xref: /linux/mm/hugetlb.c (revision 8e07e0e3964ca4e23ce7b68e2096fe660a888942)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 #include <linux/migrate.h>
34 #include <linux/nospec.h>
35 #include <linux/delayacct.h>
36 #include <linux/memory.h>
37 #include <linux/mm_inline.h>
38 
39 #include <asm/page.h>
40 #include <asm/pgalloc.h>
41 #include <asm/tlb.h>
42 
43 #include <linux/io.h>
44 #include <linux/hugetlb.h>
45 #include <linux/hugetlb_cgroup.h>
46 #include <linux/node.h>
47 #include <linux/page_owner.h>
48 #include "internal.h"
49 #include "hugetlb_vmemmap.h"
50 
51 int hugetlb_max_hstate __read_mostly;
52 unsigned int default_hstate_idx;
53 struct hstate hstates[HUGE_MAX_HSTATE];
54 
55 #ifdef CONFIG_CMA
56 static struct cma *hugetlb_cma[MAX_NUMNODES];
57 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
58 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
59 {
60 	return cma_pages_valid(hugetlb_cma[folio_nid(folio)], &folio->page,
61 				1 << order);
62 }
63 #else
64 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
65 {
66 	return false;
67 }
68 #endif
69 static unsigned long hugetlb_cma_size __initdata;
70 
71 __initdata LIST_HEAD(huge_boot_pages);
72 
73 /* for command line parsing */
74 static struct hstate * __initdata parsed_hstate;
75 static unsigned long __initdata default_hstate_max_huge_pages;
76 static bool __initdata parsed_valid_hugepagesz = true;
77 static bool __initdata parsed_default_hugepagesz;
78 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
79 
80 /*
81  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
82  * free_huge_pages, and surplus_huge_pages.
83  */
84 DEFINE_SPINLOCK(hugetlb_lock);
85 
86 /*
87  * Serializes faults on the same logical page.  This is used to
88  * prevent spurious OOMs when the hugepage pool is fully utilized.
89  */
90 static int num_fault_mutexes;
91 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
92 
93 /* Forward declaration */
94 static int hugetlb_acct_memory(struct hstate *h, long delta);
95 static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
96 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
97 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
98 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
99 		unsigned long start, unsigned long end);
100 static struct resv_map *vma_resv_map(struct vm_area_struct *vma);
101 
102 static inline bool subpool_is_free(struct hugepage_subpool *spool)
103 {
104 	if (spool->count)
105 		return false;
106 	if (spool->max_hpages != -1)
107 		return spool->used_hpages == 0;
108 	if (spool->min_hpages != -1)
109 		return spool->rsv_hpages == spool->min_hpages;
110 
111 	return true;
112 }
113 
114 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
115 						unsigned long irq_flags)
116 {
117 	spin_unlock_irqrestore(&spool->lock, irq_flags);
118 
119 	/* If no pages are used, and no other handles to the subpool
120 	 * remain, give up any reservations based on minimum size and
121 	 * free the subpool */
122 	if (subpool_is_free(spool)) {
123 		if (spool->min_hpages != -1)
124 			hugetlb_acct_memory(spool->hstate,
125 						-spool->min_hpages);
126 		kfree(spool);
127 	}
128 }
129 
130 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
131 						long min_hpages)
132 {
133 	struct hugepage_subpool *spool;
134 
135 	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
136 	if (!spool)
137 		return NULL;
138 
139 	spin_lock_init(&spool->lock);
140 	spool->count = 1;
141 	spool->max_hpages = max_hpages;
142 	spool->hstate = h;
143 	spool->min_hpages = min_hpages;
144 
145 	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
146 		kfree(spool);
147 		return NULL;
148 	}
149 	spool->rsv_hpages = min_hpages;
150 
151 	return spool;
152 }
153 
154 void hugepage_put_subpool(struct hugepage_subpool *spool)
155 {
156 	unsigned long flags;
157 
158 	spin_lock_irqsave(&spool->lock, flags);
159 	BUG_ON(!spool->count);
160 	spool->count--;
161 	unlock_or_release_subpool(spool, flags);
162 }
163 
164 /*
165  * Subpool accounting for allocating and reserving pages.
166  * Return -ENOMEM if there are not enough resources to satisfy the
167  * request.  Otherwise, return the number of pages by which the
168  * global pools must be adjusted (upward).  The returned value may
169  * only be different than the passed value (delta) in the case where
170  * a subpool minimum size must be maintained.
171  */
172 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
173 				      long delta)
174 {
175 	long ret = delta;
176 
177 	if (!spool)
178 		return ret;
179 
180 	spin_lock_irq(&spool->lock);
181 
182 	if (spool->max_hpages != -1) {		/* maximum size accounting */
183 		if ((spool->used_hpages + delta) <= spool->max_hpages)
184 			spool->used_hpages += delta;
185 		else {
186 			ret = -ENOMEM;
187 			goto unlock_ret;
188 		}
189 	}
190 
191 	/* minimum size accounting */
192 	if (spool->min_hpages != -1 && spool->rsv_hpages) {
193 		if (delta > spool->rsv_hpages) {
194 			/*
195 			 * Asking for more reserves than those already taken on
196 			 * behalf of subpool.  Return difference.
197 			 */
198 			ret = delta - spool->rsv_hpages;
199 			spool->rsv_hpages = 0;
200 		} else {
201 			ret = 0;	/* reserves already accounted for */
202 			spool->rsv_hpages -= delta;
203 		}
204 	}
205 
206 unlock_ret:
207 	spin_unlock_irq(&spool->lock);
208 	return ret;
209 }
210 
211 /*
212  * Subpool accounting for freeing and unreserving pages.
213  * Return the number of global page reservations that must be dropped.
214  * The return value may only be different than the passed value (delta)
215  * in the case where a subpool minimum size must be maintained.
216  */
217 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
218 				       long delta)
219 {
220 	long ret = delta;
221 	unsigned long flags;
222 
223 	if (!spool)
224 		return delta;
225 
226 	spin_lock_irqsave(&spool->lock, flags);
227 
228 	if (spool->max_hpages != -1)		/* maximum size accounting */
229 		spool->used_hpages -= delta;
230 
231 	 /* minimum size accounting */
232 	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
233 		if (spool->rsv_hpages + delta <= spool->min_hpages)
234 			ret = 0;
235 		else
236 			ret = spool->rsv_hpages + delta - spool->min_hpages;
237 
238 		spool->rsv_hpages += delta;
239 		if (spool->rsv_hpages > spool->min_hpages)
240 			spool->rsv_hpages = spool->min_hpages;
241 	}
242 
243 	/*
244 	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
245 	 * quota reference, free it now.
246 	 */
247 	unlock_or_release_subpool(spool, flags);
248 
249 	return ret;
250 }
251 
252 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
253 {
254 	return HUGETLBFS_SB(inode->i_sb)->spool;
255 }
256 
257 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
258 {
259 	return subpool_inode(file_inode(vma->vm_file));
260 }
261 
262 /*
263  * hugetlb vma_lock helper routines
264  */
265 void hugetlb_vma_lock_read(struct vm_area_struct *vma)
266 {
267 	if (__vma_shareable_lock(vma)) {
268 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
269 
270 		down_read(&vma_lock->rw_sema);
271 	} else if (__vma_private_lock(vma)) {
272 		struct resv_map *resv_map = vma_resv_map(vma);
273 
274 		down_read(&resv_map->rw_sema);
275 	}
276 }
277 
278 void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
279 {
280 	if (__vma_shareable_lock(vma)) {
281 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
282 
283 		up_read(&vma_lock->rw_sema);
284 	} else if (__vma_private_lock(vma)) {
285 		struct resv_map *resv_map = vma_resv_map(vma);
286 
287 		up_read(&resv_map->rw_sema);
288 	}
289 }
290 
291 void hugetlb_vma_lock_write(struct vm_area_struct *vma)
292 {
293 	if (__vma_shareable_lock(vma)) {
294 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
295 
296 		down_write(&vma_lock->rw_sema);
297 	} else if (__vma_private_lock(vma)) {
298 		struct resv_map *resv_map = vma_resv_map(vma);
299 
300 		down_write(&resv_map->rw_sema);
301 	}
302 }
303 
304 void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
305 {
306 	if (__vma_shareable_lock(vma)) {
307 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
308 
309 		up_write(&vma_lock->rw_sema);
310 	} else if (__vma_private_lock(vma)) {
311 		struct resv_map *resv_map = vma_resv_map(vma);
312 
313 		up_write(&resv_map->rw_sema);
314 	}
315 }
316 
317 int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
318 {
319 
320 	if (__vma_shareable_lock(vma)) {
321 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
322 
323 		return down_write_trylock(&vma_lock->rw_sema);
324 	} else if (__vma_private_lock(vma)) {
325 		struct resv_map *resv_map = vma_resv_map(vma);
326 
327 		return down_write_trylock(&resv_map->rw_sema);
328 	}
329 
330 	return 1;
331 }
332 
333 void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
334 {
335 	if (__vma_shareable_lock(vma)) {
336 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
337 
338 		lockdep_assert_held(&vma_lock->rw_sema);
339 	} else if (__vma_private_lock(vma)) {
340 		struct resv_map *resv_map = vma_resv_map(vma);
341 
342 		lockdep_assert_held(&resv_map->rw_sema);
343 	}
344 }
345 
346 void hugetlb_vma_lock_release(struct kref *kref)
347 {
348 	struct hugetlb_vma_lock *vma_lock = container_of(kref,
349 			struct hugetlb_vma_lock, refs);
350 
351 	kfree(vma_lock);
352 }
353 
354 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
355 {
356 	struct vm_area_struct *vma = vma_lock->vma;
357 
358 	/*
359 	 * vma_lock structure may or not be released as a result of put,
360 	 * it certainly will no longer be attached to vma so clear pointer.
361 	 * Semaphore synchronizes access to vma_lock->vma field.
362 	 */
363 	vma_lock->vma = NULL;
364 	vma->vm_private_data = NULL;
365 	up_write(&vma_lock->rw_sema);
366 	kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
367 }
368 
369 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
370 {
371 	if (__vma_shareable_lock(vma)) {
372 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
373 
374 		__hugetlb_vma_unlock_write_put(vma_lock);
375 	} else if (__vma_private_lock(vma)) {
376 		struct resv_map *resv_map = vma_resv_map(vma);
377 
378 		/* no free for anon vmas, but still need to unlock */
379 		up_write(&resv_map->rw_sema);
380 	}
381 }
382 
383 static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
384 {
385 	/*
386 	 * Only present in sharable vmas.
387 	 */
388 	if (!vma || !__vma_shareable_lock(vma))
389 		return;
390 
391 	if (vma->vm_private_data) {
392 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
393 
394 		down_write(&vma_lock->rw_sema);
395 		__hugetlb_vma_unlock_write_put(vma_lock);
396 	}
397 }
398 
399 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
400 {
401 	struct hugetlb_vma_lock *vma_lock;
402 
403 	/* Only establish in (flags) sharable vmas */
404 	if (!vma || !(vma->vm_flags & VM_MAYSHARE))
405 		return;
406 
407 	/* Should never get here with non-NULL vm_private_data */
408 	if (vma->vm_private_data)
409 		return;
410 
411 	vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
412 	if (!vma_lock) {
413 		/*
414 		 * If we can not allocate structure, then vma can not
415 		 * participate in pmd sharing.  This is only a possible
416 		 * performance enhancement and memory saving issue.
417 		 * However, the lock is also used to synchronize page
418 		 * faults with truncation.  If the lock is not present,
419 		 * unlikely races could leave pages in a file past i_size
420 		 * until the file is removed.  Warn in the unlikely case of
421 		 * allocation failure.
422 		 */
423 		pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
424 		return;
425 	}
426 
427 	kref_init(&vma_lock->refs);
428 	init_rwsem(&vma_lock->rw_sema);
429 	vma_lock->vma = vma;
430 	vma->vm_private_data = vma_lock;
431 }
432 
433 /* Helper that removes a struct file_region from the resv_map cache and returns
434  * it for use.
435  */
436 static struct file_region *
437 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
438 {
439 	struct file_region *nrg;
440 
441 	VM_BUG_ON(resv->region_cache_count <= 0);
442 
443 	resv->region_cache_count--;
444 	nrg = list_first_entry(&resv->region_cache, struct file_region, link);
445 	list_del(&nrg->link);
446 
447 	nrg->from = from;
448 	nrg->to = to;
449 
450 	return nrg;
451 }
452 
453 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
454 					      struct file_region *rg)
455 {
456 #ifdef CONFIG_CGROUP_HUGETLB
457 	nrg->reservation_counter = rg->reservation_counter;
458 	nrg->css = rg->css;
459 	if (rg->css)
460 		css_get(rg->css);
461 #endif
462 }
463 
464 /* Helper that records hugetlb_cgroup uncharge info. */
465 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
466 						struct hstate *h,
467 						struct resv_map *resv,
468 						struct file_region *nrg)
469 {
470 #ifdef CONFIG_CGROUP_HUGETLB
471 	if (h_cg) {
472 		nrg->reservation_counter =
473 			&h_cg->rsvd_hugepage[hstate_index(h)];
474 		nrg->css = &h_cg->css;
475 		/*
476 		 * The caller will hold exactly one h_cg->css reference for the
477 		 * whole contiguous reservation region. But this area might be
478 		 * scattered when there are already some file_regions reside in
479 		 * it. As a result, many file_regions may share only one css
480 		 * reference. In order to ensure that one file_region must hold
481 		 * exactly one h_cg->css reference, we should do css_get for
482 		 * each file_region and leave the reference held by caller
483 		 * untouched.
