1 /* 2 * Generic hugetlb support. 3 * (C) Nadia Yvette Chambers, April 2004 4 */ 5 #include <linux/list.h> 6 #include <linux/init.h> 7 #include <linux/mm.h> 8 #include <linux/seq_file.h> 9 #include <linux/sysctl.h> 10 #include <linux/highmem.h> 11 #include <linux/mmu_notifier.h> 12 #include <linux/nodemask.h> 13 #include <linux/pagemap.h> 14 #include <linux/mempolicy.h> 15 #include <linux/compiler.h> 16 #include <linux/cpuset.h> 17 #include <linux/mutex.h> 18 #include <linux/bootmem.h> 19 #include <linux/sysfs.h> 20 #include <linux/slab.h> 21 #include <linux/rmap.h> 22 #include <linux/swap.h> 23 #include <linux/swapops.h> 24 #include <linux/page-isolation.h> 25 #include <linux/jhash.h> 26 27 #include <asm/page.h> 28 #include <asm/pgtable.h> 29 #include <asm/tlb.h> 30 31 #include <linux/io.h> 32 #include <linux/hugetlb.h> 33 #include <linux/hugetlb_cgroup.h> 34 #include <linux/node.h> 35 #include "internal.h" 36 37 int hugepages_treat_as_movable; 38 39 int hugetlb_max_hstate __read_mostly; 40 unsigned int default_hstate_idx; 41 struct hstate hstates[HUGE_MAX_HSTATE]; 42 /* 43 * Minimum page order among possible hugepage sizes, set to a proper value 44 * at boot time. 45 */ 46 static unsigned int minimum_order __read_mostly = UINT_MAX; 47 48 __initdata LIST_HEAD(huge_boot_pages); 49 50 /* for command line parsing */ 51 static struct hstate * __initdata parsed_hstate; 52 static unsigned long __initdata default_hstate_max_huge_pages; 53 static unsigned long __initdata default_hstate_size; 54 static bool __initdata parsed_valid_hugepagesz = true; 55 56 /* 57 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages, 58 * free_huge_pages, and surplus_huge_pages. 59 */ 60 DEFINE_SPINLOCK(hugetlb_lock); 61 62 /* 63 * Serializes faults on the same logical page. This is used to 64 * prevent spurious OOMs when the hugepage pool is fully utilized. 65 */ 66 static int num_fault_mutexes; 67 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp; 68 69 /* Forward declaration */ 70 static int hugetlb_acct_memory(struct hstate *h, long delta); 71 72 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool) 73 { 74 bool free = (spool->count == 0) && (spool->used_hpages == 0); 75 76 spin_unlock(&spool->lock); 77 78 /* If no pages are used, and no other handles to the subpool 79 * remain, give up any reservations mased on minimum size and 80 * free the subpool */ 81 if (free) { 82 if (spool->min_hpages != -1) 83 hugetlb_acct_memory(spool->hstate, 84 -spool->min_hpages); 85 kfree(spool); 86 } 87 } 88 89 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages, 90 long min_hpages) 91 { 92 struct hugepage_subpool *spool; 93 94 spool = kzalloc(sizeof(*spool), GFP_KERNEL); 95 if (!spool) 96 return NULL; 97 98 spin_lock_init(&spool->lock); 99 spool->count = 1; 100 spool->max_hpages = max_hpages; 101 spool->hstate = h; 102 spool->min_hpages = min_hpages; 103 104 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) { 105 kfree(spool); 106 return NULL; 107 } 108 spool->rsv_hpages = min_hpages; 109 110 return spool; 111 } 112 113 void hugepage_put_subpool(struct hugepage_subpool *spool) 114 { 115 spin_lock(&spool->lock); 116 BUG_ON(!spool->count); 117 spool->count--; 118 unlock_or_release_subpool(spool); 119 } 120 121 /* 122 * Subpool accounting for allocating and reserving pages. 123 * Return -ENOMEM if there are not enough resources to satisfy the 124 * the request. Otherwise, return the number of pages by which the 125 * global pools must be adjusted (upward). The returned value may 126 * only be different than the passed value (delta) in the case where 127 * a subpool minimum size must be manitained. 128 */ 129 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool, 130 long delta) 131 { 132 long ret = delta; 133 134 if (!spool) 135 return ret; 136 137 spin_lock(&spool->lock); 138 139 if (spool->max_hpages != -1) { /* maximum size accounting */ 140 if ((spool->used_hpages + delta) <= spool->max_hpages) 141 spool->used_hpages += delta; 142 else { 143 ret = -ENOMEM; 144 goto unlock_ret; 145 } 146 } 147 148 /* minimum size accounting */ 149 if (spool->min_hpages != -1 && spool->rsv_hpages) { 150 if (delta > spool->rsv_hpages) { 151 /* 152 * Asking for more reserves than those already taken on 153 * behalf of subpool. Return difference. 154 */ 155 ret = delta - spool->rsv_hpages; 156 spool->rsv_hpages = 0; 157 } else { 158 ret = 0; /* reserves already accounted for */ 159 spool->rsv_hpages -= delta; 160 } 161 } 162 163 unlock_ret: 164 spin_unlock(&spool->lock); 165 return ret; 166 } 167 168 /* 169 * Subpool accounting for freeing and unreserving pages. 170 * Return the number of global page reservations that must be dropped. 171 * The return value may only be different than the passed value (delta) 172 * in the case where a subpool minimum size must be maintained. 173 */ 174 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool, 175 long delta) 176 { 177 long ret = delta; 178 179 if (!spool) 180 return delta; 181 182 spin_lock(&spool->lock); 183 184 if (spool->max_hpages != -1) /* maximum size accounting */ 185 spool->used_hpages -= delta; 186 187 /* minimum size accounting */ 188 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) { 189 if (spool->rsv_hpages + delta <= spool->min_hpages) 190 ret = 0; 191 else 192 ret = spool->rsv_hpages + delta - spool->min_hpages; 193 194 spool->rsv_hpages += delta; 195 if (spool->rsv_hpages > spool->min_hpages) 196 spool->rsv_hpages = spool->min_hpages; 197 } 198 199 /* 200 * If hugetlbfs_put_super couldn't free spool due to an outstanding 201 * quota reference, free it now. 202 */ 203 unlock_or_release_subpool(spool); 204 205 return ret; 206 } 207 208 static inline struct hugepage_subpool *subpool_inode(struct inode *inode) 209 { 210 return HUGETLBFS_SB(inode->i_sb)->spool; 211 } 212 213 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma) 214 { 215 return subpool_inode(file_inode(vma->vm_file)); 216 } 217 218 /* 219 * Region tracking -- allows tracking of reservations and instantiated pages 220 * across the pages in a mapping. 221 * 222 * The region data structures are embedded into a resv_map and protected 223 * by a resv_map's lock. The set of regions within the resv_map represent 224 * reservations for huge pages, or huge pages that have already been 225 * instantiated within the map. The from and to elements are huge page 226 * indicies into the associated mapping. from indicates the starting index 227 * of the region. to represents the first index past the end of the region. 228 * 229 * For example, a file region structure with from == 0 and to == 4 represents 230 * four huge pages in a mapping. It is important to note that the to element 231 * represents the first element past the end of the region. This is used in 232 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region. 233 * 234 * Interval notation of the form [from, to) will be used to indicate that 235 * the endpoint from is inclusive and to is exclusive. 236 */ 237 struct file_region { 238 struct list_head link; 239 long from; 240 long to; 241 }; 242 243 /* 244 * Add the huge page range represented by [f, t) to the reserve 245 * map. In the normal case, existing regions will be expanded 246 * to accommodate the specified range. Sufficient regions should 247 * exist for expansion due to the previous call to region_chg 248 * with the same range. However, it is possible that region_del 249 * could have been called after region_chg and modifed the map 250 * in such a way that no region exists to be expanded. In this 251 * case, pull a region descriptor from the cache associated with 252 * the map and use that for the new range. 253 * 254 * Return the number of new huge pages added to the map. This 255 * number is greater than or equal to zero. 256 */ 257 static long region_add(struct resv_map *resv, long f, long t) 258 { 259 struct list_head *head = &resv->regions; 260 struct file_region *rg, *nrg, *trg; 261 long add = 0; 262 263 spin_lock(&resv->lock); 264 /* Locate the region we are either in or before. */ 265 list_for_each_entry(rg, head, link) 266 if (f <= rg->to) 267 break; 268 269 /* 270 * If no region exists which can be expanded to include the 271 * specified range, the list must have been modified by an 272 * interleving call to region_del(). Pull a region descriptor 273 * from the cache and use it for this range. 274 */ 275 if (&rg->link == head || t < rg->from) { 276 VM_BUG_ON(resv->region_cache_count <= 0); 277 278 resv->region_cache_count--; 279 nrg = list_first_entry(&resv->region_cache, struct file_region, 280 link); 281 list_del(&nrg->link); 282 283 nrg->from = f; 284 nrg->to = t; 285 list_add(&nrg->link, rg->link.prev); 286 287 add += t - f; 288 goto out_locked; 289 } 290 291 /* Round our left edge to the current segment if it encloses us. */ 292 if (f > rg->from) 293 f = rg->from; 294 295 /* Check for and consume any regions we now overlap with. */ 296 nrg = rg; 297 list_for_each_entry_safe(rg, trg, rg->link.prev, link) { 298 if (&rg->link == head) 299 break; 300 if (rg->from > t) 301 break; 302 303 /* If this area reaches higher then extend our area to 304 * include it completely. If this is not the first area 305 * which we intend to reuse, free it. */ 306 if (rg->to > t) 307 t = rg->to; 308 if (rg != nrg) { 309 /* Decrement return value by the deleted range. 310 * Another range will span this area so that by 311 * end of routine add will be >= zero 312 */ 313 add -= (rg->to - rg->from); 314 list_del(&rg->link); 315 kfree(rg); 316 } 317 } 318 319 add += (nrg->from - f); /* Added to beginning of region */ 320 nrg->from = f; 321 add += t - nrg->to; /* Added to end of region */ 322 nrg->to = t; 323 324 out_locked: 325 resv->adds_in_progress--; 326 spin_unlock(&resv->lock); 327 VM_BUG_ON(add < 0); 328 return add; 329 } 330 331 /* 332 * Examine the existing reserve map and determine how many 333 * huge pages in the specified range [f, t) are NOT currently 334 * represented. This routine is called before a subsequent 335 * call to region_add that will actually modify the reserve 336 * map to add the specified range [f, t). region_chg does 337 * not change the number of huge pages represented by the 338 * map. However, if the existing regions in the map can not 339 * be expanded to represent the new range, a new file_region 340 * structure is added to the map as a placeholder. This is 341 * so that the subsequent region_add call will have all the 342 * regions it needs and will not fail. 343 * 344 * Upon entry, region_chg will also examine the cache of region descriptors 345 * associated with the map. If there are not enough descriptors cached, one 346 * will be allocated for the in progress add operation. 347 * 348 * Returns the number of huge pages that need to be added to the existing 349 * reservation map for the range [f, t). This number is greater or equal to 350 * zero. -ENOMEM is returned if a new file_region structure or cache entry 351 * is needed and can not be allocated. 352 */ 353 static long region_chg(struct resv_map *resv, long f, long t) 354 { 355 struct list_head *head = &resv->regions; 356 struct file_region *rg, *nrg = NULL; 357 long chg = 0; 358 359 retry: 360 spin_lock(&resv->lock); 361 retry_locked: 362 resv->adds_in_progress++; 363 364 /* 365 * Check for sufficient descriptors in the cache to accommodate 366 * the number of in progress add operations. 367 */ 368 if (resv->adds_in_progress > resv->region_cache_count) { 369 struct file_region *trg; 370 371 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1); 372 /* Must drop lock to allocate a new descriptor. */ 373 resv->adds_in_progress--; 374 spin_unlock(&resv->lock); 375 376 trg = kmalloc(sizeof(*trg), GFP_KERNEL); 377 if (!trg) { 378 kfree(nrg); 379 return -ENOMEM; 380 } 381 382 spin_lock(&resv->lock); 383 list_add(&trg->link, &resv->region_cache); 384 resv->region_cache_count++; 385 goto retry_locked; 386 } 387 388 /* Locate the region we are before or in. */ 389 list_for_each_entry(rg, head, link) 390 if (f <= rg->to) 391 break; 392 393 /* If we are below the current region then a new region is required. 394 * Subtle, allocate a new region at the position but make it zero 395 * size such that we can guarantee to record the reservation. */ 396 if (&rg->link == head || t < rg->from) { 397 if (!nrg) { 398 resv->adds_in_progress--; 399 spin_unlock(&resv->lock); 400 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 401 if (!nrg) 402 return -ENOMEM; 403 404 nrg->from = f; 405 nrg->to = f; 406 INIT_LIST_HEAD(&nrg->link); 407 goto retry; 408 } 409 410 list_add(&nrg->link, rg->link.prev); 411 chg = t - f; 412 goto out_nrg; 413 } 414 415 /* Round our left edge to the current segment if it encloses us. */ 416 if (f > rg->from) 417 f = rg->from; 418 chg = t - f; 419 420 /* Check for and consume any regions we now overlap with. */ 421 list_for_each_entry(rg, rg->link.prev, link) { 422 if (&rg->link == head) 423 break; 424 if (rg->from > t) 425 goto out; 426 427 /* We overlap with this area, if it extends further than 428 * us then we must extend ourselves. Account for its 429 * existing reservation. */ 430 if (rg->to > t) { 431 chg += rg->to - t; 432 t = rg->to; 433 } 434 chg -= rg->to - rg->from; 435 } 436 437 out: 438 spin_unlock(&resv->lock); 439 /* We already know we raced and no longer need the new region */ 440 kfree(nrg); 441 return chg; 442 out_nrg: 443 spin_unlock(&resv->lock); 444 return chg; 445 } 446 447 /* 448 * Abort the in progress add operation. The adds_in_progress field 449 * of the resv_map keeps track of the operations in progress between 450 * calls to region_chg and region_add. Operations are sometimes 451 * aborted after the call to region_chg. In such cases, region_abort 452 * is called to decrement the adds_in_progress counter. 453 * 454 * NOTE: The range arguments [f, t) are not needed or used in this 455 * routine. They are kept to make reading the calling code easier as 456 * arguments will match the associated region_chg call. 457 */ 458 static void region_abort(struct resv_map *resv, long f, long t) 459 { 460 spin_lock(&resv->lock); 461 VM_BUG_ON(!resv->region_cache_count); 462 resv->adds_in_progress--; 463 spin_unlock(&resv->lock); 464 } 465 466 /* 467 * Delete the specified range [f, t) from the reserve map. If the 468 * t parameter is LONG_MAX, this indicates that ALL regions after f 469 * should be deleted. Locate the regions which intersect [f, t) 470 * and either trim, delete or split the existing regions. 471 * 472 * Returns the number of huge pages deleted from the reserve map. 473 * In the normal case, the return value is zero or more. In the 474 * case where a region must be split, a new region descriptor must 475 * be allocated. If the allocation fails, -ENOMEM will be returned. 476 * NOTE: If the parameter t == LONG_MAX, then we will never split 477 * a region and possibly return -ENOMEM. Callers specifying 478 * t == LONG_MAX do not need to check for -ENOMEM error. 479 */ 480 static long region_del(struct resv_map *resv, long f, long t) 481 { 482 struct list_head *head = &resv->regions; 483 struct file_region *rg, *trg; 484 struct file_region *nrg = NULL; 485 long del = 0; 486 487 retry: 488 spin_lock(&resv->lock); 489 list_for_each_entry_safe(rg, trg, head, link) { 490 /* 491 * Skip regions before the range to be deleted. file_region 492 * ranges are normally of the form [from, to). However, there 493 * may be a "placeholder" entry in the map which is of the form 494 * (from, to) with from == to. Check for placeholder entries 495 * at the beginning of the range to be deleted. 496 */ 497 if (rg->to <= f && (rg->to != rg->from || rg->to != f)) 498 continue; 499 500 if (rg->from >= t) 501 break; 502 503 if (f > rg->from && t < rg->to) { /* Must split region */ 504 /* 505 * Check for an entry in the cache before dropping 506 * lock and attempting allocation. 507 */ 508 if (!nrg && 509 resv->region_cache_count > resv->adds_in_progress) { 510 nrg = list_first_entry(&resv->region_cache, 511 struct file_region, 512 link); 513 list_del(&nrg->link); 514 resv->region_cache_count--; 515 } 516 517 if (!nrg) { 518 spin_unlock(&resv->lock); 519 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 520 if (!nrg) 521 return -ENOMEM; 522 goto retry; 523 } 524 525 del += t - f; 526 527 /* New entry for end of split region */ 528 nrg->from = t; 529 nrg->to = rg->to; 530 INIT_LIST_HEAD(&nrg->link); 531 532 /* Original entry is trimmed */ 533 rg->to = f; 534 535 list_add(&nrg->link, &rg->link); 536 nrg = NULL; 537 break; 538 } 539 540 if (f <= rg->from && t >= rg->to) { /* Remove entire region */ 541 del += rg->to - rg->from; 542 list_del(&rg->link); 543 kfree(rg); 544 continue; 545 } 546 547 if (f <= rg->from) { /* Trim beginning of region */ 548 del += t - rg->from; 549 rg->from = t; 550 } else { /* Trim end of region */ 551 del += rg->to - f; 552 rg->to = f; 553 } 554 } 555 556 spin_unlock(&resv->lock); 557 kfree(nrg); 558 return del; 559 } 560 561 /* 562 * A rare out of memory error was encountered which prevented removal of 563 * the reserve map region for a page. The huge page itself was free'ed 564 * and removed from the page cache. This routine will adjust the subpool 565 * usage count, and the global reserve count if needed. By incrementing 566 * these counts, the reserve map entry which could not be deleted will 567 * appear as a "reserved" entry instead of simply dangling with incorrect 568 * counts. 