1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic hugetlb support. 4 * (C) Nadia Yvette Chambers, April 2004 5 */ 6 #include <linux/list.h> 7 #include <linux/init.h> 8 #include <linux/mm.h> 9 #include <linux/seq_file.h> 10 #include <linux/sysctl.h> 11 #include <linux/highmem.h> 12 #include <linux/mmu_notifier.h> 13 #include <linux/nodemask.h> 14 #include <linux/pagemap.h> 15 #include <linux/mempolicy.h> 16 #include <linux/compiler.h> 17 #include <linux/cpuset.h> 18 #include <linux/mutex.h> 19 #include <linux/memblock.h> 20 #include <linux/sysfs.h> 21 #include <linux/slab.h> 22 #include <linux/sched/mm.h> 23 #include <linux/mmdebug.h> 24 #include <linux/sched/signal.h> 25 #include <linux/rmap.h> 26 #include <linux/string_helpers.h> 27 #include <linux/swap.h> 28 #include <linux/swapops.h> 29 #include <linux/jhash.h> 30 #include <linux/numa.h> 31 #include <linux/llist.h> 32 #include <linux/cma.h> 33 #include <linux/migrate.h> 34 #include <linux/nospec.h> 35 #include <linux/delayacct.h> 36 #include <linux/memory.h> 37 #include <linux/mm_inline.h> 38 #include <linux/padata.h> 39 40 #include <asm/page.h> 41 #include <asm/pgalloc.h> 42 #include <asm/tlb.h> 43 #include <asm/setup.h> 44 45 #include <linux/io.h> 46 #include <linux/hugetlb.h> 47 #include <linux/hugetlb_cgroup.h> 48 #include <linux/node.h> 49 #include <linux/page_owner.h> 50 #include "internal.h" 51 #include "hugetlb_vmemmap.h" 52 #include "hugetlb_cma.h" 53 #include <linux/page-isolation.h> 54 55 int hugetlb_max_hstate __read_mostly; 56 unsigned int default_hstate_idx; 57 struct hstate hstates[HUGE_MAX_HSTATE]; 58 59 __initdata struct list_head huge_boot_pages[MAX_NUMNODES]; 60 static unsigned long hstate_boot_nrinvalid[HUGE_MAX_HSTATE] __initdata; 61 62 /* 63 * Due to ordering constraints across the init code for various 64 * architectures, hugetlb hstate cmdline parameters can't simply 65 * be early_param. early_param might call the setup function 66 * before valid hugetlb page sizes are determined, leading to 67 * incorrect rejection of valid hugepagesz= options. 68 * 69 * So, record the parameters early and consume them whenever the 70 * init code is ready for them, by calling hugetlb_parse_params(). 71 */ 72 73 /* one (hugepagesz=,hugepages=) pair per hstate, one default_hugepagesz */ 74 #define HUGE_MAX_CMDLINE_ARGS (2 * HUGE_MAX_HSTATE + 1) 75 struct hugetlb_cmdline { 76 char *val; 77 int (*setup)(char *val); 78 }; 79 80 /* for command line parsing */ 81 static struct hstate * __initdata parsed_hstate; 82 static unsigned long __initdata default_hstate_max_huge_pages; 83 static bool __initdata parsed_valid_hugepagesz = true; 84 static bool __initdata parsed_default_hugepagesz; 85 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata; 86 87 static char hstate_cmdline_buf[COMMAND_LINE_SIZE] __initdata; 88 static int hstate_cmdline_index __initdata; 89 static struct hugetlb_cmdline hugetlb_params[HUGE_MAX_CMDLINE_ARGS] __initdata; 90 static int hugetlb_param_index __initdata; 91 static __init int hugetlb_add_param(char *s, int (*setup)(char *val)); 92 static __init void hugetlb_parse_params(void); 93 94 #define hugetlb_early_param(str, func) \ 95 static __init int func##args(char *s) \ 96 { \ 97 return hugetlb_add_param(s, func); \ 98 } \ 99 early_param(str, func##args) 100 101 /* 102 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages, 103 * free_huge_pages, and surplus_huge_pages. 104 */ 105 __cacheline_aligned_in_smp DEFINE_SPINLOCK(hugetlb_lock); 106 107 /* 108 * Serializes faults on the same logical page. This is used to 109 * prevent spurious OOMs when the hugepage pool is fully utilized. 110 */ 111 static int num_fault_mutexes __ro_after_init; 112 struct mutex *hugetlb_fault_mutex_table __ro_after_init; 113 114 /* Forward declaration */ 115 static int hugetlb_acct_memory(struct hstate *h, long delta); 116 static void hugetlb_vma_lock_free(struct vm_area_struct *vma); 117 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma); 118 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma); 119 static void hugetlb_unshare_pmds(struct vm_area_struct *vma, 120 unsigned long start, unsigned long end); 121 static struct resv_map *vma_resv_map(struct vm_area_struct *vma); 122 123 static void hugetlb_free_folio(struct folio *folio) 124 { 125 if (folio_test_hugetlb_cma(folio)) { 126 hugetlb_cma_free_folio(folio); 127 return; 128 } 129 130 folio_put(folio); 131 } 132 133 static inline bool subpool_is_free(struct hugepage_subpool *spool) 134 { 135 if (spool->count) 136 return false; 137 if (spool->max_hpages != -1) 138 return spool->used_hpages == 0; 139 if (spool->min_hpages != -1) 140 return spool->rsv_hpages == spool->min_hpages; 141 142 return true; 143 } 144 145 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool, 146 unsigned long irq_flags) 147 { 148 spin_unlock_irqrestore(&spool->lock, irq_flags); 149 150 /* If no pages are used, and no other handles to the subpool 151 * remain, give up any reservations based on minimum size and 152 * free the subpool */ 153 if (subpool_is_free(spool)) { 154 if (spool->min_hpages != -1) 155 hugetlb_acct_memory(spool->hstate, 156 -spool->min_hpages); 157 kfree(spool); 158 } 159 } 160 161 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages, 162 long min_hpages) 163 { 164 struct hugepage_subpool *spool; 165 166 spool = kzalloc(sizeof(*spool), GFP_KERNEL); 167 if (!spool) 168 return NULL; 169 170 spin_lock_init(&spool->lock); 171 spool->count = 1; 172 spool->max_hpages = max_hpages; 173 spool->hstate = h; 174 spool->min_hpages = min_hpages; 175 176 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) { 177 kfree(spool); 178 return NULL; 179 } 180 spool->rsv_hpages = min_hpages; 181 182 return spool; 183 } 184 185 void hugepage_put_subpool(struct hugepage_subpool *spool) 186 { 187 unsigned long flags; 188 189 spin_lock_irqsave(&spool->lock, flags); 190 BUG_ON(!spool->count); 191 spool->count--; 192 unlock_or_release_subpool(spool, flags); 193 } 194 195 /* 196 * Subpool accounting for allocating and reserving pages. 197 * Return -ENOMEM if there are not enough resources to satisfy the 198 * request. Otherwise, return the number of pages by which the 199 * global pools must be adjusted (upward). The returned value may 200 * only be different than the passed value (delta) in the case where 201 * a subpool minimum size must be maintained. 202 */ 203 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool, 204 long delta) 205 { 206 long ret = delta; 207 208 if (!spool) 209 return ret; 210 211 spin_lock_irq(&spool->lock); 212 213 if (spool->max_hpages != -1) { /* maximum size accounting */ 214 if ((spool->used_hpages + delta) <= spool->max_hpages) 215 spool->used_hpages += delta; 216 else { 217 ret = -ENOMEM; 218 goto unlock_ret; 219 } 220 } 221 222 /* minimum size accounting */ 223 if (spool->min_hpages != -1 && spool->rsv_hpages) { 224 if (delta > spool->rsv_hpages) { 225 /* 226 * Asking for more reserves than those already taken on 227 * behalf of subpool. Return difference. 228 */ 229 ret = delta - spool->rsv_hpages; 230 spool->rsv_hpages = 0; 231 } else { 232 ret = 0; /* reserves already accounted for */ 233 spool->rsv_hpages -= delta; 234 } 235 } 236 237 unlock_ret: 238 spin_unlock_irq(&spool->lock); 239 return ret; 240 } 241 242 /* 243 * Subpool accounting for freeing and unreserving pages. 244 * Return the number of global page reservations that must be dropped. 245 * The return value may only be different than the passed value (delta) 246 * in the case where a subpool minimum size must be maintained. 247 */ 248 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool, 249 long delta) 250 { 251 long ret = delta; 252 unsigned long flags; 253 254 if (!spool) 255 return delta; 256 257 spin_lock_irqsave(&spool->lock, flags); 258 259 if (spool->max_hpages != -1) /* maximum size accounting */ 260 spool->used_hpages -= delta; 261 262 /* minimum size accounting */ 263 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) { 264 if (spool->rsv_hpages + delta <= spool->min_hpages) 265 ret = 0; 266 else 267 ret = spool->rsv_hpages + delta - spool->min_hpages; 268 269 spool->rsv_hpages += delta; 270 if (spool->rsv_hpages > spool->min_hpages) 271 spool->rsv_hpages = spool->min_hpages; 272 } 273 274 /* 275 * If hugetlbfs_put_super couldn't free spool due to an outstanding 276 * quota reference, free it now. 277 */ 278 unlock_or_release_subpool(spool, flags); 279 280 return ret; 281 } 282 283 static inline struct hugepage_subpool *subpool_inode(struct inode *inode) 284 { 285 return HUGETLBFS_SB(inode->i_sb)->spool; 286 } 287 288 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma) 289 { 290 return subpool_inode(file_inode(vma->vm_file)); 291 } 292 293 /* 294 * hugetlb vma_lock helper routines 295 */ 296 void hugetlb_vma_lock_read(struct vm_area_struct *vma) 297 { 298 if (__vma_shareable_lock(vma)) { 299 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 300 301 down_read(&vma_lock->rw_sema); 302 } else if (__vma_private_lock(vma)) { 303 struct resv_map *resv_map = vma_resv_map(vma); 304 305 down_read(&resv_map->rw_sema); 306 } 307 } 308 309 void hugetlb_vma_unlock_read(struct vm_area_struct *vma) 310 { 311 if (__vma_shareable_lock(vma)) { 312 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 313 314 up_read(&vma_lock->rw_sema); 315 } else if (__vma_private_lock(vma)) { 316 struct resv_map *resv_map = vma_resv_map(vma); 317 318 up_read(&resv_map->rw_sema); 319 } 320 } 321 322 void hugetlb_vma_lock_write(struct vm_area_struct *vma) 323 { 324 if (__vma_shareable_lock(vma)) { 325 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 326 327 down_write(&vma_lock->rw_sema); 328 } else if (__vma_private_lock(vma)) { 329 struct resv_map *resv_map = vma_resv_map(vma); 330 331 down_write(&resv_map->rw_sema); 332 } 333 } 334 335 void hugetlb_vma_unlock_write(struct vm_area_struct *vma) 336 { 337 if (__vma_shareable_lock(vma)) { 338 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 339 340 up_write(&vma_lock->rw_sema); 341 } else if (__vma_private_lock(vma)) { 342 struct resv_map *resv_map = vma_resv_map(vma); 343 344 up_write(&resv_map->rw_sema); 345 } 346 } 347 348 int hugetlb_vma_trylock_write(struct vm_area_struct *vma) 349 { 350 351 if (__vma_shareable_lock(vma)) { 352 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 353 354 return down_write_trylock(&vma_lock->rw_sema); 355 } else if (__vma_private_lock(vma)) { 356 struct resv_map *resv_map = vma_resv_map(vma); 357 358 return down_write_trylock(&resv_map->rw_sema); 359 } 360 361 return 1; 362 } 363 364 void hugetlb_vma_assert_locked(struct vm_area_struct *vma) 365 { 366 if (__vma_shareable_lock(vma)) { 367 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 368 369 lockdep_assert_held(&vma_lock->rw_sema); 370 } else if (__vma_private_lock(vma)) { 371 struct resv_map *resv_map = vma_resv_map(vma); 372 373 lockdep_assert_held(&resv_map->rw_sema); 374 } 375 } 376 377 void hugetlb_vma_lock_release(struct kref *kref) 378 { 379 struct hugetlb_vma_lock *vma_lock = container_of(kref, 380 struct hugetlb_vma_lock, refs); 381 382 kfree(vma_lock); 383 } 384 385 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock) 386 { 387 struct vm_area_struct *vma = vma_lock->vma; 388 389 /* 390 * vma_lock structure may or not be released as a result of put, 391 * it certainly will no longer be attached to vma so clear pointer. 392 * Semaphore synchronizes access to vma_lock->vma field. 393 */ 394 vma_lock->vma = NULL; 395 vma->vm_private_data = NULL; 396 up_write(&vma_lock->rw_sema); 397 kref_put(&vma_lock->refs, hugetlb_vma_lock_release); 398 } 399 400 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma) 401 { 402 if (__vma_shareable_lock(vma)) { 403 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 404 405 __hugetlb_vma_unlock_write_put(vma_lock); 406 } else if (__vma_private_lock(vma)) { 407 struct resv_map *resv_map = vma_resv_map(vma); 408 409 /* no free for anon vmas, but still need to unlock */ 410 up_write(&resv_map->rw_sema); 411 } 412 } 413 414 static void hugetlb_vma_lock_free(struct vm_area_struct *vma) 415 { 416 /* 417 * Only present in sharable vmas. 418 */ 419 if (!vma || !__vma_shareable_lock(vma)) 420 return; 421 422 if (vma->vm_private_data) { 423 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 424 425 down_write(&vma_lock->rw_sema); 426 __hugetlb_vma_unlock_write_put(vma_lock); 427 } 428 } 429 430 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma) 431 { 432 struct hugetlb_vma_lock *vma_lock; 433 434 /* Only establish in (flags) sharable vmas */ 435 if (!vma || !(vma->vm_flags & VM_MAYSHARE)) 436 return; 437 438 /* Should never get here with non-NULL vm_private_data */ 439 if (vma->vm_private_data) 440 return; 441 442 vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL); 443 if (!vma_lock) { 444 /* 445 * If we can not allocate structure, then vma can not 446 * participate in pmd sharing. This is only a possible 447 * performance enhancement and memory saving issue. 448 * However, the lock is also used to synchronize page 449 * faults with truncation. If the lock is not present, 450 * unlikely races could leave pages in a file past i_size 451 * until the file is removed. Warn in the unlikely case of 452 * allocation failure. 453 */ 454 pr_warn_once("HugeTLB: unable to allocate vma specific lock\n"); 455 return; 456 } 457 458 kref_init(&vma_lock->refs); 459 init_rwsem(&vma_lock->rw_sema); 460 vma_lock->vma = vma; 461 vma->vm_private_data = vma_lock; 462 } 463 464 /* Helper that removes a struct file_region from the resv_map cache and returns 465 * it for use. 466 */ 467 static struct file_region * 468 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to) 469 { 470 struct file_region *nrg; 471 472 VM_BUG_ON(resv->region_cache_count <= 0); 473 474 resv->region_cache_count--; 475 nrg = list_first_entry(&resv->region_cache, struct file_region, link); 476 list_del(&nrg->link); 477 478 nrg->from = from; 479 nrg->to = to; 480 481 return nrg; 482 } 483 484 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg, 485 struct file_region *rg) 486 { 487 #ifdef CONFIG_CGROUP_HUGETLB 488 nrg->reservation_counter = rg->reservation_counter; 489 nrg->css = rg->css; 490 if (rg->css) 491 css_get(rg->css); 492 #endif 493 } 494 495 /* Helper that records hugetlb_cgroup uncharge info. */ 496 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg, 497 struct hstate *h, 498 struct resv_map *resv, 499 struct file_region *nrg) 500 { 501 #ifdef CONFIG_CGROUP_HUGETLB 502 if (h_cg) { 503 nrg->reservation_counter = 504 &h_cg->rsvd_hugepage[hstate_index(h)]; 505 nrg->css = &h_cg->css; 506 /* 507 * The caller will hold exactly one h_cg->css reference for the 508 * whole contiguous reservation region. But this area might be 509 * scattered when there are already some file_regions reside in 510 * it. As a result, many file_regions may share only one css 511 * reference. In order to ensure that one file_region must hold 512 * exactly one h_cg->css reference, we should do css_get for 513 * each file_region and leave the reference held by caller 514 * untouched. 515 */ 516 css_get(&h_cg->css); 517 if (!resv->pages_per_hpage) 518 resv->pages_per_hpage = pages_per_huge_page(h); 519 /* pages_per_hpage should be the same for all entries in 520 * a resv_map. 521 */ 522 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h)); 523 } else { 524 nrg->reservation_counter = NULL; 525 nrg->css = NULL; 526 } 527 #endif 528 } 529 530 static void put_uncharge_info(struct file_region *rg) 531 { 532 #ifdef CONFIG_CGROUP_HUGETLB 533 if (rg->css) 534 css_put(rg->css); 535 #endif 536 } 537 538 static bool has_same_uncharge_info(struct file_region *rg, 539 struct file_region *org) 540 { 541 #ifdef CONFIG_CGROUP_HUGETLB 542 return rg->reservation_counter == org->reservation_counter && 543 rg->css == org->css; 544 545 #else 546 return true; 547 #endif 548 } 549 550 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg) 551 { 552 struct file_region *nrg, *prg; 553 554 prg = list_prev_entry(rg, link); 555 if (&prg->link != &resv->regions && prg->to == rg->from && 556 has_same_uncharge_info(prg, rg)) { 557 prg->to = rg->to; 558 559 list_del(&rg->link); 560 put_uncharge_info(rg); 561 kfree(rg); 562 563 rg = prg; 564 } 565 566 nrg = list_next_entry(rg, link); 567 if (&nrg->link != &resv->regions && nrg->from == rg->to && 568 has_same_uncharge_info(nrg, rg)) { 569 nrg->from = rg->from; 570 571 list_del(&rg->link); 572 put_uncharge_info(rg); 573 kfree(rg); 574 } 575 } 576 577 static inline long 578 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from, 579 long to, struct hstate *h, struct hugetlb_cgroup *cg, 580 long *regions_needed) 581 { 582 struct file_region *nrg; 583 584 if (!regions_needed) { 585 nrg = get_file_region_entry_from_cache(map, from, to); 586 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg); 587 list_add(&nrg->link, rg); 588 coalesce_file_region(map, nrg); 589 } else 590 *regions_needed += 1; 591 592 return to - from; 593 } 594 595 /* 596 * Must be called with resv->lock held. 597 * 598 * Calling this with regions_needed != NULL will count the number of pages 599 * to be added but will not modify the linked list. And regions_needed will 600 * indicate the number of file_regions needed in the cache to carry out to add 601 * the regions for this range. 602 */ 603 static long add_reservation_in_range(struct resv_map *resv, long f, long t, 604 struct hugetlb_cgroup *h_cg, 605 struct hstate *h, long *regions_needed) 606 { 607 long add = 0; 608 struct list_head *head = &resv->regions; 609 long last_accounted_offset = f; 610 struct file_region *iter, *trg = NULL; 611 struct list_head *rg = NULL; 612 613 if (regions_needed) 614 *regions_needed = 0; 615 616 /* In this loop, we essentially handle an entry for the range 617 * [last_accounted_offset, iter->from), at every iteration, with some 618 * bounds checking. 619 */ 620 list_for_each_entry_safe(iter, trg, head, link) { 621 /* Skip irrelevant regions that start before our range. */ 622 if (iter->from < f) { 623 /* If this region ends after the last accounted offset, 624 * then we need to update last_accounted_offset. 625 */ 626 if (iter->to > last_accounted_offset) 627 last_accounted_offset = iter->to; 628 continue; 629 } 630 631 /* When we find a region that starts beyond our range, we've 632 * finished. 633 */ 634 if (iter->from >= t) { 635 rg = iter->link.prev; 636 break; 637 } 638 639 /* Add an entry for last_accounted_offset -> iter->from, and 640 * update last_accounted_offset. 641 */ 642 if (iter->from > last_accounted_offset) 643 add += hugetlb_resv_map_add(resv, iter->link.prev, 644 last_accounted_offset, 645 iter->from, h, h_cg, 646 regions_needed); 647 648 last_accounted_offset = iter->to; 649 } 650 651 /* Handle the case where our range extends beyond 652 * last_accounted_offset. 653 */ 654 if (!rg) 655 rg = head->prev; 656 if (last_accounted_offset < t) 657 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset, 658 t, h, h_cg, regions_needed); 659 660 return add; 661 } 662 663 /* Must be called with resv->lock acquired. Will drop lock to allocate entries. 664 */ 665 static int allocate_file_region_entries(struct resv_map *resv, 666 int regions_needed) 667 __must_hold(&resv->lock) 668 { 669 LIST_HEAD(allocated_regions); 670 int to_allocate = 0, i = 0; 671 struct file_region *trg = NULL, *rg = NULL; 672 673 VM_BUG_ON(regions_needed < 0); 674 675 /* 676 * Check for sufficient descriptors in the cache to accommodate 677 * the number of in progress add operations plus regions_needed. 678 * 679 * This is a while loop because when we drop the lock, some other call 680 * to region_add or region_del may have consumed some region_entries, 681 * so we keep looping here until we finally have enough entries for 682 * (adds_in_progress + regions_needed). 683 */ 684 while (resv->region_cache_count < 685 (resv->adds_in_progress + regions_needed)) { 686 to_allocate = resv->adds_in_progress + regions_needed - 687 resv->region_cache_count; 688 689 /* At this point, we should have enough entries in the cache 690 * for all the existing adds_in_progress. We should only be 691 * needing to allocate for regions_needed. 692 */ 693 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress); 694 695 spin_unlock(&resv->lock); 696 for (i = 0; i < to_allocate; i++) { 697 trg = kmalloc(sizeof(*trg), GFP_KERNEL); 698 if (!trg) 699 goto out_of_memory; 700 list_add(&trg->link, &allocated_regions); 701 } 702 703 spin_lock(&resv->lock); 704 705 list_splice(&allocated_regions, &resv->region_cache); 706 resv->region_cache_count += to_allocate; 707 } 708 709 return 0; 710 711 out_of_memory: 712 list_for_each_entry_safe(rg, trg, &allocated_regions, link) { 713 list_del(&rg->link); 714 kfree(rg); 715 } 716 return -ENOMEM; 717 } 718 719 /* 720 * Add the huge page range represented by [f, t) to the reserve 721 * map. Regions will be taken from the cache to fill in this range. 722 * Sufficient regions should exist in the cache due to the previous 723 * call to region_chg with the same range, but in some cases the cache will not 724 * have sufficient entries due to races with other code doing region_add or 725 * region_del. The extra needed entries will be allocated. 726 * 727 * regions_needed is the out value provided by a previous call to region_chg. 728 * 729 * Return the number of new huge pages added to the map. This number is greater 730 * than or equal to zero. If file_region entries needed to be allocated for 731 * this operation and we were not able to allocate, it returns -ENOMEM. 732 * region_add of regions of length 1 never allocate file_regions and cannot 733 * fail; region_chg will always allocate at least 1 entry and a region_add for 734 * 1 page will only require at most 1 entry. 735 */ 736 static long region_add(struct resv_map *resv, long f, long t, 737 long in_regions_needed, struct hstate *h, 738 struct hugetlb_cgroup *h_cg) 739 { 740 long add = 0, actual_regions_needed = 0; 741 742 spin_lock(&resv->lock); 743 retry: 744 745 /* Count how many regions are actually needed to execute this add. */ 746 add_reservation_in_range(resv, f, t, NULL, NULL, 747 &actual_regions_needed); 748 749 /* 750 * Check for sufficient descriptors in the cache to accommodate 751 * this add operation. Note that actual_regions_needed may be greater 752 * than in_regions_needed, as the resv_map may have been modified since 753 * the region_chg call. In this case, we need to make sure that we 754 * allocate extra entries, such that we have enough for all the 755 * existing adds_in_progress, plus the excess needed for this 756 * operation. 757 */ 758 if (actual_regions_needed > in_regions_needed && 759 resv->region_cache_count < 760 resv->adds_in_progress + 761 (actual_regions_needed - in_regions_needed)) { 762 /* region_add operation of range 1 should never need to 763 * allocate file_region entries. 764 */ 765 VM_BUG_ON(t - f <= 1); 766 767 if (allocate_file_region_entries( 768 resv, actual_regions_needed - in_regions_needed)) { 769 return -ENOMEM; 770 } 771 772 goto retry; 773 } 774 775 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL); 776 777 resv->adds_in_progress -= in_regions_needed; 778 779 spin_unlock(&resv->lock); 780 return add; 781 } 782 783 /* 784 * Examine the existing reserve map and determine how many 785 * huge pages in the specified range [f, t) are NOT currently 786 * represented. This routine is called before a subsequent 787 * call to region_add that will actually modify the reserve 788 * map to add the specified range [f, t). region_chg does 789 * not change the number of huge pages represented by the 790 * map. A number of new file_region structures is added to the cache as a 791 * placeholder, for the subsequent region_add call to use. At least 1 792 * file_region structure is added. 793 * 794 * out_regions_needed is the number of regions added to the 795 * resv->adds_in_progress. This value needs to be provided to a follow up call 796 * to region_add or region_abort for proper accounting. 797 * 798 * Returns the number of huge pages that need to be added to the existing 799 * reservation map for the range [f, t). This number is greater or equal to 800 * zero. -ENOMEM is returned if a new file_region structure or cache entry 801 * is needed and can not be allocated. 802 */ 803 static long region_chg(struct resv_map *resv, long f, long t, 804 long *out_regions_needed) 805 { 806 long chg = 0; 807 808 spin_lock(&resv->lock); 809 810 /* Count how many hugepages in this range are NOT represented. */ 811 chg = add_reservation_in_range(resv, f, t, NULL, NULL, 812 out_regions_needed); 813 814 if (*out_regions_needed == 0) 815 *out_regions_needed = 1; 816 817 if (allocate_file_region_entries(resv, *out_regions_needed)) 818 return -ENOMEM; 819 820 resv->adds_in_progress += *out_regions_needed; 821 822 spin_unlock(&resv->lock); 823 return chg; 824 } 825 826 /* 827 * Abort the in progress add operation. The adds_in_progress field 828 * of the resv_map keeps track of the operations in progress between 829 * calls to region_chg and region_add. Operations are sometimes 830 * aborted after the call to region_chg. In such cases, region_abort 831 * is called to decrement the adds_in_progress counter. regions_needed 832 * is the value returned by the region_chg call, it is used to decrement 833 * the adds_in_progress counter. 834 * 835 * NOTE: The range arguments [f, t) are not needed or used in this 836 * routine. They are kept to make reading the calling code easier as 837 * arguments will match the associated region_chg call. 838 */ 839 static void region_abort(struct resv_map *resv, long f, long t, 840 long regions_needed) 841 { 842 spin_lock(&resv->lock); 843 VM_BUG_ON(!resv->region_cache_count); 844 resv->adds_in_progress -= regions_needed; 845 spin_unlock(&resv->lock); 846 } 847 848 /* 849 * Delete the specified range [f, t) from the reserve map. If the 850 * t parameter is LONG_MAX, this indicates that ALL regions after f 851 * should be deleted. Locate the regions which intersect [f, t) 852 * and either trim, delete or split the existing regions. 853 * 854 * Returns the number of huge pages deleted from the reserve map. 855 * In the normal case, the return value is zero or more. In the 856 * case where a region must be split, a new region descriptor must 857 * be allocated. If the allocation fails, -ENOMEM will be returned. 858 * NOTE: If the parameter t == LONG_MAX, then we will never split 859 * a region and possibly return -ENOMEM. Callers specifying 860 * t == LONG_MAX do not need to check for -ENOMEM error. 861 */ 862 static long region_del(struct resv_map *resv, long f, long t) 863 { 864 struct list_head *head = &resv->regions; 865 struct file_region *rg, *trg; 866 struct file_region *nrg = NULL; 867 long del = 0; 868 869 retry: 870 spin_lock(&resv->lock); 871 list_for_each_entry_safe(rg, trg, head, link) { 872 /* 873 * Skip regions before the range to be deleted. file_region 874 * ranges are normally of the form [from, to). However, there 875 * may be a "placeholder" entry in the map which is of the form 876 * (from, to) with from == to. Check for placeholder entries 877 * at the beginning of the range to be deleted. 878 */ 879 if (rg->to <= f && (rg->to != rg->from || rg->to != f)) 880 continue; 881 882 if (rg->from >= t) 883 break; 884 885 if (f > rg->from && t < rg->to) { /* Must split region */ 886 /* 887 * Check for an entry in the cache before dropping 888 * lock and attempting allocation. 889 */ 890 if (!nrg && 891 resv->region_cache_count > resv->adds_in_progress) { 892 nrg = list_first_entry(&resv->region_cache, 893 struct file_region, 894 link); 895 list_del(&nrg->link); 896 resv->region_cache_count--; 897 } 898 899 if (!nrg) { 900 spin_unlock(&resv->lock); 901 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 902 if (!nrg) 903 return -ENOMEM; 904 goto retry; 905 } 906 907 del += t - f; 908 hugetlb_cgroup_uncharge_file_region( 909 resv, rg, t - f, false); 910 911 /* New entry for end of split region */ 912 nrg->from = t; 913 nrg->to = rg->to; 914 915 copy_hugetlb_cgroup_uncharge_info(nrg, rg); 916 917 INIT_LIST_HEAD(&nrg->link); 918 919 /* Original entry is trimmed */ 920 rg->to = f; 921 922 list_add(&nrg->link, &rg->link); 923 nrg = NULL; 924 break; 925 } 926 927 if (f <= rg->from && t >= rg->to) { /* Remove entire region */ 928 del += rg->to - rg->from; 929 hugetlb_cgroup_uncharge_file_region(resv, rg, 930 rg->to - rg->from, true); 931 list_del(&rg->link); 932 kfree(rg); 933 continue; 934 } 935 936 if (f <= rg->from) { /* Trim beginning of region */ 937 hugetlb_cgroup_uncharge_file_region(resv, rg, 938 t - rg->from, false); 939 940 del += t - rg->from; 941 rg->from = t; 942 } else { /* Trim end of region */ 943 hugetlb_cgroup_uncharge_file_region(resv, rg, 944 rg->to - f, false); 945 946 del += rg->to - f; 947 rg->to = f; 948 } 949 } 950 951 spin_unlock(&resv->lock); 952 kfree(nrg); 953 return del; 954 } 955 956 /* 957 * A rare out of memory error was encountered which prevented removal of 958 * the reserve map region for a page. The huge page itself was free'ed 959 * and removed from the page cache. This routine will adjust the subpool 960 * usage count, and the global reserve count if needed. By incrementing 961 * these counts, the reserve map entry which could not be deleted will 962 * appear as a "reserved" entry instead of simply dangling with incorrect 963 * counts. 964 */ 965 void hugetlb_fix_reserve_counts(struct inode *inode) 966 { 967 struct hugepage_subpool *spool = subpool_inode(inode); 968 long rsv_adjust; 969 bool reserved = false; 970 971 rsv_adjust = hugepage_subpool_get_pages(spool, 1); 972 if (rsv_adjust > 0) { 973 struct hstate *h = hstate_inode(inode); 974 975 if (!hugetlb_acct_memory(h, 1)) 976 reserved = true; 977 } else if (!rsv_adjust) { 978 reserved = true; 979 } 980 981 if (!reserved) 982 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n"); 983 } 984 985 /* 986 * Count and return the number of huge pages in the reserve map 987 * that intersect with the range [f, t). 