1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic hugetlb support. 4 * (C) Nadia Yvette Chambers, April 2004 5 */ 6 #include <linux/list.h> 7 #include <linux/init.h> 8 #include <linux/mm.h> 9 #include <linux/seq_file.h> 10 #include <linux/sysctl.h> 11 #include <linux/highmem.h> 12 #include <linux/mmu_notifier.h> 13 #include <linux/nodemask.h> 14 #include <linux/pagemap.h> 15 #include <linux/mempolicy.h> 16 #include <linux/compiler.h> 17 #include <linux/cpuset.h> 18 #include <linux/mutex.h> 19 #include <linux/memblock.h> 20 #include <linux/sysfs.h> 21 #include <linux/slab.h> 22 #include <linux/sched/mm.h> 23 #include <linux/mmdebug.h> 24 #include <linux/sched/signal.h> 25 #include <linux/rmap.h> 26 #include <linux/string_helpers.h> 27 #include <linux/swap.h> 28 #include <linux/swapops.h> 29 #include <linux/jhash.h> 30 #include <linux/numa.h> 31 #include <linux/llist.h> 32 #include <linux/cma.h> 33 34 #include <asm/page.h> 35 #include <asm/pgalloc.h> 36 #include <asm/tlb.h> 37 38 #include <linux/io.h> 39 #include <linux/hugetlb.h> 40 #include <linux/hugetlb_cgroup.h> 41 #include <linux/node.h> 42 #include <linux/userfaultfd_k.h> 43 #include <linux/page_owner.h> 44 #include "internal.h" 45 46 int hugetlb_max_hstate __read_mostly; 47 unsigned int default_hstate_idx; 48 struct hstate hstates[HUGE_MAX_HSTATE]; 49 50 #ifdef CONFIG_CMA 51 static struct cma *hugetlb_cma[MAX_NUMNODES]; 52 #endif 53 static unsigned long hugetlb_cma_size __initdata; 54 55 /* 56 * Minimum page order among possible hugepage sizes, set to a proper value 57 * at boot time. 58 */ 59 static unsigned int minimum_order __read_mostly = UINT_MAX; 60 61 __initdata LIST_HEAD(huge_boot_pages); 62 63 /* for command line parsing */ 64 static struct hstate * __initdata parsed_hstate; 65 static unsigned long __initdata default_hstate_max_huge_pages; 66 static bool __initdata parsed_valid_hugepagesz = true; 67 static bool __initdata parsed_default_hugepagesz; 68 69 /* 70 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages, 71 * free_huge_pages, and surplus_huge_pages. 72 */ 73 DEFINE_SPINLOCK(hugetlb_lock); 74 75 /* 76 * Serializes faults on the same logical page. This is used to 77 * prevent spurious OOMs when the hugepage pool is fully utilized. 78 */ 79 static int num_fault_mutexes; 80 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp; 81 82 /* Forward declaration */ 83 static int hugetlb_acct_memory(struct hstate *h, long delta); 84 85 static inline bool subpool_is_free(struct hugepage_subpool *spool) 86 { 87 if (spool->count) 88 return false; 89 if (spool->max_hpages != -1) 90 return spool->used_hpages == 0; 91 if (spool->min_hpages != -1) 92 return spool->rsv_hpages == spool->min_hpages; 93 94 return true; 95 } 96 97 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool) 98 { 99 spin_unlock(&spool->lock); 100 101 /* If no pages are used, and no other handles to the subpool 102 * remain, give up any reservations based on minimum size and 103 * free the subpool */ 104 if (subpool_is_free(spool)) { 105 if (spool->min_hpages != -1) 106 hugetlb_acct_memory(spool->hstate, 107 -spool->min_hpages); 108 kfree(spool); 109 } 110 } 111 112 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages, 113 long min_hpages) 114 { 115 struct hugepage_subpool *spool; 116 117 spool = kzalloc(sizeof(*spool), GFP_KERNEL); 118 if (!spool) 119 return NULL; 120 121 spin_lock_init(&spool->lock); 122 spool->count = 1; 123 spool->max_hpages = max_hpages; 124 spool->hstate = h; 125 spool->min_hpages = min_hpages; 126 127 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) { 128 kfree(spool); 129 return NULL; 130 } 131 spool->rsv_hpages = min_hpages; 132 133 return spool; 134 } 135 136 void hugepage_put_subpool(struct hugepage_subpool *spool) 137 { 138 spin_lock(&spool->lock); 139 BUG_ON(!spool->count); 140 spool->count--; 141 unlock_or_release_subpool(spool); 142 } 143 144 /* 145 * Subpool accounting for allocating and reserving pages. 146 * Return -ENOMEM if there are not enough resources to satisfy the 147 * request. Otherwise, return the number of pages by which the 148 * global pools must be adjusted (upward). The returned value may 149 * only be different than the passed value (delta) in the case where 150 * a subpool minimum size must be maintained. 151 */ 152 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool, 153 long delta) 154 { 155 long ret = delta; 156 157 if (!spool) 158 return ret; 159 160 spin_lock(&spool->lock); 161 162 if (spool->max_hpages != -1) { /* maximum size accounting */ 163 if ((spool->used_hpages + delta) <= spool->max_hpages) 164 spool->used_hpages += delta; 165 else { 166 ret = -ENOMEM; 167 goto unlock_ret; 168 } 169 } 170 171 /* minimum size accounting */ 172 if (spool->min_hpages != -1 && spool->rsv_hpages) { 173 if (delta > spool->rsv_hpages) { 174 /* 175 * Asking for more reserves than those already taken on 176 * behalf of subpool. Return difference. 177 */ 178 ret = delta - spool->rsv_hpages; 179 spool->rsv_hpages = 0; 180 } else { 181 ret = 0; /* reserves already accounted for */ 182 spool->rsv_hpages -= delta; 183 } 184 } 185 186 unlock_ret: 187 spin_unlock(&spool->lock); 188 return ret; 189 } 190 191 /* 192 * Subpool accounting for freeing and unreserving pages. 193 * Return the number of global page reservations that must be dropped. 194 * The return value may only be different than the passed value (delta) 195 * in the case where a subpool minimum size must be maintained. 196 */ 197 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool, 198 long delta) 199 { 200 long ret = delta; 201 202 if (!spool) 203 return delta; 204 205 spin_lock(&spool->lock); 206 207 if (spool->max_hpages != -1) /* maximum size accounting */ 208 spool->used_hpages -= delta; 209 210 /* minimum size accounting */ 211 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) { 212 if (spool->rsv_hpages + delta <= spool->min_hpages) 213 ret = 0; 214 else 215 ret = spool->rsv_hpages + delta - spool->min_hpages; 216 217 spool->rsv_hpages += delta; 218 if (spool->rsv_hpages > spool->min_hpages) 219 spool->rsv_hpages = spool->min_hpages; 220 } 221 222 /* 223 * If hugetlbfs_put_super couldn't free spool due to an outstanding 224 * quota reference, free it now. 225 */ 226 unlock_or_release_subpool(spool); 227 228 return ret; 229 } 230 231 static inline struct hugepage_subpool *subpool_inode(struct inode *inode) 232 { 233 return HUGETLBFS_SB(inode->i_sb)->spool; 234 } 235 236 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma) 237 { 238 return subpool_inode(file_inode(vma->vm_file)); 239 } 240 241 /* Helper that removes a struct file_region from the resv_map cache and returns 242 * it for use. 243 */ 244 static struct file_region * 245 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to) 246 { 247 struct file_region *nrg = NULL; 248 249 VM_BUG_ON(resv->region_cache_count <= 0); 250 251 resv->region_cache_count--; 252 nrg = list_first_entry(&resv->region_cache, struct file_region, link); 253 list_del(&nrg->link); 254 255 nrg->from = from; 256 nrg->to = to; 257 258 return nrg; 259 } 260 261 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg, 262 struct file_region *rg) 263 { 264 #ifdef CONFIG_CGROUP_HUGETLB 265 nrg->reservation_counter = rg->reservation_counter; 266 nrg->css = rg->css; 267 if (rg->css) 268 css_get(rg->css); 269 #endif 270 } 271 272 /* Helper that records hugetlb_cgroup uncharge info. */ 273 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg, 274 struct hstate *h, 275 struct resv_map *resv, 276 struct file_region *nrg) 277 { 278 #ifdef CONFIG_CGROUP_HUGETLB 279 if (h_cg) { 280 nrg->reservation_counter = 281 &h_cg->rsvd_hugepage[hstate_index(h)]; 282 nrg->css = &h_cg->css; 283 /* 284 * The caller will hold exactly one h_cg->css reference for the 285 * whole contiguous reservation region. But this area might be 286 * scattered when there are already some file_regions reside in 287 * it. As a result, many file_regions may share only one css 288 * reference. In order to ensure that one file_region must hold 289 * exactly one h_cg->css reference, we should do css_get for 290 * each file_region and leave the reference held by caller 291 * untouched. 292 */ 293 css_get(&h_cg->css); 294 if (!resv->pages_per_hpage) 295 resv->pages_per_hpage = pages_per_huge_page(h); 296 /* pages_per_hpage should be the same for all entries in 297 * a resv_map. 298 */ 299 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h)); 300 } else { 301 nrg->reservation_counter = NULL; 302 nrg->css = NULL; 303 } 304 #endif 305 } 306 307 static void put_uncharge_info(struct file_region *rg) 308 { 309 #ifdef CONFIG_CGROUP_HUGETLB 310 if (rg->css) 311 css_put(rg->css); 312 #endif 313 } 314 315 static bool has_same_uncharge_info(struct file_region *rg, 316 struct file_region *org) 317 { 318 #ifdef CONFIG_CGROUP_HUGETLB 319 return rg && org && 320 rg->reservation_counter == org->reservation_counter && 321 rg->css == org->css; 322 323 #else 324 return true; 325 #endif 326 } 327 328 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg) 329 { 330 struct file_region *nrg = NULL, *prg = NULL; 331 332 prg = list_prev_entry(rg, link); 333 if (&prg->link != &resv->regions && prg->to == rg->from && 334 has_same_uncharge_info(prg, rg)) { 335 prg->to = rg->to; 336 337 list_del(&rg->link); 338 put_uncharge_info(rg); 339 kfree(rg); 340 341 rg = prg; 342 } 343 344 nrg = list_next_entry(rg, link); 345 if (&nrg->link != &resv->regions && nrg->from == rg->to && 346 has_same_uncharge_info(nrg, rg)) { 347 nrg->from = rg->from; 348 349 list_del(&rg->link); 350 put_uncharge_info(rg); 351 kfree(rg); 352 } 353 } 354 355 static inline long 356 hugetlb_resv_map_add(struct resv_map *map, struct file_region *rg, long from, 357 long to, struct hstate *h, struct hugetlb_cgroup *cg, 358 long *regions_needed) 359 { 360 struct file_region *nrg; 361 362 if (!regions_needed) { 363 nrg = get_file_region_entry_from_cache(map, from, to); 364 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg); 365 list_add(&nrg->link, rg->link.prev); 366 coalesce_file_region(map, nrg); 367 } else 368 *regions_needed += 1; 369 370 return to - from; 371 } 372 373 /* 374 * Must be called with resv->lock held. 375 * 376 * Calling this with regions_needed != NULL will count the number of pages 377 * to be added but will not modify the linked list. And regions_needed will 378 * indicate the number of file_regions needed in the cache to carry out to add 379 * the regions for this range. 380 */ 381 static long add_reservation_in_range(struct resv_map *resv, long f, long t, 382 struct hugetlb_cgroup *h_cg, 383 struct hstate *h, long *regions_needed) 384 { 385 long add = 0; 386 struct list_head *head = &resv->regions; 387 long last_accounted_offset = f; 388 struct file_region *rg = NULL, *trg = NULL; 389 390 if (regions_needed) 391 *regions_needed = 0; 392 393 /* In this loop, we essentially handle an entry for the range 394 * [last_accounted_offset, rg->from), at every iteration, with some 395 * bounds checking. 396 */ 397 list_for_each_entry_safe(rg, trg, head, link) { 398 /* Skip irrelevant regions that start before our range. */ 399 if (rg->from < f) { 400 /* If this region ends after the last accounted offset, 401 * then we need to update last_accounted_offset. 402 */ 403 if (rg->to > last_accounted_offset) 404 last_accounted_offset = rg->to; 405 continue; 406 } 407 408 /* When we find a region that starts beyond our range, we've 409 * finished. 410 */ 411 if (rg->from >= t) 412 break; 413 414 /* Add an entry for last_accounted_offset -> rg->from, and 415 * update last_accounted_offset. 416 */ 417 if (rg->from > last_accounted_offset) 418 add += hugetlb_resv_map_add(resv, rg, 419 last_accounted_offset, 420 rg->from, h, h_cg, 421 regions_needed); 422 423 last_accounted_offset = rg->to; 424 } 425 426 /* Handle the case where our range extends beyond 427 * last_accounted_offset. 428 */ 429 if (last_accounted_offset < t) 430 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset, 431 t, h, h_cg, regions_needed); 432 433 VM_BUG_ON(add < 0); 434 return add; 435 } 436 437 /* Must be called with resv->lock acquired. Will drop lock to allocate entries. 438 */ 439 static int allocate_file_region_entries(struct resv_map *resv, 440 int regions_needed) 441 __must_hold(&resv->lock) 442 { 443 struct list_head allocated_regions; 444 int to_allocate = 0, i = 0; 445 struct file_region *trg = NULL, *rg = NULL; 446 447 VM_BUG_ON(regions_needed < 0); 448 449 INIT_LIST_HEAD(&allocated_regions); 450 451 /* 452 * Check for sufficient descriptors in the cache to accommodate 453 * the number of in progress add operations plus regions_needed. 454 * 455 * This is a while loop because when we drop the lock, some other call 456 * to region_add or region_del may have consumed some region_entries, 457 * so we keep looping here until we finally have enough entries for 458 * (adds_in_progress + regions_needed). 459 */ 460 while (resv->region_cache_count < 461 (resv->adds_in_progress + regions_needed)) { 462 to_allocate = resv->adds_in_progress + regions_needed - 463 resv->region_cache_count; 464 465 /* At this point, we should have enough entries in the cache 466 * for all the existings adds_in_progress. We should only be 467 * needing to allocate for regions_needed. 468 */ 469 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress); 470 471 spin_unlock(&resv->lock); 472 for (i = 0; i < to_allocate; i++) { 473 trg = kmalloc(sizeof(*trg), GFP_KERNEL); 474 if (!trg) 475 goto out_of_memory; 476 list_add(&trg->link, &allocated_regions); 477 } 478 479 spin_lock(&resv->lock); 480 481 list_splice(&allocated_regions, &resv->region_cache); 482 resv->region_cache_count += to_allocate; 483 } 484 485 return 0; 486 487 out_of_memory: 488 list_for_each_entry_safe(rg, trg, &allocated_regions, link) { 489 list_del(&rg->link); 490 kfree(rg); 491 } 492 return -ENOMEM; 493 } 494 495 /* 496 * Add the huge page range represented by [f, t) to the reserve 497 * map. Regions will be taken from the cache to fill in this range. 498 * Sufficient regions should exist in the cache due to the previous 499 * call to region_chg with the same range, but in some cases the cache will not 500 * have sufficient entries due to races with other code doing region_add or 501 * region_del. The extra needed entries will be allocated. 502 * 503 * regions_needed is the out value provided by a previous call to region_chg. 504 * 505 * Return the number of new huge pages added to the map. This number is greater 506 * than or equal to zero. If file_region entries needed to be allocated for 507 * this operation and we were not able to allocate, it returns -ENOMEM. 508 * region_add of regions of length 1 never allocate file_regions and cannot 509 * fail; region_chg will always allocate at least 1 entry and a region_add for 510 * 1 page will only require at most 1 entry. 511 */ 512 static long region_add(struct resv_map *resv, long f, long t, 513 long in_regions_needed, struct hstate *h, 514 struct hugetlb_cgroup *h_cg) 515 { 516 long add = 0, actual_regions_needed = 0; 517 518 spin_lock(&resv->lock); 519 retry: 520 521 /* Count how many regions are actually needed to execute this add. */ 522 add_reservation_in_range(resv, f, t, NULL, NULL, 523 &actual_regions_needed); 524 525 /* 526 * Check for sufficient descriptors in the cache to accommodate 527 * this add operation. Note that actual_regions_needed may be greater 528 * than in_regions_needed, as the resv_map may have been modified since 529 * the region_chg call. In this case, we need to make sure that we 530 * allocate extra entries, such that we have enough for all the 531 * existing adds_in_progress, plus the excess needed for this 532 * operation. 533 */ 534 if (actual_regions_needed > in_regions_needed && 535 resv->region_cache_count < 536 resv->adds_in_progress + 537 (actual_regions_needed - in_regions_needed)) { 538 /* region_add operation of range 1 should never need to 539 * allocate file_region entries. 540 */ 541 VM_BUG_ON(t - f <= 1); 542 543 if (allocate_file_region_entries( 544 resv, actual_regions_needed - in_regions_needed)) { 545 return -ENOMEM; 546 } 547 548 goto retry; 549 } 550 551 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL); 552 553 resv->adds_in_progress -= in_regions_needed; 554 555 spin_unlock(&resv->lock); 556 VM_BUG_ON(add < 0); 557 return add; 558 } 559 560 /* 561 * Examine the existing reserve map and determine how many 562 * huge pages in the specified range [f, t) are NOT currently 563 * represented. This routine is called before a subsequent 564 * call to region_add that will actually modify the reserve 565 * map to add the specified range [f, t). region_chg does 566 * not change the number of huge pages represented by the 567 * map. A number of new file_region structures is added to the cache as a 568 * placeholder, for the subsequent region_add call to use. At least 1 569 * file_region structure is added. 570 * 571 * out_regions_needed is the number of regions added to the 572 * resv->adds_in_progress. This value needs to be provided to a follow up call 573 * to region_add or region_abort for proper accounting. 574 * 575 * Returns the number of huge pages that need to be added to the existing 576 * reservation map for the range [f, t). This number is greater or equal to 577 * zero. -ENOMEM is returned if a new file_region structure or cache entry 578 * is needed and can not be allocated. 579 */ 580 static long region_chg(struct resv_map *resv, long f, long t, 581 long *out_regions_needed) 582 { 583 long chg = 0; 584 585 spin_lock(&resv->lock); 586 587 /* Count how many hugepages in this range are NOT represented. */ 588 chg = add_reservation_in_range(resv, f, t, NULL, NULL, 589 out_regions_needed); 590 591 if (*out_regions_needed == 0) 592 *out_regions_needed = 1; 593 594 if (allocate_file_region_entries(resv, *out_regions_needed)) 595 return -ENOMEM; 596 597 resv->adds_in_progress += *out_regions_needed; 598 599 spin_unlock(&resv->lock); 600 return chg; 601 } 602 603 /* 604 * Abort the in progress add operation. The adds_in_progress field 605 * of the resv_map keeps track of the operations in progress between 606 * calls to region_chg and region_add. Operations are sometimes 607 * aborted after the call to region_chg. In such cases, region_abort 608 * is called to decrement the adds_in_progress counter. regions_needed 609 * is the value returned by the region_chg call, it is used to decrement 610 * the adds_in_progress counter. 611 * 612 * NOTE: The range arguments [f, t) are not needed or used in this 613 * routine. They are kept to make reading the calling code easier as 614 * arguments will match the associated region_chg call. 615 */ 616 static void region_abort(struct resv_map *resv, long f, long t, 617 long regions_needed) 618 { 619 spin_lock(&resv->lock); 620 VM_BUG_ON(!resv->region_cache_count); 621 resv->adds_in_progress -= regions_needed; 622 spin_unlock(&resv->lock); 623 } 624 625 /* 626 * Delete the specified range [f, t) from the reserve map. If the 627 * t parameter is LONG_MAX, this indicates that ALL regions after f 628 * should be deleted. Locate the regions which intersect [f, t) 629 * and either trim, delete or split the existing regions. 630 * 631 * Returns the number of huge pages deleted from the reserve map. 632 * In the normal case, the return value is zero or more. In the 633 * case where a region must be split, a new region descriptor must 634 * be allocated. If the allocation fails, -ENOMEM will be returned. 635 * NOTE: If the parameter t == LONG_MAX, then we will never split 636 * a region and possibly return -ENOMEM. Callers specifying 637 * t == LONG_MAX do not need to check for -ENOMEM error. 638 */ 639 static long region_del(struct resv_map *resv, long f, long t) 640 { 641 struct list_head *head = &resv->regions; 642 struct file_region *rg, *trg; 643 struct file_region *nrg = NULL; 644 long del = 0; 645 646 retry: 647 spin_lock(&resv->lock); 648 list_for_each_entry_safe(rg, trg, head, link) { 649 /* 650 * Skip regions before the range to be deleted. file_region 651 * ranges are normally of the form [from, to). However, there 652 * may be a "placeholder" entry in the map which is of the form 653 * (from, to) with from == to. Check for placeholder entries 654 * at the beginning of the range to be deleted. 655 */ 656 if (rg->to <= f && (rg->to != rg->from || rg->to != f)) 657 continue; 658 659 if (rg->from >= t) 660 break; 661 662 if (f > rg->from && t < rg->to) { /* Must split region */ 663 /* 664 * Check for an entry in the cache before dropping 665 * lock and attempting allocation. 666 */ 667 if (!nrg && 668 resv->region_cache_count > resv->adds_in_progress) { 669 nrg = list_first_entry(&resv->region_cache, 670 struct file_region, 671 link); 672 list_del(&nrg->link); 673 resv->region_cache_count--; 674 } 675 676 if (!nrg) { 677 spin_unlock(&resv->lock); 678 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 679 if (!nrg) 680 return -ENOMEM; 681 goto retry; 682 } 683 684 del += t - f; 685 hugetlb_cgroup_uncharge_file_region( 686 resv, rg, t - f, false); 687 688 /* New entry for end of split region */ 689 nrg->from = t; 690 nrg->to = rg->to; 691 692 copy_hugetlb_cgroup_uncharge_info(nrg, rg); 693 694 INIT_LIST_HEAD(&nrg->link); 695 696 /* Original entry is trimmed */ 697 rg->to = f; 698 699 list_add(&nrg->link, &rg->link); 700 nrg = NULL; 701 break; 702 } 703 704 if (f <= rg->from && t >= rg->to) { /* Remove entire region */ 705 del += rg->to - rg->from; 706 hugetlb_cgroup_uncharge_file_region(resv, rg, 707 rg->to - rg->from, true); 708 list_del(&rg->link); 709 kfree(rg); 710 continue; 711 } 712 713 if (f <= rg->from) { /* Trim beginning of region */ 714 hugetlb_cgroup_uncharge_file_region(resv, rg, 715 t - rg->from, false); 716 717 del += t - rg->from; 718 rg->from = t; 719 } else { /* Trim end of region */ 720 hugetlb_cgroup_uncharge_file_region(resv, rg, 721 rg->to - f, false); 722 723 del += rg->to - f; 724 rg->to = f; 725 } 726 } 727 728 spin_unlock(&resv->lock); 729 kfree(nrg); 730 return del; 731 } 732 733 /* 734 * A rare out of memory error was encountered which prevented removal of 735 * the reserve map region for a page. The huge page itself was free'ed 736 * and removed from the page cache. This routine will adjust the subpool 737 * usage count, and the global reserve count if needed. By incrementing 738 * these counts, the reserve map entry which could not be deleted will 739 * appear as a "reserved" entry instead of simply dangling with incorrect 740 * counts. 