569 */ 570 void hugetlb_fix_reserve_counts(struct inode *inode, bool restore_reserve) 571 { 572 struct hugepage_subpool *spool = subpool_inode(inode); 573 long rsv_adjust; 574 575 rsv_adjust = hugepage_subpool_get_pages(spool, 1); 576 if (restore_reserve && rsv_adjust) { 577 struct hstate *h = hstate_inode(inode); 578 579 hugetlb_acct_memory(h, 1); 580 } 581 } 582 583 /* 584 * Count and return the number of huge pages in the reserve map 585 * that intersect with the range [f, t). 586 */ 587 static long region_count(struct resv_map *resv, long f, long t) 588 { 589 struct list_head *head = &resv->regions; 590 struct file_region *rg; 591 long chg = 0; 592 593 spin_lock(&resv->lock); 594 /* Locate each segment we overlap with, and count that overlap. */ 595 list_for_each_entry(rg, head, link) { 596 long seg_from; 597 long seg_to; 598 599 if (rg->to <= f) 600 continue; 601 if (rg->from >= t) 602 break; 603 604 seg_from = max(rg->from, f); 605 seg_to = min(rg->to, t); 606 607 chg += seg_to - seg_from; 608 } 609 spin_unlock(&resv->lock); 610 611 return chg; 612 } 613 614 /* 615 * Convert the address within this vma to the page offset within 616 * the mapping, in pagecache page units; huge pages here. 617 */ 618 static pgoff_t vma_hugecache_offset(struct hstate *h, 619 struct vm_area_struct *vma, unsigned long address) 620 { 621 return ((address - vma->vm_start) >> huge_page_shift(h)) + 622 (vma->vm_pgoff >> huge_page_order(h)); 623 } 624 625 pgoff_t linear_hugepage_index(struct vm_area_struct *vma, 626 unsigned long address) 627 { 628 return vma_hugecache_offset(hstate_vma(vma), vma, address); 629 } 630 EXPORT_SYMBOL_GPL(linear_hugepage_index); 631 632 /* 633 * Return the size of the pages allocated when backing a VMA. In the majority 634 * cases this will be same size as used by the page table entries. 635 */ 636 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) 637 { 638 struct hstate *hstate; 639 640 if (!is_vm_hugetlb_page(vma)) 641 return PAGE_SIZE; 642 643 hstate = hstate_vma(vma); 644 645 return 1UL << huge_page_shift(hstate); 646 } 647 EXPORT_SYMBOL_GPL(vma_kernel_pagesize); 648 649 /* 650 * Return the page size being used by the MMU to back a VMA. In the majority 651 * of cases, the page size used by the kernel matches the MMU size. On 652 * architectures where it differs, an architecture-specific version of this 653 * function is required. 654 */ 655 #ifndef vma_mmu_pagesize 656 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 657 { 658 return vma_kernel_pagesize(vma); 659 } 660 #endif 661 662 /* 663 * Flags for MAP_PRIVATE reservations. These are stored in the bottom 664 * bits of the reservation map pointer, which are always clear due to 665 * alignment. 666 */ 667 #define HPAGE_RESV_OWNER (1UL << 0) 668 #define HPAGE_RESV_UNMAPPED (1UL << 1) 669 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) 670 671 /* 672 * These helpers are used to track how many pages are reserved for 673 * faults in a MAP_PRIVATE mapping. Only the process that called mmap() 674 * is guaranteed to have their future faults succeed. 675 * 676 * With the exception of reset_vma_resv_huge_pages() which is called at fork(), 677 * the reserve counters are updated with the hugetlb_lock held. It is safe 678 * to reset the VMA at fork() time as it is not in use yet and there is no 679 * chance of the global counters getting corrupted as a result of the values. 680 * 681 * The private mapping reservation is represented in a subtly different 682 * manner to a shared mapping. A shared mapping has a region map associated 683 * with the underlying file, this region map represents the backing file 684 * pages which have ever had a reservation assigned which this persists even 685 * after the page is instantiated. A private mapping has a region map 686 * associated with the original mmap which is attached to all VMAs which 687 * reference it, this region map represents those offsets which have consumed 688 * reservation ie. where pages have been instantiated. 689 */ 690 static unsigned long get_vma_private_data(struct vm_area_struct *vma) 691 { 692 return (unsigned long)vma->vm_private_data; 693 } 694 695 static void set_vma_private_data(struct vm_area_struct *vma, 696 unsigned long value) 697 { 698 vma->vm_private_data = (void *)value; 699 } 700 701 struct resv_map *resv_map_alloc(void) 702 { 703 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); 704 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL); 705 706 if (!resv_map || !rg) { 707 kfree(resv_map); 708 kfree(rg); 709 return NULL; 710 } 711 712 kref_init(&resv_map->refs); 713 spin_lock_init(&resv_map->lock); 714 INIT_LIST_HEAD(&resv_map->regions); 715 716 resv_map->adds_in_progress = 0; 717 718 INIT_LIST_HEAD(&resv_map->region_cache); 719 list_add(&rg->link, &resv_map->region_cache); 720 resv_map->region_cache_count = 1; 721 722 return resv_map; 723 } 724 725 void resv_map_release(struct kref *ref) 726 { 727 struct resv_map *resv_map = container_of(ref, struct resv_map, refs); 728 struct list_head *head = &resv_map->region_cache; 729 struct file_region *rg, *trg; 730 731 /* Clear out any active regions before we release the map. */ 732 region_del(resv_map, 0, LONG_MAX); 733 734 /* ... and any entries left in the cache */ 735 list_for_each_entry_safe(rg, trg, head, link) { 736 list_del(&rg->link); 737 kfree(rg); 738 } 739 740 VM_BUG_ON(resv_map->adds_in_progress); 741 742 kfree(resv_map); 743 } 744 745 static inline struct resv_map *inode_resv_map(struct inode *inode) 746 { 747 return inode->i_mapping->private_data; 748 } 749 750 static struct resv_map *vma_resv_map(struct vm_area_struct *vma) 751 { 752 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 753 if (vma->vm_flags & VM_MAYSHARE) { 754 struct address_space *mapping = vma->vm_file->f_mapping; 755 struct inode *inode = mapping->host; 756 757 return inode_resv_map(inode); 758 759 } else { 760 return (struct resv_map *)(get_vma_private_data(vma) & 761 ~HPAGE_RESV_MASK); 762 } 763 } 764 765 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) 766 { 767 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 768 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 769 770 set_vma_private_data(vma, (get_vma_private_data(vma) & 771 HPAGE_RESV_MASK) | (unsigned long)map); 772 } 773 774 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) 775 { 776 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 777 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 778 779 set_vma_private_data(vma, get_vma_private_data(vma) | flags); 780 } 781 782 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) 783 { 784 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 785 786 return (get_vma_private_data(vma) & flag) != 0; 787 } 788 789 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */ 790 void reset_vma_resv_huge_pages(struct vm_area_struct *vma) 791 { 792 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 793 if (!(vma->vm_flags & VM_MAYSHARE)) 794 vma->vm_private_data = (void *)0; 795 } 796 797 /* Returns true if the VMA has associated reserve pages */ 798 static bool vma_has_reserves(struct vm_area_struct *vma, long chg) 799 { 800 if (vma->vm_flags & VM_NORESERVE) { 801 /* 802 * This address is already reserved by other process(chg == 0), 803 * so, we should decrement reserved count. Without decrementing, 804 * reserve count remains after releasing inode, because this 805 * allocated page will go into page cache and is regarded as 806 * coming from reserved pool in releasing step. Currently, we 807 * don't have any other solution to deal with this situation 808 * properly, so add work-around here. 809 */ 810 if (vma->vm_flags & VM_MAYSHARE && chg == 0) 811 return true; 812 else 813 return false; 814 } 815 816 /* Shared mappings always use reserves */ 817 if (vma->vm_flags & VM_MAYSHARE) { 818 /* 819 * We know VM_NORESERVE is not set. Therefore, there SHOULD 820 * be a region map for all pages. The only situation where 821 * there is no region map is if a hole was punched via 822 * fallocate. In this case, there really are no reverves to 823 * use. This situation is indicated if chg != 0. 824 */ 825 if (chg) 826 return false; 827 else 828 return true; 829 } 830 831 /* 832 * Only the process that called mmap() has reserves for 833 * private mappings. 834 */ 835 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 836 /* 837 * Like the shared case above, a hole punch or truncate 838 * could have been performed on the private mapping. 839 * Examine the value of chg to determine if reserves 840 * actually exist or were previously consumed. 841 * Very Subtle - The value of chg comes from a previous 842 * call to vma_needs_reserves(). The reserve map for 843 * private mappings has different (opposite) semantics 844 * than that of shared mappings. vma_needs_reserves() 845 * has already taken this difference in semantics into 846 * account. Therefore, the meaning of chg is the same 847 * as in the shared case above. Code could easily be 848 * combined, but keeping it separate draws attention to 849 * subtle differences. 850 */ 851 if (chg) 852 return false; 853 else 854 return true; 855 } 856 857 return false; 858 } 859 860 static void enqueue_huge_page(struct hstate *h, struct page *page) 861 { 862 int nid = page_to_nid(page); 863 list_move(&page->lru, &h->hugepage_freelists[nid]); 864 h->free_huge_pages++; 865 h->free_huge_pages_node[nid]++; 866 } 867 868 static struct page *dequeue_huge_page_node(struct hstate *h, int nid) 869 { 870 struct page *page; 871 872 list_for_each_entry(page, &h->hugepage_freelists[nid], lru) 873 if (!is_migrate_isolate_page(page)) 874 break; 875 /* 876 * if 'non-isolated free hugepage' not found on the list, 877 * the allocation fails. 878 */ 879 if (&h->hugepage_freelists[nid] == &page->lru) 880 return NULL; 881 list_move(&page->lru, &h->hugepage_activelist); 882 set_page_refcounted(page); 883 h->free_huge_pages--; 884 h->free_huge_pages_node[nid]--; 885 return page; 886 } 887 888 /* Movability of hugepages depends on migration support. */ 889 static inline gfp_t htlb_alloc_mask(struct hstate *h) 890 { 891 if (hugepages_treat_as_movable || hugepage_migration_supported(h)) 892 return GFP_HIGHUSER_MOVABLE; 893 else 894 return GFP_HIGHUSER; 895 } 896 897 static struct page *dequeue_huge_page_vma(struct hstate *h, 898 struct vm_area_struct *vma, 899 unsigned long address, int avoid_reserve, 900 long chg) 901 { 902 struct page *page = NULL; 903 struct mempolicy *mpol; 904 nodemask_t *nodemask; 905 struct zonelist *zonelist; 906 struct zone *zone; 907 struct zoneref *z; 908 unsigned int cpuset_mems_cookie; 909 910 /* 911 * A child process with MAP_PRIVATE mappings created by their parent 912 * have no page reserves. This check ensures that reservations are 913 * not "stolen". The child may still get SIGKILLed 914 */ 915 if (!vma_has_reserves(vma, chg) && 916 h->free_huge_pages - h->resv_huge_pages == 0) 917 goto err; 918 919 /* If reserves cannot be used, ensure enough pages are in the pool */ 920 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0) 921 goto err; 922 923 retry_cpuset: 924 cpuset_mems_cookie = read_mems_allowed_begin(); 925 zonelist = huge_zonelist(vma, address, 926 htlb_alloc_mask(h), &mpol, &nodemask); 927 928 for_each_zone_zonelist_nodemask(zone, z, zonelist, 929 MAX_NR_ZONES - 1, nodemask) { 930 if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) { 931 page = dequeue_huge_page_node(h, zone_to_nid(zone)); 932 if (page) { 933 if (avoid_reserve) 934 break; 935 if (!vma_has_reserves(vma, chg)) 936 break; 937 938 SetPagePrivate(page); 939 h->resv_huge_pages--; 940 break; 941 } 942 } 943 } 944 945 mpol_cond_put(mpol); 946 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) 947 goto retry_cpuset; 948 return page; 949 950 err: 951 return NULL; 952 } 953 954 /* 955 * common helper functions for hstate_next_node_to_{alloc|free}. 956 * We may have allocated or freed a huge page based on a different 957 * nodes_allowed previously, so h->next_node_to_{alloc|free} might 958 * be outside of *nodes_allowed. Ensure that we use an allowed 959 * node for alloc or free. 960 */ 961 static int next_node_allowed(int nid, nodemask_t *nodes_allowed) 962 { 963 nid = next_node_in(nid, *nodes_allowed); 964 VM_BUG_ON(nid >= MAX_NUMNODES); 965 966 return nid; 967 } 968 969 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed) 970 { 971 if (!node_isset(nid, *nodes_allowed)) 972 nid = next_node_allowed(nid, nodes_allowed); 973 return nid; 974 } 975 976 /* 977 * returns the previously saved node ["this node"] from which to 978 * allocate a persistent huge page for the pool and advance the 979 * next node from which to allocate, handling wrap at end of node 980 * mask. 981 */ 982 static int hstate_next_node_to_alloc(struct hstate *h, 983 nodemask_t *nodes_allowed) 984 { 985 int nid; 986 987 VM_BUG_ON(!nodes_allowed); 988 989 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed); 990 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed); 991 992 return nid; 993 } 994 995 /* 996 * helper for free_pool_huge_page() - return the previously saved 997 * node ["this node"] from which to free a huge page. Advance the 998 * next node id whether or not we find a free huge page to free so 999 * that the next attempt to free addresses the next node. 1000 */ 1001 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed) 1002 { 1003 int nid; 1004 1005 VM_BUG_ON(!nodes_allowed); 1006 1007 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed); 1008 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed); 1009 1010 return nid; 1011 } 1012 1013 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \ 1014 for (nr_nodes = nodes_weight(*mask); \ 1015 nr_nodes > 0 && \ 1016 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \ 1017 nr_nodes--) 1018 1019 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \ 1020 for (nr_nodes = nodes_weight(*mask); \ 1021 nr_nodes > 0 && \ 1022 ((node = hstate_next_node_to_free(hs, mask)) || 1); \ 1023 nr_nodes--) 1024 1025 #if (defined(CONFIG_X86_64) || defined(CONFIG_S390)) && \ 1026 ((defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || \ 1027 defined(CONFIG_CMA)) 1028 static void destroy_compound_gigantic_page(struct page *page, 1029 unsigned int order) 1030 { 1031 int i; 1032 int nr_pages = 1 << order; 1033 struct page *p = page + 1; 1034 1035 atomic_set(compound_mapcount_ptr(page), 0); 1036 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { 1037 clear_compound_head(p); 1038 set_page_refcounted(p); 1039 } 1040 1041 set_compound_order(page, 0); 1042 __ClearPageHead(page); 1043 } 1044 1045 static void free_gigantic_page(struct page *page, unsigned int order) 1046 { 1047 free_contig_range(page_to_pfn(page), 1 << order); 1048 } 1049 1050 static int __alloc_gigantic_page(unsigned long start_pfn, 1051 unsigned long nr_pages) 1052 { 1053 unsigned long end_pfn = start_pfn + nr_pages; 1054 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE); 1055 } 1056 1057 static bool pfn_range_valid_gigantic(struct zone *z, 1058 unsigned long start_pfn, unsigned long nr_pages) 1059 { 1060 unsigned long i, end_pfn = start_pfn + nr_pages; 1061 struct page *page; 1062 1063 for (i = start_pfn; i < end_pfn; i++) { 1064 if (!pfn_valid(i)) 1065 return false; 1066 1067 page = pfn_to_page(i); 1068 1069 if (page_zone(page) != z) 1070 return false; 1071 1072 if (PageReserved(page)) 1073 return false; 1074 1075 if (page_count(page) > 0) 1076 return false; 1077 1078 if (PageHuge(page)) 1079 return false; 1080 } 1081 1082 return true; 1083 } 1084 1085 static bool zone_spans_last_pfn(const struct zone *zone, 1086 unsigned long start_pfn, unsigned long nr_pages) 1087 { 1088 unsigned long last_pfn = start_pfn + nr_pages - 1; 1089 return zone_spans_pfn(zone, last_pfn); 1090 } 1091 1092 static struct page *alloc_gigantic_page(int nid, unsigned int order) 1093 { 1094 unsigned long nr_pages = 1 << order; 1095 unsigned long ret, pfn, flags; 1096 struct zone *z; 1097 1098 z = NODE_DATA(nid)->node_zones; 1099 for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) { 1100 spin_lock_irqsave(&z->lock, flags); 1101 1102 pfn = ALIGN(z->zone_start_pfn, nr_pages); 1103 while (zone_spans_last_pfn(z, pfn, nr_pages)) { 1104 if (pfn_range_valid_gigantic(z, pfn, nr_pages)) { 1105 /* 1106 * We release the zone lock here because 1107 * alloc_contig_range() will also lock the zone 