xref: /linux/mm/hugetlb.c (revision 9009b455811b0fa1f6b0adfa94db136984db5a38)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 
34 #include <asm/page.h>
35 #include <asm/pgalloc.h>
36 #include <asm/tlb.h>
37 
38 #include <linux/io.h>
39 #include <linux/hugetlb.h>
40 #include <linux/hugetlb_cgroup.h>
41 #include <linux/node.h>
42 #include <linux/userfaultfd_k.h>
43 #include <linux/page_owner.h>
44 #include "internal.h"
45 
46 int hugetlb_max_hstate __read_mostly;
47 unsigned int default_hstate_idx;
48 struct hstate hstates[HUGE_MAX_HSTATE];
49 
50 #ifdef CONFIG_CMA
51 static struct cma *hugetlb_cma[MAX_NUMNODES];
52 #endif
53 static unsigned long hugetlb_cma_size __initdata;
54 
55 /*
56  * Minimum page order among possible hugepage sizes, set to a proper value
57  * at boot time.
58  */
59 static unsigned int minimum_order __read_mostly = UINT_MAX;
60 
61 __initdata LIST_HEAD(huge_boot_pages);
62 
63 /* for command line parsing */
64 static struct hstate * __initdata parsed_hstate;
65 static unsigned long __initdata default_hstate_max_huge_pages;
66 static bool __initdata parsed_valid_hugepagesz = true;
67 static bool __initdata parsed_default_hugepagesz;
68 
69 /*
70  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
71  * free_huge_pages, and surplus_huge_pages.
72  */
73 DEFINE_SPINLOCK(hugetlb_lock);
74 
75 /*
76  * Serializes faults on the same logical page.  This is used to
77  * prevent spurious OOMs when the hugepage pool is fully utilized.
78  */
79 static int num_fault_mutexes;
80 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
81 
82 /* Forward declaration */
83 static int hugetlb_acct_memory(struct hstate *h, long delta);
84 
85 static inline bool subpool_is_free(struct hugepage_subpool *spool)
86 {
87 	if (spool->count)
88 		return false;
89 	if (spool->max_hpages != -1)
90 		return spool->used_hpages == 0;
91 	if (spool->min_hpages != -1)
92 		return spool->rsv_hpages == spool->min_hpages;
93 
94 	return true;
95 }
96 
97 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
98 {
99 	spin_unlock(&spool->lock);
100 
101 	/* If no pages are used, and no other handles to the subpool
102 	 * remain, give up any reservations based on minimum size and
103 	 * free the subpool */
104 	if (subpool_is_free(spool)) {
105 		if (spool->min_hpages != -1)
106 			hugetlb_acct_memory(spool->hstate,
107 						-spool->min_hpages);
108 		kfree(spool);
109 	}
110 }
111 
112 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
113 						long min_hpages)
114 {
115 	struct hugepage_subpool *spool;
116 
117 	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
118 	if (!spool)
119 		return NULL;
120 
121 	spin_lock_init(&spool->lock);
122 	spool->count = 1;
123 	spool->max_hpages = max_hpages;
124 	spool->hstate = h;
125 	spool->min_hpages = min_hpages;
126 
127 	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
128 		kfree(spool);
129 		return NULL;
130 	}
131 	spool->rsv_hpages = min_hpages;
132 
133 	return spool;
134 }
135 
136 void hugepage_put_subpool(struct hugepage_subpool *spool)
137 {
138 	spin_lock(&spool->lock);
139 	BUG_ON(!spool->count);
140 	spool->count--;
141 	unlock_or_release_subpool(spool);
142 }
143 
144 /*
145  * Subpool accounting for allocating and reserving pages.
146  * Return -ENOMEM if there are not enough resources to satisfy the
147  * request.  Otherwise, return the number of pages by which the
148  * global pools must be adjusted (upward).  The returned value may
149  * only be different than the passed value (delta) in the case where
150  * a subpool minimum size must be maintained.
151  */
152 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
153 				      long delta)
154 {
155 	long ret = delta;
156 
157 	if (!spool)
158 		return ret;
159 
160 	spin_lock(&spool->lock);
161 
162 	if (spool->max_hpages != -1) {		/* maximum size accounting */
163 		if ((spool->used_hpages + delta) <= spool->max_hpages)
164 			spool->used_hpages += delta;
165 		else {
166 			ret = -ENOMEM;
167 			goto unlock_ret;
168 		}
169 	}
170 
171 	/* minimum size accounting */
172 	if (spool->min_hpages != -1 && spool->rsv_hpages) {
173 		if (delta > spool->rsv_hpages) {
174 			/*
175 			 * Asking for more reserves than those already taken on
176 			 * behalf of subpool.  Return difference.
177 			 */
178 			ret = delta - spool->rsv_hpages;
179 			spool->rsv_hpages = 0;
180 		} else {
181 			ret = 0;	/* reserves already accounted for */
182 			spool->rsv_hpages -= delta;
183 		}
184 	}
185 
186 unlock_ret:
187 	spin_unlock(&spool->lock);
188 	return ret;
189 }
190 
191 /*
192  * Subpool accounting for freeing and unreserving pages.
193  * Return the number of global page reservations that must be dropped.
194  * The return value may only be different than the passed value (delta)
195  * in the case where a subpool minimum size must be maintained.
196  */
197 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
198 				       long delta)
199 {
200 	long ret = delta;
201 
202 	if (!spool)
203 		return delta;
204 
205 	spin_lock(&spool->lock);
206 
207 	if (spool->max_hpages != -1)		/* maximum size accounting */
208 		spool->used_hpages -= delta;
209 
210 	 /* minimum size accounting */
211 	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
212 		if (spool->rsv_hpages + delta <= spool->min_hpages)
213 			ret = 0;
214 		else
215 			ret = spool->rsv_hpages + delta - spool->min_hpages;
216 
217 		spool->rsv_hpages += delta;
218 		if (spool->rsv_hpages > spool->min_hpages)
219 			spool->rsv_hpages = spool->min_hpages;
220 	}
221 
222 	/*
223 	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
224 	 * quota reference, free it now.
225 	 */
226 	unlock_or_release_subpool(spool);
227 
228 	return ret;
229 }
230 
231 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
232 {
233 	return HUGETLBFS_SB(inode->i_sb)->spool;
234 }
235 
236 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
237 {
238 	return subpool_inode(file_inode(vma->vm_file));
239 }
240 
241 /* Helper that removes a struct file_region from the resv_map cache and returns
242  * it for use.
243  */
244 static struct file_region *
245 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
246 {
247 	struct file_region *nrg = NULL;
248 
249 	VM_BUG_ON(resv->region_cache_count <= 0);
250 
251 	resv->region_cache_count--;
252 	nrg = list_first_entry(&resv->region_cache, struct file_region, link);
253 	list_del(&nrg->link);
254 
255 	nrg->from = from;
256 	nrg->to = to;
257 
258 	return nrg;
259 }
260 
261 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
262 					      struct file_region *rg)
263 {
264 #ifdef CONFIG_CGROUP_HUGETLB
265 	nrg->reservation_counter = rg->reservation_counter;
266 	nrg->css = rg->css;
267 	if (rg->css)
268 		css_get(rg->css);
269 #endif
270 }
271 
272 /* Helper that records hugetlb_cgroup uncharge info. */
273 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
274 						struct hstate *h,
275 						struct resv_map *resv,
276 						struct file_region *nrg)
277 {
278 #ifdef CONFIG_CGROUP_HUGETLB
279 	if (h_cg) {
280 		nrg->reservation_counter =
281 			&h_cg->rsvd_hugepage[hstate_index(h)];
282 		nrg->css = &h_cg->css;
283 		/*
284 		 * The caller will hold exactly one h_cg->css reference for the
285 		 * whole contiguous reservation region. But this area might be
286 		 * scattered when there are already some file_regions reside in
287 		 * it. As a result, many file_regions may share only one css
288 		 * reference. In order to ensure that one file_region must hold
289 		 * exactly one h_cg->css reference, we should do css_get for
290 		 * each file_region and leave the reference held by caller
291 		 * untouched.
292 		 */
293 		css_get(&h_cg->css);
294 		if (!resv->pages_per_hpage)
295 			resv->pages_per_hpage = pages_per_huge_page(h);
296 		/* pages_per_hpage should be the same for all entries in
297 		 * a resv_map.
298 		 */
299 		VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
300 	} else {
301 		nrg->reservation_counter = NULL;
302 		nrg->css = NULL;
303 	}
304 #endif
305 }
306 
307 static void put_uncharge_info(struct file_region *rg)
308 {
309 #ifdef CONFIG_CGROUP_HUGETLB
310 	if (rg->css)
311 		css_put(rg->css);
312 #endif
313 }
314 
315 static bool has_same_uncharge_info(struct file_region *rg,
316 				   struct file_region *org)
317 {
318 #ifdef CONFIG_CGROUP_HUGETLB
319 	return rg && org &&
320 	       rg->reservation_counter == org->reservation_counter &&
321 	       rg->css == org->css;
322 
323 #else
324 	return true;
325 #endif
326 }
327 
328 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
329 {
330 	struct file_region *nrg = NULL, *prg = NULL;
331 
332 	prg = list_prev_entry(rg, link);
333 	if (&prg->link != &resv->regions && prg->to == rg->from &&
334 	    has_same_uncharge_info(prg, rg)) {
335 		prg->to = rg->to;
336 
337 		list_del(&rg->link);
338 		put_uncharge_info(rg);
339 		kfree(rg);
340 
341 		rg = prg;
342 	}
343 
344 	nrg = list_next_entry(rg, link);
345 	if (&nrg->link != &resv->regions && nrg->from == rg->to &&
346 	    has_same_uncharge_info(nrg, rg)) {
347 		nrg->from = rg->from;
348 
349 		list_del(&rg->link);
350 		put_uncharge_info(rg);
351 		kfree(rg);
352 	}
353 }
354 
355 static inline long
356 hugetlb_resv_map_add(struct resv_map *map, struct file_region *rg, long from,
357 		     long to, struct hstate *h, struct hugetlb_cgroup *cg,
358 		     long *regions_needed)
359 {
360 	struct file_region *nrg;
361 
362 	if (!regions_needed) {
363 		nrg = get_file_region_entry_from_cache(map, from, to);
364 		record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
365 		list_add(&nrg->link, rg->link.prev);
366 		coalesce_file_region(map, nrg);
367 	} else
368 		*regions_needed += 1;
369 
370 	return to - from;
371 }
372 
373 /*
374  * Must be called with resv->lock held.
375  *
376  * Calling this with regions_needed != NULL will count the number of pages
377  * to be added but will not modify the linked list. And regions_needed will
378  * indicate the number of file_regions needed in the cache to carry out to add
379  * the regions for this range.
380  */
381 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
382 				     struct hugetlb_cgroup *h_cg,
383 				     struct hstate *h, long *regions_needed)
384 {
385 	long add = 0;
386 	struct list_head *head = &resv->regions;
387 	long last_accounted_offset = f;
388 	struct file_region *rg = NULL, *trg = NULL;
389 
390 	if (regions_needed)
391 		*regions_needed = 0;
392 
393 	/* In this loop, we essentially handle an entry for the range
394 	 * [last_accounted_offset, rg->from), at every iteration, with some
395 	 * bounds checking.
396 	 */
397 	list_for_each_entry_safe(rg, trg, head, link) {
398 		/* Skip irrelevant regions that start before our range. */
399 		if (rg->from < f) {
400 			/* If this region ends after the last accounted offset,
401 			 * then we need to update last_accounted_offset.
402 			 */
403 			if (rg->to > last_accounted_offset)
404 				last_accounted_offset = rg->to;
405 			continue;
406 		}
407 
408 		/* When we find a region that starts beyond our range, we've
409 		 * finished.
410 		 */
411 		if (rg->from >= t)
412 			break;
413 
414 		/* Add an entry for last_accounted_offset -> rg->from, and
415 		 * update last_accounted_offset.
416 		 */
417 		if (rg->from > last_accounted_offset)
418 			add += hugetlb_resv_map_add(resv, rg,
419 						    last_accounted_offset,
420 						    rg->from, h, h_cg,
421 						    regions_needed);
422 
423 		last_accounted_offset = rg->to;
424 	}
425 
426 	/* Handle the case where our range extends beyond
427 	 * last_accounted_offset.
428 	 */
429 	if (last_accounted_offset < t)
430 		add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
431 					    t, h, h_cg, regions_needed);
432 
433 	VM_BUG_ON(add < 0);
434 	return add;
435 }
436 
437 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
438  */
439 static int allocate_file_region_entries(struct resv_map *resv,
440 					int regions_needed)
441 	__must_hold(&resv->lock)
442 {
443 	struct list_head allocated_regions;
444 	int to_allocate = 0, i = 0;
445 	struct file_region *trg = NULL, *rg = NULL;
446 
447 	VM_BUG_ON(regions_needed < 0);
448 
449 	INIT_LIST_HEAD(&allocated_regions);
450 
451 	/*
452 	 * Check for sufficient descriptors in the cache to accommodate
453 	 * the number of in progress add operations plus regions_needed.
454 	 *
455 	 * This is a while loop because when we drop the lock, some other call
456 	 * to region_add or region_del may have consumed some region_entries,
457 	 * so we keep looping here until we finally have enough entries for
458 	 * (adds_in_progress + regions_needed).
459 	 */
460 	while (resv->region_cache_count <
461 	       (resv->adds_in_progress + regions_needed)) {
462 		to_allocate = resv->adds_in_progress + regions_needed -
463 			      resv->region_cache_count;
464 
465 		/* At this point, we should have enough entries in the cache
466 		 * for all the existings adds_in_progress. We should only be
467 		 * needing to allocate for regions_needed.
468 		 */
469 		VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
470 
471 		spin_unlock(&resv->lock);
472 		for (i = 0; i < to_allocate; i++) {
473 			trg = kmalloc(sizeof(*trg), GFP_KERNEL);
474 			if (!trg)
475 				goto out_of_memory;
476 			list_add(&trg->link, &allocated_regions);
477 		}
478 
479 		spin_lock(&resv->lock);
480 
481 		list_splice(&allocated_regions, &resv->region_cache);
482 		resv->region_cache_count += to_allocate;
483 	}
484 
485 	return 0;
486 
487 out_of_memory:
488 	list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
489 		list_del(&rg->link);
490 		kfree(rg);
491 	}
492 	return -ENOMEM;
493 }
494 
495 /*
496  * Add the huge page range represented by [f, t) to the reserve
497  * map.  Regions will be taken from the cache to fill in this range.
498  * Sufficient regions should exist in the cache due to the previous
499  * call to region_chg with the same range, but in some cases the cache will not
500  * have sufficient entries due to races with other code doing region_add or
501  * region_del.  The extra needed entries will be allocated.
502  *
503  * regions_needed is the out value provided by a previous call to region_chg.
504  *
505  * Return the number of new huge pages added to the map.  This number is greater
506  * than or equal to zero.  If file_region entries needed to be allocated for
507  * this operation and we were not able to allocate, it returns -ENOMEM.
508  * region_add of regions of length 1 never allocate file_regions and cannot
509  * fail; region_chg will always allocate at least 1 entry and a region_add for
510  * 1 page will only require at most 1 entry.
511  */
512 static long region_add(struct resv_map *resv, long f, long t,
513 		       long in_regions_needed, struct hstate *h,
514 		       struct hugetlb_cgroup *h_cg)
515 {
516 	long add = 0, actual_regions_needed = 0;
517 
518 	spin_lock(&resv->lock);
519 retry:
520 
521 	/* Count how many regions are actually needed to execute this add. */
522 	add_reservation_in_range(resv, f, t, NULL, NULL,
523 				 &actual_regions_needed);
524 
525 	/*
526 	 * Check for sufficient descriptors in the cache to accommodate
527 	 * this add operation. Note that actual_regions_needed may be greater
528 	 * than in_regions_needed, as the resv_map may have been modified since
529 	 * the region_chg call. In this case, we need to make sure that we
530 	 * allocate extra entries, such that we have enough for all the
531 	 * existing adds_in_progress, plus the excess needed for this
532 	 * operation.
533 	 */
534 	if (actual_regions_needed > in_regions_needed &&
535 	    resv->region_cache_count <
536 		    resv->adds_in_progress +
537 			    (actual_regions_needed - in_regions_needed)) {
538 		/* region_add operation of range 1 should never need to
539 		 * allocate file_region entries.
540 		 */
541 		VM_BUG_ON(t - f <= 1);
542 
543 		if (allocate_file_region_entries(
544 			    resv, actual_regions_needed - in_regions_needed)) {
545 			return -ENOMEM;
546 		}
547 
548 		goto retry;
549 	}
550 
551 	add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
552 
553 	resv->adds_in_progress -= in_regions_needed;
554 
555 	spin_unlock(&resv->lock);
556 	VM_BUG_ON(add < 0);
557 	return add;
558 }
559 
560 /*
561  * Examine the existing reserve map and determine how many
562  * huge pages in the specified range [f, t) are NOT currently
563  * represented.  This routine is called before a subsequent
564  * call to region_add that will actually modify the reserve
565  * map to add the specified range [f, t).  region_chg does
566  * not change the number of huge pages represented by the
567  * map.  A number of new file_region structures is added to the cache as a
568  * placeholder, for the subsequent region_add call to use. At least 1
569  * file_region structure is added.
570  *
571  * out_regions_needed is the number of regions added to the
572  * resv->adds_in_progress.  This value needs to be provided to a follow up call
573  * to region_add or region_abort for proper accounting.
574  *
575  * Returns the number of huge pages that need to be added to the existing
576  * reservation map for the range [f, t).  This number is greater or equal to
577  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
578  * is needed and can not be allocated.
579  */
580 static long region_chg(struct resv_map *resv, long f, long t,
581 		       long *out_regions_needed)
582 {
583 	long chg = 0;
584 
585 	spin_lock(&resv->lock);
586 
587 	/* Count how many hugepages in this range are NOT represented. */
588 	chg = add_reservation_in_range(resv, f, t, NULL, NULL,
589 				       out_regions_needed);
590 
591 	if (*out_regions_needed == 0)
592 		*out_regions_needed = 1;
593 
594 	if (allocate_file_region_entries(resv, *out_regions_needed))
595 		return -ENOMEM;
596 
597 	resv->adds_in_progress += *out_regions_needed;
598 
599 	spin_unlock(&resv->lock);
600 	return chg;
601 }
602 
603 /*
604  * Abort the in progress add operation.  The adds_in_progress field
605  * of the resv_map keeps track of the operations in progress between
606  * calls to region_chg and region_add.  Operations are sometimes
607  * aborted after the call to region_chg.  In such cases, region_abort
608  * is called to decrement the adds_in_progress counter. regions_needed
609  * is the value returned by the region_chg call, it is used to decrement
610  * the adds_in_progress counter.
611  *
612  * NOTE: The range arguments [f, t) are not needed or used in this
613  * routine.  They are kept to make reading the calling code easier as
614  * arguments will match the associated region_chg call.
615  */
616 static void region_abort(struct resv_map *resv, long f, long t,
617 			 long regions_needed)
618 {
619 	spin_lock(&resv->lock);
620 	VM_BUG_ON(!resv->region_cache_count);
621 	resv->adds_in_progress -= regions_needed;
622 	spin_unlock(&resv->lock);
623 }
624 
625 /*
626  * Delete the specified range [f, t) from the reserve map.  If the
627  * t parameter is LONG_MAX, this indicates that ALL regions after f
628  * should be deleted.  Locate the regions which intersect [f, t)
629  * and either trim, delete or split the existing regions.
630  *
631  * Returns the number of huge pages deleted from the reserve map.
632  * In the normal case, the return value is zero or more.  In the
633  * case where a region must be split, a new region descriptor must
634  * be allocated.  If the allocation fails, -ENOMEM will be returned.
635  * NOTE: If the parameter t == LONG_MAX, then we will never split
636  * a region and possibly return -ENOMEM.  Callers specifying
637  * t == LONG_MAX do not need to check for -ENOMEM error.
638  */
639 static long region_del(struct resv_map *resv, long f, long t)
640 {
641 	struct list_head *head = &resv->regions;
642 	struct file_region *rg, *trg;
643 	struct file_region *nrg = NULL;
644 	long del = 0;
645 
646 retry:
647 	spin_lock(&resv->lock);
648 	list_for_each_entry_safe(rg, trg, head, link) {
649 		/*
650 		 * Skip regions before the range to be deleted.  file_region
651 		 * ranges are normally of the form [from, to).  However, there
652 		 * may be a "placeholder" entry in the map which is of the form
653 		 * (from, to) with from == to.  Check for placeholder entries
654 		 * at the beginning of the range to be deleted.
655 		 */
656 		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
657 			continue;
658 
659 		if (rg->from >= t)
660 			break;
661 
662 		if (f > rg->from && t < rg->to) { /* Must split region */
663 			/*
664 			 * Check for an entry in the cache before dropping
665 			 * lock and attempting allocation.
666 			 */
667 			if (!nrg &&
668 			    resv->region_cache_count > resv->adds_in_progress) {
669 				nrg = list_first_entry(&resv->region_cache,
670 							struct file_region,
671 							link);
672 				list_del(&nrg->link);
673 				resv->region_cache_count--;
674 			}
675 
676 			if (!nrg) {
677 				spin_unlock(&resv->lock);
678 				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
679 				if (!nrg)
680 					return -ENOMEM;
681 				goto retry;
682 			}
683 
684 			del += t - f;
685 			hugetlb_cgroup_uncharge_file_region(
686 				resv, rg, t - f, false);
687 
688 			/* New entry for end of split region */
689 			nrg->from = t;
690 			nrg->to = rg->to;
691 
692 			copy_hugetlb_cgroup_uncharge_info(nrg, rg);
693 
694 			INIT_LIST_HEAD(&nrg->link);
695 
696 			/* Original entry is trimmed */
697 			rg->to = f;
698 
699 			list_add(&nrg->link, &rg->link);
700 			nrg = NULL;
701 			break;
702 		}
703 
704 		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
705 			del += rg->to - rg->from;
706 			hugetlb_cgroup_uncharge_file_region(resv, rg,
707 							    rg->to - rg->from, true);
708 			list_del(&rg->link);
709 			kfree(rg);
710 			continue;
711 		}
712 
713 		if (f <= rg->from) {	/* Trim beginning of region */
714 			hugetlb_cgroup_uncharge_file_region(resv, rg,
715 							    t - rg->from, false);
716 
717 			del += t - rg->from;
718 			rg->from = t;
719 		} else {		/* Trim end of region */
720 			hugetlb_cgroup_uncharge_file_region(resv, rg,
721 							    rg->to - f, false);
722 
723 			del += rg->to - f;
724 			rg->to = f;
725 		}
726 	}
727 
728 	spin_unlock(&resv->lock);
729 	kfree(nrg);
730 	return del;
731 }
732 
733 /*
734  * A rare out of memory error was encountered which prevented removal of
735  * the reserve map region for a page.  The huge page itself was free'ed
736  * and removed from the page cache.  This routine will adjust the subpool
737  * usage count, and the global reserve count if needed.  By incrementing
738  * these counts, the reserve map entry which could not be deleted will
739  * appear as a "reserved" entry instead of simply dangling with incorrect
740  * counts.
741  */
742 void hugetlb_fix_reserve_counts(struct inode *inode)
743 {
744 	struct hugepage_subpool *spool = subpool_inode(inode);
745 	long rsv_adjust;
746 
747 	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
748 	if (rsv_adjust) {
749 		struct hstate *h = hstate_inode(inode);
750 
751 		hugetlb_acct_memory(h, 1);
752 	}
753 }
754 
755 /*
756  * Count and return the number of huge pages in the reserve map
757  * that intersect with the range [f, t).