741 */ 742 void hugetlb_fix_reserve_counts(struct inode *inode) 743 { 744 struct hugepage_subpool *spool = subpool_inode(inode); 745 long rsv_adjust; 746 747 rsv_adjust = hugepage_subpool_get_pages(spool, 1); 748 if (rsv_adjust) { 749 struct hstate *h = hstate_inode(inode); 750 751 hugetlb_acct_memory(h, 1); 752 } 753 } 754 755 /* 756 * Count and return the number of huge pages in the reserve map 757 * that intersect with the range [f, t). 758 */ 759 static long region_count(struct resv_map *resv, long f, long t) 760 { 761 struct list_head *head = &resv->regions; 762 struct file_region *rg; 763 long chg = 0; 764 765 spin_lock(&resv->lock); 766 /* Locate each segment we overlap with, and count that overlap. */ 767 list_for_each_entry(rg, head, link) { 768 long seg_from; 769 long seg_to; 770 771 if (rg->to <= f) 772 continue; 773 if (rg->from >= t) 774 break; 775 776 seg_from = max(rg->from, f); 777 seg_to = min(rg->to, t); 778 779 chg += seg_to - seg_from; 780 } 781 spin_unlock(&resv->lock); 782 783 return chg; 784 } 785 786 /* 787 * Convert the address within this vma to the page offset within 788 * the mapping, in pagecache page units; huge pages here. 789 */ 790 static pgoff_t vma_hugecache_offset(struct hstate *h, 791 struct vm_area_struct *vma, unsigned long address) 792 { 793 return ((address - vma->vm_start) >> huge_page_shift(h)) + 794 (vma->vm_pgoff >> huge_page_order(h)); 795 } 796 797 pgoff_t linear_hugepage_index(struct vm_area_struct *vma, 798 unsigned long address) 799 { 800 return vma_hugecache_offset(hstate_vma(vma), vma, address); 801 } 802 EXPORT_SYMBOL_GPL(linear_hugepage_index); 803 804 /* 805 * Return the size of the pages allocated when backing a VMA. In the majority 806 * cases this will be same size as used by the page table entries. 807 */ 808 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) 809 { 810 if (vma->vm_ops && vma->vm_ops->pagesize) 811 return vma->vm_ops->pagesize(vma); 812 return PAGE_SIZE; 813 } 814 EXPORT_SYMBOL_GPL(vma_kernel_pagesize); 815 816 /* 817 * Return the page size being used by the MMU to back a VMA. In the majority 818 * of cases, the page size used by the kernel matches the MMU size. On 819 * architectures where it differs, an architecture-specific 'strong' 820 * version of this symbol is required. 821 */ 822 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 823 { 824 return vma_kernel_pagesize(vma); 825 } 826 827 /* 828 * Flags for MAP_PRIVATE reservations. These are stored in the bottom 829 * bits of the reservation map pointer, which are always clear due to 830 * alignment. 831 */ 832 #define HPAGE_RESV_OWNER (1UL << 0) 833 #define HPAGE_RESV_UNMAPPED (1UL << 1) 834 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) 835 836 /* 837 * These helpers are used to track how many pages are reserved for 838 * faults in a MAP_PRIVATE mapping. Only the process that called mmap() 839 * is guaranteed to have their future faults succeed. 840 * 841 * With the exception of reset_vma_resv_huge_pages() which is called at fork(), 842 * the reserve counters are updated with the hugetlb_lock held. It is safe 843 * to reset the VMA at fork() time as it is not in use yet and there is no 844 * chance of the global counters getting corrupted as a result of the values. 845 * 846 * The private mapping reservation is represented in a subtly different 847 * manner to a shared mapping. A shared mapping has a region map associated 848 * with the underlying file, this region map represents the backing file 849 * pages which have ever had a reservation assigned which this persists even 850 * after the page is instantiated. A private mapping has a region map 851 * associated with the original mmap which is attached to all VMAs which 852 * reference it, this region map represents those offsets which have consumed 853 * reservation ie. where pages have been instantiated. 854 */ 855 static unsigned long get_vma_private_data(struct vm_area_struct *vma) 856 { 857 return (unsigned long)vma->vm_private_data; 858 } 859 860 static void set_vma_private_data(struct vm_area_struct *vma, 861 unsigned long value) 862 { 863 vma->vm_private_data = (void *)value; 864 } 865 866 static void 867 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map, 868 struct hugetlb_cgroup *h_cg, 869 struct hstate *h) 870 { 871 #ifdef CONFIG_CGROUP_HUGETLB 872 if (!h_cg || !h) { 873 resv_map->reservation_counter = NULL; 874 resv_map->pages_per_hpage = 0; 875 resv_map->css = NULL; 876 } else { 877 resv_map->reservation_counter = 878 &h_cg->rsvd_hugepage[hstate_index(h)]; 879 resv_map->pages_per_hpage = pages_per_huge_page(h); 880 resv_map->css = &h_cg->css; 881 } 882 #endif 883 } 884 885 struct resv_map *resv_map_alloc(void) 886 { 887 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); 888 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL); 889 890 if (!resv_map || !rg) { 891 kfree(resv_map); 892 kfree(rg); 893 return NULL; 894 } 895 896 kref_init(&resv_map->refs); 897 spin_lock_init(&resv_map->lock); 898 INIT_LIST_HEAD(&resv_map->regions); 899 900 resv_map->adds_in_progress = 0; 901 /* 902 * Initialize these to 0. On shared mappings, 0's here indicate these 903 * fields don't do cgroup accounting. On private mappings, these will be 904 * re-initialized to the proper values, to indicate that hugetlb cgroup 905 * reservations are to be un-charged from here. 906 */ 907 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL); 908 909 INIT_LIST_HEAD(&resv_map->region_cache); 910 list_add(&rg->link, &resv_map->region_cache); 911 resv_map->region_cache_count = 1; 912 913 return resv_map; 914 } 915 916 void resv_map_release(struct kref *ref) 917 { 918 struct resv_map *resv_map = container_of(ref, struct resv_map, refs); 919 struct list_head *head = &resv_map->region_cache; 920 struct file_region *rg, *trg; 921 922 /* Clear out any active regions before we release the map. */ 923 region_del(resv_map, 0, LONG_MAX); 924 925 /* ... and any entries left in the cache */ 926 list_for_each_entry_safe(rg, trg, head, link) { 927 list_del(&rg->link); 928 kfree(rg); 929 } 930 931 VM_BUG_ON(resv_map->adds_in_progress); 932 933 kfree(resv_map); 934 } 935 936 static inline struct resv_map *inode_resv_map(struct inode *inode) 937 { 938 /* 939 * At inode evict time, i_mapping may not point to the original 940 * address space within the inode. This original address space 941 * contains the pointer to the resv_map. So, always use the 942 * address space embedded within the inode. 943 * The VERY common case is inode->mapping == &inode->i_data but, 944 * this may not be true for device special inodes. 945 */ 946 return (struct resv_map *)(&inode->i_data)->private_data; 947 } 948 949 static struct resv_map *vma_resv_map(struct vm_area_struct *vma) 950 { 951 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 952 if (vma->vm_flags & VM_MAYSHARE) { 953 struct address_space *mapping = vma->vm_file->f_mapping; 954 struct inode *inode = mapping->host; 955 956 return inode_resv_map(inode); 957 958 } else { 959 return (struct resv_map *)(get_vma_private_data(vma) & 960 ~HPAGE_RESV_MASK); 961 } 962 } 963 964 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) 965 { 966 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 967 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 968 969 set_vma_private_data(vma, (get_vma_private_data(vma) & 970 HPAGE_RESV_MASK) | (unsigned long)map); 971 } 972 973 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) 974 { 975 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 976 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 977 978 set_vma_private_data(vma, get_vma_private_data(vma) | flags); 979 } 980 981 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) 982 { 983 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 984 985 return (get_vma_private_data(vma) & flag) != 0; 986 } 987 988 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */ 989 void reset_vma_resv_huge_pages(struct vm_area_struct *vma) 990 { 991 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 992 if (!(vma->vm_flags & VM_MAYSHARE)) 993 vma->vm_private_data = (void *)0; 994 } 995 996 /* Returns true if the VMA has associated reserve pages */ 997 static bool vma_has_reserves(struct vm_area_struct *vma, long chg) 998 { 999 if (vma->vm_flags & VM_NORESERVE) { 1000 /* 1001 * This address is already reserved by other process(chg == 0), 1002 * so, we should decrement reserved count. Without decrementing, 1003 * reserve count remains after releasing inode, because this 1004 * allocated page will go into page cache and is regarded as 1005 * coming from reserved pool in releasing step. Currently, we 1006 * don't have any other solution to deal with this situation 1007 * properly, so add work-around here. 1008 */ 1009 if (vma->vm_flags & VM_MAYSHARE && chg == 0) 1010 return true; 1011 else 1012 return false; 1013 } 1014 1015 /* Shared mappings always use reserves */ 1016 if (vma->vm_flags & VM_MAYSHARE) { 1017 /* 1018 * We know VM_NORESERVE is not set. Therefore, there SHOULD 1019 * be a region map for all pages. The only situation where 1020 * there is no region map is if a hole was punched via 1021 * fallocate. In this case, there really are no reserves to 1022 * use. This situation is indicated if chg != 0. 1023 */ 1024 if (chg) 1025 return false; 1026 else 1027 return true; 1028 } 1029 1030 /* 1031 * Only the process that called mmap() has reserves for 1032 * private mappings. 1033 */ 1034 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 1035 /* 1036 * Like the shared case above, a hole punch or truncate 1037 * could have been performed on the private mapping. 1038 * Examine the value of chg to determine if reserves 1039 * actually exist or were previously consumed. 1040 * Very Subtle - The value of chg comes from a previous 1041 * call to vma_needs_reserves(). The reserve map for 1042 * private mappings has different (opposite) semantics 1043 * than that of shared mappings. vma_needs_reserves() 1044 * has already taken this difference in semantics into 1045 * account. Therefore, the meaning of chg is the same 1046 * as in the shared case above. Code could easily be 1047 * combined, but keeping it separate draws attention to 1048 * subtle differences. 1049 */ 1050 if (chg) 1051 return false; 1052 else 1053 return true; 1054 } 1055 1056 return false; 1057 } 1058 1059 static void enqueue_huge_page(struct hstate *h, struct page *page) 1060 { 1061 int nid = page_to_nid(page); 1062 list_move(&page->lru, &h->hugepage_freelists[nid]); 1063 h->free_huge_pages++; 1064 h->free_huge_pages_node[nid]++; 1065 SetHPageFreed(page); 1066 } 1067 1068 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid) 1069 { 1070 struct page *page; 1071 bool nocma = !!(current->flags & PF_MEMALLOC_NOCMA); 1072 1073 list_for_each_entry(page, &h->hugepage_freelists[nid], lru) { 1074 if (nocma && is_migrate_cma_page(page)) 1075 continue; 1076 1077 if (PageHWPoison(page)) 1078 continue; 1079 1080 list_move(&page->lru, &h->hugepage_activelist); 1081 set_page_refcounted(page); 1082 ClearHPageFreed(page); 1083 h->free_huge_pages--; 1084 h->free_huge_pages_node[nid]--; 1085 return page; 1086 } 1087 1088 return NULL; 1089 } 1090 1091 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid, 1092 nodemask_t *nmask) 1093 { 1094 unsigned int cpuset_mems_cookie; 1095 struct zonelist *zonelist; 1096 struct zone *zone; 1097 struct zoneref *z; 1098 int node = NUMA_NO_NODE; 1099 1100 zonelist = node_zonelist(nid, gfp_mask); 1101 1102 retry_cpuset: 1103 cpuset_mems_cookie = read_mems_allowed_begin(); 1104 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) { 1105 struct page *page; 1106 1107 if (!cpuset_zone_allowed(zone, gfp_mask)) 1108 continue; 1109 /* 1110 * no need to ask again on the same node. Pool is node rather than 1111 * zone aware 1112 */ 1113 if (zone_to_nid(zone) == node) 1114 continue; 1115 node = zone_to_nid(zone); 1116 1117 page = dequeue_huge_page_node_exact(h, node); 1118 if (page) 1119 return page; 1120 } 1121 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie))) 1122 goto retry_cpuset; 1123 1124 return NULL; 1125 } 1126 1127 static struct page *dequeue_huge_page_vma(struct hstate *h, 1128 struct vm_area_struct *vma, 1129 unsigned long address, int avoid_reserve, 1130 long chg) 1131 { 1132 struct page *page; 1133 struct mempolicy *mpol; 1134 gfp_t gfp_mask; 1135 nodemask_t *nodemask; 1136 int nid; 1137 1138 /* 1139 * A child process with MAP_PRIVATE mappings created by their parent 1140 * have no page reserves. This check ensures that reservations are 1141 * not "stolen". The child may still get SIGKILLed 1142 */ 1143 if (!vma_has_reserves(vma, chg) && 1144 h->free_huge_pages - h->resv_huge_pages == 0) 1145 goto err; 1146 1147 /* If reserves cannot be used, ensure enough pages are in the pool */ 1148 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0) 1149 goto err; 1150 1151 gfp_mask = htlb_alloc_mask(h); 1152 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 1153 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask); 1154 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) { 1155 SetHPageRestoreReserve(page); 1156 h->resv_huge_pages--; 1157 } 1158 1159 mpol_cond_put(mpol); 1160 return page; 1161 1162 err: 1163 return NULL; 1164 } 1165 1166 /* 1167 * common helper functions for hstate_next_node_to_{alloc|free}. 1168 * We may have allocated or freed a huge page based on a different 1169 * nodes_allowed previously, so h->next_node_to_{alloc|free} might 1170 * be outside of *nodes_allowed. Ensure that we use an allowed 1171 * node for alloc or free. 1172 */ 1173 static int next_node_allowed(int nid, nodemask_t *nodes_allowed) 1174 { 1175 nid = next_node_in(nid, *nodes_allowed); 1176 VM_BUG_ON(nid >= MAX_NUMNODES); 1177 1178 return nid; 1179 } 1180 1181 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed) 1182 { 1183 if (!node_isset(nid, *nodes_allowed)) 1184 nid = next_node_allowed(nid, nodes_allowed); 1185 return nid; 1186 } 1187 1188 /* 1189 * returns the previously saved node ["this node"] from which to 1190 * allocate a persistent huge page for the pool and advance the 1191 * next node from which to allocate, handling wrap at end of node 1192 * mask. 1193 */ 1194 static int hstate_next_node_to_alloc(struct hstate *h, 1195 nodemask_t *nodes_allowed) 1196 { 1197 int nid; 1198 1199 VM_BUG_ON(!nodes_allowed); 1200 1201 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed); 1202 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed); 1203 1204 return nid; 1205 } 1206 1207 /* 1208 * helper for free_pool_huge_page() - return the previously saved 1209 * node ["this node"] from which to free a huge page. Advance the 1210 * next node id whether or not we find a free huge page to free so 1211 * that the next attempt to free addresses the next node. 1212 */ 1213 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed) 1214 { 1215 int nid; 1216 1217 VM_BUG_ON(!nodes_allowed); 1218 1219 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed); 1220 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed); 1221 1222 return nid; 1223 } 1224 1225 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \ 1226 for (nr_nodes = nodes_weight(*mask); \ 1227 nr_nodes > 0 && \ 1228 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \ 1229 nr_nodes--) 1230 1231 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \ 1232 for (nr_nodes = nodes_weight(*mask); \ 1233 nr_nodes > 0 && \ 1234 ((node = hstate_next_node_to_free(hs, mask)) || 1); \ 1235 nr_nodes--) 1236 1237 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE 1238 static void destroy_compound_gigantic_page(struct page *page, 1239 unsigned int order) 1240 { 1241 int i; 1242 int nr_pages = 1 << order; 1243 struct page *p = page + 1; 1244 1245 atomic_set(compound_mapcount_ptr(page), 0); 1246 atomic_set(compound_pincount_ptr(page), 0); 1247 1248 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { 1249 clear_compound_head(p); 1250 set_page_refcounted(p); 1251 } 1252 1253 set_compound_order(page, 0); 1254 page[1].compound_nr = 0; 1255 __ClearPageHead(page); 1256 } 1257 1258 static void free_gigantic_page(struct page *page, unsigned int order) 1259 { 1260 /* 1261 * If the page isn't allocated using the cma allocator, 1262 * cma_release() returns false. 1263 */ 1264 #ifdef CONFIG_CMA 1265 if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order)) 1266 return; 1267 #endif 1268 1269 free_contig_range(page_to_pfn(page), 1 << order); 1270 } 1271 1272 #ifdef CONFIG_CONTIG_ALLOC 1273 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, 1274 int nid, nodemask_t *nodemask) 1275 { 1276 unsigned long nr_pages = 1UL << huge_page_order(h); 1277 if (nid == NUMA_NO_NODE) 1278 nid = numa_mem_id(); 1279 1280 #ifdef CONFIG_CMA 1281 { 1282 struct page *page; 1283 int node; 1284 1285 if (hugetlb_cma[nid]) { 1286 page = cma_alloc(hugetlb_cma[nid], nr_pages, 1287 huge_page_order(h), true); 1288 if (page) 1289 return page; 1290 } 1291 1292 if (!(gfp_mask & __GFP_THISNODE)) { 1293 for_each_node_mask(node, *nodemask) { 1294 if (node == nid || !hugetlb_cma[node]) 1295 continue; 1296 1297 page = cma_alloc(hugetlb_cma[node], nr_pages, 1298 huge_page_order(h), true); 1299 if (page) 1300 return page; 1301 } 1302 } 1303 } 1304 #endif 1305 1306 return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask); 1307 } 1308 1309 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid); 1310 static void prep_compound_gigantic_page(struct page *page, unsigned int order); 1311 #else /* !CONFIG_CONTIG_ALLOC */ 1312 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, 1313 int nid, nodemask_t *nodemask) 1314 { 1315 return NULL; 1316 } 1317 #endif /* CONFIG_CONTIG_ALLOC */ 1318 1319 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */ 1320 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, 1321 int nid, nodemask_t *nodemask) 1322 { 1323 return NULL; 1324 } 1325 static inline void free_gigantic_page(struct page *page, unsigned int order) { } 1326 static inline void destroy_compound_gigantic_page(struct page *page, 1327 unsigned int order) { } 1328 #endif 1329 1330 static void update_and_free_page(struct hstate *h, struct page *page) 1331 { 1332 int i; 1333 struct page *subpage = page; 1334 1335 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 1336 return; 1337 1338 h->nr_huge_pages--; 1339 h->nr_huge_pages_node[page_to_nid(page)]--; 1340 for (i = 0; i < pages_per_huge_page(h); 1341 i++, subpage = mem_map_next(subpage, page, i)) { 1342 subpage->flags &= ~(1 << PG_locked | 1 << PG_error | 1343 1 << PG_referenced | 1 << PG_dirty | 1344 1 << PG_active | 1 << PG_private | 1345 1 << PG_writeback); 1346 } 1347 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page); 1348 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page); 1349 set_compound_page_dtor(page, NULL_COMPOUND_DTOR); 1350 set_page_refcounted(page); 1351 if (hstate_is_gigantic(h)) { 1352 /* 1353 * Temporarily drop the hugetlb_lock, because 1354 * we might block in free_gigantic_page(). 1355 */ 1356 spin_unlock(&hugetlb_lock); 1357 destroy_compound_gigantic_page(page, huge_page_order(h)); 1358 free_gigantic_page(page, huge_page_order(h)); 1359 spin_lock(&hugetlb_lock); 1360 } else { 1361 __free_pages(page, huge_page_order(h)); 1362 } 1363 } 1364 1365 struct hstate *size_to_hstate(unsigned long size) 1366 { 1367 struct hstate *h; 1368 1369 for_each_hstate(h) { 1370 if (huge_page_size(h) == size) 1371 return h; 1372 } 1373 return NULL; 1374 } 1375 1376 static void __free_huge_page(struct page *page) 1377 { 1378 /* 1379 * Can't pass hstate in here because it is called from the 1380 * compound page destructor. 1381 */ 1382 struct hstate *h = page_hstate(page); 1383 int nid = page_to_nid(page); 1384 struct hugepage_subpool *spool = hugetlb_page_subpool(page); 1385 bool restore_reserve; 1386 1387 VM_BUG_ON_PAGE(page_count(page), page); 1388 VM_BUG_ON_PAGE(page_mapcount(page), page); 1389 1390 hugetlb_set_page_subpool(page, NULL); 1391 page->mapping = NULL; 1392 restore_reserve = HPageRestoreReserve(page); 1393 ClearHPageRestoreReserve(page); 1394 1395 /* 1396 * If HPageRestoreReserve was set on page, page allocation consumed a 1397 * reservation. If the page was associated with a subpool, there 1398 * would have been a page reserved in the subpool before allocation 1399 * via hugepage_subpool_get_pages(). Since we are 'restoring' the 1400 * reservation, do not call hugepage_subpool_put_pages() as this will 1401 * remove the reserved page from the subpool. 1402 */ 1403 if (!restore_reserve) { 1404 /* 1405 * A return code of zero implies that the subpool will be 1406 * under its minimum size if the reservation is not restored 1407 * after page is free. Therefore, force restore_reserve 1408 * operation. 1409 */ 1410 if (hugepage_subpool_put_pages(spool, 1) == 0) 1411 restore_reserve = true; 1412 } 1413 1414 spin_lock(&hugetlb_lock); 1415 ClearHPageMigratable(page); 1416 hugetlb_cgroup_uncharge_page(hstate_index(h), 1417 pages_per_huge_page(h), page); 1418 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h), 1419 pages_per_huge_page(h), page); 1420 if (restore_reserve) 1421 h->resv_huge_pages++; 1422 1423 if (HPageTemporary(page)) { 1424 list_del(&page->lru); 1425 ClearHPageTemporary(page); 1426 update_and_free_page(h, page); 1427 } else if (h->surplus_huge_pages_node[nid]) { 1428 /* remove the page from active list */ 1429 list_del(&page->lru); 1430 update_and_free_page(h, page); 1431 h->surplus_huge_pages--; 1432 h->surplus_huge_pages_node[nid]--; 1433 } else { 1434 arch_clear_hugepage_flags(page); 1435 enqueue_huge_page(h, page); 1436 } 1437 spin_unlock(&hugetlb_lock); 1438 } 1439 1440 /* 1441 * As free_huge_page() can be called from a non-task context, we have 1442 * to defer the actual freeing in a workqueue to prevent potential 1443 * hugetlb_lock deadlock. 