1108 * at some point. If there's an allocation 1109 * spinning on this lock, it may win the race 1110 * and cause alloc_contig_range() to fail... 1111 */ 1112 spin_unlock_irqrestore(&z->lock, flags); 1113 ret = __alloc_gigantic_page(pfn, nr_pages); 1114 if (!ret) 1115 return pfn_to_page(pfn); 1116 spin_lock_irqsave(&z->lock, flags); 1117 } 1118 pfn += nr_pages; 1119 } 1120 1121 spin_unlock_irqrestore(&z->lock, flags); 1122 } 1123 1124 return NULL; 1125 } 1126 1127 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid); 1128 static void prep_compound_gigantic_page(struct page *page, unsigned int order); 1129 1130 static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid) 1131 { 1132 struct page *page; 1133 1134 page = alloc_gigantic_page(nid, huge_page_order(h)); 1135 if (page) { 1136 prep_compound_gigantic_page(page, huge_page_order(h)); 1137 prep_new_huge_page(h, page, nid); 1138 } 1139 1140 return page; 1141 } 1142 1143 static int alloc_fresh_gigantic_page(struct hstate *h, 1144 nodemask_t *nodes_allowed) 1145 { 1146 struct page *page = NULL; 1147 int nr_nodes, node; 1148 1149 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 1150 page = alloc_fresh_gigantic_page_node(h, node); 1151 if (page) 1152 return 1; 1153 } 1154 1155 return 0; 1156 } 1157 1158 static inline bool gigantic_page_supported(void) { return true; } 1159 #else 1160 static inline bool gigantic_page_supported(void) { return false; } 1161 static inline void free_gigantic_page(struct page *page, unsigned int order) { } 1162 static inline void destroy_compound_gigantic_page(struct page *page, 1163 unsigned int order) { } 1164 static inline int alloc_fresh_gigantic_page(struct hstate *h, 1165 nodemask_t *nodes_allowed) { return 0; } 1166 #endif 1167 1168 static void update_and_free_page(struct hstate *h, struct page *page) 1169 { 1170 int i; 1171 1172 if (hstate_is_gigantic(h) && !gigantic_page_supported()) 1173 return; 1174 1175 h->nr_huge_pages--; 1176 h->nr_huge_pages_node[page_to_nid(page)]--; 1177 for (i = 0; i < pages_per_huge_page(h); i++) { 1178 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1179 1 << PG_referenced | 1 << PG_dirty | 1180 1 << PG_active | 1 << PG_private | 1181 1 << PG_writeback); 1182 } 1183 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page); 1184 set_compound_page_dtor(page, NULL_COMPOUND_DTOR); 1185 set_page_refcounted(page); 1186 if (hstate_is_gigantic(h)) { 1187 destroy_compound_gigantic_page(page, huge_page_order(h)); 1188 free_gigantic_page(page, huge_page_order(h)); 1189 } else { 1190 __free_pages(page, huge_page_order(h)); 1191 } 1192 } 1193 1194 struct hstate *size_to_hstate(unsigned long size) 1195 { 1196 struct hstate *h; 1197 1198 for_each_hstate(h) { 1199 if (huge_page_size(h) == size) 1200 return h; 1201 } 1202 return NULL; 1203 } 1204 1205 /* 1206 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked 1207 * to hstate->hugepage_activelist.) 1208 * 1209 * This function can be called for tail pages, but never returns true for them. 1210 */ 1211 bool page_huge_active(struct page *page) 1212 { 1213 VM_BUG_ON_PAGE(!PageHuge(page), page); 1214 return PageHead(page) && PagePrivate(&page[1]); 1215 } 1216 1217 /* never called for tail page */ 1218 static void set_page_huge_active(struct page *page) 1219 { 1220 VM_BUG_ON_PAGE(!PageHeadHuge(page), page); 1221 SetPagePrivate(&page[1]); 1222 } 1223 1224 static void clear_page_huge_active(struct page *page) 1225 { 1226 VM_BUG_ON_PAGE(!PageHeadHuge(page), page); 1227 ClearPagePrivate(&page[1]); 1228 } 1229 1230 void free_huge_page(struct page *page) 1231 { 1232 /* 1233 * Can't pass hstate in here because it is called from the 1234 * compound page destructor. 1235 */ 1236 struct hstate *h = page_hstate(page); 1237 int nid = page_to_nid(page); 1238 struct hugepage_subpool *spool = 1239 (struct hugepage_subpool *)page_private(page); 1240 bool restore_reserve; 1241 1242 set_page_private(page, 0); 1243 page->mapping = NULL; 1244 VM_BUG_ON_PAGE(page_count(page), page); 1245 VM_BUG_ON_PAGE(page_mapcount(page), page); 1246 restore_reserve = PagePrivate(page); 1247 ClearPagePrivate(page); 1248 1249 /* 1250 * A return code of zero implies that the subpool will be under its 1251 * minimum size if the reservation is not restored after page is free. 1252 * Therefore, force restore_reserve operation. 1253 */ 1254 if (hugepage_subpool_put_pages(spool, 1) == 0) 1255 restore_reserve = true; 1256 1257 spin_lock(&hugetlb_lock); 1258 clear_page_huge_active(page); 1259 hugetlb_cgroup_uncharge_page(hstate_index(h), 1260 pages_per_huge_page(h), page); 1261 if (restore_reserve) 1262 h->resv_huge_pages++; 1263 1264 if (h->surplus_huge_pages_node[nid]) { 1265 /* remove the page from active list */ 1266 list_del(&page->lru); 1267 update_and_free_page(h, page); 1268 h->surplus_huge_pages--; 1269 h->surplus_huge_pages_node[nid]--; 1270 } else { 1271 arch_clear_hugepage_flags(page); 1272 enqueue_huge_page(h, page); 1273 } 1274 spin_unlock(&hugetlb_lock); 1275 } 1276 1277 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid) 1278 { 1279 INIT_LIST_HEAD(&page->lru); 1280 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR); 1281 spin_lock(&hugetlb_lock); 1282 set_hugetlb_cgroup(page, NULL); 1283 h->nr_huge_pages++; 1284 h->nr_huge_pages_node[nid]++; 1285 spin_unlock(&hugetlb_lock); 1286 put_page(page); /* free it into the hugepage allocator */ 1287 } 1288 1289 static void prep_compound_gigantic_page(struct page *page, unsigned int order) 1290 { 1291 int i; 1292 int nr_pages = 1 << order; 1293 struct page *p = page + 1; 1294 1295 /* we rely on prep_new_huge_page to set the destructor */ 1296 set_compound_order(page, order); 1297 __ClearPageReserved(page); 1298 __SetPageHead(page); 1299 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { 1300 /* 1301 * For gigantic hugepages allocated through bootmem at 1302 * boot, it's safer to be consistent with the not-gigantic 1303 * hugepages and clear the PG_reserved bit from all tail pages 1304 * too. Otherwse drivers using get_user_pages() to access tail 1305 * pages may get the reference counting wrong if they see 1306 * PG_reserved set on a tail page (despite the head page not 1307 * having PG_reserved set). Enforcing this consistency between 1308 * head and tail pages allows drivers to optimize away a check 1309 * on the head page when they need know if put_page() is needed 1310 * after get_user_pages(). 1311 */ 1312 __ClearPageReserved(p); 1313 set_page_count(p, 0); 1314 set_compound_head(p, page); 1315 } 1316 atomic_set(compound_mapcount_ptr(page), -1); 1317 } 1318 1319 /* 1320 * PageHuge() only returns true for hugetlbfs pages, but not for normal or 1321 * transparent huge pages. See the PageTransHuge() documentation for more 1322 * details. 1323 */ 1324 int PageHuge(struct page *page) 1325 { 1326 if (!PageCompound(page)) 1327 return 0; 1328 1329 page = compound_head(page); 1330 return page[1].compound_dtor == HUGETLB_PAGE_DTOR; 1331 } 1332 EXPORT_SYMBOL_GPL(PageHuge); 1333 1334 /* 1335 * PageHeadHuge() only returns true for hugetlbfs head page, but not for 1336 * normal or transparent huge pages. 1337 */ 1338 int PageHeadHuge(struct page *page_head) 1339 { 1340 if (!PageHead(page_head)) 1341 return 0; 1342 1343 return get_compound_page_dtor(page_head) == free_huge_page; 1344 } 1345 1346 pgoff_t __basepage_index(struct page *page) 1347 { 1348 struct page *page_head = compound_head(page); 1349 pgoff_t index = page_index(page_head); 1350 unsigned long compound_idx; 1351 1352 if (!PageHuge(page_head)) 1353 return page_index(page); 1354 1355 if (compound_order(page_head) >= MAX_ORDER) 1356 compound_idx = page_to_pfn(page) - page_to_pfn(page_head); 1357 else 1358 compound_idx = page - page_head; 1359 1360 return (index << compound_order(page_head)) + compound_idx; 1361 } 1362 1363 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid) 1364 { 1365 struct page *page; 1366 1367 page = __alloc_pages_node(nid, 1368 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE| 1369 __GFP_REPEAT|__GFP_NOWARN, 1370 huge_page_order(h)); 1371 if (page) { 1372 prep_new_huge_page(h, page, nid); 1373 } 1374 1375 return page; 1376 } 1377 1378 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed) 1379 { 1380 struct page *page; 1381 int nr_nodes, node; 1382 int ret = 0; 1383 1384 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 1385 page = alloc_fresh_huge_page_node(h, node); 1386 if (page) { 1387 ret = 1; 1388 break; 1389 } 1390 } 1391 1392 if (ret) 1393 count_vm_event(HTLB_BUDDY_PGALLOC); 1394 else 1395 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 1396 1397 return ret; 1398 } 1399 1400 /* 1401 * Free huge page from pool from next node to free. 1402 * Attempt to keep persistent huge pages more or less 1403 * balanced over allowed nodes. 1404 * Called with hugetlb_lock locked. 1405 */ 1406 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed, 1407 bool acct_surplus) 1408 { 1409 int nr_nodes, node; 1410 int ret = 0; 1411 1412 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 1413 /* 1414 * If we're returning unused surplus pages, only examine 1415 * nodes with surplus pages. 1416 */ 1417 if ((!acct_surplus || h->surplus_huge_pages_node[node]) && 1418 !list_empty(&h->hugepage_freelists[node])) { 1419 struct page *page = 1420 list_entry(h->hugepage_freelists[node].next, 1421 struct page, lru); 1422 list_del(&page->lru); 1423 h->free_huge_pages--; 1424 h->free_huge_pages_node[node]--; 1425 if (acct_surplus) { 1426 h->surplus_huge_pages--; 1427 h->surplus_huge_pages_node[node]--; 1428 } 1429 update_and_free_page(h, page); 1430 ret = 1; 1431 break; 1432 } 1433 } 1434 1435 return ret; 1436 } 1437 1438 /* 1439 * Dissolve a given free hugepage into free buddy pages. This function does 1440 * nothing for in-use (including surplus) hugepages. 1441 */ 1442 static void dissolve_free_huge_page(struct page *page) 1443 { 1444 spin_lock(&hugetlb_lock); 1445 if (PageHuge(page) && !page_count(page)) { 1446 struct hstate *h = page_hstate(page); 1447 int nid = page_to_nid(page); 1448 list_del(&page->lru); 1449 h->free_huge_pages--; 1450 h->free_huge_pages_node[nid]--; 1451 update_and_free_page(h, page); 1452 } 1453 spin_unlock(&hugetlb_lock); 1454 } 1455 1456 /* 1457 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to 1458 * make specified memory blocks removable from the system. 1459 * Note that start_pfn should aligned with (minimum) hugepage size. 1460 */ 1461 void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn) 1462 { 1463 unsigned long pfn; 1464 1465 if (!hugepages_supported()) 1466 return; 1467 1468 VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << minimum_order)); 1469 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) 1470 dissolve_free_huge_page(pfn_to_page(pfn)); 1471 } 1472 1473 /* 1474 * There are 3 ways this can get called: 1475 * 1. With vma+addr: we use the VMA's memory policy 1476 * 2. With !vma, but nid=NUMA_NO_NODE: We try to allocate a huge 1477 * page from any node, and let the buddy allocator itself figure 1478 * it out. 1479 * 3. With !vma, but nid!=NUMA_NO_NODE. We allocate a huge page 1480 * strictly from 'nid' 1481 */ 1482 static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h, 1483 struct vm_area_struct *vma, unsigned long addr, int nid) 1484 { 1485 int order = huge_page_order(h); 1486 gfp_t gfp = htlb_alloc_mask(h)|__GFP_COMP|__GFP_REPEAT|__GFP_NOWARN; 1487 unsigned int cpuset_mems_cookie; 1488 1489 /* 1490 * We need a VMA to get a memory policy. If we do not 1491 * have one, we use the 'nid' argument. 1492 * 1493 * The mempolicy stuff below has some non-inlined bits 1494 * and calls ->vm_ops. That makes it hard to optimize at 1495 * compile-time, even when NUMA is off and it does 1496 * nothing. This helps the compiler optimize it out. 1497 */ 1498 if (!IS_ENABLED(CONFIG_NUMA) || !vma) { 1499 /* 1500 * If a specific node is requested, make sure to 1501 * get memory from there, but only when a node 1502 * is explicitly specified. 1503 */ 1504 if (nid != NUMA_NO_NODE) 1505 gfp |= __GFP_THISNODE; 1506 /* 1507 * Make sure to call something that can handle 1508 * nid=NUMA_NO_NODE 1509 */ 1510 return alloc_pages_node(nid, gfp, order); 1511 } 1512 1513 /* 1514 * OK, so we have a VMA. Fetch the mempolicy and try to 1515 * allocate a huge page with it. We will only reach this 1516 * when CONFIG_NUMA=y. 1517 */ 1518 do { 1519 struct page *page; 1520 struct mempolicy *mpol; 1521 struct zonelist *zl; 1522 nodemask_t *nodemask; 1523 1524 cpuset_mems_cookie = read_mems_allowed_begin(); 1525 zl = huge_zonelist(vma, addr, gfp, &mpol, &nodemask); 1526 mpol_cond_put(mpol); 1527 page = __alloc_pages_nodemask(gfp, order, zl, nodemask); 1528 if (page) 1529 return page; 1530 } while (read_mems_allowed_retry(cpuset_mems_cookie)); 1531 1532 return NULL; 1533 } 1534 1535 /* 1536 * There are two ways to allocate a huge page: 1537 * 1. When you have a VMA and an address (like a fault) 1538 * 2. When you have no VMA (like when setting /proc/.../nr_hugepages) 1539 * 1540 * 'vma' and 'addr' are only for (1). 'nid' is always NUMA_NO_NODE in 1541 * this case which signifies that the allocation should be done with 1542 * respect for the VMA's memory policy. 1543 * 1544 * For (2), we ignore 'vma' and 'addr' and use 'nid' exclusively. This 1545 * implies that memory policies will not be taken in to account. 1546 */ 1547 static struct page *__alloc_buddy_huge_page(struct hstate *h, 1548 struct vm_area_struct *vma, unsigned long addr, int nid) 1549 { 1550 struct page *page; 1551 unsigned int r_nid; 1552 1553 if (hstate_is_gigantic(h)) 1554 return NULL; 1555 1556 /* 1557 * Make sure that anyone specifying 'nid' is not also specifying a VMA. 1558 * This makes sure the caller is picking _one_ of the modes with which 1559 * we can call this function, not both. 1560 */ 1561 if (vma || (addr != -1)) { 1562 VM_WARN_ON_ONCE(addr == -1); 1563 VM_WARN_ON_ONCE(nid != NUMA_NO_NODE); 1564 } 1565 /* 1566 * Assume we will successfully allocate the surplus page to 1567 * prevent racing processes from causing the surplus to exceed 1568 * overcommit 1569 * 1570 * This however introduces a different race, where a process B 1571 * tries to grow the static hugepage pool while alloc_pages() is 1572 * called by process A. B will only examine the per-node 1573 * counters in determining if surplus huge pages can be 1574 * converted to normal huge pages in adjust_pool_surplus(). A 1575 * won't be able to increment the per-node counter, until the 1576 * lock is dropped by B, but B doesn't drop hugetlb_lock until 1577 * no more huge pages can be converted from surplus to normal 1578 * state (and doesn't try to convert again). Thus, we have a 1579 * case where a surplus huge page exists, the pool is grown, and 1580 * the surplus huge page still exists after, even though it 1581 * should just have been converted to a normal huge page. This 1582 * does not leak memory, though, as the hugepage will be freed 1583 * once it is out of use. It also does not allow the counters to 1584 * go out of whack in adjust_pool_surplus() as we don't modify 1585 * the node values until we've gotten the hugepage and only the 1586 * per-node value is checked there. 1587 */ 1588 spin_lock(&hugetlb_lock); 1589 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { 1590 spin_unlock(&hugetlb_lock); 1591 return NULL; 1592 } else { 1593 h->nr_huge_pages++; 1594 h->surplus_huge_pages++; 1595 } 1596 spin_unlock(&hugetlb_lock); 1597 1598 page = __hugetlb_alloc_buddy_huge_page(h, vma, addr, nid); 1599 1600 spin_lock(&hugetlb_lock); 1601 if (page) { 1602 INIT_LIST_HEAD(&page->lru); 1603 r_nid = page_to_nid(page); 1604 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR); 1605 set_hugetlb_cgroup(page, NULL); 1606 /* 1607 * We incremented the global counters already 1608 */ 1609 h->nr_huge_pages_node[r_nid]++; 1610 h->surplus_huge_pages_node[r_nid]++; 1611 __count_vm_event(HTLB_BUDDY_PGALLOC); 1612 } else { 1613 h->nr_huge_pages--; 1614 h->surplus_huge_pages--; 1615 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 1616 } 1617 spin_unlock(&hugetlb_lock); 1618 1619 return page; 1620 } 1621 1622 /* 1623 * Allocate a huge page from 'nid'. Note, 'nid' may be 1624 * NUMA_NO_NODE, which means that it may be allocated 1625 * anywhere. 1626 */ 1627 static 1628 struct page *__alloc_buddy_huge_page_no_mpol(struct hstate *h, int nid) 1629 { 1630 unsigned long addr = -1; 1631 1632 return __alloc_buddy_huge_page(h, NULL, addr, nid); 1633 } 1634 1635 /* 1636 * Use the VMA's mpolicy to allocate a huge page from the buddy. 1637 */ 1638 static 1639 struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h, 1640 struct vm_area_struct *vma, unsigned long addr) 1641 { 1642 return __alloc_buddy_huge_page(h, vma, addr, NUMA_NO_NODE); 1643 } 1644 1645 /* 1646 * This allocation function is useful in the context where vma is irrelevant. 