xref: /linux/mm/hugetlb.c (revision a44e4f3ab16bc808590763a543a93b6fbf3abcc4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/mmdebug.h>
23 #include <linux/sched/signal.h>
24 #include <linux/rmap.h>
25 #include <linux/string_helpers.h>
26 #include <linux/swap.h>
27 #include <linux/swapops.h>
28 #include <linux/jhash.h>
29 #include <linux/numa.h>
30 
31 #include <asm/page.h>
32 #include <asm/pgtable.h>
33 #include <asm/tlb.h>
34 
35 #include <linux/io.h>
36 #include <linux/hugetlb.h>
37 #include <linux/hugetlb_cgroup.h>
38 #include <linux/node.h>
39 #include <linux/userfaultfd_k.h>
40 #include <linux/page_owner.h>
41 #include "internal.h"
42 
43 int hugetlb_max_hstate __read_mostly;
44 unsigned int default_hstate_idx;
45 struct hstate hstates[HUGE_MAX_HSTATE];
46 /*
47  * Minimum page order among possible hugepage sizes, set to a proper value
48  * at boot time.
49  */
50 static unsigned int minimum_order __read_mostly = UINT_MAX;
51 
52 __initdata LIST_HEAD(huge_boot_pages);
53 
54 /* for command line parsing */
55 static struct hstate * __initdata parsed_hstate;
56 static unsigned long __initdata default_hstate_max_huge_pages;
57 static unsigned long __initdata default_hstate_size;
58 static bool __initdata parsed_valid_hugepagesz = true;
59 
60 /*
61  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
62  * free_huge_pages, and surplus_huge_pages.
63  */
64 DEFINE_SPINLOCK(hugetlb_lock);
65 
66 /*
67  * Serializes faults on the same logical page.  This is used to
68  * prevent spurious OOMs when the hugepage pool is fully utilized.
69  */
70 static int num_fault_mutexes;
71 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
72 
73 /* Forward declaration */
74 static int hugetlb_acct_memory(struct hstate *h, long delta);
75 
76 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
77 {
78 	bool free = (spool->count == 0) && (spool->used_hpages == 0);
79 
80 	spin_unlock(&spool->lock);
81 
82 	/* If no pages are used, and no other handles to the subpool
83 	 * remain, give up any reservations mased on minimum size and
84 	 * free the subpool */
85 	if (free) {
86 		if (spool->min_hpages != -1)
87 			hugetlb_acct_memory(spool->hstate,
88 						-spool->min_hpages);
89 		kfree(spool);
90 	}
91 }
92 
93 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
94 						long min_hpages)
95 {
96 	struct hugepage_subpool *spool;
97 
98 	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
99 	if (!spool)
100 		return NULL;
101 
102 	spin_lock_init(&spool->lock);
103 	spool->count = 1;
104 	spool->max_hpages = max_hpages;
105 	spool->hstate = h;
106 	spool->min_hpages = min_hpages;
107 
108 	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
109 		kfree(spool);
110 		return NULL;
111 	}
112 	spool->rsv_hpages = min_hpages;
113 
114 	return spool;
115 }
116 
117 void hugepage_put_subpool(struct hugepage_subpool *spool)
118 {
119 	spin_lock(&spool->lock);
120 	BUG_ON(!spool->count);
121 	spool->count--;
122 	unlock_or_release_subpool(spool);
123 }
124 
125 /*
126  * Subpool accounting for allocating and reserving pages.
127  * Return -ENOMEM if there are not enough resources to satisfy the
128  * the request.  Otherwise, return the number of pages by which the
129  * global pools must be adjusted (upward).  The returned value may
130  * only be different than the passed value (delta) in the case where
131  * a subpool minimum size must be manitained.
132  */
133 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
134 				      long delta)
135 {
136 	long ret = delta;
137 
138 	if (!spool)
139 		return ret;
140 
141 	spin_lock(&spool->lock);
142 
143 	if (spool->max_hpages != -1) {		/* maximum size accounting */
144 		if ((spool->used_hpages + delta) <= spool->max_hpages)
145 			spool->used_hpages += delta;
146 		else {
147 			ret = -ENOMEM;
148 			goto unlock_ret;
149 		}
150 	}
151 
152 	/* minimum size accounting */
153 	if (spool->min_hpages != -1 && spool->rsv_hpages) {
154 		if (delta > spool->rsv_hpages) {
155 			/*
156 			 * Asking for more reserves than those already taken on
157 			 * behalf of subpool.  Return difference.
158 			 */
159 			ret = delta - spool->rsv_hpages;
160 			spool->rsv_hpages = 0;
161 		} else {
162 			ret = 0;	/* reserves already accounted for */
163 			spool->rsv_hpages -= delta;
164 		}
165 	}
166 
167 unlock_ret:
168 	spin_unlock(&spool->lock);
169 	return ret;
170 }
171 
172 /*
173  * Subpool accounting for freeing and unreserving pages.
174  * Return the number of global page reservations that must be dropped.
175  * The return value may only be different than the passed value (delta)
176  * in the case where a subpool minimum size must be maintained.
177  */
178 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
179 				       long delta)
180 {
181 	long ret = delta;
182 
183 	if (!spool)
184 		return delta;
185 
186 	spin_lock(&spool->lock);
187 
188 	if (spool->max_hpages != -1)		/* maximum size accounting */
189 		spool->used_hpages -= delta;
190 
191 	 /* minimum size accounting */
192 	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
193 		if (spool->rsv_hpages + delta <= spool->min_hpages)
194 			ret = 0;
195 		else
196 			ret = spool->rsv_hpages + delta - spool->min_hpages;
197 
198 		spool->rsv_hpages += delta;
199 		if (spool->rsv_hpages > spool->min_hpages)
200 			spool->rsv_hpages = spool->min_hpages;
201 	}
202 
203 	/*
204 	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
205 	 * quota reference, free it now.
206 	 */
207 	unlock_or_release_subpool(spool);
208 
209 	return ret;
210 }
211 
212 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
213 {
214 	return HUGETLBFS_SB(inode->i_sb)->spool;
215 }
216 
217 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
218 {
219 	return subpool_inode(file_inode(vma->vm_file));
220 }
221 
222 /*
223  * Region tracking -- allows tracking of reservations and instantiated pages
224  *                    across the pages in a mapping.
225  *
226  * The region data structures are embedded into a resv_map and protected
227  * by a resv_map's lock.  The set of regions within the resv_map represent
228  * reservations for huge pages, or huge pages that have already been
229  * instantiated within the map.  The from and to elements are huge page
230  * indicies into the associated mapping.  from indicates the starting index
231  * of the region.  to represents the first index past the end of  the region.
232  *
233  * For example, a file region structure with from == 0 and to == 4 represents
234  * four huge pages in a mapping.  It is important to note that the to element
235  * represents the first element past the end of the region. This is used in
236  * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
237  *
238  * Interval notation of the form [from, to) will be used to indicate that
239  * the endpoint from is inclusive and to is exclusive.
240  */
241 struct file_region {
242 	struct list_head link;
243 	long from;
244 	long to;
245 };
246 
247 /*
248  * Add the huge page range represented by [f, t) to the reserve
249  * map.  In the normal case, existing regions will be expanded
250  * to accommodate the specified range.  Sufficient regions should
251  * exist for expansion due to the previous call to region_chg
252  * with the same range.  However, it is possible that region_del
253  * could have been called after region_chg and modifed the map
254  * in such a way that no region exists to be expanded.  In this
255  * case, pull a region descriptor from the cache associated with
256  * the map and use that for the new range.
257  *
258  * Return the number of new huge pages added to the map.  This
259  * number is greater than or equal to zero.
260  */
261 static long region_add(struct resv_map *resv, long f, long t)
262 {
263 	struct list_head *head = &resv->regions;
264 	struct file_region *rg, *nrg, *trg;
265 	long add = 0;
266 
267 	spin_lock(&resv->lock);
268 	/* Locate the region we are either in or before. */
269 	list_for_each_entry(rg, head, link)
270 		if (f <= rg->to)
271 			break;
272 
273 	/*
274 	 * If no region exists which can be expanded to include the
275 	 * specified range, the list must have been modified by an
276 	 * interleving call to region_del().  Pull a region descriptor
277 	 * from the cache and use it for this range.
278 	 */
279 	if (&rg->link == head || t < rg->from) {
280 		VM_BUG_ON(resv->region_cache_count <= 0);
281 
282 		resv->region_cache_count--;
283 		nrg = list_first_entry(&resv->region_cache, struct file_region,
284 					link);
285 		list_del(&nrg->link);
286 
287 		nrg->from = f;
288 		nrg->to = t;
289 		list_add(&nrg->link, rg->link.prev);
290 
291 		add += t - f;
292 		goto out_locked;
293 	}
294 
295 	/* Round our left edge to the current segment if it encloses us. */
296 	if (f > rg->from)
297 		f = rg->from;
298 
299 	/* Check for and consume any regions we now overlap with. */
300 	nrg = rg;
301 	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
302 		if (&rg->link == head)
303 			break;
304 		if (rg->from > t)
305 			break;
306 
307 		/* If this area reaches higher then extend our area to
308 		 * include it completely.  If this is not the first area
309 		 * which we intend to reuse, free it. */
310 		if (rg->to > t)
311 			t = rg->to;
312 		if (rg != nrg) {
313 			/* Decrement return value by the deleted range.
314 			 * Another range will span this area so that by
315 			 * end of routine add will be >= zero
316 			 */
317 			add -= (rg->to - rg->from);
318 			list_del(&rg->link);
319 			kfree(rg);
320 		}
321 	}
322 
323 	add += (nrg->from - f);		/* Added to beginning of region */
324 	nrg->from = f;
325 	add += t - nrg->to;		/* Added to end of region */
326 	nrg->to = t;
327 
328 out_locked:
329 	resv->adds_in_progress--;
330 	spin_unlock(&resv->lock);
331 	VM_BUG_ON(add < 0);
332 	return add;
333 }
334 
335 /*
336  * Examine the existing reserve map and determine how many
337  * huge pages in the specified range [f, t) are NOT currently
338  * represented.  This routine is called before a subsequent
339  * call to region_add that will actually modify the reserve
340  * map to add the specified range [f, t).  region_chg does
341  * not change the number of huge pages represented by the
342  * map.  However, if the existing regions in the map can not
343  * be expanded to represent the new range, a new file_region
344  * structure is added to the map as a placeholder.  This is
345  * so that the subsequent region_add call will have all the
346  * regions it needs and will not fail.
347  *
348  * Upon entry, region_chg will also examine the cache of region descriptors
349  * associated with the map.  If there are not enough descriptors cached, one
350  * will be allocated for the in progress add operation.
351  *
352  * Returns the number of huge pages that need to be added to the existing
353  * reservation map for the range [f, t).  This number is greater or equal to
354  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
355  * is needed and can not be allocated.
356  */
357 static long region_chg(struct resv_map *resv, long f, long t)
358 {
359 	struct list_head *head = &resv->regions;
360 	struct file_region *rg, *nrg = NULL;
361 	long chg = 0;
362 
363 retry:
364 	spin_lock(&resv->lock);
365 retry_locked:
366 	resv->adds_in_progress++;
367 
368 	/*
369 	 * Check for sufficient descriptors in the cache to accommodate
370 	 * the number of in progress add operations.
371 	 */
372 	if (resv->adds_in_progress > resv->region_cache_count) {
373 		struct file_region *trg;
374 
375 		VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
376 		/* Must drop lock to allocate a new descriptor. */
377 		resv->adds_in_progress--;
378 		spin_unlock(&resv->lock);
379 
380 		trg = kmalloc(sizeof(*trg), GFP_KERNEL);
381 		if (!trg) {
382 			kfree(nrg);
383 			return -ENOMEM;
384 		}
385 
386 		spin_lock(&resv->lock);
387 		list_add(&trg->link, &resv->region_cache);
388 		resv->region_cache_count++;
389 		goto retry_locked;
390 	}
391 
392 	/* Locate the region we are before or in. */
393 	list_for_each_entry(rg, head, link)
394 		if (f <= rg->to)
395 			break;
396 
397 	/* If we are below the current region then a new region is required.
398 	 * Subtle, allocate a new region at the position but make it zero
399 	 * size such that we can guarantee to record the reservation. */
400 	if (&rg->link == head || t < rg->from) {
401 		if (!nrg) {
402 			resv->adds_in_progress--;
403 			spin_unlock(&resv->lock);
404 			nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
405 			if (!nrg)
406 				return -ENOMEM;
407 
408 			nrg->from = f;
409 			nrg->to   = f;
410 			INIT_LIST_HEAD(&nrg->link);
411 			goto retry;
412 		}
413 
414 		list_add(&nrg->link, rg->link.prev);
415 		chg = t - f;
416 		goto out_nrg;
417 	}
418 
419 	/* Round our left edge to the current segment if it encloses us. */
420 	if (f > rg->from)
421 		f = rg->from;
422 	chg = t - f;
423 
424 	/* Check for and consume any regions we now overlap with. */
425 	list_for_each_entry(rg, rg->link.prev, link) {
426 		if (&rg->link == head)
427 			break;
428 		if (rg->from > t)
429 			goto out;
430 
431 		/* We overlap with this area, if it extends further than
432 		 * us then we must extend ourselves.  Account for its
433 		 * existing reservation. */
434 		if (rg->to > t) {
435 			chg += rg->to - t;
436 			t = rg->to;
437 		}
438 		chg -= rg->to - rg->from;
439 	}
440 
441 out:
442 	spin_unlock(&resv->lock);
443 	/*  We already know we raced and no longer need the new region */
444 	kfree(nrg);
445 	return chg;
446 out_nrg:
447 	spin_unlock(&resv->lock);
448 	return chg;
449 }
450 
451 /*
452  * Abort the in progress add operation.  The adds_in_progress field
453  * of the resv_map keeps track of the operations in progress between
454  * calls to region_chg and region_add.  Operations are sometimes
455  * aborted after the call to region_chg.  In such cases, region_abort
456  * is called to decrement the adds_in_progress counter.
457  *
458  * NOTE: The range arguments [f, t) are not needed or used in this
459  * routine.  They are kept to make reading the calling code easier as
460  * arguments will match the associated region_chg call.
461  */
462 static void region_abort(struct resv_map *resv, long f, long t)
463 {
464 	spin_lock(&resv->lock);
465 	VM_BUG_ON(!resv->region_cache_count);
466 	resv->adds_in_progress--;
467 	spin_unlock(&resv->lock);
468 }
469 
470 /*
471  * Delete the specified range [f, t) from the reserve map.  If the
472  * t parameter is LONG_MAX, this indicates that ALL regions after f
473  * should be deleted.  Locate the regions which intersect [f, t)
474  * and either trim, delete or split the existing regions.
475  *
476  * Returns the number of huge pages deleted from the reserve map.
477  * In the normal case, the return value is zero or more.  In the
478  * case where a region must be split, a new region descriptor must
479  * be allocated.  If the allocation fails, -ENOMEM will be returned.
480  * NOTE: If the parameter t == LONG_MAX, then we will never split
481  * a region and possibly return -ENOMEM.  Callers specifying
482  * t == LONG_MAX do not need to check for -ENOMEM error.
483  */
484 static long region_del(struct resv_map *resv, long f, long t)
485 {
486 	struct list_head *head = &resv->regions;
487 	struct file_region *rg, *trg;
488 	struct file_region *nrg = NULL;
489 	long del = 0;
490 
491 retry:
492 	spin_lock(&resv->lock);
493 	list_for_each_entry_safe(rg, trg, head, link) {
494 		/*
495 		 * Skip regions before the range to be deleted.  file_region
496 		 * ranges are normally of the form [from, to).  However, there
497 		 * may be a "placeholder" entry in the map which is of the form
498 		 * (from, to) with from == to.  Check for placeholder entries
499 		 * at the beginning of the range to be deleted.
500 		 */
501 		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
502 			continue;
503 
504 		if (rg->from >= t)
505 			break;
506 
507 		if (f > rg->from && t < rg->to) { /* Must split region */
508 			/*
509 			 * Check for an entry in the cache before dropping
510 			 * lock and attempting allocation.
511 			 */
512 			if (!nrg &&
513 			    resv->region_cache_count > resv->adds_in_progress) {
514 				nrg = list_first_entry(&resv->region_cache,
515 							struct file_region,
516 							link);
517 				list_del(&nrg->link);
518 				resv->region_cache_count--;
519 			}
520 
521 			if (!nrg) {
522 				spin_unlock(&resv->lock);
523 				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
524 				if (!nrg)
525 					return -ENOMEM;
526 				goto retry;
527 			}
528 
529 			del += t - f;
530 
531 			/* New entry for end of split region */
532 			nrg->from = t;
533 			nrg->to = rg->to;
534 			INIT_LIST_HEAD(&nrg->link);
535 
536 			/* Original entry is trimmed */
537 			rg->to = f;
538 
539 			list_add(&nrg->link, &rg->link);
540 			nrg = NULL;
541 			break;
542 		}
543 
544 		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
545 			del += rg->to - rg->from;
546 			list_del(&rg->link);
547 			kfree(rg);
548 			continue;
549 		}
550 
551 		if (f <= rg->from) {	/* Trim beginning of region */
552 			del += t - rg->from;
553 			rg->from = t;
554 		} else {		/* Trim end of region */
555 			del += rg->to - f;
556 			rg->to = f;
557 		}
558 	}
559 
560 	spin_unlock(&resv->lock);
561 	kfree(nrg);
562 	return del;
563 }
564 
565 /*
566  * A rare out of memory error was encountered which prevented removal of
567  * the reserve map region for a page.  The huge page itself was free'ed
568  * and removed from the page cache.  This routine will adjust the subpool
569  * usage count, and the global reserve count if needed.  By incrementing
570  * these counts, the reserve map entry which could not be deleted will
571  * appear as a "reserved" entry instead of simply dangling with incorrect
572  * counts.
573  */
574 void hugetlb_fix_reserve_counts(struct inode *inode)
575 {
576 	struct hugepage_subpool *spool = subpool_inode(inode);
577 	long rsv_adjust;
578 
579 	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
580 	if (rsv_adjust) {
581 		struct hstate *h = hstate_inode(inode);
582 
583 		hugetlb_acct_memory(h, 1);
584 	}
585 }
586 
587 /*
588  * Count and return the number of huge pages in the reserve map
589  * that intersect with the range [f, t).
590  */
591 static long region_count(struct resv_map *resv, long f, long t)
592 {
593 	struct list_head *head = &resv->regions;
594 	struct file_region *rg;
595 	long chg = 0;
596 
597 	spin_lock(&resv->lock);
598 	/* Locate each segment we overlap with, and count that overlap. */
599 	list_for_each_entry(rg, head, link) {
600 		long seg_from;
601 		long seg_to;
602 
603 		if (rg->to <= f)
604 			continue;
605 		if (rg->from >= t)
606 			break;
607 
608 		seg_from = max(rg->from, f);
609 		seg_to = min(rg->to, t);
610 
611 		chg += seg_to - seg_from;
612 	}
613 	spin_unlock(&resv->lock);
614 
615 	return chg;
616 }
617 
618 /*
619  * Convert the address within this vma to the page offset within
620  * the mapping, in pagecache page units; huge pages here.
621  */
622 static pgoff_t vma_hugecache_offset(struct hstate *h,
623 			struct vm_area_struct *vma, unsigned long address)
624 {
625 	return ((address - vma->vm_start) >> huge_page_shift(h)) +
626 			(vma->vm_pgoff >> huge_page_order(h));
627 }
628 
629 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
630 				     unsigned long address)
631 {
632 	return vma_hugecache_offset(hstate_vma(vma), vma, address);
633 }
634 EXPORT_SYMBOL_GPL(linear_hugepage_index);
635 
636 /*
637  * Return the size of the pages allocated when backing a VMA. In the majority
638  * cases this will be same size as used by the page table entries.
639  */
640 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
641 {
642 	if (vma->vm_ops && vma->vm_ops->pagesize)
643 		return vma->vm_ops->pagesize(vma);
644 	return PAGE_SIZE;
645 }
646 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
647 
648 /*
649  * Return the page size being used by the MMU to back a VMA. In the majority
650  * of cases, the page size used by the kernel matches the MMU size. On
651  * architectures where it differs, an architecture-specific 'strong'
652  * version of this symbol is required.
653  */
654 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
655 {
656 	return vma_kernel_pagesize(vma);
657 }
658 
659 /*
660  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
661  * bits of the reservation map pointer, which are always clear due to
662  * alignment.
663  */
664 #define HPAGE_RESV_OWNER    (1UL << 0)
665 #define HPAGE_RESV_UNMAPPED (1UL << 1)
666 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
667 
668 /*
669  * These helpers are used to track how many pages are reserved for
670  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
671  * is guaranteed to have their future faults succeed.
672  *
673  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
674  * the reserve counters are updated with the hugetlb_lock held. It is safe
675  * to reset the VMA at fork() time as it is not in use yet and there is no
676  * chance of the global counters getting corrupted as a result of the values.
677  *
678  * The private mapping reservation is represented in a subtly different
679  * manner to a shared mapping.  A shared mapping has a region map associated
680  * with the underlying file, this region map represents the backing file
681  * pages which have ever had a reservation assigned which this persists even
682  * after the page is instantiated.  A private mapping has a region map
683  * associated with the original mmap which is attached to all VMAs which
684  * reference it, this region map represents those offsets which have consumed
685  * reservation ie. where pages have been instantiated.
