1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic hugetlb support. 4 * (C) Nadia Yvette Chambers, April 2004 5 */ 6 #include <linux/list.h> 7 #include <linux/init.h> 8 #include <linux/mm.h> 9 #include <linux/seq_file.h> 10 #include <linux/sysctl.h> 11 #include <linux/highmem.h> 12 #include <linux/mmu_notifier.h> 13 #include <linux/nodemask.h> 14 #include <linux/pagemap.h> 15 #include <linux/mempolicy.h> 16 #include <linux/compiler.h> 17 #include <linux/cpuset.h> 18 #include <linux/mutex.h> 19 #include <linux/memblock.h> 20 #include <linux/sysfs.h> 21 #include <linux/slab.h> 22 #include <linux/sched/mm.h> 23 #include <linux/mmdebug.h> 24 #include <linux/sched/signal.h> 25 #include <linux/rmap.h> 26 #include <linux/string_helpers.h> 27 #include <linux/swap.h> 28 #include <linux/swapops.h> 29 #include <linux/jhash.h> 30 #include <linux/numa.h> 31 #include <linux/llist.h> 32 #include <linux/cma.h> 33 #include <linux/migrate.h> 34 #include <linux/nospec.h> 35 #include <linux/delayacct.h> 36 37 #include <asm/page.h> 38 #include <asm/pgalloc.h> 39 #include <asm/tlb.h> 40 41 #include <linux/io.h> 42 #include <linux/hugetlb.h> 43 #include <linux/hugetlb_cgroup.h> 44 #include <linux/node.h> 45 #include <linux/page_owner.h> 46 #include "internal.h" 47 #include "hugetlb_vmemmap.h" 48 49 int hugetlb_max_hstate __read_mostly; 50 unsigned int default_hstate_idx; 51 struct hstate hstates[HUGE_MAX_HSTATE]; 52 53 #ifdef CONFIG_CMA 54 static struct cma *hugetlb_cma[MAX_NUMNODES]; 55 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata; 56 static bool hugetlb_cma_page(struct page *page, unsigned int order) 57 { 58 return cma_pages_valid(hugetlb_cma[page_to_nid(page)], page, 59 1 << order); 60 } 61 #else 62 static bool hugetlb_cma_page(struct page *page, unsigned int order) 63 { 64 return false; 65 } 66 #endif 67 static unsigned long hugetlb_cma_size __initdata; 68 69 /* 70 * Minimum page order among possible hugepage sizes, set to a proper value 71 * at boot time. 72 */ 73 static unsigned int minimum_order __read_mostly = UINT_MAX; 74 75 __initdata LIST_HEAD(huge_boot_pages); 76 77 /* for command line parsing */ 78 static struct hstate * __initdata parsed_hstate; 79 static unsigned long __initdata default_hstate_max_huge_pages; 80 static bool __initdata parsed_valid_hugepagesz = true; 81 static bool __initdata parsed_default_hugepagesz; 82 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata; 83 84 /* 85 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages, 86 * free_huge_pages, and surplus_huge_pages. 87 */ 88 DEFINE_SPINLOCK(hugetlb_lock); 89 90 /* 91 * Serializes faults on the same logical page. This is used to 92 * prevent spurious OOMs when the hugepage pool is fully utilized. 93 */ 94 static int num_fault_mutexes; 95 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp; 96 97 /* Forward declaration */ 98 static int hugetlb_acct_memory(struct hstate *h, long delta); 99 100 static inline bool subpool_is_free(struct hugepage_subpool *spool) 101 { 102 if (spool->count) 103 return false; 104 if (spool->max_hpages != -1) 105 return spool->used_hpages == 0; 106 if (spool->min_hpages != -1) 107 return spool->rsv_hpages == spool->min_hpages; 108 109 return true; 110 } 111 112 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool, 113 unsigned long irq_flags) 114 { 115 spin_unlock_irqrestore(&spool->lock, irq_flags); 116 117 /* If no pages are used, and no other handles to the subpool 118 * remain, give up any reservations based on minimum size and 119 * free the subpool */ 120 if (subpool_is_free(spool)) { 121 if (spool->min_hpages != -1) 122 hugetlb_acct_memory(spool->hstate, 123 -spool->min_hpages); 124 kfree(spool); 125 } 126 } 127 128 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages, 129 long min_hpages) 130 { 131 struct hugepage_subpool *spool; 132 133 spool = kzalloc(sizeof(*spool), GFP_KERNEL); 134 if (!spool) 135 return NULL; 136 137 spin_lock_init(&spool->lock); 138 spool->count = 1; 139 spool->max_hpages = max_hpages; 140 spool->hstate = h; 141 spool->min_hpages = min_hpages; 142 143 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) { 144 kfree(spool); 145 return NULL; 146 } 147 spool->rsv_hpages = min_hpages; 148 149 return spool; 150 } 151 152 void hugepage_put_subpool(struct hugepage_subpool *spool) 153 { 154 unsigned long flags; 155 156 spin_lock_irqsave(&spool->lock, flags); 157 BUG_ON(!spool->count); 158 spool->count--; 159 unlock_or_release_subpool(spool, flags); 160 } 161 162 /* 163 * Subpool accounting for allocating and reserving pages. 164 * Return -ENOMEM if there are not enough resources to satisfy the 165 * request. Otherwise, return the number of pages by which the 166 * global pools must be adjusted (upward). The returned value may 167 * only be different than the passed value (delta) in the case where 168 * a subpool minimum size must be maintained. 169 */ 170 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool, 171 long delta) 172 { 173 long ret = delta; 174 175 if (!spool) 176 return ret; 177 178 spin_lock_irq(&spool->lock); 179 180 if (spool->max_hpages != -1) { /* maximum size accounting */ 181 if ((spool->used_hpages + delta) <= spool->max_hpages) 182 spool->used_hpages += delta; 183 else { 184 ret = -ENOMEM; 185 goto unlock_ret; 186 } 187 } 188 189 /* minimum size accounting */ 190 if (spool->min_hpages != -1 && spool->rsv_hpages) { 191 if (delta > spool->rsv_hpages) { 192 /* 193 * Asking for more reserves than those already taken on 194 * behalf of subpool. Return difference. 195 */ 196 ret = delta - spool->rsv_hpages; 197 spool->rsv_hpages = 0; 198 } else { 199 ret = 0; /* reserves already accounted for */ 200 spool->rsv_hpages -= delta; 201 } 202 } 203 204 unlock_ret: 205 spin_unlock_irq(&spool->lock); 206 return ret; 207 } 208 209 /* 210 * Subpool accounting for freeing and unreserving pages. 211 * Return the number of global page reservations that must be dropped. 212 * The return value may only be different than the passed value (delta) 213 * in the case where a subpool minimum size must be maintained. 214 */ 215 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool, 216 long delta) 217 { 218 long ret = delta; 219 unsigned long flags; 220 221 if (!spool) 222 return delta; 223 224 spin_lock_irqsave(&spool->lock, flags); 225 226 if (spool->max_hpages != -1) /* maximum size accounting */ 227 spool->used_hpages -= delta; 228 229 /* minimum size accounting */ 230 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) { 231 if (spool->rsv_hpages + delta <= spool->min_hpages) 232 ret = 0; 233 else 234 ret = spool->rsv_hpages + delta - spool->min_hpages; 235 236 spool->rsv_hpages += delta; 237 if (spool->rsv_hpages > spool->min_hpages) 238 spool->rsv_hpages = spool->min_hpages; 239 } 240 241 /* 242 * If hugetlbfs_put_super couldn't free spool due to an outstanding 243 * quota reference, free it now. 244 */ 245 unlock_or_release_subpool(spool, flags); 246 247 return ret; 248 } 249 250 static inline struct hugepage_subpool *subpool_inode(struct inode *inode) 251 { 252 return HUGETLBFS_SB(inode->i_sb)->spool; 253 } 254 255 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma) 256 { 257 return subpool_inode(file_inode(vma->vm_file)); 258 } 259 260 /* Helper that removes a struct file_region from the resv_map cache and returns 261 * it for use. 262 */ 263 static struct file_region * 264 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to) 265 { 266 struct file_region *nrg = NULL; 267 268 VM_BUG_ON(resv->region_cache_count <= 0); 269 270 resv->region_cache_count--; 271 nrg = list_first_entry(&resv->region_cache, struct file_region, link); 272 list_del(&nrg->link); 273 274 nrg->from = from; 275 nrg->to = to; 276 277 return nrg; 278 } 279 280 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg, 281 struct file_region *rg) 282 { 283 #ifdef CONFIG_CGROUP_HUGETLB 284 nrg->reservation_counter = rg->reservation_counter; 285 nrg->css = rg->css; 286 if (rg->css) 287 css_get(rg->css); 288 #endif 289 } 290 291 /* Helper that records hugetlb_cgroup uncharge info. */ 292 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg, 293 struct hstate *h, 294 struct resv_map *resv, 295 struct file_region *nrg) 296 { 297 #ifdef CONFIG_CGROUP_HUGETLB 298 if (h_cg) { 299 nrg->reservation_counter = 300 &h_cg->rsvd_hugepage[hstate_index(h)]; 301 nrg->css = &h_cg->css; 302 /* 303 * The caller will hold exactly one h_cg->css reference for the 304 * whole contiguous reservation region. But this area might be 305 * scattered when there are already some file_regions reside in 306 * it. As a result, many file_regions may share only one css 307 * reference. In order to ensure that one file_region must hold 308 * exactly one h_cg->css reference, we should do css_get for 309 * each file_region and leave the reference held by caller 310 * untouched. 311 */ 312 css_get(&h_cg->css); 313 if (!resv->pages_per_hpage) 314 resv->pages_per_hpage = pages_per_huge_page(h); 315 /* pages_per_hpage should be the same for all entries in 316 * a resv_map. 317 */ 318 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h)); 319 } else { 320 nrg->reservation_counter = NULL; 321 nrg->css = NULL; 322 } 323 #endif 324 } 325 326 static void put_uncharge_info(struct file_region *rg) 327 { 328 #ifdef CONFIG_CGROUP_HUGETLB 329 if (rg->css) 330 css_put(rg->css); 331 #endif 332 } 333 334 static bool has_same_uncharge_info(struct file_region *rg, 335 struct file_region *org) 336 { 337 #ifdef CONFIG_CGROUP_HUGETLB 338 return rg->reservation_counter == org->reservation_counter && 339 rg->css == org->css; 340 341 #else 342 return true; 343 #endif 344 } 345 346 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg) 347 { 348 struct file_region *nrg = NULL, *prg = NULL; 349 350 prg = list_prev_entry(rg, link); 351 if (&prg->link != &resv->regions && prg->to == rg->from && 352 has_same_uncharge_info(prg, rg)) { 353 prg->to = rg->to; 354 355 list_del(&rg->link); 356 put_uncharge_info(rg); 357 kfree(rg); 358 359 rg = prg; 360 } 361 362 nrg = list_next_entry(rg, link); 363 if (&nrg->link != &resv->regions && nrg->from == rg->to && 364 has_same_uncharge_info(nrg, rg)) { 365 nrg->from = rg->from; 366 367 list_del(&rg->link); 368 put_uncharge_info(rg); 369 kfree(rg); 370 } 371 } 372 373 static inline long 374 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from, 375 long to, struct hstate *h, struct hugetlb_cgroup *cg, 376 long *regions_needed) 377 { 378 struct file_region *nrg; 379 380 if (!regions_needed) { 381 nrg = get_file_region_entry_from_cache(map, from, to); 382 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg); 383 list_add(&nrg->link, rg); 384 coalesce_file_region(map, nrg); 385 } else 386 *regions_needed += 1; 387 388 return to - from; 389 } 390 391 /* 392 * Must be called with resv->lock held. 393 * 394 * Calling this with regions_needed != NULL will count the number of pages 395 * to be added but will not modify the linked list. And regions_needed will 396 * indicate the number of file_regions needed in the cache to carry out to add 397 * the regions for this range. 398 */ 399 static long add_reservation_in_range(struct resv_map *resv, long f, long t, 400 struct hugetlb_cgroup *h_cg, 401 struct hstate *h, long *regions_needed) 402 { 403 long add = 0; 404 struct list_head *head = &resv->regions; 405 long last_accounted_offset = f; 406 struct file_region *iter, *trg = NULL; 407 struct list_head *rg = NULL; 408 409 if (regions_needed) 410 *regions_needed = 0; 411 412 /* In this loop, we essentially handle an entry for the range 413 * [last_accounted_offset, iter->from), at every iteration, with some 414 * bounds checking. 415 */ 416 list_for_each_entry_safe(iter, trg, head, link) { 417 /* Skip irrelevant regions that start before our range. */ 418 if (iter->from < f) { 419 /* If this region ends after the last accounted offset, 420 * then we need to update last_accounted_offset. 421 */ 422 if (iter->to > last_accounted_offset) 423 last_accounted_offset = iter->to; 424 continue; 425 } 426 427 /* When we find a region that starts beyond our range, we've 428 * finished. 429 */ 430 if (iter->from >= t) { 431 rg = iter->link.prev; 432 break; 433 } 434 435 /* Add an entry for last_accounted_offset -> iter->from, and 436 * update last_accounted_offset. 437 */ 438 if (iter->from > last_accounted_offset) 439 add += hugetlb_resv_map_add(resv, iter->link.prev, 440 last_accounted_offset, 441 iter->from, h, h_cg, 442 regions_needed); 443 444 last_accounted_offset = iter->to; 445 } 446 447 /* Handle the case where our range extends beyond 448 * last_accounted_offset. 449 */ 450 if (!rg) 451 rg = head->prev; 452 if (last_accounted_offset < t) 453 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset, 454 t, h, h_cg, regions_needed); 455 456 return add; 457 } 458 459 /* Must be called with resv->lock acquired. Will drop lock to allocate entries. 460 */ 461 static int allocate_file_region_entries(struct resv_map *resv, 462 int regions_needed) 463 __must_hold(&resv->lock) 464 { 465 struct list_head allocated_regions; 466 int to_allocate = 0, i = 0; 467 struct file_region *trg = NULL, *rg = NULL; 468 469 VM_BUG_ON(regions_needed < 0); 470 471 INIT_LIST_HEAD(&allocated_regions); 472 473 /* 474 * Check for sufficient descriptors in the cache to accommodate 475 * the number of in progress add operations plus regions_needed. 476 * 477 * This is a while loop because when we drop the lock, some other call 478 * to region_add or region_del may have consumed some region_entries, 479 * so we keep looping here until we finally have enough entries for 480 * (adds_in_progress + regions_needed). 481 */ 482 while (resv->region_cache_count < 483 (resv->adds_in_progress + regions_needed)) { 484 to_allocate = resv->adds_in_progress + regions_needed - 485 resv->region_cache_count; 486 487 /* At this point, we should have enough entries in the cache 488 * for all the existing adds_in_progress. We should only be 489 * needing to allocate for regions_needed. 490 */ 491 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress); 492 493 spin_unlock(&resv->lock); 494 for (i = 0; i < to_allocate; i++) { 495 trg = kmalloc(sizeof(*trg), GFP_KERNEL); 496 if (!trg) 497 goto out_of_memory; 498 list_add(&trg->link, &allocated_regions); 499 } 500 501 spin_lock(&resv->lock); 502 503 list_splice(&allocated_regions, &resv->region_cache); 504 resv->region_cache_count += to_allocate; 505 } 506 507 return 0; 508 509 out_of_memory: 510 list_for_each_entry_safe(rg, trg, &allocated_regions, link) { 511 list_del(&rg->link); 512 kfree(rg); 513 } 514 return -ENOMEM; 515 } 516 517 /* 518 * Add the huge page range represented by [f, t) to the reserve 519 * map. Regions will be taken from the cache to fill in this range. 520 * Sufficient regions should exist in the cache due to the previous 521 * call to region_chg with the same range, but in some cases the cache will not 522 * have sufficient entries due to races with other code doing region_add or 523 * region_del. The extra needed entries will be allocated. 524 * 525 * regions_needed is the out value provided by a previous call to region_chg. 526 * 527 * Return the number of new huge pages added to the map. This number is greater 528 * than or equal to zero. If file_region entries needed to be allocated for 529 * this operation and we were not able to allocate, it returns -ENOMEM. 530 * region_add of regions of length 1 never allocate file_regions and cannot 531 * fail; region_chg will always allocate at least 1 entry and a region_add for 532 * 1 page will only require at most 1 entry. 533 */ 534 static long region_add(struct resv_map *resv, long f, long t, 535 long in_regions_needed, struct hstate *h, 536 struct hugetlb_cgroup *h_cg) 537 { 538 long add = 0, actual_regions_needed = 0; 539 540 spin_lock(&resv->lock); 541 retry: 542 543 /* Count how many regions are actually needed to execute this add. */ 544 add_reservation_in_range(resv, f, t, NULL, NULL, 545 &actual_regions_needed); 546 547 /* 548 * Check for sufficient descriptors in the cache to accommodate 549 * this add operation. Note that actual_regions_needed may be greater 550 * than in_regions_needed, as the resv_map may have been modified since 551 * the region_chg call. In this case, we need to make sure that we 552 * allocate extra entries, such that we have enough for all the 553 * existing adds_in_progress, plus the excess needed for this 554 * operation. 555 */ 556 if (actual_regions_needed > in_regions_needed && 557 resv->region_cache_count < 558 resv->adds_in_progress + 559 (actual_regions_needed - in_regions_needed)) { 560 /* region_add operation of range 1 should never need to 561 * allocate file_region entries. 562 */ 563 VM_BUG_ON(t - f <= 1); 564 565 if (allocate_file_region_entries( 566 resv, actual_regions_needed - in_regions_needed)) { 567 return -ENOMEM; 568 } 569 570 goto retry; 571 } 572 573 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL); 574 575 resv->adds_in_progress -= in_regions_needed; 576 577 spin_unlock(&resv->lock); 578 return add; 579 } 580 581 /* 582 * Examine the existing reserve map and determine how many 583 * huge pages in the specified range [f, t) are NOT currently 584 * represented. This routine is called before a subsequent 585 * call to region_add that will actually modify the reserve 586 * map to add the specified range [f, t). region_chg does 587 * not change the number of huge pages represented by the 588 * map. A number of new file_region structures is added to the cache as a 589 * placeholder, for the subsequent region_add call to use. At least 1 590 * file_region structure is added. 591 * 592 * out_regions_needed is the number of regions added to the 593 * resv->adds_in_progress. This value needs to be provided to a follow up call 594 * to region_add or region_abort for proper accounting. 595 * 596 * Returns the number of huge pages that need to be added to the existing 597 * reservation map for the range [f, t). This number is greater or equal to 598 * zero. -ENOMEM is returned if a new file_region structure or cache entry 599 * is needed and can not be allocated. 600 */ 601 static long region_chg(struct resv_map *resv, long f, long t, 602 long *out_regions_needed) 603 { 604 long chg = 0; 605 606 spin_lock(&resv->lock); 607 608 /* Count how many hugepages in this range are NOT represented. */ 609 chg = add_reservation_in_range(resv, f, t, NULL, NULL, 610 out_regions_needed); 611 612 if (*out_regions_needed == 0) 613 *out_regions_needed = 1; 614 615 if (allocate_file_region_entries(resv, *out_regions_needed)) 616 return -ENOMEM; 617 618 resv->adds_in_progress += *out_regions_needed; 619 620 spin_unlock(&resv->lock); 621 return chg; 622 } 623 624 /* 625 * Abort the in progress add operation. The adds_in_progress field 626 * of the resv_map keeps track of the operations in progress between 627 * calls to region_chg and region_add. Operations are sometimes 628 * aborted after the call to region_chg. In such cases, region_abort 629 * is called to decrement the adds_in_progress counter. regions_needed 630 * is the value returned by the region_chg call, it is used to decrement 631 * the adds_in_progress counter. 632 * 633 * NOTE: The range arguments [f, t) are not needed or used in this 634 * routine. They are kept to make reading the calling code easier as 635 * arguments will match the associated region_chg call. 636 */ 637 static void region_abort(struct resv_map *resv, long f, long t, 638 long regions_needed) 639 { 640 spin_lock(&resv->lock); 641 VM_BUG_ON(!resv->region_cache_count); 642 resv->adds_in_progress -= regions_needed; 643 spin_unlock(&resv->lock); 644 } 645 646 /* 647 * Delete the specified range [f, t) from the reserve map. If the 648 * t parameter is LONG_MAX, this indicates that ALL regions after f 649 * should be deleted. Locate the regions which intersect [f, t) 650 * and either trim, delete or split the existing regions. 651 * 652 * Returns the number of huge pages deleted from the reserve map. 653 * In the normal case, the return value is zero or more. In the 654 * case where a region must be split, a new region descriptor must 655 * be allocated. If the allocation fails, -ENOMEM will be returned. 656 * NOTE: If the parameter t == LONG_MAX, then we will never split 657 * a region and possibly return -ENOMEM. Callers specifying 658 * t == LONG_MAX do not need to check for -ENOMEM error. 659 */ 660 static long region_del(struct resv_map *resv, long f, long t) 661 { 662 struct list_head *head = &resv->regions; 663 struct file_region *rg, *trg; 664 struct file_region *nrg = NULL; 665 long del = 0; 666 667 retry: 668 spin_lock(&resv->lock); 669 list_for_each_entry_safe(rg, trg, head, link) { 670 /* 671 * Skip regions before the range to be deleted. file_region 672 * ranges are normally of the form [from, to). However, there 673 * may be a "placeholder" entry in the map which is of the form 674 * (from, to) with from == to. Check for placeholder entries 675 * at the beginning of the range to be deleted. 676 */ 677 if (rg->to <= f && (rg->to != rg->from || rg->to != f)) 678 continue; 679 680 if (rg->from >= t) 681 break; 682 683 if (f > rg->from && t < rg->to) { /* Must split region */ 684 /* 685 * Check for an entry in the cache before dropping 686 * lock and attempting allocation. 687 */ 688 if (!nrg && 689 resv->region_cache_count > resv->adds_in_progress) { 690 nrg = list_first_entry(&resv->region_cache, 691 struct file_region, 692 link); 693 list_del(&nrg->link); 694 resv->region_cache_count--; 695 } 696 697 if (!nrg) { 698 spin_unlock(&resv->lock); 699 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 700 if (!nrg) 701 return -ENOMEM; 702 goto retry; 703 } 704 705 del += t - f; 706 hugetlb_cgroup_uncharge_file_region( 707 resv, rg, t - f, false); 708 709 /* New entry for end of split region */ 710 nrg->from = t; 711 nrg->to = rg->to; 712 713 copy_hugetlb_cgroup_uncharge_info(nrg, rg); 714 715 INIT_LIST_HEAD(&nrg->link); 716 717 /* Original entry is trimmed */ 718 rg->to = f; 719 720 list_add(&nrg->link, &rg->link); 721 nrg = NULL; 722 break; 723 } 724 725 if (f <= rg->from && t >= rg->to) { /* Remove entire region */ 726 del += rg->to - rg->from; 727 hugetlb_cgroup_uncharge_file_region(resv, rg, 728 rg->to - rg->from, true); 729 list_del(&rg->link); 730 kfree(rg); 731 continue; 732 } 733 734 if (f <= rg->from) { /* Trim beginning of region */ 735 hugetlb_cgroup_uncharge_file_region(resv, rg, 736 t - rg->from, false); 737 738 del += t - rg->from; 739 rg->from = t; 740 } else { /* Trim end of region */ 741 hugetlb_cgroup_uncharge_file_region(resv, rg, 742 rg->to - f, false); 743 744 del += rg->to - f; 745 rg->to = f; 746 } 747 } 748 749 spin_unlock(&resv->lock); 750 kfree(nrg); 751 return del; 752 } 753 754 /* 755 * A rare out of memory error was encountered which prevented removal of 756 * the reserve map region for a page. The huge page itself was free'ed 757 * and removed from the page cache. This routine will adjust the subpool 758 * usage count, and the global reserve count if needed. By incrementing 759 * these counts, the reserve map entry which could not be deleted will 760 * appear as a "reserved" entry instead of simply dangling with incorrect 761 * counts. 762 */ 763 void hugetlb_fix_reserve_counts(struct inode *inode) 764 { 765 struct hugepage_subpool *spool = subpool_inode(inode); 766 long rsv_adjust; 767 bool reserved = false; 768 769 rsv_adjust = hugepage_subpool_get_pages(spool, 1); 770 if (rsv_adjust > 0) { 771 struct hstate *h = hstate_inode(inode); 772 773 if (!hugetlb_acct_memory(h, 1)) 774 reserved = true; 775 } else if (!rsv_adjust) { 776 reserved = true; 777 } 778 779 if (!reserved) 780 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n"); 781 } 782 783 /* 784 * Count and return the number of huge pages in the reserve map 785 * that intersect with the range [f, t). 786 */ 787 static long region_count(struct resv_map *resv, long f, long t) 788 { 789 struct list_head *head = &resv->regions; 790 struct file_region *rg; 791 long chg = 0; 792 793 spin_lock(&resv->lock); 794 /* Locate each segment we overlap with, and count that overlap. */ 795 list_for_each_entry(rg, head, link) { 796 long seg_from; 797 long seg_to; 798 799 if (rg->to <= f) 800 continue; 801 if (rg->from >= t) 802 break; 803 804 seg_from = max(rg->from, f); 805 seg_to = min(rg->to, t); 806 807 chg += seg_to - seg_from; 808 } 809 spin_unlock(&resv->lock); 810 811 return chg; 812 } 813 814 /* 815 * Convert the address within this vma to the page offset within 816 * the mapping, in pagecache page units; huge pages here. 817 */ 818 static pgoff_t vma_hugecache_offset(struct hstate *h, 819 struct vm_area_struct *vma, unsigned long address) 820 { 821 return ((address - vma->vm_start) >> huge_page_shift(h)) + 822 (vma->vm_pgoff >> huge_page_order(h)); 823 } 824 825 pgoff_t linear_hugepage_index(struct vm_area_struct *vma, 826 unsigned long address) 827 { 828 return vma_hugecache_offset(hstate_vma(vma), vma, address); 829 } 830 EXPORT_SYMBOL_GPL(linear_hugepage_index); 831 832 /* 833 * Return the size of the pages allocated when backing a VMA. In the majority 834 * cases this will be same size as used by the page table entries. 835 */ 836 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) 837 { 838 if (vma->vm_ops && vma->vm_ops->pagesize) 839 return vma->vm_ops->pagesize(vma); 840 return PAGE_SIZE; 841 } 842 EXPORT_SYMBOL_GPL(vma_kernel_pagesize); 843 844 /* 845 * Return the page size being used by the MMU to back a VMA. In the majority 846 * of cases, the page size used by the kernel matches the MMU size. On 847 * architectures where it differs, an architecture-specific 'strong' 848 * version of this symbol is required. 849 */ 850 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 851 { 852 return vma_kernel_pagesize(vma); 853 } 854 855 /* 856 * Flags for MAP_PRIVATE reservations. These are stored in the bottom 857 * bits of the reservation map pointer, which are always clear due to 858 * alignment. 859 */ 860 #define HPAGE_RESV_OWNER (1UL << 0) 861 #define HPAGE_RESV_UNMAPPED (1UL << 1) 862 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) 863 864 /* 865 * These helpers are used to track how many pages are reserved for 866 * faults in a MAP_PRIVATE mapping. Only the process that called mmap() 867 * is guaranteed to have their future faults succeed. 868 * 869 * With the exception of reset_vma_resv_huge_pages() which is called at fork(), 870 * the reserve counters are updated with the hugetlb_lock held. It is safe 871 * to reset the VMA at fork() time as it is not in use yet and there is no 872 * chance of the global counters getting corrupted as a result of the values. 873 * 874 * The private mapping reservation is represented in a subtly different 875 * manner to a shared mapping. A shared mapping has a region map associated 876 * with the underlying file, this region map represents the backing file 877 * pages which have ever had a reservation assigned which this persists even 878 * after the page is instantiated. A private mapping has a region map 879 * associated with the original mmap which is attached to all VMAs which 880 * reference it, this region map represents those offsets which have consumed 881 * reservation ie. where pages have been instantiated. 