1647 * E.g. soft-offlining uses this function because it only cares physical 1648 * address of error page. 1649 */ 1650 struct page *alloc_huge_page_node(struct hstate *h, int nid) 1651 { 1652 struct page *page = NULL; 1653 1654 spin_lock(&hugetlb_lock); 1655 if (h->free_huge_pages - h->resv_huge_pages > 0) 1656 page = dequeue_huge_page_node(h, nid); 1657 spin_unlock(&hugetlb_lock); 1658 1659 if (!page) 1660 page = __alloc_buddy_huge_page_no_mpol(h, nid); 1661 1662 return page; 1663 } 1664 1665 /* 1666 * Increase the hugetlb pool such that it can accommodate a reservation 1667 * of size 'delta'. 1668 */ 1669 static int gather_surplus_pages(struct hstate *h, int delta) 1670 { 1671 struct list_head surplus_list; 1672 struct page *page, *tmp; 1673 int ret, i; 1674 int needed, allocated; 1675 bool alloc_ok = true; 1676 1677 needed = (h->resv_huge_pages + delta) - h->free_huge_pages; 1678 if (needed <= 0) { 1679 h->resv_huge_pages += delta; 1680 return 0; 1681 } 1682 1683 allocated = 0; 1684 INIT_LIST_HEAD(&surplus_list); 1685 1686 ret = -ENOMEM; 1687 retry: 1688 spin_unlock(&hugetlb_lock); 1689 for (i = 0; i < needed; i++) { 1690 page = __alloc_buddy_huge_page_no_mpol(h, NUMA_NO_NODE); 1691 if (!page) { 1692 alloc_ok = false; 1693 break; 1694 } 1695 list_add(&page->lru, &surplus_list); 1696 } 1697 allocated += i; 1698 1699 /* 1700 * After retaking hugetlb_lock, we need to recalculate 'needed' 1701 * because either resv_huge_pages or free_huge_pages may have changed. 1702 */ 1703 spin_lock(&hugetlb_lock); 1704 needed = (h->resv_huge_pages + delta) - 1705 (h->free_huge_pages + allocated); 1706 if (needed > 0) { 1707 if (alloc_ok) 1708 goto retry; 1709 /* 1710 * We were not able to allocate enough pages to 1711 * satisfy the entire reservation so we free what 1712 * we've allocated so far. 1713 */ 1714 goto free; 1715 } 1716 /* 1717 * The surplus_list now contains _at_least_ the number of extra pages 1718 * needed to accommodate the reservation. Add the appropriate number 1719 * of pages to the hugetlb pool and free the extras back to the buddy 1720 * allocator. Commit the entire reservation here to prevent another 1721 * process from stealing the pages as they are added to the pool but 1722 * before they are reserved. 1723 */ 1724 needed += allocated; 1725 h->resv_huge_pages += delta; 1726 ret = 0; 1727 1728 /* Free the needed pages to the hugetlb pool */ 1729 list_for_each_entry_safe(page, tmp, &surplus_list, lru) { 1730 if ((--needed) < 0) 1731 break; 1732 /* 1733 * This page is now managed by the hugetlb allocator and has 1734 * no users -- drop the buddy allocator's reference. 1735 */ 1736 put_page_testzero(page); 1737 VM_BUG_ON_PAGE(page_count(page), page); 1738 enqueue_huge_page(h, page); 1739 } 1740 free: 1741 spin_unlock(&hugetlb_lock); 1742 1743 /* Free unnecessary surplus pages to the buddy allocator */ 1744 list_for_each_entry_safe(page, tmp, &surplus_list, lru) 1745 put_page(page); 1746 spin_lock(&hugetlb_lock); 1747 1748 return ret; 1749 } 1750 1751 /* 1752 * When releasing a hugetlb pool reservation, any surplus pages that were 1753 * allocated to satisfy the reservation must be explicitly freed if they were 1754 * never used. 1755 * Called with hugetlb_lock held. 1756 */ 1757 static void return_unused_surplus_pages(struct hstate *h, 1758 unsigned long unused_resv_pages) 1759 { 1760 unsigned long nr_pages; 1761 1762 /* Uncommit the reservation */ 1763 h->resv_huge_pages -= unused_resv_pages; 1764 1765 /* Cannot return gigantic pages currently */ 1766 if (hstate_is_gigantic(h)) 1767 return; 1768 1769 nr_pages = min(unused_resv_pages, h->surplus_huge_pages); 1770 1771 /* 1772 * We want to release as many surplus pages as possible, spread 1773 * evenly across all nodes with memory. Iterate across these nodes 1774 * until we can no longer free unreserved surplus pages. This occurs 1775 * when the nodes with surplus pages have no free pages. 1776 * free_pool_huge_page() will balance the the freed pages across the 1777 * on-line nodes with memory and will handle the hstate accounting. 1778 */ 1779 while (nr_pages--) { 1780 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1)) 1781 break; 1782 cond_resched_lock(&hugetlb_lock); 1783 } 1784 } 1785 1786 1787 /* 1788 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation 1789 * are used by the huge page allocation routines to manage reservations. 1790 * 1791 * vma_needs_reservation is called to determine if the huge page at addr 1792 * within the vma has an associated reservation. If a reservation is 1793 * needed, the value 1 is returned. The caller is then responsible for 1794 * managing the global reservation and subpool usage counts. After 1795 * the huge page has been allocated, vma_commit_reservation is called 1796 * to add the page to the reservation map. If the page allocation fails, 1797 * the reservation must be ended instead of committed. vma_end_reservation 1798 * is called in such cases. 1799 * 1800 * In the normal case, vma_commit_reservation returns the same value 1801 * as the preceding vma_needs_reservation call. The only time this 1802 * is not the case is if a reserve map was changed between calls. It 1803 * is the responsibility of the caller to notice the difference and 1804 * take appropriate action. 1805 */ 1806 enum vma_resv_mode { 1807 VMA_NEEDS_RESV, 1808 VMA_COMMIT_RESV, 1809 VMA_END_RESV, 1810 }; 1811 static long __vma_reservation_common(struct hstate *h, 1812 struct vm_area_struct *vma, unsigned long addr, 1813 enum vma_resv_mode mode) 1814 { 1815 struct resv_map *resv; 1816 pgoff_t idx; 1817 long ret; 1818 1819 resv = vma_resv_map(vma); 1820 if (!resv) 1821 return 1; 1822 1823 idx = vma_hugecache_offset(h, vma, addr); 1824 switch (mode) { 1825 case VMA_NEEDS_RESV: 1826 ret = region_chg(resv, idx, idx + 1); 1827 break; 1828 case VMA_COMMIT_RESV: 1829 ret = region_add(resv, idx, idx + 1); 1830 break; 1831 case VMA_END_RESV: 1832 region_abort(resv, idx, idx + 1); 1833 ret = 0; 1834 break; 1835 default: 1836 BUG(); 1837 } 1838 1839 if (vma->vm_flags & VM_MAYSHARE) 1840 return ret; 1841 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) { 1842 /* 1843 * In most cases, reserves always exist for private mappings. 1844 * However, a file associated with mapping could have been 1845 * hole punched or truncated after reserves were consumed. 1846 * As subsequent fault on such a range will not use reserves. 1847 * Subtle - The reserve map for private mappings has the 1848 * opposite meaning than that of shared mappings. If NO 1849 * entry is in the reserve map, it means a reservation exists. 1850 * If an entry exists in the reserve map, it means the 1851 * reservation has already been consumed. As a result, the 1852 * return value of this routine is the opposite of the 1853 * value returned from reserve map manipulation routines above. 1854 */ 1855 if (ret) 1856 return 0; 1857 else 1858 return 1; 1859 } 1860 else 1861 return ret < 0 ? ret : 0; 1862 } 1863 1864 static long vma_needs_reservation(struct hstate *h, 1865 struct vm_area_struct *vma, unsigned long addr) 1866 { 1867 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV); 1868 } 1869 1870 static long vma_commit_reservation(struct hstate *h, 1871 struct vm_area_struct *vma, unsigned long addr) 1872 { 1873 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV); 1874 } 1875 1876 static void vma_end_reservation(struct hstate *h, 1877 struct vm_area_struct *vma, unsigned long addr) 1878 { 1879 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV); 1880 } 1881 1882 struct page *alloc_huge_page(struct vm_area_struct *vma, 1883 unsigned long addr, int avoid_reserve) 1884 { 1885 struct hugepage_subpool *spool = subpool_vma(vma); 1886 struct hstate *h = hstate_vma(vma); 1887 struct page *page; 1888 long map_chg, map_commit; 1889 long gbl_chg; 1890 int ret, idx; 1891 struct hugetlb_cgroup *h_cg; 1892 1893 idx = hstate_index(h); 1894 /* 1895 * Examine the region/reserve map to determine if the process 1896 * has a reservation for the page to be allocated. A return 1897 * code of zero indicates a reservation exists (no change). 1898 */ 1899 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr); 1900 if (map_chg < 0) 1901 return ERR_PTR(-ENOMEM); 1902 1903 /* 1904 * Processes that did not create the mapping will have no 1905 * reserves as indicated by the region/reserve map. Check 1906 * that the allocation will not exceed the subpool limit. 1907 * Allocations for MAP_NORESERVE mappings also need to be 1908 * checked against any subpool limit. 1909 */ 1910 if (map_chg || avoid_reserve) { 1911 gbl_chg = hugepage_subpool_get_pages(spool, 1); 1912 if (gbl_chg < 0) { 1913 vma_end_reservation(h, vma, addr); 1914 return ERR_PTR(-ENOSPC); 1915 } 1916 1917 /* 1918 * Even though there was no reservation in the region/reserve 1919 * map, there could be reservations associated with the 1920 * subpool that can be used. This would be indicated if the 1921 * return value of hugepage_subpool_get_pages() is zero. 1922 * However, if avoid_reserve is specified we still avoid even 1923 * the subpool reservations. 1924 */ 1925 if (avoid_reserve) 1926 gbl_chg = 1; 1927 } 1928 1929 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg); 1930 if (ret) 1931 goto out_subpool_put; 1932 1933 spin_lock(&hugetlb_lock); 1934 /* 1935 * glb_chg is passed to indicate whether or not a page must be taken 1936 * from the global free pool (global change). gbl_chg == 0 indicates 1937 * a reservation exists for the allocation. 1938 */ 1939 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg); 1940 if (!page) { 1941 spin_unlock(&hugetlb_lock); 1942 page = __alloc_buddy_huge_page_with_mpol(h, vma, addr); 1943 if (!page) 1944 goto out_uncharge_cgroup; 1945 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) { 1946 SetPagePrivate(page); 1947 h->resv_huge_pages--; 1948 } 1949 spin_lock(&hugetlb_lock); 1950 list_move(&page->lru, &h->hugepage_activelist); 1951 /* Fall through */ 1952 } 1953 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page); 1954 spin_unlock(&hugetlb_lock); 1955 1956 set_page_private(page, (unsigned long)spool); 1957 1958 map_commit = vma_commit_reservation(h, vma, addr); 1959 if (unlikely(map_chg > map_commit)) { 1960 /* 1961 * The page was added to the reservation map between 1962 * vma_needs_reservation and vma_commit_reservation. 1963 * This indicates a race with hugetlb_reserve_pages. 1964 * Adjust for the subpool count incremented above AND 1965 * in hugetlb_reserve_pages for the same page. Also, 1966 * the reservation count added in hugetlb_reserve_pages 1967 * no longer applies. 1968 */ 1969 long rsv_adjust; 1970 1971 rsv_adjust = hugepage_subpool_put_pages(spool, 1); 1972 hugetlb_acct_memory(h, -rsv_adjust); 1973 } 1974 return page; 1975 1976 out_uncharge_cgroup: 1977 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg); 1978 out_subpool_put: 1979 if (map_chg || avoid_reserve) 1980 hugepage_subpool_put_pages(spool, 1); 1981 vma_end_reservation(h, vma, addr); 1982 return ERR_PTR(-ENOSPC); 1983 } 1984 1985 /* 1986 * alloc_huge_page()'s wrapper which simply returns the page if allocation 1987 * succeeds, otherwise NULL. This function is called from new_vma_page(), 1988 * where no ERR_VALUE is expected to be returned. 1989 */ 1990 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma, 1991 unsigned long addr, int avoid_reserve) 1992 { 1993 struct page *page = alloc_huge_page(vma, addr, avoid_reserve); 1994 if (IS_ERR(page)) 1995 page = NULL; 1996 return page; 1997 } 1998 1999 int __weak alloc_bootmem_huge_page(struct hstate *h) 2000 { 2001 struct huge_bootmem_page *m; 2002 int nr_nodes, node; 2003 2004 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) { 2005 void *addr; 2006 2007 addr = memblock_virt_alloc_try_nid_nopanic( 2008 huge_page_size(h), huge_page_size(h), 2009 0, BOOTMEM_ALLOC_ACCESSIBLE, node); 2010 if (addr) { 2011 /* 2012 * Use the beginning of the huge page to store the 2013 * huge_bootmem_page struct (until gather_bootmem 2014 * puts them into the mem_map). 2015 */ 2016 m = addr; 2017 goto found; 2018 } 2019 } 2020 return 0; 2021 2022 found: 2023 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h))); 2024 /* Put them into a private list first because mem_map is not up yet */ 2025 list_add(&m->list, &huge_boot_pages); 2026 m->hstate = h; 2027 return 1; 2028 } 2029 2030 static void __init prep_compound_huge_page(struct page *page, 2031 unsigned int order) 2032 { 2033 if (unlikely(order > (MAX_ORDER - 1))) 2034 prep_compound_gigantic_page(page, order); 2035 else 2036 prep_compound_page(page, order); 2037 } 2038 2039 /* Put bootmem huge pages into the standard lists after mem_map is up */ 2040 static void __init gather_bootmem_prealloc(void) 2041 { 2042 struct huge_bootmem_page *m; 2043 2044 list_for_each_entry(m, &huge_boot_pages, list) { 2045 struct hstate *h = m->hstate; 2046 struct page *page; 2047 2048 #ifdef CONFIG_HIGHMEM 2049 page = pfn_to_page(m->phys >> PAGE_SHIFT); 2050 memblock_free_late(__pa(m), 2051 sizeof(struct huge_bootmem_page)); 2052 #else 2053 page = virt_to_page(m); 2054 #endif 2055 WARN_ON(page_count(page) != 1); 2056 prep_compound_huge_page(page, h->order); 2057 WARN_ON(PageReserved(page)); 2058 prep_new_huge_page(h, page, page_to_nid(page)); 2059 /* 2060 * If we had gigantic hugepages allocated at boot time, we need 2061 * to restore the 'stolen' pages to totalram_pages in order to 2062 * fix confusing memory reports from free(1) and another 2063 * side-effects, like CommitLimit going negative. 2064 */ 2065 if (hstate_is_gigantic(h)) 2066 adjust_managed_page_count(page, 1 << h->order); 2067 } 2068 } 2069 2070 static void __init hugetlb_hstate_alloc_pages(struct hstate *h) 2071 { 2072 unsigned long i; 2073 2074 for (i = 0; i < h->max_huge_pages; ++i) { 2075 if (hstate_is_gigantic(h)) { 2076 if (!alloc_bootmem_huge_page(h)) 2077 break; 2078 } else if (!alloc_fresh_huge_page(h, 2079 &node_states[N_MEMORY])) 2080 break; 2081 } 2082 h->max_huge_pages = i; 2083 } 2084 2085 static void __init hugetlb_init_hstates(void) 2086 { 2087 struct hstate *h; 2088 2089 for_each_hstate(h) { 2090 if (minimum_order > huge_page_order(h)) 2091 minimum_order = huge_page_order(h); 2092 2093 /* oversize hugepages were init'ed in early boot */ 2094 if (!hstate_is_gigantic(h)) 2095 hugetlb_hstate_alloc_pages(h); 2096 } 2097 VM_BUG_ON(minimum_order == UINT_MAX); 2098 } 2099 2100 static char * __init memfmt(char *buf, unsigned long n) 2101 { 2102 if (n >= (1UL << 30)) 2103 sprintf(buf, "%lu GB", n >> 30); 2104 else if (n >= (1UL << 20)) 2105 sprintf(buf, "%lu MB", n >> 20); 2106 else 2107 sprintf(buf, "%lu KB", n >> 10); 2108 return buf; 2109 } 2110 2111 static void __init report_hugepages(void) 2112 { 2113 struct hstate *h; 2114 2115 for_each_hstate(h) { 2116 char buf[32]; 2117 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n", 2118 memfmt(buf, huge_page_size(h)), 2119 h->free_huge_pages); 2120 } 2121 } 2122 2123 #ifdef CONFIG_HIGHMEM 2124 static void try_to_free_low(struct hstate *h, unsigned long count, 2125 nodemask_t *nodes_allowed) 2126 { 2127 int i; 2128 2129 if (hstate_is_gigantic(h)) 2130 return; 2131 2132 for_each_node_mask(i, *nodes_allowed) { 2133 struct page *page, *next; 2134 struct list_head *freel = &h->hugepage_freelists[i]; 2135 list_for_each_entry_safe(page, next, freel, lru) { 2136 if (count >= h->nr_huge_pages) 2137 return; 2138 if (PageHighMem(page)) 2139 continue; 2140 list_del(&page->lru); 2141 update_and_free_page(h, page); 2142 h->free_huge_pages--; 2143 h->free_huge_pages_node[page_to_nid(page)]--; 2144 } 2145 } 2146 } 2147 #else 2148 static inline void try_to_free_low(struct hstate *h, unsigned long count, 2149 nodemask_t *nodes_allowed) 2150 { 2151 } 2152 #endif 2153 2154 /* 2155 * Increment or decrement surplus_huge_pages. Keep node-specific counters 2156 * balanced by operating on them in a round-robin fashion. 2157 * Returns 1 if an adjustment was made. 2158 */ 2159 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed, 2160 int delta) 2161 { 2162 int nr_nodes, node; 2163 2164 VM_BUG_ON(delta != -1 && delta != 1); 2165 2166 if (delta < 0) { 2167 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 2168 if (h->surplus_huge_pages_node[node]) 2169 goto found; 2170 } 2171 } else { 2172 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 2173 if (h->surplus_huge_pages_node[node] < 2174 h->nr_huge_pages_node[node]) 2175 goto found; 2176 } 2177 } 2178 return 0; 2179 2180 found: 2181 h->surplus_huge_pages += delta; 2182 h->surplus_huge_pages_node[node] += delta; 2183 return 1; 2184 } 2185 2186 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) 2187 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count, 2188 nodemask_t *nodes_allowed) 2189 { 2190 unsigned long min_count, ret; 2191 2192 if (hstate_is_gigantic(h) && !gigantic_page_supported()) 2193 return h->max_huge_pages; 2194 2195 /* 2196 * Increase the pool size 2197 * First take pages out of surplus state. Then make up the 2198 * remaining difference by allocating fresh huge pages. 