758  */
759 static long region_count(struct resv_map *resv, long f, long t)
760 {
761 	struct list_head *head = &resv->regions;
762 	struct file_region *rg;
763 	long chg = 0;
764 
765 	spin_lock(&resv->lock);
766 	/* Locate each segment we overlap with, and count that overlap. */
767 	list_for_each_entry(rg, head, link) {
768 		long seg_from;
769 		long seg_to;
770 
771 		if (rg->to <= f)
772 			continue;
773 		if (rg->from >= t)
774 			break;
775 
776 		seg_from = max(rg->from, f);
777 		seg_to = min(rg->to, t);
778 
779 		chg += seg_to - seg_from;
780 	}
781 	spin_unlock(&resv->lock);
782 
783 	return chg;
784 }
785 
786 /*
787  * Convert the address within this vma to the page offset within
788  * the mapping, in pagecache page units; huge pages here.
789  */
790 static pgoff_t vma_hugecache_offset(struct hstate *h,
791 			struct vm_area_struct *vma, unsigned long address)
792 {
793 	return ((address - vma->vm_start) >> huge_page_shift(h)) +
794 			(vma->vm_pgoff >> huge_page_order(h));
795 }
796 
797 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
798 				     unsigned long address)
799 {
800 	return vma_hugecache_offset(hstate_vma(vma), vma, address);
801 }
802 EXPORT_SYMBOL_GPL(linear_hugepage_index);
803 
804 /*
805  * Return the size of the pages allocated when backing a VMA. In the majority
806  * cases this will be same size as used by the page table entries.
807  */
808 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
809 {
810 	if (vma->vm_ops && vma->vm_ops->pagesize)
811 		return vma->vm_ops->pagesize(vma);
812 	return PAGE_SIZE;
813 }
814 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
815 
816 /*
817  * Return the page size being used by the MMU to back a VMA. In the majority
818  * of cases, the page size used by the kernel matches the MMU size. On
819  * architectures where it differs, an architecture-specific 'strong'
820  * version of this symbol is required.
821  */
822 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
823 {
824 	return vma_kernel_pagesize(vma);
825 }
826 
827 /*
828  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
829  * bits of the reservation map pointer, which are always clear due to
830  * alignment.
831  */
832 #define HPAGE_RESV_OWNER    (1UL << 0)
833 #define HPAGE_RESV_UNMAPPED (1UL << 1)
834 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
835 
836 /*
837  * These helpers are used to track how many pages are reserved for
838  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
839  * is guaranteed to have their future faults succeed.
840  *
841  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
842  * the reserve counters are updated with the hugetlb_lock held. It is safe
843  * to reset the VMA at fork() time as it is not in use yet and there is no
844  * chance of the global counters getting corrupted as a result of the values.
845  *
846  * The private mapping reservation is represented in a subtly different
847  * manner to a shared mapping.  A shared mapping has a region map associated
848  * with the underlying file, this region map represents the backing file
849  * pages which have ever had a reservation assigned which this persists even
850  * after the page is instantiated.  A private mapping has a region map
851  * associated with the original mmap which is attached to all VMAs which
852  * reference it, this region map represents those offsets which have consumed
853  * reservation ie. where pages have been instantiated.
854  */
855 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
856 {
857 	return (unsigned long)vma->vm_private_data;
858 }
859 
860 static void set_vma_private_data(struct vm_area_struct *vma,
861 							unsigned long value)
862 {
863 	vma->vm_private_data = (void *)value;
864 }
865 
866 static void
867 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
868 					  struct hugetlb_cgroup *h_cg,
869 					  struct hstate *h)
870 {
871 #ifdef CONFIG_CGROUP_HUGETLB
872 	if (!h_cg || !h) {
873 		resv_map->reservation_counter = NULL;
874 		resv_map->pages_per_hpage = 0;
875 		resv_map->css = NULL;
876 	} else {
877 		resv_map->reservation_counter =
878 			&h_cg->rsvd_hugepage[hstate_index(h)];
879 		resv_map->pages_per_hpage = pages_per_huge_page(h);
880 		resv_map->css = &h_cg->css;
881 	}
882 #endif
883 }
884 
885 struct resv_map *resv_map_alloc(void)
886 {
887 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
888 	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
889 
890 	if (!resv_map || !rg) {
891 		kfree(resv_map);
892 		kfree(rg);
893 		return NULL;
894 	}
895 
896 	kref_init(&resv_map->refs);
897 	spin_lock_init(&resv_map->lock);
898 	INIT_LIST_HEAD(&resv_map->regions);
899 
900 	resv_map->adds_in_progress = 0;
901 	/*
902 	 * Initialize these to 0. On shared mappings, 0's here indicate these
903 	 * fields don't do cgroup accounting. On private mappings, these will be
904 	 * re-initialized to the proper values, to indicate that hugetlb cgroup
905 	 * reservations are to be un-charged from here.
906 	 */
907 	resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
908 
909 	INIT_LIST_HEAD(&resv_map->region_cache);
910 	list_add(&rg->link, &resv_map->region_cache);
911 	resv_map->region_cache_count = 1;
912 
913 	return resv_map;
914 }
915 
916 void resv_map_release(struct kref *ref)
917 {
918 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
919 	struct list_head *head = &resv_map->region_cache;
920 	struct file_region *rg, *trg;
921 
922 	/* Clear out any active regions before we release the map. */
923 	region_del(resv_map, 0, LONG_MAX);
924 
925 	/* ... and any entries left in the cache */
926 	list_for_each_entry_safe(rg, trg, head, link) {
927 		list_del(&rg->link);
928 		kfree(rg);
929 	}
930 
931 	VM_BUG_ON(resv_map->adds_in_progress);
932 
933 	kfree(resv_map);
934 }
935 
936 static inline struct resv_map *inode_resv_map(struct inode *inode)
937 {
938 	/*
939 	 * At inode evict time, i_mapping may not point to the original
940 	 * address space within the inode.  This original address space
941 	 * contains the pointer to the resv_map.  So, always use the
942 	 * address space embedded within the inode.
943 	 * The VERY common case is inode->mapping == &inode->i_data but,
944 	 * this may not be true for device special inodes.
945 	 */
946 	return (struct resv_map *)(&inode->i_data)->private_data;
947 }
948 
949 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
950 {
951 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
952 	if (vma->vm_flags & VM_MAYSHARE) {
953 		struct address_space *mapping = vma->vm_file->f_mapping;
954 		struct inode *inode = mapping->host;
955 
956 		return inode_resv_map(inode);
957 
958 	} else {
959 		return (struct resv_map *)(get_vma_private_data(vma) &
960 							~HPAGE_RESV_MASK);
961 	}
962 }
963 
964 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
965 {
966 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
967 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
968 
969 	set_vma_private_data(vma, (get_vma_private_data(vma) &
970 				HPAGE_RESV_MASK) | (unsigned long)map);
971 }
972 
973 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
974 {
975 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
976 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
977 
978 	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
979 }
980 
981 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
982 {
983 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
984 
985 	return (get_vma_private_data(vma) & flag) != 0;
986 }
987 
988 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
989 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
990 {
991 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
992 	if (!(vma->vm_flags & VM_MAYSHARE))
993 		vma->vm_private_data = (void *)0;
994 }
995 
996 /* Returns true if the VMA has associated reserve pages */
997 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
998 {
999 	if (vma->vm_flags & VM_NORESERVE) {
1000 		/*
1001 		 * This address is already reserved by other process(chg == 0),
1002 		 * so, we should decrement reserved count. Without decrementing,
1003 		 * reserve count remains after releasing inode, because this
1004 		 * allocated page will go into page cache and is regarded as
1005 		 * coming from reserved pool in releasing step.  Currently, we
1006 		 * don't have any other solution to deal with this situation
1007 		 * properly, so add work-around here.
1008 		 */
1009 		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1010 			return true;
1011 		else
1012 			return false;
1013 	}
1014 
1015 	/* Shared mappings always use reserves */
1016 	if (vma->vm_flags & VM_MAYSHARE) {
1017 		/*
1018 		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1019 		 * be a region map for all pages.  The only situation where
1020 		 * there is no region map is if a hole was punched via
1021 		 * fallocate.  In this case, there really are no reserves to
1022 		 * use.  This situation is indicated if chg != 0.
1023 		 */
1024 		if (chg)
1025 			return false;
1026 		else
1027 			return true;
1028 	}
1029 
1030 	/*
1031 	 * Only the process that called mmap() has reserves for
1032 	 * private mappings.
1033 	 */
1034 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1035 		/*
1036 		 * Like the shared case above, a hole punch or truncate
1037 		 * could have been performed on the private mapping.
1038 		 * Examine the value of chg to determine if reserves
1039 		 * actually exist or were previously consumed.
1040 		 * Very Subtle - The value of chg comes from a previous
1041 		 * call to vma_needs_reserves().  The reserve map for
1042 		 * private mappings has different (opposite) semantics
1043 		 * than that of shared mappings.  vma_needs_reserves()
1044 		 * has already taken this difference in semantics into
1045 		 * account.  Therefore, the meaning of chg is the same
1046 		 * as in the shared case above.  Code could easily be
1047 		 * combined, but keeping it separate draws attention to
1048 		 * subtle differences.
1049 		 */
1050 		if (chg)
1051 			return false;
1052 		else
1053 			return true;
1054 	}
1055 
1056 	return false;
1057 }
1058 
1059 static void enqueue_huge_page(struct hstate *h, struct page *page)
1060 {
1061 	int nid = page_to_nid(page);
1062 	list_move(&page->lru, &h->hugepage_freelists[nid]);
1063 	h->free_huge_pages++;
1064 	h->free_huge_pages_node[nid]++;
1065 	SetHPageFreed(page);
1066 }
1067 
1068 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1069 {
1070 	struct page *page;
1071 	bool nocma = !!(current->flags & PF_MEMALLOC_NOCMA);
1072 
1073 	list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1074 		if (nocma && is_migrate_cma_page(page))
1075 			continue;
1076 
1077 		if (PageHWPoison(page))
1078 			continue;
1079 
1080 		list_move(&page->lru, &h->hugepage_activelist);
1081 		set_page_refcounted(page);
1082 		ClearHPageFreed(page);
1083 		h->free_huge_pages--;
1084 		h->free_huge_pages_node[nid]--;
1085 		return page;
1086 	}
1087 
1088 	return NULL;
1089 }
1090 
1091 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1092 		nodemask_t *nmask)
1093 {
1094 	unsigned int cpuset_mems_cookie;
1095 	struct zonelist *zonelist;
1096 	struct zone *zone;
1097 	struct zoneref *z;
1098 	int node = NUMA_NO_NODE;
1099 
1100 	zonelist = node_zonelist(nid, gfp_mask);
1101 
1102 retry_cpuset:
1103 	cpuset_mems_cookie = read_mems_allowed_begin();
1104 	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1105 		struct page *page;
1106 
1107 		if (!cpuset_zone_allowed(zone, gfp_mask))
1108 			continue;
1109 		/*
1110 		 * no need to ask again on the same node. Pool is node rather than
1111 		 * zone aware
1112 		 */
1113 		if (zone_to_nid(zone) == node)
1114 			continue;
1115 		node = zone_to_nid(zone);
1116 
1117 		page = dequeue_huge_page_node_exact(h, node);
1118 		if (page)
1119 			return page;
1120 	}
1121 	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1122 		goto retry_cpuset;
1123 
1124 	return NULL;
1125 }
1126 
1127 static struct page *dequeue_huge_page_vma(struct hstate *h,
1128 				struct vm_area_struct *vma,
1129 				unsigned long address, int avoid_reserve,
1130 				long chg)
1131 {
1132 	struct page *page;
1133 	struct mempolicy *mpol;
1134 	gfp_t gfp_mask;
1135 	nodemask_t *nodemask;
1136 	int nid;
1137 
1138 	/*
1139 	 * A child process with MAP_PRIVATE mappings created by their parent
1140 	 * have no page reserves. This check ensures that reservations are
1141 	 * not "stolen". The child may still get SIGKILLed
1142 	 */
1143 	if (!vma_has_reserves(vma, chg) &&
1144 			h->free_huge_pages - h->resv_huge_pages == 0)
1145 		goto err;
1146 
1147 	/* If reserves cannot be used, ensure enough pages are in the pool */
1148 	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
1149 		goto err;
1150 
1151 	gfp_mask = htlb_alloc_mask(h);
1152 	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1153 	page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1154 	if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1155 		SetHPageRestoreReserve(page);
1156 		h->resv_huge_pages--;
1157 	}
1158 
1159 	mpol_cond_put(mpol);
1160 	return page;
1161 
1162 err:
1163 	return NULL;
1164 }
1165 
1166 /*
1167  * common helper functions for hstate_next_node_to_{alloc|free}.
1168  * We may have allocated or freed a huge page based on a different
1169  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1170  * be outside of *nodes_allowed.  Ensure that we use an allowed
1171  * node for alloc or free.
1172  */
1173 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1174 {
1175 	nid = next_node_in(nid, *nodes_allowed);
1176 	VM_BUG_ON(nid >= MAX_NUMNODES);
1177 
1178 	return nid;
1179 }
1180 
1181 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1182 {
1183 	if (!node_isset(nid, *nodes_allowed))
1184 		nid = next_node_allowed(nid, nodes_allowed);
1185 	return nid;
1186 }
1187 
1188 /*
1189  * returns the previously saved node ["this node"] from which to
1190  * allocate a persistent huge page for the pool and advance the
1191  * next node from which to allocate, handling wrap at end of node
1192  * mask.
1193  */
1194 static int hstate_next_node_to_alloc(struct hstate *h,
1195 					nodemask_t *nodes_allowed)
1196 {
1197 	int nid;
1198 
1199 	VM_BUG_ON(!nodes_allowed);
1200 
1201 	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1202 	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1203 
1204 	return nid;
1205 }
1206 
1207 /*
1208  * helper for free_pool_huge_page() - return the previously saved
1209  * node ["this node"] from which to free a huge page.  Advance the
1210  * next node id whether or not we find a free huge page to free so
1211  * that the next attempt to free addresses the next node.
1212  */
1213 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1214 {
1215 	int nid;
1216 
1217 	VM_BUG_ON(!nodes_allowed);
1218 
1219 	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1220 	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1221 
1222 	return nid;
1223 }
1224 
1225 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
1226 	for (nr_nodes = nodes_weight(*mask);				\
1227 		nr_nodes > 0 &&						\
1228 		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
1229 		nr_nodes--)
1230 
1231 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
1232 	for (nr_nodes = nodes_weight(*mask);				\
1233 		nr_nodes > 0 &&						\
1234 		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
1235 		nr_nodes--)
1236 
1237 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1238 static void destroy_compound_gigantic_page(struct page *page,
1239 					unsigned int order)
1240 {
1241 	int i;
1242 	int nr_pages = 1 << order;
1243 	struct page *p = page + 1;
1244 
1245 	atomic_set(compound_mapcount_ptr(page), 0);
1246 	atomic_set(compound_pincount_ptr(page), 0);
1247 
1248 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1249 		clear_compound_head(p);
1250 		set_page_refcounted(p);
1251 	}
1252 
1253 	set_compound_order(page, 0);
1254 	page[1].compound_nr = 0;
1255 	__ClearPageHead(page);
1256 }
1257 
1258 static void free_gigantic_page(struct page *page, unsigned int order)
1259 {
1260 	/*
1261 	 * If the page isn't allocated using the cma allocator,
1262 	 * cma_release() returns false.
1263 	 */
1264 #ifdef CONFIG_CMA
1265 	if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1266 		return;
1267 #endif
1268 
1269 	free_contig_range(page_to_pfn(page), 1 << order);
1270 }
1271 
1272 #ifdef CONFIG_CONTIG_ALLOC
1273 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1274 		int nid, nodemask_t *nodemask)
1275 {
1276 	unsigned long nr_pages = 1UL << huge_page_order(h);
1277 	if (nid == NUMA_NO_NODE)
1278 		nid = numa_mem_id();
1279 
1280 #ifdef CONFIG_CMA
1281 	{
1282 		struct page *page;
1283 		int node;
1284 
1285 		if (hugetlb_cma[nid]) {
1286 			page = cma_alloc(hugetlb_cma[nid], nr_pages,
1287 					huge_page_order(h), true);
1288 			if (page)
1289 				return page;
1290 		}
1291 
1292 		if (!(gfp_mask & __GFP_THISNODE)) {
1293 			for_each_node_mask(node, *nodemask) {
1294 				if (node == nid || !hugetlb_cma[node])
1295 					continue;
1296 
1297 				page = cma_alloc(hugetlb_cma[node], nr_pages,
1298 						huge_page_order(h), true);
1299 				if (page)
1300 					return page;
1301 			}
1302 		}
1303 	}
1304 #endif
1305 
1306 	return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1307 }
1308 
1309 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1310 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1311 #else /* !CONFIG_CONTIG_ALLOC */
1312 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1313 					int nid, nodemask_t *nodemask)
1314 {
1315 	return NULL;
1316 }
1317 #endif /* CONFIG_CONTIG_ALLOC */
1318 
1319 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1320 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1321 					int nid, nodemask_t *nodemask)
1322 {
1323 	return NULL;
1324 }
1325 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1326 static inline void destroy_compound_gigantic_page(struct page *page,
1327 						unsigned int order) { }
1328 #endif
1329 
1330 static void update_and_free_page(struct hstate *h, struct page *page)
1331 {
1332 	int i;
1333 	struct page *subpage = page;
1334 
1335 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1336 		return;
1337 
1338 	h->nr_huge_pages--;
1339 	h->nr_huge_pages_node[page_to_nid(page)]--;
1340 	for (i = 0; i < pages_per_huge_page(h);
1341 	     i++, subpage = mem_map_next(subpage, page, i)) {
1342 		subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1343 				1 << PG_referenced | 1 << PG_dirty |
1344 				1 << PG_active | 1 << PG_private |
1345 				1 << PG_writeback);
1346 	}
1347 	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1348 	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1349 	set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1350 	set_page_refcounted(page);
1351 	if (hstate_is_gigantic(h)) {
1352 		/*
1353 		 * Temporarily drop the hugetlb_lock, because
1354 		 * we might block in free_gigantic_page().
1355 		 */
1356 		spin_unlock(&hugetlb_lock);
1357 		destroy_compound_gigantic_page(page, huge_page_order(h));
1358 		free_gigantic_page(page, huge_page_order(h));
1359 		spin_lock(&hugetlb_lock);
1360 	} else {
1361 		__free_pages(page, huge_page_order(h));
1362 	}
1363 }
1364 
1365 struct hstate *size_to_hstate(unsigned long size)
1366 {
1367 	struct hstate *h;
1368 
1369 	for_each_hstate(h) {
1370 		if (huge_page_size(h) == size)
1371 			return h;
1372 	}
1373 	return NULL;
1374 }
1375 
1376 static void __free_huge_page(struct page *page)
1377 {
1378 	/*
1379 	 * Can't pass hstate in here because it is called from the
1380 	 * compound page destructor.
1381 	 */
1382 	struct hstate *h = page_hstate(page);
1383 	int nid = page_to_nid(page);
1384 	struct hugepage_subpool *spool = hugetlb_page_subpool(page);
1385 	bool restore_reserve;
1386 
1387 	VM_BUG_ON_PAGE(page_count(page), page);
1388 	VM_BUG_ON_PAGE(page_mapcount(page), page);
1389 
1390 	hugetlb_set_page_subpool(page, NULL);
1391 	page->mapping = NULL;
1392 	restore_reserve = HPageRestoreReserve(page);
1393 	ClearHPageRestoreReserve(page);
1394 
1395 	/*
1396 	 * If HPageRestoreReserve was set on page, page allocation consumed a
1397 	 * reservation.  If the page was associated with a subpool, there
1398 	 * would have been a page reserved in the subpool before allocation
1399 	 * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1400 	 * reservation, do not call hugepage_subpool_put_pages() as this will
1401 	 * remove the reserved page from the subpool.
1402 	 */
1403 	if (!restore_reserve) {
1404 		/*
1405 		 * A return code of zero implies that the subpool will be
1406 		 * under its minimum size if the reservation is not restored
1407 		 * after page is free.  Therefore, force restore_reserve
1408 		 * operation.
1409 		 */
1410 		if (hugepage_subpool_put_pages(spool, 1) == 0)
1411 			restore_reserve = true;
1412 	}
1413 
1414 	spin_lock(&hugetlb_lock);
1415 	ClearHPageMigratable(page);
1416 	hugetlb_cgroup_uncharge_page(hstate_index(h),
1417 				     pages_per_huge_page(h), page);
1418 	hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1419 					  pages_per_huge_page(h), page);
1420 	if (restore_reserve)
1421 		h->resv_huge_pages++;
1422 
1423 	if (HPageTemporary(page)) {
1424 		list_del(&page->lru);
1425 		ClearHPageTemporary(page);
1426 		update_and_free_page(h, page);
1427 	} else if (h->surplus_huge_pages_node[nid]) {
1428 		/* remove the page from active list */
1429 		list_del(&page->lru);
1430 		update_and_free_page(h, page);
1431 		h->surplus_huge_pages--;
1432 		h->surplus_huge_pages_node[nid]--;
1433 	} else {
1434 		arch_clear_hugepage_flags(page);
1435 		enqueue_huge_page(h, page);
1436 	}
1437 	spin_unlock(&hugetlb_lock);
1438 }
1439 
1440 /*
1441  * As free_huge_page() can be called from a non-task context, we have
1442  * to defer the actual freeing in a workqueue to prevent potential
1443  * hugetlb_lock deadlock.
1444  *
1445  * free_hpage_workfn() locklessly retrieves the linked list of pages to
1446  * be freed and frees them one-by-one. As the page->mapping pointer is
1447  * going to be cleared in __free_huge_page() anyway, it is reused as the
1448  * llist_node structure of a lockless linked list of huge pages to be freed.
1449  */
1450 static LLIST_HEAD(hpage_freelist);
1451 
1452 static void free_hpage_workfn(struct work_struct *work)
1453 {
1454 	struct llist_node *node;
1455 	struct page *page;
1456 
1457 	node = llist_del_all(&hpage_freelist);
1458 
1459 	while (node) {
1460 		page = container_of((struct address_space **)node,
1461 				     struct page, mapping);
1462 		node = node->next;
1463 		__free_huge_page(page);
1464 	}
1465 }
1466 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1467 
1468 void free_huge_page(struct page *page)
1469 {
1470 	/*
1471 	 * Defer freeing if in non-task context to avoid hugetlb_lock deadlock.
1472 	 */
1473 	if (!in_task()) {
1474 		/*
1475 		 * Only call schedule_work() if hpage_freelist is previously
1476 		 * empty. Otherwise, schedule_work() had been called but the
1477 		 * workfn hasn't retrieved the list yet.
1478 		 */
1479 		if (llist_add((struct llist_node *)&page->mapping,
1480 			      &hpage_freelist))
1481 			schedule_work(&free_hpage_work);
1482 		return;
1483 	}
1484 
1485 	__free_huge_page(page);
1486 }
1487 
1488 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1489 {
1490 	INIT_LIST_HEAD(&page->lru);
1491 	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1492 	hugetlb_set_page_subpool(page, NULL);
1493 	set_hugetlb_cgroup(page, NULL);
1494 	set_hugetlb_cgroup_rsvd(page, NULL);
1495 	spin_lock(&hugetlb_lock);
1496 	h->nr_huge_pages++;
1497 	h->nr_huge_pages_node[nid]++;
1498 	ClearHPageFreed(page);
1499 	spin_unlock(&hugetlb_lock);
1500 }
1501 
1502 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1503 {
1504 	int i;
1505 	int nr_pages = 1 << order;
1506 	struct page *p = page + 1;
1507 
1508 	/* we rely on prep_new_huge_page to set the destructor */
1509 	set_compound_order(page, order);
1510 	__ClearPageReserved(page);
1511 	__SetPageHead(page);
1512 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1513 		/*
1514 		 * For gigantic hugepages allocated through bootmem at
1515 		 * boot, it's safer to be consistent with the not-gigantic
1516 		 * hugepages and clear the PG_reserved bit from all tail pages
1517 		 * too.  Otherwise drivers using get_user_pages() to access tail
1518 		 * pages may get the reference counting wrong if they see
1519 		 * PG_reserved set on a tail page (despite the head page not
1520 		 * having PG_reserved set).  Enforcing this consistency between
1521 		 * head and tail pages allows drivers to optimize away a check
1522 		 * on the head page when they need know if put_page() is needed
1523 		 * after get_user_pages().
