xref: /linux/mm/hugetlb.c (revision b0d5c81e872ed21de1e56feb0fa6e4161da7be61)
1 /*
2  * Generic hugetlb support.
3  * (C) Nadia Yvette Chambers, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/mm.h>
8 #include <linux/seq_file.h>
9 #include <linux/sysctl.h>
10 #include <linux/highmem.h>
11 #include <linux/mmu_notifier.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/compiler.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/mmdebug.h>
22 #include <linux/sched/signal.h>
23 #include <linux/rmap.h>
24 #include <linux/string_helpers.h>
25 #include <linux/swap.h>
26 #include <linux/swapops.h>
27 #include <linux/jhash.h>
28 
29 #include <asm/page.h>
30 #include <asm/pgtable.h>
31 #include <asm/tlb.h>
32 
33 #include <linux/io.h>
34 #include <linux/hugetlb.h>
35 #include <linux/hugetlb_cgroup.h>
36 #include <linux/node.h>
37 #include <linux/userfaultfd_k.h>
38 #include <linux/page_owner.h>
39 #include "internal.h"
40 
41 int hugetlb_max_hstate __read_mostly;
42 unsigned int default_hstate_idx;
43 struct hstate hstates[HUGE_MAX_HSTATE];
44 /*
45  * Minimum page order among possible hugepage sizes, set to a proper value
46  * at boot time.
47  */
48 static unsigned int minimum_order __read_mostly = UINT_MAX;
49 
50 __initdata LIST_HEAD(huge_boot_pages);
51 
52 /* for command line parsing */
53 static struct hstate * __initdata parsed_hstate;
54 static unsigned long __initdata default_hstate_max_huge_pages;
55 static unsigned long __initdata default_hstate_size;
56 static bool __initdata parsed_valid_hugepagesz = true;
57 
58 /*
59  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
60  * free_huge_pages, and surplus_huge_pages.
61  */
62 DEFINE_SPINLOCK(hugetlb_lock);
63 
64 /*
65  * Serializes faults on the same logical page.  This is used to
66  * prevent spurious OOMs when the hugepage pool is fully utilized.
67  */
68 static int num_fault_mutexes;
69 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
70 
71 /* Forward declaration */
72 static int hugetlb_acct_memory(struct hstate *h, long delta);
73 
74 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
75 {
76 	bool free = (spool->count == 0) && (spool->used_hpages == 0);
77 
78 	spin_unlock(&spool->lock);
79 
80 	/* If no pages are used, and no other handles to the subpool
81 	 * remain, give up any reservations mased on minimum size and
82 	 * free the subpool */
83 	if (free) {
84 		if (spool->min_hpages != -1)
85 			hugetlb_acct_memory(spool->hstate,
86 						-spool->min_hpages);
87 		kfree(spool);
88 	}
89 }
90 
91 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
92 						long min_hpages)
93 {
94 	struct hugepage_subpool *spool;
95 
96 	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
97 	if (!spool)
98 		return NULL;
99 
100 	spin_lock_init(&spool->lock);
101 	spool->count = 1;
102 	spool->max_hpages = max_hpages;
103 	spool->hstate = h;
104 	spool->min_hpages = min_hpages;
105 
106 	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
107 		kfree(spool);
108 		return NULL;
109 	}
110 	spool->rsv_hpages = min_hpages;
111 
112 	return spool;
113 }
114 
115 void hugepage_put_subpool(struct hugepage_subpool *spool)
116 {
117 	spin_lock(&spool->lock);
118 	BUG_ON(!spool->count);
119 	spool->count--;
120 	unlock_or_release_subpool(spool);
121 }
122 
123 /*
124  * Subpool accounting for allocating and reserving pages.
125  * Return -ENOMEM if there are not enough resources to satisfy the
126  * the request.  Otherwise, return the number of pages by which the
127  * global pools must be adjusted (upward).  The returned value may
128  * only be different than the passed value (delta) in the case where
129  * a subpool minimum size must be manitained.
130  */
131 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
132 				      long delta)
133 {
134 	long ret = delta;
135 
136 	if (!spool)
137 		return ret;
138 
139 	spin_lock(&spool->lock);
140 
141 	if (spool->max_hpages != -1) {		/* maximum size accounting */
142 		if ((spool->used_hpages + delta) <= spool->max_hpages)
143 			spool->used_hpages += delta;
144 		else {
145 			ret = -ENOMEM;
146 			goto unlock_ret;
147 		}
148 	}
149 
150 	/* minimum size accounting */
151 	if (spool->min_hpages != -1 && spool->rsv_hpages) {
152 		if (delta > spool->rsv_hpages) {
153 			/*
154 			 * Asking for more reserves than those already taken on
155 			 * behalf of subpool.  Return difference.
156 			 */
157 			ret = delta - spool->rsv_hpages;
158 			spool->rsv_hpages = 0;
159 		} else {
160 			ret = 0;	/* reserves already accounted for */
161 			spool->rsv_hpages -= delta;
162 		}
163 	}
164 
165 unlock_ret:
166 	spin_unlock(&spool->lock);
167 	return ret;
168 }
169 
170 /*
171  * Subpool accounting for freeing and unreserving pages.
172  * Return the number of global page reservations that must be dropped.
173  * The return value may only be different than the passed value (delta)
174  * in the case where a subpool minimum size must be maintained.
175  */
176 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
177 				       long delta)
178 {
179 	long ret = delta;
180 
181 	if (!spool)
182 		return delta;
183 
184 	spin_lock(&spool->lock);
185 
186 	if (spool->max_hpages != -1)		/* maximum size accounting */
187 		spool->used_hpages -= delta;
188 
189 	 /* minimum size accounting */
190 	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
191 		if (spool->rsv_hpages + delta <= spool->min_hpages)
192 			ret = 0;
193 		else
194 			ret = spool->rsv_hpages + delta - spool->min_hpages;
195 
196 		spool->rsv_hpages += delta;
197 		if (spool->rsv_hpages > spool->min_hpages)
198 			spool->rsv_hpages = spool->min_hpages;
199 	}
200 
201 	/*
202 	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
203 	 * quota reference, free it now.
204 	 */
205 	unlock_or_release_subpool(spool);
206 
207 	return ret;
208 }
209 
210 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
211 {
212 	return HUGETLBFS_SB(inode->i_sb)->spool;
213 }
214 
215 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
216 {
217 	return subpool_inode(file_inode(vma->vm_file));
218 }
219 
220 /*
221  * Region tracking -- allows tracking of reservations and instantiated pages
222  *                    across the pages in a mapping.
223  *
224  * The region data structures are embedded into a resv_map and protected
225  * by a resv_map's lock.  The set of regions within the resv_map represent
226  * reservations for huge pages, or huge pages that have already been
227  * instantiated within the map.  The from and to elements are huge page
228  * indicies into the associated mapping.  from indicates the starting index
229  * of the region.  to represents the first index past the end of  the region.
230  *
231  * For example, a file region structure with from == 0 and to == 4 represents
232  * four huge pages in a mapping.  It is important to note that the to element
233  * represents the first element past the end of the region. This is used in
234  * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
235  *
236  * Interval notation of the form [from, to) will be used to indicate that
237  * the endpoint from is inclusive and to is exclusive.
238  */
239 struct file_region {
240 	struct list_head link;
241 	long from;
242 	long to;
243 };
244 
245 /*
246  * Add the huge page range represented by [f, t) to the reserve
247  * map.  In the normal case, existing regions will be expanded
248  * to accommodate the specified range.  Sufficient regions should
249  * exist for expansion due to the previous call to region_chg
250  * with the same range.  However, it is possible that region_del
251  * could have been called after region_chg and modifed the map
252  * in such a way that no region exists to be expanded.  In this
253  * case, pull a region descriptor from the cache associated with
254  * the map and use that for the new range.
255  *
256  * Return the number of new huge pages added to the map.  This
257  * number is greater than or equal to zero.
258  */
259 static long region_add(struct resv_map *resv, long f, long t)
260 {
261 	struct list_head *head = &resv->regions;
262 	struct file_region *rg, *nrg, *trg;
263 	long add = 0;
264 
265 	spin_lock(&resv->lock);
266 	/* Locate the region we are either in or before. */
267 	list_for_each_entry(rg, head, link)
268 		if (f <= rg->to)
269 			break;
270 
271 	/*
272 	 * If no region exists which can be expanded to include the
273 	 * specified range, the list must have been modified by an
274 	 * interleving call to region_del().  Pull a region descriptor
275 	 * from the cache and use it for this range.
276 	 */
277 	if (&rg->link == head || t < rg->from) {
278 		VM_BUG_ON(resv->region_cache_count <= 0);
279 
280 		resv->region_cache_count--;
281 		nrg = list_first_entry(&resv->region_cache, struct file_region,
282 					link);
283 		list_del(&nrg->link);
284 
285 		nrg->from = f;
286 		nrg->to = t;
287 		list_add(&nrg->link, rg->link.prev);
288 
289 		add += t - f;
290 		goto out_locked;
291 	}
292 
293 	/* Round our left edge to the current segment if it encloses us. */
294 	if (f > rg->from)
295 		f = rg->from;
296 
297 	/* Check for and consume any regions we now overlap with. */
298 	nrg = rg;
299 	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
300 		if (&rg->link == head)
301 			break;
302 		if (rg->from > t)
303 			break;
304 
305 		/* If this area reaches higher then extend our area to
306 		 * include it completely.  If this is not the first area
307 		 * which we intend to reuse, free it. */
308 		if (rg->to > t)
309 			t = rg->to;
310 		if (rg != nrg) {
311 			/* Decrement return value by the deleted range.
312 			 * Another range will span this area so that by
313 			 * end of routine add will be >= zero
314 			 */
315 			add -= (rg->to - rg->from);
316 			list_del(&rg->link);
317 			kfree(rg);
318 		}
319 	}
320 
321 	add += (nrg->from - f);		/* Added to beginning of region */
322 	nrg->from = f;
323 	add += t - nrg->to;		/* Added to end of region */
324 	nrg->to = t;
325 
326 out_locked:
327 	resv->adds_in_progress--;
328 	spin_unlock(&resv->lock);
329 	VM_BUG_ON(add < 0);
330 	return add;
331 }
332 
333 /*
334  * Examine the existing reserve map and determine how many
335  * huge pages in the specified range [f, t) are NOT currently
336  * represented.  This routine is called before a subsequent
337  * call to region_add that will actually modify the reserve
338  * map to add the specified range [f, t).  region_chg does
339  * not change the number of huge pages represented by the
340  * map.  However, if the existing regions in the map can not
341  * be expanded to represent the new range, a new file_region
342  * structure is added to the map as a placeholder.  This is
343  * so that the subsequent region_add call will have all the
344  * regions it needs and will not fail.
345  *
346  * Upon entry, region_chg will also examine the cache of region descriptors
347  * associated with the map.  If there are not enough descriptors cached, one
348  * will be allocated for the in progress add operation.
349  *
350  * Returns the number of huge pages that need to be added to the existing
351  * reservation map for the range [f, t).  This number is greater or equal to
352  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
353  * is needed and can not be allocated.
354  */
355 static long region_chg(struct resv_map *resv, long f, long t)
356 {
357 	struct list_head *head = &resv->regions;
358 	struct file_region *rg, *nrg = NULL;
359 	long chg = 0;
360 
361 retry:
362 	spin_lock(&resv->lock);
363 retry_locked:
364 	resv->adds_in_progress++;
365 
366 	/*
367 	 * Check for sufficient descriptors in the cache to accommodate
368 	 * the number of in progress add operations.
369 	 */
370 	if (resv->adds_in_progress > resv->region_cache_count) {
371 		struct file_region *trg;
372 
373 		VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
374 		/* Must drop lock to allocate a new descriptor. */
375 		resv->adds_in_progress--;
376 		spin_unlock(&resv->lock);
377 
378 		trg = kmalloc(sizeof(*trg), GFP_KERNEL);
379 		if (!trg) {
380 			kfree(nrg);
381 			return -ENOMEM;
382 		}
383 
384 		spin_lock(&resv->lock);
385 		list_add(&trg->link, &resv->region_cache);
386 		resv->region_cache_count++;
387 		goto retry_locked;
388 	}
389 
390 	/* Locate the region we are before or in. */
391 	list_for_each_entry(rg, head, link)
392 		if (f <= rg->to)
393 			break;
394 
395 	/* If we are below the current region then a new region is required.
396 	 * Subtle, allocate a new region at the position but make it zero
397 	 * size such that we can guarantee to record the reservation. */
398 	if (&rg->link == head || t < rg->from) {
399 		if (!nrg) {
400 			resv->adds_in_progress--;
401 			spin_unlock(&resv->lock);
402 			nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
403 			if (!nrg)
404 				return -ENOMEM;
405 
406 			nrg->from = f;
407 			nrg->to   = f;
408 			INIT_LIST_HEAD(&nrg->link);
409 			goto retry;
410 		}
411 
412 		list_add(&nrg->link, rg->link.prev);
413 		chg = t - f;
414 		goto out_nrg;
415 	}
416 
417 	/* Round our left edge to the current segment if it encloses us. */
418 	if (f > rg->from)
419 		f = rg->from;
420 	chg = t - f;
421 
422 	/* Check for and consume any regions we now overlap with. */
423 	list_for_each_entry(rg, rg->link.prev, link) {
424 		if (&rg->link == head)
425 			break;
426 		if (rg->from > t)
427 			goto out;
428 
429 		/* We overlap with this area, if it extends further than
430 		 * us then we must extend ourselves.  Account for its
431 		 * existing reservation. */
432 		if (rg->to > t) {
433 			chg += rg->to - t;
434 			t = rg->to;
435 		}
436 		chg -= rg->to - rg->from;
437 	}
438 
439 out:
440 	spin_unlock(&resv->lock);
441 	/*  We already know we raced and no longer need the new region */
442 	kfree(nrg);
443 	return chg;
444 out_nrg:
445 	spin_unlock(&resv->lock);
446 	return chg;
447 }
448 
449 /*
450  * Abort the in progress add operation.  The adds_in_progress field
451  * of the resv_map keeps track of the operations in progress between
452  * calls to region_chg and region_add.  Operations are sometimes
453  * aborted after the call to region_chg.  In such cases, region_abort
454  * is called to decrement the adds_in_progress counter.
455  *
456  * NOTE: The range arguments [f, t) are not needed or used in this
457  * routine.  They are kept to make reading the calling code easier as
458  * arguments will match the associated region_chg call.
459  */
460 static void region_abort(struct resv_map *resv, long f, long t)
461 {
462 	spin_lock(&resv->lock);
463 	VM_BUG_ON(!resv->region_cache_count);
464 	resv->adds_in_progress--;
465 	spin_unlock(&resv->lock);
466 }
467 
468 /*
469  * Delete the specified range [f, t) from the reserve map.  If the
470  * t parameter is LONG_MAX, this indicates that ALL regions after f
471  * should be deleted.  Locate the regions which intersect [f, t)
472  * and either trim, delete or split the existing regions.
473  *
474  * Returns the number of huge pages deleted from the reserve map.
475  * In the normal case, the return value is zero or more.  In the
476  * case where a region must be split, a new region descriptor must
477  * be allocated.  If the allocation fails, -ENOMEM will be returned.
478  * NOTE: If the parameter t == LONG_MAX, then we will never split
479  * a region and possibly return -ENOMEM.  Callers specifying
480  * t == LONG_MAX do not need to check for -ENOMEM error.
481  */
482 static long region_del(struct resv_map *resv, long f, long t)
483 {
484 	struct list_head *head = &resv->regions;
485 	struct file_region *rg, *trg;
486 	struct file_region *nrg = NULL;
487 	long del = 0;
488 
489 retry:
490 	spin_lock(&resv->lock);
491 	list_for_each_entry_safe(rg, trg, head, link) {
492 		/*
493 		 * Skip regions before the range to be deleted.  file_region
494 		 * ranges are normally of the form [from, to).  However, there
495 		 * may be a "placeholder" entry in the map which is of the form
496 		 * (from, to) with from == to.  Check for placeholder entries
497 		 * at the beginning of the range to be deleted.
498 		 */
499 		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
500 			continue;
501 
502 		if (rg->from >= t)
503 			break;
504 
505 		if (f > rg->from && t < rg->to) { /* Must split region */
506 			/*
507 			 * Check for an entry in the cache before dropping
508 			 * lock and attempting allocation.
509 			 */
510 			if (!nrg &&
511 			    resv->region_cache_count > resv->adds_in_progress) {
512 				nrg = list_first_entry(&resv->region_cache,
513 							struct file_region,
514 							link);
515 				list_del(&nrg->link);
516 				resv->region_cache_count--;
517 			}
518 
519 			if (!nrg) {
520 				spin_unlock(&resv->lock);
521 				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
522 				if (!nrg)
523 					return -ENOMEM;
524 				goto retry;
525 			}
526 
527 			del += t - f;
528 
529 			/* New entry for end of split region */
530 			nrg->from = t;
531 			nrg->to = rg->to;
532 			INIT_LIST_HEAD(&nrg->link);
533 
534 			/* Original entry is trimmed */
535 			rg->to = f;
536 
537 			list_add(&nrg->link, &rg->link);
538 			nrg = NULL;
539 			break;
540 		}
541 
542 		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
543 			del += rg->to - rg->from;
544 			list_del(&rg->link);
545 			kfree(rg);
546 			continue;
547 		}
548 
549 		if (f <= rg->from) {	/* Trim beginning of region */
550 			del += t - rg->from;
551 			rg->from = t;
552 		} else {		/* Trim end of region */
553 			del += rg->to - f;
554 			rg->to = f;
555 		}
556 	}
557 
558 	spin_unlock(&resv->lock);
559 	kfree(nrg);
560 	return del;
561 }
562 
563 /*
564  * A rare out of memory error was encountered which prevented removal of
565  * the reserve map region for a page.  The huge page itself was free'ed
566  * and removed from the page cache.  This routine will adjust the subpool
567  * usage count, and the global reserve count if needed.  By incrementing
568  * these counts, the reserve map entry which could not be deleted will
569  * appear as a "reserved" entry instead of simply dangling with incorrect
570  * counts.
571  */
572 void hugetlb_fix_reserve_counts(struct inode *inode)
573 {
574 	struct hugepage_subpool *spool = subpool_inode(inode);
575 	long rsv_adjust;
576 
577 	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
578 	if (rsv_adjust) {
579 		struct hstate *h = hstate_inode(inode);
580 
581 		hugetlb_acct_memory(h, 1);
582 	}
583 }
584 
585 /*
586  * Count and return the number of huge pages in the reserve map
587  * that intersect with the range [f, t).
588  */
589 static long region_count(struct resv_map *resv, long f, long t)
590 {
591 	struct list_head *head = &resv->regions;
592 	struct file_region *rg;
593 	long chg = 0;
594 
595 	spin_lock(&resv->lock);
596 	/* Locate each segment we overlap with, and count that overlap. */
597 	list_for_each_entry(rg, head, link) {
598 		long seg_from;
599 		long seg_to;
600 
601 		if (rg->to <= f)
602 			continue;
603 		if (rg->from >= t)
604 			break;
605 
606 		seg_from = max(rg->from, f);
607 		seg_to = min(rg->to, t);
608 
609 		chg += seg_to - seg_from;
610 	}
611 	spin_unlock(&resv->lock);
612 
613 	return chg;
614 }
615 
616 /*
617  * Convert the address within this vma to the page offset within
618  * the mapping, in pagecache page units; huge pages here.
619  */
620 static pgoff_t vma_hugecache_offset(struct hstate *h,
621 			struct vm_area_struct *vma, unsigned long address)
622 {
623 	return ((address - vma->vm_start) >> huge_page_shift(h)) +
624 			(vma->vm_pgoff >> huge_page_order(h));
625 }
626 
627 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
628 				     unsigned long address)
629 {
630 	return vma_hugecache_offset(hstate_vma(vma), vma, address);
631 }
632 EXPORT_SYMBOL_GPL(linear_hugepage_index);
633 
634 /*
635  * Return the size of the pages allocated when backing a VMA. In the majority
636  * cases this will be same size as used by the page table entries.