988 */ 989 static long region_count(struct resv_map *resv, long f, long t) 990 { 991 struct list_head *head = &resv->regions; 992 struct file_region *rg; 993 long chg = 0; 994 995 spin_lock(&resv->lock); 996 /* Locate each segment we overlap with, and count that overlap. */ 997 list_for_each_entry(rg, head, link) { 998 long seg_from; 999 long seg_to; 1000 1001 if (rg->to <= f) 1002 continue; 1003 if (rg->from >= t) 1004 break; 1005 1006 seg_from = max(rg->from, f); 1007 seg_to = min(rg->to, t); 1008 1009 chg += seg_to - seg_from; 1010 } 1011 spin_unlock(&resv->lock); 1012 1013 return chg; 1014 } 1015 1016 /* 1017 * Convert the address within this vma to the page offset within 1018 * the mapping, huge page units here. 1019 */ 1020 static pgoff_t vma_hugecache_offset(struct hstate *h, 1021 struct vm_area_struct *vma, unsigned long address) 1022 { 1023 return ((address - vma->vm_start) >> huge_page_shift(h)) + 1024 (vma->vm_pgoff >> huge_page_order(h)); 1025 } 1026 1027 /** 1028 * vma_kernel_pagesize - Page size granularity for this VMA. 1029 * @vma: The user mapping. 1030 * 1031 * Folios in this VMA will be aligned to, and at least the size of the 1032 * number of bytes returned by this function. 1033 * 1034 * Return: The default size of the folios allocated when backing a VMA. 1035 */ 1036 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) 1037 { 1038 if (vma->vm_ops && vma->vm_ops->pagesize) 1039 return vma->vm_ops->pagesize(vma); 1040 return PAGE_SIZE; 1041 } 1042 EXPORT_SYMBOL_GPL(vma_kernel_pagesize); 1043 1044 /* 1045 * Return the page size being used by the MMU to back a VMA. In the majority 1046 * of cases, the page size used by the kernel matches the MMU size. On 1047 * architectures where it differs, an architecture-specific 'strong' 1048 * version of this symbol is required. 1049 */ 1050 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 1051 { 1052 return vma_kernel_pagesize(vma); 1053 } 1054 1055 /* 1056 * Flags for MAP_PRIVATE reservations. These are stored in the bottom 1057 * bits of the reservation map pointer, which are always clear due to 1058 * alignment. 1059 */ 1060 #define HPAGE_RESV_OWNER (1UL << 0) 1061 #define HPAGE_RESV_UNMAPPED (1UL << 1) 1062 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) 1063 1064 /* 1065 * These helpers are used to track how many pages are reserved for 1066 * faults in a MAP_PRIVATE mapping. Only the process that called mmap() 1067 * is guaranteed to have their future faults succeed. 1068 * 1069 * With the exception of hugetlb_dup_vma_private() which is called at fork(), 1070 * the reserve counters are updated with the hugetlb_lock held. It is safe 1071 * to reset the VMA at fork() time as it is not in use yet and there is no 1072 * chance of the global counters getting corrupted as a result of the values. 1073 * 1074 * The private mapping reservation is represented in a subtly different 1075 * manner to a shared mapping. A shared mapping has a region map associated 1076 * with the underlying file, this region map represents the backing file 1077 * pages which have ever had a reservation assigned which this persists even 1078 * after the page is instantiated. A private mapping has a region map 1079 * associated with the original mmap which is attached to all VMAs which 1080 * reference it, this region map represents those offsets which have consumed 1081 * reservation ie. where pages have been instantiated. 1082 */ 1083 static unsigned long get_vma_private_data(struct vm_area_struct *vma) 1084 { 1085 return (unsigned long)vma->vm_private_data; 1086 } 1087 1088 static void set_vma_private_data(struct vm_area_struct *vma, 1089 unsigned long value) 1090 { 1091 vma->vm_private_data = (void *)value; 1092 } 1093 1094 static void 1095 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map, 1096 struct hugetlb_cgroup *h_cg, 1097 struct hstate *h) 1098 { 1099 #ifdef CONFIG_CGROUP_HUGETLB 1100 if (!h_cg || !h) { 1101 resv_map->reservation_counter = NULL; 1102 resv_map->pages_per_hpage = 0; 1103 resv_map->css = NULL; 1104 } else { 1105 resv_map->reservation_counter = 1106 &h_cg->rsvd_hugepage[hstate_index(h)]; 1107 resv_map->pages_per_hpage = pages_per_huge_page(h); 1108 resv_map->css = &h_cg->css; 1109 } 1110 #endif 1111 } 1112 1113 struct resv_map *resv_map_alloc(void) 1114 { 1115 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); 1116 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL); 1117 1118 if (!resv_map || !rg) { 1119 kfree(resv_map); 1120 kfree(rg); 1121 return NULL; 1122 } 1123 1124 kref_init(&resv_map->refs); 1125 spin_lock_init(&resv_map->lock); 1126 INIT_LIST_HEAD(&resv_map->regions); 1127 init_rwsem(&resv_map->rw_sema); 1128 1129 resv_map->adds_in_progress = 0; 1130 /* 1131 * Initialize these to 0. On shared mappings, 0's here indicate these 1132 * fields don't do cgroup accounting. On private mappings, these will be 1133 * re-initialized to the proper values, to indicate that hugetlb cgroup 1134 * reservations are to be un-charged from here. 1135 */ 1136 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL); 1137 1138 INIT_LIST_HEAD(&resv_map->region_cache); 1139 list_add(&rg->link, &resv_map->region_cache); 1140 resv_map->region_cache_count = 1; 1141 1142 return resv_map; 1143 } 1144 1145 void resv_map_release(struct kref *ref) 1146 { 1147 struct resv_map *resv_map = container_of(ref, struct resv_map, refs); 1148 struct list_head *head = &resv_map->region_cache; 1149 struct file_region *rg, *trg; 1150 1151 /* Clear out any active regions before we release the map. */ 1152 region_del(resv_map, 0, LONG_MAX); 1153 1154 /* ... and any entries left in the cache */ 1155 list_for_each_entry_safe(rg, trg, head, link) { 1156 list_del(&rg->link); 1157 kfree(rg); 1158 } 1159 1160 VM_BUG_ON(resv_map->adds_in_progress); 1161 1162 kfree(resv_map); 1163 } 1164 1165 static inline struct resv_map *inode_resv_map(struct inode *inode) 1166 { 1167 /* 1168 * At inode evict time, i_mapping may not point to the original 1169 * address space within the inode. This original address space 1170 * contains the pointer to the resv_map. So, always use the 1171 * address space embedded within the inode. 1172 * The VERY common case is inode->mapping == &inode->i_data but, 1173 * this may not be true for device special inodes. 1174 */ 1175 return (struct resv_map *)(&inode->i_data)->i_private_data; 1176 } 1177 1178 static struct resv_map *vma_resv_map(struct vm_area_struct *vma) 1179 { 1180 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1181 if (vma->vm_flags & VM_MAYSHARE) { 1182 struct address_space *mapping = vma->vm_file->f_mapping; 1183 struct inode *inode = mapping->host; 1184 1185 return inode_resv_map(inode); 1186 1187 } else { 1188 return (struct resv_map *)(get_vma_private_data(vma) & 1189 ~HPAGE_RESV_MASK); 1190 } 1191 } 1192 1193 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) 1194 { 1195 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1196 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 1197 1198 set_vma_private_data(vma, (unsigned long)map); 1199 } 1200 1201 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) 1202 { 1203 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1204 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 1205 1206 set_vma_private_data(vma, get_vma_private_data(vma) | flags); 1207 } 1208 1209 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) 1210 { 1211 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1212 1213 return (get_vma_private_data(vma) & flag) != 0; 1214 } 1215 1216 bool __vma_private_lock(struct vm_area_struct *vma) 1217 { 1218 return !(vma->vm_flags & VM_MAYSHARE) && 1219 get_vma_private_data(vma) & ~HPAGE_RESV_MASK && 1220 is_vma_resv_set(vma, HPAGE_RESV_OWNER); 1221 } 1222 1223 void hugetlb_dup_vma_private(struct vm_area_struct *vma) 1224 { 1225 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1226 /* 1227 * Clear vm_private_data 1228 * - For shared mappings this is a per-vma semaphore that may be 1229 * allocated in a subsequent call to hugetlb_vm_op_open. 1230 * Before clearing, make sure pointer is not associated with vma 1231 * as this will leak the structure. This is the case when called 1232 * via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already 1233 * been called to allocate a new structure. 1234 * - For MAP_PRIVATE mappings, this is the reserve map which does 1235 * not apply to children. Faults generated by the children are 1236 * not guaranteed to succeed, even if read-only. 1237 */ 1238 if (vma->vm_flags & VM_MAYSHARE) { 1239 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 1240 1241 if (vma_lock && vma_lock->vma != vma) 1242 vma->vm_private_data = NULL; 1243 } else 1244 vma->vm_private_data = NULL; 1245 } 1246 1247 /* 1248 * Reset and decrement one ref on hugepage private reservation. 1249 * Called with mm->mmap_lock writer semaphore held. 1250 * This function should be only used by move_vma() and operate on 1251 * same sized vma. It should never come here with last ref on the 1252 * reservation. 1253 */ 1254 void clear_vma_resv_huge_pages(struct vm_area_struct *vma) 1255 { 1256 /* 1257 * Clear the old hugetlb private page reservation. 1258 * It has already been transferred to new_vma. 1259 * 1260 * During a mremap() operation of a hugetlb vma we call move_vma() 1261 * which copies vma into new_vma and unmaps vma. After the copy 1262 * operation both new_vma and vma share a reference to the resv_map 1263 * struct, and at that point vma is about to be unmapped. We don't 1264 * want to return the reservation to the pool at unmap of vma because 1265 * the reservation still lives on in new_vma, so simply decrement the 1266 * ref here and remove the resv_map reference from this vma. 1267 */ 1268 struct resv_map *reservations = vma_resv_map(vma); 1269 1270 if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 1271 resv_map_put_hugetlb_cgroup_uncharge_info(reservations); 1272 kref_put(&reservations->refs, resv_map_release); 1273 } 1274 1275 hugetlb_dup_vma_private(vma); 1276 } 1277 1278 static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio) 1279 { 1280 int nid = folio_nid(folio); 1281 1282 lockdep_assert_held(&hugetlb_lock); 1283 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio); 1284 1285 list_move(&folio->lru, &h->hugepage_freelists[nid]); 1286 h->free_huge_pages++; 1287 h->free_huge_pages_node[nid]++; 1288 folio_set_hugetlb_freed(folio); 1289 } 1290 1291 static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h, 1292 int nid) 1293 { 1294 struct folio *folio; 1295 bool pin = !!(current->flags & PF_MEMALLOC_PIN); 1296 1297 lockdep_assert_held(&hugetlb_lock); 1298 list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) { 1299 if (pin && !folio_is_longterm_pinnable(folio)) 1300 continue; 1301 1302 if (folio_test_hwpoison(folio)) 1303 continue; 1304 1305 if (is_migrate_isolate_page(&folio->page)) 1306 continue; 1307 1308 list_move(&folio->lru, &h->hugepage_activelist); 1309 folio_ref_unfreeze(folio, 1); 1310 folio_clear_hugetlb_freed(folio); 1311 h->free_huge_pages--; 1312 h->free_huge_pages_node[nid]--; 1313 return folio; 1314 } 1315 1316 return NULL; 1317 } 1318 1319 static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask, 1320 int nid, nodemask_t *nmask) 1321 { 1322 unsigned int cpuset_mems_cookie; 1323 struct zonelist *zonelist; 1324 struct zone *zone; 1325 struct zoneref *z; 1326 int node = NUMA_NO_NODE; 1327 1328 /* 'nid' should not be NUMA_NO_NODE. Try to catch any misuse of it and rectifiy. */ 1329 if (nid == NUMA_NO_NODE) 1330 nid = numa_node_id(); 1331 1332 zonelist = node_zonelist(nid, gfp_mask); 1333 1334 retry_cpuset: 1335 cpuset_mems_cookie = read_mems_allowed_begin(); 1336 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) { 1337 struct folio *folio; 1338 1339 if (!cpuset_zone_allowed(zone, gfp_mask)) 1340 continue; 1341 /* 1342 * no need to ask again on the same node. Pool is node rather than 1343 * zone aware 1344 */ 1345 if (zone_to_nid(zone) == node) 1346 continue; 1347 node = zone_to_nid(zone); 1348 1349 folio = dequeue_hugetlb_folio_node_exact(h, node); 1350 if (folio) 1351 return folio; 1352 } 1353 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie))) 1354 goto retry_cpuset; 1355 1356 return NULL; 1357 } 1358 1359 static unsigned long available_huge_pages(struct hstate *h) 1360 { 1361 return h->free_huge_pages - h->resv_huge_pages; 1362 } 1363 1364 static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h, 1365 struct vm_area_struct *vma, 1366 unsigned long address, long gbl_chg) 1367 { 1368 struct folio *folio = NULL; 1369 struct mempolicy *mpol; 1370 gfp_t gfp_mask; 1371 nodemask_t *nodemask; 1372 int nid; 1373 1374 /* 1375 * gbl_chg==1 means the allocation requires a new page that was not 1376 * reserved before. Making sure there's at least one free page. 1377 */ 1378 if (gbl_chg && !available_huge_pages(h)) 1379 goto err; 1380 1381 gfp_mask = htlb_alloc_mask(h); 1382 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 1383 1384 if (mpol_is_preferred_many(mpol)) { 1385 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, 1386 nid, nodemask); 1387 1388 /* Fallback to all nodes if page==NULL */ 1389 nodemask = NULL; 1390 } 1391 1392 if (!folio) 1393 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, 1394 nid, nodemask); 1395 1396 mpol_cond_put(mpol); 1397 return folio; 1398 1399 err: 1400 return NULL; 1401 } 1402 1403 /* 1404 * common helper functions for hstate_next_node_to_{alloc|free}. 1405 * We may have allocated or freed a huge page based on a different 1406 * nodes_allowed previously, so h->next_node_to_{alloc|free} might 1407 * be outside of *nodes_allowed. Ensure that we use an allowed 1408 * node for alloc or free. 1409 */ 1410 static int next_node_allowed(int nid, nodemask_t *nodes_allowed) 1411 { 1412 nid = next_node_in(nid, *nodes_allowed); 1413 VM_BUG_ON(nid >= MAX_NUMNODES); 1414 1415 return nid; 1416 } 1417 1418 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed) 1419 { 1420 if (!node_isset(nid, *nodes_allowed)) 1421 nid = next_node_allowed(nid, nodes_allowed); 1422 return nid; 1423 } 1424 1425 /* 1426 * returns the previously saved node ["this node"] from which to 1427 * allocate a persistent huge page for the pool and advance the 1428 * next node from which to allocate, handling wrap at end of node 1429 * mask. 1430 */ 1431 static int hstate_next_node_to_alloc(int *next_node, 1432 nodemask_t *nodes_allowed) 1433 { 1434 int nid; 1435 1436 VM_BUG_ON(!nodes_allowed); 1437 1438 nid = get_valid_node_allowed(*next_node, nodes_allowed); 1439 *next_node = next_node_allowed(nid, nodes_allowed); 1440 1441 return nid; 1442 } 1443 1444 /* 1445 * helper for remove_pool_hugetlb_folio() - return the previously saved 1446 * node ["this node"] from which to free a huge page. Advance the 1447 * next node id whether or not we find a free huge page to free so 1448 * that the next attempt to free addresses the next node. 1449 */ 1450 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed) 1451 { 1452 int nid; 1453 1454 VM_BUG_ON(!nodes_allowed); 1455 1456 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed); 1457 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed); 1458 1459 return nid; 1460 } 1461 1462 #define for_each_node_mask_to_alloc(next_node, nr_nodes, node, mask) \ 1463 for (nr_nodes = nodes_weight(*mask); \ 1464 nr_nodes > 0 && \ 1465 ((node = hstate_next_node_to_alloc(next_node, mask)) || 1); \ 1466 nr_nodes--) 1467 1468 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \ 1469 for (nr_nodes = nodes_weight(*mask); \ 1470 nr_nodes > 0 && \ 1471 ((node = hstate_next_node_to_free(hs, mask)) || 1); \ 1472 nr_nodes--) 1473 1474 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE 1475 #ifdef CONFIG_CONTIG_ALLOC 1476 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask, 1477 int nid, nodemask_t *nodemask) 1478 { 1479 struct folio *folio; 1480 int order = huge_page_order(h); 1481 bool retried = false; 1482 1483 if (nid == NUMA_NO_NODE) 1484 nid = numa_mem_id(); 1485 retry: 1486 folio = hugetlb_cma_alloc_folio(h, gfp_mask, nid, nodemask); 1487 if (!folio) { 1488 if (hugetlb_cma_exclusive_alloc()) 1489 return NULL; 1490 1491 folio = folio_alloc_gigantic(order, gfp_mask, nid, nodemask); 1492 if (!folio) 1493 return NULL; 1494 } 1495 1496 if (folio_ref_freeze(folio, 1)) 1497 return folio; 1498 1499 pr_warn("HugeTLB: unexpected refcount on PFN %lu\n", folio_pfn(folio)); 1500 hugetlb_free_folio(folio); 1501 if (!retried) { 1502 retried = true; 1503 goto retry; 1504 } 1505 return NULL; 1506 } 1507 1508 #else /* !CONFIG_CONTIG_ALLOC */ 1509 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask, 1510 int nid, nodemask_t *nodemask) 1511 { 1512 return NULL; 1513 } 1514 #endif /* CONFIG_CONTIG_ALLOC */ 1515 1516 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */ 1517 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask, 1518 int nid, nodemask_t *nodemask) 1519 { 1520 return NULL; 1521 } 1522 #endif 1523 1524 /* 1525 * Remove hugetlb folio from lists. 1526 * If vmemmap exists for the folio, clear the hugetlb flag so that the 1527 * folio appears as just a compound page. Otherwise, wait until after 1528 * allocating vmemmap to clear the flag. 1529 * 1530 * Must be called with hugetlb lock held. 1531 */ 1532 static void remove_hugetlb_folio(struct hstate *h, struct folio *folio, 1533 bool adjust_surplus) 1534 { 1535 int nid = folio_nid(folio); 1536 1537 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio); 1538 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio); 1539 1540 lockdep_assert_held(&hugetlb_lock); 1541 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 1542 return; 1543 1544 list_del(&folio->lru); 1545 1546 if (folio_test_hugetlb_freed(folio)) { 1547 folio_clear_hugetlb_freed(folio); 1548 h->free_huge_pages--; 1549 h->free_huge_pages_node[nid]--; 1550 } 1551 if (adjust_surplus) { 1552 h->surplus_huge_pages--; 1553 h->surplus_huge_pages_node[nid]--; 1554 } 1555 1556 /* 1557 * We can only clear the hugetlb flag after allocating vmemmap 1558 * pages. Otherwise, someone (memory error handling) may try to write 1559 * to tail struct pages. 1560 */ 1561 if (!folio_test_hugetlb_vmemmap_optimized(folio)) 1562 __folio_clear_hugetlb(folio); 1563 1564 h->nr_huge_pages--; 1565 h->nr_huge_pages_node[nid]--; 1566 } 1567 1568 static void add_hugetlb_folio(struct hstate *h, struct folio *folio, 1569 bool adjust_surplus) 1570 { 1571 int nid = folio_nid(folio); 1572 1573 VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio); 1574 1575 lockdep_assert_held(&hugetlb_lock); 1576 1577 INIT_LIST_HEAD(&folio->lru); 1578 h->nr_huge_pages++; 1579 h->nr_huge_pages_node[nid]++; 1580 1581 if (adjust_surplus) { 1582 h->surplus_huge_pages++; 1583 h->surplus_huge_pages_node[nid]++; 1584 } 1585 1586 __folio_set_hugetlb(folio); 1587 folio_change_private(folio, NULL); 1588 /* 1589 * We have to set hugetlb_vmemmap_optimized again as above 1590 * folio_change_private(folio, NULL) cleared it. 1591 */ 1592 folio_set_hugetlb_vmemmap_optimized(folio); 1593 1594 arch_clear_hugetlb_flags(folio); 1595 enqueue_hugetlb_folio(h, folio); 1596 } 1597 1598 static void __update_and_free_hugetlb_folio(struct hstate *h, 1599 struct folio *folio) 1600 { 1601 bool clear_flag = folio_test_hugetlb_vmemmap_optimized(folio); 1602 1603 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 1604 return; 1605 1606 /* 1607 * If we don't know which subpages are hwpoisoned, we can't free 1608 * the hugepage, so it's leaked intentionally. 1609 */ 1610 if (folio_test_hugetlb_raw_hwp_unreliable(folio)) 1611 return; 1612 1613 /* 1614 * If folio is not vmemmap optimized (!clear_flag), then the folio 1615 * is no longer identified as a hugetlb page. hugetlb_vmemmap_restore_folio 1616 * can only be passed hugetlb pages and will BUG otherwise. 1617 */ 1618 if (clear_flag && hugetlb_vmemmap_restore_folio(h, folio)) { 1619 spin_lock_irq(&hugetlb_lock); 1620 /* 1621 * If we cannot allocate vmemmap pages, just refuse to free the 1622 * page and put the page back on the hugetlb free list and treat 1623 * as a surplus page. 1624 */ 1625 add_hugetlb_folio(h, folio, true); 1626 spin_unlock_irq(&hugetlb_lock); 1627 return; 1628 } 1629 1630 /* 1631 * If vmemmap pages were allocated above, then we need to clear the 1632 * hugetlb flag under the hugetlb lock. 1633 */ 1634 if (folio_test_hugetlb(folio)) { 1635 spin_lock_irq(&hugetlb_lock); 1636 __folio_clear_hugetlb(folio); 1637 spin_unlock_irq(&hugetlb_lock); 1638 } 1639 1640 /* 1641 * Move PageHWPoison flag from head page to the raw error pages, 1642 * which makes any healthy subpages reusable. 1643 */ 1644 if (unlikely(folio_test_hwpoison(folio))) 1645 folio_clear_hugetlb_hwpoison(folio); 1646 1647 folio_ref_unfreeze(folio, 1); 1648 1649 INIT_LIST_HEAD(&folio->_deferred_list); 1650 hugetlb_free_folio(folio); 1651 } 1652 1653 /* 1654 * As update_and_free_hugetlb_folio() can be called under any context, so we cannot 1655 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the 1656 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate 1657 * the vmemmap pages. 1658 * 1659 * free_hpage_workfn() locklessly retrieves the linked list of pages to be 1660 * freed and frees them one-by-one. As the page->mapping pointer is going 1661 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node 1662 * structure of a lockless linked list of huge pages to be freed. 1663 */ 1664 static LLIST_HEAD(hpage_freelist); 1665 1666 static void free_hpage_workfn(struct work_struct *work) 1667 { 1668 struct llist_node *node; 1669 1670 node = llist_del_all(&hpage_freelist); 1671 1672 while (node) { 1673 struct folio *folio; 1674 struct hstate *h; 1675 1676 folio = container_of((struct address_space **)node, 1677 struct folio, mapping); 1678 node = node->next; 1679 folio->mapping = NULL; 1680 /* 1681 * The VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio) in 1682 * folio_hstate() is going to trigger because a previous call to 1683 * remove_hugetlb_folio() will clear the hugetlb bit, so do 1684 * not use folio_hstate() directly. 1685 */ 1686 h = size_to_hstate(folio_size(folio)); 1687 1688 __update_and_free_hugetlb_folio(h, folio); 1689 1690 cond_resched(); 1691 } 1692 } 1693 static DECLARE_WORK(free_hpage_work, free_hpage_workfn); 1694 1695 static inline void flush_free_hpage_work(struct hstate *h) 1696 { 1697 if (hugetlb_vmemmap_optimizable(h)) 1698 flush_work(&free_hpage_work); 1699 } 1700 1701 static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio, 1702 bool atomic) 1703 { 1704 if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) { 1705 __update_and_free_hugetlb_folio(h, folio); 1706 return; 1707 } 1708 1709 /* 1710 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages. 1711 * 1712 * Only call schedule_work() if hpage_freelist is previously 1713 * empty. Otherwise, schedule_work() had been called but the workfn 1714 * hasn't retrieved the list yet. 1715 */ 1716 if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist)) 1717 schedule_work(&free_hpage_work); 1718 } 1719 1720 static void bulk_vmemmap_restore_error(struct hstate *h, 1721 struct list_head *folio_list, 1722 struct list_head *non_hvo_folios) 1723 { 1724 struct folio *folio, *t_folio; 1725 1726 if (!list_empty(non_hvo_folios)) { 1727 /* 1728 * Free any restored hugetlb pages so that restore of the 1729 * entire list can be retried. 1730 * The idea is that in the common case of ENOMEM errors freeing 1731 * hugetlb pages with vmemmap we will free up memory so that we 1732 * can allocate vmemmap for more hugetlb pages. 1733 */ 1734 list_for_each_entry_safe(folio, t_folio, non_hvo_folios, lru) { 1735 list_del(&folio->lru); 1736 spin_lock_irq(&hugetlb_lock); 1737 __folio_clear_hugetlb(folio); 1738 spin_unlock_irq(&hugetlb_lock); 1739 update_and_free_hugetlb_folio(h, folio, false); 1740 cond_resched(); 1741 } 1742 } else { 1743 /* 1744 * In the case where there are no folios which can be 1745 * immediately freed, we loop through the list trying to restore 1746 * vmemmap individually in the hope that someone elsewhere may 1747 * have done something to cause success (such as freeing some 1748 * memory). If unable to restore a hugetlb page, the hugetlb 1749 * page is made a surplus page and removed from the list. 1750 * If are able to restore vmemmap and free one hugetlb page, we 1751 * quit processing the list to retry the bulk operation. 1752 */ 1753 list_for_each_entry_safe(folio, t_folio, folio_list, lru) 1754 if (hugetlb_vmemmap_restore_folio(h, folio)) { 1755 list_del(&folio->lru); 1756 spin_lock_irq(&hugetlb_lock); 1757 add_hugetlb_folio(h, folio, true); 1758 spin_unlock_irq(&hugetlb_lock); 1759 } else { 1760 list_del(&folio->lru); 1761 spin_lock_irq(&hugetlb_lock); 1762 __folio_clear_hugetlb(folio); 1763 spin_unlock_irq(&hugetlb_lock); 1764 update_and_free_hugetlb_folio(h, folio, false); 1765 cond_resched(); 1766 break; 1767 } 1768 } 1769 } 1770 1771 static void update_and_free_pages_bulk(struct hstate *h, 1772 struct list_head *folio_list) 1773 { 1774 long ret; 1775 struct folio *folio, *t_folio; 1776 LIST_HEAD(non_hvo_folios); 1777 1778 /* 1779 * First allocate required vmemmmap (if necessary) for all folios. 1780 * Carefully handle errors and free up any available hugetlb pages 1781 * in an effort to make forward progress. 1782 */ 1783 retry: 1784 ret = hugetlb_vmemmap_restore_folios(h, folio_list, &non_hvo_folios); 1785 if (ret < 0) { 1786 bulk_vmemmap_restore_error(h, folio_list, &non_hvo_folios); 1787 goto retry; 1788 } 1789 1790 /* 1791 * At this point, list should be empty, ret should be >= 0 and there 1792 * should only be pages on the non_hvo_folios list. 1793 * Do note that the non_hvo_folios list could be empty. 1794 * Without HVO enabled, ret will be 0 and there is no need to call 1795 * __folio_clear_hugetlb as this was done previously. 1796 */ 1797 VM_WARN_ON(!list_empty(folio_list)); 1798 VM_WARN_ON(ret < 0); 1799 if (!list_empty(&non_hvo_folios) && ret) { 1800 spin_lock_irq(&hugetlb_lock); 1801 list_for_each_entry(folio, &non_hvo_folios, lru) 1802 __folio_clear_hugetlb(folio); 1803 spin_unlock_irq(&hugetlb_lock); 1804 } 1805 1806 list_for_each_entry_safe(folio, t_folio, &non_hvo_folios, lru) { 1807 update_and_free_hugetlb_folio(h, folio, false); 1808 cond_resched(); 1809 } 1810 } 1811 1812 struct hstate *size_to_hstate(unsigned long size) 1813 { 1814 struct hstate *h; 1815 1816 for_each_hstate(h) { 1817 if (huge_page_size(h) == size) 1818 return h; 1819 } 1820 return NULL; 1821 } 1822 1823 void free_huge_folio(struct folio *folio) 1824 { 1825 /* 1826 * Can't pass hstate in here because it is called from the 1827 * generic mm code. 1828 */ 1829 struct hstate *h = folio_hstate(folio); 1830 int nid = folio_nid(folio); 1831 struct hugepage_subpool *spool = hugetlb_folio_subpool(folio); 1832 bool restore_reserve; 1833 unsigned long flags; 1834 1835 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio); 1836 VM_BUG_ON_FOLIO(folio_mapcount(folio), folio); 1837 1838 hugetlb_set_folio_subpool(folio, NULL); 1839 if (folio_test_anon(folio)) 1840 __ClearPageAnonExclusive(&folio->page); 1841 folio->mapping = NULL; 1842 restore_reserve = folio_test_hugetlb_restore_reserve(folio); 1843 folio_clear_hugetlb_restore_reserve(folio); 1844 1845 /* 1846 * If HPageRestoreReserve was set on page, page allocation consumed a 1847 * reservation. If the page was associated with a subpool, there 1848 * would have been a page reserved in the subpool before allocation 1849 * via hugepage_subpool_get_pages(). Since we are 'restoring' the 1850 * reservation, do not call hugepage_subpool_put_pages() as this will 1851 * remove the reserved page from the subpool. 1852 */ 1853 if (!restore_reserve) { 1854 /* 1855 * A return code of zero implies that the subpool will be 1856 * under its minimum size if the reservation is not restored 1857 * after page is free. Therefore, force restore_reserve 1858 * operation. 1859 */ 1860 if (hugepage_subpool_put_pages(spool, 1) == 0) 1861 restore_reserve = true; 1862 } 1863 1864 spin_lock_irqsave(&hugetlb_lock, flags); 1865 folio_clear_hugetlb_migratable(folio); 1866 hugetlb_cgroup_uncharge_folio(hstate_index(h), 1867 pages_per_huge_page(h), folio); 1868 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h), 1869 pages_per_huge_page(h), folio); 1870 lruvec_stat_mod_folio(folio, NR_HUGETLB, -pages_per_huge_page(h)); 1871 mem_cgroup_uncharge(folio); 1872 if (restore_reserve) 1873 h->resv_huge_pages++; 1874 1875 if (folio_test_hugetlb_temporary(folio)) { 1876 remove_hugetlb_folio(h, folio, false); 1877 spin_unlock_irqrestore(&hugetlb_lock, flags); 1878 update_and_free_hugetlb_folio(h, folio, true); 1879 } else if (h->surplus_huge_pages_node[nid]) { 1880 /* remove the page from active list */ 1881 remove_hugetlb_folio(h, folio, true); 1882 spin_unlock_irqrestore(&hugetlb_lock, flags); 1883 update_and_free_hugetlb_folio(h, folio, true); 1884 } else { 1885 arch_clear_hugetlb_flags(folio); 1886 enqueue_hugetlb_folio(h, folio); 1887 spin_unlock_irqrestore(&hugetlb_lock, flags); 1888 } 1889 } 1890 1891 /* 1892 * Must be called with the hugetlb lock held 1893 */ 1894 static void __prep_account_new_huge_page(struct hstate *h, int nid) 1895 { 1896 lockdep_assert_held(&hugetlb_lock); 1897 h->nr_huge_pages++; 1898 h->nr_huge_pages_node[nid]++; 1899 } 1900 1901 static void init_new_hugetlb_folio(struct hstate *h, struct folio *folio) 1902 { 1903 __folio_set_hugetlb(folio); 1904 INIT_LIST_HEAD(&folio->lru); 1905 hugetlb_set_folio_subpool(folio, NULL); 1906 set_hugetlb_cgroup(folio, NULL); 1907 set_hugetlb_cgroup_rsvd(folio, NULL); 1908 } 1909 1910 static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio) 1911 { 1912 init_new_hugetlb_folio(h, folio); 1913 hugetlb_vmemmap_optimize_folio(h, folio); 1914 } 1915 1916 static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid) 1917 { 1918 __prep_new_hugetlb_folio(h, folio); 1919 spin_lock_irq(&hugetlb_lock); 1920 __prep_account_new_huge_page(h, nid); 1921 spin_unlock_irq(&hugetlb_lock); 1922 } 1923 1924 /* 1925 * Find and lock address space (mapping) in write mode. 1926 * 1927 * Upon entry, the folio is locked which means that folio_mapping() is 1928 * stable. Due to locking order, we can only trylock_write. If we can 1929 * not get the lock, simply return NULL to caller. 1930 */ 1931 struct address_space *hugetlb_folio_mapping_lock_write(struct folio *folio) 1932 { 1933 struct address_space *mapping = folio_mapping(folio); 1934 1935 if (!mapping) 1936 return mapping; 1937 1938 if (i_mmap_trylock_write(mapping)) 1939 return mapping; 1940 1941 return NULL; 1942 } 1943 1944 static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h, 1945 gfp_t gfp_mask, int nid, nodemask_t *nmask, 1946 nodemask_t *node_alloc_noretry) 1947 { 1948 int order = huge_page_order(h); 1949 struct folio *folio; 1950 bool alloc_try_hard = true; 1951 bool retry = true; 1952 1953 /* 1954 * By default we always try hard to allocate the folio with 1955 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating folios in 1956 * a loop (to adjust global huge page counts) and previous allocation 1957 * failed, do not continue to try hard on the same node. Use the 1958 * node_alloc_noretry bitmap to manage this state information. 