2199 * 2200 * We might race with __alloc_buddy_huge_page() here and be unable 2201 * to convert a surplus huge page to a normal huge page. That is 2202 * not critical, though, it just means the overall size of the 2203 * pool might be one hugepage larger than it needs to be, but 2204 * within all the constraints specified by the sysctls. 2205 */ 2206 spin_lock(&hugetlb_lock); 2207 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { 2208 if (!adjust_pool_surplus(h, nodes_allowed, -1)) 2209 break; 2210 } 2211 2212 while (count > persistent_huge_pages(h)) { 2213 /* 2214 * If this allocation races such that we no longer need the 2215 * page, free_huge_page will handle it by freeing the page 2216 * and reducing the surplus. 2217 */ 2218 spin_unlock(&hugetlb_lock); 2219 2220 /* yield cpu to avoid soft lockup */ 2221 cond_resched(); 2222 2223 if (hstate_is_gigantic(h)) 2224 ret = alloc_fresh_gigantic_page(h, nodes_allowed); 2225 else 2226 ret = alloc_fresh_huge_page(h, nodes_allowed); 2227 spin_lock(&hugetlb_lock); 2228 if (!ret) 2229 goto out; 2230 2231 /* Bail for signals. Probably ctrl-c from user */ 2232 if (signal_pending(current)) 2233 goto out; 2234 } 2235 2236 /* 2237 * Decrease the pool size 2238 * First return free pages to the buddy allocator (being careful 2239 * to keep enough around to satisfy reservations). Then place 2240 * pages into surplus state as needed so the pool will shrink 2241 * to the desired size as pages become free. 2242 * 2243 * By placing pages into the surplus state independent of the 2244 * overcommit value, we are allowing the surplus pool size to 2245 * exceed overcommit. There are few sane options here. Since 2246 * __alloc_buddy_huge_page() is checking the global counter, 2247 * though, we'll note that we're not allowed to exceed surplus 2248 * and won't grow the pool anywhere else. Not until one of the 2249 * sysctls are changed, or the surplus pages go out of use. 2250 */ 2251 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages; 2252 min_count = max(count, min_count); 2253 try_to_free_low(h, min_count, nodes_allowed); 2254 while (min_count < persistent_huge_pages(h)) { 2255 if (!free_pool_huge_page(h, nodes_allowed, 0)) 2256 break; 2257 cond_resched_lock(&hugetlb_lock); 2258 } 2259 while (count < persistent_huge_pages(h)) { 2260 if (!adjust_pool_surplus(h, nodes_allowed, 1)) 2261 break; 2262 } 2263 out: 2264 ret = persistent_huge_pages(h); 2265 spin_unlock(&hugetlb_lock); 2266 return ret; 2267 } 2268 2269 #define HSTATE_ATTR_RO(_name) \ 2270 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 2271 2272 #define HSTATE_ATTR(_name) \ 2273 static struct kobj_attribute _name##_attr = \ 2274 __ATTR(_name, 0644, _name##_show, _name##_store) 2275 2276 static struct kobject *hugepages_kobj; 2277 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 2278 2279 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp); 2280 2281 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp) 2282 { 2283 int i; 2284 2285 for (i = 0; i < HUGE_MAX_HSTATE; i++) 2286 if (hstate_kobjs[i] == kobj) { 2287 if (nidp) 2288 *nidp = NUMA_NO_NODE; 2289 return &hstates[i]; 2290 } 2291 2292 return kobj_to_node_hstate(kobj, nidp); 2293 } 2294 2295 static ssize_t nr_hugepages_show_common(struct kobject *kobj, 2296 struct kobj_attribute *attr, char *buf) 2297 { 2298 struct hstate *h; 2299 unsigned long nr_huge_pages; 2300 int nid; 2301 2302 h = kobj_to_hstate(kobj, &nid); 2303 if (nid == NUMA_NO_NODE) 2304 nr_huge_pages = h->nr_huge_pages; 2305 else 2306 nr_huge_pages = h->nr_huge_pages_node[nid]; 2307 2308 return sprintf(buf, "%lu\n", nr_huge_pages); 2309 } 2310 2311 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy, 2312 struct hstate *h, int nid, 2313 unsigned long count, size_t len) 2314 { 2315 int err; 2316 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY); 2317 2318 if (hstate_is_gigantic(h) && !gigantic_page_supported()) { 2319 err = -EINVAL; 2320 goto out; 2321 } 2322 2323 if (nid == NUMA_NO_NODE) { 2324 /* 2325 * global hstate attribute 2326 */ 2327 if (!(obey_mempolicy && 2328 init_nodemask_of_mempolicy(nodes_allowed))) { 2329 NODEMASK_FREE(nodes_allowed); 2330 nodes_allowed = &node_states[N_MEMORY]; 2331 } 2332 } else if (nodes_allowed) { 2333 /* 2334 * per node hstate attribute: adjust count to global, 2335 * but restrict alloc/free to the specified node. 2336 */ 2337 count += h->nr_huge_pages - h->nr_huge_pages_node[nid]; 2338 init_nodemask_of_node(nodes_allowed, nid); 2339 } else 2340 nodes_allowed = &node_states[N_MEMORY]; 2341 2342 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed); 2343 2344 if (nodes_allowed != &node_states[N_MEMORY]) 2345 NODEMASK_FREE(nodes_allowed); 2346 2347 return len; 2348 out: 2349 NODEMASK_FREE(nodes_allowed); 2350 return err; 2351 } 2352 2353 static ssize_t nr_hugepages_store_common(bool obey_mempolicy, 2354 struct kobject *kobj, const char *buf, 2355 size_t len) 2356 { 2357 struct hstate *h; 2358 unsigned long count; 2359 int nid; 2360 int err; 2361 2362 err = kstrtoul(buf, 10, &count); 2363 if (err) 2364 return err; 2365 2366 h = kobj_to_hstate(kobj, &nid); 2367 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len); 2368 } 2369 2370 static ssize_t nr_hugepages_show(struct kobject *kobj, 2371 struct kobj_attribute *attr, char *buf) 2372 { 2373 return nr_hugepages_show_common(kobj, attr, buf); 2374 } 2375 2376 static ssize_t nr_hugepages_store(struct kobject *kobj, 2377 struct kobj_attribute *attr, const char *buf, size_t len) 2378 { 2379 return nr_hugepages_store_common(false, kobj, buf, len); 2380 } 2381 HSTATE_ATTR(nr_hugepages); 2382 2383 #ifdef CONFIG_NUMA 2384 2385 /* 2386 * hstate attribute for optionally mempolicy-based constraint on persistent 2387 * huge page alloc/free. 2388 */ 2389 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj, 2390 struct kobj_attribute *attr, char *buf) 2391 { 2392 return nr_hugepages_show_common(kobj, attr, buf); 2393 } 2394 2395 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj, 2396 struct kobj_attribute *attr, const char *buf, size_t len) 2397 { 2398 return nr_hugepages_store_common(true, kobj, buf, len); 2399 } 2400 HSTATE_ATTR(nr_hugepages_mempolicy); 2401 #endif 2402 2403 2404 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, 2405 struct kobj_attribute *attr, char *buf) 2406 { 2407 struct hstate *h = kobj_to_hstate(kobj, NULL); 2408 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages); 2409 } 2410 2411 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, 2412 struct kobj_attribute *attr, const char *buf, size_t count) 2413 { 2414 int err; 2415 unsigned long input; 2416 struct hstate *h = kobj_to_hstate(kobj, NULL); 2417 2418 if (hstate_is_gigantic(h)) 2419 return -EINVAL; 2420 2421 err = kstrtoul(buf, 10, &input); 2422 if (err) 2423 return err; 2424 2425 spin_lock(&hugetlb_lock); 2426 h->nr_overcommit_huge_pages = input; 2427 spin_unlock(&hugetlb_lock); 2428 2429 return count; 2430 } 2431 HSTATE_ATTR(nr_overcommit_hugepages); 2432 2433 static ssize_t free_hugepages_show(struct kobject *kobj, 2434 struct kobj_attribute *attr, char *buf) 2435 { 2436 struct hstate *h; 2437 unsigned long free_huge_pages; 2438 int nid; 2439 2440 h = kobj_to_hstate(kobj, &nid); 2441 if (nid == NUMA_NO_NODE) 2442 free_huge_pages = h->free_huge_pages; 2443 else 2444 free_huge_pages = h->free_huge_pages_node[nid]; 2445 2446 return sprintf(buf, "%lu\n", free_huge_pages); 2447 } 2448 HSTATE_ATTR_RO(free_hugepages); 2449 2450 static ssize_t resv_hugepages_show(struct kobject *kobj, 2451 struct kobj_attribute *attr, char *buf) 2452 { 2453 struct hstate *h = kobj_to_hstate(kobj, NULL); 2454 return sprintf(buf, "%lu\n", h->resv_huge_pages); 2455 } 2456 HSTATE_ATTR_RO(resv_hugepages); 2457 2458 static ssize_t surplus_hugepages_show(struct kobject *kobj, 2459 struct kobj_attribute *attr, char *buf) 2460 { 2461 struct hstate *h; 2462 unsigned long surplus_huge_pages; 2463 int nid; 2464 2465 h = kobj_to_hstate(kobj, &nid); 2466 if (nid == NUMA_NO_NODE) 2467 surplus_huge_pages = h->surplus_huge_pages; 2468 else 2469 surplus_huge_pages = h->surplus_huge_pages_node[nid]; 2470 2471 return sprintf(buf, "%lu\n", surplus_huge_pages); 2472 } 2473 HSTATE_ATTR_RO(surplus_hugepages); 2474 2475 static struct attribute *hstate_attrs[] = { 2476 &nr_hugepages_attr.attr, 2477 &nr_overcommit_hugepages_attr.attr, 2478 &free_hugepages_attr.attr, 2479 &resv_hugepages_attr.attr, 2480 &surplus_hugepages_attr.attr, 2481 #ifdef CONFIG_NUMA 2482 &nr_hugepages_mempolicy_attr.attr, 2483 #endif 2484 NULL, 2485 }; 2486 2487 static struct attribute_group hstate_attr_group = { 2488 .attrs = hstate_attrs, 2489 }; 2490 2491 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent, 2492 struct kobject **hstate_kobjs, 2493 struct attribute_group *hstate_attr_group) 2494 { 2495 int retval; 2496 int hi = hstate_index(h); 2497 2498 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent); 2499 if (!hstate_kobjs[hi]) 2500 return -ENOMEM; 2501 2502 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group); 2503 if (retval) 2504 kobject_put(hstate_kobjs[hi]); 2505 2506 return retval; 2507 } 2508 2509 static void __init hugetlb_sysfs_init(void) 2510 { 2511 struct hstate *h; 2512 int err; 2513 2514 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); 2515 if (!hugepages_kobj) 2516 return; 2517 2518 for_each_hstate(h) { 2519 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj, 2520 hstate_kobjs, &hstate_attr_group); 2521 if (err) 2522 pr_err("Hugetlb: Unable to add hstate %s", h->name); 2523 } 2524 } 2525 2526 #ifdef CONFIG_NUMA 2527 2528 /* 2529 * node_hstate/s - associate per node hstate attributes, via their kobjects, 2530 * with node devices in node_devices[] using a parallel array. The array 2531 * index of a node device or _hstate == node id. 2532 * This is here to avoid any static dependency of the node device driver, in 2533 * the base kernel, on the hugetlb module. 2534 */ 2535 struct node_hstate { 2536 struct kobject *hugepages_kobj; 2537 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 2538 }; 2539 static struct node_hstate node_hstates[MAX_NUMNODES]; 2540 2541 /* 2542 * A subset of global hstate attributes for node devices 2543 */ 2544 static struct attribute *per_node_hstate_attrs[] = { 2545 &nr_hugepages_attr.attr, 2546 &free_hugepages_attr.attr, 2547 &surplus_hugepages_attr.attr, 2548 NULL, 2549 }; 2550 2551 static struct attribute_group per_node_hstate_attr_group = { 2552 .attrs = per_node_hstate_attrs, 2553 }; 2554 2555 /* 2556 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj. 2557 * Returns node id via non-NULL nidp. 2558 */ 2559 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 2560 { 2561 int nid; 2562 2563 for (nid = 0; nid < nr_node_ids; nid++) { 2564 struct node_hstate *nhs = &node_hstates[nid]; 2565 int i; 2566 for (i = 0; i < HUGE_MAX_HSTATE; i++) 2567 if (nhs->hstate_kobjs[i] == kobj) { 2568 if (nidp) 2569 *nidp = nid; 2570 return &hstates[i]; 2571 } 2572 } 2573 2574 BUG(); 2575 return NULL; 2576 } 2577 2578 /* 2579 * Unregister hstate attributes from a single node device. 2580 * No-op if no hstate attributes attached. 2581 */ 2582 static void hugetlb_unregister_node(struct node *node) 2583 { 2584 struct hstate *h; 2585 struct node_hstate *nhs = &node_hstates[node->dev.id]; 2586 2587 if (!nhs->hugepages_kobj) 2588 return; /* no hstate attributes */ 2589 2590 for_each_hstate(h) { 2591 int idx = hstate_index(h); 2592 if (nhs->hstate_kobjs[idx]) { 2593 kobject_put(nhs->hstate_kobjs[idx]); 2594 nhs->hstate_kobjs[idx] = NULL; 2595 } 2596 } 2597 2598 kobject_put(nhs->hugepages_kobj); 2599 nhs->hugepages_kobj = NULL; 2600 } 2601 2602 2603 /* 2604 * Register hstate attributes for a single node device. 2605 * No-op if attributes already registered. 2606 */ 2607 static void hugetlb_register_node(struct node *node) 2608 { 2609 struct hstate *h; 2610 struct node_hstate *nhs = &node_hstates[node->dev.id]; 2611 int err; 2612 2613 if (nhs->hugepages_kobj) 2614 return; /* already allocated */ 2615 2616 nhs->hugepages_kobj = kobject_create_and_add("hugepages", 2617 &node->dev.kobj); 2618 if (!nhs->hugepages_kobj) 2619 return; 2620 2621 for_each_hstate(h) { 2622 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj, 2623 nhs->hstate_kobjs, 2624 &per_node_hstate_attr_group); 2625 if (err) { 2626 pr_err("Hugetlb: Unable to add hstate %s for node %d\n", 2627 h->name, node->dev.id); 2628 hugetlb_unregister_node(node); 2629 break; 2630 } 2631 } 2632 } 2633 2634 /* 2635 * hugetlb init time: register hstate attributes for all registered node 2636 * devices of nodes that have memory. All on-line nodes should have 2637 * registered their associated device by this time. 2638 */ 2639 static void __init hugetlb_register_all_nodes(void) 2640 { 2641 int nid; 2642 2643 for_each_node_state(nid, N_MEMORY) { 2644 struct node *node = node_devices[nid]; 2645 if (node->dev.id == nid) 2646 hugetlb_register_node(node); 2647 } 2648 2649 /* 2650 * Let the node device driver know we're here so it can 2651 * [un]register hstate attributes on node hotplug. 2652 */ 2653 register_hugetlbfs_with_node(hugetlb_register_node, 2654 hugetlb_unregister_node); 2655 } 2656 #else /* !CONFIG_NUMA */ 2657 2658 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 2659 { 2660 BUG(); 2661 if (nidp) 2662 *nidp = -1; 2663 return NULL; 2664 } 2665 2666 static void hugetlb_register_all_nodes(void) { } 2667 2668 #endif 2669 2670 static int __init hugetlb_init(void) 2671 { 2672 int i; 2673 2674 if (!hugepages_supported()) 2675 return 0; 2676 2677 if (!size_to_hstate(default_hstate_size)) { 2678 default_hstate_size = HPAGE_SIZE; 2679 if (!size_to_hstate(default_hstate_size)) 2680 hugetlb_add_hstate(HUGETLB_PAGE_ORDER); 2681 } 2682 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size)); 2683 if (default_hstate_max_huge_pages) { 2684 if (!default_hstate.max_huge_pages) 2685 default_hstate.max_huge_pages = default_hstate_max_huge_pages; 2686 } 2687 2688 hugetlb_init_hstates(); 2689 gather_bootmem_prealloc(); 2690 report_hugepages(); 2691 2692 hugetlb_sysfs_init(); 2693 hugetlb_register_all_nodes(); 2694 hugetlb_cgroup_file_init(); 2695 2696 #ifdef CONFIG_SMP 2697 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus()); 2698 #else 2699 num_fault_mutexes = 1; 2700 #endif 2701 hugetlb_fault_mutex_table = 2702 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL); 2703 BUG_ON(!hugetlb_fault_mutex_table); 2704 2705 for (i = 0; i < num_fault_mutexes; i++) 2706 mutex_init(&hugetlb_fault_mutex_table[i]); 2707 return 0; 2708 } 2709 subsys_initcall(hugetlb_init); 2710 2711 /* Should be called on processing a hugepagesz=... option */ 2712 void __init hugetlb_bad_size(void) 2713 { 2714 parsed_valid_hugepagesz = false; 2715 } 2716 2717 void __init hugetlb_add_hstate(unsigned int order) 2718 { 2719 struct hstate *h; 2720 unsigned long i; 2721 2722 if (size_to_hstate(PAGE_SIZE << order)) { 2723 pr_warn("hugepagesz= specified twice, ignoring\n"); 2724 return; 2725 } 2726 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE); 2727 BUG_ON(order == 0); 2728 h = &hstates[hugetlb_max_hstate++]; 2729 h->order = order; 2730 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1); 2731 h->nr_huge_pages = 0; 2732 h->free_huge_pages = 0; 2733 for (i = 0; i < MAX_NUMNODES; ++i) 2734 INIT_LIST_HEAD(&h->hugepage_freelists[i]); 2735 INIT_LIST_HEAD(&h->hugepage_activelist); 2736 h->next_nid_to_alloc = first_memory_node; 2737 h->next_nid_to_free = first_memory_node; 2738 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", 2739 huge_page_size(h)/1024); 2740 2741 parsed_hstate = h; 2742 } 2743 2744 static int __init hugetlb_nrpages_setup(char *s) 2745 { 2746 unsigned long *mhp; 2747 static unsigned long *last_mhp; 2748 2749 if (!parsed_valid_hugepagesz) { 2750 pr_warn("hugepages = %s preceded by " 2751 "an unsupported hugepagesz, ignoring\n", s); 2752 parsed_valid_hugepagesz = true; 2753 return 1; 2754 } 2755 /* 2756 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet, 2757 * so this hugepages= parameter goes to the "default hstate". 2758 */ 2759 else if (!hugetlb_max_hstate) 2760 mhp = &default_hstate_max_huge_pages; 2761 else 2762 mhp = &parsed_hstate->max_huge_pages; 2763 2764 if (mhp == last_mhp) { 2765 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n"); 2766 return 1; 2767 } 2768 2769 if (sscanf(s, "%lu", mhp) <= 0) 2770 *mhp = 0; 2771 2772 /* 2773 * Global state is always initialized later in hugetlb_init. 2774 * But we need to allocate >= MAX_ORDER hstates here early to still 2775 * use the bootmem allocator. 