637  */
638 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
639 {
640 	struct hstate *hstate;
641 
642 	if (!is_vm_hugetlb_page(vma))
643 		return PAGE_SIZE;
644 
645 	hstate = hstate_vma(vma);
646 
647 	return 1UL << huge_page_shift(hstate);
648 }
649 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
650 
651 /*
652  * Return the page size being used by the MMU to back a VMA. In the majority
653  * of cases, the page size used by the kernel matches the MMU size. On
654  * architectures where it differs, an architecture-specific version of this
655  * function is required.
656  */
657 #ifndef vma_mmu_pagesize
658 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
659 {
660 	return vma_kernel_pagesize(vma);
661 }
662 #endif
663 
664 /*
665  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
666  * bits of the reservation map pointer, which are always clear due to
667  * alignment.
668  */
669 #define HPAGE_RESV_OWNER    (1UL << 0)
670 #define HPAGE_RESV_UNMAPPED (1UL << 1)
671 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
672 
673 /*
674  * These helpers are used to track how many pages are reserved for
675  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
676  * is guaranteed to have their future faults succeed.
677  *
678  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
679  * the reserve counters are updated with the hugetlb_lock held. It is safe
680  * to reset the VMA at fork() time as it is not in use yet and there is no
681  * chance of the global counters getting corrupted as a result of the values.
682  *
683  * The private mapping reservation is represented in a subtly different
684  * manner to a shared mapping.  A shared mapping has a region map associated
685  * with the underlying file, this region map represents the backing file
686  * pages which have ever had a reservation assigned which this persists even
687  * after the page is instantiated.  A private mapping has a region map
688  * associated with the original mmap which is attached to all VMAs which
689  * reference it, this region map represents those offsets which have consumed
690  * reservation ie. where pages have been instantiated.
691  */
692 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
693 {
694 	return (unsigned long)vma->vm_private_data;
695 }
696 
697 static void set_vma_private_data(struct vm_area_struct *vma,
698 							unsigned long value)
699 {
700 	vma->vm_private_data = (void *)value;
701 }
702 
703 struct resv_map *resv_map_alloc(void)
704 {
705 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
706 	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
707 
708 	if (!resv_map || !rg) {
709 		kfree(resv_map);
710 		kfree(rg);
711 		return NULL;
712 	}
713 
714 	kref_init(&resv_map->refs);
715 	spin_lock_init(&resv_map->lock);
716 	INIT_LIST_HEAD(&resv_map->regions);
717 
718 	resv_map->adds_in_progress = 0;
719 
720 	INIT_LIST_HEAD(&resv_map->region_cache);
721 	list_add(&rg->link, &resv_map->region_cache);
722 	resv_map->region_cache_count = 1;
723 
724 	return resv_map;
725 }
726 
727 void resv_map_release(struct kref *ref)
728 {
729 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
730 	struct list_head *head = &resv_map->region_cache;
731 	struct file_region *rg, *trg;
732 
733 	/* Clear out any active regions before we release the map. */
734 	region_del(resv_map, 0, LONG_MAX);
735 
736 	/* ... and any entries left in the cache */
737 	list_for_each_entry_safe(rg, trg, head, link) {
738 		list_del(&rg->link);
739 		kfree(rg);
740 	}
741 
742 	VM_BUG_ON(resv_map->adds_in_progress);
743 
744 	kfree(resv_map);
745 }
746 
747 static inline struct resv_map *inode_resv_map(struct inode *inode)
748 {
749 	return inode->i_mapping->private_data;
750 }
751 
752 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
753 {
754 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
755 	if (vma->vm_flags & VM_MAYSHARE) {
756 		struct address_space *mapping = vma->vm_file->f_mapping;
757 		struct inode *inode = mapping->host;
758 
759 		return inode_resv_map(inode);
760 
761 	} else {
762 		return (struct resv_map *)(get_vma_private_data(vma) &
763 							~HPAGE_RESV_MASK);
764 	}
765 }
766 
767 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
768 {
769 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
770 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
771 
772 	set_vma_private_data(vma, (get_vma_private_data(vma) &
773 				HPAGE_RESV_MASK) | (unsigned long)map);
774 }
775 
776 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
777 {
778 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
779 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
780 
781 	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
782 }
783 
784 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
785 {
786 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
787 
788 	return (get_vma_private_data(vma) & flag) != 0;
789 }
790 
791 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
792 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
793 {
794 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
795 	if (!(vma->vm_flags & VM_MAYSHARE))
796 		vma->vm_private_data = (void *)0;
797 }
798 
799 /* Returns true if the VMA has associated reserve pages */
800 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
801 {
802 	if (vma->vm_flags & VM_NORESERVE) {
803 		/*
804 		 * This address is already reserved by other process(chg == 0),
805 		 * so, we should decrement reserved count. Without decrementing,
806 		 * reserve count remains after releasing inode, because this
807 		 * allocated page will go into page cache and is regarded as
808 		 * coming from reserved pool in releasing step.  Currently, we
809 		 * don't have any other solution to deal with this situation
810 		 * properly, so add work-around here.
811 		 */
812 		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
813 			return true;
814 		else
815 			return false;
816 	}
817 
818 	/* Shared mappings always use reserves */
819 	if (vma->vm_flags & VM_MAYSHARE) {
820 		/*
821 		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
822 		 * be a region map for all pages.  The only situation where
823 		 * there is no region map is if a hole was punched via
824 		 * fallocate.  In this case, there really are no reverves to
825 		 * use.  This situation is indicated if chg != 0.
826 		 */
827 		if (chg)
828 			return false;
829 		else
830 			return true;
831 	}
832 
833 	/*
834 	 * Only the process that called mmap() has reserves for
835 	 * private mappings.
836 	 */
837 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
838 		/*
839 		 * Like the shared case above, a hole punch or truncate
840 		 * could have been performed on the private mapping.
841 		 * Examine the value of chg to determine if reserves
842 		 * actually exist or were previously consumed.
843 		 * Very Subtle - The value of chg comes from a previous
844 		 * call to vma_needs_reserves().  The reserve map for
845 		 * private mappings has different (opposite) semantics
846 		 * than that of shared mappings.  vma_needs_reserves()
847 		 * has already taken this difference in semantics into
848 		 * account.  Therefore, the meaning of chg is the same
849 		 * as in the shared case above.  Code could easily be
850 		 * combined, but keeping it separate draws attention to
851 		 * subtle differences.
852 		 */
853 		if (chg)
854 			return false;
855 		else
856 			return true;
857 	}
858 
859 	return false;
860 }
861 
862 static void enqueue_huge_page(struct hstate *h, struct page *page)
863 {
864 	int nid = page_to_nid(page);
865 	list_move(&page->lru, &h->hugepage_freelists[nid]);
866 	h->free_huge_pages++;
867 	h->free_huge_pages_node[nid]++;
868 }
869 
870 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
871 {
872 	struct page *page;
873 
874 	list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
875 		if (!PageHWPoison(page))
876 			break;
877 	/*
878 	 * if 'non-isolated free hugepage' not found on the list,
879 	 * the allocation fails.
880 	 */
881 	if (&h->hugepage_freelists[nid] == &page->lru)
882 		return NULL;
883 	list_move(&page->lru, &h->hugepage_activelist);
884 	set_page_refcounted(page);
885 	h->free_huge_pages--;
886 	h->free_huge_pages_node[nid]--;
887 	return page;
888 }
889 
890 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
891 		nodemask_t *nmask)
892 {
893 	unsigned int cpuset_mems_cookie;
894 	struct zonelist *zonelist;
895 	struct zone *zone;
896 	struct zoneref *z;
897 	int node = -1;
898 
899 	zonelist = node_zonelist(nid, gfp_mask);
900 
901 retry_cpuset:
902 	cpuset_mems_cookie = read_mems_allowed_begin();
903 	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
904 		struct page *page;
905 
906 		if (!cpuset_zone_allowed(zone, gfp_mask))
907 			continue;
908 		/*
909 		 * no need to ask again on the same node. Pool is node rather than
910 		 * zone aware
911 		 */
912 		if (zone_to_nid(zone) == node)
913 			continue;
914 		node = zone_to_nid(zone);
915 
916 		page = dequeue_huge_page_node_exact(h, node);
917 		if (page)
918 			return page;
919 	}
920 	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
921 		goto retry_cpuset;
922 
923 	return NULL;
924 }
925 
926 /* Movability of hugepages depends on migration support. */
927 static inline gfp_t htlb_alloc_mask(struct hstate *h)
928 {
929 	if (hugepage_migration_supported(h))
930 		return GFP_HIGHUSER_MOVABLE;
931 	else
932 		return GFP_HIGHUSER;
933 }
934 
935 static struct page *dequeue_huge_page_vma(struct hstate *h,
936 				struct vm_area_struct *vma,
937 				unsigned long address, int avoid_reserve,
938 				long chg)
939 {
940 	struct page *page;
941 	struct mempolicy *mpol;
942 	gfp_t gfp_mask;
943 	nodemask_t *nodemask;
944 	int nid;
945 
946 	/*
947 	 * A child process with MAP_PRIVATE mappings created by their parent
948 	 * have no page reserves. This check ensures that reservations are
949 	 * not "stolen". The child may still get SIGKILLed
950 	 */
951 	if (!vma_has_reserves(vma, chg) &&
952 			h->free_huge_pages - h->resv_huge_pages == 0)
953 		goto err;
954 
955 	/* If reserves cannot be used, ensure enough pages are in the pool */
956 	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
957 		goto err;
958 
959 	gfp_mask = htlb_alloc_mask(h);
960 	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
961 	page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
962 	if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
963 		SetPagePrivate(page);
964 		h->resv_huge_pages--;
965 	}
966 
967 	mpol_cond_put(mpol);
968 	return page;
969 
970 err:
971 	return NULL;
972 }
973 
974 /*
975  * common helper functions for hstate_next_node_to_{alloc|free}.
976  * We may have allocated or freed a huge page based on a different
977  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
978  * be outside of *nodes_allowed.  Ensure that we use an allowed
979  * node for alloc or free.
980  */
981 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
982 {
983 	nid = next_node_in(nid, *nodes_allowed);
984 	VM_BUG_ON(nid >= MAX_NUMNODES);
985 
986 	return nid;
987 }
988 
989 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
990 {
991 	if (!node_isset(nid, *nodes_allowed))
992 		nid = next_node_allowed(nid, nodes_allowed);
993 	return nid;
994 }
995 
996 /*
997  * returns the previously saved node ["this node"] from which to
998  * allocate a persistent huge page for the pool and advance the
999  * next node from which to allocate, handling wrap at end of node
1000  * mask.
1001  */
1002 static int hstate_next_node_to_alloc(struct hstate *h,
1003 					nodemask_t *nodes_allowed)
1004 {
1005 	int nid;
1006 
1007 	VM_BUG_ON(!nodes_allowed);
1008 
1009 	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1010 	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1011 
1012 	return nid;
1013 }
1014 
1015 /*
1016  * helper for free_pool_huge_page() - return the previously saved
1017  * node ["this node"] from which to free a huge page.  Advance the
1018  * next node id whether or not we find a free huge page to free so
1019  * that the next attempt to free addresses the next node.
1020  */
1021 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1022 {
1023 	int nid;
1024 
1025 	VM_BUG_ON(!nodes_allowed);
1026 
1027 	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1028 	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1029 
1030 	return nid;
1031 }
1032 
1033 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
1034 	for (nr_nodes = nodes_weight(*mask);				\
1035 		nr_nodes > 0 &&						\
1036 		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
1037 		nr_nodes--)
1038 
1039 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
1040 	for (nr_nodes = nodes_weight(*mask);				\
1041 		nr_nodes > 0 &&						\
1042 		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
1043 		nr_nodes--)
1044 
1045 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1046 static void destroy_compound_gigantic_page(struct page *page,
1047 					unsigned int order)
1048 {
1049 	int i;
1050 	int nr_pages = 1 << order;
1051 	struct page *p = page + 1;
1052 
1053 	atomic_set(compound_mapcount_ptr(page), 0);
1054 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1055 		clear_compound_head(p);
1056 		set_page_refcounted(p);
1057 	}
1058 
1059 	set_compound_order(page, 0);
1060 	__ClearPageHead(page);
1061 }
1062 
1063 static void free_gigantic_page(struct page *page, unsigned int order)
1064 {
1065 	free_contig_range(page_to_pfn(page), 1 << order);
1066 }
1067 
1068 static int __alloc_gigantic_page(unsigned long start_pfn,
1069 				unsigned long nr_pages, gfp_t gfp_mask)
1070 {
1071 	unsigned long end_pfn = start_pfn + nr_pages;
1072 	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
1073 				  gfp_mask);
1074 }
1075 
1076 static bool pfn_range_valid_gigantic(struct zone *z,
1077 			unsigned long start_pfn, unsigned long nr_pages)
1078 {
1079 	unsigned long i, end_pfn = start_pfn + nr_pages;
1080 	struct page *page;
1081 
1082 	for (i = start_pfn; i < end_pfn; i++) {
1083 		if (!pfn_valid(i))
1084 			return false;
1085 
1086 		page = pfn_to_page(i);
1087 
1088 		if (page_zone(page) != z)
1089 			return false;
1090 
1091 		if (PageReserved(page))
1092 			return false;
1093 
1094 		if (page_count(page) > 0)
1095 			return false;
1096 
1097 		if (PageHuge(page))
1098 			return false;
1099 	}
1100 
1101 	return true;
1102 }
1103 
1104 static bool zone_spans_last_pfn(const struct zone *zone,
1105 			unsigned long start_pfn, unsigned long nr_pages)
1106 {
1107 	unsigned long last_pfn = start_pfn + nr_pages - 1;
1108 	return zone_spans_pfn(zone, last_pfn);
1109 }
1110 
1111 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1112 		int nid, nodemask_t *nodemask)
1113 {
1114 	unsigned int order = huge_page_order(h);
1115 	unsigned long nr_pages = 1 << order;
1116 	unsigned long ret, pfn, flags;
1117 	struct zonelist *zonelist;
1118 	struct zone *zone;
1119 	struct zoneref *z;
1120 
1121 	zonelist = node_zonelist(nid, gfp_mask);
1122 	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nodemask) {
1123 		spin_lock_irqsave(&zone->lock, flags);
1124 
1125 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
1126 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
1127 			if (pfn_range_valid_gigantic(zone, pfn, nr_pages)) {
1128 				/*
1129 				 * We release the zone lock here because
1130 				 * alloc_contig_range() will also lock the zone
1131 				 * at some point. If there's an allocation
1132 				 * spinning on this lock, it may win the race
1133 				 * and cause alloc_contig_range() to fail...
1134 				 */
1135 				spin_unlock_irqrestore(&zone->lock, flags);
1136 				ret = __alloc_gigantic_page(pfn, nr_pages, gfp_mask);
1137 				if (!ret)
1138 					return pfn_to_page(pfn);
1139 				spin_lock_irqsave(&zone->lock, flags);
1140 			}
1141 			pfn += nr_pages;
1142 		}
1143 
1144 		spin_unlock_irqrestore(&zone->lock, flags);
1145 	}
1146 
1147 	return NULL;
1148 }
1149 
1150 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1151 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1152 
1153 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1154 static inline bool gigantic_page_supported(void) { return false; }
1155 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1156 		int nid, nodemask_t *nodemask) { return NULL; }
1157 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1158 static inline void destroy_compound_gigantic_page(struct page *page,
1159 						unsigned int order) { }
1160 #endif
1161 
1162 static void update_and_free_page(struct hstate *h, struct page *page)
1163 {
1164 	int i;
1165 
1166 	if (hstate_is_gigantic(h) && !gigantic_page_supported())
1167 		return;
1168 
1169 	h->nr_huge_pages--;
1170 	h->nr_huge_pages_node[page_to_nid(page)]--;
1171 	for (i = 0; i < pages_per_huge_page(h); i++) {
1172 		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1173 				1 << PG_referenced | 1 << PG_dirty |
1174 				1 << PG_active | 1 << PG_private |
1175 				1 << PG_writeback);
1176 	}
1177 	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1178 	set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1179 	set_page_refcounted(page);
1180 	if (hstate_is_gigantic(h)) {
1181 		destroy_compound_gigantic_page(page, huge_page_order(h));
1182 		free_gigantic_page(page, huge_page_order(h));
1183 	} else {
1184 		__free_pages(page, huge_page_order(h));
1185 	}
1186 }
1187 
1188 struct hstate *size_to_hstate(unsigned long size)
1189 {
1190 	struct hstate *h;
1191 
1192 	for_each_hstate(h) {
1193 		if (huge_page_size(h) == size)
1194 			return h;
1195 	}
1196 	return NULL;
1197 }
1198 
1199 /*
1200  * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1201  * to hstate->hugepage_activelist.)
1202  *
1203  * This function can be called for tail pages, but never returns true for them.
1204  */
1205 bool page_huge_active(struct page *page)
1206 {
1207 	VM_BUG_ON_PAGE(!PageHuge(page), page);
1208 	return PageHead(page) && PagePrivate(&page[1]);
1209 }
1210 
1211 /* never called for tail page */
1212 static void set_page_huge_active(struct page *page)
1213 {
1214 	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1215 	SetPagePrivate(&page[1]);
1216 }
1217 
1218 static void clear_page_huge_active(struct page *page)
1219 {
1220 	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1221 	ClearPagePrivate(&page[1]);
1222 }
1223 
1224 /*
1225  * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1226  * code
1227  */
1228 static inline bool PageHugeTemporary(struct page *page)
1229 {
1230 	if (!PageHuge(page))
1231 		return false;
1232 
1233 	return (unsigned long)page[2].mapping == -1U;
1234 }
1235 
1236 static inline void SetPageHugeTemporary(struct page *page)
1237 {
1238 	page[2].mapping = (void *)-1U;
1239 }
1240 
1241 static inline void ClearPageHugeTemporary(struct page *page)
1242 {
1243 	page[2].mapping = NULL;
1244 }
1245 
1246 void free_huge_page(struct page *page)
1247 {
1248 	/*
1249 	 * Can't pass hstate in here because it is called from the
1250 	 * compound page destructor.
1251 	 */
1252 	struct hstate *h = page_hstate(page);
1253 	int nid = page_to_nid(page);
1254 	struct hugepage_subpool *spool =
1255 		(struct hugepage_subpool *)page_private(page);
1256 	bool restore_reserve;
1257 
1258 	set_page_private(page, 0);
1259 	page->mapping = NULL;
1260 	VM_BUG_ON_PAGE(page_count(page), page);
1261 	VM_BUG_ON_PAGE(page_mapcount(page), page);
1262 	restore_reserve = PagePrivate(page);
1263 	ClearPagePrivate(page);
1264 
1265 	/*
1266 	 * A return code of zero implies that the subpool will be under its
1267 	 * minimum size if the reservation is not restored after page is free.
1268 	 * Therefore, force restore_reserve operation.
1269 	 */
1270 	if (hugepage_subpool_put_pages(spool, 1) == 0)
1271 		restore_reserve = true;
1272 
1273 	spin_lock(&hugetlb_lock);
1274 	clear_page_huge_active(page);
1275 	hugetlb_cgroup_uncharge_page(hstate_index(h),
1276 				     pages_per_huge_page(h), page);
1277 	if (restore_reserve)
1278 		h->resv_huge_pages++;
1279 
1280 	if (PageHugeTemporary(page)) {
1281 		list_del(&page->lru);
1282 		ClearPageHugeTemporary(page);
1283 		update_and_free_page(h, page);
1284 	} else if (h->surplus_huge_pages_node[nid]) {
1285 		/* remove the page from active list */
1286 		list_del(&page->lru);
1287 		update_and_free_page(h, page);
1288 		h->surplus_huge_pages--;
1289 		h->surplus_huge_pages_node[nid]--;
1290 	} else {
1291 		arch_clear_hugepage_flags(page);
1292 		enqueue_huge_page(h, page);
1293 	}
1294 	spin_unlock(&hugetlb_lock);
1295 }
1296 
1297 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1298 {
1299 	INIT_LIST_HEAD(&page->lru);
1300 	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1301 	spin_lock(&hugetlb_lock);
1302 	set_hugetlb_cgroup(page, NULL);
1303 	h->nr_huge_pages++;
1304 	h->nr_huge_pages_node[nid]++;
1305 	spin_unlock(&hugetlb_lock);
1306 }
1307 
1308 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1309 {
1310 	int i;
1311 	int nr_pages = 1 << order;
1312 	struct page *p = page + 1;
1313 
1314 	/* we rely on prep_new_huge_page to set the destructor */
1315 	set_compound_order(page, order);
1316 	__ClearPageReserved(page);
1317 	__SetPageHead(page);
1318 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1319 		/*
1320 		 * For gigantic hugepages allocated through bootmem at
1321 		 * boot, it's safer to be consistent with the not-gigantic
1322 		 * hugepages and clear the PG_reserved bit from all tail pages
1323 		 * too.  Otherwse drivers using get_user_pages() to access tail
1324 		 * pages may get the reference counting wrong if they see
1325 		 * PG_reserved set on a tail page (despite the head page not
1326 		 * having PG_reserved set).  Enforcing this consistency between
1327 		 * head and tail pages allows drivers to optimize away a check
1328 		 * on the head page when they need know if put_page() is needed
1329 		 * after get_user_pages().
