 4973 4974 spin_lock(&hugetlb_lock); 4975 if (h->surplus_huge_pages_node[old_nid]) { 4976 h->surplus_huge_pages_node[old_nid]--; 4977 h->surplus_huge_pages_node[new_nid]++; 4978 } 4979 spin_unlock(&hugetlb_lock); 4980 } 4981 } 4982