1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic hugetlb support. 4 * (C) Nadia Yvette Chambers, April 2004 5 */ 6 #include <linux/list.h> 7 #include <linux/init.h> 8 #include <linux/mm.h> 9 #include <linux/seq_file.h> 10 #include <linux/sysctl.h> 11 #include <linux/highmem.h> 12 #include <linux/mmu_notifier.h> 13 #include <linux/nodemask.h> 14 #include <linux/pagemap.h> 15 #include <linux/mempolicy.h> 16 #include <linux/compiler.h> 17 #include <linux/cpuset.h> 18 #include <linux/mutex.h> 19 #include <linux/memblock.h> 20 #include <linux/sysfs.h> 21 #include <linux/slab.h> 22 #include <linux/sched/mm.h> 23 #include <linux/mmdebug.h> 24 #include <linux/sched/signal.h> 25 #include <linux/rmap.h> 26 #include <linux/string_helpers.h> 27 #include <linux/swap.h> 28 #include <linux/swapops.h> 29 #include <linux/jhash.h> 30 #include <linux/numa.h> 31 #include <linux/llist.h> 32 #include <linux/cma.h> 33 #include <linux/migrate.h> 34 #include <linux/nospec.h> 35 #include <linux/delayacct.h> 36 #include <linux/memory.h> 37 #include <linux/mm_inline.h> 38 39 #include <asm/page.h> 40 #include <asm/pgalloc.h> 41 #include <asm/tlb.h> 42 43 #include <linux/io.h> 44 #include <linux/hugetlb.h> 45 #include <linux/hugetlb_cgroup.h> 46 #include <linux/node.h> 47 #include <linux/page_owner.h> 48 #include "internal.h" 49 #include "hugetlb_vmemmap.h" 50 51 int hugetlb_max_hstate __read_mostly; 52 unsigned int default_hstate_idx; 53 struct hstate hstates[HUGE_MAX_HSTATE]; 54 55 #ifdef CONFIG_CMA 56 static struct cma *hugetlb_cma[MAX_NUMNODES]; 57 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata; 58 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order) 59 { 60 return cma_pages_valid(hugetlb_cma[folio_nid(folio)], &folio->page, 61 1 << order); 62 } 63 #else 64 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order) 65 { 66 return false; 67 } 68 #endif 69 static unsigned long hugetlb_cma_size __initdata; 70 71 __initdata LIST_HEAD(huge_boot_pages); 72 73 /* for command line parsing */ 74 static struct hstate * __initdata parsed_hstate; 75 static unsigned long __initdata default_hstate_max_huge_pages; 76 static bool __initdata parsed_valid_hugepagesz = true; 77 static bool __initdata parsed_default_hugepagesz; 78 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata; 79 80 /* 81 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages, 82 * free_huge_pages, and surplus_huge_pages. 83 */ 84 DEFINE_SPINLOCK(hugetlb_lock); 85 86 /* 87 * Serializes faults on the same logical page. This is used to 88 * prevent spurious OOMs when the hugepage pool is fully utilized. 89 */ 90 static int num_fault_mutexes; 91 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp; 92 93 /* Forward declaration */ 94 static int hugetlb_acct_memory(struct hstate *h, long delta); 95 static void hugetlb_vma_lock_free(struct vm_area_struct *vma); 96 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma); 97 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma); 98 static void hugetlb_unshare_pmds(struct vm_area_struct *vma, 99 unsigned long start, unsigned long end); 100 static struct resv_map *vma_resv_map(struct vm_area_struct *vma); 101 102 static inline bool subpool_is_free(struct hugepage_subpool *spool) 103 { 104 if (spool->count) 105 return false; 106 if (spool->max_hpages != -1) 107 return spool->used_hpages == 0; 108 if (spool->min_hpages != -1) 109 return spool->rsv_hpages == spool->min_hpages; 110 111 return true; 112 } 113 114 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool, 115 unsigned long irq_flags) 116 { 117 spin_unlock_irqrestore(&spool->lock, irq_flags); 118 119 /* If no pages are used, and no other handles to the subpool 120 * remain, give up any reservations based on minimum size and 121 * free the subpool */ 122 if (subpool_is_free(spool)) { 123 if (spool->min_hpages != -1) 124 hugetlb_acct_memory(spool->hstate, 125 -spool->min_hpages); 126 kfree(spool); 127 } 128 } 129 130 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages, 131 long min_hpages) 132 { 133 struct hugepage_subpool *spool; 134 135 spool = kzalloc(sizeof(*spool), GFP_KERNEL); 136 if (!spool) 137 return NULL; 138 139 spin_lock_init(&spool->lock); 140 spool->count = 1; 141 spool->max_hpages = max_hpages; 142 spool->hstate = h; 143 spool->min_hpages = min_hpages; 144 145 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) { 146 kfree(spool); 147 return NULL; 148 } 149 spool->rsv_hpages = min_hpages; 150 151 return spool; 152 } 153 154 void hugepage_put_subpool(struct hugepage_subpool *spool) 155 { 156 unsigned long flags; 157 158 spin_lock_irqsave(&spool->lock, flags); 159 BUG_ON(!spool->count); 160 spool->count--; 161 unlock_or_release_subpool(spool, flags); 162 } 163 164 /* 165 * Subpool accounting for allocating and reserving pages. 166 * Return -ENOMEM if there are not enough resources to satisfy the 167 * request. Otherwise, return the number of pages by which the 168 * global pools must be adjusted (upward). The returned value may 169 * only be different than the passed value (delta) in the case where 170 * a subpool minimum size must be maintained. 171 */ 172 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool, 173 long delta) 174 { 175 long ret = delta; 176 177 if (!spool) 178 return ret; 179 180 spin_lock_irq(&spool->lock); 181 182 if (spool->max_hpages != -1) { /* maximum size accounting */ 183 if ((spool->used_hpages + delta) <= spool->max_hpages) 184 spool->used_hpages += delta; 185 else { 186 ret = -ENOMEM; 187 goto unlock_ret; 188 } 189 } 190 191 /* minimum size accounting */ 192 if (spool->min_hpages != -1 && spool->rsv_hpages) { 193 if (delta > spool->rsv_hpages) { 194 /* 195 * Asking for more reserves than those already taken on 196 * behalf of subpool. Return difference. 197 */ 198 ret = delta - spool->rsv_hpages; 199 spool->rsv_hpages = 0; 200 } else { 201 ret = 0; /* reserves already accounted for */ 202 spool->rsv_hpages -= delta; 203 } 204 } 205 206 unlock_ret: 207 spin_unlock_irq(&spool->lock); 208 return ret; 209 } 210 211 /* 212 * Subpool accounting for freeing and unreserving pages. 213 * Return the number of global page reservations that must be dropped. 214 * The return value may only be different than the passed value (delta) 215 * in the case where a subpool minimum size must be maintained. 216 */ 217 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool, 218 long delta) 219 { 220 long ret = delta; 221 unsigned long flags; 222 223 if (!spool) 224 return delta; 225 226 spin_lock_irqsave(&spool->lock, flags); 227 228 if (spool->max_hpages != -1) /* maximum size accounting */ 229 spool->used_hpages -= delta; 230 231 /* minimum size accounting */ 232 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) { 233 if (spool->rsv_hpages + delta <= spool->min_hpages) 234 ret = 0; 235 else 236 ret = spool->rsv_hpages + delta - spool->min_hpages; 237 238 spool->rsv_hpages += delta; 239 if (spool->rsv_hpages > spool->min_hpages) 240 spool->rsv_hpages = spool->min_hpages; 241 } 242 243 /* 244 * If hugetlbfs_put_super couldn't free spool due to an outstanding 245 * quota reference, free it now. 246 */ 247 unlock_or_release_subpool(spool, flags); 248 249 return ret; 250 } 251 252 static inline struct hugepage_subpool *subpool_inode(struct inode *inode) 253 { 254 return HUGETLBFS_SB(inode->i_sb)->spool; 255 } 256 257 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma) 258 { 259 return subpool_inode(file_inode(vma->vm_file)); 260 } 261 262 /* 263 * hugetlb vma_lock helper routines 264 */ 265 void hugetlb_vma_lock_read(struct vm_area_struct *vma) 266 { 267 if (__vma_shareable_lock(vma)) { 268 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 269 270 down_read(&vma_lock->rw_sema); 271 } else if (__vma_private_lock(vma)) { 272 struct resv_map *resv_map = vma_resv_map(vma); 273 274 down_read(&resv_map->rw_sema); 275 } 276 } 277 278 void hugetlb_vma_unlock_read(struct vm_area_struct *vma) 279 { 280 if (__vma_shareable_lock(vma)) { 281 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 282 283 up_read(&vma_lock->rw_sema); 284 } else if (__vma_private_lock(vma)) { 285 struct resv_map *resv_map = vma_resv_map(vma); 286 287 up_read(&resv_map->rw_sema); 288 } 289 } 290 291 void hugetlb_vma_lock_write(struct vm_area_struct *vma) 292 { 293 if (__vma_shareable_lock(vma)) { 294 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 295 296 down_write(&vma_lock->rw_sema); 297 } else if (__vma_private_lock(vma)) { 298 struct resv_map *resv_map = vma_resv_map(vma); 299 300 down_write(&resv_map->rw_sema); 301 } 302 } 303 304 void hugetlb_vma_unlock_write(struct vm_area_struct *vma) 305 { 306 if (__vma_shareable_lock(vma)) { 307 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 308 309 up_write(&vma_lock->rw_sema); 310 } else if (__vma_private_lock(vma)) { 311 struct resv_map *resv_map = vma_resv_map(vma); 312 313 up_write(&resv_map->rw_sema); 314 } 315 } 316 317 int hugetlb_vma_trylock_write(struct vm_area_struct *vma) 318 { 319 320 if (__vma_shareable_lock(vma)) { 321 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 322 323 return down_write_trylock(&vma_lock->rw_sema); 324 } else if (__vma_private_lock(vma)) { 325 struct resv_map *resv_map = vma_resv_map(vma); 326 327 return down_write_trylock(&resv_map->rw_sema); 328 } 329 330 return 1; 331 } 332 333 void hugetlb_vma_assert_locked(struct vm_area_struct *vma) 334 { 335 if (__vma_shareable_lock(vma)) { 336 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 337 338 lockdep_assert_held(&vma_lock->rw_sema); 339 } else if (__vma_private_lock(vma)) { 340 struct resv_map *resv_map = vma_resv_map(vma); 341 342 lockdep_assert_held(&resv_map->rw_sema); 343 } 344 } 345 346 void hugetlb_vma_lock_release(struct kref *kref) 347 { 348 struct hugetlb_vma_lock *vma_lock = container_of(kref, 349 struct hugetlb_vma_lock, refs); 350 351 kfree(vma_lock); 352 } 353 354 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock) 355 { 356 struct vm_area_struct *vma = vma_lock->vma; 357 358 /* 359 * vma_lock structure may or not be released as a result of put, 360 * it certainly will no longer be attached to vma so clear pointer. 361 * Semaphore synchronizes access to vma_lock->vma field. 362 */ 363 vma_lock->vma = NULL; 364 vma->vm_private_data = NULL; 365 up_write(&vma_lock->rw_sema); 366 kref_put(&vma_lock->refs, hugetlb_vma_lock_release); 367 } 368 369 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma) 370 { 371 if (__vma_shareable_lock(vma)) { 372 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 373 374 __hugetlb_vma_unlock_write_put(vma_lock); 375 } else if (__vma_private_lock(vma)) { 376 struct resv_map *resv_map = vma_resv_map(vma); 377 378 /* no free for anon vmas, but still need to unlock */ 379 up_write(&resv_map->rw_sema); 380 } 381 } 382 383 static void hugetlb_vma_lock_free(struct vm_area_struct *vma) 384 { 385 /* 386 * Only present in sharable vmas. 387 */ 388 if (!vma || !__vma_shareable_lock(vma)) 389 return; 390 391 if (vma->vm_private_data) { 392 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 393 394 down_write(&vma_lock->rw_sema); 395 __hugetlb_vma_unlock_write_put(vma_lock); 396 } 397 } 398 399 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma) 400 { 401 struct hugetlb_vma_lock *vma_lock; 402 403 /* Only establish in (flags) sharable vmas */ 404 if (!vma || !(vma->vm_flags & VM_MAYSHARE)) 405 return; 406 407 /* Should never get here with non-NULL vm_private_data */ 408 if (vma->vm_private_data) 409 return; 410 411 vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL); 412 if (!vma_lock) { 413 /* 414 * If we can not allocate structure, then vma can not 415 * participate in pmd sharing. This is only a possible 416 * performance enhancement and memory saving issue. 417 * However, the lock is also used to synchronize page 418 * faults with truncation. If the lock is not present, 419 * unlikely races could leave pages in a file past i_size 420 * until the file is removed. Warn in the unlikely case of 421 * allocation failure. 422 */ 423 pr_warn_once("HugeTLB: unable to allocate vma specific lock\n"); 424 return; 425 } 426 427 kref_init(&vma_lock->refs); 428 init_rwsem(&vma_lock->rw_sema); 429 vma_lock->vma = vma; 430 vma->vm_private_data = vma_lock; 431 } 432 433 /* Helper that removes a struct file_region from the resv_map cache and returns 434 * it for use. 435 */ 436 static struct file_region * 437 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to) 438 { 439 struct file_region *nrg; 440 441 VM_BUG_ON(resv->region_cache_count <= 0); 442 443 resv->region_cache_count--; 444 nrg = list_first_entry(&resv->region_cache, struct file_region, link); 445 list_del(&nrg->link); 446 447 nrg->from = from; 448 nrg->to = to; 449 450 return nrg; 451 } 452 453 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg, 454 struct file_region *rg) 455 { 456 #ifdef CONFIG_CGROUP_HUGETLB 457 nrg->reservation_counter = rg->reservation_counter; 458 nrg->css = rg->css; 459 if (rg->css) 460 css_get(rg->css); 461 #endif 462 } 463 464 /* Helper that records hugetlb_cgroup uncharge info. */ 465 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg, 466 struct hstate *h, 467 struct resv_map *resv, 468 struct file_region *nrg) 469 { 470 #ifdef CONFIG_CGROUP_HUGETLB 471 if (h_cg) { 472 nrg->reservation_counter = 473 &h_cg->rsvd_hugepage[hstate_index(h)]; 474 nrg->css = &h_cg->css; 475 /* 476 * The caller will hold exactly one h_cg->css reference for the 477 * whole contiguous reservation region. But this area might be 478 * scattered when there are already some file_regions reside in 479 * it. As a result, many file_regions may share only one css 480 * reference. In order to ensure that one file_region must hold 481 * exactly one h_cg->css reference, we should do css_get for 482 * each file_region and leave the reference held by caller 483 * untouched. 484 */ 485 css_get(&h_cg->css); 486 if (!resv->pages_per_hpage) 487 resv->pages_per_hpage = pages_per_huge_page(h); 488 /* pages_per_hpage should be the same for all entries in 489 * a resv_map. 490 */ 491 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h)); 492 } else { 493 nrg->reservation_counter = NULL; 494 nrg->css = NULL; 495 } 496 #endif 497 } 498 499 static void put_uncharge_info(struct file_region *rg) 500 { 501 #ifdef CONFIG_CGROUP_HUGETLB 502 if (rg->css) 503 css_put(rg->css); 504 #endif 505 } 506 507 static bool has_same_uncharge_info(struct file_region *rg, 508 struct file_region *org) 509 { 510 #ifdef CONFIG_CGROUP_HUGETLB 511 return rg->reservation_counter == org->reservation_counter && 512 rg->css == org->css; 513 514 #else 515 return true; 516 #endif 517 } 518 519 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg) 520 { 521 struct file_region *nrg, *prg; 522 523 prg = list_prev_entry(rg, link); 524 if (&prg->link != &resv->regions && prg->to == rg->from && 525 has_same_uncharge_info(prg, rg)) { 526 prg->to = rg->to; 527 528 list_del(&rg->link); 529 put_uncharge_info(rg); 530 kfree(rg); 531 532 rg = prg; 533 } 534 535 nrg = list_next_entry(rg, link); 536 if (&nrg->link != &resv->regions && nrg->from == rg->to && 537 has_same_uncharge_info(nrg, rg)) { 538 nrg->from = rg->from; 539 540 list_del(&rg->link); 541 put_uncharge_info(rg); 542 kfree(rg); 543 } 544 } 545 546 static inline long 547 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from, 548 long to, struct hstate *h, struct hugetlb_cgroup *cg, 549 long *regions_needed) 550 { 551 struct file_region *nrg; 552 553 if (!regions_needed) { 554 nrg = get_file_region_entry_from_cache(map, from, to); 555 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg); 556 list_add(&nrg->link, rg); 557 coalesce_file_region(map, nrg); 558 } else 559 *regions_needed += 1; 560 561 return to - from; 562 } 563 564 /* 565 * Must be called with resv->lock held. 566 * 567 * Calling this with regions_needed != NULL will count the number of pages 568 * to be added but will not modify the linked list. And regions_needed will 569 * indicate the number of file_regions needed in the cache to carry out to add 570 * the regions for this range. 571 */ 572 static long add_reservation_in_range(struct resv_map *resv, long f, long t, 573 struct hugetlb_cgroup *h_cg, 574 struct hstate *h, long *regions_needed) 575 { 576 long add = 0; 577 struct list_head *head = &resv->regions; 578 long last_accounted_offset = f; 579 struct file_region *iter, *trg = NULL; 580 struct list_head *rg = NULL; 581 582 if (regions_needed) 583 *regions_needed = 0; 584 585 /* In this loop, we essentially handle an entry for the range 586 * [last_accounted_offset, iter->from), at every iteration, with some 587 * bounds checking. 588 */ 589 list_for_each_entry_safe(iter, trg, head, link) { 590 /* Skip irrelevant regions that start before our range. */ 591 if (iter->from < f) { 592 /* If this region ends after the last accounted offset, 593 * then we need to update last_accounted_offset. 594 */ 595 if (iter->to > last_accounted_offset) 596 last_accounted_offset = iter->to; 597 continue; 598 } 599 600 /* When we find a region that starts beyond our range, we've 601 * finished. 602 */ 603 if (iter->from >= t) { 604 rg = iter->link.prev; 605 break; 606 } 607 608 /* Add an entry for last_accounted_offset -> iter->from, and 609 * update last_accounted_offset. 610 */ 611 if (iter->from > last_accounted_offset) 612 add += hugetlb_resv_map_add(resv, iter->link.prev, 613 last_accounted_offset, 614 iter->from, h, h_cg, 615 regions_needed); 616 617 last_accounted_offset = iter->to; 618 } 619 620 /* Handle the case where our range extends beyond 621 * last_accounted_offset. 622 */ 623 if (!rg) 624 rg = head->prev; 625 if (last_accounted_offset < t) 626 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset, 627 t, h, h_cg, regions_needed); 628 629 return add; 630 } 631 632 /* Must be called with resv->lock acquired. Will drop lock to allocate entries. 633 */ 634 static int allocate_file_region_entries(struct resv_map *resv, 635 int regions_needed) 636 __must_hold(&resv->lock) 637 { 638 LIST_HEAD(allocated_regions); 639 int to_allocate = 0, i = 0; 640 struct file_region *trg = NULL, *rg = NULL; 641 642 VM_BUG_ON(regions_needed < 0); 643 644 /* 645 * Check for sufficient descriptors in the cache to accommodate 646 * the number of in progress add operations plus regions_needed. 647 * 648 * This is a while loop because when we drop the lock, some other call 649 * to region_add or region_del may have consumed some region_entries, 650 * so we keep looping here until we finally have enough entries for 651 * (adds_in_progress + regions_needed). 652 */ 653 while (resv->region_cache_count < 654 (resv->adds_in_progress + regions_needed)) { 655 to_allocate = resv->adds_in_progress + regions_needed - 656 resv->region_cache_count; 657 658 /* At this point, we should have enough entries in the cache 659 * for all the existing adds_in_progress. We should only be 660 * needing to allocate for regions_needed. 661 */ 662 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress); 663 664 spin_unlock(&resv->lock); 665 for (i = 0; i < to_allocate; i++) { 666 trg = kmalloc(sizeof(*trg), GFP_KERNEL); 667 if (!trg) 668 goto out_of_memory; 669 list_add(&trg->link, &allocated_regions); 670 } 671 672 spin_lock(&resv->lock); 673 674 list_splice(&allocated_regions, &resv->region_cache); 675 resv->region_cache_count += to_allocate; 676 } 677 678 return 0; 679 680 out_of_memory: 681 list_for_each_entry_safe(rg, trg, &allocated_regions, link) { 682 list_del(&rg->link); 683 kfree(rg); 684 } 685 return -ENOMEM; 686 } 687 688 /* 689 * Add the huge page range represented by [f, t) to the reserve 690 * map. Regions will be taken from the cache to fill in this range. 691 * Sufficient regions should exist in the cache due to the previous 692 * call to region_chg with the same range, but in some cases the cache will not 693 * have sufficient entries due to races with other code doing region_add or 694 * region_del. The extra needed entries will be allocated. 695 * 696 * regions_needed is the out value provided by a previous call to region_chg. 697 * 698 * Return the number of new huge pages added to the map. This number is greater 699 * than or equal to zero. If file_region entries needed to be allocated for 700 * this operation and we were not able to allocate, it returns -ENOMEM. 701 * region_add of regions of length 1 never allocate file_regions and cannot 702 * fail; region_chg will always allocate at least 1 entry and a region_add for 703 * 1 page will only require at most 1 entry. 704 */ 705 static long region_add(struct resv_map *resv, long f, long t, 706 long in_regions_needed, struct hstate *h, 707 struct hugetlb_cgroup *h_cg) 708 { 709 long add = 0, actual_regions_needed = 0; 710 711 spin_lock(&resv->lock); 712 retry: 713 714 /* Count how many regions are actually needed to execute this add. */ 715 add_reservation_in_range(resv, f, t, NULL, NULL, 716 &actual_regions_needed); 717 718 /* 719 * Check for sufficient descriptors in the cache to accommodate 720 * this add operation. Note that actual_regions_needed may be greater 721 * than in_regions_needed, as the resv_map may have been modified since 722 * the region_chg call. In this case, we need to make sure that we 723 * allocate extra entries, such that we have enough for all the 724 * existing adds_in_progress, plus the excess needed for this 725 * operation. 726 */ 727 if (actual_regions_needed > in_regions_needed && 728 resv->region_cache_count < 729 resv->adds_in_progress + 730 (actual_regions_needed - in_regions_needed)) { 731 /* region_add operation of range 1 should never need to 732 * allocate file_region entries. 733 */ 734 VM_BUG_ON(t - f <= 1); 735 736 if (allocate_file_region_entries( 737 resv, actual_regions_needed - in_regions_needed)) { 738 return -ENOMEM; 739 } 740 741 goto retry; 742 } 743 744 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL); 745 746 resv->adds_in_progress -= in_regions_needed; 747 748 spin_unlock(&resv->lock); 749 return add; 750 } 751 752 /* 753 * Examine the existing reserve map and determine how many 754 * huge pages in the specified range [f, t) are NOT currently 755 * represented. This routine is called before a subsequent 756 * call to region_add that will actually modify the reserve 757 * map to add the specified range [f, t). region_chg does 758 * not change the number of huge pages represented by the 759 * map. A number of new file_region structures is added to the cache as a 760 * placeholder, for the subsequent region_add call to use. At least 1 761 * file_region structure is added. 762 * 763 * out_regions_needed is the number of regions added to the 764 * resv->adds_in_progress. This value needs to be provided to a follow up call 765 * to region_add or region_abort for proper accounting. 766 * 767 * Returns the number of huge pages that need to be added to the existing 768 * reservation map for the range [f, t). This number is greater or equal to 769 * zero. -ENOMEM is returned if a new file_region structure or cache entry 770 * is needed and can not be allocated. 771 */ 772 static long region_chg(struct resv_map *resv, long f, long t, 773 long *out_regions_needed) 774 { 775 long chg = 0; 776 777 spin_lock(&resv->lock); 778 779 /* Count how many hugepages in this range are NOT represented. */ 780 chg = add_reservation_in_range(resv, f, t, NULL, NULL, 781 out_regions_needed); 782 783 if (*out_regions_needed == 0) 784 *out_regions_needed = 1; 785 786 if (allocate_file_region_entries(resv, *out_regions_needed)) 787 return -ENOMEM; 788 789 resv->adds_in_progress += *out_regions_needed; 790 791 spin_unlock(&resv->lock); 792 return chg; 793 } 794 795 /* 796 * Abort the in progress add operation. The adds_in_progress field 797 * of the resv_map keeps track of the operations in progress between 798 * calls to region_chg and region_add. Operations are sometimes 799 * aborted after the call to region_chg. In such cases, region_abort 800 * is called to decrement the adds_in_progress counter. regions_needed 801 * is the value returned by the region_chg call, it is used to decrement 802 * the adds_in_progress counter. 803 * 804 * NOTE: The range arguments [f, t) are not needed or used in this 805 * routine. They are kept to make reading the calling code easier as 806 * arguments will match the associated region_chg call. 807 */ 808 static void region_abort(struct resv_map *resv, long f, long t, 809 long regions_needed) 810 { 811 spin_lock(&resv->lock); 812 VM_BUG_ON(!resv->region_cache_count); 813 resv->adds_in_progress -= regions_needed; 814 spin_unlock(&resv->lock); 815 } 816 817 /* 818 * Delete the specified range [f, t) from the reserve map. If the 819 * t parameter is LONG_MAX, this indicates that ALL regions after f 820 * should be deleted. Locate the regions which intersect [f, t) 821 * and either trim, delete or split the existing regions. 822 * 823 * Returns the number of huge pages deleted from the reserve map. 824 * In the normal case, the return value is zero or more. In the 825 * case where a region must be split, a new region descriptor must 826 * be allocated. If the allocation fails, -ENOMEM will be returned. 827 * NOTE: If the parameter t == LONG_MAX, then we will never split 828 * a region and possibly return -ENOMEM. Callers specifying 829 * t == LONG_MAX do not need to check for -ENOMEM error. 830 */ 831 static long region_del(struct resv_map *resv, long f, long t) 832 { 833 struct list_head *head = &resv->regions; 834 struct file_region *rg, *trg; 835 struct file_region *nrg = NULL; 836 long del = 0; 837 838 retry: 839 spin_lock(&resv->lock); 840 list_for_each_entry_safe(rg, trg, head, link) { 841 /* 842 * Skip regions before the range to be deleted. file_region 843 * ranges are normally of the form [from, to). However, there 844 * may be a "placeholder" entry in the map which is of the form 845 * (from, to) with from == to. Check for placeholder entries 846 * at the beginning of the range to be deleted. 847 */ 848 if (rg->to <= f && (rg->to != rg->from || rg->to != f)) 849 continue; 850 851 if (rg->from >= t) 852 break; 853 854 if (f > rg->from && t < rg->to) { /* Must split region */ 855 /* 856 * Check for an entry in the cache before dropping 857 * lock and attempting allocation. 858 */ 859 if (!nrg && 860 resv->region_cache_count > resv->adds_in_progress) { 861 nrg = list_first_entry(&resv->region_cache, 862 struct file_region, 863 link); 864 list_del(&nrg->link); 865 resv->region_cache_count--; 866 } 867 868 if (!nrg) { 869 spin_unlock(&resv->lock); 870 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 871 if (!nrg) 872 return -ENOMEM; 873 goto retry; 874 } 875 876 del += t - f; 877 hugetlb_cgroup_uncharge_file_region( 878 resv, rg, t - f, false); 879 880 /* New entry for end of split region */ 881 nrg->from = t; 882 nrg->to = rg->to; 883 884 copy_hugetlb_cgroup_uncharge_info(nrg, rg); 885 886 INIT_LIST_HEAD(&nrg->link); 887 888 /* Original entry is trimmed */ 889 rg->to = f; 890 891 list_add(&nrg->link, &rg->link); 892 nrg = NULL; 893 break; 894 } 895 896 if (f <= rg->from && t >= rg->to) { /* Remove entire region */ 897 del += rg->to - rg->from; 898 hugetlb_cgroup_uncharge_file_region(resv, rg, 899 rg->to - rg->from, true); 900 list_del(&rg->link); 901 kfree(rg); 902 continue; 903 } 904 905 if (f <= rg->from) { /* Trim beginning of region */ 906 hugetlb_cgroup_uncharge_file_region(resv, rg, 907 t - rg->from, false); 908 909 del += t - rg->from; 910 rg->from = t; 911 } else { /* Trim end of region */ 912 hugetlb_cgroup_uncharge_file_region(resv, rg, 913 rg->to - f, false); 914 915 del += rg->to - f; 916 rg->to = f; 917 } 918 } 919 920 spin_unlock(&resv->lock); 921 kfree(nrg); 922 return del; 923 } 924 925 /* 926 * A rare out of memory error was encountered which prevented removal of 927 * the reserve map region for a page. The huge page itself was free'ed 928 * and removed from the page cache. This routine will adjust the subpool 929 * usage count, and the global reserve count if needed. By incrementing 930 * these counts, the reserve map entry which could not be deleted will 931 * appear as a "reserved" entry instead of simply dangling with incorrect 932 * counts. 933 */ 934 void hugetlb_fix_reserve_counts(struct inode *inode) 935 { 936 struct hugepage_subpool *spool = subpool_inode(inode); 937 long rsv_adjust; 938 bool reserved = false; 939 940 rsv_adjust = hugepage_subpool_get_pages(spool, 1); 941 if (rsv_adjust > 0) { 942 struct hstate *h = hstate_inode(inode); 943 944 if (!hugetlb_acct_memory(h, 1)) 945 reserved = true; 946 } else if (!rsv_adjust) { 947 reserved = true; 948 } 949 950 if (!reserved) 951 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n"); 952 } 953 954 /* 955 * Count and return the number of huge pages in the reserve map 956 * that intersect with the range [f, t). 957 */ 958 static long region_count(struct resv_map *resv, long f, long t) 959 { 960 struct list_head *head = &resv->regions; 961 struct file_region *rg; 962 long chg = 0; 963 964 spin_lock(&resv->lock); 965 /* Locate each segment we overlap with, and count that overlap. */ 966 list_for_each_entry(rg, head, link) { 967 long seg_from; 968 long seg_to; 969 970 if (rg->to <= f) 971 continue; 972 if (rg->from >= t) 973 break; 974 975 seg_from = max(rg->from, f); 976 seg_to = min(rg->to, t); 977 978 chg += seg_to - seg_from; 979 } 980 spin_unlock(&resv->lock); 981 982 return chg; 983 } 984 985 /* 986 * Convert the address within this vma to the page offset within 987 * the mapping, huge page units here. 988 */ 989 static pgoff_t vma_hugecache_offset(struct hstate *h, 990 struct vm_area_struct *vma, unsigned long address) 991 { 992 return ((address - vma->vm_start) >> huge_page_shift(h)) + 993 (vma->vm_pgoff >> huge_page_order(h)); 994 } 995 996 /** 997 * vma_kernel_pagesize - Page size granularity for this VMA. 998 * @vma: The user mapping. 999 * 1000 * Folios in this VMA will be aligned to, and at least the size of the 1001 * number of bytes returned by this function. 