484 		 */
485 		css_get(&h_cg->css);
486 		if (!resv->pages_per_hpage)
487 			resv->pages_per_hpage = pages_per_huge_page(h);
488 		/* pages_per_hpage should be the same for all entries in
489 		 * a resv_map.
490 		 */
491 		VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
492 	} else {
493 		nrg->reservation_counter = NULL;
494 		nrg->css = NULL;
495 	}
496 #endif
497 }
498 
499 static void put_uncharge_info(struct file_region *rg)
500 {
501 #ifdef CONFIG_CGROUP_HUGETLB
502 	if (rg->css)
503 		css_put(rg->css);
504 #endif
505 }
506 
507 static bool has_same_uncharge_info(struct file_region *rg,
508 				   struct file_region *org)
509 {
510 #ifdef CONFIG_CGROUP_HUGETLB
511 	return rg->reservation_counter == org->reservation_counter &&
512 	       rg->css == org->css;
513 
514 #else
515 	return true;
516 #endif
517 }
518 
519 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
520 {
521 	struct file_region *nrg, *prg;
522 
523 	prg = list_prev_entry(rg, link);
524 	if (&prg->link != &resv->regions && prg->to == rg->from &&
525 	    has_same_uncharge_info(prg, rg)) {
526 		prg->to = rg->to;
527 
528 		list_del(&rg->link);
529 		put_uncharge_info(rg);
530 		kfree(rg);
531 
532 		rg = prg;
533 	}
534 
535 	nrg = list_next_entry(rg, link);
536 	if (&nrg->link != &resv->regions && nrg->from == rg->to &&
537 	    has_same_uncharge_info(nrg, rg)) {
538 		nrg->from = rg->from;
539 
540 		list_del(&rg->link);
541 		put_uncharge_info(rg);
542 		kfree(rg);
543 	}
544 }
545 
546 static inline long
547 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
548 		     long to, struct hstate *h, struct hugetlb_cgroup *cg,
549 		     long *regions_needed)
550 {
551 	struct file_region *nrg;
552 
553 	if (!regions_needed) {
554 		nrg = get_file_region_entry_from_cache(map, from, to);
555 		record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
556 		list_add(&nrg->link, rg);
557 		coalesce_file_region(map, nrg);
558 	} else
559 		*regions_needed += 1;
560 
561 	return to - from;
562 }
563 
564 /*
565  * Must be called with resv->lock held.
566  *
567  * Calling this with regions_needed != NULL will count the number of pages
568  * to be added but will not modify the linked list. And regions_needed will
569  * indicate the number of file_regions needed in the cache to carry out to add
570  * the regions for this range.
571  */
572 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
573 				     struct hugetlb_cgroup *h_cg,
574 				     struct hstate *h, long *regions_needed)
575 {
576 	long add = 0;
577 	struct list_head *head = &resv->regions;
578 	long last_accounted_offset = f;
579 	struct file_region *iter, *trg = NULL;
580 	struct list_head *rg = NULL;
581 
582 	if (regions_needed)
583 		*regions_needed = 0;
584 
585 	/* In this loop, we essentially handle an entry for the range
586 	 * [last_accounted_offset, iter->from), at every iteration, with some
587 	 * bounds checking.
588 	 */
589 	list_for_each_entry_safe(iter, trg, head, link) {
590 		/* Skip irrelevant regions that start before our range. */
591 		if (iter->from < f) {
592 			/* If this region ends after the last accounted offset,
593 			 * then we need to update last_accounted_offset.
594 			 */
595 			if (iter->to > last_accounted_offset)
596 				last_accounted_offset = iter->to;
597 			continue;
598 		}
599 
600 		/* When we find a region that starts beyond our range, we've
601 		 * finished.
602 		 */
603 		if (iter->from >= t) {
604 			rg = iter->link.prev;
605 			break;
606 		}
607 
608 		/* Add an entry for last_accounted_offset -> iter->from, and
609 		 * update last_accounted_offset.
610 		 */
611 		if (iter->from > last_accounted_offset)
612 			add += hugetlb_resv_map_add(resv, iter->link.prev,
613 						    last_accounted_offset,
614 						    iter->from, h, h_cg,
615 						    regions_needed);
616 
617 		last_accounted_offset = iter->to;
618 	}
619 
620 	/* Handle the case where our range extends beyond
621 	 * last_accounted_offset.
622 	 */
623 	if (!rg)
624 		rg = head->prev;
625 	if (last_accounted_offset < t)
626 		add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
627 					    t, h, h_cg, regions_needed);
628 
629 	return add;
630 }
631 
632 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
633  */
634 static int allocate_file_region_entries(struct resv_map *resv,
635 					int regions_needed)
636 	__must_hold(&resv->lock)
637 {
638 	LIST_HEAD(allocated_regions);
639 	int to_allocate = 0, i = 0;
640 	struct file_region *trg = NULL, *rg = NULL;
641 
642 	VM_BUG_ON(regions_needed < 0);
643 
644 	/*
645 	 * Check for sufficient descriptors in the cache to accommodate
646 	 * the number of in progress add operations plus regions_needed.
647 	 *
648 	 * This is a while loop because when we drop the lock, some other call
649 	 * to region_add or region_del may have consumed some region_entries,
650 	 * so we keep looping here until we finally have enough entries for
651 	 * (adds_in_progress + regions_needed).
652 	 */
653 	while (resv->region_cache_count <
654 	       (resv->adds_in_progress + regions_needed)) {
655 		to_allocate = resv->adds_in_progress + regions_needed -
656 			      resv->region_cache_count;
657 
658 		/* At this point, we should have enough entries in the cache
659 		 * for all the existing adds_in_progress. We should only be
660 		 * needing to allocate for regions_needed.
661 		 */
662 		VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
663 
664 		spin_unlock(&resv->lock);
665 		for (i = 0; i < to_allocate; i++) {
666 			trg = kmalloc(sizeof(*trg), GFP_KERNEL);
667 			if (!trg)
668 				goto out_of_memory;
669 			list_add(&trg->link, &allocated_regions);
670 		}
671 
672 		spin_lock(&resv->lock);
673 
674 		list_splice(&allocated_regions, &resv->region_cache);
675 		resv->region_cache_count += to_allocate;
676 	}
677 
678 	return 0;
679 
680 out_of_memory:
681 	list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
682 		list_del(&rg->link);
683 		kfree(rg);
684 	}
685 	return -ENOMEM;
686 }
687 
688 /*
689  * Add the huge page range represented by [f, t) to the reserve
690  * map.  Regions will be taken from the cache to fill in this range.
691  * Sufficient regions should exist in the cache due to the previous
692  * call to region_chg with the same range, but in some cases the cache will not
693  * have sufficient entries due to races with other code doing region_add or
694  * region_del.  The extra needed entries will be allocated.
695  *
696  * regions_needed is the out value provided by a previous call to region_chg.
697  *
698  * Return the number of new huge pages added to the map.  This number is greater
699  * than or equal to zero.  If file_region entries needed to be allocated for
700  * this operation and we were not able to allocate, it returns -ENOMEM.
701  * region_add of regions of length 1 never allocate file_regions and cannot
702  * fail; region_chg will always allocate at least 1 entry and a region_add for
703  * 1 page will only require at most 1 entry.
704  */
705 static long region_add(struct resv_map *resv, long f, long t,
706 		       long in_regions_needed, struct hstate *h,
707 		       struct hugetlb_cgroup *h_cg)
708 {
709 	long add = 0, actual_regions_needed = 0;
710 
711 	spin_lock(&resv->lock);
712 retry:
713 
714 	/* Count how many regions are actually needed to execute this add. */
715 	add_reservation_in_range(resv, f, t, NULL, NULL,
716 				 &actual_regions_needed);
717 
718 	/*
719 	 * Check for sufficient descriptors in the cache to accommodate
720 	 * this add operation. Note that actual_regions_needed may be greater
721 	 * than in_regions_needed, as the resv_map may have been modified since
722 	 * the region_chg call. In this case, we need to make sure that we
723 	 * allocate extra entries, such that we have enough for all the
724 	 * existing adds_in_progress, plus the excess needed for this
725 	 * operation.
726 	 */
727 	if (actual_regions_needed > in_regions_needed &&
728 	    resv->region_cache_count <
729 		    resv->adds_in_progress +
730 			    (actual_regions_needed - in_regions_needed)) {
731 		/* region_add operation of range 1 should never need to
732 		 * allocate file_region entries.
733 		 */
734 		VM_BUG_ON(t - f <= 1);
735 
736 		if (allocate_file_region_entries(
737 			    resv, actual_regions_needed - in_regions_needed)) {
738 			return -ENOMEM;
739 		}
740 
741 		goto retry;
742 	}
743 
744 	add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
745 
746 	resv->adds_in_progress -= in_regions_needed;
747 
748 	spin_unlock(&resv->lock);
749 	return add;
750 }
751 
752 /*
753  * Examine the existing reserve map and determine how many
754  * huge pages in the specified range [f, t) are NOT currently
755  * represented.  This routine is called before a subsequent
756  * call to region_add that will actually modify the reserve
757  * map to add the specified range [f, t).  region_chg does
758  * not change the number of huge pages represented by the
759  * map.  A number of new file_region structures is added to the cache as a
760  * placeholder, for the subsequent region_add call to use. At least 1
761  * file_region structure is added.
762  *
763  * out_regions_needed is the number of regions added to the
764  * resv->adds_in_progress.  This value needs to be provided to a follow up call
765  * to region_add or region_abort for proper accounting.
766  *
767  * Returns the number of huge pages that need to be added to the existing
768  * reservation map for the range [f, t).  This number is greater or equal to
769  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
770  * is needed and can not be allocated.
771  */
772 static long region_chg(struct resv_map *resv, long f, long t,
773 		       long *out_regions_needed)
774 {
775 	long chg = 0;
776 
777 	spin_lock(&resv->lock);
778 
779 	/* Count how many hugepages in this range are NOT represented. */
780 	chg = add_reservation_in_range(resv, f, t, NULL, NULL,
781 				       out_regions_needed);
782 
783 	if (*out_regions_needed == 0)
784 		*out_regions_needed = 1;
785 
786 	if (allocate_file_region_entries(resv, *out_regions_needed))
787 		return -ENOMEM;
788 
789 	resv->adds_in_progress += *out_regions_needed;
790 
791 	spin_unlock(&resv->lock);
792 	return chg;
793 }
794 
795 /*
796  * Abort the in progress add operation.  The adds_in_progress field
797  * of the resv_map keeps track of the operations in progress between
798  * calls to region_chg and region_add.  Operations are sometimes
799  * aborted after the call to region_chg.  In such cases, region_abort
800  * is called to decrement the adds_in_progress counter. regions_needed
801  * is the value returned by the region_chg call, it is used to decrement
802  * the adds_in_progress counter.
803  *
804  * NOTE: The range arguments [f, t) are not needed or used in this
805  * routine.  They are kept to make reading the calling code easier as
806  * arguments will match the associated region_chg call.
807  */
808 static void region_abort(struct resv_map *resv, long f, long t,
809 			 long regions_needed)
810 {
811 	spin_lock(&resv->lock);
812 	VM_BUG_ON(!resv->region_cache_count);
813 	resv->adds_in_progress -= regions_needed;
814 	spin_unlock(&resv->lock);
815 }
816 
817 /*
818  * Delete the specified range [f, t) from the reserve map.  If the
819  * t parameter is LONG_MAX, this indicates that ALL regions after f
820  * should be deleted.  Locate the regions which intersect [f, t)
821  * and either trim, delete or split the existing regions.
822  *
823  * Returns the number of huge pages deleted from the reserve map.
824  * In the normal case, the return value is zero or more.  In the
825  * case where a region must be split, a new region descriptor must
826  * be allocated.  If the allocation fails, -ENOMEM will be returned.
827  * NOTE: If the parameter t == LONG_MAX, then we will never split
828  * a region and possibly return -ENOMEM.  Callers specifying
829  * t == LONG_MAX do not need to check for -ENOMEM error.
830  */
831 static long region_del(struct resv_map *resv, long f, long t)
832 {
833 	struct list_head *head = &resv->regions;
834 	struct file_region *rg, *trg;
835 	struct file_region *nrg = NULL;
836 	long del = 0;
837 
838 retry:
839 	spin_lock(&resv->lock);
840 	list_for_each_entry_safe(rg, trg, head, link) {
841 		/*
842 		 * Skip regions before the range to be deleted.  file_region
843 		 * ranges are normally of the form [from, to).  However, there
844 		 * may be a "placeholder" entry in the map which is of the form
845 		 * (from, to) with from == to.  Check for placeholder entries
846 		 * at the beginning of the range to be deleted.
847 		 */
848 		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
849 			continue;
850 
851 		if (rg->from >= t)
852 			break;
853 
854 		if (f > rg->from && t < rg->to) { /* Must split region */
855 			/*
856 			 * Check for an entry in the cache before dropping
857 			 * lock and attempting allocation.
