1 /* 2 * Generic hugetlb support. 3 * (C) Nadia Yvette Chambers, April 2004 4 */ 5 #include <linux/list.h> 6 #include <linux/init.h> 7 #include <linux/mm.h> 8 #include <linux/seq_file.h> 9 #include <linux/sysctl.h> 10 #include <linux/highmem.h> 11 #include <linux/mmu_notifier.h> 12 #include <linux/nodemask.h> 13 #include <linux/pagemap.h> 14 #include <linux/mempolicy.h> 15 #include <linux/compiler.h> 16 #include <linux/cpuset.h> 17 #include <linux/mutex.h> 18 #include <linux/bootmem.h> 19 #include <linux/sysfs.h> 20 #include <linux/slab.h> 21 #include <linux/mmdebug.h> 22 #include <linux/sched/signal.h> 23 #include <linux/rmap.h> 24 #include <linux/string_helpers.h> 25 #include <linux/swap.h> 26 #include <linux/swapops.h> 27 #include <linux/jhash.h> 28 29 #include <asm/page.h> 30 #include <asm/pgtable.h> 31 #include <asm/tlb.h> 32 33 #include <linux/io.h> 34 #include <linux/hugetlb.h> 35 #include <linux/hugetlb_cgroup.h> 36 #include <linux/node.h> 37 #include <linux/userfaultfd_k.h> 38 #include <linux/page_owner.h> 39 #include "internal.h" 40 41 int hugetlb_max_hstate __read_mostly; 42 unsigned int default_hstate_idx; 43 struct hstate hstates[HUGE_MAX_HSTATE]; 44 /* 45 * Minimum page order among possible hugepage sizes, set to a proper value 46 * at boot time. 47 */ 48 static unsigned int minimum_order __read_mostly = UINT_MAX; 49 50 __initdata LIST_HEAD(huge_boot_pages); 51 52 /* for command line parsing */ 53 static struct hstate * __initdata parsed_hstate; 54 static unsigned long __initdata default_hstate_max_huge_pages; 55 static unsigned long __initdata default_hstate_size; 56 static bool __initdata parsed_valid_hugepagesz = true; 57 58 /* 59 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages, 60 * free_huge_pages, and surplus_huge_pages. 61 */ 62 DEFINE_SPINLOCK(hugetlb_lock); 63 64 /* 65 * Serializes faults on the same logical page. This is used to 66 * prevent spurious OOMs when the hugepage pool is fully utilized. 67 */ 68 static int num_fault_mutexes; 69 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp; 70 71 /* Forward declaration */ 72 static int hugetlb_acct_memory(struct hstate *h, long delta); 73 74 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool) 75 { 76 bool free = (spool->count == 0) && (spool->used_hpages == 0); 77 78 spin_unlock(&spool->lock); 79 80 /* If no pages are used, and no other handles to the subpool 81 * remain, give up any reservations mased on minimum size and 82 * free the subpool */ 83 if (free) { 84 if (spool->min_hpages != -1) 85 hugetlb_acct_memory(spool->hstate, 86 -spool->min_hpages); 87 kfree(spool); 88 } 89 } 90 91 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages, 92 long min_hpages) 93 { 94 struct hugepage_subpool *spool; 95 96 spool = kzalloc(sizeof(*spool), GFP_KERNEL); 97 if (!spool) 98 return NULL; 99 100 spin_lock_init(&spool->lock); 101 spool->count = 1; 102 spool->max_hpages = max_hpages; 103 spool->hstate = h; 104 spool->min_hpages = min_hpages; 105 106 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) { 107 kfree(spool); 108 return NULL; 109 } 110 spool->rsv_hpages = min_hpages; 111 112 return spool; 113 } 114 115 void hugepage_put_subpool(struct hugepage_subpool *spool) 116 { 117 spin_lock(&spool->lock); 118 BUG_ON(!spool->count); 119 spool->count--; 120 unlock_or_release_subpool(spool); 121 } 122 123 /* 124 * Subpool accounting for allocating and reserving pages. 125 * Return -ENOMEM if there are not enough resources to satisfy the 126 * the request. Otherwise, return the number of pages by which the 127 * global pools must be adjusted (upward). The returned value may 128 * only be different than the passed value (delta) in the case where 129 * a subpool minimum size must be manitained. 130 */ 131 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool, 132 long delta) 133 { 134 long ret = delta; 135 136 if (!spool) 137 return ret; 138 139 spin_lock(&spool->lock); 140 141 if (spool->max_hpages != -1) { /* maximum size accounting */ 142 if ((spool->used_hpages + delta) <= spool->max_hpages) 143 spool->used_hpages += delta; 144 else { 145 ret = -ENOMEM; 146 goto unlock_ret; 147 } 148 } 149 150 /* minimum size accounting */ 151 if (spool->min_hpages != -1 && spool->rsv_hpages) { 152 if (delta > spool->rsv_hpages) { 153 /* 154 * Asking for more reserves than those already taken on 155 * behalf of subpool. Return difference. 156 */ 157 ret = delta - spool->rsv_hpages; 158 spool->rsv_hpages = 0; 159 } else { 160 ret = 0; /* reserves already accounted for */ 161 spool->rsv_hpages -= delta; 162 } 163 } 164 165 unlock_ret: 166 spin_unlock(&spool->lock); 167 return ret; 168 } 169 170 /* 171 * Subpool accounting for freeing and unreserving pages. 172 * Return the number of global page reservations that must be dropped. 173 * The return value may only be different than the passed value (delta) 174 * in the case where a subpool minimum size must be maintained. 175 */ 176 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool, 177 long delta) 178 { 179 long ret = delta; 180 181 if (!spool) 182 return delta; 183 184 spin_lock(&spool->lock); 185 186 if (spool->max_hpages != -1) /* maximum size accounting */ 187 spool->used_hpages -= delta; 188 189 /* minimum size accounting */ 190 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) { 191 if (spool->rsv_hpages + delta <= spool->min_hpages) 192 ret = 0; 193 else 194 ret = spool->rsv_hpages + delta - spool->min_hpages; 195 196 spool->rsv_hpages += delta; 197 if (spool->rsv_hpages > spool->min_hpages) 198 spool->rsv_hpages = spool->min_hpages; 199 } 200 201 /* 202 * If hugetlbfs_put_super couldn't free spool due to an outstanding 203 * quota reference, free it now. 204 */ 205 unlock_or_release_subpool(spool); 206 207 return ret; 208 } 209 210 static inline struct hugepage_subpool *subpool_inode(struct inode *inode) 211 { 212 return HUGETLBFS_SB(inode->i_sb)->spool; 213 } 214 215 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma) 216 { 217 return subpool_inode(file_inode(vma->vm_file)); 218 } 219 220 /* 221 * Region tracking -- allows tracking of reservations and instantiated pages 222 * across the pages in a mapping. 223 * 224 * The region data structures are embedded into a resv_map and protected 225 * by a resv_map's lock. The set of regions within the resv_map represent 226 * reservations for huge pages, or huge pages that have already been 227 * instantiated within the map. The from and to elements are huge page 228 * indicies into the associated mapping. from indicates the starting index 229 * of the region. to represents the first index past the end of the region. 230 * 231 * For example, a file region structure with from == 0 and to == 4 represents 232 * four huge pages in a mapping. It is important to note that the to element 233 * represents the first element past the end of the region. This is used in 234 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region. 235 * 236 * Interval notation of the form [from, to) will be used to indicate that 237 * the endpoint from is inclusive and to is exclusive. 238 */ 239 struct file_region { 240 struct list_head link; 241 long from; 242 long to; 243 }; 244 245 /* 246 * Add the huge page range represented by [f, t) to the reserve 247 * map. In the normal case, existing regions will be expanded 248 * to accommodate the specified range. Sufficient regions should 249 * exist for expansion due to the previous call to region_chg 250 * with the same range. However, it is possible that region_del 251 * could have been called after region_chg and modifed the map 252 * in such a way that no region exists to be expanded. In this 253 * case, pull a region descriptor from the cache associated with 254 * the map and use that for the new range. 255 * 256 * Return the number of new huge pages added to the map. This 257 * number is greater than or equal to zero. 258 */ 259 static long region_add(struct resv_map *resv, long f, long t) 260 { 261 struct list_head *head = &resv->regions; 262 struct file_region *rg, *nrg, *trg; 263 long add = 0; 264 265 spin_lock(&resv->lock); 266 /* Locate the region we are either in or before. */ 267 list_for_each_entry(rg, head, link) 268 if (f <= rg->to) 269 break; 270 271 /* 272 * If no region exists which can be expanded to include the 273 * specified range, the list must have been modified by an 274 * interleving call to region_del(). Pull a region descriptor 275 * from the cache and use it for this range. 276 */ 277 if (&rg->link == head || t < rg->from) { 278 VM_BUG_ON(resv->region_cache_count <= 0); 279 280 resv->region_cache_count--; 281 nrg = list_first_entry(&resv->region_cache, struct file_region, 282 link); 283 list_del(&nrg->link); 284 285 nrg->from = f; 286 nrg->to = t; 287 list_add(&nrg->link, rg->link.prev); 288 289 add += t - f; 290 goto out_locked; 291 } 292 293 /* Round our left edge to the current segment if it encloses us. */ 294 if (f > rg->from) 295 f = rg->from; 296 297 /* Check for and consume any regions we now overlap with. */ 298 nrg = rg; 299 list_for_each_entry_safe(rg, trg, rg->link.prev, link) { 300 if (&rg->link == head) 301 break; 302 if (rg->from > t) 303 break; 304 305 /* If this area reaches higher then extend our area to 306 * include it completely. If this is not the first area 307 * which we intend to reuse, free it. */ 308 if (rg->to > t) 309 t = rg->to; 310 if (rg != nrg) { 311 /* Decrement return value by the deleted range. 312 * Another range will span this area so that by 313 * end of routine add will be >= zero 314 */ 315 add -= (rg->to - rg->from); 316 list_del(&rg->link); 317 kfree(rg); 318 } 319 } 320 321 add += (nrg->from - f); /* Added to beginning of region */ 322 nrg->from = f; 323 add += t - nrg->to; /* Added to end of region */ 324 nrg->to = t; 325 326 out_locked: 327 resv->adds_in_progress--; 328 spin_unlock(&resv->lock); 329 VM_BUG_ON(add < 0); 330 return add; 331 } 332 333 /* 334 * Examine the existing reserve map and determine how many 335 * huge pages in the specified range [f, t) are NOT currently 336 * represented. This routine is called before a subsequent 337 * call to region_add that will actually modify the reserve 338 * map to add the specified range [f, t). region_chg does 339 * not change the number of huge pages represented by the 340 * map. However, if the existing regions in the map can not 341 * be expanded to represent the new range, a new file_region 342 * structure is added to the map as a placeholder. This is 343 * so that the subsequent region_add call will have all the 344 * regions it needs and will not fail. 345 * 346 * Upon entry, region_chg will also examine the cache of region descriptors 347 * associated with the map. If there are not enough descriptors cached, one 348 * will be allocated for the in progress add operation. 349 * 350 * Returns the number of huge pages that need to be added to the existing 351 * reservation map for the range [f, t). This number is greater or equal to 352 * zero. -ENOMEM is returned if a new file_region structure or cache entry 353 * is needed and can not be allocated. 354 */ 355 static long region_chg(struct resv_map *resv, long f, long t) 356 { 357 struct list_head *head = &resv->regions; 358 struct file_region *rg, *nrg = NULL; 359 long chg = 0; 360 361 retry: 362 spin_lock(&resv->lock); 363 retry_locked: 364 resv->adds_in_progress++; 365 366 /* 367 * Check for sufficient descriptors in the cache to accommodate 368 * the number of in progress add operations. 369 */ 370 if (resv->adds_in_progress > resv->region_cache_count) { 371 struct file_region *trg; 372 373 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1); 374 /* Must drop lock to allocate a new descriptor. */ 375 resv->adds_in_progress--; 376 spin_unlock(&resv->lock); 377 378 trg = kmalloc(sizeof(*trg), GFP_KERNEL); 379 if (!trg) { 380 kfree(nrg); 381 return -ENOMEM; 382 } 383 384 spin_lock(&resv->lock); 385 list_add(&trg->link, &resv->region_cache); 386 resv->region_cache_count++; 387 goto retry_locked; 388 } 389 390 /* Locate the region we are before or in. */ 391 list_for_each_entry(rg, head, link) 392 if (f <= rg->to) 393 break; 394 395 /* If we are below the current region then a new region is required. 396 * Subtle, allocate a new region at the position but make it zero 397 * size such that we can guarantee to record the reservation. */ 398 if (&rg->link == head || t < rg->from) { 399 if (!nrg) { 400 resv->adds_in_progress--; 401 spin_unlock(&resv->lock); 402 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 403 if (!nrg) 404 return -ENOMEM; 405 406 nrg->from = f; 407 nrg->to = f; 408 INIT_LIST_HEAD(&nrg->link); 409 goto retry; 410 } 411 412 list_add(&nrg->link, rg->link.prev); 413 chg = t - f; 414 goto out_nrg; 415 } 416 417 /* Round our left edge to the current segment if it encloses us. */ 418 if (f > rg->from) 419 f = rg->from; 420 chg = t - f; 421 422 /* Check for and consume any regions we now overlap with. */ 423 list_for_each_entry(rg, rg->link.prev, link) { 424 if (&rg->link == head) 425 break; 426 if (rg->from > t) 427 goto out; 428 429 /* We overlap with this area, if it extends further than 430 * us then we must extend ourselves. Account for its 431 * existing reservation. */ 432 if (rg->to > t) { 433 chg += rg->to - t; 434 t = rg->to; 435 } 436 chg -= rg->to - rg->from; 437 } 438 439 out: 440 spin_unlock(&resv->lock); 441 /* We already know we raced and no longer need the new region */ 442 kfree(nrg); 443 return chg; 444 out_nrg: 445 spin_unlock(&resv->lock); 446 return chg; 447 } 448 449 /* 450 * Abort the in progress add operation. The adds_in_progress field 451 * of the resv_map keeps track of the operations in progress between 452 * calls to region_chg and region_add. Operations are sometimes 453 * aborted after the call to region_chg. In such cases, region_abort 454 * is called to decrement the adds_in_progress counter. 455 * 456 * NOTE: The range arguments [f, t) are not needed or used in this 457 * routine. They are kept to make reading the calling code easier as 458 * arguments will match the associated region_chg call. 459 */ 460 static void region_abort(struct resv_map *resv, long f, long t) 461 { 462 spin_lock(&resv->lock); 463 VM_BUG_ON(!resv->region_cache_count); 464 resv->adds_in_progress--; 465 spin_unlock(&resv->lock); 466 } 467 468 /* 469 * Delete the specified range [f, t) from the reserve map. If the 470 * t parameter is LONG_MAX, this indicates that ALL regions after f 471 * should be deleted. Locate the regions which intersect [f, t) 472 * and either trim, delete or split the existing regions. 473 * 474 * Returns the number of huge pages deleted from the reserve map. 475 * In the normal case, the return value is zero or more. In the 476 * case where a region must be split, a new region descriptor must 477 * be allocated. If the allocation fails, -ENOMEM will be returned. 478 * NOTE: If the parameter t == LONG_MAX, then we will never split 479 * a region and possibly return -ENOMEM. Callers specifying 480 * t == LONG_MAX do not need to check for -ENOMEM error. 481 */ 482 static long region_del(struct resv_map *resv, long f, long t) 483 { 484 struct list_head *head = &resv->regions; 485 struct file_region *rg, *trg; 486 struct file_region *nrg = NULL; 487 long del = 0; 488 489 retry: 490 spin_lock(&resv->lock); 491 list_for_each_entry_safe(rg, trg, head, link) { 492 /* 493 * Skip regions before the range to be deleted. file_region 494 * ranges are normally of the form [from, to). However, there 495 * may be a "placeholder" entry in the map which is of the form 496 * (from, to) with from == to. Check for placeholder entries 497 * at the beginning of the range to be deleted. 498 */ 499 if (rg->to <= f && (rg->to != rg->from || rg->to != f)) 500 continue; 501 502 if (rg->from >= t) 503 break; 504 505 if (f > rg->from && t < rg->to) { /* Must split region */ 506 /* 507 * Check for an entry in the cache before dropping 508 * lock and attempting allocation. 509 */ 510 if (!nrg && 511 resv->region_cache_count > resv->adds_in_progress) { 512 nrg = list_first_entry(&resv->region_cache, 513 struct file_region, 514 link); 515 list_del(&nrg->link); 516 resv->region_cache_count--; 517 } 518 519 if (!nrg) { 520 spin_unlock(&resv->lock); 521 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 522 if (!nrg) 523 return -ENOMEM; 524 goto retry; 525 } 526 527 del += t - f; 528 529 /* New entry for end of split region */ 530 nrg->from = t; 531 nrg->to = rg->to; 532 INIT_LIST_HEAD(&nrg->link); 533 534 /* Original entry is trimmed */ 535 rg->to = f; 536 537 list_add(&nrg->link, &rg->link); 538 nrg = NULL; 539 break; 540 } 541 542 if (f <= rg->from && t >= rg->to) { /* Remove entire region */ 543 del += rg->to - rg->from; 544 list_del(&rg->link); 545 kfree(rg); 546 continue; 547 } 548 549 if (f <= rg->from) { /* Trim beginning of region */ 550 del += t - rg->from; 551 rg->from = t; 552 } else { /* Trim end of region */ 553 del += rg->to - f; 554 rg->to = f; 555 } 556 } 557 558 spin_unlock(&resv->lock); 559 kfree(nrg); 560 return del; 561 } 562 563 /* 564 * A rare out of memory error was encountered which prevented removal of 565 * the reserve map region for a page. The huge page itself was free'ed 566 * and removed from the page cache. This routine will adjust the subpool 567 * usage count, and the global reserve count if needed. By incrementing 568 * these counts, the reserve map entry which could not be deleted will 569 * appear as a "reserved" entry instead of simply dangling with incorrect 570 * counts. 571 */ 572 void hugetlb_fix_reserve_counts(struct inode *inode) 573 { 574 struct hugepage_subpool *spool = subpool_inode(inode); 575 long rsv_adjust; 576 577 rsv_adjust = hugepage_subpool_get_pages(spool, 1); 578 if (rsv_adjust) { 579 struct hstate *h = hstate_inode(inode); 580 581 hugetlb_acct_memory(h, 1); 582 } 583 } 584 585 /* 586 * Count and return the number of huge pages in the reserve map 587 * that intersect with the range [f, t). 