1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic hugetlb support. 4 * (C) Nadia Yvette Chambers, April 2004 5 */ 6 #include <linux/list.h> 7 #include <linux/init.h> 8 #include <linux/mm.h> 9 #include <linux/seq_file.h> 10 #include <linux/sysctl.h> 11 #include <linux/highmem.h> 12 #include <linux/mmu_notifier.h> 13 #include <linux/nodemask.h> 14 #include <linux/pagemap.h> 15 #include <linux/mempolicy.h> 16 #include <linux/compiler.h> 17 #include <linux/cpuset.h> 18 #include <linux/mutex.h> 19 #include <linux/memblock.h> 20 #include <linux/sysfs.h> 21 #include <linux/slab.h> 22 #include <linux/sched/mm.h> 23 #include <linux/mmdebug.h> 24 #include <linux/sched/signal.h> 25 #include <linux/rmap.h> 26 #include <linux/string_helpers.h> 27 #include <linux/swap.h> 28 #include <linux/swapops.h> 29 #include <linux/jhash.h> 30 #include <linux/numa.h> 31 #include <linux/llist.h> 32 #include <linux/cma.h> 33 #include <linux/migrate.h> 34 #include <linux/nospec.h> 35 #include <linux/delayacct.h> 36 #include <linux/memory.h> 37 #include <linux/mm_inline.h> 38 39 #include <asm/page.h> 40 #include <asm/pgalloc.h> 41 #include <asm/tlb.h> 42 43 #include <linux/io.h> 44 #include <linux/hugetlb.h> 45 #include <linux/hugetlb_cgroup.h> 46 #include <linux/node.h> 47 #include <linux/page_owner.h> 48 #include "internal.h" 49 #include "hugetlb_vmemmap.h" 50 51 int hugetlb_max_hstate __read_mostly; 52 unsigned int default_hstate_idx; 53 struct hstate hstates[HUGE_MAX_HSTATE]; 54 55 #ifdef CONFIG_CMA 56 static struct cma *hugetlb_cma[MAX_NUMNODES]; 57 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata; 58 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order) 59 { 60 return cma_pages_valid(hugetlb_cma[folio_nid(folio)], &folio->page, 61 1 << order); 62 } 63 #else 64 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order) 65 { 66 return false; 67 } 68 #endif 69 static unsigned long hugetlb_cma_size __initdata; 70 71 __initdata LIST_HEAD(huge_boot_pages); 72 73 /* for command line parsing */ 74 static struct hstate * __initdata parsed_hstate; 75 static unsigned long __initdata default_hstate_max_huge_pages; 76 static bool __initdata parsed_valid_hugepagesz = true; 77 static bool __initdata parsed_default_hugepagesz; 78 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata; 79 80 /* 81 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages, 82 * free_huge_pages, and surplus_huge_pages. 83 */ 84 DEFINE_SPINLOCK(hugetlb_lock); 85 86 /* 87 * Serializes faults on the same logical page. This is used to 88 * prevent spurious OOMs when the hugepage pool is fully utilized. 89 */ 90 static int num_fault_mutexes; 91 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp; 92 93 /* Forward declaration */ 94 static int hugetlb_acct_memory(struct hstate *h, long delta); 95 static void hugetlb_vma_lock_free(struct vm_area_struct *vma); 96 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma); 97 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma); 98 static void hugetlb_unshare_pmds(struct vm_area_struct *vma, 99 unsigned long start, unsigned long end); 100 static struct resv_map *vma_resv_map(struct vm_area_struct *vma); 101 102 static inline bool subpool_is_free(struct hugepage_subpool *spool) 103 { 104 if (spool->count) 105 return false; 106 if (spool->max_hpages != -1) 107 return spool->used_hpages == 0; 108 if (spool->min_hpages != -1) 109 return spool->rsv_hpages == spool->min_hpages; 110 111 return true; 112 } 113 114 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool, 115 unsigned long irq_flags) 116 { 117 spin_unlock_irqrestore(&spool->lock, irq_flags); 118 119 /* If no pages are used, and no other handles to the subpool 120 * remain, give up any reservations based on minimum size and 121 * free the subpool */ 122 if (subpool_is_free(spool)) { 123 if (spool->min_hpages != -1) 124 hugetlb_acct_memory(spool->hstate, 125 -spool->min_hpages); 126 kfree(spool); 127 } 128 } 129 130 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages, 131 long min_hpages) 132 { 133 struct hugepage_subpool *spool; 134 135 spool = kzalloc(sizeof(*spool), GFP_KERNEL); 136 if (!spool) 137 return NULL; 138 139 spin_lock_init(&spool->lock); 140 spool->count = 1; 141 spool->max_hpages = max_hpages; 142 spool->hstate = h; 143 spool->min_hpages = min_hpages; 144 145 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) { 146 kfree(spool); 147 return NULL; 148 } 149 spool->rsv_hpages = min_hpages; 150 151 return spool; 152 } 153 154 void hugepage_put_subpool(struct hugepage_subpool *spool) 155 { 156 unsigned long flags; 157 158 spin_lock_irqsave(&spool->lock, flags); 159 BUG_ON(!spool->count); 160 spool->count--; 161 unlock_or_release_subpool(spool, flags); 162 } 163 164 /* 165 * Subpool accounting for allocating and reserving pages. 166 * Return -ENOMEM if there are not enough resources to satisfy the 167 * request. Otherwise, return the number of pages by which the 168 * global pools must be adjusted (upward). The returned value may 169 * only be different than the passed value (delta) in the case where 170 * a subpool minimum size must be maintained. 171 */ 172 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool, 173 long delta) 174 { 175 long ret = delta; 176 177 if (!spool) 178 return ret; 179 180 spin_lock_irq(&spool->lock); 181 182 if (spool->max_hpages != -1) { /* maximum size accounting */ 183 if ((spool->used_hpages + delta) <= spool->max_hpages) 184 spool->used_hpages += delta; 185 else { 186 ret = -ENOMEM; 187 goto unlock_ret; 188 } 189 } 190 191 /* minimum size accounting */ 192 if (spool->min_hpages != -1 && spool->rsv_hpages) { 193 if (delta > spool->rsv_hpages) { 194 /* 195 * Asking for more reserves than those already taken on 196 * behalf of subpool. Return difference. 197 */ 198 ret = delta - spool->rsv_hpages; 199 spool->rsv_hpages = 0; 200 } else { 201 ret = 0; /* reserves already accounted for */ 202 spool->rsv_hpages -= delta; 203 } 204 } 205 206 unlock_ret: 207 spin_unlock_irq(&spool->lock); 208 return ret; 209 } 210 211 /* 212 * Subpool accounting for freeing and unreserving pages. 213 * Return the number of global page reservations that must be dropped. 214 * The return value may only be different than the passed value (delta) 215 * in the case where a subpool minimum size must be maintained. 216 */ 217 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool, 218 long delta) 219 { 220 long ret = delta; 221 unsigned long flags; 222 223 if (!spool) 224 return delta; 225 226 spin_lock_irqsave(&spool->lock, flags); 227 228 if (spool->max_hpages != -1) /* maximum size accounting */ 229 spool->used_hpages -= delta; 230 231 /* minimum size accounting */ 232 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) { 233 if (spool->rsv_hpages + delta <= spool->min_hpages) 234 ret = 0; 235 else 236 ret = spool->rsv_hpages + delta - spool->min_hpages; 237 238 spool->rsv_hpages += delta; 239 if (spool->rsv_hpages > spool->min_hpages) 240 spool->rsv_hpages = spool->min_hpages; 241 } 242 243 /* 244 * If hugetlbfs_put_super couldn't free spool due to an outstanding 245 * quota reference, free it now. 246 */ 247 unlock_or_release_subpool(spool, flags); 248 249 return ret; 250 } 251 252 static inline struct hugepage_subpool *subpool_inode(struct inode *inode) 253 { 254 return HUGETLBFS_SB(inode->i_sb)->spool; 255 } 256 257 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma) 258 { 259 return subpool_inode(file_inode(vma->vm_file)); 260 } 261 262 /* 263 * hugetlb vma_lock helper routines 264 */ 265 void hugetlb_vma_lock_read(struct vm_area_struct *vma) 266 { 267 if (__vma_shareable_lock(vma)) { 268 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 269 270 down_read(&vma_lock->rw_sema); 271 } else if (__vma_private_lock(vma)) { 272 struct resv_map *resv_map = vma_resv_map(vma); 273 274 down_read(&resv_map->rw_sema); 275 } 276 } 277 278 void hugetlb_vma_unlock_read(struct vm_area_struct *vma) 279 { 280 if (__vma_shareable_lock(vma)) { 281 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 282 283 up_read(&vma_lock->rw_sema); 284 } else if (__vma_private_lock(vma)) { 285 struct resv_map *resv_map = vma_resv_map(vma); 286 287 up_read(&resv_map->rw_sema); 288 } 289 } 290 291 void hugetlb_vma_lock_write(struct vm_area_struct *vma) 292 { 293 if (__vma_shareable_lock(vma)) { 294 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 295 296 down_write(&vma_lock->rw_sema); 297 } else if (__vma_private_lock(vma)) { 298 struct resv_map *resv_map = vma_resv_map(vma); 299 300 down_write(&resv_map->rw_sema); 301 } 302 } 303 304 void hugetlb_vma_unlock_write(struct vm_area_struct *vma) 305 { 306 if (__vma_shareable_lock(vma)) { 307 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 308 309 up_write(&vma_lock->rw_sema); 310 } else if (__vma_private_lock(vma)) { 311 struct resv_map *resv_map = vma_resv_map(vma); 312 313 up_write(&resv_map->rw_sema); 314 } 315 } 316 317 int hugetlb_vma_trylock_write(struct vm_area_struct *vma) 318 { 319 320 if (__vma_shareable_lock(vma)) { 321 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 322 323 return down_write_trylock(&vma_lock->rw_sema); 324 } else if (__vma_private_lock(vma)) { 325 struct resv_map *resv_map = vma_resv_map(vma); 326 327 return down_write_trylock(&resv_map->rw_sema); 328 } 329 330 return 1; 331 } 332 333 void hugetlb_vma_assert_locked(struct vm_area_struct *vma) 334 { 335 if (__vma_shareable_lock(vma)) { 336 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 337 338 lockdep_assert_held(&vma_lock->rw_sema); 339 } else if (__vma_private_lock(vma)) { 340 struct resv_map *resv_map = vma_resv_map(vma); 341 342 lockdep_assert_held(&resv_map->rw_sema); 343 } 344 } 345 346 void hugetlb_vma_lock_release(struct kref *kref) 347 { 348 struct hugetlb_vma_lock *vma_lock = container_of(kref, 349 struct hugetlb_vma_lock, refs); 350 351 kfree(vma_lock); 352 } 353 354 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock) 355 { 356 struct vm_area_struct *vma = vma_lock->vma; 357 358 /* 359 * vma_lock structure may or not be released as a result of put, 360 * it certainly will no longer be attached to vma so clear pointer. 361 * Semaphore synchronizes access to vma_lock->vma field. 362 */ 363 vma_lock->vma = NULL; 364 vma->vm_private_data = NULL; 365 up_write(&vma_lock->rw_sema); 366 kref_put(&vma_lock->refs, hugetlb_vma_lock_release); 367 } 368 369 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma) 370 { 371 if (__vma_shareable_lock(vma)) { 372 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 373 374 __hugetlb_vma_unlock_write_put(vma_lock); 375 } else if (__vma_private_lock(vma)) { 376 struct resv_map *resv_map = vma_resv_map(vma); 377 378 /* no free for anon vmas, but still need to unlock */ 379 up_write(&resv_map->rw_sema); 380 } 381 } 382 383 static void hugetlb_vma_lock_free(struct vm_area_struct *vma) 384 { 385 /* 386 * Only present in sharable vmas. 387 */ 388 if (!vma || !__vma_shareable_lock(vma)) 389 return; 390 391 if (vma->vm_private_data) { 392 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 393 394 down_write(&vma_lock->rw_sema); 395 __hugetlb_vma_unlock_write_put(vma_lock); 396 } 397 } 398 399 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma) 400 { 401 struct hugetlb_vma_lock *vma_lock; 402 403 /* Only establish in (flags) sharable vmas */ 404 if (!vma || !(vma->vm_flags & VM_MAYSHARE)) 405 return; 406 407 /* Should never get here with non-NULL vm_private_data */ 408 if (vma->vm_private_data) 409 return; 410 411 vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL); 412 if (!vma_lock) { 413 /* 414 * If we can not allocate structure, then vma can not 415 * participate in pmd sharing. This is only a possible 416 * performance enhancement and memory saving issue. 417 * However, the lock is also used to synchronize page 418 * faults with truncation. If the lock is not present, 419 * unlikely races could leave pages in a file past i_size 420 * until the file is removed. Warn in the unlikely case of 421 * allocation failure. 422 */ 423 pr_warn_once("HugeTLB: unable to allocate vma specific lock\n"); 424 return; 425 } 426 427 kref_init(&vma_lock->refs); 428 init_rwsem(&vma_lock->rw_sema); 429 vma_lock->vma = vma; 430 vma->vm_private_data = vma_lock; 431 } 432 433 /* Helper that removes a struct file_region from the resv_map cache and returns 434 * it for use. 435 */ 436 static struct file_region * 437 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to) 438 { 439 struct file_region *nrg; 440 441 VM_BUG_ON(resv->region_cache_count <= 0); 442 443 resv->region_cache_count--; 444 nrg = list_first_entry(&resv->region_cache, struct file_region, link); 445 list_del(&nrg->link); 446 447 nrg->from = from; 448 nrg->to = to; 449 450 return nrg; 451 } 452 453 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg, 454 struct file_region *rg) 455 { 456 #ifdef CONFIG_CGROUP_HUGETLB 457 nrg->reservation_counter = rg->reservation_counter; 458 nrg->css = rg->css; 459 if (rg->css) 460 css_get(rg->css); 461 #endif 462 } 463 464 /* Helper that records hugetlb_cgroup uncharge info. */ 465 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg, 466 struct hstate *h, 467 struct resv_map *resv, 468 struct file_region *nrg) 469 { 470 #ifdef CONFIG_CGROUP_HUGETLB 471 if (h_cg) { 472 nrg->reservation_counter = 473 &h_cg->rsvd_hugepage[hstate_index(h)]; 474 nrg->css = &h_cg->css; 475 /* 476 * The caller will hold exactly one h_cg->css reference for the 477 * whole contiguous reservation region. But this area might be 478 * scattered when there are already some file_regions reside in 479 * it. As a result, many file_regions may share only one css 480 * reference. In order to ensure that one file_region must hold 481 * exactly one h_cg->css reference, we should do css_get for 482 * each file_region and leave the reference held by caller 483 * untouched. 484 */ 485 css_get(&h_cg->css); 486 if (!resv->pages_per_hpage) 487 resv->pages_per_hpage = pages_per_huge_page(h); 488 /* pages_per_hpage should be the same for all entries in 489 * a resv_map. 490 */ 491 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h)); 492 } else { 493 nrg->reservation_counter = NULL; 494 nrg->css = NULL; 495 } 496 #endif 497 } 498 499 static void put_uncharge_info(struct file_region *rg) 500 { 501 #ifdef CONFIG_CGROUP_HUGETLB 502 if (rg->css) 503 css_put(rg->css); 504 #endif 505 } 506 507 static bool has_same_uncharge_info(struct file_region *rg, 508 struct file_region *org) 509 { 510 #ifdef CONFIG_CGROUP_HUGETLB 511 return rg->reservation_counter == org->reservation_counter && 512 rg->css == org->css; 513 514 #else 515 return true; 516 #endif 517 } 518 519 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg) 520 { 521 struct file_region *nrg, *prg; 522 523 prg = list_prev_entry(rg, link); 524 if (&prg->link != &resv->regions && prg->to == rg->from && 525 has_same_uncharge_info(prg, rg)) { 526 prg->to = rg->to; 527 528 list_del(&rg->link); 529 put_uncharge_info(rg); 530 kfree(rg); 531 532 rg = prg; 533 } 534 535 nrg = list_next_entry(rg, link); 536 if (&nrg->link != &resv->regions && nrg->from == rg->to && 537 has_same_uncharge_info(nrg, rg)) { 538 nrg->from = rg->from; 539 540 list_del(&rg->link); 541 put_uncharge_info(rg); 542 kfree(rg); 543 } 544 } 545 546 static inline long 547 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from, 548 long to, struct hstate *h, struct hugetlb_cgroup *cg, 549 long *regions_needed) 550 { 551 struct file_region *nrg; 552 553 if (!regions_needed) { 554 nrg = get_file_region_entry_from_cache(map, from, to); 555 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg); 556 list_add(&nrg->link, rg); 557 coalesce_file_region(map, nrg); 558 } else 559 *regions_needed += 1; 560 561 return to - from; 562 } 563 564 /* 565 * Must be called with resv->lock held. 566 * 567 * Calling this with regions_needed != NULL will count the number of pages 568 * to be added but will not modify the linked list. And regions_needed will 569 * indicate the number of file_regions needed in the cache to carry out to add 570 * the regions for this range. 571 */ 572 static long add_reservation_in_range(struct resv_map *resv, long f, long t, 573 struct hugetlb_cgroup *h_cg, 574 struct hstate *h, long *regions_needed) 575 { 576 long add = 0; 577 struct list_head *head = &resv->regions; 578 long last_accounted_offset = f; 579 struct file_region *iter, *trg = NULL; 580 struct list_head *rg = NULL; 581 582 if (regions_needed) 583 *regions_needed = 0; 584 585 /* In this loop, we essentially handle an entry for the range 586 * [last_accounted_offset, iter->from), at every iteration, with some 587 * bounds checking. 588 */ 589 list_for_each_entry_safe(iter, trg, head, link) { 590 /* Skip irrelevant regions that start before our range. */ 591 if (iter->from < f) { 592 /* If this region ends after the last accounted offset, 593 * then we need to update last_accounted_offset. 594 */ 595 if (iter->to > last_accounted_offset) 596 last_accounted_offset = iter->to; 597 continue; 598 } 599 600 /* When we find a region that starts beyond our range, we've 601 * finished. 602 */ 603 if (iter->from >= t) { 604 rg = iter->link.prev; 605 break; 606 } 607 608 /* Add an entry for last_accounted_offset -> iter->from, and 609 * update last_accounted_offset. 610 */ 611 if (iter->from > last_accounted_offset) 612 add += hugetlb_resv_map_add(resv, iter->link.prev, 613 last_accounted_offset, 614 iter->from, h, h_cg, 615 regions_needed); 616 617 last_accounted_offset = iter->to; 618 } 619 620 /* Handle the case where our range extends beyond 621 * last_accounted_offset. 622 */ 623 if (!rg) 624 rg = head->prev; 625 if (last_accounted_offset < t) 626 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset, 627 t, h, h_cg, regions_needed); 628 629 return add; 630 } 631 632 /* Must be called with resv->lock acquired. Will drop lock to allocate entries. 633 */ 634 static int allocate_file_region_entries(struct resv_map *resv, 635 int regions_needed) 636 __must_hold(&resv->lock) 637 { 638 LIST_HEAD(allocated_regions); 639 int to_allocate = 0, i = 0; 640 struct file_region *trg = NULL, *rg = NULL; 641 642 VM_BUG_ON(regions_needed < 0); 643 644 /* 645 * Check for sufficient descriptors in the cache to accommodate 646 * the number of in progress add operations plus regions_needed. 647 * 648 * This is a while loop because when we drop the lock, some other call 649 * to region_add or region_del may have consumed some region_entries, 650 * so we keep looping here until we finally have enough entries for 651 * (adds_in_progress + regions_needed). 652 */ 653 while (resv->region_cache_count < 654 (resv->adds_in_progress + regions_needed)) { 655 to_allocate = resv->adds_in_progress + regions_needed - 656 resv->region_cache_count; 657 658 /* At this point, we should have enough entries in the cache 659 * for all the existing adds_in_progress. We should only be 660 * needing to allocate for regions_needed. 661 */ 662 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress); 663 664 spin_unlock(&resv->lock); 665 for (i = 0; i < to_allocate; i++) { 666 trg = kmalloc(sizeof(*trg), GFP_KERNEL); 667 if (!trg) 668 goto out_of_memory; 669 list_add(&trg->link, &allocated_regions); 670 } 671 672 spin_lock(&resv->lock); 673 674 list_splice(&allocated_regions, &resv->region_cache); 675 resv->region_cache_count += to_allocate; 676 } 677 678 return 0; 679 680 out_of_memory: 681 list_for_each_entry_safe(rg, trg, &allocated_regions, link) { 682 list_del(&rg->link); 683 kfree(rg); 684 } 685 return -ENOMEM; 686 } 687 688 /* 689 * Add the huge page range represented by [f, t) to the reserve 690 * map. Regions will be taken from the cache to fill in this range. 691 * Sufficient regions should exist in the cache due to the previous 692 * call to region_chg with the same range, but in some cases the cache will not 693 * have sufficient entries due to races with other code doing region_add or 694 * region_del. The extra needed entries will be allocated. 695 * 696 * regions_needed is the out value provided by a previous call to region_chg. 697 * 698 * Return the number of new huge pages added to the map. This number is greater 699 * than or equal to zero. If file_region entries needed to be allocated for 700 * this operation and we were not able to allocate, it returns -ENOMEM. 701 * region_add of regions of length 1 never allocate file_regions and cannot 702 * fail; region_chg will always allocate at least 1 entry and a region_add for 703 * 1 page will only require at most 1 entry. 704 */ 705 static long region_add(struct resv_map *resv, long f, long t, 706 long in_regions_needed, struct hstate *h, 707 struct hugetlb_cgroup *h_cg) 708 { 709 long add = 0, actual_regions_needed = 0; 710 711 spin_lock(&resv->lock); 712 retry: 713 714 /* Count how many regions are actually needed to execute this add. */ 715 add_reservation_in_range(resv, f, t, NULL, NULL, 716 &actual_regions_needed); 717 718 /* 719 * Check for sufficient descriptors in the cache to accommodate 720 * this add operation. Note that actual_regions_needed may be greater 721 * than in_regions_needed, as the resv_map may have been modified since 722 * the region_chg call. In this case, we need to make sure that we 723 * allocate extra entries, such that we have enough for all the 724 * existing adds_in_progress, plus the excess needed for this 725 * operation. 726 */ 727 if (actual_regions_needed > in_regions_needed && 728 resv->region_cache_count < 729 resv->adds_in_progress + 730 (actual_regions_needed - in_regions_needed)) { 731 /* region_add operation of range 1 should never need to 732 * allocate file_region entries. 733 */ 734 VM_BUG_ON(t - f <= 1); 735 736 if (allocate_file_region_entries( 737 resv, actual_regions_needed - in_regions_needed)) { 738 return -ENOMEM; 739 } 740 741 goto retry; 742 } 743 744 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL); 745 746 resv->adds_in_progress -= in_regions_needed; 747 748 spin_unlock(&resv->lock); 749 return add; 750 } 751 752 /* 753 * Examine the existing reserve map and determine how many 754 * huge pages in the specified range [f, t) are NOT currently 755 * represented. This routine is called before a subsequent 756 * call to region_add that will actually modify the reserve 757 * map to add the specified range [f, t). region_chg does 758 * not change the number of huge pages represented by the 759 * map. A number of new file_region structures is added to the cache as a 760 * placeholder, for the subsequent region_add call to use. At least 1 761 * file_region structure is added. 762 * 763 * out_regions_needed is the number of regions added to the 764 * resv->adds_in_progress. This value needs to be provided to a follow up call 765 * to region_add or region_abort for proper accounting. 766 * 767 * Returns the number of huge pages that need to be added to the existing 768 * reservation map for the range [f, t). This number is greater or equal to 769 * zero. -ENOMEM is returned if a new file_region structure or cache entry 770 * is needed and can not be allocated. 771 */ 772 static long region_chg(struct resv_map *resv, long f, long t, 773 long *out_regions_needed) 774 { 775 long chg = 0; 776 777 spin_lock(&resv->lock); 778 779 /* Count how many hugepages in this range are NOT represented. */ 780 chg = add_reservation_in_range(resv, f, t, NULL, NULL, 781 out_regions_needed); 782 783 if (*out_regions_needed == 0) 784 *out_regions_needed = 1; 785 786 if (allocate_file_region_entries(resv, *out_regions_needed)) 787 return -ENOMEM; 788 789 resv->adds_in_progress += *out_regions_needed; 790 791 spin_unlock(&resv->lock); 792 return chg; 793 } 794 795 /* 796 * Abort the in progress add operation. The adds_in_progress field 797 * of the resv_map keeps track of the operations in progress between 798 * calls to region_chg and region_add. Operations are sometimes 799 * aborted after the call to region_chg. In such cases, region_abort 800 * is called to decrement the adds_in_progress counter. regions_needed 801 * is the value returned by the region_chg call, it is used to decrement 802 * the adds_in_progress counter. 803 * 804 * NOTE: The range arguments [f, t) are not needed or used in this 805 * routine. They are kept to make reading the calling code easier as 806 * arguments will match the associated region_chg call. 807 */ 808 static void region_abort(struct resv_map *resv, long f, long t, 809 long regions_needed) 810 { 811 spin_lock(&resv->lock); 812 VM_BUG_ON(!resv->region_cache_count); 813 resv->adds_in_progress -= regions_needed; 814 spin_unlock(&resv->lock); 815 } 816 817 /* 818 * Delete the specified range [f, t) from the reserve map. If the 819 * t parameter is LONG_MAX, this indicates that ALL regions after f 820 * should be deleted. Locate the regions which intersect [f, t) 821 * and either trim, delete or split the existing regions. 822 * 823 * Returns the number of huge pages deleted from the reserve map. 824 * In the normal case, the return value is zero or more. In the 825 * case where a region must be split, a new region descriptor must 826 * be allocated. If the allocation fails, -ENOMEM will be returned. 827 * NOTE: If the parameter t == LONG_MAX, then we will never split 828 * a region and possibly return -ENOMEM. Callers specifying 829 * t == LONG_MAX do not need to check for -ENOMEM error. 830 */ 831 static long region_del(struct resv_map *resv, long f, long t) 832 { 833 struct list_head *head = &resv->regions; 834 struct file_region *rg, *trg; 835 struct file_region *nrg = NULL; 836 long del = 0; 837 838 retry: 839 spin_lock(&resv->lock); 840 list_for_each_entry_safe(rg, trg, head, link) { 841 /* 842 * Skip regions before the range to be deleted. file_region 843 * ranges are normally of the form [from, to). However, there 844 * may be a "placeholder" entry in the map which is of the form 845 * (from, to) with from == to. Check for placeholder entries 846 * at the beginning of the range to be deleted. 847 */ 848 if (rg->to <= f && (rg->to != rg->from || rg->to != f)) 849 continue; 850 851 if (rg->from >= t) 852 break; 853 854 if (f > rg->from && t < rg->to) { /* Must split region */ 855 /* 856 * Check for an entry in the cache before dropping 857 * lock and attempting allocation. 858 */ 859 if (!nrg && 860 resv->region_cache_count > resv->adds_in_progress) { 861 nrg = list_first_entry(&resv->region_cache, 862 struct file_region, 863 link); 864 list_del(&nrg->link); 865 resv->region_cache_count--; 866 } 867 868 if (!nrg) { 869 spin_unlock(&resv->lock); 870 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 871 if (!nrg) 872 return -ENOMEM; 873 goto retry; 874 } 875 876 del += t - f; 877 hugetlb_cgroup_uncharge_file_region( 878 resv, rg, t - f, false); 879 880 /* New entry for end of split region */ 881 nrg->from = t; 882 nrg->to = rg->to; 883 884 copy_hugetlb_cgroup_uncharge_info(nrg, rg); 885 886 INIT_LIST_HEAD(&nrg->link); 887 888 /* Original entry is trimmed */ 889 rg->to = f; 890 891 list_add(&nrg->link, &rg->link); 892 nrg = NULL; 893 break; 894 } 895 896 if (f <= rg->from && t >= rg->to) { /* Remove entire region */ 897 del += rg->to - rg->from; 898 hugetlb_cgroup_uncharge_file_region(resv, rg, 899 rg->to - rg->from, true); 900 list_del(&rg->link); 901 kfree(rg); 902 continue; 903 } 904 905 if (f <= rg->from) { /* Trim beginning of region */ 906 hugetlb_cgroup_uncharge_file_region(resv, rg, 907 t - rg->from, false); 908 909 del += t - rg->from; 910 rg->from = t; 911 } else { /* Trim end of region */ 912 hugetlb_cgroup_uncharge_file_region(resv, rg, 913 rg->to - f, false); 914 915 del += rg->to - f; 916 rg->to = f; 917 } 918 } 919 920 spin_unlock(&resv->lock); 921 kfree(nrg); 922 return del; 923 } 924 925 /* 926 * A rare out of memory error was encountered which prevented removal of 927 * the reserve map region for a page. The huge page itself was free'ed 928 * and removed from the page cache. This routine will adjust the subpool 929 * usage count, and the global reserve count if needed. By incrementing 930 * these counts, the reserve map entry which could not be deleted will 931 * appear as a "reserved" entry instead of simply dangling with incorrect 932 * counts. 933 */ 934 void hugetlb_fix_reserve_counts(struct inode *inode) 935 { 936 struct hugepage_subpool *spool = subpool_inode(inode); 937 long rsv_adjust; 938 bool reserved = false; 939 940 rsv_adjust = hugepage_subpool_get_pages(spool, 1); 941 if (rsv_adjust > 0) { 942 struct hstate *h = hstate_inode(inode); 943 944 if (!hugetlb_acct_memory(h, 1)) 945 reserved = true; 946 } else if (!rsv_adjust) { 947 reserved = true; 948 } 949 950 if (!reserved) 951 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n"); 952 } 953 954 /* 955 * Count and return the number of huge pages in the reserve map 956 * that intersect with the range [f, t). 957 */ 958 static long region_count(struct resv_map *resv, long f, long t) 959 { 960 struct list_head *head = &resv->regions; 961 struct file_region *rg; 962 long chg = 0; 963 964 spin_lock(&resv->lock); 965 /* Locate each segment we overlap with, and count that overlap. */ 966 list_for_each_entry(rg, head, link) { 967 long seg_from; 968 long seg_to; 969 970 if (rg->to <= f) 971 continue; 972 if (rg->from >= t) 973 break; 974 975 seg_from = max(rg->from, f); 976 seg_to = min(rg->to, t); 977 978 chg += seg_to - seg_from; 979 } 980 spin_unlock(&resv->lock); 981 982 return chg; 983 } 984 985 /* 986 * Convert the address within this vma to the page offset within 987 * the mapping, huge page units here. 988 */ 989 static pgoff_t vma_hugecache_offset(struct hstate *h, 990 struct vm_area_struct *vma, unsigned long address) 991 { 992 return ((address - vma->vm_start) >> huge_page_shift(h)) + 993 (vma->vm_pgoff >> huge_page_order(h)); 994 } 995 996 /** 997 * vma_kernel_pagesize - Page size granularity for this VMA. 998 * @vma: The user mapping. 999 * 1000 * Folios in this VMA will be aligned to, and at least the size of the 1001 * number of bytes returned by this function. 