1524 		 */
1525 		__ClearPageReserved(p);
1526 		set_page_count(p, 0);
1527 		set_compound_head(p, page);
1528 	}
1529 	atomic_set(compound_mapcount_ptr(page), -1);
1530 	atomic_set(compound_pincount_ptr(page), 0);
1531 }
1532 
1533 /*
1534  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1535  * transparent huge pages.  See the PageTransHuge() documentation for more
1536  * details.
1537  */
1538 int PageHuge(struct page *page)
1539 {
1540 	if (!PageCompound(page))
1541 		return 0;
1542 
1543 	page = compound_head(page);
1544 	return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1545 }
1546 EXPORT_SYMBOL_GPL(PageHuge);
1547 
1548 /*
1549  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1550  * normal or transparent huge pages.
1551  */
1552 int PageHeadHuge(struct page *page_head)
1553 {
1554 	if (!PageHead(page_head))
1555 		return 0;
1556 
1557 	return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1558 }
1559 
1560 /*
1561  * Find and lock address space (mapping) in write mode.
1562  *
1563  * Upon entry, the page is locked which means that page_mapping() is
1564  * stable.  Due to locking order, we can only trylock_write.  If we can
1565  * not get the lock, simply return NULL to caller.
1566  */
1567 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1568 {
1569 	struct address_space *mapping = page_mapping(hpage);
1570 
1571 	if (!mapping)
1572 		return mapping;
1573 
1574 	if (i_mmap_trylock_write(mapping))
1575 		return mapping;
1576 
1577 	return NULL;
1578 }
1579 
1580 pgoff_t __basepage_index(struct page *page)
1581 {
1582 	struct page *page_head = compound_head(page);
1583 	pgoff_t index = page_index(page_head);
1584 	unsigned long compound_idx;
1585 
1586 	if (!PageHuge(page_head))
1587 		return page_index(page);
1588 
1589 	if (compound_order(page_head) >= MAX_ORDER)
1590 		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1591 	else
1592 		compound_idx = page - page_head;
1593 
1594 	return (index << compound_order(page_head)) + compound_idx;
1595 }
1596 
1597 static struct page *alloc_buddy_huge_page(struct hstate *h,
1598 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
1599 		nodemask_t *node_alloc_noretry)
1600 {
1601 	int order = huge_page_order(h);
1602 	struct page *page;
1603 	bool alloc_try_hard = true;
1604 
1605 	/*
1606 	 * By default we always try hard to allocate the page with
1607 	 * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
1608 	 * a loop (to adjust global huge page counts) and previous allocation
1609 	 * failed, do not continue to try hard on the same node.  Use the
1610 	 * node_alloc_noretry bitmap to manage this state information.
1611 	 */
1612 	if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1613 		alloc_try_hard = false;
1614 	gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1615 	if (alloc_try_hard)
1616 		gfp_mask |= __GFP_RETRY_MAYFAIL;
1617 	if (nid == NUMA_NO_NODE)
1618 		nid = numa_mem_id();
1619 	page = __alloc_pages(gfp_mask, order, nid, nmask);
1620 	if (page)
1621 		__count_vm_event(HTLB_BUDDY_PGALLOC);
1622 	else
1623 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1624 
1625 	/*
1626 	 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1627 	 * indicates an overall state change.  Clear bit so that we resume
1628 	 * normal 'try hard' allocations.
1629 	 */
1630 	if (node_alloc_noretry && page && !alloc_try_hard)
1631 		node_clear(nid, *node_alloc_noretry);
1632 
1633 	/*
1634 	 * If we tried hard to get a page but failed, set bit so that
1635 	 * subsequent attempts will not try as hard until there is an
1636 	 * overall state change.
1637 	 */
1638 	if (node_alloc_noretry && !page && alloc_try_hard)
1639 		node_set(nid, *node_alloc_noretry);
1640 
1641 	return page;
1642 }
1643 
1644 /*
1645  * Common helper to allocate a fresh hugetlb page. All specific allocators
1646  * should use this function to get new hugetlb pages
1647  */
1648 static struct page *alloc_fresh_huge_page(struct hstate *h,
1649 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
1650 		nodemask_t *node_alloc_noretry)
1651 {
1652 	struct page *page;
1653 
1654 	if (hstate_is_gigantic(h))
1655 		page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1656 	else
1657 		page = alloc_buddy_huge_page(h, gfp_mask,
1658 				nid, nmask, node_alloc_noretry);
1659 	if (!page)
1660 		return NULL;
1661 
1662 	if (hstate_is_gigantic(h))
1663 		prep_compound_gigantic_page(page, huge_page_order(h));
1664 	prep_new_huge_page(h, page, page_to_nid(page));
1665 
1666 	return page;
1667 }
1668 
1669 /*
1670  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1671  * manner.
1672  */
1673 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1674 				nodemask_t *node_alloc_noretry)
1675 {
1676 	struct page *page;
1677 	int nr_nodes, node;
1678 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1679 
1680 	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1681 		page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1682 						node_alloc_noretry);
1683 		if (page)
1684 			break;
1685 	}
1686 
1687 	if (!page)
1688 		return 0;
1689 
1690 	put_page(page); /* free it into the hugepage allocator */
1691 
1692 	return 1;
1693 }
1694 
1695 /*
1696  * Free huge page from pool from next node to free.
1697  * Attempt to keep persistent huge pages more or less
1698  * balanced over allowed nodes.
1699  * Called with hugetlb_lock locked.
1700  */
1701 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1702 							 bool acct_surplus)
1703 {
1704 	int nr_nodes, node;
1705 	int ret = 0;
1706 
1707 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1708 		/*
1709 		 * If we're returning unused surplus pages, only examine
1710 		 * nodes with surplus pages.
1711 		 */
1712 		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1713 		    !list_empty(&h->hugepage_freelists[node])) {
1714 			struct page *page =
1715 				list_entry(h->hugepage_freelists[node].next,
1716 					  struct page, lru);
1717 			list_del(&page->lru);
1718 			h->free_huge_pages--;
1719 			h->free_huge_pages_node[node]--;
1720 			if (acct_surplus) {
1721 				h->surplus_huge_pages--;
1722 				h->surplus_huge_pages_node[node]--;
1723 			}
1724 			update_and_free_page(h, page);
1725 			ret = 1;
1726 			break;
1727 		}
1728 	}
1729 
1730 	return ret;
1731 }
1732 
1733 /*
1734  * Dissolve a given free hugepage into free buddy pages. This function does
1735  * nothing for in-use hugepages and non-hugepages.
1736  * This function returns values like below:
1737  *
1738  *  -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1739  *          (allocated or reserved.)
1740  *       0: successfully dissolved free hugepages or the page is not a
1741  *          hugepage (considered as already dissolved)
1742  */
1743 int dissolve_free_huge_page(struct page *page)
1744 {
1745 	int rc = -EBUSY;
1746 
1747 retry:
1748 	/* Not to disrupt normal path by vainly holding hugetlb_lock */
1749 	if (!PageHuge(page))
1750 		return 0;
1751 
1752 	spin_lock(&hugetlb_lock);
1753 	if (!PageHuge(page)) {
1754 		rc = 0;
1755 		goto out;
1756 	}
1757 
1758 	if (!page_count(page)) {
1759 		struct page *head = compound_head(page);
1760 		struct hstate *h = page_hstate(head);
1761 		int nid = page_to_nid(head);
1762 		if (h->free_huge_pages - h->resv_huge_pages == 0)
1763 			goto out;
1764 
1765 		/*
1766 		 * We should make sure that the page is already on the free list
1767 		 * when it is dissolved.
1768 		 */
1769 		if (unlikely(!HPageFreed(head))) {
1770 			spin_unlock(&hugetlb_lock);
1771 			cond_resched();
1772 
1773 			/*
1774 			 * Theoretically, we should return -EBUSY when we
1775 			 * encounter this race. In fact, we have a chance
1776 			 * to successfully dissolve the page if we do a
1777 			 * retry. Because the race window is quite small.
1778 			 * If we seize this opportunity, it is an optimization
1779 			 * for increasing the success rate of dissolving page.
1780 			 */
1781 			goto retry;
1782 		}
1783 
1784 		/*
1785 		 * Move PageHWPoison flag from head page to the raw error page,
1786 		 * which makes any subpages rather than the error page reusable.
1787 		 */
1788 		if (PageHWPoison(head) && page != head) {
1789 			SetPageHWPoison(page);
1790 			ClearPageHWPoison(head);
1791 		}
1792 		list_del(&head->lru);
1793 		h->free_huge_pages--;
1794 		h->free_huge_pages_node[nid]--;
1795 		h->max_huge_pages--;
1796 		update_and_free_page(h, head);
1797 		rc = 0;
1798 	}
1799 out:
1800 	spin_unlock(&hugetlb_lock);
1801 	return rc;
1802 }
1803 
1804 /*
1805  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1806  * make specified memory blocks removable from the system.
1807  * Note that this will dissolve a free gigantic hugepage completely, if any
1808  * part of it lies within the given range.
1809  * Also note that if dissolve_free_huge_page() returns with an error, all
1810  * free hugepages that were dissolved before that error are lost.
1811  */
1812 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1813 {
1814 	unsigned long pfn;
1815 	struct page *page;
1816 	int rc = 0;
1817 
1818 	if (!hugepages_supported())
1819 		return rc;
1820 
1821 	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1822 		page = pfn_to_page(pfn);
1823 		rc = dissolve_free_huge_page(page);
1824 		if (rc)
1825 			break;
1826 	}
1827 
1828 	return rc;
1829 }
1830 
1831 /*
1832  * Allocates a fresh surplus page from the page allocator.
1833  */
1834 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1835 		int nid, nodemask_t *nmask)
1836 {
1837 	struct page *page = NULL;
1838 
1839 	if (hstate_is_gigantic(h))
1840 		return NULL;
1841 
1842 	spin_lock(&hugetlb_lock);
1843 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1844 		goto out_unlock;
1845 	spin_unlock(&hugetlb_lock);
1846 
1847 	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1848 	if (!page)
1849 		return NULL;
1850 
1851 	spin_lock(&hugetlb_lock);
1852 	/*
1853 	 * We could have raced with the pool size change.
1854 	 * Double check that and simply deallocate the new page
1855 	 * if we would end up overcommiting the surpluses. Abuse
1856 	 * temporary page to workaround the nasty free_huge_page
1857 	 * codeflow
1858 	 */
1859 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1860 		SetHPageTemporary(page);
1861 		spin_unlock(&hugetlb_lock);
1862 		put_page(page);
1863 		return NULL;
1864 	} else {
1865 		h->surplus_huge_pages++;
1866 		h->surplus_huge_pages_node[page_to_nid(page)]++;
1867 	}
1868 
1869 out_unlock:
1870 	spin_unlock(&hugetlb_lock);
1871 
1872 	return page;
1873 }
1874 
1875 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1876 				     int nid, nodemask_t *nmask)
1877 {
1878 	struct page *page;
1879 
1880 	if (hstate_is_gigantic(h))
1881 		return NULL;
1882 
1883 	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1884 	if (!page)
1885 		return NULL;
1886 
1887 	/*
1888 	 * We do not account these pages as surplus because they are only
1889 	 * temporary and will be released properly on the last reference
1890 	 */
1891 	SetHPageTemporary(page);
1892 
1893 	return page;
1894 }
1895 
1896 /*
1897  * Use the VMA's mpolicy to allocate a huge page from the buddy.
1898  */
1899 static
1900 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1901 		struct vm_area_struct *vma, unsigned long addr)
1902 {
1903 	struct page *page;
1904 	struct mempolicy *mpol;
1905 	gfp_t gfp_mask = htlb_alloc_mask(h);
1906 	int nid;
1907 	nodemask_t *nodemask;
1908 
1909 	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1910 	page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1911 	mpol_cond_put(mpol);
1912 
1913 	return page;
1914 }
1915 
1916 /* page migration callback function */
1917 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1918 		nodemask_t *nmask, gfp_t gfp_mask)
1919 {
1920 	spin_lock(&hugetlb_lock);
1921 	if (h->free_huge_pages - h->resv_huge_pages > 0) {
1922 		struct page *page;
1923 
1924 		page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1925 		if (page) {
1926 			spin_unlock(&hugetlb_lock);
1927 			return page;
1928 		}
1929 	}
1930 	spin_unlock(&hugetlb_lock);
1931 
1932 	return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
1933 }
1934 
1935 /* mempolicy aware migration callback */
1936 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1937 		unsigned long address)
1938 {
1939 	struct mempolicy *mpol;
1940 	nodemask_t *nodemask;
1941 	struct page *page;
1942 	gfp_t gfp_mask;
1943 	int node;
1944 
1945 	gfp_mask = htlb_alloc_mask(h);
1946 	node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1947 	page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
1948 	mpol_cond_put(mpol);
1949 
1950 	return page;
1951 }
1952 
1953 /*
1954  * Increase the hugetlb pool such that it can accommodate a reservation
1955  * of size 'delta'.
1956  */
1957 static int gather_surplus_pages(struct hstate *h, long delta)
1958 	__must_hold(&hugetlb_lock)
1959 {
1960 	struct list_head surplus_list;
1961 	struct page *page, *tmp;
1962 	int ret;
1963 	long i;
1964 	long needed, allocated;
1965 	bool alloc_ok = true;
1966 
1967 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1968 	if (needed <= 0) {
1969 		h->resv_huge_pages += delta;
1970 		return 0;
1971 	}
1972 
1973 	allocated = 0;
1974 	INIT_LIST_HEAD(&surplus_list);
1975 
1976 	ret = -ENOMEM;
1977 retry:
1978 	spin_unlock(&hugetlb_lock);
1979 	for (i = 0; i < needed; i++) {
1980 		page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
1981 				NUMA_NO_NODE, NULL);
1982 		if (!page) {
1983 			alloc_ok = false;
1984 			break;
1985 		}
1986 		list_add(&page->lru, &surplus_list);
1987 		cond_resched();
1988 	}
1989 	allocated += i;
1990 
1991 	/*
1992 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
1993 	 * because either resv_huge_pages or free_huge_pages may have changed.
1994 	 */
1995 	spin_lock(&hugetlb_lock);
1996 	needed = (h->resv_huge_pages + delta) -
1997 			(h->free_huge_pages + allocated);
1998 	if (needed > 0) {
1999 		if (alloc_ok)
2000 			goto retry;
2001 		/*
2002 		 * We were not able to allocate enough pages to
2003 		 * satisfy the entire reservation so we free what
2004 		 * we've allocated so far.
2005 		 */
2006 		goto free;
2007 	}
2008 	/*
2009 	 * The surplus_list now contains _at_least_ the number of extra pages
2010 	 * needed to accommodate the reservation.  Add the appropriate number
2011 	 * of pages to the hugetlb pool and free the extras back to the buddy
2012 	 * allocator.  Commit the entire reservation here to prevent another
2013 	 * process from stealing the pages as they are added to the pool but
2014 	 * before they are reserved.
2015 	 */
2016 	needed += allocated;
2017 	h->resv_huge_pages += delta;
2018 	ret = 0;
2019 
2020 	/* Free the needed pages to the hugetlb pool */
2021 	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2022 		int zeroed;
2023 
2024 		if ((--needed) < 0)
2025 			break;
2026 		/*
2027 		 * This page is now managed by the hugetlb allocator and has
2028 		 * no users -- drop the buddy allocator's reference.
2029 		 */
2030 		zeroed = put_page_testzero(page);
2031 		VM_BUG_ON_PAGE(!zeroed, page);
2032 		enqueue_huge_page(h, page);
2033 	}
2034 free:
2035 	spin_unlock(&hugetlb_lock);
2036 
2037 	/* Free unnecessary surplus pages to the buddy allocator */
2038 	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2039 		put_page(page);
2040 	spin_lock(&hugetlb_lock);
2041 
2042 	return ret;
2043 }
2044 
2045 /*
2046  * This routine has two main purposes:
2047  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2048  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2049  *    to the associated reservation map.
2050  * 2) Free any unused surplus pages that may have been allocated to satisfy
2051  *    the reservation.  As many as unused_resv_pages may be freed.
2052  *
2053  * Called with hugetlb_lock held.  However, the lock could be dropped (and
2054  * reacquired) during calls to cond_resched_lock.  Whenever dropping the lock,
2055  * we must make sure nobody else can claim pages we are in the process of
2056  * freeing.  Do this by ensuring resv_huge_page always is greater than the
2057  * number of huge pages we plan to free when dropping the lock.
2058  */
2059 static void return_unused_surplus_pages(struct hstate *h,
2060 					unsigned long unused_resv_pages)
2061 {
2062 	unsigned long nr_pages;
2063 
2064 	/* Cannot return gigantic pages currently */
2065 	if (hstate_is_gigantic(h))
2066 		goto out;
2067 
2068 	/*
2069 	 * Part (or even all) of the reservation could have been backed
2070 	 * by pre-allocated pages. Only free surplus pages.
2071 	 */
2072 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2073 
2074 	/*
2075 	 * We want to release as many surplus pages as possible, spread
2076 	 * evenly across all nodes with memory. Iterate across these nodes
2077 	 * until we can no longer free unreserved surplus pages. This occurs
2078 	 * when the nodes with surplus pages have no free pages.
2079 	 * free_pool_huge_page() will balance the freed pages across the
2080 	 * on-line nodes with memory and will handle the hstate accounting.
2081 	 *
2082 	 * Note that we decrement resv_huge_pages as we free the pages.  If
2083 	 * we drop the lock, resv_huge_pages will still be sufficiently large
2084 	 * to cover subsequent pages we may free.
2085 	 */
2086 	while (nr_pages--) {
2087 		h->resv_huge_pages--;
2088 		unused_resv_pages--;
2089 		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
2090 			goto out;
2091 		cond_resched_lock(&hugetlb_lock);
2092 	}
2093 
2094 out:
2095 	/* Fully uncommit the reservation */
2096 	h->resv_huge_pages -= unused_resv_pages;
2097 }
2098 
2099 
2100 /*
2101  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2102  * are used by the huge page allocation routines to manage reservations.
2103  *
2104  * vma_needs_reservation is called to determine if the huge page at addr
2105  * within the vma has an associated reservation.  If a reservation is
2106  * needed, the value 1 is returned.  The caller is then responsible for
2107  * managing the global reservation and subpool usage counts.  After
2108  * the huge page has been allocated, vma_commit_reservation is called
2109  * to add the page to the reservation map.  If the page allocation fails,
2110  * the reservation must be ended instead of committed.  vma_end_reservation
2111  * is called in such cases.
2112  *
2113  * In the normal case, vma_commit_reservation returns the same value
2114  * as the preceding vma_needs_reservation call.  The only time this
2115  * is not the case is if a reserve map was changed between calls.  It
2116  * is the responsibility of the caller to notice the difference and
2117  * take appropriate action.
2118  *
2119  * vma_add_reservation is used in error paths where a reservation must
2120  * be restored when a newly allocated huge page must be freed.  It is
2121  * to be called after calling vma_needs_reservation to determine if a
2122  * reservation exists.
2123  */
2124 enum vma_resv_mode {
2125 	VMA_NEEDS_RESV,
2126 	VMA_COMMIT_RESV,
2127 	VMA_END_RESV,
2128 	VMA_ADD_RESV,
2129 };
2130 static long __vma_reservation_common(struct hstate *h,
2131 				struct vm_area_struct *vma, unsigned long addr,
2132 				enum vma_resv_mode mode)
2133 {
2134 	struct resv_map *resv;
2135 	pgoff_t idx;
2136 	long ret;
2137 	long dummy_out_regions_needed;
2138 
2139 	resv = vma_resv_map(vma);
2140 	if (!resv)
2141 		return 1;
2142 
2143 	idx = vma_hugecache_offset(h, vma, addr);
2144 	switch (mode) {
2145 	case VMA_NEEDS_RESV:
2146 		ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2147 		/* We assume that vma_reservation_* routines always operate on
2148 		 * 1 page, and that adding to resv map a 1 page entry can only
2149 		 * ever require 1 region.
2150 		 */
2151 		VM_BUG_ON(dummy_out_regions_needed != 1);
2152 		break;
2153 	case VMA_COMMIT_RESV:
2154 		ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2155 		/* region_add calls of range 1 should never fail. */
2156 		VM_BUG_ON(ret < 0);
2157 		break;
2158 	case VMA_END_RESV:
2159 		region_abort(resv, idx, idx + 1, 1);
2160 		ret = 0;
2161 		break;
2162 	case VMA_ADD_RESV:
2163 		if (vma->vm_flags & VM_MAYSHARE) {
2164 			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2165 			/* region_add calls of range 1 should never fail. */
2166 			VM_BUG_ON(ret < 0);
2167 		} else {
2168 			region_abort(resv, idx, idx + 1, 1);
2169 			ret = region_del(resv, idx, idx + 1);
2170 		}
2171 		break;
2172 	default:
2173 		BUG();
2174 	}
2175 
2176 	if (vma->vm_flags & VM_MAYSHARE)
2177 		return ret;
2178 	else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
2179 		/*
2180 		 * In most cases, reserves always exist for private mappings.
2181 		 * However, a file associated with mapping could have been
2182 		 * hole punched or truncated after reserves were consumed.
2183 		 * As subsequent fault on such a range will not use reserves.
2184 		 * Subtle - The reserve map for private mappings has the
2185 		 * opposite meaning than that of shared mappings.  If NO
2186 		 * entry is in the reserve map, it means a reservation exists.
2187 		 * If an entry exists in the reserve map, it means the
2188 		 * reservation has already been consumed.  As a result, the
2189 		 * return value of this routine is the opposite of the
2190 		 * value returned from reserve map manipulation routines above.
2191 		 */
2192 		if (ret)
2193 			return 0;
2194 		else
2195 			return 1;
2196 	}
2197 	else
2198 		return ret < 0 ? ret : 0;
2199 }
2200 
2201 static long vma_needs_reservation(struct hstate *h,
2202 			struct vm_area_struct *vma, unsigned long addr)
2203 {
2204 	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2205 }
2206 
2207 static long vma_commit_reservation(struct hstate *h,
2208 			struct vm_area_struct *vma, unsigned long addr)
2209 {
2210 	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2211 }
2212 
2213 static void vma_end_reservation(struct hstate *h,
2214 			struct vm_area_struct *vma, unsigned long addr)
2215 {
2216 	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2217 }
2218 
2219 static long vma_add_reservation(struct hstate *h,
2220 			struct vm_area_struct *vma, unsigned long addr)
2221 {
2222 	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2223 }
2224 
2225 /*
2226  * This routine is called to restore a reservation on error paths.  In the
2227  * specific error paths, a huge page was allocated (via alloc_huge_page)
2228  * and is about to be freed.  If a reservation for the page existed,
2229  * alloc_huge_page would have consumed the reservation and set
2230  * HPageRestoreReserve in the newly allocated page.  When the page is freed
2231  * via free_huge_page, the global reservation count will be incremented if
2232  * HPageRestoreReserve is set.  However, free_huge_page can not adjust the
2233  * reserve map.  Adjust the reserve map here to be consistent with global
2234  * reserve count adjustments to be made by free_huge_page.
2235  */
2236 static void restore_reserve_on_error(struct hstate *h,
2237 			struct vm_area_struct *vma, unsigned long address,
2238 			struct page *page)
2239 {
2240 	if (unlikely(HPageRestoreReserve(page))) {
2241 		long rc = vma_needs_reservation(h, vma, address);
2242 
2243 		if (unlikely(rc < 0)) {
2244 			/*
2245 			 * Rare out of memory condition in reserve map
2246 			 * manipulation.  Clear HPageRestoreReserve so that
2247 			 * global reserve count will not be incremented
2248 			 * by free_huge_page.  This will make it appear
2249 			 * as though the reservation for this page was
2250 			 * consumed.  This may prevent the task from
2251 			 * faulting in the page at a later time.  This
2252 			 * is better than inconsistent global huge page
2253 			 * accounting of reserve counts.