1002 * 1003 * Return: The default size of the folios allocated when backing a VMA. 1004 */ 1005 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) 1006 { 1007 if (vma->vm_ops && vma->vm_ops->pagesize) 1008 return vma->vm_ops->pagesize(vma); 1009 return PAGE_SIZE; 1010 } 1011 EXPORT_SYMBOL_GPL(vma_kernel_pagesize); 1012 1013 /* 1014 * Return the page size being used by the MMU to back a VMA. In the majority 1015 * of cases, the page size used by the kernel matches the MMU size. On 1016 * architectures where it differs, an architecture-specific 'strong' 1017 * version of this symbol is required. 1018 */ 1019 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 1020 { 1021 return vma_kernel_pagesize(vma); 1022 } 1023 1024 /* 1025 * Flags for MAP_PRIVATE reservations. These are stored in the bottom 1026 * bits of the reservation map pointer, which are always clear due to 1027 * alignment. 1028 */ 1029 #define HPAGE_RESV_OWNER (1UL << 0) 1030 #define HPAGE_RESV_UNMAPPED (1UL << 1) 1031 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) 1032 1033 /* 1034 * These helpers are used to track how many pages are reserved for 1035 * faults in a MAP_PRIVATE mapping. Only the process that called mmap() 1036 * is guaranteed to have their future faults succeed. 1037 * 1038 * With the exception of hugetlb_dup_vma_private() which is called at fork(), 1039 * the reserve counters are updated with the hugetlb_lock held. It is safe 1040 * to reset the VMA at fork() time as it is not in use yet and there is no 1041 * chance of the global counters getting corrupted as a result of the values. 1042 * 1043 * The private mapping reservation is represented in a subtly different 1044 * manner to a shared mapping. A shared mapping has a region map associated 1045 * with the underlying file, this region map represents the backing file 1046 * pages which have ever had a reservation assigned which this persists even 1047 * after the page is instantiated. A private mapping has a region map 1048 * associated with the original mmap which is attached to all VMAs which 1049 * reference it, this region map represents those offsets which have consumed 1050 * reservation ie. where pages have been instantiated. 1051 */ 1052 static unsigned long get_vma_private_data(struct vm_area_struct *vma) 1053 { 1054 return (unsigned long)vma->vm_private_data; 1055 } 1056 1057 static void set_vma_private_data(struct vm_area_struct *vma, 1058 unsigned long value) 1059 { 1060 vma->vm_private_data = (void *)value; 1061 } 1062 1063 static void 1064 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map, 1065 struct hugetlb_cgroup *h_cg, 1066 struct hstate *h) 1067 { 1068 #ifdef CONFIG_CGROUP_HUGETLB 1069 if (!h_cg || !h) { 1070 resv_map->reservation_counter = NULL; 1071 resv_map->pages_per_hpage = 0; 1072 resv_map->css = NULL; 1073 } else { 1074 resv_map->reservation_counter = 1075 &h_cg->rsvd_hugepage[hstate_index(h)]; 1076 resv_map->pages_per_hpage = pages_per_huge_page(h); 1077 resv_map->css = &h_cg->css; 1078 } 1079 #endif 1080 } 1081 1082 struct resv_map *resv_map_alloc(void) 1083 { 1084 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); 1085 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL); 1086 1087 if (!resv_map || !rg) { 1088 kfree(resv_map); 1089 kfree(rg); 1090 return NULL; 1091 } 1092 1093 kref_init(&resv_map->refs); 1094 spin_lock_init(&resv_map->lock); 1095 INIT_LIST_HEAD(&resv_map->regions); 1096 init_rwsem(&resv_map->rw_sema); 1097 1098 resv_map->adds_in_progress = 0; 1099 /* 1100 * Initialize these to 0. On shared mappings, 0's here indicate these 1101 * fields don't do cgroup accounting. On private mappings, these will be 1102 * re-initialized to the proper values, to indicate that hugetlb cgroup 1103 * reservations are to be un-charged from here. 1104 */ 1105 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL); 1106 1107 INIT_LIST_HEAD(&resv_map->region_cache); 1108 list_add(&rg->link, &resv_map->region_cache); 1109 resv_map->region_cache_count = 1; 1110 1111 return resv_map; 1112 } 1113 1114 void resv_map_release(struct kref *ref) 1115 { 1116 struct resv_map *resv_map = container_of(ref, struct resv_map, refs); 1117 struct list_head *head = &resv_map->region_cache; 1118 struct file_region *rg, *trg; 1119 1120 /* Clear out any active regions before we release the map. */ 1121 region_del(resv_map, 0, LONG_MAX); 1122 1123 /* ... and any entries left in the cache */ 1124 list_for_each_entry_safe(rg, trg, head, link) { 1125 list_del(&rg->link); 1126 kfree(rg); 1127 } 1128 1129 VM_BUG_ON(resv_map->adds_in_progress); 1130 1131 kfree(resv_map); 1132 } 1133 1134 static inline struct resv_map *inode_resv_map(struct inode *inode) 1135 { 1136 /* 1137 * At inode evict time, i_mapping may not point to the original 1138 * address space within the inode. This original address space 1139 * contains the pointer to the resv_map. So, always use the 1140 * address space embedded within the inode. 1141 * The VERY common case is inode->mapping == &inode->i_data but, 1142 * this may not be true for device special inodes. 1143 */ 1144 return (struct resv_map *)(&inode->i_data)->i_private_data; 1145 } 1146 1147 static struct resv_map *vma_resv_map(struct vm_area_struct *vma) 1148 { 1149 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1150 if (vma->vm_flags & VM_MAYSHARE) { 1151 struct address_space *mapping = vma->vm_file->f_mapping; 1152 struct inode *inode = mapping->host; 1153 1154 return inode_resv_map(inode); 1155 1156 } else { 1157 return (struct resv_map *)(get_vma_private_data(vma) & 1158 ~HPAGE_RESV_MASK); 1159 } 1160 } 1161 1162 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) 1163 { 1164 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1165 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 1166 1167 set_vma_private_data(vma, (unsigned long)map); 1168 } 1169 1170 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) 1171 { 1172 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1173 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 1174 1175 set_vma_private_data(vma, get_vma_private_data(vma) | flags); 1176 } 1177 1178 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) 1179 { 1180 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1181 1182 return (get_vma_private_data(vma) & flag) != 0; 1183 } 1184 1185 bool __vma_private_lock(struct vm_area_struct *vma) 1186 { 1187 return !(vma->vm_flags & VM_MAYSHARE) && 1188 get_vma_private_data(vma) & ~HPAGE_RESV_MASK && 1189 is_vma_resv_set(vma, HPAGE_RESV_OWNER); 1190 } 1191 1192 void hugetlb_dup_vma_private(struct vm_area_struct *vma) 1193 { 1194 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1195 /* 1196 * Clear vm_private_data 1197 * - For shared mappings this is a per-vma semaphore that may be 1198 * allocated in a subsequent call to hugetlb_vm_op_open. 1199 * Before clearing, make sure pointer is not associated with vma 1200 * as this will leak the structure. This is the case when called 1201 * via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already 1202 * been called to allocate a new structure. 1203 * - For MAP_PRIVATE mappings, this is the reserve map which does 1204 * not apply to children. Faults generated by the children are 1205 * not guaranteed to succeed, even if read-only. 1206 */ 1207 if (vma->vm_flags & VM_MAYSHARE) { 1208 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 1209 1210 if (vma_lock && vma_lock->vma != vma) 1211 vma->vm_private_data = NULL; 1212 } else 1213 vma->vm_private_data = NULL; 1214 } 1215 1216 /* 1217 * Reset and decrement one ref on hugepage private reservation. 1218 * Called with mm->mmap_lock writer semaphore held. 1219 * This function should be only used by move_vma() and operate on 1220 * same sized vma. It should never come here with last ref on the 1221 * reservation. 1222 */ 1223 void clear_vma_resv_huge_pages(struct vm_area_struct *vma) 1224 { 1225 /* 1226 * Clear the old hugetlb private page reservation. 1227 * It has already been transferred to new_vma. 1228 * 1229 * During a mremap() operation of a hugetlb vma we call move_vma() 1230 * which copies vma into new_vma and unmaps vma. After the copy 1231 * operation both new_vma and vma share a reference to the resv_map 1232 * struct, and at that point vma is about to be unmapped. We don't 1233 * want to return the reservation to the pool at unmap of vma because 1234 * the reservation still lives on in new_vma, so simply decrement the 1235 * ref here and remove the resv_map reference from this vma. 1236 */ 1237 struct resv_map *reservations = vma_resv_map(vma); 1238 1239 if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 1240 resv_map_put_hugetlb_cgroup_uncharge_info(reservations); 1241 kref_put(&reservations->refs, resv_map_release); 1242 } 1243 1244 hugetlb_dup_vma_private(vma); 1245 } 1246 1247 /* Returns true if the VMA has associated reserve pages */ 1248 static bool vma_has_reserves(struct vm_area_struct *vma, long chg) 1249 { 1250 if (vma->vm_flags & VM_NORESERVE) { 1251 /* 1252 * This address is already reserved by other process(chg == 0), 1253 * so, we should decrement reserved count. Without decrementing, 1254 * reserve count remains after releasing inode, because this 1255 * allocated page will go into page cache and is regarded as 1256 * coming from reserved pool in releasing step. Currently, we 1257 * don't have any other solution to deal with this situation 1258 * properly, so add work-around here. 1259 */ 1260 if (vma->vm_flags & VM_MAYSHARE && chg == 0) 1261 return true; 1262 else 1263 return false; 1264 } 1265 1266 /* Shared mappings always use reserves */ 1267 if (vma->vm_flags & VM_MAYSHARE) { 1268 /* 1269 * We know VM_NORESERVE is not set. Therefore, there SHOULD 1270 * be a region map for all pages. The only situation where 1271 * there is no region map is if a hole was punched via 1272 * fallocate. In this case, there really are no reserves to 1273 * use. This situation is indicated if chg != 0. 1274 */ 1275 if (chg) 1276 return false; 1277 else 1278 return true; 1279 } 1280 1281 /* 1282 * Only the process that called mmap() has reserves for 1283 * private mappings. 1284 */ 1285 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 1286 /* 1287 * Like the shared case above, a hole punch or truncate 1288 * could have been performed on the private mapping. 1289 * Examine the value of chg to determine if reserves 1290 * actually exist or were previously consumed. 1291 * Very Subtle - The value of chg comes from a previous 1292 * call to vma_needs_reserves(). The reserve map for 1293 * private mappings has different (opposite) semantics 1294 * than that of shared mappings. vma_needs_reserves() 1295 * has already taken this difference in semantics into 1296 * account. Therefore, the meaning of chg is the same 1297 * as in the shared case above. Code could easily be 1298 * combined, but keeping it separate draws attention to 1299 * subtle differences. 1300 */ 1301 if (chg) 1302 return false; 1303 else 1304 return true; 1305 } 1306 1307 return false; 1308 } 1309 1310 static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio) 1311 { 1312 int nid = folio_nid(folio); 1313 1314 lockdep_assert_held(&hugetlb_lock); 1315 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio); 1316 1317 list_move(&folio->lru, &h->hugepage_freelists[nid]); 1318 h->free_huge_pages++; 1319 h->free_huge_pages_node[nid]++; 1320 folio_set_hugetlb_freed(folio); 1321 } 1322 1323 static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h, 1324 int nid) 1325 { 1326 struct folio *folio; 1327 bool pin = !!(current->flags & PF_MEMALLOC_PIN); 1328 1329 lockdep_assert_held(&hugetlb_lock); 1330 list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) { 1331 if (pin && !folio_is_longterm_pinnable(folio)) 1332 continue; 1333 1334 if (folio_test_hwpoison(folio)) 1335 continue; 1336 1337 list_move(&folio->lru, &h->hugepage_activelist); 1338 folio_ref_unfreeze(folio, 1); 1339 folio_clear_hugetlb_freed(folio); 1340 h->free_huge_pages--; 1341 h->free_huge_pages_node[nid]--; 1342 return folio; 1343 } 1344 1345 return NULL; 1346 } 1347 1348 static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask, 1349 int nid, nodemask_t *nmask) 1350 { 1351 unsigned int cpuset_mems_cookie; 1352 struct zonelist *zonelist; 1353 struct zone *zone; 1354 struct zoneref *z; 1355 int node = NUMA_NO_NODE; 1356 1357 zonelist = node_zonelist(nid, gfp_mask); 1358 1359 retry_cpuset: 1360 cpuset_mems_cookie = read_mems_allowed_begin(); 1361 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) { 1362 struct folio *folio; 1363 1364 if (!cpuset_zone_allowed(zone, gfp_mask)) 1365 continue; 1366 /* 1367 * no need to ask again on the same node. Pool is node rather than 1368 * zone aware 1369 */ 1370 if (zone_to_nid(zone) == node) 1371 continue; 1372 node = zone_to_nid(zone); 1373 1374 folio = dequeue_hugetlb_folio_node_exact(h, node); 1375 if (folio) 1376 return folio; 1377 } 1378 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie))) 1379 goto retry_cpuset; 1380 1381 return NULL; 1382 } 1383 1384 static unsigned long available_huge_pages(struct hstate *h) 1385 { 1386 return h->free_huge_pages - h->resv_huge_pages; 1387 } 1388 1389 static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h, 1390 struct vm_area_struct *vma, 1391 unsigned long address, int avoid_reserve, 1392 long chg) 1393 { 1394 struct folio *folio = NULL; 1395 struct mempolicy *mpol; 1396 gfp_t gfp_mask; 1397 nodemask_t *nodemask; 1398 int nid; 1399 1400 /* 1401 * A child process with MAP_PRIVATE mappings created by their parent 1402 * have no page reserves. This check ensures that reservations are 1403 * not "stolen". The child may still get SIGKILLed 1404 */ 1405 if (!vma_has_reserves(vma, chg) && !available_huge_pages(h)) 1406 goto err; 1407 1408 /* If reserves cannot be used, ensure enough pages are in the pool */ 1409 if (avoid_reserve && !available_huge_pages(h)) 1410 goto err; 1411 1412 gfp_mask = htlb_alloc_mask(h); 1413 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 1414 1415 if (mpol_is_preferred_many(mpol)) { 1416 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, 1417 nid, nodemask); 1418 1419 /* Fallback to all nodes if page==NULL */ 1420 nodemask = NULL; 1421 } 1422 1423 if (!folio) 1424 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, 1425 nid, nodemask); 1426 1427 if (folio && !avoid_reserve && vma_has_reserves(vma, chg)) { 1428 folio_set_hugetlb_restore_reserve(folio); 1429 h->resv_huge_pages--; 1430 } 1431 1432 mpol_cond_put(mpol); 1433 return folio; 1434 1435 err: 1436 return NULL; 1437 } 1438 1439 /* 1440 * common helper functions for hstate_next_node_to_{alloc|free}. 1441 * We may have allocated or freed a huge page based on a different 1442 * nodes_allowed previously, so h->next_node_to_{alloc|free} might 1443 * be outside of *nodes_allowed. Ensure that we use an allowed 1444 * node for alloc or free. 1445 */ 1446 static int next_node_allowed(int nid, nodemask_t *nodes_allowed) 1447 { 1448 nid = next_node_in(nid, *nodes_allowed); 1449 VM_BUG_ON(nid >= MAX_NUMNODES); 1450 1451 return nid; 1452 } 1453 1454 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed) 1455 { 1456 if (!node_isset(nid, *nodes_allowed)) 1457 nid = next_node_allowed(nid, nodes_allowed); 1458 return nid; 1459 } 1460 1461 /* 1462 * returns the previously saved node ["this node"] from which to 1463 * allocate a persistent huge page for the pool and advance the 1464 * next node from which to allocate, handling wrap at end of node 1465 * mask. 1466 */ 1467 static int hstate_next_node_to_alloc(struct hstate *h, 1468 nodemask_t *nodes_allowed) 1469 { 1470 int nid; 1471 1472 VM_BUG_ON(!nodes_allowed); 1473 1474 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed); 1475 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed); 1476 1477 return nid; 1478 } 1479 1480 /* 1481 * helper for remove_pool_hugetlb_folio() - return the previously saved 1482 * node ["this node"] from which to free a huge page. Advance the 1483 * next node id whether or not we find a free huge page to free so 1484 * that the next attempt to free addresses the next node. 1485 */ 1486 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed) 1487 { 1488 int nid; 1489 1490 VM_BUG_ON(!nodes_allowed); 1491 1492 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed); 1493 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed); 1494 1495 return nid; 1496 } 1497 1498 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \ 1499 for (nr_nodes = nodes_weight(*mask); \ 1500 nr_nodes > 0 && \ 1501 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \ 1502 nr_nodes--) 1503 1504 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \ 1505 for (nr_nodes = nodes_weight(*mask); \ 1506 nr_nodes > 0 && \ 1507 ((node = hstate_next_node_to_free(hs, mask)) || 1); \ 1508 nr_nodes--) 1509 1510 /* used to demote non-gigantic_huge pages as well */ 1511 static void __destroy_compound_gigantic_folio(struct folio *folio, 1512 unsigned int order, bool demote) 1513 { 1514 int i; 1515 int nr_pages = 1 << order; 1516 struct page *p; 1517 1518 atomic_set(&folio->_entire_mapcount, 0); 1519 atomic_set(&folio->_nr_pages_mapped, 0); 1520 atomic_set(&folio->_pincount, 0); 1521 1522 for (i = 1; i < nr_pages; i++) { 1523 p = folio_page(folio, i); 1524 p->flags &= ~PAGE_FLAGS_CHECK_AT_FREE; 1525 p->mapping = NULL; 1526 clear_compound_head(p); 1527 if (!demote) 1528 set_page_refcounted(p); 1529 } 1530 1531 __folio_clear_head(folio); 1532 } 1533 1534 static void destroy_compound_hugetlb_folio_for_demote(struct folio *folio, 1535 unsigned int order) 1536 { 1537 __destroy_compound_gigantic_folio(folio, order, true); 1538 } 1539 1540 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE 1541 static void destroy_compound_gigantic_folio(struct folio *folio, 1542 unsigned int order) 1543 { 1544 __destroy_compound_gigantic_folio(folio, order, false); 1545 } 1546 1547 static void free_gigantic_folio(struct folio *folio, unsigned int order) 1548 { 1549 /* 1550 * If the page isn't allocated using the cma allocator, 1551 * cma_release() returns false. 1552 */ 1553 #ifdef CONFIG_CMA 1554 int nid = folio_nid(folio); 1555 1556 if (cma_release(hugetlb_cma[nid], &folio->page, 1 << order)) 1557 return; 1558 #endif 1559 1560 free_contig_range(folio_pfn(folio), 1 << order); 1561 } 1562 1563 #ifdef CONFIG_CONTIG_ALLOC 1564 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask, 1565 int nid, nodemask_t *nodemask) 1566 { 1567 struct page *page; 1568 unsigned long nr_pages = pages_per_huge_page(h); 1569 if (nid == NUMA_NO_NODE) 1570 nid = numa_mem_id(); 1571 1572 #ifdef CONFIG_CMA 1573 { 1574 int node; 1575 1576 if (hugetlb_cma[nid]) { 1577 page = cma_alloc(hugetlb_cma[nid], nr_pages, 1578 huge_page_order(h), true); 1579 if (page) 1580 return page_folio(page); 1581 } 1582 1583 if (!(gfp_mask & __GFP_THISNODE)) { 1584 for_each_node_mask(node, *nodemask) { 1585 if (node == nid || !hugetlb_cma[node]) 1586 continue; 1587 1588 page = cma_alloc(hugetlb_cma[node], nr_pages, 1589 huge_page_order(h), true); 1590 if (page) 1591 return page_folio(page); 1592 } 1593 } 1594 } 1595 #endif 1596 1597 page = alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask); 1598 return page ? page_folio(page) : NULL; 1599 } 1600 1601 #else /* !CONFIG_CONTIG_ALLOC */ 1602 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask, 1603 int nid, nodemask_t *nodemask) 1604 { 1605 return NULL; 1606 } 1607 #endif /* CONFIG_CONTIG_ALLOC */ 1608 1609 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */ 1610 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask, 1611 int nid, nodemask_t *nodemask) 1612 { 1613 return NULL; 1614 } 1615 static inline void free_gigantic_folio(struct folio *folio, 1616 unsigned int order) { } 1617 static inline void destroy_compound_gigantic_folio(struct folio *folio, 1618 unsigned int order) { } 1619 #endif 1620 1621 static inline void __clear_hugetlb_destructor(struct hstate *h, 1622 struct folio *folio) 1623 { 1624 lockdep_assert_held(&hugetlb_lock); 1625 1626 folio_clear_hugetlb(folio); 1627 } 1628 1629 /* 1630 * Remove hugetlb folio from lists. 1631 * If vmemmap exists for the folio, update dtor so that the folio appears 1632 * as just a compound page. Otherwise, wait until after allocating vmemmap 1633 * to update dtor. 1634 * 1635 * A reference is held on the folio, except in the case of demote. 1636 * 1637 * Must be called with hugetlb lock held. 1638 */ 1639 static void __remove_hugetlb_folio(struct hstate *h, struct folio *folio, 1640 bool adjust_surplus, 1641 bool demote) 1642 { 1643 int nid = folio_nid(folio); 1644 1645 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio); 1646 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio); 1647 1648 lockdep_assert_held(&hugetlb_lock); 1649 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 1650 return; 1651 1652 list_del(&folio->lru); 1653 1654 if (folio_test_hugetlb_freed(folio)) { 1655 h->free_huge_pages--; 1656 h->free_huge_pages_node[nid]--; 1657 } 1658 if (adjust_surplus) { 1659 h->surplus_huge_pages--; 1660 h->surplus_huge_pages_node[nid]--; 1661 } 1662 1663 /* 1664 * We can only clear the hugetlb destructor after allocating vmemmap 1665 * pages. Otherwise, someone (memory error handling) may try to write 1666 * to tail struct pages. 1667 */ 1668 if (!folio_test_hugetlb_vmemmap_optimized(folio)) 1669 __clear_hugetlb_destructor(h, folio); 1670 1671 /* 1672 * In the case of demote we do not ref count the page as it will soon 1673 * be turned into a page of smaller size. 1674 */ 1675 if (!demote) 1676 folio_ref_unfreeze(folio, 1); 1677 1678 h->nr_huge_pages--; 1679 h->nr_huge_pages_node[nid]--; 1680 } 1681 1682 static void remove_hugetlb_folio(struct hstate *h, struct folio *folio, 1683 bool adjust_surplus) 1684 { 1685 __remove_hugetlb_folio(h, folio, adjust_surplus, false); 1686 } 1687 1688 static void remove_hugetlb_folio_for_demote(struct hstate *h, struct folio *folio, 1689 bool adjust_surplus) 1690 { 1691 __remove_hugetlb_folio(h, folio, adjust_surplus, true); 1692 } 1693 1694 static void add_hugetlb_folio(struct hstate *h, struct folio *folio, 1695 bool adjust_surplus) 1696 { 1697 int zeroed; 1698 int nid = folio_nid(folio); 1699 1700 VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio); 1701 1702 lockdep_assert_held(&hugetlb_lock); 1703 1704 INIT_LIST_HEAD(&folio->lru); 1705 h->nr_huge_pages++; 1706 h->nr_huge_pages_node[nid]++; 1707 1708 if (adjust_surplus) { 1709 h->surplus_huge_pages++; 1710 h->surplus_huge_pages_node[nid]++; 1711 } 1712 1713 folio_set_hugetlb(folio); 1714 folio_change_private(folio, NULL); 1715 /* 1716 * We have to set hugetlb_vmemmap_optimized again as above 1717 * folio_change_private(folio, NULL) cleared it. 1718 */ 1719 folio_set_hugetlb_vmemmap_optimized(folio); 1720 1721 /* 1722 * This folio is about to be managed by the hugetlb allocator and 1723 * should have no users. Drop our reference, and check for others 1724 * just in case. 1725 */ 1726 zeroed = folio_put_testzero(folio); 1727 if (unlikely(!zeroed)) 1728 /* 1729 * It is VERY unlikely soneone else has taken a ref 1730 * on the folio. In this case, we simply return as 1731 * free_huge_folio() will be called when this other ref 1732 * is dropped. 1733 */ 1734 return; 1735 1736 arch_clear_hugepage_flags(&folio->page); 1737 enqueue_hugetlb_folio(h, folio); 1738 } 1739 1740 static void __update_and_free_hugetlb_folio(struct hstate *h, 1741 struct folio *folio) 1742 { 1743 bool clear_dtor = folio_test_hugetlb_vmemmap_optimized(folio); 1744 1745 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 1746 return; 1747 1748 /* 1749 * If we don't know which subpages are hwpoisoned, we can't free 1750 * the hugepage, so it's leaked intentionally. 1751 */ 1752 if (folio_test_hugetlb_raw_hwp_unreliable(folio)) 1753 return; 1754 1755 /* 1756 * If folio is not vmemmap optimized (!clear_dtor), then the folio 1757 * is no longer identified as a hugetlb page. hugetlb_vmemmap_restore_folio 1758 * can only be passed hugetlb pages and will BUG otherwise. 1759 */ 1760 if (clear_dtor && hugetlb_vmemmap_restore_folio(h, folio)) { 1761 spin_lock_irq(&hugetlb_lock); 1762 /* 1763 * If we cannot allocate vmemmap pages, just refuse to free the 1764 * page and put the page back on the hugetlb free list and treat 1765 * as a surplus page. 1766 */ 1767 add_hugetlb_folio(h, folio, true); 1768 spin_unlock_irq(&hugetlb_lock); 1769 return; 1770 } 1771 1772 /* 1773 * Move PageHWPoison flag from head page to the raw error pages, 1774 * which makes any healthy subpages reusable. 1775 */ 1776 if (unlikely(folio_test_hwpoison(folio))) 1777 folio_clear_hugetlb_hwpoison(folio); 1778 1779 /* 1780 * If vmemmap pages were allocated above, then we need to clear the 1781 * hugetlb destructor under the hugetlb lock. 1782 */ 1783 if (clear_dtor) { 1784 spin_lock_irq(&hugetlb_lock); 1785 __clear_hugetlb_destructor(h, folio); 1786 spin_unlock_irq(&hugetlb_lock); 1787 } 1788 1789 /* 1790 * Non-gigantic pages demoted from CMA allocated gigantic pages 1791 * need to be given back to CMA in free_gigantic_folio. 1792 */ 1793 if (hstate_is_gigantic(h) || 1794 hugetlb_cma_folio(folio, huge_page_order(h))) { 1795 destroy_compound_gigantic_folio(folio, huge_page_order(h)); 1796 free_gigantic_folio(folio, huge_page_order(h)); 1797 } else { 1798 __free_pages(&folio->page, huge_page_order(h)); 1799 } 1800 } 1801 1802 /* 1803 * As update_and_free_hugetlb_folio() can be called under any context, so we cannot 1804 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the 1805 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate 1806 * the vmemmap pages. 1807 * 1808 * free_hpage_workfn() locklessly retrieves the linked list of pages to be 1809 * freed and frees them one-by-one. As the page->mapping pointer is going 1810 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node 1811 * structure of a lockless linked list of huge pages to be freed. 1812 */ 1813 static LLIST_HEAD(hpage_freelist); 1814 1815 static void free_hpage_workfn(struct work_struct *work) 1816 { 1817 struct llist_node *node; 1818 1819 node = llist_del_all(&hpage_freelist); 1820 1821 while (node) { 1822 struct folio *folio; 1823 struct hstate *h; 1824 1825 folio = container_of((struct address_space **)node, 1826 struct folio, mapping); 1827 node = node->next; 1828 folio->mapping = NULL; 1829 /* 1830 * The VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio) in 1831 * folio_hstate() is going to trigger because a previous call to 1832 * remove_hugetlb_folio() will clear the hugetlb bit, so do 1833 * not use folio_hstate() directly. 1834 */ 1835 h = size_to_hstate(folio_size(folio)); 1836 1837 __update_and_free_hugetlb_folio(h, folio); 1838 1839 cond_resched(); 1840 } 1841 } 1842 static DECLARE_WORK(free_hpage_work, free_hpage_workfn); 1843 1844 static inline void flush_free_hpage_work(struct hstate *h) 1845 { 1846 if (hugetlb_vmemmap_optimizable(h)) 1847 flush_work(&free_hpage_work); 1848 } 1849 1850 static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio, 1851 bool atomic) 1852 { 1853 if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) { 1854 __update_and_free_hugetlb_folio(h, folio); 1855 return; 1856 } 1857 1858 /* 1859 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages. 1860 * 1861 * Only call schedule_work() if hpage_freelist is previously 1862 * empty. Otherwise, schedule_work() had been called but the workfn 1863 * hasn't retrieved the list yet. 1864 */ 1865 if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist)) 1866 schedule_work(&free_hpage_work); 1867 } 1868 1869 static void bulk_vmemmap_restore_error(struct hstate *h, 1870 struct list_head *folio_list, 1871 struct list_head *non_hvo_folios) 1872 { 1873 struct folio *folio, *t_folio; 1874 1875 if (!list_empty(non_hvo_folios)) { 1876 /* 1877 * Free any restored hugetlb pages so that restore of the 1878 * entire list can be retried. 1879 * The idea is that in the common case of ENOMEM errors freeing 1880 * hugetlb pages with vmemmap we will free up memory so that we 1881 * can allocate vmemmap for more hugetlb pages. 1882 */ 1883 list_for_each_entry_safe(folio, t_folio, non_hvo_folios, lru) { 1884 list_del(&folio->lru); 1885 spin_lock_irq(&hugetlb_lock); 1886 __clear_hugetlb_destructor(h, folio); 1887 spin_unlock_irq(&hugetlb_lock); 1888 update_and_free_hugetlb_folio(h, folio, false); 1889 cond_resched(); 1890 } 1891 } else { 1892 /* 1893 * In the case where there are no folios which can be 1894 * immediately freed, we loop through the list trying to restore 1895 * vmemmap individually in the hope that someone elsewhere may 1896 * have done something to cause success (such as freeing some 1897 * memory). If unable to restore a hugetlb page, the hugetlb 1898 * page is made a surplus page and removed from the list. 1899 * If are able to restore vmemmap and free one hugetlb page, we 1900 * quit processing the list to retry the bulk operation. 1901 */ 1902 list_for_each_entry_safe(folio, t_folio, folio_list, lru) 1903 if (hugetlb_vmemmap_restore_folio(h, folio)) { 1904 list_del(&folio->lru); 1905 spin_lock_irq(&hugetlb_lock); 1906 add_hugetlb_folio(h, folio, true); 1907 spin_unlock_irq(&hugetlb_lock); 1908 } else { 1909 list_del(&folio->lru); 1910 spin_lock_irq(&hugetlb_lock); 1911 __clear_hugetlb_destructor(h, folio); 1912 spin_unlock_irq(&hugetlb_lock); 1913 update_and_free_hugetlb_folio(h, folio, false); 1914 cond_resched(); 1915 break; 1916 } 1917 } 1918 } 1919 1920 static void update_and_free_pages_bulk(struct hstate *h, 1921 struct list_head *folio_list) 1922 { 1923 long ret; 1924 struct folio *folio, *t_folio; 1925 LIST_HEAD(non_hvo_folios); 1926 1927 /* 1928 * First allocate required vmemmmap (if necessary) for all folios. 1929 * Carefully handle errors and free up any available hugetlb pages 1930 * in an effort to make forward progress. 1931 */ 1932 retry: 1933 ret = hugetlb_vmemmap_restore_folios(h, folio_list, &non_hvo_folios); 1934 if (ret < 0) { 1935 bulk_vmemmap_restore_error(h, folio_list, &non_hvo_folios); 1936 goto retry; 1937 } 1938 1939 /* 1940 * At this point, list should be empty, ret should be >= 0 and there 1941 * should only be pages on the non_hvo_folios list. 1942 * Do note that the non_hvo_folios list could be empty. 1943 * Without HVO enabled, ret will be 0 and there is no need to call 1944 * __clear_hugetlb_destructor as this was done previously. 