588 */ 589 static long region_count(struct resv_map *resv, long f, long t) 590 { 591 struct list_head *head = &resv->regions; 592 struct file_region *rg; 593 long chg = 0; 594 595 spin_lock(&resv->lock); 596 /* Locate each segment we overlap with, and count that overlap. */ 597 list_for_each_entry(rg, head, link) { 598 long seg_from; 599 long seg_to; 600 601 if (rg->to <= f) 602 continue; 603 if (rg->from >= t) 604 break; 605 606 seg_from = max(rg->from, f); 607 seg_to = min(rg->to, t); 608 609 chg += seg_to - seg_from; 610 } 611 spin_unlock(&resv->lock); 612 613 return chg; 614 } 615 616 /* 617 * Convert the address within this vma to the page offset within 618 * the mapping, in pagecache page units; huge pages here. 619 */ 620 static pgoff_t vma_hugecache_offset(struct hstate *h, 621 struct vm_area_struct *vma, unsigned long address) 622 { 623 return ((address - vma->vm_start) >> huge_page_shift(h)) + 624 (vma->vm_pgoff >> huge_page_order(h)); 625 } 626 627 pgoff_t linear_hugepage_index(struct vm_area_struct *vma, 628 unsigned long address) 629 { 630 return vma_hugecache_offset(hstate_vma(vma), vma, address); 631 } 632 EXPORT_SYMBOL_GPL(linear_hugepage_index); 633 634 /* 635 * Return the size of the pages allocated when backing a VMA. In the majority 636 * cases this will be same size as used by the page table entries. 637 */ 638 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) 639 { 640 struct hstate *hstate; 641 642 if (!is_vm_hugetlb_page(vma)) 643 return PAGE_SIZE; 644 645 hstate = hstate_vma(vma); 646 647 return 1UL << huge_page_shift(hstate); 648 } 649 EXPORT_SYMBOL_GPL(vma_kernel_pagesize); 650 651 /* 652 * Return the page size being used by the MMU to back a VMA. In the majority 653 * of cases, the page size used by the kernel matches the MMU size. On 654 * architectures where it differs, an architecture-specific version of this 655 * function is required. 656 */ 657 #ifndef vma_mmu_pagesize 658 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 659 { 660 return vma_kernel_pagesize(vma); 661 } 662 #endif 663 664 /* 665 * Flags for MAP_PRIVATE reservations. These are stored in the bottom 666 * bits of the reservation map pointer, which are always clear due to 667 * alignment. 668 */ 669 #define HPAGE_RESV_OWNER (1UL << 0) 670 #define HPAGE_RESV_UNMAPPED (1UL << 1) 671 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) 672 673 /* 674 * These helpers are used to track how many pages are reserved for 675 * faults in a MAP_PRIVATE mapping. Only the process that called mmap() 676 * is guaranteed to have their future faults succeed. 677 * 678 * With the exception of reset_vma_resv_huge_pages() which is called at fork(), 679 * the reserve counters are updated with the hugetlb_lock held. It is safe 680 * to reset the VMA at fork() time as it is not in use yet and there is no 681 * chance of the global counters getting corrupted as a result of the values. 682 * 683 * The private mapping reservation is represented in a subtly different 684 * manner to a shared mapping. A shared mapping has a region map associated 685 * with the underlying file, this region map represents the backing file 686 * pages which have ever had a reservation assigned which this persists even 687 * after the page is instantiated. A private mapping has a region map 688 * associated with the original mmap which is attached to all VMAs which 689 * reference it, this region map represents those offsets which have consumed 690 * reservation ie. where pages have been instantiated. 691 */ 692 static unsigned long get_vma_private_data(struct vm_area_struct *vma) 693 { 694 return (unsigned long)vma->vm_private_data; 695 } 696 697 static void set_vma_private_data(struct vm_area_struct *vma, 698 unsigned long value) 699 { 700 vma->vm_private_data = (void *)value; 701 } 702 703 struct resv_map *resv_map_alloc(void) 704 { 705 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); 706 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL); 707 708 if (!resv_map || !rg) { 709 kfree(resv_map); 710 kfree(rg); 711 return NULL; 712 } 713 714 kref_init(&resv_map->refs); 715 spin_lock_init(&resv_map->lock); 716 INIT_LIST_HEAD(&resv_map->regions); 717 718 resv_map->adds_in_progress = 0; 719 720 INIT_LIST_HEAD(&resv_map->region_cache); 721 list_add(&rg->link, &resv_map->region_cache); 722 resv_map->region_cache_count = 1; 723 724 return resv_map; 725 } 726 727 void resv_map_release(struct kref *ref) 728 { 729 struct resv_map *resv_map = container_of(ref, struct resv_map, refs); 730 struct list_head *head = &resv_map->region_cache; 731 struct file_region *rg, *trg; 732 733 /* Clear out any active regions before we release the map. */ 734 region_del(resv_map, 0, LONG_MAX); 735 736 /* ... and any entries left in the cache */ 737 list_for_each_entry_safe(rg, trg, head, link) { 738 list_del(&rg->link); 739 kfree(rg); 740 } 741 742 VM_BUG_ON(resv_map->adds_in_progress); 743 744 kfree(resv_map); 745 } 746 747 static inline struct resv_map *inode_resv_map(struct inode *inode) 748 { 749 return inode->i_mapping->private_data; 750 } 751 752 static struct resv_map *vma_resv_map(struct vm_area_struct *vma) 753 { 754 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 755 if (vma->vm_flags & VM_MAYSHARE) { 756 struct address_space *mapping = vma->vm_file->f_mapping; 757 struct inode *inode = mapping->host; 758 759 return inode_resv_map(inode); 760 761 } else { 762 return (struct resv_map *)(get_vma_private_data(vma) & 763 ~HPAGE_RESV_MASK); 764 } 765 } 766 767 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) 768 { 769 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 770 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 771 772 set_vma_private_data(vma, (get_vma_private_data(vma) & 773 HPAGE_RESV_MASK) | (unsigned long)map); 774 } 775 776 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) 777 { 778 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 779 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 780 781 set_vma_private_data(vma, get_vma_private_data(vma) | flags); 782 } 783 784 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) 785 { 786 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 787 788 return (get_vma_private_data(vma) & flag) != 0; 789 } 790 791 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */ 792 void reset_vma_resv_huge_pages(struct vm_area_struct *vma) 793 { 794 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 795 if (!(vma->vm_flags & VM_MAYSHARE)) 796 vma->vm_private_data = (void *)0; 797 } 798 799 /* Returns true if the VMA has associated reserve pages */ 800 static bool vma_has_reserves(struct vm_area_struct *vma, long chg) 801 { 802 if (vma->vm_flags & VM_NORESERVE) { 803 /* 804 * This address is already reserved by other process(chg == 0), 805 * so, we should decrement reserved count. Without decrementing, 806 * reserve count remains after releasing inode, because this 807 * allocated page will go into page cache and is regarded as 808 * coming from reserved pool in releasing step. Currently, we 809 * don't have any other solution to deal with this situation 810 * properly, so add work-around here. 811 */ 812 if (vma->vm_flags & VM_MAYSHARE && chg == 0) 813 return true; 814 else 815 return false; 816 } 817 818 /* Shared mappings always use reserves */ 819 if (vma->vm_flags & VM_MAYSHARE) { 820 /* 821 * We know VM_NORESERVE is not set. Therefore, there SHOULD 822 * be a region map for all pages. The only situation where 823 * there is no region map is if a hole was punched via 824 * fallocate. In this case, there really are no reverves to 825 * use. This situation is indicated if chg != 0. 826 */ 827 if (chg) 828 return false; 829 else 830 return true; 831 } 832 833 /* 834 * Only the process that called mmap() has reserves for 835 * private mappings. 836 */ 837 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 838 /* 839 * Like the shared case above, a hole punch or truncate 840 * could have been performed on the private mapping. 841 * Examine the value of chg to determine if reserves 842 * actually exist or were previously consumed. 843 * Very Subtle - The value of chg comes from a previous 844 * call to vma_needs_reserves(). The reserve map for 845 * private mappings has different (opposite) semantics 846 * than that of shared mappings. vma_needs_reserves() 847 * has already taken this difference in semantics into 848 * account. Therefore, the meaning of chg is the same 849 * as in the shared case above. Code could easily be 850 * combined, but keeping it separate draws attention to 851 * subtle differences. 852 */ 853 if (chg) 854 return false; 855 else 856 return true; 857 } 858 859 return false; 860 } 861 862 static void enqueue_huge_page(struct hstate *h, struct page *page) 863 { 864 int nid = page_to_nid(page); 865 list_move(&page->lru, &h->hugepage_freelists[nid]); 866 h->free_huge_pages++; 867 h->free_huge_pages_node[nid]++; 868 } 869 870 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid) 871 { 872 struct page *page; 873 874 list_for_each_entry(page, &h->hugepage_freelists[nid], lru) 875 if (!PageHWPoison(page)) 876 break; 877 /* 878 * if 'non-isolated free hugepage' not found on the list, 879 * the allocation fails. 880 */ 881 if (&h->hugepage_freelists[nid] == &page->lru) 882 return NULL; 883 list_move(&page->lru, &h->hugepage_activelist); 884 set_page_refcounted(page); 885 h->free_huge_pages--; 886 h->free_huge_pages_node[nid]--; 887 return page; 888 } 889 890 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid, 891 nodemask_t *nmask) 892 { 893 unsigned int cpuset_mems_cookie; 894 struct zonelist *zonelist; 895 struct zone *zone; 896 struct zoneref *z; 897 int node = -1; 898 899 zonelist = node_zonelist(nid, gfp_mask); 900 901 retry_cpuset: 902 cpuset_mems_cookie = read_mems_allowed_begin(); 903 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) { 904 struct page *page; 905 906 if (!cpuset_zone_allowed(zone, gfp_mask)) 907 continue; 908 /* 909 * no need to ask again on the same node. Pool is node rather than 910 * zone aware 911 */ 912 if (zone_to_nid(zone) == node) 913 continue; 914 node = zone_to_nid(zone); 915 916 page = dequeue_huge_page_node_exact(h, node); 917 if (page) 918 return page; 919 } 920 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie))) 921 goto retry_cpuset; 922 923 return NULL; 924 } 925 926 /* Movability of hugepages depends on migration support. */ 927 static inline gfp_t htlb_alloc_mask(struct hstate *h) 928 { 929 if (hugepage_migration_supported(h)) 930 return GFP_HIGHUSER_MOVABLE; 931 else 932 return GFP_HIGHUSER; 933 } 934 935 static struct page *dequeue_huge_page_vma(struct hstate *h, 936 struct vm_area_struct *vma, 937 unsigned long address, int avoid_reserve, 938 long chg) 939 { 940 struct page *page; 941 struct mempolicy *mpol; 942 gfp_t gfp_mask; 943 nodemask_t *nodemask; 944 int nid; 945 946 /* 947 * A child process with MAP_PRIVATE mappings created by their parent 948 * have no page reserves. This check ensures that reservations are 949 * not "stolen". The child may still get SIGKILLed 950 */ 951 if (!vma_has_reserves(vma, chg) && 952 h->free_huge_pages - h->resv_huge_pages == 0) 953 goto err; 954 955 /* If reserves cannot be used, ensure enough pages are in the pool */ 956 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0) 957 goto err; 958 959 gfp_mask = htlb_alloc_mask(h); 960 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 961 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask); 962 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) { 963 SetPagePrivate(page); 964 h->resv_huge_pages--; 965 } 966 967 mpol_cond_put(mpol); 968 return page; 969 970 err: 971 return NULL; 972 } 973 974 /* 975 * common helper functions for hstate_next_node_to_{alloc|free}. 976 * We may have allocated or freed a huge page based on a different 977 * nodes_allowed previously, so h->next_node_to_{alloc|free} might 978 * be outside of *nodes_allowed. Ensure that we use an allowed 979 * node for alloc or free. 980 */ 981 static int next_node_allowed(int nid, nodemask_t *nodes_allowed) 982 { 983 nid = next_node_in(nid, *nodes_allowed); 984 VM_BUG_ON(nid >= MAX_NUMNODES); 985 986 return nid; 987 } 988 989 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed) 990 { 991 if (!node_isset(nid, *nodes_allowed)) 992 nid = next_node_allowed(nid, nodes_allowed); 993 return nid; 994 } 995 996 /* 997 * returns the previously saved node ["this node"] from which to 998 * allocate a persistent huge page for the pool and advance the 999 * next node from which to allocate, handling wrap at end of node 1000 * mask. 1001 */ 1002 static int hstate_next_node_to_alloc(struct hstate *h, 1003 nodemask_t *nodes_allowed) 1004 { 1005 int nid; 1006 1007 VM_BUG_ON(!nodes_allowed); 1008 1009 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed); 1010 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed); 1011 1012 return nid; 1013 } 1014 1015 /* 1016 * helper for free_pool_huge_page() - return the previously saved 1017 * node ["this node"] from which to free a huge page. Advance the 1018 * next node id whether or not we find a free huge page to free so 1019 * that the next attempt to free addresses the next node. 1020 */ 1021 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed) 1022 { 1023 int nid; 1024 1025 VM_BUG_ON(!nodes_allowed); 1026 1027 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed); 1028 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed); 1029 1030 return nid; 1031 } 1032 1033 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \ 1034 for (nr_nodes = nodes_weight(*mask); \ 1035 nr_nodes > 0 && \ 1036 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \ 1037 nr_nodes--) 1038 1039 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \ 1040 for (nr_nodes = nodes_weight(*mask); \ 1041 nr_nodes > 0 && \ 1042 ((node = hstate_next_node_to_free(hs, mask)) || 1); \ 1043 nr_nodes--) 1044 1045 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE 1046 static void destroy_compound_gigantic_page(struct page *page, 1047 unsigned int order) 1048 { 1049 int i; 1050 int nr_pages = 1 << order; 1051 struct page *p = page + 1; 1052 1053 atomic_set(compound_mapcount_ptr(page), 0); 1054 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { 1055 clear_compound_head(p); 1056 set_page_refcounted(p); 1057 } 1058 1059 set_compound_order(page, 0); 1060 __ClearPageHead(page); 1061 } 1062 1063 static void free_gigantic_page(struct page *page, unsigned int order) 1064 { 1065 free_contig_range(page_to_pfn(page), 1 << order); 1066 } 1067 1068 static int __alloc_gigantic_page(unsigned long start_pfn, 1069 unsigned long nr_pages, gfp_t gfp_mask) 1070 { 1071 unsigned long end_pfn = start_pfn + nr_pages; 1072 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE, 1073 gfp_mask); 1074 } 1075 1076 static bool pfn_range_valid_gigantic(struct zone *z, 1077 unsigned long start_pfn, unsigned long nr_pages) 1078 { 1079 unsigned long i, end_pfn = start_pfn + nr_pages; 1080 struct page *page; 1081 1082 for (i = start_pfn; i < end_pfn; i++) { 1083 if (!pfn_valid(i)) 1084 return false; 1085 1086 page = pfn_to_page(i); 1087 1088 if (page_zone(page) != z) 1089 return false; 1090 1091 if (PageReserved(page)) 1092 return false; 1093 1094 if (page_count(page) > 0) 1095 return false; 1096 1097 if (PageHuge(page)) 1098 return false; 1099 } 1100 1101 return true; 1102 } 1103 1104 static bool zone_spans_last_pfn(const struct zone *zone, 1105 unsigned long start_pfn, unsigned long nr_pages) 1106 { 1107 unsigned long last_pfn = start_pfn + nr_pages - 1; 1108 return zone_spans_pfn(zone, last_pfn); 1109 } 1110 1111 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, 1112 int nid, nodemask_t *nodemask) 1113 { 1114 unsigned int order = huge_page_order(h); 1115 unsigned long nr_pages = 1 << order; 1116 unsigned long ret, pfn, flags; 1117 struct zonelist *zonelist; 1118 struct zone *zone; 1119 struct zoneref *z; 1120 1121 zonelist = node_zonelist(nid, gfp_mask); 1122 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nodemask) { 1123 spin_lock_irqsave(&zone->lock, flags); 1124 1125 pfn = ALIGN(zone->zone_start_pfn, nr_pages); 1126 while (zone_spans_last_pfn(zone, pfn, nr_pages)) { 1127 if (pfn_range_valid_gigantic(zone, pfn, nr_pages)) { 1128 /* 1129 * We release the zone lock here because 1130 * alloc_contig_range() will also lock the zone 1131 * at some point. If there's an allocation 1132 * spinning on this lock, it may win the race 1133 * and cause alloc_contig_range() to fail... 1134 */ 1135 spin_unlock_irqrestore(&zone->lock, flags); 1136 ret = __alloc_gigantic_page(pfn, nr_pages, gfp_mask); 1137 if (!ret) 1138 return pfn_to_page(pfn); 1139 spin_lock_irqsave(&zone->lock, flags); 1140 } 1141 pfn += nr_pages; 1142 } 1143 1144 spin_unlock_irqrestore(&zone->lock, flags); 1145 } 1146 1147 return NULL; 1148 } 1149 1150 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid); 1151 static void prep_compound_gigantic_page(struct page *page, unsigned int order); 1152 1153 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */ 1154 static inline bool gigantic_page_supported(void) { return false; } 1155 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, 1156 int nid, nodemask_t *nodemask) { return NULL; } 1157 static inline void free_gigantic_page(struct page *page, unsigned int order) { } 1158 static inline void destroy_compound_gigantic_page(struct page *page, 1159 unsigned int order) { } 1160 #endif 1161 1162 static void update_and_free_page(struct hstate *h, struct page *page) 1163 { 1164 int i; 1165 1166 if (hstate_is_gigantic(h) && !gigantic_page_supported()) 1167 return; 1168 1169 h->nr_huge_pages--; 1170 h->nr_huge_pages_node[page_to_nid(page)]--; 1171 for (i = 0; i < pages_per_huge_page(h); i++) { 1172 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1173 1 << PG_referenced | 1 << PG_dirty | 1174 1 << PG_active | 1 << PG_private | 1175 1 << PG_writeback); 1176 } 1177 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page); 1178 set_compound_page_dtor(page, NULL_COMPOUND_DTOR); 1179 set_page_refcounted(page); 1180 if (hstate_is_gigantic(h)) { 1181 destroy_compound_gigantic_page(page, huge_page_order(h)); 1182 free_gigantic_page(page, huge_page_order(h)); 1183 } else { 1184 __free_pages(page, huge_page_order(h)); 1185 } 1186 } 1187 1188 struct hstate *size_to_hstate(unsigned long size) 1189 { 1190 struct hstate *h; 1191 1192 for_each_hstate(h) { 1193 if (huge_page_size(h) == size) 1194 return h; 1195 } 1196 return NULL; 1197 } 1198 1199 /* 1200 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked 1201 * to hstate->hugepage_activelist.) 