882 */ 883 static unsigned long get_vma_private_data(struct vm_area_struct *vma) 884 { 885 return (unsigned long)vma->vm_private_data; 886 } 887 888 static void set_vma_private_data(struct vm_area_struct *vma, 889 unsigned long value) 890 { 891 vma->vm_private_data = (void *)value; 892 } 893 894 static void 895 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map, 896 struct hugetlb_cgroup *h_cg, 897 struct hstate *h) 898 { 899 #ifdef CONFIG_CGROUP_HUGETLB 900 if (!h_cg || !h) { 901 resv_map->reservation_counter = NULL; 902 resv_map->pages_per_hpage = 0; 903 resv_map->css = NULL; 904 } else { 905 resv_map->reservation_counter = 906 &h_cg->rsvd_hugepage[hstate_index(h)]; 907 resv_map->pages_per_hpage = pages_per_huge_page(h); 908 resv_map->css = &h_cg->css; 909 } 910 #endif 911 } 912 913 struct resv_map *resv_map_alloc(void) 914 { 915 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); 916 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL); 917 918 if (!resv_map || !rg) { 919 kfree(resv_map); 920 kfree(rg); 921 return NULL; 922 } 923 924 kref_init(&resv_map->refs); 925 spin_lock_init(&resv_map->lock); 926 INIT_LIST_HEAD(&resv_map->regions); 927 928 resv_map->adds_in_progress = 0; 929 /* 930 * Initialize these to 0. On shared mappings, 0's here indicate these 931 * fields don't do cgroup accounting. On private mappings, these will be 932 * re-initialized to the proper values, to indicate that hugetlb cgroup 933 * reservations are to be un-charged from here. 934 */ 935 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL); 936 937 INIT_LIST_HEAD(&resv_map->region_cache); 938 list_add(&rg->link, &resv_map->region_cache); 939 resv_map->region_cache_count = 1; 940 941 return resv_map; 942 } 943 944 void resv_map_release(struct kref *ref) 945 { 946 struct resv_map *resv_map = container_of(ref, struct resv_map, refs); 947 struct list_head *head = &resv_map->region_cache; 948 struct file_region *rg, *trg; 949 950 /* Clear out any active regions before we release the map. */ 951 region_del(resv_map, 0, LONG_MAX); 952 953 /* ... and any entries left in the cache */ 954 list_for_each_entry_safe(rg, trg, head, link) { 955 list_del(&rg->link); 956 kfree(rg); 957 } 958 959 VM_BUG_ON(resv_map->adds_in_progress); 960 961 kfree(resv_map); 962 } 963 964 static inline struct resv_map *inode_resv_map(struct inode *inode) 965 { 966 /* 967 * At inode evict time, i_mapping may not point to the original 968 * address space within the inode. This original address space 969 * contains the pointer to the resv_map. So, always use the 970 * address space embedded within the inode. 971 * The VERY common case is inode->mapping == &inode->i_data but, 972 * this may not be true for device special inodes. 973 */ 974 return (struct resv_map *)(&inode->i_data)->private_data; 975 } 976 977 static struct resv_map *vma_resv_map(struct vm_area_struct *vma) 978 { 979 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 980 if (vma->vm_flags & VM_MAYSHARE) { 981 struct address_space *mapping = vma->vm_file->f_mapping; 982 struct inode *inode = mapping->host; 983 984 return inode_resv_map(inode); 985 986 } else { 987 return (struct resv_map *)(get_vma_private_data(vma) & 988 ~HPAGE_RESV_MASK); 989 } 990 } 991 992 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) 993 { 994 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 995 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 996 997 set_vma_private_data(vma, (get_vma_private_data(vma) & 998 HPAGE_RESV_MASK) | (unsigned long)map); 999 } 1000 1001 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) 1002 { 1003 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1004 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 1005 1006 set_vma_private_data(vma, get_vma_private_data(vma) | flags); 1007 } 1008 1009 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) 1010 { 1011 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1012 1013 return (get_vma_private_data(vma) & flag) != 0; 1014 } 1015 1016 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */ 1017 void reset_vma_resv_huge_pages(struct vm_area_struct *vma) 1018 { 1019 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1020 if (!(vma->vm_flags & VM_MAYSHARE)) 1021 vma->vm_private_data = (void *)0; 1022 } 1023 1024 /* 1025 * Reset and decrement one ref on hugepage private reservation. 1026 * Called with mm->mmap_sem writer semaphore held. 1027 * This function should be only used by move_vma() and operate on 1028 * same sized vma. It should never come here with last ref on the 1029 * reservation. 1030 */ 1031 void clear_vma_resv_huge_pages(struct vm_area_struct *vma) 1032 { 1033 /* 1034 * Clear the old hugetlb private page reservation. 1035 * It has already been transferred to new_vma. 1036 * 1037 * During a mremap() operation of a hugetlb vma we call move_vma() 1038 * which copies vma into new_vma and unmaps vma. After the copy 1039 * operation both new_vma and vma share a reference to the resv_map 1040 * struct, and at that point vma is about to be unmapped. We don't 1041 * want to return the reservation to the pool at unmap of vma because 1042 * the reservation still lives on in new_vma, so simply decrement the 1043 * ref here and remove the resv_map reference from this vma. 1044 */ 1045 struct resv_map *reservations = vma_resv_map(vma); 1046 1047 if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 1048 resv_map_put_hugetlb_cgroup_uncharge_info(reservations); 1049 kref_put(&reservations->refs, resv_map_release); 1050 } 1051 1052 reset_vma_resv_huge_pages(vma); 1053 } 1054 1055 /* Returns true if the VMA has associated reserve pages */ 1056 static bool vma_has_reserves(struct vm_area_struct *vma, long chg) 1057 { 1058 if (vma->vm_flags & VM_NORESERVE) { 1059 /* 1060 * This address is already reserved by other process(chg == 0), 1061 * so, we should decrement reserved count. Without decrementing, 1062 * reserve count remains after releasing inode, because this 1063 * allocated page will go into page cache and is regarded as 1064 * coming from reserved pool in releasing step. Currently, we 1065 * don't have any other solution to deal with this situation 1066 * properly, so add work-around here. 1067 */ 1068 if (vma->vm_flags & VM_MAYSHARE && chg == 0) 1069 return true; 1070 else 1071 return false; 1072 } 1073 1074 /* Shared mappings always use reserves */ 1075 if (vma->vm_flags & VM_MAYSHARE) { 1076 /* 1077 * We know VM_NORESERVE is not set. Therefore, there SHOULD 1078 * be a region map for all pages. The only situation where 1079 * there is no region map is if a hole was punched via 1080 * fallocate. In this case, there really are no reserves to 1081 * use. This situation is indicated if chg != 0. 1082 */ 1083 if (chg) 1084 return false; 1085 else 1086 return true; 1087 } 1088 1089 /* 1090 * Only the process that called mmap() has reserves for 1091 * private mappings. 1092 */ 1093 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 1094 /* 1095 * Like the shared case above, a hole punch or truncate 1096 * could have been performed on the private mapping. 1097 * Examine the value of chg to determine if reserves 1098 * actually exist or were previously consumed. 1099 * Very Subtle - The value of chg comes from a previous 1100 * call to vma_needs_reserves(). The reserve map for 1101 * private mappings has different (opposite) semantics 1102 * than that of shared mappings. vma_needs_reserves() 1103 * has already taken this difference in semantics into 1104 * account. Therefore, the meaning of chg is the same 1105 * as in the shared case above. Code could easily be 1106 * combined, but keeping it separate draws attention to 1107 * subtle differences. 1108 */ 1109 if (chg) 1110 return false; 1111 else 1112 return true; 1113 } 1114 1115 return false; 1116 } 1117 1118 static void enqueue_huge_page(struct hstate *h, struct page *page) 1119 { 1120 int nid = page_to_nid(page); 1121 1122 lockdep_assert_held(&hugetlb_lock); 1123 VM_BUG_ON_PAGE(page_count(page), page); 1124 1125 list_move(&page->lru, &h->hugepage_freelists[nid]); 1126 h->free_huge_pages++; 1127 h->free_huge_pages_node[nid]++; 1128 SetHPageFreed(page); 1129 } 1130 1131 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid) 1132 { 1133 struct page *page; 1134 bool pin = !!(current->flags & PF_MEMALLOC_PIN); 1135 1136 lockdep_assert_held(&hugetlb_lock); 1137 list_for_each_entry(page, &h->hugepage_freelists[nid], lru) { 1138 if (pin && !is_pinnable_page(page)) 1139 continue; 1140 1141 if (PageHWPoison(page)) 1142 continue; 1143 1144 list_move(&page->lru, &h->hugepage_activelist); 1145 set_page_refcounted(page); 1146 ClearHPageFreed(page); 1147 h->free_huge_pages--; 1148 h->free_huge_pages_node[nid]--; 1149 return page; 1150 } 1151 1152 return NULL; 1153 } 1154 1155 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid, 1156 nodemask_t *nmask) 1157 { 1158 unsigned int cpuset_mems_cookie; 1159 struct zonelist *zonelist; 1160 struct zone *zone; 1161 struct zoneref *z; 1162 int node = NUMA_NO_NODE; 1163 1164 zonelist = node_zonelist(nid, gfp_mask); 1165 1166 retry_cpuset: 1167 cpuset_mems_cookie = read_mems_allowed_begin(); 1168 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) { 1169 struct page *page; 1170 1171 if (!cpuset_zone_allowed(zone, gfp_mask)) 1172 continue; 1173 /* 1174 * no need to ask again on the same node. Pool is node rather than 1175 * zone aware 1176 */ 1177 if (zone_to_nid(zone) == node) 1178 continue; 1179 node = zone_to_nid(zone); 1180 1181 page = dequeue_huge_page_node_exact(h, node); 1182 if (page) 1183 return page; 1184 } 1185 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie))) 1186 goto retry_cpuset; 1187 1188 return NULL; 1189 } 1190 1191 static struct page *dequeue_huge_page_vma(struct hstate *h, 1192 struct vm_area_struct *vma, 1193 unsigned long address, int avoid_reserve, 1194 long chg) 1195 { 1196 struct page *page = NULL; 1197 struct mempolicy *mpol; 1198 gfp_t gfp_mask; 1199 nodemask_t *nodemask; 1200 int nid; 1201 1202 /* 1203 * A child process with MAP_PRIVATE mappings created by their parent 1204 * have no page reserves. This check ensures that reservations are 1205 * not "stolen". The child may still get SIGKILLed 1206 */ 1207 if (!vma_has_reserves(vma, chg) && 1208 h->free_huge_pages - h->resv_huge_pages == 0) 1209 goto err; 1210 1211 /* If reserves cannot be used, ensure enough pages are in the pool */ 1212 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0) 1213 goto err; 1214 1215 gfp_mask = htlb_alloc_mask(h); 1216 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 1217 1218 if (mpol_is_preferred_many(mpol)) { 1219 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask); 1220 1221 /* Fallback to all nodes if page==NULL */ 1222 nodemask = NULL; 1223 } 1224 1225 if (!page) 1226 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask); 1227 1228 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) { 1229 SetHPageRestoreReserve(page); 1230 h->resv_huge_pages--; 1231 } 1232 1233 mpol_cond_put(mpol); 1234 return page; 1235 1236 err: 1237 return NULL; 1238 } 1239 1240 /* 1241 * common helper functions for hstate_next_node_to_{alloc|free}. 1242 * We may have allocated or freed a huge page based on a different 1243 * nodes_allowed previously, so h->next_node_to_{alloc|free} might 1244 * be outside of *nodes_allowed. Ensure that we use an allowed 1245 * node for alloc or free. 1246 */ 1247 static int next_node_allowed(int nid, nodemask_t *nodes_allowed) 1248 { 1249 nid = next_node_in(nid, *nodes_allowed); 1250 VM_BUG_ON(nid >= MAX_NUMNODES); 1251 1252 return nid; 1253 } 1254 1255 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed) 1256 { 1257 if (!node_isset(nid, *nodes_allowed)) 1258 nid = next_node_allowed(nid, nodes_allowed); 1259 return nid; 1260 } 1261 1262 /* 1263 * returns the previously saved node ["this node"] from which to 1264 * allocate a persistent huge page for the pool and advance the 1265 * next node from which to allocate, handling wrap at end of node 1266 * mask. 1267 */ 1268 static int hstate_next_node_to_alloc(struct hstate *h, 1269 nodemask_t *nodes_allowed) 1270 { 1271 int nid; 1272 1273 VM_BUG_ON(!nodes_allowed); 1274 1275 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed); 1276 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed); 1277 1278 return nid; 1279 } 1280 1281 /* 1282 * helper for remove_pool_huge_page() - return the previously saved 1283 * node ["this node"] from which to free a huge page. Advance the 1284 * next node id whether or not we find a free huge page to free so 1285 * that the next attempt to free addresses the next node. 1286 */ 1287 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed) 1288 { 1289 int nid; 1290 1291 VM_BUG_ON(!nodes_allowed); 1292 1293 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed); 1294 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed); 1295 1296 return nid; 1297 } 1298 1299 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \ 1300 for (nr_nodes = nodes_weight(*mask); \ 1301 nr_nodes > 0 && \ 1302 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \ 1303 nr_nodes--) 1304 1305 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \ 1306 for (nr_nodes = nodes_weight(*mask); \ 1307 nr_nodes > 0 && \ 1308 ((node = hstate_next_node_to_free(hs, mask)) || 1); \ 1309 nr_nodes--) 1310 1311 /* used to demote non-gigantic_huge pages as well */ 1312 static void __destroy_compound_gigantic_page(struct page *page, 1313 unsigned int order, bool demote) 1314 { 1315 int i; 1316 int nr_pages = 1 << order; 1317 struct page *p = page + 1; 1318 1319 atomic_set(compound_mapcount_ptr(page), 0); 1320 atomic_set(compound_pincount_ptr(page), 0); 1321 1322 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { 1323 p->mapping = NULL; 1324 clear_compound_head(p); 1325 if (!demote) 1326 set_page_refcounted(p); 1327 } 1328 1329 set_compound_order(page, 0); 1330 #ifdef CONFIG_64BIT 1331 page[1].compound_nr = 0; 1332 #endif 1333 __ClearPageHead(page); 1334 } 1335 1336 static void destroy_compound_hugetlb_page_for_demote(struct page *page, 1337 unsigned int order) 1338 { 1339 __destroy_compound_gigantic_page(page, order, true); 1340 } 1341 1342 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE 1343 static void destroy_compound_gigantic_page(struct page *page, 1344 unsigned int order) 1345 { 1346 __destroy_compound_gigantic_page(page, order, false); 1347 } 1348 1349 static void free_gigantic_page(struct page *page, unsigned int order) 1350 { 1351 /* 1352 * If the page isn't allocated using the cma allocator, 1353 * cma_release() returns false. 1354 */ 1355 #ifdef CONFIG_CMA 1356 if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order)) 1357 return; 1358 #endif 1359 1360 free_contig_range(page_to_pfn(page), 1 << order); 1361 } 1362 1363 #ifdef CONFIG_CONTIG_ALLOC 1364 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, 1365 int nid, nodemask_t *nodemask) 1366 { 1367 unsigned long nr_pages = pages_per_huge_page(h); 1368 if (nid == NUMA_NO_NODE) 1369 nid = numa_mem_id(); 1370 1371 #ifdef CONFIG_CMA 1372 { 1373 struct page *page; 1374 int node; 1375 1376 if (hugetlb_cma[nid]) { 1377 page = cma_alloc(hugetlb_cma[nid], nr_pages, 1378 huge_page_order(h), true); 1379 if (page) 1380 return page; 1381 } 1382 1383 if (!(gfp_mask & __GFP_THISNODE)) { 1384 for_each_node_mask(node, *nodemask) { 1385 if (node == nid || !hugetlb_cma[node]) 1386 continue; 1387 1388 page = cma_alloc(hugetlb_cma[node], nr_pages, 1389 huge_page_order(h), true); 1390 if (page) 1391 return page; 1392 } 1393 } 1394 } 1395 #endif 1396 1397 return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask); 1398 } 1399 1400 #else /* !CONFIG_CONTIG_ALLOC */ 1401 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, 1402 int nid, nodemask_t *nodemask) 1403 { 1404 return NULL; 1405 } 1406 #endif /* CONFIG_CONTIG_ALLOC */ 1407 1408 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */ 1409 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, 1410 int nid, nodemask_t *nodemask) 1411 { 1412 return NULL; 1413 } 1414 static inline void free_gigantic_page(struct page *page, unsigned int order) { } 1415 static inline void destroy_compound_gigantic_page(struct page *page, 1416 unsigned int order) { } 1417 #endif 1418 1419 /* 1420 * Remove hugetlb page from lists, and update dtor so that page appears 1421 * as just a compound page. 1422 * 1423 * A reference is held on the page, except in the case of demote. 1424 * 1425 * Must be called with hugetlb lock held. 1426 */ 1427 static void __remove_hugetlb_page(struct hstate *h, struct page *page, 1428 bool adjust_surplus, 1429 bool demote) 1430 { 1431 int nid = page_to_nid(page); 1432 1433 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page); 1434 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page); 1435 1436 lockdep_assert_held(&hugetlb_lock); 1437 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 1438 return; 1439 1440 list_del(&page->lru); 1441 1442 if (HPageFreed(page)) { 1443 h->free_huge_pages--; 1444 h->free_huge_pages_node[nid]--; 1445 } 1446 if (adjust_surplus) { 1447 h->surplus_huge_pages--; 1448 h->surplus_huge_pages_node[nid]--; 1449 } 1450 1451 /* 1452 * Very subtle 1453 * 1454 * For non-gigantic pages set the destructor to the normal compound 1455 * page dtor. This is needed in case someone takes an additional 1456 * temporary ref to the page, and freeing is delayed until they drop 1457 * their reference. 1458 * 1459 * For gigantic pages set the destructor to the null dtor. This 1460 * destructor will never be called. Before freeing the gigantic 1461 * page destroy_compound_gigantic_page will turn the compound page 1462 * into a simple group of pages. After this the destructor does not 1463 * apply. 1464 * 1465 * This handles the case where more than one ref is held when and 1466 * after update_and_free_page is called. 1467 * 1468 * In the case of demote we do not ref count the page as it will soon 1469 * be turned into a page of smaller size. 1470 */ 1471 if (!demote) 1472 set_page_refcounted(page); 1473 if (hstate_is_gigantic(h)) 1474 set_compound_page_dtor(page, NULL_COMPOUND_DTOR); 1475 else 1476 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR); 1477 1478 h->nr_huge_pages--; 1479 h->nr_huge_pages_node[nid]--; 1480 } 1481 1482 static void remove_hugetlb_page(struct hstate *h, struct page *page, 1483 bool adjust_surplus) 1484 { 1485 __remove_hugetlb_page(h, page, adjust_surplus, false); 1486 } 1487 1488 static void remove_hugetlb_page_for_demote(struct hstate *h, struct page *page, 1489 bool adjust_surplus) 1490 { 1491 __remove_hugetlb_page(h, page, adjust_surplus, true); 1492 } 1493 1494 static void add_hugetlb_page(struct hstate *h, struct page *page, 1495 bool adjust_surplus) 1496 { 1497 int zeroed; 1498 int nid = page_to_nid(page); 1499 1500 VM_BUG_ON_PAGE(!HPageVmemmapOptimized(page), page); 1501 1502 lockdep_assert_held(&hugetlb_lock); 1503 1504 INIT_LIST_HEAD(&page->lru); 1505 h->nr_huge_pages++; 1506 h->nr_huge_pages_node[nid]++; 1507 1508 if (adjust_surplus) { 1509 h->surplus_huge_pages++; 1510 h->surplus_huge_pages_node[nid]++; 1511 } 1512 1513 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR); 1514 set_page_private(page, 0); 1515 SetHPageVmemmapOptimized(page); 1516 1517 /* 1518 * This page is about to be managed by the hugetlb allocator and 1519 * should have no users. Drop our reference, and check for others 1520 * just in case. 1521 */ 1522 zeroed = put_page_testzero(page); 1523 if (!zeroed) 1524 /* 1525 * It is VERY unlikely soneone else has taken a ref on 1526 * the page. In this case, we simply return as the 1527 * hugetlb destructor (free_huge_page) will be called 1528 * when this other ref is dropped. 1529 */ 1530 return; 1531 1532 arch_clear_hugepage_flags(page); 1533 enqueue_huge_page(h, page); 1534 } 1535 1536 static void __update_and_free_page(struct hstate *h, struct page *page) 1537 { 1538 int i; 1539 struct page *subpage = page; 1540 1541 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 1542 return; 1543 1544 if (hugetlb_vmemmap_alloc(h, page)) { 1545 spin_lock_irq(&hugetlb_lock); 1546 /* 1547 * If we cannot allocate vmemmap pages, just refuse to free the 1548 * page and put the page back on the hugetlb free list and treat 1549 * as a surplus page. 1550 */ 1551 add_hugetlb_page(h, page, true); 1552 spin_unlock_irq(&hugetlb_lock); 1553 return; 1554 } 1555 1556 for (i = 0; i < pages_per_huge_page(h); 1557 i++, subpage = mem_map_next(subpage, page, i)) { 1558 subpage->flags &= ~(1 << PG_locked | 1 << PG_error | 1559 1 << PG_referenced | 1 << PG_dirty | 1560 1 << PG_active | 1 << PG_private | 1561 1 << PG_writeback); 1562 } 1563 1564 /* 1565 * Non-gigantic pages demoted from CMA allocated gigantic pages 1566 * need to be given back to CMA in free_gigantic_page. 1567 */ 1568 if (hstate_is_gigantic(h) || 1569 hugetlb_cma_page(page, huge_page_order(h))) { 1570 destroy_compound_gigantic_page(page, huge_page_order(h)); 1571 free_gigantic_page(page, huge_page_order(h)); 1572 } else { 1573 __free_pages(page, huge_page_order(h)); 1574 } 1575 } 1576 1577 /* 1578 * As update_and_free_page() can be called under any context, so we cannot 1579 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the 1580 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate 1581 * the vmemmap pages. 1582 * 1583 * free_hpage_workfn() locklessly retrieves the linked list of pages to be 1584 * freed and frees them one-by-one. As the page->mapping pointer is going 1585 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node 1586 * structure of a lockless linked list of huge pages to be freed. 1587 */ 1588 static LLIST_HEAD(hpage_freelist); 1589 1590 static void free_hpage_workfn(struct work_struct *work) 1591 { 1592 struct llist_node *node; 1593 1594 node = llist_del_all(&hpage_freelist); 1595 1596 while (node) { 1597 struct page *page; 1598 struct hstate *h; 1599 1600 page = container_of((struct address_space **)node, 1601 struct page, mapping); 1602 node = node->next; 1603 page->mapping = NULL; 1604 /* 1605 * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate() 1606 * is going to trigger because a previous call to 1607 * remove_hugetlb_page() will set_compound_page_dtor(page, 1608 * NULL_COMPOUND_DTOR), so do not use page_hstate() directly. 1609 */ 1610 h = size_to_hstate(page_size(page)); 1611 1612 __update_and_free_page(h, page); 1613 1614 cond_resched(); 1615 } 1616 } 1617 static DECLARE_WORK(free_hpage_work, free_hpage_workfn); 1618 1619 static inline void flush_free_hpage_work(struct hstate *h) 1620 { 1621 if (hugetlb_optimize_vmemmap_pages(h)) 1622 flush_work(&free_hpage_work); 1623 } 1624 1625 static void update_and_free_page(struct hstate *h, struct page *page, 1626 bool atomic) 1627 { 1628 if (!HPageVmemmapOptimized(page) || !atomic) { 1629 __update_and_free_page(h, page); 1630 return; 1631 } 1632 1633 /* 1634 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages. 1635 * 1636 * Only call schedule_work() if hpage_freelist is previously 1637 * empty. Otherwise, schedule_work() had been called but the workfn 1638 * hasn't retrieved the list yet. 1639 */ 1640 if (llist_add((struct llist_node *)&page->mapping, &hpage_freelist)) 1641 schedule_work(&free_hpage_work); 1642 } 1643 1644 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list) 1645 { 1646 struct page *page, *t_page; 1647 1648 list_for_each_entry_safe(page, t_page, list, lru) { 1649 update_and_free_page(h, page, false); 1650 cond_resched(); 1651 } 1652 } 1653 1654 struct hstate *size_to_hstate(unsigned long size) 1655 { 1656 struct hstate *h; 1657 1658 for_each_hstate(h) { 1659 if (huge_page_size(h) == size) 1660 return h; 1661 } 1662 return NULL; 1663 } 1664 1665 void free_huge_page(struct page *page) 1666 { 1667 /* 1668 * Can't pass hstate in here because it is called from the 1669 * compound page destructor. 1670 */ 1671 struct hstate *h = page_hstate(page); 1672 int nid = page_to_nid(page); 1673 struct hugepage_subpool *spool = hugetlb_page_subpool(page); 1674 bool restore_reserve; 1675 unsigned long flags; 1676 1677 VM_BUG_ON_PAGE(page_count(page), page); 1678 VM_BUG_ON_PAGE(page_mapcount(page), page); 1679 1680 hugetlb_set_page_subpool(page, NULL); 1681 if (PageAnon(page)) 1682 __ClearPageAnonExclusive(page); 1683 page->mapping = NULL; 1684 restore_reserve = HPageRestoreReserve(page); 1685 ClearHPageRestoreReserve(page); 1686 1687 /* 1688 * If HPageRestoreReserve was set on page, page allocation consumed a 1689 * reservation. If the page was associated with a subpool, there 1690 * would have been a page reserved in the subpool before allocation 1691 * via hugepage_subpool_get_pages(). Since we are 'restoring' the 1692 * reservation, do not call hugepage_subpool_put_pages() as this will 1693 * remove the reserved page from the subpool. 1694 */ 1695 if (!restore_reserve) { 1696 /* 1697 * A return code of zero implies that the subpool will be 1698 * under its minimum size if the reservation is not restored 1699 * after page is free. Therefore, force restore_reserve 1700 * operation. 1701 */ 1702 if (hugepage_subpool_put_pages(spool, 1) == 0) 1703 restore_reserve = true; 1704 } 1705 1706 spin_lock_irqsave(&hugetlb_lock, flags); 1707 ClearHPageMigratable(page); 1708 hugetlb_cgroup_uncharge_page(hstate_index(h), 1709 pages_per_huge_page(h), page); 1710 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h), 1711 pages_per_huge_page(h), page); 1712 if (restore_reserve) 1713 h->resv_huge_pages++; 1714 1715 if (HPageTemporary(page)) { 1716 remove_hugetlb_page(h, page, false); 1717 spin_unlock_irqrestore(&hugetlb_lock, flags); 1718 update_and_free_page(h, page, true); 1719 } else if (h->surplus_huge_pages_node[nid]) { 1720 /* remove the page from active list */ 1721 remove_hugetlb_page(h, page, true); 1722 spin_unlock_irqrestore(&hugetlb_lock, flags); 1723 update_and_free_page(h, page, true); 1724 } else { 1725 arch_clear_hugepage_flags(page); 1726 enqueue_huge_page(h, page); 1727 spin_unlock_irqrestore(&hugetlb_lock, flags); 1728 } 1729 } 1730 1731 /* 1732 * Must be called with the hugetlb lock held 1733 */ 1734 static void __prep_account_new_huge_page(struct hstate *h, int nid) 1735 { 1736 lockdep_assert_held(&hugetlb_lock); 1737 h->nr_huge_pages++; 1738 h->nr_huge_pages_node[nid]++; 1739 } 1740 1741 static void __prep_new_huge_page(struct hstate *h, struct page *page) 1742 { 1743 hugetlb_vmemmap_free(h, page); 1744 INIT_LIST_HEAD(&page->lru); 1745 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR); 1746 hugetlb_set_page_subpool(page, NULL); 1747 set_hugetlb_cgroup(page, NULL); 1748 set_hugetlb_cgroup_rsvd(page, NULL); 1749 } 1750 1751 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid) 1752 { 1753 __prep_new_huge_page(h, page); 1754 spin_lock_irq(&hugetlb_lock); 1755 __prep_account_new_huge_page(h, nid); 1756 spin_unlock_irq(&hugetlb_lock); 1757 } 1758 1759 static bool __prep_compound_gigantic_page(struct page *page, unsigned int order, 1760 bool demote) 1761 { 1762 int i, j; 1763 int nr_pages = 1 << order; 1764 struct page *p = page + 1; 1765 1766 /* we rely on prep_new_huge_page to set the destructor */ 1767 set_compound_order(page, order); 1768 __ClearPageReserved(page); 1769 __SetPageHead(page); 1770 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { 1771 /* 1772 * For gigantic hugepages allocated through bootmem at 1773 * boot, it's safer to be consistent with the not-gigantic 1774 * hugepages and clear the PG_reserved bit from all tail pages 1775 * too. Otherwise drivers using get_user_pages() to access tail 1776 * pages may get the reference counting wrong if they see 1777 * PG_reserved set on a tail page (despite the head page not 1778 * having PG_reserved set). Enforcing this consistency between 1779 * head and tail pages allows drivers to optimize away a check 1780 * on the head page when they need know if put_page() is needed 1781 * after get_user_pages(). 1782 */ 1783 __ClearPageReserved(p); 1784 /* 1785 * Subtle and very unlikely 1786 * 1787 * Gigantic 'page allocators' such as memblock or cma will 1788 * return a set of pages with each page ref counted. We need 1789 * to turn this set of pages into a compound page with tail 1790 * page ref counts set to zero. Code such as speculative page 1791 * cache adding could take a ref on a 'to be' tail page. 1792 * We need to respect any increased ref count, and only set 1793 * the ref count to zero if count is currently 1. If count 1794 * is not 1, we return an error. An error return indicates 1795 * the set of pages can not be converted to a gigantic page. 1796 * The caller who allocated the pages should then discard the 1797 * pages using the appropriate free interface. 