2254 			 */
2255 			ClearHPageRestoreReserve(page);
2256 		} else if (rc) {
2257 			rc = vma_add_reservation(h, vma, address);
2258 			if (unlikely(rc < 0))
2259 				/*
2260 				 * See above comment about rare out of
2261 				 * memory condition.
2262 				 */
2263 				ClearHPageRestoreReserve(page);
2264 		} else
2265 			vma_end_reservation(h, vma, address);
2266 	}
2267 }
2268 
2269 struct page *alloc_huge_page(struct vm_area_struct *vma,
2270 				    unsigned long addr, int avoid_reserve)
2271 {
2272 	struct hugepage_subpool *spool = subpool_vma(vma);
2273 	struct hstate *h = hstate_vma(vma);
2274 	struct page *page;
2275 	long map_chg, map_commit;
2276 	long gbl_chg;
2277 	int ret, idx;
2278 	struct hugetlb_cgroup *h_cg;
2279 	bool deferred_reserve;
2280 
2281 	idx = hstate_index(h);
2282 	/*
2283 	 * Examine the region/reserve map to determine if the process
2284 	 * has a reservation for the page to be allocated.  A return
2285 	 * code of zero indicates a reservation exists (no change).
2286 	 */
2287 	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2288 	if (map_chg < 0)
2289 		return ERR_PTR(-ENOMEM);
2290 
2291 	/*
2292 	 * Processes that did not create the mapping will have no
2293 	 * reserves as indicated by the region/reserve map. Check
2294 	 * that the allocation will not exceed the subpool limit.
2295 	 * Allocations for MAP_NORESERVE mappings also need to be
2296 	 * checked against any subpool limit.
2297 	 */
2298 	if (map_chg || avoid_reserve) {
2299 		gbl_chg = hugepage_subpool_get_pages(spool, 1);
2300 		if (gbl_chg < 0) {
2301 			vma_end_reservation(h, vma, addr);
2302 			return ERR_PTR(-ENOSPC);
2303 		}
2304 
2305 		/*
2306 		 * Even though there was no reservation in the region/reserve
2307 		 * map, there could be reservations associated with the
2308 		 * subpool that can be used.  This would be indicated if the
2309 		 * return value of hugepage_subpool_get_pages() is zero.
2310 		 * However, if avoid_reserve is specified we still avoid even
2311 		 * the subpool reservations.
2312 		 */
2313 		if (avoid_reserve)
2314 			gbl_chg = 1;
2315 	}
2316 
2317 	/* If this allocation is not consuming a reservation, charge it now.
2318 	 */
2319 	deferred_reserve = map_chg || avoid_reserve || !vma_resv_map(vma);
2320 	if (deferred_reserve) {
2321 		ret = hugetlb_cgroup_charge_cgroup_rsvd(
2322 			idx, pages_per_huge_page(h), &h_cg);
2323 		if (ret)
2324 			goto out_subpool_put;
2325 	}
2326 
2327 	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2328 	if (ret)
2329 		goto out_uncharge_cgroup_reservation;
2330 
2331 	spin_lock(&hugetlb_lock);
2332 	/*
2333 	 * glb_chg is passed to indicate whether or not a page must be taken
2334 	 * from the global free pool (global change).  gbl_chg == 0 indicates
2335 	 * a reservation exists for the allocation.
2336 	 */
2337 	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2338 	if (!page) {
2339 		spin_unlock(&hugetlb_lock);
2340 		page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2341 		if (!page)
2342 			goto out_uncharge_cgroup;
2343 		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2344 			SetHPageRestoreReserve(page);
2345 			h->resv_huge_pages--;
2346 		}
2347 		spin_lock(&hugetlb_lock);
2348 		list_add(&page->lru, &h->hugepage_activelist);
2349 		/* Fall through */
2350 	}
2351 	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2352 	/* If allocation is not consuming a reservation, also store the
2353 	 * hugetlb_cgroup pointer on the page.
2354 	 */
2355 	if (deferred_reserve) {
2356 		hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2357 						  h_cg, page);
2358 	}
2359 
2360 	spin_unlock(&hugetlb_lock);
2361 
2362 	hugetlb_set_page_subpool(page, spool);
2363 
2364 	map_commit = vma_commit_reservation(h, vma, addr);
2365 	if (unlikely(map_chg > map_commit)) {
2366 		/*
2367 		 * The page was added to the reservation map between
2368 		 * vma_needs_reservation and vma_commit_reservation.
2369 		 * This indicates a race with hugetlb_reserve_pages.
2370 		 * Adjust for the subpool count incremented above AND
2371 		 * in hugetlb_reserve_pages for the same page.  Also,
2372 		 * the reservation count added in hugetlb_reserve_pages
2373 		 * no longer applies.
2374 		 */
2375 		long rsv_adjust;
2376 
2377 		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2378 		hugetlb_acct_memory(h, -rsv_adjust);
2379 		if (deferred_reserve)
2380 			hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
2381 					pages_per_huge_page(h), page);
2382 	}
2383 	return page;
2384 
2385 out_uncharge_cgroup:
2386 	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2387 out_uncharge_cgroup_reservation:
2388 	if (deferred_reserve)
2389 		hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2390 						    h_cg);
2391 out_subpool_put:
2392 	if (map_chg || avoid_reserve)
2393 		hugepage_subpool_put_pages(spool, 1);
2394 	vma_end_reservation(h, vma, addr);
2395 	return ERR_PTR(-ENOSPC);
2396 }
2397 
2398 int alloc_bootmem_huge_page(struct hstate *h)
2399 	__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2400 int __alloc_bootmem_huge_page(struct hstate *h)
2401 {
2402 	struct huge_bootmem_page *m;
2403 	int nr_nodes, node;
2404 
2405 	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2406 		void *addr;
2407 
2408 		addr = memblock_alloc_try_nid_raw(
2409 				huge_page_size(h), huge_page_size(h),
2410 				0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2411 		if (addr) {
2412 			/*
2413 			 * Use the beginning of the huge page to store the
2414 			 * huge_bootmem_page struct (until gather_bootmem
2415 			 * puts them into the mem_map).
2416 			 */
2417 			m = addr;
2418 			goto found;
2419 		}
2420 	}
2421 	return 0;
2422 
2423 found:
2424 	BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2425 	/* Put them into a private list first because mem_map is not up yet */
2426 	INIT_LIST_HEAD(&m->list);
2427 	list_add(&m->list, &huge_boot_pages);
2428 	m->hstate = h;
2429 	return 1;
2430 }
2431 
2432 static void __init prep_compound_huge_page(struct page *page,
2433 		unsigned int order)
2434 {
2435 	if (unlikely(order > (MAX_ORDER - 1)))
2436 		prep_compound_gigantic_page(page, order);
2437 	else
2438 		prep_compound_page(page, order);
2439 }
2440 
2441 /* Put bootmem huge pages into the standard lists after mem_map is up */
2442 static void __init gather_bootmem_prealloc(void)
2443 {
2444 	struct huge_bootmem_page *m;
2445 
2446 	list_for_each_entry(m, &huge_boot_pages, list) {
2447 		struct page *page = virt_to_page(m);
2448 		struct hstate *h = m->hstate;
2449 
2450 		WARN_ON(page_count(page) != 1);
2451 		prep_compound_huge_page(page, huge_page_order(h));
2452 		WARN_ON(PageReserved(page));
2453 		prep_new_huge_page(h, page, page_to_nid(page));
2454 		put_page(page); /* free it into the hugepage allocator */
2455 
2456 		/*
2457 		 * If we had gigantic hugepages allocated at boot time, we need
2458 		 * to restore the 'stolen' pages to totalram_pages in order to
2459 		 * fix confusing memory reports from free(1) and another
2460 		 * side-effects, like CommitLimit going negative.
2461 		 */
2462 		if (hstate_is_gigantic(h))
2463 			adjust_managed_page_count(page, pages_per_huge_page(h));
2464 		cond_resched();
2465 	}
2466 }
2467 
2468 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2469 {
2470 	unsigned long i;
2471 	nodemask_t *node_alloc_noretry;
2472 
2473 	if (!hstate_is_gigantic(h)) {
2474 		/*
2475 		 * Bit mask controlling how hard we retry per-node allocations.
2476 		 * Ignore errors as lower level routines can deal with
2477 		 * node_alloc_noretry == NULL.  If this kmalloc fails at boot
2478 		 * time, we are likely in bigger trouble.
2479 		 */
2480 		node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2481 						GFP_KERNEL);
2482 	} else {
2483 		/* allocations done at boot time */
2484 		node_alloc_noretry = NULL;
2485 	}
2486 
2487 	/* bit mask controlling how hard we retry per-node allocations */
2488 	if (node_alloc_noretry)
2489 		nodes_clear(*node_alloc_noretry);
2490 
2491 	for (i = 0; i < h->max_huge_pages; ++i) {
2492 		if (hstate_is_gigantic(h)) {
2493 			if (hugetlb_cma_size) {
2494 				pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
2495 				goto free;
2496 			}
2497 			if (!alloc_bootmem_huge_page(h))
2498 				break;
2499 		} else if (!alloc_pool_huge_page(h,
2500 					 &node_states[N_MEMORY],
2501 					 node_alloc_noretry))
2502 			break;
2503 		cond_resched();
2504 	}
2505 	if (i < h->max_huge_pages) {
2506 		char buf[32];
2507 
2508 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2509 		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
2510 			h->max_huge_pages, buf, i);
2511 		h->max_huge_pages = i;
2512 	}
2513 free:
2514 	kfree(node_alloc_noretry);
2515 }
2516 
2517 static void __init hugetlb_init_hstates(void)
2518 {
2519 	struct hstate *h;
2520 
2521 	for_each_hstate(h) {
2522 		if (minimum_order > huge_page_order(h))
2523 			minimum_order = huge_page_order(h);
2524 
2525 		/* oversize hugepages were init'ed in early boot */
2526 		if (!hstate_is_gigantic(h))
2527 			hugetlb_hstate_alloc_pages(h);
2528 	}
2529 	VM_BUG_ON(minimum_order == UINT_MAX);
2530 }
2531 
2532 static void __init report_hugepages(void)
2533 {
2534 	struct hstate *h;
2535 
2536 	for_each_hstate(h) {
2537 		char buf[32];
2538 
2539 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2540 		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2541 			buf, h->free_huge_pages);
2542 	}
2543 }
2544 
2545 #ifdef CONFIG_HIGHMEM
2546 static void try_to_free_low(struct hstate *h, unsigned long count,
2547 						nodemask_t *nodes_allowed)
2548 {
2549 	int i;
2550 
2551 	if (hstate_is_gigantic(h))
2552 		return;
2553 
2554 	for_each_node_mask(i, *nodes_allowed) {
2555 		struct page *page, *next;
2556 		struct list_head *freel = &h->hugepage_freelists[i];
2557 		list_for_each_entry_safe(page, next, freel, lru) {
2558 			if (count >= h->nr_huge_pages)
2559 				return;
2560 			if (PageHighMem(page))
2561 				continue;
2562 			list_del(&page->lru);
2563 			update_and_free_page(h, page);
2564 			h->free_huge_pages--;
2565 			h->free_huge_pages_node[page_to_nid(page)]--;
2566 		}
2567 	}
2568 }
2569 #else
2570 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2571 						nodemask_t *nodes_allowed)
2572 {
2573 }
2574 #endif
2575 
2576 /*
2577  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2578  * balanced by operating on them in a round-robin fashion.
2579  * Returns 1 if an adjustment was made.
2580  */
2581 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2582 				int delta)
2583 {
2584 	int nr_nodes, node;
2585 
2586 	VM_BUG_ON(delta != -1 && delta != 1);
2587 
2588 	if (delta < 0) {
2589 		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2590 			if (h->surplus_huge_pages_node[node])
2591 				goto found;
2592 		}
2593 	} else {
2594 		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2595 			if (h->surplus_huge_pages_node[node] <
2596 					h->nr_huge_pages_node[node])
2597 				goto found;
2598 		}
2599 	}
2600 	return 0;
2601 
2602 found:
2603 	h->surplus_huge_pages += delta;
2604 	h->surplus_huge_pages_node[node] += delta;
2605 	return 1;
2606 }
2607 
2608 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2609 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
2610 			      nodemask_t *nodes_allowed)
2611 {
2612 	unsigned long min_count, ret;
2613 	NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
2614 
2615 	/*
2616 	 * Bit mask controlling how hard we retry per-node allocations.
2617 	 * If we can not allocate the bit mask, do not attempt to allocate
2618 	 * the requested huge pages.
2619 	 */
2620 	if (node_alloc_noretry)
2621 		nodes_clear(*node_alloc_noretry);
2622 	else
2623 		return -ENOMEM;
2624 
2625 	spin_lock(&hugetlb_lock);
2626 
2627 	/*
2628 	 * Check for a node specific request.
2629 	 * Changing node specific huge page count may require a corresponding
2630 	 * change to the global count.  In any case, the passed node mask
2631 	 * (nodes_allowed) will restrict alloc/free to the specified node.
2632 	 */
2633 	if (nid != NUMA_NO_NODE) {
2634 		unsigned long old_count = count;
2635 
2636 		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2637 		/*
2638 		 * User may have specified a large count value which caused the
2639 		 * above calculation to overflow.  In this case, they wanted
2640 		 * to allocate as many huge pages as possible.  Set count to
2641 		 * largest possible value to align with their intention.
2642 		 */
2643 		if (count < old_count)
2644 			count = ULONG_MAX;
2645 	}
2646 
2647 	/*
2648 	 * Gigantic pages runtime allocation depend on the capability for large
2649 	 * page range allocation.
2650 	 * If the system does not provide this feature, return an error when
2651 	 * the user tries to allocate gigantic pages but let the user free the
2652 	 * boottime allocated gigantic pages.
2653 	 */
2654 	if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2655 		if (count > persistent_huge_pages(h)) {
2656 			spin_unlock(&hugetlb_lock);
2657 			NODEMASK_FREE(node_alloc_noretry);
2658 			return -EINVAL;
2659 		}
2660 		/* Fall through to decrease pool */
2661 	}
2662 
2663 	/*
2664 	 * Increase the pool size
2665 	 * First take pages out of surplus state.  Then make up the
2666 	 * remaining difference by allocating fresh huge pages.
2667 	 *
2668 	 * We might race with alloc_surplus_huge_page() here and be unable
2669 	 * to convert a surplus huge page to a normal huge page. That is
2670 	 * not critical, though, it just means the overall size of the
2671 	 * pool might be one hugepage larger than it needs to be, but
2672 	 * within all the constraints specified by the sysctls.
2673 	 */
2674 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2675 		if (!adjust_pool_surplus(h, nodes_allowed, -1))
2676 			break;
2677 	}
2678 
2679 	while (count > persistent_huge_pages(h)) {
2680 		/*
2681 		 * If this allocation races such that we no longer need the
2682 		 * page, free_huge_page will handle it by freeing the page
2683 		 * and reducing the surplus.
2684 		 */
2685 		spin_unlock(&hugetlb_lock);
2686 
2687 		/* yield cpu to avoid soft lockup */
2688 		cond_resched();
2689 
2690 		ret = alloc_pool_huge_page(h, nodes_allowed,
2691 						node_alloc_noretry);
2692 		spin_lock(&hugetlb_lock);
2693 		if (!ret)
2694 			goto out;
2695 
2696 		/* Bail for signals. Probably ctrl-c from user */
2697 		if (signal_pending(current))
2698 			goto out;
2699 	}
2700 
2701 	/*
2702 	 * Decrease the pool size
2703 	 * First return free pages to the buddy allocator (being careful
2704 	 * to keep enough around to satisfy reservations).  Then place
2705 	 * pages into surplus state as needed so the pool will shrink
2706 	 * to the desired size as pages become free.
2707 	 *
2708 	 * By placing pages into the surplus state independent of the
2709 	 * overcommit value, we are allowing the surplus pool size to
2710 	 * exceed overcommit. There are few sane options here. Since
2711 	 * alloc_surplus_huge_page() is checking the global counter,
2712 	 * though, we'll note that we're not allowed to exceed surplus
2713 	 * and won't grow the pool anywhere else. Not until one of the
2714 	 * sysctls are changed, or the surplus pages go out of use.
2715 	 */
2716 	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2717 	min_count = max(count, min_count);
2718 	try_to_free_low(h, min_count, nodes_allowed);
2719 	while (min_count < persistent_huge_pages(h)) {
2720 		if (!free_pool_huge_page(h, nodes_allowed, 0))
2721 			break;
2722 		cond_resched_lock(&hugetlb_lock);
2723 	}
2724 	while (count < persistent_huge_pages(h)) {
2725 		if (!adjust_pool_surplus(h, nodes_allowed, 1))
2726 			break;
2727 	}
2728 out:
2729 	h->max_huge_pages = persistent_huge_pages(h);
2730 	spin_unlock(&hugetlb_lock);
2731 
2732 	NODEMASK_FREE(node_alloc_noretry);
2733 
2734 	return 0;
2735 }
2736 
2737 #define HSTATE_ATTR_RO(_name) \
2738 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2739 
2740 #define HSTATE_ATTR(_name) \
2741 	static struct kobj_attribute _name##_attr = \
2742 		__ATTR(_name, 0644, _name##_show, _name##_store)
2743 
2744 static struct kobject *hugepages_kobj;
2745 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2746 
2747 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2748 
2749 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2750 {
2751 	int i;
2752 
2753 	for (i = 0; i < HUGE_MAX_HSTATE; i++)
2754 		if (hstate_kobjs[i] == kobj) {
2755 			if (nidp)
2756 				*nidp = NUMA_NO_NODE;
2757 			return &hstates[i];
2758 		}
2759 
2760 	return kobj_to_node_hstate(kobj, nidp);
2761 }
2762 
2763 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2764 					struct kobj_attribute *attr, char *buf)
2765 {
2766 	struct hstate *h;
2767 	unsigned long nr_huge_pages;
2768 	int nid;
2769 
2770 	h = kobj_to_hstate(kobj, &nid);
2771 	if (nid == NUMA_NO_NODE)
2772 		nr_huge_pages = h->nr_huge_pages;
2773 	else
2774 		nr_huge_pages = h->nr_huge_pages_node[nid];
2775 
2776 	return sysfs_emit(buf, "%lu\n", nr_huge_pages);
2777 }
2778 
2779 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2780 					   struct hstate *h, int nid,
2781 					   unsigned long count, size_t len)
2782 {
2783 	int err;
2784 	nodemask_t nodes_allowed, *n_mask;
2785 
2786 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2787 		return -EINVAL;
2788 
2789 	if (nid == NUMA_NO_NODE) {
2790 		/*
2791 		 * global hstate attribute
2792 		 */
2793 		if (!(obey_mempolicy &&
2794 				init_nodemask_of_mempolicy(&nodes_allowed)))
2795 			n_mask = &node_states[N_MEMORY];
2796 		else
2797 			n_mask = &nodes_allowed;
2798 	} else {
2799 		/*
2800 		 * Node specific request.  count adjustment happens in
2801 		 * set_max_huge_pages() after acquiring hugetlb_lock.
2802 		 */
2803 		init_nodemask_of_node(&nodes_allowed, nid);
2804 		n_mask = &nodes_allowed;
2805 	}
2806 
2807 	err = set_max_huge_pages(h, count, nid, n_mask);
2808 
2809 	return err ? err : len;
2810 }
2811 
2812 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2813 					 struct kobject *kobj, const char *buf,
2814 					 size_t len)
2815 {
2816 	struct hstate *h;
2817 	unsigned long count;
2818 	int nid;
2819 	int err;
2820 
2821 	err = kstrtoul(buf, 10, &count);
2822 	if (err)
2823 		return err;
2824 
2825 	h = kobj_to_hstate(kobj, &nid);
2826 	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2827 }
2828 
2829 static ssize_t nr_hugepages_show(struct kobject *kobj,
2830 				       struct kobj_attribute *attr, char *buf)
2831 {
2832 	return nr_hugepages_show_common(kobj, attr, buf);
2833 }
2834 
2835 static ssize_t nr_hugepages_store(struct kobject *kobj,
2836 	       struct kobj_attribute *attr, const char *buf, size_t len)
2837 {
2838 	return nr_hugepages_store_common(false, kobj, buf, len);
2839 }
2840 HSTATE_ATTR(nr_hugepages);
2841 
2842 #ifdef CONFIG_NUMA
2843 
2844 /*
2845  * hstate attribute for optionally mempolicy-based constraint on persistent
2846  * huge page alloc/free.
2847  */
2848 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2849 					   struct kobj_attribute *attr,
2850 					   char *buf)
2851 {
2852 	return nr_hugepages_show_common(kobj, attr, buf);
2853 }
2854 
2855 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2856 	       struct kobj_attribute *attr, const char *buf, size_t len)
2857 {
2858 	return nr_hugepages_store_common(true, kobj, buf, len);
2859 }
2860 HSTATE_ATTR(nr_hugepages_mempolicy);
2861 #endif
2862 
2863 
2864 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2865 					struct kobj_attribute *attr, char *buf)
2866 {
2867 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2868 	return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
2869 }
2870 
2871 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2872 		struct kobj_attribute *attr, const char *buf, size_t count)
2873 {
2874 	int err;
2875 	unsigned long input;
2876 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2877 
2878 	if (hstate_is_gigantic(h))
2879 		return -EINVAL;
2880 
2881 	err = kstrtoul(buf, 10, &input);
2882 	if (err)
2883 		return err;
2884 
2885 	spin_lock(&hugetlb_lock);
2886 	h->nr_overcommit_huge_pages = input;
2887 	spin_unlock(&hugetlb_lock);
2888 
2889 	return count;
2890 }
2891 HSTATE_ATTR(nr_overcommit_hugepages);
2892 
2893 static ssize_t free_hugepages_show(struct kobject *kobj,
2894 					struct kobj_attribute *attr, char *buf)
2895 {
2896 	struct hstate *h;
2897 	unsigned long free_huge_pages;
2898 	int nid;
2899 
2900 	h = kobj_to_hstate(kobj, &nid);
2901 	if (nid == NUMA_NO_NODE)
2902 		free_huge_pages = h->free_huge_pages;
2903 	else
2904 		free_huge_pages = h->free_huge_pages_node[nid];
2905 
2906 	return sysfs_emit(buf, "%lu\n", free_huge_pages);
2907 }
2908 HSTATE_ATTR_RO(free_hugepages);
2909 
2910 static ssize_t resv_hugepages_show(struct kobject *kobj,
2911 					struct kobj_attribute *attr, char *buf)
2912 {
2913 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2914 	return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
2915 }
2916 HSTATE_ATTR_RO(resv_hugepages);
2917 
2918 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2919 					struct kobj_attribute *attr, char *buf)
2920 {
2921 	struct hstate *h;
2922 	unsigned long surplus_huge_pages;
2923 	int nid;
2924 
2925 	h = kobj_to_hstate(kobj, &nid);
2926 	if (nid == NUMA_NO_NODE)
2927 		surplus_huge_pages = h->surplus_huge_pages;
2928 	else
2929 		surplus_huge_pages = h->surplus_huge_pages_node[nid];
2930 
2931 	return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
2932 }
2933 HSTATE_ATTR_RO(surplus_hugepages);
2934 
2935 static struct attribute *hstate_attrs[] = {
2936 	&nr_hugepages_attr.attr,
2937 	&nr_overcommit_hugepages_attr.attr,
2938 	&free_hugepages_attr.attr,
2939 	&resv_hugepages_attr.attr,
2940 	&surplus_hugepages_attr.attr,
2941 #ifdef CONFIG_NUMA
2942 	&nr_hugepages_mempolicy_attr.attr,
2943 #endif
2944 	NULL,
2945 };
2946 
2947 static const struct attribute_group hstate_attr_group = {
2948 	.attrs = hstate_attrs,
2949 };
2950 
2951 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2952 				    struct kobject **hstate_kobjs,
2953 				    const struct attribute_group *hstate_attr_group)
2954 {
2955 	int retval;
2956 	int hi = hstate_index(h);
2957 
2958 	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2959 	if (!hstate_kobjs[hi])
2960 		return -ENOMEM;
2961 
2962 	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2963 	if (retval) {
2964 		kobject_put(hstate_kobjs[hi]);
2965 		hstate_kobjs[hi] = NULL;
2966 	}
2967 
2968 	return retval;
2969 }
2970 
2971 static void __init hugetlb_sysfs_init(void)
2972 {
2973 	struct hstate *h;
2974 	int err;
2975 
2976 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2977 	if (!hugepages_kobj)
2978 		return;
2979 
2980 	for_each_hstate(h) {
2981 		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2982 					 hstate_kobjs, &hstate_attr_group);
2983 		if (err)
2984 			pr_err("HugeTLB: Unable to add hstate %s", h->name);
2985 	}
2986 }
2987 
2988 #ifdef CONFIG_NUMA
2989 
2990 /*
2991  * node_hstate/s - associate per node hstate attributes, via their kobjects,
2992  * with node devices in node_devices[] using a parallel array.  The array
2993  * index of a node device or _hstate == node id.