1202 * 1203 * This function can be called for tail pages, but never returns true for them. 1204 */ 1205 bool page_huge_active(struct page *page) 1206 { 1207 VM_BUG_ON_PAGE(!PageHuge(page), page); 1208 return PageHead(page) && PagePrivate(&page[1]); 1209 } 1210 1211 /* never called for tail page */ 1212 static void set_page_huge_active(struct page *page) 1213 { 1214 VM_BUG_ON_PAGE(!PageHeadHuge(page), page); 1215 SetPagePrivate(&page[1]); 1216 } 1217 1218 static void clear_page_huge_active(struct page *page) 1219 { 1220 VM_BUG_ON_PAGE(!PageHeadHuge(page), page); 1221 ClearPagePrivate(&page[1]); 1222 } 1223 1224 /* 1225 * Internal hugetlb specific page flag. Do not use outside of the hugetlb 1226 * code 1227 */ 1228 static inline bool PageHugeTemporary(struct page *page) 1229 { 1230 if (!PageHuge(page)) 1231 return false; 1232 1233 return (unsigned long)page[2].mapping == -1U; 1234 } 1235 1236 static inline void SetPageHugeTemporary(struct page *page) 1237 { 1238 page[2].mapping = (void *)-1U; 1239 } 1240 1241 static inline void ClearPageHugeTemporary(struct page *page) 1242 { 1243 page[2].mapping = NULL; 1244 } 1245 1246 void free_huge_page(struct page *page) 1247 { 1248 /* 1249 * Can't pass hstate in here because it is called from the 1250 * compound page destructor. 1251 */ 1252 struct hstate *h = page_hstate(page); 1253 int nid = page_to_nid(page); 1254 struct hugepage_subpool *spool = 1255 (struct hugepage_subpool *)page_private(page); 1256 bool restore_reserve; 1257 1258 set_page_private(page, 0); 1259 page->mapping = NULL; 1260 VM_BUG_ON_PAGE(page_count(page), page); 1261 VM_BUG_ON_PAGE(page_mapcount(page), page); 1262 restore_reserve = PagePrivate(page); 1263 ClearPagePrivate(page); 1264 1265 /* 1266 * A return code of zero implies that the subpool will be under its 1267 * minimum size if the reservation is not restored after page is free. 1268 * Therefore, force restore_reserve operation. 1269 */ 1270 if (hugepage_subpool_put_pages(spool, 1) == 0) 1271 restore_reserve = true; 1272 1273 spin_lock(&hugetlb_lock); 1274 clear_page_huge_active(page); 1275 hugetlb_cgroup_uncharge_page(hstate_index(h), 1276 pages_per_huge_page(h), page); 1277 if (restore_reserve) 1278 h->resv_huge_pages++; 1279 1280 if (PageHugeTemporary(page)) { 1281 list_del(&page->lru); 1282 ClearPageHugeTemporary(page); 1283 update_and_free_page(h, page); 1284 } else if (h->surplus_huge_pages_node[nid]) { 1285 /* remove the page from active list */ 1286 list_del(&page->lru); 1287 update_and_free_page(h, page); 1288 h->surplus_huge_pages--; 1289 h->surplus_huge_pages_node[nid]--; 1290 } else { 1291 arch_clear_hugepage_flags(page); 1292 enqueue_huge_page(h, page); 1293 } 1294 spin_unlock(&hugetlb_lock); 1295 } 1296 1297 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid) 1298 { 1299 INIT_LIST_HEAD(&page->lru); 1300 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR); 1301 spin_lock(&hugetlb_lock); 1302 set_hugetlb_cgroup(page, NULL); 1303 h->nr_huge_pages++; 1304 h->nr_huge_pages_node[nid]++; 1305 spin_unlock(&hugetlb_lock); 1306 } 1307 1308 static void prep_compound_gigantic_page(struct page *page, unsigned int order) 1309 { 1310 int i; 1311 int nr_pages = 1 << order; 1312 struct page *p = page + 1; 1313 1314 /* we rely on prep_new_huge_page to set the destructor */ 1315 set_compound_order(page, order); 1316 __ClearPageReserved(page); 1317 __SetPageHead(page); 1318 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { 1319 /* 1320 * For gigantic hugepages allocated through bootmem at 1321 * boot, it's safer to be consistent with the not-gigantic 1322 * hugepages and clear the PG_reserved bit from all tail pages 1323 * too. Otherwse drivers using get_user_pages() to access tail 1324 * pages may get the reference counting wrong if they see 1325 * PG_reserved set on a tail page (despite the head page not 1326 * having PG_reserved set). Enforcing this consistency between 1327 * head and tail pages allows drivers to optimize away a check 1328 * on the head page when they need know if put_page() is needed 1329 * after get_user_pages(). 1330 */ 1331 __ClearPageReserved(p); 1332 set_page_count(p, 0); 1333 set_compound_head(p, page); 1334 } 1335 atomic_set(compound_mapcount_ptr(page), -1); 1336 } 1337 1338 /* 1339 * PageHuge() only returns true for hugetlbfs pages, but not for normal or 1340 * transparent huge pages. See the PageTransHuge() documentation for more 1341 * details. 1342 */ 1343 int PageHuge(struct page *page) 1344 { 1345 if (!PageCompound(page)) 1346 return 0; 1347 1348 page = compound_head(page); 1349 return page[1].compound_dtor == HUGETLB_PAGE_DTOR; 1350 } 1351 EXPORT_SYMBOL_GPL(PageHuge); 1352 1353 /* 1354 * PageHeadHuge() only returns true for hugetlbfs head page, but not for 1355 * normal or transparent huge pages. 1356 */ 1357 int PageHeadHuge(struct page *page_head) 1358 { 1359 if (!PageHead(page_head)) 1360 return 0; 1361 1362 return get_compound_page_dtor(page_head) == free_huge_page; 1363 } 1364 1365 pgoff_t __basepage_index(struct page *page) 1366 { 1367 struct page *page_head = compound_head(page); 1368 pgoff_t index = page_index(page_head); 1369 unsigned long compound_idx; 1370 1371 if (!PageHuge(page_head)) 1372 return page_index(page); 1373 1374 if (compound_order(page_head) >= MAX_ORDER) 1375 compound_idx = page_to_pfn(page) - page_to_pfn(page_head); 1376 else 1377 compound_idx = page - page_head; 1378 1379 return (index << compound_order(page_head)) + compound_idx; 1380 } 1381 1382 static struct page *alloc_buddy_huge_page(struct hstate *h, 1383 gfp_t gfp_mask, int nid, nodemask_t *nmask) 1384 { 1385 int order = huge_page_order(h); 1386 struct page *page; 1387 1388 gfp_mask |= __GFP_COMP|__GFP_RETRY_MAYFAIL|__GFP_NOWARN; 1389 if (nid == NUMA_NO_NODE) 1390 nid = numa_mem_id(); 1391 page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask); 1392 if (page) 1393 __count_vm_event(HTLB_BUDDY_PGALLOC); 1394 else 1395 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 1396 1397 return page; 1398 } 1399 1400 /* 1401 * Common helper to allocate a fresh hugetlb page. All specific allocators 1402 * should use this function to get new hugetlb pages 1403 */ 1404 static struct page *alloc_fresh_huge_page(struct hstate *h, 1405 gfp_t gfp_mask, int nid, nodemask_t *nmask) 1406 { 1407 struct page *page; 1408 1409 if (hstate_is_gigantic(h)) 1410 page = alloc_gigantic_page(h, gfp_mask, nid, nmask); 1411 else 1412 page = alloc_buddy_huge_page(h, gfp_mask, 1413 nid, nmask); 1414 if (!page) 1415 return NULL; 1416 1417 if (hstate_is_gigantic(h)) 1418 prep_compound_gigantic_page(page, huge_page_order(h)); 1419 prep_new_huge_page(h, page, page_to_nid(page)); 1420 1421 return page; 1422 } 1423 1424 /* 1425 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved 1426 * manner. 1427 */ 1428 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed) 1429 { 1430 struct page *page; 1431 int nr_nodes, node; 1432 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 1433 1434 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 1435 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed); 1436 if (page) 1437 break; 1438 } 1439 1440 if (!page) 1441 return 0; 1442 1443 put_page(page); /* free it into the hugepage allocator */ 1444 1445 return 1; 1446 } 1447 1448 /* 1449 * Free huge page from pool from next node to free. 1450 * Attempt to keep persistent huge pages more or less 1451 * balanced over allowed nodes. 1452 * Called with hugetlb_lock locked. 1453 */ 1454 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed, 1455 bool acct_surplus) 1456 { 1457 int nr_nodes, node; 1458 int ret = 0; 1459 1460 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 1461 /* 1462 * If we're returning unused surplus pages, only examine 1463 * nodes with surplus pages. 1464 */ 1465 if ((!acct_surplus || h->surplus_huge_pages_node[node]) && 1466 !list_empty(&h->hugepage_freelists[node])) { 1467 struct page *page = 1468 list_entry(h->hugepage_freelists[node].next, 1469 struct page, lru); 1470 list_del(&page->lru); 1471 h->free_huge_pages--; 1472 h->free_huge_pages_node[node]--; 1473 if (acct_surplus) { 1474 h->surplus_huge_pages--; 1475 h->surplus_huge_pages_node[node]--; 1476 } 1477 update_and_free_page(h, page); 1478 ret = 1; 1479 break; 1480 } 1481 } 1482 1483 return ret; 1484 } 1485 1486 /* 1487 * Dissolve a given free hugepage into free buddy pages. This function does 1488 * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the 1489 * number of free hugepages would be reduced below the number of reserved 1490 * hugepages. 1491 */ 1492 int dissolve_free_huge_page(struct page *page) 1493 { 1494 int rc = 0; 1495 1496 spin_lock(&hugetlb_lock); 1497 if (PageHuge(page) && !page_count(page)) { 1498 struct page *head = compound_head(page); 1499 struct hstate *h = page_hstate(head); 1500 int nid = page_to_nid(head); 1501 if (h->free_huge_pages - h->resv_huge_pages == 0) { 1502 rc = -EBUSY; 1503 goto out; 1504 } 1505 /* 1506 * Move PageHWPoison flag from head page to the raw error page, 1507 * which makes any subpages rather than the error page reusable. 1508 */ 1509 if (PageHWPoison(head) && page != head) { 1510 SetPageHWPoison(page); 1511 ClearPageHWPoison(head); 1512 } 1513 list_del(&head->lru); 1514 h->free_huge_pages--; 1515 h->free_huge_pages_node[nid]--; 1516 h->max_huge_pages--; 1517 update_and_free_page(h, head); 1518 } 1519 out: 1520 spin_unlock(&hugetlb_lock); 1521 return rc; 1522 } 1523 1524 /* 1525 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to 1526 * make specified memory blocks removable from the system. 1527 * Note that this will dissolve a free gigantic hugepage completely, if any 1528 * part of it lies within the given range. 1529 * Also note that if dissolve_free_huge_page() returns with an error, all 1530 * free hugepages that were dissolved before that error are lost. 1531 */ 1532 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn) 1533 { 1534 unsigned long pfn; 1535 struct page *page; 1536 int rc = 0; 1537 1538 if (!hugepages_supported()) 1539 return rc; 1540 1541 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) { 1542 page = pfn_to_page(pfn); 1543 if (PageHuge(page) && !page_count(page)) { 1544 rc = dissolve_free_huge_page(page); 1545 if (rc) 1546 break; 1547 } 1548 } 1549 1550 return rc; 1551 } 1552 1553 /* 1554 * Allocates a fresh surplus page from the page allocator. 1555 */ 1556 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask, 1557 int nid, nodemask_t *nmask) 1558 { 1559 struct page *page = NULL; 1560 1561 if (hstate_is_gigantic(h)) 1562 return NULL; 1563 1564 spin_lock(&hugetlb_lock); 1565 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) 1566 goto out_unlock; 1567 spin_unlock(&hugetlb_lock); 1568 1569 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask); 1570 if (!page) 1571 return NULL; 1572 1573 spin_lock(&hugetlb_lock); 1574 /* 1575 * We could have raced with the pool size change. 1576 * Double check that and simply deallocate the new page 1577 * if we would end up overcommiting the surpluses. Abuse 1578 * temporary page to workaround the nasty free_huge_page 1579 * codeflow 1580 */ 1581 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { 1582 SetPageHugeTemporary(page); 1583 put_page(page); 1584 page = NULL; 1585 } else { 1586 h->surplus_huge_pages++; 1587 h->surplus_huge_pages_node[page_to_nid(page)]++; 1588 } 1589 1590 out_unlock: 1591 spin_unlock(&hugetlb_lock); 1592 1593 return page; 1594 } 1595 1596 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask, 1597 int nid, nodemask_t *nmask) 1598 { 1599 struct page *page; 1600 1601 if (hstate_is_gigantic(h)) 1602 return NULL; 1603 1604 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask); 1605 if (!page) 1606 return NULL; 1607 1608 /* 1609 * We do not account these pages as surplus because they are only 1610 * temporary and will be released properly on the last reference 1611 */ 1612 SetPageHugeTemporary(page); 1613 1614 return page; 1615 } 1616 1617 /* 1618 * Use the VMA's mpolicy to allocate a huge page from the buddy. 1619 */ 1620 static 1621 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h, 1622 struct vm_area_struct *vma, unsigned long addr) 1623 { 1624 struct page *page; 1625 struct mempolicy *mpol; 1626 gfp_t gfp_mask = htlb_alloc_mask(h); 1627 int nid; 1628 nodemask_t *nodemask; 1629 1630 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask); 1631 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask); 1632 mpol_cond_put(mpol); 1633 1634 return page; 1635 } 1636 1637 /* page migration callback function */ 1638 struct page *alloc_huge_page_node(struct hstate *h, int nid) 1639 { 1640 gfp_t gfp_mask = htlb_alloc_mask(h); 1641 struct page *page = NULL; 1642 1643 if (nid != NUMA_NO_NODE) 1644 gfp_mask |= __GFP_THISNODE; 1645 1646 spin_lock(&hugetlb_lock); 1647 if (h->free_huge_pages - h->resv_huge_pages > 0) 1648 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL); 1649 spin_unlock(&hugetlb_lock); 1650 1651 if (!page) 1652 page = alloc_migrate_huge_page(h, gfp_mask, nid, NULL); 1653 1654 return page; 1655 } 1656 1657 /* page migration callback function */ 1658 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid, 1659 nodemask_t *nmask) 1660 { 1661 gfp_t gfp_mask = htlb_alloc_mask(h); 1662 1663 spin_lock(&hugetlb_lock); 1664 if (h->free_huge_pages - h->resv_huge_pages > 0) { 1665 struct page *page; 1666 1667 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask); 1668 if (page) { 1669 spin_unlock(&hugetlb_lock); 1670 return page; 1671 } 1672 } 1673 spin_unlock(&hugetlb_lock); 1674 1675 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask); 1676 } 1677 1678 /* mempolicy aware migration callback */ 1679 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma, 1680 unsigned long address) 1681 { 1682 struct mempolicy *mpol; 1683 nodemask_t *nodemask; 1684 struct page *page; 1685 gfp_t gfp_mask; 1686 int node; 1687 1688 gfp_mask = htlb_alloc_mask(h); 1689 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 1690 page = alloc_huge_page_nodemask(h, node, nodemask); 1691 mpol_cond_put(mpol); 1692 1693 return page; 1694 } 1695 1696 /* 1697 * Increase the hugetlb pool such that it can accommodate a reservation 1698 * of size 'delta'. 1699 */ 1700 static int gather_surplus_pages(struct hstate *h, int delta) 1701 { 1702 struct list_head surplus_list; 1703 struct page *page, *tmp; 1704 int ret, i; 1705 int needed, allocated; 1706 bool alloc_ok = true; 1707 1708 needed = (h->resv_huge_pages + delta) - h->free_huge_pages; 1709 if (needed <= 0) { 1710 h->resv_huge_pages += delta; 1711 return 0; 1712 } 1713 1714 allocated = 0; 1715 INIT_LIST_HEAD(&surplus_list); 1716 1717 ret = -ENOMEM; 1718 retry: 1719 spin_unlock(&hugetlb_lock); 1720 for (i = 0; i < needed; i++) { 1721 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h), 1722 NUMA_NO_NODE, NULL); 1723 if (!page) { 1724 alloc_ok = false; 1725 break; 1726 } 1727 list_add(&page->lru, &surplus_list); 1728 cond_resched(); 1729 } 1730 allocated += i; 1731 1732 /* 1733 * After retaking hugetlb_lock, we need to recalculate 'needed' 1734 * because either resv_huge_pages or free_huge_pages may have changed. 1735 */ 1736 spin_lock(&hugetlb_lock); 1737 needed = (h->resv_huge_pages + delta) - 1738 (h->free_huge_pages + allocated); 1739 if (needed > 0) { 1740 if (alloc_ok) 1741 goto retry; 1742 /* 1743 * We were not able to allocate enough pages to 1744 * satisfy the entire reservation so we free what 1745 * we've allocated so far. 1746 */ 1747 goto free; 1748 } 1749 /* 1750 * The surplus_list now contains _at_least_ the number of extra pages 1751 * needed to accommodate the reservation. Add the appropriate number 1752 * of pages to the hugetlb pool and free the extras back to the buddy 1753 * allocator. Commit the entire reservation here to prevent another 1754 * process from stealing the pages as they are added to the pool but 1755 * before they are reserved. 1756 */ 1757 needed += allocated; 1758 h->resv_huge_pages += delta; 1759 ret = 0; 1760 1761 /* Free the needed pages to the hugetlb pool */ 1762 list_for_each_entry_safe(page, tmp, &surplus_list, lru) { 1763 if ((--needed) < 0) 1764 break; 1765 /* 1766 * This page is now managed by the hugetlb allocator and has 1767 * no users -- drop the buddy allocator's reference. 1768 */ 1769 put_page_testzero(page); 1770 VM_BUG_ON_PAGE(page_count(page), page); 1771 enqueue_huge_page(h, page); 1772 } 1773 free: 1774 spin_unlock(&hugetlb_lock); 1775 1776 /* Free unnecessary surplus pages to the buddy allocator */ 1777 list_for_each_entry_safe(page, tmp, &surplus_list, lru) 1778 put_page(page); 1779 spin_lock(&hugetlb_lock); 1780 1781 return ret; 1782 } 1783 1784 /* 1785 * This routine has two main purposes: 1786 * 1) Decrement the reservation count (resv_huge_pages) by the value passed 1787 * in unused_resv_pages. This corresponds to the prior adjustments made 1788 * to the associated reservation map. 1789 * 2) Free any unused surplus pages that may have been allocated to satisfy 1790 * the reservation. As many as unused_resv_pages may be freed. 1791 * 1792 * Called with hugetlb_lock held. However, the lock could be dropped (and 1793 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock, 1794 * we must make sure nobody else can claim pages we are in the process of 1795 * freeing. Do this by ensuring resv_huge_page always is greater than the 1796 * number of huge pages we plan to free when dropping the lock. 1797 */ 1798 static void return_unused_surplus_pages(struct hstate *h, 1799 unsigned long unused_resv_pages) 1800 { 1801 unsigned long nr_pages; 1802 1803 /* Cannot return gigantic pages currently */ 1804 if (hstate_is_gigantic(h)) 1805 goto out; 1806 1807 /* 1808 * Part (or even all) of the reservation could have been backed 1809 * by pre-allocated pages. Only free surplus pages. 1810 */ 1811 nr_pages = min(unused_resv_pages, h->surplus_huge_pages); 1812 1813 /* 1814 * We want to release as many surplus pages as possible, spread 1815 * evenly across all nodes with memory. Iterate across these nodes 1816 * until we can no longer free unreserved surplus pages. This occurs 1817 * when the nodes with surplus pages have no free pages. 1818 * free_pool_huge_page() will balance the the freed pages across the 1819 * on-line nodes with memory and will handle the hstate accounting. 