1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic hugetlb support. 4 * (C) Nadia Yvette Chambers, April 2004 5 */ 6 #include <linux/list.h> 7 #include <linux/init.h> 8 #include <linux/mm.h> 9 #include <linux/seq_file.h> 10 #include <linux/sysctl.h> 11 #include <linux/highmem.h> 12 #include <linux/mmu_notifier.h> 13 #include <linux/nodemask.h> 14 #include <linux/pagemap.h> 15 #include <linux/mempolicy.h> 16 #include <linux/compiler.h> 17 #include <linux/cpuset.h> 18 #include <linux/mutex.h> 19 #include <linux/memblock.h> 20 #include <linux/sysfs.h> 21 #include <linux/slab.h> 22 #include <linux/sched/mm.h> 23 #include <linux/mmdebug.h> 24 #include <linux/sched/signal.h> 25 #include <linux/rmap.h> 26 #include <linux/string_helpers.h> 27 #include <linux/swap.h> 28 #include <linux/swapops.h> 29 #include <linux/jhash.h> 30 #include <linux/numa.h> 31 #include <linux/llist.h> 32 #include <linux/cma.h> 33 #include <linux/migrate.h> 34 #include <linux/nospec.h> 35 #include <linux/delayacct.h> 36 #include <linux/memory.h> 37 #include <linux/mm_inline.h> 38 #include <linux/padata.h> 39 40 #include <asm/page.h> 41 #include <asm/pgalloc.h> 42 #include <asm/tlb.h> 43 44 #include <linux/io.h> 45 #include <linux/hugetlb.h> 46 #include <linux/hugetlb_cgroup.h> 47 #include <linux/node.h> 48 #include <linux/page_owner.h> 49 #include "internal.h" 50 #include "hugetlb_vmemmap.h" 51 52 int hugetlb_max_hstate __read_mostly; 53 unsigned int default_hstate_idx; 54 struct hstate hstates[HUGE_MAX_HSTATE]; 55 56 #ifdef CONFIG_CMA 57 static struct cma *hugetlb_cma[MAX_NUMNODES]; 58 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata; 59 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order) 60 { 61 return cma_pages_valid(hugetlb_cma[folio_nid(folio)], &folio->page, 62 1 << order); 63 } 64 #else 65 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order) 66 { 67 return false; 68 } 69 #endif 70 static unsigned long hugetlb_cma_size __initdata; 71 72 __initdata struct list_head huge_boot_pages[MAX_NUMNODES]; 73 74 /* for command line parsing */ 75 static struct hstate * __initdata parsed_hstate; 76 static unsigned long __initdata default_hstate_max_huge_pages; 77 static bool __initdata parsed_valid_hugepagesz = true; 78 static bool __initdata parsed_default_hugepagesz; 79 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata; 80 81 /* 82 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages, 83 * free_huge_pages, and surplus_huge_pages. 84 */ 85 DEFINE_SPINLOCK(hugetlb_lock); 86 87 /* 88 * Serializes faults on the same logical page. This is used to 89 * prevent spurious OOMs when the hugepage pool is fully utilized. 90 */ 91 static int num_fault_mutexes; 92 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp; 93 94 /* Forward declaration */ 95 static int hugetlb_acct_memory(struct hstate *h, long delta); 96 static void hugetlb_vma_lock_free(struct vm_area_struct *vma); 97 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma); 98 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma); 99 static void hugetlb_unshare_pmds(struct vm_area_struct *vma, 100 unsigned long start, unsigned long end); 101 static struct resv_map *vma_resv_map(struct vm_area_struct *vma); 102 103 static inline bool subpool_is_free(struct hugepage_subpool *spool) 104 { 105 if (spool->count) 106 return false; 107 if (spool->max_hpages != -1) 108 return spool->used_hpages == 0; 109 if (spool->min_hpages != -1) 110 return spool->rsv_hpages == spool->min_hpages; 111 112 return true; 113 } 114 115 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool, 116 unsigned long irq_flags) 117 { 118 spin_unlock_irqrestore(&spool->lock, irq_flags); 119 120 /* If no pages are used, and no other handles to the subpool 121 * remain, give up any reservations based on minimum size and 122 * free the subpool */ 123 if (subpool_is_free(spool)) { 124 if (spool->min_hpages != -1) 125 hugetlb_acct_memory(spool->hstate, 126 -spool->min_hpages); 127 kfree(spool); 128 } 129 } 130 131 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages, 132 long min_hpages) 133 { 134 struct hugepage_subpool *spool; 135 136 spool = kzalloc(sizeof(*spool), GFP_KERNEL); 137 if (!spool) 138 return NULL; 139 140 spin_lock_init(&spool->lock); 141 spool->count = 1; 142 spool->max_hpages = max_hpages; 143 spool->hstate = h; 144 spool->min_hpages = min_hpages; 145 146 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) { 147 kfree(spool); 148 return NULL; 149 } 150 spool->rsv_hpages = min_hpages; 151 152 return spool; 153 } 154 155 void hugepage_put_subpool(struct hugepage_subpool *spool) 156 { 157 unsigned long flags; 158 159 spin_lock_irqsave(&spool->lock, flags); 160 BUG_ON(!spool->count); 161 spool->count--; 162 unlock_or_release_subpool(spool, flags); 163 } 164 165 /* 166 * Subpool accounting for allocating and reserving pages. 167 * Return -ENOMEM if there are not enough resources to satisfy the 168 * request. Otherwise, return the number of pages by which the 169 * global pools must be adjusted (upward). The returned value may 170 * only be different than the passed value (delta) in the case where 171 * a subpool minimum size must be maintained. 172 */ 173 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool, 174 long delta) 175 { 176 long ret = delta; 177 178 if (!spool) 179 return ret; 180 181 spin_lock_irq(&spool->lock); 182 183 if (spool->max_hpages != -1) { /* maximum size accounting */ 184 if ((spool->used_hpages + delta) <= spool->max_hpages) 185 spool->used_hpages += delta; 186 else { 187 ret = -ENOMEM; 188 goto unlock_ret; 189 } 190 } 191 192 /* minimum size accounting */ 193 if (spool->min_hpages != -1 && spool->rsv_hpages) { 194 if (delta > spool->rsv_hpages) { 195 /* 196 * Asking for more reserves than those already taken on 197 * behalf of subpool. Return difference. 198 */ 199 ret = delta - spool->rsv_hpages; 200 spool->rsv_hpages = 0; 201 } else { 202 ret = 0; /* reserves already accounted for */ 203 spool->rsv_hpages -= delta; 204 } 205 } 206 207 unlock_ret: 208 spin_unlock_irq(&spool->lock); 209 return ret; 210 } 211 212 /* 213 * Subpool accounting for freeing and unreserving pages. 214 * Return the number of global page reservations that must be dropped. 215 * The return value may only be different than the passed value (delta) 216 * in the case where a subpool minimum size must be maintained. 217 */ 218 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool, 219 long delta) 220 { 221 long ret = delta; 222 unsigned long flags; 223 224 if (!spool) 225 return delta; 226 227 spin_lock_irqsave(&spool->lock, flags); 228 229 if (spool->max_hpages != -1) /* maximum size accounting */ 230 spool->used_hpages -= delta; 231 232 /* minimum size accounting */ 233 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) { 234 if (spool->rsv_hpages + delta <= spool->min_hpages) 235 ret = 0; 236 else 237 ret = spool->rsv_hpages + delta - spool->min_hpages; 238 239 spool->rsv_hpages += delta; 240 if (spool->rsv_hpages > spool->min_hpages) 241 spool->rsv_hpages = spool->min_hpages; 242 } 243 244 /* 245 * If hugetlbfs_put_super couldn't free spool due to an outstanding 246 * quota reference, free it now. 247 */ 248 unlock_or_release_subpool(spool, flags); 249 250 return ret; 251 } 252 253 static inline struct hugepage_subpool *subpool_inode(struct inode *inode) 254 { 255 return HUGETLBFS_SB(inode->i_sb)->spool; 256 } 257 258 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma) 259 { 260 return subpool_inode(file_inode(vma->vm_file)); 261 } 262 263 /* 264 * hugetlb vma_lock helper routines 265 */ 266 void hugetlb_vma_lock_read(struct vm_area_struct *vma) 267 { 268 if (__vma_shareable_lock(vma)) { 269 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 270 271 down_read(&vma_lock->rw_sema); 272 } else if (__vma_private_lock(vma)) { 273 struct resv_map *resv_map = vma_resv_map(vma); 274 275 down_read(&resv_map->rw_sema); 276 } 277 } 278 279 void hugetlb_vma_unlock_read(struct vm_area_struct *vma) 280 { 281 if (__vma_shareable_lock(vma)) { 282 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 283 284 up_read(&vma_lock->rw_sema); 285 } else if (__vma_private_lock(vma)) { 286 struct resv_map *resv_map = vma_resv_map(vma); 287 288 up_read(&resv_map->rw_sema); 289 } 290 } 291 292 void hugetlb_vma_lock_write(struct vm_area_struct *vma) 293 { 294 if (__vma_shareable_lock(vma)) { 295 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 296 297 down_write(&vma_lock->rw_sema); 298 } else if (__vma_private_lock(vma)) { 299 struct resv_map *resv_map = vma_resv_map(vma); 300 301 down_write(&resv_map->rw_sema); 302 } 303 } 304 305 void hugetlb_vma_unlock_write(struct vm_area_struct *vma) 306 { 307 if (__vma_shareable_lock(vma)) { 308 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 309 310 up_write(&vma_lock->rw_sema); 311 } else if (__vma_private_lock(vma)) { 312 struct resv_map *resv_map = vma_resv_map(vma); 313 314 up_write(&resv_map->rw_sema); 315 } 316 } 317 318 int hugetlb_vma_trylock_write(struct vm_area_struct *vma) 319 { 320 321 if (__vma_shareable_lock(vma)) { 322 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 323 324 return down_write_trylock(&vma_lock->rw_sema); 325 } else if (__vma_private_lock(vma)) { 326 struct resv_map *resv_map = vma_resv_map(vma); 327 328 return down_write_trylock(&resv_map->rw_sema); 329 } 330 331 return 1; 332 } 333 334 void hugetlb_vma_assert_locked(struct vm_area_struct *vma) 335 { 336 if (__vma_shareable_lock(vma)) { 337 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 338 339 lockdep_assert_held(&vma_lock->rw_sema); 340 } else if (__vma_private_lock(vma)) { 341 struct resv_map *resv_map = vma_resv_map(vma); 342 343 lockdep_assert_held(&resv_map->rw_sema); 344 } 345 } 346 347 void hugetlb_vma_lock_release(struct kref *kref) 348 { 349 struct hugetlb_vma_lock *vma_lock = container_of(kref, 350 struct hugetlb_vma_lock, refs); 351 352 kfree(vma_lock); 353 } 354 355 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock) 356 { 357 struct vm_area_struct *vma = vma_lock->vma; 358 359 /* 360 * vma_lock structure may or not be released as a result of put, 361 * it certainly will no longer be attached to vma so clear pointer. 362 * Semaphore synchronizes access to vma_lock->vma field. 363 */ 364 vma_lock->vma = NULL; 365 vma->vm_private_data = NULL; 366 up_write(&vma_lock->rw_sema); 367 kref_put(&vma_lock->refs, hugetlb_vma_lock_release); 368 } 369 370 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma) 371 { 372 if (__vma_shareable_lock(vma)) { 373 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 374 375 __hugetlb_vma_unlock_write_put(vma_lock); 376 } else if (__vma_private_lock(vma)) { 377 struct resv_map *resv_map = vma_resv_map(vma); 378 379 /* no free for anon vmas, but still need to unlock */ 380 up_write(&resv_map->rw_sema); 381 } 382 } 383 384 static void hugetlb_vma_lock_free(struct vm_area_struct *vma) 385 { 386 /* 387 * Only present in sharable vmas. 388 */ 389 if (!vma || !__vma_shareable_lock(vma)) 390 return; 391 392 if (vma->vm_private_data) { 393 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 394 395 down_write(&vma_lock->rw_sema); 396 __hugetlb_vma_unlock_write_put(vma_lock); 397 } 398 } 399 400 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma) 401 { 402 struct hugetlb_vma_lock *vma_lock; 403 404 /* Only establish in (flags) sharable vmas */ 405 if (!vma || !(vma->vm_flags & VM_MAYSHARE)) 406 return; 407 408 /* Should never get here with non-NULL vm_private_data */ 409 if (vma->vm_private_data) 410 return; 411 412 vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL); 413 if (!vma_lock) { 414 /* 415 * If we can not allocate structure, then vma can not 416 * participate in pmd sharing. This is only a possible 417 * performance enhancement and memory saving issue. 418 * However, the lock is also used to synchronize page 419 * faults with truncation. If the lock is not present, 420 * unlikely races could leave pages in a file past i_size 421 * until the file is removed. Warn in the unlikely case of 422 * allocation failure. 423 */ 424 pr_warn_once("HugeTLB: unable to allocate vma specific lock\n"); 425 return; 426 } 427 428 kref_init(&vma_lock->refs); 429 init_rwsem(&vma_lock->rw_sema); 430 vma_lock->vma = vma; 431 vma->vm_private_data = vma_lock; 432 } 433 434 /* Helper that removes a struct file_region from the resv_map cache and returns 435 * it for use. 436 */ 437 static struct file_region * 438 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to) 439 { 440 struct file_region *nrg; 441 442 VM_BUG_ON(resv->region_cache_count <= 0); 443 444 resv->region_cache_count--; 445 nrg = list_first_entry(&resv->region_cache, struct file_region, link); 446 list_del(&nrg->link); 447 448 nrg->from = from; 449 nrg->to = to; 450 451 return nrg; 452 } 453 454 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg, 455 struct file_region *rg) 456 { 457 #ifdef CONFIG_CGROUP_HUGETLB 458 nrg->reservation_counter = rg->reservation_counter; 459 nrg->css = rg->css; 460 if (rg->css) 461 css_get(rg->css); 462 #endif 463 } 464 465 /* Helper that records hugetlb_cgroup uncharge info. */ 466 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg, 467 struct hstate *h, 468 struct resv_map *resv, 469 struct file_region *nrg) 470 { 471 #ifdef CONFIG_CGROUP_HUGETLB 472 if (h_cg) { 473 nrg->reservation_counter = 474 &h_cg->rsvd_hugepage[hstate_index(h)]; 475 nrg->css = &h_cg->css; 476 /* 477 * The caller will hold exactly one h_cg->css reference for the 478 * whole contiguous reservation region. But this area might be 479 * scattered when there are already some file_regions reside in 480 * it. As a result, many file_regions may share only one css 481 * reference. In order to ensure that one file_region must hold 482 * exactly one h_cg->css reference, we should do css_get for 483 * each file_region and leave the reference held by caller 484 * untouched. 485 */ 486 css_get(&h_cg->css); 487 if (!resv->pages_per_hpage) 488 resv->pages_per_hpage = pages_per_huge_page(h); 489 /* pages_per_hpage should be the same for all entries in 490 * a resv_map. 491 */ 492 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h)); 493 } else { 494 nrg->reservation_counter = NULL; 495 nrg->css = NULL; 496 } 497 #endif 498 } 499 500 static void put_uncharge_info(struct file_region *rg) 501 { 502 #ifdef CONFIG_CGROUP_HUGETLB 503 if (rg->css) 504 css_put(rg->css); 505 #endif 506 } 507 508 static bool has_same_uncharge_info(struct file_region *rg, 509 struct file_region *org) 510 { 511 #ifdef CONFIG_CGROUP_HUGETLB 512 return rg->reservation_counter == org->reservation_counter && 513 rg->css == org->css; 514 515 #else 516 return true; 517 #endif 518 } 519 520 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg) 521 { 522 struct file_region *nrg, *prg; 523 524 prg = list_prev_entry(rg, link); 525 if (&prg->link != &resv->regions && prg->to == rg->from && 526 has_same_uncharge_info(prg, rg)) { 527 prg->to = rg->to; 528 529 list_del(&rg->link); 530 put_uncharge_info(rg); 531 kfree(rg); 532 533 rg = prg; 534 } 535 536 nrg = list_next_entry(rg, link); 537 if (&nrg->link != &resv->regions && nrg->from == rg->to && 538 has_same_uncharge_info(nrg, rg)) { 539 nrg->from = rg->from; 540 541 list_del(&rg->link); 542 put_uncharge_info(rg); 543 kfree(rg); 544 } 545 } 546 547 static inline long 548 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from, 549 long to, struct hstate *h, struct hugetlb_cgroup *cg, 550 long *regions_needed) 551 { 552 struct file_region *nrg; 553 554 if (!regions_needed) { 555 nrg = get_file_region_entry_from_cache(map, from, to); 556 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg); 557 list_add(&nrg->link, rg); 558 coalesce_file_region(map, nrg); 559 } else 560 *regions_needed += 1; 561 562 return to - from; 563 } 564 565 /* 566 * Must be called with resv->lock held. 567 * 568 * Calling this with regions_needed != NULL will count the number of pages 569 * to be added but will not modify the linked list. And regions_needed will 570 * indicate the number of file_regions needed in the cache to carry out to add 571 * the regions for this range. 572 */ 573 static long add_reservation_in_range(struct resv_map *resv, long f, long t, 574 struct hugetlb_cgroup *h_cg, 575 struct hstate *h, long *regions_needed) 576 { 577 long add = 0; 578 struct list_head *head = &resv->regions; 579 long last_accounted_offset = f; 580 struct file_region *iter, *trg = NULL; 581 struct list_head *rg = NULL; 582 583 if (regions_needed) 584 *regions_needed = 0; 585 586 /* In this loop, we essentially handle an entry for the range 587 * [last_accounted_offset, iter->from), at every iteration, with some 588 * bounds checking. 589 */ 590 list_for_each_entry_safe(iter, trg, head, link) { 591 /* Skip irrelevant regions that start before our range. */ 592 if (iter->from < f) { 593 /* If this region ends after the last accounted offset, 594 * then we need to update last_accounted_offset. 595 */ 596 if (iter->to > last_accounted_offset) 597 last_accounted_offset = iter->to; 598 continue; 599 } 600 601 /* When we find a region that starts beyond our range, we've 602 * finished. 603 */ 604 if (iter->from >= t) { 605 rg = iter->link.prev; 606 break; 607 } 608 609 /* Add an entry for last_accounted_offset -> iter->from, and 610 * update last_accounted_offset. 611 */ 612 if (iter->from > last_accounted_offset) 613 add += hugetlb_resv_map_add(resv, iter->link.prev, 614 last_accounted_offset, 615 iter->from, h, h_cg, 616 regions_needed); 617 618 last_accounted_offset = iter->to; 619 } 620 621 /* Handle the case where our range extends beyond 622 * last_accounted_offset. 623 */ 624 if (!rg) 625 rg = head->prev; 626 if (last_accounted_offset < t) 627 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset, 628 t, h, h_cg, regions_needed); 629 630 return add; 631 } 632 633 /* Must be called with resv->lock acquired. Will drop lock to allocate entries. 634 */ 635 static int allocate_file_region_entries(struct resv_map *resv, 636 int regions_needed) 637 __must_hold(&resv->lock) 638 { 639 LIST_HEAD(allocated_regions); 640 int to_allocate = 0, i = 0; 641 struct file_region *trg = NULL, *rg = NULL; 642 643 VM_BUG_ON(regions_needed < 0); 644 645 /* 646 * Check for sufficient descriptors in the cache to accommodate 647 * the number of in progress add operations plus regions_needed. 648 * 649 * This is a while loop because when we drop the lock, some other call 650 * to region_add or region_del may have consumed some region_entries, 651 * so we keep looping here until we finally have enough entries for 652 * (adds_in_progress + regions_needed). 653 */ 654 while (resv->region_cache_count < 655 (resv->adds_in_progress + regions_needed)) { 656 to_allocate = resv->adds_in_progress + regions_needed - 657 resv->region_cache_count; 658 659 /* At this point, we should have enough entries in the cache 660 * for all the existing adds_in_progress. We should only be 661 * needing to allocate for regions_needed. 662 */ 663 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress); 664 665 spin_unlock(&resv->lock); 666 for (i = 0; i < to_allocate; i++) { 667 trg = kmalloc(sizeof(*trg), GFP_KERNEL); 668 if (!trg) 669 goto out_of_memory; 670 list_add(&trg->link, &allocated_regions); 671 } 672 673 spin_lock(&resv->lock); 674 675 list_splice(&allocated_regions, &resv->region_cache); 676 resv->region_cache_count += to_allocate; 677 } 678 679 return 0; 680 681 out_of_memory: 682 list_for_each_entry_safe(rg, trg, &allocated_regions, link) { 683 list_del(&rg->link); 684 kfree(rg); 685 } 686 return -ENOMEM; 687 } 688 689 /* 690 * Add the huge page range represented by [f, t) to the reserve 691 * map. Regions will be taken from the cache to fill in this range. 692 * Sufficient regions should exist in the cache due to the previous 693 * call to region_chg with the same range, but in some cases the cache will not 694 * have sufficient entries due to races with other code doing region_add or 695 * region_del. The extra needed entries will be allocated. 696 * 697 * regions_needed is the out value provided by a previous call to region_chg. 698 * 699 * Return the number of new huge pages added to the map. This number is greater 700 * than or equal to zero. If file_region entries needed to be allocated for 701 * this operation and we were not able to allocate, it returns -ENOMEM. 702 * region_add of regions of length 1 never allocate file_regions and cannot 703 * fail; region_chg will always allocate at least 1 entry and a region_add for 704 * 1 page will only require at most 1 entry. 705 */ 706 static long region_add(struct resv_map *resv, long f, long t, 707 long in_regions_needed, struct hstate *h, 708 struct hugetlb_cgroup *h_cg) 709 { 710 long add = 0, actual_regions_needed = 0; 711 712 spin_lock(&resv->lock); 713 retry: 714 715 /* Count how many regions are actually needed to execute this add. */ 716 add_reservation_in_range(resv, f, t, NULL, NULL, 717 &actual_regions_needed); 718 719 /* 720 * Check for sufficient descriptors in the cache to accommodate 721 * this add operation. Note that actual_regions_needed may be greater 722 * than in_regions_needed, as the resv_map may have been modified since 723 * the region_chg call. In this case, we need to make sure that we 724 * allocate extra entries, such that we have enough for all the 725 * existing adds_in_progress, plus the excess needed for this 726 * operation. 727 */ 728 if (actual_regions_needed > in_regions_needed && 729 resv->region_cache_count < 730 resv->adds_in_progress + 731 (actual_regions_needed - in_regions_needed)) { 732 /* region_add operation of range 1 should never need to 733 * allocate file_region entries. 734 */ 735 VM_BUG_ON(t - f <= 1); 736 737 if (allocate_file_region_entries( 738 resv, actual_regions_needed - in_regions_needed)) { 739 return -ENOMEM; 740 } 741 742 goto retry; 743 } 744 745 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL); 746 747 resv->adds_in_progress -= in_regions_needed; 748 749 spin_unlock(&resv->lock); 750 return add; 751 } 752 753 /* 754 * Examine the existing reserve map and determine how many 755 * huge pages in the specified range [f, t) are NOT currently 756 * represented. This routine is called before a subsequent 757 * call to region_add that will actually modify the reserve 758 * map to add the specified range [f, t). region_chg does 759 * not change the number of huge pages represented by the 760 * map. A number of new file_region structures is added to the cache as a 761 * placeholder, for the subsequent region_add call to use. At least 1 762 * file_region structure is added. 763 * 764 * out_regions_needed is the number of regions added to the 765 * resv->adds_in_progress. This value needs to be provided to a follow up call 766 * to region_add or region_abort for proper accounting. 767 * 768 * Returns the number of huge pages that need to be added to the existing 769 * reservation map for the range [f, t). This number is greater or equal to 770 * zero. -ENOMEM is returned if a new file_region structure or cache entry 771 * is needed and can not be allocated. 772 */ 773 static long region_chg(struct resv_map *resv, long f, long t, 774 long *out_regions_needed) 775 { 776 long chg = 0; 777 778 spin_lock(&resv->lock); 779 780 /* Count how many hugepages in this range are NOT represented. */ 781 chg = add_reservation_in_range(resv, f, t, NULL, NULL, 782 out_regions_needed); 783 784 if (*out_regions_needed == 0) 785 *out_regions_needed = 1; 786 787 if (allocate_file_region_entries(resv, *out_regions_needed)) 788 return -ENOMEM; 789 790 resv->adds_in_progress += *out_regions_needed; 791 792 spin_unlock(&resv->lock); 793 return chg; 794 } 795 796 /* 797 * Abort the in progress add operation. The adds_in_progress field 798 * of the resv_map keeps track of the operations in progress between 799 * calls to region_chg and region_add. Operations are sometimes 800 * aborted after the call to region_chg. In such cases, region_abort 801 * is called to decrement the adds_in_progress counter. regions_needed 802 * is the value returned by the region_chg call, it is used to decrement 803 * the adds_in_progress counter. 804 * 805 * NOTE: The range arguments [f, t) are not needed or used in this 806 * routine. They are kept to make reading the calling code easier as 807 * arguments will match the associated region_chg call. 808 */ 809 static void region_abort(struct resv_map *resv, long f, long t, 810 long regions_needed) 811 { 812 spin_lock(&resv->lock); 813 VM_BUG_ON(!resv->region_cache_count); 814 resv->adds_in_progress -= regions_needed; 815 spin_unlock(&resv->lock); 816 } 817 818 /* 819 * Delete the specified range [f, t) from the reserve map. If the 820 * t parameter is LONG_MAX, this indicates that ALL regions after f 821 * should be deleted. Locate the regions which intersect [f, t) 822 * and either trim, delete or split the existing regions. 823 * 824 * Returns the number of huge pages deleted from the reserve map. 825 * In the normal case, the return value is zero or more. In the 826 * case where a region must be split, a new region descriptor must 827 * be allocated. If the allocation fails, -ENOMEM will be returned. 828 * NOTE: If the parameter t == LONG_MAX, then we will never split 829 * a region and possibly return -ENOMEM. Callers specifying 830 * t == LONG_MAX do not need to check for -ENOMEM error. 831 */ 832 static long region_del(struct resv_map *resv, long f, long t) 833 { 834 struct list_head *head = &resv->regions; 835 struct file_region *rg, *trg; 836 struct file_region *nrg = NULL; 837 long del = 0; 838 839 retry: 840 spin_lock(&resv->lock); 841 list_for_each_entry_safe(rg, trg, head, link) { 842 /* 843 * Skip regions before the range to be deleted. file_region 844 * ranges are normally of the form [from, to). However, there 845 * may be a "placeholder" entry in the map which is of the form 846 * (from, to) with from == to. Check for placeholder entries 847 * at the beginning of the range to be deleted. 848 */ 849 if (rg->to <= f && (rg->to != rg->from || rg->to != f)) 850 continue; 851 852 if (rg->from >= t) 853 break; 854 855 if (f > rg->from && t < rg->to) { /* Must split region */ 856 /* 857 * Check for an entry in the cache before dropping 858 * lock and attempting allocation. 859 */ 860 if (!nrg && 861 resv->region_cache_count > resv->adds_in_progress) { 862 nrg = list_first_entry(&resv->region_cache, 863 struct file_region, 864 link); 865 list_del(&nrg->link); 866 resv->region_cache_count--; 867 } 868 869 if (!nrg) { 870 spin_unlock(&resv->lock); 871 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 872 if (!nrg) 873 return -ENOMEM; 874 goto retry; 875 } 876 877 del += t - f; 878 hugetlb_cgroup_uncharge_file_region( 879 resv, rg, t - f, false); 880 881 /* New entry for end of split region */ 882 nrg->from = t; 883 nrg->to = rg->to; 884 885 copy_hugetlb_cgroup_uncharge_info(nrg, rg); 886 887 INIT_LIST_HEAD(&nrg->link); 888 889 /* Original entry is trimmed */ 890 rg->to = f; 891 892 list_add(&nrg->link, &rg->link); 893 nrg = NULL; 894 break; 895 } 896 897 if (f <= rg->from && t >= rg->to) { /* Remove entire region */ 898 del += rg->to - rg->from; 899 hugetlb_cgroup_uncharge_file_region(resv, rg, 900 rg->to - rg->from, true); 901 list_del(&rg->link); 902 kfree(rg); 903 continue; 904 } 905 906 if (f <= rg->from) { /* Trim beginning of region */ 907 hugetlb_cgroup_uncharge_file_region(resv, rg, 908 t - rg->from, false); 909 910 del += t - rg->from; 911 rg->from = t; 912 } else { /* Trim end of region */ 913 hugetlb_cgroup_uncharge_file_region(resv, rg, 914 rg->to - f, false); 915 916 del += rg->to - f; 917 rg->to = f; 918 } 919 } 920 921 spin_unlock(&resv->lock); 922 kfree(nrg); 923 return del; 924 } 925 926 /* 927 * A rare out of memory error was encountered which prevented removal of 928 * the reserve map region for a page. The huge page itself was free'ed 929 * and removed from the page cache. This routine will adjust the subpool 930 * usage count, and the global reserve count if needed. By incrementing 931 * these counts, the reserve map entry which could not be deleted will 932 * appear as a "reserved" entry instead of simply dangling with incorrect 933 * counts. 934 */ 935 void hugetlb_fix_reserve_counts(struct inode *inode) 936 { 937 struct hugepage_subpool *spool = subpool_inode(inode); 938 long rsv_adjust; 939 bool reserved = false; 940 941 rsv_adjust = hugepage_subpool_get_pages(spool, 1); 942 if (rsv_adjust > 0) { 943 struct hstate *h = hstate_inode(inode); 944 945 if (!hugetlb_acct_memory(h, 1)) 946 reserved = true; 947 } else if (!rsv_adjust) { 948 reserved = true; 949 } 950 951 if (!reserved) 952 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n"); 953 } 954 955 /* 956 * Count and return the number of huge pages in the reserve map 957 * that intersect with the range [f, t). 958 */ 959 static long region_count(struct resv_map *resv, long f, long t) 960 { 961 struct list_head *head = &resv->regions; 962 struct file_region *rg; 963 long chg = 0; 964 965 spin_lock(&resv->lock); 966 /* Locate each segment we overlap with, and count that overlap. */ 967 list_for_each_entry(rg, head, link) { 968 long seg_from; 969 long seg_to; 970 971 if (rg->to <= f) 972 continue; 973 if (rg->from >= t) 974 break; 975 976 seg_from = max(rg->from, f); 977 seg_to = min(rg->to, t); 978 979 chg += seg_to - seg_from; 980 } 981 spin_unlock(&resv->lock); 982 983 return chg; 984 } 985 986 /* 987 * Convert the address within this vma to the page offset within 988 * the mapping, huge page units here. 989 */ 990 static pgoff_t vma_hugecache_offset(struct hstate *h, 991 struct vm_area_struct *vma, unsigned long address) 992 { 993 return ((address - vma->vm_start) >> huge_page_shift(h)) + 994 (vma->vm_pgoff >> huge_page_order(h)); 995 } 996 997 /** 998 * vma_kernel_pagesize - Page size granularity for this VMA. 999 * @vma: The user mapping. 1000 * 1001 * Folios in this VMA will be aligned to, and at least the size of the 1002 * number of bytes returned by this function. 1003 * 1004 * Return: The default size of the folios allocated when backing a VMA. 1005 */ 1006 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) 1007 { 1008 if (vma->vm_ops && vma->vm_ops->pagesize) 1009 return vma->vm_ops->pagesize(vma); 1010 return PAGE_SIZE; 1011 } 1012 EXPORT_SYMBOL_GPL(vma_kernel_pagesize); 1013 1014 /* 1015 * Return the page size being used by the MMU to back a VMA. In the majority 1016 * of cases, the page size used by the kernel matches the MMU size. On 1017 * architectures where it differs, an architecture-specific 'strong' 1018 * version of this symbol is required. 