1798 * 1799 * In the case of demote, the ref count will be zero. 1800 */ 1801 if (!demote) { 1802 if (!page_ref_freeze(p, 1)) { 1803 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n"); 1804 goto out_error; 1805 } 1806 } else { 1807 VM_BUG_ON_PAGE(page_count(p), p); 1808 } 1809 set_compound_head(p, page); 1810 } 1811 atomic_set(compound_mapcount_ptr(page), -1); 1812 atomic_set(compound_pincount_ptr(page), 0); 1813 return true; 1814 1815 out_error: 1816 /* undo tail page modifications made above */ 1817 p = page + 1; 1818 for (j = 1; j < i; j++, p = mem_map_next(p, page, j)) { 1819 clear_compound_head(p); 1820 set_page_refcounted(p); 1821 } 1822 /* need to clear PG_reserved on remaining tail pages */ 1823 for (; j < nr_pages; j++, p = mem_map_next(p, page, j)) 1824 __ClearPageReserved(p); 1825 set_compound_order(page, 0); 1826 #ifdef CONFIG_64BIT 1827 page[1].compound_nr = 0; 1828 #endif 1829 __ClearPageHead(page); 1830 return false; 1831 } 1832 1833 static bool prep_compound_gigantic_page(struct page *page, unsigned int order) 1834 { 1835 return __prep_compound_gigantic_page(page, order, false); 1836 } 1837 1838 static bool prep_compound_gigantic_page_for_demote(struct page *page, 1839 unsigned int order) 1840 { 1841 return __prep_compound_gigantic_page(page, order, true); 1842 } 1843 1844 /* 1845 * PageHuge() only returns true for hugetlbfs pages, but not for normal or 1846 * transparent huge pages. See the PageTransHuge() documentation for more 1847 * details. 1848 */ 1849 int PageHuge(struct page *page) 1850 { 1851 if (!PageCompound(page)) 1852 return 0; 1853 1854 page = compound_head(page); 1855 return page[1].compound_dtor == HUGETLB_PAGE_DTOR; 1856 } 1857 EXPORT_SYMBOL_GPL(PageHuge); 1858 1859 /* 1860 * PageHeadHuge() only returns true for hugetlbfs head page, but not for 1861 * normal or transparent huge pages. 1862 */ 1863 int PageHeadHuge(struct page *page_head) 1864 { 1865 if (!PageHead(page_head)) 1866 return 0; 1867 1868 return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR; 1869 } 1870 EXPORT_SYMBOL_GPL(PageHeadHuge); 1871 1872 /* 1873 * Find and lock address space (mapping) in write mode. 1874 * 1875 * Upon entry, the page is locked which means that page_mapping() is 1876 * stable. Due to locking order, we can only trylock_write. If we can 1877 * not get the lock, simply return NULL to caller. 1878 */ 1879 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage) 1880 { 1881 struct address_space *mapping = page_mapping(hpage); 1882 1883 if (!mapping) 1884 return mapping; 1885 1886 if (i_mmap_trylock_write(mapping)) 1887 return mapping; 1888 1889 return NULL; 1890 } 1891 1892 pgoff_t hugetlb_basepage_index(struct page *page) 1893 { 1894 struct page *page_head = compound_head(page); 1895 pgoff_t index = page_index(page_head); 1896 unsigned long compound_idx; 1897 1898 if (compound_order(page_head) >= MAX_ORDER) 1899 compound_idx = page_to_pfn(page) - page_to_pfn(page_head); 1900 else 1901 compound_idx = page - page_head; 1902 1903 return (index << compound_order(page_head)) + compound_idx; 1904 } 1905 1906 static struct page *alloc_buddy_huge_page(struct hstate *h, 1907 gfp_t gfp_mask, int nid, nodemask_t *nmask, 1908 nodemask_t *node_alloc_noretry) 1909 { 1910 int order = huge_page_order(h); 1911 struct page *page; 1912 bool alloc_try_hard = true; 1913 1914 /* 1915 * By default we always try hard to allocate the page with 1916 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in 1917 * a loop (to adjust global huge page counts) and previous allocation 1918 * failed, do not continue to try hard on the same node. Use the 1919 * node_alloc_noretry bitmap to manage this state information. 1920 */ 1921 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry)) 1922 alloc_try_hard = false; 1923 gfp_mask |= __GFP_COMP|__GFP_NOWARN; 1924 if (alloc_try_hard) 1925 gfp_mask |= __GFP_RETRY_MAYFAIL; 1926 if (nid == NUMA_NO_NODE) 1927 nid = numa_mem_id(); 1928 page = __alloc_pages(gfp_mask, order, nid, nmask); 1929 if (page) 1930 __count_vm_event(HTLB_BUDDY_PGALLOC); 1931 else 1932 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 1933 1934 /* 1935 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this 1936 * indicates an overall state change. Clear bit so that we resume 1937 * normal 'try hard' allocations. 1938 */ 1939 if (node_alloc_noretry && page && !alloc_try_hard) 1940 node_clear(nid, *node_alloc_noretry); 1941 1942 /* 1943 * If we tried hard to get a page but failed, set bit so that 1944 * subsequent attempts will not try as hard until there is an 1945 * overall state change. 1946 */ 1947 if (node_alloc_noretry && !page && alloc_try_hard) 1948 node_set(nid, *node_alloc_noretry); 1949 1950 return page; 1951 } 1952 1953 /* 1954 * Common helper to allocate a fresh hugetlb page. All specific allocators 1955 * should use this function to get new hugetlb pages 1956 */ 1957 static struct page *alloc_fresh_huge_page(struct hstate *h, 1958 gfp_t gfp_mask, int nid, nodemask_t *nmask, 1959 nodemask_t *node_alloc_noretry) 1960 { 1961 struct page *page; 1962 bool retry = false; 1963 1964 retry: 1965 if (hstate_is_gigantic(h)) 1966 page = alloc_gigantic_page(h, gfp_mask, nid, nmask); 1967 else 1968 page = alloc_buddy_huge_page(h, gfp_mask, 1969 nid, nmask, node_alloc_noretry); 1970 if (!page) 1971 return NULL; 1972 1973 if (hstate_is_gigantic(h)) { 1974 if (!prep_compound_gigantic_page(page, huge_page_order(h))) { 1975 /* 1976 * Rare failure to convert pages to compound page. 1977 * Free pages and try again - ONCE! 1978 */ 1979 free_gigantic_page(page, huge_page_order(h)); 1980 if (!retry) { 1981 retry = true; 1982 goto retry; 1983 } 1984 return NULL; 1985 } 1986 } 1987 prep_new_huge_page(h, page, page_to_nid(page)); 1988 1989 return page; 1990 } 1991 1992 /* 1993 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved 1994 * manner. 1995 */ 1996 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed, 1997 nodemask_t *node_alloc_noretry) 1998 { 1999 struct page *page; 2000 int nr_nodes, node; 2001 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 2002 2003 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 2004 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed, 2005 node_alloc_noretry); 2006 if (page) 2007 break; 2008 } 2009 2010 if (!page) 2011 return 0; 2012 2013 put_page(page); /* free it into the hugepage allocator */ 2014 2015 return 1; 2016 } 2017 2018 /* 2019 * Remove huge page from pool from next node to free. Attempt to keep 2020 * persistent huge pages more or less balanced over allowed nodes. 2021 * This routine only 'removes' the hugetlb page. The caller must make 2022 * an additional call to free the page to low level allocators. 2023 * Called with hugetlb_lock locked. 2024 */ 2025 static struct page *remove_pool_huge_page(struct hstate *h, 2026 nodemask_t *nodes_allowed, 2027 bool acct_surplus) 2028 { 2029 int nr_nodes, node; 2030 struct page *page = NULL; 2031 2032 lockdep_assert_held(&hugetlb_lock); 2033 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 2034 /* 2035 * If we're returning unused surplus pages, only examine 2036 * nodes with surplus pages. 2037 */ 2038 if ((!acct_surplus || h->surplus_huge_pages_node[node]) && 2039 !list_empty(&h->hugepage_freelists[node])) { 2040 page = list_entry(h->hugepage_freelists[node].next, 2041 struct page, lru); 2042 remove_hugetlb_page(h, page, acct_surplus); 2043 break; 2044 } 2045 } 2046 2047 return page; 2048 } 2049 2050 /* 2051 * Dissolve a given free hugepage into free buddy pages. This function does 2052 * nothing for in-use hugepages and non-hugepages. 2053 * This function returns values like below: 2054 * 2055 * -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages 2056 * when the system is under memory pressure and the feature of 2057 * freeing unused vmemmap pages associated with each hugetlb page 2058 * is enabled. 2059 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use 2060 * (allocated or reserved.) 2061 * 0: successfully dissolved free hugepages or the page is not a 2062 * hugepage (considered as already dissolved) 2063 */ 2064 int dissolve_free_huge_page(struct page *page) 2065 { 2066 int rc = -EBUSY; 2067 2068 retry: 2069 /* Not to disrupt normal path by vainly holding hugetlb_lock */ 2070 if (!PageHuge(page)) 2071 return 0; 2072 2073 spin_lock_irq(&hugetlb_lock); 2074 if (!PageHuge(page)) { 2075 rc = 0; 2076 goto out; 2077 } 2078 2079 if (!page_count(page)) { 2080 struct page *head = compound_head(page); 2081 struct hstate *h = page_hstate(head); 2082 if (h->free_huge_pages - h->resv_huge_pages == 0) 2083 goto out; 2084 2085 /* 2086 * We should make sure that the page is already on the free list 2087 * when it is dissolved. 2088 */ 2089 if (unlikely(!HPageFreed(head))) { 2090 spin_unlock_irq(&hugetlb_lock); 2091 cond_resched(); 2092 2093 /* 2094 * Theoretically, we should return -EBUSY when we 2095 * encounter this race. In fact, we have a chance 2096 * to successfully dissolve the page if we do a 2097 * retry. Because the race window is quite small. 2098 * If we seize this opportunity, it is an optimization 2099 * for increasing the success rate of dissolving page. 2100 */ 2101 goto retry; 2102 } 2103 2104 remove_hugetlb_page(h, head, false); 2105 h->max_huge_pages--; 2106 spin_unlock_irq(&hugetlb_lock); 2107 2108 /* 2109 * Normally update_and_free_page will allocate required vmemmmap 2110 * before freeing the page. update_and_free_page will fail to 2111 * free the page if it can not allocate required vmemmap. We 2112 * need to adjust max_huge_pages if the page is not freed. 2113 * Attempt to allocate vmemmmap here so that we can take 2114 * appropriate action on failure. 2115 */ 2116 rc = hugetlb_vmemmap_alloc(h, head); 2117 if (!rc) { 2118 /* 2119 * Move PageHWPoison flag from head page to the raw 2120 * error page, which makes any subpages rather than 2121 * the error page reusable. 2122 */ 2123 if (PageHWPoison(head) && page != head) { 2124 SetPageHWPoison(page); 2125 ClearPageHWPoison(head); 2126 } 2127 update_and_free_page(h, head, false); 2128 } else { 2129 spin_lock_irq(&hugetlb_lock); 2130 add_hugetlb_page(h, head, false); 2131 h->max_huge_pages++; 2132 spin_unlock_irq(&hugetlb_lock); 2133 } 2134 2135 return rc; 2136 } 2137 out: 2138 spin_unlock_irq(&hugetlb_lock); 2139 return rc; 2140 } 2141 2142 /* 2143 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to 2144 * make specified memory blocks removable from the system. 2145 * Note that this will dissolve a free gigantic hugepage completely, if any 2146 * part of it lies within the given range. 2147 * Also note that if dissolve_free_huge_page() returns with an error, all 2148 * free hugepages that were dissolved before that error are lost. 2149 */ 2150 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn) 2151 { 2152 unsigned long pfn; 2153 struct page *page; 2154 int rc = 0; 2155 2156 if (!hugepages_supported()) 2157 return rc; 2158 2159 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) { 2160 page = pfn_to_page(pfn); 2161 rc = dissolve_free_huge_page(page); 2162 if (rc) 2163 break; 2164 } 2165 2166 return rc; 2167 } 2168 2169 /* 2170 * Allocates a fresh surplus page from the page allocator. 2171 */ 2172 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask, 2173 int nid, nodemask_t *nmask, bool zero_ref) 2174 { 2175 struct page *page = NULL; 2176 bool retry = false; 2177 2178 if (hstate_is_gigantic(h)) 2179 return NULL; 2180 2181 spin_lock_irq(&hugetlb_lock); 2182 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) 2183 goto out_unlock; 2184 spin_unlock_irq(&hugetlb_lock); 2185 2186 retry: 2187 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL); 2188 if (!page) 2189 return NULL; 2190 2191 spin_lock_irq(&hugetlb_lock); 2192 /* 2193 * We could have raced with the pool size change. 2194 * Double check that and simply deallocate the new page 2195 * if we would end up overcommiting the surpluses. Abuse 2196 * temporary page to workaround the nasty free_huge_page 2197 * codeflow 2198 */ 2199 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { 2200 SetHPageTemporary(page); 2201 spin_unlock_irq(&hugetlb_lock); 2202 put_page(page); 2203 return NULL; 2204 } 2205 2206 if (zero_ref) { 2207 /* 2208 * Caller requires a page with zero ref count. 2209 * We will drop ref count here. If someone else is holding 2210 * a ref, the page will be freed when they drop it. Abuse 2211 * temporary page flag to accomplish this. 2212 */ 2213 SetHPageTemporary(page); 2214 if (!put_page_testzero(page)) { 2215 /* 2216 * Unexpected inflated ref count on freshly allocated 2217 * huge. Retry once. 2218 */ 2219 pr_info("HugeTLB unexpected inflated ref count on freshly allocated page\n"); 2220 spin_unlock_irq(&hugetlb_lock); 2221 if (retry) 2222 return NULL; 2223 2224 retry = true; 2225 goto retry; 2226 } 2227 ClearHPageTemporary(page); 2228 } 2229 2230 h->surplus_huge_pages++; 2231 h->surplus_huge_pages_node[page_to_nid(page)]++; 2232 2233 out_unlock: 2234 spin_unlock_irq(&hugetlb_lock); 2235 2236 return page; 2237 } 2238 2239 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask, 2240 int nid, nodemask_t *nmask) 2241 { 2242 struct page *page; 2243 2244 if (hstate_is_gigantic(h)) 2245 return NULL; 2246 2247 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL); 2248 if (!page) 2249 return NULL; 2250 2251 /* 2252 * We do not account these pages as surplus because they are only 2253 * temporary and will be released properly on the last reference 2254 */ 2255 SetHPageTemporary(page); 2256 2257 return page; 2258 } 2259 2260 /* 2261 * Use the VMA's mpolicy to allocate a huge page from the buddy. 2262 */ 2263 static 2264 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h, 2265 struct vm_area_struct *vma, unsigned long addr) 2266 { 2267 struct page *page = NULL; 2268 struct mempolicy *mpol; 2269 gfp_t gfp_mask = htlb_alloc_mask(h); 2270 int nid; 2271 nodemask_t *nodemask; 2272 2273 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask); 2274 if (mpol_is_preferred_many(mpol)) { 2275 gfp_t gfp = gfp_mask | __GFP_NOWARN; 2276 2277 gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL); 2278 page = alloc_surplus_huge_page(h, gfp, nid, nodemask, false); 2279 2280 /* Fallback to all nodes if page==NULL */ 2281 nodemask = NULL; 2282 } 2283 2284 if (!page) 2285 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask, false); 2286 mpol_cond_put(mpol); 2287 return page; 2288 } 2289 2290 /* page migration callback function */ 2291 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid, 2292 nodemask_t *nmask, gfp_t gfp_mask) 2293 { 2294 spin_lock_irq(&hugetlb_lock); 2295 if (h->free_huge_pages - h->resv_huge_pages > 0) { 2296 struct page *page; 2297 2298 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask); 2299 if (page) { 2300 spin_unlock_irq(&hugetlb_lock); 2301 return page; 2302 } 2303 } 2304 spin_unlock_irq(&hugetlb_lock); 2305 2306 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask); 2307 } 2308 2309 /* mempolicy aware migration callback */ 2310 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma, 2311 unsigned long address) 2312 { 2313 struct mempolicy *mpol; 2314 nodemask_t *nodemask; 2315 struct page *page; 2316 gfp_t gfp_mask; 2317 int node; 2318 2319 gfp_mask = htlb_alloc_mask(h); 2320 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 2321 page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask); 2322 mpol_cond_put(mpol); 2323 2324 return page; 2325 } 2326 2327 /* 2328 * Increase the hugetlb pool such that it can accommodate a reservation 2329 * of size 'delta'. 2330 */ 2331 static int gather_surplus_pages(struct hstate *h, long delta) 2332 __must_hold(&hugetlb_lock) 2333 { 2334 struct list_head surplus_list; 2335 struct page *page, *tmp; 2336 int ret; 2337 long i; 2338 long needed, allocated; 2339 bool alloc_ok = true; 2340 2341 lockdep_assert_held(&hugetlb_lock); 2342 needed = (h->resv_huge_pages + delta) - h->free_huge_pages; 2343 if (needed <= 0) { 2344 h->resv_huge_pages += delta; 2345 return 0; 2346 } 2347 2348 allocated = 0; 2349 INIT_LIST_HEAD(&surplus_list); 2350 2351 ret = -ENOMEM; 2352 retry: 2353 spin_unlock_irq(&hugetlb_lock); 2354 for (i = 0; i < needed; i++) { 2355 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h), 2356 NUMA_NO_NODE, NULL, true); 2357 if (!page) { 2358 alloc_ok = false; 2359 break; 2360 } 2361 list_add(&page->lru, &surplus_list); 2362 cond_resched(); 2363 } 2364 allocated += i; 2365 2366 /* 2367 * After retaking hugetlb_lock, we need to recalculate 'needed' 2368 * because either resv_huge_pages or free_huge_pages may have changed. 2369 */ 2370 spin_lock_irq(&hugetlb_lock); 2371 needed = (h->resv_huge_pages + delta) - 2372 (h->free_huge_pages + allocated); 2373 if (needed > 0) { 2374 if (alloc_ok) 2375 goto retry; 2376 /* 2377 * We were not able to allocate enough pages to 2378 * satisfy the entire reservation so we free what 2379 * we've allocated so far. 2380 */ 2381 goto free; 2382 } 2383 /* 2384 * The surplus_list now contains _at_least_ the number of extra pages 2385 * needed to accommodate the reservation. Add the appropriate number 2386 * of pages to the hugetlb pool and free the extras back to the buddy 2387 * allocator. Commit the entire reservation here to prevent another 2388 * process from stealing the pages as they are added to the pool but 2389 * before they are reserved. 2390 */ 2391 needed += allocated; 2392 h->resv_huge_pages += delta; 2393 ret = 0; 2394 2395 /* Free the needed pages to the hugetlb pool */ 2396 list_for_each_entry_safe(page, tmp, &surplus_list, lru) { 2397 if ((--needed) < 0) 2398 break; 2399 /* Add the page to the hugetlb allocator */ 2400 enqueue_huge_page(h, page); 2401 } 2402 free: 2403 spin_unlock_irq(&hugetlb_lock); 2404 2405 /* 2406 * Free unnecessary surplus pages to the buddy allocator. 2407 * Pages have no ref count, call free_huge_page directly. 2408 */ 2409 list_for_each_entry_safe(page, tmp, &surplus_list, lru) 2410 free_huge_page(page); 2411 spin_lock_irq(&hugetlb_lock); 2412 2413 return ret; 2414 } 2415 2416 /* 2417 * This routine has two main purposes: 2418 * 1) Decrement the reservation count (resv_huge_pages) by the value passed 2419 * in unused_resv_pages. This corresponds to the prior adjustments made 2420 * to the associated reservation map. 2421 * 2) Free any unused surplus pages that may have been allocated to satisfy 2422 * the reservation. As many as unused_resv_pages may be freed. 2423 */ 2424 static void return_unused_surplus_pages(struct hstate *h, 2425 unsigned long unused_resv_pages) 2426 { 2427 unsigned long nr_pages; 2428 struct page *page; 2429 LIST_HEAD(page_list); 2430 2431 lockdep_assert_held(&hugetlb_lock); 2432 /* Uncommit the reservation */ 2433 h->resv_huge_pages -= unused_resv_pages; 2434 2435 /* Cannot return gigantic pages currently */ 2436 if (hstate_is_gigantic(h)) 2437 goto out; 2438 2439 /* 2440 * Part (or even all) of the reservation could have been backed 2441 * by pre-allocated pages. Only free surplus pages. 2442 */ 2443 nr_pages = min(unused_resv_pages, h->surplus_huge_pages); 2444 2445 /* 2446 * We want to release as many surplus pages as possible, spread 2447 * evenly across all nodes with memory. Iterate across these nodes 2448 * until we can no longer free unreserved surplus pages. This occurs 2449 * when the nodes with surplus pages have no free pages. 2450 * remove_pool_huge_page() will balance the freed pages across the 2451 * on-line nodes with memory and will handle the hstate accounting. 2452 */ 2453 while (nr_pages--) { 2454 page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1); 2455 if (!page) 2456 goto out; 2457 2458 list_add(&page->lru, &page_list); 2459 } 2460 2461 out: 2462 spin_unlock_irq(&hugetlb_lock); 2463 update_and_free_pages_bulk(h, &page_list); 2464 spin_lock_irq(&hugetlb_lock); 2465 } 2466 2467 2468 /* 2469 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation 2470 * are used by the huge page allocation routines to manage reservations. 2471 * 2472 * vma_needs_reservation is called to determine if the huge page at addr 2473 * within the vma has an associated reservation. If a reservation is 2474 * needed, the value 1 is returned. The caller is then responsible for 2475 * managing the global reservation and subpool usage counts. After 2476 * the huge page has been allocated, vma_commit_reservation is called 2477 * to add the page to the reservation map. If the page allocation fails, 2478 * the reservation must be ended instead of committed. vma_end_reservation 2479 * is called in such cases. 2480 * 2481 * In the normal case, vma_commit_reservation returns the same value 2482 * as the preceding vma_needs_reservation call. The only time this 2483 * is not the case is if a reserve map was changed between calls. It 2484 * is the responsibility of the caller to notice the difference and 2485 * take appropriate action. 2486 * 2487 * vma_add_reservation is used in error paths where a reservation must 2488 * be restored when a newly allocated huge page must be freed. It is 2489 * to be called after calling vma_needs_reservation to determine if a 2490 * reservation exists. 2491 * 2492 * vma_del_reservation is used in error paths where an entry in the reserve 2493 * map was created during huge page allocation and must be removed. It is to 2494 * be called after calling vma_needs_reservation to determine if a reservation 2495 * exists. 2496 */ 2497 enum vma_resv_mode { 2498 VMA_NEEDS_RESV, 2499 VMA_COMMIT_RESV, 2500 VMA_END_RESV, 2501 VMA_ADD_RESV, 2502 VMA_DEL_RESV, 2503 }; 2504 static long __vma_reservation_common(struct hstate *h, 2505 struct vm_area_struct *vma, unsigned long addr, 2506 enum vma_resv_mode mode) 2507 { 2508 struct resv_map *resv; 2509 pgoff_t idx; 2510 long ret; 2511 long dummy_out_regions_needed; 2512 2513 resv = vma_resv_map(vma); 2514 if (!resv) 2515 return 1; 2516 2517 idx = vma_hugecache_offset(h, vma, addr); 2518 switch (mode) { 2519 case VMA_NEEDS_RESV: 2520 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed); 2521 /* We assume that vma_reservation_* routines always operate on 2522 * 1 page, and that adding to resv map a 1 page entry can only 2523 * ever require 1 region. 2524 */ 2525 VM_BUG_ON(dummy_out_regions_needed != 1); 2526 break; 2527 case VMA_COMMIT_RESV: 2528 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2529 /* region_add calls of range 1 should never fail. */ 2530 VM_BUG_ON(ret < 0); 2531 break; 2532 case VMA_END_RESV: 2533 region_abort(resv, idx, idx + 1, 1); 2534 ret = 0; 2535 break; 2536 case VMA_ADD_RESV: 2537 if (vma->vm_flags & VM_MAYSHARE) { 2538 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2539 /* region_add calls of range 1 should never fail. */ 2540 VM_BUG_ON(ret < 0); 2541 } else { 2542 region_abort(resv, idx, idx + 1, 1); 2543 ret = region_del(resv, idx, idx + 1); 2544 } 2545 break; 2546 case VMA_DEL_RESV: 2547 if (vma->vm_flags & VM_MAYSHARE) { 2548 region_abort(resv, idx, idx + 1, 1); 2549 ret = region_del(resv, idx, idx + 1); 2550 } else { 2551 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2552 /* region_add calls of range 1 should never fail. */ 2553 VM_BUG_ON(ret < 0); 2554 } 2555 break; 2556 default: 2557 BUG(); 2558 } 2559 2560 if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV) 2561 return ret; 2562 /* 2563 * We know private mapping must have HPAGE_RESV_OWNER set. 2564 * 2565 * In most cases, reserves always exist for private mappings. 2566 * However, a file associated with mapping could have been 2567 * hole punched or truncated after reserves were consumed. 2568 * As subsequent fault on such a range will not use reserves. 2569 * Subtle - The reserve map for private mappings has the 2570 * opposite meaning than that of shared mappings. If NO 2571 * entry is in the reserve map, it means a reservation exists. 2572 * If an entry exists in the reserve map, it means the 2573 * reservation has already been consumed. As a result, the 2574 * return value of this routine is the opposite of the 2575 * value returned from reserve map manipulation routines above. 2576 */ 2577 if (ret > 0) 2578 return 0; 2579 if (ret == 0) 2580 return 1; 2581 return ret; 2582 } 2583 2584 static long vma_needs_reservation(struct hstate *h, 2585 struct vm_area_struct *vma, unsigned long addr) 2586 { 2587 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV); 2588 } 2589 2590 static long vma_commit_reservation(struct hstate *h, 2591 struct vm_area_struct *vma, unsigned long addr) 2592 { 2593 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV); 2594 } 2595 2596 static void vma_end_reservation(struct hstate *h, 2597 struct vm_area_struct *vma, unsigned long addr) 2598 { 2599 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV); 2600 } 2601 2602 static long vma_add_reservation(struct hstate *h, 2603 struct vm_area_struct *vma, unsigned long addr) 2604 { 2605 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV); 2606 } 2607 2608 static long vma_del_reservation(struct hstate *h, 2609 struct vm_area_struct *vma, unsigned long addr) 2610 { 2611 return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV); 2612 } 2613 2614 /* 2615 * This routine is called to restore reservation information on error paths. 2616 * It should ONLY be called for pages allocated via alloc_huge_page(), and 2617 * the hugetlb mutex should remain held when calling this routine. 2618 * 2619 * It handles two specific cases: 2620 * 1) A reservation was in place and the page consumed the reservation. 2621 * HPageRestoreReserve is set in the page. 2622 * 2) No reservation was in place for the page, so HPageRestoreReserve is 2623 * not set. However, alloc_huge_page always updates the reserve map. 2624 * 2625 * In case 1, free_huge_page later in the error path will increment the 2626 * global reserve count. But, free_huge_page does not have enough context 2627 * to adjust the reservation map. This case deals primarily with private 2628 * mappings. Adjust the reserve map here to be consistent with global 2629 * reserve count adjustments to be made by free_huge_page. Make sure the 2630 * reserve map indicates there is a reservation present. 2631 * 2632 * In case 2, simply undo reserve map modifications done by alloc_huge_page. 2633 */ 2634 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma, 2635 unsigned long address, struct page *page) 2636 { 2637 long rc = vma_needs_reservation(h, vma, address); 2638 2639 if (HPageRestoreReserve(page)) { 2640 if (unlikely(rc < 0)) 2641 /* 2642 * Rare out of memory condition in reserve map 2643 * manipulation. Clear HPageRestoreReserve so that 2644 * global reserve count will not be incremented 2645 * by free_huge_page. This will make it appear 2646 * as though the reservation for this page was 2647 * consumed. This may prevent the task from 2648 * faulting in the page at a later time. This 2649 * is better than inconsistent global huge page 2650 * accounting of reserve counts. 2651 */ 2652 ClearHPageRestoreReserve(page); 2653 else if (rc) 2654 (void)vma_add_reservation(h, vma, address); 2655 else 2656 vma_end_reservation(h, vma, address); 2657 } else { 2658 if (!rc) { 2659 /* 2660 * This indicates there is an entry in the reserve map 2661 * not added by alloc_huge_page. We know it was added 2662 * before the alloc_huge_page call, otherwise 2663 * HPageRestoreReserve would be set on the page. 2664 * Remove the entry so that a subsequent allocation 2665 * does not consume a reservation. 2666 */ 2667 rc = vma_del_reservation(h, vma, address); 2668 if (rc < 0) 2669 /* 2670 * VERY rare out of memory condition. Since 2671 * we can not delete the entry, set 2672 * HPageRestoreReserve so that the reserve 2673 * count will be incremented when the page 2674 * is freed. This reserve will be consumed 2675 * on a subsequent allocation. 