1444 * 1445 * free_hpage_workfn() locklessly retrieves the linked list of pages to 1446 * be freed and frees them one-by-one. As the page->mapping pointer is 1447 * going to be cleared in __free_huge_page() anyway, it is reused as the 1448 * llist_node structure of a lockless linked list of huge pages to be freed. 1449 */ 1450 static LLIST_HEAD(hpage_freelist); 1451 1452 static void free_hpage_workfn(struct work_struct *work) 1453 { 1454 struct llist_node *node; 1455 struct page *page; 1456 1457 node = llist_del_all(&hpage_freelist); 1458 1459 while (node) { 1460 page = container_of((struct address_space **)node, 1461 struct page, mapping); 1462 node = node->next; 1463 __free_huge_page(page); 1464 } 1465 } 1466 static DECLARE_WORK(free_hpage_work, free_hpage_workfn); 1467 1468 void free_huge_page(struct page *page) 1469 { 1470 /* 1471 * Defer freeing if in non-task context to avoid hugetlb_lock deadlock. 1472 */ 1473 if (!in_task()) { 1474 /* 1475 * Only call schedule_work() if hpage_freelist is previously 1476 * empty. Otherwise, schedule_work() had been called but the 1477 * workfn hasn't retrieved the list yet. 1478 */ 1479 if (llist_add((struct llist_node *)&page->mapping, 1480 &hpage_freelist)) 1481 schedule_work(&free_hpage_work); 1482 return; 1483 } 1484 1485 __free_huge_page(page); 1486 } 1487 1488 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid) 1489 { 1490 INIT_LIST_HEAD(&page->lru); 1491 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR); 1492 hugetlb_set_page_subpool(page, NULL); 1493 set_hugetlb_cgroup(page, NULL); 1494 set_hugetlb_cgroup_rsvd(page, NULL); 1495 spin_lock(&hugetlb_lock); 1496 h->nr_huge_pages++; 1497 h->nr_huge_pages_node[nid]++; 1498 ClearHPageFreed(page); 1499 spin_unlock(&hugetlb_lock); 1500 } 1501 1502 static void prep_compound_gigantic_page(struct page *page, unsigned int order) 1503 { 1504 int i; 1505 int nr_pages = 1 << order; 1506 struct page *p = page + 1; 1507 1508 /* we rely on prep_new_huge_page to set the destructor */ 1509 set_compound_order(page, order); 1510 __ClearPageReserved(page); 1511 __SetPageHead(page); 1512 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { 1513 /* 1514 * For gigantic hugepages allocated through bootmem at 1515 * boot, it's safer to be consistent with the not-gigantic 1516 * hugepages and clear the PG_reserved bit from all tail pages 1517 * too. Otherwise drivers using get_user_pages() to access tail 1518 * pages may get the reference counting wrong if they see 1519 * PG_reserved set on a tail page (despite the head page not 1520 * having PG_reserved set). Enforcing this consistency between 1521 * head and tail pages allows drivers to optimize away a check 1522 * on the head page when they need know if put_page() is needed 1523 * after get_user_pages(). 1524 */ 1525 __ClearPageReserved(p); 1526 set_page_count(p, 0); 1527 set_compound_head(p, page); 1528 } 1529 atomic_set(compound_mapcount_ptr(page), -1); 1530 atomic_set(compound_pincount_ptr(page), 0); 1531 } 1532 1533 /* 1534 * PageHuge() only returns true for hugetlbfs pages, but not for normal or 1535 * transparent huge pages. See the PageTransHuge() documentation for more 1536 * details. 1537 */ 1538 int PageHuge(struct page *page) 1539 { 1540 if (!PageCompound(page)) 1541 return 0; 1542 1543 page = compound_head(page); 1544 return page[1].compound_dtor == HUGETLB_PAGE_DTOR; 1545 } 1546 EXPORT_SYMBOL_GPL(PageHuge); 1547 1548 /* 1549 * PageHeadHuge() only returns true for hugetlbfs head page, but not for 1550 * normal or transparent huge pages. 1551 */ 1552 int PageHeadHuge(struct page *page_head) 1553 { 1554 if (!PageHead(page_head)) 1555 return 0; 1556 1557 return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR; 1558 } 1559 1560 /* 1561 * Find and lock address space (mapping) in write mode. 1562 * 1563 * Upon entry, the page is locked which means that page_mapping() is 1564 * stable. Due to locking order, we can only trylock_write. If we can 1565 * not get the lock, simply return NULL to caller. 1566 */ 1567 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage) 1568 { 1569 struct address_space *mapping = page_mapping(hpage); 1570 1571 if (!mapping) 1572 return mapping; 1573 1574 if (i_mmap_trylock_write(mapping)) 1575 return mapping; 1576 1577 return NULL; 1578 } 1579 1580 pgoff_t __basepage_index(struct page *page) 1581 { 1582 struct page *page_head = compound_head(page); 1583 pgoff_t index = page_index(page_head); 1584 unsigned long compound_idx; 1585 1586 if (!PageHuge(page_head)) 1587 return page_index(page); 1588 1589 if (compound_order(page_head) >= MAX_ORDER) 1590 compound_idx = page_to_pfn(page) - page_to_pfn(page_head); 1591 else 1592 compound_idx = page - page_head; 1593 1594 return (index << compound_order(page_head)) + compound_idx; 1595 } 1596 1597 static struct page *alloc_buddy_huge_page(struct hstate *h, 1598 gfp_t gfp_mask, int nid, nodemask_t *nmask, 1599 nodemask_t *node_alloc_noretry) 1600 { 1601 int order = huge_page_order(h); 1602 struct page *page; 1603 bool alloc_try_hard = true; 1604 1605 /* 1606 * By default we always try hard to allocate the page with 1607 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in 1608 * a loop (to adjust global huge page counts) and previous allocation 1609 * failed, do not continue to try hard on the same node. Use the 1610 * node_alloc_noretry bitmap to manage this state information. 1611 */ 1612 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry)) 1613 alloc_try_hard = false; 1614 gfp_mask |= __GFP_COMP|__GFP_NOWARN; 1615 if (alloc_try_hard) 1616 gfp_mask |= __GFP_RETRY_MAYFAIL; 1617 if (nid == NUMA_NO_NODE) 1618 nid = numa_mem_id(); 1619 page = __alloc_pages(gfp_mask, order, nid, nmask); 1620 if (page) 1621 __count_vm_event(HTLB_BUDDY_PGALLOC); 1622 else 1623 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 1624 1625 /* 1626 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this 1627 * indicates an overall state change. Clear bit so that we resume 1628 * normal 'try hard' allocations. 1629 */ 1630 if (node_alloc_noretry && page && !alloc_try_hard) 1631 node_clear(nid, *node_alloc_noretry); 1632 1633 /* 1634 * If we tried hard to get a page but failed, set bit so that 1635 * subsequent attempts will not try as hard until there is an 1636 * overall state change. 1637 */ 1638 if (node_alloc_noretry && !page && alloc_try_hard) 1639 node_set(nid, *node_alloc_noretry); 1640 1641 return page; 1642 } 1643 1644 /* 1645 * Common helper to allocate a fresh hugetlb page. All specific allocators 1646 * should use this function to get new hugetlb pages 1647 */ 1648 static struct page *alloc_fresh_huge_page(struct hstate *h, 1649 gfp_t gfp_mask, int nid, nodemask_t *nmask, 1650 nodemask_t *node_alloc_noretry) 1651 { 1652 struct page *page; 1653 1654 if (hstate_is_gigantic(h)) 1655 page = alloc_gigantic_page(h, gfp_mask, nid, nmask); 1656 else 1657 page = alloc_buddy_huge_page(h, gfp_mask, 1658 nid, nmask, node_alloc_noretry); 1659 if (!page) 1660 return NULL; 1661 1662 if (hstate_is_gigantic(h)) 1663 prep_compound_gigantic_page(page, huge_page_order(h)); 1664 prep_new_huge_page(h, page, page_to_nid(page)); 1665 1666 return page; 1667 } 1668 1669 /* 1670 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved 1671 * manner. 1672 */ 1673 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed, 1674 nodemask_t *node_alloc_noretry) 1675 { 1676 struct page *page; 1677 int nr_nodes, node; 1678 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 1679 1680 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 1681 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed, 1682 node_alloc_noretry); 1683 if (page) 1684 break; 1685 } 1686 1687 if (!page) 1688 return 0; 1689 1690 put_page(page); /* free it into the hugepage allocator */ 1691 1692 return 1; 1693 } 1694 1695 /* 1696 * Free huge page from pool from next node to free. 1697 * Attempt to keep persistent huge pages more or less 1698 * balanced over allowed nodes. 1699 * Called with hugetlb_lock locked. 1700 */ 1701 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed, 1702 bool acct_surplus) 1703 { 1704 int nr_nodes, node; 1705 int ret = 0; 1706 1707 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 1708 /* 1709 * If we're returning unused surplus pages, only examine 1710 * nodes with surplus pages. 1711 */ 1712 if ((!acct_surplus || h->surplus_huge_pages_node[node]) && 1713 !list_empty(&h->hugepage_freelists[node])) { 1714 struct page *page = 1715 list_entry(h->hugepage_freelists[node].next, 1716 struct page, lru); 1717 list_del(&page->lru); 1718 h->free_huge_pages--; 1719 h->free_huge_pages_node[node]--; 1720 if (acct_surplus) { 1721 h->surplus_huge_pages--; 1722 h->surplus_huge_pages_node[node]--; 1723 } 1724 update_and_free_page(h, page); 1725 ret = 1; 1726 break; 1727 } 1728 } 1729 1730 return ret; 1731 } 1732 1733 /* 1734 * Dissolve a given free hugepage into free buddy pages. This function does 1735 * nothing for in-use hugepages and non-hugepages. 1736 * This function returns values like below: 1737 * 1738 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use 1739 * (allocated or reserved.) 1740 * 0: successfully dissolved free hugepages or the page is not a 1741 * hugepage (considered as already dissolved) 1742 */ 1743 int dissolve_free_huge_page(struct page *page) 1744 { 1745 int rc = -EBUSY; 1746 1747 retry: 1748 /* Not to disrupt normal path by vainly holding hugetlb_lock */ 1749 if (!PageHuge(page)) 1750 return 0; 1751 1752 spin_lock(&hugetlb_lock); 1753 if (!PageHuge(page)) { 1754 rc = 0; 1755 goto out; 1756 } 1757 1758 if (!page_count(page)) { 1759 struct page *head = compound_head(page); 1760 struct hstate *h = page_hstate(head); 1761 int nid = page_to_nid(head); 1762 if (h->free_huge_pages - h->resv_huge_pages == 0) 1763 goto out; 1764 1765 /* 1766 * We should make sure that the page is already on the free list 1767 * when it is dissolved. 1768 */ 1769 if (unlikely(!HPageFreed(head))) { 1770 spin_unlock(&hugetlb_lock); 1771 cond_resched(); 1772 1773 /* 1774 * Theoretically, we should return -EBUSY when we 1775 * encounter this race. In fact, we have a chance 1776 * to successfully dissolve the page if we do a 1777 * retry. Because the race window is quite small. 1778 * If we seize this opportunity, it is an optimization 1779 * for increasing the success rate of dissolving page. 1780 */ 1781 goto retry; 1782 } 1783 1784 /* 1785 * Move PageHWPoison flag from head page to the raw error page, 1786 * which makes any subpages rather than the error page reusable. 1787 */ 1788 if (PageHWPoison(head) && page != head) { 1789 SetPageHWPoison(page); 1790 ClearPageHWPoison(head); 1791 } 1792 list_del(&head->lru); 1793 h->free_huge_pages--; 1794 h->free_huge_pages_node[nid]--; 1795 h->max_huge_pages--; 1796 update_and_free_page(h, head); 1797 rc = 0; 1798 } 1799 out: 1800 spin_unlock(&hugetlb_lock); 1801 return rc; 1802 } 1803 1804 /* 1805 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to 1806 * make specified memory blocks removable from the system. 1807 * Note that this will dissolve a free gigantic hugepage completely, if any 1808 * part of it lies within the given range. 1809 * Also note that if dissolve_free_huge_page() returns with an error, all 1810 * free hugepages that were dissolved before that error are lost. 1811 */ 1812 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn) 1813 { 1814 unsigned long pfn; 1815 struct page *page; 1816 int rc = 0; 1817 1818 if (!hugepages_supported()) 1819 return rc; 1820 1821 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) { 1822 page = pfn_to_page(pfn); 1823 rc = dissolve_free_huge_page(page); 1824 if (rc) 1825 break; 1826 } 1827 1828 return rc; 1829 } 1830 1831 /* 1832 * Allocates a fresh surplus page from the page allocator. 1833 */ 1834 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask, 1835 int nid, nodemask_t *nmask) 1836 { 1837 struct page *page = NULL; 1838 1839 if (hstate_is_gigantic(h)) 1840 return NULL; 1841 1842 spin_lock(&hugetlb_lock); 1843 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) 1844 goto out_unlock; 1845 spin_unlock(&hugetlb_lock); 1846 1847 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL); 1848 if (!page) 1849 return NULL; 1850 1851 spin_lock(&hugetlb_lock); 1852 /* 1853 * We could have raced with the pool size change. 1854 * Double check that and simply deallocate the new page 1855 * if we would end up overcommiting the surpluses. Abuse 1856 * temporary page to workaround the nasty free_huge_page 1857 * codeflow 1858 */ 1859 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { 1860 SetHPageTemporary(page); 1861 spin_unlock(&hugetlb_lock); 1862 put_page(page); 1863 return NULL; 1864 } else { 1865 h->surplus_huge_pages++; 1866 h->surplus_huge_pages_node[page_to_nid(page)]++; 1867 } 1868 1869 out_unlock: 1870 spin_unlock(&hugetlb_lock); 1871 1872 return page; 1873 } 1874 1875 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask, 1876 int nid, nodemask_t *nmask) 1877 { 1878 struct page *page; 1879 1880 if (hstate_is_gigantic(h)) 1881 return NULL; 1882 1883 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL); 1884 if (!page) 1885 return NULL; 1886 1887 /* 1888 * We do not account these pages as surplus because they are only 1889 * temporary and will be released properly on the last reference 1890 */ 1891 SetHPageTemporary(page); 1892 1893 return page; 1894 } 1895 1896 /* 1897 * Use the VMA's mpolicy to allocate a huge page from the buddy. 1898 */ 1899 static 1900 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h, 1901 struct vm_area_struct *vma, unsigned long addr) 1902 { 1903 struct page *page; 1904 struct mempolicy *mpol; 1905 gfp_t gfp_mask = htlb_alloc_mask(h); 1906 int nid; 1907 nodemask_t *nodemask; 1908 1909 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask); 1910 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask); 1911 mpol_cond_put(mpol); 1912 1913 return page; 1914 } 1915 1916 /* page migration callback function */ 1917 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid, 1918 nodemask_t *nmask, gfp_t gfp_mask) 1919 { 1920 spin_lock(&hugetlb_lock); 1921 if (h->free_huge_pages - h->resv_huge_pages > 0) { 1922 struct page *page; 1923 1924 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask); 1925 if (page) { 1926 spin_unlock(&hugetlb_lock); 1927 return page; 1928 } 1929 } 1930 spin_unlock(&hugetlb_lock); 1931 1932 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask); 1933 } 1934 1935 /* mempolicy aware migration callback */ 1936 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma, 1937 unsigned long address) 1938 { 1939 struct mempolicy *mpol; 1940 nodemask_t *nodemask; 1941 struct page *page; 1942 gfp_t gfp_mask; 1943 int node; 1944 1945 gfp_mask = htlb_alloc_mask(h); 1946 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 1947 page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask); 1948 mpol_cond_put(mpol); 1949 1950 return page; 1951 } 1952 1953 /* 1954 * Increase the hugetlb pool such that it can accommodate a reservation 1955 * of size 'delta'. 1956 */ 1957 static int gather_surplus_pages(struct hstate *h, long delta) 1958 __must_hold(&hugetlb_lock) 1959 { 1960 struct list_head surplus_list; 1961 struct page *page, *tmp; 1962 int ret; 1963 long i; 1964 long needed, allocated; 1965 bool alloc_ok = true; 1966 1967 needed = (h->resv_huge_pages + delta) - h->free_huge_pages; 1968 if (needed <= 0) { 1969 h->resv_huge_pages += delta; 1970 return 0; 1971 } 1972 1973 allocated = 0; 1974 INIT_LIST_HEAD(&surplus_list); 1975 1976 ret = -ENOMEM; 1977 retry: 1978 spin_unlock(&hugetlb_lock); 1979 for (i = 0; i < needed; i++) { 1980 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h), 1981 NUMA_NO_NODE, NULL); 1982 if (!page) { 1983 alloc_ok = false; 1984 break; 1985 } 1986 list_add(&page->lru, &surplus_list); 1987 cond_resched(); 1988 } 1989 allocated += i; 1990 1991 /* 1992 * After retaking hugetlb_lock, we need to recalculate 'needed' 1993 * because either resv_huge_pages or free_huge_pages may have changed. 1994 */ 1995 spin_lock(&hugetlb_lock); 1996 needed = (h->resv_huge_pages + delta) - 1997 (h->free_huge_pages + allocated); 1998 if (needed > 0) { 1999 if (alloc_ok) 2000 goto retry; 2001 /* 2002 * We were not able to allocate enough pages to 2003 * satisfy the entire reservation so we free what 2004 * we've allocated so far. 2005 */ 2006 goto free; 2007 } 2008 /* 2009 * The surplus_list now contains _at_least_ the number of extra pages 2010 * needed to accommodate the reservation. Add the appropriate number 2011 * of pages to the hugetlb pool and free the extras back to the buddy 2012 * allocator. Commit the entire reservation here to prevent another 2013 * process from stealing the pages as they are added to the pool but 2014 * before they are reserved. 2015 */ 2016 needed += allocated; 2017 h->resv_huge_pages += delta; 2018 ret = 0; 2019 2020 /* Free the needed pages to the hugetlb pool */ 2021 list_for_each_entry_safe(page, tmp, &surplus_list, lru) { 2022 int zeroed; 2023 2024 if ((--needed) < 0) 2025 break; 2026 /* 2027 * This page is now managed by the hugetlb allocator and has 2028 * no users -- drop the buddy allocator's reference. 2029 */ 2030 zeroed = put_page_testzero(page); 2031 VM_BUG_ON_PAGE(!zeroed, page); 2032 enqueue_huge_page(h, page); 2033 } 2034 free: 2035 spin_unlock(&hugetlb_lock); 2036 2037 /* Free unnecessary surplus pages to the buddy allocator */ 2038 list_for_each_entry_safe(page, tmp, &surplus_list, lru) 2039 put_page(page); 2040 spin_lock(&hugetlb_lock); 2041 2042 return ret; 2043 } 2044 2045 /* 2046 * This routine has two main purposes: 2047 * 1) Decrement the reservation count (resv_huge_pages) by the value passed 2048 * in unused_resv_pages. This corresponds to the prior adjustments made 2049 * to the associated reservation map. 2050 * 2) Free any unused surplus pages that may have been allocated to satisfy 2051 * the reservation. As many as unused_resv_pages may be freed. 2052 * 2053 * Called with hugetlb_lock held. However, the lock could be dropped (and 2054 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock, 2055 * we must make sure nobody else can claim pages we are in the process of 2056 * freeing. Do this by ensuring resv_huge_page always is greater than the 2057 * number of huge pages we plan to free when dropping the lock. 2058 */ 2059 static void return_unused_surplus_pages(struct hstate *h, 2060 unsigned long unused_resv_pages) 2061 { 2062 unsigned long nr_pages; 2063 2064 /* Cannot return gigantic pages currently */ 2065 if (hstate_is_gigantic(h)) 2066 goto out; 2067 2068 /* 2069 * Part (or even all) of the reservation could have been backed 2070 * by pre-allocated pages. Only free surplus pages. 2071 */ 2072 nr_pages = min(unused_resv_pages, h->surplus_huge_pages); 2073 2074 /* 2075 * We want to release as many surplus pages as possible, spread 2076 * evenly across all nodes with memory. Iterate across these nodes 2077 * until we can no longer free unreserved surplus pages. This occurs 2078 * when the nodes with surplus pages have no free pages. 2079 * free_pool_huge_page() will balance the freed pages across the 2080 * on-line nodes with memory and will handle the hstate accounting. 2081 * 2082 * Note that we decrement resv_huge_pages as we free the pages. If 2083 * we drop the lock, resv_huge_pages will still be sufficiently large 2084 * to cover subsequent pages we may free. 2085 */ 2086 while (nr_pages--) { 2087 h->resv_huge_pages--; 2088 unused_resv_pages--; 2089 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1)) 2090 goto out; 2091 cond_resched_lock(&hugetlb_lock); 2092 } 2093 2094 out: 2095 /* Fully uncommit the reservation */ 2096 h->resv_huge_pages -= unused_resv_pages; 2097 } 2098 2099 2100 /* 2101 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation 2102 * are used by the huge page allocation routines to manage reservations. 2103 * 2104 * vma_needs_reservation is called to determine if the huge page at addr 2105 * within the vma has an associated reservation. If a reservation is 2106 * needed, the value 1 is returned. The caller is then responsible for 2107 * managing the global reservation and subpool usage counts. After 2108 * the huge page has been allocated, vma_commit_reservation is called 2109 * to add the page to the reservation map. If the page allocation fails, 2110 * the reservation must be ended instead of committed. vma_end_reservation 2111 * is called in such cases. 2112 * 2113 * In the normal case, vma_commit_reservation returns the same value 2114 * as the preceding vma_needs_reservation call. The only time this 2115 * is not the case is if a reserve map was changed between calls. It 2116 * is the responsibility of the caller to notice the difference and 2117 * take appropriate action. 2118 * 2119 * vma_add_reservation is used in error paths where a reservation must 2120 * be restored when a newly allocated huge page must be freed. It is 2121 * to be called after calling vma_needs_reservation to determine if a 2122 * reservation exists. 2123 */ 2124 enum vma_resv_mode { 2125 VMA_NEEDS_RESV, 2126 VMA_COMMIT_RESV, 2127 VMA_END_RESV, 2128 VMA_ADD_RESV, 2129 }; 2130 static long __vma_reservation_common(struct hstate *h, 2131 struct vm_area_struct *vma, unsigned long addr, 2132 enum vma_resv_mode mode) 2133 { 2134 struct resv_map *resv; 2135 pgoff_t idx; 2136 long ret; 2137 long dummy_out_regions_needed; 2138 2139 resv = vma_resv_map(vma); 2140 if (!resv) 2141 return 1; 2142 2143 idx = vma_hugecache_offset(h, vma, addr); 2144 switch (mode) { 2145 case VMA_NEEDS_RESV: 2146 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed); 2147 /* We assume that vma_reservation_* routines always operate on 2148 * 1 page, and that adding to resv map a 1 page entry can only 2149 * ever require 1 region. 