686  */
687 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
688 {
689 	return (unsigned long)vma->vm_private_data;
690 }
691 
692 static void set_vma_private_data(struct vm_area_struct *vma,
693 							unsigned long value)
694 {
695 	vma->vm_private_data = (void *)value;
696 }
697 
698 struct resv_map *resv_map_alloc(void)
699 {
700 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
701 	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
702 
703 	if (!resv_map || !rg) {
704 		kfree(resv_map);
705 		kfree(rg);
706 		return NULL;
707 	}
708 
709 	kref_init(&resv_map->refs);
710 	spin_lock_init(&resv_map->lock);
711 	INIT_LIST_HEAD(&resv_map->regions);
712 
713 	resv_map->adds_in_progress = 0;
714 
715 	INIT_LIST_HEAD(&resv_map->region_cache);
716 	list_add(&rg->link, &resv_map->region_cache);
717 	resv_map->region_cache_count = 1;
718 
719 	return resv_map;
720 }
721 
722 void resv_map_release(struct kref *ref)
723 {
724 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
725 	struct list_head *head = &resv_map->region_cache;
726 	struct file_region *rg, *trg;
727 
728 	/* Clear out any active regions before we release the map. */
729 	region_del(resv_map, 0, LONG_MAX);
730 
731 	/* ... and any entries left in the cache */
732 	list_for_each_entry_safe(rg, trg, head, link) {
733 		list_del(&rg->link);
734 		kfree(rg);
735 	}
736 
737 	VM_BUG_ON(resv_map->adds_in_progress);
738 
739 	kfree(resv_map);
740 }
741 
742 static inline struct resv_map *inode_resv_map(struct inode *inode)
743 {
744 	/*
745 	 * At inode evict time, i_mapping may not point to the original
746 	 * address space within the inode.  This original address space
747 	 * contains the pointer to the resv_map.  So, always use the
748 	 * address space embedded within the inode.
749 	 * The VERY common case is inode->mapping == &inode->i_data but,
750 	 * this may not be true for device special inodes.
751 	 */
752 	return (struct resv_map *)(&inode->i_data)->private_data;
753 }
754 
755 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
756 {
757 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
758 	if (vma->vm_flags & VM_MAYSHARE) {
759 		struct address_space *mapping = vma->vm_file->f_mapping;
760 		struct inode *inode = mapping->host;
761 
762 		return inode_resv_map(inode);
763 
764 	} else {
765 		return (struct resv_map *)(get_vma_private_data(vma) &
766 							~HPAGE_RESV_MASK);
767 	}
768 }
769 
770 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
771 {
772 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
773 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
774 
775 	set_vma_private_data(vma, (get_vma_private_data(vma) &
776 				HPAGE_RESV_MASK) | (unsigned long)map);
777 }
778 
779 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
780 {
781 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
782 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
783 
784 	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
785 }
786 
787 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
788 {
789 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
790 
791 	return (get_vma_private_data(vma) & flag) != 0;
792 }
793 
794 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
795 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
796 {
797 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
798 	if (!(vma->vm_flags & VM_MAYSHARE))
799 		vma->vm_private_data = (void *)0;
800 }
801 
802 /* Returns true if the VMA has associated reserve pages */
803 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
804 {
805 	if (vma->vm_flags & VM_NORESERVE) {
806 		/*
807 		 * This address is already reserved by other process(chg == 0),
808 		 * so, we should decrement reserved count. Without decrementing,
809 		 * reserve count remains after releasing inode, because this
810 		 * allocated page will go into page cache and is regarded as
811 		 * coming from reserved pool in releasing step.  Currently, we
812 		 * don't have any other solution to deal with this situation
813 		 * properly, so add work-around here.
814 		 */
815 		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
816 			return true;
817 		else
818 			return false;
819 	}
820 
821 	/* Shared mappings always use reserves */
822 	if (vma->vm_flags & VM_MAYSHARE) {
823 		/*
824 		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
825 		 * be a region map for all pages.  The only situation where
826 		 * there is no region map is if a hole was punched via
827 		 * fallocate.  In this case, there really are no reverves to
828 		 * use.  This situation is indicated if chg != 0.
829 		 */
830 		if (chg)
831 			return false;
832 		else
833 			return true;
834 	}
835 
836 	/*
837 	 * Only the process that called mmap() has reserves for
838 	 * private mappings.
839 	 */
840 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
841 		/*
842 		 * Like the shared case above, a hole punch or truncate
843 		 * could have been performed on the private mapping.
844 		 * Examine the value of chg to determine if reserves
845 		 * actually exist or were previously consumed.
846 		 * Very Subtle - The value of chg comes from a previous
847 		 * call to vma_needs_reserves().  The reserve map for
848 		 * private mappings has different (opposite) semantics
849 		 * than that of shared mappings.  vma_needs_reserves()
850 		 * has already taken this difference in semantics into
851 		 * account.  Therefore, the meaning of chg is the same
852 		 * as in the shared case above.  Code could easily be
853 		 * combined, but keeping it separate draws attention to
854 		 * subtle differences.
855 		 */
856 		if (chg)
857 			return false;
858 		else
859 			return true;
860 	}
861 
862 	return false;
863 }
864 
865 static void enqueue_huge_page(struct hstate *h, struct page *page)
866 {
867 	int nid = page_to_nid(page);
868 	list_move(&page->lru, &h->hugepage_freelists[nid]);
869 	h->free_huge_pages++;
870 	h->free_huge_pages_node[nid]++;
871 }
872 
873 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
874 {
875 	struct page *page;
876 
877 	list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
878 		if (!PageHWPoison(page))
879 			break;
880 	/*
881 	 * if 'non-isolated free hugepage' not found on the list,
882 	 * the allocation fails.
883 	 */
884 	if (&h->hugepage_freelists[nid] == &page->lru)
885 		return NULL;
886 	list_move(&page->lru, &h->hugepage_activelist);
887 	set_page_refcounted(page);
888 	h->free_huge_pages--;
889 	h->free_huge_pages_node[nid]--;
890 	return page;
891 }
892 
893 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
894 		nodemask_t *nmask)
895 {
896 	unsigned int cpuset_mems_cookie;
897 	struct zonelist *zonelist;
898 	struct zone *zone;
899 	struct zoneref *z;
900 	int node = NUMA_NO_NODE;
901 
902 	zonelist = node_zonelist(nid, gfp_mask);
903 
904 retry_cpuset:
905 	cpuset_mems_cookie = read_mems_allowed_begin();
906 	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
907 		struct page *page;
908 
909 		if (!cpuset_zone_allowed(zone, gfp_mask))
910 			continue;
911 		/*
912 		 * no need to ask again on the same node. Pool is node rather than
913 		 * zone aware
914 		 */
915 		if (zone_to_nid(zone) == node)
916 			continue;
917 		node = zone_to_nid(zone);
918 
919 		page = dequeue_huge_page_node_exact(h, node);
920 		if (page)
921 			return page;
922 	}
923 	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
924 		goto retry_cpuset;
925 
926 	return NULL;
927 }
928 
929 /* Movability of hugepages depends on migration support. */
930 static inline gfp_t htlb_alloc_mask(struct hstate *h)
931 {
932 	if (hugepage_movable_supported(h))
933 		return GFP_HIGHUSER_MOVABLE;
934 	else
935 		return GFP_HIGHUSER;
936 }
937 
938 static struct page *dequeue_huge_page_vma(struct hstate *h,
939 				struct vm_area_struct *vma,
940 				unsigned long address, int avoid_reserve,
941 				long chg)
942 {
943 	struct page *page;
944 	struct mempolicy *mpol;
945 	gfp_t gfp_mask;
946 	nodemask_t *nodemask;
947 	int nid;
948 
949 	/*
950 	 * A child process with MAP_PRIVATE mappings created by their parent
951 	 * have no page reserves. This check ensures that reservations are
952 	 * not "stolen". The child may still get SIGKILLed
953 	 */
954 	if (!vma_has_reserves(vma, chg) &&
955 			h->free_huge_pages - h->resv_huge_pages == 0)
956 		goto err;
957 
958 	/* If reserves cannot be used, ensure enough pages are in the pool */
959 	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
960 		goto err;
961 
962 	gfp_mask = htlb_alloc_mask(h);
963 	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
964 	page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
965 	if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
966 		SetPagePrivate(page);
967 		h->resv_huge_pages--;
968 	}
969 
970 	mpol_cond_put(mpol);
971 	return page;
972 
973 err:
974 	return NULL;
975 }
976 
977 /*
978  * common helper functions for hstate_next_node_to_{alloc|free}.
979  * We may have allocated or freed a huge page based on a different
980  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
981  * be outside of *nodes_allowed.  Ensure that we use an allowed
982  * node for alloc or free.
983  */
984 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
985 {
986 	nid = next_node_in(nid, *nodes_allowed);
987 	VM_BUG_ON(nid >= MAX_NUMNODES);
988 
989 	return nid;
990 }
991 
992 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
993 {
994 	if (!node_isset(nid, *nodes_allowed))
995 		nid = next_node_allowed(nid, nodes_allowed);
996 	return nid;
997 }
998 
999 /*
1000  * returns the previously saved node ["this node"] from which to
1001  * allocate a persistent huge page for the pool and advance the
1002  * next node from which to allocate, handling wrap at end of node
1003  * mask.
1004  */
1005 static int hstate_next_node_to_alloc(struct hstate *h,
1006 					nodemask_t *nodes_allowed)
1007 {
1008 	int nid;
1009 
1010 	VM_BUG_ON(!nodes_allowed);
1011 
1012 	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1013 	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1014 
1015 	return nid;
1016 }
1017 
1018 /*
1019  * helper for free_pool_huge_page() - return the previously saved
1020  * node ["this node"] from which to free a huge page.  Advance the
1021  * next node id whether or not we find a free huge page to free so
1022  * that the next attempt to free addresses the next node.
1023  */
1024 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1025 {
1026 	int nid;
1027 
1028 	VM_BUG_ON(!nodes_allowed);
1029 
1030 	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1031 	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1032 
1033 	return nid;
1034 }
1035 
1036 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
1037 	for (nr_nodes = nodes_weight(*mask);				\
1038 		nr_nodes > 0 &&						\
1039 		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
1040 		nr_nodes--)
1041 
1042 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
1043 	for (nr_nodes = nodes_weight(*mask);				\
1044 		nr_nodes > 0 &&						\
1045 		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
1046 		nr_nodes--)
1047 
1048 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1049 static void destroy_compound_gigantic_page(struct page *page,
1050 					unsigned int order)
1051 {
1052 	int i;
1053 	int nr_pages = 1 << order;
1054 	struct page *p = page + 1;
1055 
1056 	atomic_set(compound_mapcount_ptr(page), 0);
1057 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1058 		clear_compound_head(p);
1059 		set_page_refcounted(p);
1060 	}
1061 
1062 	set_compound_order(page, 0);
1063 	__ClearPageHead(page);
1064 }
1065 
1066 static void free_gigantic_page(struct page *page, unsigned int order)
1067 {
1068 	free_contig_range(page_to_pfn(page), 1 << order);
1069 }
1070 
1071 #ifdef CONFIG_CONTIG_ALLOC
1072 static int __alloc_gigantic_page(unsigned long start_pfn,
1073 				unsigned long nr_pages, gfp_t gfp_mask)
1074 {
1075 	unsigned long end_pfn = start_pfn + nr_pages;
1076 	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
1077 				  gfp_mask);
1078 }
1079 
1080 static bool pfn_range_valid_gigantic(struct zone *z,
1081 			unsigned long start_pfn, unsigned long nr_pages)
1082 {
1083 	unsigned long i, end_pfn = start_pfn + nr_pages;
1084 	struct page *page;
1085 
1086 	for (i = start_pfn; i < end_pfn; i++) {
1087 		page = pfn_to_online_page(i);
1088 		if (!page)
1089 			return false;
1090 
1091 		if (page_zone(page) != z)
1092 			return false;
1093 
1094 		if (PageReserved(page))
1095 			return false;
1096 
1097 		if (page_count(page) > 0)
1098 			return false;
1099 
1100 		if (PageHuge(page))
1101 			return false;
1102 	}
1103 
1104 	return true;
1105 }
1106 
1107 static bool zone_spans_last_pfn(const struct zone *zone,
1108 			unsigned long start_pfn, unsigned long nr_pages)
1109 {
1110 	unsigned long last_pfn = start_pfn + nr_pages - 1;
1111 	return zone_spans_pfn(zone, last_pfn);
1112 }
1113 
1114 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1115 		int nid, nodemask_t *nodemask)
1116 {
1117 	unsigned int order = huge_page_order(h);
1118 	unsigned long nr_pages = 1 << order;
1119 	unsigned long ret, pfn, flags;
1120 	struct zonelist *zonelist;
1121 	struct zone *zone;
1122 	struct zoneref *z;
1123 
1124 	zonelist = node_zonelist(nid, gfp_mask);
1125 	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nodemask) {
1126 		spin_lock_irqsave(&zone->lock, flags);
1127 
1128 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
1129 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
1130 			if (pfn_range_valid_gigantic(zone, pfn, nr_pages)) {
1131 				/*
1132 				 * We release the zone lock here because
1133 				 * alloc_contig_range() will also lock the zone
1134 				 * at some point. If there's an allocation
1135 				 * spinning on this lock, it may win the race
1136 				 * and cause alloc_contig_range() to fail...
1137 				 */
1138 				spin_unlock_irqrestore(&zone->lock, flags);
1139 				ret = __alloc_gigantic_page(pfn, nr_pages, gfp_mask);
1140 				if (!ret)
1141 					return pfn_to_page(pfn);
1142 				spin_lock_irqsave(&zone->lock, flags);
1143 			}
1144 			pfn += nr_pages;
1145 		}
1146 
1147 		spin_unlock_irqrestore(&zone->lock, flags);
1148 	}
1149 
1150 	return NULL;
1151 }
1152 
1153 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1154 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1155 #else /* !CONFIG_CONTIG_ALLOC */
1156 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1157 					int nid, nodemask_t *nodemask)
1158 {
1159 	return NULL;
1160 }
1161 #endif /* CONFIG_CONTIG_ALLOC */
1162 
1163 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1164 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1165 					int nid, nodemask_t *nodemask)
1166 {
1167 	return NULL;
1168 }
1169 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1170 static inline void destroy_compound_gigantic_page(struct page *page,
1171 						unsigned int order) { }
1172 #endif
1173 
1174 static void update_and_free_page(struct hstate *h, struct page *page)
1175 {
1176 	int i;
1177 
1178 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1179 		return;
1180 
1181 	h->nr_huge_pages--;
1182 	h->nr_huge_pages_node[page_to_nid(page)]--;
1183 	for (i = 0; i < pages_per_huge_page(h); i++) {
1184 		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1185 				1 << PG_referenced | 1 << PG_dirty |
1186 				1 << PG_active | 1 << PG_private |
1187 				1 << PG_writeback);
1188 	}
1189 	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1190 	set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1191 	set_page_refcounted(page);
1192 	if (hstate_is_gigantic(h)) {
1193 		destroy_compound_gigantic_page(page, huge_page_order(h));
1194 		free_gigantic_page(page, huge_page_order(h));
1195 	} else {
1196 		__free_pages(page, huge_page_order(h));
1197 	}
1198 }
1199 
1200 struct hstate *size_to_hstate(unsigned long size)
1201 {
1202 	struct hstate *h;
1203 
1204 	for_each_hstate(h) {
1205 		if (huge_page_size(h) == size)
1206 			return h;
1207 	}
1208 	return NULL;
1209 }
1210 
1211 /*
1212  * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1213  * to hstate->hugepage_activelist.)
1214  *
1215  * This function can be called for tail pages, but never returns true for them.
1216  */
1217 bool page_huge_active(struct page *page)
1218 {
1219 	VM_BUG_ON_PAGE(!PageHuge(page), page);
1220 	return PageHead(page) && PagePrivate(&page[1]);
1221 }
1222 
1223 /* never called for tail page */
1224 static void set_page_huge_active(struct page *page)
1225 {
1226 	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1227 	SetPagePrivate(&page[1]);
1228 }
1229 
1230 static void clear_page_huge_active(struct page *page)
1231 {
1232 	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1233 	ClearPagePrivate(&page[1]);
1234 }
1235 
1236 /*
1237  * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1238  * code
1239  */
1240 static inline bool PageHugeTemporary(struct page *page)
1241 {
1242 	if (!PageHuge(page))
1243 		return false;
1244 
1245 	return (unsigned long)page[2].mapping == -1U;
1246 }
1247 
1248 static inline void SetPageHugeTemporary(struct page *page)
1249 {
1250 	page[2].mapping = (void *)-1U;
1251 }
1252 
1253 static inline void ClearPageHugeTemporary(struct page *page)
1254 {
1255 	page[2].mapping = NULL;
1256 }
1257 
1258 void free_huge_page(struct page *page)
1259 {
1260 	/*
1261 	 * Can't pass hstate in here because it is called from the
1262 	 * compound page destructor.
1263 	 */
1264 	struct hstate *h = page_hstate(page);
1265 	int nid = page_to_nid(page);
1266 	struct hugepage_subpool *spool =
1267 		(struct hugepage_subpool *)page_private(page);
1268 	bool restore_reserve;
1269 
1270 	VM_BUG_ON_PAGE(page_count(page), page);
1271 	VM_BUG_ON_PAGE(page_mapcount(page), page);
1272 
1273 	set_page_private(page, 0);
1274 	page->mapping = NULL;
1275 	restore_reserve = PagePrivate(page);
1276 	ClearPagePrivate(page);
1277 
1278 	/*
1279 	 * If PagePrivate() was set on page, page allocation consumed a
1280 	 * reservation.  If the page was associated with a subpool, there
1281 	 * would have been a page reserved in the subpool before allocation
1282 	 * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1283 	 * reservtion, do not call hugepage_subpool_put_pages() as this will
1284 	 * remove the reserved page from the subpool.
1285 	 */
1286 	if (!restore_reserve) {
1287 		/*
1288 		 * A return code of zero implies that the subpool will be
1289 		 * under its minimum size if the reservation is not restored
1290 		 * after page is free.  Therefore, force restore_reserve
1291 		 * operation.
1292 		 */
1293 		if (hugepage_subpool_put_pages(spool, 1) == 0)
1294 			restore_reserve = true;
1295 	}
1296 
1297 	spin_lock(&hugetlb_lock);
1298 	clear_page_huge_active(page);
1299 	hugetlb_cgroup_uncharge_page(hstate_index(h),
1300 				     pages_per_huge_page(h), page);
1301 	if (restore_reserve)
1302 		h->resv_huge_pages++;
1303 
1304 	if (PageHugeTemporary(page)) {
1305 		list_del(&page->lru);
1306 		ClearPageHugeTemporary(page);
1307 		update_and_free_page(h, page);
1308 	} else if (h->surplus_huge_pages_node[nid]) {
1309 		/* remove the page from active list */
1310 		list_del(&page->lru);
1311 		update_and_free_page(h, page);
1312 		h->surplus_huge_pages--;
1313 		h->surplus_huge_pages_node[nid]--;
1314 	} else {
1315 		arch_clear_hugepage_flags(page);
1316 		enqueue_huge_page(h, page);
1317 	}
1318 	spin_unlock(&hugetlb_lock);
1319 }
1320 
1321 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1322 {
1323 	INIT_LIST_HEAD(&page->lru);
1324 	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1325 	spin_lock(&hugetlb_lock);
1326 	set_hugetlb_cgroup(page, NULL);
1327 	h->nr_huge_pages++;
1328 	h->nr_huge_pages_node[nid]++;
1329 	spin_unlock(&hugetlb_lock);
1330 }
1331 
1332 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1333 {
1334 	int i;
1335 	int nr_pages = 1 << order;
1336 	struct page *p = page + 1;
1337 
1338 	/* we rely on prep_new_huge_page to set the destructor */
1339 	set_compound_order(page, order);
1340 	__ClearPageReserved(page);
1341 	__SetPageHead(page);
1342 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1343 		/*
1344 		 * For gigantic hugepages allocated through bootmem at
1345 		 * boot, it's safer to be consistent with the not-gigantic
1346 		 * hugepages and clear the PG_reserved bit from all tail pages
1347 		 * too.  Otherwse drivers using get_user_pages() to access tail
1348 		 * pages may get the reference counting wrong if they see
1349 		 * PG_reserved set on a tail page (despite the head page not
1350 		 * having PG_reserved set).  Enforcing this consistency between
1351 		 * head and tail pages allows drivers to optimize away a check
1352 		 * on the head page when they need know if put_page() is needed
1353 		 * after get_user_pages().
1354 		 */
1355 		__ClearPageReserved(p);
1356 		set_page_count(p, 0);
1357 		set_compound_head(p, page);
1358 	}
1359 	atomic_set(compound_mapcount_ptr(page), -1);
1360 }
1361 
1362 /*
1363  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1364  * transparent huge pages.  See the PageTransHuge() documentation for more
1365  * details.