1959 */ 1960 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry)) 1961 alloc_try_hard = false; 1962 if (alloc_try_hard) 1963 gfp_mask |= __GFP_RETRY_MAYFAIL; 1964 if (nid == NUMA_NO_NODE) 1965 nid = numa_mem_id(); 1966 retry: 1967 folio = __folio_alloc(gfp_mask, order, nid, nmask); 1968 /* Ensure hugetlb folio won't have large_rmappable flag set. */ 1969 if (folio) 1970 folio_clear_large_rmappable(folio); 1971 1972 if (folio && !folio_ref_freeze(folio, 1)) { 1973 folio_put(folio); 1974 if (retry) { /* retry once */ 1975 retry = false; 1976 goto retry; 1977 } 1978 /* WOW! twice in a row. */ 1979 pr_warn("HugeTLB unexpected inflated folio ref count\n"); 1980 folio = NULL; 1981 } 1982 1983 /* 1984 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a 1985 * folio this indicates an overall state change. Clear bit so 1986 * that we resume normal 'try hard' allocations. 1987 */ 1988 if (node_alloc_noretry && folio && !alloc_try_hard) 1989 node_clear(nid, *node_alloc_noretry); 1990 1991 /* 1992 * If we tried hard to get a folio but failed, set bit so that 1993 * subsequent attempts will not try as hard until there is an 1994 * overall state change. 1995 */ 1996 if (node_alloc_noretry && !folio && alloc_try_hard) 1997 node_set(nid, *node_alloc_noretry); 1998 1999 if (!folio) { 2000 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 2001 return NULL; 2002 } 2003 2004 __count_vm_event(HTLB_BUDDY_PGALLOC); 2005 return folio; 2006 } 2007 2008 static struct folio *only_alloc_fresh_hugetlb_folio(struct hstate *h, 2009 gfp_t gfp_mask, int nid, nodemask_t *nmask, 2010 nodemask_t *node_alloc_noretry) 2011 { 2012 struct folio *folio; 2013 2014 if (hstate_is_gigantic(h)) 2015 folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask); 2016 else 2017 folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, nmask, node_alloc_noretry); 2018 if (folio) 2019 init_new_hugetlb_folio(h, folio); 2020 return folio; 2021 } 2022 2023 /* 2024 * Common helper to allocate a fresh hugetlb page. All specific allocators 2025 * should use this function to get new hugetlb pages 2026 * 2027 * Note that returned page is 'frozen': ref count of head page and all tail 2028 * pages is zero. 2029 */ 2030 static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h, 2031 gfp_t gfp_mask, int nid, nodemask_t *nmask) 2032 { 2033 struct folio *folio; 2034 2035 if (hstate_is_gigantic(h)) 2036 folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask); 2037 else 2038 folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, nmask, NULL); 2039 if (!folio) 2040 return NULL; 2041 2042 prep_new_hugetlb_folio(h, folio, folio_nid(folio)); 2043 return folio; 2044 } 2045 2046 static void prep_and_add_allocated_folios(struct hstate *h, 2047 struct list_head *folio_list) 2048 { 2049 unsigned long flags; 2050 struct folio *folio, *tmp_f; 2051 2052 /* Send list for bulk vmemmap optimization processing */ 2053 hugetlb_vmemmap_optimize_folios(h, folio_list); 2054 2055 /* Add all new pool pages to free lists in one lock cycle */ 2056 spin_lock_irqsave(&hugetlb_lock, flags); 2057 list_for_each_entry_safe(folio, tmp_f, folio_list, lru) { 2058 __prep_account_new_huge_page(h, folio_nid(folio)); 2059 enqueue_hugetlb_folio(h, folio); 2060 } 2061 spin_unlock_irqrestore(&hugetlb_lock, flags); 2062 } 2063 2064 /* 2065 * Allocates a fresh hugetlb page in a node interleaved manner. The page 2066 * will later be added to the appropriate hugetlb pool. 2067 */ 2068 static struct folio *alloc_pool_huge_folio(struct hstate *h, 2069 nodemask_t *nodes_allowed, 2070 nodemask_t *node_alloc_noretry, 2071 int *next_node) 2072 { 2073 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 2074 int nr_nodes, node; 2075 2076 for_each_node_mask_to_alloc(next_node, nr_nodes, node, nodes_allowed) { 2077 struct folio *folio; 2078 2079 folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, node, 2080 nodes_allowed, node_alloc_noretry); 2081 if (folio) 2082 return folio; 2083 } 2084 2085 return NULL; 2086 } 2087 2088 /* 2089 * Remove huge page from pool from next node to free. Attempt to keep 2090 * persistent huge pages more or less balanced over allowed nodes. 2091 * This routine only 'removes' the hugetlb page. The caller must make 2092 * an additional call to free the page to low level allocators. 2093 * Called with hugetlb_lock locked. 2094 */ 2095 static struct folio *remove_pool_hugetlb_folio(struct hstate *h, 2096 nodemask_t *nodes_allowed, bool acct_surplus) 2097 { 2098 int nr_nodes, node; 2099 struct folio *folio = NULL; 2100 2101 lockdep_assert_held(&hugetlb_lock); 2102 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 2103 /* 2104 * If we're returning unused surplus pages, only examine 2105 * nodes with surplus pages. 2106 */ 2107 if ((!acct_surplus || h->surplus_huge_pages_node[node]) && 2108 !list_empty(&h->hugepage_freelists[node])) { 2109 folio = list_entry(h->hugepage_freelists[node].next, 2110 struct folio, lru); 2111 remove_hugetlb_folio(h, folio, acct_surplus); 2112 break; 2113 } 2114 } 2115 2116 return folio; 2117 } 2118 2119 /* 2120 * Dissolve a given free hugetlb folio into free buddy pages. This function 2121 * does nothing for in-use hugetlb folios and non-hugetlb folios. 2122 * This function returns values like below: 2123 * 2124 * -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages 2125 * when the system is under memory pressure and the feature of 2126 * freeing unused vmemmap pages associated with each hugetlb page 2127 * is enabled. 2128 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use 2129 * (allocated or reserved.) 2130 * 0: successfully dissolved free hugepages or the page is not a 2131 * hugepage (considered as already dissolved) 2132 */ 2133 int dissolve_free_hugetlb_folio(struct folio *folio) 2134 { 2135 int rc = -EBUSY; 2136 2137 retry: 2138 /* Not to disrupt normal path by vainly holding hugetlb_lock */ 2139 if (!folio_test_hugetlb(folio)) 2140 return 0; 2141 2142 spin_lock_irq(&hugetlb_lock); 2143 if (!folio_test_hugetlb(folio)) { 2144 rc = 0; 2145 goto out; 2146 } 2147 2148 if (!folio_ref_count(folio)) { 2149 struct hstate *h = folio_hstate(folio); 2150 bool adjust_surplus = false; 2151 2152 if (!available_huge_pages(h)) 2153 goto out; 2154 2155 /* 2156 * We should make sure that the page is already on the free list 2157 * when it is dissolved. 2158 */ 2159 if (unlikely(!folio_test_hugetlb_freed(folio))) { 2160 spin_unlock_irq(&hugetlb_lock); 2161 cond_resched(); 2162 2163 /* 2164 * Theoretically, we should return -EBUSY when we 2165 * encounter this race. In fact, we have a chance 2166 * to successfully dissolve the page if we do a 2167 * retry. Because the race window is quite small. 2168 * If we seize this opportunity, it is an optimization 2169 * for increasing the success rate of dissolving page. 2170 */ 2171 goto retry; 2172 } 2173 2174 if (h->surplus_huge_pages_node[folio_nid(folio)]) 2175 adjust_surplus = true; 2176 remove_hugetlb_folio(h, folio, adjust_surplus); 2177 h->max_huge_pages--; 2178 spin_unlock_irq(&hugetlb_lock); 2179 2180 /* 2181 * Normally update_and_free_hugtlb_folio will allocate required vmemmmap 2182 * before freeing the page. update_and_free_hugtlb_folio will fail to 2183 * free the page if it can not allocate required vmemmap. We 2184 * need to adjust max_huge_pages if the page is not freed. 2185 * Attempt to allocate vmemmmap here so that we can take 2186 * appropriate action on failure. 2187 * 2188 * The folio_test_hugetlb check here is because 2189 * remove_hugetlb_folio will clear hugetlb folio flag for 2190 * non-vmemmap optimized hugetlb folios. 2191 */ 2192 if (folio_test_hugetlb(folio)) { 2193 rc = hugetlb_vmemmap_restore_folio(h, folio); 2194 if (rc) { 2195 spin_lock_irq(&hugetlb_lock); 2196 add_hugetlb_folio(h, folio, adjust_surplus); 2197 h->max_huge_pages++; 2198 goto out; 2199 } 2200 } else 2201 rc = 0; 2202 2203 update_and_free_hugetlb_folio(h, folio, false); 2204 return rc; 2205 } 2206 out: 2207 spin_unlock_irq(&hugetlb_lock); 2208 return rc; 2209 } 2210 2211 /* 2212 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to 2213 * make specified memory blocks removable from the system. 2214 * Note that this will dissolve a free gigantic hugepage completely, if any 2215 * part of it lies within the given range. 2216 * Also note that if dissolve_free_hugetlb_folio() returns with an error, all 2217 * free hugetlb folios that were dissolved before that error are lost. 2218 */ 2219 int dissolve_free_hugetlb_folios(unsigned long start_pfn, unsigned long end_pfn) 2220 { 2221 unsigned long pfn; 2222 struct folio *folio; 2223 int rc = 0; 2224 unsigned int order; 2225 struct hstate *h; 2226 2227 if (!hugepages_supported()) 2228 return rc; 2229 2230 order = huge_page_order(&default_hstate); 2231 for_each_hstate(h) 2232 order = min(order, huge_page_order(h)); 2233 2234 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) { 2235 folio = pfn_folio(pfn); 2236 rc = dissolve_free_hugetlb_folio(folio); 2237 if (rc) 2238 break; 2239 } 2240 2241 return rc; 2242 } 2243 2244 /* 2245 * Allocates a fresh surplus page from the page allocator. 2246 */ 2247 static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h, 2248 gfp_t gfp_mask, int nid, nodemask_t *nmask) 2249 { 2250 struct folio *folio = NULL; 2251 2252 if (hstate_is_gigantic(h)) 2253 return NULL; 2254 2255 spin_lock_irq(&hugetlb_lock); 2256 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) 2257 goto out_unlock; 2258 spin_unlock_irq(&hugetlb_lock); 2259 2260 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask); 2261 if (!folio) 2262 return NULL; 2263 2264 spin_lock_irq(&hugetlb_lock); 2265 /* 2266 * We could have raced with the pool size change. 2267 * Double check that and simply deallocate the new page 2268 * if we would end up overcommiting the surpluses. Abuse 2269 * temporary page to workaround the nasty free_huge_folio 2270 * codeflow 2271 */ 2272 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { 2273 folio_set_hugetlb_temporary(folio); 2274 spin_unlock_irq(&hugetlb_lock); 2275 free_huge_folio(folio); 2276 return NULL; 2277 } 2278 2279 h->surplus_huge_pages++; 2280 h->surplus_huge_pages_node[folio_nid(folio)]++; 2281 2282 out_unlock: 2283 spin_unlock_irq(&hugetlb_lock); 2284 2285 return folio; 2286 } 2287 2288 static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask, 2289 int nid, nodemask_t *nmask) 2290 { 2291 struct folio *folio; 2292 2293 if (hstate_is_gigantic(h)) 2294 return NULL; 2295 2296 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask); 2297 if (!folio) 2298 return NULL; 2299 2300 /* fresh huge pages are frozen */ 2301 folio_ref_unfreeze(folio, 1); 2302 /* 2303 * We do not account these pages as surplus because they are only 2304 * temporary and will be released properly on the last reference 2305 */ 2306 folio_set_hugetlb_temporary(folio); 2307 2308 return folio; 2309 } 2310 2311 /* 2312 * Use the VMA's mpolicy to allocate a huge page from the buddy. 2313 */ 2314 static 2315 struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h, 2316 struct vm_area_struct *vma, unsigned long addr) 2317 { 2318 struct folio *folio = NULL; 2319 struct mempolicy *mpol; 2320 gfp_t gfp_mask = htlb_alloc_mask(h); 2321 int nid; 2322 nodemask_t *nodemask; 2323 2324 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask); 2325 if (mpol_is_preferred_many(mpol)) { 2326 gfp_t gfp = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL); 2327 2328 folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask); 2329 2330 /* Fallback to all nodes if page==NULL */ 2331 nodemask = NULL; 2332 } 2333 2334 if (!folio) 2335 folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask); 2336 mpol_cond_put(mpol); 2337 return folio; 2338 } 2339 2340 struct folio *alloc_hugetlb_folio_reserve(struct hstate *h, int preferred_nid, 2341 nodemask_t *nmask, gfp_t gfp_mask) 2342 { 2343 struct folio *folio; 2344 2345 spin_lock_irq(&hugetlb_lock); 2346 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, preferred_nid, 2347 nmask); 2348 if (folio) { 2349 VM_BUG_ON(!h->resv_huge_pages); 2350 h->resv_huge_pages--; 2351 } 2352 2353 spin_unlock_irq(&hugetlb_lock); 2354 return folio; 2355 } 2356 2357 /* folio migration callback function */ 2358 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid, 2359 nodemask_t *nmask, gfp_t gfp_mask, bool allow_alloc_fallback) 2360 { 2361 spin_lock_irq(&hugetlb_lock); 2362 if (available_huge_pages(h)) { 2363 struct folio *folio; 2364 2365 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, 2366 preferred_nid, nmask); 2367 if (folio) { 2368 spin_unlock_irq(&hugetlb_lock); 2369 return folio; 2370 } 2371 } 2372 spin_unlock_irq(&hugetlb_lock); 2373 2374 /* We cannot fallback to other nodes, as we could break the per-node pool. */ 2375 if (!allow_alloc_fallback) 2376 gfp_mask |= __GFP_THISNODE; 2377 2378 return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask); 2379 } 2380 2381 static nodemask_t *policy_mbind_nodemask(gfp_t gfp) 2382 { 2383 #ifdef CONFIG_NUMA 2384 struct mempolicy *mpol = get_task_policy(current); 2385 2386 /* 2387 * Only enforce MPOL_BIND policy which overlaps with cpuset policy 2388 * (from policy_nodemask) specifically for hugetlb case 2389 */ 2390 if (mpol->mode == MPOL_BIND && 2391 (apply_policy_zone(mpol, gfp_zone(gfp)) && 2392 cpuset_nodemask_valid_mems_allowed(&mpol->nodes))) 2393 return &mpol->nodes; 2394 #endif 2395 return NULL; 2396 } 2397 2398 /* 2399 * Increase the hugetlb pool such that it can accommodate a reservation 2400 * of size 'delta'. 2401 */ 2402 static int gather_surplus_pages(struct hstate *h, long delta) 2403 __must_hold(&hugetlb_lock) 2404 { 2405 LIST_HEAD(surplus_list); 2406 struct folio *folio, *tmp; 2407 int ret; 2408 long i; 2409 long needed, allocated; 2410 bool alloc_ok = true; 2411 int node; 2412 nodemask_t *mbind_nodemask, alloc_nodemask; 2413 2414 mbind_nodemask = policy_mbind_nodemask(htlb_alloc_mask(h)); 2415 if (mbind_nodemask) 2416 nodes_and(alloc_nodemask, *mbind_nodemask, cpuset_current_mems_allowed); 2417 else 2418 alloc_nodemask = cpuset_current_mems_allowed; 2419 2420 lockdep_assert_held(&hugetlb_lock); 2421 needed = (h->resv_huge_pages + delta) - h->free_huge_pages; 2422 if (needed <= 0) { 2423 h->resv_huge_pages += delta; 2424 return 0; 2425 } 2426 2427 allocated = 0; 2428 2429 ret = -ENOMEM; 2430 retry: 2431 spin_unlock_irq(&hugetlb_lock); 2432 for (i = 0; i < needed; i++) { 2433 folio = NULL; 2434 2435 /* Prioritize current node */ 2436 if (node_isset(numa_mem_id(), alloc_nodemask)) 2437 folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h), 2438 numa_mem_id(), NULL); 2439 2440 if (!folio) { 2441 for_each_node_mask(node, alloc_nodemask) { 2442 if (node == numa_mem_id()) 2443 continue; 2444 folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h), 2445 node, NULL); 2446 if (folio) 2447 break; 2448 } 2449 } 2450 if (!folio) { 2451 alloc_ok = false; 2452 break; 2453 } 2454 list_add(&folio->lru, &surplus_list); 2455 cond_resched(); 2456 } 2457 allocated += i; 2458 2459 /* 2460 * After retaking hugetlb_lock, we need to recalculate 'needed' 2461 * because either resv_huge_pages or free_huge_pages may have changed. 2462 */ 2463 spin_lock_irq(&hugetlb_lock); 2464 needed = (h->resv_huge_pages + delta) - 2465 (h->free_huge_pages + allocated); 2466 if (needed > 0) { 2467 if (alloc_ok) 2468 goto retry; 2469 /* 2470 * We were not able to allocate enough pages to 2471 * satisfy the entire reservation so we free what 2472 * we've allocated so far. 2473 */ 2474 goto free; 2475 } 2476 /* 2477 * The surplus_list now contains _at_least_ the number of extra pages 2478 * needed to accommodate the reservation. Add the appropriate number 2479 * of pages to the hugetlb pool and free the extras back to the buddy 2480 * allocator. Commit the entire reservation here to prevent another 2481 * process from stealing the pages as they are added to the pool but 2482 * before they are reserved. 2483 */ 2484 needed += allocated; 2485 h->resv_huge_pages += delta; 2486 ret = 0; 2487 2488 /* Free the needed pages to the hugetlb pool */ 2489 list_for_each_entry_safe(folio, tmp, &surplus_list, lru) { 2490 if ((--needed) < 0) 2491 break; 2492 /* Add the page to the hugetlb allocator */ 2493 enqueue_hugetlb_folio(h, folio); 2494 } 2495 free: 2496 spin_unlock_irq(&hugetlb_lock); 2497 2498 /* 2499 * Free unnecessary surplus pages to the buddy allocator. 2500 * Pages have no ref count, call free_huge_folio directly. 2501 */ 2502 list_for_each_entry_safe(folio, tmp, &surplus_list, lru) 2503 free_huge_folio(folio); 2504 spin_lock_irq(&hugetlb_lock); 2505 2506 return ret; 2507 } 2508 2509 /* 2510 * This routine has two main purposes: 2511 * 1) Decrement the reservation count (resv_huge_pages) by the value passed 2512 * in unused_resv_pages. This corresponds to the prior adjustments made 2513 * to the associated reservation map. 2514 * 2) Free any unused surplus pages that may have been allocated to satisfy 2515 * the reservation. As many as unused_resv_pages may be freed. 2516 */ 2517 static void return_unused_surplus_pages(struct hstate *h, 2518 unsigned long unused_resv_pages) 2519 { 2520 unsigned long nr_pages; 2521 LIST_HEAD(page_list); 2522 2523 lockdep_assert_held(&hugetlb_lock); 2524 /* Uncommit the reservation */ 2525 h->resv_huge_pages -= unused_resv_pages; 2526 2527 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 2528 goto out; 2529 2530 /* 2531 * Part (or even all) of the reservation could have been backed 2532 * by pre-allocated pages. Only free surplus pages. 2533 */ 2534 nr_pages = min(unused_resv_pages, h->surplus_huge_pages); 2535 2536 /* 2537 * We want to release as many surplus pages as possible, spread 2538 * evenly across all nodes with memory. Iterate across these nodes 2539 * until we can no longer free unreserved surplus pages. This occurs 2540 * when the nodes with surplus pages have no free pages. 2541 * remove_pool_hugetlb_folio() will balance the freed pages across the 2542 * on-line nodes with memory and will handle the hstate accounting. 2543 */ 2544 while (nr_pages--) { 2545 struct folio *folio; 2546 2547 folio = remove_pool_hugetlb_folio(h, &node_states[N_MEMORY], 1); 2548 if (!folio) 2549 goto out; 2550 2551 list_add(&folio->lru, &page_list); 2552 } 2553 2554 out: 2555 spin_unlock_irq(&hugetlb_lock); 2556 update_and_free_pages_bulk(h, &page_list); 2557 spin_lock_irq(&hugetlb_lock); 2558 } 2559 2560 2561 /* 2562 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation 2563 * are used by the huge page allocation routines to manage reservations. 2564 * 2565 * vma_needs_reservation is called to determine if the huge page at addr 2566 * within the vma has an associated reservation. If a reservation is 2567 * needed, the value 1 is returned. The caller is then responsible for 2568 * managing the global reservation and subpool usage counts. After 2569 * the huge page has been allocated, vma_commit_reservation is called 2570 * to add the page to the reservation map. If the page allocation fails, 2571 * the reservation must be ended instead of committed. vma_end_reservation 2572 * is called in such cases. 2573 * 2574 * In the normal case, vma_commit_reservation returns the same value 2575 * as the preceding vma_needs_reservation call. The only time this 2576 * is not the case is if a reserve map was changed between calls. It 2577 * is the responsibility of the caller to notice the difference and 2578 * take appropriate action. 2579 * 2580 * vma_add_reservation is used in error paths where a reservation must 2581 * be restored when a newly allocated huge page must be freed. It is 2582 * to be called after calling vma_needs_reservation to determine if a 2583 * reservation exists. 2584 * 2585 * vma_del_reservation is used in error paths where an entry in the reserve 2586 * map was created during huge page allocation and must be removed. It is to 2587 * be called after calling vma_needs_reservation to determine if a reservation 2588 * exists. 2589 */ 2590 enum vma_resv_mode { 2591 VMA_NEEDS_RESV, 2592 VMA_COMMIT_RESV, 2593 VMA_END_RESV, 2594 VMA_ADD_RESV, 2595 VMA_DEL_RESV, 2596 }; 2597 static long __vma_reservation_common(struct hstate *h, 2598 struct vm_area_struct *vma, unsigned long addr, 2599 enum vma_resv_mode mode) 2600 { 2601 struct resv_map *resv; 2602 pgoff_t idx; 2603 long ret; 2604 long dummy_out_regions_needed; 2605 2606 resv = vma_resv_map(vma); 2607 if (!resv) 2608 return 1; 2609 2610 idx = vma_hugecache_offset(h, vma, addr); 2611 switch (mode) { 2612 case VMA_NEEDS_RESV: 2613 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed); 2614 /* We assume that vma_reservation_* routines always operate on 2615 * 1 page, and that adding to resv map a 1 page entry can only 2616 * ever require 1 region. 2617 */ 2618 VM_BUG_ON(dummy_out_regions_needed != 1); 2619 break; 2620 case VMA_COMMIT_RESV: 2621 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2622 /* region_add calls of range 1 should never fail. */ 2623 VM_BUG_ON(ret < 0); 2624 break; 2625 case VMA_END_RESV: 2626 region_abort(resv, idx, idx + 1, 1); 2627 ret = 0; 2628 break; 2629 case VMA_ADD_RESV: 2630 if (vma->vm_flags & VM_MAYSHARE) { 2631 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2632 /* region_add calls of range 1 should never fail. */ 2633 VM_BUG_ON(ret < 0); 2634 } else { 2635 region_abort(resv, idx, idx + 1, 1); 2636 ret = region_del(resv, idx, idx + 1); 2637 } 2638 break; 2639 case VMA_DEL_RESV: 2640 if (vma->vm_flags & VM_MAYSHARE) { 2641 region_abort(resv, idx, idx + 1, 1); 2642 ret = region_del(resv, idx, idx + 1); 2643 } else { 2644 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2645 /* region_add calls of range 1 should never fail. */ 2646 VM_BUG_ON(ret < 0); 2647 } 2648 break; 2649 default: 2650 BUG(); 2651 } 2652 2653 if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV) 2654 return ret; 2655 /* 2656 * We know private mapping must have HPAGE_RESV_OWNER set. 2657 * 2658 * In most cases, reserves always exist for private mappings. 2659 * However, a file associated with mapping could have been 2660 * hole punched or truncated after reserves were consumed. 2661 * As subsequent fault on such a range will not use reserves. 2662 * Subtle - The reserve map for private mappings has the 2663 * opposite meaning than that of shared mappings. If NO 2664 * entry is in the reserve map, it means a reservation exists. 2665 * If an entry exists in the reserve map, it means the 2666 * reservation has already been consumed. As a result, the 2667 * return value of this routine is the opposite of the 2668 * value returned from reserve map manipulation routines above. 2669 */ 2670 if (ret > 0) 2671 return 0; 2672 if (ret == 0) 2673 return 1; 2674 return ret; 2675 } 2676 2677 static long vma_needs_reservation(struct hstate *h, 2678 struct vm_area_struct *vma, unsigned long addr) 2679 { 2680 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV); 2681 } 2682 2683 static long vma_commit_reservation(struct hstate *h, 2684 struct vm_area_struct *vma, unsigned long addr) 2685 { 2686 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV); 2687 } 2688 2689 static void vma_end_reservation(struct hstate *h, 2690 struct vm_area_struct *vma, unsigned long addr) 2691 { 2692 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV); 2693 } 2694 2695 static long vma_add_reservation(struct hstate *h, 2696 struct vm_area_struct *vma, unsigned long addr) 2697 { 2698 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV); 2699 } 2700 2701 static long vma_del_reservation(struct hstate *h, 2702 struct vm_area_struct *vma, unsigned long addr) 2703 { 2704 return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV); 2705 } 2706 2707 /* 2708 * This routine is called to restore reservation information on error paths. 2709 * It should ONLY be called for folios allocated via alloc_hugetlb_folio(), 2710 * and the hugetlb mutex should remain held when calling this routine. 2711 * 2712 * It handles two specific cases: 2713 * 1) A reservation was in place and the folio consumed the reservation. 2714 * hugetlb_restore_reserve is set in the folio. 2715 * 2) No reservation was in place for the page, so hugetlb_restore_reserve is 2716 * not set. However, alloc_hugetlb_folio always updates the reserve map. 2717 * 2718 * In case 1, free_huge_folio later in the error path will increment the 2719 * global reserve count. But, free_huge_folio does not have enough context 2720 * to adjust the reservation map. This case deals primarily with private 2721 * mappings. Adjust the reserve map here to be consistent with global 2722 * reserve count adjustments to be made by free_huge_folio. Make sure the 2723 * reserve map indicates there is a reservation present. 2724 * 2725 * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio. 2726 */ 2727 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma, 2728 unsigned long address, struct folio *folio) 2729 { 2730 long rc = vma_needs_reservation(h, vma, address); 2731 2732 if (folio_test_hugetlb_restore_reserve(folio)) { 2733 if (unlikely(rc < 0)) 2734 /* 2735 * Rare out of memory condition in reserve map 2736 * manipulation. Clear hugetlb_restore_reserve so 2737 * that global reserve count will not be incremented 2738 * by free_huge_folio. This will make it appear 2739 * as though the reservation for this folio was 2740 * consumed. This may prevent the task from 2741 * faulting in the folio at a later time. This 2742 * is better than inconsistent global huge page 2743 * accounting of reserve counts. 2744 */ 2745 folio_clear_hugetlb_restore_reserve(folio); 2746 else if (rc) 2747 (void)vma_add_reservation(h, vma, address); 2748 else 2749 vma_end_reservation(h, vma, address); 2750 } else { 2751 if (!rc) { 2752 /* 2753 * This indicates there is an entry in the reserve map 2754 * not added by alloc_hugetlb_folio. We know it was added 2755 * before the alloc_hugetlb_folio call, otherwise 2756 * hugetlb_restore_reserve would be set on the folio. 2757 * Remove the entry so that a subsequent allocation 2758 * does not consume a reservation. 2759 */ 2760 rc = vma_del_reservation(h, vma, address); 2761 if (rc < 0) 2762 /* 2763 * VERY rare out of memory condition. Since 2764 * we can not delete the entry, set 2765 * hugetlb_restore_reserve so that the reserve 2766 * count will be incremented when the folio 2767 * is freed. This reserve will be consumed 2768 * on a subsequent allocation. 2769 */ 2770 folio_set_hugetlb_restore_reserve(folio); 2771 } else if (rc < 0) { 2772 /* 2773 * Rare out of memory condition from 2774 * vma_needs_reservation call. Memory allocation is 2775 * only attempted if a new entry is needed. Therefore, 2776 * this implies there is not an entry in the 2777 * reserve map. 2778 * 2779 * For shared mappings, no entry in the map indicates 2780 * no reservation. We are done. 2781 */ 2782 if (!(vma->vm_flags & VM_MAYSHARE)) 2783 /* 2784 * For private mappings, no entry indicates 2785 * a reservation is present. Since we can 2786 * not add an entry, set hugetlb_restore_reserve 2787 * on the folio so reserve count will be 2788 * incremented when freed. This reserve will 2789 * be consumed on a subsequent allocation. 2790 */ 2791 folio_set_hugetlb_restore_reserve(folio); 2792 } else 2793 /* 2794 * No reservation present, do nothing 2795 */ 2796 vma_end_reservation(h, vma, address); 2797 } 2798 } 2799 2800 /* 2801 * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve 2802 * the old one 2803 * @h: struct hstate old page belongs to 2804 * @old_folio: Old folio to dissolve 2805 * @list: List to isolate the page in case we need to 2806 * Returns 0 on success, otherwise negated error. 2807 */ 2808 static int alloc_and_dissolve_hugetlb_folio(struct hstate *h, 2809 struct folio *old_folio, struct list_head *list) 2810 { 2811 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 2812 int nid = folio_nid(old_folio); 2813 struct folio *new_folio = NULL; 2814 int ret = 0; 2815 2816 retry: 2817 spin_lock_irq(&hugetlb_lock); 2818 if (!folio_test_hugetlb(old_folio)) { 2819 /* 2820 * Freed from under us. Drop new_folio too. 2821 */ 2822 goto free_new; 2823 } else if (folio_ref_count(old_folio)) { 2824 bool isolated; 2825 2826 /* 2827 * Someone has grabbed the folio, try to isolate it here. 2828 * Fail with -EBUSY if not possible. 2829 */ 2830 spin_unlock_irq(&hugetlb_lock); 2831 isolated = folio_isolate_hugetlb(old_folio, list); 2832 ret = isolated ? 0 : -EBUSY; 2833 spin_lock_irq(&hugetlb_lock); 2834 goto free_new; 2835 } else if (!folio_test_hugetlb_freed(old_folio)) { 2836 /* 2837 * Folio's refcount is 0 but it has not been enqueued in the 2838 * freelist yet. Race window is small, so we can succeed here if 2839 * we retry. 2840 */ 2841 spin_unlock_irq(&hugetlb_lock); 2842 cond_resched(); 2843 goto retry; 2844 } else { 2845 if (!new_folio) { 2846 spin_unlock_irq(&hugetlb_lock); 2847 new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, 2848 NULL, NULL); 2849 if (!new_folio) 2850 return -ENOMEM; 2851 __prep_new_hugetlb_folio(h, new_folio); 2852 goto retry; 2853 } 2854 2855 /* 2856 * Ok, old_folio is still a genuine free hugepage. Remove it from 2857 * the freelist and decrease the counters. These will be 2858 * incremented again when calling __prep_account_new_huge_page() 2859 * and enqueue_hugetlb_folio() for new_folio. The counters will 2860 * remain stable since this happens under the lock. 2861 */ 2862 remove_hugetlb_folio(h, old_folio, false); 2863 2864 /* 2865 * Ref count on new_folio is already zero as it was dropped 2866 * earlier. It can be directly added to the pool free list. 2867 */ 2868 __prep_account_new_huge_page(h, nid); 2869 enqueue_hugetlb_folio(h, new_folio); 2870 2871 /* 2872 * Folio has been replaced, we can safely free the old one. 2873 */ 2874 spin_unlock_irq(&hugetlb_lock); 2875 update_and_free_hugetlb_folio(h, old_folio, false); 2876 } 2877 2878 return ret; 2879 2880 free_new: 2881 spin_unlock_irq(&hugetlb_lock); 2882 if (new_folio) 2883 update_and_free_hugetlb_folio(h, new_folio, false); 2884 2885 return ret; 2886 } 2887 2888 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list) 2889 { 2890 struct hstate *h; 2891 struct folio *folio = page_folio(page); 2892 int ret = -EBUSY; 2893 2894 /* 2895 * The page might have been dissolved from under our feet, so make sure 2896 * to carefully check the state under the lock. 2897 * Return success when racing as if we dissolved the page ourselves. 