2676 */ 2677 SetHPageRestoreReserve(page); 2678 } else if (rc < 0) { 2679 /* 2680 * Rare out of memory condition from 2681 * vma_needs_reservation call. Memory allocation is 2682 * only attempted if a new entry is needed. Therefore, 2683 * this implies there is not an entry in the 2684 * reserve map. 2685 * 2686 * For shared mappings, no entry in the map indicates 2687 * no reservation. We are done. 2688 */ 2689 if (!(vma->vm_flags & VM_MAYSHARE)) 2690 /* 2691 * For private mappings, no entry indicates 2692 * a reservation is present. Since we can 2693 * not add an entry, set SetHPageRestoreReserve 2694 * on the page so reserve count will be 2695 * incremented when freed. This reserve will 2696 * be consumed on a subsequent allocation. 2697 */ 2698 SetHPageRestoreReserve(page); 2699 } else 2700 /* 2701 * No reservation present, do nothing 2702 */ 2703 vma_end_reservation(h, vma, address); 2704 } 2705 } 2706 2707 /* 2708 * alloc_and_dissolve_huge_page - Allocate a new page and dissolve the old one 2709 * @h: struct hstate old page belongs to 2710 * @old_page: Old page to dissolve 2711 * @list: List to isolate the page in case we need to 2712 * Returns 0 on success, otherwise negated error. 2713 */ 2714 static int alloc_and_dissolve_huge_page(struct hstate *h, struct page *old_page, 2715 struct list_head *list) 2716 { 2717 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 2718 int nid = page_to_nid(old_page); 2719 bool alloc_retry = false; 2720 struct page *new_page; 2721 int ret = 0; 2722 2723 /* 2724 * Before dissolving the page, we need to allocate a new one for the 2725 * pool to remain stable. Here, we allocate the page and 'prep' it 2726 * by doing everything but actually updating counters and adding to 2727 * the pool. This simplifies and let us do most of the processing 2728 * under the lock. 2729 */ 2730 alloc_retry: 2731 new_page = alloc_buddy_huge_page(h, gfp_mask, nid, NULL, NULL); 2732 if (!new_page) 2733 return -ENOMEM; 2734 /* 2735 * If all goes well, this page will be directly added to the free 2736 * list in the pool. For this the ref count needs to be zero. 2737 * Attempt to drop now, and retry once if needed. It is VERY 2738 * unlikely there is another ref on the page. 2739 * 2740 * If someone else has a reference to the page, it will be freed 2741 * when they drop their ref. Abuse temporary page flag to accomplish 2742 * this. Retry once if there is an inflated ref count. 2743 */ 2744 SetHPageTemporary(new_page); 2745 if (!put_page_testzero(new_page)) { 2746 if (alloc_retry) 2747 return -EBUSY; 2748 2749 alloc_retry = true; 2750 goto alloc_retry; 2751 } 2752 ClearHPageTemporary(new_page); 2753 2754 __prep_new_huge_page(h, new_page); 2755 2756 retry: 2757 spin_lock_irq(&hugetlb_lock); 2758 if (!PageHuge(old_page)) { 2759 /* 2760 * Freed from under us. Drop new_page too. 2761 */ 2762 goto free_new; 2763 } else if (page_count(old_page)) { 2764 /* 2765 * Someone has grabbed the page, try to isolate it here. 2766 * Fail with -EBUSY if not possible. 2767 */ 2768 spin_unlock_irq(&hugetlb_lock); 2769 if (!isolate_huge_page(old_page, list)) 2770 ret = -EBUSY; 2771 spin_lock_irq(&hugetlb_lock); 2772 goto free_new; 2773 } else if (!HPageFreed(old_page)) { 2774 /* 2775 * Page's refcount is 0 but it has not been enqueued in the 2776 * freelist yet. Race window is small, so we can succeed here if 2777 * we retry. 2778 */ 2779 spin_unlock_irq(&hugetlb_lock); 2780 cond_resched(); 2781 goto retry; 2782 } else { 2783 /* 2784 * Ok, old_page is still a genuine free hugepage. Remove it from 2785 * the freelist and decrease the counters. These will be 2786 * incremented again when calling __prep_account_new_huge_page() 2787 * and enqueue_huge_page() for new_page. The counters will remain 2788 * stable since this happens under the lock. 2789 */ 2790 remove_hugetlb_page(h, old_page, false); 2791 2792 /* 2793 * Ref count on new page is already zero as it was dropped 2794 * earlier. It can be directly added to the pool free list. 2795 */ 2796 __prep_account_new_huge_page(h, nid); 2797 enqueue_huge_page(h, new_page); 2798 2799 /* 2800 * Pages have been replaced, we can safely free the old one. 2801 */ 2802 spin_unlock_irq(&hugetlb_lock); 2803 update_and_free_page(h, old_page, false); 2804 } 2805 2806 return ret; 2807 2808 free_new: 2809 spin_unlock_irq(&hugetlb_lock); 2810 /* Page has a zero ref count, but needs a ref to be freed */ 2811 set_page_refcounted(new_page); 2812 update_and_free_page(h, new_page, false); 2813 2814 return ret; 2815 } 2816 2817 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list) 2818 { 2819 struct hstate *h; 2820 struct page *head; 2821 int ret = -EBUSY; 2822 2823 /* 2824 * The page might have been dissolved from under our feet, so make sure 2825 * to carefully check the state under the lock. 2826 * Return success when racing as if we dissolved the page ourselves. 2827 */ 2828 spin_lock_irq(&hugetlb_lock); 2829 if (PageHuge(page)) { 2830 head = compound_head(page); 2831 h = page_hstate(head); 2832 } else { 2833 spin_unlock_irq(&hugetlb_lock); 2834 return 0; 2835 } 2836 spin_unlock_irq(&hugetlb_lock); 2837 2838 /* 2839 * Fence off gigantic pages as there is a cyclic dependency between 2840 * alloc_contig_range and them. Return -ENOMEM as this has the effect 2841 * of bailing out right away without further retrying. 2842 */ 2843 if (hstate_is_gigantic(h)) 2844 return -ENOMEM; 2845 2846 if (page_count(head) && isolate_huge_page(head, list)) 2847 ret = 0; 2848 else if (!page_count(head)) 2849 ret = alloc_and_dissolve_huge_page(h, head, list); 2850 2851 return ret; 2852 } 2853 2854 struct page *alloc_huge_page(struct vm_area_struct *vma, 2855 unsigned long addr, int avoid_reserve) 2856 { 2857 struct hugepage_subpool *spool = subpool_vma(vma); 2858 struct hstate *h = hstate_vma(vma); 2859 struct page *page; 2860 long map_chg, map_commit; 2861 long gbl_chg; 2862 int ret, idx; 2863 struct hugetlb_cgroup *h_cg; 2864 bool deferred_reserve; 2865 2866 idx = hstate_index(h); 2867 /* 2868 * Examine the region/reserve map to determine if the process 2869 * has a reservation for the page to be allocated. A return 2870 * code of zero indicates a reservation exists (no change). 2871 */ 2872 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr); 2873 if (map_chg < 0) 2874 return ERR_PTR(-ENOMEM); 2875 2876 /* 2877 * Processes that did not create the mapping will have no 2878 * reserves as indicated by the region/reserve map. Check 2879 * that the allocation will not exceed the subpool limit. 2880 * Allocations for MAP_NORESERVE mappings also need to be 2881 * checked against any subpool limit. 2882 */ 2883 if (map_chg || avoid_reserve) { 2884 gbl_chg = hugepage_subpool_get_pages(spool, 1); 2885 if (gbl_chg < 0) { 2886 vma_end_reservation(h, vma, addr); 2887 return ERR_PTR(-ENOSPC); 2888 } 2889 2890 /* 2891 * Even though there was no reservation in the region/reserve 2892 * map, there could be reservations associated with the 2893 * subpool that can be used. This would be indicated if the 2894 * return value of hugepage_subpool_get_pages() is zero. 2895 * However, if avoid_reserve is specified we still avoid even 2896 * the subpool reservations. 2897 */ 2898 if (avoid_reserve) 2899 gbl_chg = 1; 2900 } 2901 2902 /* If this allocation is not consuming a reservation, charge it now. 2903 */ 2904 deferred_reserve = map_chg || avoid_reserve; 2905 if (deferred_reserve) { 2906 ret = hugetlb_cgroup_charge_cgroup_rsvd( 2907 idx, pages_per_huge_page(h), &h_cg); 2908 if (ret) 2909 goto out_subpool_put; 2910 } 2911 2912 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg); 2913 if (ret) 2914 goto out_uncharge_cgroup_reservation; 2915 2916 spin_lock_irq(&hugetlb_lock); 2917 /* 2918 * glb_chg is passed to indicate whether or not a page must be taken 2919 * from the global free pool (global change). gbl_chg == 0 indicates 2920 * a reservation exists for the allocation. 2921 */ 2922 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg); 2923 if (!page) { 2924 spin_unlock_irq(&hugetlb_lock); 2925 page = alloc_buddy_huge_page_with_mpol(h, vma, addr); 2926 if (!page) 2927 goto out_uncharge_cgroup; 2928 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) { 2929 SetHPageRestoreReserve(page); 2930 h->resv_huge_pages--; 2931 } 2932 spin_lock_irq(&hugetlb_lock); 2933 list_add(&page->lru, &h->hugepage_activelist); 2934 /* Fall through */ 2935 } 2936 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page); 2937 /* If allocation is not consuming a reservation, also store the 2938 * hugetlb_cgroup pointer on the page. 2939 */ 2940 if (deferred_reserve) { 2941 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h), 2942 h_cg, page); 2943 } 2944 2945 spin_unlock_irq(&hugetlb_lock); 2946 2947 hugetlb_set_page_subpool(page, spool); 2948 2949 map_commit = vma_commit_reservation(h, vma, addr); 2950 if (unlikely(map_chg > map_commit)) { 2951 /* 2952 * The page was added to the reservation map between 2953 * vma_needs_reservation and vma_commit_reservation. 2954 * This indicates a race with hugetlb_reserve_pages. 2955 * Adjust for the subpool count incremented above AND 2956 * in hugetlb_reserve_pages for the same page. Also, 2957 * the reservation count added in hugetlb_reserve_pages 2958 * no longer applies. 2959 */ 2960 long rsv_adjust; 2961 2962 rsv_adjust = hugepage_subpool_put_pages(spool, 1); 2963 hugetlb_acct_memory(h, -rsv_adjust); 2964 if (deferred_reserve) 2965 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h), 2966 pages_per_huge_page(h), page); 2967 } 2968 return page; 2969 2970 out_uncharge_cgroup: 2971 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg); 2972 out_uncharge_cgroup_reservation: 2973 if (deferred_reserve) 2974 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h), 2975 h_cg); 2976 out_subpool_put: 2977 if (map_chg || avoid_reserve) 2978 hugepage_subpool_put_pages(spool, 1); 2979 vma_end_reservation(h, vma, addr); 2980 return ERR_PTR(-ENOSPC); 2981 } 2982 2983 int alloc_bootmem_huge_page(struct hstate *h, int nid) 2984 __attribute__ ((weak, alias("__alloc_bootmem_huge_page"))); 2985 int __alloc_bootmem_huge_page(struct hstate *h, int nid) 2986 { 2987 struct huge_bootmem_page *m = NULL; /* initialize for clang */ 2988 int nr_nodes, node; 2989 2990 /* do node specific alloc */ 2991 if (nid != NUMA_NO_NODE) { 2992 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h), 2993 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid); 2994 if (!m) 2995 return 0; 2996 goto found; 2997 } 2998 /* allocate from next node when distributing huge pages */ 2999 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) { 3000 m = memblock_alloc_try_nid_raw( 3001 huge_page_size(h), huge_page_size(h), 3002 0, MEMBLOCK_ALLOC_ACCESSIBLE, node); 3003 /* 3004 * Use the beginning of the huge page to store the 3005 * huge_bootmem_page struct (until gather_bootmem 3006 * puts them into the mem_map). 3007 */ 3008 if (!m) 3009 return 0; 3010 goto found; 3011 } 3012 3013 found: 3014 /* Put them into a private list first because mem_map is not up yet */ 3015 INIT_LIST_HEAD(&m->list); 3016 list_add(&m->list, &huge_boot_pages); 3017 m->hstate = h; 3018 return 1; 3019 } 3020 3021 /* 3022 * Put bootmem huge pages into the standard lists after mem_map is up. 3023 * Note: This only applies to gigantic (order > MAX_ORDER) pages. 3024 */ 3025 static void __init gather_bootmem_prealloc(void) 3026 { 3027 struct huge_bootmem_page *m; 3028 3029 list_for_each_entry(m, &huge_boot_pages, list) { 3030 struct page *page = virt_to_page(m); 3031 struct hstate *h = m->hstate; 3032 3033 VM_BUG_ON(!hstate_is_gigantic(h)); 3034 WARN_ON(page_count(page) != 1); 3035 if (prep_compound_gigantic_page(page, huge_page_order(h))) { 3036 WARN_ON(PageReserved(page)); 3037 prep_new_huge_page(h, page, page_to_nid(page)); 3038 put_page(page); /* add to the hugepage allocator */ 3039 } else { 3040 /* VERY unlikely inflated ref count on a tail page */ 3041 free_gigantic_page(page, huge_page_order(h)); 3042 } 3043 3044 /* 3045 * We need to restore the 'stolen' pages to totalram_pages 3046 * in order to fix confusing memory reports from free(1) and 3047 * other side-effects, like CommitLimit going negative. 3048 */ 3049 adjust_managed_page_count(page, pages_per_huge_page(h)); 3050 cond_resched(); 3051 } 3052 } 3053 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid) 3054 { 3055 unsigned long i; 3056 char buf[32]; 3057 3058 for (i = 0; i < h->max_huge_pages_node[nid]; ++i) { 3059 if (hstate_is_gigantic(h)) { 3060 if (!alloc_bootmem_huge_page(h, nid)) 3061 break; 3062 } else { 3063 struct page *page; 3064 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 3065 3066 page = alloc_fresh_huge_page(h, gfp_mask, nid, 3067 &node_states[N_MEMORY], NULL); 3068 if (!page) 3069 break; 3070 put_page(page); /* free it into the hugepage allocator */ 3071 } 3072 cond_resched(); 3073 } 3074 if (i == h->max_huge_pages_node[nid]) 3075 return; 3076 3077 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3078 pr_warn("HugeTLB: allocating %u of page size %s failed node%d. Only allocated %lu hugepages.\n", 3079 h->max_huge_pages_node[nid], buf, nid, i); 3080 h->max_huge_pages -= (h->max_huge_pages_node[nid] - i); 3081 h->max_huge_pages_node[nid] = i; 3082 } 3083 3084 static void __init hugetlb_hstate_alloc_pages(struct hstate *h) 3085 { 3086 unsigned long i; 3087 nodemask_t *node_alloc_noretry; 3088 bool node_specific_alloc = false; 3089 3090 /* skip gigantic hugepages allocation if hugetlb_cma enabled */ 3091 if (hstate_is_gigantic(h) && hugetlb_cma_size) { 3092 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n"); 3093 return; 3094 } 3095 3096 /* do node specific alloc */ 3097 for_each_online_node(i) { 3098 if (h->max_huge_pages_node[i] > 0) { 3099 hugetlb_hstate_alloc_pages_onenode(h, i); 3100 node_specific_alloc = true; 3101 } 3102 } 3103 3104 if (node_specific_alloc) 3105 return; 3106 3107 /* below will do all node balanced alloc */ 3108 if (!hstate_is_gigantic(h)) { 3109 /* 3110 * Bit mask controlling how hard we retry per-node allocations. 3111 * Ignore errors as lower level routines can deal with 3112 * node_alloc_noretry == NULL. If this kmalloc fails at boot 3113 * time, we are likely in bigger trouble. 3114 */ 3115 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry), 3116 GFP_KERNEL); 3117 } else { 3118 /* allocations done at boot time */ 3119 node_alloc_noretry = NULL; 3120 } 3121 3122 /* bit mask controlling how hard we retry per-node allocations */ 3123 if (node_alloc_noretry) 3124 nodes_clear(*node_alloc_noretry); 3125 3126 for (i = 0; i < h->max_huge_pages; ++i) { 3127 if (hstate_is_gigantic(h)) { 3128 if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE)) 3129 break; 3130 } else if (!alloc_pool_huge_page(h, 3131 &node_states[N_MEMORY], 3132 node_alloc_noretry)) 3133 break; 3134 cond_resched(); 3135 } 3136 if (i < h->max_huge_pages) { 3137 char buf[32]; 3138 3139 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3140 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n", 3141 h->max_huge_pages, buf, i); 3142 h->max_huge_pages = i; 3143 } 3144 kfree(node_alloc_noretry); 3145 } 3146 3147 static void __init hugetlb_init_hstates(void) 3148 { 3149 struct hstate *h, *h2; 3150 3151 for_each_hstate(h) { 3152 if (minimum_order > huge_page_order(h)) 3153 minimum_order = huge_page_order(h); 3154 3155 /* oversize hugepages were init'ed in early boot */ 3156 if (!hstate_is_gigantic(h)) 3157 hugetlb_hstate_alloc_pages(h); 3158 3159 /* 3160 * Set demote order for each hstate. Note that 3161 * h->demote_order is initially 0. 3162 * - We can not demote gigantic pages if runtime freeing 3163 * is not supported, so skip this. 3164 * - If CMA allocation is possible, we can not demote 3165 * HUGETLB_PAGE_ORDER or smaller size pages. 3166 */ 3167 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 3168 continue; 3169 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER) 3170 continue; 3171 for_each_hstate(h2) { 3172 if (h2 == h) 3173 continue; 3174 if (h2->order < h->order && 3175 h2->order > h->demote_order) 3176 h->demote_order = h2->order; 3177 } 3178 } 3179 VM_BUG_ON(minimum_order == UINT_MAX); 3180 } 3181 3182 static void __init report_hugepages(void) 3183 { 3184 struct hstate *h; 3185 3186 for_each_hstate(h) { 3187 char buf[32]; 3188 3189 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3190 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n", 3191 buf, h->free_huge_pages); 3192 } 3193 } 3194 3195 #ifdef CONFIG_HIGHMEM 3196 static void try_to_free_low(struct hstate *h, unsigned long count, 3197 nodemask_t *nodes_allowed) 3198 { 3199 int i; 3200 LIST_HEAD(page_list); 3201 3202 lockdep_assert_held(&hugetlb_lock); 3203 if (hstate_is_gigantic(h)) 3204 return; 3205 3206 /* 3207 * Collect pages to be freed on a list, and free after dropping lock 3208 */ 3209 for_each_node_mask(i, *nodes_allowed) { 3210 struct page *page, *next; 3211 struct list_head *freel = &h->hugepage_freelists[i]; 3212 list_for_each_entry_safe(page, next, freel, lru) { 3213 if (count >= h->nr_huge_pages) 3214 goto out; 3215 if (PageHighMem(page)) 3216 continue; 3217 remove_hugetlb_page(h, page, false); 3218 list_add(&page->lru, &page_list); 3219 } 3220 } 3221 3222 out: 3223 spin_unlock_irq(&hugetlb_lock); 3224 update_and_free_pages_bulk(h, &page_list); 3225 spin_lock_irq(&hugetlb_lock); 3226 } 3227 #else 3228 static inline void try_to_free_low(struct hstate *h, unsigned long count, 3229 nodemask_t *nodes_allowed) 3230 { 3231 } 3232 #endif 3233 3234 /* 3235 * Increment or decrement surplus_huge_pages. Keep node-specific counters 3236 * balanced by operating on them in a round-robin fashion. 3237 * Returns 1 if an adjustment was made. 3238 */ 3239 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed, 3240 int delta) 3241 { 3242 int nr_nodes, node; 3243 3244 lockdep_assert_held(&hugetlb_lock); 3245 VM_BUG_ON(delta != -1 && delta != 1); 3246 3247 if (delta < 0) { 3248 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 3249 if (h->surplus_huge_pages_node[node]) 3250 goto found; 3251 } 3252 } else { 3253 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 3254 if (h->surplus_huge_pages_node[node] < 3255 h->nr_huge_pages_node[node]) 3256 goto found; 3257 } 3258 } 3259 return 0; 3260 3261 found: 3262 h->surplus_huge_pages += delta; 3263 h->surplus_huge_pages_node[node] += delta; 3264 return 1; 3265 } 3266 3267 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) 3268 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid, 3269 nodemask_t *nodes_allowed) 3270 { 3271 unsigned long min_count, ret; 3272 struct page *page; 3273 LIST_HEAD(page_list); 3274 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL); 3275 3276 /* 3277 * Bit mask controlling how hard we retry per-node allocations. 3278 * If we can not allocate the bit mask, do not attempt to allocate 3279 * the requested huge pages. 3280 */ 3281 if (node_alloc_noretry) 3282 nodes_clear(*node_alloc_noretry); 3283 else 3284 return -ENOMEM; 3285 3286 /* 3287 * resize_lock mutex prevents concurrent adjustments to number of 3288 * pages in hstate via the proc/sysfs interfaces. 3289 */ 3290 mutex_lock(&h->resize_lock); 3291 flush_free_hpage_work(h); 3292 spin_lock_irq(&hugetlb_lock); 3293 3294 /* 3295 * Check for a node specific request. 3296 * Changing node specific huge page count may require a corresponding 3297 * change to the global count. In any case, the passed node mask 3298 * (nodes_allowed) will restrict alloc/free to the specified node. 3299 */ 3300 if (nid != NUMA_NO_NODE) { 3301 unsigned long old_count = count; 3302 3303 count += h->nr_huge_pages - h->nr_huge_pages_node[nid]; 3304 /* 3305 * User may have specified a large count value which caused the 3306 * above calculation to overflow. In this case, they wanted 3307 * to allocate as many huge pages as possible. Set count to 3308 * largest possible value to align with their intention. 3309 */ 3310 if (count < old_count) 3311 count = ULONG_MAX; 3312 } 3313 3314 /* 3315 * Gigantic pages runtime allocation depend on the capability for large 3316 * page range allocation. 3317 * If the system does not provide this feature, return an error when 3318 * the user tries to allocate gigantic pages but let the user free the 3319 * boottime allocated gigantic pages. 3320 */ 3321 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) { 3322 if (count > persistent_huge_pages(h)) { 3323 spin_unlock_irq(&hugetlb_lock); 3324 mutex_unlock(&h->resize_lock); 3325 NODEMASK_FREE(node_alloc_noretry); 3326 return -EINVAL; 3327 } 3328 /* Fall through to decrease pool */ 3329 } 3330 3331 /* 3332 * Increase the pool size 3333 * First take pages out of surplus state. Then make up the 3334 * remaining difference by allocating fresh huge pages. 3335 * 3336 * We might race with alloc_surplus_huge_page() here and be unable 3337 * to convert a surplus huge page to a normal huge page. That is 3338 * not critical, though, it just means the overall size of the 3339 * pool might be one hugepage larger than it needs to be, but 3340 * within all the constraints specified by the sysctls. 3341 */ 3342 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { 3343 if (!adjust_pool_surplus(h, nodes_allowed, -1)) 3344 break; 3345 } 3346 3347 while (count > persistent_huge_pages(h)) { 3348 /* 3349 * If this allocation races such that we no longer need the 3350 * page, free_huge_page will handle it by freeing the page 3351 * and reducing the surplus. 3352 */ 3353 spin_unlock_irq(&hugetlb_lock); 3354 3355 /* yield cpu to avoid soft lockup */ 3356 cond_resched(); 3357 3358 ret = alloc_pool_huge_page(h, nodes_allowed, 3359 node_alloc_noretry); 3360 spin_lock_irq(&hugetlb_lock); 3361 if (!ret) 3362 goto out; 3363 3364 /* Bail for signals. Probably ctrl-c from user */ 3365 if (signal_pending(current)) 3366 goto out; 3367 } 3368 3369 /* 3370 * Decrease the pool size 3371 * First return free pages to the buddy allocator (being careful 3372 * to keep enough around to satisfy reservations). Then place 3373 * pages into surplus state as needed so the pool will shrink 3374 * to the desired size as pages become free. 3375 * 3376 * By placing pages into the surplus state independent of the 3377 * overcommit value, we are allowing the surplus pool size to 3378 * exceed overcommit. There are few sane options here. Since 3379 * alloc_surplus_huge_page() is checking the global counter, 3380 * though, we'll note that we're not allowed to exceed surplus 3381 * and won't grow the pool anywhere else. Not until one of the 3382 * sysctls are changed, or the surplus pages go out of use. 3383 */ 3384 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages; 3385 min_count = max(count, min_count); 3386 try_to_free_low(h, min_count, nodes_allowed); 3387 3388 /* 3389 * Collect pages to be removed on list without dropping lock 3390 */ 3391 while (min_count < persistent_huge_pages(h)) { 3392 page = remove_pool_huge_page(h, nodes_allowed, 0); 3393 if (!page) 3394 break; 3395 3396 list_add(&page->lru, &page_list); 3397 } 3398 /* free the pages after dropping lock */ 3399 spin_unlock_irq(&hugetlb_lock); 3400 update_and_free_pages_bulk(h, &page_list); 3401 flush_free_hpage_work(h); 3402 spin_lock_irq(&hugetlb_lock); 3403 3404 while (count < persistent_huge_pages(h)) { 3405 if (!adjust_pool_surplus(h, nodes_allowed, 1)) 3406 break; 3407 } 3408 out: 3409 h->max_huge_pages = persistent_huge_pages(h); 3410 spin_unlock_irq(&hugetlb_lock); 3411 mutex_unlock(&h->resize_lock); 3412 3413 NODEMASK_FREE(node_alloc_noretry); 3414 3415 return 0; 3416 } 3417 3418 static int demote_free_huge_page(struct hstate *h, struct page *page) 3419 { 3420 int i, nid = page_to_nid(page); 3421 struct hstate *target_hstate; 3422 int rc = 0; 3423 3424 target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order); 3425 3426 remove_hugetlb_page_for_demote(h, page, false); 3427 spin_unlock_irq(&hugetlb_lock); 3428 3429 rc = hugetlb_vmemmap_alloc(h, page); 3430 if (rc) { 3431 /* Allocation of vmemmmap failed, we can not demote page */ 3432 spin_lock_irq(&hugetlb_lock); 3433 set_page_refcounted(page); 3434 add_hugetlb_page(h, page, false); 3435 return rc; 3436 } 3437 3438 /* 3439 * Use destroy_compound_hugetlb_page_for_demote for all huge page 3440 * sizes as it will not ref count pages. 3441 */ 3442 destroy_compound_hugetlb_page_for_demote(page, huge_page_order(h)); 3443 3444 /* 3445 * Taking target hstate mutex synchronizes with set_max_huge_pages. 3446 * Without the mutex, pages added to target hstate could be marked 3447 * as surplus. 3448 * 3449 * Note that we already hold h->resize_lock. To prevent deadlock, 3450 * use the convention of always taking larger size hstate mutex first. 3451 */ 3452 mutex_lock(&target_hstate->resize_lock); 3453 for (i = 0; i < pages_per_huge_page(h); 3454 i += pages_per_huge_page(target_hstate)) { 3455 if (hstate_is_gigantic(target_hstate)) 3456 prep_compound_gigantic_page_for_demote(page + i, 3457 target_hstate->order); 3458 else 3459 prep_compound_page(page + i, target_hstate->order); 3460 set_page_private(page + i, 0); 3461 set_page_refcounted(page + i); 3462 prep_new_huge_page(target_hstate, page + i, nid); 3463 put_page(page + i); 3464 } 3465 mutex_unlock(&target_hstate->resize_lock); 3466 3467 spin_lock_irq(&hugetlb_lock); 3468 3469 /* 3470 * Not absolutely necessary, but for consistency update max_huge_pages 3471 * based on pool changes for the demoted page. 3472 */ 3473 h->max_huge_pages--; 3474 target_hstate->max_huge_pages += pages_per_huge_page(h); 3475 3476 return rc; 3477 } 3478 3479 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed) 3480 __must_hold(&hugetlb_lock) 3481 { 3482 int nr_nodes, node; 3483 struct page *page; 3484 3485 lockdep_assert_held(&hugetlb_lock); 3486 3487 /* We should never get here if no demote order */ 3488 if (!h->demote_order) { 3489 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n"); 3490 return -EINVAL; /* internal error */ 3491 } 3492 3493 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 3494 list_for_each_entry(page, &h->hugepage_freelists[node], lru) { 3495 if (PageHWPoison(page)) 3496 continue; 3497 3498 return demote_free_huge_page(h, page); 3499 } 3500 } 3501 3502 /* 3503 * Only way to get here is if all pages on free lists are poisoned. 3504 * Return -EBUSY so that caller will not retry. 3505 */ 3506 return -EBUSY; 3507 } 3508 3509 #define HSTATE_ATTR_RO(_name) \ 3510 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 3511 3512 #define HSTATE_ATTR_WO(_name) \ 3513 static struct kobj_attribute _name##_attr = __ATTR_WO(_name) 3514 3515 #define HSTATE_ATTR(_name) \ 3516 static struct kobj_attribute _name##_attr = __ATTR_RW(_name) 3517 3518 static struct kobject *hugepages_kobj; 3519 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 3520 3521 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp); 3522 3523 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp) 3524 { 3525 int i; 3526 3527 for (i = 0; i < HUGE_MAX_HSTATE; i++) 3528 if (hstate_kobjs[i] == kobj) { 3529 if (nidp) 3530 *nidp = NUMA_NO_NODE; 3531 return &hstates[i]; 3532 } 3533 3534 return kobj_to_node_hstate(kobj, nidp); 3535 } 3536 3537 static ssize_t nr_hugepages_show_common(struct kobject *kobj, 3538 struct kobj_attribute *attr, char *buf) 3539 { 3540 struct hstate *h; 3541 unsigned long nr_huge_pages; 3542 int nid; 3543 3544 h = kobj_to_hstate(kobj, &nid); 3545 if (nid == NUMA_NO_NODE) 3546 nr_huge_pages = h->nr_huge_pages; 3547 else 3548 nr_huge_pages = h->nr_huge_pages_node[nid]; 3549 3550 return sysfs_emit(buf, "%lu\n", nr_huge_pages); 3551 } 3552 3553 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy, 3554 struct hstate *h, int nid, 3555 unsigned long count, size_t len) 3556 { 3557 int err; 3558 nodemask_t nodes_allowed, *n_mask; 3559 3560 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 3561 return -EINVAL; 3562 3563 if (nid == NUMA_NO_NODE) { 3564 /* 3565 * global hstate attribute 3566 */ 3567 if (!