1945 */ 1946 VM_WARN_ON(!list_empty(folio_list)); 1947 VM_WARN_ON(ret < 0); 1948 if (!list_empty(&non_hvo_folios) && ret) { 1949 spin_lock_irq(&hugetlb_lock); 1950 list_for_each_entry(folio, &non_hvo_folios, lru) 1951 __clear_hugetlb_destructor(h, folio); 1952 spin_unlock_irq(&hugetlb_lock); 1953 } 1954 1955 list_for_each_entry_safe(folio, t_folio, &non_hvo_folios, lru) { 1956 update_and_free_hugetlb_folio(h, folio, false); 1957 cond_resched(); 1958 } 1959 } 1960 1961 struct hstate *size_to_hstate(unsigned long size) 1962 { 1963 struct hstate *h; 1964 1965 for_each_hstate(h) { 1966 if (huge_page_size(h) == size) 1967 return h; 1968 } 1969 return NULL; 1970 } 1971 1972 void free_huge_folio(struct folio *folio) 1973 { 1974 /* 1975 * Can't pass hstate in here because it is called from the 1976 * compound page destructor. 1977 */ 1978 struct hstate *h = folio_hstate(folio); 1979 int nid = folio_nid(folio); 1980 struct hugepage_subpool *spool = hugetlb_folio_subpool(folio); 1981 bool restore_reserve; 1982 unsigned long flags; 1983 1984 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio); 1985 VM_BUG_ON_FOLIO(folio_mapcount(folio), folio); 1986 1987 hugetlb_set_folio_subpool(folio, NULL); 1988 if (folio_test_anon(folio)) 1989 __ClearPageAnonExclusive(&folio->page); 1990 folio->mapping = NULL; 1991 restore_reserve = folio_test_hugetlb_restore_reserve(folio); 1992 folio_clear_hugetlb_restore_reserve(folio); 1993 1994 /* 1995 * If HPageRestoreReserve was set on page, page allocation consumed a 1996 * reservation. If the page was associated with a subpool, there 1997 * would have been a page reserved in the subpool before allocation 1998 * via hugepage_subpool_get_pages(). Since we are 'restoring' the 1999 * reservation, do not call hugepage_subpool_put_pages() as this will 2000 * remove the reserved page from the subpool. 2001 */ 2002 if (!restore_reserve) { 2003 /* 2004 * A return code of zero implies that the subpool will be 2005 * under its minimum size if the reservation is not restored 2006 * after page is free. Therefore, force restore_reserve 2007 * operation. 2008 */ 2009 if (hugepage_subpool_put_pages(spool, 1) == 0) 2010 restore_reserve = true; 2011 } 2012 2013 spin_lock_irqsave(&hugetlb_lock, flags); 2014 folio_clear_hugetlb_migratable(folio); 2015 hugetlb_cgroup_uncharge_folio(hstate_index(h), 2016 pages_per_huge_page(h), folio); 2017 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h), 2018 pages_per_huge_page(h), folio); 2019 mem_cgroup_uncharge(folio); 2020 if (restore_reserve) 2021 h->resv_huge_pages++; 2022 2023 if (folio_test_hugetlb_temporary(folio)) { 2024 remove_hugetlb_folio(h, folio, false); 2025 spin_unlock_irqrestore(&hugetlb_lock, flags); 2026 update_and_free_hugetlb_folio(h, folio, true); 2027 } else if (h->surplus_huge_pages_node[nid]) { 2028 /* remove the page from active list */ 2029 remove_hugetlb_folio(h, folio, true); 2030 spin_unlock_irqrestore(&hugetlb_lock, flags); 2031 update_and_free_hugetlb_folio(h, folio, true); 2032 } else { 2033 arch_clear_hugepage_flags(&folio->page); 2034 enqueue_hugetlb_folio(h, folio); 2035 spin_unlock_irqrestore(&hugetlb_lock, flags); 2036 } 2037 } 2038 2039 /* 2040 * Must be called with the hugetlb lock held 2041 */ 2042 static void __prep_account_new_huge_page(struct hstate *h, int nid) 2043 { 2044 lockdep_assert_held(&hugetlb_lock); 2045 h->nr_huge_pages++; 2046 h->nr_huge_pages_node[nid]++; 2047 } 2048 2049 static void init_new_hugetlb_folio(struct hstate *h, struct folio *folio) 2050 { 2051 folio_set_hugetlb(folio); 2052 INIT_LIST_HEAD(&folio->lru); 2053 hugetlb_set_folio_subpool(folio, NULL); 2054 set_hugetlb_cgroup(folio, NULL); 2055 set_hugetlb_cgroup_rsvd(folio, NULL); 2056 } 2057 2058 static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio) 2059 { 2060 init_new_hugetlb_folio(h, folio); 2061 hugetlb_vmemmap_optimize_folio(h, folio); 2062 } 2063 2064 static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid) 2065 { 2066 __prep_new_hugetlb_folio(h, folio); 2067 spin_lock_irq(&hugetlb_lock); 2068 __prep_account_new_huge_page(h, nid); 2069 spin_unlock_irq(&hugetlb_lock); 2070 } 2071 2072 static bool __prep_compound_gigantic_folio(struct folio *folio, 2073 unsigned int order, bool demote) 2074 { 2075 int i, j; 2076 int nr_pages = 1 << order; 2077 struct page *p; 2078 2079 __folio_clear_reserved(folio); 2080 for (i = 0; i < nr_pages; i++) { 2081 p = folio_page(folio, i); 2082 2083 /* 2084 * For gigantic hugepages allocated through bootmem at 2085 * boot, it's safer to be consistent with the not-gigantic 2086 * hugepages and clear the PG_reserved bit from all tail pages 2087 * too. Otherwise drivers using get_user_pages() to access tail 2088 * pages may get the reference counting wrong if they see 2089 * PG_reserved set on a tail page (despite the head page not 2090 * having PG_reserved set). Enforcing this consistency between 2091 * head and tail pages allows drivers to optimize away a check 2092 * on the head page when they need know if put_page() is needed 2093 * after get_user_pages(). 2094 */ 2095 if (i != 0) /* head page cleared above */ 2096 __ClearPageReserved(p); 2097 /* 2098 * Subtle and very unlikely 2099 * 2100 * Gigantic 'page allocators' such as memblock or cma will 2101 * return a set of pages with each page ref counted. We need 2102 * to turn this set of pages into a compound page with tail 2103 * page ref counts set to zero. Code such as speculative page 2104 * cache adding could take a ref on a 'to be' tail page. 2105 * We need to respect any increased ref count, and only set 2106 * the ref count to zero if count is currently 1. If count 2107 * is not 1, we return an error. An error return indicates 2108 * the set of pages can not be converted to a gigantic page. 2109 * The caller who allocated the pages should then discard the 2110 * pages using the appropriate free interface. 2111 * 2112 * In the case of demote, the ref count will be zero. 2113 */ 2114 if (!demote) { 2115 if (!page_ref_freeze(p, 1)) { 2116 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n"); 2117 goto out_error; 2118 } 2119 } else { 2120 VM_BUG_ON_PAGE(page_count(p), p); 2121 } 2122 if (i != 0) 2123 set_compound_head(p, &folio->page); 2124 } 2125 __folio_set_head(folio); 2126 /* we rely on prep_new_hugetlb_folio to set the destructor */ 2127 folio_set_order(folio, order); 2128 atomic_set(&folio->_entire_mapcount, -1); 2129 atomic_set(&folio->_nr_pages_mapped, 0); 2130 atomic_set(&folio->_pincount, 0); 2131 return true; 2132 2133 out_error: 2134 /* undo page modifications made above */ 2135 for (j = 0; j < i; j++) { 2136 p = folio_page(folio, j); 2137 if (j != 0) 2138 clear_compound_head(p); 2139 set_page_refcounted(p); 2140 } 2141 /* need to clear PG_reserved on remaining tail pages */ 2142 for (; j < nr_pages; j++) { 2143 p = folio_page(folio, j); 2144 __ClearPageReserved(p); 2145 } 2146 return false; 2147 } 2148 2149 static bool prep_compound_gigantic_folio(struct folio *folio, 2150 unsigned int order) 2151 { 2152 return __prep_compound_gigantic_folio(folio, order, false); 2153 } 2154 2155 static bool prep_compound_gigantic_folio_for_demote(struct folio *folio, 2156 unsigned int order) 2157 { 2158 return __prep_compound_gigantic_folio(folio, order, true); 2159 } 2160 2161 /* 2162 * PageHuge() only returns true for hugetlbfs pages, but not for normal or 2163 * transparent huge pages. See the PageTransHuge() documentation for more 2164 * details. 2165 */ 2166 int PageHuge(struct page *page) 2167 { 2168 struct folio *folio; 2169 2170 if (!PageCompound(page)) 2171 return 0; 2172 folio = page_folio(page); 2173 return folio_test_hugetlb(folio); 2174 } 2175 EXPORT_SYMBOL_GPL(PageHuge); 2176 2177 /* 2178 * Find and lock address space (mapping) in write mode. 2179 * 2180 * Upon entry, the page is locked which means that page_mapping() is 2181 * stable. Due to locking order, we can only trylock_write. If we can 2182 * not get the lock, simply return NULL to caller. 2183 */ 2184 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage) 2185 { 2186 struct address_space *mapping = page_mapping(hpage); 2187 2188 if (!mapping) 2189 return mapping; 2190 2191 if (i_mmap_trylock_write(mapping)) 2192 return mapping; 2193 2194 return NULL; 2195 } 2196 2197 static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h, 2198 gfp_t gfp_mask, int nid, nodemask_t *nmask, 2199 nodemask_t *node_alloc_noretry) 2200 { 2201 int order = huge_page_order(h); 2202 struct page *page; 2203 bool alloc_try_hard = true; 2204 bool retry = true; 2205 2206 /* 2207 * By default we always try hard to allocate the page with 2208 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in 2209 * a loop (to adjust global huge page counts) and previous allocation 2210 * failed, do not continue to try hard on the same node. Use the 2211 * node_alloc_noretry bitmap to manage this state information. 2212 */ 2213 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry)) 2214 alloc_try_hard = false; 2215 gfp_mask |= __GFP_COMP|__GFP_NOWARN; 2216 if (alloc_try_hard) 2217 gfp_mask |= __GFP_RETRY_MAYFAIL; 2218 if (nid == NUMA_NO_NODE) 2219 nid = numa_mem_id(); 2220 retry: 2221 page = __alloc_pages(gfp_mask, order, nid, nmask); 2222 2223 /* Freeze head page */ 2224 if (page && !page_ref_freeze(page, 1)) { 2225 __free_pages(page, order); 2226 if (retry) { /* retry once */ 2227 retry = false; 2228 goto retry; 2229 } 2230 /* WOW! twice in a row. */ 2231 pr_warn("HugeTLB head page unexpected inflated ref count\n"); 2232 page = NULL; 2233 } 2234 2235 /* 2236 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this 2237 * indicates an overall state change. Clear bit so that we resume 2238 * normal 'try hard' allocations. 2239 */ 2240 if (node_alloc_noretry && page && !alloc_try_hard) 2241 node_clear(nid, *node_alloc_noretry); 2242 2243 /* 2244 * If we tried hard to get a page but failed, set bit so that 2245 * subsequent attempts will not try as hard until there is an 2246 * overall state change. 2247 */ 2248 if (node_alloc_noretry && !page && alloc_try_hard) 2249 node_set(nid, *node_alloc_noretry); 2250 2251 if (!page) { 2252 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 2253 return NULL; 2254 } 2255 2256 __count_vm_event(HTLB_BUDDY_PGALLOC); 2257 return page_folio(page); 2258 } 2259 2260 static struct folio *__alloc_fresh_hugetlb_folio(struct hstate *h, 2261 gfp_t gfp_mask, int nid, nodemask_t *nmask, 2262 nodemask_t *node_alloc_noretry) 2263 { 2264 struct folio *folio; 2265 bool retry = false; 2266 2267 retry: 2268 if (hstate_is_gigantic(h)) 2269 folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask); 2270 else 2271 folio = alloc_buddy_hugetlb_folio(h, gfp_mask, 2272 nid, nmask, node_alloc_noretry); 2273 if (!folio) 2274 return NULL; 2275 2276 if (hstate_is_gigantic(h)) { 2277 if (!prep_compound_gigantic_folio(folio, huge_page_order(h))) { 2278 /* 2279 * Rare failure to convert pages to compound page. 2280 * Free pages and try again - ONCE! 2281 */ 2282 free_gigantic_folio(folio, huge_page_order(h)); 2283 if (!retry) { 2284 retry = true; 2285 goto retry; 2286 } 2287 return NULL; 2288 } 2289 } 2290 2291 return folio; 2292 } 2293 2294 static struct folio *only_alloc_fresh_hugetlb_folio(struct hstate *h, 2295 gfp_t gfp_mask, int nid, nodemask_t *nmask, 2296 nodemask_t *node_alloc_noretry) 2297 { 2298 struct folio *folio; 2299 2300 folio = __alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, 2301 node_alloc_noretry); 2302 if (folio) 2303 init_new_hugetlb_folio(h, folio); 2304 return folio; 2305 } 2306 2307 /* 2308 * Common helper to allocate a fresh hugetlb page. All specific allocators 2309 * should use this function to get new hugetlb pages 2310 * 2311 * Note that returned page is 'frozen': ref count of head page and all tail 2312 * pages is zero. 2313 */ 2314 static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h, 2315 gfp_t gfp_mask, int nid, nodemask_t *nmask, 2316 nodemask_t *node_alloc_noretry) 2317 { 2318 struct folio *folio; 2319 2320 folio = __alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, 2321 node_alloc_noretry); 2322 if (!folio) 2323 return NULL; 2324 2325 prep_new_hugetlb_folio(h, folio, folio_nid(folio)); 2326 return folio; 2327 } 2328 2329 static void prep_and_add_allocated_folios(struct hstate *h, 2330 struct list_head *folio_list) 2331 { 2332 unsigned long flags; 2333 struct folio *folio, *tmp_f; 2334 2335 /* Send list for bulk vmemmap optimization processing */ 2336 hugetlb_vmemmap_optimize_folios(h, folio_list); 2337 2338 /* Add all new pool pages to free lists in one lock cycle */ 2339 spin_lock_irqsave(&hugetlb_lock, flags); 2340 list_for_each_entry_safe(folio, tmp_f, folio_list, lru) { 2341 __prep_account_new_huge_page(h, folio_nid(folio)); 2342 enqueue_hugetlb_folio(h, folio); 2343 } 2344 spin_unlock_irqrestore(&hugetlb_lock, flags); 2345 } 2346 2347 /* 2348 * Allocates a fresh hugetlb page in a node interleaved manner. The page 2349 * will later be added to the appropriate hugetlb pool. 2350 */ 2351 static struct folio *alloc_pool_huge_folio(struct hstate *h, 2352 nodemask_t *nodes_allowed, 2353 nodemask_t *node_alloc_noretry) 2354 { 2355 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 2356 int nr_nodes, node; 2357 2358 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 2359 struct folio *folio; 2360 2361 folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, node, 2362 nodes_allowed, node_alloc_noretry); 2363 if (folio) 2364 return folio; 2365 } 2366 2367 return NULL; 2368 } 2369 2370 /* 2371 * Remove huge page from pool from next node to free. Attempt to keep 2372 * persistent huge pages more or less balanced over allowed nodes. 2373 * This routine only 'removes' the hugetlb page. The caller must make 2374 * an additional call to free the page to low level allocators. 2375 * Called with hugetlb_lock locked. 2376 */ 2377 static struct folio *remove_pool_hugetlb_folio(struct hstate *h, 2378 nodemask_t *nodes_allowed, bool acct_surplus) 2379 { 2380 int nr_nodes, node; 2381 struct folio *folio = NULL; 2382 2383 lockdep_assert_held(&hugetlb_lock); 2384 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 2385 /* 2386 * If we're returning unused surplus pages, only examine 2387 * nodes with surplus pages. 2388 */ 2389 if ((!acct_surplus || h->surplus_huge_pages_node[node]) && 2390 !list_empty(&h->hugepage_freelists[node])) { 2391 folio = list_entry(h->hugepage_freelists[node].next, 2392 struct folio, lru); 2393 remove_hugetlb_folio(h, folio, acct_surplus); 2394 break; 2395 } 2396 } 2397 2398 return folio; 2399 } 2400 2401 /* 2402 * Dissolve a given free hugepage into free buddy pages. This function does 2403 * nothing for in-use hugepages and non-hugepages. 2404 * This function returns values like below: 2405 * 2406 * -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages 2407 * when the system is under memory pressure and the feature of 2408 * freeing unused vmemmap pages associated with each hugetlb page 2409 * is enabled. 2410 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use 2411 * (allocated or reserved.) 2412 * 0: successfully dissolved free hugepages or the page is not a 2413 * hugepage (considered as already dissolved) 2414 */ 2415 int dissolve_free_huge_page(struct page *page) 2416 { 2417 int rc = -EBUSY; 2418 struct folio *folio = page_folio(page); 2419 2420 retry: 2421 /* Not to disrupt normal path by vainly holding hugetlb_lock */ 2422 if (!folio_test_hugetlb(folio)) 2423 return 0; 2424 2425 spin_lock_irq(&hugetlb_lock); 2426 if (!folio_test_hugetlb(folio)) { 2427 rc = 0; 2428 goto out; 2429 } 2430 2431 if (!folio_ref_count(folio)) { 2432 struct hstate *h = folio_hstate(folio); 2433 if (!available_huge_pages(h)) 2434 goto out; 2435 2436 /* 2437 * We should make sure that the page is already on the free list 2438 * when it is dissolved. 2439 */ 2440 if (unlikely(!folio_test_hugetlb_freed(folio))) { 2441 spin_unlock_irq(&hugetlb_lock); 2442 cond_resched(); 2443 2444 /* 2445 * Theoretically, we should return -EBUSY when we 2446 * encounter this race. In fact, we have a chance 2447 * to successfully dissolve the page if we do a 2448 * retry. Because the race window is quite small. 2449 * If we seize this opportunity, it is an optimization 2450 * for increasing the success rate of dissolving page. 2451 */ 2452 goto retry; 2453 } 2454 2455 remove_hugetlb_folio(h, folio, false); 2456 h->max_huge_pages--; 2457 spin_unlock_irq(&hugetlb_lock); 2458 2459 /* 2460 * Normally update_and_free_hugtlb_folio will allocate required vmemmmap 2461 * before freeing the page. update_and_free_hugtlb_folio will fail to 2462 * free the page if it can not allocate required vmemmap. We 2463 * need to adjust max_huge_pages if the page is not freed. 2464 * Attempt to allocate vmemmmap here so that we can take 2465 * appropriate action on failure. 2466 * 2467 * The folio_test_hugetlb check here is because 2468 * remove_hugetlb_folio will clear hugetlb folio flag for 2469 * non-vmemmap optimized hugetlb folios. 2470 */ 2471 if (folio_test_hugetlb(folio)) { 2472 rc = hugetlb_vmemmap_restore_folio(h, folio); 2473 if (rc) { 2474 spin_lock_irq(&hugetlb_lock); 2475 add_hugetlb_folio(h, folio, false); 2476 h->max_huge_pages++; 2477 goto out; 2478 } 2479 } else 2480 rc = 0; 2481 2482 update_and_free_hugetlb_folio(h, folio, false); 2483 return rc; 2484 } 2485 out: 2486 spin_unlock_irq(&hugetlb_lock); 2487 return rc; 2488 } 2489 2490 /* 2491 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to 2492 * make specified memory blocks removable from the system. 2493 * Note that this will dissolve a free gigantic hugepage completely, if any 2494 * part of it lies within the given range. 2495 * Also note that if dissolve_free_huge_page() returns with an error, all 2496 * free hugepages that were dissolved before that error are lost. 2497 */ 2498 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn) 2499 { 2500 unsigned long pfn; 2501 struct page *page; 2502 int rc = 0; 2503 unsigned int order; 2504 struct hstate *h; 2505 2506 if (!hugepages_supported()) 2507 return rc; 2508 2509 order = huge_page_order(&default_hstate); 2510 for_each_hstate(h) 2511 order = min(order, huge_page_order(h)); 2512 2513 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) { 2514 page = pfn_to_page(pfn); 2515 rc = dissolve_free_huge_page(page); 2516 if (rc) 2517 break; 2518 } 2519 2520 return rc; 2521 } 2522 2523 /* 2524 * Allocates a fresh surplus page from the page allocator. 2525 */ 2526 static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h, 2527 gfp_t gfp_mask, int nid, nodemask_t *nmask) 2528 { 2529 struct folio *folio = NULL; 2530 2531 if (hstate_is_gigantic(h)) 2532 return NULL; 2533 2534 spin_lock_irq(&hugetlb_lock); 2535 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) 2536 goto out_unlock; 2537 spin_unlock_irq(&hugetlb_lock); 2538 2539 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL); 2540 if (!folio) 2541 return NULL; 2542 2543 spin_lock_irq(&hugetlb_lock); 2544 /* 2545 * We could have raced with the pool size change. 2546 * Double check that and simply deallocate the new page 2547 * if we would end up overcommiting the surpluses. Abuse 2548 * temporary page to workaround the nasty free_huge_folio 2549 * codeflow 2550 */ 2551 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { 2552 folio_set_hugetlb_temporary(folio); 2553 spin_unlock_irq(&hugetlb_lock); 2554 free_huge_folio(folio); 2555 return NULL; 2556 } 2557 2558 h->surplus_huge_pages++; 2559 h->surplus_huge_pages_node[folio_nid(folio)]++; 2560 2561 out_unlock: 2562 spin_unlock_irq(&hugetlb_lock); 2563 2564 return folio; 2565 } 2566 2567 static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask, 2568 int nid, nodemask_t *nmask) 2569 { 2570 struct folio *folio; 2571 2572 if (hstate_is_gigantic(h)) 2573 return NULL; 2574 2575 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL); 2576 if (!folio) 2577 return NULL; 2578 2579 /* fresh huge pages are frozen */ 2580 folio_ref_unfreeze(folio, 1); 2581 /* 2582 * We do not account these pages as surplus because they are only 2583 * temporary and will be released properly on the last reference 2584 */ 2585 folio_set_hugetlb_temporary(folio); 2586 2587 return folio; 2588 } 2589 2590 /* 2591 * Use the VMA's mpolicy to allocate a huge page from the buddy. 2592 */ 2593 static 2594 struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h, 2595 struct vm_area_struct *vma, unsigned long addr) 2596 { 2597 struct folio *folio = NULL; 2598 struct mempolicy *mpol; 2599 gfp_t gfp_mask = htlb_alloc_mask(h); 2600 int nid; 2601 nodemask_t *nodemask; 2602 2603 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask); 2604 if (mpol_is_preferred_many(mpol)) { 2605 gfp_t gfp = gfp_mask | __GFP_NOWARN; 2606 2607 gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL); 2608 folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask); 2609 2610 /* Fallback to all nodes if page==NULL */ 2611 nodemask = NULL; 2612 } 2613 2614 if (!folio) 2615 folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask); 2616 mpol_cond_put(mpol); 2617 return folio; 2618 } 2619 2620 /* folio migration callback function */ 2621 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid, 2622 nodemask_t *nmask, gfp_t gfp_mask) 2623 { 2624 spin_lock_irq(&hugetlb_lock); 2625 if (available_huge_pages(h)) { 2626 struct folio *folio; 2627 2628 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, 2629 preferred_nid, nmask); 2630 if (folio) { 2631 spin_unlock_irq(&hugetlb_lock); 2632 return folio; 2633 } 2634 } 2635 spin_unlock_irq(&hugetlb_lock); 2636 2637 return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask); 2638 } 2639 2640 /* 2641 * Increase the hugetlb pool such that it can accommodate a reservation 2642 * of size 'delta'. 2643 */ 2644 static int gather_surplus_pages(struct hstate *h, long delta) 2645 __must_hold(&hugetlb_lock) 2646 { 2647 LIST_HEAD(surplus_list); 2648 struct folio *folio, *tmp; 2649 int ret; 2650 long i; 2651 long needed, allocated; 2652 bool alloc_ok = true; 2653 2654 lockdep_assert_held(&hugetlb_lock); 2655 needed = (h->resv_huge_pages + delta) - h->free_huge_pages; 2656 if (needed <= 0) { 2657 h->resv_huge_pages += delta; 2658 return 0; 2659 } 2660 2661 allocated = 0; 2662 2663 ret = -ENOMEM; 2664 retry: 2665 spin_unlock_irq(&hugetlb_lock); 2666 for (i = 0; i < needed; i++) { 2667 folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h), 2668 NUMA_NO_NODE, NULL); 2669 if (!folio) { 2670 alloc_ok = false; 2671 break; 2672 } 2673 list_add(&folio->lru, &surplus_list); 2674 cond_resched(); 2675 } 2676 allocated += i; 2677 2678 /* 2679 * After retaking hugetlb_lock, we need to recalculate 'needed' 2680 * because either resv_huge_pages or free_huge_pages may have changed. 2681 */ 2682 spin_lock_irq(&hugetlb_lock); 2683 needed = (h->resv_huge_pages + delta) - 2684 (h->free_huge_pages + allocated); 2685 if (needed > 0) { 2686 if (alloc_ok) 2687 goto retry; 2688 /* 2689 * We were not able to allocate enough pages to 2690 * satisfy the entire reservation so we free what 2691 * we've allocated so far. 2692 */ 2693 goto free; 2694 } 2695 /* 2696 * The surplus_list now contains _at_least_ the number of extra pages 2697 * needed to accommodate the reservation. Add the appropriate number 2698 * of pages to the hugetlb pool and free the extras back to the buddy 2699 * allocator. Commit the entire reservation here to prevent another 2700 * process from stealing the pages as they are added to the pool but 2701 * before they are reserved. 2702 */ 2703 needed += allocated; 2704 h->resv_huge_pages += delta; 2705 ret = 0; 2706 2707 /* Free the needed pages to the hugetlb pool */ 2708 list_for_each_entry_safe(folio, tmp, &surplus_list, lru) { 2709 if ((--needed) < 0) 2710 break; 2711 /* Add the page to the hugetlb allocator */ 2712 enqueue_hugetlb_folio(h, folio); 2713 } 2714 free: 2715 spin_unlock_irq(&hugetlb_lock); 2716 2717 /* 2718 * Free unnecessary surplus pages to the buddy allocator. 2719 * Pages have no ref count, call free_huge_folio directly. 2720 */ 2721 list_for_each_entry_safe(folio, tmp, &surplus_list, lru) 2722 free_huge_folio(folio); 2723 spin_lock_irq(&hugetlb_lock); 2724 2725 return ret; 2726 } 2727 2728 /* 2729 * This routine has two main purposes: 2730 * 1) Decrement the reservation count (resv_huge_pages) by the value passed 2731 * in unused_resv_pages. This corresponds to the prior adjustments made 2732 * to the associated reservation map. 2733 * 2) Free any unused surplus pages that may have been allocated to satisfy 2734 * the reservation. As many as unused_resv_pages may be freed. 2735 */ 2736 static void return_unused_surplus_pages(struct hstate *h, 2737 unsigned long unused_resv_pages) 2738 { 2739 unsigned long nr_pages; 2740 LIST_HEAD(page_list); 2741 2742 lockdep_assert_held(&hugetlb_lock); 2743 /* Uncommit the reservation */ 2744 h->resv_huge_pages -= unused_resv_pages; 2745 2746 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 2747 goto out; 2748 2749 /* 2750 * Part (or even all) of the reservation could have been backed 2751 * by pre-allocated pages. Only free surplus pages. 2752 */ 2753 nr_pages = min(unused_resv_pages, h->surplus_huge_pages); 2754 2755 /* 2756 * We want to release as many surplus pages as possible, spread 2757 * evenly across all nodes with memory. Iterate across these nodes 2758 * until we can no longer free unreserved surplus pages. This occurs 2759 * when the nodes with surplus pages have no free pages. 2760 * remove_pool_hugetlb_folio() will balance the freed pages across the 2761 * on-line nodes with memory and will handle the hstate accounting. 2762 */ 2763 while (nr_pages--) { 2764 struct folio *folio; 2765 2766 folio = remove_pool_hugetlb_folio(h, &node_states[N_MEMORY], 1); 2767 if (!folio) 2768 goto out; 2769 2770 list_add(&folio->lru, &page_list); 2771 } 2772 2773 out: 2774 spin_unlock_irq(&hugetlb_lock); 2775 update_and_free_pages_bulk(h, &page_list); 2776 spin_lock_irq(&hugetlb_lock); 2777 } 2778 2779 2780 /* 2781 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation 2782 * are used by the huge page allocation routines to manage reservations. 2783 * 2784 * vma_needs_reservation is called to determine if the huge page at addr 2785 * within the vma has an associated reservation. If a reservation is 2786 * needed, the value 1 is returned. The caller is then responsible for 2787 * managing the global reservation and subpool usage counts. After 2788 * the huge page has been allocated, vma_commit_reservation is called 2789 * to add the page to the reservation map. If the page allocation fails, 2790 * the reservation must be ended instead of committed. vma_end_reservation 2791 * is called in such cases. 2792 * 2793 * In the normal case, vma_commit_reservation returns the same value 2794 * as the preceding vma_needs_reservation call. The only time this 2795 * is not the case is if a reserve map was changed between calls. It 2796 * is the responsibility of the caller to notice the difference and 2797 * take appropriate action. 2798 * 2799 * vma_add_reservation is used in error paths where a reservation must 2800 * be restored when a newly allocated huge page must be freed. It is 2801 * to be called after calling vma_needs_reservation to determine if a 2802 * reservation exists. 2803 * 2804 * vma_del_reservation is used in error paths where an entry in the reserve 2805 * map was created during huge page allocation and must be removed. It is to 2806 * be called after calling vma_needs_reservation to determine if a reservation 2807 * exists. 2808 */ 2809 enum vma_resv_mode { 2810 VMA_NEEDS_RESV, 2811 VMA_COMMIT_RESV, 2812 VMA_END_RESV, 2813 VMA_ADD_RESV, 2814 VMA_DEL_RESV, 2815 }; 2816 static long __vma_reservation_common(struct hstate *h, 2817 struct vm_area_struct *vma, unsigned long addr, 2818 enum vma_resv_mode mode) 2819 { 2820 struct resv_map *resv; 2821 pgoff_t idx; 2822 long ret; 2823 long dummy_out_regions_needed; 2824 2825 resv = vma_resv_map(vma); 2826 if (!resv) 2827 return 1; 2828 2829 idx = vma_hugecache_offset(h, vma, addr); 2830 switch (mode) { 2831 case VMA_NEEDS_RESV: 2832 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed); 2833 /* We assume that vma_reservation_* routines always operate on 2834 * 1 page, and that adding to resv map a 1 page entry can only 2835 * ever require 1 region. 2836 */ 2837 VM_BUG_ON(dummy_out_regions_needed != 1); 2838 break; 2839 case VMA_COMMIT_RESV: 2840 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2841 /* region_add calls of range 1 should never fail. */ 2842 VM_BUG_ON(ret < 0); 2843 break; 2844 case VMA_END_RESV: 2845 region_abort(resv, idx, idx + 1, 1); 2846 ret = 0; 2847 break; 2848 case VMA_ADD_RESV: 2849 if (vma->vm_flags & VM_MAYSHARE) { 2850 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2851 /* region_add calls of range 1 should never fail. */ 2852 VM_BUG_ON(ret < 0); 2853 } else { 2854 region_abort(resv, idx, idx + 1, 1); 2855 ret = region_del(resv, idx, idx + 1); 2856 } 2857 break; 2858 case VMA_DEL_RESV: 2859 if (vma->vm_flags & VM_MAYSHARE) { 2860 region_abort(resv, idx, idx + 1, 1); 2861 ret = region_del(resv, idx, idx + 1); 2862 } else { 2863 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2864 /* region_add calls of range 1 should never fail. */ 2865 VM_BUG_ON(ret < 0); 2866 } 2867 break; 2868 default: 2869 BUG(); 2870 } 2871 2872 if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV) 2873 return ret; 2874 /* 2875 * We know private mapping must have HPAGE_RESV_OWNER set. 2876 * 2877 * In most cases, reserves always exist for private mappings. 2878 * However, a file associated with mapping could have been 2879 * hole punched or truncated after reserves were consumed. 2880 * As subsequent fault on such a range will not use reserves. 2881 * Subtle - The reserve map for private mappings has the 2882 * opposite meaning than that of shared mappings. If NO 2883 * entry is in the reserve map, it means a reservation exists. 2884 * If an entry exists in the reserve map, it means the 2885 * reservation has already been consumed. As a result, the 2886 * return value of this routine is the opposite of the 2887 * value returned from reserve map manipulation routines above. 