1002 * 1003 * Return: The default size of the folios allocated when backing a VMA. 1004 */ 1005 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) 1006 { 1007 if (vma->vm_ops && vma->vm_ops->pagesize) 1008 return vma->vm_ops->pagesize(vma); 1009 return PAGE_SIZE; 1010 } 1011 EXPORT_SYMBOL_GPL(vma_kernel_pagesize); 1012 1013 /* 1014 * Return the page size being used by the MMU to back a VMA. In the majority 1015 * of cases, the page size used by the kernel matches the MMU size. On 1016 * architectures where it differs, an architecture-specific 'strong' 1017 * version of this symbol is required. 1018 */ 1019 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 1020 { 1021 return vma_kernel_pagesize(vma); 1022 } 1023 1024 /* 1025 * Flags for MAP_PRIVATE reservations. These are stored in the bottom 1026 * bits of the reservation map pointer, which are always clear due to 1027 * alignment. 1028 */ 1029 #define HPAGE_RESV_OWNER (1UL << 0) 1030 #define HPAGE_RESV_UNMAPPED (1UL << 1) 1031 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) 1032 1033 /* 1034 * These helpers are used to track how many pages are reserved for 1035 * faults in a MAP_PRIVATE mapping. Only the process that called mmap() 1036 * is guaranteed to have their future faults succeed. 1037 * 1038 * With the exception of hugetlb_dup_vma_private() which is called at fork(), 1039 * the reserve counters are updated with the hugetlb_lock held. It is safe 1040 * to reset the VMA at fork() time as it is not in use yet and there is no 1041 * chance of the global counters getting corrupted as a result of the values. 1042 * 1043 * The private mapping reservation is represented in a subtly different 1044 * manner to a shared mapping. A shared mapping has a region map associated 1045 * with the underlying file, this region map represents the backing file 1046 * pages which have ever had a reservation assigned which this persists even 1047 * after the page is instantiated. A private mapping has a region map 1048 * associated with the original mmap which is attached to all VMAs which 1049 * reference it, this region map represents those offsets which have consumed 1050 * reservation ie. where pages have been instantiated. 1051 */ 1052 static unsigned long get_vma_private_data(struct vm_area_struct *vma) 1053 { 1054 return (unsigned long)vma->vm_private_data; 1055 } 1056 1057 static void set_vma_private_data(struct vm_area_struct *vma, 1058 unsigned long value) 1059 { 1060 vma->vm_private_data = (void *)value; 1061 } 1062 1063 static void 1064 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map, 1065 struct hugetlb_cgroup *h_cg, 1066 struct hstate *h) 1067 { 1068 #ifdef CONFIG_CGROUP_HUGETLB 1069 if (!h_cg || !h) { 1070 resv_map->reservation_counter = NULL; 1071 resv_map->pages_per_hpage = 0; 1072 resv_map->css = NULL; 1073 } else { 1074 resv_map->reservation_counter = 1075 &h_cg->rsvd_hugepage[hstate_index(h)]; 1076 resv_map->pages_per_hpage = pages_per_huge_page(h); 1077 resv_map->css = &h_cg->css; 1078 } 1079 #endif 1080 } 1081 1082 struct resv_map *resv_map_alloc(void) 1083 { 1084 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); 1085 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL); 1086 1087 if (!resv_map || !rg) { 1088 kfree(resv_map); 1089 kfree(rg); 1090 return NULL; 1091 } 1092 1093 kref_init(&resv_map->refs); 1094 spin_lock_init(&resv_map->lock); 1095 INIT_LIST_HEAD(&resv_map->regions); 1096 init_rwsem(&resv_map->rw_sema); 1097 1098 resv_map->adds_in_progress = 0; 1099 /* 1100 * Initialize these to 0. On shared mappings, 0's here indicate these 1101 * fields don't do cgroup accounting. On private mappings, these will be 1102 * re-initialized to the proper values, to indicate that hugetlb cgroup 1103 * reservations are to be un-charged from here. 1104 */ 1105 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL); 1106 1107 INIT_LIST_HEAD(&resv_map->region_cache); 1108 list_add(&rg->link, &resv_map->region_cache); 1109 resv_map->region_cache_count = 1; 1110 1111 return resv_map; 1112 } 1113 1114 void resv_map_release(struct kref *ref) 1115 { 1116 struct resv_map *resv_map = container_of(ref, struct resv_map, refs); 1117 struct list_head *head = &resv_map->region_cache; 1118 struct file_region *rg, *trg; 1119 1120 /* Clear out any active regions before we release the map. */ 1121 region_del(resv_map, 0, LONG_MAX); 1122 1123 /* ... and any entries left in the cache */ 1124 list_for_each_entry_safe(rg, trg, head, link) { 1125 list_del(&rg->link); 1126 kfree(rg); 1127 } 1128 1129 VM_BUG_ON(resv_map->adds_in_progress); 1130 1131 kfree(resv_map); 1132 } 1133 1134 static inline struct resv_map *inode_resv_map(struct inode *inode) 1135 { 1136 /* 1137 * At inode evict time, i_mapping may not point to the original 1138 * address space within the inode. This original address space 1139 * contains the pointer to the resv_map. So, always use the 1140 * address space embedded within the inode. 1141 * The VERY common case is inode->mapping == &inode->i_data but, 1142 * this may not be true for device special inodes. 1143 */ 1144 return (struct resv_map *)(&inode->i_data)->private_data; 1145 } 1146 1147 static struct resv_map *vma_resv_map(struct vm_area_struct *vma) 1148 { 1149 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1150 if (vma->vm_flags & VM_MAYSHARE) { 1151 struct address_space *mapping = vma->vm_file->f_mapping; 1152 struct inode *inode = mapping->host; 1153 1154 return inode_resv_map(inode); 1155 1156 } else { 1157 return (struct resv_map *)(get_vma_private_data(vma) & 1158 ~HPAGE_RESV_MASK); 1159 } 1160 } 1161 1162 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) 1163 { 1164 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1165 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 1166 1167 set_vma_private_data(vma, (unsigned long)map); 1168 } 1169 1170 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) 1171 { 1172 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1173 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 1174 1175 set_vma_private_data(vma, get_vma_private_data(vma) | flags); 1176 } 1177 1178 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) 1179 { 1180 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1181 1182 return (get_vma_private_data(vma) & flag) != 0; 1183 } 1184 1185 void hugetlb_dup_vma_private(struct vm_area_struct *vma) 1186 { 1187 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1188 /* 1189 * Clear vm_private_data 1190 * - For shared mappings this is a per-vma semaphore that may be 1191 * allocated in a subsequent call to hugetlb_vm_op_open. 1192 * Before clearing, make sure pointer is not associated with vma 1193 * as this will leak the structure. This is the case when called 1194 * via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already 1195 * been called to allocate a new structure. 1196 * - For MAP_PRIVATE mappings, this is the reserve map which does 1197 * not apply to children. Faults generated by the children are 1198 * not guaranteed to succeed, even if read-only. 1199 */ 1200 if (vma->vm_flags & VM_MAYSHARE) { 1201 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 1202 1203 if (vma_lock && vma_lock->vma != vma) 1204 vma->vm_private_data = NULL; 1205 } else 1206 vma->vm_private_data = NULL; 1207 } 1208 1209 /* 1210 * Reset and decrement one ref on hugepage private reservation. 1211 * Called with mm->mmap_lock writer semaphore held. 1212 * This function should be only used by move_vma() and operate on 1213 * same sized vma. It should never come here with last ref on the 1214 * reservation. 1215 */ 1216 void clear_vma_resv_huge_pages(struct vm_area_struct *vma) 1217 { 1218 /* 1219 * Clear the old hugetlb private page reservation. 1220 * It has already been transferred to new_vma. 1221 * 1222 * During a mremap() operation of a hugetlb vma we call move_vma() 1223 * which copies vma into new_vma and unmaps vma. After the copy 1224 * operation both new_vma and vma share a reference to the resv_map 1225 * struct, and at that point vma is about to be unmapped. We don't 1226 * want to return the reservation to the pool at unmap of vma because 1227 * the reservation still lives on in new_vma, so simply decrement the 1228 * ref here and remove the resv_map reference from this vma. 1229 */ 1230 struct resv_map *reservations = vma_resv_map(vma); 1231 1232 if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 1233 resv_map_put_hugetlb_cgroup_uncharge_info(reservations); 1234 kref_put(&reservations->refs, resv_map_release); 1235 } 1236 1237 hugetlb_dup_vma_private(vma); 1238 } 1239 1240 /* Returns true if the VMA has associated reserve pages */ 1241 static bool vma_has_reserves(struct vm_area_struct *vma, long chg) 1242 { 1243 if (vma->vm_flags & VM_NORESERVE) { 1244 /* 1245 * This address is already reserved by other process(chg == 0), 1246 * so, we should decrement reserved count. Without decrementing, 1247 * reserve count remains after releasing inode, because this 1248 * allocated page will go into page cache and is regarded as 1249 * coming from reserved pool in releasing step. Currently, we 1250 * don't have any other solution to deal with this situation 1251 * properly, so add work-around here. 1252 */ 1253 if (vma->vm_flags & VM_MAYSHARE && chg == 0) 1254 return true; 1255 else 1256 return false; 1257 } 1258 1259 /* Shared mappings always use reserves */ 1260 if (vma->vm_flags & VM_MAYSHARE) { 1261 /* 1262 * We know VM_NORESERVE is not set. Therefore, there SHOULD 1263 * be a region map for all pages. The only situation where 1264 * there is no region map is if a hole was punched via 1265 * fallocate. In this case, there really are no reserves to 1266 * use. This situation is indicated if chg != 0. 1267 */ 1268 if (chg) 1269 return false; 1270 else 1271 return true; 1272 } 1273 1274 /* 1275 * Only the process that called mmap() has reserves for 1276 * private mappings. 1277 */ 1278 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 1279 /* 1280 * Like the shared case above, a hole punch or truncate 1281 * could have been performed on the private mapping. 1282 * Examine the value of chg to determine if reserves 1283 * actually exist or were previously consumed. 1284 * Very Subtle - The value of chg comes from a previous 1285 * call to vma_needs_reserves(). The reserve map for 1286 * private mappings has different (opposite) semantics 1287 * than that of shared mappings. vma_needs_reserves() 1288 * has already taken this difference in semantics into 1289 * account. Therefore, the meaning of chg is the same 1290 * as in the shared case above. Code could easily be 1291 * combined, but keeping it separate draws attention to 1292 * subtle differences. 1293 */ 1294 if (chg) 1295 return false; 1296 else 1297 return true; 1298 } 1299 1300 return false; 1301 } 1302 1303 static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio) 1304 { 1305 int nid = folio_nid(folio); 1306 1307 lockdep_assert_held(&hugetlb_lock); 1308 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio); 1309 1310 list_move(&folio->lru, &h->hugepage_freelists[nid]); 1311 h->free_huge_pages++; 1312 h->free_huge_pages_node[nid]++; 1313 folio_set_hugetlb_freed(folio); 1314 } 1315 1316 static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h, 1317 int nid) 1318 { 1319 struct folio *folio; 1320 bool pin = !!(current->flags & PF_MEMALLOC_PIN); 1321 1322 lockdep_assert_held(&hugetlb_lock); 1323 list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) { 1324 if (pin && !folio_is_longterm_pinnable(folio)) 1325 continue; 1326 1327 if (folio_test_hwpoison(folio)) 1328 continue; 1329 1330 list_move(&folio->lru, &h->hugepage_activelist); 1331 folio_ref_unfreeze(folio, 1); 1332 folio_clear_hugetlb_freed(folio); 1333 h->free_huge_pages--; 1334 h->free_huge_pages_node[nid]--; 1335 return folio; 1336 } 1337 1338 return NULL; 1339 } 1340 1341 static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask, 1342 int nid, nodemask_t *nmask) 1343 { 1344 unsigned int cpuset_mems_cookie; 1345 struct zonelist *zonelist; 1346 struct zone *zone; 1347 struct zoneref *z; 1348 int node = NUMA_NO_NODE; 1349 1350 zonelist = node_zonelist(nid, gfp_mask); 1351 1352 retry_cpuset: 1353 cpuset_mems_cookie = read_mems_allowed_begin(); 1354 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) { 1355 struct folio *folio; 1356 1357 if (!cpuset_zone_allowed(zone, gfp_mask)) 1358 continue; 1359 /* 1360 * no need to ask again on the same node. Pool is node rather than 1361 * zone aware 1362 */ 1363 if (zone_to_nid(zone) == node) 1364 continue; 1365 node = zone_to_nid(zone); 1366 1367 folio = dequeue_hugetlb_folio_node_exact(h, node); 1368 if (folio) 1369 return folio; 1370 } 1371 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie))) 1372 goto retry_cpuset; 1373 1374 return NULL; 1375 } 1376 1377 static unsigned long available_huge_pages(struct hstate *h) 1378 { 1379 return h->free_huge_pages - h->resv_huge_pages; 1380 } 1381 1382 static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h, 1383 struct vm_area_struct *vma, 1384 unsigned long address, int avoid_reserve, 1385 long chg) 1386 { 1387 struct folio *folio = NULL; 1388 struct mempolicy *mpol; 1389 gfp_t gfp_mask; 1390 nodemask_t *nodemask; 1391 int nid; 1392 1393 /* 1394 * A child process with MAP_PRIVATE mappings created by their parent 1395 * have no page reserves. This check ensures that reservations are 1396 * not "stolen". The child may still get SIGKILLed 1397 */ 1398 if (!vma_has_reserves(vma, chg) && !available_huge_pages(h)) 1399 goto err; 1400 1401 /* If reserves cannot be used, ensure enough pages are in the pool */ 1402 if (avoid_reserve && !available_huge_pages(h)) 1403 goto err; 1404 1405 gfp_mask = htlb_alloc_mask(h); 1406 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 1407 1408 if (mpol_is_preferred_many(mpol)) { 1409 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, 1410 nid, nodemask); 1411 1412 /* Fallback to all nodes if page==NULL */ 1413 nodemask = NULL; 1414 } 1415 1416 if (!folio) 1417 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, 1418 nid, nodemask); 1419 1420 if (folio && !avoid_reserve && vma_has_reserves(vma, chg)) { 1421 folio_set_hugetlb_restore_reserve(folio); 1422 h->resv_huge_pages--; 1423 } 1424 1425 mpol_cond_put(mpol); 1426 return folio; 1427 1428 err: 1429 return NULL; 1430 } 1431 1432 /* 1433 * common helper functions for hstate_next_node_to_{alloc|free}. 1434 * We may have allocated or freed a huge page based on a different 1435 * nodes_allowed previously, so h->next_node_to_{alloc|free} might 1436 * be outside of *nodes_allowed. Ensure that we use an allowed 1437 * node for alloc or free. 1438 */ 1439 static int next_node_allowed(int nid, nodemask_t *nodes_allowed) 1440 { 1441 nid = next_node_in(nid, *nodes_allowed); 1442 VM_BUG_ON(nid >= MAX_NUMNODES); 1443 1444 return nid; 1445 } 1446 1447 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed) 1448 { 1449 if (!node_isset(nid, *nodes_allowed)) 1450 nid = next_node_allowed(nid, nodes_allowed); 1451 return nid; 1452 } 1453 1454 /* 1455 * returns the previously saved node ["this node"] from which to 1456 * allocate a persistent huge page for the pool and advance the 1457 * next node from which to allocate, handling wrap at end of node 1458 * mask. 1459 */ 1460 static int hstate_next_node_to_alloc(struct hstate *h, 1461 nodemask_t *nodes_allowed) 1462 { 1463 int nid; 1464 1465 VM_BUG_ON(!nodes_allowed); 1466 1467 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed); 1468 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed); 1469 1470 return nid; 1471 } 1472 1473 /* 1474 * helper for remove_pool_hugetlb_folio() - return the previously saved 1475 * node ["this node"] from which to free a huge page. Advance the 1476 * next node id whether or not we find a free huge page to free so 1477 * that the next attempt to free addresses the next node. 1478 */ 1479 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed) 1480 { 1481 int nid; 1482 1483 VM_BUG_ON(!nodes_allowed); 1484 1485 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed); 1486 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed); 1487 1488 return nid; 1489 } 1490 1491 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \ 1492 for (nr_nodes = nodes_weight(*mask); \ 1493 nr_nodes > 0 && \ 1494 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \ 1495 nr_nodes--) 1496 1497 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \ 1498 for (nr_nodes = nodes_weight(*mask); \ 1499 nr_nodes > 0 && \ 1500 ((node = hstate_next_node_to_free(hs, mask)) || 1); \ 1501 nr_nodes--) 1502 1503 /* used to demote non-gigantic_huge pages as well */ 1504 static void __destroy_compound_gigantic_folio(struct folio *folio, 1505 unsigned int order, bool demote) 1506 { 1507 int i; 1508 int nr_pages = 1 << order; 1509 struct page *p; 1510 1511 atomic_set(&folio->_entire_mapcount, 0); 1512 atomic_set(&folio->_nr_pages_mapped, 0); 1513 atomic_set(&folio->_pincount, 0); 1514 1515 for (i = 1; i < nr_pages; i++) { 1516 p = folio_page(folio, i); 1517 p->flags &= ~PAGE_FLAGS_CHECK_AT_FREE; 1518 p->mapping = NULL; 1519 clear_compound_head(p); 1520 if (!demote) 1521 set_page_refcounted(p); 1522 } 1523 1524 __folio_clear_head(folio); 1525 } 1526 1527 static void destroy_compound_hugetlb_folio_for_demote(struct folio *folio, 1528 unsigned int order) 1529 { 1530 __destroy_compound_gigantic_folio(folio, order, true); 1531 } 1532 1533 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE 1534 static void destroy_compound_gigantic_folio(struct folio *folio, 1535 unsigned int order) 1536 { 1537 __destroy_compound_gigantic_folio(folio, order, false); 1538 } 1539 1540 static void free_gigantic_folio(struct folio *folio, unsigned int order) 1541 { 1542 /* 1543 * If the page isn't allocated using the cma allocator, 1544 * cma_release() returns false. 1545 */ 1546 #ifdef CONFIG_CMA 1547 int nid = folio_nid(folio); 1548 1549 if (cma_release(hugetlb_cma[nid], &folio->page, 1 << order)) 1550 return; 1551 #endif 1552 1553 free_contig_range(folio_pfn(folio), 1 << order); 1554 } 1555 1556 #ifdef CONFIG_CONTIG_ALLOC 1557 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask, 1558 int nid, nodemask_t *nodemask) 1559 { 1560 struct page *page; 1561 unsigned long nr_pages = pages_per_huge_page(h); 1562 if (nid == NUMA_NO_NODE) 1563 nid = numa_mem_id(); 1564 1565 #ifdef CONFIG_CMA 1566 { 1567 int node; 1568 1569 if (hugetlb_cma[nid]) { 1570 page = cma_alloc(hugetlb_cma[nid], nr_pages, 1571 huge_page_order(h), true); 1572 if (page) 1573 return page_folio(page); 1574 } 1575 1576 if (!(gfp_mask & __GFP_THISNODE)) { 1577 for_each_node_mask(node, *nodemask) { 1578 if (node == nid || !hugetlb_cma[node]) 1579 continue; 1580 1581 page = cma_alloc(hugetlb_cma[node], nr_pages, 1582 huge_page_order(h), true); 1583 if (page) 1584 return page_folio(page); 1585 } 1586 } 1587 } 1588 #endif 1589 1590 page = alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask); 1591 return page ? page_folio(page) : NULL; 1592 } 1593 1594 #else /* !CONFIG_CONTIG_ALLOC */ 1595 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask, 1596 int nid, nodemask_t *nodemask) 1597 { 1598 return NULL; 1599 } 1600 #endif /* CONFIG_CONTIG_ALLOC */ 1601 1602 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */ 1603 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask, 1604 int nid, nodemask_t *nodemask) 1605 { 1606 return NULL; 1607 } 1608 static inline void free_gigantic_folio(struct folio *folio, 1609 unsigned int order) { } 1610 static inline void destroy_compound_gigantic_folio(struct folio *folio, 1611 unsigned int order) { } 1612 #endif 1613 1614 static inline void __clear_hugetlb_destructor(struct hstate *h, 1615 struct folio *folio) 1616 { 1617 lockdep_assert_held(&hugetlb_lock); 1618 1619 folio_clear_hugetlb(folio); 1620 } 1621 1622 /* 1623 * Remove hugetlb folio from lists. 1624 * If vmemmap exists for the folio, update dtor so that the folio appears 1625 * as just a compound page. Otherwise, wait until after allocating vmemmap 1626 * to update dtor. 1627 * 1628 * A reference is held on the folio, except in the case of demote. 1629 * 1630 * Must be called with hugetlb lock held. 1631 */ 1632 static void __remove_hugetlb_folio(struct hstate *h, struct folio *folio, 1633 bool adjust_surplus, 1634 bool demote) 1635 { 1636 int nid = folio_nid(folio); 1637 1638 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio); 1639 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio); 1640 1641 lockdep_assert_held(&hugetlb_lock); 1642 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 1643 return; 1644 1645 list_del(&folio->lru); 1646 1647 if (folio_test_hugetlb_freed(folio)) { 1648 h->free_huge_pages--; 1649 h->free_huge_pages_node[nid]--; 1650 } 1651 if (adjust_surplus) { 1652 h->surplus_huge_pages--; 1653 h->surplus_huge_pages_node[nid]--; 1654 } 1655 1656 /* 1657 * We can only clear the hugetlb destructor after allocating vmemmap 1658 * pages. Otherwise, someone (memory error handling) may try to write 1659 * to tail struct pages. 1660 */ 1661 if (!folio_test_hugetlb_vmemmap_optimized(folio)) 1662 __clear_hugetlb_destructor(h, folio); 1663 1664 /* 1665 * In the case of demote we do not ref count the page as it will soon 1666 * be turned into a page of smaller size. 1667 */ 1668 if (!demote) 1669 folio_ref_unfreeze(folio, 1); 1670 1671 h->nr_huge_pages--; 1672 h->nr_huge_pages_node[nid]--; 1673 } 1674 1675 static void remove_hugetlb_folio(struct hstate *h, struct folio *folio, 1676 bool adjust_surplus) 1677 { 1678 __remove_hugetlb_folio(h, folio, adjust_surplus, false); 1679 } 1680 1681 static void remove_hugetlb_folio_for_demote(struct hstate *h, struct folio *folio, 1682 bool adjust_surplus) 1683 { 1684 __remove_hugetlb_folio(h, folio, adjust_surplus, true); 1685 } 1686 1687 static void add_hugetlb_folio(struct hstate *h, struct folio *folio, 1688 bool adjust_surplus) 1689 { 1690 int zeroed; 1691 int nid = folio_nid(folio); 1692 1693 VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio); 1694 1695 lockdep_assert_held(&hugetlb_lock); 1696 1697 INIT_LIST_HEAD(&folio->lru); 1698 h->nr_huge_pages++; 1699 h->nr_huge_pages_node[nid]++; 1700 1701 if (adjust_surplus) { 1702 h->surplus_huge_pages++; 1703 h->surplus_huge_pages_node[nid]++; 1704 } 1705 1706 folio_set_hugetlb(folio); 1707 folio_change_private(folio, NULL); 1708 /* 1709 * We have to set hugetlb_vmemmap_optimized again as above 1710 * folio_change_private(folio, NULL) cleared it. 1711 */ 1712 folio_set_hugetlb_vmemmap_optimized(folio); 1713 1714 /* 1715 * This folio is about to be managed by the hugetlb allocator and 1716 * should have no users. Drop our reference, and check for others 1717 * just in case. 1718 */ 1719 zeroed = folio_put_testzero(folio); 1720 if (unlikely(!zeroed)) 1721 /* 1722 * It is VERY unlikely soneone else has taken a ref 1723 * on the folio. In this case, we simply return as 1724 * free_huge_folio() will be called when this other ref 1725 * is dropped. 1726 */ 1727 return; 1728 1729 arch_clear_hugepage_flags(&folio->page); 1730 enqueue_hugetlb_folio(h, folio); 1731 } 1732 1733 static void __update_and_free_hugetlb_folio(struct hstate *h, 1734 struct folio *folio) 1735 { 1736 bool clear_dtor = folio_test_hugetlb_vmemmap_optimized(folio); 1737 1738 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 1739 return; 1740 1741 /* 1742 * If we don't know which subpages are hwpoisoned, we can't free 1743 * the hugepage, so it's leaked intentionally. 1744 */ 1745 if (folio_test_hugetlb_raw_hwp_unreliable(folio)) 1746 return; 1747 1748 /* 1749 * If folio is not vmemmap optimized (!clear_dtor), then the folio 1750 * is no longer identified as a hugetlb page. hugetlb_vmemmap_restore_folio 1751 * can only be passed hugetlb pages and will BUG otherwise. 1752 */ 1753 if (clear_dtor && hugetlb_vmemmap_restore_folio(h, folio)) { 1754 spin_lock_irq(&hugetlb_lock); 1755 /* 1756 * If we cannot allocate vmemmap pages, just refuse to free the 1757 * page and put the page back on the hugetlb free list and treat 1758 * as a surplus page. 1759 */ 1760 add_hugetlb_folio(h, folio, true); 1761 spin_unlock_irq(&hugetlb_lock); 1762 return; 1763 } 1764 1765 /* 1766 * Move PageHWPoison flag from head page to the raw error pages, 1767 * which makes any healthy subpages reusable. 1768 */ 1769 if (unlikely(folio_test_hwpoison(folio))) 1770 folio_clear_hugetlb_hwpoison(folio); 1771 1772 /* 1773 * If vmemmap pages were allocated above, then we need to clear the 1774 * hugetlb destructor under the hugetlb lock. 1775 */ 1776 if (clear_dtor) { 1777 spin_lock_irq(&hugetlb_lock); 1778 __clear_hugetlb_destructor(h, folio); 1779 spin_unlock_irq(&hugetlb_lock); 1780 } 1781 1782 /* 1783 * Non-gigantic pages demoted from CMA allocated gigantic pages 1784 * need to be given back to CMA in free_gigantic_folio. 1785 */ 1786 if (hstate_is_gigantic(h) || 1787 hugetlb_cma_folio(folio, huge_page_order(h))) { 1788 destroy_compound_gigantic_folio(folio, huge_page_order(h)); 1789 free_gigantic_folio(folio, huge_page_order(h)); 1790 } else { 1791 __free_pages(&folio->page, huge_page_order(h)); 1792 } 1793 } 1794 1795 /* 1796 * As update_and_free_hugetlb_folio() can be called under any context, so we cannot 1797 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the 1798 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate 1799 * the vmemmap pages. 1800 * 1801 * free_hpage_workfn() locklessly retrieves the linked list of pages to be 1802 * freed and frees them one-by-one. As the page->mapping pointer is going 1803 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node 1804 * structure of a lockless linked list of huge pages to be freed. 1805 */ 1806 static LLIST_HEAD(hpage_freelist); 1807 1808 static void free_hpage_workfn(struct work_struct *work) 1809 { 1810 struct llist_node *node; 1811 1812 node = llist_del_all(&hpage_freelist); 1813 1814 while (node) { 1815 struct folio *folio; 1816 struct hstate *h; 1817 1818 folio = container_of((struct address_space **)node, 1819 struct folio, mapping); 1820 node = node->next; 1821 folio->mapping = NULL; 1822 /* 1823 * The VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio) in 1824 * folio_hstate() is going to trigger because a previous call to 1825 * remove_hugetlb_folio() will clear the hugetlb bit, so do 1826 * not use folio_hstate() directly. 1827 */ 1828 h = size_to_hstate(folio_size(folio)); 1829 1830 __update_and_free_hugetlb_folio(h, folio); 1831 1832 cond_resched(); 1833 } 1834 } 1835 static DECLARE_WORK(free_hpage_work, free_hpage_workfn); 1836 1837 static inline void flush_free_hpage_work(struct hstate *h) 1838 { 1839 if (hugetlb_vmemmap_optimizable(h)) 1840 flush_work(&free_hpage_work); 1841 } 1842 1843 static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio, 1844 bool atomic) 1845 { 1846 if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) { 1847 __update_and_free_hugetlb_folio(h, folio); 1848 return; 1849 } 1850 1851 /* 1852 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages. 1853 * 1854 * Only call schedule_work() if hpage_freelist is previously 1855 * empty. Otherwise, schedule_work() had been called but the workfn 1856 * hasn't retrieved the list yet. 1857 */ 1858 if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist)) 1859 schedule_work(&free_hpage_work); 1860 } 1861 1862 static void bulk_vmemmap_restore_error(struct hstate *h, 1863 struct list_head *folio_list, 1864 struct list_head *non_hvo_folios) 1865 { 1866 struct folio *folio, *t_folio; 1867 1868 if (!list_empty(non_hvo_folios)) { 1869 /* 1870 * Free any restored hugetlb pages so that restore of the 1871 * entire list can be retried. 1872 * The idea is that in the common case of ENOMEM errors freeing 1873 * hugetlb pages with vmemmap we will free up memory so that we 1874 * can allocate vmemmap for more hugetlb pages. 1875 */ 1876 list_for_each_entry_safe(folio, t_folio, non_hvo_folios, lru) { 1877 list_del(&folio->lru); 1878 spin_lock_irq(&hugetlb_lock); 1879 __clear_hugetlb_destructor(h, folio); 1880 spin_unlock_irq(&hugetlb_lock); 1881 update_and_free_hugetlb_folio(h, folio, false); 1882 cond_resched(); 1883 } 1884 } else { 1885 /* 1886 * In the case where there are no folios which can be 1887 * immediately freed, we loop through the list trying to restore 1888 * vmemmap individually in the hope that someone elsewhere may 1889 * have done something to cause success (such as freeing some 1890 * memory). If unable to restore a hugetlb page, the hugetlb 1891 * page is made a surplus page and removed from the list. 1892 * If are able to restore vmemmap and free one hugetlb page, we 1893 * quit processing the list to retry the bulk operation. 1894 */ 1895 list_for_each_entry_safe(folio, t_folio, folio_list, lru) 1896 if (hugetlb_vmemmap_restore_folio(h, folio)) { 1897 list_del(&folio->lru); 1898 spin_lock_irq(&hugetlb_lock); 1899 add_hugetlb_folio(h, folio, true); 1900 spin_unlock_irq(&hugetlb_lock); 1901 } else { 1902 list_del(&folio->lru); 1903 spin_lock_irq(&hugetlb_lock); 1904 __clear_hugetlb_destructor(h, folio); 1905 spin_unlock_irq(&hugetlb_lock); 1906 update_and_free_hugetlb_folio(h, folio, false); 1907 cond_resched(); 1908 break; 1909 } 1910 } 1911 } 1912 1913 static void update_and_free_pages_bulk(struct hstate *h, 1914 struct list_head *folio_list) 1915 { 1916 long ret; 1917 struct folio *folio, *t_folio; 1918 LIST_HEAD(non_hvo_folios); 1919 1920 /* 1921 * First allocate required vmemmmap (if necessary) for all folios. 1922 * Carefully handle errors and free up any available hugetlb pages 1923 * in an effort to make forward progress. 1924 */ 1925 retry: 1926 ret = hugetlb_vmemmap_restore_folios(h, folio_list, &non_hvo_folios); 1927 if (ret < 0) { 1928 bulk_vmemmap_restore_error(h, folio_list, &non_hvo_folios); 1929 goto retry; 1930 } 1931 1932 /* 1933 * At this point, list should be empty, ret should be >= 0 and there 1934 * should only be pages on the non_hvo_folios list. 1935 * Do note that the non_hvo_folios list could be empty. 1936 * Without HVO enabled, ret will be 0 and there is no need to call 1937 * __clear_hugetlb_destructor as this was done previously. 