xref: /linux/mm/hugetlb.c (revision a7f7f6248d9740d710fd6bd190293fe5e16410ac)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/mmdebug.h>
23 #include <linux/sched/signal.h>
24 #include <linux/rmap.h>
25 #include <linux/string_helpers.h>
26 #include <linux/swap.h>
27 #include <linux/swapops.h>
28 #include <linux/jhash.h>
29 #include <linux/numa.h>
30 #include <linux/llist.h>
31 #include <linux/cma.h>
32 
33 #include <asm/page.h>
34 #include <asm/tlb.h>
35 
36 #include <linux/io.h>
37 #include <linux/hugetlb.h>
38 #include <linux/hugetlb_cgroup.h>
39 #include <linux/node.h>
40 #include <linux/userfaultfd_k.h>
41 #include <linux/page_owner.h>
42 #include "internal.h"
43 
44 int hugetlb_max_hstate __read_mostly;
45 unsigned int default_hstate_idx;
46 struct hstate hstates[HUGE_MAX_HSTATE];
47 
48 static struct cma *hugetlb_cma[MAX_NUMNODES];
49 
50 /*
51  * Minimum page order among possible hugepage sizes, set to a proper value
52  * at boot time.
53  */
54 static unsigned int minimum_order __read_mostly = UINT_MAX;
55 
56 __initdata LIST_HEAD(huge_boot_pages);
57 
58 /* for command line parsing */
59 static struct hstate * __initdata parsed_hstate;
60 static unsigned long __initdata default_hstate_max_huge_pages;
61 static bool __initdata parsed_valid_hugepagesz = true;
62 static bool __initdata parsed_default_hugepagesz;
63 
64 /*
65  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
66  * free_huge_pages, and surplus_huge_pages.
67  */
68 DEFINE_SPINLOCK(hugetlb_lock);
69 
70 /*
71  * Serializes faults on the same logical page.  This is used to
72  * prevent spurious OOMs when the hugepage pool is fully utilized.
73  */
74 static int num_fault_mutexes;
75 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
76 
77 /* Forward declaration */
78 static int hugetlb_acct_memory(struct hstate *h, long delta);
79 
80 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
81 {
82 	bool free = (spool->count == 0) && (spool->used_hpages == 0);
83 
84 	spin_unlock(&spool->lock);
85 
86 	/* If no pages are used, and no other handles to the subpool
87 	 * remain, give up any reservations based on minimum size and
88 	 * free the subpool */
89 	if (free) {
90 		if (spool->min_hpages != -1)
91 			hugetlb_acct_memory(spool->hstate,
92 						-spool->min_hpages);
93 		kfree(spool);
94 	}
95 }
96 
97 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
98 						long min_hpages)
99 {
100 	struct hugepage_subpool *spool;
101 
102 	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
103 	if (!spool)
104 		return NULL;
105 
106 	spin_lock_init(&spool->lock);
107 	spool->count = 1;
108 	spool->max_hpages = max_hpages;
109 	spool->hstate = h;
110 	spool->min_hpages = min_hpages;
111 
112 	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
113 		kfree(spool);
114 		return NULL;
115 	}
116 	spool->rsv_hpages = min_hpages;
117 
118 	return spool;
119 }
120 
121 void hugepage_put_subpool(struct hugepage_subpool *spool)
122 {
123 	spin_lock(&spool->lock);
124 	BUG_ON(!spool->count);
125 	spool->count--;
126 	unlock_or_release_subpool(spool);
127 }
128 
129 /*
130  * Subpool accounting for allocating and reserving pages.
131  * Return -ENOMEM if there are not enough resources to satisfy the
132  * the request.  Otherwise, return the number of pages by which the
133  * global pools must be adjusted (upward).  The returned value may
134  * only be different than the passed value (delta) in the case where
135  * a subpool minimum size must be maintained.
136  */
137 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
138 				      long delta)
139 {
140 	long ret = delta;
141 
142 	if (!spool)
143 		return ret;
144 
145 	spin_lock(&spool->lock);
146 
147 	if (spool->max_hpages != -1) {		/* maximum size accounting */
148 		if ((spool->used_hpages + delta) <= spool->max_hpages)
149 			spool->used_hpages += delta;
150 		else {
151 			ret = -ENOMEM;
152 			goto unlock_ret;
153 		}
154 	}
155 
156 	/* minimum size accounting */
157 	if (spool->min_hpages != -1 && spool->rsv_hpages) {
158 		if (delta > spool->rsv_hpages) {
159 			/*
160 			 * Asking for more reserves than those already taken on
161 			 * behalf of subpool.  Return difference.
162 			 */
163 			ret = delta - spool->rsv_hpages;
164 			spool->rsv_hpages = 0;
165 		} else {
166 			ret = 0;	/* reserves already accounted for */
167 			spool->rsv_hpages -= delta;
168 		}
169 	}
170 
171 unlock_ret:
172 	spin_unlock(&spool->lock);
173 	return ret;
174 }
175 
176 /*
177  * Subpool accounting for freeing and unreserving pages.
178  * Return the number of global page reservations that must be dropped.
179  * The return value may only be different than the passed value (delta)
180  * in the case where a subpool minimum size must be maintained.
181  */
182 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
183 				       long delta)
184 {
185 	long ret = delta;
186 
187 	if (!spool)
188 		return delta;
189 
190 	spin_lock(&spool->lock);
191 
192 	if (spool->max_hpages != -1)		/* maximum size accounting */
193 		spool->used_hpages -= delta;
194 
195 	 /* minimum size accounting */
196 	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
197 		if (spool->rsv_hpages + delta <= spool->min_hpages)
198 			ret = 0;
199 		else
200 			ret = spool->rsv_hpages + delta - spool->min_hpages;
201 
202 		spool->rsv_hpages += delta;
203 		if (spool->rsv_hpages > spool->min_hpages)
204 			spool->rsv_hpages = spool->min_hpages;
205 	}
206 
207 	/*
208 	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
209 	 * quota reference, free it now.
210 	 */
211 	unlock_or_release_subpool(spool);
212 
213 	return ret;
214 }
215 
216 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
217 {
218 	return HUGETLBFS_SB(inode->i_sb)->spool;
219 }
220 
221 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
222 {
223 	return subpool_inode(file_inode(vma->vm_file));
224 }
225 
226 /* Helper that removes a struct file_region from the resv_map cache and returns
227  * it for use.
228  */
229 static struct file_region *
230 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
231 {
232 	struct file_region *nrg = NULL;
233 
234 	VM_BUG_ON(resv->region_cache_count <= 0);
235 
236 	resv->region_cache_count--;
237 	nrg = list_first_entry(&resv->region_cache, struct file_region, link);
238 	VM_BUG_ON(!nrg);
239 	list_del(&nrg->link);
240 
241 	nrg->from = from;
242 	nrg->to = to;
243 
244 	return nrg;
245 }
246 
247 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
248 					      struct file_region *rg)
249 {
250 #ifdef CONFIG_CGROUP_HUGETLB
251 	nrg->reservation_counter = rg->reservation_counter;
252 	nrg->css = rg->css;
253 	if (rg->css)
254 		css_get(rg->css);
255 #endif
256 }
257 
258 /* Helper that records hugetlb_cgroup uncharge info. */
259 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
260 						struct hstate *h,
261 						struct resv_map *resv,
262 						struct file_region *nrg)
263 {
264 #ifdef CONFIG_CGROUP_HUGETLB
265 	if (h_cg) {
266 		nrg->reservation_counter =
267 			&h_cg->rsvd_hugepage[hstate_index(h)];
268 		nrg->css = &h_cg->css;
269 		if (!resv->pages_per_hpage)
270 			resv->pages_per_hpage = pages_per_huge_page(h);
271 		/* pages_per_hpage should be the same for all entries in
272 		 * a resv_map.
273 		 */
274 		VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
275 	} else {
276 		nrg->reservation_counter = NULL;
277 		nrg->css = NULL;
278 	}
279 #endif
280 }
281 
282 static bool has_same_uncharge_info(struct file_region *rg,
283 				   struct file_region *org)
284 {
285 #ifdef CONFIG_CGROUP_HUGETLB
286 	return rg && org &&
287 	       rg->reservation_counter == org->reservation_counter &&
288 	       rg->css == org->css;
289 
290 #else
291 	return true;
292 #endif
293 }
294 
295 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
296 {
297 	struct file_region *nrg = NULL, *prg = NULL;
298 
299 	prg = list_prev_entry(rg, link);
300 	if (&prg->link != &resv->regions && prg->to == rg->from &&
301 	    has_same_uncharge_info(prg, rg)) {
302 		prg->to = rg->to;
303 
304 		list_del(&rg->link);
305 		kfree(rg);
306 
307 		coalesce_file_region(resv, prg);
308 		return;
309 	}
310 
311 	nrg = list_next_entry(rg, link);
312 	if (&nrg->link != &resv->regions && nrg->from == rg->to &&
313 	    has_same_uncharge_info(nrg, rg)) {
314 		nrg->from = rg->from;
315 
316 		list_del(&rg->link);
317 		kfree(rg);
318 
319 		coalesce_file_region(resv, nrg);
320 		return;
321 	}
322 }
323 
324 /* Must be called with resv->lock held. Calling this with count_only == true
325  * will count the number of pages to be added but will not modify the linked
326  * list. If regions_needed != NULL and count_only == true, then regions_needed
327  * will indicate the number of file_regions needed in the cache to carry out to
328  * add the regions for this range.
329  */
330 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
331 				     struct hugetlb_cgroup *h_cg,
332 				     struct hstate *h, long *regions_needed,
333 				     bool count_only)
334 {
335 	long add = 0;
336 	struct list_head *head = &resv->regions;
337 	long last_accounted_offset = f;
338 	struct file_region *rg = NULL, *trg = NULL, *nrg = NULL;
339 
340 	if (regions_needed)
341 		*regions_needed = 0;
342 
343 	/* In this loop, we essentially handle an entry for the range
344 	 * [last_accounted_offset, rg->from), at every iteration, with some
345 	 * bounds checking.
346 	 */
347 	list_for_each_entry_safe(rg, trg, head, link) {
348 		/* Skip irrelevant regions that start before our range. */
349 		if (rg->from < f) {
350 			/* If this region ends after the last accounted offset,
351 			 * then we need to update last_accounted_offset.
352 			 */
353 			if (rg->to > last_accounted_offset)
354 				last_accounted_offset = rg->to;
355 			continue;
356 		}
357 
358 		/* When we find a region that starts beyond our range, we've
359 		 * finished.
360 		 */
361 		if (rg->from > t)
362 			break;
363 
364 		/* Add an entry for last_accounted_offset -> rg->from, and
365 		 * update last_accounted_offset.
366 		 */
367 		if (rg->from > last_accounted_offset) {
368 			add += rg->from - last_accounted_offset;
369 			if (!count_only) {
370 				nrg = get_file_region_entry_from_cache(
371 					resv, last_accounted_offset, rg->from);
372 				record_hugetlb_cgroup_uncharge_info(h_cg, h,
373 								    resv, nrg);
374 				list_add(&nrg->link, rg->link.prev);
375 				coalesce_file_region(resv, nrg);
376 			} else if (regions_needed)
377 				*regions_needed += 1;
378 		}
379 
380 		last_accounted_offset = rg->to;
381 	}
382 
383 	/* Handle the case where our range extends beyond
384 	 * last_accounted_offset.
385 	 */
386 	if (last_accounted_offset < t) {
387 		add += t - last_accounted_offset;
388 		if (!count_only) {
389 			nrg = get_file_region_entry_from_cache(
390 				resv, last_accounted_offset, t);
391 			record_hugetlb_cgroup_uncharge_info(h_cg, h, resv, nrg);
392 			list_add(&nrg->link, rg->link.prev);
393 			coalesce_file_region(resv, nrg);
394 		} else if (regions_needed)
395 			*regions_needed += 1;
396 	}
397 
398 	VM_BUG_ON(add < 0);
399 	return add;
400 }
401 
402 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
403  */
404 static int allocate_file_region_entries(struct resv_map *resv,
405 					int regions_needed)
406 	__must_hold(&resv->lock)
407 {
408 	struct list_head allocated_regions;
409 	int to_allocate = 0, i = 0;
410 	struct file_region *trg = NULL, *rg = NULL;
411 
412 	VM_BUG_ON(regions_needed < 0);
413 
414 	INIT_LIST_HEAD(&allocated_regions);
415 
416 	/*
417 	 * Check for sufficient descriptors in the cache to accommodate
418 	 * the number of in progress add operations plus regions_needed.
419 	 *
420 	 * This is a while loop because when we drop the lock, some other call
421 	 * to region_add or region_del may have consumed some region_entries,
422 	 * so we keep looping here until we finally have enough entries for
423 	 * (adds_in_progress + regions_needed).
424 	 */
425 	while (resv->region_cache_count <
426 	       (resv->adds_in_progress + regions_needed)) {
427 		to_allocate = resv->adds_in_progress + regions_needed -
428 			      resv->region_cache_count;
429 
430 		/* At this point, we should have enough entries in the cache
431 		 * for all the existings adds_in_progress. We should only be
432 		 * needing to allocate for regions_needed.
433 		 */
434 		VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
435 
436 		spin_unlock(&resv->lock);
437 		for (i = 0; i < to_allocate; i++) {
438 			trg = kmalloc(sizeof(*trg), GFP_KERNEL);
439 			if (!trg)
440 				goto out_of_memory;
441 			list_add(&trg->link, &allocated_regions);
442 		}
443 
444 		spin_lock(&resv->lock);
445 
446 		list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
447 			list_del(&rg->link);
448 			list_add(&rg->link, &resv->region_cache);
449 			resv->region_cache_count++;
450 		}
451 	}
452 
453 	return 0;
454 
455 out_of_memory:
456 	list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
457 		list_del(&rg->link);
458 		kfree(rg);
459 	}
460 	return -ENOMEM;
461 }
462 
463 /*
464  * Add the huge page range represented by [f, t) to the reserve
465  * map.  Regions will be taken from the cache to fill in this range.
466  * Sufficient regions should exist in the cache due to the previous
467  * call to region_chg with the same range, but in some cases the cache will not
468  * have sufficient entries due to races with other code doing region_add or
469  * region_del.  The extra needed entries will be allocated.
470  *
471  * regions_needed is the out value provided by a previous call to region_chg.
472  *
473  * Return the number of new huge pages added to the map.  This number is greater
474  * than or equal to zero.  If file_region entries needed to be allocated for
475  * this operation and we were not able to allocate, it returns -ENOMEM.
476  * region_add of regions of length 1 never allocate file_regions and cannot
477  * fail; region_chg will always allocate at least 1 entry and a region_add for
478  * 1 page will only require at most 1 entry.
479  */
480 static long region_add(struct resv_map *resv, long f, long t,
481 		       long in_regions_needed, struct hstate *h,
482 		       struct hugetlb_cgroup *h_cg)
483 {
484 	long add = 0, actual_regions_needed = 0;
485 
486 	spin_lock(&resv->lock);
487 retry:
488 
489 	/* Count how many regions are actually needed to execute this add. */
490 	add_reservation_in_range(resv, f, t, NULL, NULL, &actual_regions_needed,
491 				 true);
492 
493 	/*
494 	 * Check for sufficient descriptors in the cache to accommodate
495 	 * this add operation. Note that actual_regions_needed may be greater
496 	 * than in_regions_needed, as the resv_map may have been modified since
497 	 * the region_chg call. In this case, we need to make sure that we
498 	 * allocate extra entries, such that we have enough for all the
499 	 * existing adds_in_progress, plus the excess needed for this
500 	 * operation.
501 	 */
502 	if (actual_regions_needed > in_regions_needed &&
503 	    resv->region_cache_count <
504 		    resv->adds_in_progress +
505 			    (actual_regions_needed - in_regions_needed)) {
506 		/* region_add operation of range 1 should never need to
507 		 * allocate file_region entries.
508 		 */
509 		VM_BUG_ON(t - f <= 1);
510 
511 		if (allocate_file_region_entries(
512 			    resv, actual_regions_needed - in_regions_needed)) {
513 			return -ENOMEM;
514 		}
515 
516 		goto retry;
517 	}
518 
519 	add = add_reservation_in_range(resv, f, t, h_cg, h, NULL, false);
520 
521 	resv->adds_in_progress -= in_regions_needed;
522 
523 	spin_unlock(&resv->lock);
524 	VM_BUG_ON(add < 0);
525 	return add;
526 }
527 
528 /*
529  * Examine the existing reserve map and determine how many
530  * huge pages in the specified range [f, t) are NOT currently
531  * represented.  This routine is called before a subsequent
532  * call to region_add that will actually modify the reserve
533  * map to add the specified range [f, t).  region_chg does
534  * not change the number of huge pages represented by the
535  * map.  A number of new file_region structures is added to the cache as a
536  * placeholder, for the subsequent region_add call to use. At least 1
537  * file_region structure is added.
538  *
539  * out_regions_needed is the number of regions added to the
540  * resv->adds_in_progress.  This value needs to be provided to a follow up call
541  * to region_add or region_abort for proper accounting.
542  *
543  * Returns the number of huge pages that need to be added to the existing
544  * reservation map for the range [f, t).  This number is greater or equal to
545  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
546  * is needed and can not be allocated.
547  */
548 static long region_chg(struct resv_map *resv, long f, long t,
549 		       long *out_regions_needed)
550 {
551 	long chg = 0;
552 
553 	spin_lock(&resv->lock);
554 
555 	/* Count how many hugepages in this range are NOT respresented. */
556 	chg = add_reservation_in_range(resv, f, t, NULL, NULL,
557 				       out_regions_needed, true);
558 
559 	if (*out_regions_needed == 0)
560 		*out_regions_needed = 1;
561 
562 	if (allocate_file_region_entries(resv, *out_regions_needed))
563 		return -ENOMEM;
564 
565 	resv->adds_in_progress += *out_regions_needed;
566 
567 	spin_unlock(&resv->lock);
568 	return chg;
569 }
570 
571 /*
572  * Abort the in progress add operation.  The adds_in_progress field
573  * of the resv_map keeps track of the operations in progress between
574  * calls to region_chg and region_add.  Operations are sometimes
575  * aborted after the call to region_chg.  In such cases, region_abort
576  * is called to decrement the adds_in_progress counter. regions_needed
577  * is the value returned by the region_chg call, it is used to decrement
578  * the adds_in_progress counter.
579  *
580  * NOTE: The range arguments [f, t) are not needed or used in this
581  * routine.  They are kept to make reading the calling code easier as
582  * arguments will match the associated region_chg call.
583  */
584 static void region_abort(struct resv_map *resv, long f, long t,
585 			 long regions_needed)
586 {
587 	spin_lock(&resv->lock);
588 	VM_BUG_ON(!resv->region_cache_count);
589 	resv->adds_in_progress -= regions_needed;
590 	spin_unlock(&resv->lock);
591 }
592 
593 /*
594  * Delete the specified range [f, t) from the reserve map.  If the
595  * t parameter is LONG_MAX, this indicates that ALL regions after f
596  * should be deleted.  Locate the regions which intersect [f, t)
597  * and either trim, delete or split the existing regions.
598  *
599  * Returns the number of huge pages deleted from the reserve map.
600  * In the normal case, the return value is zero or more.  In the
601  * case where a region must be split, a new region descriptor must
602  * be allocated.  If the allocation fails, -ENOMEM will be returned.
603  * NOTE: If the parameter t == LONG_MAX, then we will never split
604  * a region and possibly return -ENOMEM.  Callers specifying
605  * t == LONG_MAX do not need to check for -ENOMEM error.
606  */
607 static long region_del(struct resv_map *resv, long f, long t)
608 {
609 	struct list_head *head = &resv->regions;
610 	struct file_region *rg, *trg;
611 	struct file_region *nrg = NULL;
612 	long del = 0;
613 
614 retry:
615 	spin_lock(&resv->lock);
616 	list_for_each_entry_safe(rg, trg, head, link) {
617 		/*
618 		 * Skip regions before the range to be deleted.  file_region
619 		 * ranges are normally of the form [from, to).  However, there
620 		 * may be a "placeholder" entry in the map which is of the form
621 		 * (from, to) with from == to.  Check for placeholder entries
622 		 * at the beginning of the range to be deleted.
623 		 */
624 		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
625 			continue;
626 
627 		if (rg->from >= t)
628 			break;
629 
630 		if (f > rg->from && t < rg->to) { /* Must split region */
631 			/*
632 			 * Check for an entry in the cache before dropping
633 			 * lock and attempting allocation.
634 			 */
635 			if (!nrg &&
636 			    resv->region_cache_count > resv->adds_in_progress) {
637 				nrg = list_first_entry(&resv->region_cache,
638 							struct file_region,
639 							link);
640 				list_del(&nrg->link);
641 				resv->region_cache_count--;
642 			}
643 
644 			if (!nrg) {
645 				spin_unlock(&resv->lock);
646 				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
647 				if (!nrg)
648 					return -ENOMEM;
649 				goto retry;
650 			}
651 
652 			del += t - f;
653 
654 			/* New entry for end of split region */
655 			nrg->from = t;
656 			nrg->to = rg->to;
657 
658 			copy_hugetlb_cgroup_uncharge_info(nrg, rg);
659 
660 			INIT_LIST_HEAD(&nrg->link);
661 
662 			/* Original entry is trimmed */
663 			rg->to = f;
664 
665 			hugetlb_cgroup_uncharge_file_region(
666 				resv, rg, nrg->to - nrg->from);
667 
668 			list_add(&nrg->link, &rg->link);
669 			nrg = NULL;
670 			break;
671 		}
672 
673 		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
674 			del += rg->to - rg->from;
675 			hugetlb_cgroup_uncharge_file_region(resv, rg,
676 							    rg->to - rg->from);
677 			list_del(&rg->link);
678 			kfree(rg);
679 			continue;
680 		}
681 
682 		if (f <= rg->from) {	/* Trim beginning of region */
683 			del += t - rg->from;
684 			rg->from = t;
685 
686 			hugetlb_cgroup_uncharge_file_region(resv, rg,
687 							    t - rg->from);
688 		} else {		/* Trim end of region */
689 			del += rg->to - f;
690 			rg->to = f;
691 
692 			hugetlb_cgroup_uncharge_file_region(resv, rg,
693 							    rg->to - f);
694 		}
695 	}
696 
697 	spin_unlock(&resv->lock);
698 	kfree(nrg);
699 	return del;
700 }
701 
702 /*
703  * A rare out of memory error was encountered which prevented removal of
704  * the reserve map region for a page.  The huge page itself was free'ed
705  * and removed from the page cache.  This routine will adjust the subpool
706  * usage count, and the global reserve count if needed.  By incrementing
707  * these counts, the reserve map entry which could not be deleted will
708  * appear as a "reserved" entry instead of simply dangling with incorrect
709  * counts.
710  */
711 void hugetlb_fix_reserve_counts(struct inode *inode)
712 {
713 	struct hugepage_subpool *spool = subpool_inode(inode);
714 	long rsv_adjust;
715 
716 	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
717 	if (rsv_adjust) {
718 		struct hstate *h = hstate_inode(inode);
719 
720 		hugetlb_acct_memory(h, 1);
721 	}
722 }
723 
724 /*
725  * Count and return the number of huge pages in the reserve map
726  * that intersect with the range [f, t).
727  */
728 static long region_count(struct resv_map *resv, long f, long t)
729 {
730 	struct list_head *head = &resv->regions;
731 	struct file_region *rg;
732 	long chg = 0;
733 
734 	spin_lock(&resv->lock);
735 	/* Locate each segment we overlap with, and count that overlap. */
736 	list_for_each_entry(rg, head, link) {
737 		long seg_from;
738 		long seg_to;
739 
740 		if (rg->to <= f)
741 			continue;
742 		if (rg->from >= t)
743 			break;
744 
745 		seg_from = max(rg->from, f);
746 		seg_to = min(rg->to, t);
747 
748 		chg += seg_to - seg_from;
749 	}
750 	spin_unlock(&resv->lock);
751 
752 	return chg;
753 }
754 
755 /*
756  * Convert the address within this vma to the page offset within
757  * the mapping, in pagecache page units; huge pages here.