1330 		 */
1331 		__ClearPageReserved(p);
1332 		set_page_count(p, 0);
1333 		set_compound_head(p, page);
1334 	}
1335 	atomic_set(compound_mapcount_ptr(page), -1);
1336 }
1337 
1338 /*
1339  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1340  * transparent huge pages.  See the PageTransHuge() documentation for more
1341  * details.
1342  */
1343 int PageHuge(struct page *page)
1344 {
1345 	if (!PageCompound(page))
1346 		return 0;
1347 
1348 	page = compound_head(page);
1349 	return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1350 }
1351 EXPORT_SYMBOL_GPL(PageHuge);
1352 
1353 /*
1354  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1355  * normal or transparent huge pages.
1356  */
1357 int PageHeadHuge(struct page *page_head)
1358 {
1359 	if (!PageHead(page_head))
1360 		return 0;
1361 
1362 	return get_compound_page_dtor(page_head) == free_huge_page;
1363 }
1364 
1365 pgoff_t __basepage_index(struct page *page)
1366 {
1367 	struct page *page_head = compound_head(page);
1368 	pgoff_t index = page_index(page_head);
1369 	unsigned long compound_idx;
1370 
1371 	if (!PageHuge(page_head))
1372 		return page_index(page);
1373 
1374 	if (compound_order(page_head) >= MAX_ORDER)
1375 		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1376 	else
1377 		compound_idx = page - page_head;
1378 
1379 	return (index << compound_order(page_head)) + compound_idx;
1380 }
1381 
1382 static struct page *alloc_buddy_huge_page(struct hstate *h,
1383 		gfp_t gfp_mask, int nid, nodemask_t *nmask)
1384 {
1385 	int order = huge_page_order(h);
1386 	struct page *page;
1387 
1388 	gfp_mask |= __GFP_COMP|__GFP_RETRY_MAYFAIL|__GFP_NOWARN;
1389 	if (nid == NUMA_NO_NODE)
1390 		nid = numa_mem_id();
1391 	page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1392 	if (page)
1393 		__count_vm_event(HTLB_BUDDY_PGALLOC);
1394 	else
1395 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1396 
1397 	return page;
1398 }
1399 
1400 /*
1401  * Common helper to allocate a fresh hugetlb page. All specific allocators
1402  * should use this function to get new hugetlb pages
1403  */
1404 static struct page *alloc_fresh_huge_page(struct hstate *h,
1405 		gfp_t gfp_mask, int nid, nodemask_t *nmask)
1406 {
1407 	struct page *page;
1408 
1409 	if (hstate_is_gigantic(h))
1410 		page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1411 	else
1412 		page = alloc_buddy_huge_page(h, gfp_mask,
1413 				nid, nmask);
1414 	if (!page)
1415 		return NULL;
1416 
1417 	if (hstate_is_gigantic(h))
1418 		prep_compound_gigantic_page(page, huge_page_order(h));
1419 	prep_new_huge_page(h, page, page_to_nid(page));
1420 
1421 	return page;
1422 }
1423 
1424 /*
1425  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1426  * manner.
1427  */
1428 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1429 {
1430 	struct page *page;
1431 	int nr_nodes, node;
1432 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1433 
1434 	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1435 		page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed);
1436 		if (page)
1437 			break;
1438 	}
1439 
1440 	if (!page)
1441 		return 0;
1442 
1443 	put_page(page); /* free it into the hugepage allocator */
1444 
1445 	return 1;
1446 }
1447 
1448 /*
1449  * Free huge page from pool from next node to free.
1450  * Attempt to keep persistent huge pages more or less
1451  * balanced over allowed nodes.
1452  * Called with hugetlb_lock locked.
1453  */
1454 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1455 							 bool acct_surplus)
1456 {
1457 	int nr_nodes, node;
1458 	int ret = 0;
1459 
1460 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1461 		/*
1462 		 * If we're returning unused surplus pages, only examine
1463 		 * nodes with surplus pages.
1464 		 */
1465 		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1466 		    !list_empty(&h->hugepage_freelists[node])) {
1467 			struct page *page =
1468 				list_entry(h->hugepage_freelists[node].next,
1469 					  struct page, lru);
1470 			list_del(&page->lru);
1471 			h->free_huge_pages--;
1472 			h->free_huge_pages_node[node]--;
1473 			if (acct_surplus) {
1474 				h->surplus_huge_pages--;
1475 				h->surplus_huge_pages_node[node]--;
1476 			}
1477 			update_and_free_page(h, page);
1478 			ret = 1;
1479 			break;
1480 		}
1481 	}
1482 
1483 	return ret;
1484 }
1485 
1486 /*
1487  * Dissolve a given free hugepage into free buddy pages. This function does
1488  * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the
1489  * number of free hugepages would be reduced below the number of reserved
1490  * hugepages.
1491  */
1492 int dissolve_free_huge_page(struct page *page)
1493 {
1494 	int rc = 0;
1495 
1496 	spin_lock(&hugetlb_lock);
1497 	if (PageHuge(page) && !page_count(page)) {
1498 		struct page *head = compound_head(page);
1499 		struct hstate *h = page_hstate(head);
1500 		int nid = page_to_nid(head);
1501 		if (h->free_huge_pages - h->resv_huge_pages == 0) {
1502 			rc = -EBUSY;
1503 			goto out;
1504 		}
1505 		/*
1506 		 * Move PageHWPoison flag from head page to the raw error page,
1507 		 * which makes any subpages rather than the error page reusable.
1508 		 */
1509 		if (PageHWPoison(head) && page != head) {
1510 			SetPageHWPoison(page);
1511 			ClearPageHWPoison(head);
1512 		}
1513 		list_del(&head->lru);
1514 		h->free_huge_pages--;
1515 		h->free_huge_pages_node[nid]--;
1516 		h->max_huge_pages--;
1517 		update_and_free_page(h, head);
1518 	}
1519 out:
1520 	spin_unlock(&hugetlb_lock);
1521 	return rc;
1522 }
1523 
1524 /*
1525  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1526  * make specified memory blocks removable from the system.
1527  * Note that this will dissolve a free gigantic hugepage completely, if any
1528  * part of it lies within the given range.
1529  * Also note that if dissolve_free_huge_page() returns with an error, all
1530  * free hugepages that were dissolved before that error are lost.
1531  */
1532 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1533 {
1534 	unsigned long pfn;
1535 	struct page *page;
1536 	int rc = 0;
1537 
1538 	if (!hugepages_supported())
1539 		return rc;
1540 
1541 	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1542 		page = pfn_to_page(pfn);
1543 		if (PageHuge(page) && !page_count(page)) {
1544 			rc = dissolve_free_huge_page(page);
1545 			if (rc)
1546 				break;
1547 		}
1548 	}
1549 
1550 	return rc;
1551 }
1552 
1553 /*
1554  * Allocates a fresh surplus page from the page allocator.
1555  */
1556 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1557 		int nid, nodemask_t *nmask)
1558 {
1559 	struct page *page = NULL;
1560 
1561 	if (hstate_is_gigantic(h))
1562 		return NULL;
1563 
1564 	spin_lock(&hugetlb_lock);
1565 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1566 		goto out_unlock;
1567 	spin_unlock(&hugetlb_lock);
1568 
1569 	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask);
1570 	if (!page)
1571 		return NULL;
1572 
1573 	spin_lock(&hugetlb_lock);
1574 	/*
1575 	 * We could have raced with the pool size change.
1576 	 * Double check that and simply deallocate the new page
1577 	 * if we would end up overcommiting the surpluses. Abuse
1578 	 * temporary page to workaround the nasty free_huge_page
1579 	 * codeflow
1580 	 */
1581 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1582 		SetPageHugeTemporary(page);
1583 		put_page(page);
1584 		page = NULL;
1585 	} else {
1586 		h->surplus_huge_pages++;
1587 		h->surplus_huge_pages_node[page_to_nid(page)]++;
1588 	}
1589 
1590 out_unlock:
1591 	spin_unlock(&hugetlb_lock);
1592 
1593 	return page;
1594 }
1595 
1596 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1597 		int nid, nodemask_t *nmask)
1598 {
1599 	struct page *page;
1600 
1601 	if (hstate_is_gigantic(h))
1602 		return NULL;
1603 
1604 	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask);
1605 	if (!page)
1606 		return NULL;
1607 
1608 	/*
1609 	 * We do not account these pages as surplus because they are only
1610 	 * temporary and will be released properly on the last reference
1611 	 */
1612 	SetPageHugeTemporary(page);
1613 
1614 	return page;
1615 }
1616 
1617 /*
1618  * Use the VMA's mpolicy to allocate a huge page from the buddy.
1619  */
1620 static
1621 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1622 		struct vm_area_struct *vma, unsigned long addr)
1623 {
1624 	struct page *page;
1625 	struct mempolicy *mpol;
1626 	gfp_t gfp_mask = htlb_alloc_mask(h);
1627 	int nid;
1628 	nodemask_t *nodemask;
1629 
1630 	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1631 	page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1632 	mpol_cond_put(mpol);
1633 
1634 	return page;
1635 }
1636 
1637 /* page migration callback function */
1638 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1639 {
1640 	gfp_t gfp_mask = htlb_alloc_mask(h);
1641 	struct page *page = NULL;
1642 
1643 	if (nid != NUMA_NO_NODE)
1644 		gfp_mask |= __GFP_THISNODE;
1645 
1646 	spin_lock(&hugetlb_lock);
1647 	if (h->free_huge_pages - h->resv_huge_pages > 0)
1648 		page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL);
1649 	spin_unlock(&hugetlb_lock);
1650 
1651 	if (!page)
1652 		page = alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
1653 
1654 	return page;
1655 }
1656 
1657 /* page migration callback function */
1658 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1659 		nodemask_t *nmask)
1660 {
1661 	gfp_t gfp_mask = htlb_alloc_mask(h);
1662 
1663 	spin_lock(&hugetlb_lock);
1664 	if (h->free_huge_pages - h->resv_huge_pages > 0) {
1665 		struct page *page;
1666 
1667 		page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1668 		if (page) {
1669 			spin_unlock(&hugetlb_lock);
1670 			return page;
1671 		}
1672 	}
1673 	spin_unlock(&hugetlb_lock);
1674 
1675 	return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
1676 }
1677 
1678 /* mempolicy aware migration callback */
1679 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1680 		unsigned long address)
1681 {
1682 	struct mempolicy *mpol;
1683 	nodemask_t *nodemask;
1684 	struct page *page;
1685 	gfp_t gfp_mask;
1686 	int node;
1687 
1688 	gfp_mask = htlb_alloc_mask(h);
1689 	node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1690 	page = alloc_huge_page_nodemask(h, node, nodemask);
1691 	mpol_cond_put(mpol);
1692 
1693 	return page;
1694 }
1695 
1696 /*
1697  * Increase the hugetlb pool such that it can accommodate a reservation
1698  * of size 'delta'.
1699  */
1700 static int gather_surplus_pages(struct hstate *h, int delta)
1701 {
1702 	struct list_head surplus_list;
1703 	struct page *page, *tmp;
1704 	int ret, i;
1705 	int needed, allocated;
1706 	bool alloc_ok = true;
1707 
1708 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1709 	if (needed <= 0) {
1710 		h->resv_huge_pages += delta;
1711 		return 0;
1712 	}
1713 
1714 	allocated = 0;
1715 	INIT_LIST_HEAD(&surplus_list);
1716 
1717 	ret = -ENOMEM;
1718 retry:
1719 	spin_unlock(&hugetlb_lock);
1720 	for (i = 0; i < needed; i++) {
1721 		page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
1722 				NUMA_NO_NODE, NULL);
1723 		if (!page) {
1724 			alloc_ok = false;
1725 			break;
1726 		}
1727 		list_add(&page->lru, &surplus_list);
1728 		cond_resched();
1729 	}
1730 	allocated += i;
1731 
1732 	/*
1733 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
1734 	 * because either resv_huge_pages or free_huge_pages may have changed.
1735 	 */
1736 	spin_lock(&hugetlb_lock);
1737 	needed = (h->resv_huge_pages + delta) -
1738 			(h->free_huge_pages + allocated);
1739 	if (needed > 0) {
1740 		if (alloc_ok)
1741 			goto retry;
1742 		/*
1743 		 * We were not able to allocate enough pages to
1744 		 * satisfy the entire reservation so we free what
1745 		 * we've allocated so far.
1746 		 */
1747 		goto free;
1748 	}
1749 	/*
1750 	 * The surplus_list now contains _at_least_ the number of extra pages
1751 	 * needed to accommodate the reservation.  Add the appropriate number
1752 	 * of pages to the hugetlb pool and free the extras back to the buddy
1753 	 * allocator.  Commit the entire reservation here to prevent another
1754 	 * process from stealing the pages as they are added to the pool but
1755 	 * before they are reserved.
1756 	 */
1757 	needed += allocated;
1758 	h->resv_huge_pages += delta;
1759 	ret = 0;
1760 
1761 	/* Free the needed pages to the hugetlb pool */
1762 	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1763 		if ((--needed) < 0)
1764 			break;
1765 		/*
1766 		 * This page is now managed by the hugetlb allocator and has
1767 		 * no users -- drop the buddy allocator's reference.
1768 		 */
1769 		put_page_testzero(page);
1770 		VM_BUG_ON_PAGE(page_count(page), page);
1771 		enqueue_huge_page(h, page);
1772 	}
1773 free:
1774 	spin_unlock(&hugetlb_lock);
1775 
1776 	/* Free unnecessary surplus pages to the buddy allocator */
1777 	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1778 		put_page(page);
1779 	spin_lock(&hugetlb_lock);
1780 
1781 	return ret;
1782 }
1783 
1784 /*
1785  * This routine has two main purposes:
1786  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1787  *    in unused_resv_pages.  This corresponds to the prior adjustments made
1788  *    to the associated reservation map.
1789  * 2) Free any unused surplus pages that may have been allocated to satisfy
1790  *    the reservation.  As many as unused_resv_pages may be freed.
1791  *
1792  * Called with hugetlb_lock held.  However, the lock could be dropped (and
1793  * reacquired) during calls to cond_resched_lock.  Whenever dropping the lock,
1794  * we must make sure nobody else can claim pages we are in the process of
1795  * freeing.  Do this by ensuring resv_huge_page always is greater than the
1796  * number of huge pages we plan to free when dropping the lock.
1797  */
1798 static void return_unused_surplus_pages(struct hstate *h,
1799 					unsigned long unused_resv_pages)
1800 {
1801 	unsigned long nr_pages;
1802 
1803 	/* Cannot return gigantic pages currently */
1804 	if (hstate_is_gigantic(h))
1805 		goto out;
1806 
1807 	/*
1808 	 * Part (or even all) of the reservation could have been backed
1809 	 * by pre-allocated pages. Only free surplus pages.
1810 	 */
1811 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1812 
1813 	/*
1814 	 * We want to release as many surplus pages as possible, spread
1815 	 * evenly across all nodes with memory. Iterate across these nodes
1816 	 * until we can no longer free unreserved surplus pages. This occurs
1817 	 * when the nodes with surplus pages have no free pages.
1818 	 * free_pool_huge_page() will balance the the freed pages across the
1819 	 * on-line nodes with memory and will handle the hstate accounting.
1820 	 *
1821 	 * Note that we decrement resv_huge_pages as we free the pages.  If
1822 	 * we drop the lock, resv_huge_pages will still be sufficiently large
1823 	 * to cover subsequent pages we may free.
1824 	 */
1825 	while (nr_pages--) {
1826 		h->resv_huge_pages--;
1827 		unused_resv_pages--;
1828 		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1829 			goto out;
1830 		cond_resched_lock(&hugetlb_lock);
1831 	}
1832 
1833 out:
1834 	/* Fully uncommit the reservation */
1835 	h->resv_huge_pages -= unused_resv_pages;
1836 }
1837 
1838 
1839 /*
1840  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1841  * are used by the huge page allocation routines to manage reservations.
1842  *
1843  * vma_needs_reservation is called to determine if the huge page at addr
1844  * within the vma has an associated reservation.  If a reservation is
1845  * needed, the value 1 is returned.  The caller is then responsible for
1846  * managing the global reservation and subpool usage counts.  After
1847  * the huge page has been allocated, vma_commit_reservation is called
1848  * to add the page to the reservation map.  If the page allocation fails,
1849  * the reservation must be ended instead of committed.  vma_end_reservation
1850  * is called in such cases.
1851  *
1852  * In the normal case, vma_commit_reservation returns the same value
1853  * as the preceding vma_needs_reservation call.  The only time this
1854  * is not the case is if a reserve map was changed between calls.  It
1855  * is the responsibility of the caller to notice the difference and
1856  * take appropriate action.
1857  *
1858  * vma_add_reservation is used in error paths where a reservation must
1859  * be restored when a newly allocated huge page must be freed.  It is
1860  * to be called after calling vma_needs_reservation to determine if a
1861  * reservation exists.
1862  */
1863 enum vma_resv_mode {
1864 	VMA_NEEDS_RESV,
1865 	VMA_COMMIT_RESV,
1866 	VMA_END_RESV,
1867 	VMA_ADD_RESV,
1868 };
1869 static long __vma_reservation_common(struct hstate *h,
1870 				struct vm_area_struct *vma, unsigned long addr,
1871 				enum vma_resv_mode mode)
1872 {
1873 	struct resv_map *resv;
1874 	pgoff_t idx;
1875 	long ret;
1876 
1877 	resv = vma_resv_map(vma);
1878 	if (!resv)
1879 		return 1;
1880 
1881 	idx = vma_hugecache_offset(h, vma, addr);
1882 	switch (mode) {
1883 	case VMA_NEEDS_RESV:
1884 		ret = region_chg(resv, idx, idx + 1);
1885 		break;
1886 	case VMA_COMMIT_RESV:
1887 		ret = region_add(resv, idx, idx + 1);
1888 		break;
1889 	case VMA_END_RESV:
1890 		region_abort(resv, idx, idx + 1);
1891 		ret = 0;
1892 		break;
1893 	case VMA_ADD_RESV:
1894 		if (vma->vm_flags & VM_MAYSHARE)
1895 			ret = region_add(resv, idx, idx + 1);
1896 		else {
1897 			region_abort(resv, idx, idx + 1);
1898 			ret = region_del(resv, idx, idx + 1);
1899 		}
1900 		break;
1901 	default:
1902 		BUG();
1903 	}
1904 
1905 	if (vma->vm_flags & VM_MAYSHARE)
1906 		return ret;
1907 	else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1908 		/*
1909 		 * In most cases, reserves always exist for private mappings.
1910 		 * However, a file associated with mapping could have been
1911 		 * hole punched or truncated after reserves were consumed.
1912 		 * As subsequent fault on such a range will not use reserves.
1913 		 * Subtle - The reserve map for private mappings has the
1914 		 * opposite meaning than that of shared mappings.  If NO
1915 		 * entry is in the reserve map, it means a reservation exists.