1938 */ 1939 VM_WARN_ON(!list_empty(folio_list)); 1940 VM_WARN_ON(ret < 0); 1941 if (!list_empty(&non_hvo_folios) && ret) { 1942 spin_lock_irq(&hugetlb_lock); 1943 list_for_each_entry(folio, &non_hvo_folios, lru) 1944 __clear_hugetlb_destructor(h, folio); 1945 spin_unlock_irq(&hugetlb_lock); 1946 } 1947 1948 list_for_each_entry_safe(folio, t_folio, &non_hvo_folios, lru) { 1949 update_and_free_hugetlb_folio(h, folio, false); 1950 cond_resched(); 1951 } 1952 } 1953 1954 struct hstate *size_to_hstate(unsigned long size) 1955 { 1956 struct hstate *h; 1957 1958 for_each_hstate(h) { 1959 if (huge_page_size(h) == size) 1960 return h; 1961 } 1962 return NULL; 1963 } 1964 1965 void free_huge_folio(struct folio *folio) 1966 { 1967 /* 1968 * Can't pass hstate in here because it is called from the 1969 * compound page destructor. 1970 */ 1971 struct hstate *h = folio_hstate(folio); 1972 int nid = folio_nid(folio); 1973 struct hugepage_subpool *spool = hugetlb_folio_subpool(folio); 1974 bool restore_reserve; 1975 unsigned long flags; 1976 1977 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio); 1978 VM_BUG_ON_FOLIO(folio_mapcount(folio), folio); 1979 1980 hugetlb_set_folio_subpool(folio, NULL); 1981 if (folio_test_anon(folio)) 1982 __ClearPageAnonExclusive(&folio->page); 1983 folio->mapping = NULL; 1984 restore_reserve = folio_test_hugetlb_restore_reserve(folio); 1985 folio_clear_hugetlb_restore_reserve(folio); 1986 1987 /* 1988 * If HPageRestoreReserve was set on page, page allocation consumed a 1989 * reservation. If the page was associated with a subpool, there 1990 * would have been a page reserved in the subpool before allocation 1991 * via hugepage_subpool_get_pages(). Since we are 'restoring' the 1992 * reservation, do not call hugepage_subpool_put_pages() as this will 1993 * remove the reserved page from the subpool. 1994 */ 1995 if (!restore_reserve) { 1996 /* 1997 * A return code of zero implies that the subpool will be 1998 * under its minimum size if the reservation is not restored 1999 * after page is free. Therefore, force restore_reserve 2000 * operation. 2001 */ 2002 if (hugepage_subpool_put_pages(spool, 1) == 0) 2003 restore_reserve = true; 2004 } 2005 2006 spin_lock_irqsave(&hugetlb_lock, flags); 2007 folio_clear_hugetlb_migratable(folio); 2008 hugetlb_cgroup_uncharge_folio(hstate_index(h), 2009 pages_per_huge_page(h), folio); 2010 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h), 2011 pages_per_huge_page(h), folio); 2012 mem_cgroup_uncharge(folio); 2013 if (restore_reserve) 2014 h->resv_huge_pages++; 2015 2016 if (folio_test_hugetlb_temporary(folio)) { 2017 remove_hugetlb_folio(h, folio, false); 2018 spin_unlock_irqrestore(&hugetlb_lock, flags); 2019 update_and_free_hugetlb_folio(h, folio, true); 2020 } else if (h->surplus_huge_pages_node[nid]) { 2021 /* remove the page from active list */ 2022 remove_hugetlb_folio(h, folio, true); 2023 spin_unlock_irqrestore(&hugetlb_lock, flags); 2024 update_and_free_hugetlb_folio(h, folio, true); 2025 } else { 2026 arch_clear_hugepage_flags(&folio->page); 2027 enqueue_hugetlb_folio(h, folio); 2028 spin_unlock_irqrestore(&hugetlb_lock, flags); 2029 } 2030 } 2031 2032 /* 2033 * Must be called with the hugetlb lock held 2034 */ 2035 static void __prep_account_new_huge_page(struct hstate *h, int nid) 2036 { 2037 lockdep_assert_held(&hugetlb_lock); 2038 h->nr_huge_pages++; 2039 h->nr_huge_pages_node[nid]++; 2040 } 2041 2042 static void init_new_hugetlb_folio(struct hstate *h, struct folio *folio) 2043 { 2044 folio_set_hugetlb(folio); 2045 INIT_LIST_HEAD(&folio->lru); 2046 hugetlb_set_folio_subpool(folio, NULL); 2047 set_hugetlb_cgroup(folio, NULL); 2048 set_hugetlb_cgroup_rsvd(folio, NULL); 2049 } 2050 2051 static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio) 2052 { 2053 init_new_hugetlb_folio(h, folio); 2054 hugetlb_vmemmap_optimize_folio(h, folio); 2055 } 2056 2057 static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid) 2058 { 2059 __prep_new_hugetlb_folio(h, folio); 2060 spin_lock_irq(&hugetlb_lock); 2061 __prep_account_new_huge_page(h, nid); 2062 spin_unlock_irq(&hugetlb_lock); 2063 } 2064 2065 static bool __prep_compound_gigantic_folio(struct folio *folio, 2066 unsigned int order, bool demote) 2067 { 2068 int i, j; 2069 int nr_pages = 1 << order; 2070 struct page *p; 2071 2072 __folio_clear_reserved(folio); 2073 for (i = 0; i < nr_pages; i++) { 2074 p = folio_page(folio, i); 2075 2076 /* 2077 * For gigantic hugepages allocated through bootmem at 2078 * boot, it's safer to be consistent with the not-gigantic 2079 * hugepages and clear the PG_reserved bit from all tail pages 2080 * too. Otherwise drivers using get_user_pages() to access tail 2081 * pages may get the reference counting wrong if they see 2082 * PG_reserved set on a tail page (despite the head page not 2083 * having PG_reserved set). Enforcing this consistency between 2084 * head and tail pages allows drivers to optimize away a check 2085 * on the head page when they need know if put_page() is needed 2086 * after get_user_pages(). 2087 */ 2088 if (i != 0) /* head page cleared above */ 2089 __ClearPageReserved(p); 2090 /* 2091 * Subtle and very unlikely 2092 * 2093 * Gigantic 'page allocators' such as memblock or cma will 2094 * return a set of pages with each page ref counted. We need 2095 * to turn this set of pages into a compound page with tail 2096 * page ref counts set to zero. Code such as speculative page 2097 * cache adding could take a ref on a 'to be' tail page. 2098 * We need to respect any increased ref count, and only set 2099 * the ref count to zero if count is currently 1. If count 2100 * is not 1, we return an error. An error return indicates 2101 * the set of pages can not be converted to a gigantic page. 2102 * The caller who allocated the pages should then discard the 2103 * pages using the appropriate free interface. 2104 * 2105 * In the case of demote, the ref count will be zero. 2106 */ 2107 if (!demote) { 2108 if (!page_ref_freeze(p, 1)) { 2109 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n"); 2110 goto out_error; 2111 } 2112 } else { 2113 VM_BUG_ON_PAGE(page_count(p), p); 2114 } 2115 if (i != 0) 2116 set_compound_head(p, &folio->page); 2117 } 2118 __folio_set_head(folio); 2119 /* we rely on prep_new_hugetlb_folio to set the destructor */ 2120 folio_set_order(folio, order); 2121 atomic_set(&folio->_entire_mapcount, -1); 2122 atomic_set(&folio->_nr_pages_mapped, 0); 2123 atomic_set(&folio->_pincount, 0); 2124 return true; 2125 2126 out_error: 2127 /* undo page modifications made above */ 2128 for (j = 0; j < i; j++) { 2129 p = folio_page(folio, j); 2130 if (j != 0) 2131 clear_compound_head(p); 2132 set_page_refcounted(p); 2133 } 2134 /* need to clear PG_reserved on remaining tail pages */ 2135 for (; j < nr_pages; j++) { 2136 p = folio_page(folio, j); 2137 __ClearPageReserved(p); 2138 } 2139 return false; 2140 } 2141 2142 static bool prep_compound_gigantic_folio(struct folio *folio, 2143 unsigned int order) 2144 { 2145 return __prep_compound_gigantic_folio(folio, order, false); 2146 } 2147 2148 static bool prep_compound_gigantic_folio_for_demote(struct folio *folio, 2149 unsigned int order) 2150 { 2151 return __prep_compound_gigantic_folio(folio, order, true); 2152 } 2153 2154 /* 2155 * PageHuge() only returns true for hugetlbfs pages, but not for normal or 2156 * transparent huge pages. See the PageTransHuge() documentation for more 2157 * details. 2158 */ 2159 int PageHuge(struct page *page) 2160 { 2161 struct folio *folio; 2162 2163 if (!PageCompound(page)) 2164 return 0; 2165 folio = page_folio(page); 2166 return folio_test_hugetlb(folio); 2167 } 2168 EXPORT_SYMBOL_GPL(PageHuge); 2169 2170 /* 2171 * Find and lock address space (mapping) in write mode. 2172 * 2173 * Upon entry, the page is locked which means that page_mapping() is 2174 * stable. Due to locking order, we can only trylock_write. If we can 2175 * not get the lock, simply return NULL to caller. 2176 */ 2177 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage) 2178 { 2179 struct address_space *mapping = page_mapping(hpage); 2180 2181 if (!mapping) 2182 return mapping; 2183 2184 if (i_mmap_trylock_write(mapping)) 2185 return mapping; 2186 2187 return NULL; 2188 } 2189 2190 static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h, 2191 gfp_t gfp_mask, int nid, nodemask_t *nmask, 2192 nodemask_t *node_alloc_noretry) 2193 { 2194 int order = huge_page_order(h); 2195 struct page *page; 2196 bool alloc_try_hard = true; 2197 bool retry = true; 2198 2199 /* 2200 * By default we always try hard to allocate the page with 2201 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in 2202 * a loop (to adjust global huge page counts) and previous allocation 2203 * failed, do not continue to try hard on the same node. Use the 2204 * node_alloc_noretry bitmap to manage this state information. 2205 */ 2206 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry)) 2207 alloc_try_hard = false; 2208 gfp_mask |= __GFP_COMP|__GFP_NOWARN; 2209 if (alloc_try_hard) 2210 gfp_mask |= __GFP_RETRY_MAYFAIL; 2211 if (nid == NUMA_NO_NODE) 2212 nid = numa_mem_id(); 2213 retry: 2214 page = __alloc_pages(gfp_mask, order, nid, nmask); 2215 2216 /* Freeze head page */ 2217 if (page && !page_ref_freeze(page, 1)) { 2218 __free_pages(page, order); 2219 if (retry) { /* retry once */ 2220 retry = false; 2221 goto retry; 2222 } 2223 /* WOW! twice in a row. */ 2224 pr_warn("HugeTLB head page unexpected inflated ref count\n"); 2225 page = NULL; 2226 } 2227 2228 /* 2229 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this 2230 * indicates an overall state change. Clear bit so that we resume 2231 * normal 'try hard' allocations. 2232 */ 2233 if (node_alloc_noretry && page && !alloc_try_hard) 2234 node_clear(nid, *node_alloc_noretry); 2235 2236 /* 2237 * If we tried hard to get a page but failed, set bit so that 2238 * subsequent attempts will not try as hard until there is an 2239 * overall state change. 2240 */ 2241 if (node_alloc_noretry && !page && alloc_try_hard) 2242 node_set(nid, *node_alloc_noretry); 2243 2244 if (!page) { 2245 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 2246 return NULL; 2247 } 2248 2249 __count_vm_event(HTLB_BUDDY_PGALLOC); 2250 return page_folio(page); 2251 } 2252 2253 static struct folio *__alloc_fresh_hugetlb_folio(struct hstate *h, 2254 gfp_t gfp_mask, int nid, nodemask_t *nmask, 2255 nodemask_t *node_alloc_noretry) 2256 { 2257 struct folio *folio; 2258 bool retry = false; 2259 2260 retry: 2261 if (hstate_is_gigantic(h)) 2262 folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask); 2263 else 2264 folio = alloc_buddy_hugetlb_folio(h, gfp_mask, 2265 nid, nmask, node_alloc_noretry); 2266 if (!folio) 2267 return NULL; 2268 2269 if (hstate_is_gigantic(h)) { 2270 if (!prep_compound_gigantic_folio(folio, huge_page_order(h))) { 2271 /* 2272 * Rare failure to convert pages to compound page. 2273 * Free pages and try again - ONCE! 2274 */ 2275 free_gigantic_folio(folio, huge_page_order(h)); 2276 if (!retry) { 2277 retry = true; 2278 goto retry; 2279 } 2280 return NULL; 2281 } 2282 } 2283 2284 return folio; 2285 } 2286 2287 static struct folio *only_alloc_fresh_hugetlb_folio(struct hstate *h, 2288 gfp_t gfp_mask, int nid, nodemask_t *nmask, 2289 nodemask_t *node_alloc_noretry) 2290 { 2291 struct folio *folio; 2292 2293 folio = __alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, 2294 node_alloc_noretry); 2295 if (folio) 2296 init_new_hugetlb_folio(h, folio); 2297 return folio; 2298 } 2299 2300 /* 2301 * Common helper to allocate a fresh hugetlb page. All specific allocators 2302 * should use this function to get new hugetlb pages 2303 * 2304 * Note that returned page is 'frozen': ref count of head page and all tail 2305 * pages is zero. 2306 */ 2307 static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h, 2308 gfp_t gfp_mask, int nid, nodemask_t *nmask, 2309 nodemask_t *node_alloc_noretry) 2310 { 2311 struct folio *folio; 2312 2313 folio = __alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, 2314 node_alloc_noretry); 2315 if (!folio) 2316 return NULL; 2317 2318 prep_new_hugetlb_folio(h, folio, folio_nid(folio)); 2319 return folio; 2320 } 2321 2322 static void prep_and_add_allocated_folios(struct hstate *h, 2323 struct list_head *folio_list) 2324 { 2325 unsigned long flags; 2326 struct folio *folio, *tmp_f; 2327 2328 /* Send list for bulk vmemmap optimization processing */ 2329 hugetlb_vmemmap_optimize_folios(h, folio_list); 2330 2331 /* Add all new pool pages to free lists in one lock cycle */ 2332 spin_lock_irqsave(&hugetlb_lock, flags); 2333 list_for_each_entry_safe(folio, tmp_f, folio_list, lru) { 2334 __prep_account_new_huge_page(h, folio_nid(folio)); 2335 enqueue_hugetlb_folio(h, folio); 2336 } 2337 spin_unlock_irqrestore(&hugetlb_lock, flags); 2338 } 2339 2340 /* 2341 * Allocates a fresh hugetlb page in a node interleaved manner. The page 2342 * will later be added to the appropriate hugetlb pool. 2343 */ 2344 static struct folio *alloc_pool_huge_folio(struct hstate *h, 2345 nodemask_t *nodes_allowed, 2346 nodemask_t *node_alloc_noretry) 2347 { 2348 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 2349 int nr_nodes, node; 2350 2351 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 2352 struct folio *folio; 2353 2354 folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, node, 2355 nodes_allowed, node_alloc_noretry); 2356 if (folio) 2357 return folio; 2358 } 2359 2360 return NULL; 2361 } 2362 2363 /* 2364 * Remove huge page from pool from next node to free. Attempt to keep 2365 * persistent huge pages more or less balanced over allowed nodes. 2366 * This routine only 'removes' the hugetlb page. The caller must make 2367 * an additional call to free the page to low level allocators. 2368 * Called with hugetlb_lock locked. 2369 */ 2370 static struct folio *remove_pool_hugetlb_folio(struct hstate *h, 2371 nodemask_t *nodes_allowed, bool acct_surplus) 2372 { 2373 int nr_nodes, node; 2374 struct folio *folio = NULL; 2375 2376 lockdep_assert_held(&hugetlb_lock); 2377 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 2378 /* 2379 * If we're returning unused surplus pages, only examine 2380 * nodes with surplus pages. 2381 */ 2382 if ((!acct_surplus || h->surplus_huge_pages_node[node]) && 2383 !list_empty(&h->hugepage_freelists[node])) { 2384 folio = list_entry(h->hugepage_freelists[node].next, 2385 struct folio, lru); 2386 remove_hugetlb_folio(h, folio, acct_surplus); 2387 break; 2388 } 2389 } 2390 2391 return folio; 2392 } 2393 2394 /* 2395 * Dissolve a given free hugepage into free buddy pages. This function does 2396 * nothing for in-use hugepages and non-hugepages. 2397 * This function returns values like below: 2398 * 2399 * -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages 2400 * when the system is under memory pressure and the feature of 2401 * freeing unused vmemmap pages associated with each hugetlb page 2402 * is enabled. 2403 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use 2404 * (allocated or reserved.) 2405 * 0: successfully dissolved free hugepages or the page is not a 2406 * hugepage (considered as already dissolved) 2407 */ 2408 int dissolve_free_huge_page(struct page *page) 2409 { 2410 int rc = -EBUSY; 2411 struct folio *folio = page_folio(page); 2412 2413 retry: 2414 /* Not to disrupt normal path by vainly holding hugetlb_lock */ 2415 if (!folio_test_hugetlb(folio)) 2416 return 0; 2417 2418 spin_lock_irq(&hugetlb_lock); 2419 if (!folio_test_hugetlb(folio)) { 2420 rc = 0; 2421 goto out; 2422 } 2423 2424 if (!folio_ref_count(folio)) { 2425 struct hstate *h = folio_hstate(folio); 2426 if (!available_huge_pages(h)) 2427 goto out; 2428 2429 /* 2430 * We should make sure that the page is already on the free list 2431 * when it is dissolved. 2432 */ 2433 if (unlikely(!folio_test_hugetlb_freed(folio))) { 2434 spin_unlock_irq(&hugetlb_lock); 2435 cond_resched(); 2436 2437 /* 2438 * Theoretically, we should return -EBUSY when we 2439 * encounter this race. In fact, we have a chance 2440 * to successfully dissolve the page if we do a 2441 * retry. Because the race window is quite small. 2442 * If we seize this opportunity, it is an optimization 2443 * for increasing the success rate of dissolving page. 2444 */ 2445 goto retry; 2446 } 2447 2448 remove_hugetlb_folio(h, folio, false); 2449 h->max_huge_pages--; 2450 spin_unlock_irq(&hugetlb_lock); 2451 2452 /* 2453 * Normally update_and_free_hugtlb_folio will allocate required vmemmmap 2454 * before freeing the page. update_and_free_hugtlb_folio will fail to 2455 * free the page if it can not allocate required vmemmap. We 2456 * need to adjust max_huge_pages if the page is not freed. 2457 * Attempt to allocate vmemmmap here so that we can take 2458 * appropriate action on failure. 2459 * 2460 * The folio_test_hugetlb check here is because 2461 * remove_hugetlb_folio will clear hugetlb folio flag for 2462 * non-vmemmap optimized hugetlb folios. 2463 */ 2464 if (folio_test_hugetlb(folio)) { 2465 rc = hugetlb_vmemmap_restore_folio(h, folio); 2466 if (rc) { 2467 spin_lock_irq(&hugetlb_lock); 2468 add_hugetlb_folio(h, folio, false); 2469 h->max_huge_pages++; 2470 goto out; 2471 } 2472 } else 2473 rc = 0; 2474 2475 update_and_free_hugetlb_folio(h, folio, false); 2476 return rc; 2477 } 2478 out: 2479 spin_unlock_irq(&hugetlb_lock); 2480 return rc; 2481 } 2482 2483 /* 2484 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to 2485 * make specified memory blocks removable from the system. 2486 * Note that this will dissolve a free gigantic hugepage completely, if any 2487 * part of it lies within the given range. 2488 * Also note that if dissolve_free_huge_page() returns with an error, all 2489 * free hugepages that were dissolved before that error are lost. 2490 */ 2491 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn) 2492 { 2493 unsigned long pfn; 2494 struct page *page; 2495 int rc = 0; 2496 unsigned int order; 2497 struct hstate *h; 2498 2499 if (!hugepages_supported()) 2500 return rc; 2501 2502 order = huge_page_order(&default_hstate); 2503 for_each_hstate(h) 2504 order = min(order, huge_page_order(h)); 2505 2506 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) { 2507 page = pfn_to_page(pfn); 2508 rc = dissolve_free_huge_page(page); 2509 if (rc) 2510 break; 2511 } 2512 2513 return rc; 2514 } 2515 2516 /* 2517 * Allocates a fresh surplus page from the page allocator. 2518 */ 2519 static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h, 2520 gfp_t gfp_mask, int nid, nodemask_t *nmask) 2521 { 2522 struct folio *folio = NULL; 2523 2524 if (hstate_is_gigantic(h)) 2525 return NULL; 2526 2527 spin_lock_irq(&hugetlb_lock); 2528 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) 2529 goto out_unlock; 2530 spin_unlock_irq(&hugetlb_lock); 2531 2532 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL); 2533 if (!folio) 2534 return NULL; 2535 2536 spin_lock_irq(&hugetlb_lock); 2537 /* 2538 * We could have raced with the pool size change. 2539 * Double check that and simply deallocate the new page 2540 * if we would end up overcommiting the surpluses. Abuse 2541 * temporary page to workaround the nasty free_huge_folio 2542 * codeflow 2543 */ 2544 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { 2545 folio_set_hugetlb_temporary(folio); 2546 spin_unlock_irq(&hugetlb_lock); 2547 free_huge_folio(folio); 2548 return NULL; 2549 } 2550 2551 h->surplus_huge_pages++; 2552 h->surplus_huge_pages_node[folio_nid(folio)]++; 2553 2554 out_unlock: 2555 spin_unlock_irq(&hugetlb_lock); 2556 2557 return folio; 2558 } 2559 2560 static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask, 2561 int nid, nodemask_t *nmask) 2562 { 2563 struct folio *folio; 2564 2565 if (hstate_is_gigantic(h)) 2566 return NULL; 2567 2568 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL); 2569 if (!folio) 2570 return NULL; 2571 2572 /* fresh huge pages are frozen */ 2573 folio_ref_unfreeze(folio, 1); 2574 /* 2575 * We do not account these pages as surplus because they are only 2576 * temporary and will be released properly on the last reference 2577 */ 2578 folio_set_hugetlb_temporary(folio); 2579 2580 return folio; 2581 } 2582 2583 /* 2584 * Use the VMA's mpolicy to allocate a huge page from the buddy. 2585 */ 2586 static 2587 struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h, 2588 struct vm_area_struct *vma, unsigned long addr) 2589 { 2590 struct folio *folio = NULL; 2591 struct mempolicy *mpol; 2592 gfp_t gfp_mask = htlb_alloc_mask(h); 2593 int nid; 2594 nodemask_t *nodemask; 2595 2596 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask); 2597 if (mpol_is_preferred_many(mpol)) { 2598 gfp_t gfp = gfp_mask | __GFP_NOWARN; 2599 2600 gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL); 2601 folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask); 2602 2603 /* Fallback to all nodes if page==NULL */ 2604 nodemask = NULL; 2605 } 2606 2607 if (!folio) 2608 folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask); 2609 mpol_cond_put(mpol); 2610 return folio; 2611 } 2612 2613 /* folio migration callback function */ 2614 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid, 2615 nodemask_t *nmask, gfp_t gfp_mask) 2616 { 2617 spin_lock_irq(&hugetlb_lock); 2618 if (available_huge_pages(h)) { 2619 struct folio *folio; 2620 2621 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, 2622 preferred_nid, nmask); 2623 if (folio) { 2624 spin_unlock_irq(&hugetlb_lock); 2625 return folio; 2626 } 2627 } 2628 spin_unlock_irq(&hugetlb_lock); 2629 2630 return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask); 2631 } 2632 2633 /* 2634 * Increase the hugetlb pool such that it can accommodate a reservation 2635 * of size 'delta'. 2636 */ 2637 static int gather_surplus_pages(struct hstate *h, long delta) 2638 __must_hold(&hugetlb_lock) 2639 { 2640 LIST_HEAD(surplus_list); 2641 struct folio *folio, *tmp; 2642 int ret; 2643 long i; 2644 long needed, allocated; 2645 bool alloc_ok = true; 2646 2647 lockdep_assert_held(&hugetlb_lock); 2648 needed = (h->resv_huge_pages + delta) - h->free_huge_pages; 2649 if (needed <= 0) { 2650 h->resv_huge_pages += delta; 2651 return 0; 2652 } 2653 2654 allocated = 0; 2655 2656 ret = -ENOMEM; 2657 retry: 2658 spin_unlock_irq(&hugetlb_lock); 2659 for (i = 0; i < needed; i++) { 2660 folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h), 2661 NUMA_NO_NODE, NULL); 2662 if (!folio) { 2663 alloc_ok = false; 2664 break; 2665 } 2666 list_add(&folio->lru, &surplus_list); 2667 cond_resched(); 2668 } 2669 allocated += i; 2670 2671 /* 2672 * After retaking hugetlb_lock, we need to recalculate 'needed' 2673 * because either resv_huge_pages or free_huge_pages may have changed. 2674 */ 2675 spin_lock_irq(&hugetlb_lock); 2676 needed = (h->resv_huge_pages + delta) - 2677 (h->free_huge_pages + allocated); 2678 if (needed > 0) { 2679 if (alloc_ok) 2680 goto retry; 2681 /* 2682 * We were not able to allocate enough pages to 2683 * satisfy the entire reservation so we free what 2684 * we've allocated so far. 2685 */ 2686 goto free; 2687 } 2688 /* 2689 * The surplus_list now contains _at_least_ the number of extra pages 2690 * needed to accommodate the reservation. Add the appropriate number 2691 * of pages to the hugetlb pool and free the extras back to the buddy 2692 * allocator. Commit the entire reservation here to prevent another 2693 * process from stealing the pages as they are added to the pool but 2694 * before they are reserved. 2695 */ 2696 needed += allocated; 2697 h->resv_huge_pages += delta; 2698 ret = 0; 2699 2700 /* Free the needed pages to the hugetlb pool */ 2701 list_for_each_entry_safe(folio, tmp, &surplus_list, lru) { 2702 if ((--needed) < 0) 2703 break; 2704 /* Add the page to the hugetlb allocator */ 2705 enqueue_hugetlb_folio(h, folio); 2706 } 2707 free: 2708 spin_unlock_irq(&hugetlb_lock); 2709 2710 /* 2711 * Free unnecessary surplus pages to the buddy allocator. 2712 * Pages have no ref count, call free_huge_folio directly. 2713 */ 2714 list_for_each_entry_safe(folio, tmp, &surplus_list, lru) 2715 free_huge_folio(folio); 2716 spin_lock_irq(&hugetlb_lock); 2717 2718 return ret; 2719 } 2720 2721 /* 2722 * This routine has two main purposes: 2723 * 1) Decrement the reservation count (resv_huge_pages) by the value passed 2724 * in unused_resv_pages. This corresponds to the prior adjustments made 2725 * to the associated reservation map. 2726 * 2) Free any unused surplus pages that may have been allocated to satisfy 2727 * the reservation. As many as unused_resv_pages may be freed. 2728 */ 2729 static void return_unused_surplus_pages(struct hstate *h, 2730 unsigned long unused_resv_pages) 2731 { 2732 unsigned long nr_pages; 2733 LIST_HEAD(page_list); 2734 2735 lockdep_assert_held(&hugetlb_lock); 2736 /* Uncommit the reservation */ 2737 h->resv_huge_pages -= unused_resv_pages; 2738 2739 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 2740 goto out; 2741 2742 /* 2743 * Part (or even all) of the reservation could have been backed 2744 * by pre-allocated pages. Only free surplus pages. 2745 */ 2746 nr_pages = min(unused_resv_pages, h->surplus_huge_pages); 2747 2748 /* 2749 * We want to release as many surplus pages as possible, spread 2750 * evenly across all nodes with memory. Iterate across these nodes 2751 * until we can no longer free unreserved surplus pages. This occurs 2752 * when the nodes with surplus pages have no free pages. 2753 * remove_pool_hugetlb_folio() will balance the freed pages across the 2754 * on-line nodes with memory and will handle the hstate accounting. 2755 */ 2756 while (nr_pages--) { 2757 struct folio *folio; 2758 2759 folio = remove_pool_hugetlb_folio(h, &node_states[N_MEMORY], 1); 2760 if (!folio) 2761 goto out; 2762 2763 list_add(&folio->lru, &page_list); 2764 } 2765 2766 out: 2767 spin_unlock_irq(&hugetlb_lock); 2768 update_and_free_pages_bulk(h, &page_list); 2769 spin_lock_irq(&hugetlb_lock); 2770 } 2771 2772 2773 /* 2774 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation 2775 * are used by the huge page allocation routines to manage reservations. 2776 * 2777 * vma_needs_reservation is called to determine if the huge page at addr 2778 * within the vma has an associated reservation. If a reservation is 2779 * needed, the value 1 is returned. The caller is then responsible for 2780 * managing the global reservation and subpool usage counts. After 2781 * the huge page has been allocated, vma_commit_reservation is called 2782 * to add the page to the reservation map. If the page allocation fails, 2783 * the reservation must be ended instead of committed. vma_end_reservation 2784 * is called in such cases. 2785 * 2786 * In the normal case, vma_commit_reservation returns the same value 2787 * as the preceding vma_needs_reservation call. The only time this 2788 * is not the case is if a reserve map was changed between calls. It 2789 * is the responsibility of the caller to notice the difference and 2790 * take appropriate action. 2791 * 2792 * vma_add_reservation is used in error paths where a reservation must 2793 * be restored when a newly allocated huge page must be freed. It is 2794 * to be called after calling vma_needs_reservation to determine if a 2795 * reservation exists. 2796 * 2797 * vma_del_reservation is used in error paths where an entry in the reserve 2798 * map was created during huge page allocation and must be removed. It is to 2799 * be called after calling vma_needs_reservation to determine if a reservation 2800 * exists. 2801 */ 2802 enum vma_resv_mode { 2803 VMA_NEEDS_RESV, 2804 VMA_COMMIT_RESV, 2805 VMA_END_RESV, 2806 VMA_ADD_RESV, 2807 VMA_DEL_RESV, 2808 }; 2809 static long __vma_reservation_common(struct hstate *h, 2810 struct vm_area_struct *vma, unsigned long addr, 2811 enum vma_resv_mode mode) 2812 { 2813 struct resv_map *resv; 2814 pgoff_t idx; 2815 long ret; 2816 long dummy_out_regions_needed; 2817 2818 resv = vma_resv_map(vma); 2819 if (!resv) 2820 return 1; 2821 2822 idx = vma_hugecache_offset(h, vma, addr); 2823 switch (mode) { 2824 case VMA_NEEDS_RESV: 2825 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed); 2826 /* We assume that vma_reservation_* routines always operate on 2827 * 1 page, and that adding to resv map a 1 page entry can only 2828 * ever require 1 region. 2829 */ 2830 VM_BUG_ON(dummy_out_regions_needed != 1); 2831 break; 2832 case VMA_COMMIT_RESV: 2833 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2834 /* region_add calls of range 1 should never fail. */ 2835 VM_BUG_ON(ret < 0); 2836 break; 2837 case VMA_END_RESV: 2838 region_abort(resv, idx, idx + 1, 1); 2839 ret = 0; 2840 break; 2841 case VMA_ADD_RESV: 2842 if (vma->vm_flags & VM_MAYSHARE) { 2843 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2844 /* region_add calls of range 1 should never fail. */ 2845 VM_BUG_ON(ret < 0); 2846 } else { 2847 region_abort(resv, idx, idx + 1, 1); 2848 ret = region_del(resv, idx, idx + 1); 2849 } 2850 break; 2851 case VMA_DEL_RESV: 2852 if (vma->vm_flags & VM_MAYSHARE) { 2853 region_abort(resv, idx, idx + 1, 1); 2854 ret = region_del(resv, idx, idx + 1); 2855 } else { 2856 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2857 /* region_add calls of range 1 should never fail. */ 2858 VM_BUG_ON(ret < 0); 2859 } 2860 break; 2861 default: 2862 BUG(); 2863 } 2864 2865 if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV) 2866 return ret; 2867 /* 2868 * We know private mapping must have HPAGE_RESV_OWNER set. 2869 * 2870 * In most cases, reserves always exist for private mappings. 2871 * However, a file associated with mapping could have been 2872 * hole punched or truncated after reserves were consumed. 2873 * As subsequent fault on such a range will not use reserves. 2874 * Subtle - The reserve map for private mappings has the 2875 * opposite meaning than that of shared mappings. If NO 2876 * entry is in the reserve map, it means a reservation exists. 2877 * If an entry exists in the reserve map, it means the 2878 * reservation has already been consumed. As a result, the 2879 * return value of this routine is the opposite of the 2880 * value returned from reserve map manipulation routines above. 