758  */
759 static pgoff_t vma_hugecache_offset(struct hstate *h,
760 			struct vm_area_struct *vma, unsigned long address)
761 {
762 	return ((address - vma->vm_start) >> huge_page_shift(h)) +
763 			(vma->vm_pgoff >> huge_page_order(h));
764 }
765 
766 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
767 				     unsigned long address)
768 {
769 	return vma_hugecache_offset(hstate_vma(vma), vma, address);
770 }
771 EXPORT_SYMBOL_GPL(linear_hugepage_index);
772 
773 /*
774  * Return the size of the pages allocated when backing a VMA. In the majority
775  * cases this will be same size as used by the page table entries.
776  */
777 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
778 {
779 	if (vma->vm_ops && vma->vm_ops->pagesize)
780 		return vma->vm_ops->pagesize(vma);
781 	return PAGE_SIZE;
782 }
783 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
784 
785 /*
786  * Return the page size being used by the MMU to back a VMA. In the majority
787  * of cases, the page size used by the kernel matches the MMU size. On
788  * architectures where it differs, an architecture-specific 'strong'
789  * version of this symbol is required.
790  */
791 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
792 {
793 	return vma_kernel_pagesize(vma);
794 }
795 
796 /*
797  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
798  * bits of the reservation map pointer, which are always clear due to
799  * alignment.
800  */
801 #define HPAGE_RESV_OWNER    (1UL << 0)
802 #define HPAGE_RESV_UNMAPPED (1UL << 1)
803 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
804 
805 /*
806  * These helpers are used to track how many pages are reserved for
807  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
808  * is guaranteed to have their future faults succeed.
809  *
810  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
811  * the reserve counters are updated with the hugetlb_lock held. It is safe
812  * to reset the VMA at fork() time as it is not in use yet and there is no
813  * chance of the global counters getting corrupted as a result of the values.
814  *
815  * The private mapping reservation is represented in a subtly different
816  * manner to a shared mapping.  A shared mapping has a region map associated
817  * with the underlying file, this region map represents the backing file
818  * pages which have ever had a reservation assigned which this persists even
819  * after the page is instantiated.  A private mapping has a region map
820  * associated with the original mmap which is attached to all VMAs which
821  * reference it, this region map represents those offsets which have consumed
822  * reservation ie. where pages have been instantiated.
823  */
824 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
825 {
826 	return (unsigned long)vma->vm_private_data;
827 }
828 
829 static void set_vma_private_data(struct vm_area_struct *vma,
830 							unsigned long value)
831 {
832 	vma->vm_private_data = (void *)value;
833 }
834 
835 static void
836 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
837 					  struct hugetlb_cgroup *h_cg,
838 					  struct hstate *h)
839 {
840 #ifdef CONFIG_CGROUP_HUGETLB
841 	if (!h_cg || !h) {
842 		resv_map->reservation_counter = NULL;
843 		resv_map->pages_per_hpage = 0;
844 		resv_map->css = NULL;
845 	} else {
846 		resv_map->reservation_counter =
847 			&h_cg->rsvd_hugepage[hstate_index(h)];
848 		resv_map->pages_per_hpage = pages_per_huge_page(h);
849 		resv_map->css = &h_cg->css;
850 	}
851 #endif
852 }
853 
854 struct resv_map *resv_map_alloc(void)
855 {
856 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
857 	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
858 
859 	if (!resv_map || !rg) {
860 		kfree(resv_map);
861 		kfree(rg);
862 		return NULL;
863 	}
864 
865 	kref_init(&resv_map->refs);
866 	spin_lock_init(&resv_map->lock);
867 	INIT_LIST_HEAD(&resv_map->regions);
868 
869 	resv_map->adds_in_progress = 0;
870 	/*
871 	 * Initialize these to 0. On shared mappings, 0's here indicate these
872 	 * fields don't do cgroup accounting. On private mappings, these will be
873 	 * re-initialized to the proper values, to indicate that hugetlb cgroup
874 	 * reservations are to be un-charged from here.
875 	 */
876 	resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
877 
878 	INIT_LIST_HEAD(&resv_map->region_cache);
879 	list_add(&rg->link, &resv_map->region_cache);
880 	resv_map->region_cache_count = 1;
881 
882 	return resv_map;
883 }
884 
885 void resv_map_release(struct kref *ref)
886 {
887 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
888 	struct list_head *head = &resv_map->region_cache;
889 	struct file_region *rg, *trg;
890 
891 	/* Clear out any active regions before we release the map. */
892 	region_del(resv_map, 0, LONG_MAX);
893 
894 	/* ... and any entries left in the cache */
895 	list_for_each_entry_safe(rg, trg, head, link) {
896 		list_del(&rg->link);
897 		kfree(rg);
898 	}
899 
900 	VM_BUG_ON(resv_map->adds_in_progress);
901 
902 	kfree(resv_map);
903 }
904 
905 static inline struct resv_map *inode_resv_map(struct inode *inode)
906 {
907 	/*
908 	 * At inode evict time, i_mapping may not point to the original
909 	 * address space within the inode.  This original address space
910 	 * contains the pointer to the resv_map.  So, always use the
911 	 * address space embedded within the inode.
912 	 * The VERY common case is inode->mapping == &inode->i_data but,
913 	 * this may not be true for device special inodes.
914 	 */
915 	return (struct resv_map *)(&inode->i_data)->private_data;
916 }
917 
918 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
919 {
920 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
921 	if (vma->vm_flags & VM_MAYSHARE) {
922 		struct address_space *mapping = vma->vm_file->f_mapping;
923 		struct inode *inode = mapping->host;
924 
925 		return inode_resv_map(inode);
926 
927 	} else {
928 		return (struct resv_map *)(get_vma_private_data(vma) &
929 							~HPAGE_RESV_MASK);
930 	}
931 }
932 
933 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
934 {
935 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
936 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
937 
938 	set_vma_private_data(vma, (get_vma_private_data(vma) &
939 				HPAGE_RESV_MASK) | (unsigned long)map);
940 }
941 
942 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
943 {
944 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
945 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
946 
947 	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
948 }
949 
950 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
951 {
952 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
953 
954 	return (get_vma_private_data(vma) & flag) != 0;
955 }
956 
957 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
958 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
959 {
960 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
961 	if (!(vma->vm_flags & VM_MAYSHARE))
962 		vma->vm_private_data = (void *)0;
963 }
964 
965 /* Returns true if the VMA has associated reserve pages */
966 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
967 {
968 	if (vma->vm_flags & VM_NORESERVE) {
969 		/*
970 		 * This address is already reserved by other process(chg == 0),
971 		 * so, we should decrement reserved count. Without decrementing,
972 		 * reserve count remains after releasing inode, because this
973 		 * allocated page will go into page cache and is regarded as
974 		 * coming from reserved pool in releasing step.  Currently, we
975 		 * don't have any other solution to deal with this situation
976 		 * properly, so add work-around here.
977 		 */
978 		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
979 			return true;
980 		else
981 			return false;
982 	}
983 
984 	/* Shared mappings always use reserves */
985 	if (vma->vm_flags & VM_MAYSHARE) {
986 		/*
987 		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
988 		 * be a region map for all pages.  The only situation where
989 		 * there is no region map is if a hole was punched via
990 		 * fallocate.  In this case, there really are no reserves to
991 		 * use.  This situation is indicated if chg != 0.
992 		 */
993 		if (chg)
994 			return false;
995 		else
996 			return true;
997 	}
998 
999 	/*
1000 	 * Only the process that called mmap() has reserves for
1001 	 * private mappings.
1002 	 */
1003 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1004 		/*
1005 		 * Like the shared case above, a hole punch or truncate
1006 		 * could have been performed on the private mapping.
1007 		 * Examine the value of chg to determine if reserves
1008 		 * actually exist or were previously consumed.
1009 		 * Very Subtle - The value of chg comes from a previous
1010 		 * call to vma_needs_reserves().  The reserve map for
1011 		 * private mappings has different (opposite) semantics
1012 		 * than that of shared mappings.  vma_needs_reserves()
1013 		 * has already taken this difference in semantics into
1014 		 * account.  Therefore, the meaning of chg is the same
1015 		 * as in the shared case above.  Code could easily be
1016 		 * combined, but keeping it separate draws attention to
1017 		 * subtle differences.
1018 		 */
1019 		if (chg)
1020 			return false;
1021 		else
1022 			return true;
1023 	}
1024 
1025 	return false;
1026 }
1027 
1028 static void enqueue_huge_page(struct hstate *h, struct page *page)
1029 {
1030 	int nid = page_to_nid(page);
1031 	list_move(&page->lru, &h->hugepage_freelists[nid]);
1032 	h->free_huge_pages++;
1033 	h->free_huge_pages_node[nid]++;
1034 }
1035 
1036 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1037 {
1038 	struct page *page;
1039 
1040 	list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
1041 		if (!PageHWPoison(page))
1042 			break;
1043 	/*
1044 	 * if 'non-isolated free hugepage' not found on the list,
1045 	 * the allocation fails.
1046 	 */
1047 	if (&h->hugepage_freelists[nid] == &page->lru)
1048 		return NULL;
1049 	list_move(&page->lru, &h->hugepage_activelist);
1050 	set_page_refcounted(page);
1051 	h->free_huge_pages--;
1052 	h->free_huge_pages_node[nid]--;
1053 	return page;
1054 }
1055 
1056 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1057 		nodemask_t *nmask)
1058 {
1059 	unsigned int cpuset_mems_cookie;
1060 	struct zonelist *zonelist;
1061 	struct zone *zone;
1062 	struct zoneref *z;
1063 	int node = NUMA_NO_NODE;
1064 
1065 	zonelist = node_zonelist(nid, gfp_mask);
1066 
1067 retry_cpuset:
1068 	cpuset_mems_cookie = read_mems_allowed_begin();
1069 	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1070 		struct page *page;
1071 
1072 		if (!cpuset_zone_allowed(zone, gfp_mask))
1073 			continue;
1074 		/*
1075 		 * no need to ask again on the same node. Pool is node rather than
1076 		 * zone aware
1077 		 */
1078 		if (zone_to_nid(zone) == node)
1079 			continue;
1080 		node = zone_to_nid(zone);
1081 
1082 		page = dequeue_huge_page_node_exact(h, node);
1083 		if (page)
1084 			return page;
1085 	}
1086 	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1087 		goto retry_cpuset;
1088 
1089 	return NULL;
1090 }
1091 
1092 /* Movability of hugepages depends on migration support. */
1093 static inline gfp_t htlb_alloc_mask(struct hstate *h)
1094 {
1095 	if (hugepage_movable_supported(h))
1096 		return GFP_HIGHUSER_MOVABLE;
1097 	else
1098 		return GFP_HIGHUSER;
1099 }
1100 
1101 static struct page *dequeue_huge_page_vma(struct hstate *h,
1102 				struct vm_area_struct *vma,
1103 				unsigned long address, int avoid_reserve,
1104 				long chg)
1105 {
1106 	struct page *page;
1107 	struct mempolicy *mpol;
1108 	gfp_t gfp_mask;
1109 	nodemask_t *nodemask;
1110 	int nid;
1111 
1112 	/*
1113 	 * A child process with MAP_PRIVATE mappings created by their parent
1114 	 * have no page reserves. This check ensures that reservations are
1115 	 * not "stolen". The child may still get SIGKILLed
1116 	 */
1117 	if (!vma_has_reserves(vma, chg) &&
1118 			h->free_huge_pages - h->resv_huge_pages == 0)
1119 		goto err;
1120 
1121 	/* If reserves cannot be used, ensure enough pages are in the pool */
1122 	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
1123 		goto err;
1124 
1125 	gfp_mask = htlb_alloc_mask(h);
1126 	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1127 	page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1128 	if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1129 		SetPagePrivate(page);
1130 		h->resv_huge_pages--;
1131 	}
1132 
1133 	mpol_cond_put(mpol);
1134 	return page;
1135 
1136 err:
1137 	return NULL;
1138 }
1139 
1140 /*
1141  * common helper functions for hstate_next_node_to_{alloc|free}.
1142  * We may have allocated or freed a huge page based on a different
1143  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1144  * be outside of *nodes_allowed.  Ensure that we use an allowed
1145  * node for alloc or free.
1146  */
1147 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1148 {
1149 	nid = next_node_in(nid, *nodes_allowed);
1150 	VM_BUG_ON(nid >= MAX_NUMNODES);
1151 
1152 	return nid;
1153 }
1154 
1155 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1156 {
1157 	if (!node_isset(nid, *nodes_allowed))
1158 		nid = next_node_allowed(nid, nodes_allowed);
1159 	return nid;
1160 }
1161 
1162 /*
1163  * returns the previously saved node ["this node"] from which to
1164  * allocate a persistent huge page for the pool and advance the
1165  * next node from which to allocate, handling wrap at end of node
1166  * mask.
1167  */
1168 static int hstate_next_node_to_alloc(struct hstate *h,
1169 					nodemask_t *nodes_allowed)
1170 {
1171 	int nid;
1172 
1173 	VM_BUG_ON(!nodes_allowed);
1174 
1175 	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1176 	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1177 
1178 	return nid;
1179 }
1180 
1181 /*
1182  * helper for free_pool_huge_page() - return the previously saved
1183  * node ["this node"] from which to free a huge page.  Advance the
1184  * next node id whether or not we find a free huge page to free so
1185  * that the next attempt to free addresses the next node.
1186  */
1187 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1188 {
1189 	int nid;
1190 
1191 	VM_BUG_ON(!nodes_allowed);
1192 
1193 	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1194 	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1195 
1196 	return nid;
1197 }
1198 
1199 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
1200 	for (nr_nodes = nodes_weight(*mask);				\
1201 		nr_nodes > 0 &&						\
1202 		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
1203 		nr_nodes--)
1204 
1205 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
1206 	for (nr_nodes = nodes_weight(*mask);				\
1207 		nr_nodes > 0 &&						\
1208 		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
1209 		nr_nodes--)
1210 
1211 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1212 static void destroy_compound_gigantic_page(struct page *page,
1213 					unsigned int order)
1214 {
1215 	int i;
1216 	int nr_pages = 1 << order;
1217 	struct page *p = page + 1;
1218 
1219 	atomic_set(compound_mapcount_ptr(page), 0);
1220 	if (hpage_pincount_available(page))
1221 		atomic_set(compound_pincount_ptr(page), 0);
1222 
1223 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1224 		clear_compound_head(p);
1225 		set_page_refcounted(p);
1226 	}
1227 
1228 	set_compound_order(page, 0);
1229 	__ClearPageHead(page);
1230 }
1231 
1232 static void free_gigantic_page(struct page *page, unsigned int order)
1233 {
1234 	/*
1235 	 * If the page isn't allocated using the cma allocator,
1236 	 * cma_release() returns false.
1237 	 */
1238 	if (IS_ENABLED(CONFIG_CMA) &&
1239 	    cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1240 		return;
1241 
1242 	free_contig_range(page_to_pfn(page), 1 << order);
1243 }
1244 
1245 #ifdef CONFIG_CONTIG_ALLOC
1246 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1247 		int nid, nodemask_t *nodemask)
1248 {
1249 	unsigned long nr_pages = 1UL << huge_page_order(h);
1250 
1251 	if (IS_ENABLED(CONFIG_CMA)) {
1252 		struct page *page;
1253 		int node;
1254 
1255 		for_each_node_mask(node, *nodemask) {
1256 			if (!hugetlb_cma[node])
1257 				continue;
1258 
1259 			page = cma_alloc(hugetlb_cma[node], nr_pages,
1260 					 huge_page_order(h), true);
1261 			if (page)
1262 				return page;
1263 		}
1264 	}
1265 
1266 	return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1267 }
1268 
1269 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1270 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1271 #else /* !CONFIG_CONTIG_ALLOC */
1272 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1273 					int nid, nodemask_t *nodemask)
1274 {
1275 	return NULL;
1276 }
1277 #endif /* CONFIG_CONTIG_ALLOC */
1278 
1279 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1280 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1281 					int nid, nodemask_t *nodemask)
1282 {
1283 	return NULL;
1284 }
1285 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1286 static inline void destroy_compound_gigantic_page(struct page *page,
1287 						unsigned int order) { }
1288 #endif
1289 
1290 static void update_and_free_page(struct hstate *h, struct page *page)
1291 {
1292 	int i;
1293 
1294 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1295 		return;
1296 
1297 	h->nr_huge_pages--;
1298 	h->nr_huge_pages_node[page_to_nid(page)]--;
1299 	for (i = 0; i < pages_per_huge_page(h); i++) {
1300 		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1301 				1 << PG_referenced | 1 << PG_dirty |
1302 				1 << PG_active | 1 << PG_private |
1303 				1 << PG_writeback);
1304 	}
1305 	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1306 	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1307 	set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1308 	set_page_refcounted(page);
1309 	if (hstate_is_gigantic(h)) {
1310 		/*
1311 		 * Temporarily drop the hugetlb_lock, because
1312 		 * we might block in free_gigantic_page().
1313 		 */
1314 		spin_unlock(&hugetlb_lock);
1315 		destroy_compound_gigantic_page(page, huge_page_order(h));
1316 		free_gigantic_page(page, huge_page_order(h));
1317 		spin_lock(&hugetlb_lock);
1318 	} else {
1319 		__free_pages(page, huge_page_order(h));
1320 	}
1321 }
1322 
1323 struct hstate *size_to_hstate(unsigned long size)
1324 {
1325 	struct hstate *h;
1326 
1327 	for_each_hstate(h) {
1328 		if (huge_page_size(h) == size)
1329 			return h;
1330 	}
1331 	return NULL;
1332 }
1333 
1334 /*
1335  * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1336  * to hstate->hugepage_activelist.)
1337  *
1338  * This function can be called for tail pages, but never returns true for them.
1339  */
1340 bool page_huge_active(struct page *page)
1341 {
1342 	VM_BUG_ON_PAGE(!PageHuge(page), page);
1343 	return PageHead(page) && PagePrivate(&page[1]);
1344 }
1345 
1346 /* never called for tail page */
1347 static void set_page_huge_active(struct page *page)
1348 {
1349 	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1350 	SetPagePrivate(&page[1]);
1351 }
1352 
1353 static void clear_page_huge_active(struct page *page)
1354 {
1355 	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1356 	ClearPagePrivate(&page[1]);
1357 }
1358 
1359 /*
1360  * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1361  * code
1362  */
1363 static inline bool PageHugeTemporary(struct page *page)
1364 {
1365 	if (!PageHuge(page))
1366 		return false;
1367 
1368 	return (unsigned long)page[2].mapping == -1U;
1369 }
1370 
1371 static inline void SetPageHugeTemporary(struct page *page)
1372 {
1373 	page[2].mapping = (void *)-1U;
1374 }
1375 
1376 static inline void ClearPageHugeTemporary(struct page *page)
1377 {
1378 	page[2].mapping = NULL;
1379 }
1380 
1381 static void __free_huge_page(struct page *page)
1382 {
1383 	/*
1384 	 * Can't pass hstate in here because it is called from the
1385 	 * compound page destructor.
1386 	 */
1387 	struct hstate *h = page_hstate(page);
1388 	int nid = page_to_nid(page);
1389 	struct hugepage_subpool *spool =
1390 		(struct hugepage_subpool *)page_private(page);
1391 	bool restore_reserve;
1392 
1393 	VM_BUG_ON_PAGE(page_count(page), page);
1394 	VM_BUG_ON_PAGE(page_mapcount(page), page);
1395 
1396 	set_page_private(page, 0);
1397 	page->mapping = NULL;
1398 	restore_reserve = PagePrivate(page);
1399 	ClearPagePrivate(page);
1400 
1401 	/*
1402 	 * If PagePrivate() was set on page, page allocation consumed a
1403 	 * reservation.  If the page was associated with a subpool, there
1404 	 * would have been a page reserved in the subpool before allocation
1405 	 * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1406 	 * reservtion, do not call hugepage_subpool_put_pages() as this will
1407 	 * remove the reserved page from the subpool.
1408 	 */
1409 	if (!restore_reserve) {
1410 		/*
1411 		 * A return code of zero implies that the subpool will be
1412 		 * under its minimum size if the reservation is not restored
1413 		 * after page is free.  Therefore, force restore_reserve
1414 		 * operation.
1415 		 */
1416 		if (hugepage_subpool_put_pages(spool, 1) == 0)
1417 			restore_reserve = true;
1418 	}
1419 
1420 	spin_lock(&hugetlb_lock);
1421 	clear_page_huge_active(page);
1422 	hugetlb_cgroup_uncharge_page(hstate_index(h),
1423 				     pages_per_huge_page(h), page);
1424 	hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1425 					  pages_per_huge_page(h), page);
1426 	if (restore_reserve)
1427 		h->resv_huge_pages++;
1428 
1429 	if (PageHugeTemporary(page)) {
1430 		list_del(&page->lru);
1431 		ClearPageHugeTemporary(page);
1432 		update_and_free_page(h, page);
1433 	} else if (h->surplus_huge_pages_node[nid]) {
1434 		/* remove the page from active list */
1435 		list_del(&page->lru);
1436 		update_and_free_page(h, page);
1437 		h->surplus_huge_pages--;
1438 		h->surplus_huge_pages_node[nid]--;
1439 	} else {
1440 		arch_clear_hugepage_flags(page);
1441 		enqueue_huge_page(h, page);
1442 	}
1443 	spin_unlock(&hugetlb_lock);
1444 }
1445 
1446 /*
1447  * As free_huge_page() can be called from a non-task context, we have
1448  * to defer the actual freeing in a workqueue to prevent potential
1449  * hugetlb_lock deadlock.
1450  *
1451  * free_hpage_workfn() locklessly retrieves the linked list of pages to
1452  * be freed and frees them one-by-one. As the page->mapping pointer is
1453  * going to be cleared in __free_huge_page() anyway, it is reused as the
1454  * llist_node structure of a lockless linked list of huge pages to be freed.
1455  */
1456 static LLIST_HEAD(hpage_freelist);
1457 
1458 static void free_hpage_workfn(struct work_struct *work)
1459 {
1460 	struct llist_node *node;
1461 	struct page *page;
1462 
1463 	node = llist_del_all(&hpage_freelist);
1464 
1465 	while (node) {
1466 		page = container_of((struct address_space **)node,
1467 				     struct page, mapping);
1468 		node = node->next;
1469 		__free_huge_page(page);
1470 	}
1471 }
1472 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1473 
1474 void free_huge_page(struct page *page)
1475 {
1476 	/*
1477 	 * Defer freeing if in non-task context to avoid hugetlb_lock deadlock.
1478 	 */
1479 	if (!in_task()) {
1480 		/*
1481 		 * Only call schedule_work() if hpage_freelist is previously
1482 		 * empty. Otherwise, schedule_work() had been called but the
1483 		 * workfn hasn't retrieved the list yet.
1484 		 */
1485 		if (llist_add((struct llist_node *)&page->mapping,
1486 			      &hpage_freelist))
1487 			schedule_work(&free_hpage_work);
1488 		return;
1489 	}
1490 
1491 	__free_huge_page(page);
1492 }
1493 
1494 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1495 {
1496 	INIT_LIST_HEAD(&page->lru);
1497 	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1498 	spin_lock(&hugetlb_lock);
1499 	set_hugetlb_cgroup(page, NULL);
1500 	set_hugetlb_cgroup_rsvd(page, NULL);
1501 	h->nr_huge_pages++;
1502 	h->nr_huge_pages_node[nid]++;
1503 	spin_unlock(&hugetlb_lock);
1504 }
1505 
1506 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1507 {
1508 	int i;
1509 	int nr_pages = 1 << order;
1510 	struct page *p = page + 1;
1511 
1512 	/* we rely on prep_new_huge_page to set the destructor */
1513 	set_compound_order(page, order);
1514 	__ClearPageReserved(page);
1515 	__SetPageHead(page);
1516 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1517 		/*
1518 		 * For gigantic hugepages allocated through bootmem at
1519 		 * boot, it's safer to be consistent with the not-gigantic
1520 		 * hugepages and clear the PG_reserved bit from all tail pages
1521 		 * too.  Otherwise drivers using get_user_pages() to access tail
1522 		 * pages may get the reference counting wrong if they see
1523 		 * PG_reserved set on a tail page (despite the head page not
1524 		 * having PG_reserved set).  Enforcing this consistency between
1525 		 * head and tail pages allows drivers to optimize away a check
1526 		 * on the head page when they need know if put_page() is needed
1527 		 * after get_user_pages().