1366  */
1367 int PageHuge(struct page *page)
1368 {
1369 	if (!PageCompound(page))
1370 		return 0;
1371 
1372 	page = compound_head(page);
1373 	return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1374 }
1375 EXPORT_SYMBOL_GPL(PageHuge);
1376 
1377 /*
1378  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1379  * normal or transparent huge pages.
1380  */
1381 int PageHeadHuge(struct page *page_head)
1382 {
1383 	if (!PageHead(page_head))
1384 		return 0;
1385 
1386 	return get_compound_page_dtor(page_head) == free_huge_page;
1387 }
1388 
1389 pgoff_t __basepage_index(struct page *page)
1390 {
1391 	struct page *page_head = compound_head(page);
1392 	pgoff_t index = page_index(page_head);
1393 	unsigned long compound_idx;
1394 
1395 	if (!PageHuge(page_head))
1396 		return page_index(page);
1397 
1398 	if (compound_order(page_head) >= MAX_ORDER)
1399 		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1400 	else
1401 		compound_idx = page - page_head;
1402 
1403 	return (index << compound_order(page_head)) + compound_idx;
1404 }
1405 
1406 static struct page *alloc_buddy_huge_page(struct hstate *h,
1407 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
1408 		nodemask_t *node_alloc_noretry)
1409 {
1410 	int order = huge_page_order(h);
1411 	struct page *page;
1412 	bool alloc_try_hard = true;
1413 
1414 	/*
1415 	 * By default we always try hard to allocate the page with
1416 	 * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
1417 	 * a loop (to adjust global huge page counts) and previous allocation
1418 	 * failed, do not continue to try hard on the same node.  Use the
1419 	 * node_alloc_noretry bitmap to manage this state information.
1420 	 */
1421 	if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1422 		alloc_try_hard = false;
1423 	gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1424 	if (alloc_try_hard)
1425 		gfp_mask |= __GFP_RETRY_MAYFAIL;
1426 	if (nid == NUMA_NO_NODE)
1427 		nid = numa_mem_id();
1428 	page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1429 	if (page)
1430 		__count_vm_event(HTLB_BUDDY_PGALLOC);
1431 	else
1432 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1433 
1434 	/*
1435 	 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1436 	 * indicates an overall state change.  Clear bit so that we resume
1437 	 * normal 'try hard' allocations.
1438 	 */
1439 	if (node_alloc_noretry && page && !alloc_try_hard)
1440 		node_clear(nid, *node_alloc_noretry);
1441 
1442 	/*
1443 	 * If we tried hard to get a page but failed, set bit so that
1444 	 * subsequent attempts will not try as hard until there is an
1445 	 * overall state change.
1446 	 */
1447 	if (node_alloc_noretry && !page && alloc_try_hard)
1448 		node_set(nid, *node_alloc_noretry);
1449 
1450 	return page;
1451 }
1452 
1453 /*
1454  * Common helper to allocate a fresh hugetlb page. All specific allocators
1455  * should use this function to get new hugetlb pages
1456  */
1457 static struct page *alloc_fresh_huge_page(struct hstate *h,
1458 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
1459 		nodemask_t *node_alloc_noretry)
1460 {
1461 	struct page *page;
1462 
1463 	if (hstate_is_gigantic(h))
1464 		page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1465 	else
1466 		page = alloc_buddy_huge_page(h, gfp_mask,
1467 				nid, nmask, node_alloc_noretry);
1468 	if (!page)
1469 		return NULL;
1470 
1471 	if (hstate_is_gigantic(h))
1472 		prep_compound_gigantic_page(page, huge_page_order(h));
1473 	prep_new_huge_page(h, page, page_to_nid(page));
1474 
1475 	return page;
1476 }
1477 
1478 /*
1479  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1480  * manner.
1481  */
1482 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1483 				nodemask_t *node_alloc_noretry)
1484 {
1485 	struct page *page;
1486 	int nr_nodes, node;
1487 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1488 
1489 	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1490 		page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1491 						node_alloc_noretry);
1492 		if (page)
1493 			break;
1494 	}
1495 
1496 	if (!page)
1497 		return 0;
1498 
1499 	put_page(page); /* free it into the hugepage allocator */
1500 
1501 	return 1;
1502 }
1503 
1504 /*
1505  * Free huge page from pool from next node to free.
1506  * Attempt to keep persistent huge pages more or less
1507  * balanced over allowed nodes.
1508  * Called with hugetlb_lock locked.
1509  */
1510 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1511 							 bool acct_surplus)
1512 {
1513 	int nr_nodes, node;
1514 	int ret = 0;
1515 
1516 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1517 		/*
1518 		 * If we're returning unused surplus pages, only examine
1519 		 * nodes with surplus pages.
1520 		 */
1521 		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1522 		    !list_empty(&h->hugepage_freelists[node])) {
1523 			struct page *page =
1524 				list_entry(h->hugepage_freelists[node].next,
1525 					  struct page, lru);
1526 			list_del(&page->lru);
1527 			h->free_huge_pages--;
1528 			h->free_huge_pages_node[node]--;
1529 			if (acct_surplus) {
1530 				h->surplus_huge_pages--;
1531 				h->surplus_huge_pages_node[node]--;
1532 			}
1533 			update_and_free_page(h, page);
1534 			ret = 1;
1535 			break;
1536 		}
1537 	}
1538 
1539 	return ret;
1540 }
1541 
1542 /*
1543  * Dissolve a given free hugepage into free buddy pages. This function does
1544  * nothing for in-use hugepages and non-hugepages.
1545  * This function returns values like below:
1546  *
1547  *  -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1548  *          (allocated or reserved.)
1549  *       0: successfully dissolved free hugepages or the page is not a
1550  *          hugepage (considered as already dissolved)
1551  */
1552 int dissolve_free_huge_page(struct page *page)
1553 {
1554 	int rc = -EBUSY;
1555 
1556 	/* Not to disrupt normal path by vainly holding hugetlb_lock */
1557 	if (!PageHuge(page))
1558 		return 0;
1559 
1560 	spin_lock(&hugetlb_lock);
1561 	if (!PageHuge(page)) {
1562 		rc = 0;
1563 		goto out;
1564 	}
1565 
1566 	if (!page_count(page)) {
1567 		struct page *head = compound_head(page);
1568 		struct hstate *h = page_hstate(head);
1569 		int nid = page_to_nid(head);
1570 		if (h->free_huge_pages - h->resv_huge_pages == 0)
1571 			goto out;
1572 		/*
1573 		 * Move PageHWPoison flag from head page to the raw error page,
1574 		 * which makes any subpages rather than the error page reusable.
1575 		 */
1576 		if (PageHWPoison(head) && page != head) {
1577 			SetPageHWPoison(page);
1578 			ClearPageHWPoison(head);
1579 		}
1580 		list_del(&head->lru);
1581 		h->free_huge_pages--;
1582 		h->free_huge_pages_node[nid]--;
1583 		h->max_huge_pages--;
1584 		update_and_free_page(h, head);
1585 		rc = 0;
1586 	}
1587 out:
1588 	spin_unlock(&hugetlb_lock);
1589 	return rc;
1590 }
1591 
1592 /*
1593  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1594  * make specified memory blocks removable from the system.
1595  * Note that this will dissolve a free gigantic hugepage completely, if any
1596  * part of it lies within the given range.
1597  * Also note that if dissolve_free_huge_page() returns with an error, all
1598  * free hugepages that were dissolved before that error are lost.
1599  */
1600 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1601 {
1602 	unsigned long pfn;
1603 	struct page *page;
1604 	int rc = 0;
1605 
1606 	if (!hugepages_supported())
1607 		return rc;
1608 
1609 	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1610 		page = pfn_to_page(pfn);
1611 		rc = dissolve_free_huge_page(page);
1612 		if (rc)
1613 			break;
1614 	}
1615 
1616 	return rc;
1617 }
1618 
1619 /*
1620  * Allocates a fresh surplus page from the page allocator.
1621  */
1622 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1623 		int nid, nodemask_t *nmask)
1624 {
1625 	struct page *page = NULL;
1626 
1627 	if (hstate_is_gigantic(h))
1628 		return NULL;
1629 
1630 	spin_lock(&hugetlb_lock);
1631 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1632 		goto out_unlock;
1633 	spin_unlock(&hugetlb_lock);
1634 
1635 	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1636 	if (!page)
1637 		return NULL;
1638 
1639 	spin_lock(&hugetlb_lock);
1640 	/*
1641 	 * We could have raced with the pool size change.
1642 	 * Double check that and simply deallocate the new page
1643 	 * if we would end up overcommiting the surpluses. Abuse
1644 	 * temporary page to workaround the nasty free_huge_page
1645 	 * codeflow
1646 	 */
1647 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1648 		SetPageHugeTemporary(page);
1649 		spin_unlock(&hugetlb_lock);
1650 		put_page(page);
1651 		return NULL;
1652 	} else {
1653 		h->surplus_huge_pages++;
1654 		h->surplus_huge_pages_node[page_to_nid(page)]++;
1655 	}
1656 
1657 out_unlock:
1658 	spin_unlock(&hugetlb_lock);
1659 
1660 	return page;
1661 }
1662 
1663 struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1664 				     int nid, nodemask_t *nmask)
1665 {
1666 	struct page *page;
1667 
1668 	if (hstate_is_gigantic(h))
1669 		return NULL;
1670 
1671 	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1672 	if (!page)
1673 		return NULL;
1674 
1675 	/*
1676 	 * We do not account these pages as surplus because they are only
1677 	 * temporary and will be released properly on the last reference
1678 	 */
1679 	SetPageHugeTemporary(page);
1680 
1681 	return page;
1682 }
1683 
1684 /*
1685  * Use the VMA's mpolicy to allocate a huge page from the buddy.
1686  */
1687 static
1688 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1689 		struct vm_area_struct *vma, unsigned long addr)
1690 {
1691 	struct page *page;
1692 	struct mempolicy *mpol;
1693 	gfp_t gfp_mask = htlb_alloc_mask(h);
1694 	int nid;
1695 	nodemask_t *nodemask;
1696 
1697 	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1698 	page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1699 	mpol_cond_put(mpol);
1700 
1701 	return page;
1702 }
1703 
1704 /* page migration callback function */
1705 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1706 {
1707 	gfp_t gfp_mask = htlb_alloc_mask(h);
1708 	struct page *page = NULL;
1709 
1710 	if (nid != NUMA_NO_NODE)
1711 		gfp_mask |= __GFP_THISNODE;
1712 
1713 	spin_lock(&hugetlb_lock);
1714 	if (h->free_huge_pages - h->resv_huge_pages > 0)
1715 		page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL);
1716 	spin_unlock(&hugetlb_lock);
1717 
1718 	if (!page)
1719 		page = alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
1720 
1721 	return page;
1722 }
1723 
1724 /* page migration callback function */
1725 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1726 		nodemask_t *nmask)
1727 {
1728 	gfp_t gfp_mask = htlb_alloc_mask(h);
1729 
1730 	spin_lock(&hugetlb_lock);
1731 	if (h->free_huge_pages - h->resv_huge_pages > 0) {
1732 		struct page *page;
1733 
1734 		page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1735 		if (page) {
1736 			spin_unlock(&hugetlb_lock);
1737 			return page;
1738 		}
1739 	}
1740 	spin_unlock(&hugetlb_lock);
1741 
1742 	return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
1743 }
1744 
1745 /* mempolicy aware migration callback */
1746 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1747 		unsigned long address)
1748 {
1749 	struct mempolicy *mpol;
1750 	nodemask_t *nodemask;
1751 	struct page *page;
1752 	gfp_t gfp_mask;
1753 	int node;
1754 
1755 	gfp_mask = htlb_alloc_mask(h);
1756 	node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1757 	page = alloc_huge_page_nodemask(h, node, nodemask);
1758 	mpol_cond_put(mpol);
1759 
1760 	return page;
1761 }
1762 
1763 /*
1764  * Increase the hugetlb pool such that it can accommodate a reservation
1765  * of size 'delta'.
1766  */
1767 static int gather_surplus_pages(struct hstate *h, int delta)
1768 {
1769 	struct list_head surplus_list;
1770 	struct page *page, *tmp;
1771 	int ret, i;
1772 	int needed, allocated;
1773 	bool alloc_ok = true;
1774 
1775 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1776 	if (needed <= 0) {
1777 		h->resv_huge_pages += delta;
1778 		return 0;
1779 	}
1780 
1781 	allocated = 0;
1782 	INIT_LIST_HEAD(&surplus_list);
1783 
1784 	ret = -ENOMEM;
1785 retry:
1786 	spin_unlock(&hugetlb_lock);
1787 	for (i = 0; i < needed; i++) {
1788 		page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
1789 				NUMA_NO_NODE, NULL);
1790 		if (!page) {
1791 			alloc_ok = false;
1792 			break;
1793 		}
1794 		list_add(&page->lru, &surplus_list);
1795 		cond_resched();
1796 	}
1797 	allocated += i;
1798 
1799 	/*
1800 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
1801 	 * because either resv_huge_pages or free_huge_pages may have changed.
1802 	 */
1803 	spin_lock(&hugetlb_lock);
1804 	needed = (h->resv_huge_pages + delta) -
1805 			(h->free_huge_pages + allocated);
1806 	if (needed > 0) {
1807 		if (alloc_ok)
1808 			goto retry;
1809 		/*
1810 		 * We were not able to allocate enough pages to
1811 		 * satisfy the entire reservation so we free what
1812 		 * we've allocated so far.
1813 		 */
1814 		goto free;
1815 	}
1816 	/*
1817 	 * The surplus_list now contains _at_least_ the number of extra pages
1818 	 * needed to accommodate the reservation.  Add the appropriate number
1819 	 * of pages to the hugetlb pool and free the extras back to the buddy
1820 	 * allocator.  Commit the entire reservation here to prevent another
1821 	 * process from stealing the pages as they are added to the pool but
1822 	 * before they are reserved.
1823 	 */
1824 	needed += allocated;
1825 	h->resv_huge_pages += delta;
1826 	ret = 0;
1827 
1828 	/* Free the needed pages to the hugetlb pool */
1829 	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1830 		if ((--needed) < 0)
1831 			break;
1832 		/*
1833 		 * This page is now managed by the hugetlb allocator and has
1834 		 * no users -- drop the buddy allocator's reference.
1835 		 */
1836 		put_page_testzero(page);
1837 		VM_BUG_ON_PAGE(page_count(page), page);
1838 		enqueue_huge_page(h, page);
1839 	}
1840 free:
1841 	spin_unlock(&hugetlb_lock);
1842 
1843 	/* Free unnecessary surplus pages to the buddy allocator */
1844 	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1845 		put_page(page);
1846 	spin_lock(&hugetlb_lock);
1847 
1848 	return ret;
1849 }
1850 
1851 /*
1852  * This routine has two main purposes:
1853  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1854  *    in unused_resv_pages.  This corresponds to the prior adjustments made
1855  *    to the associated reservation map.
1856  * 2) Free any unused surplus pages that may have been allocated to satisfy
1857  *    the reservation.  As many as unused_resv_pages may be freed.
1858  *
1859  * Called with hugetlb_lock held.  However, the lock could be dropped (and
1860  * reacquired) during calls to cond_resched_lock.  Whenever dropping the lock,
1861  * we must make sure nobody else can claim pages we are in the process of
1862  * freeing.  Do this by ensuring resv_huge_page always is greater than the
1863  * number of huge pages we plan to free when dropping the lock.
1864  */
1865 static void return_unused_surplus_pages(struct hstate *h,
1866 					unsigned long unused_resv_pages)
1867 {
1868 	unsigned long nr_pages;
1869 
1870 	/* Cannot return gigantic pages currently */
1871 	if (hstate_is_gigantic(h))
1872 		goto out;
1873 
1874 	/*
1875 	 * Part (or even all) of the reservation could have been backed
1876 	 * by pre-allocated pages. Only free surplus pages.
1877 	 */
1878 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1879 
1880 	/*
1881 	 * We want to release as many surplus pages as possible, spread
1882 	 * evenly across all nodes with memory. Iterate across these nodes
1883 	 * until we can no longer free unreserved surplus pages. This occurs
1884 	 * when the nodes with surplus pages have no free pages.
1885 	 * free_pool_huge_page() will balance the the freed pages across the
1886 	 * on-line nodes with memory and will handle the hstate accounting.
1887 	 *
1888 	 * Note that we decrement resv_huge_pages as we free the pages.  If
1889 	 * we drop the lock, resv_huge_pages will still be sufficiently large
1890 	 * to cover subsequent pages we may free.
1891 	 */
1892 	while (nr_pages--) {
1893 		h->resv_huge_pages--;
1894 		unused_resv_pages--;
1895 		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1896 			goto out;
1897 		cond_resched_lock(&hugetlb_lock);
1898 	}
1899 
1900 out:
1901 	/* Fully uncommit the reservation */
1902 	h->resv_huge_pages -= unused_resv_pages;
1903 }
1904 
1905 
1906 /*
1907  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1908  * are used by the huge page allocation routines to manage reservations.
1909  *
1910  * vma_needs_reservation is called to determine if the huge page at addr
1911  * within the vma has an associated reservation.  If a reservation is
1912  * needed, the value 1 is returned.  The caller is then responsible for
1913  * managing the global reservation and subpool usage counts.  After
1914  * the huge page has been allocated, vma_commit_reservation is called
1915  * to add the page to the reservation map.  If the page allocation fails,
1916  * the reservation must be ended instead of committed.  vma_end_reservation
1917  * is called in such cases.
1918  *
1919  * In the normal case, vma_commit_reservation returns the same value
1920  * as the preceding vma_needs_reservation call.  The only time this
1921  * is not the case is if a reserve map was changed between calls.  It
1922  * is the responsibility of the caller to notice the difference and
1923  * take appropriate action.
1924  *
1925  * vma_add_reservation is used in error paths where a reservation must
1926  * be restored when a newly allocated huge page must be freed.  It is
1927  * to be called after calling vma_needs_reservation to determine if a
1928  * reservation exists.
1929  */
1930 enum vma_resv_mode {
1931 	VMA_NEEDS_RESV,
1932 	VMA_COMMIT_RESV,
1933 	VMA_END_RESV,
1934 	VMA_ADD_RESV,
1935 };
1936 static long __vma_reservation_common(struct hstate *h,
1937 				struct vm_area_struct *vma, unsigned long addr,
1938 				enum vma_resv_mode mode)
1939 {
1940 	struct resv_map *resv;
1941 	pgoff_t idx;
1942 	long ret;
1943 
1944 	resv = vma_resv_map(vma);
1945 	if (!resv)
1946 		return 1;
1947 
1948 	idx = vma_hugecache_offset(h, vma, addr);
1949 	switch (mode) {
1950 	case VMA_NEEDS_RESV:
1951 		ret = region_chg(resv, idx, idx + 1);
1952 		break;
1953 	case VMA_COMMIT_RESV:
1954 		ret = region_add(resv, idx, idx + 1);
1955 		break;
1956 	case VMA_END_RESV:
1957 		region_abort(resv, idx, idx + 1);
1958 		ret = 0;
1959 		break;
1960 	case VMA_ADD_RESV:
1961 		if (vma->vm_flags & VM_MAYSHARE)
1962 			ret = region_add(resv, idx, idx + 1);
1963 		else {
1964 			region_abort(resv, idx, idx + 1);
1965 			ret = region_del(resv, idx, idx + 1);
1966 		}
1967 		break;
1968 	default:
1969 		BUG();
1970 	}
1971 
1972 	if (vma->vm_flags & VM_MAYSHARE)
1973 		return ret;
1974 	else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1975 		/*
1976 		 * In most cases, reserves always exist for private mappings.
1977 		 * However, a file associated with mapping could have been
1978 		 * hole punched or truncated after reserves were consumed.
1979 		 * As subsequent fault on such a range will not use reserves.
1980 		 * Subtle - The reserve map for private mappings has the
1981 		 * opposite meaning than that of shared mappings.  If NO
1982 		 * entry is in the reserve map, it means a reservation exists.
1983 		 * If an entry exists in the reserve map, it means the
1984 		 * reservation has already been consumed.  As a result, the
1985 		 * return value of this routine is the opposite of the
1986 		 * value returned from reserve map manipulation routines above.
1987 		 */
1988 		if (ret)
1989 			return 0;
1990 		else
1991 			return 1;
1992 	}
1993 	else
1994 		return ret < 0 ? ret : 0;
1995 }
1996 
1997 static long vma_needs_reservation(struct hstate *h,
1998 			struct vm_area_struct *vma, unsigned long addr)
1999 {
2000 	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2001 }
2002 
2003 static long vma_commit_reservation(struct hstate *h,
2004 			struct vm_area_struct *vma, unsigned long addr)
2005 {
2006 	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2007 }
2008 
2009 static void vma_end_reservation(struct hstate *h,
2010 			struct vm_area_struct *vma, unsigned long addr)
2011 {
2012 	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2013 }
2014 
2015 static long vma_add_reservation(struct hstate *h,
2016 			struct vm_area_struct *vma, unsigned long addr)
2017 {
2018 	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2019 }
2020 
2021 /*
2022  * This routine is called to restore a reservation on error paths.  In the
2023  * specific error paths, a huge page was allocated (via alloc_huge_page)
2024  * and is about to be freed.  If a reservation for the page existed,
2025  * alloc_huge_page would have consumed the reservation and set PagePrivate
2026  * in the newly allocated page.  When the page is freed via free_huge_page,
2027  * the global reservation count will be incremented if PagePrivate is set.