2881 */ 2882 if (ret > 0) 2883 return 0; 2884 if (ret == 0) 2885 return 1; 2886 return ret; 2887 } 2888 2889 static long vma_needs_reservation(struct hstate *h, 2890 struct vm_area_struct *vma, unsigned long addr) 2891 { 2892 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV); 2893 } 2894 2895 static long vma_commit_reservation(struct hstate *h, 2896 struct vm_area_struct *vma, unsigned long addr) 2897 { 2898 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV); 2899 } 2900 2901 static void vma_end_reservation(struct hstate *h, 2902 struct vm_area_struct *vma, unsigned long addr) 2903 { 2904 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV); 2905 } 2906 2907 static long vma_add_reservation(struct hstate *h, 2908 struct vm_area_struct *vma, unsigned long addr) 2909 { 2910 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV); 2911 } 2912 2913 static long vma_del_reservation(struct hstate *h, 2914 struct vm_area_struct *vma, unsigned long addr) 2915 { 2916 return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV); 2917 } 2918 2919 /* 2920 * This routine is called to restore reservation information on error paths. 2921 * It should ONLY be called for folios allocated via alloc_hugetlb_folio(), 2922 * and the hugetlb mutex should remain held when calling this routine. 2923 * 2924 * It handles two specific cases: 2925 * 1) A reservation was in place and the folio consumed the reservation. 2926 * hugetlb_restore_reserve is set in the folio. 2927 * 2) No reservation was in place for the page, so hugetlb_restore_reserve is 2928 * not set. However, alloc_hugetlb_folio always updates the reserve map. 2929 * 2930 * In case 1, free_huge_folio later in the error path will increment the 2931 * global reserve count. But, free_huge_folio does not have enough context 2932 * to adjust the reservation map. This case deals primarily with private 2933 * mappings. Adjust the reserve map here to be consistent with global 2934 * reserve count adjustments to be made by free_huge_folio. Make sure the 2935 * reserve map indicates there is a reservation present. 2936 * 2937 * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio. 2938 */ 2939 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma, 2940 unsigned long address, struct folio *folio) 2941 { 2942 long rc = vma_needs_reservation(h, vma, address); 2943 2944 if (folio_test_hugetlb_restore_reserve(folio)) { 2945 if (unlikely(rc < 0)) 2946 /* 2947 * Rare out of memory condition in reserve map 2948 * manipulation. Clear hugetlb_restore_reserve so 2949 * that global reserve count will not be incremented 2950 * by free_huge_folio. This will make it appear 2951 * as though the reservation for this folio was 2952 * consumed. This may prevent the task from 2953 * faulting in the folio at a later time. This 2954 * is better than inconsistent global huge page 2955 * accounting of reserve counts. 2956 */ 2957 folio_clear_hugetlb_restore_reserve(folio); 2958 else if (rc) 2959 (void)vma_add_reservation(h, vma, address); 2960 else 2961 vma_end_reservation(h, vma, address); 2962 } else { 2963 if (!rc) { 2964 /* 2965 * This indicates there is an entry in the reserve map 2966 * not added by alloc_hugetlb_folio. We know it was added 2967 * before the alloc_hugetlb_folio call, otherwise 2968 * hugetlb_restore_reserve would be set on the folio. 2969 * Remove the entry so that a subsequent allocation 2970 * does not consume a reservation. 2971 */ 2972 rc = vma_del_reservation(h, vma, address); 2973 if (rc < 0) 2974 /* 2975 * VERY rare out of memory condition. Since 2976 * we can not delete the entry, set 2977 * hugetlb_restore_reserve so that the reserve 2978 * count will be incremented when the folio 2979 * is freed. This reserve will be consumed 2980 * on a subsequent allocation. 2981 */ 2982 folio_set_hugetlb_restore_reserve(folio); 2983 } else if (rc < 0) { 2984 /* 2985 * Rare out of memory condition from 2986 * vma_needs_reservation call. Memory allocation is 2987 * only attempted if a new entry is needed. Therefore, 2988 * this implies there is not an entry in the 2989 * reserve map. 2990 * 2991 * For shared mappings, no entry in the map indicates 2992 * no reservation. We are done. 2993 */ 2994 if (!(vma->vm_flags & VM_MAYSHARE)) 2995 /* 2996 * For private mappings, no entry indicates 2997 * a reservation is present. Since we can 2998 * not add an entry, set hugetlb_restore_reserve 2999 * on the folio so reserve count will be 3000 * incremented when freed. This reserve will 3001 * be consumed on a subsequent allocation. 3002 */ 3003 folio_set_hugetlb_restore_reserve(folio); 3004 } else 3005 /* 3006 * No reservation present, do nothing 3007 */ 3008 vma_end_reservation(h, vma, address); 3009 } 3010 } 3011 3012 /* 3013 * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve 3014 * the old one 3015 * @h: struct hstate old page belongs to 3016 * @old_folio: Old folio to dissolve 3017 * @list: List to isolate the page in case we need to 3018 * Returns 0 on success, otherwise negated error. 3019 */ 3020 static int alloc_and_dissolve_hugetlb_folio(struct hstate *h, 3021 struct folio *old_folio, struct list_head *list) 3022 { 3023 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 3024 int nid = folio_nid(old_folio); 3025 struct folio *new_folio; 3026 int ret = 0; 3027 3028 /* 3029 * Before dissolving the folio, we need to allocate a new one for the 3030 * pool to remain stable. Here, we allocate the folio and 'prep' it 3031 * by doing everything but actually updating counters and adding to 3032 * the pool. This simplifies and let us do most of the processing 3033 * under the lock. 3034 */ 3035 new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, NULL, NULL); 3036 if (!new_folio) 3037 return -ENOMEM; 3038 __prep_new_hugetlb_folio(h, new_folio); 3039 3040 retry: 3041 spin_lock_irq(&hugetlb_lock); 3042 if (!folio_test_hugetlb(old_folio)) { 3043 /* 3044 * Freed from under us. Drop new_folio too. 3045 */ 3046 goto free_new; 3047 } else if (folio_ref_count(old_folio)) { 3048 bool isolated; 3049 3050 /* 3051 * Someone has grabbed the folio, try to isolate it here. 3052 * Fail with -EBUSY if not possible. 3053 */ 3054 spin_unlock_irq(&hugetlb_lock); 3055 isolated = isolate_hugetlb(old_folio, list); 3056 ret = isolated ? 0 : -EBUSY; 3057 spin_lock_irq(&hugetlb_lock); 3058 goto free_new; 3059 } else if (!folio_test_hugetlb_freed(old_folio)) { 3060 /* 3061 * Folio's refcount is 0 but it has not been enqueued in the 3062 * freelist yet. Race window is small, so we can succeed here if 3063 * we retry. 3064 */ 3065 spin_unlock_irq(&hugetlb_lock); 3066 cond_resched(); 3067 goto retry; 3068 } else { 3069 /* 3070 * Ok, old_folio is still a genuine free hugepage. Remove it from 3071 * the freelist and decrease the counters. These will be 3072 * incremented again when calling __prep_account_new_huge_page() 3073 * and enqueue_hugetlb_folio() for new_folio. The counters will 3074 * remain stable since this happens under the lock. 3075 */ 3076 remove_hugetlb_folio(h, old_folio, false); 3077 3078 /* 3079 * Ref count on new_folio is already zero as it was dropped 3080 * earlier. It can be directly added to the pool free list. 3081 */ 3082 __prep_account_new_huge_page(h, nid); 3083 enqueue_hugetlb_folio(h, new_folio); 3084 3085 /* 3086 * Folio has been replaced, we can safely free the old one. 3087 */ 3088 spin_unlock_irq(&hugetlb_lock); 3089 update_and_free_hugetlb_folio(h, old_folio, false); 3090 } 3091 3092 return ret; 3093 3094 free_new: 3095 spin_unlock_irq(&hugetlb_lock); 3096 /* Folio has a zero ref count, but needs a ref to be freed */ 3097 folio_ref_unfreeze(new_folio, 1); 3098 update_and_free_hugetlb_folio(h, new_folio, false); 3099 3100 return ret; 3101 } 3102 3103 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list) 3104 { 3105 struct hstate *h; 3106 struct folio *folio = page_folio(page); 3107 int ret = -EBUSY; 3108 3109 /* 3110 * The page might have been dissolved from under our feet, so make sure 3111 * to carefully check the state under the lock. 3112 * Return success when racing as if we dissolved the page ourselves. 3113 */ 3114 spin_lock_irq(&hugetlb_lock); 3115 if (folio_test_hugetlb(folio)) { 3116 h = folio_hstate(folio); 3117 } else { 3118 spin_unlock_irq(&hugetlb_lock); 3119 return 0; 3120 } 3121 spin_unlock_irq(&hugetlb_lock); 3122 3123 /* 3124 * Fence off gigantic pages as there is a cyclic dependency between 3125 * alloc_contig_range and them. Return -ENOMEM as this has the effect 3126 * of bailing out right away without further retrying. 3127 */ 3128 if (hstate_is_gigantic(h)) 3129 return -ENOMEM; 3130 3131 if (folio_ref_count(folio) && isolate_hugetlb(folio, list)) 3132 ret = 0; 3133 else if (!folio_ref_count(folio)) 3134 ret = alloc_and_dissolve_hugetlb_folio(h, folio, list); 3135 3136 return ret; 3137 } 3138 3139 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma, 3140 unsigned long addr, int avoid_reserve) 3141 { 3142 struct hugepage_subpool *spool = subpool_vma(vma); 3143 struct hstate *h = hstate_vma(vma); 3144 struct folio *folio; 3145 long map_chg, map_commit, nr_pages = pages_per_huge_page(h); 3146 long gbl_chg; 3147 int memcg_charge_ret, ret, idx; 3148 struct hugetlb_cgroup *h_cg = NULL; 3149 struct mem_cgroup *memcg; 3150 bool deferred_reserve; 3151 gfp_t gfp = htlb_alloc_mask(h) | __GFP_RETRY_MAYFAIL; 3152 3153 memcg = get_mem_cgroup_from_current(); 3154 memcg_charge_ret = mem_cgroup_hugetlb_try_charge(memcg, gfp, nr_pages); 3155 if (memcg_charge_ret == -ENOMEM) { 3156 mem_cgroup_put(memcg); 3157 return ERR_PTR(-ENOMEM); 3158 } 3159 3160 idx = hstate_index(h); 3161 /* 3162 * Examine the region/reserve map to determine if the process 3163 * has a reservation for the page to be allocated. A return 3164 * code of zero indicates a reservation exists (no change). 3165 */ 3166 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr); 3167 if (map_chg < 0) { 3168 if (!memcg_charge_ret) 3169 mem_cgroup_cancel_charge(memcg, nr_pages); 3170 mem_cgroup_put(memcg); 3171 return ERR_PTR(-ENOMEM); 3172 } 3173 3174 /* 3175 * Processes that did not create the mapping will have no 3176 * reserves as indicated by the region/reserve map. Check 3177 * that the allocation will not exceed the subpool limit. 3178 * Allocations for MAP_NORESERVE mappings also need to be 3179 * checked against any subpool limit. 3180 */ 3181 if (map_chg || avoid_reserve) { 3182 gbl_chg = hugepage_subpool_get_pages(spool, 1); 3183 if (gbl_chg < 0) 3184 goto out_end_reservation; 3185 3186 /* 3187 * Even though there was no reservation in the region/reserve 3188 * map, there could be reservations associated with the 3189 * subpool that can be used. This would be indicated if the 3190 * return value of hugepage_subpool_get_pages() is zero. 3191 * However, if avoid_reserve is specified we still avoid even 3192 * the subpool reservations. 3193 */ 3194 if (avoid_reserve) 3195 gbl_chg = 1; 3196 } 3197 3198 /* If this allocation is not consuming a reservation, charge it now. 3199 */ 3200 deferred_reserve = map_chg || avoid_reserve; 3201 if (deferred_reserve) { 3202 ret = hugetlb_cgroup_charge_cgroup_rsvd( 3203 idx, pages_per_huge_page(h), &h_cg); 3204 if (ret) 3205 goto out_subpool_put; 3206 } 3207 3208 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg); 3209 if (ret) 3210 goto out_uncharge_cgroup_reservation; 3211 3212 spin_lock_irq(&hugetlb_lock); 3213 /* 3214 * glb_chg is passed to indicate whether or not a page must be taken 3215 * from the global free pool (global change). gbl_chg == 0 indicates 3216 * a reservation exists for the allocation. 3217 */ 3218 folio = dequeue_hugetlb_folio_vma(h, vma, addr, avoid_reserve, gbl_chg); 3219 if (!folio) { 3220 spin_unlock_irq(&hugetlb_lock); 3221 folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr); 3222 if (!folio) 3223 goto out_uncharge_cgroup; 3224 spin_lock_irq(&hugetlb_lock); 3225 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) { 3226 folio_set_hugetlb_restore_reserve(folio); 3227 h->resv_huge_pages--; 3228 } 3229 list_add(&folio->lru, &h->hugepage_activelist); 3230 folio_ref_unfreeze(folio, 1); 3231 /* Fall through */ 3232 } 3233 3234 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio); 3235 /* If allocation is not consuming a reservation, also store the 3236 * hugetlb_cgroup pointer on the page. 3237 */ 3238 if (deferred_reserve) { 3239 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h), 3240 h_cg, folio); 3241 } 3242 3243 spin_unlock_irq(&hugetlb_lock); 3244 3245 hugetlb_set_folio_subpool(folio, spool); 3246 3247 map_commit = vma_commit_reservation(h, vma, addr); 3248 if (unlikely(map_chg > map_commit)) { 3249 /* 3250 * The page was added to the reservation map between 3251 * vma_needs_reservation and vma_commit_reservation. 3252 * This indicates a race with hugetlb_reserve_pages. 3253 * Adjust for the subpool count incremented above AND 3254 * in hugetlb_reserve_pages for the same page. Also, 3255 * the reservation count added in hugetlb_reserve_pages 3256 * no longer applies. 3257 */ 3258 long rsv_adjust; 3259 3260 rsv_adjust = hugepage_subpool_put_pages(spool, 1); 3261 hugetlb_acct_memory(h, -rsv_adjust); 3262 if (deferred_reserve) 3263 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h), 3264 pages_per_huge_page(h), folio); 3265 } 3266 3267 if (!memcg_charge_ret) 3268 mem_cgroup_commit_charge(folio, memcg); 3269 mem_cgroup_put(memcg); 3270 3271 return folio; 3272 3273 out_uncharge_cgroup: 3274 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg); 3275 out_uncharge_cgroup_reservation: 3276 if (deferred_reserve) 3277 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h), 3278 h_cg); 3279 out_subpool_put: 3280 if (map_chg || avoid_reserve) 3281 hugepage_subpool_put_pages(spool, 1); 3282 out_end_reservation: 3283 vma_end_reservation(h, vma, addr); 3284 if (!memcg_charge_ret) 3285 mem_cgroup_cancel_charge(memcg, nr_pages); 3286 mem_cgroup_put(memcg); 3287 return ERR_PTR(-ENOSPC); 3288 } 3289 3290 int alloc_bootmem_huge_page(struct hstate *h, int nid) 3291 __attribute__ ((weak, alias("__alloc_bootmem_huge_page"))); 3292 int __alloc_bootmem_huge_page(struct hstate *h, int nid) 3293 { 3294 struct huge_bootmem_page *m = NULL; /* initialize for clang */ 3295 int nr_nodes, node; 3296 3297 /* do node specific alloc */ 3298 if (nid != NUMA_NO_NODE) { 3299 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h), 3300 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid); 3301 if (!m) 3302 return 0; 3303 goto found; 3304 } 3305 /* allocate from next node when distributing huge pages */ 3306 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) { 3307 m = memblock_alloc_try_nid_raw( 3308 huge_page_size(h), huge_page_size(h), 3309 0, MEMBLOCK_ALLOC_ACCESSIBLE, node); 3310 /* 3311 * Use the beginning of the huge page to store the 3312 * huge_bootmem_page struct (until gather_bootmem 3313 * puts them into the mem_map). 3314 */ 3315 if (!m) 3316 return 0; 3317 goto found; 3318 } 3319 3320 found: 3321 3322 /* 3323 * Only initialize the head struct page in memmap_init_reserved_pages, 3324 * rest of the struct pages will be initialized by the HugeTLB 3325 * subsystem itself. 3326 * The head struct page is used to get folio information by the HugeTLB 3327 * subsystem like zone id and node id. 3328 */ 3329 memblock_reserved_mark_noinit(virt_to_phys((void *)m + PAGE_SIZE), 3330 huge_page_size(h) - PAGE_SIZE); 3331 /* Put them into a private list first because mem_map is not up yet */ 3332 INIT_LIST_HEAD(&m->list); 3333 list_add(&m->list, &huge_boot_pages); 3334 m->hstate = h; 3335 return 1; 3336 } 3337 3338 /* Initialize [start_page:end_page_number] tail struct pages of a hugepage */ 3339 static void __init hugetlb_folio_init_tail_vmemmap(struct folio *folio, 3340 unsigned long start_page_number, 3341 unsigned long end_page_number) 3342 { 3343 enum zone_type zone = zone_idx(folio_zone(folio)); 3344 int nid = folio_nid(folio); 3345 unsigned long head_pfn = folio_pfn(folio); 3346 unsigned long pfn, end_pfn = head_pfn + end_page_number; 3347 int ret; 3348 3349 for (pfn = head_pfn + start_page_number; pfn < end_pfn; pfn++) { 3350 struct page *page = pfn_to_page(pfn); 3351 3352 __init_single_page(page, pfn, zone, nid); 3353 prep_compound_tail((struct page *)folio, pfn - head_pfn); 3354 ret = page_ref_freeze(page, 1); 3355 VM_BUG_ON(!ret); 3356 } 3357 } 3358 3359 static void __init hugetlb_folio_init_vmemmap(struct folio *folio, 3360 struct hstate *h, 3361 unsigned long nr_pages) 3362 { 3363 int ret; 3364 3365 /* Prepare folio head */ 3366 __folio_clear_reserved(folio); 3367 __folio_set_head(folio); 3368 ret = folio_ref_freeze(folio, 1); 3369 VM_BUG_ON(!ret); 3370 /* Initialize the necessary tail struct pages */ 3371 hugetlb_folio_init_tail_vmemmap(folio, 1, nr_pages); 3372 prep_compound_head((struct page *)folio, huge_page_order(h)); 3373 } 3374 3375 static void __init prep_and_add_bootmem_folios(struct hstate *h, 3376 struct list_head *folio_list) 3377 { 3378 unsigned long flags; 3379 struct folio *folio, *tmp_f; 3380 3381 /* Send list for bulk vmemmap optimization processing */ 3382 hugetlb_vmemmap_optimize_folios(h, folio_list); 3383 3384 /* Add all new pool pages to free lists in one lock cycle */ 3385 spin_lock_irqsave(&hugetlb_lock, flags); 3386 list_for_each_entry_safe(folio, tmp_f, folio_list, lru) { 3387 if (!folio_test_hugetlb_vmemmap_optimized(folio)) { 3388 /* 3389 * If HVO fails, initialize all tail struct pages 3390 * We do not worry about potential long lock hold 3391 * time as this is early in boot and there should 3392 * be no contention. 3393 */ 3394 hugetlb_folio_init_tail_vmemmap(folio, 3395 HUGETLB_VMEMMAP_RESERVE_PAGES, 3396 pages_per_huge_page(h)); 3397 } 3398 __prep_account_new_huge_page(h, folio_nid(folio)); 3399 enqueue_hugetlb_folio(h, folio); 3400 } 3401 spin_unlock_irqrestore(&hugetlb_lock, flags); 3402 } 3403 3404 /* 3405 * Put bootmem huge pages into the standard lists after mem_map is up. 3406 * Note: This only applies to gigantic (order > MAX_ORDER) pages. 3407 */ 3408 static void __init gather_bootmem_prealloc(void) 3409 { 3410 LIST_HEAD(folio_list); 3411 struct huge_bootmem_page *m; 3412 struct hstate *h = NULL, *prev_h = NULL; 3413 3414 list_for_each_entry(m, &huge_boot_pages, list) { 3415 struct page *page = virt_to_page(m); 3416 struct folio *folio = (void *)page; 3417 3418 h = m->hstate; 3419 /* 3420 * It is possible to have multiple huge page sizes (hstates) 3421 * in this list. If so, process each size separately. 3422 */ 3423 if (h != prev_h && prev_h != NULL) 3424 prep_and_add_bootmem_folios(prev_h, &folio_list); 3425 prev_h = h; 3426 3427 VM_BUG_ON(!hstate_is_gigantic(h)); 3428 WARN_ON(folio_ref_count(folio) != 1); 3429 3430 hugetlb_folio_init_vmemmap(folio, h, 3431 HUGETLB_VMEMMAP_RESERVE_PAGES); 3432 init_new_hugetlb_folio(h, folio); 3433 list_add(&folio->lru, &folio_list); 3434 3435 /* 3436 * We need to restore the 'stolen' pages to totalram_pages 3437 * in order to fix confusing memory reports from free(1) and 3438 * other side-effects, like CommitLimit going negative. 3439 */ 3440 adjust_managed_page_count(page, pages_per_huge_page(h)); 3441 cond_resched(); 3442 } 3443 3444 prep_and_add_bootmem_folios(h, &folio_list); 3445 } 3446 3447 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid) 3448 { 3449 unsigned long i; 3450 char buf[32]; 3451 3452 for (i = 0; i < h->max_huge_pages_node[nid]; ++i) { 3453 if (hstate_is_gigantic(h)) { 3454 if (!alloc_bootmem_huge_page(h, nid)) 3455 break; 3456 } else { 3457 struct folio *folio; 3458 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 3459 3460 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, 3461 &node_states[N_MEMORY], NULL); 3462 if (!folio) 3463 break; 3464 free_huge_folio(folio); /* free it into the hugepage allocator */ 3465 } 3466 cond_resched(); 3467 } 3468 if (i == h->max_huge_pages_node[nid]) 3469 return; 3470 3471 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3472 pr_warn("HugeTLB: allocating %u of page size %s failed node%d. Only allocated %lu hugepages.\n", 3473 h->max_huge_pages_node[nid], buf, nid, i); 3474 h->max_huge_pages -= (h->max_huge_pages_node[nid] - i); 3475 h->max_huge_pages_node[nid] = i; 3476 } 3477 3478 /* 3479 * NOTE: this routine is called in different contexts for gigantic and 3480 * non-gigantic pages. 3481 * - For gigantic pages, this is called early in the boot process and 3482 * pages are allocated from memblock allocated or something similar. 3483 * Gigantic pages are actually added to pools later with the routine 3484 * gather_bootmem_prealloc. 3485 * - For non-gigantic pages, this is called later in the boot process after 3486 * all of mm is up and functional. Pages are allocated from buddy and 3487 * then added to hugetlb pools. 3488 */ 3489 static void __init hugetlb_hstate_alloc_pages(struct hstate *h) 3490 { 3491 unsigned long i; 3492 struct folio *folio; 3493 LIST_HEAD(folio_list); 3494 nodemask_t *node_alloc_noretry; 3495 bool node_specific_alloc = false; 3496 3497 /* skip gigantic hugepages allocation if hugetlb_cma enabled */ 3498 if (hstate_is_gigantic(h) && hugetlb_cma_size) { 3499 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n"); 3500 return; 3501 } 3502 3503 /* do node specific alloc */ 3504 for_each_online_node(i) { 3505 if (h->max_huge_pages_node[i] > 0) { 3506 hugetlb_hstate_alloc_pages_onenode(h, i); 3507 node_specific_alloc = true; 3508 } 3509 } 3510 3511 if (node_specific_alloc) 3512 return; 3513 3514 /* below will do all node balanced alloc */ 3515 if (!hstate_is_gigantic(h)) { 3516 /* 3517 * Bit mask controlling how hard we retry per-node allocations. 3518 * Ignore errors as lower level routines can deal with 3519 * node_alloc_noretry == NULL. If this kmalloc fails at boot 3520 * time, we are likely in bigger trouble. 3521 */ 3522 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry), 3523 GFP_KERNEL); 3524 } else { 3525 /* allocations done at boot time */ 3526 node_alloc_noretry = NULL; 3527 } 3528 3529 /* bit mask controlling how hard we retry per-node allocations */ 3530 if (node_alloc_noretry) 3531 nodes_clear(*node_alloc_noretry); 3532 3533 for (i = 0; i < h->max_huge_pages; ++i) { 3534 if (hstate_is_gigantic(h)) { 3535 /* 3536 * gigantic pages not added to list as they are not 3537 * added to pools now. 3538 */ 3539 if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE)) 3540 break; 3541 } else { 3542 folio = alloc_pool_huge_folio(h, &node_states[N_MEMORY], 3543 node_alloc_noretry); 3544 if (!folio) 3545 break; 3546 list_add(&folio->lru, &folio_list); 3547 } 3548 cond_resched(); 3549 } 3550 3551 /* list will be empty if hstate_is_gigantic */ 3552 prep_and_add_allocated_folios(h, &folio_list); 3553 3554 if (i < h->max_huge_pages) { 3555 char buf[32]; 3556 3557 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3558 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n", 3559 h->max_huge_pages, buf, i); 3560 h->max_huge_pages = i; 3561 } 3562 kfree(node_alloc_noretry); 3563 } 3564 3565 static void __init hugetlb_init_hstates(void) 3566 { 3567 struct hstate *h, *h2; 3568 3569 for_each_hstate(h) { 3570 /* oversize hugepages were init'ed in early boot */ 3571 if (!hstate_is_gigantic(h)) 3572 hugetlb_hstate_alloc_pages(h); 3573 3574 /* 3575 * Set demote order for each hstate. Note that 3576 * h->demote_order is initially 0. 3577 * - We can not demote gigantic pages if runtime freeing 3578 * is not supported, so skip this. 3579 * - If CMA allocation is possible, we can not demote 3580 * HUGETLB_PAGE_ORDER or smaller size pages. 3581 */ 3582 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 3583 continue; 3584 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER) 3585 continue; 3586 for_each_hstate(h2) { 3587 if (h2 == h) 3588 continue; 3589 if (h2->order < h->order && 3590 h2->order > h->demote_order) 3591 h->demote_order = h2->order; 3592 } 3593 } 3594 } 3595 3596 static void __init report_hugepages(void) 3597 { 3598 struct hstate *h; 3599 3600 for_each_hstate(h) { 3601 char buf[32]; 3602 3603 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3604 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n", 3605 buf, h->free_huge_pages); 3606 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n", 3607 hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf); 3608 } 3609 } 3610 3611 #ifdef CONFIG_HIGHMEM 3612 static void try_to_free_low(struct hstate *h, unsigned long count, 3613 nodemask_t *nodes_allowed) 3614 { 3615 int i; 3616 LIST_HEAD(page_list); 3617 3618 lockdep_assert_held(&hugetlb_lock); 3619 if (hstate_is_gigantic(h)) 3620 return; 3621 3622 /* 3623 * Collect pages to be freed on a list, and free after dropping lock 3624 */ 3625 for_each_node_mask(i, *nodes_allowed) { 3626 struct folio *folio, *next; 3627 struct list_head *freel = &h->hugepage_freelists[i]; 3628 list_for_each_entry_safe(folio, next, freel, lru) { 3629 if (count >= h->nr_huge_pages) 3630 goto out; 3631 if (folio_test_highmem(folio)) 3632 continue; 3633 remove_hugetlb_folio(h, folio, false); 3634 list_add(&folio->lru, &page_list); 3635 } 3636 } 3637 3638 out: 3639 spin_unlock_irq(&hugetlb_lock); 3640 update_and_free_pages_bulk(h, &page_list); 3641 spin_lock_irq(&hugetlb_lock); 3642 } 3643 #else 3644 static inline void try_to_free_low(struct hstate *h, unsigned long count, 3645 nodemask_t *nodes_allowed) 3646 { 3647 } 3648 #endif 3649 3650 /* 3651 * Increment or decrement surplus_huge_pages. Keep node-specific counters 3652 * balanced by operating on them in a round-robin fashion. 3653 * Returns 1 if an adjustment was made. 3654 */ 3655 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed, 3656 int delta) 3657 { 3658 int nr_nodes, node; 3659 3660 lockdep_assert_held(&hugetlb_lock); 3661 VM_BUG_ON(delta != -1 && delta != 1); 3662 3663 if (delta < 0) { 3664 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 3665 if (h->surplus_huge_pages_node[node]) 3666 goto found; 3667 } 3668 } else { 3669 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 3670 if (h->surplus_huge_pages_node[node] < 3671 h->nr_huge_pages_node[node]) 3672 goto found; 3673 } 3674 } 3675 return 0; 3676 3677 found: 3678 h->surplus_huge_pages += delta; 3679 h->surplus_huge_pages_node[node] += delta; 3680 return 1; 3681 } 3682 3683 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) 3684 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid, 3685 nodemask_t *nodes_allowed) 3686 { 3687 unsigned long min_count; 3688 unsigned long allocated; 3689 struct folio *folio; 3690 LIST_HEAD(page_list); 3691 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL); 3692 3693 /* 3694 * Bit mask controlling how hard we retry per-node allocations. 3695 * If we can not allocate the bit mask, do not attempt to allocate 3696 * the requested huge pages. 3697 */ 3698 if (node_alloc_noretry) 3699 nodes_clear(*node_alloc_noretry); 3700 else 3701 return -ENOMEM; 3702 3703 /* 3704 * resize_lock mutex prevents concurrent adjustments to number of 3705 * pages in hstate via the proc/sysfs interfaces. 3706 */ 3707 mutex_lock(&h->resize_lock); 3708 flush_free_hpage_work(h); 3709 spin_lock_irq(&hugetlb_lock); 3710 3711 /* 3712 * Check for a node specific request. 3713 * Changing node specific huge page count may require a corresponding 3714 * change to the global count. In any case, the passed node mask 3715 * (nodes_allowed) will restrict alloc/free to the specified node. 3716 */ 3717 if (nid != NUMA_NO_NODE) { 3718 unsigned long old_count = count; 3719 3720 count += persistent_huge_pages(h) - 3721 (h->nr_huge_pages_node[nid] - 3722 h->surplus_huge_pages_node[nid]); 3723 /* 3724 * User may have specified a large count value which caused the 3725 * above calculation to overflow. In this case, they wanted 3726 * to allocate as many huge pages as possible. Set count to 3727 * largest possible value to align with their intention. 3728 */ 3729 if (count < old_count) 3730 count = ULONG_MAX; 3731 } 3732 3733 /* 3734 * Gigantic pages runtime allocation depend on the capability for large 3735 * page range allocation. 3736 * If the system does not provide this feature, return an error when 3737 * the user tries to allocate gigantic pages but let the user free the 3738 * boottime allocated gigantic pages. 3739 */ 3740 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) { 3741 if (count > persistent_huge_pages(h)) { 3742 spin_unlock_irq(&hugetlb_lock); 3743 mutex_unlock(&h->resize_lock); 3744 NODEMASK_FREE(node_alloc_noretry); 3745 return -EINVAL; 3746 } 3747 /* Fall through to decrease pool */ 3748 } 3749 3750 /* 3751 * Increase the pool size 3752 * First take pages out of surplus state. Then make up the 3753 * remaining difference by allocating fresh huge pages. 3754 * 3755 * We might race with alloc_surplus_hugetlb_folio() here and be unable 3756 * to convert a surplus huge page to a normal huge page. That is 3757 * not critical, though, it just means the overall size of the 3758 * pool might be one hugepage larger than it needs to be, but 3759 * within all the constraints specified by the sysctls. 3760 */ 3761 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { 3762 if (!adjust_pool_surplus(h, nodes_allowed, -1)) 3763 break; 3764 } 3765 3766 allocated = 0; 3767 while (count > (persistent_huge_pages(h) + allocated)) { 3768 /* 3769 * If this allocation races such that we no longer need the 3770 * page, free_huge_folio will handle it by freeing the page 3771 * and reducing the surplus. 