2888 */ 2889 if (ret > 0) 2890 return 0; 2891 if (ret == 0) 2892 return 1; 2893 return ret; 2894 } 2895 2896 static long vma_needs_reservation(struct hstate *h, 2897 struct vm_area_struct *vma, unsigned long addr) 2898 { 2899 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV); 2900 } 2901 2902 static long vma_commit_reservation(struct hstate *h, 2903 struct vm_area_struct *vma, unsigned long addr) 2904 { 2905 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV); 2906 } 2907 2908 static void vma_end_reservation(struct hstate *h, 2909 struct vm_area_struct *vma, unsigned long addr) 2910 { 2911 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV); 2912 } 2913 2914 static long vma_add_reservation(struct hstate *h, 2915 struct vm_area_struct *vma, unsigned long addr) 2916 { 2917 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV); 2918 } 2919 2920 static long vma_del_reservation(struct hstate *h, 2921 struct vm_area_struct *vma, unsigned long addr) 2922 { 2923 return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV); 2924 } 2925 2926 /* 2927 * This routine is called to restore reservation information on error paths. 2928 * It should ONLY be called for folios allocated via alloc_hugetlb_folio(), 2929 * and the hugetlb mutex should remain held when calling this routine. 2930 * 2931 * It handles two specific cases: 2932 * 1) A reservation was in place and the folio consumed the reservation. 2933 * hugetlb_restore_reserve is set in the folio. 2934 * 2) No reservation was in place for the page, so hugetlb_restore_reserve is 2935 * not set. However, alloc_hugetlb_folio always updates the reserve map. 2936 * 2937 * In case 1, free_huge_folio later in the error path will increment the 2938 * global reserve count. But, free_huge_folio does not have enough context 2939 * to adjust the reservation map. This case deals primarily with private 2940 * mappings. Adjust the reserve map here to be consistent with global 2941 * reserve count adjustments to be made by free_huge_folio. Make sure the 2942 * reserve map indicates there is a reservation present. 2943 * 2944 * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio. 2945 */ 2946 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma, 2947 unsigned long address, struct folio *folio) 2948 { 2949 long rc = vma_needs_reservation(h, vma, address); 2950 2951 if (folio_test_hugetlb_restore_reserve(folio)) { 2952 if (unlikely(rc < 0)) 2953 /* 2954 * Rare out of memory condition in reserve map 2955 * manipulation. Clear hugetlb_restore_reserve so 2956 * that global reserve count will not be incremented 2957 * by free_huge_folio. This will make it appear 2958 * as though the reservation for this folio was 2959 * consumed. This may prevent the task from 2960 * faulting in the folio at a later time. This 2961 * is better than inconsistent global huge page 2962 * accounting of reserve counts. 2963 */ 2964 folio_clear_hugetlb_restore_reserve(folio); 2965 else if (rc) 2966 (void)vma_add_reservation(h, vma, address); 2967 else 2968 vma_end_reservation(h, vma, address); 2969 } else { 2970 if (!rc) { 2971 /* 2972 * This indicates there is an entry in the reserve map 2973 * not added by alloc_hugetlb_folio. We know it was added 2974 * before the alloc_hugetlb_folio call, otherwise 2975 * hugetlb_restore_reserve would be set on the folio. 2976 * Remove the entry so that a subsequent allocation 2977 * does not consume a reservation. 2978 */ 2979 rc = vma_del_reservation(h, vma, address); 2980 if (rc < 0) 2981 /* 2982 * VERY rare out of memory condition. Since 2983 * we can not delete the entry, set 2984 * hugetlb_restore_reserve so that the reserve 2985 * count will be incremented when the folio 2986 * is freed. This reserve will be consumed 2987 * on a subsequent allocation. 2988 */ 2989 folio_set_hugetlb_restore_reserve(folio); 2990 } else if (rc < 0) { 2991 /* 2992 * Rare out of memory condition from 2993 * vma_needs_reservation call. Memory allocation is 2994 * only attempted if a new entry is needed. Therefore, 2995 * this implies there is not an entry in the 2996 * reserve map. 2997 * 2998 * For shared mappings, no entry in the map indicates 2999 * no reservation. We are done. 3000 */ 3001 if (!(vma->vm_flags & VM_MAYSHARE)) 3002 /* 3003 * For private mappings, no entry indicates 3004 * a reservation is present. Since we can 3005 * not add an entry, set hugetlb_restore_reserve 3006 * on the folio so reserve count will be 3007 * incremented when freed. This reserve will 3008 * be consumed on a subsequent allocation. 3009 */ 3010 folio_set_hugetlb_restore_reserve(folio); 3011 } else 3012 /* 3013 * No reservation present, do nothing 3014 */ 3015 vma_end_reservation(h, vma, address); 3016 } 3017 } 3018 3019 /* 3020 * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve 3021 * the old one 3022 * @h: struct hstate old page belongs to 3023 * @old_folio: Old folio to dissolve 3024 * @list: List to isolate the page in case we need to 3025 * Returns 0 on success, otherwise negated error. 3026 */ 3027 static int alloc_and_dissolve_hugetlb_folio(struct hstate *h, 3028 struct folio *old_folio, struct list_head *list) 3029 { 3030 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 3031 int nid = folio_nid(old_folio); 3032 struct folio *new_folio; 3033 int ret = 0; 3034 3035 /* 3036 * Before dissolving the folio, we need to allocate a new one for the 3037 * pool to remain stable. Here, we allocate the folio and 'prep' it 3038 * by doing everything but actually updating counters and adding to 3039 * the pool. This simplifies and let us do most of the processing 3040 * under the lock. 3041 */ 3042 new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, NULL, NULL); 3043 if (!new_folio) 3044 return -ENOMEM; 3045 __prep_new_hugetlb_folio(h, new_folio); 3046 3047 retry: 3048 spin_lock_irq(&hugetlb_lock); 3049 if (!folio_test_hugetlb(old_folio)) { 3050 /* 3051 * Freed from under us. Drop new_folio too. 3052 */ 3053 goto free_new; 3054 } else if (folio_ref_count(old_folio)) { 3055 bool isolated; 3056 3057 /* 3058 * Someone has grabbed the folio, try to isolate it here. 3059 * Fail with -EBUSY if not possible. 3060 */ 3061 spin_unlock_irq(&hugetlb_lock); 3062 isolated = isolate_hugetlb(old_folio, list); 3063 ret = isolated ? 0 : -EBUSY; 3064 spin_lock_irq(&hugetlb_lock); 3065 goto free_new; 3066 } else if (!folio_test_hugetlb_freed(old_folio)) { 3067 /* 3068 * Folio's refcount is 0 but it has not been enqueued in the 3069 * freelist yet. Race window is small, so we can succeed here if 3070 * we retry. 3071 */ 3072 spin_unlock_irq(&hugetlb_lock); 3073 cond_resched(); 3074 goto retry; 3075 } else { 3076 /* 3077 * Ok, old_folio is still a genuine free hugepage. Remove it from 3078 * the freelist and decrease the counters. These will be 3079 * incremented again when calling __prep_account_new_huge_page() 3080 * and enqueue_hugetlb_folio() for new_folio. The counters will 3081 * remain stable since this happens under the lock. 3082 */ 3083 remove_hugetlb_folio(h, old_folio, false); 3084 3085 /* 3086 * Ref count on new_folio is already zero as it was dropped 3087 * earlier. It can be directly added to the pool free list. 3088 */ 3089 __prep_account_new_huge_page(h, nid); 3090 enqueue_hugetlb_folio(h, new_folio); 3091 3092 /* 3093 * Folio has been replaced, we can safely free the old one. 3094 */ 3095 spin_unlock_irq(&hugetlb_lock); 3096 update_and_free_hugetlb_folio(h, old_folio, false); 3097 } 3098 3099 return ret; 3100 3101 free_new: 3102 spin_unlock_irq(&hugetlb_lock); 3103 /* Folio has a zero ref count, but needs a ref to be freed */ 3104 folio_ref_unfreeze(new_folio, 1); 3105 update_and_free_hugetlb_folio(h, new_folio, false); 3106 3107 return ret; 3108 } 3109 3110 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list) 3111 { 3112 struct hstate *h; 3113 struct folio *folio = page_folio(page); 3114 int ret = -EBUSY; 3115 3116 /* 3117 * The page might have been dissolved from under our feet, so make sure 3118 * to carefully check the state under the lock. 3119 * Return success when racing as if we dissolved the page ourselves. 3120 */ 3121 spin_lock_irq(&hugetlb_lock); 3122 if (folio_test_hugetlb(folio)) { 3123 h = folio_hstate(folio); 3124 } else { 3125 spin_unlock_irq(&hugetlb_lock); 3126 return 0; 3127 } 3128 spin_unlock_irq(&hugetlb_lock); 3129 3130 /* 3131 * Fence off gigantic pages as there is a cyclic dependency between 3132 * alloc_contig_range and them. Return -ENOMEM as this has the effect 3133 * of bailing out right away without further retrying. 3134 */ 3135 if (hstate_is_gigantic(h)) 3136 return -ENOMEM; 3137 3138 if (folio_ref_count(folio) && isolate_hugetlb(folio, list)) 3139 ret = 0; 3140 else if (!folio_ref_count(folio)) 3141 ret = alloc_and_dissolve_hugetlb_folio(h, folio, list); 3142 3143 return ret; 3144 } 3145 3146 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma, 3147 unsigned long addr, int avoid_reserve) 3148 { 3149 struct hugepage_subpool *spool = subpool_vma(vma); 3150 struct hstate *h = hstate_vma(vma); 3151 struct folio *folio; 3152 long map_chg, map_commit, nr_pages = pages_per_huge_page(h); 3153 long gbl_chg; 3154 int memcg_charge_ret, ret, idx; 3155 struct hugetlb_cgroup *h_cg = NULL; 3156 struct mem_cgroup *memcg; 3157 bool deferred_reserve; 3158 gfp_t gfp = htlb_alloc_mask(h) | __GFP_RETRY_MAYFAIL; 3159 3160 memcg = get_mem_cgroup_from_current(); 3161 memcg_charge_ret = mem_cgroup_hugetlb_try_charge(memcg, gfp, nr_pages); 3162 if (memcg_charge_ret == -ENOMEM) { 3163 mem_cgroup_put(memcg); 3164 return ERR_PTR(-ENOMEM); 3165 } 3166 3167 idx = hstate_index(h); 3168 /* 3169 * Examine the region/reserve map to determine if the process 3170 * has a reservation for the page to be allocated. A return 3171 * code of zero indicates a reservation exists (no change). 3172 */ 3173 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr); 3174 if (map_chg < 0) { 3175 if (!memcg_charge_ret) 3176 mem_cgroup_cancel_charge(memcg, nr_pages); 3177 mem_cgroup_put(memcg); 3178 return ERR_PTR(-ENOMEM); 3179 } 3180 3181 /* 3182 * Processes that did not create the mapping will have no 3183 * reserves as indicated by the region/reserve map. Check 3184 * that the allocation will not exceed the subpool limit. 3185 * Allocations for MAP_NORESERVE mappings also need to be 3186 * checked against any subpool limit. 3187 */ 3188 if (map_chg || avoid_reserve) { 3189 gbl_chg = hugepage_subpool_get_pages(spool, 1); 3190 if (gbl_chg < 0) 3191 goto out_end_reservation; 3192 3193 /* 3194 * Even though there was no reservation in the region/reserve 3195 * map, there could be reservations associated with the 3196 * subpool that can be used. This would be indicated if the 3197 * return value of hugepage_subpool_get_pages() is zero. 3198 * However, if avoid_reserve is specified we still avoid even 3199 * the subpool reservations. 3200 */ 3201 if (avoid_reserve) 3202 gbl_chg = 1; 3203 } 3204 3205 /* If this allocation is not consuming a reservation, charge it now. 3206 */ 3207 deferred_reserve = map_chg || avoid_reserve; 3208 if (deferred_reserve) { 3209 ret = hugetlb_cgroup_charge_cgroup_rsvd( 3210 idx, pages_per_huge_page(h), &h_cg); 3211 if (ret) 3212 goto out_subpool_put; 3213 } 3214 3215 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg); 3216 if (ret) 3217 goto out_uncharge_cgroup_reservation; 3218 3219 spin_lock_irq(&hugetlb_lock); 3220 /* 3221 * glb_chg is passed to indicate whether or not a page must be taken 3222 * from the global free pool (global change). gbl_chg == 0 indicates 3223 * a reservation exists for the allocation. 3224 */ 3225 folio = dequeue_hugetlb_folio_vma(h, vma, addr, avoid_reserve, gbl_chg); 3226 if (!folio) { 3227 spin_unlock_irq(&hugetlb_lock); 3228 folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr); 3229 if (!folio) 3230 goto out_uncharge_cgroup; 3231 spin_lock_irq(&hugetlb_lock); 3232 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) { 3233 folio_set_hugetlb_restore_reserve(folio); 3234 h->resv_huge_pages--; 3235 } 3236 list_add(&folio->lru, &h->hugepage_activelist); 3237 folio_ref_unfreeze(folio, 1); 3238 /* Fall through */ 3239 } 3240 3241 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio); 3242 /* If allocation is not consuming a reservation, also store the 3243 * hugetlb_cgroup pointer on the page. 3244 */ 3245 if (deferred_reserve) { 3246 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h), 3247 h_cg, folio); 3248 } 3249 3250 spin_unlock_irq(&hugetlb_lock); 3251 3252 hugetlb_set_folio_subpool(folio, spool); 3253 3254 map_commit = vma_commit_reservation(h, vma, addr); 3255 if (unlikely(map_chg > map_commit)) { 3256 /* 3257 * The page was added to the reservation map between 3258 * vma_needs_reservation and vma_commit_reservation. 3259 * This indicates a race with hugetlb_reserve_pages. 3260 * Adjust for the subpool count incremented above AND 3261 * in hugetlb_reserve_pages for the same page. Also, 3262 * the reservation count added in hugetlb_reserve_pages 3263 * no longer applies. 3264 */ 3265 long rsv_adjust; 3266 3267 rsv_adjust = hugepage_subpool_put_pages(spool, 1); 3268 hugetlb_acct_memory(h, -rsv_adjust); 3269 if (deferred_reserve) 3270 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h), 3271 pages_per_huge_page(h), folio); 3272 } 3273 3274 if (!memcg_charge_ret) 3275 mem_cgroup_commit_charge(folio, memcg); 3276 mem_cgroup_put(memcg); 3277 3278 return folio; 3279 3280 out_uncharge_cgroup: 3281 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg); 3282 out_uncharge_cgroup_reservation: 3283 if (deferred_reserve) 3284 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h), 3285 h_cg); 3286 out_subpool_put: 3287 if (map_chg || avoid_reserve) 3288 hugepage_subpool_put_pages(spool, 1); 3289 out_end_reservation: 3290 vma_end_reservation(h, vma, addr); 3291 if (!memcg_charge_ret) 3292 mem_cgroup_cancel_charge(memcg, nr_pages); 3293 mem_cgroup_put(memcg); 3294 return ERR_PTR(-ENOSPC); 3295 } 3296 3297 int alloc_bootmem_huge_page(struct hstate *h, int nid) 3298 __attribute__ ((weak, alias("__alloc_bootmem_huge_page"))); 3299 int __alloc_bootmem_huge_page(struct hstate *h, int nid) 3300 { 3301 struct huge_bootmem_page *m = NULL; /* initialize for clang */ 3302 int nr_nodes, node; 3303 3304 /* do node specific alloc */ 3305 if (nid != NUMA_NO_NODE) { 3306 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h), 3307 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid); 3308 if (!m) 3309 return 0; 3310 goto found; 3311 } 3312 /* allocate from next node when distributing huge pages */ 3313 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) { 3314 m = memblock_alloc_try_nid_raw( 3315 huge_page_size(h), huge_page_size(h), 3316 0, MEMBLOCK_ALLOC_ACCESSIBLE, node); 3317 /* 3318 * Use the beginning of the huge page to store the 3319 * huge_bootmem_page struct (until gather_bootmem 3320 * puts them into the mem_map). 3321 */ 3322 if (!m) 3323 return 0; 3324 goto found; 3325 } 3326 3327 found: 3328 3329 /* 3330 * Only initialize the head struct page in memmap_init_reserved_pages, 3331 * rest of the struct pages will be initialized by the HugeTLB 3332 * subsystem itself. 3333 * The head struct page is used to get folio information by the HugeTLB 3334 * subsystem like zone id and node id. 3335 */ 3336 memblock_reserved_mark_noinit(virt_to_phys((void *)m + PAGE_SIZE), 3337 huge_page_size(h) - PAGE_SIZE); 3338 /* Put them into a private list first because mem_map is not up yet */ 3339 INIT_LIST_HEAD(&m->list); 3340 list_add(&m->list, &huge_boot_pages); 3341 m->hstate = h; 3342 return 1; 3343 } 3344 3345 /* Initialize [start_page:end_page_number] tail struct pages of a hugepage */ 3346 static void __init hugetlb_folio_init_tail_vmemmap(struct folio *folio, 3347 unsigned long start_page_number, 3348 unsigned long end_page_number) 3349 { 3350 enum zone_type zone = zone_idx(folio_zone(folio)); 3351 int nid = folio_nid(folio); 3352 unsigned long head_pfn = folio_pfn(folio); 3353 unsigned long pfn, end_pfn = head_pfn + end_page_number; 3354 int ret; 3355 3356 for (pfn = head_pfn + start_page_number; pfn < end_pfn; pfn++) { 3357 struct page *page = pfn_to_page(pfn); 3358 3359 __init_single_page(page, pfn, zone, nid); 3360 prep_compound_tail((struct page *)folio, pfn - head_pfn); 3361 ret = page_ref_freeze(page, 1); 3362 VM_BUG_ON(!ret); 3363 } 3364 } 3365 3366 static void __init hugetlb_folio_init_vmemmap(struct folio *folio, 3367 struct hstate *h, 3368 unsigned long nr_pages) 3369 { 3370 int ret; 3371 3372 /* Prepare folio head */ 3373 __folio_clear_reserved(folio); 3374 __folio_set_head(folio); 3375 ret = folio_ref_freeze(folio, 1); 3376 VM_BUG_ON(!ret); 3377 /* Initialize the necessary tail struct pages */ 3378 hugetlb_folio_init_tail_vmemmap(folio, 1, nr_pages); 3379 prep_compound_head((struct page *)folio, huge_page_order(h)); 3380 } 3381 3382 static void __init prep_and_add_bootmem_folios(struct hstate *h, 3383 struct list_head *folio_list) 3384 { 3385 unsigned long flags; 3386 struct folio *folio, *tmp_f; 3387 3388 /* Send list for bulk vmemmap optimization processing */ 3389 hugetlb_vmemmap_optimize_folios(h, folio_list); 3390 3391 /* Add all new pool pages to free lists in one lock cycle */ 3392 spin_lock_irqsave(&hugetlb_lock, flags); 3393 list_for_each_entry_safe(folio, tmp_f, folio_list, lru) { 3394 if (!folio_test_hugetlb_vmemmap_optimized(folio)) { 3395 /* 3396 * If HVO fails, initialize all tail struct pages 3397 * We do not worry about potential long lock hold 3398 * time as this is early in boot and there should 3399 * be no contention. 3400 */ 3401 hugetlb_folio_init_tail_vmemmap(folio, 3402 HUGETLB_VMEMMAP_RESERVE_PAGES, 3403 pages_per_huge_page(h)); 3404 } 3405 __prep_account_new_huge_page(h, folio_nid(folio)); 3406 enqueue_hugetlb_folio(h, folio); 3407 } 3408 spin_unlock_irqrestore(&hugetlb_lock, flags); 3409 } 3410 3411 /* 3412 * Put bootmem huge pages into the standard lists after mem_map is up. 3413 * Note: This only applies to gigantic (order > MAX_PAGE_ORDER) pages. 3414 */ 3415 static void __init gather_bootmem_prealloc(void) 3416 { 3417 LIST_HEAD(folio_list); 3418 struct huge_bootmem_page *m; 3419 struct hstate *h = NULL, *prev_h = NULL; 3420 3421 list_for_each_entry(m, &huge_boot_pages, list) { 3422 struct page *page = virt_to_page(m); 3423 struct folio *folio = (void *)page; 3424 3425 h = m->hstate; 3426 /* 3427 * It is possible to have multiple huge page sizes (hstates) 3428 * in this list. If so, process each size separately. 3429 */ 3430 if (h != prev_h && prev_h != NULL) 3431 prep_and_add_bootmem_folios(prev_h, &folio_list); 3432 prev_h = h; 3433 3434 VM_BUG_ON(!hstate_is_gigantic(h)); 3435 WARN_ON(folio_ref_count(folio) != 1); 3436 3437 hugetlb_folio_init_vmemmap(folio, h, 3438 HUGETLB_VMEMMAP_RESERVE_PAGES); 3439 init_new_hugetlb_folio(h, folio); 3440 list_add(&folio->lru, &folio_list); 3441 3442 /* 3443 * We need to restore the 'stolen' pages to totalram_pages 3444 * in order to fix confusing memory reports from free(1) and 3445 * other side-effects, like CommitLimit going negative. 3446 */ 3447 adjust_managed_page_count(page, pages_per_huge_page(h)); 3448 cond_resched(); 3449 } 3450 3451 prep_and_add_bootmem_folios(h, &folio_list); 3452 } 3453 3454 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid) 3455 { 3456 unsigned long i; 3457 char buf[32]; 3458 3459 for (i = 0; i < h->max_huge_pages_node[nid]; ++i) { 3460 if (hstate_is_gigantic(h)) { 3461 if (!alloc_bootmem_huge_page(h, nid)) 3462 break; 3463 } else { 3464 struct folio *folio; 3465 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 3466 3467 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, 3468 &node_states[N_MEMORY], NULL); 3469 if (!folio) 3470 break; 3471 free_huge_folio(folio); /* free it into the hugepage allocator */ 3472 } 3473 cond_resched(); 3474 } 3475 if (i == h->max_huge_pages_node[nid]) 3476 return; 3477 3478 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3479 pr_warn("HugeTLB: allocating %u of page size %s failed node%d. Only allocated %lu hugepages.\n", 3480 h->max_huge_pages_node[nid], buf, nid, i); 3481 h->max_huge_pages -= (h->max_huge_pages_node[nid] - i); 3482 h->max_huge_pages_node[nid] = i; 3483 } 3484 3485 /* 3486 * NOTE: this routine is called in different contexts for gigantic and 3487 * non-gigantic pages. 3488 * - For gigantic pages, this is called early in the boot process and 3489 * pages are allocated from memblock allocated or something similar. 3490 * Gigantic pages are actually added to pools later with the routine 3491 * gather_bootmem_prealloc. 3492 * - For non-gigantic pages, this is called later in the boot process after 3493 * all of mm is up and functional. Pages are allocated from buddy and 3494 * then added to hugetlb pools. 3495 */ 3496 static void __init hugetlb_hstate_alloc_pages(struct hstate *h) 3497 { 3498 unsigned long i; 3499 struct folio *folio; 3500 LIST_HEAD(folio_list); 3501 nodemask_t *node_alloc_noretry; 3502 bool node_specific_alloc = false; 3503 3504 /* skip gigantic hugepages allocation if hugetlb_cma enabled */ 3505 if (hstate_is_gigantic(h) && hugetlb_cma_size) { 3506 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n"); 3507 return; 3508 } 3509 3510 /* do node specific alloc */ 3511 for_each_online_node(i) { 3512 if (h->max_huge_pages_node[i] > 0) { 3513 hugetlb_hstate_alloc_pages_onenode(h, i); 3514 node_specific_alloc = true; 3515 } 3516 } 3517 3518 if (node_specific_alloc) 3519 return; 3520 3521 /* below will do all node balanced alloc */ 3522 if (!hstate_is_gigantic(h)) { 3523 /* 3524 * Bit mask controlling how hard we retry per-node allocations. 3525 * Ignore errors as lower level routines can deal with 3526 * node_alloc_noretry == NULL. If this kmalloc fails at boot 3527 * time, we are likely in bigger trouble. 3528 */ 3529 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry), 3530 GFP_KERNEL); 3531 } else { 3532 /* allocations done at boot time */ 3533 node_alloc_noretry = NULL; 3534 } 3535 3536 /* bit mask controlling how hard we retry per-node allocations */ 3537 if (node_alloc_noretry) 3538 nodes_clear(*node_alloc_noretry); 3539 3540 for (i = 0; i < h->max_huge_pages; ++i) { 3541 if (hstate_is_gigantic(h)) { 3542 /* 3543 * gigantic pages not added to list as they are not 3544 * added to pools now. 3545 */ 3546 if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE)) 3547 break; 3548 } else { 3549 folio = alloc_pool_huge_folio(h, &node_states[N_MEMORY], 3550 node_alloc_noretry); 3551 if (!folio) 3552 break; 3553 list_add(&folio->lru, &folio_list); 3554 } 3555 cond_resched(); 3556 } 3557 3558 /* list will be empty if hstate_is_gigantic */ 3559 prep_and_add_allocated_folios(h, &folio_list); 3560 3561 if (i < h->max_huge_pages) { 3562 char buf[32]; 3563 3564 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3565 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n", 3566 h->max_huge_pages, buf, i); 3567 h->max_huge_pages = i; 3568 } 3569 kfree(node_alloc_noretry); 3570 } 3571 3572 static void __init hugetlb_init_hstates(void) 3573 { 3574 struct hstate *h, *h2; 3575 3576 for_each_hstate(h) { 3577 /* oversize hugepages were init'ed in early boot */ 3578 if (!hstate_is_gigantic(h)) 3579 hugetlb_hstate_alloc_pages(h); 3580 3581 /* 3582 * Set demote order for each hstate. Note that 3583 * h->demote_order is initially 0. 3584 * - We can not demote gigantic pages if runtime freeing 3585 * is not supported, so skip this. 3586 * - If CMA allocation is possible, we can not demote 3587 * HUGETLB_PAGE_ORDER or smaller size pages. 3588 */ 3589 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 3590 continue; 3591 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER) 3592 continue; 3593 for_each_hstate(h2) { 3594 if (h2 == h) 3595 continue; 3596 if (h2->order < h->order && 3597 h2->order > h->demote_order) 3598 h->demote_order = h2->order; 3599 } 3600 } 3601 } 3602 3603 static void __init report_hugepages(void) 3604 { 3605 struct hstate *h; 3606 3607 for_each_hstate(h) { 3608 char buf[32]; 3609 3610 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3611 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n", 3612 buf, h->free_huge_pages); 3613 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n", 3614 hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf); 3615 } 3616 } 3617 3618 #ifdef CONFIG_HIGHMEM 3619 static void try_to_free_low(struct hstate *h, unsigned long count, 3620 nodemask_t *nodes_allowed) 3621 { 3622 int i; 3623 LIST_HEAD(page_list); 3624 3625 lockdep_assert_held(&hugetlb_lock); 3626 if (hstate_is_gigantic(h)) 3627 return; 3628 3629 /* 3630 * Collect pages to be freed on a list, and free after dropping lock 3631 */ 3632 for_each_node_mask(i, *nodes_allowed) { 3633 struct folio *folio, *next; 3634 struct list_head *freel = &h->hugepage_freelists[i]; 3635 list_for_each_entry_safe(folio, next, freel, lru) { 3636 if (count >= h->nr_huge_pages) 3637 goto out; 3638 if (folio_test_highmem(folio)) 3639 continue; 3640 remove_hugetlb_folio(h, folio, false); 3641 list_add(&folio->lru, &page_list); 3642 } 3643 } 3644 3645 out: 3646 spin_unlock_irq(&hugetlb_lock); 3647 update_and_free_pages_bulk(h, &page_list); 3648 spin_lock_irq(&hugetlb_lock); 3649 } 3650 #else 3651 static inline void try_to_free_low(struct hstate *h, unsigned long count, 3652 nodemask_t *nodes_allowed) 3653 { 3654 } 3655 #endif 3656 3657 /* 3658 * Increment or decrement surplus_huge_pages. Keep node-specific counters 3659 * balanced by operating on them in a round-robin fashion. 3660 * Returns 1 if an adjustment was made. 3661 */ 3662 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed, 3663 int delta) 3664 { 3665 int nr_nodes, node; 3666 3667 lockdep_assert_held(&hugetlb_lock); 3668 VM_BUG_ON(delta != -1 && delta != 1); 3669 3670 if (delta < 0) { 3671 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 3672 if (h->surplus_huge_pages_node[node]) 3673 goto found; 3674 } 3675 } else { 3676 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 3677 if (h->surplus_huge_pages_node[node] < 3678 h->nr_huge_pages_node[node]) 3679 goto found; 3680 } 3681 } 3682 return 0; 3683 3684 found: 3685 h->surplus_huge_pages += delta; 3686 h->surplus_huge_pages_node[node] += delta; 3687 return 1; 3688 } 3689 3690 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) 3691 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid, 3692 nodemask_t *nodes_allowed) 3693 { 3694 unsigned long min_count; 3695 unsigned long allocated; 3696 struct folio *folio; 3697 LIST_HEAD(page_list); 3698 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL); 3699 3700 /* 3701 * Bit mask controlling how hard we retry per-node allocations. 3702 * If we can not allocate the bit mask, do not attempt to allocate 3703 * the requested huge pages. 3704 */ 3705 if (node_alloc_noretry) 3706 nodes_clear(*node_alloc_noretry); 3707 else 3708 return -ENOMEM; 3709 3710 /* 3711 * resize_lock mutex prevents concurrent adjustments to number of 3712 * pages in hstate via the proc/sysfs interfaces. 3713 */ 3714 mutex_lock(&h->resize_lock); 3715 flush_free_hpage_work(h); 3716 spin_lock_irq(&hugetlb_lock); 3717 3718 /* 3719 * Check for a node specific request. 3720 * Changing node specific huge page count may require a corresponding 3721 * change to the global count. In any case, the passed node mask 3722 * (nodes_allowed) will restrict alloc/free to the specified node. 3723 */ 3724 if (nid != NUMA_NO_NODE) { 3725 unsigned long old_count = count; 3726 3727 count += persistent_huge_pages(h) - 3728 (h->nr_huge_pages_node[nid] - 3729 h->surplus_huge_pages_node[nid]); 3730 /* 3731 * User may have specified a large count value which caused the 3732 * above calculation to overflow. In this case, they wanted 3733 * to allocate as many huge pages as possible. Set count to 3734 * largest possible value to align with their intention. 3735 */ 3736 if (count < old_count) 3737 count = ULONG_MAX; 3738 } 3739 3740 /* 3741 * Gigantic pages runtime allocation depend on the capability for large 3742 * page range allocation. 3743 * If the system does not provide this feature, return an error when 3744 * the user tries to allocate gigantic pages but let the user free the 3745 * boottime allocated gigantic pages. 3746 */ 3747 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) { 3748 if (count > persistent_huge_pages(h)) { 3749 spin_unlock_irq(&hugetlb_lock); 3750 mutex_unlock(&h->resize_lock); 3751 NODEMASK_FREE(node_alloc_noretry); 3752 return -EINVAL; 3753 } 3754 /* Fall through to decrease pool */ 3755 } 3756 3757 /* 3758 * Increase the pool size 3759 * First take pages out of surplus state. Then make up the 3760 * remaining difference by allocating fresh huge pages. 3761 * 3762 * We might race with alloc_surplus_hugetlb_folio() here and be unable 3763 * to convert a surplus huge page to a normal huge page. That is 3764 * not critical, though, it just means the overall size of the 3765 * pool might be one hugepage larger than it needs to be, but 3766 * within all the constraints specified by the sysctls. 3767 */ 3768 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { 3769 if (!adjust_pool_surplus(h, nodes_allowed, -1)) 3770 break; 3771 } 3772 3773 allocated = 0; 3774 while (count > (persistent_huge_pages(h) + allocated)) { 3775 /* 3776 * If this allocation races such that we no longer need the 3777 * page, free_huge_folio will handle it by freeing the page 3778 * and reducing the surplus. 