2028  * However, free_huge_page can not adjust the reserve map.  Adjust the
2029  * reserve map here to be consistent with global reserve count adjustments
2030  * to be made by free_huge_page.
2031  */
2032 static void restore_reserve_on_error(struct hstate *h,
2033 			struct vm_area_struct *vma, unsigned long address,
2034 			struct page *page)
2035 {
2036 	if (unlikely(PagePrivate(page))) {
2037 		long rc = vma_needs_reservation(h, vma, address);
2038 
2039 		if (unlikely(rc < 0)) {
2040 			/*
2041 			 * Rare out of memory condition in reserve map
2042 			 * manipulation.  Clear PagePrivate so that
2043 			 * global reserve count will not be incremented
2044 			 * by free_huge_page.  This will make it appear
2045 			 * as though the reservation for this page was
2046 			 * consumed.  This may prevent the task from
2047 			 * faulting in the page at a later time.  This
2048 			 * is better than inconsistent global huge page
2049 			 * accounting of reserve counts.
2050 			 */
2051 			ClearPagePrivate(page);
2052 		} else if (rc) {
2053 			rc = vma_add_reservation(h, vma, address);
2054 			if (unlikely(rc < 0))
2055 				/*
2056 				 * See above comment about rare out of
2057 				 * memory condition.
2058 				 */
2059 				ClearPagePrivate(page);
2060 		} else
2061 			vma_end_reservation(h, vma, address);
2062 	}
2063 }
2064 
2065 struct page *alloc_huge_page(struct vm_area_struct *vma,
2066 				    unsigned long addr, int avoid_reserve)
2067 {
2068 	struct hugepage_subpool *spool = subpool_vma(vma);
2069 	struct hstate *h = hstate_vma(vma);
2070 	struct page *page;
2071 	long map_chg, map_commit;
2072 	long gbl_chg;
2073 	int ret, idx;
2074 	struct hugetlb_cgroup *h_cg;
2075 
2076 	idx = hstate_index(h);
2077 	/*
2078 	 * Examine the region/reserve map to determine if the process
2079 	 * has a reservation for the page to be allocated.  A return
2080 	 * code of zero indicates a reservation exists (no change).
2081 	 */
2082 	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2083 	if (map_chg < 0)
2084 		return ERR_PTR(-ENOMEM);
2085 
2086 	/*
2087 	 * Processes that did not create the mapping will have no
2088 	 * reserves as indicated by the region/reserve map. Check
2089 	 * that the allocation will not exceed the subpool limit.
2090 	 * Allocations for MAP_NORESERVE mappings also need to be
2091 	 * checked against any subpool limit.
2092 	 */
2093 	if (map_chg || avoid_reserve) {
2094 		gbl_chg = hugepage_subpool_get_pages(spool, 1);
2095 		if (gbl_chg < 0) {
2096 			vma_end_reservation(h, vma, addr);
2097 			return ERR_PTR(-ENOSPC);
2098 		}
2099 
2100 		/*
2101 		 * Even though there was no reservation in the region/reserve
2102 		 * map, there could be reservations associated with the
2103 		 * subpool that can be used.  This would be indicated if the
2104 		 * return value of hugepage_subpool_get_pages() is zero.
2105 		 * However, if avoid_reserve is specified we still avoid even
2106 		 * the subpool reservations.
2107 		 */
2108 		if (avoid_reserve)
2109 			gbl_chg = 1;
2110 	}
2111 
2112 	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2113 	if (ret)
2114 		goto out_subpool_put;
2115 
2116 	spin_lock(&hugetlb_lock);
2117 	/*
2118 	 * glb_chg is passed to indicate whether or not a page must be taken
2119 	 * from the global free pool (global change).  gbl_chg == 0 indicates
2120 	 * a reservation exists for the allocation.
2121 	 */
2122 	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2123 	if (!page) {
2124 		spin_unlock(&hugetlb_lock);
2125 		page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2126 		if (!page)
2127 			goto out_uncharge_cgroup;
2128 		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2129 			SetPagePrivate(page);
2130 			h->resv_huge_pages--;
2131 		}
2132 		spin_lock(&hugetlb_lock);
2133 		list_move(&page->lru, &h->hugepage_activelist);
2134 		/* Fall through */
2135 	}
2136 	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2137 	spin_unlock(&hugetlb_lock);
2138 
2139 	set_page_private(page, (unsigned long)spool);
2140 
2141 	map_commit = vma_commit_reservation(h, vma, addr);
2142 	if (unlikely(map_chg > map_commit)) {
2143 		/*
2144 		 * The page was added to the reservation map between
2145 		 * vma_needs_reservation and vma_commit_reservation.
2146 		 * This indicates a race with hugetlb_reserve_pages.
2147 		 * Adjust for the subpool count incremented above AND
2148 		 * in hugetlb_reserve_pages for the same page.  Also,
2149 		 * the reservation count added in hugetlb_reserve_pages
2150 		 * no longer applies.
2151 		 */
2152 		long rsv_adjust;
2153 
2154 		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2155 		hugetlb_acct_memory(h, -rsv_adjust);
2156 	}
2157 	return page;
2158 
2159 out_uncharge_cgroup:
2160 	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2161 out_subpool_put:
2162 	if (map_chg || avoid_reserve)
2163 		hugepage_subpool_put_pages(spool, 1);
2164 	vma_end_reservation(h, vma, addr);
2165 	return ERR_PTR(-ENOSPC);
2166 }
2167 
2168 int alloc_bootmem_huge_page(struct hstate *h)
2169 	__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2170 int __alloc_bootmem_huge_page(struct hstate *h)
2171 {
2172 	struct huge_bootmem_page *m;
2173 	int nr_nodes, node;
2174 
2175 	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2176 		void *addr;
2177 
2178 		addr = memblock_alloc_try_nid_raw(
2179 				huge_page_size(h), huge_page_size(h),
2180 				0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2181 		if (addr) {
2182 			/*
2183 			 * Use the beginning of the huge page to store the
2184 			 * huge_bootmem_page struct (until gather_bootmem
2185 			 * puts them into the mem_map).
2186 			 */
2187 			m = addr;
2188 			goto found;
2189 		}
2190 	}
2191 	return 0;
2192 
2193 found:
2194 	BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2195 	/* Put them into a private list first because mem_map is not up yet */
2196 	INIT_LIST_HEAD(&m->list);
2197 	list_add(&m->list, &huge_boot_pages);
2198 	m->hstate = h;
2199 	return 1;
2200 }
2201 
2202 static void __init prep_compound_huge_page(struct page *page,
2203 		unsigned int order)
2204 {
2205 	if (unlikely(order > (MAX_ORDER - 1)))
2206 		prep_compound_gigantic_page(page, order);
2207 	else
2208 		prep_compound_page(page, order);
2209 }
2210 
2211 /* Put bootmem huge pages into the standard lists after mem_map is up */
2212 static void __init gather_bootmem_prealloc(void)
2213 {
2214 	struct huge_bootmem_page *m;
2215 
2216 	list_for_each_entry(m, &huge_boot_pages, list) {
2217 		struct page *page = virt_to_page(m);
2218 		struct hstate *h = m->hstate;
2219 
2220 		WARN_ON(page_count(page) != 1);
2221 		prep_compound_huge_page(page, h->order);
2222 		WARN_ON(PageReserved(page));
2223 		prep_new_huge_page(h, page, page_to_nid(page));
2224 		put_page(page); /* free it into the hugepage allocator */
2225 
2226 		/*
2227 		 * If we had gigantic hugepages allocated at boot time, we need
2228 		 * to restore the 'stolen' pages to totalram_pages in order to
2229 		 * fix confusing memory reports from free(1) and another
2230 		 * side-effects, like CommitLimit going negative.
2231 		 */
2232 		if (hstate_is_gigantic(h))
2233 			adjust_managed_page_count(page, 1 << h->order);
2234 		cond_resched();
2235 	}
2236 }
2237 
2238 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2239 {
2240 	unsigned long i;
2241 	nodemask_t *node_alloc_noretry;
2242 
2243 	if (!hstate_is_gigantic(h)) {
2244 		/*
2245 		 * Bit mask controlling how hard we retry per-node allocations.
2246 		 * Ignore errors as lower level routines can deal with
2247 		 * node_alloc_noretry == NULL.  If this kmalloc fails at boot
2248 		 * time, we are likely in bigger trouble.
2249 		 */
2250 		node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2251 						GFP_KERNEL);
2252 	} else {
2253 		/* allocations done at boot time */
2254 		node_alloc_noretry = NULL;
2255 	}
2256 
2257 	/* bit mask controlling how hard we retry per-node allocations */
2258 	if (node_alloc_noretry)
2259 		nodes_clear(*node_alloc_noretry);
2260 
2261 	for (i = 0; i < h->max_huge_pages; ++i) {
2262 		if (hstate_is_gigantic(h)) {
2263 			if (!alloc_bootmem_huge_page(h))
2264 				break;
2265 		} else if (!alloc_pool_huge_page(h,
2266 					 &node_states[N_MEMORY],
2267 					 node_alloc_noretry))
2268 			break;
2269 		cond_resched();
2270 	}
2271 	if (i < h->max_huge_pages) {
2272 		char buf[32];
2273 
2274 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2275 		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
2276 			h->max_huge_pages, buf, i);
2277 		h->max_huge_pages = i;
2278 	}
2279 
2280 	kfree(node_alloc_noretry);
2281 }
2282 
2283 static void __init hugetlb_init_hstates(void)
2284 {
2285 	struct hstate *h;
2286 
2287 	for_each_hstate(h) {
2288 		if (minimum_order > huge_page_order(h))
2289 			minimum_order = huge_page_order(h);
2290 
2291 		/* oversize hugepages were init'ed in early boot */
2292 		if (!hstate_is_gigantic(h))
2293 			hugetlb_hstate_alloc_pages(h);
2294 	}
2295 	VM_BUG_ON(minimum_order == UINT_MAX);
2296 }
2297 
2298 static void __init report_hugepages(void)
2299 {
2300 	struct hstate *h;
2301 
2302 	for_each_hstate(h) {
2303 		char buf[32];
2304 
2305 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2306 		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2307 			buf, h->free_huge_pages);
2308 	}
2309 }
2310 
2311 #ifdef CONFIG_HIGHMEM
2312 static void try_to_free_low(struct hstate *h, unsigned long count,
2313 						nodemask_t *nodes_allowed)
2314 {
2315 	int i;
2316 
2317 	if (hstate_is_gigantic(h))
2318 		return;
2319 
2320 	for_each_node_mask(i, *nodes_allowed) {
2321 		struct page *page, *next;
2322 		struct list_head *freel = &h->hugepage_freelists[i];
2323 		list_for_each_entry_safe(page, next, freel, lru) {
2324 			if (count >= h->nr_huge_pages)
2325 				return;
2326 			if (PageHighMem(page))
2327 				continue;
2328 			list_del(&page->lru);
2329 			update_and_free_page(h, page);
2330 			h->free_huge_pages--;
2331 			h->free_huge_pages_node[page_to_nid(page)]--;
2332 		}
2333 	}
2334 }
2335 #else
2336 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2337 						nodemask_t *nodes_allowed)
2338 {
2339 }
2340 #endif
2341 
2342 /*
2343  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2344  * balanced by operating on them in a round-robin fashion.
2345  * Returns 1 if an adjustment was made.
2346  */
2347 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2348 				int delta)
2349 {
2350 	int nr_nodes, node;
2351 
2352 	VM_BUG_ON(delta != -1 && delta != 1);
2353 
2354 	if (delta < 0) {
2355 		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2356 			if (h->surplus_huge_pages_node[node])
2357 				goto found;
2358 		}
2359 	} else {
2360 		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2361 			if (h->surplus_huge_pages_node[node] <
2362 					h->nr_huge_pages_node[node])
2363 				goto found;
2364 		}
2365 	}
2366 	return 0;
2367 
2368 found:
2369 	h->surplus_huge_pages += delta;
2370 	h->surplus_huge_pages_node[node] += delta;
2371 	return 1;
2372 }
2373 
2374 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2375 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
2376 			      nodemask_t *nodes_allowed)
2377 {
2378 	unsigned long min_count, ret;
2379 	NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
2380 
2381 	/*
2382 	 * Bit mask controlling how hard we retry per-node allocations.
2383 	 * If we can not allocate the bit mask, do not attempt to allocate
2384 	 * the requested huge pages.
2385 	 */
2386 	if (node_alloc_noretry)
2387 		nodes_clear(*node_alloc_noretry);
2388 	else
2389 		return -ENOMEM;
2390 
2391 	spin_lock(&hugetlb_lock);
2392 
2393 	/*
2394 	 * Check for a node specific request.
2395 	 * Changing node specific huge page count may require a corresponding
2396 	 * change to the global count.  In any case, the passed node mask
2397 	 * (nodes_allowed) will restrict alloc/free to the specified node.
2398 	 */
2399 	if (nid != NUMA_NO_NODE) {
2400 		unsigned long old_count = count;
2401 
2402 		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2403 		/*
2404 		 * User may have specified a large count value which caused the
2405 		 * above calculation to overflow.  In this case, they wanted
2406 		 * to allocate as many huge pages as possible.  Set count to
2407 		 * largest possible value to align with their intention.
2408 		 */
2409 		if (count < old_count)
2410 			count = ULONG_MAX;
2411 	}
2412 
2413 	/*
2414 	 * Gigantic pages runtime allocation depend on the capability for large
2415 	 * page range allocation.
2416 	 * If the system does not provide this feature, return an error when
2417 	 * the user tries to allocate gigantic pages but let the user free the
2418 	 * boottime allocated gigantic pages.
2419 	 */
2420 	if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2421 		if (count > persistent_huge_pages(h)) {
2422 			spin_unlock(&hugetlb_lock);
2423 			NODEMASK_FREE(node_alloc_noretry);
2424 			return -EINVAL;
2425 		}
2426 		/* Fall through to decrease pool */
2427 	}
2428 
2429 	/*
2430 	 * Increase the pool size
2431 	 * First take pages out of surplus state.  Then make up the
2432 	 * remaining difference by allocating fresh huge pages.
2433 	 *
2434 	 * We might race with alloc_surplus_huge_page() here and be unable
2435 	 * to convert a surplus huge page to a normal huge page. That is
2436 	 * not critical, though, it just means the overall size of the
2437 	 * pool might be one hugepage larger than it needs to be, but
2438 	 * within all the constraints specified by the sysctls.
2439 	 */
2440 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2441 		if (!adjust_pool_surplus(h, nodes_allowed, -1))
2442 			break;
2443 	}
2444 
2445 	while (count > persistent_huge_pages(h)) {
2446 		/*
2447 		 * If this allocation races such that we no longer need the
2448 		 * page, free_huge_page will handle it by freeing the page
2449 		 * and reducing the surplus.
2450 		 */
2451 		spin_unlock(&hugetlb_lock);
2452 
2453 		/* yield cpu to avoid soft lockup */
2454 		cond_resched();
2455 
2456 		ret = alloc_pool_huge_page(h, nodes_allowed,
2457 						node_alloc_noretry);
2458 		spin_lock(&hugetlb_lock);
2459 		if (!ret)
2460 			goto out;
2461 
2462 		/* Bail for signals. Probably ctrl-c from user */
2463 		if (signal_pending(current))
2464 			goto out;
2465 	}
2466 
2467 	/*
2468 	 * Decrease the pool size
2469 	 * First return free pages to the buddy allocator (being careful
2470 	 * to keep enough around to satisfy reservations).  Then place
2471 	 * pages into surplus state as needed so the pool will shrink
2472 	 * to the desired size as pages become free.
2473 	 *
2474 	 * By placing pages into the surplus state independent of the
2475 	 * overcommit value, we are allowing the surplus pool size to
2476 	 * exceed overcommit. There are few sane options here. Since
2477 	 * alloc_surplus_huge_page() is checking the global counter,
2478 	 * though, we'll note that we're not allowed to exceed surplus
2479 	 * and won't grow the pool anywhere else. Not until one of the
2480 	 * sysctls are changed, or the surplus pages go out of use.
2481 	 */
2482 	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2483 	min_count = max(count, min_count);
2484 	try_to_free_low(h, min_count, nodes_allowed);
2485 	while (min_count < persistent_huge_pages(h)) {
2486 		if (!free_pool_huge_page(h, nodes_allowed, 0))
2487 			break;
2488 		cond_resched_lock(&hugetlb_lock);
2489 	}
2490 	while (count < persistent_huge_pages(h)) {
2491 		if (!adjust_pool_surplus(h, nodes_allowed, 1))
2492 			break;
2493 	}
2494 out:
2495 	h->max_huge_pages = persistent_huge_pages(h);
2496 	spin_unlock(&hugetlb_lock);
2497 
2498 	NODEMASK_FREE(node_alloc_noretry);
2499 
2500 	return 0;
2501 }
2502 
2503 #define HSTATE_ATTR_RO(_name) \
2504 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2505 
2506 #define HSTATE_ATTR(_name) \
2507 	static struct kobj_attribute _name##_attr = \
2508 		__ATTR(_name, 0644, _name##_show, _name##_store)
2509 
2510 static struct kobject *hugepages_kobj;
2511 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2512 
2513 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2514 
2515 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2516 {
2517 	int i;
2518 
2519 	for (i = 0; i < HUGE_MAX_HSTATE; i++)
2520 		if (hstate_kobjs[i] == kobj) {
2521 			if (nidp)
2522 				*nidp = NUMA_NO_NODE;
2523 			return &hstates[i];
2524 		}
2525 
2526 	return kobj_to_node_hstate(kobj, nidp);
2527 }
2528 
2529 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2530 					struct kobj_attribute *attr, char *buf)
2531 {
2532 	struct hstate *h;
2533 	unsigned long nr_huge_pages;
2534 	int nid;
2535 
2536 	h = kobj_to_hstate(kobj, &nid);
2537 	if (nid == NUMA_NO_NODE)
2538 		nr_huge_pages = h->nr_huge_pages;
2539 	else
2540 		nr_huge_pages = h->nr_huge_pages_node[nid];
2541 
2542 	return sprintf(buf, "%lu\n", nr_huge_pages);
2543 }
2544 
2545 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2546 					   struct hstate *h, int nid,
2547 					   unsigned long count, size_t len)
2548 {
2549 	int err;
2550 	nodemask_t nodes_allowed, *n_mask;
2551 
2552 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2553 		return -EINVAL;
2554 
2555 	if (nid == NUMA_NO_NODE) {
2556 		/*
2557 		 * global hstate attribute
2558 		 */
2559 		if (!(obey_mempolicy &&
2560 				init_nodemask_of_mempolicy(&nodes_allowed)))
2561 			n_mask = &node_states[N_MEMORY];
2562 		else
2563 			n_mask = &nodes_allowed;
2564 	} else {
2565 		/*
2566 		 * Node specific request.  count adjustment happens in
2567 		 * set_max_huge_pages() after acquiring hugetlb_lock.
2568 		 */
2569 		init_nodemask_of_node(&nodes_allowed, nid);
2570 		n_mask = &nodes_allowed;
2571 	}
2572 
2573 	err = set_max_huge_pages(h, count, nid, n_mask);
2574 
2575 	return err ? err : len;
2576 }
2577 
2578 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2579 					 struct kobject *kobj, const char *buf,
2580 					 size_t len)
2581 {
2582 	struct hstate *h;
2583 	unsigned long count;
2584 	int nid;
2585 	int err;
2586 
2587 	err = kstrtoul(buf, 10, &count);
2588 	if (err)
2589 		return err;
2590 
2591 	h = kobj_to_hstate(kobj, &nid);
2592 	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2593 }
2594 
2595 static ssize_t nr_hugepages_show(struct kobject *kobj,
2596 				       struct kobj_attribute *attr, char *buf)
2597 {
2598 	return nr_hugepages_show_common(kobj, attr, buf);
2599 }
2600 
2601 static ssize_t nr_hugepages_store(struct kobject *kobj,
2602 	       struct kobj_attribute *attr, const char *buf, size_t len)
2603 {
2604 	return nr_hugepages_store_common(false, kobj, buf, len);
2605 }
2606 HSTATE_ATTR(nr_hugepages);
2607 
2608 #ifdef CONFIG_NUMA
2609 
2610 /*
2611  * hstate attribute for optionally mempolicy-based constraint on persistent
2612  * huge page alloc/free.
