1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic hugetlb support. 4 * (C) Nadia Yvette Chambers, April 2004 5 */ 6 #include <linux/list.h> 7 #include <linux/init.h> 8 #include <linux/mm.h> 9 #include <linux/seq_file.h> 10 #include <linux/sysctl.h> 11 #include <linux/highmem.h> 12 #include <linux/mmu_notifier.h> 13 #include <linux/nodemask.h> 14 #include <linux/pagemap.h> 15 #include <linux/mempolicy.h> 16 #include <linux/compiler.h> 17 #include <linux/cpuset.h> 18 #include <linux/mutex.h> 19 #include <linux/memblock.h> 20 #include <linux/sysfs.h> 21 #include <linux/slab.h> 22 #include <linux/sched/mm.h> 23 #include <linux/mmdebug.h> 24 #include <linux/sched/signal.h> 25 #include <linux/rmap.h> 26 #include <linux/string_helpers.h> 27 #include <linux/swap.h> 28 #include <linux/swapops.h> 29 #include <linux/jhash.h> 30 #include <linux/numa.h> 31 #include <linux/llist.h> 32 #include <linux/cma.h> 33 34 #include <asm/page.h> 35 #include <asm/pgalloc.h> 36 #include <asm/tlb.h> 37 38 #include <linux/io.h> 39 #include <linux/hugetlb.h> 40 #include <linux/hugetlb_cgroup.h> 41 #include <linux/node.h> 42 #include <linux/page_owner.h> 43 #include "internal.h" 44 45 int hugetlb_max_hstate __read_mostly; 46 unsigned int default_hstate_idx; 47 struct hstate hstates[HUGE_MAX_HSTATE]; 48 49 #ifdef CONFIG_CMA 50 static struct cma *hugetlb_cma[MAX_NUMNODES]; 51 #endif 52 static unsigned long hugetlb_cma_size __initdata; 53 54 /* 55 * Minimum page order among possible hugepage sizes, set to a proper value 56 * at boot time. 57 */ 58 static unsigned int minimum_order __read_mostly = UINT_MAX; 59 60 __initdata LIST_HEAD(huge_boot_pages); 61 62 /* for command line parsing */ 63 static struct hstate * __initdata parsed_hstate; 64 static unsigned long __initdata default_hstate_max_huge_pages; 65 static bool __initdata parsed_valid_hugepagesz = true; 66 static bool __initdata parsed_default_hugepagesz; 67 68 /* 69 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages, 70 * free_huge_pages, and surplus_huge_pages. 71 */ 72 DEFINE_SPINLOCK(hugetlb_lock); 73 74 /* 75 * Serializes faults on the same logical page. This is used to 76 * prevent spurious OOMs when the hugepage pool is fully utilized. 77 */ 78 static int num_fault_mutexes; 79 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp; 80 81 /* Forward declaration */ 82 static int hugetlb_acct_memory(struct hstate *h, long delta); 83 84 static inline bool subpool_is_free(struct hugepage_subpool *spool) 85 { 86 if (spool->count) 87 return false; 88 if (spool->max_hpages != -1) 89 return spool->used_hpages == 0; 90 if (spool->min_hpages != -1) 91 return spool->rsv_hpages == spool->min_hpages; 92 93 return true; 94 } 95 96 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool, 97 unsigned long irq_flags) 98 { 99 spin_unlock_irqrestore(&spool->lock, irq_flags); 100 101 /* If no pages are used, and no other handles to the subpool 102 * remain, give up any reservations based on minimum size and 103 * free the subpool */ 104 if (subpool_is_free(spool)) { 105 if (spool->min_hpages != -1) 106 hugetlb_acct_memory(spool->hstate, 107 -spool->min_hpages); 108 kfree(spool); 109 } 110 } 111 112 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages, 113 long min_hpages) 114 { 115 struct hugepage_subpool *spool; 116 117 spool = kzalloc(sizeof(*spool), GFP_KERNEL); 118 if (!spool) 119 return NULL; 120 121 spin_lock_init(&spool->lock); 122 spool->count = 1; 123 spool->max_hpages = max_hpages; 124 spool->hstate = h; 125 spool->min_hpages = min_hpages; 126 127 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) { 128 kfree(spool); 129 return NULL; 130 } 131 spool->rsv_hpages = min_hpages; 132 133 return spool; 134 } 135 136 void hugepage_put_subpool(struct hugepage_subpool *spool) 137 { 138 unsigned long flags; 139 140 spin_lock_irqsave(&spool->lock, flags); 141 BUG_ON(!spool->count); 142 spool->count--; 143 unlock_or_release_subpool(spool, flags); 144 } 145 146 /* 147 * Subpool accounting for allocating and reserving pages. 148 * Return -ENOMEM if there are not enough resources to satisfy the 149 * request. Otherwise, return the number of pages by which the 150 * global pools must be adjusted (upward). The returned value may 151 * only be different than the passed value (delta) in the case where 152 * a subpool minimum size must be maintained. 153 */ 154 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool, 155 long delta) 156 { 157 long ret = delta; 158 159 if (!spool) 160 return ret; 161 162 spin_lock_irq(&spool->lock); 163 164 if (spool->max_hpages != -1) { /* maximum size accounting */ 165 if ((spool->used_hpages + delta) <= spool->max_hpages) 166 spool->used_hpages += delta; 167 else { 168 ret = -ENOMEM; 169 goto unlock_ret; 170 } 171 } 172 173 /* minimum size accounting */ 174 if (spool->min_hpages != -1 && spool->rsv_hpages) { 175 if (delta > spool->rsv_hpages) { 176 /* 177 * Asking for more reserves than those already taken on 178 * behalf of subpool. Return difference. 179 */ 180 ret = delta - spool->rsv_hpages; 181 spool->rsv_hpages = 0; 182 } else { 183 ret = 0; /* reserves already accounted for */ 184 spool->rsv_hpages -= delta; 185 } 186 } 187 188 unlock_ret: 189 spin_unlock_irq(&spool->lock); 190 return ret; 191 } 192 193 /* 194 * Subpool accounting for freeing and unreserving pages. 195 * Return the number of global page reservations that must be dropped. 196 * The return value may only be different than the passed value (delta) 197 * in the case where a subpool minimum size must be maintained. 198 */ 199 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool, 200 long delta) 201 { 202 long ret = delta; 203 unsigned long flags; 204 205 if (!spool) 206 return delta; 207 208 spin_lock_irqsave(&spool->lock, flags); 209 210 if (spool->max_hpages != -1) /* maximum size accounting */ 211 spool->used_hpages -= delta; 212 213 /* minimum size accounting */ 214 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) { 215 if (spool->rsv_hpages + delta <= spool->min_hpages) 216 ret = 0; 217 else 218 ret = spool->rsv_hpages + delta - spool->min_hpages; 219 220 spool->rsv_hpages += delta; 221 if (spool->rsv_hpages > spool->min_hpages) 222 spool->rsv_hpages = spool->min_hpages; 223 } 224 225 /* 226 * If hugetlbfs_put_super couldn't free spool due to an outstanding 227 * quota reference, free it now. 228 */ 229 unlock_or_release_subpool(spool, flags); 230 231 return ret; 232 } 233 234 static inline struct hugepage_subpool *subpool_inode(struct inode *inode) 235 { 236 return HUGETLBFS_SB(inode->i_sb)->spool; 237 } 238 239 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma) 240 { 241 return subpool_inode(file_inode(vma->vm_file)); 242 } 243 244 /* Helper that removes a struct file_region from the resv_map cache and returns 245 * it for use. 246 */ 247 static struct file_region * 248 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to) 249 { 250 struct file_region *nrg = NULL; 251 252 VM_BUG_ON(resv->region_cache_count <= 0); 253 254 resv->region_cache_count--; 255 nrg = list_first_entry(&resv->region_cache, struct file_region, link); 256 list_del(&nrg->link); 257 258 nrg->from = from; 259 nrg->to = to; 260 261 return nrg; 262 } 263 264 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg, 265 struct file_region *rg) 266 { 267 #ifdef CONFIG_CGROUP_HUGETLB 268 nrg->reservation_counter = rg->reservation_counter; 269 nrg->css = rg->css; 270 if (rg->css) 271 css_get(rg->css); 272 #endif 273 } 274 275 /* Helper that records hugetlb_cgroup uncharge info. */ 276 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg, 277 struct hstate *h, 278 struct resv_map *resv, 279 struct file_region *nrg) 280 { 281 #ifdef CONFIG_CGROUP_HUGETLB 282 if (h_cg) { 283 nrg->reservation_counter = 284 &h_cg->rsvd_hugepage[hstate_index(h)]; 285 nrg->css = &h_cg->css; 286 /* 287 * The caller will hold exactly one h_cg->css reference for the 288 * whole contiguous reservation region. But this area might be 289 * scattered when there are already some file_regions reside in 290 * it. As a result, many file_regions may share only one css 291 * reference. In order to ensure that one file_region must hold 292 * exactly one h_cg->css reference, we should do css_get for 293 * each file_region and leave the reference held by caller 294 * untouched. 295 */ 296 css_get(&h_cg->css); 297 if (!resv->pages_per_hpage) 298 resv->pages_per_hpage = pages_per_huge_page(h); 299 /* pages_per_hpage should be the same for all entries in 300 * a resv_map. 301 */ 302 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h)); 303 } else { 304 nrg->reservation_counter = NULL; 305 nrg->css = NULL; 306 } 307 #endif 308 } 309 310 static void put_uncharge_info(struct file_region *rg) 311 { 312 #ifdef CONFIG_CGROUP_HUGETLB 313 if (rg->css) 314 css_put(rg->css); 315 #endif 316 } 317 318 static bool has_same_uncharge_info(struct file_region *rg, 319 struct file_region *org) 320 { 321 #ifdef CONFIG_CGROUP_HUGETLB 322 return rg && org && 323 rg->reservation_counter == org->reservation_counter && 324 rg->css == org->css; 325 326 #else 327 return true; 328 #endif 329 } 330 331 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg) 332 { 333 struct file_region *nrg = NULL, *prg = NULL; 334 335 prg = list_prev_entry(rg, link); 336 if (&prg->link != &resv->regions && prg->to == rg->from && 337 has_same_uncharge_info(prg, rg)) { 338 prg->to = rg->to; 339 340 list_del(&rg->link); 341 put_uncharge_info(rg); 342 kfree(rg); 343 344 rg = prg; 345 } 346 347 nrg = list_next_entry(rg, link); 348 if (&nrg->link != &resv->regions && nrg->from == rg->to && 349 has_same_uncharge_info(nrg, rg)) { 350 nrg->from = rg->from; 351 352 list_del(&rg->link); 353 put_uncharge_info(rg); 354 kfree(rg); 355 } 356 } 357 358 static inline long 359 hugetlb_resv_map_add(struct resv_map *map, struct file_region *rg, long from, 360 long to, struct hstate *h, struct hugetlb_cgroup *cg, 361 long *regions_needed) 362 { 363 struct file_region *nrg; 364 365 if (!regions_needed) { 366 nrg = get_file_region_entry_from_cache(map, from, to); 367 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg); 368 list_add(&nrg->link, rg->link.prev); 369 coalesce_file_region(map, nrg); 370 } else 371 *regions_needed += 1; 372 373 return to - from; 374 } 375 376 /* 377 * Must be called with resv->lock held. 378 * 379 * Calling this with regions_needed != NULL will count the number of pages 380 * to be added but will not modify the linked list. And regions_needed will 381 * indicate the number of file_regions needed in the cache to carry out to add 382 * the regions for this range. 383 */ 384 static long add_reservation_in_range(struct resv_map *resv, long f, long t, 385 struct hugetlb_cgroup *h_cg, 386 struct hstate *h, long *regions_needed) 387 { 388 long add = 0; 389 struct list_head *head = &resv->regions; 390 long last_accounted_offset = f; 391 struct file_region *rg = NULL, *trg = NULL; 392 393 if (regions_needed) 394 *regions_needed = 0; 395 396 /* In this loop, we essentially handle an entry for the range 397 * [last_accounted_offset, rg->from), at every iteration, with some 398 * bounds checking. 399 */ 400 list_for_each_entry_safe(rg, trg, head, link) { 401 /* Skip irrelevant regions that start before our range. */ 402 if (rg->from < f) { 403 /* If this region ends after the last accounted offset, 404 * then we need to update last_accounted_offset. 405 */ 406 if (rg->to > last_accounted_offset) 407 last_accounted_offset = rg->to; 408 continue; 409 } 410 411 /* When we find a region that starts beyond our range, we've 412 * finished. 413 */ 414 if (rg->from >= t) 415 break; 416 417 /* Add an entry for last_accounted_offset -> rg->from, and 418 * update last_accounted_offset. 419 */ 420 if (rg->from > last_accounted_offset) 421 add += hugetlb_resv_map_add(resv, rg, 422 last_accounted_offset, 423 rg->from, h, h_cg, 424 regions_needed); 425 426 last_accounted_offset = rg->to; 427 } 428 429 /* Handle the case where our range extends beyond 430 * last_accounted_offset. 431 */ 432 if (last_accounted_offset < t) 433 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset, 434 t, h, h_cg, regions_needed); 435 436 VM_BUG_ON(add < 0); 437 return add; 438 } 439 440 /* Must be called with resv->lock acquired. Will drop lock to allocate entries. 441 */ 442 static int allocate_file_region_entries(struct resv_map *resv, 443 int regions_needed) 444 __must_hold(&resv->lock) 445 { 446 struct list_head allocated_regions; 447 int to_allocate = 0, i = 0; 448 struct file_region *trg = NULL, *rg = NULL; 449 450 VM_BUG_ON(regions_needed < 0); 451 452 INIT_LIST_HEAD(&allocated_regions); 453 454 /* 455 * Check for sufficient descriptors in the cache to accommodate 456 * the number of in progress add operations plus regions_needed. 457 * 458 * This is a while loop because when we drop the lock, some other call 459 * to region_add or region_del may have consumed some region_entries, 460 * so we keep looping here until we finally have enough entries for 461 * (adds_in_progress + regions_needed). 462 */ 463 while (resv->region_cache_count < 464 (resv->adds_in_progress + regions_needed)) { 465 to_allocate = resv->adds_in_progress + regions_needed - 466 resv->region_cache_count; 467 468 /* At this point, we should have enough entries in the cache 469 * for all the existing adds_in_progress. We should only be 470 * needing to allocate for regions_needed. 471 */ 472 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress); 473 474 spin_unlock(&resv->lock); 475 for (i = 0; i < to_allocate; i++) { 476 trg = kmalloc(sizeof(*trg), GFP_KERNEL); 477 if (!trg) 478 goto out_of_memory; 479 list_add(&trg->link, &allocated_regions); 480 } 481 482 spin_lock(&resv->lock); 483 484 list_splice(&allocated_regions, &resv->region_cache); 485 resv->region_cache_count += to_allocate; 486 } 487 488 return 0; 489 490 out_of_memory: 491 list_for_each_entry_safe(rg, trg, &allocated_regions, link) { 492 list_del(&rg->link); 493 kfree(rg); 494 } 495 return -ENOMEM; 496 } 497 498 /* 499 * Add the huge page range represented by [f, t) to the reserve 500 * map. Regions will be taken from the cache to fill in this range. 501 * Sufficient regions should exist in the cache due to the previous 502 * call to region_chg with the same range, but in some cases the cache will not 503 * have sufficient entries due to races with other code doing region_add or 504 * region_del. The extra needed entries will be allocated. 505 * 506 * regions_needed is the out value provided by a previous call to region_chg. 507 * 508 * Return the number of new huge pages added to the map. This number is greater 509 * than or equal to zero. If file_region entries needed to be allocated for 510 * this operation and we were not able to allocate, it returns -ENOMEM. 511 * region_add of regions of length 1 never allocate file_regions and cannot 512 * fail; region_chg will always allocate at least 1 entry and a region_add for 513 * 1 page will only require at most 1 entry. 514 */ 515 static long region_add(struct resv_map *resv, long f, long t, 516 long in_regions_needed, struct hstate *h, 517 struct hugetlb_cgroup *h_cg) 518 { 519 long add = 0, actual_regions_needed = 0; 520 521 spin_lock(&resv->lock); 522 retry: 523 524 /* Count how many regions are actually needed to execute this add. */ 525 add_reservation_in_range(resv, f, t, NULL, NULL, 526 &actual_regions_needed); 527 528 /* 529 * Check for sufficient descriptors in the cache to accommodate 530 * this add operation. Note that actual_regions_needed may be greater 531 * than in_regions_needed, as the resv_map may have been modified since 532 * the region_chg call. In this case, we need to make sure that we 533 * allocate extra entries, such that we have enough for all the 534 * existing adds_in_progress, plus the excess needed for this 535 * operation. 536 */ 537 if (actual_regions_needed > in_regions_needed && 538 resv->region_cache_count < 539 resv->adds_in_progress + 540 (actual_regions_needed - in_regions_needed)) { 541 /* region_add operation of range 1 should never need to 542 * allocate file_region entries. 543 */ 544 VM_BUG_ON(t - f <= 1); 545 546 if (allocate_file_region_entries( 547 resv, actual_regions_needed - in_regions_needed)) { 548 return -ENOMEM; 549 } 550 551 goto retry; 552 } 553 554 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL); 555 556 resv->adds_in_progress -= in_regions_needed; 557 558 spin_unlock(&resv->lock); 559 return add; 560 } 561 562 /* 563 * Examine the existing reserve map and determine how many 564 * huge pages in the specified range [f, t) are NOT currently 565 * represented. This routine is called before a subsequent 566 * call to region_add that will actually modify the reserve 567 * map to add the specified range [f, t). region_chg does 568 * not change the number of huge pages represented by the 569 * map. A number of new file_region structures is added to the cache as a 570 * placeholder, for the subsequent region_add call to use. At least 1 571 * file_region structure is added. 572 * 573 * out_regions_needed is the number of regions added to the 574 * resv->adds_in_progress. This value needs to be provided to a follow up call 575 * to region_add or region_abort for proper accounting. 576 * 577 * Returns the number of huge pages that need to be added to the existing 578 * reservation map for the range [f, t). This number is greater or equal to 579 * zero. -ENOMEM is returned if a new file_region structure or cache entry 580 * is needed and can not be allocated. 581 */ 582 static long region_chg(struct resv_map *resv, long f, long t, 583 long *out_regions_needed) 584 { 585 long chg = 0; 586 587 spin_lock(&resv->lock); 588 589 /* Count how many hugepages in this range are NOT represented. */ 590 chg = add_reservation_in_range(resv, f, t, NULL, NULL, 591 out_regions_needed); 592 593 if (*out_regions_needed == 0) 594 *out_regions_needed = 1; 595 596 if (allocate_file_region_entries(resv, *out_regions_needed)) 597 return -ENOMEM; 598 599 resv->adds_in_progress += *out_regions_needed; 600 601 spin_unlock(&resv->lock); 602 return chg; 603 } 604 605 /* 606 * Abort the in progress add operation. The adds_in_progress field 607 * of the resv_map keeps track of the operations in progress between 608 * calls to region_chg and region_add. Operations are sometimes 609 * aborted after the call to region_chg. In such cases, region_abort 610 * is called to decrement the adds_in_progress counter. regions_needed 611 * is the value returned by the region_chg call, it is used to decrement 612 * the adds_in_progress counter. 613 * 614 * NOTE: The range arguments [f, t) are not needed or used in this 615 * routine. They are kept to make reading the calling code easier as 616 * arguments will match the associated region_chg call. 617 */ 618 static void region_abort(struct resv_map *resv, long f, long t, 619 long regions_needed) 620 { 621 spin_lock(&resv->lock); 622 VM_BUG_ON(!resv->region_cache_count); 623 resv->adds_in_progress -= regions_needed; 624 spin_unlock(&resv->lock); 625 } 626 627 /* 628 * Delete the specified range [f, t) from the reserve map. If the 629 * t parameter is LONG_MAX, this indicates that ALL regions after f 630 * should be deleted. Locate the regions which intersect [f, t) 631 * and either trim, delete or split the existing regions. 632 * 633 * Returns the number of huge pages deleted from the reserve map. 634 * In the normal case, the return value is zero or more. In the 635 * case where a region must be split, a new region descriptor must 636 * be allocated. If the allocation fails, -ENOMEM will be returned. 637 * NOTE: If the parameter t == LONG_MAX, then we will never split 638 * a region and possibly return -ENOMEM. Callers specifying 639 * t == LONG_MAX do not need to check for -ENOMEM error. 640 */ 641 static long region_del(struct resv_map *resv, long f, long t) 642 { 643 struct list_head *head = &resv->regions; 644 struct file_region *rg, *trg; 645 struct file_region *nrg = NULL; 646 long del = 0; 647 648 retry: 649 spin_lock(&resv->lock); 650 list_for_each_entry_safe(rg, trg, head, link) { 651 /* 652 * Skip regions before the range to be deleted. file_region 653 * ranges are normally of the form [from, to). However, there 654 * may be a "placeholder" entry in the map which is of the form 655 * (from, to) with from == to. Check for placeholder entries 656 * at the beginning of the range to be deleted. 657 */ 658 if (rg->to <= f && (rg->to != rg->from || rg->to != f)) 659 continue; 660 661 if (rg->from >= t) 662 break; 663 664 if (f > rg->from && t < rg->to) { /* Must split region */ 665 /* 666 * Check for an entry in the cache before dropping 667 * lock and attempting allocation. 668 */ 669 if (!nrg && 670 resv->region_cache_count > resv->adds_in_progress) { 671 nrg = list_first_entry(&resv->region_cache, 672 struct file_region, 673 link); 674 list_del(&nrg->link); 675 resv->region_cache_count--; 676 } 677 678 if (!nrg) { 679 spin_unlock(&resv->lock); 680 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 681 if (!nrg) 682 return -ENOMEM; 683 goto retry; 684 } 685 686 del += t - f; 687 hugetlb_cgroup_uncharge_file_region( 688 resv, rg, t - f, false); 689 690 /* New entry for end of split region */ 691 nrg->from = t; 692 nrg->to = rg->to; 693 694 copy_hugetlb_cgroup_uncharge_info(nrg, rg); 695 696 INIT_LIST_HEAD(&nrg->link); 697 698 /* Original entry is trimmed */ 699 rg->to = f; 700 701 list_add(&nrg->link, &rg->link); 702 nrg = NULL; 703 break; 704 } 705 706 if (f <= rg->from && t >= rg->to) { /* Remove entire region */ 707 del += rg->to - rg->from; 708 hugetlb_cgroup_uncharge_file_region(resv, rg, 709 rg->to - rg->from, true); 710 list_del(&rg->link); 711 kfree(rg); 712 continue; 713 } 714 715 if (f <= rg->from) { /* Trim beginning of region */ 716 hugetlb_cgroup_uncharge_file_region(resv, rg, 717 t - rg->from, false); 718 719 del += t - rg->from; 720 rg->from = t; 721 } else { /* Trim end of region */ 722 hugetlb_cgroup_uncharge_file_region(resv, rg, 723 rg->to - f, false); 724 725 del += rg->to - f; 726 rg->to = f; 727 } 728 } 729 730 spin_unlock(&resv->lock); 731 kfree(nrg); 732 return del; 733 } 734 735 /* 736 * A rare out of memory error was encountered which prevented removal of 737 * the reserve map region for a page. The huge page itself was free'ed 738 * and removed from the page cache. This routine will adjust the subpool 739 * usage count, and the global reserve count if needed. By incrementing 740 * these counts, the reserve map entry which could not be deleted will 741 * appear as a "reserved" entry instead of simply dangling with incorrect 742 * counts. 743 */ 744 void hugetlb_fix_reserve_counts(struct inode *inode) 745 { 746 struct hugepage_subpool *spool = subpool_inode(inode); 747 long rsv_adjust; 748 bool reserved = false; 749 750 rsv_adjust = hugepage_subpool_get_pages(spool, 1); 751 if (rsv_adjust > 0) { 752 struct hstate *h = hstate_inode(inode); 753 754 if (!hugetlb_acct_memory(h, 1)) 755 reserved = true; 756 } else if (!rsv_adjust) { 757 reserved = true; 758 } 759 760 if (!reserved) 761 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n"); 762 } 763 764 /* 765 * Count and return the number of huge pages in the reserve map 766 * that intersect with the range [f, t). 