2150 */ 2151 VM_BUG_ON(dummy_out_regions_needed != 1); 2152 break; 2153 case VMA_COMMIT_RESV: 2154 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2155 /* region_add calls of range 1 should never fail. */ 2156 VM_BUG_ON(ret < 0); 2157 break; 2158 case VMA_END_RESV: 2159 region_abort(resv, idx, idx + 1, 1); 2160 ret = 0; 2161 break; 2162 case VMA_ADD_RESV: 2163 if (vma->vm_flags & VM_MAYSHARE) { 2164 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2165 /* region_add calls of range 1 should never fail. */ 2166 VM_BUG_ON(ret < 0); 2167 } else { 2168 region_abort(resv, idx, idx + 1, 1); 2169 ret = region_del(resv, idx, idx + 1); 2170 } 2171 break; 2172 default: 2173 BUG(); 2174 } 2175 2176 if (vma->vm_flags & VM_MAYSHARE) 2177 return ret; 2178 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) { 2179 /* 2180 * In most cases, reserves always exist for private mappings. 2181 * However, a file associated with mapping could have been 2182 * hole punched or truncated after reserves were consumed. 2183 * As subsequent fault on such a range will not use reserves. 2184 * Subtle - The reserve map for private mappings has the 2185 * opposite meaning than that of shared mappings. If NO 2186 * entry is in the reserve map, it means a reservation exists. 2187 * If an entry exists in the reserve map, it means the 2188 * reservation has already been consumed. As a result, the 2189 * return value of this routine is the opposite of the 2190 * value returned from reserve map manipulation routines above. 2191 */ 2192 if (ret) 2193 return 0; 2194 else 2195 return 1; 2196 } 2197 else 2198 return ret < 0 ? ret : 0; 2199 } 2200 2201 static long vma_needs_reservation(struct hstate *h, 2202 struct vm_area_struct *vma, unsigned long addr) 2203 { 2204 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV); 2205 } 2206 2207 static long vma_commit_reservation(struct hstate *h, 2208 struct vm_area_struct *vma, unsigned long addr) 2209 { 2210 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV); 2211 } 2212 2213 static void vma_end_reservation(struct hstate *h, 2214 struct vm_area_struct *vma, unsigned long addr) 2215 { 2216 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV); 2217 } 2218 2219 static long vma_add_reservation(struct hstate *h, 2220 struct vm_area_struct *vma, unsigned long addr) 2221 { 2222 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV); 2223 } 2224 2225 /* 2226 * This routine is called to restore a reservation on error paths. In the 2227 * specific error paths, a huge page was allocated (via alloc_huge_page) 2228 * and is about to be freed. If a reservation for the page existed, 2229 * alloc_huge_page would have consumed the reservation and set 2230 * HPageRestoreReserve in the newly allocated page. When the page is freed 2231 * via free_huge_page, the global reservation count will be incremented if 2232 * HPageRestoreReserve is set. However, free_huge_page can not adjust the 2233 * reserve map. Adjust the reserve map here to be consistent with global 2234 * reserve count adjustments to be made by free_huge_page. 2235 */ 2236 static void restore_reserve_on_error(struct hstate *h, 2237 struct vm_area_struct *vma, unsigned long address, 2238 struct page *page) 2239 { 2240 if (unlikely(HPageRestoreReserve(page))) { 2241 long rc = vma_needs_reservation(h, vma, address); 2242 2243 if (unlikely(rc < 0)) { 2244 /* 2245 * Rare out of memory condition in reserve map 2246 * manipulation. Clear HPageRestoreReserve so that 2247 * global reserve count will not be incremented 2248 * by free_huge_page. This will make it appear 2249 * as though the reservation for this page was 2250 * consumed. This may prevent the task from 2251 * faulting in the page at a later time. This 2252 * is better than inconsistent global huge page 2253 * accounting of reserve counts. 2254 */ 2255 ClearHPageRestoreReserve(page); 2256 } else if (rc) { 2257 rc = vma_add_reservation(h, vma, address); 2258 if (unlikely(rc < 0)) 2259 /* 2260 * See above comment about rare out of 2261 * memory condition. 2262 */ 2263 ClearHPageRestoreReserve(page); 2264 } else 2265 vma_end_reservation(h, vma, address); 2266 } 2267 } 2268 2269 struct page *alloc_huge_page(struct vm_area_struct *vma, 2270 unsigned long addr, int avoid_reserve) 2271 { 2272 struct hugepage_subpool *spool = subpool_vma(vma); 2273 struct hstate *h = hstate_vma(vma); 2274 struct page *page; 2275 long map_chg, map_commit; 2276 long gbl_chg; 2277 int ret, idx; 2278 struct hugetlb_cgroup *h_cg; 2279 bool deferred_reserve; 2280 2281 idx = hstate_index(h); 2282 /* 2283 * Examine the region/reserve map to determine if the process 2284 * has a reservation for the page to be allocated. A return 2285 * code of zero indicates a reservation exists (no change). 2286 */ 2287 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr); 2288 if (map_chg < 0) 2289 return ERR_PTR(-ENOMEM); 2290 2291 /* 2292 * Processes that did not create the mapping will have no 2293 * reserves as indicated by the region/reserve map. Check 2294 * that the allocation will not exceed the subpool limit. 2295 * Allocations for MAP_NORESERVE mappings also need to be 2296 * checked against any subpool limit. 2297 */ 2298 if (map_chg || avoid_reserve) { 2299 gbl_chg = hugepage_subpool_get_pages(spool, 1); 2300 if (gbl_chg < 0) { 2301 vma_end_reservation(h, vma, addr); 2302 return ERR_PTR(-ENOSPC); 2303 } 2304 2305 /* 2306 * Even though there was no reservation in the region/reserve 2307 * map, there could be reservations associated with the 2308 * subpool that can be used. This would be indicated if the 2309 * return value of hugepage_subpool_get_pages() is zero. 2310 * However, if avoid_reserve is specified we still avoid even 2311 * the subpool reservations. 2312 */ 2313 if (avoid_reserve) 2314 gbl_chg = 1; 2315 } 2316 2317 /* If this allocation is not consuming a reservation, charge it now. 2318 */ 2319 deferred_reserve = map_chg || avoid_reserve || !vma_resv_map(vma); 2320 if (deferred_reserve) { 2321 ret = hugetlb_cgroup_charge_cgroup_rsvd( 2322 idx, pages_per_huge_page(h), &h_cg); 2323 if (ret) 2324 goto out_subpool_put; 2325 } 2326 2327 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg); 2328 if (ret) 2329 goto out_uncharge_cgroup_reservation; 2330 2331 spin_lock(&hugetlb_lock); 2332 /* 2333 * glb_chg is passed to indicate whether or not a page must be taken 2334 * from the global free pool (global change). gbl_chg == 0 indicates 2335 * a reservation exists for the allocation. 2336 */ 2337 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg); 2338 if (!page) { 2339 spin_unlock(&hugetlb_lock); 2340 page = alloc_buddy_huge_page_with_mpol(h, vma, addr); 2341 if (!page) 2342 goto out_uncharge_cgroup; 2343 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) { 2344 SetHPageRestoreReserve(page); 2345 h->resv_huge_pages--; 2346 } 2347 spin_lock(&hugetlb_lock); 2348 list_add(&page->lru, &h->hugepage_activelist); 2349 /* Fall through */ 2350 } 2351 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page); 2352 /* If allocation is not consuming a reservation, also store the 2353 * hugetlb_cgroup pointer on the page. 2354 */ 2355 if (deferred_reserve) { 2356 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h), 2357 h_cg, page); 2358 } 2359 2360 spin_unlock(&hugetlb_lock); 2361 2362 hugetlb_set_page_subpool(page, spool); 2363 2364 map_commit = vma_commit_reservation(h, vma, addr); 2365 if (unlikely(map_chg > map_commit)) { 2366 /* 2367 * The page was added to the reservation map between 2368 * vma_needs_reservation and vma_commit_reservation. 2369 * This indicates a race with hugetlb_reserve_pages. 2370 * Adjust for the subpool count incremented above AND 2371 * in hugetlb_reserve_pages for the same page. Also, 2372 * the reservation count added in hugetlb_reserve_pages 2373 * no longer applies. 2374 */ 2375 long rsv_adjust; 2376 2377 rsv_adjust = hugepage_subpool_put_pages(spool, 1); 2378 hugetlb_acct_memory(h, -rsv_adjust); 2379 if (deferred_reserve) 2380 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h), 2381 pages_per_huge_page(h), page); 2382 } 2383 return page; 2384 2385 out_uncharge_cgroup: 2386 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg); 2387 out_uncharge_cgroup_reservation: 2388 if (deferred_reserve) 2389 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h), 2390 h_cg); 2391 out_subpool_put: 2392 if (map_chg || avoid_reserve) 2393 hugepage_subpool_put_pages(spool, 1); 2394 vma_end_reservation(h, vma, addr); 2395 return ERR_PTR(-ENOSPC); 2396 } 2397 2398 int alloc_bootmem_huge_page(struct hstate *h) 2399 __attribute__ ((weak, alias("__alloc_bootmem_huge_page"))); 2400 int __alloc_bootmem_huge_page(struct hstate *h) 2401 { 2402 struct huge_bootmem_page *m; 2403 int nr_nodes, node; 2404 2405 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) { 2406 void *addr; 2407 2408 addr = memblock_alloc_try_nid_raw( 2409 huge_page_size(h), huge_page_size(h), 2410 0, MEMBLOCK_ALLOC_ACCESSIBLE, node); 2411 if (addr) { 2412 /* 2413 * Use the beginning of the huge page to store the 2414 * huge_bootmem_page struct (until gather_bootmem 2415 * puts them into the mem_map). 2416 */ 2417 m = addr; 2418 goto found; 2419 } 2420 } 2421 return 0; 2422 2423 found: 2424 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h))); 2425 /* Put them into a private list first because mem_map is not up yet */ 2426 INIT_LIST_HEAD(&m->list); 2427 list_add(&m->list, &huge_boot_pages); 2428 m->hstate = h; 2429 return 1; 2430 } 2431 2432 static void __init prep_compound_huge_page(struct page *page, 2433 unsigned int order) 2434 { 2435 if (unlikely(order > (MAX_ORDER - 1))) 2436 prep_compound_gigantic_page(page, order); 2437 else 2438 prep_compound_page(page, order); 2439 } 2440 2441 /* Put bootmem huge pages into the standard lists after mem_map is up */ 2442 static void __init gather_bootmem_prealloc(void) 2443 { 2444 struct huge_bootmem_page *m; 2445 2446 list_for_each_entry(m, &huge_boot_pages, list) { 2447 struct page *page = virt_to_page(m); 2448 struct hstate *h = m->hstate; 2449 2450 WARN_ON(page_count(page) != 1); 2451 prep_compound_huge_page(page, huge_page_order(h)); 2452 WARN_ON(PageReserved(page)); 2453 prep_new_huge_page(h, page, page_to_nid(page)); 2454 put_page(page); /* free it into the hugepage allocator */ 2455 2456 /* 2457 * If we had gigantic hugepages allocated at boot time, we need 2458 * to restore the 'stolen' pages to totalram_pages in order to 2459 * fix confusing memory reports from free(1) and another 2460 * side-effects, like CommitLimit going negative. 2461 */ 2462 if (hstate_is_gigantic(h)) 2463 adjust_managed_page_count(page, pages_per_huge_page(h)); 2464 cond_resched(); 2465 } 2466 } 2467 2468 static void __init hugetlb_hstate_alloc_pages(struct hstate *h) 2469 { 2470 unsigned long i; 2471 nodemask_t *node_alloc_noretry; 2472 2473 if (!hstate_is_gigantic(h)) { 2474 /* 2475 * Bit mask controlling how hard we retry per-node allocations. 2476 * Ignore errors as lower level routines can deal with 2477 * node_alloc_noretry == NULL. If this kmalloc fails at boot 2478 * time, we are likely in bigger trouble. 2479 */ 2480 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry), 2481 GFP_KERNEL); 2482 } else { 2483 /* allocations done at boot time */ 2484 node_alloc_noretry = NULL; 2485 } 2486 2487 /* bit mask controlling how hard we retry per-node allocations */ 2488 if (node_alloc_noretry) 2489 nodes_clear(*node_alloc_noretry); 2490 2491 for (i = 0; i < h->max_huge_pages; ++i) { 2492 if (hstate_is_gigantic(h)) { 2493 if (hugetlb_cma_size) { 2494 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n"); 2495 goto free; 2496 } 2497 if (!alloc_bootmem_huge_page(h)) 2498 break; 2499 } else if (!alloc_pool_huge_page(h, 2500 &node_states[N_MEMORY], 2501 node_alloc_noretry)) 2502 break; 2503 cond_resched(); 2504 } 2505 if (i < h->max_huge_pages) { 2506 char buf[32]; 2507 2508 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 2509 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n", 2510 h->max_huge_pages, buf, i); 2511 h->max_huge_pages = i; 2512 } 2513 free: 2514 kfree(node_alloc_noretry); 2515 } 2516 2517 static void __init hugetlb_init_hstates(void) 2518 { 2519 struct hstate *h; 2520 2521 for_each_hstate(h) { 2522 if (minimum_order > huge_page_order(h)) 2523 minimum_order = huge_page_order(h); 2524 2525 /* oversize hugepages were init'ed in early boot */ 2526 if (!hstate_is_gigantic(h)) 2527 hugetlb_hstate_alloc_pages(h); 2528 } 2529 VM_BUG_ON(minimum_order == UINT_MAX); 2530 } 2531 2532 static void __init report_hugepages(void) 2533 { 2534 struct hstate *h; 2535 2536 for_each_hstate(h) { 2537 char buf[32]; 2538 2539 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 2540 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n", 2541 buf, h->free_huge_pages); 2542 } 2543 } 2544 2545 #ifdef CONFIG_HIGHMEM 2546 static void try_to_free_low(struct hstate *h, unsigned long count, 2547 nodemask_t *nodes_allowed) 2548 { 2549 int i; 2550 2551 if (hstate_is_gigantic(h)) 2552 return; 2553 2554 for_each_node_mask(i, *nodes_allowed) { 2555 struct page *page, *next; 2556 struct list_head *freel = &h->hugepage_freelists[i]; 2557 list_for_each_entry_safe(page, next, freel, lru) { 2558 if (count >= h->nr_huge_pages) 2559 return; 2560 if (PageHighMem(page)) 2561 continue; 2562 list_del(&page->lru); 2563 update_and_free_page(h, page); 2564 h->free_huge_pages--; 2565 h->free_huge_pages_node[page_to_nid(page)]--; 2566 } 2567 } 2568 } 2569 #else 2570 static inline void try_to_free_low(struct hstate *h, unsigned long count, 2571 nodemask_t *nodes_allowed) 2572 { 2573 } 2574 #endif 2575 2576 /* 2577 * Increment or decrement surplus_huge_pages. Keep node-specific counters 2578 * balanced by operating on them in a round-robin fashion. 2579 * Returns 1 if an adjustment was made. 2580 */ 2581 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed, 2582 int delta) 2583 { 2584 int nr_nodes, node; 2585 2586 VM_BUG_ON(delta != -1 && delta != 1); 2587 2588 if (delta < 0) { 2589 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 2590 if (h->surplus_huge_pages_node[node]) 2591 goto found; 2592 } 2593 } else { 2594 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 2595 if (h->surplus_huge_pages_node[node] < 2596 h->nr_huge_pages_node[node]) 2597 goto found; 2598 } 2599 } 2600 return 0; 2601 2602 found: 2603 h->surplus_huge_pages += delta; 2604 h->surplus_huge_pages_node[node] += delta; 2605 return 1; 2606 } 2607 2608 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) 2609 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid, 2610 nodemask_t *nodes_allowed) 2611 { 2612 unsigned long min_count, ret; 2613 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL); 2614 2615 /* 2616 * Bit mask controlling how hard we retry per-node allocations. 2617 * If we can not allocate the bit mask, do not attempt to allocate 2618 * the requested huge pages. 2619 */ 2620 if (node_alloc_noretry) 2621 nodes_clear(*node_alloc_noretry); 2622 else 2623 return -ENOMEM; 2624 2625 spin_lock(&hugetlb_lock); 2626 2627 /* 2628 * Check for a node specific request. 2629 * Changing node specific huge page count may require a corresponding 2630 * change to the global count. In any case, the passed node mask 2631 * (nodes_allowed) will restrict alloc/free to the specified node. 2632 */ 2633 if (nid != NUMA_NO_NODE) { 2634 unsigned long old_count = count; 2635 2636 count += h->nr_huge_pages - h->nr_huge_pages_node[nid]; 2637 /* 2638 * User may have specified a large count value which caused the 2639 * above calculation to overflow. In this case, they wanted 2640 * to allocate as many huge pages as possible. Set count to 2641 * largest possible value to align with their intention. 2642 */ 2643 if (count < old_count) 2644 count = ULONG_MAX; 2645 } 2646 2647 /* 2648 * Gigantic pages runtime allocation depend on the capability for large 2649 * page range allocation. 2650 * If the system does not provide this feature, return an error when 2651 * the user tries to allocate gigantic pages but let the user free the 2652 * boottime allocated gigantic pages. 2653 */ 2654 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) { 2655 if (count > persistent_huge_pages(h)) { 2656 spin_unlock(&hugetlb_lock); 2657 NODEMASK_FREE(node_alloc_noretry); 2658 return -EINVAL; 2659 } 2660 /* Fall through to decrease pool */ 2661 } 2662 2663 /* 2664 * Increase the pool size 2665 * First take pages out of surplus state. Then make up the 2666 * remaining difference by allocating fresh huge pages. 2667 * 2668 * We might race with alloc_surplus_huge_page() here and be unable 2669 * to convert a surplus huge page to a normal huge page. That is 2670 * not critical, though, it just means the overall size of the 2671 * pool might be one hugepage larger than it needs to be, but 2672 * within all the constraints specified by the sysctls. 2673 */ 2674 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { 2675 if (!adjust_pool_surplus(h, nodes_allowed, -1)) 2676 break; 2677 } 2678 2679 while (count > persistent_huge_pages(h)) { 2680 /* 2681 * If this allocation races such that we no longer need the 2682 * page, free_huge_page will handle it by freeing the page 2683 * and reducing the surplus. 2684 */ 2685 spin_unlock(&hugetlb_lock); 2686 2687 /* yield cpu to avoid soft lockup */ 2688 cond_resched(); 2689 2690 ret = alloc_pool_huge_page(h, nodes_allowed, 2691 node_alloc_noretry); 2692 spin_lock(&hugetlb_lock); 2693 if (!ret) 2694 goto out; 2695 2696 /* Bail for signals. Probably ctrl-c from user */ 2697 if (signal_pending(current)) 2698 goto out; 2699 } 2700 2701 /* 2702 * Decrease the pool size 2703 * First return free pages to the buddy allocator (being careful 2704 * to keep enough around to satisfy reservations). Then place 2705 * pages into surplus state as needed so the pool will shrink 2706 * to the desired size as pages become free. 2707 * 2708 * By placing pages into the surplus state independent of the 2709 * overcommit value, we are allowing the surplus pool size to 2710 * exceed overcommit. There are few sane options here. Since 2711 * alloc_surplus_huge_page() is checking the global counter, 2712 * though, we'll note that we're not allowed to exceed surplus 2713 * and won't grow the pool anywhere else. Not until one of the 2714 * sysctls are changed, or the surplus pages go out of use. 2715 */ 2716 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages; 2717 min_count = max(count, min_count); 2718 try_to_free_low(h, min_count, nodes_allowed); 2719 while (min_count < persistent_huge_pages(h)) { 2720 if (!free_pool_huge_page(h, nodes_allowed, 0)) 2721 break; 2722 cond_resched_lock(&hugetlb_lock); 2723 } 2724 while (count < persistent_huge_pages(h)) { 2725 if (!adjust_pool_surplus(h, nodes_allowed, 1)) 2726 break; 2727 } 2728 out: 2729 h->max_huge_pages = persistent_huge_pages(h); 2730 spin_unlock(&hugetlb_lock); 2731 2732 NODEMASK_FREE(node_alloc_noretry); 2733 2734 return 0; 2735 } 2736 2737 #define HSTATE_ATTR_RO(_name) \ 2738 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 2739 2740 #define HSTATE_ATTR(_name) \ 2741 static struct kobj_attribute _name##_attr = \ 2742 __ATTR(_name, 0644, _name##_show, _name##_store) 2743 2744 static struct kobject *hugepages_kobj; 2745 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 2746 2747 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp); 2748 2749 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp) 2750 { 2751 int i; 2752 2753 for (i = 0; i < HUGE_MAX_HSTATE; i++) 2754 if (hstate_kobjs[i] == kobj) { 2755 if (nidp) 2756 *nidp = NUMA_NO_NODE; 2757 return &hstates[i]; 2758 } 2759 2760 return kobj_to_node_hstate(kobj, nidp); 2761 } 2762 2763 static ssize_t nr_hugepages_show_common(struct kobject *kobj, 2764 struct kobj_attribute *attr, char *buf) 2765 { 2766 struct hstate *h; 2767 unsigned long nr_huge_pages; 2768 int nid; 2769 2770 h = kobj_to_hstate(kobj, &nid); 2771 if (nid == NUMA_NO_NODE) 2772 nr_huge_pages = h->nr_huge_pages; 2773 else 2774 nr_huge_pages = h->nr_huge_pages_node[nid]; 2775 2776 return sysfs_emit(buf, "%lu\n", nr_huge_pages); 2777 } 2778 2779 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy, 2780 struct hstate *h, int nid, 2781 unsigned long count, size_t len) 2782 { 2783 int err; 2784 nodemask_t nodes_allowed, *n_mask; 2785 2786 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 2787 return -EINVAL; 2788 2789 if (nid == NUMA_NO_NODE) { 2790 /* 2791 * global hstate attribute 2792 */ 2793 if (!