1019 */ 1020 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 1021 { 1022 return vma_kernel_pagesize(vma); 1023 } 1024 1025 /* 1026 * Flags for MAP_PRIVATE reservations. These are stored in the bottom 1027 * bits of the reservation map pointer, which are always clear due to 1028 * alignment. 1029 */ 1030 #define HPAGE_RESV_OWNER (1UL << 0) 1031 #define HPAGE_RESV_UNMAPPED (1UL << 1) 1032 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) 1033 1034 /* 1035 * These helpers are used to track how many pages are reserved for 1036 * faults in a MAP_PRIVATE mapping. Only the process that called mmap() 1037 * is guaranteed to have their future faults succeed. 1038 * 1039 * With the exception of hugetlb_dup_vma_private() which is called at fork(), 1040 * the reserve counters are updated with the hugetlb_lock held. It is safe 1041 * to reset the VMA at fork() time as it is not in use yet and there is no 1042 * chance of the global counters getting corrupted as a result of the values. 1043 * 1044 * The private mapping reservation is represented in a subtly different 1045 * manner to a shared mapping. A shared mapping has a region map associated 1046 * with the underlying file, this region map represents the backing file 1047 * pages which have ever had a reservation assigned which this persists even 1048 * after the page is instantiated. A private mapping has a region map 1049 * associated with the original mmap which is attached to all VMAs which 1050 * reference it, this region map represents those offsets which have consumed 1051 * reservation ie. where pages have been instantiated. 1052 */ 1053 static unsigned long get_vma_private_data(struct vm_area_struct *vma) 1054 { 1055 return (unsigned long)vma->vm_private_data; 1056 } 1057 1058 static void set_vma_private_data(struct vm_area_struct *vma, 1059 unsigned long value) 1060 { 1061 vma->vm_private_data = (void *)value; 1062 } 1063 1064 static void 1065 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map, 1066 struct hugetlb_cgroup *h_cg, 1067 struct hstate *h) 1068 { 1069 #ifdef CONFIG_CGROUP_HUGETLB 1070 if (!h_cg || !h) { 1071 resv_map->reservation_counter = NULL; 1072 resv_map->pages_per_hpage = 0; 1073 resv_map->css = NULL; 1074 } else { 1075 resv_map->reservation_counter = 1076 &h_cg->rsvd_hugepage[hstate_index(h)]; 1077 resv_map->pages_per_hpage = pages_per_huge_page(h); 1078 resv_map->css = &h_cg->css; 1079 } 1080 #endif 1081 } 1082 1083 struct resv_map *resv_map_alloc(void) 1084 { 1085 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); 1086 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL); 1087 1088 if (!resv_map || !rg) { 1089 kfree(resv_map); 1090 kfree(rg); 1091 return NULL; 1092 } 1093 1094 kref_init(&resv_map->refs); 1095 spin_lock_init(&resv_map->lock); 1096 INIT_LIST_HEAD(&resv_map->regions); 1097 init_rwsem(&resv_map->rw_sema); 1098 1099 resv_map->adds_in_progress = 0; 1100 /* 1101 * Initialize these to 0. On shared mappings, 0's here indicate these 1102 * fields don't do cgroup accounting. On private mappings, these will be 1103 * re-initialized to the proper values, to indicate that hugetlb cgroup 1104 * reservations are to be un-charged from here. 1105 */ 1106 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL); 1107 1108 INIT_LIST_HEAD(&resv_map->region_cache); 1109 list_add(&rg->link, &resv_map->region_cache); 1110 resv_map->region_cache_count = 1; 1111 1112 return resv_map; 1113 } 1114 1115 void resv_map_release(struct kref *ref) 1116 { 1117 struct resv_map *resv_map = container_of(ref, struct resv_map, refs); 1118 struct list_head *head = &resv_map->region_cache; 1119 struct file_region *rg, *trg; 1120 1121 /* Clear out any active regions before we release the map. */ 1122 region_del(resv_map, 0, LONG_MAX); 1123 1124 /* ... and any entries left in the cache */ 1125 list_for_each_entry_safe(rg, trg, head, link) { 1126 list_del(&rg->link); 1127 kfree(rg); 1128 } 1129 1130 VM_BUG_ON(resv_map->adds_in_progress); 1131 1132 kfree(resv_map); 1133 } 1134 1135 static inline struct resv_map *inode_resv_map(struct inode *inode) 1136 { 1137 /* 1138 * At inode evict time, i_mapping may not point to the original 1139 * address space within the inode. This original address space 1140 * contains the pointer to the resv_map. So, always use the 1141 * address space embedded within the inode. 1142 * The VERY common case is inode->mapping == &inode->i_data but, 1143 * this may not be true for device special inodes. 1144 */ 1145 return (struct resv_map *)(&inode->i_data)->i_private_data; 1146 } 1147 1148 static struct resv_map *vma_resv_map(struct vm_area_struct *vma) 1149 { 1150 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1151 if (vma->vm_flags & VM_MAYSHARE) { 1152 struct address_space *mapping = vma->vm_file->f_mapping; 1153 struct inode *inode = mapping->host; 1154 1155 return inode_resv_map(inode); 1156 1157 } else { 1158 return (struct resv_map *)(get_vma_private_data(vma) & 1159 ~HPAGE_RESV_MASK); 1160 } 1161 } 1162 1163 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) 1164 { 1165 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1166 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 1167 1168 set_vma_private_data(vma, (unsigned long)map); 1169 } 1170 1171 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) 1172 { 1173 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1174 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 1175 1176 set_vma_private_data(vma, get_vma_private_data(vma) | flags); 1177 } 1178 1179 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) 1180 { 1181 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1182 1183 return (get_vma_private_data(vma) & flag) != 0; 1184 } 1185 1186 bool __vma_private_lock(struct vm_area_struct *vma) 1187 { 1188 return !(vma->vm_flags & VM_MAYSHARE) && 1189 get_vma_private_data(vma) & ~HPAGE_RESV_MASK && 1190 is_vma_resv_set(vma, HPAGE_RESV_OWNER); 1191 } 1192 1193 void hugetlb_dup_vma_private(struct vm_area_struct *vma) 1194 { 1195 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1196 /* 1197 * Clear vm_private_data 1198 * - For shared mappings this is a per-vma semaphore that may be 1199 * allocated in a subsequent call to hugetlb_vm_op_open. 1200 * Before clearing, make sure pointer is not associated with vma 1201 * as this will leak the structure. This is the case when called 1202 * via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already 1203 * been called to allocate a new structure. 1204 * - For MAP_PRIVATE mappings, this is the reserve map which does 1205 * not apply to children. Faults generated by the children are 1206 * not guaranteed to succeed, even if read-only. 1207 */ 1208 if (vma->vm_flags & VM_MAYSHARE) { 1209 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 1210 1211 if (vma_lock && vma_lock->vma != vma) 1212 vma->vm_private_data = NULL; 1213 } else 1214 vma->vm_private_data = NULL; 1215 } 1216 1217 /* 1218 * Reset and decrement one ref on hugepage private reservation. 1219 * Called with mm->mmap_lock writer semaphore held. 1220 * This function should be only used by move_vma() and operate on 1221 * same sized vma. It should never come here with last ref on the 1222 * reservation. 1223 */ 1224 void clear_vma_resv_huge_pages(struct vm_area_struct *vma) 1225 { 1226 /* 1227 * Clear the old hugetlb private page reservation. 1228 * It has already been transferred to new_vma. 1229 * 1230 * During a mremap() operation of a hugetlb vma we call move_vma() 1231 * which copies vma into new_vma and unmaps vma. After the copy 1232 * operation both new_vma and vma share a reference to the resv_map 1233 * struct, and at that point vma is about to be unmapped. We don't 1234 * want to return the reservation to the pool at unmap of vma because 1235 * the reservation still lives on in new_vma, so simply decrement the 1236 * ref here and remove the resv_map reference from this vma. 1237 */ 1238 struct resv_map *reservations = vma_resv_map(vma); 1239 1240 if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 1241 resv_map_put_hugetlb_cgroup_uncharge_info(reservations); 1242 kref_put(&reservations->refs, resv_map_release); 1243 } 1244 1245 hugetlb_dup_vma_private(vma); 1246 } 1247 1248 /* Returns true if the VMA has associated reserve pages */ 1249 static bool vma_has_reserves(struct vm_area_struct *vma, long chg) 1250 { 1251 if (vma->vm_flags & VM_NORESERVE) { 1252 /* 1253 * This address is already reserved by other process(chg == 0), 1254 * so, we should decrement reserved count. Without decrementing, 1255 * reserve count remains after releasing inode, because this 1256 * allocated page will go into page cache and is regarded as 1257 * coming from reserved pool in releasing step. Currently, we 1258 * don't have any other solution to deal with this situation 1259 * properly, so add work-around here. 1260 */ 1261 if (vma->vm_flags & VM_MAYSHARE && chg == 0) 1262 return true; 1263 else 1264 return false; 1265 } 1266 1267 /* Shared mappings always use reserves */ 1268 if (vma->vm_flags & VM_MAYSHARE) { 1269 /* 1270 * We know VM_NORESERVE is not set. Therefore, there SHOULD 1271 * be a region map for all pages. The only situation where 1272 * there is no region map is if a hole was punched via 1273 * fallocate. In this case, there really are no reserves to 1274 * use. This situation is indicated if chg != 0. 1275 */ 1276 if (chg) 1277 return false; 1278 else 1279 return true; 1280 } 1281 1282 /* 1283 * Only the process that called mmap() has reserves for 1284 * private mappings. 1285 */ 1286 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 1287 /* 1288 * Like the shared case above, a hole punch or truncate 1289 * could have been performed on the private mapping. 1290 * Examine the value of chg to determine if reserves 1291 * actually exist or were previously consumed. 1292 * Very Subtle - The value of chg comes from a previous 1293 * call to vma_needs_reserves(). The reserve map for 1294 * private mappings has different (opposite) semantics 1295 * than that of shared mappings. vma_needs_reserves() 1296 * has already taken this difference in semantics into 1297 * account. Therefore, the meaning of chg is the same 1298 * as in the shared case above. Code could easily be 1299 * combined, but keeping it separate draws attention to 1300 * subtle differences. 1301 */ 1302 if (chg) 1303 return false; 1304 else 1305 return true; 1306 } 1307 1308 return false; 1309 } 1310 1311 static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio) 1312 { 1313 int nid = folio_nid(folio); 1314 1315 lockdep_assert_held(&hugetlb_lock); 1316 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio); 1317 1318 list_move(&folio->lru, &h->hugepage_freelists[nid]); 1319 h->free_huge_pages++; 1320 h->free_huge_pages_node[nid]++; 1321 folio_set_hugetlb_freed(folio); 1322 } 1323 1324 static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h, 1325 int nid) 1326 { 1327 struct folio *folio; 1328 bool pin = !!(current->flags & PF_MEMALLOC_PIN); 1329 1330 lockdep_assert_held(&hugetlb_lock); 1331 list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) { 1332 if (pin && !folio_is_longterm_pinnable(folio)) 1333 continue; 1334 1335 if (folio_test_hwpoison(folio)) 1336 continue; 1337 1338 list_move(&folio->lru, &h->hugepage_activelist); 1339 folio_ref_unfreeze(folio, 1); 1340 folio_clear_hugetlb_freed(folio); 1341 h->free_huge_pages--; 1342 h->free_huge_pages_node[nid]--; 1343 return folio; 1344 } 1345 1346 return NULL; 1347 } 1348 1349 static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask, 1350 int nid, nodemask_t *nmask) 1351 { 1352 unsigned int cpuset_mems_cookie; 1353 struct zonelist *zonelist; 1354 struct zone *zone; 1355 struct zoneref *z; 1356 int node = NUMA_NO_NODE; 1357 1358 /* 'nid' should not be NUMA_NO_NODE. Try to catch any misuse of it and rectifiy. */ 1359 if (nid == NUMA_NO_NODE) 1360 nid = numa_node_id(); 1361 1362 zonelist = node_zonelist(nid, gfp_mask); 1363 1364 retry_cpuset: 1365 cpuset_mems_cookie = read_mems_allowed_begin(); 1366 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) { 1367 struct folio *folio; 1368 1369 if (!cpuset_zone_allowed(zone, gfp_mask)) 1370 continue; 1371 /* 1372 * no need to ask again on the same node. Pool is node rather than 1373 * zone aware 1374 */ 1375 if (zone_to_nid(zone) == node) 1376 continue; 1377 node = zone_to_nid(zone); 1378 1379 folio = dequeue_hugetlb_folio_node_exact(h, node); 1380 if (folio) 1381 return folio; 1382 } 1383 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie))) 1384 goto retry_cpuset; 1385 1386 return NULL; 1387 } 1388 1389 static unsigned long available_huge_pages(struct hstate *h) 1390 { 1391 return h->free_huge_pages - h->resv_huge_pages; 1392 } 1393 1394 static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h, 1395 struct vm_area_struct *vma, 1396 unsigned long address, int avoid_reserve, 1397 long chg) 1398 { 1399 struct folio *folio = NULL; 1400 struct mempolicy *mpol; 1401 gfp_t gfp_mask; 1402 nodemask_t *nodemask; 1403 int nid; 1404 1405 /* 1406 * A child process with MAP_PRIVATE mappings created by their parent 1407 * have no page reserves. This check ensures that reservations are 1408 * not "stolen". The child may still get SIGKILLed 1409 */ 1410 if (!vma_has_reserves(vma, chg) && !available_huge_pages(h)) 1411 goto err; 1412 1413 /* If reserves cannot be used, ensure enough pages are in the pool */ 1414 if (avoid_reserve && !available_huge_pages(h)) 1415 goto err; 1416 1417 gfp_mask = htlb_alloc_mask(h); 1418 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 1419 1420 if (mpol_is_preferred_many(mpol)) { 1421 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, 1422 nid, nodemask); 1423 1424 /* Fallback to all nodes if page==NULL */ 1425 nodemask = NULL; 1426 } 1427 1428 if (!folio) 1429 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, 1430 nid, nodemask); 1431 1432 if (folio && !avoid_reserve && vma_has_reserves(vma, chg)) { 1433 folio_set_hugetlb_restore_reserve(folio); 1434 h->resv_huge_pages--; 1435 } 1436 1437 mpol_cond_put(mpol); 1438 return folio; 1439 1440 err: 1441 return NULL; 1442 } 1443 1444 /* 1445 * common helper functions for hstate_next_node_to_{alloc|free}. 1446 * We may have allocated or freed a huge page based on a different 1447 * nodes_allowed previously, so h->next_node_to_{alloc|free} might 1448 * be outside of *nodes_allowed. Ensure that we use an allowed 1449 * node for alloc or free. 1450 */ 1451 static int next_node_allowed(int nid, nodemask_t *nodes_allowed) 1452 { 1453 nid = next_node_in(nid, *nodes_allowed); 1454 VM_BUG_ON(nid >= MAX_NUMNODES); 1455 1456 return nid; 1457 } 1458 1459 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed) 1460 { 1461 if (!node_isset(nid, *nodes_allowed)) 1462 nid = next_node_allowed(nid, nodes_allowed); 1463 return nid; 1464 } 1465 1466 /* 1467 * returns the previously saved node ["this node"] from which to 1468 * allocate a persistent huge page for the pool and advance the 1469 * next node from which to allocate, handling wrap at end of node 1470 * mask. 1471 */ 1472 static int hstate_next_node_to_alloc(int *next_node, 1473 nodemask_t *nodes_allowed) 1474 { 1475 int nid; 1476 1477 VM_BUG_ON(!nodes_allowed); 1478 1479 nid = get_valid_node_allowed(*next_node, nodes_allowed); 1480 *next_node = next_node_allowed(nid, nodes_allowed); 1481 1482 return nid; 1483 } 1484 1485 /* 1486 * helper for remove_pool_hugetlb_folio() - return the previously saved 1487 * node ["this node"] from which to free a huge page. Advance the 1488 * next node id whether or not we find a free huge page to free so 1489 * that the next attempt to free addresses the next node. 1490 */ 1491 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed) 1492 { 1493 int nid; 1494 1495 VM_BUG_ON(!nodes_allowed); 1496 1497 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed); 1498 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed); 1499 1500 return nid; 1501 } 1502 1503 #define for_each_node_mask_to_alloc(next_node, nr_nodes, node, mask) \ 1504 for (nr_nodes = nodes_weight(*mask); \ 1505 nr_nodes > 0 && \ 1506 ((node = hstate_next_node_to_alloc(next_node, mask)) || 1); \ 1507 nr_nodes--) 1508 1509 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \ 1510 for (nr_nodes = nodes_weight(*mask); \ 1511 nr_nodes > 0 && \ 1512 ((node = hstate_next_node_to_free(hs, mask)) || 1); \ 1513 nr_nodes--) 1514 1515 /* used to demote non-gigantic_huge pages as well */ 1516 static void __destroy_compound_gigantic_folio(struct folio *folio, 1517 unsigned int order, bool demote) 1518 { 1519 int i; 1520 int nr_pages = 1 << order; 1521 struct page *p; 1522 1523 atomic_set(&folio->_entire_mapcount, 0); 1524 atomic_set(&folio->_large_mapcount, 0); 1525 atomic_set(&folio->_pincount, 0); 1526 1527 for (i = 1; i < nr_pages; i++) { 1528 p = folio_page(folio, i); 1529 p->flags &= ~PAGE_FLAGS_CHECK_AT_FREE; 1530 p->mapping = NULL; 1531 clear_compound_head(p); 1532 if (!demote) 1533 set_page_refcounted(p); 1534 } 1535 1536 __folio_clear_head(folio); 1537 } 1538 1539 static void destroy_compound_hugetlb_folio_for_demote(struct folio *folio, 1540 unsigned int order) 1541 { 1542 __destroy_compound_gigantic_folio(folio, order, true); 1543 } 1544 1545 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE 1546 static void destroy_compound_gigantic_folio(struct folio *folio, 1547 unsigned int order) 1548 { 1549 __destroy_compound_gigantic_folio(folio, order, false); 1550 } 1551 1552 static void free_gigantic_folio(struct folio *folio, unsigned int order) 1553 { 1554 /* 1555 * If the page isn't allocated using the cma allocator, 1556 * cma_release() returns false. 1557 */ 1558 #ifdef CONFIG_CMA 1559 int nid = folio_nid(folio); 1560 1561 if (cma_release(hugetlb_cma[nid], &folio->page, 1 << order)) 1562 return; 1563 #endif 1564 1565 free_contig_range(folio_pfn(folio), 1 << order); 1566 } 1567 1568 #ifdef CONFIG_CONTIG_ALLOC 1569 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask, 1570 int nid, nodemask_t *nodemask) 1571 { 1572 struct page *page; 1573 unsigned long nr_pages = pages_per_huge_page(h); 1574 if (nid == NUMA_NO_NODE) 1575 nid = numa_mem_id(); 1576 1577 #ifdef CONFIG_CMA 1578 { 1579 int node; 1580 1581 if (hugetlb_cma[nid]) { 1582 page = cma_alloc(hugetlb_cma[nid], nr_pages, 1583 huge_page_order(h), true); 1584 if (page) 1585 return page_folio(page); 1586 } 1587 1588 if (!(gfp_mask & __GFP_THISNODE)) { 1589 for_each_node_mask(node, *nodemask) { 1590 if (node == nid || !hugetlb_cma[node]) 1591 continue; 1592 1593 page = cma_alloc(hugetlb_cma[node], nr_pages, 1594 huge_page_order(h), true); 1595 if (page) 1596 return page_folio(page); 1597 } 1598 } 1599 } 1600 #endif 1601 1602 page = alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask); 1603 return page ? page_folio(page) : NULL; 1604 } 1605 1606 #else /* !CONFIG_CONTIG_ALLOC */ 1607 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask, 1608 int nid, nodemask_t *nodemask) 1609 { 1610 return NULL; 1611 } 1612 #endif /* CONFIG_CONTIG_ALLOC */ 1613 1614 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */ 1615 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask, 1616 int nid, nodemask_t *nodemask) 1617 { 1618 return NULL; 1619 } 1620 static inline void free_gigantic_folio(struct folio *folio, 1621 unsigned int order) { } 1622 static inline void destroy_compound_gigantic_folio(struct folio *folio, 1623 unsigned int order) { } 1624 #endif 1625 1626 /* 1627 * Remove hugetlb folio from lists. 1628 * If vmemmap exists for the folio, clear the hugetlb flag so that the 1629 * folio appears as just a compound page. Otherwise, wait until after 1630 * allocating vmemmap to clear the flag. 1631 * 1632 * Must be called with hugetlb lock held. 1633 */ 1634 static void remove_hugetlb_folio(struct hstate *h, struct folio *folio, 1635 bool adjust_surplus) 1636 { 1637 int nid = folio_nid(folio); 1638 1639 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio); 1640 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio); 1641 1642 lockdep_assert_held(&hugetlb_lock); 1643 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 1644 return; 1645 1646 list_del(&folio->lru); 1647 1648 if (folio_test_hugetlb_freed(folio)) { 1649 folio_clear_hugetlb_freed(folio); 1650 h->free_huge_pages--; 1651 h->free_huge_pages_node[nid]--; 1652 } 1653 if (adjust_surplus) { 1654 h->surplus_huge_pages--; 1655 h->surplus_huge_pages_node[nid]--; 1656 } 1657 1658 /* 1659 * We can only clear the hugetlb flag after allocating vmemmap 1660 * pages. Otherwise, someone (memory error handling) may try to write 1661 * to tail struct pages. 1662 */ 1663 if (!folio_test_hugetlb_vmemmap_optimized(folio)) 1664 __folio_clear_hugetlb(folio); 1665 1666 h->nr_huge_pages--; 1667 h->nr_huge_pages_node[nid]--; 1668 } 1669 1670 static void add_hugetlb_folio(struct hstate *h, struct folio *folio, 1671 bool adjust_surplus) 1672 { 1673 int nid = folio_nid(folio); 1674 1675 VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio); 1676 1677 lockdep_assert_held(&hugetlb_lock); 1678 1679 INIT_LIST_HEAD(&folio->lru); 1680 h->nr_huge_pages++; 1681 h->nr_huge_pages_node[nid]++; 1682 1683 if (adjust_surplus) { 1684 h->surplus_huge_pages++; 1685 h->surplus_huge_pages_node[nid]++; 1686 } 1687 1688 __folio_set_hugetlb(folio); 1689 folio_change_private(folio, NULL); 1690 /* 1691 * We have to set hugetlb_vmemmap_optimized again as above 1692 * folio_change_private(folio, NULL) cleared it. 1693 */ 1694 folio_set_hugetlb_vmemmap_optimized(folio); 1695 1696 arch_clear_hugetlb_flags(folio); 1697 enqueue_hugetlb_folio(h, folio); 1698 } 1699 1700 static void __update_and_free_hugetlb_folio(struct hstate *h, 1701 struct folio *folio) 1702 { 1703 bool clear_flag = folio_test_hugetlb_vmemmap_optimized(folio); 1704 1705 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 1706 return; 1707 1708 /* 1709 * If we don't know which subpages are hwpoisoned, we can't free 1710 * the hugepage, so it's leaked intentionally. 1711 */ 1712 if (folio_test_hugetlb_raw_hwp_unreliable(folio)) 1713 return; 1714 1715 /* 1716 * If folio is not vmemmap optimized (!clear_flag), then the folio 1717 * is no longer identified as a hugetlb page. hugetlb_vmemmap_restore_folio 1718 * can only be passed hugetlb pages and will BUG otherwise. 1719 */ 1720 if (clear_flag && hugetlb_vmemmap_restore_folio(h, folio)) { 1721 spin_lock_irq(&hugetlb_lock); 1722 /* 1723 * If we cannot allocate vmemmap pages, just refuse to free the 1724 * page and put the page back on the hugetlb free list and treat 1725 * as a surplus page. 1726 */ 1727 add_hugetlb_folio(h, folio, true); 1728 spin_unlock_irq(&hugetlb_lock); 1729 return; 1730 } 1731 1732 /* 1733 * If vmemmap pages were allocated above, then we need to clear the 1734 * hugetlb flag under the hugetlb lock. 1735 */ 1736 if (folio_test_hugetlb(folio)) { 1737 spin_lock_irq(&hugetlb_lock); 1738 __folio_clear_hugetlb(folio); 1739 spin_unlock_irq(&hugetlb_lock); 1740 } 1741 1742 /* 1743 * Move PageHWPoison flag from head page to the raw error pages, 1744 * which makes any healthy subpages reusable. 1745 */ 1746 if (unlikely(folio_test_hwpoison(folio))) 1747 folio_clear_hugetlb_hwpoison(folio); 1748 1749 folio_ref_unfreeze(folio, 1); 1750 1751 /* 1752 * Non-gigantic pages demoted from CMA allocated gigantic pages 1753 * need to be given back to CMA in free_gigantic_folio. 1754 */ 1755 if (hstate_is_gigantic(h) || 1756 hugetlb_cma_folio(folio, huge_page_order(h))) { 1757 destroy_compound_gigantic_folio(folio, huge_page_order(h)); 1758 free_gigantic_folio(folio, huge_page_order(h)); 1759 } else { 1760 INIT_LIST_HEAD(&folio->_deferred_list); 1761 folio_put(folio); 1762 } 1763 } 1764 1765 /* 1766 * As update_and_free_hugetlb_folio() can be called under any context, so we cannot 1767 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the 1768 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate 1769 * the vmemmap pages. 1770 * 1771 * free_hpage_workfn() locklessly retrieves the linked list of pages to be 1772 * freed and frees them one-by-one. As the page->mapping pointer is going 1773 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node 1774 * structure of a lockless linked list of huge pages to be freed. 1775 */ 1776 static LLIST_HEAD(hpage_freelist); 1777 1778 static void free_hpage_workfn(struct work_struct *work) 1779 { 1780 struct llist_node *node; 1781 1782 node = llist_del_all(&hpage_freelist); 1783 1784 while (node) { 1785 struct folio *folio; 1786 struct hstate *h; 1787 1788 folio = container_of((struct address_space **)node, 1789 struct folio, mapping); 1790 node = node->next; 1791 folio->mapping = NULL; 1792 /* 1793 * The VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio) in 1794 * folio_hstate() is going to trigger because a previous call to 1795 * remove_hugetlb_folio() will clear the hugetlb bit, so do 1796 * not use folio_hstate() directly. 1797 */ 1798 h = size_to_hstate(folio_size(folio)); 1799 1800 __update_and_free_hugetlb_folio(h, folio); 1801 1802 cond_resched(); 1803 } 1804 } 1805 static DECLARE_WORK(free_hpage_work, free_hpage_workfn); 1806 1807 static inline void flush_free_hpage_work(struct hstate *h) 1808 { 1809 if (hugetlb_vmemmap_optimizable(h)) 1810 flush_work(&free_hpage_work); 1811 } 1812 1813 static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio, 1814 bool atomic) 1815 { 1816 if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) { 1817 __update_and_free_hugetlb_folio(h, folio); 1818 return; 1819 } 1820 1821 /* 1822 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages. 1823 * 1824 * Only call schedule_work() if hpage_freelist is previously 1825 * empty. Otherwise, schedule_work() had been called but the workfn 1826 * hasn't retrieved the list yet. 1827 */ 1828 if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist)) 1829 schedule_work(&free_hpage_work); 1830 } 1831 1832 static void bulk_vmemmap_restore_error(struct hstate *h, 1833 struct list_head *folio_list, 1834 struct list_head *non_hvo_folios) 1835 { 1836 struct folio *folio, *t_folio; 1837 1838 if (!list_empty(non_hvo_folios)) { 1839 /* 1840 * Free any restored hugetlb pages so that restore of the 1841 * entire list can be retried. 1842 * The idea is that in the common case of ENOMEM errors freeing 1843 * hugetlb pages with vmemmap we will free up memory so that we 1844 * can allocate vmemmap for more hugetlb pages. 1845 */ 1846 list_for_each_entry_safe(folio, t_folio, non_hvo_folios, lru) { 1847 list_del(&folio->lru); 1848 spin_lock_irq(&hugetlb_lock); 1849 __folio_clear_hugetlb(folio); 1850 spin_unlock_irq(&hugetlb_lock); 1851 update_and_free_hugetlb_folio(h, folio, false); 1852 cond_resched(); 1853 } 1854 } else { 1855 /* 1856 * In the case where there are no folios which can be 1857 * immediately freed, we loop through the list trying to restore 1858 * vmemmap individually in the hope that someone elsewhere may 1859 * have done something to cause success (such as freeing some 1860 * memory). If unable to restore a hugetlb page, the hugetlb 1861 * page is made a surplus page and removed from the list. 1862 * If are able to restore vmemmap and free one hugetlb page, we 1863 * quit processing the list to retry the bulk operation. 1864 */ 1865 list_for_each_entry_safe(folio, t_folio, folio_list, lru) 1866 if (hugetlb_vmemmap_restore_folio(h, folio)) { 1867 list_del(&folio->lru); 1868 spin_lock_irq(&hugetlb_lock); 1869 add_hugetlb_folio(h, folio, true); 1870 spin_unlock_irq(&hugetlb_lock); 1871 } else { 1872 list_del(&folio->lru); 1873 spin_lock_irq(&hugetlb_lock); 1874 __folio_clear_hugetlb(folio); 1875 spin_unlock_irq(&hugetlb_lock); 1876 update_and_free_hugetlb_folio(h, folio, false); 1877 cond_resched(); 1878 break; 1879 } 1880 } 1881 } 1882 1883 static void update_and_free_pages_bulk(struct hstate *h, 1884 struct list_head *folio_list) 1885 { 1886 long ret; 1887 struct folio *folio, *t_folio; 1888 LIST_HEAD(non_hvo_folios); 1889 1890 /* 1891 * First allocate required vmemmmap (if necessary) for all folios. 1892 * Carefully handle errors and free up any available hugetlb pages 1893 * in an effort to make forward progress. 1894 */ 1895 retry: 1896 ret = hugetlb_vmemmap_restore_folios(h, folio_list, &non_hvo_folios); 1897 if (ret < 0) { 1898 bulk_vmemmap_restore_error(h, folio_list, &non_hvo_folios); 1899 goto retry; 1900 } 1901 1902 /* 1903 * At this point, list should be empty, ret should be >= 0 and there 1904 * should only be pages on the non_hvo_folios list. 1905 * Do note that the non_hvo_folios list could be empty. 1906 * Without HVO enabled, ret will be 0 and there is no need to call 1907 * __folio_clear_hugetlb as this was done previously. 1908 */ 1909 VM_WARN_ON(!list_empty(folio_list)); 1910 VM_WARN_ON(ret < 0); 1911 if (!list_empty(&non_hvo_folios) && ret) { 1912 spin_lock_irq(&hugetlb_lock); 1913 list_for_each_entry(folio, &non_hvo_folios, lru) 1914 __folio_clear_hugetlb(folio); 1915 spin_unlock_irq(&hugetlb_lock); 1916 } 1917 1918 list_for_each_entry_safe(folio, t_folio, &non_hvo_folios, lru) { 1919 update_and_free_hugetlb_folio(h, folio, false); 1920 cond_resched(); 1921 } 1922 } 1923 1924 struct hstate *size_to_hstate(unsigned long size) 1925 { 1926 struct hstate *h; 1927 1928 for_each_hstate(h) { 1929 if (huge_page_size(h) == size) 1930 return h; 1931 } 1932 return NULL; 1933 } 1934 1935 void free_huge_folio(struct folio *folio) 1936 { 1937 /* 1938 * Can't pass hstate in here because it is called from the 1939 * generic mm code. 1940 */ 1941 struct hstate *h = folio_hstate(folio); 1942 int nid = folio_nid(folio); 1943 struct hugepage_subpool *spool = hugetlb_folio_subpool(folio); 1944 bool restore_reserve; 1945 unsigned long flags; 1946 1947 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio); 1948 VM_BUG_ON_FOLIO(folio_mapcount(folio), folio); 1949 1950 hugetlb_set_folio_subpool(folio, NULL); 1951 if (folio_test_anon(folio)) 1952 __ClearPageAnonExclusive(&folio->page); 1953 folio->mapping = NULL; 1954 restore_reserve = folio_test_hugetlb_restore_reserve(folio); 1955 folio_clear_hugetlb_restore_reserve(folio); 1956 1957 /* 1958 * If HPageRestoreReserve was set on page, page allocation consumed a 1959 * reservation. If the page was associated with a subpool, there 1960 * would have been a page reserved in the subpool before allocation 1961 * via hugepage_subpool_get_pages(). Since we are 'restoring' the 1962 * reservation, do not call hugepage_subpool_put_pages() as this will 1963 * remove the reserved page from the subpool. 