858 			 */
859 			if (!nrg &&
860 			    resv->region_cache_count > resv->adds_in_progress) {
861 				nrg = list_first_entry(&resv->region_cache,
862 							struct file_region,
863 							link);
864 				list_del(&nrg->link);
865 				resv->region_cache_count--;
866 			}
867 
868 			if (!nrg) {
869 				spin_unlock(&resv->lock);
870 				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
871 				if (!nrg)
872 					return -ENOMEM;
873 				goto retry;
874 			}
875 
876 			del += t - f;
877 			hugetlb_cgroup_uncharge_file_region(
878 				resv, rg, t - f, false);
879 
880 			/* New entry for end of split region */
881 			nrg->from = t;
882 			nrg->to = rg->to;
883 
884 			copy_hugetlb_cgroup_uncharge_info(nrg, rg);
885 
886 			INIT_LIST_HEAD(&nrg->link);
887 
888 			/* Original entry is trimmed */
889 			rg->to = f;
890 
891 			list_add(&nrg->link, &rg->link);
892 			nrg = NULL;
893 			break;
894 		}
895 
896 		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
897 			del += rg->to - rg->from;
898 			hugetlb_cgroup_uncharge_file_region(resv, rg,
899 							    rg->to - rg->from, true);
900 			list_del(&rg->link);
901 			kfree(rg);
902 			continue;
903 		}
904 
905 		if (f <= rg->from) {	/* Trim beginning of region */
906 			hugetlb_cgroup_uncharge_file_region(resv, rg,
907 							    t - rg->from, false);
908 
909 			del += t - rg->from;
910 			rg->from = t;
911 		} else {		/* Trim end of region */
912 			hugetlb_cgroup_uncharge_file_region(resv, rg,
913 							    rg->to - f, false);
914 
915 			del += rg->to - f;
916 			rg->to = f;
917 		}
918 	}
919 
920 	spin_unlock(&resv->lock);
921 	kfree(nrg);
922 	return del;
923 }
924 
925 /*
926  * A rare out of memory error was encountered which prevented removal of
927  * the reserve map region for a page.  The huge page itself was free'ed
928  * and removed from the page cache.  This routine will adjust the subpool
929  * usage count, and the global reserve count if needed.  By incrementing
930  * these counts, the reserve map entry which could not be deleted will
931  * appear as a "reserved" entry instead of simply dangling with incorrect
932  * counts.
933  */
934 void hugetlb_fix_reserve_counts(struct inode *inode)
935 {
936 	struct hugepage_subpool *spool = subpool_inode(inode);
937 	long rsv_adjust;
938 	bool reserved = false;
939 
940 	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
941 	if (rsv_adjust > 0) {
942 		struct hstate *h = hstate_inode(inode);
943 
944 		if (!hugetlb_acct_memory(h, 1))
945 			reserved = true;
946 	} else if (!rsv_adjust) {
947 		reserved = true;
948 	}
949 
950 	if (!reserved)
951 		pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
952 }
953 
954 /*
955  * Count and return the number of huge pages in the reserve map
956  * that intersect with the range [f, t).
957  */
958 static long region_count(struct resv_map *resv, long f, long t)
959 {
960 	struct list_head *head = &resv->regions;
961 	struct file_region *rg;
962 	long chg = 0;
963 
964 	spin_lock(&resv->lock);
965 	/* Locate each segment we overlap with, and count that overlap. */
966 	list_for_each_entry(rg, head, link) {
967 		long seg_from;
968 		long seg_to;
969 
970 		if (rg->to <= f)
971 			continue;
972 		if (rg->from >= t)
973 			break;
974 
975 		seg_from = max(rg->from, f);
976 		seg_to = min(rg->to, t);
977 
978 		chg += seg_to - seg_from;
979 	}
980 	spin_unlock(&resv->lock);
981 
982 	return chg;
983 }
984 
985 /*
986  * Convert the address within this vma to the page offset within
987  * the mapping, huge page units here.
988  */
989 static pgoff_t vma_hugecache_offset(struct hstate *h,
990 			struct vm_area_struct *vma, unsigned long address)
991 {
992 	return ((address - vma->vm_start) >> huge_page_shift(h)) +
993 			(vma->vm_pgoff >> huge_page_order(h));
994 }
995 
996 /**
997  * vma_kernel_pagesize - Page size granularity for this VMA.
998  * @vma: The user mapping.
999  *
1000  * Folios in this VMA will be aligned to, and at least the size of the
1001  * number of bytes returned by this function.
1002  *
1003  * Return: The default size of the folios allocated when backing a VMA.
1004  */
1005 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
1006 {
1007 	if (vma->vm_ops && vma->vm_ops->pagesize)
1008 		return vma->vm_ops->pagesize(vma);
1009 	return PAGE_SIZE;
1010 }
1011 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
1012 
1013 /*
1014  * Return the page size being used by the MMU to back a VMA. In the majority
1015  * of cases, the page size used by the kernel matches the MMU size. On
1016  * architectures where it differs, an architecture-specific 'strong'
1017  * version of this symbol is required.
1018  */
1019 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
1020 {
1021 	return vma_kernel_pagesize(vma);
1022 }
1023 
1024 /*
1025  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
1026  * bits of the reservation map pointer, which are always clear due to
1027  * alignment.
1028  */
1029 #define HPAGE_RESV_OWNER    (1UL << 0)
1030 #define HPAGE_RESV_UNMAPPED (1UL << 1)
1031 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
1032 
1033 /*
1034  * These helpers are used to track how many pages are reserved for
1035  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
1036  * is guaranteed to have their future faults succeed.
1037  *
1038  * With the exception of hugetlb_dup_vma_private() which is called at fork(),
1039  * the reserve counters are updated with the hugetlb_lock held. It is safe
1040  * to reset the VMA at fork() time as it is not in use yet and there is no
1041  * chance of the global counters getting corrupted as a result of the values.
1042  *
1043  * The private mapping reservation is represented in a subtly different
1044  * manner to a shared mapping.  A shared mapping has a region map associated
1045  * with the underlying file, this region map represents the backing file
1046  * pages which have ever had a reservation assigned which this persists even
1047  * after the page is instantiated.  A private mapping has a region map
1048  * associated with the original mmap which is attached to all VMAs which
1049  * reference it, this region map represents those offsets which have consumed
1050  * reservation ie. where pages have been instantiated.
1051  */
1052 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
1053 {
1054 	return (unsigned long)vma->vm_private_data;
1055 }
1056 
1057 static void set_vma_private_data(struct vm_area_struct *vma,
1058 							unsigned long value)
1059 {
1060 	vma->vm_private_data = (void *)value;
1061 }
1062 
1063 static void
1064 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
1065 					  struct hugetlb_cgroup *h_cg,
1066 					  struct hstate *h)
1067 {
1068 #ifdef CONFIG_CGROUP_HUGETLB
1069 	if (!h_cg || !h) {
1070 		resv_map->reservation_counter = NULL;
1071 		resv_map->pages_per_hpage = 0;
1072 		resv_map->css = NULL;
1073 	} else {
1074 		resv_map->reservation_counter =
1075 			&h_cg->rsvd_hugepage[hstate_index(h)];
1076 		resv_map->pages_per_hpage = pages_per_huge_page(h);
1077 		resv_map->css = &h_cg->css;
1078 	}
1079 #endif
1080 }
1081 
1082 struct resv_map *resv_map_alloc(void)
1083 {
1084 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
1085 	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
1086 
1087 	if (!resv_map || !rg) {
1088 		kfree(resv_map);
1089 		kfree(rg);
1090 		return NULL;
1091 	}
1092 
1093 	kref_init(&resv_map->refs);
1094 	spin_lock_init(&resv_map->lock);
1095 	INIT_LIST_HEAD(&resv_map->regions);
1096 	init_rwsem(&resv_map->rw_sema);
1097 
1098 	resv_map->adds_in_progress = 0;
1099 	/*
1100 	 * Initialize these to 0. On shared mappings, 0's here indicate these
1101 	 * fields don't do cgroup accounting. On private mappings, these will be
1102 	 * re-initialized to the proper values, to indicate that hugetlb cgroup
1103 	 * reservations are to be un-charged from here.
1104 	 */
1105 	resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
1106 
1107 	INIT_LIST_HEAD(&resv_map->region_cache);
1108 	list_add(&rg->link, &resv_map->region_cache);
1109 	resv_map->region_cache_count = 1;
1110 
1111 	return resv_map;
1112 }
1113 
1114 void resv_map_release(struct kref *ref)
1115 {
1116 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
1117 	struct list_head *head = &resv_map->region_cache;
1118 	struct file_region *rg, *trg;
1119 
1120 	/* Clear out any active regions before we release the map. */
1121 	region_del(resv_map, 0, LONG_MAX);
1122 
1123 	/* ... and any entries left in the cache */
1124 	list_for_each_entry_safe(rg, trg, head, link) {
1125 		list_del(&rg->link);
1126 		kfree(rg);
1127 	}
1128 
1129 	VM_BUG_ON(resv_map->adds_in_progress);
1130 
1131 	kfree(resv_map);
1132 }
1133 
1134 static inline struct resv_map *inode_resv_map(struct inode *inode)
1135 {
1136 	/*
1137 	 * At inode evict time, i_mapping may not point to the original
1138 	 * address space within the inode.  This original address space
1139 	 * contains the pointer to the resv_map.  So, always use the
1140 	 * address space embedded within the inode.
1141 	 * The VERY common case is inode->mapping == &inode->i_data but,
1142 	 * this may not be true for device special inodes.
1143 	 */
1144 	return (struct resv_map *)(&inode->i_data)->private_data;
1145 }
1146 
1147 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
1148 {
1149 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1150 	if (vma->vm_flags & VM_MAYSHARE) {
1151 		struct address_space *mapping = vma->vm_file->f_mapping;
1152 		struct inode *inode = mapping->host;
1153 
1154 		return inode_resv_map(inode);
1155 
1156 	} else {
1157 		return (struct resv_map *)(get_vma_private_data(vma) &
1158 							~HPAGE_RESV_MASK);
1159 	}
1160 }
1161 
1162 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
1163 {
1164 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1165 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1166 
1167 	set_vma_private_data(vma, (unsigned long)map);
1168 }
1169 
1170 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
1171 {
1172 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1173 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1174 
1175 	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1176 }
1177 
1178 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1179 {
1180 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1181 
1182 	return (get_vma_private_data(vma) & flag) != 0;
1183 }
1184 
1185 bool __vma_private_lock(struct vm_area_struct *vma)
1186 {
1187 	return !(vma->vm_flags & VM_MAYSHARE) &&
1188 		get_vma_private_data(vma) & ~HPAGE_RESV_MASK &&
1189 		is_vma_resv_set(vma, HPAGE_RESV_OWNER);
1190 }
1191 
1192 void hugetlb_dup_vma_private(struct vm_area_struct *vma)
1193 {
1194 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1195 	/*
1196 	 * Clear vm_private_data
1197 	 * - For shared mappings this is a per-vma semaphore that may be
1198 	 *   allocated in a subsequent call to hugetlb_vm_op_open.
1199 	 *   Before clearing, make sure pointer is not associated with vma
1200 	 *   as this will leak the structure.  This is the case when called
1201 	 *   via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already
1202 	 *   been called to allocate a new structure.
1203 	 * - For MAP_PRIVATE mappings, this is the reserve map which does
1204 	 *   not apply to children.  Faults generated by the children are
1205 	 *   not guaranteed to succeed, even if read-only.
1206 	 */
1207 	if (vma->vm_flags & VM_MAYSHARE) {
1208 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1209 
1210 		if (vma_lock && vma_lock->vma != vma)
1211 			vma->vm_private_data = NULL;
1212 	} else
1213 		vma->vm_private_data = NULL;
1214 }
1215 
1216 /*
1217  * Reset and decrement one ref on hugepage private reservation.
1218  * Called with mm->mmap_lock writer semaphore held.
1219  * This function should be only used by move_vma() and operate on
1220  * same sized vma. It should never come here with last ref on the
1221  * reservation.
1222  */
1223 void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1224 {
1225 	/*
1226 	 * Clear the old hugetlb private page reservation.
1227 	 * It has already been transferred to new_vma.
1228 	 *
1229 	 * During a mremap() operation of a hugetlb vma we call move_vma()
1230 	 * which copies vma into new_vma and unmaps vma. After the copy
1231 	 * operation both new_vma and vma share a reference to the resv_map
1232 	 * struct, and at that point vma is about to be unmapped. We don't
1233 	 * want to return the reservation to the pool at unmap of vma because
1234 	 * the reservation still lives on in new_vma, so simply decrement the
1235 	 * ref here and remove the resv_map reference from this vma.
1236 	 */
1237 	struct resv_map *reservations = vma_resv_map(vma);
1238 
1239 	if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1240 		resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1241 		kref_put(&reservations->refs, resv_map_release);
1242 	}
1243 
1244 	hugetlb_dup_vma_private(vma);
1245 }
1246 
1247 /* Returns true if the VMA has associated reserve pages */
1248 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1249 {
1250 	if (vma->vm_flags & VM_NORESERVE) {
1251 		/*
1252 		 * This address is already reserved by other process(chg == 0),
1253 		 * so, we should decrement reserved count. Without decrementing,
1254 		 * reserve count remains after releasing inode, because this
1255 		 * allocated page will go into page cache and is regarded as
1256 		 * coming from reserved pool in releasing step.  Currently, we
1257 		 * don't have any other solution to deal with this situation
1258 		 * properly, so add work-around here.
1259 		 */
1260 		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1261 			return true;
1262 		else
1263 			return false;
1264 	}
1265 
1266 	/* Shared mappings always use reserves */
1267 	if (vma->vm_flags & VM_MAYSHARE) {
1268 		/*
1269 		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1270 		 * be a region map for all pages.  The only situation where
1271 		 * there is no region map is if a hole was punched via
1272 		 * fallocate.  In this case, there really are no reserves to
1273 		 * use.  This situation is indicated if chg != 0.