(obey_mempolicy && 2794 init_nodemask_of_mempolicy(&nodes_allowed))) 2795 n_mask = &node_states[N_MEMORY]; 2796 else 2797 n_mask = &nodes_allowed; 2798 } else { 2799 /* 2800 * Node specific request. count adjustment happens in 2801 * set_max_huge_pages() after acquiring hugetlb_lock. 2802 */ 2803 init_nodemask_of_node(&nodes_allowed, nid); 2804 n_mask = &nodes_allowed; 2805 } 2806 2807 err = set_max_huge_pages(h, count, nid, n_mask); 2808 2809 return err ? err : len; 2810 } 2811 2812 static ssize_t nr_hugepages_store_common(bool obey_mempolicy, 2813 struct kobject *kobj, const char *buf, 2814 size_t len) 2815 { 2816 struct hstate *h; 2817 unsigned long count; 2818 int nid; 2819 int err; 2820 2821 err = kstrtoul(buf, 10, &count); 2822 if (err) 2823 return err; 2824 2825 h = kobj_to_hstate(kobj, &nid); 2826 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len); 2827 } 2828 2829 static ssize_t nr_hugepages_show(struct kobject *kobj, 2830 struct kobj_attribute *attr, char *buf) 2831 { 2832 return nr_hugepages_show_common(kobj, attr, buf); 2833 } 2834 2835 static ssize_t nr_hugepages_store(struct kobject *kobj, 2836 struct kobj_attribute *attr, const char *buf, size_t len) 2837 { 2838 return nr_hugepages_store_common(false, kobj, buf, len); 2839 } 2840 HSTATE_ATTR(nr_hugepages); 2841 2842 #ifdef CONFIG_NUMA 2843 2844 /* 2845 * hstate attribute for optionally mempolicy-based constraint on persistent 2846 * huge page alloc/free. 2847 */ 2848 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj, 2849 struct kobj_attribute *attr, 2850 char *buf) 2851 { 2852 return nr_hugepages_show_common(kobj, attr, buf); 2853 } 2854 2855 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj, 2856 struct kobj_attribute *attr, const char *buf, size_t len) 2857 { 2858 return nr_hugepages_store_common(true, kobj, buf, len); 2859 } 2860 HSTATE_ATTR(nr_hugepages_mempolicy); 2861 #endif 2862 2863 2864 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, 2865 struct kobj_attribute *attr, char *buf) 2866 { 2867 struct hstate *h = kobj_to_hstate(kobj, NULL); 2868 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages); 2869 } 2870 2871 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, 2872 struct kobj_attribute *attr, const char *buf, size_t count) 2873 { 2874 int err; 2875 unsigned long input; 2876 struct hstate *h = kobj_to_hstate(kobj, NULL); 2877 2878 if (hstate_is_gigantic(h)) 2879 return -EINVAL; 2880 2881 err = kstrtoul(buf, 10, &input); 2882 if (err) 2883 return err; 2884 2885 spin_lock(&hugetlb_lock); 2886 h->nr_overcommit_huge_pages = input; 2887 spin_unlock(&hugetlb_lock); 2888 2889 return count; 2890 } 2891 HSTATE_ATTR(nr_overcommit_hugepages); 2892 2893 static ssize_t free_hugepages_show(struct kobject *kobj, 2894 struct kobj_attribute *attr, char *buf) 2895 { 2896 struct hstate *h; 2897 unsigned long free_huge_pages; 2898 int nid; 2899 2900 h = kobj_to_hstate(kobj, &nid); 2901 if (nid == NUMA_NO_NODE) 2902 free_huge_pages = h->free_huge_pages; 2903 else 2904 free_huge_pages = h->free_huge_pages_node[nid]; 2905 2906 return sysfs_emit(buf, "%lu\n", free_huge_pages); 2907 } 2908 HSTATE_ATTR_RO(free_hugepages); 2909 2910 static ssize_t resv_hugepages_show(struct kobject *kobj, 2911 struct kobj_attribute *attr, char *buf) 2912 { 2913 struct hstate *h = kobj_to_hstate(kobj, NULL); 2914 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages); 2915 } 2916 HSTATE_ATTR_RO(resv_hugepages); 2917 2918 static ssize_t surplus_hugepages_show(struct kobject *kobj, 2919 struct kobj_attribute *attr, char *buf) 2920 { 2921 struct hstate *h; 2922 unsigned long surplus_huge_pages; 2923 int nid; 2924 2925 h = kobj_to_hstate(kobj, &nid); 2926 if (nid == NUMA_NO_NODE) 2927 surplus_huge_pages = h->surplus_huge_pages; 2928 else 2929 surplus_huge_pages = h->surplus_huge_pages_node[nid]; 2930 2931 return sysfs_emit(buf, "%lu\n", surplus_huge_pages); 2932 } 2933 HSTATE_ATTR_RO(surplus_hugepages); 2934 2935 static struct attribute *hstate_attrs[] = { 2936 &nr_hugepages_attr.attr, 2937 &nr_overcommit_hugepages_attr.attr, 2938 &free_hugepages_attr.attr, 2939 &resv_hugepages_attr.attr, 2940 &surplus_hugepages_attr.attr, 2941 #ifdef CONFIG_NUMA 2942 &nr_hugepages_mempolicy_attr.attr, 2943 #endif 2944 NULL, 2945 }; 2946 2947 static const struct attribute_group hstate_attr_group = { 2948 .attrs = hstate_attrs, 2949 }; 2950 2951 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent, 2952 struct kobject **hstate_kobjs, 2953 const struct attribute_group *hstate_attr_group) 2954 { 2955 int retval; 2956 int hi = hstate_index(h); 2957 2958 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent); 2959 if (!hstate_kobjs[hi]) 2960 return -ENOMEM; 2961 2962 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group); 2963 if (retval) { 2964 kobject_put(hstate_kobjs[hi]); 2965 hstate_kobjs[hi] = NULL; 2966 } 2967 2968 return retval; 2969 } 2970 2971 static void __init hugetlb_sysfs_init(void) 2972 { 2973 struct hstate *h; 2974 int err; 2975 2976 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); 2977 if (!hugepages_kobj) 2978 return; 2979 2980 for_each_hstate(h) { 2981 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj, 2982 hstate_kobjs, &hstate_attr_group); 2983 if (err) 2984 pr_err("HugeTLB: Unable to add hstate %s", h->name); 2985 } 2986 } 2987 2988 #ifdef CONFIG_NUMA 2989 2990 /* 2991 * node_hstate/s - associate per node hstate attributes, via their kobjects, 2992 * with node devices in node_devices[] using a parallel array. The array 2993 * index of a node device or _hstate == node id. 2994 * This is here to avoid any static dependency of the node device driver, in 2995 * the base kernel, on the hugetlb module. 2996 */ 2997 struct node_hstate { 2998 struct kobject *hugepages_kobj; 2999 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 3000 }; 3001 static struct node_hstate node_hstates[MAX_NUMNODES]; 3002 3003 /* 3004 * A subset of global hstate attributes for node devices 3005 */ 3006 static struct attribute *per_node_hstate_attrs[] = { 3007 &nr_hugepages_attr.attr, 3008 &free_hugepages_attr.attr, 3009 &surplus_hugepages_attr.attr, 3010 NULL, 3011 }; 3012 3013 static const struct attribute_group per_node_hstate_attr_group = { 3014 .attrs = per_node_hstate_attrs, 3015 }; 3016 3017 /* 3018 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj. 3019 * Returns node id via non-NULL nidp. 3020 */ 3021 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 3022 { 3023 int nid; 3024 3025 for (nid = 0; nid < nr_node_ids; nid++) { 3026 struct node_hstate *nhs = &node_hstates[nid]; 3027 int i; 3028 for (i = 0; i < HUGE_MAX_HSTATE; i++) 3029 if (nhs->hstate_kobjs[i] == kobj) { 3030 if (nidp) 3031 *nidp = nid; 3032 return &hstates[i]; 3033 } 3034 } 3035 3036 BUG(); 3037 return NULL; 3038 } 3039 3040 /* 3041 * Unregister hstate attributes from a single node device. 3042 * No-op if no hstate attributes attached. 3043 */ 3044 static void hugetlb_unregister_node(struct node *node) 3045 { 3046 struct hstate *h; 3047 struct node_hstate *nhs = &node_hstates[node->dev.id]; 3048 3049 if (!nhs->hugepages_kobj) 3050 return; /* no hstate attributes */ 3051 3052 for_each_hstate(h) { 3053 int idx = hstate_index(h); 3054 if (nhs->hstate_kobjs[idx]) { 3055 kobject_put(nhs->hstate_kobjs[idx]); 3056 nhs->hstate_kobjs[idx] = NULL; 3057 } 3058 } 3059 3060 kobject_put(nhs->hugepages_kobj); 3061 nhs->hugepages_kobj = NULL; 3062 } 3063 3064 3065 /* 3066 * Register hstate attributes for a single node device. 3067 * No-op if attributes already registered. 3068 */ 3069 static void hugetlb_register_node(struct node *node) 3070 { 3071 struct hstate *h; 3072 struct node_hstate *nhs = &node_hstates[node->dev.id]; 3073 int err; 3074 3075 if (nhs->hugepages_kobj) 3076 return; /* already allocated */ 3077 3078 nhs->hugepages_kobj = kobject_create_and_add("hugepages", 3079 &node->dev.kobj); 3080 if (!nhs->hugepages_kobj) 3081 return; 3082 3083 for_each_hstate(h) { 3084 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj, 3085 nhs->hstate_kobjs, 3086 &per_node_hstate_attr_group); 3087 if (err) { 3088 pr_err("HugeTLB: Unable to add hstate %s for node %d\n", 3089 h->name, node->dev.id); 3090 hugetlb_unregister_node(node); 3091 break; 3092 } 3093 } 3094 } 3095 3096 /* 3097 * hugetlb init time: register hstate attributes for all registered node 3098 * devices of nodes that have memory. All on-line nodes should have 3099 * registered their associated device by this time. 3100 */ 3101 static void __init hugetlb_register_all_nodes(void) 3102 { 3103 int nid; 3104 3105 for_each_node_state(nid, N_MEMORY) { 3106 struct node *node = node_devices[nid]; 3107 if (node->dev.id == nid) 3108 hugetlb_register_node(node); 3109 } 3110 3111 /* 3112 * Let the node device driver know we're here so it can 3113 * [un]register hstate attributes on node hotplug. 3114 */ 3115 register_hugetlbfs_with_node(hugetlb_register_node, 3116 hugetlb_unregister_node); 3117 } 3118 #else /* !CONFIG_NUMA */ 3119 3120 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 3121 { 3122 BUG(); 3123 if (nidp) 3124 *nidp = -1; 3125 return NULL; 3126 } 3127 3128 static void hugetlb_register_all_nodes(void) { } 3129 3130 #endif 3131 3132 static int __init hugetlb_init(void) 3133 { 3134 int i; 3135 3136 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE < 3137 __NR_HPAGEFLAGS); 3138 3139 if (!hugepages_supported()) { 3140 if (hugetlb_max_hstate || default_hstate_max_huge_pages) 3141 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n"); 3142 return 0; 3143 } 3144 3145 /* 3146 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some 3147 * architectures depend on setup being done here. 3148 */ 3149 hugetlb_add_hstate(HUGETLB_PAGE_ORDER); 3150 if (!parsed_default_hugepagesz) { 3151 /* 3152 * If we did not parse a default huge page size, set 3153 * default_hstate_idx to HPAGE_SIZE hstate. And, if the 3154 * number of huge pages for this default size was implicitly 3155 * specified, set that here as well. 3156 * Note that the implicit setting will overwrite an explicit 3157 * setting. A warning will be printed in this case. 3158 */ 3159 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE)); 3160 if (default_hstate_max_huge_pages) { 3161 if (default_hstate.max_huge_pages) { 3162 char buf[32]; 3163 3164 string_get_size(huge_page_size(&default_hstate), 3165 1, STRING_UNITS_2, buf, 32); 3166 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n", 3167 default_hstate.max_huge_pages, buf); 3168 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n", 3169 default_hstate_max_huge_pages); 3170 } 3171 default_hstate.max_huge_pages = 3172 default_hstate_max_huge_pages; 3173 } 3174 } 3175 3176 hugetlb_cma_check(); 3177 hugetlb_init_hstates(); 3178 gather_bootmem_prealloc(); 3179 report_hugepages(); 3180 3181 hugetlb_sysfs_init(); 3182 hugetlb_register_all_nodes(); 3183 hugetlb_cgroup_file_init(); 3184 3185 #ifdef CONFIG_SMP 3186 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus()); 3187 #else 3188 num_fault_mutexes = 1; 3189 #endif 3190 hugetlb_fault_mutex_table = 3191 kmalloc_array(num_fault_mutexes, sizeof(struct mutex), 3192 GFP_KERNEL); 3193 BUG_ON(!hugetlb_fault_mutex_table); 3194 3195 for (i = 0; i < num_fault_mutexes; i++) 3196 mutex_init(&hugetlb_fault_mutex_table[i]); 3197 return 0; 3198 } 3199 subsys_initcall(hugetlb_init); 3200 3201 /* Overwritten by architectures with more huge page sizes */ 3202 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size) 3203 { 3204 return size == HPAGE_SIZE; 3205 } 3206 3207 void __init hugetlb_add_hstate(unsigned int order) 3208 { 3209 struct hstate *h; 3210 unsigned long i; 3211 3212 if (size_to_hstate(PAGE_SIZE << order)) { 3213 return; 3214 } 3215 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE); 3216 BUG_ON(order == 0); 3217 h = &hstates[hugetlb_max_hstate++]; 3218 h->order = order; 3219 h->mask = ~(huge_page_size(h) - 1); 3220 for (i = 0; i < MAX_NUMNODES; ++i) 3221 INIT_LIST_HEAD(&h->hugepage_freelists[i]); 3222 INIT_LIST_HEAD(&h->hugepage_activelist); 3223 h->next_nid_to_alloc = first_memory_node; 3224 h->next_nid_to_free = first_memory_node; 3225 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", 3226 huge_page_size(h)/1024); 3227 3228 parsed_hstate = h; 3229 } 3230 3231 /* 3232 * hugepages command line processing 3233 * hugepages normally follows a valid hugepagsz or default_hugepagsz 3234 * specification. If not, ignore the hugepages value. hugepages can also 3235 * be the first huge page command line option in which case it implicitly 3236 * specifies the number of huge pages for the default size. 3237 */ 3238 static int __init hugepages_setup(char *s) 3239 { 3240 unsigned long *mhp; 3241 static unsigned long *last_mhp; 3242 3243 if (!parsed_valid_hugepagesz) { 3244 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s); 3245 parsed_valid_hugepagesz = true; 3246 return 0; 3247 } 3248 3249 /* 3250 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter 3251 * yet, so this hugepages= parameter goes to the "default hstate". 3252 * Otherwise, it goes with the previously parsed hugepagesz or 3253 * default_hugepagesz. 3254 */ 3255 else if (!hugetlb_max_hstate) 3256 mhp = &default_hstate_max_huge_pages; 3257 else 3258 mhp = &parsed_hstate->max_huge_pages; 3259 3260 if (mhp == last_mhp) { 3261 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s); 3262 return 0; 3263 } 3264 3265 if (sscanf(s, "%lu", mhp) <= 0) 3266 *mhp = 0; 3267 3268 /* 3269 * Global state is always initialized later in hugetlb_init. 3270 * But we need to allocate >= MAX_ORDER hstates here early to still 3271 * use the bootmem allocator. 3272 */ 3273 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER) 3274 hugetlb_hstate_alloc_pages(parsed_hstate); 3275 3276 last_mhp = mhp; 3277 3278 return 1; 3279 } 3280 __setup("hugepages=", hugepages_setup); 3281 3282 /* 3283 * hugepagesz command line processing 3284 * A specific huge page size can only be specified once with hugepagesz. 3285 * hugepagesz is followed by hugepages on the command line. The global 3286 * variable 'parsed_valid_hugepagesz' is used to determine if prior 3287 * hugepagesz argument was valid. 3288 */ 3289 static int __init hugepagesz_setup(char *s) 3290 { 3291 unsigned long size; 3292 struct hstate *h; 3293 3294 parsed_valid_hugepagesz = false; 3295 size = (unsigned long)memparse(s, NULL); 3296 3297 if (!arch_hugetlb_valid_size(size)) { 3298 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s); 3299 return 0; 3300 } 3301 3302 h = size_to_hstate(size); 3303 if (h) { 3304 /* 3305 * hstate for this size already exists. This is normally 3306 * an error, but is allowed if the existing hstate is the 3307 * default hstate. More specifically, it is only allowed if 3308 * the number of huge pages for the default hstate was not 3309 * previously specified. 3310 */ 3311 if (!parsed_default_hugepagesz || h != &default_hstate || 3312 default_hstate.max_huge_pages) { 3313 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s); 3314 return 0; 3315 } 3316 3317 /* 3318 * No need to call hugetlb_add_hstate() as hstate already 3319 * exists. But, do set parsed_hstate so that a following 3320 * hugepages= parameter will be applied to this hstate. 3321 */ 3322 parsed_hstate = h; 3323 parsed_valid_hugepagesz = true; 3324 return 1; 3325 } 3326 3327 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); 3328 parsed_valid_hugepagesz = true; 3329 return 1; 3330 } 3331 __setup("hugepagesz=", hugepagesz_setup); 3332 3333 /* 3334 * default_hugepagesz command line input 3335 * Only one instance of default_hugepagesz allowed on command line. 3336 */ 3337 static int __init default_hugepagesz_setup(char *s) 3338 { 3339 unsigned long size; 3340 3341 parsed_valid_hugepagesz = false; 3342 if (parsed_default_hugepagesz) { 3343 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s); 3344 return 0; 3345 } 3346 3347 size = (unsigned long)memparse(s, NULL); 3348 3349 if (!arch_hugetlb_valid_size(size)) { 3350 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s); 3351 return 0; 3352 } 3353 3354 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); 3355 parsed_valid_hugepagesz = true; 3356 parsed_default_hugepagesz = true; 3357 default_hstate_idx = hstate_index(size_to_hstate(size)); 3358 3359 /* 3360 * The number of default huge pages (for this size) could have been 3361 * specified as the first hugetlb parameter: hugepages=X. If so, 3362 * then default_hstate_max_huge_pages is set. If the default huge 3363 * page size is gigantic (>= MAX_ORDER), then the pages must be 3364 * allocated here from bootmem allocator. 3365 */ 3366 if (default_hstate_max_huge_pages) { 3367 default_hstate.max_huge_pages = default_hstate_max_huge_pages; 3368 if (hstate_is_gigantic(&default_hstate)) 3369 hugetlb_hstate_alloc_pages(&default_hstate); 3370 default_hstate_max_huge_pages = 0; 3371 } 3372 3373 return 1; 3374 } 3375 __setup("default_hugepagesz=", default_hugepagesz_setup); 3376 3377 static unsigned int allowed_mems_nr(struct hstate *h) 3378 { 3379 int node; 3380 unsigned int nr = 0; 3381 nodemask_t *mpol_allowed; 3382 unsigned int *array = h->free_huge_pages_node; 3383 gfp_t gfp_mask = htlb_alloc_mask(h); 3384 3385 mpol_allowed = policy_nodemask_current(gfp_mask); 3386 3387 for_each_node_mask(node, cpuset_current_mems_allowed) { 3388 if (!mpol_allowed || node_isset(node, *mpol_allowed)) 3389 nr += array[node]; 3390 } 3391 3392 return nr; 3393 } 3394 3395 #ifdef CONFIG_SYSCTL 3396 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write, 3397 void *buffer, size_t *length, 3398 loff_t *ppos, unsigned long *out) 3399 { 3400 struct ctl_table dup_table; 3401 3402 /* 3403 * In order to avoid races with __do_proc_doulongvec_minmax(), we 3404 * can duplicate the @table and alter the duplicate of it. 3405 */ 3406 dup_table = *table; 3407 dup_table.data = out; 3408 3409 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos); 3410 } 3411 3412 static int hugetlb_sysctl_handler_common(bool obey_mempolicy, 3413 struct ctl_table *table, int write, 3414 void *buffer, size_t *length, loff_t *ppos) 3415 { 3416 struct hstate *h = &default_hstate; 3417 unsigned long tmp = h->max_huge_pages; 3418 int ret; 3419 3420 if (!hugepages_supported()) 3421 return -EOPNOTSUPP; 3422 3423 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, 3424 &tmp); 3425 if (ret) 3426 goto out; 3427 3428 if (write) 3429 ret = __nr_hugepages_store_common(obey_mempolicy, h, 3430 NUMA_NO_NODE, tmp, *length); 3431 out: 3432 return ret; 3433 } 3434 3435 int hugetlb_sysctl_handler(struct ctl_table *table, int write, 3436 void *buffer, size_t *length, loff_t *ppos) 3437 { 3438 3439 return hugetlb_sysctl_handler_common(false, table, write, 3440 buffer, length, ppos); 3441 } 3442 3443 #ifdef CONFIG_NUMA 3444 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write, 3445 void *buffer, size_t *length, loff_t *ppos) 3446 { 3447 return hugetlb_sysctl_handler_common(true, table, write, 3448 buffer, length, ppos); 3449 } 3450 #endif /* CONFIG_NUMA */ 3451 3452 int hugetlb_overcommit_handler(struct ctl_table *table, int write, 3453 void *buffer, size_t *length, loff_t *ppos) 3454 { 3455 struct hstate *h = &default_hstate; 3456 unsigned long tmp; 3457 int ret; 3458 3459 if (!hugepages_supported()) 3460 return -EOPNOTSUPP; 3461 3462 tmp = h->nr_overcommit_huge_pages; 3463 3464 if (write && hstate_is_gigantic(h)) 3465 return -EINVAL; 3466 3467 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, 3468 &tmp); 3469 if (ret) 3470 goto out; 3471 3472 if (write) { 3473 spin_lock(&hugetlb_lock); 3474 h->nr_overcommit_huge_pages = tmp; 3475 spin_unlock(&hugetlb_lock); 3476 } 3477 out: 3478 return ret; 3479 } 3480 3481 #endif /* CONFIG_SYSCTL */ 3482 3483 void hugetlb_report_meminfo(struct seq_file *m) 3484 { 3485 struct hstate *h; 3486 unsigned long total = 0; 3487 3488 if (!hugepages_supported()) 3489 return; 3490 3491 for_each_hstate(h) { 3492 unsigned long count = h->nr_huge_pages; 3493 3494 total += huge_page_size(h) * count; 3495 3496 if (h == &default_hstate) 3497 seq_printf(m, 3498 "HugePages_Total: %5lu\n" 3499 "HugePages_Free: %5lu\n" 3500 "HugePages_Rsvd: %5lu\n" 3501 "HugePages_Surp: %5lu\n" 3502 "Hugepagesize: %8lu kB\n", 3503 count, 3504 h->free_huge_pages, 3505 h->resv_huge_pages, 3506 h->surplus_huge_pages, 3507 huge_page_size(h) / SZ_1K); 3508 } 3509 3510 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K); 3511 } 3512 3513 int hugetlb_report_node_meminfo(char *buf, int len, int nid) 3514 { 3515 struct hstate *h = &default_hstate; 3516 3517 if (!hugepages_supported()) 3518 return 0; 3519 3520 return sysfs_emit_at(buf, len, 3521 "Node %d HugePages_Total: %5u\n" 3522 "Node %d HugePages_Free: %5u\n" 3523 "Node %d HugePages_Surp: %5u\n", 3524 nid, h->nr_huge_pages_node[nid], 3525 nid, h->free_huge_pages_node[nid], 3526 nid, h->surplus_huge_pages_node[nid]); 3527 } 3528 3529 void hugetlb_show_meminfo(void) 3530 { 3531 struct hstate *h; 3532 int nid; 3533 3534 if (!hugepages_supported()) 3535 return; 3536 3537 for_each_node_state(nid, N_MEMORY) 3538 for_each_hstate(h) 3539 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n", 3540 nid, 3541 h->nr_huge_pages_node[nid], 3542 h->free_huge_pages_node[nid], 3543 h->surplus_huge_pages_node[nid], 3544 huge_page_size(h) / SZ_1K); 3545 } 3546 3547 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm) 3548 { 3549 seq_printf(m, "HugetlbPages:\t%8lu kB\n", 3550 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10)); 3551 } 3552 3553 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ 3554 unsigned long hugetlb_total_pages(void) 3555 { 3556 struct hstate *h; 3557 unsigned long nr_total_pages = 0; 3558 3559 for_each_hstate(h) 3560 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h); 3561 return nr_total_pages; 3562 } 3563 3564 static int hugetlb_acct_memory(struct hstate *h, long delta) 3565 { 3566 int ret = -ENOMEM; 3567 3568 if (!delta) 3569 return 0; 3570 3571 spin_lock(&hugetlb_lock); 3572 /* 3573 * When cpuset is configured, it breaks the strict hugetlb page 3574 * reservation as the accounting is done on a global variable. Such 3575 * reservation is completely rubbish in the presence of cpuset because 3576 * the reservation is not checked against page availability for the 3577 * current cpuset. Application can still potentially OOM'ed by kernel 3578 * with lack of free htlb page in cpuset that the task is in. 3579 * Attempt to enforce strict accounting with cpuset is almost 3580 * impossible (or too ugly) because cpuset is too fluid that 3581 * task or memory node can be dynamically moved between cpusets. 3582 * 3583 * The change of semantics for shared hugetlb mapping with cpuset is 3584 * undesirable. However, in order to preserve some of the semantics, 3585 * we fall back to check against current free page availability as 3586 * a best attempt and hopefully to minimize the impact of changing 3587 * semantics that cpuset has. 3588 * 3589 * Apart from cpuset, we also have memory policy mechanism that 3590 * also determines from which node the kernel will allocate memory 3591 * in a NUMA system. So similar to cpuset, we also should consider 3592 * the memory policy of the current task. Similar to the description 3593 * above. 3594 */ 3595 if (delta > 0) { 3596 if (gather_surplus_pages(h, delta) < 0) 3597 goto out; 3598 3599 if (delta > allowed_mems_nr(h)) { 3600 return_unused_surplus_pages(h, delta); 3601 goto out; 3602 } 3603 } 3604 3605 ret = 0; 3606 if (delta < 0) 3607 return_unused_surplus_pages(h, (unsigned long) -delta); 3608 3609 out: 3610 spin_unlock(&hugetlb_lock); 3611 return ret; 3612 } 3613 3614 static void hugetlb_vm_op_open(struct vm_area_struct *vma) 3615 { 3616 struct resv_map *resv = vma_resv_map(vma); 3617 3618 /* 3619 * This new VMA should share its siblings reservation map if present. 