1820 * 1821 * Note that we decrement resv_huge_pages as we free the pages. If 1822 * we drop the lock, resv_huge_pages will still be sufficiently large 1823 * to cover subsequent pages we may free. 1824 */ 1825 while (nr_pages--) { 1826 h->resv_huge_pages--; 1827 unused_resv_pages--; 1828 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1)) 1829 goto out; 1830 cond_resched_lock(&hugetlb_lock); 1831 } 1832 1833 out: 1834 /* Fully uncommit the reservation */ 1835 h->resv_huge_pages -= unused_resv_pages; 1836 } 1837 1838 1839 /* 1840 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation 1841 * are used by the huge page allocation routines to manage reservations. 1842 * 1843 * vma_needs_reservation is called to determine if the huge page at addr 1844 * within the vma has an associated reservation. If a reservation is 1845 * needed, the value 1 is returned. The caller is then responsible for 1846 * managing the global reservation and subpool usage counts. After 1847 * the huge page has been allocated, vma_commit_reservation is called 1848 * to add the page to the reservation map. If the page allocation fails, 1849 * the reservation must be ended instead of committed. vma_end_reservation 1850 * is called in such cases. 1851 * 1852 * In the normal case, vma_commit_reservation returns the same value 1853 * as the preceding vma_needs_reservation call. The only time this 1854 * is not the case is if a reserve map was changed between calls. It 1855 * is the responsibility of the caller to notice the difference and 1856 * take appropriate action. 1857 * 1858 * vma_add_reservation is used in error paths where a reservation must 1859 * be restored when a newly allocated huge page must be freed. It is 1860 * to be called after calling vma_needs_reservation to determine if a 1861 * reservation exists. 1862 */ 1863 enum vma_resv_mode { 1864 VMA_NEEDS_RESV, 1865 VMA_COMMIT_RESV, 1866 VMA_END_RESV, 1867 VMA_ADD_RESV, 1868 }; 1869 static long __vma_reservation_common(struct hstate *h, 1870 struct vm_area_struct *vma, unsigned long addr, 1871 enum vma_resv_mode mode) 1872 { 1873 struct resv_map *resv; 1874 pgoff_t idx; 1875 long ret; 1876 1877 resv = vma_resv_map(vma); 1878 if (!resv) 1879 return 1; 1880 1881 idx = vma_hugecache_offset(h, vma, addr); 1882 switch (mode) { 1883 case VMA_NEEDS_RESV: 1884 ret = region_chg(resv, idx, idx + 1); 1885 break; 1886 case VMA_COMMIT_RESV: 1887 ret = region_add(resv, idx, idx + 1); 1888 break; 1889 case VMA_END_RESV: 1890 region_abort(resv, idx, idx + 1); 1891 ret = 0; 1892 break; 1893 case VMA_ADD_RESV: 1894 if (vma->vm_flags & VM_MAYSHARE) 1895 ret = region_add(resv, idx, idx + 1); 1896 else { 1897 region_abort(resv, idx, idx + 1); 1898 ret = region_del(resv, idx, idx + 1); 1899 } 1900 break; 1901 default: 1902 BUG(); 1903 } 1904 1905 if (vma->vm_flags & VM_MAYSHARE) 1906 return ret; 1907 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) { 1908 /* 1909 * In most cases, reserves always exist for private mappings. 1910 * However, a file associated with mapping could have been 1911 * hole punched or truncated after reserves were consumed. 1912 * As subsequent fault on such a range will not use reserves. 1913 * Subtle - The reserve map for private mappings has the 1914 * opposite meaning than that of shared mappings. If NO 1915 * entry is in the reserve map, it means a reservation exists. 1916 * If an entry exists in the reserve map, it means the 1917 * reservation has already been consumed. As a result, the 1918 * return value of this routine is the opposite of the 1919 * value returned from reserve map manipulation routines above. 1920 */ 1921 if (ret) 1922 return 0; 1923 else 1924 return 1; 1925 } 1926 else 1927 return ret < 0 ? ret : 0; 1928 } 1929 1930 static long vma_needs_reservation(struct hstate *h, 1931 struct vm_area_struct *vma, unsigned long addr) 1932 { 1933 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV); 1934 } 1935 1936 static long vma_commit_reservation(struct hstate *h, 1937 struct vm_area_struct *vma, unsigned long addr) 1938 { 1939 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV); 1940 } 1941 1942 static void vma_end_reservation(struct hstate *h, 1943 struct vm_area_struct *vma, unsigned long addr) 1944 { 1945 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV); 1946 } 1947 1948 static long vma_add_reservation(struct hstate *h, 1949 struct vm_area_struct *vma, unsigned long addr) 1950 { 1951 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV); 1952 } 1953 1954 /* 1955 * This routine is called to restore a reservation on error paths. In the 1956 * specific error paths, a huge page was allocated (via alloc_huge_page) 1957 * and is about to be freed. If a reservation for the page existed, 1958 * alloc_huge_page would have consumed the reservation and set PagePrivate 1959 * in the newly allocated page. When the page is freed via free_huge_page, 1960 * the global reservation count will be incremented if PagePrivate is set. 1961 * However, free_huge_page can not adjust the reserve map. Adjust the 1962 * reserve map here to be consistent with global reserve count adjustments 1963 * to be made by free_huge_page. 1964 */ 1965 static void restore_reserve_on_error(struct hstate *h, 1966 struct vm_area_struct *vma, unsigned long address, 1967 struct page *page) 1968 { 1969 if (unlikely(PagePrivate(page))) { 1970 long rc = vma_needs_reservation(h, vma, address); 1971 1972 if (unlikely(rc < 0)) { 1973 /* 1974 * Rare out of memory condition in reserve map 1975 * manipulation. Clear PagePrivate so that 1976 * global reserve count will not be incremented 1977 * by free_huge_page. This will make it appear 1978 * as though the reservation for this page was 1979 * consumed. This may prevent the task from 1980 * faulting in the page at a later time. This 1981 * is better than inconsistent global huge page 1982 * accounting of reserve counts. 1983 */ 1984 ClearPagePrivate(page); 1985 } else if (rc) { 1986 rc = vma_add_reservation(h, vma, address); 1987 if (unlikely(rc < 0)) 1988 /* 1989 * See above comment about rare out of 1990 * memory condition. 1991 */ 1992 ClearPagePrivate(page); 1993 } else 1994 vma_end_reservation(h, vma, address); 1995 } 1996 } 1997 1998 struct page *alloc_huge_page(struct vm_area_struct *vma, 1999 unsigned long addr, int avoid_reserve) 2000 { 2001 struct hugepage_subpool *spool = subpool_vma(vma); 2002 struct hstate *h = hstate_vma(vma); 2003 struct page *page; 2004 long map_chg, map_commit; 2005 long gbl_chg; 2006 int ret, idx; 2007 struct hugetlb_cgroup *h_cg; 2008 2009 idx = hstate_index(h); 2010 /* 2011 * Examine the region/reserve map to determine if the process 2012 * has a reservation for the page to be allocated. A return 2013 * code of zero indicates a reservation exists (no change). 2014 */ 2015 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr); 2016 if (map_chg < 0) 2017 return ERR_PTR(-ENOMEM); 2018 2019 /* 2020 * Processes that did not create the mapping will have no 2021 * reserves as indicated by the region/reserve map. Check 2022 * that the allocation will not exceed the subpool limit. 2023 * Allocations for MAP_NORESERVE mappings also need to be 2024 * checked against any subpool limit. 2025 */ 2026 if (map_chg || avoid_reserve) { 2027 gbl_chg = hugepage_subpool_get_pages(spool, 1); 2028 if (gbl_chg < 0) { 2029 vma_end_reservation(h, vma, addr); 2030 return ERR_PTR(-ENOSPC); 2031 } 2032 2033 /* 2034 * Even though there was no reservation in the region/reserve 2035 * map, there could be reservations associated with the 2036 * subpool that can be used. This would be indicated if the 2037 * return value of hugepage_subpool_get_pages() is zero. 2038 * However, if avoid_reserve is specified we still avoid even 2039 * the subpool reservations. 2040 */ 2041 if (avoid_reserve) 2042 gbl_chg = 1; 2043 } 2044 2045 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg); 2046 if (ret) 2047 goto out_subpool_put; 2048 2049 spin_lock(&hugetlb_lock); 2050 /* 2051 * glb_chg is passed to indicate whether or not a page must be taken 2052 * from the global free pool (global change). gbl_chg == 0 indicates 2053 * a reservation exists for the allocation. 2054 */ 2055 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg); 2056 if (!page) { 2057 spin_unlock(&hugetlb_lock); 2058 page = alloc_buddy_huge_page_with_mpol(h, vma, addr); 2059 if (!page) 2060 goto out_uncharge_cgroup; 2061 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) { 2062 SetPagePrivate(page); 2063 h->resv_huge_pages--; 2064 } 2065 spin_lock(&hugetlb_lock); 2066 list_move(&page->lru, &h->hugepage_activelist); 2067 /* Fall through */ 2068 } 2069 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page); 2070 spin_unlock(&hugetlb_lock); 2071 2072 set_page_private(page, (unsigned long)spool); 2073 2074 map_commit = vma_commit_reservation(h, vma, addr); 2075 if (unlikely(map_chg > map_commit)) { 2076 /* 2077 * The page was added to the reservation map between 2078 * vma_needs_reservation and vma_commit_reservation. 2079 * This indicates a race with hugetlb_reserve_pages. 2080 * Adjust for the subpool count incremented above AND 2081 * in hugetlb_reserve_pages for the same page. Also, 2082 * the reservation count added in hugetlb_reserve_pages 2083 * no longer applies. 2084 */ 2085 long rsv_adjust; 2086 2087 rsv_adjust = hugepage_subpool_put_pages(spool, 1); 2088 hugetlb_acct_memory(h, -rsv_adjust); 2089 } 2090 return page; 2091 2092 out_uncharge_cgroup: 2093 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg); 2094 out_subpool_put: 2095 if (map_chg || avoid_reserve) 2096 hugepage_subpool_put_pages(spool, 1); 2097 vma_end_reservation(h, vma, addr); 2098 return ERR_PTR(-ENOSPC); 2099 } 2100 2101 int alloc_bootmem_huge_page(struct hstate *h) 2102 __attribute__ ((weak, alias("__alloc_bootmem_huge_page"))); 2103 int __alloc_bootmem_huge_page(struct hstate *h) 2104 { 2105 struct huge_bootmem_page *m; 2106 int nr_nodes, node; 2107 2108 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) { 2109 void *addr; 2110 2111 addr = memblock_virt_alloc_try_nid_nopanic( 2112 huge_page_size(h), huge_page_size(h), 2113 0, BOOTMEM_ALLOC_ACCESSIBLE, node); 2114 if (addr) { 2115 /* 2116 * Use the beginning of the huge page to store the 2117 * huge_bootmem_page struct (until gather_bootmem 2118 * puts them into the mem_map). 2119 */ 2120 m = addr; 2121 goto found; 2122 } 2123 } 2124 return 0; 2125 2126 found: 2127 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h))); 2128 /* Put them into a private list first because mem_map is not up yet */ 2129 list_add(&m->list, &huge_boot_pages); 2130 m->hstate = h; 2131 return 1; 2132 } 2133 2134 static void __init prep_compound_huge_page(struct page *page, 2135 unsigned int order) 2136 { 2137 if (unlikely(order > (MAX_ORDER - 1))) 2138 prep_compound_gigantic_page(page, order); 2139 else 2140 prep_compound_page(page, order); 2141 } 2142 2143 /* Put bootmem huge pages into the standard lists after mem_map is up */ 2144 static void __init gather_bootmem_prealloc(void) 2145 { 2146 struct huge_bootmem_page *m; 2147 2148 list_for_each_entry(m, &huge_boot_pages, list) { 2149 struct hstate *h = m->hstate; 2150 struct page *page; 2151 2152 #ifdef CONFIG_HIGHMEM 2153 page = pfn_to_page(m->phys >> PAGE_SHIFT); 2154 memblock_free_late(__pa(m), 2155 sizeof(struct huge_bootmem_page)); 2156 #else 2157 page = virt_to_page(m); 2158 #endif 2159 WARN_ON(page_count(page) != 1); 2160 prep_compound_huge_page(page, h->order); 2161 WARN_ON(PageReserved(page)); 2162 prep_new_huge_page(h, page, page_to_nid(page)); 2163 put_page(page); /* free it into the hugepage allocator */ 2164 2165 /* 2166 * If we had gigantic hugepages allocated at boot time, we need 2167 * to restore the 'stolen' pages to totalram_pages in order to 2168 * fix confusing memory reports from free(1) and another 2169 * side-effects, like CommitLimit going negative. 2170 */ 2171 if (hstate_is_gigantic(h)) 2172 adjust_managed_page_count(page, 1 << h->order); 2173 } 2174 } 2175 2176 static void __init hugetlb_hstate_alloc_pages(struct hstate *h) 2177 { 2178 unsigned long i; 2179 2180 for (i = 0; i < h->max_huge_pages; ++i) { 2181 if (hstate_is_gigantic(h)) { 2182 if (!alloc_bootmem_huge_page(h)) 2183 break; 2184 } else if (!alloc_pool_huge_page(h, 2185 &node_states[N_MEMORY])) 2186 break; 2187 cond_resched(); 2188 } 2189 if (i < h->max_huge_pages) { 2190 char buf[32]; 2191 2192 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 2193 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n", 2194 h->max_huge_pages, buf, i); 2195 h->max_huge_pages = i; 2196 } 2197 } 2198 2199 static void __init hugetlb_init_hstates(void) 2200 { 2201 struct hstate *h; 2202 2203 for_each_hstate(h) { 2204 if (minimum_order > huge_page_order(h)) 2205 minimum_order = huge_page_order(h); 2206 2207 /* oversize hugepages were init'ed in early boot */ 2208 if (!hstate_is_gigantic(h)) 2209 hugetlb_hstate_alloc_pages(h); 2210 } 2211 VM_BUG_ON(minimum_order == UINT_MAX); 2212 } 2213 2214 static void __init report_hugepages(void) 2215 { 2216 struct hstate *h; 2217 2218 for_each_hstate(h) { 2219 char buf[32]; 2220 2221 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 2222 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n", 2223 buf, h->free_huge_pages); 2224 } 2225 } 2226 2227 #ifdef CONFIG_HIGHMEM 2228 static void try_to_free_low(struct hstate *h, unsigned long count, 2229 nodemask_t *nodes_allowed) 2230 { 2231 int i; 2232 2233 if (hstate_is_gigantic(h)) 2234 return; 2235 2236 for_each_node_mask(i, *nodes_allowed) { 2237 struct page *page, *next; 2238 struct list_head *freel = &h->hugepage_freelists[i]; 2239 list_for_each_entry_safe(page, next, freel, lru) { 2240 if (count >= h->nr_huge_pages) 2241 return; 2242 if (PageHighMem(page)) 2243 continue; 2244 list_del(&page->lru); 2245 update_and_free_page(h, page); 2246 h->free_huge_pages--; 2247 h->free_huge_pages_node[page_to_nid(page)]--; 2248 } 2249 } 2250 } 2251 #else 2252 static inline void try_to_free_low(struct hstate *h, unsigned long count, 2253 nodemask_t *nodes_allowed) 2254 { 2255 } 2256 #endif 2257 2258 /* 2259 * Increment or decrement surplus_huge_pages. Keep node-specific counters 2260 * balanced by operating on them in a round-robin fashion. 2261 * Returns 1 if an adjustment was made. 2262 */ 2263 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed, 2264 int delta) 2265 { 2266 int nr_nodes, node; 2267 2268 VM_BUG_ON(delta != -1 && delta != 1); 2269 2270 if (delta < 0) { 2271 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 2272 if (h->surplus_huge_pages_node[node]) 2273 goto found; 2274 } 2275 } else { 2276 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 2277 if (h->surplus_huge_pages_node[node] < 2278 h->nr_huge_pages_node[node]) 2279 goto found; 2280 } 2281 } 2282 return 0; 2283 2284 found: 2285 h->surplus_huge_pages += delta; 2286 h->surplus_huge_pages_node[node] += delta; 2287 return 1; 2288 } 2289 2290 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) 2291 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count, 2292 nodemask_t *nodes_allowed) 2293 { 2294 unsigned long min_count, ret; 2295 2296 if (hstate_is_gigantic(h) && !gigantic_page_supported()) 2297 return h->max_huge_pages; 2298 2299 /* 2300 * Increase the pool size 2301 * First take pages out of surplus state. Then make up the 2302 * remaining difference by allocating fresh huge pages. 2303 * 2304 * We might race with alloc_surplus_huge_page() here and be unable 2305 * to convert a surplus huge page to a normal huge page. That is 2306 * not critical, though, it just means the overall size of the 2307 * pool might be one hugepage larger than it needs to be, but 2308 * within all the constraints specified by the sysctls. 2309 */ 2310 spin_lock(&hugetlb_lock); 2311 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { 2312 if (!adjust_pool_surplus(h, nodes_allowed, -1)) 2313 break; 2314 } 2315 2316 while (count > persistent_huge_pages(h)) { 2317 /* 2318 * If this allocation races such that we no longer need the 2319 * page, free_huge_page will handle it by freeing the page 2320 * and reducing the surplus. 2321 */ 2322 spin_unlock(&hugetlb_lock); 2323 2324 /* yield cpu to avoid soft lockup */ 2325 cond_resched(); 2326 2327 ret = alloc_pool_huge_page(h, nodes_allowed); 2328 spin_lock(&hugetlb_lock); 2329 if (!ret) 2330 goto out; 2331 2332 /* Bail for signals. Probably ctrl-c from user */ 2333 if (signal_pending(current)) 2334 goto out; 2335 } 2336 2337 /* 2338 * Decrease the pool size 2339 * First return free pages to the buddy allocator (being careful 2340 * to keep enough around to satisfy reservations). Then place 2341 * pages into surplus state as needed so the pool will shrink 2342 * to the desired size as pages become free. 2343 * 2344 * By placing pages into the surplus state independent of the 2345 * overcommit value, we are allowing the surplus pool size to 2346 * exceed overcommit. There are few sane options here. Since 2347 * alloc_surplus_huge_page() is checking the global counter, 2348 * though, we'll note that we're not allowed to exceed surplus 2349 * and won't grow the pool anywhere else. Not until one of the 2350 * sysctls are changed, or the surplus pages go out of use. 2351 */ 2352 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages; 2353 min_count = max(count, min_count); 2354 try_to_free_low(h, min_count, nodes_allowed); 2355 while (min_count < persistent_huge_pages(h)) { 2356 if (!free_pool_huge_page(h, nodes_allowed, 0)) 2357 break; 2358 cond_resched_lock(&hugetlb_lock); 2359 } 2360 while (count < persistent_huge_pages(h)) { 2361 if (!adjust_pool_surplus(h, nodes_allowed, 1)) 2362 break; 2363 } 2364 out: 2365 ret = persistent_huge_pages(h); 2366 spin_unlock(&hugetlb_lock); 2367 return ret; 2368 } 2369 2370 #define HSTATE_ATTR_RO(_name) \ 2371 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 2372 2373 #define HSTATE_ATTR(_name) \ 2374 static struct kobj_attribute _name##_attr = \ 2375 __ATTR(_name, 0644, _name##_show, _name##_store) 2376 2377 static struct kobject *hugepages_kobj; 2378 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 2379 2380 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp); 2381 2382 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp) 2383 { 2384 int i; 2385 2386 for (i = 0; i < HUGE_MAX_HSTATE; i++) 2387 if (hstate_kobjs[i] == kobj) { 2388 if (nidp) 2389 *nidp = NUMA_NO_NODE; 2390 return &hstates[i]; 2391 } 2392 2393 return kobj_to_node_hstate(kobj, nidp); 2394 } 2395 2396 static ssize_t nr_hugepages_show_common(struct kobject *kobj, 2397 struct kobj_attribute *attr, char *buf) 2398 { 2399 struct hstate *h; 2400 unsigned long nr_huge_pages; 2401 int nid; 2402 2403 h = kobj_to_hstate(kobj, &nid); 2404 if (nid == NUMA_NO_NODE) 2405 nr_huge_pages = h->nr_huge_pages; 2406 else 2407 nr_huge_pages = h->nr_huge_pages_node[nid]; 2408 2409 return sprintf(buf, "%lu\n", nr_huge_pages); 2410 } 2411 2412 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy, 2413 struct hstate *h, int nid, 2414 unsigned long count, size_t len) 2415 { 2416 int err; 2417 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY); 2418 2419 if (hstate_is_gigantic(h) && !gigantic_page_supported()) { 2420 err = -EINVAL; 2421 goto out; 2422 } 2423 2424 if (nid == NUMA_NO_NODE) { 2425 /* 2426 * global hstate attribute 2427 */ 2428 if (!