3772 */ 3773 spin_unlock_irq(&hugetlb_lock); 3774 3775 /* yield cpu to avoid soft lockup */ 3776 cond_resched(); 3777 3778 folio = alloc_pool_huge_folio(h, nodes_allowed, 3779 node_alloc_noretry); 3780 if (!folio) { 3781 prep_and_add_allocated_folios(h, &page_list); 3782 spin_lock_irq(&hugetlb_lock); 3783 goto out; 3784 } 3785 3786 list_add(&folio->lru, &page_list); 3787 allocated++; 3788 3789 /* Bail for signals. Probably ctrl-c from user */ 3790 if (signal_pending(current)) { 3791 prep_and_add_allocated_folios(h, &page_list); 3792 spin_lock_irq(&hugetlb_lock); 3793 goto out; 3794 } 3795 3796 spin_lock_irq(&hugetlb_lock); 3797 } 3798 3799 /* Add allocated pages to the pool */ 3800 if (!list_empty(&page_list)) { 3801 spin_unlock_irq(&hugetlb_lock); 3802 prep_and_add_allocated_folios(h, &page_list); 3803 spin_lock_irq(&hugetlb_lock); 3804 } 3805 3806 /* 3807 * Decrease the pool size 3808 * First return free pages to the buddy allocator (being careful 3809 * to keep enough around to satisfy reservations). Then place 3810 * pages into surplus state as needed so the pool will shrink 3811 * to the desired size as pages become free. 3812 * 3813 * By placing pages into the surplus state independent of the 3814 * overcommit value, we are allowing the surplus pool size to 3815 * exceed overcommit. There are few sane options here. Since 3816 * alloc_surplus_hugetlb_folio() is checking the global counter, 3817 * though, we'll note that we're not allowed to exceed surplus 3818 * and won't grow the pool anywhere else. Not until one of the 3819 * sysctls are changed, or the surplus pages go out of use. 3820 */ 3821 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages; 3822 min_count = max(count, min_count); 3823 try_to_free_low(h, min_count, nodes_allowed); 3824 3825 /* 3826 * Collect pages to be removed on list without dropping lock 3827 */ 3828 while (min_count < persistent_huge_pages(h)) { 3829 folio = remove_pool_hugetlb_folio(h, nodes_allowed, 0); 3830 if (!folio) 3831 break; 3832 3833 list_add(&folio->lru, &page_list); 3834 } 3835 /* free the pages after dropping lock */ 3836 spin_unlock_irq(&hugetlb_lock); 3837 update_and_free_pages_bulk(h, &page_list); 3838 flush_free_hpage_work(h); 3839 spin_lock_irq(&hugetlb_lock); 3840 3841 while (count < persistent_huge_pages(h)) { 3842 if (!adjust_pool_surplus(h, nodes_allowed, 1)) 3843 break; 3844 } 3845 out: 3846 h->max_huge_pages = persistent_huge_pages(h); 3847 spin_unlock_irq(&hugetlb_lock); 3848 mutex_unlock(&h->resize_lock); 3849 3850 NODEMASK_FREE(node_alloc_noretry); 3851 3852 return 0; 3853 } 3854 3855 static int demote_free_hugetlb_folio(struct hstate *h, struct folio *folio) 3856 { 3857 int i, nid = folio_nid(folio); 3858 struct hstate *target_hstate; 3859 struct page *subpage; 3860 struct folio *inner_folio; 3861 int rc = 0; 3862 3863 target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order); 3864 3865 remove_hugetlb_folio_for_demote(h, folio, false); 3866 spin_unlock_irq(&hugetlb_lock); 3867 3868 /* 3869 * If vmemmap already existed for folio, the remove routine above would 3870 * have cleared the hugetlb folio flag. Hence the folio is technically 3871 * no longer a hugetlb folio. hugetlb_vmemmap_restore_folio can only be 3872 * passed hugetlb folios and will BUG otherwise. 3873 */ 3874 if (folio_test_hugetlb(folio)) { 3875 rc = hugetlb_vmemmap_restore_folio(h, folio); 3876 if (rc) { 3877 /* Allocation of vmemmmap failed, we can not demote folio */ 3878 spin_lock_irq(&hugetlb_lock); 3879 folio_ref_unfreeze(folio, 1); 3880 add_hugetlb_folio(h, folio, false); 3881 return rc; 3882 } 3883 } 3884 3885 /* 3886 * Use destroy_compound_hugetlb_folio_for_demote for all huge page 3887 * sizes as it will not ref count folios. 3888 */ 3889 destroy_compound_hugetlb_folio_for_demote(folio, huge_page_order(h)); 3890 3891 /* 3892 * Taking target hstate mutex synchronizes with set_max_huge_pages. 3893 * Without the mutex, pages added to target hstate could be marked 3894 * as surplus. 3895 * 3896 * Note that we already hold h->resize_lock. To prevent deadlock, 3897 * use the convention of always taking larger size hstate mutex first. 3898 */ 3899 mutex_lock(&target_hstate->resize_lock); 3900 for (i = 0; i < pages_per_huge_page(h); 3901 i += pages_per_huge_page(target_hstate)) { 3902 subpage = folio_page(folio, i); 3903 inner_folio = page_folio(subpage); 3904 if (hstate_is_gigantic(target_hstate)) 3905 prep_compound_gigantic_folio_for_demote(inner_folio, 3906 target_hstate->order); 3907 else 3908 prep_compound_page(subpage, target_hstate->order); 3909 folio_change_private(inner_folio, NULL); 3910 prep_new_hugetlb_folio(target_hstate, inner_folio, nid); 3911 free_huge_folio(inner_folio); 3912 } 3913 mutex_unlock(&target_hstate->resize_lock); 3914 3915 spin_lock_irq(&hugetlb_lock); 3916 3917 /* 3918 * Not absolutely necessary, but for consistency update max_huge_pages 3919 * based on pool changes for the demoted page. 3920 */ 3921 h->max_huge_pages--; 3922 target_hstate->max_huge_pages += 3923 pages_per_huge_page(h) / pages_per_huge_page(target_hstate); 3924 3925 return rc; 3926 } 3927 3928 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed) 3929 __must_hold(&hugetlb_lock) 3930 { 3931 int nr_nodes, node; 3932 struct folio *folio; 3933 3934 lockdep_assert_held(&hugetlb_lock); 3935 3936 /* We should never get here if no demote order */ 3937 if (!h->demote_order) { 3938 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n"); 3939 return -EINVAL; /* internal error */ 3940 } 3941 3942 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 3943 list_for_each_entry(folio, &h->hugepage_freelists[node], lru) { 3944 if (folio_test_hwpoison(folio)) 3945 continue; 3946 return demote_free_hugetlb_folio(h, folio); 3947 } 3948 } 3949 3950 /* 3951 * Only way to get here is if all pages on free lists are poisoned. 3952 * Return -EBUSY so that caller will not retry. 3953 */ 3954 return -EBUSY; 3955 } 3956 3957 #define HSTATE_ATTR_RO(_name) \ 3958 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 3959 3960 #define HSTATE_ATTR_WO(_name) \ 3961 static struct kobj_attribute _name##_attr = __ATTR_WO(_name) 3962 3963 #define HSTATE_ATTR(_name) \ 3964 static struct kobj_attribute _name##_attr = __ATTR_RW(_name) 3965 3966 static struct kobject *hugepages_kobj; 3967 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 3968 3969 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp); 3970 3971 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp) 3972 { 3973 int i; 3974 3975 for (i = 0; i < HUGE_MAX_HSTATE; i++) 3976 if (hstate_kobjs[i] == kobj) { 3977 if (nidp) 3978 *nidp = NUMA_NO_NODE; 3979 return &hstates[i]; 3980 } 3981 3982 return kobj_to_node_hstate(kobj, nidp); 3983 } 3984 3985 static ssize_t nr_hugepages_show_common(struct kobject *kobj, 3986 struct kobj_attribute *attr, char *buf) 3987 { 3988 struct hstate *h; 3989 unsigned long nr_huge_pages; 3990 int nid; 3991 3992 h = kobj_to_hstate(kobj, &nid); 3993 if (nid == NUMA_NO_NODE) 3994 nr_huge_pages = h->nr_huge_pages; 3995 else 3996 nr_huge_pages = h->nr_huge_pages_node[nid]; 3997 3998 return sysfs_emit(buf, "%lu\n", nr_huge_pages); 3999 } 4000 4001 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy, 4002 struct hstate *h, int nid, 4003 unsigned long count, size_t len) 4004 { 4005 int err; 4006 nodemask_t nodes_allowed, *n_mask; 4007 4008 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 4009 return -EINVAL; 4010 4011 if (nid == NUMA_NO_NODE) { 4012 /* 4013 * global hstate attribute 4014 */ 4015 if (!(obey_mempolicy && 4016 init_nodemask_of_mempolicy(&nodes_allowed))) 4017 n_mask = &node_states[N_MEMORY]; 4018 else 4019 n_mask = &nodes_allowed; 4020 } else { 4021 /* 4022 * Node specific request. count adjustment happens in 4023 * set_max_huge_pages() after acquiring hugetlb_lock. 4024 */ 4025 init_nodemask_of_node(&nodes_allowed, nid); 4026 n_mask = &nodes_allowed; 4027 } 4028 4029 err = set_max_huge_pages(h, count, nid, n_mask); 4030 4031 return err ? err : len; 4032 } 4033 4034 static ssize_t nr_hugepages_store_common(bool obey_mempolicy, 4035 struct kobject *kobj, const char *buf, 4036 size_t len) 4037 { 4038 struct hstate *h; 4039 unsigned long count; 4040 int nid; 4041 int err; 4042 4043 err = kstrtoul(buf, 10, &count); 4044 if (err) 4045 return err; 4046 4047 h = kobj_to_hstate(kobj, &nid); 4048 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len); 4049 } 4050 4051 static ssize_t nr_hugepages_show(struct kobject *kobj, 4052 struct kobj_attribute *attr, char *buf) 4053 { 4054 return nr_hugepages_show_common(kobj, attr, buf); 4055 } 4056 4057 static ssize_t nr_hugepages_store(struct kobject *kobj, 4058 struct kobj_attribute *attr, const char *buf, size_t len) 4059 { 4060 return nr_hugepages_store_common(false, kobj, buf, len); 4061 } 4062 HSTATE_ATTR(nr_hugepages); 4063 4064 #ifdef CONFIG_NUMA 4065 4066 /* 4067 * hstate attribute for optionally mempolicy-based constraint on persistent 4068 * huge page alloc/free. 4069 */ 4070 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj, 4071 struct kobj_attribute *attr, 4072 char *buf) 4073 { 4074 return nr_hugepages_show_common(kobj, attr, buf); 4075 } 4076 4077 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj, 4078 struct kobj_attribute *attr, const char *buf, size_t len) 4079 { 4080 return nr_hugepages_store_common(true, kobj, buf, len); 4081 } 4082 HSTATE_ATTR(nr_hugepages_mempolicy); 4083 #endif 4084 4085 4086 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, 4087 struct kobj_attribute *attr, char *buf) 4088 { 4089 struct hstate *h = kobj_to_hstate(kobj, NULL); 4090 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages); 4091 } 4092 4093 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, 4094 struct kobj_attribute *attr, const char *buf, size_t count) 4095 { 4096 int err; 4097 unsigned long input; 4098 struct hstate *h = kobj_to_hstate(kobj, NULL); 4099 4100 if (hstate_is_gigantic(h)) 4101 return -EINVAL; 4102 4103 err = kstrtoul(buf, 10, &input); 4104 if (err) 4105 return err; 4106 4107 spin_lock_irq(&hugetlb_lock); 4108 h->nr_overcommit_huge_pages = input; 4109 spin_unlock_irq(&hugetlb_lock); 4110 4111 return count; 4112 } 4113 HSTATE_ATTR(nr_overcommit_hugepages); 4114 4115 static ssize_t free_hugepages_show(struct kobject *kobj, 4116 struct kobj_attribute *attr, char *buf) 4117 { 4118 struct hstate *h; 4119 unsigned long free_huge_pages; 4120 int nid; 4121 4122 h = kobj_to_hstate(kobj, &nid); 4123 if (nid == NUMA_NO_NODE) 4124 free_huge_pages = h->free_huge_pages; 4125 else 4126 free_huge_pages = h->free_huge_pages_node[nid]; 4127 4128 return sysfs_emit(buf, "%lu\n", free_huge_pages); 4129 } 4130 HSTATE_ATTR_RO(free_hugepages); 4131 4132 static ssize_t resv_hugepages_show(struct kobject *kobj, 4133 struct kobj_attribute *attr, char *buf) 4134 { 4135 struct hstate *h = kobj_to_hstate(kobj, NULL); 4136 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages); 4137 } 4138 HSTATE_ATTR_RO(resv_hugepages); 4139 4140 static ssize_t surplus_hugepages_show(struct kobject *kobj, 4141 struct kobj_attribute *attr, char *buf) 4142 { 4143 struct hstate *h; 4144 unsigned long surplus_huge_pages; 4145 int nid; 4146 4147 h = kobj_to_hstate(kobj, &nid); 4148 if (nid == NUMA_NO_NODE) 4149 surplus_huge_pages = h->surplus_huge_pages; 4150 else 4151 surplus_huge_pages = h->surplus_huge_pages_node[nid]; 4152 4153 return sysfs_emit(buf, "%lu\n", surplus_huge_pages); 4154 } 4155 HSTATE_ATTR_RO(surplus_hugepages); 4156 4157 static ssize_t demote_store(struct kobject *kobj, 4158 struct kobj_attribute *attr, const char *buf, size_t len) 4159 { 4160 unsigned long nr_demote; 4161 unsigned long nr_available; 4162 nodemask_t nodes_allowed, *n_mask; 4163 struct hstate *h; 4164 int err; 4165 int nid; 4166 4167 err = kstrtoul(buf, 10, &nr_demote); 4168 if (err) 4169 return err; 4170 h = kobj_to_hstate(kobj, &nid); 4171 4172 if (nid != NUMA_NO_NODE) { 4173 init_nodemask_of_node(&nodes_allowed, nid); 4174 n_mask = &nodes_allowed; 4175 } else { 4176 n_mask = &node_states[N_MEMORY]; 4177 } 4178 4179 /* Synchronize with other sysfs operations modifying huge pages */ 4180 mutex_lock(&h->resize_lock); 4181 spin_lock_irq(&hugetlb_lock); 4182 4183 while (nr_demote) { 4184 /* 4185 * Check for available pages to demote each time thorough the 4186 * loop as demote_pool_huge_page will drop hugetlb_lock. 4187 */ 4188 if (nid != NUMA_NO_NODE) 4189 nr_available = h->free_huge_pages_node[nid]; 4190 else 4191 nr_available = h->free_huge_pages; 4192 nr_available -= h->resv_huge_pages; 4193 if (!nr_available) 4194 break; 4195 4196 err = demote_pool_huge_page(h, n_mask); 4197 if (err) 4198 break; 4199 4200 nr_demote--; 4201 } 4202 4203 spin_unlock_irq(&hugetlb_lock); 4204 mutex_unlock(&h->resize_lock); 4205 4206 if (err) 4207 return err; 4208 return len; 4209 } 4210 HSTATE_ATTR_WO(demote); 4211 4212 static ssize_t demote_size_show(struct kobject *kobj, 4213 struct kobj_attribute *attr, char *buf) 4214 { 4215 struct hstate *h = kobj_to_hstate(kobj, NULL); 4216 unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K; 4217 4218 return sysfs_emit(buf, "%lukB\n", demote_size); 4219 } 4220 4221 static ssize_t demote_size_store(struct kobject *kobj, 4222 struct kobj_attribute *attr, 4223 const char *buf, size_t count) 4224 { 4225 struct hstate *h, *demote_hstate; 4226 unsigned long demote_size; 4227 unsigned int demote_order; 4228 4229 demote_size = (unsigned long)memparse(buf, NULL); 4230 4231 demote_hstate = size_to_hstate(demote_size); 4232 if (!demote_hstate) 4233 return -EINVAL; 4234 demote_order = demote_hstate->order; 4235 if (demote_order < HUGETLB_PAGE_ORDER) 4236 return -EINVAL; 4237 4238 /* demote order must be smaller than hstate order */ 4239 h = kobj_to_hstate(kobj, NULL); 4240 if (demote_order >= h->order) 4241 return -EINVAL; 4242 4243 /* resize_lock synchronizes access to demote size and writes */ 4244 mutex_lock(&h->resize_lock); 4245 h->demote_order = demote_order; 4246 mutex_unlock(&h->resize_lock); 4247 4248 return count; 4249 } 4250 HSTATE_ATTR(demote_size); 4251 4252 static struct attribute *hstate_attrs[] = { 4253 &nr_hugepages_attr.attr, 4254 &nr_overcommit_hugepages_attr.attr, 4255 &free_hugepages_attr.attr, 4256 &resv_hugepages_attr.attr, 4257 &surplus_hugepages_attr.attr, 4258 #ifdef CONFIG_NUMA 4259 &nr_hugepages_mempolicy_attr.attr, 4260 #endif 4261 NULL, 4262 }; 4263 4264 static const struct attribute_group hstate_attr_group = { 4265 .attrs = hstate_attrs, 4266 }; 4267 4268 static struct attribute *hstate_demote_attrs[] = { 4269 &demote_size_attr.attr, 4270 &demote_attr.attr, 4271 NULL, 4272 }; 4273 4274 static const struct attribute_group hstate_demote_attr_group = { 4275 .attrs = hstate_demote_attrs, 4276 }; 4277 4278 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent, 4279 struct kobject **hstate_kobjs, 4280 const struct attribute_group *hstate_attr_group) 4281 { 4282 int retval; 4283 int hi = hstate_index(h); 4284 4285 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent); 4286 if (!hstate_kobjs[hi]) 4287 return -ENOMEM; 4288 4289 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group); 4290 if (retval) { 4291 kobject_put(hstate_kobjs[hi]); 4292 hstate_kobjs[hi] = NULL; 4293 return retval; 4294 } 4295 4296 if (h->demote_order) { 4297 retval = sysfs_create_group(hstate_kobjs[hi], 4298 &hstate_demote_attr_group); 4299 if (retval) { 4300 pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name); 4301 sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group); 4302 kobject_put(hstate_kobjs[hi]); 4303 hstate_kobjs[hi] = NULL; 4304 return retval; 4305 } 4306 } 4307 4308 return 0; 4309 } 4310 4311 #ifdef CONFIG_NUMA 4312 static bool hugetlb_sysfs_initialized __ro_after_init; 4313 4314 /* 4315 * node_hstate/s - associate per node hstate attributes, via their kobjects, 4316 * with node devices in node_devices[] using a parallel array. The array 4317 * index of a node device or _hstate == node id. 4318 * This is here to avoid any static dependency of the node device driver, in 4319 * the base kernel, on the hugetlb module. 4320 */ 4321 struct node_hstate { 4322 struct kobject *hugepages_kobj; 4323 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 4324 }; 4325 static struct node_hstate node_hstates[MAX_NUMNODES]; 4326 4327 /* 4328 * A subset of global hstate attributes for node devices 4329 */ 4330 static struct attribute *per_node_hstate_attrs[] = { 4331 &nr_hugepages_attr.attr, 4332 &free_hugepages_attr.attr, 4333 &surplus_hugepages_attr.attr, 4334 NULL, 4335 }; 4336 4337 static const struct attribute_group per_node_hstate_attr_group = { 4338 .attrs = per_node_hstate_attrs, 4339 }; 4340 4341 /* 4342 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj. 4343 * Returns node id via non-NULL nidp. 4344 */ 4345 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 4346 { 4347 int nid; 4348 4349 for (nid = 0; nid < nr_node_ids; nid++) { 4350 struct node_hstate *nhs = &node_hstates[nid]; 4351 int i; 4352 for (i = 0; i < HUGE_MAX_HSTATE; i++) 4353 if (nhs->hstate_kobjs[i] == kobj) { 4354 if (nidp) 4355 *nidp = nid; 4356 return &hstates[i]; 4357 } 4358 } 4359 4360 BUG(); 4361 return NULL; 4362 } 4363 4364 /* 4365 * Unregister hstate attributes from a single node device. 4366 * No-op if no hstate attributes attached. 4367 */ 4368 void hugetlb_unregister_node(struct node *node) 4369 { 4370 struct hstate *h; 4371 struct node_hstate *nhs = &node_hstates[node->dev.id]; 4372 4373 if (!nhs->hugepages_kobj) 4374 return; /* no hstate attributes */ 4375 4376 for_each_hstate(h) { 4377 int idx = hstate_index(h); 4378 struct kobject *hstate_kobj = nhs->hstate_kobjs[idx]; 4379 4380 if (!hstate_kobj) 4381 continue; 4382 if (h->demote_order) 4383 sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group); 4384 sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group); 4385 kobject_put(hstate_kobj); 4386 nhs->hstate_kobjs[idx] = NULL; 4387 } 4388 4389 kobject_put(nhs->hugepages_kobj); 4390 nhs->hugepages_kobj = NULL; 4391 } 4392 4393 4394 /* 4395 * Register hstate attributes for a single node device. 4396 * No-op if attributes already registered. 4397 */ 4398 void hugetlb_register_node(struct node *node) 4399 { 4400 struct hstate *h; 4401 struct node_hstate *nhs = &node_hstates[node->dev.id]; 4402 int err; 4403 4404 if (!hugetlb_sysfs_initialized) 4405 return; 4406 4407 if (nhs->hugepages_kobj) 4408 return; /* already allocated */ 4409 4410 nhs->hugepages_kobj = kobject_create_and_add("hugepages", 4411 &node->dev.kobj); 4412 if (!nhs->hugepages_kobj) 4413 return; 4414 4415 for_each_hstate(h) { 4416 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj, 4417 nhs->hstate_kobjs, 4418 &per_node_hstate_attr_group); 4419 if (err) { 4420 pr_err("HugeTLB: Unable to add hstate %s for node %d\n", 4421 h->name, node->dev.id); 4422 hugetlb_unregister_node(node); 4423 break; 4424 } 4425 } 4426 } 4427 4428 /* 4429 * hugetlb init time: register hstate attributes for all registered node 4430 * devices of nodes that have memory. All on-line nodes should have 4431 * registered their associated device by this time. 4432 */ 4433 static void __init hugetlb_register_all_nodes(void) 4434 { 4435 int nid; 4436 4437 for_each_online_node(nid) 4438 hugetlb_register_node(node_devices[nid]); 4439 } 4440 #else /* !CONFIG_NUMA */ 4441 4442 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 4443 { 4444 BUG(); 4445 if (nidp) 4446 *nidp = -1; 4447 return NULL; 4448 } 4449 4450 static void hugetlb_register_all_nodes(void) { } 4451 4452 #endif 4453 4454 #ifdef CONFIG_CMA 4455 static void __init hugetlb_cma_check(void); 4456 #else 4457 static inline __init void hugetlb_cma_check(void) 4458 { 4459 } 4460 #endif 4461 4462 static void __init hugetlb_sysfs_init(void) 4463 { 4464 struct hstate *h; 4465 int err; 4466 4467 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); 4468 if (!hugepages_kobj) 4469 return; 4470 4471 for_each_hstate(h) { 4472 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj, 4473 hstate_kobjs, &hstate_attr_group); 4474 if (err) 4475 pr_err("HugeTLB: Unable to add hstate %s", h->name); 4476 } 4477 4478 #ifdef CONFIG_NUMA 4479 hugetlb_sysfs_initialized = true; 4480 #endif 4481 hugetlb_register_all_nodes(); 4482 } 4483 4484 #ifdef CONFIG_SYSCTL 4485 static void hugetlb_sysctl_init(void); 4486 #else 4487 static inline void hugetlb_sysctl_init(void) { } 4488 #endif 4489 4490 static int __init hugetlb_init(void) 4491 { 4492 int i; 4493 4494 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE < 4495 __NR_HPAGEFLAGS); 4496 4497 if (!hugepages_supported()) { 4498 if (hugetlb_max_hstate || default_hstate_max_huge_pages) 4499 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n"); 4500 return 0; 4501 } 4502 4503 /* 4504 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some 4505 * architectures depend on setup being done here. 4506 */ 4507 hugetlb_add_hstate(HUGETLB_PAGE_ORDER); 4508 if (!parsed_default_hugepagesz) { 4509 /* 4510 * If we did not parse a default huge page size, set 4511 * default_hstate_idx to HPAGE_SIZE hstate. And, if the 4512 * number of huge pages for this default size was implicitly 4513 * specified, set that here as well. 4514 * Note that the implicit setting will overwrite an explicit 4515 * setting. A warning will be printed in this case. 4516 */ 4517 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE)); 4518 if (default_hstate_max_huge_pages) { 4519 if (default_hstate.max_huge_pages) { 4520 char buf[32]; 4521 4522 string_get_size(huge_page_size(&default_hstate), 4523 1, STRING_UNITS_2, buf, 32); 4524 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n", 4525 default_hstate.max_huge_pages, buf); 4526 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n", 4527 default_hstate_max_huge_pages); 4528 } 4529 default_hstate.max_huge_pages = 4530 default_hstate_max_huge_pages; 4531 4532 for_each_online_node(i) 4533 default_hstate.max_huge_pages_node[i] = 4534 default_hugepages_in_node[i]; 4535 } 4536 } 4537 4538 hugetlb_cma_check(); 4539 hugetlb_init_hstates(); 4540 gather_bootmem_prealloc(); 4541 report_hugepages(); 4542 4543 hugetlb_sysfs_init(); 4544 hugetlb_cgroup_file_init(); 4545 hugetlb_sysctl_init(); 4546 4547 #ifdef CONFIG_SMP 4548 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus()); 4549 #else 4550 num_fault_mutexes = 1; 4551 #endif 4552 hugetlb_fault_mutex_table = 4553 kmalloc_array(num_fault_mutexes, sizeof(struct mutex), 4554 GFP_KERNEL); 4555 BUG_ON(!hugetlb_fault_mutex_table); 4556 4557 for (i = 0; i < num_fault_mutexes; i++) 4558 mutex_init(&hugetlb_fault_mutex_table[i]); 4559 return 0; 4560 } 4561 subsys_initcall(hugetlb_init); 4562 4563 /* Overwritten by architectures with more huge page sizes */ 4564 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size) 4565 { 4566 return size == HPAGE_SIZE; 4567 } 4568 4569 void __init hugetlb_add_hstate(unsigned int order) 4570 { 4571 struct hstate *h; 4572 unsigned long i; 4573 4574 if (size_to_hstate(PAGE_SIZE << order)) { 4575 return; 4576 } 4577 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE); 4578 BUG_ON(order < order_base_2(__NR_USED_SUBPAGE)); 4579 h = &hstates[hugetlb_max_hstate++]; 4580 mutex_init(&h->resize_lock); 4581 h->order = order; 4582 h->mask = ~(huge_page_size(h) - 1); 4583 for (i = 0; i < MAX_NUMNODES; ++i) 4584 INIT_LIST_HEAD(&h->hugepage_freelists[i]); 4585 INIT_LIST_HEAD(&h->hugepage_activelist); 4586 h->next_nid_to_alloc = first_memory_node; 4587 h->next_nid_to_free = first_memory_node; 4588 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", 4589 huge_page_size(h)/SZ_1K); 4590 4591 parsed_hstate = h; 4592 } 4593 4594 bool __init __weak hugetlb_node_alloc_supported(void) 4595 { 4596 return true; 4597 } 4598 4599 static void __init hugepages_clear_pages_in_node(void) 4600 { 4601 if (!hugetlb_max_hstate) { 4602 default_hstate_max_huge_pages = 0; 4603 memset(default_hugepages_in_node, 0, 4604 sizeof(default_hugepages_in_node)); 4605 } else { 4606 parsed_hstate->max_huge_pages = 0; 4607 memset(parsed_hstate->max_huge_pages_node, 0, 4608 sizeof(parsed_hstate->max_huge_pages_node)); 4609 } 4610 } 4611 4612 /* 4613 * hugepages command line processing 4614 * hugepages normally follows a valid hugepagsz or default_hugepagsz 4615 * specification. If not, ignore the hugepages value. hugepages can also 4616 * be the first huge page command line option in which case it implicitly 4617 * specifies the number of huge pages for the default size. 4618 */ 4619 static int __init hugepages_setup(char *s) 4620 { 4621 unsigned long *mhp; 4622 static unsigned long *last_mhp; 4623 int node = NUMA_NO_NODE; 4624 int count; 4625 unsigned long tmp; 4626 char *p = s; 4627 4628 if (!parsed_valid_hugepagesz) { 4629 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s); 4630 parsed_valid_hugepagesz = true; 4631 return 1; 4632 } 4633 4634 /* 4635 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter 4636 * yet, so this hugepages= parameter goes to the "default hstate". 4637 * Otherwise, it goes with the previously parsed hugepagesz or 4638 * default_hugepagesz. 4639 */ 4640 else if (!hugetlb_max_hstate) 4641 mhp = &default_hstate_max_huge_pages; 4642 else 4643 mhp = &parsed_hstate->max_huge_pages; 4644 4645 if (mhp == last_mhp) { 4646 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s); 4647 return 1; 4648 } 4649 4650 while (*p) { 4651 count = 0; 4652 if (sscanf(p, "%lu%n", &tmp, &count) != 1) 4653 goto invalid; 4654 /* Parameter is node format */ 4655 if (p[count] == ':') { 4656 if (!hugetlb_node_alloc_supported()) { 4657 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n"); 4658 return 1; 4659 } 4660 if (tmp >= MAX_NUMNODES || !node_online(tmp)) 4661 goto invalid; 4662 node = array_index_nospec(tmp, MAX_NUMNODES); 4663 p += count + 1; 4664 /* Parse hugepages */ 4665 if (sscanf(p, "%lu%n", &tmp, &count) != 1) 4666 goto invalid; 4667 if (!hugetlb_max_hstate) 4668 default_hugepages_in_node[node] = tmp; 4669 else 4670 parsed_hstate->max_huge_pages_node[node] = tmp; 4671 *mhp += tmp; 4672 /* Go to parse next node*/ 4673 if (p[count] == ',') 4674 p += count + 1; 4675 else 4676 break; 4677 } else { 4678 if (p != s) 4679 goto invalid; 4680 *mhp = tmp; 4681 break; 4682 } 4683 } 4684 4685 /* 4686 * Global state is always initialized later in hugetlb_init. 4687 * But we need to allocate gigantic hstates here early to still 4688 * use the bootmem allocator. 4689 */ 4690 if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate)) 4691 hugetlb_hstate_alloc_pages(parsed_hstate); 4692 4693 last_mhp = mhp; 4694 4695 return 1; 4696 4697 invalid: 4698 pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p); 4699 hugepages_clear_pages_in_node(); 4700 return 1; 4701 } 4702 __setup("hugepages=", hugepages_setup); 4703 4704 /* 4705 * hugepagesz command line processing 4706 * A specific huge page size can only be specified once with hugepagesz. 4707 * hugepagesz is followed by hugepages on the command line. The global 4708 * variable 'parsed_valid_hugepagesz' is used to determine if prior 4709 * hugepagesz argument was valid. 4710 */ 4711 static int __init hugepagesz_setup(char *s) 4712 { 4713 unsigned long size; 4714 struct hstate *h; 4715 4716 parsed_valid_hugepagesz = false; 4717 size = (unsigned long)memparse(s, NULL); 4718 4719 if (!arch_hugetlb_valid_size(size)) { 4720 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s); 4721 return 1; 4722 } 4723 4724 h = size_to_hstate(size); 4725 if (h) { 4726 /* 4727 * hstate for this size already exists. This is normally 4728 * an error, but is allowed if the existing hstate is the 4729 * default hstate. More specifically, it is only allowed if 4730 * the number of huge pages for the default hstate was not 4731 * previously specified. 4732 */ 4733 if (!parsed_default_hugepagesz || h != &default_hstate || 4734 default_hstate.max_huge_pages) { 4735 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s); 4736 return 1; 4737 } 4738 4739 /* 4740 * No need to call hugetlb_add_hstate() as hstate already 4741 * exists. But, do set parsed_hstate so that a following 4742 * hugepages= parameter will be applied to this hstate. 4743 */ 4744 parsed_hstate = h; 4745 parsed_valid_hugepagesz = true; 4746 return 1; 4747 } 4748 4749 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); 4750 parsed_valid_hugepagesz = true; 4751 return 1; 4752 } 4753 __setup("hugepagesz=", hugepagesz_setup); 4754 4755 /* 4756 * default_hugepagesz command line input 4757 * Only one instance of default_hugepagesz allowed on command line. 4758 */ 4759 static int __init default_hugepagesz_setup(char *s) 4760 { 4761 unsigned long size; 4762 int i; 4763 4764 parsed_valid_hugepagesz = false; 4765 if (parsed_default_hugepagesz) { 4766 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s); 4767 return 1; 4768 } 4769 4770 size = (unsigned long)memparse(s, NULL); 4771 4772 if (!arch_hugetlb_valid_size(size)) { 4773 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s); 4774 return 1; 4775 } 4776 4777 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); 4778 parsed_valid_hugepagesz = true; 4779 parsed_default_hugepagesz = true; 4780 default_hstate_idx = hstate_index(size_to_hstate(size)); 4781 4782 /* 4783 * The number of default huge pages (for this size) could have been 4784 * specified as the first hugetlb parameter: hugepages=X. If so, 4785 * then default_hstate_max_huge_pages is set. If the default huge 4786 * page size is gigantic (> MAX_ORDER), then the pages must be 4787 * allocated here from bootmem allocator. 