1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic hugetlb support. 4 * (C) Nadia Yvette Chambers, April 2004 5 */ 6 #include <linux/list.h> 7 #include <linux/init.h> 8 #include <linux/mm.h> 9 #include <linux/seq_file.h> 10 #include <linux/sysctl.h> 11 #include <linux/highmem.h> 12 #include <linux/mmu_notifier.h> 13 #include <linux/nodemask.h> 14 #include <linux/pagemap.h> 15 #include <linux/mempolicy.h> 16 #include <linux/compiler.h> 17 #include <linux/cpumask.h> 18 #include <linux/cpuset.h> 19 #include <linux/mutex.h> 20 #include <linux/memblock.h> 21 #include <linux/minmax.h> 22 #include <linux/sysfs.h> 23 #include <linux/slab.h> 24 #include <linux/sched/mm.h> 25 #include <linux/mmdebug.h> 26 #include <linux/sched/signal.h> 27 #include <linux/rmap.h> 28 #include <linux/string_choices.h> 29 #include <linux/string_helpers.h> 30 #include <linux/swap.h> 31 #include <linux/swapops.h> 32 #include <linux/jhash.h> 33 #include <linux/numa.h> 34 #include <linux/llist.h> 35 #include <linux/cma.h> 36 #include <linux/migrate.h> 37 #include <linux/nospec.h> 38 #include <linux/delayacct.h> 39 #include <linux/memory.h> 40 #include <linux/mm_inline.h> 41 #include <linux/padata.h> 42 43 #include <asm/page.h> 44 #include <asm/pgalloc.h> 45 #include <asm/tlb.h> 46 #include <asm/setup.h> 47 48 #include <linux/io.h> 49 #include <linux/hugetlb.h> 50 #include <linux/hugetlb_cgroup.h> 51 #include <linux/node.h> 52 #include <linux/page_owner.h> 53 #include "internal.h" 54 #include "hugetlb_vmemmap.h" 55 #include "hugetlb_cma.h" 56 #include <linux/page-isolation.h> 57 58 int hugetlb_max_hstate __read_mostly; 59 unsigned int default_hstate_idx; 60 struct hstate hstates[HUGE_MAX_HSTATE]; 61 62 __initdata nodemask_t hugetlb_bootmem_nodes; 63 __initdata struct list_head huge_boot_pages[MAX_NUMNODES]; 64 static unsigned long hstate_boot_nrinvalid[HUGE_MAX_HSTATE] __initdata; 65 66 /* 67 * Due to ordering constraints across the init code for various 68 * architectures, hugetlb hstate cmdline parameters can't simply 69 * be early_param. early_param might call the setup function 70 * before valid hugetlb page sizes are determined, leading to 71 * incorrect rejection of valid hugepagesz= options. 72 * 73 * So, record the parameters early and consume them whenever the 74 * init code is ready for them, by calling hugetlb_parse_params(). 75 */ 76 77 /* one (hugepagesz=,hugepages=) pair per hstate, one default_hugepagesz */ 78 #define HUGE_MAX_CMDLINE_ARGS (2 * HUGE_MAX_HSTATE + 1) 79 struct hugetlb_cmdline { 80 char *val; 81 int (*setup)(char *val); 82 }; 83 84 /* for command line parsing */ 85 static struct hstate * __initdata parsed_hstate; 86 static unsigned long __initdata default_hstate_max_huge_pages; 87 static bool __initdata parsed_valid_hugepagesz = true; 88 static bool __initdata parsed_default_hugepagesz; 89 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata; 90 static unsigned long hugepage_allocation_threads __initdata; 91 92 static char hstate_cmdline_buf[COMMAND_LINE_SIZE] __initdata; 93 static int hstate_cmdline_index __initdata; 94 static struct hugetlb_cmdline hugetlb_params[HUGE_MAX_CMDLINE_ARGS] __initdata; 95 static int hugetlb_param_index __initdata; 96 static __init int hugetlb_add_param(char *s, int (*setup)(char *val)); 97 static __init void hugetlb_parse_params(void); 98 99 #define hugetlb_early_param(str, func) \ 100 static __init int func##args(char *s) \ 101 { \ 102 return hugetlb_add_param(s, func); \ 103 } \ 104 early_param(str, func##args) 105 106 /* 107 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages, 108 * free_huge_pages, and surplus_huge_pages. 109 */ 110 __cacheline_aligned_in_smp DEFINE_SPINLOCK(hugetlb_lock); 111 112 /* 113 * Serializes faults on the same logical page. This is used to 114 * prevent spurious OOMs when the hugepage pool is fully utilized. 115 */ 116 static int num_fault_mutexes __ro_after_init; 117 struct mutex *hugetlb_fault_mutex_table __ro_after_init; 118 119 /* Forward declaration */ 120 static int hugetlb_acct_memory(struct hstate *h, long delta); 121 static void hugetlb_vma_lock_free(struct vm_area_struct *vma); 122 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma); 123 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma); 124 static void hugetlb_unshare_pmds(struct vm_area_struct *vma, 125 unsigned long start, unsigned long end, bool take_locks); 126 static struct resv_map *vma_resv_map(struct vm_area_struct *vma); 127 128 static void hugetlb_free_folio(struct folio *folio) 129 { 130 if (folio_test_hugetlb_cma(folio)) { 131 hugetlb_cma_free_folio(folio); 132 return; 133 } 134 135 folio_put(folio); 136 } 137 138 static inline bool subpool_is_free(struct hugepage_subpool *spool) 139 { 140 if (spool->count) 141 return false; 142 if (spool->max_hpages != -1) 143 return spool->used_hpages == 0; 144 if (spool->min_hpages != -1) 145 return spool->rsv_hpages == spool->min_hpages; 146 147 return true; 148 } 149 150 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool, 151 unsigned long irq_flags) 152 { 153 spin_unlock_irqrestore(&spool->lock, irq_flags); 154 155 /* If no pages are used, and no other handles to the subpool 156 * remain, give up any reservations based on minimum size and 157 * free the subpool */ 158 if (subpool_is_free(spool)) { 159 if (spool->min_hpages != -1) 160 hugetlb_acct_memory(spool->hstate, 161 -spool->min_hpages); 162 kfree(spool); 163 } 164 } 165 166 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages, 167 long min_hpages) 168 { 169 struct hugepage_subpool *spool; 170 171 spool = kzalloc(sizeof(*spool), GFP_KERNEL); 172 if (!spool) 173 return NULL; 174 175 spin_lock_init(&spool->lock); 176 spool->count = 1; 177 spool->max_hpages = max_hpages; 178 spool->hstate = h; 179 spool->min_hpages = min_hpages; 180 181 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) { 182 kfree(spool); 183 return NULL; 184 } 185 spool->rsv_hpages = min_hpages; 186 187 return spool; 188 } 189 190 void hugepage_put_subpool(struct hugepage_subpool *spool) 191 { 192 unsigned long flags; 193 194 spin_lock_irqsave(&spool->lock, flags); 195 BUG_ON(!spool->count); 196 spool->count--; 197 unlock_or_release_subpool(spool, flags); 198 } 199 200 /* 201 * Subpool accounting for allocating and reserving pages. 202 * Return -ENOMEM if there are not enough resources to satisfy the 203 * request. Otherwise, return the number of pages by which the 204 * global pools must be adjusted (upward). The returned value may 205 * only be different than the passed value (delta) in the case where 206 * a subpool minimum size must be maintained. 207 */ 208 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool, 209 long delta) 210 { 211 long ret = delta; 212 213 if (!spool) 214 return ret; 215 216 spin_lock_irq(&spool->lock); 217 218 if (spool->max_hpages != -1) { /* maximum size accounting */ 219 if ((spool->used_hpages + delta) <= spool->max_hpages) 220 spool->used_hpages += delta; 221 else { 222 ret = -ENOMEM; 223 goto unlock_ret; 224 } 225 } 226 227 /* minimum size accounting */ 228 if (spool->min_hpages != -1 && spool->rsv_hpages) { 229 if (delta > spool->rsv_hpages) { 230 /* 231 * Asking for more reserves than those already taken on 232 * behalf of subpool. Return difference. 233 */ 234 ret = delta - spool->rsv_hpages; 235 spool->rsv_hpages = 0; 236 } else { 237 ret = 0; /* reserves already accounted for */ 238 spool->rsv_hpages -= delta; 239 } 240 } 241 242 unlock_ret: 243 spin_unlock_irq(&spool->lock); 244 return ret; 245 } 246 247 /* 248 * Subpool accounting for freeing and unreserving pages. 249 * Return the number of global page reservations that must be dropped. 250 * The return value may only be different than the passed value (delta) 251 * in the case where a subpool minimum size must be maintained. 252 */ 253 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool, 254 long delta) 255 { 256 long ret = delta; 257 unsigned long flags; 258 259 if (!spool) 260 return delta; 261 262 spin_lock_irqsave(&spool->lock, flags); 263 264 if (spool->max_hpages != -1) /* maximum size accounting */ 265 spool->used_hpages -= delta; 266 267 /* minimum size accounting */ 268 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) { 269 if (spool->rsv_hpages + delta <= spool->min_hpages) 270 ret = 0; 271 else 272 ret = spool->rsv_hpages + delta - spool->min_hpages; 273 274 spool->rsv_hpages += delta; 275 if (spool->rsv_hpages > spool->min_hpages) 276 spool->rsv_hpages = spool->min_hpages; 277 } 278 279 /* 280 * If hugetlbfs_put_super couldn't free spool due to an outstanding 281 * quota reference, free it now. 282 */ 283 unlock_or_release_subpool(spool, flags); 284 285 return ret; 286 } 287 288 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma) 289 { 290 return subpool_inode(file_inode(vma->vm_file)); 291 } 292 293 /* 294 * hugetlb vma_lock helper routines 295 */ 296 void hugetlb_vma_lock_read(struct vm_area_struct *vma) 297 { 298 if (__vma_shareable_lock(vma)) { 299 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 300 301 down_read(&vma_lock->rw_sema); 302 } else if (__vma_private_lock(vma)) { 303 struct resv_map *resv_map = vma_resv_map(vma); 304 305 down_read(&resv_map->rw_sema); 306 } 307 } 308 309 void hugetlb_vma_unlock_read(struct vm_area_struct *vma) 310 { 311 if (__vma_shareable_lock(vma)) { 312 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 313 314 up_read(&vma_lock->rw_sema); 315 } else if (__vma_private_lock(vma)) { 316 struct resv_map *resv_map = vma_resv_map(vma); 317 318 up_read(&resv_map->rw_sema); 319 } 320 } 321 322 void hugetlb_vma_lock_write(struct vm_area_struct *vma) 323 { 324 if (__vma_shareable_lock(vma)) { 325 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 326 327 down_write(&vma_lock->rw_sema); 328 } else if (__vma_private_lock(vma)) { 329 struct resv_map *resv_map = vma_resv_map(vma); 330 331 down_write(&resv_map->rw_sema); 332 } 333 } 334 335 void hugetlb_vma_unlock_write(struct vm_area_struct *vma) 336 { 337 if (__vma_shareable_lock(vma)) { 338 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 339 340 up_write(&vma_lock->rw_sema); 341 } else if (__vma_private_lock(vma)) { 342 struct resv_map *resv_map = vma_resv_map(vma); 343 344 up_write(&resv_map->rw_sema); 345 } 346 } 347 348 int hugetlb_vma_trylock_write(struct vm_area_struct *vma) 349 { 350 351 if (__vma_shareable_lock(vma)) { 352 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 353 354 return down_write_trylock(&vma_lock->rw_sema); 355 } else if (__vma_private_lock(vma)) { 356 struct resv_map *resv_map = vma_resv_map(vma); 357 358 return down_write_trylock(&resv_map->rw_sema); 359 } 360 361 return 1; 362 } 363 364 void hugetlb_vma_assert_locked(struct vm_area_struct *vma) 365 { 366 if (__vma_shareable_lock(vma)) { 367 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 368 369 lockdep_assert_held(&vma_lock->rw_sema); 370 } else if (__vma_private_lock(vma)) { 371 struct resv_map *resv_map = vma_resv_map(vma); 372 373 lockdep_assert_held(&resv_map->rw_sema); 374 } 375 } 376 377 void hugetlb_vma_lock_release(struct kref *kref) 378 { 379 struct hugetlb_vma_lock *vma_lock = container_of(kref, 380 struct hugetlb_vma_lock, refs); 381 382 kfree(vma_lock); 383 } 384 385 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock) 386 { 387 struct vm_area_struct *vma = vma_lock->vma; 388 389 /* 390 * vma_lock structure may or not be released as a result of put, 391 * it certainly will no longer be attached to vma so clear pointer. 392 * Semaphore synchronizes access to vma_lock->vma field. 393 */ 394 vma_lock->vma = NULL; 395 vma->vm_private_data = NULL; 396 up_write(&vma_lock->rw_sema); 397 kref_put(&vma_lock->refs, hugetlb_vma_lock_release); 398 } 399 400 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma) 401 { 402 if (__vma_shareable_lock(vma)) { 403 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 404 405 __hugetlb_vma_unlock_write_put(vma_lock); 406 } else if (__vma_private_lock(vma)) { 407 struct resv_map *resv_map = vma_resv_map(vma); 408 409 /* no free for anon vmas, but still need to unlock */ 410 up_write(&resv_map->rw_sema); 411 } 412 } 413 414 static void hugetlb_vma_lock_free(struct vm_area_struct *vma) 415 { 416 /* 417 * Only present in sharable vmas. 418 */ 419 if (!vma || !__vma_shareable_lock(vma)) 420 return; 421 422 if (vma->vm_private_data) { 423 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 424 425 down_write(&vma_lock->rw_sema); 426 __hugetlb_vma_unlock_write_put(vma_lock); 427 } 428 } 429 430 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma) 431 { 432 struct hugetlb_vma_lock *vma_lock; 433 434 /* Only establish in (flags) sharable vmas */ 435 if (!vma || !(vma->vm_flags & VM_MAYSHARE)) 436 return; 437 438 /* Should never get here with non-NULL vm_private_data */ 439 if (vma->vm_private_data) 440 return; 441 442 vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL); 443 if (!vma_lock) { 444 /* 445 * If we can not allocate structure, then vma can not 446 * participate in pmd sharing. This is only a possible 447 * performance enhancement and memory saving issue. 448 * However, the lock is also used to synchronize page 449 * faults with truncation. If the lock is not present, 450 * unlikely races could leave pages in a file past i_size 451 * until the file is removed. Warn in the unlikely case of 452 * allocation failure. 453 */ 454 pr_warn_once("HugeTLB: unable to allocate vma specific lock\n"); 455 return; 456 } 457 458 kref_init(&vma_lock->refs); 459 init_rwsem(&vma_lock->rw_sema); 460 vma_lock->vma = vma; 461 vma->vm_private_data = vma_lock; 462 } 463 464 /* Helper that removes a struct file_region from the resv_map cache and returns 465 * it for use. 466 */ 467 static struct file_region * 468 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to) 469 { 470 struct file_region *nrg; 471 472 VM_BUG_ON(resv->region_cache_count <= 0); 473 474 resv->region_cache_count--; 475 nrg = list_first_entry(&resv->region_cache, struct file_region, link); 476 list_del(&nrg->link); 477 478 nrg->from = from; 479 nrg->to = to; 480 481 return nrg; 482 } 483 484 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg, 485 struct file_region *rg) 486 { 487 #ifdef CONFIG_CGROUP_HUGETLB 488 nrg->reservation_counter = rg->reservation_counter; 489 nrg->css = rg->css; 490 if (rg->css) 491 css_get(rg->css); 492 #endif 493 } 494 495 /* Helper that records hugetlb_cgroup uncharge info. */ 496 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg, 497 struct hstate *h, 498 struct resv_map *resv, 499 struct file_region *nrg) 500 { 501 #ifdef CONFIG_CGROUP_HUGETLB 502 if (h_cg) { 503 nrg->reservation_counter = 504 &h_cg->rsvd_hugepage[hstate_index(h)]; 505 nrg->css = &h_cg->css; 506 /* 507 * The caller will hold exactly one h_cg->css reference for the 508 * whole contiguous reservation region. But this area might be 509 * scattered when there are already some file_regions reside in 510 * it. As a result, many file_regions may share only one css 511 * reference. In order to ensure that one file_region must hold 512 * exactly one h_cg->css reference, we should do css_get for 513 * each file_region and leave the reference held by caller 514 * untouched. 515 */ 516 css_get(&h_cg->css); 517 if (!resv->pages_per_hpage) 518 resv->pages_per_hpage = pages_per_huge_page(h); 519 /* pages_per_hpage should be the same for all entries in 520 * a resv_map. 521 */ 522 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h)); 523 } else { 524 nrg->reservation_counter = NULL; 525 nrg->css = NULL; 526 } 527 #endif 528 } 529 530 static void put_uncharge_info(struct file_region *rg) 531 { 532 #ifdef CONFIG_CGROUP_HUGETLB 533 if (rg->css) 534 css_put(rg->css); 535 #endif 536 } 537 538 static bool has_same_uncharge_info(struct file_region *rg, 539 struct file_region *org) 540 { 541 #ifdef CONFIG_CGROUP_HUGETLB 542 return rg->reservation_counter == org->reservation_counter && 543 rg->css == org->css; 544 545 #else 546 return true; 547 #endif 548 } 549 550 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg) 551 { 552 struct file_region *nrg, *prg; 553 554 prg = list_prev_entry(rg, link); 555 if (&prg->link != &resv->regions && prg->to == rg->from && 556 has_same_uncharge_info(prg, rg)) { 557 prg->to = rg->to; 558 559 list_del(&rg->link); 560 put_uncharge_info(rg); 561 kfree(rg); 562 563 rg = prg; 564 } 565 566 nrg = list_next_entry(rg, link); 567 if (&nrg->link != &resv->regions && nrg->from == rg->to && 568 has_same_uncharge_info(nrg, rg)) { 569 nrg->from = rg->from; 570 571 list_del(&rg->link); 572 put_uncharge_info(rg); 573 kfree(rg); 574 } 575 } 576 577 static inline long 578 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from, 579 long to, struct hstate *h, struct hugetlb_cgroup *cg, 580 long *regions_needed) 581 { 582 struct file_region *nrg; 583 584 if (!regions_needed) { 585 nrg = get_file_region_entry_from_cache(map, from, to); 586 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg); 587 list_add(&nrg->link, rg); 588 coalesce_file_region(map, nrg); 589 } else 590 *regions_needed += 1; 591 592 return to - from; 593 } 594 595 /* 596 * Must be called with resv->lock held. 597 * 598 * Calling this with regions_needed != NULL will count the number of pages 599 * to be added but will not modify the linked list. And regions_needed will 600 * indicate the number of file_regions needed in the cache to carry out to add 601 * the regions for this range. 602 */ 603 static long add_reservation_in_range(struct resv_map *resv, long f, long t, 604 struct hugetlb_cgroup *h_cg, 605 struct hstate *h, long *regions_needed) 606 { 607 long add = 0; 608 struct list_head *head = &resv->regions; 609 long last_accounted_offset = f; 610 struct file_region *iter, *trg = NULL; 611 struct list_head *rg = NULL; 612 613 if (regions_needed) 614 *regions_needed = 0; 615 616 /* In this loop, we essentially handle an entry for the range 617 * [last_accounted_offset, iter->from), at every iteration, with some 618 * bounds checking. 619 */ 620 list_for_each_entry_safe(iter, trg, head, link) { 621 /* Skip irrelevant regions that start before our range. */ 622 if (iter->from < f) { 623 /* If this region ends after the last accounted offset, 624 * then we need to update last_accounted_offset. 625 */ 626 if (iter->to > last_accounted_offset) 627 last_accounted_offset = iter->to; 628 continue; 629 } 630 631 /* When we find a region that starts beyond our range, we've 632 * finished. 633 */ 634 if (iter->from >= t) { 635 rg = iter->link.prev; 636 break; 637 } 638 639 /* Add an entry for last_accounted_offset -> iter->from, and 640 * update last_accounted_offset. 641 */ 642 if (iter->from > last_accounted_offset) 643 add += hugetlb_resv_map_add(resv, iter->link.prev, 644 last_accounted_offset, 645 iter->from, h, h_cg, 646 regions_needed); 647 648 last_accounted_offset = iter->to; 649 } 650 651 /* Handle the case where our range extends beyond 652 * last_accounted_offset. 653 */ 654 if (!rg) 655 rg = head->prev; 656 if (last_accounted_offset < t) 657 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset, 658 t, h, h_cg, regions_needed); 659 660 return add; 661 } 662 663 /* Must be called with resv->lock acquired. Will drop lock to allocate entries. 664 */ 665 static int allocate_file_region_entries(struct resv_map *resv, 666 int regions_needed) 667 __must_hold(&resv->lock) 668 { 669 LIST_HEAD(allocated_regions); 670 int to_allocate = 0, i = 0; 671 struct file_region *trg = NULL, *rg = NULL; 672 673 VM_BUG_ON(regions_needed < 0); 674 675 /* 676 * Check for sufficient descriptors in the cache to accommodate 677 * the number of in progress add operations plus regions_needed. 678 * 679 * This is a while loop because when we drop the lock, some other call 680 * to region_add or region_del may have consumed some region_entries, 681 * so we keep looping here until we finally have enough entries for 682 * (adds_in_progress + regions_needed). 683 */ 684 while (resv->region_cache_count < 685 (resv->adds_in_progress + regions_needed)) { 686 to_allocate = resv->adds_in_progress + regions_needed - 687 resv->region_cache_count; 688 689 /* At this point, we should have enough entries in the cache 690 * for all the existing adds_in_progress. We should only be 691 * needing to allocate for regions_needed. 692 */ 693 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress); 694 695 spin_unlock(&resv->lock); 696 for (i = 0; i < to_allocate; i++) { 697 trg = kmalloc(sizeof(*trg), GFP_KERNEL); 698 if (!trg) 699 goto out_of_memory; 700 list_add(&trg->link, &allocated_regions); 701 } 702 703 spin_lock(&resv->lock); 704 705 list_splice(&allocated_regions, &resv->region_cache); 706 resv->region_cache_count += to_allocate; 707 } 708 709 return 0; 710 711 out_of_memory: 712 list_for_each_entry_safe(rg, trg, &allocated_regions, link) { 713 list_del(&rg->link); 714 kfree(rg); 715 } 716 return -ENOMEM; 717 } 718 719 /* 720 * Add the huge page range represented by [f, t) to the reserve 721 * map. Regions will be taken from the cache to fill in this range. 722 * Sufficient regions should exist in the cache due to the previous 723 * call to region_chg with the same range, but in some cases the cache will not 724 * have sufficient entries due to races with other code doing region_add or 725 * region_del. The extra needed entries will be allocated. 726 * 727 * regions_needed is the out value provided by a previous call to region_chg. 728 * 729 * Return the number of new huge pages added to the map. This number is greater 730 * than or equal to zero. If file_region entries needed to be allocated for 731 * this operation and we were not able to allocate, it returns -ENOMEM. 732 * region_add of regions of length 1 never allocate file_regions and cannot 733 * fail; region_chg will always allocate at least 1 entry and a region_add for 734 * 1 page will only require at most 1 entry. 735 */ 736 static long region_add(struct resv_map *resv, long f, long t, 737 long in_regions_needed, struct hstate *h, 738 struct hugetlb_cgroup *h_cg) 739 { 740 long add = 0, actual_regions_needed = 0; 741 742 spin_lock(&resv->lock); 743 retry: 744 745 /* Count how many regions are actually needed to execute this add. */ 746 add_reservation_in_range(resv, f, t, NULL, NULL, 747 &actual_regions_needed); 748 749 /* 750 * Check for sufficient descriptors in the cache to accommodate 751 * this add operation. Note that actual_regions_needed may be greater 752 * than in_regions_needed, as the resv_map may have been modified since 753 * the region_chg call. In this case, we need to make sure that we 754 * allocate extra entries, such that we have enough for all the 755 * existing adds_in_progress, plus the excess needed for this 756 * operation. 757 */ 758 if (actual_regions_needed > in_regions_needed && 759 resv->region_cache_count < 760 resv->adds_in_progress + 761 (actual_regions_needed - in_regions_needed)) { 762 /* region_add operation of range 1 should never need to 763 * allocate file_region entries. 764 */ 765 VM_BUG_ON(t - f <= 1); 766 767 if (allocate_file_region_entries( 768 resv, actual_regions_needed - in_regions_needed)) { 769 return -ENOMEM; 770 } 771 772 goto retry; 773 } 774 775 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL); 776 777 resv->adds_in_progress -= in_regions_needed; 778 779 spin_unlock(&resv->lock); 780 return add; 781 } 782 783 /* 784 * Examine the existing reserve map and determine how many 785 * huge pages in the specified range [f, t) are NOT currently 786 * represented. This routine is called before a subsequent 787 * call to region_add that will actually modify the reserve 788 * map to add the specified range [f, t). region_chg does 789 * not change the number of huge pages represented by the 790 * map. A number of new file_region structures is added to the cache as a 791 * placeholder, for the subsequent region_add call to use. At least 1 792 * file_region structure is added. 793 * 794 * out_regions_needed is the number of regions added to the 795 * resv->adds_in_progress. This value needs to be provided to a follow up call 796 * to region_add or region_abort for proper accounting. 797 * 798 * Returns the number of huge pages that need to be added to the existing 799 * reservation map for the range [f, t). This number is greater or equal to 800 * zero. -ENOMEM is returned if a new file_region structure or cache entry 801 * is needed and can not be allocated. 802 */ 803 static long region_chg(struct resv_map *resv, long f, long t, 804 long *out_regions_needed) 805 { 806 long chg = 0; 807 808 spin_lock(&resv->lock); 809 810 /* Count how many hugepages in this range are NOT represented. */ 811 chg = add_reservation_in_range(resv, f, t, NULL, NULL, 812 out_regions_needed); 813 814 if (*out_regions_needed == 0) 815 *out_regions_needed = 1; 816 817 if (allocate_file_region_entries(resv, *out_regions_needed)) 818 return -ENOMEM; 819 820 resv->adds_in_progress += *out_regions_needed; 821 822 spin_unlock(&resv->lock); 823 return chg; 824 } 825 826 /* 827 * Abort the in progress add operation. The adds_in_progress field 828 * of the resv_map keeps track of the operations in progress between 829 * calls to region_chg and region_add. Operations are sometimes 830 * aborted after the call to region_chg. In such cases, region_abort 831 * is called to decrement the adds_in_progress counter. regions_needed 832 * is the value returned by the region_chg call, it is used to decrement 833 * the adds_in_progress counter. 834 * 835 * NOTE: The range arguments [f, t) are not needed or used in this 836 * routine. They are kept to make reading the calling code easier as 837 * arguments will match the associated region_chg call. 838 */ 839 static void region_abort(struct resv_map *resv, long f, long t, 840 long regions_needed) 841 { 842 spin_lock(&resv->lock); 843 VM_BUG_ON(!resv->region_cache_count); 844 resv->adds_in_progress -= regions_needed; 845 spin_unlock(&resv->lock); 846 } 847 848 /* 849 * Delete the specified range [f, t) from the reserve map. If the 850 * t parameter is LONG_MAX, this indicates that ALL regions after f 851 * should be deleted. Locate the regions which intersect [f, t) 852 * and either trim, delete or split the existing regions. 853 * 854 * Returns the number of huge pages deleted from the reserve map. 855 * In the normal case, the return value is zero or more. In the 856 * case where a region must be split, a new region descriptor must 857 * be allocated. If the allocation fails, -ENOMEM will be returned. 858 * NOTE: If the parameter t == LONG_MAX, then we will never split 859 * a region and possibly return -ENOMEM. Callers specifying 860 * t == LONG_MAX do not need to check for -ENOMEM error. 861 */ 862 static long region_del(struct resv_map *resv, long f, long t) 863 { 864 struct list_head *head = &resv->regions; 865 struct file_region *rg, *trg; 866 struct file_region *nrg = NULL; 867 long del = 0; 868 869 retry: 870 spin_lock(&resv->lock); 871 list_for_each_entry_safe(rg, trg, head, link) { 872 /* 873 * Skip regions before the range to be deleted. file_region 874 * ranges are normally of the form [from, to). However, there 875 * may be a "placeholder" entry in the map which is of the form 876 * (from, to) with from == to. Check for placeholder entries 877 * at the beginning of the range to be deleted. 878 */ 879 if (rg->to <= f && (rg->to != rg->from || rg->to != f)) 880 continue; 881 882 if (rg->from >= t) 883 break; 884 885 if (f > rg->from && t < rg->to) { /* Must split region */ 886 /* 887 * Check for an entry in the cache before dropping 888 * lock and attempting allocation. 889 */ 890 if (!nrg && 891 resv->region_cache_count > resv->adds_in_progress) { 892 nrg = list_first_entry(&resv->region_cache, 893 struct file_region, 894 link); 895 list_del(&nrg->link); 896 resv->region_cache_count--; 897 } 898 899 if (!nrg) { 900 spin_unlock(&resv->lock); 901 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 902 if (!nrg) 903 return -ENOMEM; 904 goto retry; 905 } 906 907 del += t - f; 908 hugetlb_cgroup_uncharge_file_region( 909 resv, rg, t - f, false); 910 911 /* New entry for end of split region */ 912 nrg->from = t; 913 nrg->to = rg->to; 914 915 copy_hugetlb_cgroup_uncharge_info(nrg, rg); 916 917 INIT_LIST_HEAD(&nrg->link); 918 919 /* Original entry is trimmed */ 920 rg->to = f; 921 922 list_add(&nrg->link, &rg->link); 923 nrg = NULL; 924 break; 925 } 926 927 if (f <= rg->from && t >= rg->to) { /* Remove entire region */ 928 del += rg->to - rg->from; 929 hugetlb_cgroup_uncharge_file_region(resv, rg, 930 rg->to - rg->from, true); 931 list_del(&rg->link); 932 kfree(rg); 933 continue; 934 } 935 936 if (f <= rg->from) { /* Trim beginning of region */ 937 hugetlb_cgroup_uncharge_file_region(resv, rg, 938 t - rg->from, false); 939 940 del += t - rg->from; 941 rg->from = t; 942 } else { /* Trim end of region */ 943 hugetlb_cgroup_uncharge_file_region(resv, rg, 944 rg->to - f, false); 945 946 del += rg->to - f; 947 rg->to = f; 948 } 949 } 950 951 spin_unlock(&resv->lock); 952 kfree(nrg); 953 return del; 954 } 955 956 /* 957 * A rare out of memory error was encountered which prevented removal of 958 * the reserve map region for a page. The huge page itself was free'ed 959 * and removed from the page cache. This routine will adjust the subpool 960 * usage count, and the global reserve count if needed. By incrementing 961 * these counts, the reserve map entry which could not be deleted will 962 * appear as a "reserved" entry instead of simply dangling with incorrect 963 * counts. 964 */ 965 void hugetlb_fix_reserve_counts(struct inode *inode) 966 { 967 struct hugepage_subpool *spool = subpool_inode(inode); 968 long rsv_adjust; 969 bool reserved = false; 970 971 rsv_adjust = hugepage_subpool_get_pages(spool, 1); 972 if (rsv_adjust > 0) { 973 struct hstate *h = hstate_inode(inode); 974 975 if (!hugetlb_acct_memory(h, 1)) 976 reserved = true; 977 } else if (!rsv_adjust) { 978 reserved = true; 979 } 980 981 if (!reserved) 982 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n"); 983 } 984 985 /* 986 * Count and return the number of huge pages in the reserve map 987 * that intersect with the range [f, t). 988 */ 989 static long region_count(struct resv_map *resv, long f, long t) 990 { 991 struct list_head *head = &resv->regions; 992 struct file_region *rg; 993 long chg = 0; 994 995 spin_lock(&resv->lock); 996 /* Locate each segment we overlap with, and count that overlap. */ 997 list_for_each_entry(rg, head, link) { 998 long seg_from; 999 long seg_to; 1000 1001 if (rg->to <= f) 1002 continue; 1003 if (rg->from >= t) 1004 break; 1005 1006 seg_from = max(rg->from, f); 1007 seg_to = min(rg->to, t); 1008 1009 chg += seg_to - seg_from; 1010 } 1011 spin_unlock(&resv->lock); 1012 1013 return chg; 1014 } 1015 1016 /* 1017 * Convert the address within this vma to the page offset within 1018 * the mapping, huge page units here. 1019 */ 1020 static pgoff_t vma_hugecache_offset(struct hstate *h, 1021 struct vm_area_struct *vma, unsigned long address) 1022 { 1023 return ((address - vma->vm_start) >> huge_page_shift(h)) + 1024 (vma->vm_pgoff >> huge_page_order(h)); 1025 } 1026 1027 /** 1028 * vma_kernel_pagesize - Page size granularity for this VMA. 1029 * @vma: The user mapping. 