(obey_mempolicy && 2429 init_nodemask_of_mempolicy(nodes_allowed))) { 2430 NODEMASK_FREE(nodes_allowed); 2431 nodes_allowed = &node_states[N_MEMORY]; 2432 } 2433 } else if (nodes_allowed) { 2434 /* 2435 * per node hstate attribute: adjust count to global, 2436 * but restrict alloc/free to the specified node. 2437 */ 2438 count += h->nr_huge_pages - h->nr_huge_pages_node[nid]; 2439 init_nodemask_of_node(nodes_allowed, nid); 2440 } else 2441 nodes_allowed = &node_states[N_MEMORY]; 2442 2443 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed); 2444 2445 if (nodes_allowed != &node_states[N_MEMORY]) 2446 NODEMASK_FREE(nodes_allowed); 2447 2448 return len; 2449 out: 2450 NODEMASK_FREE(nodes_allowed); 2451 return err; 2452 } 2453 2454 static ssize_t nr_hugepages_store_common(bool obey_mempolicy, 2455 struct kobject *kobj, const char *buf, 2456 size_t len) 2457 { 2458 struct hstate *h; 2459 unsigned long count; 2460 int nid; 2461 int err; 2462 2463 err = kstrtoul(buf, 10, &count); 2464 if (err) 2465 return err; 2466 2467 h = kobj_to_hstate(kobj, &nid); 2468 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len); 2469 } 2470 2471 static ssize_t nr_hugepages_show(struct kobject *kobj, 2472 struct kobj_attribute *attr, char *buf) 2473 { 2474 return nr_hugepages_show_common(kobj, attr, buf); 2475 } 2476 2477 static ssize_t nr_hugepages_store(struct kobject *kobj, 2478 struct kobj_attribute *attr, const char *buf, size_t len) 2479 { 2480 return nr_hugepages_store_common(false, kobj, buf, len); 2481 } 2482 HSTATE_ATTR(nr_hugepages); 2483 2484 #ifdef CONFIG_NUMA 2485 2486 /* 2487 * hstate attribute for optionally mempolicy-based constraint on persistent 2488 * huge page alloc/free. 2489 */ 2490 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj, 2491 struct kobj_attribute *attr, char *buf) 2492 { 2493 return nr_hugepages_show_common(kobj, attr, buf); 2494 } 2495 2496 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj, 2497 struct kobj_attribute *attr, const char *buf, size_t len) 2498 { 2499 return nr_hugepages_store_common(true, kobj, buf, len); 2500 } 2501 HSTATE_ATTR(nr_hugepages_mempolicy); 2502 #endif 2503 2504 2505 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, 2506 struct kobj_attribute *attr, char *buf) 2507 { 2508 struct hstate *h = kobj_to_hstate(kobj, NULL); 2509 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages); 2510 } 2511 2512 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, 2513 struct kobj_attribute *attr, const char *buf, size_t count) 2514 { 2515 int err; 2516 unsigned long input; 2517 struct hstate *h = kobj_to_hstate(kobj, NULL); 2518 2519 if (hstate_is_gigantic(h)) 2520 return -EINVAL; 2521 2522 err = kstrtoul(buf, 10, &input); 2523 if (err) 2524 return err; 2525 2526 spin_lock(&hugetlb_lock); 2527 h->nr_overcommit_huge_pages = input; 2528 spin_unlock(&hugetlb_lock); 2529 2530 return count; 2531 } 2532 HSTATE_ATTR(nr_overcommit_hugepages); 2533 2534 static ssize_t free_hugepages_show(struct kobject *kobj, 2535 struct kobj_attribute *attr, char *buf) 2536 { 2537 struct hstate *h; 2538 unsigned long free_huge_pages; 2539 int nid; 2540 2541 h = kobj_to_hstate(kobj, &nid); 2542 if (nid == NUMA_NO_NODE) 2543 free_huge_pages = h->free_huge_pages; 2544 else 2545 free_huge_pages = h->free_huge_pages_node[nid]; 2546 2547 return sprintf(buf, "%lu\n", free_huge_pages); 2548 } 2549 HSTATE_ATTR_RO(free_hugepages); 2550 2551 static ssize_t resv_hugepages_show(struct kobject *kobj, 2552 struct kobj_attribute *attr, char *buf) 2553 { 2554 struct hstate *h = kobj_to_hstate(kobj, NULL); 2555 return sprintf(buf, "%lu\n", h->resv_huge_pages); 2556 } 2557 HSTATE_ATTR_RO(resv_hugepages); 2558 2559 static ssize_t surplus_hugepages_show(struct kobject *kobj, 2560 struct kobj_attribute *attr, char *buf) 2561 { 2562 struct hstate *h; 2563 unsigned long surplus_huge_pages; 2564 int nid; 2565 2566 h = kobj_to_hstate(kobj, &nid); 2567 if (nid == NUMA_NO_NODE) 2568 surplus_huge_pages = h->surplus_huge_pages; 2569 else 2570 surplus_huge_pages = h->surplus_huge_pages_node[nid]; 2571 2572 return sprintf(buf, "%lu\n", surplus_huge_pages); 2573 } 2574 HSTATE_ATTR_RO(surplus_hugepages); 2575 2576 static struct attribute *hstate_attrs[] = { 2577 &nr_hugepages_attr.attr, 2578 &nr_overcommit_hugepages_attr.attr, 2579 &free_hugepages_attr.attr, 2580 &resv_hugepages_attr.attr, 2581 &surplus_hugepages_attr.attr, 2582 #ifdef CONFIG_NUMA 2583 &nr_hugepages_mempolicy_attr.attr, 2584 #endif 2585 NULL, 2586 }; 2587 2588 static const struct attribute_group hstate_attr_group = { 2589 .attrs = hstate_attrs, 2590 }; 2591 2592 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent, 2593 struct kobject **hstate_kobjs, 2594 const struct attribute_group *hstate_attr_group) 2595 { 2596 int retval; 2597 int hi = hstate_index(h); 2598 2599 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent); 2600 if (!hstate_kobjs[hi]) 2601 return -ENOMEM; 2602 2603 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group); 2604 if (retval) 2605 kobject_put(hstate_kobjs[hi]); 2606 2607 return retval; 2608 } 2609 2610 static void __init hugetlb_sysfs_init(void) 2611 { 2612 struct hstate *h; 2613 int err; 2614 2615 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); 2616 if (!hugepages_kobj) 2617 return; 2618 2619 for_each_hstate(h) { 2620 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj, 2621 hstate_kobjs, &hstate_attr_group); 2622 if (err) 2623 pr_err("Hugetlb: Unable to add hstate %s", h->name); 2624 } 2625 } 2626 2627 #ifdef CONFIG_NUMA 2628 2629 /* 2630 * node_hstate/s - associate per node hstate attributes, via their kobjects, 2631 * with node devices in node_devices[] using a parallel array. The array 2632 * index of a node device or _hstate == node id. 2633 * This is here to avoid any static dependency of the node device driver, in 2634 * the base kernel, on the hugetlb module. 2635 */ 2636 struct node_hstate { 2637 struct kobject *hugepages_kobj; 2638 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 2639 }; 2640 static struct node_hstate node_hstates[MAX_NUMNODES]; 2641 2642 /* 2643 * A subset of global hstate attributes for node devices 2644 */ 2645 static struct attribute *per_node_hstate_attrs[] = { 2646 &nr_hugepages_attr.attr, 2647 &free_hugepages_attr.attr, 2648 &surplus_hugepages_attr.attr, 2649 NULL, 2650 }; 2651 2652 static const struct attribute_group per_node_hstate_attr_group = { 2653 .attrs = per_node_hstate_attrs, 2654 }; 2655 2656 /* 2657 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj. 2658 * Returns node id via non-NULL nidp. 2659 */ 2660 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 2661 { 2662 int nid; 2663 2664 for (nid = 0; nid < nr_node_ids; nid++) { 2665 struct node_hstate *nhs = &node_hstates[nid]; 2666 int i; 2667 for (i = 0; i < HUGE_MAX_HSTATE; i++) 2668 if (nhs->hstate_kobjs[i] == kobj) { 2669 if (nidp) 2670 *nidp = nid; 2671 return &hstates[i]; 2672 } 2673 } 2674 2675 BUG(); 2676 return NULL; 2677 } 2678 2679 /* 2680 * Unregister hstate attributes from a single node device. 2681 * No-op if no hstate attributes attached. 2682 */ 2683 static void hugetlb_unregister_node(struct node *node) 2684 { 2685 struct hstate *h; 2686 struct node_hstate *nhs = &node_hstates[node->dev.id]; 2687 2688 if (!nhs->hugepages_kobj) 2689 return; /* no hstate attributes */ 2690 2691 for_each_hstate(h) { 2692 int idx = hstate_index(h); 2693 if (nhs->hstate_kobjs[idx]) { 2694 kobject_put(nhs->hstate_kobjs[idx]); 2695 nhs->hstate_kobjs[idx] = NULL; 2696 } 2697 } 2698 2699 kobject_put(nhs->hugepages_kobj); 2700 nhs->hugepages_kobj = NULL; 2701 } 2702 2703 2704 /* 2705 * Register hstate attributes for a single node device. 2706 * No-op if attributes already registered. 2707 */ 2708 static void hugetlb_register_node(struct node *node) 2709 { 2710 struct hstate *h; 2711 struct node_hstate *nhs = &node_hstates[node->dev.id]; 2712 int err; 2713 2714 if (nhs->hugepages_kobj) 2715 return; /* already allocated */ 2716 2717 nhs->hugepages_kobj = kobject_create_and_add("hugepages", 2718 &node->dev.kobj); 2719 if (!nhs->hugepages_kobj) 2720 return; 2721 2722 for_each_hstate(h) { 2723 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj, 2724 nhs->hstate_kobjs, 2725 &per_node_hstate_attr_group); 2726 if (err) { 2727 pr_err("Hugetlb: Unable to add hstate %s for node %d\n", 2728 h->name, node->dev.id); 2729 hugetlb_unregister_node(node); 2730 break; 2731 } 2732 } 2733 } 2734 2735 /* 2736 * hugetlb init time: register hstate attributes for all registered node 2737 * devices of nodes that have memory. All on-line nodes should have 2738 * registered their associated device by this time. 2739 */ 2740 static void __init hugetlb_register_all_nodes(void) 2741 { 2742 int nid; 2743 2744 for_each_node_state(nid, N_MEMORY) { 2745 struct node *node = node_devices[nid]; 2746 if (node->dev.id == nid) 2747 hugetlb_register_node(node); 2748 } 2749 2750 /* 2751 * Let the node device driver know we're here so it can 2752 * [un]register hstate attributes on node hotplug. 2753 */ 2754 register_hugetlbfs_with_node(hugetlb_register_node, 2755 hugetlb_unregister_node); 2756 } 2757 #else /* !CONFIG_NUMA */ 2758 2759 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 2760 { 2761 BUG(); 2762 if (nidp) 2763 *nidp = -1; 2764 return NULL; 2765 } 2766 2767 static void hugetlb_register_all_nodes(void) { } 2768 2769 #endif 2770 2771 static int __init hugetlb_init(void) 2772 { 2773 int i; 2774 2775 if (!hugepages_supported()) 2776 return 0; 2777 2778 if (!size_to_hstate(default_hstate_size)) { 2779 if (default_hstate_size != 0) { 2780 pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n", 2781 default_hstate_size, HPAGE_SIZE); 2782 } 2783 2784 default_hstate_size = HPAGE_SIZE; 2785 if (!size_to_hstate(default_hstate_size)) 2786 hugetlb_add_hstate(HUGETLB_PAGE_ORDER); 2787 } 2788 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size)); 2789 if (default_hstate_max_huge_pages) { 2790 if (!default_hstate.max_huge_pages) 2791 default_hstate.max_huge_pages = default_hstate_max_huge_pages; 2792 } 2793 2794 hugetlb_init_hstates(); 2795 gather_bootmem_prealloc(); 2796 report_hugepages(); 2797 2798 hugetlb_sysfs_init(); 2799 hugetlb_register_all_nodes(); 2800 hugetlb_cgroup_file_init(); 2801 2802 #ifdef CONFIG_SMP 2803 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus()); 2804 #else 2805 num_fault_mutexes = 1; 2806 #endif 2807 hugetlb_fault_mutex_table = 2808 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL); 2809 BUG_ON(!hugetlb_fault_mutex_table); 2810 2811 for (i = 0; i < num_fault_mutexes; i++) 2812 mutex_init(&hugetlb_fault_mutex_table[i]); 2813 return 0; 2814 } 2815 subsys_initcall(hugetlb_init); 2816 2817 /* Should be called on processing a hugepagesz=... option */ 2818 void __init hugetlb_bad_size(void) 2819 { 2820 parsed_valid_hugepagesz = false; 2821 } 2822 2823 void __init hugetlb_add_hstate(unsigned int order) 2824 { 2825 struct hstate *h; 2826 unsigned long i; 2827 2828 if (size_to_hstate(PAGE_SIZE << order)) { 2829 pr_warn("hugepagesz= specified twice, ignoring\n"); 2830 return; 2831 } 2832 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE); 2833 BUG_ON(order == 0); 2834 h = &hstates[hugetlb_max_hstate++]; 2835 h->order = order; 2836 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1); 2837 h->nr_huge_pages = 0; 2838 h->free_huge_pages = 0; 2839 for (i = 0; i < MAX_NUMNODES; ++i) 2840 INIT_LIST_HEAD(&h->hugepage_freelists[i]); 2841 INIT_LIST_HEAD(&h->hugepage_activelist); 2842 h->next_nid_to_alloc = first_memory_node; 2843 h->next_nid_to_free = first_memory_node; 2844 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", 2845 huge_page_size(h)/1024); 2846 2847 parsed_hstate = h; 2848 } 2849 2850 static int __init hugetlb_nrpages_setup(char *s) 2851 { 2852 unsigned long *mhp; 2853 static unsigned long *last_mhp; 2854 2855 if (!parsed_valid_hugepagesz) { 2856 pr_warn("hugepages = %s preceded by " 2857 "an unsupported hugepagesz, ignoring\n", s); 2858 parsed_valid_hugepagesz = true; 2859 return 1; 2860 } 2861 /* 2862 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet, 2863 * so this hugepages= parameter goes to the "default hstate". 2864 */ 2865 else if (!hugetlb_max_hstate) 2866 mhp = &default_hstate_max_huge_pages; 2867 else 2868 mhp = &parsed_hstate->max_huge_pages; 2869 2870 if (mhp == last_mhp) { 2871 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n"); 2872 return 1; 2873 } 2874 2875 if (sscanf(s, "%lu", mhp) <= 0) 2876 *mhp = 0; 2877 2878 /* 2879 * Global state is always initialized later in hugetlb_init. 2880 * But we need to allocate >= MAX_ORDER hstates here early to still 2881 * use the bootmem allocator. 2882 */ 2883 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER) 2884 hugetlb_hstate_alloc_pages(parsed_hstate); 2885 2886 last_mhp = mhp; 2887 2888 return 1; 2889 } 2890 __setup("hugepages=", hugetlb_nrpages_setup); 2891 2892 static int __init hugetlb_default_setup(char *s) 2893 { 2894 default_hstate_size = memparse(s, &s); 2895 return 1; 2896 } 2897 __setup("default_hugepagesz=", hugetlb_default_setup); 2898 2899 static unsigned int cpuset_mems_nr(unsigned int *array) 2900 { 2901 int node; 2902 unsigned int nr = 0; 2903 2904 for_each_node_mask(node, cpuset_current_mems_allowed) 2905 nr += array[node]; 2906 2907 return nr; 2908 } 2909 2910 #ifdef CONFIG_SYSCTL 2911 static int hugetlb_sysctl_handler_common(bool obey_mempolicy, 2912 struct ctl_table *table, int write, 2913 void __user *buffer, size_t *length, loff_t *ppos) 2914 { 2915 struct hstate *h = &default_hstate; 2916 unsigned long tmp = h->max_huge_pages; 2917 int ret; 2918 2919 if (!hugepages_supported()) 2920 return -EOPNOTSUPP; 2921 2922 table->data = &tmp; 2923 table->maxlen = sizeof(unsigned long); 2924 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos); 2925 if (ret) 2926 goto out; 2927 2928 if (write) 2929 ret = __nr_hugepages_store_common(obey_mempolicy, h, 2930 NUMA_NO_NODE, tmp, *length); 2931 out: 2932 return ret; 2933 } 2934 2935 int hugetlb_sysctl_handler(struct ctl_table *table, int write, 2936 void __user *buffer, size_t *length, loff_t *ppos) 2937 { 2938 2939 return hugetlb_sysctl_handler_common(false, table, write, 2940 buffer, length, ppos); 2941 } 2942 2943 #ifdef CONFIG_NUMA 2944 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write, 2945 void __user *buffer, size_t *length, loff_t *ppos) 2946 { 2947 return hugetlb_sysctl_handler_common(true, table, write, 2948 buffer, length, ppos); 2949 } 2950 #endif /* CONFIG_NUMA */ 2951 2952 int hugetlb_overcommit_handler(struct ctl_table *table, int write, 2953 void __user *buffer, 2954 size_t *length, loff_t *ppos) 2955 { 2956 struct hstate *h = &default_hstate; 2957 unsigned long tmp; 2958 int ret; 2959 2960 if (!hugepages_supported()) 2961 return -EOPNOTSUPP; 2962 2963 tmp = h->nr_overcommit_huge_pages; 2964 2965 if (write && hstate_is_gigantic(h)) 2966 return -EINVAL; 2967 2968 table->data = &tmp; 2969 table->maxlen = sizeof(unsigned long); 2970 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos); 2971 if (ret) 2972 goto out; 2973 2974 if (write) { 2975 spin_lock(&hugetlb_lock); 2976 h->nr_overcommit_huge_pages = tmp; 2977 spin_unlock(&hugetlb_lock); 2978 } 2979 out: 2980 return ret; 2981 } 2982 2983 #endif /* CONFIG_SYSCTL */ 2984 2985 void hugetlb_report_meminfo(struct seq_file *m) 2986 { 2987 struct hstate *h; 2988 unsigned long total = 0; 2989 2990 if (!hugepages_supported()) 2991 return; 2992 2993 for_each_hstate(h) { 2994 unsigned long count = h->nr_huge_pages; 2995 2996 total += (PAGE_SIZE << huge_page_order(h)) * count; 2997 2998 if (h == &default_hstate) 2999 seq_printf(m, 3000 "HugePages_Total: %5lu\n" 3001 "HugePages_Free: %5lu\n" 3002 "HugePages_Rsvd: %5lu\n" 3003 "HugePages_Surp: %5lu\n" 3004 "Hugepagesize: %8lu kB\n", 3005 count, 3006 h->free_huge_pages, 3007 h->resv_huge_pages, 3008 h->surplus_huge_pages, 3009 (PAGE_SIZE << huge_page_order(h)) / 1024); 3010 } 3011 3012 seq_printf(m, "Hugetlb: %8lu kB\n", total / 1024); 3013 } 3014 3015 int hugetlb_report_node_meminfo(int nid, char *buf) 3016 { 3017 struct hstate *h = &default_hstate; 3018 if (!hugepages_supported()) 3019 return 0; 3020 return sprintf(buf, 3021 "Node %d HugePages_Total: %5u\n" 3022 "Node %d HugePages_Free: %5u\n" 3023 "Node %d HugePages_Surp: %5u\n", 3024 nid, h->nr_huge_pages_node[nid], 3025 nid, h->free_huge_pages_node[nid], 3026 nid, h->surplus_huge_pages_node[nid]); 3027 } 3028 3029 void hugetlb_show_meminfo(void) 3030 { 3031 struct hstate *h; 3032 int nid; 3033 3034 if (!hugepages_supported()) 3035 return; 3036 3037 for_each_node_state(nid, N_MEMORY) 3038 for_each_hstate(h) 3039 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n", 3040 nid, 3041 h->nr_huge_pages_node[nid], 3042 h->free_huge_pages_node[nid], 3043 h->surplus_huge_pages_node[nid], 3044 1UL << (huge_page_order(h) + PAGE_SHIFT - 10)); 3045 } 3046 3047 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm) 3048 { 3049 seq_printf(m, "HugetlbPages:\t%8lu kB\n", 3050 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10)); 3051 } 3052 3053 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ 3054 unsigned long hugetlb_total_pages(void) 3055 { 3056 struct hstate *h; 3057 unsigned long nr_total_pages = 0; 3058 3059 for_each_hstate(h) 3060 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h); 3061 return nr_total_pages; 3062 } 3063 3064 static int hugetlb_acct_memory(struct hstate *h, long delta) 3065 { 3066 int ret = -ENOMEM; 3067 3068 spin_lock(&hugetlb_lock); 3069 /* 3070 * When cpuset is configured, it breaks the strict hugetlb page 3071 * reservation as the accounting is done on a global variable. Such 3072 * reservation is completely rubbish in the presence of cpuset because 3073 * the reservation is not checked against page availability for the 3074 * current cpuset. Application can still potentially OOM'ed by kernel 3075 * with lack of free htlb page in cpuset that the task is in. 3076 * Attempt to enforce strict accounting with cpuset is almost 3077 * impossible (or too ugly) because cpuset is too fluid that 3078 * task or memory node can be dynamically moved between cpusets. 