767 */ 768 static long region_count(struct resv_map *resv, long f, long t) 769 { 770 struct list_head *head = &resv->regions; 771 struct file_region *rg; 772 long chg = 0; 773 774 spin_lock(&resv->lock); 775 /* Locate each segment we overlap with, and count that overlap. */ 776 list_for_each_entry(rg, head, link) { 777 long seg_from; 778 long seg_to; 779 780 if (rg->to <= f) 781 continue; 782 if (rg->from >= t) 783 break; 784 785 seg_from = max(rg->from, f); 786 seg_to = min(rg->to, t); 787 788 chg += seg_to - seg_from; 789 } 790 spin_unlock(&resv->lock); 791 792 return chg; 793 } 794 795 /* 796 * Convert the address within this vma to the page offset within 797 * the mapping, in pagecache page units; huge pages here. 798 */ 799 static pgoff_t vma_hugecache_offset(struct hstate *h, 800 struct vm_area_struct *vma, unsigned long address) 801 { 802 return ((address - vma->vm_start) >> huge_page_shift(h)) + 803 (vma->vm_pgoff >> huge_page_order(h)); 804 } 805 806 pgoff_t linear_hugepage_index(struct vm_area_struct *vma, 807 unsigned long address) 808 { 809 return vma_hugecache_offset(hstate_vma(vma), vma, address); 810 } 811 EXPORT_SYMBOL_GPL(linear_hugepage_index); 812 813 /* 814 * Return the size of the pages allocated when backing a VMA. In the majority 815 * cases this will be same size as used by the page table entries. 816 */ 817 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) 818 { 819 if (vma->vm_ops && vma->vm_ops->pagesize) 820 return vma->vm_ops->pagesize(vma); 821 return PAGE_SIZE; 822 } 823 EXPORT_SYMBOL_GPL(vma_kernel_pagesize); 824 825 /* 826 * Return the page size being used by the MMU to back a VMA. In the majority 827 * of cases, the page size used by the kernel matches the MMU size. On 828 * architectures where it differs, an architecture-specific 'strong' 829 * version of this symbol is required. 830 */ 831 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 832 { 833 return vma_kernel_pagesize(vma); 834 } 835 836 /* 837 * Flags for MAP_PRIVATE reservations. These are stored in the bottom 838 * bits of the reservation map pointer, which are always clear due to 839 * alignment. 840 */ 841 #define HPAGE_RESV_OWNER (1UL << 0) 842 #define HPAGE_RESV_UNMAPPED (1UL << 1) 843 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) 844 845 /* 846 * These helpers are used to track how many pages are reserved for 847 * faults in a MAP_PRIVATE mapping. Only the process that called mmap() 848 * is guaranteed to have their future faults succeed. 849 * 850 * With the exception of reset_vma_resv_huge_pages() which is called at fork(), 851 * the reserve counters are updated with the hugetlb_lock held. It is safe 852 * to reset the VMA at fork() time as it is not in use yet and there is no 853 * chance of the global counters getting corrupted as a result of the values. 854 * 855 * The private mapping reservation is represented in a subtly different 856 * manner to a shared mapping. A shared mapping has a region map associated 857 * with the underlying file, this region map represents the backing file 858 * pages which have ever had a reservation assigned which this persists even 859 * after the page is instantiated. A private mapping has a region map 860 * associated with the original mmap which is attached to all VMAs which 861 * reference it, this region map represents those offsets which have consumed 862 * reservation ie. where pages have been instantiated. 863 */ 864 static unsigned long get_vma_private_data(struct vm_area_struct *vma) 865 { 866 return (unsigned long)vma->vm_private_data; 867 } 868 869 static void set_vma_private_data(struct vm_area_struct *vma, 870 unsigned long value) 871 { 872 vma->vm_private_data = (void *)value; 873 } 874 875 static void 876 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map, 877 struct hugetlb_cgroup *h_cg, 878 struct hstate *h) 879 { 880 #ifdef CONFIG_CGROUP_HUGETLB 881 if (!h_cg || !h) { 882 resv_map->reservation_counter = NULL; 883 resv_map->pages_per_hpage = 0; 884 resv_map->css = NULL; 885 } else { 886 resv_map->reservation_counter = 887 &h_cg->rsvd_hugepage[hstate_index(h)]; 888 resv_map->pages_per_hpage = pages_per_huge_page(h); 889 resv_map->css = &h_cg->css; 890 } 891 #endif 892 } 893 894 struct resv_map *resv_map_alloc(void) 895 { 896 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); 897 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL); 898 899 if (!resv_map || !rg) { 900 kfree(resv_map); 901 kfree(rg); 902 return NULL; 903 } 904 905 kref_init(&resv_map->refs); 906 spin_lock_init(&resv_map->lock); 907 INIT_LIST_HEAD(&resv_map->regions); 908 909 resv_map->adds_in_progress = 0; 910 /* 911 * Initialize these to 0. On shared mappings, 0's here indicate these 912 * fields don't do cgroup accounting. On private mappings, these will be 913 * re-initialized to the proper values, to indicate that hugetlb cgroup 914 * reservations are to be un-charged from here. 915 */ 916 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL); 917 918 INIT_LIST_HEAD(&resv_map->region_cache); 919 list_add(&rg->link, &resv_map->region_cache); 920 resv_map->region_cache_count = 1; 921 922 return resv_map; 923 } 924 925 void resv_map_release(struct kref *ref) 926 { 927 struct resv_map *resv_map = container_of(ref, struct resv_map, refs); 928 struct list_head *head = &resv_map->region_cache; 929 struct file_region *rg, *trg; 930 931 /* Clear out any active regions before we release the map. */ 932 region_del(resv_map, 0, LONG_MAX); 933 934 /* ... and any entries left in the cache */ 935 list_for_each_entry_safe(rg, trg, head, link) { 936 list_del(&rg->link); 937 kfree(rg); 938 } 939 940 VM_BUG_ON(resv_map->adds_in_progress); 941 942 kfree(resv_map); 943 } 944 945 static inline struct resv_map *inode_resv_map(struct inode *inode) 946 { 947 /* 948 * At inode evict time, i_mapping may not point to the original 949 * address space within the inode. This original address space 950 * contains the pointer to the resv_map. So, always use the 951 * address space embedded within the inode. 952 * The VERY common case is inode->mapping == &inode->i_data but, 953 * this may not be true for device special inodes. 954 */ 955 return (struct resv_map *)(&inode->i_data)->private_data; 956 } 957 958 static struct resv_map *vma_resv_map(struct vm_area_struct *vma) 959 { 960 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 961 if (vma->vm_flags & VM_MAYSHARE) { 962 struct address_space *mapping = vma->vm_file->f_mapping; 963 struct inode *inode = mapping->host; 964 965 return inode_resv_map(inode); 966 967 } else { 968 return (struct resv_map *)(get_vma_private_data(vma) & 969 ~HPAGE_RESV_MASK); 970 } 971 } 972 973 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) 974 { 975 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 976 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 977 978 set_vma_private_data(vma, (get_vma_private_data(vma) & 979 HPAGE_RESV_MASK) | (unsigned long)map); 980 } 981 982 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) 983 { 984 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 985 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 986 987 set_vma_private_data(vma, get_vma_private_data(vma) | flags); 988 } 989 990 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) 991 { 992 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 993 994 return (get_vma_private_data(vma) & flag) != 0; 995 } 996 997 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */ 998 void reset_vma_resv_huge_pages(struct vm_area_struct *vma) 999 { 1000 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1001 if (!(vma->vm_flags & VM_MAYSHARE)) 1002 vma->vm_private_data = (void *)0; 1003 } 1004 1005 /* Returns true if the VMA has associated reserve pages */ 1006 static bool vma_has_reserves(struct vm_area_struct *vma, long chg) 1007 { 1008 if (vma->vm_flags & VM_NORESERVE) { 1009 /* 1010 * This address is already reserved by other process(chg == 0), 1011 * so, we should decrement reserved count. Without decrementing, 1012 * reserve count remains after releasing inode, because this 1013 * allocated page will go into page cache and is regarded as 1014 * coming from reserved pool in releasing step. Currently, we 1015 * don't have any other solution to deal with this situation 1016 * properly, so add work-around here. 1017 */ 1018 if (vma->vm_flags & VM_MAYSHARE && chg == 0) 1019 return true; 1020 else 1021 return false; 1022 } 1023 1024 /* Shared mappings always use reserves */ 1025 if (vma->vm_flags & VM_MAYSHARE) { 1026 /* 1027 * We know VM_NORESERVE is not set. Therefore, there SHOULD 1028 * be a region map for all pages. The only situation where 1029 * there is no region map is if a hole was punched via 1030 * fallocate. In this case, there really are no reserves to 1031 * use. This situation is indicated if chg != 0. 1032 */ 1033 if (chg) 1034 return false; 1035 else 1036 return true; 1037 } 1038 1039 /* 1040 * Only the process that called mmap() has reserves for 1041 * private mappings. 1042 */ 1043 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 1044 /* 1045 * Like the shared case above, a hole punch or truncate 1046 * could have been performed on the private mapping. 1047 * Examine the value of chg to determine if reserves 1048 * actually exist or were previously consumed. 1049 * Very Subtle - The value of chg comes from a previous 1050 * call to vma_needs_reserves(). The reserve map for 1051 * private mappings has different (opposite) semantics 1052 * than that of shared mappings. vma_needs_reserves() 1053 * has already taken this difference in semantics into 1054 * account. Therefore, the meaning of chg is the same 1055 * as in the shared case above. Code could easily be 1056 * combined, but keeping it separate draws attention to 1057 * subtle differences. 1058 */ 1059 if (chg) 1060 return false; 1061 else 1062 return true; 1063 } 1064 1065 return false; 1066 } 1067 1068 static void enqueue_huge_page(struct hstate *h, struct page *page) 1069 { 1070 int nid = page_to_nid(page); 1071 1072 lockdep_assert_held(&hugetlb_lock); 1073 list_move(&page->lru, &h->hugepage_freelists[nid]); 1074 h->free_huge_pages++; 1075 h->free_huge_pages_node[nid]++; 1076 SetHPageFreed(page); 1077 } 1078 1079 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid) 1080 { 1081 struct page *page; 1082 bool pin = !!(current->flags & PF_MEMALLOC_PIN); 1083 1084 lockdep_assert_held(&hugetlb_lock); 1085 list_for_each_entry(page, &h->hugepage_freelists[nid], lru) { 1086 if (pin && !is_pinnable_page(page)) 1087 continue; 1088 1089 if (PageHWPoison(page)) 1090 continue; 1091 1092 list_move(&page->lru, &h->hugepage_activelist); 1093 set_page_refcounted(page); 1094 ClearHPageFreed(page); 1095 h->free_huge_pages--; 1096 h->free_huge_pages_node[nid]--; 1097 return page; 1098 } 1099 1100 return NULL; 1101 } 1102 1103 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid, 1104 nodemask_t *nmask) 1105 { 1106 unsigned int cpuset_mems_cookie; 1107 struct zonelist *zonelist; 1108 struct zone *zone; 1109 struct zoneref *z; 1110 int node = NUMA_NO_NODE; 1111 1112 zonelist = node_zonelist(nid, gfp_mask); 1113 1114 retry_cpuset: 1115 cpuset_mems_cookie = read_mems_allowed_begin(); 1116 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) { 1117 struct page *page; 1118 1119 if (!cpuset_zone_allowed(zone, gfp_mask)) 1120 continue; 1121 /* 1122 * no need to ask again on the same node. Pool is node rather than 1123 * zone aware 1124 */ 1125 if (zone_to_nid(zone) == node) 1126 continue; 1127 node = zone_to_nid(zone); 1128 1129 page = dequeue_huge_page_node_exact(h, node); 1130 if (page) 1131 return page; 1132 } 1133 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie))) 1134 goto retry_cpuset; 1135 1136 return NULL; 1137 } 1138 1139 static struct page *dequeue_huge_page_vma(struct hstate *h, 1140 struct vm_area_struct *vma, 1141 unsigned long address, int avoid_reserve, 1142 long chg) 1143 { 1144 struct page *page; 1145 struct mempolicy *mpol; 1146 gfp_t gfp_mask; 1147 nodemask_t *nodemask; 1148 int nid; 1149 1150 /* 1151 * A child process with MAP_PRIVATE mappings created by their parent 1152 * have no page reserves. This check ensures that reservations are 1153 * not "stolen". The child may still get SIGKILLed 1154 */ 1155 if (!vma_has_reserves(vma, chg) && 1156 h->free_huge_pages - h->resv_huge_pages == 0) 1157 goto err; 1158 1159 /* If reserves cannot be used, ensure enough pages are in the pool */ 1160 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0) 1161 goto err; 1162 1163 gfp_mask = htlb_alloc_mask(h); 1164 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 1165 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask); 1166 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) { 1167 SetHPageRestoreReserve(page); 1168 h->resv_huge_pages--; 1169 } 1170 1171 mpol_cond_put(mpol); 1172 return page; 1173 1174 err: 1175 return NULL; 1176 } 1177 1178 /* 1179 * common helper functions for hstate_next_node_to_{alloc|free}. 1180 * We may have allocated or freed a huge page based on a different 1181 * nodes_allowed previously, so h->next_node_to_{alloc|free} might 1182 * be outside of *nodes_allowed. Ensure that we use an allowed 1183 * node for alloc or free. 1184 */ 1185 static int next_node_allowed(int nid, nodemask_t *nodes_allowed) 1186 { 1187 nid = next_node_in(nid, *nodes_allowed); 1188 VM_BUG_ON(nid >= MAX_NUMNODES); 1189 1190 return nid; 1191 } 1192 1193 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed) 1194 { 1195 if (!node_isset(nid, *nodes_allowed)) 1196 nid = next_node_allowed(nid, nodes_allowed); 1197 return nid; 1198 } 1199 1200 /* 1201 * returns the previously saved node ["this node"] from which to 1202 * allocate a persistent huge page for the pool and advance the 1203 * next node from which to allocate, handling wrap at end of node 1204 * mask. 1205 */ 1206 static int hstate_next_node_to_alloc(struct hstate *h, 1207 nodemask_t *nodes_allowed) 1208 { 1209 int nid; 1210 1211 VM_BUG_ON(!nodes_allowed); 1212 1213 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed); 1214 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed); 1215 1216 return nid; 1217 } 1218 1219 /* 1220 * helper for remove_pool_huge_page() - return the previously saved 1221 * node ["this node"] from which to free a huge page. Advance the 1222 * next node id whether or not we find a free huge page to free so 1223 * that the next attempt to free addresses the next node. 1224 */ 1225 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed) 1226 { 1227 int nid; 1228 1229 VM_BUG_ON(!nodes_allowed); 1230 1231 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed); 1232 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed); 1233 1234 return nid; 1235 } 1236 1237 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \ 1238 for (nr_nodes = nodes_weight(*mask); \ 1239 nr_nodes > 0 && \ 1240 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \ 1241 nr_nodes--) 1242 1243 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \ 1244 for (nr_nodes = nodes_weight(*mask); \ 1245 nr_nodes > 0 && \ 1246 ((node = hstate_next_node_to_free(hs, mask)) || 1); \ 1247 nr_nodes--) 1248 1249 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE 1250 static void destroy_compound_gigantic_page(struct page *page, 1251 unsigned int order) 1252 { 1253 int i; 1254 int nr_pages = 1 << order; 1255 struct page *p = page + 1; 1256 1257 atomic_set(compound_mapcount_ptr(page), 0); 1258 atomic_set(compound_pincount_ptr(page), 0); 1259 1260 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { 1261 clear_compound_head(p); 1262 set_page_refcounted(p); 1263 } 1264 1265 set_compound_order(page, 0); 1266 page[1].compound_nr = 0; 1267 __ClearPageHead(page); 1268 } 1269 1270 static void free_gigantic_page(struct page *page, unsigned int order) 1271 { 1272 /* 1273 * If the page isn't allocated using the cma allocator, 1274 * cma_release() returns false. 1275 */ 1276 #ifdef CONFIG_CMA 1277 if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order)) 1278 return; 1279 #endif 1280 1281 free_contig_range(page_to_pfn(page), 1 << order); 1282 } 1283 1284 #ifdef CONFIG_CONTIG_ALLOC 1285 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, 1286 int nid, nodemask_t *nodemask) 1287 { 1288 unsigned long nr_pages = pages_per_huge_page(h); 1289 if (nid == NUMA_NO_NODE) 1290 nid = numa_mem_id(); 1291 1292 #ifdef CONFIG_CMA 1293 { 1294 struct page *page; 1295 int node; 1296 1297 if (hugetlb_cma[nid]) { 1298 page = cma_alloc(hugetlb_cma[nid], nr_pages, 1299 huge_page_order(h), true); 1300 if (page) 1301 return page; 1302 } 1303 1304 if (!(gfp_mask & __GFP_THISNODE)) { 1305 for_each_node_mask(node, *nodemask) { 1306 if (node == nid || !hugetlb_cma[node]) 1307 continue; 1308 1309 page = cma_alloc(hugetlb_cma[node], nr_pages, 1310 huge_page_order(h), true); 1311 if (page) 1312 return page; 1313 } 1314 } 1315 } 1316 #endif 1317 1318 return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask); 1319 } 1320 1321 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid); 1322 static void prep_compound_gigantic_page(struct page *page, unsigned int order); 1323 #else /* !CONFIG_CONTIG_ALLOC */ 1324 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, 1325 int nid, nodemask_t *nodemask) 1326 { 1327 return NULL; 1328 } 1329 #endif /* CONFIG_CONTIG_ALLOC */ 1330 1331 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */ 1332 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, 1333 int nid, nodemask_t *nodemask) 1334 { 1335 return NULL; 1336 } 1337 static inline void free_gigantic_page(struct page *page, unsigned int order) { } 1338 static inline void destroy_compound_gigantic_page(struct page *page, 1339 unsigned int order) { } 1340 #endif 1341 1342 /* 1343 * Remove hugetlb page from lists, and update dtor so that page appears 1344 * as just a compound page. A reference is held on the page. 1345 * 1346 * Must be called with hugetlb lock held. 1347 */ 1348 static void remove_hugetlb_page(struct hstate *h, struct page *page, 1349 bool adjust_surplus) 1350 { 1351 int nid = page_to_nid(page); 1352 1353 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page); 1354 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page); 1355 1356 lockdep_assert_held(&hugetlb_lock); 1357 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 1358 return; 1359 1360 list_del(&page->lru); 1361 1362 if (HPageFreed(page)) { 1363 h->free_huge_pages--; 1364 h->free_huge_pages_node[nid]--; 1365 } 1366 if (adjust_surplus) { 1367 h->surplus_huge_pages--; 1368 h->surplus_huge_pages_node[nid]--; 1369 } 1370 1371 set_page_refcounted(page); 1372 set_compound_page_dtor(page, NULL_COMPOUND_DTOR); 1373 1374 h->nr_huge_pages--; 1375 h->nr_huge_pages_node[nid]--; 1376 } 1377 1378 static void update_and_free_page(struct hstate *h, struct page *page) 1379 { 1380 int i; 1381 struct page *subpage = page; 1382 1383 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 1384 return; 1385 1386 for (i = 0; i < pages_per_huge_page(h); 1387 i++, subpage = mem_map_next(subpage, page, i)) { 1388 subpage->flags &= ~(1 << PG_locked | 1 << PG_error | 1389 1 << PG_referenced | 1 << PG_dirty | 1390 1 << PG_active | 1 << PG_private | 1391 1 << PG_writeback); 1392 } 1393 if (hstate_is_gigantic(h)) { 1394 destroy_compound_gigantic_page(page, huge_page_order(h)); 1395 free_gigantic_page(page, huge_page_order(h)); 1396 } else { 1397 __free_pages(page, huge_page_order(h)); 1398 } 1399 } 1400 1401 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list) 1402 { 1403 struct page *page, *t_page; 1404 1405 list_for_each_entry_safe(page, t_page, list, lru) { 1406 update_and_free_page(h, page); 1407 cond_resched(); 1408 } 1409 } 1410 1411 struct hstate *size_to_hstate(unsigned long size) 1412 { 1413 struct hstate *h; 1414 1415 for_each_hstate(h) { 1416 if (huge_page_size(h) == size) 1417 return h; 1418 } 1419 return NULL; 1420 } 1421 1422 void free_huge_page(struct page *page) 1423 { 1424 /* 1425 * Can't pass hstate in here because it is called from the 1426 * compound page destructor. 1427 */ 1428 struct hstate *h = page_hstate(page); 1429 int nid = page_to_nid(page); 1430 struct hugepage_subpool *spool = hugetlb_page_subpool(page); 1431 bool restore_reserve; 1432 unsigned long flags; 1433 1434 VM_BUG_ON_PAGE(page_count(page), page); 1435 VM_BUG_ON_PAGE(page_mapcount(page), page); 1436 1437 hugetlb_set_page_subpool(page, NULL); 1438 page->mapping = NULL; 1439 restore_reserve = HPageRestoreReserve(page); 1440 ClearHPageRestoreReserve(page); 1441 1442 /* 1443 * If HPageRestoreReserve was set on page, page allocation consumed a 1444 * reservation. If the page was associated with a subpool, there 1445 * would have been a page reserved in the subpool before allocation 1446 * via hugepage_subpool_get_pages(). Since we are 'restoring' the 1447 * reservation, do not call hugepage_subpool_put_pages() as this will 1448 * remove the reserved page from the subpool. 1449 */ 1450 if (!restore_reserve) { 1451 /* 1452 * A return code of zero implies that the subpool will be 1453 * under its minimum size if the reservation is not restored 1454 * after page is free. Therefore, force restore_reserve 1455 * operation. 1456 */ 1457 if (hugepage_subpool_put_pages(spool, 1) == 0) 1458 restore_reserve = true; 1459 } 1460 1461 spin_lock_irqsave(&hugetlb_lock, flags); 1462 ClearHPageMigratable(page); 1463 hugetlb_cgroup_uncharge_page(hstate_index(h), 1464 pages_per_huge_page(h), page); 1465 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h), 1466 pages_per_huge_page(h), page); 1467 if (restore_reserve) 1468 h->resv_huge_pages++; 1469 1470 if (HPageTemporary(page)) { 1471 remove_hugetlb_page(h, page, false); 1472 spin_unlock_irqrestore(&hugetlb_lock, flags); 1473 update_and_free_page(h, page); 1474 } else if (h->surplus_huge_pages_node[nid]) { 1475 /* remove the page from active list */ 1476 remove_hugetlb_page(h, page, true); 1477 spin_unlock_irqrestore(&hugetlb_lock, flags); 1478 update_and_free_page(h, page); 1479 } else { 1480 arch_clear_hugepage_flags(page); 1481 enqueue_huge_page(h, page); 1482 spin_unlock_irqrestore(&hugetlb_lock, flags); 1483 } 1484 } 1485 1486 /* 1487 * Must be called with the hugetlb lock held 1488 */ 1489 static void __prep_account_new_huge_page(struct hstate *h, int nid) 1490 { 1491 lockdep_assert_held(&hugetlb_lock); 1492 h->nr_huge_pages++; 1493 h->nr_huge_pages_node[nid]++; 1494 } 1495 1496 static void __prep_new_huge_page(struct page *page) 1497 { 1498 INIT_LIST_HEAD(&page->lru); 1499 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR); 1500 hugetlb_set_page_subpool(page, NULL); 1501 set_hugetlb_cgroup(page, NULL); 1502 set_hugetlb_cgroup_rsvd(page, NULL); 1503 } 1504 1505 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid) 1506 { 1507 __prep_new_huge_page(page); 1508 spin_lock_irq(&hugetlb_lock); 1509 __prep_account_new_huge_page(h, nid); 1510 spin_unlock_irq(&hugetlb_lock); 1511 } 1512 1513 static void prep_compound_gigantic_page(struct page *page, unsigned int order) 1514 { 1515 int i; 1516 int nr_pages = 1 << order; 1517 struct page *p = page + 1; 1518 1519 /* we rely on prep_new_huge_page to set the destructor */ 1520 set_compound_order(page, order); 1521 __ClearPageReserved(page); 1522 __SetPageHead(page); 1523 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { 1524 /* 1525 * For gigantic hugepages allocated through bootmem at 1526 * boot, it's safer to be consistent with the not-gigantic 1527 * hugepages and clear the PG_reserved bit from all tail pages 1528 * too. Otherwise drivers using get_user_pages() to access tail 1529 * pages may get the reference counting wrong if they see 1530 * PG_reserved set on a tail page (despite the head page not 1531 * having PG_reserved set). Enforcing this consistency between 1532 * head and tail pages allows drivers to optimize away a check 1533 * on the head page when they need know if put_page() is needed 1534 * after get_user_pages(). 