1964 */ 1965 if (!restore_reserve) { 1966 /* 1967 * A return code of zero implies that the subpool will be 1968 * under its minimum size if the reservation is not restored 1969 * after page is free. Therefore, force restore_reserve 1970 * operation. 1971 */ 1972 if (hugepage_subpool_put_pages(spool, 1) == 0) 1973 restore_reserve = true; 1974 } 1975 1976 spin_lock_irqsave(&hugetlb_lock, flags); 1977 folio_clear_hugetlb_migratable(folio); 1978 hugetlb_cgroup_uncharge_folio(hstate_index(h), 1979 pages_per_huge_page(h), folio); 1980 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h), 1981 pages_per_huge_page(h), folio); 1982 mem_cgroup_uncharge(folio); 1983 if (restore_reserve) 1984 h->resv_huge_pages++; 1985 1986 if (folio_test_hugetlb_temporary(folio)) { 1987 remove_hugetlb_folio(h, folio, false); 1988 spin_unlock_irqrestore(&hugetlb_lock, flags); 1989 update_and_free_hugetlb_folio(h, folio, true); 1990 } else if (h->surplus_huge_pages_node[nid]) { 1991 /* remove the page from active list */ 1992 remove_hugetlb_folio(h, folio, true); 1993 spin_unlock_irqrestore(&hugetlb_lock, flags); 1994 update_and_free_hugetlb_folio(h, folio, true); 1995 } else { 1996 arch_clear_hugetlb_flags(folio); 1997 enqueue_hugetlb_folio(h, folio); 1998 spin_unlock_irqrestore(&hugetlb_lock, flags); 1999 } 2000 } 2001 2002 /* 2003 * Must be called with the hugetlb lock held 2004 */ 2005 static void __prep_account_new_huge_page(struct hstate *h, int nid) 2006 { 2007 lockdep_assert_held(&hugetlb_lock); 2008 h->nr_huge_pages++; 2009 h->nr_huge_pages_node[nid]++; 2010 } 2011 2012 static void init_new_hugetlb_folio(struct hstate *h, struct folio *folio) 2013 { 2014 __folio_set_hugetlb(folio); 2015 INIT_LIST_HEAD(&folio->lru); 2016 hugetlb_set_folio_subpool(folio, NULL); 2017 set_hugetlb_cgroup(folio, NULL); 2018 set_hugetlb_cgroup_rsvd(folio, NULL); 2019 } 2020 2021 static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio) 2022 { 2023 init_new_hugetlb_folio(h, folio); 2024 hugetlb_vmemmap_optimize_folio(h, folio); 2025 } 2026 2027 static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid) 2028 { 2029 __prep_new_hugetlb_folio(h, folio); 2030 spin_lock_irq(&hugetlb_lock); 2031 __prep_account_new_huge_page(h, nid); 2032 spin_unlock_irq(&hugetlb_lock); 2033 } 2034 2035 static bool __prep_compound_gigantic_folio(struct folio *folio, 2036 unsigned int order, bool demote) 2037 { 2038 int i, j; 2039 int nr_pages = 1 << order; 2040 struct page *p; 2041 2042 __folio_clear_reserved(folio); 2043 for (i = 0; i < nr_pages; i++) { 2044 p = folio_page(folio, i); 2045 2046 /* 2047 * For gigantic hugepages allocated through bootmem at 2048 * boot, it's safer to be consistent with the not-gigantic 2049 * hugepages and clear the PG_reserved bit from all tail pages 2050 * too. Otherwise drivers using get_user_pages() to access tail 2051 * pages may get the reference counting wrong if they see 2052 * PG_reserved set on a tail page (despite the head page not 2053 * having PG_reserved set). Enforcing this consistency between 2054 * head and tail pages allows drivers to optimize away a check 2055 * on the head page when they need know if put_page() is needed 2056 * after get_user_pages(). 2057 */ 2058 if (i != 0) /* head page cleared above */ 2059 __ClearPageReserved(p); 2060 /* 2061 * Subtle and very unlikely 2062 * 2063 * Gigantic 'page allocators' such as memblock or cma will 2064 * return a set of pages with each page ref counted. We need 2065 * to turn this set of pages into a compound page with tail 2066 * page ref counts set to zero. Code such as speculative page 2067 * cache adding could take a ref on a 'to be' tail page. 2068 * We need to respect any increased ref count, and only set 2069 * the ref count to zero if count is currently 1. If count 2070 * is not 1, we return an error. An error return indicates 2071 * the set of pages can not be converted to a gigantic page. 2072 * The caller who allocated the pages should then discard the 2073 * pages using the appropriate free interface. 2074 * 2075 * In the case of demote, the ref count will be zero. 2076 */ 2077 if (!demote) { 2078 if (!page_ref_freeze(p, 1)) { 2079 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n"); 2080 goto out_error; 2081 } 2082 } else { 2083 VM_BUG_ON_PAGE(page_count(p), p); 2084 } 2085 if (i != 0) 2086 set_compound_head(p, &folio->page); 2087 } 2088 __folio_set_head(folio); 2089 /* we rely on prep_new_hugetlb_folio to set the hugetlb flag */ 2090 folio_set_order(folio, order); 2091 atomic_set(&folio->_entire_mapcount, -1); 2092 atomic_set(&folio->_large_mapcount, -1); 2093 atomic_set(&folio->_pincount, 0); 2094 return true; 2095 2096 out_error: 2097 /* undo page modifications made above */ 2098 for (j = 0; j < i; j++) { 2099 p = folio_page(folio, j); 2100 if (j != 0) 2101 clear_compound_head(p); 2102 set_page_refcounted(p); 2103 } 2104 /* need to clear PG_reserved on remaining tail pages */ 2105 for (; j < nr_pages; j++) { 2106 p = folio_page(folio, j); 2107 __ClearPageReserved(p); 2108 } 2109 return false; 2110 } 2111 2112 static bool prep_compound_gigantic_folio(struct folio *folio, 2113 unsigned int order) 2114 { 2115 return __prep_compound_gigantic_folio(folio, order, false); 2116 } 2117 2118 static bool prep_compound_gigantic_folio_for_demote(struct folio *folio, 2119 unsigned int order) 2120 { 2121 return __prep_compound_gigantic_folio(folio, order, true); 2122 } 2123 2124 /* 2125 * Find and lock address space (mapping) in write mode. 2126 * 2127 * Upon entry, the folio is locked which means that folio_mapping() is 2128 * stable. Due to locking order, we can only trylock_write. If we can 2129 * not get the lock, simply return NULL to caller. 2130 */ 2131 struct address_space *hugetlb_folio_mapping_lock_write(struct folio *folio) 2132 { 2133 struct address_space *mapping = folio_mapping(folio); 2134 2135 if (!mapping) 2136 return mapping; 2137 2138 if (i_mmap_trylock_write(mapping)) 2139 return mapping; 2140 2141 return NULL; 2142 } 2143 2144 static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h, 2145 gfp_t gfp_mask, int nid, nodemask_t *nmask, 2146 nodemask_t *node_alloc_noretry) 2147 { 2148 int order = huge_page_order(h); 2149 struct folio *folio; 2150 bool alloc_try_hard = true; 2151 bool retry = true; 2152 2153 /* 2154 * By default we always try hard to allocate the folio with 2155 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating folios in 2156 * a loop (to adjust global huge page counts) and previous allocation 2157 * failed, do not continue to try hard on the same node. Use the 2158 * node_alloc_noretry bitmap to manage this state information. 2159 */ 2160 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry)) 2161 alloc_try_hard = false; 2162 gfp_mask |= __GFP_COMP|__GFP_NOWARN; 2163 if (alloc_try_hard) 2164 gfp_mask |= __GFP_RETRY_MAYFAIL; 2165 if (nid == NUMA_NO_NODE) 2166 nid = numa_mem_id(); 2167 retry: 2168 folio = __folio_alloc(gfp_mask, order, nid, nmask); 2169 /* Ensure hugetlb folio won't have large_rmappable flag set. */ 2170 if (folio) 2171 folio_clear_large_rmappable(folio); 2172 2173 if (folio && !folio_ref_freeze(folio, 1)) { 2174 folio_put(folio); 2175 if (retry) { /* retry once */ 2176 retry = false; 2177 goto retry; 2178 } 2179 /* WOW! twice in a row. */ 2180 pr_warn("HugeTLB unexpected inflated folio ref count\n"); 2181 folio = NULL; 2182 } 2183 2184 /* 2185 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a 2186 * folio this indicates an overall state change. Clear bit so 2187 * that we resume normal 'try hard' allocations. 2188 */ 2189 if (node_alloc_noretry && folio && !alloc_try_hard) 2190 node_clear(nid, *node_alloc_noretry); 2191 2192 /* 2193 * If we tried hard to get a folio but failed, set bit so that 2194 * subsequent attempts will not try as hard until there is an 2195 * overall state change. 2196 */ 2197 if (node_alloc_noretry && !folio && alloc_try_hard) 2198 node_set(nid, *node_alloc_noretry); 2199 2200 if (!folio) { 2201 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 2202 return NULL; 2203 } 2204 2205 __count_vm_event(HTLB_BUDDY_PGALLOC); 2206 return folio; 2207 } 2208 2209 static struct folio *__alloc_fresh_hugetlb_folio(struct hstate *h, 2210 gfp_t gfp_mask, int nid, nodemask_t *nmask, 2211 nodemask_t *node_alloc_noretry) 2212 { 2213 struct folio *folio; 2214 bool retry = false; 2215 2216 retry: 2217 if (hstate_is_gigantic(h)) 2218 folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask); 2219 else 2220 folio = alloc_buddy_hugetlb_folio(h, gfp_mask, 2221 nid, nmask, node_alloc_noretry); 2222 if (!folio) 2223 return NULL; 2224 2225 if (hstate_is_gigantic(h)) { 2226 if (!prep_compound_gigantic_folio(folio, huge_page_order(h))) { 2227 /* 2228 * Rare failure to convert pages to compound page. 2229 * Free pages and try again - ONCE! 2230 */ 2231 free_gigantic_folio(folio, huge_page_order(h)); 2232 if (!retry) { 2233 retry = true; 2234 goto retry; 2235 } 2236 return NULL; 2237 } 2238 } 2239 2240 return folio; 2241 } 2242 2243 static struct folio *only_alloc_fresh_hugetlb_folio(struct hstate *h, 2244 gfp_t gfp_mask, int nid, nodemask_t *nmask, 2245 nodemask_t *node_alloc_noretry) 2246 { 2247 struct folio *folio; 2248 2249 folio = __alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, 2250 node_alloc_noretry); 2251 if (folio) 2252 init_new_hugetlb_folio(h, folio); 2253 return folio; 2254 } 2255 2256 /* 2257 * Common helper to allocate a fresh hugetlb page. All specific allocators 2258 * should use this function to get new hugetlb pages 2259 * 2260 * Note that returned page is 'frozen': ref count of head page and all tail 2261 * pages is zero. 2262 */ 2263 static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h, 2264 gfp_t gfp_mask, int nid, nodemask_t *nmask) 2265 { 2266 struct folio *folio; 2267 2268 folio = __alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL); 2269 if (!folio) 2270 return NULL; 2271 2272 prep_new_hugetlb_folio(h, folio, folio_nid(folio)); 2273 return folio; 2274 } 2275 2276 static void prep_and_add_allocated_folios(struct hstate *h, 2277 struct list_head *folio_list) 2278 { 2279 unsigned long flags; 2280 struct folio *folio, *tmp_f; 2281 2282 /* Send list for bulk vmemmap optimization processing */ 2283 hugetlb_vmemmap_optimize_folios(h, folio_list); 2284 2285 /* Add all new pool pages to free lists in one lock cycle */ 2286 spin_lock_irqsave(&hugetlb_lock, flags); 2287 list_for_each_entry_safe(folio, tmp_f, folio_list, lru) { 2288 __prep_account_new_huge_page(h, folio_nid(folio)); 2289 enqueue_hugetlb_folio(h, folio); 2290 } 2291 spin_unlock_irqrestore(&hugetlb_lock, flags); 2292 } 2293 2294 /* 2295 * Allocates a fresh hugetlb page in a node interleaved manner. The page 2296 * will later be added to the appropriate hugetlb pool. 2297 */ 2298 static struct folio *alloc_pool_huge_folio(struct hstate *h, 2299 nodemask_t *nodes_allowed, 2300 nodemask_t *node_alloc_noretry, 2301 int *next_node) 2302 { 2303 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 2304 int nr_nodes, node; 2305 2306 for_each_node_mask_to_alloc(next_node, nr_nodes, node, nodes_allowed) { 2307 struct folio *folio; 2308 2309 folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, node, 2310 nodes_allowed, node_alloc_noretry); 2311 if (folio) 2312 return folio; 2313 } 2314 2315 return NULL; 2316 } 2317 2318 /* 2319 * Remove huge page from pool from next node to free. Attempt to keep 2320 * persistent huge pages more or less balanced over allowed nodes. 2321 * This routine only 'removes' the hugetlb page. The caller must make 2322 * an additional call to free the page to low level allocators. 2323 * Called with hugetlb_lock locked. 2324 */ 2325 static struct folio *remove_pool_hugetlb_folio(struct hstate *h, 2326 nodemask_t *nodes_allowed, bool acct_surplus) 2327 { 2328 int nr_nodes, node; 2329 struct folio *folio = NULL; 2330 2331 lockdep_assert_held(&hugetlb_lock); 2332 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 2333 /* 2334 * If we're returning unused surplus pages, only examine 2335 * nodes with surplus pages. 2336 */ 2337 if ((!acct_surplus || h->surplus_huge_pages_node[node]) && 2338 !list_empty(&h->hugepage_freelists[node])) { 2339 folio = list_entry(h->hugepage_freelists[node].next, 2340 struct folio, lru); 2341 remove_hugetlb_folio(h, folio, acct_surplus); 2342 break; 2343 } 2344 } 2345 2346 return folio; 2347 } 2348 2349 /* 2350 * Dissolve a given free hugetlb folio into free buddy pages. This function 2351 * does nothing for in-use hugetlb folios and non-hugetlb folios. 2352 * This function returns values like below: 2353 * 2354 * -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages 2355 * when the system is under memory pressure and the feature of 2356 * freeing unused vmemmap pages associated with each hugetlb page 2357 * is enabled. 2358 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use 2359 * (allocated or reserved.) 2360 * 0: successfully dissolved free hugepages or the page is not a 2361 * hugepage (considered as already dissolved) 2362 */ 2363 int dissolve_free_hugetlb_folio(struct folio *folio) 2364 { 2365 int rc = -EBUSY; 2366 2367 retry: 2368 /* Not to disrupt normal path by vainly holding hugetlb_lock */ 2369 if (!folio_test_hugetlb(folio)) 2370 return 0; 2371 2372 spin_lock_irq(&hugetlb_lock); 2373 if (!folio_test_hugetlb(folio)) { 2374 rc = 0; 2375 goto out; 2376 } 2377 2378 if (!folio_ref_count(folio)) { 2379 struct hstate *h = folio_hstate(folio); 2380 if (!available_huge_pages(h)) 2381 goto out; 2382 2383 /* 2384 * We should make sure that the page is already on the free list 2385 * when it is dissolved. 2386 */ 2387 if (unlikely(!folio_test_hugetlb_freed(folio))) { 2388 spin_unlock_irq(&hugetlb_lock); 2389 cond_resched(); 2390 2391 /* 2392 * Theoretically, we should return -EBUSY when we 2393 * encounter this race. In fact, we have a chance 2394 * to successfully dissolve the page if we do a 2395 * retry. Because the race window is quite small. 2396 * If we seize this opportunity, it is an optimization 2397 * for increasing the success rate of dissolving page. 2398 */ 2399 goto retry; 2400 } 2401 2402 remove_hugetlb_folio(h, folio, false); 2403 h->max_huge_pages--; 2404 spin_unlock_irq(&hugetlb_lock); 2405 2406 /* 2407 * Normally update_and_free_hugtlb_folio will allocate required vmemmmap 2408 * before freeing the page. update_and_free_hugtlb_folio will fail to 2409 * free the page if it can not allocate required vmemmap. We 2410 * need to adjust max_huge_pages if the page is not freed. 2411 * Attempt to allocate vmemmmap here so that we can take 2412 * appropriate action on failure. 2413 * 2414 * The folio_test_hugetlb check here is because 2415 * remove_hugetlb_folio will clear hugetlb folio flag for 2416 * non-vmemmap optimized hugetlb folios. 2417 */ 2418 if (folio_test_hugetlb(folio)) { 2419 rc = hugetlb_vmemmap_restore_folio(h, folio); 2420 if (rc) { 2421 spin_lock_irq(&hugetlb_lock); 2422 add_hugetlb_folio(h, folio, false); 2423 h->max_huge_pages++; 2424 goto out; 2425 } 2426 } else 2427 rc = 0; 2428 2429 update_and_free_hugetlb_folio(h, folio, false); 2430 return rc; 2431 } 2432 out: 2433 spin_unlock_irq(&hugetlb_lock); 2434 return rc; 2435 } 2436 2437 /* 2438 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to 2439 * make specified memory blocks removable from the system. 2440 * Note that this will dissolve a free gigantic hugepage completely, if any 2441 * part of it lies within the given range. 2442 * Also note that if dissolve_free_hugetlb_folio() returns with an error, all 2443 * free hugetlb folios that were dissolved before that error are lost. 2444 */ 2445 int dissolve_free_hugetlb_folios(unsigned long start_pfn, unsigned long end_pfn) 2446 { 2447 unsigned long pfn; 2448 struct folio *folio; 2449 int rc = 0; 2450 unsigned int order; 2451 struct hstate *h; 2452 2453 if (!hugepages_supported()) 2454 return rc; 2455 2456 order = huge_page_order(&default_hstate); 2457 for_each_hstate(h) 2458 order = min(order, huge_page_order(h)); 2459 2460 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) { 2461 folio = pfn_folio(pfn); 2462 rc = dissolve_free_hugetlb_folio(folio); 2463 if (rc) 2464 break; 2465 } 2466 2467 return rc; 2468 } 2469 2470 /* 2471 * Allocates a fresh surplus page from the page allocator. 2472 */ 2473 static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h, 2474 gfp_t gfp_mask, int nid, nodemask_t *nmask) 2475 { 2476 struct folio *folio = NULL; 2477 2478 if (hstate_is_gigantic(h)) 2479 return NULL; 2480 2481 spin_lock_irq(&hugetlb_lock); 2482 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) 2483 goto out_unlock; 2484 spin_unlock_irq(&hugetlb_lock); 2485 2486 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask); 2487 if (!folio) 2488 return NULL; 2489 2490 spin_lock_irq(&hugetlb_lock); 2491 /* 2492 * We could have raced with the pool size change. 2493 * Double check that and simply deallocate the new page 2494 * if we would end up overcommiting the surpluses. Abuse 2495 * temporary page to workaround the nasty free_huge_folio 2496 * codeflow 2497 */ 2498 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { 2499 folio_set_hugetlb_temporary(folio); 2500 spin_unlock_irq(&hugetlb_lock); 2501 free_huge_folio(folio); 2502 return NULL; 2503 } 2504 2505 h->surplus_huge_pages++; 2506 h->surplus_huge_pages_node[folio_nid(folio)]++; 2507 2508 out_unlock: 2509 spin_unlock_irq(&hugetlb_lock); 2510 2511 return folio; 2512 } 2513 2514 static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask, 2515 int nid, nodemask_t *nmask) 2516 { 2517 struct folio *folio; 2518 2519 if (hstate_is_gigantic(h)) 2520 return NULL; 2521 2522 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask); 2523 if (!folio) 2524 return NULL; 2525 2526 /* fresh huge pages are frozen */ 2527 folio_ref_unfreeze(folio, 1); 2528 /* 2529 * We do not account these pages as surplus because they are only 2530 * temporary and will be released properly on the last reference 2531 */ 2532 folio_set_hugetlb_temporary(folio); 2533 2534 return folio; 2535 } 2536 2537 /* 2538 * Use the VMA's mpolicy to allocate a huge page from the buddy. 2539 */ 2540 static 2541 struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h, 2542 struct vm_area_struct *vma, unsigned long addr) 2543 { 2544 struct folio *folio = NULL; 2545 struct mempolicy *mpol; 2546 gfp_t gfp_mask = htlb_alloc_mask(h); 2547 int nid; 2548 nodemask_t *nodemask; 2549 2550 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask); 2551 if (mpol_is_preferred_many(mpol)) { 2552 gfp_t gfp = gfp_mask | __GFP_NOWARN; 2553 2554 gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL); 2555 folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask); 2556 2557 /* Fallback to all nodes if page==NULL */ 2558 nodemask = NULL; 2559 } 2560 2561 if (!folio) 2562 folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask); 2563 mpol_cond_put(mpol); 2564 return folio; 2565 } 2566 2567 /* folio migration callback function */ 2568 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid, 2569 nodemask_t *nmask, gfp_t gfp_mask, bool allow_alloc_fallback) 2570 { 2571 spin_lock_irq(&hugetlb_lock); 2572 if (available_huge_pages(h)) { 2573 struct folio *folio; 2574 2575 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, 2576 preferred_nid, nmask); 2577 if (folio) { 2578 spin_unlock_irq(&hugetlb_lock); 2579 return folio; 2580 } 2581 } 2582 spin_unlock_irq(&hugetlb_lock); 2583 2584 /* We cannot fallback to other nodes, as we could break the per-node pool. */ 2585 if (!allow_alloc_fallback) 2586 gfp_mask |= __GFP_THISNODE; 2587 2588 return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask); 2589 } 2590 2591 static nodemask_t *policy_mbind_nodemask(gfp_t gfp) 2592 { 2593 #ifdef CONFIG_NUMA 2594 struct mempolicy *mpol = get_task_policy(current); 2595 2596 /* 2597 * Only enforce MPOL_BIND policy which overlaps with cpuset policy 2598 * (from policy_nodemask) specifically for hugetlb case 2599 */ 2600 if (mpol->mode == MPOL_BIND && 2601 (apply_policy_zone(mpol, gfp_zone(gfp)) && 2602 cpuset_nodemask_valid_mems_allowed(&mpol->nodes))) 2603 return &mpol->nodes; 2604 #endif 2605 return NULL; 2606 } 2607 2608 /* 2609 * Increase the hugetlb pool such that it can accommodate a reservation 2610 * of size 'delta'. 2611 */ 2612 static int gather_surplus_pages(struct hstate *h, long delta) 2613 __must_hold(&hugetlb_lock) 2614 { 2615 LIST_HEAD(surplus_list); 2616 struct folio *folio, *tmp; 2617 int ret; 2618 long i; 2619 long needed, allocated; 2620 bool alloc_ok = true; 2621 int node; 2622 nodemask_t *mbind_nodemask = policy_mbind_nodemask(htlb_alloc_mask(h)); 2623 2624 lockdep_assert_held(&hugetlb_lock); 2625 needed = (h->resv_huge_pages + delta) - h->free_huge_pages; 2626 if (needed <= 0) { 2627 h->resv_huge_pages += delta; 2628 return 0; 2629 } 2630 2631 allocated = 0; 2632 2633 ret = -ENOMEM; 2634 retry: 2635 spin_unlock_irq(&hugetlb_lock); 2636 for (i = 0; i < needed; i++) { 2637 folio = NULL; 2638 for_each_node_mask(node, cpuset_current_mems_allowed) { 2639 if (!mbind_nodemask || node_isset(node, *mbind_nodemask)) { 2640 folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h), 2641 node, NULL); 2642 if (folio) 2643 break; 2644 } 2645 } 2646 if (!folio) { 2647 alloc_ok = false; 2648 break; 2649 } 2650 list_add(&folio->lru, &surplus_list); 2651 cond_resched(); 2652 } 2653 allocated += i; 2654 2655 /* 2656 * After retaking hugetlb_lock, we need to recalculate 'needed' 2657 * because either resv_huge_pages or free_huge_pages may have changed. 2658 */ 2659 spin_lock_irq(&hugetlb_lock); 2660 needed = (h->resv_huge_pages + delta) - 2661 (h->free_huge_pages + allocated); 2662 if (needed > 0) { 2663 if (alloc_ok) 2664 goto retry; 2665 /* 2666 * We were not able to allocate enough pages to 2667 * satisfy the entire reservation so we free what 2668 * we've allocated so far. 2669 */ 2670 goto free; 2671 } 2672 /* 2673 * The surplus_list now contains _at_least_ the number of extra pages 2674 * needed to accommodate the reservation. Add the appropriate number 2675 * of pages to the hugetlb pool and free the extras back to the buddy 2676 * allocator. Commit the entire reservation here to prevent another 2677 * process from stealing the pages as they are added to the pool but 2678 * before they are reserved. 2679 */ 2680 needed += allocated; 2681 h->resv_huge_pages += delta; 2682 ret = 0; 2683 2684 /* Free the needed pages to the hugetlb pool */ 2685 list_for_each_entry_safe(folio, tmp, &surplus_list, lru) { 2686 if ((--needed) < 0) 2687 break; 2688 /* Add the page to the hugetlb allocator */ 2689 enqueue_hugetlb_folio(h, folio); 2690 } 2691 free: 2692 spin_unlock_irq(&hugetlb_lock); 2693 2694 /* 2695 * Free unnecessary surplus pages to the buddy allocator. 2696 * Pages have no ref count, call free_huge_folio directly. 2697 */ 2698 list_for_each_entry_safe(folio, tmp, &surplus_list, lru) 2699 free_huge_folio(folio); 2700 spin_lock_irq(&hugetlb_lock); 2701 2702 return ret; 2703 } 2704 2705 /* 2706 * This routine has two main purposes: 2707 * 1) Decrement the reservation count (resv_huge_pages) by the value passed 2708 * in unused_resv_pages. This corresponds to the prior adjustments made 2709 * to the associated reservation map. 2710 * 2) Free any unused surplus pages that may have been allocated to satisfy 2711 * the reservation. As many as unused_resv_pages may be freed. 2712 */ 2713 static void return_unused_surplus_pages(struct hstate *h, 2714 unsigned long unused_resv_pages) 2715 { 2716 unsigned long nr_pages; 2717 LIST_HEAD(page_list); 2718 2719 lockdep_assert_held(&hugetlb_lock); 2720 /* Uncommit the reservation */ 2721 h->resv_huge_pages -= unused_resv_pages; 2722 2723 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 2724 goto out; 2725 2726 /* 2727 * Part (or even all) of the reservation could have been backed 2728 * by pre-allocated pages. Only free surplus pages. 2729 */ 2730 nr_pages = min(unused_resv_pages, h->surplus_huge_pages); 2731 2732 /* 2733 * We want to release as many surplus pages as possible, spread 2734 * evenly across all nodes with memory. Iterate across these nodes 2735 * until we can no longer free unreserved surplus pages. This occurs 2736 * when the nodes with surplus pages have no free pages. 2737 * remove_pool_hugetlb_folio() will balance the freed pages across the 2738 * on-line nodes with memory and will handle the hstate accounting. 2739 */ 2740 while (nr_pages--) { 2741 struct folio *folio; 2742 2743 folio = remove_pool_hugetlb_folio(h, &node_states[N_MEMORY], 1); 2744 if (!folio) 2745 goto out; 2746 2747 list_add(&folio->lru, &page_list); 2748 } 2749 2750 out: 2751 spin_unlock_irq(&hugetlb_lock); 2752 update_and_free_pages_bulk(h, &page_list); 2753 spin_lock_irq(&hugetlb_lock); 2754 } 2755 2756 2757 /* 2758 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation 2759 * are used by the huge page allocation routines to manage reservations. 2760 * 2761 * vma_needs_reservation is called to determine if the huge page at addr 2762 * within the vma has an associated reservation. If a reservation is 2763 * needed, the value 1 is returned. The caller is then responsible for 2764 * managing the global reservation and subpool usage counts. After 2765 * the huge page has been allocated, vma_commit_reservation is called 2766 * to add the page to the reservation map. If the page allocation fails, 2767 * the reservation must be ended instead of committed. vma_end_reservation 2768 * is called in such cases. 2769 * 2770 * In the normal case, vma_commit_reservation returns the same value 2771 * as the preceding vma_needs_reservation call. The only time this 2772 * is not the case is if a reserve map was changed between calls. It 2773 * is the responsibility of the caller to notice the difference and 2774 * take appropriate action. 2775 * 2776 * vma_add_reservation is used in error paths where a reservation must 2777 * be restored when a newly allocated huge page must be freed. It is 2778 * to be called after calling vma_needs_reservation to determine if a 2779 * reservation exists. 2780 * 2781 * vma_del_reservation is used in error paths where an entry in the reserve 2782 * map was created during huge page allocation and must be removed. It is to 2783 * be called after calling vma_needs_reservation to determine if a reservation 2784 * exists. 2785 */ 2786 enum vma_resv_mode { 2787 VMA_NEEDS_RESV, 2788 VMA_COMMIT_RESV, 2789 VMA_END_RESV, 2790 VMA_ADD_RESV, 2791 VMA_DEL_RESV, 2792 }; 2793 static long __vma_reservation_common(struct hstate *h, 2794 struct vm_area_struct *vma, unsigned long addr, 2795 enum vma_resv_mode mode) 2796 { 2797 struct resv_map *resv; 2798 pgoff_t idx; 2799 long ret; 2800 long dummy_out_regions_needed; 2801 2802 resv = vma_resv_map(vma); 2803 if (!resv) 2804 return 1; 2805 2806 idx = vma_hugecache_offset(h, vma, addr); 2807 switch (mode) { 2808 case VMA_NEEDS_RESV: 2809 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed); 2810 /* We assume that vma_reservation_* routines always operate on 2811 * 1 page, and that adding to resv map a 1 page entry can only 2812 * ever require 1 region. 2813 */ 2814 VM_BUG_ON(dummy_out_regions_needed != 1); 2815 break; 2816 case VMA_COMMIT_RESV: 2817 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2818 /* region_add calls of range 1 should never fail. */ 2819 VM_BUG_ON(ret < 0); 2820 break; 2821 case VMA_END_RESV: 2822 region_abort(resv, idx, idx + 1, 1); 2823 ret = 0; 2824 break; 2825 case VMA_ADD_RESV: 2826 if (vma->vm_flags & VM_MAYSHARE) { 2827 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2828 /* region_add calls of range 1 should never fail. */ 2829 VM_BUG_ON(ret < 0); 2830 } else { 2831 region_abort(resv, idx, idx + 1, 1); 2832 ret = region_del(resv, idx, idx + 1); 2833 } 2834 break; 2835 case VMA_DEL_RESV: 2836 if (vma->vm_flags & VM_MAYSHARE) { 2837 region_abort(resv, idx, idx + 1, 1); 2838 ret = region_del(resv, idx, idx + 1); 2839 } else { 2840 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2841 /* region_add calls of range 1 should never fail. */ 2842 VM_BUG_ON(ret < 0); 2843 } 2844 break; 2845 default: 2846 BUG(); 2847 } 2848 2849 if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV) 2850 return ret; 2851 /* 2852 * We know private mapping must have HPAGE_RESV_OWNER set. 2853 * 2854 * In most cases, reserves always exist for private mappings. 2855 * However, a file associated with mapping could have been 2856 * hole punched or truncated after reserves were consumed. 2857 * As subsequent fault on such a range will not use reserves. 2858 * Subtle - The reserve map for private mappings has the 2859 * opposite meaning than that of shared mappings. If NO 2860 * entry is in the reserve map, it means a reservation exists. 2861 * If an entry exists in the reserve map, it means the 2862 * reservation has already been consumed. As a result, the 2863 * return value of this routine is the opposite of the 2864 * value returned from reserve map manipulation routines above. 2865 */ 2866 if (ret > 0) 2867 return 0; 2868 if (ret == 0) 2869 return 1; 2870 return ret; 2871 } 2872 2873 static long vma_needs_reservation(struct hstate *h, 2874 struct vm_area_struct *vma, unsigned long addr) 2875 { 2876 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV); 2877 } 2878 2879 static long vma_commit_reservation(struct hstate *h, 2880 struct vm_area_struct *vma, unsigned long addr) 2881 { 2882 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV); 2883 } 2884 2885 static void vma_end_reservation(struct hstate *h, 2886 struct vm_area_struct *vma, unsigned long addr) 2887 { 2888 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV); 2889 } 2890 2891 static long vma_add_reservation(struct hstate *h, 2892 struct vm_area_struct *vma, unsigned long addr) 2893 { 2894 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV); 2895 } 2896 2897 static long vma_del_reservation(struct hstate *h, 2898 struct vm_area_struct *vma, unsigned long addr) 2899 { 2900 return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV); 2901 } 2902 2903 /* 2904 * This routine is called to restore reservation information on error paths. 2905 * It should ONLY be called for folios allocated via alloc_hugetlb_folio(), 2906 * and the hugetlb mutex should remain held when calling this routine. 2907 * 2908 * It handles two specific cases: 2909 * 1) A reservation was in place and the folio consumed the reservation. 2910 * hugetlb_restore_reserve is set in the folio. 