2898 */ 2899 spin_lock_irq(&hugetlb_lock); 2900 if (folio_test_hugetlb(folio)) { 2901 h = folio_hstate(folio); 2902 } else { 2903 spin_unlock_irq(&hugetlb_lock); 2904 return 0; 2905 } 2906 spin_unlock_irq(&hugetlb_lock); 2907 2908 /* 2909 * Fence off gigantic pages as there is a cyclic dependency between 2910 * alloc_contig_range and them. Return -ENOMEM as this has the effect 2911 * of bailing out right away without further retrying. 2912 */ 2913 if (hstate_is_gigantic(h)) 2914 return -ENOMEM; 2915 2916 if (folio_ref_count(folio) && folio_isolate_hugetlb(folio, list)) 2917 ret = 0; 2918 else if (!folio_ref_count(folio)) 2919 ret = alloc_and_dissolve_hugetlb_folio(h, folio, list); 2920 2921 return ret; 2922 } 2923 2924 /* 2925 * replace_free_hugepage_folios - Replace free hugepage folios in a given pfn 2926 * range with new folios. 2927 * @start_pfn: start pfn of the given pfn range 2928 * @end_pfn: end pfn of the given pfn range 2929 * Returns 0 on success, otherwise negated error. 2930 */ 2931 int replace_free_hugepage_folios(unsigned long start_pfn, unsigned long end_pfn) 2932 { 2933 struct hstate *h; 2934 struct folio *folio; 2935 int ret = 0; 2936 2937 LIST_HEAD(isolate_list); 2938 2939 while (start_pfn < end_pfn) { 2940 folio = pfn_folio(start_pfn); 2941 if (folio_test_hugetlb(folio)) { 2942 h = folio_hstate(folio); 2943 } else { 2944 start_pfn++; 2945 continue; 2946 } 2947 2948 if (!folio_ref_count(folio)) { 2949 ret = alloc_and_dissolve_hugetlb_folio(h, folio, 2950 &isolate_list); 2951 if (ret) 2952 break; 2953 2954 putback_movable_pages(&isolate_list); 2955 } 2956 start_pfn++; 2957 } 2958 2959 return ret; 2960 } 2961 2962 void wait_for_freed_hugetlb_folios(void) 2963 { 2964 if (llist_empty(&hpage_freelist)) 2965 return; 2966 2967 flush_work(&free_hpage_work); 2968 } 2969 2970 typedef enum { 2971 /* 2972 * For either 0/1: we checked the per-vma resv map, and one resv 2973 * count either can be reused (0), or an extra needed (1). 2974 */ 2975 MAP_CHG_REUSE = 0, 2976 MAP_CHG_NEEDED = 1, 2977 /* 2978 * Cannot use per-vma resv count can be used, hence a new resv 2979 * count is enforced. 2980 * 2981 * NOTE: This is mostly identical to MAP_CHG_NEEDED, except 2982 * that currently vma_needs_reservation() has an unwanted side 2983 * effect to either use end() or commit() to complete the 2984 * transaction. Hence it needs to differenciate from NEEDED. 2985 */ 2986 MAP_CHG_ENFORCED = 2, 2987 } map_chg_state; 2988 2989 /* 2990 * NOTE! "cow_from_owner" represents a very hacky usage only used in CoW 2991 * faults of hugetlb private mappings on top of a non-page-cache folio (in 2992 * which case even if there's a private vma resv map it won't cover such 2993 * allocation). New call sites should (probably) never set it to true!! 2994 * When it's set, the allocation will bypass all vma level reservations. 2995 */ 2996 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma, 2997 unsigned long addr, bool cow_from_owner) 2998 { 2999 struct hugepage_subpool *spool = subpool_vma(vma); 3000 struct hstate *h = hstate_vma(vma); 3001 struct folio *folio; 3002 long retval, gbl_chg; 3003 map_chg_state map_chg; 3004 int ret, idx; 3005 struct hugetlb_cgroup *h_cg = NULL; 3006 gfp_t gfp = htlb_alloc_mask(h) | __GFP_RETRY_MAYFAIL; 3007 3008 idx = hstate_index(h); 3009 3010 /* Whether we need a separate per-vma reservation? */ 3011 if (cow_from_owner) { 3012 /* 3013 * Special case! Since it's a CoW on top of a reserved 3014 * page, the private resv map doesn't count. So it cannot 3015 * consume the per-vma resv map even if it's reserved. 3016 */ 3017 map_chg = MAP_CHG_ENFORCED; 3018 } else { 3019 /* 3020 * Examine the region/reserve map to determine if the process 3021 * has a reservation for the page to be allocated. A return 3022 * code of zero indicates a reservation exists (no change). 3023 */ 3024 retval = vma_needs_reservation(h, vma, addr); 3025 if (retval < 0) 3026 return ERR_PTR(-ENOMEM); 3027 map_chg = retval ? MAP_CHG_NEEDED : MAP_CHG_REUSE; 3028 } 3029 3030 /* 3031 * Whether we need a separate global reservation? 3032 * 3033 * Processes that did not create the mapping will have no 3034 * reserves as indicated by the region/reserve map. Check 3035 * that the allocation will not exceed the subpool limit. 3036 * Or if it can get one from the pool reservation directly. 3037 */ 3038 if (map_chg) { 3039 gbl_chg = hugepage_subpool_get_pages(spool, 1); 3040 if (gbl_chg < 0) 3041 goto out_end_reservation; 3042 } else { 3043 /* 3044 * If we have the vma reservation ready, no need for extra 3045 * global reservation. 3046 */ 3047 gbl_chg = 0; 3048 } 3049 3050 /* 3051 * If this allocation is not consuming a per-vma reservation, 3052 * charge the hugetlb cgroup now. 3053 */ 3054 if (map_chg) { 3055 ret = hugetlb_cgroup_charge_cgroup_rsvd( 3056 idx, pages_per_huge_page(h), &h_cg); 3057 if (ret) 3058 goto out_subpool_put; 3059 } 3060 3061 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg); 3062 if (ret) 3063 goto out_uncharge_cgroup_reservation; 3064 3065 spin_lock_irq(&hugetlb_lock); 3066 /* 3067 * glb_chg is passed to indicate whether or not a page must be taken 3068 * from the global free pool (global change). gbl_chg == 0 indicates 3069 * a reservation exists for the allocation. 3070 */ 3071 folio = dequeue_hugetlb_folio_vma(h, vma, addr, gbl_chg); 3072 if (!folio) { 3073 spin_unlock_irq(&hugetlb_lock); 3074 folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr); 3075 if (!folio) 3076 goto out_uncharge_cgroup; 3077 spin_lock_irq(&hugetlb_lock); 3078 list_add(&folio->lru, &h->hugepage_activelist); 3079 folio_ref_unfreeze(folio, 1); 3080 /* Fall through */ 3081 } 3082 3083 /* 3084 * Either dequeued or buddy-allocated folio needs to add special 3085 * mark to the folio when it consumes a global reservation. 3086 */ 3087 if (!gbl_chg) { 3088 folio_set_hugetlb_restore_reserve(folio); 3089 h->resv_huge_pages--; 3090 } 3091 3092 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio); 3093 /* If allocation is not consuming a reservation, also store the 3094 * hugetlb_cgroup pointer on the page. 3095 */ 3096 if (map_chg) { 3097 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h), 3098 h_cg, folio); 3099 } 3100 3101 spin_unlock_irq(&hugetlb_lock); 3102 3103 hugetlb_set_folio_subpool(folio, spool); 3104 3105 if (map_chg != MAP_CHG_ENFORCED) { 3106 /* commit() is only needed if the map_chg is not enforced */ 3107 retval = vma_commit_reservation(h, vma, addr); 3108 /* 3109 * Check for possible race conditions. When it happens.. 3110 * The page was added to the reservation map between 3111 * vma_needs_reservation and vma_commit_reservation. 3112 * This indicates a race with hugetlb_reserve_pages. 3113 * Adjust for the subpool count incremented above AND 3114 * in hugetlb_reserve_pages for the same page. Also, 3115 * the reservation count added in hugetlb_reserve_pages 3116 * no longer applies. 3117 */ 3118 if (unlikely(map_chg == MAP_CHG_NEEDED && retval == 0)) { 3119 long rsv_adjust; 3120 3121 rsv_adjust = hugepage_subpool_put_pages(spool, 1); 3122 hugetlb_acct_memory(h, -rsv_adjust); 3123 if (map_chg) { 3124 spin_lock_irq(&hugetlb_lock); 3125 hugetlb_cgroup_uncharge_folio_rsvd( 3126 hstate_index(h), pages_per_huge_page(h), 3127 folio); 3128 spin_unlock_irq(&hugetlb_lock); 3129 } 3130 } 3131 } 3132 3133 ret = mem_cgroup_charge_hugetlb(folio, gfp); 3134 /* 3135 * Unconditionally increment NR_HUGETLB here. If it turns out that 3136 * mem_cgroup_charge_hugetlb failed, then immediately free the page and 3137 * decrement NR_HUGETLB. 3138 */ 3139 lruvec_stat_mod_folio(folio, NR_HUGETLB, pages_per_huge_page(h)); 3140 3141 if (ret == -ENOMEM) { 3142 free_huge_folio(folio); 3143 return ERR_PTR(-ENOMEM); 3144 } 3145 3146 return folio; 3147 3148 out_uncharge_cgroup: 3149 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg); 3150 out_uncharge_cgroup_reservation: 3151 if (map_chg) 3152 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h), 3153 h_cg); 3154 out_subpool_put: 3155 if (map_chg) 3156 hugepage_subpool_put_pages(spool, 1); 3157 out_end_reservation: 3158 if (map_chg != MAP_CHG_ENFORCED) 3159 vma_end_reservation(h, vma, addr); 3160 return ERR_PTR(-ENOSPC); 3161 } 3162 3163 static __init void *alloc_bootmem(struct hstate *h, int nid, bool node_exact) 3164 { 3165 struct huge_bootmem_page *m; 3166 int listnode = nid; 3167 3168 if (hugetlb_early_cma(h)) 3169 m = hugetlb_cma_alloc_bootmem(h, &listnode, node_exact); 3170 else { 3171 if (node_exact) 3172 m = memblock_alloc_exact_nid_raw(huge_page_size(h), 3173 huge_page_size(h), 0, 3174 MEMBLOCK_ALLOC_ACCESSIBLE, nid); 3175 else { 3176 m = memblock_alloc_try_nid_raw(huge_page_size(h), 3177 huge_page_size(h), 0, 3178 MEMBLOCK_ALLOC_ACCESSIBLE, nid); 3179 /* 3180 * For pre-HVO to work correctly, pages need to be on 3181 * the list for the node they were actually allocated 3182 * from. That node may be different in the case of 3183 * fallback by memblock_alloc_try_nid_raw. So, 3184 * extract the actual node first. 3185 */ 3186 if (m) 3187 listnode = early_pfn_to_nid(PHYS_PFN(virt_to_phys(m))); 3188 } 3189 3190 if (m) { 3191 m->flags = 0; 3192 m->cma = NULL; 3193 } 3194 } 3195 3196 if (m) { 3197 /* 3198 * Use the beginning of the huge page to store the 3199 * huge_bootmem_page struct (until gather_bootmem 3200 * puts them into the mem_map). 3201 * 3202 * Put them into a private list first because mem_map 3203 * is not up yet. 3204 */ 3205 INIT_LIST_HEAD(&m->list); 3206 list_add(&m->list, &huge_boot_pages[listnode]); 3207 m->hstate = h; 3208 } 3209 3210 return m; 3211 } 3212 3213 int alloc_bootmem_huge_page(struct hstate *h, int nid) 3214 __attribute__ ((weak, alias("__alloc_bootmem_huge_page"))); 3215 int __alloc_bootmem_huge_page(struct hstate *h, int nid) 3216 { 3217 struct huge_bootmem_page *m = NULL; /* initialize for clang */ 3218 int nr_nodes, node = nid; 3219 3220 /* do node specific alloc */ 3221 if (nid != NUMA_NO_NODE) { 3222 m = alloc_bootmem(h, node, true); 3223 if (!m) 3224 return 0; 3225 goto found; 3226 } 3227 3228 /* allocate from next node when distributing huge pages */ 3229 for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, &node_states[N_ONLINE]) { 3230 m = alloc_bootmem(h, node, false); 3231 if (!m) 3232 return 0; 3233 goto found; 3234 } 3235 3236 found: 3237 3238 /* 3239 * Only initialize the head struct page in memmap_init_reserved_pages, 3240 * rest of the struct pages will be initialized by the HugeTLB 3241 * subsystem itself. 3242 * The head struct page is used to get folio information by the HugeTLB 3243 * subsystem like zone id and node id. 3244 */ 3245 memblock_reserved_mark_noinit(virt_to_phys((void *)m + PAGE_SIZE), 3246 huge_page_size(h) - PAGE_SIZE); 3247 3248 return 1; 3249 } 3250 3251 /* Initialize [start_page:end_page_number] tail struct pages of a hugepage */ 3252 static void __init hugetlb_folio_init_tail_vmemmap(struct folio *folio, 3253 unsigned long start_page_number, 3254 unsigned long end_page_number) 3255 { 3256 enum zone_type zone = zone_idx(folio_zone(folio)); 3257 int nid = folio_nid(folio); 3258 unsigned long head_pfn = folio_pfn(folio); 3259 unsigned long pfn, end_pfn = head_pfn + end_page_number; 3260 int ret; 3261 3262 for (pfn = head_pfn + start_page_number; pfn < end_pfn; pfn++) { 3263 struct page *page = pfn_to_page(pfn); 3264 3265 __init_single_page(page, pfn, zone, nid); 3266 prep_compound_tail((struct page *)folio, pfn - head_pfn); 3267 ret = page_ref_freeze(page, 1); 3268 VM_BUG_ON(!ret); 3269 } 3270 } 3271 3272 static void __init hugetlb_folio_init_vmemmap(struct folio *folio, 3273 struct hstate *h, 3274 unsigned long nr_pages) 3275 { 3276 int ret; 3277 3278 /* Prepare folio head */ 3279 __folio_clear_reserved(folio); 3280 __folio_set_head(folio); 3281 ret = folio_ref_freeze(folio, 1); 3282 VM_BUG_ON(!ret); 3283 /* Initialize the necessary tail struct pages */ 3284 hugetlb_folio_init_tail_vmemmap(folio, 1, nr_pages); 3285 prep_compound_head((struct page *)folio, huge_page_order(h)); 3286 } 3287 3288 static bool __init hugetlb_bootmem_page_prehvo(struct huge_bootmem_page *m) 3289 { 3290 return m->flags & HUGE_BOOTMEM_HVO; 3291 } 3292 3293 static bool __init hugetlb_bootmem_page_earlycma(struct huge_bootmem_page *m) 3294 { 3295 return m->flags & HUGE_BOOTMEM_CMA; 3296 } 3297 3298 /* 3299 * memblock-allocated pageblocks might not have the migrate type set 3300 * if marked with the 'noinit' flag. Set it to the default (MIGRATE_MOVABLE) 3301 * here, or MIGRATE_CMA if this was a page allocated through an early CMA 3302 * reservation. 3303 * 3304 * In case of vmemmap optimized folios, the tail vmemmap pages are mapped 3305 * read-only, but that's ok - for sparse vmemmap this does not write to 3306 * the page structure. 3307 */ 3308 static void __init hugetlb_bootmem_init_migratetype(struct folio *folio, 3309 struct hstate *h) 3310 { 3311 unsigned long nr_pages = pages_per_huge_page(h), i; 3312 3313 WARN_ON_ONCE(!pageblock_aligned(folio_pfn(folio))); 3314 3315 for (i = 0; i < nr_pages; i += pageblock_nr_pages) { 3316 if (folio_test_hugetlb_cma(folio)) 3317 init_cma_pageblock(folio_page(folio, i)); 3318 else 3319 set_pageblock_migratetype(folio_page(folio, i), 3320 MIGRATE_MOVABLE); 3321 } 3322 } 3323 3324 static void __init prep_and_add_bootmem_folios(struct hstate *h, 3325 struct list_head *folio_list) 3326 { 3327 unsigned long flags; 3328 struct folio *folio, *tmp_f; 3329 3330 /* Send list for bulk vmemmap optimization processing */ 3331 hugetlb_vmemmap_optimize_bootmem_folios(h, folio_list); 3332 3333 list_for_each_entry_safe(folio, tmp_f, folio_list, lru) { 3334 if (!folio_test_hugetlb_vmemmap_optimized(folio)) { 3335 /* 3336 * If HVO fails, initialize all tail struct pages 3337 * We do not worry about potential long lock hold 3338 * time as this is early in boot and there should 3339 * be no contention. 3340 */ 3341 hugetlb_folio_init_tail_vmemmap(folio, 3342 HUGETLB_VMEMMAP_RESERVE_PAGES, 3343 pages_per_huge_page(h)); 3344 } 3345 hugetlb_bootmem_init_migratetype(folio, h); 3346 /* Subdivide locks to achieve better parallel performance */ 3347 spin_lock_irqsave(&hugetlb_lock, flags); 3348 __prep_account_new_huge_page(h, folio_nid(folio)); 3349 enqueue_hugetlb_folio(h, folio); 3350 spin_unlock_irqrestore(&hugetlb_lock, flags); 3351 } 3352 } 3353 3354 bool __init hugetlb_bootmem_page_zones_valid(int nid, 3355 struct huge_bootmem_page *m) 3356 { 3357 unsigned long start_pfn; 3358 bool valid; 3359 3360 if (m->flags & HUGE_BOOTMEM_ZONES_VALID) { 3361 /* 3362 * Already validated, skip check. 3363 */ 3364 return true; 3365 } 3366 3367 if (hugetlb_bootmem_page_earlycma(m)) { 3368 valid = cma_validate_zones(m->cma); 3369 goto out; 3370 } 3371 3372 start_pfn = virt_to_phys(m) >> PAGE_SHIFT; 3373 3374 valid = !pfn_range_intersects_zones(nid, start_pfn, 3375 pages_per_huge_page(m->hstate)); 3376 out: 3377 if (!valid) 3378 hstate_boot_nrinvalid[hstate_index(m->hstate)]++; 3379 3380 return valid; 3381 } 3382 3383 /* 3384 * Free a bootmem page that was found to be invalid (intersecting with 3385 * multiple zones). 3386 * 3387 * Since it intersects with multiple zones, we can't just do a free 3388 * operation on all pages at once, but instead have to walk all 3389 * pages, freeing them one by one. 3390 */ 3391 static void __init hugetlb_bootmem_free_invalid_page(int nid, struct page *page, 3392 struct hstate *h) 3393 { 3394 unsigned long npages = pages_per_huge_page(h); 3395 unsigned long pfn; 3396 3397 while (npages--) { 3398 pfn = page_to_pfn(page); 3399 __init_reserved_page_zone(pfn, nid); 3400 free_reserved_page(page); 3401 page++; 3402 } 3403 } 3404 3405 /* 3406 * Put bootmem huge pages into the standard lists after mem_map is up. 3407 * Note: This only applies to gigantic (order > MAX_PAGE_ORDER) pages. 3408 */ 3409 static void __init gather_bootmem_prealloc_node(unsigned long nid) 3410 { 3411 LIST_HEAD(folio_list); 3412 struct huge_bootmem_page *m, *tm; 3413 struct hstate *h = NULL, *prev_h = NULL; 3414 3415 list_for_each_entry_safe(m, tm, &huge_boot_pages[nid], list) { 3416 struct page *page = virt_to_page(m); 3417 struct folio *folio = (void *)page; 3418 3419 h = m->hstate; 3420 if (!hugetlb_bootmem_page_zones_valid(nid, m)) { 3421 /* 3422 * Can't use this page. Initialize the 3423 * page structures if that hasn't already 3424 * been done, and give them to the page 3425 * allocator. 3426 */ 3427 hugetlb_bootmem_free_invalid_page(nid, page, h); 3428 continue; 3429 } 3430 3431 /* 3432 * It is possible to have multiple huge page sizes (hstates) 3433 * in this list. If so, process each size separately. 3434 */ 3435 if (h != prev_h && prev_h != NULL) 3436 prep_and_add_bootmem_folios(prev_h, &folio_list); 3437 prev_h = h; 3438 3439 VM_BUG_ON(!hstate_is_gigantic(h)); 3440 WARN_ON(folio_ref_count(folio) != 1); 3441 3442 hugetlb_folio_init_vmemmap(folio, h, 3443 HUGETLB_VMEMMAP_RESERVE_PAGES); 3444 init_new_hugetlb_folio(h, folio); 3445 3446 if (hugetlb_bootmem_page_prehvo(m)) 3447 /* 3448 * If pre-HVO was done, just set the 3449 * flag, the HVO code will then skip 3450 * this folio. 3451 */ 3452 folio_set_hugetlb_vmemmap_optimized(folio); 3453 3454 if (hugetlb_bootmem_page_earlycma(m)) 3455 folio_set_hugetlb_cma(folio); 3456 3457 list_add(&folio->lru, &folio_list); 3458 3459 /* 3460 * We need to restore the 'stolen' pages to totalram_pages 3461 * in order to fix confusing memory reports from free(1) and 3462 * other side-effects, like CommitLimit going negative. 3463 * 3464 * For CMA pages, this is done in init_cma_pageblock 3465 * (via hugetlb_bootmem_init_migratetype), so skip it here. 3466 */ 3467 if (!folio_test_hugetlb_cma(folio)) 3468 adjust_managed_page_count(page, pages_per_huge_page(h)); 3469 cond_resched(); 3470 } 3471 3472 prep_and_add_bootmem_folios(h, &folio_list); 3473 } 3474 3475 static void __init gather_bootmem_prealloc_parallel(unsigned long start, 3476 unsigned long end, void *arg) 3477 { 3478 int nid; 3479 3480 for (nid = start; nid < end; nid++) 3481 gather_bootmem_prealloc_node(nid); 3482 } 3483 3484 static void __init gather_bootmem_prealloc(void) 3485 { 3486 struct padata_mt_job job = { 3487 .thread_fn = gather_bootmem_prealloc_parallel, 3488 .fn_arg = NULL, 3489 .start = 0, 3490 .size = nr_node_ids, 3491 .align = 1, 3492 .min_chunk = 1, 3493 .max_threads = num_node_state(N_MEMORY), 3494 .numa_aware = true, 3495 }; 3496 3497 padata_do_multithreaded(&job); 3498 } 3499 3500 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid) 3501 { 3502 unsigned long i; 3503 char buf[32]; 3504 LIST_HEAD(folio_list); 3505 3506 for (i = 0; i < h->max_huge_pages_node[nid]; ++i) { 3507 if (hstate_is_gigantic(h)) { 3508 if (!alloc_bootmem_huge_page(h, nid)) 3509 break; 3510 } else { 3511 struct folio *folio; 3512 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 3513 3514 folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, nid, 3515 &node_states[N_MEMORY], NULL); 3516 if (!folio) 3517 break; 3518 list_add(&folio->lru, &folio_list); 3519 } 3520 cond_resched(); 3521 } 3522 3523 if (!list_empty(&folio_list)) 3524 prep_and_add_allocated_folios(h, &folio_list); 3525 3526 if (i == h->max_huge_pages_node[nid]) 3527 return; 3528 3529 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3530 pr_warn("HugeTLB: allocating %u of page size %s failed node%d. Only allocated %lu hugepages.\n", 3531 h->max_huge_pages_node[nid], buf, nid, i); 3532 h->max_huge_pages -= (h->max_huge_pages_node[nid] - i); 3533 h->max_huge_pages_node[nid] = i; 3534 } 3535 3536 static bool __init hugetlb_hstate_alloc_pages_specific_nodes(struct hstate *h) 3537 { 3538 int i; 3539 bool node_specific_alloc = false; 3540 3541 for_each_online_node(i) { 3542 if (h->max_huge_pages_node[i] > 0) { 3543 hugetlb_hstate_alloc_pages_onenode(h, i); 3544 node_specific_alloc = true; 3545 } 3546 } 3547 3548 return node_specific_alloc; 3549 } 3550 3551 static void __init hugetlb_hstate_alloc_pages_errcheck(unsigned long allocated, struct hstate *h) 3552 { 3553 if (allocated < h->max_huge_pages) { 3554 char buf[32]; 3555 3556 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3557 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n", 3558 h->max_huge_pages, buf, allocated); 3559 h->max_huge_pages = allocated; 3560 } 3561 } 3562 3563 static void __init hugetlb_pages_alloc_boot_node(unsigned long start, unsigned long end, void *arg) 3564 { 3565 struct hstate *h = (struct hstate *)arg; 3566 int i, num = end - start; 3567 nodemask_t node_alloc_noretry; 3568 LIST_HEAD(folio_list); 3569 int next_node = first_online_node; 3570 3571 /* Bit mask controlling how hard we retry per-node allocations.*/ 3572 nodes_clear(node_alloc_noretry); 3573 3574 for (i = 0; i < num; ++i) { 3575 struct folio *folio = alloc_pool_huge_folio(h, &node_states[N_MEMORY], 3576 &node_alloc_noretry, &next_node); 3577 if (!folio) 3578 break; 3579 3580 list_move(&folio->lru, &folio_list); 3581 cond_resched(); 3582 } 3583 3584 prep_and_add_allocated_folios(h, &folio_list); 3585 } 3586 3587 static unsigned long __init hugetlb_gigantic_pages_alloc_boot(struct hstate *h) 3588 { 3589 unsigned long i; 3590 3591 for (i = 0; i < h->max_huge_pages; ++i) { 3592 if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE)) 3593 break; 3594 cond_resched(); 3595 } 3596 3597 return i; 3598 } 3599 3600 static unsigned long __init hugetlb_pages_alloc_boot(struct hstate *h) 3601 { 3602 struct padata_mt_job job = { 3603 .fn_arg = h, 3604 .align = 1, 3605 .numa_aware = true 3606 }; 3607 3608 job.thread_fn = hugetlb_pages_alloc_boot_node; 3609 job.start = 0; 3610 job.size = h->max_huge_pages; 3611 3612 /* 3613 * job.max_threads is twice the num_node_state(N_MEMORY), 3614 * 3615 * Tests below indicate that a multiplier of 2 significantly improves 3616 * performance, and although larger values also provide improvements, 3617 * the gains are marginal. 3618 * 3619 * Therefore, choosing 2 as the multiplier strikes a good balance between 3620 * enhancing parallel processing capabilities and maintaining efficient 3621 * resource management. 3622 * 3623 * +------------+-------+-------+-------+-------+-------+ 3624 * | multiplier | 1 | 2 | 3 | 4 | 5 | 3625 * +------------+-------+-------+-------+-------+-------+ 3626 * | 256G 2node | 358ms | 215ms | 157ms | 134ms | 126ms | 3627 * | 2T 4node | 979ms | 679ms | 543ms | 489ms | 481ms | 3628 * | 50G 2node | 71ms | 44ms | 37ms | 30ms | 31ms | 3629 * +------------+-------+-------+-------+-------+-------+ 3630 */ 3631 job.max_threads = num_node_state(N_MEMORY) * 2; 3632 job.min_chunk = h->max_huge_pages / num_node_state(N_MEMORY) / 2; 3633 padata_do_multithreaded(&job); 3634 3635 return h->nr_huge_pages; 3636 } 3637 3638 /* 3639 * NOTE: this routine is called in different contexts for gigantic and 3640 * non-gigantic pages. 3641 * - For gigantic pages, this is called early in the boot process and 3642 * pages are allocated from memblock allocated or something similar. 3643 * Gigantic pages are actually added to pools later with the routine 3644 * gather_bootmem_prealloc. 3645 * - For non-gigantic pages, this is called later in the boot process after 3646 * all of mm is up and functional. Pages are allocated from buddy and 3647 * then added to hugetlb pools. 3648 */ 3649 static void __init hugetlb_hstate_alloc_pages(struct hstate *h) 3650 { 3651 unsigned long allocated; 3652 3653 /* 3654 * Skip gigantic hugepages allocation if early CMA 3655 * reservations are not available. 3656 */ 3657 if (hstate_is_gigantic(h) && hugetlb_cma_total_size() && 3658 !hugetlb_early_cma(h)) { 3659 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n"); 3660 return; 3661 } 3662 3663 /* do node specific alloc */ 3664 if (hugetlb_hstate_alloc_pages_specific_nodes(h)) 3665 return; 3666 3667 /* below will do all node balanced alloc */ 3668 if (hstate_is_gigantic(h)) 3669 allocated = hugetlb_gigantic_pages_alloc_boot(h); 3670 else 3671 allocated = hugetlb_pages_alloc_boot(h); 3672 3673 hugetlb_hstate_alloc_pages_errcheck(allocated, h); 3674 } 3675 3676 static void __init hugetlb_init_hstates(void) 3677 { 3678 struct hstate *h, *h2; 3679 3680 for_each_hstate(h) { 3681 /* oversize hugepages were init'ed in early boot */ 3682 if (!hstate_is_gigantic(h)) 3683 hugetlb_hstate_alloc_pages(h); 3684 3685 /* 3686 * Set demote order for each hstate. Note that 3687 * h->demote_order is initially 0. 3688 * - We can not demote gigantic pages if runtime freeing 3689 * is not supported, so skip this. 3690 * - If CMA allocation is possible, we can not demote 3691 * HUGETLB_PAGE_ORDER or smaller size pages. 3692 */ 3693 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 3694 continue; 3695 if (hugetlb_cma_total_size() && h->order <= HUGETLB_PAGE_ORDER) 3696 continue; 3697 for_each_hstate(h2) { 3698 if (h2 == h) 3699 continue; 3700 if (h2->order < h->order && 3701 h2->order > h->demote_order) 3702 h->demote_order = h2->order; 3703 } 3704 } 3705 } 3706 3707 static void __init report_hugepages(void) 3708 { 3709 struct hstate *h; 3710 unsigned long nrinvalid; 3711 3712 for_each_hstate(h) { 3713 char buf[32]; 3714 3715 nrinvalid = hstate_boot_nrinvalid[hstate_index(h)]; 3716 h->max_huge_pages -= nrinvalid; 3717 3718 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3719 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n", 3720 buf, h->free_huge_pages); 3721 if (nrinvalid) 3722 pr_info("HugeTLB: %s page size: %lu invalid page%s discarded\n", 3723 buf, nrinvalid, nrinvalid > 1 ? "s" : ""); 3724 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n", 3725 hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf); 3726 } 3727 } 3728 3729 #ifdef CONFIG_HIGHMEM 3730 static void try_to_free_low(struct hstate *h, unsigned long count, 3731 nodemask_t *nodes_allowed) 3732 { 3733 int i; 3734 LIST_HEAD(page_list); 3735 3736 lockdep_assert_held(&hugetlb_lock); 3737 if (hstate_is_gigantic(h)) 3738 return; 3739 3740 /* 3741 * Collect pages to be freed on a list, and free after dropping lock 3742 */ 3743 for_each_node_mask(i, *nodes_allowed) { 3744 struct folio *folio, *next; 3745 struct list_head *freel = &h->hugepage_freelists[i]; 3746 list_for_each_entry_safe(folio, next, freel, lru) { 3747 if (count >= h->nr_huge_pages) 3748 goto out; 3749 if (folio_test_highmem(folio)) 3750 continue; 3751 remove_hugetlb_folio(h, folio, false); 3752 list_add(&folio->lru, &page_list); 3753 } 3754 } 3755 3756 out: 3757 spin_unlock_irq(&hugetlb_lock); 3758 update_and_free_pages_bulk(h, &page_list); 3759 spin_lock_irq(&hugetlb_lock); 3760 } 3761 #else 3762 static inline void try_to_free_low(struct hstate *h, unsigned long count, 3763 nodemask_t *nodes_allowed) 3764 { 3765 } 3766 #endif 3767 3768 /* 3769 * Increment or decrement surplus_huge_pages. Keep node-specific counters 3770 * balanced by operating on them in a round-robin fashion. 3771 * Returns 1 if an adjustment was made. 3772 */ 3773 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed, 3774 int delta) 3775 { 3776 int nr_nodes, node; 3777 3778 lockdep_assert_held(&hugetlb_lock); 3779 VM_BUG_ON(delta != -1 && delta != 1); 3780 3781 if (delta < 0) { 3782 for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, nodes_allowed) { 3783 if (h->surplus_huge_pages_node[node]) 3784 goto found; 3785 } 3786 } else { 3787 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 3788 if (h->surplus_huge_pages_node[node] < 3789 h->nr_huge_pages_node[node]) 3790 goto found; 3791 } 3792 } 3793 return 0; 3794 3795 found: 3796 h->surplus_huge_pages += delta; 3797 h->surplus_huge_pages_node[node] += delta; 3798 return 1; 3799 } 3800 3801 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) 3802 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid, 3803 nodemask_t *nodes_allowed) 3804 { 3805 unsigned long min_count; 3806 unsigned long allocated; 3807 struct folio *folio; 3808 LIST_HEAD(page_list); 3809 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL); 3810 3811 /* 3812 * Bit mask controlling how hard we retry per-node allocations. 3813 * If we can not allocate the bit mask, do not attempt to allocate 3814 * the requested huge pages. 3815 */ 3816 if (node_alloc_noretry) 3817 nodes_clear(*node_alloc_noretry); 3818 else 3819 return -ENOMEM; 3820 3821 /* 3822 * resize_lock mutex prevents concurrent adjustments to number of 3823 * pages in hstate via the proc/sysfs interfaces. 3824 */ 3825 mutex_lock(&h->resize_lock); 3826 flush_free_hpage_work(h); 3827 spin_lock_irq(&hugetlb_lock); 3828 3829 /* 3830 * Check for a node specific request. 3831 * Changing node specific huge page count may require a corresponding 3832 * change to the global count. In any case, the passed node mask 3833 * (nodes_allowed) will restrict alloc/free to the specified node. 3834 */ 3835 if (nid != NUMA_NO_NODE) { 3836 unsigned long old_count = count; 3837 3838 count += persistent_huge_pages(h) - 3839 (h->nr_huge_pages_node[nid] - 3840 h->surplus_huge_pages_node[nid]); 3841 /* 3842 * User may have specified a large count value which caused the 3843 * above calculation to overflow. In this case, they wanted 3844 * to allocate as many huge pages as possible. Set count to 3845 * largest possible value to align with their intention. 3846 */ 3847 if (count < old_count) 3848 count = ULONG_MAX; 3849 } 3850 3851 /* 3852 * Gigantic pages runtime allocation depend on the capability for large 3853 * page range allocation. 3854 * If the system does not provide this feature, return an error when 3855 * the user tries to allocate gigantic pages but let the user free the 3856 * boottime allocated gigantic pages. 3857 */ 3858 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) { 3859 if (count > persistent_huge_pages(h)) { 3860 spin_unlock_irq(&hugetlb_lock); 3861 mutex_unlock(&h->resize_lock); 3862 NODEMASK_FREE(node_alloc_noretry); 3863 return -EINVAL; 3864 } 3865 /* Fall through to decrease pool */ 3866 } 3867 3868 /* 3869 * Increase the pool size 3870 * First take pages out of surplus state. Then make up the 3871 * remaining difference by allocating fresh huge pages. 3872 * 3873 * We might race with alloc_surplus_hugetlb_folio() here and be unable 3874 * to convert a surplus huge page to a normal huge page. That is 3875 * not critical, though, it just means the overall size of the 3876 * pool might be one hugepage larger than it needs to be, but 3877 * within all the constraints specified by the sysctls. 3878 */ 3879 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { 3880 if (!adjust_pool_surplus(h, nodes_allowed, -1)) 3881 break; 3882 } 3883 3884 allocated = 0; 3885 while (count > (persistent_huge_pages(h) + allocated)) { 3886 /* 3887 * If this allocation races such that we no longer need the 3888 * page, free_huge_folio will handle it by freeing the page 3889 * and reducing the surplus. 