1528 		 */
1529 		__ClearPageReserved(p);
1530 		set_page_count(p, 0);
1531 		set_compound_head(p, page);
1532 	}
1533 	atomic_set(compound_mapcount_ptr(page), -1);
1534 
1535 	if (hpage_pincount_available(page))
1536 		atomic_set(compound_pincount_ptr(page), 0);
1537 }
1538 
1539 /*
1540  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1541  * transparent huge pages.  See the PageTransHuge() documentation for more
1542  * details.
1543  */
1544 int PageHuge(struct page *page)
1545 {
1546 	if (!PageCompound(page))
1547 		return 0;
1548 
1549 	page = compound_head(page);
1550 	return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1551 }
1552 EXPORT_SYMBOL_GPL(PageHuge);
1553 
1554 /*
1555  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1556  * normal or transparent huge pages.
1557  */
1558 int PageHeadHuge(struct page *page_head)
1559 {
1560 	if (!PageHead(page_head))
1561 		return 0;
1562 
1563 	return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1564 }
1565 
1566 /*
1567  * Find address_space associated with hugetlbfs page.
1568  * Upon entry page is locked and page 'was' mapped although mapped state
1569  * could change.  If necessary, use anon_vma to find vma and associated
1570  * address space.  The returned mapping may be stale, but it can not be
1571  * invalid as page lock (which is held) is required to destroy mapping.
1572  */
1573 static struct address_space *_get_hugetlb_page_mapping(struct page *hpage)
1574 {
1575 	struct anon_vma *anon_vma;
1576 	pgoff_t pgoff_start, pgoff_end;
1577 	struct anon_vma_chain *avc;
1578 	struct address_space *mapping = page_mapping(hpage);
1579 
1580 	/* Simple file based mapping */
1581 	if (mapping)
1582 		return mapping;
1583 
1584 	/*
1585 	 * Even anonymous hugetlbfs mappings are associated with an
1586 	 * underlying hugetlbfs file (see hugetlb_file_setup in mmap
1587 	 * code).  Find a vma associated with the anonymous vma, and
1588 	 * use the file pointer to get address_space.
1589 	 */
1590 	anon_vma = page_lock_anon_vma_read(hpage);
1591 	if (!anon_vma)
1592 		return mapping;  /* NULL */
1593 
1594 	/* Use first found vma */
1595 	pgoff_start = page_to_pgoff(hpage);
1596 	pgoff_end = pgoff_start + hpage_nr_pages(hpage) - 1;
1597 	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
1598 					pgoff_start, pgoff_end) {
1599 		struct vm_area_struct *vma = avc->vma;
1600 
1601 		mapping = vma->vm_file->f_mapping;
1602 		break;
1603 	}
1604 
1605 	anon_vma_unlock_read(anon_vma);
1606 	return mapping;
1607 }
1608 
1609 /*
1610  * Find and lock address space (mapping) in write mode.
1611  *
1612  * Upon entry, the page is locked which allows us to find the mapping
1613  * even in the case of an anon page.  However, locking order dictates
1614  * the i_mmap_rwsem be acquired BEFORE the page lock.  This is hugetlbfs
1615  * specific.  So, we first try to lock the sema while still holding the
1616  * page lock.  If this works, great!  If not, then we need to drop the
1617  * page lock and then acquire i_mmap_rwsem and reacquire page lock.  Of
1618  * course, need to revalidate state along the way.
1619  */
1620 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1621 {
1622 	struct address_space *mapping, *mapping2;
1623 
1624 	mapping = _get_hugetlb_page_mapping(hpage);
1625 retry:
1626 	if (!mapping)
1627 		return mapping;
1628 
1629 	/*
1630 	 * If no contention, take lock and return
1631 	 */
1632 	if (i_mmap_trylock_write(mapping))
1633 		return mapping;
1634 
1635 	/*
1636 	 * Must drop page lock and wait on mapping sema.
1637 	 * Note:  Once page lock is dropped, mapping could become invalid.
1638 	 * As a hack, increase map count until we lock page again.
1639 	 */
1640 	atomic_inc(&hpage->_mapcount);
1641 	unlock_page(hpage);
1642 	i_mmap_lock_write(mapping);
1643 	lock_page(hpage);
1644 	atomic_add_negative(-1, &hpage->_mapcount);
1645 
1646 	/* verify page is still mapped */
1647 	if (!page_mapped(hpage)) {
1648 		i_mmap_unlock_write(mapping);
1649 		return NULL;
1650 	}
1651 
1652 	/*
1653 	 * Get address space again and verify it is the same one
1654 	 * we locked.  If not, drop lock and retry.
1655 	 */
1656 	mapping2 = _get_hugetlb_page_mapping(hpage);
1657 	if (mapping2 != mapping) {
1658 		i_mmap_unlock_write(mapping);
1659 		mapping = mapping2;
1660 		goto retry;
1661 	}
1662 
1663 	return mapping;
1664 }
1665 
1666 pgoff_t __basepage_index(struct page *page)
1667 {
1668 	struct page *page_head = compound_head(page);
1669 	pgoff_t index = page_index(page_head);
1670 	unsigned long compound_idx;
1671 
1672 	if (!PageHuge(page_head))
1673 		return page_index(page);
1674 
1675 	if (compound_order(page_head) >= MAX_ORDER)
1676 		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1677 	else
1678 		compound_idx = page - page_head;
1679 
1680 	return (index << compound_order(page_head)) + compound_idx;
1681 }
1682 
1683 static struct page *alloc_buddy_huge_page(struct hstate *h,
1684 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
1685 		nodemask_t *node_alloc_noretry)
1686 {
1687 	int order = huge_page_order(h);
1688 	struct page *page;
1689 	bool alloc_try_hard = true;
1690 
1691 	/*
1692 	 * By default we always try hard to allocate the page with
1693 	 * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
1694 	 * a loop (to adjust global huge page counts) and previous allocation
1695 	 * failed, do not continue to try hard on the same node.  Use the
1696 	 * node_alloc_noretry bitmap to manage this state information.
1697 	 */
1698 	if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1699 		alloc_try_hard = false;
1700 	gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1701 	if (alloc_try_hard)
1702 		gfp_mask |= __GFP_RETRY_MAYFAIL;
1703 	if (nid == NUMA_NO_NODE)
1704 		nid = numa_mem_id();
1705 	page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1706 	if (page)
1707 		__count_vm_event(HTLB_BUDDY_PGALLOC);
1708 	else
1709 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1710 
1711 	/*
1712 	 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1713 	 * indicates an overall state change.  Clear bit so that we resume
1714 	 * normal 'try hard' allocations.
1715 	 */
1716 	if (node_alloc_noretry && page && !alloc_try_hard)
1717 		node_clear(nid, *node_alloc_noretry);
1718 
1719 	/*
1720 	 * If we tried hard to get a page but failed, set bit so that
1721 	 * subsequent attempts will not try as hard until there is an
1722 	 * overall state change.
1723 	 */
1724 	if (node_alloc_noretry && !page && alloc_try_hard)
1725 		node_set(nid, *node_alloc_noretry);
1726 
1727 	return page;
1728 }
1729 
1730 /*
1731  * Common helper to allocate a fresh hugetlb page. All specific allocators
1732  * should use this function to get new hugetlb pages
1733  */
1734 static struct page *alloc_fresh_huge_page(struct hstate *h,
1735 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
1736 		nodemask_t *node_alloc_noretry)
1737 {
1738 	struct page *page;
1739 
1740 	if (hstate_is_gigantic(h))
1741 		page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1742 	else
1743 		page = alloc_buddy_huge_page(h, gfp_mask,
1744 				nid, nmask, node_alloc_noretry);
1745 	if (!page)
1746 		return NULL;
1747 
1748 	if (hstate_is_gigantic(h))
1749 		prep_compound_gigantic_page(page, huge_page_order(h));
1750 	prep_new_huge_page(h, page, page_to_nid(page));
1751 
1752 	return page;
1753 }
1754 
1755 /*
1756  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1757  * manner.
1758  */
1759 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1760 				nodemask_t *node_alloc_noretry)
1761 {
1762 	struct page *page;
1763 	int nr_nodes, node;
1764 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1765 
1766 	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1767 		page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1768 						node_alloc_noretry);
1769 		if (page)
1770 			break;
1771 	}
1772 
1773 	if (!page)
1774 		return 0;
1775 
1776 	put_page(page); /* free it into the hugepage allocator */
1777 
1778 	return 1;
1779 }
1780 
1781 /*
1782  * Free huge page from pool from next node to free.
1783  * Attempt to keep persistent huge pages more or less
1784  * balanced over allowed nodes.
1785  * Called with hugetlb_lock locked.
1786  */
1787 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1788 							 bool acct_surplus)
1789 {
1790 	int nr_nodes, node;
1791 	int ret = 0;
1792 
1793 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1794 		/*
1795 		 * If we're returning unused surplus pages, only examine
1796 		 * nodes with surplus pages.
1797 		 */
1798 		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1799 		    !list_empty(&h->hugepage_freelists[node])) {
1800 			struct page *page =
1801 				list_entry(h->hugepage_freelists[node].next,
1802 					  struct page, lru);
1803 			list_del(&page->lru);
1804 			h->free_huge_pages--;
1805 			h->free_huge_pages_node[node]--;
1806 			if (acct_surplus) {
1807 				h->surplus_huge_pages--;
1808 				h->surplus_huge_pages_node[node]--;
1809 			}
1810 			update_and_free_page(h, page);
1811 			ret = 1;
1812 			break;
1813 		}
1814 	}
1815 
1816 	return ret;
1817 }
1818 
1819 /*
1820  * Dissolve a given free hugepage into free buddy pages. This function does
1821  * nothing for in-use hugepages and non-hugepages.
1822  * This function returns values like below:
1823  *
1824  *  -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1825  *          (allocated or reserved.)
1826  *       0: successfully dissolved free hugepages or the page is not a
1827  *          hugepage (considered as already dissolved)
1828  */
1829 int dissolve_free_huge_page(struct page *page)
1830 {
1831 	int rc = -EBUSY;
1832 
1833 	/* Not to disrupt normal path by vainly holding hugetlb_lock */
1834 	if (!PageHuge(page))
1835 		return 0;
1836 
1837 	spin_lock(&hugetlb_lock);
1838 	if (!PageHuge(page)) {
1839 		rc = 0;
1840 		goto out;
1841 	}
1842 
1843 	if (!page_count(page)) {
1844 		struct page *head = compound_head(page);
1845 		struct hstate *h = page_hstate(head);
1846 		int nid = page_to_nid(head);
1847 		if (h->free_huge_pages - h->resv_huge_pages == 0)
1848 			goto out;
1849 		/*
1850 		 * Move PageHWPoison flag from head page to the raw error page,
1851 		 * which makes any subpages rather than the error page reusable.
1852 		 */
1853 		if (PageHWPoison(head) && page != head) {
1854 			SetPageHWPoison(page);
1855 			ClearPageHWPoison(head);
1856 		}
1857 		list_del(&head->lru);
1858 		h->free_huge_pages--;
1859 		h->free_huge_pages_node[nid]--;
1860 		h->max_huge_pages--;
1861 		update_and_free_page(h, head);
1862 		rc = 0;
1863 	}
1864 out:
1865 	spin_unlock(&hugetlb_lock);
1866 	return rc;
1867 }
1868 
1869 /*
1870  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1871  * make specified memory blocks removable from the system.
1872  * Note that this will dissolve a free gigantic hugepage completely, if any
1873  * part of it lies within the given range.
1874  * Also note that if dissolve_free_huge_page() returns with an error, all
1875  * free hugepages that were dissolved before that error are lost.
1876  */
1877 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1878 {
1879 	unsigned long pfn;
1880 	struct page *page;
1881 	int rc = 0;
1882 
1883 	if (!hugepages_supported())
1884 		return rc;
1885 
1886 	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1887 		page = pfn_to_page(pfn);
1888 		rc = dissolve_free_huge_page(page);
1889 		if (rc)
1890 			break;
1891 	}
1892 
1893 	return rc;
1894 }
1895 
1896 /*
1897  * Allocates a fresh surplus page from the page allocator.
1898  */
1899 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1900 		int nid, nodemask_t *nmask)
1901 {
1902 	struct page *page = NULL;
1903 
1904 	if (hstate_is_gigantic(h))
1905 		return NULL;
1906 
1907 	spin_lock(&hugetlb_lock);
1908 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1909 		goto out_unlock;
1910 	spin_unlock(&hugetlb_lock);
1911 
1912 	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1913 	if (!page)
1914 		return NULL;
1915 
1916 	spin_lock(&hugetlb_lock);
1917 	/*
1918 	 * We could have raced with the pool size change.
1919 	 * Double check that and simply deallocate the new page
1920 	 * if we would end up overcommiting the surpluses. Abuse
1921 	 * temporary page to workaround the nasty free_huge_page
1922 	 * codeflow
1923 	 */
1924 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1925 		SetPageHugeTemporary(page);
1926 		spin_unlock(&hugetlb_lock);
1927 		put_page(page);
1928 		return NULL;
1929 	} else {
1930 		h->surplus_huge_pages++;
1931 		h->surplus_huge_pages_node[page_to_nid(page)]++;
1932 	}
1933 
1934 out_unlock:
1935 	spin_unlock(&hugetlb_lock);
1936 
1937 	return page;
1938 }
1939 
1940 struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1941 				     int nid, nodemask_t *nmask)
1942 {
1943 	struct page *page;
1944 
1945 	if (hstate_is_gigantic(h))
1946 		return NULL;
1947 
1948 	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1949 	if (!page)
1950 		return NULL;
1951 
1952 	/*
1953 	 * We do not account these pages as surplus because they are only
1954 	 * temporary and will be released properly on the last reference
1955 	 */
1956 	SetPageHugeTemporary(page);
1957 
1958 	return page;
1959 }
1960 
1961 /*
1962  * Use the VMA's mpolicy to allocate a huge page from the buddy.
1963  */
1964 static
1965 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1966 		struct vm_area_struct *vma, unsigned long addr)
1967 {
1968 	struct page *page;
1969 	struct mempolicy *mpol;
1970 	gfp_t gfp_mask = htlb_alloc_mask(h);
1971 	int nid;
1972 	nodemask_t *nodemask;
1973 
1974 	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1975 	page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1976 	mpol_cond_put(mpol);
1977 
1978 	return page;
1979 }
1980 
1981 /* page migration callback function */
1982 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1983 {
1984 	gfp_t gfp_mask = htlb_alloc_mask(h);
1985 	struct page *page = NULL;
1986 
1987 	if (nid != NUMA_NO_NODE)
1988 		gfp_mask |= __GFP_THISNODE;
1989 
1990 	spin_lock(&hugetlb_lock);
1991 	if (h->free_huge_pages - h->resv_huge_pages > 0)
1992 		page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL);
1993 	spin_unlock(&hugetlb_lock);
1994 
1995 	if (!page)
1996 		page = alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
1997 
1998 	return page;
1999 }
2000 
2001 /* page migration callback function */
2002 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
2003 		nodemask_t *nmask)
2004 {
2005 	gfp_t gfp_mask = htlb_alloc_mask(h);
2006 
2007 	spin_lock(&hugetlb_lock);
2008 	if (h->free_huge_pages - h->resv_huge_pages > 0) {
2009 		struct page *page;
2010 
2011 		page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
2012 		if (page) {
2013 			spin_unlock(&hugetlb_lock);
2014 			return page;
2015 		}
2016 	}
2017 	spin_unlock(&hugetlb_lock);
2018 
2019 	return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
2020 }
2021 
2022 /* mempolicy aware migration callback */
2023 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
2024 		unsigned long address)
2025 {
2026 	struct mempolicy *mpol;
2027 	nodemask_t *nodemask;
2028 	struct page *page;
2029 	gfp_t gfp_mask;
2030 	int node;
2031 
2032 	gfp_mask = htlb_alloc_mask(h);
2033 	node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2034 	page = alloc_huge_page_nodemask(h, node, nodemask);
2035 	mpol_cond_put(mpol);
2036 
2037 	return page;
2038 }
2039 
2040 /*
2041  * Increase the hugetlb pool such that it can accommodate a reservation
2042  * of size 'delta'.
2043  */
2044 static int gather_surplus_pages(struct hstate *h, int delta)
2045 	__must_hold(&hugetlb_lock)
2046 {
2047 	struct list_head surplus_list;
2048 	struct page *page, *tmp;
2049 	int ret, i;
2050 	int needed, allocated;
2051 	bool alloc_ok = true;
2052 
2053 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2054 	if (needed <= 0) {
2055 		h->resv_huge_pages += delta;
2056 		return 0;
2057 	}
2058 
2059 	allocated = 0;
2060 	INIT_LIST_HEAD(&surplus_list);
2061 
2062 	ret = -ENOMEM;
2063 retry:
2064 	spin_unlock(&hugetlb_lock);
2065 	for (i = 0; i < needed; i++) {
2066 		page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2067 				NUMA_NO_NODE, NULL);
2068 		if (!page) {
2069 			alloc_ok = false;
2070 			break;
2071 		}
2072 		list_add(&page->lru, &surplus_list);
2073 		cond_resched();
2074 	}
2075 	allocated += i;
2076 
2077 	/*
2078 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
2079 	 * because either resv_huge_pages or free_huge_pages may have changed.
2080 	 */
2081 	spin_lock(&hugetlb_lock);
2082 	needed = (h->resv_huge_pages + delta) -
2083 			(h->free_huge_pages + allocated);
2084 	if (needed > 0) {
2085 		if (alloc_ok)
2086 			goto retry;
2087 		/*
2088 		 * We were not able to allocate enough pages to
2089 		 * satisfy the entire reservation so we free what
2090 		 * we've allocated so far.
2091 		 */
2092 		goto free;
2093 	}
2094 	/*
2095 	 * The surplus_list now contains _at_least_ the number of extra pages
2096 	 * needed to accommodate the reservation.  Add the appropriate number
2097 	 * of pages to the hugetlb pool and free the extras back to the buddy
2098 	 * allocator.  Commit the entire reservation here to prevent another
2099 	 * process from stealing the pages as they are added to the pool but
2100 	 * before they are reserved.
2101 	 */
2102 	needed += allocated;
2103 	h->resv_huge_pages += delta;
2104 	ret = 0;
2105 
2106 	/* Free the needed pages to the hugetlb pool */
2107 	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2108 		if ((--needed) < 0)
2109 			break;
2110 		/*
2111 		 * This page is now managed by the hugetlb allocator and has
2112 		 * no users -- drop the buddy allocator's reference.
2113 		 */
2114 		put_page_testzero(page);
2115 		VM_BUG_ON_PAGE(page_count(page), page);
2116 		enqueue_huge_page(h, page);
2117 	}
2118 free:
2119 	spin_unlock(&hugetlb_lock);
2120 
2121 	/* Free unnecessary surplus pages to the buddy allocator */
2122 	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2123 		put_page(page);
2124 	spin_lock(&hugetlb_lock);
2125 
2126 	return ret;
2127 }
2128 
2129 /*
2130  * This routine has two main purposes:
2131  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2132  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2133  *    to the associated reservation map.
2134  * 2) Free any unused surplus pages that may have been allocated to satisfy
2135  *    the reservation.  As many as unused_resv_pages may be freed.
2136  *
2137  * Called with hugetlb_lock held.  However, the lock could be dropped (and
2138  * reacquired) during calls to cond_resched_lock.  Whenever dropping the lock,
2139  * we must make sure nobody else can claim pages we are in the process of
2140  * freeing.  Do this by ensuring resv_huge_page always is greater than the
2141  * number of huge pages we plan to free when dropping the lock.
2142  */
2143 static void return_unused_surplus_pages(struct hstate *h,
2144 					unsigned long unused_resv_pages)
2145 {
2146 	unsigned long nr_pages;
2147 
2148 	/* Cannot return gigantic pages currently */
2149 	if (hstate_is_gigantic(h))
2150 		goto out;
2151 
2152 	/*
2153 	 * Part (or even all) of the reservation could have been backed
2154 	 * by pre-allocated pages. Only free surplus pages.
2155 	 */
2156 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2157 
2158 	/*
2159 	 * We want to release as many surplus pages as possible, spread
2160 	 * evenly across all nodes with memory. Iterate across these nodes
2161 	 * until we can no longer free unreserved surplus pages. This occurs
2162 	 * when the nodes with surplus pages have no free pages.
2163 	 * free_pool_huge_page() will balance the the freed pages across the
2164 	 * on-line nodes with memory and will handle the hstate accounting.
2165 	 *
2166 	 * Note that we decrement resv_huge_pages as we free the pages.  If
2167 	 * we drop the lock, resv_huge_pages will still be sufficiently large
2168 	 * to cover subsequent pages we may free.
2169 	 */
2170 	while (nr_pages--) {
2171 		h->resv_huge_pages--;
2172 		unused_resv_pages--;
2173 		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
2174 			goto out;
2175 		cond_resched_lock(&hugetlb_lock);
2176 	}
2177 
2178 out:
2179 	/* Fully uncommit the reservation */
2180 	h->resv_huge_pages -= unused_resv_pages;
2181 }
2182 
2183 
2184 /*
2185  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2186  * are used by the huge page allocation routines to manage reservations.
2187  *
2188  * vma_needs_reservation is called to determine if the huge page at addr
2189  * within the vma has an associated reservation.  If a reservation is
2190  * needed, the value 1 is returned.  The caller is then responsible for
2191  * managing the global reservation and subpool usage counts.  After
2192  * the huge page has been allocated, vma_commit_reservation is called
2193  * to add the page to the reservation map.  If the page allocation fails,
2194  * the reservation must be ended instead of committed.  vma_end_reservation
2195  * is called in such cases.
2196  *
2197  * In the normal case, vma_commit_reservation returns the same value
2198  * as the preceding vma_needs_reservation call.  The only time this
2199  * is not the case is if a reserve map was changed between calls.  It
2200  * is the responsibility of the caller to notice the difference and
2201  * take appropriate action.
2202  *
2203  * vma_add_reservation is used in error paths where a reservation must
2204  * be restored when a newly allocated huge page must be freed.  It is
2205  * to be called after calling vma_needs_reservation to determine if a
2206  * reservation exists.
2207  */
2208 enum vma_resv_mode {
2209 	VMA_NEEDS_RESV,
2210 	VMA_COMMIT_RESV,
2211 	VMA_END_RESV,
2212 	VMA_ADD_RESV,
2213 };
2214 static long __vma_reservation_common(struct hstate *h,
2215 				struct vm_area_struct *vma, unsigned long addr,
2216 				enum vma_resv_mode mode)
2217 {
2218 	struct resv_map *resv;
2219 	pgoff_t idx;
2220 	long ret;
2221 	long dummy_out_regions_needed;
2222 
2223 	resv = vma_resv_map(vma);
2224 	if (!resv)
2225 		return 1;
2226 
2227 	idx = vma_hugecache_offset(h, vma, addr);
2228 	switch (mode) {
2229 	case VMA_NEEDS_RESV:
2230 		ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2231 		/* We assume that vma_reservation_* routines always operate on
2232 		 * 1 page, and that adding to resv map a 1 page entry can only
2233 		 * ever require 1 region.