2776 */ 2777 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER) 2778 hugetlb_hstate_alloc_pages(parsed_hstate); 2779 2780 last_mhp = mhp; 2781 2782 return 1; 2783 } 2784 __setup("hugepages=", hugetlb_nrpages_setup); 2785 2786 static int __init hugetlb_default_setup(char *s) 2787 { 2788 default_hstate_size = memparse(s, &s); 2789 return 1; 2790 } 2791 __setup("default_hugepagesz=", hugetlb_default_setup); 2792 2793 static unsigned int cpuset_mems_nr(unsigned int *array) 2794 { 2795 int node; 2796 unsigned int nr = 0; 2797 2798 for_each_node_mask(node, cpuset_current_mems_allowed) 2799 nr += array[node]; 2800 2801 return nr; 2802 } 2803 2804 #ifdef CONFIG_SYSCTL 2805 static int hugetlb_sysctl_handler_common(bool obey_mempolicy, 2806 struct ctl_table *table, int write, 2807 void __user *buffer, size_t *length, loff_t *ppos) 2808 { 2809 struct hstate *h = &default_hstate; 2810 unsigned long tmp = h->max_huge_pages; 2811 int ret; 2812 2813 if (!hugepages_supported()) 2814 return -EOPNOTSUPP; 2815 2816 table->data = &tmp; 2817 table->maxlen = sizeof(unsigned long); 2818 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos); 2819 if (ret) 2820 goto out; 2821 2822 if (write) 2823 ret = __nr_hugepages_store_common(obey_mempolicy, h, 2824 NUMA_NO_NODE, tmp, *length); 2825 out: 2826 return ret; 2827 } 2828 2829 int hugetlb_sysctl_handler(struct ctl_table *table, int write, 2830 void __user *buffer, size_t *length, loff_t *ppos) 2831 { 2832 2833 return hugetlb_sysctl_handler_common(false, table, write, 2834 buffer, length, ppos); 2835 } 2836 2837 #ifdef CONFIG_NUMA 2838 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write, 2839 void __user *buffer, size_t *length, loff_t *ppos) 2840 { 2841 return hugetlb_sysctl_handler_common(true, table, write, 2842 buffer, length, ppos); 2843 } 2844 #endif /* CONFIG_NUMA */ 2845 2846 int hugetlb_overcommit_handler(struct ctl_table *table, int write, 2847 void __user *buffer, 2848 size_t *length, loff_t *ppos) 2849 { 2850 struct hstate *h = &default_hstate; 2851 unsigned long tmp; 2852 int ret; 2853 2854 if (!hugepages_supported()) 2855 return -EOPNOTSUPP; 2856 2857 tmp = h->nr_overcommit_huge_pages; 2858 2859 if (write && hstate_is_gigantic(h)) 2860 return -EINVAL; 2861 2862 table->data = &tmp; 2863 table->maxlen = sizeof(unsigned long); 2864 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos); 2865 if (ret) 2866 goto out; 2867 2868 if (write) { 2869 spin_lock(&hugetlb_lock); 2870 h->nr_overcommit_huge_pages = tmp; 2871 spin_unlock(&hugetlb_lock); 2872 } 2873 out: 2874 return ret; 2875 } 2876 2877 #endif /* CONFIG_SYSCTL */ 2878 2879 void hugetlb_report_meminfo(struct seq_file *m) 2880 { 2881 struct hstate *h = &default_hstate; 2882 if (!hugepages_supported()) 2883 return; 2884 seq_printf(m, 2885 "HugePages_Total: %5lu\n" 2886 "HugePages_Free: %5lu\n" 2887 "HugePages_Rsvd: %5lu\n" 2888 "HugePages_Surp: %5lu\n" 2889 "Hugepagesize: %8lu kB\n", 2890 h->nr_huge_pages, 2891 h->free_huge_pages, 2892 h->resv_huge_pages, 2893 h->surplus_huge_pages, 2894 1UL << (huge_page_order(h) + PAGE_SHIFT - 10)); 2895 } 2896 2897 int hugetlb_report_node_meminfo(int nid, char *buf) 2898 { 2899 struct hstate *h = &default_hstate; 2900 if (!hugepages_supported()) 2901 return 0; 2902 return sprintf(buf, 2903 "Node %d HugePages_Total: %5u\n" 2904 "Node %d HugePages_Free: %5u\n" 2905 "Node %d HugePages_Surp: %5u\n", 2906 nid, h->nr_huge_pages_node[nid], 2907 nid, h->free_huge_pages_node[nid], 2908 nid, h->surplus_huge_pages_node[nid]); 2909 } 2910 2911 void hugetlb_show_meminfo(void) 2912 { 2913 struct hstate *h; 2914 int nid; 2915 2916 if (!hugepages_supported()) 2917 return; 2918 2919 for_each_node_state(nid, N_MEMORY) 2920 for_each_hstate(h) 2921 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n", 2922 nid, 2923 h->nr_huge_pages_node[nid], 2924 h->free_huge_pages_node[nid], 2925 h->surplus_huge_pages_node[nid], 2926 1UL << (huge_page_order(h) + PAGE_SHIFT - 10)); 2927 } 2928 2929 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm) 2930 { 2931 seq_printf(m, "HugetlbPages:\t%8lu kB\n", 2932 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10)); 2933 } 2934 2935 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ 2936 unsigned long hugetlb_total_pages(void) 2937 { 2938 struct hstate *h; 2939 unsigned long nr_total_pages = 0; 2940 2941 for_each_hstate(h) 2942 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h); 2943 return nr_total_pages; 2944 } 2945 2946 static int hugetlb_acct_memory(struct hstate *h, long delta) 2947 { 2948 int ret = -ENOMEM; 2949 2950 spin_lock(&hugetlb_lock); 2951 /* 2952 * When cpuset is configured, it breaks the strict hugetlb page 2953 * reservation as the accounting is done on a global variable. Such 2954 * reservation is completely rubbish in the presence of cpuset because 2955 * the reservation is not checked against page availability for the 2956 * current cpuset. Application can still potentially OOM'ed by kernel 2957 * with lack of free htlb page in cpuset that the task is in. 2958 * Attempt to enforce strict accounting with cpuset is almost 2959 * impossible (or too ugly) because cpuset is too fluid that 2960 * task or memory node can be dynamically moved between cpusets. 2961 * 2962 * The change of semantics for shared hugetlb mapping with cpuset is 2963 * undesirable. However, in order to preserve some of the semantics, 2964 * we fall back to check against current free page availability as 2965 * a best attempt and hopefully to minimize the impact of changing 2966 * semantics that cpuset has. 2967 */ 2968 if (delta > 0) { 2969 if (gather_surplus_pages(h, delta) < 0) 2970 goto out; 2971 2972 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) { 2973 return_unused_surplus_pages(h, delta); 2974 goto out; 2975 } 2976 } 2977 2978 ret = 0; 2979 if (delta < 0) 2980 return_unused_surplus_pages(h, (unsigned long) -delta); 2981 2982 out: 2983 spin_unlock(&hugetlb_lock); 2984 return ret; 2985 } 2986 2987 static void hugetlb_vm_op_open(struct vm_area_struct *vma) 2988 { 2989 struct resv_map *resv = vma_resv_map(vma); 2990 2991 /* 2992 * This new VMA should share its siblings reservation map if present. 2993 * The VMA will only ever have a valid reservation map pointer where 2994 * it is being copied for another still existing VMA. As that VMA 2995 * has a reference to the reservation map it cannot disappear until 2996 * after this open call completes. It is therefore safe to take a 2997 * new reference here without additional locking. 2998 */ 2999 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 3000 kref_get(&resv->refs); 3001 } 3002 3003 static void hugetlb_vm_op_close(struct vm_area_struct *vma) 3004 { 3005 struct hstate *h = hstate_vma(vma); 3006 struct resv_map *resv = vma_resv_map(vma); 3007 struct hugepage_subpool *spool = subpool_vma(vma); 3008 unsigned long reserve, start, end; 3009 long gbl_reserve; 3010 3011 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 3012 return; 3013 3014 start = vma_hugecache_offset(h, vma, vma->vm_start); 3015 end = vma_hugecache_offset(h, vma, vma->vm_end); 3016 3017 reserve = (end - start) - region_count(resv, start, end); 3018 3019 kref_put(&resv->refs, resv_map_release); 3020 3021 if (reserve) { 3022 /* 3023 * Decrement reserve counts. The global reserve count may be 3024 * adjusted if the subpool has a minimum size. 3025 */ 3026 gbl_reserve = hugepage_subpool_put_pages(spool, reserve); 3027 hugetlb_acct_memory(h, -gbl_reserve); 3028 } 3029 } 3030 3031 /* 3032 * We cannot handle pagefaults against hugetlb pages at all. They cause 3033 * handle_mm_fault() to try to instantiate regular-sized pages in the 3034 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get 3035 * this far. 3036 */ 3037 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 3038 { 3039 BUG(); 3040 return 0; 3041 } 3042 3043 const struct vm_operations_struct hugetlb_vm_ops = { 3044 .fault = hugetlb_vm_op_fault, 3045 .open = hugetlb_vm_op_open, 3046 .close = hugetlb_vm_op_close, 3047 }; 3048 3049 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, 3050 int writable) 3051 { 3052 pte_t entry; 3053 3054 if (writable) { 3055 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page, 3056 vma->vm_page_prot))); 3057 } else { 3058 entry = huge_pte_wrprotect(mk_huge_pte(page, 3059 vma->vm_page_prot)); 3060 } 3061 entry = pte_mkyoung(entry); 3062 entry = pte_mkhuge(entry); 3063 entry = arch_make_huge_pte(entry, vma, page, writable); 3064 3065 return entry; 3066 } 3067 3068 static void set_huge_ptep_writable(struct vm_area_struct *vma, 3069 unsigned long address, pte_t *ptep) 3070 { 3071 pte_t entry; 3072 3073 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep))); 3074 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) 3075 update_mmu_cache(vma, address, ptep); 3076 } 3077 3078 static int is_hugetlb_entry_migration(pte_t pte) 3079 { 3080 swp_entry_t swp; 3081 3082 if (huge_pte_none(pte) || pte_present(pte)) 3083 return 0; 3084 swp = pte_to_swp_entry(pte); 3085 if (non_swap_entry(swp) && is_migration_entry(swp)) 3086 return 1; 3087 else 3088 return 0; 3089 } 3090 3091 static int is_hugetlb_entry_hwpoisoned(pte_t pte) 3092 { 3093 swp_entry_t swp; 3094 3095 if (huge_pte_none(pte) || pte_present(pte)) 3096 return 0; 3097 swp = pte_to_swp_entry(pte); 3098 if (non_swap_entry(swp) && is_hwpoison_entry(swp)) 3099 return 1; 3100 else 3101 return 0; 3102 } 3103 3104 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, 3105 struct vm_area_struct *vma) 3106 { 3107 pte_t *src_pte, *dst_pte, entry; 3108 struct page *ptepage; 3109 unsigned long addr; 3110 int cow; 3111 struct hstate *h = hstate_vma(vma); 3112 unsigned long sz = huge_page_size(h); 3113 unsigned long mmun_start; /* For mmu_notifiers */ 3114 unsigned long mmun_end; /* For mmu_notifiers */ 3115 int ret = 0; 3116 3117 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 3118 3119 mmun_start = vma->vm_start; 3120 mmun_end = vma->vm_end; 3121 if (cow) 3122 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end); 3123 3124 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) { 3125 spinlock_t *src_ptl, *dst_ptl; 3126 src_pte = huge_pte_offset(src, addr); 3127 if (!src_pte) 3128 continue; 3129 dst_pte = huge_pte_alloc(dst, addr, sz); 3130 if (!dst_pte) { 3131 ret = -ENOMEM; 3132 break; 3133 } 3134 3135 /* If the pagetables are shared don't copy or take references */ 3136 if (dst_pte == src_pte) 3137 continue; 3138 3139 dst_ptl = huge_pte_lock(h, dst, dst_pte); 3140 src_ptl = huge_pte_lockptr(h, src, src_pte); 3141 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 3142 entry = huge_ptep_get(src_pte); 3143 if (huge_pte_none(entry)) { /* skip none entry */ 3144 ; 3145 } else if (unlikely(is_hugetlb_entry_migration(entry) || 3146 is_hugetlb_entry_hwpoisoned(entry))) { 3147 swp_entry_t swp_entry = pte_to_swp_entry(entry); 3148 3149 if (is_write_migration_entry(swp_entry) && cow) { 3150 /* 3151 * COW mappings require pages in both 3152 * parent and child to be set to read. 3153 */ 3154 make_migration_entry_read(&swp_entry); 3155 entry = swp_entry_to_pte(swp_entry); 3156 set_huge_pte_at(src, addr, src_pte, entry); 3157 } 3158 set_huge_pte_at(dst, addr, dst_pte, entry); 3159 } else { 3160 if (cow) { 3161 huge_ptep_set_wrprotect(src, addr, src_pte); 3162 mmu_notifier_invalidate_range(src, mmun_start, 3163 mmun_end); 3164 } 3165 entry = huge_ptep_get(src_pte); 3166 ptepage = pte_page(entry); 3167 get_page(ptepage); 3168 page_dup_rmap(ptepage, true); 3169 set_huge_pte_at(dst, addr, dst_pte, entry); 3170 hugetlb_count_add(pages_per_huge_page(h), dst); 3171 } 3172 spin_unlock(src_ptl); 3173 spin_unlock(dst_ptl); 3174 } 3175 3176 if (cow) 3177 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end); 3178 3179 return ret; 3180 } 3181 3182 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma, 3183 unsigned long start, unsigned long end, 3184 struct page *ref_page) 3185 { 3186 struct mm_struct *mm = vma->vm_mm; 3187 unsigned long address; 3188 pte_t *ptep; 3189 pte_t pte; 3190 spinlock_t *ptl; 3191 struct page *page; 3192 struct hstate *h = hstate_vma(vma); 3193 unsigned long sz = huge_page_size(h); 3194 const unsigned long mmun_start = start; /* For mmu_notifiers */ 3195 const unsigned long mmun_end = end; /* For mmu_notifiers */ 3196 3197 WARN_ON(!is_vm_hugetlb_page(vma)); 3198 BUG_ON(start & ~huge_page_mask(h)); 3199 BUG_ON(end & ~huge_page_mask(h)); 3200 3201 tlb_start_vma(tlb, vma); 3202 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 3203 address = start; 3204 for (; address < end; address += sz) { 3205 ptep = huge_pte_offset(mm, address); 3206 if (!ptep) 3207 continue; 3208 3209 ptl = huge_pte_lock(h, mm, ptep); 3210 if (huge_pmd_unshare(mm, &address, ptep)) { 3211 spin_unlock(ptl); 3212 continue; 3213 } 3214 3215 pte = huge_ptep_get(ptep); 3216 if (huge_pte_none(pte)) { 3217 spin_unlock(ptl); 3218 continue; 3219 } 3220 3221 /* 3222 * Migrating hugepage or HWPoisoned hugepage is already 3223 * unmapped and its refcount is dropped, so just clear pte here. 3224 */ 3225 if (unlikely(!pte_present(pte))) { 3226 huge_pte_clear(mm, address, ptep); 3227 spin_unlock(ptl); 3228 continue; 3229 } 3230 3231 page = pte_page(pte); 3232 /* 3233 * If a reference page is supplied, it is because a specific 3234 * page is being unmapped, not a range. Ensure the page we 3235 * are about to unmap is the actual page of interest. 3236 */ 3237 if (ref_page) { 3238 if (page != ref_page) { 3239 spin_unlock(ptl); 3240 continue; 3241 } 3242 /* 3243 * Mark the VMA as having unmapped its page so that 3244 * future faults in this VMA will fail rather than 3245 * looking like data was lost 3246 */ 3247 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); 3248 } 3249 3250 pte = huge_ptep_get_and_clear(mm, address, ptep); 3251 tlb_remove_tlb_entry(tlb, ptep, address); 3252 if (huge_pte_dirty(pte)) 3253 set_page_dirty(page); 3254 3255 hugetlb_count_sub(pages_per_huge_page(h), mm); 3256 page_remove_rmap(page, true); 3257 3258 spin_unlock(ptl); 3259 tlb_remove_page_size(tlb, page, huge_page_size(h)); 3260 /* 3261 * Bail out after unmapping reference page if supplied 3262 */ 3263 if (ref_page) 3264 break; 3265 } 3266 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 3267 tlb_end_vma(tlb, vma); 3268 } 3269 3270 void __unmap_hugepage_range_final(struct mmu_gather *tlb, 3271 struct vm_area_struct *vma, unsigned long start, 3272 unsigned long end, struct page *ref_page) 3273 { 3274 __unmap_hugepage_range(tlb, vma, start, end, ref_page); 3275 3276 /* 3277 * Clear this flag so that x86's huge_pmd_share page_table_shareable 3278 * test will fail on a vma being torn down, and not grab a page table 3279 * on its way out. We're lucky that the flag has such an appropriate 3280 * name, and can in fact be safely cleared here. We could clear it 3281 * before the __unmap_hugepage_range above, but all that's necessary 3282 * is to clear it before releasing the i_mmap_rwsem. This works 3283 * because in the context this is called, the VMA is about to be 3284 * destroyed and the i_mmap_rwsem is held. 3285 */ 3286 vma->vm_flags &= ~VM_MAYSHARE; 3287 } 3288 3289 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, 3290 unsigned long end, struct page *ref_page) 3291 { 3292 struct mm_struct *mm; 3293 struct mmu_gather tlb; 3294 3295 mm = vma->vm_mm; 3296 3297 tlb_gather_mmu(&tlb, mm, start, end); 3298 __unmap_hugepage_range(&tlb, vma, start, end, ref_page); 3299 tlb_finish_mmu(&tlb, start, end); 3300 } 3301 3302 /* 3303 * This is called when the original mapper is failing to COW a MAP_PRIVATE 3304 * mappping it owns the reserve page for. The intention is to unmap the page 3305 * from other VMAs and let the children be SIGKILLed if they are faulting the 3306 * same region. 3307 */ 3308 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, 3309 struct page *page, unsigned long address) 3310 { 3311 struct hstate *h = hstate_vma(vma); 3312 struct vm_area_struct *iter_vma; 3313 struct address_space *mapping; 3314 pgoff_t pgoff; 3315 3316 /* 3317 * vm_pgoff is in PAGE_SIZE units, hence the different calculation 3318 * from page cache lookup which is in HPAGE_SIZE units. 3319 */ 3320 address = address & huge_page_mask(h); 3321 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + 3322 vma->vm_pgoff; 3323 mapping = vma->vm_file->f_mapping; 3324 3325 /* 3326 * Take the mapping lock for the duration of the table walk. As 3327 * this mapping should be shared between all the VMAs, 3328 * __unmap_hugepage_range() is called as the lock is already held 3329 */ 3330 i_mmap_lock_write(mapping); 3331 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) { 3332 /* Do not unmap the current VMA */ 3333 if (iter_vma == vma) 3334 continue; 3335 3336 /* 3337 * Shared VMAs have their own reserves and do not affect 3338 * MAP_PRIVATE accounting but it is possible that a shared 3339 * VMA is using the same page so check and skip such VMAs. 3340 */ 3341 if (iter_vma->vm_flags & VM_MAYSHARE) 3342 continue; 3343 3344 /* 3345 * Unmap the page from other VMAs without their own reserves. 