3890 */ 3891 spin_unlock_irq(&hugetlb_lock); 3892 3893 /* yield cpu to avoid soft lockup */ 3894 cond_resched(); 3895 3896 folio = alloc_pool_huge_folio(h, nodes_allowed, 3897 node_alloc_noretry, 3898 &h->next_nid_to_alloc); 3899 if (!folio) { 3900 prep_and_add_allocated_folios(h, &page_list); 3901 spin_lock_irq(&hugetlb_lock); 3902 goto out; 3903 } 3904 3905 list_add(&folio->lru, &page_list); 3906 allocated++; 3907 3908 /* Bail for signals. Probably ctrl-c from user */ 3909 if (signal_pending(current)) { 3910 prep_and_add_allocated_folios(h, &page_list); 3911 spin_lock_irq(&hugetlb_lock); 3912 goto out; 3913 } 3914 3915 spin_lock_irq(&hugetlb_lock); 3916 } 3917 3918 /* Add allocated pages to the pool */ 3919 if (!list_empty(&page_list)) { 3920 spin_unlock_irq(&hugetlb_lock); 3921 prep_and_add_allocated_folios(h, &page_list); 3922 spin_lock_irq(&hugetlb_lock); 3923 } 3924 3925 /* 3926 * Decrease the pool size 3927 * First return free pages to the buddy allocator (being careful 3928 * to keep enough around to satisfy reservations). Then place 3929 * pages into surplus state as needed so the pool will shrink 3930 * to the desired size as pages become free. 3931 * 3932 * By placing pages into the surplus state independent of the 3933 * overcommit value, we are allowing the surplus pool size to 3934 * exceed overcommit. There are few sane options here. Since 3935 * alloc_surplus_hugetlb_folio() is checking the global counter, 3936 * though, we'll note that we're not allowed to exceed surplus 3937 * and won't grow the pool anywhere else. Not until one of the 3938 * sysctls are changed, or the surplus pages go out of use. 3939 */ 3940 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages; 3941 min_count = max(count, min_count); 3942 try_to_free_low(h, min_count, nodes_allowed); 3943 3944 /* 3945 * Collect pages to be removed on list without dropping lock 3946 */ 3947 while (min_count < persistent_huge_pages(h)) { 3948 folio = remove_pool_hugetlb_folio(h, nodes_allowed, 0); 3949 if (!folio) 3950 break; 3951 3952 list_add(&folio->lru, &page_list); 3953 } 3954 /* free the pages after dropping lock */ 3955 spin_unlock_irq(&hugetlb_lock); 3956 update_and_free_pages_bulk(h, &page_list); 3957 flush_free_hpage_work(h); 3958 spin_lock_irq(&hugetlb_lock); 3959 3960 while (count < persistent_huge_pages(h)) { 3961 if (!adjust_pool_surplus(h, nodes_allowed, 1)) 3962 break; 3963 } 3964 out: 3965 h->max_huge_pages = persistent_huge_pages(h); 3966 spin_unlock_irq(&hugetlb_lock); 3967 mutex_unlock(&h->resize_lock); 3968 3969 NODEMASK_FREE(node_alloc_noretry); 3970 3971 return 0; 3972 } 3973 3974 static long demote_free_hugetlb_folios(struct hstate *src, struct hstate *dst, 3975 struct list_head *src_list) 3976 { 3977 long rc; 3978 struct folio *folio, *next; 3979 LIST_HEAD(dst_list); 3980 LIST_HEAD(ret_list); 3981 3982 rc = hugetlb_vmemmap_restore_folios(src, src_list, &ret_list); 3983 list_splice_init(&ret_list, src_list); 3984 3985 /* 3986 * Taking target hstate mutex synchronizes with set_max_huge_pages. 3987 * Without the mutex, pages added to target hstate could be marked 3988 * as surplus. 3989 * 3990 * Note that we already hold src->resize_lock. To prevent deadlock, 3991 * use the convention of always taking larger size hstate mutex first. 3992 */ 3993 mutex_lock(&dst->resize_lock); 3994 3995 list_for_each_entry_safe(folio, next, src_list, lru) { 3996 int i; 3997 3998 if (folio_test_hugetlb_vmemmap_optimized(folio)) 3999 continue; 4000 4001 list_del(&folio->lru); 4002 4003 split_page_owner(&folio->page, huge_page_order(src), huge_page_order(dst)); 4004 pgalloc_tag_split(folio, huge_page_order(src), huge_page_order(dst)); 4005 4006 for (i = 0; i < pages_per_huge_page(src); i += pages_per_huge_page(dst)) { 4007 struct page *page = folio_page(folio, i); 4008 /* Careful: see __split_huge_page_tail() */ 4009 struct folio *new_folio = (struct folio *)page; 4010 4011 clear_compound_head(page); 4012 prep_compound_page(page, dst->order); 4013 4014 new_folio->mapping = NULL; 4015 init_new_hugetlb_folio(dst, new_folio); 4016 list_add(&new_folio->lru, &dst_list); 4017 } 4018 } 4019 4020 prep_and_add_allocated_folios(dst, &dst_list); 4021 4022 mutex_unlock(&dst->resize_lock); 4023 4024 return rc; 4025 } 4026 4027 static long demote_pool_huge_page(struct hstate *src, nodemask_t *nodes_allowed, 4028 unsigned long nr_to_demote) 4029 __must_hold(&hugetlb_lock) 4030 { 4031 int nr_nodes, node; 4032 struct hstate *dst; 4033 long rc = 0; 4034 long nr_demoted = 0; 4035 4036 lockdep_assert_held(&hugetlb_lock); 4037 4038 /* We should never get here if no demote order */ 4039 if (!src->demote_order) { 4040 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n"); 4041 return -EINVAL; /* internal error */ 4042 } 4043 dst = size_to_hstate(PAGE_SIZE << src->demote_order); 4044 4045 for_each_node_mask_to_free(src, nr_nodes, node, nodes_allowed) { 4046 LIST_HEAD(list); 4047 struct folio *folio, *next; 4048 4049 list_for_each_entry_safe(folio, next, &src->hugepage_freelists[node], lru) { 4050 if (folio_test_hwpoison(folio)) 4051 continue; 4052 4053 remove_hugetlb_folio(src, folio, false); 4054 list_add(&folio->lru, &list); 4055 4056 if (++nr_demoted == nr_to_demote) 4057 break; 4058 } 4059 4060 spin_unlock_irq(&hugetlb_lock); 4061 4062 rc = demote_free_hugetlb_folios(src, dst, &list); 4063 4064 spin_lock_irq(&hugetlb_lock); 4065 4066 list_for_each_entry_safe(folio, next, &list, lru) { 4067 list_del(&folio->lru); 4068 add_hugetlb_folio(src, folio, false); 4069 4070 nr_demoted--; 4071 } 4072 4073 if (rc < 0 || nr_demoted == nr_to_demote) 4074 break; 4075 } 4076 4077 /* 4078 * Not absolutely necessary, but for consistency update max_huge_pages 4079 * based on pool changes for the demoted page. 4080 */ 4081 src->max_huge_pages -= nr_demoted; 4082 dst->max_huge_pages += nr_demoted << (huge_page_order(src) - huge_page_order(dst)); 4083 4084 if (rc < 0) 4085 return rc; 4086 4087 if (nr_demoted) 4088 return nr_demoted; 4089 /* 4090 * Only way to get here is if all pages on free lists are poisoned. 4091 * Return -EBUSY so that caller will not retry. 4092 */ 4093 return -EBUSY; 4094 } 4095 4096 #define HSTATE_ATTR_RO(_name) \ 4097 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 4098 4099 #define HSTATE_ATTR_WO(_name) \ 4100 static struct kobj_attribute _name##_attr = __ATTR_WO(_name) 4101 4102 #define HSTATE_ATTR(_name) \ 4103 static struct kobj_attribute _name##_attr = __ATTR_RW(_name) 4104 4105 static struct kobject *hugepages_kobj; 4106 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 4107 4108 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp); 4109 4110 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp) 4111 { 4112 int i; 4113 4114 for (i = 0; i < HUGE_MAX_HSTATE; i++) 4115 if (hstate_kobjs[i] == kobj) { 4116 if (nidp) 4117 *nidp = NUMA_NO_NODE; 4118 return &hstates[i]; 4119 } 4120 4121 return kobj_to_node_hstate(kobj, nidp); 4122 } 4123 4124 static ssize_t nr_hugepages_show_common(struct kobject *kobj, 4125 struct kobj_attribute *attr, char *buf) 4126 { 4127 struct hstate *h; 4128 unsigned long nr_huge_pages; 4129 int nid; 4130 4131 h = kobj_to_hstate(kobj, &nid); 4132 if (nid == NUMA_NO_NODE) 4133 nr_huge_pages = h->nr_huge_pages; 4134 else 4135 nr_huge_pages = h->nr_huge_pages_node[nid]; 4136 4137 return sysfs_emit(buf, "%lu\n", nr_huge_pages); 4138 } 4139 4140 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy, 4141 struct hstate *h, int nid, 4142 unsigned long count, size_t len) 4143 { 4144 int err; 4145 nodemask_t nodes_allowed, *n_mask; 4146 4147 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 4148 return -EINVAL; 4149 4150 if (nid == NUMA_NO_NODE) { 4151 /* 4152 * global hstate attribute 4153 */ 4154 if (!(obey_mempolicy && 4155 init_nodemask_of_mempolicy(&nodes_allowed))) 4156 n_mask = &node_states[N_MEMORY]; 4157 else 4158 n_mask = &nodes_allowed; 4159 } else { 4160 /* 4161 * Node specific request. count adjustment happens in 4162 * set_max_huge_pages() after acquiring hugetlb_lock. 4163 */ 4164 init_nodemask_of_node(&nodes_allowed, nid); 4165 n_mask = &nodes_allowed; 4166 } 4167 4168 err = set_max_huge_pages(h, count, nid, n_mask); 4169 4170 return err ? err : len; 4171 } 4172 4173 static ssize_t nr_hugepages_store_common(bool obey_mempolicy, 4174 struct kobject *kobj, const char *buf, 4175 size_t len) 4176 { 4177 struct hstate *h; 4178 unsigned long count; 4179 int nid; 4180 int err; 4181 4182 err = kstrtoul(buf, 10, &count); 4183 if (err) 4184 return err; 4185 4186 h = kobj_to_hstate(kobj, &nid); 4187 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len); 4188 } 4189 4190 static ssize_t nr_hugepages_show(struct kobject *kobj, 4191 struct kobj_attribute *attr, char *buf) 4192 { 4193 return nr_hugepages_show_common(kobj, attr, buf); 4194 } 4195 4196 static ssize_t nr_hugepages_store(struct kobject *kobj, 4197 struct kobj_attribute *attr, const char *buf, size_t len) 4198 { 4199 return nr_hugepages_store_common(false, kobj, buf, len); 4200 } 4201 HSTATE_ATTR(nr_hugepages); 4202 4203 #ifdef CONFIG_NUMA 4204 4205 /* 4206 * hstate attribute for optionally mempolicy-based constraint on persistent 4207 * huge page alloc/free. 4208 */ 4209 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj, 4210 struct kobj_attribute *attr, 4211 char *buf) 4212 { 4213 return nr_hugepages_show_common(kobj, attr, buf); 4214 } 4215 4216 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj, 4217 struct kobj_attribute *attr, const char *buf, size_t len) 4218 { 4219 return nr_hugepages_store_common(true, kobj, buf, len); 4220 } 4221 HSTATE_ATTR(nr_hugepages_mempolicy); 4222 #endif 4223 4224 4225 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, 4226 struct kobj_attribute *attr, char *buf) 4227 { 4228 struct hstate *h = kobj_to_hstate(kobj, NULL); 4229 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages); 4230 } 4231 4232 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, 4233 struct kobj_attribute *attr, const char *buf, size_t count) 4234 { 4235 int err; 4236 unsigned long input; 4237 struct hstate *h = kobj_to_hstate(kobj, NULL); 4238 4239 if (hstate_is_gigantic(h)) 4240 return -EINVAL; 4241 4242 err = kstrtoul(buf, 10, &input); 4243 if (err) 4244 return err; 4245 4246 spin_lock_irq(&hugetlb_lock); 4247 h->nr_overcommit_huge_pages = input; 4248 spin_unlock_irq(&hugetlb_lock); 4249 4250 return count; 4251 } 4252 HSTATE_ATTR(nr_overcommit_hugepages); 4253 4254 static ssize_t free_hugepages_show(struct kobject *kobj, 4255 struct kobj_attribute *attr, char *buf) 4256 { 4257 struct hstate *h; 4258 unsigned long free_huge_pages; 4259 int nid; 4260 4261 h = kobj_to_hstate(kobj, &nid); 4262 if (nid == NUMA_NO_NODE) 4263 free_huge_pages = h->free_huge_pages; 4264 else 4265 free_huge_pages = h->free_huge_pages_node[nid]; 4266 4267 return sysfs_emit(buf, "%lu\n", free_huge_pages); 4268 } 4269 HSTATE_ATTR_RO(free_hugepages); 4270 4271 static ssize_t resv_hugepages_show(struct kobject *kobj, 4272 struct kobj_attribute *attr, char *buf) 4273 { 4274 struct hstate *h = kobj_to_hstate(kobj, NULL); 4275 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages); 4276 } 4277 HSTATE_ATTR_RO(resv_hugepages); 4278 4279 static ssize_t surplus_hugepages_show(struct kobject *kobj, 4280 struct kobj_attribute *attr, char *buf) 4281 { 4282 struct hstate *h; 4283 unsigned long surplus_huge_pages; 4284 int nid; 4285 4286 h = kobj_to_hstate(kobj, &nid); 4287 if (nid == NUMA_NO_NODE) 4288 surplus_huge_pages = h->surplus_huge_pages; 4289 else 4290 surplus_huge_pages = h->surplus_huge_pages_node[nid]; 4291 4292 return sysfs_emit(buf, "%lu\n", surplus_huge_pages); 4293 } 4294 HSTATE_ATTR_RO(surplus_hugepages); 4295 4296 static ssize_t demote_store(struct kobject *kobj, 4297 struct kobj_attribute *attr, const char *buf, size_t len) 4298 { 4299 unsigned long nr_demote; 4300 unsigned long nr_available; 4301 nodemask_t nodes_allowed, *n_mask; 4302 struct hstate *h; 4303 int err; 4304 int nid; 4305 4306 err = kstrtoul(buf, 10, &nr_demote); 4307 if (err) 4308 return err; 4309 h = kobj_to_hstate(kobj, &nid); 4310 4311 if (nid != NUMA_NO_NODE) { 4312 init_nodemask_of_node(&nodes_allowed, nid); 4313 n_mask = &nodes_allowed; 4314 } else { 4315 n_mask = &node_states[N_MEMORY]; 4316 } 4317 4318 /* Synchronize with other sysfs operations modifying huge pages */ 4319 mutex_lock(&h->resize_lock); 4320 spin_lock_irq(&hugetlb_lock); 4321 4322 while (nr_demote) { 4323 long rc; 4324 4325 /* 4326 * Check for available pages to demote each time thorough the 4327 * loop as demote_pool_huge_page will drop hugetlb_lock. 4328 */ 4329 if (nid != NUMA_NO_NODE) 4330 nr_available = h->free_huge_pages_node[nid]; 4331 else 4332 nr_available = h->free_huge_pages; 4333 nr_available -= h->resv_huge_pages; 4334 if (!nr_available) 4335 break; 4336 4337 rc = demote_pool_huge_page(h, n_mask, nr_demote); 4338 if (rc < 0) { 4339 err = rc; 4340 break; 4341 } 4342 4343 nr_demote -= rc; 4344 } 4345 4346 spin_unlock_irq(&hugetlb_lock); 4347 mutex_unlock(&h->resize_lock); 4348 4349 if (err) 4350 return err; 4351 return len; 4352 } 4353 HSTATE_ATTR_WO(demote); 4354 4355 static ssize_t demote_size_show(struct kobject *kobj, 4356 struct kobj_attribute *attr, char *buf) 4357 { 4358 struct hstate *h = kobj_to_hstate(kobj, NULL); 4359 unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K; 4360 4361 return sysfs_emit(buf, "%lukB\n", demote_size); 4362 } 4363 4364 static ssize_t demote_size_store(struct kobject *kobj, 4365 struct kobj_attribute *attr, 4366 const char *buf, size_t count) 4367 { 4368 struct hstate *h, *demote_hstate; 4369 unsigned long demote_size; 4370 unsigned int demote_order; 4371 4372 demote_size = (unsigned long)memparse(buf, NULL); 4373 4374 demote_hstate = size_to_hstate(demote_size); 4375 if (!demote_hstate) 4376 return -EINVAL; 4377 demote_order = demote_hstate->order; 4378 if (demote_order < HUGETLB_PAGE_ORDER) 4379 return -EINVAL; 4380 4381 /* demote order must be smaller than hstate order */ 4382 h = kobj_to_hstate(kobj, NULL); 4383 if (demote_order >= h->order) 4384 return -EINVAL; 4385 4386 /* resize_lock synchronizes access to demote size and writes */ 4387 mutex_lock(&h->resize_lock); 4388 h->demote_order = demote_order; 4389 mutex_unlock(&h->resize_lock); 4390 4391 return count; 4392 } 4393 HSTATE_ATTR(demote_size); 4394 4395 static struct attribute *hstate_attrs[] = { 4396 &nr_hugepages_attr.attr, 4397 &nr_overcommit_hugepages_attr.attr, 4398 &free_hugepages_attr.attr, 4399 &resv_hugepages_attr.attr, 4400 &surplus_hugepages_attr.attr, 4401 #ifdef CONFIG_NUMA 4402 &nr_hugepages_mempolicy_attr.attr, 4403 #endif 4404 NULL, 4405 }; 4406 4407 static const struct attribute_group hstate_attr_group = { 4408 .attrs = hstate_attrs, 4409 }; 4410 4411 static struct attribute *hstate_demote_attrs[] = { 4412 &demote_size_attr.attr, 4413 &demote_attr.attr, 4414 NULL, 4415 }; 4416 4417 static const struct attribute_group hstate_demote_attr_group = { 4418 .attrs = hstate_demote_attrs, 4419 }; 4420 4421 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent, 4422 struct kobject **hstate_kobjs, 4423 const struct attribute_group *hstate_attr_group) 4424 { 4425 int retval; 4426 int hi = hstate_index(h); 4427 4428 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent); 4429 if (!hstate_kobjs[hi]) 4430 return -ENOMEM; 4431 4432 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group); 4433 if (retval) { 4434 kobject_put(hstate_kobjs[hi]); 4435 hstate_kobjs[hi] = NULL; 4436 return retval; 4437 } 4438 4439 if (h->demote_order) { 4440 retval = sysfs_create_group(hstate_kobjs[hi], 4441 &hstate_demote_attr_group); 4442 if (retval) { 4443 pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name); 4444 sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group); 4445 kobject_put(hstate_kobjs[hi]); 4446 hstate_kobjs[hi] = NULL; 4447 return retval; 4448 } 4449 } 4450 4451 return 0; 4452 } 4453 4454 #ifdef CONFIG_NUMA 4455 static bool hugetlb_sysfs_initialized __ro_after_init; 4456 4457 /* 4458 * node_hstate/s - associate per node hstate attributes, via their kobjects, 4459 * with node devices in node_devices[] using a parallel array. The array 4460 * index of a node device or _hstate == node id. 4461 * This is here to avoid any static dependency of the node device driver, in 4462 * the base kernel, on the hugetlb module. 4463 */ 4464 struct node_hstate { 4465 struct kobject *hugepages_kobj; 4466 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 4467 }; 4468 static struct node_hstate node_hstates[MAX_NUMNODES]; 4469 4470 /* 4471 * A subset of global hstate attributes for node devices 4472 */ 4473 static struct attribute *per_node_hstate_attrs[] = { 4474 &nr_hugepages_attr.attr, 4475 &free_hugepages_attr.attr, 4476 &surplus_hugepages_attr.attr, 4477 NULL, 4478 }; 4479 4480 static const struct attribute_group per_node_hstate_attr_group = { 4481 .attrs = per_node_hstate_attrs, 4482 }; 4483 4484 /* 4485 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj. 4486 * Returns node id via non-NULL nidp. 4487 */ 4488 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 4489 { 4490 int nid; 4491 4492 for (nid = 0; nid < nr_node_ids; nid++) { 4493 struct node_hstate *nhs = &node_hstates[nid]; 4494 int i; 4495 for (i = 0; i < HUGE_MAX_HSTATE; i++) 4496 if (nhs->hstate_kobjs[i] == kobj) { 4497 if (nidp) 4498 *nidp = nid; 4499 return &hstates[i]; 4500 } 4501 } 4502 4503 BUG(); 4504 return NULL; 4505 } 4506 4507 /* 4508 * Unregister hstate attributes from a single node device. 4509 * No-op if no hstate attributes attached. 4510 */ 4511 void hugetlb_unregister_node(struct node *node) 4512 { 4513 struct hstate *h; 4514 struct node_hstate *nhs = &node_hstates[node->dev.id]; 4515 4516 if (!nhs->hugepages_kobj) 4517 return; /* no hstate attributes */ 4518 4519 for_each_hstate(h) { 4520 int idx = hstate_index(h); 4521 struct kobject *hstate_kobj = nhs->hstate_kobjs[idx]; 4522 4523 if (!hstate_kobj) 4524 continue; 4525 if (h->demote_order) 4526 sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group); 4527 sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group); 4528 kobject_put(hstate_kobj); 4529 nhs->hstate_kobjs[idx] = NULL; 4530 } 4531 4532 kobject_put(nhs->hugepages_kobj); 4533 nhs->hugepages_kobj = NULL; 4534 } 4535 4536 4537 /* 4538 * Register hstate attributes for a single node device. 4539 * No-op if attributes already registered. 4540 */ 4541 void hugetlb_register_node(struct node *node) 4542 { 4543 struct hstate *h; 4544 struct node_hstate *nhs = &node_hstates[node->dev.id]; 4545 int err; 4546 4547 if (!hugetlb_sysfs_initialized) 4548 return; 4549 4550 if (nhs->hugepages_kobj) 4551 return; /* already allocated */ 4552 4553 nhs->hugepages_kobj = kobject_create_and_add("hugepages", 4554 &node->dev.kobj); 4555 if (!nhs->hugepages_kobj) 4556 return; 4557 4558 for_each_hstate(h) { 4559 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj, 4560 nhs->hstate_kobjs, 4561 &per_node_hstate_attr_group); 4562 if (err) { 4563 pr_err("HugeTLB: Unable to add hstate %s for node %d\n", 4564 h->name, node->dev.id); 4565 hugetlb_unregister_node(node); 4566 break; 4567 } 4568 } 4569 } 4570 4571 /* 4572 * hugetlb init time: register hstate attributes for all registered node 4573 * devices of nodes that have memory. All on-line nodes should have 4574 * registered their associated device by this time. 4575 */ 4576 static void __init hugetlb_register_all_nodes(void) 4577 { 4578 int nid; 4579 4580 for_each_online_node(nid) 4581 hugetlb_register_node(node_devices[nid]); 4582 } 4583 #else /* !CONFIG_NUMA */ 4584 4585 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 4586 { 4587 BUG(); 4588 if (nidp) 4589 *nidp = -1; 4590 return NULL; 4591 } 4592 4593 static void hugetlb_register_all_nodes(void) { } 4594 4595 #endif 4596 4597 static void __init hugetlb_sysfs_init(void) 4598 { 4599 struct hstate *h; 4600 int err; 4601 4602 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); 4603 if (!hugepages_kobj) 4604 return; 4605 4606 for_each_hstate(h) { 4607 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj, 4608 hstate_kobjs, &hstate_attr_group); 4609 if (err) 4610 pr_err("HugeTLB: Unable to add hstate %s", h->name); 4611 } 4612 4613 #ifdef CONFIG_NUMA 4614 hugetlb_sysfs_initialized = true; 4615 #endif 4616 hugetlb_register_all_nodes(); 4617 } 4618 4619 #ifdef CONFIG_SYSCTL 4620 static void hugetlb_sysctl_init(void); 4621 #else 4622 static inline void hugetlb_sysctl_init(void) { } 4623 #endif 4624 4625 static int __init hugetlb_init(void) 4626 { 4627 int i; 4628 4629 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE < 4630 __NR_HPAGEFLAGS); 4631 4632 if (!hugepages_supported()) { 4633 if (hugetlb_max_hstate || default_hstate_max_huge_pages) 4634 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n"); 4635 return 0; 4636 } 4637 4638 /* 4639 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some 4640 * architectures depend on setup being done here. 4641 */ 4642 hugetlb_add_hstate(HUGETLB_PAGE_ORDER); 4643 if (!parsed_default_hugepagesz) { 4644 /* 4645 * If we did not parse a default huge page size, set 4646 * default_hstate_idx to HPAGE_SIZE hstate. And, if the 4647 * number of huge pages for this default size was implicitly 4648 * specified, set that here as well. 4649 * Note that the implicit setting will overwrite an explicit 4650 * setting. A warning will be printed in this case. 4651 */ 4652 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE)); 4653 if (default_hstate_max_huge_pages) { 4654 if (default_hstate.max_huge_pages) { 4655 char buf[32]; 4656 4657 string_get_size(huge_page_size(&default_hstate), 4658 1, STRING_UNITS_2, buf, 32); 4659 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n", 4660 default_hstate.max_huge_pages, buf); 4661 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n", 4662 default_hstate_max_huge_pages); 4663 } 4664 default_hstate.max_huge_pages = 4665 default_hstate_max_huge_pages; 4666 4667 for_each_online_node(i) 4668 default_hstate.max_huge_pages_node[i] = 4669 default_hugepages_in_node[i]; 4670 } 4671 } 4672 4673 hugetlb_cma_check(); 4674 hugetlb_init_hstates(); 4675 gather_bootmem_prealloc(); 4676 report_hugepages(); 4677 4678 hugetlb_sysfs_init(); 4679 hugetlb_cgroup_file_init(); 4680 hugetlb_sysctl_init(); 4681 4682 #ifdef CONFIG_SMP 4683 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus()); 4684 #else 4685 num_fault_mutexes = 1; 4686 #endif 4687 hugetlb_fault_mutex_table = 4688 kmalloc_array(num_fault_mutexes, sizeof(struct mutex), 4689 GFP_KERNEL); 4690 BUG_ON(!hugetlb_fault_mutex_table); 4691 4692 for (i = 0; i < num_fault_mutexes; i++) 4693 mutex_init(&hugetlb_fault_mutex_table[i]); 4694 return 0; 4695 } 4696 subsys_initcall(hugetlb_init); 4697 4698 /* Overwritten by architectures with more huge page sizes */ 4699 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size) 4700 { 4701 return size == HPAGE_SIZE; 4702 } 4703 4704 void __init hugetlb_add_hstate(unsigned int order) 4705 { 4706 struct hstate *h; 4707 unsigned long i; 4708 4709 if (size_to_hstate(PAGE_SIZE << order)) { 4710 return; 4711 } 4712 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE); 4713 BUG_ON(order < order_base_2(__NR_USED_SUBPAGE)); 4714 h = &hstates[hugetlb_max_hstate++]; 4715 __mutex_init(&h->resize_lock, "resize mutex", &h->resize_key); 4716 h->order = order; 4717 h->mask = ~(huge_page_size(h) - 1); 4718 for (i = 0; i < MAX_NUMNODES; ++i) 4719 INIT_LIST_HEAD(&h->hugepage_freelists[i]); 4720 INIT_LIST_HEAD(&h->hugepage_activelist); 4721 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", 4722 huge_page_size(h)/SZ_1K); 4723 4724 parsed_hstate = h; 4725 } 4726 4727 bool __init __weak hugetlb_node_alloc_supported(void) 4728 { 4729 return true; 4730 } 4731 4732 static void __init hugepages_clear_pages_in_node(void) 4733 { 4734 if (!hugetlb_max_hstate) { 4735 default_hstate_max_huge_pages = 0; 4736 memset(default_hugepages_in_node, 0, 4737 sizeof(default_hugepages_in_node)); 4738 } else { 4739 parsed_hstate->max_huge_pages = 0; 4740 memset(parsed_hstate->max_huge_pages_node, 0, 4741 sizeof(parsed_hstate->max_huge_pages_node)); 4742 } 4743 } 4744 4745 static __init int hugetlb_add_param(char *s, int (*setup)(char *)) 4746 { 4747 size_t len; 4748 char *p; 4749 4750 if (hugetlb_param_index >= HUGE_MAX_CMDLINE_ARGS) 4751 return -EINVAL; 4752 4753 len = strlen(s) + 1; 4754 if (len + hstate_cmdline_index > sizeof(hstate_cmdline_buf)) 4755 return -EINVAL; 4756 4757 p = &hstate_cmdline_buf[hstate_cmdline_index]; 4758 memcpy(p, s, len); 4759 hstate_cmdline_index += len; 4760 4761 hugetlb_params[hugetlb_param_index].val = p; 4762 hugetlb_params[hugetlb_param_index].setup = setup; 4763 4764 hugetlb_param_index++; 4765 4766 return 0; 4767 } 4768 4769 static __init void hugetlb_parse_params(void) 4770 { 4771 int i; 4772 struct hugetlb_cmdline *hcp; 4773 4774 for (i = 0; i < hugetlb_param_index; i++) { 4775 hcp = &hugetlb_params[i]; 4776 4777 hcp->setup(hcp->val); 4778 } 4779 4780 hugetlb_cma_validate_params(); 4781 } 4782 4783 /* 4784 * hugepages command line processing 4785 * hugepages normally follows a valid hugepagsz or default_hugepagsz 4786 * specification. If not, ignore the hugepages value. hugepages can also 4787 * be the first huge page command line option in which case it implicitly 4788 * specifies the number of huge pages for the default size. 4789 */ 4790 static int __init hugepages_setup(char *s) 4791 { 4792 unsigned long *mhp; 4793 static unsigned long *last_mhp; 4794 int node = NUMA_NO_NODE; 4795 int count; 4796 unsigned long tmp; 4797 char *p = s; 4798 4799 if (!parsed_valid_hugepagesz) { 4800 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s); 4801 parsed_valid_hugepagesz = true; 4802 return -EINVAL; 4803 } 4804 4805 /* 4806 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter 4807 * yet, so this hugepages= parameter goes to the "default hstate". 4808 * Otherwise, it goes with the previously parsed hugepagesz or 4809 * default_hugepagesz. 4810 */ 4811 else if (!hugetlb_max_hstate) 4812 mhp = &default_hstate_max_huge_pages; 4813 else 4814 mhp = &parsed_hstate->max_huge_pages; 4815 4816 if (mhp == last_mhp) { 4817 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s); 4818 return 1; 4819 } 4820 4821 while (*p) { 4822 count = 0; 4823 if (sscanf(p, "%lu%n", &tmp, &count) != 1) 4824 goto invalid; 4825 /* Parameter is node format */ 4826 if (p[count] == ':') { 4827 if (!hugetlb_node_alloc_supported()) { 4828 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n"); 4829 return 1; 4830 } 4831 if (tmp >= MAX_NUMNODES || !node_online(tmp)) 4832 goto invalid; 4833 node = array_index_nospec(tmp, MAX_NUMNODES); 4834 p += count + 1; 4835 /* Parse hugepages */ 4836 if (sscanf(p, "%lu%n", &tmp, &count) != 1) 4837 goto invalid; 4838 if (!hugetlb_max_hstate) 4839 default_hugepages_in_node[node] = tmp; 4840 else 4841 parsed_hstate->max_huge_pages_node[node] = tmp; 4842 *mhp += tmp; 4843 /* Go to parse next node*/ 4844 if (p[count] == ',') 4845 p += count + 1; 4846 else 4847 break; 4848 } else { 4849 if (p != s) 4850 goto invalid; 4851 *mhp = tmp; 4852 break; 4853 } 4854 } 4855 4856 last_mhp = mhp; 4857 4858 return 0; 4859 4860 invalid: 4861 pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p); 4862 hugepages_clear_pages_in_node(); 4863 return -EINVAL; 4864 } 4865 hugetlb_early_param("hugepages", hugepages_setup); 4866 4867 /* 4868 * hugepagesz command line processing 4869 * A specific huge page size can only be specified once with hugepagesz. 4870 * hugepagesz is followed by hugepages on the command line. The global 4871 * variable 'parsed_valid_hugepagesz' is used to determine if prior 4872 * hugepagesz argument was valid. 4873 */ 4874 static int __init hugepagesz_setup(char *s) 4875 { 4876 unsigned long size; 4877 struct hstate *h; 4878 4879 parsed_valid_hugepagesz = false; 4880 size = (unsigned long)memparse(s, NULL); 4881 4882 if (!arch_hugetlb_valid_size(size)) { 4883 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s); 4884 return -EINVAL; 4885 } 4886 4887 h = size_to_hstate(size); 4888 if (h) { 4889 /* 4890 * hstate for this size already exists. This is normally 4891 * an error, but is allowed if the existing hstate is the 4892 * default hstate. More specifically, it is only allowed if 4893 * the number of huge pages for the default hstate was not 4894 * previously specified. 4895 */ 4896 if (!parsed_default_hugepagesz || h != &default_hstate || 4897 default_hstate.max_huge_pages) { 4898 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s); 4899 return -EINVAL; 4900 } 4901 4902 /* 4903 * No need to call hugetlb_add_hstate() as hstate already 4904 * exists. But, do set parsed_hstate so that a following 4905 * hugepages= parameter will be applied to this hstate. 4906 */ 4907 parsed_hstate = h; 4908 parsed_valid_hugepagesz = true; 4909 return 0; 4910 } 4911 4912 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); 4913 parsed_valid_hugepagesz = true; 4914 return 0; 4915 } 4916 hugetlb_early_param("hugepagesz", hugepagesz_setup); 4917 4918 /* 4919 * default_hugepagesz command line input 4920 * Only one instance of default_hugepagesz allowed on command line. 4921 */ 4922 static int __init default_hugepagesz_setup(char *s) 4923 { 4924 unsigned long size; 4925 int i; 4926 4927 parsed_valid_hugepagesz = false; 4928 if (parsed_default_hugepagesz) { 4929 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s); 4930 return -EINVAL; 4931 } 4932 4933 size = (unsigned long)memparse(s, NULL); 4934 4935 if (!arch_hugetlb_valid_size(size)) { 4936 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s); 4937 return -EINVAL; 4938 } 4939 4940 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); 4941 parsed_valid_hugepagesz = true; 4942 parsed_default_hugepagesz = true; 4943 default_hstate_idx = hstate_index(size_to_hstate(size)); 4944 4945 /* 4946 * The number of default huge pages (for this size) could have been 4947 * specified as the first hugetlb parameter: hugepages=X. If so, 4948 * then default_hstate_max_huge_pages is set. If the default huge 4949 * page size is gigantic (> MAX_PAGE_ORDER), then the pages must be 4950 * allocated here from bootmem allocator. 4951 */ 4952 if (default_hstate_max_huge_pages) { 4953 default_hstate.max_huge_pages = default_hstate_max_huge_pages; 4954 /* 4955 * Since this is an early parameter, we can't check 4956 * NUMA node state yet, so loop through MAX_NUMNODES. 