3779 */ 3780 spin_unlock_irq(&hugetlb_lock); 3781 3782 /* yield cpu to avoid soft lockup */ 3783 cond_resched(); 3784 3785 folio = alloc_pool_huge_folio(h, nodes_allowed, 3786 node_alloc_noretry); 3787 if (!folio) { 3788 prep_and_add_allocated_folios(h, &page_list); 3789 spin_lock_irq(&hugetlb_lock); 3790 goto out; 3791 } 3792 3793 list_add(&folio->lru, &page_list); 3794 allocated++; 3795 3796 /* Bail for signals. Probably ctrl-c from user */ 3797 if (signal_pending(current)) { 3798 prep_and_add_allocated_folios(h, &page_list); 3799 spin_lock_irq(&hugetlb_lock); 3800 goto out; 3801 } 3802 3803 spin_lock_irq(&hugetlb_lock); 3804 } 3805 3806 /* Add allocated pages to the pool */ 3807 if (!list_empty(&page_list)) { 3808 spin_unlock_irq(&hugetlb_lock); 3809 prep_and_add_allocated_folios(h, &page_list); 3810 spin_lock_irq(&hugetlb_lock); 3811 } 3812 3813 /* 3814 * Decrease the pool size 3815 * First return free pages to the buddy allocator (being careful 3816 * to keep enough around to satisfy reservations). Then place 3817 * pages into surplus state as needed so the pool will shrink 3818 * to the desired size as pages become free. 3819 * 3820 * By placing pages into the surplus state independent of the 3821 * overcommit value, we are allowing the surplus pool size to 3822 * exceed overcommit. There are few sane options here. Since 3823 * alloc_surplus_hugetlb_folio() is checking the global counter, 3824 * though, we'll note that we're not allowed to exceed surplus 3825 * and won't grow the pool anywhere else. Not until one of the 3826 * sysctls are changed, or the surplus pages go out of use. 3827 */ 3828 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages; 3829 min_count = max(count, min_count); 3830 try_to_free_low(h, min_count, nodes_allowed); 3831 3832 /* 3833 * Collect pages to be removed on list without dropping lock 3834 */ 3835 while (min_count < persistent_huge_pages(h)) { 3836 folio = remove_pool_hugetlb_folio(h, nodes_allowed, 0); 3837 if (!folio) 3838 break; 3839 3840 list_add(&folio->lru, &page_list); 3841 } 3842 /* free the pages after dropping lock */ 3843 spin_unlock_irq(&hugetlb_lock); 3844 update_and_free_pages_bulk(h, &page_list); 3845 flush_free_hpage_work(h); 3846 spin_lock_irq(&hugetlb_lock); 3847 3848 while (count < persistent_huge_pages(h)) { 3849 if (!adjust_pool_surplus(h, nodes_allowed, 1)) 3850 break; 3851 } 3852 out: 3853 h->max_huge_pages = persistent_huge_pages(h); 3854 spin_unlock_irq(&hugetlb_lock); 3855 mutex_unlock(&h->resize_lock); 3856 3857 NODEMASK_FREE(node_alloc_noretry); 3858 3859 return 0; 3860 } 3861 3862 static int demote_free_hugetlb_folio(struct hstate *h, struct folio *folio) 3863 { 3864 int i, nid = folio_nid(folio); 3865 struct hstate *target_hstate; 3866 struct page *subpage; 3867 struct folio *inner_folio; 3868 int rc = 0; 3869 3870 target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order); 3871 3872 remove_hugetlb_folio_for_demote(h, folio, false); 3873 spin_unlock_irq(&hugetlb_lock); 3874 3875 /* 3876 * If vmemmap already existed for folio, the remove routine above would 3877 * have cleared the hugetlb folio flag. Hence the folio is technically 3878 * no longer a hugetlb folio. hugetlb_vmemmap_restore_folio can only be 3879 * passed hugetlb folios and will BUG otherwise. 3880 */ 3881 if (folio_test_hugetlb(folio)) { 3882 rc = hugetlb_vmemmap_restore_folio(h, folio); 3883 if (rc) { 3884 /* Allocation of vmemmmap failed, we can not demote folio */ 3885 spin_lock_irq(&hugetlb_lock); 3886 folio_ref_unfreeze(folio, 1); 3887 add_hugetlb_folio(h, folio, false); 3888 return rc; 3889 } 3890 } 3891 3892 /* 3893 * Use destroy_compound_hugetlb_folio_for_demote for all huge page 3894 * sizes as it will not ref count folios. 3895 */ 3896 destroy_compound_hugetlb_folio_for_demote(folio, huge_page_order(h)); 3897 3898 /* 3899 * Taking target hstate mutex synchronizes with set_max_huge_pages. 3900 * Without the mutex, pages added to target hstate could be marked 3901 * as surplus. 3902 * 3903 * Note that we already hold h->resize_lock. To prevent deadlock, 3904 * use the convention of always taking larger size hstate mutex first. 3905 */ 3906 mutex_lock(&target_hstate->resize_lock); 3907 for (i = 0; i < pages_per_huge_page(h); 3908 i += pages_per_huge_page(target_hstate)) { 3909 subpage = folio_page(folio, i); 3910 inner_folio = page_folio(subpage); 3911 if (hstate_is_gigantic(target_hstate)) 3912 prep_compound_gigantic_folio_for_demote(inner_folio, 3913 target_hstate->order); 3914 else 3915 prep_compound_page(subpage, target_hstate->order); 3916 folio_change_private(inner_folio, NULL); 3917 prep_new_hugetlb_folio(target_hstate, inner_folio, nid); 3918 free_huge_folio(inner_folio); 3919 } 3920 mutex_unlock(&target_hstate->resize_lock); 3921 3922 spin_lock_irq(&hugetlb_lock); 3923 3924 /* 3925 * Not absolutely necessary, but for consistency update max_huge_pages 3926 * based on pool changes for the demoted page. 3927 */ 3928 h->max_huge_pages--; 3929 target_hstate->max_huge_pages += 3930 pages_per_huge_page(h) / pages_per_huge_page(target_hstate); 3931 3932 return rc; 3933 } 3934 3935 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed) 3936 __must_hold(&hugetlb_lock) 3937 { 3938 int nr_nodes, node; 3939 struct folio *folio; 3940 3941 lockdep_assert_held(&hugetlb_lock); 3942 3943 /* We should never get here if no demote order */ 3944 if (!h->demote_order) { 3945 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n"); 3946 return -EINVAL; /* internal error */ 3947 } 3948 3949 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 3950 list_for_each_entry(folio, &h->hugepage_freelists[node], lru) { 3951 if (folio_test_hwpoison(folio)) 3952 continue; 3953 return demote_free_hugetlb_folio(h, folio); 3954 } 3955 } 3956 3957 /* 3958 * Only way to get here is if all pages on free lists are poisoned. 3959 * Return -EBUSY so that caller will not retry. 3960 */ 3961 return -EBUSY; 3962 } 3963 3964 #define HSTATE_ATTR_RO(_name) \ 3965 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 3966 3967 #define HSTATE_ATTR_WO(_name) \ 3968 static struct kobj_attribute _name##_attr = __ATTR_WO(_name) 3969 3970 #define HSTATE_ATTR(_name) \ 3971 static struct kobj_attribute _name##_attr = __ATTR_RW(_name) 3972 3973 static struct kobject *hugepages_kobj; 3974 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 3975 3976 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp); 3977 3978 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp) 3979 { 3980 int i; 3981 3982 for (i = 0; i < HUGE_MAX_HSTATE; i++) 3983 if (hstate_kobjs[i] == kobj) { 3984 if (nidp) 3985 *nidp = NUMA_NO_NODE; 3986 return &hstates[i]; 3987 } 3988 3989 return kobj_to_node_hstate(kobj, nidp); 3990 } 3991 3992 static ssize_t nr_hugepages_show_common(struct kobject *kobj, 3993 struct kobj_attribute *attr, char *buf) 3994 { 3995 struct hstate *h; 3996 unsigned long nr_huge_pages; 3997 int nid; 3998 3999 h = kobj_to_hstate(kobj, &nid); 4000 if (nid == NUMA_NO_NODE) 4001 nr_huge_pages = h->nr_huge_pages; 4002 else 4003 nr_huge_pages = h->nr_huge_pages_node[nid]; 4004 4005 return sysfs_emit(buf, "%lu\n", nr_huge_pages); 4006 } 4007 4008 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy, 4009 struct hstate *h, int nid, 4010 unsigned long count, size_t len) 4011 { 4012 int err; 4013 nodemask_t nodes_allowed, *n_mask; 4014 4015 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 4016 return -EINVAL; 4017 4018 if (nid == NUMA_NO_NODE) { 4019 /* 4020 * global hstate attribute 4021 */ 4022 if (!(obey_mempolicy && 4023 init_nodemask_of_mempolicy(&nodes_allowed))) 4024 n_mask = &node_states[N_MEMORY]; 4025 else 4026 n_mask = &nodes_allowed; 4027 } else { 4028 /* 4029 * Node specific request. count adjustment happens in 4030 * set_max_huge_pages() after acquiring hugetlb_lock. 4031 */ 4032 init_nodemask_of_node(&nodes_allowed, nid); 4033 n_mask = &nodes_allowed; 4034 } 4035 4036 err = set_max_huge_pages(h, count, nid, n_mask); 4037 4038 return err ? err : len; 4039 } 4040 4041 static ssize_t nr_hugepages_store_common(bool obey_mempolicy, 4042 struct kobject *kobj, const char *buf, 4043 size_t len) 4044 { 4045 struct hstate *h; 4046 unsigned long count; 4047 int nid; 4048 int err; 4049 4050 err = kstrtoul(buf, 10, &count); 4051 if (err) 4052 return err; 4053 4054 h = kobj_to_hstate(kobj, &nid); 4055 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len); 4056 } 4057 4058 static ssize_t nr_hugepages_show(struct kobject *kobj, 4059 struct kobj_attribute *attr, char *buf) 4060 { 4061 return nr_hugepages_show_common(kobj, attr, buf); 4062 } 4063 4064 static ssize_t nr_hugepages_store(struct kobject *kobj, 4065 struct kobj_attribute *attr, const char *buf, size_t len) 4066 { 4067 return nr_hugepages_store_common(false, kobj, buf, len); 4068 } 4069 HSTATE_ATTR(nr_hugepages); 4070 4071 #ifdef CONFIG_NUMA 4072 4073 /* 4074 * hstate attribute for optionally mempolicy-based constraint on persistent 4075 * huge page alloc/free. 4076 */ 4077 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj, 4078 struct kobj_attribute *attr, 4079 char *buf) 4080 { 4081 return nr_hugepages_show_common(kobj, attr, buf); 4082 } 4083 4084 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj, 4085 struct kobj_attribute *attr, const char *buf, size_t len) 4086 { 4087 return nr_hugepages_store_common(true, kobj, buf, len); 4088 } 4089 HSTATE_ATTR(nr_hugepages_mempolicy); 4090 #endif 4091 4092 4093 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, 4094 struct kobj_attribute *attr, char *buf) 4095 { 4096 struct hstate *h = kobj_to_hstate(kobj, NULL); 4097 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages); 4098 } 4099 4100 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, 4101 struct kobj_attribute *attr, const char *buf, size_t count) 4102 { 4103 int err; 4104 unsigned long input; 4105 struct hstate *h = kobj_to_hstate(kobj, NULL); 4106 4107 if (hstate_is_gigantic(h)) 4108 return -EINVAL; 4109 4110 err = kstrtoul(buf, 10, &input); 4111 if (err) 4112 return err; 4113 4114 spin_lock_irq(&hugetlb_lock); 4115 h->nr_overcommit_huge_pages = input; 4116 spin_unlock_irq(&hugetlb_lock); 4117 4118 return count; 4119 } 4120 HSTATE_ATTR(nr_overcommit_hugepages); 4121 4122 static ssize_t free_hugepages_show(struct kobject *kobj, 4123 struct kobj_attribute *attr, char *buf) 4124 { 4125 struct hstate *h; 4126 unsigned long free_huge_pages; 4127 int nid; 4128 4129 h = kobj_to_hstate(kobj, &nid); 4130 if (nid == NUMA_NO_NODE) 4131 free_huge_pages = h->free_huge_pages; 4132 else 4133 free_huge_pages = h->free_huge_pages_node[nid]; 4134 4135 return sysfs_emit(buf, "%lu\n", free_huge_pages); 4136 } 4137 HSTATE_ATTR_RO(free_hugepages); 4138 4139 static ssize_t resv_hugepages_show(struct kobject *kobj, 4140 struct kobj_attribute *attr, char *buf) 4141 { 4142 struct hstate *h = kobj_to_hstate(kobj, NULL); 4143 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages); 4144 } 4145 HSTATE_ATTR_RO(resv_hugepages); 4146 4147 static ssize_t surplus_hugepages_show(struct kobject *kobj, 4148 struct kobj_attribute *attr, char *buf) 4149 { 4150 struct hstate *h; 4151 unsigned long surplus_huge_pages; 4152 int nid; 4153 4154 h = kobj_to_hstate(kobj, &nid); 4155 if (nid == NUMA_NO_NODE) 4156 surplus_huge_pages = h->surplus_huge_pages; 4157 else 4158 surplus_huge_pages = h->surplus_huge_pages_node[nid]; 4159 4160 return sysfs_emit(buf, "%lu\n", surplus_huge_pages); 4161 } 4162 HSTATE_ATTR_RO(surplus_hugepages); 4163 4164 static ssize_t demote_store(struct kobject *kobj, 4165 struct kobj_attribute *attr, const char *buf, size_t len) 4166 { 4167 unsigned long nr_demote; 4168 unsigned long nr_available; 4169 nodemask_t nodes_allowed, *n_mask; 4170 struct hstate *h; 4171 int err; 4172 int nid; 4173 4174 err = kstrtoul(buf, 10, &nr_demote); 4175 if (err) 4176 return err; 4177 h = kobj_to_hstate(kobj, &nid); 4178 4179 if (nid != NUMA_NO_NODE) { 4180 init_nodemask_of_node(&nodes_allowed, nid); 4181 n_mask = &nodes_allowed; 4182 } else { 4183 n_mask = &node_states[N_MEMORY]; 4184 } 4185 4186 /* Synchronize with other sysfs operations modifying huge pages */ 4187 mutex_lock(&h->resize_lock); 4188 spin_lock_irq(&hugetlb_lock); 4189 4190 while (nr_demote) { 4191 /* 4192 * Check for available pages to demote each time thorough the 4193 * loop as demote_pool_huge_page will drop hugetlb_lock. 4194 */ 4195 if (nid != NUMA_NO_NODE) 4196 nr_available = h->free_huge_pages_node[nid]; 4197 else 4198 nr_available = h->free_huge_pages; 4199 nr_available -= h->resv_huge_pages; 4200 if (!nr_available) 4201 break; 4202 4203 err = demote_pool_huge_page(h, n_mask); 4204 if (err) 4205 break; 4206 4207 nr_demote--; 4208 } 4209 4210 spin_unlock_irq(&hugetlb_lock); 4211 mutex_unlock(&h->resize_lock); 4212 4213 if (err) 4214 return err; 4215 return len; 4216 } 4217 HSTATE_ATTR_WO(demote); 4218 4219 static ssize_t demote_size_show(struct kobject *kobj, 4220 struct kobj_attribute *attr, char *buf) 4221 { 4222 struct hstate *h = kobj_to_hstate(kobj, NULL); 4223 unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K; 4224 4225 return sysfs_emit(buf, "%lukB\n", demote_size); 4226 } 4227 4228 static ssize_t demote_size_store(struct kobject *kobj, 4229 struct kobj_attribute *attr, 4230 const char *buf, size_t count) 4231 { 4232 struct hstate *h, *demote_hstate; 4233 unsigned long demote_size; 4234 unsigned int demote_order; 4235 4236 demote_size = (unsigned long)memparse(buf, NULL); 4237 4238 demote_hstate = size_to_hstate(demote_size); 4239 if (!demote_hstate) 4240 return -EINVAL; 4241 demote_order = demote_hstate->order; 4242 if (demote_order < HUGETLB_PAGE_ORDER) 4243 return -EINVAL; 4244 4245 /* demote order must be smaller than hstate order */ 4246 h = kobj_to_hstate(kobj, NULL); 4247 if (demote_order >= h->order) 4248 return -EINVAL; 4249 4250 /* resize_lock synchronizes access to demote size and writes */ 4251 mutex_lock(&h->resize_lock); 4252 h->demote_order = demote_order; 4253 mutex_unlock(&h->resize_lock); 4254 4255 return count; 4256 } 4257 HSTATE_ATTR(demote_size); 4258 4259 static struct attribute *hstate_attrs[] = { 4260 &nr_hugepages_attr.attr, 4261 &nr_overcommit_hugepages_attr.attr, 4262 &free_hugepages_attr.attr, 4263 &resv_hugepages_attr.attr, 4264 &surplus_hugepages_attr.attr, 4265 #ifdef CONFIG_NUMA 4266 &nr_hugepages_mempolicy_attr.attr, 4267 #endif 4268 NULL, 4269 }; 4270 4271 static const struct attribute_group hstate_attr_group = { 4272 .attrs = hstate_attrs, 4273 }; 4274 4275 static struct attribute *hstate_demote_attrs[] = { 4276 &demote_size_attr.attr, 4277 &demote_attr.attr, 4278 NULL, 4279 }; 4280 4281 static const struct attribute_group hstate_demote_attr_group = { 4282 .attrs = hstate_demote_attrs, 4283 }; 4284 4285 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent, 4286 struct kobject **hstate_kobjs, 4287 const struct attribute_group *hstate_attr_group) 4288 { 4289 int retval; 4290 int hi = hstate_index(h); 4291 4292 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent); 4293 if (!hstate_kobjs[hi]) 4294 return -ENOMEM; 4295 4296 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group); 4297 if (retval) { 4298 kobject_put(hstate_kobjs[hi]); 4299 hstate_kobjs[hi] = NULL; 4300 return retval; 4301 } 4302 4303 if (h->demote_order) { 4304 retval = sysfs_create_group(hstate_kobjs[hi], 4305 &hstate_demote_attr_group); 4306 if (retval) { 4307 pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name); 4308 sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group); 4309 kobject_put(hstate_kobjs[hi]); 4310 hstate_kobjs[hi] = NULL; 4311 return retval; 4312 } 4313 } 4314 4315 return 0; 4316 } 4317 4318 #ifdef CONFIG_NUMA 4319 static bool hugetlb_sysfs_initialized __ro_after_init; 4320 4321 /* 4322 * node_hstate/s - associate per node hstate attributes, via their kobjects, 4323 * with node devices in node_devices[] using a parallel array. The array 4324 * index of a node device or _hstate == node id. 4325 * This is here to avoid any static dependency of the node device driver, in 4326 * the base kernel, on the hugetlb module. 4327 */ 4328 struct node_hstate { 4329 struct kobject *hugepages_kobj; 4330 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 4331 }; 4332 static struct node_hstate node_hstates[MAX_NUMNODES]; 4333 4334 /* 4335 * A subset of global hstate attributes for node devices 4336 */ 4337 static struct attribute *per_node_hstate_attrs[] = { 4338 &nr_hugepages_attr.attr, 4339 &free_hugepages_attr.attr, 4340 &surplus_hugepages_attr.attr, 4341 NULL, 4342 }; 4343 4344 static const struct attribute_group per_node_hstate_attr_group = { 4345 .attrs = per_node_hstate_attrs, 4346 }; 4347 4348 /* 4349 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj. 4350 * Returns node id via non-NULL nidp. 4351 */ 4352 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 4353 { 4354 int nid; 4355 4356 for (nid = 0; nid < nr_node_ids; nid++) { 4357 struct node_hstate *nhs = &node_hstates[nid]; 4358 int i; 4359 for (i = 0; i < HUGE_MAX_HSTATE; i++) 4360 if (nhs->hstate_kobjs[i] == kobj) { 4361 if (nidp) 4362 *nidp = nid; 4363 return &hstates[i]; 4364 } 4365 } 4366 4367 BUG(); 4368 return NULL; 4369 } 4370 4371 /* 4372 * Unregister hstate attributes from a single node device. 4373 * No-op if no hstate attributes attached. 4374 */ 4375 void hugetlb_unregister_node(struct node *node) 4376 { 4377 struct hstate *h; 4378 struct node_hstate *nhs = &node_hstates[node->dev.id]; 4379 4380 if (!nhs->hugepages_kobj) 4381 return; /* no hstate attributes */ 4382 4383 for_each_hstate(h) { 4384 int idx = hstate_index(h); 4385 struct kobject *hstate_kobj = nhs->hstate_kobjs[idx]; 4386 4387 if (!hstate_kobj) 4388 continue; 4389 if (h->demote_order) 4390 sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group); 4391 sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group); 4392 kobject_put(hstate_kobj); 4393 nhs->hstate_kobjs[idx] = NULL; 4394 } 4395 4396 kobject_put(nhs->hugepages_kobj); 4397 nhs->hugepages_kobj = NULL; 4398 } 4399 4400 4401 /* 4402 * Register hstate attributes for a single node device. 4403 * No-op if attributes already registered. 4404 */ 4405 void hugetlb_register_node(struct node *node) 4406 { 4407 struct hstate *h; 4408 struct node_hstate *nhs = &node_hstates[node->dev.id]; 4409 int err; 4410 4411 if (!hugetlb_sysfs_initialized) 4412 return; 4413 4414 if (nhs->hugepages_kobj) 4415 return; /* already allocated */ 4416 4417 nhs->hugepages_kobj = kobject_create_and_add("hugepages", 4418 &node->dev.kobj); 4419 if (!nhs->hugepages_kobj) 4420 return; 4421 4422 for_each_hstate(h) { 4423 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj, 4424 nhs->hstate_kobjs, 4425 &per_node_hstate_attr_group); 4426 if (err) { 4427 pr_err("HugeTLB: Unable to add hstate %s for node %d\n", 4428 h->name, node->dev.id); 4429 hugetlb_unregister_node(node); 4430 break; 4431 } 4432 } 4433 } 4434 4435 /* 4436 * hugetlb init time: register hstate attributes for all registered node 4437 * devices of nodes that have memory. All on-line nodes should have 4438 * registered their associated device by this time. 4439 */ 4440 static void __init hugetlb_register_all_nodes(void) 4441 { 4442 int nid; 4443 4444 for_each_online_node(nid) 4445 hugetlb_register_node(node_devices[nid]); 4446 } 4447 #else /* !CONFIG_NUMA */ 4448 4449 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 4450 { 4451 BUG(); 4452 if (nidp) 4453 *nidp = -1; 4454 return NULL; 4455 } 4456 4457 static void hugetlb_register_all_nodes(void) { } 4458 4459 #endif 4460 4461 #ifdef CONFIG_CMA 4462 static void __init hugetlb_cma_check(void); 4463 #else 4464 static inline __init void hugetlb_cma_check(void) 4465 { 4466 } 4467 #endif 4468 4469 static void __init hugetlb_sysfs_init(void) 4470 { 4471 struct hstate *h; 4472 int err; 4473 4474 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); 4475 if (!hugepages_kobj) 4476 return; 4477 4478 for_each_hstate(h) { 4479 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj, 4480 hstate_kobjs, &hstate_attr_group); 4481 if (err) 4482 pr_err("HugeTLB: Unable to add hstate %s", h->name); 4483 } 4484 4485 #ifdef CONFIG_NUMA 4486 hugetlb_sysfs_initialized = true; 4487 #endif 4488 hugetlb_register_all_nodes(); 4489 } 4490 4491 #ifdef CONFIG_SYSCTL 4492 static void hugetlb_sysctl_init(void); 4493 #else 4494 static inline void hugetlb_sysctl_init(void) { } 4495 #endif 4496 4497 static int __init hugetlb_init(void) 4498 { 4499 int i; 4500 4501 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE < 4502 __NR_HPAGEFLAGS); 4503 4504 if (!hugepages_supported()) { 4505 if (hugetlb_max_hstate || default_hstate_max_huge_pages) 4506 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n"); 4507 return 0; 4508 } 4509 4510 /* 4511 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some 4512 * architectures depend on setup being done here. 4513 */ 4514 hugetlb_add_hstate(HUGETLB_PAGE_ORDER); 4515 if (!parsed_default_hugepagesz) { 4516 /* 4517 * If we did not parse a default huge page size, set 4518 * default_hstate_idx to HPAGE_SIZE hstate. And, if the 4519 * number of huge pages for this default size was implicitly 4520 * specified, set that here as well. 4521 * Note that the implicit setting will overwrite an explicit 4522 * setting. A warning will be printed in this case. 4523 */ 4524 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE)); 4525 if (default_hstate_max_huge_pages) { 4526 if (default_hstate.max_huge_pages) { 4527 char buf[32]; 4528 4529 string_get_size(huge_page_size(&default_hstate), 4530 1, STRING_UNITS_2, buf, 32); 4531 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n", 4532 default_hstate.max_huge_pages, buf); 4533 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n", 4534 default_hstate_max_huge_pages); 4535 } 4536 default_hstate.max_huge_pages = 4537 default_hstate_max_huge_pages; 4538 4539 for_each_online_node(i) 4540 default_hstate.max_huge_pages_node[i] = 4541 default_hugepages_in_node[i]; 4542 } 4543 } 4544 4545 hugetlb_cma_check(); 4546 hugetlb_init_hstates(); 4547 gather_bootmem_prealloc(); 4548 report_hugepages(); 4549 4550 hugetlb_sysfs_init(); 4551 hugetlb_cgroup_file_init(); 4552 hugetlb_sysctl_init(); 4553 4554 #ifdef CONFIG_SMP 4555 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus()); 4556 #else 4557 num_fault_mutexes = 1; 4558 #endif 4559 hugetlb_fault_mutex_table = 4560 kmalloc_array(num_fault_mutexes, sizeof(struct mutex), 4561 GFP_KERNEL); 4562 BUG_ON(!hugetlb_fault_mutex_table); 4563 4564 for (i = 0; i < num_fault_mutexes; i++) 4565 mutex_init(&hugetlb_fault_mutex_table[i]); 4566 return 0; 4567 } 4568 subsys_initcall(hugetlb_init); 4569 4570 /* Overwritten by architectures with more huge page sizes */ 4571 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size) 4572 { 4573 return size == HPAGE_SIZE; 4574 } 4575 4576 void __init hugetlb_add_hstate(unsigned int order) 4577 { 4578 struct hstate *h; 4579 unsigned long i; 4580 4581 if (size_to_hstate(PAGE_SIZE << order)) { 4582 return; 4583 } 4584 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE); 4585 BUG_ON(order < order_base_2(__NR_USED_SUBPAGE)); 4586 h = &hstates[hugetlb_max_hstate++]; 4587 mutex_init(&h->resize_lock); 4588 h->order = order; 4589 h->mask = ~(huge_page_size(h) - 1); 4590 for (i = 0; i < MAX_NUMNODES; ++i) 4591 INIT_LIST_HEAD(&h->hugepage_freelists[i]); 4592 INIT_LIST_HEAD(&h->hugepage_activelist); 4593 h->next_nid_to_alloc = first_memory_node; 4594 h->next_nid_to_free = first_memory_node; 4595 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", 4596 huge_page_size(h)/SZ_1K); 4597 4598 parsed_hstate = h; 4599 } 4600 4601 bool __init __weak hugetlb_node_alloc_supported(void) 4602 { 4603 return true; 4604 } 4605 4606 static void __init hugepages_clear_pages_in_node(void) 4607 { 4608 if (!hugetlb_max_hstate) { 4609 default_hstate_max_huge_pages = 0; 4610 memset(default_hugepages_in_node, 0, 4611 sizeof(default_hugepages_in_node)); 4612 } else { 4613 parsed_hstate->max_huge_pages = 0; 4614 memset(parsed_hstate->max_huge_pages_node, 0, 4615 sizeof(parsed_hstate->max_huge_pages_node)); 4616 } 4617 } 4618 4619 /* 4620 * hugepages command line processing 4621 * hugepages normally follows a valid hugepagsz or default_hugepagsz 4622 * specification. If not, ignore the hugepages value. hugepages can also 4623 * be the first huge page command line option in which case it implicitly 4624 * specifies the number of huge pages for the default size. 4625 */ 4626 static int __init hugepages_setup(char *s) 4627 { 4628 unsigned long *mhp; 4629 static unsigned long *last_mhp; 4630 int node = NUMA_NO_NODE; 4631 int count; 4632 unsigned long tmp; 4633 char *p = s; 4634 4635 if (!parsed_valid_hugepagesz) { 4636 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s); 4637 parsed_valid_hugepagesz = true; 4638 return 1; 4639 } 4640 4641 /* 4642 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter 4643 * yet, so this hugepages= parameter goes to the "default hstate". 4644 * Otherwise, it goes with the previously parsed hugepagesz or 4645 * default_hugepagesz. 4646 */ 4647 else if (!hugetlb_max_hstate) 4648 mhp = &default_hstate_max_huge_pages; 4649 else 4650 mhp = &parsed_hstate->max_huge_pages; 4651 4652 if (mhp == last_mhp) { 4653 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s); 4654 return 1; 4655 } 4656 4657 while (*p) { 4658 count = 0; 4659 if (sscanf(p, "%lu%n", &tmp, &count) != 1) 4660 goto invalid; 4661 /* Parameter is node format */ 4662 if (p[count] == ':') { 4663 if (!hugetlb_node_alloc_supported()) { 4664 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n"); 4665 return 1; 4666 } 4667 if (tmp >= MAX_NUMNODES || !node_online(tmp)) 4668 goto invalid; 4669 node = array_index_nospec(tmp, MAX_NUMNODES); 4670 p += count + 1; 4671 /* Parse hugepages */ 4672 if (sscanf(p, "%lu%n", &tmp, &count) != 1) 4673 goto invalid; 4674 if (!hugetlb_max_hstate) 4675 default_hugepages_in_node[node] = tmp; 4676 else 4677 parsed_hstate->max_huge_pages_node[node] = tmp; 4678 *mhp += tmp; 4679 /* Go to parse next node*/ 4680 if (p[count] == ',') 4681 p += count + 1; 4682 else 4683 break; 4684 } else { 4685 if (p != s) 4686 goto invalid; 4687 *mhp = tmp; 4688 break; 4689 } 4690 } 4691 4692 /* 4693 * Global state is always initialized later in hugetlb_init. 4694 * But we need to allocate gigantic hstates here early to still 4695 * use the bootmem allocator. 4696 */ 4697 if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate)) 4698 hugetlb_hstate_alloc_pages(parsed_hstate); 4699 4700 last_mhp = mhp; 4701 4702 return 1; 4703 4704 invalid: 4705 pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p); 4706 hugepages_clear_pages_in_node(); 4707 return 1; 4708 } 4709 __setup("hugepages=", hugepages_setup); 4710 4711 /* 4712 * hugepagesz command line processing 4713 * A specific huge page size can only be specified once with hugepagesz. 4714 * hugepagesz is followed by hugepages on the command line. The global 4715 * variable 'parsed_valid_hugepagesz' is used to determine if prior 4716 * hugepagesz argument was valid. 4717 */ 4718 static int __init hugepagesz_setup(char *s) 4719 { 4720 unsigned long size; 4721 struct hstate *h; 4722 4723 parsed_valid_hugepagesz = false; 4724 size = (unsigned long)memparse(s, NULL); 4725 4726 if (!arch_hugetlb_valid_size(size)) { 4727 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s); 4728 return 1; 4729 } 4730 4731 h = size_to_hstate(size); 4732 if (h) { 4733 /* 4734 * hstate for this size already exists. This is normally 4735 * an error, but is allowed if the existing hstate is the 4736 * default hstate. More specifically, it is only allowed if 4737 * the number of huge pages for the default hstate was not 4738 * previously specified. 4739 */ 4740 if (!parsed_default_hugepagesz || h != &default_hstate || 4741 default_hstate.max_huge_pages) { 4742 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s); 4743 return 1; 4744 } 4745 4746 /* 4747 * No need to call hugetlb_add_hstate() as hstate already 4748 * exists. But, do set parsed_hstate so that a following 4749 * hugepages= parameter will be applied to this hstate. 4750 */ 4751 parsed_hstate = h; 4752 parsed_valid_hugepagesz = true; 4753 return 1; 4754 } 4755 4756 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); 4757 parsed_valid_hugepagesz = true; 4758 return 1; 4759 } 4760 __setup("hugepagesz=", hugepagesz_setup); 4761 4762 /* 4763 * default_hugepagesz command line input 4764 * Only one instance of default_hugepagesz allowed on command line. 4765 */ 4766 static int __init default_hugepagesz_setup(char *s) 4767 { 4768 unsigned long size; 4769 int i; 4770 4771 parsed_valid_hugepagesz = false; 4772 if (parsed_default_hugepagesz) { 4773 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s); 4774 return 1; 4775 } 4776 4777 size = (unsigned long)memparse(s, NULL); 4778 4779 if (!arch_hugetlb_valid_size(size)) { 4780 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s); 4781 return 1; 4782 } 4783 4784 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); 4785 parsed_valid_hugepagesz = true; 4786 parsed_default_hugepagesz = true; 4787 default_hstate_idx = hstate_index(size_to_hstate(size)); 4788 4789 /* 4790 * The number of default huge pages (for this size) could have been 4791 * specified as the first hugetlb parameter: hugepages=X. If so, 4792 * then default_hstate_max_huge_pages is set. If the default huge 4793 * page size is gigantic (> MAX_PAGE_ORDER), then the pages must be 4794 * allocated here from bootmem allocator. 