2911 * 2) No reservation was in place for the page, so hugetlb_restore_reserve is 2912 * not set. However, alloc_hugetlb_folio always updates the reserve map. 2913 * 2914 * In case 1, free_huge_folio later in the error path will increment the 2915 * global reserve count. But, free_huge_folio does not have enough context 2916 * to adjust the reservation map. This case deals primarily with private 2917 * mappings. Adjust the reserve map here to be consistent with global 2918 * reserve count adjustments to be made by free_huge_folio. Make sure the 2919 * reserve map indicates there is a reservation present. 2920 * 2921 * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio. 2922 */ 2923 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma, 2924 unsigned long address, struct folio *folio) 2925 { 2926 long rc = vma_needs_reservation(h, vma, address); 2927 2928 if (folio_test_hugetlb_restore_reserve(folio)) { 2929 if (unlikely(rc < 0)) 2930 /* 2931 * Rare out of memory condition in reserve map 2932 * manipulation. Clear hugetlb_restore_reserve so 2933 * that global reserve count will not be incremented 2934 * by free_huge_folio. This will make it appear 2935 * as though the reservation for this folio was 2936 * consumed. This may prevent the task from 2937 * faulting in the folio at a later time. This 2938 * is better than inconsistent global huge page 2939 * accounting of reserve counts. 2940 */ 2941 folio_clear_hugetlb_restore_reserve(folio); 2942 else if (rc) 2943 (void)vma_add_reservation(h, vma, address); 2944 else 2945 vma_end_reservation(h, vma, address); 2946 } else { 2947 if (!rc) { 2948 /* 2949 * This indicates there is an entry in the reserve map 2950 * not added by alloc_hugetlb_folio. We know it was added 2951 * before the alloc_hugetlb_folio call, otherwise 2952 * hugetlb_restore_reserve would be set on the folio. 2953 * Remove the entry so that a subsequent allocation 2954 * does not consume a reservation. 2955 */ 2956 rc = vma_del_reservation(h, vma, address); 2957 if (rc < 0) 2958 /* 2959 * VERY rare out of memory condition. Since 2960 * we can not delete the entry, set 2961 * hugetlb_restore_reserve so that the reserve 2962 * count will be incremented when the folio 2963 * is freed. This reserve will be consumed 2964 * on a subsequent allocation. 2965 */ 2966 folio_set_hugetlb_restore_reserve(folio); 2967 } else if (rc < 0) { 2968 /* 2969 * Rare out of memory condition from 2970 * vma_needs_reservation call. Memory allocation is 2971 * only attempted if a new entry is needed. Therefore, 2972 * this implies there is not an entry in the 2973 * reserve map. 2974 * 2975 * For shared mappings, no entry in the map indicates 2976 * no reservation. We are done. 2977 */ 2978 if (!(vma->vm_flags & VM_MAYSHARE)) 2979 /* 2980 * For private mappings, no entry indicates 2981 * a reservation is present. Since we can 2982 * not add an entry, set hugetlb_restore_reserve 2983 * on the folio so reserve count will be 2984 * incremented when freed. This reserve will 2985 * be consumed on a subsequent allocation. 2986 */ 2987 folio_set_hugetlb_restore_reserve(folio); 2988 } else 2989 /* 2990 * No reservation present, do nothing 2991 */ 2992 vma_end_reservation(h, vma, address); 2993 } 2994 } 2995 2996 /* 2997 * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve 2998 * the old one 2999 * @h: struct hstate old page belongs to 3000 * @old_folio: Old folio to dissolve 3001 * @list: List to isolate the page in case we need to 3002 * Returns 0 on success, otherwise negated error. 3003 */ 3004 static int alloc_and_dissolve_hugetlb_folio(struct hstate *h, 3005 struct folio *old_folio, struct list_head *list) 3006 { 3007 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 3008 int nid = folio_nid(old_folio); 3009 struct folio *new_folio = NULL; 3010 int ret = 0; 3011 3012 retry: 3013 spin_lock_irq(&hugetlb_lock); 3014 if (!folio_test_hugetlb(old_folio)) { 3015 /* 3016 * Freed from under us. Drop new_folio too. 3017 */ 3018 goto free_new; 3019 } else if (folio_ref_count(old_folio)) { 3020 bool isolated; 3021 3022 /* 3023 * Someone has grabbed the folio, try to isolate it here. 3024 * Fail with -EBUSY if not possible. 3025 */ 3026 spin_unlock_irq(&hugetlb_lock); 3027 isolated = isolate_hugetlb(old_folio, list); 3028 ret = isolated ? 0 : -EBUSY; 3029 spin_lock_irq(&hugetlb_lock); 3030 goto free_new; 3031 } else if (!folio_test_hugetlb_freed(old_folio)) { 3032 /* 3033 * Folio's refcount is 0 but it has not been enqueued in the 3034 * freelist yet. Race window is small, so we can succeed here if 3035 * we retry. 3036 */ 3037 spin_unlock_irq(&hugetlb_lock); 3038 cond_resched(); 3039 goto retry; 3040 } else { 3041 if (!new_folio) { 3042 spin_unlock_irq(&hugetlb_lock); 3043 new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, 3044 NULL, NULL); 3045 if (!new_folio) 3046 return -ENOMEM; 3047 __prep_new_hugetlb_folio(h, new_folio); 3048 goto retry; 3049 } 3050 3051 /* 3052 * Ok, old_folio is still a genuine free hugepage. Remove it from 3053 * the freelist and decrease the counters. These will be 3054 * incremented again when calling __prep_account_new_huge_page() 3055 * and enqueue_hugetlb_folio() for new_folio. The counters will 3056 * remain stable since this happens under the lock. 3057 */ 3058 remove_hugetlb_folio(h, old_folio, false); 3059 3060 /* 3061 * Ref count on new_folio is already zero as it was dropped 3062 * earlier. It can be directly added to the pool free list. 3063 */ 3064 __prep_account_new_huge_page(h, nid); 3065 enqueue_hugetlb_folio(h, new_folio); 3066 3067 /* 3068 * Folio has been replaced, we can safely free the old one. 3069 */ 3070 spin_unlock_irq(&hugetlb_lock); 3071 update_and_free_hugetlb_folio(h, old_folio, false); 3072 } 3073 3074 return ret; 3075 3076 free_new: 3077 spin_unlock_irq(&hugetlb_lock); 3078 if (new_folio) 3079 update_and_free_hugetlb_folio(h, new_folio, false); 3080 3081 return ret; 3082 } 3083 3084 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list) 3085 { 3086 struct hstate *h; 3087 struct folio *folio = page_folio(page); 3088 int ret = -EBUSY; 3089 3090 /* 3091 * The page might have been dissolved from under our feet, so make sure 3092 * to carefully check the state under the lock. 3093 * Return success when racing as if we dissolved the page ourselves. 3094 */ 3095 spin_lock_irq(&hugetlb_lock); 3096 if (folio_test_hugetlb(folio)) { 3097 h = folio_hstate(folio); 3098 } else { 3099 spin_unlock_irq(&hugetlb_lock); 3100 return 0; 3101 } 3102 spin_unlock_irq(&hugetlb_lock); 3103 3104 /* 3105 * Fence off gigantic pages as there is a cyclic dependency between 3106 * alloc_contig_range and them. Return -ENOMEM as this has the effect 3107 * of bailing out right away without further retrying. 3108 */ 3109 if (hstate_is_gigantic(h)) 3110 return -ENOMEM; 3111 3112 if (folio_ref_count(folio) && isolate_hugetlb(folio, list)) 3113 ret = 0; 3114 else if (!folio_ref_count(folio)) 3115 ret = alloc_and_dissolve_hugetlb_folio(h, folio, list); 3116 3117 return ret; 3118 } 3119 3120 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma, 3121 unsigned long addr, int avoid_reserve) 3122 { 3123 struct hugepage_subpool *spool = subpool_vma(vma); 3124 struct hstate *h = hstate_vma(vma); 3125 struct folio *folio; 3126 long map_chg, map_commit, nr_pages = pages_per_huge_page(h); 3127 long gbl_chg; 3128 int memcg_charge_ret, ret, idx; 3129 struct hugetlb_cgroup *h_cg = NULL; 3130 struct mem_cgroup *memcg; 3131 bool deferred_reserve; 3132 gfp_t gfp = htlb_alloc_mask(h) | __GFP_RETRY_MAYFAIL; 3133 3134 memcg = get_mem_cgroup_from_current(); 3135 memcg_charge_ret = mem_cgroup_hugetlb_try_charge(memcg, gfp, nr_pages); 3136 if (memcg_charge_ret == -ENOMEM) { 3137 mem_cgroup_put(memcg); 3138 return ERR_PTR(-ENOMEM); 3139 } 3140 3141 idx = hstate_index(h); 3142 /* 3143 * Examine the region/reserve map to determine if the process 3144 * has a reservation for the page to be allocated. A return 3145 * code of zero indicates a reservation exists (no change). 3146 */ 3147 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr); 3148 if (map_chg < 0) { 3149 if (!memcg_charge_ret) 3150 mem_cgroup_cancel_charge(memcg, nr_pages); 3151 mem_cgroup_put(memcg); 3152 return ERR_PTR(-ENOMEM); 3153 } 3154 3155 /* 3156 * Processes that did not create the mapping will have no 3157 * reserves as indicated by the region/reserve map. Check 3158 * that the allocation will not exceed the subpool limit. 3159 * Allocations for MAP_NORESERVE mappings also need to be 3160 * checked against any subpool limit. 3161 */ 3162 if (map_chg || avoid_reserve) { 3163 gbl_chg = hugepage_subpool_get_pages(spool, 1); 3164 if (gbl_chg < 0) 3165 goto out_end_reservation; 3166 3167 /* 3168 * Even though there was no reservation in the region/reserve 3169 * map, there could be reservations associated with the 3170 * subpool that can be used. This would be indicated if the 3171 * return value of hugepage_subpool_get_pages() is zero. 3172 * However, if avoid_reserve is specified we still avoid even 3173 * the subpool reservations. 3174 */ 3175 if (avoid_reserve) 3176 gbl_chg = 1; 3177 } 3178 3179 /* If this allocation is not consuming a reservation, charge it now. 3180 */ 3181 deferred_reserve = map_chg || avoid_reserve; 3182 if (deferred_reserve) { 3183 ret = hugetlb_cgroup_charge_cgroup_rsvd( 3184 idx, pages_per_huge_page(h), &h_cg); 3185 if (ret) 3186 goto out_subpool_put; 3187 } 3188 3189 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg); 3190 if (ret) 3191 goto out_uncharge_cgroup_reservation; 3192 3193 spin_lock_irq(&hugetlb_lock); 3194 /* 3195 * glb_chg is passed to indicate whether or not a page must be taken 3196 * from the global free pool (global change). gbl_chg == 0 indicates 3197 * a reservation exists for the allocation. 3198 */ 3199 folio = dequeue_hugetlb_folio_vma(h, vma, addr, avoid_reserve, gbl_chg); 3200 if (!folio) { 3201 spin_unlock_irq(&hugetlb_lock); 3202 folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr); 3203 if (!folio) 3204 goto out_uncharge_cgroup; 3205 spin_lock_irq(&hugetlb_lock); 3206 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) { 3207 folio_set_hugetlb_restore_reserve(folio); 3208 h->resv_huge_pages--; 3209 } 3210 list_add(&folio->lru, &h->hugepage_activelist); 3211 folio_ref_unfreeze(folio, 1); 3212 /* Fall through */ 3213 } 3214 3215 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio); 3216 /* If allocation is not consuming a reservation, also store the 3217 * hugetlb_cgroup pointer on the page. 3218 */ 3219 if (deferred_reserve) { 3220 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h), 3221 h_cg, folio); 3222 } 3223 3224 spin_unlock_irq(&hugetlb_lock); 3225 3226 hugetlb_set_folio_subpool(folio, spool); 3227 3228 map_commit = vma_commit_reservation(h, vma, addr); 3229 if (unlikely(map_chg > map_commit)) { 3230 /* 3231 * The page was added to the reservation map between 3232 * vma_needs_reservation and vma_commit_reservation. 3233 * This indicates a race with hugetlb_reserve_pages. 3234 * Adjust for the subpool count incremented above AND 3235 * in hugetlb_reserve_pages for the same page. Also, 3236 * the reservation count added in hugetlb_reserve_pages 3237 * no longer applies. 3238 */ 3239 long rsv_adjust; 3240 3241 rsv_adjust = hugepage_subpool_put_pages(spool, 1); 3242 hugetlb_acct_memory(h, -rsv_adjust); 3243 if (deferred_reserve) { 3244 spin_lock_irq(&hugetlb_lock); 3245 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h), 3246 pages_per_huge_page(h), folio); 3247 spin_unlock_irq(&hugetlb_lock); 3248 } 3249 } 3250 3251 if (!memcg_charge_ret) 3252 mem_cgroup_commit_charge(folio, memcg); 3253 mem_cgroup_put(memcg); 3254 3255 return folio; 3256 3257 out_uncharge_cgroup: 3258 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg); 3259 out_uncharge_cgroup_reservation: 3260 if (deferred_reserve) 3261 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h), 3262 h_cg); 3263 out_subpool_put: 3264 if (map_chg || avoid_reserve) 3265 hugepage_subpool_put_pages(spool, 1); 3266 out_end_reservation: 3267 vma_end_reservation(h, vma, addr); 3268 if (!memcg_charge_ret) 3269 mem_cgroup_cancel_charge(memcg, nr_pages); 3270 mem_cgroup_put(memcg); 3271 return ERR_PTR(-ENOSPC); 3272 } 3273 3274 int alloc_bootmem_huge_page(struct hstate *h, int nid) 3275 __attribute__ ((weak, alias("__alloc_bootmem_huge_page"))); 3276 int __alloc_bootmem_huge_page(struct hstate *h, int nid) 3277 { 3278 struct huge_bootmem_page *m = NULL; /* initialize for clang */ 3279 int nr_nodes, node = nid; 3280 3281 /* do node specific alloc */ 3282 if (nid != NUMA_NO_NODE) { 3283 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h), 3284 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid); 3285 if (!m) 3286 return 0; 3287 goto found; 3288 } 3289 /* allocate from next node when distributing huge pages */ 3290 for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, &node_states[N_MEMORY]) { 3291 m = memblock_alloc_try_nid_raw( 3292 huge_page_size(h), huge_page_size(h), 3293 0, MEMBLOCK_ALLOC_ACCESSIBLE, node); 3294 /* 3295 * Use the beginning of the huge page to store the 3296 * huge_bootmem_page struct (until gather_bootmem 3297 * puts them into the mem_map). 3298 */ 3299 if (!m) 3300 return 0; 3301 goto found; 3302 } 3303 3304 found: 3305 3306 /* 3307 * Only initialize the head struct page in memmap_init_reserved_pages, 3308 * rest of the struct pages will be initialized by the HugeTLB 3309 * subsystem itself. 3310 * The head struct page is used to get folio information by the HugeTLB 3311 * subsystem like zone id and node id. 3312 */ 3313 memblock_reserved_mark_noinit(virt_to_phys((void *)m + PAGE_SIZE), 3314 huge_page_size(h) - PAGE_SIZE); 3315 /* Put them into a private list first because mem_map is not up yet */ 3316 INIT_LIST_HEAD(&m->list); 3317 list_add(&m->list, &huge_boot_pages[node]); 3318 m->hstate = h; 3319 return 1; 3320 } 3321 3322 /* Initialize [start_page:end_page_number] tail struct pages of a hugepage */ 3323 static void __init hugetlb_folio_init_tail_vmemmap(struct folio *folio, 3324 unsigned long start_page_number, 3325 unsigned long end_page_number) 3326 { 3327 enum zone_type zone = zone_idx(folio_zone(folio)); 3328 int nid = folio_nid(folio); 3329 unsigned long head_pfn = folio_pfn(folio); 3330 unsigned long pfn, end_pfn = head_pfn + end_page_number; 3331 int ret; 3332 3333 for (pfn = head_pfn + start_page_number; pfn < end_pfn; pfn++) { 3334 struct page *page = pfn_to_page(pfn); 3335 3336 __init_single_page(page, pfn, zone, nid); 3337 prep_compound_tail((struct page *)folio, pfn - head_pfn); 3338 ret = page_ref_freeze(page, 1); 3339 VM_BUG_ON(!ret); 3340 } 3341 } 3342 3343 static void __init hugetlb_folio_init_vmemmap(struct folio *folio, 3344 struct hstate *h, 3345 unsigned long nr_pages) 3346 { 3347 int ret; 3348 3349 /* Prepare folio head */ 3350 __folio_clear_reserved(folio); 3351 __folio_set_head(folio); 3352 ret = folio_ref_freeze(folio, 1); 3353 VM_BUG_ON(!ret); 3354 /* Initialize the necessary tail struct pages */ 3355 hugetlb_folio_init_tail_vmemmap(folio, 1, nr_pages); 3356 prep_compound_head((struct page *)folio, huge_page_order(h)); 3357 } 3358 3359 static void __init prep_and_add_bootmem_folios(struct hstate *h, 3360 struct list_head *folio_list) 3361 { 3362 unsigned long flags; 3363 struct folio *folio, *tmp_f; 3364 3365 /* Send list for bulk vmemmap optimization processing */ 3366 hugetlb_vmemmap_optimize_folios(h, folio_list); 3367 3368 list_for_each_entry_safe(folio, tmp_f, folio_list, lru) { 3369 if (!folio_test_hugetlb_vmemmap_optimized(folio)) { 3370 /* 3371 * If HVO fails, initialize all tail struct pages 3372 * We do not worry about potential long lock hold 3373 * time as this is early in boot and there should 3374 * be no contention. 3375 */ 3376 hugetlb_folio_init_tail_vmemmap(folio, 3377 HUGETLB_VMEMMAP_RESERVE_PAGES, 3378 pages_per_huge_page(h)); 3379 } 3380 /* Subdivide locks to achieve better parallel performance */ 3381 spin_lock_irqsave(&hugetlb_lock, flags); 3382 __prep_account_new_huge_page(h, folio_nid(folio)); 3383 enqueue_hugetlb_folio(h, folio); 3384 spin_unlock_irqrestore(&hugetlb_lock, flags); 3385 } 3386 } 3387 3388 /* 3389 * Put bootmem huge pages into the standard lists after mem_map is up. 3390 * Note: This only applies to gigantic (order > MAX_PAGE_ORDER) pages. 3391 */ 3392 static void __init gather_bootmem_prealloc_node(unsigned long nid) 3393 { 3394 LIST_HEAD(folio_list); 3395 struct huge_bootmem_page *m; 3396 struct hstate *h = NULL, *prev_h = NULL; 3397 3398 list_for_each_entry(m, &huge_boot_pages[nid], list) { 3399 struct page *page = virt_to_page(m); 3400 struct folio *folio = (void *)page; 3401 3402 h = m->hstate; 3403 /* 3404 * It is possible to have multiple huge page sizes (hstates) 3405 * in this list. If so, process each size separately. 3406 */ 3407 if (h != prev_h && prev_h != NULL) 3408 prep_and_add_bootmem_folios(prev_h, &folio_list); 3409 prev_h = h; 3410 3411 VM_BUG_ON(!hstate_is_gigantic(h)); 3412 WARN_ON(folio_ref_count(folio) != 1); 3413 3414 hugetlb_folio_init_vmemmap(folio, h, 3415 HUGETLB_VMEMMAP_RESERVE_PAGES); 3416 init_new_hugetlb_folio(h, folio); 3417 list_add(&folio->lru, &folio_list); 3418 3419 /* 3420 * We need to restore the 'stolen' pages to totalram_pages 3421 * in order to fix confusing memory reports from free(1) and 3422 * other side-effects, like CommitLimit going negative. 3423 */ 3424 adjust_managed_page_count(page, pages_per_huge_page(h)); 3425 cond_resched(); 3426 } 3427 3428 prep_and_add_bootmem_folios(h, &folio_list); 3429 } 3430 3431 static void __init gather_bootmem_prealloc_parallel(unsigned long start, 3432 unsigned long end, void *arg) 3433 { 3434 int nid; 3435 3436 for (nid = start; nid < end; nid++) 3437 gather_bootmem_prealloc_node(nid); 3438 } 3439 3440 static void __init gather_bootmem_prealloc(void) 3441 { 3442 struct padata_mt_job job = { 3443 .thread_fn = gather_bootmem_prealloc_parallel, 3444 .fn_arg = NULL, 3445 .start = 0, 3446 .size = num_node_state(N_MEMORY), 3447 .align = 1, 3448 .min_chunk = 1, 3449 .max_threads = num_node_state(N_MEMORY), 3450 .numa_aware = true, 3451 }; 3452 3453 padata_do_multithreaded(&job); 3454 } 3455 3456 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid) 3457 { 3458 unsigned long i; 3459 char buf[32]; 3460 3461 for (i = 0; i < h->max_huge_pages_node[nid]; ++i) { 3462 if (hstate_is_gigantic(h)) { 3463 if (!alloc_bootmem_huge_page(h, nid)) 3464 break; 3465 } else { 3466 struct folio *folio; 3467 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 3468 3469 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, 3470 &node_states[N_MEMORY]); 3471 if (!folio) 3472 break; 3473 free_huge_folio(folio); /* free it into the hugepage allocator */ 3474 } 3475 cond_resched(); 3476 } 3477 if (i == h->max_huge_pages_node[nid]) 3478 return; 3479 3480 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3481 pr_warn("HugeTLB: allocating %u of page size %s failed node%d. Only allocated %lu hugepages.\n", 3482 h->max_huge_pages_node[nid], buf, nid, i); 3483 h->max_huge_pages -= (h->max_huge_pages_node[nid] - i); 3484 h->max_huge_pages_node[nid] = i; 3485 } 3486 3487 static bool __init hugetlb_hstate_alloc_pages_specific_nodes(struct hstate *h) 3488 { 3489 int i; 3490 bool node_specific_alloc = false; 3491 3492 for_each_online_node(i) { 3493 if (h->max_huge_pages_node[i] > 0) { 3494 hugetlb_hstate_alloc_pages_onenode(h, i); 3495 node_specific_alloc = true; 3496 } 3497 } 3498 3499 return node_specific_alloc; 3500 } 3501 3502 static void __init hugetlb_hstate_alloc_pages_errcheck(unsigned long allocated, struct hstate *h) 3503 { 3504 if (allocated < h->max_huge_pages) { 3505 char buf[32]; 3506 3507 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3508 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n", 3509 h->max_huge_pages, buf, allocated); 3510 h->max_huge_pages = allocated; 3511 } 3512 } 3513 3514 static void __init hugetlb_pages_alloc_boot_node(unsigned long start, unsigned long end, void *arg) 3515 { 3516 struct hstate *h = (struct hstate *)arg; 3517 int i, num = end - start; 3518 nodemask_t node_alloc_noretry; 3519 LIST_HEAD(folio_list); 3520 int next_node = first_online_node; 3521 3522 /* Bit mask controlling how hard we retry per-node allocations.*/ 3523 nodes_clear(node_alloc_noretry); 3524 3525 for (i = 0; i < num; ++i) { 3526 struct folio *folio = alloc_pool_huge_folio(h, &node_states[N_MEMORY], 3527 &node_alloc_noretry, &next_node); 3528 if (!folio) 3529 break; 3530 3531 list_move(&folio->lru, &folio_list); 3532 cond_resched(); 3533 } 3534 3535 prep_and_add_allocated_folios(h, &folio_list); 3536 } 3537 3538 static unsigned long __init hugetlb_gigantic_pages_alloc_boot(struct hstate *h) 3539 { 3540 unsigned long i; 3541 3542 for (i = 0; i < h->max_huge_pages; ++i) { 3543 if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE)) 3544 break; 3545 cond_resched(); 3546 } 3547 3548 return i; 3549 } 3550 3551 static unsigned long __init hugetlb_pages_alloc_boot(struct hstate *h) 3552 { 3553 struct padata_mt_job job = { 3554 .fn_arg = h, 3555 .align = 1, 3556 .numa_aware = true 3557 }; 3558 3559 job.thread_fn = hugetlb_pages_alloc_boot_node; 3560 job.start = 0; 3561 job.size = h->max_huge_pages; 3562 3563 /* 3564 * job.max_threads is twice the num_node_state(N_MEMORY), 3565 * 3566 * Tests below indicate that a multiplier of 2 significantly improves 3567 * performance, and although larger values also provide improvements, 3568 * the gains are marginal. 3569 * 3570 * Therefore, choosing 2 as the multiplier strikes a good balance between 3571 * enhancing parallel processing capabilities and maintaining efficient 3572 * resource management. 3573 * 3574 * +------------+-------+-------+-------+-------+-------+ 3575 * | multiplier | 1 | 2 | 3 | 4 | 5 | 3576 * +------------+-------+-------+-------+-------+-------+ 3577 * | 256G 2node | 358ms | 215ms | 157ms | 134ms | 126ms | 3578 * | 2T 4node | 979ms | 679ms | 543ms | 489ms | 481ms | 3579 * | 50G 2node | 71ms | 44ms | 37ms | 30ms | 31ms | 3580 * +------------+-------+-------+-------+-------+-------+ 3581 */ 3582 job.max_threads = num_node_state(N_MEMORY) * 2; 3583 job.min_chunk = h->max_huge_pages / num_node_state(N_MEMORY) / 2; 3584 padata_do_multithreaded(&job); 3585 3586 return h->nr_huge_pages; 3587 } 3588 3589 /* 3590 * NOTE: this routine is called in different contexts for gigantic and 3591 * non-gigantic pages. 3592 * - For gigantic pages, this is called early in the boot process and 3593 * pages are allocated from memblock allocated or something similar. 3594 * Gigantic pages are actually added to pools later with the routine 3595 * gather_bootmem_prealloc. 3596 * - For non-gigantic pages, this is called later in the boot process after 3597 * all of mm is up and functional. Pages are allocated from buddy and 3598 * then added to hugetlb pools. 3599 */ 3600 static void __init hugetlb_hstate_alloc_pages(struct hstate *h) 3601 { 3602 unsigned long allocated; 3603 static bool initialized __initdata; 3604 3605 /* skip gigantic hugepages allocation if hugetlb_cma enabled */ 3606 if (hstate_is_gigantic(h) && hugetlb_cma_size) { 3607 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n"); 3608 return; 3609 } 3610 3611 /* hugetlb_hstate_alloc_pages will be called many times, initialize huge_boot_pages once */ 3612 if (!initialized) { 3613 int i = 0; 3614 3615 for (i = 0; i < MAX_NUMNODES; i++) 3616 INIT_LIST_HEAD(&huge_boot_pages[i]); 3617 initialized = true; 3618 } 3619 3620 /* do node specific alloc */ 3621 if (hugetlb_hstate_alloc_pages_specific_nodes(h)) 3622 return; 3623 3624 /* below will do all node balanced alloc */ 3625 if (hstate_is_gigantic(h)) 3626 allocated = hugetlb_gigantic_pages_alloc_boot(h); 3627 else 3628 allocated = hugetlb_pages_alloc_boot(h); 3629 3630 hugetlb_hstate_alloc_pages_errcheck(allocated, h); 3631 } 3632 3633 static void __init hugetlb_init_hstates(void) 3634 { 3635 struct hstate *h, *h2; 3636 3637 for_each_hstate(h) { 3638 /* oversize hugepages were init'ed in early boot */ 3639 if (!hstate_is_gigantic(h)) 3640 hugetlb_hstate_alloc_pages(h); 3641 3642 /* 3643 * Set demote order for each hstate. Note that 3644 * h->demote_order is initially 0. 3645 * - We can not demote gigantic pages if runtime freeing 3646 * is not supported, so skip this. 3647 * - If CMA allocation is possible, we can not demote 3648 * HUGETLB_PAGE_ORDER or smaller size pages. 3649 */ 3650 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 3651 continue; 3652 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER) 3653 continue; 3654 for_each_hstate(h2) { 3655 if (h2 == h) 3656 continue; 3657 if (h2->order < h->order && 3658 h2->order > h->demote_order) 3659 h->demote_order = h2->order; 3660 } 3661 } 3662 } 3663 3664 static void __init report_hugepages(void) 3665 { 3666 struct hstate *h; 3667 3668 for_each_hstate(h) { 3669 char buf[32]; 3670 3671 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3672 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n", 3673 buf, h->free_huge_pages); 3674 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n", 3675 hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf); 3676 } 3677 } 3678 3679 #ifdef CONFIG_HIGHMEM 3680 static void try_to_free_low(struct hstate *h, unsigned long count, 3681 nodemask_t *nodes_allowed) 3682 { 3683 int i; 3684 LIST_HEAD(page_list); 3685 3686 lockdep_assert_held(&hugetlb_lock); 3687 if (hstate_is_gigantic(h)) 3688 return; 3689 3690 /* 3691 * Collect pages to be freed on a list, and free after dropping lock 3692 */ 3693 for_each_node_mask(i, *nodes_allowed) { 3694 struct folio *folio, *next; 3695 struct list_head *freel = &h->hugepage_freelists[i]; 3696 list_for_each_entry_safe(folio, next, freel, lru) { 3697 if (count >= h->nr_huge_pages) 3698 goto out; 3699 if (folio_test_highmem(folio)) 3700 continue; 3701 remove_hugetlb_folio(h, folio, false); 3702 list_add(&folio->lru, &page_list); 3703 } 3704 } 3705 3706 out: 3707 spin_unlock_irq(&hugetlb_lock); 3708 update_and_free_pages_bulk(h, &page_list); 3709 spin_lock_irq(&hugetlb_lock); 3710 } 3711 #else 3712 static inline void try_to_free_low(struct hstate *h, unsigned long count, 3713 nodemask_t *nodes_allowed) 3714 { 3715 } 3716 #endif 3717 3718 /* 3719 * Increment or decrement surplus_huge_pages. Keep node-specific counters 3720 * balanced by operating on them in a round-robin fashion. 3721 * Returns 1 if an adjustment was made. 3722 */ 3723 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed, 3724 int delta) 3725 { 3726 int nr_nodes, node; 3727 3728 lockdep_assert_held(&hugetlb_lock); 3729 VM_BUG_ON(delta != -1 && delta != 1); 3730 3731 if (delta < 0) { 3732 for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, nodes_allowed) { 3733 if (h->surplus_huge_pages_node[node]) 3734 goto found; 3735 } 3736 } else { 3737 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 3738 if (h->surplus_huge_pages_node[node] < 3739 h->nr_huge_pages_node[node]) 3740 goto found; 3741 } 3742 } 3743 return 0; 3744 3745 found: 3746 h->surplus_huge_pages += delta; 3747 h->surplus_huge_pages_node[node] += delta; 3748 return 1; 3749 } 3750 3751 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) 3752 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid, 3753 nodemask_t *nodes_allowed) 3754 { 3755 unsigned long min_count; 3756 unsigned long allocated; 3757 struct folio *folio; 3758 LIST_HEAD(page_list); 3759 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL); 3760 3761 /* 3762 * Bit mask controlling how hard we retry per-node allocations. 3763 * If we can not allocate the bit mask, do not attempt to allocate 3764 * the requested huge pages. 3765 */ 3766 if (node_alloc_noretry) 3767 nodes_clear(*node_alloc_noretry); 3768 else 3769 return -ENOMEM; 3770 3771 /* 3772 * resize_lock mutex prevents concurrent adjustments to number of 3773 * pages in hstate via the proc/sysfs interfaces. 3774 */ 3775 mutex_lock(&h->resize_lock); 3776 flush_free_hpage_work(h); 3777 spin_lock_irq(&hugetlb_lock); 3778 3779 /* 3780 * Check for a node specific request. 3781 * Changing node specific huge page count may require a corresponding 3782 * change to the global count. In any case, the passed node mask 3783 * (nodes_allowed) will restrict alloc/free to the specified node. 3784 */ 3785 if (nid != NUMA_NO_NODE) { 3786 unsigned long old_count = count; 3787 3788 count += persistent_huge_pages(h) - 3789 (h->nr_huge_pages_node[nid] - 3790 h->surplus_huge_pages_node[nid]); 3791 /* 3792 * User may have specified a large count value which caused the 3793 * above calculation to overflow. In this case, they wanted 3794 * to allocate as many huge pages as possible. Set count to 3795 * largest possible value to align with their intention. 3796 */ 3797 if (count < old_count) 3798 count = ULONG_MAX; 3799 } 3800 3801 /* 3802 * Gigantic pages runtime allocation depend on the capability for large 3803 * page range allocation. 3804 * If the system does not provide this feature, return an error when 3805 * the user tries to allocate gigantic pages but let the user free the 3806 * boottime allocated gigantic pages. 3807 */ 3808 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) { 3809 if (count > persistent_huge_pages(h)) { 3810 spin_unlock_irq(&hugetlb_lock); 3811 mutex_unlock(&h->resize_lock); 3812 NODEMASK_FREE(node_alloc_noretry); 3813 return -EINVAL; 3814 } 3815 /* Fall through to decrease pool */ 3816 } 3817 3818 /* 3819 * Increase the pool size 3820 * First take pages out of surplus state. Then make up the 3821 * remaining difference by allocating fresh huge pages. 3822 * 3823 * We might race with alloc_surplus_hugetlb_folio() here and be unable 3824 * to convert a surplus huge page to a normal huge page. That is 3825 * not critical, though, it just means the overall size of the 3826 * pool might be one hugepage larger than it needs to be, but 3827 * within all the constraints specified by the sysctls. 3828 */ 3829 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { 3830 if (!adjust_pool_surplus(h, nodes_allowed, -1)) 3831 break; 3832 } 3833 3834 allocated = 0; 3835 while (count > (persistent_huge_pages(h) + allocated)) { 3836 /* 3837 * If this allocation races such that we no longer need the 3838 * page, free_huge_folio will handle it by freeing the page 3839 * and reducing the surplus. 