4957 */ 4958 for (i = 0; i < MAX_NUMNODES; i++) { 4959 if (default_hugepages_in_node[i] != 0) 4960 default_hstate.max_huge_pages_node[i] = 4961 default_hugepages_in_node[i]; 4962 } 4963 default_hstate_max_huge_pages = 0; 4964 } 4965 4966 return 0; 4967 } 4968 hugetlb_early_param("default_hugepagesz", default_hugepagesz_setup); 4969 4970 static bool __hugetlb_bootmem_allocated __initdata; 4971 4972 bool __init hugetlb_bootmem_allocated(void) 4973 { 4974 return __hugetlb_bootmem_allocated; 4975 } 4976 4977 void __init hugetlb_bootmem_alloc(void) 4978 { 4979 struct hstate *h; 4980 int i; 4981 4982 if (__hugetlb_bootmem_allocated) 4983 return; 4984 4985 for (i = 0; i < MAX_NUMNODES; i++) 4986 INIT_LIST_HEAD(&huge_boot_pages[i]); 4987 4988 hugetlb_parse_params(); 4989 4990 for_each_hstate(h) { 4991 h->next_nid_to_alloc = first_online_node; 4992 h->next_nid_to_free = first_online_node; 4993 4994 if (hstate_is_gigantic(h)) 4995 hugetlb_hstate_alloc_pages(h); 4996 } 4997 4998 __hugetlb_bootmem_allocated = true; 4999 } 5000 5001 static unsigned int allowed_mems_nr(struct hstate *h) 5002 { 5003 int node; 5004 unsigned int nr = 0; 5005 nodemask_t *mbind_nodemask; 5006 unsigned int *array = h->free_huge_pages_node; 5007 gfp_t gfp_mask = htlb_alloc_mask(h); 5008 5009 mbind_nodemask = policy_mbind_nodemask(gfp_mask); 5010 for_each_node_mask(node, cpuset_current_mems_allowed) { 5011 if (!mbind_nodemask || node_isset(node, *mbind_nodemask)) 5012 nr += array[node]; 5013 } 5014 5015 return nr; 5016 } 5017 5018 #ifdef CONFIG_SYSCTL 5019 static int proc_hugetlb_doulongvec_minmax(const struct ctl_table *table, int write, 5020 void *buffer, size_t *length, 5021 loff_t *ppos, unsigned long *out) 5022 { 5023 struct ctl_table dup_table; 5024 5025 /* 5026 * In order to avoid races with __do_proc_doulongvec_minmax(), we 5027 * can duplicate the @table and alter the duplicate of it. 5028 */ 5029 dup_table = *table; 5030 dup_table.data = out; 5031 5032 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos); 5033 } 5034 5035 static int hugetlb_sysctl_handler_common(bool obey_mempolicy, 5036 const struct ctl_table *table, int write, 5037 void *buffer, size_t *length, loff_t *ppos) 5038 { 5039 struct hstate *h = &default_hstate; 5040 unsigned long tmp = h->max_huge_pages; 5041 int ret; 5042 5043 if (!hugepages_supported()) 5044 return -EOPNOTSUPP; 5045 5046 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, 5047 &tmp); 5048 if (ret) 5049 goto out; 5050 5051 if (write) 5052 ret = __nr_hugepages_store_common(obey_mempolicy, h, 5053 NUMA_NO_NODE, tmp, *length); 5054 out: 5055 return ret; 5056 } 5057 5058 static int hugetlb_sysctl_handler(const struct ctl_table *table, int write, 5059 void *buffer, size_t *length, loff_t *ppos) 5060 { 5061 5062 return hugetlb_sysctl_handler_common(false, table, write, 5063 buffer, length, ppos); 5064 } 5065 5066 #ifdef CONFIG_NUMA 5067 static int hugetlb_mempolicy_sysctl_handler(const struct ctl_table *table, int write, 5068 void *buffer, size_t *length, loff_t *ppos) 5069 { 5070 return hugetlb_sysctl_handler_common(true, table, write, 5071 buffer, length, ppos); 5072 } 5073 #endif /* CONFIG_NUMA */ 5074 5075 static int hugetlb_overcommit_handler(const struct ctl_table *table, int write, 5076 void *buffer, size_t *length, loff_t *ppos) 5077 { 5078 struct hstate *h = &default_hstate; 5079 unsigned long tmp; 5080 int ret; 5081 5082 if (!hugepages_supported()) 5083 return -EOPNOTSUPP; 5084 5085 tmp = h->nr_overcommit_huge_pages; 5086 5087 if (write && hstate_is_gigantic(h)) 5088 return -EINVAL; 5089 5090 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, 5091 &tmp); 5092 if (ret) 5093 goto out; 5094 5095 if (write) { 5096 spin_lock_irq(&hugetlb_lock); 5097 h->nr_overcommit_huge_pages = tmp; 5098 spin_unlock_irq(&hugetlb_lock); 5099 } 5100 out: 5101 return ret; 5102 } 5103 5104 static const struct ctl_table hugetlb_table[] = { 5105 { 5106 .procname = "nr_hugepages", 5107 .data = NULL, 5108 .maxlen = sizeof(unsigned long), 5109 .mode = 0644, 5110 .proc_handler = hugetlb_sysctl_handler, 5111 }, 5112 #ifdef CONFIG_NUMA 5113 { 5114 .procname = "nr_hugepages_mempolicy", 5115 .data = NULL, 5116 .maxlen = sizeof(unsigned long), 5117 .mode = 0644, 5118 .proc_handler = &hugetlb_mempolicy_sysctl_handler, 5119 }, 5120 #endif 5121 { 5122 .procname = "hugetlb_shm_group", 5123 .data = &sysctl_hugetlb_shm_group, 5124 .maxlen = sizeof(gid_t), 5125 .mode = 0644, 5126 .proc_handler = proc_dointvec, 5127 }, 5128 { 5129 .procname = "nr_overcommit_hugepages", 5130 .data = NULL, 5131 .maxlen = sizeof(unsigned long), 5132 .mode = 0644, 5133 .proc_handler = hugetlb_overcommit_handler, 5134 }, 5135 }; 5136 5137 static void hugetlb_sysctl_init(void) 5138 { 5139 register_sysctl_init("vm", hugetlb_table); 5140 } 5141 #endif /* CONFIG_SYSCTL */ 5142 5143 void hugetlb_report_meminfo(struct seq_file *m) 5144 { 5145 struct hstate *h; 5146 unsigned long total = 0; 5147 5148 if (!hugepages_supported()) 5149 return; 5150 5151 for_each_hstate(h) { 5152 unsigned long count = h->nr_huge_pages; 5153 5154 total += huge_page_size(h) * count; 5155 5156 if (h == &default_hstate) 5157 seq_printf(m, 5158 "HugePages_Total: %5lu\n" 5159 "HugePages_Free: %5lu\n" 5160 "HugePages_Rsvd: %5lu\n" 5161 "HugePages_Surp: %5lu\n" 5162 "Hugepagesize: %8lu kB\n", 5163 count, 5164 h->free_huge_pages, 5165 h->resv_huge_pages, 5166 h->surplus_huge_pages, 5167 huge_page_size(h) / SZ_1K); 5168 } 5169 5170 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K); 5171 } 5172 5173 int hugetlb_report_node_meminfo(char *buf, int len, int nid) 5174 { 5175 struct hstate *h = &default_hstate; 5176 5177 if (!hugepages_supported()) 5178 return 0; 5179 5180 return sysfs_emit_at(buf, len, 5181 "Node %d HugePages_Total: %5u\n" 5182 "Node %d HugePages_Free: %5u\n" 5183 "Node %d HugePages_Surp: %5u\n", 5184 nid, h->nr_huge_pages_node[nid], 5185 nid, h->free_huge_pages_node[nid], 5186 nid, h->surplus_huge_pages_node[nid]); 5187 } 5188 5189 void hugetlb_show_meminfo_node(int nid) 5190 { 5191 struct hstate *h; 5192 5193 if (!hugepages_supported()) 5194 return; 5195 5196 for_each_hstate(h) 5197 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n", 5198 nid, 5199 h->nr_huge_pages_node[nid], 5200 h->free_huge_pages_node[nid], 5201 h->surplus_huge_pages_node[nid], 5202 huge_page_size(h) / SZ_1K); 5203 } 5204 5205 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm) 5206 { 5207 seq_printf(m, "HugetlbPages:\t%8lu kB\n", 5208 K(atomic_long_read(&mm->hugetlb_usage))); 5209 } 5210 5211 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ 5212 unsigned long hugetlb_total_pages(void) 5213 { 5214 struct hstate *h; 5215 unsigned long nr_total_pages = 0; 5216 5217 for_each_hstate(h) 5218 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h); 5219 return nr_total_pages; 5220 } 5221 5222 static int hugetlb_acct_memory(struct hstate *h, long delta) 5223 { 5224 int ret = -ENOMEM; 5225 5226 if (!delta) 5227 return 0; 5228 5229 spin_lock_irq(&hugetlb_lock); 5230 /* 5231 * When cpuset is configured, it breaks the strict hugetlb page 5232 * reservation as the accounting is done on a global variable. Such 5233 * reservation is completely rubbish in the presence of cpuset because 5234 * the reservation is not checked against page availability for the 5235 * current cpuset. Application can still potentially OOM'ed by kernel 5236 * with lack of free htlb page in cpuset that the task is in. 5237 * Attempt to enforce strict accounting with cpuset is almost 5238 * impossible (or too ugly) because cpuset is too fluid that 5239 * task or memory node can be dynamically moved between cpusets. 5240 * 5241 * The change of semantics for shared hugetlb mapping with cpuset is 5242 * undesirable. However, in order to preserve some of the semantics, 5243 * we fall back to check against current free page availability as 5244 * a best attempt and hopefully to minimize the impact of changing 5245 * semantics that cpuset has. 5246 * 5247 * Apart from cpuset, we also have memory policy mechanism that 5248 * also determines from which node the kernel will allocate memory 5249 * in a NUMA system. So similar to cpuset, we also should consider 5250 * the memory policy of the current task. Similar to the description 5251 * above. 5252 */ 5253 if (delta > 0) { 5254 if (gather_surplus_pages(h, delta) < 0) 5255 goto out; 5256 5257 if (delta > allowed_mems_nr(h)) { 5258 return_unused_surplus_pages(h, delta); 5259 goto out; 5260 } 5261 } 5262 5263 ret = 0; 5264 if (delta < 0) 5265 return_unused_surplus_pages(h, (unsigned long) -delta); 5266 5267 out: 5268 spin_unlock_irq(&hugetlb_lock); 5269 return ret; 5270 } 5271 5272 static void hugetlb_vm_op_open(struct vm_area_struct *vma) 5273 { 5274 struct resv_map *resv = vma_resv_map(vma); 5275 5276 /* 5277 * HPAGE_RESV_OWNER indicates a private mapping. 5278 * This new VMA should share its siblings reservation map if present. 5279 * The VMA will only ever have a valid reservation map pointer where 5280 * it is being copied for another still existing VMA. As that VMA 5281 * has a reference to the reservation map it cannot disappear until 5282 * after this open call completes. It is therefore safe to take a 5283 * new reference here without additional locking. 5284 */ 5285 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 5286 resv_map_dup_hugetlb_cgroup_uncharge_info(resv); 5287 kref_get(&resv->refs); 5288 } 5289 5290 /* 5291 * vma_lock structure for sharable mappings is vma specific. 5292 * Clear old pointer (if copied via vm_area_dup) and allocate 5293 * new structure. Before clearing, make sure vma_lock is not 5294 * for this vma. 5295 */ 5296 if (vma->vm_flags & VM_MAYSHARE) { 5297 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 5298 5299 if (vma_lock) { 5300 if (vma_lock->vma != vma) { 5301 vma->vm_private_data = NULL; 5302 hugetlb_vma_lock_alloc(vma); 5303 } else 5304 pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__); 5305 } else 5306 hugetlb_vma_lock_alloc(vma); 5307 } 5308 } 5309 5310 static void hugetlb_vm_op_close(struct vm_area_struct *vma) 5311 { 5312 struct hstate *h = hstate_vma(vma); 5313 struct resv_map *resv; 5314 struct hugepage_subpool *spool = subpool_vma(vma); 5315 unsigned long reserve, start, end; 5316 long gbl_reserve; 5317 5318 hugetlb_vma_lock_free(vma); 5319 5320 resv = vma_resv_map(vma); 5321 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 5322 return; 5323 5324 start = vma_hugecache_offset(h, vma, vma->vm_start); 5325 end = vma_hugecache_offset(h, vma, vma->vm_end); 5326 5327 reserve = (end - start) - region_count(resv, start, end); 5328 hugetlb_cgroup_uncharge_counter(resv, start, end); 5329 if (reserve) { 5330 /* 5331 * Decrement reserve counts. The global reserve count may be 5332 * adjusted if the subpool has a minimum size. 5333 */ 5334 gbl_reserve = hugepage_subpool_put_pages(spool, reserve); 5335 hugetlb_acct_memory(h, -gbl_reserve); 5336 } 5337 5338 kref_put(&resv->refs, resv_map_release); 5339 } 5340 5341 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr) 5342 { 5343 if (addr & ~(huge_page_mask(hstate_vma(vma)))) 5344 return -EINVAL; 5345 5346 /* 5347 * PMD sharing is only possible for PUD_SIZE-aligned address ranges 5348 * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this 5349 * split, unshare PMDs in the PUD_SIZE interval surrounding addr now. 5350 */ 5351 if (addr & ~PUD_MASK) { 5352 /* 5353 * hugetlb_vm_op_split is called right before we attempt to 5354 * split the VMA. We will need to unshare PMDs in the old and 5355 * new VMAs, so let's unshare before we split. 5356 */ 5357 unsigned long floor = addr & PUD_MASK; 5358 unsigned long ceil = floor + PUD_SIZE; 5359 5360 if (floor >= vma->vm_start && ceil <= vma->vm_end) 5361 hugetlb_unshare_pmds(vma, floor, ceil); 5362 } 5363 5364 return 0; 5365 } 5366 5367 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma) 5368 { 5369 return huge_page_size(hstate_vma(vma)); 5370 } 5371 5372 /* 5373 * We cannot handle pagefaults against hugetlb pages at all. They cause 5374 * handle_mm_fault() to try to instantiate regular-sized pages in the 5375 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get 5376 * this far. 5377 */ 5378 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf) 5379 { 5380 BUG(); 5381 return 0; 5382 } 5383 5384 /* 5385 * When a new function is introduced to vm_operations_struct and added 5386 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops. 5387 * This is because under System V memory model, mappings created via 5388 * shmget/shmat with "huge page" specified are backed by hugetlbfs files, 5389 * their original vm_ops are overwritten with shm_vm_ops. 5390 */ 5391 const struct vm_operations_struct hugetlb_vm_ops = { 5392 .fault = hugetlb_vm_op_fault, 5393 .open = hugetlb_vm_op_open, 5394 .close = hugetlb_vm_op_close, 5395 .may_split = hugetlb_vm_op_split, 5396 .pagesize = hugetlb_vm_op_pagesize, 5397 }; 5398 5399 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, 5400 bool try_mkwrite) 5401 { 5402 pte_t entry; 5403 unsigned int shift = huge_page_shift(hstate_vma(vma)); 5404 5405 if (try_mkwrite && (vma->vm_flags & VM_WRITE)) { 5406 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page, 5407 vma->vm_page_prot))); 5408 } else { 5409 entry = huge_pte_wrprotect(mk_huge_pte(page, 5410 vma->vm_page_prot)); 5411 } 5412 entry = pte_mkyoung(entry); 5413 entry = arch_make_huge_pte(entry, shift, vma->vm_flags); 5414 5415 return entry; 5416 } 5417 5418 static void set_huge_ptep_writable(struct vm_area_struct *vma, 5419 unsigned long address, pte_t *ptep) 5420 { 5421 pte_t entry; 5422 5423 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(vma->vm_mm, address, ptep))); 5424 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) 5425 update_mmu_cache(vma, address, ptep); 5426 } 5427 5428 static void set_huge_ptep_maybe_writable(struct vm_area_struct *vma, 5429 unsigned long address, pte_t *ptep) 5430 { 5431 if (vma->vm_flags & VM_WRITE) 5432 set_huge_ptep_writable(vma, address, ptep); 5433 } 5434 5435 bool is_hugetlb_entry_migration(pte_t pte) 5436 { 5437 swp_entry_t swp; 5438 5439 if (huge_pte_none(pte) || pte_present(pte)) 5440 return false; 5441 swp = pte_to_swp_entry(pte); 5442 if (is_migration_entry(swp)) 5443 return true; 5444 else 5445 return false; 5446 } 5447 5448 bool is_hugetlb_entry_hwpoisoned(pte_t pte) 5449 { 5450 swp_entry_t swp; 5451 5452 if (huge_pte_none(pte) || pte_present(pte)) 5453 return false; 5454 swp = pte_to_swp_entry(pte); 5455 if (is_hwpoison_entry(swp)) 5456 return true; 5457 else 5458 return false; 5459 } 5460 5461 static void 5462 hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr, 5463 struct folio *new_folio, pte_t old, unsigned long sz) 5464 { 5465 pte_t newpte = make_huge_pte(vma, &new_folio->page, true); 5466 5467 __folio_mark_uptodate(new_folio); 5468 hugetlb_add_new_anon_rmap(new_folio, vma, addr); 5469 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(old)) 5470 newpte = huge_pte_mkuffd_wp(newpte); 5471 set_huge_pte_at(vma->vm_mm, addr, ptep, newpte, sz); 5472 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm); 5473 folio_set_hugetlb_migratable(new_folio); 5474 } 5475 5476 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, 5477 struct vm_area_struct *dst_vma, 5478 struct vm_area_struct *src_vma) 5479 { 5480 pte_t *src_pte, *dst_pte, entry; 5481 struct folio *pte_folio; 5482 unsigned long addr; 5483 bool cow = is_cow_mapping(src_vma->vm_flags); 5484 struct hstate *h = hstate_vma(src_vma); 5485 unsigned long sz = huge_page_size(h); 5486 unsigned long npages = pages_per_huge_page(h); 5487 struct mmu_notifier_range range; 5488 unsigned long last_addr_mask; 5489 int ret = 0; 5490 5491 if (cow) { 5492 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src, 5493 src_vma->vm_start, 5494 src_vma->vm_end); 5495 mmu_notifier_invalidate_range_start(&range); 5496 vma_assert_write_locked(src_vma); 5497 raw_write_seqcount_begin(&src->write_protect_seq); 5498 } else { 5499 /* 5500 * For shared mappings the vma lock must be held before 5501 * calling hugetlb_walk() in the src vma. Otherwise, the 5502 * returned ptep could go away if part of a shared pmd and 5503 * another thread calls huge_pmd_unshare. 5504 */ 5505 hugetlb_vma_lock_read(src_vma); 5506 } 5507 5508 last_addr_mask = hugetlb_mask_last_page(h); 5509 for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) { 5510 spinlock_t *src_ptl, *dst_ptl; 5511 src_pte = hugetlb_walk(src_vma, addr, sz); 5512 if (!src_pte) { 5513 addr |= last_addr_mask; 5514 continue; 5515 } 5516 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz); 5517 if (!dst_pte) { 5518 ret = -ENOMEM; 5519 break; 5520 } 5521 5522 /* 5523 * If the pagetables are shared don't copy or take references. 5524 * 5525 * dst_pte == src_pte is the common case of src/dest sharing. 5526 * However, src could have 'unshared' and dst shares with 5527 * another vma. So page_count of ptep page is checked instead 5528 * to reliably determine whether pte is shared. 5529 */ 5530 if (page_count(virt_to_page(dst_pte)) > 1) { 5531 addr |= last_addr_mask; 5532 continue; 5533 } 5534 5535 dst_ptl = huge_pte_lock(h, dst, dst_pte); 5536 src_ptl = huge_pte_lockptr(h, src, src_pte); 5537 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 5538 entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte); 5539 again: 5540 if (huge_pte_none(entry)) { 5541 /* 5542 * Skip if src entry none. 5543 */ 5544 ; 5545 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) { 5546 if (!userfaultfd_wp(dst_vma)) 5547 entry = huge_pte_clear_uffd_wp(entry); 5548 set_huge_pte_at(dst, addr, dst_pte, entry, sz); 5549 } else if (unlikely(is_hugetlb_entry_migration(entry))) { 5550 swp_entry_t swp_entry = pte_to_swp_entry(entry); 5551 bool uffd_wp = pte_swp_uffd_wp(entry); 5552 5553 if (!is_readable_migration_entry(swp_entry) && cow) { 5554 /* 5555 * COW mappings require pages in both 5556 * parent and child to be set to read. 5557 */ 5558 swp_entry = make_readable_migration_entry( 5559 swp_offset(swp_entry)); 5560 entry = swp_entry_to_pte(swp_entry); 5561 if (userfaultfd_wp(src_vma) && uffd_wp) 5562 entry = pte_swp_mkuffd_wp(entry); 5563 set_huge_pte_at(src, addr, src_pte, entry, sz); 5564 } 5565 if (!userfaultfd_wp(dst_vma)) 5566 entry = huge_pte_clear_uffd_wp(entry); 5567 set_huge_pte_at(dst, addr, dst_pte, entry, sz); 5568 } else if (unlikely(is_pte_marker(entry))) { 5569 pte_marker marker = copy_pte_marker( 5570 pte_to_swp_entry(entry), dst_vma); 5571 5572 if (marker) 5573 set_huge_pte_at(dst, addr, dst_pte, 5574 make_pte_marker(marker), sz); 5575 } else { 5576 entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte); 5577 pte_folio = page_folio(pte_page(entry)); 5578 folio_get(pte_folio); 5579 5580 /* 5581 * Failing to duplicate the anon rmap is a rare case 5582 * where we see pinned hugetlb pages while they're 5583 * prone to COW. We need to do the COW earlier during 5584 * fork. 5585 * 5586 * When pre-allocating the page or copying data, we 5587 * need to be without the pgtable locks since we could 5588 * sleep during the process. 5589 */ 5590 if (!folio_test_anon(pte_folio)) { 5591 hugetlb_add_file_rmap(pte_folio); 5592 } else if (hugetlb_try_dup_anon_rmap(pte_folio, src_vma)) { 5593 pte_t src_pte_old = entry; 5594 struct folio *new_folio; 5595 5596 spin_unlock(src_ptl); 5597 spin_unlock(dst_ptl); 5598 /* Do not use reserve as it's private owned */ 5599 new_folio = alloc_hugetlb_folio(dst_vma, addr, false); 5600 if (IS_ERR(new_folio)) { 5601 folio_put(pte_folio); 5602 ret = PTR_ERR(new_folio); 5603 break; 5604 } 5605 ret = copy_user_large_folio(new_folio, pte_folio, 5606 addr, dst_vma); 5607 folio_put(pte_folio); 5608 if (ret) { 5609 folio_put(new_folio); 5610 break; 5611 } 5612 5613 /* Install the new hugetlb folio if src pte stable */ 5614 dst_ptl = huge_pte_lock(h, dst, dst_pte); 5615 src_ptl = huge_pte_lockptr(h, src, src_pte); 5616 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 5617 entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte); 5618 if (!pte_same(src_pte_old, entry)) { 5619 restore_reserve_on_error(h, dst_vma, addr, 5620 new_folio); 5621 folio_put(new_folio); 5622 /* huge_ptep of dst_pte won't change as in child */ 5623 goto again; 5624 } 5625 hugetlb_install_folio(dst_vma, dst_pte, addr, 5626 new_folio, src_pte_old, sz); 5627 spin_unlock(src_ptl); 5628 spin_unlock(dst_ptl); 5629 continue; 5630 } 5631 5632 if (cow) { 5633 /* 5634 * No need to notify as we are downgrading page 5635 * table protection not changing it to point 5636 * to a new page. 5637 * 5638 * See Documentation/mm/mmu_notifier.rst 5639 */ 5640 huge_ptep_set_wrprotect(src, addr, src_pte); 5641 entry = huge_pte_wrprotect(entry); 5642 } 5643 5644 if (!userfaultfd_wp(dst_vma)) 5645 entry = huge_pte_clear_uffd_wp(entry); 5646 5647 set_huge_pte_at(dst, addr, dst_pte, entry, sz); 5648 hugetlb_count_add(npages, dst); 5649 } 5650 spin_unlock(src_ptl); 5651 spin_unlock(dst_ptl); 5652 } 5653 5654 if (cow) { 5655 raw_write_seqcount_end(&src->write_protect_seq); 5656 mmu_notifier_invalidate_range_end(&range); 5657 } else { 5658 hugetlb_vma_unlock_read(src_vma); 5659 } 5660 5661 return ret; 5662 } 5663 5664 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr, 5665 unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte, 5666 unsigned long sz) 5667 { 5668 bool need_clear_uffd_wp = vma_has_uffd_without_event_remap(vma); 5669 struct hstate *h = hstate_vma(vma); 5670 struct mm_struct *mm = vma->vm_mm; 5671 spinlock_t *src_ptl, *dst_ptl; 5672 pte_t pte; 5673 5674 dst_ptl = huge_pte_lock(h, mm, dst_pte); 5675 src_ptl = huge_pte_lockptr(h, mm, src_pte); 5676 5677 /* 5678 * We don't have to worry about the ordering of src and dst ptlocks 5679 * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock. 5680 */ 5681 if (src_ptl != dst_ptl) 5682 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 5683 5684 pte = huge_ptep_get_and_clear(mm, old_addr, src_pte, sz); 5685 5686 if (need_clear_uffd_wp && pte_marker_uffd_wp(pte)) 5687 huge_pte_clear(mm, new_addr, dst_pte, sz); 5688 else { 5689 if (need_clear_uffd_wp) { 5690 if (pte_present(pte)) 5691 pte = huge_pte_clear_uffd_wp(pte); 5692 else if (is_swap_pte(pte)) 5693 pte = pte_swp_clear_uffd_wp(pte); 5694 } 5695 set_huge_pte_at(mm, new_addr, dst_pte, pte, sz); 5696 } 5697 5698 if (src_ptl != dst_ptl) 5699 spin_unlock(src_ptl); 5700 spin_unlock(dst_ptl); 5701 } 5702 5703 int move_hugetlb_page_tables(struct vm_area_struct *vma, 5704 struct vm_area_struct *new_vma, 5705 unsigned long old_addr, unsigned long new_addr, 5706 unsigned long len) 5707 { 5708 struct hstate *h = hstate_vma(vma); 5709 struct address_space *mapping = vma->vm_file->f_mapping; 5710 unsigned long sz = huge_page_size(h); 5711 struct mm_struct *mm = vma->vm_mm; 5712 unsigned long old_end = old_addr + len; 5713 unsigned long last_addr_mask; 5714 pte_t *src_pte, *dst_pte; 5715 struct mmu_notifier_range range; 5716 bool shared_pmd = false; 5717 5718 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr, 5719 old_end); 5720 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 5721 /* 5722 * In case of shared PMDs, we should cover the maximum possible 5723 * range. 5724 */ 5725 flush_cache_range(vma, range.start, range.end); 5726 5727 mmu_notifier_invalidate_range_start(&range); 5728 last_addr_mask = hugetlb_mask_last_page(h); 5729 /* Prevent race with file truncation */ 5730 hugetlb_vma_lock_write(vma); 5731 i_mmap_lock_write(mapping); 5732 for (; old_addr < old_end; old_addr += sz, new_addr += sz) { 5733 src_pte = hugetlb_walk(vma, old_addr, sz); 5734 if (!src_pte) { 5735 old_addr |= last_addr_mask; 5736 new_addr |= last_addr_mask; 5737 continue; 5738 } 5739 if (huge_pte_none(huge_ptep_get(mm, old_addr, src_pte))) 5740 continue; 5741 5742 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) { 5743 shared_pmd = true; 5744 old_addr |= last_addr_mask; 5745 new_addr |= last_addr_mask; 5746 continue; 5747 } 5748 5749 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz); 5750 if (!dst_pte) 5751 break; 5752 5753 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte, sz); 5754 } 5755 5756 if (shared_pmd) 5757 flush_hugetlb_tlb_range(vma, range.start, range.end); 5758 else 5759 flush_hugetlb_tlb_range(vma, old_end - len, old_end); 5760 mmu_notifier_invalidate_range_end(&range); 5761 i_mmap_unlock_write(mapping); 5762 hugetlb_vma_unlock_write(vma); 5763 5764 return len + old_addr - old_end; 5765 } 5766 5767 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma, 5768 unsigned long start, unsigned long end, 5769 struct page *ref_page, zap_flags_t zap_flags) 5770 { 5771 struct mm_struct *mm = vma->vm_mm; 5772 unsigned long address; 5773 pte_t *ptep; 5774 pte_t pte; 5775 spinlock_t *ptl; 5776 struct page *page; 5777 struct hstate *h = hstate_vma(vma); 5778 unsigned long sz = huge_page_size(h); 5779 bool adjust_reservation = false; 5780 unsigned long last_addr_mask; 5781 bool force_flush = false; 5782 5783 WARN_ON(!is_vm_hugetlb_page(vma)); 5784 BUG_ON(start & ~huge_page_mask(h)); 5785 BUG_ON(end & ~huge_page_mask(h)); 5786 5787 /* 5788 * This is a hugetlb vma, all the pte entries should point 5789 * to huge page. 5790 */ 5791 tlb_change_page_size(tlb, sz); 5792 tlb_start_vma(tlb, vma); 5793 5794 last_addr_mask = hugetlb_mask_last_page(h); 5795 address = start; 5796 for (; address < end; address += sz) { 5797 ptep = hugetlb_walk(vma, address, sz); 5798 if (!ptep) { 5799 address |= last_addr_mask; 5800 continue; 5801 } 5802 5803 ptl = huge_pte_lock(h, mm, ptep); 5804 if (huge_pmd_unshare(mm, vma, address, ptep)) { 5805 spin_unlock(ptl); 5806 tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE); 5807 force_flush = true; 5808 address |= last_addr_mask; 5809 continue; 5810 } 5811 5812 pte = huge_ptep_get(mm, address, ptep); 5813 if (huge_pte_none(pte)) { 5814 spin_unlock(ptl); 5815 continue; 5816 } 5817 5818 /* 5819 * Migrating hugepage or HWPoisoned hugepage is already 5820 * unmapped and its refcount is dropped, so just clear pte here. 5821 */ 5822 if (unlikely(!pte_present(pte))) { 5823 /* 5824 * If the pte was wr-protected by uffd-wp in any of the 5825 * swap forms, meanwhile the caller does not want to 5826 * drop the uffd-wp bit in this zap, then replace the 5827 * pte with a marker. 5828 */ 5829 if (pte_swp_uffd_wp_any(pte) && 5830 !(zap_flags & ZAP_FLAG_DROP_MARKER)) 5831 set_huge_pte_at(mm, address, ptep, 5832 make_pte_marker(PTE_MARKER_UFFD_WP), 5833 sz); 5834 else 5835 huge_pte_clear(mm, address, ptep, sz); 5836 spin_unlock(ptl); 5837 continue; 5838 } 5839 5840 page = pte_page(pte); 5841 /* 5842 * If a reference page is supplied, it is because a specific 5843 * page is being unmapped, not a range. Ensure the page we 5844 * are about to unmap is the actual page of interest. 5845 */ 5846 if (ref_page) { 5847 if (page != ref_page) { 5848 spin_unlock(ptl); 5849 continue; 5850 } 5851 /* 5852 * Mark the VMA as having unmapped its page so that 5853 * future faults in this VMA will fail rather than 5854 * looking like data was lost 5855 */ 5856 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); 5857 } 5858 5859 pte = huge_ptep_get_and_clear(mm, address, ptep, sz); 5860 tlb_remove_huge_tlb_entry(h, tlb, ptep, address); 5861 if (huge_pte_dirty(pte)) 5862 set_page_dirty(page); 5863 /* Leave a uffd-wp pte marker if needed */ 5864 if (huge_pte_uffd_wp(pte) && 5865 !(zap_flags & ZAP_FLAG_DROP_MARKER)) 5866 set_huge_pte_at(mm, address, ptep, 5867 make_pte_marker(PTE_MARKER_UFFD_WP), 5868 sz); 5869 hugetlb_count_sub(pages_per_huge_page(h), mm); 5870 hugetlb_remove_rmap(page_folio(page)); 5871 5872 /* 5873 * Restore the reservation for anonymous page, otherwise the 5874 * backing page could be stolen by someone. 5875 * If there we are freeing a surplus, do not set the restore 5876 * reservation bit. 5877 */ 5878 if (!h->surplus_huge_pages && __vma_private_lock(vma) && 5879 folio_test_anon(page_folio(page))) { 5880 folio_set_hugetlb_restore_reserve(page_folio(page)); 5881 /* Reservation to be adjusted after the spin lock */ 5882 adjust_reservation = true; 5883 } 5884 5885 spin_unlock(ptl); 5886 5887 /* 5888 * Adjust the reservation for the region that will have the 5889 * reserve restored. Keep in mind that vma_needs_reservation() changes 5890 * resv->adds_in_progress if it succeeds. If this is not done, 5891 * do_exit() will not see it, and will keep the reservation 5892 * forever. 5893 */ 5894 if (adjust_reservation) { 5895 int rc = vma_needs_reservation(h, vma, address); 5896 5897 if (rc < 0) 5898 /* Pressumably allocate_file_region_entries failed 5899 * to allocate a file_region struct. Clear 5900 * hugetlb_restore_reserve so that global reserve 5901 * count will not be incremented by free_huge_folio. 5902 * Act as if we consumed the reservation. 5903 */ 5904 folio_clear_hugetlb_restore_reserve(page_folio(page)); 5905 else if (rc) 5906 vma_add_reservation(h, vma, address); 5907 } 5908 5909 tlb_remove_page_size(tlb, page, huge_page_size(h)); 5910 /* 5911 * Bail out after unmapping reference page if supplied 5912 */ 5913 if (ref_page) 5914 break; 5915 } 5916 tlb_end_vma(tlb, vma); 5917 5918 /* 5919 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We 5920 * could defer the flush until now, since by holding i_mmap_rwsem we 5921 * guaranteed that the last refernece would not be dropped. But we must 5922 * do the flushing before we return, as otherwise i_mmap_rwsem will be 5923 * dropped and the last reference to the shared PMDs page might be 5924 * dropped as well. 5925 * 5926 * In theory we could defer the freeing of the PMD pages as well, but 5927 * huge_pmd_unshare() relies on the exact page_count for the PMD page to 5928 * detect sharing, so we cannot defer the release of the page either. 5929 * Instead, do flush now. 5930 */ 5931 if (force_flush) 5932 tlb_flush_mmu_tlbonly(tlb); 5933 } 5934 5935 void __hugetlb_zap_begin(struct vm_area_struct *vma, 5936 unsigned long *start, unsigned long *end) 5937 { 5938 if (!vma->vm_file) /* hugetlbfs_file_mmap error */ 5939 return; 5940 5941 adjust_range_if_pmd_sharing_possible(vma, start, end); 5942 hugetlb_vma_lock_write(vma); 5943 if (vma->vm_file) 5944 i_mmap_lock_write(vma->vm_file->f_mapping); 5945 } 5946 5947 void __hugetlb_zap_end(struct vm_area_struct *vma, 5948 struct zap_details *details) 5949 { 5950 zap_flags_t zap_flags = details ? details->zap_flags : 0; 5951 5952 if (!vma->vm_file) /* hugetlbfs_file_mmap error */ 5953 return; 5954 5955 if (zap_flags & ZAP_FLAG_UNMAP) { /* final unmap */ 5956 /* 5957 * Unlock and free the vma lock before releasing i_mmap_rwsem. 