(obey_mempolicy && 3568 init_nodemask_of_mempolicy(&nodes_allowed))) 3569 n_mask = &node_states[N_MEMORY]; 3570 else 3571 n_mask = &nodes_allowed; 3572 } else { 3573 /* 3574 * Node specific request. count adjustment happens in 3575 * set_max_huge_pages() after acquiring hugetlb_lock. 3576 */ 3577 init_nodemask_of_node(&nodes_allowed, nid); 3578 n_mask = &nodes_allowed; 3579 } 3580 3581 err = set_max_huge_pages(h, count, nid, n_mask); 3582 3583 return err ? err : len; 3584 } 3585 3586 static ssize_t nr_hugepages_store_common(bool obey_mempolicy, 3587 struct kobject *kobj, const char *buf, 3588 size_t len) 3589 { 3590 struct hstate *h; 3591 unsigned long count; 3592 int nid; 3593 int err; 3594 3595 err = kstrtoul(buf, 10, &count); 3596 if (err) 3597 return err; 3598 3599 h = kobj_to_hstate(kobj, &nid); 3600 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len); 3601 } 3602 3603 static ssize_t nr_hugepages_show(struct kobject *kobj, 3604 struct kobj_attribute *attr, char *buf) 3605 { 3606 return nr_hugepages_show_common(kobj, attr, buf); 3607 } 3608 3609 static ssize_t nr_hugepages_store(struct kobject *kobj, 3610 struct kobj_attribute *attr, const char *buf, size_t len) 3611 { 3612 return nr_hugepages_store_common(false, kobj, buf, len); 3613 } 3614 HSTATE_ATTR(nr_hugepages); 3615 3616 #ifdef CONFIG_NUMA 3617 3618 /* 3619 * hstate attribute for optionally mempolicy-based constraint on persistent 3620 * huge page alloc/free. 3621 */ 3622 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj, 3623 struct kobj_attribute *attr, 3624 char *buf) 3625 { 3626 return nr_hugepages_show_common(kobj, attr, buf); 3627 } 3628 3629 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj, 3630 struct kobj_attribute *attr, const char *buf, size_t len) 3631 { 3632 return nr_hugepages_store_common(true, kobj, buf, len); 3633 } 3634 HSTATE_ATTR(nr_hugepages_mempolicy); 3635 #endif 3636 3637 3638 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, 3639 struct kobj_attribute *attr, char *buf) 3640 { 3641 struct hstate *h = kobj_to_hstate(kobj, NULL); 3642 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages); 3643 } 3644 3645 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, 3646 struct kobj_attribute *attr, const char *buf, size_t count) 3647 { 3648 int err; 3649 unsigned long input; 3650 struct hstate *h = kobj_to_hstate(kobj, NULL); 3651 3652 if (hstate_is_gigantic(h)) 3653 return -EINVAL; 3654 3655 err = kstrtoul(buf, 10, &input); 3656 if (err) 3657 return err; 3658 3659 spin_lock_irq(&hugetlb_lock); 3660 h->nr_overcommit_huge_pages = input; 3661 spin_unlock_irq(&hugetlb_lock); 3662 3663 return count; 3664 } 3665 HSTATE_ATTR(nr_overcommit_hugepages); 3666 3667 static ssize_t free_hugepages_show(struct kobject *kobj, 3668 struct kobj_attribute *attr, char *buf) 3669 { 3670 struct hstate *h; 3671 unsigned long free_huge_pages; 3672 int nid; 3673 3674 h = kobj_to_hstate(kobj, &nid); 3675 if (nid == NUMA_NO_NODE) 3676 free_huge_pages = h->free_huge_pages; 3677 else 3678 free_huge_pages = h->free_huge_pages_node[nid]; 3679 3680 return sysfs_emit(buf, "%lu\n", free_huge_pages); 3681 } 3682 HSTATE_ATTR_RO(free_hugepages); 3683 3684 static ssize_t resv_hugepages_show(struct kobject *kobj, 3685 struct kobj_attribute *attr, char *buf) 3686 { 3687 struct hstate *h = kobj_to_hstate(kobj, NULL); 3688 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages); 3689 } 3690 HSTATE_ATTR_RO(resv_hugepages); 3691 3692 static ssize_t surplus_hugepages_show(struct kobject *kobj, 3693 struct kobj_attribute *attr, char *buf) 3694 { 3695 struct hstate *h; 3696 unsigned long surplus_huge_pages; 3697 int nid; 3698 3699 h = kobj_to_hstate(kobj, &nid); 3700 if (nid == NUMA_NO_NODE) 3701 surplus_huge_pages = h->surplus_huge_pages; 3702 else 3703 surplus_huge_pages = h->surplus_huge_pages_node[nid]; 3704 3705 return sysfs_emit(buf, "%lu\n", surplus_huge_pages); 3706 } 3707 HSTATE_ATTR_RO(surplus_hugepages); 3708 3709 static ssize_t demote_store(struct kobject *kobj, 3710 struct kobj_attribute *attr, const char *buf, size_t len) 3711 { 3712 unsigned long nr_demote; 3713 unsigned long nr_available; 3714 nodemask_t nodes_allowed, *n_mask; 3715 struct hstate *h; 3716 int err = 0; 3717 int nid; 3718 3719 err = kstrtoul(buf, 10, &nr_demote); 3720 if (err) 3721 return err; 3722 h = kobj_to_hstate(kobj, &nid); 3723 3724 if (nid != NUMA_NO_NODE) { 3725 init_nodemask_of_node(&nodes_allowed, nid); 3726 n_mask = &nodes_allowed; 3727 } else { 3728 n_mask = &node_states[N_MEMORY]; 3729 } 3730 3731 /* Synchronize with other sysfs operations modifying huge pages */ 3732 mutex_lock(&h->resize_lock); 3733 spin_lock_irq(&hugetlb_lock); 3734 3735 while (nr_demote) { 3736 /* 3737 * Check for available pages to demote each time thorough the 3738 * loop as demote_pool_huge_page will drop hugetlb_lock. 3739 */ 3740 if (nid != NUMA_NO_NODE) 3741 nr_available = h->free_huge_pages_node[nid]; 3742 else 3743 nr_available = h->free_huge_pages; 3744 nr_available -= h->resv_huge_pages; 3745 if (!nr_available) 3746 break; 3747 3748 err = demote_pool_huge_page(h, n_mask); 3749 if (err) 3750 break; 3751 3752 nr_demote--; 3753 } 3754 3755 spin_unlock_irq(&hugetlb_lock); 3756 mutex_unlock(&h->resize_lock); 3757 3758 if (err) 3759 return err; 3760 return len; 3761 } 3762 HSTATE_ATTR_WO(demote); 3763 3764 static ssize_t demote_size_show(struct kobject *kobj, 3765 struct kobj_attribute *attr, char *buf) 3766 { 3767 int nid; 3768 struct hstate *h = kobj_to_hstate(kobj, &nid); 3769 unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K; 3770 3771 return sysfs_emit(buf, "%lukB\n", demote_size); 3772 } 3773 3774 static ssize_t demote_size_store(struct kobject *kobj, 3775 struct kobj_attribute *attr, 3776 const char *buf, size_t count) 3777 { 3778 struct hstate *h, *demote_hstate; 3779 unsigned long demote_size; 3780 unsigned int demote_order; 3781 int nid; 3782 3783 demote_size = (unsigned long)memparse(buf, NULL); 3784 3785 demote_hstate = size_to_hstate(demote_size); 3786 if (!demote_hstate) 3787 return -EINVAL; 3788 demote_order = demote_hstate->order; 3789 if (demote_order < HUGETLB_PAGE_ORDER) 3790 return -EINVAL; 3791 3792 /* demote order must be smaller than hstate order */ 3793 h = kobj_to_hstate(kobj, &nid); 3794 if (demote_order >= h->order) 3795 return -EINVAL; 3796 3797 /* resize_lock synchronizes access to demote size and writes */ 3798 mutex_lock(&h->resize_lock); 3799 h->demote_order = demote_order; 3800 mutex_unlock(&h->resize_lock); 3801 3802 return count; 3803 } 3804 HSTATE_ATTR(demote_size); 3805 3806 static struct attribute *hstate_attrs[] = { 3807 &nr_hugepages_attr.attr, 3808 &nr_overcommit_hugepages_attr.attr, 3809 &free_hugepages_attr.attr, 3810 &resv_hugepages_attr.attr, 3811 &surplus_hugepages_attr.attr, 3812 #ifdef CONFIG_NUMA 3813 &nr_hugepages_mempolicy_attr.attr, 3814 #endif 3815 NULL, 3816 }; 3817 3818 static const struct attribute_group hstate_attr_group = { 3819 .attrs = hstate_attrs, 3820 }; 3821 3822 static struct attribute *hstate_demote_attrs[] = { 3823 &demote_size_attr.attr, 3824 &demote_attr.attr, 3825 NULL, 3826 }; 3827 3828 static const struct attribute_group hstate_demote_attr_group = { 3829 .attrs = hstate_demote_attrs, 3830 }; 3831 3832 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent, 3833 struct kobject **hstate_kobjs, 3834 const struct attribute_group *hstate_attr_group) 3835 { 3836 int retval; 3837 int hi = hstate_index(h); 3838 3839 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent); 3840 if (!hstate_kobjs[hi]) 3841 return -ENOMEM; 3842 3843 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group); 3844 if (retval) { 3845 kobject_put(hstate_kobjs[hi]); 3846 hstate_kobjs[hi] = NULL; 3847 } 3848 3849 if (h->demote_order) { 3850 if (sysfs_create_group(hstate_kobjs[hi], 3851 &hstate_demote_attr_group)) 3852 pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name); 3853 } 3854 3855 return retval; 3856 } 3857 3858 static void __init hugetlb_sysfs_init(void) 3859 { 3860 struct hstate *h; 3861 int err; 3862 3863 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); 3864 if (!hugepages_kobj) 3865 return; 3866 3867 for_each_hstate(h) { 3868 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj, 3869 hstate_kobjs, &hstate_attr_group); 3870 if (err) 3871 pr_err("HugeTLB: Unable to add hstate %s", h->name); 3872 } 3873 } 3874 3875 #ifdef CONFIG_NUMA 3876 3877 /* 3878 * node_hstate/s - associate per node hstate attributes, via their kobjects, 3879 * with node devices in node_devices[] using a parallel array. The array 3880 * index of a node device or _hstate == node id. 3881 * This is here to avoid any static dependency of the node device driver, in 3882 * the base kernel, on the hugetlb module. 3883 */ 3884 struct node_hstate { 3885 struct kobject *hugepages_kobj; 3886 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 3887 }; 3888 static struct node_hstate node_hstates[MAX_NUMNODES]; 3889 3890 /* 3891 * A subset of global hstate attributes for node devices 3892 */ 3893 static struct attribute *per_node_hstate_attrs[] = { 3894 &nr_hugepages_attr.attr, 3895 &free_hugepages_attr.attr, 3896 &surplus_hugepages_attr.attr, 3897 NULL, 3898 }; 3899 3900 static const struct attribute_group per_node_hstate_attr_group = { 3901 .attrs = per_node_hstate_attrs, 3902 }; 3903 3904 /* 3905 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj. 3906 * Returns node id via non-NULL nidp. 3907 */ 3908 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 3909 { 3910 int nid; 3911 3912 for (nid = 0; nid < nr_node_ids; nid++) { 3913 struct node_hstate *nhs = &node_hstates[nid]; 3914 int i; 3915 for (i = 0; i < HUGE_MAX_HSTATE; i++) 3916 if (nhs->hstate_kobjs[i] == kobj) { 3917 if (nidp) 3918 *nidp = nid; 3919 return &hstates[i]; 3920 } 3921 } 3922 3923 BUG(); 3924 return NULL; 3925 } 3926 3927 /* 3928 * Unregister hstate attributes from a single node device. 3929 * No-op if no hstate attributes attached. 3930 */ 3931 static void hugetlb_unregister_node(struct node *node) 3932 { 3933 struct hstate *h; 3934 struct node_hstate *nhs = &node_hstates[node->dev.id]; 3935 3936 if (!nhs->hugepages_kobj) 3937 return; /* no hstate attributes */ 3938 3939 for_each_hstate(h) { 3940 int idx = hstate_index(h); 3941 if (nhs->hstate_kobjs[idx]) { 3942 kobject_put(nhs->hstate_kobjs[idx]); 3943 nhs->hstate_kobjs[idx] = NULL; 3944 } 3945 } 3946 3947 kobject_put(nhs->hugepages_kobj); 3948 nhs->hugepages_kobj = NULL; 3949 } 3950 3951 3952 /* 3953 * Register hstate attributes for a single node device. 3954 * No-op if attributes already registered. 3955 */ 3956 static void hugetlb_register_node(struct node *node) 3957 { 3958 struct hstate *h; 3959 struct node_hstate *nhs = &node_hstates[node->dev.id]; 3960 int err; 3961 3962 if (nhs->hugepages_kobj) 3963 return; /* already allocated */ 3964 3965 nhs->hugepages_kobj = kobject_create_and_add("hugepages", 3966 &node->dev.kobj); 3967 if (!nhs->hugepages_kobj) 3968 return; 3969 3970 for_each_hstate(h) { 3971 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj, 3972 nhs->hstate_kobjs, 3973 &per_node_hstate_attr_group); 3974 if (err) { 3975 pr_err("HugeTLB: Unable to add hstate %s for node %d\n", 3976 h->name, node->dev.id); 3977 hugetlb_unregister_node(node); 3978 break; 3979 } 3980 } 3981 } 3982 3983 /* 3984 * hugetlb init time: register hstate attributes for all registered node 3985 * devices of nodes that have memory. All on-line nodes should have 3986 * registered their associated device by this time. 3987 */ 3988 static void __init hugetlb_register_all_nodes(void) 3989 { 3990 int nid; 3991 3992 for_each_node_state(nid, N_MEMORY) { 3993 struct node *node = node_devices[nid]; 3994 if (node->dev.id == nid) 3995 hugetlb_register_node(node); 3996 } 3997 3998 /* 3999 * Let the node device driver know we're here so it can 4000 * [un]register hstate attributes on node hotplug. 4001 */ 4002 register_hugetlbfs_with_node(hugetlb_register_node, 4003 hugetlb_unregister_node); 4004 } 4005 #else /* !CONFIG_NUMA */ 4006 4007 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 4008 { 4009 BUG(); 4010 if (nidp) 4011 *nidp = -1; 4012 return NULL; 4013 } 4014 4015 static void hugetlb_register_all_nodes(void) { } 4016 4017 #endif 4018 4019 static int __init hugetlb_init(void) 4020 { 4021 int i; 4022 4023 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE < 4024 __NR_HPAGEFLAGS); 4025 4026 if (!hugepages_supported()) { 4027 if (hugetlb_max_hstate || default_hstate_max_huge_pages) 4028 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n"); 4029 return 0; 4030 } 4031 4032 /* 4033 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some 4034 * architectures depend on setup being done here. 4035 */ 4036 hugetlb_add_hstate(HUGETLB_PAGE_ORDER); 4037 if (!parsed_default_hugepagesz) { 4038 /* 4039 * If we did not parse a default huge page size, set 4040 * default_hstate_idx to HPAGE_SIZE hstate. And, if the 4041 * number of huge pages for this default size was implicitly 4042 * specified, set that here as well. 4043 * Note that the implicit setting will overwrite an explicit 4044 * setting. A warning will be printed in this case. 4045 */ 4046 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE)); 4047 if (default_hstate_max_huge_pages) { 4048 if (default_hstate.max_huge_pages) { 4049 char buf[32]; 4050 4051 string_get_size(huge_page_size(&default_hstate), 4052 1, STRING_UNITS_2, buf, 32); 4053 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n", 4054 default_hstate.max_huge_pages, buf); 4055 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n", 4056 default_hstate_max_huge_pages); 4057 } 4058 default_hstate.max_huge_pages = 4059 default_hstate_max_huge_pages; 4060 4061 for_each_online_node(i) 4062 default_hstate.max_huge_pages_node[i] = 4063 default_hugepages_in_node[i]; 4064 } 4065 } 4066 4067 hugetlb_cma_check(); 4068 hugetlb_init_hstates(); 4069 gather_bootmem_prealloc(); 4070 report_hugepages(); 4071 4072 hugetlb_sysfs_init(); 4073 hugetlb_register_all_nodes(); 4074 hugetlb_cgroup_file_init(); 4075 4076 #ifdef CONFIG_SMP 4077 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus()); 4078 #else 4079 num_fault_mutexes = 1; 4080 #endif 4081 hugetlb_fault_mutex_table = 4082 kmalloc_array(num_fault_mutexes, sizeof(struct mutex), 4083 GFP_KERNEL); 4084 BUG_ON(!hugetlb_fault_mutex_table); 4085 4086 for (i = 0; i < num_fault_mutexes; i++) 4087 mutex_init(&hugetlb_fault_mutex_table[i]); 4088 return 0; 4089 } 4090 subsys_initcall(hugetlb_init); 4091 4092 /* Overwritten by architectures with more huge page sizes */ 4093 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size) 4094 { 4095 return size == HPAGE_SIZE; 4096 } 4097 4098 void __init hugetlb_add_hstate(unsigned int order) 4099 { 4100 struct hstate *h; 4101 unsigned long i; 4102 4103 if (size_to_hstate(PAGE_SIZE << order)) { 4104 return; 4105 } 4106 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE); 4107 BUG_ON(order == 0); 4108 h = &hstates[hugetlb_max_hstate++]; 4109 mutex_init(&h->resize_lock); 4110 h->order = order; 4111 h->mask = ~(huge_page_size(h) - 1); 4112 for (i = 0; i < MAX_NUMNODES; ++i) 4113 INIT_LIST_HEAD(&h->hugepage_freelists[i]); 4114 INIT_LIST_HEAD(&h->hugepage_activelist); 4115 h->next_nid_to_alloc = first_memory_node; 4116 h->next_nid_to_free = first_memory_node; 4117 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", 4118 huge_page_size(h)/1024); 4119 hugetlb_vmemmap_init(h); 4120 4121 parsed_hstate = h; 4122 } 4123 4124 bool __init __weak hugetlb_node_alloc_supported(void) 4125 { 4126 return true; 4127 } 4128 4129 static void __init hugepages_clear_pages_in_node(void) 4130 { 4131 if (!hugetlb_max_hstate) { 4132 default_hstate_max_huge_pages = 0; 4133 memset(default_hugepages_in_node, 0, 4134 MAX_NUMNODES * sizeof(unsigned int)); 4135 } else { 4136 parsed_hstate->max_huge_pages = 0; 4137 memset(parsed_hstate->max_huge_pages_node, 0, 4138 MAX_NUMNODES * sizeof(unsigned int)); 4139 } 4140 } 4141 4142 /* 4143 * hugepages command line processing 4144 * hugepages normally follows a valid hugepagsz or default_hugepagsz 4145 * specification. If not, ignore the hugepages value. hugepages can also 4146 * be the first huge page command line option in which case it implicitly 4147 * specifies the number of huge pages for the default size. 4148 */ 4149 static int __init hugepages_setup(char *s) 4150 { 4151 unsigned long *mhp; 4152 static unsigned long *last_mhp; 4153 int node = NUMA_NO_NODE; 4154 int count; 4155 unsigned long tmp; 4156 char *p = s; 4157 4158 if (!parsed_valid_hugepagesz) { 4159 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s); 4160 parsed_valid_hugepagesz = true; 4161 return 1; 4162 } 4163 4164 /* 4165 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter 4166 * yet, so this hugepages= parameter goes to the "default hstate". 4167 * Otherwise, it goes with the previously parsed hugepagesz or 4168 * default_hugepagesz. 4169 */ 4170 else if (!hugetlb_max_hstate) 4171 mhp = &default_hstate_max_huge_pages; 4172 else 4173 mhp = &parsed_hstate->max_huge_pages; 4174 4175 if (mhp == last_mhp) { 4176 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s); 4177 return 1; 4178 } 4179 4180 while (*p) { 4181 count = 0; 4182 if (sscanf(p, "%lu%n", &tmp, &count) != 1) 4183 goto invalid; 4184 /* Parameter is node format */ 4185 if (p[count] == ':') { 4186 if (!hugetlb_node_alloc_supported()) { 4187 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n"); 4188 return 1; 4189 } 4190 if (tmp >= MAX_NUMNODES || !node_online(tmp)) 4191 goto invalid; 4192 node = array_index_nospec(tmp, MAX_NUMNODES); 4193 p += count + 1; 4194 /* Parse hugepages */ 4195 if (sscanf(p, "%lu%n", &tmp, &count) != 1) 4196 goto invalid; 4197 if (!hugetlb_max_hstate) 4198 default_hugepages_in_node[node] = tmp; 4199 else 4200 parsed_hstate->max_huge_pages_node[node] = tmp; 4201 *mhp += tmp; 4202 /* Go to parse next node*/ 4203 if (p[count] == ',') 4204 p += count + 1; 4205 else 4206 break; 4207 } else { 4208 if (p != s) 4209 goto invalid; 4210 *mhp = tmp; 4211 break; 4212 } 4213 } 4214 4215 /* 4216 * Global state is always initialized later in hugetlb_init. 4217 * But we need to allocate gigantic hstates here early to still 4218 * use the bootmem allocator. 4219 */ 4220 if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate)) 4221 hugetlb_hstate_alloc_pages(parsed_hstate); 4222 4223 last_mhp = mhp; 4224 4225 return 1; 4226 4227 invalid: 4228 pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p); 4229 hugepages_clear_pages_in_node(); 4230 return 1; 4231 } 4232 __setup("hugepages=", hugepages_setup); 4233 4234 /* 4235 * hugepagesz command line processing 4236 * A specific huge page size can only be specified once with hugepagesz. 4237 * hugepagesz is followed by hugepages on the command line. The global 4238 * variable 'parsed_valid_hugepagesz' is used to determine if prior 4239 * hugepagesz argument was valid. 4240 */ 4241 static int __init hugepagesz_setup(char *s) 4242 { 4243 unsigned long size; 4244 struct hstate *h; 4245 4246 parsed_valid_hugepagesz = false; 4247 size = (unsigned long)memparse(s, NULL); 4248 4249 if (!arch_hugetlb_valid_size(size)) { 4250 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s); 4251 return 1; 4252 } 4253 4254 h = size_to_hstate(size); 4255 if (h) { 4256 /* 4257 * hstate for this size already exists. This is normally 4258 * an error, but is allowed if the existing hstate is the 4259 * default hstate. More specifically, it is only allowed if 4260 * the number of huge pages for the default hstate was not 4261 * previously specified. 4262 */ 4263 if (!parsed_default_hugepagesz || h != &default_hstate || 4264 default_hstate.max_huge_pages) { 4265 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s); 4266 return 1; 4267 } 4268 4269 /* 4270 * No need to call hugetlb_add_hstate() as hstate already 4271 * exists. But, do set parsed_hstate so that a following 4272 * hugepages= parameter will be applied to this hstate. 4273 */ 4274 parsed_hstate = h; 4275 parsed_valid_hugepagesz = true; 4276 return 1; 4277 } 4278 4279 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); 4280 parsed_valid_hugepagesz = true; 4281 return 1; 4282 } 4283 __setup("hugepagesz=", hugepagesz_setup); 4284 4285 /* 4286 * default_hugepagesz command line input 4287 * Only one instance of default_hugepagesz allowed on command line. 4288 */ 4289 static int __init default_hugepagesz_setup(char *s) 4290 { 4291 unsigned long size; 4292 int i; 4293 4294 parsed_valid_hugepagesz = false; 4295 if (parsed_default_hugepagesz) { 4296 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s); 4297 return 1; 4298 } 4299 4300 size = (unsigned long)memparse(s, NULL); 4301 4302 if (!arch_hugetlb_valid_size(size)) { 4303 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s); 4304 return 1; 4305 } 4306 4307 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); 4308 parsed_valid_hugepagesz = true; 4309 parsed_default_hugepagesz = true; 4310 default_hstate_idx = hstate_index(size_to_hstate(size)); 4311 4312 /* 4313 * The number of default huge pages (for this size) could have been 4314 * specified as the first hugetlb parameter: hugepages=X. If so, 4315 * then default_hstate_max_huge_pages is set. If the default huge 4316 * page size is gigantic (>= MAX_ORDER), then the pages must be 4317 * allocated here from bootmem allocator. 4318 */ 4319 if (default_hstate_max_huge_pages) { 4320 default_hstate.max_huge_pages = default_hstate_max_huge_pages; 4321 for_each_online_node(i) 4322 default_hstate.max_huge_pages_node[i] = 4323 default_hugepages_in_node[i]; 4324 if (hstate_is_gigantic(&default_hstate)) 4325 hugetlb_hstate_alloc_pages(&default_hstate); 4326 default_hstate_max_huge_pages = 0; 4327 } 4328 4329 return 1; 4330 } 4331 __setup("default_hugepagesz=", default_hugepagesz_setup); 4332 4333 static unsigned int allowed_mems_nr(struct hstate *h) 4334 { 4335 int node; 4336 unsigned int nr = 0; 4337 nodemask_t *mpol_allowed; 4338 unsigned int *array = h->free_huge_pages_node; 4339 gfp_t gfp_mask = htlb_alloc_mask(h); 4340 4341 mpol_allowed = policy_nodemask_current(gfp_mask); 4342 4343 for_each_node_mask(node, cpuset_current_mems_allowed) { 4344 if (!mpol_allowed || node_isset(node, *mpol_allowed)) 4345 nr += array[node]; 4346 } 4347 4348 return nr; 4349 } 4350 4351 #ifdef CONFIG_SYSCTL 4352 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write, 4353 void *buffer, size_t *length, 4354 loff_t *ppos, unsigned long *out) 4355 { 4356 struct ctl_table dup_table; 4357 4358 /* 4359 * In order to avoid races with __do_proc_doulongvec_minmax(), we 4360 * can duplicate the @table and alter the duplicate of it. 4361 */ 4362 dup_table = *table; 4363 dup_table.data = out; 4364 4365 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos); 4366 } 4367 4368 static int hugetlb_sysctl_handler_common(bool obey_mempolicy, 4369 struct ctl_table *table, int write, 4370 void *buffer, size_t *length, loff_t *ppos) 4371 { 4372 struct hstate *h = &default_hstate; 4373 unsigned long tmp = h->max_huge_pages; 4374 int ret; 4375 4376 if (!hugepages_supported()) 4377 return -EOPNOTSUPP; 4378 4379 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, 4380 &tmp); 4381 if (ret) 4382 goto out; 4383 4384 if (write) 4385 ret = __nr_hugepages_store_common(obey_mempolicy, h, 4386 NUMA_NO_NODE, tmp, *length); 4387 out: 4388 return ret; 4389 } 4390 4391 int hugetlb_sysctl_handler(struct ctl_table *table, int write, 4392 void *buffer, size_t *length, loff_t *ppos) 4393 { 4394 4395 return hugetlb_sysctl_handler_common(false, table, write, 4396 buffer, length, ppos); 4397 } 4398 4399 #ifdef CONFIG_NUMA 4400 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write, 4401 void *buffer, size_t *length, loff_t *ppos) 4402 { 4403 return hugetlb_sysctl_handler_common(true, table, write, 4404 buffer, length, ppos); 4405 } 4406 #endif /* CONFIG_NUMA */ 4407 4408 int hugetlb_overcommit_handler(struct ctl_table *table, int write, 4409 void *buffer, size_t *length, loff_t *ppos) 4410 { 4411 struct hstate *h = &default_hstate; 4412 unsigned long tmp; 4413 int ret; 4414 4415 if (!hugepages_supported()) 4416 return -EOPNOTSUPP; 4417 4418 tmp = h->nr_overcommit_huge_pages; 4419 4420 if (write && hstate_is_gigantic(h)) 4421 return -EINVAL; 4422 4423 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, 4424 &tmp); 4425 if (ret) 4426 goto out; 4427 4428 if (write) { 4429 spin_lock_irq(&hugetlb_lock); 4430 h->nr_overcommit_huge_pages = tmp; 4431 spin_unlock_irq(&hugetlb_lock); 4432 } 4433 out: 4434 return ret; 4435 } 4436 4437 #endif /* CONFIG_SYSCTL */ 4438 4439 void hugetlb_report_meminfo(struct seq_file *m) 4440 { 4441 struct hstate *h; 4442 unsigned long total = 0; 4443 4444 if (!hugepages_supported()) 4445 return; 4446 4447 for_each_hstate(h) { 4448 unsigned long count = h->nr_huge_pages; 4449 4450 total += huge_page_size(h) * count; 4451 4452 if (h == &default_hstate) 4453 seq_printf(m, 4454 "HugePages_Total: %5lu\n" 4455 "HugePages_Free: %5lu\n" 4456 "HugePages_Rsvd: %5lu\n" 4457 "HugePages_Surp: %5lu\n" 4458 "Hugepagesize: %8lu kB\n", 4459 count, 4460 h->free_huge_pages, 4461 h->resv_huge_pages, 4462 h->surplus_huge_pages, 4463 huge_page_size(h) / SZ_1K); 4464 } 4465 4466 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K); 4467 } 4468 4469 int hugetlb_report_node_meminfo(char *buf, int len, int nid) 4470 { 4471 struct hstate *h = &default_hstate; 4472 4473 if (!hugepages_supported()) 4474 return 0; 4475 4476 return sysfs_emit_at(buf, len, 4477 "Node %d HugePages_Total: %5u\n" 4478 "Node %d HugePages_Free: %5u\n" 4479 "Node %d HugePages_Surp: %5u\n", 4480 nid, h->nr_huge_pages_node[nid], 4481 nid, h->free_huge_pages_node[nid], 4482 nid, h->surplus_huge_pages_node[nid]); 4483 } 4484 4485 void hugetlb_show_meminfo(void) 4486 { 4487 struct hstate *h; 4488 int nid; 4489 4490 if (!hugepages_supported()) 4491 return; 4492 4493 for_each_node_state(nid, N_MEMORY) 4494 for_each_hstate(h) 4495 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n", 4496 nid, 4497 h->nr_huge_pages_node[nid], 4498 h->free_huge_pages_node[nid], 4499 h->surplus_huge_pages_node[nid], 4500 huge_page_size(h) / SZ_1K); 4501 } 4502 4503 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm) 4504 { 4505 seq_printf(m, "HugetlbPages:\t%8lu kB\n", 4506 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10)); 4507 } 4508 4509 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ 4510 unsigned long hugetlb_total_pages(void) 4511 { 4512 struct hstate *h; 4513 unsigned long nr_total_pages = 0; 4514 4515 for_each_hstate(h) 4516 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h); 4517 return nr_total_pages; 4518 } 4519 4520 static int hugetlb_acct_memory(struct hstate *h, long delta) 4521 { 4522 int ret = -ENOMEM; 4523 4524 if (!delta) 4525 return 0; 4526 4527 spin_lock_irq(&hugetlb_lock); 4528 /* 4529 * When cpuset is configured, it breaks the strict hugetlb page 4530 * reservation as the accounting is done on a global variable. Such 4531 * reservation is completely rubbish in the presence of cpuset because 4532 * the reservation is not checked against page availability for the 4533 * current cpuset. Application can still potentially OOM'ed by kernel 4534 * with lack of free htlb page in cpuset that the task is in. 4535 * Attempt to enforce strict accounting with cpuset is almost 4536 * impossible (or too ugly) because cpuset is too fluid that 4537 * task or memory node can be dynamically moved between cpusets. 4538 * 4539 * The change of semantics for shared hugetlb mapping with cpuset is 4540 * undesirable. However, in order to preserve some of the semantics, 4541 * we fall back to check against current free page availability as 4542 * a best attempt and hopefully to minimize the impact of changing 4543 * semantics that cpuset has. 4544 * 4545 * Apart from cpuset, we also have memory policy mechanism that 4546 * also determines from which node the kernel will allocate memory 4547 * in a NUMA system. So similar to cpuset, we also should consider 4548 * the memory policy of the current task. Similar to the description 4549 * above. 