3840 */ 3841 spin_unlock_irq(&hugetlb_lock); 3842 3843 /* yield cpu to avoid soft lockup */ 3844 cond_resched(); 3845 3846 folio = alloc_pool_huge_folio(h, nodes_allowed, 3847 node_alloc_noretry, 3848 &h->next_nid_to_alloc); 3849 if (!folio) { 3850 prep_and_add_allocated_folios(h, &page_list); 3851 spin_lock_irq(&hugetlb_lock); 3852 goto out; 3853 } 3854 3855 list_add(&folio->lru, &page_list); 3856 allocated++; 3857 3858 /* Bail for signals. Probably ctrl-c from user */ 3859 if (signal_pending(current)) { 3860 prep_and_add_allocated_folios(h, &page_list); 3861 spin_lock_irq(&hugetlb_lock); 3862 goto out; 3863 } 3864 3865 spin_lock_irq(&hugetlb_lock); 3866 } 3867 3868 /* Add allocated pages to the pool */ 3869 if (!list_empty(&page_list)) { 3870 spin_unlock_irq(&hugetlb_lock); 3871 prep_and_add_allocated_folios(h, &page_list); 3872 spin_lock_irq(&hugetlb_lock); 3873 } 3874 3875 /* 3876 * Decrease the pool size 3877 * First return free pages to the buddy allocator (being careful 3878 * to keep enough around to satisfy reservations). Then place 3879 * pages into surplus state as needed so the pool will shrink 3880 * to the desired size as pages become free. 3881 * 3882 * By placing pages into the surplus state independent of the 3883 * overcommit value, we are allowing the surplus pool size to 3884 * exceed overcommit. There are few sane options here. Since 3885 * alloc_surplus_hugetlb_folio() is checking the global counter, 3886 * though, we'll note that we're not allowed to exceed surplus 3887 * and won't grow the pool anywhere else. Not until one of the 3888 * sysctls are changed, or the surplus pages go out of use. 3889 */ 3890 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages; 3891 min_count = max(count, min_count); 3892 try_to_free_low(h, min_count, nodes_allowed); 3893 3894 /* 3895 * Collect pages to be removed on list without dropping lock 3896 */ 3897 while (min_count < persistent_huge_pages(h)) { 3898 folio = remove_pool_hugetlb_folio(h, nodes_allowed, 0); 3899 if (!folio) 3900 break; 3901 3902 list_add(&folio->lru, &page_list); 3903 } 3904 /* free the pages after dropping lock */ 3905 spin_unlock_irq(&hugetlb_lock); 3906 update_and_free_pages_bulk(h, &page_list); 3907 flush_free_hpage_work(h); 3908 spin_lock_irq(&hugetlb_lock); 3909 3910 while (count < persistent_huge_pages(h)) { 3911 if (!adjust_pool_surplus(h, nodes_allowed, 1)) 3912 break; 3913 } 3914 out: 3915 h->max_huge_pages = persistent_huge_pages(h); 3916 spin_unlock_irq(&hugetlb_lock); 3917 mutex_unlock(&h->resize_lock); 3918 3919 NODEMASK_FREE(node_alloc_noretry); 3920 3921 return 0; 3922 } 3923 3924 static int demote_free_hugetlb_folio(struct hstate *h, struct folio *folio) 3925 { 3926 int i, nid = folio_nid(folio); 3927 struct hstate *target_hstate; 3928 struct page *subpage; 3929 struct folio *inner_folio; 3930 int rc = 0; 3931 3932 target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order); 3933 3934 remove_hugetlb_folio(h, folio, false); 3935 spin_unlock_irq(&hugetlb_lock); 3936 3937 /* 3938 * If vmemmap already existed for folio, the remove routine above would 3939 * have cleared the hugetlb folio flag. Hence the folio is technically 3940 * no longer a hugetlb folio. hugetlb_vmemmap_restore_folio can only be 3941 * passed hugetlb folios and will BUG otherwise. 3942 */ 3943 if (folio_test_hugetlb(folio)) { 3944 rc = hugetlb_vmemmap_restore_folio(h, folio); 3945 if (rc) { 3946 /* Allocation of vmemmmap failed, we can not demote folio */ 3947 spin_lock_irq(&hugetlb_lock); 3948 add_hugetlb_folio(h, folio, false); 3949 return rc; 3950 } 3951 } 3952 3953 /* 3954 * Use destroy_compound_hugetlb_folio_for_demote for all huge page 3955 * sizes as it will not ref count folios. 3956 */ 3957 destroy_compound_hugetlb_folio_for_demote(folio, huge_page_order(h)); 3958 3959 /* 3960 * Taking target hstate mutex synchronizes with set_max_huge_pages. 3961 * Without the mutex, pages added to target hstate could be marked 3962 * as surplus. 3963 * 3964 * Note that we already hold h->resize_lock. To prevent deadlock, 3965 * use the convention of always taking larger size hstate mutex first. 3966 */ 3967 mutex_lock(&target_hstate->resize_lock); 3968 for (i = 0; i < pages_per_huge_page(h); 3969 i += pages_per_huge_page(target_hstate)) { 3970 subpage = folio_page(folio, i); 3971 inner_folio = page_folio(subpage); 3972 if (hstate_is_gigantic(target_hstate)) 3973 prep_compound_gigantic_folio_for_demote(inner_folio, 3974 target_hstate->order); 3975 else 3976 prep_compound_page(subpage, target_hstate->order); 3977 folio_change_private(inner_folio, NULL); 3978 prep_new_hugetlb_folio(target_hstate, inner_folio, nid); 3979 free_huge_folio(inner_folio); 3980 } 3981 mutex_unlock(&target_hstate->resize_lock); 3982 3983 spin_lock_irq(&hugetlb_lock); 3984 3985 /* 3986 * Not absolutely necessary, but for consistency update max_huge_pages 3987 * based on pool changes for the demoted page. 3988 */ 3989 h->max_huge_pages--; 3990 target_hstate->max_huge_pages += 3991 pages_per_huge_page(h) / pages_per_huge_page(target_hstate); 3992 3993 return rc; 3994 } 3995 3996 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed) 3997 __must_hold(&hugetlb_lock) 3998 { 3999 int nr_nodes, node; 4000 struct folio *folio; 4001 4002 lockdep_assert_held(&hugetlb_lock); 4003 4004 /* We should never get here if no demote order */ 4005 if (!h->demote_order) { 4006 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n"); 4007 return -EINVAL; /* internal error */ 4008 } 4009 4010 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 4011 list_for_each_entry(folio, &h->hugepage_freelists[node], lru) { 4012 if (folio_test_hwpoison(folio)) 4013 continue; 4014 return demote_free_hugetlb_folio(h, folio); 4015 } 4016 } 4017 4018 /* 4019 * Only way to get here is if all pages on free lists are poisoned. 4020 * Return -EBUSY so that caller will not retry. 4021 */ 4022 return -EBUSY; 4023 } 4024 4025 #define HSTATE_ATTR_RO(_name) \ 4026 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 4027 4028 #define HSTATE_ATTR_WO(_name) \ 4029 static struct kobj_attribute _name##_attr = __ATTR_WO(_name) 4030 4031 #define HSTATE_ATTR(_name) \ 4032 static struct kobj_attribute _name##_attr = __ATTR_RW(_name) 4033 4034 static struct kobject *hugepages_kobj; 4035 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 4036 4037 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp); 4038 4039 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp) 4040 { 4041 int i; 4042 4043 for (i = 0; i < HUGE_MAX_HSTATE; i++) 4044 if (hstate_kobjs[i] == kobj) { 4045 if (nidp) 4046 *nidp = NUMA_NO_NODE; 4047 return &hstates[i]; 4048 } 4049 4050 return kobj_to_node_hstate(kobj, nidp); 4051 } 4052 4053 static ssize_t nr_hugepages_show_common(struct kobject *kobj, 4054 struct kobj_attribute *attr, char *buf) 4055 { 4056 struct hstate *h; 4057 unsigned long nr_huge_pages; 4058 int nid; 4059 4060 h = kobj_to_hstate(kobj, &nid); 4061 if (nid == NUMA_NO_NODE) 4062 nr_huge_pages = h->nr_huge_pages; 4063 else 4064 nr_huge_pages = h->nr_huge_pages_node[nid]; 4065 4066 return sysfs_emit(buf, "%lu\n", nr_huge_pages); 4067 } 4068 4069 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy, 4070 struct hstate *h, int nid, 4071 unsigned long count, size_t len) 4072 { 4073 int err; 4074 nodemask_t nodes_allowed, *n_mask; 4075 4076 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 4077 return -EINVAL; 4078 4079 if (nid == NUMA_NO_NODE) { 4080 /* 4081 * global hstate attribute 4082 */ 4083 if (!(obey_mempolicy && 4084 init_nodemask_of_mempolicy(&nodes_allowed))) 4085 n_mask = &node_states[N_MEMORY]; 4086 else 4087 n_mask = &nodes_allowed; 4088 } else { 4089 /* 4090 * Node specific request. count adjustment happens in 4091 * set_max_huge_pages() after acquiring hugetlb_lock. 4092 */ 4093 init_nodemask_of_node(&nodes_allowed, nid); 4094 n_mask = &nodes_allowed; 4095 } 4096 4097 err = set_max_huge_pages(h, count, nid, n_mask); 4098 4099 return err ? err : len; 4100 } 4101 4102 static ssize_t nr_hugepages_store_common(bool obey_mempolicy, 4103 struct kobject *kobj, const char *buf, 4104 size_t len) 4105 { 4106 struct hstate *h; 4107 unsigned long count; 4108 int nid; 4109 int err; 4110 4111 err = kstrtoul(buf, 10, &count); 4112 if (err) 4113 return err; 4114 4115 h = kobj_to_hstate(kobj, &nid); 4116 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len); 4117 } 4118 4119 static ssize_t nr_hugepages_show(struct kobject *kobj, 4120 struct kobj_attribute *attr, char *buf) 4121 { 4122 return nr_hugepages_show_common(kobj, attr, buf); 4123 } 4124 4125 static ssize_t nr_hugepages_store(struct kobject *kobj, 4126 struct kobj_attribute *attr, const char *buf, size_t len) 4127 { 4128 return nr_hugepages_store_common(false, kobj, buf, len); 4129 } 4130 HSTATE_ATTR(nr_hugepages); 4131 4132 #ifdef CONFIG_NUMA 4133 4134 /* 4135 * hstate attribute for optionally mempolicy-based constraint on persistent 4136 * huge page alloc/free. 4137 */ 4138 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj, 4139 struct kobj_attribute *attr, 4140 char *buf) 4141 { 4142 return nr_hugepages_show_common(kobj, attr, buf); 4143 } 4144 4145 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj, 4146 struct kobj_attribute *attr, const char *buf, size_t len) 4147 { 4148 return nr_hugepages_store_common(true, kobj, buf, len); 4149 } 4150 HSTATE_ATTR(nr_hugepages_mempolicy); 4151 #endif 4152 4153 4154 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, 4155 struct kobj_attribute *attr, char *buf) 4156 { 4157 struct hstate *h = kobj_to_hstate(kobj, NULL); 4158 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages); 4159 } 4160 4161 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, 4162 struct kobj_attribute *attr, const char *buf, size_t count) 4163 { 4164 int err; 4165 unsigned long input; 4166 struct hstate *h = kobj_to_hstate(kobj, NULL); 4167 4168 if (hstate_is_gigantic(h)) 4169 return -EINVAL; 4170 4171 err = kstrtoul(buf, 10, &input); 4172 if (err) 4173 return err; 4174 4175 spin_lock_irq(&hugetlb_lock); 4176 h->nr_overcommit_huge_pages = input; 4177 spin_unlock_irq(&hugetlb_lock); 4178 4179 return count; 4180 } 4181 HSTATE_ATTR(nr_overcommit_hugepages); 4182 4183 static ssize_t free_hugepages_show(struct kobject *kobj, 4184 struct kobj_attribute *attr, char *buf) 4185 { 4186 struct hstate *h; 4187 unsigned long free_huge_pages; 4188 int nid; 4189 4190 h = kobj_to_hstate(kobj, &nid); 4191 if (nid == NUMA_NO_NODE) 4192 free_huge_pages = h->free_huge_pages; 4193 else 4194 free_huge_pages = h->free_huge_pages_node[nid]; 4195 4196 return sysfs_emit(buf, "%lu\n", free_huge_pages); 4197 } 4198 HSTATE_ATTR_RO(free_hugepages); 4199 4200 static ssize_t resv_hugepages_show(struct kobject *kobj, 4201 struct kobj_attribute *attr, char *buf) 4202 { 4203 struct hstate *h = kobj_to_hstate(kobj, NULL); 4204 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages); 4205 } 4206 HSTATE_ATTR_RO(resv_hugepages); 4207 4208 static ssize_t surplus_hugepages_show(struct kobject *kobj, 4209 struct kobj_attribute *attr, char *buf) 4210 { 4211 struct hstate *h; 4212 unsigned long surplus_huge_pages; 4213 int nid; 4214 4215 h = kobj_to_hstate(kobj, &nid); 4216 if (nid == NUMA_NO_NODE) 4217 surplus_huge_pages = h->surplus_huge_pages; 4218 else 4219 surplus_huge_pages = h->surplus_huge_pages_node[nid]; 4220 4221 return sysfs_emit(buf, "%lu\n", surplus_huge_pages); 4222 } 4223 HSTATE_ATTR_RO(surplus_hugepages); 4224 4225 static ssize_t demote_store(struct kobject *kobj, 4226 struct kobj_attribute *attr, const char *buf, size_t len) 4227 { 4228 unsigned long nr_demote; 4229 unsigned long nr_available; 4230 nodemask_t nodes_allowed, *n_mask; 4231 struct hstate *h; 4232 int err; 4233 int nid; 4234 4235 err = kstrtoul(buf, 10, &nr_demote); 4236 if (err) 4237 return err; 4238 h = kobj_to_hstate(kobj, &nid); 4239 4240 if (nid != NUMA_NO_NODE) { 4241 init_nodemask_of_node(&nodes_allowed, nid); 4242 n_mask = &nodes_allowed; 4243 } else { 4244 n_mask = &node_states[N_MEMORY]; 4245 } 4246 4247 /* Synchronize with other sysfs operations modifying huge pages */ 4248 mutex_lock(&h->resize_lock); 4249 spin_lock_irq(&hugetlb_lock); 4250 4251 while (nr_demote) { 4252 /* 4253 * Check for available pages to demote each time thorough the 4254 * loop as demote_pool_huge_page will drop hugetlb_lock. 4255 */ 4256 if (nid != NUMA_NO_NODE) 4257 nr_available = h->free_huge_pages_node[nid]; 4258 else 4259 nr_available = h->free_huge_pages; 4260 nr_available -= h->resv_huge_pages; 4261 if (!nr_available) 4262 break; 4263 4264 err = demote_pool_huge_page(h, n_mask); 4265 if (err) 4266 break; 4267 4268 nr_demote--; 4269 } 4270 4271 spin_unlock_irq(&hugetlb_lock); 4272 mutex_unlock(&h->resize_lock); 4273 4274 if (err) 4275 return err; 4276 return len; 4277 } 4278 HSTATE_ATTR_WO(demote); 4279 4280 static ssize_t demote_size_show(struct kobject *kobj, 4281 struct kobj_attribute *attr, char *buf) 4282 { 4283 struct hstate *h = kobj_to_hstate(kobj, NULL); 4284 unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K; 4285 4286 return sysfs_emit(buf, "%lukB\n", demote_size); 4287 } 4288 4289 static ssize_t demote_size_store(struct kobject *kobj, 4290 struct kobj_attribute *attr, 4291 const char *buf, size_t count) 4292 { 4293 struct hstate *h, *demote_hstate; 4294 unsigned long demote_size; 4295 unsigned int demote_order; 4296 4297 demote_size = (unsigned long)memparse(buf, NULL); 4298 4299 demote_hstate = size_to_hstate(demote_size); 4300 if (!demote_hstate) 4301 return -EINVAL; 4302 demote_order = demote_hstate->order; 4303 if (demote_order < HUGETLB_PAGE_ORDER) 4304 return -EINVAL; 4305 4306 /* demote order must be smaller than hstate order */ 4307 h = kobj_to_hstate(kobj, NULL); 4308 if (demote_order >= h->order) 4309 return -EINVAL; 4310 4311 /* resize_lock synchronizes access to demote size and writes */ 4312 mutex_lock(&h->resize_lock); 4313 h->demote_order = demote_order; 4314 mutex_unlock(&h->resize_lock); 4315 4316 return count; 4317 } 4318 HSTATE_ATTR(demote_size); 4319 4320 static struct attribute *hstate_attrs[] = { 4321 &nr_hugepages_attr.attr, 4322 &nr_overcommit_hugepages_attr.attr, 4323 &free_hugepages_attr.attr, 4324 &resv_hugepages_attr.attr, 4325 &surplus_hugepages_attr.attr, 4326 #ifdef CONFIG_NUMA 4327 &nr_hugepages_mempolicy_attr.attr, 4328 #endif 4329 NULL, 4330 }; 4331 4332 static const struct attribute_group hstate_attr_group = { 4333 .attrs = hstate_attrs, 4334 }; 4335 4336 static struct attribute *hstate_demote_attrs[] = { 4337 &demote_size_attr.attr, 4338 &demote_attr.attr, 4339 NULL, 4340 }; 4341 4342 static const struct attribute_group hstate_demote_attr_group = { 4343 .attrs = hstate_demote_attrs, 4344 }; 4345 4346 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent, 4347 struct kobject **hstate_kobjs, 4348 const struct attribute_group *hstate_attr_group) 4349 { 4350 int retval; 4351 int hi = hstate_index(h); 4352 4353 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent); 4354 if (!hstate_kobjs[hi]) 4355 return -ENOMEM; 4356 4357 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group); 4358 if (retval) { 4359 kobject_put(hstate_kobjs[hi]); 4360 hstate_kobjs[hi] = NULL; 4361 return retval; 4362 } 4363 4364 if (h->demote_order) { 4365 retval = sysfs_create_group(hstate_kobjs[hi], 4366 &hstate_demote_attr_group); 4367 if (retval) { 4368 pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name); 4369 sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group); 4370 kobject_put(hstate_kobjs[hi]); 4371 hstate_kobjs[hi] = NULL; 4372 return retval; 4373 } 4374 } 4375 4376 return 0; 4377 } 4378 4379 #ifdef CONFIG_NUMA 4380 static bool hugetlb_sysfs_initialized __ro_after_init; 4381 4382 /* 4383 * node_hstate/s - associate per node hstate attributes, via their kobjects, 4384 * with node devices in node_devices[] using a parallel array. The array 4385 * index of a node device or _hstate == node id. 4386 * This is here to avoid any static dependency of the node device driver, in 4387 * the base kernel, on the hugetlb module. 4388 */ 4389 struct node_hstate { 4390 struct kobject *hugepages_kobj; 4391 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 4392 }; 4393 static struct node_hstate node_hstates[MAX_NUMNODES]; 4394 4395 /* 4396 * A subset of global hstate attributes for node devices 4397 */ 4398 static struct attribute *per_node_hstate_attrs[] = { 4399 &nr_hugepages_attr.attr, 4400 &free_hugepages_attr.attr, 4401 &surplus_hugepages_attr.attr, 4402 NULL, 4403 }; 4404 4405 static const struct attribute_group per_node_hstate_attr_group = { 4406 .attrs = per_node_hstate_attrs, 4407 }; 4408 4409 /* 4410 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj. 4411 * Returns node id via non-NULL nidp. 4412 */ 4413 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 4414 { 4415 int nid; 4416 4417 for (nid = 0; nid < nr_node_ids; nid++) { 4418 struct node_hstate *nhs = &node_hstates[nid]; 4419 int i; 4420 for (i = 0; i < HUGE_MAX_HSTATE; i++) 4421 if (nhs->hstate_kobjs[i] == kobj) { 4422 if (nidp) 4423 *nidp = nid; 4424 return &hstates[i]; 4425 } 4426 } 4427 4428 BUG(); 4429 return NULL; 4430 } 4431 4432 /* 4433 * Unregister hstate attributes from a single node device. 4434 * No-op if no hstate attributes attached. 4435 */ 4436 void hugetlb_unregister_node(struct node *node) 4437 { 4438 struct hstate *h; 4439 struct node_hstate *nhs = &node_hstates[node->dev.id]; 4440 4441 if (!nhs->hugepages_kobj) 4442 return; /* no hstate attributes */ 4443 4444 for_each_hstate(h) { 4445 int idx = hstate_index(h); 4446 struct kobject *hstate_kobj = nhs->hstate_kobjs[idx]; 4447 4448 if (!hstate_kobj) 4449 continue; 4450 if (h->demote_order) 4451 sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group); 4452 sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group); 4453 kobject_put(hstate_kobj); 4454 nhs->hstate_kobjs[idx] = NULL; 4455 } 4456 4457 kobject_put(nhs->hugepages_kobj); 4458 nhs->hugepages_kobj = NULL; 4459 } 4460 4461 4462 /* 4463 * Register hstate attributes for a single node device. 4464 * No-op if attributes already registered. 4465 */ 4466 void hugetlb_register_node(struct node *node) 4467 { 4468 struct hstate *h; 4469 struct node_hstate *nhs = &node_hstates[node->dev.id]; 4470 int err; 4471 4472 if (!hugetlb_sysfs_initialized) 4473 return; 4474 4475 if (nhs->hugepages_kobj) 4476 return; /* already allocated */ 4477 4478 nhs->hugepages_kobj = kobject_create_and_add("hugepages", 4479 &node->dev.kobj); 4480 if (!nhs->hugepages_kobj) 4481 return; 4482 4483 for_each_hstate(h) { 4484 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj, 4485 nhs->hstate_kobjs, 4486 &per_node_hstate_attr_group); 4487 if (err) { 4488 pr_err("HugeTLB: Unable to add hstate %s for node %d\n", 4489 h->name, node->dev.id); 4490 hugetlb_unregister_node(node); 4491 break; 4492 } 4493 } 4494 } 4495 4496 /* 4497 * hugetlb init time: register hstate attributes for all registered node 4498 * devices of nodes that have memory. All on-line nodes should have 4499 * registered their associated device by this time. 4500 */ 4501 static void __init hugetlb_register_all_nodes(void) 4502 { 4503 int nid; 4504 4505 for_each_online_node(nid) 4506 hugetlb_register_node(node_devices[nid]); 4507 } 4508 #else /* !CONFIG_NUMA */ 4509 4510 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 4511 { 4512 BUG(); 4513 if (nidp) 4514 *nidp = -1; 4515 return NULL; 4516 } 4517 4518 static void hugetlb_register_all_nodes(void) { } 4519 4520 #endif 4521 4522 #ifdef CONFIG_CMA 4523 static void __init hugetlb_cma_check(void); 4524 #else 4525 static inline __init void hugetlb_cma_check(void) 4526 { 4527 } 4528 #endif 4529 4530 static void __init hugetlb_sysfs_init(void) 4531 { 4532 struct hstate *h; 4533 int err; 4534 4535 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); 4536 if (!hugepages_kobj) 4537 return; 4538 4539 for_each_hstate(h) { 4540 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj, 4541 hstate_kobjs, &hstate_attr_group); 4542 if (err) 4543 pr_err("HugeTLB: Unable to add hstate %s", h->name); 4544 } 4545 4546 #ifdef CONFIG_NUMA 4547 hugetlb_sysfs_initialized = true; 4548 #endif 4549 hugetlb_register_all_nodes(); 4550 } 4551 4552 #ifdef CONFIG_SYSCTL 4553 static void hugetlb_sysctl_init(void); 4554 #else 4555 static inline void hugetlb_sysctl_init(void) { } 4556 #endif 4557 4558 static int __init hugetlb_init(void) 4559 { 4560 int i; 4561 4562 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE < 4563 __NR_HPAGEFLAGS); 4564 4565 if (!hugepages_supported()) { 4566 if (hugetlb_max_hstate || default_hstate_max_huge_pages) 4567 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n"); 4568 return 0; 4569 } 4570 4571 /* 4572 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some 4573 * architectures depend on setup being done here. 4574 */ 4575 hugetlb_add_hstate(HUGETLB_PAGE_ORDER); 4576 if (!parsed_default_hugepagesz) { 4577 /* 4578 * If we did not parse a default huge page size, set 4579 * default_hstate_idx to HPAGE_SIZE hstate. And, if the 4580 * number of huge pages for this default size was implicitly 4581 * specified, set that here as well. 4582 * Note that the implicit setting will overwrite an explicit 4583 * setting. A warning will be printed in this case. 4584 */ 4585 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE)); 4586 if (default_hstate_max_huge_pages) { 4587 if (default_hstate.max_huge_pages) { 4588 char buf[32]; 4589 4590 string_get_size(huge_page_size(&default_hstate), 4591 1, STRING_UNITS_2, buf, 32); 4592 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n", 4593 default_hstate.max_huge_pages, buf); 4594 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n", 4595 default_hstate_max_huge_pages); 4596 } 4597 default_hstate.max_huge_pages = 4598 default_hstate_max_huge_pages; 4599 4600 for_each_online_node(i) 4601 default_hstate.max_huge_pages_node[i] = 4602 default_hugepages_in_node[i]; 4603 } 4604 } 4605 4606 hugetlb_cma_check(); 4607 hugetlb_init_hstates(); 4608 gather_bootmem_prealloc(); 4609 report_hugepages(); 4610 4611 hugetlb_sysfs_init(); 4612 hugetlb_cgroup_file_init(); 4613 hugetlb_sysctl_init(); 4614 4615 #ifdef CONFIG_SMP 4616 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus()); 4617 #else 4618 num_fault_mutexes = 1; 4619 #endif 4620 hugetlb_fault_mutex_table = 4621 kmalloc_array(num_fault_mutexes, sizeof(struct mutex), 4622 GFP_KERNEL); 4623 BUG_ON(!hugetlb_fault_mutex_table); 4624 4625 for (i = 0; i < num_fault_mutexes; i++) 4626 mutex_init(&hugetlb_fault_mutex_table[i]); 4627 return 0; 4628 } 4629 subsys_initcall(hugetlb_init); 4630 4631 /* Overwritten by architectures with more huge page sizes */ 4632 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size) 4633 { 4634 return size == HPAGE_SIZE; 4635 } 4636 4637 void __init hugetlb_add_hstate(unsigned int order) 4638 { 4639 struct hstate *h; 4640 unsigned long i; 4641 4642 if (size_to_hstate(PAGE_SIZE << order)) { 4643 return; 4644 } 4645 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE); 4646 BUG_ON(order < order_base_2(__NR_USED_SUBPAGE)); 4647 h = &hstates[hugetlb_max_hstate++]; 4648 __mutex_init(&h->resize_lock, "resize mutex", &h->resize_key); 4649 h->order = order; 4650 h->mask = ~(huge_page_size(h) - 1); 4651 for (i = 0; i < MAX_NUMNODES; ++i) 4652 INIT_LIST_HEAD(&h->hugepage_freelists[i]); 4653 INIT_LIST_HEAD(&h->hugepage_activelist); 4654 h->next_nid_to_alloc = first_memory_node; 4655 h->next_nid_to_free = first_memory_node; 4656 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", 4657 huge_page_size(h)/SZ_1K); 4658 4659 parsed_hstate = h; 4660 } 4661 4662 bool __init __weak hugetlb_node_alloc_supported(void) 4663 { 4664 return true; 4665 } 4666 4667 static void __init hugepages_clear_pages_in_node(void) 4668 { 4669 if (!hugetlb_max_hstate) { 4670 default_hstate_max_huge_pages = 0; 4671 memset(default_hugepages_in_node, 0, 4672 sizeof(default_hugepages_in_node)); 4673 } else { 4674 parsed_hstate->max_huge_pages = 0; 4675 memset(parsed_hstate->max_huge_pages_node, 0, 4676 sizeof(parsed_hstate->max_huge_pages_node)); 4677 } 4678 } 4679 4680 /* 4681 * hugepages command line processing 4682 * hugepages normally follows a valid hugepagsz or default_hugepagsz 4683 * specification. If not, ignore the hugepages value. hugepages can also 4684 * be the first huge page command line option in which case it implicitly 4685 * specifies the number of huge pages for the default size. 4686 */ 4687 static int __init hugepages_setup(char *s) 4688 { 4689 unsigned long *mhp; 4690 static unsigned long *last_mhp; 4691 int node = NUMA_NO_NODE; 4692 int count; 4693 unsigned long tmp; 4694 char *p = s; 4695 4696 if (!parsed_valid_hugepagesz) { 4697 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s); 4698 parsed_valid_hugepagesz = true; 4699 return 1; 4700 } 4701 4702 /* 4703 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter 4704 * yet, so this hugepages= parameter goes to the "default hstate". 4705 * Otherwise, it goes with the previously parsed hugepagesz or 4706 * default_hugepagesz. 4707 */ 4708 else if (!hugetlb_max_hstate) 4709 mhp = &default_hstate_max_huge_pages; 4710 else 4711 mhp = &parsed_hstate->max_huge_pages; 4712 4713 if (mhp == last_mhp) { 4714 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s); 4715 return 1; 4716 } 4717 4718 while (*p) { 4719 count = 0; 4720 if (sscanf(p, "%lu%n", &tmp, &count) != 1) 4721 goto invalid; 4722 /* Parameter is node format */ 4723 if (p[count] == ':') { 4724 if (!hugetlb_node_alloc_supported()) { 4725 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n"); 4726 return 1; 4727 } 4728 if (tmp >= MAX_NUMNODES || !node_online(tmp)) 4729 goto invalid; 4730 node = array_index_nospec(tmp, MAX_NUMNODES); 4731 p += count + 1; 4732 /* Parse hugepages */ 4733 if (sscanf(p, "%lu%n", &tmp, &count) != 1) 4734 goto invalid; 4735 if (!hugetlb_max_hstate) 4736 default_hugepages_in_node[node] = tmp; 4737 else 4738 parsed_hstate->max_huge_pages_node[node] = tmp; 4739 *mhp += tmp; 4740 /* Go to parse next node*/ 4741 if (p[count] == ',') 4742 p += count + 1; 4743 else 4744 break; 4745 } else { 4746 if (p != s) 4747 goto invalid; 4748 *mhp = tmp; 4749 break; 4750 } 4751 } 4752 4753 /* 4754 * Global state is always initialized later in hugetlb_init. 4755 * But we need to allocate gigantic hstates here early to still 4756 * use the bootmem allocator. 4757 */ 4758 if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate)) 4759 hugetlb_hstate_alloc_pages(parsed_hstate); 4760 4761 last_mhp = mhp; 4762 4763 return 1; 4764 4765 invalid: 4766 pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p); 4767 hugepages_clear_pages_in_node(); 4768 return 1; 4769 } 4770 __setup("hugepages=", hugepages_setup); 4771 4772 /* 4773 * hugepagesz command line processing 4774 * A specific huge page size can only be specified once with hugepagesz. 4775 * hugepagesz is followed by hugepages on the command line. The global 4776 * variable 'parsed_valid_hugepagesz' is used to determine if prior 4777 * hugepagesz argument was valid. 4778 */ 4779 static int __init hugepagesz_setup(char *s) 4780 { 4781 unsigned long size; 4782 struct hstate *h; 4783 4784 parsed_valid_hugepagesz = false; 4785 size = (unsigned long)memparse(s, NULL); 4786 4787 if (!arch_hugetlb_valid_size(size)) { 4788 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s); 4789 return 1; 4790 } 4791 4792 h = size_to_hstate(size); 4793 if (h) { 4794 /* 4795 * hstate for this size already exists. This is normally 4796 * an error, but is allowed if the existing hstate is the 4797 * default hstate. More specifically, it is only allowed if 4798 * the number of huge pages for the default hstate was not 4799 * previously specified. 4800 */ 4801 if (!parsed_default_hugepagesz || h != &default_hstate || 4802 default_hstate.max_huge_pages) { 4803 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s); 4804 return 1; 4805 } 4806 4807 /* 4808 * No need to call hugetlb_add_hstate() as hstate already 4809 * exists. But, do set parsed_hstate so that a following 4810 * hugepages= parameter will be applied to this hstate. 4811 */ 4812 parsed_hstate = h; 4813 parsed_valid_hugepagesz = true; 4814 return 1; 4815 } 4816 4817 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); 4818 parsed_valid_hugepagesz = true; 4819 return 1; 4820 } 4821 __setup("hugepagesz=", hugepagesz_setup); 4822 4823 /* 4824 * default_hugepagesz command line input 4825 * Only one instance of default_hugepagesz allowed on command line. 4826 */ 4827 static int __init default_hugepagesz_setup(char *s) 4828 { 4829 unsigned long size; 4830 int i; 4831 4832 parsed_valid_hugepagesz = false; 4833 if (parsed_default_hugepagesz) { 4834 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s); 4835 return 1; 4836 } 4837 4838 size = (unsigned long)memparse(s, NULL); 4839 4840 if (!arch_hugetlb_valid_size(size)) { 4841 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s); 4842 return 1; 4843 } 4844 4845 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); 4846 parsed_valid_hugepagesz = true; 4847 parsed_default_hugepagesz = true; 4848 default_hstate_idx = hstate_index(size_to_hstate(size)); 4849 4850 /* 4851 * The number of default huge pages (for this size) could have been 4852 * specified as the first hugetlb parameter: hugepages=X. If so, 4853 * then default_hstate_max_huge_pages is set. If the default huge 4854 * page size is gigantic (> MAX_PAGE_ORDER), then the pages must be 4855 * allocated here from bootmem allocator. 