1916 		 * If an entry exists in the reserve map, it means the
1917 		 * reservation has already been consumed.  As a result, the
1918 		 * return value of this routine is the opposite of the
1919 		 * value returned from reserve map manipulation routines above.
1920 		 */
1921 		if (ret)
1922 			return 0;
1923 		else
1924 			return 1;
1925 	}
1926 	else
1927 		return ret < 0 ? ret : 0;
1928 }
1929 
1930 static long vma_needs_reservation(struct hstate *h,
1931 			struct vm_area_struct *vma, unsigned long addr)
1932 {
1933 	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1934 }
1935 
1936 static long vma_commit_reservation(struct hstate *h,
1937 			struct vm_area_struct *vma, unsigned long addr)
1938 {
1939 	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1940 }
1941 
1942 static void vma_end_reservation(struct hstate *h,
1943 			struct vm_area_struct *vma, unsigned long addr)
1944 {
1945 	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1946 }
1947 
1948 static long vma_add_reservation(struct hstate *h,
1949 			struct vm_area_struct *vma, unsigned long addr)
1950 {
1951 	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
1952 }
1953 
1954 /*
1955  * This routine is called to restore a reservation on error paths.  In the
1956  * specific error paths, a huge page was allocated (via alloc_huge_page)
1957  * and is about to be freed.  If a reservation for the page existed,
1958  * alloc_huge_page would have consumed the reservation and set PagePrivate
1959  * in the newly allocated page.  When the page is freed via free_huge_page,
1960  * the global reservation count will be incremented if PagePrivate is set.
1961  * However, free_huge_page can not adjust the reserve map.  Adjust the
1962  * reserve map here to be consistent with global reserve count adjustments
1963  * to be made by free_huge_page.
1964  */
1965 static void restore_reserve_on_error(struct hstate *h,
1966 			struct vm_area_struct *vma, unsigned long address,
1967 			struct page *page)
1968 {
1969 	if (unlikely(PagePrivate(page))) {
1970 		long rc = vma_needs_reservation(h, vma, address);
1971 
1972 		if (unlikely(rc < 0)) {
1973 			/*
1974 			 * Rare out of memory condition in reserve map
1975 			 * manipulation.  Clear PagePrivate so that
1976 			 * global reserve count will not be incremented
1977 			 * by free_huge_page.  This will make it appear
1978 			 * as though the reservation for this page was
1979 			 * consumed.  This may prevent the task from
1980 			 * faulting in the page at a later time.  This
1981 			 * is better than inconsistent global huge page
1982 			 * accounting of reserve counts.
1983 			 */
1984 			ClearPagePrivate(page);
1985 		} else if (rc) {
1986 			rc = vma_add_reservation(h, vma, address);
1987 			if (unlikely(rc < 0))
1988 				/*
1989 				 * See above comment about rare out of
1990 				 * memory condition.
1991 				 */
1992 				ClearPagePrivate(page);
1993 		} else
1994 			vma_end_reservation(h, vma, address);
1995 	}
1996 }
1997 
1998 struct page *alloc_huge_page(struct vm_area_struct *vma,
1999 				    unsigned long addr, int avoid_reserve)
2000 {
2001 	struct hugepage_subpool *spool = subpool_vma(vma);
2002 	struct hstate *h = hstate_vma(vma);
2003 	struct page *page;
2004 	long map_chg, map_commit;
2005 	long gbl_chg;
2006 	int ret, idx;
2007 	struct hugetlb_cgroup *h_cg;
2008 
2009 	idx = hstate_index(h);
2010 	/*
2011 	 * Examine the region/reserve map to determine if the process
2012 	 * has a reservation for the page to be allocated.  A return
2013 	 * code of zero indicates a reservation exists (no change).
2014 	 */
2015 	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2016 	if (map_chg < 0)
2017 		return ERR_PTR(-ENOMEM);
2018 
2019 	/*
2020 	 * Processes that did not create the mapping will have no
2021 	 * reserves as indicated by the region/reserve map. Check
2022 	 * that the allocation will not exceed the subpool limit.
2023 	 * Allocations for MAP_NORESERVE mappings also need to be
2024 	 * checked against any subpool limit.
2025 	 */
2026 	if (map_chg || avoid_reserve) {
2027 		gbl_chg = hugepage_subpool_get_pages(spool, 1);
2028 		if (gbl_chg < 0) {
2029 			vma_end_reservation(h, vma, addr);
2030 			return ERR_PTR(-ENOSPC);
2031 		}
2032 
2033 		/*
2034 		 * Even though there was no reservation in the region/reserve
2035 		 * map, there could be reservations associated with the
2036 		 * subpool that can be used.  This would be indicated if the
2037 		 * return value of hugepage_subpool_get_pages() is zero.
2038 		 * However, if avoid_reserve is specified we still avoid even
2039 		 * the subpool reservations.
2040 		 */
2041 		if (avoid_reserve)
2042 			gbl_chg = 1;
2043 	}
2044 
2045 	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2046 	if (ret)
2047 		goto out_subpool_put;
2048 
2049 	spin_lock(&hugetlb_lock);
2050 	/*
2051 	 * glb_chg is passed to indicate whether or not a page must be taken
2052 	 * from the global free pool (global change).  gbl_chg == 0 indicates
2053 	 * a reservation exists for the allocation.
2054 	 */
2055 	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2056 	if (!page) {
2057 		spin_unlock(&hugetlb_lock);
2058 		page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2059 		if (!page)
2060 			goto out_uncharge_cgroup;
2061 		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2062 			SetPagePrivate(page);
2063 			h->resv_huge_pages--;
2064 		}
2065 		spin_lock(&hugetlb_lock);
2066 		list_move(&page->lru, &h->hugepage_activelist);
2067 		/* Fall through */
2068 	}
2069 	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2070 	spin_unlock(&hugetlb_lock);
2071 
2072 	set_page_private(page, (unsigned long)spool);
2073 
2074 	map_commit = vma_commit_reservation(h, vma, addr);
2075 	if (unlikely(map_chg > map_commit)) {
2076 		/*
2077 		 * The page was added to the reservation map between
2078 		 * vma_needs_reservation and vma_commit_reservation.
2079 		 * This indicates a race with hugetlb_reserve_pages.
2080 		 * Adjust for the subpool count incremented above AND
2081 		 * in hugetlb_reserve_pages for the same page.  Also,
2082 		 * the reservation count added in hugetlb_reserve_pages
2083 		 * no longer applies.
2084 		 */
2085 		long rsv_adjust;
2086 
2087 		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2088 		hugetlb_acct_memory(h, -rsv_adjust);
2089 	}
2090 	return page;
2091 
2092 out_uncharge_cgroup:
2093 	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2094 out_subpool_put:
2095 	if (map_chg || avoid_reserve)
2096 		hugepage_subpool_put_pages(spool, 1);
2097 	vma_end_reservation(h, vma, addr);
2098 	return ERR_PTR(-ENOSPC);
2099 }
2100 
2101 int alloc_bootmem_huge_page(struct hstate *h)
2102 	__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2103 int __alloc_bootmem_huge_page(struct hstate *h)
2104 {
2105 	struct huge_bootmem_page *m;
2106 	int nr_nodes, node;
2107 
2108 	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2109 		void *addr;
2110 
2111 		addr = memblock_virt_alloc_try_nid_nopanic(
2112 				huge_page_size(h), huge_page_size(h),
2113 				0, BOOTMEM_ALLOC_ACCESSIBLE, node);
2114 		if (addr) {
2115 			/*
2116 			 * Use the beginning of the huge page to store the
2117 			 * huge_bootmem_page struct (until gather_bootmem
2118 			 * puts them into the mem_map).
2119 			 */
2120 			m = addr;
2121 			goto found;
2122 		}
2123 	}
2124 	return 0;
2125 
2126 found:
2127 	BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2128 	/* Put them into a private list first because mem_map is not up yet */
2129 	list_add(&m->list, &huge_boot_pages);
2130 	m->hstate = h;
2131 	return 1;
2132 }
2133 
2134 static void __init prep_compound_huge_page(struct page *page,
2135 		unsigned int order)
2136 {
2137 	if (unlikely(order > (MAX_ORDER - 1)))
2138 		prep_compound_gigantic_page(page, order);
2139 	else
2140 		prep_compound_page(page, order);
2141 }
2142 
2143 /* Put bootmem huge pages into the standard lists after mem_map is up */
2144 static void __init gather_bootmem_prealloc(void)
2145 {
2146 	struct huge_bootmem_page *m;
2147 
2148 	list_for_each_entry(m, &huge_boot_pages, list) {
2149 		struct hstate *h = m->hstate;
2150 		struct page *page;
2151 
2152 #ifdef CONFIG_HIGHMEM
2153 		page = pfn_to_page(m->phys >> PAGE_SHIFT);
2154 		memblock_free_late(__pa(m),
2155 				   sizeof(struct huge_bootmem_page));
2156 #else
2157 		page = virt_to_page(m);
2158 #endif
2159 		WARN_ON(page_count(page) != 1);
2160 		prep_compound_huge_page(page, h->order);
2161 		WARN_ON(PageReserved(page));
2162 		prep_new_huge_page(h, page, page_to_nid(page));
2163 		put_page(page); /* free it into the hugepage allocator */
2164 
2165 		/*
2166 		 * If we had gigantic hugepages allocated at boot time, we need
2167 		 * to restore the 'stolen' pages to totalram_pages in order to
2168 		 * fix confusing memory reports from free(1) and another
2169 		 * side-effects, like CommitLimit going negative.
2170 		 */
2171 		if (hstate_is_gigantic(h))
2172 			adjust_managed_page_count(page, 1 << h->order);
2173 	}
2174 }
2175 
2176 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2177 {
2178 	unsigned long i;
2179 
2180 	for (i = 0; i < h->max_huge_pages; ++i) {
2181 		if (hstate_is_gigantic(h)) {
2182 			if (!alloc_bootmem_huge_page(h))
2183 				break;
2184 		} else if (!alloc_pool_huge_page(h,
2185 					 &node_states[N_MEMORY]))
2186 			break;
2187 		cond_resched();
2188 	}
2189 	if (i < h->max_huge_pages) {
2190 		char buf[32];
2191 
2192 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2193 		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
2194 			h->max_huge_pages, buf, i);
2195 		h->max_huge_pages = i;
2196 	}
2197 }
2198 
2199 static void __init hugetlb_init_hstates(void)
2200 {
2201 	struct hstate *h;
2202 
2203 	for_each_hstate(h) {
2204 		if (minimum_order > huge_page_order(h))
2205 			minimum_order = huge_page_order(h);
2206 
2207 		/* oversize hugepages were init'ed in early boot */
2208 		if (!hstate_is_gigantic(h))
2209 			hugetlb_hstate_alloc_pages(h);
2210 	}
2211 	VM_BUG_ON(minimum_order == UINT_MAX);
2212 }
2213 
2214 static void __init report_hugepages(void)
2215 {
2216 	struct hstate *h;
2217 
2218 	for_each_hstate(h) {
2219 		char buf[32];
2220 
2221 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2222 		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2223 			buf, h->free_huge_pages);
2224 	}
2225 }
2226 
2227 #ifdef CONFIG_HIGHMEM
2228 static void try_to_free_low(struct hstate *h, unsigned long count,
2229 						nodemask_t *nodes_allowed)
2230 {
2231 	int i;
2232 
2233 	if (hstate_is_gigantic(h))
2234 		return;
2235 
2236 	for_each_node_mask(i, *nodes_allowed) {
2237 		struct page *page, *next;
2238 		struct list_head *freel = &h->hugepage_freelists[i];
2239 		list_for_each_entry_safe(page, next, freel, lru) {
2240 			if (count >= h->nr_huge_pages)
2241 				return;
2242 			if (PageHighMem(page))
2243 				continue;
2244 			list_del(&page->lru);
2245 			update_and_free_page(h, page);
2246 			h->free_huge_pages--;
2247 			h->free_huge_pages_node[page_to_nid(page)]--;
2248 		}
2249 	}
2250 }
2251 #else
2252 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2253 						nodemask_t *nodes_allowed)
2254 {
2255 }
2256 #endif
2257 
2258 /*
2259  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2260  * balanced by operating on them in a round-robin fashion.
2261  * Returns 1 if an adjustment was made.
2262  */
2263 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2264 				int delta)
2265 {
2266 	int nr_nodes, node;
2267 
2268 	VM_BUG_ON(delta != -1 && delta != 1);
2269 
2270 	if (delta < 0) {
2271 		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2272 			if (h->surplus_huge_pages_node[node])
2273 				goto found;
2274 		}
2275 	} else {
2276 		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2277 			if (h->surplus_huge_pages_node[node] <
2278 					h->nr_huge_pages_node[node])
2279 				goto found;
2280 		}
2281 	}
2282 	return 0;
2283 
2284 found:
2285 	h->surplus_huge_pages += delta;
2286 	h->surplus_huge_pages_node[node] += delta;
2287 	return 1;
2288 }
2289 
2290 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2291 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2292 						nodemask_t *nodes_allowed)
2293 {
2294 	unsigned long min_count, ret;
2295 
2296 	if (hstate_is_gigantic(h) && !gigantic_page_supported())
2297 		return h->max_huge_pages;
2298 
2299 	/*
2300 	 * Increase the pool size
2301 	 * First take pages out of surplus state.  Then make up the
2302 	 * remaining difference by allocating fresh huge pages.
2303 	 *
2304 	 * We might race with alloc_surplus_huge_page() here and be unable
2305 	 * to convert a surplus huge page to a normal huge page. That is
2306 	 * not critical, though, it just means the overall size of the
2307 	 * pool might be one hugepage larger than it needs to be, but
2308 	 * within all the constraints specified by the sysctls.
2309 	 */
2310 	spin_lock(&hugetlb_lock);
2311 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2312 		if (!adjust_pool_surplus(h, nodes_allowed, -1))
2313 			break;
2314 	}
2315 
2316 	while (count > persistent_huge_pages(h)) {
2317 		/*
2318 		 * If this allocation races such that we no longer need the
2319 		 * page, free_huge_page will handle it by freeing the page
2320 		 * and reducing the surplus.
2321 		 */
2322 		spin_unlock(&hugetlb_lock);
2323 
2324 		/* yield cpu to avoid soft lockup */
2325 		cond_resched();
2326 
2327 		ret = alloc_pool_huge_page(h, nodes_allowed);
2328 		spin_lock(&hugetlb_lock);
2329 		if (!ret)
2330 			goto out;
2331 
2332 		/* Bail for signals. Probably ctrl-c from user */
2333 		if (signal_pending(current))
2334 			goto out;
2335 	}
2336 
2337 	/*
2338 	 * Decrease the pool size
2339 	 * First return free pages to the buddy allocator (being careful
2340 	 * to keep enough around to satisfy reservations).  Then place
2341 	 * pages into surplus state as needed so the pool will shrink
2342 	 * to the desired size as pages become free.
2343 	 *
2344 	 * By placing pages into the surplus state independent of the
2345 	 * overcommit value, we are allowing the surplus pool size to
2346 	 * exceed overcommit. There are few sane options here. Since
2347 	 * alloc_surplus_huge_page() is checking the global counter,
2348 	 * though, we'll note that we're not allowed to exceed surplus
2349 	 * and won't grow the pool anywhere else. Not until one of the
2350 	 * sysctls are changed, or the surplus pages go out of use.
2351 	 */
2352 	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2353 	min_count = max(count, min_count);
2354 	try_to_free_low(h, min_count, nodes_allowed);
2355 	while (min_count < persistent_huge_pages(h)) {
2356 		if (!free_pool_huge_page(h, nodes_allowed, 0))
2357 			break;
2358 		cond_resched_lock(&hugetlb_lock);
2359 	}
2360 	while (count < persistent_huge_pages(h)) {
2361 		if (!adjust_pool_surplus(h, nodes_allowed, 1))
2362 			break;
2363 	}
2364 out:
2365 	ret = persistent_huge_pages(h);
2366 	spin_unlock(&hugetlb_lock);
2367 	return ret;
2368 }
2369 
2370 #define HSTATE_ATTR_RO(_name) \
2371 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2372 
2373 #define HSTATE_ATTR(_name) \
2374 	static struct kobj_attribute _name##_attr = \
2375 		__ATTR(_name, 0644, _name##_show, _name##_store)
2376 
2377 static struct kobject *hugepages_kobj;
2378 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2379 
2380 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2381 
2382 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2383 {
2384 	int i;
2385 
2386 	for (i = 0; i < HUGE_MAX_HSTATE; i++)
2387 		if (hstate_kobjs[i] == kobj) {
2388 			if (nidp)
2389 				*nidp = NUMA_NO_NODE;
2390 			return &hstates[i];
2391 		}
2392 
2393 	return kobj_to_node_hstate(kobj, nidp);
2394 }
2395 
2396 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2397 					struct kobj_attribute *attr, char *buf)
2398 {
2399 	struct hstate *h;
2400 	unsigned long nr_huge_pages;
2401 	int nid;
2402 
2403 	h = kobj_to_hstate(kobj, &nid);
2404 	if (nid == NUMA_NO_NODE)
2405 		nr_huge_pages = h->nr_huge_pages;
2406 	else
2407 		nr_huge_pages = h->nr_huge_pages_node[nid];
2408 
2409 	return sprintf(buf, "%lu\n", nr_huge_pages);
2410 }
2411 
2412 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2413 					   struct hstate *h, int nid,
2414 					   unsigned long count, size_t len)
2415 {
2416 	int err;
2417 	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2418 
2419 	if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2420 		err = -EINVAL;
2421 		goto out;
2422 	}
2423 
2424 	if (nid == NUMA_NO_NODE) {
2425 		/*
2426 		 * global hstate attribute
2427 		 */
2428 		if (!(obey_mempolicy &&
2429 				init_nodemask_of_mempolicy(nodes_allowed))) {
2430 			NODEMASK_FREE(nodes_allowed);
2431 			nodes_allowed = &node_states[N_MEMORY];
2432 		}
2433 	} else if (nodes_allowed) {
2434 		/*
2435 		 * per node hstate attribute: adjust count to global,
2436 		 * but restrict alloc/free to the specified node.
2437 		 */
2438 		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2439 		init_nodemask_of_node(nodes_allowed, nid);
2440 	} else
2441 		nodes_allowed = &node_states[N_MEMORY];
2442 
2443 	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2444 
2445 	if (nodes_allowed != &node_states[N_MEMORY])
2446 		NODEMASK_FREE(nodes_allowed);
2447 
2448 	return len;
2449 out:
2450 	NODEMASK_FREE(nodes_allowed);
2451 	return err;
2452 }
2453 
2454 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2455 					 struct kobject *kobj, const char *buf,
2456 					 size_t len)
2457 {
2458 	struct hstate *h;
2459 	unsigned long count;
2460 	int nid;
2461 	int err;
2462 
2463 	err = kstrtoul(buf, 10, &count);
2464 	if (err)
2465 		return err;
2466 
2467 	h = kobj_to_hstate(kobj, &nid);
2468 	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2469 }
2470 
2471 static ssize_t nr_hugepages_show(struct kobject *kobj,
2472 				       struct kobj_attribute *attr, char *buf)
2473 {
2474 	return nr_hugepages_show_common(kobj, attr, buf);
2475 }
2476 
2477 static ssize_t nr_hugepages_store(struct kobject *kobj,
2478 	       struct kobj_attribute *attr, const char *buf, size_t len)
2479 {
2480 	return nr_hugepages_store_common(false, kobj, buf, len);
2481 }
2482 HSTATE_ATTR(nr_hugepages);
2483 
2484 #ifdef CONFIG_NUMA
2485 
2486 /*
2487  * hstate attribute for optionally mempolicy-based constraint on persistent
2488  * huge page alloc/free.