4550 */ 4551 if (delta > 0) { 4552 if (gather_surplus_pages(h, delta) < 0) 4553 goto out; 4554 4555 if (delta > allowed_mems_nr(h)) { 4556 return_unused_surplus_pages(h, delta); 4557 goto out; 4558 } 4559 } 4560 4561 ret = 0; 4562 if (delta < 0) 4563 return_unused_surplus_pages(h, (unsigned long) -delta); 4564 4565 out: 4566 spin_unlock_irq(&hugetlb_lock); 4567 return ret; 4568 } 4569 4570 static void hugetlb_vm_op_open(struct vm_area_struct *vma) 4571 { 4572 struct resv_map *resv = vma_resv_map(vma); 4573 4574 /* 4575 * This new VMA should share its siblings reservation map if present. 4576 * The VMA will only ever have a valid reservation map pointer where 4577 * it is being copied for another still existing VMA. As that VMA 4578 * has a reference to the reservation map it cannot disappear until 4579 * after this open call completes. It is therefore safe to take a 4580 * new reference here without additional locking. 4581 */ 4582 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 4583 resv_map_dup_hugetlb_cgroup_uncharge_info(resv); 4584 kref_get(&resv->refs); 4585 } 4586 } 4587 4588 static void hugetlb_vm_op_close(struct vm_area_struct *vma) 4589 { 4590 struct hstate *h = hstate_vma(vma); 4591 struct resv_map *resv = vma_resv_map(vma); 4592 struct hugepage_subpool *spool = subpool_vma(vma); 4593 unsigned long reserve, start, end; 4594 long gbl_reserve; 4595 4596 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 4597 return; 4598 4599 start = vma_hugecache_offset(h, vma, vma->vm_start); 4600 end = vma_hugecache_offset(h, vma, vma->vm_end); 4601 4602 reserve = (end - start) - region_count(resv, start, end); 4603 hugetlb_cgroup_uncharge_counter(resv, start, end); 4604 if (reserve) { 4605 /* 4606 * Decrement reserve counts. The global reserve count may be 4607 * adjusted if the subpool has a minimum size. 4608 */ 4609 gbl_reserve = hugepage_subpool_put_pages(spool, reserve); 4610 hugetlb_acct_memory(h, -gbl_reserve); 4611 } 4612 4613 kref_put(&resv->refs, resv_map_release); 4614 } 4615 4616 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr) 4617 { 4618 if (addr & ~(huge_page_mask(hstate_vma(vma)))) 4619 return -EINVAL; 4620 return 0; 4621 } 4622 4623 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma) 4624 { 4625 return huge_page_size(hstate_vma(vma)); 4626 } 4627 4628 /* 4629 * We cannot handle pagefaults against hugetlb pages at all. They cause 4630 * handle_mm_fault() to try to instantiate regular-sized pages in the 4631 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get 4632 * this far. 4633 */ 4634 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf) 4635 { 4636 BUG(); 4637 return 0; 4638 } 4639 4640 /* 4641 * When a new function is introduced to vm_operations_struct and added 4642 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops. 4643 * This is because under System V memory model, mappings created via 4644 * shmget/shmat with "huge page" specified are backed by hugetlbfs files, 4645 * their original vm_ops are overwritten with shm_vm_ops. 4646 */ 4647 const struct vm_operations_struct hugetlb_vm_ops = { 4648 .fault = hugetlb_vm_op_fault, 4649 .open = hugetlb_vm_op_open, 4650 .close = hugetlb_vm_op_close, 4651 .may_split = hugetlb_vm_op_split, 4652 .pagesize = hugetlb_vm_op_pagesize, 4653 }; 4654 4655 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, 4656 int writable) 4657 { 4658 pte_t entry; 4659 unsigned int shift = huge_page_shift(hstate_vma(vma)); 4660 4661 if (writable) { 4662 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page, 4663 vma->vm_page_prot))); 4664 } else { 4665 entry = huge_pte_wrprotect(mk_huge_pte(page, 4666 vma->vm_page_prot)); 4667 } 4668 entry = pte_mkyoung(entry); 4669 entry = arch_make_huge_pte(entry, shift, vma->vm_flags); 4670 4671 return entry; 4672 } 4673 4674 static void set_huge_ptep_writable(struct vm_area_struct *vma, 4675 unsigned long address, pte_t *ptep) 4676 { 4677 pte_t entry; 4678 4679 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep))); 4680 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) 4681 update_mmu_cache(vma, address, ptep); 4682 } 4683 4684 bool is_hugetlb_entry_migration(pte_t pte) 4685 { 4686 swp_entry_t swp; 4687 4688 if (huge_pte_none(pte) || pte_present(pte)) 4689 return false; 4690 swp = pte_to_swp_entry(pte); 4691 if (is_migration_entry(swp)) 4692 return true; 4693 else 4694 return false; 4695 } 4696 4697 static bool is_hugetlb_entry_hwpoisoned(pte_t pte) 4698 { 4699 swp_entry_t swp; 4700 4701 if (huge_pte_none(pte) || pte_present(pte)) 4702 return false; 4703 swp = pte_to_swp_entry(pte); 4704 if (is_hwpoison_entry(swp)) 4705 return true; 4706 else 4707 return false; 4708 } 4709 4710 static void 4711 hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr, 4712 struct page *new_page) 4713 { 4714 __SetPageUptodate(new_page); 4715 hugepage_add_new_anon_rmap(new_page, vma, addr); 4716 set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1)); 4717 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm); 4718 ClearHPageRestoreReserve(new_page); 4719 SetHPageMigratable(new_page); 4720 } 4721 4722 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, 4723 struct vm_area_struct *dst_vma, 4724 struct vm_area_struct *src_vma) 4725 { 4726 pte_t *src_pte, *dst_pte, entry, dst_entry; 4727 struct page *ptepage; 4728 unsigned long addr; 4729 bool cow = is_cow_mapping(src_vma->vm_flags); 4730 struct hstate *h = hstate_vma(src_vma); 4731 unsigned long sz = huge_page_size(h); 4732 unsigned long npages = pages_per_huge_page(h); 4733 struct address_space *mapping = src_vma->vm_file->f_mapping; 4734 struct mmu_notifier_range range; 4735 int ret = 0; 4736 4737 if (cow) { 4738 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src_vma, src, 4739 src_vma->vm_start, 4740 src_vma->vm_end); 4741 mmu_notifier_invalidate_range_start(&range); 4742 mmap_assert_write_locked(src); 4743 raw_write_seqcount_begin(&src->write_protect_seq); 4744 } else { 4745 /* 4746 * For shared mappings i_mmap_rwsem must be held to call 4747 * huge_pte_alloc, otherwise the returned ptep could go 4748 * away if part of a shared pmd and another thread calls 4749 * huge_pmd_unshare. 4750 */ 4751 i_mmap_lock_read(mapping); 4752 } 4753 4754 for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) { 4755 spinlock_t *src_ptl, *dst_ptl; 4756 src_pte = huge_pte_offset(src, addr, sz); 4757 if (!src_pte) 4758 continue; 4759 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz); 4760 if (!dst_pte) { 4761 ret = -ENOMEM; 4762 break; 4763 } 4764 4765 /* 4766 * If the pagetables are shared don't copy or take references. 4767 * dst_pte == src_pte is the common case of src/dest sharing. 4768 * 4769 * However, src could have 'unshared' and dst shares with 4770 * another vma. If dst_pte !none, this implies sharing. 4771 * Check here before taking page table lock, and once again 4772 * after taking the lock below. 4773 */ 4774 dst_entry = huge_ptep_get(dst_pte); 4775 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry)) 4776 continue; 4777 4778 dst_ptl = huge_pte_lock(h, dst, dst_pte); 4779 src_ptl = huge_pte_lockptr(h, src, src_pte); 4780 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 4781 entry = huge_ptep_get(src_pte); 4782 dst_entry = huge_ptep_get(dst_pte); 4783 again: 4784 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) { 4785 /* 4786 * Skip if src entry none. Also, skip in the 4787 * unlikely case dst entry !none as this implies 4788 * sharing with another vma. 4789 */ 4790 ; 4791 } else if (unlikely(is_hugetlb_entry_migration(entry) || 4792 is_hugetlb_entry_hwpoisoned(entry))) { 4793 swp_entry_t swp_entry = pte_to_swp_entry(entry); 4794 bool uffd_wp = huge_pte_uffd_wp(entry); 4795 4796 if (!is_readable_migration_entry(swp_entry) && cow) { 4797 /* 4798 * COW mappings require pages in both 4799 * parent and child to be set to read. 4800 */ 4801 swp_entry = make_readable_migration_entry( 4802 swp_offset(swp_entry)); 4803 entry = swp_entry_to_pte(swp_entry); 4804 if (userfaultfd_wp(src_vma) && uffd_wp) 4805 entry = huge_pte_mkuffd_wp(entry); 4806 set_huge_swap_pte_at(src, addr, src_pte, 4807 entry, sz); 4808 } 4809 if (!userfaultfd_wp(dst_vma) && uffd_wp) 4810 entry = huge_pte_clear_uffd_wp(entry); 4811 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz); 4812 } else if (unlikely(is_pte_marker(entry))) { 4813 /* 4814 * We copy the pte marker only if the dst vma has 4815 * uffd-wp enabled. 4816 */ 4817 if (userfaultfd_wp(dst_vma)) 4818 set_huge_pte_at(dst, addr, dst_pte, entry); 4819 } else { 4820 entry = huge_ptep_get(src_pte); 4821 ptepage = pte_page(entry); 4822 get_page(ptepage); 4823 4824 /* 4825 * Failing to duplicate the anon rmap is a rare case 4826 * where we see pinned hugetlb pages while they're 4827 * prone to COW. We need to do the COW earlier during 4828 * fork. 4829 * 4830 * When pre-allocating the page or copying data, we 4831 * need to be without the pgtable locks since we could 4832 * sleep during the process. 4833 */ 4834 if (!PageAnon(ptepage)) { 4835 page_dup_file_rmap(ptepage, true); 4836 } else if (page_try_dup_anon_rmap(ptepage, true, 4837 src_vma)) { 4838 pte_t src_pte_old = entry; 4839 struct page *new; 4840 4841 spin_unlock(src_ptl); 4842 spin_unlock(dst_ptl); 4843 /* Do not use reserve as it's private owned */ 4844 new = alloc_huge_page(dst_vma, addr, 1); 4845 if (IS_ERR(new)) { 4846 put_page(ptepage); 4847 ret = PTR_ERR(new); 4848 break; 4849 } 4850 copy_user_huge_page(new, ptepage, addr, dst_vma, 4851 npages); 4852 put_page(ptepage); 4853 4854 /* Install the new huge page if src pte stable */ 4855 dst_ptl = huge_pte_lock(h, dst, dst_pte); 4856 src_ptl = huge_pte_lockptr(h, src, src_pte); 4857 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 4858 entry = huge_ptep_get(src_pte); 4859 if (!pte_same(src_pte_old, entry)) { 4860 restore_reserve_on_error(h, dst_vma, addr, 4861 new); 4862 put_page(new); 4863 /* dst_entry won't change as in child */ 4864 goto again; 4865 } 4866 hugetlb_install_page(dst_vma, dst_pte, addr, new); 4867 spin_unlock(src_ptl); 4868 spin_unlock(dst_ptl); 4869 continue; 4870 } 4871 4872 if (cow) { 4873 /* 4874 * No need to notify as we are downgrading page 4875 * table protection not changing it to point 4876 * to a new page. 4877 * 4878 * See Documentation/vm/mmu_notifier.rst 4879 */ 4880 huge_ptep_set_wrprotect(src, addr, src_pte); 4881 entry = huge_pte_wrprotect(entry); 4882 } 4883 4884 set_huge_pte_at(dst, addr, dst_pte, entry); 4885 hugetlb_count_add(npages, dst); 4886 } 4887 spin_unlock(src_ptl); 4888 spin_unlock(dst_ptl); 4889 } 4890 4891 if (cow) { 4892 raw_write_seqcount_end(&src->write_protect_seq); 4893 mmu_notifier_invalidate_range_end(&range); 4894 } else { 4895 i_mmap_unlock_read(mapping); 4896 } 4897 4898 return ret; 4899 } 4900 4901 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr, 4902 unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte) 4903 { 4904 struct hstate *h = hstate_vma(vma); 4905 struct mm_struct *mm = vma->vm_mm; 4906 spinlock_t *src_ptl, *dst_ptl; 4907 pte_t pte; 4908 4909 dst_ptl = huge_pte_lock(h, mm, dst_pte); 4910 src_ptl = huge_pte_lockptr(h, mm, src_pte); 4911 4912 /* 4913 * We don't have to worry about the ordering of src and dst ptlocks 4914 * because exclusive mmap_sem (or the i_mmap_lock) prevents deadlock. 4915 */ 4916 if (src_ptl != dst_ptl) 4917 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 4918 4919 pte = huge_ptep_get_and_clear(mm, old_addr, src_pte); 4920 set_huge_pte_at(mm, new_addr, dst_pte, pte); 4921 4922 if (src_ptl != dst_ptl) 4923 spin_unlock(src_ptl); 4924 spin_unlock(dst_ptl); 4925 } 4926 4927 int move_hugetlb_page_tables(struct vm_area_struct *vma, 4928 struct vm_area_struct *new_vma, 4929 unsigned long old_addr, unsigned long new_addr, 4930 unsigned long len) 4931 { 4932 struct hstate *h = hstate_vma(vma); 4933 struct address_space *mapping = vma->vm_file->f_mapping; 4934 unsigned long sz = huge_page_size(h); 4935 struct mm_struct *mm = vma->vm_mm; 4936 unsigned long old_end = old_addr + len; 4937 unsigned long old_addr_copy; 4938 pte_t *src_pte, *dst_pte; 4939 struct mmu_notifier_range range; 4940 bool shared_pmd = false; 4941 4942 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, old_addr, 4943 old_end); 4944 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 4945 /* 4946 * In case of shared PMDs, we should cover the maximum possible 4947 * range. 4948 */ 4949 flush_cache_range(vma, range.start, range.end); 4950 4951 mmu_notifier_invalidate_range_start(&range); 4952 /* Prevent race with file truncation */ 4953 i_mmap_lock_write(mapping); 4954 for (; old_addr < old_end; old_addr += sz, new_addr += sz) { 4955 src_pte = huge_pte_offset(mm, old_addr, sz); 4956 if (!src_pte) 4957 continue; 4958 if (huge_pte_none(huge_ptep_get(src_pte))) 4959 continue; 4960 4961 /* old_addr arg to huge_pmd_unshare() is a pointer and so the 4962 * arg may be modified. Pass a copy instead to preserve the 4963 * value in old_addr. 4964 */ 4965 old_addr_copy = old_addr; 4966 4967 if (huge_pmd_unshare(mm, vma, &old_addr_copy, src_pte)) { 4968 shared_pmd = true; 4969 continue; 4970 } 4971 4972 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz); 4973 if (!dst_pte) 4974 break; 4975 4976 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte); 4977 } 4978 4979 if (shared_pmd) 4980 flush_tlb_range(vma, range.start, range.end); 4981 else 4982 flush_tlb_range(vma, old_end - len, old_end); 4983 mmu_notifier_invalidate_range_end(&range); 4984 i_mmap_unlock_write(mapping); 4985 4986 return len + old_addr - old_end; 4987 } 4988 4989 static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma, 4990 unsigned long start, unsigned long end, 4991 struct page *ref_page, zap_flags_t zap_flags) 4992 { 4993 struct mm_struct *mm = vma->vm_mm; 4994 unsigned long address; 4995 pte_t *ptep; 4996 pte_t pte; 4997 spinlock_t *ptl; 4998 struct page *page; 4999 struct hstate *h = hstate_vma(vma); 5000 unsigned long sz = huge_page_size(h); 5001 struct mmu_notifier_range range; 5002 bool force_flush = false; 5003 5004 WARN_ON(!is_vm_hugetlb_page(vma)); 5005 BUG_ON(start & ~huge_page_mask(h)); 5006 BUG_ON(end & ~huge_page_mask(h)); 5007 5008 /* 5009 * This is a hugetlb vma, all the pte entries should point 5010 * to huge page. 5011 */ 5012 tlb_change_page_size(tlb, sz); 5013 tlb_start_vma(tlb, vma); 5014 5015 /* 5016 * If sharing possible, alert mmu notifiers of worst case. 5017 */ 5018 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start, 5019 end); 5020 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 5021 mmu_notifier_invalidate_range_start(&range); 5022 address = start; 5023 for (; address < end; address += sz) { 5024 ptep = huge_pte_offset(mm, address, sz); 5025 if (!ptep) 5026 continue; 5027 5028 ptl = huge_pte_lock(h, mm, ptep); 5029 if (huge_pmd_unshare(mm, vma, &address, ptep)) { 5030 spin_unlock(ptl); 5031 tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE); 5032 force_flush = true; 5033 continue; 5034 } 5035 5036 pte = huge_ptep_get(ptep); 5037 if (huge_pte_none(pte)) { 5038 spin_unlock(ptl); 5039 continue; 5040 } 5041 5042 /* 5043 * Migrating hugepage or HWPoisoned hugepage is already 5044 * unmapped and its refcount is dropped, so just clear pte here. 5045 */ 5046 if (unlikely(!pte_present(pte))) { 5047 /* 5048 * If the pte was wr-protected by uffd-wp in any of the 5049 * swap forms, meanwhile the caller does not want to 5050 * drop the uffd-wp bit in this zap, then replace the 5051 * pte with a marker. 5052 */ 5053 if (pte_swp_uffd_wp_any(pte) && 5054 !(zap_flags & ZAP_FLAG_DROP_MARKER)) 5055 set_huge_pte_at(mm, address, ptep, 5056 make_pte_marker(PTE_MARKER_UFFD_WP)); 5057 else 5058 huge_pte_clear(mm, address, ptep, sz); 5059 spin_unlock(ptl); 5060 continue; 5061 } 5062 5063 page = pte_page(pte); 5064 /* 5065 * If a reference page is supplied, it is because a specific 5066 * page is being unmapped, not a range. Ensure the page we 5067 * are about to unmap is the actual page of interest. 5068 */ 5069 if (ref_page) { 5070 if (page != ref_page) { 5071 spin_unlock(ptl); 5072 continue; 5073 } 5074 /* 5075 * Mark the VMA as having unmapped its page so that 5076 * future faults in this VMA will fail rather than 5077 * looking like data was lost 5078 */ 5079 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); 5080 } 5081 5082 pte = huge_ptep_get_and_clear(mm, address, ptep); 5083 tlb_remove_huge_tlb_entry(h, tlb, ptep, address); 5084 if (huge_pte_dirty(pte)) 5085 set_page_dirty(page); 5086 /* Leave a uffd-wp pte marker if needed */ 5087 if (huge_pte_uffd_wp(pte) && 5088 !(zap_flags & ZAP_FLAG_DROP_MARKER)) 5089 set_huge_pte_at(mm, address, ptep, 5090 make_pte_marker(PTE_MARKER_UFFD_WP)); 5091 hugetlb_count_sub(pages_per_huge_page(h), mm); 5092 page_remove_rmap(page, vma, true); 5093 5094 spin_unlock(ptl); 5095 tlb_remove_page_size(tlb, page, huge_page_size(h)); 5096 /* 5097 * Bail out after unmapping reference page if supplied 5098 */ 5099 if (ref_page) 5100 break; 5101 } 5102 mmu_notifier_invalidate_range_end(&range); 5103 tlb_end_vma(tlb, vma); 5104 5105 /* 5106 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We 5107 * could defer the flush until now, since by holding i_mmap_rwsem we 5108 * guaranteed that the last refernece would not be dropped. But we must 5109 * do the flushing before we return, as otherwise i_mmap_rwsem will be 5110 * dropped and the last reference to the shared PMDs page might be 5111 * dropped as well. 5112 * 5113 * In theory we could defer the freeing of the PMD pages as well, but 5114 * huge_pmd_unshare() relies on the exact page_count for the PMD page to 5115 * detect sharing, so we cannot defer the release of the page either. 5116 * Instead, do flush now. 5117 */ 5118 if (force_flush) 5119 tlb_flush_mmu_tlbonly(tlb); 5120 } 5121 5122 void __unmap_hugepage_range_final(struct mmu_gather *tlb, 5123 struct vm_area_struct *vma, unsigned long start, 5124 unsigned long end, struct page *ref_page, 5125 zap_flags_t zap_flags) 5126 { 5127 __unmap_hugepage_range(tlb, vma, start, end, ref_page, zap_flags); 5128 5129 /* 5130 * Clear this flag so that x86's huge_pmd_share page_table_shareable 5131 * test will fail on a vma being torn down, and not grab a page table 5132 * on its way out. We're lucky that the flag has such an appropriate 5133 * name, and can in fact be safely cleared here. We could clear it 5134 * before the __unmap_hugepage_range above, but all that's necessary 5135 * is to clear it before releasing the i_mmap_rwsem. This works 5136 * because in the context this is called, the VMA is about to be 5137 * destroyed and the i_mmap_rwsem is held. 5138 */ 5139 vma->vm_flags &= ~VM_MAYSHARE; 5140 } 5141 5142 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, 5143 unsigned long end, struct page *ref_page, 5144 zap_flags_t zap_flags) 5145 { 5146 struct mmu_gather tlb; 5147 5148 tlb_gather_mmu(&tlb, vma->vm_mm); 5149 __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags); 5150 tlb_finish_mmu(&tlb); 5151 } 5152 5153 /* 5154 * This is called when the original mapper is failing to COW a MAP_PRIVATE 5155 * mapping it owns the reserve page for. The intention is to unmap the page 5156 * from other VMAs and let the children be SIGKILLed if they are faulting the 5157 * same region. 5158 */ 5159 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, 5160 struct page *page, unsigned long address) 5161 { 5162 struct hstate *h = hstate_vma(vma); 5163 struct vm_area_struct *iter_vma; 5164 struct address_space *mapping; 5165 pgoff_t pgoff; 5166 5167 /* 5168 * vm_pgoff is in PAGE_SIZE units, hence the different calculation 5169 * from page cache lookup which is in HPAGE_SIZE units. 5170 */ 5171 address = address & huge_page_mask(h); 5172 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + 5173 vma->vm_pgoff; 5174 mapping = vma->vm_file->f_mapping; 5175 5176 /* 5177 * Take the mapping lock for the duration of the table walk. As 5178 * this mapping should be shared between all the VMAs, 5179 * __unmap_hugepage_range() is called as the lock is already held 5180 */ 5181 i_mmap_lock_write(mapping); 5182 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) { 5183 /* Do not unmap the current VMA */ 5184 if (iter_vma == vma) 5185 continue; 5186 5187 /* 5188 * Shared VMAs have their own reserves and do not affect 5189 * MAP_PRIVATE accounting but it is possible that a shared 5190 * VMA is using the same page so check and skip such VMAs. 5191 */ 5192 if (iter_vma->vm_flags & VM_MAYSHARE) 5193 continue; 5194 5195 /* 5196 * Unmap the page from other VMAs without their own reserves. 5197 * They get marked to be SIGKILLed if they fault in these 5198 * areas. This is because a future no-page fault on this VMA 5199 * could insert a zeroed page instead of the data existing 5200 * from the time of fork. This would look like data corruption 5201 */ 5202 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) 5203 unmap_hugepage_range(iter_vma, address, 5204 address + huge_page_size(h), page, 0); 5205 } 5206 i_mmap_unlock_write(mapping); 5207 } 5208 5209 /* 5210 * hugetlb_wp() should be called with page lock of the original hugepage held. 5211 * Called with hugetlb_fault_mutex_table held and pte_page locked so we 5212 * cannot race with other handlers or page migration. 5213 * Keep the pte_same checks anyway to make transition from the mutex easier. 5214 */ 5215 static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma, 5216 unsigned long address, pte_t *ptep, unsigned int flags, 5217 struct page *pagecache_page, spinlock_t *ptl) 5218 { 5219 const bool unshare = flags & FAULT_FLAG_UNSHARE; 5220 pte_t pte; 5221 struct hstate *h = hstate_vma(vma); 5222 struct page *old_page, *new_page; 5223 int outside_reserve = 0; 5224 vm_fault_t ret = 0; 5225 unsigned long haddr = address & huge_page_mask(h); 5226 struct mmu_notifier_range range; 5227 5228 VM_BUG_ON(unshare && (flags & FOLL_WRITE)); 5229 VM_BUG_ON(!unshare && !(flags & FOLL_WRITE)); 5230 5231 pte = huge_ptep_get(ptep); 5232 old_page = pte_page(pte); 5233 5234 delayacct_wpcopy_start(); 5235 5236 retry_avoidcopy: 5237 /* 5238 * If no-one else is actually using this page, we're the exclusive 5239 * owner and can reuse this page. 5240 */ 5241 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) { 5242 if (!PageAnonExclusive(old_page)) 5243 page_move_anon_rmap(old_page, vma); 5244 if (likely(!unshare)) 5245 set_huge_ptep_writable(vma, haddr, ptep); 5246 5247 delayacct_wpcopy_end(); 5248 return 0; 5249 } 5250 VM_BUG_ON_PAGE(PageAnon(old_page) && PageAnonExclusive(old_page), 5251 old_page); 5252 5253 /* 5254 * If the process that created a MAP_PRIVATE mapping is about to 5255 * perform a COW due to a shared page count, attempt to satisfy 5256 * the allocation without using the existing reserves. The pagecache 5257 * page is used to determine if the reserve at this address was 5258 * consumed or not. If reserves were used, a partial faulted mapping 5259 * at the time of fork() could consume its reserves on COW instead 5260 * of the full address range. 5261 */ 5262 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && 5263 old_page != pagecache_page) 5264 outside_reserve = 1; 5265 5266 get_page(old_page); 5267 5268 /* 5269 * Drop page table lock as buddy allocator may be called. It will 5270 * be acquired again before returning to the caller, as expected. 5271 */ 5272 spin_unlock(ptl); 5273 new_page = alloc_huge_page(vma, haddr, outside_reserve); 5274 5275 if (IS_ERR(new_page)) { 5276 /* 5277 * If a process owning a MAP_PRIVATE mapping fails to COW, 5278 * it is due to references held by a child and an insufficient 5279 * huge page pool. To guarantee the original mappers 5280 * reliability, unmap the page from child processes. The child 5281 * may get SIGKILLed if it later faults. 5282 */ 5283 if (outside_reserve) { 5284 struct address_space *mapping = vma->vm_file->f_mapping; 5285 pgoff_t idx; 5286 u32 hash; 5287 5288 put_page(old_page); 5289 BUG_ON(huge_pte_none(pte)); 5290 /* 5291 * Drop hugetlb_fault_mutex and i_mmap_rwsem before 5292 * unmapping. unmapping needs to hold i_mmap_rwsem 5293 * in write mode. Dropping i_mmap_rwsem in read mode 5294 * here is OK as COW mappings do not interact with 5295 * PMD sharing. 5296 * 5297 * Reacquire both after unmap operation. 5298 */ 5299 idx = vma_hugecache_offset(h, vma, haddr); 5300 hash = hugetlb_fault_mutex_hash(mapping, idx); 5301 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 5302 i_mmap_unlock_read(mapping); 5303 5304 unmap_ref_private(mm, vma, old_page, haddr); 5305 5306 i_mmap_lock_read(mapping); 5307 mutex_lock(&hugetlb_fault_mutex_table[hash]); 5308 spin_lock(ptl); 5309 ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); 5310 if (likely(ptep && 5311 pte_same(huge_ptep_get(ptep), pte))) 5312 goto retry_avoidcopy; 5313 /* 5314 * race occurs while re-acquiring page table 5315 * lock, and our job is done. 5316 */ 5317 delayacct_wpcopy_end(); 5318 return 0; 5319 } 5320 5321 ret = vmf_error(PTR_ERR(new_page)); 5322 goto out_release_old; 5323 } 5324 5325 /* 5326 * When the original hugepage is shared one, it does not have 5327 * anon_vma prepared. 5328 */ 5329 if (unlikely(anon_vma_prepare(vma))) { 5330 ret = VM_FAULT_OOM; 5331 goto out_release_all; 5332 } 5333 5334 copy_user_huge_page(new_page, old_page, address, vma, 5335 pages_per_huge_page(h)); 5336 __SetPageUptodate(new_page); 5337 5338 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr, 5339 haddr + huge_page_size(h)); 5340 mmu_notifier_invalidate_range_start(&range); 5341 5342 /* 5343 * Retake the page table lock to check for racing updates 5344 * before the page tables are altered 5345 */ 5346 spin_lock(ptl); 5347 ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); 5348 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) { 5349 ClearHPageRestoreReserve(new_page); 5350 5351 /* Break COW or unshare */ 5352 huge_ptep_clear_flush(vma, haddr, ptep); 5353 mmu_notifier_invalidate_range(mm, range.start, range.end); 5354 page_remove_rmap(old_page, vma, true); 5355 hugepage_add_new_anon_rmap(new_page, vma, haddr); 5356 set_huge_pte_at(mm, haddr, ptep, 5357 make_huge_pte(vma, new_page, !unshare)); 5358 SetHPageMigratable(new_page); 5359 /* Make the old page be freed below */ 5360 new_page = old_page; 5361 } 5362 spin_unlock(ptl); 5363 mmu_notifier_invalidate_range_end(&range); 5364 out_release_all: 5365 /* 5366 * No restore in case of successful pagetable update (Break COW or 5367 * unshare) 5368 */ 5369 if (new_page != old_page) 5370 restore_reserve_on_error(h, vma, haddr, new_page); 5371 put_page(new_page); 5372 out_release_old: 5373 put_page(old_page); 5374 5375 spin_lock(ptl); /* Caller expects lock to be held */ 5376 5377 delayacct_wpcopy_end(); 5378 return ret; 5379 } 5380 5381 /* Return the pagecache page at a given address within a VMA */ 5382 static struct page *hugetlbfs_pagecache_page(struct hstate *h, 5383 struct vm_area_struct *vma, unsigned long address) 5384 { 5385 struct address_space *mapping; 5386 pgoff_t idx; 5387 5388 mapping = vma->vm_file->f_mapping; 5389 idx = vma_hugecache_offset(h, vma, address); 5390 5391 return find_lock_page(mapping, idx); 5392 } 5393 5394 /* 5395 * Return whether there is a pagecache page to back given address within VMA. 5396 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page. 5397 */ 5398 static bool hugetlbfs_pagecache_present(struct hstate *h, 5399 struct vm_area_struct *vma, unsigned long address) 5400 { 5401 struct address_space *mapping; 5402 pgoff_t idx; 5403 struct page *page; 5404 5405 mapping = vma->vm_file->f_mapping; 5406 idx = vma_hugecache_offset(h, vma, address); 5407 5408 page = find_get_page(mapping, idx); 5409 if (page) 5410 put_page(page); 5411 return page != NULL; 5412 } 5413 5414 int huge_add_to_page_cache(struct page *page, struct address_space *mapping, 5415 pgoff_t idx) 5416 { 5417 struct inode *inode = mapping->host; 5418 struct hstate *h = hstate_inode(inode); 5419 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL); 5420 5421 if (err) 5422 return err; 5423 ClearHPageRestoreReserve(page); 5424 5425 /* 5426 * set page dirty so that it will not be removed from cache/file 5427 * by non-hugetlbfs specific code paths. 