4795 */ 4796 if (default_hstate_max_huge_pages) { 4797 default_hstate.max_huge_pages = default_hstate_max_huge_pages; 4798 for_each_online_node(i) 4799 default_hstate.max_huge_pages_node[i] = 4800 default_hugepages_in_node[i]; 4801 if (hstate_is_gigantic(&default_hstate)) 4802 hugetlb_hstate_alloc_pages(&default_hstate); 4803 default_hstate_max_huge_pages = 0; 4804 } 4805 4806 return 1; 4807 } 4808 __setup("default_hugepagesz=", default_hugepagesz_setup); 4809 4810 static nodemask_t *policy_mbind_nodemask(gfp_t gfp) 4811 { 4812 #ifdef CONFIG_NUMA 4813 struct mempolicy *mpol = get_task_policy(current); 4814 4815 /* 4816 * Only enforce MPOL_BIND policy which overlaps with cpuset policy 4817 * (from policy_nodemask) specifically for hugetlb case 4818 */ 4819 if (mpol->mode == MPOL_BIND && 4820 (apply_policy_zone(mpol, gfp_zone(gfp)) && 4821 cpuset_nodemask_valid_mems_allowed(&mpol->nodes))) 4822 return &mpol->nodes; 4823 #endif 4824 return NULL; 4825 } 4826 4827 static unsigned int allowed_mems_nr(struct hstate *h) 4828 { 4829 int node; 4830 unsigned int nr = 0; 4831 nodemask_t *mbind_nodemask; 4832 unsigned int *array = h->free_huge_pages_node; 4833 gfp_t gfp_mask = htlb_alloc_mask(h); 4834 4835 mbind_nodemask = policy_mbind_nodemask(gfp_mask); 4836 for_each_node_mask(node, cpuset_current_mems_allowed) { 4837 if (!mbind_nodemask || node_isset(node, *mbind_nodemask)) 4838 nr += array[node]; 4839 } 4840 4841 return nr; 4842 } 4843 4844 #ifdef CONFIG_SYSCTL 4845 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write, 4846 void *buffer, size_t *length, 4847 loff_t *ppos, unsigned long *out) 4848 { 4849 struct ctl_table dup_table; 4850 4851 /* 4852 * In order to avoid races with __do_proc_doulongvec_minmax(), we 4853 * can duplicate the @table and alter the duplicate of it. 4854 */ 4855 dup_table = *table; 4856 dup_table.data = out; 4857 4858 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos); 4859 } 4860 4861 static int hugetlb_sysctl_handler_common(bool obey_mempolicy, 4862 struct ctl_table *table, int write, 4863 void *buffer, size_t *length, loff_t *ppos) 4864 { 4865 struct hstate *h = &default_hstate; 4866 unsigned long tmp = h->max_huge_pages; 4867 int ret; 4868 4869 if (!hugepages_supported()) 4870 return -EOPNOTSUPP; 4871 4872 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, 4873 &tmp); 4874 if (ret) 4875 goto out; 4876 4877 if (write) 4878 ret = __nr_hugepages_store_common(obey_mempolicy, h, 4879 NUMA_NO_NODE, tmp, *length); 4880 out: 4881 return ret; 4882 } 4883 4884 static int hugetlb_sysctl_handler(struct ctl_table *table, int write, 4885 void *buffer, size_t *length, loff_t *ppos) 4886 { 4887 4888 return hugetlb_sysctl_handler_common(false, table, write, 4889 buffer, length, ppos); 4890 } 4891 4892 #ifdef CONFIG_NUMA 4893 static int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write, 4894 void *buffer, size_t *length, loff_t *ppos) 4895 { 4896 return hugetlb_sysctl_handler_common(true, table, write, 4897 buffer, length, ppos); 4898 } 4899 #endif /* CONFIG_NUMA */ 4900 4901 static int hugetlb_overcommit_handler(struct ctl_table *table, int write, 4902 void *buffer, size_t *length, loff_t *ppos) 4903 { 4904 struct hstate *h = &default_hstate; 4905 unsigned long tmp; 4906 int ret; 4907 4908 if (!hugepages_supported()) 4909 return -EOPNOTSUPP; 4910 4911 tmp = h->nr_overcommit_huge_pages; 4912 4913 if (write && hstate_is_gigantic(h)) 4914 return -EINVAL; 4915 4916 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, 4917 &tmp); 4918 if (ret) 4919 goto out; 4920 4921 if (write) { 4922 spin_lock_irq(&hugetlb_lock); 4923 h->nr_overcommit_huge_pages = tmp; 4924 spin_unlock_irq(&hugetlb_lock); 4925 } 4926 out: 4927 return ret; 4928 } 4929 4930 static struct ctl_table hugetlb_table[] = { 4931 { 4932 .procname = "nr_hugepages", 4933 .data = NULL, 4934 .maxlen = sizeof(unsigned long), 4935 .mode = 0644, 4936 .proc_handler = hugetlb_sysctl_handler, 4937 }, 4938 #ifdef CONFIG_NUMA 4939 { 4940 .procname = "nr_hugepages_mempolicy", 4941 .data = NULL, 4942 .maxlen = sizeof(unsigned long), 4943 .mode = 0644, 4944 .proc_handler = &hugetlb_mempolicy_sysctl_handler, 4945 }, 4946 #endif 4947 { 4948 .procname = "hugetlb_shm_group", 4949 .data = &sysctl_hugetlb_shm_group, 4950 .maxlen = sizeof(gid_t), 4951 .mode = 0644, 4952 .proc_handler = proc_dointvec, 4953 }, 4954 { 4955 .procname = "nr_overcommit_hugepages", 4956 .data = NULL, 4957 .maxlen = sizeof(unsigned long), 4958 .mode = 0644, 4959 .proc_handler = hugetlb_overcommit_handler, 4960 }, 4961 { } 4962 }; 4963 4964 static void hugetlb_sysctl_init(void) 4965 { 4966 register_sysctl_init("vm", hugetlb_table); 4967 } 4968 #endif /* CONFIG_SYSCTL */ 4969 4970 void hugetlb_report_meminfo(struct seq_file *m) 4971 { 4972 struct hstate *h; 4973 unsigned long total = 0; 4974 4975 if (!hugepages_supported()) 4976 return; 4977 4978 for_each_hstate(h) { 4979 unsigned long count = h->nr_huge_pages; 4980 4981 total += huge_page_size(h) * count; 4982 4983 if (h == &default_hstate) 4984 seq_printf(m, 4985 "HugePages_Total: %5lu\n" 4986 "HugePages_Free: %5lu\n" 4987 "HugePages_Rsvd: %5lu\n" 4988 "HugePages_Surp: %5lu\n" 4989 "Hugepagesize: %8lu kB\n", 4990 count, 4991 h->free_huge_pages, 4992 h->resv_huge_pages, 4993 h->surplus_huge_pages, 4994 huge_page_size(h) / SZ_1K); 4995 } 4996 4997 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K); 4998 } 4999 5000 int hugetlb_report_node_meminfo(char *buf, int len, int nid) 5001 { 5002 struct hstate *h = &default_hstate; 5003 5004 if (!hugepages_supported()) 5005 return 0; 5006 5007 return sysfs_emit_at(buf, len, 5008 "Node %d HugePages_Total: %5u\n" 5009 "Node %d HugePages_Free: %5u\n" 5010 "Node %d HugePages_Surp: %5u\n", 5011 nid, h->nr_huge_pages_node[nid], 5012 nid, h->free_huge_pages_node[nid], 5013 nid, h->surplus_huge_pages_node[nid]); 5014 } 5015 5016 void hugetlb_show_meminfo_node(int nid) 5017 { 5018 struct hstate *h; 5019 5020 if (!hugepages_supported()) 5021 return; 5022 5023 for_each_hstate(h) 5024 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n", 5025 nid, 5026 h->nr_huge_pages_node[nid], 5027 h->free_huge_pages_node[nid], 5028 h->surplus_huge_pages_node[nid], 5029 huge_page_size(h) / SZ_1K); 5030 } 5031 5032 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm) 5033 { 5034 seq_printf(m, "HugetlbPages:\t%8lu kB\n", 5035 K(atomic_long_read(&mm->hugetlb_usage))); 5036 } 5037 5038 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ 5039 unsigned long hugetlb_total_pages(void) 5040 { 5041 struct hstate *h; 5042 unsigned long nr_total_pages = 0; 5043 5044 for_each_hstate(h) 5045 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h); 5046 return nr_total_pages; 5047 } 5048 5049 static int hugetlb_acct_memory(struct hstate *h, long delta) 5050 { 5051 int ret = -ENOMEM; 5052 5053 if (!delta) 5054 return 0; 5055 5056 spin_lock_irq(&hugetlb_lock); 5057 /* 5058 * When cpuset is configured, it breaks the strict hugetlb page 5059 * reservation as the accounting is done on a global variable. Such 5060 * reservation is completely rubbish in the presence of cpuset because 5061 * the reservation is not checked against page availability for the 5062 * current cpuset. Application can still potentially OOM'ed by kernel 5063 * with lack of free htlb page in cpuset that the task is in. 5064 * Attempt to enforce strict accounting with cpuset is almost 5065 * impossible (or too ugly) because cpuset is too fluid that 5066 * task or memory node can be dynamically moved between cpusets. 5067 * 5068 * The change of semantics for shared hugetlb mapping with cpuset is 5069 * undesirable. However, in order to preserve some of the semantics, 5070 * we fall back to check against current free page availability as 5071 * a best attempt and hopefully to minimize the impact of changing 5072 * semantics that cpuset has. 5073 * 5074 * Apart from cpuset, we also have memory policy mechanism that 5075 * also determines from which node the kernel will allocate memory 5076 * in a NUMA system. So similar to cpuset, we also should consider 5077 * the memory policy of the current task. Similar to the description 5078 * above. 5079 */ 5080 if (delta > 0) { 5081 if (gather_surplus_pages(h, delta) < 0) 5082 goto out; 5083 5084 if (delta > allowed_mems_nr(h)) { 5085 return_unused_surplus_pages(h, delta); 5086 goto out; 5087 } 5088 } 5089 5090 ret = 0; 5091 if (delta < 0) 5092 return_unused_surplus_pages(h, (unsigned long) -delta); 5093 5094 out: 5095 spin_unlock_irq(&hugetlb_lock); 5096 return ret; 5097 } 5098 5099 static void hugetlb_vm_op_open(struct vm_area_struct *vma) 5100 { 5101 struct resv_map *resv = vma_resv_map(vma); 5102 5103 /* 5104 * HPAGE_RESV_OWNER indicates a private mapping. 5105 * This new VMA should share its siblings reservation map if present. 5106 * The VMA will only ever have a valid reservation map pointer where 5107 * it is being copied for another still existing VMA. As that VMA 5108 * has a reference to the reservation map it cannot disappear until 5109 * after this open call completes. It is therefore safe to take a 5110 * new reference here without additional locking. 5111 */ 5112 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 5113 resv_map_dup_hugetlb_cgroup_uncharge_info(resv); 5114 kref_get(&resv->refs); 5115 } 5116 5117 /* 5118 * vma_lock structure for sharable mappings is vma specific. 5119 * Clear old pointer (if copied via vm_area_dup) and allocate 5120 * new structure. Before clearing, make sure vma_lock is not 5121 * for this vma. 5122 */ 5123 if (vma->vm_flags & VM_MAYSHARE) { 5124 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 5125 5126 if (vma_lock) { 5127 if (vma_lock->vma != vma) { 5128 vma->vm_private_data = NULL; 5129 hugetlb_vma_lock_alloc(vma); 5130 } else 5131 pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__); 5132 } else 5133 hugetlb_vma_lock_alloc(vma); 5134 } 5135 } 5136 5137 static void hugetlb_vm_op_close(struct vm_area_struct *vma) 5138 { 5139 struct hstate *h = hstate_vma(vma); 5140 struct resv_map *resv; 5141 struct hugepage_subpool *spool = subpool_vma(vma); 5142 unsigned long reserve, start, end; 5143 long gbl_reserve; 5144 5145 hugetlb_vma_lock_free(vma); 5146 5147 resv = vma_resv_map(vma); 5148 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 5149 return; 5150 5151 start = vma_hugecache_offset(h, vma, vma->vm_start); 5152 end = vma_hugecache_offset(h, vma, vma->vm_end); 5153 5154 reserve = (end - start) - region_count(resv, start, end); 5155 hugetlb_cgroup_uncharge_counter(resv, start, end); 5156 if (reserve) { 5157 /* 5158 * Decrement reserve counts. The global reserve count may be 5159 * adjusted if the subpool has a minimum size. 5160 */ 5161 gbl_reserve = hugepage_subpool_put_pages(spool, reserve); 5162 hugetlb_acct_memory(h, -gbl_reserve); 5163 } 5164 5165 kref_put(&resv->refs, resv_map_release); 5166 } 5167 5168 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr) 5169 { 5170 if (addr & ~(huge_page_mask(hstate_vma(vma)))) 5171 return -EINVAL; 5172 5173 /* 5174 * PMD sharing is only possible for PUD_SIZE-aligned address ranges 5175 * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this 5176 * split, unshare PMDs in the PUD_SIZE interval surrounding addr now. 5177 */ 5178 if (addr & ~PUD_MASK) { 5179 /* 5180 * hugetlb_vm_op_split is called right before we attempt to 5181 * split the VMA. We will need to unshare PMDs in the old and 5182 * new VMAs, so let's unshare before we split. 5183 */ 5184 unsigned long floor = addr & PUD_MASK; 5185 unsigned long ceil = floor + PUD_SIZE; 5186 5187 if (floor >= vma->vm_start && ceil <= vma->vm_end) 5188 hugetlb_unshare_pmds(vma, floor, ceil); 5189 } 5190 5191 return 0; 5192 } 5193 5194 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma) 5195 { 5196 return huge_page_size(hstate_vma(vma)); 5197 } 5198 5199 /* 5200 * We cannot handle pagefaults against hugetlb pages at all. They cause 5201 * handle_mm_fault() to try to instantiate regular-sized pages in the 5202 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get 5203 * this far. 5204 */ 5205 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf) 5206 { 5207 BUG(); 5208 return 0; 5209 } 5210 5211 /* 5212 * When a new function is introduced to vm_operations_struct and added 5213 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops. 5214 * This is because under System V memory model, mappings created via 5215 * shmget/shmat with "huge page" specified are backed by hugetlbfs files, 5216 * their original vm_ops are overwritten with shm_vm_ops. 5217 */ 5218 const struct vm_operations_struct hugetlb_vm_ops = { 5219 .fault = hugetlb_vm_op_fault, 5220 .open = hugetlb_vm_op_open, 5221 .close = hugetlb_vm_op_close, 5222 .may_split = hugetlb_vm_op_split, 5223 .pagesize = hugetlb_vm_op_pagesize, 5224 }; 5225 5226 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, 5227 int writable) 5228 { 5229 pte_t entry; 5230 unsigned int shift = huge_page_shift(hstate_vma(vma)); 5231 5232 if (writable) { 5233 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page, 5234 vma->vm_page_prot))); 5235 } else { 5236 entry = huge_pte_wrprotect(mk_huge_pte(page, 5237 vma->vm_page_prot)); 5238 } 5239 entry = pte_mkyoung(entry); 5240 entry = arch_make_huge_pte(entry, shift, vma->vm_flags); 5241 5242 return entry; 5243 } 5244 5245 static void set_huge_ptep_writable(struct vm_area_struct *vma, 5246 unsigned long address, pte_t *ptep) 5247 { 5248 pte_t entry; 5249 5250 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep))); 5251 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) 5252 update_mmu_cache(vma, address, ptep); 5253 } 5254 5255 bool is_hugetlb_entry_migration(pte_t pte) 5256 { 5257 swp_entry_t swp; 5258 5259 if (huge_pte_none(pte) || pte_present(pte)) 5260 return false; 5261 swp = pte_to_swp_entry(pte); 5262 if (is_migration_entry(swp)) 5263 return true; 5264 else 5265 return false; 5266 } 5267 5268 bool is_hugetlb_entry_hwpoisoned(pte_t pte) 5269 { 5270 swp_entry_t swp; 5271 5272 if (huge_pte_none(pte) || pte_present(pte)) 5273 return false; 5274 swp = pte_to_swp_entry(pte); 5275 if (is_hwpoison_entry(swp)) 5276 return true; 5277 else 5278 return false; 5279 } 5280 5281 static void 5282 hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr, 5283 struct folio *new_folio, pte_t old, unsigned long sz) 5284 { 5285 pte_t newpte = make_huge_pte(vma, &new_folio->page, 1); 5286 5287 __folio_mark_uptodate(new_folio); 5288 hugetlb_add_new_anon_rmap(new_folio, vma, addr); 5289 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(old)) 5290 newpte = huge_pte_mkuffd_wp(newpte); 5291 set_huge_pte_at(vma->vm_mm, addr, ptep, newpte, sz); 5292 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm); 5293 folio_set_hugetlb_migratable(new_folio); 5294 } 5295 5296 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, 5297 struct vm_area_struct *dst_vma, 5298 struct vm_area_struct *src_vma) 5299 { 5300 pte_t *src_pte, *dst_pte, entry; 5301 struct folio *pte_folio; 5302 unsigned long addr; 5303 bool cow = is_cow_mapping(src_vma->vm_flags); 5304 struct hstate *h = hstate_vma(src_vma); 5305 unsigned long sz = huge_page_size(h); 5306 unsigned long npages = pages_per_huge_page(h); 5307 struct mmu_notifier_range range; 5308 unsigned long last_addr_mask; 5309 int ret = 0; 5310 5311 if (cow) { 5312 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src, 5313 src_vma->vm_start, 5314 src_vma->vm_end); 5315 mmu_notifier_invalidate_range_start(&range); 5316 vma_assert_write_locked(src_vma); 5317 raw_write_seqcount_begin(&src->write_protect_seq); 5318 } else { 5319 /* 5320 * For shared mappings the vma lock must be held before 5321 * calling hugetlb_walk() in the src vma. Otherwise, the 5322 * returned ptep could go away if part of a shared pmd and 5323 * another thread calls huge_pmd_unshare. 5324 */ 5325 hugetlb_vma_lock_read(src_vma); 5326 } 5327 5328 last_addr_mask = hugetlb_mask_last_page(h); 5329 for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) { 5330 spinlock_t *src_ptl, *dst_ptl; 5331 src_pte = hugetlb_walk(src_vma, addr, sz); 5332 if (!src_pte) { 5333 addr |= last_addr_mask; 5334 continue; 5335 } 5336 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz); 5337 if (!dst_pte) { 5338 ret = -ENOMEM; 5339 break; 5340 } 5341 5342 /* 5343 * If the pagetables are shared don't copy or take references. 5344 * 5345 * dst_pte == src_pte is the common case of src/dest sharing. 5346 * However, src could have 'unshared' and dst shares with 5347 * another vma. So page_count of ptep page is checked instead 5348 * to reliably determine whether pte is shared. 5349 */ 5350 if (page_count(virt_to_page(dst_pte)) > 1) { 5351 addr |= last_addr_mask; 5352 continue; 5353 } 5354 5355 dst_ptl = huge_pte_lock(h, dst, dst_pte); 5356 src_ptl = huge_pte_lockptr(h, src, src_pte); 5357 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 5358 entry = huge_ptep_get(src_pte); 5359 again: 5360 if (huge_pte_none(entry)) { 5361 /* 5362 * Skip if src entry none. 5363 */ 5364 ; 5365 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) { 5366 if (!userfaultfd_wp(dst_vma)) 5367 entry = huge_pte_clear_uffd_wp(entry); 5368 set_huge_pte_at(dst, addr, dst_pte, entry, sz); 5369 } else if (unlikely(is_hugetlb_entry_migration(entry))) { 5370 swp_entry_t swp_entry = pte_to_swp_entry(entry); 5371 bool uffd_wp = pte_swp_uffd_wp(entry); 5372 5373 if (!is_readable_migration_entry(swp_entry) && cow) { 5374 /* 5375 * COW mappings require pages in both 5376 * parent and child to be set to read. 5377 */ 5378 swp_entry = make_readable_migration_entry( 5379 swp_offset(swp_entry)); 5380 entry = swp_entry_to_pte(swp_entry); 5381 if (userfaultfd_wp(src_vma) && uffd_wp) 5382 entry = pte_swp_mkuffd_wp(entry); 5383 set_huge_pte_at(src, addr, src_pte, entry, sz); 5384 } 5385 if (!userfaultfd_wp(dst_vma)) 5386 entry = huge_pte_clear_uffd_wp(entry); 5387 set_huge_pte_at(dst, addr, dst_pte, entry, sz); 5388 } else if (unlikely(is_pte_marker(entry))) { 5389 pte_marker marker = copy_pte_marker( 5390 pte_to_swp_entry(entry), dst_vma); 5391 5392 if (marker) 5393 set_huge_pte_at(dst, addr, dst_pte, 5394 make_pte_marker(marker), sz); 5395 } else { 5396 entry = huge_ptep_get(src_pte); 5397 pte_folio = page_folio(pte_page(entry)); 5398 folio_get(pte_folio); 5399 5400 /* 5401 * Failing to duplicate the anon rmap is a rare case 5402 * where we see pinned hugetlb pages while they're 5403 * prone to COW. We need to do the COW earlier during 5404 * fork. 5405 * 5406 * When pre-allocating the page or copying data, we 5407 * need to be without the pgtable locks since we could 5408 * sleep during the process. 5409 */ 5410 if (!folio_test_anon(pte_folio)) { 5411 hugetlb_add_file_rmap(pte_folio); 5412 } else if (hugetlb_try_dup_anon_rmap(pte_folio, src_vma)) { 5413 pte_t src_pte_old = entry; 5414 struct folio *new_folio; 5415 5416 spin_unlock(src_ptl); 5417 spin_unlock(dst_ptl); 5418 /* Do not use reserve as it's private owned */ 5419 new_folio = alloc_hugetlb_folio(dst_vma, addr, 1); 5420 if (IS_ERR(new_folio)) { 5421 folio_put(pte_folio); 5422 ret = PTR_ERR(new_folio); 5423 break; 5424 } 5425 ret = copy_user_large_folio(new_folio, 5426 pte_folio, 5427 addr, dst_vma); 5428 folio_put(pte_folio); 5429 if (ret) { 5430 folio_put(new_folio); 5431 break; 5432 } 5433 5434 /* Install the new hugetlb folio if src pte stable */ 5435 dst_ptl = huge_pte_lock(h, dst, dst_pte); 5436 src_ptl = huge_pte_lockptr(h, src, src_pte); 5437 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 5438 entry = huge_ptep_get(src_pte); 5439 if (!pte_same(src_pte_old, entry)) { 5440 restore_reserve_on_error(h, dst_vma, addr, 5441 new_folio); 5442 folio_put(new_folio); 5443 /* huge_ptep of dst_pte won't change as in child */ 5444 goto again; 5445 } 5446 hugetlb_install_folio(dst_vma, dst_pte, addr, 5447 new_folio, src_pte_old, sz); 5448 spin_unlock(src_ptl); 5449 spin_unlock(dst_ptl); 5450 continue; 5451 } 5452 5453 if (cow) { 5454 /* 5455 * No need to notify as we are downgrading page 5456 * table protection not changing it to point 5457 * to a new page. 5458 * 5459 * See Documentation/mm/mmu_notifier.rst 5460 */ 5461 huge_ptep_set_wrprotect(src, addr, src_pte); 5462 entry = huge_pte_wrprotect(entry); 5463 } 5464 5465 if (!userfaultfd_wp(dst_vma)) 5466 entry = huge_pte_clear_uffd_wp(entry); 5467 5468 set_huge_pte_at(dst, addr, dst_pte, entry, sz); 5469 hugetlb_count_add(npages, dst); 5470 } 5471 spin_unlock(src_ptl); 5472 spin_unlock(dst_ptl); 5473 } 5474 5475 if (cow) { 5476 raw_write_seqcount_end(&src->write_protect_seq); 5477 mmu_notifier_invalidate_range_end(&range); 5478 } else { 5479 hugetlb_vma_unlock_read(src_vma); 5480 } 5481 5482 return ret; 5483 } 5484 5485 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr, 5486 unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte, 5487 unsigned long sz) 5488 { 5489 struct hstate *h = hstate_vma(vma); 5490 struct mm_struct *mm = vma->vm_mm; 5491 spinlock_t *src_ptl, *dst_ptl; 5492 pte_t pte; 5493 5494 dst_ptl = huge_pte_lock(h, mm, dst_pte); 5495 src_ptl = huge_pte_lockptr(h, mm, src_pte); 5496 5497 /* 5498 * We don't have to worry about the ordering of src and dst ptlocks 5499 * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock. 5500 */ 5501 if (src_ptl != dst_ptl) 5502 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 5503 5504 pte = huge_ptep_get_and_clear(mm, old_addr, src_pte); 5505 set_huge_pte_at(mm, new_addr, dst_pte, pte, sz); 5506 5507 if (src_ptl != dst_ptl) 5508 spin_unlock(src_ptl); 5509 spin_unlock(dst_ptl); 5510 } 5511 5512 int move_hugetlb_page_tables(struct vm_area_struct *vma, 5513 struct vm_area_struct *new_vma, 5514 unsigned long old_addr, unsigned long new_addr, 5515 unsigned long len) 5516 { 5517 struct hstate *h = hstate_vma(vma); 5518 struct address_space *mapping = vma->vm_file->f_mapping; 5519 unsigned long sz = huge_page_size(h); 5520 struct mm_struct *mm = vma->vm_mm; 5521 unsigned long old_end = old_addr + len; 5522 unsigned long last_addr_mask; 5523 pte_t *src_pte, *dst_pte; 5524 struct mmu_notifier_range range; 5525 bool shared_pmd = false; 5526 5527 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr, 5528 old_end); 5529 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 5530 /* 5531 * In case of shared PMDs, we should cover the maximum possible 5532 * range. 5533 */ 5534 flush_cache_range(vma, range.start, range.end); 5535 5536 mmu_notifier_invalidate_range_start(&range); 5537 last_addr_mask = hugetlb_mask_last_page(h); 5538 /* Prevent race with file truncation */ 5539 hugetlb_vma_lock_write(vma); 5540 i_mmap_lock_write(mapping); 5541 for (; old_addr < old_end; old_addr += sz, new_addr += sz) { 5542 src_pte = hugetlb_walk(vma, old_addr, sz); 5543 if (!src_pte) { 5544 old_addr |= last_addr_mask; 5545 new_addr |= last_addr_mask; 5546 continue; 5547 } 5548 if (huge_pte_none(huge_ptep_get(src_pte))) 5549 continue; 5550 5551 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) { 5552 shared_pmd = true; 5553 old_addr |= last_addr_mask; 5554 new_addr |= last_addr_mask; 5555 continue; 5556 } 5557 5558 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz); 5559 if (!dst_pte) 5560 break; 5561 5562 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte, sz); 5563 } 5564 5565 if (shared_pmd) 5566 flush_hugetlb_tlb_range(vma, range.start, range.end); 5567 else 5568 flush_hugetlb_tlb_range(vma, old_end - len, old_end); 5569 mmu_notifier_invalidate_range_end(&range); 5570 i_mmap_unlock_write(mapping); 5571 hugetlb_vma_unlock_write(vma); 5572 5573 return len + old_addr - old_end; 5574 } 5575 5576 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma, 5577 unsigned long start, unsigned long end, 5578 struct page *ref_page, zap_flags_t zap_flags) 5579 { 5580 struct mm_struct *mm = vma->vm_mm; 5581 unsigned long address; 5582 pte_t *ptep; 5583 pte_t pte; 5584 spinlock_t *ptl; 5585 struct page *page; 5586 struct hstate *h = hstate_vma(vma); 5587 unsigned long sz = huge_page_size(h); 5588 unsigned long last_addr_mask; 5589 bool force_flush = false; 5590 5591 WARN_ON(!is_vm_hugetlb_page(vma)); 5592 BUG_ON(start & ~huge_page_mask(h)); 5593 BUG_ON(end & ~huge_page_mask(h)); 5594 5595 /* 5596 * This is a hugetlb vma, all the pte entries should point 5597 * to huge page. 5598 */ 5599 tlb_change_page_size(tlb, sz); 5600 tlb_start_vma(tlb, vma); 5601 5602 last_addr_mask = hugetlb_mask_last_page(h); 5603 address = start; 5604 for (; address < end; address += sz) { 5605 ptep = hugetlb_walk(vma, address, sz); 5606 if (!ptep) { 5607 address |= last_addr_mask; 5608 continue; 5609 } 5610 5611 ptl = huge_pte_lock(h, mm, ptep); 5612 if (huge_pmd_unshare(mm, vma, address, ptep)) { 5613 spin_unlock(ptl); 5614 tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE); 5615 force_flush = true; 5616 address |= last_addr_mask; 5617 continue; 5618 } 5619 5620 pte = huge_ptep_get(ptep); 5621 if (huge_pte_none(pte)) { 5622 spin_unlock(ptl); 5623 continue; 5624 } 5625 5626 /* 5627 * Migrating hugepage or HWPoisoned hugepage is already 5628 * unmapped and its refcount is dropped, so just clear pte here. 5629 */ 5630 if (unlikely(!pte_present(pte))) { 5631 /* 5632 * If the pte was wr-protected by uffd-wp in any of the 5633 * swap forms, meanwhile the caller does not want to 5634 * drop the uffd-wp bit in this zap, then replace the 5635 * pte with a marker. 5636 */ 5637 if (pte_swp_uffd_wp_any(pte) && 5638 !(zap_flags & ZAP_FLAG_DROP_MARKER)) 5639 set_huge_pte_at(mm, address, ptep, 5640 make_pte_marker(PTE_MARKER_UFFD_WP), 5641 sz); 5642 else 5643 huge_pte_clear(mm, address, ptep, sz); 5644 spin_unlock(ptl); 5645 continue; 5646 } 5647 5648 page = pte_page(pte); 5649 /* 5650 * If a reference page is supplied, it is because a specific 5651 * page is being unmapped, not a range. Ensure the page we 5652 * are about to unmap is the actual page of interest. 5653 */ 5654 if (ref_page) { 5655 if (page != ref_page) { 5656 spin_unlock(ptl); 5657 continue; 5658 } 5659 /* 5660 * Mark the VMA as having unmapped its page so that 5661 * future faults in this VMA will fail rather than 5662 * looking like data was lost 5663 */ 5664 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); 5665 } 5666 5667 pte = huge_ptep_get_and_clear(mm, address, ptep); 5668 tlb_remove_huge_tlb_entry(h, tlb, ptep, address); 5669 if (huge_pte_dirty(pte)) 5670 set_page_dirty(page); 5671 /* Leave a uffd-wp pte marker if needed */ 5672 if (huge_pte_uffd_wp(pte) && 5673 !(zap_flags & ZAP_FLAG_DROP_MARKER)) 5674 set_huge_pte_at(mm, address, ptep, 5675 make_pte_marker(PTE_MARKER_UFFD_WP), 5676 sz); 5677 hugetlb_count_sub(pages_per_huge_page(h), mm); 5678 hugetlb_remove_rmap(page_folio(page)); 5679 5680 spin_unlock(ptl); 5681 tlb_remove_page_size(tlb, page, huge_page_size(h)); 5682 /* 5683 * Bail out after unmapping reference page if supplied 5684 */ 5685 if (ref_page) 5686 break; 5687 } 5688 tlb_end_vma(tlb, vma); 5689 5690 /* 5691 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We 5692 * could defer the flush until now, since by holding i_mmap_rwsem we 5693 * guaranteed that the last refernece would not be dropped. But we must 5694 * do the flushing before we return, as otherwise i_mmap_rwsem will be 5695 * dropped and the last reference to the shared PMDs page might be 5696 * dropped as well. 5697 * 5698 * In theory we could defer the freeing of the PMD pages as well, but 5699 * huge_pmd_unshare() relies on the exact page_count for the PMD page to 5700 * detect sharing, so we cannot defer the release of the page either. 5701 * Instead, do flush now. 5702 */ 5703 if (force_flush) 5704 tlb_flush_mmu_tlbonly(tlb); 5705 } 5706 5707 void __hugetlb_zap_begin(struct vm_area_struct *vma, 5708 unsigned long *start, unsigned long *end) 5709 { 5710 if (!vma->vm_file) /* hugetlbfs_file_mmap error */ 5711 return; 5712 5713 adjust_range_if_pmd_sharing_possible(vma, start, end); 5714 hugetlb_vma_lock_write(vma); 5715 if (vma->vm_file) 5716 i_mmap_lock_write(vma->vm_file->f_mapping); 5717 } 5718 5719 void __hugetlb_zap_end(struct vm_area_struct *vma, 5720 struct zap_details *details) 5721 { 5722 zap_flags_t zap_flags = details ? details->zap_flags : 0; 5723 5724 if (!vma->vm_file) /* hugetlbfs_file_mmap error */ 5725 return; 5726 5727 if (zap_flags & ZAP_FLAG_UNMAP) { /* final unmap */ 5728 /* 5729 * Unlock and free the vma lock before releasing i_mmap_rwsem. 5730 * When the vma_lock is freed, this makes the vma ineligible 5731 * for pmd sharing. And, i_mmap_rwsem is required to set up 5732 * pmd sharing. This is important as page tables for this 5733 * unmapped range will be asynchrously deleted. If the page 5734 * tables are shared, there will be issues when accessed by 5735 * someone else. 5736 */ 5737 __hugetlb_vma_unlock_write_free(vma); 5738 } else { 5739 hugetlb_vma_unlock_write(vma); 5740 } 5741 5742 if (vma->vm_file) 5743 i_mmap_unlock_write(vma->vm_file->f_mapping); 5744 } 5745 5746 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, 5747 unsigned long end, struct page *ref_page, 5748 zap_flags_t zap_flags) 5749 { 5750 struct mmu_notifier_range range; 5751 struct mmu_gather tlb; 5752 5753 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 5754 start, end); 5755 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 5756 mmu_notifier_invalidate_range_start(&range); 5757 tlb_gather_mmu(&tlb, vma->vm_mm); 5758 5759 __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags); 5760 5761 mmu_notifier_invalidate_range_end(&range); 5762 tlb_finish_mmu(&tlb); 5763 } 5764 5765 /* 5766 * This is called when the original mapper is failing to COW a MAP_PRIVATE 5767 * mapping it owns the reserve page for. The intention is to unmap the page 5768 * from other VMAs and let the children be SIGKILLed if they are faulting the 5769 * same region. 5770 */ 5771 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, 5772 struct page *page, unsigned long address) 5773 { 5774 struct hstate *h = hstate_vma(vma); 5775 struct vm_area_struct *iter_vma; 5776 struct address_space *mapping; 5777 pgoff_t pgoff; 5778 5779 /* 5780 * vm_pgoff is in PAGE_SIZE units, hence the different calculation 5781 * from page cache lookup which is in HPAGE_SIZE units. 5782 */ 5783 address = address & huge_page_mask(h); 5784 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + 5785 vma->vm_pgoff; 5786 mapping = vma->vm_file->f_mapping; 5787 5788 /* 5789 * Take the mapping lock for the duration of the table walk. As 5790 * this mapping should be shared between all the VMAs, 5791 * __unmap_hugepage_range() is called as the lock is already held 5792 */ 5793 i_mmap_lock_write(mapping); 5794 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) { 5795 /* Do not unmap the current VMA */ 5796 if (iter_vma == vma) 5797 continue; 5798 5799 /* 5800 * Shared VMAs have their own reserves and do not affect 5801 * MAP_PRIVATE accounting but it is possible that a shared 5802 * VMA is using the same page so check and skip such VMAs. 5803 */ 5804 if (iter_vma->vm_flags & VM_MAYSHARE) 5805 continue; 5806 5807 /* 5808 * Unmap the page from other VMAs without their own reserves. 5809 * They get marked to be SIGKILLed if they fault in these 5810 * areas. This is because a future no-page fault on this VMA 5811 * could insert a zeroed page instead of the data existing 5812 * from the time of fork. This would look like data corruption 5813 */ 5814 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) 5815 unmap_hugepage_range(iter_vma, address, 5816 address + huge_page_size(h), page, 0); 5817 } 5818 i_mmap_unlock_write(mapping); 5819 } 5820 5821 /* 5822 * hugetlb_wp() should be called with page lock of the original hugepage held. 5823 * Called with hugetlb_fault_mutex_table held and pte_page locked so we 5824 * cannot race with other handlers or page migration. 5825 * Keep the pte_same checks anyway to make transition from the mutex easier. 