3346 * They get marked to be SIGKILLed if they fault in these 3347 * areas. This is because a future no-page fault on this VMA 3348 * could insert a zeroed page instead of the data existing 3349 * from the time of fork. This would look like data corruption 3350 */ 3351 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) 3352 unmap_hugepage_range(iter_vma, address, 3353 address + huge_page_size(h), page); 3354 } 3355 i_mmap_unlock_write(mapping); 3356 } 3357 3358 /* 3359 * Hugetlb_cow() should be called with page lock of the original hugepage held. 3360 * Called with hugetlb_instantiation_mutex held and pte_page locked so we 3361 * cannot race with other handlers or page migration. 3362 * Keep the pte_same checks anyway to make transition from the mutex easier. 3363 */ 3364 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma, 3365 unsigned long address, pte_t *ptep, pte_t pte, 3366 struct page *pagecache_page, spinlock_t *ptl) 3367 { 3368 struct hstate *h = hstate_vma(vma); 3369 struct page *old_page, *new_page; 3370 int ret = 0, outside_reserve = 0; 3371 unsigned long mmun_start; /* For mmu_notifiers */ 3372 unsigned long mmun_end; /* For mmu_notifiers */ 3373 3374 old_page = pte_page(pte); 3375 3376 retry_avoidcopy: 3377 /* If no-one else is actually using this page, avoid the copy 3378 * and just make the page writable */ 3379 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) { 3380 page_move_anon_rmap(old_page, vma); 3381 set_huge_ptep_writable(vma, address, ptep); 3382 return 0; 3383 } 3384 3385 /* 3386 * If the process that created a MAP_PRIVATE mapping is about to 3387 * perform a COW due to a shared page count, attempt to satisfy 3388 * the allocation without using the existing reserves. The pagecache 3389 * page is used to determine if the reserve at this address was 3390 * consumed or not. If reserves were used, a partial faulted mapping 3391 * at the time of fork() could consume its reserves on COW instead 3392 * of the full address range. 3393 */ 3394 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && 3395 old_page != pagecache_page) 3396 outside_reserve = 1; 3397 3398 get_page(old_page); 3399 3400 /* 3401 * Drop page table lock as buddy allocator may be called. It will 3402 * be acquired again before returning to the caller, as expected. 3403 */ 3404 spin_unlock(ptl); 3405 new_page = alloc_huge_page(vma, address, outside_reserve); 3406 3407 if (IS_ERR(new_page)) { 3408 /* 3409 * If a process owning a MAP_PRIVATE mapping fails to COW, 3410 * it is due to references held by a child and an insufficient 3411 * huge page pool. To guarantee the original mappers 3412 * reliability, unmap the page from child processes. The child 3413 * may get SIGKILLed if it later faults. 3414 */ 3415 if (outside_reserve) { 3416 put_page(old_page); 3417 BUG_ON(huge_pte_none(pte)); 3418 unmap_ref_private(mm, vma, old_page, address); 3419 BUG_ON(huge_pte_none(pte)); 3420 spin_lock(ptl); 3421 ptep = huge_pte_offset(mm, address & huge_page_mask(h)); 3422 if (likely(ptep && 3423 pte_same(huge_ptep_get(ptep), pte))) 3424 goto retry_avoidcopy; 3425 /* 3426 * race occurs while re-acquiring page table 3427 * lock, and our job is done. 3428 */ 3429 return 0; 3430 } 3431 3432 ret = (PTR_ERR(new_page) == -ENOMEM) ? 3433 VM_FAULT_OOM : VM_FAULT_SIGBUS; 3434 goto out_release_old; 3435 } 3436 3437 /* 3438 * When the original hugepage is shared one, it does not have 3439 * anon_vma prepared. 3440 */ 3441 if (unlikely(anon_vma_prepare(vma))) { 3442 ret = VM_FAULT_OOM; 3443 goto out_release_all; 3444 } 3445 3446 copy_user_huge_page(new_page, old_page, address, vma, 3447 pages_per_huge_page(h)); 3448 __SetPageUptodate(new_page); 3449 set_page_huge_active(new_page); 3450 3451 mmun_start = address & huge_page_mask(h); 3452 mmun_end = mmun_start + huge_page_size(h); 3453 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 3454 3455 /* 3456 * Retake the page table lock to check for racing updates 3457 * before the page tables are altered 3458 */ 3459 spin_lock(ptl); 3460 ptep = huge_pte_offset(mm, address & huge_page_mask(h)); 3461 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) { 3462 ClearPagePrivate(new_page); 3463 3464 /* Break COW */ 3465 huge_ptep_clear_flush(vma, address, ptep); 3466 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end); 3467 set_huge_pte_at(mm, address, ptep, 3468 make_huge_pte(vma, new_page, 1)); 3469 page_remove_rmap(old_page, true); 3470 hugepage_add_new_anon_rmap(new_page, vma, address); 3471 /* Make the old page be freed below */ 3472 new_page = old_page; 3473 } 3474 spin_unlock(ptl); 3475 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 3476 out_release_all: 3477 put_page(new_page); 3478 out_release_old: 3479 put_page(old_page); 3480 3481 spin_lock(ptl); /* Caller expects lock to be held */ 3482 return ret; 3483 } 3484 3485 /* Return the pagecache page at a given address within a VMA */ 3486 static struct page *hugetlbfs_pagecache_page(struct hstate *h, 3487 struct vm_area_struct *vma, unsigned long address) 3488 { 3489 struct address_space *mapping; 3490 pgoff_t idx; 3491 3492 mapping = vma->vm_file->f_mapping; 3493 idx = vma_hugecache_offset(h, vma, address); 3494 3495 return find_lock_page(mapping, idx); 3496 } 3497 3498 /* 3499 * Return whether there is a pagecache page to back given address within VMA. 3500 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page. 3501 */ 3502 static bool hugetlbfs_pagecache_present(struct hstate *h, 3503 struct vm_area_struct *vma, unsigned long address) 3504 { 3505 struct address_space *mapping; 3506 pgoff_t idx; 3507 struct page *page; 3508 3509 mapping = vma->vm_file->f_mapping; 3510 idx = vma_hugecache_offset(h, vma, address); 3511 3512 page = find_get_page(mapping, idx); 3513 if (page) 3514 put_page(page); 3515 return page != NULL; 3516 } 3517 3518 int huge_add_to_page_cache(struct page *page, struct address_space *mapping, 3519 pgoff_t idx) 3520 { 3521 struct inode *inode = mapping->host; 3522 struct hstate *h = hstate_inode(inode); 3523 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL); 3524 3525 if (err) 3526 return err; 3527 ClearPagePrivate(page); 3528 3529 spin_lock(&inode->i_lock); 3530 inode->i_blocks += blocks_per_huge_page(h); 3531 spin_unlock(&inode->i_lock); 3532 return 0; 3533 } 3534 3535 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma, 3536 struct address_space *mapping, pgoff_t idx, 3537 unsigned long address, pte_t *ptep, unsigned int flags) 3538 { 3539 struct hstate *h = hstate_vma(vma); 3540 int ret = VM_FAULT_SIGBUS; 3541 int anon_rmap = 0; 3542 unsigned long size; 3543 struct page *page; 3544 pte_t new_pte; 3545 spinlock_t *ptl; 3546 3547 /* 3548 * Currently, we are forced to kill the process in the event the 3549 * original mapper has unmapped pages from the child due to a failed 3550 * COW. Warn that such a situation has occurred as it may not be obvious 3551 */ 3552 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { 3553 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n", 3554 current->pid); 3555 return ret; 3556 } 3557 3558 /* 3559 * Use page lock to guard against racing truncation 3560 * before we get page_table_lock. 3561 */ 3562 retry: 3563 page = find_lock_page(mapping, idx); 3564 if (!page) { 3565 size = i_size_read(mapping->host) >> huge_page_shift(h); 3566 if (idx >= size) 3567 goto out; 3568 page = alloc_huge_page(vma, address, 0); 3569 if (IS_ERR(page)) { 3570 ret = PTR_ERR(page); 3571 if (ret == -ENOMEM) 3572 ret = VM_FAULT_OOM; 3573 else 3574 ret = VM_FAULT_SIGBUS; 3575 goto out; 3576 } 3577 clear_huge_page(page, address, pages_per_huge_page(h)); 3578 __SetPageUptodate(page); 3579 set_page_huge_active(page); 3580 3581 if (vma->vm_flags & VM_MAYSHARE) { 3582 int err = huge_add_to_page_cache(page, mapping, idx); 3583 if (err) { 3584 put_page(page); 3585 if (err == -EEXIST) 3586 goto retry; 3587 goto out; 3588 } 3589 } else { 3590 lock_page(page); 3591 if (unlikely(anon_vma_prepare(vma))) { 3592 ret = VM_FAULT_OOM; 3593 goto backout_unlocked; 3594 } 3595 anon_rmap = 1; 3596 } 3597 } else { 3598 /* 3599 * If memory error occurs between mmap() and fault, some process 3600 * don't have hwpoisoned swap entry for errored virtual address. 3601 * So we need to block hugepage fault by PG_hwpoison bit check. 3602 */ 3603 if (unlikely(PageHWPoison(page))) { 3604 ret = VM_FAULT_HWPOISON | 3605 VM_FAULT_SET_HINDEX(hstate_index(h)); 3606 goto backout_unlocked; 3607 } 3608 } 3609 3610 /* 3611 * If we are going to COW a private mapping later, we examine the 3612 * pending reservations for this page now. This will ensure that 3613 * any allocations necessary to record that reservation occur outside 3614 * the spinlock. 3615 */ 3616 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 3617 if (vma_needs_reservation(h, vma, address) < 0) { 3618 ret = VM_FAULT_OOM; 3619 goto backout_unlocked; 3620 } 3621 /* Just decrements count, does not deallocate */ 3622 vma_end_reservation(h, vma, address); 3623 } 3624 3625 ptl = huge_pte_lockptr(h, mm, ptep); 3626 spin_lock(ptl); 3627 size = i_size_read(mapping->host) >> huge_page_shift(h); 3628 if (idx >= size) 3629 goto backout; 3630 3631 ret = 0; 3632 if (!huge_pte_none(huge_ptep_get(ptep))) 3633 goto backout; 3634 3635 if (anon_rmap) { 3636 ClearPagePrivate(page); 3637 hugepage_add_new_anon_rmap(page, vma, address); 3638 } else 3639 page_dup_rmap(page, true); 3640 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE) 3641 && (vma->vm_flags & VM_SHARED))); 3642 set_huge_pte_at(mm, address, ptep, new_pte); 3643 3644 hugetlb_count_add(pages_per_huge_page(h), mm); 3645 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 3646 /* Optimization, do the COW without a second fault */ 3647 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl); 3648 } 3649 3650 spin_unlock(ptl); 3651 unlock_page(page); 3652 out: 3653 return ret; 3654 3655 backout: 3656 spin_unlock(ptl); 3657 backout_unlocked: 3658 unlock_page(page); 3659 put_page(page); 3660 goto out; 3661 } 3662 3663 #ifdef CONFIG_SMP 3664 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm, 3665 struct vm_area_struct *vma, 3666 struct address_space *mapping, 3667 pgoff_t idx, unsigned long address) 3668 { 3669 unsigned long key[2]; 3670 u32 hash; 3671 3672 if (vma->vm_flags & VM_SHARED) { 3673 key[0] = (unsigned long) mapping; 3674 key[1] = idx; 3675 } else { 3676 key[0] = (unsigned long) mm; 3677 key[1] = address >> huge_page_shift(h); 3678 } 3679 3680 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0); 3681 3682 return hash & (num_fault_mutexes - 1); 3683 } 3684 #else 3685 /* 3686 * For uniprocesor systems we always use a single mutex, so just 3687 * return 0 and avoid the hashing overhead. 3688 */ 3689 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm, 3690 struct vm_area_struct *vma, 3691 struct address_space *mapping, 3692 pgoff_t idx, unsigned long address) 3693 { 3694 return 0; 3695 } 3696 #endif 3697 3698 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3699 unsigned long address, unsigned int flags) 3700 { 3701 pte_t *ptep, entry; 3702 spinlock_t *ptl; 3703 int ret; 3704 u32 hash; 3705 pgoff_t idx; 3706 struct page *page = NULL; 3707 struct page *pagecache_page = NULL; 3708 struct hstate *h = hstate_vma(vma); 3709 struct address_space *mapping; 3710 int need_wait_lock = 0; 3711 3712 address &= huge_page_mask(h); 3713 3714 ptep = huge_pte_offset(mm, address); 3715 if (ptep) { 3716 entry = huge_ptep_get(ptep); 3717 if (unlikely(is_hugetlb_entry_migration(entry))) { 3718 migration_entry_wait_huge(vma, mm, ptep); 3719 return 0; 3720 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) 3721 return VM_FAULT_HWPOISON_LARGE | 3722 VM_FAULT_SET_HINDEX(hstate_index(h)); 3723 } else { 3724 ptep = huge_pte_alloc(mm, address, huge_page_size(h)); 3725 if (!ptep) 3726 return VM_FAULT_OOM; 3727 } 3728 3729 mapping = vma->vm_file->f_mapping; 3730 idx = vma_hugecache_offset(h, vma, address); 3731 3732 /* 3733 * Serialize hugepage allocation and instantiation, so that we don't 3734 * get spurious allocation failures if two CPUs race to instantiate 3735 * the same page in the page cache. 3736 */ 3737 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address); 3738 mutex_lock(&hugetlb_fault_mutex_table[hash]); 3739 3740 entry = huge_ptep_get(ptep); 3741 if (huge_pte_none(entry)) { 3742 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags); 3743 goto out_mutex; 3744 } 3745 3746 ret = 0; 3747 3748 /* 3749 * entry could be a migration/hwpoison entry at this point, so this 3750 * check prevents the kernel from going below assuming that we have 3751 * a active hugepage in pagecache. This goto expects the 2nd page fault, 3752 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly 3753 * handle it. 3754 */ 3755 if (!pte_present(entry)) 3756 goto out_mutex; 3757 3758 /* 3759 * If we are going to COW the mapping later, we examine the pending 3760 * reservations for this page now. This will ensure that any 3761 * allocations necessary to record that reservation occur outside the 3762 * spinlock. For private mappings, we also lookup the pagecache 3763 * page now as it is used to determine if a reservation has been 3764 * consumed. 3765 */ 3766 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) { 3767 if (vma_needs_reservation(h, vma, address) < 0) { 3768 ret = VM_FAULT_OOM; 3769 goto out_mutex; 3770 } 3771 /* Just decrements count, does not deallocate */ 3772 vma_end_reservation(h, vma, address); 3773 3774 if (!(vma->vm_flags & VM_MAYSHARE)) 3775 pagecache_page = hugetlbfs_pagecache_page(h, 3776 vma, address); 3777 } 3778 3779 ptl = huge_pte_lock(h, mm, ptep); 3780 3781 /* Check for a racing update before calling hugetlb_cow */ 3782 if (unlikely(!pte_same(entry, huge_ptep_get(ptep)))) 3783 goto out_ptl; 3784 3785 /* 3786 * hugetlb_cow() requires page locks of pte_page(entry) and 3787 * pagecache_page, so here we need take the former one 3788 * when page != pagecache_page or !pagecache_page. 3789 */ 3790 page = pte_page(entry); 3791 if (page != pagecache_page) 3792 if (!trylock_page(page)) { 3793 need_wait_lock = 1; 3794 goto out_ptl; 3795 } 3796 3797 get_page(page); 3798 3799 if (flags & FAULT_FLAG_WRITE) { 3800 if (!huge_pte_write(entry)) { 3801 ret = hugetlb_cow(mm, vma, address, ptep, entry, 3802 pagecache_page, ptl); 3803 goto out_put_page; 3804 } 3805 entry = huge_pte_mkdirty(entry); 3806 } 3807 entry = pte_mkyoung(entry); 3808 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 3809 flags & FAULT_FLAG_WRITE)) 3810 update_mmu_cache(vma, address, ptep); 3811 out_put_page: 3812 if (page != pagecache_page) 3813 unlock_page(page); 3814 put_page(page); 3815 out_ptl: 3816 spin_unlock(ptl); 3817 3818 if (pagecache_page) { 3819 unlock_page(pagecache_page); 3820 put_page(pagecache_page); 3821 } 3822 out_mutex: 3823 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 3824 /* 3825 * Generally it's safe to hold refcount during waiting page lock. But 3826 * here we just wait to defer the next page fault to avoid busy loop and 3827 * the page is not used after unlocked before returning from the current 3828 * page fault. So we are safe from accessing freed page, even if we wait 3829 * here without taking refcount. 3830 */ 3831 if (need_wait_lock) 3832 wait_on_page_locked(page); 3833 return ret; 3834 } 3835 3836 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, 3837 struct page **pages, struct vm_area_struct **vmas, 3838 unsigned long *position, unsigned long *nr_pages, 3839 long i, unsigned int flags) 3840 { 3841 unsigned long pfn_offset; 3842 unsigned long vaddr = *position; 3843 unsigned long remainder = *nr_pages; 3844 struct hstate *h = hstate_vma(vma); 3845 3846 while (vaddr < vma->vm_end && remainder) { 3847 pte_t *pte; 3848 spinlock_t *ptl = NULL; 3849 int absent; 3850 struct page *page; 3851 3852 /* 3853 * If we have a pending SIGKILL, don't keep faulting pages and 3854 * potentially allocating memory. 3855 */ 3856 if (unlikely(fatal_signal_pending(current))) { 3857 remainder = 0; 3858 break; 3859 } 3860 3861 /* 3862 * Some archs (sparc64, sh*) have multiple pte_ts to 3863 * each hugepage. We have to make sure we get the 3864 * first, for the page indexing below to work. 3865 * 3866 * Note that page table lock is not held when pte is null. 3867 */ 3868 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h)); 3869 if (pte) 3870 ptl = huge_pte_lock(h, mm, pte); 3871 absent = !pte || huge_pte_none(huge_ptep_get(pte)); 3872 3873 /* 3874 * When coredumping, it suits get_dump_page if we just return 3875 * an error where there's an empty slot with no huge pagecache 3876 * to back it. This way, we avoid allocating a hugepage, and 3877 * the sparse dumpfile avoids allocating disk blocks, but its 3878 * huge holes still show up with zeroes where they need to be. 3879 */ 3880 if (absent && (flags & FOLL_DUMP) && 3881 !hugetlbfs_pagecache_present(h, vma, vaddr)) { 3882 if (pte) 3883 spin_unlock(ptl); 3884 remainder = 0; 3885 break; 3886 } 3887 3888 /* 3889 * We need call hugetlb_fault for both hugepages under migration 3890 * (in which case hugetlb_fault waits for the migration,) and 3891 * hwpoisoned hugepages (in which case we need to prevent the 3892 * caller from accessing to them.) In order to do this, we use 3893 * here is_swap_pte instead of is_hugetlb_entry_migration and 3894 * is_hugetlb_entry_hwpoisoned. This is because it simply covers 3895 * both cases, and because we can't follow correct pages 3896 * directly from any kind of swap entries. 