2489  */
2490 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2491 				       struct kobj_attribute *attr, char *buf)
2492 {
2493 	return nr_hugepages_show_common(kobj, attr, buf);
2494 }
2495 
2496 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2497 	       struct kobj_attribute *attr, const char *buf, size_t len)
2498 {
2499 	return nr_hugepages_store_common(true, kobj, buf, len);
2500 }
2501 HSTATE_ATTR(nr_hugepages_mempolicy);
2502 #endif
2503 
2504 
2505 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2506 					struct kobj_attribute *attr, char *buf)
2507 {
2508 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2509 	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2510 }
2511 
2512 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2513 		struct kobj_attribute *attr, const char *buf, size_t count)
2514 {
2515 	int err;
2516 	unsigned long input;
2517 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2518 
2519 	if (hstate_is_gigantic(h))
2520 		return -EINVAL;
2521 
2522 	err = kstrtoul(buf, 10, &input);
2523 	if (err)
2524 		return err;
2525 
2526 	spin_lock(&hugetlb_lock);
2527 	h->nr_overcommit_huge_pages = input;
2528 	spin_unlock(&hugetlb_lock);
2529 
2530 	return count;
2531 }
2532 HSTATE_ATTR(nr_overcommit_hugepages);
2533 
2534 static ssize_t free_hugepages_show(struct kobject *kobj,
2535 					struct kobj_attribute *attr, char *buf)
2536 {
2537 	struct hstate *h;
2538 	unsigned long free_huge_pages;
2539 	int nid;
2540 
2541 	h = kobj_to_hstate(kobj, &nid);
2542 	if (nid == NUMA_NO_NODE)
2543 		free_huge_pages = h->free_huge_pages;
2544 	else
2545 		free_huge_pages = h->free_huge_pages_node[nid];
2546 
2547 	return sprintf(buf, "%lu\n", free_huge_pages);
2548 }
2549 HSTATE_ATTR_RO(free_hugepages);
2550 
2551 static ssize_t resv_hugepages_show(struct kobject *kobj,
2552 					struct kobj_attribute *attr, char *buf)
2553 {
2554 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2555 	return sprintf(buf, "%lu\n", h->resv_huge_pages);
2556 }
2557 HSTATE_ATTR_RO(resv_hugepages);
2558 
2559 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2560 					struct kobj_attribute *attr, char *buf)
2561 {
2562 	struct hstate *h;
2563 	unsigned long surplus_huge_pages;
2564 	int nid;
2565 
2566 	h = kobj_to_hstate(kobj, &nid);
2567 	if (nid == NUMA_NO_NODE)
2568 		surplus_huge_pages = h->surplus_huge_pages;
2569 	else
2570 		surplus_huge_pages = h->surplus_huge_pages_node[nid];
2571 
2572 	return sprintf(buf, "%lu\n", surplus_huge_pages);
2573 }
2574 HSTATE_ATTR_RO(surplus_hugepages);
2575 
2576 static struct attribute *hstate_attrs[] = {
2577 	&nr_hugepages_attr.attr,
2578 	&nr_overcommit_hugepages_attr.attr,
2579 	&free_hugepages_attr.attr,
2580 	&resv_hugepages_attr.attr,
2581 	&surplus_hugepages_attr.attr,
2582 #ifdef CONFIG_NUMA
2583 	&nr_hugepages_mempolicy_attr.attr,
2584 #endif
2585 	NULL,
2586 };
2587 
2588 static const struct attribute_group hstate_attr_group = {
2589 	.attrs = hstate_attrs,
2590 };
2591 
2592 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2593 				    struct kobject **hstate_kobjs,
2594 				    const struct attribute_group *hstate_attr_group)
2595 {
2596 	int retval;
2597 	int hi = hstate_index(h);
2598 
2599 	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2600 	if (!hstate_kobjs[hi])
2601 		return -ENOMEM;
2602 
2603 	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2604 	if (retval)
2605 		kobject_put(hstate_kobjs[hi]);
2606 
2607 	return retval;
2608 }
2609 
2610 static void __init hugetlb_sysfs_init(void)
2611 {
2612 	struct hstate *h;
2613 	int err;
2614 
2615 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2616 	if (!hugepages_kobj)
2617 		return;
2618 
2619 	for_each_hstate(h) {
2620 		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2621 					 hstate_kobjs, &hstate_attr_group);
2622 		if (err)
2623 			pr_err("Hugetlb: Unable to add hstate %s", h->name);
2624 	}
2625 }
2626 
2627 #ifdef CONFIG_NUMA
2628 
2629 /*
2630  * node_hstate/s - associate per node hstate attributes, via their kobjects,
2631  * with node devices in node_devices[] using a parallel array.  The array
2632  * index of a node device or _hstate == node id.
2633  * This is here to avoid any static dependency of the node device driver, in
2634  * the base kernel, on the hugetlb module.
2635  */
2636 struct node_hstate {
2637 	struct kobject		*hugepages_kobj;
2638 	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
2639 };
2640 static struct node_hstate node_hstates[MAX_NUMNODES];
2641 
2642 /*
2643  * A subset of global hstate attributes for node devices
2644  */
2645 static struct attribute *per_node_hstate_attrs[] = {
2646 	&nr_hugepages_attr.attr,
2647 	&free_hugepages_attr.attr,
2648 	&surplus_hugepages_attr.attr,
2649 	NULL,
2650 };
2651 
2652 static const struct attribute_group per_node_hstate_attr_group = {
2653 	.attrs = per_node_hstate_attrs,
2654 };
2655 
2656 /*
2657  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2658  * Returns node id via non-NULL nidp.
2659  */
2660 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2661 {
2662 	int nid;
2663 
2664 	for (nid = 0; nid < nr_node_ids; nid++) {
2665 		struct node_hstate *nhs = &node_hstates[nid];
2666 		int i;
2667 		for (i = 0; i < HUGE_MAX_HSTATE; i++)
2668 			if (nhs->hstate_kobjs[i] == kobj) {
2669 				if (nidp)
2670 					*nidp = nid;
2671 				return &hstates[i];
2672 			}
2673 	}
2674 
2675 	BUG();
2676 	return NULL;
2677 }
2678 
2679 /*
2680  * Unregister hstate attributes from a single node device.
2681  * No-op if no hstate attributes attached.
2682  */
2683 static void hugetlb_unregister_node(struct node *node)
2684 {
2685 	struct hstate *h;
2686 	struct node_hstate *nhs = &node_hstates[node->dev.id];
2687 
2688 	if (!nhs->hugepages_kobj)
2689 		return;		/* no hstate attributes */
2690 
2691 	for_each_hstate(h) {
2692 		int idx = hstate_index(h);
2693 		if (nhs->hstate_kobjs[idx]) {
2694 			kobject_put(nhs->hstate_kobjs[idx]);
2695 			nhs->hstate_kobjs[idx] = NULL;
2696 		}
2697 	}
2698 
2699 	kobject_put(nhs->hugepages_kobj);
2700 	nhs->hugepages_kobj = NULL;
2701 }
2702 
2703 
2704 /*
2705  * Register hstate attributes for a single node device.
2706  * No-op if attributes already registered.
2707  */
2708 static void hugetlb_register_node(struct node *node)
2709 {
2710 	struct hstate *h;
2711 	struct node_hstate *nhs = &node_hstates[node->dev.id];
2712 	int err;
2713 
2714 	if (nhs->hugepages_kobj)
2715 		return;		/* already allocated */
2716 
2717 	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2718 							&node->dev.kobj);
2719 	if (!nhs->hugepages_kobj)
2720 		return;
2721 
2722 	for_each_hstate(h) {
2723 		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2724 						nhs->hstate_kobjs,
2725 						&per_node_hstate_attr_group);
2726 		if (err) {
2727 			pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2728 				h->name, node->dev.id);
2729 			hugetlb_unregister_node(node);
2730 			break;
2731 		}
2732 	}
2733 }
2734 
2735 /*
2736  * hugetlb init time:  register hstate attributes for all registered node
2737  * devices of nodes that have memory.  All on-line nodes should have
2738  * registered their associated device by this time.
2739  */
2740 static void __init hugetlb_register_all_nodes(void)
2741 {
2742 	int nid;
2743 
2744 	for_each_node_state(nid, N_MEMORY) {
2745 		struct node *node = node_devices[nid];
2746 		if (node->dev.id == nid)
2747 			hugetlb_register_node(node);
2748 	}
2749 
2750 	/*
2751 	 * Let the node device driver know we're here so it can
2752 	 * [un]register hstate attributes on node hotplug.
2753 	 */
2754 	register_hugetlbfs_with_node(hugetlb_register_node,
2755 				     hugetlb_unregister_node);
2756 }
2757 #else	/* !CONFIG_NUMA */
2758 
2759 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2760 {
2761 	BUG();
2762 	if (nidp)
2763 		*nidp = -1;
2764 	return NULL;
2765 }
2766 
2767 static void hugetlb_register_all_nodes(void) { }
2768 
2769 #endif
2770 
2771 static int __init hugetlb_init(void)
2772 {
2773 	int i;
2774 
2775 	if (!hugepages_supported())
2776 		return 0;
2777 
2778 	if (!size_to_hstate(default_hstate_size)) {
2779 		if (default_hstate_size != 0) {
2780 			pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
2781 			       default_hstate_size, HPAGE_SIZE);
2782 		}
2783 
2784 		default_hstate_size = HPAGE_SIZE;
2785 		if (!size_to_hstate(default_hstate_size))
2786 			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2787 	}
2788 	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2789 	if (default_hstate_max_huge_pages) {
2790 		if (!default_hstate.max_huge_pages)
2791 			default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2792 	}
2793 
2794 	hugetlb_init_hstates();
2795 	gather_bootmem_prealloc();
2796 	report_hugepages();
2797 
2798 	hugetlb_sysfs_init();
2799 	hugetlb_register_all_nodes();
2800 	hugetlb_cgroup_file_init();
2801 
2802 #ifdef CONFIG_SMP
2803 	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2804 #else
2805 	num_fault_mutexes = 1;
2806 #endif
2807 	hugetlb_fault_mutex_table =
2808 		kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2809 	BUG_ON(!hugetlb_fault_mutex_table);
2810 
2811 	for (i = 0; i < num_fault_mutexes; i++)
2812 		mutex_init(&hugetlb_fault_mutex_table[i]);
2813 	return 0;
2814 }
2815 subsys_initcall(hugetlb_init);
2816 
2817 /* Should be called on processing a hugepagesz=... option */
2818 void __init hugetlb_bad_size(void)
2819 {
2820 	parsed_valid_hugepagesz = false;
2821 }
2822 
2823 void __init hugetlb_add_hstate(unsigned int order)
2824 {
2825 	struct hstate *h;
2826 	unsigned long i;
2827 
2828 	if (size_to_hstate(PAGE_SIZE << order)) {
2829 		pr_warn("hugepagesz= specified twice, ignoring\n");
2830 		return;
2831 	}
2832 	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2833 	BUG_ON(order == 0);
2834 	h = &hstates[hugetlb_max_hstate++];
2835 	h->order = order;
2836 	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2837 	h->nr_huge_pages = 0;
2838 	h->free_huge_pages = 0;
2839 	for (i = 0; i < MAX_NUMNODES; ++i)
2840 		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2841 	INIT_LIST_HEAD(&h->hugepage_activelist);
2842 	h->next_nid_to_alloc = first_memory_node;
2843 	h->next_nid_to_free = first_memory_node;
2844 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2845 					huge_page_size(h)/1024);
2846 
2847 	parsed_hstate = h;
2848 }
2849 
2850 static int __init hugetlb_nrpages_setup(char *s)
2851 {
2852 	unsigned long *mhp;
2853 	static unsigned long *last_mhp;
2854 
2855 	if (!parsed_valid_hugepagesz) {
2856 		pr_warn("hugepages = %s preceded by "
2857 			"an unsupported hugepagesz, ignoring\n", s);
2858 		parsed_valid_hugepagesz = true;
2859 		return 1;
2860 	}
2861 	/*
2862 	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2863 	 * so this hugepages= parameter goes to the "default hstate".
2864 	 */
2865 	else if (!hugetlb_max_hstate)
2866 		mhp = &default_hstate_max_huge_pages;
2867 	else
2868 		mhp = &parsed_hstate->max_huge_pages;
2869 
2870 	if (mhp == last_mhp) {
2871 		pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2872 		return 1;
2873 	}
2874 
2875 	if (sscanf(s, "%lu", mhp) <= 0)
2876 		*mhp = 0;
2877 
2878 	/*
2879 	 * Global state is always initialized later in hugetlb_init.
2880 	 * But we need to allocate >= MAX_ORDER hstates here early to still
2881 	 * use the bootmem allocator.
2882 	 */
2883 	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2884 		hugetlb_hstate_alloc_pages(parsed_hstate);
2885 
2886 	last_mhp = mhp;
2887 
2888 	return 1;
2889 }
2890 __setup("hugepages=", hugetlb_nrpages_setup);
2891 
2892 static int __init hugetlb_default_setup(char *s)
2893 {
2894 	default_hstate_size = memparse(s, &s);
2895 	return 1;
2896 }
2897 __setup("default_hugepagesz=", hugetlb_default_setup);
2898 
2899 static unsigned int cpuset_mems_nr(unsigned int *array)
2900 {
2901 	int node;
2902 	unsigned int nr = 0;
2903 
2904 	for_each_node_mask(node, cpuset_current_mems_allowed)
2905 		nr += array[node];
2906 
2907 	return nr;
2908 }
2909 
2910 #ifdef CONFIG_SYSCTL
2911 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2912 			 struct ctl_table *table, int write,
2913 			 void __user *buffer, size_t *length, loff_t *ppos)
2914 {
2915 	struct hstate *h = &default_hstate;
2916 	unsigned long tmp = h->max_huge_pages;
2917 	int ret;
2918 
2919 	if (!hugepages_supported())
2920 		return -EOPNOTSUPP;
2921 
2922 	table->data = &tmp;
2923 	table->maxlen = sizeof(unsigned long);
2924 	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2925 	if (ret)
2926 		goto out;
2927 
2928 	if (write)
2929 		ret = __nr_hugepages_store_common(obey_mempolicy, h,
2930 						  NUMA_NO_NODE, tmp, *length);
2931 out:
2932 	return ret;
2933 }
2934 
2935 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2936 			  void __user *buffer, size_t *length, loff_t *ppos)
2937 {
2938 
2939 	return hugetlb_sysctl_handler_common(false, table, write,
2940 							buffer, length, ppos);
2941 }
2942 
2943 #ifdef CONFIG_NUMA
2944 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2945 			  void __user *buffer, size_t *length, loff_t *ppos)
2946 {
2947 	return hugetlb_sysctl_handler_common(true, table, write,
2948 							buffer, length, ppos);
2949 }
2950 #endif /* CONFIG_NUMA */
2951 
2952 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2953 			void __user *buffer,
2954 			size_t *length, loff_t *ppos)
2955 {
2956 	struct hstate *h = &default_hstate;
2957 	unsigned long tmp;
2958 	int ret;
2959 
2960 	if (!hugepages_supported())
2961 		return -EOPNOTSUPP;
2962 
2963 	tmp = h->nr_overcommit_huge_pages;
2964 
2965 	if (write && hstate_is_gigantic(h))
2966 		return -EINVAL;
2967 
2968 	table->data = &tmp;
2969 	table->maxlen = sizeof(unsigned long);
2970 	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2971 	if (ret)
2972 		goto out;
2973 
2974 	if (write) {
2975 		spin_lock(&hugetlb_lock);
2976 		h->nr_overcommit_huge_pages = tmp;
2977 		spin_unlock(&hugetlb_lock);
2978 	}
2979 out:
2980 	return ret;
2981 }
2982 
2983 #endif /* CONFIG_SYSCTL */
2984 
2985 void hugetlb_report_meminfo(struct seq_file *m)
2986 {
2987 	struct hstate *h;
2988 	unsigned long total = 0;
2989 
2990 	if (!hugepages_supported())
2991 		return;
2992 
2993 	for_each_hstate(h) {
2994 		unsigned long count = h->nr_huge_pages;
2995 
2996 		total += (PAGE_SIZE << huge_page_order(h)) * count;
2997 
2998 		if (h == &default_hstate)
2999 			seq_printf(m,
3000 				   "HugePages_Total:   %5lu\n"
3001 				   "HugePages_Free:    %5lu\n"
3002 				   "HugePages_Rsvd:    %5lu\n"
3003 				   "HugePages_Surp:    %5lu\n"
3004 				   "Hugepagesize:   %8lu kB\n",
3005 				   count,
3006 				   h->free_huge_pages,
3007 				   h->resv_huge_pages,
3008 				   h->surplus_huge_pages,
3009 				   (PAGE_SIZE << huge_page_order(h)) / 1024);
3010 	}
3011 
3012 	seq_printf(m, "Hugetlb:        %8lu kB\n", total / 1024);
3013 }
3014 
3015 int hugetlb_report_node_meminfo(int nid, char *buf)
3016 {
3017 	struct hstate *h = &default_hstate;
3018 	if (!hugepages_supported())
3019 		return 0;
3020 	return sprintf(buf,
3021 		"Node %d HugePages_Total: %5u\n"
3022 		"Node %d HugePages_Free:  %5u\n"
3023 		"Node %d HugePages_Surp:  %5u\n",
3024 		nid, h->nr_huge_pages_node[nid],
3025 		nid, h->free_huge_pages_node[nid],
3026 		nid, h->surplus_huge_pages_node[nid]);
3027 }
3028 
3029 void hugetlb_show_meminfo(void)
3030 {
3031 	struct hstate *h;
3032 	int nid;
3033 
3034 	if (!hugepages_supported())
3035 		return;
3036 
3037 	for_each_node_state(nid, N_MEMORY)
3038 		for_each_hstate(h)
3039 			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3040 				nid,
3041 				h->nr_huge_pages_node[nid],
3042 				h->free_huge_pages_node[nid],
3043 				h->surplus_huge_pages_node[nid],
3044 				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3045 }
3046 
3047 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3048 {
3049 	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3050 		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3051 }
3052 
3053 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3054 unsigned long hugetlb_total_pages(void)
3055 {
3056 	struct hstate *h;
3057 	unsigned long nr_total_pages = 0;
3058 
3059 	for_each_hstate(h)
3060 		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3061 	return nr_total_pages;
3062 }
3063 
3064 static int hugetlb_acct_memory(struct hstate *h, long delta)
3065 {
3066 	int ret = -ENOMEM;
3067 
3068 	spin_lock(&hugetlb_lock);
3069 	/*
3070 	 * When cpuset is configured, it breaks the strict hugetlb page
3071 	 * reservation as the accounting is done on a global variable. Such
3072 	 * reservation is completely rubbish in the presence of cpuset because
3073 	 * the reservation is not checked against page availability for the
3074 	 * current cpuset. Application can still potentially OOM'ed by kernel
3075 	 * with lack of free htlb page in cpuset that the task is in.
3076 	 * Attempt to enforce strict accounting with cpuset is almost
3077 	 * impossible (or too ugly) because cpuset is too fluid that
3078 	 * task or memory node can be dynamically moved between cpusets.
3079 	 *
3080 	 * The change of semantics for shared hugetlb mapping with cpuset is
3081 	 * undesirable. However, in order to preserve some of the semantics,
3082 	 * we fall back to check against current free page availability as
3083 	 * a best attempt and hopefully to minimize the impact of changing
3084 	 * semantics that cpuset has.
3085 	 */
3086 	if (delta > 0) {
3087 		if (gather_surplus_pages(h, delta) < 0)
3088 			goto out;
3089 
3090 		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3091 			return_unused_surplus_pages(h, delta);
3092 			goto out;
3093 		}
3094 	}
3095 
3096 	ret = 0;
3097 	if (delta < 0)
3098 		return_unused_surplus_pages(h, (unsigned long) -delta);
3099 
3100 out:
3101 	spin_unlock(&hugetlb_lock);
3102 	return ret;
3103 }
3104 
3105 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3106 {
3107 	struct resv_map *resv = vma_resv_map(vma);
3108 
3109 	/*
3110 	 * This new VMA should share its siblings reservation map if present.
3111 	 * The VMA will only ever have a valid reservation map pointer where
3112 	 * it is being copied for another still existing VMA.  As that VMA
3113 	 * has a reference to the reservation map it cannot disappear until
3114 	 * after this open call completes.  It is therefore safe to take a
3115 	 * new reference here without additional locking.