3620 * The VMA will only ever have a valid reservation map pointer where 3621 * it is being copied for another still existing VMA. As that VMA 3622 * has a reference to the reservation map it cannot disappear until 3623 * after this open call completes. It is therefore safe to take a 3624 * new reference here without additional locking. 3625 */ 3626 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 3627 kref_get(&resv->refs); 3628 } 3629 3630 static void hugetlb_vm_op_close(struct vm_area_struct *vma) 3631 { 3632 struct hstate *h = hstate_vma(vma); 3633 struct resv_map *resv = vma_resv_map(vma); 3634 struct hugepage_subpool *spool = subpool_vma(vma); 3635 unsigned long reserve, start, end; 3636 long gbl_reserve; 3637 3638 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 3639 return; 3640 3641 start = vma_hugecache_offset(h, vma, vma->vm_start); 3642 end = vma_hugecache_offset(h, vma, vma->vm_end); 3643 3644 reserve = (end - start) - region_count(resv, start, end); 3645 hugetlb_cgroup_uncharge_counter(resv, start, end); 3646 if (reserve) { 3647 /* 3648 * Decrement reserve counts. The global reserve count may be 3649 * adjusted if the subpool has a minimum size. 3650 */ 3651 gbl_reserve = hugepage_subpool_put_pages(spool, reserve); 3652 hugetlb_acct_memory(h, -gbl_reserve); 3653 } 3654 3655 kref_put(&resv->refs, resv_map_release); 3656 } 3657 3658 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr) 3659 { 3660 if (addr & ~(huge_page_mask(hstate_vma(vma)))) 3661 return -EINVAL; 3662 return 0; 3663 } 3664 3665 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma) 3666 { 3667 return huge_page_size(hstate_vma(vma)); 3668 } 3669 3670 /* 3671 * We cannot handle pagefaults against hugetlb pages at all. They cause 3672 * handle_mm_fault() to try to instantiate regular-sized pages in the 3673 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get 3674 * this far. 3675 */ 3676 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf) 3677 { 3678 BUG(); 3679 return 0; 3680 } 3681 3682 /* 3683 * When a new function is introduced to vm_operations_struct and added 3684 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops. 3685 * This is because under System V memory model, mappings created via 3686 * shmget/shmat with "huge page" specified are backed by hugetlbfs files, 3687 * their original vm_ops are overwritten with shm_vm_ops. 3688 */ 3689 const struct vm_operations_struct hugetlb_vm_ops = { 3690 .fault = hugetlb_vm_op_fault, 3691 .open = hugetlb_vm_op_open, 3692 .close = hugetlb_vm_op_close, 3693 .may_split = hugetlb_vm_op_split, 3694 .pagesize = hugetlb_vm_op_pagesize, 3695 }; 3696 3697 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, 3698 int writable) 3699 { 3700 pte_t entry; 3701 3702 if (writable) { 3703 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page, 3704 vma->vm_page_prot))); 3705 } else { 3706 entry = huge_pte_wrprotect(mk_huge_pte(page, 3707 vma->vm_page_prot)); 3708 } 3709 entry = pte_mkyoung(entry); 3710 entry = pte_mkhuge(entry); 3711 entry = arch_make_huge_pte(entry, vma, page, writable); 3712 3713 return entry; 3714 } 3715 3716 static void set_huge_ptep_writable(struct vm_area_struct *vma, 3717 unsigned long address, pte_t *ptep) 3718 { 3719 pte_t entry; 3720 3721 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep))); 3722 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) 3723 update_mmu_cache(vma, address, ptep); 3724 } 3725 3726 bool is_hugetlb_entry_migration(pte_t pte) 3727 { 3728 swp_entry_t swp; 3729 3730 if (huge_pte_none(pte) || pte_present(pte)) 3731 return false; 3732 swp = pte_to_swp_entry(pte); 3733 if (is_migration_entry(swp)) 3734 return true; 3735 else 3736 return false; 3737 } 3738 3739 static bool is_hugetlb_entry_hwpoisoned(pte_t pte) 3740 { 3741 swp_entry_t swp; 3742 3743 if (huge_pte_none(pte) || pte_present(pte)) 3744 return false; 3745 swp = pte_to_swp_entry(pte); 3746 if (is_hwpoison_entry(swp)) 3747 return true; 3748 else 3749 return false; 3750 } 3751 3752 static void 3753 hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr, 3754 struct page *new_page) 3755 { 3756 __SetPageUptodate(new_page); 3757 set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1)); 3758 hugepage_add_new_anon_rmap(new_page, vma, addr); 3759 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm); 3760 ClearHPageRestoreReserve(new_page); 3761 SetHPageMigratable(new_page); 3762 } 3763 3764 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, 3765 struct vm_area_struct *vma) 3766 { 3767 pte_t *src_pte, *dst_pte, entry, dst_entry; 3768 struct page *ptepage; 3769 unsigned long addr; 3770 bool cow = is_cow_mapping(vma->vm_flags); 3771 struct hstate *h = hstate_vma(vma); 3772 unsigned long sz = huge_page_size(h); 3773 unsigned long npages = pages_per_huge_page(h); 3774 struct address_space *mapping = vma->vm_file->f_mapping; 3775 struct mmu_notifier_range range; 3776 int ret = 0; 3777 3778 if (cow) { 3779 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src, 3780 vma->vm_start, 3781 vma->vm_end); 3782 mmu_notifier_invalidate_range_start(&range); 3783 } else { 3784 /* 3785 * For shared mappings i_mmap_rwsem must be held to call 3786 * huge_pte_alloc, otherwise the returned ptep could go 3787 * away if part of a shared pmd and another thread calls 3788 * huge_pmd_unshare. 3789 */ 3790 i_mmap_lock_read(mapping); 3791 } 3792 3793 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) { 3794 spinlock_t *src_ptl, *dst_ptl; 3795 src_pte = huge_pte_offset(src, addr, sz); 3796 if (!src_pte) 3797 continue; 3798 dst_pte = huge_pte_alloc(dst, addr, sz); 3799 if (!dst_pte) { 3800 ret = -ENOMEM; 3801 break; 3802 } 3803 3804 /* 3805 * If the pagetables are shared don't copy or take references. 3806 * dst_pte == src_pte is the common case of src/dest sharing. 3807 * 3808 * However, src could have 'unshared' and dst shares with 3809 * another vma. If dst_pte !none, this implies sharing. 3810 * Check here before taking page table lock, and once again 3811 * after taking the lock below. 3812 */ 3813 dst_entry = huge_ptep_get(dst_pte); 3814 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry)) 3815 continue; 3816 3817 dst_ptl = huge_pte_lock(h, dst, dst_pte); 3818 src_ptl = huge_pte_lockptr(h, src, src_pte); 3819 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 3820 entry = huge_ptep_get(src_pte); 3821 dst_entry = huge_ptep_get(dst_pte); 3822 again: 3823 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) { 3824 /* 3825 * Skip if src entry none. Also, skip in the 3826 * unlikely case dst entry !none as this implies 3827 * sharing with another vma. 3828 */ 3829 ; 3830 } else if (unlikely(is_hugetlb_entry_migration(entry) || 3831 is_hugetlb_entry_hwpoisoned(entry))) { 3832 swp_entry_t swp_entry = pte_to_swp_entry(entry); 3833 3834 if (is_write_migration_entry(swp_entry) && cow) { 3835 /* 3836 * COW mappings require pages in both 3837 * parent and child to be set to read. 3838 */ 3839 make_migration_entry_read(&swp_entry); 3840 entry = swp_entry_to_pte(swp_entry); 3841 set_huge_swap_pte_at(src, addr, src_pte, 3842 entry, sz); 3843 } 3844 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz); 3845 } else { 3846 entry = huge_ptep_get(src_pte); 3847 ptepage = pte_page(entry); 3848 get_page(ptepage); 3849 3850 /* 3851 * This is a rare case where we see pinned hugetlb 3852 * pages while they're prone to COW. We need to do the 3853 * COW earlier during fork. 3854 * 3855 * When pre-allocating the page or copying data, we 3856 * need to be without the pgtable locks since we could 3857 * sleep during the process. 3858 */ 3859 if (unlikely(page_needs_cow_for_dma(vma, ptepage))) { 3860 pte_t src_pte_old = entry; 3861 struct page *new; 3862 3863 spin_unlock(src_ptl); 3864 spin_unlock(dst_ptl); 3865 /* Do not use reserve as it's private owned */ 3866 new = alloc_huge_page(vma, addr, 1); 3867 if (IS_ERR(new)) { 3868 put_page(ptepage); 3869 ret = PTR_ERR(new); 3870 break; 3871 } 3872 copy_user_huge_page(new, ptepage, addr, vma, 3873 npages); 3874 put_page(ptepage); 3875 3876 /* Install the new huge page if src pte stable */ 3877 dst_ptl = huge_pte_lock(h, dst, dst_pte); 3878 src_ptl = huge_pte_lockptr(h, src, src_pte); 3879 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 3880 entry = huge_ptep_get(src_pte); 3881 if (!pte_same(src_pte_old, entry)) { 3882 put_page(new); 3883 /* dst_entry won't change as in child */ 3884 goto again; 3885 } 3886 hugetlb_install_page(vma, dst_pte, addr, new); 3887 spin_unlock(src_ptl); 3888 spin_unlock(dst_ptl); 3889 continue; 3890 } 3891 3892 if (cow) { 3893 /* 3894 * No need to notify as we are downgrading page 3895 * table protection not changing it to point 3896 * to a new page. 3897 * 3898 * See Documentation/vm/mmu_notifier.rst 3899 */ 3900 huge_ptep_set_wrprotect(src, addr, src_pte); 3901 } 3902 3903 page_dup_rmap(ptepage, true); 3904 set_huge_pte_at(dst, addr, dst_pte, entry); 3905 hugetlb_count_add(npages, dst); 3906 } 3907 spin_unlock(src_ptl); 3908 spin_unlock(dst_ptl); 3909 } 3910 3911 if (cow) 3912 mmu_notifier_invalidate_range_end(&range); 3913 else 3914 i_mmap_unlock_read(mapping); 3915 3916 return ret; 3917 } 3918 3919 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma, 3920 unsigned long start, unsigned long end, 3921 struct page *ref_page) 3922 { 3923 struct mm_struct *mm = vma->vm_mm; 3924 unsigned long address; 3925 pte_t *ptep; 3926 pte_t pte; 3927 spinlock_t *ptl; 3928 struct page *page; 3929 struct hstate *h = hstate_vma(vma); 3930 unsigned long sz = huge_page_size(h); 3931 struct mmu_notifier_range range; 3932 3933 WARN_ON(!is_vm_hugetlb_page(vma)); 3934 BUG_ON(start & ~huge_page_mask(h)); 3935 BUG_ON(end & ~huge_page_mask(h)); 3936 3937 /* 3938 * This is a hugetlb vma, all the pte entries should point 3939 * to huge page. 3940 */ 3941 tlb_change_page_size(tlb, sz); 3942 tlb_start_vma(tlb, vma); 3943 3944 /* 3945 * If sharing possible, alert mmu notifiers of worst case. 3946 */ 3947 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start, 3948 end); 3949 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 3950 mmu_notifier_invalidate_range_start(&range); 3951 address = start; 3952 for (; address < end; address += sz) { 3953 ptep = huge_pte_offset(mm, address, sz); 3954 if (!ptep) 3955 continue; 3956 3957 ptl = huge_pte_lock(h, mm, ptep); 3958 if (huge_pmd_unshare(mm, vma, &address, ptep)) { 3959 spin_unlock(ptl); 3960 /* 3961 * We just unmapped a page of PMDs by clearing a PUD. 3962 * The caller's TLB flush range should cover this area. 3963 */ 3964 continue; 3965 } 3966 3967 pte = huge_ptep_get(ptep); 3968 if (huge_pte_none(pte)) { 3969 spin_unlock(ptl); 3970 continue; 3971 } 3972 3973 /* 3974 * Migrating hugepage or HWPoisoned hugepage is already 3975 * unmapped and its refcount is dropped, so just clear pte here. 3976 */ 3977 if (unlikely(!pte_present(pte))) { 3978 huge_pte_clear(mm, address, ptep, sz); 3979 spin_unlock(ptl); 3980 continue; 3981 } 3982 3983 page = pte_page(pte); 3984 /* 3985 * If a reference page is supplied, it is because a specific 3986 * page is being unmapped, not a range. Ensure the page we 3987 * are about to unmap is the actual page of interest. 3988 */ 3989 if (ref_page) { 3990 if (page != ref_page) { 3991 spin_unlock(ptl); 3992 continue; 3993 } 3994 /* 3995 * Mark the VMA as having unmapped its page so that 3996 * future faults in this VMA will fail rather than 3997 * looking like data was lost 3998 */ 3999 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); 4000 } 4001 4002 pte = huge_ptep_get_and_clear(mm, address, ptep); 4003 tlb_remove_huge_tlb_entry(h, tlb, ptep, address); 4004 if (huge_pte_dirty(pte)) 4005 set_page_dirty(page); 4006 4007 hugetlb_count_sub(pages_per_huge_page(h), mm); 4008 page_remove_rmap(page, true); 4009 4010 spin_unlock(ptl); 4011 tlb_remove_page_size(tlb, page, huge_page_size(h)); 4012 /* 4013 * Bail out after unmapping reference page if supplied 4014 */ 4015 if (ref_page) 4016 break; 4017 } 4018 mmu_notifier_invalidate_range_end(&range); 4019 tlb_end_vma(tlb, vma); 4020 } 4021 4022 void __unmap_hugepage_range_final(struct mmu_gather *tlb, 4023 struct vm_area_struct *vma, unsigned long start, 4024 unsigned long end, struct page *ref_page) 4025 { 4026 __unmap_hugepage_range(tlb, vma, start, end, ref_page); 4027 4028 /* 4029 * Clear this flag so that x86's huge_pmd_share page_table_shareable 4030 * test will fail on a vma being torn down, and not grab a page table 4031 * on its way out. We're lucky that the flag has such an appropriate 4032 * name, and can in fact be safely cleared here. We could clear it 4033 * before the __unmap_hugepage_range above, but all that's necessary 4034 * is to clear it before releasing the i_mmap_rwsem. This works 4035 * because in the context this is called, the VMA is about to be 4036 * destroyed and the i_mmap_rwsem is held. 4037 */ 4038 vma->vm_flags &= ~VM_MAYSHARE; 4039 } 4040 4041 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, 4042 unsigned long end, struct page *ref_page) 4043 { 4044 struct mmu_gather tlb; 4045 4046 tlb_gather_mmu(&tlb, vma->vm_mm); 4047 __unmap_hugepage_range(&tlb, vma, start, end, ref_page); 4048 tlb_finish_mmu(&tlb); 4049 } 4050 4051 /* 4052 * This is called when the original mapper is failing to COW a MAP_PRIVATE 4053 * mapping it owns the reserve page for. The intention is to unmap the page 4054 * from other VMAs and let the children be SIGKILLed if they are faulting the 4055 * same region. 4056 */ 4057 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, 4058 struct page *page, unsigned long address) 4059 { 4060 struct hstate *h = hstate_vma(vma); 4061 struct vm_area_struct *iter_vma; 4062 struct address_space *mapping; 4063 pgoff_t pgoff; 4064 4065 /* 4066 * vm_pgoff is in PAGE_SIZE units, hence the different calculation 4067 * from page cache lookup which is in HPAGE_SIZE units. 4068 */ 4069 address = address & huge_page_mask(h); 4070 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + 4071 vma->vm_pgoff; 4072 mapping = vma->vm_file->f_mapping; 4073 4074 /* 4075 * Take the mapping lock for the duration of the table walk. As 4076 * this mapping should be shared between all the VMAs, 4077 * __unmap_hugepage_range() is called as the lock is already held 4078 */ 4079 i_mmap_lock_write(mapping); 4080 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) { 4081 /* Do not unmap the current VMA */ 4082 if (iter_vma == vma) 4083 continue; 4084 4085 /* 4086 * Shared VMAs have their own reserves and do not affect 4087 * MAP_PRIVATE accounting but it is possible that a shared 4088 * VMA is using the same page so check and skip such VMAs. 4089 */ 4090 if (iter_vma->vm_flags & VM_MAYSHARE) 4091 continue; 4092 4093 /* 4094 * Unmap the page from other VMAs without their own reserves. 4095 * They get marked to be SIGKILLed if they fault in these 4096 * areas. This is because a future no-page fault on this VMA 4097 * could insert a zeroed page instead of the data existing 4098 * from the time of fork. This would look like data corruption 4099 */ 4100 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) 4101 unmap_hugepage_range(iter_vma, address, 4102 address + huge_page_size(h), page); 4103 } 4104 i_mmap_unlock_write(mapping); 4105 } 4106 4107 /* 4108 * Hugetlb_cow() should be called with page lock of the original hugepage held. 4109 * Called with hugetlb_instantiation_mutex held and pte_page locked so we 4110 * cannot race with other handlers or page migration. 4111 * Keep the pte_same checks anyway to make transition from the mutex easier. 4112 */ 4113 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma, 4114 unsigned long address, pte_t *ptep, 4115 struct page *pagecache_page, spinlock_t *ptl) 4116 { 4117 pte_t pte; 4118 struct hstate *h = hstate_vma(vma); 4119 struct page *old_page, *new_page; 4120 int outside_reserve = 0; 4121 vm_fault_t ret = 0; 4122 unsigned long haddr = address & huge_page_mask(h); 4123 struct mmu_notifier_range range; 4124 4125 pte = huge_ptep_get(ptep); 4126 old_page = pte_page(pte); 4127 4128 retry_avoidcopy: 4129 /* If no-one else is actually using this page, avoid the copy 4130 * and just make the page writable */ 4131 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) { 4132 page_move_anon_rmap(old_page, vma); 4133 set_huge_ptep_writable(vma, haddr, ptep); 4134 return 0; 4135 } 4136 4137 /* 4138 * If the process that created a MAP_PRIVATE mapping is about to 4139 * perform a COW due to a shared page count, attempt to satisfy 4140 * the allocation without using the existing reserves. The pagecache 4141 * page is used to determine if the reserve at this address was 4142 * consumed or not. If reserves were used, a partial faulted mapping 4143 * at the time of fork() could consume its reserves on COW instead 4144 * of the full address range. 4145 */ 4146 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && 4147 old_page != pagecache_page) 4148 outside_reserve = 1; 4149 4150 get_page(old_page); 4151 4152 /* 4153 * Drop page table lock as buddy allocator may be called. It will 4154 * be acquired again before returning to the caller, as expected. 4155 */ 4156 spin_unlock(ptl); 4157 new_page = alloc_huge_page(vma, haddr, outside_reserve); 4158 4159 if (IS_ERR(new_page)) { 4160 /* 4161 * If a process owning a MAP_PRIVATE mapping fails to COW, 4162 * it is due to references held by a child and an insufficient 4163 * huge page pool. To guarantee the original mappers 4164 * reliability, unmap the page from child processes. The child 4165 * may get SIGKILLed if it later faults. 4166 */ 4167 if (outside_reserve) { 4168 struct address_space *mapping = vma->vm_file->f_mapping; 4169 pgoff_t idx; 4170 u32 hash; 4171 4172 put_page(old_page); 4173 BUG_ON(huge_pte_none(pte)); 4174 /* 4175 * Drop hugetlb_fault_mutex and i_mmap_rwsem before 4176 * unmapping. unmapping needs to hold i_mmap_rwsem 4177 * in write mode. Dropping i_mmap_rwsem in read mode 4178 * here is OK as COW mappings do not interact with 4179 * PMD sharing. 4180 * 4181 * Reacquire both after unmap operation. 4182 */ 4183 idx = vma_hugecache_offset(h, vma, haddr); 4184 hash = hugetlb_fault_mutex_hash(mapping, idx); 4185 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 4186 i_mmap_unlock_read(mapping); 4187 4188 unmap_ref_private(mm, vma, old_page, haddr); 4189 4190 i_mmap_lock_read(mapping); 4191 mutex_lock(&hugetlb_fault_mutex_table[hash]); 4192 spin_lock(ptl); 4193 ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); 4194 if (likely(ptep && 4195 pte_same(huge_ptep_get(ptep), pte))) 4196 goto retry_avoidcopy; 4197 /* 4198 * race occurs while re-acquiring page table 4199 * lock, and our job is done. 4200 */ 4201 return 0; 4202 } 4203 4204 ret = vmf_error(PTR_ERR(new_page)); 4205 goto out_release_old; 4206 } 4207 4208 /* 4209 * When the original hugepage is shared one, it does not have 4210 * anon_vma prepared. 4211 */ 4212 if (unlikely(anon_vma_prepare(vma))) { 4213 ret = VM_FAULT_OOM; 4214 goto out_release_all; 4215 } 4216 4217 copy_user_huge_page(new_page, old_page, address, vma, 4218 pages_per_huge_page(h)); 4219 __SetPageUptodate(new_page); 4220 4221 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr, 4222 haddr + huge_page_size(h)); 4223 mmu_notifier_invalidate_range_start(&range); 4224 4225 /* 4226 * Retake the page table lock to check for racing updates 4227 * before the page tables are altered 4228 */ 4229 spin_lock(ptl); 4230 ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); 4231 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) { 4232 ClearHPageRestoreReserve(new_page); 4233 4234 /* Break COW */ 4235 huge_ptep_clear_flush(vma, haddr, ptep); 4236 mmu_notifier_invalidate_range(mm, range.start, range.end); 4237 set_huge_pte_at(mm, haddr, ptep, 4238 make_huge_pte(vma, new_page, 1)); 4239 page_remove_rmap(old_page, true); 4240 hugepage_add_new_anon_rmap(new_page, vma, haddr); 4241 SetHPageMigratable(new_page); 4242 /* Make the old page be freed below */ 4243 new_page = old_page; 4244 } 4245 spin_unlock(ptl); 4246 mmu_notifier_invalidate_range_end(&range); 4247 out_release_all: 4248 restore_reserve_on_error(h, vma, haddr, new_page); 4249 put_page(new_page); 4250 out_release_old: 4251 put_page(old_page); 4252 4253 spin_lock(ptl); /* Caller expects lock to be held */ 4254 return ret; 4255 } 4256 4257 /* Return the pagecache page at a given address within a VMA */ 4258 static struct page *hugetlbfs_pagecache_page(struct hstate *h, 4259 struct vm_area_struct *vma, unsigned long address) 4260 { 4261 struct address_space *mapping; 4262 pgoff_t idx; 4263 4264 mapping = vma->vm_file->f_mapping; 4265 idx = vma_hugecache_offset(h, vma, address); 4266 4267 return find_lock_page(mapping, idx); 4268 } 4269 4270 /* 4271 * Return whether there is a pagecache page to back given address within VMA. 4272 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page. 4273 */ 4274 static bool hugetlbfs_pagecache_present(struct hstate *h, 4275 struct vm_area_struct *vma, unsigned long address) 4276 { 4277 struct address_space *mapping; 4278 pgoff_t idx; 4279 struct page *page; 4280 4281 mapping = vma->vm_file->f_mapping; 4282 idx = vma_hugecache_offset(h, vma, address); 4283 4284 page = find_get_page(mapping, idx); 4285 if (page) 4286 put_page(page); 4287 return page != NULL; 4288 } 4289 4290 int huge_add_to_page_cache(struct page *page, struct address_space *mapping, 4291 pgoff_t idx) 4292 { 4293 struct inode *inode = mapping->host; 4294 struct hstate *h = hstate_inode(inode); 4295 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL); 4296 4297 if (err) 4298 return err; 4299 ClearHPageRestoreReserve(page); 4300 4301 /* 4302 * set page dirty so that it will not be removed from cache/file 4303 * by non-hugetlbfs specific code paths. 