1535 */ 1536 __ClearPageReserved(p); 1537 set_page_count(p, 0); 1538 set_compound_head(p, page); 1539 } 1540 atomic_set(compound_mapcount_ptr(page), -1); 1541 atomic_set(compound_pincount_ptr(page), 0); 1542 } 1543 1544 /* 1545 * PageHuge() only returns true for hugetlbfs pages, but not for normal or 1546 * transparent huge pages. See the PageTransHuge() documentation for more 1547 * details. 1548 */ 1549 int PageHuge(struct page *page) 1550 { 1551 if (!PageCompound(page)) 1552 return 0; 1553 1554 page = compound_head(page); 1555 return page[1].compound_dtor == HUGETLB_PAGE_DTOR; 1556 } 1557 EXPORT_SYMBOL_GPL(PageHuge); 1558 1559 /* 1560 * PageHeadHuge() only returns true for hugetlbfs head page, but not for 1561 * normal or transparent huge pages. 1562 */ 1563 int PageHeadHuge(struct page *page_head) 1564 { 1565 if (!PageHead(page_head)) 1566 return 0; 1567 1568 return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR; 1569 } 1570 1571 /* 1572 * Find and lock address space (mapping) in write mode. 1573 * 1574 * Upon entry, the page is locked which means that page_mapping() is 1575 * stable. Due to locking order, we can only trylock_write. If we can 1576 * not get the lock, simply return NULL to caller. 1577 */ 1578 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage) 1579 { 1580 struct address_space *mapping = page_mapping(hpage); 1581 1582 if (!mapping) 1583 return mapping; 1584 1585 if (i_mmap_trylock_write(mapping)) 1586 return mapping; 1587 1588 return NULL; 1589 } 1590 1591 pgoff_t hugetlb_basepage_index(struct page *page) 1592 { 1593 struct page *page_head = compound_head(page); 1594 pgoff_t index = page_index(page_head); 1595 unsigned long compound_idx; 1596 1597 if (compound_order(page_head) >= MAX_ORDER) 1598 compound_idx = page_to_pfn(page) - page_to_pfn(page_head); 1599 else 1600 compound_idx = page - page_head; 1601 1602 return (index << compound_order(page_head)) + compound_idx; 1603 } 1604 1605 static struct page *alloc_buddy_huge_page(struct hstate *h, 1606 gfp_t gfp_mask, int nid, nodemask_t *nmask, 1607 nodemask_t *node_alloc_noretry) 1608 { 1609 int order = huge_page_order(h); 1610 struct page *page; 1611 bool alloc_try_hard = true; 1612 1613 /* 1614 * By default we always try hard to allocate the page with 1615 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in 1616 * a loop (to adjust global huge page counts) and previous allocation 1617 * failed, do not continue to try hard on the same node. Use the 1618 * node_alloc_noretry bitmap to manage this state information. 1619 */ 1620 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry)) 1621 alloc_try_hard = false; 1622 gfp_mask |= __GFP_COMP|__GFP_NOWARN; 1623 if (alloc_try_hard) 1624 gfp_mask |= __GFP_RETRY_MAYFAIL; 1625 if (nid == NUMA_NO_NODE) 1626 nid = numa_mem_id(); 1627 page = __alloc_pages(gfp_mask, order, nid, nmask); 1628 if (page) 1629 __count_vm_event(HTLB_BUDDY_PGALLOC); 1630 else 1631 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 1632 1633 /* 1634 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this 1635 * indicates an overall state change. Clear bit so that we resume 1636 * normal 'try hard' allocations. 1637 */ 1638 if (node_alloc_noretry && page && !alloc_try_hard) 1639 node_clear(nid, *node_alloc_noretry); 1640 1641 /* 1642 * If we tried hard to get a page but failed, set bit so that 1643 * subsequent attempts will not try as hard until there is an 1644 * overall state change. 1645 */ 1646 if (node_alloc_noretry && !page && alloc_try_hard) 1647 node_set(nid, *node_alloc_noretry); 1648 1649 return page; 1650 } 1651 1652 /* 1653 * Common helper to allocate a fresh hugetlb page. All specific allocators 1654 * should use this function to get new hugetlb pages 1655 */ 1656 static struct page *alloc_fresh_huge_page(struct hstate *h, 1657 gfp_t gfp_mask, int nid, nodemask_t *nmask, 1658 nodemask_t *node_alloc_noretry) 1659 { 1660 struct page *page; 1661 1662 if (hstate_is_gigantic(h)) 1663 page = alloc_gigantic_page(h, gfp_mask, nid, nmask); 1664 else 1665 page = alloc_buddy_huge_page(h, gfp_mask, 1666 nid, nmask, node_alloc_noretry); 1667 if (!page) 1668 return NULL; 1669 1670 if (hstate_is_gigantic(h)) 1671 prep_compound_gigantic_page(page, huge_page_order(h)); 1672 prep_new_huge_page(h, page, page_to_nid(page)); 1673 1674 return page; 1675 } 1676 1677 /* 1678 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved 1679 * manner. 1680 */ 1681 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed, 1682 nodemask_t *node_alloc_noretry) 1683 { 1684 struct page *page; 1685 int nr_nodes, node; 1686 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 1687 1688 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 1689 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed, 1690 node_alloc_noretry); 1691 if (page) 1692 break; 1693 } 1694 1695 if (!page) 1696 return 0; 1697 1698 put_page(page); /* free it into the hugepage allocator */ 1699 1700 return 1; 1701 } 1702 1703 /* 1704 * Remove huge page from pool from next node to free. Attempt to keep 1705 * persistent huge pages more or less balanced over allowed nodes. 1706 * This routine only 'removes' the hugetlb page. The caller must make 1707 * an additional call to free the page to low level allocators. 1708 * Called with hugetlb_lock locked. 1709 */ 1710 static struct page *remove_pool_huge_page(struct hstate *h, 1711 nodemask_t *nodes_allowed, 1712 bool acct_surplus) 1713 { 1714 int nr_nodes, node; 1715 struct page *page = NULL; 1716 1717 lockdep_assert_held(&hugetlb_lock); 1718 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 1719 /* 1720 * If we're returning unused surplus pages, only examine 1721 * nodes with surplus pages. 1722 */ 1723 if ((!acct_surplus || h->surplus_huge_pages_node[node]) && 1724 !list_empty(&h->hugepage_freelists[node])) { 1725 page = list_entry(h->hugepage_freelists[node].next, 1726 struct page, lru); 1727 remove_hugetlb_page(h, page, acct_surplus); 1728 break; 1729 } 1730 } 1731 1732 return page; 1733 } 1734 1735 /* 1736 * Dissolve a given free hugepage into free buddy pages. This function does 1737 * nothing for in-use hugepages and non-hugepages. 1738 * This function returns values like below: 1739 * 1740 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use 1741 * (allocated or reserved.) 1742 * 0: successfully dissolved free hugepages or the page is not a 1743 * hugepage (considered as already dissolved) 1744 */ 1745 int dissolve_free_huge_page(struct page *page) 1746 { 1747 int rc = -EBUSY; 1748 1749 retry: 1750 /* Not to disrupt normal path by vainly holding hugetlb_lock */ 1751 if (!PageHuge(page)) 1752 return 0; 1753 1754 spin_lock_irq(&hugetlb_lock); 1755 if (!PageHuge(page)) { 1756 rc = 0; 1757 goto out; 1758 } 1759 1760 if (!page_count(page)) { 1761 struct page *head = compound_head(page); 1762 struct hstate *h = page_hstate(head); 1763 if (h->free_huge_pages - h->resv_huge_pages == 0) 1764 goto out; 1765 1766 /* 1767 * We should make sure that the page is already on the free list 1768 * when it is dissolved. 1769 */ 1770 if (unlikely(!HPageFreed(head))) { 1771 spin_unlock_irq(&hugetlb_lock); 1772 cond_resched(); 1773 1774 /* 1775 * Theoretically, we should return -EBUSY when we 1776 * encounter this race. In fact, we have a chance 1777 * to successfully dissolve the page if we do a 1778 * retry. Because the race window is quite small. 1779 * If we seize this opportunity, it is an optimization 1780 * for increasing the success rate of dissolving page. 1781 */ 1782 goto retry; 1783 } 1784 1785 /* 1786 * Move PageHWPoison flag from head page to the raw error page, 1787 * which makes any subpages rather than the error page reusable. 1788 */ 1789 if (PageHWPoison(head) && page != head) { 1790 SetPageHWPoison(page); 1791 ClearPageHWPoison(head); 1792 } 1793 remove_hugetlb_page(h, head, false); 1794 h->max_huge_pages--; 1795 spin_unlock_irq(&hugetlb_lock); 1796 update_and_free_page(h, head); 1797 return 0; 1798 } 1799 out: 1800 spin_unlock_irq(&hugetlb_lock); 1801 return rc; 1802 } 1803 1804 /* 1805 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to 1806 * make specified memory blocks removable from the system. 1807 * Note that this will dissolve a free gigantic hugepage completely, if any 1808 * part of it lies within the given range. 1809 * Also note that if dissolve_free_huge_page() returns with an error, all 1810 * free hugepages that were dissolved before that error are lost. 1811 */ 1812 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn) 1813 { 1814 unsigned long pfn; 1815 struct page *page; 1816 int rc = 0; 1817 1818 if (!hugepages_supported()) 1819 return rc; 1820 1821 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) { 1822 page = pfn_to_page(pfn); 1823 rc = dissolve_free_huge_page(page); 1824 if (rc) 1825 break; 1826 } 1827 1828 return rc; 1829 } 1830 1831 /* 1832 * Allocates a fresh surplus page from the page allocator. 1833 */ 1834 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask, 1835 int nid, nodemask_t *nmask) 1836 { 1837 struct page *page = NULL; 1838 1839 if (hstate_is_gigantic(h)) 1840 return NULL; 1841 1842 spin_lock_irq(&hugetlb_lock); 1843 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) 1844 goto out_unlock; 1845 spin_unlock_irq(&hugetlb_lock); 1846 1847 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL); 1848 if (!page) 1849 return NULL; 1850 1851 spin_lock_irq(&hugetlb_lock); 1852 /* 1853 * We could have raced with the pool size change. 1854 * Double check that and simply deallocate the new page 1855 * if we would end up overcommiting the surpluses. Abuse 1856 * temporary page to workaround the nasty free_huge_page 1857 * codeflow 1858 */ 1859 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { 1860 SetHPageTemporary(page); 1861 spin_unlock_irq(&hugetlb_lock); 1862 put_page(page); 1863 return NULL; 1864 } else { 1865 h->surplus_huge_pages++; 1866 h->surplus_huge_pages_node[page_to_nid(page)]++; 1867 } 1868 1869 out_unlock: 1870 spin_unlock_irq(&hugetlb_lock); 1871 1872 return page; 1873 } 1874 1875 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask, 1876 int nid, nodemask_t *nmask) 1877 { 1878 struct page *page; 1879 1880 if (hstate_is_gigantic(h)) 1881 return NULL; 1882 1883 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL); 1884 if (!page) 1885 return NULL; 1886 1887 /* 1888 * We do not account these pages as surplus because they are only 1889 * temporary and will be released properly on the last reference 1890 */ 1891 SetHPageTemporary(page); 1892 1893 return page; 1894 } 1895 1896 /* 1897 * Use the VMA's mpolicy to allocate a huge page from the buddy. 1898 */ 1899 static 1900 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h, 1901 struct vm_area_struct *vma, unsigned long addr) 1902 { 1903 struct page *page; 1904 struct mempolicy *mpol; 1905 gfp_t gfp_mask = htlb_alloc_mask(h); 1906 int nid; 1907 nodemask_t *nodemask; 1908 1909 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask); 1910 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask); 1911 mpol_cond_put(mpol); 1912 1913 return page; 1914 } 1915 1916 /* page migration callback function */ 1917 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid, 1918 nodemask_t *nmask, gfp_t gfp_mask) 1919 { 1920 spin_lock_irq(&hugetlb_lock); 1921 if (h->free_huge_pages - h->resv_huge_pages > 0) { 1922 struct page *page; 1923 1924 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask); 1925 if (page) { 1926 spin_unlock_irq(&hugetlb_lock); 1927 return page; 1928 } 1929 } 1930 spin_unlock_irq(&hugetlb_lock); 1931 1932 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask); 1933 } 1934 1935 /* mempolicy aware migration callback */ 1936 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma, 1937 unsigned long address) 1938 { 1939 struct mempolicy *mpol; 1940 nodemask_t *nodemask; 1941 struct page *page; 1942 gfp_t gfp_mask; 1943 int node; 1944 1945 gfp_mask = htlb_alloc_mask(h); 1946 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 1947 page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask); 1948 mpol_cond_put(mpol); 1949 1950 return page; 1951 } 1952 1953 /* 1954 * Increase the hugetlb pool such that it can accommodate a reservation 1955 * of size 'delta'. 1956 */ 1957 static int gather_surplus_pages(struct hstate *h, long delta) 1958 __must_hold(&hugetlb_lock) 1959 { 1960 struct list_head surplus_list; 1961 struct page *page, *tmp; 1962 int ret; 1963 long i; 1964 long needed, allocated; 1965 bool alloc_ok = true; 1966 1967 lockdep_assert_held(&hugetlb_lock); 1968 needed = (h->resv_huge_pages + delta) - h->free_huge_pages; 1969 if (needed <= 0) { 1970 h->resv_huge_pages += delta; 1971 return 0; 1972 } 1973 1974 allocated = 0; 1975 INIT_LIST_HEAD(&surplus_list); 1976 1977 ret = -ENOMEM; 1978 retry: 1979 spin_unlock_irq(&hugetlb_lock); 1980 for (i = 0; i < needed; i++) { 1981 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h), 1982 NUMA_NO_NODE, NULL); 1983 if (!page) { 1984 alloc_ok = false; 1985 break; 1986 } 1987 list_add(&page->lru, &surplus_list); 1988 cond_resched(); 1989 } 1990 allocated += i; 1991 1992 /* 1993 * After retaking hugetlb_lock, we need to recalculate 'needed' 1994 * because either resv_huge_pages or free_huge_pages may have changed. 1995 */ 1996 spin_lock_irq(&hugetlb_lock); 1997 needed = (h->resv_huge_pages + delta) - 1998 (h->free_huge_pages + allocated); 1999 if (needed > 0) { 2000 if (alloc_ok) 2001 goto retry; 2002 /* 2003 * We were not able to allocate enough pages to 2004 * satisfy the entire reservation so we free what 2005 * we've allocated so far. 2006 */ 2007 goto free; 2008 } 2009 /* 2010 * The surplus_list now contains _at_least_ the number of extra pages 2011 * needed to accommodate the reservation. Add the appropriate number 2012 * of pages to the hugetlb pool and free the extras back to the buddy 2013 * allocator. Commit the entire reservation here to prevent another 2014 * process from stealing the pages as they are added to the pool but 2015 * before they are reserved. 2016 */ 2017 needed += allocated; 2018 h->resv_huge_pages += delta; 2019 ret = 0; 2020 2021 /* Free the needed pages to the hugetlb pool */ 2022 list_for_each_entry_safe(page, tmp, &surplus_list, lru) { 2023 int zeroed; 2024 2025 if ((--needed) < 0) 2026 break; 2027 /* 2028 * This page is now managed by the hugetlb allocator and has 2029 * no users -- drop the buddy allocator's reference. 2030 */ 2031 zeroed = put_page_testzero(page); 2032 VM_BUG_ON_PAGE(!zeroed, page); 2033 enqueue_huge_page(h, page); 2034 } 2035 free: 2036 spin_unlock_irq(&hugetlb_lock); 2037 2038 /* Free unnecessary surplus pages to the buddy allocator */ 2039 list_for_each_entry_safe(page, tmp, &surplus_list, lru) 2040 put_page(page); 2041 spin_lock_irq(&hugetlb_lock); 2042 2043 return ret; 2044 } 2045 2046 /* 2047 * This routine has two main purposes: 2048 * 1) Decrement the reservation count (resv_huge_pages) by the value passed 2049 * in unused_resv_pages. This corresponds to the prior adjustments made 2050 * to the associated reservation map. 2051 * 2) Free any unused surplus pages that may have been allocated to satisfy 2052 * the reservation. As many as unused_resv_pages may be freed. 2053 */ 2054 static void return_unused_surplus_pages(struct hstate *h, 2055 unsigned long unused_resv_pages) 2056 { 2057 unsigned long nr_pages; 2058 struct page *page; 2059 LIST_HEAD(page_list); 2060 2061 lockdep_assert_held(&hugetlb_lock); 2062 /* Uncommit the reservation */ 2063 h->resv_huge_pages -= unused_resv_pages; 2064 2065 /* Cannot return gigantic pages currently */ 2066 if (hstate_is_gigantic(h)) 2067 goto out; 2068 2069 /* 2070 * Part (or even all) of the reservation could have been backed 2071 * by pre-allocated pages. Only free surplus pages. 2072 */ 2073 nr_pages = min(unused_resv_pages, h->surplus_huge_pages); 2074 2075 /* 2076 * We want to release as many surplus pages as possible, spread 2077 * evenly across all nodes with memory. Iterate across these nodes 2078 * until we can no longer free unreserved surplus pages. This occurs 2079 * when the nodes with surplus pages have no free pages. 2080 * remove_pool_huge_page() will balance the freed pages across the 2081 * on-line nodes with memory and will handle the hstate accounting. 2082 */ 2083 while (nr_pages--) { 2084 page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1); 2085 if (!page) 2086 goto out; 2087 2088 list_add(&page->lru, &page_list); 2089 } 2090 2091 out: 2092 spin_unlock_irq(&hugetlb_lock); 2093 update_and_free_pages_bulk(h, &page_list); 2094 spin_lock_irq(&hugetlb_lock); 2095 } 2096 2097 2098 /* 2099 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation 2100 * are used by the huge page allocation routines to manage reservations. 2101 * 2102 * vma_needs_reservation is called to determine if the huge page at addr 2103 * within the vma has an associated reservation. If a reservation is 2104 * needed, the value 1 is returned. The caller is then responsible for 2105 * managing the global reservation and subpool usage counts. After 2106 * the huge page has been allocated, vma_commit_reservation is called 2107 * to add the page to the reservation map. If the page allocation fails, 2108 * the reservation must be ended instead of committed. vma_end_reservation 2109 * is called in such cases. 2110 * 2111 * In the normal case, vma_commit_reservation returns the same value 2112 * as the preceding vma_needs_reservation call. The only time this 2113 * is not the case is if a reserve map was changed between calls. It 2114 * is the responsibility of the caller to notice the difference and 2115 * take appropriate action. 2116 * 2117 * vma_add_reservation is used in error paths where a reservation must 2118 * be restored when a newly allocated huge page must be freed. It is 2119 * to be called after calling vma_needs_reservation to determine if a 2120 * reservation exists. 2121 * 2122 * vma_del_reservation is used in error paths where an entry in the reserve 2123 * map was created during huge page allocation and must be removed. It is to 2124 * be called after calling vma_needs_reservation to determine if a reservation 2125 * exists. 2126 */ 2127 enum vma_resv_mode { 2128 VMA_NEEDS_RESV, 2129 VMA_COMMIT_RESV, 2130 VMA_END_RESV, 2131 VMA_ADD_RESV, 2132 VMA_DEL_RESV, 2133 }; 2134 static long __vma_reservation_common(struct hstate *h, 2135 struct vm_area_struct *vma, unsigned long addr, 2136 enum vma_resv_mode mode) 2137 { 2138 struct resv_map *resv; 2139 pgoff_t idx; 2140 long ret; 2141 long dummy_out_regions_needed; 2142 2143 resv = vma_resv_map(vma); 2144 if (!resv) 2145 return 1; 2146 2147 idx = vma_hugecache_offset(h, vma, addr); 2148 switch (mode) { 2149 case VMA_NEEDS_RESV: 2150 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed); 2151 /* We assume that vma_reservation_* routines always operate on 2152 * 1 page, and that adding to resv map a 1 page entry can only 2153 * ever require 1 region. 2154 */ 2155 VM_BUG_ON(dummy_out_regions_needed != 1); 2156 break; 2157 case VMA_COMMIT_RESV: 2158 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2159 /* region_add calls of range 1 should never fail. */ 2160 VM_BUG_ON(ret < 0); 2161 break; 2162 case VMA_END_RESV: 2163 region_abort(resv, idx, idx + 1, 1); 2164 ret = 0; 2165 break; 2166 case VMA_ADD_RESV: 2167 if (vma->vm_flags & VM_MAYSHARE) { 2168 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2169 /* region_add calls of range 1 should never fail. */ 2170 VM_BUG_ON(ret < 0); 2171 } else { 2172 region_abort(resv, idx, idx + 1, 1); 2173 ret = region_del(resv, idx, idx + 1); 2174 } 2175 break; 2176 case VMA_DEL_RESV: 2177 if (vma->vm_flags & VM_MAYSHARE) { 2178 region_abort(resv, idx, idx + 1, 1); 2179 ret = region_del(resv, idx, idx + 1); 2180 } else { 2181 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2182 /* region_add calls of range 1 should never fail. */ 2183 VM_BUG_ON(ret < 0); 2184 } 2185 break; 2186 default: 2187 BUG(); 2188 } 2189 2190 if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV) 2191 return ret; 2192 /* 2193 * We know private mapping must have HPAGE_RESV_OWNER set. 2194 * 2195 * In most cases, reserves always exist for private mappings. 2196 * However, a file associated with mapping could have been 2197 * hole punched or truncated after reserves were consumed. 2198 * As subsequent fault on such a range will not use reserves. 2199 * Subtle - The reserve map for private mappings has the 2200 * opposite meaning than that of shared mappings. If NO 2201 * entry is in the reserve map, it means a reservation exists. 2202 * If an entry exists in the reserve map, it means the 2203 * reservation has already been consumed. As a result, the 2204 * return value of this routine is the opposite of the 2205 * value returned from reserve map manipulation routines above. 2206 */ 2207 if (ret > 0) 2208 return 0; 2209 if (ret == 0) 2210 return 1; 2211 return ret; 2212 } 2213 2214 static long vma_needs_reservation(struct hstate *h, 2215 struct vm_area_struct *vma, unsigned long addr) 2216 { 2217 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV); 2218 } 2219 2220 static long vma_commit_reservation(struct hstate *h, 2221 struct vm_area_struct *vma, unsigned long addr) 2222 { 2223 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV); 2224 } 2225 2226 static void vma_end_reservation(struct hstate *h, 2227 struct vm_area_struct *vma, unsigned long addr) 2228 { 2229 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV); 2230 } 2231 2232 static long vma_add_reservation(struct hstate *h, 2233 struct vm_area_struct *vma, unsigned long addr) 2234 { 2235 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV); 2236 } 2237 2238 static long vma_del_reservation(struct hstate *h, 2239 struct vm_area_struct *vma, unsigned long addr) 2240 { 2241 return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV); 2242 } 2243 2244 /* 2245 * This routine is called to restore reservation information on error paths. 2246 * It should ONLY be called for pages allocated via alloc_huge_page(), and 2247 * the hugetlb mutex should remain held when calling this routine. 2248 * 2249 * It handles two specific cases: 2250 * 1) A reservation was in place and the page consumed the reservation. 2251 * HPageRestoreReserve is set in the page. 2252 * 2) No reservation was in place for the page, so HPageRestoreReserve is 2253 * not set. However, alloc_huge_page always updates the reserve map. 2254 * 2255 * In case 1, free_huge_page later in the error path will increment the 2256 * global reserve count. But, free_huge_page does not have enough context 2257 * to adjust the reservation map. This case deals primarily with private 2258 * mappings. Adjust the reserve map here to be consistent with global 2259 * reserve count adjustments to be made by free_huge_page. Make sure the 2260 * reserve map indicates there is a reservation present. 