1030 * 1031 * Folios in this VMA will be aligned to, and at least the size of the 1032 * number of bytes returned by this function. 1033 * 1034 * Return: The default size of the folios allocated when backing a VMA. 1035 */ 1036 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) 1037 { 1038 if (vma->vm_ops && vma->vm_ops->pagesize) 1039 return vma->vm_ops->pagesize(vma); 1040 return PAGE_SIZE; 1041 } 1042 EXPORT_SYMBOL_GPL(vma_kernel_pagesize); 1043 1044 /* 1045 * Return the page size being used by the MMU to back a VMA. In the majority 1046 * of cases, the page size used by the kernel matches the MMU size. On 1047 * architectures where it differs, an architecture-specific 'strong' 1048 * version of this symbol is required. 1049 */ 1050 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 1051 { 1052 return vma_kernel_pagesize(vma); 1053 } 1054 1055 /* 1056 * Flags for MAP_PRIVATE reservations. These are stored in the bottom 1057 * bits of the reservation map pointer, which are always clear due to 1058 * alignment. 1059 */ 1060 #define HPAGE_RESV_OWNER (1UL << 0) 1061 #define HPAGE_RESV_UNMAPPED (1UL << 1) 1062 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) 1063 1064 /* 1065 * These helpers are used to track how many pages are reserved for 1066 * faults in a MAP_PRIVATE mapping. Only the process that called mmap() 1067 * is guaranteed to have their future faults succeed. 1068 * 1069 * With the exception of hugetlb_dup_vma_private() which is called at fork(), 1070 * the reserve counters are updated with the hugetlb_lock held. It is safe 1071 * to reset the VMA at fork() time as it is not in use yet and there is no 1072 * chance of the global counters getting corrupted as a result of the values. 1073 * 1074 * The private mapping reservation is represented in a subtly different 1075 * manner to a shared mapping. A shared mapping has a region map associated 1076 * with the underlying file, this region map represents the backing file 1077 * pages which have ever had a reservation assigned which this persists even 1078 * after the page is instantiated. A private mapping has a region map 1079 * associated with the original mmap which is attached to all VMAs which 1080 * reference it, this region map represents those offsets which have consumed 1081 * reservation ie. where pages have been instantiated. 1082 */ 1083 static unsigned long get_vma_private_data(struct vm_area_struct *vma) 1084 { 1085 return (unsigned long)vma->vm_private_data; 1086 } 1087 1088 static void set_vma_private_data(struct vm_area_struct *vma, 1089 unsigned long value) 1090 { 1091 vma->vm_private_data = (void *)value; 1092 } 1093 1094 static void 1095 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map, 1096 struct hugetlb_cgroup *h_cg, 1097 struct hstate *h) 1098 { 1099 #ifdef CONFIG_CGROUP_HUGETLB 1100 if (!h_cg || !h) { 1101 resv_map->reservation_counter = NULL; 1102 resv_map->pages_per_hpage = 0; 1103 resv_map->css = NULL; 1104 } else { 1105 resv_map->reservation_counter = 1106 &h_cg->rsvd_hugepage[hstate_index(h)]; 1107 resv_map->pages_per_hpage = pages_per_huge_page(h); 1108 resv_map->css = &h_cg->css; 1109 } 1110 #endif 1111 } 1112 1113 struct resv_map *resv_map_alloc(void) 1114 { 1115 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); 1116 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL); 1117 1118 if (!resv_map || !rg) { 1119 kfree(resv_map); 1120 kfree(rg); 1121 return NULL; 1122 } 1123 1124 kref_init(&resv_map->refs); 1125 spin_lock_init(&resv_map->lock); 1126 INIT_LIST_HEAD(&resv_map->regions); 1127 init_rwsem(&resv_map->rw_sema); 1128 1129 resv_map->adds_in_progress = 0; 1130 /* 1131 * Initialize these to 0. On shared mappings, 0's here indicate these 1132 * fields don't do cgroup accounting. On private mappings, these will be 1133 * re-initialized to the proper values, to indicate that hugetlb cgroup 1134 * reservations are to be un-charged from here. 1135 */ 1136 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL); 1137 1138 INIT_LIST_HEAD(&resv_map->region_cache); 1139 list_add(&rg->link, &resv_map->region_cache); 1140 resv_map->region_cache_count = 1; 1141 1142 return resv_map; 1143 } 1144 1145 void resv_map_release(struct kref *ref) 1146 { 1147 struct resv_map *resv_map = container_of(ref, struct resv_map, refs); 1148 struct list_head *head = &resv_map->region_cache; 1149 struct file_region *rg, *trg; 1150 1151 /* Clear out any active regions before we release the map. */ 1152 region_del(resv_map, 0, LONG_MAX); 1153 1154 /* ... and any entries left in the cache */ 1155 list_for_each_entry_safe(rg, trg, head, link) { 1156 list_del(&rg->link); 1157 kfree(rg); 1158 } 1159 1160 VM_BUG_ON(resv_map->adds_in_progress); 1161 1162 kfree(resv_map); 1163 } 1164 1165 static inline struct resv_map *inode_resv_map(struct inode *inode) 1166 { 1167 /* 1168 * At inode evict time, i_mapping may not point to the original 1169 * address space within the inode. This original address space 1170 * contains the pointer to the resv_map. So, always use the 1171 * address space embedded within the inode. 1172 * The VERY common case is inode->mapping == &inode->i_data but, 1173 * this may not be true for device special inodes. 1174 */ 1175 return (struct resv_map *)(&inode->i_data)->i_private_data; 1176 } 1177 1178 static struct resv_map *vma_resv_map(struct vm_area_struct *vma) 1179 { 1180 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1181 if (vma->vm_flags & VM_MAYSHARE) { 1182 struct address_space *mapping = vma->vm_file->f_mapping; 1183 struct inode *inode = mapping->host; 1184 1185 return inode_resv_map(inode); 1186 1187 } else { 1188 return (struct resv_map *)(get_vma_private_data(vma) & 1189 ~HPAGE_RESV_MASK); 1190 } 1191 } 1192 1193 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) 1194 { 1195 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1196 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 1197 1198 set_vma_private_data(vma, (unsigned long)map); 1199 } 1200 1201 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) 1202 { 1203 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1204 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 1205 1206 set_vma_private_data(vma, get_vma_private_data(vma) | flags); 1207 } 1208 1209 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) 1210 { 1211 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1212 1213 return (get_vma_private_data(vma) & flag) != 0; 1214 } 1215 1216 bool __vma_private_lock(struct vm_area_struct *vma) 1217 { 1218 return !(vma->vm_flags & VM_MAYSHARE) && 1219 get_vma_private_data(vma) & ~HPAGE_RESV_MASK && 1220 is_vma_resv_set(vma, HPAGE_RESV_OWNER); 1221 } 1222 1223 void hugetlb_dup_vma_private(struct vm_area_struct *vma) 1224 { 1225 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1226 /* 1227 * Clear vm_private_data 1228 * - For shared mappings this is a per-vma semaphore that may be 1229 * allocated in a subsequent call to hugetlb_vm_op_open. 1230 * Before clearing, make sure pointer is not associated with vma 1231 * as this will leak the structure. This is the case when called 1232 * via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already 1233 * been called to allocate a new structure. 1234 * - For MAP_PRIVATE mappings, this is the reserve map which does 1235 * not apply to children. Faults generated by the children are 1236 * not guaranteed to succeed, even if read-only. 1237 */ 1238 if (vma->vm_flags & VM_MAYSHARE) { 1239 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 1240 1241 if (vma_lock && vma_lock->vma != vma) 1242 vma->vm_private_data = NULL; 1243 } else 1244 vma->vm_private_data = NULL; 1245 } 1246 1247 /* 1248 * Reset and decrement one ref on hugepage private reservation. 1249 * Called with mm->mmap_lock writer semaphore held. 1250 * This function should be only used by mremap and operate on 1251 * same sized vma. It should never come here with last ref on the 1252 * reservation. 1253 */ 1254 void clear_vma_resv_huge_pages(struct vm_area_struct *vma) 1255 { 1256 /* 1257 * Clear the old hugetlb private page reservation. 1258 * It has already been transferred to new_vma. 1259 * 1260 * During a mremap() operation of a hugetlb vma we call move_vma() 1261 * which copies vma into new_vma and unmaps vma. After the copy 1262 * operation both new_vma and vma share a reference to the resv_map 1263 * struct, and at that point vma is about to be unmapped. We don't 1264 * want to return the reservation to the pool at unmap of vma because 1265 * the reservation still lives on in new_vma, so simply decrement the 1266 * ref here and remove the resv_map reference from this vma. 1267 */ 1268 struct resv_map *reservations = vma_resv_map(vma); 1269 1270 if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 1271 resv_map_put_hugetlb_cgroup_uncharge_info(reservations); 1272 kref_put(&reservations->refs, resv_map_release); 1273 } 1274 1275 hugetlb_dup_vma_private(vma); 1276 } 1277 1278 static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio) 1279 { 1280 int nid = folio_nid(folio); 1281 1282 lockdep_assert_held(&hugetlb_lock); 1283 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio); 1284 1285 list_move(&folio->lru, &h->hugepage_freelists[nid]); 1286 h->free_huge_pages++; 1287 h->free_huge_pages_node[nid]++; 1288 folio_set_hugetlb_freed(folio); 1289 } 1290 1291 static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h, 1292 int nid) 1293 { 1294 struct folio *folio; 1295 bool pin = !!(current->flags & PF_MEMALLOC_PIN); 1296 1297 lockdep_assert_held(&hugetlb_lock); 1298 list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) { 1299 if (pin && !folio_is_longterm_pinnable(folio)) 1300 continue; 1301 1302 if (folio_test_hwpoison(folio)) 1303 continue; 1304 1305 if (is_migrate_isolate_page(&folio->page)) 1306 continue; 1307 1308 list_move(&folio->lru, &h->hugepage_activelist); 1309 folio_ref_unfreeze(folio, 1); 1310 folio_clear_hugetlb_freed(folio); 1311 h->free_huge_pages--; 1312 h->free_huge_pages_node[nid]--; 1313 return folio; 1314 } 1315 1316 return NULL; 1317 } 1318 1319 static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask, 1320 int nid, nodemask_t *nmask) 1321 { 1322 unsigned int cpuset_mems_cookie; 1323 struct zonelist *zonelist; 1324 struct zone *zone; 1325 struct zoneref *z; 1326 int node = NUMA_NO_NODE; 1327 1328 /* 'nid' should not be NUMA_NO_NODE. Try to catch any misuse of it and rectifiy. */ 1329 if (nid == NUMA_NO_NODE) 1330 nid = numa_node_id(); 1331 1332 zonelist = node_zonelist(nid, gfp_mask); 1333 1334 retry_cpuset: 1335 cpuset_mems_cookie = read_mems_allowed_begin(); 1336 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) { 1337 struct folio *folio; 1338 1339 if (!cpuset_zone_allowed(zone, gfp_mask)) 1340 continue; 1341 /* 1342 * no need to ask again on the same node. Pool is node rather than 1343 * zone aware 1344 */ 1345 if (zone_to_nid(zone) == node) 1346 continue; 1347 node = zone_to_nid(zone); 1348 1349 folio = dequeue_hugetlb_folio_node_exact(h, node); 1350 if (folio) 1351 return folio; 1352 } 1353 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie))) 1354 goto retry_cpuset; 1355 1356 return NULL; 1357 } 1358 1359 static unsigned long available_huge_pages(struct hstate *h) 1360 { 1361 return h->free_huge_pages - h->resv_huge_pages; 1362 } 1363 1364 static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h, 1365 struct vm_area_struct *vma, 1366 unsigned long address, long gbl_chg) 1367 { 1368 struct folio *folio = NULL; 1369 struct mempolicy *mpol; 1370 gfp_t gfp_mask; 1371 nodemask_t *nodemask; 1372 int nid; 1373 1374 /* 1375 * gbl_chg==1 means the allocation requires a new page that was not 1376 * reserved before. Making sure there's at least one free page. 1377 */ 1378 if (gbl_chg && !available_huge_pages(h)) 1379 goto err; 1380 1381 gfp_mask = htlb_alloc_mask(h); 1382 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 1383 1384 if (mpol_is_preferred_many(mpol)) { 1385 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, 1386 nid, nodemask); 1387 1388 /* Fallback to all nodes if page==NULL */ 1389 nodemask = NULL; 1390 } 1391 1392 if (!folio) 1393 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, 1394 nid, nodemask); 1395 1396 mpol_cond_put(mpol); 1397 return folio; 1398 1399 err: 1400 return NULL; 1401 } 1402 1403 /* 1404 * common helper functions for hstate_next_node_to_{alloc|free}. 1405 * We may have allocated or freed a huge page based on a different 1406 * nodes_allowed previously, so h->next_node_to_{alloc|free} might 1407 * be outside of *nodes_allowed. Ensure that we use an allowed 1408 * node for alloc or free. 1409 */ 1410 static int next_node_allowed(int nid, nodemask_t *nodes_allowed) 1411 { 1412 nid = next_node_in(nid, *nodes_allowed); 1413 VM_BUG_ON(nid >= MAX_NUMNODES); 1414 1415 return nid; 1416 } 1417 1418 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed) 1419 { 1420 if (!node_isset(nid, *nodes_allowed)) 1421 nid = next_node_allowed(nid, nodes_allowed); 1422 return nid; 1423 } 1424 1425 /* 1426 * returns the previously saved node ["this node"] from which to 1427 * allocate a persistent huge page for the pool and advance the 1428 * next node from which to allocate, handling wrap at end of node 1429 * mask. 1430 */ 1431 static int hstate_next_node_to_alloc(int *next_node, 1432 nodemask_t *nodes_allowed) 1433 { 1434 int nid; 1435 1436 VM_BUG_ON(!nodes_allowed); 1437 1438 nid = get_valid_node_allowed(*next_node, nodes_allowed); 1439 *next_node = next_node_allowed(nid, nodes_allowed); 1440 1441 return nid; 1442 } 1443 1444 /* 1445 * helper for remove_pool_hugetlb_folio() - return the previously saved 1446 * node ["this node"] from which to free a huge page. Advance the 1447 * next node id whether or not we find a free huge page to free so 1448 * that the next attempt to free addresses the next node. 1449 */ 1450 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed) 1451 { 1452 int nid; 1453 1454 VM_BUG_ON(!nodes_allowed); 1455 1456 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed); 1457 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed); 1458 1459 return nid; 1460 } 1461 1462 #define for_each_node_mask_to_alloc(next_node, nr_nodes, node, mask) \ 1463 for (nr_nodes = nodes_weight(*mask); \ 1464 nr_nodes > 0 && \ 1465 ((node = hstate_next_node_to_alloc(next_node, mask)) || 1); \ 1466 nr_nodes--) 1467 1468 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \ 1469 for (nr_nodes = nodes_weight(*mask); \ 1470 nr_nodes > 0 && \ 1471 ((node = hstate_next_node_to_free(hs, mask)) || 1); \ 1472 nr_nodes--) 1473 1474 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE 1475 #ifdef CONFIG_CONTIG_ALLOC 1476 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask, 1477 int nid, nodemask_t *nodemask) 1478 { 1479 struct folio *folio; 1480 int order = huge_page_order(h); 1481 bool retried = false; 1482 1483 if (nid == NUMA_NO_NODE) 1484 nid = numa_mem_id(); 1485 retry: 1486 folio = hugetlb_cma_alloc_folio(h, gfp_mask, nid, nodemask); 1487 if (!folio) { 1488 if (hugetlb_cma_exclusive_alloc()) 1489 return NULL; 1490 1491 folio = folio_alloc_gigantic(order, gfp_mask, nid, nodemask); 1492 if (!folio) 1493 return NULL; 1494 } 1495 1496 if (folio_ref_freeze(folio, 1)) 1497 return folio; 1498 1499 pr_warn("HugeTLB: unexpected refcount on PFN %lu\n", folio_pfn(folio)); 1500 hugetlb_free_folio(folio); 1501 if (!retried) { 1502 retried = true; 1503 goto retry; 1504 } 1505 return NULL; 1506 } 1507 1508 #else /* !CONFIG_CONTIG_ALLOC */ 1509 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask, 1510 int nid, nodemask_t *nodemask) 1511 { 1512 return NULL; 1513 } 1514 #endif /* CONFIG_CONTIG_ALLOC */ 1515 1516 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */ 1517 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask, 1518 int nid, nodemask_t *nodemask) 1519 { 1520 return NULL; 1521 } 1522 #endif 1523 1524 /* 1525 * Remove hugetlb folio from lists. 1526 * If vmemmap exists for the folio, clear the hugetlb flag so that the 1527 * folio appears as just a compound page. Otherwise, wait until after 1528 * allocating vmemmap to clear the flag. 1529 * 1530 * Must be called with hugetlb lock held. 1531 */ 1532 static void remove_hugetlb_folio(struct hstate *h, struct folio *folio, 1533 bool adjust_surplus) 1534 { 1535 int nid = folio_nid(folio); 1536 1537 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio); 1538 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio); 1539 1540 lockdep_assert_held(&hugetlb_lock); 1541 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 1542 return; 1543 1544 list_del(&folio->lru); 1545 1546 if (folio_test_hugetlb_freed(folio)) { 1547 folio_clear_hugetlb_freed(folio); 1548 h->free_huge_pages--; 1549 h->free_huge_pages_node[nid]--; 1550 } 1551 if (adjust_surplus) { 1552 h->surplus_huge_pages--; 1553 h->surplus_huge_pages_node[nid]--; 1554 } 1555 1556 /* 1557 * We can only clear the hugetlb flag after allocating vmemmap 1558 * pages. Otherwise, someone (memory error handling) may try to write 1559 * to tail struct pages. 1560 */ 1561 if (!folio_test_hugetlb_vmemmap_optimized(folio)) 1562 __folio_clear_hugetlb(folio); 1563 1564 h->nr_huge_pages--; 1565 h->nr_huge_pages_node[nid]--; 1566 } 1567 1568 static void add_hugetlb_folio(struct hstate *h, struct folio *folio, 1569 bool adjust_surplus) 1570 { 1571 int nid = folio_nid(folio); 1572 1573 VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio); 1574 1575 lockdep_assert_held(&hugetlb_lock); 1576 1577 INIT_LIST_HEAD(&folio->lru); 1578 h->nr_huge_pages++; 1579 h->nr_huge_pages_node[nid]++; 1580 1581 if (adjust_surplus) { 1582 h->surplus_huge_pages++; 1583 h->surplus_huge_pages_node[nid]++; 1584 } 1585 1586 __folio_set_hugetlb(folio); 1587 folio_change_private(folio, NULL); 1588 /* 1589 * We have to set hugetlb_vmemmap_optimized again as above 1590 * folio_change_private(folio, NULL) cleared it. 1591 */ 1592 folio_set_hugetlb_vmemmap_optimized(folio); 1593 1594 arch_clear_hugetlb_flags(folio); 1595 enqueue_hugetlb_folio(h, folio); 1596 } 1597 1598 static void __update_and_free_hugetlb_folio(struct hstate *h, 1599 struct folio *folio) 1600 { 1601 bool clear_flag = folio_test_hugetlb_vmemmap_optimized(folio); 1602 1603 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 1604 return; 1605 1606 /* 1607 * If we don't know which subpages are hwpoisoned, we can't free 1608 * the hugepage, so it's leaked intentionally. 1609 */ 1610 if (folio_test_hugetlb_raw_hwp_unreliable(folio)) 1611 return; 1612 1613 /* 1614 * If folio is not vmemmap optimized (!clear_flag), then the folio 1615 * is no longer identified as a hugetlb page. hugetlb_vmemmap_restore_folio 1616 * can only be passed hugetlb pages and will BUG otherwise. 1617 */ 1618 if (clear_flag && hugetlb_vmemmap_restore_folio(h, folio)) { 1619 spin_lock_irq(&hugetlb_lock); 1620 /* 1621 * If we cannot allocate vmemmap pages, just refuse to free the 1622 * page and put the page back on the hugetlb free list and treat 1623 * as a surplus page. 1624 */ 1625 add_hugetlb_folio(h, folio, true); 1626 spin_unlock_irq(&hugetlb_lock); 1627 return; 1628 } 1629 1630 /* 1631 * If vmemmap pages were allocated above, then we need to clear the 1632 * hugetlb flag under the hugetlb lock. 1633 */ 1634 if (folio_test_hugetlb(folio)) { 1635 spin_lock_irq(&hugetlb_lock); 1636 __folio_clear_hugetlb(folio); 1637 spin_unlock_irq(&hugetlb_lock); 1638 } 1639 1640 /* 1641 * Move PageHWPoison flag from head page to the raw error pages, 1642 * which makes any healthy subpages reusable. 1643 */ 1644 if (unlikely(folio_test_hwpoison(folio))) 1645 folio_clear_hugetlb_hwpoison(folio); 1646 1647 folio_ref_unfreeze(folio, 1); 1648 1649 hugetlb_free_folio(folio); 1650 } 1651 1652 /* 1653 * As update_and_free_hugetlb_folio() can be called under any context, so we cannot 1654 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the 1655 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate 1656 * the vmemmap pages. 1657 * 1658 * free_hpage_workfn() locklessly retrieves the linked list of pages to be 1659 * freed and frees them one-by-one. As the page->mapping pointer is going 1660 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node 1661 * structure of a lockless linked list of huge pages to be freed. 1662 */ 1663 static LLIST_HEAD(hpage_freelist); 1664 1665 static void free_hpage_workfn(struct work_struct *work) 1666 { 1667 struct llist_node *node; 1668 1669 node = llist_del_all(&hpage_freelist); 1670 1671 while (node) { 1672 struct folio *folio; 1673 struct hstate *h; 1674 1675 folio = container_of((struct address_space **)node, 1676 struct folio, mapping); 1677 node = node->next; 1678 folio->mapping = NULL; 1679 /* 1680 * The VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio) in 1681 * folio_hstate() is going to trigger because a previous call to 1682 * remove_hugetlb_folio() will clear the hugetlb bit, so do 1683 * not use folio_hstate() directly. 1684 */ 1685 h = size_to_hstate(folio_size(folio)); 1686 1687 __update_and_free_hugetlb_folio(h, folio); 1688 1689 cond_resched(); 1690 } 1691 } 1692 static DECLARE_WORK(free_hpage_work, free_hpage_workfn); 1693 1694 static inline void flush_free_hpage_work(struct hstate *h) 1695 { 1696 if (hugetlb_vmemmap_optimizable(h)) 1697 flush_work(&free_hpage_work); 1698 } 1699 1700 static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio, 1701 bool atomic) 1702 { 1703 if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) { 1704 __update_and_free_hugetlb_folio(h, folio); 1705 return; 1706 } 1707 1708 /* 1709 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages. 1710 * 1711 * Only call schedule_work() if hpage_freelist is previously 1712 * empty. Otherwise, schedule_work() had been called but the workfn 1713 * hasn't retrieved the list yet. 1714 */ 1715 if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist)) 1716 schedule_work(&free_hpage_work); 1717 } 1718 1719 static void bulk_vmemmap_restore_error(struct hstate *h, 1720 struct list_head *folio_list, 1721 struct list_head *non_hvo_folios) 1722 { 1723 struct folio *folio, *t_folio; 1724 1725 if (!list_empty(non_hvo_folios)) { 1726 /* 1727 * Free any restored hugetlb pages so that restore of the 1728 * entire list can be retried. 1729 * The idea is that in the common case of ENOMEM errors freeing 1730 * hugetlb pages with vmemmap we will free up memory so that we 1731 * can allocate vmemmap for more hugetlb pages. 1732 */ 1733 list_for_each_entry_safe(folio, t_folio, non_hvo_folios, lru) { 1734 list_del(&folio->lru); 1735 spin_lock_irq(&hugetlb_lock); 1736 __folio_clear_hugetlb(folio); 1737 spin_unlock_irq(&hugetlb_lock); 1738 update_and_free_hugetlb_folio(h, folio, false); 1739 cond_resched(); 1740 } 1741 } else { 1742 /* 1743 * In the case where there are no folios which can be 1744 * immediately freed, we loop through the list trying to restore 1745 * vmemmap individually in the hope that someone elsewhere may 1746 * have done something to cause success (such as freeing some 1747 * memory). If unable to restore a hugetlb page, the hugetlb 1748 * page is made a surplus page and removed from the list. 1749 * If are able to restore vmemmap and free one hugetlb page, we 1750 * quit processing the list to retry the bulk operation. 1751 */ 1752 list_for_each_entry_safe(folio, t_folio, folio_list, lru) 1753 if (hugetlb_vmemmap_restore_folio(h, folio)) { 1754 list_del(&folio->lru); 1755 spin_lock_irq(&hugetlb_lock); 1756 add_hugetlb_folio(h, folio, true); 1757 spin_unlock_irq(&hugetlb_lock); 1758 } else { 1759 list_del(&folio->lru); 1760 spin_lock_irq(&hugetlb_lock); 1761 __folio_clear_hugetlb(folio); 1762 spin_unlock_irq(&hugetlb_lock); 1763 update_and_free_hugetlb_folio(h, folio, false); 1764 cond_resched(); 1765 break; 1766 } 1767 } 1768 } 1769 1770 static void update_and_free_pages_bulk(struct hstate *h, 1771 struct list_head *folio_list) 1772 { 1773 long ret; 1774 struct folio *folio, *t_folio; 1775 LIST_HEAD(non_hvo_folios); 1776 1777 /* 1778 * First allocate required vmemmmap (if necessary) for all folios. 1779 * Carefully handle errors and free up any available hugetlb pages 1780 * in an effort to make forward progress. 1781 */ 1782 retry: 1783 ret = hugetlb_vmemmap_restore_folios(h, folio_list, &non_hvo_folios); 1784 if (ret < 0) { 1785 bulk_vmemmap_restore_error(h, folio_list, &non_hvo_folios); 1786 goto retry; 1787 } 1788 1789 /* 1790 * At this point, list should be empty, ret should be >= 0 and there 1791 * should only be pages on the non_hvo_folios list. 1792 * Do note that the non_hvo_folios list could be empty. 1793 * Without HVO enabled, ret will be 0 and there is no need to call 1794 * __folio_clear_hugetlb as this was done previously. 1795 */ 1796 VM_WARN_ON(!list_empty(folio_list)); 1797 VM_WARN_ON(ret < 0); 1798 if (!list_empty(&non_hvo_folios) && ret) { 1799 spin_lock_irq(&hugetlb_lock); 1800 list_for_each_entry(folio, &non_hvo_folios, lru) 1801 __folio_clear_hugetlb(folio); 1802 spin_unlock_irq(&hugetlb_lock); 1803 } 1804 1805 list_for_each_entry_safe(folio, t_folio, &non_hvo_folios, lru) { 1806 update_and_free_hugetlb_folio(h, folio, false); 1807 cond_resched(); 1808 } 1809 } 1810 1811 struct hstate *size_to_hstate(unsigned long size) 1812 { 1813 struct hstate *h; 1814 1815 for_each_hstate(h) { 1816 if (huge_page_size(h) == size) 1817 return h; 1818 } 1819 return NULL; 1820 } 1821 1822 void free_huge_folio(struct folio *folio) 1823 { 1824 /* 1825 * Can't pass hstate in here because it is called from the 1826 * generic mm code. 1827 */ 1828 struct hstate *h = folio_hstate(folio); 1829 int nid = folio_nid(folio); 1830 struct hugepage_subpool *spool = hugetlb_folio_subpool(folio); 1831 bool restore_reserve; 1832 unsigned long flags; 1833 1834 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio); 1835 VM_BUG_ON_FOLIO(folio_mapcount(folio), folio); 1836 1837 hugetlb_set_folio_subpool(folio, NULL); 1838 if (folio_test_anon(folio)) 1839 __ClearPageAnonExclusive(&folio->page); 1840 folio->mapping = NULL; 1841 restore_reserve = folio_test_hugetlb_restore_reserve(folio); 1842 folio_clear_hugetlb_restore_reserve(folio); 1843 1844 /* 1845 * If HPageRestoreReserve was set on page, page allocation consumed a 1846 * reservation. If the page was associated with a subpool, there 1847 * would have been a page reserved in the subpool before allocation 1848 * via hugepage_subpool_get_pages(). Since we are 'restoring' the 1849 * reservation, do not call hugepage_subpool_put_pages() as this will 1850 * remove the reserved page from the subpool. 1851 */ 1852 if (!restore_reserve) { 1853 /* 1854 * A return code of zero implies that the subpool will be 1855 * under its minimum size if the reservation is not restored 1856 * after page is free. Therefore, force restore_reserve 1857 * operation. 1858 */ 1859 if (hugepage_subpool_put_pages(spool, 1) == 0) 1860 restore_reserve = true; 1861 } 1862 1863 spin_lock_irqsave(&hugetlb_lock, flags); 1864 folio_clear_hugetlb_migratable(folio); 1865 hugetlb_cgroup_uncharge_folio(hstate_index(h), 1866 pages_per_huge_page(h), folio); 1867 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h), 1868 pages_per_huge_page(h), folio); 1869 lruvec_stat_mod_folio(folio, NR_HUGETLB, -pages_per_huge_page(h)); 1870 mem_cgroup_uncharge(folio); 1871 if (restore_reserve) 1872 h->resv_huge_pages++; 1873 1874 if (folio_test_hugetlb_temporary(folio)) { 1875 remove_hugetlb_folio(h, folio, false); 1876 spin_unlock_irqrestore(&hugetlb_lock, flags); 1877 update_and_free_hugetlb_folio(h, folio, true); 1878 } else if (h->surplus_huge_pages_node[nid]) { 1879 /* remove the page from active list */ 1880 remove_hugetlb_folio(h, folio, true); 1881 spin_unlock_irqrestore(&hugetlb_lock, flags); 1882 update_and_free_hugetlb_folio(h, folio, true); 1883 } else { 1884 arch_clear_hugetlb_flags(folio); 1885 enqueue_hugetlb_folio(h, folio); 1886 spin_unlock_irqrestore(&hugetlb_lock, flags); 1887 } 1888 } 1889 1890 /* 1891 * Must be called with the hugetlb lock held 1892 */ 1893 static void __prep_account_new_huge_page(struct hstate *h, int nid) 1894 { 1895 lockdep_assert_held(&hugetlb_lock); 1896 h->nr_huge_pages++; 1897 h->nr_huge_pages_node[nid]++; 1898 } 1899 1900 static void init_new_hugetlb_folio(struct hstate *h, struct folio *folio) 1901 { 1902 __folio_set_hugetlb(folio); 1903 INIT_LIST_HEAD(&folio->lru); 1904 hugetlb_set_folio_subpool(folio, NULL); 1905 set_hugetlb_cgroup(folio, NULL); 1906 set_hugetlb_cgroup_rsvd(folio, NULL); 1907 } 1908 1909 static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio) 1910 { 1911 init_new_hugetlb_folio(h, folio); 1912 hugetlb_vmemmap_optimize_folio(h, folio); 1913 } 1914 1915 static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid) 1916 { 1917 __prep_new_hugetlb_folio(h, folio); 1918 spin_lock_irq(&hugetlb_lock); 1919 __prep_account_new_huge_page(h, nid); 1920 spin_unlock_irq(&hugetlb_lock); 1921 } 1922 1923 /* 1924 * Find and lock address space (mapping) in write mode. 1925 * 1926 * Upon entry, the folio is locked which means that folio_mapping() is 1927 * stable. Due to locking order, we can only trylock_write. If we can 1928 * not get the lock, simply return NULL to caller. 1929 */ 1930 struct address_space *hugetlb_folio_mapping_lock_write(struct folio *folio) 1931 { 1932 struct address_space *mapping = folio_mapping(folio); 1933 1934 if (!mapping) 1935 return mapping; 1936 1937 if (i_mmap_trylock_write(mapping)) 1938 return mapping; 1939 1940 return NULL; 1941 } 1942 1943 static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h, 1944 gfp_t gfp_mask, int nid, nodemask_t *nmask, 1945 nodemask_t *node_alloc_noretry) 1946 { 1947 int order = huge_page_order(h); 1948 struct folio *folio; 1949 bool alloc_try_hard = true; 1950 1951 /* 1952 * By default we always try hard to allocate the folio with 1953 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating folios in 1954 * a loop (to adjust global huge page counts) and previous allocation 1955 * failed, do not continue to try hard on the same node. Use the 1956 * node_alloc_noretry bitmap to manage this state information. 1957 */ 1958 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry)) 1959 alloc_try_hard = false; 1960 if (alloc_try_hard) 1961 gfp_mask |= __GFP_RETRY_MAYFAIL; 1962 if (nid == NUMA_NO_NODE) 1963 nid = numa_mem_id(); 1964 1965 folio = (struct folio *)__alloc_frozen_pages(gfp_mask, order, nid, nmask); 1966 1967 /* 1968 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a 1969 * folio this indicates an overall state change. Clear bit so 1970 * that we resume normal 'try hard' allocations. 1971 */ 1972 if (node_alloc_noretry && folio && !alloc_try_hard) 1973 node_clear(nid, *node_alloc_noretry); 1974 1975 /* 1976 * If we tried hard to get a folio but failed, set bit so that 1977 * subsequent attempts will not try as hard until there is an 1978 * overall state change. 