2234 		 */
2235 		VM_BUG_ON(dummy_out_regions_needed != 1);
2236 		break;
2237 	case VMA_COMMIT_RESV:
2238 		ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2239 		/* region_add calls of range 1 should never fail. */
2240 		VM_BUG_ON(ret < 0);
2241 		break;
2242 	case VMA_END_RESV:
2243 		region_abort(resv, idx, idx + 1, 1);
2244 		ret = 0;
2245 		break;
2246 	case VMA_ADD_RESV:
2247 		if (vma->vm_flags & VM_MAYSHARE) {
2248 			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2249 			/* region_add calls of range 1 should never fail. */
2250 			VM_BUG_ON(ret < 0);
2251 		} else {
2252 			region_abort(resv, idx, idx + 1, 1);
2253 			ret = region_del(resv, idx, idx + 1);
2254 		}
2255 		break;
2256 	default:
2257 		BUG();
2258 	}
2259 
2260 	if (vma->vm_flags & VM_MAYSHARE)
2261 		return ret;
2262 	else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
2263 		/*
2264 		 * In most cases, reserves always exist for private mappings.
2265 		 * However, a file associated with mapping could have been
2266 		 * hole punched or truncated after reserves were consumed.
2267 		 * As subsequent fault on such a range will not use reserves.
2268 		 * Subtle - The reserve map for private mappings has the
2269 		 * opposite meaning than that of shared mappings.  If NO
2270 		 * entry is in the reserve map, it means a reservation exists.
2271 		 * If an entry exists in the reserve map, it means the
2272 		 * reservation has already been consumed.  As a result, the
2273 		 * return value of this routine is the opposite of the
2274 		 * value returned from reserve map manipulation routines above.
2275 		 */
2276 		if (ret)
2277 			return 0;
2278 		else
2279 			return 1;
2280 	}
2281 	else
2282 		return ret < 0 ? ret : 0;
2283 }
2284 
2285 static long vma_needs_reservation(struct hstate *h,
2286 			struct vm_area_struct *vma, unsigned long addr)
2287 {
2288 	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2289 }
2290 
2291 static long vma_commit_reservation(struct hstate *h,
2292 			struct vm_area_struct *vma, unsigned long addr)
2293 {
2294 	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2295 }
2296 
2297 static void vma_end_reservation(struct hstate *h,
2298 			struct vm_area_struct *vma, unsigned long addr)
2299 {
2300 	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2301 }
2302 
2303 static long vma_add_reservation(struct hstate *h,
2304 			struct vm_area_struct *vma, unsigned long addr)
2305 {
2306 	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2307 }
2308 
2309 /*
2310  * This routine is called to restore a reservation on error paths.  In the
2311  * specific error paths, a huge page was allocated (via alloc_huge_page)
2312  * and is about to be freed.  If a reservation for the page existed,
2313  * alloc_huge_page would have consumed the reservation and set PagePrivate
2314  * in the newly allocated page.  When the page is freed via free_huge_page,
2315  * the global reservation count will be incremented if PagePrivate is set.
2316  * However, free_huge_page can not adjust the reserve map.  Adjust the
2317  * reserve map here to be consistent with global reserve count adjustments
2318  * to be made by free_huge_page.
2319  */
2320 static void restore_reserve_on_error(struct hstate *h,
2321 			struct vm_area_struct *vma, unsigned long address,
2322 			struct page *page)
2323 {
2324 	if (unlikely(PagePrivate(page))) {
2325 		long rc = vma_needs_reservation(h, vma, address);
2326 
2327 		if (unlikely(rc < 0)) {
2328 			/*
2329 			 * Rare out of memory condition in reserve map
2330 			 * manipulation.  Clear PagePrivate so that
2331 			 * global reserve count will not be incremented
2332 			 * by free_huge_page.  This will make it appear
2333 			 * as though the reservation for this page was
2334 			 * consumed.  This may prevent the task from
2335 			 * faulting in the page at a later time.  This
2336 			 * is better than inconsistent global huge page
2337 			 * accounting of reserve counts.
2338 			 */
2339 			ClearPagePrivate(page);
2340 		} else if (rc) {
2341 			rc = vma_add_reservation(h, vma, address);
2342 			if (unlikely(rc < 0))
2343 				/*
2344 				 * See above comment about rare out of
2345 				 * memory condition.
2346 				 */
2347 				ClearPagePrivate(page);
2348 		} else
2349 			vma_end_reservation(h, vma, address);
2350 	}
2351 }
2352 
2353 struct page *alloc_huge_page(struct vm_area_struct *vma,
2354 				    unsigned long addr, int avoid_reserve)
2355 {
2356 	struct hugepage_subpool *spool = subpool_vma(vma);
2357 	struct hstate *h = hstate_vma(vma);
2358 	struct page *page;
2359 	long map_chg, map_commit;
2360 	long gbl_chg;
2361 	int ret, idx;
2362 	struct hugetlb_cgroup *h_cg;
2363 	bool deferred_reserve;
2364 
2365 	idx = hstate_index(h);
2366 	/*
2367 	 * Examine the region/reserve map to determine if the process
2368 	 * has a reservation for the page to be allocated.  A return
2369 	 * code of zero indicates a reservation exists (no change).
2370 	 */
2371 	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2372 	if (map_chg < 0)
2373 		return ERR_PTR(-ENOMEM);
2374 
2375 	/*
2376 	 * Processes that did not create the mapping will have no
2377 	 * reserves as indicated by the region/reserve map. Check
2378 	 * that the allocation will not exceed the subpool limit.
2379 	 * Allocations for MAP_NORESERVE mappings also need to be
2380 	 * checked against any subpool limit.
2381 	 */
2382 	if (map_chg || avoid_reserve) {
2383 		gbl_chg = hugepage_subpool_get_pages(spool, 1);
2384 		if (gbl_chg < 0) {
2385 			vma_end_reservation(h, vma, addr);
2386 			return ERR_PTR(-ENOSPC);
2387 		}
2388 
2389 		/*
2390 		 * Even though there was no reservation in the region/reserve
2391 		 * map, there could be reservations associated with the
2392 		 * subpool that can be used.  This would be indicated if the
2393 		 * return value of hugepage_subpool_get_pages() is zero.
2394 		 * However, if avoid_reserve is specified we still avoid even
2395 		 * the subpool reservations.
2396 		 */
2397 		if (avoid_reserve)
2398 			gbl_chg = 1;
2399 	}
2400 
2401 	/* If this allocation is not consuming a reservation, charge it now.
2402 	 */
2403 	deferred_reserve = map_chg || avoid_reserve || !vma_resv_map(vma);
2404 	if (deferred_reserve) {
2405 		ret = hugetlb_cgroup_charge_cgroup_rsvd(
2406 			idx, pages_per_huge_page(h), &h_cg);
2407 		if (ret)
2408 			goto out_subpool_put;
2409 	}
2410 
2411 	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2412 	if (ret)
2413 		goto out_uncharge_cgroup_reservation;
2414 
2415 	spin_lock(&hugetlb_lock);
2416 	/*
2417 	 * glb_chg is passed to indicate whether or not a page must be taken
2418 	 * from the global free pool (global change).  gbl_chg == 0 indicates
2419 	 * a reservation exists for the allocation.
2420 	 */
2421 	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2422 	if (!page) {
2423 		spin_unlock(&hugetlb_lock);
2424 		page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2425 		if (!page)
2426 			goto out_uncharge_cgroup;
2427 		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2428 			SetPagePrivate(page);
2429 			h->resv_huge_pages--;
2430 		}
2431 		spin_lock(&hugetlb_lock);
2432 		list_move(&page->lru, &h->hugepage_activelist);
2433 		/* Fall through */
2434 	}
2435 	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2436 	/* If allocation is not consuming a reservation, also store the
2437 	 * hugetlb_cgroup pointer on the page.
2438 	 */
2439 	if (deferred_reserve) {
2440 		hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2441 						  h_cg, page);
2442 	}
2443 
2444 	spin_unlock(&hugetlb_lock);
2445 
2446 	set_page_private(page, (unsigned long)spool);
2447 
2448 	map_commit = vma_commit_reservation(h, vma, addr);
2449 	if (unlikely(map_chg > map_commit)) {
2450 		/*
2451 		 * The page was added to the reservation map between
2452 		 * vma_needs_reservation and vma_commit_reservation.
2453 		 * This indicates a race with hugetlb_reserve_pages.
2454 		 * Adjust for the subpool count incremented above AND
2455 		 * in hugetlb_reserve_pages for the same page.  Also,
2456 		 * the reservation count added in hugetlb_reserve_pages
2457 		 * no longer applies.
2458 		 */
2459 		long rsv_adjust;
2460 
2461 		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2462 		hugetlb_acct_memory(h, -rsv_adjust);
2463 	}
2464 	return page;
2465 
2466 out_uncharge_cgroup:
2467 	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2468 out_uncharge_cgroup_reservation:
2469 	if (deferred_reserve)
2470 		hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2471 						    h_cg);
2472 out_subpool_put:
2473 	if (map_chg || avoid_reserve)
2474 		hugepage_subpool_put_pages(spool, 1);
2475 	vma_end_reservation(h, vma, addr);
2476 	return ERR_PTR(-ENOSPC);
2477 }
2478 
2479 int alloc_bootmem_huge_page(struct hstate *h)
2480 	__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2481 int __alloc_bootmem_huge_page(struct hstate *h)
2482 {
2483 	struct huge_bootmem_page *m;
2484 	int nr_nodes, node;
2485 
2486 	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2487 		void *addr;
2488 
2489 		addr = memblock_alloc_try_nid_raw(
2490 				huge_page_size(h), huge_page_size(h),
2491 				0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2492 		if (addr) {
2493 			/*
2494 			 * Use the beginning of the huge page to store the
2495 			 * huge_bootmem_page struct (until gather_bootmem
2496 			 * puts them into the mem_map).
2497 			 */
2498 			m = addr;
2499 			goto found;
2500 		}
2501 	}
2502 	return 0;
2503 
2504 found:
2505 	BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2506 	/* Put them into a private list first because mem_map is not up yet */
2507 	INIT_LIST_HEAD(&m->list);
2508 	list_add(&m->list, &huge_boot_pages);
2509 	m->hstate = h;
2510 	return 1;
2511 }
2512 
2513 static void __init prep_compound_huge_page(struct page *page,
2514 		unsigned int order)
2515 {
2516 	if (unlikely(order > (MAX_ORDER - 1)))
2517 		prep_compound_gigantic_page(page, order);
2518 	else
2519 		prep_compound_page(page, order);
2520 }
2521 
2522 /* Put bootmem huge pages into the standard lists after mem_map is up */
2523 static void __init gather_bootmem_prealloc(void)
2524 {
2525 	struct huge_bootmem_page *m;
2526 
2527 	list_for_each_entry(m, &huge_boot_pages, list) {
2528 		struct page *page = virt_to_page(m);
2529 		struct hstate *h = m->hstate;
2530 
2531 		WARN_ON(page_count(page) != 1);
2532 		prep_compound_huge_page(page, h->order);
2533 		WARN_ON(PageReserved(page));
2534 		prep_new_huge_page(h, page, page_to_nid(page));
2535 		put_page(page); /* free it into the hugepage allocator */
2536 
2537 		/*
2538 		 * If we had gigantic hugepages allocated at boot time, we need
2539 		 * to restore the 'stolen' pages to totalram_pages in order to
2540 		 * fix confusing memory reports from free(1) and another
2541 		 * side-effects, like CommitLimit going negative.
2542 		 */
2543 		if (hstate_is_gigantic(h))
2544 			adjust_managed_page_count(page, 1 << h->order);
2545 		cond_resched();
2546 	}
2547 }
2548 
2549 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2550 {
2551 	unsigned long i;
2552 	nodemask_t *node_alloc_noretry;
2553 
2554 	if (!hstate_is_gigantic(h)) {
2555 		/*
2556 		 * Bit mask controlling how hard we retry per-node allocations.
2557 		 * Ignore errors as lower level routines can deal with
2558 		 * node_alloc_noretry == NULL.  If this kmalloc fails at boot
2559 		 * time, we are likely in bigger trouble.
2560 		 */
2561 		node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2562 						GFP_KERNEL);
2563 	} else {
2564 		/* allocations done at boot time */
2565 		node_alloc_noretry = NULL;
2566 	}
2567 
2568 	/* bit mask controlling how hard we retry per-node allocations */
2569 	if (node_alloc_noretry)
2570 		nodes_clear(*node_alloc_noretry);
2571 
2572 	for (i = 0; i < h->max_huge_pages; ++i) {
2573 		if (hstate_is_gigantic(h)) {
2574 			if (IS_ENABLED(CONFIG_CMA) && hugetlb_cma[0]) {
2575 				pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
2576 				break;
2577 			}
2578 			if (!alloc_bootmem_huge_page(h))
2579 				break;
2580 		} else if (!alloc_pool_huge_page(h,
2581 					 &node_states[N_MEMORY],
2582 					 node_alloc_noretry))
2583 			break;
2584 		cond_resched();
2585 	}
2586 	if (i < h->max_huge_pages) {
2587 		char buf[32];
2588 
2589 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2590 		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
2591 			h->max_huge_pages, buf, i);
2592 		h->max_huge_pages = i;
2593 	}
2594 
2595 	kfree(node_alloc_noretry);
2596 }
2597 
2598 static void __init hugetlb_init_hstates(void)
2599 {
2600 	struct hstate *h;
2601 
2602 	for_each_hstate(h) {
2603 		if (minimum_order > huge_page_order(h))
2604 			minimum_order = huge_page_order(h);
2605 
2606 		/* oversize hugepages were init'ed in early boot */
2607 		if (!hstate_is_gigantic(h))
2608 			hugetlb_hstate_alloc_pages(h);
2609 	}
2610 	VM_BUG_ON(minimum_order == UINT_MAX);
2611 }
2612 
2613 static void __init report_hugepages(void)
2614 {
2615 	struct hstate *h;
2616 
2617 	for_each_hstate(h) {
2618 		char buf[32];
2619 
2620 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2621 		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2622 			buf, h->free_huge_pages);
2623 	}
2624 }
2625 
2626 #ifdef CONFIG_HIGHMEM
2627 static void try_to_free_low(struct hstate *h, unsigned long count,
2628 						nodemask_t *nodes_allowed)
2629 {
2630 	int i;
2631 
2632 	if (hstate_is_gigantic(h))
2633 		return;
2634 
2635 	for_each_node_mask(i, *nodes_allowed) {
2636 		struct page *page, *next;
2637 		struct list_head *freel = &h->hugepage_freelists[i];
2638 		list_for_each_entry_safe(page, next, freel, lru) {
2639 			if (count >= h->nr_huge_pages)
2640 				return;
2641 			if (PageHighMem(page))
2642 				continue;
2643 			list_del(&page->lru);
2644 			update_and_free_page(h, page);
2645 			h->free_huge_pages--;
2646 			h->free_huge_pages_node[page_to_nid(page)]--;
2647 		}
2648 	}
2649 }
2650 #else
2651 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2652 						nodemask_t *nodes_allowed)
2653 {
2654 }
2655 #endif
2656 
2657 /*
2658  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2659  * balanced by operating on them in a round-robin fashion.
2660  * Returns 1 if an adjustment was made.
2661  */
2662 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2663 				int delta)
2664 {
2665 	int nr_nodes, node;
2666 
2667 	VM_BUG_ON(delta != -1 && delta != 1);
2668 
2669 	if (delta < 0) {
2670 		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2671 			if (h->surplus_huge_pages_node[node])
2672 				goto found;
2673 		}
2674 	} else {
2675 		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2676 			if (h->surplus_huge_pages_node[node] <
2677 					h->nr_huge_pages_node[node])
2678 				goto found;
2679 		}
2680 	}
2681 	return 0;
2682 
2683 found:
2684 	h->surplus_huge_pages += delta;
2685 	h->surplus_huge_pages_node[node] += delta;
2686 	return 1;
2687 }
2688 
2689 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2690 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
2691 			      nodemask_t *nodes_allowed)
2692 {
2693 	unsigned long min_count, ret;
2694 	NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
2695 
2696 	/*
2697 	 * Bit mask controlling how hard we retry per-node allocations.
2698 	 * If we can not allocate the bit mask, do not attempt to allocate
2699 	 * the requested huge pages.
2700 	 */
2701 	if (node_alloc_noretry)
2702 		nodes_clear(*node_alloc_noretry);
2703 	else
2704 		return -ENOMEM;
2705 
2706 	spin_lock(&hugetlb_lock);
2707 
2708 	/*
2709 	 * Check for a node specific request.
2710 	 * Changing node specific huge page count may require a corresponding
2711 	 * change to the global count.  In any case, the passed node mask
2712 	 * (nodes_allowed) will restrict alloc/free to the specified node.
2713 	 */
2714 	if (nid != NUMA_NO_NODE) {
2715 		unsigned long old_count = count;
2716 
2717 		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2718 		/*
2719 		 * User may have specified a large count value which caused the
2720 		 * above calculation to overflow.  In this case, they wanted
2721 		 * to allocate as many huge pages as possible.  Set count to
2722 		 * largest possible value to align with their intention.
2723 		 */
2724 		if (count < old_count)
2725 			count = ULONG_MAX;
2726 	}
2727 
2728 	/*
2729 	 * Gigantic pages runtime allocation depend on the capability for large
2730 	 * page range allocation.
2731 	 * If the system does not provide this feature, return an error when
2732 	 * the user tries to allocate gigantic pages but let the user free the
2733 	 * boottime allocated gigantic pages.
2734 	 */
2735 	if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2736 		if (count > persistent_huge_pages(h)) {
2737 			spin_unlock(&hugetlb_lock);
2738 			NODEMASK_FREE(node_alloc_noretry);
2739 			return -EINVAL;
2740 		}
2741 		/* Fall through to decrease pool */
2742 	}
2743 
2744 	/*
2745 	 * Increase the pool size
2746 	 * First take pages out of surplus state.  Then make up the
2747 	 * remaining difference by allocating fresh huge pages.
2748 	 *
2749 	 * We might race with alloc_surplus_huge_page() here and be unable
2750 	 * to convert a surplus huge page to a normal huge page. That is
2751 	 * not critical, though, it just means the overall size of the
2752 	 * pool might be one hugepage larger than it needs to be, but
2753 	 * within all the constraints specified by the sysctls.
2754 	 */
2755 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2756 		if (!adjust_pool_surplus(h, nodes_allowed, -1))
2757 			break;
2758 	}
2759 
2760 	while (count > persistent_huge_pages(h)) {
2761 		/*
2762 		 * If this allocation races such that we no longer need the
2763 		 * page, free_huge_page will handle it by freeing the page
2764 		 * and reducing the surplus.
2765 		 */
2766 		spin_unlock(&hugetlb_lock);
2767 
2768 		/* yield cpu to avoid soft lockup */
2769 		cond_resched();
2770 
2771 		ret = alloc_pool_huge_page(h, nodes_allowed,
2772 						node_alloc_noretry);
2773 		spin_lock(&hugetlb_lock);
2774 		if (!ret)
2775 			goto out;
2776 
2777 		/* Bail for signals. Probably ctrl-c from user */
2778 		if (signal_pending(current))
2779 			goto out;
2780 	}
2781 
2782 	/*
2783 	 * Decrease the pool size
2784 	 * First return free pages to the buddy allocator (being careful
2785 	 * to keep enough around to satisfy reservations).  Then place
2786 	 * pages into surplus state as needed so the pool will shrink
2787 	 * to the desired size as pages become free.
2788 	 *
2789 	 * By placing pages into the surplus state independent of the
2790 	 * overcommit value, we are allowing the surplus pool size to
2791 	 * exceed overcommit. There are few sane options here. Since
2792 	 * alloc_surplus_huge_page() is checking the global counter,
2793 	 * though, we'll note that we're not allowed to exceed surplus
2794 	 * and won't grow the pool anywhere else. Not until one of the
2795 	 * sysctls are changed, or the surplus pages go out of use.
2796 	 */
2797 	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2798 	min_count = max(count, min_count);
2799 	try_to_free_low(h, min_count, nodes_allowed);
2800 	while (min_count < persistent_huge_pages(h)) {
2801 		if (!free_pool_huge_page(h, nodes_allowed, 0))
2802 			break;
2803 		cond_resched_lock(&hugetlb_lock);
2804 	}
2805 	while (count < persistent_huge_pages(h)) {
2806 		if (!adjust_pool_surplus(h, nodes_allowed, 1))
2807 			break;
2808 	}
2809 out:
2810 	h->max_huge_pages = persistent_huge_pages(h);
2811 	spin_unlock(&hugetlb_lock);
2812 
2813 	NODEMASK_FREE(node_alloc_noretry);
2814 
2815 	return 0;
2816 }
2817 
2818 #define HSTATE_ATTR_RO(_name) \
2819 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2820 
2821 #define HSTATE_ATTR(_name) \
2822 	static struct kobj_attribute _name##_attr = \
2823 		__ATTR(_name, 0644, _name##_show, _name##_store)
2824 
2825 static struct kobject *hugepages_kobj;
2826 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2827 
2828 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2829 
2830 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2831 {
2832 	int i;
2833 
2834 	for (i = 0; i < HUGE_MAX_HSTATE; i++)
2835 		if (hstate_kobjs[i] == kobj) {
2836 			if (nidp)
2837 				*nidp = NUMA_NO_NODE;
2838 			return &hstates[i];
2839 		}
2840 
2841 	return kobj_to_node_hstate(kobj, nidp);
2842 }
2843 
2844 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2845 					struct kobj_attribute *attr, char *buf)
2846 {
2847 	struct hstate *h;
2848 	unsigned long nr_huge_pages;
2849 	int nid;
2850 
2851 	h = kobj_to_hstate(kobj, &nid);
2852 	if (nid == NUMA_NO_NODE)
2853 		nr_huge_pages = h->nr_huge_pages;
2854 	else
2855 		nr_huge_pages = h->nr_huge_pages_node[nid];
2856 
2857 	return sprintf(buf, "%lu\n", nr_huge_pages);
2858 }
2859 
2860 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2861 					   struct hstate *h, int nid,
2862 					   unsigned long count, size_t len)
2863 {
2864 	int err;
2865 	nodemask_t nodes_allowed, *n_mask;
2866 
2867 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2868 		return -EINVAL;
2869 
2870 	if (nid == NUMA_NO_NODE) {
2871 		/*
2872 		 * global hstate attribute
2873 		 */
2874 		if (!(obey_mempolicy &&
2875 				init_nodemask_of_mempolicy(&nodes_allowed)))
2876 			n_mask = &node_states[N_MEMORY];
2877 		else
2878 			n_mask = &nodes_allowed;
2879 	} else {
2880 		/*
2881 		 * Node specific request.  count adjustment happens in
2882 		 * set_max_huge_pages() after acquiring hugetlb_lock.
2883 		 */
2884 		init_nodemask_of_node(&nodes_allowed, nid);
2885 		n_mask = &nodes_allowed;
2886 	}
2887 
2888 	err = set_max_huge_pages(h, count, nid, n_mask);
2889 
2890 	return err ? err : len;
2891 }
2892 
2893 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2894 					 struct kobject *kobj, const char *buf,
2895 					 size_t len)
2896 {
2897 	struct hstate *h;
2898 	unsigned long count;
2899 	int nid;
2900 	int err;
2901 
2902 	err = kstrtoul(buf, 10, &count);
2903 	if (err)
2904 		return err;
2905 
2906 	h = kobj_to_hstate(kobj, &nid);
2907 	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2908 }
2909 
2910 static ssize_t nr_hugepages_show(struct kobject *kobj,
2911 				       struct kobj_attribute *attr, char *buf)
2912 {
2913 	return nr_hugepages_show_common(kobj, attr, buf);
2914 }
2915 
2916 static ssize_t nr_hugepages_store(struct kobject *kobj,
2917 	       struct kobj_attribute *attr, const char *buf, size_t len)
2918 {
2919 	return nr_hugepages_store_common(false, kobj, buf, len);
2920 }
2921 HSTATE_ATTR(nr_hugepages);
2922 
2923 #ifdef CONFIG_NUMA
2924 
2925 /*
2926  * hstate attribute for optionally mempolicy-based constraint on persistent
2927  * huge page alloc/free.