4788 */ 4789 if (default_hstate_max_huge_pages) { 4790 default_hstate.max_huge_pages = default_hstate_max_huge_pages; 4791 for_each_online_node(i) 4792 default_hstate.max_huge_pages_node[i] = 4793 default_hugepages_in_node[i]; 4794 if (hstate_is_gigantic(&default_hstate)) 4795 hugetlb_hstate_alloc_pages(&default_hstate); 4796 default_hstate_max_huge_pages = 0; 4797 } 4798 4799 return 1; 4800 } 4801 __setup("default_hugepagesz=", default_hugepagesz_setup); 4802 4803 static nodemask_t *policy_mbind_nodemask(gfp_t gfp) 4804 { 4805 #ifdef CONFIG_NUMA 4806 struct mempolicy *mpol = get_task_policy(current); 4807 4808 /* 4809 * Only enforce MPOL_BIND policy which overlaps with cpuset policy 4810 * (from policy_nodemask) specifically for hugetlb case 4811 */ 4812 if (mpol->mode == MPOL_BIND && 4813 (apply_policy_zone(mpol, gfp_zone(gfp)) && 4814 cpuset_nodemask_valid_mems_allowed(&mpol->nodes))) 4815 return &mpol->nodes; 4816 #endif 4817 return NULL; 4818 } 4819 4820 static unsigned int allowed_mems_nr(struct hstate *h) 4821 { 4822 int node; 4823 unsigned int nr = 0; 4824 nodemask_t *mbind_nodemask; 4825 unsigned int *array = h->free_huge_pages_node; 4826 gfp_t gfp_mask = htlb_alloc_mask(h); 4827 4828 mbind_nodemask = policy_mbind_nodemask(gfp_mask); 4829 for_each_node_mask(node, cpuset_current_mems_allowed) { 4830 if (!mbind_nodemask || node_isset(node, *mbind_nodemask)) 4831 nr += array[node]; 4832 } 4833 4834 return nr; 4835 } 4836 4837 #ifdef CONFIG_SYSCTL 4838 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write, 4839 void *buffer, size_t *length, 4840 loff_t *ppos, unsigned long *out) 4841 { 4842 struct ctl_table dup_table; 4843 4844 /* 4845 * In order to avoid races with __do_proc_doulongvec_minmax(), we 4846 * can duplicate the @table and alter the duplicate of it. 4847 */ 4848 dup_table = *table; 4849 dup_table.data = out; 4850 4851 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos); 4852 } 4853 4854 static int hugetlb_sysctl_handler_common(bool obey_mempolicy, 4855 struct ctl_table *table, int write, 4856 void *buffer, size_t *length, loff_t *ppos) 4857 { 4858 struct hstate *h = &default_hstate; 4859 unsigned long tmp = h->max_huge_pages; 4860 int ret; 4861 4862 if (!hugepages_supported()) 4863 return -EOPNOTSUPP; 4864 4865 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, 4866 &tmp); 4867 if (ret) 4868 goto out; 4869 4870 if (write) 4871 ret = __nr_hugepages_store_common(obey_mempolicy, h, 4872 NUMA_NO_NODE, tmp, *length); 4873 out: 4874 return ret; 4875 } 4876 4877 static int hugetlb_sysctl_handler(struct ctl_table *table, int write, 4878 void *buffer, size_t *length, loff_t *ppos) 4879 { 4880 4881 return hugetlb_sysctl_handler_common(false, table, write, 4882 buffer, length, ppos); 4883 } 4884 4885 #ifdef CONFIG_NUMA 4886 static int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write, 4887 void *buffer, size_t *length, loff_t *ppos) 4888 { 4889 return hugetlb_sysctl_handler_common(true, table, write, 4890 buffer, length, ppos); 4891 } 4892 #endif /* CONFIG_NUMA */ 4893 4894 static int hugetlb_overcommit_handler(struct ctl_table *table, int write, 4895 void *buffer, size_t *length, loff_t *ppos) 4896 { 4897 struct hstate *h = &default_hstate; 4898 unsigned long tmp; 4899 int ret; 4900 4901 if (!hugepages_supported()) 4902 return -EOPNOTSUPP; 4903 4904 tmp = h->nr_overcommit_huge_pages; 4905 4906 if (write && hstate_is_gigantic(h)) 4907 return -EINVAL; 4908 4909 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, 4910 &tmp); 4911 if (ret) 4912 goto out; 4913 4914 if (write) { 4915 spin_lock_irq(&hugetlb_lock); 4916 h->nr_overcommit_huge_pages = tmp; 4917 spin_unlock_irq(&hugetlb_lock); 4918 } 4919 out: 4920 return ret; 4921 } 4922 4923 static struct ctl_table hugetlb_table[] = { 4924 { 4925 .procname = "nr_hugepages", 4926 .data = NULL, 4927 .maxlen = sizeof(unsigned long), 4928 .mode = 0644, 4929 .proc_handler = hugetlb_sysctl_handler, 4930 }, 4931 #ifdef CONFIG_NUMA 4932 { 4933 .procname = "nr_hugepages_mempolicy", 4934 .data = NULL, 4935 .maxlen = sizeof(unsigned long), 4936 .mode = 0644, 4937 .proc_handler = &hugetlb_mempolicy_sysctl_handler, 4938 }, 4939 #endif 4940 { 4941 .procname = "hugetlb_shm_group", 4942 .data = &sysctl_hugetlb_shm_group, 4943 .maxlen = sizeof(gid_t), 4944 .mode = 0644, 4945 .proc_handler = proc_dointvec, 4946 }, 4947 { 4948 .procname = "nr_overcommit_hugepages", 4949 .data = NULL, 4950 .maxlen = sizeof(unsigned long), 4951 .mode = 0644, 4952 .proc_handler = hugetlb_overcommit_handler, 4953 }, 4954 { } 4955 }; 4956 4957 static void hugetlb_sysctl_init(void) 4958 { 4959 register_sysctl_init("vm", hugetlb_table); 4960 } 4961 #endif /* CONFIG_SYSCTL */ 4962 4963 void hugetlb_report_meminfo(struct seq_file *m) 4964 { 4965 struct hstate *h; 4966 unsigned long total = 0; 4967 4968 if (!hugepages_supported()) 4969 return; 4970 4971 for_each_hstate(h) { 4972 unsigned long count = h->nr_huge_pages; 4973 4974 total += huge_page_size(h) * count; 4975 4976 if (h == &default_hstate) 4977 seq_printf(m, 4978 "HugePages_Total: %5lu\n" 4979 "HugePages_Free: %5lu\n" 4980 "HugePages_Rsvd: %5lu\n" 4981 "HugePages_Surp: %5lu\n" 4982 "Hugepagesize: %8lu kB\n", 4983 count, 4984 h->free_huge_pages, 4985 h->resv_huge_pages, 4986 h->surplus_huge_pages, 4987 huge_page_size(h) / SZ_1K); 4988 } 4989 4990 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K); 4991 } 4992 4993 int hugetlb_report_node_meminfo(char *buf, int len, int nid) 4994 { 4995 struct hstate *h = &default_hstate; 4996 4997 if (!hugepages_supported()) 4998 return 0; 4999 5000 return sysfs_emit_at(buf, len, 5001 "Node %d HugePages_Total: %5u\n" 5002 "Node %d HugePages_Free: %5u\n" 5003 "Node %d HugePages_Surp: %5u\n", 5004 nid, h->nr_huge_pages_node[nid], 5005 nid, h->free_huge_pages_node[nid], 5006 nid, h->surplus_huge_pages_node[nid]); 5007 } 5008 5009 void hugetlb_show_meminfo_node(int nid) 5010 { 5011 struct hstate *h; 5012 5013 if (!hugepages_supported()) 5014 return; 5015 5016 for_each_hstate(h) 5017 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n", 5018 nid, 5019 h->nr_huge_pages_node[nid], 5020 h->free_huge_pages_node[nid], 5021 h->surplus_huge_pages_node[nid], 5022 huge_page_size(h) / SZ_1K); 5023 } 5024 5025 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm) 5026 { 5027 seq_printf(m, "HugetlbPages:\t%8lu kB\n", 5028 K(atomic_long_read(&mm->hugetlb_usage))); 5029 } 5030 5031 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ 5032 unsigned long hugetlb_total_pages(void) 5033 { 5034 struct hstate *h; 5035 unsigned long nr_total_pages = 0; 5036 5037 for_each_hstate(h) 5038 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h); 5039 return nr_total_pages; 5040 } 5041 5042 static int hugetlb_acct_memory(struct hstate *h, long delta) 5043 { 5044 int ret = -ENOMEM; 5045 5046 if (!delta) 5047 return 0; 5048 5049 spin_lock_irq(&hugetlb_lock); 5050 /* 5051 * When cpuset is configured, it breaks the strict hugetlb page 5052 * reservation as the accounting is done on a global variable. Such 5053 * reservation is completely rubbish in the presence of cpuset because 5054 * the reservation is not checked against page availability for the 5055 * current cpuset. Application can still potentially OOM'ed by kernel 5056 * with lack of free htlb page in cpuset that the task is in. 5057 * Attempt to enforce strict accounting with cpuset is almost 5058 * impossible (or too ugly) because cpuset is too fluid that 5059 * task or memory node can be dynamically moved between cpusets. 5060 * 5061 * The change of semantics for shared hugetlb mapping with cpuset is 5062 * undesirable. However, in order to preserve some of the semantics, 5063 * we fall back to check against current free page availability as 5064 * a best attempt and hopefully to minimize the impact of changing 5065 * semantics that cpuset has. 5066 * 5067 * Apart from cpuset, we also have memory policy mechanism that 5068 * also determines from which node the kernel will allocate memory 5069 * in a NUMA system. So similar to cpuset, we also should consider 5070 * the memory policy of the current task. Similar to the description 5071 * above. 5072 */ 5073 if (delta > 0) { 5074 if (gather_surplus_pages(h, delta) < 0) 5075 goto out; 5076 5077 if (delta > allowed_mems_nr(h)) { 5078 return_unused_surplus_pages(h, delta); 5079 goto out; 5080 } 5081 } 5082 5083 ret = 0; 5084 if (delta < 0) 5085 return_unused_surplus_pages(h, (unsigned long) -delta); 5086 5087 out: 5088 spin_unlock_irq(&hugetlb_lock); 5089 return ret; 5090 } 5091 5092 static void hugetlb_vm_op_open(struct vm_area_struct *vma) 5093 { 5094 struct resv_map *resv = vma_resv_map(vma); 5095 5096 /* 5097 * HPAGE_RESV_OWNER indicates a private mapping. 5098 * This new VMA should share its siblings reservation map if present. 5099 * The VMA will only ever have a valid reservation map pointer where 5100 * it is being copied for another still existing VMA. As that VMA 5101 * has a reference to the reservation map it cannot disappear until 5102 * after this open call completes. It is therefore safe to take a 5103 * new reference here without additional locking. 5104 */ 5105 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 5106 resv_map_dup_hugetlb_cgroup_uncharge_info(resv); 5107 kref_get(&resv->refs); 5108 } 5109 5110 /* 5111 * vma_lock structure for sharable mappings is vma specific. 5112 * Clear old pointer (if copied via vm_area_dup) and allocate 5113 * new structure. Before clearing, make sure vma_lock is not 5114 * for this vma. 5115 */ 5116 if (vma->vm_flags & VM_MAYSHARE) { 5117 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 5118 5119 if (vma_lock) { 5120 if (vma_lock->vma != vma) { 5121 vma->vm_private_data = NULL; 5122 hugetlb_vma_lock_alloc(vma); 5123 } else 5124 pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__); 5125 } else 5126 hugetlb_vma_lock_alloc(vma); 5127 } 5128 } 5129 5130 static void hugetlb_vm_op_close(struct vm_area_struct *vma) 5131 { 5132 struct hstate *h = hstate_vma(vma); 5133 struct resv_map *resv; 5134 struct hugepage_subpool *spool = subpool_vma(vma); 5135 unsigned long reserve, start, end; 5136 long gbl_reserve; 5137 5138 hugetlb_vma_lock_free(vma); 5139 5140 resv = vma_resv_map(vma); 5141 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 5142 return; 5143 5144 start = vma_hugecache_offset(h, vma, vma->vm_start); 5145 end = vma_hugecache_offset(h, vma, vma->vm_end); 5146 5147 reserve = (end - start) - region_count(resv, start, end); 5148 hugetlb_cgroup_uncharge_counter(resv, start, end); 5149 if (reserve) { 5150 /* 5151 * Decrement reserve counts. The global reserve count may be 5152 * adjusted if the subpool has a minimum size. 5153 */ 5154 gbl_reserve = hugepage_subpool_put_pages(spool, reserve); 5155 hugetlb_acct_memory(h, -gbl_reserve); 5156 } 5157 5158 kref_put(&resv->refs, resv_map_release); 5159 } 5160 5161 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr) 5162 { 5163 if (addr & ~(huge_page_mask(hstate_vma(vma)))) 5164 return -EINVAL; 5165 5166 /* 5167 * PMD sharing is only possible for PUD_SIZE-aligned address ranges 5168 * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this 5169 * split, unshare PMDs in the PUD_SIZE interval surrounding addr now. 5170 */ 5171 if (addr & ~PUD_MASK) { 5172 /* 5173 * hugetlb_vm_op_split is called right before we attempt to 5174 * split the VMA. We will need to unshare PMDs in the old and 5175 * new VMAs, so let's unshare before we split. 5176 */ 5177 unsigned long floor = addr & PUD_MASK; 5178 unsigned long ceil = floor + PUD_SIZE; 5179 5180 if (floor >= vma->vm_start && ceil <= vma->vm_end) 5181 hugetlb_unshare_pmds(vma, floor, ceil); 5182 } 5183 5184 return 0; 5185 } 5186 5187 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma) 5188 { 5189 return huge_page_size(hstate_vma(vma)); 5190 } 5191 5192 /* 5193 * We cannot handle pagefaults against hugetlb pages at all. They cause 5194 * handle_mm_fault() to try to instantiate regular-sized pages in the 5195 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get 5196 * this far. 5197 */ 5198 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf) 5199 { 5200 BUG(); 5201 return 0; 5202 } 5203 5204 /* 5205 * When a new function is introduced to vm_operations_struct and added 5206 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops. 5207 * This is because under System V memory model, mappings created via 5208 * shmget/shmat with "huge page" specified are backed by hugetlbfs files, 5209 * their original vm_ops are overwritten with shm_vm_ops. 5210 */ 5211 const struct vm_operations_struct hugetlb_vm_ops = { 5212 .fault = hugetlb_vm_op_fault, 5213 .open = hugetlb_vm_op_open, 5214 .close = hugetlb_vm_op_close, 5215 .may_split = hugetlb_vm_op_split, 5216 .pagesize = hugetlb_vm_op_pagesize, 5217 }; 5218 5219 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, 5220 int writable) 5221 { 5222 pte_t entry; 5223 unsigned int shift = huge_page_shift(hstate_vma(vma)); 5224 5225 if (writable) { 5226 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page, 5227 vma->vm_page_prot))); 5228 } else { 5229 entry = huge_pte_wrprotect(mk_huge_pte(page, 5230 vma->vm_page_prot)); 5231 } 5232 entry = pte_mkyoung(entry); 5233 entry = arch_make_huge_pte(entry, shift, vma->vm_flags); 5234 5235 return entry; 5236 } 5237 5238 static void set_huge_ptep_writable(struct vm_area_struct *vma, 5239 unsigned long address, pte_t *ptep) 5240 { 5241 pte_t entry; 5242 5243 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep))); 5244 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) 5245 update_mmu_cache(vma, address, ptep); 5246 } 5247 5248 bool is_hugetlb_entry_migration(pte_t pte) 5249 { 5250 swp_entry_t swp; 5251 5252 if (huge_pte_none(pte) || pte_present(pte)) 5253 return false; 5254 swp = pte_to_swp_entry(pte); 5255 if (is_migration_entry(swp)) 5256 return true; 5257 else 5258 return false; 5259 } 5260 5261 bool is_hugetlb_entry_hwpoisoned(pte_t pte) 5262 { 5263 swp_entry_t swp; 5264 5265 if (huge_pte_none(pte) || pte_present(pte)) 5266 return false; 5267 swp = pte_to_swp_entry(pte); 5268 if (is_hwpoison_entry(swp)) 5269 return true; 5270 else 5271 return false; 5272 } 5273 5274 static void 5275 hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr, 5276 struct folio *new_folio, pte_t old, unsigned long sz) 5277 { 5278 pte_t newpte = make_huge_pte(vma, &new_folio->page, 1); 5279 5280 __folio_mark_uptodate(new_folio); 5281 hugepage_add_new_anon_rmap(new_folio, vma, addr); 5282 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(old)) 5283 newpte = huge_pte_mkuffd_wp(newpte); 5284 set_huge_pte_at(vma->vm_mm, addr, ptep, newpte, sz); 5285 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm); 5286 folio_set_hugetlb_migratable(new_folio); 5287 } 5288 5289 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, 5290 struct vm_area_struct *dst_vma, 5291 struct vm_area_struct *src_vma) 5292 { 5293 pte_t *src_pte, *dst_pte, entry; 5294 struct folio *pte_folio; 5295 unsigned long addr; 5296 bool cow = is_cow_mapping(src_vma->vm_flags); 5297 struct hstate *h = hstate_vma(src_vma); 5298 unsigned long sz = huge_page_size(h); 5299 unsigned long npages = pages_per_huge_page(h); 5300 struct mmu_notifier_range range; 5301 unsigned long last_addr_mask; 5302 int ret = 0; 5303 5304 if (cow) { 5305 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src, 5306 src_vma->vm_start, 5307 src_vma->vm_end); 5308 mmu_notifier_invalidate_range_start(&range); 5309 vma_assert_write_locked(src_vma); 5310 raw_write_seqcount_begin(&src->write_protect_seq); 5311 } else { 5312 /* 5313 * For shared mappings the vma lock must be held before 5314 * calling hugetlb_walk() in the src vma. Otherwise, the 5315 * returned ptep could go away if part of a shared pmd and 5316 * another thread calls huge_pmd_unshare. 5317 */ 5318 hugetlb_vma_lock_read(src_vma); 5319 } 5320 5321 last_addr_mask = hugetlb_mask_last_page(h); 5322 for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) { 5323 spinlock_t *src_ptl, *dst_ptl; 5324 src_pte = hugetlb_walk(src_vma, addr, sz); 5325 if (!src_pte) { 5326 addr |= last_addr_mask; 5327 continue; 5328 } 5329 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz); 5330 if (!dst_pte) { 5331 ret = -ENOMEM; 5332 break; 5333 } 5334 5335 /* 5336 * If the pagetables are shared don't copy or take references. 5337 * 5338 * dst_pte == src_pte is the common case of src/dest sharing. 5339 * However, src could have 'unshared' and dst shares with 5340 * another vma. So page_count of ptep page is checked instead 5341 * to reliably determine whether pte is shared. 5342 */ 5343 if (page_count(virt_to_page(dst_pte)) > 1) { 5344 addr |= last_addr_mask; 5345 continue; 5346 } 5347 5348 dst_ptl = huge_pte_lock(h, dst, dst_pte); 5349 src_ptl = huge_pte_lockptr(h, src, src_pte); 5350 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 5351 entry = huge_ptep_get(src_pte); 5352 again: 5353 if (huge_pte_none(entry)) { 5354 /* 5355 * Skip if src entry none. 5356 */ 5357 ; 5358 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) { 5359 if (!userfaultfd_wp(dst_vma)) 5360 entry = huge_pte_clear_uffd_wp(entry); 5361 set_huge_pte_at(dst, addr, dst_pte, entry, sz); 5362 } else if (unlikely(is_hugetlb_entry_migration(entry))) { 5363 swp_entry_t swp_entry = pte_to_swp_entry(entry); 5364 bool uffd_wp = pte_swp_uffd_wp(entry); 5365 5366 if (!is_readable_migration_entry(swp_entry) && cow) { 5367 /* 5368 * COW mappings require pages in both 5369 * parent and child to be set to read. 5370 */ 5371 swp_entry = make_readable_migration_entry( 5372 swp_offset(swp_entry)); 5373 entry = swp_entry_to_pte(swp_entry); 5374 if (userfaultfd_wp(src_vma) && uffd_wp) 5375 entry = pte_swp_mkuffd_wp(entry); 5376 set_huge_pte_at(src, addr, src_pte, entry, sz); 5377 } 5378 if (!userfaultfd_wp(dst_vma)) 5379 entry = huge_pte_clear_uffd_wp(entry); 5380 set_huge_pte_at(dst, addr, dst_pte, entry, sz); 5381 } else if (unlikely(is_pte_marker(entry))) { 5382 pte_marker marker = copy_pte_marker( 5383 pte_to_swp_entry(entry), dst_vma); 5384 5385 if (marker) 5386 set_huge_pte_at(dst, addr, dst_pte, 5387 make_pte_marker(marker), sz); 5388 } else { 5389 entry = huge_ptep_get(src_pte); 5390 pte_folio = page_folio(pte_page(entry)); 5391 folio_get(pte_folio); 5392 5393 /* 5394 * Failing to duplicate the anon rmap is a rare case 5395 * where we see pinned hugetlb pages while they're 5396 * prone to COW. We need to do the COW earlier during 5397 * fork. 5398 * 5399 * When pre-allocating the page or copying data, we 5400 * need to be without the pgtable locks since we could 5401 * sleep during the process. 5402 */ 5403 if (!folio_test_anon(pte_folio)) { 5404 page_dup_file_rmap(&pte_folio->page, true); 5405 } else if (page_try_dup_anon_rmap(&pte_folio->page, 5406 true, src_vma)) { 5407 pte_t src_pte_old = entry; 5408 struct folio *new_folio; 5409 5410 spin_unlock(src_ptl); 5411 spin_unlock(dst_ptl); 5412 /* Do not use reserve as it's private owned */ 5413 new_folio = alloc_hugetlb_folio(dst_vma, addr, 1); 5414 if (IS_ERR(new_folio)) { 5415 folio_put(pte_folio); 5416 ret = PTR_ERR(new_folio); 5417 break; 5418 } 5419 ret = copy_user_large_folio(new_folio, 5420 pte_folio, 5421 addr, dst_vma); 5422 folio_put(pte_folio); 5423 if (ret) { 5424 folio_put(new_folio); 5425 break; 5426 } 5427 5428 /* Install the new hugetlb folio if src pte stable */ 5429 dst_ptl = huge_pte_lock(h, dst, dst_pte); 5430 src_ptl = huge_pte_lockptr(h, src, src_pte); 5431 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 5432 entry = huge_ptep_get(src_pte); 5433 if (!pte_same(src_pte_old, entry)) { 5434 restore_reserve_on_error(h, dst_vma, addr, 5435 new_folio); 5436 folio_put(new_folio); 5437 /* huge_ptep of dst_pte won't change as in child */ 5438 goto again; 5439 } 5440 hugetlb_install_folio(dst_vma, dst_pte, addr, 5441 new_folio, src_pte_old, sz); 5442 spin_unlock(src_ptl); 5443 spin_unlock(dst_ptl); 5444 continue; 5445 } 5446 5447 if (cow) { 5448 /* 5449 * No need to notify as we are downgrading page 5450 * table protection not changing it to point 5451 * to a new page. 5452 * 5453 * See Documentation/mm/mmu_notifier.rst 5454 */ 5455 huge_ptep_set_wrprotect(src, addr, src_pte); 5456 entry = huge_pte_wrprotect(entry); 5457 } 5458 5459 if (!userfaultfd_wp(dst_vma)) 5460 entry = huge_pte_clear_uffd_wp(entry); 5461 5462 set_huge_pte_at(dst, addr, dst_pte, entry, sz); 5463 hugetlb_count_add(npages, dst); 5464 } 5465 spin_unlock(src_ptl); 5466 spin_unlock(dst_ptl); 5467 } 5468 5469 if (cow) { 5470 raw_write_seqcount_end(&src->write_protect_seq); 5471 mmu_notifier_invalidate_range_end(&range); 5472 } else { 5473 hugetlb_vma_unlock_read(src_vma); 5474 } 5475 5476 return ret; 5477 } 5478 5479 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr, 5480 unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte, 5481 unsigned long sz) 5482 { 5483 struct hstate *h = hstate_vma(vma); 5484 struct mm_struct *mm = vma->vm_mm; 5485 spinlock_t *src_ptl, *dst_ptl; 5486 pte_t pte; 5487 5488 dst_ptl = huge_pte_lock(h, mm, dst_pte); 5489 src_ptl = huge_pte_lockptr(h, mm, src_pte); 5490 5491 /* 5492 * We don't have to worry about the ordering of src and dst ptlocks 5493 * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock. 5494 */ 5495 if (src_ptl != dst_ptl) 5496 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 5497 5498 pte = huge_ptep_get_and_clear(mm, old_addr, src_pte); 5499 set_huge_pte_at(mm, new_addr, dst_pte, pte, sz); 5500 5501 if (src_ptl != dst_ptl) 5502 spin_unlock(src_ptl); 5503 spin_unlock(dst_ptl); 5504 } 5505 5506 int move_hugetlb_page_tables(struct vm_area_struct *vma, 5507 struct vm_area_struct *new_vma, 5508 unsigned long old_addr, unsigned long new_addr, 5509 unsigned long len) 5510 { 5511 struct hstate *h = hstate_vma(vma); 5512 struct address_space *mapping = vma->vm_file->f_mapping; 5513 unsigned long sz = huge_page_size(h); 5514 struct mm_struct *mm = vma->vm_mm; 5515 unsigned long old_end = old_addr + len; 5516 unsigned long last_addr_mask; 5517 pte_t *src_pte, *dst_pte; 5518 struct mmu_notifier_range range; 5519 bool shared_pmd = false; 5520 5521 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr, 5522 old_end); 5523 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 5524 /* 5525 * In case of shared PMDs, we should cover the maximum possible 5526 * range. 5527 */ 5528 flush_cache_range(vma, range.start, range.end); 5529 5530 mmu_notifier_invalidate_range_start(&range); 5531 last_addr_mask = hugetlb_mask_last_page(h); 5532 /* Prevent race with file truncation */ 5533 hugetlb_vma_lock_write(vma); 5534 i_mmap_lock_write(mapping); 5535 for (; old_addr < old_end; old_addr += sz, new_addr += sz) { 5536 src_pte = hugetlb_walk(vma, old_addr, sz); 5537 if (!src_pte) { 5538 old_addr |= last_addr_mask; 5539 new_addr |= last_addr_mask; 5540 continue; 5541 } 5542 if (huge_pte_none(huge_ptep_get(src_pte))) 5543 continue; 5544 5545 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) { 5546 shared_pmd = true; 5547 old_addr |= last_addr_mask; 5548 new_addr |= last_addr_mask; 5549 continue; 5550 } 5551 5552 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz); 5553 if (!dst_pte) 5554 break; 5555 5556 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte, sz); 5557 } 5558 5559 if (shared_pmd) 5560 flush_hugetlb_tlb_range(vma, range.start, range.end); 5561 else 5562 flush_hugetlb_tlb_range(vma, old_end - len, old_end); 5563 mmu_notifier_invalidate_range_end(&range); 5564 i_mmap_unlock_write(mapping); 5565 hugetlb_vma_unlock_write(vma); 5566 5567 return len + old_addr - old_end; 5568 } 5569 5570 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma, 5571 unsigned long start, unsigned long end, 5572 struct page *ref_page, zap_flags_t zap_flags) 5573 { 5574 struct mm_struct *mm = vma->vm_mm; 5575 unsigned long address; 5576 pte_t *ptep; 5577 pte_t pte; 5578 spinlock_t *ptl; 5579 struct page *page; 5580 struct hstate *h = hstate_vma(vma); 5581 unsigned long sz = huge_page_size(h); 5582 unsigned long last_addr_mask; 5583 bool force_flush = false; 5584 5585 WARN_ON(!is_vm_hugetlb_page(vma)); 5586 BUG_ON(start & ~huge_page_mask(h)); 5587 BUG_ON(end & ~huge_page_mask(h)); 5588 5589 /* 5590 * This is a hugetlb vma, all the pte entries should point 5591 * to huge page. 5592 */ 5593 tlb_change_page_size(tlb, sz); 5594 tlb_start_vma(tlb, vma); 5595 5596 last_addr_mask = hugetlb_mask_last_page(h); 5597 address = start; 5598 for (; address < end; address += sz) { 5599 ptep = hugetlb_walk(vma, address, sz); 5600 if (!ptep) { 5601 address |= last_addr_mask; 5602 continue; 5603 } 5604 5605 ptl = huge_pte_lock(h, mm, ptep); 5606 if (huge_pmd_unshare(mm, vma, address, ptep)) { 5607 spin_unlock(ptl); 5608 tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE); 5609 force_flush = true; 5610 address |= last_addr_mask; 5611 continue; 5612 } 5613 5614 pte = huge_ptep_get(ptep); 5615 if (huge_pte_none(pte)) { 5616 spin_unlock(ptl); 5617 continue; 5618 } 5619 5620 /* 5621 * Migrating hugepage or HWPoisoned hugepage is already 5622 * unmapped and its refcount is dropped, so just clear pte here. 5623 */ 5624 if (unlikely(!pte_present(pte))) { 5625 /* 5626 * If the pte was wr-protected by uffd-wp in any of the 5627 * swap forms, meanwhile the caller does not want to 5628 * drop the uffd-wp bit in this zap, then replace the 5629 * pte with a marker. 5630 */ 5631 if (pte_swp_uffd_wp_any(pte) && 5632 !(zap_flags & ZAP_FLAG_DROP_MARKER)) 5633 set_huge_pte_at(mm, address, ptep, 5634 make_pte_marker(PTE_MARKER_UFFD_WP), 5635 sz); 5636 else 5637 huge_pte_clear(mm, address, ptep, sz); 5638 spin_unlock(ptl); 5639 continue; 5640 } 5641 5642 page = pte_page(pte); 5643 /* 5644 * If a reference page is supplied, it is because a specific 5645 * page is being unmapped, not a range. Ensure the page we 5646 * are about to unmap is the actual page of interest. 5647 */ 5648 if (ref_page) { 5649 if (page != ref_page) { 5650 spin_unlock(ptl); 5651 continue; 5652 } 5653 /* 5654 * Mark the VMA as having unmapped its page so that 5655 * future faults in this VMA will fail rather than 5656 * looking like data was lost 5657 */ 5658 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); 5659 } 5660 5661 pte = huge_ptep_get_and_clear(mm, address, ptep); 5662 tlb_remove_huge_tlb_entry(h, tlb, ptep, address); 5663 if (huge_pte_dirty(pte)) 5664 set_page_dirty(page); 5665 /* Leave a uffd-wp pte marker if needed */ 5666 if (huge_pte_uffd_wp(pte) && 5667 !(zap_flags & ZAP_FLAG_DROP_MARKER)) 5668 set_huge_pte_at(mm, address, ptep, 5669 make_pte_marker(PTE_MARKER_UFFD_WP), 5670 sz); 5671 hugetlb_count_sub(pages_per_huge_page(h), mm); 5672 page_remove_rmap(page, vma, true); 5673 5674 spin_unlock(ptl); 5675 tlb_remove_page_size(tlb, page, huge_page_size(h)); 5676 /* 5677 * Bail out after unmapping reference page if supplied 5678 */ 5679 if (ref_page) 5680 break; 5681 } 5682 tlb_end_vma(tlb, vma); 5683 5684 /* 5685 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We 5686 * could defer the flush until now, since by holding i_mmap_rwsem we 5687 * guaranteed that the last refernece would not be dropped. But we must 5688 * do the flushing before we return, as otherwise i_mmap_rwsem will be 5689 * dropped and the last reference to the shared PMDs page might be 5690 * dropped as well. 5691 * 5692 * In theory we could defer the freeing of the PMD pages as well, but 5693 * huge_pmd_unshare() relies on the exact page_count for the PMD page to 5694 * detect sharing, so we cannot defer the release of the page either. 5695 * Instead, do flush now. 5696 */ 5697 if (force_flush) 5698 tlb_flush_mmu_tlbonly(tlb); 5699 } 5700 5701 void __hugetlb_zap_begin(struct vm_area_struct *vma, 5702 unsigned long *start, unsigned long *end) 5703 { 5704 if (!vma->vm_file) /* hugetlbfs_file_mmap error */ 5705 return; 5706 5707 adjust_range_if_pmd_sharing_possible(vma, start, end); 5708 hugetlb_vma_lock_write(vma); 5709 if (vma->vm_file) 5710 i_mmap_lock_write(vma->vm_file->f_mapping); 5711 } 5712 5713 void __hugetlb_zap_end(struct vm_area_struct *vma, 5714 struct zap_details *details) 5715 { 5716 zap_flags_t zap_flags = details ? details->zap_flags : 0; 5717 5718 if (!vma->vm_file) /* hugetlbfs_file_mmap error */ 5719 return; 5720 5721 if (zap_flags & ZAP_FLAG_UNMAP) { /* final unmap */ 5722 /* 5723 * Unlock and free the vma lock before releasing i_mmap_rwsem. 5724 * When the vma_lock is freed, this makes the vma ineligible 5725 * for pmd sharing. And, i_mmap_rwsem is required to set up 5726 * pmd sharing. This is important as page tables for this 5727 * unmapped range will be asynchrously deleted. If the page 5728 * tables are shared, there will be issues when accessed by 5729 * someone else. 5730 */ 5731 __hugetlb_vma_unlock_write_free(vma); 5732 } else { 5733 hugetlb_vma_unlock_write(vma); 5734 } 5735 5736 if (vma->vm_file) 5737 i_mmap_unlock_write(vma->vm_file->f_mapping); 5738 } 5739 5740 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, 5741 unsigned long end, struct page *ref_page, 5742 zap_flags_t zap_flags) 5743 { 5744 struct mmu_notifier_range range; 5745 struct mmu_gather tlb; 5746 5747 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 5748 start, end); 5749 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 5750 mmu_notifier_invalidate_range_start(&range); 5751 tlb_gather_mmu(&tlb, vma->vm_mm); 5752 5753 __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags); 5754 5755 mmu_notifier_invalidate_range_end(&range); 5756 tlb_finish_mmu(&tlb); 5757 } 5758 5759 /* 5760 * This is called when the original mapper is failing to COW a MAP_PRIVATE 5761 * mapping it owns the reserve page for. The intention is to unmap the page 5762 * from other VMAs and let the children be SIGKILLed if they are faulting the 5763 * same region. 5764 */ 5765 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, 5766 struct page *page, unsigned long address) 5767 { 5768 struct hstate *h = hstate_vma(vma); 5769 struct vm_area_struct *iter_vma; 5770 struct address_space *mapping; 5771 pgoff_t pgoff; 5772 5773 /* 5774 * vm_pgoff is in PAGE_SIZE units, hence the different calculation 5775 * from page cache lookup which is in HPAGE_SIZE units. 5776 */ 5777 address = address & huge_page_mask(h); 5778 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + 5779 vma->vm_pgoff; 5780 mapping = vma->vm_file->f_mapping; 5781 5782 /* 5783 * Take the mapping lock for the duration of the table walk. As 5784 * this mapping should be shared between all the VMAs, 5785 * __unmap_hugepage_range() is called as the lock is already held 5786 */ 5787 i_mmap_lock_write(mapping); 5788 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) { 5789 /* Do not unmap the current VMA */ 5790 if (iter_vma == vma) 5791 continue; 5792 5793 /* 5794 * Shared VMAs have their own reserves and do not affect 5795 * MAP_PRIVATE accounting but it is possible that a shared 5796 * VMA is using the same page so check and skip such VMAs. 5797 */ 5798 if (iter_vma->vm_flags & VM_MAYSHARE) 5799 continue; 5800 5801 /* 5802 * Unmap the page from other VMAs without their own reserves. 5803 * They get marked to be SIGKILLed if they fault in these 5804 * areas. This is because a future no-page fault on this VMA 5805 * could insert a zeroed page instead of the data existing 5806 * from the time of fork. This would look like data corruption 5807 */ 5808 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) 5809 unmap_hugepage_range(iter_vma, address, 5810 address + huge_page_size(h), page, 0); 5811 } 5812 i_mmap_unlock_write(mapping); 5813 } 5814 5815 /* 5816 * hugetlb_wp() should be called with page lock of the original hugepage held. 5817 * Called with hugetlb_fault_mutex_table held and pte_page locked so we 5818 * cannot race with other handlers or page migration. 5819 * Keep the pte_same checks anyway to make transition from the mutex easier. 