2261 * 2262 * In case 2, simply undo reserve map modifications done by alloc_huge_page. 2263 */ 2264 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma, 2265 unsigned long address, struct page *page) 2266 { 2267 long rc = vma_needs_reservation(h, vma, address); 2268 2269 if (HPageRestoreReserve(page)) { 2270 if (unlikely(rc < 0)) 2271 /* 2272 * Rare out of memory condition in reserve map 2273 * manipulation. Clear HPageRestoreReserve so that 2274 * global reserve count will not be incremented 2275 * by free_huge_page. This will make it appear 2276 * as though the reservation for this page was 2277 * consumed. This may prevent the task from 2278 * faulting in the page at a later time. This 2279 * is better than inconsistent global huge page 2280 * accounting of reserve counts. 2281 */ 2282 ClearHPageRestoreReserve(page); 2283 else if (rc) 2284 (void)vma_add_reservation(h, vma, address); 2285 else 2286 vma_end_reservation(h, vma, address); 2287 } else { 2288 if (!rc) { 2289 /* 2290 * This indicates there is an entry in the reserve map 2291 * added by alloc_huge_page. We know it was added 2292 * before the alloc_huge_page call, otherwise 2293 * HPageRestoreReserve would be set on the page. 2294 * Remove the entry so that a subsequent allocation 2295 * does not consume a reservation. 2296 */ 2297 rc = vma_del_reservation(h, vma, address); 2298 if (rc < 0) 2299 /* 2300 * VERY rare out of memory condition. Since 2301 * we can not delete the entry, set 2302 * HPageRestoreReserve so that the reserve 2303 * count will be incremented when the page 2304 * is freed. This reserve will be consumed 2305 * on a subsequent allocation. 2306 */ 2307 SetHPageRestoreReserve(page); 2308 } else if (rc < 0) { 2309 /* 2310 * Rare out of memory condition from 2311 * vma_needs_reservation call. Memory allocation is 2312 * only attempted if a new entry is needed. Therefore, 2313 * this implies there is not an entry in the 2314 * reserve map. 2315 * 2316 * For shared mappings, no entry in the map indicates 2317 * no reservation. We are done. 2318 */ 2319 if (!(vma->vm_flags & VM_MAYSHARE)) 2320 /* 2321 * For private mappings, no entry indicates 2322 * a reservation is present. Since we can 2323 * not add an entry, set SetHPageRestoreReserve 2324 * on the page so reserve count will be 2325 * incremented when freed. This reserve will 2326 * be consumed on a subsequent allocation. 2327 */ 2328 SetHPageRestoreReserve(page); 2329 } else 2330 /* 2331 * No reservation present, do nothing 2332 */ 2333 vma_end_reservation(h, vma, address); 2334 } 2335 } 2336 2337 /* 2338 * alloc_and_dissolve_huge_page - Allocate a new page and dissolve the old one 2339 * @h: struct hstate old page belongs to 2340 * @old_page: Old page to dissolve 2341 * @list: List to isolate the page in case we need to 2342 * Returns 0 on success, otherwise negated error. 2343 */ 2344 static int alloc_and_dissolve_huge_page(struct hstate *h, struct page *old_page, 2345 struct list_head *list) 2346 { 2347 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 2348 int nid = page_to_nid(old_page); 2349 struct page *new_page; 2350 int ret = 0; 2351 2352 /* 2353 * Before dissolving the page, we need to allocate a new one for the 2354 * pool to remain stable. Using alloc_buddy_huge_page() allows us to 2355 * not having to deal with prep_new_huge_page() and avoids dealing of any 2356 * counters. This simplifies and let us do the whole thing under the 2357 * lock. 2358 */ 2359 new_page = alloc_buddy_huge_page(h, gfp_mask, nid, NULL, NULL); 2360 if (!new_page) 2361 return -ENOMEM; 2362 2363 retry: 2364 spin_lock_irq(&hugetlb_lock); 2365 if (!PageHuge(old_page)) { 2366 /* 2367 * Freed from under us. Drop new_page too. 2368 */ 2369 goto free_new; 2370 } else if (page_count(old_page)) { 2371 /* 2372 * Someone has grabbed the page, try to isolate it here. 2373 * Fail with -EBUSY if not possible. 2374 */ 2375 spin_unlock_irq(&hugetlb_lock); 2376 if (!isolate_huge_page(old_page, list)) 2377 ret = -EBUSY; 2378 spin_lock_irq(&hugetlb_lock); 2379 goto free_new; 2380 } else if (!HPageFreed(old_page)) { 2381 /* 2382 * Page's refcount is 0 but it has not been enqueued in the 2383 * freelist yet. Race window is small, so we can succeed here if 2384 * we retry. 2385 */ 2386 spin_unlock_irq(&hugetlb_lock); 2387 cond_resched(); 2388 goto retry; 2389 } else { 2390 /* 2391 * Ok, old_page is still a genuine free hugepage. Remove it from 2392 * the freelist and decrease the counters. These will be 2393 * incremented again when calling __prep_account_new_huge_page() 2394 * and enqueue_huge_page() for new_page. The counters will remain 2395 * stable since this happens under the lock. 2396 */ 2397 remove_hugetlb_page(h, old_page, false); 2398 2399 /* 2400 * new_page needs to be initialized with the standard hugetlb 2401 * state. This is normally done by prep_new_huge_page() but 2402 * that takes hugetlb_lock which is already held so we need to 2403 * open code it here. 2404 * Reference count trick is needed because allocator gives us 2405 * referenced page but the pool requires pages with 0 refcount. 2406 */ 2407 __prep_new_huge_page(new_page); 2408 __prep_account_new_huge_page(h, nid); 2409 page_ref_dec(new_page); 2410 enqueue_huge_page(h, new_page); 2411 2412 /* 2413 * Pages have been replaced, we can safely free the old one. 2414 */ 2415 spin_unlock_irq(&hugetlb_lock); 2416 update_and_free_page(h, old_page); 2417 } 2418 2419 return ret; 2420 2421 free_new: 2422 spin_unlock_irq(&hugetlb_lock); 2423 __free_pages(new_page, huge_page_order(h)); 2424 2425 return ret; 2426 } 2427 2428 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list) 2429 { 2430 struct hstate *h; 2431 struct page *head; 2432 int ret = -EBUSY; 2433 2434 /* 2435 * The page might have been dissolved from under our feet, so make sure 2436 * to carefully check the state under the lock. 2437 * Return success when racing as if we dissolved the page ourselves. 2438 */ 2439 spin_lock_irq(&hugetlb_lock); 2440 if (PageHuge(page)) { 2441 head = compound_head(page); 2442 h = page_hstate(head); 2443 } else { 2444 spin_unlock_irq(&hugetlb_lock); 2445 return 0; 2446 } 2447 spin_unlock_irq(&hugetlb_lock); 2448 2449 /* 2450 * Fence off gigantic pages as there is a cyclic dependency between 2451 * alloc_contig_range and them. Return -ENOMEM as this has the effect 2452 * of bailing out right away without further retrying. 2453 */ 2454 if (hstate_is_gigantic(h)) 2455 return -ENOMEM; 2456 2457 if (page_count(head) && isolate_huge_page(head, list)) 2458 ret = 0; 2459 else if (!page_count(head)) 2460 ret = alloc_and_dissolve_huge_page(h, head, list); 2461 2462 return ret; 2463 } 2464 2465 struct page *alloc_huge_page(struct vm_area_struct *vma, 2466 unsigned long addr, int avoid_reserve) 2467 { 2468 struct hugepage_subpool *spool = subpool_vma(vma); 2469 struct hstate *h = hstate_vma(vma); 2470 struct page *page; 2471 long map_chg, map_commit; 2472 long gbl_chg; 2473 int ret, idx; 2474 struct hugetlb_cgroup *h_cg; 2475 bool deferred_reserve; 2476 2477 idx = hstate_index(h); 2478 /* 2479 * Examine the region/reserve map to determine if the process 2480 * has a reservation for the page to be allocated. A return 2481 * code of zero indicates a reservation exists (no change). 2482 */ 2483 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr); 2484 if (map_chg < 0) 2485 return ERR_PTR(-ENOMEM); 2486 2487 /* 2488 * Processes that did not create the mapping will have no 2489 * reserves as indicated by the region/reserve map. Check 2490 * that the allocation will not exceed the subpool limit. 2491 * Allocations for MAP_NORESERVE mappings also need to be 2492 * checked against any subpool limit. 2493 */ 2494 if (map_chg || avoid_reserve) { 2495 gbl_chg = hugepage_subpool_get_pages(spool, 1); 2496 if (gbl_chg < 0) { 2497 vma_end_reservation(h, vma, addr); 2498 return ERR_PTR(-ENOSPC); 2499 } 2500 2501 /* 2502 * Even though there was no reservation in the region/reserve 2503 * map, there could be reservations associated with the 2504 * subpool that can be used. This would be indicated if the 2505 * return value of hugepage_subpool_get_pages() is zero. 2506 * However, if avoid_reserve is specified we still avoid even 2507 * the subpool reservations. 2508 */ 2509 if (avoid_reserve) 2510 gbl_chg = 1; 2511 } 2512 2513 /* If this allocation is not consuming a reservation, charge it now. 2514 */ 2515 deferred_reserve = map_chg || avoid_reserve; 2516 if (deferred_reserve) { 2517 ret = hugetlb_cgroup_charge_cgroup_rsvd( 2518 idx, pages_per_huge_page(h), &h_cg); 2519 if (ret) 2520 goto out_subpool_put; 2521 } 2522 2523 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg); 2524 if (ret) 2525 goto out_uncharge_cgroup_reservation; 2526 2527 spin_lock_irq(&hugetlb_lock); 2528 /* 2529 * glb_chg is passed to indicate whether or not a page must be taken 2530 * from the global free pool (global change). gbl_chg == 0 indicates 2531 * a reservation exists for the allocation. 2532 */ 2533 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg); 2534 if (!page) { 2535 spin_unlock_irq(&hugetlb_lock); 2536 page = alloc_buddy_huge_page_with_mpol(h, vma, addr); 2537 if (!page) 2538 goto out_uncharge_cgroup; 2539 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) { 2540 SetHPageRestoreReserve(page); 2541 h->resv_huge_pages--; 2542 } 2543 spin_lock_irq(&hugetlb_lock); 2544 list_add(&page->lru, &h->hugepage_activelist); 2545 /* Fall through */ 2546 } 2547 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page); 2548 /* If allocation is not consuming a reservation, also store the 2549 * hugetlb_cgroup pointer on the page. 2550 */ 2551 if (deferred_reserve) { 2552 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h), 2553 h_cg, page); 2554 } 2555 2556 spin_unlock_irq(&hugetlb_lock); 2557 2558 hugetlb_set_page_subpool(page, spool); 2559 2560 map_commit = vma_commit_reservation(h, vma, addr); 2561 if (unlikely(map_chg > map_commit)) { 2562 /* 2563 * The page was added to the reservation map between 2564 * vma_needs_reservation and vma_commit_reservation. 2565 * This indicates a race with hugetlb_reserve_pages. 2566 * Adjust for the subpool count incremented above AND 2567 * in hugetlb_reserve_pages for the same page. Also, 2568 * the reservation count added in hugetlb_reserve_pages 2569 * no longer applies. 2570 */ 2571 long rsv_adjust; 2572 2573 rsv_adjust = hugepage_subpool_put_pages(spool, 1); 2574 hugetlb_acct_memory(h, -rsv_adjust); 2575 if (deferred_reserve) 2576 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h), 2577 pages_per_huge_page(h), page); 2578 } 2579 return page; 2580 2581 out_uncharge_cgroup: 2582 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg); 2583 out_uncharge_cgroup_reservation: 2584 if (deferred_reserve) 2585 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h), 2586 h_cg); 2587 out_subpool_put: 2588 if (map_chg || avoid_reserve) 2589 hugepage_subpool_put_pages(spool, 1); 2590 vma_end_reservation(h, vma, addr); 2591 return ERR_PTR(-ENOSPC); 2592 } 2593 2594 int alloc_bootmem_huge_page(struct hstate *h) 2595 __attribute__ ((weak, alias("__alloc_bootmem_huge_page"))); 2596 int __alloc_bootmem_huge_page(struct hstate *h) 2597 { 2598 struct huge_bootmem_page *m; 2599 int nr_nodes, node; 2600 2601 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) { 2602 void *addr; 2603 2604 addr = memblock_alloc_try_nid_raw( 2605 huge_page_size(h), huge_page_size(h), 2606 0, MEMBLOCK_ALLOC_ACCESSIBLE, node); 2607 if (addr) { 2608 /* 2609 * Use the beginning of the huge page to store the 2610 * huge_bootmem_page struct (until gather_bootmem 2611 * puts them into the mem_map). 2612 */ 2613 m = addr; 2614 goto found; 2615 } 2616 } 2617 return 0; 2618 2619 found: 2620 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h))); 2621 /* Put them into a private list first because mem_map is not up yet */ 2622 INIT_LIST_HEAD(&m->list); 2623 list_add(&m->list, &huge_boot_pages); 2624 m->hstate = h; 2625 return 1; 2626 } 2627 2628 static void __init prep_compound_huge_page(struct page *page, 2629 unsigned int order) 2630 { 2631 if (unlikely(order > (MAX_ORDER - 1))) 2632 prep_compound_gigantic_page(page, order); 2633 else 2634 prep_compound_page(page, order); 2635 } 2636 2637 /* Put bootmem huge pages into the standard lists after mem_map is up */ 2638 static void __init gather_bootmem_prealloc(void) 2639 { 2640 struct huge_bootmem_page *m; 2641 2642 list_for_each_entry(m, &huge_boot_pages, list) { 2643 struct page *page = virt_to_page(m); 2644 struct hstate *h = m->hstate; 2645 2646 WARN_ON(page_count(page) != 1); 2647 prep_compound_huge_page(page, huge_page_order(h)); 2648 WARN_ON(PageReserved(page)); 2649 prep_new_huge_page(h, page, page_to_nid(page)); 2650 put_page(page); /* free it into the hugepage allocator */ 2651 2652 /* 2653 * If we had gigantic hugepages allocated at boot time, we need 2654 * to restore the 'stolen' pages to totalram_pages in order to 2655 * fix confusing memory reports from free(1) and another 2656 * side-effects, like CommitLimit going negative. 2657 */ 2658 if (hstate_is_gigantic(h)) 2659 adjust_managed_page_count(page, pages_per_huge_page(h)); 2660 cond_resched(); 2661 } 2662 } 2663 2664 static void __init hugetlb_hstate_alloc_pages(struct hstate *h) 2665 { 2666 unsigned long i; 2667 nodemask_t *node_alloc_noretry; 2668 2669 if (!hstate_is_gigantic(h)) { 2670 /* 2671 * Bit mask controlling how hard we retry per-node allocations. 2672 * Ignore errors as lower level routines can deal with 2673 * node_alloc_noretry == NULL. If this kmalloc fails at boot 2674 * time, we are likely in bigger trouble. 2675 */ 2676 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry), 2677 GFP_KERNEL); 2678 } else { 2679 /* allocations done at boot time */ 2680 node_alloc_noretry = NULL; 2681 } 2682 2683 /* bit mask controlling how hard we retry per-node allocations */ 2684 if (node_alloc_noretry) 2685 nodes_clear(*node_alloc_noretry); 2686 2687 for (i = 0; i < h->max_huge_pages; ++i) { 2688 if (hstate_is_gigantic(h)) { 2689 if (hugetlb_cma_size) { 2690 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n"); 2691 goto free; 2692 } 2693 if (!alloc_bootmem_huge_page(h)) 2694 break; 2695 } else if (!alloc_pool_huge_page(h, 2696 &node_states[N_MEMORY], 2697 node_alloc_noretry)) 2698 break; 2699 cond_resched(); 2700 } 2701 if (i < h->max_huge_pages) { 2702 char buf[32]; 2703 2704 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 2705 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n", 2706 h->max_huge_pages, buf, i); 2707 h->max_huge_pages = i; 2708 } 2709 free: 2710 kfree(node_alloc_noretry); 2711 } 2712 2713 static void __init hugetlb_init_hstates(void) 2714 { 2715 struct hstate *h; 2716 2717 for_each_hstate(h) { 2718 if (minimum_order > huge_page_order(h)) 2719 minimum_order = huge_page_order(h); 2720 2721 /* oversize hugepages were init'ed in early boot */ 2722 if (!hstate_is_gigantic(h)) 2723 hugetlb_hstate_alloc_pages(h); 2724 } 2725 VM_BUG_ON(minimum_order == UINT_MAX); 2726 } 2727 2728 static void __init report_hugepages(void) 2729 { 2730 struct hstate *h; 2731 2732 for_each_hstate(h) { 2733 char buf[32]; 2734 2735 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 2736 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n", 2737 buf, h->free_huge_pages); 2738 } 2739 } 2740 2741 #ifdef CONFIG_HIGHMEM 2742 static void try_to_free_low(struct hstate *h, unsigned long count, 2743 nodemask_t *nodes_allowed) 2744 { 2745 int i; 2746 LIST_HEAD(page_list); 2747 2748 lockdep_assert_held(&hugetlb_lock); 2749 if (hstate_is_gigantic(h)) 2750 return; 2751 2752 /* 2753 * Collect pages to be freed on a list, and free after dropping lock 2754 */ 2755 for_each_node_mask(i, *nodes_allowed) { 2756 struct page *page, *next; 2757 struct list_head *freel = &h->hugepage_freelists[i]; 2758 list_for_each_entry_safe(page, next, freel, lru) { 2759 if (count >= h->nr_huge_pages) 2760 goto out; 2761 if (PageHighMem(page)) 2762 continue; 2763 remove_hugetlb_page(h, page, false); 2764 list_add(&page->lru, &page_list); 2765 } 2766 } 2767 2768 out: 2769 spin_unlock_irq(&hugetlb_lock); 2770 update_and_free_pages_bulk(h, &page_list); 2771 spin_lock_irq(&hugetlb_lock); 2772 } 2773 #else 2774 static inline void try_to_free_low(struct hstate *h, unsigned long count, 2775 nodemask_t *nodes_allowed) 2776 { 2777 } 2778 #endif 2779 2780 /* 2781 * Increment or decrement surplus_huge_pages. Keep node-specific counters 2782 * balanced by operating on them in a round-robin fashion. 2783 * Returns 1 if an adjustment was made. 2784 */ 2785 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed, 2786 int delta) 2787 { 2788 int nr_nodes, node; 2789 2790 lockdep_assert_held(&hugetlb_lock); 2791 VM_BUG_ON(delta != -1 && delta != 1); 2792 2793 if (delta < 0) { 2794 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 2795 if (h->surplus_huge_pages_node[node]) 2796 goto found; 2797 } 2798 } else { 2799 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 2800 if (h->surplus_huge_pages_node[node] < 2801 h->nr_huge_pages_node[node]) 2802 goto found; 2803 } 2804 } 2805 return 0; 2806 2807 found: 2808 h->surplus_huge_pages += delta; 2809 h->surplus_huge_pages_node[node] += delta; 2810 return 1; 2811 } 2812 2813 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) 2814 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid, 2815 nodemask_t *nodes_allowed) 2816 { 2817 unsigned long min_count, ret; 2818 struct page *page; 2819 LIST_HEAD(page_list); 2820 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL); 2821 2822 /* 2823 * Bit mask controlling how hard we retry per-node allocations. 2824 * If we can not allocate the bit mask, do not attempt to allocate 2825 * the requested huge pages. 2826 */ 2827 if (node_alloc_noretry) 2828 nodes_clear(*node_alloc_noretry); 2829 else 2830 return -ENOMEM; 2831 2832 /* 2833 * resize_lock mutex prevents concurrent adjustments to number of 2834 * pages in hstate via the proc/sysfs interfaces. 2835 */ 2836 mutex_lock(&h->resize_lock); 2837 spin_lock_irq(&hugetlb_lock); 2838 2839 /* 2840 * Check for a node specific request. 2841 * Changing node specific huge page count may require a corresponding 2842 * change to the global count. In any case, the passed node mask 2843 * (nodes_allowed) will restrict alloc/free to the specified node. 2844 */ 2845 if (nid != NUMA_NO_NODE) { 2846 unsigned long old_count = count; 2847 2848 count += h->nr_huge_pages - h->nr_huge_pages_node[nid]; 2849 /* 2850 * User may have specified a large count value which caused the 2851 * above calculation to overflow. In this case, they wanted 2852 * to allocate as many huge pages as possible. Set count to 2853 * largest possible value to align with their intention. 2854 */ 2855 if (count < old_count) 2856 count = ULONG_MAX; 2857 } 2858 2859 /* 2860 * Gigantic pages runtime allocation depend on the capability for large 2861 * page range allocation. 2862 * If the system does not provide this feature, return an error when 2863 * the user tries to allocate gigantic pages but let the user free the 2864 * boottime allocated gigantic pages. 2865 */ 2866 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) { 2867 if (count > persistent_huge_pages(h)) { 2868 spin_unlock_irq(&hugetlb_lock); 2869 mutex_unlock(&h->resize_lock); 2870 NODEMASK_FREE(node_alloc_noretry); 2871 return -EINVAL; 2872 } 2873 /* Fall through to decrease pool */ 2874 } 2875 2876 /* 2877 * Increase the pool size 2878 * First take pages out of surplus state. Then make up the 2879 * remaining difference by allocating fresh huge pages. 2880 * 2881 * We might race with alloc_surplus_huge_page() here and be unable 2882 * to convert a surplus huge page to a normal huge page. That is 2883 * not critical, though, it just means the overall size of the 2884 * pool might be one hugepage larger than it needs to be, but 2885 * within all the constraints specified by the sysctls. 2886 */ 2887 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { 2888 if (!adjust_pool_surplus(h, nodes_allowed, -1)) 2889 break; 2890 } 2891 2892 while (count > persistent_huge_pages(h)) { 2893 /* 2894 * If this allocation races such that we no longer need the 2895 * page, free_huge_page will handle it by freeing the page 2896 * and reducing the surplus. 2897 */ 2898 spin_unlock_irq(&hugetlb_lock); 2899 2900 /* yield cpu to avoid soft lockup */ 2901 cond_resched(); 2902 2903 ret = alloc_pool_huge_page(h, nodes_allowed, 2904 node_alloc_noretry); 2905 spin_lock_irq(&hugetlb_lock); 2906 if (!ret) 2907 goto out; 2908 2909 /* Bail for signals. Probably ctrl-c from user */ 2910 if (signal_pending(current)) 2911 goto out; 2912 } 2913 2914 /* 2915 * Decrease the pool size 2916 * First return free pages to the buddy allocator (being careful 2917 * to keep enough around to satisfy reservations). Then place 2918 * pages into surplus state as needed so the pool will shrink 2919 * to the desired size as pages become free. 2920 * 2921 * By placing pages into the surplus state independent of the 2922 * overcommit value, we are allowing the surplus pool size to 2923 * exceed overcommit. There are few sane options here. Since 2924 * alloc_surplus_huge_page() is checking the global counter, 2925 * though, we'll note that we're not allowed to exceed surplus 2926 * and won't grow the pool anywhere else. Not until one of the 2927 * sysctls are changed, or the surplus pages go out of use. 2928 */ 2929 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages; 2930 min_count = max(count, min_count); 2931 try_to_free_low(h, min_count, nodes_allowed); 2932 2933 /* 2934 * Collect pages to be removed on list without dropping lock 2935 */ 2936 while (min_count < persistent_huge_pages(h)) { 2937 page = remove_pool_huge_page(h, nodes_allowed, 0); 2938 if (!page) 2939 break; 2940 2941 list_add(&page->lru, &page_list); 2942 } 2943 /* free the pages after dropping lock */ 2944 spin_unlock_irq(&hugetlb_lock); 2945 update_and_free_pages_bulk(h, &page_list); 2946 spin_lock_irq(&hugetlb_lock); 2947 2948 while (count < persistent_huge_pages(h)) { 2949 if (!adjust_pool_surplus(h, nodes_allowed, 1)) 2950 break; 2951 } 2952 out: 2953 h->max_huge_pages = persistent_huge_pages(h); 2954 spin_unlock_irq(&hugetlb_lock); 2955 mutex_unlock(&h->resize_lock); 2956 2957 NODEMASK_FREE(node_alloc_noretry); 2958 2959 return 0; 2960 } 2961 2962 #define HSTATE_ATTR_RO(_name) \ 2963 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 2964 2965 #define HSTATE_ATTR(_name) \ 2966 static struct kobj_attribute _name##_attr = \ 2967 __ATTR(_name, 0644, _name##_show, _name##_store) 2968 2969 static struct kobject *hugepages_kobj; 2970 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 2971 2972 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp); 2973 2974 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp) 2975 { 2976 int i; 2977 2978 for (i = 0; i < HUGE_MAX_HSTATE; i++) 2979 if (hstate_kobjs[i] == kobj) { 2980 if (nidp) 2981 *nidp = NUMA_NO_NODE; 2982 return &hstates[i]; 2983 } 2984 2985 return kobj_to_node_hstate(kobj, nidp); 2986 } 2987 2988 static ssize_t nr_hugepages_show_common(struct kobject *kobj, 2989 struct kobj_attribute *attr, char *buf) 2990 { 2991 struct hstate *h; 2992 unsigned long nr_huge_pages; 2993 int nid; 2994 2995 h = kobj_to_hstate(kobj, &nid); 2996 if (nid == NUMA_NO_NODE) 2997 nr_huge_pages = h->nr_huge_pages; 2998 else 2999 nr_huge_pages = h->nr_huge_pages_node[nid]; 3000 3001 return sysfs_emit(buf, "%lu\n", nr_huge_pages); 3002 } 3003 3004 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy, 3005 struct hstate *h, int nid, 3006 unsigned long count, size_t len) 3007 { 3008 int err; 3009 nodemask_t nodes_allowed, *n_mask; 3010 3011 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 3012 return -EINVAL; 3013 3014 if (nid == NUMA_NO_NODE) { 3015 /* 3016 * global hstate attribute 3017 */ 3018 if (!