4304 */ 4305 set_page_dirty(page); 4306 4307 spin_lock(&inode->i_lock); 4308 inode->i_blocks += blocks_per_huge_page(h); 4309 spin_unlock(&inode->i_lock); 4310 return 0; 4311 } 4312 4313 static vm_fault_t hugetlb_no_page(struct mm_struct *mm, 4314 struct vm_area_struct *vma, 4315 struct address_space *mapping, pgoff_t idx, 4316 unsigned long address, pte_t *ptep, unsigned int flags) 4317 { 4318 struct hstate *h = hstate_vma(vma); 4319 vm_fault_t ret = VM_FAULT_SIGBUS; 4320 int anon_rmap = 0; 4321 unsigned long size; 4322 struct page *page; 4323 pte_t new_pte; 4324 spinlock_t *ptl; 4325 unsigned long haddr = address & huge_page_mask(h); 4326 bool new_page = false; 4327 4328 /* 4329 * Currently, we are forced to kill the process in the event the 4330 * original mapper has unmapped pages from the child due to a failed 4331 * COW. Warn that such a situation has occurred as it may not be obvious 4332 */ 4333 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { 4334 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n", 4335 current->pid); 4336 return ret; 4337 } 4338 4339 /* 4340 * We can not race with truncation due to holding i_mmap_rwsem. 4341 * i_size is modified when holding i_mmap_rwsem, so check here 4342 * once for faults beyond end of file. 4343 */ 4344 size = i_size_read(mapping->host) >> huge_page_shift(h); 4345 if (idx >= size) 4346 goto out; 4347 4348 retry: 4349 page = find_lock_page(mapping, idx); 4350 if (!page) { 4351 /* 4352 * Check for page in userfault range 4353 */ 4354 if (userfaultfd_missing(vma)) { 4355 u32 hash; 4356 struct vm_fault vmf = { 4357 .vma = vma, 4358 .address = haddr, 4359 .flags = flags, 4360 /* 4361 * Hard to debug if it ends up being 4362 * used by a callee that assumes 4363 * something about the other 4364 * uninitialized fields... same as in 4365 * memory.c 4366 */ 4367 }; 4368 4369 /* 4370 * hugetlb_fault_mutex and i_mmap_rwsem must be 4371 * dropped before handling userfault. Reacquire 4372 * after handling fault to make calling code simpler. 4373 */ 4374 hash = hugetlb_fault_mutex_hash(mapping, idx); 4375 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 4376 i_mmap_unlock_read(mapping); 4377 ret = handle_userfault(&vmf, VM_UFFD_MISSING); 4378 i_mmap_lock_read(mapping); 4379 mutex_lock(&hugetlb_fault_mutex_table[hash]); 4380 goto out; 4381 } 4382 4383 page = alloc_huge_page(vma, haddr, 0); 4384 if (IS_ERR(page)) { 4385 /* 4386 * Returning error will result in faulting task being 4387 * sent SIGBUS. The hugetlb fault mutex prevents two 4388 * tasks from racing to fault in the same page which 4389 * could result in false unable to allocate errors. 4390 * Page migration does not take the fault mutex, but 4391 * does a clear then write of pte's under page table 4392 * lock. Page fault code could race with migration, 4393 * notice the clear pte and try to allocate a page 4394 * here. Before returning error, get ptl and make 4395 * sure there really is no pte entry. 4396 */ 4397 ptl = huge_pte_lock(h, mm, ptep); 4398 if (!huge_pte_none(huge_ptep_get(ptep))) { 4399 ret = 0; 4400 spin_unlock(ptl); 4401 goto out; 4402 } 4403 spin_unlock(ptl); 4404 ret = vmf_error(PTR_ERR(page)); 4405 goto out; 4406 } 4407 clear_huge_page(page, address, pages_per_huge_page(h)); 4408 __SetPageUptodate(page); 4409 new_page = true; 4410 4411 if (vma->vm_flags & VM_MAYSHARE) { 4412 int err = huge_add_to_page_cache(page, mapping, idx); 4413 if (err) { 4414 put_page(page); 4415 if (err == -EEXIST) 4416 goto retry; 4417 goto out; 4418 } 4419 } else { 4420 lock_page(page); 4421 if (unlikely(anon_vma_prepare(vma))) { 4422 ret = VM_FAULT_OOM; 4423 goto backout_unlocked; 4424 } 4425 anon_rmap = 1; 4426 } 4427 } else { 4428 /* 4429 * If memory error occurs between mmap() and fault, some process 4430 * don't have hwpoisoned swap entry for errored virtual address. 4431 * So we need to block hugepage fault by PG_hwpoison bit check. 4432 */ 4433 if (unlikely(PageHWPoison(page))) { 4434 ret = VM_FAULT_HWPOISON_LARGE | 4435 VM_FAULT_SET_HINDEX(hstate_index(h)); 4436 goto backout_unlocked; 4437 } 4438 } 4439 4440 /* 4441 * If we are going to COW a private mapping later, we examine the 4442 * pending reservations for this page now. This will ensure that 4443 * any allocations necessary to record that reservation occur outside 4444 * the spinlock. 4445 */ 4446 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 4447 if (vma_needs_reservation(h, vma, haddr) < 0) { 4448 ret = VM_FAULT_OOM; 4449 goto backout_unlocked; 4450 } 4451 /* Just decrements count, does not deallocate */ 4452 vma_end_reservation(h, vma, haddr); 4453 } 4454 4455 ptl = huge_pte_lock(h, mm, ptep); 4456 ret = 0; 4457 if (!huge_pte_none(huge_ptep_get(ptep))) 4458 goto backout; 4459 4460 if (anon_rmap) { 4461 ClearHPageRestoreReserve(page); 4462 hugepage_add_new_anon_rmap(page, vma, haddr); 4463 } else 4464 page_dup_rmap(page, true); 4465 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE) 4466 && (vma->vm_flags & VM_SHARED))); 4467 set_huge_pte_at(mm, haddr, ptep, new_pte); 4468 4469 hugetlb_count_add(pages_per_huge_page(h), mm); 4470 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 4471 /* Optimization, do the COW without a second fault */ 4472 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl); 4473 } 4474 4475 spin_unlock(ptl); 4476 4477 /* 4478 * Only set HPageMigratable in newly allocated pages. Existing pages 4479 * found in the pagecache may not have HPageMigratableset if they have 4480 * been isolated for migration. 4481 */ 4482 if (new_page) 4483 SetHPageMigratable(page); 4484 4485 unlock_page(page); 4486 out: 4487 return ret; 4488 4489 backout: 4490 spin_unlock(ptl); 4491 backout_unlocked: 4492 unlock_page(page); 4493 restore_reserve_on_error(h, vma, haddr, page); 4494 put_page(page); 4495 goto out; 4496 } 4497 4498 #ifdef CONFIG_SMP 4499 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 4500 { 4501 unsigned long key[2]; 4502 u32 hash; 4503 4504 key[0] = (unsigned long) mapping; 4505 key[1] = idx; 4506 4507 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0); 4508 4509 return hash & (num_fault_mutexes - 1); 4510 } 4511 #else 4512 /* 4513 * For uniprocessor systems we always use a single mutex, so just 4514 * return 0 and avoid the hashing overhead. 4515 */ 4516 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 4517 { 4518 return 0; 4519 } 4520 #endif 4521 4522 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, 4523 unsigned long address, unsigned int flags) 4524 { 4525 pte_t *ptep, entry; 4526 spinlock_t *ptl; 4527 vm_fault_t ret; 4528 u32 hash; 4529 pgoff_t idx; 4530 struct page *page = NULL; 4531 struct page *pagecache_page = NULL; 4532 struct hstate *h = hstate_vma(vma); 4533 struct address_space *mapping; 4534 int need_wait_lock = 0; 4535 unsigned long haddr = address & huge_page_mask(h); 4536 4537 ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); 4538 if (ptep) { 4539 /* 4540 * Since we hold no locks, ptep could be stale. That is 4541 * OK as we are only making decisions based on content and 4542 * not actually modifying content here. 4543 */ 4544 entry = huge_ptep_get(ptep); 4545 if (unlikely(is_hugetlb_entry_migration(entry))) { 4546 migration_entry_wait_huge(vma, mm, ptep); 4547 return 0; 4548 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) 4549 return VM_FAULT_HWPOISON_LARGE | 4550 VM_FAULT_SET_HINDEX(hstate_index(h)); 4551 } 4552 4553 /* 4554 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold 4555 * until finished with ptep. This serves two purposes: 4556 * 1) It prevents huge_pmd_unshare from being called elsewhere 4557 * and making the ptep no longer valid. 4558 * 2) It synchronizes us with i_size modifications during truncation. 4559 * 4560 * ptep could have already be assigned via huge_pte_offset. That 4561 * is OK, as huge_pte_alloc will return the same value unless 4562 * something has changed. 4563 */ 4564 mapping = vma->vm_file->f_mapping; 4565 i_mmap_lock_read(mapping); 4566 ptep = huge_pte_alloc(mm, haddr, huge_page_size(h)); 4567 if (!ptep) { 4568 i_mmap_unlock_read(mapping); 4569 return VM_FAULT_OOM; 4570 } 4571 4572 /* 4573 * Serialize hugepage allocation and instantiation, so that we don't 4574 * get spurious allocation failures if two CPUs race to instantiate 4575 * the same page in the page cache. 4576 */ 4577 idx = vma_hugecache_offset(h, vma, haddr); 4578 hash = hugetlb_fault_mutex_hash(mapping, idx); 4579 mutex_lock(&hugetlb_fault_mutex_table[hash]); 4580 4581 entry = huge_ptep_get(ptep); 4582 if (huge_pte_none(entry)) { 4583 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags); 4584 goto out_mutex; 4585 } 4586 4587 ret = 0; 4588 4589 /* 4590 * entry could be a migration/hwpoison entry at this point, so this 4591 * check prevents the kernel from going below assuming that we have 4592 * an active hugepage in pagecache. This goto expects the 2nd page 4593 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will 4594 * properly handle it. 4595 */ 4596 if (!pte_present(entry)) 4597 goto out_mutex; 4598 4599 /* 4600 * If we are going to COW the mapping later, we examine the pending 4601 * reservations for this page now. This will ensure that any 4602 * allocations necessary to record that reservation occur outside the 4603 * spinlock. For private mappings, we also lookup the pagecache 4604 * page now as it is used to determine if a reservation has been 4605 * consumed. 4606 */ 4607 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) { 4608 if (vma_needs_reservation(h, vma, haddr) < 0) { 4609 ret = VM_FAULT_OOM; 4610 goto out_mutex; 4611 } 4612 /* Just decrements count, does not deallocate */ 4613 vma_end_reservation(h, vma, haddr); 4614 4615 if (!(vma->vm_flags & VM_MAYSHARE)) 4616 pagecache_page = hugetlbfs_pagecache_page(h, 4617 vma, haddr); 4618 } 4619 4620 ptl = huge_pte_lock(h, mm, ptep); 4621 4622 /* Check for a racing update before calling hugetlb_cow */ 4623 if (unlikely(!pte_same(entry, huge_ptep_get(ptep)))) 4624 goto out_ptl; 4625 4626 /* 4627 * hugetlb_cow() requires page locks of pte_page(entry) and 4628 * pagecache_page, so here we need take the former one 4629 * when page != pagecache_page or !pagecache_page. 4630 */ 4631 page = pte_page(entry); 4632 if (page != pagecache_page) 4633 if (!trylock_page(page)) { 4634 need_wait_lock = 1; 4635 goto out_ptl; 4636 } 4637 4638 get_page(page); 4639 4640 if (flags & FAULT_FLAG_WRITE) { 4641 if (!huge_pte_write(entry)) { 4642 ret = hugetlb_cow(mm, vma, address, ptep, 4643 pagecache_page, ptl); 4644 goto out_put_page; 4645 } 4646 entry = huge_pte_mkdirty(entry); 4647 } 4648 entry = pte_mkyoung(entry); 4649 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry, 4650 flags & FAULT_FLAG_WRITE)) 4651 update_mmu_cache(vma, haddr, ptep); 4652 out_put_page: 4653 if (page != pagecache_page) 4654 unlock_page(page); 4655 put_page(page); 4656 out_ptl: 4657 spin_unlock(ptl); 4658 4659 if (pagecache_page) { 4660 unlock_page(pagecache_page); 4661 put_page(pagecache_page); 4662 } 4663 out_mutex: 4664 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 4665 i_mmap_unlock_read(mapping); 4666 /* 4667 * Generally it's safe to hold refcount during waiting page lock. But 4668 * here we just wait to defer the next page fault to avoid busy loop and 4669 * the page is not used after unlocked before returning from the current 4670 * page fault. So we are safe from accessing freed page, even if we wait 4671 * here without taking refcount. 4672 */ 4673 if (need_wait_lock) 4674 wait_on_page_locked(page); 4675 return ret; 4676 } 4677 4678 /* 4679 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with 4680 * modifications for huge pages. 4681 */ 4682 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm, 4683 pte_t *dst_pte, 4684 struct vm_area_struct *dst_vma, 4685 unsigned long dst_addr, 4686 unsigned long src_addr, 4687 struct page **pagep) 4688 { 4689 struct address_space *mapping; 4690 pgoff_t idx; 4691 unsigned long size; 4692 int vm_shared = dst_vma->vm_flags & VM_SHARED; 4693 struct hstate *h = hstate_vma(dst_vma); 4694 pte_t _dst_pte; 4695 spinlock_t *ptl; 4696 int ret; 4697 struct page *page; 4698 4699 if (!*pagep) { 4700 ret = -ENOMEM; 4701 page = alloc_huge_page(dst_vma, dst_addr, 0); 4702 if (IS_ERR(page)) 4703 goto out; 4704 4705 ret = copy_huge_page_from_user(page, 4706 (const void __user *) src_addr, 4707 pages_per_huge_page(h), false); 4708 4709 /* fallback to copy_from_user outside mmap_lock */ 4710 if (unlikely(ret)) { 4711 ret = -ENOENT; 4712 *pagep = page; 4713 /* don't free the page */ 4714 goto out; 4715 } 4716 } else { 4717 page = *pagep; 4718 *pagep = NULL; 4719 } 4720 4721 /* 4722 * The memory barrier inside __SetPageUptodate makes sure that 4723 * preceding stores to the page contents become visible before 4724 * the set_pte_at() write. 4725 */ 4726 __SetPageUptodate(page); 4727 4728 mapping = dst_vma->vm_file->f_mapping; 4729 idx = vma_hugecache_offset(h, dst_vma, dst_addr); 4730 4731 /* 4732 * If shared, add to page cache 4733 */ 4734 if (vm_shared) { 4735 size = i_size_read(mapping->host) >> huge_page_shift(h); 4736 ret = -EFAULT; 4737 if (idx >= size) 4738 goto out_release_nounlock; 4739 4740 /* 4741 * Serialization between remove_inode_hugepages() and 4742 * huge_add_to_page_cache() below happens through the 4743 * hugetlb_fault_mutex_table that here must be hold by 4744 * the caller. 4745 */ 4746 ret = huge_add_to_page_cache(page, mapping, idx); 4747 if (ret) 4748 goto out_release_nounlock; 4749 } 4750 4751 ptl = huge_pte_lockptr(h, dst_mm, dst_pte); 4752 spin_lock(ptl); 4753 4754 /* 4755 * Recheck the i_size after holding PT lock to make sure not 4756 * to leave any page mapped (as page_mapped()) beyond the end 4757 * of the i_size (remove_inode_hugepages() is strict about 4758 * enforcing that). If we bail out here, we'll also leave a 4759 * page in the radix tree in the vm_shared case beyond the end 4760 * of the i_size, but remove_inode_hugepages() will take care 4761 * of it as soon as we drop the hugetlb_fault_mutex_table. 4762 */ 4763 size = i_size_read(mapping->host) >> huge_page_shift(h); 4764 ret = -EFAULT; 4765 if (idx >= size) 4766 goto out_release_unlock; 4767 4768 ret = -EEXIST; 4769 if (!huge_pte_none(huge_ptep_get(dst_pte))) 4770 goto out_release_unlock; 4771 4772 if (vm_shared) { 4773 page_dup_rmap(page, true); 4774 } else { 4775 ClearHPageRestoreReserve(page); 4776 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr); 4777 } 4778 4779 _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE); 4780 if (dst_vma->vm_flags & VM_WRITE) 4781 _dst_pte = huge_pte_mkdirty(_dst_pte); 4782 _dst_pte = pte_mkyoung(_dst_pte); 4783 4784 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte); 4785 4786 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte, 4787 dst_vma->vm_flags & VM_WRITE); 4788 hugetlb_count_add(pages_per_huge_page(h), dst_mm); 4789 4790 /* No need to invalidate - it was non-present before */ 4791 update_mmu_cache(dst_vma, dst_addr, dst_pte); 4792 4793 spin_unlock(ptl); 4794 SetHPageMigratable(page); 4795 if (vm_shared) 4796 unlock_page(page); 4797 ret = 0; 4798 out: 4799 return ret; 4800 out_release_unlock: 4801 spin_unlock(ptl); 4802 if (vm_shared) 4803 unlock_page(page); 4804 out_release_nounlock: 4805 put_page(page); 4806 goto out; 4807 } 4808 4809 static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma, 4810 int refs, struct page **pages, 4811 struct vm_area_struct **vmas) 4812 { 4813 int nr; 4814 4815 for (nr = 0; nr < refs; nr++) { 4816 if (likely(pages)) 4817 pages[nr] = mem_map_offset(page, nr); 4818 if (vmas) 4819 vmas[nr] = vma; 4820 } 4821 } 4822 4823 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, 4824 struct page **pages, struct vm_area_struct **vmas, 4825 unsigned long *position, unsigned long *nr_pages, 4826 long i, unsigned int flags, int *locked) 4827 { 4828 unsigned long pfn_offset; 4829 unsigned long vaddr = *position; 4830 unsigned long remainder = *nr_pages; 4831 struct hstate *h = hstate_vma(vma); 4832 int err = -EFAULT, refs; 4833 4834 while (vaddr < vma->vm_end && remainder) { 4835 pte_t *pte; 4836 spinlock_t *ptl = NULL; 4837 int absent; 4838 struct page *page; 4839 4840 /* 4841 * If we have a pending SIGKILL, don't keep faulting pages and 4842 * potentially allocating memory. 4843 */ 4844 if (fatal_signal_pending(current)) { 4845 remainder = 0; 4846 break; 4847 } 4848 4849 /* 4850 * Some archs (sparc64, sh*) have multiple pte_ts to 4851 * each hugepage. We have to make sure we get the 4852 * first, for the page indexing below to work. 4853 * 4854 * Note that page table lock is not held when pte is null. 4855 */ 4856 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h), 4857 huge_page_size(h)); 4858 if (pte) 4859 ptl = huge_pte_lock(h, mm, pte); 4860 absent = !pte || huge_pte_none(huge_ptep_get(pte)); 4861 4862 /* 4863 * When coredumping, it suits get_dump_page if we just return 4864 * an error where there's an empty slot with no huge pagecache 4865 * to back it. This way, we avoid allocating a hugepage, and 4866 * the sparse dumpfile avoids allocating disk blocks, but its 4867 * huge holes still show up with zeroes where they need to be. 4868 */ 4869 if (absent && (flags & FOLL_DUMP) && 4870 !hugetlbfs_pagecache_present(h, vma, vaddr)) { 4871 if (pte) 4872 spin_unlock(ptl); 4873 remainder = 0; 4874 break; 4875 } 4876 4877 /* 4878 * We need call hugetlb_fault for both hugepages under migration 4879 * (in which case hugetlb_fault waits for the migration,) and 4880 * hwpoisoned hugepages (in which case we need to prevent the 4881 * caller from accessing to them.) In order to do this, we use 4882 * here is_swap_pte instead of is_hugetlb_entry_migration and 4883 * is_hugetlb_entry_hwpoisoned. This is because it simply covers 4884 * both cases, and because we can't follow correct pages 4885 * directly from any kind of swap entries. 4886 */ 4887 if (absent || is_swap_pte(huge_ptep_get(pte)) || 4888 ((flags & FOLL_WRITE) && 4889 !huge_pte_write(huge_ptep_get(pte)))) { 4890 vm_fault_t ret; 4891 unsigned int fault_flags = 0; 4892 4893 if (pte) 4894 spin_unlock(ptl); 4895 if (flags & FOLL_WRITE) 4896 fault_flags |= FAULT_FLAG_WRITE; 4897 if (locked) 4898 fault_flags |= FAULT_FLAG_ALLOW_RETRY | 4899 FAULT_FLAG_KILLABLE; 4900 if (flags & FOLL_NOWAIT) 4901 fault_flags |= FAULT_FLAG_ALLOW_RETRY | 4902 FAULT_FLAG_RETRY_NOWAIT; 4903 if (flags & FOLL_TRIED) { 4904 /* 4905 * Note: FAULT_FLAG_ALLOW_RETRY and 4906 * FAULT_FLAG_TRIED can co-exist 4907 */ 4908 fault_flags |= FAULT_FLAG_TRIED; 4909 } 4910 ret = hugetlb_fault(mm, vma, vaddr, fault_flags); 4911 if (ret & VM_FAULT_ERROR) { 4912 err = vm_fault_to_errno(ret, flags); 4913 remainder = 0; 4914 break; 4915 } 4916 if (ret & VM_FAULT_RETRY) { 4917 if (locked && 4918 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) 4919 *locked = 0; 4920 *nr_pages = 0; 4921 /* 4922 * VM_FAULT_RETRY must not return an 4923 * error, it will return zero 4924 * instead. 4925 * 4926 * No need to update "position" as the 4927 * caller will not check it after 4928 * *nr_pages is set to 0. 4929 */ 4930 return i; 4931 } 4932 continue; 4933 } 4934 4935 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT; 4936 page = pte_page(huge_ptep_get(pte)); 4937 4938 /* 4939 * If subpage information not requested, update counters 4940 * and skip the same_page loop below. 4941 */ 4942 if (!pages && !vmas && !pfn_offset && 4943 (vaddr + huge_page_size(h) < vma->vm_end) && 4944 (remainder >= pages_per_huge_page(h))) { 4945 vaddr += huge_page_size(h); 4946 remainder -= pages_per_huge_page(h); 4947 i += pages_per_huge_page(h); 4948 spin_unlock(ptl); 4949 continue; 4950 } 4951 4952 refs = min3(pages_per_huge_page(h) - pfn_offset, 4953 (vma->vm_end - vaddr) >> PAGE_SHIFT, remainder); 4954 4955 if (pages || vmas) 4956 record_subpages_vmas(mem_map_offset(page, pfn_offset), 4957 vma, refs, 4958 likely(pages) ? pages + i : NULL, 4959 vmas ? vmas + i : NULL); 4960 4961 if (pages) { 4962 /* 4963 * try_grab_compound_head() should always succeed here, 4964 * because: a) we hold the ptl lock, and b) we've just 4965 * checked that the huge page is present in the page 4966 * tables. If the huge page is present, then the tail 4967 * pages must also be present. The ptl prevents the 4968 * head page and tail pages from being rearranged in 4969 * any way. So this page must be available at this 4970 * point, unless the page refcount overflowed: 4971 */ 4972 if (WARN_ON_ONCE(!try_grab_compound_head(pages[i], 4973 refs, 4974 flags))) { 4975 spin_unlock(ptl); 4976 remainder = 0; 4977 err = -ENOMEM; 4978 break; 4979 } 4980 } 4981 4982 vaddr += (refs << PAGE_SHIFT); 4983 remainder -= refs; 4984 i += refs; 4985 4986 spin_unlock(ptl); 4987 } 4988 *nr_pages = remainder; 4989 /* 4990 * setting position is actually required only if remainder is 4991 * not zero but it's faster not to add a "if (remainder)" 4992 * branch. 4993 */ 4994 *position = vaddr; 4995 4996 return i ? i : err; 4997 } 4998 4999 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE 5000 /* 5001 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can 5002 * implement this. 5003 */ 5004 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end) 5005 #endif 5006 5007 unsigned long hugetlb_change_protection(struct vm_area_struct *vma, 5008 unsigned long address, unsigned long end, pgprot_t newprot) 5009 { 5010 struct mm_struct *mm = vma->vm_mm; 5011 unsigned long start = address; 5012 pte_t *ptep; 5013 pte_t pte; 5014 struct hstate *h = hstate_vma(vma); 5015 unsigned long pages = 0; 5016 bool shared_pmd = false; 5017 struct mmu_notifier_range range; 5018 5019 /* 5020 * In the case of shared PMDs, the area to flush could be beyond 5021 * start/end. Set range.start/range.end to cover the maximum possible 5022 * range if PMD sharing is possible. 