2613  */
2614 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2615 				       struct kobj_attribute *attr, char *buf)
2616 {
2617 	return nr_hugepages_show_common(kobj, attr, buf);
2618 }
2619 
2620 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2621 	       struct kobj_attribute *attr, const char *buf, size_t len)
2622 {
2623 	return nr_hugepages_store_common(true, kobj, buf, len);
2624 }
2625 HSTATE_ATTR(nr_hugepages_mempolicy);
2626 #endif
2627 
2628 
2629 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2630 					struct kobj_attribute *attr, char *buf)
2631 {
2632 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2633 	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2634 }
2635 
2636 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2637 		struct kobj_attribute *attr, const char *buf, size_t count)
2638 {
2639 	int err;
2640 	unsigned long input;
2641 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2642 
2643 	if (hstate_is_gigantic(h))
2644 		return -EINVAL;
2645 
2646 	err = kstrtoul(buf, 10, &input);
2647 	if (err)
2648 		return err;
2649 
2650 	spin_lock(&hugetlb_lock);
2651 	h->nr_overcommit_huge_pages = input;
2652 	spin_unlock(&hugetlb_lock);
2653 
2654 	return count;
2655 }
2656 HSTATE_ATTR(nr_overcommit_hugepages);
2657 
2658 static ssize_t free_hugepages_show(struct kobject *kobj,
2659 					struct kobj_attribute *attr, char *buf)
2660 {
2661 	struct hstate *h;
2662 	unsigned long free_huge_pages;
2663 	int nid;
2664 
2665 	h = kobj_to_hstate(kobj, &nid);
2666 	if (nid == NUMA_NO_NODE)
2667 		free_huge_pages = h->free_huge_pages;
2668 	else
2669 		free_huge_pages = h->free_huge_pages_node[nid];
2670 
2671 	return sprintf(buf, "%lu\n", free_huge_pages);
2672 }
2673 HSTATE_ATTR_RO(free_hugepages);
2674 
2675 static ssize_t resv_hugepages_show(struct kobject *kobj,
2676 					struct kobj_attribute *attr, char *buf)
2677 {
2678 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2679 	return sprintf(buf, "%lu\n", h->resv_huge_pages);
2680 }
2681 HSTATE_ATTR_RO(resv_hugepages);
2682 
2683 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2684 					struct kobj_attribute *attr, char *buf)
2685 {
2686 	struct hstate *h;
2687 	unsigned long surplus_huge_pages;
2688 	int nid;
2689 
2690 	h = kobj_to_hstate(kobj, &nid);
2691 	if (nid == NUMA_NO_NODE)
2692 		surplus_huge_pages = h->surplus_huge_pages;
2693 	else
2694 		surplus_huge_pages = h->surplus_huge_pages_node[nid];
2695 
2696 	return sprintf(buf, "%lu\n", surplus_huge_pages);
2697 }
2698 HSTATE_ATTR_RO(surplus_hugepages);
2699 
2700 static struct attribute *hstate_attrs[] = {
2701 	&nr_hugepages_attr.attr,
2702 	&nr_overcommit_hugepages_attr.attr,
2703 	&free_hugepages_attr.attr,
2704 	&resv_hugepages_attr.attr,
2705 	&surplus_hugepages_attr.attr,
2706 #ifdef CONFIG_NUMA
2707 	&nr_hugepages_mempolicy_attr.attr,
2708 #endif
2709 	NULL,
2710 };
2711 
2712 static const struct attribute_group hstate_attr_group = {
2713 	.attrs = hstate_attrs,
2714 };
2715 
2716 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2717 				    struct kobject **hstate_kobjs,
2718 				    const struct attribute_group *hstate_attr_group)
2719 {
2720 	int retval;
2721 	int hi = hstate_index(h);
2722 
2723 	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2724 	if (!hstate_kobjs[hi])
2725 		return -ENOMEM;
2726 
2727 	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2728 	if (retval)
2729 		kobject_put(hstate_kobjs[hi]);
2730 
2731 	return retval;
2732 }
2733 
2734 static void __init hugetlb_sysfs_init(void)
2735 {
2736 	struct hstate *h;
2737 	int err;
2738 
2739 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2740 	if (!hugepages_kobj)
2741 		return;
2742 
2743 	for_each_hstate(h) {
2744 		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2745 					 hstate_kobjs, &hstate_attr_group);
2746 		if (err)
2747 			pr_err("Hugetlb: Unable to add hstate %s", h->name);
2748 	}
2749 }
2750 
2751 #ifdef CONFIG_NUMA
2752 
2753 /*
2754  * node_hstate/s - associate per node hstate attributes, via their kobjects,
2755  * with node devices in node_devices[] using a parallel array.  The array
2756  * index of a node device or _hstate == node id.
2757  * This is here to avoid any static dependency of the node device driver, in
2758  * the base kernel, on the hugetlb module.
2759  */
2760 struct node_hstate {
2761 	struct kobject		*hugepages_kobj;
2762 	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
2763 };
2764 static struct node_hstate node_hstates[MAX_NUMNODES];
2765 
2766 /*
2767  * A subset of global hstate attributes for node devices
2768  */
2769 static struct attribute *per_node_hstate_attrs[] = {
2770 	&nr_hugepages_attr.attr,
2771 	&free_hugepages_attr.attr,
2772 	&surplus_hugepages_attr.attr,
2773 	NULL,
2774 };
2775 
2776 static const struct attribute_group per_node_hstate_attr_group = {
2777 	.attrs = per_node_hstate_attrs,
2778 };
2779 
2780 /*
2781  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2782  * Returns node id via non-NULL nidp.
2783  */
2784 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2785 {
2786 	int nid;
2787 
2788 	for (nid = 0; nid < nr_node_ids; nid++) {
2789 		struct node_hstate *nhs = &node_hstates[nid];
2790 		int i;
2791 		for (i = 0; i < HUGE_MAX_HSTATE; i++)
2792 			if (nhs->hstate_kobjs[i] == kobj) {
2793 				if (nidp)
2794 					*nidp = nid;
2795 				return &hstates[i];
2796 			}
2797 	}
2798 
2799 	BUG();
2800 	return NULL;
2801 }
2802 
2803 /*
2804  * Unregister hstate attributes from a single node device.
2805  * No-op if no hstate attributes attached.
2806  */
2807 static void hugetlb_unregister_node(struct node *node)
2808 {
2809 	struct hstate *h;
2810 	struct node_hstate *nhs = &node_hstates[node->dev.id];
2811 
2812 	if (!nhs->hugepages_kobj)
2813 		return;		/* no hstate attributes */
2814 
2815 	for_each_hstate(h) {
2816 		int idx = hstate_index(h);
2817 		if (nhs->hstate_kobjs[idx]) {
2818 			kobject_put(nhs->hstate_kobjs[idx]);
2819 			nhs->hstate_kobjs[idx] = NULL;
2820 		}
2821 	}
2822 
2823 	kobject_put(nhs->hugepages_kobj);
2824 	nhs->hugepages_kobj = NULL;
2825 }
2826 
2827 
2828 /*
2829  * Register hstate attributes for a single node device.
2830  * No-op if attributes already registered.
2831  */
2832 static void hugetlb_register_node(struct node *node)
2833 {
2834 	struct hstate *h;
2835 	struct node_hstate *nhs = &node_hstates[node->dev.id];
2836 	int err;
2837 
2838 	if (nhs->hugepages_kobj)
2839 		return;		/* already allocated */
2840 
2841 	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2842 							&node->dev.kobj);
2843 	if (!nhs->hugepages_kobj)
2844 		return;
2845 
2846 	for_each_hstate(h) {
2847 		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2848 						nhs->hstate_kobjs,
2849 						&per_node_hstate_attr_group);
2850 		if (err) {
2851 			pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2852 				h->name, node->dev.id);
2853 			hugetlb_unregister_node(node);
2854 			break;
2855 		}
2856 	}
2857 }
2858 
2859 /*
2860  * hugetlb init time:  register hstate attributes for all registered node
2861  * devices of nodes that have memory.  All on-line nodes should have
2862  * registered their associated device by this time.
2863  */
2864 static void __init hugetlb_register_all_nodes(void)
2865 {
2866 	int nid;
2867 
2868 	for_each_node_state(nid, N_MEMORY) {
2869 		struct node *node = node_devices[nid];
2870 		if (node->dev.id == nid)
2871 			hugetlb_register_node(node);
2872 	}
2873 
2874 	/*
2875 	 * Let the node device driver know we're here so it can
2876 	 * [un]register hstate attributes on node hotplug.
2877 	 */
2878 	register_hugetlbfs_with_node(hugetlb_register_node,
2879 				     hugetlb_unregister_node);
2880 }
2881 #else	/* !CONFIG_NUMA */
2882 
2883 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2884 {
2885 	BUG();
2886 	if (nidp)
2887 		*nidp = -1;
2888 	return NULL;
2889 }
2890 
2891 static void hugetlb_register_all_nodes(void) { }
2892 
2893 #endif
2894 
2895 static int __init hugetlb_init(void)
2896 {
2897 	int i;
2898 
2899 	if (!hugepages_supported())
2900 		return 0;
2901 
2902 	if (!size_to_hstate(default_hstate_size)) {
2903 		if (default_hstate_size != 0) {
2904 			pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
2905 			       default_hstate_size, HPAGE_SIZE);
2906 		}
2907 
2908 		default_hstate_size = HPAGE_SIZE;
2909 		if (!size_to_hstate(default_hstate_size))
2910 			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2911 	}
2912 	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2913 	if (default_hstate_max_huge_pages) {
2914 		if (!default_hstate.max_huge_pages)
2915 			default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2916 	}
2917 
2918 	hugetlb_init_hstates();
2919 	gather_bootmem_prealloc();
2920 	report_hugepages();
2921 
2922 	hugetlb_sysfs_init();
2923 	hugetlb_register_all_nodes();
2924 	hugetlb_cgroup_file_init();
2925 
2926 #ifdef CONFIG_SMP
2927 	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2928 #else
2929 	num_fault_mutexes = 1;
2930 #endif
2931 	hugetlb_fault_mutex_table =
2932 		kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
2933 			      GFP_KERNEL);
2934 	BUG_ON(!hugetlb_fault_mutex_table);
2935 
2936 	for (i = 0; i < num_fault_mutexes; i++)
2937 		mutex_init(&hugetlb_fault_mutex_table[i]);
2938 	return 0;
2939 }
2940 subsys_initcall(hugetlb_init);
2941 
2942 /* Should be called on processing a hugepagesz=... option */
2943 void __init hugetlb_bad_size(void)
2944 {
2945 	parsed_valid_hugepagesz = false;
2946 }
2947 
2948 void __init hugetlb_add_hstate(unsigned int order)
2949 {
2950 	struct hstate *h;
2951 	unsigned long i;
2952 
2953 	if (size_to_hstate(PAGE_SIZE << order)) {
2954 		pr_warn("hugepagesz= specified twice, ignoring\n");
2955 		return;
2956 	}
2957 	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2958 	BUG_ON(order == 0);
2959 	h = &hstates[hugetlb_max_hstate++];
2960 	h->order = order;
2961 	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2962 	h->nr_huge_pages = 0;
2963 	h->free_huge_pages = 0;
2964 	for (i = 0; i < MAX_NUMNODES; ++i)
2965 		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2966 	INIT_LIST_HEAD(&h->hugepage_activelist);
2967 	h->next_nid_to_alloc = first_memory_node;
2968 	h->next_nid_to_free = first_memory_node;
2969 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2970 					huge_page_size(h)/1024);
2971 
2972 	parsed_hstate = h;
2973 }
2974 
2975 static int __init hugetlb_nrpages_setup(char *s)
2976 {
2977 	unsigned long *mhp;
2978 	static unsigned long *last_mhp;
2979 
2980 	if (!parsed_valid_hugepagesz) {
2981 		pr_warn("hugepages = %s preceded by "
2982 			"an unsupported hugepagesz, ignoring\n", s);
2983 		parsed_valid_hugepagesz = true;
2984 		return 1;
2985 	}
2986 	/*
2987 	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2988 	 * so this hugepages= parameter goes to the "default hstate".
2989 	 */
2990 	else if (!hugetlb_max_hstate)
2991 		mhp = &default_hstate_max_huge_pages;
2992 	else
2993 		mhp = &parsed_hstate->max_huge_pages;
2994 
2995 	if (mhp == last_mhp) {
2996 		pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2997 		return 1;
2998 	}
2999 
3000 	if (sscanf(s, "%lu", mhp) <= 0)
3001 		*mhp = 0;
3002 
3003 	/*
3004 	 * Global state is always initialized later in hugetlb_init.
3005 	 * But we need to allocate >= MAX_ORDER hstates here early to still
3006 	 * use the bootmem allocator.
3007 	 */
3008 	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
3009 		hugetlb_hstate_alloc_pages(parsed_hstate);
3010 
3011 	last_mhp = mhp;
3012 
3013 	return 1;
3014 }
3015 __setup("hugepages=", hugetlb_nrpages_setup);
3016 
3017 static int __init hugetlb_default_setup(char *s)
3018 {
3019 	default_hstate_size = memparse(s, &s);
3020 	return 1;
3021 }
3022 __setup("default_hugepagesz=", hugetlb_default_setup);
3023 
3024 static unsigned int cpuset_mems_nr(unsigned int *array)
3025 {
3026 	int node;
3027 	unsigned int nr = 0;
3028 
3029 	for_each_node_mask(node, cpuset_current_mems_allowed)
3030 		nr += array[node];
3031 
3032 	return nr;
3033 }
3034 
3035 #ifdef CONFIG_SYSCTL
3036 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3037 			 struct ctl_table *table, int write,
3038 			 void __user *buffer, size_t *length, loff_t *ppos)
3039 {
3040 	struct hstate *h = &default_hstate;
3041 	unsigned long tmp = h->max_huge_pages;
3042 	int ret;
3043 
3044 	if (!hugepages_supported())
3045 		return -EOPNOTSUPP;
3046 
3047 	table->data = &tmp;
3048 	table->maxlen = sizeof(unsigned long);
3049 	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
3050 	if (ret)
3051 		goto out;
3052 
3053 	if (write)
3054 		ret = __nr_hugepages_store_common(obey_mempolicy, h,
3055 						  NUMA_NO_NODE, tmp, *length);
3056 out:
3057 	return ret;
3058 }
3059 
3060 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
3061 			  void __user *buffer, size_t *length, loff_t *ppos)
3062 {
3063 
3064 	return hugetlb_sysctl_handler_common(false, table, write,
3065 							buffer, length, ppos);
3066 }
3067 
3068 #ifdef CONFIG_NUMA
3069 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3070 			  void __user *buffer, size_t *length, loff_t *ppos)
3071 {
3072 	return hugetlb_sysctl_handler_common(true, table, write,
3073 							buffer, length, ppos);
3074 }
3075 #endif /* CONFIG_NUMA */
3076 
3077 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
3078 			void __user *buffer,
3079 			size_t *length, loff_t *ppos)
3080 {
3081 	struct hstate *h = &default_hstate;
3082 	unsigned long tmp;
3083 	int ret;
3084 
3085 	if (!hugepages_supported())
3086 		return -EOPNOTSUPP;
3087 
3088 	tmp = h->nr_overcommit_huge_pages;
3089 
3090 	if (write && hstate_is_gigantic(h))
3091 		return -EINVAL;
3092 
3093 	table->data = &tmp;
3094 	table->maxlen = sizeof(unsigned long);
3095 	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
3096 	if (ret)
3097 		goto out;
3098 
3099 	if (write) {
3100 		spin_lock(&hugetlb_lock);
3101 		h->nr_overcommit_huge_pages = tmp;
3102 		spin_unlock(&hugetlb_lock);
3103 	}
3104 out:
3105 	return ret;
3106 }
3107 
3108 #endif /* CONFIG_SYSCTL */
3109 
3110 void hugetlb_report_meminfo(struct seq_file *m)
3111 {
3112 	struct hstate *h;
3113 	unsigned long total = 0;
3114 
3115 	if (!hugepages_supported())
3116 		return;
3117 
3118 	for_each_hstate(h) {
3119 		unsigned long count = h->nr_huge_pages;
3120 
3121 		total += (PAGE_SIZE << huge_page_order(h)) * count;
3122 
3123 		if (h == &default_hstate)
3124 			seq_printf(m,
3125 				   "HugePages_Total:   %5lu\n"
3126 				   "HugePages_Free:    %5lu\n"
3127 				   "HugePages_Rsvd:    %5lu\n"
3128 				   "HugePages_Surp:    %5lu\n"
3129 				   "Hugepagesize:   %8lu kB\n",
3130 				   count,
3131 				   h->free_huge_pages,
3132 				   h->resv_huge_pages,
3133 				   h->surplus_huge_pages,
3134 				   (PAGE_SIZE << huge_page_order(h)) / 1024);
3135 	}
3136 
3137 	seq_printf(m, "Hugetlb:        %8lu kB\n", total / 1024);
3138 }
3139 
3140 int hugetlb_report_node_meminfo(int nid, char *buf)
3141 {
3142 	struct hstate *h = &default_hstate;
3143 	if (!hugepages_supported())
3144 		return 0;
3145 	return sprintf(buf,
3146 		"Node %d HugePages_Total: %5u\n"
3147 		"Node %d HugePages_Free:  %5u\n"
3148 		"Node %d HugePages_Surp:  %5u\n",
3149 		nid, h->nr_huge_pages_node[nid],
3150 		nid, h->free_huge_pages_node[nid],
3151 		nid, h->surplus_huge_pages_node[nid]);
3152 }
3153 
3154 void hugetlb_show_meminfo(void)
3155 {
3156 	struct hstate *h;
3157 	int nid;
3158 
3159 	if (!hugepages_supported())
3160 		return;
3161 
3162 	for_each_node_state(nid, N_MEMORY)
3163 		for_each_hstate(h)
3164 			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3165 				nid,
3166 				h->nr_huge_pages_node[nid],
3167 				h->free_huge_pages_node[nid],
3168 				h->surplus_huge_pages_node[nid],
3169 				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3170 }
3171 
3172 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3173 {
3174 	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3175 		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3176 }
3177 
3178 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3179 unsigned long hugetlb_total_pages(void)
3180 {
3181 	struct hstate *h;
3182 	unsigned long nr_total_pages = 0;
3183 
3184 	for_each_hstate(h)
3185 		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3186 	return nr_total_pages;
3187 }
3188 
3189 static int hugetlb_acct_memory(struct hstate *h, long delta)
3190 {
3191 	int ret = -ENOMEM;
3192 
3193 	spin_lock(&hugetlb_lock);
3194 	/*
3195 	 * When cpuset is configured, it breaks the strict hugetlb page
3196 	 * reservation as the accounting is done on a global variable. Such
3197 	 * reservation is completely rubbish in the presence of cpuset because
3198 	 * the reservation is not checked against page availability for the
3199 	 * current cpuset. Application can still potentially OOM'ed by kernel
3200 	 * with lack of free htlb page in cpuset that the task is in.
3201 	 * Attempt to enforce strict accounting with cpuset is almost
3202 	 * impossible (or too ugly) because cpuset is too fluid that
3203 	 * task or memory node can be dynamically moved between cpusets.
3204 	 *
3205 	 * The change of semantics for shared hugetlb mapping with cpuset is
3206 	 * undesirable. However, in order to preserve some of the semantics,
3207 	 * we fall back to check against current free page availability as
3208 	 * a best attempt and hopefully to minimize the impact of changing
3209 	 * semantics that cpuset has.
3210 	 */
3211 	if (delta > 0) {
3212 		if (gather_surplus_pages(h, delta) < 0)
3213 			goto out;
3214 
3215 		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3216 			return_unused_surplus_pages(h, delta);
3217 			goto out;
3218 		}
3219 	}
3220 
3221 	ret = 0;
3222 	if (delta < 0)
3223 		return_unused_surplus_pages(h, (unsigned long) -delta);
3224 
3225 out:
3226 	spin_unlock(&hugetlb_lock);
3227 	return ret;
3228 }
3229 
3230 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3231 {
3232 	struct resv_map *resv = vma_resv_map(vma);
3233 
3234 	/*
3235 	 * This new VMA should share its siblings reservation map if present.
3236 	 * The VMA will only ever have a valid reservation map pointer where
3237 	 * it is being copied for another still existing VMA.  As that VMA
3238 	 * has a reference to the reservation map it cannot disappear until
3239 	 * after this open call completes.  It is therefore safe to take a
3240 	 * new reference here without additional locking.
3241 	 */
3242 	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3243 		kref_get(&resv->refs);
3244 }
3245 
3246 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3247 {
3248 	struct hstate *h = hstate_vma(vma);
3249 	struct resv_map *resv = vma_resv_map(vma);
3250 	struct hugepage_subpool *spool = subpool_vma(vma);
3251 	unsigned long reserve, start, end;
3252 	long gbl_reserve;
3253 
3254 	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3255 		return;
3256 
3257 	start = vma_hugecache_offset(h, vma, vma->vm_start);
3258 	end = vma_hugecache_offset(h, vma, vma->vm_end);
3259 
3260 	reserve = (end - start) - region_count(resv, start, end);
3261 
3262 	kref_put(&resv->refs, resv_map_release);
3263 
3264 	if (reserve) {
3265 		/*
3266 		 * Decrement reserve counts.  The global reserve count may be
3267 		 * adjusted if the subpool has a minimum size.
3268 		 */
3269 		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3270 		hugetlb_acct_memory(h, -gbl_reserve);
3271 	}
3272 }
3273 
3274 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3275 {
3276 	if (addr & ~(huge_page_mask(hstate_vma(vma))))
3277 		return -EINVAL;
3278 	return 0;
3279 }
3280 
3281 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3282 {
3283 	struct hstate *hstate = hstate_vma(vma);
3284 
3285 	return 1UL << huge_page_shift(hstate);
3286 }
3287 
3288 /*
3289  * We cannot handle pagefaults against hugetlb pages at all.  They cause
3290  * handle_mm_fault() to try to instantiate regular-sized pages in the
3291  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
3292  * this far.