5826 */ 5827 static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma, 5828 unsigned long address, pte_t *ptep, unsigned int flags, 5829 struct folio *pagecache_folio, spinlock_t *ptl) 5830 { 5831 const bool unshare = flags & FAULT_FLAG_UNSHARE; 5832 pte_t pte = huge_ptep_get(ptep); 5833 struct hstate *h = hstate_vma(vma); 5834 struct folio *old_folio; 5835 struct folio *new_folio; 5836 int outside_reserve = 0; 5837 vm_fault_t ret = 0; 5838 unsigned long haddr = address & huge_page_mask(h); 5839 struct mmu_notifier_range range; 5840 5841 /* 5842 * Never handle CoW for uffd-wp protected pages. It should be only 5843 * handled when the uffd-wp protection is removed. 5844 * 5845 * Note that only the CoW optimization path (in hugetlb_no_page()) 5846 * can trigger this, because hugetlb_fault() will always resolve 5847 * uffd-wp bit first. 5848 */ 5849 if (!unshare && huge_pte_uffd_wp(pte)) 5850 return 0; 5851 5852 /* 5853 * hugetlb does not support FOLL_FORCE-style write faults that keep the 5854 * PTE mapped R/O such as maybe_mkwrite() would do. 5855 */ 5856 if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE))) 5857 return VM_FAULT_SIGSEGV; 5858 5859 /* Let's take out MAP_SHARED mappings first. */ 5860 if (vma->vm_flags & VM_MAYSHARE) { 5861 set_huge_ptep_writable(vma, haddr, ptep); 5862 return 0; 5863 } 5864 5865 old_folio = page_folio(pte_page(pte)); 5866 5867 delayacct_wpcopy_start(); 5868 5869 retry_avoidcopy: 5870 /* 5871 * If no-one else is actually using this page, we're the exclusive 5872 * owner and can reuse this page. 5873 */ 5874 if (folio_mapcount(old_folio) == 1 && folio_test_anon(old_folio)) { 5875 if (!PageAnonExclusive(&old_folio->page)) { 5876 folio_move_anon_rmap(old_folio, vma); 5877 SetPageAnonExclusive(&old_folio->page); 5878 } 5879 if (likely(!unshare)) 5880 set_huge_ptep_writable(vma, haddr, ptep); 5881 5882 delayacct_wpcopy_end(); 5883 return 0; 5884 } 5885 VM_BUG_ON_PAGE(folio_test_anon(old_folio) && 5886 PageAnonExclusive(&old_folio->page), &old_folio->page); 5887 5888 /* 5889 * If the process that created a MAP_PRIVATE mapping is about to 5890 * perform a COW due to a shared page count, attempt to satisfy 5891 * the allocation without using the existing reserves. The pagecache 5892 * page is used to determine if the reserve at this address was 5893 * consumed or not. If reserves were used, a partial faulted mapping 5894 * at the time of fork() could consume its reserves on COW instead 5895 * of the full address range. 5896 */ 5897 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && 5898 old_folio != pagecache_folio) 5899 outside_reserve = 1; 5900 5901 folio_get(old_folio); 5902 5903 /* 5904 * Drop page table lock as buddy allocator may be called. It will 5905 * be acquired again before returning to the caller, as expected. 5906 */ 5907 spin_unlock(ptl); 5908 new_folio = alloc_hugetlb_folio(vma, haddr, outside_reserve); 5909 5910 if (IS_ERR(new_folio)) { 5911 /* 5912 * If a process owning a MAP_PRIVATE mapping fails to COW, 5913 * it is due to references held by a child and an insufficient 5914 * huge page pool. To guarantee the original mappers 5915 * reliability, unmap the page from child processes. The child 5916 * may get SIGKILLed if it later faults. 5917 */ 5918 if (outside_reserve) { 5919 struct address_space *mapping = vma->vm_file->f_mapping; 5920 pgoff_t idx; 5921 u32 hash; 5922 5923 folio_put(old_folio); 5924 /* 5925 * Drop hugetlb_fault_mutex and vma_lock before 5926 * unmapping. unmapping needs to hold vma_lock 5927 * in write mode. Dropping vma_lock in read mode 5928 * here is OK as COW mappings do not interact with 5929 * PMD sharing. 5930 * 5931 * Reacquire both after unmap operation. 5932 */ 5933 idx = vma_hugecache_offset(h, vma, haddr); 5934 hash = hugetlb_fault_mutex_hash(mapping, idx); 5935 hugetlb_vma_unlock_read(vma); 5936 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 5937 5938 unmap_ref_private(mm, vma, &old_folio->page, haddr); 5939 5940 mutex_lock(&hugetlb_fault_mutex_table[hash]); 5941 hugetlb_vma_lock_read(vma); 5942 spin_lock(ptl); 5943 ptep = hugetlb_walk(vma, haddr, huge_page_size(h)); 5944 if (likely(ptep && 5945 pte_same(huge_ptep_get(ptep), pte))) 5946 goto retry_avoidcopy; 5947 /* 5948 * race occurs while re-acquiring page table 5949 * lock, and our job is done. 5950 */ 5951 delayacct_wpcopy_end(); 5952 return 0; 5953 } 5954 5955 ret = vmf_error(PTR_ERR(new_folio)); 5956 goto out_release_old; 5957 } 5958 5959 /* 5960 * When the original hugepage is shared one, it does not have 5961 * anon_vma prepared. 5962 */ 5963 if (unlikely(anon_vma_prepare(vma))) { 5964 ret = VM_FAULT_OOM; 5965 goto out_release_all; 5966 } 5967 5968 if (copy_user_large_folio(new_folio, old_folio, address, vma)) { 5969 ret = VM_FAULT_HWPOISON_LARGE; 5970 goto out_release_all; 5971 } 5972 __folio_mark_uptodate(new_folio); 5973 5974 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, haddr, 5975 haddr + huge_page_size(h)); 5976 mmu_notifier_invalidate_range_start(&range); 5977 5978 /* 5979 * Retake the page table lock to check for racing updates 5980 * before the page tables are altered 5981 */ 5982 spin_lock(ptl); 5983 ptep = hugetlb_walk(vma, haddr, huge_page_size(h)); 5984 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) { 5985 pte_t newpte = make_huge_pte(vma, &new_folio->page, !unshare); 5986 5987 /* Break COW or unshare */ 5988 huge_ptep_clear_flush(vma, haddr, ptep); 5989 hugetlb_remove_rmap(old_folio); 5990 hugetlb_add_new_anon_rmap(new_folio, vma, haddr); 5991 if (huge_pte_uffd_wp(pte)) 5992 newpte = huge_pte_mkuffd_wp(newpte); 5993 set_huge_pte_at(mm, haddr, ptep, newpte, huge_page_size(h)); 5994 folio_set_hugetlb_migratable(new_folio); 5995 /* Make the old page be freed below */ 5996 new_folio = old_folio; 5997 } 5998 spin_unlock(ptl); 5999 mmu_notifier_invalidate_range_end(&range); 6000 out_release_all: 6001 /* 6002 * No restore in case of successful pagetable update (Break COW or 6003 * unshare) 6004 */ 6005 if (new_folio != old_folio) 6006 restore_reserve_on_error(h, vma, haddr, new_folio); 6007 folio_put(new_folio); 6008 out_release_old: 6009 folio_put(old_folio); 6010 6011 spin_lock(ptl); /* Caller expects lock to be held */ 6012 6013 delayacct_wpcopy_end(); 6014 return ret; 6015 } 6016 6017 /* 6018 * Return whether there is a pagecache page to back given address within VMA. 6019 */ 6020 static bool hugetlbfs_pagecache_present(struct hstate *h, 6021 struct vm_area_struct *vma, unsigned long address) 6022 { 6023 struct address_space *mapping = vma->vm_file->f_mapping; 6024 pgoff_t idx = linear_page_index(vma, address); 6025 struct folio *folio; 6026 6027 folio = filemap_get_folio(mapping, idx); 6028 if (IS_ERR(folio)) 6029 return false; 6030 folio_put(folio); 6031 return true; 6032 } 6033 6034 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping, 6035 pgoff_t idx) 6036 { 6037 struct inode *inode = mapping->host; 6038 struct hstate *h = hstate_inode(inode); 6039 int err; 6040 6041 idx <<= huge_page_order(h); 6042 __folio_set_locked(folio); 6043 err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL); 6044 6045 if (unlikely(err)) { 6046 __folio_clear_locked(folio); 6047 return err; 6048 } 6049 folio_clear_hugetlb_restore_reserve(folio); 6050 6051 /* 6052 * mark folio dirty so that it will not be removed from cache/file 6053 * by non-hugetlbfs specific code paths. 6054 */ 6055 folio_mark_dirty(folio); 6056 6057 spin_lock(&inode->i_lock); 6058 inode->i_blocks += blocks_per_huge_page(h); 6059 spin_unlock(&inode->i_lock); 6060 return 0; 6061 } 6062 6063 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma, 6064 struct address_space *mapping, 6065 pgoff_t idx, 6066 unsigned int flags, 6067 unsigned long haddr, 6068 unsigned long addr, 6069 unsigned long reason) 6070 { 6071 u32 hash; 6072 struct vm_fault vmf = { 6073 .vma = vma, 6074 .address = haddr, 6075 .real_address = addr, 6076 .flags = flags, 6077 6078 /* 6079 * Hard to debug if it ends up being 6080 * used by a callee that assumes 6081 * something about the other 6082 * uninitialized fields... same as in 6083 * memory.c 6084 */ 6085 }; 6086 6087 /* 6088 * vma_lock and hugetlb_fault_mutex must be dropped before handling 6089 * userfault. Also mmap_lock could be dropped due to handling 6090 * userfault, any vma operation should be careful from here. 6091 */ 6092 hugetlb_vma_unlock_read(vma); 6093 hash = hugetlb_fault_mutex_hash(mapping, idx); 6094 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6095 return handle_userfault(&vmf, reason); 6096 } 6097 6098 /* 6099 * Recheck pte with pgtable lock. Returns true if pte didn't change, or 6100 * false if pte changed or is changing. 6101 */ 6102 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm, 6103 pte_t *ptep, pte_t old_pte) 6104 { 6105 spinlock_t *ptl; 6106 bool same; 6107 6108 ptl = huge_pte_lock(h, mm, ptep); 6109 same = pte_same(huge_ptep_get(ptep), old_pte); 6110 spin_unlock(ptl); 6111 6112 return same; 6113 } 6114 6115 static vm_fault_t hugetlb_no_page(struct mm_struct *mm, 6116 struct vm_area_struct *vma, 6117 struct address_space *mapping, pgoff_t idx, 6118 unsigned long address, pte_t *ptep, 6119 pte_t old_pte, unsigned int flags) 6120 { 6121 struct hstate *h = hstate_vma(vma); 6122 vm_fault_t ret = VM_FAULT_SIGBUS; 6123 int anon_rmap = 0; 6124 unsigned long size; 6125 struct folio *folio; 6126 pte_t new_pte; 6127 spinlock_t *ptl; 6128 unsigned long haddr = address & huge_page_mask(h); 6129 bool new_folio, new_pagecache_folio = false; 6130 u32 hash = hugetlb_fault_mutex_hash(mapping, idx); 6131 6132 /* 6133 * Currently, we are forced to kill the process in the event the 6134 * original mapper has unmapped pages from the child due to a failed 6135 * COW/unsharing. Warn that such a situation has occurred as it may not 6136 * be obvious. 6137 */ 6138 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { 6139 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n", 6140 current->pid); 6141 goto out; 6142 } 6143 6144 /* 6145 * Use page lock to guard against racing truncation 6146 * before we get page_table_lock. 6147 */ 6148 new_folio = false; 6149 folio = filemap_lock_hugetlb_folio(h, mapping, idx); 6150 if (IS_ERR(folio)) { 6151 size = i_size_read(mapping->host) >> huge_page_shift(h); 6152 if (idx >= size) 6153 goto out; 6154 /* Check for page in userfault range */ 6155 if (userfaultfd_missing(vma)) { 6156 /* 6157 * Since hugetlb_no_page() was examining pte 6158 * without pgtable lock, we need to re-test under 6159 * lock because the pte may not be stable and could 6160 * have changed from under us. Try to detect 6161 * either changed or during-changing ptes and retry 6162 * properly when needed. 6163 * 6164 * Note that userfaultfd is actually fine with 6165 * false positives (e.g. caused by pte changed), 6166 * but not wrong logical events (e.g. caused by 6167 * reading a pte during changing). The latter can 6168 * confuse the userspace, so the strictness is very 6169 * much preferred. E.g., MISSING event should 6170 * never happen on the page after UFFDIO_COPY has 6171 * correctly installed the page and returned. 6172 */ 6173 if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) { 6174 ret = 0; 6175 goto out; 6176 } 6177 6178 return hugetlb_handle_userfault(vma, mapping, idx, flags, 6179 haddr, address, 6180 VM_UFFD_MISSING); 6181 } 6182 6183 folio = alloc_hugetlb_folio(vma, haddr, 0); 6184 if (IS_ERR(folio)) { 6185 /* 6186 * Returning error will result in faulting task being 6187 * sent SIGBUS. The hugetlb fault mutex prevents two 6188 * tasks from racing to fault in the same page which 6189 * could result in false unable to allocate errors. 6190 * Page migration does not take the fault mutex, but 6191 * does a clear then write of pte's under page table 6192 * lock. Page fault code could race with migration, 6193 * notice the clear pte and try to allocate a page 6194 * here. Before returning error, get ptl and make 6195 * sure there really is no pte entry. 6196 */ 6197 if (hugetlb_pte_stable(h, mm, ptep, old_pte)) 6198 ret = vmf_error(PTR_ERR(folio)); 6199 else 6200 ret = 0; 6201 goto out; 6202 } 6203 clear_huge_page(&folio->page, address, pages_per_huge_page(h)); 6204 __folio_mark_uptodate(folio); 6205 new_folio = true; 6206 6207 if (vma->vm_flags & VM_MAYSHARE) { 6208 int err = hugetlb_add_to_page_cache(folio, mapping, idx); 6209 if (err) { 6210 /* 6211 * err can't be -EEXIST which implies someone 6212 * else consumed the reservation since hugetlb 6213 * fault mutex is held when add a hugetlb page 6214 * to the page cache. So it's safe to call 6215 * restore_reserve_on_error() here. 6216 */ 6217 restore_reserve_on_error(h, vma, haddr, folio); 6218 folio_put(folio); 6219 goto out; 6220 } 6221 new_pagecache_folio = true; 6222 } else { 6223 folio_lock(folio); 6224 if (unlikely(anon_vma_prepare(vma))) { 6225 ret = VM_FAULT_OOM; 6226 goto backout_unlocked; 6227 } 6228 anon_rmap = 1; 6229 } 6230 } else { 6231 /* 6232 * If memory error occurs between mmap() and fault, some process 6233 * don't have hwpoisoned swap entry for errored virtual address. 6234 * So we need to block hugepage fault by PG_hwpoison bit check. 6235 */ 6236 if (unlikely(folio_test_hwpoison(folio))) { 6237 ret = VM_FAULT_HWPOISON_LARGE | 6238 VM_FAULT_SET_HINDEX(hstate_index(h)); 6239 goto backout_unlocked; 6240 } 6241 6242 /* Check for page in userfault range. */ 6243 if (userfaultfd_minor(vma)) { 6244 folio_unlock(folio); 6245 folio_put(folio); 6246 /* See comment in userfaultfd_missing() block above */ 6247 if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) { 6248 ret = 0; 6249 goto out; 6250 } 6251 return hugetlb_handle_userfault(vma, mapping, idx, flags, 6252 haddr, address, 6253 VM_UFFD_MINOR); 6254 } 6255 } 6256 6257 /* 6258 * If we are going to COW a private mapping later, we examine the 6259 * pending reservations for this page now. This will ensure that 6260 * any allocations necessary to record that reservation occur outside 6261 * the spinlock. 6262 */ 6263 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 6264 if (vma_needs_reservation(h, vma, haddr) < 0) { 6265 ret = VM_FAULT_OOM; 6266 goto backout_unlocked; 6267 } 6268 /* Just decrements count, does not deallocate */ 6269 vma_end_reservation(h, vma, haddr); 6270 } 6271 6272 ptl = huge_pte_lock(h, mm, ptep); 6273 ret = 0; 6274 /* If pte changed from under us, retry */ 6275 if (!pte_same(huge_ptep_get(ptep), old_pte)) 6276 goto backout; 6277 6278 if (anon_rmap) 6279 hugetlb_add_new_anon_rmap(folio, vma, haddr); 6280 else 6281 hugetlb_add_file_rmap(folio); 6282 new_pte = make_huge_pte(vma, &folio->page, ((vma->vm_flags & VM_WRITE) 6283 && (vma->vm_flags & VM_SHARED))); 6284 /* 6285 * If this pte was previously wr-protected, keep it wr-protected even 6286 * if populated. 6287 */ 6288 if (unlikely(pte_marker_uffd_wp(old_pte))) 6289 new_pte = huge_pte_mkuffd_wp(new_pte); 6290 set_huge_pte_at(mm, haddr, ptep, new_pte, huge_page_size(h)); 6291 6292 hugetlb_count_add(pages_per_huge_page(h), mm); 6293 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 6294 /* Optimization, do the COW without a second fault */ 6295 ret = hugetlb_wp(mm, vma, address, ptep, flags, folio, ptl); 6296 } 6297 6298 spin_unlock(ptl); 6299 6300 /* 6301 * Only set hugetlb_migratable in newly allocated pages. Existing pages 6302 * found in the pagecache may not have hugetlb_migratable if they have 6303 * been isolated for migration. 6304 */ 6305 if (new_folio) 6306 folio_set_hugetlb_migratable(folio); 6307 6308 folio_unlock(folio); 6309 out: 6310 hugetlb_vma_unlock_read(vma); 6311 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6312 return ret; 6313 6314 backout: 6315 spin_unlock(ptl); 6316 backout_unlocked: 6317 if (new_folio && !new_pagecache_folio) 6318 restore_reserve_on_error(h, vma, haddr, folio); 6319 6320 folio_unlock(folio); 6321 folio_put(folio); 6322 goto out; 6323 } 6324 6325 #ifdef CONFIG_SMP 6326 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 6327 { 6328 unsigned long key[2]; 6329 u32 hash; 6330 6331 key[0] = (unsigned long) mapping; 6332 key[1] = idx; 6333 6334 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0); 6335 6336 return hash & (num_fault_mutexes - 1); 6337 } 6338 #else 6339 /* 6340 * For uniprocessor systems we always use a single mutex, so just 6341 * return 0 and avoid the hashing overhead. 6342 */ 6343 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 6344 { 6345 return 0; 6346 } 6347 #endif 6348 6349 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, 6350 unsigned long address, unsigned int flags) 6351 { 6352 pte_t *ptep, entry; 6353 spinlock_t *ptl; 6354 vm_fault_t ret; 6355 u32 hash; 6356 pgoff_t idx; 6357 struct folio *folio = NULL; 6358 struct folio *pagecache_folio = NULL; 6359 struct hstate *h = hstate_vma(vma); 6360 struct address_space *mapping; 6361 int need_wait_lock = 0; 6362 unsigned long haddr = address & huge_page_mask(h); 6363 6364 /* TODO: Handle faults under the VMA lock */ 6365 if (flags & FAULT_FLAG_VMA_LOCK) { 6366 vma_end_read(vma); 6367 return VM_FAULT_RETRY; 6368 } 6369 6370 /* 6371 * Serialize hugepage allocation and instantiation, so that we don't 6372 * get spurious allocation failures if two CPUs race to instantiate 6373 * the same page in the page cache. 6374 */ 6375 mapping = vma->vm_file->f_mapping; 6376 idx = vma_hugecache_offset(h, vma, haddr); 6377 hash = hugetlb_fault_mutex_hash(mapping, idx); 6378 mutex_lock(&hugetlb_fault_mutex_table[hash]); 6379 6380 /* 6381 * Acquire vma lock before calling huge_pte_alloc and hold 6382 * until finished with ptep. This prevents huge_pmd_unshare from 6383 * being called elsewhere and making the ptep no longer valid. 6384 */ 6385 hugetlb_vma_lock_read(vma); 6386 ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h)); 6387 if (!ptep) { 6388 hugetlb_vma_unlock_read(vma); 6389 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6390 return VM_FAULT_OOM; 6391 } 6392 6393 entry = huge_ptep_get(ptep); 6394 if (huge_pte_none_mostly(entry)) { 6395 if (is_pte_marker(entry)) { 6396 pte_marker marker = 6397 pte_marker_get(pte_to_swp_entry(entry)); 6398 6399 if (marker & PTE_MARKER_POISONED) { 6400 ret = VM_FAULT_HWPOISON_LARGE; 6401 goto out_mutex; 6402 } 6403 } 6404 6405 /* 6406 * Other PTE markers should be handled the same way as none PTE. 6407 * 6408 * hugetlb_no_page will drop vma lock and hugetlb fault 6409 * mutex internally, which make us return immediately. 6410 */ 6411 return hugetlb_no_page(mm, vma, mapping, idx, address, ptep, 6412 entry, flags); 6413 } 6414 6415 ret = 0; 6416 6417 /* 6418 * entry could be a migration/hwpoison entry at this point, so this 6419 * check prevents the kernel from going below assuming that we have 6420 * an active hugepage in pagecache. This goto expects the 2nd page 6421 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will 6422 * properly handle it. 6423 */ 6424 if (!pte_present(entry)) { 6425 if (unlikely(is_hugetlb_entry_migration(entry))) { 6426 /* 6427 * Release the hugetlb fault lock now, but retain 6428 * the vma lock, because it is needed to guard the 6429 * huge_pte_lockptr() later in 6430 * migration_entry_wait_huge(). The vma lock will 6431 * be released there. 6432 */ 6433 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6434 migration_entry_wait_huge(vma, ptep); 6435 return 0; 6436 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) 6437 ret = VM_FAULT_HWPOISON_LARGE | 6438 VM_FAULT_SET_HINDEX(hstate_index(h)); 6439 goto out_mutex; 6440 } 6441 6442 /* 6443 * If we are going to COW/unshare the mapping later, we examine the 6444 * pending reservations for this page now. This will ensure that any 6445 * allocations necessary to record that reservation occur outside the 6446 * spinlock. Also lookup the pagecache page now as it is used to 6447 * determine if a reservation has been consumed. 6448 */ 6449 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) && 6450 !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) { 6451 if (vma_needs_reservation(h, vma, haddr) < 0) { 6452 ret = VM_FAULT_OOM; 6453 goto out_mutex; 6454 } 6455 /* Just decrements count, does not deallocate */ 6456 vma_end_reservation(h, vma, haddr); 6457 6458 pagecache_folio = filemap_lock_hugetlb_folio(h, mapping, idx); 6459 if (IS_ERR(pagecache_folio)) 6460 pagecache_folio = NULL; 6461 } 6462 6463 ptl = huge_pte_lock(h, mm, ptep); 6464 6465 /* Check for a racing update before calling hugetlb_wp() */ 6466 if (unlikely(!pte_same(entry, huge_ptep_get(ptep)))) 6467 goto out_ptl; 6468 6469 /* Handle userfault-wp first, before trying to lock more pages */ 6470 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) && 6471 (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) { 6472 if (!userfaultfd_wp_async(vma)) { 6473 struct vm_fault vmf = { 6474 .vma = vma, 6475 .address = haddr, 6476 .real_address = address, 6477 .flags = flags, 6478 }; 6479 6480 spin_unlock(ptl); 6481 if (pagecache_folio) { 6482 folio_unlock(pagecache_folio); 6483 folio_put(pagecache_folio); 6484 } 6485 hugetlb_vma_unlock_read(vma); 6486 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6487 return handle_userfault(&vmf, VM_UFFD_WP); 6488 } 6489 6490 entry = huge_pte_clear_uffd_wp(entry); 6491 set_huge_pte_at(mm, haddr, ptep, entry, 6492 huge_page_size(hstate_vma(vma))); 6493 /* Fallthrough to CoW */ 6494 } 6495 6496 /* 6497 * hugetlb_wp() requires page locks of pte_page(entry) and 6498 * pagecache_folio, so here we need take the former one 6499 * when folio != pagecache_folio or !pagecache_folio. 6500 */ 6501 folio = page_folio(pte_page(entry)); 6502 if (folio != pagecache_folio) 6503 if (!folio_trylock(folio)) { 6504 need_wait_lock = 1; 6505 goto out_ptl; 6506 } 6507 6508 folio_get(folio); 6509 6510 if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) { 6511 if (!huge_pte_write(entry)) { 6512 ret = hugetlb_wp(mm, vma, address, ptep, flags, 6513 pagecache_folio, ptl); 6514 goto out_put_page; 6515 } else if (likely(flags & FAULT_FLAG_WRITE)) { 6516 entry = huge_pte_mkdirty(entry); 6517 } 6518 } 6519 entry = pte_mkyoung(entry); 6520 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry, 6521 flags & FAULT_FLAG_WRITE)) 6522 update_mmu_cache(vma, haddr, ptep); 6523 out_put_page: 6524 if (folio != pagecache_folio) 6525 folio_unlock(folio); 6526 folio_put(folio); 6527 out_ptl: 6528 spin_unlock(ptl); 6529 6530 if (pagecache_folio) { 6531 folio_unlock(pagecache_folio); 6532 folio_put(pagecache_folio); 6533 } 6534 out_mutex: 6535 hugetlb_vma_unlock_read(vma); 6536 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6537 /* 6538 * Generally it's safe to hold refcount during waiting page lock. But 6539 * here we just wait to defer the next page fault to avoid busy loop and 6540 * the page is not used after unlocked before returning from the current 6541 * page fault. So we are safe from accessing freed page, even if we wait 6542 * here without taking refcount. 6543 */ 6544 if (need_wait_lock) 6545 folio_wait_locked(folio); 6546 return ret; 6547 } 6548 6549 #ifdef CONFIG_USERFAULTFD 6550 /* 6551 * Can probably be eliminated, but still used by hugetlb_mfill_atomic_pte(). 6552 */ 6553 static struct folio *alloc_hugetlb_folio_vma(struct hstate *h, 6554 struct vm_area_struct *vma, unsigned long address) 6555 { 6556 struct mempolicy *mpol; 6557 nodemask_t *nodemask; 6558 struct folio *folio; 6559 gfp_t gfp_mask; 6560 int node; 6561 6562 gfp_mask = htlb_alloc_mask(h); 6563 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 6564 folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask); 6565 mpol_cond_put(mpol); 6566 6567 return folio; 6568 } 6569 6570 /* 6571 * Used by userfaultfd UFFDIO_* ioctls. Based on userfaultfd's mfill_atomic_pte 6572 * with modifications for hugetlb pages. 6573 */ 6574 int hugetlb_mfill_atomic_pte(pte_t *dst_pte, 6575 struct vm_area_struct *dst_vma, 6576 unsigned long dst_addr, 6577 unsigned long src_addr, 6578 uffd_flags_t flags, 6579 struct folio **foliop) 6580 { 6581 struct mm_struct *dst_mm = dst_vma->vm_mm; 6582 bool is_continue = uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE); 6583 bool wp_enabled = (flags & MFILL_ATOMIC_WP); 6584 struct hstate *h = hstate_vma(dst_vma); 6585 struct address_space *mapping = dst_vma->vm_file->f_mapping; 6586 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr); 6587 unsigned long size; 6588 int vm_shared = dst_vma->vm_flags & VM_SHARED; 6589 pte_t _dst_pte; 6590 spinlock_t *ptl; 6591 int ret = -ENOMEM; 6592 struct folio *folio; 6593 int writable; 6594 bool folio_in_pagecache = false; 6595 6596 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_POISON)) { 6597 ptl = huge_pte_lock(h, dst_mm, dst_pte); 6598 6599 /* Don't overwrite any existing PTEs (even markers) */ 6600 if (!huge_pte_none(huge_ptep_get(dst_pte))) { 6601 spin_unlock(ptl); 6602 return -EEXIST; 6603 } 6604 6605 _dst_pte = make_pte_marker(PTE_MARKER_POISONED); 6606 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, 6607 huge_page_size(h)); 6608 6609 /* No need to invalidate - it was non-present before */ 6610 update_mmu_cache(dst_vma, dst_addr, dst_pte); 6611 6612 spin_unlock(ptl); 6613 return 0; 6614 } 6615 6616 if (is_continue) { 6617 ret = -EFAULT; 6618 folio = filemap_lock_hugetlb_folio(h, mapping, idx); 6619 if (IS_ERR(folio)) 6620 goto out; 6621 folio_in_pagecache = true; 6622 } else if (!*foliop) { 6623 /* If a folio already exists, then it's UFFDIO_COPY for 6624 * a non-missing case. Return -EEXIST. 6625 */ 6626 if (vm_shared && 6627 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) { 6628 ret = -EEXIST; 6629 goto out; 6630 } 6631 6632 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0); 6633 if (IS_ERR(folio)) { 6634 ret = -ENOMEM; 6635 goto out; 6636 } 6637 6638 ret = copy_folio_from_user(folio, (const void __user *) src_addr, 6639 false); 6640 6641 /* fallback to copy_from_user outside mmap_lock */ 6642 if (unlikely(ret)) { 6643 ret = -ENOENT; 6644 /* Free the allocated folio which may have 6645 * consumed a reservation. 6646 */ 6647 restore_reserve_on_error(h, dst_vma, dst_addr, folio); 6648 folio_put(folio); 6649 6650 /* Allocate a temporary folio to hold the copied 6651 * contents. 6652 */ 6653 folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr); 6654 if (!folio) { 6655 ret = -ENOMEM; 6656 goto out; 6657 } 6658 *foliop = folio; 6659 /* Set the outparam foliop and return to the caller to 6660 * copy the contents outside the lock. Don't free the 6661 * folio. 6662 */ 6663 goto out; 6664 } 6665 } else { 6666 if (vm_shared && 6667 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) { 6668 folio_put(*foliop); 6669 ret = -EEXIST; 6670 *foliop = NULL; 6671 goto out; 6672 } 6673 6674 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0); 6675 if (IS_ERR(folio)) { 6676 folio_put(*foliop); 6677 ret = -ENOMEM; 6678 *foliop = NULL; 6679 goto out; 6680 } 6681 ret = copy_user_large_folio(folio, *foliop, dst_addr, dst_vma); 6682 folio_put(*foliop); 6683 *foliop = NULL; 6684 if (ret) { 6685 folio_put(folio); 6686 goto out; 6687 } 6688 } 6689 6690 /* 6691 * The memory barrier inside __folio_mark_uptodate makes sure that 6692 * preceding stores to the page contents become visible before 6693 * the set_pte_at() write. 6694 */ 6695 __folio_mark_uptodate(folio); 6696 6697 /* Add shared, newly allocated pages to the page cache. */ 6698 if (vm_shared && !is_continue) { 6699 size = i_size_read(mapping->host) >> huge_page_shift(h); 6700 ret = -EFAULT; 6701 if (idx >= size) 6702 goto out_release_nounlock; 6703 6704 /* 6705 * Serialization between remove_inode_hugepages() and 6706 * hugetlb_add_to_page_cache() below happens through the 6707 * hugetlb_fault_mutex_table that here must be hold by 6708 * the caller. 6709 */ 6710 ret = hugetlb_add_to_page_cache(folio, mapping, idx); 6711 if (ret) 6712 goto out_release_nounlock; 6713 folio_in_pagecache = true; 6714 } 6715 6716 ptl = huge_pte_lock(h, dst_mm, dst_pte); 6717 6718 ret = -EIO; 6719 if (folio_test_hwpoison(folio)) 6720 goto out_release_unlock; 6721 6722 /* 6723 * We allow to overwrite a pte marker: consider when both MISSING|WP 6724 * registered, we firstly wr-protect a none pte which has no page cache 6725 * page backing it, then access the page. 6726 */ 6727 ret = -EEXIST; 6728 if (!huge_pte_none_mostly(huge_ptep_get(dst_pte))) 6729 goto out_release_unlock; 6730 6731 if (folio_in_pagecache) 6732 hugetlb_add_file_rmap(folio); 6733 else 6734 hugetlb_add_new_anon_rmap(folio, dst_vma, dst_addr); 6735 6736 /* 6737 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY 6738 * with wp flag set, don't set pte write bit. 6739 */ 6740 if (wp_enabled || (is_continue && !vm_shared)) 6741 writable = 0; 6742 else 6743 writable = dst_vma->vm_flags & VM_WRITE; 6744 6745 _dst_pte = make_huge_pte(dst_vma, &folio->page, writable); 6746 /* 6747 * Always mark UFFDIO_COPY page dirty; note that this may not be 6748 * extremely important for hugetlbfs for now since swapping is not 6749 * supported, but we should still be clear in that this page cannot be 6750 * thrown away at will, even if write bit not set. 6751 */ 6752 _dst_pte = huge_pte_mkdirty(_dst_pte); 6753 _dst_pte = pte_mkyoung(_dst_pte); 6754 6755 if (wp_enabled) 6756 _dst_pte = huge_pte_mkuffd_wp(_dst_pte); 6757 6758 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, huge_page_size(h)); 6759 6760 hugetlb_count_add(pages_per_huge_page(h), dst_mm); 6761 6762 /* No need to invalidate - it was non-present before */ 6763 update_mmu_cache(dst_vma, dst_addr, dst_pte); 6764 6765 spin_unlock(ptl); 6766 if (!is_continue) 6767 folio_set_hugetlb_migratable(folio); 6768 if (vm_shared || is_continue) 6769 folio_unlock(folio); 6770 ret = 0; 6771 out: 6772 return ret; 6773 out_release_unlock: 6774 spin_unlock(ptl); 6775 if (vm_shared || is_continue) 6776 folio_unlock(folio); 6777 out_release_nounlock: 6778 if (!folio_in_pagecache) 6779 restore_reserve_on_error(h, dst_vma, dst_addr, folio); 6780 folio_put(folio); 6781 goto out; 6782 } 6783 #endif /* CONFIG_USERFAULTFD */ 6784 6785 struct page *hugetlb_follow_page_mask(struct vm_area_struct *vma, 6786 unsigned long address, unsigned int flags, 6787 unsigned int *page_mask) 6788 { 6789 struct hstate *h = hstate_vma(vma); 6790 struct mm_struct *mm = vma->vm_mm; 6791 unsigned long haddr = address & huge_page_mask(h); 6792 struct page *page = NULL; 6793 spinlock_t *ptl; 6794 pte_t *pte, entry; 6795 int ret; 6796 6797 hugetlb_vma_lock_read(vma); 6798 pte = hugetlb_walk(vma, haddr, huge_page_size(h)); 6799 if (!pte) 6800 goto out_unlock; 6801 6802 ptl = huge_pte_lock(h, mm, pte); 6803 entry = huge_ptep_get(pte); 6804 if (pte_present(entry)) { 6805 page = pte_page(entry); 6806 6807 if (!huge_pte_write(entry)) { 6808 if (flags & FOLL_WRITE) { 6809 page = NULL; 6810 goto out; 6811 } 6812 6813 if (gup_must_unshare(vma, flags, page)) { 6814 /* Tell the caller to do unsharing */ 6815 page = ERR_PTR(-EMLINK); 6816 goto out; 6817 } 6818 } 6819 6820 page = nth_page(page, ((address & ~huge_page_mask(h)) >> PAGE_SHIFT)); 6821 6822 /* 6823 * Note that page may be a sub-page, and with vmemmap 6824 * optimizations the page struct may be read only. 6825 * try_grab_page() will increase the ref count on the 6826 * head page, so this will be OK. 6827 * 6828 * try_grab_page() should always be able to get the page here, 6829 * because we hold the ptl lock and have verified pte_present(). 