5023 */ 5024 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA, 5025 0, vma, mm, start, end); 5026 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 5027 5028 BUG_ON(address >= end); 5029 flush_cache_range(vma, range.start, range.end); 5030 5031 mmu_notifier_invalidate_range_start(&range); 5032 i_mmap_lock_write(vma->vm_file->f_mapping); 5033 for (; address < end; address += huge_page_size(h)) { 5034 spinlock_t *ptl; 5035 ptep = huge_pte_offset(mm, address, huge_page_size(h)); 5036 if (!ptep) 5037 continue; 5038 ptl = huge_pte_lock(h, mm, ptep); 5039 if (huge_pmd_unshare(mm, vma, &address, ptep)) { 5040 pages++; 5041 spin_unlock(ptl); 5042 shared_pmd = true; 5043 continue; 5044 } 5045 pte = huge_ptep_get(ptep); 5046 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) { 5047 spin_unlock(ptl); 5048 continue; 5049 } 5050 if (unlikely(is_hugetlb_entry_migration(pte))) { 5051 swp_entry_t entry = pte_to_swp_entry(pte); 5052 5053 if (is_write_migration_entry(entry)) { 5054 pte_t newpte; 5055 5056 make_migration_entry_read(&entry); 5057 newpte = swp_entry_to_pte(entry); 5058 set_huge_swap_pte_at(mm, address, ptep, 5059 newpte, huge_page_size(h)); 5060 pages++; 5061 } 5062 spin_unlock(ptl); 5063 continue; 5064 } 5065 if (!huge_pte_none(pte)) { 5066 pte_t old_pte; 5067 5068 old_pte = huge_ptep_modify_prot_start(vma, address, ptep); 5069 pte = pte_mkhuge(huge_pte_modify(old_pte, newprot)); 5070 pte = arch_make_huge_pte(pte, vma, NULL, 0); 5071 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte); 5072 pages++; 5073 } 5074 spin_unlock(ptl); 5075 } 5076 /* 5077 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare 5078 * may have cleared our pud entry and done put_page on the page table: 5079 * once we release i_mmap_rwsem, another task can do the final put_page 5080 * and that page table be reused and filled with junk. If we actually 5081 * did unshare a page of pmds, flush the range corresponding to the pud. 5082 */ 5083 if (shared_pmd) 5084 flush_hugetlb_tlb_range(vma, range.start, range.end); 5085 else 5086 flush_hugetlb_tlb_range(vma, start, end); 5087 /* 5088 * No need to call mmu_notifier_invalidate_range() we are downgrading 5089 * page table protection not changing it to point to a new page. 5090 * 5091 * See Documentation/vm/mmu_notifier.rst 5092 */ 5093 i_mmap_unlock_write(vma->vm_file->f_mapping); 5094 mmu_notifier_invalidate_range_end(&range); 5095 5096 return pages << h->order; 5097 } 5098 5099 /* Return true if reservation was successful, false otherwise. */ 5100 bool hugetlb_reserve_pages(struct inode *inode, 5101 long from, long to, 5102 struct vm_area_struct *vma, 5103 vm_flags_t vm_flags) 5104 { 5105 long chg, add = -1; 5106 struct hstate *h = hstate_inode(inode); 5107 struct hugepage_subpool *spool = subpool_inode(inode); 5108 struct resv_map *resv_map; 5109 struct hugetlb_cgroup *h_cg = NULL; 5110 long gbl_reserve, regions_needed = 0; 5111 5112 /* This should never happen */ 5113 if (from > to) { 5114 VM_WARN(1, "%s called with a negative range\n", __func__); 5115 return false; 5116 } 5117 5118 /* 5119 * Only apply hugepage reservation if asked. At fault time, an 5120 * attempt will be made for VM_NORESERVE to allocate a page 5121 * without using reserves 5122 */ 5123 if (vm_flags & VM_NORESERVE) 5124 return true; 5125 5126 /* 5127 * Shared mappings base their reservation on the number of pages that 5128 * are already allocated on behalf of the file. Private mappings need 5129 * to reserve the full area even if read-only as mprotect() may be 5130 * called to make the mapping read-write. Assume !vma is a shm mapping 5131 */ 5132 if (!vma || vma->vm_flags & VM_MAYSHARE) { 5133 /* 5134 * resv_map can not be NULL as hugetlb_reserve_pages is only 5135 * called for inodes for which resv_maps were created (see 5136 * hugetlbfs_get_inode). 5137 */ 5138 resv_map = inode_resv_map(inode); 5139 5140 chg = region_chg(resv_map, from, to, ®ions_needed); 5141 5142 } else { 5143 /* Private mapping. */ 5144 resv_map = resv_map_alloc(); 5145 if (!resv_map) 5146 return false; 5147 5148 chg = to - from; 5149 5150 set_vma_resv_map(vma, resv_map); 5151 set_vma_resv_flags(vma, HPAGE_RESV_OWNER); 5152 } 5153 5154 if (chg < 0) 5155 goto out_err; 5156 5157 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h), 5158 chg * pages_per_huge_page(h), &h_cg) < 0) 5159 goto out_err; 5160 5161 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) { 5162 /* For private mappings, the hugetlb_cgroup uncharge info hangs 5163 * of the resv_map. 5164 */ 5165 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h); 5166 } 5167 5168 /* 5169 * There must be enough pages in the subpool for the mapping. If 5170 * the subpool has a minimum size, there may be some global 5171 * reservations already in place (gbl_reserve). 5172 */ 5173 gbl_reserve = hugepage_subpool_get_pages(spool, chg); 5174 if (gbl_reserve < 0) 5175 goto out_uncharge_cgroup; 5176 5177 /* 5178 * Check enough hugepages are available for the reservation. 5179 * Hand the pages back to the subpool if there are not 5180 */ 5181 if (hugetlb_acct_memory(h, gbl_reserve) < 0) 5182 goto out_put_pages; 5183 5184 /* 5185 * Account for the reservations made. Shared mappings record regions 5186 * that have reservations as they are shared by multiple VMAs. 5187 * When the last VMA disappears, the region map says how much 5188 * the reservation was and the page cache tells how much of 5189 * the reservation was consumed. Private mappings are per-VMA and 5190 * only the consumed reservations are tracked. When the VMA 5191 * disappears, the original reservation is the VMA size and the 5192 * consumed reservations are stored in the map. Hence, nothing 5193 * else has to be done for private mappings here 5194 */ 5195 if (!vma || vma->vm_flags & VM_MAYSHARE) { 5196 add = region_add(resv_map, from, to, regions_needed, h, h_cg); 5197 5198 if (unlikely(add < 0)) { 5199 hugetlb_acct_memory(h, -gbl_reserve); 5200 goto out_put_pages; 5201 } else if (unlikely(chg > add)) { 5202 /* 5203 * pages in this range were added to the reserve 5204 * map between region_chg and region_add. This 5205 * indicates a race with alloc_huge_page. Adjust 5206 * the subpool and reserve counts modified above 5207 * based on the difference. 5208 */ 5209 long rsv_adjust; 5210 5211 /* 5212 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the 5213 * reference to h_cg->css. See comment below for detail. 5214 */ 5215 hugetlb_cgroup_uncharge_cgroup_rsvd( 5216 hstate_index(h), 5217 (chg - add) * pages_per_huge_page(h), h_cg); 5218 5219 rsv_adjust = hugepage_subpool_put_pages(spool, 5220 chg - add); 5221 hugetlb_acct_memory(h, -rsv_adjust); 5222 } else if (h_cg) { 5223 /* 5224 * The file_regions will hold their own reference to 5225 * h_cg->css. So we should release the reference held 5226 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are 5227 * done. 5228 */ 5229 hugetlb_cgroup_put_rsvd_cgroup(h_cg); 5230 } 5231 } 5232 return true; 5233 5234 out_put_pages: 5235 /* put back original number of pages, chg */ 5236 (void)hugepage_subpool_put_pages(spool, chg); 5237 out_uncharge_cgroup: 5238 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h), 5239 chg * pages_per_huge_page(h), h_cg); 5240 out_err: 5241 if (!vma || vma->vm_flags & VM_MAYSHARE) 5242 /* Only call region_abort if the region_chg succeeded but the 5243 * region_add failed or didn't run. 5244 */ 5245 if (chg >= 0 && add < 0) 5246 region_abort(resv_map, from, to, regions_needed); 5247 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 5248 kref_put(&resv_map->refs, resv_map_release); 5249 return false; 5250 } 5251 5252 long hugetlb_unreserve_pages(struct inode *inode, long start, long end, 5253 long freed) 5254 { 5255 struct hstate *h = hstate_inode(inode); 5256 struct resv_map *resv_map = inode_resv_map(inode); 5257 long chg = 0; 5258 struct hugepage_subpool *spool = subpool_inode(inode); 5259 long gbl_reserve; 5260 5261 /* 5262 * Since this routine can be called in the evict inode path for all 5263 * hugetlbfs inodes, resv_map could be NULL. 5264 */ 5265 if (resv_map) { 5266 chg = region_del(resv_map, start, end); 5267 /* 5268 * region_del() can fail in the rare case where a region 5269 * must be split and another region descriptor can not be 5270 * allocated. If end == LONG_MAX, it will not fail. 5271 */ 5272 if (chg < 0) 5273 return chg; 5274 } 5275 5276 spin_lock(&inode->i_lock); 5277 inode->i_blocks -= (blocks_per_huge_page(h) * freed); 5278 spin_unlock(&inode->i_lock); 5279 5280 /* 5281 * If the subpool has a minimum size, the number of global 5282 * reservations to be released may be adjusted. 5283 */ 5284 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed)); 5285 hugetlb_acct_memory(h, -gbl_reserve); 5286 5287 return 0; 5288 } 5289 5290 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE 5291 static unsigned long page_table_shareable(struct vm_area_struct *svma, 5292 struct vm_area_struct *vma, 5293 unsigned long addr, pgoff_t idx) 5294 { 5295 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) + 5296 svma->vm_start; 5297 unsigned long sbase = saddr & PUD_MASK; 5298 unsigned long s_end = sbase + PUD_SIZE; 5299 5300 /* Allow segments to share if only one is marked locked */ 5301 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK; 5302 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK; 5303 5304 /* 5305 * match the virtual addresses, permission and the alignment of the 5306 * page table page. 5307 */ 5308 if (pmd_index(addr) != pmd_index(saddr) || 5309 vm_flags != svm_flags || 5310 !range_in_vma(svma, sbase, s_end)) 5311 return 0; 5312 5313 return saddr; 5314 } 5315 5316 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr) 5317 { 5318 unsigned long base = addr & PUD_MASK; 5319 unsigned long end = base + PUD_SIZE; 5320 5321 /* 5322 * check on proper vm_flags and page table alignment 5323 */ 5324 if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end)) 5325 return true; 5326 return false; 5327 } 5328 5329 /* 5330 * Determine if start,end range within vma could be mapped by shared pmd. 5331 * If yes, adjust start and end to cover range associated with possible 5332 * shared pmd mappings. 5333 */ 5334 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 5335 unsigned long *start, unsigned long *end) 5336 { 5337 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE), 5338 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE); 5339 5340 /* 5341 * vma need span at least one aligned PUD size and the start,end range 5342 * must at least partialy within it. 5343 */ 5344 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) || 5345 (*end <= v_start) || (*start >= v_end)) 5346 return; 5347 5348 /* Extend the range to be PUD aligned for a worst case scenario */ 5349 if (*start > v_start) 5350 *start = ALIGN_DOWN(*start, PUD_SIZE); 5351 5352 if (*end < v_end) 5353 *end = ALIGN(*end, PUD_SIZE); 5354 } 5355 5356 /* 5357 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc() 5358 * and returns the corresponding pte. While this is not necessary for the 5359 * !shared pmd case because we can allocate the pmd later as well, it makes the 5360 * code much cleaner. 5361 * 5362 * This routine must be called with i_mmap_rwsem held in at least read mode if 5363 * sharing is possible. For hugetlbfs, this prevents removal of any page 5364 * table entries associated with the address space. This is important as we 5365 * are setting up sharing based on existing page table entries (mappings). 5366 * 5367 * NOTE: This routine is only called from huge_pte_alloc. Some callers of 5368 * huge_pte_alloc know that sharing is not possible and do not take 5369 * i_mmap_rwsem as a performance optimization. This is handled by the 5370 * if !vma_shareable check at the beginning of the routine. i_mmap_rwsem is 5371 * only required for subsequent processing. 5372 */ 5373 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud) 5374 { 5375 struct vm_area_struct *vma = find_vma(mm, addr); 5376 struct address_space *mapping = vma->vm_file->f_mapping; 5377 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + 5378 vma->vm_pgoff; 5379 struct vm_area_struct *svma; 5380 unsigned long saddr; 5381 pte_t *spte = NULL; 5382 pte_t *pte; 5383 spinlock_t *ptl; 5384 5385 if (!vma_shareable(vma, addr)) 5386 return (pte_t *)pmd_alloc(mm, pud, addr); 5387 5388 i_mmap_assert_locked(mapping); 5389 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) { 5390 if (svma == vma) 5391 continue; 5392 5393 saddr = page_table_shareable(svma, vma, addr, idx); 5394 if (saddr) { 5395 spte = huge_pte_offset(svma->vm_mm, saddr, 5396 vma_mmu_pagesize(svma)); 5397 if (spte) { 5398 get_page(virt_to_page(spte)); 5399 break; 5400 } 5401 } 5402 } 5403 5404 if (!spte) 5405 goto out; 5406 5407 ptl = huge_pte_lock(hstate_vma(vma), mm, spte); 5408 if (pud_none(*pud)) { 5409 pud_populate(mm, pud, 5410 (pmd_t *)((unsigned long)spte & PAGE_MASK)); 5411 mm_inc_nr_pmds(mm); 5412 } else { 5413 put_page(virt_to_page(spte)); 5414 } 5415 spin_unlock(ptl); 5416 out: 5417 pte = (pte_t *)pmd_alloc(mm, pud, addr); 5418 return pte; 5419 } 5420 5421 /* 5422 * unmap huge page backed by shared pte. 5423 * 5424 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared 5425 * indicated by page_count > 1, unmap is achieved by clearing pud and 5426 * decrementing the ref count. If count == 1, the pte page is not shared. 5427 * 5428 * Called with page table lock held and i_mmap_rwsem held in write mode. 5429 * 5430 * returns: 1 successfully unmapped a shared pte page 5431 * 0 the underlying pte page is not shared, or it is the last user 5432 */ 5433 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, 5434 unsigned long *addr, pte_t *ptep) 5435 { 5436 pgd_t *pgd = pgd_offset(mm, *addr); 5437 p4d_t *p4d = p4d_offset(pgd, *addr); 5438 pud_t *pud = pud_offset(p4d, *addr); 5439 5440 i_mmap_assert_write_locked(vma->vm_file->f_mapping); 5441 BUG_ON(page_count(virt_to_page(ptep)) == 0); 5442 if (page_count(virt_to_page(ptep)) == 1) 5443 return 0; 5444 5445 pud_clear(pud); 5446 put_page(virt_to_page(ptep)); 5447 mm_dec_nr_pmds(mm); 5448 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE; 5449 return 1; 5450 } 5451 #define want_pmd_share() (1) 5452 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 5453 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud) 5454 { 5455 return NULL; 5456 } 5457 5458 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, 5459 unsigned long *addr, pte_t *ptep) 5460 { 5461 return 0; 5462 } 5463 5464 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 5465 unsigned long *start, unsigned long *end) 5466 { 5467 } 5468 #define want_pmd_share() (0) 5469 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 5470 5471 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB 5472 pte_t *huge_pte_alloc(struct mm_struct *mm, 5473 unsigned long addr, unsigned long sz) 5474 { 5475 pgd_t *pgd; 5476 p4d_t *p4d; 5477 pud_t *pud; 5478 pte_t *pte = NULL; 5479 5480 pgd = pgd_offset(mm, addr); 5481 p4d = p4d_alloc(mm, pgd, addr); 5482 if (!p4d) 5483 return NULL; 5484 pud = pud_alloc(mm, p4d, addr); 5485 if (pud) { 5486 if (sz == PUD_SIZE) { 5487 pte = (pte_t *)pud; 5488 } else { 5489 BUG_ON(sz != PMD_SIZE); 5490 if (want_pmd_share() && pud_none(*pud)) 5491 pte = huge_pmd_share(mm, addr, pud); 5492 else 5493 pte = (pte_t *)pmd_alloc(mm, pud, addr); 5494 } 5495 } 5496 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte)); 5497 5498 return pte; 5499 } 5500 5501 /* 5502 * huge_pte_offset() - Walk the page table to resolve the hugepage 5503 * entry at address @addr 5504 * 5505 * Return: Pointer to page table entry (PUD or PMD) for 5506 * address @addr, or NULL if a !p*d_present() entry is encountered and the 5507 * size @sz doesn't match the hugepage size at this level of the page 5508 * table. 5509 */ 5510 pte_t *huge_pte_offset(struct mm_struct *mm, 5511 unsigned long addr, unsigned long sz) 5512 { 5513 pgd_t *pgd; 5514 p4d_t *p4d; 5515 pud_t *pud; 5516 pmd_t *pmd; 5517 5518 pgd = pgd_offset(mm, addr); 5519 if (!pgd_present(*pgd)) 5520 return NULL; 5521 p4d = p4d_offset(pgd, addr); 5522 if (!p4d_present(*p4d)) 5523 return NULL; 5524 5525 pud = pud_offset(p4d, addr); 5526 if (sz == PUD_SIZE) 5527 /* must be pud huge, non-present or none */ 5528 return (pte_t *)pud; 5529 if (!pud_present(*pud)) 5530 return NULL; 5531 /* must have a valid entry and size to go further */ 5532 5533 pmd = pmd_offset(pud, addr); 5534 /* must be pmd huge, non-present or none */ 5535 return (pte_t *)pmd; 5536 } 5537 5538 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */ 5539 5540 /* 5541 * These functions are overwritable if your architecture needs its own 5542 * behavior. 5543 */ 5544 struct page * __weak 5545 follow_huge_addr(struct mm_struct *mm, unsigned long address, 5546 int write) 5547 { 5548 return ERR_PTR(-EINVAL); 5549 } 5550 5551 struct page * __weak 5552 follow_huge_pd(struct vm_area_struct *vma, 5553 unsigned long address, hugepd_t hpd, int flags, int pdshift) 5554 { 5555 WARN(1, "hugepd follow called with no support for hugepage directory format\n"); 5556 return NULL; 5557 } 5558 5559 struct page * __weak 5560 follow_huge_pmd(struct mm_struct *mm, unsigned long address, 5561 pmd_t *pmd, int flags) 5562 { 5563 struct page *page = NULL; 5564 spinlock_t *ptl; 5565 pte_t pte; 5566 5567 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 5568 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) == 5569 (FOLL_PIN | FOLL_GET))) 5570 return NULL; 5571 5572 retry: 5573 ptl = pmd_lockptr(mm, pmd); 5574 spin_lock(ptl); 5575 /* 5576 * make sure that the address range covered by this pmd is not 5577 * unmapped from other threads. 5578 */ 5579 if (!pmd_huge(*pmd)) 5580 goto out; 5581 pte = huge_ptep_get((pte_t *)pmd); 5582 if (pte_present(pte)) { 5583 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT); 5584 /* 5585 * try_grab_page() should always succeed here, because: a) we 5586 * hold the pmd (ptl) lock, and b) we've just checked that the 5587 * huge pmd (head) page is present in the page tables. The ptl 5588 * prevents the head page and tail pages from being rearranged 5589 * in any way. So this page must be available at this point, 5590 * unless the page refcount overflowed: 5591 */ 5592 if (WARN_ON_ONCE(!try_grab_page(page, flags))) { 5593 page = NULL; 5594 goto out; 5595 } 5596 } else { 5597 if (is_hugetlb_entry_migration(pte)) { 5598 spin_unlock(ptl); 5599 __migration_entry_wait(mm, (pte_t *)pmd, ptl); 5600 goto retry; 5601 } 5602 /* 5603 * hwpoisoned entry is treated as no_page_table in 5604 * follow_page_mask(). 5605 */ 5606 } 5607 out: 5608 spin_unlock(ptl); 5609 return page; 5610 } 5611 5612 struct page * __weak 5613 follow_huge_pud(struct mm_struct *mm, unsigned long address, 5614 pud_t *pud, int flags) 5615 { 5616 if (flags & (FOLL_GET | FOLL_PIN)) 5617 return NULL; 5618 5619 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT); 5620 } 5621 5622 struct page * __weak 5623 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags) 5624 { 5625 if (flags & (FOLL_GET | FOLL_PIN)) 5626 return NULL; 5627 5628 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT); 5629 } 5630 5631 bool isolate_huge_page(struct page *page, struct list_head *list) 5632 { 5633 bool ret = true; 5634 5635 spin_lock(&hugetlb_lock); 5636 if (!PageHeadHuge(page) || 5637 !HPageMigratable(page) || 5638 !get_page_unless_zero(page)) { 5639 ret = false; 5640 goto unlock; 5641 } 5642 ClearHPageMigratable(page); 5643 list_move_tail(&page->lru, list); 5644 unlock: 5645 spin_unlock(&hugetlb_lock); 5646 return ret; 5647 } 5648 5649 void putback_active_hugepage(struct page *page) 5650 { 5651 spin_lock(&hugetlb_lock); 5652 SetHPageMigratable(page); 5653 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist); 5654 spin_unlock(&hugetlb_lock); 5655 put_page(page); 5656 } 5657 5658 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason) 5659 { 5660 struct hstate *h = page_hstate(oldpage); 5661 5662 hugetlb_cgroup_migrate(oldpage, newpage); 5663 set_page_owner_migrate_reason(newpage, reason); 5664 5665 /* 5666 * transfer temporary state of the new huge page. This is 5667 * reverse to other transitions because the newpage is going to 5668 * be final while the old one will be freed so it takes over 5669 * the temporary status. 5670 * 5671 * Also note that we have to transfer the per-node surplus state 5672 * here as well otherwise the global surplus count will not match 5673 * the per-node's. 5674 */ 5675 if (HPageTemporary(newpage)) { 5676 int old_nid = page_to_nid(oldpage); 5677 int new_nid = page_to_nid(newpage); 5678 5679 SetHPageTemporary(oldpage); 5680 ClearHPageTemporary(newpage); 5681 5682 spin_lock(&hugetlb_lock); 5683 if (h->surplus_huge_pages_node[old_nid]) { 5684 h->surplus_huge_pages_node[old_nid]--; 5685 h->surplus_huge_pages_node[new_nid]++; 5686 } 5687 spin_unlock(&hugetlb_lock); 5688 } 5689 } 5690 5691 #ifdef CONFIG_CMA 5692 static bool cma_reserve_called __initdata; 5693 5694 static int __init cmdline_parse_hugetlb_cma(char *p) 5695 { 5696 hugetlb_cma_size = memparse(p, &p); 5697 return 0; 5698 } 5699 5700 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma); 5701 5702 void __init hugetlb_cma_reserve(int order) 5703 { 5704 unsigned long size, reserved, per_node; 5705 int nid; 5706 5707 cma_reserve_called = true; 5708 5709 if (!hugetlb_cma_size) 5710 return; 5711 5712 if (hugetlb_cma_size < (PAGE_SIZE << order)) { 5713 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n", 5714 (PAGE_SIZE << order) / SZ_1M); 5715 return; 5716 } 5717 5718 /* 5719 * If 3 GB area is requested on a machine with 4 numa nodes, 5720 * let's allocate 1 GB on first three nodes and ignore the last one. 5721 */ 5722 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes); 5723 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n", 5724 hugetlb_cma_size / SZ_1M, per_node / SZ_1M); 5725 5726 reserved = 0; 5727 for_each_node_state(nid, N_ONLINE) { 5728 int res; 5729 char name[CMA_MAX_NAME]; 5730 5731 size = min(per_node, hugetlb_cma_size - reserved); 5732 size = round_up(size, PAGE_SIZE << order); 5733 5734 snprintf(name, sizeof(name), "hugetlb%d", nid); 5735 res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order, 5736 0, false, name, 5737 &hugetlb_cma[nid], nid); 5738 if (res) { 5739 pr_warn("hugetlb_cma: reservation failed: err %d, node %d", 5740 res, nid); 5741 continue; 5742 } 5743 5744 reserved += size; 5745 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n", 5746 size / SZ_1M, nid); 5747 5748 if (reserved >= hugetlb_cma_size) 5749 break; 5750 } 5751 } 5752 5753 void __init hugetlb_cma_check(void) 5754 { 5755 if (!hugetlb_cma_size || cma_reserve_called) 5756 return; 5757 5758 pr_warn("hugetlb_cma: the option isn't supported by current arch\n"); 5759 } 5760 5761 #endif /* CONFIG_CMA */ 5762