2928  */
2929 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2930 				       struct kobj_attribute *attr, char *buf)
2931 {
2932 	return nr_hugepages_show_common(kobj, attr, buf);
2933 }
2934 
2935 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2936 	       struct kobj_attribute *attr, const char *buf, size_t len)
2937 {
2938 	return nr_hugepages_store_common(true, kobj, buf, len);
2939 }
2940 HSTATE_ATTR(nr_hugepages_mempolicy);
2941 #endif
2942 
2943 
2944 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2945 					struct kobj_attribute *attr, char *buf)
2946 {
2947 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2948 	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2949 }
2950 
2951 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2952 		struct kobj_attribute *attr, const char *buf, size_t count)
2953 {
2954 	int err;
2955 	unsigned long input;
2956 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2957 
2958 	if (hstate_is_gigantic(h))
2959 		return -EINVAL;
2960 
2961 	err = kstrtoul(buf, 10, &input);
2962 	if (err)
2963 		return err;
2964 
2965 	spin_lock(&hugetlb_lock);
2966 	h->nr_overcommit_huge_pages = input;
2967 	spin_unlock(&hugetlb_lock);
2968 
2969 	return count;
2970 }
2971 HSTATE_ATTR(nr_overcommit_hugepages);
2972 
2973 static ssize_t free_hugepages_show(struct kobject *kobj,
2974 					struct kobj_attribute *attr, char *buf)
2975 {
2976 	struct hstate *h;
2977 	unsigned long free_huge_pages;
2978 	int nid;
2979 
2980 	h = kobj_to_hstate(kobj, &nid);
2981 	if (nid == NUMA_NO_NODE)
2982 		free_huge_pages = h->free_huge_pages;
2983 	else
2984 		free_huge_pages = h->free_huge_pages_node[nid];
2985 
2986 	return sprintf(buf, "%lu\n", free_huge_pages);
2987 }
2988 HSTATE_ATTR_RO(free_hugepages);
2989 
2990 static ssize_t resv_hugepages_show(struct kobject *kobj,
2991 					struct kobj_attribute *attr, char *buf)
2992 {
2993 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2994 	return sprintf(buf, "%lu\n", h->resv_huge_pages);
2995 }
2996 HSTATE_ATTR_RO(resv_hugepages);
2997 
2998 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2999 					struct kobj_attribute *attr, char *buf)
3000 {
3001 	struct hstate *h;
3002 	unsigned long surplus_huge_pages;
3003 	int nid;
3004 
3005 	h = kobj_to_hstate(kobj, &nid);
3006 	if (nid == NUMA_NO_NODE)
3007 		surplus_huge_pages = h->surplus_huge_pages;
3008 	else
3009 		surplus_huge_pages = h->surplus_huge_pages_node[nid];
3010 
3011 	return sprintf(buf, "%lu\n", surplus_huge_pages);
3012 }
3013 HSTATE_ATTR_RO(surplus_hugepages);
3014 
3015 static struct attribute *hstate_attrs[] = {
3016 	&nr_hugepages_attr.attr,
3017 	&nr_overcommit_hugepages_attr.attr,
3018 	&free_hugepages_attr.attr,
3019 	&resv_hugepages_attr.attr,
3020 	&surplus_hugepages_attr.attr,
3021 #ifdef CONFIG_NUMA
3022 	&nr_hugepages_mempolicy_attr.attr,
3023 #endif
3024 	NULL,
3025 };
3026 
3027 static const struct attribute_group hstate_attr_group = {
3028 	.attrs = hstate_attrs,
3029 };
3030 
3031 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3032 				    struct kobject **hstate_kobjs,
3033 				    const struct attribute_group *hstate_attr_group)
3034 {
3035 	int retval;
3036 	int hi = hstate_index(h);
3037 
3038 	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
3039 	if (!hstate_kobjs[hi])
3040 		return -ENOMEM;
3041 
3042 	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
3043 	if (retval)
3044 		kobject_put(hstate_kobjs[hi]);
3045 
3046 	return retval;
3047 }
3048 
3049 static void __init hugetlb_sysfs_init(void)
3050 {
3051 	struct hstate *h;
3052 	int err;
3053 
3054 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
3055 	if (!hugepages_kobj)
3056 		return;
3057 
3058 	for_each_hstate(h) {
3059 		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
3060 					 hstate_kobjs, &hstate_attr_group);
3061 		if (err)
3062 			pr_err("HugeTLB: Unable to add hstate %s", h->name);
3063 	}
3064 }
3065 
3066 #ifdef CONFIG_NUMA
3067 
3068 /*
3069  * node_hstate/s - associate per node hstate attributes, via their kobjects,
3070  * with node devices in node_devices[] using a parallel array.  The array
3071  * index of a node device or _hstate == node id.
3072  * This is here to avoid any static dependency of the node device driver, in
3073  * the base kernel, on the hugetlb module.
3074  */
3075 struct node_hstate {
3076 	struct kobject		*hugepages_kobj;
3077 	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
3078 };
3079 static struct node_hstate node_hstates[MAX_NUMNODES];
3080 
3081 /*
3082  * A subset of global hstate attributes for node devices
3083  */
3084 static struct attribute *per_node_hstate_attrs[] = {
3085 	&nr_hugepages_attr.attr,
3086 	&free_hugepages_attr.attr,
3087 	&surplus_hugepages_attr.attr,
3088 	NULL,
3089 };
3090 
3091 static const struct attribute_group per_node_hstate_attr_group = {
3092 	.attrs = per_node_hstate_attrs,
3093 };
3094 
3095 /*
3096  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3097  * Returns node id via non-NULL nidp.
3098  */
3099 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3100 {
3101 	int nid;
3102 
3103 	for (nid = 0; nid < nr_node_ids; nid++) {
3104 		struct node_hstate *nhs = &node_hstates[nid];
3105 		int i;
3106 		for (i = 0; i < HUGE_MAX_HSTATE; i++)
3107 			if (nhs->hstate_kobjs[i] == kobj) {
3108 				if (nidp)
3109 					*nidp = nid;
3110 				return &hstates[i];
3111 			}
3112 	}
3113 
3114 	BUG();
3115 	return NULL;
3116 }
3117 
3118 /*
3119  * Unregister hstate attributes from a single node device.
3120  * No-op if no hstate attributes attached.
3121  */
3122 static void hugetlb_unregister_node(struct node *node)
3123 {
3124 	struct hstate *h;
3125 	struct node_hstate *nhs = &node_hstates[node->dev.id];
3126 
3127 	if (!nhs->hugepages_kobj)
3128 		return;		/* no hstate attributes */
3129 
3130 	for_each_hstate(h) {
3131 		int idx = hstate_index(h);
3132 		if (nhs->hstate_kobjs[idx]) {
3133 			kobject_put(nhs->hstate_kobjs[idx]);
3134 			nhs->hstate_kobjs[idx] = NULL;
3135 		}
3136 	}
3137 
3138 	kobject_put(nhs->hugepages_kobj);
3139 	nhs->hugepages_kobj = NULL;
3140 }
3141 
3142 
3143 /*
3144  * Register hstate attributes for a single node device.
3145  * No-op if attributes already registered.
3146  */
3147 static void hugetlb_register_node(struct node *node)
3148 {
3149 	struct hstate *h;
3150 	struct node_hstate *nhs = &node_hstates[node->dev.id];
3151 	int err;
3152 
3153 	if (nhs->hugepages_kobj)
3154 		return;		/* already allocated */
3155 
3156 	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3157 							&node->dev.kobj);
3158 	if (!nhs->hugepages_kobj)
3159 		return;
3160 
3161 	for_each_hstate(h) {
3162 		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3163 						nhs->hstate_kobjs,
3164 						&per_node_hstate_attr_group);
3165 		if (err) {
3166 			pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3167 				h->name, node->dev.id);
3168 			hugetlb_unregister_node(node);
3169 			break;
3170 		}
3171 	}
3172 }
3173 
3174 /*
3175  * hugetlb init time:  register hstate attributes for all registered node
3176  * devices of nodes that have memory.  All on-line nodes should have
3177  * registered their associated device by this time.
3178  */
3179 static void __init hugetlb_register_all_nodes(void)
3180 {
3181 	int nid;
3182 
3183 	for_each_node_state(nid, N_MEMORY) {
3184 		struct node *node = node_devices[nid];
3185 		if (node->dev.id == nid)
3186 			hugetlb_register_node(node);
3187 	}
3188 
3189 	/*
3190 	 * Let the node device driver know we're here so it can
3191 	 * [un]register hstate attributes on node hotplug.
3192 	 */
3193 	register_hugetlbfs_with_node(hugetlb_register_node,
3194 				     hugetlb_unregister_node);
3195 }
3196 #else	/* !CONFIG_NUMA */
3197 
3198 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3199 {
3200 	BUG();
3201 	if (nidp)
3202 		*nidp = -1;
3203 	return NULL;
3204 }
3205 
3206 static void hugetlb_register_all_nodes(void) { }
3207 
3208 #endif
3209 
3210 static int __init hugetlb_init(void)
3211 {
3212 	int i;
3213 
3214 	if (!hugepages_supported()) {
3215 		if (hugetlb_max_hstate || default_hstate_max_huge_pages)
3216 			pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
3217 		return 0;
3218 	}
3219 
3220 	/*
3221 	 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
3222 	 * architectures depend on setup being done here.
3223 	 */
3224 	hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
3225 	if (!parsed_default_hugepagesz) {
3226 		/*
3227 		 * If we did not parse a default huge page size, set
3228 		 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
3229 		 * number of huge pages for this default size was implicitly
3230 		 * specified, set that here as well.
3231 		 * Note that the implicit setting will overwrite an explicit
3232 		 * setting.  A warning will be printed in this case.
3233 		 */
3234 		default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
3235 		if (default_hstate_max_huge_pages) {
3236 			if (default_hstate.max_huge_pages) {
3237 				char buf[32];
3238 
3239 				string_get_size(huge_page_size(&default_hstate),
3240 					1, STRING_UNITS_2, buf, 32);
3241 				pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
3242 					default_hstate.max_huge_pages, buf);
3243 				pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
3244 					default_hstate_max_huge_pages);
3245 			}
3246 			default_hstate.max_huge_pages =
3247 				default_hstate_max_huge_pages;
3248 		}
3249 	}
3250 
3251 	hugetlb_cma_check();
3252 	hugetlb_init_hstates();
3253 	gather_bootmem_prealloc();
3254 	report_hugepages();
3255 
3256 	hugetlb_sysfs_init();
3257 	hugetlb_register_all_nodes();
3258 	hugetlb_cgroup_file_init();
3259 
3260 #ifdef CONFIG_SMP
3261 	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
3262 #else
3263 	num_fault_mutexes = 1;
3264 #endif
3265 	hugetlb_fault_mutex_table =
3266 		kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
3267 			      GFP_KERNEL);
3268 	BUG_ON(!hugetlb_fault_mutex_table);
3269 
3270 	for (i = 0; i < num_fault_mutexes; i++)
3271 		mutex_init(&hugetlb_fault_mutex_table[i]);
3272 	return 0;
3273 }
3274 subsys_initcall(hugetlb_init);
3275 
3276 /* Overwritten by architectures with more huge page sizes */
3277 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
3278 {
3279 	return size == HPAGE_SIZE;
3280 }
3281 
3282 void __init hugetlb_add_hstate(unsigned int order)
3283 {
3284 	struct hstate *h;
3285 	unsigned long i;
3286 
3287 	if (size_to_hstate(PAGE_SIZE << order)) {
3288 		return;
3289 	}
3290 	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
3291 	BUG_ON(order == 0);
3292 	h = &hstates[hugetlb_max_hstate++];
3293 	h->order = order;
3294 	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
3295 	h->nr_huge_pages = 0;
3296 	h->free_huge_pages = 0;
3297 	for (i = 0; i < MAX_NUMNODES; ++i)
3298 		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
3299 	INIT_LIST_HEAD(&h->hugepage_activelist);
3300 	h->next_nid_to_alloc = first_memory_node;
3301 	h->next_nid_to_free = first_memory_node;
3302 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
3303 					huge_page_size(h)/1024);
3304 
3305 	parsed_hstate = h;
3306 }
3307 
3308 /*
3309  * hugepages command line processing
3310  * hugepages normally follows a valid hugepagsz or default_hugepagsz
3311  * specification.  If not, ignore the hugepages value.  hugepages can also
3312  * be the first huge page command line  option in which case it implicitly
3313  * specifies the number of huge pages for the default size.
3314  */
3315 static int __init hugepages_setup(char *s)
3316 {
3317 	unsigned long *mhp;
3318 	static unsigned long *last_mhp;
3319 
3320 	if (!parsed_valid_hugepagesz) {
3321 		pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
3322 		parsed_valid_hugepagesz = true;
3323 		return 0;
3324 	}
3325 
3326 	/*
3327 	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
3328 	 * yet, so this hugepages= parameter goes to the "default hstate".
3329 	 * Otherwise, it goes with the previously parsed hugepagesz or
3330 	 * default_hugepagesz.
3331 	 */
3332 	else if (!hugetlb_max_hstate)
3333 		mhp = &default_hstate_max_huge_pages;
3334 	else
3335 		mhp = &parsed_hstate->max_huge_pages;
3336 
3337 	if (mhp == last_mhp) {
3338 		pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
3339 		return 0;
3340 	}
3341 
3342 	if (sscanf(s, "%lu", mhp) <= 0)
3343 		*mhp = 0;
3344 
3345 	/*
3346 	 * Global state is always initialized later in hugetlb_init.
3347 	 * But we need to allocate >= MAX_ORDER hstates here early to still
3348 	 * use the bootmem allocator.
3349 	 */
3350 	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
3351 		hugetlb_hstate_alloc_pages(parsed_hstate);
3352 
3353 	last_mhp = mhp;
3354 
3355 	return 1;
3356 }
3357 __setup("hugepages=", hugepages_setup);
3358 
3359 /*
3360  * hugepagesz command line processing
3361  * A specific huge page size can only be specified once with hugepagesz.
3362  * hugepagesz is followed by hugepages on the command line.  The global
3363  * variable 'parsed_valid_hugepagesz' is used to determine if prior
3364  * hugepagesz argument was valid.
3365  */
3366 static int __init hugepagesz_setup(char *s)
3367 {
3368 	unsigned long size;
3369 	struct hstate *h;
3370 
3371 	parsed_valid_hugepagesz = false;
3372 	size = (unsigned long)memparse(s, NULL);
3373 
3374 	if (!arch_hugetlb_valid_size(size)) {
3375 		pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
3376 		return 0;
3377 	}
3378 
3379 	h = size_to_hstate(size);
3380 	if (h) {
3381 		/*
3382 		 * hstate for this size already exists.  This is normally
3383 		 * an error, but is allowed if the existing hstate is the
3384 		 * default hstate.  More specifically, it is only allowed if
3385 		 * the number of huge pages for the default hstate was not
3386 		 * previously specified.
3387 		 */
3388 		if (!parsed_default_hugepagesz ||  h != &default_hstate ||
3389 		    default_hstate.max_huge_pages) {
3390 			pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
3391 			return 0;
3392 		}
3393 
3394 		/*
3395 		 * No need to call hugetlb_add_hstate() as hstate already
3396 		 * exists.  But, do set parsed_hstate so that a following
3397 		 * hugepages= parameter will be applied to this hstate.
3398 		 */
3399 		parsed_hstate = h;
3400 		parsed_valid_hugepagesz = true;
3401 		return 1;
3402 	}
3403 
3404 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3405 	parsed_valid_hugepagesz = true;
3406 	return 1;
3407 }
3408 __setup("hugepagesz=", hugepagesz_setup);
3409 
3410 /*
3411  * default_hugepagesz command line input
3412  * Only one instance of default_hugepagesz allowed on command line.
3413  */
3414 static int __init default_hugepagesz_setup(char *s)
3415 {
3416 	unsigned long size;
3417 
3418 	parsed_valid_hugepagesz = false;
3419 	if (parsed_default_hugepagesz) {
3420 		pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
3421 		return 0;
3422 	}
3423 
3424 	size = (unsigned long)memparse(s, NULL);
3425 
3426 	if (!arch_hugetlb_valid_size(size)) {
3427 		pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
3428 		return 0;
3429 	}
3430 
3431 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3432 	parsed_valid_hugepagesz = true;
3433 	parsed_default_hugepagesz = true;
3434 	default_hstate_idx = hstate_index(size_to_hstate(size));
3435 
3436 	/*
3437 	 * The number of default huge pages (for this size) could have been
3438 	 * specified as the first hugetlb parameter: hugepages=X.  If so,
3439 	 * then default_hstate_max_huge_pages is set.  If the default huge
3440 	 * page size is gigantic (>= MAX_ORDER), then the pages must be
3441 	 * allocated here from bootmem allocator.
3442 	 */
3443 	if (default_hstate_max_huge_pages) {
3444 		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
3445 		if (hstate_is_gigantic(&default_hstate))
3446 			hugetlb_hstate_alloc_pages(&default_hstate);
3447 		default_hstate_max_huge_pages = 0;
3448 	}
3449 
3450 	return 1;
3451 }
3452 __setup("default_hugepagesz=", default_hugepagesz_setup);
3453 
3454 static unsigned int cpuset_mems_nr(unsigned int *array)
3455 {
3456 	int node;
3457 	unsigned int nr = 0;
3458 
3459 	for_each_node_mask(node, cpuset_current_mems_allowed)
3460 		nr += array[node];
3461 
3462 	return nr;
3463 }
3464 
3465 #ifdef CONFIG_SYSCTL
3466 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3467 			 struct ctl_table *table, int write,
3468 			 void *buffer, size_t *length, loff_t *ppos)
3469 {
3470 	struct hstate *h = &default_hstate;
3471 	unsigned long tmp = h->max_huge_pages;
3472 	int ret;
3473 
3474 	if (!hugepages_supported())
3475 		return -EOPNOTSUPP;
3476 
3477 	table->data = &tmp;
3478 	table->maxlen = sizeof(unsigned long);
3479 	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
3480 	if (ret)
3481 		goto out;
3482 
3483 	if (write)
3484 		ret = __nr_hugepages_store_common(obey_mempolicy, h,
3485 						  NUMA_NO_NODE, tmp, *length);
3486 out:
3487 	return ret;
3488 }
3489 
3490 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
3491 			  void *buffer, size_t *length, loff_t *ppos)
3492 {
3493 
3494 	return hugetlb_sysctl_handler_common(false, table, write,
3495 							buffer, length, ppos);
3496 }
3497 
3498 #ifdef CONFIG_NUMA
3499 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3500 			  void *buffer, size_t *length, loff_t *ppos)
3501 {
3502 	return hugetlb_sysctl_handler_common(true, table, write,
3503 							buffer, length, ppos);
3504 }
3505 #endif /* CONFIG_NUMA */
3506 
3507 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
3508 		void *buffer, size_t *length, loff_t *ppos)
3509 {
3510 	struct hstate *h = &default_hstate;
3511 	unsigned long tmp;
3512 	int ret;
3513 
3514 	if (!hugepages_supported())
3515 		return -EOPNOTSUPP;
3516 
3517 	tmp = h->nr_overcommit_huge_pages;
3518 
3519 	if (write && hstate_is_gigantic(h))
3520 		return -EINVAL;
3521 
3522 	table->data = &tmp;
3523 	table->maxlen = sizeof(unsigned long);
3524 	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
3525 	if (ret)
3526 		goto out;
3527 
3528 	if (write) {
3529 		spin_lock(&hugetlb_lock);
3530 		h->nr_overcommit_huge_pages = tmp;
3531 		spin_unlock(&hugetlb_lock);
3532 	}
3533 out:
3534 	return ret;
3535 }
3536 
3537 #endif /* CONFIG_SYSCTL */
3538 
3539 void hugetlb_report_meminfo(struct seq_file *m)
3540 {
3541 	struct hstate *h;
3542 	unsigned long total = 0;
3543 
3544 	if (!hugepages_supported())
3545 		return;
3546 
3547 	for_each_hstate(h) {
3548 		unsigned long count = h->nr_huge_pages;
3549 
3550 		total += (PAGE_SIZE << huge_page_order(h)) * count;
3551 
3552 		if (h == &default_hstate)
3553 			seq_printf(m,
3554 				   "HugePages_Total:   %5lu\n"
3555 				   "HugePages_Free:    %5lu\n"
3556 				   "HugePages_Rsvd:    %5lu\n"
3557 				   "HugePages_Surp:    %5lu\n"
3558 				   "Hugepagesize:   %8lu kB\n",
3559 				   count,
3560 				   h->free_huge_pages,
3561 				   h->resv_huge_pages,
3562 				   h->surplus_huge_pages,
3563 				   (PAGE_SIZE << huge_page_order(h)) / 1024);
3564 	}
3565 
3566 	seq_printf(m, "Hugetlb:        %8lu kB\n", total / 1024);
3567 }
3568 
3569 int hugetlb_report_node_meminfo(int nid, char *buf)
3570 {
3571 	struct hstate *h = &default_hstate;
3572 	if (!hugepages_supported())
3573 		return 0;
3574 	return sprintf(buf,
3575 		"Node %d HugePages_Total: %5u\n"
3576 		"Node %d HugePages_Free:  %5u\n"
3577 		"Node %d HugePages_Surp:  %5u\n",
3578 		nid, h->nr_huge_pages_node[nid],
3579 		nid, h->free_huge_pages_node[nid],
3580 		nid, h->surplus_huge_pages_node[nid]);
3581 }
3582 
3583 void hugetlb_show_meminfo(void)
3584 {
3585 	struct hstate *h;
3586 	int nid;
3587 
3588 	if (!hugepages_supported())
3589 		return;
3590 
3591 	for_each_node_state(nid, N_MEMORY)
3592 		for_each_hstate(h)
3593 			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3594 				nid,
3595 				h->nr_huge_pages_node[nid],
3596 				h->free_huge_pages_node[nid],
3597 				h->surplus_huge_pages_node[nid],
3598 				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3599 }
3600 
3601 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3602 {
3603 	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3604 		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3605 }
3606 
3607 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3608 unsigned long hugetlb_total_pages(void)
3609 {
3610 	struct hstate *h;
3611 	unsigned long nr_total_pages = 0;
3612 
3613 	for_each_hstate(h)
3614 		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3615 	return nr_total_pages;
3616 }
3617 
3618 static int hugetlb_acct_memory(struct hstate *h, long delta)
3619 {
3620 	int ret = -ENOMEM;
3621 
3622 	spin_lock(&hugetlb_lock);
3623 	/*
3624 	 * When cpuset is configured, it breaks the strict hugetlb page
3625 	 * reservation as the accounting is done on a global variable. Such
3626 	 * reservation is completely rubbish in the presence of cpuset because
3627 	 * the reservation is not checked against page availability for the
3628 	 * current cpuset. Application can still potentially OOM'ed by kernel
3629 	 * with lack of free htlb page in cpuset that the task is in.
3630 	 * Attempt to enforce strict accounting with cpuset is almost
3631 	 * impossible (or too ugly) because cpuset is too fluid that
3632 	 * task or memory node can be dynamically moved between cpusets.
3633 	 *
3634 	 * The change of semantics for shared hugetlb mapping with cpuset is
3635 	 * undesirable. However, in order to preserve some of the semantics,
3636 	 * we fall back to check against current free page availability as
3637 	 * a best attempt and hopefully to minimize the impact of changing
3638 	 * semantics that cpuset has.
3639 	 */
3640 	if (delta > 0) {
3641 		if (gather_surplus_pages(h, delta) < 0)
3642 			goto out;
3643 
3644 		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3645 			return_unused_surplus_pages(h, delta);
3646 			goto out;
3647 		}
3648 	}
3649 
3650 	ret = 0;
3651 	if (delta < 0)
3652 		return_unused_surplus_pages(h, (unsigned long) -delta);
3653 
3654 out:
3655 	spin_unlock(&hugetlb_lock);
3656 	return ret;
3657 }
3658 
3659 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3660 {
3661 	struct resv_map *resv = vma_resv_map(vma);
3662 
3663 	/*
3664 	 * This new VMA should share its siblings reservation map if present.