5958 * When the vma_lock is freed, this makes the vma ineligible 5959 * for pmd sharing. And, i_mmap_rwsem is required to set up 5960 * pmd sharing. This is important as page tables for this 5961 * unmapped range will be asynchrously deleted. If the page 5962 * tables are shared, there will be issues when accessed by 5963 * someone else. 5964 */ 5965 __hugetlb_vma_unlock_write_free(vma); 5966 } else { 5967 hugetlb_vma_unlock_write(vma); 5968 } 5969 5970 if (vma->vm_file) 5971 i_mmap_unlock_write(vma->vm_file->f_mapping); 5972 } 5973 5974 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, 5975 unsigned long end, struct page *ref_page, 5976 zap_flags_t zap_flags) 5977 { 5978 struct mmu_notifier_range range; 5979 struct mmu_gather tlb; 5980 5981 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 5982 start, end); 5983 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 5984 mmu_notifier_invalidate_range_start(&range); 5985 tlb_gather_mmu(&tlb, vma->vm_mm); 5986 5987 __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags); 5988 5989 mmu_notifier_invalidate_range_end(&range); 5990 tlb_finish_mmu(&tlb); 5991 } 5992 5993 /* 5994 * This is called when the original mapper is failing to COW a MAP_PRIVATE 5995 * mapping it owns the reserve page for. The intention is to unmap the page 5996 * from other VMAs and let the children be SIGKILLed if they are faulting the 5997 * same region. 5998 */ 5999 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, 6000 struct page *page, unsigned long address) 6001 { 6002 struct hstate *h = hstate_vma(vma); 6003 struct vm_area_struct *iter_vma; 6004 struct address_space *mapping; 6005 pgoff_t pgoff; 6006 6007 /* 6008 * vm_pgoff is in PAGE_SIZE units, hence the different calculation 6009 * from page cache lookup which is in HPAGE_SIZE units. 6010 */ 6011 address = address & huge_page_mask(h); 6012 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + 6013 vma->vm_pgoff; 6014 mapping = vma->vm_file->f_mapping; 6015 6016 /* 6017 * Take the mapping lock for the duration of the table walk. As 6018 * this mapping should be shared between all the VMAs, 6019 * __unmap_hugepage_range() is called as the lock is already held 6020 */ 6021 i_mmap_lock_write(mapping); 6022 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) { 6023 /* Do not unmap the current VMA */ 6024 if (iter_vma == vma) 6025 continue; 6026 6027 /* 6028 * Shared VMAs have their own reserves and do not affect 6029 * MAP_PRIVATE accounting but it is possible that a shared 6030 * VMA is using the same page so check and skip such VMAs. 6031 */ 6032 if (iter_vma->vm_flags & VM_MAYSHARE) 6033 continue; 6034 6035 /* 6036 * Unmap the page from other VMAs without their own reserves. 6037 * They get marked to be SIGKILLed if they fault in these 6038 * areas. This is because a future no-page fault on this VMA 6039 * could insert a zeroed page instead of the data existing 6040 * from the time of fork. This would look like data corruption 6041 */ 6042 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) 6043 unmap_hugepage_range(iter_vma, address, 6044 address + huge_page_size(h), page, 0); 6045 } 6046 i_mmap_unlock_write(mapping); 6047 } 6048 6049 /* 6050 * hugetlb_wp() should be called with page lock of the original hugepage held. 6051 * Called with hugetlb_fault_mutex_table held and pte_page locked so we 6052 * cannot race with other handlers or page migration. 6053 * Keep the pte_same checks anyway to make transition from the mutex easier. 6054 */ 6055 static vm_fault_t hugetlb_wp(struct folio *pagecache_folio, 6056 struct vm_fault *vmf) 6057 { 6058 struct vm_area_struct *vma = vmf->vma; 6059 struct mm_struct *mm = vma->vm_mm; 6060 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 6061 pte_t pte = huge_ptep_get(mm, vmf->address, vmf->pte); 6062 struct hstate *h = hstate_vma(vma); 6063 struct folio *old_folio; 6064 struct folio *new_folio; 6065 bool cow_from_owner = 0; 6066 vm_fault_t ret = 0; 6067 struct mmu_notifier_range range; 6068 6069 /* 6070 * Never handle CoW for uffd-wp protected pages. It should be only 6071 * handled when the uffd-wp protection is removed. 6072 * 6073 * Note that only the CoW optimization path (in hugetlb_no_page()) 6074 * can trigger this, because hugetlb_fault() will always resolve 6075 * uffd-wp bit first. 6076 */ 6077 if (!unshare && huge_pte_uffd_wp(pte)) 6078 return 0; 6079 6080 /* Let's take out MAP_SHARED mappings first. */ 6081 if (vma->vm_flags & VM_MAYSHARE) { 6082 set_huge_ptep_writable(vma, vmf->address, vmf->pte); 6083 return 0; 6084 } 6085 6086 old_folio = page_folio(pte_page(pte)); 6087 6088 delayacct_wpcopy_start(); 6089 6090 retry_avoidcopy: 6091 /* 6092 * If no-one else is actually using this page, we're the exclusive 6093 * owner and can reuse this page. 6094 * 6095 * Note that we don't rely on the (safer) folio refcount here, because 6096 * copying the hugetlb folio when there are unexpected (temporary) 6097 * folio references could harm simple fork()+exit() users when 6098 * we run out of free hugetlb folios: we would have to kill processes 6099 * in scenarios that used to work. As a side effect, there can still 6100 * be leaks between processes, for example, with FOLL_GET users. 6101 */ 6102 if (folio_mapcount(old_folio) == 1 && folio_test_anon(old_folio)) { 6103 if (!PageAnonExclusive(&old_folio->page)) { 6104 folio_move_anon_rmap(old_folio, vma); 6105 SetPageAnonExclusive(&old_folio->page); 6106 } 6107 if (likely(!unshare)) 6108 set_huge_ptep_maybe_writable(vma, vmf->address, 6109 vmf->pte); 6110 6111 delayacct_wpcopy_end(); 6112 return 0; 6113 } 6114 VM_BUG_ON_PAGE(folio_test_anon(old_folio) && 6115 PageAnonExclusive(&old_folio->page), &old_folio->page); 6116 6117 /* 6118 * If the process that created a MAP_PRIVATE mapping is about to 6119 * perform a COW due to a shared page count, attempt to satisfy 6120 * the allocation without using the existing reserves. The pagecache 6121 * page is used to determine if the reserve at this address was 6122 * consumed or not. If reserves were used, a partial faulted mapping 6123 * at the time of fork() could consume its reserves on COW instead 6124 * of the full address range. 6125 */ 6126 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && 6127 old_folio != pagecache_folio) 6128 cow_from_owner = true; 6129 6130 folio_get(old_folio); 6131 6132 /* 6133 * Drop page table lock as buddy allocator may be called. It will 6134 * be acquired again before returning to the caller, as expected. 6135 */ 6136 spin_unlock(vmf->ptl); 6137 new_folio = alloc_hugetlb_folio(vma, vmf->address, cow_from_owner); 6138 6139 if (IS_ERR(new_folio)) { 6140 /* 6141 * If a process owning a MAP_PRIVATE mapping fails to COW, 6142 * it is due to references held by a child and an insufficient 6143 * huge page pool. To guarantee the original mappers 6144 * reliability, unmap the page from child processes. The child 6145 * may get SIGKILLed if it later faults. 6146 */ 6147 if (cow_from_owner) { 6148 struct address_space *mapping = vma->vm_file->f_mapping; 6149 pgoff_t idx; 6150 u32 hash; 6151 6152 folio_put(old_folio); 6153 /* 6154 * Drop hugetlb_fault_mutex and vma_lock before 6155 * unmapping. unmapping needs to hold vma_lock 6156 * in write mode. Dropping vma_lock in read mode 6157 * here is OK as COW mappings do not interact with 6158 * PMD sharing. 6159 * 6160 * Reacquire both after unmap operation. 6161 */ 6162 idx = vma_hugecache_offset(h, vma, vmf->address); 6163 hash = hugetlb_fault_mutex_hash(mapping, idx); 6164 hugetlb_vma_unlock_read(vma); 6165 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6166 6167 unmap_ref_private(mm, vma, &old_folio->page, 6168 vmf->address); 6169 6170 mutex_lock(&hugetlb_fault_mutex_table[hash]); 6171 hugetlb_vma_lock_read(vma); 6172 spin_lock(vmf->ptl); 6173 vmf->pte = hugetlb_walk(vma, vmf->address, 6174 huge_page_size(h)); 6175 if (likely(vmf->pte && 6176 pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), pte))) 6177 goto retry_avoidcopy; 6178 /* 6179 * race occurs while re-acquiring page table 6180 * lock, and our job is done. 6181 */ 6182 delayacct_wpcopy_end(); 6183 return 0; 6184 } 6185 6186 ret = vmf_error(PTR_ERR(new_folio)); 6187 goto out_release_old; 6188 } 6189 6190 /* 6191 * When the original hugepage is shared one, it does not have 6192 * anon_vma prepared. 6193 */ 6194 ret = __vmf_anon_prepare(vmf); 6195 if (unlikely(ret)) 6196 goto out_release_all; 6197 6198 if (copy_user_large_folio(new_folio, old_folio, vmf->real_address, vma)) { 6199 ret = VM_FAULT_HWPOISON_LARGE | VM_FAULT_SET_HINDEX(hstate_index(h)); 6200 goto out_release_all; 6201 } 6202 __folio_mark_uptodate(new_folio); 6203 6204 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, vmf->address, 6205 vmf->address + huge_page_size(h)); 6206 mmu_notifier_invalidate_range_start(&range); 6207 6208 /* 6209 * Retake the page table lock to check for racing updates 6210 * before the page tables are altered 6211 */ 6212 spin_lock(vmf->ptl); 6213 vmf->pte = hugetlb_walk(vma, vmf->address, huge_page_size(h)); 6214 if (likely(vmf->pte && pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), pte))) { 6215 pte_t newpte = make_huge_pte(vma, &new_folio->page, !unshare); 6216 6217 /* Break COW or unshare */ 6218 huge_ptep_clear_flush(vma, vmf->address, vmf->pte); 6219 hugetlb_remove_rmap(old_folio); 6220 hugetlb_add_new_anon_rmap(new_folio, vma, vmf->address); 6221 if (huge_pte_uffd_wp(pte)) 6222 newpte = huge_pte_mkuffd_wp(newpte); 6223 set_huge_pte_at(mm, vmf->address, vmf->pte, newpte, 6224 huge_page_size(h)); 6225 folio_set_hugetlb_migratable(new_folio); 6226 /* Make the old page be freed below */ 6227 new_folio = old_folio; 6228 } 6229 spin_unlock(vmf->ptl); 6230 mmu_notifier_invalidate_range_end(&range); 6231 out_release_all: 6232 /* 6233 * No restore in case of successful pagetable update (Break COW or 6234 * unshare) 6235 */ 6236 if (new_folio != old_folio) 6237 restore_reserve_on_error(h, vma, vmf->address, new_folio); 6238 folio_put(new_folio); 6239 out_release_old: 6240 folio_put(old_folio); 6241 6242 spin_lock(vmf->ptl); /* Caller expects lock to be held */ 6243 6244 delayacct_wpcopy_end(); 6245 return ret; 6246 } 6247 6248 /* 6249 * Return whether there is a pagecache page to back given address within VMA. 6250 */ 6251 bool hugetlbfs_pagecache_present(struct hstate *h, 6252 struct vm_area_struct *vma, unsigned long address) 6253 { 6254 struct address_space *mapping = vma->vm_file->f_mapping; 6255 pgoff_t idx = linear_page_index(vma, address); 6256 struct folio *folio; 6257 6258 folio = filemap_get_folio(mapping, idx); 6259 if (IS_ERR(folio)) 6260 return false; 6261 folio_put(folio); 6262 return true; 6263 } 6264 6265 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping, 6266 pgoff_t idx) 6267 { 6268 struct inode *inode = mapping->host; 6269 struct hstate *h = hstate_inode(inode); 6270 int err; 6271 6272 idx <<= huge_page_order(h); 6273 __folio_set_locked(folio); 6274 err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL); 6275 6276 if (unlikely(err)) { 6277 __folio_clear_locked(folio); 6278 return err; 6279 } 6280 folio_clear_hugetlb_restore_reserve(folio); 6281 6282 /* 6283 * mark folio dirty so that it will not be removed from cache/file 6284 * by non-hugetlbfs specific code paths. 6285 */ 6286 folio_mark_dirty(folio); 6287 6288 spin_lock(&inode->i_lock); 6289 inode->i_blocks += blocks_per_huge_page(h); 6290 spin_unlock(&inode->i_lock); 6291 return 0; 6292 } 6293 6294 static inline vm_fault_t hugetlb_handle_userfault(struct vm_fault *vmf, 6295 struct address_space *mapping, 6296 unsigned long reason) 6297 { 6298 u32 hash; 6299 6300 /* 6301 * vma_lock and hugetlb_fault_mutex must be dropped before handling 6302 * userfault. Also mmap_lock could be dropped due to handling 6303 * userfault, any vma operation should be careful from here. 6304 */ 6305 hugetlb_vma_unlock_read(vmf->vma); 6306 hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff); 6307 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6308 return handle_userfault(vmf, reason); 6309 } 6310 6311 /* 6312 * Recheck pte with pgtable lock. Returns true if pte didn't change, or 6313 * false if pte changed or is changing. 6314 */ 6315 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm, unsigned long addr, 6316 pte_t *ptep, pte_t old_pte) 6317 { 6318 spinlock_t *ptl; 6319 bool same; 6320 6321 ptl = huge_pte_lock(h, mm, ptep); 6322 same = pte_same(huge_ptep_get(mm, addr, ptep), old_pte); 6323 spin_unlock(ptl); 6324 6325 return same; 6326 } 6327 6328 static vm_fault_t hugetlb_no_page(struct address_space *mapping, 6329 struct vm_fault *vmf) 6330 { 6331 struct vm_area_struct *vma = vmf->vma; 6332 struct mm_struct *mm = vma->vm_mm; 6333 struct hstate *h = hstate_vma(vma); 6334 vm_fault_t ret = VM_FAULT_SIGBUS; 6335 int anon_rmap = 0; 6336 unsigned long size; 6337 struct folio *folio; 6338 pte_t new_pte; 6339 bool new_folio, new_pagecache_folio = false; 6340 u32 hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff); 6341 6342 /* 6343 * Currently, we are forced to kill the process in the event the 6344 * original mapper has unmapped pages from the child due to a failed 6345 * COW/unsharing. Warn that such a situation has occurred as it may not 6346 * be obvious. 6347 */ 6348 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { 6349 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n", 6350 current->pid); 6351 goto out; 6352 } 6353 6354 /* 6355 * Use page lock to guard against racing truncation 6356 * before we get page_table_lock. 6357 */ 6358 new_folio = false; 6359 folio = filemap_lock_hugetlb_folio(h, mapping, vmf->pgoff); 6360 if (IS_ERR(folio)) { 6361 size = i_size_read(mapping->host) >> huge_page_shift(h); 6362 if (vmf->pgoff >= size) 6363 goto out; 6364 /* Check for page in userfault range */ 6365 if (userfaultfd_missing(vma)) { 6366 /* 6367 * Since hugetlb_no_page() was examining pte 6368 * without pgtable lock, we need to re-test under 6369 * lock because the pte may not be stable and could 6370 * have changed from under us. Try to detect 6371 * either changed or during-changing ptes and retry 6372 * properly when needed. 6373 * 6374 * Note that userfaultfd is actually fine with 6375 * false positives (e.g. caused by pte changed), 6376 * but not wrong logical events (e.g. caused by 6377 * reading a pte during changing). The latter can 6378 * confuse the userspace, so the strictness is very 6379 * much preferred. E.g., MISSING event should 6380 * never happen on the page after UFFDIO_COPY has 6381 * correctly installed the page and returned. 6382 */ 6383 if (!hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte)) { 6384 ret = 0; 6385 goto out; 6386 } 6387 6388 return hugetlb_handle_userfault(vmf, mapping, 6389 VM_UFFD_MISSING); 6390 } 6391 6392 if (!(vma->vm_flags & VM_MAYSHARE)) { 6393 ret = __vmf_anon_prepare(vmf); 6394 if (unlikely(ret)) 6395 goto out; 6396 } 6397 6398 folio = alloc_hugetlb_folio(vma, vmf->address, false); 6399 if (IS_ERR(folio)) { 6400 /* 6401 * Returning error will result in faulting task being 6402 * sent SIGBUS. The hugetlb fault mutex prevents two 6403 * tasks from racing to fault in the same page which 6404 * could result in false unable to allocate errors. 6405 * Page migration does not take the fault mutex, but 6406 * does a clear then write of pte's under page table 6407 * lock. Page fault code could race with migration, 6408 * notice the clear pte and try to allocate a page 6409 * here. Before returning error, get ptl and make 6410 * sure there really is no pte entry. 6411 */ 6412 if (hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte)) 6413 ret = vmf_error(PTR_ERR(folio)); 6414 else 6415 ret = 0; 6416 goto out; 6417 } 6418 folio_zero_user(folio, vmf->real_address); 6419 __folio_mark_uptodate(folio); 6420 new_folio = true; 6421 6422 if (vma->vm_flags & VM_MAYSHARE) { 6423 int err = hugetlb_add_to_page_cache(folio, mapping, 6424 vmf->pgoff); 6425 if (err) { 6426 /* 6427 * err can't be -EEXIST which implies someone 6428 * else consumed the reservation since hugetlb 6429 * fault mutex is held when add a hugetlb page 6430 * to the page cache. So it's safe to call 6431 * restore_reserve_on_error() here. 6432 */ 6433 restore_reserve_on_error(h, vma, vmf->address, 6434 folio); 6435 folio_put(folio); 6436 ret = VM_FAULT_SIGBUS; 6437 goto out; 6438 } 6439 new_pagecache_folio = true; 6440 } else { 6441 folio_lock(folio); 6442 anon_rmap = 1; 6443 } 6444 } else { 6445 /* 6446 * If memory error occurs between mmap() and fault, some process 6447 * don't have hwpoisoned swap entry for errored virtual address. 6448 * So we need to block hugepage fault by PG_hwpoison bit check. 6449 */ 6450 if (unlikely(folio_test_hwpoison(folio))) { 6451 ret = VM_FAULT_HWPOISON_LARGE | 6452 VM_FAULT_SET_HINDEX(hstate_index(h)); 6453 goto backout_unlocked; 6454 } 6455 6456 /* Check for page in userfault range. */ 6457 if (userfaultfd_minor(vma)) { 6458 folio_unlock(folio); 6459 folio_put(folio); 6460 /* See comment in userfaultfd_missing() block above */ 6461 if (!hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte)) { 6462 ret = 0; 6463 goto out; 6464 } 6465 return hugetlb_handle_userfault(vmf, mapping, 6466 VM_UFFD_MINOR); 6467 } 6468 } 6469 6470 /* 6471 * If we are going to COW a private mapping later, we examine the 6472 * pending reservations for this page now. This will ensure that 6473 * any allocations necessary to record that reservation occur outside 6474 * the spinlock. 6475 */ 6476 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 6477 if (vma_needs_reservation(h, vma, vmf->address) < 0) { 6478 ret = VM_FAULT_OOM; 6479 goto backout_unlocked; 6480 } 6481 /* Just decrements count, does not deallocate */ 6482 vma_end_reservation(h, vma, vmf->address); 6483 } 6484 6485 vmf->ptl = huge_pte_lock(h, mm, vmf->pte); 6486 ret = 0; 6487 /* If pte changed from under us, retry */ 6488 if (!pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), vmf->orig_pte)) 6489 goto backout; 6490 6491 if (anon_rmap) 6492 hugetlb_add_new_anon_rmap(folio, vma, vmf->address); 6493 else 6494 hugetlb_add_file_rmap(folio); 6495 new_pte = make_huge_pte(vma, &folio->page, vma->vm_flags & VM_SHARED); 6496 /* 6497 * If this pte was previously wr-protected, keep it wr-protected even 6498 * if populated. 6499 */ 6500 if (unlikely(pte_marker_uffd_wp(vmf->orig_pte))) 6501 new_pte = huge_pte_mkuffd_wp(new_pte); 6502 set_huge_pte_at(mm, vmf->address, vmf->pte, new_pte, huge_page_size(h)); 6503 6504 hugetlb_count_add(pages_per_huge_page(h), mm); 6505 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 6506 /* Optimization, do the COW without a second fault */ 6507 ret = hugetlb_wp(folio, vmf); 6508 } 6509 6510 spin_unlock(vmf->ptl); 6511 6512 /* 6513 * Only set hugetlb_migratable in newly allocated pages. Existing pages 6514 * found in the pagecache may not have hugetlb_migratable if they have 6515 * been isolated for migration. 6516 */ 6517 if (new_folio) 6518 folio_set_hugetlb_migratable(folio); 6519 6520 folio_unlock(folio); 6521 out: 6522 hugetlb_vma_unlock_read(vma); 6523 6524 /* 6525 * We must check to release the per-VMA lock. __vmf_anon_prepare() is 6526 * the only way ret can be set to VM_FAULT_RETRY. 6527 */ 6528 if (unlikely(ret & VM_FAULT_RETRY)) 6529 vma_end_read(vma); 6530 6531 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6532 return ret; 6533 6534 backout: 6535 spin_unlock(vmf->ptl); 6536 backout_unlocked: 6537 if (new_folio && !new_pagecache_folio) 6538 restore_reserve_on_error(h, vma, vmf->address, folio); 6539 6540 folio_unlock(folio); 6541 folio_put(folio); 6542 goto out; 6543 } 6544 6545 #ifdef CONFIG_SMP 6546 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 6547 { 6548 unsigned long key[2]; 6549 u32 hash; 6550 6551 key[0] = (unsigned long) mapping; 6552 key[1] = idx; 6553 6554 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0); 6555 6556 return hash & (num_fault_mutexes - 1); 6557 } 6558 #else 6559 /* 6560 * For uniprocessor systems we always use a single mutex, so just 6561 * return 0 and avoid the hashing overhead. 6562 */ 6563 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 6564 { 6565 return 0; 6566 } 6567 #endif 6568 6569 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, 6570 unsigned long address, unsigned int flags) 6571 { 6572 vm_fault_t ret; 6573 u32 hash; 6574 struct folio *folio = NULL; 6575 struct folio *pagecache_folio = NULL; 6576 struct hstate *h = hstate_vma(vma); 6577 struct address_space *mapping; 6578 int need_wait_lock = 0; 6579 struct vm_fault vmf = { 6580 .vma = vma, 6581 .address = address & huge_page_mask(h), 6582 .real_address = address, 6583 .flags = flags, 6584 .pgoff = vma_hugecache_offset(h, vma, 6585 address & huge_page_mask(h)), 6586 /* TODO: Track hugetlb faults using vm_fault */ 6587 6588 /* 6589 * Some fields may not be initialized, be careful as it may 6590 * be hard to debug if called functions make assumptions 6591 */ 6592 }; 6593 6594 /* 6595 * Serialize hugepage allocation and instantiation, so that we don't 6596 * get spurious allocation failures if two CPUs race to instantiate 6597 * the same page in the page cache. 6598 */ 6599 mapping = vma->vm_file->f_mapping; 6600 hash = hugetlb_fault_mutex_hash(mapping, vmf.pgoff); 6601 mutex_lock(&hugetlb_fault_mutex_table[hash]); 6602 6603 /* 6604 * Acquire vma lock before calling huge_pte_alloc and hold 6605 * until finished with vmf.pte. This prevents huge_pmd_unshare from 6606 * being called elsewhere and making the vmf.pte no longer valid. 6607 */ 6608 hugetlb_vma_lock_read(vma); 6609 vmf.pte = huge_pte_alloc(mm, vma, vmf.address, huge_page_size(h)); 6610 if (!vmf.pte) { 6611 hugetlb_vma_unlock_read(vma); 6612 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6613 return VM_FAULT_OOM; 6614 } 6615 6616 vmf.orig_pte = huge_ptep_get(mm, vmf.address, vmf.pte); 6617 if (huge_pte_none_mostly(vmf.orig_pte)) { 6618 if (is_pte_marker(vmf.orig_pte)) { 6619 pte_marker marker = 6620 pte_marker_get(pte_to_swp_entry(vmf.orig_pte)); 6621 6622 if (marker & PTE_MARKER_POISONED) { 6623 ret = VM_FAULT_HWPOISON_LARGE | 6624 VM_FAULT_SET_HINDEX(hstate_index(h)); 6625 goto out_mutex; 6626 } else if (WARN_ON_ONCE(marker & PTE_MARKER_GUARD)) { 6627 /* This isn't supported in hugetlb. */ 6628 ret = VM_FAULT_SIGSEGV; 6629 goto out_mutex; 6630 } 6631 } 6632 6633 /* 6634 * Other PTE markers should be handled the same way as none PTE. 6635 * 6636 * hugetlb_no_page will drop vma lock and hugetlb fault 6637 * mutex internally, which make us return immediately. 6638 */ 6639 return hugetlb_no_page(mapping, &vmf); 6640 } 6641 6642 ret = 0; 6643 6644 /* 6645 * vmf.orig_pte could be a migration/hwpoison vmf.orig_pte at this 6646 * point, so this check prevents the kernel from going below assuming 6647 * that we have an active hugepage in pagecache. This goto expects 6648 * the 2nd page fault, and is_hugetlb_entry_(migration|hwpoisoned) 6649 * check will properly handle it. 6650 */ 6651 if (!pte_present(vmf.orig_pte)) { 6652 if (unlikely(is_hugetlb_entry_migration(vmf.orig_pte))) { 6653 /* 6654 * Release the hugetlb fault lock now, but retain 6655 * the vma lock, because it is needed to guard the 6656 * huge_pte_lockptr() later in 6657 * migration_entry_wait_huge(). The vma lock will 6658 * be released there. 6659 */ 6660 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6661 migration_entry_wait_huge(vma, vmf.address, vmf.pte); 6662 return 0; 6663 } else if (unlikely(is_hugetlb_entry_hwpoisoned(vmf.orig_pte))) 6664 ret = VM_FAULT_HWPOISON_LARGE | 6665 VM_FAULT_SET_HINDEX(hstate_index(h)); 6666 goto out_mutex; 6667 } 6668 6669 /* 6670 * If we are going to COW/unshare the mapping later, we examine the 6671 * pending reservations for this page now. This will ensure that any 6672 * allocations necessary to record that reservation occur outside the 6673 * spinlock. Also lookup the pagecache page now as it is used to 6674 * determine if a reservation has been consumed. 6675 */ 6676 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) && 6677 !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(vmf.orig_pte)) { 6678 if (vma_needs_reservation(h, vma, vmf.address) < 0) { 6679 ret = VM_FAULT_OOM; 6680 goto out_mutex; 6681 } 6682 /* Just decrements count, does not deallocate */ 6683 vma_end_reservation(h, vma, vmf.address); 6684 6685 pagecache_folio = filemap_lock_hugetlb_folio(h, mapping, 6686 vmf.pgoff); 6687 if (IS_ERR(pagecache_folio)) 6688 pagecache_folio = NULL; 6689 } 6690 6691 vmf.ptl = huge_pte_lock(h, mm, vmf.pte); 6692 6693 /* Check for a racing update before calling hugetlb_wp() */ 6694 if (unlikely(!pte_same(vmf.orig_pte, huge_ptep_get(mm, vmf.address, vmf.pte)))) 6695 goto out_ptl; 6696 6697 /* Handle userfault-wp first, before trying to lock more pages */ 6698 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(mm, vmf.address, vmf.pte)) && 6699 (flags & FAULT_FLAG_WRITE) && !huge_pte_write(vmf.orig_pte)) { 6700 if (!userfaultfd_wp_async(vma)) { 6701 spin_unlock(vmf.ptl); 6702 if (pagecache_folio) { 6703 folio_unlock(pagecache_folio); 6704 folio_put(pagecache_folio); 6705 } 6706 hugetlb_vma_unlock_read(vma); 6707 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6708 return handle_userfault(&vmf, VM_UFFD_WP); 6709 } 6710 6711 vmf.orig_pte = huge_pte_clear_uffd_wp(vmf.orig_pte); 6712 set_huge_pte_at(mm, vmf.address, vmf.pte, vmf.orig_pte, 6713 huge_page_size(hstate_vma(vma))); 6714 /* Fallthrough to CoW */ 6715 } 6716 6717 /* 6718 * hugetlb_wp() requires page locks of pte_page(vmf.orig_pte) and 6719 * pagecache_folio, so here we need take the former one 6720 * when folio != pagecache_folio or !pagecache_folio. 6721 */ 6722 folio = page_folio(pte_page(vmf.orig_pte)); 6723 if (folio != pagecache_folio) 6724 if (!folio_trylock(folio)) { 6725 need_wait_lock = 1; 6726 goto out_ptl; 6727 } 6728 6729 folio_get(folio); 6730 6731 if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) { 6732 if (!huge_pte_write(vmf.orig_pte)) { 6733 ret = hugetlb_wp(pagecache_folio, &vmf); 6734 goto out_put_page; 6735 } else if (likely(flags & FAULT_FLAG_WRITE)) { 6736 vmf.orig_pte = huge_pte_mkdirty(vmf.orig_pte); 6737 } 6738 } 6739 vmf.orig_pte = pte_mkyoung(vmf.orig_pte); 6740 if (huge_ptep_set_access_flags(vma, vmf.address, vmf.pte, vmf.orig_pte, 6741 flags & FAULT_FLAG_WRITE)) 6742 update_mmu_cache(vma, vmf.address, vmf.pte); 6743 out_put_page: 6744 if (folio != pagecache_folio) 6745 folio_unlock(folio); 6746 folio_put(folio); 6747 out_ptl: 6748 spin_unlock(vmf.ptl); 6749 6750 if (pagecache_folio) { 6751 folio_unlock(pagecache_folio); 6752 folio_put(pagecache_folio); 6753 } 6754 out_mutex: 6755 hugetlb_vma_unlock_read(vma); 6756 6757 /* 6758 * We must check to release the per-VMA lock. __vmf_anon_prepare() in 6759 * hugetlb_wp() is the only way ret can be set to VM_FAULT_RETRY. 6760 */ 6761 if (unlikely(ret & VM_FAULT_RETRY)) 6762 vma_end_read(vma); 6763 6764 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6765 /* 6766 * Generally it's safe to hold refcount during waiting page lock. But 6767 * here we just wait to defer the next page fault to avoid busy loop and 6768 * the page is not used after unlocked before returning from the current 6769 * page fault. So we are safe from accessing freed page, even if we wait 6770 * here without taking refcount. 6771 */ 6772 if (need_wait_lock) 6773 folio_wait_locked(folio); 6774 return ret; 6775 } 6776 6777 #ifdef CONFIG_USERFAULTFD 6778 /* 6779 * Can probably be eliminated, but still used by hugetlb_mfill_atomic_pte(). 6780 */ 6781 static struct folio *alloc_hugetlb_folio_vma(struct hstate *h, 6782 struct vm_area_struct *vma, unsigned long address) 6783 { 6784 struct mempolicy *mpol; 6785 nodemask_t *nodemask; 6786 struct folio *folio; 6787 gfp_t gfp_mask; 6788 int node; 6789 6790 gfp_mask = htlb_alloc_mask(h); 6791 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 6792 /* 6793 * This is used to allocate a temporary hugetlb to hold the copied 6794 * content, which will then be copied again to the final hugetlb 6795 * consuming a reservation. Set the alloc_fallback to false to indicate 6796 * that breaking the per-node hugetlb pool is not allowed in this case. 6797 */ 6798 folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask, false); 6799 mpol_cond_put(mpol); 6800 6801 return folio; 6802 } 6803 6804 /* 6805 * Used by userfaultfd UFFDIO_* ioctls. Based on userfaultfd's mfill_atomic_pte 6806 * with modifications for hugetlb pages. 6807 */ 6808 int hugetlb_mfill_atomic_pte(pte_t *dst_pte, 6809 struct vm_area_struct *dst_vma, 6810 unsigned long dst_addr, 6811 unsigned long src_addr, 6812 uffd_flags_t flags, 6813 struct folio **foliop) 6814 { 6815 struct mm_struct *dst_mm = dst_vma->vm_mm; 6816 bool is_continue = uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE); 6817 bool wp_enabled = (flags & MFILL_ATOMIC_WP); 6818 struct hstate *h = hstate_vma(dst_vma); 6819 struct address_space *mapping = dst_vma->vm_file->f_mapping; 6820 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr); 6821 unsigned long size = huge_page_size(h); 6822 int vm_shared = dst_vma->vm_flags & VM_SHARED; 6823 pte_t _dst_pte; 6824 spinlock_t *ptl; 6825 int ret = -ENOMEM; 6826 struct folio *folio; 6827 bool folio_in_pagecache = false; 6828 6829 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_POISON)) { 6830 ptl = huge_pte_lock(h, dst_mm, dst_pte); 6831 6832 /* Don't overwrite any existing PTEs (even markers) */ 6833 if (!huge_pte_none(huge_ptep_get(dst_mm, dst_addr, dst_pte))) { 6834 spin_unlock(ptl); 6835 return -EEXIST; 6836 } 6837 6838 _dst_pte = make_pte_marker(PTE_MARKER_POISONED); 6839 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, size); 6840 6841 /* No need to invalidate - it was non-present before */ 6842 update_mmu_cache(dst_vma, dst_addr, dst_pte); 6843 6844 spin_unlock(ptl); 6845 return 0; 6846 } 6847 6848 if (is_continue) { 6849 ret = -EFAULT; 6850 folio = filemap_lock_hugetlb_folio(h, mapping, idx); 6851 if (IS_ERR(folio)) 6852 goto out; 6853 folio_in_pagecache = true; 6854 } else if (!*foliop) { 6855 /* If a folio already exists, then it's UFFDIO_COPY for 6856 * a non-missing case. Return -EEXIST. 6857 */ 6858 if (vm_shared && 6859 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) { 6860 ret = -EEXIST; 6861 goto out; 6862 } 6863 6864 folio = alloc_hugetlb_folio(dst_vma, dst_addr, false); 6865 if (IS_ERR(folio)) { 6866 ret = -ENOMEM; 6867 goto out; 6868 } 6869 6870 ret = copy_folio_from_user(folio, (const void __user *) src_addr, 6871 false); 6872 6873 /* fallback to copy_from_user outside mmap_lock */ 6874 if (unlikely(ret)) { 6875 ret = -ENOENT; 6876 /* Free the allocated folio which may have 6877 * consumed a reservation. 