3293  */
3294 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
3295 {
3296 	BUG();
3297 	return 0;
3298 }
3299 
3300 /*
3301  * When a new function is introduced to vm_operations_struct and added
3302  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3303  * This is because under System V memory model, mappings created via
3304  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3305  * their original vm_ops are overwritten with shm_vm_ops.
3306  */
3307 const struct vm_operations_struct hugetlb_vm_ops = {
3308 	.fault = hugetlb_vm_op_fault,
3309 	.open = hugetlb_vm_op_open,
3310 	.close = hugetlb_vm_op_close,
3311 	.split = hugetlb_vm_op_split,
3312 	.pagesize = hugetlb_vm_op_pagesize,
3313 };
3314 
3315 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3316 				int writable)
3317 {
3318 	pte_t entry;
3319 
3320 	if (writable) {
3321 		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3322 					 vma->vm_page_prot)));
3323 	} else {
3324 		entry = huge_pte_wrprotect(mk_huge_pte(page,
3325 					   vma->vm_page_prot));
3326 	}
3327 	entry = pte_mkyoung(entry);
3328 	entry = pte_mkhuge(entry);
3329 	entry = arch_make_huge_pte(entry, vma, page, writable);
3330 
3331 	return entry;
3332 }
3333 
3334 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3335 				   unsigned long address, pte_t *ptep)
3336 {
3337 	pte_t entry;
3338 
3339 	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3340 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3341 		update_mmu_cache(vma, address, ptep);
3342 }
3343 
3344 bool is_hugetlb_entry_migration(pte_t pte)
3345 {
3346 	swp_entry_t swp;
3347 
3348 	if (huge_pte_none(pte) || pte_present(pte))
3349 		return false;
3350 	swp = pte_to_swp_entry(pte);
3351 	if (non_swap_entry(swp) && is_migration_entry(swp))
3352 		return true;
3353 	else
3354 		return false;
3355 }
3356 
3357 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3358 {
3359 	swp_entry_t swp;
3360 
3361 	if (huge_pte_none(pte) || pte_present(pte))
3362 		return 0;
3363 	swp = pte_to_swp_entry(pte);
3364 	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3365 		return 1;
3366 	else
3367 		return 0;
3368 }
3369 
3370 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3371 			    struct vm_area_struct *vma)
3372 {
3373 	pte_t *src_pte, *dst_pte, entry, dst_entry;
3374 	struct page *ptepage;
3375 	unsigned long addr;
3376 	int cow;
3377 	struct hstate *h = hstate_vma(vma);
3378 	unsigned long sz = huge_page_size(h);
3379 	struct mmu_notifier_range range;
3380 	int ret = 0;
3381 
3382 	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3383 
3384 	if (cow) {
3385 		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
3386 					vma->vm_start,
3387 					vma->vm_end);
3388 		mmu_notifier_invalidate_range_start(&range);
3389 	}
3390 
3391 	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3392 		spinlock_t *src_ptl, *dst_ptl;
3393 		src_pte = huge_pte_offset(src, addr, sz);
3394 		if (!src_pte)
3395 			continue;
3396 		dst_pte = huge_pte_alloc(dst, addr, sz);
3397 		if (!dst_pte) {
3398 			ret = -ENOMEM;
3399 			break;
3400 		}
3401 
3402 		/*
3403 		 * If the pagetables are shared don't copy or take references.
3404 		 * dst_pte == src_pte is the common case of src/dest sharing.
3405 		 *
3406 		 * However, src could have 'unshared' and dst shares with
3407 		 * another vma.  If dst_pte !none, this implies sharing.
3408 		 * Check here before taking page table lock, and once again
3409 		 * after taking the lock below.
3410 		 */
3411 		dst_entry = huge_ptep_get(dst_pte);
3412 		if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3413 			continue;
3414 
3415 		dst_ptl = huge_pte_lock(h, dst, dst_pte);
3416 		src_ptl = huge_pte_lockptr(h, src, src_pte);
3417 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3418 		entry = huge_ptep_get(src_pte);
3419 		dst_entry = huge_ptep_get(dst_pte);
3420 		if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3421 			/*
3422 			 * Skip if src entry none.  Also, skip in the
3423 			 * unlikely case dst entry !none as this implies
3424 			 * sharing with another vma.
3425 			 */
3426 			;
3427 		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
3428 				    is_hugetlb_entry_hwpoisoned(entry))) {
3429 			swp_entry_t swp_entry = pte_to_swp_entry(entry);
3430 
3431 			if (is_write_migration_entry(swp_entry) && cow) {
3432 				/*
3433 				 * COW mappings require pages in both
3434 				 * parent and child to be set to read.
3435 				 */
3436 				make_migration_entry_read(&swp_entry);
3437 				entry = swp_entry_to_pte(swp_entry);
3438 				set_huge_swap_pte_at(src, addr, src_pte,
3439 						     entry, sz);
3440 			}
3441 			set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3442 		} else {
3443 			if (cow) {
3444 				/*
3445 				 * No need to notify as we are downgrading page
3446 				 * table protection not changing it to point
3447 				 * to a new page.
3448 				 *
3449 				 * See Documentation/vm/mmu_notifier.rst
3450 				 */
3451 				huge_ptep_set_wrprotect(src, addr, src_pte);
3452 			}
3453 			entry = huge_ptep_get(src_pte);
3454 			ptepage = pte_page(entry);
3455 			get_page(ptepage);
3456 			page_dup_rmap(ptepage, true);
3457 			set_huge_pte_at(dst, addr, dst_pte, entry);
3458 			hugetlb_count_add(pages_per_huge_page(h), dst);
3459 		}
3460 		spin_unlock(src_ptl);
3461 		spin_unlock(dst_ptl);
3462 	}
3463 
3464 	if (cow)
3465 		mmu_notifier_invalidate_range_end(&range);
3466 
3467 	return ret;
3468 }
3469 
3470 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3471 			    unsigned long start, unsigned long end,
3472 			    struct page *ref_page)
3473 {
3474 	struct mm_struct *mm = vma->vm_mm;
3475 	unsigned long address;
3476 	pte_t *ptep;
3477 	pte_t pte;
3478 	spinlock_t *ptl;
3479 	struct page *page;
3480 	struct hstate *h = hstate_vma(vma);
3481 	unsigned long sz = huge_page_size(h);
3482 	struct mmu_notifier_range range;
3483 
3484 	WARN_ON(!is_vm_hugetlb_page(vma));
3485 	BUG_ON(start & ~huge_page_mask(h));
3486 	BUG_ON(end & ~huge_page_mask(h));
3487 
3488 	/*
3489 	 * This is a hugetlb vma, all the pte entries should point
3490 	 * to huge page.
3491 	 */
3492 	tlb_change_page_size(tlb, sz);
3493 	tlb_start_vma(tlb, vma);
3494 
3495 	/*
3496 	 * If sharing possible, alert mmu notifiers of worst case.
3497 	 */
3498 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
3499 				end);
3500 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3501 	mmu_notifier_invalidate_range_start(&range);
3502 	address = start;
3503 	for (; address < end; address += sz) {
3504 		ptep = huge_pte_offset(mm, address, sz);
3505 		if (!ptep)
3506 			continue;
3507 
3508 		ptl = huge_pte_lock(h, mm, ptep);
3509 		if (huge_pmd_unshare(mm, &address, ptep)) {
3510 			spin_unlock(ptl);
3511 			/*
3512 			 * We just unmapped a page of PMDs by clearing a PUD.
3513 			 * The caller's TLB flush range should cover this area.
3514 			 */
3515 			continue;
3516 		}
3517 
3518 		pte = huge_ptep_get(ptep);
3519 		if (huge_pte_none(pte)) {
3520 			spin_unlock(ptl);
3521 			continue;
3522 		}
3523 
3524 		/*
3525 		 * Migrating hugepage or HWPoisoned hugepage is already
3526 		 * unmapped and its refcount is dropped, so just clear pte here.
3527 		 */
3528 		if (unlikely(!pte_present(pte))) {
3529 			huge_pte_clear(mm, address, ptep, sz);
3530 			spin_unlock(ptl);
3531 			continue;
3532 		}
3533 
3534 		page = pte_page(pte);
3535 		/*
3536 		 * If a reference page is supplied, it is because a specific
3537 		 * page is being unmapped, not a range. Ensure the page we
3538 		 * are about to unmap is the actual page of interest.
3539 		 */
3540 		if (ref_page) {
3541 			if (page != ref_page) {
3542 				spin_unlock(ptl);
3543 				continue;
3544 			}
3545 			/*
3546 			 * Mark the VMA as having unmapped its page so that
3547 			 * future faults in this VMA will fail rather than
3548 			 * looking like data was lost
3549 			 */
3550 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3551 		}
3552 
3553 		pte = huge_ptep_get_and_clear(mm, address, ptep);
3554 		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3555 		if (huge_pte_dirty(pte))
3556 			set_page_dirty(page);
3557 
3558 		hugetlb_count_sub(pages_per_huge_page(h), mm);
3559 		page_remove_rmap(page, true);
3560 
3561 		spin_unlock(ptl);
3562 		tlb_remove_page_size(tlb, page, huge_page_size(h));
3563 		/*
3564 		 * Bail out after unmapping reference page if supplied
3565 		 */
3566 		if (ref_page)
3567 			break;
3568 	}
3569 	mmu_notifier_invalidate_range_end(&range);
3570 	tlb_end_vma(tlb, vma);
3571 }
3572 
3573 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3574 			  struct vm_area_struct *vma, unsigned long start,
3575 			  unsigned long end, struct page *ref_page)
3576 {
3577 	__unmap_hugepage_range(tlb, vma, start, end, ref_page);
3578 
3579 	/*
3580 	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3581 	 * test will fail on a vma being torn down, and not grab a page table
3582 	 * on its way out.  We're lucky that the flag has such an appropriate
3583 	 * name, and can in fact be safely cleared here. We could clear it
3584 	 * before the __unmap_hugepage_range above, but all that's necessary
3585 	 * is to clear it before releasing the i_mmap_rwsem. This works
3586 	 * because in the context this is called, the VMA is about to be
3587 	 * destroyed and the i_mmap_rwsem is held.
3588 	 */
3589 	vma->vm_flags &= ~VM_MAYSHARE;
3590 }
3591 
3592 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3593 			  unsigned long end, struct page *ref_page)
3594 {
3595 	struct mm_struct *mm;
3596 	struct mmu_gather tlb;
3597 	unsigned long tlb_start = start;
3598 	unsigned long tlb_end = end;
3599 
3600 	/*
3601 	 * If shared PMDs were possibly used within this vma range, adjust
3602 	 * start/end for worst case tlb flushing.
3603 	 * Note that we can not be sure if PMDs are shared until we try to
3604 	 * unmap pages.  However, we want to make sure TLB flushing covers
3605 	 * the largest possible range.
3606 	 */
3607 	adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end);
3608 
3609 	mm = vma->vm_mm;
3610 
3611 	tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end);
3612 	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3613 	tlb_finish_mmu(&tlb, tlb_start, tlb_end);
3614 }
3615 
3616 /*
3617  * This is called when the original mapper is failing to COW a MAP_PRIVATE
3618  * mappping it owns the reserve page for. The intention is to unmap the page
3619  * from other VMAs and let the children be SIGKILLed if they are faulting the
3620  * same region.
3621  */
3622 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3623 			      struct page *page, unsigned long address)
3624 {
3625 	struct hstate *h = hstate_vma(vma);
3626 	struct vm_area_struct *iter_vma;
3627 	struct address_space *mapping;
3628 	pgoff_t pgoff;
3629 
3630 	/*
3631 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3632 	 * from page cache lookup which is in HPAGE_SIZE units.
3633 	 */
3634 	address = address & huge_page_mask(h);
3635 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3636 			vma->vm_pgoff;
3637 	mapping = vma->vm_file->f_mapping;
3638 
3639 	/*
3640 	 * Take the mapping lock for the duration of the table walk. As
3641 	 * this mapping should be shared between all the VMAs,
3642 	 * __unmap_hugepage_range() is called as the lock is already held
3643 	 */
3644 	i_mmap_lock_write(mapping);
3645 	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3646 		/* Do not unmap the current VMA */
3647 		if (iter_vma == vma)
3648 			continue;
3649 
3650 		/*
3651 		 * Shared VMAs have their own reserves and do not affect
3652 		 * MAP_PRIVATE accounting but it is possible that a shared
3653 		 * VMA is using the same page so check and skip such VMAs.
3654 		 */
3655 		if (iter_vma->vm_flags & VM_MAYSHARE)
3656 			continue;
3657 
3658 		/*
3659 		 * Unmap the page from other VMAs without their own reserves.
3660 		 * They get marked to be SIGKILLed if they fault in these
3661 		 * areas. This is because a future no-page fault on this VMA
3662 		 * could insert a zeroed page instead of the data existing
3663 		 * from the time of fork. This would look like data corruption
3664 		 */
3665 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3666 			unmap_hugepage_range(iter_vma, address,
3667 					     address + huge_page_size(h), page);
3668 	}
3669 	i_mmap_unlock_write(mapping);
3670 }
3671 
3672 /*
3673  * Hugetlb_cow() should be called with page lock of the original hugepage held.
3674  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3675  * cannot race with other handlers or page migration.
3676  * Keep the pte_same checks anyway to make transition from the mutex easier.
3677  */
3678 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3679 		       unsigned long address, pte_t *ptep,
3680 		       struct page *pagecache_page, spinlock_t *ptl)
3681 {
3682 	pte_t pte;
3683 	struct hstate *h = hstate_vma(vma);
3684 	struct page *old_page, *new_page;
3685 	int outside_reserve = 0;
3686 	vm_fault_t ret = 0;
3687 	unsigned long haddr = address & huge_page_mask(h);
3688 	struct mmu_notifier_range range;
3689 
3690 	pte = huge_ptep_get(ptep);
3691 	old_page = pte_page(pte);
3692 
3693 retry_avoidcopy:
3694 	/* If no-one else is actually using this page, avoid the copy
3695 	 * and just make the page writable */
3696 	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3697 		page_move_anon_rmap(old_page, vma);
3698 		set_huge_ptep_writable(vma, haddr, ptep);
3699 		return 0;
3700 	}
3701 
3702 	/*
3703 	 * If the process that created a MAP_PRIVATE mapping is about to
3704 	 * perform a COW due to a shared page count, attempt to satisfy
3705 	 * the allocation without using the existing reserves. The pagecache
3706 	 * page is used to determine if the reserve at this address was
3707 	 * consumed or not. If reserves were used, a partial faulted mapping
3708 	 * at the time of fork() could consume its reserves on COW instead
3709 	 * of the full address range.
3710 	 */
3711 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3712 			old_page != pagecache_page)
3713 		outside_reserve = 1;
3714 
3715 	get_page(old_page);
3716 
3717 	/*
3718 	 * Drop page table lock as buddy allocator may be called. It will
3719 	 * be acquired again before returning to the caller, as expected.
3720 	 */
3721 	spin_unlock(ptl);
3722 	new_page = alloc_huge_page(vma, haddr, outside_reserve);
3723 
3724 	if (IS_ERR(new_page)) {
3725 		/*
3726 		 * If a process owning a MAP_PRIVATE mapping fails to COW,
3727 		 * it is due to references held by a child and an insufficient
3728 		 * huge page pool. To guarantee the original mappers
3729 		 * reliability, unmap the page from child processes. The child
3730 		 * may get SIGKILLed if it later faults.
3731 		 */
3732 		if (outside_reserve) {
3733 			put_page(old_page);
3734 			BUG_ON(huge_pte_none(pte));
3735 			unmap_ref_private(mm, vma, old_page, haddr);
3736 			BUG_ON(huge_pte_none(pte));
3737 			spin_lock(ptl);
3738 			ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3739 			if (likely(ptep &&
3740 				   pte_same(huge_ptep_get(ptep), pte)))
3741 				goto retry_avoidcopy;
3742 			/*
3743 			 * race occurs while re-acquiring page table
3744 			 * lock, and our job is done.
3745 			 */
3746 			return 0;
3747 		}
3748 
3749 		ret = vmf_error(PTR_ERR(new_page));
3750 		goto out_release_old;
3751 	}
3752 
3753 	/*
3754 	 * When the original hugepage is shared one, it does not have
3755 	 * anon_vma prepared.
3756 	 */
3757 	if (unlikely(anon_vma_prepare(vma))) {
3758 		ret = VM_FAULT_OOM;
3759 		goto out_release_all;
3760 	}
3761 
3762 	copy_user_huge_page(new_page, old_page, address, vma,
3763 			    pages_per_huge_page(h));
3764 	__SetPageUptodate(new_page);
3765 
3766 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
3767 				haddr + huge_page_size(h));
3768 	mmu_notifier_invalidate_range_start(&range);
3769 
3770 	/*
3771 	 * Retake the page table lock to check for racing updates
3772 	 * before the page tables are altered
3773 	 */
3774 	spin_lock(ptl);
3775 	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3776 	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3777 		ClearPagePrivate(new_page);
3778 
3779 		/* Break COW */
3780 		huge_ptep_clear_flush(vma, haddr, ptep);
3781 		mmu_notifier_invalidate_range(mm, range.start, range.end);
3782 		set_huge_pte_at(mm, haddr, ptep,
3783 				make_huge_pte(vma, new_page, 1));
3784 		page_remove_rmap(old_page, true);
3785 		hugepage_add_new_anon_rmap(new_page, vma, haddr);
3786 		set_page_huge_active(new_page);
3787 		/* Make the old page be freed below */
3788 		new_page = old_page;
3789 	}
3790 	spin_unlock(ptl);
3791 	mmu_notifier_invalidate_range_end(&range);
3792 out_release_all:
3793 	restore_reserve_on_error(h, vma, haddr, new_page);
3794 	put_page(new_page);
3795 out_release_old:
3796 	put_page(old_page);
3797 
3798 	spin_lock(ptl); /* Caller expects lock to be held */
3799 	return ret;
3800 }
3801 
3802 /* Return the pagecache page at a given address within a VMA */
3803 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3804 			struct vm_area_struct *vma, unsigned long address)
3805 {
3806 	struct address_space *mapping;
3807 	pgoff_t idx;
3808 
3809 	mapping = vma->vm_file->f_mapping;
3810 	idx = vma_hugecache_offset(h, vma, address);
3811 
3812 	return find_lock_page(mapping, idx);
3813 }
3814 
3815 /*
3816  * Return whether there is a pagecache page to back given address within VMA.
3817  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3818  */
3819 static bool hugetlbfs_pagecache_present(struct hstate *h,
3820 			struct vm_area_struct *vma, unsigned long address)
3821 {
3822 	struct address_space *mapping;
3823 	pgoff_t idx;
3824 	struct page *page;
3825 
3826 	mapping = vma->vm_file->f_mapping;
3827 	idx = vma_hugecache_offset(h, vma, address);
3828 
3829 	page = find_get_page(mapping, idx);
3830 	if (page)
3831 		put_page(page);
3832 	return page != NULL;
3833 }
3834 
3835 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3836 			   pgoff_t idx)
3837 {
3838 	struct inode *inode = mapping->host;
3839 	struct hstate *h = hstate_inode(inode);
3840 	int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3841 
3842 	if (err)
3843 		return err;
3844 	ClearPagePrivate(page);
3845 
3846 	/*
3847 	 * set page dirty so that it will not be removed from cache/file
3848 	 * by non-hugetlbfs specific code paths.
3849 	 */
3850 	set_page_dirty(page);
3851 
3852 	spin_lock(&inode->i_lock);
3853 	inode->i_blocks += blocks_per_huge_page(h);
3854 	spin_unlock(&inode->i_lock);
3855 	return 0;
3856 }
3857 
3858 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
3859 			struct vm_area_struct *vma,
3860 			struct address_space *mapping, pgoff_t idx,
3861 			unsigned long address, pte_t *ptep, unsigned int flags)
3862 {
3863 	struct hstate *h = hstate_vma(vma);
3864 	vm_fault_t ret = VM_FAULT_SIGBUS;
3865 	int anon_rmap = 0;
3866 	unsigned long size;
3867 	struct page *page;
3868 	pte_t new_pte;
3869 	spinlock_t *ptl;
3870 	unsigned long haddr = address & huge_page_mask(h);
3871 	bool new_page = false;
3872 
3873 	/*
3874 	 * Currently, we are forced to kill the process in the event the
3875 	 * original mapper has unmapped pages from the child due to a failed
3876 	 * COW. Warn that such a situation has occurred as it may not be obvious
3877 	 */
3878 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3879 		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3880 			   current->pid);
3881 		return ret;
3882 	}
3883 
3884 	/*
3885 	 * Use page lock to guard against racing truncation
3886 	 * before we get page_table_lock.
3887 	 */
3888 retry:
3889 	page = find_lock_page(mapping, idx);
3890 	if (!page) {
3891 		size = i_size_read(mapping->host) >> huge_page_shift(h);
3892 		if (idx >= size)
3893 			goto out;
3894 
3895 		/*
3896 		 * Check for page in userfault range
3897 		 */
3898 		if (userfaultfd_missing(vma)) {
3899 			u32 hash;
3900 			struct vm_fault vmf = {
3901 				.vma = vma,
3902 				.address = haddr,
3903 				.flags = flags,
3904 				/*
3905 				 * Hard to debug if it ends up being
3906 				 * used by a callee that assumes
3907 				 * something about the other
3908 				 * uninitialized fields... same as in
3909 				 * memory.c
3910 				 */
3911 			};
3912 
3913 			/*
3914 			 * hugetlb_fault_mutex must be dropped before
3915 			 * handling userfault.  Reacquire after handling
3916 			 * fault to make calling code simpler.