2994  * This is here to avoid any static dependency of the node device driver, in
2995  * the base kernel, on the hugetlb module.
2996  */
2997 struct node_hstate {
2998 	struct kobject		*hugepages_kobj;
2999 	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
3000 };
3001 static struct node_hstate node_hstates[MAX_NUMNODES];
3002 
3003 /*
3004  * A subset of global hstate attributes for node devices
3005  */
3006 static struct attribute *per_node_hstate_attrs[] = {
3007 	&nr_hugepages_attr.attr,
3008 	&free_hugepages_attr.attr,
3009 	&surplus_hugepages_attr.attr,
3010 	NULL,
3011 };
3012 
3013 static const struct attribute_group per_node_hstate_attr_group = {
3014 	.attrs = per_node_hstate_attrs,
3015 };
3016 
3017 /*
3018  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3019  * Returns node id via non-NULL nidp.
3020  */
3021 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3022 {
3023 	int nid;
3024 
3025 	for (nid = 0; nid < nr_node_ids; nid++) {
3026 		struct node_hstate *nhs = &node_hstates[nid];
3027 		int i;
3028 		for (i = 0; i < HUGE_MAX_HSTATE; i++)
3029 			if (nhs->hstate_kobjs[i] == kobj) {
3030 				if (nidp)
3031 					*nidp = nid;
3032 				return &hstates[i];
3033 			}
3034 	}
3035 
3036 	BUG();
3037 	return NULL;
3038 }
3039 
3040 /*
3041  * Unregister hstate attributes from a single node device.
3042  * No-op if no hstate attributes attached.
3043  */
3044 static void hugetlb_unregister_node(struct node *node)
3045 {
3046 	struct hstate *h;
3047 	struct node_hstate *nhs = &node_hstates[node->dev.id];
3048 
3049 	if (!nhs->hugepages_kobj)
3050 		return;		/* no hstate attributes */
3051 
3052 	for_each_hstate(h) {
3053 		int idx = hstate_index(h);
3054 		if (nhs->hstate_kobjs[idx]) {
3055 			kobject_put(nhs->hstate_kobjs[idx]);
3056 			nhs->hstate_kobjs[idx] = NULL;
3057 		}
3058 	}
3059 
3060 	kobject_put(nhs->hugepages_kobj);
3061 	nhs->hugepages_kobj = NULL;
3062 }
3063 
3064 
3065 /*
3066  * Register hstate attributes for a single node device.
3067  * No-op if attributes already registered.
3068  */
3069 static void hugetlb_register_node(struct node *node)
3070 {
3071 	struct hstate *h;
3072 	struct node_hstate *nhs = &node_hstates[node->dev.id];
3073 	int err;
3074 
3075 	if (nhs->hugepages_kobj)
3076 		return;		/* already allocated */
3077 
3078 	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3079 							&node->dev.kobj);
3080 	if (!nhs->hugepages_kobj)
3081 		return;
3082 
3083 	for_each_hstate(h) {
3084 		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3085 						nhs->hstate_kobjs,
3086 						&per_node_hstate_attr_group);
3087 		if (err) {
3088 			pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3089 				h->name, node->dev.id);
3090 			hugetlb_unregister_node(node);
3091 			break;
3092 		}
3093 	}
3094 }
3095 
3096 /*
3097  * hugetlb init time:  register hstate attributes for all registered node
3098  * devices of nodes that have memory.  All on-line nodes should have
3099  * registered their associated device by this time.
3100  */
3101 static void __init hugetlb_register_all_nodes(void)
3102 {
3103 	int nid;
3104 
3105 	for_each_node_state(nid, N_MEMORY) {
3106 		struct node *node = node_devices[nid];
3107 		if (node->dev.id == nid)
3108 			hugetlb_register_node(node);
3109 	}
3110 
3111 	/*
3112 	 * Let the node device driver know we're here so it can
3113 	 * [un]register hstate attributes on node hotplug.
3114 	 */
3115 	register_hugetlbfs_with_node(hugetlb_register_node,
3116 				     hugetlb_unregister_node);
3117 }
3118 #else	/* !CONFIG_NUMA */
3119 
3120 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3121 {
3122 	BUG();
3123 	if (nidp)
3124 		*nidp = -1;
3125 	return NULL;
3126 }
3127 
3128 static void hugetlb_register_all_nodes(void) { }
3129 
3130 #endif
3131 
3132 static int __init hugetlb_init(void)
3133 {
3134 	int i;
3135 
3136 	BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
3137 			__NR_HPAGEFLAGS);
3138 
3139 	if (!hugepages_supported()) {
3140 		if (hugetlb_max_hstate || default_hstate_max_huge_pages)
3141 			pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
3142 		return 0;
3143 	}
3144 
3145 	/*
3146 	 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
3147 	 * architectures depend on setup being done here.
3148 	 */
3149 	hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
3150 	if (!parsed_default_hugepagesz) {
3151 		/*
3152 		 * If we did not parse a default huge page size, set
3153 		 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
3154 		 * number of huge pages for this default size was implicitly
3155 		 * specified, set that here as well.
3156 		 * Note that the implicit setting will overwrite an explicit
3157 		 * setting.  A warning will be printed in this case.
3158 		 */
3159 		default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
3160 		if (default_hstate_max_huge_pages) {
3161 			if (default_hstate.max_huge_pages) {
3162 				char buf[32];
3163 
3164 				string_get_size(huge_page_size(&default_hstate),
3165 					1, STRING_UNITS_2, buf, 32);
3166 				pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
3167 					default_hstate.max_huge_pages, buf);
3168 				pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
3169 					default_hstate_max_huge_pages);
3170 			}
3171 			default_hstate.max_huge_pages =
3172 				default_hstate_max_huge_pages;
3173 		}
3174 	}
3175 
3176 	hugetlb_cma_check();
3177 	hugetlb_init_hstates();
3178 	gather_bootmem_prealloc();
3179 	report_hugepages();
3180 
3181 	hugetlb_sysfs_init();
3182 	hugetlb_register_all_nodes();
3183 	hugetlb_cgroup_file_init();
3184 
3185 #ifdef CONFIG_SMP
3186 	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
3187 #else
3188 	num_fault_mutexes = 1;
3189 #endif
3190 	hugetlb_fault_mutex_table =
3191 		kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
3192 			      GFP_KERNEL);
3193 	BUG_ON(!hugetlb_fault_mutex_table);
3194 
3195 	for (i = 0; i < num_fault_mutexes; i++)
3196 		mutex_init(&hugetlb_fault_mutex_table[i]);
3197 	return 0;
3198 }
3199 subsys_initcall(hugetlb_init);
3200 
3201 /* Overwritten by architectures with more huge page sizes */
3202 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
3203 {
3204 	return size == HPAGE_SIZE;
3205 }
3206 
3207 void __init hugetlb_add_hstate(unsigned int order)
3208 {
3209 	struct hstate *h;
3210 	unsigned long i;
3211 
3212 	if (size_to_hstate(PAGE_SIZE << order)) {
3213 		return;
3214 	}
3215 	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
3216 	BUG_ON(order == 0);
3217 	h = &hstates[hugetlb_max_hstate++];
3218 	h->order = order;
3219 	h->mask = ~(huge_page_size(h) - 1);
3220 	for (i = 0; i < MAX_NUMNODES; ++i)
3221 		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
3222 	INIT_LIST_HEAD(&h->hugepage_activelist);
3223 	h->next_nid_to_alloc = first_memory_node;
3224 	h->next_nid_to_free = first_memory_node;
3225 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
3226 					huge_page_size(h)/1024);
3227 
3228 	parsed_hstate = h;
3229 }
3230 
3231 /*
3232  * hugepages command line processing
3233  * hugepages normally follows a valid hugepagsz or default_hugepagsz
3234  * specification.  If not, ignore the hugepages value.  hugepages can also
3235  * be the first huge page command line  option in which case it implicitly
3236  * specifies the number of huge pages for the default size.
3237  */
3238 static int __init hugepages_setup(char *s)
3239 {
3240 	unsigned long *mhp;
3241 	static unsigned long *last_mhp;
3242 
3243 	if (!parsed_valid_hugepagesz) {
3244 		pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
3245 		parsed_valid_hugepagesz = true;
3246 		return 0;
3247 	}
3248 
3249 	/*
3250 	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
3251 	 * yet, so this hugepages= parameter goes to the "default hstate".
3252 	 * Otherwise, it goes with the previously parsed hugepagesz or
3253 	 * default_hugepagesz.
3254 	 */
3255 	else if (!hugetlb_max_hstate)
3256 		mhp = &default_hstate_max_huge_pages;
3257 	else
3258 		mhp = &parsed_hstate->max_huge_pages;
3259 
3260 	if (mhp == last_mhp) {
3261 		pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
3262 		return 0;
3263 	}
3264 
3265 	if (sscanf(s, "%lu", mhp) <= 0)
3266 		*mhp = 0;
3267 
3268 	/*
3269 	 * Global state is always initialized later in hugetlb_init.
3270 	 * But we need to allocate >= MAX_ORDER hstates here early to still
3271 	 * use the bootmem allocator.
3272 	 */
3273 	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
3274 		hugetlb_hstate_alloc_pages(parsed_hstate);
3275 
3276 	last_mhp = mhp;
3277 
3278 	return 1;
3279 }
3280 __setup("hugepages=", hugepages_setup);
3281 
3282 /*
3283  * hugepagesz command line processing
3284  * A specific huge page size can only be specified once with hugepagesz.
3285  * hugepagesz is followed by hugepages on the command line.  The global
3286  * variable 'parsed_valid_hugepagesz' is used to determine if prior
3287  * hugepagesz argument was valid.
3288  */
3289 static int __init hugepagesz_setup(char *s)
3290 {
3291 	unsigned long size;
3292 	struct hstate *h;
3293 
3294 	parsed_valid_hugepagesz = false;
3295 	size = (unsigned long)memparse(s, NULL);
3296 
3297 	if (!arch_hugetlb_valid_size(size)) {
3298 		pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
3299 		return 0;
3300 	}
3301 
3302 	h = size_to_hstate(size);
3303 	if (h) {
3304 		/*
3305 		 * hstate for this size already exists.  This is normally
3306 		 * an error, but is allowed if the existing hstate is the
3307 		 * default hstate.  More specifically, it is only allowed if
3308 		 * the number of huge pages for the default hstate was not
3309 		 * previously specified.
3310 		 */
3311 		if (!parsed_default_hugepagesz ||  h != &default_hstate ||
3312 		    default_hstate.max_huge_pages) {
3313 			pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
3314 			return 0;
3315 		}
3316 
3317 		/*
3318 		 * No need to call hugetlb_add_hstate() as hstate already
3319 		 * exists.  But, do set parsed_hstate so that a following
3320 		 * hugepages= parameter will be applied to this hstate.
3321 		 */
3322 		parsed_hstate = h;
3323 		parsed_valid_hugepagesz = true;
3324 		return 1;
3325 	}
3326 
3327 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3328 	parsed_valid_hugepagesz = true;
3329 	return 1;
3330 }
3331 __setup("hugepagesz=", hugepagesz_setup);
3332 
3333 /*
3334  * default_hugepagesz command line input
3335  * Only one instance of default_hugepagesz allowed on command line.
3336  */
3337 static int __init default_hugepagesz_setup(char *s)
3338 {
3339 	unsigned long size;
3340 
3341 	parsed_valid_hugepagesz = false;
3342 	if (parsed_default_hugepagesz) {
3343 		pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
3344 		return 0;
3345 	}
3346 
3347 	size = (unsigned long)memparse(s, NULL);
3348 
3349 	if (!arch_hugetlb_valid_size(size)) {
3350 		pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
3351 		return 0;
3352 	}
3353 
3354 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3355 	parsed_valid_hugepagesz = true;
3356 	parsed_default_hugepagesz = true;
3357 	default_hstate_idx = hstate_index(size_to_hstate(size));
3358 
3359 	/*
3360 	 * The number of default huge pages (for this size) could have been
3361 	 * specified as the first hugetlb parameter: hugepages=X.  If so,
3362 	 * then default_hstate_max_huge_pages is set.  If the default huge
3363 	 * page size is gigantic (>= MAX_ORDER), then the pages must be
3364 	 * allocated here from bootmem allocator.
3365 	 */
3366 	if (default_hstate_max_huge_pages) {
3367 		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
3368 		if (hstate_is_gigantic(&default_hstate))
3369 			hugetlb_hstate_alloc_pages(&default_hstate);
3370 		default_hstate_max_huge_pages = 0;
3371 	}
3372 
3373 	return 1;
3374 }
3375 __setup("default_hugepagesz=", default_hugepagesz_setup);
3376 
3377 static unsigned int allowed_mems_nr(struct hstate *h)
3378 {
3379 	int node;
3380 	unsigned int nr = 0;
3381 	nodemask_t *mpol_allowed;
3382 	unsigned int *array = h->free_huge_pages_node;
3383 	gfp_t gfp_mask = htlb_alloc_mask(h);
3384 
3385 	mpol_allowed = policy_nodemask_current(gfp_mask);
3386 
3387 	for_each_node_mask(node, cpuset_current_mems_allowed) {
3388 		if (!mpol_allowed || node_isset(node, *mpol_allowed))
3389 			nr += array[node];
3390 	}
3391 
3392 	return nr;
3393 }
3394 
3395 #ifdef CONFIG_SYSCTL
3396 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
3397 					  void *buffer, size_t *length,
3398 					  loff_t *ppos, unsigned long *out)
3399 {
3400 	struct ctl_table dup_table;
3401 
3402 	/*
3403 	 * In order to avoid races with __do_proc_doulongvec_minmax(), we
3404 	 * can duplicate the @table and alter the duplicate of it.
3405 	 */
3406 	dup_table = *table;
3407 	dup_table.data = out;
3408 
3409 	return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
3410 }
3411 
3412 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3413 			 struct ctl_table *table, int write,
3414 			 void *buffer, size_t *length, loff_t *ppos)
3415 {
3416 	struct hstate *h = &default_hstate;
3417 	unsigned long tmp = h->max_huge_pages;
3418 	int ret;
3419 
3420 	if (!hugepages_supported())
3421 		return -EOPNOTSUPP;
3422 
3423 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3424 					     &tmp);
3425 	if (ret)
3426 		goto out;
3427 
3428 	if (write)
3429 		ret = __nr_hugepages_store_common(obey_mempolicy, h,
3430 						  NUMA_NO_NODE, tmp, *length);
3431 out:
3432 	return ret;
3433 }
3434 
3435 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
3436 			  void *buffer, size_t *length, loff_t *ppos)
3437 {
3438 
3439 	return hugetlb_sysctl_handler_common(false, table, write,
3440 							buffer, length, ppos);
3441 }
3442 
3443 #ifdef CONFIG_NUMA
3444 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3445 			  void *buffer, size_t *length, loff_t *ppos)
3446 {
3447 	return hugetlb_sysctl_handler_common(true, table, write,
3448 							buffer, length, ppos);
3449 }
3450 #endif /* CONFIG_NUMA */
3451 
3452 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
3453 		void *buffer, size_t *length, loff_t *ppos)
3454 {
3455 	struct hstate *h = &default_hstate;
3456 	unsigned long tmp;
3457 	int ret;
3458 
3459 	if (!hugepages_supported())
3460 		return -EOPNOTSUPP;
3461 
3462 	tmp = h->nr_overcommit_huge_pages;
3463 
3464 	if (write && hstate_is_gigantic(h))
3465 		return -EINVAL;
3466 
3467 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3468 					     &tmp);
3469 	if (ret)
3470 		goto out;
3471 
3472 	if (write) {
3473 		spin_lock(&hugetlb_lock);
3474 		h->nr_overcommit_huge_pages = tmp;
3475 		spin_unlock(&hugetlb_lock);
3476 	}
3477 out:
3478 	return ret;
3479 }
3480 
3481 #endif /* CONFIG_SYSCTL */
3482 
3483 void hugetlb_report_meminfo(struct seq_file *m)
3484 {
3485 	struct hstate *h;
3486 	unsigned long total = 0;
3487 
3488 	if (!hugepages_supported())
3489 		return;
3490 
3491 	for_each_hstate(h) {
3492 		unsigned long count = h->nr_huge_pages;
3493 
3494 		total += huge_page_size(h) * count;
3495 
3496 		if (h == &default_hstate)
3497 			seq_printf(m,
3498 				   "HugePages_Total:   %5lu\n"
3499 				   "HugePages_Free:    %5lu\n"
3500 				   "HugePages_Rsvd:    %5lu\n"
3501 				   "HugePages_Surp:    %5lu\n"
3502 				   "Hugepagesize:   %8lu kB\n",
3503 				   count,
3504 				   h->free_huge_pages,
3505 				   h->resv_huge_pages,
3506 				   h->surplus_huge_pages,
3507 				   huge_page_size(h) / SZ_1K);
3508 	}
3509 
3510 	seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
3511 }
3512 
3513 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
3514 {
3515 	struct hstate *h = &default_hstate;
3516 
3517 	if (!hugepages_supported())
3518 		return 0;
3519 
3520 	return sysfs_emit_at(buf, len,
3521 			     "Node %d HugePages_Total: %5u\n"
3522 			     "Node %d HugePages_Free:  %5u\n"
3523 			     "Node %d HugePages_Surp:  %5u\n",
3524 			     nid, h->nr_huge_pages_node[nid],
3525 			     nid, h->free_huge_pages_node[nid],
3526 			     nid, h->surplus_huge_pages_node[nid]);
3527 }
3528 
3529 void hugetlb_show_meminfo(void)
3530 {
3531 	struct hstate *h;
3532 	int nid;
3533 
3534 	if (!hugepages_supported())
3535 		return;
3536 
3537 	for_each_node_state(nid, N_MEMORY)
3538 		for_each_hstate(h)
3539 			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3540 				nid,
3541 				h->nr_huge_pages_node[nid],
3542 				h->free_huge_pages_node[nid],
3543 				h->surplus_huge_pages_node[nid],
3544 				huge_page_size(h) / SZ_1K);
3545 }
3546 
3547 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3548 {
3549 	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3550 		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3551 }
3552 
3553 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3554 unsigned long hugetlb_total_pages(void)
3555 {
3556 	struct hstate *h;
3557 	unsigned long nr_total_pages = 0;
3558 
3559 	for_each_hstate(h)
3560 		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3561 	return nr_total_pages;
3562 }
3563 
3564 static int hugetlb_acct_memory(struct hstate *h, long delta)
3565 {
3566 	int ret = -ENOMEM;
3567 
3568 	if (!delta)
3569 		return 0;
3570 
3571 	spin_lock(&hugetlb_lock);
3572 	/*
3573 	 * When cpuset is configured, it breaks the strict hugetlb page
3574 	 * reservation as the accounting is done on a global variable. Such
3575 	 * reservation is completely rubbish in the presence of cpuset because
3576 	 * the reservation is not checked against page availability for the
3577 	 * current cpuset. Application can still potentially OOM'ed by kernel
3578 	 * with lack of free htlb page in cpuset that the task is in.
3579 	 * Attempt to enforce strict accounting with cpuset is almost
3580 	 * impossible (or too ugly) because cpuset is too fluid that
3581 	 * task or memory node can be dynamically moved between cpusets.
3582 	 *
3583 	 * The change of semantics for shared hugetlb mapping with cpuset is
3584 	 * undesirable. However, in order to preserve some of the semantics,
3585 	 * we fall back to check against current free page availability as
3586 	 * a best attempt and hopefully to minimize the impact of changing
3587 	 * semantics that cpuset has.
3588 	 *
3589 	 * Apart from cpuset, we also have memory policy mechanism that
3590 	 * also determines from which node the kernel will allocate memory
3591 	 * in a NUMA system. So similar to cpuset, we also should consider
3592 	 * the memory policy of the current task. Similar to the description
3593 	 * above.
3594 	 */
3595 	if (delta > 0) {
3596 		if (gather_surplus_pages(h, delta) < 0)
3597 			goto out;
3598 
3599 		if (delta > allowed_mems_nr(h)) {
3600 			return_unused_surplus_pages(h, delta);
3601 			goto out;
3602 		}
3603 	}
3604 
3605 	ret = 0;
3606 	if (delta < 0)
3607 		return_unused_surplus_pages(h, (unsigned long) -delta);
3608 
3609 out:
3610 	spin_unlock(&hugetlb_lock);
3611 	return ret;
3612 }
3613 
3614 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3615 {
3616 	struct resv_map *resv = vma_resv_map(vma);
3617 
3618 	/*
3619 	 * This new VMA should share its siblings reservation map if present.
3620 	 * The VMA will only ever have a valid reservation map pointer where
3621 	 * it is being copied for another still existing VMA.  As that VMA
3622 	 * has a reference to the reservation map it cannot disappear until
3623 	 * after this open call completes.  It is therefore safe to take a
3624 	 * new reference here without additional locking.
3625 	 */
3626 	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3627 		kref_get(&resv->refs);
3628 }
3629 
3630 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3631 {
3632 	struct hstate *h = hstate_vma(vma);
3633 	struct resv_map *resv = vma_resv_map(vma);
3634 	struct hugepage_subpool *spool = subpool_vma(vma);
3635 	unsigned long reserve, start, end;
3636 	long gbl_reserve;
3637 
3638 	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3639 		return;
3640 
3641 	start = vma_hugecache_offset(h, vma, vma->vm_start);
3642 	end = vma_hugecache_offset(h, vma, vma->vm_end);
3643 
3644 	reserve = (end - start) - region_count(resv, start, end);
3645 	hugetlb_cgroup_uncharge_counter(resv, start, end);
3646 	if (reserve) {
3647 		/*
3648 		 * Decrement reserve counts.  The global reserve count may be
3649 		 * adjusted if the subpool has a minimum size.
3650 		 */
3651 		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3652 		hugetlb_acct_memory(h, -gbl_reserve);
3653 	}
3654 
3655 	kref_put(&resv->refs, resv_map_release);
3656 }
3657 
3658 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3659 {
3660 	if (addr & ~(huge_page_mask(hstate_vma(vma))))
3661 		return -EINVAL;
3662 	return 0;
3663 }
3664 
3665 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3666 {
3667 	return huge_page_size(hstate_vma(vma));
3668 }
3669 
3670 /*
3671  * We cannot handle pagefaults against hugetlb pages at all.  They cause
3672  * handle_mm_fault() to try to instantiate regular-sized pages in the
3673  * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
3674  * this far.
3675  */
3676 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
3677 {
3678 	BUG();
3679 	return 0;
3680 }
3681 
3682 /*
3683  * When a new function is introduced to vm_operations_struct and added
3684  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3685  * This is because under System V memory model, mappings created via
3686  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3687  * their original vm_ops are overwritten with shm_vm_ops.