(obey_mempolicy && 3019 init_nodemask_of_mempolicy(&nodes_allowed))) 3020 n_mask = &node_states[N_MEMORY]; 3021 else 3022 n_mask = &nodes_allowed; 3023 } else { 3024 /* 3025 * Node specific request. count adjustment happens in 3026 * set_max_huge_pages() after acquiring hugetlb_lock. 3027 */ 3028 init_nodemask_of_node(&nodes_allowed, nid); 3029 n_mask = &nodes_allowed; 3030 } 3031 3032 err = set_max_huge_pages(h, count, nid, n_mask); 3033 3034 return err ? err : len; 3035 } 3036 3037 static ssize_t nr_hugepages_store_common(bool obey_mempolicy, 3038 struct kobject *kobj, const char *buf, 3039 size_t len) 3040 { 3041 struct hstate *h; 3042 unsigned long count; 3043 int nid; 3044 int err; 3045 3046 err = kstrtoul(buf, 10, &count); 3047 if (err) 3048 return err; 3049 3050 h = kobj_to_hstate(kobj, &nid); 3051 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len); 3052 } 3053 3054 static ssize_t nr_hugepages_show(struct kobject *kobj, 3055 struct kobj_attribute *attr, char *buf) 3056 { 3057 return nr_hugepages_show_common(kobj, attr, buf); 3058 } 3059 3060 static ssize_t nr_hugepages_store(struct kobject *kobj, 3061 struct kobj_attribute *attr, const char *buf, size_t len) 3062 { 3063 return nr_hugepages_store_common(false, kobj, buf, len); 3064 } 3065 HSTATE_ATTR(nr_hugepages); 3066 3067 #ifdef CONFIG_NUMA 3068 3069 /* 3070 * hstate attribute for optionally mempolicy-based constraint on persistent 3071 * huge page alloc/free. 3072 */ 3073 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj, 3074 struct kobj_attribute *attr, 3075 char *buf) 3076 { 3077 return nr_hugepages_show_common(kobj, attr, buf); 3078 } 3079 3080 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj, 3081 struct kobj_attribute *attr, const char *buf, size_t len) 3082 { 3083 return nr_hugepages_store_common(true, kobj, buf, len); 3084 } 3085 HSTATE_ATTR(nr_hugepages_mempolicy); 3086 #endif 3087 3088 3089 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, 3090 struct kobj_attribute *attr, char *buf) 3091 { 3092 struct hstate *h = kobj_to_hstate(kobj, NULL); 3093 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages); 3094 } 3095 3096 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, 3097 struct kobj_attribute *attr, const char *buf, size_t count) 3098 { 3099 int err; 3100 unsigned long input; 3101 struct hstate *h = kobj_to_hstate(kobj, NULL); 3102 3103 if (hstate_is_gigantic(h)) 3104 return -EINVAL; 3105 3106 err = kstrtoul(buf, 10, &input); 3107 if (err) 3108 return err; 3109 3110 spin_lock_irq(&hugetlb_lock); 3111 h->nr_overcommit_huge_pages = input; 3112 spin_unlock_irq(&hugetlb_lock); 3113 3114 return count; 3115 } 3116 HSTATE_ATTR(nr_overcommit_hugepages); 3117 3118 static ssize_t free_hugepages_show(struct kobject *kobj, 3119 struct kobj_attribute *attr, char *buf) 3120 { 3121 struct hstate *h; 3122 unsigned long free_huge_pages; 3123 int nid; 3124 3125 h = kobj_to_hstate(kobj, &nid); 3126 if (nid == NUMA_NO_NODE) 3127 free_huge_pages = h->free_huge_pages; 3128 else 3129 free_huge_pages = h->free_huge_pages_node[nid]; 3130 3131 return sysfs_emit(buf, "%lu\n", free_huge_pages); 3132 } 3133 HSTATE_ATTR_RO(free_hugepages); 3134 3135 static ssize_t resv_hugepages_show(struct kobject *kobj, 3136 struct kobj_attribute *attr, char *buf) 3137 { 3138 struct hstate *h = kobj_to_hstate(kobj, NULL); 3139 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages); 3140 } 3141 HSTATE_ATTR_RO(resv_hugepages); 3142 3143 static ssize_t surplus_hugepages_show(struct kobject *kobj, 3144 struct kobj_attribute *attr, char *buf) 3145 { 3146 struct hstate *h; 3147 unsigned long surplus_huge_pages; 3148 int nid; 3149 3150 h = kobj_to_hstate(kobj, &nid); 3151 if (nid == NUMA_NO_NODE) 3152 surplus_huge_pages = h->surplus_huge_pages; 3153 else 3154 surplus_huge_pages = h->surplus_huge_pages_node[nid]; 3155 3156 return sysfs_emit(buf, "%lu\n", surplus_huge_pages); 3157 } 3158 HSTATE_ATTR_RO(surplus_hugepages); 3159 3160 static struct attribute *hstate_attrs[] = { 3161 &nr_hugepages_attr.attr, 3162 &nr_overcommit_hugepages_attr.attr, 3163 &free_hugepages_attr.attr, 3164 &resv_hugepages_attr.attr, 3165 &surplus_hugepages_attr.attr, 3166 #ifdef CONFIG_NUMA 3167 &nr_hugepages_mempolicy_attr.attr, 3168 #endif 3169 NULL, 3170 }; 3171 3172 static const struct attribute_group hstate_attr_group = { 3173 .attrs = hstate_attrs, 3174 }; 3175 3176 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent, 3177 struct kobject **hstate_kobjs, 3178 const struct attribute_group *hstate_attr_group) 3179 { 3180 int retval; 3181 int hi = hstate_index(h); 3182 3183 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent); 3184 if (!hstate_kobjs[hi]) 3185 return -ENOMEM; 3186 3187 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group); 3188 if (retval) { 3189 kobject_put(hstate_kobjs[hi]); 3190 hstate_kobjs[hi] = NULL; 3191 } 3192 3193 return retval; 3194 } 3195 3196 static void __init hugetlb_sysfs_init(void) 3197 { 3198 struct hstate *h; 3199 int err; 3200 3201 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); 3202 if (!hugepages_kobj) 3203 return; 3204 3205 for_each_hstate(h) { 3206 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj, 3207 hstate_kobjs, &hstate_attr_group); 3208 if (err) 3209 pr_err("HugeTLB: Unable to add hstate %s", h->name); 3210 } 3211 } 3212 3213 #ifdef CONFIG_NUMA 3214 3215 /* 3216 * node_hstate/s - associate per node hstate attributes, via their kobjects, 3217 * with node devices in node_devices[] using a parallel array. The array 3218 * index of a node device or _hstate == node id. 3219 * This is here to avoid any static dependency of the node device driver, in 3220 * the base kernel, on the hugetlb module. 3221 */ 3222 struct node_hstate { 3223 struct kobject *hugepages_kobj; 3224 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 3225 }; 3226 static struct node_hstate node_hstates[MAX_NUMNODES]; 3227 3228 /* 3229 * A subset of global hstate attributes for node devices 3230 */ 3231 static struct attribute *per_node_hstate_attrs[] = { 3232 &nr_hugepages_attr.attr, 3233 &free_hugepages_attr.attr, 3234 &surplus_hugepages_attr.attr, 3235 NULL, 3236 }; 3237 3238 static const struct attribute_group per_node_hstate_attr_group = { 3239 .attrs = per_node_hstate_attrs, 3240 }; 3241 3242 /* 3243 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj. 3244 * Returns node id via non-NULL nidp. 3245 */ 3246 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 3247 { 3248 int nid; 3249 3250 for (nid = 0; nid < nr_node_ids; nid++) { 3251 struct node_hstate *nhs = &node_hstates[nid]; 3252 int i; 3253 for (i = 0; i < HUGE_MAX_HSTATE; i++) 3254 if (nhs->hstate_kobjs[i] == kobj) { 3255 if (nidp) 3256 *nidp = nid; 3257 return &hstates[i]; 3258 } 3259 } 3260 3261 BUG(); 3262 return NULL; 3263 } 3264 3265 /* 3266 * Unregister hstate attributes from a single node device. 3267 * No-op if no hstate attributes attached. 3268 */ 3269 static void hugetlb_unregister_node(struct node *node) 3270 { 3271 struct hstate *h; 3272 struct node_hstate *nhs = &node_hstates[node->dev.id]; 3273 3274 if (!nhs->hugepages_kobj) 3275 return; /* no hstate attributes */ 3276 3277 for_each_hstate(h) { 3278 int idx = hstate_index(h); 3279 if (nhs->hstate_kobjs[idx]) { 3280 kobject_put(nhs->hstate_kobjs[idx]); 3281 nhs->hstate_kobjs[idx] = NULL; 3282 } 3283 } 3284 3285 kobject_put(nhs->hugepages_kobj); 3286 nhs->hugepages_kobj = NULL; 3287 } 3288 3289 3290 /* 3291 * Register hstate attributes for a single node device. 3292 * No-op if attributes already registered. 3293 */ 3294 static void hugetlb_register_node(struct node *node) 3295 { 3296 struct hstate *h; 3297 struct node_hstate *nhs = &node_hstates[node->dev.id]; 3298 int err; 3299 3300 if (nhs->hugepages_kobj) 3301 return; /* already allocated */ 3302 3303 nhs->hugepages_kobj = kobject_create_and_add("hugepages", 3304 &node->dev.kobj); 3305 if (!nhs->hugepages_kobj) 3306 return; 3307 3308 for_each_hstate(h) { 3309 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj, 3310 nhs->hstate_kobjs, 3311 &per_node_hstate_attr_group); 3312 if (err) { 3313 pr_err("HugeTLB: Unable to add hstate %s for node %d\n", 3314 h->name, node->dev.id); 3315 hugetlb_unregister_node(node); 3316 break; 3317 } 3318 } 3319 } 3320 3321 /* 3322 * hugetlb init time: register hstate attributes for all registered node 3323 * devices of nodes that have memory. All on-line nodes should have 3324 * registered their associated device by this time. 3325 */ 3326 static void __init hugetlb_register_all_nodes(void) 3327 { 3328 int nid; 3329 3330 for_each_node_state(nid, N_MEMORY) { 3331 struct node *node = node_devices[nid]; 3332 if (node->dev.id == nid) 3333 hugetlb_register_node(node); 3334 } 3335 3336 /* 3337 * Let the node device driver know we're here so it can 3338 * [un]register hstate attributes on node hotplug. 3339 */ 3340 register_hugetlbfs_with_node(hugetlb_register_node, 3341 hugetlb_unregister_node); 3342 } 3343 #else /* !CONFIG_NUMA */ 3344 3345 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 3346 { 3347 BUG(); 3348 if (nidp) 3349 *nidp = -1; 3350 return NULL; 3351 } 3352 3353 static void hugetlb_register_all_nodes(void) { } 3354 3355 #endif 3356 3357 static int __init hugetlb_init(void) 3358 { 3359 int i; 3360 3361 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE < 3362 __NR_HPAGEFLAGS); 3363 3364 if (!hugepages_supported()) { 3365 if (hugetlb_max_hstate || default_hstate_max_huge_pages) 3366 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n"); 3367 return 0; 3368 } 3369 3370 /* 3371 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some 3372 * architectures depend on setup being done here. 3373 */ 3374 hugetlb_add_hstate(HUGETLB_PAGE_ORDER); 3375 if (!parsed_default_hugepagesz) { 3376 /* 3377 * If we did not parse a default huge page size, set 3378 * default_hstate_idx to HPAGE_SIZE hstate. And, if the 3379 * number of huge pages for this default size was implicitly 3380 * specified, set that here as well. 3381 * Note that the implicit setting will overwrite an explicit 3382 * setting. A warning will be printed in this case. 3383 */ 3384 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE)); 3385 if (default_hstate_max_huge_pages) { 3386 if (default_hstate.max_huge_pages) { 3387 char buf[32]; 3388 3389 string_get_size(huge_page_size(&default_hstate), 3390 1, STRING_UNITS_2, buf, 32); 3391 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n", 3392 default_hstate.max_huge_pages, buf); 3393 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n", 3394 default_hstate_max_huge_pages); 3395 } 3396 default_hstate.max_huge_pages = 3397 default_hstate_max_huge_pages; 3398 } 3399 } 3400 3401 hugetlb_cma_check(); 3402 hugetlb_init_hstates(); 3403 gather_bootmem_prealloc(); 3404 report_hugepages(); 3405 3406 hugetlb_sysfs_init(); 3407 hugetlb_register_all_nodes(); 3408 hugetlb_cgroup_file_init(); 3409 3410 #ifdef CONFIG_SMP 3411 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus()); 3412 #else 3413 num_fault_mutexes = 1; 3414 #endif 3415 hugetlb_fault_mutex_table = 3416 kmalloc_array(num_fault_mutexes, sizeof(struct mutex), 3417 GFP_KERNEL); 3418 BUG_ON(!hugetlb_fault_mutex_table); 3419 3420 for (i = 0; i < num_fault_mutexes; i++) 3421 mutex_init(&hugetlb_fault_mutex_table[i]); 3422 return 0; 3423 } 3424 subsys_initcall(hugetlb_init); 3425 3426 /* Overwritten by architectures with more huge page sizes */ 3427 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size) 3428 { 3429 return size == HPAGE_SIZE; 3430 } 3431 3432 void __init hugetlb_add_hstate(unsigned int order) 3433 { 3434 struct hstate *h; 3435 unsigned long i; 3436 3437 if (size_to_hstate(PAGE_SIZE << order)) { 3438 return; 3439 } 3440 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE); 3441 BUG_ON(order == 0); 3442 h = &hstates[hugetlb_max_hstate++]; 3443 mutex_init(&h->resize_lock); 3444 h->order = order; 3445 h->mask = ~(huge_page_size(h) - 1); 3446 for (i = 0; i < MAX_NUMNODES; ++i) 3447 INIT_LIST_HEAD(&h->hugepage_freelists[i]); 3448 INIT_LIST_HEAD(&h->hugepage_activelist); 3449 h->next_nid_to_alloc = first_memory_node; 3450 h->next_nid_to_free = first_memory_node; 3451 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", 3452 huge_page_size(h)/1024); 3453 3454 parsed_hstate = h; 3455 } 3456 3457 /* 3458 * hugepages command line processing 3459 * hugepages normally follows a valid hugepagsz or default_hugepagsz 3460 * specification. If not, ignore the hugepages value. hugepages can also 3461 * be the first huge page command line option in which case it implicitly 3462 * specifies the number of huge pages for the default size. 3463 */ 3464 static int __init hugepages_setup(char *s) 3465 { 3466 unsigned long *mhp; 3467 static unsigned long *last_mhp; 3468 3469 if (!parsed_valid_hugepagesz) { 3470 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s); 3471 parsed_valid_hugepagesz = true; 3472 return 0; 3473 } 3474 3475 /* 3476 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter 3477 * yet, so this hugepages= parameter goes to the "default hstate". 3478 * Otherwise, it goes with the previously parsed hugepagesz or 3479 * default_hugepagesz. 3480 */ 3481 else if (!hugetlb_max_hstate) 3482 mhp = &default_hstate_max_huge_pages; 3483 else 3484 mhp = &parsed_hstate->max_huge_pages; 3485 3486 if (mhp == last_mhp) { 3487 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s); 3488 return 0; 3489 } 3490 3491 if (sscanf(s, "%lu", mhp) <= 0) 3492 *mhp = 0; 3493 3494 /* 3495 * Global state is always initialized later in hugetlb_init. 3496 * But we need to allocate gigantic hstates here early to still 3497 * use the bootmem allocator. 3498 */ 3499 if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate)) 3500 hugetlb_hstate_alloc_pages(parsed_hstate); 3501 3502 last_mhp = mhp; 3503 3504 return 1; 3505 } 3506 __setup("hugepages=", hugepages_setup); 3507 3508 /* 3509 * hugepagesz command line processing 3510 * A specific huge page size can only be specified once with hugepagesz. 3511 * hugepagesz is followed by hugepages on the command line. The global 3512 * variable 'parsed_valid_hugepagesz' is used to determine if prior 3513 * hugepagesz argument was valid. 3514 */ 3515 static int __init hugepagesz_setup(char *s) 3516 { 3517 unsigned long size; 3518 struct hstate *h; 3519 3520 parsed_valid_hugepagesz = false; 3521 size = (unsigned long)memparse(s, NULL); 3522 3523 if (!arch_hugetlb_valid_size(size)) { 3524 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s); 3525 return 0; 3526 } 3527 3528 h = size_to_hstate(size); 3529 if (h) { 3530 /* 3531 * hstate for this size already exists. This is normally 3532 * an error, but is allowed if the existing hstate is the 3533 * default hstate. More specifically, it is only allowed if 3534 * the number of huge pages for the default hstate was not 3535 * previously specified. 3536 */ 3537 if (!parsed_default_hugepagesz || h != &default_hstate || 3538 default_hstate.max_huge_pages) { 3539 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s); 3540 return 0; 3541 } 3542 3543 /* 3544 * No need to call hugetlb_add_hstate() as hstate already 3545 * exists. But, do set parsed_hstate so that a following 3546 * hugepages= parameter will be applied to this hstate. 3547 */ 3548 parsed_hstate = h; 3549 parsed_valid_hugepagesz = true; 3550 return 1; 3551 } 3552 3553 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); 3554 parsed_valid_hugepagesz = true; 3555 return 1; 3556 } 3557 __setup("hugepagesz=", hugepagesz_setup); 3558 3559 /* 3560 * default_hugepagesz command line input 3561 * Only one instance of default_hugepagesz allowed on command line. 3562 */ 3563 static int __init default_hugepagesz_setup(char *s) 3564 { 3565 unsigned long size; 3566 3567 parsed_valid_hugepagesz = false; 3568 if (parsed_default_hugepagesz) { 3569 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s); 3570 return 0; 3571 } 3572 3573 size = (unsigned long)memparse(s, NULL); 3574 3575 if (!arch_hugetlb_valid_size(size)) { 3576 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s); 3577 return 0; 3578 } 3579 3580 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); 3581 parsed_valid_hugepagesz = true; 3582 parsed_default_hugepagesz = true; 3583 default_hstate_idx = hstate_index(size_to_hstate(size)); 3584 3585 /* 3586 * The number of default huge pages (for this size) could have been 3587 * specified as the first hugetlb parameter: hugepages=X. If so, 3588 * then default_hstate_max_huge_pages is set. If the default huge 3589 * page size is gigantic (>= MAX_ORDER), then the pages must be 3590 * allocated here from bootmem allocator. 3591 */ 3592 if (default_hstate_max_huge_pages) { 3593 default_hstate.max_huge_pages = default_hstate_max_huge_pages; 3594 if (hstate_is_gigantic(&default_hstate)) 3595 hugetlb_hstate_alloc_pages(&default_hstate); 3596 default_hstate_max_huge_pages = 0; 3597 } 3598 3599 return 1; 3600 } 3601 __setup("default_hugepagesz=", default_hugepagesz_setup); 3602 3603 static unsigned int allowed_mems_nr(struct hstate *h) 3604 { 3605 int node; 3606 unsigned int nr = 0; 3607 nodemask_t *mpol_allowed; 3608 unsigned int *array = h->free_huge_pages_node; 3609 gfp_t gfp_mask = htlb_alloc_mask(h); 3610 3611 mpol_allowed = policy_nodemask_current(gfp_mask); 3612 3613 for_each_node_mask(node, cpuset_current_mems_allowed) { 3614 if (!mpol_allowed || node_isset(node, *mpol_allowed)) 3615 nr += array[node]; 3616 } 3617 3618 return nr; 3619 } 3620 3621 #ifdef CONFIG_SYSCTL 3622 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write, 3623 void *buffer, size_t *length, 3624 loff_t *ppos, unsigned long *out) 3625 { 3626 struct ctl_table dup_table; 3627 3628 /* 3629 * In order to avoid races with __do_proc_doulongvec_minmax(), we 3630 * can duplicate the @table and alter the duplicate of it. 3631 */ 3632 dup_table = *table; 3633 dup_table.data = out; 3634 3635 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos); 3636 } 3637 3638 static int hugetlb_sysctl_handler_common(bool obey_mempolicy, 3639 struct ctl_table *table, int write, 3640 void *buffer, size_t *length, loff_t *ppos) 3641 { 3642 struct hstate *h = &default_hstate; 3643 unsigned long tmp = h->max_huge_pages; 3644 int ret; 3645 3646 if (!hugepages_supported()) 3647 return -EOPNOTSUPP; 3648 3649 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, 3650 &tmp); 3651 if (ret) 3652 goto out; 3653 3654 if (write) 3655 ret = __nr_hugepages_store_common(obey_mempolicy, h, 3656 NUMA_NO_NODE, tmp, *length); 3657 out: 3658 return ret; 3659 } 3660 3661 int hugetlb_sysctl_handler(struct ctl_table *table, int write, 3662 void *buffer, size_t *length, loff_t *ppos) 3663 { 3664 3665 return hugetlb_sysctl_handler_common(false, table, write, 3666 buffer, length, ppos); 3667 } 3668 3669 #ifdef CONFIG_NUMA 3670 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write, 3671 void *buffer, size_t *length, loff_t *ppos) 3672 { 3673 return hugetlb_sysctl_handler_common(true, table, write, 3674 buffer, length, ppos); 3675 } 3676 #endif /* CONFIG_NUMA */ 3677 3678 int hugetlb_overcommit_handler(struct ctl_table *table, int write, 3679 void *buffer, size_t *length, loff_t *ppos) 3680 { 3681 struct hstate *h = &default_hstate; 3682 unsigned long tmp; 3683 int ret; 3684 3685 if (!hugepages_supported()) 3686 return -EOPNOTSUPP; 3687 3688 tmp = h->nr_overcommit_huge_pages; 3689 3690 if (write && hstate_is_gigantic(h)) 3691 return -EINVAL; 3692 3693 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, 3694 &tmp); 3695 if (ret) 3696 goto out; 3697 3698 if (write) { 3699 spin_lock_irq(&hugetlb_lock); 3700 h->nr_overcommit_huge_pages = tmp; 3701 spin_unlock_irq(&hugetlb_lock); 3702 } 3703 out: 3704 return ret; 3705 } 3706 3707 #endif /* CONFIG_SYSCTL */ 3708 3709 void hugetlb_report_meminfo(struct seq_file *m) 3710 { 3711 struct hstate *h; 3712 unsigned long total = 0; 3713 3714 if (!hugepages_supported()) 3715 return; 3716 3717 for_each_hstate(h) { 3718 unsigned long count = h->nr_huge_pages; 3719 3720 total += huge_page_size(h) * count; 3721 3722 if (h == &default_hstate) 3723 seq_printf(m, 3724 "HugePages_Total: %5lu\n" 3725 "HugePages_Free: %5lu\n" 3726 "HugePages_Rsvd: %5lu\n" 3727 "HugePages_Surp: %5lu\n" 3728 "Hugepagesize: %8lu kB\n", 3729 count, 3730 h->free_huge_pages, 3731 h->resv_huge_pages, 3732 h->surplus_huge_pages, 3733 huge_page_size(h) / SZ_1K); 3734 } 3735 3736 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K); 3737 } 3738 3739 int hugetlb_report_node_meminfo(char *buf, int len, int nid) 3740 { 3741 struct hstate *h = &default_hstate; 3742 3743 if (!hugepages_supported()) 3744 return 0; 3745 3746 return sysfs_emit_at(buf, len, 3747 "Node %d HugePages_Total: %5u\n" 3748 "Node %d HugePages_Free: %5u\n" 3749 "Node %d HugePages_Surp: %5u\n", 3750 nid, h->nr_huge_pages_node[nid], 3751 nid, h->free_huge_pages_node[nid], 3752 nid, h->surplus_huge_pages_node[nid]); 3753 } 3754 3755 void hugetlb_show_meminfo(void) 3756 { 3757 struct hstate *h; 3758 int nid; 3759 3760 if (!hugepages_supported()) 3761 return; 3762 3763 for_each_node_state(nid, N_MEMORY) 3764 for_each_hstate(h) 3765 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n", 3766 nid, 3767 h->nr_huge_pages_node[nid], 3768 h->free_huge_pages_node[nid], 3769 h->surplus_huge_pages_node[nid], 3770 huge_page_size(h) / SZ_1K); 3771 } 3772 3773 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm) 3774 { 3775 seq_printf(m, "HugetlbPages:\t%8lu kB\n", 3776 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10)); 3777 } 3778 3779 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ 3780 unsigned long hugetlb_total_pages(void) 3781 { 3782 struct hstate *h; 3783 unsigned long nr_total_pages = 0; 3784 3785 for_each_hstate(h) 3786 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h); 3787 return nr_total_pages; 3788 } 3789 3790 static int hugetlb_acct_memory(struct hstate *h, long delta) 3791 { 3792 int ret = -ENOMEM; 3793 3794 if (!delta) 3795 return 0; 3796 3797 spin_lock_irq(&hugetlb_lock); 3798 /* 3799 * When cpuset is configured, it breaks the strict hugetlb page 3800 * reservation as the accounting is done on a global variable. Such 3801 * reservation is completely rubbish in the presence of cpuset because 3802 * the reservation is not checked against page availability for the 3803 * current cpuset. Application can still potentially OOM'ed by kernel 3804 * with lack of free htlb page in cpuset that the task is in. 3805 * Attempt to enforce strict accounting with cpuset is almost 3806 * impossible (or too ugly) because cpuset is too fluid that 3807 * task or memory node can be dynamically moved between cpusets. 3808 * 3809 * The change of semantics for shared hugetlb mapping with cpuset is 3810 * undesirable. However, in order to preserve some of the semantics, 3811 * we fall back to check against current free page availability as 3812 * a best attempt and hopefully to minimize the impact of changing 3813 * semantics that cpuset has. 3814 * 3815 * Apart from cpuset, we also have memory policy mechanism that 3816 * also determines from which node the kernel will allocate memory 3817 * in a NUMA system. So similar to cpuset, we also should consider 3818 * the memory policy of the current task. Similar to the description 3819 * above. 