3116 	 */
3117 	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3118 		kref_get(&resv->refs);
3119 }
3120 
3121 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3122 {
3123 	struct hstate *h = hstate_vma(vma);
3124 	struct resv_map *resv = vma_resv_map(vma);
3125 	struct hugepage_subpool *spool = subpool_vma(vma);
3126 	unsigned long reserve, start, end;
3127 	long gbl_reserve;
3128 
3129 	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3130 		return;
3131 
3132 	start = vma_hugecache_offset(h, vma, vma->vm_start);
3133 	end = vma_hugecache_offset(h, vma, vma->vm_end);
3134 
3135 	reserve = (end - start) - region_count(resv, start, end);
3136 
3137 	kref_put(&resv->refs, resv_map_release);
3138 
3139 	if (reserve) {
3140 		/*
3141 		 * Decrement reserve counts.  The global reserve count may be
3142 		 * adjusted if the subpool has a minimum size.
3143 		 */
3144 		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3145 		hugetlb_acct_memory(h, -gbl_reserve);
3146 	}
3147 }
3148 
3149 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3150 {
3151 	if (addr & ~(huge_page_mask(hstate_vma(vma))))
3152 		return -EINVAL;
3153 	return 0;
3154 }
3155 
3156 /*
3157  * We cannot handle pagefaults against hugetlb pages at all.  They cause
3158  * handle_mm_fault() to try to instantiate regular-sized pages in the
3159  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
3160  * this far.
3161  */
3162 static int hugetlb_vm_op_fault(struct vm_fault *vmf)
3163 {
3164 	BUG();
3165 	return 0;
3166 }
3167 
3168 const struct vm_operations_struct hugetlb_vm_ops = {
3169 	.fault = hugetlb_vm_op_fault,
3170 	.open = hugetlb_vm_op_open,
3171 	.close = hugetlb_vm_op_close,
3172 	.split = hugetlb_vm_op_split,
3173 };
3174 
3175 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3176 				int writable)
3177 {
3178 	pte_t entry;
3179 
3180 	if (writable) {
3181 		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3182 					 vma->vm_page_prot)));
3183 	} else {
3184 		entry = huge_pte_wrprotect(mk_huge_pte(page,
3185 					   vma->vm_page_prot));
3186 	}
3187 	entry = pte_mkyoung(entry);
3188 	entry = pte_mkhuge(entry);
3189 	entry = arch_make_huge_pte(entry, vma, page, writable);
3190 
3191 	return entry;
3192 }
3193 
3194 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3195 				   unsigned long address, pte_t *ptep)
3196 {
3197 	pte_t entry;
3198 
3199 	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3200 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3201 		update_mmu_cache(vma, address, ptep);
3202 }
3203 
3204 bool is_hugetlb_entry_migration(pte_t pte)
3205 {
3206 	swp_entry_t swp;
3207 
3208 	if (huge_pte_none(pte) || pte_present(pte))
3209 		return false;
3210 	swp = pte_to_swp_entry(pte);
3211 	if (non_swap_entry(swp) && is_migration_entry(swp))
3212 		return true;
3213 	else
3214 		return false;
3215 }
3216 
3217 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3218 {
3219 	swp_entry_t swp;
3220 
3221 	if (huge_pte_none(pte) || pte_present(pte))
3222 		return 0;
3223 	swp = pte_to_swp_entry(pte);
3224 	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3225 		return 1;
3226 	else
3227 		return 0;
3228 }
3229 
3230 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3231 			    struct vm_area_struct *vma)
3232 {
3233 	pte_t *src_pte, *dst_pte, entry;
3234 	struct page *ptepage;
3235 	unsigned long addr;
3236 	int cow;
3237 	struct hstate *h = hstate_vma(vma);
3238 	unsigned long sz = huge_page_size(h);
3239 	unsigned long mmun_start;	/* For mmu_notifiers */
3240 	unsigned long mmun_end;		/* For mmu_notifiers */
3241 	int ret = 0;
3242 
3243 	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3244 
3245 	mmun_start = vma->vm_start;
3246 	mmun_end = vma->vm_end;
3247 	if (cow)
3248 		mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
3249 
3250 	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3251 		spinlock_t *src_ptl, *dst_ptl;
3252 		src_pte = huge_pte_offset(src, addr, sz);
3253 		if (!src_pte)
3254 			continue;
3255 		dst_pte = huge_pte_alloc(dst, addr, sz);
3256 		if (!dst_pte) {
3257 			ret = -ENOMEM;
3258 			break;
3259 		}
3260 
3261 		/* If the pagetables are shared don't copy or take references */
3262 		if (dst_pte == src_pte)
3263 			continue;
3264 
3265 		dst_ptl = huge_pte_lock(h, dst, dst_pte);
3266 		src_ptl = huge_pte_lockptr(h, src, src_pte);
3267 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3268 		entry = huge_ptep_get(src_pte);
3269 		if (huge_pte_none(entry)) { /* skip none entry */
3270 			;
3271 		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
3272 				    is_hugetlb_entry_hwpoisoned(entry))) {
3273 			swp_entry_t swp_entry = pte_to_swp_entry(entry);
3274 
3275 			if (is_write_migration_entry(swp_entry) && cow) {
3276 				/*
3277 				 * COW mappings require pages in both
3278 				 * parent and child to be set to read.
3279 				 */
3280 				make_migration_entry_read(&swp_entry);
3281 				entry = swp_entry_to_pte(swp_entry);
3282 				set_huge_swap_pte_at(src, addr, src_pte,
3283 						     entry, sz);
3284 			}
3285 			set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3286 		} else {
3287 			if (cow) {
3288 				/*
3289 				 * No need to notify as we are downgrading page
3290 				 * table protection not changing it to point
3291 				 * to a new page.
3292 				 *
3293 				 * See Documentation/vm/mmu_notifier.txt
3294 				 */
3295 				huge_ptep_set_wrprotect(src, addr, src_pte);
3296 			}
3297 			entry = huge_ptep_get(src_pte);
3298 			ptepage = pte_page(entry);
3299 			get_page(ptepage);
3300 			page_dup_rmap(ptepage, true);
3301 			set_huge_pte_at(dst, addr, dst_pte, entry);
3302 			hugetlb_count_add(pages_per_huge_page(h), dst);
3303 		}
3304 		spin_unlock(src_ptl);
3305 		spin_unlock(dst_ptl);
3306 	}
3307 
3308 	if (cow)
3309 		mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3310 
3311 	return ret;
3312 }
3313 
3314 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3315 			    unsigned long start, unsigned long end,
3316 			    struct page *ref_page)
3317 {
3318 	struct mm_struct *mm = vma->vm_mm;
3319 	unsigned long address;
3320 	pte_t *ptep;
3321 	pte_t pte;
3322 	spinlock_t *ptl;
3323 	struct page *page;
3324 	struct hstate *h = hstate_vma(vma);
3325 	unsigned long sz = huge_page_size(h);
3326 	const unsigned long mmun_start = start;	/* For mmu_notifiers */
3327 	const unsigned long mmun_end   = end;	/* For mmu_notifiers */
3328 
3329 	WARN_ON(!is_vm_hugetlb_page(vma));
3330 	BUG_ON(start & ~huge_page_mask(h));
3331 	BUG_ON(end & ~huge_page_mask(h));
3332 
3333 	/*
3334 	 * This is a hugetlb vma, all the pte entries should point
3335 	 * to huge page.
3336 	 */
3337 	tlb_remove_check_page_size_change(tlb, sz);
3338 	tlb_start_vma(tlb, vma);
3339 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3340 	address = start;
3341 	for (; address < end; address += sz) {
3342 		ptep = huge_pte_offset(mm, address, sz);
3343 		if (!ptep)
3344 			continue;
3345 
3346 		ptl = huge_pte_lock(h, mm, ptep);
3347 		if (huge_pmd_unshare(mm, &address, ptep)) {
3348 			spin_unlock(ptl);
3349 			continue;
3350 		}
3351 
3352 		pte = huge_ptep_get(ptep);
3353 		if (huge_pte_none(pte)) {
3354 			spin_unlock(ptl);
3355 			continue;
3356 		}
3357 
3358 		/*
3359 		 * Migrating hugepage or HWPoisoned hugepage is already
3360 		 * unmapped and its refcount is dropped, so just clear pte here.
3361 		 */
3362 		if (unlikely(!pte_present(pte))) {
3363 			huge_pte_clear(mm, address, ptep, sz);
3364 			spin_unlock(ptl);
3365 			continue;
3366 		}
3367 
3368 		page = pte_page(pte);
3369 		/*
3370 		 * If a reference page is supplied, it is because a specific
3371 		 * page is being unmapped, not a range. Ensure the page we
3372 		 * are about to unmap is the actual page of interest.
3373 		 */
3374 		if (ref_page) {
3375 			if (page != ref_page) {
3376 				spin_unlock(ptl);
3377 				continue;
3378 			}
3379 			/*
3380 			 * Mark the VMA as having unmapped its page so that
3381 			 * future faults in this VMA will fail rather than
3382 			 * looking like data was lost
3383 			 */
3384 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3385 		}
3386 
3387 		pte = huge_ptep_get_and_clear(mm, address, ptep);
3388 		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3389 		if (huge_pte_dirty(pte))
3390 			set_page_dirty(page);
3391 
3392 		hugetlb_count_sub(pages_per_huge_page(h), mm);
3393 		page_remove_rmap(page, true);
3394 
3395 		spin_unlock(ptl);
3396 		tlb_remove_page_size(tlb, page, huge_page_size(h));
3397 		/*
3398 		 * Bail out after unmapping reference page if supplied
3399 		 */
3400 		if (ref_page)
3401 			break;
3402 	}
3403 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3404 	tlb_end_vma(tlb, vma);
3405 }
3406 
3407 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3408 			  struct vm_area_struct *vma, unsigned long start,
3409 			  unsigned long end, struct page *ref_page)
3410 {
3411 	__unmap_hugepage_range(tlb, vma, start, end, ref_page);
3412 
3413 	/*
3414 	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3415 	 * test will fail on a vma being torn down, and not grab a page table
3416 	 * on its way out.  We're lucky that the flag has such an appropriate
3417 	 * name, and can in fact be safely cleared here. We could clear it
3418 	 * before the __unmap_hugepage_range above, but all that's necessary
3419 	 * is to clear it before releasing the i_mmap_rwsem. This works
3420 	 * because in the context this is called, the VMA is about to be
3421 	 * destroyed and the i_mmap_rwsem is held.
3422 	 */
3423 	vma->vm_flags &= ~VM_MAYSHARE;
3424 }
3425 
3426 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3427 			  unsigned long end, struct page *ref_page)
3428 {
3429 	struct mm_struct *mm;
3430 	struct mmu_gather tlb;
3431 
3432 	mm = vma->vm_mm;
3433 
3434 	tlb_gather_mmu(&tlb, mm, start, end);
3435 	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3436 	tlb_finish_mmu(&tlb, start, end);
3437 }
3438 
3439 /*
3440  * This is called when the original mapper is failing to COW a MAP_PRIVATE
3441  * mappping it owns the reserve page for. The intention is to unmap the page
3442  * from other VMAs and let the children be SIGKILLed if they are faulting the
3443  * same region.
3444  */
3445 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3446 			      struct page *page, unsigned long address)
3447 {
3448 	struct hstate *h = hstate_vma(vma);
3449 	struct vm_area_struct *iter_vma;
3450 	struct address_space *mapping;
3451 	pgoff_t pgoff;
3452 
3453 	/*
3454 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3455 	 * from page cache lookup which is in HPAGE_SIZE units.
3456 	 */
3457 	address = address & huge_page_mask(h);
3458 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3459 			vma->vm_pgoff;
3460 	mapping = vma->vm_file->f_mapping;
3461 
3462 	/*
3463 	 * Take the mapping lock for the duration of the table walk. As
3464 	 * this mapping should be shared between all the VMAs,
3465 	 * __unmap_hugepage_range() is called as the lock is already held
3466 	 */
3467 	i_mmap_lock_write(mapping);
3468 	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3469 		/* Do not unmap the current VMA */
3470 		if (iter_vma == vma)
3471 			continue;
3472 
3473 		/*
3474 		 * Shared VMAs have their own reserves and do not affect
3475 		 * MAP_PRIVATE accounting but it is possible that a shared
3476 		 * VMA is using the same page so check and skip such VMAs.
3477 		 */
3478 		if (iter_vma->vm_flags & VM_MAYSHARE)
3479 			continue;
3480 
3481 		/*
3482 		 * Unmap the page from other VMAs without their own reserves.
3483 		 * They get marked to be SIGKILLed if they fault in these
3484 		 * areas. This is because a future no-page fault on this VMA
3485 		 * could insert a zeroed page instead of the data existing
3486 		 * from the time of fork. This would look like data corruption
3487 		 */
3488 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3489 			unmap_hugepage_range(iter_vma, address,
3490 					     address + huge_page_size(h), page);
3491 	}
3492 	i_mmap_unlock_write(mapping);
3493 }
3494 
3495 /*
3496  * Hugetlb_cow() should be called with page lock of the original hugepage held.
3497  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3498  * cannot race with other handlers or page migration.
3499  * Keep the pte_same checks anyway to make transition from the mutex easier.
3500  */
3501 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3502 		       unsigned long address, pte_t *ptep,
3503 		       struct page *pagecache_page, spinlock_t *ptl)
3504 {
3505 	pte_t pte;
3506 	struct hstate *h = hstate_vma(vma);
3507 	struct page *old_page, *new_page;
3508 	int ret = 0, outside_reserve = 0;
3509 	unsigned long mmun_start;	/* For mmu_notifiers */
3510 	unsigned long mmun_end;		/* For mmu_notifiers */
3511 
3512 	pte = huge_ptep_get(ptep);
3513 	old_page = pte_page(pte);
3514 
3515 retry_avoidcopy:
3516 	/* If no-one else is actually using this page, avoid the copy
3517 	 * and just make the page writable */
3518 	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3519 		page_move_anon_rmap(old_page, vma);
3520 		set_huge_ptep_writable(vma, address, ptep);
3521 		return 0;
3522 	}
3523 
3524 	/*
3525 	 * If the process that created a MAP_PRIVATE mapping is about to
3526 	 * perform a COW due to a shared page count, attempt to satisfy
3527 	 * the allocation without using the existing reserves. The pagecache
3528 	 * page is used to determine if the reserve at this address was
3529 	 * consumed or not. If reserves were used, a partial faulted mapping
3530 	 * at the time of fork() could consume its reserves on COW instead
3531 	 * of the full address range.
3532 	 */
3533 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3534 			old_page != pagecache_page)
3535 		outside_reserve = 1;
3536 
3537 	get_page(old_page);
3538 
3539 	/*
3540 	 * Drop page table lock as buddy allocator may be called. It will
3541 	 * be acquired again before returning to the caller, as expected.
3542 	 */
3543 	spin_unlock(ptl);
3544 	new_page = alloc_huge_page(vma, address, outside_reserve);
3545 
3546 	if (IS_ERR(new_page)) {
3547 		/*
3548 		 * If a process owning a MAP_PRIVATE mapping fails to COW,
3549 		 * it is due to references held by a child and an insufficient
3550 		 * huge page pool. To guarantee the original mappers
3551 		 * reliability, unmap the page from child processes. The child
3552 		 * may get SIGKILLed if it later faults.
3553 		 */
3554 		if (outside_reserve) {
3555 			put_page(old_page);
3556 			BUG_ON(huge_pte_none(pte));
3557 			unmap_ref_private(mm, vma, old_page, address);
3558 			BUG_ON(huge_pte_none(pte));
3559 			spin_lock(ptl);
3560 			ptep = huge_pte_offset(mm, address & huge_page_mask(h),
3561 					       huge_page_size(h));
3562 			if (likely(ptep &&
3563 				   pte_same(huge_ptep_get(ptep), pte)))
3564 				goto retry_avoidcopy;
3565 			/*
3566 			 * race occurs while re-acquiring page table
3567 			 * lock, and our job is done.
3568 			 */
3569 			return 0;
3570 		}
3571 
3572 		ret = (PTR_ERR(new_page) == -ENOMEM) ?
3573 			VM_FAULT_OOM : VM_FAULT_SIGBUS;
3574 		goto out_release_old;
3575 	}
3576 
3577 	/*
3578 	 * When the original hugepage is shared one, it does not have
3579 	 * anon_vma prepared.
3580 	 */
3581 	if (unlikely(anon_vma_prepare(vma))) {
3582 		ret = VM_FAULT_OOM;
3583 		goto out_release_all;
3584 	}
3585 
3586 	copy_user_huge_page(new_page, old_page, address, vma,
3587 			    pages_per_huge_page(h));
3588 	__SetPageUptodate(new_page);
3589 	set_page_huge_active(new_page);
3590 
3591 	mmun_start = address & huge_page_mask(h);
3592 	mmun_end = mmun_start + huge_page_size(h);
3593 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3594 
3595 	/*
3596 	 * Retake the page table lock to check for racing updates
3597 	 * before the page tables are altered
3598 	 */
3599 	spin_lock(ptl);
3600 	ptep = huge_pte_offset(mm, address & huge_page_mask(h),
3601 			       huge_page_size(h));
3602 	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3603 		ClearPagePrivate(new_page);
3604 
3605 		/* Break COW */
3606 		huge_ptep_clear_flush(vma, address, ptep);
3607 		mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3608 		set_huge_pte_at(mm, address, ptep,
3609 				make_huge_pte(vma, new_page, 1));
3610 		page_remove_rmap(old_page, true);
3611 		hugepage_add_new_anon_rmap(new_page, vma, address);
3612 		/* Make the old page be freed below */
3613 		new_page = old_page;
3614 	}
3615 	spin_unlock(ptl);
3616 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3617 out_release_all:
3618 	restore_reserve_on_error(h, vma, address, new_page);
3619 	put_page(new_page);
3620 out_release_old:
3621 	put_page(old_page);
3622 
3623 	spin_lock(ptl); /* Caller expects lock to be held */
3624 	return ret;
3625 }
3626 
3627 /* Return the pagecache page at a given address within a VMA */
3628 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3629 			struct vm_area_struct *vma, unsigned long address)
3630 {
3631 	struct address_space *mapping;
3632 	pgoff_t idx;
3633 
3634 	mapping = vma->vm_file->f_mapping;
3635 	idx = vma_hugecache_offset(h, vma, address);
3636 
3637 	return find_lock_page(mapping, idx);
3638 }
3639 
3640 /*
3641  * Return whether there is a pagecache page to back given address within VMA.
3642  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3643  */
3644 static bool hugetlbfs_pagecache_present(struct hstate *h,
3645 			struct vm_area_struct *vma, unsigned long address)
3646 {
3647 	struct address_space *mapping;
3648 	pgoff_t idx;
3649 	struct page *page;
3650 
3651 	mapping = vma->vm_file->f_mapping;
3652 	idx = vma_hugecache_offset(h, vma, address);
3653 
3654 	page = find_get_page(mapping, idx);
3655 	if (page)
3656 		put_page(page);
3657 	return page != NULL;
3658 }
3659 
3660 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3661 			   pgoff_t idx)
3662 {
3663 	struct inode *inode = mapping->host;
3664 	struct hstate *h = hstate_inode(inode);
3665 	int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3666 
3667 	if (err)
3668 		return err;
3669 	ClearPagePrivate(page);
3670 
3671 	spin_lock(&inode->i_lock);
3672 	inode->i_blocks += blocks_per_huge_page(h);
3673 	spin_unlock(&inode->i_lock);
3674 	return 0;
3675 }
3676 
3677 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3678 			   struct address_space *mapping, pgoff_t idx,
3679 			   unsigned long address, pte_t *ptep, unsigned int flags)
3680 {
3681 	struct hstate *h = hstate_vma(vma);
3682 	int ret = VM_FAULT_SIGBUS;
3683 	int anon_rmap = 0;
3684 	unsigned long size;
3685 	struct page *page;
3686 	pte_t new_pte;
3687 	spinlock_t *ptl;
3688 
3689 	/*
3690 	 * Currently, we are forced to kill the process in the event the
3691 	 * original mapper has unmapped pages from the child due to a failed
3692 	 * COW. Warn that such a situation has occurred as it may not be obvious
3693 	 */
3694 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3695 		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3696 			   current->pid);
3697 		return ret;
3698 	}
3699 
3700 	/*
3701 	 * Use page lock to guard against racing truncation
3702 	 * before we get page_table_lock.