3897 */ 3898 if (absent || is_swap_pte(huge_ptep_get(pte)) || 3899 ((flags & FOLL_WRITE) && 3900 !huge_pte_write(huge_ptep_get(pte)))) { 3901 int ret; 3902 3903 if (pte) 3904 spin_unlock(ptl); 3905 ret = hugetlb_fault(mm, vma, vaddr, 3906 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0); 3907 if (!(ret & VM_FAULT_ERROR)) 3908 continue; 3909 3910 remainder = 0; 3911 break; 3912 } 3913 3914 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT; 3915 page = pte_page(huge_ptep_get(pte)); 3916 same_page: 3917 if (pages) { 3918 pages[i] = mem_map_offset(page, pfn_offset); 3919 get_page(pages[i]); 3920 } 3921 3922 if (vmas) 3923 vmas[i] = vma; 3924 3925 vaddr += PAGE_SIZE; 3926 ++pfn_offset; 3927 --remainder; 3928 ++i; 3929 if (vaddr < vma->vm_end && remainder && 3930 pfn_offset < pages_per_huge_page(h)) { 3931 /* 3932 * We use pfn_offset to avoid touching the pageframes 3933 * of this compound page. 3934 */ 3935 goto same_page; 3936 } 3937 spin_unlock(ptl); 3938 } 3939 *nr_pages = remainder; 3940 *position = vaddr; 3941 3942 return i ? i : -EFAULT; 3943 } 3944 3945 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE 3946 /* 3947 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can 3948 * implement this. 3949 */ 3950 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end) 3951 #endif 3952 3953 unsigned long hugetlb_change_protection(struct vm_area_struct *vma, 3954 unsigned long address, unsigned long end, pgprot_t newprot) 3955 { 3956 struct mm_struct *mm = vma->vm_mm; 3957 unsigned long start = address; 3958 pte_t *ptep; 3959 pte_t pte; 3960 struct hstate *h = hstate_vma(vma); 3961 unsigned long pages = 0; 3962 3963 BUG_ON(address >= end); 3964 flush_cache_range(vma, address, end); 3965 3966 mmu_notifier_invalidate_range_start(mm, start, end); 3967 i_mmap_lock_write(vma->vm_file->f_mapping); 3968 for (; address < end; address += huge_page_size(h)) { 3969 spinlock_t *ptl; 3970 ptep = huge_pte_offset(mm, address); 3971 if (!ptep) 3972 continue; 3973 ptl = huge_pte_lock(h, mm, ptep); 3974 if (huge_pmd_unshare(mm, &address, ptep)) { 3975 pages++; 3976 spin_unlock(ptl); 3977 continue; 3978 } 3979 pte = huge_ptep_get(ptep); 3980 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) { 3981 spin_unlock(ptl); 3982 continue; 3983 } 3984 if (unlikely(is_hugetlb_entry_migration(pte))) { 3985 swp_entry_t entry = pte_to_swp_entry(pte); 3986 3987 if (is_write_migration_entry(entry)) { 3988 pte_t newpte; 3989 3990 make_migration_entry_read(&entry); 3991 newpte = swp_entry_to_pte(entry); 3992 set_huge_pte_at(mm, address, ptep, newpte); 3993 pages++; 3994 } 3995 spin_unlock(ptl); 3996 continue; 3997 } 3998 if (!huge_pte_none(pte)) { 3999 pte = huge_ptep_get_and_clear(mm, address, ptep); 4000 pte = pte_mkhuge(huge_pte_modify(pte, newprot)); 4001 pte = arch_make_huge_pte(pte, vma, NULL, 0); 4002 set_huge_pte_at(mm, address, ptep, pte); 4003 pages++; 4004 } 4005 spin_unlock(ptl); 4006 } 4007 /* 4008 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare 4009 * may have cleared our pud entry and done put_page on the page table: 4010 * once we release i_mmap_rwsem, another task can do the final put_page 4011 * and that page table be reused and filled with junk. 4012 */ 4013 flush_hugetlb_tlb_range(vma, start, end); 4014 mmu_notifier_invalidate_range(mm, start, end); 4015 i_mmap_unlock_write(vma->vm_file->f_mapping); 4016 mmu_notifier_invalidate_range_end(mm, start, end); 4017 4018 return pages << h->order; 4019 } 4020 4021 int hugetlb_reserve_pages(struct inode *inode, 4022 long from, long to, 4023 struct vm_area_struct *vma, 4024 vm_flags_t vm_flags) 4025 { 4026 long ret, chg; 4027 struct hstate *h = hstate_inode(inode); 4028 struct hugepage_subpool *spool = subpool_inode(inode); 4029 struct resv_map *resv_map; 4030 long gbl_reserve; 4031 4032 /* 4033 * Only apply hugepage reservation if asked. At fault time, an 4034 * attempt will be made for VM_NORESERVE to allocate a page 4035 * without using reserves 4036 */ 4037 if (vm_flags & VM_NORESERVE) 4038 return 0; 4039 4040 /* 4041 * Shared mappings base their reservation on the number of pages that 4042 * are already allocated on behalf of the file. Private mappings need 4043 * to reserve the full area even if read-only as mprotect() may be 4044 * called to make the mapping read-write. Assume !vma is a shm mapping 4045 */ 4046 if (!vma || vma->vm_flags & VM_MAYSHARE) { 4047 resv_map = inode_resv_map(inode); 4048 4049 chg = region_chg(resv_map, from, to); 4050 4051 } else { 4052 resv_map = resv_map_alloc(); 4053 if (!resv_map) 4054 return -ENOMEM; 4055 4056 chg = to - from; 4057 4058 set_vma_resv_map(vma, resv_map); 4059 set_vma_resv_flags(vma, HPAGE_RESV_OWNER); 4060 } 4061 4062 if (chg < 0) { 4063 ret = chg; 4064 goto out_err; 4065 } 4066 4067 /* 4068 * There must be enough pages in the subpool for the mapping. If 4069 * the subpool has a minimum size, there may be some global 4070 * reservations already in place (gbl_reserve). 4071 */ 4072 gbl_reserve = hugepage_subpool_get_pages(spool, chg); 4073 if (gbl_reserve < 0) { 4074 ret = -ENOSPC; 4075 goto out_err; 4076 } 4077 4078 /* 4079 * Check enough hugepages are available for the reservation. 4080 * Hand the pages back to the subpool if there are not 4081 */ 4082 ret = hugetlb_acct_memory(h, gbl_reserve); 4083 if (ret < 0) { 4084 /* put back original number of pages, chg */ 4085 (void)hugepage_subpool_put_pages(spool, chg); 4086 goto out_err; 4087 } 4088 4089 /* 4090 * Account for the reservations made. Shared mappings record regions 4091 * that have reservations as they are shared by multiple VMAs. 4092 * When the last VMA disappears, the region map says how much 4093 * the reservation was and the page cache tells how much of 4094 * the reservation was consumed. Private mappings are per-VMA and 4095 * only the consumed reservations are tracked. When the VMA 4096 * disappears, the original reservation is the VMA size and the 4097 * consumed reservations are stored in the map. Hence, nothing 4098 * else has to be done for private mappings here 4099 */ 4100 if (!vma || vma->vm_flags & VM_MAYSHARE) { 4101 long add = region_add(resv_map, from, to); 4102 4103 if (unlikely(chg > add)) { 4104 /* 4105 * pages in this range were added to the reserve 4106 * map between region_chg and region_add. This 4107 * indicates a race with alloc_huge_page. Adjust 4108 * the subpool and reserve counts modified above 4109 * based on the difference. 4110 */ 4111 long rsv_adjust; 4112 4113 rsv_adjust = hugepage_subpool_put_pages(spool, 4114 chg - add); 4115 hugetlb_acct_memory(h, -rsv_adjust); 4116 } 4117 } 4118 return 0; 4119 out_err: 4120 if (!vma || vma->vm_flags & VM_MAYSHARE) 4121 region_abort(resv_map, from, to); 4122 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 4123 kref_put(&resv_map->refs, resv_map_release); 4124 return ret; 4125 } 4126 4127 long hugetlb_unreserve_pages(struct inode *inode, long start, long end, 4128 long freed) 4129 { 4130 struct hstate *h = hstate_inode(inode); 4131 struct resv_map *resv_map = inode_resv_map(inode); 4132 long chg = 0; 4133 struct hugepage_subpool *spool = subpool_inode(inode); 4134 long gbl_reserve; 4135 4136 if (resv_map) { 4137 chg = region_del(resv_map, start, end); 4138 /* 4139 * region_del() can fail in the rare case where a region 4140 * must be split and another region descriptor can not be 4141 * allocated. If end == LONG_MAX, it will not fail. 4142 */ 4143 if (chg < 0) 4144 return chg; 4145 } 4146 4147 spin_lock(&inode->i_lock); 4148 inode->i_blocks -= (blocks_per_huge_page(h) * freed); 4149 spin_unlock(&inode->i_lock); 4150 4151 /* 4152 * If the subpool has a minimum size, the number of global 4153 * reservations to be released may be adjusted. 4154 */ 4155 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed)); 4156 hugetlb_acct_memory(h, -gbl_reserve); 4157 4158 return 0; 4159 } 4160 4161 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE 4162 static unsigned long page_table_shareable(struct vm_area_struct *svma, 4163 struct vm_area_struct *vma, 4164 unsigned long addr, pgoff_t idx) 4165 { 4166 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) + 4167 svma->vm_start; 4168 unsigned long sbase = saddr & PUD_MASK; 4169 unsigned long s_end = sbase + PUD_SIZE; 4170 4171 /* Allow segments to share if only one is marked locked */ 4172 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK; 4173 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK; 4174 4175 /* 4176 * match the virtual addresses, permission and the alignment of the 4177 * page table page. 4178 */ 4179 if (pmd_index(addr) != pmd_index(saddr) || 4180 vm_flags != svm_flags || 4181 sbase < svma->vm_start || svma->vm_end < s_end) 4182 return 0; 4183 4184 return saddr; 4185 } 4186 4187 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr) 4188 { 4189 unsigned long base = addr & PUD_MASK; 4190 unsigned long end = base + PUD_SIZE; 4191 4192 /* 4193 * check on proper vm_flags and page table alignment 4194 */ 4195 if (vma->vm_flags & VM_MAYSHARE && 4196 vma->vm_start <= base && end <= vma->vm_end) 4197 return true; 4198 return false; 4199 } 4200 4201 /* 4202 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc() 4203 * and returns the corresponding pte. While this is not necessary for the 4204 * !shared pmd case because we can allocate the pmd later as well, it makes the 4205 * code much cleaner. pmd allocation is essential for the shared case because 4206 * pud has to be populated inside the same i_mmap_rwsem section - otherwise 4207 * racing tasks could either miss the sharing (see huge_pte_offset) or select a 4208 * bad pmd for sharing. 4209 */ 4210 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud) 4211 { 4212 struct vm_area_struct *vma = find_vma(mm, addr); 4213 struct address_space *mapping = vma->vm_file->f_mapping; 4214 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + 4215 vma->vm_pgoff; 4216 struct vm_area_struct *svma; 4217 unsigned long saddr; 4218 pte_t *spte = NULL; 4219 pte_t *pte; 4220 spinlock_t *ptl; 4221 4222 if (!vma_shareable(vma, addr)) 4223 return (pte_t *)pmd_alloc(mm, pud, addr); 4224 4225 i_mmap_lock_write(mapping); 4226 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) { 4227 if (svma == vma) 4228 continue; 4229 4230 saddr = page_table_shareable(svma, vma, addr, idx); 4231 if (saddr) { 4232 spte = huge_pte_offset(svma->vm_mm, saddr); 4233 if (spte) { 4234 get_page(virt_to_page(spte)); 4235 break; 4236 } 4237 } 4238 } 4239 4240 if (!spte) 4241 goto out; 4242 4243 ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte); 4244 spin_lock(ptl); 4245 if (pud_none(*pud)) { 4246 pud_populate(mm, pud, 4247 (pmd_t *)((unsigned long)spte & PAGE_MASK)); 4248 mm_inc_nr_pmds(mm); 4249 } else { 4250 put_page(virt_to_page(spte)); 4251 } 4252 spin_unlock(ptl); 4253 out: 4254 pte = (pte_t *)pmd_alloc(mm, pud, addr); 4255 i_mmap_unlock_write(mapping); 4256 return pte; 4257 } 4258 4259 /* 4260 * unmap huge page backed by shared pte. 4261 * 4262 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared 4263 * indicated by page_count > 1, unmap is achieved by clearing pud and 4264 * decrementing the ref count. If count == 1, the pte page is not shared. 4265 * 4266 * called with page table lock held. 4267 * 4268 * returns: 1 successfully unmapped a shared pte page 4269 * 0 the underlying pte page is not shared, or it is the last user 4270 */ 4271 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep) 4272 { 4273 pgd_t *pgd = pgd_offset(mm, *addr); 4274 pud_t *pud = pud_offset(pgd, *addr); 4275 4276 BUG_ON(page_count(virt_to_page(ptep)) == 0); 4277 if (page_count(virt_to_page(ptep)) == 1) 4278 return 0; 4279 4280 pud_clear(pud); 4281 put_page(virt_to_page(ptep)); 4282 mm_dec_nr_pmds(mm); 4283 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE; 4284 return 1; 4285 } 4286 #define want_pmd_share() (1) 4287 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 4288 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud) 4289 { 4290 return NULL; 4291 } 4292 4293 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep) 4294 { 4295 return 0; 4296 } 4297 #define want_pmd_share() (0) 4298 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 4299 4300 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB 4301 pte_t *huge_pte_alloc(struct mm_struct *mm, 4302 unsigned long addr, unsigned long sz) 4303 { 4304 pgd_t *pgd; 4305 pud_t *pud; 4306 pte_t *pte = NULL; 4307 4308 pgd = pgd_offset(mm, addr); 4309 pud = pud_alloc(mm, pgd, addr); 4310 if (pud) { 4311 if (sz == PUD_SIZE) { 4312 pte = (pte_t *)pud; 4313 } else { 4314 BUG_ON(sz != PMD_SIZE); 4315 if (want_pmd_share() && pud_none(*pud)) 4316 pte = huge_pmd_share(mm, addr, pud); 4317 else 4318 pte = (pte_t *)pmd_alloc(mm, pud, addr); 4319 } 4320 } 4321 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte)); 4322 4323 return pte; 4324 } 4325 4326 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr) 4327 { 4328 pgd_t *pgd; 4329 pud_t *pud; 4330 pmd_t *pmd = NULL; 4331 4332 pgd = pgd_offset(mm, addr); 4333 if (pgd_present(*pgd)) { 4334 pud = pud_offset(pgd, addr); 4335 if (pud_present(*pud)) { 4336 if (pud_huge(*pud)) 4337 return (pte_t *)pud; 4338 pmd = pmd_offset(pud, addr); 4339 } 4340 } 4341 return (pte_t *) pmd; 4342 } 4343 4344 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */ 4345 4346 /* 4347 * These functions are overwritable if your architecture needs its own 4348 * behavior. 4349 */ 4350 struct page * __weak 4351 follow_huge_addr(struct mm_struct *mm, unsigned long address, 4352 int write) 4353 { 4354 return ERR_PTR(-EINVAL); 4355 } 4356 4357 struct page * __weak 4358 follow_huge_pmd(struct mm_struct *mm, unsigned long address, 4359 pmd_t *pmd, int flags) 4360 { 4361 struct page *page = NULL; 4362 spinlock_t *ptl; 4363 retry: 4364 ptl = pmd_lockptr(mm, pmd); 4365 spin_lock(ptl); 4366 /* 4367 * make sure that the address range covered by this pmd is not 4368 * unmapped from other threads. 4369 */ 4370 if (!pmd_huge(*pmd)) 4371 goto out; 4372 if (pmd_present(*pmd)) { 4373 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT); 4374 if (flags & FOLL_GET) 4375 get_page(page); 4376 } else { 4377 if (is_hugetlb_entry_migration(huge_ptep_get((pte_t *)pmd))) { 4378 spin_unlock(ptl); 4379 __migration_entry_wait(mm, (pte_t *)pmd, ptl); 4380 goto retry; 4381 } 4382 /* 4383 * hwpoisoned entry is treated as no_page_table in 4384 * follow_page_mask(). 4385 */ 4386 } 4387 out: 4388 spin_unlock(ptl); 4389 return page; 4390 } 4391 4392 struct page * __weak 4393 follow_huge_pud(struct mm_struct *mm, unsigned long address, 4394 pud_t *pud, int flags) 4395 { 4396 if (flags & FOLL_GET) 4397 return NULL; 4398 4399 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT); 4400 } 4401 4402 #ifdef CONFIG_MEMORY_FAILURE 4403 4404 /* 4405 * This function is called from memory failure code. 4406 */ 4407 int dequeue_hwpoisoned_huge_page(struct page *hpage) 4408 { 4409 struct hstate *h = page_hstate(hpage); 4410 int nid = page_to_nid(hpage); 4411 int ret = -EBUSY; 4412 4413 spin_lock(&hugetlb_lock); 4414 /* 4415 * Just checking !page_huge_active is not enough, because that could be 4416 * an isolated/hwpoisoned hugepage (which have >0 refcount). 4417 */ 4418 if (!page_huge_active(hpage) && !page_count(hpage)) { 4419 /* 4420 * Hwpoisoned hugepage isn't linked to activelist or freelist, 4421 * but dangling hpage->lru can trigger list-debug warnings 4422 * (this happens when we call unpoison_memory() on it), 4423 * so let it point to itself with list_del_init(). 4424 */ 4425 list_del_init(&hpage->lru); 4426 set_page_refcounted(hpage); 4427 h->free_huge_pages--; 4428 h->free_huge_pages_node[nid]--; 4429 ret = 0; 4430 } 4431 spin_unlock(&hugetlb_lock); 4432 return ret; 4433 } 4434 #endif 4435 4436 bool isolate_huge_page(struct page *page, struct list_head *list) 4437 { 4438 bool ret = true; 4439 4440 VM_BUG_ON_PAGE(!PageHead(page), page); 4441 spin_lock(&hugetlb_lock); 4442 if (!page_huge_active(page) || !get_page_unless_zero(page)) { 4443 ret = false; 4444 goto unlock; 4445 } 4446 clear_page_huge_active(page); 4447 list_move_tail(&page->lru, list); 4448 unlock: 4449 spin_unlock(&hugetlb_lock); 4450 return ret; 4451 } 4452 4453 void putback_active_hugepage(struct page *page) 4454 { 4455 VM_BUG_ON_PAGE(!PageHead(page), page); 4456 spin_lock(&hugetlb_lock); 4457 set_page_huge_active(page); 4458 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist); 4459 spin_unlock(&hugetlb_lock); 4460 put_page(page); 4461 } 4462