6830 */ 6831 ret = try_grab_page(page, flags); 6832 6833 if (WARN_ON_ONCE(ret)) { 6834 page = ERR_PTR(ret); 6835 goto out; 6836 } 6837 6838 *page_mask = (1U << huge_page_order(h)) - 1; 6839 } 6840 out: 6841 spin_unlock(ptl); 6842 out_unlock: 6843 hugetlb_vma_unlock_read(vma); 6844 6845 /* 6846 * Fixup retval for dump requests: if pagecache doesn't exist, 6847 * don't try to allocate a new page but just skip it. 6848 */ 6849 if (!page && (flags & FOLL_DUMP) && 6850 !hugetlbfs_pagecache_present(h, vma, address)) 6851 page = ERR_PTR(-EFAULT); 6852 6853 return page; 6854 } 6855 6856 long hugetlb_change_protection(struct vm_area_struct *vma, 6857 unsigned long address, unsigned long end, 6858 pgprot_t newprot, unsigned long cp_flags) 6859 { 6860 struct mm_struct *mm = vma->vm_mm; 6861 unsigned long start = address; 6862 pte_t *ptep; 6863 pte_t pte; 6864 struct hstate *h = hstate_vma(vma); 6865 long pages = 0, psize = huge_page_size(h); 6866 bool shared_pmd = false; 6867 struct mmu_notifier_range range; 6868 unsigned long last_addr_mask; 6869 bool uffd_wp = cp_flags & MM_CP_UFFD_WP; 6870 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE; 6871 6872 /* 6873 * In the case of shared PMDs, the area to flush could be beyond 6874 * start/end. Set range.start/range.end to cover the maximum possible 6875 * range if PMD sharing is possible. 6876 */ 6877 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA, 6878 0, mm, start, end); 6879 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 6880 6881 BUG_ON(address >= end); 6882 flush_cache_range(vma, range.start, range.end); 6883 6884 mmu_notifier_invalidate_range_start(&range); 6885 hugetlb_vma_lock_write(vma); 6886 i_mmap_lock_write(vma->vm_file->f_mapping); 6887 last_addr_mask = hugetlb_mask_last_page(h); 6888 for (; address < end; address += psize) { 6889 spinlock_t *ptl; 6890 ptep = hugetlb_walk(vma, address, psize); 6891 if (!ptep) { 6892 if (!uffd_wp) { 6893 address |= last_addr_mask; 6894 continue; 6895 } 6896 /* 6897 * Userfaultfd wr-protect requires pgtable 6898 * pre-allocations to install pte markers. 6899 */ 6900 ptep = huge_pte_alloc(mm, vma, address, psize); 6901 if (!ptep) { 6902 pages = -ENOMEM; 6903 break; 6904 } 6905 } 6906 ptl = huge_pte_lock(h, mm, ptep); 6907 if (huge_pmd_unshare(mm, vma, address, ptep)) { 6908 /* 6909 * When uffd-wp is enabled on the vma, unshare 6910 * shouldn't happen at all. Warn about it if it 6911 * happened due to some reason. 6912 */ 6913 WARN_ON_ONCE(uffd_wp || uffd_wp_resolve); 6914 pages++; 6915 spin_unlock(ptl); 6916 shared_pmd = true; 6917 address |= last_addr_mask; 6918 continue; 6919 } 6920 pte = huge_ptep_get(ptep); 6921 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) { 6922 /* Nothing to do. */ 6923 } else if (unlikely(is_hugetlb_entry_migration(pte))) { 6924 swp_entry_t entry = pte_to_swp_entry(pte); 6925 struct page *page = pfn_swap_entry_to_page(entry); 6926 pte_t newpte = pte; 6927 6928 if (is_writable_migration_entry(entry)) { 6929 if (PageAnon(page)) 6930 entry = make_readable_exclusive_migration_entry( 6931 swp_offset(entry)); 6932 else 6933 entry = make_readable_migration_entry( 6934 swp_offset(entry)); 6935 newpte = swp_entry_to_pte(entry); 6936 pages++; 6937 } 6938 6939 if (uffd_wp) 6940 newpte = pte_swp_mkuffd_wp(newpte); 6941 else if (uffd_wp_resolve) 6942 newpte = pte_swp_clear_uffd_wp(newpte); 6943 if (!pte_same(pte, newpte)) 6944 set_huge_pte_at(mm, address, ptep, newpte, psize); 6945 } else if (unlikely(is_pte_marker(pte))) { 6946 /* No other markers apply for now. */ 6947 WARN_ON_ONCE(!pte_marker_uffd_wp(pte)); 6948 if (uffd_wp_resolve) 6949 /* Safe to modify directly (non-present->none). */ 6950 huge_pte_clear(mm, address, ptep, psize); 6951 } else if (!huge_pte_none(pte)) { 6952 pte_t old_pte; 6953 unsigned int shift = huge_page_shift(hstate_vma(vma)); 6954 6955 old_pte = huge_ptep_modify_prot_start(vma, address, ptep); 6956 pte = huge_pte_modify(old_pte, newprot); 6957 pte = arch_make_huge_pte(pte, shift, vma->vm_flags); 6958 if (uffd_wp) 6959 pte = huge_pte_mkuffd_wp(pte); 6960 else if (uffd_wp_resolve) 6961 pte = huge_pte_clear_uffd_wp(pte); 6962 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte); 6963 pages++; 6964 } else { 6965 /* None pte */ 6966 if (unlikely(uffd_wp)) 6967 /* Safe to modify directly (none->non-present). */ 6968 set_huge_pte_at(mm, address, ptep, 6969 make_pte_marker(PTE_MARKER_UFFD_WP), 6970 psize); 6971 } 6972 spin_unlock(ptl); 6973 } 6974 /* 6975 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare 6976 * may have cleared our pud entry and done put_page on the page table: 6977 * once we release i_mmap_rwsem, another task can do the final put_page 6978 * and that page table be reused and filled with junk. If we actually 6979 * did unshare a page of pmds, flush the range corresponding to the pud. 6980 */ 6981 if (shared_pmd) 6982 flush_hugetlb_tlb_range(vma, range.start, range.end); 6983 else 6984 flush_hugetlb_tlb_range(vma, start, end); 6985 /* 6986 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs() we are 6987 * downgrading page table protection not changing it to point to a new 6988 * page. 6989 * 6990 * See Documentation/mm/mmu_notifier.rst 6991 */ 6992 i_mmap_unlock_write(vma->vm_file->f_mapping); 6993 hugetlb_vma_unlock_write(vma); 6994 mmu_notifier_invalidate_range_end(&range); 6995 6996 return pages > 0 ? (pages << h->order) : pages; 6997 } 6998 6999 /* Return true if reservation was successful, false otherwise. */ 7000 bool hugetlb_reserve_pages(struct inode *inode, 7001 long from, long to, 7002 struct vm_area_struct *vma, 7003 vm_flags_t vm_flags) 7004 { 7005 long chg = -1, add = -1; 7006 struct hstate *h = hstate_inode(inode); 7007 struct hugepage_subpool *spool = subpool_inode(inode); 7008 struct resv_map *resv_map; 7009 struct hugetlb_cgroup *h_cg = NULL; 7010 long gbl_reserve, regions_needed = 0; 7011 7012 /* This should never happen */ 7013 if (from > to) { 7014 VM_WARN(1, "%s called with a negative range\n", __func__); 7015 return false; 7016 } 7017 7018 /* 7019 * vma specific semaphore used for pmd sharing and fault/truncation 7020 * synchronization 7021 */ 7022 hugetlb_vma_lock_alloc(vma); 7023 7024 /* 7025 * Only apply hugepage reservation if asked. At fault time, an 7026 * attempt will be made for VM_NORESERVE to allocate a page 7027 * without using reserves 7028 */ 7029 if (vm_flags & VM_NORESERVE) 7030 return true; 7031 7032 /* 7033 * Shared mappings base their reservation on the number of pages that 7034 * are already allocated on behalf of the file. Private mappings need 7035 * to reserve the full area even if read-only as mprotect() may be 7036 * called to make the mapping read-write. Assume !vma is a shm mapping 7037 */ 7038 if (!vma || vma->vm_flags & VM_MAYSHARE) { 7039 /* 7040 * resv_map can not be NULL as hugetlb_reserve_pages is only 7041 * called for inodes for which resv_maps were created (see 7042 * hugetlbfs_get_inode). 7043 */ 7044 resv_map = inode_resv_map(inode); 7045 7046 chg = region_chg(resv_map, from, to, ®ions_needed); 7047 } else { 7048 /* Private mapping. */ 7049 resv_map = resv_map_alloc(); 7050 if (!resv_map) 7051 goto out_err; 7052 7053 chg = to - from; 7054 7055 set_vma_resv_map(vma, resv_map); 7056 set_vma_resv_flags(vma, HPAGE_RESV_OWNER); 7057 } 7058 7059 if (chg < 0) 7060 goto out_err; 7061 7062 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h), 7063 chg * pages_per_huge_page(h), &h_cg) < 0) 7064 goto out_err; 7065 7066 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) { 7067 /* For private mappings, the hugetlb_cgroup uncharge info hangs 7068 * of the resv_map. 7069 */ 7070 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h); 7071 } 7072 7073 /* 7074 * There must be enough pages in the subpool for the mapping. If 7075 * the subpool has a minimum size, there may be some global 7076 * reservations already in place (gbl_reserve). 7077 */ 7078 gbl_reserve = hugepage_subpool_get_pages(spool, chg); 7079 if (gbl_reserve < 0) 7080 goto out_uncharge_cgroup; 7081 7082 /* 7083 * Check enough hugepages are available for the reservation. 7084 * Hand the pages back to the subpool if there are not 7085 */ 7086 if (hugetlb_acct_memory(h, gbl_reserve) < 0) 7087 goto out_put_pages; 7088 7089 /* 7090 * Account for the reservations made. Shared mappings record regions 7091 * that have reservations as they are shared by multiple VMAs. 7092 * When the last VMA disappears, the region map says how much 7093 * the reservation was and the page cache tells how much of 7094 * the reservation was consumed. Private mappings are per-VMA and 7095 * only the consumed reservations are tracked. When the VMA 7096 * disappears, the original reservation is the VMA size and the 7097 * consumed reservations are stored in the map. Hence, nothing 7098 * else has to be done for private mappings here 7099 */ 7100 if (!vma || vma->vm_flags & VM_MAYSHARE) { 7101 add = region_add(resv_map, from, to, regions_needed, h, h_cg); 7102 7103 if (unlikely(add < 0)) { 7104 hugetlb_acct_memory(h, -gbl_reserve); 7105 goto out_put_pages; 7106 } else if (unlikely(chg > add)) { 7107 /* 7108 * pages in this range were added to the reserve 7109 * map between region_chg and region_add. This 7110 * indicates a race with alloc_hugetlb_folio. Adjust 7111 * the subpool and reserve counts modified above 7112 * based on the difference. 7113 */ 7114 long rsv_adjust; 7115 7116 /* 7117 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the 7118 * reference to h_cg->css. See comment below for detail. 7119 */ 7120 hugetlb_cgroup_uncharge_cgroup_rsvd( 7121 hstate_index(h), 7122 (chg - add) * pages_per_huge_page(h), h_cg); 7123 7124 rsv_adjust = hugepage_subpool_put_pages(spool, 7125 chg - add); 7126 hugetlb_acct_memory(h, -rsv_adjust); 7127 } else if (h_cg) { 7128 /* 7129 * The file_regions will hold their own reference to 7130 * h_cg->css. So we should release the reference held 7131 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are 7132 * done. 7133 */ 7134 hugetlb_cgroup_put_rsvd_cgroup(h_cg); 7135 } 7136 } 7137 return true; 7138 7139 out_put_pages: 7140 /* put back original number of pages, chg */ 7141 (void)hugepage_subpool_put_pages(spool, chg); 7142 out_uncharge_cgroup: 7143 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h), 7144 chg * pages_per_huge_page(h), h_cg); 7145 out_err: 7146 hugetlb_vma_lock_free(vma); 7147 if (!vma || vma->vm_flags & VM_MAYSHARE) 7148 /* Only call region_abort if the region_chg succeeded but the 7149 * region_add failed or didn't run. 7150 */ 7151 if (chg >= 0 && add < 0) 7152 region_abort(resv_map, from, to, regions_needed); 7153 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 7154 kref_put(&resv_map->refs, resv_map_release); 7155 set_vma_resv_map(vma, NULL); 7156 } 7157 return false; 7158 } 7159 7160 long hugetlb_unreserve_pages(struct inode *inode, long start, long end, 7161 long freed) 7162 { 7163 struct hstate *h = hstate_inode(inode); 7164 struct resv_map *resv_map = inode_resv_map(inode); 7165 long chg = 0; 7166 struct hugepage_subpool *spool = subpool_inode(inode); 7167 long gbl_reserve; 7168 7169 /* 7170 * Since this routine can be called in the evict inode path for all 7171 * hugetlbfs inodes, resv_map could be NULL. 7172 */ 7173 if (resv_map) { 7174 chg = region_del(resv_map, start, end); 7175 /* 7176 * region_del() can fail in the rare case where a region 7177 * must be split and another region descriptor can not be 7178 * allocated. If end == LONG_MAX, it will not fail. 7179 */ 7180 if (chg < 0) 7181 return chg; 7182 } 7183 7184 spin_lock(&inode->i_lock); 7185 inode->i_blocks -= (blocks_per_huge_page(h) * freed); 7186 spin_unlock(&inode->i_lock); 7187 7188 /* 7189 * If the subpool has a minimum size, the number of global 7190 * reservations to be released may be adjusted. 7191 * 7192 * Note that !resv_map implies freed == 0. So (chg - freed) 7193 * won't go negative. 7194 */ 7195 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed)); 7196 hugetlb_acct_memory(h, -gbl_reserve); 7197 7198 return 0; 7199 } 7200 7201 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE 7202 static unsigned long page_table_shareable(struct vm_area_struct *svma, 7203 struct vm_area_struct *vma, 7204 unsigned long addr, pgoff_t idx) 7205 { 7206 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) + 7207 svma->vm_start; 7208 unsigned long sbase = saddr & PUD_MASK; 7209 unsigned long s_end = sbase + PUD_SIZE; 7210 7211 /* Allow segments to share if only one is marked locked */ 7212 unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED_MASK; 7213 unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED_MASK; 7214 7215 /* 7216 * match the virtual addresses, permission and the alignment of the 7217 * page table page. 7218 * 7219 * Also, vma_lock (vm_private_data) is required for sharing. 7220 */ 7221 if (pmd_index(addr) != pmd_index(saddr) || 7222 vm_flags != svm_flags || 7223 !range_in_vma(svma, sbase, s_end) || 7224 !svma->vm_private_data) 7225 return 0; 7226 7227 return saddr; 7228 } 7229 7230 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr) 7231 { 7232 unsigned long start = addr & PUD_MASK; 7233 unsigned long end = start + PUD_SIZE; 7234 7235 #ifdef CONFIG_USERFAULTFD 7236 if (uffd_disable_huge_pmd_share(vma)) 7237 return false; 7238 #endif 7239 /* 7240 * check on proper vm_flags and page table alignment 7241 */ 7242 if (!(vma->vm_flags & VM_MAYSHARE)) 7243 return false; 7244 if (!vma->vm_private_data) /* vma lock required for sharing */ 7245 return false; 7246 if (!range_in_vma(vma, start, end)) 7247 return false; 7248 return true; 7249 } 7250 7251 /* 7252 * Determine if start,end range within vma could be mapped by shared pmd. 7253 * If yes, adjust start and end to cover range associated with possible 7254 * shared pmd mappings. 7255 */ 7256 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 7257 unsigned long *start, unsigned long *end) 7258 { 7259 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE), 7260 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE); 7261 7262 /* 7263 * vma needs to span at least one aligned PUD size, and the range 7264 * must be at least partially within in. 7265 */ 7266 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) || 7267 (*end <= v_start) || (*start >= v_end)) 7268 return; 7269 7270 /* Extend the range to be PUD aligned for a worst case scenario */ 7271 if (*start > v_start) 7272 *start = ALIGN_DOWN(*start, PUD_SIZE); 7273 7274 if (*end < v_end) 7275 *end = ALIGN(*end, PUD_SIZE); 7276 } 7277 7278 /* 7279 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc() 7280 * and returns the corresponding pte. While this is not necessary for the 7281 * !shared pmd case because we can allocate the pmd later as well, it makes the 7282 * code much cleaner. pmd allocation is essential for the shared case because 7283 * pud has to be populated inside the same i_mmap_rwsem section - otherwise 7284 * racing tasks could either miss the sharing (see huge_pte_offset) or select a 7285 * bad pmd for sharing. 7286 */ 7287 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, 7288 unsigned long addr, pud_t *pud) 7289 { 7290 struct address_space *mapping = vma->vm_file->f_mapping; 7291 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + 7292 vma->vm_pgoff; 7293 struct vm_area_struct *svma; 7294 unsigned long saddr; 7295 pte_t *spte = NULL; 7296 pte_t *pte; 7297 7298 i_mmap_lock_read(mapping); 7299 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) { 7300 if (svma == vma) 7301 continue; 7302 7303 saddr = page_table_shareable(svma, vma, addr, idx); 7304 if (saddr) { 7305 spte = hugetlb_walk(svma, saddr, 7306 vma_mmu_pagesize(svma)); 7307 if (spte) { 7308 get_page(virt_to_page(spte)); 7309 break; 7310 } 7311 } 7312 } 7313 7314 if (!spte) 7315 goto out; 7316 7317 spin_lock(&mm->page_table_lock); 7318 if (pud_none(*pud)) { 7319 pud_populate(mm, pud, 7320 (pmd_t *)((unsigned long)spte & PAGE_MASK)); 7321 mm_inc_nr_pmds(mm); 7322 } else { 7323 put_page(virt_to_page(spte)); 7324 } 7325 spin_unlock(&mm->page_table_lock); 7326 out: 7327 pte = (pte_t *)pmd_alloc(mm, pud, addr); 7328 i_mmap_unlock_read(mapping); 7329 return pte; 7330 } 7331 7332 /* 7333 * unmap huge page backed by shared pte. 7334 * 7335 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared 7336 * indicated by page_count > 1, unmap is achieved by clearing pud and 7337 * decrementing the ref count. If count == 1, the pte page is not shared. 7338 * 7339 * Called with page table lock held. 7340 * 7341 * returns: 1 successfully unmapped a shared pte page 7342 * 0 the underlying pte page is not shared, or it is the last user 7343 */ 7344 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, 7345 unsigned long addr, pte_t *ptep) 7346 { 7347 pgd_t *pgd = pgd_offset(mm, addr); 7348 p4d_t *p4d = p4d_offset(pgd, addr); 7349 pud_t *pud = pud_offset(p4d, addr); 7350 7351 i_mmap_assert_write_locked(vma->vm_file->f_mapping); 7352 hugetlb_vma_assert_locked(vma); 7353 BUG_ON(page_count(virt_to_page(ptep)) == 0); 7354 if (page_count(virt_to_page(ptep)) == 1) 7355 return 0; 7356 7357 pud_clear(pud); 7358 put_page(virt_to_page(ptep)); 7359 mm_dec_nr_pmds(mm); 7360 return 1; 7361 } 7362 7363 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 7364 7365 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, 7366 unsigned long addr, pud_t *pud) 7367 { 7368 return NULL; 7369 } 7370 7371 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, 7372 unsigned long addr, pte_t *ptep) 7373 { 7374 return 0; 7375 } 7376 7377 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 7378 unsigned long *start, unsigned long *end) 7379 { 7380 } 7381 7382 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr) 7383 { 7384 return false; 7385 } 7386 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 7387 7388 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB 7389 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 7390 unsigned long addr, unsigned long sz) 7391 { 7392 pgd_t *pgd; 7393 p4d_t *p4d; 7394 pud_t *pud; 7395 pte_t *pte = NULL; 7396 7397 pgd = pgd_offset(mm, addr); 7398 p4d = p4d_alloc(mm, pgd, addr); 7399 if (!p4d) 7400 return NULL; 7401 pud = pud_alloc(mm, p4d, addr); 7402 if (pud) { 7403 if (sz == PUD_SIZE) { 7404 pte = (pte_t *)pud; 7405 } else { 7406 BUG_ON(sz != PMD_SIZE); 7407 if (want_pmd_share(vma, addr) && pud_none(*pud)) 7408 pte = huge_pmd_share(mm, vma, addr, pud); 7409 else 7410 pte = (pte_t *)pmd_alloc(mm, pud, addr); 7411 } 7412 } 7413 7414 if (pte) { 7415 pte_t pteval = ptep_get_lockless(pte); 7416 7417 BUG_ON(pte_present(pteval) && !pte_huge(pteval)); 7418 } 7419 7420 return pte; 7421 } 7422 7423 /* 7424 * huge_pte_offset() - Walk the page table to resolve the hugepage 7425 * entry at address @addr 7426 * 7427 * Return: Pointer to page table entry (PUD or PMD) for 7428 * address @addr, or NULL if a !p*d_present() entry is encountered and the 7429 * size @sz doesn't match the hugepage size at this level of the page 7430 * table. 7431 */ 7432 pte_t *huge_pte_offset(struct mm_struct *mm, 7433 unsigned long addr, unsigned long sz) 7434 { 7435 pgd_t *pgd; 7436 p4d_t *p4d; 7437 pud_t *pud; 7438 pmd_t *pmd; 7439 7440 pgd = pgd_offset(mm, addr); 7441 if (!pgd_present(*pgd)) 7442 return NULL; 7443 p4d = p4d_offset(pgd, addr); 7444 if (!p4d_present(*p4d)) 7445 return NULL; 7446 7447 pud = pud_offset(p4d, addr); 7448 if (sz == PUD_SIZE) 7449 /* must be pud huge, non-present or none */ 7450 return (pte_t *)pud; 7451 if (!pud_present(*pud)) 7452 return NULL; 7453 /* must have a valid entry and size to go further */ 7454 7455 pmd = pmd_offset(pud, addr); 7456 /* must be pmd huge, non-present or none */ 7457 return (pte_t *)pmd; 7458 } 7459 7460 /* 7461 * Return a mask that can be used to update an address to the last huge 7462 * page in a page table page mapping size. Used to skip non-present 7463 * page table entries when linearly scanning address ranges. Architectures 7464 * with unique huge page to page table relationships can define their own 7465 * version of this routine. 7466 */ 7467 unsigned long hugetlb_mask_last_page(struct hstate *h) 7468 { 7469 unsigned long hp_size = huge_page_size(h); 7470 7471 if (hp_size == PUD_SIZE) 7472 return P4D_SIZE - PUD_SIZE; 7473 else if (hp_size == PMD_SIZE) 7474 return PUD_SIZE - PMD_SIZE; 7475 else 7476 return 0UL; 7477 } 7478 7479 #else 7480 7481 /* See description above. Architectures can provide their own version. */ 7482 __weak unsigned long hugetlb_mask_last_page(struct hstate *h) 7483 { 7484 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE 7485 if (huge_page_size(h) == PMD_SIZE) 7486 return PUD_SIZE - PMD_SIZE; 7487 #endif 7488 return 0UL; 7489 } 7490 7491 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */ 7492 7493 /* 7494 * These functions are overwritable if your architecture needs its own 7495 * behavior. 7496 */ 7497 bool isolate_hugetlb(struct folio *folio, struct list_head *list) 7498 { 7499 bool ret = true; 7500 7501 spin_lock_irq(&hugetlb_lock); 7502 if (!folio_test_hugetlb(folio) || 7503 !folio_test_hugetlb_migratable(folio) || 7504 !folio_try_get(folio)) { 7505 ret = false; 7506 goto unlock; 7507 } 7508 folio_clear_hugetlb_migratable(folio); 7509 list_move_tail(&folio->lru, list); 7510 unlock: 7511 spin_unlock_irq(&hugetlb_lock); 7512 return ret; 7513 } 7514 7515 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison) 7516 { 7517 int ret = 0; 7518 7519 *hugetlb = false; 7520 spin_lock_irq(&hugetlb_lock); 7521 if (folio_test_hugetlb(folio)) { 7522 *hugetlb = true; 7523 if (folio_test_hugetlb_freed(folio)) 7524 ret = 0; 7525 else if (folio_test_hugetlb_migratable(folio) || unpoison) 7526 ret = folio_try_get(folio); 7527 else 7528 ret = -EBUSY; 7529 } 7530 spin_unlock_irq(&hugetlb_lock); 7531 return ret; 7532 } 7533 7534 int get_huge_page_for_hwpoison(unsigned long pfn, int flags, 7535 bool *migratable_cleared) 7536 { 7537 int ret; 7538 7539 spin_lock_irq(&hugetlb_lock); 7540 ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared); 7541 spin_unlock_irq(&hugetlb_lock); 7542 return ret; 7543 } 7544 7545 void folio_putback_active_hugetlb(struct folio *folio) 7546 { 7547 spin_lock_irq(&hugetlb_lock); 7548 folio_set_hugetlb_migratable(folio); 7549 list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist); 7550 spin_unlock_irq(&hugetlb_lock); 7551 folio_put(folio); 7552 } 7553 7554 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason) 7555 { 7556 struct hstate *h = folio_hstate(old_folio); 7557 7558 hugetlb_cgroup_migrate(old_folio, new_folio); 7559 set_page_owner_migrate_reason(&new_folio->page, reason); 7560 7561 /* 7562 * transfer temporary state of the new hugetlb folio. This is 7563 * reverse to other transitions because the newpage is going to 7564 * be final while the old one will be freed so it takes over 7565 * the temporary status. 7566 * 7567 * Also note that we have to transfer the per-node surplus state 7568 * here as well otherwise the global surplus count will not match 7569 * the per-node's. 7570 */ 7571 if (folio_test_hugetlb_temporary(new_folio)) { 7572 int old_nid = folio_nid(old_folio); 7573 int new_nid = folio_nid(new_folio); 7574 7575 folio_set_hugetlb_temporary(old_folio); 7576 folio_clear_hugetlb_temporary(new_folio); 7577 7578 7579 /* 7580 * There is no need to transfer the per-node surplus state 7581 * when we do not cross the node. 7582 */ 7583 if (new_nid == old_nid) 7584 return; 7585 spin_lock_irq(&hugetlb_lock); 7586 if (h->surplus_huge_pages_node[old_nid]) { 7587 h->surplus_huge_pages_node[old_nid]--; 7588 h->surplus_huge_pages_node[new_nid]++; 7589 } 7590 spin_unlock_irq(&hugetlb_lock); 7591 } 7592 } 7593 7594 static void hugetlb_unshare_pmds(struct vm_area_struct *vma, 7595 unsigned long start, 7596 unsigned long end) 7597 { 7598 struct hstate *h = hstate_vma(vma); 7599 unsigned long sz = huge_page_size(h); 7600 struct mm_struct *mm = vma->vm_mm; 7601 struct mmu_notifier_range range; 7602 unsigned long address; 7603 spinlock_t *ptl; 7604 pte_t *ptep; 7605 7606 if (!(vma->vm_flags & VM_MAYSHARE)) 7607 return; 7608 7609 if (start >= end) 7610 return; 7611 7612 flush_cache_range(vma, start, end); 7613 /* 7614 * No need to call adjust_range_if_pmd_sharing_possible(), because 7615 * we have already done the PUD_SIZE alignment. 7616 */ 7617 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 7618 start, end); 7619 mmu_notifier_invalidate_range_start(&range); 7620 hugetlb_vma_lock_write(vma); 7621 i_mmap_lock_write(vma->vm_file->f_mapping); 7622 for (address = start; address < end; address += PUD_SIZE) { 7623 ptep = hugetlb_walk(vma, address, sz); 7624 if (!ptep) 7625 continue; 7626 ptl = huge_pte_lock(h, mm, ptep); 7627 huge_pmd_unshare(mm, vma, address, ptep); 7628 spin_unlock(ptl); 7629 } 7630 flush_hugetlb_tlb_range(vma, start, end); 7631 i_mmap_unlock_write(vma->vm_file->f_mapping); 7632 hugetlb_vma_unlock_write(vma); 7633 /* 7634 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs(), see 7635 * Documentation/mm/mmu_notifier.rst. 7636 */ 7637 mmu_notifier_invalidate_range_end(&range); 7638 } 7639 7640 /* 7641 * This function will unconditionally remove all the shared pmd pgtable entries 7642 * within the specific vma for a hugetlbfs memory range. 7643 */ 7644 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma) 7645 { 7646 hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE), 7647 ALIGN_DOWN(vma->vm_end, PUD_SIZE)); 7648 } 7649 7650 #ifdef CONFIG_CMA 7651 static bool cma_reserve_called __initdata; 7652 7653 static int __init cmdline_parse_hugetlb_cma(char *p) 7654 { 7655 int nid, count = 0; 7656 unsigned long tmp; 7657 char *s = p; 7658 7659 while (*s) { 7660 if (sscanf(s, "%lu%n", &tmp, &count) != 1) 7661 break; 7662 7663 if (s[count] == ':') { 7664 if (tmp >= MAX_NUMNODES) 7665 break; 7666 nid = array_index_nospec(tmp, MAX_NUMNODES); 7667 7668 s += count + 1; 7669 tmp = memparse(s, &s); 7670 hugetlb_cma_size_in_node[nid] = tmp; 7671 hugetlb_cma_size += tmp; 7672 7673 /* 7674 * Skip the separator if have one, otherwise 7675 * break the parsing. 7676 */ 7677 if (*s == ',') 7678 s++; 7679 else 7680 break; 7681 } else { 7682 hugetlb_cma_size = memparse(p, &p); 7683 break; 7684 } 7685 } 7686 7687 return 0; 7688 } 7689 7690 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma); 7691 7692 void __init hugetlb_cma_reserve(int order) 7693 { 7694 unsigned long size, reserved, per_node; 7695 bool node_specific_cma_alloc = false; 7696 int nid; 7697 7698 cma_reserve_called = true; 7699 7700 if (!hugetlb_cma_size) 7701 return; 7702 7703 for (nid = 0; nid < MAX_NUMNODES; nid++) { 7704 if (hugetlb_cma_size_in_node[nid] == 0) 7705 continue; 7706 7707 if (!node_online(nid)) { 7708 pr_warn("hugetlb_cma: invalid node %d specified\n", nid); 7709 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid]; 7710 hugetlb_cma_size_in_node[nid] = 0; 7711 continue; 7712 } 7713 7714 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) { 7715 pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n", 7716 nid, (PAGE_SIZE << order) / SZ_1M); 7717 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid]; 7718 hugetlb_cma_size_in_node[nid] = 0; 7719 } else { 7720 node_specific_cma_alloc = true; 7721 } 7722 } 7723 7724 /* Validate the CMA size again in case some invalid nodes specified. */ 7725 if (!hugetlb_cma_size) 7726 return; 7727 7728 if (hugetlb_cma_size < (PAGE_SIZE << order)) { 7729 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n", 7730 (PAGE_SIZE << order) / SZ_1M); 7731 hugetlb_cma_size = 0; 7732 return; 7733 } 7734 7735 if (!node_specific_cma_alloc) { 7736 /* 7737 * If 3 GB area is requested on a machine with 4 numa nodes, 7738 * let's allocate 1 GB on first three nodes and ignore the last one. 7739 */ 7740 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes); 7741 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n", 7742 hugetlb_cma_size / SZ_1M, per_node / SZ_1M); 7743 } 7744 7745 reserved = 0; 7746 for_each_online_node(nid) { 7747 int res; 7748 char name[CMA_MAX_NAME]; 7749 7750 if (node_specific_cma_alloc) { 7751 if (hugetlb_cma_size_in_node[nid] == 0) 7752 continue; 7753 7754 size = hugetlb_cma_size_in_node[nid]; 7755 } else { 7756 size = min(per_node, hugetlb_cma_size - reserved); 7757 } 7758 7759 size = round_up(size, PAGE_SIZE << order); 7760 7761 snprintf(name, sizeof(name), "hugetlb%d", nid); 7762 /* 7763 * Note that 'order per bit' is based on smallest size that 7764 * may be returned to CMA allocator in the case of 7765 * huge page demotion. 7766 */ 7767 res = cma_declare_contiguous_nid(0, size, 0, 7768 PAGE_SIZE << HUGETLB_PAGE_ORDER, 7769 0, false, name, 7770 &hugetlb_cma[nid], nid); 7771 if (res) { 7772 pr_warn("hugetlb_cma: reservation failed: err %d, node %d", 7773 res, nid); 7774 continue; 7775 } 7776 7777 reserved += size; 7778 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n", 7779 size / SZ_1M, nid); 7780 7781 if (reserved >= hugetlb_cma_size) 7782 break; 7783 } 7784 7785 if (!reserved) 7786 /* 7787 * hugetlb_cma_size is used to determine if allocations from 7788 * cma are possible. Set to zero if no cma regions are set up. 7789 */ 7790 hugetlb_cma_size = 0; 7791 } 7792 7793 static void __init hugetlb_cma_check(void) 7794 { 7795 if (!hugetlb_cma_size || cma_reserve_called) 7796 return; 7797 7798 pr_warn("hugetlb_cma: the option isn't supported by current arch\n"); 7799 } 7800 7801 #endif /* CONFIG_CMA */ 7802