3688  */
3689 const struct vm_operations_struct hugetlb_vm_ops = {
3690 	.fault = hugetlb_vm_op_fault,
3691 	.open = hugetlb_vm_op_open,
3692 	.close = hugetlb_vm_op_close,
3693 	.may_split = hugetlb_vm_op_split,
3694 	.pagesize = hugetlb_vm_op_pagesize,
3695 };
3696 
3697 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3698 				int writable)
3699 {
3700 	pte_t entry;
3701 
3702 	if (writable) {
3703 		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3704 					 vma->vm_page_prot)));
3705 	} else {
3706 		entry = huge_pte_wrprotect(mk_huge_pte(page,
3707 					   vma->vm_page_prot));
3708 	}
3709 	entry = pte_mkyoung(entry);
3710 	entry = pte_mkhuge(entry);
3711 	entry = arch_make_huge_pte(entry, vma, page, writable);
3712 
3713 	return entry;
3714 }
3715 
3716 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3717 				   unsigned long address, pte_t *ptep)
3718 {
3719 	pte_t entry;
3720 
3721 	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3722 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3723 		update_mmu_cache(vma, address, ptep);
3724 }
3725 
3726 bool is_hugetlb_entry_migration(pte_t pte)
3727 {
3728 	swp_entry_t swp;
3729 
3730 	if (huge_pte_none(pte) || pte_present(pte))
3731 		return false;
3732 	swp = pte_to_swp_entry(pte);
3733 	if (is_migration_entry(swp))
3734 		return true;
3735 	else
3736 		return false;
3737 }
3738 
3739 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
3740 {
3741 	swp_entry_t swp;
3742 
3743 	if (huge_pte_none(pte) || pte_present(pte))
3744 		return false;
3745 	swp = pte_to_swp_entry(pte);
3746 	if (is_hwpoison_entry(swp))
3747 		return true;
3748 	else
3749 		return false;
3750 }
3751 
3752 static void
3753 hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
3754 		     struct page *new_page)
3755 {
3756 	__SetPageUptodate(new_page);
3757 	set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1));
3758 	hugepage_add_new_anon_rmap(new_page, vma, addr);
3759 	hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
3760 	ClearHPageRestoreReserve(new_page);
3761 	SetHPageMigratable(new_page);
3762 }
3763 
3764 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3765 			    struct vm_area_struct *vma)
3766 {
3767 	pte_t *src_pte, *dst_pte, entry, dst_entry;
3768 	struct page *ptepage;
3769 	unsigned long addr;
3770 	bool cow = is_cow_mapping(vma->vm_flags);
3771 	struct hstate *h = hstate_vma(vma);
3772 	unsigned long sz = huge_page_size(h);
3773 	unsigned long npages = pages_per_huge_page(h);
3774 	struct address_space *mapping = vma->vm_file->f_mapping;
3775 	struct mmu_notifier_range range;
3776 	int ret = 0;
3777 
3778 	if (cow) {
3779 		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
3780 					vma->vm_start,
3781 					vma->vm_end);
3782 		mmu_notifier_invalidate_range_start(&range);
3783 	} else {
3784 		/*
3785 		 * For shared mappings i_mmap_rwsem must be held to call
3786 		 * huge_pte_alloc, otherwise the returned ptep could go
3787 		 * away if part of a shared pmd and another thread calls
3788 		 * huge_pmd_unshare.
3789 		 */
3790 		i_mmap_lock_read(mapping);
3791 	}
3792 
3793 	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3794 		spinlock_t *src_ptl, *dst_ptl;
3795 		src_pte = huge_pte_offset(src, addr, sz);
3796 		if (!src_pte)
3797 			continue;
3798 		dst_pte = huge_pte_alloc(dst, addr, sz);
3799 		if (!dst_pte) {
3800 			ret = -ENOMEM;
3801 			break;
3802 		}
3803 
3804 		/*
3805 		 * If the pagetables are shared don't copy or take references.
3806 		 * dst_pte == src_pte is the common case of src/dest sharing.
3807 		 *
3808 		 * However, src could have 'unshared' and dst shares with
3809 		 * another vma.  If dst_pte !none, this implies sharing.
3810 		 * Check here before taking page table lock, and once again
3811 		 * after taking the lock below.
3812 		 */
3813 		dst_entry = huge_ptep_get(dst_pte);
3814 		if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3815 			continue;
3816 
3817 		dst_ptl = huge_pte_lock(h, dst, dst_pte);
3818 		src_ptl = huge_pte_lockptr(h, src, src_pte);
3819 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3820 		entry = huge_ptep_get(src_pte);
3821 		dst_entry = huge_ptep_get(dst_pte);
3822 again:
3823 		if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3824 			/*
3825 			 * Skip if src entry none.  Also, skip in the
3826 			 * unlikely case dst entry !none as this implies
3827 			 * sharing with another vma.
3828 			 */
3829 			;
3830 		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
3831 				    is_hugetlb_entry_hwpoisoned(entry))) {
3832 			swp_entry_t swp_entry = pte_to_swp_entry(entry);
3833 
3834 			if (is_write_migration_entry(swp_entry) && cow) {
3835 				/*
3836 				 * COW mappings require pages in both
3837 				 * parent and child to be set to read.
3838 				 */
3839 				make_migration_entry_read(&swp_entry);
3840 				entry = swp_entry_to_pte(swp_entry);
3841 				set_huge_swap_pte_at(src, addr, src_pte,
3842 						     entry, sz);
3843 			}
3844 			set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3845 		} else {
3846 			entry = huge_ptep_get(src_pte);
3847 			ptepage = pte_page(entry);
3848 			get_page(ptepage);
3849 
3850 			/*
3851 			 * This is a rare case where we see pinned hugetlb
3852 			 * pages while they're prone to COW.  We need to do the
3853 			 * COW earlier during fork.
3854 			 *
3855 			 * When pre-allocating the page or copying data, we
3856 			 * need to be without the pgtable locks since we could
3857 			 * sleep during the process.
3858 			 */
3859 			if (unlikely(page_needs_cow_for_dma(vma, ptepage))) {
3860 				pte_t src_pte_old = entry;
3861 				struct page *new;
3862 
3863 				spin_unlock(src_ptl);
3864 				spin_unlock(dst_ptl);
3865 				/* Do not use reserve as it's private owned */
3866 				new = alloc_huge_page(vma, addr, 1);
3867 				if (IS_ERR(new)) {
3868 					put_page(ptepage);
3869 					ret = PTR_ERR(new);
3870 					break;
3871 				}
3872 				copy_user_huge_page(new, ptepage, addr, vma,
3873 						    npages);
3874 				put_page(ptepage);
3875 
3876 				/* Install the new huge page if src pte stable */
3877 				dst_ptl = huge_pte_lock(h, dst, dst_pte);
3878 				src_ptl = huge_pte_lockptr(h, src, src_pte);
3879 				spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3880 				entry = huge_ptep_get(src_pte);
3881 				if (!pte_same(src_pte_old, entry)) {
3882 					put_page(new);
3883 					/* dst_entry won't change as in child */
3884 					goto again;
3885 				}
3886 				hugetlb_install_page(vma, dst_pte, addr, new);
3887 				spin_unlock(src_ptl);
3888 				spin_unlock(dst_ptl);
3889 				continue;
3890 			}
3891 
3892 			if (cow) {
3893 				/*
3894 				 * No need to notify as we are downgrading page
3895 				 * table protection not changing it to point
3896 				 * to a new page.
3897 				 *
3898 				 * See Documentation/vm/mmu_notifier.rst
3899 				 */
3900 				huge_ptep_set_wrprotect(src, addr, src_pte);
3901 			}
3902 
3903 			page_dup_rmap(ptepage, true);
3904 			set_huge_pte_at(dst, addr, dst_pte, entry);
3905 			hugetlb_count_add(npages, dst);
3906 		}
3907 		spin_unlock(src_ptl);
3908 		spin_unlock(dst_ptl);
3909 	}
3910 
3911 	if (cow)
3912 		mmu_notifier_invalidate_range_end(&range);
3913 	else
3914 		i_mmap_unlock_read(mapping);
3915 
3916 	return ret;
3917 }
3918 
3919 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3920 			    unsigned long start, unsigned long end,
3921 			    struct page *ref_page)
3922 {
3923 	struct mm_struct *mm = vma->vm_mm;
3924 	unsigned long address;
3925 	pte_t *ptep;
3926 	pte_t pte;
3927 	spinlock_t *ptl;
3928 	struct page *page;
3929 	struct hstate *h = hstate_vma(vma);
3930 	unsigned long sz = huge_page_size(h);
3931 	struct mmu_notifier_range range;
3932 
3933 	WARN_ON(!is_vm_hugetlb_page(vma));
3934 	BUG_ON(start & ~huge_page_mask(h));
3935 	BUG_ON(end & ~huge_page_mask(h));
3936 
3937 	/*
3938 	 * This is a hugetlb vma, all the pte entries should point
3939 	 * to huge page.
3940 	 */
3941 	tlb_change_page_size(tlb, sz);
3942 	tlb_start_vma(tlb, vma);
3943 
3944 	/*
3945 	 * If sharing possible, alert mmu notifiers of worst case.
3946 	 */
3947 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
3948 				end);
3949 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3950 	mmu_notifier_invalidate_range_start(&range);
3951 	address = start;
3952 	for (; address < end; address += sz) {
3953 		ptep = huge_pte_offset(mm, address, sz);
3954 		if (!ptep)
3955 			continue;
3956 
3957 		ptl = huge_pte_lock(h, mm, ptep);
3958 		if (huge_pmd_unshare(mm, vma, &address, ptep)) {
3959 			spin_unlock(ptl);
3960 			/*
3961 			 * We just unmapped a page of PMDs by clearing a PUD.
3962 			 * The caller's TLB flush range should cover this area.
3963 			 */
3964 			continue;
3965 		}
3966 
3967 		pte = huge_ptep_get(ptep);
3968 		if (huge_pte_none(pte)) {
3969 			spin_unlock(ptl);
3970 			continue;
3971 		}
3972 
3973 		/*
3974 		 * Migrating hugepage or HWPoisoned hugepage is already
3975 		 * unmapped and its refcount is dropped, so just clear pte here.
3976 		 */
3977 		if (unlikely(!pte_present(pte))) {
3978 			huge_pte_clear(mm, address, ptep, sz);
3979 			spin_unlock(ptl);
3980 			continue;
3981 		}
3982 
3983 		page = pte_page(pte);
3984 		/*
3985 		 * If a reference page is supplied, it is because a specific
3986 		 * page is being unmapped, not a range. Ensure the page we
3987 		 * are about to unmap is the actual page of interest.
3988 		 */
3989 		if (ref_page) {
3990 			if (page != ref_page) {
3991 				spin_unlock(ptl);
3992 				continue;
3993 			}
3994 			/*
3995 			 * Mark the VMA as having unmapped its page so that
3996 			 * future faults in this VMA will fail rather than
3997 			 * looking like data was lost
3998 			 */
3999 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
4000 		}
4001 
4002 		pte = huge_ptep_get_and_clear(mm, address, ptep);
4003 		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
4004 		if (huge_pte_dirty(pte))
4005 			set_page_dirty(page);
4006 
4007 		hugetlb_count_sub(pages_per_huge_page(h), mm);
4008 		page_remove_rmap(page, true);
4009 
4010 		spin_unlock(ptl);
4011 		tlb_remove_page_size(tlb, page, huge_page_size(h));
4012 		/*
4013 		 * Bail out after unmapping reference page if supplied
4014 		 */
4015 		if (ref_page)
4016 			break;
4017 	}
4018 	mmu_notifier_invalidate_range_end(&range);
4019 	tlb_end_vma(tlb, vma);
4020 }
4021 
4022 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
4023 			  struct vm_area_struct *vma, unsigned long start,
4024 			  unsigned long end, struct page *ref_page)
4025 {
4026 	__unmap_hugepage_range(tlb, vma, start, end, ref_page);
4027 
4028 	/*
4029 	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
4030 	 * test will fail on a vma being torn down, and not grab a page table
4031 	 * on its way out.  We're lucky that the flag has such an appropriate
4032 	 * name, and can in fact be safely cleared here. We could clear it
4033 	 * before the __unmap_hugepage_range above, but all that's necessary
4034 	 * is to clear it before releasing the i_mmap_rwsem. This works
4035 	 * because in the context this is called, the VMA is about to be
4036 	 * destroyed and the i_mmap_rwsem is held.
4037 	 */
4038 	vma->vm_flags &= ~VM_MAYSHARE;
4039 }
4040 
4041 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
4042 			  unsigned long end, struct page *ref_page)
4043 {
4044 	struct mmu_gather tlb;
4045 
4046 	tlb_gather_mmu(&tlb, vma->vm_mm);
4047 	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
4048 	tlb_finish_mmu(&tlb);
4049 }
4050 
4051 /*
4052  * This is called when the original mapper is failing to COW a MAP_PRIVATE
4053  * mapping it owns the reserve page for. The intention is to unmap the page
4054  * from other VMAs and let the children be SIGKILLed if they are faulting the
4055  * same region.
4056  */
4057 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
4058 			      struct page *page, unsigned long address)
4059 {
4060 	struct hstate *h = hstate_vma(vma);
4061 	struct vm_area_struct *iter_vma;
4062 	struct address_space *mapping;
4063 	pgoff_t pgoff;
4064 
4065 	/*
4066 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
4067 	 * from page cache lookup which is in HPAGE_SIZE units.
4068 	 */
4069 	address = address & huge_page_mask(h);
4070 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
4071 			vma->vm_pgoff;
4072 	mapping = vma->vm_file->f_mapping;
4073 
4074 	/*
4075 	 * Take the mapping lock for the duration of the table walk. As
4076 	 * this mapping should be shared between all the VMAs,
4077 	 * __unmap_hugepage_range() is called as the lock is already held
4078 	 */
4079 	i_mmap_lock_write(mapping);
4080 	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
4081 		/* Do not unmap the current VMA */
4082 		if (iter_vma == vma)
4083 			continue;
4084 
4085 		/*
4086 		 * Shared VMAs have their own reserves and do not affect
4087 		 * MAP_PRIVATE accounting but it is possible that a shared
4088 		 * VMA is using the same page so check and skip such VMAs.
4089 		 */
4090 		if (iter_vma->vm_flags & VM_MAYSHARE)
4091 			continue;
4092 
4093 		/*
4094 		 * Unmap the page from other VMAs without their own reserves.
4095 		 * They get marked to be SIGKILLed if they fault in these
4096 		 * areas. This is because a future no-page fault on this VMA
4097 		 * could insert a zeroed page instead of the data existing
4098 		 * from the time of fork. This would look like data corruption
4099 		 */
4100 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
4101 			unmap_hugepage_range(iter_vma, address,
4102 					     address + huge_page_size(h), page);
4103 	}
4104 	i_mmap_unlock_write(mapping);
4105 }
4106 
4107 /*
4108  * Hugetlb_cow() should be called with page lock of the original hugepage held.
4109  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
4110  * cannot race with other handlers or page migration.
4111  * Keep the pte_same checks anyway to make transition from the mutex easier.
4112  */
4113 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
4114 		       unsigned long address, pte_t *ptep,
4115 		       struct page *pagecache_page, spinlock_t *ptl)
4116 {
4117 	pte_t pte;
4118 	struct hstate *h = hstate_vma(vma);
4119 	struct page *old_page, *new_page;
4120 	int outside_reserve = 0;
4121 	vm_fault_t ret = 0;
4122 	unsigned long haddr = address & huge_page_mask(h);
4123 	struct mmu_notifier_range range;
4124 
4125 	pte = huge_ptep_get(ptep);
4126 	old_page = pte_page(pte);
4127 
4128 retry_avoidcopy:
4129 	/* If no-one else is actually using this page, avoid the copy
4130 	 * and just make the page writable */
4131 	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
4132 		page_move_anon_rmap(old_page, vma);
4133 		set_huge_ptep_writable(vma, haddr, ptep);
4134 		return 0;
4135 	}
4136 
4137 	/*
4138 	 * If the process that created a MAP_PRIVATE mapping is about to
4139 	 * perform a COW due to a shared page count, attempt to satisfy
4140 	 * the allocation without using the existing reserves. The pagecache
4141 	 * page is used to determine if the reserve at this address was
4142 	 * consumed or not. If reserves were used, a partial faulted mapping
4143 	 * at the time of fork() could consume its reserves on COW instead
4144 	 * of the full address range.
4145 	 */
4146 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
4147 			old_page != pagecache_page)
4148 		outside_reserve = 1;
4149 
4150 	get_page(old_page);
4151 
4152 	/*
4153 	 * Drop page table lock as buddy allocator may be called. It will
4154 	 * be acquired again before returning to the caller, as expected.
4155 	 */
4156 	spin_unlock(ptl);
4157 	new_page = alloc_huge_page(vma, haddr, outside_reserve);
4158 
4159 	if (IS_ERR(new_page)) {
4160 		/*
4161 		 * If a process owning a MAP_PRIVATE mapping fails to COW,
4162 		 * it is due to references held by a child and an insufficient
4163 		 * huge page pool. To guarantee the original mappers
4164 		 * reliability, unmap the page from child processes. The child
4165 		 * may get SIGKILLed if it later faults.
4166 		 */
4167 		if (outside_reserve) {
4168 			struct address_space *mapping = vma->vm_file->f_mapping;
4169 			pgoff_t idx;
4170 			u32 hash;
4171 
4172 			put_page(old_page);
4173 			BUG_ON(huge_pte_none(pte));
4174 			/*
4175 			 * Drop hugetlb_fault_mutex and i_mmap_rwsem before
4176 			 * unmapping.  unmapping needs to hold i_mmap_rwsem
4177 			 * in write mode.  Dropping i_mmap_rwsem in read mode
4178 			 * here is OK as COW mappings do not interact with
4179 			 * PMD sharing.
4180 			 *
4181 			 * Reacquire both after unmap operation.
4182 			 */
4183 			idx = vma_hugecache_offset(h, vma, haddr);
4184 			hash = hugetlb_fault_mutex_hash(mapping, idx);
4185 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4186 			i_mmap_unlock_read(mapping);
4187 
4188 			unmap_ref_private(mm, vma, old_page, haddr);
4189 
4190 			i_mmap_lock_read(mapping);
4191 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
4192 			spin_lock(ptl);
4193 			ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4194 			if (likely(ptep &&
4195 				   pte_same(huge_ptep_get(ptep), pte)))
4196 				goto retry_avoidcopy;
4197 			/*
4198 			 * race occurs while re-acquiring page table
4199 			 * lock, and our job is done.
4200 			 */
4201 			return 0;
4202 		}
4203 
4204 		ret = vmf_error(PTR_ERR(new_page));
4205 		goto out_release_old;
4206 	}
4207 
4208 	/*
4209 	 * When the original hugepage is shared one, it does not have
4210 	 * anon_vma prepared.
4211 	 */
4212 	if (unlikely(anon_vma_prepare(vma))) {
4213 		ret = VM_FAULT_OOM;
4214 		goto out_release_all;
4215 	}
4216 
4217 	copy_user_huge_page(new_page, old_page, address, vma,
4218 			    pages_per_huge_page(h));
4219 	__SetPageUptodate(new_page);
4220 
4221 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
4222 				haddr + huge_page_size(h));
4223 	mmu_notifier_invalidate_range_start(&range);
4224 
4225 	/*
4226 	 * Retake the page table lock to check for racing updates
4227 	 * before the page tables are altered
4228 	 */
4229 	spin_lock(ptl);
4230 	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4231 	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
4232 		ClearHPageRestoreReserve(new_page);
4233 
4234 		/* Break COW */
4235 		huge_ptep_clear_flush(vma, haddr, ptep);
4236 		mmu_notifier_invalidate_range(mm, range.start, range.end);
4237 		set_huge_pte_at(mm, haddr, ptep,
4238 				make_huge_pte(vma, new_page, 1));
4239 		page_remove_rmap(old_page, true);
4240 		hugepage_add_new_anon_rmap(new_page, vma, haddr);
4241 		SetHPageMigratable(new_page);
4242 		/* Make the old page be freed below */
4243 		new_page = old_page;
4244 	}
4245 	spin_unlock(ptl);
4246 	mmu_notifier_invalidate_range_end(&range);
4247 out_release_all:
4248 	restore_reserve_on_error(h, vma, haddr, new_page);
4249 	put_page(new_page);
4250 out_release_old:
4251 	put_page(old_page);
4252 
4253 	spin_lock(ptl); /* Caller expects lock to be held */
4254 	return ret;
4255 }
4256 
4257 /* Return the pagecache page at a given address within a VMA */
4258 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
4259 			struct vm_area_struct *vma, unsigned long address)
4260 {
4261 	struct address_space *mapping;
4262 	pgoff_t idx;
4263 
4264 	mapping = vma->vm_file->f_mapping;
4265 	idx = vma_hugecache_offset(h, vma, address);
4266 
4267 	return find_lock_page(mapping, idx);
4268 }
4269 
4270 /*
4271  * Return whether there is a pagecache page to back given address within VMA.
4272  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
4273  */
4274 static bool hugetlbfs_pagecache_present(struct hstate *h,
4275 			struct vm_area_struct *vma, unsigned long address)
4276 {
4277 	struct address_space *mapping;
4278 	pgoff_t idx;
4279 	struct page *page;
4280 
4281 	mapping = vma->vm_file->f_mapping;
4282 	idx = vma_hugecache_offset(h, vma, address);
4283 
4284 	page = find_get_page(mapping, idx);
4285 	if (page)
4286 		put_page(page);
4287 	return page != NULL;
4288 }
4289 
4290 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
4291 			   pgoff_t idx)
4292 {
4293 	struct inode *inode = mapping->host;
4294 	struct hstate *h = hstate_inode(inode);
4295 	int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
4296 
4297 	if (err)
4298 		return err;
4299 	ClearHPageRestoreReserve(page);
4300 
4301 	/*
4302 	 * set page dirty so that it will not be removed from cache/file
4303 	 * by non-hugetlbfs specific code paths.
4304 	 */
4305 	set_page_dirty(page);
4306 
4307 	spin_lock(&inode->i_lock);
4308 	inode->i_blocks += blocks_per_huge_page(h);
4309 	spin_unlock(&inode->i_lock);
4310 	return 0;
4311 }
4312 
4313 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
4314 			struct vm_area_struct *vma,
4315 			struct address_space *mapping, pgoff_t idx,
4316 			unsigned long address, pte_t *ptep, unsigned int flags)
4317 {
4318 	struct hstate *h = hstate_vma(vma);
4319 	vm_fault_t ret = VM_FAULT_SIGBUS;
4320 	int anon_rmap = 0;
4321 	unsigned long size;
4322 	struct page *page;
4323 	pte_t new_pte;
4324 	spinlock_t *ptl;
4325 	unsigned long haddr = address & huge_page_mask(h);
4326 	bool new_page = false;
4327 
4328 	/*
4329 	 * Currently, we are forced to kill the process in the event the
4330 	 * original mapper has unmapped pages from the child due to a failed
4331 	 * COW. Warn that such a situation has occurred as it may not be obvious
4332 	 */
4333 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
4334 		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
4335 			   current->pid);
4336 		return ret;
4337 	}
4338 
4339 	/*
4340 	 * We can not race with truncation due to holding i_mmap_rwsem.
4341 	 * i_size is modified when holding i_mmap_rwsem, so check here
4342 	 * once for faults beyond end of file.
4343 	 */
4344 	size = i_size_read(mapping->host) >> huge_page_shift(h);
4345 	if (idx >= size)
4346 		goto out;
4347 
4348 retry:
4349 	page = find_lock_page(mapping, idx);
4350 	if (!page) {
4351 		/*
4352 		 * Check for page in userfault range
4353 		 */
4354 		if (userfaultfd_missing(vma)) {
4355 			u32 hash;
4356 			struct vm_fault vmf = {
4357 				.vma = vma,
4358 				.address = haddr,
4359 				.flags = flags,
4360 				/*
4361 				 * Hard to debug if it ends up being
4362 				 * used by a callee that assumes
4363 				 * something about the other
4364 				 * uninitialized fields... same as in
4365 				 * memory.c
4366 				 */
4367 			};
4368 
4369 			/*
4370 			 * hugetlb_fault_mutex and i_mmap_rwsem must be
4371 			 * dropped before handling userfault.  Reacquire
4372 			 * after handling fault to make calling code simpler.