1979 */ 1980 if (node_alloc_noretry && !folio && alloc_try_hard) 1981 node_set(nid, *node_alloc_noretry); 1982 1983 if (!folio) { 1984 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 1985 return NULL; 1986 } 1987 1988 __count_vm_event(HTLB_BUDDY_PGALLOC); 1989 return folio; 1990 } 1991 1992 static struct folio *only_alloc_fresh_hugetlb_folio(struct hstate *h, 1993 gfp_t gfp_mask, int nid, nodemask_t *nmask, 1994 nodemask_t *node_alloc_noretry) 1995 { 1996 struct folio *folio; 1997 1998 if (hstate_is_gigantic(h)) 1999 folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask); 2000 else 2001 folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, nmask, node_alloc_noretry); 2002 if (folio) 2003 init_new_hugetlb_folio(h, folio); 2004 return folio; 2005 } 2006 2007 /* 2008 * Common helper to allocate a fresh hugetlb page. All specific allocators 2009 * should use this function to get new hugetlb pages 2010 * 2011 * Note that returned page is 'frozen': ref count of head page and all tail 2012 * pages is zero. 2013 */ 2014 static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h, 2015 gfp_t gfp_mask, int nid, nodemask_t *nmask) 2016 { 2017 struct folio *folio; 2018 2019 if (hstate_is_gigantic(h)) 2020 folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask); 2021 else 2022 folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, nmask, NULL); 2023 if (!folio) 2024 return NULL; 2025 2026 prep_new_hugetlb_folio(h, folio, folio_nid(folio)); 2027 return folio; 2028 } 2029 2030 static void prep_and_add_allocated_folios(struct hstate *h, 2031 struct list_head *folio_list) 2032 { 2033 unsigned long flags; 2034 struct folio *folio, *tmp_f; 2035 2036 /* Send list for bulk vmemmap optimization processing */ 2037 hugetlb_vmemmap_optimize_folios(h, folio_list); 2038 2039 /* Add all new pool pages to free lists in one lock cycle */ 2040 spin_lock_irqsave(&hugetlb_lock, flags); 2041 list_for_each_entry_safe(folio, tmp_f, folio_list, lru) { 2042 __prep_account_new_huge_page(h, folio_nid(folio)); 2043 enqueue_hugetlb_folio(h, folio); 2044 } 2045 spin_unlock_irqrestore(&hugetlb_lock, flags); 2046 } 2047 2048 /* 2049 * Allocates a fresh hugetlb page in a node interleaved manner. The page 2050 * will later be added to the appropriate hugetlb pool. 2051 */ 2052 static struct folio *alloc_pool_huge_folio(struct hstate *h, 2053 nodemask_t *nodes_allowed, 2054 nodemask_t *node_alloc_noretry, 2055 int *next_node) 2056 { 2057 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 2058 int nr_nodes, node; 2059 2060 for_each_node_mask_to_alloc(next_node, nr_nodes, node, nodes_allowed) { 2061 struct folio *folio; 2062 2063 folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, node, 2064 nodes_allowed, node_alloc_noretry); 2065 if (folio) 2066 return folio; 2067 } 2068 2069 return NULL; 2070 } 2071 2072 /* 2073 * Remove huge page from pool from next node to free. Attempt to keep 2074 * persistent huge pages more or less balanced over allowed nodes. 2075 * This routine only 'removes' the hugetlb page. The caller must make 2076 * an additional call to free the page to low level allocators. 2077 * Called with hugetlb_lock locked. 2078 */ 2079 static struct folio *remove_pool_hugetlb_folio(struct hstate *h, 2080 nodemask_t *nodes_allowed, bool acct_surplus) 2081 { 2082 int nr_nodes, node; 2083 struct folio *folio = NULL; 2084 2085 lockdep_assert_held(&hugetlb_lock); 2086 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 2087 /* 2088 * If we're returning unused surplus pages, only examine 2089 * nodes with surplus pages. 2090 */ 2091 if ((!acct_surplus || h->surplus_huge_pages_node[node]) && 2092 !list_empty(&h->hugepage_freelists[node])) { 2093 folio = list_entry(h->hugepage_freelists[node].next, 2094 struct folio, lru); 2095 remove_hugetlb_folio(h, folio, acct_surplus); 2096 break; 2097 } 2098 } 2099 2100 return folio; 2101 } 2102 2103 /* 2104 * Dissolve a given free hugetlb folio into free buddy pages. This function 2105 * does nothing for in-use hugetlb folios and non-hugetlb folios. 2106 * This function returns values like below: 2107 * 2108 * -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages 2109 * when the system is under memory pressure and the feature of 2110 * freeing unused vmemmap pages associated with each hugetlb page 2111 * is enabled. 2112 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use 2113 * (allocated or reserved.) 2114 * 0: successfully dissolved free hugepages or the page is not a 2115 * hugepage (considered as already dissolved) 2116 */ 2117 int dissolve_free_hugetlb_folio(struct folio *folio) 2118 { 2119 int rc = -EBUSY; 2120 2121 retry: 2122 /* Not to disrupt normal path by vainly holding hugetlb_lock */ 2123 if (!folio_test_hugetlb(folio)) 2124 return 0; 2125 2126 spin_lock_irq(&hugetlb_lock); 2127 if (!folio_test_hugetlb(folio)) { 2128 rc = 0; 2129 goto out; 2130 } 2131 2132 if (!folio_ref_count(folio)) { 2133 struct hstate *h = folio_hstate(folio); 2134 bool adjust_surplus = false; 2135 2136 if (!available_huge_pages(h)) 2137 goto out; 2138 2139 /* 2140 * We should make sure that the page is already on the free list 2141 * when it is dissolved. 2142 */ 2143 if (unlikely(!folio_test_hugetlb_freed(folio))) { 2144 spin_unlock_irq(&hugetlb_lock); 2145 cond_resched(); 2146 2147 /* 2148 * Theoretically, we should return -EBUSY when we 2149 * encounter this race. In fact, we have a chance 2150 * to successfully dissolve the page if we do a 2151 * retry. Because the race window is quite small. 2152 * If we seize this opportunity, it is an optimization 2153 * for increasing the success rate of dissolving page. 2154 */ 2155 goto retry; 2156 } 2157 2158 if (h->surplus_huge_pages_node[folio_nid(folio)]) 2159 adjust_surplus = true; 2160 remove_hugetlb_folio(h, folio, adjust_surplus); 2161 h->max_huge_pages--; 2162 spin_unlock_irq(&hugetlb_lock); 2163 2164 /* 2165 * Normally update_and_free_hugtlb_folio will allocate required vmemmmap 2166 * before freeing the page. update_and_free_hugtlb_folio will fail to 2167 * free the page if it can not allocate required vmemmap. We 2168 * need to adjust max_huge_pages if the page is not freed. 2169 * Attempt to allocate vmemmmap here so that we can take 2170 * appropriate action on failure. 2171 * 2172 * The folio_test_hugetlb check here is because 2173 * remove_hugetlb_folio will clear hugetlb folio flag for 2174 * non-vmemmap optimized hugetlb folios. 2175 */ 2176 if (folio_test_hugetlb(folio)) { 2177 rc = hugetlb_vmemmap_restore_folio(h, folio); 2178 if (rc) { 2179 spin_lock_irq(&hugetlb_lock); 2180 add_hugetlb_folio(h, folio, adjust_surplus); 2181 h->max_huge_pages++; 2182 goto out; 2183 } 2184 } else 2185 rc = 0; 2186 2187 update_and_free_hugetlb_folio(h, folio, false); 2188 return rc; 2189 } 2190 out: 2191 spin_unlock_irq(&hugetlb_lock); 2192 return rc; 2193 } 2194 2195 /* 2196 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to 2197 * make specified memory blocks removable from the system. 2198 * Note that this will dissolve a free gigantic hugepage completely, if any 2199 * part of it lies within the given range. 2200 * Also note that if dissolve_free_hugetlb_folio() returns with an error, all 2201 * free hugetlb folios that were dissolved before that error are lost. 2202 */ 2203 int dissolve_free_hugetlb_folios(unsigned long start_pfn, unsigned long end_pfn) 2204 { 2205 unsigned long pfn; 2206 struct folio *folio; 2207 int rc = 0; 2208 unsigned int order; 2209 struct hstate *h; 2210 2211 if (!hugepages_supported()) 2212 return rc; 2213 2214 order = huge_page_order(&default_hstate); 2215 for_each_hstate(h) 2216 order = min(order, huge_page_order(h)); 2217 2218 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) { 2219 folio = pfn_folio(pfn); 2220 rc = dissolve_free_hugetlb_folio(folio); 2221 if (rc) 2222 break; 2223 } 2224 2225 return rc; 2226 } 2227 2228 /* 2229 * Allocates a fresh surplus page from the page allocator. 2230 */ 2231 static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h, 2232 gfp_t gfp_mask, int nid, nodemask_t *nmask) 2233 { 2234 struct folio *folio = NULL; 2235 2236 if (hstate_is_gigantic(h)) 2237 return NULL; 2238 2239 spin_lock_irq(&hugetlb_lock); 2240 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) 2241 goto out_unlock; 2242 spin_unlock_irq(&hugetlb_lock); 2243 2244 folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL); 2245 if (!folio) 2246 return NULL; 2247 2248 hugetlb_vmemmap_optimize_folio(h, folio); 2249 2250 spin_lock_irq(&hugetlb_lock); 2251 /* 2252 * nr_huge_pages needs to be adjusted within the same lock cycle 2253 * as surplus_pages, otherwise it might confuse 2254 * persistent_huge_pages() momentarily. 2255 */ 2256 __prep_account_new_huge_page(h, folio_nid(folio)); 2257 2258 /* 2259 * We could have raced with the pool size change. 2260 * Double check that and simply deallocate the new page 2261 * if we would end up overcommiting the surpluses. Abuse 2262 * temporary page to workaround the nasty free_huge_folio 2263 * codeflow 2264 */ 2265 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { 2266 folio_set_hugetlb_temporary(folio); 2267 spin_unlock_irq(&hugetlb_lock); 2268 free_huge_folio(folio); 2269 return NULL; 2270 } 2271 2272 h->surplus_huge_pages++; 2273 h->surplus_huge_pages_node[folio_nid(folio)]++; 2274 2275 out_unlock: 2276 spin_unlock_irq(&hugetlb_lock); 2277 2278 return folio; 2279 } 2280 2281 static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask, 2282 int nid, nodemask_t *nmask) 2283 { 2284 struct folio *folio; 2285 2286 if (hstate_is_gigantic(h)) 2287 return NULL; 2288 2289 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask); 2290 if (!folio) 2291 return NULL; 2292 2293 /* fresh huge pages are frozen */ 2294 folio_ref_unfreeze(folio, 1); 2295 /* 2296 * We do not account these pages as surplus because they are only 2297 * temporary and will be released properly on the last reference 2298 */ 2299 folio_set_hugetlb_temporary(folio); 2300 2301 return folio; 2302 } 2303 2304 /* 2305 * Use the VMA's mpolicy to allocate a huge page from the buddy. 2306 */ 2307 static 2308 struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h, 2309 struct vm_area_struct *vma, unsigned long addr) 2310 { 2311 struct folio *folio = NULL; 2312 struct mempolicy *mpol; 2313 gfp_t gfp_mask = htlb_alloc_mask(h); 2314 int nid; 2315 nodemask_t *nodemask; 2316 2317 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask); 2318 if (mpol_is_preferred_many(mpol)) { 2319 gfp_t gfp = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL); 2320 2321 folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask); 2322 2323 /* Fallback to all nodes if page==NULL */ 2324 nodemask = NULL; 2325 } 2326 2327 if (!folio) 2328 folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask); 2329 mpol_cond_put(mpol); 2330 return folio; 2331 } 2332 2333 struct folio *alloc_hugetlb_folio_reserve(struct hstate *h, int preferred_nid, 2334 nodemask_t *nmask, gfp_t gfp_mask) 2335 { 2336 struct folio *folio; 2337 2338 spin_lock_irq(&hugetlb_lock); 2339 if (!h->resv_huge_pages) { 2340 spin_unlock_irq(&hugetlb_lock); 2341 return NULL; 2342 } 2343 2344 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, preferred_nid, 2345 nmask); 2346 if (folio) 2347 h->resv_huge_pages--; 2348 2349 spin_unlock_irq(&hugetlb_lock); 2350 return folio; 2351 } 2352 2353 /* folio migration callback function */ 2354 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid, 2355 nodemask_t *nmask, gfp_t gfp_mask, bool allow_alloc_fallback) 2356 { 2357 spin_lock_irq(&hugetlb_lock); 2358 if (available_huge_pages(h)) { 2359 struct folio *folio; 2360 2361 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, 2362 preferred_nid, nmask); 2363 if (folio) { 2364 spin_unlock_irq(&hugetlb_lock); 2365 return folio; 2366 } 2367 } 2368 spin_unlock_irq(&hugetlb_lock); 2369 2370 /* We cannot fallback to other nodes, as we could break the per-node pool. */ 2371 if (!allow_alloc_fallback) 2372 gfp_mask |= __GFP_THISNODE; 2373 2374 return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask); 2375 } 2376 2377 static nodemask_t *policy_mbind_nodemask(gfp_t gfp) 2378 { 2379 #ifdef CONFIG_NUMA 2380 struct mempolicy *mpol = get_task_policy(current); 2381 2382 /* 2383 * Only enforce MPOL_BIND policy which overlaps with cpuset policy 2384 * (from policy_nodemask) specifically for hugetlb case 2385 */ 2386 if (mpol->mode == MPOL_BIND && 2387 (apply_policy_zone(mpol, gfp_zone(gfp)) && 2388 cpuset_nodemask_valid_mems_allowed(&mpol->nodes))) 2389 return &mpol->nodes; 2390 #endif 2391 return NULL; 2392 } 2393 2394 /* 2395 * Increase the hugetlb pool such that it can accommodate a reservation 2396 * of size 'delta'. 2397 */ 2398 static int gather_surplus_pages(struct hstate *h, long delta) 2399 __must_hold(&hugetlb_lock) 2400 { 2401 LIST_HEAD(surplus_list); 2402 struct folio *folio, *tmp; 2403 int ret; 2404 long i; 2405 long needed, allocated; 2406 bool alloc_ok = true; 2407 nodemask_t *mbind_nodemask, alloc_nodemask; 2408 2409 mbind_nodemask = policy_mbind_nodemask(htlb_alloc_mask(h)); 2410 if (mbind_nodemask) 2411 nodes_and(alloc_nodemask, *mbind_nodemask, cpuset_current_mems_allowed); 2412 else 2413 alloc_nodemask = cpuset_current_mems_allowed; 2414 2415 lockdep_assert_held(&hugetlb_lock); 2416 needed = (h->resv_huge_pages + delta) - h->free_huge_pages; 2417 if (needed <= 0) { 2418 h->resv_huge_pages += delta; 2419 return 0; 2420 } 2421 2422 allocated = 0; 2423 2424 ret = -ENOMEM; 2425 retry: 2426 spin_unlock_irq(&hugetlb_lock); 2427 for (i = 0; i < needed; i++) { 2428 folio = NULL; 2429 2430 /* 2431 * It is okay to use NUMA_NO_NODE because we use numa_mem_id() 2432 * down the road to pick the current node if that is the case. 2433 */ 2434 folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h), 2435 NUMA_NO_NODE, &alloc_nodemask); 2436 if (!folio) { 2437 alloc_ok = false; 2438 break; 2439 } 2440 list_add(&folio->lru, &surplus_list); 2441 cond_resched(); 2442 } 2443 allocated += i; 2444 2445 /* 2446 * After retaking hugetlb_lock, we need to recalculate 'needed' 2447 * because either resv_huge_pages or free_huge_pages may have changed. 2448 */ 2449 spin_lock_irq(&hugetlb_lock); 2450 needed = (h->resv_huge_pages + delta) - 2451 (h->free_huge_pages + allocated); 2452 if (needed > 0) { 2453 if (alloc_ok) 2454 goto retry; 2455 /* 2456 * We were not able to allocate enough pages to 2457 * satisfy the entire reservation so we free what 2458 * we've allocated so far. 2459 */ 2460 goto free; 2461 } 2462 /* 2463 * The surplus_list now contains _at_least_ the number of extra pages 2464 * needed to accommodate the reservation. Add the appropriate number 2465 * of pages to the hugetlb pool and free the extras back to the buddy 2466 * allocator. Commit the entire reservation here to prevent another 2467 * process from stealing the pages as they are added to the pool but 2468 * before they are reserved. 2469 */ 2470 needed += allocated; 2471 h->resv_huge_pages += delta; 2472 ret = 0; 2473 2474 /* Free the needed pages to the hugetlb pool */ 2475 list_for_each_entry_safe(folio, tmp, &surplus_list, lru) { 2476 if ((--needed) < 0) 2477 break; 2478 /* Add the page to the hugetlb allocator */ 2479 enqueue_hugetlb_folio(h, folio); 2480 } 2481 free: 2482 spin_unlock_irq(&hugetlb_lock); 2483 2484 /* 2485 * Free unnecessary surplus pages to the buddy allocator. 2486 * Pages have no ref count, call free_huge_folio directly. 2487 */ 2488 list_for_each_entry_safe(folio, tmp, &surplus_list, lru) 2489 free_huge_folio(folio); 2490 spin_lock_irq(&hugetlb_lock); 2491 2492 return ret; 2493 } 2494 2495 /* 2496 * This routine has two main purposes: 2497 * 1) Decrement the reservation count (resv_huge_pages) by the value passed 2498 * in unused_resv_pages. This corresponds to the prior adjustments made 2499 * to the associated reservation map. 2500 * 2) Free any unused surplus pages that may have been allocated to satisfy 2501 * the reservation. As many as unused_resv_pages may be freed. 2502 */ 2503 static void return_unused_surplus_pages(struct hstate *h, 2504 unsigned long unused_resv_pages) 2505 { 2506 unsigned long nr_pages; 2507 LIST_HEAD(page_list); 2508 2509 lockdep_assert_held(&hugetlb_lock); 2510 /* Uncommit the reservation */ 2511 h->resv_huge_pages -= unused_resv_pages; 2512 2513 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 2514 goto out; 2515 2516 /* 2517 * Part (or even all) of the reservation could have been backed 2518 * by pre-allocated pages. Only free surplus pages. 2519 */ 2520 nr_pages = min(unused_resv_pages, h->surplus_huge_pages); 2521 2522 /* 2523 * We want to release as many surplus pages as possible, spread 2524 * evenly across all nodes with memory. Iterate across these nodes 2525 * until we can no longer free unreserved surplus pages. This occurs 2526 * when the nodes with surplus pages have no free pages. 2527 * remove_pool_hugetlb_folio() will balance the freed pages across the 2528 * on-line nodes with memory and will handle the hstate accounting. 2529 */ 2530 while (nr_pages--) { 2531 struct folio *folio; 2532 2533 folio = remove_pool_hugetlb_folio(h, &node_states[N_MEMORY], 1); 2534 if (!folio) 2535 goto out; 2536 2537 list_add(&folio->lru, &page_list); 2538 } 2539 2540 out: 2541 spin_unlock_irq(&hugetlb_lock); 2542 update_and_free_pages_bulk(h, &page_list); 2543 spin_lock_irq(&hugetlb_lock); 2544 } 2545 2546 2547 /* 2548 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation 2549 * are used by the huge page allocation routines to manage reservations. 2550 * 2551 * vma_needs_reservation is called to determine if the huge page at addr 2552 * within the vma has an associated reservation. If a reservation is 2553 * needed, the value 1 is returned. The caller is then responsible for 2554 * managing the global reservation and subpool usage counts. After 2555 * the huge page has been allocated, vma_commit_reservation is called 2556 * to add the page to the reservation map. If the page allocation fails, 2557 * the reservation must be ended instead of committed. vma_end_reservation 2558 * is called in such cases. 2559 * 2560 * In the normal case, vma_commit_reservation returns the same value 2561 * as the preceding vma_needs_reservation call. The only time this 2562 * is not the case is if a reserve map was changed between calls. It 2563 * is the responsibility of the caller to notice the difference and 2564 * take appropriate action. 2565 * 2566 * vma_add_reservation is used in error paths where a reservation must 2567 * be restored when a newly allocated huge page must be freed. It is 2568 * to be called after calling vma_needs_reservation to determine if a 2569 * reservation exists. 2570 * 2571 * vma_del_reservation is used in error paths where an entry in the reserve 2572 * map was created during huge page allocation and must be removed. It is to 2573 * be called after calling vma_needs_reservation to determine if a reservation 2574 * exists. 2575 */ 2576 enum vma_resv_mode { 2577 VMA_NEEDS_RESV, 2578 VMA_COMMIT_RESV, 2579 VMA_END_RESV, 2580 VMA_ADD_RESV, 2581 VMA_DEL_RESV, 2582 }; 2583 static long __vma_reservation_common(struct hstate *h, 2584 struct vm_area_struct *vma, unsigned long addr, 2585 enum vma_resv_mode mode) 2586 { 2587 struct resv_map *resv; 2588 pgoff_t idx; 2589 long ret; 2590 long dummy_out_regions_needed; 2591 2592 resv = vma_resv_map(vma); 2593 if (!resv) 2594 return 1; 2595 2596 idx = vma_hugecache_offset(h, vma, addr); 2597 switch (mode) { 2598 case VMA_NEEDS_RESV: 2599 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed); 2600 /* We assume that vma_reservation_* routines always operate on 2601 * 1 page, and that adding to resv map a 1 page entry can only 2602 * ever require 1 region. 2603 */ 2604 VM_BUG_ON(dummy_out_regions_needed != 1); 2605 break; 2606 case VMA_COMMIT_RESV: 2607 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2608 /* region_add calls of range 1 should never fail. */ 2609 VM_BUG_ON(ret < 0); 2610 break; 2611 case VMA_END_RESV: 2612 region_abort(resv, idx, idx + 1, 1); 2613 ret = 0; 2614 break; 2615 case VMA_ADD_RESV: 2616 if (vma->vm_flags & VM_MAYSHARE) { 2617 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2618 /* region_add calls of range 1 should never fail. */ 2619 VM_BUG_ON(ret < 0); 2620 } else { 2621 region_abort(resv, idx, idx + 1, 1); 2622 ret = region_del(resv, idx, idx + 1); 2623 } 2624 break; 2625 case VMA_DEL_RESV: 2626 if (vma->vm_flags & VM_MAYSHARE) { 2627 region_abort(resv, idx, idx + 1, 1); 2628 ret = region_del(resv, idx, idx + 1); 2629 } else { 2630 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2631 /* region_add calls of range 1 should never fail. */ 2632 VM_BUG_ON(ret < 0); 2633 } 2634 break; 2635 default: 2636 BUG(); 2637 } 2638 2639 if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV) 2640 return ret; 2641 /* 2642 * We know private mapping must have HPAGE_RESV_OWNER set. 2643 * 2644 * In most cases, reserves always exist for private mappings. 2645 * However, a file associated with mapping could have been 2646 * hole punched or truncated after reserves were consumed. 2647 * As subsequent fault on such a range will not use reserves. 2648 * Subtle - The reserve map for private mappings has the 2649 * opposite meaning than that of shared mappings. If NO 2650 * entry is in the reserve map, it means a reservation exists. 2651 * If an entry exists in the reserve map, it means the 2652 * reservation has already been consumed. As a result, the 2653 * return value of this routine is the opposite of the 2654 * value returned from reserve map manipulation routines above. 2655 */ 2656 if (ret > 0) 2657 return 0; 2658 if (ret == 0) 2659 return 1; 2660 return ret; 2661 } 2662 2663 static long vma_needs_reservation(struct hstate *h, 2664 struct vm_area_struct *vma, unsigned long addr) 2665 { 2666 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV); 2667 } 2668 2669 static long vma_commit_reservation(struct hstate *h, 2670 struct vm_area_struct *vma, unsigned long addr) 2671 { 2672 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV); 2673 } 2674 2675 static void vma_end_reservation(struct hstate *h, 2676 struct vm_area_struct *vma, unsigned long addr) 2677 { 2678 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV); 2679 } 2680 2681 static long vma_add_reservation(struct hstate *h, 2682 struct vm_area_struct *vma, unsigned long addr) 2683 { 2684 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV); 2685 } 2686 2687 static long vma_del_reservation(struct hstate *h, 2688 struct vm_area_struct *vma, unsigned long addr) 2689 { 2690 return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV); 2691 } 2692 2693 /* 2694 * This routine is called to restore reservation information on error paths. 2695 * It should ONLY be called for folios allocated via alloc_hugetlb_folio(), 2696 * and the hugetlb mutex should remain held when calling this routine. 2697 * 2698 * It handles two specific cases: 2699 * 1) A reservation was in place and the folio consumed the reservation. 2700 * hugetlb_restore_reserve is set in the folio. 2701 * 2) No reservation was in place for the page, so hugetlb_restore_reserve is 2702 * not set. However, alloc_hugetlb_folio always updates the reserve map. 2703 * 2704 * In case 1, free_huge_folio later in the error path will increment the 2705 * global reserve count. But, free_huge_folio does not have enough context 2706 * to adjust the reservation map. This case deals primarily with private 2707 * mappings. Adjust the reserve map here to be consistent with global 2708 * reserve count adjustments to be made by free_huge_folio. Make sure the 2709 * reserve map indicates there is a reservation present. 2710 * 2711 * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio. 2712 */ 2713 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma, 2714 unsigned long address, struct folio *folio) 2715 { 2716 long rc = vma_needs_reservation(h, vma, address); 2717 2718 if (folio_test_hugetlb_restore_reserve(folio)) { 2719 if (unlikely(rc < 0)) 2720 /* 2721 * Rare out of memory condition in reserve map 2722 * manipulation. Clear hugetlb_restore_reserve so 2723 * that global reserve count will not be incremented 2724 * by free_huge_folio. This will make it appear 2725 * as though the reservation for this folio was 2726 * consumed. This may prevent the task from 2727 * faulting in the folio at a later time. This 2728 * is better than inconsistent global huge page 2729 * accounting of reserve counts. 2730 */ 2731 folio_clear_hugetlb_restore_reserve(folio); 2732 else if (rc) 2733 (void)vma_add_reservation(h, vma, address); 2734 else 2735 vma_end_reservation(h, vma, address); 2736 } else { 2737 if (!rc) { 2738 /* 2739 * This indicates there is an entry in the reserve map 2740 * not added by alloc_hugetlb_folio. We know it was added 2741 * before the alloc_hugetlb_folio call, otherwise 2742 * hugetlb_restore_reserve would be set on the folio. 2743 * Remove the entry so that a subsequent allocation 2744 * does not consume a reservation. 2745 */ 2746 rc = vma_del_reservation(h, vma, address); 2747 if (rc < 0) 2748 /* 2749 * VERY rare out of memory condition. Since 2750 * we can not delete the entry, set 2751 * hugetlb_restore_reserve so that the reserve 2752 * count will be incremented when the folio 2753 * is freed. This reserve will be consumed 2754 * on a subsequent allocation. 2755 */ 2756 folio_set_hugetlb_restore_reserve(folio); 2757 } else if (rc < 0) { 2758 /* 2759 * Rare out of memory condition from 2760 * vma_needs_reservation call. Memory allocation is 2761 * only attempted if a new entry is needed. Therefore, 2762 * this implies there is not an entry in the 2763 * reserve map. 2764 * 2765 * For shared mappings, no entry in the map indicates 2766 * no reservation. We are done. 2767 */ 2768 if (!(vma->vm_flags & VM_MAYSHARE)) 2769 /* 2770 * For private mappings, no entry indicates 2771 * a reservation is present. Since we can 2772 * not add an entry, set hugetlb_restore_reserve 2773 * on the folio so reserve count will be 2774 * incremented when freed. This reserve will 2775 * be consumed on a subsequent allocation. 2776 */ 2777 folio_set_hugetlb_restore_reserve(folio); 2778 } else 2779 /* 2780 * No reservation present, do nothing 2781 */ 2782 vma_end_reservation(h, vma, address); 2783 } 2784 } 2785 2786 /* 2787 * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve 2788 * the old one 2789 * @old_folio: Old folio to dissolve 2790 * @list: List to isolate the page in case we need to 2791 * Returns 0 on success, otherwise negated error. 2792 */ 2793 static int alloc_and_dissolve_hugetlb_folio(struct folio *old_folio, 2794 struct list_head *list) 2795 { 2796 gfp_t gfp_mask; 2797 struct hstate *h; 2798 int nid = folio_nid(old_folio); 2799 struct folio *new_folio = NULL; 2800 int ret = 0; 2801 2802 retry: 2803 /* 2804 * The old_folio might have been dissolved from under our feet, so make sure 2805 * to carefully check the state under the lock. 2806 */ 2807 spin_lock_irq(&hugetlb_lock); 2808 if (!folio_test_hugetlb(old_folio)) { 2809 /* 2810 * Freed from under us. Drop new_folio too. 2811 */ 2812 goto free_new; 2813 } else if (folio_ref_count(old_folio)) { 2814 bool isolated; 2815 2816 /* 2817 * Someone has grabbed the folio, try to isolate it here. 2818 * Fail with -EBUSY if not possible. 2819 */ 2820 spin_unlock_irq(&hugetlb_lock); 2821 isolated = folio_isolate_hugetlb(old_folio, list); 2822 ret = isolated ? 0 : -EBUSY; 2823 spin_lock_irq(&hugetlb_lock); 2824 goto free_new; 2825 } else if (!folio_test_hugetlb_freed(old_folio)) { 2826 /* 2827 * Folio's refcount is 0 but it has not been enqueued in the 2828 * freelist yet. Race window is small, so we can succeed here if 2829 * we retry. 2830 */ 2831 spin_unlock_irq(&hugetlb_lock); 2832 cond_resched(); 2833 goto retry; 2834 } else { 2835 h = folio_hstate(old_folio); 2836 if (!new_folio) { 2837 spin_unlock_irq(&hugetlb_lock); 2838 gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 2839 new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, 2840 NULL, NULL); 2841 if (!new_folio) 2842 return -ENOMEM; 2843 __prep_new_hugetlb_folio(h, new_folio); 2844 goto retry; 2845 } 2846 2847 /* 2848 * Ok, old_folio is still a genuine free hugepage. Remove it from 2849 * the freelist and decrease the counters. These will be 2850 * incremented again when calling __prep_account_new_huge_page() 2851 * and enqueue_hugetlb_folio() for new_folio. The counters will 2852 * remain stable since this happens under the lock. 2853 */ 2854 remove_hugetlb_folio(h, old_folio, false); 2855 2856 /* 2857 * Ref count on new_folio is already zero as it was dropped 2858 * earlier. It can be directly added to the pool free list. 2859 */ 2860 __prep_account_new_huge_page(h, nid); 2861 enqueue_hugetlb_folio(h, new_folio); 2862 2863 /* 2864 * Folio has been replaced, we can safely free the old one. 2865 */ 2866 spin_unlock_irq(&hugetlb_lock); 2867 update_and_free_hugetlb_folio(h, old_folio, false); 2868 } 2869 2870 return ret; 2871 2872 free_new: 2873 spin_unlock_irq(&hugetlb_lock); 2874 if (new_folio) 2875 update_and_free_hugetlb_folio(h, new_folio, false); 2876 2877 return ret; 2878 } 2879 2880 int isolate_or_dissolve_huge_folio(struct folio *folio, struct list_head *list) 2881 { 2882 int ret = -EBUSY; 2883 2884 /* Not to disrupt normal path by vainly holding hugetlb_lock */ 2885 if (!folio_test_hugetlb(folio)) 2886 return 0; 2887 2888 /* 2889 * Fence off gigantic pages as there is a cyclic dependency between 2890 * alloc_contig_range and them. Return -ENOMEM as this has the effect 2891 * of bailing out right away without further retrying. 2892 */ 2893 if (folio_order(folio) > MAX_PAGE_ORDER) 2894 return -ENOMEM; 2895 2896 if (folio_ref_count(folio) && folio_isolate_hugetlb(folio, list)) 2897 ret = 0; 2898 else if (!folio_ref_count(folio)) 2899 ret = alloc_and_dissolve_hugetlb_folio(folio, list); 2900 2901 return ret; 2902 } 2903 2904 /* 2905 * replace_free_hugepage_folios - Replace free hugepage folios in a given pfn 2906 * range with new folios. 2907 * @start_pfn: start pfn of the given pfn range 2908 * @end_pfn: end pfn of the given pfn range 2909 * Returns 0 on success, otherwise negated error. 2910 */ 2911 int replace_free_hugepage_folios(unsigned long start_pfn, unsigned long end_pfn) 2912 { 2913 struct folio *folio; 2914 int ret = 0; 2915 2916 LIST_HEAD(isolate_list); 2917 2918 while (start_pfn < end_pfn) { 2919 folio = pfn_folio(start_pfn); 2920 2921 /* Not to disrupt normal path by vainly holding hugetlb_lock */ 2922 if (folio_test_hugetlb(folio) && !folio_ref_count(folio)) { 2923 ret = alloc_and_dissolve_hugetlb_folio(folio, &isolate_list); 2924 if (ret) 2925 break; 2926 2927 putback_movable_pages(&isolate_list); 2928 } 2929 start_pfn++; 2930 } 2931 2932 return ret; 2933 } 2934 2935 void wait_for_freed_hugetlb_folios(void) 2936 { 2937 if (llist_empty(&hpage_freelist)) 2938 return; 2939 2940 flush_work(&free_hpage_work); 2941 } 2942 2943 typedef enum { 2944 /* 2945 * For either 0/1: we checked the per-vma resv map, and one resv 2946 * count either can be reused (0), or an extra needed (1). 2947 */ 2948 MAP_CHG_REUSE = 0, 2949 MAP_CHG_NEEDED = 1, 2950 /* 2951 * Cannot use per-vma resv count can be used, hence a new resv 2952 * count is enforced. 