4856 */ 4857 if (default_hstate_max_huge_pages) { 4858 default_hstate.max_huge_pages = default_hstate_max_huge_pages; 4859 for_each_online_node(i) 4860 default_hstate.max_huge_pages_node[i] = 4861 default_hugepages_in_node[i]; 4862 if (hstate_is_gigantic(&default_hstate)) 4863 hugetlb_hstate_alloc_pages(&default_hstate); 4864 default_hstate_max_huge_pages = 0; 4865 } 4866 4867 return 1; 4868 } 4869 __setup("default_hugepagesz=", default_hugepagesz_setup); 4870 4871 static unsigned int allowed_mems_nr(struct hstate *h) 4872 { 4873 int node; 4874 unsigned int nr = 0; 4875 nodemask_t *mbind_nodemask; 4876 unsigned int *array = h->free_huge_pages_node; 4877 gfp_t gfp_mask = htlb_alloc_mask(h); 4878 4879 mbind_nodemask = policy_mbind_nodemask(gfp_mask); 4880 for_each_node_mask(node, cpuset_current_mems_allowed) { 4881 if (!mbind_nodemask || node_isset(node, *mbind_nodemask)) 4882 nr += array[node]; 4883 } 4884 4885 return nr; 4886 } 4887 4888 #ifdef CONFIG_SYSCTL 4889 static int proc_hugetlb_doulongvec_minmax(const struct ctl_table *table, int write, 4890 void *buffer, size_t *length, 4891 loff_t *ppos, unsigned long *out) 4892 { 4893 struct ctl_table dup_table; 4894 4895 /* 4896 * In order to avoid races with __do_proc_doulongvec_minmax(), we 4897 * can duplicate the @table and alter the duplicate of it. 4898 */ 4899 dup_table = *table; 4900 dup_table.data = out; 4901 4902 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos); 4903 } 4904 4905 static int hugetlb_sysctl_handler_common(bool obey_mempolicy, 4906 const struct ctl_table *table, int write, 4907 void *buffer, size_t *length, loff_t *ppos) 4908 { 4909 struct hstate *h = &default_hstate; 4910 unsigned long tmp = h->max_huge_pages; 4911 int ret; 4912 4913 if (!hugepages_supported()) 4914 return -EOPNOTSUPP; 4915 4916 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, 4917 &tmp); 4918 if (ret) 4919 goto out; 4920 4921 if (write) 4922 ret = __nr_hugepages_store_common(obey_mempolicy, h, 4923 NUMA_NO_NODE, tmp, *length); 4924 out: 4925 return ret; 4926 } 4927 4928 static int hugetlb_sysctl_handler(const struct ctl_table *table, int write, 4929 void *buffer, size_t *length, loff_t *ppos) 4930 { 4931 4932 return hugetlb_sysctl_handler_common(false, table, write, 4933 buffer, length, ppos); 4934 } 4935 4936 #ifdef CONFIG_NUMA 4937 static int hugetlb_mempolicy_sysctl_handler(const struct ctl_table *table, int write, 4938 void *buffer, size_t *length, loff_t *ppos) 4939 { 4940 return hugetlb_sysctl_handler_common(true, table, write, 4941 buffer, length, ppos); 4942 } 4943 #endif /* CONFIG_NUMA */ 4944 4945 static int hugetlb_overcommit_handler(const struct ctl_table *table, int write, 4946 void *buffer, size_t *length, loff_t *ppos) 4947 { 4948 struct hstate *h = &default_hstate; 4949 unsigned long tmp; 4950 int ret; 4951 4952 if (!hugepages_supported()) 4953 return -EOPNOTSUPP; 4954 4955 tmp = h->nr_overcommit_huge_pages; 4956 4957 if (write && hstate_is_gigantic(h)) 4958 return -EINVAL; 4959 4960 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, 4961 &tmp); 4962 if (ret) 4963 goto out; 4964 4965 if (write) { 4966 spin_lock_irq(&hugetlb_lock); 4967 h->nr_overcommit_huge_pages = tmp; 4968 spin_unlock_irq(&hugetlb_lock); 4969 } 4970 out: 4971 return ret; 4972 } 4973 4974 static struct ctl_table hugetlb_table[] = { 4975 { 4976 .procname = "nr_hugepages", 4977 .data = NULL, 4978 .maxlen = sizeof(unsigned long), 4979 .mode = 0644, 4980 .proc_handler = hugetlb_sysctl_handler, 4981 }, 4982 #ifdef CONFIG_NUMA 4983 { 4984 .procname = "nr_hugepages_mempolicy", 4985 .data = NULL, 4986 .maxlen = sizeof(unsigned long), 4987 .mode = 0644, 4988 .proc_handler = &hugetlb_mempolicy_sysctl_handler, 4989 }, 4990 #endif 4991 { 4992 .procname = "hugetlb_shm_group", 4993 .data = &sysctl_hugetlb_shm_group, 4994 .maxlen = sizeof(gid_t), 4995 .mode = 0644, 4996 .proc_handler = proc_dointvec, 4997 }, 4998 { 4999 .procname = "nr_overcommit_hugepages", 5000 .data = NULL, 5001 .maxlen = sizeof(unsigned long), 5002 .mode = 0644, 5003 .proc_handler = hugetlb_overcommit_handler, 5004 }, 5005 }; 5006 5007 static void hugetlb_sysctl_init(void) 5008 { 5009 register_sysctl_init("vm", hugetlb_table); 5010 } 5011 #endif /* CONFIG_SYSCTL */ 5012 5013 void hugetlb_report_meminfo(struct seq_file *m) 5014 { 5015 struct hstate *h; 5016 unsigned long total = 0; 5017 5018 if (!hugepages_supported()) 5019 return; 5020 5021 for_each_hstate(h) { 5022 unsigned long count = h->nr_huge_pages; 5023 5024 total += huge_page_size(h) * count; 5025 5026 if (h == &default_hstate) 5027 seq_printf(m, 5028 "HugePages_Total: %5lu\n" 5029 "HugePages_Free: %5lu\n" 5030 "HugePages_Rsvd: %5lu\n" 5031 "HugePages_Surp: %5lu\n" 5032 "Hugepagesize: %8lu kB\n", 5033 count, 5034 h->free_huge_pages, 5035 h->resv_huge_pages, 5036 h->surplus_huge_pages, 5037 huge_page_size(h) / SZ_1K); 5038 } 5039 5040 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K); 5041 } 5042 5043 int hugetlb_report_node_meminfo(char *buf, int len, int nid) 5044 { 5045 struct hstate *h = &default_hstate; 5046 5047 if (!hugepages_supported()) 5048 return 0; 5049 5050 return sysfs_emit_at(buf, len, 5051 "Node %d HugePages_Total: %5u\n" 5052 "Node %d HugePages_Free: %5u\n" 5053 "Node %d HugePages_Surp: %5u\n", 5054 nid, h->nr_huge_pages_node[nid], 5055 nid, h->free_huge_pages_node[nid], 5056 nid, h->surplus_huge_pages_node[nid]); 5057 } 5058 5059 void hugetlb_show_meminfo_node(int nid) 5060 { 5061 struct hstate *h; 5062 5063 if (!hugepages_supported()) 5064 return; 5065 5066 for_each_hstate(h) 5067 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n", 5068 nid, 5069 h->nr_huge_pages_node[nid], 5070 h->free_huge_pages_node[nid], 5071 h->surplus_huge_pages_node[nid], 5072 huge_page_size(h) / SZ_1K); 5073 } 5074 5075 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm) 5076 { 5077 seq_printf(m, "HugetlbPages:\t%8lu kB\n", 5078 K(atomic_long_read(&mm->hugetlb_usage))); 5079 } 5080 5081 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ 5082 unsigned long hugetlb_total_pages(void) 5083 { 5084 struct hstate *h; 5085 unsigned long nr_total_pages = 0; 5086 5087 for_each_hstate(h) 5088 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h); 5089 return nr_total_pages; 5090 } 5091 5092 static int hugetlb_acct_memory(struct hstate *h, long delta) 5093 { 5094 int ret = -ENOMEM; 5095 5096 if (!delta) 5097 return 0; 5098 5099 spin_lock_irq(&hugetlb_lock); 5100 /* 5101 * When cpuset is configured, it breaks the strict hugetlb page 5102 * reservation as the accounting is done on a global variable. Such 5103 * reservation is completely rubbish in the presence of cpuset because 5104 * the reservation is not checked against page availability for the 5105 * current cpuset. Application can still potentially OOM'ed by kernel 5106 * with lack of free htlb page in cpuset that the task is in. 5107 * Attempt to enforce strict accounting with cpuset is almost 5108 * impossible (or too ugly) because cpuset is too fluid that 5109 * task or memory node can be dynamically moved between cpusets. 5110 * 5111 * The change of semantics for shared hugetlb mapping with cpuset is 5112 * undesirable. However, in order to preserve some of the semantics, 5113 * we fall back to check against current free page availability as 5114 * a best attempt and hopefully to minimize the impact of changing 5115 * semantics that cpuset has. 5116 * 5117 * Apart from cpuset, we also have memory policy mechanism that 5118 * also determines from which node the kernel will allocate memory 5119 * in a NUMA system. So similar to cpuset, we also should consider 5120 * the memory policy of the current task. Similar to the description 5121 * above. 5122 */ 5123 if (delta > 0) { 5124 if (gather_surplus_pages(h, delta) < 0) 5125 goto out; 5126 5127 if (delta > allowed_mems_nr(h)) { 5128 return_unused_surplus_pages(h, delta); 5129 goto out; 5130 } 5131 } 5132 5133 ret = 0; 5134 if (delta < 0) 5135 return_unused_surplus_pages(h, (unsigned long) -delta); 5136 5137 out: 5138 spin_unlock_irq(&hugetlb_lock); 5139 return ret; 5140 } 5141 5142 static void hugetlb_vm_op_open(struct vm_area_struct *vma) 5143 { 5144 struct resv_map *resv = vma_resv_map(vma); 5145 5146 /* 5147 * HPAGE_RESV_OWNER indicates a private mapping. 5148 * This new VMA should share its siblings reservation map if present. 5149 * The VMA will only ever have a valid reservation map pointer where 5150 * it is being copied for another still existing VMA. As that VMA 5151 * has a reference to the reservation map it cannot disappear until 5152 * after this open call completes. It is therefore safe to take a 5153 * new reference here without additional locking. 5154 */ 5155 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 5156 resv_map_dup_hugetlb_cgroup_uncharge_info(resv); 5157 kref_get(&resv->refs); 5158 } 5159 5160 /* 5161 * vma_lock structure for sharable mappings is vma specific. 5162 * Clear old pointer (if copied via vm_area_dup) and allocate 5163 * new structure. Before clearing, make sure vma_lock is not 5164 * for this vma. 5165 */ 5166 if (vma->vm_flags & VM_MAYSHARE) { 5167 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 5168 5169 if (vma_lock) { 5170 if (vma_lock->vma != vma) { 5171 vma->vm_private_data = NULL; 5172 hugetlb_vma_lock_alloc(vma); 5173 } else 5174 pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__); 5175 } else 5176 hugetlb_vma_lock_alloc(vma); 5177 } 5178 } 5179 5180 static void hugetlb_vm_op_close(struct vm_area_struct *vma) 5181 { 5182 struct hstate *h = hstate_vma(vma); 5183 struct resv_map *resv; 5184 struct hugepage_subpool *spool = subpool_vma(vma); 5185 unsigned long reserve, start, end; 5186 long gbl_reserve; 5187 5188 hugetlb_vma_lock_free(vma); 5189 5190 resv = vma_resv_map(vma); 5191 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 5192 return; 5193 5194 start = vma_hugecache_offset(h, vma, vma->vm_start); 5195 end = vma_hugecache_offset(h, vma, vma->vm_end); 5196 5197 reserve = (end - start) - region_count(resv, start, end); 5198 hugetlb_cgroup_uncharge_counter(resv, start, end); 5199 if (reserve) { 5200 /* 5201 * Decrement reserve counts. The global reserve count may be 5202 * adjusted if the subpool has a minimum size. 5203 */ 5204 gbl_reserve = hugepage_subpool_put_pages(spool, reserve); 5205 hugetlb_acct_memory(h, -gbl_reserve); 5206 } 5207 5208 kref_put(&resv->refs, resv_map_release); 5209 } 5210 5211 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr) 5212 { 5213 if (addr & ~(huge_page_mask(hstate_vma(vma)))) 5214 return -EINVAL; 5215 5216 /* 5217 * PMD sharing is only possible for PUD_SIZE-aligned address ranges 5218 * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this 5219 * split, unshare PMDs in the PUD_SIZE interval surrounding addr now. 5220 */ 5221 if (addr & ~PUD_MASK) { 5222 /* 5223 * hugetlb_vm_op_split is called right before we attempt to 5224 * split the VMA. We will need to unshare PMDs in the old and 5225 * new VMAs, so let's unshare before we split. 5226 */ 5227 unsigned long floor = addr & PUD_MASK; 5228 unsigned long ceil = floor + PUD_SIZE; 5229 5230 if (floor >= vma->vm_start && ceil <= vma->vm_end) 5231 hugetlb_unshare_pmds(vma, floor, ceil); 5232 } 5233 5234 return 0; 5235 } 5236 5237 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma) 5238 { 5239 return huge_page_size(hstate_vma(vma)); 5240 } 5241 5242 /* 5243 * We cannot handle pagefaults against hugetlb pages at all. They cause 5244 * handle_mm_fault() to try to instantiate regular-sized pages in the 5245 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get 5246 * this far. 5247 */ 5248 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf) 5249 { 5250 BUG(); 5251 return 0; 5252 } 5253 5254 /* 5255 * When a new function is introduced to vm_operations_struct and added 5256 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops. 5257 * This is because under System V memory model, mappings created via 5258 * shmget/shmat with "huge page" specified are backed by hugetlbfs files, 5259 * their original vm_ops are overwritten with shm_vm_ops. 5260 */ 5261 const struct vm_operations_struct hugetlb_vm_ops = { 5262 .fault = hugetlb_vm_op_fault, 5263 .open = hugetlb_vm_op_open, 5264 .close = hugetlb_vm_op_close, 5265 .may_split = hugetlb_vm_op_split, 5266 .pagesize = hugetlb_vm_op_pagesize, 5267 }; 5268 5269 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, 5270 int writable) 5271 { 5272 pte_t entry; 5273 unsigned int shift = huge_page_shift(hstate_vma(vma)); 5274 5275 if (writable) { 5276 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page, 5277 vma->vm_page_prot))); 5278 } else { 5279 entry = huge_pte_wrprotect(mk_huge_pte(page, 5280 vma->vm_page_prot)); 5281 } 5282 entry = pte_mkyoung(entry); 5283 entry = arch_make_huge_pte(entry, shift, vma->vm_flags); 5284 5285 return entry; 5286 } 5287 5288 static void set_huge_ptep_writable(struct vm_area_struct *vma, 5289 unsigned long address, pte_t *ptep) 5290 { 5291 pte_t entry; 5292 5293 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(vma->vm_mm, address, ptep))); 5294 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) 5295 update_mmu_cache(vma, address, ptep); 5296 } 5297 5298 bool is_hugetlb_entry_migration(pte_t pte) 5299 { 5300 swp_entry_t swp; 5301 5302 if (huge_pte_none(pte) || pte_present(pte)) 5303 return false; 5304 swp = pte_to_swp_entry(pte); 5305 if (is_migration_entry(swp)) 5306 return true; 5307 else 5308 return false; 5309 } 5310 5311 bool is_hugetlb_entry_hwpoisoned(pte_t pte) 5312 { 5313 swp_entry_t swp; 5314 5315 if (huge_pte_none(pte) || pte_present(pte)) 5316 return false; 5317 swp = pte_to_swp_entry(pte); 5318 if (is_hwpoison_entry(swp)) 5319 return true; 5320 else 5321 return false; 5322 } 5323 5324 static void 5325 hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr, 5326 struct folio *new_folio, pte_t old, unsigned long sz) 5327 { 5328 pte_t newpte = make_huge_pte(vma, &new_folio->page, 1); 5329 5330 __folio_mark_uptodate(new_folio); 5331 hugetlb_add_new_anon_rmap(new_folio, vma, addr); 5332 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(old)) 5333 newpte = huge_pte_mkuffd_wp(newpte); 5334 set_huge_pte_at(vma->vm_mm, addr, ptep, newpte, sz); 5335 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm); 5336 folio_set_hugetlb_migratable(new_folio); 5337 } 5338 5339 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, 5340 struct vm_area_struct *dst_vma, 5341 struct vm_area_struct *src_vma) 5342 { 5343 pte_t *src_pte, *dst_pte, entry; 5344 struct folio *pte_folio; 5345 unsigned long addr; 5346 bool cow = is_cow_mapping(src_vma->vm_flags); 5347 struct hstate *h = hstate_vma(src_vma); 5348 unsigned long sz = huge_page_size(h); 5349 unsigned long npages = pages_per_huge_page(h); 5350 struct mmu_notifier_range range; 5351 unsigned long last_addr_mask; 5352 int ret = 0; 5353 5354 if (cow) { 5355 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src, 5356 src_vma->vm_start, 5357 src_vma->vm_end); 5358 mmu_notifier_invalidate_range_start(&range); 5359 vma_assert_write_locked(src_vma); 5360 raw_write_seqcount_begin(&src->write_protect_seq); 5361 } else { 5362 /* 5363 * For shared mappings the vma lock must be held before 5364 * calling hugetlb_walk() in the src vma. Otherwise, the 5365 * returned ptep could go away if part of a shared pmd and 5366 * another thread calls huge_pmd_unshare. 5367 */ 5368 hugetlb_vma_lock_read(src_vma); 5369 } 5370 5371 last_addr_mask = hugetlb_mask_last_page(h); 5372 for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) { 5373 spinlock_t *src_ptl, *dst_ptl; 5374 src_pte = hugetlb_walk(src_vma, addr, sz); 5375 if (!src_pte) { 5376 addr |= last_addr_mask; 5377 continue; 5378 } 5379 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz); 5380 if (!dst_pte) { 5381 ret = -ENOMEM; 5382 break; 5383 } 5384 5385 /* 5386 * If the pagetables are shared don't copy or take references. 5387 * 5388 * dst_pte == src_pte is the common case of src/dest sharing. 5389 * However, src could have 'unshared' and dst shares with 5390 * another vma. So page_count of ptep page is checked instead 5391 * to reliably determine whether pte is shared. 5392 */ 5393 if (page_count(virt_to_page(dst_pte)) > 1) { 5394 addr |= last_addr_mask; 5395 continue; 5396 } 5397 5398 dst_ptl = huge_pte_lock(h, dst, dst_pte); 5399 src_ptl = huge_pte_lockptr(h, src, src_pte); 5400 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 5401 entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte); 5402 again: 5403 if (huge_pte_none(entry)) { 5404 /* 5405 * Skip if src entry none. 5406 */ 5407 ; 5408 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) { 5409 if (!userfaultfd_wp(dst_vma)) 5410 entry = huge_pte_clear_uffd_wp(entry); 5411 set_huge_pte_at(dst, addr, dst_pte, entry, sz); 5412 } else if (unlikely(is_hugetlb_entry_migration(entry))) { 5413 swp_entry_t swp_entry = pte_to_swp_entry(entry); 5414 bool uffd_wp = pte_swp_uffd_wp(entry); 5415 5416 if (!is_readable_migration_entry(swp_entry) && cow) { 5417 /* 5418 * COW mappings require pages in both 5419 * parent and child to be set to read. 5420 */ 5421 swp_entry = make_readable_migration_entry( 5422 swp_offset(swp_entry)); 5423 entry = swp_entry_to_pte(swp_entry); 5424 if (userfaultfd_wp(src_vma) && uffd_wp) 5425 entry = pte_swp_mkuffd_wp(entry); 5426 set_huge_pte_at(src, addr, src_pte, entry, sz); 5427 } 5428 if (!userfaultfd_wp(dst_vma)) 5429 entry = huge_pte_clear_uffd_wp(entry); 5430 set_huge_pte_at(dst, addr, dst_pte, entry, sz); 5431 } else if (unlikely(is_pte_marker(entry))) { 5432 pte_marker marker = copy_pte_marker( 5433 pte_to_swp_entry(entry), dst_vma); 5434 5435 if (marker) 5436 set_huge_pte_at(dst, addr, dst_pte, 5437 make_pte_marker(marker), sz); 5438 } else { 5439 entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte); 5440 pte_folio = page_folio(pte_page(entry)); 5441 folio_get(pte_folio); 5442 5443 /* 5444 * Failing to duplicate the anon rmap is a rare case 5445 * where we see pinned hugetlb pages while they're 5446 * prone to COW. We need to do the COW earlier during 5447 * fork. 5448 * 5449 * When pre-allocating the page or copying data, we 5450 * need to be without the pgtable locks since we could 5451 * sleep during the process. 5452 */ 5453 if (!folio_test_anon(pte_folio)) { 5454 hugetlb_add_file_rmap(pte_folio); 5455 } else if (hugetlb_try_dup_anon_rmap(pte_folio, src_vma)) { 5456 pte_t src_pte_old = entry; 5457 struct folio *new_folio; 5458 5459 spin_unlock(src_ptl); 5460 spin_unlock(dst_ptl); 5461 /* Do not use reserve as it's private owned */ 5462 new_folio = alloc_hugetlb_folio(dst_vma, addr, 1); 5463 if (IS_ERR(new_folio)) { 5464 folio_put(pte_folio); 5465 ret = PTR_ERR(new_folio); 5466 break; 5467 } 5468 ret = copy_user_large_folio(new_folio, pte_folio, 5469 ALIGN_DOWN(addr, sz), dst_vma); 5470 folio_put(pte_folio); 5471 if (ret) { 5472 folio_put(new_folio); 5473 break; 5474 } 5475 5476 /* Install the new hugetlb folio if src pte stable */ 5477 dst_ptl = huge_pte_lock(h, dst, dst_pte); 5478 src_ptl = huge_pte_lockptr(h, src, src_pte); 5479 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 5480 entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte); 5481 if (!pte_same(src_pte_old, entry)) { 5482 restore_reserve_on_error(h, dst_vma, addr, 5483 new_folio); 5484 folio_put(new_folio); 5485 /* huge_ptep of dst_pte won't change as in child */ 5486 goto again; 5487 } 5488 hugetlb_install_folio(dst_vma, dst_pte, addr, 5489 new_folio, src_pte_old, sz); 5490 spin_unlock(src_ptl); 5491 spin_unlock(dst_ptl); 5492 continue; 5493 } 5494 5495 if (cow) { 5496 /* 5497 * No need to notify as we are downgrading page 5498 * table protection not changing it to point 5499 * to a new page. 5500 * 5501 * See Documentation/mm/mmu_notifier.rst 5502 */ 5503 huge_ptep_set_wrprotect(src, addr, src_pte); 5504 entry = huge_pte_wrprotect(entry); 5505 } 5506 5507 if (!userfaultfd_wp(dst_vma)) 5508 entry = huge_pte_clear_uffd_wp(entry); 5509 5510 set_huge_pte_at(dst, addr, dst_pte, entry, sz); 5511 hugetlb_count_add(npages, dst); 5512 } 5513 spin_unlock(src_ptl); 5514 spin_unlock(dst_ptl); 5515 } 5516 5517 if (cow) { 5518 raw_write_seqcount_end(&src->write_protect_seq); 5519 mmu_notifier_invalidate_range_end(&range); 5520 } else { 5521 hugetlb_vma_unlock_read(src_vma); 5522 } 5523 5524 return ret; 5525 } 5526 5527 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr, 5528 unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte, 5529 unsigned long sz) 5530 { 5531 struct hstate *h = hstate_vma(vma); 5532 struct mm_struct *mm = vma->vm_mm; 5533 spinlock_t *src_ptl, *dst_ptl; 5534 pte_t pte; 5535 5536 dst_ptl = huge_pte_lock(h, mm, dst_pte); 5537 src_ptl = huge_pte_lockptr(h, mm, src_pte); 5538 5539 /* 5540 * We don't have to worry about the ordering of src and dst ptlocks 5541 * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock. 5542 */ 5543 if (src_ptl != dst_ptl) 5544 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 5545 5546 pte = huge_ptep_get_and_clear(mm, old_addr, src_pte); 5547 set_huge_pte_at(mm, new_addr, dst_pte, pte, sz); 5548 5549 if (src_ptl != dst_ptl) 5550 spin_unlock(src_ptl); 5551 spin_unlock(dst_ptl); 5552 } 5553 5554 int move_hugetlb_page_tables(struct vm_area_struct *vma, 5555 struct vm_area_struct *new_vma, 5556 unsigned long old_addr, unsigned long new_addr, 5557 unsigned long len) 5558 { 5559 struct hstate *h = hstate_vma(vma); 5560 struct address_space *mapping = vma->vm_file->f_mapping; 5561 unsigned long sz = huge_page_size(h); 5562 struct mm_struct *mm = vma->vm_mm; 5563 unsigned long old_end = old_addr + len; 5564 unsigned long last_addr_mask; 5565 pte_t *src_pte, *dst_pte; 5566 struct mmu_notifier_range range; 5567 bool shared_pmd = false; 5568 5569 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr, 5570 old_end); 5571 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 5572 /* 5573 * In case of shared PMDs, we should cover the maximum possible 5574 * range. 5575 */ 5576 flush_cache_range(vma, range.start, range.end); 5577 5578 mmu_notifier_invalidate_range_start(&range); 5579 last_addr_mask = hugetlb_mask_last_page(h); 5580 /* Prevent race with file truncation */ 5581 hugetlb_vma_lock_write(vma); 5582 i_mmap_lock_write(mapping); 5583 for (; old_addr < old_end; old_addr += sz, new_addr += sz) { 5584 src_pte = hugetlb_walk(vma, old_addr, sz); 5585 if (!src_pte) { 5586 old_addr |= last_addr_mask; 5587 new_addr |= last_addr_mask; 5588 continue; 5589 } 5590 if (huge_pte_none(huge_ptep_get(mm, old_addr, src_pte))) 5591 continue; 5592 5593 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) { 5594 shared_pmd = true; 5595 old_addr |= last_addr_mask; 5596 new_addr |= last_addr_mask; 5597 continue; 5598 } 5599 5600 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz); 5601 if (!dst_pte) 5602 break; 5603 5604 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte, sz); 5605 } 5606 5607 if (shared_pmd) 5608 flush_hugetlb_tlb_range(vma, range.start, range.end); 5609 else 5610 flush_hugetlb_tlb_range(vma, old_end - len, old_end); 5611 mmu_notifier_invalidate_range_end(&range); 5612 i_mmap_unlock_write(mapping); 5613 hugetlb_vma_unlock_write(vma); 5614 5615 return len + old_addr - old_end; 5616 } 5617 5618 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma, 5619 unsigned long start, unsigned long end, 5620 struct page *ref_page, zap_flags_t zap_flags) 5621 { 5622 struct mm_struct *mm = vma->vm_mm; 5623 unsigned long address; 5624 pte_t *ptep; 5625 pte_t pte; 5626 spinlock_t *ptl; 5627 struct page *page; 5628 struct hstate *h = hstate_vma(vma); 5629 unsigned long sz = huge_page_size(h); 5630 bool adjust_reservation = false; 5631 unsigned long last_addr_mask; 5632 bool force_flush = false; 5633 5634 WARN_ON(!is_vm_hugetlb_page(vma)); 5635 BUG_ON(start & ~huge_page_mask(h)); 5636 BUG_ON(end & ~huge_page_mask(h)); 5637 5638 /* 5639 * This is a hugetlb vma, all the pte entries should point 5640 * to huge page. 5641 */ 5642 tlb_change_page_size(tlb, sz); 5643 tlb_start_vma(tlb, vma); 5644 5645 last_addr_mask = hugetlb_mask_last_page(h); 5646 address = start; 5647 for (; address < end; address += sz) { 5648 ptep = hugetlb_walk(vma, address, sz); 5649 if (!ptep) { 5650 address |= last_addr_mask; 5651 continue; 5652 } 5653 5654 ptl = huge_pte_lock(h, mm, ptep); 5655 if (huge_pmd_unshare(mm, vma, address, ptep)) { 5656 spin_unlock(ptl); 5657 tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE); 5658 force_flush = true; 5659 address |= last_addr_mask; 5660 continue; 5661 } 5662 5663 pte = huge_ptep_get(mm, address, ptep); 5664 if (huge_pte_none(pte)) { 5665 spin_unlock(ptl); 5666 continue; 5667 } 5668 5669 /* 5670 * Migrating hugepage or HWPoisoned hugepage is already 5671 * unmapped and its refcount is dropped, so just clear pte here. 5672 */ 5673 if (unlikely(!pte_present(pte))) { 5674 /* 5675 * If the pte was wr-protected by uffd-wp in any of the 5676 * swap forms, meanwhile the caller does not want to 5677 * drop the uffd-wp bit in this zap, then replace the 5678 * pte with a marker. 5679 */ 5680 if (pte_swp_uffd_wp_any(pte) && 5681 !(zap_flags & ZAP_FLAG_DROP_MARKER)) 5682 set_huge_pte_at(mm, address, ptep, 5683 make_pte_marker(PTE_MARKER_UFFD_WP), 5684 sz); 5685 else 5686 huge_pte_clear(mm, address, ptep, sz); 5687 spin_unlock(ptl); 5688 continue; 5689 } 5690 5691 page = pte_page(pte); 5692 /* 5693 * If a reference page is supplied, it is because a specific 5694 * page is being unmapped, not a range. Ensure the page we 5695 * are about to unmap is the actual page of interest. 5696 */ 5697 if (ref_page) { 5698 if (page != ref_page) { 5699 spin_unlock(ptl); 5700 continue; 5701 } 5702 /* 5703 * Mark the VMA as having unmapped its page so that 5704 * future faults in this VMA will fail rather than 5705 * looking like data was lost 5706 */ 5707 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); 5708 } 5709 5710 pte = huge_ptep_get_and_clear(mm, address, ptep); 5711 tlb_remove_huge_tlb_entry(h, tlb, ptep, address); 5712 if (huge_pte_dirty(pte)) 5713 set_page_dirty(page); 5714 /* Leave a uffd-wp pte marker if needed */ 5715 if (huge_pte_uffd_wp(pte) && 5716 !(zap_flags & ZAP_FLAG_DROP_MARKER)) 5717 set_huge_pte_at(mm, address, ptep, 5718 make_pte_marker(PTE_MARKER_UFFD_WP), 5719 sz); 5720 hugetlb_count_sub(pages_per_huge_page(h), mm); 5721 hugetlb_remove_rmap(page_folio(page)); 5722 5723 /* 5724 * Restore the reservation for anonymous page, otherwise the 5725 * backing page could be stolen by someone. 5726 * If there we are freeing a surplus, do not set the restore 5727 * reservation bit. 5728 */ 5729 if (!h->surplus_huge_pages && __vma_private_lock(vma) && 5730 folio_test_anon(page_folio(page))) { 5731 folio_set_hugetlb_restore_reserve(page_folio(page)); 5732 /* Reservation to be adjusted after the spin lock */ 5733 adjust_reservation = true; 5734 } 5735 5736 spin_unlock(ptl); 5737 5738 /* 5739 * Adjust the reservation for the region that will have the 5740 * reserve restored. Keep in mind that vma_needs_reservation() changes 5741 * resv->adds_in_progress if it succeeds. If this is not done, 5742 * do_exit() will not see it, and will keep the reservation 5743 * forever. 5744 */ 5745 if (adjust_reservation) { 5746 int rc = vma_needs_reservation(h, vma, address); 5747 5748 if (rc < 0) 5749 /* Pressumably allocate_file_region_entries failed 5750 * to allocate a file_region struct. Clear 5751 * hugetlb_restore_reserve so that global reserve 5752 * count will not be incremented by free_huge_folio. 5753 * Act as if we consumed the reservation. 5754 */ 5755 folio_clear_hugetlb_restore_reserve(page_folio(page)); 5756 else if (rc) 5757 vma_add_reservation(h, vma, address); 5758 } 5759 5760 tlb_remove_page_size(tlb, page, huge_page_size(h)); 5761 /* 5762 * Bail out after unmapping reference page if supplied 5763 */ 5764 if (ref_page) 5765 break; 5766 } 5767 tlb_end_vma(tlb, vma); 5768 5769 /* 5770 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We 5771 * could defer the flush until now, since by holding i_mmap_rwsem we 5772 * guaranteed that the last refernece would not be dropped. But we must 5773 * do the flushing before we return, as otherwise i_mmap_rwsem will be 5774 * dropped and the last reference to the shared PMDs page might be 5775 * dropped as well. 5776 * 5777 * In theory we could defer the freeing of the PMD pages as well, but 5778 * huge_pmd_unshare() relies on the exact page_count for the PMD page to 5779 * detect sharing, so we cannot defer the release of the page either. 5780 * Instead, do flush now. 5781 */ 5782 if (force_flush) 5783 tlb_flush_mmu_tlbonly(tlb); 5784 } 5785 5786 void __hugetlb_zap_begin(struct vm_area_struct *vma, 5787 unsigned long *start, unsigned long *end) 5788 { 5789 if (!vma->vm_file) /* hugetlbfs_file_mmap error */ 5790 return; 5791 5792 adjust_range_if_pmd_sharing_possible(vma, start, end); 5793 hugetlb_vma_lock_write(vma); 5794 if (vma->vm_file) 5795 i_mmap_lock_write(vma->vm_file->f_mapping); 5796 } 5797 5798 void __hugetlb_zap_end(struct vm_area_struct *vma, 5799 struct zap_details *details) 5800 { 5801 zap_flags_t zap_flags = details ? details->zap_flags : 0; 5802 5803 if (!vma->vm_file) /* hugetlbfs_file_mmap error */ 5804 return; 5805 5806 if (zap_flags & ZAP_FLAG_UNMAP) { /* final unmap */ 5807 /* 5808 * Unlock and free the vma lock before releasing i_mmap_rwsem. 5809 * When the vma_lock is freed, this makes the vma ineligible 5810 * for pmd sharing. And, i_mmap_rwsem is required to set up 5811 * pmd sharing. This is important as page tables for this 5812 * unmapped range will be asynchrously deleted. If the page 5813 * tables are shared, there will be issues when accessed by 5814 * someone else. 5815 */ 5816 __hugetlb_vma_unlock_write_free(vma); 5817 } else { 5818 hugetlb_vma_unlock_write(vma); 5819 } 5820 5821 if (vma->vm_file) 5822 i_mmap_unlock_write(vma->vm_file->f_mapping); 5823 } 5824 5825 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, 5826 unsigned long end, struct page *ref_page, 5827 zap_flags_t zap_flags) 5828 { 5829 struct mmu_notifier_range range; 5830 struct mmu_gather tlb; 5831 5832 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 5833 start, end); 5834 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 5835 mmu_notifier_invalidate_range_start(&range); 5836 tlb_gather_mmu(&tlb, vma->vm_mm); 5837 5838 __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags); 5839 5840 mmu_notifier_invalidate_range_end(&range); 5841 tlb_finish_mmu(&tlb); 5842 } 5843 5844 /* 5845 * This is called when the original mapper is failing to COW a MAP_PRIVATE 5846 * mapping it owns the reserve page for. The intention is to unmap the page 5847 * from other VMAs and let the children be SIGKILLed if they are faulting the 5848 * same region. 5849 */ 5850 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, 5851 struct page *page, unsigned long address) 5852 { 5853 struct hstate *h = hstate_vma(vma); 5854 struct vm_area_struct *iter_vma; 5855 struct address_space *mapping; 5856 pgoff_t pgoff; 5857 5858 /* 5859 * vm_pgoff is in PAGE_SIZE units, hence the different calculation 5860 * from page cache lookup which is in HPAGE_SIZE units. 5861 */ 5862 address = address & huge_page_mask(h); 5863 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + 5864 vma->vm_pgoff; 5865 mapping = vma->vm_file->f_mapping; 5866 5867 /* 5868 * Take the mapping lock for the duration of the table walk. As 5869 * this mapping should be shared between all the VMAs, 5870 * __unmap_hugepage_range() is called as the lock is already held 5871 */ 5872 i_mmap_lock_write(mapping); 5873 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) { 5874 /* Do not unmap the current VMA */ 5875 if (iter_vma == vma) 5876 continue; 5877 5878 /* 5879 * Shared VMAs have their own reserves and do not affect 5880 * MAP_PRIVATE accounting but it is possible that a shared 5881 * VMA is using the same page so check and skip such VMAs. 5882 */ 5883 if (iter_vma->vm_flags & VM_MAYSHARE) 5884 continue; 5885 5886 /* 5887 * Unmap the page from other VMAs without their own reserves. 