1274 		 */
1275 		if (chg)
1276 			return false;
1277 		else
1278 			return true;
1279 	}
1280 
1281 	/*
1282 	 * Only the process that called mmap() has reserves for
1283 	 * private mappings.
1284 	 */
1285 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1286 		/*
1287 		 * Like the shared case above, a hole punch or truncate
1288 		 * could have been performed on the private mapping.
1289 		 * Examine the value of chg to determine if reserves
1290 		 * actually exist or were previously consumed.
1291 		 * Very Subtle - The value of chg comes from a previous
1292 		 * call to vma_needs_reserves().  The reserve map for
1293 		 * private mappings has different (opposite) semantics
1294 		 * than that of shared mappings.  vma_needs_reserves()
1295 		 * has already taken this difference in semantics into
1296 		 * account.  Therefore, the meaning of chg is the same
1297 		 * as in the shared case above.  Code could easily be
1298 		 * combined, but keeping it separate draws attention to
1299 		 * subtle differences.
1300 		 */
1301 		if (chg)
1302 			return false;
1303 		else
1304 			return true;
1305 	}
1306 
1307 	return false;
1308 }
1309 
1310 static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio)
1311 {
1312 	int nid = folio_nid(folio);
1313 
1314 	lockdep_assert_held(&hugetlb_lock);
1315 	VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1316 
1317 	list_move(&folio->lru, &h->hugepage_freelists[nid]);
1318 	h->free_huge_pages++;
1319 	h->free_huge_pages_node[nid]++;
1320 	folio_set_hugetlb_freed(folio);
1321 }
1322 
1323 static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h,
1324 								int nid)
1325 {
1326 	struct folio *folio;
1327 	bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1328 
1329 	lockdep_assert_held(&hugetlb_lock);
1330 	list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) {
1331 		if (pin && !folio_is_longterm_pinnable(folio))
1332 			continue;
1333 
1334 		if (folio_test_hwpoison(folio))
1335 			continue;
1336 
1337 		list_move(&folio->lru, &h->hugepage_activelist);
1338 		folio_ref_unfreeze(folio, 1);
1339 		folio_clear_hugetlb_freed(folio);
1340 		h->free_huge_pages--;
1341 		h->free_huge_pages_node[nid]--;
1342 		return folio;
1343 	}
1344 
1345 	return NULL;
1346 }
1347 
1348 static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask,
1349 							int nid, nodemask_t *nmask)
1350 {
1351 	unsigned int cpuset_mems_cookie;
1352 	struct zonelist *zonelist;
1353 	struct zone *zone;
1354 	struct zoneref *z;
1355 	int node = NUMA_NO_NODE;
1356 
1357 	zonelist = node_zonelist(nid, gfp_mask);
1358 
1359 retry_cpuset:
1360 	cpuset_mems_cookie = read_mems_allowed_begin();
1361 	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1362 		struct folio *folio;
1363 
1364 		if (!cpuset_zone_allowed(zone, gfp_mask))
1365 			continue;
1366 		/*
1367 		 * no need to ask again on the same node. Pool is node rather than
1368 		 * zone aware
1369 		 */
1370 		if (zone_to_nid(zone) == node)
1371 			continue;
1372 		node = zone_to_nid(zone);
1373 
1374 		folio = dequeue_hugetlb_folio_node_exact(h, node);
1375 		if (folio)
1376 			return folio;
1377 	}
1378 	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1379 		goto retry_cpuset;
1380 
1381 	return NULL;
1382 }
1383 
1384 static unsigned long available_huge_pages(struct hstate *h)
1385 {
1386 	return h->free_huge_pages - h->resv_huge_pages;
1387 }
1388 
1389 static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h,
1390 				struct vm_area_struct *vma,
1391 				unsigned long address, int avoid_reserve,
1392 				long chg)
1393 {
1394 	struct folio *folio = NULL;
1395 	struct mempolicy *mpol;
1396 	gfp_t gfp_mask;
1397 	nodemask_t *nodemask;
1398 	int nid;
1399 
1400 	/*
1401 	 * A child process with MAP_PRIVATE mappings created by their parent
1402 	 * have no page reserves. This check ensures that reservations are
1403 	 * not "stolen". The child may still get SIGKILLed
1404 	 */
1405 	if (!vma_has_reserves(vma, chg) && !available_huge_pages(h))
1406 		goto err;
1407 
1408 	/* If reserves cannot be used, ensure enough pages are in the pool */
1409 	if (avoid_reserve && !available_huge_pages(h))
1410 		goto err;
1411 
1412 	gfp_mask = htlb_alloc_mask(h);
1413 	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1414 
1415 	if (mpol_is_preferred_many(mpol)) {
1416 		folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1417 							nid, nodemask);
1418 
1419 		/* Fallback to all nodes if page==NULL */
1420 		nodemask = NULL;
1421 	}
1422 
1423 	if (!folio)
1424 		folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1425 							nid, nodemask);
1426 
1427 	if (folio && !avoid_reserve && vma_has_reserves(vma, chg)) {
1428 		folio_set_hugetlb_restore_reserve(folio);
1429 		h->resv_huge_pages--;
1430 	}
1431 
1432 	mpol_cond_put(mpol);
1433 	return folio;
1434 
1435 err:
1436 	return NULL;
1437 }
1438 
1439 /*
1440  * common helper functions for hstate_next_node_to_{alloc|free}.
1441  * We may have allocated or freed a huge page based on a different
1442  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1443  * be outside of *nodes_allowed.  Ensure that we use an allowed
1444  * node for alloc or free.
1445  */
1446 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1447 {
1448 	nid = next_node_in(nid, *nodes_allowed);
1449 	VM_BUG_ON(nid >= MAX_NUMNODES);
1450 
1451 	return nid;
1452 }
1453 
1454 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1455 {
1456 	if (!node_isset(nid, *nodes_allowed))
1457 		nid = next_node_allowed(nid, nodes_allowed);
1458 	return nid;
1459 }
1460 
1461 /*
1462  * returns the previously saved node ["this node"] from which to
1463  * allocate a persistent huge page for the pool and advance the
1464  * next node from which to allocate, handling wrap at end of node
1465  * mask.
1466  */
1467 static int hstate_next_node_to_alloc(struct hstate *h,
1468 					nodemask_t *nodes_allowed)
1469 {
1470 	int nid;
1471 
1472 	VM_BUG_ON(!nodes_allowed);
1473 
1474 	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1475 	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1476 
1477 	return nid;
1478 }
1479 
1480 /*
1481  * helper for remove_pool_hugetlb_folio() - return the previously saved
1482  * node ["this node"] from which to free a huge page.  Advance the
1483  * next node id whether or not we find a free huge page to free so
1484  * that the next attempt to free addresses the next node.
1485  */
1486 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1487 {
1488 	int nid;
1489 
1490 	VM_BUG_ON(!nodes_allowed);
1491 
1492 	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1493 	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1494 
1495 	return nid;
1496 }
1497 
1498 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
1499 	for (nr_nodes = nodes_weight(*mask);				\
1500 		nr_nodes > 0 &&						\
1501 		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
1502 		nr_nodes--)
1503 
1504 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
1505 	for (nr_nodes = nodes_weight(*mask);				\
1506 		nr_nodes > 0 &&						\
1507 		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
1508 		nr_nodes--)
1509 
1510 /* used to demote non-gigantic_huge pages as well */
1511 static void __destroy_compound_gigantic_folio(struct folio *folio,
1512 					unsigned int order, bool demote)
1513 {
1514 	int i;
1515 	int nr_pages = 1 << order;
1516 	struct page *p;
1517 
1518 	atomic_set(&folio->_entire_mapcount, 0);
1519 	atomic_set(&folio->_nr_pages_mapped, 0);
1520 	atomic_set(&folio->_pincount, 0);
1521 
1522 	for (i = 1; i < nr_pages; i++) {
1523 		p = folio_page(folio, i);
1524 		p->flags &= ~PAGE_FLAGS_CHECK_AT_FREE;
1525 		p->mapping = NULL;
1526 		clear_compound_head(p);
1527 		if (!demote)
1528 			set_page_refcounted(p);
1529 	}
1530 
1531 	__folio_clear_head(folio);
1532 }
1533 
1534 static void destroy_compound_hugetlb_folio_for_demote(struct folio *folio,
1535 					unsigned int order)
1536 {
1537 	__destroy_compound_gigantic_folio(folio, order, true);
1538 }
1539 
1540 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1541 static void destroy_compound_gigantic_folio(struct folio *folio,
1542 					unsigned int order)
1543 {
1544 	__destroy_compound_gigantic_folio(folio, order, false);
1545 }
1546 
1547 static void free_gigantic_folio(struct folio *folio, unsigned int order)
1548 {
1549 	/*
1550 	 * If the page isn't allocated using the cma allocator,
1551 	 * cma_release() returns false.
1552 	 */
1553 #ifdef CONFIG_CMA
1554 	int nid = folio_nid(folio);
1555 
1556 	if (cma_release(hugetlb_cma[nid], &folio->page, 1 << order))
1557 		return;
1558 #endif
1559 
1560 	free_contig_range(folio_pfn(folio), 1 << order);
1561 }
1562 
1563 #ifdef CONFIG_CONTIG_ALLOC
1564 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1565 		int nid, nodemask_t *nodemask)
1566 {
1567 	struct page *page;
1568 	unsigned long nr_pages = pages_per_huge_page(h);
1569 	if (nid == NUMA_NO_NODE)
1570 		nid = numa_mem_id();
1571 
1572 #ifdef CONFIG_CMA
1573 	{
1574 		int node;
1575 
1576 		if (hugetlb_cma[nid]) {
1577 			page = cma_alloc(hugetlb_cma[nid], nr_pages,
1578 					huge_page_order(h), true);
1579 			if (page)
1580 				return page_folio(page);
1581 		}
1582 
1583 		if (!(gfp_mask & __GFP_THISNODE)) {
1584 			for_each_node_mask(node, *nodemask) {
1585 				if (node == nid || !hugetlb_cma[node])
1586 					continue;
1587 
1588 				page = cma_alloc(hugetlb_cma[node], nr_pages,
1589 						huge_page_order(h), true);
1590 				if (page)
1591 					return page_folio(page);
1592 			}
1593 		}
1594 	}
1595 #endif
1596 
1597 	page = alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1598 	return page ? page_folio(page) : NULL;
1599 }
1600 
1601 #else /* !CONFIG_CONTIG_ALLOC */
1602 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1603 					int nid, nodemask_t *nodemask)
1604 {
1605 	return NULL;
1606 }
1607 #endif /* CONFIG_CONTIG_ALLOC */
1608 
1609 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1610 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1611 					int nid, nodemask_t *nodemask)
1612 {
1613 	return NULL;
1614 }
1615 static inline void free_gigantic_folio(struct folio *folio,
1616 						unsigned int order) { }
1617 static inline void destroy_compound_gigantic_folio(struct folio *folio,
1618 						unsigned int order) { }
1619 #endif
1620 
1621 static inline void __clear_hugetlb_destructor(struct hstate *h,
1622 						struct folio *folio)
1623 {
1624 	lockdep_assert_held(&hugetlb_lock);
1625 
1626 	folio_clear_hugetlb(folio);
1627 }
1628 
1629 /*
1630  * Remove hugetlb folio from lists.
1631  * If vmemmap exists for the folio, update dtor so that the folio appears
1632  * as just a compound page.  Otherwise, wait until after allocating vmemmap
1633  * to update dtor.
1634  *
1635  * A reference is held on the folio, except in the case of demote.
1636  *
1637  * Must be called with hugetlb lock held.
1638  */
1639 static void __remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1640 							bool adjust_surplus,
1641 							bool demote)
1642 {
1643 	int nid = folio_nid(folio);
1644 
1645 	VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio);
1646 	VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio);
1647 
1648 	lockdep_assert_held(&hugetlb_lock);
1649 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1650 		return;
1651 
1652 	list_del(&folio->lru);
1653 
1654 	if (folio_test_hugetlb_freed(folio)) {
1655 		h->free_huge_pages--;
1656 		h->free_huge_pages_node[nid]--;
1657 	}
1658 	if (adjust_surplus) {
1659 		h->surplus_huge_pages--;
1660 		h->surplus_huge_pages_node[nid]--;
1661 	}
1662 
1663 	/*
1664 	 * We can only clear the hugetlb destructor after allocating vmemmap
1665 	 * pages.  Otherwise, someone (memory error handling) may try to write
1666 	 * to tail struct pages.
1667 	 */
1668 	if (!folio_test_hugetlb_vmemmap_optimized(folio))
1669 		__clear_hugetlb_destructor(h, folio);
1670 
1671 	 /*
1672 	  * In the case of demote we do not ref count the page as it will soon
1673 	  * be turned into a page of smaller size.