2953 * 2954 * NOTE: This is mostly identical to MAP_CHG_NEEDED, except 2955 * that currently vma_needs_reservation() has an unwanted side 2956 * effect to either use end() or commit() to complete the 2957 * transaction. Hence it needs to differenciate from NEEDED. 2958 */ 2959 MAP_CHG_ENFORCED = 2, 2960 } map_chg_state; 2961 2962 /* 2963 * NOTE! "cow_from_owner" represents a very hacky usage only used in CoW 2964 * faults of hugetlb private mappings on top of a non-page-cache folio (in 2965 * which case even if there's a private vma resv map it won't cover such 2966 * allocation). New call sites should (probably) never set it to true!! 2967 * When it's set, the allocation will bypass all vma level reservations. 2968 */ 2969 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma, 2970 unsigned long addr, bool cow_from_owner) 2971 { 2972 struct hugepage_subpool *spool = subpool_vma(vma); 2973 struct hstate *h = hstate_vma(vma); 2974 struct folio *folio; 2975 long retval, gbl_chg, gbl_reserve; 2976 map_chg_state map_chg; 2977 int ret, idx; 2978 struct hugetlb_cgroup *h_cg = NULL; 2979 gfp_t gfp = htlb_alloc_mask(h) | __GFP_RETRY_MAYFAIL; 2980 2981 idx = hstate_index(h); 2982 2983 /* Whether we need a separate per-vma reservation? */ 2984 if (cow_from_owner) { 2985 /* 2986 * Special case! Since it's a CoW on top of a reserved 2987 * page, the private resv map doesn't count. So it cannot 2988 * consume the per-vma resv map even if it's reserved. 2989 */ 2990 map_chg = MAP_CHG_ENFORCED; 2991 } else { 2992 /* 2993 * Examine the region/reserve map to determine if the process 2994 * has a reservation for the page to be allocated. A return 2995 * code of zero indicates a reservation exists (no change). 2996 */ 2997 retval = vma_needs_reservation(h, vma, addr); 2998 if (retval < 0) 2999 return ERR_PTR(-ENOMEM); 3000 map_chg = retval ? MAP_CHG_NEEDED : MAP_CHG_REUSE; 3001 } 3002 3003 /* 3004 * Whether we need a separate global reservation? 3005 * 3006 * Processes that did not create the mapping will have no 3007 * reserves as indicated by the region/reserve map. Check 3008 * that the allocation will not exceed the subpool limit. 3009 * Or if it can get one from the pool reservation directly. 3010 */ 3011 if (map_chg) { 3012 gbl_chg = hugepage_subpool_get_pages(spool, 1); 3013 if (gbl_chg < 0) 3014 goto out_end_reservation; 3015 } else { 3016 /* 3017 * If we have the vma reservation ready, no need for extra 3018 * global reservation. 3019 */ 3020 gbl_chg = 0; 3021 } 3022 3023 /* 3024 * If this allocation is not consuming a per-vma reservation, 3025 * charge the hugetlb cgroup now. 3026 */ 3027 if (map_chg) { 3028 ret = hugetlb_cgroup_charge_cgroup_rsvd( 3029 idx, pages_per_huge_page(h), &h_cg); 3030 if (ret) 3031 goto out_subpool_put; 3032 } 3033 3034 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg); 3035 if (ret) 3036 goto out_uncharge_cgroup_reservation; 3037 3038 spin_lock_irq(&hugetlb_lock); 3039 /* 3040 * glb_chg is passed to indicate whether or not a page must be taken 3041 * from the global free pool (global change). gbl_chg == 0 indicates 3042 * a reservation exists for the allocation. 3043 */ 3044 folio = dequeue_hugetlb_folio_vma(h, vma, addr, gbl_chg); 3045 if (!folio) { 3046 spin_unlock_irq(&hugetlb_lock); 3047 folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr); 3048 if (!folio) 3049 goto out_uncharge_cgroup; 3050 spin_lock_irq(&hugetlb_lock); 3051 list_add(&folio->lru, &h->hugepage_activelist); 3052 folio_ref_unfreeze(folio, 1); 3053 /* Fall through */ 3054 } 3055 3056 /* 3057 * Either dequeued or buddy-allocated folio needs to add special 3058 * mark to the folio when it consumes a global reservation. 3059 */ 3060 if (!gbl_chg) { 3061 folio_set_hugetlb_restore_reserve(folio); 3062 h->resv_huge_pages--; 3063 } 3064 3065 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio); 3066 /* If allocation is not consuming a reservation, also store the 3067 * hugetlb_cgroup pointer on the page. 3068 */ 3069 if (map_chg) { 3070 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h), 3071 h_cg, folio); 3072 } 3073 3074 spin_unlock_irq(&hugetlb_lock); 3075 3076 hugetlb_set_folio_subpool(folio, spool); 3077 3078 if (map_chg != MAP_CHG_ENFORCED) { 3079 /* commit() is only needed if the map_chg is not enforced */ 3080 retval = vma_commit_reservation(h, vma, addr); 3081 /* 3082 * Check for possible race conditions. When it happens.. 3083 * The page was added to the reservation map between 3084 * vma_needs_reservation and vma_commit_reservation. 3085 * This indicates a race with hugetlb_reserve_pages. 3086 * Adjust for the subpool count incremented above AND 3087 * in hugetlb_reserve_pages for the same page. Also, 3088 * the reservation count added in hugetlb_reserve_pages 3089 * no longer applies. 3090 */ 3091 if (unlikely(map_chg == MAP_CHG_NEEDED && retval == 0)) { 3092 long rsv_adjust; 3093 3094 rsv_adjust = hugepage_subpool_put_pages(spool, 1); 3095 hugetlb_acct_memory(h, -rsv_adjust); 3096 if (map_chg) { 3097 spin_lock_irq(&hugetlb_lock); 3098 hugetlb_cgroup_uncharge_folio_rsvd( 3099 hstate_index(h), pages_per_huge_page(h), 3100 folio); 3101 spin_unlock_irq(&hugetlb_lock); 3102 } 3103 } 3104 } 3105 3106 ret = mem_cgroup_charge_hugetlb(folio, gfp); 3107 /* 3108 * Unconditionally increment NR_HUGETLB here. If it turns out that 3109 * mem_cgroup_charge_hugetlb failed, then immediately free the page and 3110 * decrement NR_HUGETLB. 3111 */ 3112 lruvec_stat_mod_folio(folio, NR_HUGETLB, pages_per_huge_page(h)); 3113 3114 if (ret == -ENOMEM) { 3115 free_huge_folio(folio); 3116 return ERR_PTR(-ENOMEM); 3117 } 3118 3119 return folio; 3120 3121 out_uncharge_cgroup: 3122 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg); 3123 out_uncharge_cgroup_reservation: 3124 if (map_chg) 3125 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h), 3126 h_cg); 3127 out_subpool_put: 3128 /* 3129 * put page to subpool iff the quota of subpool's rsv_hpages is used 3130 * during hugepage_subpool_get_pages. 3131 */ 3132 if (map_chg && !gbl_chg) { 3133 gbl_reserve = hugepage_subpool_put_pages(spool, 1); 3134 hugetlb_acct_memory(h, -gbl_reserve); 3135 } 3136 3137 3138 out_end_reservation: 3139 if (map_chg != MAP_CHG_ENFORCED) 3140 vma_end_reservation(h, vma, addr); 3141 return ERR_PTR(-ENOSPC); 3142 } 3143 3144 static __init void *alloc_bootmem(struct hstate *h, int nid, bool node_exact) 3145 { 3146 struct huge_bootmem_page *m; 3147 int listnode = nid; 3148 3149 if (hugetlb_early_cma(h)) 3150 m = hugetlb_cma_alloc_bootmem(h, &listnode, node_exact); 3151 else { 3152 if (node_exact) 3153 m = memblock_alloc_exact_nid_raw(huge_page_size(h), 3154 huge_page_size(h), 0, 3155 MEMBLOCK_ALLOC_ACCESSIBLE, nid); 3156 else { 3157 m = memblock_alloc_try_nid_raw(huge_page_size(h), 3158 huge_page_size(h), 0, 3159 MEMBLOCK_ALLOC_ACCESSIBLE, nid); 3160 /* 3161 * For pre-HVO to work correctly, pages need to be on 3162 * the list for the node they were actually allocated 3163 * from. That node may be different in the case of 3164 * fallback by memblock_alloc_try_nid_raw. So, 3165 * extract the actual node first. 3166 */ 3167 if (m) 3168 listnode = early_pfn_to_nid(PHYS_PFN(virt_to_phys(m))); 3169 } 3170 3171 if (m) { 3172 m->flags = 0; 3173 m->cma = NULL; 3174 } 3175 } 3176 3177 if (m) { 3178 /* 3179 * Use the beginning of the huge page to store the 3180 * huge_bootmem_page struct (until gather_bootmem 3181 * puts them into the mem_map). 3182 * 3183 * Put them into a private list first because mem_map 3184 * is not up yet. 3185 */ 3186 INIT_LIST_HEAD(&m->list); 3187 list_add(&m->list, &huge_boot_pages[listnode]); 3188 m->hstate = h; 3189 } 3190 3191 return m; 3192 } 3193 3194 int alloc_bootmem_huge_page(struct hstate *h, int nid) 3195 __attribute__ ((weak, alias("__alloc_bootmem_huge_page"))); 3196 int __alloc_bootmem_huge_page(struct hstate *h, int nid) 3197 { 3198 struct huge_bootmem_page *m = NULL; /* initialize for clang */ 3199 int nr_nodes, node = nid; 3200 3201 /* do node specific alloc */ 3202 if (nid != NUMA_NO_NODE) { 3203 m = alloc_bootmem(h, node, true); 3204 if (!m) 3205 return 0; 3206 goto found; 3207 } 3208 3209 /* allocate from next node when distributing huge pages */ 3210 for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, 3211 &hugetlb_bootmem_nodes) { 3212 m = alloc_bootmem(h, node, false); 3213 if (!m) 3214 return 0; 3215 goto found; 3216 } 3217 3218 found: 3219 3220 /* 3221 * Only initialize the head struct page in memmap_init_reserved_pages, 3222 * rest of the struct pages will be initialized by the HugeTLB 3223 * subsystem itself. 3224 * The head struct page is used to get folio information by the HugeTLB 3225 * subsystem like zone id and node id. 3226 */ 3227 memblock_reserved_mark_noinit(virt_to_phys((void *)m + PAGE_SIZE), 3228 huge_page_size(h) - PAGE_SIZE); 3229 3230 return 1; 3231 } 3232 3233 /* Initialize [start_page:end_page_number] tail struct pages of a hugepage */ 3234 static void __init hugetlb_folio_init_tail_vmemmap(struct folio *folio, 3235 unsigned long start_page_number, 3236 unsigned long end_page_number) 3237 { 3238 enum zone_type zone = zone_idx(folio_zone(folio)); 3239 int nid = folio_nid(folio); 3240 unsigned long head_pfn = folio_pfn(folio); 3241 unsigned long pfn, end_pfn = head_pfn + end_page_number; 3242 int ret; 3243 3244 for (pfn = head_pfn + start_page_number; pfn < end_pfn; pfn++) { 3245 struct page *page = pfn_to_page(pfn); 3246 3247 __init_single_page(page, pfn, zone, nid); 3248 prep_compound_tail((struct page *)folio, pfn - head_pfn); 3249 ret = page_ref_freeze(page, 1); 3250 VM_BUG_ON(!ret); 3251 } 3252 } 3253 3254 static void __init hugetlb_folio_init_vmemmap(struct folio *folio, 3255 struct hstate *h, 3256 unsigned long nr_pages) 3257 { 3258 int ret; 3259 3260 /* Prepare folio head */ 3261 __folio_clear_reserved(folio); 3262 __folio_set_head(folio); 3263 ret = folio_ref_freeze(folio, 1); 3264 VM_BUG_ON(!ret); 3265 /* Initialize the necessary tail struct pages */ 3266 hugetlb_folio_init_tail_vmemmap(folio, 1, nr_pages); 3267 prep_compound_head((struct page *)folio, huge_page_order(h)); 3268 } 3269 3270 static bool __init hugetlb_bootmem_page_prehvo(struct huge_bootmem_page *m) 3271 { 3272 return m->flags & HUGE_BOOTMEM_HVO; 3273 } 3274 3275 static bool __init hugetlb_bootmem_page_earlycma(struct huge_bootmem_page *m) 3276 { 3277 return m->flags & HUGE_BOOTMEM_CMA; 3278 } 3279 3280 /* 3281 * memblock-allocated pageblocks might not have the migrate type set 3282 * if marked with the 'noinit' flag. Set it to the default (MIGRATE_MOVABLE) 3283 * here, or MIGRATE_CMA if this was a page allocated through an early CMA 3284 * reservation. 3285 * 3286 * In case of vmemmap optimized folios, the tail vmemmap pages are mapped 3287 * read-only, but that's ok - for sparse vmemmap this does not write to 3288 * the page structure. 3289 */ 3290 static void __init hugetlb_bootmem_init_migratetype(struct folio *folio, 3291 struct hstate *h) 3292 { 3293 unsigned long nr_pages = pages_per_huge_page(h), i; 3294 3295 WARN_ON_ONCE(!pageblock_aligned(folio_pfn(folio))); 3296 3297 for (i = 0; i < nr_pages; i += pageblock_nr_pages) { 3298 if (folio_test_hugetlb_cma(folio)) 3299 init_cma_pageblock(folio_page(folio, i)); 3300 else 3301 init_pageblock_migratetype(folio_page(folio, i), 3302 MIGRATE_MOVABLE, false); 3303 } 3304 } 3305 3306 static void __init prep_and_add_bootmem_folios(struct hstate *h, 3307 struct list_head *folio_list) 3308 { 3309 unsigned long flags; 3310 struct folio *folio, *tmp_f; 3311 3312 /* Send list for bulk vmemmap optimization processing */ 3313 hugetlb_vmemmap_optimize_bootmem_folios(h, folio_list); 3314 3315 list_for_each_entry_safe(folio, tmp_f, folio_list, lru) { 3316 if (!folio_test_hugetlb_vmemmap_optimized(folio)) { 3317 /* 3318 * If HVO fails, initialize all tail struct pages 3319 * We do not worry about potential long lock hold 3320 * time as this is early in boot and there should 3321 * be no contention. 3322 */ 3323 hugetlb_folio_init_tail_vmemmap(folio, 3324 HUGETLB_VMEMMAP_RESERVE_PAGES, 3325 pages_per_huge_page(h)); 3326 } 3327 hugetlb_bootmem_init_migratetype(folio, h); 3328 /* Subdivide locks to achieve better parallel performance */ 3329 spin_lock_irqsave(&hugetlb_lock, flags); 3330 __prep_account_new_huge_page(h, folio_nid(folio)); 3331 enqueue_hugetlb_folio(h, folio); 3332 spin_unlock_irqrestore(&hugetlb_lock, flags); 3333 } 3334 } 3335 3336 bool __init hugetlb_bootmem_page_zones_valid(int nid, 3337 struct huge_bootmem_page *m) 3338 { 3339 unsigned long start_pfn; 3340 bool valid; 3341 3342 if (m->flags & HUGE_BOOTMEM_ZONES_VALID) { 3343 /* 3344 * Already validated, skip check. 3345 */ 3346 return true; 3347 } 3348 3349 if (hugetlb_bootmem_page_earlycma(m)) { 3350 valid = cma_validate_zones(m->cma); 3351 goto out; 3352 } 3353 3354 start_pfn = virt_to_phys(m) >> PAGE_SHIFT; 3355 3356 valid = !pfn_range_intersects_zones(nid, start_pfn, 3357 pages_per_huge_page(m->hstate)); 3358 out: 3359 if (!valid) 3360 hstate_boot_nrinvalid[hstate_index(m->hstate)]++; 3361 3362 return valid; 3363 } 3364 3365 /* 3366 * Free a bootmem page that was found to be invalid (intersecting with 3367 * multiple zones). 3368 * 3369 * Since it intersects with multiple zones, we can't just do a free 3370 * operation on all pages at once, but instead have to walk all 3371 * pages, freeing them one by one. 3372 */ 3373 static void __init hugetlb_bootmem_free_invalid_page(int nid, struct page *page, 3374 struct hstate *h) 3375 { 3376 unsigned long npages = pages_per_huge_page(h); 3377 unsigned long pfn; 3378 3379 while (npages--) { 3380 pfn = page_to_pfn(page); 3381 __init_page_from_nid(pfn, nid); 3382 free_reserved_page(page); 3383 page++; 3384 } 3385 } 3386 3387 /* 3388 * Put bootmem huge pages into the standard lists after mem_map is up. 3389 * Note: This only applies to gigantic (order > MAX_PAGE_ORDER) pages. 3390 */ 3391 static void __init gather_bootmem_prealloc_node(unsigned long nid) 3392 { 3393 LIST_HEAD(folio_list); 3394 struct huge_bootmem_page *m, *tm; 3395 struct hstate *h = NULL, *prev_h = NULL; 3396 3397 list_for_each_entry_safe(m, tm, &huge_boot_pages[nid], list) { 3398 struct page *page = virt_to_page(m); 3399 struct folio *folio = (void *)page; 3400 3401 h = m->hstate; 3402 if (!hugetlb_bootmem_page_zones_valid(nid, m)) { 3403 /* 3404 * Can't use this page. Initialize the 3405 * page structures if that hasn't already 3406 * been done, and give them to the page 3407 * allocator. 3408 */ 3409 hugetlb_bootmem_free_invalid_page(nid, page, h); 3410 continue; 3411 } 3412 3413 /* 3414 * It is possible to have multiple huge page sizes (hstates) 3415 * in this list. If so, process each size separately. 3416 */ 3417 if (h != prev_h && prev_h != NULL) 3418 prep_and_add_bootmem_folios(prev_h, &folio_list); 3419 prev_h = h; 3420 3421 VM_BUG_ON(!hstate_is_gigantic(h)); 3422 WARN_ON(folio_ref_count(folio) != 1); 3423 3424 hugetlb_folio_init_vmemmap(folio, h, 3425 HUGETLB_VMEMMAP_RESERVE_PAGES); 3426 init_new_hugetlb_folio(h, folio); 3427 3428 if (hugetlb_bootmem_page_prehvo(m)) 3429 /* 3430 * If pre-HVO was done, just set the 3431 * flag, the HVO code will then skip 3432 * this folio. 3433 */ 3434 folio_set_hugetlb_vmemmap_optimized(folio); 3435 3436 if (hugetlb_bootmem_page_earlycma(m)) 3437 folio_set_hugetlb_cma(folio); 3438 3439 list_add(&folio->lru, &folio_list); 3440 3441 /* 3442 * We need to restore the 'stolen' pages to totalram_pages 3443 * in order to fix confusing memory reports from free(1) and 3444 * other side-effects, like CommitLimit going negative. 3445 * 3446 * For CMA pages, this is done in init_cma_pageblock 3447 * (via hugetlb_bootmem_init_migratetype), so skip it here. 3448 */ 3449 if (!folio_test_hugetlb_cma(folio)) 3450 adjust_managed_page_count(page, pages_per_huge_page(h)); 3451 cond_resched(); 3452 } 3453 3454 prep_and_add_bootmem_folios(h, &folio_list); 3455 } 3456 3457 static void __init gather_bootmem_prealloc_parallel(unsigned long start, 3458 unsigned long end, void *arg) 3459 { 3460 int nid; 3461 3462 for (nid = start; nid < end; nid++) 3463 gather_bootmem_prealloc_node(nid); 3464 } 3465 3466 static void __init gather_bootmem_prealloc(void) 3467 { 3468 struct padata_mt_job job = { 3469 .thread_fn = gather_bootmem_prealloc_parallel, 3470 .fn_arg = NULL, 3471 .start = 0, 3472 .size = nr_node_ids, 3473 .align = 1, 3474 .min_chunk = 1, 3475 .max_threads = num_node_state(N_MEMORY), 3476 .numa_aware = true, 3477 }; 3478 3479 padata_do_multithreaded(&job); 3480 } 3481 3482 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid) 3483 { 3484 unsigned long i; 3485 char buf[32]; 3486 LIST_HEAD(folio_list); 3487 3488 for (i = 0; i < h->max_huge_pages_node[nid]; ++i) { 3489 if (hstate_is_gigantic(h)) { 3490 if (!alloc_bootmem_huge_page(h, nid)) 3491 break; 3492 } else { 3493 struct folio *folio; 3494 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 3495 3496 folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, nid, 3497 &node_states[N_MEMORY], NULL); 3498 if (!folio) 3499 break; 3500 list_add(&folio->lru, &folio_list); 3501 } 3502 cond_resched(); 3503 } 3504 3505 if (!list_empty(&folio_list)) 3506 prep_and_add_allocated_folios(h, &folio_list); 3507 3508 if (i == h->max_huge_pages_node[nid]) 3509 return; 3510 3511 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3512 pr_warn("HugeTLB: allocating %u of page size %s failed node%d. Only allocated %lu hugepages.\n", 3513 h->max_huge_pages_node[nid], buf, nid, i); 3514 h->max_huge_pages -= (h->max_huge_pages_node[nid] - i); 3515 h->max_huge_pages_node[nid] = i; 3516 } 3517 3518 static bool __init hugetlb_hstate_alloc_pages_specific_nodes(struct hstate *h) 3519 { 3520 int i; 3521 bool node_specific_alloc = false; 3522 3523 for_each_online_node(i) { 3524 if (h->max_huge_pages_node[i] > 0) { 3525 hugetlb_hstate_alloc_pages_onenode(h, i); 3526 node_specific_alloc = true; 3527 } 3528 } 3529 3530 return node_specific_alloc; 3531 } 3532 3533 static void __init hugetlb_hstate_alloc_pages_errcheck(unsigned long allocated, struct hstate *h) 3534 { 3535 if (allocated < h->max_huge_pages) { 3536 char buf[32]; 3537 3538 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3539 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n", 3540 h->max_huge_pages, buf, allocated); 3541 h->max_huge_pages = allocated; 3542 } 3543 } 3544 3545 static void __init hugetlb_pages_alloc_boot_node(unsigned long start, unsigned long end, void *arg) 3546 { 3547 struct hstate *h = (struct hstate *)arg; 3548 int i, num = end - start; 3549 nodemask_t node_alloc_noretry; 3550 LIST_HEAD(folio_list); 3551 int next_node = first_online_node; 3552 3553 /* Bit mask controlling how hard we retry per-node allocations.*/ 3554 nodes_clear(node_alloc_noretry); 3555 3556 for (i = 0; i < num; ++i) { 3557 struct folio *folio = alloc_pool_huge_folio(h, &node_states[N_MEMORY], 3558 &node_alloc_noretry, &next_node); 3559 if (!folio) 3560 break; 3561 3562 list_move(&folio->lru, &folio_list); 3563 cond_resched(); 3564 } 3565 3566 prep_and_add_allocated_folios(h, &folio_list); 3567 } 3568 3569 static unsigned long __init hugetlb_gigantic_pages_alloc_boot(struct hstate *h) 3570 { 3571 unsigned long i; 3572 3573 for (i = 0; i < h->max_huge_pages; ++i) { 3574 if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE)) 3575 break; 3576 cond_resched(); 3577 } 3578 3579 return i; 3580 } 3581 3582 static unsigned long __init hugetlb_pages_alloc_boot(struct hstate *h) 3583 { 3584 struct padata_mt_job job = { 3585 .fn_arg = h, 3586 .align = 1, 3587 .numa_aware = true 3588 }; 3589 3590 unsigned long jiffies_start; 3591 unsigned long jiffies_end; 3592 3593 job.thread_fn = hugetlb_pages_alloc_boot_node; 3594 job.start = 0; 3595 job.size = h->max_huge_pages; 3596 3597 /* 3598 * job.max_threads is 25% of the available cpu threads by default. 3599 * 3600 * On large servers with terabytes of memory, huge page allocation 3601 * can consume a considerably amount of time. 3602 * 3603 * Tests below show how long it takes to allocate 1 TiB of memory with 2MiB huge pages. 3604 * 2MiB huge pages. Using more threads can significantly improve allocation time. 3605 * 3606 * +-----------------------+-------+-------+-------+-------+-------+ 3607 * | threads | 8 | 16 | 32 | 64 | 128 | 3608 * +-----------------------+-------+-------+-------+-------+-------+ 3609 * | skylake 144 cpus | 44s | 22s | 16s | 19s | 20s | 3610 * | cascade lake 192 cpus | 39s | 20s | 11s | 10s | 9s | 3611 * +-----------------------+-------+-------+-------+-------+-------+ 3612 */ 3613 if (hugepage_allocation_threads == 0) { 3614 hugepage_allocation_threads = num_online_cpus() / 4; 3615 hugepage_allocation_threads = max(hugepage_allocation_threads, 1); 3616 } 3617 3618 job.max_threads = hugepage_allocation_threads; 3619 job.min_chunk = h->max_huge_pages / hugepage_allocation_threads; 3620 3621 jiffies_start = jiffies; 3622 padata_do_multithreaded(&job); 3623 jiffies_end = jiffies; 3624 3625 pr_info("HugeTLB: allocation took %dms with hugepage_allocation_threads=%ld\n", 3626 jiffies_to_msecs(jiffies_end - jiffies_start), 3627 hugepage_allocation_threads); 3628 3629 return h->nr_huge_pages; 3630 } 3631 3632 /* 3633 * NOTE: this routine is called in different contexts for gigantic and 3634 * non-gigantic pages. 3635 * - For gigantic pages, this is called early in the boot process and 3636 * pages are allocated from memblock allocated or something similar. 3637 * Gigantic pages are actually added to pools later with the routine 3638 * gather_bootmem_prealloc. 3639 * - For non-gigantic pages, this is called later in the boot process after 3640 * all of mm is up and functional. Pages are allocated from buddy and 3641 * then added to hugetlb pools. 3642 */ 3643 static void __init hugetlb_hstate_alloc_pages(struct hstate *h) 3644 { 3645 unsigned long allocated; 3646 3647 /* 3648 * Skip gigantic hugepages allocation if early CMA 3649 * reservations are not available. 3650 */ 3651 if (hstate_is_gigantic(h) && hugetlb_cma_total_size() && 3652 !hugetlb_early_cma(h)) { 3653 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n"); 3654 return; 3655 } 3656 3657 /* do node specific alloc */ 3658 if (hugetlb_hstate_alloc_pages_specific_nodes(h)) 3659 return; 3660 3661 /* below will do all node balanced alloc */ 3662 if (hstate_is_gigantic(h)) 3663 allocated = hugetlb_gigantic_pages_alloc_boot(h); 3664 else 3665 allocated = hugetlb_pages_alloc_boot(h); 3666 3667 hugetlb_hstate_alloc_pages_errcheck(allocated, h); 3668 } 3669 3670 static void __init hugetlb_init_hstates(void) 3671 { 3672 struct hstate *h, *h2; 3673 3674 for_each_hstate(h) { 3675 /* 3676 * Always reset to first_memory_node here, even if 3677 * next_nid_to_alloc was set before - we can't 3678 * reference hugetlb_bootmem_nodes after init, and 3679 * first_memory_node is right for all further allocations. 3680 */ 3681 h->next_nid_to_alloc = first_memory_node; 3682 h->next_nid_to_free = first_memory_node; 3683 3684 /* oversize hugepages were init'ed in early boot */ 3685 if (!hstate_is_gigantic(h)) 3686 hugetlb_hstate_alloc_pages(h); 3687 3688 /* 3689 * Set demote order for each hstate. Note that 3690 * h->demote_order is initially 0. 3691 * - We can not demote gigantic pages if runtime freeing 3692 * is not supported, so skip this. 3693 * - If CMA allocation is possible, we can not demote 3694 * HUGETLB_PAGE_ORDER or smaller size pages. 3695 */ 3696 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 3697 continue; 3698 if (hugetlb_cma_total_size() && h->order <= HUGETLB_PAGE_ORDER) 3699 continue; 3700 for_each_hstate(h2) { 3701 if (h2 == h) 3702 continue; 3703 if (h2->order < h->order && 3704 h2->order > h->demote_order) 3705 h->demote_order = h2->order; 3706 } 3707 } 3708 } 3709 3710 static void __init report_hugepages(void) 3711 { 3712 struct hstate *h; 3713 unsigned long nrinvalid; 3714 3715 for_each_hstate(h) { 3716 char buf[32]; 3717 3718 nrinvalid = hstate_boot_nrinvalid[hstate_index(h)]; 3719 h->max_huge_pages -= nrinvalid; 3720 3721 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3722 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n", 3723 buf, h->nr_huge_pages); 3724 if (nrinvalid) 3725 pr_info("HugeTLB: %s page size: %lu invalid page%s discarded\n", 3726 buf, nrinvalid, str_plural(nrinvalid)); 3727 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n", 3728 hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf); 3729 } 3730 } 3731 3732 #ifdef CONFIG_HIGHMEM 3733 static void try_to_free_low(struct hstate *h, unsigned long count, 3734 nodemask_t *nodes_allowed) 3735 { 3736 int i; 3737 LIST_HEAD(page_list); 3738 3739 lockdep_assert_held(&hugetlb_lock); 3740 if (hstate_is_gigantic(h)) 3741 return; 3742 3743 /* 3744 * Collect pages to be freed on a list, and free after dropping lock 3745 */ 3746 for_each_node_mask(i, *nodes_allowed) { 3747 struct folio *folio, *next; 3748 struct list_head *freel = &h->hugepage_freelists[i]; 3749 list_for_each_entry_safe(folio, next, freel, lru) { 3750 if (count >= h->nr_huge_pages) 3751 goto out; 3752 if (folio_test_highmem(folio)) 3753 continue; 3754 remove_hugetlb_folio(h, folio, false); 3755 list_add(&folio->lru, &page_list); 3756 } 3757 } 3758 3759 out: 3760 spin_unlock_irq(&hugetlb_lock); 3761 update_and_free_pages_bulk(h, &page_list); 3762 spin_lock_irq(&hugetlb_lock); 3763 } 3764 #else 3765 static inline void try_to_free_low(struct hstate *h, unsigned long count, 3766 nodemask_t *nodes_allowed) 3767 { 3768 } 3769 #endif 3770 3771 /* 3772 * Increment or decrement surplus_huge_pages. Keep node-specific counters 3773 * balanced by operating on them in a round-robin fashion. 3774 * Returns 1 if an adjustment was made. 3775 */ 3776 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed, 3777 int delta) 3778 { 3779 int nr_nodes, node; 3780 3781 lockdep_assert_held(&hugetlb_lock); 3782 VM_BUG_ON(delta != -1 && delta != 1); 3783 3784 if (delta < 0) { 3785 for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, nodes_allowed) { 3786 if (h->surplus_huge_pages_node[node]) 3787 goto found; 3788 } 3789 } else { 3790 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 3791 if (h->surplus_huge_pages_node[node] < 3792 h->nr_huge_pages_node[node]) 3793 goto found; 3794 } 3795 } 3796 return 0; 3797 3798 found: 3799 h->surplus_huge_pages += delta; 3800 h->surplus_huge_pages_node[node] += delta; 3801 return 1; 3802 } 3803 3804 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) 3805 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid, 3806 nodemask_t *nodes_allowed) 3807 { 3808 unsigned long persistent_free_count; 3809 unsigned long min_count; 3810 unsigned long allocated; 3811 struct folio *folio; 3812 LIST_HEAD(page_list); 3813 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL); 3814 3815 /* 3816 * Bit mask controlling how hard we retry per-node allocations. 3817 * If we can not allocate the bit mask, do not attempt to allocate 3818 * the requested huge pages. 3819 */ 3820 if (node_alloc_noretry) 3821 nodes_clear(*node_alloc_noretry); 3822 else 3823 return -ENOMEM; 3824 3825 /* 3826 * resize_lock mutex prevents concurrent adjustments to number of 3827 * pages in hstate via the proc/sysfs interfaces. 3828 */ 3829 mutex_lock(&h->resize_lock); 3830 flush_free_hpage_work(h); 3831 spin_lock_irq(&hugetlb_lock); 3832 3833 /* 3834 * Check for a node specific request. 3835 * Changing node specific huge page count may require a corresponding 3836 * change to the global count. In any case, the passed node mask 3837 * (nodes_allowed) will restrict alloc/free to the specified node. 3838 */ 3839 if (nid != NUMA_NO_NODE) { 3840 unsigned long old_count = count; 3841 3842 count += persistent_huge_pages(h) - 3843 (h->nr_huge_pages_node[nid] - 3844 h->surplus_huge_pages_node[nid]); 3845 /* 3846 * User may have specified a large count value which caused the 3847 * above calculation to overflow. In this case, they wanted 3848 * to allocate as many huge pages as possible. Set count to 3849 * largest possible value to align with their intention. 3850 */ 3851 if (count < old_count) 3852 count = ULONG_MAX; 3853 } 3854 3855 /* 3856 * Gigantic pages runtime allocation depend on the capability for large 3857 * page range allocation. 3858 * If the system does not provide this feature, return an error when 3859 * the user tries to allocate gigantic pages but let the user free the 3860 * boottime allocated gigantic pages. 3861 */ 3862 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) { 3863 if (count > persistent_huge_pages(h)) { 3864 spin_unlock_irq(&hugetlb_lock); 3865 mutex_unlock(&h->resize_lock); 3866 NODEMASK_FREE(node_alloc_noretry); 3867 return -EINVAL; 3868 } 3869 /* Fall through to decrease pool */ 3870 } 3871 3872 /* 3873 * Increase the pool size 3874 * First take pages out of surplus state. Then make up the 3875 * remaining difference by allocating fresh huge pages. 3876 * 3877 * We might race with alloc_surplus_hugetlb_folio() here and be unable 3878 * to convert a surplus huge page to a normal huge page. That is 3879 * not critical, though, it just means the overall size of the 3880 * pool might be one hugepage larger than it needs to be, but 3881 * within all the constraints specified by the sysctls. 3882 */ 3883 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { 3884 if (!adjust_pool_surplus(h, nodes_allowed, -1)) 3885 break; 3886 } 3887 3888 allocated = 0; 3889 while (count > (persistent_huge_pages(h) + allocated)) { 3890 /* 3891 * If this allocation races such that we no longer need the 3892 * page, free_huge_folio will handle it by freeing the page 3893 * and reducing the surplus. 3894 */ 3895 spin_unlock_irq(&hugetlb_lock); 3896 3897 /* yield cpu to avoid soft lockup */ 3898 cond_resched(); 3899 3900 folio = alloc_pool_huge_folio(h, nodes_allowed, 3901 node_alloc_noretry, 3902 &h->next_nid_to_alloc); 3903 if (!folio) { 3904 prep_and_add_allocated_folios(h, &page_list); 3905 spin_lock_irq(&hugetlb_lock); 3906 goto out; 3907 } 3908 3909 list_add(&folio->lru, &page_list); 3910 allocated++; 3911 3912 /* Bail for signals. Probably ctrl-c from user */ 3913 if (signal_pending(current)) { 3914 prep_and_add_allocated_folios(h, &page_list); 3915 spin_lock_irq(&hugetlb_lock); 3916 goto out; 3917 } 3918 3919 spin_lock_irq(&hugetlb_lock); 3920 } 3921 3922 /* Add allocated pages to the pool */ 3923 if (!list_empty(&page_list)) { 3924 spin_unlock_irq(&hugetlb_lock); 3925 prep_and_add_allocated_folios(h, &page_list); 3926 spin_lock_irq(&hugetlb_lock); 3927 } 3928 3929 /* 3930 * Decrease the pool size 3931 * First return free pages to the buddy allocator (being careful 3932 * to keep enough around to satisfy reservations). Then place 3933 * pages into surplus state as needed so the pool will shrink 3934 * to the desired size as pages become free. 3935 * 3936 * By placing pages into the surplus state independent of the 3937 * overcommit value, we are allowing the surplus pool size to 3938 * exceed overcommit. There are few sane options here. Since 3939 * alloc_surplus_hugetlb_folio() is checking the global counter, 3940 * though, we'll note that we're not allowed to exceed surplus 3941 * and won't grow the pool anywhere else. Not until one of the 3942 * sysctls are changed, or the surplus pages go out of use. 3943 * 3944 * min_count is the expected number of persistent pages, we 3945 * shouldn't calculate min_count by using 3946 * resv_huge_pages + persistent_huge_pages() - free_huge_pages, 3947 * because there may exist free surplus huge pages, and this will 3948 * lead to subtracting twice. Free surplus huge pages come from HVO 3949 * failing to restore vmemmap, see comments in the callers of 3950 * hugetlb_vmemmap_restore_folio(). Thus, we should calculate 3951 * persistent free count first. 