3820 */ 3821 if (delta > 0) { 3822 if (gather_surplus_pages(h, delta) < 0) 3823 goto out; 3824 3825 if (delta > allowed_mems_nr(h)) { 3826 return_unused_surplus_pages(h, delta); 3827 goto out; 3828 } 3829 } 3830 3831 ret = 0; 3832 if (delta < 0) 3833 return_unused_surplus_pages(h, (unsigned long) -delta); 3834 3835 out: 3836 spin_unlock_irq(&hugetlb_lock); 3837 return ret; 3838 } 3839 3840 static void hugetlb_vm_op_open(struct vm_area_struct *vma) 3841 { 3842 struct resv_map *resv = vma_resv_map(vma); 3843 3844 /* 3845 * This new VMA should share its siblings reservation map if present. 3846 * The VMA will only ever have a valid reservation map pointer where 3847 * it is being copied for another still existing VMA. As that VMA 3848 * has a reference to the reservation map it cannot disappear until 3849 * after this open call completes. It is therefore safe to take a 3850 * new reference here without additional locking. 3851 */ 3852 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 3853 kref_get(&resv->refs); 3854 } 3855 3856 static void hugetlb_vm_op_close(struct vm_area_struct *vma) 3857 { 3858 struct hstate *h = hstate_vma(vma); 3859 struct resv_map *resv = vma_resv_map(vma); 3860 struct hugepage_subpool *spool = subpool_vma(vma); 3861 unsigned long reserve, start, end; 3862 long gbl_reserve; 3863 3864 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 3865 return; 3866 3867 start = vma_hugecache_offset(h, vma, vma->vm_start); 3868 end = vma_hugecache_offset(h, vma, vma->vm_end); 3869 3870 reserve = (end - start) - region_count(resv, start, end); 3871 hugetlb_cgroup_uncharge_counter(resv, start, end); 3872 if (reserve) { 3873 /* 3874 * Decrement reserve counts. The global reserve count may be 3875 * adjusted if the subpool has a minimum size. 3876 */ 3877 gbl_reserve = hugepage_subpool_put_pages(spool, reserve); 3878 hugetlb_acct_memory(h, -gbl_reserve); 3879 } 3880 3881 kref_put(&resv->refs, resv_map_release); 3882 } 3883 3884 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr) 3885 { 3886 if (addr & ~(huge_page_mask(hstate_vma(vma)))) 3887 return -EINVAL; 3888 return 0; 3889 } 3890 3891 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma) 3892 { 3893 return huge_page_size(hstate_vma(vma)); 3894 } 3895 3896 /* 3897 * We cannot handle pagefaults against hugetlb pages at all. They cause 3898 * handle_mm_fault() to try to instantiate regular-sized pages in the 3899 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get 3900 * this far. 3901 */ 3902 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf) 3903 { 3904 BUG(); 3905 return 0; 3906 } 3907 3908 /* 3909 * When a new function is introduced to vm_operations_struct and added 3910 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops. 3911 * This is because under System V memory model, mappings created via 3912 * shmget/shmat with "huge page" specified are backed by hugetlbfs files, 3913 * their original vm_ops are overwritten with shm_vm_ops. 3914 */ 3915 const struct vm_operations_struct hugetlb_vm_ops = { 3916 .fault = hugetlb_vm_op_fault, 3917 .open = hugetlb_vm_op_open, 3918 .close = hugetlb_vm_op_close, 3919 .may_split = hugetlb_vm_op_split, 3920 .pagesize = hugetlb_vm_op_pagesize, 3921 }; 3922 3923 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, 3924 int writable) 3925 { 3926 pte_t entry; 3927 3928 if (writable) { 3929 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page, 3930 vma->vm_page_prot))); 3931 } else { 3932 entry = huge_pte_wrprotect(mk_huge_pte(page, 3933 vma->vm_page_prot)); 3934 } 3935 entry = pte_mkyoung(entry); 3936 entry = pte_mkhuge(entry); 3937 entry = arch_make_huge_pte(entry, vma, page, writable); 3938 3939 return entry; 3940 } 3941 3942 static void set_huge_ptep_writable(struct vm_area_struct *vma, 3943 unsigned long address, pte_t *ptep) 3944 { 3945 pte_t entry; 3946 3947 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep))); 3948 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) 3949 update_mmu_cache(vma, address, ptep); 3950 } 3951 3952 bool is_hugetlb_entry_migration(pte_t pte) 3953 { 3954 swp_entry_t swp; 3955 3956 if (huge_pte_none(pte) || pte_present(pte)) 3957 return false; 3958 swp = pte_to_swp_entry(pte); 3959 if (is_migration_entry(swp)) 3960 return true; 3961 else 3962 return false; 3963 } 3964 3965 static bool is_hugetlb_entry_hwpoisoned(pte_t pte) 3966 { 3967 swp_entry_t swp; 3968 3969 if (huge_pte_none(pte) || pte_present(pte)) 3970 return false; 3971 swp = pte_to_swp_entry(pte); 3972 if (is_hwpoison_entry(swp)) 3973 return true; 3974 else 3975 return false; 3976 } 3977 3978 static void 3979 hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr, 3980 struct page *new_page) 3981 { 3982 __SetPageUptodate(new_page); 3983 set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1)); 3984 hugepage_add_new_anon_rmap(new_page, vma, addr); 3985 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm); 3986 ClearHPageRestoreReserve(new_page); 3987 SetHPageMigratable(new_page); 3988 } 3989 3990 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, 3991 struct vm_area_struct *vma) 3992 { 3993 pte_t *src_pte, *dst_pte, entry, dst_entry; 3994 struct page *ptepage; 3995 unsigned long addr; 3996 bool cow = is_cow_mapping(vma->vm_flags); 3997 struct hstate *h = hstate_vma(vma); 3998 unsigned long sz = huge_page_size(h); 3999 unsigned long npages = pages_per_huge_page(h); 4000 struct address_space *mapping = vma->vm_file->f_mapping; 4001 struct mmu_notifier_range range; 4002 int ret = 0; 4003 4004 if (cow) { 4005 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src, 4006 vma->vm_start, 4007 vma->vm_end); 4008 mmu_notifier_invalidate_range_start(&range); 4009 } else { 4010 /* 4011 * For shared mappings i_mmap_rwsem must be held to call 4012 * huge_pte_alloc, otherwise the returned ptep could go 4013 * away if part of a shared pmd and another thread calls 4014 * huge_pmd_unshare. 4015 */ 4016 i_mmap_lock_read(mapping); 4017 } 4018 4019 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) { 4020 spinlock_t *src_ptl, *dst_ptl; 4021 src_pte = huge_pte_offset(src, addr, sz); 4022 if (!src_pte) 4023 continue; 4024 dst_pte = huge_pte_alloc(dst, vma, addr, sz); 4025 if (!dst_pte) { 4026 ret = -ENOMEM; 4027 break; 4028 } 4029 4030 /* 4031 * If the pagetables are shared don't copy or take references. 4032 * dst_pte == src_pte is the common case of src/dest sharing. 4033 * 4034 * However, src could have 'unshared' and dst shares with 4035 * another vma. If dst_pte !none, this implies sharing. 4036 * Check here before taking page table lock, and once again 4037 * after taking the lock below. 4038 */ 4039 dst_entry = huge_ptep_get(dst_pte); 4040 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry)) 4041 continue; 4042 4043 dst_ptl = huge_pte_lock(h, dst, dst_pte); 4044 src_ptl = huge_pte_lockptr(h, src, src_pte); 4045 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 4046 entry = huge_ptep_get(src_pte); 4047 dst_entry = huge_ptep_get(dst_pte); 4048 again: 4049 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) { 4050 /* 4051 * Skip if src entry none. Also, skip in the 4052 * unlikely case dst entry !none as this implies 4053 * sharing with another vma. 4054 */ 4055 ; 4056 } else if (unlikely(is_hugetlb_entry_migration(entry) || 4057 is_hugetlb_entry_hwpoisoned(entry))) { 4058 swp_entry_t swp_entry = pte_to_swp_entry(entry); 4059 4060 if (is_write_migration_entry(swp_entry) && cow) { 4061 /* 4062 * COW mappings require pages in both 4063 * parent and child to be set to read. 4064 */ 4065 make_migration_entry_read(&swp_entry); 4066 entry = swp_entry_to_pte(swp_entry); 4067 set_huge_swap_pte_at(src, addr, src_pte, 4068 entry, sz); 4069 } 4070 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz); 4071 } else { 4072 entry = huge_ptep_get(src_pte); 4073 ptepage = pte_page(entry); 4074 get_page(ptepage); 4075 4076 /* 4077 * This is a rare case where we see pinned hugetlb 4078 * pages while they're prone to COW. We need to do the 4079 * COW earlier during fork. 4080 * 4081 * When pre-allocating the page or copying data, we 4082 * need to be without the pgtable locks since we could 4083 * sleep during the process. 4084 */ 4085 if (unlikely(page_needs_cow_for_dma(vma, ptepage))) { 4086 pte_t src_pte_old = entry; 4087 struct page *new; 4088 4089 spin_unlock(src_ptl); 4090 spin_unlock(dst_ptl); 4091 /* Do not use reserve as it's private owned */ 4092 new = alloc_huge_page(vma, addr, 1); 4093 if (IS_ERR(new)) { 4094 put_page(ptepage); 4095 ret = PTR_ERR(new); 4096 break; 4097 } 4098 copy_user_huge_page(new, ptepage, addr, vma, 4099 npages); 4100 put_page(ptepage); 4101 4102 /* Install the new huge page if src pte stable */ 4103 dst_ptl = huge_pte_lock(h, dst, dst_pte); 4104 src_ptl = huge_pte_lockptr(h, src, src_pte); 4105 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 4106 entry = huge_ptep_get(src_pte); 4107 if (!pte_same(src_pte_old, entry)) { 4108 restore_reserve_on_error(h, vma, addr, 4109 new); 4110 put_page(new); 4111 /* dst_entry won't change as in child */ 4112 goto again; 4113 } 4114 hugetlb_install_page(vma, dst_pte, addr, new); 4115 spin_unlock(src_ptl); 4116 spin_unlock(dst_ptl); 4117 continue; 4118 } 4119 4120 if (cow) { 4121 /* 4122 * No need to notify as we are downgrading page 4123 * table protection not changing it to point 4124 * to a new page. 4125 * 4126 * See Documentation/vm/mmu_notifier.rst 4127 */ 4128 huge_ptep_set_wrprotect(src, addr, src_pte); 4129 entry = huge_pte_wrprotect(entry); 4130 } 4131 4132 page_dup_rmap(ptepage, true); 4133 set_huge_pte_at(dst, addr, dst_pte, entry); 4134 hugetlb_count_add(npages, dst); 4135 } 4136 spin_unlock(src_ptl); 4137 spin_unlock(dst_ptl); 4138 } 4139 4140 if (cow) 4141 mmu_notifier_invalidate_range_end(&range); 4142 else 4143 i_mmap_unlock_read(mapping); 4144 4145 return ret; 4146 } 4147 4148 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma, 4149 unsigned long start, unsigned long end, 4150 struct page *ref_page) 4151 { 4152 struct mm_struct *mm = vma->vm_mm; 4153 unsigned long address; 4154 pte_t *ptep; 4155 pte_t pte; 4156 spinlock_t *ptl; 4157 struct page *page; 4158 struct hstate *h = hstate_vma(vma); 4159 unsigned long sz = huge_page_size(h); 4160 struct mmu_notifier_range range; 4161 4162 WARN_ON(!is_vm_hugetlb_page(vma)); 4163 BUG_ON(start & ~huge_page_mask(h)); 4164 BUG_ON(end & ~huge_page_mask(h)); 4165 4166 /* 4167 * This is a hugetlb vma, all the pte entries should point 4168 * to huge page. 4169 */ 4170 tlb_change_page_size(tlb, sz); 4171 tlb_start_vma(tlb, vma); 4172 4173 /* 4174 * If sharing possible, alert mmu notifiers of worst case. 4175 */ 4176 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start, 4177 end); 4178 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 4179 mmu_notifier_invalidate_range_start(&range); 4180 address = start; 4181 for (; address < end; address += sz) { 4182 ptep = huge_pte_offset(mm, address, sz); 4183 if (!ptep) 4184 continue; 4185 4186 ptl = huge_pte_lock(h, mm, ptep); 4187 if (huge_pmd_unshare(mm, vma, &address, ptep)) { 4188 spin_unlock(ptl); 4189 /* 4190 * We just unmapped a page of PMDs by clearing a PUD. 4191 * The caller's TLB flush range should cover this area. 4192 */ 4193 continue; 4194 } 4195 4196 pte = huge_ptep_get(ptep); 4197 if (huge_pte_none(pte)) { 4198 spin_unlock(ptl); 4199 continue; 4200 } 4201 4202 /* 4203 * Migrating hugepage or HWPoisoned hugepage is already 4204 * unmapped and its refcount is dropped, so just clear pte here. 4205 */ 4206 if (unlikely(!pte_present(pte))) { 4207 huge_pte_clear(mm, address, ptep, sz); 4208 spin_unlock(ptl); 4209 continue; 4210 } 4211 4212 page = pte_page(pte); 4213 /* 4214 * If a reference page is supplied, it is because a specific 4215 * page is being unmapped, not a range. Ensure the page we 4216 * are about to unmap is the actual page of interest. 4217 */ 4218 if (ref_page) { 4219 if (page != ref_page) { 4220 spin_unlock(ptl); 4221 continue; 4222 } 4223 /* 4224 * Mark the VMA as having unmapped its page so that 4225 * future faults in this VMA will fail rather than 4226 * looking like data was lost 4227 */ 4228 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); 4229 } 4230 4231 pte = huge_ptep_get_and_clear(mm, address, ptep); 4232 tlb_remove_huge_tlb_entry(h, tlb, ptep, address); 4233 if (huge_pte_dirty(pte)) 4234 set_page_dirty(page); 4235 4236 hugetlb_count_sub(pages_per_huge_page(h), mm); 4237 page_remove_rmap(page, true); 4238 4239 spin_unlock(ptl); 4240 tlb_remove_page_size(tlb, page, huge_page_size(h)); 4241 /* 4242 * Bail out after unmapping reference page if supplied 4243 */ 4244 if (ref_page) 4245 break; 4246 } 4247 mmu_notifier_invalidate_range_end(&range); 4248 tlb_end_vma(tlb, vma); 4249 } 4250 4251 void __unmap_hugepage_range_final(struct mmu_gather *tlb, 4252 struct vm_area_struct *vma, unsigned long start, 4253 unsigned long end, struct page *ref_page) 4254 { 4255 __unmap_hugepage_range(tlb, vma, start, end, ref_page); 4256 4257 /* 4258 * Clear this flag so that x86's huge_pmd_share page_table_shareable 4259 * test will fail on a vma being torn down, and not grab a page table 4260 * on its way out. We're lucky that the flag has such an appropriate 4261 * name, and can in fact be safely cleared here. We could clear it 4262 * before the __unmap_hugepage_range above, but all that's necessary 4263 * is to clear it before releasing the i_mmap_rwsem. This works 4264 * because in the context this is called, the VMA is about to be 4265 * destroyed and the i_mmap_rwsem is held. 4266 */ 4267 vma->vm_flags &= ~VM_MAYSHARE; 4268 } 4269 4270 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, 4271 unsigned long end, struct page *ref_page) 4272 { 4273 struct mmu_gather tlb; 4274 4275 tlb_gather_mmu(&tlb, vma->vm_mm); 4276 __unmap_hugepage_range(&tlb, vma, start, end, ref_page); 4277 tlb_finish_mmu(&tlb); 4278 } 4279 4280 /* 4281 * This is called when the original mapper is failing to COW a MAP_PRIVATE 4282 * mapping it owns the reserve page for. The intention is to unmap the page 4283 * from other VMAs and let the children be SIGKILLed if they are faulting the 4284 * same region. 4285 */ 4286 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, 4287 struct page *page, unsigned long address) 4288 { 4289 struct hstate *h = hstate_vma(vma); 4290 struct vm_area_struct *iter_vma; 4291 struct address_space *mapping; 4292 pgoff_t pgoff; 4293 4294 /* 4295 * vm_pgoff is in PAGE_SIZE units, hence the different calculation 4296 * from page cache lookup which is in HPAGE_SIZE units. 4297 */ 4298 address = address & huge_page_mask(h); 4299 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + 4300 vma->vm_pgoff; 4301 mapping = vma->vm_file->f_mapping; 4302 4303 /* 4304 * Take the mapping lock for the duration of the table walk. As 4305 * this mapping should be shared between all the VMAs, 4306 * __unmap_hugepage_range() is called as the lock is already held 4307 */ 4308 i_mmap_lock_write(mapping); 4309 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) { 4310 /* Do not unmap the current VMA */ 4311 if (iter_vma == vma) 4312 continue; 4313 4314 /* 4315 * Shared VMAs have their own reserves and do not affect 4316 * MAP_PRIVATE accounting but it is possible that a shared 4317 * VMA is using the same page so check and skip such VMAs. 4318 */ 4319 if (iter_vma->vm_flags & VM_MAYSHARE) 4320 continue; 4321 4322 /* 4323 * Unmap the page from other VMAs without their own reserves. 4324 * They get marked to be SIGKILLed if they fault in these 4325 * areas. This is because a future no-page fault on this VMA 4326 * could insert a zeroed page instead of the data existing 4327 * from the time of fork. This would look like data corruption 4328 */ 4329 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) 4330 unmap_hugepage_range(iter_vma, address, 4331 address + huge_page_size(h), page); 4332 } 4333 i_mmap_unlock_write(mapping); 4334 } 4335 4336 /* 4337 * Hugetlb_cow() should be called with page lock of the original hugepage held. 4338 * Called with hugetlb_instantiation_mutex held and pte_page locked so we 4339 * cannot race with other handlers or page migration. 4340 * Keep the pte_same checks anyway to make transition from the mutex easier. 4341 */ 4342 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma, 4343 unsigned long address, pte_t *ptep, 4344 struct page *pagecache_page, spinlock_t *ptl) 4345 { 4346 pte_t pte; 4347 struct hstate *h = hstate_vma(vma); 4348 struct page *old_page, *new_page; 4349 int outside_reserve = 0; 4350 vm_fault_t ret = 0; 4351 unsigned long haddr = address & huge_page_mask(h); 4352 struct mmu_notifier_range range; 4353 4354 pte = huge_ptep_get(ptep); 4355 old_page = pte_page(pte); 4356 4357 retry_avoidcopy: 4358 /* If no-one else is actually using this page, avoid the copy 4359 * and just make the page writable */ 4360 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) { 4361 page_move_anon_rmap(old_page, vma); 4362 set_huge_ptep_writable(vma, haddr, ptep); 4363 return 0; 4364 } 4365 4366 /* 4367 * If the process that created a MAP_PRIVATE mapping is about to 4368 * perform a COW due to a shared page count, attempt to satisfy 4369 * the allocation without using the existing reserves. The pagecache 4370 * page is used to determine if the reserve at this address was 4371 * consumed or not. If reserves were used, a partial faulted mapping 4372 * at the time of fork() could consume its reserves on COW instead 4373 * of the full address range. 4374 */ 4375 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && 4376 old_page != pagecache_page) 4377 outside_reserve = 1; 4378 4379 get_page(old_page); 4380 4381 /* 4382 * Drop page table lock as buddy allocator may be called. It will 4383 * be acquired again before returning to the caller, as expected. 4384 */ 4385 spin_unlock(ptl); 4386 new_page = alloc_huge_page(vma, haddr, outside_reserve); 4387 4388 if (IS_ERR(new_page)) { 4389 /* 4390 * If a process owning a MAP_PRIVATE mapping fails to COW, 4391 * it is due to references held by a child and an insufficient 4392 * huge page pool. To guarantee the original mappers 4393 * reliability, unmap the page from child processes. The child 4394 * may get SIGKILLed if it later faults. 4395 */ 4396 if (outside_reserve) { 4397 struct address_space *mapping = vma->vm_file->f_mapping; 4398 pgoff_t idx; 4399 u32 hash; 4400 4401 put_page(old_page); 4402 BUG_ON(huge_pte_none(pte)); 4403 /* 4404 * Drop hugetlb_fault_mutex and i_mmap_rwsem before 4405 * unmapping. unmapping needs to hold i_mmap_rwsem 4406 * in write mode. Dropping i_mmap_rwsem in read mode 4407 * here is OK as COW mappings do not interact with 4408 * PMD sharing. 4409 * 4410 * Reacquire both after unmap operation. 4411 */ 4412 idx = vma_hugecache_offset(h, vma, haddr); 4413 hash = hugetlb_fault_mutex_hash(mapping, idx); 4414 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 4415 i_mmap_unlock_read(mapping); 4416 4417 unmap_ref_private(mm, vma, old_page, haddr); 4418 4419 i_mmap_lock_read(mapping); 4420 mutex_lock(&hugetlb_fault_mutex_table[hash]); 4421 spin_lock(ptl); 4422 ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); 4423 if (likely(ptep && 4424 pte_same(huge_ptep_get(ptep), pte))) 4425 goto retry_avoidcopy; 4426 /* 4427 * race occurs while re-acquiring page table 4428 * lock, and our job is done. 4429 */ 4430 return 0; 4431 } 4432 4433 ret = vmf_error(PTR_ERR(new_page)); 4434 goto out_release_old; 4435 } 4436 4437 /* 4438 * When the original hugepage is shared one, it does not have 4439 * anon_vma prepared. 4440 */ 4441 if (unlikely(anon_vma_prepare(vma))) { 4442 ret = VM_FAULT_OOM; 4443 goto out_release_all; 4444 } 4445 4446 copy_user_huge_page(new_page, old_page, address, vma, 4447 pages_per_huge_page(h)); 4448 __SetPageUptodate(new_page); 4449 4450 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr, 4451 haddr + huge_page_size(h)); 4452 mmu_notifier_invalidate_range_start(&range); 4453 4454 /* 4455 * Retake the page table lock to check for racing updates 4456 * before the page tables are altered 4457 */ 4458 spin_lock(ptl); 4459 ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); 4460 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) { 4461 ClearHPageRestoreReserve(new_page); 4462 4463 /* Break COW */ 4464 huge_ptep_clear_flush(vma, haddr, ptep); 4465 mmu_notifier_invalidate_range(mm, range.start, range.end); 4466 set_huge_pte_at(mm, haddr, ptep, 4467 make_huge_pte(vma, new_page, 1)); 4468 page_remove_rmap(old_page, true); 4469 hugepage_add_new_anon_rmap(new_page, vma, haddr); 4470 SetHPageMigratable(new_page); 4471 /* Make the old page be freed below */ 4472 new_page = old_page; 4473 } 4474 spin_unlock(ptl); 4475 mmu_notifier_invalidate_range_end(&range); 4476 out_release_all: 4477 restore_reserve_on_error(h, vma, haddr, new_page); 4478 put_page(new_page); 4479 out_release_old: 4480 put_page(old_page); 4481 4482 spin_lock(ptl); /* Caller expects lock to be held */ 4483 return ret; 4484 } 4485 4486 /* Return the pagecache page at a given address within a VMA */ 4487 static struct page *hugetlbfs_pagecache_page(struct hstate *h, 4488 struct vm_area_struct *vma, unsigned long address) 4489 { 4490 struct address_space *mapping; 4491 pgoff_t idx; 4492 4493 mapping = vma->vm_file->f_mapping; 4494 idx = vma_hugecache_offset(h, vma, address); 4495 4496 return find_lock_page(mapping, idx); 4497 } 4498 4499 /* 4500 * Return whether there is a pagecache page to back given address within VMA. 4501 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page. 4502 */ 4503 static bool hugetlbfs_pagecache_present(struct hstate *h, 4504 struct vm_area_struct *vma, unsigned long address) 4505 { 4506 struct address_space *mapping; 4507 pgoff_t idx; 4508 struct page *page; 4509 4510 mapping = vma->vm_file->f_mapping; 4511 idx = vma_hugecache_offset(h, vma, address); 4512 4513 page = find_get_page(mapping, idx); 4514 if (page) 4515 put_page(page); 4516 return page != NULL; 4517 } 4518 4519 int huge_add_to_page_cache(struct page *page, struct address_space *mapping, 4520 pgoff_t idx) 4521 { 4522 struct inode *inode = mapping->host; 4523 struct hstate *h = hstate_inode(inode); 4524 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL); 4525 4526 if (err) 4527 return err; 4528 ClearHPageRestoreReserve(page); 4529 4530 /* 4531 * set page dirty so that it will not be removed from cache/file 4532 * by non-hugetlbfs specific code paths. 4533 */ 4534 set_page_dirty(page); 4535 4536 spin_lock(&inode->i_lock); 4537 inode->i_blocks += blocks_per_huge_page(h); 4538 spin_unlock(&inode->i_lock); 4539 return 0; 4540 } 4541 4542 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma, 4543 struct address_space *mapping, 4544 pgoff_t idx, 4545 unsigned int flags, 4546 unsigned long haddr, 4547 unsigned long reason) 4548 { 4549 vm_fault_t ret; 4550 u32 hash; 4551 struct vm_fault vmf = { 4552 .vma = vma, 4553 .address = haddr, 4554 .flags = flags, 4555 4556 /* 4557 * Hard to debug if it ends up being 4558 * used by a callee that assumes 4559 * something about the other 4560 * uninitialized fields... same as in 4561 * memory.c 4562 */ 4563 }; 4564 4565 /* 4566 * hugetlb_fault_mutex and i_mmap_rwsem must be 4567 * dropped before handling userfault. Reacquire 4568 * after handling fault to make calling code simpler. 