1674 	 */
1675 	if (!demote)
1676 		folio_ref_unfreeze(folio, 1);
1677 
1678 	h->nr_huge_pages--;
1679 	h->nr_huge_pages_node[nid]--;
1680 }
1681 
1682 static void remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1683 							bool adjust_surplus)
1684 {
1685 	__remove_hugetlb_folio(h, folio, adjust_surplus, false);
1686 }
1687 
1688 static void remove_hugetlb_folio_for_demote(struct hstate *h, struct folio *folio,
1689 							bool adjust_surplus)
1690 {
1691 	__remove_hugetlb_folio(h, folio, adjust_surplus, true);
1692 }
1693 
1694 static void add_hugetlb_folio(struct hstate *h, struct folio *folio,
1695 			     bool adjust_surplus)
1696 {
1697 	int zeroed;
1698 	int nid = folio_nid(folio);
1699 
1700 	VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio);
1701 
1702 	lockdep_assert_held(&hugetlb_lock);
1703 
1704 	INIT_LIST_HEAD(&folio->lru);
1705 	h->nr_huge_pages++;
1706 	h->nr_huge_pages_node[nid]++;
1707 
1708 	if (adjust_surplus) {
1709 		h->surplus_huge_pages++;
1710 		h->surplus_huge_pages_node[nid]++;
1711 	}
1712 
1713 	folio_set_hugetlb(folio);
1714 	folio_change_private(folio, NULL);
1715 	/*
1716 	 * We have to set hugetlb_vmemmap_optimized again as above
1717 	 * folio_change_private(folio, NULL) cleared it.
1718 	 */
1719 	folio_set_hugetlb_vmemmap_optimized(folio);
1720 
1721 	/*
1722 	 * This folio is about to be managed by the hugetlb allocator and
1723 	 * should have no users.  Drop our reference, and check for others
1724 	 * just in case.
1725 	 */
1726 	zeroed = folio_put_testzero(folio);
1727 	if (unlikely(!zeroed))
1728 		/*
1729 		 * It is VERY unlikely soneone else has taken a ref
1730 		 * on the folio.  In this case, we simply return as
1731 		 * free_huge_folio() will be called when this other ref
1732 		 * is dropped.
1733 		 */
1734 		return;
1735 
1736 	arch_clear_hugepage_flags(&folio->page);
1737 	enqueue_hugetlb_folio(h, folio);
1738 }
1739 
1740 static void __update_and_free_hugetlb_folio(struct hstate *h,
1741 						struct folio *folio)
1742 {
1743 	bool clear_dtor = folio_test_hugetlb_vmemmap_optimized(folio);
1744 
1745 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1746 		return;
1747 
1748 	/*
1749 	 * If we don't know which subpages are hwpoisoned, we can't free
1750 	 * the hugepage, so it's leaked intentionally.
1751 	 */
1752 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1753 		return;
1754 
1755 	/*
1756 	 * If folio is not vmemmap optimized (!clear_dtor), then the folio
1757 	 * is no longer identified as a hugetlb page.  hugetlb_vmemmap_restore_folio
1758 	 * can only be passed hugetlb pages and will BUG otherwise.
1759 	 */
1760 	if (clear_dtor && hugetlb_vmemmap_restore_folio(h, folio)) {
1761 		spin_lock_irq(&hugetlb_lock);
1762 		/*
1763 		 * If we cannot allocate vmemmap pages, just refuse to free the
1764 		 * page and put the page back on the hugetlb free list and treat
1765 		 * as a surplus page.
1766 		 */
1767 		add_hugetlb_folio(h, folio, true);
1768 		spin_unlock_irq(&hugetlb_lock);
1769 		return;
1770 	}
1771 
1772 	/*
1773 	 * Move PageHWPoison flag from head page to the raw error pages,
1774 	 * which makes any healthy subpages reusable.
1775 	 */
1776 	if (unlikely(folio_test_hwpoison(folio)))
1777 		folio_clear_hugetlb_hwpoison(folio);
1778 
1779 	/*
1780 	 * If vmemmap pages were allocated above, then we need to clear the
1781 	 * hugetlb destructor under the hugetlb lock.
1782 	 */
1783 	if (clear_dtor) {
1784 		spin_lock_irq(&hugetlb_lock);
1785 		__clear_hugetlb_destructor(h, folio);
1786 		spin_unlock_irq(&hugetlb_lock);
1787 	}
1788 
1789 	/*
1790 	 * Non-gigantic pages demoted from CMA allocated gigantic pages
1791 	 * need to be given back to CMA in free_gigantic_folio.
1792 	 */
1793 	if (hstate_is_gigantic(h) ||
1794 	    hugetlb_cma_folio(folio, huge_page_order(h))) {
1795 		destroy_compound_gigantic_folio(folio, huge_page_order(h));
1796 		free_gigantic_folio(folio, huge_page_order(h));
1797 	} else {
1798 		__free_pages(&folio->page, huge_page_order(h));
1799 	}
1800 }
1801 
1802 /*
1803  * As update_and_free_hugetlb_folio() can be called under any context, so we cannot
1804  * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1805  * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1806  * the vmemmap pages.
1807  *
1808  * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1809  * freed and frees them one-by-one. As the page->mapping pointer is going
1810  * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1811  * structure of a lockless linked list of huge pages to be freed.
1812  */
1813 static LLIST_HEAD(hpage_freelist);
1814 
1815 static void free_hpage_workfn(struct work_struct *work)
1816 {
1817 	struct llist_node *node;
1818 
1819 	node = llist_del_all(&hpage_freelist);
1820 
1821 	while (node) {
1822 		struct folio *folio;
1823 		struct hstate *h;
1824 
1825 		folio = container_of((struct address_space **)node,
1826 				     struct folio, mapping);
1827 		node = node->next;
1828 		folio->mapping = NULL;
1829 		/*
1830 		 * The VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio) in
1831 		 * folio_hstate() is going to trigger because a previous call to
1832 		 * remove_hugetlb_folio() will clear the hugetlb bit, so do
1833 		 * not use folio_hstate() directly.
1834 		 */
1835 		h = size_to_hstate(folio_size(folio));
1836 
1837 		__update_and_free_hugetlb_folio(h, folio);
1838 
1839 		cond_resched();
1840 	}
1841 }
1842 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1843 
1844 static inline void flush_free_hpage_work(struct hstate *h)
1845 {
1846 	if (hugetlb_vmemmap_optimizable(h))
1847 		flush_work(&free_hpage_work);
1848 }
1849 
1850 static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio,
1851 				 bool atomic)
1852 {
1853 	if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) {
1854 		__update_and_free_hugetlb_folio(h, folio);
1855 		return;
1856 	}
1857 
1858 	/*
1859 	 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1860 	 *
1861 	 * Only call schedule_work() if hpage_freelist is previously
1862 	 * empty. Otherwise, schedule_work() had been called but the workfn
1863 	 * hasn't retrieved the list yet.
1864 	 */
1865 	if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist))
1866 		schedule_work(&free_hpage_work);
1867 }
1868 
1869 static void bulk_vmemmap_restore_error(struct hstate *h,
1870 					struct list_head *folio_list,
1871 					struct list_head *non_hvo_folios)
1872 {
1873 	struct folio *folio, *t_folio;
1874 
1875 	if (!list_empty(non_hvo_folios)) {
1876 		/*
1877 		 * Free any restored hugetlb pages so that restore of the
1878 		 * entire list can be retried.
1879 		 * The idea is that in the common case of ENOMEM errors freeing
1880 		 * hugetlb pages with vmemmap we will free up memory so that we
1881 		 * can allocate vmemmap for more hugetlb pages.
1882 		 */
1883 		list_for_each_entry_safe(folio, t_folio, non_hvo_folios, lru) {
1884 			list_del(&folio->lru);
1885 			spin_lock_irq(&hugetlb_lock);
1886 			__clear_hugetlb_destructor(h, folio);
1887 			spin_unlock_irq(&hugetlb_lock);
1888 			update_and_free_hugetlb_folio(h, folio, false);
1889 			cond_resched();
1890 		}
1891 	} else {
1892 		/*
1893 		 * In the case where there are no folios which can be
1894 		 * immediately freed, we loop through the list trying to restore
1895 		 * vmemmap individually in the hope that someone elsewhere may
1896 		 * have done something to cause success (such as freeing some
1897 		 * memory).  If unable to restore a hugetlb page, the hugetlb
1898 		 * page is made a surplus page and removed from the list.
1899 		 * If are able to restore vmemmap and free one hugetlb page, we
1900 		 * quit processing the list to retry the bulk operation.
1901 		 */
1902 		list_for_each_entry_safe(folio, t_folio, folio_list, lru)
1903 			if (hugetlb_vmemmap_restore_folio(h, folio)) {
1904 				list_del(&folio->lru);
1905 				spin_lock_irq(&hugetlb_lock);
1906 				add_hugetlb_folio(h, folio, true);
1907 				spin_unlock_irq(&hugetlb_lock);
1908 			} else {
1909 				list_del(&folio->lru);
1910 				spin_lock_irq(&hugetlb_lock);
1911 				__clear_hugetlb_destructor(h, folio);
1912 				spin_unlock_irq(&hugetlb_lock);
1913 				update_and_free_hugetlb_folio(h, folio, false);
1914 				cond_resched();
1915 				break;
1916 			}
1917 	}
1918 }
1919 
1920 static void update_and_free_pages_bulk(struct hstate *h,
1921 						struct list_head *folio_list)
1922 {
1923 	long ret;
1924 	struct folio *folio, *t_folio;
1925 	LIST_HEAD(non_hvo_folios);
1926 
1927 	/*
1928 	 * First allocate required vmemmmap (if necessary) for all folios.
1929 	 * Carefully handle errors and free up any available hugetlb pages
1930 	 * in an effort to make forward progress.
1931 	 */
1932 retry:
1933 	ret = hugetlb_vmemmap_restore_folios(h, folio_list, &non_hvo_folios);
1934 	if (ret < 0) {
1935 		bulk_vmemmap_restore_error(h, folio_list, &non_hvo_folios);
1936 		goto retry;
1937 	}
1938 
1939 	/*
1940 	 * At this point, list should be empty, ret should be >= 0 and there
1941 	 * should only be pages on the non_hvo_folios list.
1942 	 * Do note that the non_hvo_folios list could be empty.
1943 	 * Without HVO enabled, ret will be 0 and there is no need to call
1944 	 * __clear_hugetlb_destructor as this was done previously.
1945 	 */
1946 	VM_WARN_ON(!list_empty(folio_list));
1947 	VM_WARN_ON(ret < 0);
1948 	if (!list_empty(&non_hvo_folios) && ret) {
1949 		spin_lock_irq(&hugetlb_lock);
1950 		list_for_each_entry(folio, &non_hvo_folios, lru)
1951 			__clear_hugetlb_destructor(h, folio);
1952 		spin_unlock_irq(&hugetlb_lock);
1953 	}
1954 
1955 	list_for_each_entry_safe(folio, t_folio, &non_hvo_folios, lru) {
1956 		update_and_free_hugetlb_folio(h, folio, false);
1957 		cond_resched();
1958 	}
1959 }
1960 
1961 struct hstate *size_to_hstate(unsigned long size)
1962 {
1963 	struct hstate *h;
1964 
1965 	for_each_hstate(h) {
1966 		if (huge_page_size(h) == size)
1967 			return h;
1968 	}
1969 	return NULL;
1970 }
1971 
1972 void free_huge_folio(struct folio *folio)
1973 {
1974 	/*
1975 	 * Can't pass hstate in here because it is called from the
1976 	 * compound page destructor.
1977 	 */
1978 	struct hstate *h = folio_hstate(folio);
1979 	int nid = folio_nid(folio);
1980 	struct hugepage_subpool *spool = hugetlb_folio_subpool(folio);
1981 	bool restore_reserve;
1982 	unsigned long flags;
1983 
1984 	VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1985 	VM_BUG_ON_FOLIO(folio_mapcount(folio), folio);
1986 
1987 	hugetlb_set_folio_subpool(folio, NULL);
1988 	if (folio_test_anon(folio))
1989 		__ClearPageAnonExclusive(&folio->page);
1990 	folio->mapping = NULL;
1991 	restore_reserve = folio_test_hugetlb_restore_reserve(folio);
1992 	folio_clear_hugetlb_restore_reserve(folio);
1993 
1994 	/*
1995 	 * If HPageRestoreReserve was set on page, page allocation consumed a
1996 	 * reservation.  If the page was associated with a subpool, there
1997 	 * would have been a page reserved in the subpool before allocation
1998 	 * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1999 	 * reservation, do not call hugepage_subpool_put_pages() as this will
2000 	 * remove the reserved page from the subpool.
2001 	 */
2002 	if (!restore_reserve) {
2003 		/*
2004 		 * A return code of zero implies that the subpool will be
2005 		 * under its minimum size if the reservation is not restored
2006 		 * after page is free.  Therefore, force restore_reserve
2007 		 * operation.