3952 */ 3953 persistent_free_count = h->free_huge_pages; 3954 if (h->free_huge_pages > persistent_huge_pages(h)) { 3955 if (h->free_huge_pages > h->surplus_huge_pages) 3956 persistent_free_count -= h->surplus_huge_pages; 3957 else 3958 persistent_free_count = 0; 3959 } 3960 min_count = h->resv_huge_pages + persistent_huge_pages(h) - persistent_free_count; 3961 min_count = max(count, min_count); 3962 try_to_free_low(h, min_count, nodes_allowed); 3963 3964 /* 3965 * Collect pages to be removed on list without dropping lock 3966 */ 3967 while (min_count < persistent_huge_pages(h)) { 3968 folio = remove_pool_hugetlb_folio(h, nodes_allowed, 0); 3969 if (!folio) 3970 break; 3971 3972 list_add(&folio->lru, &page_list); 3973 } 3974 /* free the pages after dropping lock */ 3975 spin_unlock_irq(&hugetlb_lock); 3976 update_and_free_pages_bulk(h, &page_list); 3977 flush_free_hpage_work(h); 3978 spin_lock_irq(&hugetlb_lock); 3979 3980 while (count < persistent_huge_pages(h)) { 3981 if (!adjust_pool_surplus(h, nodes_allowed, 1)) 3982 break; 3983 } 3984 out: 3985 h->max_huge_pages = persistent_huge_pages(h); 3986 spin_unlock_irq(&hugetlb_lock); 3987 mutex_unlock(&h->resize_lock); 3988 3989 NODEMASK_FREE(node_alloc_noretry); 3990 3991 return 0; 3992 } 3993 3994 static long demote_free_hugetlb_folios(struct hstate *src, struct hstate *dst, 3995 struct list_head *src_list) 3996 { 3997 long rc; 3998 struct folio *folio, *next; 3999 LIST_HEAD(dst_list); 4000 LIST_HEAD(ret_list); 4001 4002 rc = hugetlb_vmemmap_restore_folios(src, src_list, &ret_list); 4003 list_splice_init(&ret_list, src_list); 4004 4005 /* 4006 * Taking target hstate mutex synchronizes with set_max_huge_pages. 4007 * Without the mutex, pages added to target hstate could be marked 4008 * as surplus. 4009 * 4010 * Note that we already hold src->resize_lock. To prevent deadlock, 4011 * use the convention of always taking larger size hstate mutex first. 4012 */ 4013 mutex_lock(&dst->resize_lock); 4014 4015 list_for_each_entry_safe(folio, next, src_list, lru) { 4016 int i; 4017 bool cma; 4018 4019 if (folio_test_hugetlb_vmemmap_optimized(folio)) 4020 continue; 4021 4022 cma = folio_test_hugetlb_cma(folio); 4023 4024 list_del(&folio->lru); 4025 4026 split_page_owner(&folio->page, huge_page_order(src), huge_page_order(dst)); 4027 pgalloc_tag_split(folio, huge_page_order(src), huge_page_order(dst)); 4028 4029 for (i = 0; i < pages_per_huge_page(src); i += pages_per_huge_page(dst)) { 4030 struct page *page = folio_page(folio, i); 4031 /* Careful: see __split_huge_page_tail() */ 4032 struct folio *new_folio = (struct folio *)page; 4033 4034 clear_compound_head(page); 4035 prep_compound_page(page, dst->order); 4036 4037 new_folio->mapping = NULL; 4038 init_new_hugetlb_folio(dst, new_folio); 4039 /* Copy the CMA flag so that it is freed correctly */ 4040 if (cma) 4041 folio_set_hugetlb_cma(new_folio); 4042 list_add(&new_folio->lru, &dst_list); 4043 } 4044 } 4045 4046 prep_and_add_allocated_folios(dst, &dst_list); 4047 4048 mutex_unlock(&dst->resize_lock); 4049 4050 return rc; 4051 } 4052 4053 static long demote_pool_huge_page(struct hstate *src, nodemask_t *nodes_allowed, 4054 unsigned long nr_to_demote) 4055 __must_hold(&hugetlb_lock) 4056 { 4057 int nr_nodes, node; 4058 struct hstate *dst; 4059 long rc = 0; 4060 long nr_demoted = 0; 4061 4062 lockdep_assert_held(&hugetlb_lock); 4063 4064 /* We should never get here if no demote order */ 4065 if (!src->demote_order) { 4066 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n"); 4067 return -EINVAL; /* internal error */ 4068 } 4069 dst = size_to_hstate(PAGE_SIZE << src->demote_order); 4070 4071 for_each_node_mask_to_free(src, nr_nodes, node, nodes_allowed) { 4072 LIST_HEAD(list); 4073 struct folio *folio, *next; 4074 4075 list_for_each_entry_safe(folio, next, &src->hugepage_freelists[node], lru) { 4076 if (folio_test_hwpoison(folio)) 4077 continue; 4078 4079 remove_hugetlb_folio(src, folio, false); 4080 list_add(&folio->lru, &list); 4081 4082 if (++nr_demoted == nr_to_demote) 4083 break; 4084 } 4085 4086 spin_unlock_irq(&hugetlb_lock); 4087 4088 rc = demote_free_hugetlb_folios(src, dst, &list); 4089 4090 spin_lock_irq(&hugetlb_lock); 4091 4092 list_for_each_entry_safe(folio, next, &list, lru) { 4093 list_del(&folio->lru); 4094 add_hugetlb_folio(src, folio, false); 4095 4096 nr_demoted--; 4097 } 4098 4099 if (rc < 0 || nr_demoted == nr_to_demote) 4100 break; 4101 } 4102 4103 /* 4104 * Not absolutely necessary, but for consistency update max_huge_pages 4105 * based on pool changes for the demoted page. 4106 */ 4107 src->max_huge_pages -= nr_demoted; 4108 dst->max_huge_pages += nr_demoted << (huge_page_order(src) - huge_page_order(dst)); 4109 4110 if (rc < 0) 4111 return rc; 4112 4113 if (nr_demoted) 4114 return nr_demoted; 4115 /* 4116 * Only way to get here is if all pages on free lists are poisoned. 4117 * Return -EBUSY so that caller will not retry. 4118 */ 4119 return -EBUSY; 4120 } 4121 4122 #define HSTATE_ATTR_RO(_name) \ 4123 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 4124 4125 #define HSTATE_ATTR_WO(_name) \ 4126 static struct kobj_attribute _name##_attr = __ATTR_WO(_name) 4127 4128 #define HSTATE_ATTR(_name) \ 4129 static struct kobj_attribute _name##_attr = __ATTR_RW(_name) 4130 4131 static struct kobject *hugepages_kobj; 4132 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 4133 4134 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp); 4135 4136 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp) 4137 { 4138 int i; 4139 4140 for (i = 0; i < HUGE_MAX_HSTATE; i++) 4141 if (hstate_kobjs[i] == kobj) { 4142 if (nidp) 4143 *nidp = NUMA_NO_NODE; 4144 return &hstates[i]; 4145 } 4146 4147 return kobj_to_node_hstate(kobj, nidp); 4148 } 4149 4150 static ssize_t nr_hugepages_show_common(struct kobject *kobj, 4151 struct kobj_attribute *attr, char *buf) 4152 { 4153 struct hstate *h; 4154 unsigned long nr_huge_pages; 4155 int nid; 4156 4157 h = kobj_to_hstate(kobj, &nid); 4158 if (nid == NUMA_NO_NODE) 4159 nr_huge_pages = h->nr_huge_pages; 4160 else 4161 nr_huge_pages = h->nr_huge_pages_node[nid]; 4162 4163 return sysfs_emit(buf, "%lu\n", nr_huge_pages); 4164 } 4165 4166 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy, 4167 struct hstate *h, int nid, 4168 unsigned long count, size_t len) 4169 { 4170 int err; 4171 nodemask_t nodes_allowed, *n_mask; 4172 4173 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 4174 return -EINVAL; 4175 4176 if (nid == NUMA_NO_NODE) { 4177 /* 4178 * global hstate attribute 4179 */ 4180 if (!(obey_mempolicy && 4181 init_nodemask_of_mempolicy(&nodes_allowed))) 4182 n_mask = &node_states[N_MEMORY]; 4183 else 4184 n_mask = &nodes_allowed; 4185 } else { 4186 /* 4187 * Node specific request. count adjustment happens in 4188 * set_max_huge_pages() after acquiring hugetlb_lock. 4189 */ 4190 init_nodemask_of_node(&nodes_allowed, nid); 4191 n_mask = &nodes_allowed; 4192 } 4193 4194 err = set_max_huge_pages(h, count, nid, n_mask); 4195 4196 return err ? err : len; 4197 } 4198 4199 static ssize_t nr_hugepages_store_common(bool obey_mempolicy, 4200 struct kobject *kobj, const char *buf, 4201 size_t len) 4202 { 4203 struct hstate *h; 4204 unsigned long count; 4205 int nid; 4206 int err; 4207 4208 err = kstrtoul(buf, 10, &count); 4209 if (err) 4210 return err; 4211 4212 h = kobj_to_hstate(kobj, &nid); 4213 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len); 4214 } 4215 4216 static ssize_t nr_hugepages_show(struct kobject *kobj, 4217 struct kobj_attribute *attr, char *buf) 4218 { 4219 return nr_hugepages_show_common(kobj, attr, buf); 4220 } 4221 4222 static ssize_t nr_hugepages_store(struct kobject *kobj, 4223 struct kobj_attribute *attr, const char *buf, size_t len) 4224 { 4225 return nr_hugepages_store_common(false, kobj, buf, len); 4226 } 4227 HSTATE_ATTR(nr_hugepages); 4228 4229 #ifdef CONFIG_NUMA 4230 4231 /* 4232 * hstate attribute for optionally mempolicy-based constraint on persistent 4233 * huge page alloc/free. 4234 */ 4235 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj, 4236 struct kobj_attribute *attr, 4237 char *buf) 4238 { 4239 return nr_hugepages_show_common(kobj, attr, buf); 4240 } 4241 4242 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj, 4243 struct kobj_attribute *attr, const char *buf, size_t len) 4244 { 4245 return nr_hugepages_store_common(true, kobj, buf, len); 4246 } 4247 HSTATE_ATTR(nr_hugepages_mempolicy); 4248 #endif 4249 4250 4251 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, 4252 struct kobj_attribute *attr, char *buf) 4253 { 4254 struct hstate *h = kobj_to_hstate(kobj, NULL); 4255 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages); 4256 } 4257 4258 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, 4259 struct kobj_attribute *attr, const char *buf, size_t count) 4260 { 4261 int err; 4262 unsigned long input; 4263 struct hstate *h = kobj_to_hstate(kobj, NULL); 4264 4265 if (hstate_is_gigantic(h)) 4266 return -EINVAL; 4267 4268 err = kstrtoul(buf, 10, &input); 4269 if (err) 4270 return err; 4271 4272 spin_lock_irq(&hugetlb_lock); 4273 h->nr_overcommit_huge_pages = input; 4274 spin_unlock_irq(&hugetlb_lock); 4275 4276 return count; 4277 } 4278 HSTATE_ATTR(nr_overcommit_hugepages); 4279 4280 static ssize_t free_hugepages_show(struct kobject *kobj, 4281 struct kobj_attribute *attr, char *buf) 4282 { 4283 struct hstate *h; 4284 unsigned long free_huge_pages; 4285 int nid; 4286 4287 h = kobj_to_hstate(kobj, &nid); 4288 if (nid == NUMA_NO_NODE) 4289 free_huge_pages = h->free_huge_pages; 4290 else 4291 free_huge_pages = h->free_huge_pages_node[nid]; 4292 4293 return sysfs_emit(buf, "%lu\n", free_huge_pages); 4294 } 4295 HSTATE_ATTR_RO(free_hugepages); 4296 4297 static ssize_t resv_hugepages_show(struct kobject *kobj, 4298 struct kobj_attribute *attr, char *buf) 4299 { 4300 struct hstate *h = kobj_to_hstate(kobj, NULL); 4301 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages); 4302 } 4303 HSTATE_ATTR_RO(resv_hugepages); 4304 4305 static ssize_t surplus_hugepages_show(struct kobject *kobj, 4306 struct kobj_attribute *attr, char *buf) 4307 { 4308 struct hstate *h; 4309 unsigned long surplus_huge_pages; 4310 int nid; 4311 4312 h = kobj_to_hstate(kobj, &nid); 4313 if (nid == NUMA_NO_NODE) 4314 surplus_huge_pages = h->surplus_huge_pages; 4315 else 4316 surplus_huge_pages = h->surplus_huge_pages_node[nid]; 4317 4318 return sysfs_emit(buf, "%lu\n", surplus_huge_pages); 4319 } 4320 HSTATE_ATTR_RO(surplus_hugepages); 4321 4322 static ssize_t demote_store(struct kobject *kobj, 4323 struct kobj_attribute *attr, const char *buf, size_t len) 4324 { 4325 unsigned long nr_demote; 4326 unsigned long nr_available; 4327 nodemask_t nodes_allowed, *n_mask; 4328 struct hstate *h; 4329 int err; 4330 int nid; 4331 4332 err = kstrtoul(buf, 10, &nr_demote); 4333 if (err) 4334 return err; 4335 h = kobj_to_hstate(kobj, &nid); 4336 4337 if (nid != NUMA_NO_NODE) { 4338 init_nodemask_of_node(&nodes_allowed, nid); 4339 n_mask = &nodes_allowed; 4340 } else { 4341 n_mask = &node_states[N_MEMORY]; 4342 } 4343 4344 /* Synchronize with other sysfs operations modifying huge pages */ 4345 mutex_lock(&h->resize_lock); 4346 spin_lock_irq(&hugetlb_lock); 4347 4348 while (nr_demote) { 4349 long rc; 4350 4351 /* 4352 * Check for available pages to demote each time thorough the 4353 * loop as demote_pool_huge_page will drop hugetlb_lock. 4354 */ 4355 if (nid != NUMA_NO_NODE) 4356 nr_available = h->free_huge_pages_node[nid]; 4357 else 4358 nr_available = h->free_huge_pages; 4359 nr_available -= h->resv_huge_pages; 4360 if (!nr_available) 4361 break; 4362 4363 rc = demote_pool_huge_page(h, n_mask, nr_demote); 4364 if (rc < 0) { 4365 err = rc; 4366 break; 4367 } 4368 4369 nr_demote -= rc; 4370 } 4371 4372 spin_unlock_irq(&hugetlb_lock); 4373 mutex_unlock(&h->resize_lock); 4374 4375 if (err) 4376 return err; 4377 return len; 4378 } 4379 HSTATE_ATTR_WO(demote); 4380 4381 static ssize_t demote_size_show(struct kobject *kobj, 4382 struct kobj_attribute *attr, char *buf) 4383 { 4384 struct hstate *h = kobj_to_hstate(kobj, NULL); 4385 unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K; 4386 4387 return sysfs_emit(buf, "%lukB\n", demote_size); 4388 } 4389 4390 static ssize_t demote_size_store(struct kobject *kobj, 4391 struct kobj_attribute *attr, 4392 const char *buf, size_t count) 4393 { 4394 struct hstate *h, *demote_hstate; 4395 unsigned long demote_size; 4396 unsigned int demote_order; 4397 4398 demote_size = (unsigned long)memparse(buf, NULL); 4399 4400 demote_hstate = size_to_hstate(demote_size); 4401 if (!demote_hstate) 4402 return -EINVAL; 4403 demote_order = demote_hstate->order; 4404 if (demote_order < HUGETLB_PAGE_ORDER) 4405 return -EINVAL; 4406 4407 /* demote order must be smaller than hstate order */ 4408 h = kobj_to_hstate(kobj, NULL); 4409 if (demote_order >= h->order) 4410 return -EINVAL; 4411 4412 /* resize_lock synchronizes access to demote size and writes */ 4413 mutex_lock(&h->resize_lock); 4414 h->demote_order = demote_order; 4415 mutex_unlock(&h->resize_lock); 4416 4417 return count; 4418 } 4419 HSTATE_ATTR(demote_size); 4420 4421 static struct attribute *hstate_attrs[] = { 4422 &nr_hugepages_attr.attr, 4423 &nr_overcommit_hugepages_attr.attr, 4424 &free_hugepages_attr.attr, 4425 &resv_hugepages_attr.attr, 4426 &surplus_hugepages_attr.attr, 4427 #ifdef CONFIG_NUMA 4428 &nr_hugepages_mempolicy_attr.attr, 4429 #endif 4430 NULL, 4431 }; 4432 4433 static const struct attribute_group hstate_attr_group = { 4434 .attrs = hstate_attrs, 4435 }; 4436 4437 static struct attribute *hstate_demote_attrs[] = { 4438 &demote_size_attr.attr, 4439 &demote_attr.attr, 4440 NULL, 4441 }; 4442 4443 static const struct attribute_group hstate_demote_attr_group = { 4444 .attrs = hstate_demote_attrs, 4445 }; 4446 4447 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent, 4448 struct kobject **hstate_kobjs, 4449 const struct attribute_group *hstate_attr_group) 4450 { 4451 int retval; 4452 int hi = hstate_index(h); 4453 4454 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent); 4455 if (!hstate_kobjs[hi]) 4456 return -ENOMEM; 4457 4458 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group); 4459 if (retval) { 4460 kobject_put(hstate_kobjs[hi]); 4461 hstate_kobjs[hi] = NULL; 4462 return retval; 4463 } 4464 4465 if (h->demote_order) { 4466 retval = sysfs_create_group(hstate_kobjs[hi], 4467 &hstate_demote_attr_group); 4468 if (retval) { 4469 pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name); 4470 sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group); 4471 kobject_put(hstate_kobjs[hi]); 4472 hstate_kobjs[hi] = NULL; 4473 return retval; 4474 } 4475 } 4476 4477 return 0; 4478 } 4479 4480 #ifdef CONFIG_NUMA 4481 static bool hugetlb_sysfs_initialized __ro_after_init; 4482 4483 /* 4484 * node_hstate/s - associate per node hstate attributes, via their kobjects, 4485 * with node devices in node_devices[] using a parallel array. The array 4486 * index of a node device or _hstate == node id. 4487 * This is here to avoid any static dependency of the node device driver, in 4488 * the base kernel, on the hugetlb module. 4489 */ 4490 struct node_hstate { 4491 struct kobject *hugepages_kobj; 4492 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 4493 }; 4494 static struct node_hstate node_hstates[MAX_NUMNODES]; 4495 4496 /* 4497 * A subset of global hstate attributes for node devices 4498 */ 4499 static struct attribute *per_node_hstate_attrs[] = { 4500 &nr_hugepages_attr.attr, 4501 &free_hugepages_attr.attr, 4502 &surplus_hugepages_attr.attr, 4503 NULL, 4504 }; 4505 4506 static const struct attribute_group per_node_hstate_attr_group = { 4507 .attrs = per_node_hstate_attrs, 4508 }; 4509 4510 /* 4511 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj. 4512 * Returns node id via non-NULL nidp. 4513 */ 4514 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 4515 { 4516 int nid; 4517 4518 for (nid = 0; nid < nr_node_ids; nid++) { 4519 struct node_hstate *nhs = &node_hstates[nid]; 4520 int i; 4521 for (i = 0; i < HUGE_MAX_HSTATE; i++) 4522 if (nhs->hstate_kobjs[i] == kobj) { 4523 if (nidp) 4524 *nidp = nid; 4525 return &hstates[i]; 4526 } 4527 } 4528 4529 BUG(); 4530 return NULL; 4531 } 4532 4533 /* 4534 * Unregister hstate attributes from a single node device. 4535 * No-op if no hstate attributes attached. 4536 */ 4537 void hugetlb_unregister_node(struct node *node) 4538 { 4539 struct hstate *h; 4540 struct node_hstate *nhs = &node_hstates[node->dev.id]; 4541 4542 if (!nhs->hugepages_kobj) 4543 return; /* no hstate attributes */ 4544 4545 for_each_hstate(h) { 4546 int idx = hstate_index(h); 4547 struct kobject *hstate_kobj = nhs->hstate_kobjs[idx]; 4548 4549 if (!hstate_kobj) 4550 continue; 4551 if (h->demote_order) 4552 sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group); 4553 sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group); 4554 kobject_put(hstate_kobj); 4555 nhs->hstate_kobjs[idx] = NULL; 4556 } 4557 4558 kobject_put(nhs->hugepages_kobj); 4559 nhs->hugepages_kobj = NULL; 4560 } 4561 4562 4563 /* 4564 * Register hstate attributes for a single node device. 4565 * No-op if attributes already registered. 4566 */ 4567 void hugetlb_register_node(struct node *node) 4568 { 4569 struct hstate *h; 4570 struct node_hstate *nhs = &node_hstates[node->dev.id]; 4571 int err; 4572 4573 if (!hugetlb_sysfs_initialized) 4574 return; 4575 4576 if (nhs->hugepages_kobj) 4577 return; /* already allocated */ 4578 4579 nhs->hugepages_kobj = kobject_create_and_add("hugepages", 4580 &node->dev.kobj); 4581 if (!nhs->hugepages_kobj) 4582 return; 4583 4584 for_each_hstate(h) { 4585 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj, 4586 nhs->hstate_kobjs, 4587 &per_node_hstate_attr_group); 4588 if (err) { 4589 pr_err("HugeTLB: Unable to add hstate %s for node %d\n", 4590 h->name, node->dev.id); 4591 hugetlb_unregister_node(node); 4592 break; 4593 } 4594 } 4595 } 4596 4597 /* 4598 * hugetlb init time: register hstate attributes for all registered node 4599 * devices of nodes that have memory. All on-line nodes should have 4600 * registered their associated device by this time. 4601 */ 4602 static void __init hugetlb_register_all_nodes(void) 4603 { 4604 int nid; 4605 4606 for_each_online_node(nid) 4607 hugetlb_register_node(node_devices[nid]); 4608 } 4609 #else /* !CONFIG_NUMA */ 4610 4611 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 4612 { 4613 BUG(); 4614 if (nidp) 4615 *nidp = -1; 4616 return NULL; 4617 } 4618 4619 static void hugetlb_register_all_nodes(void) { } 4620 4621 #endif 4622 4623 static void __init hugetlb_sysfs_init(void) 4624 { 4625 struct hstate *h; 4626 int err; 4627 4628 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); 4629 if (!hugepages_kobj) 4630 return; 4631 4632 for_each_hstate(h) { 4633 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj, 4634 hstate_kobjs, &hstate_attr_group); 4635 if (err) 4636 pr_err("HugeTLB: Unable to add hstate %s\n", h->name); 4637 } 4638 4639 #ifdef CONFIG_NUMA 4640 hugetlb_sysfs_initialized = true; 4641 #endif 4642 hugetlb_register_all_nodes(); 4643 } 4644 4645 #ifdef CONFIG_SYSCTL 4646 static void hugetlb_sysctl_init(void); 4647 #else 4648 static inline void hugetlb_sysctl_init(void) { } 4649 #endif 4650 4651 static int __init hugetlb_init(void) 4652 { 4653 int i; 4654 4655 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE < 4656 __NR_HPAGEFLAGS); 4657 4658 if (!hugepages_supported()) { 4659 if (hugetlb_max_hstate || default_hstate_max_huge_pages) 4660 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n"); 4661 return 0; 4662 } 4663 4664 /* 4665 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some 4666 * architectures depend on setup being done here. 4667 */ 4668 hugetlb_add_hstate(HUGETLB_PAGE_ORDER); 4669 if (!parsed_default_hugepagesz) { 4670 /* 4671 * If we did not parse a default huge page size, set 4672 * default_hstate_idx to HPAGE_SIZE hstate. And, if the 4673 * number of huge pages for this default size was implicitly 4674 * specified, set that here as well. 4675 * Note that the implicit setting will overwrite an explicit 4676 * setting. A warning will be printed in this case. 4677 */ 4678 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE)); 4679 if (default_hstate_max_huge_pages) { 4680 if (default_hstate.max_huge_pages) { 4681 char buf[32]; 4682 4683 string_get_size(huge_page_size(&default_hstate), 4684 1, STRING_UNITS_2, buf, 32); 4685 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n", 4686 default_hstate.max_huge_pages, buf); 4687 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n", 4688 default_hstate_max_huge_pages); 4689 } 4690 default_hstate.max_huge_pages = 4691 default_hstate_max_huge_pages; 4692 4693 for_each_online_node(i) 4694 default_hstate.max_huge_pages_node[i] = 4695 default_hugepages_in_node[i]; 4696 } 4697 } 4698 4699 hugetlb_cma_check(); 4700 hugetlb_init_hstates(); 4701 gather_bootmem_prealloc(); 4702 report_hugepages(); 4703 4704 hugetlb_sysfs_init(); 4705 hugetlb_cgroup_file_init(); 4706 hugetlb_sysctl_init(); 4707 4708 #ifdef CONFIG_SMP 4709 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus()); 4710 #else 4711 num_fault_mutexes = 1; 4712 #endif 4713 hugetlb_fault_mutex_table = 4714 kmalloc_array(num_fault_mutexes, sizeof(struct mutex), 4715 GFP_KERNEL); 4716 BUG_ON(!hugetlb_fault_mutex_table); 4717 4718 for (i = 0; i < num_fault_mutexes; i++) 4719 mutex_init(&hugetlb_fault_mutex_table[i]); 4720 return 0; 4721 } 4722 subsys_initcall(hugetlb_init); 4723 4724 /* Overwritten by architectures with more huge page sizes */ 4725 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size) 4726 { 4727 return size == HPAGE_SIZE; 4728 } 4729 4730 void __init hugetlb_add_hstate(unsigned int order) 4731 { 4732 struct hstate *h; 4733 unsigned long i; 4734 4735 if (size_to_hstate(PAGE_SIZE << order)) { 4736 return; 4737 } 4738 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE); 4739 BUG_ON(order < order_base_2(__NR_USED_SUBPAGE)); 4740 h = &hstates[hugetlb_max_hstate++]; 4741 __mutex_init(&h->resize_lock, "resize mutex", &h->resize_key); 4742 h->order = order; 4743 h->mask = ~(huge_page_size(h) - 1); 4744 for (i = 0; i < MAX_NUMNODES; ++i) 4745 INIT_LIST_HEAD(&h->hugepage_freelists[i]); 4746 INIT_LIST_HEAD(&h->hugepage_activelist); 4747 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", 4748 huge_page_size(h)/SZ_1K); 4749 4750 parsed_hstate = h; 4751 } 4752 4753 bool __init __weak hugetlb_node_alloc_supported(void) 4754 { 4755 return true; 4756 } 4757 4758 static void __init hugepages_clear_pages_in_node(void) 4759 { 4760 if (!hugetlb_max_hstate) { 4761 default_hstate_max_huge_pages = 0; 4762 memset(default_hugepages_in_node, 0, 4763 sizeof(default_hugepages_in_node)); 4764 } else { 4765 parsed_hstate->max_huge_pages = 0; 4766 memset(parsed_hstate->max_huge_pages_node, 0, 4767 sizeof(parsed_hstate->max_huge_pages_node)); 4768 } 4769 } 4770 4771 static __init int hugetlb_add_param(char *s, int (*setup)(char *)) 4772 { 4773 size_t len; 4774 char *p; 4775 4776 if (hugetlb_param_index >= HUGE_MAX_CMDLINE_ARGS) 4777 return -EINVAL; 4778 4779 len = strlen(s) + 1; 4780 if (len + hstate_cmdline_index > sizeof(hstate_cmdline_buf)) 4781 return -EINVAL; 4782 4783 p = &hstate_cmdline_buf[hstate_cmdline_index]; 4784 memcpy(p, s, len); 4785 hstate_cmdline_index += len; 4786 4787 hugetlb_params[hugetlb_param_index].val = p; 4788 hugetlb_params[hugetlb_param_index].setup = setup; 4789 4790 hugetlb_param_index++; 4791 4792 return 0; 4793 } 4794 4795 static __init void hugetlb_parse_params(void) 4796 { 4797 int i; 4798 struct hugetlb_cmdline *hcp; 4799 4800 for (i = 0; i < hugetlb_param_index; i++) { 4801 hcp = &hugetlb_params[i]; 4802 4803 hcp->setup(hcp->val); 4804 } 4805 4806 hugetlb_cma_validate_params(); 4807 } 4808 4809 /* 4810 * hugepages command line processing 4811 * hugepages normally follows a valid hugepagsz or default_hugepagsz 4812 * specification. If not, ignore the hugepages value. hugepages can also 4813 * be the first huge page command line option in which case it implicitly 4814 * specifies the number of huge pages for the default size. 4815 */ 4816 static int __init hugepages_setup(char *s) 4817 { 4818 unsigned long *mhp; 4819 static unsigned long *last_mhp; 4820 int node = NUMA_NO_NODE; 4821 int count; 4822 unsigned long tmp; 4823 char *p = s; 4824 4825 if (!parsed_valid_hugepagesz) { 4826 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s); 4827 parsed_valid_hugepagesz = true; 4828 return -EINVAL; 4829 } 4830 4831 /* 4832 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter 4833 * yet, so this hugepages= parameter goes to the "default hstate". 4834 * Otherwise, it goes with the previously parsed hugepagesz or 4835 * default_hugepagesz. 4836 */ 4837 else if (!hugetlb_max_hstate) 4838 mhp = &default_hstate_max_huge_pages; 4839 else 4840 mhp = &parsed_hstate->max_huge_pages; 4841 4842 if (mhp == last_mhp) { 4843 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s); 4844 return 1; 4845 } 4846 4847 while (*p) { 4848 count = 0; 4849 if (sscanf(p, "%lu%n", &tmp, &count) != 1) 4850 goto invalid; 4851 /* Parameter is node format */ 4852 if (p[count] == ':') { 4853 if (!hugetlb_node_alloc_supported()) { 4854 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n"); 4855 return 1; 4856 } 4857 if (tmp >= MAX_NUMNODES || !node_online(tmp)) 4858 goto invalid; 4859 node = array_index_nospec(tmp, MAX_NUMNODES); 4860 p += count + 1; 4861 /* Parse hugepages */ 4862 if (sscanf(p, "%lu%n", &tmp, &count) != 1) 4863 goto invalid; 4864 if (!hugetlb_max_hstate) 4865 default_hugepages_in_node[node] = tmp; 4866 else 4867 parsed_hstate->max_huge_pages_node[node] = tmp; 4868 *mhp += tmp; 4869 /* Go to parse next node*/ 4870 if (p[count] == ',') 4871 p += count + 1; 4872 else 4873 break; 4874 } else { 4875 if (p != s) 4876 goto invalid; 4877 *mhp = tmp; 4878 break; 4879 } 4880 } 4881 4882 last_mhp = mhp; 4883 4884 return 0; 4885 4886 invalid: 4887 pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p); 4888 hugepages_clear_pages_in_node(); 4889 return -EINVAL; 4890 } 4891 hugetlb_early_param("hugepages", hugepages_setup); 4892 4893 /* 4894 * hugepagesz command line processing 4895 * A specific huge page size can only be specified once with hugepagesz. 4896 * hugepagesz is followed by hugepages on the command line. The global 4897 * variable 'parsed_valid_hugepagesz' is used to determine if prior 4898 * hugepagesz argument was valid. 4899 */ 4900 static int __init hugepagesz_setup(char *s) 4901 { 4902 unsigned long size; 4903 struct hstate *h; 4904 4905 parsed_valid_hugepagesz = false; 4906 size = (unsigned long)memparse(s, NULL); 4907 4908 if (!arch_hugetlb_valid_size(size)) { 4909 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s); 4910 return -EINVAL; 4911 } 4912 4913 h = size_to_hstate(size); 4914 if (h) { 4915 /* 4916 * hstate for this size already exists. This is normally 4917 * an error, but is allowed if the existing hstate is the 4918 * default hstate. More specifically, it is only allowed if 4919 * the number of huge pages for the default hstate was not 4920 * previously specified. 4921 */ 4922 if (!parsed_default_hugepagesz || h != &default_hstate || 4923 default_hstate.max_huge_pages) { 4924 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s); 4925 return -EINVAL; 4926 } 4927 4928 /* 4929 * No need to call hugetlb_add_hstate() as hstate already 4930 * exists. But, do set parsed_hstate so that a following 4931 * hugepages= parameter will be applied to this hstate. 4932 */ 4933 parsed_hstate = h; 4934 parsed_valid_hugepagesz = true; 4935 return 0; 4936 } 4937 4938 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); 4939 parsed_valid_hugepagesz = true; 4940 return 0; 4941 } 4942 hugetlb_early_param("hugepagesz", hugepagesz_setup); 4943 4944 /* 4945 * default_hugepagesz command line input 4946 * Only one instance of default_hugepagesz allowed on command line. 4947 */ 4948 static int __init default_hugepagesz_setup(char *s) 4949 { 4950 unsigned long size; 4951 int i; 4952 4953 parsed_valid_hugepagesz = false; 4954 if (parsed_default_hugepagesz) { 4955 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s); 4956 return -EINVAL; 4957 } 4958 4959 size = (unsigned long)memparse(s, NULL); 4960 4961 if (!arch_hugetlb_valid_size(size)) { 4962 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s); 4963 return -EINVAL; 4964 } 4965 4966 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); 4967 parsed_valid_hugepagesz = true; 4968 parsed_default_hugepagesz = true; 4969 default_hstate_idx = hstate_index(size_to_hstate(size)); 4970 4971 /* 4972 * The number of default huge pages (for this size) could have been 4973 * specified as the first hugetlb parameter: hugepages=X. If so, 4974 * then default_hstate_max_huge_pages is set. If the default huge 4975 * page size is gigantic (> MAX_PAGE_ORDER), then the pages must be 4976 * allocated here from bootmem allocator. 4977 */ 4978 if (default_hstate_max_huge_pages) { 4979 default_hstate.max_huge_pages = default_hstate_max_huge_pages; 4980 /* 4981 * Since this is an early parameter, we can't check 4982 * NUMA node state yet, so loop through MAX_NUMNODES. 4983 */ 4984 for (i = 0; i < MAX_NUMNODES; i++) { 4985 if (default_hugepages_in_node[i] != 0) 4986 default_hstate.max_huge_pages_node[i] = 4987 default_hugepages_in_node[i]; 4988 } 4989 default_hstate_max_huge_pages = 0; 4990 } 4991 4992 return 0; 4993 } 4994 hugetlb_early_param("default_hugepagesz", default_hugepagesz_setup); 4995 4996 void __init hugetlb_bootmem_set_nodes(void) 4997 { 4998 int i, nid; 4999 unsigned long start_pfn, end_pfn; 5000 5001 if (!nodes_empty(hugetlb_bootmem_nodes)) 5002 return; 5003 5004 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 5005 if (end_pfn > start_pfn) 5006 node_set(nid, hugetlb_bootmem_nodes); 5007 } 5008 } 5009 5010 static bool __hugetlb_bootmem_allocated __initdata; 5011 5012 bool __init hugetlb_bootmem_allocated(void) 5013 { 5014 return __hugetlb_bootmem_allocated; 5015 } 5016 5017 void __init hugetlb_bootmem_alloc(void) 5018 { 5019 struct hstate *h; 5020 int i; 5021 5022 if (__hugetlb_bootmem_allocated) 5023 return; 5024 5025 hugetlb_bootmem_set_nodes(); 5026 5027 for (i = 0; i < MAX_NUMNODES; i++) 5028 INIT_LIST_HEAD(&huge_boot_pages[i]); 5029 5030 hugetlb_parse_params(); 5031 5032 for_each_hstate(h) { 5033 h->next_nid_to_alloc = first_online_node; 5034 5035 if (hstate_is_gigantic(h)) 5036 hugetlb_hstate_alloc_pages(h); 5037 } 5038 5039 __hugetlb_bootmem_allocated = true; 5040 } 5041 5042 /* 5043 * hugepage_alloc_threads command line parsing. 