3665 	 * The VMA will only ever have a valid reservation map pointer where
3666 	 * it is being copied for another still existing VMA.  As that VMA
3667 	 * has a reference to the reservation map it cannot disappear until
3668 	 * after this open call completes.  It is therefore safe to take a
3669 	 * new reference here without additional locking.
3670 	 */
3671 	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3672 		kref_get(&resv->refs);
3673 }
3674 
3675 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3676 {
3677 	struct hstate *h = hstate_vma(vma);
3678 	struct resv_map *resv = vma_resv_map(vma);
3679 	struct hugepage_subpool *spool = subpool_vma(vma);
3680 	unsigned long reserve, start, end;
3681 	long gbl_reserve;
3682 
3683 	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3684 		return;
3685 
3686 	start = vma_hugecache_offset(h, vma, vma->vm_start);
3687 	end = vma_hugecache_offset(h, vma, vma->vm_end);
3688 
3689 	reserve = (end - start) - region_count(resv, start, end);
3690 	hugetlb_cgroup_uncharge_counter(resv, start, end);
3691 	if (reserve) {
3692 		/*
3693 		 * Decrement reserve counts.  The global reserve count may be
3694 		 * adjusted if the subpool has a minimum size.
3695 		 */
3696 		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3697 		hugetlb_acct_memory(h, -gbl_reserve);
3698 	}
3699 
3700 	kref_put(&resv->refs, resv_map_release);
3701 }
3702 
3703 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3704 {
3705 	if (addr & ~(huge_page_mask(hstate_vma(vma))))
3706 		return -EINVAL;
3707 	return 0;
3708 }
3709 
3710 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3711 {
3712 	struct hstate *hstate = hstate_vma(vma);
3713 
3714 	return 1UL << huge_page_shift(hstate);
3715 }
3716 
3717 /*
3718  * We cannot handle pagefaults against hugetlb pages at all.  They cause
3719  * handle_mm_fault() to try to instantiate regular-sized pages in the
3720  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
3721  * this far.
3722  */
3723 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
3724 {
3725 	BUG();
3726 	return 0;
3727 }
3728 
3729 /*
3730  * When a new function is introduced to vm_operations_struct and added
3731  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3732  * This is because under System V memory model, mappings created via
3733  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3734  * their original vm_ops are overwritten with shm_vm_ops.
3735  */
3736 const struct vm_operations_struct hugetlb_vm_ops = {
3737 	.fault = hugetlb_vm_op_fault,
3738 	.open = hugetlb_vm_op_open,
3739 	.close = hugetlb_vm_op_close,
3740 	.split = hugetlb_vm_op_split,
3741 	.pagesize = hugetlb_vm_op_pagesize,
3742 };
3743 
3744 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3745 				int writable)
3746 {
3747 	pte_t entry;
3748 
3749 	if (writable) {
3750 		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3751 					 vma->vm_page_prot)));
3752 	} else {
3753 		entry = huge_pte_wrprotect(mk_huge_pte(page,
3754 					   vma->vm_page_prot));
3755 	}
3756 	entry = pte_mkyoung(entry);
3757 	entry = pte_mkhuge(entry);
3758 	entry = arch_make_huge_pte(entry, vma, page, writable);
3759 
3760 	return entry;
3761 }
3762 
3763 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3764 				   unsigned long address, pte_t *ptep)
3765 {
3766 	pte_t entry;
3767 
3768 	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3769 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3770 		update_mmu_cache(vma, address, ptep);
3771 }
3772 
3773 bool is_hugetlb_entry_migration(pte_t pte)
3774 {
3775 	swp_entry_t swp;
3776 
3777 	if (huge_pte_none(pte) || pte_present(pte))
3778 		return false;
3779 	swp = pte_to_swp_entry(pte);
3780 	if (non_swap_entry(swp) && is_migration_entry(swp))
3781 		return true;
3782 	else
3783 		return false;
3784 }
3785 
3786 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3787 {
3788 	swp_entry_t swp;
3789 
3790 	if (huge_pte_none(pte) || pte_present(pte))
3791 		return 0;
3792 	swp = pte_to_swp_entry(pte);
3793 	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3794 		return 1;
3795 	else
3796 		return 0;
3797 }
3798 
3799 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3800 			    struct vm_area_struct *vma)
3801 {
3802 	pte_t *src_pte, *dst_pte, entry, dst_entry;
3803 	struct page *ptepage;
3804 	unsigned long addr;
3805 	int cow;
3806 	struct hstate *h = hstate_vma(vma);
3807 	unsigned long sz = huge_page_size(h);
3808 	struct address_space *mapping = vma->vm_file->f_mapping;
3809 	struct mmu_notifier_range range;
3810 	int ret = 0;
3811 
3812 	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3813 
3814 	if (cow) {
3815 		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
3816 					vma->vm_start,
3817 					vma->vm_end);
3818 		mmu_notifier_invalidate_range_start(&range);
3819 	} else {
3820 		/*
3821 		 * For shared mappings i_mmap_rwsem must be held to call
3822 		 * huge_pte_alloc, otherwise the returned ptep could go
3823 		 * away if part of a shared pmd and another thread calls
3824 		 * huge_pmd_unshare.
3825 		 */
3826 		i_mmap_lock_read(mapping);
3827 	}
3828 
3829 	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3830 		spinlock_t *src_ptl, *dst_ptl;
3831 		src_pte = huge_pte_offset(src, addr, sz);
3832 		if (!src_pte)
3833 			continue;
3834 		dst_pte = huge_pte_alloc(dst, addr, sz);
3835 		if (!dst_pte) {
3836 			ret = -ENOMEM;
3837 			break;
3838 		}
3839 
3840 		/*
3841 		 * If the pagetables are shared don't copy or take references.
3842 		 * dst_pte == src_pte is the common case of src/dest sharing.
3843 		 *
3844 		 * However, src could have 'unshared' and dst shares with
3845 		 * another vma.  If dst_pte !none, this implies sharing.
3846 		 * Check here before taking page table lock, and once again
3847 		 * after taking the lock below.
3848 		 */
3849 		dst_entry = huge_ptep_get(dst_pte);
3850 		if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3851 			continue;
3852 
3853 		dst_ptl = huge_pte_lock(h, dst, dst_pte);
3854 		src_ptl = huge_pte_lockptr(h, src, src_pte);
3855 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3856 		entry = huge_ptep_get(src_pte);
3857 		dst_entry = huge_ptep_get(dst_pte);
3858 		if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3859 			/*
3860 			 * Skip if src entry none.  Also, skip in the
3861 			 * unlikely case dst entry !none as this implies
3862 			 * sharing with another vma.
3863 			 */
3864 			;
3865 		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
3866 				    is_hugetlb_entry_hwpoisoned(entry))) {
3867 			swp_entry_t swp_entry = pte_to_swp_entry(entry);
3868 
3869 			if (is_write_migration_entry(swp_entry) && cow) {
3870 				/*
3871 				 * COW mappings require pages in both
3872 				 * parent and child to be set to read.
3873 				 */
3874 				make_migration_entry_read(&swp_entry);
3875 				entry = swp_entry_to_pte(swp_entry);
3876 				set_huge_swap_pte_at(src, addr, src_pte,
3877 						     entry, sz);
3878 			}
3879 			set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3880 		} else {
3881 			if (cow) {
3882 				/*
3883 				 * No need to notify as we are downgrading page
3884 				 * table protection not changing it to point
3885 				 * to a new page.
3886 				 *
3887 				 * See Documentation/vm/mmu_notifier.rst
3888 				 */
3889 				huge_ptep_set_wrprotect(src, addr, src_pte);
3890 			}
3891 			entry = huge_ptep_get(src_pte);
3892 			ptepage = pte_page(entry);
3893 			get_page(ptepage);
3894 			page_dup_rmap(ptepage, true);
3895 			set_huge_pte_at(dst, addr, dst_pte, entry);
3896 			hugetlb_count_add(pages_per_huge_page(h), dst);
3897 		}
3898 		spin_unlock(src_ptl);
3899 		spin_unlock(dst_ptl);
3900 	}
3901 
3902 	if (cow)
3903 		mmu_notifier_invalidate_range_end(&range);
3904 	else
3905 		i_mmap_unlock_read(mapping);
3906 
3907 	return ret;
3908 }
3909 
3910 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3911 			    unsigned long start, unsigned long end,
3912 			    struct page *ref_page)
3913 {
3914 	struct mm_struct *mm = vma->vm_mm;
3915 	unsigned long address;
3916 	pte_t *ptep;
3917 	pte_t pte;
3918 	spinlock_t *ptl;
3919 	struct page *page;
3920 	struct hstate *h = hstate_vma(vma);
3921 	unsigned long sz = huge_page_size(h);
3922 	struct mmu_notifier_range range;
3923 
3924 	WARN_ON(!is_vm_hugetlb_page(vma));
3925 	BUG_ON(start & ~huge_page_mask(h));
3926 	BUG_ON(end & ~huge_page_mask(h));
3927 
3928 	/*
3929 	 * This is a hugetlb vma, all the pte entries should point
3930 	 * to huge page.
3931 	 */
3932 	tlb_change_page_size(tlb, sz);
3933 	tlb_start_vma(tlb, vma);
3934 
3935 	/*
3936 	 * If sharing possible, alert mmu notifiers of worst case.
3937 	 */
3938 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
3939 				end);
3940 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3941 	mmu_notifier_invalidate_range_start(&range);
3942 	address = start;
3943 	for (; address < end; address += sz) {
3944 		ptep = huge_pte_offset(mm, address, sz);
3945 		if (!ptep)
3946 			continue;
3947 
3948 		ptl = huge_pte_lock(h, mm, ptep);
3949 		if (huge_pmd_unshare(mm, &address, ptep)) {
3950 			spin_unlock(ptl);
3951 			/*
3952 			 * We just unmapped a page of PMDs by clearing a PUD.
3953 			 * The caller's TLB flush range should cover this area.
3954 			 */
3955 			continue;
3956 		}
3957 
3958 		pte = huge_ptep_get(ptep);
3959 		if (huge_pte_none(pte)) {
3960 			spin_unlock(ptl);
3961 			continue;
3962 		}
3963 
3964 		/*
3965 		 * Migrating hugepage or HWPoisoned hugepage is already
3966 		 * unmapped and its refcount is dropped, so just clear pte here.
3967 		 */
3968 		if (unlikely(!pte_present(pte))) {
3969 			huge_pte_clear(mm, address, ptep, sz);
3970 			spin_unlock(ptl);
3971 			continue;
3972 		}
3973 
3974 		page = pte_page(pte);
3975 		/*
3976 		 * If a reference page is supplied, it is because a specific
3977 		 * page is being unmapped, not a range. Ensure the page we
3978 		 * are about to unmap is the actual page of interest.
3979 		 */
3980 		if (ref_page) {
3981 			if (page != ref_page) {
3982 				spin_unlock(ptl);
3983 				continue;
3984 			}
3985 			/*
3986 			 * Mark the VMA as having unmapped its page so that
3987 			 * future faults in this VMA will fail rather than
3988 			 * looking like data was lost
3989 			 */
3990 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3991 		}
3992 
3993 		pte = huge_ptep_get_and_clear(mm, address, ptep);
3994 		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3995 		if (huge_pte_dirty(pte))
3996 			set_page_dirty(page);
3997 
3998 		hugetlb_count_sub(pages_per_huge_page(h), mm);
3999 		page_remove_rmap(page, true);
4000 
4001 		spin_unlock(ptl);
4002 		tlb_remove_page_size(tlb, page, huge_page_size(h));
4003 		/*
4004 		 * Bail out after unmapping reference page if supplied
4005 		 */
4006 		if (ref_page)
4007 			break;
4008 	}
4009 	mmu_notifier_invalidate_range_end(&range);
4010 	tlb_end_vma(tlb, vma);
4011 }
4012 
4013 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
4014 			  struct vm_area_struct *vma, unsigned long start,
4015 			  unsigned long end, struct page *ref_page)
4016 {
4017 	__unmap_hugepage_range(tlb, vma, start, end, ref_page);
4018 
4019 	/*
4020 	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
4021 	 * test will fail on a vma being torn down, and not grab a page table
4022 	 * on its way out.  We're lucky that the flag has such an appropriate
4023 	 * name, and can in fact be safely cleared here. We could clear it
4024 	 * before the __unmap_hugepage_range above, but all that's necessary
4025 	 * is to clear it before releasing the i_mmap_rwsem. This works
4026 	 * because in the context this is called, the VMA is about to be
4027 	 * destroyed and the i_mmap_rwsem is held.
4028 	 */
4029 	vma->vm_flags &= ~VM_MAYSHARE;
4030 }
4031 
4032 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
4033 			  unsigned long end, struct page *ref_page)
4034 {
4035 	struct mm_struct *mm;
4036 	struct mmu_gather tlb;
4037 	unsigned long tlb_start = start;
4038 	unsigned long tlb_end = end;
4039 
4040 	/*
4041 	 * If shared PMDs were possibly used within this vma range, adjust
4042 	 * start/end for worst case tlb flushing.
4043 	 * Note that we can not be sure if PMDs are shared until we try to
4044 	 * unmap pages.  However, we want to make sure TLB flushing covers
4045 	 * the largest possible range.
4046 	 */
4047 	adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end);
4048 
4049 	mm = vma->vm_mm;
4050 
4051 	tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end);
4052 	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
4053 	tlb_finish_mmu(&tlb, tlb_start, tlb_end);
4054 }
4055 
4056 /*
4057  * This is called when the original mapper is failing to COW a MAP_PRIVATE
4058  * mappping it owns the reserve page for. The intention is to unmap the page
4059  * from other VMAs and let the children be SIGKILLed if they are faulting the
4060  * same region.
4061  */
4062 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
4063 			      struct page *page, unsigned long address)
4064 {
4065 	struct hstate *h = hstate_vma(vma);
4066 	struct vm_area_struct *iter_vma;
4067 	struct address_space *mapping;
4068 	pgoff_t pgoff;
4069 
4070 	/*
4071 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
4072 	 * from page cache lookup which is in HPAGE_SIZE units.
4073 	 */
4074 	address = address & huge_page_mask(h);
4075 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
4076 			vma->vm_pgoff;
4077 	mapping = vma->vm_file->f_mapping;
4078 
4079 	/*
4080 	 * Take the mapping lock for the duration of the table walk. As
4081 	 * this mapping should be shared between all the VMAs,
4082 	 * __unmap_hugepage_range() is called as the lock is already held
4083 	 */
4084 	i_mmap_lock_write(mapping);
4085 	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
4086 		/* Do not unmap the current VMA */
4087 		if (iter_vma == vma)
4088 			continue;
4089 
4090 		/*
4091 		 * Shared VMAs have their own reserves and do not affect
4092 		 * MAP_PRIVATE accounting but it is possible that a shared
4093 		 * VMA is using the same page so check and skip such VMAs.
4094 		 */
4095 		if (iter_vma->vm_flags & VM_MAYSHARE)
4096 			continue;
4097 
4098 		/*
4099 		 * Unmap the page from other VMAs without their own reserves.
4100 		 * They get marked to be SIGKILLed if they fault in these
4101 		 * areas. This is because a future no-page fault on this VMA
4102 		 * could insert a zeroed page instead of the data existing
4103 		 * from the time of fork. This would look like data corruption
4104 		 */
4105 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
4106 			unmap_hugepage_range(iter_vma, address,
4107 					     address + huge_page_size(h), page);
4108 	}
4109 	i_mmap_unlock_write(mapping);
4110 }
4111 
4112 /*
4113  * Hugetlb_cow() should be called with page lock of the original hugepage held.
4114  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
4115  * cannot race with other handlers or page migration.
4116  * Keep the pte_same checks anyway to make transition from the mutex easier.
4117  */
4118 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
4119 		       unsigned long address, pte_t *ptep,
4120 		       struct page *pagecache_page, spinlock_t *ptl)
4121 {
4122 	pte_t pte;
4123 	struct hstate *h = hstate_vma(vma);
4124 	struct page *old_page, *new_page;
4125 	int outside_reserve = 0;
4126 	vm_fault_t ret = 0;
4127 	unsigned long haddr = address & huge_page_mask(h);
4128 	struct mmu_notifier_range range;
4129 
4130 	pte = huge_ptep_get(ptep);
4131 	old_page = pte_page(pte);
4132 
4133 retry_avoidcopy:
4134 	/* If no-one else is actually using this page, avoid the copy
4135 	 * and just make the page writable */
4136 	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
4137 		page_move_anon_rmap(old_page, vma);
4138 		set_huge_ptep_writable(vma, haddr, ptep);
4139 		return 0;
4140 	}
4141 
4142 	/*
4143 	 * If the process that created a MAP_PRIVATE mapping is about to
4144 	 * perform a COW due to a shared page count, attempt to satisfy
4145 	 * the allocation without using the existing reserves. The pagecache
4146 	 * page is used to determine if the reserve at this address was
4147 	 * consumed or not. If reserves were used, a partial faulted mapping
4148 	 * at the time of fork() could consume its reserves on COW instead
4149 	 * of the full address range.
4150 	 */
4151 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
4152 			old_page != pagecache_page)
4153 		outside_reserve = 1;
4154 
4155 	get_page(old_page);
4156 
4157 	/*
4158 	 * Drop page table lock as buddy allocator may be called. It will
4159 	 * be acquired again before returning to the caller, as expected.
4160 	 */
4161 	spin_unlock(ptl);
4162 	new_page = alloc_huge_page(vma, haddr, outside_reserve);
4163 
4164 	if (IS_ERR(new_page)) {
4165 		/*
4166 		 * If a process owning a MAP_PRIVATE mapping fails to COW,
4167 		 * it is due to references held by a child and an insufficient
4168 		 * huge page pool. To guarantee the original mappers
4169 		 * reliability, unmap the page from child processes. The child
4170 		 * may get SIGKILLed if it later faults.
4171 		 */
4172 		if (outside_reserve) {
4173 			put_page(old_page);
4174 			BUG_ON(huge_pte_none(pte));
4175 			unmap_ref_private(mm, vma, old_page, haddr);
4176 			BUG_ON(huge_pte_none(pte));
4177 			spin_lock(ptl);
4178 			ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4179 			if (likely(ptep &&
4180 				   pte_same(huge_ptep_get(ptep), pte)))
4181 				goto retry_avoidcopy;
4182 			/*
4183 			 * race occurs while re-acquiring page table
4184 			 * lock, and our job is done.
4185 			 */
4186 			return 0;
4187 		}
4188 
4189 		ret = vmf_error(PTR_ERR(new_page));
4190 		goto out_release_old;
4191 	}
4192 
4193 	/*
4194 	 * When the original hugepage is shared one, it does not have
4195 	 * anon_vma prepared.
4196 	 */
4197 	if (unlikely(anon_vma_prepare(vma))) {
4198 		ret = VM_FAULT_OOM;
4199 		goto out_release_all;
4200 	}
4201 
4202 	copy_user_huge_page(new_page, old_page, address, vma,
4203 			    pages_per_huge_page(h));
4204 	__SetPageUptodate(new_page);
4205 
4206 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
4207 				haddr + huge_page_size(h));
4208 	mmu_notifier_invalidate_range_start(&range);
4209 
4210 	/*
4211 	 * Retake the page table lock to check for racing updates
4212 	 * before the page tables are altered
4213 	 */
4214 	spin_lock(ptl);
4215 	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4216 	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
4217 		ClearPagePrivate(new_page);
4218 
4219 		/* Break COW */
4220 		huge_ptep_clear_flush(vma, haddr, ptep);
4221 		mmu_notifier_invalidate_range(mm, range.start, range.end);
4222 		set_huge_pte_at(mm, haddr, ptep,
4223 				make_huge_pte(vma, new_page, 1));
4224 		page_remove_rmap(old_page, true);
4225 		hugepage_add_new_anon_rmap(new_page, vma, haddr);
4226 		set_page_huge_active(new_page);
4227 		/* Make the old page be freed below */
4228 		new_page = old_page;
4229 	}
4230 	spin_unlock(ptl);
4231 	mmu_notifier_invalidate_range_end(&range);
4232 out_release_all:
4233 	restore_reserve_on_error(h, vma, haddr, new_page);
4234 	put_page(new_page);
4235 out_release_old:
4236 	put_page(old_page);
4237 
4238 	spin_lock(ptl); /* Caller expects lock to be held */
4239 	return ret;
4240 }
4241 
4242 /* Return the pagecache page at a given address within a VMA */
4243 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
4244 			struct vm_area_struct *vma, unsigned long address)
4245 {
4246 	struct address_space *mapping;
4247 	pgoff_t idx;
4248 
4249 	mapping = vma->vm_file->f_mapping;
4250 	idx = vma_hugecache_offset(h, vma, address);
4251 
4252 	return find_lock_page(mapping, idx);
4253 }
4254 
4255 /*
4256  * Return whether there is a pagecache page to back given address within VMA.
4257  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
4258  */
4259 static bool hugetlbfs_pagecache_present(struct hstate *h,
4260 			struct vm_area_struct *vma, unsigned long address)
4261 {
4262 	struct address_space *mapping;
4263 	pgoff_t idx;
4264 	struct page *page;
4265 
4266 	mapping = vma->vm_file->f_mapping;
4267 	idx = vma_hugecache_offset(h, vma, address);
4268 
4269 	page = find_get_page(mapping, idx);
4270 	if (page)
4271 		put_page(page);
4272 	return page != NULL;
4273 }
4274 
4275 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
4276 			   pgoff_t idx)
4277 {
4278 	struct inode *inode = mapping->host;
4279 	struct hstate *h = hstate_inode(inode);
4280 	int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
4281 
4282 	if (err)
4283 		return err;
4284 	ClearPagePrivate(page);
4285 
4286 	/*
4287 	 * set page dirty so that it will not be removed from cache/file
4288 	 * by non-hugetlbfs specific code paths.
4289 	 */
4290 	set_page_dirty(page);
4291 
4292 	spin_lock(&inode->i_lock);
4293 	inode->i_blocks += blocks_per_huge_page(h);
4294 	spin_unlock(&inode->i_lock);
4295 	return 0;
4296 }
4297 
4298 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
4299 			struct vm_area_struct *vma,
4300 			struct address_space *mapping, pgoff_t idx,
4301 			unsigned long address, pte_t *ptep, unsigned int flags)
4302 {
4303 	struct hstate *h = hstate_vma(vma);
4304 	vm_fault_t ret = VM_FAULT_SIGBUS;
4305 	int anon_rmap = 0;
4306 	unsigned long size;
4307 	struct page *page;
4308 	pte_t new_pte;
4309 	spinlock_t *ptl;
4310 	unsigned long haddr = address & huge_page_mask(h);
4311 	bool new_page = false;
4312 
4313 	/*
4314 	 * Currently, we are forced to kill the process in the event the
4315 	 * original mapper has unmapped pages from the child due to a failed
4316 	 * COW. Warn that such a situation has occurred as it may not be obvious
4317 	 */
4318 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
4319 		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
4320 			   current->pid);
4321 		return ret;
4322 	}
4323 
4324 	/*
4325 	 * We can not race with truncation due to holding i_mmap_rwsem.
4326 	 * i_size is modified when holding i_mmap_rwsem, so check here
4327 	 * once for faults beyond end of file.
4328 	 */
4329 	size = i_size_read(mapping->host) >> huge_page_shift(h);
4330 	if (idx >= size)
4331 		goto out;
4332 
4333 retry:
4334 	page = find_lock_page(mapping, idx);
4335 	if (!page) {
4336 		/*
4337 		 * Check for page in userfault range
4338 		 */
4339 		if (userfaultfd_missing(vma)) {
4340 			u32 hash;
4341 			struct vm_fault vmf = {
4342 				.vma = vma,
4343 				.address = haddr,
4344 				.flags = flags,
4345 				/*
4346 				 * Hard to debug if it ends up being
4347 				 * used by a callee that assumes
4348 				 * something about the other
4349 				 * uninitialized fields... same as in
4350 				 * memory.c
4351 				 */
4352 			};
4353 
4354 			/*
4355 			 * hugetlb_fault_mutex and i_mmap_rwsem must be
4356 			 * dropped before handling userfault.  Reacquire
4357 			 * after handling fault to make calling code simpler.