4569 */ 4570 hash = hugetlb_fault_mutex_hash(mapping, idx); 4571 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 4572 i_mmap_unlock_read(mapping); 4573 ret = handle_userfault(&vmf, reason); 4574 i_mmap_lock_read(mapping); 4575 mutex_lock(&hugetlb_fault_mutex_table[hash]); 4576 4577 return ret; 4578 } 4579 4580 static vm_fault_t hugetlb_no_page(struct mm_struct *mm, 4581 struct vm_area_struct *vma, 4582 struct address_space *mapping, pgoff_t idx, 4583 unsigned long address, pte_t *ptep, unsigned int flags) 4584 { 4585 struct hstate *h = hstate_vma(vma); 4586 vm_fault_t ret = VM_FAULT_SIGBUS; 4587 int anon_rmap = 0; 4588 unsigned long size; 4589 struct page *page; 4590 pte_t new_pte; 4591 spinlock_t *ptl; 4592 unsigned long haddr = address & huge_page_mask(h); 4593 bool new_page = false; 4594 4595 /* 4596 * Currently, we are forced to kill the process in the event the 4597 * original mapper has unmapped pages from the child due to a failed 4598 * COW. Warn that such a situation has occurred as it may not be obvious 4599 */ 4600 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { 4601 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n", 4602 current->pid); 4603 return ret; 4604 } 4605 4606 /* 4607 * We can not race with truncation due to holding i_mmap_rwsem. 4608 * i_size is modified when holding i_mmap_rwsem, so check here 4609 * once for faults beyond end of file. 4610 */ 4611 size = i_size_read(mapping->host) >> huge_page_shift(h); 4612 if (idx >= size) 4613 goto out; 4614 4615 retry: 4616 page = find_lock_page(mapping, idx); 4617 if (!page) { 4618 /* Check for page in userfault range */ 4619 if (userfaultfd_missing(vma)) { 4620 ret = hugetlb_handle_userfault(vma, mapping, idx, 4621 flags, haddr, 4622 VM_UFFD_MISSING); 4623 goto out; 4624 } 4625 4626 page = alloc_huge_page(vma, haddr, 0); 4627 if (IS_ERR(page)) { 4628 /* 4629 * Returning error will result in faulting task being 4630 * sent SIGBUS. The hugetlb fault mutex prevents two 4631 * tasks from racing to fault in the same page which 4632 * could result in false unable to allocate errors. 4633 * Page migration does not take the fault mutex, but 4634 * does a clear then write of pte's under page table 4635 * lock. Page fault code could race with migration, 4636 * notice the clear pte and try to allocate a page 4637 * here. Before returning error, get ptl and make 4638 * sure there really is no pte entry. 4639 */ 4640 ptl = huge_pte_lock(h, mm, ptep); 4641 ret = 0; 4642 if (huge_pte_none(huge_ptep_get(ptep))) 4643 ret = vmf_error(PTR_ERR(page)); 4644 spin_unlock(ptl); 4645 goto out; 4646 } 4647 clear_huge_page(page, address, pages_per_huge_page(h)); 4648 __SetPageUptodate(page); 4649 new_page = true; 4650 4651 if (vma->vm_flags & VM_MAYSHARE) { 4652 int err = huge_add_to_page_cache(page, mapping, idx); 4653 if (err) { 4654 put_page(page); 4655 if (err == -EEXIST) 4656 goto retry; 4657 goto out; 4658 } 4659 } else { 4660 lock_page(page); 4661 if (unlikely(anon_vma_prepare(vma))) { 4662 ret = VM_FAULT_OOM; 4663 goto backout_unlocked; 4664 } 4665 anon_rmap = 1; 4666 } 4667 } else { 4668 /* 4669 * If memory error occurs between mmap() and fault, some process 4670 * don't have hwpoisoned swap entry for errored virtual address. 4671 * So we need to block hugepage fault by PG_hwpoison bit check. 4672 */ 4673 if (unlikely(PageHWPoison(page))) { 4674 ret = VM_FAULT_HWPOISON_LARGE | 4675 VM_FAULT_SET_HINDEX(hstate_index(h)); 4676 goto backout_unlocked; 4677 } 4678 4679 /* Check for page in userfault range. */ 4680 if (userfaultfd_minor(vma)) { 4681 unlock_page(page); 4682 put_page(page); 4683 ret = hugetlb_handle_userfault(vma, mapping, idx, 4684 flags, haddr, 4685 VM_UFFD_MINOR); 4686 goto out; 4687 } 4688 } 4689 4690 /* 4691 * If we are going to COW a private mapping later, we examine the 4692 * pending reservations for this page now. This will ensure that 4693 * any allocations necessary to record that reservation occur outside 4694 * the spinlock. 4695 */ 4696 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 4697 if (vma_needs_reservation(h, vma, haddr) < 0) { 4698 ret = VM_FAULT_OOM; 4699 goto backout_unlocked; 4700 } 4701 /* Just decrements count, does not deallocate */ 4702 vma_end_reservation(h, vma, haddr); 4703 } 4704 4705 ptl = huge_pte_lock(h, mm, ptep); 4706 ret = 0; 4707 if (!huge_pte_none(huge_ptep_get(ptep))) 4708 goto backout; 4709 4710 if (anon_rmap) { 4711 ClearHPageRestoreReserve(page); 4712 hugepage_add_new_anon_rmap(page, vma, haddr); 4713 } else 4714 page_dup_rmap(page, true); 4715 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE) 4716 && (vma->vm_flags & VM_SHARED))); 4717 set_huge_pte_at(mm, haddr, ptep, new_pte); 4718 4719 hugetlb_count_add(pages_per_huge_page(h), mm); 4720 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 4721 /* Optimization, do the COW without a second fault */ 4722 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl); 4723 } 4724 4725 spin_unlock(ptl); 4726 4727 /* 4728 * Only set HPageMigratable in newly allocated pages. Existing pages 4729 * found in the pagecache may not have HPageMigratableset if they have 4730 * been isolated for migration. 4731 */ 4732 if (new_page) 4733 SetHPageMigratable(page); 4734 4735 unlock_page(page); 4736 out: 4737 return ret; 4738 4739 backout: 4740 spin_unlock(ptl); 4741 backout_unlocked: 4742 unlock_page(page); 4743 restore_reserve_on_error(h, vma, haddr, page); 4744 put_page(page); 4745 goto out; 4746 } 4747 4748 #ifdef CONFIG_SMP 4749 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 4750 { 4751 unsigned long key[2]; 4752 u32 hash; 4753 4754 key[0] = (unsigned long) mapping; 4755 key[1] = idx; 4756 4757 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0); 4758 4759 return hash & (num_fault_mutexes - 1); 4760 } 4761 #else 4762 /* 4763 * For uniprocessor systems we always use a single mutex, so just 4764 * return 0 and avoid the hashing overhead. 4765 */ 4766 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 4767 { 4768 return 0; 4769 } 4770 #endif 4771 4772 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, 4773 unsigned long address, unsigned int flags) 4774 { 4775 pte_t *ptep, entry; 4776 spinlock_t *ptl; 4777 vm_fault_t ret; 4778 u32 hash; 4779 pgoff_t idx; 4780 struct page *page = NULL; 4781 struct page *pagecache_page = NULL; 4782 struct hstate *h = hstate_vma(vma); 4783 struct address_space *mapping; 4784 int need_wait_lock = 0; 4785 unsigned long haddr = address & huge_page_mask(h); 4786 4787 ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); 4788 if (ptep) { 4789 /* 4790 * Since we hold no locks, ptep could be stale. That is 4791 * OK as we are only making decisions based on content and 4792 * not actually modifying content here. 4793 */ 4794 entry = huge_ptep_get(ptep); 4795 if (unlikely(is_hugetlb_entry_migration(entry))) { 4796 migration_entry_wait_huge(vma, mm, ptep); 4797 return 0; 4798 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) 4799 return VM_FAULT_HWPOISON_LARGE | 4800 VM_FAULT_SET_HINDEX(hstate_index(h)); 4801 } 4802 4803 /* 4804 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold 4805 * until finished with ptep. This serves two purposes: 4806 * 1) It prevents huge_pmd_unshare from being called elsewhere 4807 * and making the ptep no longer valid. 4808 * 2) It synchronizes us with i_size modifications during truncation. 4809 * 4810 * ptep could have already be assigned via huge_pte_offset. That 4811 * is OK, as huge_pte_alloc will return the same value unless 4812 * something has changed. 4813 */ 4814 mapping = vma->vm_file->f_mapping; 4815 i_mmap_lock_read(mapping); 4816 ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h)); 4817 if (!ptep) { 4818 i_mmap_unlock_read(mapping); 4819 return VM_FAULT_OOM; 4820 } 4821 4822 /* 4823 * Serialize hugepage allocation and instantiation, so that we don't 4824 * get spurious allocation failures if two CPUs race to instantiate 4825 * the same page in the page cache. 4826 */ 4827 idx = vma_hugecache_offset(h, vma, haddr); 4828 hash = hugetlb_fault_mutex_hash(mapping, idx); 4829 mutex_lock(&hugetlb_fault_mutex_table[hash]); 4830 4831 entry = huge_ptep_get(ptep); 4832 if (huge_pte_none(entry)) { 4833 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags); 4834 goto out_mutex; 4835 } 4836 4837 ret = 0; 4838 4839 /* 4840 * entry could be a migration/hwpoison entry at this point, so this 4841 * check prevents the kernel from going below assuming that we have 4842 * an active hugepage in pagecache. This goto expects the 2nd page 4843 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will 4844 * properly handle it. 4845 */ 4846 if (!pte_present(entry)) 4847 goto out_mutex; 4848 4849 /* 4850 * If we are going to COW the mapping later, we examine the pending 4851 * reservations for this page now. This will ensure that any 4852 * allocations necessary to record that reservation occur outside the 4853 * spinlock. For private mappings, we also lookup the pagecache 4854 * page now as it is used to determine if a reservation has been 4855 * consumed. 4856 */ 4857 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) { 4858 if (vma_needs_reservation(h, vma, haddr) < 0) { 4859 ret = VM_FAULT_OOM; 4860 goto out_mutex; 4861 } 4862 /* Just decrements count, does not deallocate */ 4863 vma_end_reservation(h, vma, haddr); 4864 4865 if (!(vma->vm_flags & VM_MAYSHARE)) 4866 pagecache_page = hugetlbfs_pagecache_page(h, 4867 vma, haddr); 4868 } 4869 4870 ptl = huge_pte_lock(h, mm, ptep); 4871 4872 /* Check for a racing update before calling hugetlb_cow */ 4873 if (unlikely(!pte_same(entry, huge_ptep_get(ptep)))) 4874 goto out_ptl; 4875 4876 /* 4877 * hugetlb_cow() requires page locks of pte_page(entry) and 4878 * pagecache_page, so here we need take the former one 4879 * when page != pagecache_page or !pagecache_page. 4880 */ 4881 page = pte_page(entry); 4882 if (page != pagecache_page) 4883 if (!trylock_page(page)) { 4884 need_wait_lock = 1; 4885 goto out_ptl; 4886 } 4887 4888 get_page(page); 4889 4890 if (flags & FAULT_FLAG_WRITE) { 4891 if (!huge_pte_write(entry)) { 4892 ret = hugetlb_cow(mm, vma, address, ptep, 4893 pagecache_page, ptl); 4894 goto out_put_page; 4895 } 4896 entry = huge_pte_mkdirty(entry); 4897 } 4898 entry = pte_mkyoung(entry); 4899 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry, 4900 flags & FAULT_FLAG_WRITE)) 4901 update_mmu_cache(vma, haddr, ptep); 4902 out_put_page: 4903 if (page != pagecache_page) 4904 unlock_page(page); 4905 put_page(page); 4906 out_ptl: 4907 spin_unlock(ptl); 4908 4909 if (pagecache_page) { 4910 unlock_page(pagecache_page); 4911 put_page(pagecache_page); 4912 } 4913 out_mutex: 4914 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 4915 i_mmap_unlock_read(mapping); 4916 /* 4917 * Generally it's safe to hold refcount during waiting page lock. But 4918 * here we just wait to defer the next page fault to avoid busy loop and 4919 * the page is not used after unlocked before returning from the current 4920 * page fault. So we are safe from accessing freed page, even if we wait 4921 * here without taking refcount. 4922 */ 4923 if (need_wait_lock) 4924 wait_on_page_locked(page); 4925 return ret; 4926 } 4927 4928 #ifdef CONFIG_USERFAULTFD 4929 /* 4930 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with 4931 * modifications for huge pages. 4932 */ 4933 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm, 4934 pte_t *dst_pte, 4935 struct vm_area_struct *dst_vma, 4936 unsigned long dst_addr, 4937 unsigned long src_addr, 4938 enum mcopy_atomic_mode mode, 4939 struct page **pagep) 4940 { 4941 bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE); 4942 struct address_space *mapping; 4943 pgoff_t idx; 4944 unsigned long size; 4945 int vm_shared = dst_vma->vm_flags & VM_SHARED; 4946 struct hstate *h = hstate_vma(dst_vma); 4947 pte_t _dst_pte; 4948 spinlock_t *ptl; 4949 int ret; 4950 struct page *page; 4951 int writable; 4952 4953 mapping = dst_vma->vm_file->f_mapping; 4954 idx = vma_hugecache_offset(h, dst_vma, dst_addr); 4955 4956 if (is_continue) { 4957 ret = -EFAULT; 4958 page = find_lock_page(mapping, idx); 4959 if (!page) 4960 goto out; 4961 } else if (!*pagep) { 4962 /* If a page already exists, then it's UFFDIO_COPY for 4963 * a non-missing case. Return -EEXIST. 4964 */ 4965 if (vm_shared && 4966 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) { 4967 ret = -EEXIST; 4968 goto out; 4969 } 4970 4971 page = alloc_huge_page(dst_vma, dst_addr, 0); 4972 if (IS_ERR(page)) { 4973 ret = -ENOMEM; 4974 goto out; 4975 } 4976 4977 ret = copy_huge_page_from_user(page, 4978 (const void __user *) src_addr, 4979 pages_per_huge_page(h), false); 4980 4981 /* fallback to copy_from_user outside mmap_lock */ 4982 if (unlikely(ret)) { 4983 ret = -ENOENT; 4984 *pagep = page; 4985 /* don't free the page */ 4986 goto out; 4987 } 4988 } else { 4989 page = *pagep; 4990 *pagep = NULL; 4991 } 4992 4993 /* 4994 * The memory barrier inside __SetPageUptodate makes sure that 4995 * preceding stores to the page contents become visible before 4996 * the set_pte_at() write. 4997 */ 4998 __SetPageUptodate(page); 4999 5000 /* Add shared, newly allocated pages to the page cache. */ 5001 if (vm_shared && !is_continue) { 5002 size = i_size_read(mapping->host) >> huge_page_shift(h); 5003 ret = -EFAULT; 5004 if (idx >= size) 5005 goto out_release_nounlock; 5006 5007 /* 5008 * Serialization between remove_inode_hugepages() and 5009 * huge_add_to_page_cache() below happens through the 5010 * hugetlb_fault_mutex_table that here must be hold by 5011 * the caller. 5012 */ 5013 ret = huge_add_to_page_cache(page, mapping, idx); 5014 if (ret) 5015 goto out_release_nounlock; 5016 } 5017 5018 ptl = huge_pte_lockptr(h, dst_mm, dst_pte); 5019 spin_lock(ptl); 5020 5021 /* 5022 * Recheck the i_size after holding PT lock to make sure not 5023 * to leave any page mapped (as page_mapped()) beyond the end 5024 * of the i_size (remove_inode_hugepages() is strict about 5025 * enforcing that). If we bail out here, we'll also leave a 5026 * page in the radix tree in the vm_shared case beyond the end 5027 * of the i_size, but remove_inode_hugepages() will take care 5028 * of it as soon as we drop the hugetlb_fault_mutex_table. 5029 */ 5030 size = i_size_read(mapping->host) >> huge_page_shift(h); 5031 ret = -EFAULT; 5032 if (idx >= size) 5033 goto out_release_unlock; 5034 5035 ret = -EEXIST; 5036 if (!huge_pte_none(huge_ptep_get(dst_pte))) 5037 goto out_release_unlock; 5038 5039 if (vm_shared) { 5040 page_dup_rmap(page, true); 5041 } else { 5042 ClearHPageRestoreReserve(page); 5043 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr); 5044 } 5045 5046 /* For CONTINUE on a non-shared VMA, don't set VM_WRITE for CoW. */ 5047 if (is_continue && !vm_shared) 5048 writable = 0; 5049 else 5050 writable = dst_vma->vm_flags & VM_WRITE; 5051 5052 _dst_pte = make_huge_pte(dst_vma, page, writable); 5053 if (writable) 5054 _dst_pte = huge_pte_mkdirty(_dst_pte); 5055 _dst_pte = pte_mkyoung(_dst_pte); 5056 5057 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte); 5058 5059 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte, 5060 dst_vma->vm_flags & VM_WRITE); 5061 hugetlb_count_add(pages_per_huge_page(h), dst_mm); 5062 5063 /* No need to invalidate - it was non-present before */ 5064 update_mmu_cache(dst_vma, dst_addr, dst_pte); 5065 5066 spin_unlock(ptl); 5067 if (!is_continue) 5068 SetHPageMigratable(page); 5069 if (vm_shared || is_continue) 5070 unlock_page(page); 5071 ret = 0; 5072 out: 5073 return ret; 5074 out_release_unlock: 5075 spin_unlock(ptl); 5076 if (vm_shared || is_continue) 5077 unlock_page(page); 5078 out_release_nounlock: 5079 restore_reserve_on_error(h, dst_vma, dst_addr, page); 5080 put_page(page); 5081 goto out; 5082 } 5083 #endif /* CONFIG_USERFAULTFD */ 5084 5085 static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma, 5086 int refs, struct page **pages, 5087 struct vm_area_struct **vmas) 5088 { 5089 int nr; 5090 5091 for (nr = 0; nr < refs; nr++) { 5092 if (likely(pages)) 5093 pages[nr] = mem_map_offset(page, nr); 5094 if (vmas) 5095 vmas[nr] = vma; 5096 } 5097 } 5098 5099 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, 5100 struct page **pages, struct vm_area_struct **vmas, 5101 unsigned long *position, unsigned long *nr_pages, 5102 long i, unsigned int flags, int *locked) 5103 { 5104 unsigned long pfn_offset; 5105 unsigned long vaddr = *position; 5106 unsigned long remainder = *nr_pages; 5107 struct hstate *h = hstate_vma(vma); 5108 int err = -EFAULT, refs; 5109 5110 while (vaddr < vma->vm_end && remainder) { 5111 pte_t *pte; 5112 spinlock_t *ptl = NULL; 5113 int absent; 5114 struct page *page; 5115 5116 /* 5117 * If we have a pending SIGKILL, don't keep faulting pages and 5118 * potentially allocating memory. 5119 */ 5120 if (fatal_signal_pending(current)) { 5121 remainder = 0; 5122 break; 5123 } 5124 5125 /* 5126 * Some archs (sparc64, sh*) have multiple pte_ts to 5127 * each hugepage. We have to make sure we get the 5128 * first, for the page indexing below to work. 5129 * 5130 * Note that page table lock is not held when pte is null. 5131 */ 5132 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h), 5133 huge_page_size(h)); 5134 if (pte) 5135 ptl = huge_pte_lock(h, mm, pte); 5136 absent = !pte || huge_pte_none(huge_ptep_get(pte)); 5137 5138 /* 5139 * When coredumping, it suits get_dump_page if we just return 5140 * an error where there's an empty slot with no huge pagecache 5141 * to back it. This way, we avoid allocating a hugepage, and 5142 * the sparse dumpfile avoids allocating disk blocks, but its 5143 * huge holes still show up with zeroes where they need to be. 5144 */ 5145 if (absent && (flags & FOLL_DUMP) && 5146 !hugetlbfs_pagecache_present(h, vma, vaddr)) { 5147 if (pte) 5148 spin_unlock(ptl); 5149 remainder = 0; 5150 break; 5151 } 5152 5153 /* 5154 * We need call hugetlb_fault for both hugepages under migration 5155 * (in which case hugetlb_fault waits for the migration,) and 5156 * hwpoisoned hugepages (in which case we need to prevent the 5157 * caller from accessing to them.) In order to do this, we use 5158 * here is_swap_pte instead of is_hugetlb_entry_migration and 5159 * is_hugetlb_entry_hwpoisoned. This is because it simply covers 5160 * both cases, and because we can't follow correct pages 5161 * directly from any kind of swap entries. 5162 */ 5163 if (absent || is_swap_pte(huge_ptep_get(pte)) || 5164 ((flags & FOLL_WRITE) && 5165 !huge_pte_write(huge_ptep_get(pte)))) { 5166 vm_fault_t ret; 5167 unsigned int fault_flags = 0; 5168 5169 if (pte) 5170 spin_unlock(ptl); 5171 if (flags & FOLL_WRITE) 5172 fault_flags |= FAULT_FLAG_WRITE; 5173 if (locked) 5174 fault_flags |= FAULT_FLAG_ALLOW_RETRY | 5175 FAULT_FLAG_KILLABLE; 5176 if (flags & FOLL_NOWAIT) 5177 fault_flags |= FAULT_FLAG_ALLOW_RETRY | 5178 FAULT_FLAG_RETRY_NOWAIT; 5179 if (flags & FOLL_TRIED) { 5180 /* 5181 * Note: FAULT_FLAG_ALLOW_RETRY and 5182 * FAULT_FLAG_TRIED can co-exist 5183 */ 5184 fault_flags |= FAULT_FLAG_TRIED; 5185 } 5186 ret = hugetlb_fault(mm, vma, vaddr, fault_flags); 5187 if (ret & VM_FAULT_ERROR) { 5188 err = vm_fault_to_errno(ret, flags); 5189 remainder = 0; 5190 break; 5191 } 5192 if (ret & VM_FAULT_RETRY) { 5193 if (locked && 5194 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) 5195 *locked = 0; 5196 *nr_pages = 0; 5197 /* 5198 * VM_FAULT_RETRY must not return an 5199 * error, it will return zero 5200 * instead. 5201 * 5202 * No need to update "position" as the 5203 * caller will not check it after 5204 * *nr_pages is set to 0. 5205 */ 5206 return i; 5207 } 5208 continue; 5209 } 5210 5211 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT; 5212 page = pte_page(huge_ptep_get(pte)); 5213 5214 /* 5215 * If subpage information not requested, update counters 5216 * and skip the same_page loop below. 5217 */ 5218 if (!pages && !vmas && !pfn_offset && 5219 (vaddr + huge_page_size(h) < vma->vm_end) && 5220 (remainder >= pages_per_huge_page(h))) { 5221 vaddr += huge_page_size(h); 5222 remainder -= pages_per_huge_page(h); 5223 i += pages_per_huge_page(h); 5224 spin_unlock(ptl); 5225 continue; 5226 } 5227 5228 refs = min3(pages_per_huge_page(h) - pfn_offset, 5229 (vma->vm_end - vaddr) >> PAGE_SHIFT, remainder); 5230 5231 if (pages || vmas) 5232 record_subpages_vmas(mem_map_offset(page, pfn_offset), 5233 vma, refs, 5234 likely(pages) ? pages + i : NULL, 5235 vmas ? vmas + i : NULL); 5236 5237 if (pages) { 5238 /* 5239 * try_grab_compound_head() should always succeed here, 5240 * because: a) we hold the ptl lock, and b) we've just 5241 * checked that the huge page is present in the page 5242 * tables. If the huge page is present, then the tail 5243 * pages must also be present. The ptl prevents the 5244 * head page and tail pages from being rearranged in 5245 * any way. So this page must be available at this 5246 * point, unless the page refcount overflowed: 5247 */ 5248 if (WARN_ON_ONCE(!try_grab_compound_head(pages[i], 5249 refs, 5250 flags))) { 5251 spin_unlock(ptl); 5252 remainder = 0; 5253 err = -ENOMEM; 5254 break; 5255 } 5256 } 5257 5258 vaddr += (refs << PAGE_SHIFT); 5259 remainder -= refs; 5260 i += refs; 5261 5262 spin_unlock(ptl); 5263 } 5264 *nr_pages = remainder; 5265 /* 5266 * setting position is actually required only if remainder is 5267 * not zero but it's faster not to add a "if (remainder)" 5268 * branch. 5269 */ 5270 *position = vaddr; 5271 5272 return i ? i : err; 5273 } 5274 5275 unsigned long hugetlb_change_protection(struct vm_area_struct *vma, 5276 unsigned long address, unsigned long end, pgprot_t newprot) 5277 { 5278 struct mm_struct *mm = vma->vm_mm; 5279 unsigned long start = address; 5280 pte_t *ptep; 5281 pte_t pte; 5282 struct hstate *h = hstate_vma(vma); 5283 unsigned long pages = 0; 5284 bool shared_pmd = false; 5285 struct mmu_notifier_range range; 5286 5287 /* 5288 * In the case of shared PMDs, the area to flush could be beyond 5289 * start/end. Set range.start/range.end to cover the maximum possible 5290 * range if PMD sharing is possible. 