5044 * 5045 * When set, use this specific number of threads for the boot 5046 * allocation of hugepages. 5047 */ 5048 static int __init hugepage_alloc_threads_setup(char *s) 5049 { 5050 unsigned long allocation_threads; 5051 5052 if (kstrtoul(s, 0, &allocation_threads) != 0) 5053 return 1; 5054 5055 if (allocation_threads == 0) 5056 return 1; 5057 5058 hugepage_allocation_threads = allocation_threads; 5059 5060 return 1; 5061 } 5062 __setup("hugepage_alloc_threads=", hugepage_alloc_threads_setup); 5063 5064 static unsigned int allowed_mems_nr(struct hstate *h) 5065 { 5066 int node; 5067 unsigned int nr = 0; 5068 nodemask_t *mbind_nodemask; 5069 unsigned int *array = h->free_huge_pages_node; 5070 gfp_t gfp_mask = htlb_alloc_mask(h); 5071 5072 mbind_nodemask = policy_mbind_nodemask(gfp_mask); 5073 for_each_node_mask(node, cpuset_current_mems_allowed) { 5074 if (!mbind_nodemask || node_isset(node, *mbind_nodemask)) 5075 nr += array[node]; 5076 } 5077 5078 return nr; 5079 } 5080 5081 #ifdef CONFIG_SYSCTL 5082 static int proc_hugetlb_doulongvec_minmax(const struct ctl_table *table, int write, 5083 void *buffer, size_t *length, 5084 loff_t *ppos, unsigned long *out) 5085 { 5086 struct ctl_table dup_table; 5087 5088 /* 5089 * In order to avoid races with __do_proc_doulongvec_minmax(), we 5090 * can duplicate the @table and alter the duplicate of it. 5091 */ 5092 dup_table = *table; 5093 dup_table.data = out; 5094 5095 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos); 5096 } 5097 5098 static int hugetlb_sysctl_handler_common(bool obey_mempolicy, 5099 const struct ctl_table *table, int write, 5100 void *buffer, size_t *length, loff_t *ppos) 5101 { 5102 struct hstate *h = &default_hstate; 5103 unsigned long tmp = h->max_huge_pages; 5104 int ret; 5105 5106 if (!hugepages_supported()) 5107 return -EOPNOTSUPP; 5108 5109 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, 5110 &tmp); 5111 if (ret) 5112 goto out; 5113 5114 if (write) 5115 ret = __nr_hugepages_store_common(obey_mempolicy, h, 5116 NUMA_NO_NODE, tmp, *length); 5117 out: 5118 return ret; 5119 } 5120 5121 static int hugetlb_sysctl_handler(const struct ctl_table *table, int write, 5122 void *buffer, size_t *length, loff_t *ppos) 5123 { 5124 5125 return hugetlb_sysctl_handler_common(false, table, write, 5126 buffer, length, ppos); 5127 } 5128 5129 #ifdef CONFIG_NUMA 5130 static int hugetlb_mempolicy_sysctl_handler(const struct ctl_table *table, int write, 5131 void *buffer, size_t *length, loff_t *ppos) 5132 { 5133 return hugetlb_sysctl_handler_common(true, table, write, 5134 buffer, length, ppos); 5135 } 5136 #endif /* CONFIG_NUMA */ 5137 5138 static int hugetlb_overcommit_handler(const struct ctl_table *table, int write, 5139 void *buffer, size_t *length, loff_t *ppos) 5140 { 5141 struct hstate *h = &default_hstate; 5142 unsigned long tmp; 5143 int ret; 5144 5145 if (!hugepages_supported()) 5146 return -EOPNOTSUPP; 5147 5148 tmp = h->nr_overcommit_huge_pages; 5149 5150 if (write && hstate_is_gigantic(h)) 5151 return -EINVAL; 5152 5153 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, 5154 &tmp); 5155 if (ret) 5156 goto out; 5157 5158 if (write) { 5159 spin_lock_irq(&hugetlb_lock); 5160 h->nr_overcommit_huge_pages = tmp; 5161 spin_unlock_irq(&hugetlb_lock); 5162 } 5163 out: 5164 return ret; 5165 } 5166 5167 static const struct ctl_table hugetlb_table[] = { 5168 { 5169 .procname = "nr_hugepages", 5170 .data = NULL, 5171 .maxlen = sizeof(unsigned long), 5172 .mode = 0644, 5173 .proc_handler = hugetlb_sysctl_handler, 5174 }, 5175 #ifdef CONFIG_NUMA 5176 { 5177 .procname = "nr_hugepages_mempolicy", 5178 .data = NULL, 5179 .maxlen = sizeof(unsigned long), 5180 .mode = 0644, 5181 .proc_handler = &hugetlb_mempolicy_sysctl_handler, 5182 }, 5183 #endif 5184 { 5185 .procname = "hugetlb_shm_group", 5186 .data = &sysctl_hugetlb_shm_group, 5187 .maxlen = sizeof(gid_t), 5188 .mode = 0644, 5189 .proc_handler = proc_dointvec, 5190 }, 5191 { 5192 .procname = "nr_overcommit_hugepages", 5193 .data = NULL, 5194 .maxlen = sizeof(unsigned long), 5195 .mode = 0644, 5196 .proc_handler = hugetlb_overcommit_handler, 5197 }, 5198 }; 5199 5200 static void __init hugetlb_sysctl_init(void) 5201 { 5202 register_sysctl_init("vm", hugetlb_table); 5203 } 5204 #endif /* CONFIG_SYSCTL */ 5205 5206 void hugetlb_report_meminfo(struct seq_file *m) 5207 { 5208 struct hstate *h; 5209 unsigned long total = 0; 5210 5211 if (!hugepages_supported()) 5212 return; 5213 5214 for_each_hstate(h) { 5215 unsigned long count = h->nr_huge_pages; 5216 5217 total += huge_page_size(h) * count; 5218 5219 if (h == &default_hstate) 5220 seq_printf(m, 5221 "HugePages_Total: %5lu\n" 5222 "HugePages_Free: %5lu\n" 5223 "HugePages_Rsvd: %5lu\n" 5224 "HugePages_Surp: %5lu\n" 5225 "Hugepagesize: %8lu kB\n", 5226 count, 5227 h->free_huge_pages, 5228 h->resv_huge_pages, 5229 h->surplus_huge_pages, 5230 huge_page_size(h) / SZ_1K); 5231 } 5232 5233 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K); 5234 } 5235 5236 int hugetlb_report_node_meminfo(char *buf, int len, int nid) 5237 { 5238 struct hstate *h = &default_hstate; 5239 5240 if (!hugepages_supported()) 5241 return 0; 5242 5243 return sysfs_emit_at(buf, len, 5244 "Node %d HugePages_Total: %5u\n" 5245 "Node %d HugePages_Free: %5u\n" 5246 "Node %d HugePages_Surp: %5u\n", 5247 nid, h->nr_huge_pages_node[nid], 5248 nid, h->free_huge_pages_node[nid], 5249 nid, h->surplus_huge_pages_node[nid]); 5250 } 5251 5252 void hugetlb_show_meminfo_node(int nid) 5253 { 5254 struct hstate *h; 5255 5256 if (!hugepages_supported()) 5257 return; 5258 5259 for_each_hstate(h) 5260 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n", 5261 nid, 5262 h->nr_huge_pages_node[nid], 5263 h->free_huge_pages_node[nid], 5264 h->surplus_huge_pages_node[nid], 5265 huge_page_size(h) / SZ_1K); 5266 } 5267 5268 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm) 5269 { 5270 seq_printf(m, "HugetlbPages:\t%8lu kB\n", 5271 K(atomic_long_read(&mm->hugetlb_usage))); 5272 } 5273 5274 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ 5275 unsigned long hugetlb_total_pages(void) 5276 { 5277 struct hstate *h; 5278 unsigned long nr_total_pages = 0; 5279 5280 for_each_hstate(h) 5281 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h); 5282 return nr_total_pages; 5283 } 5284 5285 static int hugetlb_acct_memory(struct hstate *h, long delta) 5286 { 5287 int ret = -ENOMEM; 5288 5289 if (!delta) 5290 return 0; 5291 5292 spin_lock_irq(&hugetlb_lock); 5293 /* 5294 * When cpuset is configured, it breaks the strict hugetlb page 5295 * reservation as the accounting is done on a global variable. Such 5296 * reservation is completely rubbish in the presence of cpuset because 5297 * the reservation is not checked against page availability for the 5298 * current cpuset. Application can still potentially OOM'ed by kernel 5299 * with lack of free htlb page in cpuset that the task is in. 5300 * Attempt to enforce strict accounting with cpuset is almost 5301 * impossible (or too ugly) because cpuset is too fluid that 5302 * task or memory node can be dynamically moved between cpusets. 5303 * 5304 * The change of semantics for shared hugetlb mapping with cpuset is 5305 * undesirable. However, in order to preserve some of the semantics, 5306 * we fall back to check against current free page availability as 5307 * a best attempt and hopefully to minimize the impact of changing 5308 * semantics that cpuset has. 5309 * 5310 * Apart from cpuset, we also have memory policy mechanism that 5311 * also determines from which node the kernel will allocate memory 5312 * in a NUMA system. So similar to cpuset, we also should consider 5313 * the memory policy of the current task. Similar to the description 5314 * above. 5315 */ 5316 if (delta > 0) { 5317 if (gather_surplus_pages(h, delta) < 0) 5318 goto out; 5319 5320 if (delta > allowed_mems_nr(h)) { 5321 return_unused_surplus_pages(h, delta); 5322 goto out; 5323 } 5324 } 5325 5326 ret = 0; 5327 if (delta < 0) 5328 return_unused_surplus_pages(h, (unsigned long) -delta); 5329 5330 out: 5331 spin_unlock_irq(&hugetlb_lock); 5332 return ret; 5333 } 5334 5335 static void hugetlb_vm_op_open(struct vm_area_struct *vma) 5336 { 5337 struct resv_map *resv = vma_resv_map(vma); 5338 5339 /* 5340 * HPAGE_RESV_OWNER indicates a private mapping. 5341 * This new VMA should share its siblings reservation map if present. 5342 * The VMA will only ever have a valid reservation map pointer where 5343 * it is being copied for another still existing VMA. As that VMA 5344 * has a reference to the reservation map it cannot disappear until 5345 * after this open call completes. It is therefore safe to take a 5346 * new reference here without additional locking. 5347 */ 5348 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 5349 resv_map_dup_hugetlb_cgroup_uncharge_info(resv); 5350 kref_get(&resv->refs); 5351 } 5352 5353 /* 5354 * vma_lock structure for sharable mappings is vma specific. 5355 * Clear old pointer (if copied via vm_area_dup) and allocate 5356 * new structure. Before clearing, make sure vma_lock is not 5357 * for this vma. 5358 */ 5359 if (vma->vm_flags & VM_MAYSHARE) { 5360 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 5361 5362 if (vma_lock) { 5363 if (vma_lock->vma != vma) { 5364 vma->vm_private_data = NULL; 5365 hugetlb_vma_lock_alloc(vma); 5366 } else 5367 pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__); 5368 } else 5369 hugetlb_vma_lock_alloc(vma); 5370 } 5371 } 5372 5373 static void hugetlb_vm_op_close(struct vm_area_struct *vma) 5374 { 5375 struct hstate *h = hstate_vma(vma); 5376 struct resv_map *resv; 5377 struct hugepage_subpool *spool = subpool_vma(vma); 5378 unsigned long reserve, start, end; 5379 long gbl_reserve; 5380 5381 hugetlb_vma_lock_free(vma); 5382 5383 resv = vma_resv_map(vma); 5384 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 5385 return; 5386 5387 start = vma_hugecache_offset(h, vma, vma->vm_start); 5388 end = vma_hugecache_offset(h, vma, vma->vm_end); 5389 5390 reserve = (end - start) - region_count(resv, start, end); 5391 hugetlb_cgroup_uncharge_counter(resv, start, end); 5392 if (reserve) { 5393 /* 5394 * Decrement reserve counts. The global reserve count may be 5395 * adjusted if the subpool has a minimum size. 5396 */ 5397 gbl_reserve = hugepage_subpool_put_pages(spool, reserve); 5398 hugetlb_acct_memory(h, -gbl_reserve); 5399 } 5400 5401 kref_put(&resv->refs, resv_map_release); 5402 } 5403 5404 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr) 5405 { 5406 if (addr & ~(huge_page_mask(hstate_vma(vma)))) 5407 return -EINVAL; 5408 return 0; 5409 } 5410 5411 void hugetlb_split(struct vm_area_struct *vma, unsigned long addr) 5412 { 5413 /* 5414 * PMD sharing is only possible for PUD_SIZE-aligned address ranges 5415 * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this 5416 * split, unshare PMDs in the PUD_SIZE interval surrounding addr now. 5417 * This function is called in the middle of a VMA split operation, with 5418 * MM, VMA and rmap all write-locked to prevent concurrent page table 5419 * walks (except hardware and gup_fast()). 5420 */ 5421 vma_assert_write_locked(vma); 5422 i_mmap_assert_write_locked(vma->vm_file->f_mapping); 5423 5424 if (addr & ~PUD_MASK) { 5425 unsigned long floor = addr & PUD_MASK; 5426 unsigned long ceil = floor + PUD_SIZE; 5427 5428 if (floor >= vma->vm_start && ceil <= vma->vm_end) { 5429 /* 5430 * Locking: 5431 * Use take_locks=false here. 5432 * The file rmap lock is already held. 5433 * The hugetlb VMA lock can't be taken when we already 5434 * hold the file rmap lock, and we don't need it because 5435 * its purpose is to synchronize against concurrent page 5436 * table walks, which are not possible thanks to the 5437 * locks held by our caller. 5438 */ 5439 hugetlb_unshare_pmds(vma, floor, ceil, /* take_locks = */ false); 5440 } 5441 } 5442 } 5443 5444 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma) 5445 { 5446 return huge_page_size(hstate_vma(vma)); 5447 } 5448 5449 /* 5450 * We cannot handle pagefaults against hugetlb pages at all. They cause 5451 * handle_mm_fault() to try to instantiate regular-sized pages in the 5452 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get 5453 * this far. 5454 */ 5455 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf) 5456 { 5457 BUG(); 5458 return 0; 5459 } 5460 5461 /* 5462 * When a new function is introduced to vm_operations_struct and added 5463 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops. 5464 * This is because under System V memory model, mappings created via 5465 * shmget/shmat with "huge page" specified are backed by hugetlbfs files, 5466 * their original vm_ops are overwritten with shm_vm_ops. 5467 */ 5468 const struct vm_operations_struct hugetlb_vm_ops = { 5469 .fault = hugetlb_vm_op_fault, 5470 .open = hugetlb_vm_op_open, 5471 .close = hugetlb_vm_op_close, 5472 .may_split = hugetlb_vm_op_split, 5473 .pagesize = hugetlb_vm_op_pagesize, 5474 }; 5475 5476 static pte_t make_huge_pte(struct vm_area_struct *vma, struct folio *folio, 5477 bool try_mkwrite) 5478 { 5479 pte_t entry = folio_mk_pte(folio, vma->vm_page_prot); 5480 unsigned int shift = huge_page_shift(hstate_vma(vma)); 5481 5482 if (try_mkwrite && (vma->vm_flags & VM_WRITE)) { 5483 entry = pte_mkwrite_novma(pte_mkdirty(entry)); 5484 } else { 5485 entry = pte_wrprotect(entry); 5486 } 5487 entry = pte_mkyoung(entry); 5488 entry = arch_make_huge_pte(entry, shift, vma->vm_flags); 5489 5490 return entry; 5491 } 5492 5493 static void set_huge_ptep_writable(struct vm_area_struct *vma, 5494 unsigned long address, pte_t *ptep) 5495 { 5496 pte_t entry; 5497 5498 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(vma->vm_mm, address, ptep))); 5499 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) 5500 update_mmu_cache(vma, address, ptep); 5501 } 5502 5503 static void set_huge_ptep_maybe_writable(struct vm_area_struct *vma, 5504 unsigned long address, pte_t *ptep) 5505 { 5506 if (vma->vm_flags & VM_WRITE) 5507 set_huge_ptep_writable(vma, address, ptep); 5508 } 5509 5510 bool is_hugetlb_entry_migration(pte_t pte) 5511 { 5512 swp_entry_t swp; 5513 5514 if (huge_pte_none(pte) || pte_present(pte)) 5515 return false; 5516 swp = pte_to_swp_entry(pte); 5517 if (is_migration_entry(swp)) 5518 return true; 5519 else 5520 return false; 5521 } 5522 5523 bool is_hugetlb_entry_hwpoisoned(pte_t pte) 5524 { 5525 swp_entry_t swp; 5526 5527 if (huge_pte_none(pte) || pte_present(pte)) 5528 return false; 5529 swp = pte_to_swp_entry(pte); 5530 if (is_hwpoison_entry(swp)) 5531 return true; 5532 else 5533 return false; 5534 } 5535 5536 static void 5537 hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr, 5538 struct folio *new_folio, pte_t old, unsigned long sz) 5539 { 5540 pte_t newpte = make_huge_pte(vma, new_folio, true); 5541 5542 __folio_mark_uptodate(new_folio); 5543 hugetlb_add_new_anon_rmap(new_folio, vma, addr); 5544 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(old)) 5545 newpte = huge_pte_mkuffd_wp(newpte); 5546 set_huge_pte_at(vma->vm_mm, addr, ptep, newpte, sz); 5547 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm); 5548 folio_set_hugetlb_migratable(new_folio); 5549 } 5550 5551 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, 5552 struct vm_area_struct *dst_vma, 5553 struct vm_area_struct *src_vma) 5554 { 5555 pte_t *src_pte, *dst_pte, entry; 5556 struct folio *pte_folio; 5557 unsigned long addr; 5558 bool cow = is_cow_mapping(src_vma->vm_flags); 5559 struct hstate *h = hstate_vma(src_vma); 5560 unsigned long sz = huge_page_size(h); 5561 unsigned long npages = pages_per_huge_page(h); 5562 struct mmu_notifier_range range; 5563 unsigned long last_addr_mask; 5564 int ret = 0; 5565 5566 if (cow) { 5567 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src, 5568 src_vma->vm_start, 5569 src_vma->vm_end); 5570 mmu_notifier_invalidate_range_start(&range); 5571 vma_assert_write_locked(src_vma); 5572 raw_write_seqcount_begin(&src->write_protect_seq); 5573 } else { 5574 /* 5575 * For shared mappings the vma lock must be held before 5576 * calling hugetlb_walk() in the src vma. Otherwise, the 5577 * returned ptep could go away if part of a shared pmd and 5578 * another thread calls huge_pmd_unshare. 5579 */ 5580 hugetlb_vma_lock_read(src_vma); 5581 } 5582 5583 last_addr_mask = hugetlb_mask_last_page(h); 5584 for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) { 5585 spinlock_t *src_ptl, *dst_ptl; 5586 src_pte = hugetlb_walk(src_vma, addr, sz); 5587 if (!src_pte) { 5588 addr |= last_addr_mask; 5589 continue; 5590 } 5591 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz); 5592 if (!dst_pte) { 5593 ret = -ENOMEM; 5594 break; 5595 } 5596 5597 /* 5598 * If the pagetables are shared don't copy or take references. 5599 * 5600 * dst_pte == src_pte is the common case of src/dest sharing. 5601 * However, src could have 'unshared' and dst shares with 5602 * another vma. So page_count of ptep page is checked instead 5603 * to reliably determine whether pte is shared. 5604 */ 5605 if (page_count(virt_to_page(dst_pte)) > 1) { 5606 addr |= last_addr_mask; 5607 continue; 5608 } 5609 5610 dst_ptl = huge_pte_lock(h, dst, dst_pte); 5611 src_ptl = huge_pte_lockptr(h, src, src_pte); 5612 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 5613 entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte); 5614 again: 5615 if (huge_pte_none(entry)) { 5616 /* 5617 * Skip if src entry none. 5618 */ 5619 ; 5620 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) { 5621 if (!userfaultfd_wp(dst_vma)) 5622 entry = huge_pte_clear_uffd_wp(entry); 5623 set_huge_pte_at(dst, addr, dst_pte, entry, sz); 5624 } else if (unlikely(is_hugetlb_entry_migration(entry))) { 5625 swp_entry_t swp_entry = pte_to_swp_entry(entry); 5626 bool uffd_wp = pte_swp_uffd_wp(entry); 5627 5628 if (!is_readable_migration_entry(swp_entry) && cow) { 5629 /* 5630 * COW mappings require pages in both 5631 * parent and child to be set to read. 5632 */ 5633 swp_entry = make_readable_migration_entry( 5634 swp_offset(swp_entry)); 5635 entry = swp_entry_to_pte(swp_entry); 5636 if (userfaultfd_wp(src_vma) && uffd_wp) 5637 entry = pte_swp_mkuffd_wp(entry); 5638 set_huge_pte_at(src, addr, src_pte, entry, sz); 5639 } 5640 if (!userfaultfd_wp(dst_vma)) 5641 entry = huge_pte_clear_uffd_wp(entry); 5642 set_huge_pte_at(dst, addr, dst_pte, entry, sz); 5643 } else if (unlikely(is_pte_marker(entry))) { 5644 pte_marker marker = copy_pte_marker( 5645 pte_to_swp_entry(entry), dst_vma); 5646 5647 if (marker) 5648 set_huge_pte_at(dst, addr, dst_pte, 5649 make_pte_marker(marker), sz); 5650 } else { 5651 entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte); 5652 pte_folio = page_folio(pte_page(entry)); 5653 folio_get(pte_folio); 5654 5655 /* 5656 * Failing to duplicate the anon rmap is a rare case 5657 * where we see pinned hugetlb pages while they're 5658 * prone to COW. We need to do the COW earlier during 5659 * fork. 5660 * 5661 * When pre-allocating the page or copying data, we 5662 * need to be without the pgtable locks since we could 5663 * sleep during the process. 5664 */ 5665 if (!folio_test_anon(pte_folio)) { 5666 hugetlb_add_file_rmap(pte_folio); 5667 } else if (hugetlb_try_dup_anon_rmap(pte_folio, src_vma)) { 5668 pte_t src_pte_old = entry; 5669 struct folio *new_folio; 5670 5671 spin_unlock(src_ptl); 5672 spin_unlock(dst_ptl); 5673 /* Do not use reserve as it's private owned */ 5674 new_folio = alloc_hugetlb_folio(dst_vma, addr, false); 5675 if (IS_ERR(new_folio)) { 5676 folio_put(pte_folio); 5677 ret = PTR_ERR(new_folio); 5678 break; 5679 } 5680 ret = copy_user_large_folio(new_folio, pte_folio, 5681 addr, dst_vma); 5682 folio_put(pte_folio); 5683 if (ret) { 5684 folio_put(new_folio); 5685 break; 5686 } 5687 5688 /* Install the new hugetlb folio if src pte stable */ 5689 dst_ptl = huge_pte_lock(h, dst, dst_pte); 5690 src_ptl = huge_pte_lockptr(h, src, src_pte); 5691 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 5692 entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte); 5693 if (!pte_same(src_pte_old, entry)) { 5694 restore_reserve_on_error(h, dst_vma, addr, 5695 new_folio); 5696 folio_put(new_folio); 5697 /* huge_ptep of dst_pte won't change as in child */ 5698 goto again; 5699 } 5700 hugetlb_install_folio(dst_vma, dst_pte, addr, 5701 new_folio, src_pte_old, sz); 5702 spin_unlock(src_ptl); 5703 spin_unlock(dst_ptl); 5704 continue; 5705 } 5706 5707 if (cow) { 5708 /* 5709 * No need to notify as we are downgrading page 5710 * table protection not changing it to point 5711 * to a new page. 5712 * 5713 * See Documentation/mm/mmu_notifier.rst 5714 */ 5715 huge_ptep_set_wrprotect(src, addr, src_pte); 5716 entry = huge_pte_wrprotect(entry); 5717 } 5718 5719 if (!userfaultfd_wp(dst_vma)) 5720 entry = huge_pte_clear_uffd_wp(entry); 5721 5722 set_huge_pte_at(dst, addr, dst_pte, entry, sz); 5723 hugetlb_count_add(npages, dst); 5724 } 5725 spin_unlock(src_ptl); 5726 spin_unlock(dst_ptl); 5727 } 5728 5729 if (cow) { 5730 raw_write_seqcount_end(&src->write_protect_seq); 5731 mmu_notifier_invalidate_range_end(&range); 5732 } else { 5733 hugetlb_vma_unlock_read(src_vma); 5734 } 5735 5736 return ret; 5737 } 5738 5739 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr, 5740 unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte, 5741 unsigned long sz) 5742 { 5743 bool need_clear_uffd_wp = vma_has_uffd_without_event_remap(vma); 5744 struct hstate *h = hstate_vma(vma); 5745 struct mm_struct *mm = vma->vm_mm; 5746 spinlock_t *src_ptl, *dst_ptl; 5747 pte_t pte; 5748 5749 dst_ptl = huge_pte_lock(h, mm, dst_pte); 5750 src_ptl = huge_pte_lockptr(h, mm, src_pte); 5751 5752 /* 5753 * We don't have to worry about the ordering of src and dst ptlocks 5754 * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock. 5755 */ 5756 if (src_ptl != dst_ptl) 5757 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 5758 5759 pte = huge_ptep_get_and_clear(mm, old_addr, src_pte, sz); 5760 5761 if (need_clear_uffd_wp && pte_marker_uffd_wp(pte)) 5762 huge_pte_clear(mm, new_addr, dst_pte, sz); 5763 else { 5764 if (need_clear_uffd_wp) { 5765 if (pte_present(pte)) 5766 pte = huge_pte_clear_uffd_wp(pte); 5767 else if (is_swap_pte(pte)) 5768 pte = pte_swp_clear_uffd_wp(pte); 5769 } 5770 set_huge_pte_at(mm, new_addr, dst_pte, pte, sz); 5771 } 5772 5773 if (src_ptl != dst_ptl) 5774 spin_unlock(src_ptl); 5775 spin_unlock(dst_ptl); 5776 } 5777 5778 int move_hugetlb_page_tables(struct vm_area_struct *vma, 5779 struct vm_area_struct *new_vma, 5780 unsigned long old_addr, unsigned long new_addr, 5781 unsigned long len) 5782 { 5783 struct hstate *h = hstate_vma(vma); 5784 struct address_space *mapping = vma->vm_file->f_mapping; 5785 unsigned long sz = huge_page_size(h); 5786 struct mm_struct *mm = vma->vm_mm; 5787 unsigned long old_end = old_addr + len; 5788 unsigned long last_addr_mask; 5789 pte_t *src_pte, *dst_pte; 5790 struct mmu_notifier_range range; 5791 bool shared_pmd = false; 5792 5793 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr, 5794 old_end); 5795 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 5796 /* 5797 * In case of shared PMDs, we should cover the maximum possible 5798 * range. 5799 */ 5800 flush_cache_range(vma, range.start, range.end); 5801 5802 mmu_notifier_invalidate_range_start(&range); 5803 last_addr_mask = hugetlb_mask_last_page(h); 5804 /* Prevent race with file truncation */ 5805 hugetlb_vma_lock_write(vma); 5806 i_mmap_lock_write(mapping); 5807 for (; old_addr < old_end; old_addr += sz, new_addr += sz) { 5808 src_pte = hugetlb_walk(vma, old_addr, sz); 5809 if (!src_pte) { 5810 old_addr |= last_addr_mask; 5811 new_addr |= last_addr_mask; 5812 continue; 5813 } 5814 if (huge_pte_none(huge_ptep_get(mm, old_addr, src_pte))) 5815 continue; 5816 5817 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) { 5818 shared_pmd = true; 5819 old_addr |= last_addr_mask; 5820 new_addr |= last_addr_mask; 5821 continue; 5822 } 5823 5824 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz); 5825 if (!dst_pte) 5826 break; 5827 5828 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte, sz); 5829 } 5830 5831 if (shared_pmd) 5832 flush_hugetlb_tlb_range(vma, range.start, range.end); 5833 else 5834 flush_hugetlb_tlb_range(vma, old_end - len, old_end); 5835 mmu_notifier_invalidate_range_end(&range); 5836 i_mmap_unlock_write(mapping); 5837 hugetlb_vma_unlock_write(vma); 5838 5839 return len + old_addr - old_end; 5840 } 5841 5842 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma, 5843 unsigned long start, unsigned long end, 5844 struct folio *folio, zap_flags_t zap_flags) 5845 { 5846 struct mm_struct *mm = vma->vm_mm; 5847 const bool folio_provided = !!folio; 5848 unsigned long address; 5849 pte_t *ptep; 5850 pte_t pte; 5851 spinlock_t *ptl; 5852 struct hstate *h = hstate_vma(vma); 5853 unsigned long sz = huge_page_size(h); 5854 bool adjust_reservation = false; 5855 unsigned long last_addr_mask; 5856 bool force_flush = false; 5857 5858 WARN_ON(!is_vm_hugetlb_page(vma)); 5859 BUG_ON(start & ~huge_page_mask(h)); 5860 BUG_ON(end & ~huge_page_mask(h)); 5861 5862 /* 5863 * This is a hugetlb vma, all the pte entries should point 5864 * to huge page. 5865 */ 5866 tlb_change_page_size(tlb, sz); 5867 tlb_start_vma(tlb, vma); 5868 5869 last_addr_mask = hugetlb_mask_last_page(h); 5870 address = start; 5871 for (; address < end; address += sz) { 5872 ptep = hugetlb_walk(vma, address, sz); 5873 if (!ptep) { 5874 address |= last_addr_mask; 5875 continue; 5876 } 5877 5878 ptl = huge_pte_lock(h, mm, ptep); 5879 if (huge_pmd_unshare(mm, vma, address, ptep)) { 5880 spin_unlock(ptl); 5881 tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE); 5882 force_flush = true; 5883 address |= last_addr_mask; 5884 continue; 5885 } 5886 5887 pte = huge_ptep_get(mm, address, ptep); 5888 if (huge_pte_none(pte)) { 5889 spin_unlock(ptl); 5890 continue; 5891 } 5892 5893 /* 5894 * Migrating hugepage or HWPoisoned hugepage is already 5895 * unmapped and its refcount is dropped, so just clear pte here. 5896 */ 5897 if (unlikely(!pte_present(pte))) { 5898 /* 5899 * If the pte was wr-protected by uffd-wp in any of the 5900 * swap forms, meanwhile the caller does not want to 5901 * drop the uffd-wp bit in this zap, then replace the 5902 * pte with a marker. 5903 */ 5904 if (pte_swp_uffd_wp_any(pte) && 5905 !(zap_flags & ZAP_FLAG_DROP_MARKER)) 5906 set_huge_pte_at(mm, address, ptep, 5907 make_pte_marker(PTE_MARKER_UFFD_WP), 5908 sz); 5909 else 5910 huge_pte_clear(mm, address, ptep, sz); 5911 spin_unlock(ptl); 5912 continue; 5913 } 5914 5915 /* 5916 * If a folio is supplied, it is because a specific 5917 * folio is being unmapped, not a range. Ensure the folio we 5918 * are about to unmap is the actual folio of interest. 5919 */ 5920 if (folio_provided) { 5921 if (folio != page_folio(pte_page(pte))) { 5922 spin_unlock(ptl); 5923 continue; 5924 } 5925 /* 5926 * Mark the VMA as having unmapped its page so that 5927 * future faults in this VMA will fail rather than 5928 * looking like data was lost 5929 */ 5930 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); 5931 } else { 5932 folio = page_folio(pte_page(pte)); 5933 } 5934 5935 pte = huge_ptep_get_and_clear(mm, address, ptep, sz); 5936 tlb_remove_huge_tlb_entry(h, tlb, ptep, address); 5937 if (huge_pte_dirty(pte)) 5938 folio_mark_dirty(folio); 5939 /* Leave a uffd-wp pte marker if needed */ 5940 if (huge_pte_uffd_wp(pte) && 5941 !(zap_flags & ZAP_FLAG_DROP_MARKER)) 5942 set_huge_pte_at(mm, address, ptep, 5943 make_pte_marker(PTE_MARKER_UFFD_WP), 5944 sz); 5945 hugetlb_count_sub(pages_per_huge_page(h), mm); 5946 hugetlb_remove_rmap(folio); 5947 5948 /* 5949 * Restore the reservation for anonymous page, otherwise the 5950 * backing page could be stolen by someone. 5951 * If there we are freeing a surplus, do not set the restore 5952 * reservation bit. 5953 */ 5954 if (!h->surplus_huge_pages && __vma_private_lock(vma) && 5955 folio_test_anon(folio)) { 5956 folio_set_hugetlb_restore_reserve(folio); 5957 /* Reservation to be adjusted after the spin lock */ 5958 adjust_reservation = true; 5959 } 5960 5961 spin_unlock(ptl); 5962 5963 /* 5964 * Adjust the reservation for the region that will have the 5965 * reserve restored. Keep in mind that vma_needs_reservation() changes 5966 * resv->adds_in_progress if it succeeds. If this is not done, 5967 * do_exit() will not see it, and will keep the reservation 5968 * forever. 5969 */ 5970 if (adjust_reservation) { 5971 int rc = vma_needs_reservation(h, vma, address); 5972 5973 if (rc < 0) 5974 /* Pressumably allocate_file_region_entries failed 5975 * to allocate a file_region struct. Clear 5976 * hugetlb_restore_reserve so that global reserve 5977 * count will not be incremented by free_huge_folio. 5978 * Act as if we consumed the reservation. 5979 */ 5980 folio_clear_hugetlb_restore_reserve(folio); 5981 else if (rc) 5982 vma_add_reservation(h, vma, address); 5983 } 5984 5985 tlb_remove_page_size(tlb, folio_page(folio, 0), 5986 folio_size(folio)); 5987 /* 5988 * If we were instructed to unmap a specific folio, we're done. 5989 */ 5990 if (folio_provided) 5991 break; 5992 } 5993 tlb_end_vma(tlb, vma); 5994 5995 /* 5996 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We 5997 * could defer the flush until now, since by holding i_mmap_rwsem we 5998 * guaranteed that the last refernece would not be dropped. But we must 5999 * do the flushing before we return, as otherwise i_mmap_rwsem will be 6000 * dropped and the last reference to the shared PMDs page might be 6001 * dropped as well. 6002 * 6003 * In theory we could defer the freeing of the PMD pages as well, but 6004 * huge_pmd_unshare() relies on the exact page_count for the PMD page to 6005 * detect sharing, so we cannot defer the release of the page either. 6006 * Instead, do flush now. 6007 */ 6008 if (force_flush) 6009 tlb_flush_mmu_tlbonly(tlb); 6010 } 6011 6012 void __hugetlb_zap_begin(struct vm_area_struct *vma, 6013 unsigned long *start, unsigned long *end) 6014 { 6015 if (!vma->vm_file) /* hugetlbfs_file_mmap error */ 6016 return; 6017 6018 adjust_range_if_pmd_sharing_possible(vma, start, end); 6019 hugetlb_vma_lock_write(vma); 6020 if (vma->vm_file) 6021 i_mmap_lock_write(vma->vm_file->f_mapping); 6022 } 6023 6024 void __hugetlb_zap_end(struct vm_area_struct *vma, 6025 struct zap_details *details) 6026 { 6027 zap_flags_t zap_flags = details ? details->zap_flags : 0; 6028 6029 if (!vma->vm_file) /* hugetlbfs_file_mmap error */ 6030 return; 6031 6032 if (zap_flags & ZAP_FLAG_UNMAP) { /* final unmap */ 6033 /* 6034 * Unlock and free the vma lock before releasing i_mmap_rwsem. 