5820 */ 5821 static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma, 5822 unsigned long address, pte_t *ptep, unsigned int flags, 5823 struct folio *pagecache_folio, spinlock_t *ptl) 5824 { 5825 const bool unshare = flags & FAULT_FLAG_UNSHARE; 5826 pte_t pte = huge_ptep_get(ptep); 5827 struct hstate *h = hstate_vma(vma); 5828 struct folio *old_folio; 5829 struct folio *new_folio; 5830 int outside_reserve = 0; 5831 vm_fault_t ret = 0; 5832 unsigned long haddr = address & huge_page_mask(h); 5833 struct mmu_notifier_range range; 5834 5835 /* 5836 * Never handle CoW for uffd-wp protected pages. It should be only 5837 * handled when the uffd-wp protection is removed. 5838 * 5839 * Note that only the CoW optimization path (in hugetlb_no_page()) 5840 * can trigger this, because hugetlb_fault() will always resolve 5841 * uffd-wp bit first. 5842 */ 5843 if (!unshare && huge_pte_uffd_wp(pte)) 5844 return 0; 5845 5846 /* 5847 * hugetlb does not support FOLL_FORCE-style write faults that keep the 5848 * PTE mapped R/O such as maybe_mkwrite() would do. 5849 */ 5850 if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE))) 5851 return VM_FAULT_SIGSEGV; 5852 5853 /* Let's take out MAP_SHARED mappings first. */ 5854 if (vma->vm_flags & VM_MAYSHARE) { 5855 set_huge_ptep_writable(vma, haddr, ptep); 5856 return 0; 5857 } 5858 5859 old_folio = page_folio(pte_page(pte)); 5860 5861 delayacct_wpcopy_start(); 5862 5863 retry_avoidcopy: 5864 /* 5865 * If no-one else is actually using this page, we're the exclusive 5866 * owner and can reuse this page. 5867 */ 5868 if (folio_mapcount(old_folio) == 1 && folio_test_anon(old_folio)) { 5869 if (!PageAnonExclusive(&old_folio->page)) { 5870 folio_move_anon_rmap(old_folio, vma); 5871 SetPageAnonExclusive(&old_folio->page); 5872 } 5873 if (likely(!unshare)) 5874 set_huge_ptep_writable(vma, haddr, ptep); 5875 5876 delayacct_wpcopy_end(); 5877 return 0; 5878 } 5879 VM_BUG_ON_PAGE(folio_test_anon(old_folio) && 5880 PageAnonExclusive(&old_folio->page), &old_folio->page); 5881 5882 /* 5883 * If the process that created a MAP_PRIVATE mapping is about to 5884 * perform a COW due to a shared page count, attempt to satisfy 5885 * the allocation without using the existing reserves. The pagecache 5886 * page is used to determine if the reserve at this address was 5887 * consumed or not. If reserves were used, a partial faulted mapping 5888 * at the time of fork() could consume its reserves on COW instead 5889 * of the full address range. 5890 */ 5891 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && 5892 old_folio != pagecache_folio) 5893 outside_reserve = 1; 5894 5895 folio_get(old_folio); 5896 5897 /* 5898 * Drop page table lock as buddy allocator may be called. It will 5899 * be acquired again before returning to the caller, as expected. 5900 */ 5901 spin_unlock(ptl); 5902 new_folio = alloc_hugetlb_folio(vma, haddr, outside_reserve); 5903 5904 if (IS_ERR(new_folio)) { 5905 /* 5906 * If a process owning a MAP_PRIVATE mapping fails to COW, 5907 * it is due to references held by a child and an insufficient 5908 * huge page pool. To guarantee the original mappers 5909 * reliability, unmap the page from child processes. The child 5910 * may get SIGKILLed if it later faults. 5911 */ 5912 if (outside_reserve) { 5913 struct address_space *mapping = vma->vm_file->f_mapping; 5914 pgoff_t idx; 5915 u32 hash; 5916 5917 folio_put(old_folio); 5918 /* 5919 * Drop hugetlb_fault_mutex and vma_lock before 5920 * unmapping. unmapping needs to hold vma_lock 5921 * in write mode. Dropping vma_lock in read mode 5922 * here is OK as COW mappings do not interact with 5923 * PMD sharing. 5924 * 5925 * Reacquire both after unmap operation. 5926 */ 5927 idx = vma_hugecache_offset(h, vma, haddr); 5928 hash = hugetlb_fault_mutex_hash(mapping, idx); 5929 hugetlb_vma_unlock_read(vma); 5930 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 5931 5932 unmap_ref_private(mm, vma, &old_folio->page, haddr); 5933 5934 mutex_lock(&hugetlb_fault_mutex_table[hash]); 5935 hugetlb_vma_lock_read(vma); 5936 spin_lock(ptl); 5937 ptep = hugetlb_walk(vma, haddr, huge_page_size(h)); 5938 if (likely(ptep && 5939 pte_same(huge_ptep_get(ptep), pte))) 5940 goto retry_avoidcopy; 5941 /* 5942 * race occurs while re-acquiring page table 5943 * lock, and our job is done. 5944 */ 5945 delayacct_wpcopy_end(); 5946 return 0; 5947 } 5948 5949 ret = vmf_error(PTR_ERR(new_folio)); 5950 goto out_release_old; 5951 } 5952 5953 /* 5954 * When the original hugepage is shared one, it does not have 5955 * anon_vma prepared. 5956 */ 5957 if (unlikely(anon_vma_prepare(vma))) { 5958 ret = VM_FAULT_OOM; 5959 goto out_release_all; 5960 } 5961 5962 if (copy_user_large_folio(new_folio, old_folio, address, vma)) { 5963 ret = VM_FAULT_HWPOISON_LARGE; 5964 goto out_release_all; 5965 } 5966 __folio_mark_uptodate(new_folio); 5967 5968 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, haddr, 5969 haddr + huge_page_size(h)); 5970 mmu_notifier_invalidate_range_start(&range); 5971 5972 /* 5973 * Retake the page table lock to check for racing updates 5974 * before the page tables are altered 5975 */ 5976 spin_lock(ptl); 5977 ptep = hugetlb_walk(vma, haddr, huge_page_size(h)); 5978 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) { 5979 pte_t newpte = make_huge_pte(vma, &new_folio->page, !unshare); 5980 5981 /* Break COW or unshare */ 5982 huge_ptep_clear_flush(vma, haddr, ptep); 5983 page_remove_rmap(&old_folio->page, vma, true); 5984 hugepage_add_new_anon_rmap(new_folio, vma, haddr); 5985 if (huge_pte_uffd_wp(pte)) 5986 newpte = huge_pte_mkuffd_wp(newpte); 5987 set_huge_pte_at(mm, haddr, ptep, newpte, huge_page_size(h)); 5988 folio_set_hugetlb_migratable(new_folio); 5989 /* Make the old page be freed below */ 5990 new_folio = old_folio; 5991 } 5992 spin_unlock(ptl); 5993 mmu_notifier_invalidate_range_end(&range); 5994 out_release_all: 5995 /* 5996 * No restore in case of successful pagetable update (Break COW or 5997 * unshare) 5998 */ 5999 if (new_folio != old_folio) 6000 restore_reserve_on_error(h, vma, haddr, new_folio); 6001 folio_put(new_folio); 6002 out_release_old: 6003 folio_put(old_folio); 6004 6005 spin_lock(ptl); /* Caller expects lock to be held */ 6006 6007 delayacct_wpcopy_end(); 6008 return ret; 6009 } 6010 6011 /* 6012 * Return whether there is a pagecache page to back given address within VMA. 6013 */ 6014 static bool hugetlbfs_pagecache_present(struct hstate *h, 6015 struct vm_area_struct *vma, unsigned long address) 6016 { 6017 struct address_space *mapping = vma->vm_file->f_mapping; 6018 pgoff_t idx = linear_page_index(vma, address); 6019 struct folio *folio; 6020 6021 folio = filemap_get_folio(mapping, idx); 6022 if (IS_ERR(folio)) 6023 return false; 6024 folio_put(folio); 6025 return true; 6026 } 6027 6028 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping, 6029 pgoff_t idx) 6030 { 6031 struct inode *inode = mapping->host; 6032 struct hstate *h = hstate_inode(inode); 6033 int err; 6034 6035 idx <<= huge_page_order(h); 6036 __folio_set_locked(folio); 6037 err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL); 6038 6039 if (unlikely(err)) { 6040 __folio_clear_locked(folio); 6041 return err; 6042 } 6043 folio_clear_hugetlb_restore_reserve(folio); 6044 6045 /* 6046 * mark folio dirty so that it will not be removed from cache/file 6047 * by non-hugetlbfs specific code paths. 6048 */ 6049 folio_mark_dirty(folio); 6050 6051 spin_lock(&inode->i_lock); 6052 inode->i_blocks += blocks_per_huge_page(h); 6053 spin_unlock(&inode->i_lock); 6054 return 0; 6055 } 6056 6057 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma, 6058 struct address_space *mapping, 6059 pgoff_t idx, 6060 unsigned int flags, 6061 unsigned long haddr, 6062 unsigned long addr, 6063 unsigned long reason) 6064 { 6065 u32 hash; 6066 struct vm_fault vmf = { 6067 .vma = vma, 6068 .address = haddr, 6069 .real_address = addr, 6070 .flags = flags, 6071 6072 /* 6073 * Hard to debug if it ends up being 6074 * used by a callee that assumes 6075 * something about the other 6076 * uninitialized fields... same as in 6077 * memory.c 6078 */ 6079 }; 6080 6081 /* 6082 * vma_lock and hugetlb_fault_mutex must be dropped before handling 6083 * userfault. Also mmap_lock could be dropped due to handling 6084 * userfault, any vma operation should be careful from here. 6085 */ 6086 hugetlb_vma_unlock_read(vma); 6087 hash = hugetlb_fault_mutex_hash(mapping, idx); 6088 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6089 return handle_userfault(&vmf, reason); 6090 } 6091 6092 /* 6093 * Recheck pte with pgtable lock. Returns true if pte didn't change, or 6094 * false if pte changed or is changing. 6095 */ 6096 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm, 6097 pte_t *ptep, pte_t old_pte) 6098 { 6099 spinlock_t *ptl; 6100 bool same; 6101 6102 ptl = huge_pte_lock(h, mm, ptep); 6103 same = pte_same(huge_ptep_get(ptep), old_pte); 6104 spin_unlock(ptl); 6105 6106 return same; 6107 } 6108 6109 static vm_fault_t hugetlb_no_page(struct mm_struct *mm, 6110 struct vm_area_struct *vma, 6111 struct address_space *mapping, pgoff_t idx, 6112 unsigned long address, pte_t *ptep, 6113 pte_t old_pte, unsigned int flags) 6114 { 6115 struct hstate *h = hstate_vma(vma); 6116 vm_fault_t ret = VM_FAULT_SIGBUS; 6117 int anon_rmap = 0; 6118 unsigned long size; 6119 struct folio *folio; 6120 pte_t new_pte; 6121 spinlock_t *ptl; 6122 unsigned long haddr = address & huge_page_mask(h); 6123 bool new_folio, new_pagecache_folio = false; 6124 u32 hash = hugetlb_fault_mutex_hash(mapping, idx); 6125 6126 /* 6127 * Currently, we are forced to kill the process in the event the 6128 * original mapper has unmapped pages from the child due to a failed 6129 * COW/unsharing. Warn that such a situation has occurred as it may not 6130 * be obvious. 6131 */ 6132 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { 6133 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n", 6134 current->pid); 6135 goto out; 6136 } 6137 6138 /* 6139 * Use page lock to guard against racing truncation 6140 * before we get page_table_lock. 6141 */ 6142 new_folio = false; 6143 folio = filemap_lock_hugetlb_folio(h, mapping, idx); 6144 if (IS_ERR(folio)) { 6145 size = i_size_read(mapping->host) >> huge_page_shift(h); 6146 if (idx >= size) 6147 goto out; 6148 /* Check for page in userfault range */ 6149 if (userfaultfd_missing(vma)) { 6150 /* 6151 * Since hugetlb_no_page() was examining pte 6152 * without pgtable lock, we need to re-test under 6153 * lock because the pte may not be stable and could 6154 * have changed from under us. Try to detect 6155 * either changed or during-changing ptes and retry 6156 * properly when needed. 6157 * 6158 * Note that userfaultfd is actually fine with 6159 * false positives (e.g. caused by pte changed), 6160 * but not wrong logical events (e.g. caused by 6161 * reading a pte during changing). The latter can 6162 * confuse the userspace, so the strictness is very 6163 * much preferred. E.g., MISSING event should 6164 * never happen on the page after UFFDIO_COPY has 6165 * correctly installed the page and returned. 6166 */ 6167 if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) { 6168 ret = 0; 6169 goto out; 6170 } 6171 6172 return hugetlb_handle_userfault(vma, mapping, idx, flags, 6173 haddr, address, 6174 VM_UFFD_MISSING); 6175 } 6176 6177 folio = alloc_hugetlb_folio(vma, haddr, 0); 6178 if (IS_ERR(folio)) { 6179 /* 6180 * Returning error will result in faulting task being 6181 * sent SIGBUS. The hugetlb fault mutex prevents two 6182 * tasks from racing to fault in the same page which 6183 * could result in false unable to allocate errors. 6184 * Page migration does not take the fault mutex, but 6185 * does a clear then write of pte's under page table 6186 * lock. Page fault code could race with migration, 6187 * notice the clear pte and try to allocate a page 6188 * here. Before returning error, get ptl and make 6189 * sure there really is no pte entry. 6190 */ 6191 if (hugetlb_pte_stable(h, mm, ptep, old_pte)) 6192 ret = vmf_error(PTR_ERR(folio)); 6193 else 6194 ret = 0; 6195 goto out; 6196 } 6197 clear_huge_page(&folio->page, address, pages_per_huge_page(h)); 6198 __folio_mark_uptodate(folio); 6199 new_folio = true; 6200 6201 if (vma->vm_flags & VM_MAYSHARE) { 6202 int err = hugetlb_add_to_page_cache(folio, mapping, idx); 6203 if (err) { 6204 /* 6205 * err can't be -EEXIST which implies someone 6206 * else consumed the reservation since hugetlb 6207 * fault mutex is held when add a hugetlb page 6208 * to the page cache. So it's safe to call 6209 * restore_reserve_on_error() here. 6210 */ 6211 restore_reserve_on_error(h, vma, haddr, folio); 6212 folio_put(folio); 6213 goto out; 6214 } 6215 new_pagecache_folio = true; 6216 } else { 6217 folio_lock(folio); 6218 if (unlikely(anon_vma_prepare(vma))) { 6219 ret = VM_FAULT_OOM; 6220 goto backout_unlocked; 6221 } 6222 anon_rmap = 1; 6223 } 6224 } else { 6225 /* 6226 * If memory error occurs between mmap() and fault, some process 6227 * don't have hwpoisoned swap entry for errored virtual address. 6228 * So we need to block hugepage fault by PG_hwpoison bit check. 6229 */ 6230 if (unlikely(folio_test_hwpoison(folio))) { 6231 ret = VM_FAULT_HWPOISON_LARGE | 6232 VM_FAULT_SET_HINDEX(hstate_index(h)); 6233 goto backout_unlocked; 6234 } 6235 6236 /* Check for page in userfault range. */ 6237 if (userfaultfd_minor(vma)) { 6238 folio_unlock(folio); 6239 folio_put(folio); 6240 /* See comment in userfaultfd_missing() block above */ 6241 if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) { 6242 ret = 0; 6243 goto out; 6244 } 6245 return hugetlb_handle_userfault(vma, mapping, idx, flags, 6246 haddr, address, 6247 VM_UFFD_MINOR); 6248 } 6249 } 6250 6251 /* 6252 * If we are going to COW a private mapping later, we examine the 6253 * pending reservations for this page now. This will ensure that 6254 * any allocations necessary to record that reservation occur outside 6255 * the spinlock. 6256 */ 6257 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 6258 if (vma_needs_reservation(h, vma, haddr) < 0) { 6259 ret = VM_FAULT_OOM; 6260 goto backout_unlocked; 6261 } 6262 /* Just decrements count, does not deallocate */ 6263 vma_end_reservation(h, vma, haddr); 6264 } 6265 6266 ptl = huge_pte_lock(h, mm, ptep); 6267 ret = 0; 6268 /* If pte changed from under us, retry */ 6269 if (!pte_same(huge_ptep_get(ptep), old_pte)) 6270 goto backout; 6271 6272 if (anon_rmap) 6273 hugepage_add_new_anon_rmap(folio, vma, haddr); 6274 else 6275 page_dup_file_rmap(&folio->page, true); 6276 new_pte = make_huge_pte(vma, &folio->page, ((vma->vm_flags & VM_WRITE) 6277 && (vma->vm_flags & VM_SHARED))); 6278 /* 6279 * If this pte was previously wr-protected, keep it wr-protected even 6280 * if populated. 6281 */ 6282 if (unlikely(pte_marker_uffd_wp(old_pte))) 6283 new_pte = huge_pte_mkuffd_wp(new_pte); 6284 set_huge_pte_at(mm, haddr, ptep, new_pte, huge_page_size(h)); 6285 6286 hugetlb_count_add(pages_per_huge_page(h), mm); 6287 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 6288 /* Optimization, do the COW without a second fault */ 6289 ret = hugetlb_wp(mm, vma, address, ptep, flags, folio, ptl); 6290 } 6291 6292 spin_unlock(ptl); 6293 6294 /* 6295 * Only set hugetlb_migratable in newly allocated pages. Existing pages 6296 * found in the pagecache may not have hugetlb_migratable if they have 6297 * been isolated for migration. 6298 */ 6299 if (new_folio) 6300 folio_set_hugetlb_migratable(folio); 6301 6302 folio_unlock(folio); 6303 out: 6304 hugetlb_vma_unlock_read(vma); 6305 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6306 return ret; 6307 6308 backout: 6309 spin_unlock(ptl); 6310 backout_unlocked: 6311 if (new_folio && !new_pagecache_folio) 6312 restore_reserve_on_error(h, vma, haddr, folio); 6313 6314 folio_unlock(folio); 6315 folio_put(folio); 6316 goto out; 6317 } 6318 6319 #ifdef CONFIG_SMP 6320 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 6321 { 6322 unsigned long key[2]; 6323 u32 hash; 6324 6325 key[0] = (unsigned long) mapping; 6326 key[1] = idx; 6327 6328 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0); 6329 6330 return hash & (num_fault_mutexes - 1); 6331 } 6332 #else 6333 /* 6334 * For uniprocessor systems we always use a single mutex, so just 6335 * return 0 and avoid the hashing overhead. 6336 */ 6337 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 6338 { 6339 return 0; 6340 } 6341 #endif 6342 6343 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, 6344 unsigned long address, unsigned int flags) 6345 { 6346 pte_t *ptep, entry; 6347 spinlock_t *ptl; 6348 vm_fault_t ret; 6349 u32 hash; 6350 pgoff_t idx; 6351 struct folio *folio = NULL; 6352 struct folio *pagecache_folio = NULL; 6353 struct hstate *h = hstate_vma(vma); 6354 struct address_space *mapping; 6355 int need_wait_lock = 0; 6356 unsigned long haddr = address & huge_page_mask(h); 6357 6358 /* TODO: Handle faults under the VMA lock */ 6359 if (flags & FAULT_FLAG_VMA_LOCK) { 6360 vma_end_read(vma); 6361 return VM_FAULT_RETRY; 6362 } 6363 6364 /* 6365 * Serialize hugepage allocation and instantiation, so that we don't 6366 * get spurious allocation failures if two CPUs race to instantiate 6367 * the same page in the page cache. 6368 */ 6369 mapping = vma->vm_file->f_mapping; 6370 idx = vma_hugecache_offset(h, vma, haddr); 6371 hash = hugetlb_fault_mutex_hash(mapping, idx); 6372 mutex_lock(&hugetlb_fault_mutex_table[hash]); 6373 6374 /* 6375 * Acquire vma lock before calling huge_pte_alloc and hold 6376 * until finished with ptep. This prevents huge_pmd_unshare from 6377 * being called elsewhere and making the ptep no longer valid. 6378 */ 6379 hugetlb_vma_lock_read(vma); 6380 ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h)); 6381 if (!ptep) { 6382 hugetlb_vma_unlock_read(vma); 6383 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6384 return VM_FAULT_OOM; 6385 } 6386 6387 entry = huge_ptep_get(ptep); 6388 if (huge_pte_none_mostly(entry)) { 6389 if (is_pte_marker(entry)) { 6390 pte_marker marker = 6391 pte_marker_get(pte_to_swp_entry(entry)); 6392 6393 if (marker & PTE_MARKER_POISONED) { 6394 ret = VM_FAULT_HWPOISON_LARGE; 6395 goto out_mutex; 6396 } 6397 } 6398 6399 /* 6400 * Other PTE markers should be handled the same way as none PTE. 6401 * 6402 * hugetlb_no_page will drop vma lock and hugetlb fault 6403 * mutex internally, which make us return immediately. 6404 */ 6405 return hugetlb_no_page(mm, vma, mapping, idx, address, ptep, 6406 entry, flags); 6407 } 6408 6409 ret = 0; 6410 6411 /* 6412 * entry could be a migration/hwpoison entry at this point, so this 6413 * check prevents the kernel from going below assuming that we have 6414 * an active hugepage in pagecache. This goto expects the 2nd page 6415 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will 6416 * properly handle it. 6417 */ 6418 if (!pte_present(entry)) { 6419 if (unlikely(is_hugetlb_entry_migration(entry))) { 6420 /* 6421 * Release the hugetlb fault lock now, but retain 6422 * the vma lock, because it is needed to guard the 6423 * huge_pte_lockptr() later in 6424 * migration_entry_wait_huge(). The vma lock will 6425 * be released there. 6426 */ 6427 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6428 migration_entry_wait_huge(vma, ptep); 6429 return 0; 6430 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) 6431 ret = VM_FAULT_HWPOISON_LARGE | 6432 VM_FAULT_SET_HINDEX(hstate_index(h)); 6433 goto out_mutex; 6434 } 6435 6436 /* 6437 * If we are going to COW/unshare the mapping later, we examine the 6438 * pending reservations for this page now. This will ensure that any 6439 * allocations necessary to record that reservation occur outside the 6440 * spinlock. Also lookup the pagecache page now as it is used to 6441 * determine if a reservation has been consumed. 6442 */ 6443 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) && 6444 !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) { 6445 if (vma_needs_reservation(h, vma, haddr) < 0) { 6446 ret = VM_FAULT_OOM; 6447 goto out_mutex; 6448 } 6449 /* Just decrements count, does not deallocate */ 6450 vma_end_reservation(h, vma, haddr); 6451 6452 pagecache_folio = filemap_lock_hugetlb_folio(h, mapping, idx); 6453 if (IS_ERR(pagecache_folio)) 6454 pagecache_folio = NULL; 6455 } 6456 6457 ptl = huge_pte_lock(h, mm, ptep); 6458 6459 /* Check for a racing update before calling hugetlb_wp() */ 6460 if (unlikely(!pte_same(entry, huge_ptep_get(ptep)))) 6461 goto out_ptl; 6462 6463 /* Handle userfault-wp first, before trying to lock more pages */ 6464 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) && 6465 (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) { 6466 if (!userfaultfd_wp_async(vma)) { 6467 struct vm_fault vmf = { 6468 .vma = vma, 6469 .address = haddr, 6470 .real_address = address, 6471 .flags = flags, 6472 }; 6473 6474 spin_unlock(ptl); 6475 if (pagecache_folio) { 6476 folio_unlock(pagecache_folio); 6477 folio_put(pagecache_folio); 6478 } 6479 hugetlb_vma_unlock_read(vma); 6480 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6481 return handle_userfault(&vmf, VM_UFFD_WP); 6482 } 6483 6484 entry = huge_pte_clear_uffd_wp(entry); 6485 set_huge_pte_at(mm, haddr, ptep, entry, 6486 huge_page_size(hstate_vma(vma))); 6487 /* Fallthrough to CoW */ 6488 } 6489 6490 /* 6491 * hugetlb_wp() requires page locks of pte_page(entry) and 6492 * pagecache_folio, so here we need take the former one 6493 * when folio != pagecache_folio or !pagecache_folio. 6494 */ 6495 folio = page_folio(pte_page(entry)); 6496 if (folio != pagecache_folio) 6497 if (!folio_trylock(folio)) { 6498 need_wait_lock = 1; 6499 goto out_ptl; 6500 } 6501 6502 folio_get(folio); 6503 6504 if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) { 6505 if (!huge_pte_write(entry)) { 6506 ret = hugetlb_wp(mm, vma, address, ptep, flags, 6507 pagecache_folio, ptl); 6508 goto out_put_page; 6509 } else if (likely(flags & FAULT_FLAG_WRITE)) { 6510 entry = huge_pte_mkdirty(entry); 6511 } 6512 } 6513 entry = pte_mkyoung(entry); 6514 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry, 6515 flags & FAULT_FLAG_WRITE)) 6516 update_mmu_cache(vma, haddr, ptep); 6517 out_put_page: 6518 if (folio != pagecache_folio) 6519 folio_unlock(folio); 6520 folio_put(folio); 6521 out_ptl: 6522 spin_unlock(ptl); 6523 6524 if (pagecache_folio) { 6525 folio_unlock(pagecache_folio); 6526 folio_put(pagecache_folio); 6527 } 6528 out_mutex: 6529 hugetlb_vma_unlock_read(vma); 6530 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6531 /* 6532 * Generally it's safe to hold refcount during waiting page lock. But 6533 * here we just wait to defer the next page fault to avoid busy loop and 6534 * the page is not used after unlocked before returning from the current 6535 * page fault. So we are safe from accessing freed page, even if we wait 6536 * here without taking refcount. 6537 */ 6538 if (need_wait_lock) 6539 folio_wait_locked(folio); 6540 return ret; 6541 } 6542 6543 #ifdef CONFIG_USERFAULTFD 6544 /* 6545 * Can probably be eliminated, but still used by hugetlb_mfill_atomic_pte(). 6546 */ 6547 static struct folio *alloc_hugetlb_folio_vma(struct hstate *h, 6548 struct vm_area_struct *vma, unsigned long address) 6549 { 6550 struct mempolicy *mpol; 6551 nodemask_t *nodemask; 6552 struct folio *folio; 6553 gfp_t gfp_mask; 6554 int node; 6555 6556 gfp_mask = htlb_alloc_mask(h); 6557 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 6558 folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask); 6559 mpol_cond_put(mpol); 6560 6561 return folio; 6562 } 6563 6564 /* 6565 * Used by userfaultfd UFFDIO_* ioctls. Based on userfaultfd's mfill_atomic_pte 6566 * with modifications for hugetlb pages. 6567 */ 6568 int hugetlb_mfill_atomic_pte(pte_t *dst_pte, 6569 struct vm_area_struct *dst_vma, 6570 unsigned long dst_addr, 6571 unsigned long src_addr, 6572 uffd_flags_t flags, 6573 struct folio **foliop) 6574 { 6575 struct mm_struct *dst_mm = dst_vma->vm_mm; 6576 bool is_continue = uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE); 6577 bool wp_enabled = (flags & MFILL_ATOMIC_WP); 6578 struct hstate *h = hstate_vma(dst_vma); 6579 struct address_space *mapping = dst_vma->vm_file->f_mapping; 6580 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr); 6581 unsigned long size; 6582 int vm_shared = dst_vma->vm_flags & VM_SHARED; 6583 pte_t _dst_pte; 6584 spinlock_t *ptl; 6585 int ret = -ENOMEM; 6586 struct folio *folio; 6587 int writable; 6588 bool folio_in_pagecache = false; 6589 6590 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_POISON)) { 6591 ptl = huge_pte_lock(h, dst_mm, dst_pte); 6592 6593 /* Don't overwrite any existing PTEs (even markers) */ 6594 if (!huge_pte_none(huge_ptep_get(dst_pte))) { 6595 spin_unlock(ptl); 6596 return -EEXIST; 6597 } 6598 6599 _dst_pte = make_pte_marker(PTE_MARKER_POISONED); 6600 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, 6601 huge_page_size(h)); 6602 6603 /* No need to invalidate - it was non-present before */ 6604 update_mmu_cache(dst_vma, dst_addr, dst_pte); 6605 6606 spin_unlock(ptl); 6607 return 0; 6608 } 6609 6610 if (is_continue) { 6611 ret = -EFAULT; 6612 folio = filemap_lock_hugetlb_folio(h, mapping, idx); 6613 if (IS_ERR(folio)) 6614 goto out; 6615 folio_in_pagecache = true; 6616 } else if (!*foliop) { 6617 /* If a folio already exists, then it's UFFDIO_COPY for 6618 * a non-missing case. Return -EEXIST. 6619 */ 6620 if (vm_shared && 6621 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) { 6622 ret = -EEXIST; 6623 goto out; 6624 } 6625 6626 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0); 6627 if (IS_ERR(folio)) { 6628 ret = -ENOMEM; 6629 goto out; 6630 } 6631 6632 ret = copy_folio_from_user(folio, (const void __user *) src_addr, 6633 false); 6634 6635 /* fallback to copy_from_user outside mmap_lock */ 6636 if (unlikely(ret)) { 6637 ret = -ENOENT; 6638 /* Free the allocated folio which may have 6639 * consumed a reservation. 6640 */ 6641 restore_reserve_on_error(h, dst_vma, dst_addr, folio); 6642 folio_put(folio); 6643 6644 /* Allocate a temporary folio to hold the copied 6645 * contents. 6646 */ 6647 folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr); 6648 if (!folio) { 6649 ret = -ENOMEM; 6650 goto out; 6651 } 6652 *foliop = folio; 6653 /* Set the outparam foliop and return to the caller to 6654 * copy the contents outside the lock. Don't free the 6655 * folio. 6656 */ 6657 goto out; 6658 } 6659 } else { 6660 if (vm_shared && 6661 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) { 6662 folio_put(*foliop); 6663 ret = -EEXIST; 6664 *foliop = NULL; 6665 goto out; 6666 } 6667 6668 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0); 6669 if (IS_ERR(folio)) { 6670 folio_put(*foliop); 6671 ret = -ENOMEM; 6672 *foliop = NULL; 6673 goto out; 6674 } 6675 ret = copy_user_large_folio(folio, *foliop, dst_addr, dst_vma); 6676 folio_put(*foliop); 6677 *foliop = NULL; 6678 if (ret) { 6679 folio_put(folio); 6680 goto out; 6681 } 6682 } 6683 6684 /* 6685 * The memory barrier inside __folio_mark_uptodate makes sure that 6686 * preceding stores to the page contents become visible before 6687 * the set_pte_at() write. 6688 */ 6689 __folio_mark_uptodate(folio); 6690 6691 /* Add shared, newly allocated pages to the page cache. */ 6692 if (vm_shared && !is_continue) { 6693 size = i_size_read(mapping->host) >> huge_page_shift(h); 6694 ret = -EFAULT; 6695 if (idx >= size) 6696 goto out_release_nounlock; 6697 6698 /* 6699 * Serialization between remove_inode_hugepages() and 6700 * hugetlb_add_to_page_cache() below happens through the 6701 * hugetlb_fault_mutex_table that here must be hold by 6702 * the caller. 6703 */ 6704 ret = hugetlb_add_to_page_cache(folio, mapping, idx); 6705 if (ret) 6706 goto out_release_nounlock; 6707 folio_in_pagecache = true; 6708 } 6709 6710 ptl = huge_pte_lock(h, dst_mm, dst_pte); 6711 6712 ret = -EIO; 6713 if (folio_test_hwpoison(folio)) 6714 goto out_release_unlock; 6715 6716 /* 6717 * We allow to overwrite a pte marker: consider when both MISSING|WP 6718 * registered, we firstly wr-protect a none pte which has no page cache 6719 * page backing it, then access the page. 6720 */ 6721 ret = -EEXIST; 6722 if (!huge_pte_none_mostly(huge_ptep_get(dst_pte))) 6723 goto out_release_unlock; 6724 6725 if (folio_in_pagecache) 6726 page_dup_file_rmap(&folio->page, true); 6727 else 6728 hugepage_add_new_anon_rmap(folio, dst_vma, dst_addr); 6729 6730 /* 6731 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY 6732 * with wp flag set, don't set pte write bit. 6733 */ 6734 if (wp_enabled || (is_continue && !vm_shared)) 6735 writable = 0; 6736 else 6737 writable = dst_vma->vm_flags & VM_WRITE; 6738 6739 _dst_pte = make_huge_pte(dst_vma, &folio->page, writable); 6740 /* 6741 * Always mark UFFDIO_COPY page dirty; note that this may not be 6742 * extremely important for hugetlbfs for now since swapping is not 6743 * supported, but we should still be clear in that this page cannot be 6744 * thrown away at will, even if write bit not set. 6745 */ 6746 _dst_pte = huge_pte_mkdirty(_dst_pte); 6747 _dst_pte = pte_mkyoung(_dst_pte); 6748 6749 if (wp_enabled) 6750 _dst_pte = huge_pte_mkuffd_wp(_dst_pte); 6751 6752 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, huge_page_size(h)); 6753 6754 hugetlb_count_add(pages_per_huge_page(h), dst_mm); 6755 6756 /* No need to invalidate - it was non-present before */ 6757 update_mmu_cache(dst_vma, dst_addr, dst_pte); 6758 6759 spin_unlock(ptl); 6760 if (!is_continue) 6761 folio_set_hugetlb_migratable(folio); 6762 if (vm_shared || is_continue) 6763 folio_unlock(folio); 6764 ret = 0; 6765 out: 6766 return ret; 6767 out_release_unlock: 6768 spin_unlock(ptl); 6769 if (vm_shared || is_continue) 6770 folio_unlock(folio); 6771 out_release_nounlock: 6772 if (!folio_in_pagecache) 6773 restore_reserve_on_error(h, dst_vma, dst_addr, folio); 6774 folio_put(folio); 6775 goto out; 6776 } 6777 #endif /* CONFIG_USERFAULTFD */ 6778 6779 struct page *hugetlb_follow_page_mask(struct vm_area_struct *vma, 6780 unsigned long address, unsigned int flags, 6781 unsigned int *page_mask) 6782 { 6783 struct hstate *h = hstate_vma(vma); 6784 struct mm_struct *mm = vma->vm_mm; 6785 unsigned long haddr = address & huge_page_mask(h); 6786 struct page *page = NULL; 6787 spinlock_t *ptl; 6788 pte_t *pte, entry; 6789 int ret; 6790 6791 hugetlb_vma_lock_read(vma); 6792 pte = hugetlb_walk(vma, haddr, huge_page_size(h)); 6793 if (!pte) 6794 goto out_unlock; 6795 6796 ptl = huge_pte_lock(h, mm, pte); 6797 entry = huge_ptep_get(pte); 6798 if (pte_present(entry)) { 6799 page = pte_page(entry); 6800 6801 if (!huge_pte_write(entry)) { 6802 if (flags & FOLL_WRITE) { 6803 page = NULL; 6804 goto out; 6805 } 6806 6807 if (gup_must_unshare(vma, flags, page)) { 6808 /* Tell the caller to do unsharing */ 6809 page = ERR_PTR(-EMLINK); 6810 goto out; 6811 } 6812 } 6813 6814 page = nth_page(page, ((address & ~huge_page_mask(h)) >> PAGE_SHIFT)); 6815 6816 /* 6817 * Note that page may be a sub-page, and with vmemmap 6818 * optimizations the page struct may be read only. 6819 * try_grab_page() will increase the ref count on the 6820 * head page, so this will be OK. 6821 * 6822 * try_grab_page() should always be able to get the page here, 6823 * because we hold the ptl lock and have verified pte_present(). 