2008 		 */
2009 		if (hugepage_subpool_put_pages(spool, 1) == 0)
2010 			restore_reserve = true;
2011 	}
2012 
2013 	spin_lock_irqsave(&hugetlb_lock, flags);
2014 	folio_clear_hugetlb_migratable(folio);
2015 	hugetlb_cgroup_uncharge_folio(hstate_index(h),
2016 				     pages_per_huge_page(h), folio);
2017 	hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
2018 					  pages_per_huge_page(h), folio);
2019 	mem_cgroup_uncharge(folio);
2020 	if (restore_reserve)
2021 		h->resv_huge_pages++;
2022 
2023 	if (folio_test_hugetlb_temporary(folio)) {
2024 		remove_hugetlb_folio(h, folio, false);
2025 		spin_unlock_irqrestore(&hugetlb_lock, flags);
2026 		update_and_free_hugetlb_folio(h, folio, true);
2027 	} else if (h->surplus_huge_pages_node[nid]) {
2028 		/* remove the page from active list */
2029 		remove_hugetlb_folio(h, folio, true);
2030 		spin_unlock_irqrestore(&hugetlb_lock, flags);
2031 		update_and_free_hugetlb_folio(h, folio, true);
2032 	} else {
2033 		arch_clear_hugepage_flags(&folio->page);
2034 		enqueue_hugetlb_folio(h, folio);
2035 		spin_unlock_irqrestore(&hugetlb_lock, flags);
2036 	}
2037 }
2038 
2039 /*
2040  * Must be called with the hugetlb lock held
2041  */
2042 static void __prep_account_new_huge_page(struct hstate *h, int nid)
2043 {
2044 	lockdep_assert_held(&hugetlb_lock);
2045 	h->nr_huge_pages++;
2046 	h->nr_huge_pages_node[nid]++;
2047 }
2048 
2049 static void init_new_hugetlb_folio(struct hstate *h, struct folio *folio)
2050 {
2051 	folio_set_hugetlb(folio);
2052 	INIT_LIST_HEAD(&folio->lru);
2053 	hugetlb_set_folio_subpool(folio, NULL);
2054 	set_hugetlb_cgroup(folio, NULL);
2055 	set_hugetlb_cgroup_rsvd(folio, NULL);
2056 }
2057 
2058 static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio)
2059 {
2060 	init_new_hugetlb_folio(h, folio);
2061 	hugetlb_vmemmap_optimize_folio(h, folio);
2062 }
2063 
2064 static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid)
2065 {
2066 	__prep_new_hugetlb_folio(h, folio);
2067 	spin_lock_irq(&hugetlb_lock);
2068 	__prep_account_new_huge_page(h, nid);
2069 	spin_unlock_irq(&hugetlb_lock);
2070 }
2071 
2072 static bool __prep_compound_gigantic_folio(struct folio *folio,
2073 					unsigned int order, bool demote)
2074 {
2075 	int i, j;
2076 	int nr_pages = 1 << order;
2077 	struct page *p;
2078 
2079 	__folio_clear_reserved(folio);
2080 	for (i = 0; i < nr_pages; i++) {
2081 		p = folio_page(folio, i);
2082 
2083 		/*
2084 		 * For gigantic hugepages allocated through bootmem at
2085 		 * boot, it's safer to be consistent with the not-gigantic
2086 		 * hugepages and clear the PG_reserved bit from all tail pages
2087 		 * too.  Otherwise drivers using get_user_pages() to access tail
2088 		 * pages may get the reference counting wrong if they see
2089 		 * PG_reserved set on a tail page (despite the head page not
2090 		 * having PG_reserved set).  Enforcing this consistency between
2091 		 * head and tail pages allows drivers to optimize away a check
2092 		 * on the head page when they need know if put_page() is needed
2093 		 * after get_user_pages().
2094 		 */
2095 		if (i != 0)	/* head page cleared above */
2096 			__ClearPageReserved(p);
2097 		/*
2098 		 * Subtle and very unlikely
2099 		 *
2100 		 * Gigantic 'page allocators' such as memblock or cma will
2101 		 * return a set of pages with each page ref counted.  We need
2102 		 * to turn this set of pages into a compound page with tail
2103 		 * page ref counts set to zero.  Code such as speculative page
2104 		 * cache adding could take a ref on a 'to be' tail page.
2105 		 * We need to respect any increased ref count, and only set
2106 		 * the ref count to zero if count is currently 1.  If count
2107 		 * is not 1, we return an error.  An error return indicates
2108 		 * the set of pages can not be converted to a gigantic page.
2109 		 * The caller who allocated the pages should then discard the
2110 		 * pages using the appropriate free interface.
2111 		 *
2112 		 * In the case of demote, the ref count will be zero.
2113 		 */
2114 		if (!demote) {
2115 			if (!page_ref_freeze(p, 1)) {
2116 				pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
2117 				goto out_error;
2118 			}
2119 		} else {
2120 			VM_BUG_ON_PAGE(page_count(p), p);
2121 		}
2122 		if (i != 0)
2123 			set_compound_head(p, &folio->page);
2124 	}
2125 	__folio_set_head(folio);
2126 	/* we rely on prep_new_hugetlb_folio to set the destructor */
2127 	folio_set_order(folio, order);
2128 	atomic_set(&folio->_entire_mapcount, -1);
2129 	atomic_set(&folio->_nr_pages_mapped, 0);
2130 	atomic_set(&folio->_pincount, 0);
2131 	return true;
2132 
2133 out_error:
2134 	/* undo page modifications made above */
2135 	for (j = 0; j < i; j++) {
2136 		p = folio_page(folio, j);
2137 		if (j != 0)
2138 			clear_compound_head(p);
2139 		set_page_refcounted(p);
2140 	}
2141 	/* need to clear PG_reserved on remaining tail pages  */
2142 	for (; j < nr_pages; j++) {
2143 		p = folio_page(folio, j);
2144 		__ClearPageReserved(p);
2145 	}
2146 	return false;
2147 }
2148 
2149 static bool prep_compound_gigantic_folio(struct folio *folio,
2150 							unsigned int order)
2151 {
2152 	return __prep_compound_gigantic_folio(folio, order, false);
2153 }
2154 
2155 static bool prep_compound_gigantic_folio_for_demote(struct folio *folio,
2156 							unsigned int order)
2157 {
2158 	return __prep_compound_gigantic_folio(folio, order, true);
2159 }
2160 
2161 /*
2162  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
2163  * transparent huge pages.  See the PageTransHuge() documentation for more
2164  * details.
2165  */
2166 int PageHuge(struct page *page)
2167 {
2168 	struct folio *folio;
2169 
2170 	if (!PageCompound(page))
2171 		return 0;
2172 	folio = page_folio(page);
2173 	return folio_test_hugetlb(folio);
2174 }
2175 EXPORT_SYMBOL_GPL(PageHuge);
2176 
2177 /*
2178  * Find and lock address space (mapping) in write mode.
2179  *
2180  * Upon entry, the page is locked which means that page_mapping() is
2181  * stable.  Due to locking order, we can only trylock_write.  If we can
2182  * not get the lock, simply return NULL to caller.
2183  */
2184 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
2185 {
2186 	struct address_space *mapping = page_mapping(hpage);
2187 
2188 	if (!mapping)
2189 		return mapping;
2190 
2191 	if (i_mmap_trylock_write(mapping))
2192 		return mapping;
2193 
2194 	return NULL;
2195 }
2196 
2197 static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h,
2198 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
2199 		nodemask_t *node_alloc_noretry)
2200 {
2201 	int order = huge_page_order(h);
2202 	struct page *page;
2203 	bool alloc_try_hard = true;
2204 	bool retry = true;
2205 
2206 	/*
2207 	 * By default we always try hard to allocate the page with
2208 	 * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
2209 	 * a loop (to adjust global huge page counts) and previous allocation
2210 	 * failed, do not continue to try hard on the same node.  Use the
2211 	 * node_alloc_noretry bitmap to manage this state information.
2212 	 */
2213 	if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
2214 		alloc_try_hard = false;
2215 	gfp_mask |= __GFP_COMP|__GFP_NOWARN;
2216 	if (alloc_try_hard)
2217 		gfp_mask |= __GFP_RETRY_MAYFAIL;
2218 	if (nid == NUMA_NO_NODE)
2219 		nid = numa_mem_id();
2220 retry:
2221 	page = __alloc_pages(gfp_mask, order, nid, nmask);
2222 
2223 	/* Freeze head page */
2224 	if (page && !page_ref_freeze(page, 1)) {
2225 		__free_pages(page, order);
2226 		if (retry) {	/* retry once */
2227 			retry = false;
2228 			goto retry;
2229 		}
2230 		/* WOW!  twice in a row. */
2231 		pr_warn("HugeTLB head page unexpected inflated ref count\n");
2232 		page = NULL;
2233 	}
2234 
2235 	/*
2236 	 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
2237 	 * indicates an overall state change.  Clear bit so that we resume
2238 	 * normal 'try hard' allocations.
2239 	 */
2240 	if (node_alloc_noretry && page && !alloc_try_hard)
2241 		node_clear(nid, *node_alloc_noretry);
2242 
2243 	/*
2244 	 * If we tried hard to get a page but failed, set bit so that
2245 	 * subsequent attempts will not try as hard until there is an
2246 	 * overall state change.
2247 	 */
2248 	if (node_alloc_noretry && !page && alloc_try_hard)
2249 		node_set(nid, *node_alloc_noretry);
2250 
2251 	if (!page) {
2252 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
2253 		return NULL;
2254 	}
2255 
2256 	__count_vm_event(HTLB_BUDDY_PGALLOC);
2257 	return page_folio(page);
2258 }
2259 
2260 static struct folio *__alloc_fresh_hugetlb_folio(struct hstate *h,
2261 				gfp_t gfp_mask, int nid, nodemask_t *nmask,
2262 				nodemask_t *node_alloc_noretry)
2263 {
2264 	struct folio *folio;
2265 	bool retry = false;
2266 
2267 retry:
2268 	if (hstate_is_gigantic(h))
2269 		folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
2270 	else
2271 		folio = alloc_buddy_hugetlb_folio(h, gfp_mask,
2272 				nid, nmask, node_alloc_noretry);
2273 	if (!folio)
2274 		return NULL;
2275 
2276 	if (hstate_is_gigantic(h)) {
2277 		if (!prep_compound_gigantic_folio(folio, huge_page_order(h))) {
2278 			/*
2279 			 * Rare failure to convert pages to compound page.
2280 			 * Free pages and try again - ONCE!
2281 			 */
2282 			free_gigantic_folio(folio, huge_page_order(h));
2283 			if (!retry) {
2284 				retry = true;
2285 				goto retry;
2286 			}
2287 			return NULL;
2288 		}
2289 	}
2290 
2291 	return folio;
2292 }
2293 
2294 static struct folio *only_alloc_fresh_hugetlb_folio(struct hstate *h,
2295 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
2296 		nodemask_t *node_alloc_noretry)
2297 {
2298 	struct folio *folio;
2299 
2300 	folio = __alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask,
2301 						node_alloc_noretry);
2302 	if (folio)
2303 		init_new_hugetlb_folio(h, folio);
2304 	return folio;
2305 }
2306 
2307 /*
2308  * Common helper to allocate a fresh hugetlb page. All specific allocators
2309  * should use this function to get new hugetlb pages
2310  *
2311  * Note that returned page is 'frozen':  ref count of head page and all tail
2312  * pages is zero.
2313  */
2314 static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h,
2315 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
2316 		nodemask_t *node_alloc_noretry)
2317 {
2318 	struct folio *folio;
2319 
2320 	folio = __alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask,
2321 						node_alloc_noretry);
2322 	if (!folio)
2323 		return NULL;
2324 
2325 	prep_new_hugetlb_folio(h, folio, folio_nid(folio));
2326 	return folio;
2327 }
2328 
2329 static void prep_and_add_allocated_folios(struct hstate *h,
2330 					struct list_head *folio_list)
2331 {
2332 	unsigned long flags;
2333 	struct folio *folio, *tmp_f;
2334 
2335 	/* Send list for bulk vmemmap optimization processing */
2336 	hugetlb_vmemmap_optimize_folios(h, folio_list);
2337 
2338 	/* Add all new pool pages to free lists in one lock cycle */
2339 	spin_lock_irqsave(&hugetlb_lock, flags);
2340 	list_for_each_entry_safe(folio, tmp_f, folio_list, lru) {
2341 		__prep_account_new_huge_page(h, folio_nid(folio));
2342 		enqueue_hugetlb_folio(h, folio);
2343 	}
2344 	spin_unlock_irqrestore(&hugetlb_lock, flags);
2345 }
2346 
2347 /*
2348  * Allocates a fresh hugetlb page in a node interleaved manner.  The page
2349  * will later be added to the appropriate hugetlb pool.
2350  */
2351 static struct folio *alloc_pool_huge_folio(struct hstate *h,
2352 					nodemask_t *nodes_allowed,
2353 					nodemask_t *node_alloc_noretry)
2354 {
2355 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2356 	int nr_nodes, node;
2357 
2358 	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2359 		struct folio *folio;
2360 
2361 		folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, node,
2362 					nodes_allowed, node_alloc_noretry);
2363 		if (folio)
2364 			return folio;
2365 	}
2366 
2367 	return NULL;
2368 }
2369 
2370 /*
2371  * Remove huge page from pool from next node to free.  Attempt to keep
2372  * persistent huge pages more or less balanced over allowed nodes.
2373  * This routine only 'removes' the hugetlb page.  The caller must make
2374  * an additional call to free the page to low level allocators.
2375  * Called with hugetlb_lock locked.
2376  */
2377 static struct folio *remove_pool_hugetlb_folio(struct hstate *h,
2378 		nodemask_t *nodes_allowed, bool acct_surplus)
2379 {
2380 	int nr_nodes, node;
2381 	struct folio *folio = NULL;
2382 
2383 	lockdep_assert_held(&hugetlb_lock);
2384 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2385 		/*
2386 		 * If we're returning unused surplus pages, only examine
2387 		 * nodes with surplus pages.
2388 		 */
2389 		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2390 		    !list_empty(&h->hugepage_freelists[node])) {
2391 			folio = list_entry(h->hugepage_freelists[node].next,
2392 					  struct folio, lru);
2393 			remove_hugetlb_folio(h, folio, acct_surplus);
2394 			break;
2395 		}
2396 	}
2397 
2398 	return folio;
2399 }
2400 
2401 /*
2402  * Dissolve a given free hugepage into free buddy pages. This function does
2403  * nothing for in-use hugepages and non-hugepages.