6878 */ 6879 restore_reserve_on_error(h, dst_vma, dst_addr, folio); 6880 folio_put(folio); 6881 6882 /* Allocate a temporary folio to hold the copied 6883 * contents. 6884 */ 6885 folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr); 6886 if (!folio) { 6887 ret = -ENOMEM; 6888 goto out; 6889 } 6890 *foliop = folio; 6891 /* Set the outparam foliop and return to the caller to 6892 * copy the contents outside the lock. Don't free the 6893 * folio. 6894 */ 6895 goto out; 6896 } 6897 } else { 6898 if (vm_shared && 6899 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) { 6900 folio_put(*foliop); 6901 ret = -EEXIST; 6902 *foliop = NULL; 6903 goto out; 6904 } 6905 6906 folio = alloc_hugetlb_folio(dst_vma, dst_addr, false); 6907 if (IS_ERR(folio)) { 6908 folio_put(*foliop); 6909 ret = -ENOMEM; 6910 *foliop = NULL; 6911 goto out; 6912 } 6913 ret = copy_user_large_folio(folio, *foliop, dst_addr, dst_vma); 6914 folio_put(*foliop); 6915 *foliop = NULL; 6916 if (ret) { 6917 folio_put(folio); 6918 goto out; 6919 } 6920 } 6921 6922 /* 6923 * If we just allocated a new page, we need a memory barrier to ensure 6924 * that preceding stores to the page become visible before the 6925 * set_pte_at() write. The memory barrier inside __folio_mark_uptodate 6926 * is what we need. 6927 * 6928 * In the case where we have not allocated a new page (is_continue), 6929 * the page must already be uptodate. UFFDIO_CONTINUE already includes 6930 * an earlier smp_wmb() to ensure that prior stores will be visible 6931 * before the set_pte_at() write. 6932 */ 6933 if (!is_continue) 6934 __folio_mark_uptodate(folio); 6935 else 6936 WARN_ON_ONCE(!folio_test_uptodate(folio)); 6937 6938 /* Add shared, newly allocated pages to the page cache. */ 6939 if (vm_shared && !is_continue) { 6940 ret = -EFAULT; 6941 if (idx >= (i_size_read(mapping->host) >> huge_page_shift(h))) 6942 goto out_release_nounlock; 6943 6944 /* 6945 * Serialization between remove_inode_hugepages() and 6946 * hugetlb_add_to_page_cache() below happens through the 6947 * hugetlb_fault_mutex_table that here must be hold by 6948 * the caller. 6949 */ 6950 ret = hugetlb_add_to_page_cache(folio, mapping, idx); 6951 if (ret) 6952 goto out_release_nounlock; 6953 folio_in_pagecache = true; 6954 } 6955 6956 ptl = huge_pte_lock(h, dst_mm, dst_pte); 6957 6958 ret = -EIO; 6959 if (folio_test_hwpoison(folio)) 6960 goto out_release_unlock; 6961 6962 /* 6963 * We allow to overwrite a pte marker: consider when both MISSING|WP 6964 * registered, we firstly wr-protect a none pte which has no page cache 6965 * page backing it, then access the page. 6966 */ 6967 ret = -EEXIST; 6968 if (!huge_pte_none_mostly(huge_ptep_get(dst_mm, dst_addr, dst_pte))) 6969 goto out_release_unlock; 6970 6971 if (folio_in_pagecache) 6972 hugetlb_add_file_rmap(folio); 6973 else 6974 hugetlb_add_new_anon_rmap(folio, dst_vma, dst_addr); 6975 6976 /* 6977 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY 6978 * with wp flag set, don't set pte write bit. 6979 */ 6980 _dst_pte = make_huge_pte(dst_vma, &folio->page, 6981 !wp_enabled && !(is_continue && !vm_shared)); 6982 /* 6983 * Always mark UFFDIO_COPY page dirty; note that this may not be 6984 * extremely important for hugetlbfs for now since swapping is not 6985 * supported, but we should still be clear in that this page cannot be 6986 * thrown away at will, even if write bit not set. 6987 */ 6988 _dst_pte = huge_pte_mkdirty(_dst_pte); 6989 _dst_pte = pte_mkyoung(_dst_pte); 6990 6991 if (wp_enabled) 6992 _dst_pte = huge_pte_mkuffd_wp(_dst_pte); 6993 6994 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, size); 6995 6996 hugetlb_count_add(pages_per_huge_page(h), dst_mm); 6997 6998 /* No need to invalidate - it was non-present before */ 6999 update_mmu_cache(dst_vma, dst_addr, dst_pte); 7000 7001 spin_unlock(ptl); 7002 if (!is_continue) 7003 folio_set_hugetlb_migratable(folio); 7004 if (vm_shared || is_continue) 7005 folio_unlock(folio); 7006 ret = 0; 7007 out: 7008 return ret; 7009 out_release_unlock: 7010 spin_unlock(ptl); 7011 if (vm_shared || is_continue) 7012 folio_unlock(folio); 7013 out_release_nounlock: 7014 if (!folio_in_pagecache) 7015 restore_reserve_on_error(h, dst_vma, dst_addr, folio); 7016 folio_put(folio); 7017 goto out; 7018 } 7019 #endif /* CONFIG_USERFAULTFD */ 7020 7021 long hugetlb_change_protection(struct vm_area_struct *vma, 7022 unsigned long address, unsigned long end, 7023 pgprot_t newprot, unsigned long cp_flags) 7024 { 7025 struct mm_struct *mm = vma->vm_mm; 7026 unsigned long start = address; 7027 pte_t *ptep; 7028 pte_t pte; 7029 struct hstate *h = hstate_vma(vma); 7030 long pages = 0, psize = huge_page_size(h); 7031 bool shared_pmd = false; 7032 struct mmu_notifier_range range; 7033 unsigned long last_addr_mask; 7034 bool uffd_wp = cp_flags & MM_CP_UFFD_WP; 7035 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE; 7036 7037 /* 7038 * In the case of shared PMDs, the area to flush could be beyond 7039 * start/end. Set range.start/range.end to cover the maximum possible 7040 * range if PMD sharing is possible. 7041 */ 7042 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA, 7043 0, mm, start, end); 7044 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 7045 7046 BUG_ON(address >= end); 7047 flush_cache_range(vma, range.start, range.end); 7048 7049 mmu_notifier_invalidate_range_start(&range); 7050 hugetlb_vma_lock_write(vma); 7051 i_mmap_lock_write(vma->vm_file->f_mapping); 7052 last_addr_mask = hugetlb_mask_last_page(h); 7053 for (; address < end; address += psize) { 7054 spinlock_t *ptl; 7055 ptep = hugetlb_walk(vma, address, psize); 7056 if (!ptep) { 7057 if (!uffd_wp) { 7058 address |= last_addr_mask; 7059 continue; 7060 } 7061 /* 7062 * Userfaultfd wr-protect requires pgtable 7063 * pre-allocations to install pte markers. 7064 */ 7065 ptep = huge_pte_alloc(mm, vma, address, psize); 7066 if (!ptep) { 7067 pages = -ENOMEM; 7068 break; 7069 } 7070 } 7071 ptl = huge_pte_lock(h, mm, ptep); 7072 if (huge_pmd_unshare(mm, vma, address, ptep)) { 7073 /* 7074 * When uffd-wp is enabled on the vma, unshare 7075 * shouldn't happen at all. Warn about it if it 7076 * happened due to some reason. 7077 */ 7078 WARN_ON_ONCE(uffd_wp || uffd_wp_resolve); 7079 pages++; 7080 spin_unlock(ptl); 7081 shared_pmd = true; 7082 address |= last_addr_mask; 7083 continue; 7084 } 7085 pte = huge_ptep_get(mm, address, ptep); 7086 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) { 7087 /* Nothing to do. */ 7088 } else if (unlikely(is_hugetlb_entry_migration(pte))) { 7089 swp_entry_t entry = pte_to_swp_entry(pte); 7090 struct page *page = pfn_swap_entry_to_page(entry); 7091 pte_t newpte = pte; 7092 7093 if (is_writable_migration_entry(entry)) { 7094 if (PageAnon(page)) 7095 entry = make_readable_exclusive_migration_entry( 7096 swp_offset(entry)); 7097 else 7098 entry = make_readable_migration_entry( 7099 swp_offset(entry)); 7100 newpte = swp_entry_to_pte(entry); 7101 pages++; 7102 } 7103 7104 if (uffd_wp) 7105 newpte = pte_swp_mkuffd_wp(newpte); 7106 else if (uffd_wp_resolve) 7107 newpte = pte_swp_clear_uffd_wp(newpte); 7108 if (!pte_same(pte, newpte)) 7109 set_huge_pte_at(mm, address, ptep, newpte, psize); 7110 } else if (unlikely(is_pte_marker(pte))) { 7111 /* 7112 * Do nothing on a poison marker; page is 7113 * corrupted, permissons do not apply. Here 7114 * pte_marker_uffd_wp()==true implies !poison 7115 * because they're mutual exclusive. 7116 */ 7117 if (pte_marker_uffd_wp(pte) && uffd_wp_resolve) 7118 /* Safe to modify directly (non-present->none). */ 7119 huge_pte_clear(mm, address, ptep, psize); 7120 } else if (!huge_pte_none(pte)) { 7121 pte_t old_pte; 7122 unsigned int shift = huge_page_shift(hstate_vma(vma)); 7123 7124 old_pte = huge_ptep_modify_prot_start(vma, address, ptep); 7125 pte = huge_pte_modify(old_pte, newprot); 7126 pte = arch_make_huge_pte(pte, shift, vma->vm_flags); 7127 if (uffd_wp) 7128 pte = huge_pte_mkuffd_wp(pte); 7129 else if (uffd_wp_resolve) 7130 pte = huge_pte_clear_uffd_wp(pte); 7131 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte); 7132 pages++; 7133 } else { 7134 /* None pte */ 7135 if (unlikely(uffd_wp)) 7136 /* Safe to modify directly (none->non-present). */ 7137 set_huge_pte_at(mm, address, ptep, 7138 make_pte_marker(PTE_MARKER_UFFD_WP), 7139 psize); 7140 } 7141 spin_unlock(ptl); 7142 } 7143 /* 7144 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare 7145 * may have cleared our pud entry and done put_page on the page table: 7146 * once we release i_mmap_rwsem, another task can do the final put_page 7147 * and that page table be reused and filled with junk. If we actually 7148 * did unshare a page of pmds, flush the range corresponding to the pud. 7149 */ 7150 if (shared_pmd) 7151 flush_hugetlb_tlb_range(vma, range.start, range.end); 7152 else 7153 flush_hugetlb_tlb_range(vma, start, end); 7154 /* 7155 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs() we are 7156 * downgrading page table protection not changing it to point to a new 7157 * page. 7158 * 7159 * See Documentation/mm/mmu_notifier.rst 7160 */ 7161 i_mmap_unlock_write(vma->vm_file->f_mapping); 7162 hugetlb_vma_unlock_write(vma); 7163 mmu_notifier_invalidate_range_end(&range); 7164 7165 return pages > 0 ? (pages << h->order) : pages; 7166 } 7167 7168 /* Return true if reservation was successful, false otherwise. */ 7169 bool hugetlb_reserve_pages(struct inode *inode, 7170 long from, long to, 7171 struct vm_area_struct *vma, 7172 vm_flags_t vm_flags) 7173 { 7174 long chg = -1, add = -1; 7175 struct hstate *h = hstate_inode(inode); 7176 struct hugepage_subpool *spool = subpool_inode(inode); 7177 struct resv_map *resv_map; 7178 struct hugetlb_cgroup *h_cg = NULL; 7179 long gbl_reserve, regions_needed = 0; 7180 7181 /* This should never happen */ 7182 if (from > to) { 7183 VM_WARN(1, "%s called with a negative range\n", __func__); 7184 return false; 7185 } 7186 7187 /* 7188 * vma specific semaphore used for pmd sharing and fault/truncation 7189 * synchronization 7190 */ 7191 hugetlb_vma_lock_alloc(vma); 7192 7193 /* 7194 * Only apply hugepage reservation if asked. At fault time, an 7195 * attempt will be made for VM_NORESERVE to allocate a page 7196 * without using reserves 7197 */ 7198 if (vm_flags & VM_NORESERVE) 7199 return true; 7200 7201 /* 7202 * Shared mappings base their reservation on the number of pages that 7203 * are already allocated on behalf of the file. Private mappings need 7204 * to reserve the full area even if read-only as mprotect() may be 7205 * called to make the mapping read-write. Assume !vma is a shm mapping 7206 */ 7207 if (!vma || vma->vm_flags & VM_MAYSHARE) { 7208 /* 7209 * resv_map can not be NULL as hugetlb_reserve_pages is only 7210 * called for inodes for which resv_maps were created (see 7211 * hugetlbfs_get_inode). 7212 */ 7213 resv_map = inode_resv_map(inode); 7214 7215 chg = region_chg(resv_map, from, to, ®ions_needed); 7216 } else { 7217 /* Private mapping. */ 7218 resv_map = resv_map_alloc(); 7219 if (!resv_map) 7220 goto out_err; 7221 7222 chg = to - from; 7223 7224 set_vma_resv_map(vma, resv_map); 7225 set_vma_resv_flags(vma, HPAGE_RESV_OWNER); 7226 } 7227 7228 if (chg < 0) 7229 goto out_err; 7230 7231 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h), 7232 chg * pages_per_huge_page(h), &h_cg) < 0) 7233 goto out_err; 7234 7235 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) { 7236 /* For private mappings, the hugetlb_cgroup uncharge info hangs 7237 * of the resv_map. 7238 */ 7239 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h); 7240 } 7241 7242 /* 7243 * There must be enough pages in the subpool for the mapping. If 7244 * the subpool has a minimum size, there may be some global 7245 * reservations already in place (gbl_reserve). 7246 */ 7247 gbl_reserve = hugepage_subpool_get_pages(spool, chg); 7248 if (gbl_reserve < 0) 7249 goto out_uncharge_cgroup; 7250 7251 /* 7252 * Check enough hugepages are available for the reservation. 7253 * Hand the pages back to the subpool if there are not 7254 */ 7255 if (hugetlb_acct_memory(h, gbl_reserve) < 0) 7256 goto out_put_pages; 7257 7258 /* 7259 * Account for the reservations made. Shared mappings record regions 7260 * that have reservations as they are shared by multiple VMAs. 7261 * When the last VMA disappears, the region map says how much 7262 * the reservation was and the page cache tells how much of 7263 * the reservation was consumed. Private mappings are per-VMA and 7264 * only the consumed reservations are tracked. When the VMA 7265 * disappears, the original reservation is the VMA size and the 7266 * consumed reservations are stored in the map. Hence, nothing 7267 * else has to be done for private mappings here 7268 */ 7269 if (!vma || vma->vm_flags & VM_MAYSHARE) { 7270 add = region_add(resv_map, from, to, regions_needed, h, h_cg); 7271 7272 if (unlikely(add < 0)) { 7273 hugetlb_acct_memory(h, -gbl_reserve); 7274 goto out_put_pages; 7275 } else if (unlikely(chg > add)) { 7276 /* 7277 * pages in this range were added to the reserve 7278 * map between region_chg and region_add. This 7279 * indicates a race with alloc_hugetlb_folio. Adjust 7280 * the subpool and reserve counts modified above 7281 * based on the difference. 7282 */ 7283 long rsv_adjust; 7284 7285 /* 7286 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the 7287 * reference to h_cg->css. See comment below for detail. 7288 */ 7289 hugetlb_cgroup_uncharge_cgroup_rsvd( 7290 hstate_index(h), 7291 (chg - add) * pages_per_huge_page(h), h_cg); 7292 7293 rsv_adjust = hugepage_subpool_put_pages(spool, 7294 chg - add); 7295 hugetlb_acct_memory(h, -rsv_adjust); 7296 } else if (h_cg) { 7297 /* 7298 * The file_regions will hold their own reference to 7299 * h_cg->css. So we should release the reference held 7300 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are 7301 * done. 7302 */ 7303 hugetlb_cgroup_put_rsvd_cgroup(h_cg); 7304 } 7305 } 7306 return true; 7307 7308 out_put_pages: 7309 /* put back original number of pages, chg */ 7310 (void)hugepage_subpool_put_pages(spool, chg); 7311 out_uncharge_cgroup: 7312 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h), 7313 chg * pages_per_huge_page(h), h_cg); 7314 out_err: 7315 hugetlb_vma_lock_free(vma); 7316 if (!vma || vma->vm_flags & VM_MAYSHARE) 7317 /* Only call region_abort if the region_chg succeeded but the 7318 * region_add failed or didn't run. 7319 */ 7320 if (chg >= 0 && add < 0) 7321 region_abort(resv_map, from, to, regions_needed); 7322 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 7323 kref_put(&resv_map->refs, resv_map_release); 7324 set_vma_resv_map(vma, NULL); 7325 } 7326 return false; 7327 } 7328 7329 long hugetlb_unreserve_pages(struct inode *inode, long start, long end, 7330 long freed) 7331 { 7332 struct hstate *h = hstate_inode(inode); 7333 struct resv_map *resv_map = inode_resv_map(inode); 7334 long chg = 0; 7335 struct hugepage_subpool *spool = subpool_inode(inode); 7336 long gbl_reserve; 7337 7338 /* 7339 * Since this routine can be called in the evict inode path for all 7340 * hugetlbfs inodes, resv_map could be NULL. 7341 */ 7342 if (resv_map) { 7343 chg = region_del(resv_map, start, end); 7344 /* 7345 * region_del() can fail in the rare case where a region 7346 * must be split and another region descriptor can not be 7347 * allocated. If end == LONG_MAX, it will not fail. 7348 */ 7349 if (chg < 0) 7350 return chg; 7351 } 7352 7353 spin_lock(&inode->i_lock); 7354 inode->i_blocks -= (blocks_per_huge_page(h) * freed); 7355 spin_unlock(&inode->i_lock); 7356 7357 /* 7358 * If the subpool has a minimum size, the number of global 7359 * reservations to be released may be adjusted. 7360 * 7361 * Note that !resv_map implies freed == 0. So (chg - freed) 7362 * won't go negative. 7363 */ 7364 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed)); 7365 hugetlb_acct_memory(h, -gbl_reserve); 7366 7367 return 0; 7368 } 7369 7370 #ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING 7371 static unsigned long page_table_shareable(struct vm_area_struct *svma, 7372 struct vm_area_struct *vma, 7373 unsigned long addr, pgoff_t idx) 7374 { 7375 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) + 7376 svma->vm_start; 7377 unsigned long sbase = saddr & PUD_MASK; 7378 unsigned long s_end = sbase + PUD_SIZE; 7379 7380 /* Allow segments to share if only one is marked locked */ 7381 unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED_MASK; 7382 unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED_MASK; 7383 7384 /* 7385 * match the virtual addresses, permission and the alignment of the 7386 * page table page. 7387 * 7388 * Also, vma_lock (vm_private_data) is required for sharing. 7389 */ 7390 if (pmd_index(addr) != pmd_index(saddr) || 7391 vm_flags != svm_flags || 7392 !range_in_vma(svma, sbase, s_end) || 7393 !svma->vm_private_data) 7394 return 0; 7395 7396 return saddr; 7397 } 7398 7399 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr) 7400 { 7401 unsigned long start = addr & PUD_MASK; 7402 unsigned long end = start + PUD_SIZE; 7403 7404 #ifdef CONFIG_USERFAULTFD 7405 if (uffd_disable_huge_pmd_share(vma)) 7406 return false; 7407 #endif 7408 /* 7409 * check on proper vm_flags and page table alignment 7410 */ 7411 if (!(vma->vm_flags & VM_MAYSHARE)) 7412 return false; 7413 if (!vma->vm_private_data) /* vma lock required for sharing */ 7414 return false; 7415 if (!range_in_vma(vma, start, end)) 7416 return false; 7417 return true; 7418 } 7419 7420 /* 7421 * Determine if start,end range within vma could be mapped by shared pmd. 7422 * If yes, adjust start and end to cover range associated with possible 7423 * shared pmd mappings. 7424 */ 7425 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 7426 unsigned long *start, unsigned long *end) 7427 { 7428 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE), 7429 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE); 7430 7431 /* 7432 * vma needs to span at least one aligned PUD size, and the range 7433 * must be at least partially within in. 7434 */ 7435 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) || 7436 (*end <= v_start) || (*start >= v_end)) 7437 return; 7438 7439 /* Extend the range to be PUD aligned for a worst case scenario */ 7440 if (*start > v_start) 7441 *start = ALIGN_DOWN(*start, PUD_SIZE); 7442 7443 if (*end < v_end) 7444 *end = ALIGN(*end, PUD_SIZE); 7445 } 7446 7447 /* 7448 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc() 7449 * and returns the corresponding pte. While this is not necessary for the 7450 * !shared pmd case because we can allocate the pmd later as well, it makes the 7451 * code much cleaner. pmd allocation is essential for the shared case because 7452 * pud has to be populated inside the same i_mmap_rwsem section - otherwise 7453 * racing tasks could either miss the sharing (see huge_pte_offset) or select a 7454 * bad pmd for sharing. 7455 */ 7456 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, 7457 unsigned long addr, pud_t *pud) 7458 { 7459 struct address_space *mapping = vma->vm_file->f_mapping; 7460 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + 7461 vma->vm_pgoff; 7462 struct vm_area_struct *svma; 7463 unsigned long saddr; 7464 pte_t *spte = NULL; 7465 pte_t *pte; 7466 7467 i_mmap_lock_read(mapping); 7468 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) { 7469 if (svma == vma) 7470 continue; 7471 7472 saddr = page_table_shareable(svma, vma, addr, idx); 7473 if (saddr) { 7474 spte = hugetlb_walk(svma, saddr, 7475 vma_mmu_pagesize(svma)); 7476 if (spte) { 7477 ptdesc_pmd_pts_inc(virt_to_ptdesc(spte)); 7478 break; 7479 } 7480 } 7481 } 7482 7483 if (!spte) 7484 goto out; 7485 7486 spin_lock(&mm->page_table_lock); 7487 if (pud_none(*pud)) { 7488 pud_populate(mm, pud, 7489 (pmd_t *)((unsigned long)spte & PAGE_MASK)); 7490 mm_inc_nr_pmds(mm); 7491 } else { 7492 ptdesc_pmd_pts_dec(virt_to_ptdesc(spte)); 7493 } 7494 spin_unlock(&mm->page_table_lock); 7495 out: 7496 pte = (pte_t *)pmd_alloc(mm, pud, addr); 7497 i_mmap_unlock_read(mapping); 7498 return pte; 7499 } 7500 7501 /* 7502 * unmap huge page backed by shared pte. 7503 * 7504 * Called with page table lock held. 7505 * 7506 * returns: 1 successfully unmapped a shared pte page 7507 * 0 the underlying pte page is not shared, or it is the last user 7508 */ 7509 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, 7510 unsigned long addr, pte_t *ptep) 7511 { 7512 unsigned long sz = huge_page_size(hstate_vma(vma)); 7513 pgd_t *pgd = pgd_offset(mm, addr); 7514 p4d_t *p4d = p4d_offset(pgd, addr); 7515 pud_t *pud = pud_offset(p4d, addr); 7516 7517 i_mmap_assert_write_locked(vma->vm_file->f_mapping); 7518 hugetlb_vma_assert_locked(vma); 7519 if (sz != PMD_SIZE) 7520 return 0; 7521 if (!ptdesc_pmd_pts_count(virt_to_ptdesc(ptep))) 7522 return 0; 7523 7524 pud_clear(pud); 7525 ptdesc_pmd_pts_dec(virt_to_ptdesc(ptep)); 7526 mm_dec_nr_pmds(mm); 7527 return 1; 7528 } 7529 7530 #else /* !CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING */ 7531 7532 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, 7533 unsigned long addr, pud_t *pud) 7534 { 7535 return NULL; 7536 } 7537 7538 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, 7539 unsigned long addr, pte_t *ptep) 7540 { 7541 return 0; 7542 } 7543 7544 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 7545 unsigned long *start, unsigned long *end) 7546 { 7547 } 7548 7549 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr) 7550 { 7551 return false; 7552 } 7553 #endif /* CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING */ 7554 7555 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB 7556 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 7557 unsigned long addr, unsigned long sz) 7558 { 7559 pgd_t *pgd; 7560 p4d_t *p4d; 7561 pud_t *pud; 7562 pte_t *pte = NULL; 7563 7564 pgd = pgd_offset(mm, addr); 7565 p4d = p4d_alloc(mm, pgd, addr); 7566 if (!p4d) 7567 return NULL; 7568 pud = pud_alloc(mm, p4d, addr); 7569 if (pud) { 7570 if (sz == PUD_SIZE) { 7571 pte = (pte_t *)pud; 7572 } else { 7573 BUG_ON(sz != PMD_SIZE); 7574 if (want_pmd_share(vma, addr) && pud_none(*pud)) 7575 pte = huge_pmd_share(mm, vma, addr, pud); 7576 else 7577 pte = (pte_t *)pmd_alloc(mm, pud, addr); 7578 } 7579 } 7580 7581 if (pte) { 7582 pte_t pteval = ptep_get_lockless(pte); 7583 7584 BUG_ON(pte_present(pteval) && !pte_huge(pteval)); 7585 } 7586 7587 return pte; 7588 } 7589 7590 /* 7591 * huge_pte_offset() - Walk the page table to resolve the hugepage 7592 * entry at address @addr 7593 * 7594 * Return: Pointer to page table entry (PUD or PMD) for 7595 * address @addr, or NULL if a !p*d_present() entry is encountered and the 7596 * size @sz doesn't match the hugepage size at this level of the page 7597 * table. 7598 */ 7599 pte_t *huge_pte_offset(struct mm_struct *mm, 7600 unsigned long addr, unsigned long sz) 7601 { 7602 pgd_t *pgd; 7603 p4d_t *p4d; 7604 pud_t *pud; 7605 pmd_t *pmd; 7606 7607 pgd = pgd_offset(mm, addr); 7608 if (!pgd_present(*pgd)) 7609 return NULL; 7610 p4d = p4d_offset(pgd, addr); 7611 if (!p4d_present(*p4d)) 7612 return NULL; 7613 7614 pud = pud_offset(p4d, addr); 7615 if (sz == PUD_SIZE) 7616 /* must be pud huge, non-present or none */ 7617 return (pte_t *)pud; 7618 if (!pud_present(*pud)) 7619 return NULL; 7620 /* must have a valid entry and size to go further */ 7621 7622 pmd = pmd_offset(pud, addr); 7623 /* must be pmd huge, non-present or none */ 7624 return (pte_t *)pmd; 7625 } 7626 7627 /* 7628 * Return a mask that can be used to update an address to the last huge 7629 * page in a page table page mapping size. Used to skip non-present 7630 * page table entries when linearly scanning address ranges. Architectures 7631 * with unique huge page to page table relationships can define their own 7632 * version of this routine. 7633 */ 7634 unsigned long hugetlb_mask_last_page(struct hstate *h) 7635 { 7636 unsigned long hp_size = huge_page_size(h); 7637 7638 if (hp_size == PUD_SIZE) 7639 return P4D_SIZE - PUD_SIZE; 7640 else if (hp_size == PMD_SIZE) 7641 return PUD_SIZE - PMD_SIZE; 7642 else 7643 return 0UL; 7644 } 7645 7646 #else 7647 7648 /* See description above. Architectures can provide their own version. */ 7649 __weak unsigned long hugetlb_mask_last_page(struct hstate *h) 7650 { 7651 #ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING 7652 if (huge_page_size(h) == PMD_SIZE) 7653 return PUD_SIZE - PMD_SIZE; 7654 #endif 7655 return 0UL; 7656 } 7657 7658 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */ 7659 7660 /** 7661 * folio_isolate_hugetlb - try to isolate an allocated hugetlb folio 7662 * @folio: the folio to isolate 7663 * @list: the list to add the folio to on success 7664 * 7665 * Isolate an allocated (refcount > 0) hugetlb folio, marking it as 7666 * isolated/non-migratable, and moving it from the active list to the 7667 * given list. 7668 * 7669 * Isolation will fail if @folio is not an allocated hugetlb folio, or if 7670 * it is already isolated/non-migratable. 7671 * 7672 * On success, an additional folio reference is taken that must be dropped 7673 * using folio_putback_hugetlb() to undo the isolation. 7674 * 7675 * Return: True if isolation worked, otherwise False. 7676 */ 7677 bool folio_isolate_hugetlb(struct folio *folio, struct list_head *list) 7678 { 7679 bool ret = true; 7680 7681 spin_lock_irq(&hugetlb_lock); 7682 if (!folio_test_hugetlb(folio) || 7683 !folio_test_hugetlb_migratable(folio) || 7684 !folio_try_get(folio)) { 7685 ret = false; 7686 goto unlock; 7687 } 7688 folio_clear_hugetlb_migratable(folio); 7689 list_move_tail(&folio->lru, list); 7690 unlock: 7691 spin_unlock_irq(&hugetlb_lock); 7692 return ret; 7693 } 7694 7695 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison) 7696 { 7697 int ret = 0; 7698 7699 *hugetlb = false; 7700 spin_lock_irq(&hugetlb_lock); 7701 if (folio_test_hugetlb(folio)) { 7702 *hugetlb = true; 7703 if (folio_test_hugetlb_freed(folio)) 7704 ret = 0; 7705 else if (folio_test_hugetlb_migratable(folio) || unpoison) 7706 ret = folio_try_get(folio); 7707 else 7708 ret = -EBUSY; 7709 } 7710 spin_unlock_irq(&hugetlb_lock); 7711 return ret; 7712 } 7713 7714 int get_huge_page_for_hwpoison(unsigned long pfn, int flags, 7715 bool *migratable_cleared) 7716 { 7717 int ret; 7718 7719 spin_lock_irq(&hugetlb_lock); 7720 ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared); 7721 spin_unlock_irq(&hugetlb_lock); 7722 return ret; 7723 } 7724 7725 /** 7726 * folio_putback_hugetlb - unisolate a hugetlb folio 7727 * @folio: the isolated hugetlb folio 7728 * 7729 * Putback/un-isolate the hugetlb folio that was previous isolated using 7730 * folio_isolate_hugetlb(): marking it non-isolated/migratable and putting it 7731 * back onto the active list. 7732 * 7733 * Will drop the additional folio reference obtained through 7734 * folio_isolate_hugetlb(). 7735 */ 7736 void folio_putback_hugetlb(struct folio *folio) 7737 { 7738 spin_lock_irq(&hugetlb_lock); 7739 folio_set_hugetlb_migratable(folio); 7740 list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist); 7741 spin_unlock_irq(&hugetlb_lock); 7742 folio_put(folio); 7743 } 7744 7745 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason) 7746 { 7747 struct hstate *h = folio_hstate(old_folio); 7748 7749 hugetlb_cgroup_migrate(old_folio, new_folio); 7750 set_page_owner_migrate_reason(&new_folio->page, reason); 7751 7752 /* 7753 * transfer temporary state of the new hugetlb folio. This is 7754 * reverse to other transitions because the newpage is going to 7755 * be final while the old one will be freed so it takes over 7756 * the temporary status. 7757 * 7758 * Also note that we have to transfer the per-node surplus state 7759 * here as well otherwise the global surplus count will not match 7760 * the per-node's. 7761 */ 7762 if (folio_test_hugetlb_temporary(new_folio)) { 7763 int old_nid = folio_nid(old_folio); 7764 int new_nid = folio_nid(new_folio); 7765 7766 folio_set_hugetlb_temporary(old_folio); 7767 folio_clear_hugetlb_temporary(new_folio); 7768 7769 7770 /* 7771 * There is no need to transfer the per-node surplus state 7772 * when we do not cross the node. 7773 */ 7774 if (new_nid == old_nid) 7775 return; 7776 spin_lock_irq(&hugetlb_lock); 7777 if (h->surplus_huge_pages_node[old_nid]) { 7778 h->surplus_huge_pages_node[old_nid]--; 7779 h->surplus_huge_pages_node[new_nid]++; 7780 } 7781 spin_unlock_irq(&hugetlb_lock); 7782 } 7783 7784 /* 7785 * Our old folio is isolated and has "migratable" cleared until it 7786 * is putback. As migration succeeded, set the new folio "migratable" 7787 * and add it to the active list. 7788 */ 7789 spin_lock_irq(&hugetlb_lock); 7790 folio_set_hugetlb_migratable(new_folio); 7791 list_move_tail(&new_folio->lru, &(folio_hstate(new_folio))->hugepage_activelist); 7792 spin_unlock_irq(&hugetlb_lock); 7793 } 7794 7795 static void hugetlb_unshare_pmds(struct vm_area_struct *vma, 7796 unsigned long start, 7797 unsigned long end) 7798 { 7799 struct hstate *h = hstate_vma(vma); 7800 unsigned long sz = huge_page_size(h); 7801 struct mm_struct *mm = vma->vm_mm; 7802 struct mmu_notifier_range range; 7803 unsigned long address; 7804 spinlock_t *ptl; 7805 pte_t *ptep; 7806 7807 if (!(vma->vm_flags & VM_MAYSHARE)) 7808 return; 7809 7810 if (start >= end) 7811 return; 7812 7813 flush_cache_range(vma, start, end); 7814 /* 7815 * No need to call adjust_range_if_pmd_sharing_possible(), because 7816 * we have already done the PUD_SIZE alignment. 7817 */ 7818 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 7819 start, end); 7820 mmu_notifier_invalidate_range_start(&range); 7821 hugetlb_vma_lock_write(vma); 7822 i_mmap_lock_write(vma->vm_file->f_mapping); 7823 for (address = start; address < end; address += PUD_SIZE) { 7824 ptep = hugetlb_walk(vma, address, sz); 7825 if (!ptep) 7826 continue; 7827 ptl = huge_pte_lock(h, mm, ptep); 7828 huge_pmd_unshare(mm, vma, address, ptep); 7829 spin_unlock(ptl); 7830 } 7831 flush_hugetlb_tlb_range(vma, start, end); 7832 i_mmap_unlock_write(vma->vm_file->f_mapping); 7833 hugetlb_vma_unlock_write(vma); 7834 /* 7835 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs(), see 7836 * Documentation/mm/mmu_notifier.rst. 7837 */ 7838 mmu_notifier_invalidate_range_end(&range); 7839 } 7840 7841 /* 7842 * This function will unconditionally remove all the shared pmd pgtable entries 7843 * within the specific vma for a hugetlbfs memory range. 7844 */ 7845 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma) 7846 { 7847 hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE), 7848 ALIGN_DOWN(vma->vm_end, PUD_SIZE)); 7849 } 7850