3917 			 */
3918 			hash = hugetlb_fault_mutex_hash(h, mapping, idx, haddr);
3919 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3920 			ret = handle_userfault(&vmf, VM_UFFD_MISSING);
3921 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
3922 			goto out;
3923 		}
3924 
3925 		page = alloc_huge_page(vma, haddr, 0);
3926 		if (IS_ERR(page)) {
3927 			/*
3928 			 * Returning error will result in faulting task being
3929 			 * sent SIGBUS.  The hugetlb fault mutex prevents two
3930 			 * tasks from racing to fault in the same page which
3931 			 * could result in false unable to allocate errors.
3932 			 * Page migration does not take the fault mutex, but
3933 			 * does a clear then write of pte's under page table
3934 			 * lock.  Page fault code could race with migration,
3935 			 * notice the clear pte and try to allocate a page
3936 			 * here.  Before returning error, get ptl and make
3937 			 * sure there really is no pte entry.
3938 			 */
3939 			ptl = huge_pte_lock(h, mm, ptep);
3940 			if (!huge_pte_none(huge_ptep_get(ptep))) {
3941 				ret = 0;
3942 				spin_unlock(ptl);
3943 				goto out;
3944 			}
3945 			spin_unlock(ptl);
3946 			ret = vmf_error(PTR_ERR(page));
3947 			goto out;
3948 		}
3949 		clear_huge_page(page, address, pages_per_huge_page(h));
3950 		__SetPageUptodate(page);
3951 		new_page = true;
3952 
3953 		if (vma->vm_flags & VM_MAYSHARE) {
3954 			int err = huge_add_to_page_cache(page, mapping, idx);
3955 			if (err) {
3956 				put_page(page);
3957 				if (err == -EEXIST)
3958 					goto retry;
3959 				goto out;
3960 			}
3961 		} else {
3962 			lock_page(page);
3963 			if (unlikely(anon_vma_prepare(vma))) {
3964 				ret = VM_FAULT_OOM;
3965 				goto backout_unlocked;
3966 			}
3967 			anon_rmap = 1;
3968 		}
3969 	} else {
3970 		/*
3971 		 * If memory error occurs between mmap() and fault, some process
3972 		 * don't have hwpoisoned swap entry for errored virtual address.
3973 		 * So we need to block hugepage fault by PG_hwpoison bit check.
3974 		 */
3975 		if (unlikely(PageHWPoison(page))) {
3976 			ret = VM_FAULT_HWPOISON |
3977 				VM_FAULT_SET_HINDEX(hstate_index(h));
3978 			goto backout_unlocked;
3979 		}
3980 	}
3981 
3982 	/*
3983 	 * If we are going to COW a private mapping later, we examine the
3984 	 * pending reservations for this page now. This will ensure that
3985 	 * any allocations necessary to record that reservation occur outside
3986 	 * the spinlock.
3987 	 */
3988 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3989 		if (vma_needs_reservation(h, vma, haddr) < 0) {
3990 			ret = VM_FAULT_OOM;
3991 			goto backout_unlocked;
3992 		}
3993 		/* Just decrements count, does not deallocate */
3994 		vma_end_reservation(h, vma, haddr);
3995 	}
3996 
3997 	ptl = huge_pte_lock(h, mm, ptep);
3998 	size = i_size_read(mapping->host) >> huge_page_shift(h);
3999 	if (idx >= size)
4000 		goto backout;
4001 
4002 	ret = 0;
4003 	if (!huge_pte_none(huge_ptep_get(ptep)))
4004 		goto backout;
4005 
4006 	if (anon_rmap) {
4007 		ClearPagePrivate(page);
4008 		hugepage_add_new_anon_rmap(page, vma, haddr);
4009 	} else
4010 		page_dup_rmap(page, true);
4011 	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
4012 				&& (vma->vm_flags & VM_SHARED)));
4013 	set_huge_pte_at(mm, haddr, ptep, new_pte);
4014 
4015 	hugetlb_count_add(pages_per_huge_page(h), mm);
4016 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4017 		/* Optimization, do the COW without a second fault */
4018 		ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
4019 	}
4020 
4021 	spin_unlock(ptl);
4022 
4023 	/*
4024 	 * Only make newly allocated pages active.  Existing pages found
4025 	 * in the pagecache could be !page_huge_active() if they have been
4026 	 * isolated for migration.
4027 	 */
4028 	if (new_page)
4029 		set_page_huge_active(page);
4030 
4031 	unlock_page(page);
4032 out:
4033 	return ret;
4034 
4035 backout:
4036 	spin_unlock(ptl);
4037 backout_unlocked:
4038 	unlock_page(page);
4039 	restore_reserve_on_error(h, vma, haddr, page);
4040 	put_page(page);
4041 	goto out;
4042 }
4043 
4044 #ifdef CONFIG_SMP
4045 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct address_space *mapping,
4046 			    pgoff_t idx, unsigned long address)
4047 {
4048 	unsigned long key[2];
4049 	u32 hash;
4050 
4051 	key[0] = (unsigned long) mapping;
4052 	key[1] = idx;
4053 
4054 	hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
4055 
4056 	return hash & (num_fault_mutexes - 1);
4057 }
4058 #else
4059 /*
4060  * For uniprocesor systems we always use a single mutex, so just
4061  * return 0 and avoid the hashing overhead.
4062  */
4063 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct address_space *mapping,
4064 			    pgoff_t idx, unsigned long address)
4065 {
4066 	return 0;
4067 }
4068 #endif
4069 
4070 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
4071 			unsigned long address, unsigned int flags)
4072 {
4073 	pte_t *ptep, entry;
4074 	spinlock_t *ptl;
4075 	vm_fault_t ret;
4076 	u32 hash;
4077 	pgoff_t idx;
4078 	struct page *page = NULL;
4079 	struct page *pagecache_page = NULL;
4080 	struct hstate *h = hstate_vma(vma);
4081 	struct address_space *mapping;
4082 	int need_wait_lock = 0;
4083 	unsigned long haddr = address & huge_page_mask(h);
4084 
4085 	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4086 	if (ptep) {
4087 		entry = huge_ptep_get(ptep);
4088 		if (unlikely(is_hugetlb_entry_migration(entry))) {
4089 			migration_entry_wait_huge(vma, mm, ptep);
4090 			return 0;
4091 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
4092 			return VM_FAULT_HWPOISON_LARGE |
4093 				VM_FAULT_SET_HINDEX(hstate_index(h));
4094 	} else {
4095 		ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
4096 		if (!ptep)
4097 			return VM_FAULT_OOM;
4098 	}
4099 
4100 	mapping = vma->vm_file->f_mapping;
4101 	idx = vma_hugecache_offset(h, vma, haddr);
4102 
4103 	/*
4104 	 * Serialize hugepage allocation and instantiation, so that we don't
4105 	 * get spurious allocation failures if two CPUs race to instantiate
4106 	 * the same page in the page cache.
4107 	 */
4108 	hash = hugetlb_fault_mutex_hash(h, mapping, idx, haddr);
4109 	mutex_lock(&hugetlb_fault_mutex_table[hash]);
4110 
4111 	entry = huge_ptep_get(ptep);
4112 	if (huge_pte_none(entry)) {
4113 		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
4114 		goto out_mutex;
4115 	}
4116 
4117 	ret = 0;
4118 
4119 	/*
4120 	 * entry could be a migration/hwpoison entry at this point, so this
4121 	 * check prevents the kernel from going below assuming that we have
4122 	 * a active hugepage in pagecache. This goto expects the 2nd page fault,
4123 	 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
4124 	 * handle it.
4125 	 */
4126 	if (!pte_present(entry))
4127 		goto out_mutex;
4128 
4129 	/*
4130 	 * If we are going to COW the mapping later, we examine the pending
4131 	 * reservations for this page now. This will ensure that any
4132 	 * allocations necessary to record that reservation occur outside the
4133 	 * spinlock. For private mappings, we also lookup the pagecache
4134 	 * page now as it is used to determine if a reservation has been
4135 	 * consumed.
4136 	 */
4137 	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
4138 		if (vma_needs_reservation(h, vma, haddr) < 0) {
4139 			ret = VM_FAULT_OOM;
4140 			goto out_mutex;
4141 		}
4142 		/* Just decrements count, does not deallocate */
4143 		vma_end_reservation(h, vma, haddr);
4144 
4145 		if (!(vma->vm_flags & VM_MAYSHARE))
4146 			pagecache_page = hugetlbfs_pagecache_page(h,
4147 								vma, haddr);
4148 	}
4149 
4150 	ptl = huge_pte_lock(h, mm, ptep);
4151 
4152 	/* Check for a racing update before calling hugetlb_cow */
4153 	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4154 		goto out_ptl;
4155 
4156 	/*
4157 	 * hugetlb_cow() requires page locks of pte_page(entry) and
4158 	 * pagecache_page, so here we need take the former one
4159 	 * when page != pagecache_page or !pagecache_page.
4160 	 */
4161 	page = pte_page(entry);
4162 	if (page != pagecache_page)
4163 		if (!trylock_page(page)) {
4164 			need_wait_lock = 1;
4165 			goto out_ptl;
4166 		}
4167 
4168 	get_page(page);
4169 
4170 	if (flags & FAULT_FLAG_WRITE) {
4171 		if (!huge_pte_write(entry)) {
4172 			ret = hugetlb_cow(mm, vma, address, ptep,
4173 					  pagecache_page, ptl);
4174 			goto out_put_page;
4175 		}
4176 		entry = huge_pte_mkdirty(entry);
4177 	}
4178 	entry = pte_mkyoung(entry);
4179 	if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
4180 						flags & FAULT_FLAG_WRITE))
4181 		update_mmu_cache(vma, haddr, ptep);
4182 out_put_page:
4183 	if (page != pagecache_page)
4184 		unlock_page(page);
4185 	put_page(page);
4186 out_ptl:
4187 	spin_unlock(ptl);
4188 
4189 	if (pagecache_page) {
4190 		unlock_page(pagecache_page);
4191 		put_page(pagecache_page);
4192 	}
4193 out_mutex:
4194 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4195 	/*
4196 	 * Generally it's safe to hold refcount during waiting page lock. But
4197 	 * here we just wait to defer the next page fault to avoid busy loop and
4198 	 * the page is not used after unlocked before returning from the current
4199 	 * page fault. So we are safe from accessing freed page, even if we wait
4200 	 * here without taking refcount.
4201 	 */
4202 	if (need_wait_lock)
4203 		wait_on_page_locked(page);
4204 	return ret;
4205 }
4206 
4207 /*
4208  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
4209  * modifications for huge pages.
4210  */
4211 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4212 			    pte_t *dst_pte,
4213 			    struct vm_area_struct *dst_vma,
4214 			    unsigned long dst_addr,
4215 			    unsigned long src_addr,
4216 			    struct page **pagep)
4217 {
4218 	struct address_space *mapping;
4219 	pgoff_t idx;
4220 	unsigned long size;
4221 	int vm_shared = dst_vma->vm_flags & VM_SHARED;
4222 	struct hstate *h = hstate_vma(dst_vma);
4223 	pte_t _dst_pte;
4224 	spinlock_t *ptl;
4225 	int ret;
4226 	struct page *page;
4227 
4228 	if (!*pagep) {
4229 		ret = -ENOMEM;
4230 		page = alloc_huge_page(dst_vma, dst_addr, 0);
4231 		if (IS_ERR(page))
4232 			goto out;
4233 
4234 		ret = copy_huge_page_from_user(page,
4235 						(const void __user *) src_addr,
4236 						pages_per_huge_page(h), false);
4237 
4238 		/* fallback to copy_from_user outside mmap_sem */
4239 		if (unlikely(ret)) {
4240 			ret = -ENOENT;
4241 			*pagep = page;
4242 			/* don't free the page */
4243 			goto out;
4244 		}
4245 	} else {
4246 		page = *pagep;
4247 		*pagep = NULL;
4248 	}
4249 
4250 	/*
4251 	 * The memory barrier inside __SetPageUptodate makes sure that
4252 	 * preceding stores to the page contents become visible before
4253 	 * the set_pte_at() write.
4254 	 */
4255 	__SetPageUptodate(page);
4256 
4257 	mapping = dst_vma->vm_file->f_mapping;
4258 	idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4259 
4260 	/*
4261 	 * If shared, add to page cache
4262 	 */
4263 	if (vm_shared) {
4264 		size = i_size_read(mapping->host) >> huge_page_shift(h);
4265 		ret = -EFAULT;
4266 		if (idx >= size)
4267 			goto out_release_nounlock;
4268 
4269 		/*
4270 		 * Serialization between remove_inode_hugepages() and
4271 		 * huge_add_to_page_cache() below happens through the
4272 		 * hugetlb_fault_mutex_table that here must be hold by
4273 		 * the caller.
4274 		 */
4275 		ret = huge_add_to_page_cache(page, mapping, idx);
4276 		if (ret)
4277 			goto out_release_nounlock;
4278 	}
4279 
4280 	ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4281 	spin_lock(ptl);
4282 
4283 	/*
4284 	 * Recheck the i_size after holding PT lock to make sure not
4285 	 * to leave any page mapped (as page_mapped()) beyond the end
4286 	 * of the i_size (remove_inode_hugepages() is strict about
4287 	 * enforcing that). If we bail out here, we'll also leave a
4288 	 * page in the radix tree in the vm_shared case beyond the end
4289 	 * of the i_size, but remove_inode_hugepages() will take care
4290 	 * of it as soon as we drop the hugetlb_fault_mutex_table.
4291 	 */
4292 	size = i_size_read(mapping->host) >> huge_page_shift(h);
4293 	ret = -EFAULT;
4294 	if (idx >= size)
4295 		goto out_release_unlock;
4296 
4297 	ret = -EEXIST;
4298 	if (!huge_pte_none(huge_ptep_get(dst_pte)))
4299 		goto out_release_unlock;
4300 
4301 	if (vm_shared) {
4302 		page_dup_rmap(page, true);
4303 	} else {
4304 		ClearPagePrivate(page);
4305 		hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4306 	}
4307 
4308 	_dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4309 	if (dst_vma->vm_flags & VM_WRITE)
4310 		_dst_pte = huge_pte_mkdirty(_dst_pte);
4311 	_dst_pte = pte_mkyoung(_dst_pte);
4312 
4313 	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4314 
4315 	(void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4316 					dst_vma->vm_flags & VM_WRITE);
4317 	hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4318 
4319 	/* No need to invalidate - it was non-present before */
4320 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
4321 
4322 	spin_unlock(ptl);
4323 	set_page_huge_active(page);
4324 	if (vm_shared)
4325 		unlock_page(page);
4326 	ret = 0;
4327 out:
4328 	return ret;
4329 out_release_unlock:
4330 	spin_unlock(ptl);
4331 	if (vm_shared)
4332 		unlock_page(page);
4333 out_release_nounlock:
4334 	put_page(page);
4335 	goto out;
4336 }
4337 
4338 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4339 			 struct page **pages, struct vm_area_struct **vmas,
4340 			 unsigned long *position, unsigned long *nr_pages,
4341 			 long i, unsigned int flags, int *nonblocking)
4342 {
4343 	unsigned long pfn_offset;
4344 	unsigned long vaddr = *position;
4345 	unsigned long remainder = *nr_pages;
4346 	struct hstate *h = hstate_vma(vma);
4347 	int err = -EFAULT;
4348 
4349 	while (vaddr < vma->vm_end && remainder) {
4350 		pte_t *pte;
4351 		spinlock_t *ptl = NULL;
4352 		int absent;
4353 		struct page *page;
4354 
4355 		/*
4356 		 * If we have a pending SIGKILL, don't keep faulting pages and
4357 		 * potentially allocating memory.
4358 		 */
4359 		if (fatal_signal_pending(current)) {
4360 			remainder = 0;
4361 			break;
4362 		}
4363 
4364 		/*
4365 		 * Some archs (sparc64, sh*) have multiple pte_ts to
4366 		 * each hugepage.  We have to make sure we get the
4367 		 * first, for the page indexing below to work.
4368 		 *
4369 		 * Note that page table lock is not held when pte is null.
4370 		 */
4371 		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4372 				      huge_page_size(h));
4373 		if (pte)
4374 			ptl = huge_pte_lock(h, mm, pte);
4375 		absent = !pte || huge_pte_none(huge_ptep_get(pte));
4376 
4377 		/*
4378 		 * When coredumping, it suits get_dump_page if we just return
4379 		 * an error where there's an empty slot with no huge pagecache
4380 		 * to back it.  This way, we avoid allocating a hugepage, and
4381 		 * the sparse dumpfile avoids allocating disk blocks, but its
4382 		 * huge holes still show up with zeroes where they need to be.
4383 		 */
4384 		if (absent && (flags & FOLL_DUMP) &&
4385 		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4386 			if (pte)
4387 				spin_unlock(ptl);
4388 			remainder = 0;
4389 			break;
4390 		}
4391 
4392 		/*
4393 		 * We need call hugetlb_fault for both hugepages under migration
4394 		 * (in which case hugetlb_fault waits for the migration,) and
4395 		 * hwpoisoned hugepages (in which case we need to prevent the
4396 		 * caller from accessing to them.) In order to do this, we use
4397 		 * here is_swap_pte instead of is_hugetlb_entry_migration and
4398 		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4399 		 * both cases, and because we can't follow correct pages
4400 		 * directly from any kind of swap entries.
4401 		 */
4402 		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4403 		    ((flags & FOLL_WRITE) &&
4404 		      !huge_pte_write(huge_ptep_get(pte)))) {
4405 			vm_fault_t ret;
4406 			unsigned int fault_flags = 0;
4407 
4408 			if (pte)
4409 				spin_unlock(ptl);
4410 			if (flags & FOLL_WRITE)
4411 				fault_flags |= FAULT_FLAG_WRITE;
4412 			if (nonblocking)
4413 				fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4414 			if (flags & FOLL_NOWAIT)
4415 				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4416 					FAULT_FLAG_RETRY_NOWAIT;
4417 			if (flags & FOLL_TRIED) {
4418 				VM_WARN_ON_ONCE(fault_flags &
4419 						FAULT_FLAG_ALLOW_RETRY);
4420 				fault_flags |= FAULT_FLAG_TRIED;
4421 			}
4422 			ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4423 			if (ret & VM_FAULT_ERROR) {
4424 				err = vm_fault_to_errno(ret, flags);
4425 				remainder = 0;
4426 				break;
4427 			}
4428 			if (ret & VM_FAULT_RETRY) {
4429 				if (nonblocking &&
4430 				    !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4431 					*nonblocking = 0;
4432 				*nr_pages = 0;
4433 				/*
4434 				 * VM_FAULT_RETRY must not return an
4435 				 * error, it will return zero
4436 				 * instead.
4437 				 *
4438 				 * No need to update "position" as the
4439 				 * caller will not check it after
4440 				 * *nr_pages is set to 0.
4441 				 */
4442 				return i;
4443 			}
4444 			continue;
4445 		}
4446 
4447 		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4448 		page = pte_page(huge_ptep_get(pte));
4449 
4450 		/*
4451 		 * Instead of doing 'try_get_page()' below in the same_page
4452 		 * loop, just check the count once here.
4453 		 */
4454 		if (unlikely(page_count(page) <= 0)) {
4455 			if (pages) {
4456 				spin_unlock(ptl);
4457 				remainder = 0;
4458 				err = -ENOMEM;
4459 				break;
4460 			}
4461 		}
4462 same_page:
4463 		if (pages) {
4464 			pages[i] = mem_map_offset(page, pfn_offset);
4465 			get_page(pages[i]);
4466 		}
4467 
4468 		if (vmas)
4469 			vmas[i] = vma;
4470 
4471 		vaddr += PAGE_SIZE;
4472 		++pfn_offset;
4473 		--remainder;
4474 		++i;
4475 		if (vaddr < vma->vm_end && remainder &&
4476 				pfn_offset < pages_per_huge_page(h)) {
4477 			/*
4478 			 * We use pfn_offset to avoid touching the pageframes
4479 			 * of this compound page.
4480 			 */
4481 			goto same_page;
4482 		}
4483 		spin_unlock(ptl);
4484 	}
4485 	*nr_pages = remainder;
4486 	/*
4487 	 * setting position is actually required only if remainder is
4488 	 * not zero but it's faster not to add a "if (remainder)"
4489 	 * branch.
4490 	 */
4491 	*position = vaddr;
4492 
4493 	return i ? i : err;
4494 }
4495 
4496 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4497 /*
4498  * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4499  * implement this.
4500  */
4501 #define flush_hugetlb_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
4502 #endif
4503 
4504 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4505 		unsigned long address, unsigned long end, pgprot_t newprot)
4506 {
4507 	struct mm_struct *mm = vma->vm_mm;
4508 	unsigned long start = address;
4509 	pte_t *ptep;
4510 	pte_t pte;
4511 	struct hstate *h = hstate_vma(vma);
4512 	unsigned long pages = 0;
4513 	bool shared_pmd = false;
4514 	struct mmu_notifier_range range;
4515 
4516 	/*
4517 	 * In the case of shared PMDs, the area to flush could be beyond
4518 	 * start/end.  Set range.start/range.end to cover the maximum possible
4519 	 * range if PMD sharing is possible.