5888 * They get marked to be SIGKILLed if they fault in these 5889 * areas. This is because a future no-page fault on this VMA 5890 * could insert a zeroed page instead of the data existing 5891 * from the time of fork. This would look like data corruption 5892 */ 5893 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) 5894 unmap_hugepage_range(iter_vma, address, 5895 address + huge_page_size(h), page, 0); 5896 } 5897 i_mmap_unlock_write(mapping); 5898 } 5899 5900 /* 5901 * hugetlb_wp() should be called with page lock of the original hugepage held. 5902 * Called with hugetlb_fault_mutex_table held and pte_page locked so we 5903 * cannot race with other handlers or page migration. 5904 * Keep the pte_same checks anyway to make transition from the mutex easier. 5905 */ 5906 static vm_fault_t hugetlb_wp(struct folio *pagecache_folio, 5907 struct vm_fault *vmf) 5908 { 5909 struct vm_area_struct *vma = vmf->vma; 5910 struct mm_struct *mm = vma->vm_mm; 5911 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 5912 pte_t pte = huge_ptep_get(mm, vmf->address, vmf->pte); 5913 struct hstate *h = hstate_vma(vma); 5914 struct folio *old_folio; 5915 struct folio *new_folio; 5916 int outside_reserve = 0; 5917 vm_fault_t ret = 0; 5918 struct mmu_notifier_range range; 5919 5920 /* 5921 * Never handle CoW for uffd-wp protected pages. It should be only 5922 * handled when the uffd-wp protection is removed. 5923 * 5924 * Note that only the CoW optimization path (in hugetlb_no_page()) 5925 * can trigger this, because hugetlb_fault() will always resolve 5926 * uffd-wp bit first. 5927 */ 5928 if (!unshare && huge_pte_uffd_wp(pte)) 5929 return 0; 5930 5931 /* 5932 * hugetlb does not support FOLL_FORCE-style write faults that keep the 5933 * PTE mapped R/O such as maybe_mkwrite() would do. 5934 */ 5935 if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE))) 5936 return VM_FAULT_SIGSEGV; 5937 5938 /* Let's take out MAP_SHARED mappings first. */ 5939 if (vma->vm_flags & VM_MAYSHARE) { 5940 set_huge_ptep_writable(vma, vmf->address, vmf->pte); 5941 return 0; 5942 } 5943 5944 old_folio = page_folio(pte_page(pte)); 5945 5946 delayacct_wpcopy_start(); 5947 5948 retry_avoidcopy: 5949 /* 5950 * If no-one else is actually using this page, we're the exclusive 5951 * owner and can reuse this page. 5952 * 5953 * Note that we don't rely on the (safer) folio refcount here, because 5954 * copying the hugetlb folio when there are unexpected (temporary) 5955 * folio references could harm simple fork()+exit() users when 5956 * we run out of free hugetlb folios: we would have to kill processes 5957 * in scenarios that used to work. As a side effect, there can still 5958 * be leaks between processes, for example, with FOLL_GET users. 5959 */ 5960 if (folio_mapcount(old_folio) == 1 && folio_test_anon(old_folio)) { 5961 if (!PageAnonExclusive(&old_folio->page)) { 5962 folio_move_anon_rmap(old_folio, vma); 5963 SetPageAnonExclusive(&old_folio->page); 5964 } 5965 if (likely(!unshare)) 5966 set_huge_ptep_writable(vma, vmf->address, vmf->pte); 5967 5968 delayacct_wpcopy_end(); 5969 return 0; 5970 } 5971 VM_BUG_ON_PAGE(folio_test_anon(old_folio) && 5972 PageAnonExclusive(&old_folio->page), &old_folio->page); 5973 5974 /* 5975 * If the process that created a MAP_PRIVATE mapping is about to 5976 * perform a COW due to a shared page count, attempt to satisfy 5977 * the allocation without using the existing reserves. The pagecache 5978 * page is used to determine if the reserve at this address was 5979 * consumed or not. If reserves were used, a partial faulted mapping 5980 * at the time of fork() could consume its reserves on COW instead 5981 * of the full address range. 5982 */ 5983 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && 5984 old_folio != pagecache_folio) 5985 outside_reserve = 1; 5986 5987 folio_get(old_folio); 5988 5989 /* 5990 * Drop page table lock as buddy allocator may be called. It will 5991 * be acquired again before returning to the caller, as expected. 5992 */ 5993 spin_unlock(vmf->ptl); 5994 new_folio = alloc_hugetlb_folio(vma, vmf->address, outside_reserve); 5995 5996 if (IS_ERR(new_folio)) { 5997 /* 5998 * If a process owning a MAP_PRIVATE mapping fails to COW, 5999 * it is due to references held by a child and an insufficient 6000 * huge page pool. To guarantee the original mappers 6001 * reliability, unmap the page from child processes. The child 6002 * may get SIGKILLed if it later faults. 6003 */ 6004 if (outside_reserve) { 6005 struct address_space *mapping = vma->vm_file->f_mapping; 6006 pgoff_t idx; 6007 u32 hash; 6008 6009 folio_put(old_folio); 6010 /* 6011 * Drop hugetlb_fault_mutex and vma_lock before 6012 * unmapping. unmapping needs to hold vma_lock 6013 * in write mode. Dropping vma_lock in read mode 6014 * here is OK as COW mappings do not interact with 6015 * PMD sharing. 6016 * 6017 * Reacquire both after unmap operation. 6018 */ 6019 idx = vma_hugecache_offset(h, vma, vmf->address); 6020 hash = hugetlb_fault_mutex_hash(mapping, idx); 6021 hugetlb_vma_unlock_read(vma); 6022 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6023 6024 unmap_ref_private(mm, vma, &old_folio->page, 6025 vmf->address); 6026 6027 mutex_lock(&hugetlb_fault_mutex_table[hash]); 6028 hugetlb_vma_lock_read(vma); 6029 spin_lock(vmf->ptl); 6030 vmf->pte = hugetlb_walk(vma, vmf->address, 6031 huge_page_size(h)); 6032 if (likely(vmf->pte && 6033 pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), pte))) 6034 goto retry_avoidcopy; 6035 /* 6036 * race occurs while re-acquiring page table 6037 * lock, and our job is done. 6038 */ 6039 delayacct_wpcopy_end(); 6040 return 0; 6041 } 6042 6043 ret = vmf_error(PTR_ERR(new_folio)); 6044 goto out_release_old; 6045 } 6046 6047 /* 6048 * When the original hugepage is shared one, it does not have 6049 * anon_vma prepared. 6050 */ 6051 ret = vmf_anon_prepare(vmf); 6052 if (unlikely(ret)) 6053 goto out_release_all; 6054 6055 if (copy_user_large_folio(new_folio, old_folio, vmf->real_address, vma)) { 6056 ret = VM_FAULT_HWPOISON_LARGE | VM_FAULT_SET_HINDEX(hstate_index(h)); 6057 goto out_release_all; 6058 } 6059 __folio_mark_uptodate(new_folio); 6060 6061 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, vmf->address, 6062 vmf->address + huge_page_size(h)); 6063 mmu_notifier_invalidate_range_start(&range); 6064 6065 /* 6066 * Retake the page table lock to check for racing updates 6067 * before the page tables are altered 6068 */ 6069 spin_lock(vmf->ptl); 6070 vmf->pte = hugetlb_walk(vma, vmf->address, huge_page_size(h)); 6071 if (likely(vmf->pte && pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), pte))) { 6072 pte_t newpte = make_huge_pte(vma, &new_folio->page, !unshare); 6073 6074 /* Break COW or unshare */ 6075 huge_ptep_clear_flush(vma, vmf->address, vmf->pte); 6076 hugetlb_remove_rmap(old_folio); 6077 hugetlb_add_new_anon_rmap(new_folio, vma, vmf->address); 6078 if (huge_pte_uffd_wp(pte)) 6079 newpte = huge_pte_mkuffd_wp(newpte); 6080 set_huge_pte_at(mm, vmf->address, vmf->pte, newpte, 6081 huge_page_size(h)); 6082 folio_set_hugetlb_migratable(new_folio); 6083 /* Make the old page be freed below */ 6084 new_folio = old_folio; 6085 } 6086 spin_unlock(vmf->ptl); 6087 mmu_notifier_invalidate_range_end(&range); 6088 out_release_all: 6089 /* 6090 * No restore in case of successful pagetable update (Break COW or 6091 * unshare) 6092 */ 6093 if (new_folio != old_folio) 6094 restore_reserve_on_error(h, vma, vmf->address, new_folio); 6095 folio_put(new_folio); 6096 out_release_old: 6097 folio_put(old_folio); 6098 6099 spin_lock(vmf->ptl); /* Caller expects lock to be held */ 6100 6101 delayacct_wpcopy_end(); 6102 return ret; 6103 } 6104 6105 /* 6106 * Return whether there is a pagecache page to back given address within VMA. 6107 */ 6108 bool hugetlbfs_pagecache_present(struct hstate *h, 6109 struct vm_area_struct *vma, unsigned long address) 6110 { 6111 struct address_space *mapping = vma->vm_file->f_mapping; 6112 pgoff_t idx = linear_page_index(vma, address); 6113 struct folio *folio; 6114 6115 folio = filemap_get_folio(mapping, idx); 6116 if (IS_ERR(folio)) 6117 return false; 6118 folio_put(folio); 6119 return true; 6120 } 6121 6122 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping, 6123 pgoff_t idx) 6124 { 6125 struct inode *inode = mapping->host; 6126 struct hstate *h = hstate_inode(inode); 6127 int err; 6128 6129 idx <<= huge_page_order(h); 6130 __folio_set_locked(folio); 6131 err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL); 6132 6133 if (unlikely(err)) { 6134 __folio_clear_locked(folio); 6135 return err; 6136 } 6137 folio_clear_hugetlb_restore_reserve(folio); 6138 6139 /* 6140 * mark folio dirty so that it will not be removed from cache/file 6141 * by non-hugetlbfs specific code paths. 6142 */ 6143 folio_mark_dirty(folio); 6144 6145 spin_lock(&inode->i_lock); 6146 inode->i_blocks += blocks_per_huge_page(h); 6147 spin_unlock(&inode->i_lock); 6148 return 0; 6149 } 6150 6151 static inline vm_fault_t hugetlb_handle_userfault(struct vm_fault *vmf, 6152 struct address_space *mapping, 6153 unsigned long reason) 6154 { 6155 u32 hash; 6156 6157 /* 6158 * vma_lock and hugetlb_fault_mutex must be dropped before handling 6159 * userfault. Also mmap_lock could be dropped due to handling 6160 * userfault, any vma operation should be careful from here. 6161 */ 6162 hugetlb_vma_unlock_read(vmf->vma); 6163 hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff); 6164 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6165 return handle_userfault(vmf, reason); 6166 } 6167 6168 /* 6169 * Recheck pte with pgtable lock. Returns true if pte didn't change, or 6170 * false if pte changed or is changing. 6171 */ 6172 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm, unsigned long addr, 6173 pte_t *ptep, pte_t old_pte) 6174 { 6175 spinlock_t *ptl; 6176 bool same; 6177 6178 ptl = huge_pte_lock(h, mm, ptep); 6179 same = pte_same(huge_ptep_get(mm, addr, ptep), old_pte); 6180 spin_unlock(ptl); 6181 6182 return same; 6183 } 6184 6185 static vm_fault_t hugetlb_no_page(struct address_space *mapping, 6186 struct vm_fault *vmf) 6187 { 6188 struct vm_area_struct *vma = vmf->vma; 6189 struct mm_struct *mm = vma->vm_mm; 6190 struct hstate *h = hstate_vma(vma); 6191 vm_fault_t ret = VM_FAULT_SIGBUS; 6192 int anon_rmap = 0; 6193 unsigned long size; 6194 struct folio *folio; 6195 pte_t new_pte; 6196 bool new_folio, new_pagecache_folio = false; 6197 u32 hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff); 6198 6199 /* 6200 * Currently, we are forced to kill the process in the event the 6201 * original mapper has unmapped pages from the child due to a failed 6202 * COW/unsharing. Warn that such a situation has occurred as it may not 6203 * be obvious. 6204 */ 6205 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { 6206 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n", 6207 current->pid); 6208 goto out; 6209 } 6210 6211 /* 6212 * Use page lock to guard against racing truncation 6213 * before we get page_table_lock. 6214 */ 6215 new_folio = false; 6216 folio = filemap_lock_hugetlb_folio(h, mapping, vmf->pgoff); 6217 if (IS_ERR(folio)) { 6218 size = i_size_read(mapping->host) >> huge_page_shift(h); 6219 if (vmf->pgoff >= size) 6220 goto out; 6221 /* Check for page in userfault range */ 6222 if (userfaultfd_missing(vma)) { 6223 /* 6224 * Since hugetlb_no_page() was examining pte 6225 * without pgtable lock, we need to re-test under 6226 * lock because the pte may not be stable and could 6227 * have changed from under us. Try to detect 6228 * either changed or during-changing ptes and retry 6229 * properly when needed. 6230 * 6231 * Note that userfaultfd is actually fine with 6232 * false positives (e.g. caused by pte changed), 6233 * but not wrong logical events (e.g. caused by 6234 * reading a pte during changing). The latter can 6235 * confuse the userspace, so the strictness is very 6236 * much preferred. E.g., MISSING event should 6237 * never happen on the page after UFFDIO_COPY has 6238 * correctly installed the page and returned. 6239 */ 6240 if (!hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte)) { 6241 ret = 0; 6242 goto out; 6243 } 6244 6245 return hugetlb_handle_userfault(vmf, mapping, 6246 VM_UFFD_MISSING); 6247 } 6248 6249 if (!(vma->vm_flags & VM_MAYSHARE)) { 6250 ret = vmf_anon_prepare(vmf); 6251 if (unlikely(ret)) 6252 goto out; 6253 } 6254 6255 folio = alloc_hugetlb_folio(vma, vmf->address, 0); 6256 if (IS_ERR(folio)) { 6257 /* 6258 * Returning error will result in faulting task being 6259 * sent SIGBUS. The hugetlb fault mutex prevents two 6260 * tasks from racing to fault in the same page which 6261 * could result in false unable to allocate errors. 6262 * Page migration does not take the fault mutex, but 6263 * does a clear then write of pte's under page table 6264 * lock. Page fault code could race with migration, 6265 * notice the clear pte and try to allocate a page 6266 * here. Before returning error, get ptl and make 6267 * sure there really is no pte entry. 6268 */ 6269 if (hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte)) 6270 ret = vmf_error(PTR_ERR(folio)); 6271 else 6272 ret = 0; 6273 goto out; 6274 } 6275 folio_zero_user(folio, vmf->real_address); 6276 __folio_mark_uptodate(folio); 6277 new_folio = true; 6278 6279 if (vma->vm_flags & VM_MAYSHARE) { 6280 int err = hugetlb_add_to_page_cache(folio, mapping, 6281 vmf->pgoff); 6282 if (err) { 6283 /* 6284 * err can't be -EEXIST which implies someone 6285 * else consumed the reservation since hugetlb 6286 * fault mutex is held when add a hugetlb page 6287 * to the page cache. So it's safe to call 6288 * restore_reserve_on_error() here. 6289 */ 6290 restore_reserve_on_error(h, vma, vmf->address, 6291 folio); 6292 folio_put(folio); 6293 ret = VM_FAULT_SIGBUS; 6294 goto out; 6295 } 6296 new_pagecache_folio = true; 6297 } else { 6298 folio_lock(folio); 6299 anon_rmap = 1; 6300 } 6301 } else { 6302 /* 6303 * If memory error occurs between mmap() and fault, some process 6304 * don't have hwpoisoned swap entry for errored virtual address. 6305 * So we need to block hugepage fault by PG_hwpoison bit check. 6306 */ 6307 if (unlikely(folio_test_hwpoison(folio))) { 6308 ret = VM_FAULT_HWPOISON_LARGE | 6309 VM_FAULT_SET_HINDEX(hstate_index(h)); 6310 goto backout_unlocked; 6311 } 6312 6313 /* Check for page in userfault range. */ 6314 if (userfaultfd_minor(vma)) { 6315 folio_unlock(folio); 6316 folio_put(folio); 6317 /* See comment in userfaultfd_missing() block above */ 6318 if (!hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte)) { 6319 ret = 0; 6320 goto out; 6321 } 6322 return hugetlb_handle_userfault(vmf, mapping, 6323 VM_UFFD_MINOR); 6324 } 6325 } 6326 6327 /* 6328 * If we are going to COW a private mapping later, we examine the 6329 * pending reservations for this page now. This will ensure that 6330 * any allocations necessary to record that reservation occur outside 6331 * the spinlock. 6332 */ 6333 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 6334 if (vma_needs_reservation(h, vma, vmf->address) < 0) { 6335 ret = VM_FAULT_OOM; 6336 goto backout_unlocked; 6337 } 6338 /* Just decrements count, does not deallocate */ 6339 vma_end_reservation(h, vma, vmf->address); 6340 } 6341 6342 vmf->ptl = huge_pte_lock(h, mm, vmf->pte); 6343 ret = 0; 6344 /* If pte changed from under us, retry */ 6345 if (!pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), vmf->orig_pte)) 6346 goto backout; 6347 6348 if (anon_rmap) 6349 hugetlb_add_new_anon_rmap(folio, vma, vmf->address); 6350 else 6351 hugetlb_add_file_rmap(folio); 6352 new_pte = make_huge_pte(vma, &folio->page, ((vma->vm_flags & VM_WRITE) 6353 && (vma->vm_flags & VM_SHARED))); 6354 /* 6355 * If this pte was previously wr-protected, keep it wr-protected even 6356 * if populated. 6357 */ 6358 if (unlikely(pte_marker_uffd_wp(vmf->orig_pte))) 6359 new_pte = huge_pte_mkuffd_wp(new_pte); 6360 set_huge_pte_at(mm, vmf->address, vmf->pte, new_pte, huge_page_size(h)); 6361 6362 hugetlb_count_add(pages_per_huge_page(h), mm); 6363 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 6364 /* Optimization, do the COW without a second fault */ 6365 ret = hugetlb_wp(folio, vmf); 6366 } 6367 6368 spin_unlock(vmf->ptl); 6369 6370 /* 6371 * Only set hugetlb_migratable in newly allocated pages. Existing pages 6372 * found in the pagecache may not have hugetlb_migratable if they have 6373 * been isolated for migration. 6374 */ 6375 if (new_folio) 6376 folio_set_hugetlb_migratable(folio); 6377 6378 folio_unlock(folio); 6379 out: 6380 hugetlb_vma_unlock_read(vma); 6381 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6382 return ret; 6383 6384 backout: 6385 spin_unlock(vmf->ptl); 6386 backout_unlocked: 6387 if (new_folio && !new_pagecache_folio) 6388 restore_reserve_on_error(h, vma, vmf->address, folio); 6389 6390 folio_unlock(folio); 6391 folio_put(folio); 6392 goto out; 6393 } 6394 6395 #ifdef CONFIG_SMP 6396 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 6397 { 6398 unsigned long key[2]; 6399 u32 hash; 6400 6401 key[0] = (unsigned long) mapping; 6402 key[1] = idx; 6403 6404 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0); 6405 6406 return hash & (num_fault_mutexes - 1); 6407 } 6408 #else 6409 /* 6410 * For uniprocessor systems we always use a single mutex, so just 6411 * return 0 and avoid the hashing overhead. 6412 */ 6413 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 6414 { 6415 return 0; 6416 } 6417 #endif 6418 6419 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, 6420 unsigned long address, unsigned int flags) 6421 { 6422 vm_fault_t ret; 6423 u32 hash; 6424 struct folio *folio = NULL; 6425 struct folio *pagecache_folio = NULL; 6426 struct hstate *h = hstate_vma(vma); 6427 struct address_space *mapping; 6428 int need_wait_lock = 0; 6429 struct vm_fault vmf = { 6430 .vma = vma, 6431 .address = address & huge_page_mask(h), 6432 .real_address = address, 6433 .flags = flags, 6434 .pgoff = vma_hugecache_offset(h, vma, 6435 address & huge_page_mask(h)), 6436 /* TODO: Track hugetlb faults using vm_fault */ 6437 6438 /* 6439 * Some fields may not be initialized, be careful as it may 6440 * be hard to debug if called functions make assumptions 6441 */ 6442 }; 6443 6444 /* 6445 * Serialize hugepage allocation and instantiation, so that we don't 6446 * get spurious allocation failures if two CPUs race to instantiate 6447 * the same page in the page cache. 6448 */ 6449 mapping = vma->vm_file->f_mapping; 6450 hash = hugetlb_fault_mutex_hash(mapping, vmf.pgoff); 6451 mutex_lock(&hugetlb_fault_mutex_table[hash]); 6452 6453 /* 6454 * Acquire vma lock before calling huge_pte_alloc and hold 6455 * until finished with vmf.pte. This prevents huge_pmd_unshare from 6456 * being called elsewhere and making the vmf.pte no longer valid. 6457 */ 6458 hugetlb_vma_lock_read(vma); 6459 vmf.pte = huge_pte_alloc(mm, vma, vmf.address, huge_page_size(h)); 6460 if (!vmf.pte) { 6461 hugetlb_vma_unlock_read(vma); 6462 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6463 return VM_FAULT_OOM; 6464 } 6465 6466 vmf.orig_pte = huge_ptep_get(mm, vmf.address, vmf.pte); 6467 if (huge_pte_none_mostly(vmf.orig_pte)) { 6468 if (is_pte_marker(vmf.orig_pte)) { 6469 pte_marker marker = 6470 pte_marker_get(pte_to_swp_entry(vmf.orig_pte)); 6471 6472 if (marker & PTE_MARKER_POISONED) { 6473 ret = VM_FAULT_HWPOISON_LARGE | 6474 VM_FAULT_SET_HINDEX(hstate_index(h)); 6475 goto out_mutex; 6476 } 6477 } 6478 6479 /* 6480 * Other PTE markers should be handled the same way as none PTE. 6481 * 6482 * hugetlb_no_page will drop vma lock and hugetlb fault 6483 * mutex internally, which make us return immediately. 6484 */ 6485 return hugetlb_no_page(mapping, &vmf); 6486 } 6487 6488 ret = 0; 6489 6490 /* 6491 * vmf.orig_pte could be a migration/hwpoison vmf.orig_pte at this 6492 * point, so this check prevents the kernel from going below assuming 6493 * that we have an active hugepage in pagecache. This goto expects 6494 * the 2nd page fault, and is_hugetlb_entry_(migration|hwpoisoned) 6495 * check will properly handle it. 6496 */ 6497 if (!pte_present(vmf.orig_pte)) { 6498 if (unlikely(is_hugetlb_entry_migration(vmf.orig_pte))) { 6499 /* 6500 * Release the hugetlb fault lock now, but retain 6501 * the vma lock, because it is needed to guard the 6502 * huge_pte_lockptr() later in 6503 * migration_entry_wait_huge(). The vma lock will 6504 * be released there. 6505 */ 6506 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6507 migration_entry_wait_huge(vma, vmf.address, vmf.pte); 6508 return 0; 6509 } else if (unlikely(is_hugetlb_entry_hwpoisoned(vmf.orig_pte))) 6510 ret = VM_FAULT_HWPOISON_LARGE | 6511 VM_FAULT_SET_HINDEX(hstate_index(h)); 6512 goto out_mutex; 6513 } 6514 6515 /* 6516 * If we are going to COW/unshare the mapping later, we examine the 6517 * pending reservations for this page now. This will ensure that any 6518 * allocations necessary to record that reservation occur outside the 6519 * spinlock. Also lookup the pagecache page now as it is used to 6520 * determine if a reservation has been consumed. 6521 */ 6522 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) && 6523 !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(vmf.orig_pte)) { 6524 if (vma_needs_reservation(h, vma, vmf.address) < 0) { 6525 ret = VM_FAULT_OOM; 6526 goto out_mutex; 6527 } 6528 /* Just decrements count, does not deallocate */ 6529 vma_end_reservation(h, vma, vmf.address); 6530 6531 pagecache_folio = filemap_lock_hugetlb_folio(h, mapping, 6532 vmf.pgoff); 6533 if (IS_ERR(pagecache_folio)) 6534 pagecache_folio = NULL; 6535 } 6536 6537 vmf.ptl = huge_pte_lock(h, mm, vmf.pte); 6538 6539 /* Check for a racing update before calling hugetlb_wp() */ 6540 if (unlikely(!pte_same(vmf.orig_pte, huge_ptep_get(mm, vmf.address, vmf.pte)))) 6541 goto out_ptl; 6542 6543 /* Handle userfault-wp first, before trying to lock more pages */ 6544 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(mm, vmf.address, vmf.pte)) && 6545 (flags & FAULT_FLAG_WRITE) && !huge_pte_write(vmf.orig_pte)) { 6546 if (!userfaultfd_wp_async(vma)) { 6547 spin_unlock(vmf.ptl); 6548 if (pagecache_folio) { 6549 folio_unlock(pagecache_folio); 6550 folio_put(pagecache_folio); 6551 } 6552 hugetlb_vma_unlock_read(vma); 6553 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6554 return handle_userfault(&vmf, VM_UFFD_WP); 6555 } 6556 6557 vmf.orig_pte = huge_pte_clear_uffd_wp(vmf.orig_pte); 6558 set_huge_pte_at(mm, vmf.address, vmf.pte, vmf.orig_pte, 6559 huge_page_size(hstate_vma(vma))); 6560 /* Fallthrough to CoW */ 6561 } 6562 6563 /* 6564 * hugetlb_wp() requires page locks of pte_page(vmf.orig_pte) and 6565 * pagecache_folio, so here we need take the former one 6566 * when folio != pagecache_folio or !pagecache_folio. 6567 */ 6568 folio = page_folio(pte_page(vmf.orig_pte)); 6569 if (folio != pagecache_folio) 6570 if (!folio_trylock(folio)) { 6571 need_wait_lock = 1; 6572 goto out_ptl; 6573 } 6574 6575 folio_get(folio); 6576 6577 if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) { 6578 if (!huge_pte_write(vmf.orig_pte)) { 6579 ret = hugetlb_wp(pagecache_folio, &vmf); 6580 goto out_put_page; 6581 } else if (likely(flags & FAULT_FLAG_WRITE)) { 6582 vmf.orig_pte = huge_pte_mkdirty(vmf.orig_pte); 6583 } 6584 } 6585 vmf.orig_pte = pte_mkyoung(vmf.orig_pte); 6586 if (huge_ptep_set_access_flags(vma, vmf.address, vmf.pte, vmf.orig_pte, 6587 flags & FAULT_FLAG_WRITE)) 6588 update_mmu_cache(vma, vmf.address, vmf.pte); 6589 out_put_page: 6590 if (folio != pagecache_folio) 6591 folio_unlock(folio); 6592 folio_put(folio); 6593 out_ptl: 6594 spin_unlock(vmf.ptl); 6595 6596 if (pagecache_folio) { 6597 folio_unlock(pagecache_folio); 6598 folio_put(pagecache_folio); 6599 } 6600 out_mutex: 6601 hugetlb_vma_unlock_read(vma); 6602 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6603 /* 6604 * Generally it's safe to hold refcount during waiting page lock. But 6605 * here we just wait to defer the next page fault to avoid busy loop and 6606 * the page is not used after unlocked before returning from the current 6607 * page fault. So we are safe from accessing freed page, even if we wait 6608 * here without taking refcount. 6609 */ 6610 if (need_wait_lock) 6611 folio_wait_locked(folio); 6612 return ret; 6613 } 6614 6615 #ifdef CONFIG_USERFAULTFD 6616 /* 6617 * Can probably be eliminated, but still used by hugetlb_mfill_atomic_pte(). 6618 */ 6619 static struct folio *alloc_hugetlb_folio_vma(struct hstate *h, 6620 struct vm_area_struct *vma, unsigned long address) 6621 { 6622 struct mempolicy *mpol; 6623 nodemask_t *nodemask; 6624 struct folio *folio; 6625 gfp_t gfp_mask; 6626 int node; 6627 6628 gfp_mask = htlb_alloc_mask(h); 6629 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 6630 /* 6631 * This is used to allocate a temporary hugetlb to hold the copied 6632 * content, which will then be copied again to the final hugetlb 6633 * consuming a reservation. Set the alloc_fallback to false to indicate 6634 * that breaking the per-node hugetlb pool is not allowed in this case. 6635 */ 6636 folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask, false); 6637 mpol_cond_put(mpol); 6638 6639 return folio; 6640 } 6641 6642 /* 6643 * Used by userfaultfd UFFDIO_* ioctls. Based on userfaultfd's mfill_atomic_pte 6644 * with modifications for hugetlb pages. 6645 */ 6646 int hugetlb_mfill_atomic_pte(pte_t *dst_pte, 6647 struct vm_area_struct *dst_vma, 6648 unsigned long dst_addr, 6649 unsigned long src_addr, 6650 uffd_flags_t flags, 6651 struct folio **foliop) 6652 { 6653 struct mm_struct *dst_mm = dst_vma->vm_mm; 6654 bool is_continue = uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE); 6655 bool wp_enabled = (flags & MFILL_ATOMIC_WP); 6656 struct hstate *h = hstate_vma(dst_vma); 6657 struct address_space *mapping = dst_vma->vm_file->f_mapping; 6658 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr); 6659 unsigned long size = huge_page_size(h); 6660 int vm_shared = dst_vma->vm_flags & VM_SHARED; 6661 pte_t _dst_pte; 6662 spinlock_t *ptl; 6663 int ret = -ENOMEM; 6664 struct folio *folio; 6665 int writable; 6666 bool folio_in_pagecache = false; 6667 6668 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_POISON)) { 6669 ptl = huge_pte_lock(h, dst_mm, dst_pte); 6670 6671 /* Don't overwrite any existing PTEs (even markers) */ 6672 if (!huge_pte_none(huge_ptep_get(dst_mm, dst_addr, dst_pte))) { 6673 spin_unlock(ptl); 6674 return -EEXIST; 6675 } 6676 6677 _dst_pte = make_pte_marker(PTE_MARKER_POISONED); 6678 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, size); 6679 6680 /* No need to invalidate - it was non-present before */ 6681 update_mmu_cache(dst_vma, dst_addr, dst_pte); 6682 6683 spin_unlock(ptl); 6684 return 0; 6685 } 6686 6687 if (is_continue) { 6688 ret = -EFAULT; 6689 folio = filemap_lock_hugetlb_folio(h, mapping, idx); 6690 if (IS_ERR(folio)) 6691 goto out; 6692 folio_in_pagecache = true; 6693 } else if (!*foliop) { 6694 /* If a folio already exists, then it's UFFDIO_COPY for 6695 * a non-missing case. Return -EEXIST. 6696 */ 6697 if (vm_shared && 6698 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) { 6699 ret = -EEXIST; 6700 goto out; 6701 } 6702 6703 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0); 6704 if (IS_ERR(folio)) { 6705 ret = -ENOMEM; 6706 goto out; 6707 } 6708 6709 ret = copy_folio_from_user(folio, (const void __user *) src_addr, 6710 false); 6711 6712 /* fallback to copy_from_user outside mmap_lock */ 6713 if (unlikely(ret)) { 6714 ret = -ENOENT; 6715 /* Free the allocated folio which may have 6716 * consumed a reservation. 6717 */ 6718 restore_reserve_on_error(h, dst_vma, dst_addr, folio); 6719 folio_put(folio); 6720 6721 /* Allocate a temporary folio to hold the copied 6722 * contents. 6723 */ 6724 folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr); 6725 if (!folio) { 6726 ret = -ENOMEM; 6727 goto out; 6728 } 6729 *foliop = folio; 6730 /* Set the outparam foliop and return to the caller to 6731 * copy the contents outside the lock. Don't free the 6732 * folio. 6733 */ 6734 goto out; 6735 } 6736 } else { 6737 if (vm_shared && 6738 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) { 6739 folio_put(*foliop); 6740 ret = -EEXIST; 6741 *foliop = NULL; 6742 goto out; 6743 } 6744 6745 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0); 6746 if (IS_ERR(folio)) { 6747 folio_put(*foliop); 6748 ret = -ENOMEM; 6749 *foliop = NULL; 6750 goto out; 6751 } 6752 ret = copy_user_large_folio(folio, *foliop, 6753 ALIGN_DOWN(dst_addr, size), dst_vma); 6754 folio_put(*foliop); 6755 *foliop = NULL; 6756 if (ret) { 6757 folio_put(folio); 6758 goto out; 6759 } 6760 } 6761 6762 /* 6763 * If we just allocated a new page, we need a memory barrier to ensure 6764 * that preceding stores to the page become visible before the 6765 * set_pte_at() write. The memory barrier inside __folio_mark_uptodate 6766 * is what we need. 6767 * 6768 * In the case where we have not allocated a new page (is_continue), 6769 * the page must already be uptodate. UFFDIO_CONTINUE already includes 6770 * an earlier smp_wmb() to ensure that prior stores will be visible 6771 * before the set_pte_at() write. 6772 */ 6773 if (!is_continue) 6774 __folio_mark_uptodate(folio); 6775 else 6776 WARN_ON_ONCE(!folio_test_uptodate(folio)); 6777 6778 /* Add shared, newly allocated pages to the page cache. */ 6779 if (vm_shared && !is_continue) { 6780 ret = -EFAULT; 6781 if (idx >= (i_size_read(mapping->host) >> huge_page_shift(h))) 6782 goto out_release_nounlock; 6783 6784 /* 6785 * Serialization between remove_inode_hugepages() and 6786 * hugetlb_add_to_page_cache() below happens through the 6787 * hugetlb_fault_mutex_table that here must be hold by 6788 * the caller. 