5291 */ 5292 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA, 5293 0, vma, mm, start, end); 5294 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 5295 5296 BUG_ON(address >= end); 5297 flush_cache_range(vma, range.start, range.end); 5298 5299 mmu_notifier_invalidate_range_start(&range); 5300 i_mmap_lock_write(vma->vm_file->f_mapping); 5301 for (; address < end; address += huge_page_size(h)) { 5302 spinlock_t *ptl; 5303 ptep = huge_pte_offset(mm, address, huge_page_size(h)); 5304 if (!ptep) 5305 continue; 5306 ptl = huge_pte_lock(h, mm, ptep); 5307 if (huge_pmd_unshare(mm, vma, &address, ptep)) { 5308 pages++; 5309 spin_unlock(ptl); 5310 shared_pmd = true; 5311 continue; 5312 } 5313 pte = huge_ptep_get(ptep); 5314 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) { 5315 spin_unlock(ptl); 5316 continue; 5317 } 5318 if (unlikely(is_hugetlb_entry_migration(pte))) { 5319 swp_entry_t entry = pte_to_swp_entry(pte); 5320 5321 if (is_write_migration_entry(entry)) { 5322 pte_t newpte; 5323 5324 make_migration_entry_read(&entry); 5325 newpte = swp_entry_to_pte(entry); 5326 set_huge_swap_pte_at(mm, address, ptep, 5327 newpte, huge_page_size(h)); 5328 pages++; 5329 } 5330 spin_unlock(ptl); 5331 continue; 5332 } 5333 if (!huge_pte_none(pte)) { 5334 pte_t old_pte; 5335 5336 old_pte = huge_ptep_modify_prot_start(vma, address, ptep); 5337 pte = pte_mkhuge(huge_pte_modify(old_pte, newprot)); 5338 pte = arch_make_huge_pte(pte, vma, NULL, 0); 5339 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte); 5340 pages++; 5341 } 5342 spin_unlock(ptl); 5343 } 5344 /* 5345 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare 5346 * may have cleared our pud entry and done put_page on the page table: 5347 * once we release i_mmap_rwsem, another task can do the final put_page 5348 * and that page table be reused and filled with junk. If we actually 5349 * did unshare a page of pmds, flush the range corresponding to the pud. 5350 */ 5351 if (shared_pmd) 5352 flush_hugetlb_tlb_range(vma, range.start, range.end); 5353 else 5354 flush_hugetlb_tlb_range(vma, start, end); 5355 /* 5356 * No need to call mmu_notifier_invalidate_range() we are downgrading 5357 * page table protection not changing it to point to a new page. 5358 * 5359 * See Documentation/vm/mmu_notifier.rst 5360 */ 5361 i_mmap_unlock_write(vma->vm_file->f_mapping); 5362 mmu_notifier_invalidate_range_end(&range); 5363 5364 return pages << h->order; 5365 } 5366 5367 /* Return true if reservation was successful, false otherwise. */ 5368 bool hugetlb_reserve_pages(struct inode *inode, 5369 long from, long to, 5370 struct vm_area_struct *vma, 5371 vm_flags_t vm_flags) 5372 { 5373 long chg, add = -1; 5374 struct hstate *h = hstate_inode(inode); 5375 struct hugepage_subpool *spool = subpool_inode(inode); 5376 struct resv_map *resv_map; 5377 struct hugetlb_cgroup *h_cg = NULL; 5378 long gbl_reserve, regions_needed = 0; 5379 5380 /* This should never happen */ 5381 if (from > to) { 5382 VM_WARN(1, "%s called with a negative range\n", __func__); 5383 return false; 5384 } 5385 5386 /* 5387 * Only apply hugepage reservation if asked. At fault time, an 5388 * attempt will be made for VM_NORESERVE to allocate a page 5389 * without using reserves 5390 */ 5391 if (vm_flags & VM_NORESERVE) 5392 return true; 5393 5394 /* 5395 * Shared mappings base their reservation on the number of pages that 5396 * are already allocated on behalf of the file. Private mappings need 5397 * to reserve the full area even if read-only as mprotect() may be 5398 * called to make the mapping read-write. Assume !vma is a shm mapping 5399 */ 5400 if (!vma || vma->vm_flags & VM_MAYSHARE) { 5401 /* 5402 * resv_map can not be NULL as hugetlb_reserve_pages is only 5403 * called for inodes for which resv_maps were created (see 5404 * hugetlbfs_get_inode). 5405 */ 5406 resv_map = inode_resv_map(inode); 5407 5408 chg = region_chg(resv_map, from, to, ®ions_needed); 5409 5410 } else { 5411 /* Private mapping. */ 5412 resv_map = resv_map_alloc(); 5413 if (!resv_map) 5414 return false; 5415 5416 chg = to - from; 5417 5418 set_vma_resv_map(vma, resv_map); 5419 set_vma_resv_flags(vma, HPAGE_RESV_OWNER); 5420 } 5421 5422 if (chg < 0) 5423 goto out_err; 5424 5425 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h), 5426 chg * pages_per_huge_page(h), &h_cg) < 0) 5427 goto out_err; 5428 5429 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) { 5430 /* For private mappings, the hugetlb_cgroup uncharge info hangs 5431 * of the resv_map. 5432 */ 5433 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h); 5434 } 5435 5436 /* 5437 * There must be enough pages in the subpool for the mapping. If 5438 * the subpool has a minimum size, there may be some global 5439 * reservations already in place (gbl_reserve). 5440 */ 5441 gbl_reserve = hugepage_subpool_get_pages(spool, chg); 5442 if (gbl_reserve < 0) 5443 goto out_uncharge_cgroup; 5444 5445 /* 5446 * Check enough hugepages are available for the reservation. 5447 * Hand the pages back to the subpool if there are not 5448 */ 5449 if (hugetlb_acct_memory(h, gbl_reserve) < 0) 5450 goto out_put_pages; 5451 5452 /* 5453 * Account for the reservations made. Shared mappings record regions 5454 * that have reservations as they are shared by multiple VMAs. 5455 * When the last VMA disappears, the region map says how much 5456 * the reservation was and the page cache tells how much of 5457 * the reservation was consumed. Private mappings are per-VMA and 5458 * only the consumed reservations are tracked. When the VMA 5459 * disappears, the original reservation is the VMA size and the 5460 * consumed reservations are stored in the map. Hence, nothing 5461 * else has to be done for private mappings here 5462 */ 5463 if (!vma || vma->vm_flags & VM_MAYSHARE) { 5464 add = region_add(resv_map, from, to, regions_needed, h, h_cg); 5465 5466 if (unlikely(add < 0)) { 5467 hugetlb_acct_memory(h, -gbl_reserve); 5468 goto out_put_pages; 5469 } else if (unlikely(chg > add)) { 5470 /* 5471 * pages in this range were added to the reserve 5472 * map between region_chg and region_add. This 5473 * indicates a race with alloc_huge_page. Adjust 5474 * the subpool and reserve counts modified above 5475 * based on the difference. 5476 */ 5477 long rsv_adjust; 5478 5479 /* 5480 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the 5481 * reference to h_cg->css. See comment below for detail. 5482 */ 5483 hugetlb_cgroup_uncharge_cgroup_rsvd( 5484 hstate_index(h), 5485 (chg - add) * pages_per_huge_page(h), h_cg); 5486 5487 rsv_adjust = hugepage_subpool_put_pages(spool, 5488 chg - add); 5489 hugetlb_acct_memory(h, -rsv_adjust); 5490 } else if (h_cg) { 5491 /* 5492 * The file_regions will hold their own reference to 5493 * h_cg->css. So we should release the reference held 5494 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are 5495 * done. 5496 */ 5497 hugetlb_cgroup_put_rsvd_cgroup(h_cg); 5498 } 5499 } 5500 return true; 5501 5502 out_put_pages: 5503 /* put back original number of pages, chg */ 5504 (void)hugepage_subpool_put_pages(spool, chg); 5505 out_uncharge_cgroup: 5506 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h), 5507 chg * pages_per_huge_page(h), h_cg); 5508 out_err: 5509 if (!vma || vma->vm_flags & VM_MAYSHARE) 5510 /* Only call region_abort if the region_chg succeeded but the 5511 * region_add failed or didn't run. 5512 */ 5513 if (chg >= 0 && add < 0) 5514 region_abort(resv_map, from, to, regions_needed); 5515 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 5516 kref_put(&resv_map->refs, resv_map_release); 5517 return false; 5518 } 5519 5520 long hugetlb_unreserve_pages(struct inode *inode, long start, long end, 5521 long freed) 5522 { 5523 struct hstate *h = hstate_inode(inode); 5524 struct resv_map *resv_map = inode_resv_map(inode); 5525 long chg = 0; 5526 struct hugepage_subpool *spool = subpool_inode(inode); 5527 long gbl_reserve; 5528 5529 /* 5530 * Since this routine can be called in the evict inode path for all 5531 * hugetlbfs inodes, resv_map could be NULL. 5532 */ 5533 if (resv_map) { 5534 chg = region_del(resv_map, start, end); 5535 /* 5536 * region_del() can fail in the rare case where a region 5537 * must be split and another region descriptor can not be 5538 * allocated. If end == LONG_MAX, it will not fail. 5539 */ 5540 if (chg < 0) 5541 return chg; 5542 } 5543 5544 spin_lock(&inode->i_lock); 5545 inode->i_blocks -= (blocks_per_huge_page(h) * freed); 5546 spin_unlock(&inode->i_lock); 5547 5548 /* 5549 * If the subpool has a minimum size, the number of global 5550 * reservations to be released may be adjusted. 5551 * 5552 * Note that !resv_map implies freed == 0. So (chg - freed) 5553 * won't go negative. 5554 */ 5555 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed)); 5556 hugetlb_acct_memory(h, -gbl_reserve); 5557 5558 return 0; 5559 } 5560 5561 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE 5562 static unsigned long page_table_shareable(struct vm_area_struct *svma, 5563 struct vm_area_struct *vma, 5564 unsigned long addr, pgoff_t idx) 5565 { 5566 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) + 5567 svma->vm_start; 5568 unsigned long sbase = saddr & PUD_MASK; 5569 unsigned long s_end = sbase + PUD_SIZE; 5570 5571 /* Allow segments to share if only one is marked locked */ 5572 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK; 5573 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK; 5574 5575 /* 5576 * match the virtual addresses, permission and the alignment of the 5577 * page table page. 5578 */ 5579 if (pmd_index(addr) != pmd_index(saddr) || 5580 vm_flags != svm_flags || 5581 !range_in_vma(svma, sbase, s_end)) 5582 return 0; 5583 5584 return saddr; 5585 } 5586 5587 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr) 5588 { 5589 unsigned long base = addr & PUD_MASK; 5590 unsigned long end = base + PUD_SIZE; 5591 5592 /* 5593 * check on proper vm_flags and page table alignment 5594 */ 5595 if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end)) 5596 return true; 5597 return false; 5598 } 5599 5600 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr) 5601 { 5602 #ifdef CONFIG_USERFAULTFD 5603 if (uffd_disable_huge_pmd_share(vma)) 5604 return false; 5605 #endif 5606 return vma_shareable(vma, addr); 5607 } 5608 5609 /* 5610 * Determine if start,end range within vma could be mapped by shared pmd. 5611 * If yes, adjust start and end to cover range associated with possible 5612 * shared pmd mappings. 5613 */ 5614 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 5615 unsigned long *start, unsigned long *end) 5616 { 5617 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE), 5618 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE); 5619 5620 /* 5621 * vma needs to span at least one aligned PUD size, and the range 5622 * must be at least partially within in. 5623 */ 5624 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) || 5625 (*end <= v_start) || (*start >= v_end)) 5626 return; 5627 5628 /* Extend the range to be PUD aligned for a worst case scenario */ 5629 if (*start > v_start) 5630 *start = ALIGN_DOWN(*start, PUD_SIZE); 5631 5632 if (*end < v_end) 5633 *end = ALIGN(*end, PUD_SIZE); 5634 } 5635 5636 /* 5637 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc() 5638 * and returns the corresponding pte. While this is not necessary for the 5639 * !shared pmd case because we can allocate the pmd later as well, it makes the 5640 * code much cleaner. 5641 * 5642 * This routine must be called with i_mmap_rwsem held in at least read mode if 5643 * sharing is possible. For hugetlbfs, this prevents removal of any page 5644 * table entries associated with the address space. This is important as we 5645 * are setting up sharing based on existing page table entries (mappings). 5646 * 5647 * NOTE: This routine is only called from huge_pte_alloc. Some callers of 5648 * huge_pte_alloc know that sharing is not possible and do not take 5649 * i_mmap_rwsem as a performance optimization. This is handled by the 5650 * if !vma_shareable check at the beginning of the routine. i_mmap_rwsem is 5651 * only required for subsequent processing. 5652 */ 5653 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, 5654 unsigned long addr, pud_t *pud) 5655 { 5656 struct address_space *mapping = vma->vm_file->f_mapping; 5657 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + 5658 vma->vm_pgoff; 5659 struct vm_area_struct *svma; 5660 unsigned long saddr; 5661 pte_t *spte = NULL; 5662 pte_t *pte; 5663 spinlock_t *ptl; 5664 5665 i_mmap_assert_locked(mapping); 5666 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) { 5667 if (svma == vma) 5668 continue; 5669 5670 saddr = page_table_shareable(svma, vma, addr, idx); 5671 if (saddr) { 5672 spte = huge_pte_offset(svma->vm_mm, saddr, 5673 vma_mmu_pagesize(svma)); 5674 if (spte) { 5675 get_page(virt_to_page(spte)); 5676 break; 5677 } 5678 } 5679 } 5680 5681 if (!spte) 5682 goto out; 5683 5684 ptl = huge_pte_lock(hstate_vma(vma), mm, spte); 5685 if (pud_none(*pud)) { 5686 pud_populate(mm, pud, 5687 (pmd_t *)((unsigned long)spte & PAGE_MASK)); 5688 mm_inc_nr_pmds(mm); 5689 } else { 5690 put_page(virt_to_page(spte)); 5691 } 5692 spin_unlock(ptl); 5693 out: 5694 pte = (pte_t *)pmd_alloc(mm, pud, addr); 5695 return pte; 5696 } 5697 5698 /* 5699 * unmap huge page backed by shared pte. 5700 * 5701 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared 5702 * indicated by page_count > 1, unmap is achieved by clearing pud and 5703 * decrementing the ref count. If count == 1, the pte page is not shared. 5704 * 5705 * Called with page table lock held and i_mmap_rwsem held in write mode. 5706 * 5707 * returns: 1 successfully unmapped a shared pte page 5708 * 0 the underlying pte page is not shared, or it is the last user 5709 */ 5710 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, 5711 unsigned long *addr, pte_t *ptep) 5712 { 5713 pgd_t *pgd = pgd_offset(mm, *addr); 5714 p4d_t *p4d = p4d_offset(pgd, *addr); 5715 pud_t *pud = pud_offset(p4d, *addr); 5716 5717 i_mmap_assert_write_locked(vma->vm_file->f_mapping); 5718 BUG_ON(page_count(virt_to_page(ptep)) == 0); 5719 if (page_count(virt_to_page(ptep)) == 1) 5720 return 0; 5721 5722 pud_clear(pud); 5723 put_page(virt_to_page(ptep)); 5724 mm_dec_nr_pmds(mm); 5725 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE; 5726 return 1; 5727 } 5728 5729 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 5730 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, 5731 unsigned long addr, pud_t *pud) 5732 { 5733 return NULL; 5734 } 5735 5736 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, 5737 unsigned long *addr, pte_t *ptep) 5738 { 5739 return 0; 5740 } 5741 5742 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 5743 unsigned long *start, unsigned long *end) 5744 { 5745 } 5746 5747 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr) 5748 { 5749 return false; 5750 } 5751 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 5752 5753 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB 5754 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 5755 unsigned long addr, unsigned long sz) 5756 { 5757 pgd_t *pgd; 5758 p4d_t *p4d; 5759 pud_t *pud; 5760 pte_t *pte = NULL; 5761 5762 pgd = pgd_offset(mm, addr); 5763 p4d = p4d_alloc(mm, pgd, addr); 5764 if (!p4d) 5765 return NULL; 5766 pud = pud_alloc(mm, p4d, addr); 5767 if (pud) { 5768 if (sz == PUD_SIZE) { 5769 pte = (pte_t *)pud; 5770 } else { 5771 BUG_ON(sz != PMD_SIZE); 5772 if (want_pmd_share(vma, addr) && pud_none(*pud)) 5773 pte = huge_pmd_share(mm, vma, addr, pud); 5774 else 5775 pte = (pte_t *)pmd_alloc(mm, pud, addr); 5776 } 5777 } 5778 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte)); 5779 5780 return pte; 5781 } 5782 5783 /* 5784 * huge_pte_offset() - Walk the page table to resolve the hugepage 5785 * entry at address @addr 5786 * 5787 * Return: Pointer to page table entry (PUD or PMD) for 5788 * address @addr, or NULL if a !p*d_present() entry is encountered and the 5789 * size @sz doesn't match the hugepage size at this level of the page 5790 * table. 5791 */ 5792 pte_t *huge_pte_offset(struct mm_struct *mm, 5793 unsigned long addr, unsigned long sz) 5794 { 5795 pgd_t *pgd; 5796 p4d_t *p4d; 5797 pud_t *pud; 5798 pmd_t *pmd; 5799 5800 pgd = pgd_offset(mm, addr); 5801 if (!pgd_present(*pgd)) 5802 return NULL; 5803 p4d = p4d_offset(pgd, addr); 5804 if (!p4d_present(*p4d)) 5805 return NULL; 5806 5807 pud = pud_offset(p4d, addr); 5808 if (sz == PUD_SIZE) 5809 /* must be pud huge, non-present or none */ 5810 return (pte_t *)pud; 5811 if (!pud_present(*pud)) 5812 return NULL; 5813 /* must have a valid entry and size to go further */ 5814 5815 pmd = pmd_offset(pud, addr); 5816 /* must be pmd huge, non-present or none */ 5817 return (pte_t *)pmd; 5818 } 5819 5820 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */ 5821 5822 /* 5823 * These functions are overwritable if your architecture needs its own 5824 * behavior. 5825 */ 5826 struct page * __weak 5827 follow_huge_addr(struct mm_struct *mm, unsigned long address, 5828 int write) 5829 { 5830 return ERR_PTR(-EINVAL); 5831 } 5832 5833 struct page * __weak 5834 follow_huge_pd(struct vm_area_struct *vma, 5835 unsigned long address, hugepd_t hpd, int flags, int pdshift) 5836 { 5837 WARN(1, "hugepd follow called with no support for hugepage directory format\n"); 5838 return NULL; 5839 } 5840 5841 struct page * __weak 5842 follow_huge_pmd(struct mm_struct *mm, unsigned long address, 5843 pmd_t *pmd, int flags) 5844 { 5845 struct page *page = NULL; 5846 spinlock_t *ptl; 5847 pte_t pte; 5848 5849 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 5850 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) == 5851 (FOLL_PIN | FOLL_GET))) 5852 return NULL; 5853 5854 retry: 5855 ptl = pmd_lockptr(mm, pmd); 5856 spin_lock(ptl); 5857 /* 5858 * make sure that the address range covered by this pmd is not 5859 * unmapped from other threads. 5860 */ 5861 if (!pmd_huge(*pmd)) 5862 goto out; 5863 pte = huge_ptep_get((pte_t *)pmd); 5864 if (pte_present(pte)) { 5865 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT); 5866 /* 5867 * try_grab_page() should always succeed here, because: a) we 5868 * hold the pmd (ptl) lock, and b) we've just checked that the 5869 * huge pmd (head) page is present in the page tables. The ptl 5870 * prevents the head page and tail pages from being rearranged 5871 * in any way. So this page must be available at this point, 5872 * unless the page refcount overflowed: 5873 */ 5874 if (WARN_ON_ONCE(!try_grab_page(page, flags))) { 5875 page = NULL; 5876 goto out; 5877 } 5878 } else { 5879 if (is_hugetlb_entry_migration(pte)) { 5880 spin_unlock(ptl); 5881 __migration_entry_wait(mm, (pte_t *)pmd, ptl); 5882 goto retry; 5883 } 5884 /* 5885 * hwpoisoned entry is treated as no_page_table in 5886 * follow_page_mask(). 5887 */ 5888 } 5889 out: 5890 spin_unlock(ptl); 5891 return page; 5892 } 5893 5894 struct page * __weak 5895 follow_huge_pud(struct mm_struct *mm, unsigned long address, 5896 pud_t *pud, int flags) 5897 { 5898 if (flags & (FOLL_GET | FOLL_PIN)) 5899 return NULL; 5900 5901 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT); 5902 } 5903 5904 struct page * __weak 5905 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags) 5906 { 5907 if (flags & (FOLL_GET | FOLL_PIN)) 5908 return NULL; 5909 5910 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT); 5911 } 5912 5913 bool isolate_huge_page(struct page *page, struct list_head *list) 5914 { 5915 bool ret = true; 5916 5917 spin_lock_irq(&hugetlb_lock); 5918 if (!PageHeadHuge(page) || 5919 !HPageMigratable(page) || 5920 !get_page_unless_zero(page)) { 5921 ret = false; 5922 goto unlock; 5923 } 5924 ClearHPageMigratable(page); 5925 list_move_tail(&page->lru, list); 5926 unlock: 5927 spin_unlock_irq(&hugetlb_lock); 5928 return ret; 5929 } 5930 5931 int get_hwpoison_huge_page(struct page *page, bool *hugetlb) 5932 { 5933 int ret = 0; 5934 5935 *hugetlb = false; 5936 spin_lock_irq(&hugetlb_lock); 5937 if (PageHeadHuge(page)) { 5938 *hugetlb = true; 5939 if (HPageFreed(page) || HPageMigratable(page)) 5940 ret = get_page_unless_zero(page); 5941 else 5942 ret = -EBUSY; 5943 } 5944 spin_unlock_irq(&hugetlb_lock); 5945 return ret; 5946 } 5947 5948 void putback_active_hugepage(struct page *page) 5949 { 5950 spin_lock_irq(&hugetlb_lock); 5951 SetHPageMigratable(page); 5952 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist); 5953 spin_unlock_irq(&hugetlb_lock); 5954 put_page(page); 5955 } 5956 5957 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason) 5958 { 5959 struct hstate *h = page_hstate(oldpage); 5960 5961 hugetlb_cgroup_migrate(oldpage, newpage); 5962 set_page_owner_migrate_reason(newpage, reason); 5963 5964 /* 5965 * transfer temporary state of the new huge page. This is 5966 * reverse to other transitions because the newpage is going to 5967 * be final while the old one will be freed so it takes over 5968 * the temporary status. 5969 * 5970 * Also note that we have to transfer the per-node surplus state 5971 * here as well otherwise the global surplus count will not match 5972 * the per-node's. 5973 */ 5974 if (HPageTemporary(newpage)) { 5975 int old_nid = page_to_nid(oldpage); 5976 int new_nid = page_to_nid(newpage); 5977 5978 SetHPageTemporary(oldpage); 5979 ClearHPageTemporary(newpage); 5980 5981 /* 5982 * There is no need to transfer the per-node surplus state 5983 * when we do not cross the node. 5984 */ 5985 if (new_nid == old_nid) 5986 return; 5987 spin_lock_irq(&hugetlb_lock); 5988 if (h->surplus_huge_pages_node[old_nid]) { 5989 h->surplus_huge_pages_node[old_nid]--; 5990 h->surplus_huge_pages_node[new_nid]++; 5991 } 5992 spin_unlock_irq(&hugetlb_lock); 5993 } 5994 } 5995 5996 /* 5997 * This function will unconditionally remove all the shared pmd pgtable entries 5998 * within the specific vma for a hugetlbfs memory range. 5999 */ 6000 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma) 6001 { 6002 struct hstate *h = hstate_vma(vma); 6003 unsigned long sz = huge_page_size(h); 6004 struct mm_struct *mm = vma->vm_mm; 6005 struct mmu_notifier_range range; 6006 unsigned long address, start, end; 6007 spinlock_t *ptl; 6008 pte_t *ptep; 6009 6010 if (!(vma->vm_flags & VM_MAYSHARE)) 6011 return; 6012 6013 start = ALIGN(vma->vm_start, PUD_SIZE); 6014 end = ALIGN_DOWN(vma->vm_end, PUD_SIZE); 6015 6016 if (start >= end) 6017 return; 6018 6019 /* 6020 * No need to call adjust_range_if_pmd_sharing_possible(), because 6021 * we have already done the PUD_SIZE alignment. 6022 */ 6023 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, 6024 start, end); 6025 mmu_notifier_invalidate_range_start(&range); 6026 i_mmap_lock_write(vma->vm_file->f_mapping); 6027 for (address = start; address < end; address += PUD_SIZE) { 6028 unsigned long tmp = address; 6029 6030 ptep = huge_pte_offset(mm, address, sz); 6031 if (!ptep) 6032 continue; 6033 ptl = huge_pte_lock(h, mm, ptep); 6034 /* We don't want 'address' to be changed */ 6035 huge_pmd_unshare(mm, vma, &tmp, ptep); 6036 spin_unlock(ptl); 6037 } 6038 flush_hugetlb_tlb_range(vma, start, end); 6039 i_mmap_unlock_write(vma->vm_file->f_mapping); 6040 /* 6041 * No need to call mmu_notifier_invalidate_range(), see 6042 * Documentation/vm/mmu_notifier.rst. 6043 */ 6044 mmu_notifier_invalidate_range_end(&range); 6045 } 6046 6047 #ifdef CONFIG_CMA 6048 static bool cma_reserve_called __initdata; 6049 6050 static int __init cmdline_parse_hugetlb_cma(char *p) 6051 { 6052 hugetlb_cma_size = memparse(p, &p); 6053 return 0; 6054 } 6055 6056 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma); 6057 6058 void __init hugetlb_cma_reserve(int order) 6059 { 6060 unsigned long size, reserved, per_node; 6061 int nid; 6062 6063 cma_reserve_called = true; 6064 6065 if (!hugetlb_cma_size) 6066 return; 6067 6068 if (hugetlb_cma_size < (PAGE_SIZE << order)) { 6069 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n", 6070 (PAGE_SIZE << order) / SZ_1M); 6071 return; 6072 } 6073 6074 /* 6075 * If 3 GB area is requested on a machine with 4 numa nodes, 6076 * let's allocate 1 GB on first three nodes and ignore the last one. 6077 */ 6078 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes); 6079 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n", 6080 hugetlb_cma_size / SZ_1M, per_node / SZ_1M); 6081 6082 reserved = 0; 6083 for_each_node_state(nid, N_ONLINE) { 6084 int res; 6085 char name[CMA_MAX_NAME]; 6086 6087 size = min(per_node, hugetlb_cma_size - reserved); 6088 size = round_up(size, PAGE_SIZE << order); 6089 6090 snprintf(name, sizeof(name), "hugetlb%d", nid); 6091 res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order, 6092 0, false, name, 6093 &hugetlb_cma[nid], nid); 6094 if (res) { 6095 pr_warn("hugetlb_cma: reservation failed: err %d, node %d", 6096 res, nid); 6097 continue; 6098 } 6099 6100 reserved += size; 6101 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n", 6102 size / SZ_1M, nid); 6103 6104 if (reserved >= hugetlb_cma_size) 6105 break; 6106 } 6107 } 6108 6109 void __init hugetlb_cma_check(void) 6110 { 6111 if (!hugetlb_cma_size || cma_reserve_called) 6112 return; 6113 6114 pr_warn("hugetlb_cma: the option isn't supported by current arch\n"); 6115 } 6116 6117 #endif /* CONFIG_CMA */ 6118