4358 			 */
4359 			hash = hugetlb_fault_mutex_hash(mapping, idx);
4360 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4361 			i_mmap_unlock_read(mapping);
4362 			ret = handle_userfault(&vmf, VM_UFFD_MISSING);
4363 			i_mmap_lock_read(mapping);
4364 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
4365 			goto out;
4366 		}
4367 
4368 		page = alloc_huge_page(vma, haddr, 0);
4369 		if (IS_ERR(page)) {
4370 			/*
4371 			 * Returning error will result in faulting task being
4372 			 * sent SIGBUS.  The hugetlb fault mutex prevents two
4373 			 * tasks from racing to fault in the same page which
4374 			 * could result in false unable to allocate errors.
4375 			 * Page migration does not take the fault mutex, but
4376 			 * does a clear then write of pte's under page table
4377 			 * lock.  Page fault code could race with migration,
4378 			 * notice the clear pte and try to allocate a page
4379 			 * here.  Before returning error, get ptl and make
4380 			 * sure there really is no pte entry.
4381 			 */
4382 			ptl = huge_pte_lock(h, mm, ptep);
4383 			if (!huge_pte_none(huge_ptep_get(ptep))) {
4384 				ret = 0;
4385 				spin_unlock(ptl);
4386 				goto out;
4387 			}
4388 			spin_unlock(ptl);
4389 			ret = vmf_error(PTR_ERR(page));
4390 			goto out;
4391 		}
4392 		clear_huge_page(page, address, pages_per_huge_page(h));
4393 		__SetPageUptodate(page);
4394 		new_page = true;
4395 
4396 		if (vma->vm_flags & VM_MAYSHARE) {
4397 			int err = huge_add_to_page_cache(page, mapping, idx);
4398 			if (err) {
4399 				put_page(page);
4400 				if (err == -EEXIST)
4401 					goto retry;
4402 				goto out;
4403 			}
4404 		} else {
4405 			lock_page(page);
4406 			if (unlikely(anon_vma_prepare(vma))) {
4407 				ret = VM_FAULT_OOM;
4408 				goto backout_unlocked;
4409 			}
4410 			anon_rmap = 1;
4411 		}
4412 	} else {
4413 		/*
4414 		 * If memory error occurs between mmap() and fault, some process
4415 		 * don't have hwpoisoned swap entry for errored virtual address.
4416 		 * So we need to block hugepage fault by PG_hwpoison bit check.
4417 		 */
4418 		if (unlikely(PageHWPoison(page))) {
4419 			ret = VM_FAULT_HWPOISON |
4420 				VM_FAULT_SET_HINDEX(hstate_index(h));
4421 			goto backout_unlocked;
4422 		}
4423 	}
4424 
4425 	/*
4426 	 * If we are going to COW a private mapping later, we examine the
4427 	 * pending reservations for this page now. This will ensure that
4428 	 * any allocations necessary to record that reservation occur outside
4429 	 * the spinlock.
4430 	 */
4431 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4432 		if (vma_needs_reservation(h, vma, haddr) < 0) {
4433 			ret = VM_FAULT_OOM;
4434 			goto backout_unlocked;
4435 		}
4436 		/* Just decrements count, does not deallocate */
4437 		vma_end_reservation(h, vma, haddr);
4438 	}
4439 
4440 	ptl = huge_pte_lock(h, mm, ptep);
4441 	ret = 0;
4442 	if (!huge_pte_none(huge_ptep_get(ptep)))
4443 		goto backout;
4444 
4445 	if (anon_rmap) {
4446 		ClearPagePrivate(page);
4447 		hugepage_add_new_anon_rmap(page, vma, haddr);
4448 	} else
4449 		page_dup_rmap(page, true);
4450 	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
4451 				&& (vma->vm_flags & VM_SHARED)));
4452 	set_huge_pte_at(mm, haddr, ptep, new_pte);
4453 
4454 	hugetlb_count_add(pages_per_huge_page(h), mm);
4455 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4456 		/* Optimization, do the COW without a second fault */
4457 		ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
4458 	}
4459 
4460 	spin_unlock(ptl);
4461 
4462 	/*
4463 	 * Only make newly allocated pages active.  Existing pages found
4464 	 * in the pagecache could be !page_huge_active() if they have been
4465 	 * isolated for migration.
4466 	 */
4467 	if (new_page)
4468 		set_page_huge_active(page);
4469 
4470 	unlock_page(page);
4471 out:
4472 	return ret;
4473 
4474 backout:
4475 	spin_unlock(ptl);
4476 backout_unlocked:
4477 	unlock_page(page);
4478 	restore_reserve_on_error(h, vma, haddr, page);
4479 	put_page(page);
4480 	goto out;
4481 }
4482 
4483 #ifdef CONFIG_SMP
4484 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4485 {
4486 	unsigned long key[2];
4487 	u32 hash;
4488 
4489 	key[0] = (unsigned long) mapping;
4490 	key[1] = idx;
4491 
4492 	hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
4493 
4494 	return hash & (num_fault_mutexes - 1);
4495 }
4496 #else
4497 /*
4498  * For uniprocesor systems we always use a single mutex, so just
4499  * return 0 and avoid the hashing overhead.
4500  */
4501 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4502 {
4503 	return 0;
4504 }
4505 #endif
4506 
4507 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
4508 			unsigned long address, unsigned int flags)
4509 {
4510 	pte_t *ptep, entry;
4511 	spinlock_t *ptl;
4512 	vm_fault_t ret;
4513 	u32 hash;
4514 	pgoff_t idx;
4515 	struct page *page = NULL;
4516 	struct page *pagecache_page = NULL;
4517 	struct hstate *h = hstate_vma(vma);
4518 	struct address_space *mapping;
4519 	int need_wait_lock = 0;
4520 	unsigned long haddr = address & huge_page_mask(h);
4521 
4522 	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4523 	if (ptep) {
4524 		/*
4525 		 * Since we hold no locks, ptep could be stale.  That is
4526 		 * OK as we are only making decisions based on content and
4527 		 * not actually modifying content here.
4528 		 */
4529 		entry = huge_ptep_get(ptep);
4530 		if (unlikely(is_hugetlb_entry_migration(entry))) {
4531 			migration_entry_wait_huge(vma, mm, ptep);
4532 			return 0;
4533 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
4534 			return VM_FAULT_HWPOISON_LARGE |
4535 				VM_FAULT_SET_HINDEX(hstate_index(h));
4536 	} else {
4537 		ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
4538 		if (!ptep)
4539 			return VM_FAULT_OOM;
4540 	}
4541 
4542 	/*
4543 	 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
4544 	 * until finished with ptep.  This serves two purposes:
4545 	 * 1) It prevents huge_pmd_unshare from being called elsewhere
4546 	 *    and making the ptep no longer valid.
4547 	 * 2) It synchronizes us with i_size modifications during truncation.
4548 	 *
4549 	 * ptep could have already be assigned via huge_pte_offset.  That
4550 	 * is OK, as huge_pte_alloc will return the same value unless
4551 	 * something has changed.
4552 	 */
4553 	mapping = vma->vm_file->f_mapping;
4554 	i_mmap_lock_read(mapping);
4555 	ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
4556 	if (!ptep) {
4557 		i_mmap_unlock_read(mapping);
4558 		return VM_FAULT_OOM;
4559 	}
4560 
4561 	/*
4562 	 * Serialize hugepage allocation and instantiation, so that we don't
4563 	 * get spurious allocation failures if two CPUs race to instantiate
4564 	 * the same page in the page cache.
4565 	 */
4566 	idx = vma_hugecache_offset(h, vma, haddr);
4567 	hash = hugetlb_fault_mutex_hash(mapping, idx);
4568 	mutex_lock(&hugetlb_fault_mutex_table[hash]);
4569 
4570 	entry = huge_ptep_get(ptep);
4571 	if (huge_pte_none(entry)) {
4572 		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
4573 		goto out_mutex;
4574 	}
4575 
4576 	ret = 0;
4577 
4578 	/*
4579 	 * entry could be a migration/hwpoison entry at this point, so this
4580 	 * check prevents the kernel from going below assuming that we have
4581 	 * an active hugepage in pagecache. This goto expects the 2nd page
4582 	 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
4583 	 * properly handle it.
4584 	 */
4585 	if (!pte_present(entry))
4586 		goto out_mutex;
4587 
4588 	/*
4589 	 * If we are going to COW the mapping later, we examine the pending
4590 	 * reservations for this page now. This will ensure that any
4591 	 * allocations necessary to record that reservation occur outside the
4592 	 * spinlock. For private mappings, we also lookup the pagecache
4593 	 * page now as it is used to determine if a reservation has been
4594 	 * consumed.
4595 	 */
4596 	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
4597 		if (vma_needs_reservation(h, vma, haddr) < 0) {
4598 			ret = VM_FAULT_OOM;
4599 			goto out_mutex;
4600 		}
4601 		/* Just decrements count, does not deallocate */
4602 		vma_end_reservation(h, vma, haddr);
4603 
4604 		if (!(vma->vm_flags & VM_MAYSHARE))
4605 			pagecache_page = hugetlbfs_pagecache_page(h,
4606 								vma, haddr);
4607 	}
4608 
4609 	ptl = huge_pte_lock(h, mm, ptep);
4610 
4611 	/* Check for a racing update before calling hugetlb_cow */
4612 	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4613 		goto out_ptl;
4614 
4615 	/*
4616 	 * hugetlb_cow() requires page locks of pte_page(entry) and
4617 	 * pagecache_page, so here we need take the former one
4618 	 * when page != pagecache_page or !pagecache_page.
4619 	 */
4620 	page = pte_page(entry);
4621 	if (page != pagecache_page)
4622 		if (!trylock_page(page)) {
4623 			need_wait_lock = 1;
4624 			goto out_ptl;
4625 		}
4626 
4627 	get_page(page);
4628 
4629 	if (flags & FAULT_FLAG_WRITE) {
4630 		if (!huge_pte_write(entry)) {
4631 			ret = hugetlb_cow(mm, vma, address, ptep,
4632 					  pagecache_page, ptl);
4633 			goto out_put_page;
4634 		}
4635 		entry = huge_pte_mkdirty(entry);
4636 	}
4637 	entry = pte_mkyoung(entry);
4638 	if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
4639 						flags & FAULT_FLAG_WRITE))
4640 		update_mmu_cache(vma, haddr, ptep);
4641 out_put_page:
4642 	if (page != pagecache_page)
4643 		unlock_page(page);
4644 	put_page(page);
4645 out_ptl:
4646 	spin_unlock(ptl);
4647 
4648 	if (pagecache_page) {
4649 		unlock_page(pagecache_page);
4650 		put_page(pagecache_page);
4651 	}
4652 out_mutex:
4653 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4654 	i_mmap_unlock_read(mapping);
4655 	/*
4656 	 * Generally it's safe to hold refcount during waiting page lock. But
4657 	 * here we just wait to defer the next page fault to avoid busy loop and
4658 	 * the page is not used after unlocked before returning from the current
4659 	 * page fault. So we are safe from accessing freed page, even if we wait
4660 	 * here without taking refcount.
4661 	 */
4662 	if (need_wait_lock)
4663 		wait_on_page_locked(page);
4664 	return ret;
4665 }
4666 
4667 /*
4668  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
4669  * modifications for huge pages.
4670  */
4671 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4672 			    pte_t *dst_pte,
4673 			    struct vm_area_struct *dst_vma,
4674 			    unsigned long dst_addr,
4675 			    unsigned long src_addr,
4676 			    struct page **pagep)
4677 {
4678 	struct address_space *mapping;
4679 	pgoff_t idx;
4680 	unsigned long size;
4681 	int vm_shared = dst_vma->vm_flags & VM_SHARED;
4682 	struct hstate *h = hstate_vma(dst_vma);
4683 	pte_t _dst_pte;
4684 	spinlock_t *ptl;
4685 	int ret;
4686 	struct page *page;
4687 
4688 	if (!*pagep) {
4689 		ret = -ENOMEM;
4690 		page = alloc_huge_page(dst_vma, dst_addr, 0);
4691 		if (IS_ERR(page))
4692 			goto out;
4693 
4694 		ret = copy_huge_page_from_user(page,
4695 						(const void __user *) src_addr,
4696 						pages_per_huge_page(h), false);
4697 
4698 		/* fallback to copy_from_user outside mmap_lock */
4699 		if (unlikely(ret)) {
4700 			ret = -ENOENT;
4701 			*pagep = page;
4702 			/* don't free the page */
4703 			goto out;
4704 		}
4705 	} else {
4706 		page = *pagep;
4707 		*pagep = NULL;
4708 	}
4709 
4710 	/*
4711 	 * The memory barrier inside __SetPageUptodate makes sure that
4712 	 * preceding stores to the page contents become visible before
4713 	 * the set_pte_at() write.
4714 	 */
4715 	__SetPageUptodate(page);
4716 
4717 	mapping = dst_vma->vm_file->f_mapping;
4718 	idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4719 
4720 	/*
4721 	 * If shared, add to page cache
4722 	 */
4723 	if (vm_shared) {
4724 		size = i_size_read(mapping->host) >> huge_page_shift(h);
4725 		ret = -EFAULT;
4726 		if (idx >= size)
4727 			goto out_release_nounlock;
4728 
4729 		/*
4730 		 * Serialization between remove_inode_hugepages() and
4731 		 * huge_add_to_page_cache() below happens through the
4732 		 * hugetlb_fault_mutex_table that here must be hold by
4733 		 * the caller.
4734 		 */
4735 		ret = huge_add_to_page_cache(page, mapping, idx);
4736 		if (ret)
4737 			goto out_release_nounlock;
4738 	}
4739 
4740 	ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4741 	spin_lock(ptl);
4742 
4743 	/*
4744 	 * Recheck the i_size after holding PT lock to make sure not
4745 	 * to leave any page mapped (as page_mapped()) beyond the end
4746 	 * of the i_size (remove_inode_hugepages() is strict about
4747 	 * enforcing that). If we bail out here, we'll also leave a
4748 	 * page in the radix tree in the vm_shared case beyond the end
4749 	 * of the i_size, but remove_inode_hugepages() will take care
4750 	 * of it as soon as we drop the hugetlb_fault_mutex_table.
4751 	 */
4752 	size = i_size_read(mapping->host) >> huge_page_shift(h);
4753 	ret = -EFAULT;
4754 	if (idx >= size)
4755 		goto out_release_unlock;
4756 
4757 	ret = -EEXIST;
4758 	if (!huge_pte_none(huge_ptep_get(dst_pte)))
4759 		goto out_release_unlock;
4760 
4761 	if (vm_shared) {
4762 		page_dup_rmap(page, true);
4763 	} else {
4764 		ClearPagePrivate(page);
4765 		hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4766 	}
4767 
4768 	_dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4769 	if (dst_vma->vm_flags & VM_WRITE)
4770 		_dst_pte = huge_pte_mkdirty(_dst_pte);
4771 	_dst_pte = pte_mkyoung(_dst_pte);
4772 
4773 	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4774 
4775 	(void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4776 					dst_vma->vm_flags & VM_WRITE);
4777 	hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4778 
4779 	/* No need to invalidate - it was non-present before */
4780 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
4781 
4782 	spin_unlock(ptl);
4783 	set_page_huge_active(page);
4784 	if (vm_shared)
4785 		unlock_page(page);
4786 	ret = 0;
4787 out:
4788 	return ret;
4789 out_release_unlock:
4790 	spin_unlock(ptl);
4791 	if (vm_shared)
4792 		unlock_page(page);
4793 out_release_nounlock:
4794 	put_page(page);
4795 	goto out;
4796 }
4797 
4798 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4799 			 struct page **pages, struct vm_area_struct **vmas,
4800 			 unsigned long *position, unsigned long *nr_pages,
4801 			 long i, unsigned int flags, int *locked)
4802 {
4803 	unsigned long pfn_offset;
4804 	unsigned long vaddr = *position;
4805 	unsigned long remainder = *nr_pages;
4806 	struct hstate *h = hstate_vma(vma);
4807 	int err = -EFAULT;
4808 
4809 	while (vaddr < vma->vm_end && remainder) {
4810 		pte_t *pte;
4811 		spinlock_t *ptl = NULL;
4812 		int absent;
4813 		struct page *page;
4814 
4815 		/*
4816 		 * If we have a pending SIGKILL, don't keep faulting pages and
4817 		 * potentially allocating memory.
4818 		 */
4819 		if (fatal_signal_pending(current)) {
4820 			remainder = 0;
4821 			break;
4822 		}
4823 
4824 		/*
4825 		 * Some archs (sparc64, sh*) have multiple pte_ts to
4826 		 * each hugepage.  We have to make sure we get the
4827 		 * first, for the page indexing below to work.
4828 		 *
4829 		 * Note that page table lock is not held when pte is null.
4830 		 */
4831 		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4832 				      huge_page_size(h));
4833 		if (pte)
4834 			ptl = huge_pte_lock(h, mm, pte);
4835 		absent = !pte || huge_pte_none(huge_ptep_get(pte));
4836 
4837 		/*
4838 		 * When coredumping, it suits get_dump_page if we just return
4839 		 * an error where there's an empty slot with no huge pagecache
4840 		 * to back it.  This way, we avoid allocating a hugepage, and
4841 		 * the sparse dumpfile avoids allocating disk blocks, but its
4842 		 * huge holes still show up with zeroes where they need to be.
4843 		 */
4844 		if (absent && (flags & FOLL_DUMP) &&
4845 		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4846 			if (pte)
4847 				spin_unlock(ptl);
4848 			remainder = 0;
4849 			break;
4850 		}
4851 
4852 		/*
4853 		 * We need call hugetlb_fault for both hugepages under migration
4854 		 * (in which case hugetlb_fault waits for the migration,) and
4855 		 * hwpoisoned hugepages (in which case we need to prevent the
4856 		 * caller from accessing to them.) In order to do this, we use
4857 		 * here is_swap_pte instead of is_hugetlb_entry_migration and
4858 		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4859 		 * both cases, and because we can't follow correct pages
4860 		 * directly from any kind of swap entries.
4861 		 */
4862 		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4863 		    ((flags & FOLL_WRITE) &&
4864 		      !huge_pte_write(huge_ptep_get(pte)))) {
4865 			vm_fault_t ret;
4866 			unsigned int fault_flags = 0;
4867 
4868 			if (pte)
4869 				spin_unlock(ptl);
4870 			if (flags & FOLL_WRITE)
4871 				fault_flags |= FAULT_FLAG_WRITE;
4872 			if (locked)
4873 				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4874 					FAULT_FLAG_KILLABLE;
4875 			if (flags & FOLL_NOWAIT)
4876 				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4877 					FAULT_FLAG_RETRY_NOWAIT;
4878 			if (flags & FOLL_TRIED) {
4879 				/*
4880 				 * Note: FAULT_FLAG_ALLOW_RETRY and
4881 				 * FAULT_FLAG_TRIED can co-exist
4882 				 */
4883 				fault_flags |= FAULT_FLAG_TRIED;
4884 			}
4885 			ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4886 			if (ret & VM_FAULT_ERROR) {
4887 				err = vm_fault_to_errno(ret, flags);
4888 				remainder = 0;
4889 				break;
4890 			}
4891 			if (ret & VM_FAULT_RETRY) {
4892 				if (locked &&
4893 				    !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4894 					*locked = 0;
4895 				*nr_pages = 0;
4896 				/*
4897 				 * VM_FAULT_RETRY must not return an
4898 				 * error, it will return zero
4899 				 * instead.
4900 				 *
4901 				 * No need to update "position" as the
4902 				 * caller will not check it after
4903 				 * *nr_pages is set to 0.
4904 				 */
4905 				return i;
4906 			}
4907 			continue;
4908 		}
4909 
4910 		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4911 		page = pte_page(huge_ptep_get(pte));
4912 
4913 		/*
4914 		 * If subpage information not requested, update counters
4915 		 * and skip the same_page loop below.
4916 		 */
4917 		if (!pages && !vmas && !pfn_offset &&
4918 		    (vaddr + huge_page_size(h) < vma->vm_end) &&
4919 		    (remainder >= pages_per_huge_page(h))) {
4920 			vaddr += huge_page_size(h);
4921 			remainder -= pages_per_huge_page(h);
4922 			i += pages_per_huge_page(h);
4923 			spin_unlock(ptl);
4924 			continue;
4925 		}
4926 
4927 same_page:
4928 		if (pages) {
4929 			pages[i] = mem_map_offset(page, pfn_offset);
4930 			/*
4931 			 * try_grab_page() should always succeed here, because:
4932 			 * a) we hold the ptl lock, and b) we've just checked
4933 			 * that the huge page is present in the page tables. If
4934 			 * the huge page is present, then the tail pages must
4935 			 * also be present. The ptl prevents the head page and
4936 			 * tail pages from being rearranged in any way. So this
4937 			 * page must be available at this point, unless the page
4938 			 * refcount overflowed:
4939 			 */
4940 			if (WARN_ON_ONCE(!try_grab_page(pages[i], flags))) {
4941 				spin_unlock(ptl);
4942 				remainder = 0;
4943 				err = -ENOMEM;
4944 				break;
4945 			}
4946 		}
4947 
4948 		if (vmas)
4949 			vmas[i] = vma;
4950 
4951 		vaddr += PAGE_SIZE;
4952 		++pfn_offset;
4953 		--remainder;
4954 		++i;
4955 		if (vaddr < vma->vm_end && remainder &&
4956 				pfn_offset < pages_per_huge_page(h)) {
4957 			/*
4958 			 * We use pfn_offset to avoid touching the pageframes
4959 			 * of this compound page.
4960 			 */
4961 			goto same_page;
4962 		}
4963 		spin_unlock(ptl);
4964 	}
4965 	*nr_pages = remainder;
4966 	/*
4967 	 * setting position is actually required only if remainder is
4968 	 * not zero but it's faster not to add a "if (remainder)"
4969 	 * branch.
4970 	 */
4971 	*position = vaddr;
4972 
4973 	return i ? i : err;
4974 }
4975 
4976 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4977 /*
4978  * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4979  * implement this.
4980  */
4981 #define flush_hugetlb_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
4982 #endif
4983 
4984 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4985 		unsigned long address, unsigned long end, pgprot_t newprot)
4986 {
4987 	struct mm_struct *mm = vma->vm_mm;
4988 	unsigned long start = address;
4989 	pte_t *ptep;
4990 	pte_t pte;
4991 	struct hstate *h = hstate_vma(vma);
4992 	unsigned long pages = 0;
4993 	bool shared_pmd = false;
4994 	struct mmu_notifier_range range;
4995 
4996 	/*
4997 	 * In the case of shared PMDs, the area to flush could be beyond
4998 	 * start/end.  Set range.start/range.end to cover the maximum possible
4999 	 * range if PMD sharing is possible.