2404  * This function returns values like below:
2405  *
2406  *  -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2407  *           when the system is under memory pressure and the feature of
2408  *           freeing unused vmemmap pages associated with each hugetlb page
2409  *           is enabled.
2410  *  -EBUSY:  failed to dissolved free hugepages or the hugepage is in-use
2411  *           (allocated or reserved.)
2412  *       0:  successfully dissolved free hugepages or the page is not a
2413  *           hugepage (considered as already dissolved)
2414  */
2415 int dissolve_free_huge_page(struct page *page)
2416 {
2417 	int rc = -EBUSY;
2418 	struct folio *folio = page_folio(page);
2419 
2420 retry:
2421 	/* Not to disrupt normal path by vainly holding hugetlb_lock */
2422 	if (!folio_test_hugetlb(folio))
2423 		return 0;
2424 
2425 	spin_lock_irq(&hugetlb_lock);
2426 	if (!folio_test_hugetlb(folio)) {
2427 		rc = 0;
2428 		goto out;
2429 	}
2430 
2431 	if (!folio_ref_count(folio)) {
2432 		struct hstate *h = folio_hstate(folio);
2433 		if (!available_huge_pages(h))
2434 			goto out;
2435 
2436 		/*
2437 		 * We should make sure that the page is already on the free list
2438 		 * when it is dissolved.
2439 		 */
2440 		if (unlikely(!folio_test_hugetlb_freed(folio))) {
2441 			spin_unlock_irq(&hugetlb_lock);
2442 			cond_resched();
2443 
2444 			/*
2445 			 * Theoretically, we should return -EBUSY when we
2446 			 * encounter this race. In fact, we have a chance
2447 			 * to successfully dissolve the page if we do a
2448 			 * retry. Because the race window is quite small.
2449 			 * If we seize this opportunity, it is an optimization
2450 			 * for increasing the success rate of dissolving page.
2451 			 */
2452 			goto retry;
2453 		}
2454 
2455 		remove_hugetlb_folio(h, folio, false);
2456 		h->max_huge_pages--;
2457 		spin_unlock_irq(&hugetlb_lock);
2458 
2459 		/*
2460 		 * Normally update_and_free_hugtlb_folio will allocate required vmemmmap
2461 		 * before freeing the page.  update_and_free_hugtlb_folio will fail to
2462 		 * free the page if it can not allocate required vmemmap.  We
2463 		 * need to adjust max_huge_pages if the page is not freed.
2464 		 * Attempt to allocate vmemmmap here so that we can take
2465 		 * appropriate action on failure.
2466 		 *
2467 		 * The folio_test_hugetlb check here is because
2468 		 * remove_hugetlb_folio will clear hugetlb folio flag for
2469 		 * non-vmemmap optimized hugetlb folios.
2470 		 */
2471 		if (folio_test_hugetlb(folio)) {
2472 			rc = hugetlb_vmemmap_restore_folio(h, folio);
2473 			if (rc) {
2474 				spin_lock_irq(&hugetlb_lock);
2475 				add_hugetlb_folio(h, folio, false);
2476 				h->max_huge_pages++;
2477 				goto out;
2478 			}
2479 		} else
2480 			rc = 0;
2481 
2482 		update_and_free_hugetlb_folio(h, folio, false);
2483 		return rc;
2484 	}
2485 out:
2486 	spin_unlock_irq(&hugetlb_lock);
2487 	return rc;
2488 }
2489 
2490 /*
2491  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2492  * make specified memory blocks removable from the system.
2493  * Note that this will dissolve a free gigantic hugepage completely, if any
2494  * part of it lies within the given range.
2495  * Also note that if dissolve_free_huge_page() returns with an error, all
2496  * free hugepages that were dissolved before that error are lost.
2497  */
2498 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
2499 {
2500 	unsigned long pfn;
2501 	struct page *page;
2502 	int rc = 0;
2503 	unsigned int order;
2504 	struct hstate *h;
2505 
2506 	if (!hugepages_supported())
2507 		return rc;
2508 
2509 	order = huge_page_order(&default_hstate);
2510 	for_each_hstate(h)
2511 		order = min(order, huge_page_order(h));
2512 
2513 	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
2514 		page = pfn_to_page(pfn);
2515 		rc = dissolve_free_huge_page(page);
2516 		if (rc)
2517 			break;
2518 	}
2519 
2520 	return rc;
2521 }
2522 
2523 /*
2524  * Allocates a fresh surplus page from the page allocator.
2525  */
2526 static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h,
2527 				gfp_t gfp_mask,	int nid, nodemask_t *nmask)
2528 {
2529 	struct folio *folio = NULL;
2530 
2531 	if (hstate_is_gigantic(h))
2532 		return NULL;
2533 
2534 	spin_lock_irq(&hugetlb_lock);
2535 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2536 		goto out_unlock;
2537 	spin_unlock_irq(&hugetlb_lock);
2538 
2539 	folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2540 	if (!folio)
2541 		return NULL;
2542 
2543 	spin_lock_irq(&hugetlb_lock);
2544 	/*
2545 	 * We could have raced with the pool size change.
2546 	 * Double check that and simply deallocate the new page
2547 	 * if we would end up overcommiting the surpluses. Abuse
2548 	 * temporary page to workaround the nasty free_huge_folio
2549 	 * codeflow
2550 	 */
2551 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2552 		folio_set_hugetlb_temporary(folio);
2553 		spin_unlock_irq(&hugetlb_lock);
2554 		free_huge_folio(folio);
2555 		return NULL;
2556 	}
2557 
2558 	h->surplus_huge_pages++;
2559 	h->surplus_huge_pages_node[folio_nid(folio)]++;
2560 
2561 out_unlock:
2562 	spin_unlock_irq(&hugetlb_lock);
2563 
2564 	return folio;
2565 }
2566 
2567 static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask,
2568 				     int nid, nodemask_t *nmask)
2569 {
2570 	struct folio *folio;
2571 
2572 	if (hstate_is_gigantic(h))
2573 		return NULL;
2574 
2575 	folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2576 	if (!folio)
2577 		return NULL;
2578 
2579 	/* fresh huge pages are frozen */
2580 	folio_ref_unfreeze(folio, 1);
2581 	/*
2582 	 * We do not account these pages as surplus because they are only
2583 	 * temporary and will be released properly on the last reference
2584 	 */
2585 	folio_set_hugetlb_temporary(folio);
2586 
2587 	return folio;
2588 }
2589 
2590 /*
2591  * Use the VMA's mpolicy to allocate a huge page from the buddy.
2592  */
2593 static
2594 struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h,
2595 		struct vm_area_struct *vma, unsigned long addr)
2596 {
2597 	struct folio *folio = NULL;
2598 	struct mempolicy *mpol;
2599 	gfp_t gfp_mask = htlb_alloc_mask(h);
2600 	int nid;
2601 	nodemask_t *nodemask;
2602 
2603 	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2604 	if (mpol_is_preferred_many(mpol)) {
2605 		gfp_t gfp = gfp_mask | __GFP_NOWARN;
2606 
2607 		gfp &=  ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2608 		folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask);
2609 
2610 		/* Fallback to all nodes if page==NULL */
2611 		nodemask = NULL;
2612 	}
2613 
2614 	if (!folio)
2615 		folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask);
2616 	mpol_cond_put(mpol);
2617 	return folio;
2618 }
2619 
2620 /* folio migration callback function */
2621 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
2622 		nodemask_t *nmask, gfp_t gfp_mask)
2623 {
2624 	spin_lock_irq(&hugetlb_lock);
2625 	if (available_huge_pages(h)) {
2626 		struct folio *folio;
2627 
2628 		folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
2629 						preferred_nid, nmask);
2630 		if (folio) {
2631 			spin_unlock_irq(&hugetlb_lock);
2632 			return folio;
2633 		}
2634 	}
2635 	spin_unlock_irq(&hugetlb_lock);
2636 
2637 	return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask);
2638 }
2639 
2640 /*
2641  * Increase the hugetlb pool such that it can accommodate a reservation
2642  * of size 'delta'.
2643  */
2644 static int gather_surplus_pages(struct hstate *h, long delta)
2645 	__must_hold(&hugetlb_lock)
2646 {
2647 	LIST_HEAD(surplus_list);
2648 	struct folio *folio, *tmp;
2649 	int ret;
2650 	long i;
2651 	long needed, allocated;
2652 	bool alloc_ok = true;
2653 
2654 	lockdep_assert_held(&hugetlb_lock);
2655 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2656 	if (needed <= 0) {
2657 		h->resv_huge_pages += delta;
2658 		return 0;
2659 	}
2660 
2661 	allocated = 0;
2662 
2663 	ret = -ENOMEM;
2664 retry:
2665 	spin_unlock_irq(&hugetlb_lock);
2666 	for (i = 0; i < needed; i++) {
2667 		folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h),
2668 				NUMA_NO_NODE, NULL);
2669 		if (!folio) {
2670 			alloc_ok = false;
2671 			break;
2672 		}
2673 		list_add(&folio->lru, &surplus_list);
2674 		cond_resched();
2675 	}
2676 	allocated += i;
2677 
2678 	/*
2679 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
2680 	 * because either resv_huge_pages or free_huge_pages may have changed.
2681 	 */
2682 	spin_lock_irq(&hugetlb_lock);
2683 	needed = (h->resv_huge_pages + delta) -
2684 			(h->free_huge_pages + allocated);
2685 	if (needed > 0) {
2686 		if (alloc_ok)
2687 			goto retry;
2688 		/*
2689 		 * We were not able to allocate enough pages to
2690 		 * satisfy the entire reservation so we free what
2691 		 * we've allocated so far.
2692 		 */
2693 		goto free;
2694 	}
2695 	/*
2696 	 * The surplus_list now contains _at_least_ the number of extra pages
2697 	 * needed to accommodate the reservation.  Add the appropriate number
2698 	 * of pages to the hugetlb pool and free the extras back to the buddy
2699 	 * allocator.  Commit the entire reservation here to prevent another
2700 	 * process from stealing the pages as they are added to the pool but
2701 	 * before they are reserved.
2702 	 */
2703 	needed += allocated;
2704 	h->resv_huge_pages += delta;
2705 	ret = 0;
2706 
2707 	/* Free the needed pages to the hugetlb pool */
2708 	list_for_each_entry_safe(folio, tmp, &surplus_list, lru) {
2709 		if ((--needed) < 0)
2710 			break;
2711 		/* Add the page to the hugetlb allocator */
2712 		enqueue_hugetlb_folio(h, folio);
2713 	}
2714 free:
2715 	spin_unlock_irq(&hugetlb_lock);
2716 
2717 	/*
2718 	 * Free unnecessary surplus pages to the buddy allocator.
2719 	 * Pages have no ref count, call free_huge_folio directly.
2720 	 */
2721 	list_for_each_entry_safe(folio, tmp, &surplus_list, lru)
2722 		free_huge_folio(folio);
2723 	spin_lock_irq(&hugetlb_lock);
2724 
2725 	return ret;
2726 }
2727 
2728 /*
2729  * This routine has two main purposes:
2730  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2731  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2732  *    to the associated reservation map.
2733  * 2) Free any unused surplus pages that may have been allocated to satisfy
2734  *    the reservation.  As many as unused_resv_pages may be freed.
2735  */
2736 static void return_unused_surplus_pages(struct hstate *h,
2737 					unsigned long unused_resv_pages)
2738 {
2739 	unsigned long nr_pages;
2740 	LIST_HEAD(page_list);
2741 
2742 	lockdep_assert_held(&hugetlb_lock);
2743 	/* Uncommit the reservation */
2744 	h->resv_huge_pages -= unused_resv_pages;
2745 
2746 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2747 		goto out;
2748 
2749 	/*
2750 	 * Part (or even all) of the reservation could have been backed
2751 	 * by pre-allocated pages. Only free surplus pages.
2752 	 */
2753 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2754 
2755 	/*
2756 	 * We want to release as many surplus pages as possible, spread
2757 	 * evenly across all nodes with memory. Iterate across these nodes
2758 	 * until we can no longer free unreserved surplus pages. This occurs
2759 	 * when the nodes with surplus pages have no free pages.
2760 	 * remove_pool_hugetlb_folio() will balance the freed pages across the
2761 	 * on-line nodes with memory and will handle the hstate accounting.
2762 	 */
2763 	while (nr_pages--) {
2764 		struct folio *folio;
2765 
2766 		folio = remove_pool_hugetlb_folio(h, &node_states[N_MEMORY], 1);
2767 		if (!folio)
2768 			goto out;
2769 
2770 		list_add(&folio->lru, &page_list);
2771 	}
2772 
2773 out:
2774 	spin_unlock_irq(&hugetlb_lock);
2775 	update_and_free_pages_bulk(h, &page_list);
2776 	spin_lock_irq(&hugetlb_lock);
2777 }
2778 
2779 
2780 /*
2781  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2782  * are used by the huge page allocation routines to manage reservations.
2783  *
2784  * vma_needs_reservation is called to determine if the huge page at addr
2785  * within the vma has an associated reservation.  If a reservation is
2786  * needed, the value 1 is returned.  The caller is then responsible for
2787  * managing the global reservation and subpool usage counts.  After
2788  * the huge page has been allocated, vma_commit_reservation is called
2789  * to add the page to the reservation map.  If the page allocation fails,
2790  * the reservation must be ended instead of committed.  vma_end_reservation
2791  * is called in such cases.