4373 			 */
4374 			hash = hugetlb_fault_mutex_hash(mapping, idx);
4375 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4376 			i_mmap_unlock_read(mapping);
4377 			ret = handle_userfault(&vmf, VM_UFFD_MISSING);
4378 			i_mmap_lock_read(mapping);
4379 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
4380 			goto out;
4381 		}
4382 
4383 		page = alloc_huge_page(vma, haddr, 0);
4384 		if (IS_ERR(page)) {
4385 			/*
4386 			 * Returning error will result in faulting task being
4387 			 * sent SIGBUS.  The hugetlb fault mutex prevents two
4388 			 * tasks from racing to fault in the same page which
4389 			 * could result in false unable to allocate errors.
4390 			 * Page migration does not take the fault mutex, but
4391 			 * does a clear then write of pte's under page table
4392 			 * lock.  Page fault code could race with migration,
4393 			 * notice the clear pte and try to allocate a page
4394 			 * here.  Before returning error, get ptl and make
4395 			 * sure there really is no pte entry.
4396 			 */
4397 			ptl = huge_pte_lock(h, mm, ptep);
4398 			if (!huge_pte_none(huge_ptep_get(ptep))) {
4399 				ret = 0;
4400 				spin_unlock(ptl);
4401 				goto out;
4402 			}
4403 			spin_unlock(ptl);
4404 			ret = vmf_error(PTR_ERR(page));
4405 			goto out;
4406 		}
4407 		clear_huge_page(page, address, pages_per_huge_page(h));
4408 		__SetPageUptodate(page);
4409 		new_page = true;
4410 
4411 		if (vma->vm_flags & VM_MAYSHARE) {
4412 			int err = huge_add_to_page_cache(page, mapping, idx);
4413 			if (err) {
4414 				put_page(page);
4415 				if (err == -EEXIST)
4416 					goto retry;
4417 				goto out;
4418 			}
4419 		} else {
4420 			lock_page(page);
4421 			if (unlikely(anon_vma_prepare(vma))) {
4422 				ret = VM_FAULT_OOM;
4423 				goto backout_unlocked;
4424 			}
4425 			anon_rmap = 1;
4426 		}
4427 	} else {
4428 		/*
4429 		 * If memory error occurs between mmap() and fault, some process
4430 		 * don't have hwpoisoned swap entry for errored virtual address.
4431 		 * So we need to block hugepage fault by PG_hwpoison bit check.
4432 		 */
4433 		if (unlikely(PageHWPoison(page))) {
4434 			ret = VM_FAULT_HWPOISON_LARGE |
4435 				VM_FAULT_SET_HINDEX(hstate_index(h));
4436 			goto backout_unlocked;
4437 		}
4438 	}
4439 
4440 	/*
4441 	 * If we are going to COW a private mapping later, we examine the
4442 	 * pending reservations for this page now. This will ensure that
4443 	 * any allocations necessary to record that reservation occur outside
4444 	 * the spinlock.
4445 	 */
4446 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4447 		if (vma_needs_reservation(h, vma, haddr) < 0) {
4448 			ret = VM_FAULT_OOM;
4449 			goto backout_unlocked;
4450 		}
4451 		/* Just decrements count, does not deallocate */
4452 		vma_end_reservation(h, vma, haddr);
4453 	}
4454 
4455 	ptl = huge_pte_lock(h, mm, ptep);
4456 	ret = 0;
4457 	if (!huge_pte_none(huge_ptep_get(ptep)))
4458 		goto backout;
4459 
4460 	if (anon_rmap) {
4461 		ClearHPageRestoreReserve(page);
4462 		hugepage_add_new_anon_rmap(page, vma, haddr);
4463 	} else
4464 		page_dup_rmap(page, true);
4465 	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
4466 				&& (vma->vm_flags & VM_SHARED)));
4467 	set_huge_pte_at(mm, haddr, ptep, new_pte);
4468 
4469 	hugetlb_count_add(pages_per_huge_page(h), mm);
4470 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4471 		/* Optimization, do the COW without a second fault */
4472 		ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
4473 	}
4474 
4475 	spin_unlock(ptl);
4476 
4477 	/*
4478 	 * Only set HPageMigratable in newly allocated pages.  Existing pages
4479 	 * found in the pagecache may not have HPageMigratableset if they have
4480 	 * been isolated for migration.
4481 	 */
4482 	if (new_page)
4483 		SetHPageMigratable(page);
4484 
4485 	unlock_page(page);
4486 out:
4487 	return ret;
4488 
4489 backout:
4490 	spin_unlock(ptl);
4491 backout_unlocked:
4492 	unlock_page(page);
4493 	restore_reserve_on_error(h, vma, haddr, page);
4494 	put_page(page);
4495 	goto out;
4496 }
4497 
4498 #ifdef CONFIG_SMP
4499 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4500 {
4501 	unsigned long key[2];
4502 	u32 hash;
4503 
4504 	key[0] = (unsigned long) mapping;
4505 	key[1] = idx;
4506 
4507 	hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
4508 
4509 	return hash & (num_fault_mutexes - 1);
4510 }
4511 #else
4512 /*
4513  * For uniprocessor systems we always use a single mutex, so just
4514  * return 0 and avoid the hashing overhead.
4515  */
4516 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4517 {
4518 	return 0;
4519 }
4520 #endif
4521 
4522 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
4523 			unsigned long address, unsigned int flags)
4524 {
4525 	pte_t *ptep, entry;
4526 	spinlock_t *ptl;
4527 	vm_fault_t ret;
4528 	u32 hash;
4529 	pgoff_t idx;
4530 	struct page *page = NULL;
4531 	struct page *pagecache_page = NULL;
4532 	struct hstate *h = hstate_vma(vma);
4533 	struct address_space *mapping;
4534 	int need_wait_lock = 0;
4535 	unsigned long haddr = address & huge_page_mask(h);
4536 
4537 	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4538 	if (ptep) {
4539 		/*
4540 		 * Since we hold no locks, ptep could be stale.  That is
4541 		 * OK as we are only making decisions based on content and
4542 		 * not actually modifying content here.
4543 		 */
4544 		entry = huge_ptep_get(ptep);
4545 		if (unlikely(is_hugetlb_entry_migration(entry))) {
4546 			migration_entry_wait_huge(vma, mm, ptep);
4547 			return 0;
4548 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
4549 			return VM_FAULT_HWPOISON_LARGE |
4550 				VM_FAULT_SET_HINDEX(hstate_index(h));
4551 	}
4552 
4553 	/*
4554 	 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
4555 	 * until finished with ptep.  This serves two purposes:
4556 	 * 1) It prevents huge_pmd_unshare from being called elsewhere
4557 	 *    and making the ptep no longer valid.
4558 	 * 2) It synchronizes us with i_size modifications during truncation.
4559 	 *
4560 	 * ptep could have already be assigned via huge_pte_offset.  That
4561 	 * is OK, as huge_pte_alloc will return the same value unless
4562 	 * something has changed.
4563 	 */
4564 	mapping = vma->vm_file->f_mapping;
4565 	i_mmap_lock_read(mapping);
4566 	ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
4567 	if (!ptep) {
4568 		i_mmap_unlock_read(mapping);
4569 		return VM_FAULT_OOM;
4570 	}
4571 
4572 	/*
4573 	 * Serialize hugepage allocation and instantiation, so that we don't
4574 	 * get spurious allocation failures if two CPUs race to instantiate
4575 	 * the same page in the page cache.
4576 	 */
4577 	idx = vma_hugecache_offset(h, vma, haddr);
4578 	hash = hugetlb_fault_mutex_hash(mapping, idx);
4579 	mutex_lock(&hugetlb_fault_mutex_table[hash]);
4580 
4581 	entry = huge_ptep_get(ptep);
4582 	if (huge_pte_none(entry)) {
4583 		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
4584 		goto out_mutex;
4585 	}
4586 
4587 	ret = 0;
4588 
4589 	/*
4590 	 * entry could be a migration/hwpoison entry at this point, so this
4591 	 * check prevents the kernel from going below assuming that we have
4592 	 * an active hugepage in pagecache. This goto expects the 2nd page
4593 	 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
4594 	 * properly handle it.
4595 	 */
4596 	if (!pte_present(entry))
4597 		goto out_mutex;
4598 
4599 	/*
4600 	 * If we are going to COW the mapping later, we examine the pending
4601 	 * reservations for this page now. This will ensure that any
4602 	 * allocations necessary to record that reservation occur outside the
4603 	 * spinlock. For private mappings, we also lookup the pagecache
4604 	 * page now as it is used to determine if a reservation has been
4605 	 * consumed.
4606 	 */
4607 	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
4608 		if (vma_needs_reservation(h, vma, haddr) < 0) {
4609 			ret = VM_FAULT_OOM;
4610 			goto out_mutex;
4611 		}
4612 		/* Just decrements count, does not deallocate */
4613 		vma_end_reservation(h, vma, haddr);
4614 
4615 		if (!(vma->vm_flags & VM_MAYSHARE))
4616 			pagecache_page = hugetlbfs_pagecache_page(h,
4617 								vma, haddr);
4618 	}
4619 
4620 	ptl = huge_pte_lock(h, mm, ptep);
4621 
4622 	/* Check for a racing update before calling hugetlb_cow */
4623 	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4624 		goto out_ptl;
4625 
4626 	/*
4627 	 * hugetlb_cow() requires page locks of pte_page(entry) and
4628 	 * pagecache_page, so here we need take the former one
4629 	 * when page != pagecache_page or !pagecache_page.
4630 	 */
4631 	page = pte_page(entry);
4632 	if (page != pagecache_page)
4633 		if (!trylock_page(page)) {
4634 			need_wait_lock = 1;
4635 			goto out_ptl;
4636 		}
4637 
4638 	get_page(page);
4639 
4640 	if (flags & FAULT_FLAG_WRITE) {
4641 		if (!huge_pte_write(entry)) {
4642 			ret = hugetlb_cow(mm, vma, address, ptep,
4643 					  pagecache_page, ptl);
4644 			goto out_put_page;
4645 		}
4646 		entry = huge_pte_mkdirty(entry);
4647 	}
4648 	entry = pte_mkyoung(entry);
4649 	if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
4650 						flags & FAULT_FLAG_WRITE))
4651 		update_mmu_cache(vma, haddr, ptep);
4652 out_put_page:
4653 	if (page != pagecache_page)
4654 		unlock_page(page);
4655 	put_page(page);
4656 out_ptl:
4657 	spin_unlock(ptl);
4658 
4659 	if (pagecache_page) {
4660 		unlock_page(pagecache_page);
4661 		put_page(pagecache_page);
4662 	}
4663 out_mutex:
4664 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4665 	i_mmap_unlock_read(mapping);
4666 	/*
4667 	 * Generally it's safe to hold refcount during waiting page lock. But
4668 	 * here we just wait to defer the next page fault to avoid busy loop and
4669 	 * the page is not used after unlocked before returning from the current
4670 	 * page fault. So we are safe from accessing freed page, even if we wait
4671 	 * here without taking refcount.
4672 	 */
4673 	if (need_wait_lock)
4674 		wait_on_page_locked(page);
4675 	return ret;
4676 }
4677 
4678 /*
4679  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
4680  * modifications for huge pages.
4681  */
4682 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4683 			    pte_t *dst_pte,
4684 			    struct vm_area_struct *dst_vma,
4685 			    unsigned long dst_addr,
4686 			    unsigned long src_addr,
4687 			    struct page **pagep)
4688 {
4689 	struct address_space *mapping;
4690 	pgoff_t idx;
4691 	unsigned long size;
4692 	int vm_shared = dst_vma->vm_flags & VM_SHARED;
4693 	struct hstate *h = hstate_vma(dst_vma);
4694 	pte_t _dst_pte;
4695 	spinlock_t *ptl;
4696 	int ret;
4697 	struct page *page;
4698 
4699 	if (!*pagep) {
4700 		ret = -ENOMEM;
4701 		page = alloc_huge_page(dst_vma, dst_addr, 0);
4702 		if (IS_ERR(page))
4703 			goto out;
4704 
4705 		ret = copy_huge_page_from_user(page,
4706 						(const void __user *) src_addr,
4707 						pages_per_huge_page(h), false);
4708 
4709 		/* fallback to copy_from_user outside mmap_lock */
4710 		if (unlikely(ret)) {
4711 			ret = -ENOENT;
4712 			*pagep = page;
4713 			/* don't free the page */
4714 			goto out;
4715 		}
4716 	} else {
4717 		page = *pagep;
4718 		*pagep = NULL;
4719 	}
4720 
4721 	/*
4722 	 * The memory barrier inside __SetPageUptodate makes sure that
4723 	 * preceding stores to the page contents become visible before
4724 	 * the set_pte_at() write.
4725 	 */
4726 	__SetPageUptodate(page);
4727 
4728 	mapping = dst_vma->vm_file->f_mapping;
4729 	idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4730 
4731 	/*
4732 	 * If shared, add to page cache
4733 	 */
4734 	if (vm_shared) {
4735 		size = i_size_read(mapping->host) >> huge_page_shift(h);
4736 		ret = -EFAULT;
4737 		if (idx >= size)
4738 			goto out_release_nounlock;
4739 
4740 		/*
4741 		 * Serialization between remove_inode_hugepages() and
4742 		 * huge_add_to_page_cache() below happens through the
4743 		 * hugetlb_fault_mutex_table that here must be hold by
4744 		 * the caller.
4745 		 */
4746 		ret = huge_add_to_page_cache(page, mapping, idx);
4747 		if (ret)
4748 			goto out_release_nounlock;
4749 	}
4750 
4751 	ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4752 	spin_lock(ptl);
4753 
4754 	/*
4755 	 * Recheck the i_size after holding PT lock to make sure not
4756 	 * to leave any page mapped (as page_mapped()) beyond the end
4757 	 * of the i_size (remove_inode_hugepages() is strict about
4758 	 * enforcing that). If we bail out here, we'll also leave a
4759 	 * page in the radix tree in the vm_shared case beyond the end
4760 	 * of the i_size, but remove_inode_hugepages() will take care
4761 	 * of it as soon as we drop the hugetlb_fault_mutex_table.
4762 	 */
4763 	size = i_size_read(mapping->host) >> huge_page_shift(h);
4764 	ret = -EFAULT;
4765 	if (idx >= size)
4766 		goto out_release_unlock;
4767 
4768 	ret = -EEXIST;
4769 	if (!huge_pte_none(huge_ptep_get(dst_pte)))
4770 		goto out_release_unlock;
4771 
4772 	if (vm_shared) {
4773 		page_dup_rmap(page, true);
4774 	} else {
4775 		ClearHPageRestoreReserve(page);
4776 		hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4777 	}
4778 
4779 	_dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4780 	if (dst_vma->vm_flags & VM_WRITE)
4781 		_dst_pte = huge_pte_mkdirty(_dst_pte);
4782 	_dst_pte = pte_mkyoung(_dst_pte);
4783 
4784 	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4785 
4786 	(void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4787 					dst_vma->vm_flags & VM_WRITE);
4788 	hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4789 
4790 	/* No need to invalidate - it was non-present before */
4791 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
4792 
4793 	spin_unlock(ptl);
4794 	SetHPageMigratable(page);
4795 	if (vm_shared)
4796 		unlock_page(page);
4797 	ret = 0;
4798 out:
4799 	return ret;
4800 out_release_unlock:
4801 	spin_unlock(ptl);
4802 	if (vm_shared)
4803 		unlock_page(page);
4804 out_release_nounlock:
4805 	put_page(page);
4806 	goto out;
4807 }
4808 
4809 static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
4810 				 int refs, struct page **pages,
4811 				 struct vm_area_struct **vmas)
4812 {
4813 	int nr;
4814 
4815 	for (nr = 0; nr < refs; nr++) {
4816 		if (likely(pages))
4817 			pages[nr] = mem_map_offset(page, nr);
4818 		if (vmas)
4819 			vmas[nr] = vma;
4820 	}
4821 }
4822 
4823 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4824 			 struct page **pages, struct vm_area_struct **vmas,
4825 			 unsigned long *position, unsigned long *nr_pages,
4826 			 long i, unsigned int flags, int *locked)
4827 {
4828 	unsigned long pfn_offset;
4829 	unsigned long vaddr = *position;
4830 	unsigned long remainder = *nr_pages;
4831 	struct hstate *h = hstate_vma(vma);
4832 	int err = -EFAULT, refs;
4833 
4834 	while (vaddr < vma->vm_end && remainder) {
4835 		pte_t *pte;
4836 		spinlock_t *ptl = NULL;
4837 		int absent;
4838 		struct page *page;
4839 
4840 		/*
4841 		 * If we have a pending SIGKILL, don't keep faulting pages and
4842 		 * potentially allocating memory.
4843 		 */
4844 		if (fatal_signal_pending(current)) {
4845 			remainder = 0;
4846 			break;
4847 		}
4848 
4849 		/*
4850 		 * Some archs (sparc64, sh*) have multiple pte_ts to
4851 		 * each hugepage.  We have to make sure we get the
4852 		 * first, for the page indexing below to work.
4853 		 *
4854 		 * Note that page table lock is not held when pte is null.
4855 		 */
4856 		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4857 				      huge_page_size(h));
4858 		if (pte)
4859 			ptl = huge_pte_lock(h, mm, pte);
4860 		absent = !pte || huge_pte_none(huge_ptep_get(pte));
4861 
4862 		/*
4863 		 * When coredumping, it suits get_dump_page if we just return
4864 		 * an error where there's an empty slot with no huge pagecache
4865 		 * to back it.  This way, we avoid allocating a hugepage, and
4866 		 * the sparse dumpfile avoids allocating disk blocks, but its
4867 		 * huge holes still show up with zeroes where they need to be.
4868 		 */
4869 		if (absent && (flags & FOLL_DUMP) &&
4870 		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4871 			if (pte)
4872 				spin_unlock(ptl);
4873 			remainder = 0;
4874 			break;
4875 		}
4876 
4877 		/*
4878 		 * We need call hugetlb_fault for both hugepages under migration
4879 		 * (in which case hugetlb_fault waits for the migration,) and
4880 		 * hwpoisoned hugepages (in which case we need to prevent the
4881 		 * caller from accessing to them.) In order to do this, we use
4882 		 * here is_swap_pte instead of is_hugetlb_entry_migration and
4883 		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4884 		 * both cases, and because we can't follow correct pages
4885 		 * directly from any kind of swap entries.
4886 		 */
4887 		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4888 		    ((flags & FOLL_WRITE) &&
4889 		      !huge_pte_write(huge_ptep_get(pte)))) {
4890 			vm_fault_t ret;
4891 			unsigned int fault_flags = 0;
4892 
4893 			if (pte)
4894 				spin_unlock(ptl);
4895 			if (flags & FOLL_WRITE)
4896 				fault_flags |= FAULT_FLAG_WRITE;
4897 			if (locked)
4898 				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4899 					FAULT_FLAG_KILLABLE;
4900 			if (flags & FOLL_NOWAIT)
4901 				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4902 					FAULT_FLAG_RETRY_NOWAIT;
4903 			if (flags & FOLL_TRIED) {
4904 				/*
4905 				 * Note: FAULT_FLAG_ALLOW_RETRY and
4906 				 * FAULT_FLAG_TRIED can co-exist
4907 				 */
4908 				fault_flags |= FAULT_FLAG_TRIED;
4909 			}
4910 			ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4911 			if (ret & VM_FAULT_ERROR) {
4912 				err = vm_fault_to_errno(ret, flags);
4913 				remainder = 0;
4914 				break;
4915 			}
4916 			if (ret & VM_FAULT_RETRY) {
4917 				if (locked &&
4918 				    !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4919 					*locked = 0;
4920 				*nr_pages = 0;
4921 				/*
4922 				 * VM_FAULT_RETRY must not return an
4923 				 * error, it will return zero
4924 				 * instead.
4925 				 *
4926 				 * No need to update "position" as the
4927 				 * caller will not check it after
4928 				 * *nr_pages is set to 0.
4929 				 */
4930 				return i;
4931 			}
4932 			continue;
4933 		}
4934 
4935 		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4936 		page = pte_page(huge_ptep_get(pte));
4937 
4938 		/*
4939 		 * If subpage information not requested, update counters
4940 		 * and skip the same_page loop below.
4941 		 */
4942 		if (!pages && !vmas && !pfn_offset &&
4943 		    (vaddr + huge_page_size(h) < vma->vm_end) &&
4944 		    (remainder >= pages_per_huge_page(h))) {
4945 			vaddr += huge_page_size(h);
4946 			remainder -= pages_per_huge_page(h);
4947 			i += pages_per_huge_page(h);
4948 			spin_unlock(ptl);
4949 			continue;
4950 		}
4951 
4952 		refs = min3(pages_per_huge_page(h) - pfn_offset,
4953 			    (vma->vm_end - vaddr) >> PAGE_SHIFT, remainder);
4954 
4955 		if (pages || vmas)
4956 			record_subpages_vmas(mem_map_offset(page, pfn_offset),
4957 					     vma, refs,
4958 					     likely(pages) ? pages + i : NULL,
4959 					     vmas ? vmas + i : NULL);
4960 
4961 		if (pages) {
4962 			/*
4963 			 * try_grab_compound_head() should always succeed here,
4964 			 * because: a) we hold the ptl lock, and b) we've just
4965 			 * checked that the huge page is present in the page
4966 			 * tables. If the huge page is present, then the tail
4967 			 * pages must also be present. The ptl prevents the
4968 			 * head page and tail pages from being rearranged in
4969 			 * any way. So this page must be available at this
4970 			 * point, unless the page refcount overflowed:
4971 			 */
4972 			if (WARN_ON_ONCE(!try_grab_compound_head(pages[i],
4973 								 refs,
4974 								 flags))) {
4975 				spin_unlock(ptl);
4976 				remainder = 0;
4977 				err = -ENOMEM;
4978 				break;
4979 			}
4980 		}
4981 
4982 		vaddr += (refs << PAGE_SHIFT);
4983 		remainder -= refs;
4984 		i += refs;
4985 
4986 		spin_unlock(ptl);
4987 	}
4988 	*nr_pages = remainder;
4989 	/*
4990 	 * setting position is actually required only if remainder is
4991 	 * not zero but it's faster not to add a "if (remainder)"
4992 	 * branch.
4993 	 */
4994 	*position = vaddr;
4995 
4996 	return i ? i : err;
4997 }
4998 
4999 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
5000 /*
5001  * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
5002  * implement this.
5003  */
5004 #define flush_hugetlb_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
5005 #endif
5006 
5007 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
5008 		unsigned long address, unsigned long end, pgprot_t newprot)
5009 {
5010 	struct mm_struct *mm = vma->vm_mm;
5011 	unsigned long start = address;
5012 	pte_t *ptep;
5013 	pte_t pte;
5014 	struct hstate *h = hstate_vma(vma);
5015 	unsigned long pages = 0;
5016 	bool shared_pmd = false;
5017 	struct mmu_notifier_range range;
5018 
5019 	/*
5020 	 * In the case of shared PMDs, the area to flush could be beyond
5021 	 * start/end.  Set range.start/range.end to cover the maximum possible
5022 	 * range if PMD sharing is possible.
5023 	 */
5024 	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
5025 				0, vma, mm, start, end);
5026 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5027 
5028 	BUG_ON(address >= end);
5029 	flush_cache_range(vma, range.start, range.end);
5030 
5031 	mmu_notifier_invalidate_range_start(&range);
5032 	i_mmap_lock_write(vma->vm_file->f_mapping);
5033 	for (; address < end; address += huge_page_size(h)) {
5034 		spinlock_t *ptl;
5035 		ptep = huge_pte_offset(mm, address, huge_page_size(h));
5036 		if (!ptep)
5037 			continue;
5038 		ptl = huge_pte_lock(h, mm, ptep);
5039 		if (huge_pmd_unshare(mm, vma, &address, ptep)) {
5040 			pages++;
5041 			spin_unlock(ptl);
5042 			shared_pmd = true;
5043 			continue;
5044 		}
5045 		pte = huge_ptep_get(ptep);
5046 		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
5047 			spin_unlock(ptl);
5048 			continue;
5049 		}
5050 		if (unlikely(is_hugetlb_entry_migration(pte))) {
5051 			swp_entry_t entry = pte_to_swp_entry(pte);
5052 
5053 			if (is_write_migration_entry(entry)) {
5054 				pte_t newpte;
5055 
5056 				make_migration_entry_read(&entry);
5057 				newpte = swp_entry_to_pte(entry);
5058 				set_huge_swap_pte_at(mm, address, ptep,
5059 						     newpte, huge_page_size(h));
5060 				pages++;
5061 			}
5062 			spin_unlock(ptl);
5063 			continue;
5064 		}
5065 		if (!huge_pte_none(pte)) {
5066 			pte_t old_pte;
5067 
5068 			old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
5069 			pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
5070 			pte = arch_make_huge_pte(pte, vma, NULL, 0);
5071 			huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
5072 			pages++;
5073 		}
5074 		spin_unlock(ptl);
5075 	}
5076 	/*
5077 	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
5078 	 * may have cleared our pud entry and done put_page on the page table:
5079 	 * once we release i_mmap_rwsem, another task can do the final put_page
5080 	 * and that page table be reused and filled with junk.  If we actually
5081 	 * did unshare a page of pmds, flush the range corresponding to the pud.