6789 */ 6790 ret = hugetlb_add_to_page_cache(folio, mapping, idx); 6791 if (ret) 6792 goto out_release_nounlock; 6793 folio_in_pagecache = true; 6794 } 6795 6796 ptl = huge_pte_lock(h, dst_mm, dst_pte); 6797 6798 ret = -EIO; 6799 if (folio_test_hwpoison(folio)) 6800 goto out_release_unlock; 6801 6802 /* 6803 * We allow to overwrite a pte marker: consider when both MISSING|WP 6804 * registered, we firstly wr-protect a none pte which has no page cache 6805 * page backing it, then access the page. 6806 */ 6807 ret = -EEXIST; 6808 if (!huge_pte_none_mostly(huge_ptep_get(dst_mm, dst_addr, dst_pte))) 6809 goto out_release_unlock; 6810 6811 if (folio_in_pagecache) 6812 hugetlb_add_file_rmap(folio); 6813 else 6814 hugetlb_add_new_anon_rmap(folio, dst_vma, dst_addr); 6815 6816 /* 6817 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY 6818 * with wp flag set, don't set pte write bit. 6819 */ 6820 if (wp_enabled || (is_continue && !vm_shared)) 6821 writable = 0; 6822 else 6823 writable = dst_vma->vm_flags & VM_WRITE; 6824 6825 _dst_pte = make_huge_pte(dst_vma, &folio->page, writable); 6826 /* 6827 * Always mark UFFDIO_COPY page dirty; note that this may not be 6828 * extremely important for hugetlbfs for now since swapping is not 6829 * supported, but we should still be clear in that this page cannot be 6830 * thrown away at will, even if write bit not set. 6831 */ 6832 _dst_pte = huge_pte_mkdirty(_dst_pte); 6833 _dst_pte = pte_mkyoung(_dst_pte); 6834 6835 if (wp_enabled) 6836 _dst_pte = huge_pte_mkuffd_wp(_dst_pte); 6837 6838 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, size); 6839 6840 hugetlb_count_add(pages_per_huge_page(h), dst_mm); 6841 6842 /* No need to invalidate - it was non-present before */ 6843 update_mmu_cache(dst_vma, dst_addr, dst_pte); 6844 6845 spin_unlock(ptl); 6846 if (!is_continue) 6847 folio_set_hugetlb_migratable(folio); 6848 if (vm_shared || is_continue) 6849 folio_unlock(folio); 6850 ret = 0; 6851 out: 6852 return ret; 6853 out_release_unlock: 6854 spin_unlock(ptl); 6855 if (vm_shared || is_continue) 6856 folio_unlock(folio); 6857 out_release_nounlock: 6858 if (!folio_in_pagecache) 6859 restore_reserve_on_error(h, dst_vma, dst_addr, folio); 6860 folio_put(folio); 6861 goto out; 6862 } 6863 #endif /* CONFIG_USERFAULTFD */ 6864 6865 long hugetlb_change_protection(struct vm_area_struct *vma, 6866 unsigned long address, unsigned long end, 6867 pgprot_t newprot, unsigned long cp_flags) 6868 { 6869 struct mm_struct *mm = vma->vm_mm; 6870 unsigned long start = address; 6871 pte_t *ptep; 6872 pte_t pte; 6873 struct hstate *h = hstate_vma(vma); 6874 long pages = 0, psize = huge_page_size(h); 6875 bool shared_pmd = false; 6876 struct mmu_notifier_range range; 6877 unsigned long last_addr_mask; 6878 bool uffd_wp = cp_flags & MM_CP_UFFD_WP; 6879 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE; 6880 6881 /* 6882 * In the case of shared PMDs, the area to flush could be beyond 6883 * start/end. Set range.start/range.end to cover the maximum possible 6884 * range if PMD sharing is possible. 6885 */ 6886 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA, 6887 0, mm, start, end); 6888 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 6889 6890 BUG_ON(address >= end); 6891 flush_cache_range(vma, range.start, range.end); 6892 6893 mmu_notifier_invalidate_range_start(&range); 6894 hugetlb_vma_lock_write(vma); 6895 i_mmap_lock_write(vma->vm_file->f_mapping); 6896 last_addr_mask = hugetlb_mask_last_page(h); 6897 for (; address < end; address += psize) { 6898 spinlock_t *ptl; 6899 ptep = hugetlb_walk(vma, address, psize); 6900 if (!ptep) { 6901 if (!uffd_wp) { 6902 address |= last_addr_mask; 6903 continue; 6904 } 6905 /* 6906 * Userfaultfd wr-protect requires pgtable 6907 * pre-allocations to install pte markers. 6908 */ 6909 ptep = huge_pte_alloc(mm, vma, address, psize); 6910 if (!ptep) { 6911 pages = -ENOMEM; 6912 break; 6913 } 6914 } 6915 ptl = huge_pte_lock(h, mm, ptep); 6916 if (huge_pmd_unshare(mm, vma, address, ptep)) { 6917 /* 6918 * When uffd-wp is enabled on the vma, unshare 6919 * shouldn't happen at all. Warn about it if it 6920 * happened due to some reason. 6921 */ 6922 WARN_ON_ONCE(uffd_wp || uffd_wp_resolve); 6923 pages++; 6924 spin_unlock(ptl); 6925 shared_pmd = true; 6926 address |= last_addr_mask; 6927 continue; 6928 } 6929 pte = huge_ptep_get(mm, address, ptep); 6930 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) { 6931 /* Nothing to do. */ 6932 } else if (unlikely(is_hugetlb_entry_migration(pte))) { 6933 swp_entry_t entry = pte_to_swp_entry(pte); 6934 struct page *page = pfn_swap_entry_to_page(entry); 6935 pte_t newpte = pte; 6936 6937 if (is_writable_migration_entry(entry)) { 6938 if (PageAnon(page)) 6939 entry = make_readable_exclusive_migration_entry( 6940 swp_offset(entry)); 6941 else 6942 entry = make_readable_migration_entry( 6943 swp_offset(entry)); 6944 newpte = swp_entry_to_pte(entry); 6945 pages++; 6946 } 6947 6948 if (uffd_wp) 6949 newpte = pte_swp_mkuffd_wp(newpte); 6950 else if (uffd_wp_resolve) 6951 newpte = pte_swp_clear_uffd_wp(newpte); 6952 if (!pte_same(pte, newpte)) 6953 set_huge_pte_at(mm, address, ptep, newpte, psize); 6954 } else if (unlikely(is_pte_marker(pte))) { 6955 /* 6956 * Do nothing on a poison marker; page is 6957 * corrupted, permissons do not apply. Here 6958 * pte_marker_uffd_wp()==true implies !poison 6959 * because they're mutual exclusive. 6960 */ 6961 if (pte_marker_uffd_wp(pte) && uffd_wp_resolve) 6962 /* Safe to modify directly (non-present->none). */ 6963 huge_pte_clear(mm, address, ptep, psize); 6964 } else if (!huge_pte_none(pte)) { 6965 pte_t old_pte; 6966 unsigned int shift = huge_page_shift(hstate_vma(vma)); 6967 6968 old_pte = huge_ptep_modify_prot_start(vma, address, ptep); 6969 pte = huge_pte_modify(old_pte, newprot); 6970 pte = arch_make_huge_pte(pte, shift, vma->vm_flags); 6971 if (uffd_wp) 6972 pte = huge_pte_mkuffd_wp(pte); 6973 else if (uffd_wp_resolve) 6974 pte = huge_pte_clear_uffd_wp(pte); 6975 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte); 6976 pages++; 6977 } else { 6978 /* None pte */ 6979 if (unlikely(uffd_wp)) 6980 /* Safe to modify directly (none->non-present). */ 6981 set_huge_pte_at(mm, address, ptep, 6982 make_pte_marker(PTE_MARKER_UFFD_WP), 6983 psize); 6984 } 6985 spin_unlock(ptl); 6986 } 6987 /* 6988 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare 6989 * may have cleared our pud entry and done put_page on the page table: 6990 * once we release i_mmap_rwsem, another task can do the final put_page 6991 * and that page table be reused and filled with junk. If we actually 6992 * did unshare a page of pmds, flush the range corresponding to the pud. 6993 */ 6994 if (shared_pmd) 6995 flush_hugetlb_tlb_range(vma, range.start, range.end); 6996 else 6997 flush_hugetlb_tlb_range(vma, start, end); 6998 /* 6999 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs() we are 7000 * downgrading page table protection not changing it to point to a new 7001 * page. 7002 * 7003 * See Documentation/mm/mmu_notifier.rst 7004 */ 7005 i_mmap_unlock_write(vma->vm_file->f_mapping); 7006 hugetlb_vma_unlock_write(vma); 7007 mmu_notifier_invalidate_range_end(&range); 7008 7009 return pages > 0 ? (pages << h->order) : pages; 7010 } 7011 7012 /* Return true if reservation was successful, false otherwise. */ 7013 bool hugetlb_reserve_pages(struct inode *inode, 7014 long from, long to, 7015 struct vm_area_struct *vma, 7016 vm_flags_t vm_flags) 7017 { 7018 long chg = -1, add = -1; 7019 struct hstate *h = hstate_inode(inode); 7020 struct hugepage_subpool *spool = subpool_inode(inode); 7021 struct resv_map *resv_map; 7022 struct hugetlb_cgroup *h_cg = NULL; 7023 long gbl_reserve, regions_needed = 0; 7024 7025 /* This should never happen */ 7026 if (from > to) { 7027 VM_WARN(1, "%s called with a negative range\n", __func__); 7028 return false; 7029 } 7030 7031 /* 7032 * vma specific semaphore used for pmd sharing and fault/truncation 7033 * synchronization 7034 */ 7035 hugetlb_vma_lock_alloc(vma); 7036 7037 /* 7038 * Only apply hugepage reservation if asked. At fault time, an 7039 * attempt will be made for VM_NORESERVE to allocate a page 7040 * without using reserves 7041 */ 7042 if (vm_flags & VM_NORESERVE) 7043 return true; 7044 7045 /* 7046 * Shared mappings base their reservation on the number of pages that 7047 * are already allocated on behalf of the file. Private mappings need 7048 * to reserve the full area even if read-only as mprotect() may be 7049 * called to make the mapping read-write. Assume !vma is a shm mapping 7050 */ 7051 if (!vma || vma->vm_flags & VM_MAYSHARE) { 7052 /* 7053 * resv_map can not be NULL as hugetlb_reserve_pages is only 7054 * called for inodes for which resv_maps were created (see 7055 * hugetlbfs_get_inode). 7056 */ 7057 resv_map = inode_resv_map(inode); 7058 7059 chg = region_chg(resv_map, from, to, ®ions_needed); 7060 } else { 7061 /* Private mapping. */ 7062 resv_map = resv_map_alloc(); 7063 if (!resv_map) 7064 goto out_err; 7065 7066 chg = to - from; 7067 7068 set_vma_resv_map(vma, resv_map); 7069 set_vma_resv_flags(vma, HPAGE_RESV_OWNER); 7070 } 7071 7072 if (chg < 0) 7073 goto out_err; 7074 7075 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h), 7076 chg * pages_per_huge_page(h), &h_cg) < 0) 7077 goto out_err; 7078 7079 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) { 7080 /* For private mappings, the hugetlb_cgroup uncharge info hangs 7081 * of the resv_map. 7082 */ 7083 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h); 7084 } 7085 7086 /* 7087 * There must be enough pages in the subpool for the mapping. If 7088 * the subpool has a minimum size, there may be some global 7089 * reservations already in place (gbl_reserve). 7090 */ 7091 gbl_reserve = hugepage_subpool_get_pages(spool, chg); 7092 if (gbl_reserve < 0) 7093 goto out_uncharge_cgroup; 7094 7095 /* 7096 * Check enough hugepages are available for the reservation. 7097 * Hand the pages back to the subpool if there are not 7098 */ 7099 if (hugetlb_acct_memory(h, gbl_reserve) < 0) 7100 goto out_put_pages; 7101 7102 /* 7103 * Account for the reservations made. Shared mappings record regions 7104 * that have reservations as they are shared by multiple VMAs. 7105 * When the last VMA disappears, the region map says how much 7106 * the reservation was and the page cache tells how much of 7107 * the reservation was consumed. Private mappings are per-VMA and 7108 * only the consumed reservations are tracked. When the VMA 7109 * disappears, the original reservation is the VMA size and the 7110 * consumed reservations are stored in the map. Hence, nothing 7111 * else has to be done for private mappings here 7112 */ 7113 if (!vma || vma->vm_flags & VM_MAYSHARE) { 7114 add = region_add(resv_map, from, to, regions_needed, h, h_cg); 7115 7116 if (unlikely(add < 0)) { 7117 hugetlb_acct_memory(h, -gbl_reserve); 7118 goto out_put_pages; 7119 } else if (unlikely(chg > add)) { 7120 /* 7121 * pages in this range were added to the reserve 7122 * map between region_chg and region_add. This 7123 * indicates a race with alloc_hugetlb_folio. Adjust 7124 * the subpool and reserve counts modified above 7125 * based on the difference. 7126 */ 7127 long rsv_adjust; 7128 7129 /* 7130 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the 7131 * reference to h_cg->css. See comment below for detail. 7132 */ 7133 hugetlb_cgroup_uncharge_cgroup_rsvd( 7134 hstate_index(h), 7135 (chg - add) * pages_per_huge_page(h), h_cg); 7136 7137 rsv_adjust = hugepage_subpool_put_pages(spool, 7138 chg - add); 7139 hugetlb_acct_memory(h, -rsv_adjust); 7140 } else if (h_cg) { 7141 /* 7142 * The file_regions will hold their own reference to 7143 * h_cg->css. So we should release the reference held 7144 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are 7145 * done. 7146 */ 7147 hugetlb_cgroup_put_rsvd_cgroup(h_cg); 7148 } 7149 } 7150 return true; 7151 7152 out_put_pages: 7153 /* put back original number of pages, chg */ 7154 (void)hugepage_subpool_put_pages(spool, chg); 7155 out_uncharge_cgroup: 7156 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h), 7157 chg * pages_per_huge_page(h), h_cg); 7158 out_err: 7159 hugetlb_vma_lock_free(vma); 7160 if (!vma || vma->vm_flags & VM_MAYSHARE) 7161 /* Only call region_abort if the region_chg succeeded but the 7162 * region_add failed or didn't run. 7163 */ 7164 if (chg >= 0 && add < 0) 7165 region_abort(resv_map, from, to, regions_needed); 7166 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 7167 kref_put(&resv_map->refs, resv_map_release); 7168 set_vma_resv_map(vma, NULL); 7169 } 7170 return false; 7171 } 7172 7173 long hugetlb_unreserve_pages(struct inode *inode, long start, long end, 7174 long freed) 7175 { 7176 struct hstate *h = hstate_inode(inode); 7177 struct resv_map *resv_map = inode_resv_map(inode); 7178 long chg = 0; 7179 struct hugepage_subpool *spool = subpool_inode(inode); 7180 long gbl_reserve; 7181 7182 /* 7183 * Since this routine can be called in the evict inode path for all 7184 * hugetlbfs inodes, resv_map could be NULL. 7185 */ 7186 if (resv_map) { 7187 chg = region_del(resv_map, start, end); 7188 /* 7189 * region_del() can fail in the rare case where a region 7190 * must be split and another region descriptor can not be 7191 * allocated. If end == LONG_MAX, it will not fail. 7192 */ 7193 if (chg < 0) 7194 return chg; 7195 } 7196 7197 spin_lock(&inode->i_lock); 7198 inode->i_blocks -= (blocks_per_huge_page(h) * freed); 7199 spin_unlock(&inode->i_lock); 7200 7201 /* 7202 * If the subpool has a minimum size, the number of global 7203 * reservations to be released may be adjusted. 7204 * 7205 * Note that !resv_map implies freed == 0. So (chg - freed) 7206 * won't go negative. 7207 */ 7208 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed)); 7209 hugetlb_acct_memory(h, -gbl_reserve); 7210 7211 return 0; 7212 } 7213 7214 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE 7215 static unsigned long page_table_shareable(struct vm_area_struct *svma, 7216 struct vm_area_struct *vma, 7217 unsigned long addr, pgoff_t idx) 7218 { 7219 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) + 7220 svma->vm_start; 7221 unsigned long sbase = saddr & PUD_MASK; 7222 unsigned long s_end = sbase + PUD_SIZE; 7223 7224 /* Allow segments to share if only one is marked locked */ 7225 unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED_MASK; 7226 unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED_MASK; 7227 7228 /* 7229 * match the virtual addresses, permission and the alignment of the 7230 * page table page. 7231 * 7232 * Also, vma_lock (vm_private_data) is required for sharing. 7233 */ 7234 if (pmd_index(addr) != pmd_index(saddr) || 7235 vm_flags != svm_flags || 7236 !range_in_vma(svma, sbase, s_end) || 7237 !svma->vm_private_data) 7238 return 0; 7239 7240 return saddr; 7241 } 7242 7243 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr) 7244 { 7245 unsigned long start = addr & PUD_MASK; 7246 unsigned long end = start + PUD_SIZE; 7247 7248 #ifdef CONFIG_USERFAULTFD 7249 if (uffd_disable_huge_pmd_share(vma)) 7250 return false; 7251 #endif 7252 /* 7253 * check on proper vm_flags and page table alignment 7254 */ 7255 if (!(vma->vm_flags & VM_MAYSHARE)) 7256 return false; 7257 if (!vma->vm_private_data) /* vma lock required for sharing */ 7258 return false; 7259 if (!range_in_vma(vma, start, end)) 7260 return false; 7261 return true; 7262 } 7263 7264 /* 7265 * Determine if start,end range within vma could be mapped by shared pmd. 7266 * If yes, adjust start and end to cover range associated with possible 7267 * shared pmd mappings. 7268 */ 7269 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 7270 unsigned long *start, unsigned long *end) 7271 { 7272 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE), 7273 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE); 7274 7275 /* 7276 * vma needs to span at least one aligned PUD size, and the range 7277 * must be at least partially within in. 7278 */ 7279 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) || 7280 (*end <= v_start) || (*start >= v_end)) 7281 return; 7282 7283 /* Extend the range to be PUD aligned for a worst case scenario */ 7284 if (*start > v_start) 7285 *start = ALIGN_DOWN(*start, PUD_SIZE); 7286 7287 if (*end < v_end) 7288 *end = ALIGN(*end, PUD_SIZE); 7289 } 7290 7291 /* 7292 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc() 7293 * and returns the corresponding pte. While this is not necessary for the 7294 * !shared pmd case because we can allocate the pmd later as well, it makes the 7295 * code much cleaner. pmd allocation is essential for the shared case because 7296 * pud has to be populated inside the same i_mmap_rwsem section - otherwise 7297 * racing tasks could either miss the sharing (see huge_pte_offset) or select a 7298 * bad pmd for sharing. 7299 */ 7300 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, 7301 unsigned long addr, pud_t *pud) 7302 { 7303 struct address_space *mapping = vma->vm_file->f_mapping; 7304 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + 7305 vma->vm_pgoff; 7306 struct vm_area_struct *svma; 7307 unsigned long saddr; 7308 pte_t *spte = NULL; 7309 pte_t *pte; 7310 7311 i_mmap_lock_read(mapping); 7312 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) { 7313 if (svma == vma) 7314 continue; 7315 7316 saddr = page_table_shareable(svma, vma, addr, idx); 7317 if (saddr) { 7318 spte = hugetlb_walk(svma, saddr, 7319 vma_mmu_pagesize(svma)); 7320 if (spte) { 7321 get_page(virt_to_page(spte)); 7322 break; 7323 } 7324 } 7325 } 7326 7327 if (!spte) 7328 goto out; 7329 7330 spin_lock(&mm->page_table_lock); 7331 if (pud_none(*pud)) { 7332 pud_populate(mm, pud, 7333 (pmd_t *)((unsigned long)spte & PAGE_MASK)); 7334 mm_inc_nr_pmds(mm); 7335 } else { 7336 put_page(virt_to_page(spte)); 7337 } 7338 spin_unlock(&mm->page_table_lock); 7339 out: 7340 pte = (pte_t *)pmd_alloc(mm, pud, addr); 7341 i_mmap_unlock_read(mapping); 7342 return pte; 7343 } 7344 7345 /* 7346 * unmap huge page backed by shared pte. 7347 * 7348 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared 7349 * indicated by page_count > 1, unmap is achieved by clearing pud and 7350 * decrementing the ref count. If count == 1, the pte page is not shared. 7351 * 7352 * Called with page table lock held. 7353 * 7354 * returns: 1 successfully unmapped a shared pte page 7355 * 0 the underlying pte page is not shared, or it is the last user 7356 */ 7357 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, 7358 unsigned long addr, pte_t *ptep) 7359 { 7360 pgd_t *pgd = pgd_offset(mm, addr); 7361 p4d_t *p4d = p4d_offset(pgd, addr); 7362 pud_t *pud = pud_offset(p4d, addr); 7363 7364 i_mmap_assert_write_locked(vma->vm_file->f_mapping); 7365 hugetlb_vma_assert_locked(vma); 7366 BUG_ON(page_count(virt_to_page(ptep)) == 0); 7367 if (page_count(virt_to_page(ptep)) == 1) 7368 return 0; 7369 7370 pud_clear(pud); 7371 put_page(virt_to_page(ptep)); 7372 mm_dec_nr_pmds(mm); 7373 return 1; 7374 } 7375 7376 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 7377 7378 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, 7379 unsigned long addr, pud_t *pud) 7380 { 7381 return NULL; 7382 } 7383 7384 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, 7385 unsigned long addr, pte_t *ptep) 7386 { 7387 return 0; 7388 } 7389 7390 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 7391 unsigned long *start, unsigned long *end) 7392 { 7393 } 7394 7395 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr) 7396 { 7397 return false; 7398 } 7399 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 7400 7401 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB 7402 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 7403 unsigned long addr, unsigned long sz) 7404 { 7405 pgd_t *pgd; 7406 p4d_t *p4d; 7407 pud_t *pud; 7408 pte_t *pte = NULL; 7409 7410 pgd = pgd_offset(mm, addr); 7411 p4d = p4d_alloc(mm, pgd, addr); 7412 if (!p4d) 7413 return NULL; 7414 pud = pud_alloc(mm, p4d, addr); 7415 if (pud) { 7416 if (sz == PUD_SIZE) { 7417 pte = (pte_t *)pud; 7418 } else { 7419 BUG_ON(sz != PMD_SIZE); 7420 if (want_pmd_share(vma, addr) && pud_none(*pud)) 7421 pte = huge_pmd_share(mm, vma, addr, pud); 7422 else 7423 pte = (pte_t *)pmd_alloc(mm, pud, addr); 7424 } 7425 } 7426 7427 if (pte) { 7428 pte_t pteval = ptep_get_lockless(pte); 7429 7430 BUG_ON(pte_present(pteval) && !pte_huge(pteval)); 7431 } 7432 7433 return pte; 7434 } 7435 7436 /* 7437 * huge_pte_offset() - Walk the page table to resolve the hugepage 7438 * entry at address @addr 7439 * 7440 * Return: Pointer to page table entry (PUD or PMD) for 7441 * address @addr, or NULL if a !p*d_present() entry is encountered and the 7442 * size @sz doesn't match the hugepage size at this level of the page 7443 * table. 7444 */ 7445 pte_t *huge_pte_offset(struct mm_struct *mm, 7446 unsigned long addr, unsigned long sz) 7447 { 7448 pgd_t *pgd; 7449 p4d_t *p4d; 7450 pud_t *pud; 7451 pmd_t *pmd; 7452 7453 pgd = pgd_offset(mm, addr); 7454 if (!pgd_present(*pgd)) 7455 return NULL; 7456 p4d = p4d_offset(pgd, addr); 7457 if (!p4d_present(*p4d)) 7458 return NULL; 7459 7460 pud = pud_offset(p4d, addr); 7461 if (sz == PUD_SIZE) 7462 /* must be pud huge, non-present or none */ 7463 return (pte_t *)pud; 7464 if (!pud_present(*pud)) 7465 return NULL; 7466 /* must have a valid entry and size to go further */ 7467 7468 pmd = pmd_offset(pud, addr); 7469 /* must be pmd huge, non-present or none */ 7470 return (pte_t *)pmd; 7471 } 7472 7473 /* 7474 * Return a mask that can be used to update an address to the last huge 7475 * page in a page table page mapping size. Used to skip non-present 7476 * page table entries when linearly scanning address ranges. Architectures 7477 * with unique huge page to page table relationships can define their own 7478 * version of this routine. 7479 */ 7480 unsigned long hugetlb_mask_last_page(struct hstate *h) 7481 { 7482 unsigned long hp_size = huge_page_size(h); 7483 7484 if (hp_size == PUD_SIZE) 7485 return P4D_SIZE - PUD_SIZE; 7486 else if (hp_size == PMD_SIZE) 7487 return PUD_SIZE - PMD_SIZE; 7488 else 7489 return 0UL; 7490 } 7491 7492 #else 7493 7494 /* See description above. Architectures can provide their own version. */ 7495 __weak unsigned long hugetlb_mask_last_page(struct hstate *h) 7496 { 7497 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE 7498 if (huge_page_size(h) == PMD_SIZE) 7499 return PUD_SIZE - PMD_SIZE; 7500 #endif 7501 return 0UL; 7502 } 7503 7504 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */ 7505 7506 /* 7507 * These functions are overwritable if your architecture needs its own 7508 * behavior. 7509 */ 7510 bool isolate_hugetlb(struct folio *folio, struct list_head *list) 7511 { 7512 bool ret = true; 7513 7514 spin_lock_irq(&hugetlb_lock); 7515 if (!folio_test_hugetlb(folio) || 7516 !folio_test_hugetlb_migratable(folio) || 7517 !folio_try_get(folio)) { 7518 ret = false; 7519 goto unlock; 7520 } 7521 folio_clear_hugetlb_migratable(folio); 7522 list_move_tail(&folio->lru, list); 7523 unlock: 7524 spin_unlock_irq(&hugetlb_lock); 7525 return ret; 7526 } 7527 7528 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison) 7529 { 7530 int ret = 0; 7531 7532 *hugetlb = false; 7533 spin_lock_irq(&hugetlb_lock); 7534 if (folio_test_hugetlb(folio)) { 7535 *hugetlb = true; 7536 if (folio_test_hugetlb_freed(folio)) 7537 ret = 0; 7538 else if (folio_test_hugetlb_migratable(folio) || unpoison) 7539 ret = folio_try_get(folio); 7540 else 7541 ret = -EBUSY; 7542 } 7543 spin_unlock_irq(&hugetlb_lock); 7544 return ret; 7545 } 7546 7547 int get_huge_page_for_hwpoison(unsigned long pfn, int flags, 7548 bool *migratable_cleared) 7549 { 7550 int ret; 7551 7552 spin_lock_irq(&hugetlb_lock); 7553 ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared); 7554 spin_unlock_irq(&hugetlb_lock); 7555 return ret; 7556 } 7557 7558 void folio_putback_active_hugetlb(struct folio *folio) 7559 { 7560 spin_lock_irq(&hugetlb_lock); 7561 folio_set_hugetlb_migratable(folio); 7562 list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist); 7563 spin_unlock_irq(&hugetlb_lock); 7564 folio_put(folio); 7565 } 7566 7567 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason) 7568 { 7569 struct hstate *h = folio_hstate(old_folio); 7570 7571 hugetlb_cgroup_migrate(old_folio, new_folio); 7572 set_page_owner_migrate_reason(&new_folio->page, reason); 7573 7574 /* 7575 * transfer temporary state of the new hugetlb folio. This is 7576 * reverse to other transitions because the newpage is going to 7577 * be final while the old one will be freed so it takes over 7578 * the temporary status. 7579 * 7580 * Also note that we have to transfer the per-node surplus state 7581 * here as well otherwise the global surplus count will not match 7582 * the per-node's. 7583 */ 7584 if (folio_test_hugetlb_temporary(new_folio)) { 7585 int old_nid = folio_nid(old_folio); 7586 int new_nid = folio_nid(new_folio); 7587 7588 folio_set_hugetlb_temporary(old_folio); 7589 folio_clear_hugetlb_temporary(new_folio); 7590 7591 7592 /* 7593 * There is no need to transfer the per-node surplus state 7594 * when we do not cross the node. 7595 */ 7596 if (new_nid == old_nid) 7597 return; 7598 spin_lock_irq(&hugetlb_lock); 7599 if (h->surplus_huge_pages_node[old_nid]) { 7600 h->surplus_huge_pages_node[old_nid]--; 7601 h->surplus_huge_pages_node[new_nid]++; 7602 } 7603 spin_unlock_irq(&hugetlb_lock); 7604 } 7605 } 7606 7607 static void hugetlb_unshare_pmds(struct vm_area_struct *vma, 7608 unsigned long start, 7609 unsigned long end) 7610 { 7611 struct hstate *h = hstate_vma(vma); 7612 unsigned long sz = huge_page_size(h); 7613 struct mm_struct *mm = vma->vm_mm; 7614 struct mmu_notifier_range range; 7615 unsigned long address; 7616 spinlock_t *ptl; 7617 pte_t *ptep; 7618 7619 if (!(vma->vm_flags & VM_MAYSHARE)) 7620 return; 7621 7622 if (start >= end) 7623 return; 7624 7625 flush_cache_range(vma, start, end); 7626 /* 7627 * No need to call adjust_range_if_pmd_sharing_possible(), because 7628 * we have already done the PUD_SIZE alignment. 7629 */ 7630 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 7631 start, end); 7632 mmu_notifier_invalidate_range_start(&range); 7633 hugetlb_vma_lock_write(vma); 7634 i_mmap_lock_write(vma->vm_file->f_mapping); 7635 for (address = start; address < end; address += PUD_SIZE) { 7636 ptep = hugetlb_walk(vma, address, sz); 7637 if (!ptep) 7638 continue; 7639 ptl = huge_pte_lock(h, mm, ptep); 7640 huge_pmd_unshare(mm, vma, address, ptep); 7641 spin_unlock(ptl); 7642 } 7643 flush_hugetlb_tlb_range(vma, start, end); 7644 i_mmap_unlock_write(vma->vm_file->f_mapping); 7645 hugetlb_vma_unlock_write(vma); 7646 /* 7647 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs(), see 7648 * Documentation/mm/mmu_notifier.rst. 7649 */ 7650 mmu_notifier_invalidate_range_end(&range); 7651 } 7652 7653 /* 7654 * This function will unconditionally remove all the shared pmd pgtable entries 7655 * within the specific vma for a hugetlbfs memory range. 7656 */ 7657 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma) 7658 { 7659 hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE), 7660 ALIGN_DOWN(vma->vm_end, PUD_SIZE)); 7661 } 7662 7663 #ifdef CONFIG_CMA 7664 static bool cma_reserve_called __initdata; 7665 7666 static int __init cmdline_parse_hugetlb_cma(char *p) 7667 { 7668 int nid, count = 0; 7669 unsigned long tmp; 7670 char *s = p; 7671 7672 while (*s) { 7673 if (sscanf(s, "%lu%n", &tmp, &count) != 1) 7674 break; 7675 7676 if (s[count] == ':') { 7677 if (tmp >= MAX_NUMNODES) 7678 break; 7679 nid = array_index_nospec(tmp, MAX_NUMNODES); 7680 7681 s += count + 1; 7682 tmp = memparse(s, &s); 7683 hugetlb_cma_size_in_node[nid] = tmp; 7684 hugetlb_cma_size += tmp; 7685 7686 /* 7687 * Skip the separator if have one, otherwise 7688 * break the parsing. 7689 */ 7690 if (*s == ',') 7691 s++; 7692 else 7693 break; 7694 } else { 7695 hugetlb_cma_size = memparse(p, &p); 7696 break; 7697 } 7698 } 7699 7700 return 0; 7701 } 7702 7703 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma); 7704 7705 void __init hugetlb_cma_reserve(int order) 7706 { 7707 unsigned long size, reserved, per_node; 7708 bool node_specific_cma_alloc = false; 7709 int nid; 7710 7711 /* 7712 * HugeTLB CMA reservation is required for gigantic 7713 * huge pages which could not be allocated via the 7714 * page allocator. Just warn if there is any change 7715 * breaking this assumption. 7716 */ 7717 VM_WARN_ON(order <= MAX_PAGE_ORDER); 7718 cma_reserve_called = true; 7719 7720 if (!hugetlb_cma_size) 7721 return; 7722 7723 for (nid = 0; nid < MAX_NUMNODES; nid++) { 7724 if (hugetlb_cma_size_in_node[nid] == 0) 7725 continue; 7726 7727 if (!node_online(nid)) { 7728 pr_warn("hugetlb_cma: invalid node %d specified\n", nid); 7729 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid]; 7730 hugetlb_cma_size_in_node[nid] = 0; 7731 continue; 7732 } 7733 7734 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) { 7735 pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n", 7736 nid, (PAGE_SIZE << order) / SZ_1M); 7737 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid]; 7738 hugetlb_cma_size_in_node[nid] = 0; 7739 } else { 7740 node_specific_cma_alloc = true; 7741 } 7742 } 7743 7744 /* Validate the CMA size again in case some invalid nodes specified. */ 7745 if (!hugetlb_cma_size) 7746 return; 7747 7748 if (hugetlb_cma_size < (PAGE_SIZE << order)) { 7749 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n", 7750 (PAGE_SIZE << order) / SZ_1M); 7751 hugetlb_cma_size = 0; 7752 return; 7753 } 7754 7755 if (!node_specific_cma_alloc) { 7756 /* 7757 * If 3 GB area is requested on a machine with 4 numa nodes, 7758 * let's allocate 1 GB on first three nodes and ignore the last one. 7759 */ 7760 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes); 7761 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n", 7762 hugetlb_cma_size / SZ_1M, per_node / SZ_1M); 7763 } 7764 7765 reserved = 0; 7766 for_each_online_node(nid) { 7767 int res; 7768 char name[CMA_MAX_NAME]; 7769 7770 if (node_specific_cma_alloc) { 7771 if (hugetlb_cma_size_in_node[nid] == 0) 7772 continue; 7773 7774 size = hugetlb_cma_size_in_node[nid]; 7775 } else { 7776 size = min(per_node, hugetlb_cma_size - reserved); 7777 } 7778 7779 size = round_up(size, PAGE_SIZE << order); 7780 7781 snprintf(name, sizeof(name), "hugetlb%d", nid); 7782 /* 7783 * Note that 'order per bit' is based on smallest size that 7784 * may be returned to CMA allocator in the case of 7785 * huge page demotion. 7786 */ 7787 res = cma_declare_contiguous_nid(0, size, 0, 7788 PAGE_SIZE << order, 7789 HUGETLB_PAGE_ORDER, false, name, 7790 &hugetlb_cma[nid], nid); 7791 if (res) { 7792 pr_warn("hugetlb_cma: reservation failed: err %d, node %d", 7793 res, nid); 7794 continue; 7795 } 7796 7797 reserved += size; 7798 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n", 7799 size / SZ_1M, nid); 7800 7801 if (reserved >= hugetlb_cma_size) 7802 break; 7803 } 7804 7805 if (!reserved) 7806 /* 7807 * hugetlb_cma_size is used to determine if allocations from 7808 * cma are possible. Set to zero if no cma regions are set up. 7809 */ 7810 hugetlb_cma_size = 0; 7811 } 7812 7813 static void __init hugetlb_cma_check(void) 7814 { 7815 if (!hugetlb_cma_size || cma_reserve_called) 7816 return; 7817 7818 pr_warn("hugetlb_cma: the option isn't supported by current arch\n"); 7819 } 7820 7821 #endif /* CONFIG_CMA */ 7822