3079 * 3080 * The change of semantics for shared hugetlb mapping with cpuset is 3081 * undesirable. However, in order to preserve some of the semantics, 3082 * we fall back to check against current free page availability as 3083 * a best attempt and hopefully to minimize the impact of changing 3084 * semantics that cpuset has. 3085 */ 3086 if (delta > 0) { 3087 if (gather_surplus_pages(h, delta) < 0) 3088 goto out; 3089 3090 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) { 3091 return_unused_surplus_pages(h, delta); 3092 goto out; 3093 } 3094 } 3095 3096 ret = 0; 3097 if (delta < 0) 3098 return_unused_surplus_pages(h, (unsigned long) -delta); 3099 3100 out: 3101 spin_unlock(&hugetlb_lock); 3102 return ret; 3103 } 3104 3105 static void hugetlb_vm_op_open(struct vm_area_struct *vma) 3106 { 3107 struct resv_map *resv = vma_resv_map(vma); 3108 3109 /* 3110 * This new VMA should share its siblings reservation map if present. 3111 * The VMA will only ever have a valid reservation map pointer where 3112 * it is being copied for another still existing VMA. As that VMA 3113 * has a reference to the reservation map it cannot disappear until 3114 * after this open call completes. It is therefore safe to take a 3115 * new reference here without additional locking. 3116 */ 3117 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 3118 kref_get(&resv->refs); 3119 } 3120 3121 static void hugetlb_vm_op_close(struct vm_area_struct *vma) 3122 { 3123 struct hstate *h = hstate_vma(vma); 3124 struct resv_map *resv = vma_resv_map(vma); 3125 struct hugepage_subpool *spool = subpool_vma(vma); 3126 unsigned long reserve, start, end; 3127 long gbl_reserve; 3128 3129 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 3130 return; 3131 3132 start = vma_hugecache_offset(h, vma, vma->vm_start); 3133 end = vma_hugecache_offset(h, vma, vma->vm_end); 3134 3135 reserve = (end - start) - region_count(resv, start, end); 3136 3137 kref_put(&resv->refs, resv_map_release); 3138 3139 if (reserve) { 3140 /* 3141 * Decrement reserve counts. The global reserve count may be 3142 * adjusted if the subpool has a minimum size. 3143 */ 3144 gbl_reserve = hugepage_subpool_put_pages(spool, reserve); 3145 hugetlb_acct_memory(h, -gbl_reserve); 3146 } 3147 } 3148 3149 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr) 3150 { 3151 if (addr & ~(huge_page_mask(hstate_vma(vma)))) 3152 return -EINVAL; 3153 return 0; 3154 } 3155 3156 /* 3157 * We cannot handle pagefaults against hugetlb pages at all. They cause 3158 * handle_mm_fault() to try to instantiate regular-sized pages in the 3159 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get 3160 * this far. 3161 */ 3162 static int hugetlb_vm_op_fault(struct vm_fault *vmf) 3163 { 3164 BUG(); 3165 return 0; 3166 } 3167 3168 const struct vm_operations_struct hugetlb_vm_ops = { 3169 .fault = hugetlb_vm_op_fault, 3170 .open = hugetlb_vm_op_open, 3171 .close = hugetlb_vm_op_close, 3172 .split = hugetlb_vm_op_split, 3173 }; 3174 3175 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, 3176 int writable) 3177 { 3178 pte_t entry; 3179 3180 if (writable) { 3181 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page, 3182 vma->vm_page_prot))); 3183 } else { 3184 entry = huge_pte_wrprotect(mk_huge_pte(page, 3185 vma->vm_page_prot)); 3186 } 3187 entry = pte_mkyoung(entry); 3188 entry = pte_mkhuge(entry); 3189 entry = arch_make_huge_pte(entry, vma, page, writable); 3190 3191 return entry; 3192 } 3193 3194 static void set_huge_ptep_writable(struct vm_area_struct *vma, 3195 unsigned long address, pte_t *ptep) 3196 { 3197 pte_t entry; 3198 3199 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep))); 3200 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) 3201 update_mmu_cache(vma, address, ptep); 3202 } 3203 3204 bool is_hugetlb_entry_migration(pte_t pte) 3205 { 3206 swp_entry_t swp; 3207 3208 if (huge_pte_none(pte) || pte_present(pte)) 3209 return false; 3210 swp = pte_to_swp_entry(pte); 3211 if (non_swap_entry(swp) && is_migration_entry(swp)) 3212 return true; 3213 else 3214 return false; 3215 } 3216 3217 static int is_hugetlb_entry_hwpoisoned(pte_t pte) 3218 { 3219 swp_entry_t swp; 3220 3221 if (huge_pte_none(pte) || pte_present(pte)) 3222 return 0; 3223 swp = pte_to_swp_entry(pte); 3224 if (non_swap_entry(swp) && is_hwpoison_entry(swp)) 3225 return 1; 3226 else 3227 return 0; 3228 } 3229 3230 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, 3231 struct vm_area_struct *vma) 3232 { 3233 pte_t *src_pte, *dst_pte, entry; 3234 struct page *ptepage; 3235 unsigned long addr; 3236 int cow; 3237 struct hstate *h = hstate_vma(vma); 3238 unsigned long sz = huge_page_size(h); 3239 unsigned long mmun_start; /* For mmu_notifiers */ 3240 unsigned long mmun_end; /* For mmu_notifiers */ 3241 int ret = 0; 3242 3243 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 3244 3245 mmun_start = vma->vm_start; 3246 mmun_end = vma->vm_end; 3247 if (cow) 3248 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end); 3249 3250 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) { 3251 spinlock_t *src_ptl, *dst_ptl; 3252 src_pte = huge_pte_offset(src, addr, sz); 3253 if (!src_pte) 3254 continue; 3255 dst_pte = huge_pte_alloc(dst, addr, sz); 3256 if (!dst_pte) { 3257 ret = -ENOMEM; 3258 break; 3259 } 3260 3261 /* If the pagetables are shared don't copy or take references */ 3262 if (dst_pte == src_pte) 3263 continue; 3264 3265 dst_ptl = huge_pte_lock(h, dst, dst_pte); 3266 src_ptl = huge_pte_lockptr(h, src, src_pte); 3267 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 3268 entry = huge_ptep_get(src_pte); 3269 if (huge_pte_none(entry)) { /* skip none entry */ 3270 ; 3271 } else if (unlikely(is_hugetlb_entry_migration(entry) || 3272 is_hugetlb_entry_hwpoisoned(entry))) { 3273 swp_entry_t swp_entry = pte_to_swp_entry(entry); 3274 3275 if (is_write_migration_entry(swp_entry) && cow) { 3276 /* 3277 * COW mappings require pages in both 3278 * parent and child to be set to read. 3279 */ 3280 make_migration_entry_read(&swp_entry); 3281 entry = swp_entry_to_pte(swp_entry); 3282 set_huge_swap_pte_at(src, addr, src_pte, 3283 entry, sz); 3284 } 3285 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz); 3286 } else { 3287 if (cow) { 3288 /* 3289 * No need to notify as we are downgrading page 3290 * table protection not changing it to point 3291 * to a new page. 3292 * 3293 * See Documentation/vm/mmu_notifier.txt 3294 */ 3295 huge_ptep_set_wrprotect(src, addr, src_pte); 3296 } 3297 entry = huge_ptep_get(src_pte); 3298 ptepage = pte_page(entry); 3299 get_page(ptepage); 3300 page_dup_rmap(ptepage, true); 3301 set_huge_pte_at(dst, addr, dst_pte, entry); 3302 hugetlb_count_add(pages_per_huge_page(h), dst); 3303 } 3304 spin_unlock(src_ptl); 3305 spin_unlock(dst_ptl); 3306 } 3307 3308 if (cow) 3309 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end); 3310 3311 return ret; 3312 } 3313 3314 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma, 3315 unsigned long start, unsigned long end, 3316 struct page *ref_page) 3317 { 3318 struct mm_struct *mm = vma->vm_mm; 3319 unsigned long address; 3320 pte_t *ptep; 3321 pte_t pte; 3322 spinlock_t *ptl; 3323 struct page *page; 3324 struct hstate *h = hstate_vma(vma); 3325 unsigned long sz = huge_page_size(h); 3326 const unsigned long mmun_start = start; /* For mmu_notifiers */ 3327 const unsigned long mmun_end = end; /* For mmu_notifiers */ 3328 3329 WARN_ON(!is_vm_hugetlb_page(vma)); 3330 BUG_ON(start & ~huge_page_mask(h)); 3331 BUG_ON(end & ~huge_page_mask(h)); 3332 3333 /* 3334 * This is a hugetlb vma, all the pte entries should point 3335 * to huge page. 3336 */ 3337 tlb_remove_check_page_size_change(tlb, sz); 3338 tlb_start_vma(tlb, vma); 3339 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 3340 address = start; 3341 for (; address < end; address += sz) { 3342 ptep = huge_pte_offset(mm, address, sz); 3343 if (!ptep) 3344 continue; 3345 3346 ptl = huge_pte_lock(h, mm, ptep); 3347 if (huge_pmd_unshare(mm, &address, ptep)) { 3348 spin_unlock(ptl); 3349 continue; 3350 } 3351 3352 pte = huge_ptep_get(ptep); 3353 if (huge_pte_none(pte)) { 3354 spin_unlock(ptl); 3355 continue; 3356 } 3357 3358 /* 3359 * Migrating hugepage or HWPoisoned hugepage is already 3360 * unmapped and its refcount is dropped, so just clear pte here. 3361 */ 3362 if (unlikely(!pte_present(pte))) { 3363 huge_pte_clear(mm, address, ptep, sz); 3364 spin_unlock(ptl); 3365 continue; 3366 } 3367 3368 page = pte_page(pte); 3369 /* 3370 * If a reference page is supplied, it is because a specific 3371 * page is being unmapped, not a range. Ensure the page we 3372 * are about to unmap is the actual page of interest. 3373 */ 3374 if (ref_page) { 3375 if (page != ref_page) { 3376 spin_unlock(ptl); 3377 continue; 3378 } 3379 /* 3380 * Mark the VMA as having unmapped its page so that 3381 * future faults in this VMA will fail rather than 3382 * looking like data was lost 3383 */ 3384 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); 3385 } 3386 3387 pte = huge_ptep_get_and_clear(mm, address, ptep); 3388 tlb_remove_huge_tlb_entry(h, tlb, ptep, address); 3389 if (huge_pte_dirty(pte)) 3390 set_page_dirty(page); 3391 3392 hugetlb_count_sub(pages_per_huge_page(h), mm); 3393 page_remove_rmap(page, true); 3394 3395 spin_unlock(ptl); 3396 tlb_remove_page_size(tlb, page, huge_page_size(h)); 3397 /* 3398 * Bail out after unmapping reference page if supplied 3399 */ 3400 if (ref_page) 3401 break; 3402 } 3403 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 3404 tlb_end_vma(tlb, vma); 3405 } 3406 3407 void __unmap_hugepage_range_final(struct mmu_gather *tlb, 3408 struct vm_area_struct *vma, unsigned long start, 3409 unsigned long end, struct page *ref_page) 3410 { 3411 __unmap_hugepage_range(tlb, vma, start, end, ref_page); 3412 3413 /* 3414 * Clear this flag so that x86's huge_pmd_share page_table_shareable 3415 * test will fail on a vma being torn down, and not grab a page table 3416 * on its way out. We're lucky that the flag has such an appropriate 3417 * name, and can in fact be safely cleared here. We could clear it 3418 * before the __unmap_hugepage_range above, but all that's necessary 3419 * is to clear it before releasing the i_mmap_rwsem. This works 3420 * because in the context this is called, the VMA is about to be 3421 * destroyed and the i_mmap_rwsem is held. 3422 */ 3423 vma->vm_flags &= ~VM_MAYSHARE; 3424 } 3425 3426 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, 3427 unsigned long end, struct page *ref_page) 3428 { 3429 struct mm_struct *mm; 3430 struct mmu_gather tlb; 3431 3432 mm = vma->vm_mm; 3433 3434 tlb_gather_mmu(&tlb, mm, start, end); 3435 __unmap_hugepage_range(&tlb, vma, start, end, ref_page); 3436 tlb_finish_mmu(&tlb, start, end); 3437 } 3438 3439 /* 3440 * This is called when the original mapper is failing to COW a MAP_PRIVATE 3441 * mappping it owns the reserve page for. The intention is to unmap the page 3442 * from other VMAs and let the children be SIGKILLed if they are faulting the 3443 * same region. 3444 */ 3445 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, 3446 struct page *page, unsigned long address) 3447 { 3448 struct hstate *h = hstate_vma(vma); 3449 struct vm_area_struct *iter_vma; 3450 struct address_space *mapping; 3451 pgoff_t pgoff; 3452 3453 /* 3454 * vm_pgoff is in PAGE_SIZE units, hence the different calculation 3455 * from page cache lookup which is in HPAGE_SIZE units. 3456 */ 3457 address = address & huge_page_mask(h); 3458 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + 3459 vma->vm_pgoff; 3460 mapping = vma->vm_file->f_mapping; 3461 3462 /* 3463 * Take the mapping lock for the duration of the table walk. As 3464 * this mapping should be shared between all the VMAs, 3465 * __unmap_hugepage_range() is called as the lock is already held 3466 */ 3467 i_mmap_lock_write(mapping); 3468 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) { 3469 /* Do not unmap the current VMA */ 3470 if (iter_vma == vma) 3471 continue; 3472 3473 /* 3474 * Shared VMAs have their own reserves and do not affect 3475 * MAP_PRIVATE accounting but it is possible that a shared 3476 * VMA is using the same page so check and skip such VMAs. 3477 */ 3478 if (iter_vma->vm_flags & VM_MAYSHARE) 3479 continue; 3480 3481 /* 3482 * Unmap the page from other VMAs without their own reserves. 3483 * They get marked to be SIGKILLed if they fault in these 3484 * areas. This is because a future no-page fault on this VMA 3485 * could insert a zeroed page instead of the data existing 3486 * from the time of fork. This would look like data corruption 3487 */ 3488 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) 3489 unmap_hugepage_range(iter_vma, address, 3490 address + huge_page_size(h), page); 3491 } 3492 i_mmap_unlock_write(mapping); 3493 } 3494 3495 /* 3496 * Hugetlb_cow() should be called with page lock of the original hugepage held. 3497 * Called with hugetlb_instantiation_mutex held and pte_page locked so we 3498 * cannot race with other handlers or page migration. 3499 * Keep the pte_same checks anyway to make transition from the mutex easier. 3500 */ 3501 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma, 3502 unsigned long address, pte_t *ptep, 3503 struct page *pagecache_page, spinlock_t *ptl) 3504 { 3505 pte_t pte; 3506 struct hstate *h = hstate_vma(vma); 3507 struct page *old_page, *new_page; 3508 int ret = 0, outside_reserve = 0; 3509 unsigned long mmun_start; /* For mmu_notifiers */ 3510 unsigned long mmun_end; /* For mmu_notifiers */ 3511 3512 pte = huge_ptep_get(ptep); 3513 old_page = pte_page(pte); 3514 3515 retry_avoidcopy: 3516 /* If no-one else is actually using this page, avoid the copy 3517 * and just make the page writable */ 3518 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) { 3519 page_move_anon_rmap(old_page, vma); 3520 set_huge_ptep_writable(vma, address, ptep); 3521 return 0; 3522 } 3523 3524 /* 3525 * If the process that created a MAP_PRIVATE mapping is about to 3526 * perform a COW due to a shared page count, attempt to satisfy 3527 * the allocation without using the existing reserves. The pagecache 3528 * page is used to determine if the reserve at this address was 3529 * consumed or not. If reserves were used, a partial faulted mapping 3530 * at the time of fork() could consume its reserves on COW instead 3531 * of the full address range. 3532 */ 3533 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && 3534 old_page != pagecache_page) 3535 outside_reserve = 1; 3536 3537 get_page(old_page); 3538 3539 /* 3540 * Drop page table lock as buddy allocator may be called. It will 3541 * be acquired again before returning to the caller, as expected. 3542 */ 3543 spin_unlock(ptl); 3544 new_page = alloc_huge_page(vma, address, outside_reserve); 3545 3546 if (IS_ERR(new_page)) { 3547 /* 3548 * If a process owning a MAP_PRIVATE mapping fails to COW, 3549 * it is due to references held by a child and an insufficient 3550 * huge page pool. To guarantee the original mappers 3551 * reliability, unmap the page from child processes. The child 3552 * may get SIGKILLed if it later faults. 3553 */ 3554 if (outside_reserve) { 3555 put_page(old_page); 3556 BUG_ON(huge_pte_none(pte)); 3557 unmap_ref_private(mm, vma, old_page, address); 3558 BUG_ON(huge_pte_none(pte)); 3559 spin_lock(ptl); 3560 ptep = huge_pte_offset(mm, address & huge_page_mask(h), 3561 huge_page_size(h)); 3562 if (likely(ptep && 3563 pte_same(huge_ptep_get(ptep), pte))) 3564 goto retry_avoidcopy; 3565 /* 3566 * race occurs while re-acquiring page table 3567 * lock, and our job is done. 3568 */ 3569 return 0; 3570 } 3571 3572 ret = (PTR_ERR(new_page) == -ENOMEM) ? 3573 VM_FAULT_OOM : VM_FAULT_SIGBUS; 3574 goto out_release_old; 3575 } 3576 3577 /* 3578 * When the original hugepage is shared one, it does not have 3579 * anon_vma prepared. 