3703 	 */
3704 retry:
3705 	page = find_lock_page(mapping, idx);
3706 	if (!page) {
3707 		size = i_size_read(mapping->host) >> huge_page_shift(h);
3708 		if (idx >= size)
3709 			goto out;
3710 
3711 		/*
3712 		 * Check for page in userfault range
3713 		 */
3714 		if (userfaultfd_missing(vma)) {
3715 			u32 hash;
3716 			struct vm_fault vmf = {
3717 				.vma = vma,
3718 				.address = address,
3719 				.flags = flags,
3720 				/*
3721 				 * Hard to debug if it ends up being
3722 				 * used by a callee that assumes
3723 				 * something about the other
3724 				 * uninitialized fields... same as in
3725 				 * memory.c
3726 				 */
3727 			};
3728 
3729 			/*
3730 			 * hugetlb_fault_mutex must be dropped before
3731 			 * handling userfault.  Reacquire after handling
3732 			 * fault to make calling code simpler.
3733 			 */
3734 			hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping,
3735 							idx, address);
3736 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3737 			ret = handle_userfault(&vmf, VM_UFFD_MISSING);
3738 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
3739 			goto out;
3740 		}
3741 
3742 		page = alloc_huge_page(vma, address, 0);
3743 		if (IS_ERR(page)) {
3744 			ret = PTR_ERR(page);
3745 			if (ret == -ENOMEM)
3746 				ret = VM_FAULT_OOM;
3747 			else
3748 				ret = VM_FAULT_SIGBUS;
3749 			goto out;
3750 		}
3751 		clear_huge_page(page, address, pages_per_huge_page(h));
3752 		__SetPageUptodate(page);
3753 		set_page_huge_active(page);
3754 
3755 		if (vma->vm_flags & VM_MAYSHARE) {
3756 			int err = huge_add_to_page_cache(page, mapping, idx);
3757 			if (err) {
3758 				put_page(page);
3759 				if (err == -EEXIST)
3760 					goto retry;
3761 				goto out;
3762 			}
3763 		} else {
3764 			lock_page(page);
3765 			if (unlikely(anon_vma_prepare(vma))) {
3766 				ret = VM_FAULT_OOM;
3767 				goto backout_unlocked;
3768 			}
3769 			anon_rmap = 1;
3770 		}
3771 	} else {
3772 		/*
3773 		 * If memory error occurs between mmap() and fault, some process
3774 		 * don't have hwpoisoned swap entry for errored virtual address.
3775 		 * So we need to block hugepage fault by PG_hwpoison bit check.
3776 		 */
3777 		if (unlikely(PageHWPoison(page))) {
3778 			ret = VM_FAULT_HWPOISON |
3779 				VM_FAULT_SET_HINDEX(hstate_index(h));
3780 			goto backout_unlocked;
3781 		}
3782 	}
3783 
3784 	/*
3785 	 * If we are going to COW a private mapping later, we examine the
3786 	 * pending reservations for this page now. This will ensure that
3787 	 * any allocations necessary to record that reservation occur outside
3788 	 * the spinlock.
3789 	 */
3790 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3791 		if (vma_needs_reservation(h, vma, address) < 0) {
3792 			ret = VM_FAULT_OOM;
3793 			goto backout_unlocked;
3794 		}
3795 		/* Just decrements count, does not deallocate */
3796 		vma_end_reservation(h, vma, address);
3797 	}
3798 
3799 	ptl = huge_pte_lock(h, mm, ptep);
3800 	size = i_size_read(mapping->host) >> huge_page_shift(h);
3801 	if (idx >= size)
3802 		goto backout;
3803 
3804 	ret = 0;
3805 	if (!huge_pte_none(huge_ptep_get(ptep)))
3806 		goto backout;
3807 
3808 	if (anon_rmap) {
3809 		ClearPagePrivate(page);
3810 		hugepage_add_new_anon_rmap(page, vma, address);
3811 	} else
3812 		page_dup_rmap(page, true);
3813 	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3814 				&& (vma->vm_flags & VM_SHARED)));
3815 	set_huge_pte_at(mm, address, ptep, new_pte);
3816 
3817 	hugetlb_count_add(pages_per_huge_page(h), mm);
3818 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3819 		/* Optimization, do the COW without a second fault */
3820 		ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
3821 	}
3822 
3823 	spin_unlock(ptl);
3824 	unlock_page(page);
3825 out:
3826 	return ret;
3827 
3828 backout:
3829 	spin_unlock(ptl);
3830 backout_unlocked:
3831 	unlock_page(page);
3832 	restore_reserve_on_error(h, vma, address, page);
3833 	put_page(page);
3834 	goto out;
3835 }
3836 
3837 #ifdef CONFIG_SMP
3838 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3839 			    struct vm_area_struct *vma,
3840 			    struct address_space *mapping,
3841 			    pgoff_t idx, unsigned long address)
3842 {
3843 	unsigned long key[2];
3844 	u32 hash;
3845 
3846 	if (vma->vm_flags & VM_SHARED) {
3847 		key[0] = (unsigned long) mapping;
3848 		key[1] = idx;
3849 	} else {
3850 		key[0] = (unsigned long) mm;
3851 		key[1] = address >> huge_page_shift(h);
3852 	}
3853 
3854 	hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3855 
3856 	return hash & (num_fault_mutexes - 1);
3857 }
3858 #else
3859 /*
3860  * For uniprocesor systems we always use a single mutex, so just
3861  * return 0 and avoid the hashing overhead.
3862  */
3863 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3864 			    struct vm_area_struct *vma,
3865 			    struct address_space *mapping,
3866 			    pgoff_t idx, unsigned long address)
3867 {
3868 	return 0;
3869 }
3870 #endif
3871 
3872 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3873 			unsigned long address, unsigned int flags)
3874 {
3875 	pte_t *ptep, entry;
3876 	spinlock_t *ptl;
3877 	int ret;
3878 	u32 hash;
3879 	pgoff_t idx;
3880 	struct page *page = NULL;
3881 	struct page *pagecache_page = NULL;
3882 	struct hstate *h = hstate_vma(vma);
3883 	struct address_space *mapping;
3884 	int need_wait_lock = 0;
3885 
3886 	address &= huge_page_mask(h);
3887 
3888 	ptep = huge_pte_offset(mm, address, huge_page_size(h));
3889 	if (ptep) {
3890 		entry = huge_ptep_get(ptep);
3891 		if (unlikely(is_hugetlb_entry_migration(entry))) {
3892 			migration_entry_wait_huge(vma, mm, ptep);
3893 			return 0;
3894 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3895 			return VM_FAULT_HWPOISON_LARGE |
3896 				VM_FAULT_SET_HINDEX(hstate_index(h));
3897 	} else {
3898 		ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3899 		if (!ptep)
3900 			return VM_FAULT_OOM;
3901 	}
3902 
3903 	mapping = vma->vm_file->f_mapping;
3904 	idx = vma_hugecache_offset(h, vma, address);
3905 
3906 	/*
3907 	 * Serialize hugepage allocation and instantiation, so that we don't
3908 	 * get spurious allocation failures if two CPUs race to instantiate
3909 	 * the same page in the page cache.
3910 	 */
3911 	hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
3912 	mutex_lock(&hugetlb_fault_mutex_table[hash]);
3913 
3914 	entry = huge_ptep_get(ptep);
3915 	if (huge_pte_none(entry)) {
3916 		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3917 		goto out_mutex;
3918 	}
3919 
3920 	ret = 0;
3921 
3922 	/*
3923 	 * entry could be a migration/hwpoison entry at this point, so this
3924 	 * check prevents the kernel from going below assuming that we have
3925 	 * a active hugepage in pagecache. This goto expects the 2nd page fault,
3926 	 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3927 	 * handle it.
3928 	 */
3929 	if (!pte_present(entry))
3930 		goto out_mutex;
3931 
3932 	/*
3933 	 * If we are going to COW the mapping later, we examine the pending
3934 	 * reservations for this page now. This will ensure that any
3935 	 * allocations necessary to record that reservation occur outside the
3936 	 * spinlock. For private mappings, we also lookup the pagecache
3937 	 * page now as it is used to determine if a reservation has been
3938 	 * consumed.
3939 	 */
3940 	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3941 		if (vma_needs_reservation(h, vma, address) < 0) {
3942 			ret = VM_FAULT_OOM;
3943 			goto out_mutex;
3944 		}
3945 		/* Just decrements count, does not deallocate */
3946 		vma_end_reservation(h, vma, address);
3947 
3948 		if (!(vma->vm_flags & VM_MAYSHARE))
3949 			pagecache_page = hugetlbfs_pagecache_page(h,
3950 								vma, address);
3951 	}
3952 
3953 	ptl = huge_pte_lock(h, mm, ptep);
3954 
3955 	/* Check for a racing update before calling hugetlb_cow */
3956 	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3957 		goto out_ptl;
3958 
3959 	/*
3960 	 * hugetlb_cow() requires page locks of pte_page(entry) and
3961 	 * pagecache_page, so here we need take the former one
3962 	 * when page != pagecache_page or !pagecache_page.
3963 	 */
3964 	page = pte_page(entry);
3965 	if (page != pagecache_page)
3966 		if (!trylock_page(page)) {
3967 			need_wait_lock = 1;
3968 			goto out_ptl;
3969 		}
3970 
3971 	get_page(page);
3972 
3973 	if (flags & FAULT_FLAG_WRITE) {
3974 		if (!huge_pte_write(entry)) {
3975 			ret = hugetlb_cow(mm, vma, address, ptep,
3976 					  pagecache_page, ptl);
3977 			goto out_put_page;
3978 		}
3979 		entry = huge_pte_mkdirty(entry);
3980 	}
3981 	entry = pte_mkyoung(entry);
3982 	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3983 						flags & FAULT_FLAG_WRITE))
3984 		update_mmu_cache(vma, address, ptep);
3985 out_put_page:
3986 	if (page != pagecache_page)
3987 		unlock_page(page);
3988 	put_page(page);
3989 out_ptl:
3990 	spin_unlock(ptl);
3991 
3992 	if (pagecache_page) {
3993 		unlock_page(pagecache_page);
3994 		put_page(pagecache_page);
3995 	}
3996 out_mutex:
3997 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3998 	/*
3999 	 * Generally it's safe to hold refcount during waiting page lock. But
4000 	 * here we just wait to defer the next page fault to avoid busy loop and
4001 	 * the page is not used after unlocked before returning from the current
4002 	 * page fault. So we are safe from accessing freed page, even if we wait
4003 	 * here without taking refcount.
4004 	 */
4005 	if (need_wait_lock)
4006 		wait_on_page_locked(page);
4007 	return ret;
4008 }
4009 
4010 /*
4011  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
4012  * modifications for huge pages.
4013  */
4014 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4015 			    pte_t *dst_pte,
4016 			    struct vm_area_struct *dst_vma,
4017 			    unsigned long dst_addr,
4018 			    unsigned long src_addr,
4019 			    struct page **pagep)
4020 {
4021 	struct address_space *mapping;
4022 	pgoff_t idx;
4023 	unsigned long size;
4024 	int vm_shared = dst_vma->vm_flags & VM_SHARED;
4025 	struct hstate *h = hstate_vma(dst_vma);
4026 	pte_t _dst_pte;
4027 	spinlock_t *ptl;
4028 	int ret;
4029 	struct page *page;
4030 
4031 	if (!*pagep) {
4032 		ret = -ENOMEM;
4033 		page = alloc_huge_page(dst_vma, dst_addr, 0);
4034 		if (IS_ERR(page))
4035 			goto out;
4036 
4037 		ret = copy_huge_page_from_user(page,
4038 						(const void __user *) src_addr,
4039 						pages_per_huge_page(h), false);
4040 
4041 		/* fallback to copy_from_user outside mmap_sem */
4042 		if (unlikely(ret)) {
4043 			ret = -EFAULT;
4044 			*pagep = page;
4045 			/* don't free the page */
4046 			goto out;
4047 		}
4048 	} else {
4049 		page = *pagep;
4050 		*pagep = NULL;
4051 	}
4052 
4053 	/*
4054 	 * The memory barrier inside __SetPageUptodate makes sure that
4055 	 * preceding stores to the page contents become visible before
4056 	 * the set_pte_at() write.
4057 	 */
4058 	__SetPageUptodate(page);
4059 	set_page_huge_active(page);
4060 
4061 	mapping = dst_vma->vm_file->f_mapping;
4062 	idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4063 
4064 	/*
4065 	 * If shared, add to page cache
4066 	 */
4067 	if (vm_shared) {
4068 		size = i_size_read(mapping->host) >> huge_page_shift(h);
4069 		ret = -EFAULT;
4070 		if (idx >= size)
4071 			goto out_release_nounlock;
4072 
4073 		/*
4074 		 * Serialization between remove_inode_hugepages() and
4075 		 * huge_add_to_page_cache() below happens through the
4076 		 * hugetlb_fault_mutex_table that here must be hold by
4077 		 * the caller.
4078 		 */
4079 		ret = huge_add_to_page_cache(page, mapping, idx);
4080 		if (ret)
4081 			goto out_release_nounlock;
4082 	}
4083 
4084 	ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4085 	spin_lock(ptl);
4086 
4087 	/*
4088 	 * Recheck the i_size after holding PT lock to make sure not
4089 	 * to leave any page mapped (as page_mapped()) beyond the end
4090 	 * of the i_size (remove_inode_hugepages() is strict about
4091 	 * enforcing that). If we bail out here, we'll also leave a
4092 	 * page in the radix tree in the vm_shared case beyond the end
4093 	 * of the i_size, but remove_inode_hugepages() will take care
4094 	 * of it as soon as we drop the hugetlb_fault_mutex_table.
4095 	 */
4096 	size = i_size_read(mapping->host) >> huge_page_shift(h);
4097 	ret = -EFAULT;
4098 	if (idx >= size)
4099 		goto out_release_unlock;
4100 
4101 	ret = -EEXIST;
4102 	if (!huge_pte_none(huge_ptep_get(dst_pte)))
4103 		goto out_release_unlock;
4104 
4105 	if (vm_shared) {
4106 		page_dup_rmap(page, true);
4107 	} else {
4108 		ClearPagePrivate(page);
4109 		hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4110 	}
4111 
4112 	_dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4113 	if (dst_vma->vm_flags & VM_WRITE)
4114 		_dst_pte = huge_pte_mkdirty(_dst_pte);
4115 	_dst_pte = pte_mkyoung(_dst_pte);
4116 
4117 	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4118 
4119 	(void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4120 					dst_vma->vm_flags & VM_WRITE);
4121 	hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4122 
4123 	/* No need to invalidate - it was non-present before */
4124 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
4125 
4126 	spin_unlock(ptl);
4127 	if (vm_shared)
4128 		unlock_page(page);
4129 	ret = 0;
4130 out:
4131 	return ret;
4132 out_release_unlock:
4133 	spin_unlock(ptl);
4134 	if (vm_shared)
4135 		unlock_page(page);
4136 out_release_nounlock:
4137 	put_page(page);
4138 	goto out;
4139 }
4140 
4141 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4142 			 struct page **pages, struct vm_area_struct **vmas,
4143 			 unsigned long *position, unsigned long *nr_pages,
4144 			 long i, unsigned int flags, int *nonblocking)
4145 {
4146 	unsigned long pfn_offset;
4147 	unsigned long vaddr = *position;
4148 	unsigned long remainder = *nr_pages;
4149 	struct hstate *h = hstate_vma(vma);
4150 	int err = -EFAULT;
4151 
4152 	while (vaddr < vma->vm_end && remainder) {
4153 		pte_t *pte;
4154 		spinlock_t *ptl = NULL;
4155 		int absent;
4156 		struct page *page;
4157 
4158 		/*
4159 		 * If we have a pending SIGKILL, don't keep faulting pages and
4160 		 * potentially allocating memory.
4161 		 */
4162 		if (unlikely(fatal_signal_pending(current))) {
4163 			remainder = 0;
4164 			break;
4165 		}
4166 
4167 		/*
4168 		 * Some archs (sparc64, sh*) have multiple pte_ts to
4169 		 * each hugepage.  We have to make sure we get the
4170 		 * first, for the page indexing below to work.
4171 		 *
4172 		 * Note that page table lock is not held when pte is null.
4173 		 */
4174 		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4175 				      huge_page_size(h));
4176 		if (pte)
4177 			ptl = huge_pte_lock(h, mm, pte);
4178 		absent = !pte || huge_pte_none(huge_ptep_get(pte));
4179 
4180 		/*
4181 		 * When coredumping, it suits get_dump_page if we just return
4182 		 * an error where there's an empty slot with no huge pagecache
4183 		 * to back it.  This way, we avoid allocating a hugepage, and
4184 		 * the sparse dumpfile avoids allocating disk blocks, but its
4185 		 * huge holes still show up with zeroes where they need to be.
4186 		 */
4187 		if (absent && (flags & FOLL_DUMP) &&
4188 		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4189 			if (pte)
4190 				spin_unlock(ptl);
4191 			remainder = 0;
4192 			break;
4193 		}
4194 
4195 		/*
4196 		 * We need call hugetlb_fault for both hugepages under migration
4197 		 * (in which case hugetlb_fault waits for the migration,) and
4198 		 * hwpoisoned hugepages (in which case we need to prevent the
4199 		 * caller from accessing to them.) In order to do this, we use
4200 		 * here is_swap_pte instead of is_hugetlb_entry_migration and
4201 		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4202 		 * both cases, and because we can't follow correct pages
4203 		 * directly from any kind of swap entries.
4204 		 */
4205 		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4206 		    ((flags & FOLL_WRITE) &&
4207 		      !huge_pte_write(huge_ptep_get(pte)))) {
4208 			int ret;
4209 			unsigned int fault_flags = 0;
4210 
4211 			if (pte)
4212 				spin_unlock(ptl);
4213 			if (flags & FOLL_WRITE)
4214 				fault_flags |= FAULT_FLAG_WRITE;
4215 			if (nonblocking)
4216 				fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4217 			if (flags & FOLL_NOWAIT)
4218 				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4219 					FAULT_FLAG_RETRY_NOWAIT;
4220 			if (flags & FOLL_TRIED) {
4221 				VM_WARN_ON_ONCE(fault_flags &
4222 						FAULT_FLAG_ALLOW_RETRY);
4223 				fault_flags |= FAULT_FLAG_TRIED;
4224 			}
4225 			ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4226 			if (ret & VM_FAULT_ERROR) {
4227 				err = vm_fault_to_errno(ret, flags);
4228 				remainder = 0;
4229 				break;
4230 			}
4231 			if (ret & VM_FAULT_RETRY) {
4232 				if (nonblocking)
4233 					*nonblocking = 0;
4234 				*nr_pages = 0;
4235 				/*
4236 				 * VM_FAULT_RETRY must not return an
4237 				 * error, it will return zero
4238 				 * instead.
4239 				 *
4240 				 * No need to update "position" as the
4241 				 * caller will not check it after
4242 				 * *nr_pages is set to 0.
4243 				 */
4244 				return i;
4245 			}
4246 			continue;
4247 		}
4248 
4249 		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4250 		page = pte_page(huge_ptep_get(pte));
4251 same_page:
4252 		if (pages) {
4253 			pages[i] = mem_map_offset(page, pfn_offset);
4254 			get_page(pages[i]);
4255 		}
4256 
4257 		if (vmas)
4258 			vmas[i] = vma;
4259 
4260 		vaddr += PAGE_SIZE;
4261 		++pfn_offset;
4262 		--remainder;
4263 		++i;
4264 		if (vaddr < vma->vm_end && remainder &&
4265 				pfn_offset < pages_per_huge_page(h)) {
4266 			/*
4267 			 * We use pfn_offset to avoid touching the pageframes
4268 			 * of this compound page.