5082 	 */
5083 	if (shared_pmd)
5084 		flush_hugetlb_tlb_range(vma, range.start, range.end);
5085 	else
5086 		flush_hugetlb_tlb_range(vma, start, end);
5087 	/*
5088 	 * No need to call mmu_notifier_invalidate_range() we are downgrading
5089 	 * page table protection not changing it to point to a new page.
5090 	 *
5091 	 * See Documentation/vm/mmu_notifier.rst
5092 	 */
5093 	i_mmap_unlock_write(vma->vm_file->f_mapping);
5094 	mmu_notifier_invalidate_range_end(&range);
5095 
5096 	return pages << h->order;
5097 }
5098 
5099 /* Return true if reservation was successful, false otherwise.  */
5100 bool hugetlb_reserve_pages(struct inode *inode,
5101 					long from, long to,
5102 					struct vm_area_struct *vma,
5103 					vm_flags_t vm_flags)
5104 {
5105 	long chg, add = -1;
5106 	struct hstate *h = hstate_inode(inode);
5107 	struct hugepage_subpool *spool = subpool_inode(inode);
5108 	struct resv_map *resv_map;
5109 	struct hugetlb_cgroup *h_cg = NULL;
5110 	long gbl_reserve, regions_needed = 0;
5111 
5112 	/* This should never happen */
5113 	if (from > to) {
5114 		VM_WARN(1, "%s called with a negative range\n", __func__);
5115 		return false;
5116 	}
5117 
5118 	/*
5119 	 * Only apply hugepage reservation if asked. At fault time, an
5120 	 * attempt will be made for VM_NORESERVE to allocate a page
5121 	 * without using reserves
5122 	 */
5123 	if (vm_flags & VM_NORESERVE)
5124 		return true;
5125 
5126 	/*
5127 	 * Shared mappings base their reservation on the number of pages that
5128 	 * are already allocated on behalf of the file. Private mappings need
5129 	 * to reserve the full area even if read-only as mprotect() may be
5130 	 * called to make the mapping read-write. Assume !vma is a shm mapping
5131 	 */
5132 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
5133 		/*
5134 		 * resv_map can not be NULL as hugetlb_reserve_pages is only
5135 		 * called for inodes for which resv_maps were created (see
5136 		 * hugetlbfs_get_inode).
5137 		 */
5138 		resv_map = inode_resv_map(inode);
5139 
5140 		chg = region_chg(resv_map, from, to, &regions_needed);
5141 
5142 	} else {
5143 		/* Private mapping. */
5144 		resv_map = resv_map_alloc();
5145 		if (!resv_map)
5146 			return false;
5147 
5148 		chg = to - from;
5149 
5150 		set_vma_resv_map(vma, resv_map);
5151 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
5152 	}
5153 
5154 	if (chg < 0)
5155 		goto out_err;
5156 
5157 	if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
5158 				chg * pages_per_huge_page(h), &h_cg) < 0)
5159 		goto out_err;
5160 
5161 	if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
5162 		/* For private mappings, the hugetlb_cgroup uncharge info hangs
5163 		 * of the resv_map.
5164 		 */
5165 		resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
5166 	}
5167 
5168 	/*
5169 	 * There must be enough pages in the subpool for the mapping. If
5170 	 * the subpool has a minimum size, there may be some global
5171 	 * reservations already in place (gbl_reserve).
5172 	 */
5173 	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
5174 	if (gbl_reserve < 0)
5175 		goto out_uncharge_cgroup;
5176 
5177 	/*
5178 	 * Check enough hugepages are available for the reservation.
5179 	 * Hand the pages back to the subpool if there are not
5180 	 */
5181 	if (hugetlb_acct_memory(h, gbl_reserve) < 0)
5182 		goto out_put_pages;
5183 
5184 	/*
5185 	 * Account for the reservations made. Shared mappings record regions
5186 	 * that have reservations as they are shared by multiple VMAs.
5187 	 * When the last VMA disappears, the region map says how much
5188 	 * the reservation was and the page cache tells how much of
5189 	 * the reservation was consumed. Private mappings are per-VMA and
5190 	 * only the consumed reservations are tracked. When the VMA
5191 	 * disappears, the original reservation is the VMA size and the
5192 	 * consumed reservations are stored in the map. Hence, nothing
5193 	 * else has to be done for private mappings here
5194 	 */
5195 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
5196 		add = region_add(resv_map, from, to, regions_needed, h, h_cg);
5197 
5198 		if (unlikely(add < 0)) {
5199 			hugetlb_acct_memory(h, -gbl_reserve);
5200 			goto out_put_pages;
5201 		} else if (unlikely(chg > add)) {
5202 			/*
5203 			 * pages in this range were added to the reserve
5204 			 * map between region_chg and region_add.  This
5205 			 * indicates a race with alloc_huge_page.  Adjust
5206 			 * the subpool and reserve counts modified above
5207 			 * based on the difference.
5208 			 */
5209 			long rsv_adjust;
5210 
5211 			/*
5212 			 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
5213 			 * reference to h_cg->css. See comment below for detail.
5214 			 */
5215 			hugetlb_cgroup_uncharge_cgroup_rsvd(
5216 				hstate_index(h),
5217 				(chg - add) * pages_per_huge_page(h), h_cg);
5218 
5219 			rsv_adjust = hugepage_subpool_put_pages(spool,
5220 								chg - add);
5221 			hugetlb_acct_memory(h, -rsv_adjust);
5222 		} else if (h_cg) {
5223 			/*
5224 			 * The file_regions will hold their own reference to
5225 			 * h_cg->css. So we should release the reference held
5226 			 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
5227 			 * done.
5228 			 */
5229 			hugetlb_cgroup_put_rsvd_cgroup(h_cg);
5230 		}
5231 	}
5232 	return true;
5233 
5234 out_put_pages:
5235 	/* put back original number of pages, chg */
5236 	(void)hugepage_subpool_put_pages(spool, chg);
5237 out_uncharge_cgroup:
5238 	hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
5239 					    chg * pages_per_huge_page(h), h_cg);
5240 out_err:
5241 	if (!vma || vma->vm_flags & VM_MAYSHARE)
5242 		/* Only call region_abort if the region_chg succeeded but the
5243 		 * region_add failed or didn't run.
5244 		 */
5245 		if (chg >= 0 && add < 0)
5246 			region_abort(resv_map, from, to, regions_needed);
5247 	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5248 		kref_put(&resv_map->refs, resv_map_release);
5249 	return false;
5250 }
5251 
5252 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
5253 								long freed)
5254 {
5255 	struct hstate *h = hstate_inode(inode);
5256 	struct resv_map *resv_map = inode_resv_map(inode);
5257 	long chg = 0;
5258 	struct hugepage_subpool *spool = subpool_inode(inode);
5259 	long gbl_reserve;
5260 
5261 	/*
5262 	 * Since this routine can be called in the evict inode path for all
5263 	 * hugetlbfs inodes, resv_map could be NULL.
5264 	 */
5265 	if (resv_map) {
5266 		chg = region_del(resv_map, start, end);
5267 		/*
5268 		 * region_del() can fail in the rare case where a region
5269 		 * must be split and another region descriptor can not be
5270 		 * allocated.  If end == LONG_MAX, it will not fail.
5271 		 */
5272 		if (chg < 0)
5273 			return chg;
5274 	}
5275 
5276 	spin_lock(&inode->i_lock);
5277 	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
5278 	spin_unlock(&inode->i_lock);
5279 
5280 	/*
5281 	 * If the subpool has a minimum size, the number of global
5282 	 * reservations to be released may be adjusted.
5283 	 */
5284 	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
5285 	hugetlb_acct_memory(h, -gbl_reserve);
5286 
5287 	return 0;
5288 }
5289 
5290 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
5291 static unsigned long page_table_shareable(struct vm_area_struct *svma,
5292 				struct vm_area_struct *vma,
5293 				unsigned long addr, pgoff_t idx)
5294 {
5295 	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
5296 				svma->vm_start;
5297 	unsigned long sbase = saddr & PUD_MASK;
5298 	unsigned long s_end = sbase + PUD_SIZE;
5299 
5300 	/* Allow segments to share if only one is marked locked */
5301 	unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
5302 	unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
5303 
5304 	/*
5305 	 * match the virtual addresses, permission and the alignment of the
5306 	 * page table page.
5307 	 */
5308 	if (pmd_index(addr) != pmd_index(saddr) ||
5309 	    vm_flags != svm_flags ||
5310 	    !range_in_vma(svma, sbase, s_end))
5311 		return 0;
5312 
5313 	return saddr;
5314 }
5315 
5316 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
5317 {
5318 	unsigned long base = addr & PUD_MASK;
5319 	unsigned long end = base + PUD_SIZE;
5320 
5321 	/*
5322 	 * check on proper vm_flags and page table alignment
5323 	 */
5324 	if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
5325 		return true;
5326 	return false;
5327 }
5328 
5329 /*
5330  * Determine if start,end range within vma could be mapped by shared pmd.
5331  * If yes, adjust start and end to cover range associated with possible
5332  * shared pmd mappings.
5333  */
5334 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5335 				unsigned long *start, unsigned long *end)
5336 {
5337 	unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
5338 		v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
5339 
5340 	/*
5341 	 * vma need span at least one aligned PUD size and the start,end range
5342 	 * must at least partialy within it.
5343 	 */
5344 	if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
5345 		(*end <= v_start) || (*start >= v_end))
5346 		return;
5347 
5348 	/* Extend the range to be PUD aligned for a worst case scenario */
5349 	if (*start > v_start)
5350 		*start = ALIGN_DOWN(*start, PUD_SIZE);
5351 
5352 	if (*end < v_end)
5353 		*end = ALIGN(*end, PUD_SIZE);
5354 }
5355 
5356 /*
5357  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
5358  * and returns the corresponding pte. While this is not necessary for the
5359  * !shared pmd case because we can allocate the pmd later as well, it makes the
5360  * code much cleaner.
5361  *
5362  * This routine must be called with i_mmap_rwsem held in at least read mode if
5363  * sharing is possible.  For hugetlbfs, this prevents removal of any page
5364  * table entries associated with the address space.  This is important as we
5365  * are setting up sharing based on existing page table entries (mappings).
5366  *
5367  * NOTE: This routine is only called from huge_pte_alloc.  Some callers of
5368  * huge_pte_alloc know that sharing is not possible and do not take
5369  * i_mmap_rwsem as a performance optimization.  This is handled by the
5370  * if !vma_shareable check at the beginning of the routine. i_mmap_rwsem is
5371  * only required for subsequent processing.
5372  */
5373 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
5374 {
5375 	struct vm_area_struct *vma = find_vma(mm, addr);
5376 	struct address_space *mapping = vma->vm_file->f_mapping;
5377 	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
5378 			vma->vm_pgoff;
5379 	struct vm_area_struct *svma;
5380 	unsigned long saddr;
5381 	pte_t *spte = NULL;
5382 	pte_t *pte;
5383 	spinlock_t *ptl;
5384 
5385 	if (!vma_shareable(vma, addr))
5386 		return (pte_t *)pmd_alloc(mm, pud, addr);
5387 
5388 	i_mmap_assert_locked(mapping);
5389 	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
5390 		if (svma == vma)
5391 			continue;
5392 
5393 		saddr = page_table_shareable(svma, vma, addr, idx);
5394 		if (saddr) {
5395 			spte = huge_pte_offset(svma->vm_mm, saddr,
5396 					       vma_mmu_pagesize(svma));
5397 			if (spte) {
5398 				get_page(virt_to_page(spte));
5399 				break;
5400 			}
5401 		}
5402 	}
5403 
5404 	if (!spte)
5405 		goto out;
5406 
5407 	ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
5408 	if (pud_none(*pud)) {
5409 		pud_populate(mm, pud,
5410 				(pmd_t *)((unsigned long)spte & PAGE_MASK));
5411 		mm_inc_nr_pmds(mm);
5412 	} else {
5413 		put_page(virt_to_page(spte));
5414 	}
5415 	spin_unlock(ptl);
5416 out:
5417 	pte = (pte_t *)pmd_alloc(mm, pud, addr);
5418 	return pte;
5419 }
5420 
5421 /*
5422  * unmap huge page backed by shared pte.
5423  *
5424  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
5425  * indicated by page_count > 1, unmap is achieved by clearing pud and
5426  * decrementing the ref count. If count == 1, the pte page is not shared.
5427  *
5428  * Called with page table lock held and i_mmap_rwsem held in write mode.
5429  *
5430  * returns: 1 successfully unmapped a shared pte page
5431  *	    0 the underlying pte page is not shared, or it is the last user
5432  */
5433 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5434 					unsigned long *addr, pte_t *ptep)
5435 {
5436 	pgd_t *pgd = pgd_offset(mm, *addr);
5437 	p4d_t *p4d = p4d_offset(pgd, *addr);
5438 	pud_t *pud = pud_offset(p4d, *addr);
5439 
5440 	i_mmap_assert_write_locked(vma->vm_file->f_mapping);
5441 	BUG_ON(page_count(virt_to_page(ptep)) == 0);
5442 	if (page_count(virt_to_page(ptep)) == 1)
5443 		return 0;
5444 
5445 	pud_clear(pud);
5446 	put_page(virt_to_page(ptep));
5447 	mm_dec_nr_pmds(mm);
5448 	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
5449 	return 1;
5450 }
5451 #define want_pmd_share()	(1)
5452 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5453 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
5454 {
5455 	return NULL;
5456 }
5457 
5458 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5459 				unsigned long *addr, pte_t *ptep)
5460 {
5461 	return 0;
5462 }
5463 
5464 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5465 				unsigned long *start, unsigned long *end)
5466 {
5467 }
5468 #define want_pmd_share()	(0)
5469 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5470 
5471 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
5472 pte_t *huge_pte_alloc(struct mm_struct *mm,
5473 			unsigned long addr, unsigned long sz)
5474 {
5475 	pgd_t *pgd;
5476 	p4d_t *p4d;
5477 	pud_t *pud;
5478 	pte_t *pte = NULL;
5479 
5480 	pgd = pgd_offset(mm, addr);
5481 	p4d = p4d_alloc(mm, pgd, addr);
5482 	if (!p4d)
5483 		return NULL;
5484 	pud = pud_alloc(mm, p4d, addr);
5485 	if (pud) {
5486 		if (sz == PUD_SIZE) {
5487 			pte = (pte_t *)pud;
5488 		} else {
5489 			BUG_ON(sz != PMD_SIZE);
5490 			if (want_pmd_share() && pud_none(*pud))
5491 				pte = huge_pmd_share(mm, addr, pud);
5492 			else
5493 				pte = (pte_t *)pmd_alloc(mm, pud, addr);
5494 		}
5495 	}
5496 	BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
5497 
5498 	return pte;
5499 }
5500 
5501 /*
5502  * huge_pte_offset() - Walk the page table to resolve the hugepage
5503  * entry at address @addr
5504  *
5505  * Return: Pointer to page table entry (PUD or PMD) for
5506  * address @addr, or NULL if a !p*d_present() entry is encountered and the
5507  * size @sz doesn't match the hugepage size at this level of the page
5508  * table.
5509  */
5510 pte_t *huge_pte_offset(struct mm_struct *mm,
5511 		       unsigned long addr, unsigned long sz)
5512 {
5513 	pgd_t *pgd;
5514 	p4d_t *p4d;
5515 	pud_t *pud;
5516 	pmd_t *pmd;
5517 
5518 	pgd = pgd_offset(mm, addr);
5519 	if (!pgd_present(*pgd))
5520 		return NULL;
5521 	p4d = p4d_offset(pgd, addr);
5522 	if (!p4d_present(*p4d))
5523 		return NULL;
5524 
5525 	pud = pud_offset(p4d, addr);
5526 	if (sz == PUD_SIZE)
5527 		/* must be pud huge, non-present or none */
5528 		return (pte_t *)pud;
5529 	if (!pud_present(*pud))
5530 		return NULL;
5531 	/* must have a valid entry and size to go further */
5532 
5533 	pmd = pmd_offset(pud, addr);
5534 	/* must be pmd huge, non-present or none */
5535 	return (pte_t *)pmd;
5536 }
5537 
5538 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
5539 
5540 /*
5541  * These functions are overwritable if your architecture needs its own
5542  * behavior.
5543  */
5544 struct page * __weak
5545 follow_huge_addr(struct mm_struct *mm, unsigned long address,
5546 			      int write)
5547 {
5548 	return ERR_PTR(-EINVAL);
5549 }
5550 
5551 struct page * __weak
5552 follow_huge_pd(struct vm_area_struct *vma,
5553 	       unsigned long address, hugepd_t hpd, int flags, int pdshift)
5554 {
5555 	WARN(1, "hugepd follow called with no support for hugepage directory format\n");
5556 	return NULL;
5557 }
5558 
5559 struct page * __weak
5560 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
5561 		pmd_t *pmd, int flags)
5562 {
5563 	struct page *page = NULL;
5564 	spinlock_t *ptl;
5565 	pte_t pte;
5566 
5567 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
5568 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
5569 			 (FOLL_PIN | FOLL_GET)))
5570 		return NULL;
5571 
5572 retry:
5573 	ptl = pmd_lockptr(mm, pmd);
5574 	spin_lock(ptl);
5575 	/*
5576 	 * make sure that the address range covered by this pmd is not
5577 	 * unmapped from other threads.
5578 	 */
5579 	if (!pmd_huge(*pmd))
5580 		goto out;
5581 	pte = huge_ptep_get((pte_t *)pmd);
5582 	if (pte_present(pte)) {
5583 		page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
5584 		/*
5585 		 * try_grab_page() should always succeed here, because: a) we
5586 		 * hold the pmd (ptl) lock, and b) we've just checked that the
5587 		 * huge pmd (head) page is present in the page tables. The ptl
5588 		 * prevents the head page and tail pages from being rearranged
5589 		 * in any way. So this page must be available at this point,
5590 		 * unless the page refcount overflowed:
5591 		 */
5592 		if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
5593 			page = NULL;
5594 			goto out;
5595 		}
5596 	} else {
5597 		if (is_hugetlb_entry_migration(pte)) {
5598 			spin_unlock(ptl);
5599 			__migration_entry_wait(mm, (pte_t *)pmd, ptl);
5600 			goto retry;
5601 		}
5602 		/*
5603 		 * hwpoisoned entry is treated as no_page_table in
5604 		 * follow_page_mask().
5605 		 */
5606 	}
5607 out:
5608 	spin_unlock(ptl);
5609 	return page;
5610 }
5611 
5612 struct page * __weak
5613 follow_huge_pud(struct mm_struct *mm, unsigned long address,
5614 		pud_t *pud, int flags)
5615 {
5616 	if (flags & (FOLL_GET | FOLL_PIN))
5617 		return NULL;
5618 
5619 	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
5620 }
5621 
5622 struct page * __weak
5623 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
5624 {
5625 	if (flags & (FOLL_GET | FOLL_PIN))
5626 		return NULL;
5627 
5628 	return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
5629 }
5630 
5631 bool isolate_huge_page(struct page *page, struct list_head *list)
5632 {
5633 	bool ret = true;
5634 
5635 	spin_lock(&hugetlb_lock);
5636 	if (!PageHeadHuge(page) ||
5637 	    !HPageMigratable(page) ||
5638 	    !get_page_unless_zero(page)) {
5639 		ret = false;
5640 		goto unlock;
5641 	}
5642 	ClearHPageMigratable(page);
5643 	list_move_tail(&page->lru, list);
5644 unlock:
5645 	spin_unlock(&hugetlb_lock);
5646 	return ret;
5647 }
5648 
5649 void putback_active_hugepage(struct page *page)
5650 {
5651 	spin_lock(&hugetlb_lock);
5652 	SetHPageMigratable(page);
5653 	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
5654 	spin_unlock(&hugetlb_lock);
5655 	put_page(page);
5656 }
5657 
5658 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
5659 {
5660 	struct hstate *h = page_hstate(oldpage);
5661 
5662 	hugetlb_cgroup_migrate(oldpage, newpage);
5663 	set_page_owner_migrate_reason(newpage, reason);
5664 
5665 	/*
5666 	 * transfer temporary state of the new huge page. This is
5667 	 * reverse to other transitions because the newpage is going to
5668 	 * be final while the old one will be freed so it takes over
5669 	 * the temporary status.
5670 	 *
5671 	 * Also note that we have to transfer the per-node surplus state
5672 	 * here as well otherwise the global surplus count will not match
5673 	 * the per-node's.
5674 	 */
5675 	if (HPageTemporary(newpage)) {
5676 		int old_nid = page_to_nid(oldpage);
5677 		int new_nid = page_to_nid(newpage);
5678 
5679 		SetHPageTemporary(oldpage);
5680 		ClearHPageTemporary(newpage);
5681 
5682 		spin_lock(&hugetlb_lock);
5683 		if (h->surplus_huge_pages_node[old_nid]) {
5684 			h->surplus_huge_pages_node[old_nid]--;
5685 			h->surplus_huge_pages_node[new_nid]++;
5686 		}
5687 		spin_unlock(&hugetlb_lock);
5688 	}
5689 }
5690 
5691 #ifdef CONFIG_CMA
5692 static bool cma_reserve_called __initdata;
5693 
5694 static int __init cmdline_parse_hugetlb_cma(char *p)
5695 {
5696 	hugetlb_cma_size = memparse(p, &p);
5697 	return 0;
5698 }
5699 
5700 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
5701 
5702 void __init hugetlb_cma_reserve(int order)
5703 {
5704 	unsigned long size, reserved, per_node;
5705 	int nid;
5706 
5707 	cma_reserve_called = true;
5708 
5709 	if (!hugetlb_cma_size)
5710 		return;
5711 
5712 	if (hugetlb_cma_size < (PAGE_SIZE << order)) {
5713 		pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
5714 			(PAGE_SIZE << order) / SZ_1M);
5715 		return;
5716 	}
5717 
5718 	/*
5719 	 * If 3 GB area is requested on a machine with 4 numa nodes,
5720 	 * let's allocate 1 GB on first three nodes and ignore the last one.
5721 	 */
5722 	per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
5723 	pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
5724 		hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
5725 
5726 	reserved = 0;
5727 	for_each_node_state(nid, N_ONLINE) {
5728 		int res;
5729 		char name[CMA_MAX_NAME];
5730 
5731 		size = min(per_node, hugetlb_cma_size - reserved);
5732 		size = round_up(size, PAGE_SIZE << order);
5733 
5734 		snprintf(name, sizeof(name), "hugetlb%d", nid);
5735 		res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order,
5736 						 0, false, name,
5737 						 &hugetlb_cma[nid], nid);
5738 		if (res) {
5739 			pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
5740 				res, nid);
5741 			continue;
5742 		}
5743 
5744 		reserved += size;
5745 		pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
5746 			size / SZ_1M, nid);
5747 
5748 		if (reserved >= hugetlb_cma_size)
5749 			break;
5750 	}
5751 }
5752 
5753 void __init hugetlb_cma_check(void)
5754 {
5755 	if (!hugetlb_cma_size || cma_reserve_called)
5756 		return;
5757 
5758 	pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
5759 }
5760 
5761 #endif /* CONFIG_CMA */
5762