3580 */ 3581 if (unlikely(anon_vma_prepare(vma))) { 3582 ret = VM_FAULT_OOM; 3583 goto out_release_all; 3584 } 3585 3586 copy_user_huge_page(new_page, old_page, address, vma, 3587 pages_per_huge_page(h)); 3588 __SetPageUptodate(new_page); 3589 set_page_huge_active(new_page); 3590 3591 mmun_start = address & huge_page_mask(h); 3592 mmun_end = mmun_start + huge_page_size(h); 3593 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 3594 3595 /* 3596 * Retake the page table lock to check for racing updates 3597 * before the page tables are altered 3598 */ 3599 spin_lock(ptl); 3600 ptep = huge_pte_offset(mm, address & huge_page_mask(h), 3601 huge_page_size(h)); 3602 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) { 3603 ClearPagePrivate(new_page); 3604 3605 /* Break COW */ 3606 huge_ptep_clear_flush(vma, address, ptep); 3607 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end); 3608 set_huge_pte_at(mm, address, ptep, 3609 make_huge_pte(vma, new_page, 1)); 3610 page_remove_rmap(old_page, true); 3611 hugepage_add_new_anon_rmap(new_page, vma, address); 3612 /* Make the old page be freed below */ 3613 new_page = old_page; 3614 } 3615 spin_unlock(ptl); 3616 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 3617 out_release_all: 3618 restore_reserve_on_error(h, vma, address, new_page); 3619 put_page(new_page); 3620 out_release_old: 3621 put_page(old_page); 3622 3623 spin_lock(ptl); /* Caller expects lock to be held */ 3624 return ret; 3625 } 3626 3627 /* Return the pagecache page at a given address within a VMA */ 3628 static struct page *hugetlbfs_pagecache_page(struct hstate *h, 3629 struct vm_area_struct *vma, unsigned long address) 3630 { 3631 struct address_space *mapping; 3632 pgoff_t idx; 3633 3634 mapping = vma->vm_file->f_mapping; 3635 idx = vma_hugecache_offset(h, vma, address); 3636 3637 return find_lock_page(mapping, idx); 3638 } 3639 3640 /* 3641 * Return whether there is a pagecache page to back given address within VMA. 3642 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page. 3643 */ 3644 static bool hugetlbfs_pagecache_present(struct hstate *h, 3645 struct vm_area_struct *vma, unsigned long address) 3646 { 3647 struct address_space *mapping; 3648 pgoff_t idx; 3649 struct page *page; 3650 3651 mapping = vma->vm_file->f_mapping; 3652 idx = vma_hugecache_offset(h, vma, address); 3653 3654 page = find_get_page(mapping, idx); 3655 if (page) 3656 put_page(page); 3657 return page != NULL; 3658 } 3659 3660 int huge_add_to_page_cache(struct page *page, struct address_space *mapping, 3661 pgoff_t idx) 3662 { 3663 struct inode *inode = mapping->host; 3664 struct hstate *h = hstate_inode(inode); 3665 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL); 3666 3667 if (err) 3668 return err; 3669 ClearPagePrivate(page); 3670 3671 spin_lock(&inode->i_lock); 3672 inode->i_blocks += blocks_per_huge_page(h); 3673 spin_unlock(&inode->i_lock); 3674 return 0; 3675 } 3676 3677 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma, 3678 struct address_space *mapping, pgoff_t idx, 3679 unsigned long address, pte_t *ptep, unsigned int flags) 3680 { 3681 struct hstate *h = hstate_vma(vma); 3682 int ret = VM_FAULT_SIGBUS; 3683 int anon_rmap = 0; 3684 unsigned long size; 3685 struct page *page; 3686 pte_t new_pte; 3687 spinlock_t *ptl; 3688 3689 /* 3690 * Currently, we are forced to kill the process in the event the 3691 * original mapper has unmapped pages from the child due to a failed 3692 * COW. Warn that such a situation has occurred as it may not be obvious 3693 */ 3694 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { 3695 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n", 3696 current->pid); 3697 return ret; 3698 } 3699 3700 /* 3701 * Use page lock to guard against racing truncation 3702 * before we get page_table_lock. 3703 */ 3704 retry: 3705 page = find_lock_page(mapping, idx); 3706 if (!page) { 3707 size = i_size_read(mapping->host) >> huge_page_shift(h); 3708 if (idx >= size) 3709 goto out; 3710 3711 /* 3712 * Check for page in userfault range 3713 */ 3714 if (userfaultfd_missing(vma)) { 3715 u32 hash; 3716 struct vm_fault vmf = { 3717 .vma = vma, 3718 .address = address, 3719 .flags = flags, 3720 /* 3721 * Hard to debug if it ends up being 3722 * used by a callee that assumes 3723 * something about the other 3724 * uninitialized fields... same as in 3725 * memory.c 3726 */ 3727 }; 3728 3729 /* 3730 * hugetlb_fault_mutex must be dropped before 3731 * handling userfault. Reacquire after handling 3732 * fault to make calling code simpler. 3733 */ 3734 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, 3735 idx, address); 3736 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 3737 ret = handle_userfault(&vmf, VM_UFFD_MISSING); 3738 mutex_lock(&hugetlb_fault_mutex_table[hash]); 3739 goto out; 3740 } 3741 3742 page = alloc_huge_page(vma, address, 0); 3743 if (IS_ERR(page)) { 3744 ret = PTR_ERR(page); 3745 if (ret == -ENOMEM) 3746 ret = VM_FAULT_OOM; 3747 else 3748 ret = VM_FAULT_SIGBUS; 3749 goto out; 3750 } 3751 clear_huge_page(page, address, pages_per_huge_page(h)); 3752 __SetPageUptodate(page); 3753 set_page_huge_active(page); 3754 3755 if (vma->vm_flags & VM_MAYSHARE) { 3756 int err = huge_add_to_page_cache(page, mapping, idx); 3757 if (err) { 3758 put_page(page); 3759 if (err == -EEXIST) 3760 goto retry; 3761 goto out; 3762 } 3763 } else { 3764 lock_page(page); 3765 if (unlikely(anon_vma_prepare(vma))) { 3766 ret = VM_FAULT_OOM; 3767 goto backout_unlocked; 3768 } 3769 anon_rmap = 1; 3770 } 3771 } else { 3772 /* 3773 * If memory error occurs between mmap() and fault, some process 3774 * don't have hwpoisoned swap entry for errored virtual address. 3775 * So we need to block hugepage fault by PG_hwpoison bit check. 3776 */ 3777 if (unlikely(PageHWPoison(page))) { 3778 ret = VM_FAULT_HWPOISON | 3779 VM_FAULT_SET_HINDEX(hstate_index(h)); 3780 goto backout_unlocked; 3781 } 3782 } 3783 3784 /* 3785 * If we are going to COW a private mapping later, we examine the 3786 * pending reservations for this page now. This will ensure that 3787 * any allocations necessary to record that reservation occur outside 3788 * the spinlock. 3789 */ 3790 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 3791 if (vma_needs_reservation(h, vma, address) < 0) { 3792 ret = VM_FAULT_OOM; 3793 goto backout_unlocked; 3794 } 3795 /* Just decrements count, does not deallocate */ 3796 vma_end_reservation(h, vma, address); 3797 } 3798 3799 ptl = huge_pte_lock(h, mm, ptep); 3800 size = i_size_read(mapping->host) >> huge_page_shift(h); 3801 if (idx >= size) 3802 goto backout; 3803 3804 ret = 0; 3805 if (!huge_pte_none(huge_ptep_get(ptep))) 3806 goto backout; 3807 3808 if (anon_rmap) { 3809 ClearPagePrivate(page); 3810 hugepage_add_new_anon_rmap(page, vma, address); 3811 } else 3812 page_dup_rmap(page, true); 3813 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE) 3814 && (vma->vm_flags & VM_SHARED))); 3815 set_huge_pte_at(mm, address, ptep, new_pte); 3816 3817 hugetlb_count_add(pages_per_huge_page(h), mm); 3818 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 3819 /* Optimization, do the COW without a second fault */ 3820 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl); 3821 } 3822 3823 spin_unlock(ptl); 3824 unlock_page(page); 3825 out: 3826 return ret; 3827 3828 backout: 3829 spin_unlock(ptl); 3830 backout_unlocked: 3831 unlock_page(page); 3832 restore_reserve_on_error(h, vma, address, page); 3833 put_page(page); 3834 goto out; 3835 } 3836 3837 #ifdef CONFIG_SMP 3838 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm, 3839 struct vm_area_struct *vma, 3840 struct address_space *mapping, 3841 pgoff_t idx, unsigned long address) 3842 { 3843 unsigned long key[2]; 3844 u32 hash; 3845 3846 if (vma->vm_flags & VM_SHARED) { 3847 key[0] = (unsigned long) mapping; 3848 key[1] = idx; 3849 } else { 3850 key[0] = (unsigned long) mm; 3851 key[1] = address >> huge_page_shift(h); 3852 } 3853 3854 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0); 3855 3856 return hash & (num_fault_mutexes - 1); 3857 } 3858 #else 3859 /* 3860 * For uniprocesor systems we always use a single mutex, so just 3861 * return 0 and avoid the hashing overhead. 3862 */ 3863 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm, 3864 struct vm_area_struct *vma, 3865 struct address_space *mapping, 3866 pgoff_t idx, unsigned long address) 3867 { 3868 return 0; 3869 } 3870 #endif 3871 3872 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3873 unsigned long address, unsigned int flags) 3874 { 3875 pte_t *ptep, entry; 3876 spinlock_t *ptl; 3877 int ret; 3878 u32 hash; 3879 pgoff_t idx; 3880 struct page *page = NULL; 3881 struct page *pagecache_page = NULL; 3882 struct hstate *h = hstate_vma(vma); 3883 struct address_space *mapping; 3884 int need_wait_lock = 0; 3885 3886 address &= huge_page_mask(h); 3887 3888 ptep = huge_pte_offset(mm, address, huge_page_size(h)); 3889 if (ptep) { 3890 entry = huge_ptep_get(ptep); 3891 if (unlikely(is_hugetlb_entry_migration(entry))) { 3892 migration_entry_wait_huge(vma, mm, ptep); 3893 return 0; 3894 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) 3895 return VM_FAULT_HWPOISON_LARGE | 3896 VM_FAULT_SET_HINDEX(hstate_index(h)); 3897 } else { 3898 ptep = huge_pte_alloc(mm, address, huge_page_size(h)); 3899 if (!ptep) 3900 return VM_FAULT_OOM; 3901 } 3902 3903 mapping = vma->vm_file->f_mapping; 3904 idx = vma_hugecache_offset(h, vma, address); 3905 3906 /* 3907 * Serialize hugepage allocation and instantiation, so that we don't 3908 * get spurious allocation failures if two CPUs race to instantiate 3909 * the same page in the page cache. 3910 */ 3911 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address); 3912 mutex_lock(&hugetlb_fault_mutex_table[hash]); 3913 3914 entry = huge_ptep_get(ptep); 3915 if (huge_pte_none(entry)) { 3916 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags); 3917 goto out_mutex; 3918 } 3919 3920 ret = 0; 3921 3922 /* 3923 * entry could be a migration/hwpoison entry at this point, so this 3924 * check prevents the kernel from going below assuming that we have 3925 * a active hugepage in pagecache. This goto expects the 2nd page fault, 3926 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly 3927 * handle it. 3928 */ 3929 if (!pte_present(entry)) 3930 goto out_mutex; 3931 3932 /* 3933 * If we are going to COW the mapping later, we examine the pending 3934 * reservations for this page now. This will ensure that any 3935 * allocations necessary to record that reservation occur outside the 3936 * spinlock. For private mappings, we also lookup the pagecache 3937 * page now as it is used to determine if a reservation has been 3938 * consumed. 3939 */ 3940 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) { 3941 if (vma_needs_reservation(h, vma, address) < 0) { 3942 ret = VM_FAULT_OOM; 3943 goto out_mutex; 3944 } 3945 /* Just decrements count, does not deallocate */ 3946 vma_end_reservation(h, vma, address); 3947 3948 if (!(vma->vm_flags & VM_MAYSHARE)) 3949 pagecache_page = hugetlbfs_pagecache_page(h, 3950 vma, address); 3951 } 3952 3953 ptl = huge_pte_lock(h, mm, ptep); 3954 3955 /* Check for a racing update before calling hugetlb_cow */ 3956 if (unlikely(!pte_same(entry, huge_ptep_get(ptep)))) 3957 goto out_ptl; 3958 3959 /* 3960 * hugetlb_cow() requires page locks of pte_page(entry) and 3961 * pagecache_page, so here we need take the former one 3962 * when page != pagecache_page or !pagecache_page. 3963 */ 3964 page = pte_page(entry); 3965 if (page != pagecache_page) 3966 if (!trylock_page(page)) { 3967 need_wait_lock = 1; 3968 goto out_ptl; 3969 } 3970 3971 get_page(page); 3972 3973 if (flags & FAULT_FLAG_WRITE) { 3974 if (!huge_pte_write(entry)) { 3975 ret = hugetlb_cow(mm, vma, address, ptep, 3976 pagecache_page, ptl); 3977 goto out_put_page; 3978 } 3979 entry = huge_pte_mkdirty(entry); 3980 } 3981 entry = pte_mkyoung(entry); 3982 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 3983 flags & FAULT_FLAG_WRITE)) 3984 update_mmu_cache(vma, address, ptep); 3985 out_put_page: 3986 if (page != pagecache_page) 3987 unlock_page(page); 3988 put_page(page); 3989 out_ptl: 3990 spin_unlock(ptl); 3991 3992 if (pagecache_page) { 3993 unlock_page(pagecache_page); 3994 put_page(pagecache_page); 3995 } 3996 out_mutex: 3997 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 3998 /* 3999 * Generally it's safe to hold refcount during waiting page lock. But 4000 * here we just wait to defer the next page fault to avoid busy loop and 4001 * the page is not used after unlocked before returning from the current 4002 * page fault. So we are safe from accessing freed page, even if we wait 4003 * here without taking refcount. 4004 */ 4005 if (need_wait_lock) 4006 wait_on_page_locked(page); 4007 return ret; 4008 } 4009 4010 /* 4011 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with 4012 * modifications for huge pages. 4013 */ 4014 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm, 4015 pte_t *dst_pte, 4016 struct vm_area_struct *dst_vma, 4017 unsigned long dst_addr, 4018 unsigned long src_addr, 4019 struct page **pagep) 4020 { 4021 struct address_space *mapping; 4022 pgoff_t idx; 4023 unsigned long size; 4024 int vm_shared = dst_vma->vm_flags & VM_SHARED; 4025 struct hstate *h = hstate_vma(dst_vma); 4026 pte_t _dst_pte; 4027 spinlock_t *ptl; 4028 int ret; 4029 struct page *page; 4030 4031 if (!*pagep) { 4032 ret = -ENOMEM; 4033 page = alloc_huge_page(dst_vma, dst_addr, 0); 4034 if (IS_ERR(page)) 4035 goto out; 4036 4037 ret = copy_huge_page_from_user(page, 4038 (const void __user *) src_addr, 4039 pages_per_huge_page(h), false); 4040 4041 /* fallback to copy_from_user outside mmap_sem */ 4042 if (unlikely(ret)) { 4043 ret = -EFAULT; 4044 *pagep = page; 4045 /* don't free the page */ 4046 goto out; 4047 } 4048 } else { 4049 page = *pagep; 4050 *pagep = NULL; 4051 } 4052 4053 /* 4054 * The memory barrier inside __SetPageUptodate makes sure that 4055 * preceding stores to the page contents become visible before 4056 * the set_pte_at() write. 4057 */ 4058 __SetPageUptodate(page); 4059 set_page_huge_active(page); 4060 4061 mapping = dst_vma->vm_file->f_mapping; 4062 idx = vma_hugecache_offset(h, dst_vma, dst_addr); 4063 4064 /* 4065 * If shared, add to page cache 4066 */ 4067 if (vm_shared) { 4068 size = i_size_read(mapping->host) >> huge_page_shift(h); 4069 ret = -EFAULT; 4070 if (idx >= size) 4071 goto out_release_nounlock; 4072 4073 /* 4074 * Serialization between remove_inode_hugepages() and 4075 * huge_add_to_page_cache() below happens through the 4076 * hugetlb_fault_mutex_table that here must be hold by 4077 * the caller. 4078 */ 4079 ret = huge_add_to_page_cache(page, mapping, idx); 4080 if (ret) 4081 goto out_release_nounlock; 4082 } 4083 4084 ptl = huge_pte_lockptr(h, dst_mm, dst_pte); 4085 spin_lock(ptl); 4086 4087 /* 4088 * Recheck the i_size after holding PT lock to make sure not 4089 * to leave any page mapped (as page_mapped()) beyond the end 4090 * of the i_size (remove_inode_hugepages() is strict about 4091 * enforcing that). If we bail out here, we'll also leave a 4092 * page in the radix tree in the vm_shared case beyond the end 4093 * of the i_size, but remove_inode_hugepages() will take care 4094 * of it as soon as we drop the hugetlb_fault_mutex_table. 4095 */ 4096 size = i_size_read(mapping->host) >> huge_page_shift(h); 4097 ret = -EFAULT; 4098 if (idx >= size) 4099 goto out_release_unlock; 4100 4101 ret = -EEXIST; 4102 if (!huge_pte_none(huge_ptep_get(dst_pte))) 4103 goto out_release_unlock; 4104 4105 if (vm_shared) { 4106 page_dup_rmap(page, true); 4107 } else { 4108 ClearPagePrivate(page); 4109 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr); 4110 } 4111 4112 _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE); 4113 if (dst_vma->vm_flags & VM_WRITE) 4114 _dst_pte = huge_pte_mkdirty(_dst_pte); 4115 _dst_pte = pte_mkyoung(_dst_pte); 4116 4117 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte); 4118 4119 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte, 4120 dst_vma->vm_flags & VM_WRITE); 4121 hugetlb_count_add(pages_per_huge_page(h), dst_mm); 4122 4123 /* No need to invalidate - it was non-present before */ 4124 update_mmu_cache(dst_vma, dst_addr, dst_pte); 4125 4126 spin_unlock(ptl); 4127 if (vm_shared) 4128 unlock_page(page); 4129 ret = 0; 4130 out: 4131 return ret; 4132 out_release_unlock: 4133 spin_unlock(ptl); 4134 if (vm_shared) 4135 unlock_page(page); 4136 out_release_nounlock: 4137 put_page(page); 4138 goto out; 4139 } 4140 4141 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, 4142 struct page **pages, struct vm_area_struct **vmas, 4143 unsigned long *position, unsigned long *nr_pages, 4144 long i, unsigned int flags, int *nonblocking) 4145 { 4146 unsigned long pfn_offset; 4147 unsigned long vaddr = *position; 4148 unsigned long remainder = *nr_pages; 4149 struct hstate *h = hstate_vma(vma); 4150 int err = -EFAULT; 4151 4152 while (vaddr < vma->vm_end && remainder) { 4153 pte_t *pte; 4154 spinlock_t *ptl = NULL; 4155 int absent; 4156 struct page *page; 4157 4158 /* 4159 * If we have a pending SIGKILL, don't keep faulting pages and 4160 * potentially allocating memory. 4161 */ 4162 if (unlikely(fatal_signal_pending(current))) { 4163 remainder = 0; 4164 break; 4165 } 4166 4167 /* 4168 * Some archs (sparc64, sh*) have multiple pte_ts to 4169 * each hugepage. We have to make sure we get the 4170 * first, for the page indexing below to work. 4171 * 4172 * Note that page table lock is not held when pte is null. 4173 */ 4174 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h), 4175 huge_page_size(h)); 4176 if (pte) 4177 ptl = huge_pte_lock(h, mm, pte); 4178 absent = !pte || huge_pte_none(huge_ptep_get(pte)); 4179 4180 /* 4181 * When coredumping, it suits get_dump_page if we just return 4182 * an error where there's an empty slot with no huge pagecache 4183 * to back it. This way, we avoid allocating a hugepage, and 4184 * the sparse dumpfile avoids allocating disk blocks, but its 4185 * huge holes still show up with zeroes where they need to be. 4186 */ 4187 if (absent && (flags & FOLL_DUMP) && 4188 !hugetlbfs_pagecache_present(h, vma, vaddr)) { 4189 if (pte) 4190 spin_unlock(ptl); 4191 remainder = 0; 4192 break; 4193 } 4194 4195 /* 4196 * We need call hugetlb_fault for both hugepages under migration 4197 * (in which case hugetlb_fault waits for the migration,) and 4198 * hwpoisoned hugepages (in which case we need to prevent the 4199 * caller from accessing to them.) In order to do this, we use 4200 * here is_swap_pte instead of is_hugetlb_entry_migration and 4201 * is_hugetlb_entry_hwpoisoned. This is because it simply covers 4202 * both cases, and because we can't follow correct pages 4203 * directly from any kind of swap entries. 4204 */ 4205 if (absent || is_swap_pte(huge_ptep_get(pte)) || 4206 ((flags & FOLL_WRITE) && 4207 !huge_pte_write(huge_ptep_get(pte)))) { 4208 int ret; 4209 unsigned int fault_flags = 0; 4210 4211 if (pte) 4212 spin_unlock(ptl); 4213 if (flags & FOLL_WRITE) 4214 fault_flags |= FAULT_FLAG_WRITE; 4215 if (nonblocking) 4216 fault_flags |= FAULT_FLAG_ALLOW_RETRY; 4217 if (flags & FOLL_NOWAIT) 4218 fault_flags |= FAULT_FLAG_ALLOW_RETRY | 4219 FAULT_FLAG_RETRY_NOWAIT; 4220 if (flags & FOLL_TRIED) { 4221 VM_WARN_ON_ONCE(fault_flags & 4222 FAULT_FLAG_ALLOW_RETRY); 4223 fault_flags |= FAULT_FLAG_TRIED; 4224 } 4225 ret = hugetlb_fault(mm, vma, vaddr, fault_flags); 4226 if (ret & VM_FAULT_ERROR) { 4227 err = vm_fault_to_errno(ret, flags); 4228 remainder = 0; 4229 break; 4230 } 4231 if (ret & VM_FAULT_RETRY) { 4232 if (nonblocking) 4233 *nonblocking = 0; 4234 *nr_pages = 0; 4235 /* 4236 * VM_FAULT_RETRY must not return an 4237 * error, it will return zero 4238 * instead. 