4269 			 */
4270 			goto same_page;
4271 		}
4272 		spin_unlock(ptl);
4273 	}
4274 	*nr_pages = remainder;
4275 	/*
4276 	 * setting position is actually required only if remainder is
4277 	 * not zero but it's faster not to add a "if (remainder)"
4278 	 * branch.
4279 	 */
4280 	*position = vaddr;
4281 
4282 	return i ? i : err;
4283 }
4284 
4285 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4286 /*
4287  * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4288  * implement this.
4289  */
4290 #define flush_hugetlb_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
4291 #endif
4292 
4293 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4294 		unsigned long address, unsigned long end, pgprot_t newprot)
4295 {
4296 	struct mm_struct *mm = vma->vm_mm;
4297 	unsigned long start = address;
4298 	pte_t *ptep;
4299 	pte_t pte;
4300 	struct hstate *h = hstate_vma(vma);
4301 	unsigned long pages = 0;
4302 
4303 	BUG_ON(address >= end);
4304 	flush_cache_range(vma, address, end);
4305 
4306 	mmu_notifier_invalidate_range_start(mm, start, end);
4307 	i_mmap_lock_write(vma->vm_file->f_mapping);
4308 	for (; address < end; address += huge_page_size(h)) {
4309 		spinlock_t *ptl;
4310 		ptep = huge_pte_offset(mm, address, huge_page_size(h));
4311 		if (!ptep)
4312 			continue;
4313 		ptl = huge_pte_lock(h, mm, ptep);
4314 		if (huge_pmd_unshare(mm, &address, ptep)) {
4315 			pages++;
4316 			spin_unlock(ptl);
4317 			continue;
4318 		}
4319 		pte = huge_ptep_get(ptep);
4320 		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4321 			spin_unlock(ptl);
4322 			continue;
4323 		}
4324 		if (unlikely(is_hugetlb_entry_migration(pte))) {
4325 			swp_entry_t entry = pte_to_swp_entry(pte);
4326 
4327 			if (is_write_migration_entry(entry)) {
4328 				pte_t newpte;
4329 
4330 				make_migration_entry_read(&entry);
4331 				newpte = swp_entry_to_pte(entry);
4332 				set_huge_swap_pte_at(mm, address, ptep,
4333 						     newpte, huge_page_size(h));
4334 				pages++;
4335 			}
4336 			spin_unlock(ptl);
4337 			continue;
4338 		}
4339 		if (!huge_pte_none(pte)) {
4340 			pte = huge_ptep_get_and_clear(mm, address, ptep);
4341 			pte = pte_mkhuge(huge_pte_modify(pte, newprot));
4342 			pte = arch_make_huge_pte(pte, vma, NULL, 0);
4343 			set_huge_pte_at(mm, address, ptep, pte);
4344 			pages++;
4345 		}
4346 		spin_unlock(ptl);
4347 	}
4348 	/*
4349 	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4350 	 * may have cleared our pud entry and done put_page on the page table:
4351 	 * once we release i_mmap_rwsem, another task can do the final put_page
4352 	 * and that page table be reused and filled with junk.
4353 	 */
4354 	flush_hugetlb_tlb_range(vma, start, end);
4355 	/*
4356 	 * No need to call mmu_notifier_invalidate_range() we are downgrading
4357 	 * page table protection not changing it to point to a new page.
4358 	 *
4359 	 * See Documentation/vm/mmu_notifier.txt
4360 	 */
4361 	i_mmap_unlock_write(vma->vm_file->f_mapping);
4362 	mmu_notifier_invalidate_range_end(mm, start, end);
4363 
4364 	return pages << h->order;
4365 }
4366 
4367 int hugetlb_reserve_pages(struct inode *inode,
4368 					long from, long to,
4369 					struct vm_area_struct *vma,
4370 					vm_flags_t vm_flags)
4371 {
4372 	long ret, chg;
4373 	struct hstate *h = hstate_inode(inode);
4374 	struct hugepage_subpool *spool = subpool_inode(inode);
4375 	struct resv_map *resv_map;
4376 	long gbl_reserve;
4377 
4378 	/* This should never happen */
4379 	if (from > to) {
4380 		VM_WARN(1, "%s called with a negative range\n", __func__);
4381 		return -EINVAL;
4382 	}
4383 
4384 	/*
4385 	 * Only apply hugepage reservation if asked. At fault time, an
4386 	 * attempt will be made for VM_NORESERVE to allocate a page
4387 	 * without using reserves
4388 	 */
4389 	if (vm_flags & VM_NORESERVE)
4390 		return 0;
4391 
4392 	/*
4393 	 * Shared mappings base their reservation on the number of pages that
4394 	 * are already allocated on behalf of the file. Private mappings need
4395 	 * to reserve the full area even if read-only as mprotect() may be
4396 	 * called to make the mapping read-write. Assume !vma is a shm mapping
4397 	 */
4398 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
4399 		resv_map = inode_resv_map(inode);
4400 
4401 		chg = region_chg(resv_map, from, to);
4402 
4403 	} else {
4404 		resv_map = resv_map_alloc();
4405 		if (!resv_map)
4406 			return -ENOMEM;
4407 
4408 		chg = to - from;
4409 
4410 		set_vma_resv_map(vma, resv_map);
4411 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4412 	}
4413 
4414 	if (chg < 0) {
4415 		ret = chg;
4416 		goto out_err;
4417 	}
4418 
4419 	/*
4420 	 * There must be enough pages in the subpool for the mapping. If
4421 	 * the subpool has a minimum size, there may be some global
4422 	 * reservations already in place (gbl_reserve).
4423 	 */
4424 	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4425 	if (gbl_reserve < 0) {
4426 		ret = -ENOSPC;
4427 		goto out_err;
4428 	}
4429 
4430 	/*
4431 	 * Check enough hugepages are available for the reservation.
4432 	 * Hand the pages back to the subpool if there are not
4433 	 */
4434 	ret = hugetlb_acct_memory(h, gbl_reserve);
4435 	if (ret < 0) {
4436 		/* put back original number of pages, chg */
4437 		(void)hugepage_subpool_put_pages(spool, chg);
4438 		goto out_err;
4439 	}
4440 
4441 	/*
4442 	 * Account for the reservations made. Shared mappings record regions
4443 	 * that have reservations as they are shared by multiple VMAs.
4444 	 * When the last VMA disappears, the region map says how much
4445 	 * the reservation was and the page cache tells how much of
4446 	 * the reservation was consumed. Private mappings are per-VMA and
4447 	 * only the consumed reservations are tracked. When the VMA
4448 	 * disappears, the original reservation is the VMA size and the
4449 	 * consumed reservations are stored in the map. Hence, nothing
4450 	 * else has to be done for private mappings here
4451 	 */
4452 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
4453 		long add = region_add(resv_map, from, to);
4454 
4455 		if (unlikely(chg > add)) {
4456 			/*
4457 			 * pages in this range were added to the reserve
4458 			 * map between region_chg and region_add.  This
4459 			 * indicates a race with alloc_huge_page.  Adjust
4460 			 * the subpool and reserve counts modified above
4461 			 * based on the difference.
4462 			 */
4463 			long rsv_adjust;
4464 
4465 			rsv_adjust = hugepage_subpool_put_pages(spool,
4466 								chg - add);
4467 			hugetlb_acct_memory(h, -rsv_adjust);
4468 		}
4469 	}
4470 	return 0;
4471 out_err:
4472 	if (!vma || vma->vm_flags & VM_MAYSHARE)
4473 		/* Don't call region_abort if region_chg failed */
4474 		if (chg >= 0)
4475 			region_abort(resv_map, from, to);
4476 	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4477 		kref_put(&resv_map->refs, resv_map_release);
4478 	return ret;
4479 }
4480 
4481 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4482 								long freed)
4483 {
4484 	struct hstate *h = hstate_inode(inode);
4485 	struct resv_map *resv_map = inode_resv_map(inode);
4486 	long chg = 0;
4487 	struct hugepage_subpool *spool = subpool_inode(inode);
4488 	long gbl_reserve;
4489 
4490 	if (resv_map) {
4491 		chg = region_del(resv_map, start, end);
4492 		/*
4493 		 * region_del() can fail in the rare case where a region
4494 		 * must be split and another region descriptor can not be
4495 		 * allocated.  If end == LONG_MAX, it will not fail.
4496 		 */
4497 		if (chg < 0)
4498 			return chg;
4499 	}
4500 
4501 	spin_lock(&inode->i_lock);
4502 	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4503 	spin_unlock(&inode->i_lock);
4504 
4505 	/*
4506 	 * If the subpool has a minimum size, the number of global
4507 	 * reservations to be released may be adjusted.
4508 	 */
4509 	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4510 	hugetlb_acct_memory(h, -gbl_reserve);
4511 
4512 	return 0;
4513 }
4514 
4515 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4516 static unsigned long page_table_shareable(struct vm_area_struct *svma,
4517 				struct vm_area_struct *vma,
4518 				unsigned long addr, pgoff_t idx)
4519 {
4520 	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4521 				svma->vm_start;
4522 	unsigned long sbase = saddr & PUD_MASK;
4523 	unsigned long s_end = sbase + PUD_SIZE;
4524 
4525 	/* Allow segments to share if only one is marked locked */
4526 	unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4527 	unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4528 
4529 	/*
4530 	 * match the virtual addresses, permission and the alignment of the
4531 	 * page table page.
4532 	 */
4533 	if (pmd_index(addr) != pmd_index(saddr) ||
4534 	    vm_flags != svm_flags ||
4535 	    sbase < svma->vm_start || svma->vm_end < s_end)
4536 		return 0;
4537 
4538 	return saddr;
4539 }
4540 
4541 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4542 {
4543 	unsigned long base = addr & PUD_MASK;
4544 	unsigned long end = base + PUD_SIZE;
4545 
4546 	/*
4547 	 * check on proper vm_flags and page table alignment
4548 	 */
4549 	if (vma->vm_flags & VM_MAYSHARE &&
4550 	    vma->vm_start <= base && end <= vma->vm_end)
4551 		return true;
4552 	return false;
4553 }
4554 
4555 /*
4556  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4557  * and returns the corresponding pte. While this is not necessary for the
4558  * !shared pmd case because we can allocate the pmd later as well, it makes the
4559  * code much cleaner. pmd allocation is essential for the shared case because
4560  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4561  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4562  * bad pmd for sharing.
4563  */
4564 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4565 {
4566 	struct vm_area_struct *vma = find_vma(mm, addr);
4567 	struct address_space *mapping = vma->vm_file->f_mapping;
4568 	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4569 			vma->vm_pgoff;
4570 	struct vm_area_struct *svma;
4571 	unsigned long saddr;
4572 	pte_t *spte = NULL;
4573 	pte_t *pte;
4574 	spinlock_t *ptl;
4575 
4576 	if (!vma_shareable(vma, addr))
4577 		return (pte_t *)pmd_alloc(mm, pud, addr);
4578 
4579 	i_mmap_lock_write(mapping);
4580 	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4581 		if (svma == vma)
4582 			continue;
4583 
4584 		saddr = page_table_shareable(svma, vma, addr, idx);
4585 		if (saddr) {
4586 			spte = huge_pte_offset(svma->vm_mm, saddr,
4587 					       vma_mmu_pagesize(svma));
4588 			if (spte) {
4589 				get_page(virt_to_page(spte));
4590 				break;
4591 			}
4592 		}
4593 	}
4594 
4595 	if (!spte)
4596 		goto out;
4597 
4598 	ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
4599 	if (pud_none(*pud)) {
4600 		pud_populate(mm, pud,
4601 				(pmd_t *)((unsigned long)spte & PAGE_MASK));
4602 		mm_inc_nr_pmds(mm);
4603 	} else {
4604 		put_page(virt_to_page(spte));
4605 	}
4606 	spin_unlock(ptl);
4607 out:
4608 	pte = (pte_t *)pmd_alloc(mm, pud, addr);
4609 	i_mmap_unlock_write(mapping);
4610 	return pte;
4611 }
4612 
4613 /*
4614  * unmap huge page backed by shared pte.
4615  *
4616  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
4617  * indicated by page_count > 1, unmap is achieved by clearing pud and
4618  * decrementing the ref count. If count == 1, the pte page is not shared.
4619  *
4620  * called with page table lock held.
4621  *
4622  * returns: 1 successfully unmapped a shared pte page
4623  *	    0 the underlying pte page is not shared, or it is the last user
4624  */
4625 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4626 {
4627 	pgd_t *pgd = pgd_offset(mm, *addr);
4628 	p4d_t *p4d = p4d_offset(pgd, *addr);
4629 	pud_t *pud = pud_offset(p4d, *addr);
4630 
4631 	BUG_ON(page_count(virt_to_page(ptep)) == 0);
4632 	if (page_count(virt_to_page(ptep)) == 1)
4633 		return 0;
4634 
4635 	pud_clear(pud);
4636 	put_page(virt_to_page(ptep));
4637 	mm_dec_nr_pmds(mm);
4638 	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4639 	return 1;
4640 }
4641 #define want_pmd_share()	(1)
4642 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4643 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4644 {
4645 	return NULL;
4646 }
4647 
4648 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4649 {
4650 	return 0;
4651 }
4652 #define want_pmd_share()	(0)
4653 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4654 
4655 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4656 pte_t *huge_pte_alloc(struct mm_struct *mm,
4657 			unsigned long addr, unsigned long sz)
4658 {
4659 	pgd_t *pgd;
4660 	p4d_t *p4d;
4661 	pud_t *pud;
4662 	pte_t *pte = NULL;
4663 
4664 	pgd = pgd_offset(mm, addr);
4665 	p4d = p4d_alloc(mm, pgd, addr);
4666 	if (!p4d)
4667 		return NULL;
4668 	pud = pud_alloc(mm, p4d, addr);
4669 	if (pud) {
4670 		if (sz == PUD_SIZE) {
4671 			pte = (pte_t *)pud;
4672 		} else {
4673 			BUG_ON(sz != PMD_SIZE);
4674 			if (want_pmd_share() && pud_none(*pud))
4675 				pte = huge_pmd_share(mm, addr, pud);
4676 			else
4677 				pte = (pte_t *)pmd_alloc(mm, pud, addr);
4678 		}
4679 	}
4680 	BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
4681 
4682 	return pte;
4683 }
4684 
4685 /*
4686  * huge_pte_offset() - Walk the page table to resolve the hugepage
4687  * entry at address @addr
4688  *
4689  * Return: Pointer to page table or swap entry (PUD or PMD) for
4690  * address @addr, or NULL if a p*d_none() entry is encountered and the
4691  * size @sz doesn't match the hugepage size at this level of the page
4692  * table.
4693  */
4694 pte_t *huge_pte_offset(struct mm_struct *mm,
4695 		       unsigned long addr, unsigned long sz)
4696 {
4697 	pgd_t *pgd;
4698 	p4d_t *p4d;
4699 	pud_t *pud;
4700 	pmd_t *pmd;
4701 
4702 	pgd = pgd_offset(mm, addr);
4703 	if (!pgd_present(*pgd))
4704 		return NULL;
4705 	p4d = p4d_offset(pgd, addr);
4706 	if (!p4d_present(*p4d))
4707 		return NULL;
4708 
4709 	pud = pud_offset(p4d, addr);
4710 	if (sz != PUD_SIZE && pud_none(*pud))
4711 		return NULL;
4712 	/* hugepage or swap? */
4713 	if (pud_huge(*pud) || !pud_present(*pud))
4714 		return (pte_t *)pud;
4715 
4716 	pmd = pmd_offset(pud, addr);
4717 	if (sz != PMD_SIZE && pmd_none(*pmd))
4718 		return NULL;
4719 	/* hugepage or swap? */
4720 	if (pmd_huge(*pmd) || !pmd_present(*pmd))
4721 		return (pte_t *)pmd;
4722 
4723 	return NULL;
4724 }
4725 
4726 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4727 
4728 /*
4729  * These functions are overwritable if your architecture needs its own
4730  * behavior.
4731  */
4732 struct page * __weak
4733 follow_huge_addr(struct mm_struct *mm, unsigned long address,
4734 			      int write)
4735 {
4736 	return ERR_PTR(-EINVAL);
4737 }
4738 
4739 struct page * __weak
4740 follow_huge_pd(struct vm_area_struct *vma,
4741 	       unsigned long address, hugepd_t hpd, int flags, int pdshift)
4742 {
4743 	WARN(1, "hugepd follow called with no support for hugepage directory format\n");
4744 	return NULL;
4745 }
4746 
4747 struct page * __weak
4748 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4749 		pmd_t *pmd, int flags)
4750 {
4751 	struct page *page = NULL;
4752 	spinlock_t *ptl;
4753 	pte_t pte;
4754 retry:
4755 	ptl = pmd_lockptr(mm, pmd);
4756 	spin_lock(ptl);
4757 	/*
4758 	 * make sure that the address range covered by this pmd is not
4759 	 * unmapped from other threads.
4760 	 */
4761 	if (!pmd_huge(*pmd))
4762 		goto out;
4763 	pte = huge_ptep_get((pte_t *)pmd);
4764 	if (pte_present(pte)) {
4765 		page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4766 		if (flags & FOLL_GET)
4767 			get_page(page);
4768 	} else {
4769 		if (is_hugetlb_entry_migration(pte)) {
4770 			spin_unlock(ptl);
4771 			__migration_entry_wait(mm, (pte_t *)pmd, ptl);
4772 			goto retry;
4773 		}
4774 		/*
4775 		 * hwpoisoned entry is treated as no_page_table in
4776 		 * follow_page_mask().
4777 		 */
4778 	}
4779 out:
4780 	spin_unlock(ptl);
4781 	return page;
4782 }
4783 
4784 struct page * __weak
4785 follow_huge_pud(struct mm_struct *mm, unsigned long address,
4786 		pud_t *pud, int flags)
4787 {
4788 	if (flags & FOLL_GET)
4789 		return NULL;
4790 
4791 	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4792 }
4793 
4794 struct page * __weak
4795 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
4796 {
4797 	if (flags & FOLL_GET)
4798 		return NULL;
4799 
4800 	return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
4801 }
4802 
4803 bool isolate_huge_page(struct page *page, struct list_head *list)
4804 {
4805 	bool ret = true;
4806 
4807 	VM_BUG_ON_PAGE(!PageHead(page), page);
4808 	spin_lock(&hugetlb_lock);
4809 	if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4810 		ret = false;
4811 		goto unlock;
4812 	}
4813 	clear_page_huge_active(page);
4814 	list_move_tail(&page->lru, list);
4815 unlock:
4816 	spin_unlock(&hugetlb_lock);
4817 	return ret;
4818 }
4819 
4820 void putback_active_hugepage(struct page *page)
4821 {
4822 	VM_BUG_ON_PAGE(!PageHead(page), page);
4823 	spin_lock(&hugetlb_lock);
4824 	set_page_huge_active(page);
4825 	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4826 	spin_unlock(&hugetlb_lock);
4827 	put_page(page);
4828 }
4829 
4830 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
4831 {
4832 	struct hstate *h = page_hstate(oldpage);
4833 
4834 	hugetlb_cgroup_migrate(oldpage, newpage);
4835 	set_page_owner_migrate_reason(newpage, reason);
4836 
4837 	/*
4838 	 * transfer temporary state of the new huge page. This is
4839 	 * reverse to other transitions because the newpage is going to
4840 	 * be final while the old one will be freed so it takes over
4841 	 * the temporary status.
4842 	 *
4843 	 * Also note that we have to transfer the per-node surplus state
4844 	 * here as well otherwise the global surplus count will not match
4845 	 * the per-node's.
4846 	 */
4847 	if (PageHugeTemporary(newpage)) {
4848 		int old_nid = page_to_nid(oldpage);
4849 		int new_nid = page_to_nid(newpage);
4850 
4851 		SetPageHugeTemporary(oldpage);
4852 		ClearPageHugeTemporary(newpage);
4853 
4854 		spin_lock(&hugetlb_lock);
4855 		if (h->surplus_huge_pages_node[old_nid]) {
4856 			h->surplus_huge_pages_node[old_nid]--;
4857 			h->surplus_huge_pages_node[new_nid]++;
4858 		}
4859 		spin_unlock(&hugetlb_lock);
4860 	}
4861 }
4862