5428 */ 5429 set_page_dirty(page); 5430 5431 spin_lock(&inode->i_lock); 5432 inode->i_blocks += blocks_per_huge_page(h); 5433 spin_unlock(&inode->i_lock); 5434 return 0; 5435 } 5436 5437 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma, 5438 struct address_space *mapping, 5439 pgoff_t idx, 5440 unsigned int flags, 5441 unsigned long haddr, 5442 unsigned long addr, 5443 unsigned long reason) 5444 { 5445 vm_fault_t ret; 5446 u32 hash; 5447 struct vm_fault vmf = { 5448 .vma = vma, 5449 .address = haddr, 5450 .real_address = addr, 5451 .flags = flags, 5452 5453 /* 5454 * Hard to debug if it ends up being 5455 * used by a callee that assumes 5456 * something about the other 5457 * uninitialized fields... same as in 5458 * memory.c 5459 */ 5460 }; 5461 5462 /* 5463 * hugetlb_fault_mutex and i_mmap_rwsem must be 5464 * dropped before handling userfault. Reacquire 5465 * after handling fault to make calling code simpler. 5466 */ 5467 hash = hugetlb_fault_mutex_hash(mapping, idx); 5468 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 5469 i_mmap_unlock_read(mapping); 5470 ret = handle_userfault(&vmf, reason); 5471 i_mmap_lock_read(mapping); 5472 mutex_lock(&hugetlb_fault_mutex_table[hash]); 5473 5474 return ret; 5475 } 5476 5477 static vm_fault_t hugetlb_no_page(struct mm_struct *mm, 5478 struct vm_area_struct *vma, 5479 struct address_space *mapping, pgoff_t idx, 5480 unsigned long address, pte_t *ptep, 5481 pte_t old_pte, unsigned int flags) 5482 { 5483 struct hstate *h = hstate_vma(vma); 5484 vm_fault_t ret = VM_FAULT_SIGBUS; 5485 int anon_rmap = 0; 5486 unsigned long size; 5487 struct page *page; 5488 pte_t new_pte; 5489 spinlock_t *ptl; 5490 unsigned long haddr = address & huge_page_mask(h); 5491 bool new_page, new_pagecache_page = false; 5492 5493 /* 5494 * Currently, we are forced to kill the process in the event the 5495 * original mapper has unmapped pages from the child due to a failed 5496 * COW/unsharing. Warn that such a situation has occurred as it may not 5497 * be obvious. 5498 */ 5499 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { 5500 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n", 5501 current->pid); 5502 return ret; 5503 } 5504 5505 /* 5506 * We can not race with truncation due to holding i_mmap_rwsem. 5507 * i_size is modified when holding i_mmap_rwsem, so check here 5508 * once for faults beyond end of file. 5509 */ 5510 size = i_size_read(mapping->host) >> huge_page_shift(h); 5511 if (idx >= size) 5512 goto out; 5513 5514 retry: 5515 new_page = false; 5516 page = find_lock_page(mapping, idx); 5517 if (!page) { 5518 /* Check for page in userfault range */ 5519 if (userfaultfd_missing(vma)) { 5520 ret = hugetlb_handle_userfault(vma, mapping, idx, 5521 flags, haddr, address, 5522 VM_UFFD_MISSING); 5523 goto out; 5524 } 5525 5526 page = alloc_huge_page(vma, haddr, 0); 5527 if (IS_ERR(page)) { 5528 /* 5529 * Returning error will result in faulting task being 5530 * sent SIGBUS. The hugetlb fault mutex prevents two 5531 * tasks from racing to fault in the same page which 5532 * could result in false unable to allocate errors. 5533 * Page migration does not take the fault mutex, but 5534 * does a clear then write of pte's under page table 5535 * lock. Page fault code could race with migration, 5536 * notice the clear pte and try to allocate a page 5537 * here. Before returning error, get ptl and make 5538 * sure there really is no pte entry. 5539 */ 5540 ptl = huge_pte_lock(h, mm, ptep); 5541 ret = 0; 5542 if (huge_pte_none(huge_ptep_get(ptep))) 5543 ret = vmf_error(PTR_ERR(page)); 5544 spin_unlock(ptl); 5545 goto out; 5546 } 5547 clear_huge_page(page, address, pages_per_huge_page(h)); 5548 __SetPageUptodate(page); 5549 new_page = true; 5550 5551 if (vma->vm_flags & VM_MAYSHARE) { 5552 int err = huge_add_to_page_cache(page, mapping, idx); 5553 if (err) { 5554 put_page(page); 5555 if (err == -EEXIST) 5556 goto retry; 5557 goto out; 5558 } 5559 new_pagecache_page = true; 5560 } else { 5561 lock_page(page); 5562 if (unlikely(anon_vma_prepare(vma))) { 5563 ret = VM_FAULT_OOM; 5564 goto backout_unlocked; 5565 } 5566 anon_rmap = 1; 5567 } 5568 } else { 5569 /* 5570 * If memory error occurs between mmap() and fault, some process 5571 * don't have hwpoisoned swap entry for errored virtual address. 5572 * So we need to block hugepage fault by PG_hwpoison bit check. 5573 */ 5574 if (unlikely(PageHWPoison(page))) { 5575 ret = VM_FAULT_HWPOISON_LARGE | 5576 VM_FAULT_SET_HINDEX(hstate_index(h)); 5577 goto backout_unlocked; 5578 } 5579 5580 /* Check for page in userfault range. */ 5581 if (userfaultfd_minor(vma)) { 5582 unlock_page(page); 5583 put_page(page); 5584 ret = hugetlb_handle_userfault(vma, mapping, idx, 5585 flags, haddr, address, 5586 VM_UFFD_MINOR); 5587 goto out; 5588 } 5589 } 5590 5591 /* 5592 * If we are going to COW a private mapping later, we examine the 5593 * pending reservations for this page now. This will ensure that 5594 * any allocations necessary to record that reservation occur outside 5595 * the spinlock. 5596 */ 5597 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 5598 if (vma_needs_reservation(h, vma, haddr) < 0) { 5599 ret = VM_FAULT_OOM; 5600 goto backout_unlocked; 5601 } 5602 /* Just decrements count, does not deallocate */ 5603 vma_end_reservation(h, vma, haddr); 5604 } 5605 5606 ptl = huge_pte_lock(h, mm, ptep); 5607 ret = 0; 5608 /* If pte changed from under us, retry */ 5609 if (!pte_same(huge_ptep_get(ptep), old_pte)) 5610 goto backout; 5611 5612 if (anon_rmap) { 5613 ClearHPageRestoreReserve(page); 5614 hugepage_add_new_anon_rmap(page, vma, haddr); 5615 } else 5616 page_dup_file_rmap(page, true); 5617 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE) 5618 && (vma->vm_flags & VM_SHARED))); 5619 /* 5620 * If this pte was previously wr-protected, keep it wr-protected even 5621 * if populated. 5622 */ 5623 if (unlikely(pte_marker_uffd_wp(old_pte))) 5624 new_pte = huge_pte_wrprotect(huge_pte_mkuffd_wp(new_pte)); 5625 set_huge_pte_at(mm, haddr, ptep, new_pte); 5626 5627 hugetlb_count_add(pages_per_huge_page(h), mm); 5628 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 5629 /* Optimization, do the COW without a second fault */ 5630 ret = hugetlb_wp(mm, vma, address, ptep, flags, page, ptl); 5631 } 5632 5633 spin_unlock(ptl); 5634 5635 /* 5636 * Only set HPageMigratable in newly allocated pages. Existing pages 5637 * found in the pagecache may not have HPageMigratableset if they have 5638 * been isolated for migration. 5639 */ 5640 if (new_page) 5641 SetHPageMigratable(page); 5642 5643 unlock_page(page); 5644 out: 5645 return ret; 5646 5647 backout: 5648 spin_unlock(ptl); 5649 backout_unlocked: 5650 unlock_page(page); 5651 /* restore reserve for newly allocated pages not in page cache */ 5652 if (new_page && !new_pagecache_page) 5653 restore_reserve_on_error(h, vma, haddr, page); 5654 put_page(page); 5655 goto out; 5656 } 5657 5658 #ifdef CONFIG_SMP 5659 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 5660 { 5661 unsigned long key[2]; 5662 u32 hash; 5663 5664 key[0] = (unsigned long) mapping; 5665 key[1] = idx; 5666 5667 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0); 5668 5669 return hash & (num_fault_mutexes - 1); 5670 } 5671 #else 5672 /* 5673 * For uniprocessor systems we always use a single mutex, so just 5674 * return 0 and avoid the hashing overhead. 5675 */ 5676 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 5677 { 5678 return 0; 5679 } 5680 #endif 5681 5682 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, 5683 unsigned long address, unsigned int flags) 5684 { 5685 pte_t *ptep, entry; 5686 spinlock_t *ptl; 5687 vm_fault_t ret; 5688 u32 hash; 5689 pgoff_t idx; 5690 struct page *page = NULL; 5691 struct page *pagecache_page = NULL; 5692 struct hstate *h = hstate_vma(vma); 5693 struct address_space *mapping; 5694 int need_wait_lock = 0; 5695 unsigned long haddr = address & huge_page_mask(h); 5696 5697 ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); 5698 if (ptep) { 5699 /* 5700 * Since we hold no locks, ptep could be stale. That is 5701 * OK as we are only making decisions based on content and 5702 * not actually modifying content here. 5703 */ 5704 entry = huge_ptep_get(ptep); 5705 if (unlikely(is_hugetlb_entry_migration(entry))) { 5706 migration_entry_wait_huge(vma, mm, ptep); 5707 return 0; 5708 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) 5709 return VM_FAULT_HWPOISON_LARGE | 5710 VM_FAULT_SET_HINDEX(hstate_index(h)); 5711 } 5712 5713 /* 5714 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold 5715 * until finished with ptep. This serves two purposes: 5716 * 1) It prevents huge_pmd_unshare from being called elsewhere 5717 * and making the ptep no longer valid. 5718 * 2) It synchronizes us with i_size modifications during truncation. 5719 * 5720 * ptep could have already be assigned via huge_pte_offset. That 5721 * is OK, as huge_pte_alloc will return the same value unless 5722 * something has changed. 5723 */ 5724 mapping = vma->vm_file->f_mapping; 5725 i_mmap_lock_read(mapping); 5726 ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h)); 5727 if (!ptep) { 5728 i_mmap_unlock_read(mapping); 5729 return VM_FAULT_OOM; 5730 } 5731 5732 /* 5733 * Serialize hugepage allocation and instantiation, so that we don't 5734 * get spurious allocation failures if two CPUs race to instantiate 5735 * the same page in the page cache. 5736 */ 5737 idx = vma_hugecache_offset(h, vma, haddr); 5738 hash = hugetlb_fault_mutex_hash(mapping, idx); 5739 mutex_lock(&hugetlb_fault_mutex_table[hash]); 5740 5741 entry = huge_ptep_get(ptep); 5742 /* PTE markers should be handled the same way as none pte */ 5743 if (huge_pte_none_mostly(entry)) { 5744 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, 5745 entry, flags); 5746 goto out_mutex; 5747 } 5748 5749 ret = 0; 5750 5751 /* 5752 * entry could be a migration/hwpoison entry at this point, so this 5753 * check prevents the kernel from going below assuming that we have 5754 * an active hugepage in pagecache. This goto expects the 2nd page 5755 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will 5756 * properly handle it. 5757 */ 5758 if (!pte_present(entry)) 5759 goto out_mutex; 5760 5761 /* 5762 * If we are going to COW/unshare the mapping later, we examine the 5763 * pending reservations for this page now. This will ensure that any 5764 * allocations necessary to record that reservation occur outside the 5765 * spinlock. For private mappings, we also lookup the pagecache 5766 * page now as it is used to determine if a reservation has been 5767 * consumed. 5768 */ 5769 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) && 5770 !huge_pte_write(entry)) { 5771 if (vma_needs_reservation(h, vma, haddr) < 0) { 5772 ret = VM_FAULT_OOM; 5773 goto out_mutex; 5774 } 5775 /* Just decrements count, does not deallocate */ 5776 vma_end_reservation(h, vma, haddr); 5777 5778 if (!(vma->vm_flags & VM_MAYSHARE)) 5779 pagecache_page = hugetlbfs_pagecache_page(h, 5780 vma, haddr); 5781 } 5782 5783 ptl = huge_pte_lock(h, mm, ptep); 5784 5785 /* Check for a racing update before calling hugetlb_wp() */ 5786 if (unlikely(!pte_same(entry, huge_ptep_get(ptep)))) 5787 goto out_ptl; 5788 5789 /* Handle userfault-wp first, before trying to lock more pages */ 5790 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) && 5791 (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) { 5792 struct vm_fault vmf = { 5793 .vma = vma, 5794 .address = haddr, 5795 .real_address = address, 5796 .flags = flags, 5797 }; 5798 5799 spin_unlock(ptl); 5800 if (pagecache_page) { 5801 unlock_page(pagecache_page); 5802 put_page(pagecache_page); 5803 } 5804 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 5805 i_mmap_unlock_read(mapping); 5806 return handle_userfault(&vmf, VM_UFFD_WP); 5807 } 5808 5809 /* 5810 * hugetlb_wp() requires page locks of pte_page(entry) and 5811 * pagecache_page, so here we need take the former one 5812 * when page != pagecache_page or !pagecache_page. 5813 */ 5814 page = pte_page(entry); 5815 if (page != pagecache_page) 5816 if (!trylock_page(page)) { 5817 need_wait_lock = 1; 5818 goto out_ptl; 5819 } 5820 5821 get_page(page); 5822 5823 if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) { 5824 if (!huge_pte_write(entry)) { 5825 ret = hugetlb_wp(mm, vma, address, ptep, flags, 5826 pagecache_page, ptl); 5827 goto out_put_page; 5828 } else if (likely(flags & FAULT_FLAG_WRITE)) { 5829 entry = huge_pte_mkdirty(entry); 5830 } 5831 } 5832 entry = pte_mkyoung(entry); 5833 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry, 5834 flags & FAULT_FLAG_WRITE)) 5835 update_mmu_cache(vma, haddr, ptep); 5836 out_put_page: 5837 if (page != pagecache_page) 5838 unlock_page(page); 5839 put_page(page); 5840 out_ptl: 5841 spin_unlock(ptl); 5842 5843 if (pagecache_page) { 5844 unlock_page(pagecache_page); 5845 put_page(pagecache_page); 5846 } 5847 out_mutex: 5848 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 5849 i_mmap_unlock_read(mapping); 5850 /* 5851 * Generally it's safe to hold refcount during waiting page lock. But 5852 * here we just wait to defer the next page fault to avoid busy loop and 5853 * the page is not used after unlocked before returning from the current 5854 * page fault. So we are safe from accessing freed page, even if we wait 5855 * here without taking refcount. 5856 */ 5857 if (need_wait_lock) 5858 wait_on_page_locked(page); 5859 return ret; 5860 } 5861 5862 #ifdef CONFIG_USERFAULTFD 5863 /* 5864 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with 5865 * modifications for huge pages. 5866 */ 5867 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm, 5868 pte_t *dst_pte, 5869 struct vm_area_struct *dst_vma, 5870 unsigned long dst_addr, 5871 unsigned long src_addr, 5872 enum mcopy_atomic_mode mode, 5873 struct page **pagep, 5874 bool wp_copy) 5875 { 5876 bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE); 5877 struct hstate *h = hstate_vma(dst_vma); 5878 struct address_space *mapping = dst_vma->vm_file->f_mapping; 5879 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr); 5880 unsigned long size; 5881 int vm_shared = dst_vma->vm_flags & VM_SHARED; 5882 pte_t _dst_pte; 5883 spinlock_t *ptl; 5884 int ret = -ENOMEM; 5885 struct page *page; 5886 int writable; 5887 bool page_in_pagecache = false; 5888 5889 if (is_continue) { 5890 ret = -EFAULT; 5891 page = find_lock_page(mapping, idx); 5892 if (!page) 5893 goto out; 5894 page_in_pagecache = true; 5895 } else if (!*pagep) { 5896 /* If a page already exists, then it's UFFDIO_COPY for 5897 * a non-missing case. Return -EEXIST. 5898 */ 5899 if (vm_shared && 5900 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) { 5901 ret = -EEXIST; 5902 goto out; 5903 } 5904 5905 page = alloc_huge_page(dst_vma, dst_addr, 0); 5906 if (IS_ERR(page)) { 5907 ret = -ENOMEM; 5908 goto out; 5909 } 5910 5911 ret = copy_huge_page_from_user(page, 5912 (const void __user *) src_addr, 5913 pages_per_huge_page(h), false); 5914 5915 /* fallback to copy_from_user outside mmap_lock */ 5916 if (unlikely(ret)) { 5917 ret = -ENOENT; 5918 /* Free the allocated page which may have 5919 * consumed a reservation. 5920 */ 5921 restore_reserve_on_error(h, dst_vma, dst_addr, page); 5922 put_page(page); 5923 5924 /* Allocate a temporary page to hold the copied 5925 * contents. 5926 */ 5927 page = alloc_huge_page_vma(h, dst_vma, dst_addr); 5928 if (!page) { 5929 ret = -ENOMEM; 5930 goto out; 5931 } 5932 *pagep = page; 5933 /* Set the outparam pagep and return to the caller to 5934 * copy the contents outside the lock. Don't free the 5935 * page. 5936 */ 5937 goto out; 5938 } 5939 } else { 5940 if (vm_shared && 5941 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) { 5942 put_page(*pagep); 5943 ret = -EEXIST; 5944 *pagep = NULL; 5945 goto out; 5946 } 5947 5948 page = alloc_huge_page(dst_vma, dst_addr, 0); 5949 if (IS_ERR(page)) { 5950 ret = -ENOMEM; 5951 *pagep = NULL; 5952 goto out; 5953 } 5954 copy_user_huge_page(page, *pagep, dst_addr, dst_vma, 5955 pages_per_huge_page(h)); 5956 put_page(*pagep); 5957 *pagep = NULL; 5958 } 5959 5960 /* 5961 * The memory barrier inside __SetPageUptodate makes sure that 5962 * preceding stores to the page contents become visible before 5963 * the set_pte_at() write. 5964 */ 5965 __SetPageUptodate(page); 5966 5967 /* Add shared, newly allocated pages to the page cache. */ 5968 if (vm_shared && !is_continue) { 5969 size = i_size_read(mapping->host) >> huge_page_shift(h); 5970 ret = -EFAULT; 5971 if (idx >= size) 5972 goto out_release_nounlock; 5973 5974 /* 5975 * Serialization between remove_inode_hugepages() and 5976 * huge_add_to_page_cache() below happens through the 5977 * hugetlb_fault_mutex_table that here must be hold by 5978 * the caller. 5979 */ 5980 ret = huge_add_to_page_cache(page, mapping, idx); 5981 if (ret) 5982 goto out_release_nounlock; 5983 page_in_pagecache = true; 5984 } 5985 5986 ptl = huge_pte_lockptr(h, dst_mm, dst_pte); 5987 spin_lock(ptl); 5988 5989 /* 5990 * Recheck the i_size after holding PT lock to make sure not 5991 * to leave any page mapped (as page_mapped()) beyond the end 5992 * of the i_size (remove_inode_hugepages() is strict about 5993 * enforcing that). If we bail out here, we'll also leave a 5994 * page in the radix tree in the vm_shared case beyond the end 5995 * of the i_size, but remove_inode_hugepages() will take care 5996 * of it as soon as we drop the hugetlb_fault_mutex_table. 5997 */ 5998 size = i_size_read(mapping->host) >> huge_page_shift(h); 5999 ret = -EFAULT; 6000 if (idx >= size) 6001 goto out_release_unlock; 6002 6003 ret = -EEXIST; 6004 /* 6005 * We allow to overwrite a pte marker: consider when both MISSING|WP 6006 * registered, we firstly wr-protect a none pte which has no page cache 6007 * page backing it, then access the page. 6008 */ 6009 if (!huge_pte_none_mostly(huge_ptep_get(dst_pte))) 6010 goto out_release_unlock; 6011 6012 if (vm_shared) { 6013 page_dup_file_rmap(page, true); 6014 } else { 6015 ClearHPageRestoreReserve(page); 6016 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr); 6017 } 6018 6019 /* 6020 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY 6021 * with wp flag set, don't set pte write bit. 6022 */ 6023 if (wp_copy || (is_continue && !vm_shared)) 6024 writable = 0; 6025 else 6026 writable = dst_vma->vm_flags & VM_WRITE; 6027 6028 _dst_pte = make_huge_pte(dst_vma, page, writable); 6029 /* 6030 * Always mark UFFDIO_COPY page dirty; note that this may not be 6031 * extremely important for hugetlbfs for now since swapping is not 6032 * supported, but we should still be clear in that this page cannot be 6033 * thrown away at will, even if write bit not set. 6034 */ 6035 _dst_pte = huge_pte_mkdirty(_dst_pte); 6036 _dst_pte = pte_mkyoung(_dst_pte); 6037 6038 if (wp_copy) 6039 _dst_pte = huge_pte_mkuffd_wp(_dst_pte); 6040 6041 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte); 6042 6043 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte, 6044 dst_vma->vm_flags & VM_WRITE); 6045 hugetlb_count_add(pages_per_huge_page(h), dst_mm); 6046 6047 /* No need to invalidate - it was non-present before */ 6048 update_mmu_cache(dst_vma, dst_addr, dst_pte); 6049 6050 spin_unlock(ptl); 6051 if (!is_continue) 6052 SetHPageMigratable(page); 6053 if (vm_shared || is_continue) 6054 unlock_page(page); 6055 ret = 0; 6056 out: 6057 return ret; 6058 out_release_unlock: 6059 spin_unlock(ptl); 6060 if (vm_shared || is_continue) 6061 unlock_page(page); 6062 out_release_nounlock: 6063 if (!page_in_pagecache) 6064 restore_reserve_on_error(h, dst_vma, dst_addr, page); 6065 put_page(page); 6066 goto out; 6067 } 6068 #endif /* CONFIG_USERFAULTFD */ 6069 6070 static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma, 6071 int refs, struct page **pages, 6072 struct vm_area_struct **vmas) 6073 { 6074 int nr; 6075 6076 for (nr = 0; nr < refs; nr++) { 6077 if (likely(pages)) 6078 pages[nr] = mem_map_offset(page, nr); 6079 if (vmas) 6080 vmas[nr] = vma; 6081 } 6082 } 6083 6084 static inline bool __follow_hugetlb_must_fault(unsigned int flags, pte_t *pte, 6085 bool *unshare) 6086 { 6087 pte_t pteval = huge_ptep_get(pte); 6088 6089 *unshare = false; 6090 if (is_swap_pte(pteval)) 6091 return true; 6092 if (huge_pte_write(pteval)) 6093 return false; 6094 if (flags & FOLL_WRITE) 6095 return true; 6096 if (gup_must_unshare(flags, pte_page(pteval))) { 6097 *unshare = true; 6098 return true; 6099 } 6100 return false; 6101 } 6102 6103 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, 6104 struct page **pages, struct vm_area_struct **vmas, 6105 unsigned long *position, unsigned long *nr_pages, 6106 long i, unsigned int flags, int *locked) 6107 { 6108 unsigned long pfn_offset; 6109 unsigned long vaddr = *position; 6110 unsigned long remainder = *nr_pages; 6111 struct hstate *h = hstate_vma(vma); 6112 int err = -EFAULT, refs; 6113 6114 while (vaddr < vma->vm_end && remainder) { 6115 pte_t *pte; 6116 spinlock_t *ptl = NULL; 6117 bool unshare = false; 6118 int absent; 6119 struct page *page; 6120 6121 /* 6122 * If we have a pending SIGKILL, don't keep faulting pages and 6123 * potentially allocating memory. 6124 */ 6125 if (fatal_signal_pending(current)) { 6126 remainder = 0; 6127 break; 6128 } 6129 6130 /* 6131 * Some archs (sparc64, sh*) have multiple pte_ts to 6132 * each hugepage. We have to make sure we get the 6133 * first, for the page indexing below to work. 6134 * 6135 * Note that page table lock is not held when pte is null. 6136 */ 6137 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h), 6138 huge_page_size(h)); 6139 if (pte) 6140 ptl = huge_pte_lock(h, mm, pte); 6141 absent = !pte || huge_pte_none(huge_ptep_get(pte)); 6142 6143 /* 6144 * When coredumping, it suits get_dump_page if we just return 6145 * an error where there's an empty slot with no huge pagecache 6146 * to back it. This way, we avoid allocating a hugepage, and 6147 * the sparse dumpfile avoids allocating disk blocks, but its 6148 * huge holes still show up with zeroes where they need to be. 6149 */ 6150 if (absent && (flags & FOLL_DUMP) && 6151 !hugetlbfs_pagecache_present(h, vma, vaddr)) { 6152 if (pte) 6153 spin_unlock(ptl); 6154 remainder = 0; 6155 break; 6156 } 6157 6158 /* 6159 * We need call hugetlb_fault for both hugepages under migration 6160 * (in which case hugetlb_fault waits for the migration,) and 6161 * hwpoisoned hugepages (in which case we need to prevent the 6162 * caller from accessing to them.) In order to do this, we use 6163 * here is_swap_pte instead of is_hugetlb_entry_migration and 6164 * is_hugetlb_entry_hwpoisoned. This is because it simply covers 6165 * both cases, and because we can't follow correct pages 6166 * directly from any kind of swap entries. 6167 */ 6168 if (absent || 6169 __follow_hugetlb_must_fault(flags, pte, &unshare)) { 6170 vm_fault_t ret; 6171 unsigned int fault_flags = 0; 6172 6173 if (pte) 6174 spin_unlock(ptl); 6175 if (flags & FOLL_WRITE) 6176 fault_flags |= FAULT_FLAG_WRITE; 6177 else if (unshare) 6178 fault_flags |= FAULT_FLAG_UNSHARE; 6179 if (locked) 6180 fault_flags |= FAULT_FLAG_ALLOW_RETRY | 6181 FAULT_FLAG_KILLABLE; 6182 if (flags & FOLL_NOWAIT) 6183 fault_flags |= FAULT_FLAG_ALLOW_RETRY | 6184 FAULT_FLAG_RETRY_NOWAIT; 6185 if (flags & FOLL_TRIED) { 6186 /* 6187 * Note: FAULT_FLAG_ALLOW_RETRY and 6188 * FAULT_FLAG_TRIED can co-exist 6189 */ 6190 fault_flags |= FAULT_FLAG_TRIED; 6191 } 6192 ret = hugetlb_fault(mm, vma, vaddr, fault_flags); 6193 if (ret & VM_FAULT_ERROR) { 6194 err = vm_fault_to_errno(ret, flags); 6195 remainder = 0; 6196 break; 6197 } 6198 if (ret & VM_FAULT_RETRY) { 6199 if (locked && 6200 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) 6201 *locked = 0; 6202 *nr_pages = 0; 6203 /* 6204 * VM_FAULT_RETRY must not return an 6205 * error, it will return zero 6206 * instead. 6207 * 6208 * No need to update "position" as the 6209 * caller will not check it after 6210 * *nr_pages is set to 0. 6211 */ 6212 return i; 6213 } 6214 continue; 6215 } 6216 6217 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT; 6218 page = pte_page(huge_ptep_get(pte)); 6219 6220 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) && 6221 !PageAnonExclusive(page), page); 6222 6223 /* 6224 * If subpage information not requested, update counters 6225 * and skip the same_page loop below. 6226 */ 6227 if (!pages && !vmas && !pfn_offset && 6228 (vaddr + huge_page_size(h) < vma->vm_end) && 6229 (remainder >= pages_per_huge_page(h))) { 6230 vaddr += huge_page_size(h); 6231 remainder -= pages_per_huge_page(h); 6232 i += pages_per_huge_page(h); 6233 spin_unlock(ptl); 6234 continue; 6235 } 6236 6237 /* vaddr may not be aligned to PAGE_SIZE */ 6238 refs = min3(pages_per_huge_page(h) - pfn_offset, remainder, 6239 (vma->vm_end - ALIGN_DOWN(vaddr, PAGE_SIZE)) >> PAGE_SHIFT); 6240 6241 if (pages || vmas) 6242 record_subpages_vmas(mem_map_offset(page, pfn_offset), 6243 vma, refs, 6244 likely(pages) ? pages + i : NULL, 6245 vmas ? vmas + i : NULL); 6246 6247 if (pages) { 6248 /* 6249 * try_grab_folio() should always succeed here, 6250 * because: a) we hold the ptl lock, and b) we've just 6251 * checked that the huge page is present in the page 6252 * tables. If the huge page is present, then the tail 6253 * pages must also be present. The ptl prevents the 6254 * head page and tail pages from being rearranged in 6255 * any way. So this page must be available at this 6256 * point, unless the page refcount overflowed: 6257 */ 6258 if (WARN_ON_ONCE(!try_grab_folio(pages[i], refs, 6259 flags))) { 6260 spin_unlock(ptl); 6261 remainder = 0; 6262 err = -ENOMEM; 6263 break; 6264 } 6265 } 6266 6267 vaddr += (refs << PAGE_SHIFT); 6268 remainder -= refs; 6269 i += refs; 6270 6271 spin_unlock(ptl); 6272 } 6273 *nr_pages = remainder; 6274 /* 6275 * setting position is actually required only if remainder is 6276 * not zero but it's faster not to add a "if (remainder)" 6277 * branch. 6278 */ 6279 *position = vaddr; 6280 6281 return i ? i : err; 6282 } 6283 6284 unsigned long hugetlb_change_protection(struct vm_area_struct *vma, 6285 unsigned long address, unsigned long end, 6286 pgprot_t newprot, unsigned long cp_flags) 6287 { 6288 struct mm_struct *mm = vma->vm_mm; 6289 unsigned long start = address; 6290 pte_t *ptep; 6291 pte_t pte; 6292 struct hstate *h = hstate_vma(vma); 6293 unsigned long pages = 0, psize = huge_page_size(h); 6294 bool shared_pmd = false; 6295 struct mmu_notifier_range range; 6296 bool uffd_wp = cp_flags & MM_CP_UFFD_WP; 6297 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE; 6298 6299 /* 6300 * In the case of shared PMDs, the area to flush could be beyond 6301 * start/end. Set range.start/range.end to cover the maximum possible 6302 * range if PMD sharing is possible. 6303 */ 6304 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA, 6305 0, vma, mm, start, end); 6306 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 6307 6308 BUG_ON(address >= end); 6309 flush_cache_range(vma, range.start, range.end); 6310 6311 mmu_notifier_invalidate_range_start(&range); 6312 i_mmap_lock_write(vma->vm_file->f_mapping); 6313 for (; address < end; address += psize) { 6314 spinlock_t *ptl; 6315 ptep = huge_pte_offset(mm, address, psize); 6316 if (!ptep) 6317 continue; 6318 ptl = huge_pte_lock(h, mm, ptep); 6319 if (huge_pmd_unshare(mm, vma, &address, ptep)) { 6320 /* 6321 * When uffd-wp is enabled on the vma, unshare 6322 * shouldn't happen at all. Warn about it if it 6323 * happened due to some reason. 