6035 * When the vma_lock is freed, this makes the vma ineligible 6036 * for pmd sharing. And, i_mmap_rwsem is required to set up 6037 * pmd sharing. This is important as page tables for this 6038 * unmapped range will be asynchrously deleted. If the page 6039 * tables are shared, there will be issues when accessed by 6040 * someone else. 6041 */ 6042 __hugetlb_vma_unlock_write_free(vma); 6043 } else { 6044 hugetlb_vma_unlock_write(vma); 6045 } 6046 6047 if (vma->vm_file) 6048 i_mmap_unlock_write(vma->vm_file->f_mapping); 6049 } 6050 6051 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, 6052 unsigned long end, struct folio *folio, 6053 zap_flags_t zap_flags) 6054 { 6055 struct mmu_notifier_range range; 6056 struct mmu_gather tlb; 6057 6058 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 6059 start, end); 6060 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 6061 mmu_notifier_invalidate_range_start(&range); 6062 tlb_gather_mmu(&tlb, vma->vm_mm); 6063 6064 __unmap_hugepage_range(&tlb, vma, start, end, 6065 folio, zap_flags); 6066 6067 mmu_notifier_invalidate_range_end(&range); 6068 tlb_finish_mmu(&tlb); 6069 } 6070 6071 /* 6072 * This is called when the original mapper is failing to COW a MAP_PRIVATE 6073 * mapping it owns the reserve page for. The intention is to unmap the page 6074 * from other VMAs and let the children be SIGKILLed if they are faulting the 6075 * same region. 6076 */ 6077 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, 6078 struct folio *folio, unsigned long address) 6079 { 6080 struct hstate *h = hstate_vma(vma); 6081 struct vm_area_struct *iter_vma; 6082 struct address_space *mapping; 6083 pgoff_t pgoff; 6084 6085 /* 6086 * vm_pgoff is in PAGE_SIZE units, hence the different calculation 6087 * from page cache lookup which is in HPAGE_SIZE units. 6088 */ 6089 address = address & huge_page_mask(h); 6090 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + 6091 vma->vm_pgoff; 6092 mapping = vma->vm_file->f_mapping; 6093 6094 /* 6095 * Take the mapping lock for the duration of the table walk. As 6096 * this mapping should be shared between all the VMAs, 6097 * __unmap_hugepage_range() is called as the lock is already held 6098 */ 6099 i_mmap_lock_write(mapping); 6100 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) { 6101 /* Do not unmap the current VMA */ 6102 if (iter_vma == vma) 6103 continue; 6104 6105 /* 6106 * Shared VMAs have their own reserves and do not affect 6107 * MAP_PRIVATE accounting but it is possible that a shared 6108 * VMA is using the same page so check and skip such VMAs. 6109 */ 6110 if (iter_vma->vm_flags & VM_MAYSHARE) 6111 continue; 6112 6113 /* 6114 * Unmap the page from other VMAs without their own reserves. 6115 * They get marked to be SIGKILLed if they fault in these 6116 * areas. This is because a future no-page fault on this VMA 6117 * could insert a zeroed page instead of the data existing 6118 * from the time of fork. This would look like data corruption 6119 */ 6120 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) 6121 unmap_hugepage_range(iter_vma, address, 6122 address + huge_page_size(h), 6123 folio, 0); 6124 } 6125 i_mmap_unlock_write(mapping); 6126 } 6127 6128 /* 6129 * hugetlb_wp() should be called with page lock of the original hugepage held. 6130 * Called with hugetlb_fault_mutex_table held and pte_page locked so we 6131 * cannot race with other handlers or page migration. 6132 * Keep the pte_same checks anyway to make transition from the mutex easier. 6133 */ 6134 static vm_fault_t hugetlb_wp(struct vm_fault *vmf) 6135 { 6136 struct vm_area_struct *vma = vmf->vma; 6137 struct mm_struct *mm = vma->vm_mm; 6138 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 6139 pte_t pte = huge_ptep_get(mm, vmf->address, vmf->pte); 6140 struct hstate *h = hstate_vma(vma); 6141 struct folio *old_folio; 6142 struct folio *new_folio; 6143 bool cow_from_owner = 0; 6144 vm_fault_t ret = 0; 6145 struct mmu_notifier_range range; 6146 6147 /* 6148 * Never handle CoW for uffd-wp protected pages. It should be only 6149 * handled when the uffd-wp protection is removed. 6150 * 6151 * Note that only the CoW optimization path (in hugetlb_no_page()) 6152 * can trigger this, because hugetlb_fault() will always resolve 6153 * uffd-wp bit first. 6154 */ 6155 if (!unshare && huge_pte_uffd_wp(pte)) 6156 return 0; 6157 6158 /* Let's take out MAP_SHARED mappings first. */ 6159 if (vma->vm_flags & VM_MAYSHARE) { 6160 set_huge_ptep_writable(vma, vmf->address, vmf->pte); 6161 return 0; 6162 } 6163 6164 old_folio = page_folio(pte_page(pte)); 6165 6166 delayacct_wpcopy_start(); 6167 6168 retry_avoidcopy: 6169 /* 6170 * If no-one else is actually using this page, we're the exclusive 6171 * owner and can reuse this page. 6172 * 6173 * Note that we don't rely on the (safer) folio refcount here, because 6174 * copying the hugetlb folio when there are unexpected (temporary) 6175 * folio references could harm simple fork()+exit() users when 6176 * we run out of free hugetlb folios: we would have to kill processes 6177 * in scenarios that used to work. As a side effect, there can still 6178 * be leaks between processes, for example, with FOLL_GET users. 6179 */ 6180 if (folio_mapcount(old_folio) == 1 && folio_test_anon(old_folio)) { 6181 if (!PageAnonExclusive(&old_folio->page)) { 6182 folio_move_anon_rmap(old_folio, vma); 6183 SetPageAnonExclusive(&old_folio->page); 6184 } 6185 if (likely(!unshare)) 6186 set_huge_ptep_maybe_writable(vma, vmf->address, 6187 vmf->pte); 6188 6189 delayacct_wpcopy_end(); 6190 return 0; 6191 } 6192 VM_BUG_ON_PAGE(folio_test_anon(old_folio) && 6193 PageAnonExclusive(&old_folio->page), &old_folio->page); 6194 6195 /* 6196 * If the process that created a MAP_PRIVATE mapping is about to perform 6197 * a COW due to a shared page count, attempt to satisfy the allocation 6198 * without using the existing reserves. 6199 * In order to determine where this is a COW on a MAP_PRIVATE mapping it 6200 * is enough to check whether the old_folio is anonymous. This means that 6201 * the reserve for this address was consumed. If reserves were used, a 6202 * partial faulted mapping at the fime of fork() could consume its reserves 6203 * on COW instead of the full address range. 6204 */ 6205 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && 6206 folio_test_anon(old_folio)) 6207 cow_from_owner = true; 6208 6209 folio_get(old_folio); 6210 6211 /* 6212 * Drop page table lock as buddy allocator may be called. It will 6213 * be acquired again before returning to the caller, as expected. 6214 */ 6215 spin_unlock(vmf->ptl); 6216 new_folio = alloc_hugetlb_folio(vma, vmf->address, cow_from_owner); 6217 6218 if (IS_ERR(new_folio)) { 6219 /* 6220 * If a process owning a MAP_PRIVATE mapping fails to COW, 6221 * it is due to references held by a child and an insufficient 6222 * huge page pool. To guarantee the original mappers 6223 * reliability, unmap the page from child processes. The child 6224 * may get SIGKILLed if it later faults. 6225 */ 6226 if (cow_from_owner) { 6227 struct address_space *mapping = vma->vm_file->f_mapping; 6228 pgoff_t idx; 6229 u32 hash; 6230 6231 folio_put(old_folio); 6232 /* 6233 * Drop hugetlb_fault_mutex and vma_lock before 6234 * unmapping. unmapping needs to hold vma_lock 6235 * in write mode. Dropping vma_lock in read mode 6236 * here is OK as COW mappings do not interact with 6237 * PMD sharing. 6238 * 6239 * Reacquire both after unmap operation. 6240 */ 6241 idx = vma_hugecache_offset(h, vma, vmf->address); 6242 hash = hugetlb_fault_mutex_hash(mapping, idx); 6243 hugetlb_vma_unlock_read(vma); 6244 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6245 6246 unmap_ref_private(mm, vma, old_folio, vmf->address); 6247 6248 mutex_lock(&hugetlb_fault_mutex_table[hash]); 6249 hugetlb_vma_lock_read(vma); 6250 spin_lock(vmf->ptl); 6251 vmf->pte = hugetlb_walk(vma, vmf->address, 6252 huge_page_size(h)); 6253 if (likely(vmf->pte && 6254 pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), pte))) 6255 goto retry_avoidcopy; 6256 /* 6257 * race occurs while re-acquiring page table 6258 * lock, and our job is done. 6259 */ 6260 delayacct_wpcopy_end(); 6261 return 0; 6262 } 6263 6264 ret = vmf_error(PTR_ERR(new_folio)); 6265 goto out_release_old; 6266 } 6267 6268 /* 6269 * When the original hugepage is shared one, it does not have 6270 * anon_vma prepared. 6271 */ 6272 ret = __vmf_anon_prepare(vmf); 6273 if (unlikely(ret)) 6274 goto out_release_all; 6275 6276 if (copy_user_large_folio(new_folio, old_folio, vmf->real_address, vma)) { 6277 ret = VM_FAULT_HWPOISON_LARGE | VM_FAULT_SET_HINDEX(hstate_index(h)); 6278 goto out_release_all; 6279 } 6280 __folio_mark_uptodate(new_folio); 6281 6282 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, vmf->address, 6283 vmf->address + huge_page_size(h)); 6284 mmu_notifier_invalidate_range_start(&range); 6285 6286 /* 6287 * Retake the page table lock to check for racing updates 6288 * before the page tables are altered 6289 */ 6290 spin_lock(vmf->ptl); 6291 vmf->pte = hugetlb_walk(vma, vmf->address, huge_page_size(h)); 6292 if (likely(vmf->pte && pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), pte))) { 6293 pte_t newpte = make_huge_pte(vma, new_folio, !unshare); 6294 6295 /* Break COW or unshare */ 6296 huge_ptep_clear_flush(vma, vmf->address, vmf->pte); 6297 hugetlb_remove_rmap(old_folio); 6298 hugetlb_add_new_anon_rmap(new_folio, vma, vmf->address); 6299 if (huge_pte_uffd_wp(pte)) 6300 newpte = huge_pte_mkuffd_wp(newpte); 6301 set_huge_pte_at(mm, vmf->address, vmf->pte, newpte, 6302 huge_page_size(h)); 6303 folio_set_hugetlb_migratable(new_folio); 6304 /* Make the old page be freed below */ 6305 new_folio = old_folio; 6306 } 6307 spin_unlock(vmf->ptl); 6308 mmu_notifier_invalidate_range_end(&range); 6309 out_release_all: 6310 /* 6311 * No restore in case of successful pagetable update (Break COW or 6312 * unshare) 6313 */ 6314 if (new_folio != old_folio) 6315 restore_reserve_on_error(h, vma, vmf->address, new_folio); 6316 folio_put(new_folio); 6317 out_release_old: 6318 folio_put(old_folio); 6319 6320 spin_lock(vmf->ptl); /* Caller expects lock to be held */ 6321 6322 delayacct_wpcopy_end(); 6323 return ret; 6324 } 6325 6326 /* 6327 * Return whether there is a pagecache page to back given address within VMA. 6328 */ 6329 bool hugetlbfs_pagecache_present(struct hstate *h, 6330 struct vm_area_struct *vma, unsigned long address) 6331 { 6332 struct address_space *mapping = vma->vm_file->f_mapping; 6333 pgoff_t idx = linear_page_index(vma, address); 6334 struct folio *folio; 6335 6336 folio = filemap_get_folio(mapping, idx); 6337 if (IS_ERR(folio)) 6338 return false; 6339 folio_put(folio); 6340 return true; 6341 } 6342 6343 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping, 6344 pgoff_t idx) 6345 { 6346 struct inode *inode = mapping->host; 6347 struct hstate *h = hstate_inode(inode); 6348 int err; 6349 6350 idx <<= huge_page_order(h); 6351 __folio_set_locked(folio); 6352 err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL); 6353 6354 if (unlikely(err)) { 6355 __folio_clear_locked(folio); 6356 return err; 6357 } 6358 folio_clear_hugetlb_restore_reserve(folio); 6359 6360 /* 6361 * mark folio dirty so that it will not be removed from cache/file 6362 * by non-hugetlbfs specific code paths. 6363 */ 6364 folio_mark_dirty(folio); 6365 6366 spin_lock(&inode->i_lock); 6367 inode->i_blocks += blocks_per_huge_page(h); 6368 spin_unlock(&inode->i_lock); 6369 return 0; 6370 } 6371 6372 static inline vm_fault_t hugetlb_handle_userfault(struct vm_fault *vmf, 6373 struct address_space *mapping, 6374 unsigned long reason) 6375 { 6376 u32 hash; 6377 6378 /* 6379 * vma_lock and hugetlb_fault_mutex must be dropped before handling 6380 * userfault. Also mmap_lock could be dropped due to handling 6381 * userfault, any vma operation should be careful from here. 6382 */ 6383 hugetlb_vma_unlock_read(vmf->vma); 6384 hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff); 6385 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6386 return handle_userfault(vmf, reason); 6387 } 6388 6389 /* 6390 * Recheck pte with pgtable lock. Returns true if pte didn't change, or 6391 * false if pte changed or is changing. 6392 */ 6393 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm, unsigned long addr, 6394 pte_t *ptep, pte_t old_pte) 6395 { 6396 spinlock_t *ptl; 6397 bool same; 6398 6399 ptl = huge_pte_lock(h, mm, ptep); 6400 same = pte_same(huge_ptep_get(mm, addr, ptep), old_pte); 6401 spin_unlock(ptl); 6402 6403 return same; 6404 } 6405 6406 static vm_fault_t hugetlb_no_page(struct address_space *mapping, 6407 struct vm_fault *vmf) 6408 { 6409 u32 hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff); 6410 bool new_folio, new_anon_folio = false; 6411 struct vm_area_struct *vma = vmf->vma; 6412 struct mm_struct *mm = vma->vm_mm; 6413 struct hstate *h = hstate_vma(vma); 6414 vm_fault_t ret = VM_FAULT_SIGBUS; 6415 bool folio_locked = true; 6416 struct folio *folio; 6417 unsigned long size; 6418 pte_t new_pte; 6419 6420 /* 6421 * Currently, we are forced to kill the process in the event the 6422 * original mapper has unmapped pages from the child due to a failed 6423 * COW/unsharing. Warn that such a situation has occurred as it may not 6424 * be obvious. 6425 */ 6426 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { 6427 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n", 6428 current->pid); 6429 goto out; 6430 } 6431 6432 /* 6433 * Use page lock to guard against racing truncation 6434 * before we get page_table_lock. 6435 */ 6436 new_folio = false; 6437 folio = filemap_lock_hugetlb_folio(h, mapping, vmf->pgoff); 6438 if (IS_ERR(folio)) { 6439 size = i_size_read(mapping->host) >> huge_page_shift(h); 6440 if (vmf->pgoff >= size) 6441 goto out; 6442 /* Check for page in userfault range */ 6443 if (userfaultfd_missing(vma)) { 6444 /* 6445 * Since hugetlb_no_page() was examining pte 6446 * without pgtable lock, we need to re-test under 6447 * lock because the pte may not be stable and could 6448 * have changed from under us. Try to detect 6449 * either changed or during-changing ptes and retry 6450 * properly when needed. 6451 * 6452 * Note that userfaultfd is actually fine with 6453 * false positives (e.g. caused by pte changed), 6454 * but not wrong logical events (e.g. caused by 6455 * reading a pte during changing). The latter can 6456 * confuse the userspace, so the strictness is very 6457 * much preferred. E.g., MISSING event should 6458 * never happen on the page after UFFDIO_COPY has 6459 * correctly installed the page and returned. 6460 */ 6461 if (!hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte)) { 6462 ret = 0; 6463 goto out; 6464 } 6465 6466 return hugetlb_handle_userfault(vmf, mapping, 6467 VM_UFFD_MISSING); 6468 } 6469 6470 if (!(vma->vm_flags & VM_MAYSHARE)) { 6471 ret = __vmf_anon_prepare(vmf); 6472 if (unlikely(ret)) 6473 goto out; 6474 } 6475 6476 folio = alloc_hugetlb_folio(vma, vmf->address, false); 6477 if (IS_ERR(folio)) { 6478 /* 6479 * Returning error will result in faulting task being 6480 * sent SIGBUS. The hugetlb fault mutex prevents two 6481 * tasks from racing to fault in the same page which 6482 * could result in false unable to allocate errors. 6483 * Page migration does not take the fault mutex, but 6484 * does a clear then write of pte's under page table 6485 * lock. Page fault code could race with migration, 6486 * notice the clear pte and try to allocate a page 6487 * here. Before returning error, get ptl and make 6488 * sure there really is no pte entry. 6489 */ 6490 if (hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte)) 6491 ret = vmf_error(PTR_ERR(folio)); 6492 else 6493 ret = 0; 6494 goto out; 6495 } 6496 folio_zero_user(folio, vmf->real_address); 6497 __folio_mark_uptodate(folio); 6498 new_folio = true; 6499 6500 if (vma->vm_flags & VM_MAYSHARE) { 6501 int err = hugetlb_add_to_page_cache(folio, mapping, 6502 vmf->pgoff); 6503 if (err) { 6504 /* 6505 * err can't be -EEXIST which implies someone 6506 * else consumed the reservation since hugetlb 6507 * fault mutex is held when add a hugetlb page 6508 * to the page cache. So it's safe to call 6509 * restore_reserve_on_error() here. 6510 */ 6511 restore_reserve_on_error(h, vma, vmf->address, 6512 folio); 6513 folio_put(folio); 6514 ret = VM_FAULT_SIGBUS; 6515 goto out; 6516 } 6517 } else { 6518 new_anon_folio = true; 6519 folio_lock(folio); 6520 } 6521 } else { 6522 /* 6523 * If memory error occurs between mmap() and fault, some process 6524 * don't have hwpoisoned swap entry for errored virtual address. 6525 * So we need to block hugepage fault by PG_hwpoison bit check. 6526 */ 6527 if (unlikely(folio_test_hwpoison(folio))) { 6528 ret = VM_FAULT_HWPOISON_LARGE | 6529 VM_FAULT_SET_HINDEX(hstate_index(h)); 6530 goto backout_unlocked; 6531 } 6532 6533 /* Check for page in userfault range. */ 6534 if (userfaultfd_minor(vma)) { 6535 folio_unlock(folio); 6536 folio_put(folio); 6537 /* See comment in userfaultfd_missing() block above */ 6538 if (!hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte)) { 6539 ret = 0; 6540 goto out; 6541 } 6542 return hugetlb_handle_userfault(vmf, mapping, 6543 VM_UFFD_MINOR); 6544 } 6545 } 6546 6547 /* 6548 * If we are going to COW a private mapping later, we examine the 6549 * pending reservations for this page now. This will ensure that 6550 * any allocations necessary to record that reservation occur outside 6551 * the spinlock. 6552 */ 6553 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 6554 if (vma_needs_reservation(h, vma, vmf->address) < 0) { 6555 ret = VM_FAULT_OOM; 6556 goto backout_unlocked; 6557 } 6558 /* Just decrements count, does not deallocate */ 6559 vma_end_reservation(h, vma, vmf->address); 6560 } 6561 6562 vmf->ptl = huge_pte_lock(h, mm, vmf->pte); 6563 ret = 0; 6564 /* If pte changed from under us, retry */ 6565 if (!pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), vmf->orig_pte)) 6566 goto backout; 6567 6568 if (new_anon_folio) 6569 hugetlb_add_new_anon_rmap(folio, vma, vmf->address); 6570 else 6571 hugetlb_add_file_rmap(folio); 6572 new_pte = make_huge_pte(vma, folio, vma->vm_flags & VM_SHARED); 6573 /* 6574 * If this pte was previously wr-protected, keep it wr-protected even 6575 * if populated. 6576 */ 6577 if (unlikely(pte_marker_uffd_wp(vmf->orig_pte))) 6578 new_pte = huge_pte_mkuffd_wp(new_pte); 6579 set_huge_pte_at(mm, vmf->address, vmf->pte, new_pte, huge_page_size(h)); 6580 6581 hugetlb_count_add(pages_per_huge_page(h), mm); 6582 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 6583 /* 6584 * No need to keep file folios locked. See comment in 6585 * hugetlb_fault(). 6586 */ 6587 if (!new_anon_folio) { 6588 folio_locked = false; 6589 folio_unlock(folio); 6590 } 6591 /* Optimization, do the COW without a second fault */ 6592 ret = hugetlb_wp(vmf); 6593 } 6594 6595 spin_unlock(vmf->ptl); 6596 6597 /* 6598 * Only set hugetlb_migratable in newly allocated pages. Existing pages 6599 * found in the pagecache may not have hugetlb_migratable if they have 6600 * been isolated for migration. 6601 */ 6602 if (new_folio) 6603 folio_set_hugetlb_migratable(folio); 6604 6605 if (folio_locked) 6606 folio_unlock(folio); 6607 out: 6608 hugetlb_vma_unlock_read(vma); 6609 6610 /* 6611 * We must check to release the per-VMA lock. __vmf_anon_prepare() is 6612 * the only way ret can be set to VM_FAULT_RETRY. 6613 */ 6614 if (unlikely(ret & VM_FAULT_RETRY)) 6615 vma_end_read(vma); 6616 6617 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6618 return ret; 6619 6620 backout: 6621 spin_unlock(vmf->ptl); 6622 backout_unlocked: 6623 /* We only need to restore reservations for private mappings */ 6624 if (new_anon_folio) 6625 restore_reserve_on_error(h, vma, vmf->address, folio); 6626 6627 folio_unlock(folio); 6628 folio_put(folio); 6629 goto out; 6630 } 6631 6632 #ifdef CONFIG_SMP 6633 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 6634 { 6635 unsigned long key[2]; 6636 u32 hash; 6637 6638 key[0] = (unsigned long) mapping; 6639 key[1] = idx; 6640 6641 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0); 6642 6643 return hash & (num_fault_mutexes - 1); 6644 } 6645 #else 6646 /* 6647 * For uniprocessor systems we always use a single mutex, so just 6648 * return 0 and avoid the hashing overhead. 6649 */ 6650 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 6651 { 6652 return 0; 6653 } 6654 #endif 6655 6656 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, 6657 unsigned long address, unsigned int flags) 6658 { 6659 vm_fault_t ret; 6660 u32 hash; 6661 struct folio *folio = NULL; 6662 struct hstate *h = hstate_vma(vma); 6663 struct address_space *mapping; 6664 bool need_wait_lock = false; 6665 struct vm_fault vmf = { 6666 .vma = vma, 6667 .address = address & huge_page_mask(h), 6668 .real_address = address, 6669 .flags = flags, 6670 .pgoff = vma_hugecache_offset(h, vma, 6671 address & huge_page_mask(h)), 6672 /* TODO: Track hugetlb faults using vm_fault */ 6673 6674 /* 6675 * Some fields may not be initialized, be careful as it may 6676 * be hard to debug if called functions make assumptions 6677 */ 6678 }; 6679 6680 /* 6681 * Serialize hugepage allocation and instantiation, so that we don't 6682 * get spurious allocation failures if two CPUs race to instantiate 6683 * the same page in the page cache. 6684 */ 6685 mapping = vma->vm_file->f_mapping; 6686 hash = hugetlb_fault_mutex_hash(mapping, vmf.pgoff); 6687 mutex_lock(&hugetlb_fault_mutex_table[hash]); 6688 6689 /* 6690 * Acquire vma lock before calling huge_pte_alloc and hold 6691 * until finished with vmf.pte. This prevents huge_pmd_unshare from 6692 * being called elsewhere and making the vmf.pte no longer valid. 6693 */ 6694 hugetlb_vma_lock_read(vma); 6695 vmf.pte = huge_pte_alloc(mm, vma, vmf.address, huge_page_size(h)); 6696 if (!vmf.pte) { 6697 hugetlb_vma_unlock_read(vma); 6698 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6699 return VM_FAULT_OOM; 6700 } 6701 6702 vmf.orig_pte = huge_ptep_get(mm, vmf.address, vmf.pte); 6703 if (huge_pte_none_mostly(vmf.orig_pte)) { 6704 if (is_pte_marker(vmf.orig_pte)) { 6705 pte_marker marker = 6706 pte_marker_get(pte_to_swp_entry(vmf.orig_pte)); 6707 6708 if (marker & PTE_MARKER_POISONED) { 6709 ret = VM_FAULT_HWPOISON_LARGE | 6710 VM_FAULT_SET_HINDEX(hstate_index(h)); 6711 goto out_mutex; 6712 } else if (WARN_ON_ONCE(marker & PTE_MARKER_GUARD)) { 6713 /* This isn't supported in hugetlb. */ 6714 ret = VM_FAULT_SIGSEGV; 6715 goto out_mutex; 6716 } 6717 } 6718 6719 /* 6720 * Other PTE markers should be handled the same way as none PTE. 6721 * 6722 * hugetlb_no_page will drop vma lock and hugetlb fault 6723 * mutex internally, which make us return immediately. 6724 */ 6725 return hugetlb_no_page(mapping, &vmf); 6726 } 6727 6728 ret = 0; 6729 6730 /* Not present, either a migration or a hwpoisoned entry */ 6731 if (!pte_present(vmf.orig_pte)) { 6732 if (is_hugetlb_entry_migration(vmf.orig_pte)) { 6733 /* 6734 * Release the hugetlb fault lock now, but retain 6735 * the vma lock, because it is needed to guard the 6736 * huge_pte_lockptr() later in 6737 * migration_entry_wait_huge(). The vma lock will 6738 * be released there. 6739 */ 6740 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6741 migration_entry_wait_huge(vma, vmf.address, vmf.pte); 6742 return 0; 6743 } else if (is_hugetlb_entry_hwpoisoned(vmf.orig_pte)) 6744 ret = VM_FAULT_HWPOISON_LARGE | 6745 VM_FAULT_SET_HINDEX(hstate_index(h)); 6746 goto out_mutex; 6747 } 6748 6749 /* 6750 * If we are going to COW/unshare the mapping later, we examine the 6751 * pending reservations for this page now. This will ensure that any 6752 * allocations necessary to record that reservation occur outside the 6753 * spinlock. 6754 */ 6755 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) && 6756 !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(vmf.orig_pte)) { 6757 if (vma_needs_reservation(h, vma, vmf.address) < 0) { 6758 ret = VM_FAULT_OOM; 6759 goto out_mutex; 6760 } 6761 /* Just decrements count, does not deallocate */ 6762 vma_end_reservation(h, vma, vmf.address); 6763 } 6764 6765 vmf.ptl = huge_pte_lock(h, mm, vmf.pte); 6766 6767 /* Check for a racing update before calling hugetlb_wp() */ 6768 if (unlikely(!pte_same(vmf.orig_pte, huge_ptep_get(mm, vmf.address, vmf.pte)))) 6769 goto out_ptl; 6770 6771 /* Handle userfault-wp first, before trying to lock more pages */ 6772 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(mm, vmf.address, vmf.pte)) && 6773 (flags & FAULT_FLAG_WRITE) && !huge_pte_write(vmf.orig_pte)) { 6774 if (!userfaultfd_wp_async(vma)) { 6775 spin_unlock(vmf.ptl); 6776 hugetlb_vma_unlock_read(vma); 6777 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6778 return handle_userfault(&vmf, VM_UFFD_WP); 6779 } 6780 6781 vmf.orig_pte = huge_pte_clear_uffd_wp(vmf.orig_pte); 6782 set_huge_pte_at(mm, vmf.address, vmf.pte, vmf.orig_pte, 6783 huge_page_size(hstate_vma(vma))); 6784 /* Fallthrough to CoW */ 6785 } 6786 6787 if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) { 6788 if (!huge_pte_write(vmf.orig_pte)) { 6789 /* 6790 * Anonymous folios need to be lock since hugetlb_wp() 6791 * checks whether we can re-use the folio exclusively 6792 * for us in case we are the only user of it. 6793 */ 6794 folio = page_folio(pte_page(vmf.orig_pte)); 6795 if (folio_test_anon(folio) && !folio_trylock(folio)) { 6796 need_wait_lock = true; 6797 goto out_ptl; 6798 } 6799 folio_get(folio); 6800 ret = hugetlb_wp(&vmf); 6801 if (folio_test_anon(folio)) 6802 folio_unlock(folio); 6803 folio_put(folio); 6804 goto out_ptl; 6805 } else if (likely(flags & FAULT_FLAG_WRITE)) { 6806 vmf.orig_pte = huge_pte_mkdirty(vmf.orig_pte); 6807 } 6808 } 6809 vmf.orig_pte = pte_mkyoung(vmf.orig_pte); 6810 if (huge_ptep_set_access_flags(vma, vmf.address, vmf.pte, vmf.orig_pte, 6811 flags & FAULT_FLAG_WRITE)) 6812 update_mmu_cache(vma, vmf.address, vmf.pte); 6813 out_ptl: 6814 spin_unlock(vmf.ptl); 6815 out_mutex: 6816 hugetlb_vma_unlock_read(vma); 6817 6818 /* 6819 * We must check to release the per-VMA lock. __vmf_anon_prepare() in 6820 * hugetlb_wp() is the only way ret can be set to VM_FAULT_RETRY. 6821 */ 6822 if (unlikely(ret & VM_FAULT_RETRY)) 6823 vma_end_read(vma); 6824 6825 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6826 /* 6827 * hugetlb_wp drops all the locks, but the folio lock, before trying to 6828 * unmap the folio from other processes. During that window, if another 6829 * process mapping that folio faults in, it will take the mutex and then 6830 * it will wait on folio_lock, causing an ABBA deadlock. 6831 * Use trylock instead and bail out if we fail. 6832 * 6833 * Ideally, we should hold a refcount on the folio we wait for, but we do 6834 * not want to use the folio after it becomes unlocked, but rather just 6835 * wait for it to become unlocked, so hopefully next fault successes on 6836 * the trylock. 6837 */ 6838 if (need_wait_lock) 6839 folio_wait_locked(folio); 6840 return ret; 6841 } 6842 6843 #ifdef CONFIG_USERFAULTFD 6844 /* 6845 * Can probably be eliminated, but still used by hugetlb_mfill_atomic_pte(). 6846 */ 6847 static struct folio *alloc_hugetlb_folio_vma(struct hstate *h, 6848 struct vm_area_struct *vma, unsigned long address) 6849 { 6850 struct mempolicy *mpol; 6851 nodemask_t *nodemask; 6852 struct folio *folio; 6853 gfp_t gfp_mask; 6854 int node; 6855 6856 gfp_mask = htlb_alloc_mask(h); 6857 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 6858 /* 6859 * This is used to allocate a temporary hugetlb to hold the copied 6860 * content, which will then be copied again to the final hugetlb 6861 * consuming a reservation. Set the alloc_fallback to false to indicate 6862 * that breaking the per-node hugetlb pool is not allowed in this case. 6863 */ 6864 folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask, false); 6865 mpol_cond_put(mpol); 6866 6867 return folio; 6868 } 6869 6870 /* 6871 * Used by userfaultfd UFFDIO_* ioctls. Based on userfaultfd's mfill_atomic_pte 6872 * with modifications for hugetlb pages. 6873 */ 6874 int hugetlb_mfill_atomic_pte(pte_t *dst_pte, 6875 struct vm_area_struct *dst_vma, 6876 unsigned long dst_addr, 6877 unsigned long src_addr, 6878 uffd_flags_t flags, 6879 struct folio **foliop) 6880 { 6881 struct mm_struct *dst_mm = dst_vma->vm_mm; 6882 bool is_continue = uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE); 6883 bool wp_enabled = (flags & MFILL_ATOMIC_WP); 6884 struct hstate *h = hstate_vma(dst_vma); 6885 struct address_space *mapping = dst_vma->vm_file->f_mapping; 6886 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr); 6887 unsigned long size = huge_page_size(h); 6888 int vm_shared = dst_vma->vm_flags & VM_SHARED; 6889 pte_t _dst_pte; 6890 spinlock_t *ptl; 6891 int ret = -ENOMEM; 6892 struct folio *folio; 6893 bool folio_in_pagecache = false; 6894 6895 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_POISON)) { 6896 ptl = huge_pte_lock(h, dst_mm, dst_pte); 6897 6898 /* Don't overwrite any existing PTEs (even markers) */ 6899 if (!huge_pte_none(huge_ptep_get(dst_mm, dst_addr, dst_pte))) { 6900 spin_unlock(ptl); 6901 return -EEXIST; 6902 } 6903 6904 _dst_pte = make_pte_marker(PTE_MARKER_POISONED); 6905 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, size); 6906 6907 /* No need to invalidate - it was non-present before */ 6908 update_mmu_cache(dst_vma, dst_addr, dst_pte); 6909 6910 spin_unlock(ptl); 6911 return 0; 6912 } 6913 6914 if (is_continue) { 6915 ret = -EFAULT; 6916 folio = filemap_lock_hugetlb_folio(h, mapping, idx); 6917 if (IS_ERR(folio)) 6918 goto out; 6919 folio_in_pagecache = true; 6920 } else if (!*foliop) { 6921 /* If a folio already exists, then it's UFFDIO_COPY for 6922 * a non-missing case. Return -EEXIST. 6923 */ 6924 if (vm_shared && 6925 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) { 6926 ret = -EEXIST; 6927 goto out; 6928 } 6929 6930 folio = alloc_hugetlb_folio(dst_vma, dst_addr, false); 6931 if (IS_ERR(folio)) { 6932 ret = -ENOMEM; 6933 goto out; 6934 } 6935 6936 ret = copy_folio_from_user(folio, (const void __user *) src_addr, 6937 false); 6938 6939 /* fallback to copy_from_user outside mmap_lock */ 6940 if (unlikely(ret)) { 6941 ret = -ENOENT; 6942 /* Free the allocated folio which may have 6943 * consumed a reservation. 6944 */ 6945 restore_reserve_on_error(h, dst_vma, dst_addr, folio); 6946 folio_put(folio); 6947 6948 /* Allocate a temporary folio to hold the copied 6949 * contents. 6950 */ 6951 folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr); 6952 if (!folio) { 6953 ret = -ENOMEM; 6954 goto out; 6955 } 6956 *foliop = folio; 6957 /* Set the outparam foliop and return to the caller to 6958 * copy the contents outside the lock. Don't free the 6959 * folio. 6960 */ 6961 goto out; 6962 } 6963 } else { 6964 if (vm_shared && 6965 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) { 6966 folio_put(*foliop); 6967 ret = -EEXIST; 6968 *foliop = NULL; 6969 goto out; 6970 } 6971 6972 folio = alloc_hugetlb_folio(dst_vma, dst_addr, false); 6973 if (IS_ERR(folio)) { 6974 folio_put(*foliop); 6975 ret = -ENOMEM; 6976 *foliop = NULL; 6977 goto out; 6978 } 6979 ret = copy_user_large_folio(folio, *foliop, dst_addr, dst_vma); 6980 folio_put(*foliop); 6981 *foliop = NULL; 6982 if (ret) { 6983 folio_put(folio); 6984 goto out; 6985 } 6986 } 6987 6988 /* 6989 * If we just allocated a new page, we need a memory barrier to ensure 6990 * that preceding stores to the page become visible before the 6991 * set_pte_at() write. The memory barrier inside __folio_mark_uptodate 6992 * is what we need. 6993 * 6994 * In the case where we have not allocated a new page (is_continue), 6995 * the page must already be uptodate. UFFDIO_CONTINUE already includes 6996 * an earlier smp_wmb() to ensure that prior stores will be visible 6997 * before the set_pte_at() write. 