4520 	 */
4521 	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
4522 				0, vma, mm, start, end);
4523 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4524 
4525 	BUG_ON(address >= end);
4526 	flush_cache_range(vma, range.start, range.end);
4527 
4528 	mmu_notifier_invalidate_range_start(&range);
4529 	i_mmap_lock_write(vma->vm_file->f_mapping);
4530 	for (; address < end; address += huge_page_size(h)) {
4531 		spinlock_t *ptl;
4532 		ptep = huge_pte_offset(mm, address, huge_page_size(h));
4533 		if (!ptep)
4534 			continue;
4535 		ptl = huge_pte_lock(h, mm, ptep);
4536 		if (huge_pmd_unshare(mm, &address, ptep)) {
4537 			pages++;
4538 			spin_unlock(ptl);
4539 			shared_pmd = true;
4540 			continue;
4541 		}
4542 		pte = huge_ptep_get(ptep);
4543 		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4544 			spin_unlock(ptl);
4545 			continue;
4546 		}
4547 		if (unlikely(is_hugetlb_entry_migration(pte))) {
4548 			swp_entry_t entry = pte_to_swp_entry(pte);
4549 
4550 			if (is_write_migration_entry(entry)) {
4551 				pte_t newpte;
4552 
4553 				make_migration_entry_read(&entry);
4554 				newpte = swp_entry_to_pte(entry);
4555 				set_huge_swap_pte_at(mm, address, ptep,
4556 						     newpte, huge_page_size(h));
4557 				pages++;
4558 			}
4559 			spin_unlock(ptl);
4560 			continue;
4561 		}
4562 		if (!huge_pte_none(pte)) {
4563 			pte_t old_pte;
4564 
4565 			old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
4566 			pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
4567 			pte = arch_make_huge_pte(pte, vma, NULL, 0);
4568 			huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
4569 			pages++;
4570 		}
4571 		spin_unlock(ptl);
4572 	}
4573 	/*
4574 	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4575 	 * may have cleared our pud entry and done put_page on the page table:
4576 	 * once we release i_mmap_rwsem, another task can do the final put_page
4577 	 * and that page table be reused and filled with junk.  If we actually
4578 	 * did unshare a page of pmds, flush the range corresponding to the pud.
4579 	 */
4580 	if (shared_pmd)
4581 		flush_hugetlb_tlb_range(vma, range.start, range.end);
4582 	else
4583 		flush_hugetlb_tlb_range(vma, start, end);
4584 	/*
4585 	 * No need to call mmu_notifier_invalidate_range() we are downgrading
4586 	 * page table protection not changing it to point to a new page.
4587 	 *
4588 	 * See Documentation/vm/mmu_notifier.rst
4589 	 */
4590 	i_mmap_unlock_write(vma->vm_file->f_mapping);
4591 	mmu_notifier_invalidate_range_end(&range);
4592 
4593 	return pages << h->order;
4594 }
4595 
4596 int hugetlb_reserve_pages(struct inode *inode,
4597 					long from, long to,
4598 					struct vm_area_struct *vma,
4599 					vm_flags_t vm_flags)
4600 {
4601 	long ret, chg;
4602 	struct hstate *h = hstate_inode(inode);
4603 	struct hugepage_subpool *spool = subpool_inode(inode);
4604 	struct resv_map *resv_map;
4605 	long gbl_reserve;
4606 
4607 	/* This should never happen */
4608 	if (from > to) {
4609 		VM_WARN(1, "%s called with a negative range\n", __func__);
4610 		return -EINVAL;
4611 	}
4612 
4613 	/*
4614 	 * Only apply hugepage reservation if asked. At fault time, an
4615 	 * attempt will be made for VM_NORESERVE to allocate a page
4616 	 * without using reserves
4617 	 */
4618 	if (vm_flags & VM_NORESERVE)
4619 		return 0;
4620 
4621 	/*
4622 	 * Shared mappings base their reservation on the number of pages that
4623 	 * are already allocated on behalf of the file. Private mappings need
4624 	 * to reserve the full area even if read-only as mprotect() may be
4625 	 * called to make the mapping read-write. Assume !vma is a shm mapping
4626 	 */
4627 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
4628 		/*
4629 		 * resv_map can not be NULL as hugetlb_reserve_pages is only
4630 		 * called for inodes for which resv_maps were created (see
4631 		 * hugetlbfs_get_inode).
4632 		 */
4633 		resv_map = inode_resv_map(inode);
4634 
4635 		chg = region_chg(resv_map, from, to);
4636 
4637 	} else {
4638 		resv_map = resv_map_alloc();
4639 		if (!resv_map)
4640 			return -ENOMEM;
4641 
4642 		chg = to - from;
4643 
4644 		set_vma_resv_map(vma, resv_map);
4645 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4646 	}
4647 
4648 	if (chg < 0) {
4649 		ret = chg;
4650 		goto out_err;
4651 	}
4652 
4653 	/*
4654 	 * There must be enough pages in the subpool for the mapping. If
4655 	 * the subpool has a minimum size, there may be some global
4656 	 * reservations already in place (gbl_reserve).
4657 	 */
4658 	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4659 	if (gbl_reserve < 0) {
4660 		ret = -ENOSPC;
4661 		goto out_err;
4662 	}
4663 
4664 	/*
4665 	 * Check enough hugepages are available for the reservation.
4666 	 * Hand the pages back to the subpool if there are not
4667 	 */
4668 	ret = hugetlb_acct_memory(h, gbl_reserve);
4669 	if (ret < 0) {
4670 		/* put back original number of pages, chg */
4671 		(void)hugepage_subpool_put_pages(spool, chg);
4672 		goto out_err;
4673 	}
4674 
4675 	/*
4676 	 * Account for the reservations made. Shared mappings record regions
4677 	 * that have reservations as they are shared by multiple VMAs.
4678 	 * When the last VMA disappears, the region map says how much
4679 	 * the reservation was and the page cache tells how much of
4680 	 * the reservation was consumed. Private mappings are per-VMA and
4681 	 * only the consumed reservations are tracked. When the VMA
4682 	 * disappears, the original reservation is the VMA size and the
4683 	 * consumed reservations are stored in the map. Hence, nothing
4684 	 * else has to be done for private mappings here
4685 	 */
4686 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
4687 		long add = region_add(resv_map, from, to);
4688 
4689 		if (unlikely(chg > add)) {
4690 			/*
4691 			 * pages in this range were added to the reserve
4692 			 * map between region_chg and region_add.  This
4693 			 * indicates a race with alloc_huge_page.  Adjust
4694 			 * the subpool and reserve counts modified above
4695 			 * based on the difference.
4696 			 */
4697 			long rsv_adjust;
4698 
4699 			rsv_adjust = hugepage_subpool_put_pages(spool,
4700 								chg - add);
4701 			hugetlb_acct_memory(h, -rsv_adjust);
4702 		}
4703 	}
4704 	return 0;
4705 out_err:
4706 	if (!vma || vma->vm_flags & VM_MAYSHARE)
4707 		/* Don't call region_abort if region_chg failed */
4708 		if (chg >= 0)
4709 			region_abort(resv_map, from, to);
4710 	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4711 		kref_put(&resv_map->refs, resv_map_release);
4712 	return ret;
4713 }
4714 
4715 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4716 								long freed)
4717 {
4718 	struct hstate *h = hstate_inode(inode);
4719 	struct resv_map *resv_map = inode_resv_map(inode);
4720 	long chg = 0;
4721 	struct hugepage_subpool *spool = subpool_inode(inode);
4722 	long gbl_reserve;
4723 
4724 	/*
4725 	 * Since this routine can be called in the evict inode path for all
4726 	 * hugetlbfs inodes, resv_map could be NULL.
4727 	 */
4728 	if (resv_map) {
4729 		chg = region_del(resv_map, start, end);
4730 		/*
4731 		 * region_del() can fail in the rare case where a region
4732 		 * must be split and another region descriptor can not be
4733 		 * allocated.  If end == LONG_MAX, it will not fail.
4734 		 */
4735 		if (chg < 0)
4736 			return chg;
4737 	}
4738 
4739 	spin_lock(&inode->i_lock);
4740 	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4741 	spin_unlock(&inode->i_lock);
4742 
4743 	/*
4744 	 * If the subpool has a minimum size, the number of global
4745 	 * reservations to be released may be adjusted.
4746 	 */
4747 	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4748 	hugetlb_acct_memory(h, -gbl_reserve);
4749 
4750 	return 0;
4751 }
4752 
4753 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4754 static unsigned long page_table_shareable(struct vm_area_struct *svma,
4755 				struct vm_area_struct *vma,
4756 				unsigned long addr, pgoff_t idx)
4757 {
4758 	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4759 				svma->vm_start;
4760 	unsigned long sbase = saddr & PUD_MASK;
4761 	unsigned long s_end = sbase + PUD_SIZE;
4762 
4763 	/* Allow segments to share if only one is marked locked */
4764 	unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4765 	unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4766 
4767 	/*
4768 	 * match the virtual addresses, permission and the alignment of the
4769 	 * page table page.
4770 	 */
4771 	if (pmd_index(addr) != pmd_index(saddr) ||
4772 	    vm_flags != svm_flags ||
4773 	    sbase < svma->vm_start || svma->vm_end < s_end)
4774 		return 0;
4775 
4776 	return saddr;
4777 }
4778 
4779 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4780 {
4781 	unsigned long base = addr & PUD_MASK;
4782 	unsigned long end = base + PUD_SIZE;
4783 
4784 	/*
4785 	 * check on proper vm_flags and page table alignment
4786 	 */
4787 	if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
4788 		return true;
4789 	return false;
4790 }
4791 
4792 /*
4793  * Determine if start,end range within vma could be mapped by shared pmd.
4794  * If yes, adjust start and end to cover range associated with possible
4795  * shared pmd mappings.
4796  */
4797 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4798 				unsigned long *start, unsigned long *end)
4799 {
4800 	unsigned long check_addr = *start;
4801 
4802 	if (!(vma->vm_flags & VM_MAYSHARE))
4803 		return;
4804 
4805 	for (check_addr = *start; check_addr < *end; check_addr += PUD_SIZE) {
4806 		unsigned long a_start = check_addr & PUD_MASK;
4807 		unsigned long a_end = a_start + PUD_SIZE;
4808 
4809 		/*
4810 		 * If sharing is possible, adjust start/end if necessary.
4811 		 */
4812 		if (range_in_vma(vma, a_start, a_end)) {
4813 			if (a_start < *start)
4814 				*start = a_start;
4815 			if (a_end > *end)
4816 				*end = a_end;
4817 		}
4818 	}
4819 }
4820 
4821 /*
4822  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4823  * and returns the corresponding pte. While this is not necessary for the
4824  * !shared pmd case because we can allocate the pmd later as well, it makes the
4825  * code much cleaner. pmd allocation is essential for the shared case because
4826  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4827  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4828  * bad pmd for sharing.
4829  */
4830 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4831 {
4832 	struct vm_area_struct *vma = find_vma(mm, addr);
4833 	struct address_space *mapping = vma->vm_file->f_mapping;
4834 	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4835 			vma->vm_pgoff;
4836 	struct vm_area_struct *svma;
4837 	unsigned long saddr;
4838 	pte_t *spte = NULL;
4839 	pte_t *pte;
4840 	spinlock_t *ptl;
4841 
4842 	if (!vma_shareable(vma, addr))
4843 		return (pte_t *)pmd_alloc(mm, pud, addr);
4844 
4845 	i_mmap_lock_write(mapping);
4846 	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4847 		if (svma == vma)
4848 			continue;
4849 
4850 		saddr = page_table_shareable(svma, vma, addr, idx);
4851 		if (saddr) {
4852 			spte = huge_pte_offset(svma->vm_mm, saddr,
4853 					       vma_mmu_pagesize(svma));
4854 			if (spte) {
4855 				get_page(virt_to_page(spte));
4856 				break;
4857 			}
4858 		}
4859 	}
4860 
4861 	if (!spte)
4862 		goto out;
4863 
4864 	ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
4865 	if (pud_none(*pud)) {
4866 		pud_populate(mm, pud,
4867 				(pmd_t *)((unsigned long)spte & PAGE_MASK));
4868 		mm_inc_nr_pmds(mm);
4869 	} else {
4870 		put_page(virt_to_page(spte));
4871 	}
4872 	spin_unlock(ptl);
4873 out:
4874 	pte = (pte_t *)pmd_alloc(mm, pud, addr);
4875 	i_mmap_unlock_write(mapping);
4876 	return pte;
4877 }
4878 
4879 /*
4880  * unmap huge page backed by shared pte.
4881  *
4882  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
4883  * indicated by page_count > 1, unmap is achieved by clearing pud and
4884  * decrementing the ref count. If count == 1, the pte page is not shared.
4885  *
4886  * called with page table lock held.
4887  *
4888  * returns: 1 successfully unmapped a shared pte page
4889  *	    0 the underlying pte page is not shared, or it is the last user
4890  */
4891 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4892 {
4893 	pgd_t *pgd = pgd_offset(mm, *addr);
4894 	p4d_t *p4d = p4d_offset(pgd, *addr);
4895 	pud_t *pud = pud_offset(p4d, *addr);
4896 
4897 	BUG_ON(page_count(virt_to_page(ptep)) == 0);
4898 	if (page_count(virt_to_page(ptep)) == 1)
4899 		return 0;
4900 
4901 	pud_clear(pud);
4902 	put_page(virt_to_page(ptep));
4903 	mm_dec_nr_pmds(mm);
4904 	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4905 	return 1;
4906 }
4907 #define want_pmd_share()	(1)
4908 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4909 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4910 {
4911 	return NULL;
4912 }
4913 
4914 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4915 {
4916 	return 0;
4917 }
4918 
4919 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4920 				unsigned long *start, unsigned long *end)
4921 {
4922 }
4923 #define want_pmd_share()	(0)
4924 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4925 
4926 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4927 pte_t *huge_pte_alloc(struct mm_struct *mm,
4928 			unsigned long addr, unsigned long sz)
4929 {
4930 	pgd_t *pgd;
4931 	p4d_t *p4d;
4932 	pud_t *pud;
4933 	pte_t *pte = NULL;
4934 
4935 	pgd = pgd_offset(mm, addr);
4936 	p4d = p4d_alloc(mm, pgd, addr);
4937 	if (!p4d)
4938 		return NULL;
4939 	pud = pud_alloc(mm, p4d, addr);
4940 	if (pud) {
4941 		if (sz == PUD_SIZE) {
4942 			pte = (pte_t *)pud;
4943 		} else {
4944 			BUG_ON(sz != PMD_SIZE);
4945 			if (want_pmd_share() && pud_none(*pud))
4946 				pte = huge_pmd_share(mm, addr, pud);
4947 			else
4948 				pte = (pte_t *)pmd_alloc(mm, pud, addr);
4949 		}
4950 	}
4951 	BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
4952 
4953 	return pte;
4954 }
4955 
4956 /*
4957  * huge_pte_offset() - Walk the page table to resolve the hugepage
4958  * entry at address @addr
4959  *
4960  * Return: Pointer to page table or swap entry (PUD or PMD) for
4961  * address @addr, or NULL if a p*d_none() entry is encountered and the
4962  * size @sz doesn't match the hugepage size at this level of the page
4963  * table.
4964  */
4965 pte_t *huge_pte_offset(struct mm_struct *mm,
4966 		       unsigned long addr, unsigned long sz)
4967 {
4968 	pgd_t *pgd;
4969 	p4d_t *p4d;
4970 	pud_t *pud;
4971 	pmd_t *pmd;
4972 
4973 	pgd = pgd_offset(mm, addr);
4974 	if (!pgd_present(*pgd))
4975 		return NULL;
4976 	p4d = p4d_offset(pgd, addr);
4977 	if (!p4d_present(*p4d))
4978 		return NULL;
4979 
4980 	pud = pud_offset(p4d, addr);
4981 	if (sz != PUD_SIZE && pud_none(*pud))
4982 		return NULL;
4983 	/* hugepage or swap? */
4984 	if (pud_huge(*pud) || !pud_present(*pud))
4985 		return (pte_t *)pud;
4986 
4987 	pmd = pmd_offset(pud, addr);
4988 	if (sz != PMD_SIZE && pmd_none(*pmd))
4989 		return NULL;
4990 	/* hugepage or swap? */
4991 	if (pmd_huge(*pmd) || !pmd_present(*pmd))
4992 		return (pte_t *)pmd;
4993 
4994 	return NULL;
4995 }
4996 
4997 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4998 
4999 /*
5000  * These functions are overwritable if your architecture needs its own
5001  * behavior.
5002  */
5003 struct page * __weak
5004 follow_huge_addr(struct mm_struct *mm, unsigned long address,
5005 			      int write)
5006 {
5007 	return ERR_PTR(-EINVAL);
5008 }
5009 
5010 struct page * __weak
5011 follow_huge_pd(struct vm_area_struct *vma,
5012 	       unsigned long address, hugepd_t hpd, int flags, int pdshift)
5013 {
5014 	WARN(1, "hugepd follow called with no support for hugepage directory format\n");
5015 	return NULL;
5016 }
5017 
5018 struct page * __weak
5019 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
5020 		pmd_t *pmd, int flags)
5021 {
5022 	struct page *page = NULL;
5023 	spinlock_t *ptl;
5024 	pte_t pte;
5025 retry:
5026 	ptl = pmd_lockptr(mm, pmd);
5027 	spin_lock(ptl);
5028 	/*
5029 	 * make sure that the address range covered by this pmd is not
5030 	 * unmapped from other threads.
5031 	 */
5032 	if (!pmd_huge(*pmd))
5033 		goto out;
5034 	pte = huge_ptep_get((pte_t *)pmd);
5035 	if (pte_present(pte)) {
5036 		page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
5037 		if (flags & FOLL_GET)
5038 			get_page(page);
5039 	} else {
5040 		if (is_hugetlb_entry_migration(pte)) {
5041 			spin_unlock(ptl);
5042 			__migration_entry_wait(mm, (pte_t *)pmd, ptl);
5043 			goto retry;
5044 		}
5045 		/*
5046 		 * hwpoisoned entry is treated as no_page_table in
5047 		 * follow_page_mask().
5048 		 */
5049 	}
5050 out:
5051 	spin_unlock(ptl);
5052 	return page;
5053 }
5054 
5055 struct page * __weak
5056 follow_huge_pud(struct mm_struct *mm, unsigned long address,
5057 		pud_t *pud, int flags)
5058 {
5059 	if (flags & FOLL_GET)
5060 		return NULL;
5061 
5062 	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
5063 }
5064 
5065 struct page * __weak
5066 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
5067 {
5068 	if (flags & FOLL_GET)
5069 		return NULL;
5070 
5071 	return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
5072 }
5073 
5074 bool isolate_huge_page(struct page *page, struct list_head *list)
5075 {
5076 	bool ret = true;
5077 
5078 	VM_BUG_ON_PAGE(!PageHead(page), page);
5079 	spin_lock(&hugetlb_lock);
5080 	if (!page_huge_active(page) || !get_page_unless_zero(page)) {
5081 		ret = false;
5082 		goto unlock;
5083 	}
5084 	clear_page_huge_active(page);
5085 	list_move_tail(&page->lru, list);
5086 unlock:
5087 	spin_unlock(&hugetlb_lock);
5088 	return ret;
5089 }
5090 
5091 void putback_active_hugepage(struct page *page)
5092 {
5093 	VM_BUG_ON_PAGE(!PageHead(page), page);
5094 	spin_lock(&hugetlb_lock);
5095 	set_page_huge_active(page);
5096 	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
5097 	spin_unlock(&hugetlb_lock);
5098 	put_page(page);
5099 }
5100 
5101 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
5102 {
5103 	struct hstate *h = page_hstate(oldpage);
5104 
5105 	hugetlb_cgroup_migrate(oldpage, newpage);
5106 	set_page_owner_migrate_reason(newpage, reason);
5107 
5108 	/*
5109 	 * transfer temporary state of the new huge page. This is
5110 	 * reverse to other transitions because the newpage is going to
5111 	 * be final while the old one will be freed so it takes over
5112 	 * the temporary status.
5113 	 *
5114 	 * Also note that we have to transfer the per-node surplus state
5115 	 * here as well otherwise the global surplus count will not match
5116 	 * the per-node's.
5117 	 */
5118 	if (PageHugeTemporary(newpage)) {
5119 		int old_nid = page_to_nid(oldpage);
5120 		int new_nid = page_to_nid(newpage);
5121 
5122 		SetPageHugeTemporary(oldpage);
5123 		ClearPageHugeTemporary(newpage);
5124 
5125 		spin_lock(&hugetlb_lock);
5126 		if (h->surplus_huge_pages_node[old_nid]) {
5127 			h->surplus_huge_pages_node[old_nid]--;
5128 			h->surplus_huge_pages_node[new_nid]++;
5129 		}
5130 		spin_unlock(&hugetlb_lock);
5131 	}
5132 }
5133