6324 */ 6325 WARN_ON_ONCE(uffd_wp || uffd_wp_resolve); 6326 pages++; 6327 spin_unlock(ptl); 6328 shared_pmd = true; 6329 continue; 6330 } 6331 pte = huge_ptep_get(ptep); 6332 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) { 6333 spin_unlock(ptl); 6334 continue; 6335 } 6336 if (unlikely(is_hugetlb_entry_migration(pte))) { 6337 swp_entry_t entry = pte_to_swp_entry(pte); 6338 struct page *page = pfn_swap_entry_to_page(entry); 6339 6340 if (!is_readable_migration_entry(entry)) { 6341 pte_t newpte; 6342 6343 if (PageAnon(page)) 6344 entry = make_readable_exclusive_migration_entry( 6345 swp_offset(entry)); 6346 else 6347 entry = make_readable_migration_entry( 6348 swp_offset(entry)); 6349 newpte = swp_entry_to_pte(entry); 6350 if (uffd_wp) 6351 newpte = pte_swp_mkuffd_wp(newpte); 6352 else if (uffd_wp_resolve) 6353 newpte = pte_swp_clear_uffd_wp(newpte); 6354 set_huge_swap_pte_at(mm, address, ptep, 6355 newpte, psize); 6356 pages++; 6357 } 6358 spin_unlock(ptl); 6359 continue; 6360 } 6361 if (unlikely(pte_marker_uffd_wp(pte))) { 6362 /* 6363 * This is changing a non-present pte into a none pte, 6364 * no need for huge_ptep_modify_prot_start/commit(). 6365 */ 6366 if (uffd_wp_resolve) 6367 huge_pte_clear(mm, address, ptep, psize); 6368 } 6369 if (!huge_pte_none(pte)) { 6370 pte_t old_pte; 6371 unsigned int shift = huge_page_shift(hstate_vma(vma)); 6372 6373 old_pte = huge_ptep_modify_prot_start(vma, address, ptep); 6374 pte = huge_pte_modify(old_pte, newprot); 6375 pte = arch_make_huge_pte(pte, shift, vma->vm_flags); 6376 if (uffd_wp) 6377 pte = huge_pte_mkuffd_wp(huge_pte_wrprotect(pte)); 6378 else if (uffd_wp_resolve) 6379 pte = huge_pte_clear_uffd_wp(pte); 6380 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte); 6381 pages++; 6382 } else { 6383 /* None pte */ 6384 if (unlikely(uffd_wp)) 6385 /* Safe to modify directly (none->non-present). */ 6386 set_huge_pte_at(mm, address, ptep, 6387 make_pte_marker(PTE_MARKER_UFFD_WP)); 6388 } 6389 spin_unlock(ptl); 6390 } 6391 /* 6392 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare 6393 * may have cleared our pud entry and done put_page on the page table: 6394 * once we release i_mmap_rwsem, another task can do the final put_page 6395 * and that page table be reused and filled with junk. If we actually 6396 * did unshare a page of pmds, flush the range corresponding to the pud. 6397 */ 6398 if (shared_pmd) 6399 flush_hugetlb_tlb_range(vma, range.start, range.end); 6400 else 6401 flush_hugetlb_tlb_range(vma, start, end); 6402 /* 6403 * No need to call mmu_notifier_invalidate_range() we are downgrading 6404 * page table protection not changing it to point to a new page. 6405 * 6406 * See Documentation/vm/mmu_notifier.rst 6407 */ 6408 i_mmap_unlock_write(vma->vm_file->f_mapping); 6409 mmu_notifier_invalidate_range_end(&range); 6410 6411 return pages << h->order; 6412 } 6413 6414 /* Return true if reservation was successful, false otherwise. */ 6415 bool hugetlb_reserve_pages(struct inode *inode, 6416 long from, long to, 6417 struct vm_area_struct *vma, 6418 vm_flags_t vm_flags) 6419 { 6420 long chg, add = -1; 6421 struct hstate *h = hstate_inode(inode); 6422 struct hugepage_subpool *spool = subpool_inode(inode); 6423 struct resv_map *resv_map; 6424 struct hugetlb_cgroup *h_cg = NULL; 6425 long gbl_reserve, regions_needed = 0; 6426 6427 /* This should never happen */ 6428 if (from > to) { 6429 VM_WARN(1, "%s called with a negative range\n", __func__); 6430 return false; 6431 } 6432 6433 /* 6434 * Only apply hugepage reservation if asked. At fault time, an 6435 * attempt will be made for VM_NORESERVE to allocate a page 6436 * without using reserves 6437 */ 6438 if (vm_flags & VM_NORESERVE) 6439 return true; 6440 6441 /* 6442 * Shared mappings base their reservation on the number of pages that 6443 * are already allocated on behalf of the file. Private mappings need 6444 * to reserve the full area even if read-only as mprotect() may be 6445 * called to make the mapping read-write. Assume !vma is a shm mapping 6446 */ 6447 if (!vma || vma->vm_flags & VM_MAYSHARE) { 6448 /* 6449 * resv_map can not be NULL as hugetlb_reserve_pages is only 6450 * called for inodes for which resv_maps were created (see 6451 * hugetlbfs_get_inode). 6452 */ 6453 resv_map = inode_resv_map(inode); 6454 6455 chg = region_chg(resv_map, from, to, ®ions_needed); 6456 6457 } else { 6458 /* Private mapping. */ 6459 resv_map = resv_map_alloc(); 6460 if (!resv_map) 6461 return false; 6462 6463 chg = to - from; 6464 6465 set_vma_resv_map(vma, resv_map); 6466 set_vma_resv_flags(vma, HPAGE_RESV_OWNER); 6467 } 6468 6469 if (chg < 0) 6470 goto out_err; 6471 6472 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h), 6473 chg * pages_per_huge_page(h), &h_cg) < 0) 6474 goto out_err; 6475 6476 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) { 6477 /* For private mappings, the hugetlb_cgroup uncharge info hangs 6478 * of the resv_map. 6479 */ 6480 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h); 6481 } 6482 6483 /* 6484 * There must be enough pages in the subpool for the mapping. If 6485 * the subpool has a minimum size, there may be some global 6486 * reservations already in place (gbl_reserve). 6487 */ 6488 gbl_reserve = hugepage_subpool_get_pages(spool, chg); 6489 if (gbl_reserve < 0) 6490 goto out_uncharge_cgroup; 6491 6492 /* 6493 * Check enough hugepages are available for the reservation. 6494 * Hand the pages back to the subpool if there are not 6495 */ 6496 if (hugetlb_acct_memory(h, gbl_reserve) < 0) 6497 goto out_put_pages; 6498 6499 /* 6500 * Account for the reservations made. Shared mappings record regions 6501 * that have reservations as they are shared by multiple VMAs. 6502 * When the last VMA disappears, the region map says how much 6503 * the reservation was and the page cache tells how much of 6504 * the reservation was consumed. Private mappings are per-VMA and 6505 * only the consumed reservations are tracked. When the VMA 6506 * disappears, the original reservation is the VMA size and the 6507 * consumed reservations are stored in the map. Hence, nothing 6508 * else has to be done for private mappings here 6509 */ 6510 if (!vma || vma->vm_flags & VM_MAYSHARE) { 6511 add = region_add(resv_map, from, to, regions_needed, h, h_cg); 6512 6513 if (unlikely(add < 0)) { 6514 hugetlb_acct_memory(h, -gbl_reserve); 6515 goto out_put_pages; 6516 } else if (unlikely(chg > add)) { 6517 /* 6518 * pages in this range were added to the reserve 6519 * map between region_chg and region_add. This 6520 * indicates a race with alloc_huge_page. Adjust 6521 * the subpool and reserve counts modified above 6522 * based on the difference. 6523 */ 6524 long rsv_adjust; 6525 6526 /* 6527 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the 6528 * reference to h_cg->css. See comment below for detail. 6529 */ 6530 hugetlb_cgroup_uncharge_cgroup_rsvd( 6531 hstate_index(h), 6532 (chg - add) * pages_per_huge_page(h), h_cg); 6533 6534 rsv_adjust = hugepage_subpool_put_pages(spool, 6535 chg - add); 6536 hugetlb_acct_memory(h, -rsv_adjust); 6537 } else if (h_cg) { 6538 /* 6539 * The file_regions will hold their own reference to 6540 * h_cg->css. So we should release the reference held 6541 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are 6542 * done. 6543 */ 6544 hugetlb_cgroup_put_rsvd_cgroup(h_cg); 6545 } 6546 } 6547 return true; 6548 6549 out_put_pages: 6550 /* put back original number of pages, chg */ 6551 (void)hugepage_subpool_put_pages(spool, chg); 6552 out_uncharge_cgroup: 6553 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h), 6554 chg * pages_per_huge_page(h), h_cg); 6555 out_err: 6556 if (!vma || vma->vm_flags & VM_MAYSHARE) 6557 /* Only call region_abort if the region_chg succeeded but the 6558 * region_add failed or didn't run. 6559 */ 6560 if (chg >= 0 && add < 0) 6561 region_abort(resv_map, from, to, regions_needed); 6562 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 6563 kref_put(&resv_map->refs, resv_map_release); 6564 return false; 6565 } 6566 6567 long hugetlb_unreserve_pages(struct inode *inode, long start, long end, 6568 long freed) 6569 { 6570 struct hstate *h = hstate_inode(inode); 6571 struct resv_map *resv_map = inode_resv_map(inode); 6572 long chg = 0; 6573 struct hugepage_subpool *spool = subpool_inode(inode); 6574 long gbl_reserve; 6575 6576 /* 6577 * Since this routine can be called in the evict inode path for all 6578 * hugetlbfs inodes, resv_map could be NULL. 6579 */ 6580 if (resv_map) { 6581 chg = region_del(resv_map, start, end); 6582 /* 6583 * region_del() can fail in the rare case where a region 6584 * must be split and another region descriptor can not be 6585 * allocated. If end == LONG_MAX, it will not fail. 6586 */ 6587 if (chg < 0) 6588 return chg; 6589 } 6590 6591 spin_lock(&inode->i_lock); 6592 inode->i_blocks -= (blocks_per_huge_page(h) * freed); 6593 spin_unlock(&inode->i_lock); 6594 6595 /* 6596 * If the subpool has a minimum size, the number of global 6597 * reservations to be released may be adjusted. 6598 * 6599 * Note that !resv_map implies freed == 0. So (chg - freed) 6600 * won't go negative. 6601 */ 6602 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed)); 6603 hugetlb_acct_memory(h, -gbl_reserve); 6604 6605 return 0; 6606 } 6607 6608 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE 6609 static unsigned long page_table_shareable(struct vm_area_struct *svma, 6610 struct vm_area_struct *vma, 6611 unsigned long addr, pgoff_t idx) 6612 { 6613 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) + 6614 svma->vm_start; 6615 unsigned long sbase = saddr & PUD_MASK; 6616 unsigned long s_end = sbase + PUD_SIZE; 6617 6618 /* Allow segments to share if only one is marked locked */ 6619 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK; 6620 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK; 6621 6622 /* 6623 * match the virtual addresses, permission and the alignment of the 6624 * page table page. 6625 */ 6626 if (pmd_index(addr) != pmd_index(saddr) || 6627 vm_flags != svm_flags || 6628 !range_in_vma(svma, sbase, s_end)) 6629 return 0; 6630 6631 return saddr; 6632 } 6633 6634 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr) 6635 { 6636 unsigned long base = addr & PUD_MASK; 6637 unsigned long end = base + PUD_SIZE; 6638 6639 /* 6640 * check on proper vm_flags and page table alignment 6641 */ 6642 if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end)) 6643 return true; 6644 return false; 6645 } 6646 6647 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr) 6648 { 6649 #ifdef CONFIG_USERFAULTFD 6650 if (uffd_disable_huge_pmd_share(vma)) 6651 return false; 6652 #endif 6653 return vma_shareable(vma, addr); 6654 } 6655 6656 /* 6657 * Determine if start,end range within vma could be mapped by shared pmd. 6658 * If yes, adjust start and end to cover range associated with possible 6659 * shared pmd mappings. 6660 */ 6661 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 6662 unsigned long *start, unsigned long *end) 6663 { 6664 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE), 6665 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE); 6666 6667 /* 6668 * vma needs to span at least one aligned PUD size, and the range 6669 * must be at least partially within in. 6670 */ 6671 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) || 6672 (*end <= v_start) || (*start >= v_end)) 6673 return; 6674 6675 /* Extend the range to be PUD aligned for a worst case scenario */ 6676 if (*start > v_start) 6677 *start = ALIGN_DOWN(*start, PUD_SIZE); 6678 6679 if (*end < v_end) 6680 *end = ALIGN(*end, PUD_SIZE); 6681 } 6682 6683 /* 6684 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc() 6685 * and returns the corresponding pte. While this is not necessary for the 6686 * !shared pmd case because we can allocate the pmd later as well, it makes the 6687 * code much cleaner. 6688 * 6689 * This routine must be called with i_mmap_rwsem held in at least read mode if 6690 * sharing is possible. For hugetlbfs, this prevents removal of any page 6691 * table entries associated with the address space. This is important as we 6692 * are setting up sharing based on existing page table entries (mappings). 6693 */ 6694 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, 6695 unsigned long addr, pud_t *pud) 6696 { 6697 struct address_space *mapping = vma->vm_file->f_mapping; 6698 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + 6699 vma->vm_pgoff; 6700 struct vm_area_struct *svma; 6701 unsigned long saddr; 6702 pte_t *spte = NULL; 6703 pte_t *pte; 6704 spinlock_t *ptl; 6705 6706 i_mmap_assert_locked(mapping); 6707 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) { 6708 if (svma == vma) 6709 continue; 6710 6711 saddr = page_table_shareable(svma, vma, addr, idx); 6712 if (saddr) { 6713 spte = huge_pte_offset(svma->vm_mm, saddr, 6714 vma_mmu_pagesize(svma)); 6715 if (spte) { 6716 get_page(virt_to_page(spte)); 6717 break; 6718 } 6719 } 6720 } 6721 6722 if (!spte) 6723 goto out; 6724 6725 ptl = huge_pte_lock(hstate_vma(vma), mm, spte); 6726 if (pud_none(*pud)) { 6727 pud_populate(mm, pud, 6728 (pmd_t *)((unsigned long)spte & PAGE_MASK)); 6729 mm_inc_nr_pmds(mm); 6730 } else { 6731 put_page(virt_to_page(spte)); 6732 } 6733 spin_unlock(ptl); 6734 out: 6735 pte = (pte_t *)pmd_alloc(mm, pud, addr); 6736 return pte; 6737 } 6738 6739 /* 6740 * unmap huge page backed by shared pte. 6741 * 6742 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared 6743 * indicated by page_count > 1, unmap is achieved by clearing pud and 6744 * decrementing the ref count. If count == 1, the pte page is not shared. 6745 * 6746 * Called with page table lock held and i_mmap_rwsem held in write mode. 6747 * 6748 * returns: 1 successfully unmapped a shared pte page 6749 * 0 the underlying pte page is not shared, or it is the last user 6750 */ 6751 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, 6752 unsigned long *addr, pte_t *ptep) 6753 { 6754 pgd_t *pgd = pgd_offset(mm, *addr); 6755 p4d_t *p4d = p4d_offset(pgd, *addr); 6756 pud_t *pud = pud_offset(p4d, *addr); 6757 6758 i_mmap_assert_write_locked(vma->vm_file->f_mapping); 6759 BUG_ON(page_count(virt_to_page(ptep)) == 0); 6760 if (page_count(virt_to_page(ptep)) == 1) 6761 return 0; 6762 6763 pud_clear(pud); 6764 put_page(virt_to_page(ptep)); 6765 mm_dec_nr_pmds(mm); 6766 /* 6767 * This update of passed address optimizes loops sequentially 6768 * processing addresses in increments of huge page size (PMD_SIZE 6769 * in this case). By clearing the pud, a PUD_SIZE area is unmapped. 6770 * Update address to the 'last page' in the cleared area so that 6771 * calling loop can move to first page past this area. 6772 */ 6773 *addr |= PUD_SIZE - PMD_SIZE; 6774 return 1; 6775 } 6776 6777 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 6778 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, 6779 unsigned long addr, pud_t *pud) 6780 { 6781 return NULL; 6782 } 6783 6784 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, 6785 unsigned long *addr, pte_t *ptep) 6786 { 6787 return 0; 6788 } 6789 6790 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 6791 unsigned long *start, unsigned long *end) 6792 { 6793 } 6794 6795 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr) 6796 { 6797 return false; 6798 } 6799 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 6800 6801 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB 6802 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 6803 unsigned long addr, unsigned long sz) 6804 { 6805 pgd_t *pgd; 6806 p4d_t *p4d; 6807 pud_t *pud; 6808 pte_t *pte = NULL; 6809 6810 pgd = pgd_offset(mm, addr); 6811 p4d = p4d_alloc(mm, pgd, addr); 6812 if (!p4d) 6813 return NULL; 6814 pud = pud_alloc(mm, p4d, addr); 6815 if (pud) { 6816 if (sz == PUD_SIZE) { 6817 pte = (pte_t *)pud; 6818 } else { 6819 BUG_ON(sz != PMD_SIZE); 6820 if (want_pmd_share(vma, addr) && pud_none(*pud)) 6821 pte = huge_pmd_share(mm, vma, addr, pud); 6822 else 6823 pte = (pte_t *)pmd_alloc(mm, pud, addr); 6824 } 6825 } 6826 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte)); 6827 6828 return pte; 6829 } 6830 6831 /* 6832 * huge_pte_offset() - Walk the page table to resolve the hugepage 6833 * entry at address @addr 6834 * 6835 * Return: Pointer to page table entry (PUD or PMD) for 6836 * address @addr, or NULL if a !p*d_present() entry is encountered and the 6837 * size @sz doesn't match the hugepage size at this level of the page 6838 * table. 6839 */ 6840 pte_t *huge_pte_offset(struct mm_struct *mm, 6841 unsigned long addr, unsigned long sz) 6842 { 6843 pgd_t *pgd; 6844 p4d_t *p4d; 6845 pud_t *pud; 6846 pmd_t *pmd; 6847 6848 pgd = pgd_offset(mm, addr); 6849 if (!pgd_present(*pgd)) 6850 return NULL; 6851 p4d = p4d_offset(pgd, addr); 6852 if (!p4d_present(*p4d)) 6853 return NULL; 6854 6855 pud = pud_offset(p4d, addr); 6856 if (sz == PUD_SIZE) 6857 /* must be pud huge, non-present or none */ 6858 return (pte_t *)pud; 6859 if (!pud_present(*pud)) 6860 return NULL; 6861 /* must have a valid entry and size to go further */ 6862 6863 pmd = pmd_offset(pud, addr); 6864 /* must be pmd huge, non-present or none */ 6865 return (pte_t *)pmd; 6866 } 6867 6868 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */ 6869 6870 /* 6871 * These functions are overwritable if your architecture needs its own 6872 * behavior. 6873 */ 6874 struct page * __weak 6875 follow_huge_addr(struct mm_struct *mm, unsigned long address, 6876 int write) 6877 { 6878 return ERR_PTR(-EINVAL); 6879 } 6880 6881 struct page * __weak 6882 follow_huge_pd(struct vm_area_struct *vma, 6883 unsigned long address, hugepd_t hpd, int flags, int pdshift) 6884 { 6885 WARN(1, "hugepd follow called with no support for hugepage directory format\n"); 6886 return NULL; 6887 } 6888 6889 struct page * __weak 6890 follow_huge_pmd(struct mm_struct *mm, unsigned long address, 6891 pmd_t *pmd, int flags) 6892 { 6893 struct page *page = NULL; 6894 spinlock_t *ptl; 6895 pte_t pte; 6896 6897 /* 6898 * FOLL_PIN is not supported for follow_page(). Ordinary GUP goes via 6899 * follow_hugetlb_page(). 6900 */ 6901 if (WARN_ON_ONCE(flags & FOLL_PIN)) 6902 return NULL; 6903 6904 retry: 6905 ptl = pmd_lockptr(mm, pmd); 6906 spin_lock(ptl); 6907 /* 6908 * make sure that the address range covered by this pmd is not 6909 * unmapped from other threads. 6910 */ 6911 if (!pmd_huge(*pmd)) 6912 goto out; 6913 pte = huge_ptep_get((pte_t *)pmd); 6914 if (pte_present(pte)) { 6915 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT); 6916 /* 6917 * try_grab_page() should always succeed here, because: a) we 6918 * hold the pmd (ptl) lock, and b) we've just checked that the 6919 * huge pmd (head) page is present in the page tables. The ptl 6920 * prevents the head page and tail pages from being rearranged 6921 * in any way. So this page must be available at this point, 6922 * unless the page refcount overflowed: 6923 */ 6924 if (WARN_ON_ONCE(!try_grab_page(page, flags))) { 6925 page = NULL; 6926 goto out; 6927 } 6928 } else { 6929 if (is_hugetlb_entry_migration(pte)) { 6930 spin_unlock(ptl); 6931 __migration_entry_wait(mm, (pte_t *)pmd, ptl); 6932 goto retry; 6933 } 6934 /* 6935 * hwpoisoned entry is treated as no_page_table in 6936 * follow_page_mask(). 6937 */ 6938 } 6939 out: 6940 spin_unlock(ptl); 6941 return page; 6942 } 6943 6944 struct page * __weak 6945 follow_huge_pud(struct mm_struct *mm, unsigned long address, 6946 pud_t *pud, int flags) 6947 { 6948 if (flags & (FOLL_GET | FOLL_PIN)) 6949 return NULL; 6950 6951 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT); 6952 } 6953 6954 struct page * __weak 6955 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags) 6956 { 6957 if (flags & (FOLL_GET | FOLL_PIN)) 6958 return NULL; 6959 6960 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT); 6961 } 6962 6963 bool isolate_huge_page(struct page *page, struct list_head *list) 6964 { 6965 bool ret = true; 6966 6967 spin_lock_irq(&hugetlb_lock); 6968 if (!PageHeadHuge(page) || 6969 !HPageMigratable(page) || 6970 !get_page_unless_zero(page)) { 6971 ret = false; 6972 goto unlock; 6973 } 6974 ClearHPageMigratable(page); 6975 list_move_tail(&page->lru, list); 6976 unlock: 6977 spin_unlock_irq(&hugetlb_lock); 6978 return ret; 6979 } 6980 6981 int get_hwpoison_huge_page(struct page *page, bool *hugetlb) 6982 { 6983 int ret = 0; 6984 6985 *hugetlb = false; 6986 spin_lock_irq(&hugetlb_lock); 6987 if (PageHeadHuge(page)) { 6988 *hugetlb = true; 6989 if (HPageFreed(page)) 6990 ret = 0; 6991 else if (HPageMigratable(page)) 6992 ret = get_page_unless_zero(page); 6993 else 6994 ret = -EBUSY; 6995 } 6996 spin_unlock_irq(&hugetlb_lock); 6997 return ret; 6998 } 6999 7000 int get_huge_page_for_hwpoison(unsigned long pfn, int flags) 7001 { 7002 int ret; 7003 7004 spin_lock_irq(&hugetlb_lock); 7005 ret = __get_huge_page_for_hwpoison(pfn, flags); 7006 spin_unlock_irq(&hugetlb_lock); 7007 return ret; 7008 } 7009 7010 void putback_active_hugepage(struct page *page) 7011 { 7012 spin_lock_irq(&hugetlb_lock); 7013 SetHPageMigratable(page); 7014 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist); 7015 spin_unlock_irq(&hugetlb_lock); 7016 put_page(page); 7017 } 7018 7019 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason) 7020 { 7021 struct hstate *h = page_hstate(oldpage); 7022 7023 hugetlb_cgroup_migrate(oldpage, newpage); 7024 set_page_owner_migrate_reason(newpage, reason); 7025 7026 /* 7027 * transfer temporary state of the new huge page. This is 7028 * reverse to other transitions because the newpage is going to 7029 * be final while the old one will be freed so it takes over 7030 * the temporary status. 7031 * 7032 * Also note that we have to transfer the per-node surplus state 7033 * here as well otherwise the global surplus count will not match 7034 * the per-node's. 7035 */ 7036 if (HPageTemporary(newpage)) { 7037 int old_nid = page_to_nid(oldpage); 7038 int new_nid = page_to_nid(newpage); 7039 7040 SetHPageTemporary(oldpage); 7041 ClearHPageTemporary(newpage); 7042 7043 /* 7044 * There is no need to transfer the per-node surplus state 7045 * when we do not cross the node. 7046 */ 7047 if (new_nid == old_nid) 7048 return; 7049 spin_lock_irq(&hugetlb_lock); 7050 if (h->surplus_huge_pages_node[old_nid]) { 7051 h->surplus_huge_pages_node[old_nid]--; 7052 h->surplus_huge_pages_node[new_nid]++; 7053 } 7054 spin_unlock_irq(&hugetlb_lock); 7055 } 7056 } 7057 7058 /* 7059 * This function will unconditionally remove all the shared pmd pgtable entries 7060 * within the specific vma for a hugetlbfs memory range. 7061 */ 7062 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma) 7063 { 7064 struct hstate *h = hstate_vma(vma); 7065 unsigned long sz = huge_page_size(h); 7066 struct mm_struct *mm = vma->vm_mm; 7067 struct mmu_notifier_range range; 7068 unsigned long address, start, end; 7069 spinlock_t *ptl; 7070 pte_t *ptep; 7071 7072 if (!(vma->vm_flags & VM_MAYSHARE)) 7073 return; 7074 7075 start = ALIGN(vma->vm_start, PUD_SIZE); 7076 end = ALIGN_DOWN(vma->vm_end, PUD_SIZE); 7077 7078 if (start >= end) 7079 return; 7080 7081 flush_cache_range(vma, start, end); 7082 /* 7083 * No need to call adjust_range_if_pmd_sharing_possible(), because 7084 * we have already done the PUD_SIZE alignment. 7085 */ 7086 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, 7087 start, end); 7088 mmu_notifier_invalidate_range_start(&range); 7089 i_mmap_lock_write(vma->vm_file->f_mapping); 7090 for (address = start; address < end; address += PUD_SIZE) { 7091 unsigned long tmp = address; 7092 7093 ptep = huge_pte_offset(mm, address, sz); 7094 if (!ptep) 7095 continue; 7096 ptl = huge_pte_lock(h, mm, ptep); 7097 /* We don't want 'address' to be changed */ 7098 huge_pmd_unshare(mm, vma, &tmp, ptep); 7099 spin_unlock(ptl); 7100 } 7101 flush_hugetlb_tlb_range(vma, start, end); 7102 i_mmap_unlock_write(vma->vm_file->f_mapping); 7103 /* 7104 * No need to call mmu_notifier_invalidate_range(), see 7105 * Documentation/vm/mmu_notifier.rst. 7106 */ 7107 mmu_notifier_invalidate_range_end(&range); 7108 } 7109 7110 #ifdef CONFIG_CMA 7111 static bool cma_reserve_called __initdata; 7112 7113 static int __init cmdline_parse_hugetlb_cma(char *p) 7114 { 7115 int nid, count = 0; 7116 unsigned long tmp; 7117 char *s = p; 7118 7119 while (*s) { 7120 if (sscanf(s, "%lu%n", &tmp, &count) != 1) 7121 break; 7122 7123 if (s[count] == ':') { 7124 if (tmp >= MAX_NUMNODES) 7125 break; 7126 nid = array_index_nospec(tmp, MAX_NUMNODES); 7127 7128 s += count + 1; 7129 tmp = memparse(s, &s); 7130 hugetlb_cma_size_in_node[nid] = tmp; 7131 hugetlb_cma_size += tmp; 7132 7133 /* 7134 * Skip the separator if have one, otherwise 7135 * break the parsing. 7136 */ 7137 if (*s == ',') 7138 s++; 7139 else 7140 break; 7141 } else { 7142 hugetlb_cma_size = memparse(p, &p); 7143 break; 7144 } 7145 } 7146 7147 return 0; 7148 } 7149 7150 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma); 7151 7152 void __init hugetlb_cma_reserve(int order) 7153 { 7154 unsigned long size, reserved, per_node; 7155 bool node_specific_cma_alloc = false; 7156 int nid; 7157 7158 cma_reserve_called = true; 7159 7160 if (!hugetlb_cma_size) 7161 return; 7162 7163 for (nid = 0; nid < MAX_NUMNODES; nid++) { 7164 if (hugetlb_cma_size_in_node[nid] == 0) 7165 continue; 7166 7167 if (!node_online(nid)) { 7168 pr_warn("hugetlb_cma: invalid node %d specified\n", nid); 7169 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid]; 7170 hugetlb_cma_size_in_node[nid] = 0; 7171 continue; 7172 } 7173 7174 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) { 7175 pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n", 7176 nid, (PAGE_SIZE << order) / SZ_1M); 7177 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid]; 7178 hugetlb_cma_size_in_node[nid] = 0; 7179 } else { 7180 node_specific_cma_alloc = true; 7181 } 7182 } 7183 7184 /* Validate the CMA size again in case some invalid nodes specified. */ 7185 if (!hugetlb_cma_size) 7186 return; 7187 7188 if (hugetlb_cma_size < (PAGE_SIZE << order)) { 7189 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n", 7190 (PAGE_SIZE << order) / SZ_1M); 7191 hugetlb_cma_size = 0; 7192 return; 7193 } 7194 7195 if (!node_specific_cma_alloc) { 7196 /* 7197 * If 3 GB area is requested on a machine with 4 numa nodes, 7198 * let's allocate 1 GB on first three nodes and ignore the last one. 7199 */ 7200 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes); 7201 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n", 7202 hugetlb_cma_size / SZ_1M, per_node / SZ_1M); 7203 } 7204 7205 reserved = 0; 7206 for_each_online_node(nid) { 7207 int res; 7208 char name[CMA_MAX_NAME]; 7209 7210 if (node_specific_cma_alloc) { 7211 if (hugetlb_cma_size_in_node[nid] == 0) 7212 continue; 7213 7214 size = hugetlb_cma_size_in_node[nid]; 7215 } else { 7216 size = min(per_node, hugetlb_cma_size - reserved); 7217 } 7218 7219 size = round_up(size, PAGE_SIZE << order); 7220 7221 snprintf(name, sizeof(name), "hugetlb%d", nid); 7222 /* 7223 * Note that 'order per bit' is based on smallest size that 7224 * may be returned to CMA allocator in the case of 7225 * huge page demotion. 7226 */ 7227 res = cma_declare_contiguous_nid(0, size, 0, 7228 PAGE_SIZE << HUGETLB_PAGE_ORDER, 7229 0, false, name, 7230 &hugetlb_cma[nid], nid); 7231 if (res) { 7232 pr_warn("hugetlb_cma: reservation failed: err %d, node %d", 7233 res, nid); 7234 continue; 7235 } 7236 7237 reserved += size; 7238 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n", 7239 size / SZ_1M, nid); 7240 7241 if (reserved >= hugetlb_cma_size) 7242 break; 7243 } 7244 7245 if (!reserved) 7246 /* 7247 * hugetlb_cma_size is used to determine if allocations from 7248 * cma are possible. Set to zero if no cma regions are set up. 7249 */ 7250 hugetlb_cma_size = 0; 7251 } 7252 7253 void __init hugetlb_cma_check(void) 7254 { 7255 if (!hugetlb_cma_size || cma_reserve_called) 7256 return; 7257 7258 pr_warn("hugetlb_cma: the option isn't supported by current arch\n"); 7259 } 7260 7261 #endif /* CONFIG_CMA */ 7262