5000 	 */
5001 	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
5002 				0, vma, mm, start, end);
5003 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5004 
5005 	BUG_ON(address >= end);
5006 	flush_cache_range(vma, range.start, range.end);
5007 
5008 	mmu_notifier_invalidate_range_start(&range);
5009 	i_mmap_lock_write(vma->vm_file->f_mapping);
5010 	for (; address < end; address += huge_page_size(h)) {
5011 		spinlock_t *ptl;
5012 		ptep = huge_pte_offset(mm, address, huge_page_size(h));
5013 		if (!ptep)
5014 			continue;
5015 		ptl = huge_pte_lock(h, mm, ptep);
5016 		if (huge_pmd_unshare(mm, &address, ptep)) {
5017 			pages++;
5018 			spin_unlock(ptl);
5019 			shared_pmd = true;
5020 			continue;
5021 		}
5022 		pte = huge_ptep_get(ptep);
5023 		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
5024 			spin_unlock(ptl);
5025 			continue;
5026 		}
5027 		if (unlikely(is_hugetlb_entry_migration(pte))) {
5028 			swp_entry_t entry = pte_to_swp_entry(pte);
5029 
5030 			if (is_write_migration_entry(entry)) {
5031 				pte_t newpte;
5032 
5033 				make_migration_entry_read(&entry);
5034 				newpte = swp_entry_to_pte(entry);
5035 				set_huge_swap_pte_at(mm, address, ptep,
5036 						     newpte, huge_page_size(h));
5037 				pages++;
5038 			}
5039 			spin_unlock(ptl);
5040 			continue;
5041 		}
5042 		if (!huge_pte_none(pte)) {
5043 			pte_t old_pte;
5044 
5045 			old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
5046 			pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
5047 			pte = arch_make_huge_pte(pte, vma, NULL, 0);
5048 			huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
5049 			pages++;
5050 		}
5051 		spin_unlock(ptl);
5052 	}
5053 	/*
5054 	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
5055 	 * may have cleared our pud entry and done put_page on the page table:
5056 	 * once we release i_mmap_rwsem, another task can do the final put_page
5057 	 * and that page table be reused and filled with junk.  If we actually
5058 	 * did unshare a page of pmds, flush the range corresponding to the pud.
5059 	 */
5060 	if (shared_pmd)
5061 		flush_hugetlb_tlb_range(vma, range.start, range.end);
5062 	else
5063 		flush_hugetlb_tlb_range(vma, start, end);
5064 	/*
5065 	 * No need to call mmu_notifier_invalidate_range() we are downgrading
5066 	 * page table protection not changing it to point to a new page.
5067 	 *
5068 	 * See Documentation/vm/mmu_notifier.rst
5069 	 */
5070 	i_mmap_unlock_write(vma->vm_file->f_mapping);
5071 	mmu_notifier_invalidate_range_end(&range);
5072 
5073 	return pages << h->order;
5074 }
5075 
5076 int hugetlb_reserve_pages(struct inode *inode,
5077 					long from, long to,
5078 					struct vm_area_struct *vma,
5079 					vm_flags_t vm_flags)
5080 {
5081 	long ret, chg, add = -1;
5082 	struct hstate *h = hstate_inode(inode);
5083 	struct hugepage_subpool *spool = subpool_inode(inode);
5084 	struct resv_map *resv_map;
5085 	struct hugetlb_cgroup *h_cg = NULL;
5086 	long gbl_reserve, regions_needed = 0;
5087 
5088 	/* This should never happen */
5089 	if (from > to) {
5090 		VM_WARN(1, "%s called with a negative range\n", __func__);
5091 		return -EINVAL;
5092 	}
5093 
5094 	/*
5095 	 * Only apply hugepage reservation if asked. At fault time, an
5096 	 * attempt will be made for VM_NORESERVE to allocate a page
5097 	 * without using reserves
5098 	 */
5099 	if (vm_flags & VM_NORESERVE)
5100 		return 0;
5101 
5102 	/*
5103 	 * Shared mappings base their reservation on the number of pages that
5104 	 * are already allocated on behalf of the file. Private mappings need
5105 	 * to reserve the full area even if read-only as mprotect() may be
5106 	 * called to make the mapping read-write. Assume !vma is a shm mapping
5107 	 */
5108 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
5109 		/*
5110 		 * resv_map can not be NULL as hugetlb_reserve_pages is only
5111 		 * called for inodes for which resv_maps were created (see
5112 		 * hugetlbfs_get_inode).
5113 		 */
5114 		resv_map = inode_resv_map(inode);
5115 
5116 		chg = region_chg(resv_map, from, to, &regions_needed);
5117 
5118 	} else {
5119 		/* Private mapping. */
5120 		resv_map = resv_map_alloc();
5121 		if (!resv_map)
5122 			return -ENOMEM;
5123 
5124 		chg = to - from;
5125 
5126 		set_vma_resv_map(vma, resv_map);
5127 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
5128 	}
5129 
5130 	if (chg < 0) {
5131 		ret = chg;
5132 		goto out_err;
5133 	}
5134 
5135 	ret = hugetlb_cgroup_charge_cgroup_rsvd(
5136 		hstate_index(h), chg * pages_per_huge_page(h), &h_cg);
5137 
5138 	if (ret < 0) {
5139 		ret = -ENOMEM;
5140 		goto out_err;
5141 	}
5142 
5143 	if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
5144 		/* For private mappings, the hugetlb_cgroup uncharge info hangs
5145 		 * of the resv_map.
5146 		 */
5147 		resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
5148 	}
5149 
5150 	/*
5151 	 * There must be enough pages in the subpool for the mapping. If
5152 	 * the subpool has a minimum size, there may be some global
5153 	 * reservations already in place (gbl_reserve).
5154 	 */
5155 	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
5156 	if (gbl_reserve < 0) {
5157 		ret = -ENOSPC;
5158 		goto out_uncharge_cgroup;
5159 	}
5160 
5161 	/*
5162 	 * Check enough hugepages are available for the reservation.
5163 	 * Hand the pages back to the subpool if there are not
5164 	 */
5165 	ret = hugetlb_acct_memory(h, gbl_reserve);
5166 	if (ret < 0) {
5167 		goto out_put_pages;
5168 	}
5169 
5170 	/*
5171 	 * Account for the reservations made. Shared mappings record regions
5172 	 * that have reservations as they are shared by multiple VMAs.
5173 	 * When the last VMA disappears, the region map says how much
5174 	 * the reservation was and the page cache tells how much of
5175 	 * the reservation was consumed. Private mappings are per-VMA and
5176 	 * only the consumed reservations are tracked. When the VMA
5177 	 * disappears, the original reservation is the VMA size and the
5178 	 * consumed reservations are stored in the map. Hence, nothing
5179 	 * else has to be done for private mappings here
5180 	 */
5181 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
5182 		add = region_add(resv_map, from, to, regions_needed, h, h_cg);
5183 
5184 		if (unlikely(add < 0)) {
5185 			hugetlb_acct_memory(h, -gbl_reserve);
5186 			goto out_put_pages;
5187 		} else if (unlikely(chg > add)) {
5188 			/*
5189 			 * pages in this range were added to the reserve
5190 			 * map between region_chg and region_add.  This
5191 			 * indicates a race with alloc_huge_page.  Adjust
5192 			 * the subpool and reserve counts modified above
5193 			 * based on the difference.
5194 			 */
5195 			long rsv_adjust;
5196 
5197 			hugetlb_cgroup_uncharge_cgroup_rsvd(
5198 				hstate_index(h),
5199 				(chg - add) * pages_per_huge_page(h), h_cg);
5200 
5201 			rsv_adjust = hugepage_subpool_put_pages(spool,
5202 								chg - add);
5203 			hugetlb_acct_memory(h, -rsv_adjust);
5204 		}
5205 	}
5206 	return 0;
5207 out_put_pages:
5208 	/* put back original number of pages, chg */
5209 	(void)hugepage_subpool_put_pages(spool, chg);
5210 out_uncharge_cgroup:
5211 	hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
5212 					    chg * pages_per_huge_page(h), h_cg);
5213 out_err:
5214 	if (!vma || vma->vm_flags & VM_MAYSHARE)
5215 		/* Only call region_abort if the region_chg succeeded but the
5216 		 * region_add failed or didn't run.
5217 		 */
5218 		if (chg >= 0 && add < 0)
5219 			region_abort(resv_map, from, to, regions_needed);
5220 	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5221 		kref_put(&resv_map->refs, resv_map_release);
5222 	return ret;
5223 }
5224 
5225 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
5226 								long freed)
5227 {
5228 	struct hstate *h = hstate_inode(inode);
5229 	struct resv_map *resv_map = inode_resv_map(inode);
5230 	long chg = 0;
5231 	struct hugepage_subpool *spool = subpool_inode(inode);
5232 	long gbl_reserve;
5233 
5234 	/*
5235 	 * Since this routine can be called in the evict inode path for all
5236 	 * hugetlbfs inodes, resv_map could be NULL.
5237 	 */
5238 	if (resv_map) {
5239 		chg = region_del(resv_map, start, end);
5240 		/*
5241 		 * region_del() can fail in the rare case where a region
5242 		 * must be split and another region descriptor can not be
5243 		 * allocated.  If end == LONG_MAX, it will not fail.
5244 		 */
5245 		if (chg < 0)
5246 			return chg;
5247 	}
5248 
5249 	spin_lock(&inode->i_lock);
5250 	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
5251 	spin_unlock(&inode->i_lock);
5252 
5253 	/*
5254 	 * If the subpool has a minimum size, the number of global
5255 	 * reservations to be released may be adjusted.
5256 	 */
5257 	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
5258 	hugetlb_acct_memory(h, -gbl_reserve);
5259 
5260 	return 0;
5261 }
5262 
5263 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
5264 static unsigned long page_table_shareable(struct vm_area_struct *svma,
5265 				struct vm_area_struct *vma,
5266 				unsigned long addr, pgoff_t idx)
5267 {
5268 	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
5269 				svma->vm_start;
5270 	unsigned long sbase = saddr & PUD_MASK;
5271 	unsigned long s_end = sbase + PUD_SIZE;
5272 
5273 	/* Allow segments to share if only one is marked locked */
5274 	unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
5275 	unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
5276 
5277 	/*
5278 	 * match the virtual addresses, permission and the alignment of the
5279 	 * page table page.
5280 	 */
5281 	if (pmd_index(addr) != pmd_index(saddr) ||
5282 	    vm_flags != svm_flags ||
5283 	    sbase < svma->vm_start || svma->vm_end < s_end)
5284 		return 0;
5285 
5286 	return saddr;
5287 }
5288 
5289 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
5290 {
5291 	unsigned long base = addr & PUD_MASK;
5292 	unsigned long end = base + PUD_SIZE;
5293 
5294 	/*
5295 	 * check on proper vm_flags and page table alignment
5296 	 */
5297 	if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
5298 		return true;
5299 	return false;
5300 }
5301 
5302 /*
5303  * Determine if start,end range within vma could be mapped by shared pmd.
5304  * If yes, adjust start and end to cover range associated with possible
5305  * shared pmd mappings.
5306  */
5307 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5308 				unsigned long *start, unsigned long *end)
5309 {
5310 	unsigned long check_addr;
5311 
5312 	if (!(vma->vm_flags & VM_MAYSHARE))
5313 		return;
5314 
5315 	for (check_addr = *start; check_addr < *end; check_addr += PUD_SIZE) {
5316 		unsigned long a_start = check_addr & PUD_MASK;
5317 		unsigned long a_end = a_start + PUD_SIZE;
5318 
5319 		/*
5320 		 * If sharing is possible, adjust start/end if necessary.
5321 		 */
5322 		if (range_in_vma(vma, a_start, a_end)) {
5323 			if (a_start < *start)
5324 				*start = a_start;
5325 			if (a_end > *end)
5326 				*end = a_end;
5327 		}
5328 	}
5329 }
5330 
5331 /*
5332  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
5333  * and returns the corresponding pte. While this is not necessary for the
5334  * !shared pmd case because we can allocate the pmd later as well, it makes the
5335  * code much cleaner.
5336  *
5337  * This routine must be called with i_mmap_rwsem held in at least read mode.
5338  * For hugetlbfs, this prevents removal of any page table entries associated
5339  * with the address space.  This is important as we are setting up sharing
5340  * based on existing page table entries (mappings).
5341  */
5342 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
5343 {
5344 	struct vm_area_struct *vma = find_vma(mm, addr);
5345 	struct address_space *mapping = vma->vm_file->f_mapping;
5346 	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
5347 			vma->vm_pgoff;
5348 	struct vm_area_struct *svma;
5349 	unsigned long saddr;
5350 	pte_t *spte = NULL;
5351 	pte_t *pte;
5352 	spinlock_t *ptl;
5353 
5354 	if (!vma_shareable(vma, addr))
5355 		return (pte_t *)pmd_alloc(mm, pud, addr);
5356 
5357 	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
5358 		if (svma == vma)
5359 			continue;
5360 
5361 		saddr = page_table_shareable(svma, vma, addr, idx);
5362 		if (saddr) {
5363 			spte = huge_pte_offset(svma->vm_mm, saddr,
5364 					       vma_mmu_pagesize(svma));
5365 			if (spte) {
5366 				get_page(virt_to_page(spte));
5367 				break;
5368 			}
5369 		}
5370 	}
5371 
5372 	if (!spte)
5373 		goto out;
5374 
5375 	ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
5376 	if (pud_none(*pud)) {
5377 		pud_populate(mm, pud,
5378 				(pmd_t *)((unsigned long)spte & PAGE_MASK));
5379 		mm_inc_nr_pmds(mm);
5380 	} else {
5381 		put_page(virt_to_page(spte));
5382 	}
5383 	spin_unlock(ptl);
5384 out:
5385 	pte = (pte_t *)pmd_alloc(mm, pud, addr);
5386 	return pte;
5387 }
5388 
5389 /*
5390  * unmap huge page backed by shared pte.
5391  *
5392  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
5393  * indicated by page_count > 1, unmap is achieved by clearing pud and
5394  * decrementing the ref count. If count == 1, the pte page is not shared.
5395  *
5396  * Called with page table lock held and i_mmap_rwsem held in write mode.
5397  *
5398  * returns: 1 successfully unmapped a shared pte page
5399  *	    0 the underlying pte page is not shared, or it is the last user
5400  */
5401 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
5402 {
5403 	pgd_t *pgd = pgd_offset(mm, *addr);
5404 	p4d_t *p4d = p4d_offset(pgd, *addr);
5405 	pud_t *pud = pud_offset(p4d, *addr);
5406 
5407 	BUG_ON(page_count(virt_to_page(ptep)) == 0);
5408 	if (page_count(virt_to_page(ptep)) == 1)
5409 		return 0;
5410 
5411 	pud_clear(pud);
5412 	put_page(virt_to_page(ptep));
5413 	mm_dec_nr_pmds(mm);
5414 	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
5415 	return 1;
5416 }
5417 #define want_pmd_share()	(1)
5418 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5419 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
5420 {
5421 	return NULL;
5422 }
5423 
5424 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
5425 {
5426 	return 0;
5427 }
5428 
5429 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5430 				unsigned long *start, unsigned long *end)
5431 {
5432 }
5433 #define want_pmd_share()	(0)
5434 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5435 
5436 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
5437 pte_t *huge_pte_alloc(struct mm_struct *mm,
5438 			unsigned long addr, unsigned long sz)
5439 {
5440 	pgd_t *pgd;
5441 	p4d_t *p4d;
5442 	pud_t *pud;
5443 	pte_t *pte = NULL;
5444 
5445 	pgd = pgd_offset(mm, addr);
5446 	p4d = p4d_alloc(mm, pgd, addr);
5447 	if (!p4d)
5448 		return NULL;
5449 	pud = pud_alloc(mm, p4d, addr);
5450 	if (pud) {
5451 		if (sz == PUD_SIZE) {
5452 			pte = (pte_t *)pud;
5453 		} else {
5454 			BUG_ON(sz != PMD_SIZE);
5455 			if (want_pmd_share() && pud_none(*pud))
5456 				pte = huge_pmd_share(mm, addr, pud);
5457 			else
5458 				pte = (pte_t *)pmd_alloc(mm, pud, addr);
5459 		}
5460 	}
5461 	BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
5462 
5463 	return pte;
5464 }
5465 
5466 /*
5467  * huge_pte_offset() - Walk the page table to resolve the hugepage
5468  * entry at address @addr
5469  *
5470  * Return: Pointer to page table entry (PUD or PMD) for
5471  * address @addr, or NULL if a !p*d_present() entry is encountered and the
5472  * size @sz doesn't match the hugepage size at this level of the page
5473  * table.
5474  */
5475 pte_t *huge_pte_offset(struct mm_struct *mm,
5476 		       unsigned long addr, unsigned long sz)
5477 {
5478 	pgd_t *pgd;
5479 	p4d_t *p4d;
5480 	pud_t *pud;
5481 	pmd_t *pmd;
5482 
5483 	pgd = pgd_offset(mm, addr);
5484 	if (!pgd_present(*pgd))
5485 		return NULL;
5486 	p4d = p4d_offset(pgd, addr);
5487 	if (!p4d_present(*p4d))
5488 		return NULL;
5489 
5490 	pud = pud_offset(p4d, addr);
5491 	if (sz == PUD_SIZE)
5492 		/* must be pud huge, non-present or none */
5493 		return (pte_t *)pud;
5494 	if (!pud_present(*pud))
5495 		return NULL;
5496 	/* must have a valid entry and size to go further */
5497 
5498 	pmd = pmd_offset(pud, addr);
5499 	/* must be pmd huge, non-present or none */
5500 	return (pte_t *)pmd;
5501 }
5502 
5503 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
5504 
5505 /*
5506  * These functions are overwritable if your architecture needs its own
5507  * behavior.
5508  */
5509 struct page * __weak
5510 follow_huge_addr(struct mm_struct *mm, unsigned long address,
5511 			      int write)
5512 {
5513 	return ERR_PTR(-EINVAL);
5514 }
5515 
5516 struct page * __weak
5517 follow_huge_pd(struct vm_area_struct *vma,
5518 	       unsigned long address, hugepd_t hpd, int flags, int pdshift)
5519 {
5520 	WARN(1, "hugepd follow called with no support for hugepage directory format\n");
5521 	return NULL;
5522 }
5523 
5524 struct page * __weak
5525 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
5526 		pmd_t *pmd, int flags)
5527 {
5528 	struct page *page = NULL;
5529 	spinlock_t *ptl;
5530 	pte_t pte;
5531 
5532 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
5533 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
5534 			 (FOLL_PIN | FOLL_GET)))
5535 		return NULL;
5536 
5537 retry:
5538 	ptl = pmd_lockptr(mm, pmd);
5539 	spin_lock(ptl);
5540 	/*
5541 	 * make sure that the address range covered by this pmd is not
5542 	 * unmapped from other threads.
5543 	 */
5544 	if (!pmd_huge(*pmd))
5545 		goto out;
5546 	pte = huge_ptep_get((pte_t *)pmd);
5547 	if (pte_present(pte)) {
5548 		page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
5549 		/*
5550 		 * try_grab_page() should always succeed here, because: a) we
5551 		 * hold the pmd (ptl) lock, and b) we've just checked that the
5552 		 * huge pmd (head) page is present in the page tables. The ptl
5553 		 * prevents the head page and tail pages from being rearranged
5554 		 * in any way. So this page must be available at this point,
5555 		 * unless the page refcount overflowed:
5556 		 */
5557 		if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
5558 			page = NULL;
5559 			goto out;
5560 		}
5561 	} else {
5562 		if (is_hugetlb_entry_migration(pte)) {
5563 			spin_unlock(ptl);
5564 			__migration_entry_wait(mm, (pte_t *)pmd, ptl);
5565 			goto retry;
5566 		}
5567 		/*
5568 		 * hwpoisoned entry is treated as no_page_table in
5569 		 * follow_page_mask().
5570 		 */
5571 	}
5572 out:
5573 	spin_unlock(ptl);
5574 	return page;
5575 }
5576 
5577 struct page * __weak
5578 follow_huge_pud(struct mm_struct *mm, unsigned long address,
5579 		pud_t *pud, int flags)
5580 {
5581 	if (flags & (FOLL_GET | FOLL_PIN))
5582 		return NULL;
5583 
5584 	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
5585 }
5586 
5587 struct page * __weak
5588 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
5589 {
5590 	if (flags & (FOLL_GET | FOLL_PIN))
5591 		return NULL;
5592 
5593 	return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
5594 }
5595 
5596 bool isolate_huge_page(struct page *page, struct list_head *list)
5597 {
5598 	bool ret = true;
5599 
5600 	VM_BUG_ON_PAGE(!PageHead(page), page);
5601 	spin_lock(&hugetlb_lock);
5602 	if (!page_huge_active(page) || !get_page_unless_zero(page)) {
5603 		ret = false;
5604 		goto unlock;
5605 	}
5606 	clear_page_huge_active(page);
5607 	list_move_tail(&page->lru, list);
5608 unlock:
5609 	spin_unlock(&hugetlb_lock);
5610 	return ret;
5611 }
5612 
5613 void putback_active_hugepage(struct page *page)
5614 {
5615 	VM_BUG_ON_PAGE(!PageHead(page), page);
5616 	spin_lock(&hugetlb_lock);
5617 	set_page_huge_active(page);
5618 	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
5619 	spin_unlock(&hugetlb_lock);
5620 	put_page(page);
5621 }
5622 
5623 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
5624 {
5625 	struct hstate *h = page_hstate(oldpage);
5626 
5627 	hugetlb_cgroup_migrate(oldpage, newpage);
5628 	set_page_owner_migrate_reason(newpage, reason);
5629 
5630 	/*
5631 	 * transfer temporary state of the new huge page. This is
5632 	 * reverse to other transitions because the newpage is going to
5633 	 * be final while the old one will be freed so it takes over
5634 	 * the temporary status.
5635 	 *
5636 	 * Also note that we have to transfer the per-node surplus state
5637 	 * here as well otherwise the global surplus count will not match
5638 	 * the per-node's.
5639 	 */
5640 	if (PageHugeTemporary(newpage)) {
5641 		int old_nid = page_to_nid(oldpage);
5642 		int new_nid = page_to_nid(newpage);
5643 
5644 		SetPageHugeTemporary(oldpage);
5645 		ClearPageHugeTemporary(newpage);
5646 
5647 		spin_lock(&hugetlb_lock);
5648 		if (h->surplus_huge_pages_node[old_nid]) {
5649 			h->surplus_huge_pages_node[old_nid]--;
5650 			h->surplus_huge_pages_node[new_nid]++;
5651 		}
5652 		spin_unlock(&hugetlb_lock);
5653 	}
5654 }
5655 
5656 #ifdef CONFIG_CMA
5657 static unsigned long hugetlb_cma_size __initdata;
5658 static bool cma_reserve_called __initdata;
5659 
5660 static int __init cmdline_parse_hugetlb_cma(char *p)
5661 {
5662 	hugetlb_cma_size = memparse(p, &p);
5663 	return 0;
5664 }
5665 
5666 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
5667 
5668 void __init hugetlb_cma_reserve(int order)
5669 {
5670 	unsigned long size, reserved, per_node;
5671 	int nid;
5672 
5673 	cma_reserve_called = true;
5674 
5675 	if (!hugetlb_cma_size)
5676 		return;
5677 
5678 	if (hugetlb_cma_size < (PAGE_SIZE << order)) {
5679 		pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
5680 			(PAGE_SIZE << order) / SZ_1M);
5681 		return;
5682 	}
5683 
5684 	/*
5685 	 * If 3 GB area is requested on a machine with 4 numa nodes,
5686 	 * let's allocate 1 GB on first three nodes and ignore the last one.
5687 	 */
5688 	per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
5689 	pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
5690 		hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
5691 
5692 	reserved = 0;
5693 	for_each_node_state(nid, N_ONLINE) {
5694 		int res;
5695 
5696 		size = min(per_node, hugetlb_cma_size - reserved);
5697 		size = round_up(size, PAGE_SIZE << order);
5698 
5699 		res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order,
5700 						 0, false, "hugetlb",
5701 						 &hugetlb_cma[nid], nid);
5702 		if (res) {
5703 			pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
5704 				res, nid);
5705 			continue;
5706 		}
5707 
5708 		reserved += size;
5709 		pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
5710 			size / SZ_1M, nid);
5711 
5712 		if (reserved >= hugetlb_cma_size)
5713 			break;
5714 	}
5715 }
5716 
5717 void __init hugetlb_cma_check(void)
5718 {
5719 	if (!hugetlb_cma_size || cma_reserve_called)
5720 		return;
5721 
5722 	pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
5723 }
5724 
5725 #endif /* CONFIG_CMA */
5726