6998 */ 6999 if (!is_continue) 7000 __folio_mark_uptodate(folio); 7001 else 7002 WARN_ON_ONCE(!folio_test_uptodate(folio)); 7003 7004 /* Add shared, newly allocated pages to the page cache. */ 7005 if (vm_shared && !is_continue) { 7006 ret = -EFAULT; 7007 if (idx >= (i_size_read(mapping->host) >> huge_page_shift(h))) 7008 goto out_release_nounlock; 7009 7010 /* 7011 * Serialization between remove_inode_hugepages() and 7012 * hugetlb_add_to_page_cache() below happens through the 7013 * hugetlb_fault_mutex_table that here must be hold by 7014 * the caller. 7015 */ 7016 ret = hugetlb_add_to_page_cache(folio, mapping, idx); 7017 if (ret) 7018 goto out_release_nounlock; 7019 folio_in_pagecache = true; 7020 } 7021 7022 ptl = huge_pte_lock(h, dst_mm, dst_pte); 7023 7024 ret = -EIO; 7025 if (folio_test_hwpoison(folio)) 7026 goto out_release_unlock; 7027 7028 /* 7029 * We allow to overwrite a pte marker: consider when both MISSING|WP 7030 * registered, we firstly wr-protect a none pte which has no page cache 7031 * page backing it, then access the page. 7032 */ 7033 ret = -EEXIST; 7034 if (!huge_pte_none_mostly(huge_ptep_get(dst_mm, dst_addr, dst_pte))) 7035 goto out_release_unlock; 7036 7037 if (folio_in_pagecache) 7038 hugetlb_add_file_rmap(folio); 7039 else 7040 hugetlb_add_new_anon_rmap(folio, dst_vma, dst_addr); 7041 7042 /* 7043 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY 7044 * with wp flag set, don't set pte write bit. 7045 */ 7046 _dst_pte = make_huge_pte(dst_vma, folio, 7047 !wp_enabled && !(is_continue && !vm_shared)); 7048 /* 7049 * Always mark UFFDIO_COPY page dirty; note that this may not be 7050 * extremely important for hugetlbfs for now since swapping is not 7051 * supported, but we should still be clear in that this page cannot be 7052 * thrown away at will, even if write bit not set. 7053 */ 7054 _dst_pte = huge_pte_mkdirty(_dst_pte); 7055 _dst_pte = pte_mkyoung(_dst_pte); 7056 7057 if (wp_enabled) 7058 _dst_pte = huge_pte_mkuffd_wp(_dst_pte); 7059 7060 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, size); 7061 7062 hugetlb_count_add(pages_per_huge_page(h), dst_mm); 7063 7064 /* No need to invalidate - it was non-present before */ 7065 update_mmu_cache(dst_vma, dst_addr, dst_pte); 7066 7067 spin_unlock(ptl); 7068 if (!is_continue) 7069 folio_set_hugetlb_migratable(folio); 7070 if (vm_shared || is_continue) 7071 folio_unlock(folio); 7072 ret = 0; 7073 out: 7074 return ret; 7075 out_release_unlock: 7076 spin_unlock(ptl); 7077 if (vm_shared || is_continue) 7078 folio_unlock(folio); 7079 out_release_nounlock: 7080 if (!folio_in_pagecache) 7081 restore_reserve_on_error(h, dst_vma, dst_addr, folio); 7082 folio_put(folio); 7083 goto out; 7084 } 7085 #endif /* CONFIG_USERFAULTFD */ 7086 7087 long hugetlb_change_protection(struct vm_area_struct *vma, 7088 unsigned long address, unsigned long end, 7089 pgprot_t newprot, unsigned long cp_flags) 7090 { 7091 struct mm_struct *mm = vma->vm_mm; 7092 unsigned long start = address; 7093 pte_t *ptep; 7094 pte_t pte; 7095 struct hstate *h = hstate_vma(vma); 7096 long pages = 0, psize = huge_page_size(h); 7097 bool shared_pmd = false; 7098 struct mmu_notifier_range range; 7099 unsigned long last_addr_mask; 7100 bool uffd_wp = cp_flags & MM_CP_UFFD_WP; 7101 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE; 7102 7103 /* 7104 * In the case of shared PMDs, the area to flush could be beyond 7105 * start/end. Set range.start/range.end to cover the maximum possible 7106 * range if PMD sharing is possible. 7107 */ 7108 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA, 7109 0, mm, start, end); 7110 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 7111 7112 BUG_ON(address >= end); 7113 flush_cache_range(vma, range.start, range.end); 7114 7115 mmu_notifier_invalidate_range_start(&range); 7116 hugetlb_vma_lock_write(vma); 7117 i_mmap_lock_write(vma->vm_file->f_mapping); 7118 last_addr_mask = hugetlb_mask_last_page(h); 7119 for (; address < end; address += psize) { 7120 spinlock_t *ptl; 7121 ptep = hugetlb_walk(vma, address, psize); 7122 if (!ptep) { 7123 if (!uffd_wp) { 7124 address |= last_addr_mask; 7125 continue; 7126 } 7127 /* 7128 * Userfaultfd wr-protect requires pgtable 7129 * pre-allocations to install pte markers. 7130 */ 7131 ptep = huge_pte_alloc(mm, vma, address, psize); 7132 if (!ptep) { 7133 pages = -ENOMEM; 7134 break; 7135 } 7136 } 7137 ptl = huge_pte_lock(h, mm, ptep); 7138 if (huge_pmd_unshare(mm, vma, address, ptep)) { 7139 /* 7140 * When uffd-wp is enabled on the vma, unshare 7141 * shouldn't happen at all. Warn about it if it 7142 * happened due to some reason. 7143 */ 7144 WARN_ON_ONCE(uffd_wp || uffd_wp_resolve); 7145 pages++; 7146 spin_unlock(ptl); 7147 shared_pmd = true; 7148 address |= last_addr_mask; 7149 continue; 7150 } 7151 pte = huge_ptep_get(mm, address, ptep); 7152 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) { 7153 /* Nothing to do. */ 7154 } else if (unlikely(is_hugetlb_entry_migration(pte))) { 7155 swp_entry_t entry = pte_to_swp_entry(pte); 7156 struct folio *folio = pfn_swap_entry_folio(entry); 7157 pte_t newpte = pte; 7158 7159 if (is_writable_migration_entry(entry)) { 7160 if (folio_test_anon(folio)) 7161 entry = make_readable_exclusive_migration_entry( 7162 swp_offset(entry)); 7163 else 7164 entry = make_readable_migration_entry( 7165 swp_offset(entry)); 7166 newpte = swp_entry_to_pte(entry); 7167 pages++; 7168 } 7169 7170 if (uffd_wp) 7171 newpte = pte_swp_mkuffd_wp(newpte); 7172 else if (uffd_wp_resolve) 7173 newpte = pte_swp_clear_uffd_wp(newpte); 7174 if (!pte_same(pte, newpte)) 7175 set_huge_pte_at(mm, address, ptep, newpte, psize); 7176 } else if (unlikely(is_pte_marker(pte))) { 7177 /* 7178 * Do nothing on a poison marker; page is 7179 * corrupted, permissons do not apply. Here 7180 * pte_marker_uffd_wp()==true implies !poison 7181 * because they're mutual exclusive. 7182 */ 7183 if (pte_marker_uffd_wp(pte) && uffd_wp_resolve) 7184 /* Safe to modify directly (non-present->none). */ 7185 huge_pte_clear(mm, address, ptep, psize); 7186 } else if (!huge_pte_none(pte)) { 7187 pte_t old_pte; 7188 unsigned int shift = huge_page_shift(hstate_vma(vma)); 7189 7190 old_pte = huge_ptep_modify_prot_start(vma, address, ptep); 7191 pte = huge_pte_modify(old_pte, newprot); 7192 pte = arch_make_huge_pte(pte, shift, vma->vm_flags); 7193 if (uffd_wp) 7194 pte = huge_pte_mkuffd_wp(pte); 7195 else if (uffd_wp_resolve) 7196 pte = huge_pte_clear_uffd_wp(pte); 7197 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte); 7198 pages++; 7199 } else { 7200 /* None pte */ 7201 if (unlikely(uffd_wp)) 7202 /* Safe to modify directly (none->non-present). */ 7203 set_huge_pte_at(mm, address, ptep, 7204 make_pte_marker(PTE_MARKER_UFFD_WP), 7205 psize); 7206 } 7207 spin_unlock(ptl); 7208 } 7209 /* 7210 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare 7211 * may have cleared our pud entry and done put_page on the page table: 7212 * once we release i_mmap_rwsem, another task can do the final put_page 7213 * and that page table be reused and filled with junk. If we actually 7214 * did unshare a page of pmds, flush the range corresponding to the pud. 7215 */ 7216 if (shared_pmd) 7217 flush_hugetlb_tlb_range(vma, range.start, range.end); 7218 else 7219 flush_hugetlb_tlb_range(vma, start, end); 7220 /* 7221 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs() we are 7222 * downgrading page table protection not changing it to point to a new 7223 * page. 7224 * 7225 * See Documentation/mm/mmu_notifier.rst 7226 */ 7227 i_mmap_unlock_write(vma->vm_file->f_mapping); 7228 hugetlb_vma_unlock_write(vma); 7229 mmu_notifier_invalidate_range_end(&range); 7230 7231 return pages > 0 ? (pages << h->order) : pages; 7232 } 7233 7234 /* 7235 * Update the reservation map for the range [from, to]. 7236 * 7237 * Returns the number of entries that would be added to the reservation map 7238 * associated with the range [from, to]. This number is greater or equal to 7239 * zero. -EINVAL or -ENOMEM is returned in case of any errors. 7240 */ 7241 7242 long hugetlb_reserve_pages(struct inode *inode, 7243 long from, long to, 7244 struct vm_area_struct *vma, 7245 vm_flags_t vm_flags) 7246 { 7247 long chg = -1, add = -1, spool_resv, gbl_resv; 7248 struct hstate *h = hstate_inode(inode); 7249 struct hugepage_subpool *spool = subpool_inode(inode); 7250 struct resv_map *resv_map; 7251 struct hugetlb_cgroup *h_cg = NULL; 7252 long gbl_reserve, regions_needed = 0; 7253 7254 /* This should never happen */ 7255 if (from > to) { 7256 VM_WARN(1, "%s called with a negative range\n", __func__); 7257 return -EINVAL; 7258 } 7259 7260 /* 7261 * vma specific semaphore used for pmd sharing and fault/truncation 7262 * synchronization 7263 */ 7264 hugetlb_vma_lock_alloc(vma); 7265 7266 /* 7267 * Only apply hugepage reservation if asked. At fault time, an 7268 * attempt will be made for VM_NORESERVE to allocate a page 7269 * without using reserves 7270 */ 7271 if (vm_flags & VM_NORESERVE) 7272 return 0; 7273 7274 /* 7275 * Shared mappings base their reservation on the number of pages that 7276 * are already allocated on behalf of the file. Private mappings need 7277 * to reserve the full area even if read-only as mprotect() may be 7278 * called to make the mapping read-write. Assume !vma is a shm mapping 7279 */ 7280 if (!vma || vma->vm_flags & VM_MAYSHARE) { 7281 /* 7282 * resv_map can not be NULL as hugetlb_reserve_pages is only 7283 * called for inodes for which resv_maps were created (see 7284 * hugetlbfs_get_inode). 7285 */ 7286 resv_map = inode_resv_map(inode); 7287 7288 chg = region_chg(resv_map, from, to, ®ions_needed); 7289 } else { 7290 /* Private mapping. */ 7291 resv_map = resv_map_alloc(); 7292 if (!resv_map) 7293 goto out_err; 7294 7295 chg = to - from; 7296 7297 set_vma_resv_map(vma, resv_map); 7298 set_vma_resv_flags(vma, HPAGE_RESV_OWNER); 7299 } 7300 7301 if (chg < 0) 7302 goto out_err; 7303 7304 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h), 7305 chg * pages_per_huge_page(h), &h_cg) < 0) 7306 goto out_err; 7307 7308 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) { 7309 /* For private mappings, the hugetlb_cgroup uncharge info hangs 7310 * of the resv_map. 7311 */ 7312 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h); 7313 } 7314 7315 /* 7316 * There must be enough pages in the subpool for the mapping. If 7317 * the subpool has a minimum size, there may be some global 7318 * reservations already in place (gbl_reserve). 7319 */ 7320 gbl_reserve = hugepage_subpool_get_pages(spool, chg); 7321 if (gbl_reserve < 0) 7322 goto out_uncharge_cgroup; 7323 7324 /* 7325 * Check enough hugepages are available for the reservation. 7326 * Hand the pages back to the subpool if there are not 7327 */ 7328 if (hugetlb_acct_memory(h, gbl_reserve) < 0) 7329 goto out_put_pages; 7330 7331 /* 7332 * Account for the reservations made. Shared mappings record regions 7333 * that have reservations as they are shared by multiple VMAs. 7334 * When the last VMA disappears, the region map says how much 7335 * the reservation was and the page cache tells how much of 7336 * the reservation was consumed. Private mappings are per-VMA and 7337 * only the consumed reservations are tracked. When the VMA 7338 * disappears, the original reservation is the VMA size and the 7339 * consumed reservations are stored in the map. Hence, nothing 7340 * else has to be done for private mappings here 7341 */ 7342 if (!vma || vma->vm_flags & VM_MAYSHARE) { 7343 add = region_add(resv_map, from, to, regions_needed, h, h_cg); 7344 7345 if (unlikely(add < 0)) { 7346 hugetlb_acct_memory(h, -gbl_reserve); 7347 goto out_put_pages; 7348 } else if (unlikely(chg > add)) { 7349 /* 7350 * pages in this range were added to the reserve 7351 * map between region_chg and region_add. This 7352 * indicates a race with alloc_hugetlb_folio. Adjust 7353 * the subpool and reserve counts modified above 7354 * based on the difference. 7355 */ 7356 long rsv_adjust; 7357 7358 /* 7359 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the 7360 * reference to h_cg->css. See comment below for detail. 7361 */ 7362 hugetlb_cgroup_uncharge_cgroup_rsvd( 7363 hstate_index(h), 7364 (chg - add) * pages_per_huge_page(h), h_cg); 7365 7366 rsv_adjust = hugepage_subpool_put_pages(spool, 7367 chg - add); 7368 hugetlb_acct_memory(h, -rsv_adjust); 7369 } else if (h_cg) { 7370 /* 7371 * The file_regions will hold their own reference to 7372 * h_cg->css. So we should release the reference held 7373 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are 7374 * done. 7375 */ 7376 hugetlb_cgroup_put_rsvd_cgroup(h_cg); 7377 } 7378 } 7379 return chg; 7380 7381 out_put_pages: 7382 spool_resv = chg - gbl_reserve; 7383 if (spool_resv) { 7384 /* put sub pool's reservation back, chg - gbl_reserve */ 7385 gbl_resv = hugepage_subpool_put_pages(spool, spool_resv); 7386 /* 7387 * subpool's reserved pages can not be put back due to race, 7388 * return to hstate. 7389 */ 7390 hugetlb_acct_memory(h, -gbl_resv); 7391 } 7392 out_uncharge_cgroup: 7393 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h), 7394 chg * pages_per_huge_page(h), h_cg); 7395 out_err: 7396 hugetlb_vma_lock_free(vma); 7397 if (!vma || vma->vm_flags & VM_MAYSHARE) 7398 /* Only call region_abort if the region_chg succeeded but the 7399 * region_add failed or didn't run. 7400 */ 7401 if (chg >= 0 && add < 0) 7402 region_abort(resv_map, from, to, regions_needed); 7403 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 7404 kref_put(&resv_map->refs, resv_map_release); 7405 set_vma_resv_map(vma, NULL); 7406 } 7407 return chg < 0 ? chg : add < 0 ? add : -EINVAL; 7408 } 7409 7410 long hugetlb_unreserve_pages(struct inode *inode, long start, long end, 7411 long freed) 7412 { 7413 struct hstate *h = hstate_inode(inode); 7414 struct resv_map *resv_map = inode_resv_map(inode); 7415 long chg = 0; 7416 struct hugepage_subpool *spool = subpool_inode(inode); 7417 long gbl_reserve; 7418 7419 /* 7420 * Since this routine can be called in the evict inode path for all 7421 * hugetlbfs inodes, resv_map could be NULL. 7422 */ 7423 if (resv_map) { 7424 chg = region_del(resv_map, start, end); 7425 /* 7426 * region_del() can fail in the rare case where a region 7427 * must be split and another region descriptor can not be 7428 * allocated. If end == LONG_MAX, it will not fail. 7429 */ 7430 if (chg < 0) 7431 return chg; 7432 } 7433 7434 spin_lock(&inode->i_lock); 7435 inode->i_blocks -= (blocks_per_huge_page(h) * freed); 7436 spin_unlock(&inode->i_lock); 7437 7438 /* 7439 * If the subpool has a minimum size, the number of global 7440 * reservations to be released may be adjusted. 7441 * 7442 * Note that !resv_map implies freed == 0. So (chg - freed) 7443 * won't go negative. 7444 */ 7445 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed)); 7446 hugetlb_acct_memory(h, -gbl_reserve); 7447 7448 return 0; 7449 } 7450 7451 #ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING 7452 static unsigned long page_table_shareable(struct vm_area_struct *svma, 7453 struct vm_area_struct *vma, 7454 unsigned long addr, pgoff_t idx) 7455 { 7456 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) + 7457 svma->vm_start; 7458 unsigned long sbase = saddr & PUD_MASK; 7459 unsigned long s_end = sbase + PUD_SIZE; 7460 7461 /* Allow segments to share if only one is marked locked */ 7462 vm_flags_t vm_flags = vma->vm_flags & ~VM_LOCKED_MASK; 7463 vm_flags_t svm_flags = svma->vm_flags & ~VM_LOCKED_MASK; 7464 7465 /* 7466 * match the virtual addresses, permission and the alignment of the 7467 * page table page. 7468 * 7469 * Also, vma_lock (vm_private_data) is required for sharing. 7470 */ 7471 if (pmd_index(addr) != pmd_index(saddr) || 7472 vm_flags != svm_flags || 7473 !range_in_vma(svma, sbase, s_end) || 7474 !svma->vm_private_data) 7475 return 0; 7476 7477 return saddr; 7478 } 7479 7480 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr) 7481 { 7482 unsigned long start = addr & PUD_MASK; 7483 unsigned long end = start + PUD_SIZE; 7484 7485 #ifdef CONFIG_USERFAULTFD 7486 if (uffd_disable_huge_pmd_share(vma)) 7487 return false; 7488 #endif 7489 /* 7490 * check on proper vm_flags and page table alignment 7491 */ 7492 if (!(vma->vm_flags & VM_MAYSHARE)) 7493 return false; 7494 if (!vma->vm_private_data) /* vma lock required for sharing */ 7495 return false; 7496 if (!range_in_vma(vma, start, end)) 7497 return false; 7498 return true; 7499 } 7500 7501 /* 7502 * Determine if start,end range within vma could be mapped by shared pmd. 7503 * If yes, adjust start and end to cover range associated with possible 7504 * shared pmd mappings. 7505 */ 7506 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 7507 unsigned long *start, unsigned long *end) 7508 { 7509 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE), 7510 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE); 7511 7512 /* 7513 * vma needs to span at least one aligned PUD size, and the range 7514 * must be at least partially within in. 7515 */ 7516 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) || 7517 (*end <= v_start) || (*start >= v_end)) 7518 return; 7519 7520 /* Extend the range to be PUD aligned for a worst case scenario */ 7521 if (*start > v_start) 7522 *start = ALIGN_DOWN(*start, PUD_SIZE); 7523 7524 if (*end < v_end) 7525 *end = ALIGN(*end, PUD_SIZE); 7526 } 7527 7528 /* 7529 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc() 7530 * and returns the corresponding pte. While this is not necessary for the 7531 * !shared pmd case because we can allocate the pmd later as well, it makes the 7532 * code much cleaner. pmd allocation is essential for the shared case because 7533 * pud has to be populated inside the same i_mmap_rwsem section - otherwise 7534 * racing tasks could either miss the sharing (see huge_pte_offset) or select a 7535 * bad pmd for sharing. 7536 */ 7537 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, 7538 unsigned long addr, pud_t *pud) 7539 { 7540 struct address_space *mapping = vma->vm_file->f_mapping; 7541 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + 7542 vma->vm_pgoff; 7543 struct vm_area_struct *svma; 7544 unsigned long saddr; 7545 pte_t *spte = NULL; 7546 pte_t *pte; 7547 7548 i_mmap_lock_read(mapping); 7549 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) { 7550 if (svma == vma) 7551 continue; 7552 7553 saddr = page_table_shareable(svma, vma, addr, idx); 7554 if (saddr) { 7555 spte = hugetlb_walk(svma, saddr, 7556 vma_mmu_pagesize(svma)); 7557 if (spte) { 7558 ptdesc_pmd_pts_inc(virt_to_ptdesc(spte)); 7559 break; 7560 } 7561 } 7562 } 7563 7564 if (!spte) 7565 goto out; 7566 7567 spin_lock(&mm->page_table_lock); 7568 if (pud_none(*pud)) { 7569 pud_populate(mm, pud, 7570 (pmd_t *)((unsigned long)spte & PAGE_MASK)); 7571 mm_inc_nr_pmds(mm); 7572 } else { 7573 ptdesc_pmd_pts_dec(virt_to_ptdesc(spte)); 7574 } 7575 spin_unlock(&mm->page_table_lock); 7576 out: 7577 pte = (pte_t *)pmd_alloc(mm, pud, addr); 7578 i_mmap_unlock_read(mapping); 7579 return pte; 7580 } 7581 7582 /* 7583 * unmap huge page backed by shared pte. 7584 * 7585 * Called with page table lock held. 7586 * 7587 * returns: 1 successfully unmapped a shared pte page 7588 * 0 the underlying pte page is not shared, or it is the last user 7589 */ 7590 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, 7591 unsigned long addr, pte_t *ptep) 7592 { 7593 unsigned long sz = huge_page_size(hstate_vma(vma)); 7594 pgd_t *pgd = pgd_offset(mm, addr); 7595 p4d_t *p4d = p4d_offset(pgd, addr); 7596 pud_t *pud = pud_offset(p4d, addr); 7597 7598 i_mmap_assert_write_locked(vma->vm_file->f_mapping); 7599 hugetlb_vma_assert_locked(vma); 7600 if (sz != PMD_SIZE) 7601 return 0; 7602 if (!ptdesc_pmd_pts_count(virt_to_ptdesc(ptep))) 7603 return 0; 7604 7605 pud_clear(pud); 7606 /* 7607 * Once our caller drops the rmap lock, some other process might be 7608 * using this page table as a normal, non-hugetlb page table. 7609 * Wait for pending gup_fast() in other threads to finish before letting 7610 * that happen. 7611 */ 7612 tlb_remove_table_sync_one(); 7613 ptdesc_pmd_pts_dec(virt_to_ptdesc(ptep)); 7614 mm_dec_nr_pmds(mm); 7615 return 1; 7616 } 7617 7618 #else /* !CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING */ 7619 7620 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, 7621 unsigned long addr, pud_t *pud) 7622 { 7623 return NULL; 7624 } 7625 7626 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, 7627 unsigned long addr, pte_t *ptep) 7628 { 7629 return 0; 7630 } 7631 7632 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 7633 unsigned long *start, unsigned long *end) 7634 { 7635 } 7636 7637 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr) 7638 { 7639 return false; 7640 } 7641 #endif /* CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING */ 7642 7643 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB 7644 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 7645 unsigned long addr, unsigned long sz) 7646 { 7647 pgd_t *pgd; 7648 p4d_t *p4d; 7649 pud_t *pud; 7650 pte_t *pte = NULL; 7651 7652 pgd = pgd_offset(mm, addr); 7653 p4d = p4d_alloc(mm, pgd, addr); 7654 if (!p4d) 7655 return NULL; 7656 pud = pud_alloc(mm, p4d, addr); 7657 if (pud) { 7658 if (sz == PUD_SIZE) { 7659 pte = (pte_t *)pud; 7660 } else { 7661 BUG_ON(sz != PMD_SIZE); 7662 if (want_pmd_share(vma, addr) && pud_none(*pud)) 7663 pte = huge_pmd_share(mm, vma, addr, pud); 7664 else 7665 pte = (pte_t *)pmd_alloc(mm, pud, addr); 7666 } 7667 } 7668 7669 if (pte) { 7670 pte_t pteval = ptep_get_lockless(pte); 7671 7672 BUG_ON(pte_present(pteval) && !pte_huge(pteval)); 7673 } 7674 7675 return pte; 7676 } 7677 7678 /* 7679 * huge_pte_offset() - Walk the page table to resolve the hugepage 7680 * entry at address @addr 7681 * 7682 * Return: Pointer to page table entry (PUD or PMD) for 7683 * address @addr, or NULL if a !p*d_present() entry is encountered and the 7684 * size @sz doesn't match the hugepage size at this level of the page 7685 * table. 7686 */ 7687 pte_t *huge_pte_offset(struct mm_struct *mm, 7688 unsigned long addr, unsigned long sz) 7689 { 7690 pgd_t *pgd; 7691 p4d_t *p4d; 7692 pud_t *pud; 7693 pmd_t *pmd; 7694 7695 pgd = pgd_offset(mm, addr); 7696 if (!pgd_present(*pgd)) 7697 return NULL; 7698 p4d = p4d_offset(pgd, addr); 7699 if (!p4d_present(*p4d)) 7700 return NULL; 7701 7702 pud = pud_offset(p4d, addr); 7703 if (sz == PUD_SIZE) 7704 /* must be pud huge, non-present or none */ 7705 return (pte_t *)pud; 7706 if (!pud_present(*pud)) 7707 return NULL; 7708 /* must have a valid entry and size to go further */ 7709 7710 pmd = pmd_offset(pud, addr); 7711 /* must be pmd huge, non-present or none */ 7712 return (pte_t *)pmd; 7713 } 7714 7715 /* 7716 * Return a mask that can be used to update an address to the last huge 7717 * page in a page table page mapping size. Used to skip non-present 7718 * page table entries when linearly scanning address ranges. Architectures 7719 * with unique huge page to page table relationships can define their own 7720 * version of this routine. 7721 */ 7722 unsigned long hugetlb_mask_last_page(struct hstate *h) 7723 { 7724 unsigned long hp_size = huge_page_size(h); 7725 7726 if (hp_size == PUD_SIZE) 7727 return P4D_SIZE - PUD_SIZE; 7728 else if (hp_size == PMD_SIZE) 7729 return PUD_SIZE - PMD_SIZE; 7730 else 7731 return 0UL; 7732 } 7733 7734 #else 7735 7736 /* See description above. Architectures can provide their own version. */ 7737 __weak unsigned long hugetlb_mask_last_page(struct hstate *h) 7738 { 7739 #ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING 7740 if (huge_page_size(h) == PMD_SIZE) 7741 return PUD_SIZE - PMD_SIZE; 7742 #endif 7743 return 0UL; 7744 } 7745 7746 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */ 7747 7748 /** 7749 * folio_isolate_hugetlb - try to isolate an allocated hugetlb folio 7750 * @folio: the folio to isolate 7751 * @list: the list to add the folio to on success 7752 * 7753 * Isolate an allocated (refcount > 0) hugetlb folio, marking it as 7754 * isolated/non-migratable, and moving it from the active list to the 7755 * given list. 7756 * 7757 * Isolation will fail if @folio is not an allocated hugetlb folio, or if 7758 * it is already isolated/non-migratable. 7759 * 7760 * On success, an additional folio reference is taken that must be dropped 7761 * using folio_putback_hugetlb() to undo the isolation. 7762 * 7763 * Return: True if isolation worked, otherwise False. 7764 */ 7765 bool folio_isolate_hugetlb(struct folio *folio, struct list_head *list) 7766 { 7767 bool ret = true; 7768 7769 spin_lock_irq(&hugetlb_lock); 7770 if (!folio_test_hugetlb(folio) || 7771 !folio_test_hugetlb_migratable(folio) || 7772 !folio_try_get(folio)) { 7773 ret = false; 7774 goto unlock; 7775 } 7776 folio_clear_hugetlb_migratable(folio); 7777 list_move_tail(&folio->lru, list); 7778 unlock: 7779 spin_unlock_irq(&hugetlb_lock); 7780 return ret; 7781 } 7782 7783 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison) 7784 { 7785 int ret = 0; 7786 7787 *hugetlb = false; 7788 spin_lock_irq(&hugetlb_lock); 7789 if (folio_test_hugetlb(folio)) { 7790 *hugetlb = true; 7791 if (folio_test_hugetlb_freed(folio)) 7792 ret = 0; 7793 else if (folio_test_hugetlb_migratable(folio) || unpoison) 7794 ret = folio_try_get(folio); 7795 else 7796 ret = -EBUSY; 7797 } 7798 spin_unlock_irq(&hugetlb_lock); 7799 return ret; 7800 } 7801 7802 int get_huge_page_for_hwpoison(unsigned long pfn, int flags, 7803 bool *migratable_cleared) 7804 { 7805 int ret; 7806 7807 spin_lock_irq(&hugetlb_lock); 7808 ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared); 7809 spin_unlock_irq(&hugetlb_lock); 7810 return ret; 7811 } 7812 7813 /** 7814 * folio_putback_hugetlb - unisolate a hugetlb folio 7815 * @folio: the isolated hugetlb folio 7816 * 7817 * Putback/un-isolate the hugetlb folio that was previous isolated using 7818 * folio_isolate_hugetlb(): marking it non-isolated/migratable and putting it 7819 * back onto the active list. 7820 * 7821 * Will drop the additional folio reference obtained through 7822 * folio_isolate_hugetlb(). 7823 */ 7824 void folio_putback_hugetlb(struct folio *folio) 7825 { 7826 spin_lock_irq(&hugetlb_lock); 7827 folio_set_hugetlb_migratable(folio); 7828 list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist); 7829 spin_unlock_irq(&hugetlb_lock); 7830 folio_put(folio); 7831 } 7832 7833 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason) 7834 { 7835 struct hstate *h = folio_hstate(old_folio); 7836 7837 hugetlb_cgroup_migrate(old_folio, new_folio); 7838 folio_set_owner_migrate_reason(new_folio, reason); 7839 7840 /* 7841 * transfer temporary state of the new hugetlb folio. This is 7842 * reverse to other transitions because the newpage is going to 7843 * be final while the old one will be freed so it takes over 7844 * the temporary status. 7845 * 7846 * Also note that we have to transfer the per-node surplus state 7847 * here as well otherwise the global surplus count will not match 7848 * the per-node's. 7849 */ 7850 if (folio_test_hugetlb_temporary(new_folio)) { 7851 int old_nid = folio_nid(old_folio); 7852 int new_nid = folio_nid(new_folio); 7853 7854 folio_set_hugetlb_temporary(old_folio); 7855 folio_clear_hugetlb_temporary(new_folio); 7856 7857 7858 /* 7859 * There is no need to transfer the per-node surplus state 7860 * when we do not cross the node. 7861 */ 7862 if (new_nid == old_nid) 7863 return; 7864 spin_lock_irq(&hugetlb_lock); 7865 if (h->surplus_huge_pages_node[old_nid]) { 7866 h->surplus_huge_pages_node[old_nid]--; 7867 h->surplus_huge_pages_node[new_nid]++; 7868 } 7869 spin_unlock_irq(&hugetlb_lock); 7870 } 7871 7872 /* 7873 * Our old folio is isolated and has "migratable" cleared until it 7874 * is putback. As migration succeeded, set the new folio "migratable" 7875 * and add it to the active list. 7876 */ 7877 spin_lock_irq(&hugetlb_lock); 7878 folio_set_hugetlb_migratable(new_folio); 7879 list_move_tail(&new_folio->lru, &(folio_hstate(new_folio))->hugepage_activelist); 7880 spin_unlock_irq(&hugetlb_lock); 7881 } 7882 7883 /* 7884 * If @take_locks is false, the caller must ensure that no concurrent page table 7885 * access can happen (except for gup_fast() and hardware page walks). 7886 * If @take_locks is true, we take the hugetlb VMA lock (to lock out things like 7887 * concurrent page fault handling) and the file rmap lock. 7888 */ 7889 static void hugetlb_unshare_pmds(struct vm_area_struct *vma, 7890 unsigned long start, 7891 unsigned long end, 7892 bool take_locks) 7893 { 7894 struct hstate *h = hstate_vma(vma); 7895 unsigned long sz = huge_page_size(h); 7896 struct mm_struct *mm = vma->vm_mm; 7897 struct mmu_notifier_range range; 7898 unsigned long address; 7899 spinlock_t *ptl; 7900 pte_t *ptep; 7901 7902 if (!(vma->vm_flags & VM_MAYSHARE)) 7903 return; 7904 7905 if (start >= end) 7906 return; 7907 7908 flush_cache_range(vma, start, end); 7909 /* 7910 * No need to call adjust_range_if_pmd_sharing_possible(), because 7911 * we have already done the PUD_SIZE alignment. 7912 */ 7913 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 7914 start, end); 7915 mmu_notifier_invalidate_range_start(&range); 7916 if (take_locks) { 7917 hugetlb_vma_lock_write(vma); 7918 i_mmap_lock_write(vma->vm_file->f_mapping); 7919 } else { 7920 i_mmap_assert_write_locked(vma->vm_file->f_mapping); 7921 } 7922 for (address = start; address < end; address += PUD_SIZE) { 7923 ptep = hugetlb_walk(vma, address, sz); 7924 if (!ptep) 7925 continue; 7926 ptl = huge_pte_lock(h, mm, ptep); 7927 huge_pmd_unshare(mm, vma, address, ptep); 7928 spin_unlock(ptl); 7929 } 7930 flush_hugetlb_tlb_range(vma, start, end); 7931 if (take_locks) { 7932 i_mmap_unlock_write(vma->vm_file->f_mapping); 7933 hugetlb_vma_unlock_write(vma); 7934 } 7935 /* 7936 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs(), see 7937 * Documentation/mm/mmu_notifier.rst. 7938 */ 7939 mmu_notifier_invalidate_range_end(&range); 7940 } 7941 7942 /* 7943 * This function will unconditionally remove all the shared pmd pgtable entries 7944 * within the specific vma for a hugetlbfs memory range. 7945 */ 7946 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma) 7947 { 7948 hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE), 7949 ALIGN_DOWN(vma->vm_end, PUD_SIZE), 7950 /* take_locks = */ true); 7951 } 7952 7953 /* 7954 * For hugetlb, mremap() is an odd edge case - while the VMA copying is 7955 * performed, we permit both the old and new VMAs to reference the same 7956 * reservation. 7957 * 7958 * We fix this up after the operation succeeds, or if a newly allocated VMA 7959 * is closed as a result of a failure to allocate memory. 7960 */ 7961 void fixup_hugetlb_reservations(struct vm_area_struct *vma) 7962 { 7963 if (is_vm_hugetlb_page(vma)) 7964 clear_vma_resv_huge_pages(vma); 7965 } 7966