6824 */ 6825 ret = try_grab_page(page, flags); 6826 6827 if (WARN_ON_ONCE(ret)) { 6828 page = ERR_PTR(ret); 6829 goto out; 6830 } 6831 6832 *page_mask = (1U << huge_page_order(h)) - 1; 6833 } 6834 out: 6835 spin_unlock(ptl); 6836 out_unlock: 6837 hugetlb_vma_unlock_read(vma); 6838 6839 /* 6840 * Fixup retval for dump requests: if pagecache doesn't exist, 6841 * don't try to allocate a new page but just skip it. 6842 */ 6843 if (!page && (flags & FOLL_DUMP) && 6844 !hugetlbfs_pagecache_present(h, vma, address)) 6845 page = ERR_PTR(-EFAULT); 6846 6847 return page; 6848 } 6849 6850 long hugetlb_change_protection(struct vm_area_struct *vma, 6851 unsigned long address, unsigned long end, 6852 pgprot_t newprot, unsigned long cp_flags) 6853 { 6854 struct mm_struct *mm = vma->vm_mm; 6855 unsigned long start = address; 6856 pte_t *ptep; 6857 pte_t pte; 6858 struct hstate *h = hstate_vma(vma); 6859 long pages = 0, psize = huge_page_size(h); 6860 bool shared_pmd = false; 6861 struct mmu_notifier_range range; 6862 unsigned long last_addr_mask; 6863 bool uffd_wp = cp_flags & MM_CP_UFFD_WP; 6864 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE; 6865 6866 /* 6867 * In the case of shared PMDs, the area to flush could be beyond 6868 * start/end. Set range.start/range.end to cover the maximum possible 6869 * range if PMD sharing is possible. 6870 */ 6871 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA, 6872 0, mm, start, end); 6873 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 6874 6875 BUG_ON(address >= end); 6876 flush_cache_range(vma, range.start, range.end); 6877 6878 mmu_notifier_invalidate_range_start(&range); 6879 hugetlb_vma_lock_write(vma); 6880 i_mmap_lock_write(vma->vm_file->f_mapping); 6881 last_addr_mask = hugetlb_mask_last_page(h); 6882 for (; address < end; address += psize) { 6883 spinlock_t *ptl; 6884 ptep = hugetlb_walk(vma, address, psize); 6885 if (!ptep) { 6886 if (!uffd_wp) { 6887 address |= last_addr_mask; 6888 continue; 6889 } 6890 /* 6891 * Userfaultfd wr-protect requires pgtable 6892 * pre-allocations to install pte markers. 6893 */ 6894 ptep = huge_pte_alloc(mm, vma, address, psize); 6895 if (!ptep) { 6896 pages = -ENOMEM; 6897 break; 6898 } 6899 } 6900 ptl = huge_pte_lock(h, mm, ptep); 6901 if (huge_pmd_unshare(mm, vma, address, ptep)) { 6902 /* 6903 * When uffd-wp is enabled on the vma, unshare 6904 * shouldn't happen at all. Warn about it if it 6905 * happened due to some reason. 6906 */ 6907 WARN_ON_ONCE(uffd_wp || uffd_wp_resolve); 6908 pages++; 6909 spin_unlock(ptl); 6910 shared_pmd = true; 6911 address |= last_addr_mask; 6912 continue; 6913 } 6914 pte = huge_ptep_get(ptep); 6915 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) { 6916 /* Nothing to do. */ 6917 } else if (unlikely(is_hugetlb_entry_migration(pte))) { 6918 swp_entry_t entry = pte_to_swp_entry(pte); 6919 struct page *page = pfn_swap_entry_to_page(entry); 6920 pte_t newpte = pte; 6921 6922 if (is_writable_migration_entry(entry)) { 6923 if (PageAnon(page)) 6924 entry = make_readable_exclusive_migration_entry( 6925 swp_offset(entry)); 6926 else 6927 entry = make_readable_migration_entry( 6928 swp_offset(entry)); 6929 newpte = swp_entry_to_pte(entry); 6930 pages++; 6931 } 6932 6933 if (uffd_wp) 6934 newpte = pte_swp_mkuffd_wp(newpte); 6935 else if (uffd_wp_resolve) 6936 newpte = pte_swp_clear_uffd_wp(newpte); 6937 if (!pte_same(pte, newpte)) 6938 set_huge_pte_at(mm, address, ptep, newpte, psize); 6939 } else if (unlikely(is_pte_marker(pte))) { 6940 /* No other markers apply for now. */ 6941 WARN_ON_ONCE(!pte_marker_uffd_wp(pte)); 6942 if (uffd_wp_resolve) 6943 /* Safe to modify directly (non-present->none). */ 6944 huge_pte_clear(mm, address, ptep, psize); 6945 } else if (!huge_pte_none(pte)) { 6946 pte_t old_pte; 6947 unsigned int shift = huge_page_shift(hstate_vma(vma)); 6948 6949 old_pte = huge_ptep_modify_prot_start(vma, address, ptep); 6950 pte = huge_pte_modify(old_pte, newprot); 6951 pte = arch_make_huge_pte(pte, shift, vma->vm_flags); 6952 if (uffd_wp) 6953 pte = huge_pte_mkuffd_wp(pte); 6954 else if (uffd_wp_resolve) 6955 pte = huge_pte_clear_uffd_wp(pte); 6956 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte); 6957 pages++; 6958 } else { 6959 /* None pte */ 6960 if (unlikely(uffd_wp)) 6961 /* Safe to modify directly (none->non-present). */ 6962 set_huge_pte_at(mm, address, ptep, 6963 make_pte_marker(PTE_MARKER_UFFD_WP), 6964 psize); 6965 } 6966 spin_unlock(ptl); 6967 } 6968 /* 6969 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare 6970 * may have cleared our pud entry and done put_page on the page table: 6971 * once we release i_mmap_rwsem, another task can do the final put_page 6972 * and that page table be reused and filled with junk. If we actually 6973 * did unshare a page of pmds, flush the range corresponding to the pud. 6974 */ 6975 if (shared_pmd) 6976 flush_hugetlb_tlb_range(vma, range.start, range.end); 6977 else 6978 flush_hugetlb_tlb_range(vma, start, end); 6979 /* 6980 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs() we are 6981 * downgrading page table protection not changing it to point to a new 6982 * page. 6983 * 6984 * See Documentation/mm/mmu_notifier.rst 6985 */ 6986 i_mmap_unlock_write(vma->vm_file->f_mapping); 6987 hugetlb_vma_unlock_write(vma); 6988 mmu_notifier_invalidate_range_end(&range); 6989 6990 return pages > 0 ? (pages << h->order) : pages; 6991 } 6992 6993 /* Return true if reservation was successful, false otherwise. */ 6994 bool hugetlb_reserve_pages(struct inode *inode, 6995 long from, long to, 6996 struct vm_area_struct *vma, 6997 vm_flags_t vm_flags) 6998 { 6999 long chg = -1, add = -1; 7000 struct hstate *h = hstate_inode(inode); 7001 struct hugepage_subpool *spool = subpool_inode(inode); 7002 struct resv_map *resv_map; 7003 struct hugetlb_cgroup *h_cg = NULL; 7004 long gbl_reserve, regions_needed = 0; 7005 7006 /* This should never happen */ 7007 if (from > to) { 7008 VM_WARN(1, "%s called with a negative range\n", __func__); 7009 return false; 7010 } 7011 7012 /* 7013 * vma specific semaphore used for pmd sharing and fault/truncation 7014 * synchronization 7015 */ 7016 hugetlb_vma_lock_alloc(vma); 7017 7018 /* 7019 * Only apply hugepage reservation if asked. At fault time, an 7020 * attempt will be made for VM_NORESERVE to allocate a page 7021 * without using reserves 7022 */ 7023 if (vm_flags & VM_NORESERVE) 7024 return true; 7025 7026 /* 7027 * Shared mappings base their reservation on the number of pages that 7028 * are already allocated on behalf of the file. Private mappings need 7029 * to reserve the full area even if read-only as mprotect() may be 7030 * called to make the mapping read-write. Assume !vma is a shm mapping 7031 */ 7032 if (!vma || vma->vm_flags & VM_MAYSHARE) { 7033 /* 7034 * resv_map can not be NULL as hugetlb_reserve_pages is only 7035 * called for inodes for which resv_maps were created (see 7036 * hugetlbfs_get_inode). 7037 */ 7038 resv_map = inode_resv_map(inode); 7039 7040 chg = region_chg(resv_map, from, to, ®ions_needed); 7041 } else { 7042 /* Private mapping. */ 7043 resv_map = resv_map_alloc(); 7044 if (!resv_map) 7045 goto out_err; 7046 7047 chg = to - from; 7048 7049 set_vma_resv_map(vma, resv_map); 7050 set_vma_resv_flags(vma, HPAGE_RESV_OWNER); 7051 } 7052 7053 if (chg < 0) 7054 goto out_err; 7055 7056 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h), 7057 chg * pages_per_huge_page(h), &h_cg) < 0) 7058 goto out_err; 7059 7060 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) { 7061 /* For private mappings, the hugetlb_cgroup uncharge info hangs 7062 * of the resv_map. 7063 */ 7064 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h); 7065 } 7066 7067 /* 7068 * There must be enough pages in the subpool for the mapping. If 7069 * the subpool has a minimum size, there may be some global 7070 * reservations already in place (gbl_reserve). 7071 */ 7072 gbl_reserve = hugepage_subpool_get_pages(spool, chg); 7073 if (gbl_reserve < 0) 7074 goto out_uncharge_cgroup; 7075 7076 /* 7077 * Check enough hugepages are available for the reservation. 7078 * Hand the pages back to the subpool if there are not 7079 */ 7080 if (hugetlb_acct_memory(h, gbl_reserve) < 0) 7081 goto out_put_pages; 7082 7083 /* 7084 * Account for the reservations made. Shared mappings record regions 7085 * that have reservations as they are shared by multiple VMAs. 7086 * When the last VMA disappears, the region map says how much 7087 * the reservation was and the page cache tells how much of 7088 * the reservation was consumed. Private mappings are per-VMA and 7089 * only the consumed reservations are tracked. When the VMA 7090 * disappears, the original reservation is the VMA size and the 7091 * consumed reservations are stored in the map. Hence, nothing 7092 * else has to be done for private mappings here 7093 */ 7094 if (!vma || vma->vm_flags & VM_MAYSHARE) { 7095 add = region_add(resv_map, from, to, regions_needed, h, h_cg); 7096 7097 if (unlikely(add < 0)) { 7098 hugetlb_acct_memory(h, -gbl_reserve); 7099 goto out_put_pages; 7100 } else if (unlikely(chg > add)) { 7101 /* 7102 * pages in this range were added to the reserve 7103 * map between region_chg and region_add. This 7104 * indicates a race with alloc_hugetlb_folio. Adjust 7105 * the subpool and reserve counts modified above 7106 * based on the difference. 7107 */ 7108 long rsv_adjust; 7109 7110 /* 7111 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the 7112 * reference to h_cg->css. See comment below for detail. 7113 */ 7114 hugetlb_cgroup_uncharge_cgroup_rsvd( 7115 hstate_index(h), 7116 (chg - add) * pages_per_huge_page(h), h_cg); 7117 7118 rsv_adjust = hugepage_subpool_put_pages(spool, 7119 chg - add); 7120 hugetlb_acct_memory(h, -rsv_adjust); 7121 } else if (h_cg) { 7122 /* 7123 * The file_regions will hold their own reference to 7124 * h_cg->css. So we should release the reference held 7125 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are 7126 * done. 7127 */ 7128 hugetlb_cgroup_put_rsvd_cgroup(h_cg); 7129 } 7130 } 7131 return true; 7132 7133 out_put_pages: 7134 /* put back original number of pages, chg */ 7135 (void)hugepage_subpool_put_pages(spool, chg); 7136 out_uncharge_cgroup: 7137 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h), 7138 chg * pages_per_huge_page(h), h_cg); 7139 out_err: 7140 hugetlb_vma_lock_free(vma); 7141 if (!vma || vma->vm_flags & VM_MAYSHARE) 7142 /* Only call region_abort if the region_chg succeeded but the 7143 * region_add failed or didn't run. 7144 */ 7145 if (chg >= 0 && add < 0) 7146 region_abort(resv_map, from, to, regions_needed); 7147 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 7148 kref_put(&resv_map->refs, resv_map_release); 7149 set_vma_resv_map(vma, NULL); 7150 } 7151 return false; 7152 } 7153 7154 long hugetlb_unreserve_pages(struct inode *inode, long start, long end, 7155 long freed) 7156 { 7157 struct hstate *h = hstate_inode(inode); 7158 struct resv_map *resv_map = inode_resv_map(inode); 7159 long chg = 0; 7160 struct hugepage_subpool *spool = subpool_inode(inode); 7161 long gbl_reserve; 7162 7163 /* 7164 * Since this routine can be called in the evict inode path for all 7165 * hugetlbfs inodes, resv_map could be NULL. 7166 */ 7167 if (resv_map) { 7168 chg = region_del(resv_map, start, end); 7169 /* 7170 * region_del() can fail in the rare case where a region 7171 * must be split and another region descriptor can not be 7172 * allocated. If end == LONG_MAX, it will not fail. 7173 */ 7174 if (chg < 0) 7175 return chg; 7176 } 7177 7178 spin_lock(&inode->i_lock); 7179 inode->i_blocks -= (blocks_per_huge_page(h) * freed); 7180 spin_unlock(&inode->i_lock); 7181 7182 /* 7183 * If the subpool has a minimum size, the number of global 7184 * reservations to be released may be adjusted. 7185 * 7186 * Note that !resv_map implies freed == 0. So (chg - freed) 7187 * won't go negative. 7188 */ 7189 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed)); 7190 hugetlb_acct_memory(h, -gbl_reserve); 7191 7192 return 0; 7193 } 7194 7195 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE 7196 static unsigned long page_table_shareable(struct vm_area_struct *svma, 7197 struct vm_area_struct *vma, 7198 unsigned long addr, pgoff_t idx) 7199 { 7200 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) + 7201 svma->vm_start; 7202 unsigned long sbase = saddr & PUD_MASK; 7203 unsigned long s_end = sbase + PUD_SIZE; 7204 7205 /* Allow segments to share if only one is marked locked */ 7206 unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED_MASK; 7207 unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED_MASK; 7208 7209 /* 7210 * match the virtual addresses, permission and the alignment of the 7211 * page table page. 7212 * 7213 * Also, vma_lock (vm_private_data) is required for sharing. 7214 */ 7215 if (pmd_index(addr) != pmd_index(saddr) || 7216 vm_flags != svm_flags || 7217 !range_in_vma(svma, sbase, s_end) || 7218 !svma->vm_private_data) 7219 return 0; 7220 7221 return saddr; 7222 } 7223 7224 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr) 7225 { 7226 unsigned long start = addr & PUD_MASK; 7227 unsigned long end = start + PUD_SIZE; 7228 7229 #ifdef CONFIG_USERFAULTFD 7230 if (uffd_disable_huge_pmd_share(vma)) 7231 return false; 7232 #endif 7233 /* 7234 * check on proper vm_flags and page table alignment 7235 */ 7236 if (!(vma->vm_flags & VM_MAYSHARE)) 7237 return false; 7238 if (!vma->vm_private_data) /* vma lock required for sharing */ 7239 return false; 7240 if (!range_in_vma(vma, start, end)) 7241 return false; 7242 return true; 7243 } 7244 7245 /* 7246 * Determine if start,end range within vma could be mapped by shared pmd. 7247 * If yes, adjust start and end to cover range associated with possible 7248 * shared pmd mappings. 7249 */ 7250 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 7251 unsigned long *start, unsigned long *end) 7252 { 7253 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE), 7254 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE); 7255 7256 /* 7257 * vma needs to span at least one aligned PUD size, and the range 7258 * must be at least partially within in. 7259 */ 7260 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) || 7261 (*end <= v_start) || (*start >= v_end)) 7262 return; 7263 7264 /* Extend the range to be PUD aligned for a worst case scenario */ 7265 if (*start > v_start) 7266 *start = ALIGN_DOWN(*start, PUD_SIZE); 7267 7268 if (*end < v_end) 7269 *end = ALIGN(*end, PUD_SIZE); 7270 } 7271 7272 /* 7273 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc() 7274 * and returns the corresponding pte. While this is not necessary for the 7275 * !shared pmd case because we can allocate the pmd later as well, it makes the 7276 * code much cleaner. pmd allocation is essential for the shared case because 7277 * pud has to be populated inside the same i_mmap_rwsem section - otherwise 7278 * racing tasks could either miss the sharing (see huge_pte_offset) or select a 7279 * bad pmd for sharing. 7280 */ 7281 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, 7282 unsigned long addr, pud_t *pud) 7283 { 7284 struct address_space *mapping = vma->vm_file->f_mapping; 7285 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + 7286 vma->vm_pgoff; 7287 struct vm_area_struct *svma; 7288 unsigned long saddr; 7289 pte_t *spte = NULL; 7290 pte_t *pte; 7291 7292 i_mmap_lock_read(mapping); 7293 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) { 7294 if (svma == vma) 7295 continue; 7296 7297 saddr = page_table_shareable(svma, vma, addr, idx); 7298 if (saddr) { 7299 spte = hugetlb_walk(svma, saddr, 7300 vma_mmu_pagesize(svma)); 7301 if (spte) { 7302 get_page(virt_to_page(spte)); 7303 break; 7304 } 7305 } 7306 } 7307 7308 if (!spte) 7309 goto out; 7310 7311 spin_lock(&mm->page_table_lock); 7312 if (pud_none(*pud)) { 7313 pud_populate(mm, pud, 7314 (pmd_t *)((unsigned long)spte & PAGE_MASK)); 7315 mm_inc_nr_pmds(mm); 7316 } else { 7317 put_page(virt_to_page(spte)); 7318 } 7319 spin_unlock(&mm->page_table_lock); 7320 out: 7321 pte = (pte_t *)pmd_alloc(mm, pud, addr); 7322 i_mmap_unlock_read(mapping); 7323 return pte; 7324 } 7325 7326 /* 7327 * unmap huge page backed by shared pte. 7328 * 7329 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared 7330 * indicated by page_count > 1, unmap is achieved by clearing pud and 7331 * decrementing the ref count. If count == 1, the pte page is not shared. 7332 * 7333 * Called with page table lock held. 7334 * 7335 * returns: 1 successfully unmapped a shared pte page 7336 * 0 the underlying pte page is not shared, or it is the last user 7337 */ 7338 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, 7339 unsigned long addr, pte_t *ptep) 7340 { 7341 pgd_t *pgd = pgd_offset(mm, addr); 7342 p4d_t *p4d = p4d_offset(pgd, addr); 7343 pud_t *pud = pud_offset(p4d, addr); 7344 7345 i_mmap_assert_write_locked(vma->vm_file->f_mapping); 7346 hugetlb_vma_assert_locked(vma); 7347 BUG_ON(page_count(virt_to_page(ptep)) == 0); 7348 if (page_count(virt_to_page(ptep)) == 1) 7349 return 0; 7350 7351 pud_clear(pud); 7352 put_page(virt_to_page(ptep)); 7353 mm_dec_nr_pmds(mm); 7354 return 1; 7355 } 7356 7357 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 7358 7359 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, 7360 unsigned long addr, pud_t *pud) 7361 { 7362 return NULL; 7363 } 7364 7365 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, 7366 unsigned long addr, pte_t *ptep) 7367 { 7368 return 0; 7369 } 7370 7371 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 7372 unsigned long *start, unsigned long *end) 7373 { 7374 } 7375 7376 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr) 7377 { 7378 return false; 7379 } 7380 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 7381 7382 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB 7383 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 7384 unsigned long addr, unsigned long sz) 7385 { 7386 pgd_t *pgd; 7387 p4d_t *p4d; 7388 pud_t *pud; 7389 pte_t *pte = NULL; 7390 7391 pgd = pgd_offset(mm, addr); 7392 p4d = p4d_alloc(mm, pgd, addr); 7393 if (!p4d) 7394 return NULL; 7395 pud = pud_alloc(mm, p4d, addr); 7396 if (pud) { 7397 if (sz == PUD_SIZE) { 7398 pte = (pte_t *)pud; 7399 } else { 7400 BUG_ON(sz != PMD_SIZE); 7401 if (want_pmd_share(vma, addr) && pud_none(*pud)) 7402 pte = huge_pmd_share(mm, vma, addr, pud); 7403 else 7404 pte = (pte_t *)pmd_alloc(mm, pud, addr); 7405 } 7406 } 7407 7408 if (pte) { 7409 pte_t pteval = ptep_get_lockless(pte); 7410 7411 BUG_ON(pte_present(pteval) && !pte_huge(pteval)); 7412 } 7413 7414 return pte; 7415 } 7416 7417 /* 7418 * huge_pte_offset() - Walk the page table to resolve the hugepage 7419 * entry at address @addr 7420 * 7421 * Return: Pointer to page table entry (PUD or PMD) for 7422 * address @addr, or NULL if a !p*d_present() entry is encountered and the 7423 * size @sz doesn't match the hugepage size at this level of the page 7424 * table. 7425 */ 7426 pte_t *huge_pte_offset(struct mm_struct *mm, 7427 unsigned long addr, unsigned long sz) 7428 { 7429 pgd_t *pgd; 7430 p4d_t *p4d; 7431 pud_t *pud; 7432 pmd_t *pmd; 7433 7434 pgd = pgd_offset(mm, addr); 7435 if (!pgd_present(*pgd)) 7436 return NULL; 7437 p4d = p4d_offset(pgd, addr); 7438 if (!p4d_present(*p4d)) 7439 return NULL; 7440 7441 pud = pud_offset(p4d, addr); 7442 if (sz == PUD_SIZE) 7443 /* must be pud huge, non-present or none */ 7444 return (pte_t *)pud; 7445 if (!pud_present(*pud)) 7446 return NULL; 7447 /* must have a valid entry and size to go further */ 7448 7449 pmd = pmd_offset(pud, addr); 7450 /* must be pmd huge, non-present or none */ 7451 return (pte_t *)pmd; 7452 } 7453 7454 /* 7455 * Return a mask that can be used to update an address to the last huge 7456 * page in a page table page mapping size. Used to skip non-present 7457 * page table entries when linearly scanning address ranges. Architectures 7458 * with unique huge page to page table relationships can define their own 7459 * version of this routine. 7460 */ 7461 unsigned long hugetlb_mask_last_page(struct hstate *h) 7462 { 7463 unsigned long hp_size = huge_page_size(h); 7464 7465 if (hp_size == PUD_SIZE) 7466 return P4D_SIZE - PUD_SIZE; 7467 else if (hp_size == PMD_SIZE) 7468 return PUD_SIZE - PMD_SIZE; 7469 else 7470 return 0UL; 7471 } 7472 7473 #else 7474 7475 /* See description above. Architectures can provide their own version. */ 7476 __weak unsigned long hugetlb_mask_last_page(struct hstate *h) 7477 { 7478 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE 7479 if (huge_page_size(h) == PMD_SIZE) 7480 return PUD_SIZE - PMD_SIZE; 7481 #endif 7482 return 0UL; 7483 } 7484 7485 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */ 7486 7487 /* 7488 * These functions are overwritable if your architecture needs its own 7489 * behavior. 7490 */ 7491 bool isolate_hugetlb(struct folio *folio, struct list_head *list) 7492 { 7493 bool ret = true; 7494 7495 spin_lock_irq(&hugetlb_lock); 7496 if (!folio_test_hugetlb(folio) || 7497 !folio_test_hugetlb_migratable(folio) || 7498 !folio_try_get(folio)) { 7499 ret = false; 7500 goto unlock; 7501 } 7502 folio_clear_hugetlb_migratable(folio); 7503 list_move_tail(&folio->lru, list); 7504 unlock: 7505 spin_unlock_irq(&hugetlb_lock); 7506 return ret; 7507 } 7508 7509 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison) 7510 { 7511 int ret = 0; 7512 7513 *hugetlb = false; 7514 spin_lock_irq(&hugetlb_lock); 7515 if (folio_test_hugetlb(folio)) { 7516 *hugetlb = true; 7517 if (folio_test_hugetlb_freed(folio)) 7518 ret = 0; 7519 else if (folio_test_hugetlb_migratable(folio) || unpoison) 7520 ret = folio_try_get(folio); 7521 else 7522 ret = -EBUSY; 7523 } 7524 spin_unlock_irq(&hugetlb_lock); 7525 return ret; 7526 } 7527 7528 int get_huge_page_for_hwpoison(unsigned long pfn, int flags, 7529 bool *migratable_cleared) 7530 { 7531 int ret; 7532 7533 spin_lock_irq(&hugetlb_lock); 7534 ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared); 7535 spin_unlock_irq(&hugetlb_lock); 7536 return ret; 7537 } 7538 7539 void folio_putback_active_hugetlb(struct folio *folio) 7540 { 7541 spin_lock_irq(&hugetlb_lock); 7542 folio_set_hugetlb_migratable(folio); 7543 list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist); 7544 spin_unlock_irq(&hugetlb_lock); 7545 folio_put(folio); 7546 } 7547 7548 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason) 7549 { 7550 struct hstate *h = folio_hstate(old_folio); 7551 7552 hugetlb_cgroup_migrate(old_folio, new_folio); 7553 set_page_owner_migrate_reason(&new_folio->page, reason); 7554 7555 /* 7556 * transfer temporary state of the new hugetlb folio. This is 7557 * reverse to other transitions because the newpage is going to 7558 * be final while the old one will be freed so it takes over 7559 * the temporary status. 7560 * 7561 * Also note that we have to transfer the per-node surplus state 7562 * here as well otherwise the global surplus count will not match 7563 * the per-node's. 7564 */ 7565 if (folio_test_hugetlb_temporary(new_folio)) { 7566 int old_nid = folio_nid(old_folio); 7567 int new_nid = folio_nid(new_folio); 7568 7569 folio_set_hugetlb_temporary(old_folio); 7570 folio_clear_hugetlb_temporary(new_folio); 7571 7572 7573 /* 7574 * There is no need to transfer the per-node surplus state 7575 * when we do not cross the node. 7576 */ 7577 if (new_nid == old_nid) 7578 return; 7579 spin_lock_irq(&hugetlb_lock); 7580 if (h->surplus_huge_pages_node[old_nid]) { 7581 h->surplus_huge_pages_node[old_nid]--; 7582 h->surplus_huge_pages_node[new_nid]++; 7583 } 7584 spin_unlock_irq(&hugetlb_lock); 7585 } 7586 } 7587 7588 static void hugetlb_unshare_pmds(struct vm_area_struct *vma, 7589 unsigned long start, 7590 unsigned long end) 7591 { 7592 struct hstate *h = hstate_vma(vma); 7593 unsigned long sz = huge_page_size(h); 7594 struct mm_struct *mm = vma->vm_mm; 7595 struct mmu_notifier_range range; 7596 unsigned long address; 7597 spinlock_t *ptl; 7598 pte_t *ptep; 7599 7600 if (!(vma->vm_flags & VM_MAYSHARE)) 7601 return; 7602 7603 if (start >= end) 7604 return; 7605 7606 flush_cache_range(vma, start, end); 7607 /* 7608 * No need to call adjust_range_if_pmd_sharing_possible(), because 7609 * we have already done the PUD_SIZE alignment. 7610 */ 7611 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 7612 start, end); 7613 mmu_notifier_invalidate_range_start(&range); 7614 hugetlb_vma_lock_write(vma); 7615 i_mmap_lock_write(vma->vm_file->f_mapping); 7616 for (address = start; address < end; address += PUD_SIZE) { 7617 ptep = hugetlb_walk(vma, address, sz); 7618 if (!ptep) 7619 continue; 7620 ptl = huge_pte_lock(h, mm, ptep); 7621 huge_pmd_unshare(mm, vma, address, ptep); 7622 spin_unlock(ptl); 7623 } 7624 flush_hugetlb_tlb_range(vma, start, end); 7625 i_mmap_unlock_write(vma->vm_file->f_mapping); 7626 hugetlb_vma_unlock_write(vma); 7627 /* 7628 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs(), see 7629 * Documentation/mm/mmu_notifier.rst. 7630 */ 7631 mmu_notifier_invalidate_range_end(&range); 7632 } 7633 7634 /* 7635 * This function will unconditionally remove all the shared pmd pgtable entries 7636 * within the specific vma for a hugetlbfs memory range. 7637 */ 7638 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma) 7639 { 7640 hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE), 7641 ALIGN_DOWN(vma->vm_end, PUD_SIZE)); 7642 } 7643 7644 #ifdef CONFIG_CMA 7645 static bool cma_reserve_called __initdata; 7646 7647 static int __init cmdline_parse_hugetlb_cma(char *p) 7648 { 7649 int nid, count = 0; 7650 unsigned long tmp; 7651 char *s = p; 7652 7653 while (*s) { 7654 if (sscanf(s, "%lu%n", &tmp, &count) != 1) 7655 break; 7656 7657 if (s[count] == ':') { 7658 if (tmp >= MAX_NUMNODES) 7659 break; 7660 nid = array_index_nospec(tmp, MAX_NUMNODES); 7661 7662 s += count + 1; 7663 tmp = memparse(s, &s); 7664 hugetlb_cma_size_in_node[nid] = tmp; 7665 hugetlb_cma_size += tmp; 7666 7667 /* 7668 * Skip the separator if have one, otherwise 7669 * break the parsing. 7670 */ 7671 if (*s == ',') 7672 s++; 7673 else 7674 break; 7675 } else { 7676 hugetlb_cma_size = memparse(p, &p); 7677 break; 7678 } 7679 } 7680 7681 return 0; 7682 } 7683 7684 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma); 7685 7686 void __init hugetlb_cma_reserve(int order) 7687 { 7688 unsigned long size, reserved, per_node; 7689 bool node_specific_cma_alloc = false; 7690 int nid; 7691 7692 cma_reserve_called = true; 7693 7694 if (!hugetlb_cma_size) 7695 return; 7696 7697 for (nid = 0; nid < MAX_NUMNODES; nid++) { 7698 if (hugetlb_cma_size_in_node[nid] == 0) 7699 continue; 7700 7701 if (!node_online(nid)) { 7702 pr_warn("hugetlb_cma: invalid node %d specified\n", nid); 7703 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid]; 7704 hugetlb_cma_size_in_node[nid] = 0; 7705 continue; 7706 } 7707 7708 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) { 7709 pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n", 7710 nid, (PAGE_SIZE << order) / SZ_1M); 7711 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid]; 7712 hugetlb_cma_size_in_node[nid] = 0; 7713 } else { 7714 node_specific_cma_alloc = true; 7715 } 7716 } 7717 7718 /* Validate the CMA size again in case some invalid nodes specified. */ 7719 if (!hugetlb_cma_size) 7720 return; 7721 7722 if (hugetlb_cma_size < (PAGE_SIZE << order)) { 7723 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n", 7724 (PAGE_SIZE << order) / SZ_1M); 7725 hugetlb_cma_size = 0; 7726 return; 7727 } 7728 7729 if (!node_specific_cma_alloc) { 7730 /* 7731 * If 3 GB area is requested on a machine with 4 numa nodes, 7732 * let's allocate 1 GB on first three nodes and ignore the last one. 7733 */ 7734 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes); 7735 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n", 7736 hugetlb_cma_size / SZ_1M, per_node / SZ_1M); 7737 } 7738 7739 reserved = 0; 7740 for_each_online_node(nid) { 7741 int res; 7742 char name[CMA_MAX_NAME]; 7743 7744 if (node_specific_cma_alloc) { 7745 if (hugetlb_cma_size_in_node[nid] == 0) 7746 continue; 7747 7748 size = hugetlb_cma_size_in_node[nid]; 7749 } else { 7750 size = min(per_node, hugetlb_cma_size - reserved); 7751 } 7752 7753 size = round_up(size, PAGE_SIZE << order); 7754 7755 snprintf(name, sizeof(name), "hugetlb%d", nid); 7756 /* 7757 * Note that 'order per bit' is based on smallest size that 7758 * may be returned to CMA allocator in the case of 7759 * huge page demotion. 7760 */ 7761 res = cma_declare_contiguous_nid(0, size, 0, 7762 PAGE_SIZE << HUGETLB_PAGE_ORDER, 7763 0, false, name, 7764 &hugetlb_cma[nid], nid); 7765 if (res) { 7766 pr_warn("hugetlb_cma: reservation failed: err %d, node %d", 7767 res, nid); 7768 continue; 7769 } 7770 7771 reserved += size; 7772 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n", 7773 size / SZ_1M, nid); 7774 7775 if (reserved >= hugetlb_cma_size) 7776 break; 7777 } 7778 7779 if (!reserved) 7780 /* 7781 * hugetlb_cma_size is used to determine if allocations from 7782 * cma are possible. Set to zero if no cma regions are set up. 7783 */ 7784 hugetlb_cma_size = 0; 7785 } 7786 7787 static void __init hugetlb_cma_check(void) 7788 { 7789 if (!hugetlb_cma_size || cma_reserve_called) 7790 return; 7791 7792 pr_warn("hugetlb_cma: the option isn't supported by current arch\n"); 7793 } 7794 7795 #endif /* CONFIG_CMA */ 7796