4239 * 4240 * No need to update "position" as the 4241 * caller will not check it after 4242 * *nr_pages is set to 0. 4243 */ 4244 return i; 4245 } 4246 continue; 4247 } 4248 4249 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT; 4250 page = pte_page(huge_ptep_get(pte)); 4251 same_page: 4252 if (pages) { 4253 pages[i] = mem_map_offset(page, pfn_offset); 4254 get_page(pages[i]); 4255 } 4256 4257 if (vmas) 4258 vmas[i] = vma; 4259 4260 vaddr += PAGE_SIZE; 4261 ++pfn_offset; 4262 --remainder; 4263 ++i; 4264 if (vaddr < vma->vm_end && remainder && 4265 pfn_offset < pages_per_huge_page(h)) { 4266 /* 4267 * We use pfn_offset to avoid touching the pageframes 4268 * of this compound page. 4269 */ 4270 goto same_page; 4271 } 4272 spin_unlock(ptl); 4273 } 4274 *nr_pages = remainder; 4275 /* 4276 * setting position is actually required only if remainder is 4277 * not zero but it's faster not to add a "if (remainder)" 4278 * branch. 4279 */ 4280 *position = vaddr; 4281 4282 return i ? i : err; 4283 } 4284 4285 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE 4286 /* 4287 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can 4288 * implement this. 4289 */ 4290 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end) 4291 #endif 4292 4293 unsigned long hugetlb_change_protection(struct vm_area_struct *vma, 4294 unsigned long address, unsigned long end, pgprot_t newprot) 4295 { 4296 struct mm_struct *mm = vma->vm_mm; 4297 unsigned long start = address; 4298 pte_t *ptep; 4299 pte_t pte; 4300 struct hstate *h = hstate_vma(vma); 4301 unsigned long pages = 0; 4302 4303 BUG_ON(address >= end); 4304 flush_cache_range(vma, address, end); 4305 4306 mmu_notifier_invalidate_range_start(mm, start, end); 4307 i_mmap_lock_write(vma->vm_file->f_mapping); 4308 for (; address < end; address += huge_page_size(h)) { 4309 spinlock_t *ptl; 4310 ptep = huge_pte_offset(mm, address, huge_page_size(h)); 4311 if (!ptep) 4312 continue; 4313 ptl = huge_pte_lock(h, mm, ptep); 4314 if (huge_pmd_unshare(mm, &address, ptep)) { 4315 pages++; 4316 spin_unlock(ptl); 4317 continue; 4318 } 4319 pte = huge_ptep_get(ptep); 4320 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) { 4321 spin_unlock(ptl); 4322 continue; 4323 } 4324 if (unlikely(is_hugetlb_entry_migration(pte))) { 4325 swp_entry_t entry = pte_to_swp_entry(pte); 4326 4327 if (is_write_migration_entry(entry)) { 4328 pte_t newpte; 4329 4330 make_migration_entry_read(&entry); 4331 newpte = swp_entry_to_pte(entry); 4332 set_huge_swap_pte_at(mm, address, ptep, 4333 newpte, huge_page_size(h)); 4334 pages++; 4335 } 4336 spin_unlock(ptl); 4337 continue; 4338 } 4339 if (!huge_pte_none(pte)) { 4340 pte = huge_ptep_get_and_clear(mm, address, ptep); 4341 pte = pte_mkhuge(huge_pte_modify(pte, newprot)); 4342 pte = arch_make_huge_pte(pte, vma, NULL, 0); 4343 set_huge_pte_at(mm, address, ptep, pte); 4344 pages++; 4345 } 4346 spin_unlock(ptl); 4347 } 4348 /* 4349 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare 4350 * may have cleared our pud entry and done put_page on the page table: 4351 * once we release i_mmap_rwsem, another task can do the final put_page 4352 * and that page table be reused and filled with junk. 4353 */ 4354 flush_hugetlb_tlb_range(vma, start, end); 4355 /* 4356 * No need to call mmu_notifier_invalidate_range() we are downgrading 4357 * page table protection not changing it to point to a new page. 4358 * 4359 * See Documentation/vm/mmu_notifier.txt 4360 */ 4361 i_mmap_unlock_write(vma->vm_file->f_mapping); 4362 mmu_notifier_invalidate_range_end(mm, start, end); 4363 4364 return pages << h->order; 4365 } 4366 4367 int hugetlb_reserve_pages(struct inode *inode, 4368 long from, long to, 4369 struct vm_area_struct *vma, 4370 vm_flags_t vm_flags) 4371 { 4372 long ret, chg; 4373 struct hstate *h = hstate_inode(inode); 4374 struct hugepage_subpool *spool = subpool_inode(inode); 4375 struct resv_map *resv_map; 4376 long gbl_reserve; 4377 4378 /* This should never happen */ 4379 if (from > to) { 4380 VM_WARN(1, "%s called with a negative range\n", __func__); 4381 return -EINVAL; 4382 } 4383 4384 /* 4385 * Only apply hugepage reservation if asked. At fault time, an 4386 * attempt will be made for VM_NORESERVE to allocate a page 4387 * without using reserves 4388 */ 4389 if (vm_flags & VM_NORESERVE) 4390 return 0; 4391 4392 /* 4393 * Shared mappings base their reservation on the number of pages that 4394 * are already allocated on behalf of the file. Private mappings need 4395 * to reserve the full area even if read-only as mprotect() may be 4396 * called to make the mapping read-write. Assume !vma is a shm mapping 4397 */ 4398 if (!vma || vma->vm_flags & VM_MAYSHARE) { 4399 resv_map = inode_resv_map(inode); 4400 4401 chg = region_chg(resv_map, from, to); 4402 4403 } else { 4404 resv_map = resv_map_alloc(); 4405 if (!resv_map) 4406 return -ENOMEM; 4407 4408 chg = to - from; 4409 4410 set_vma_resv_map(vma, resv_map); 4411 set_vma_resv_flags(vma, HPAGE_RESV_OWNER); 4412 } 4413 4414 if (chg < 0) { 4415 ret = chg; 4416 goto out_err; 4417 } 4418 4419 /* 4420 * There must be enough pages in the subpool for the mapping. If 4421 * the subpool has a minimum size, there may be some global 4422 * reservations already in place (gbl_reserve). 4423 */ 4424 gbl_reserve = hugepage_subpool_get_pages(spool, chg); 4425 if (gbl_reserve < 0) { 4426 ret = -ENOSPC; 4427 goto out_err; 4428 } 4429 4430 /* 4431 * Check enough hugepages are available for the reservation. 4432 * Hand the pages back to the subpool if there are not 4433 */ 4434 ret = hugetlb_acct_memory(h, gbl_reserve); 4435 if (ret < 0) { 4436 /* put back original number of pages, chg */ 4437 (void)hugepage_subpool_put_pages(spool, chg); 4438 goto out_err; 4439 } 4440 4441 /* 4442 * Account for the reservations made. Shared mappings record regions 4443 * that have reservations as they are shared by multiple VMAs. 4444 * When the last VMA disappears, the region map says how much 4445 * the reservation was and the page cache tells how much of 4446 * the reservation was consumed. Private mappings are per-VMA and 4447 * only the consumed reservations are tracked. When the VMA 4448 * disappears, the original reservation is the VMA size and the 4449 * consumed reservations are stored in the map. Hence, nothing 4450 * else has to be done for private mappings here 4451 */ 4452 if (!vma || vma->vm_flags & VM_MAYSHARE) { 4453 long add = region_add(resv_map, from, to); 4454 4455 if (unlikely(chg > add)) { 4456 /* 4457 * pages in this range were added to the reserve 4458 * map between region_chg and region_add. This 4459 * indicates a race with alloc_huge_page. Adjust 4460 * the subpool and reserve counts modified above 4461 * based on the difference. 4462 */ 4463 long rsv_adjust; 4464 4465 rsv_adjust = hugepage_subpool_put_pages(spool, 4466 chg - add); 4467 hugetlb_acct_memory(h, -rsv_adjust); 4468 } 4469 } 4470 return 0; 4471 out_err: 4472 if (!vma || vma->vm_flags & VM_MAYSHARE) 4473 /* Don't call region_abort if region_chg failed */ 4474 if (chg >= 0) 4475 region_abort(resv_map, from, to); 4476 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 4477 kref_put(&resv_map->refs, resv_map_release); 4478 return ret; 4479 } 4480 4481 long hugetlb_unreserve_pages(struct inode *inode, long start, long end, 4482 long freed) 4483 { 4484 struct hstate *h = hstate_inode(inode); 4485 struct resv_map *resv_map = inode_resv_map(inode); 4486 long chg = 0; 4487 struct hugepage_subpool *spool = subpool_inode(inode); 4488 long gbl_reserve; 4489 4490 if (resv_map) { 4491 chg = region_del(resv_map, start, end); 4492 /* 4493 * region_del() can fail in the rare case where a region 4494 * must be split and another region descriptor can not be 4495 * allocated. If end == LONG_MAX, it will not fail. 4496 */ 4497 if (chg < 0) 4498 return chg; 4499 } 4500 4501 spin_lock(&inode->i_lock); 4502 inode->i_blocks -= (blocks_per_huge_page(h) * freed); 4503 spin_unlock(&inode->i_lock); 4504 4505 /* 4506 * If the subpool has a minimum size, the number of global 4507 * reservations to be released may be adjusted. 4508 */ 4509 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed)); 4510 hugetlb_acct_memory(h, -gbl_reserve); 4511 4512 return 0; 4513 } 4514 4515 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE 4516 static unsigned long page_table_shareable(struct vm_area_struct *svma, 4517 struct vm_area_struct *vma, 4518 unsigned long addr, pgoff_t idx) 4519 { 4520 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) + 4521 svma->vm_start; 4522 unsigned long sbase = saddr & PUD_MASK; 4523 unsigned long s_end = sbase + PUD_SIZE; 4524 4525 /* Allow segments to share if only one is marked locked */ 4526 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK; 4527 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK; 4528 4529 /* 4530 * match the virtual addresses, permission and the alignment of the 4531 * page table page. 4532 */ 4533 if (pmd_index(addr) != pmd_index(saddr) || 4534 vm_flags != svm_flags || 4535 sbase < svma->vm_start || svma->vm_end < s_end) 4536 return 0; 4537 4538 return saddr; 4539 } 4540 4541 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr) 4542 { 4543 unsigned long base = addr & PUD_MASK; 4544 unsigned long end = base + PUD_SIZE; 4545 4546 /* 4547 * check on proper vm_flags and page table alignment 4548 */ 4549 if (vma->vm_flags & VM_MAYSHARE && 4550 vma->vm_start <= base && end <= vma->vm_end) 4551 return true; 4552 return false; 4553 } 4554 4555 /* 4556 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc() 4557 * and returns the corresponding pte. While this is not necessary for the 4558 * !shared pmd case because we can allocate the pmd later as well, it makes the 4559 * code much cleaner. pmd allocation is essential for the shared case because 4560 * pud has to be populated inside the same i_mmap_rwsem section - otherwise 4561 * racing tasks could either miss the sharing (see huge_pte_offset) or select a 4562 * bad pmd for sharing. 4563 */ 4564 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud) 4565 { 4566 struct vm_area_struct *vma = find_vma(mm, addr); 4567 struct address_space *mapping = vma->vm_file->f_mapping; 4568 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + 4569 vma->vm_pgoff; 4570 struct vm_area_struct *svma; 4571 unsigned long saddr; 4572 pte_t *spte = NULL; 4573 pte_t *pte; 4574 spinlock_t *ptl; 4575 4576 if (!vma_shareable(vma, addr)) 4577 return (pte_t *)pmd_alloc(mm, pud, addr); 4578 4579 i_mmap_lock_write(mapping); 4580 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) { 4581 if (svma == vma) 4582 continue; 4583 4584 saddr = page_table_shareable(svma, vma, addr, idx); 4585 if (saddr) { 4586 spte = huge_pte_offset(svma->vm_mm, saddr, 4587 vma_mmu_pagesize(svma)); 4588 if (spte) { 4589 get_page(virt_to_page(spte)); 4590 break; 4591 } 4592 } 4593 } 4594 4595 if (!spte) 4596 goto out; 4597 4598 ptl = huge_pte_lock(hstate_vma(vma), mm, spte); 4599 if (pud_none(*pud)) { 4600 pud_populate(mm, pud, 4601 (pmd_t *)((unsigned long)spte & PAGE_MASK)); 4602 mm_inc_nr_pmds(mm); 4603 } else { 4604 put_page(virt_to_page(spte)); 4605 } 4606 spin_unlock(ptl); 4607 out: 4608 pte = (pte_t *)pmd_alloc(mm, pud, addr); 4609 i_mmap_unlock_write(mapping); 4610 return pte; 4611 } 4612 4613 /* 4614 * unmap huge page backed by shared pte. 4615 * 4616 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared 4617 * indicated by page_count > 1, unmap is achieved by clearing pud and 4618 * decrementing the ref count. If count == 1, the pte page is not shared. 4619 * 4620 * called with page table lock held. 4621 * 4622 * returns: 1 successfully unmapped a shared pte page 4623 * 0 the underlying pte page is not shared, or it is the last user 4624 */ 4625 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep) 4626 { 4627 pgd_t *pgd = pgd_offset(mm, *addr); 4628 p4d_t *p4d = p4d_offset(pgd, *addr); 4629 pud_t *pud = pud_offset(p4d, *addr); 4630 4631 BUG_ON(page_count(virt_to_page(ptep)) == 0); 4632 if (page_count(virt_to_page(ptep)) == 1) 4633 return 0; 4634 4635 pud_clear(pud); 4636 put_page(virt_to_page(ptep)); 4637 mm_dec_nr_pmds(mm); 4638 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE; 4639 return 1; 4640 } 4641 #define want_pmd_share() (1) 4642 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 4643 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud) 4644 { 4645 return NULL; 4646 } 4647 4648 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep) 4649 { 4650 return 0; 4651 } 4652 #define want_pmd_share() (0) 4653 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 4654 4655 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB 4656 pte_t *huge_pte_alloc(struct mm_struct *mm, 4657 unsigned long addr, unsigned long sz) 4658 { 4659 pgd_t *pgd; 4660 p4d_t *p4d; 4661 pud_t *pud; 4662 pte_t *pte = NULL; 4663 4664 pgd = pgd_offset(mm, addr); 4665 p4d = p4d_alloc(mm, pgd, addr); 4666 if (!p4d) 4667 return NULL; 4668 pud = pud_alloc(mm, p4d, addr); 4669 if (pud) { 4670 if (sz == PUD_SIZE) { 4671 pte = (pte_t *)pud; 4672 } else { 4673 BUG_ON(sz != PMD_SIZE); 4674 if (want_pmd_share() && pud_none(*pud)) 4675 pte = huge_pmd_share(mm, addr, pud); 4676 else 4677 pte = (pte_t *)pmd_alloc(mm, pud, addr); 4678 } 4679 } 4680 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte)); 4681 4682 return pte; 4683 } 4684 4685 /* 4686 * huge_pte_offset() - Walk the page table to resolve the hugepage 4687 * entry at address @addr 4688 * 4689 * Return: Pointer to page table or swap entry (PUD or PMD) for 4690 * address @addr, or NULL if a p*d_none() entry is encountered and the 4691 * size @sz doesn't match the hugepage size at this level of the page 4692 * table. 4693 */ 4694 pte_t *huge_pte_offset(struct mm_struct *mm, 4695 unsigned long addr, unsigned long sz) 4696 { 4697 pgd_t *pgd; 4698 p4d_t *p4d; 4699 pud_t *pud; 4700 pmd_t *pmd; 4701 4702 pgd = pgd_offset(mm, addr); 4703 if (!pgd_present(*pgd)) 4704 return NULL; 4705 p4d = p4d_offset(pgd, addr); 4706 if (!p4d_present(*p4d)) 4707 return NULL; 4708 4709 pud = pud_offset(p4d, addr); 4710 if (sz != PUD_SIZE && pud_none(*pud)) 4711 return NULL; 4712 /* hugepage or swap? */ 4713 if (pud_huge(*pud) || !pud_present(*pud)) 4714 return (pte_t *)pud; 4715 4716 pmd = pmd_offset(pud, addr); 4717 if (sz != PMD_SIZE && pmd_none(*pmd)) 4718 return NULL; 4719 /* hugepage or swap? */ 4720 if (pmd_huge(*pmd) || !pmd_present(*pmd)) 4721 return (pte_t *)pmd; 4722 4723 return NULL; 4724 } 4725 4726 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */ 4727 4728 /* 4729 * These functions are overwritable if your architecture needs its own 4730 * behavior. 4731 */ 4732 struct page * __weak 4733 follow_huge_addr(struct mm_struct *mm, unsigned long address, 4734 int write) 4735 { 4736 return ERR_PTR(-EINVAL); 4737 } 4738 4739 struct page * __weak 4740 follow_huge_pd(struct vm_area_struct *vma, 4741 unsigned long address, hugepd_t hpd, int flags, int pdshift) 4742 { 4743 WARN(1, "hugepd follow called with no support for hugepage directory format\n"); 4744 return NULL; 4745 } 4746 4747 struct page * __weak 4748 follow_huge_pmd(struct mm_struct *mm, unsigned long address, 4749 pmd_t *pmd, int flags) 4750 { 4751 struct page *page = NULL; 4752 spinlock_t *ptl; 4753 pte_t pte; 4754 retry: 4755 ptl = pmd_lockptr(mm, pmd); 4756 spin_lock(ptl); 4757 /* 4758 * make sure that the address range covered by this pmd is not 4759 * unmapped from other threads. 4760 */ 4761 if (!pmd_huge(*pmd)) 4762 goto out; 4763 pte = huge_ptep_get((pte_t *)pmd); 4764 if (pte_present(pte)) { 4765 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT); 4766 if (flags & FOLL_GET) 4767 get_page(page); 4768 } else { 4769 if (is_hugetlb_entry_migration(pte)) { 4770 spin_unlock(ptl); 4771 __migration_entry_wait(mm, (pte_t *)pmd, ptl); 4772 goto retry; 4773 } 4774 /* 4775 * hwpoisoned entry is treated as no_page_table in 4776 * follow_page_mask(). 4777 */ 4778 } 4779 out: 4780 spin_unlock(ptl); 4781 return page; 4782 } 4783 4784 struct page * __weak 4785 follow_huge_pud(struct mm_struct *mm, unsigned long address, 4786 pud_t *pud, int flags) 4787 { 4788 if (flags & FOLL_GET) 4789 return NULL; 4790 4791 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT); 4792 } 4793 4794 struct page * __weak 4795 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags) 4796 { 4797 if (flags & FOLL_GET) 4798 return NULL; 4799 4800 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT); 4801 } 4802 4803 bool isolate_huge_page(struct page *page, struct list_head *list) 4804 { 4805 bool ret = true; 4806 4807 VM_BUG_ON_PAGE(!PageHead(page), page); 4808 spin_lock(&hugetlb_lock); 4809 if (!page_huge_active(page) || !get_page_unless_zero(page)) { 4810 ret = false; 4811 goto unlock; 4812 } 4813 clear_page_huge_active(page); 4814 list_move_tail(&page->lru, list); 4815 unlock: 4816 spin_unlock(&hugetlb_lock); 4817 return ret; 4818 } 4819 4820 void putback_active_hugepage(struct page *page) 4821 { 4822 VM_BUG_ON_PAGE(!PageHead(page), page); 4823 spin_lock(&hugetlb_lock); 4824 set_page_huge_active(page); 4825 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist); 4826 spin_unlock(&hugetlb_lock); 4827 put_page(page); 4828 } 4829 4830 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason) 4831 { 4832 struct hstate *h = page_hstate(oldpage); 4833 4834 hugetlb_cgroup_migrate(oldpage, newpage); 4835 set_page_owner_migrate_reason(newpage, reason); 4836 4837 /* 4838 * transfer temporary state of the new huge page. This is 4839 * reverse to other transitions because the newpage is going to 4840 * be final while the old one will be freed so it takes over 4841 * the temporary status. 4842 * 4843 * Also note that we have to transfer the per-node surplus state 4844 * here as well otherwise the global surplus count will not match 4845 * the per-node's. 4846 */ 4847 if (PageHugeTemporary(newpage)) { 4848 int old_nid = page_to_nid(oldpage); 4849 int new_nid = page_to_nid(newpage); 4850 4851 SetPageHugeTemporary(oldpage); 4852 ClearPageHugeTemporary(newpage); 4853 4854 spin_lock(&hugetlb_lock); 4855 if (h->surplus_huge_pages_node[old_nid]) { 4856 h->surplus_huge_pages_node[old_nid]--; 4857 h->surplus_huge_pages_node[new_nid]++; 4858 } 4859 spin_unlock(&hugetlb_lock); 4860 } 4861 } 4862