2792  *
2793  * In the normal case, vma_commit_reservation returns the same value
2794  * as the preceding vma_needs_reservation call.  The only time this
2795  * is not the case is if a reserve map was changed between calls.  It
2796  * is the responsibility of the caller to notice the difference and
2797  * take appropriate action.
2798  *
2799  * vma_add_reservation is used in error paths where a reservation must
2800  * be restored when a newly allocated huge page must be freed.  It is
2801  * to be called after calling vma_needs_reservation to determine if a
2802  * reservation exists.
2803  *
2804  * vma_del_reservation is used in error paths where an entry in the reserve
2805  * map was created during huge page allocation and must be removed.  It is to
2806  * be called after calling vma_needs_reservation to determine if a reservation
2807  * exists.
2808  */
2809 enum vma_resv_mode {
2810 	VMA_NEEDS_RESV,
2811 	VMA_COMMIT_RESV,
2812 	VMA_END_RESV,
2813 	VMA_ADD_RESV,
2814 	VMA_DEL_RESV,
2815 };
2816 static long __vma_reservation_common(struct hstate *h,
2817 				struct vm_area_struct *vma, unsigned long addr,
2818 				enum vma_resv_mode mode)
2819 {
2820 	struct resv_map *resv;
2821 	pgoff_t idx;
2822 	long ret;
2823 	long dummy_out_regions_needed;
2824 
2825 	resv = vma_resv_map(vma);
2826 	if (!resv)
2827 		return 1;
2828 
2829 	idx = vma_hugecache_offset(h, vma, addr);
2830 	switch (mode) {
2831 	case VMA_NEEDS_RESV:
2832 		ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2833 		/* We assume that vma_reservation_* routines always operate on
2834 		 * 1 page, and that adding to resv map a 1 page entry can only
2835 		 * ever require 1 region.
2836 		 */
2837 		VM_BUG_ON(dummy_out_regions_needed != 1);
2838 		break;
2839 	case VMA_COMMIT_RESV:
2840 		ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2841 		/* region_add calls of range 1 should never fail. */
2842 		VM_BUG_ON(ret < 0);
2843 		break;
2844 	case VMA_END_RESV:
2845 		region_abort(resv, idx, idx + 1, 1);
2846 		ret = 0;
2847 		break;
2848 	case VMA_ADD_RESV:
2849 		if (vma->vm_flags & VM_MAYSHARE) {
2850 			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2851 			/* region_add calls of range 1 should never fail. */
2852 			VM_BUG_ON(ret < 0);
2853 		} else {
2854 			region_abort(resv, idx, idx + 1, 1);
2855 			ret = region_del(resv, idx, idx + 1);
2856 		}
2857 		break;
2858 	case VMA_DEL_RESV:
2859 		if (vma->vm_flags & VM_MAYSHARE) {
2860 			region_abort(resv, idx, idx + 1, 1);
2861 			ret = region_del(resv, idx, idx + 1);
2862 		} else {
2863 			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2864 			/* region_add calls of range 1 should never fail. */
2865 			VM_BUG_ON(ret < 0);
2866 		}
2867 		break;
2868 	default:
2869 		BUG();
2870 	}
2871 
2872 	if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2873 		return ret;
2874 	/*
2875 	 * We know private mapping must have HPAGE_RESV_OWNER set.
2876 	 *
2877 	 * In most cases, reserves always exist for private mappings.
2878 	 * However, a file associated with mapping could have been
2879 	 * hole punched or truncated after reserves were consumed.
2880 	 * As subsequent fault on such a range will not use reserves.
2881 	 * Subtle - The reserve map for private mappings has the
2882 	 * opposite meaning than that of shared mappings.  If NO
2883 	 * entry is in the reserve map, it means a reservation exists.
2884 	 * If an entry exists in the reserve map, it means the
2885 	 * reservation has already been consumed.  As a result, the
2886 	 * return value of this routine is the opposite of the
2887 	 * value returned from reserve map manipulation routines above.
2888 	 */
2889 	if (ret > 0)
2890 		return 0;
2891 	if (ret == 0)
2892 		return 1;
2893 	return ret;
2894 }
2895 
2896 static long vma_needs_reservation(struct hstate *h,
2897 			struct vm_area_struct *vma, unsigned long addr)
2898 {
2899 	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2900 }
2901 
2902 static long vma_commit_reservation(struct hstate *h,
2903 			struct vm_area_struct *vma, unsigned long addr)
2904 {
2905 	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2906 }
2907 
2908 static void vma_end_reservation(struct hstate *h,
2909 			struct vm_area_struct *vma, unsigned long addr)
2910 {
2911 	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2912 }
2913 
2914 static long vma_add_reservation(struct hstate *h,
2915 			struct vm_area_struct *vma, unsigned long addr)
2916 {
2917 	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2918 }
2919 
2920 static long vma_del_reservation(struct hstate *h,
2921 			struct vm_area_struct *vma, unsigned long addr)
2922 {
2923 	return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2924 }
2925 
2926 /*
2927  * This routine is called to restore reservation information on error paths.
2928  * It should ONLY be called for folios allocated via alloc_hugetlb_folio(),
2929  * and the hugetlb mutex should remain held when calling this routine.
2930  *
2931  * It handles two specific cases:
2932  * 1) A reservation was in place and the folio consumed the reservation.
2933  *    hugetlb_restore_reserve is set in the folio.
2934  * 2) No reservation was in place for the page, so hugetlb_restore_reserve is
2935  *    not set.  However, alloc_hugetlb_folio always updates the reserve map.
2936  *
2937  * In case 1, free_huge_folio later in the error path will increment the
2938  * global reserve count.  But, free_huge_folio does not have enough context
2939  * to adjust the reservation map.  This case deals primarily with private
2940  * mappings.  Adjust the reserve map here to be consistent with global
2941  * reserve count adjustments to be made by free_huge_folio.  Make sure the
2942  * reserve map indicates there is a reservation present.
2943  *
2944  * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio.
2945  */
2946 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2947 			unsigned long address, struct folio *folio)
2948 {
2949 	long rc = vma_needs_reservation(h, vma, address);
2950 
2951 	if (folio_test_hugetlb_restore_reserve(folio)) {
2952 		if (unlikely(rc < 0))
2953 			/*
2954 			 * Rare out of memory condition in reserve map
2955 			 * manipulation.  Clear hugetlb_restore_reserve so
2956 			 * that global reserve count will not be incremented
2957 			 * by free_huge_folio.  This will make it appear
2958 			 * as though the reservation for this folio was
2959 			 * consumed.  This may prevent the task from
2960 			 * faulting in the folio at a later time.  This
2961 			 * is better than inconsistent global huge page
2962 			 * accounting of reserve counts.
2963 			 */
2964 			folio_clear_hugetlb_restore_reserve(folio);
2965 		else if (rc)
2966 			(void)vma_add_reservation(h, vma, address);
2967 		else
2968 			vma_end_reservation(h, vma, address);
2969 	} else {
2970 		if (!rc) {
2971 			/*
2972 			 * This indicates there is an entry in the reserve map
2973 			 * not added by alloc_hugetlb_folio.  We know it was added
2974 			 * before the alloc_hugetlb_folio call, otherwise
2975 			 * hugetlb_restore_reserve would be set on the folio.
2976 			 * Remove the entry so that a subsequent allocation
2977 			 * does not consume a reservation.
2978 			 */
2979 			rc = vma_del_reservation(h, vma, address);
2980 			if (rc < 0)
2981 				/*
2982 				 * VERY rare out of memory condition.  Since
2983 				 * we can not delete the entry, set
2984 				 * hugetlb_restore_reserve so that the reserve
2985 				 * count will be incremented when the folio
2986 				 * is freed.  This reserve will be consumed
2987 				 * on a subsequent allocation.
2988 				 */
2989 				folio_set_hugetlb_restore_reserve(folio);
2990 		} else if (rc < 0) {
2991 			/*
2992 			 * Rare out of memory condition from
2993 			 * vma_needs_reservation call.  Memory allocation is
2994 			 * only attempted if a new entry is needed.  Therefore,
2995 			 * this implies there is not an entry in the
2996 			 * reserve map.
2997 			 *
2998 			 * For shared mappings, no entry in the map indicates
2999 			 * no reservation.  We are done.
3000 			 */
3001 			if (!(vma->vm_flags & VM_MAYSHARE))
3002 				/*
3003 				 * For private mappings, no entry indicates
3004 				 * a reservation is present.  Since we can
3005 				 * not add an entry, set hugetlb_restore_reserve
3006 				 * on the folio so reserve count will be
3007 				 * incremented when freed.  This reserve will
3008 				 * be consumed on a subsequent allocation.
3009 				 */
3010 				folio_set_hugetlb_restore_reserve(folio);
3011 		} else
3012 			/*
3013 			 * No reservation present, do nothing
3014 			 */
3015 			 vma_end_reservation(h, vma, address);
3016 	}
3017 }
3018 
3019 /*
3020  * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve
3021  * the old one
3022  * @h: struct hstate old page belongs to
3023  * @old_folio: Old folio to dissolve
3024  * @list: List to isolate the page in case we need to
3025  * Returns 0 on success, otherwise negated error.
3026  */
3027 static int alloc_and_dissolve_hugetlb_folio(struct hstate *h,
3028 			struct folio *old_folio, struct list_head *list)
3029 {
3030 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3031 	int nid = folio_nid(old_folio);
3032 	struct folio *new_folio;
3033 	int ret = 0;
3034 
3035 	/*
3036 	 * Before dissolving the folio, we need to allocate a new one for the
3037 	 * pool to remain stable.  Here, we allocate the folio and 'prep' it
3038 	 * by doing everything but actually updating counters and adding to
3039 	 * the pool.  This simplifies and let us do most of the processing
3040 	 * under the lock.
3041 	 */
3042 	new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, NULL, NULL);
3043 	if (!new_folio)
3044 		return -ENOMEM;
3045 	__prep_new_hugetlb_folio(h, new_folio);
3046 
3047 retry:
3048 	spin_lock_irq(&hugetlb_lock);
3049 	if (!folio_test_hugetlb(old_folio)) {
3050 		/*
3051 		 * Freed from under us. Drop new_folio too.
3052 		 */
3053 		goto free_new;
3054 	} else if (folio_ref_count(old_folio)) {
3055 		bool isolated;
3056 
3057 		/*
3058 		 * Someone has grabbed the folio, try to isolate it here.
3059 		 * Fail with -EBUSY if not possible.
3060 		 */
3061 		spin_unlock_irq(&hugetlb_lock);
3062 		isolated = isolate_hugetlb(old_folio, list);
3063 		ret = isolated ? 0 : -EBUSY;
3064 		spin_lock_irq(&hugetlb_lock);
3065 		goto free_new;
3066 	} else if (!folio_test_hugetlb_freed(old_folio)) {
3067 		/*
3068 		 * Folio's refcount is 0 but it has not been enqueued in the
3069 		 * freelist yet. Race window is small, so we can succeed here if
3070 		 * we retry.
3071 		 */
3072 		spin_unlock_irq(&hugetlb_lock);
3073 		cond_resched();
3074 		goto retry;
3075 	} else {
3076 		/*
3077 		 * Ok, old_folio is still a genuine free hugepage. Remove it from
3078 		 * the freelist and decrease the counters. These will be
3079 		 * incremented again when calling __prep_account_new_huge_page()
3080 		 * and enqueue_hugetlb_folio() for new_folio. The counters will
3081 		 * remain stable since this happens under the lock.
3082 		 */
3083 		remove_hugetlb_folio(h, old_folio, false);
3084 
3085 		/*
3086 		 * Ref count on new_folio is already zero as it was dropped
3087 		 * earlier.  It can be directly added to the pool free list.
3088 		 */
3089 		__prep_account_new_huge_page(h, nid);
3090 		enqueue_hugetlb_folio(h, new_folio);
3091 
3092 		/*
3093 		 * Folio has been replaced, we can safely free the old one.
3094 		 */
3095 		spin_unlock_irq(&hugetlb_lock);
3096 		update_and_free_hugetlb_folio(h, old_folio, false);
3097 	}
3098 
3099 	return ret;
3100 
3101 free_new:
3102 	spin_unlock_irq(&hugetlb_lock);
3103 	/* Folio has a zero ref count, but needs a ref to be freed */
3104 	folio_ref_unfreeze(new_folio, 1);
3105 	update_and_free_hugetlb_folio(h, new_folio, false);
3106 
3107 	return ret;
3108 }
3109 
3110 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
3111 {
3112 	struct hstate *h;
3113 	struct folio *folio = page_folio(page);
3114 	int ret = -EBUSY;
3115 
3116 	/*
3117 	 * The page might have been dissolved from under our feet, so make sure
3118 	 * to carefully check the state under the lock.
3119 	 * Return success when racing as if we dissolved the page ourselves.
3120 	 */
3121 	spin_lock_irq(&hugetlb_lock);
3122 	if (folio_test_hugetlb(folio)) {
3123 		h = folio_hstate(folio);
3124 	} else {
3125 		spin_unlock_irq(&hugetlb_lock);
3126 		return 0;
3127 	}
3128 	spin_unlock_irq(&hugetlb_lock);
3129 
3130 	/*
3131 	 * Fence off gigantic pages as there is a cyclic dependency between
3132 	 * alloc_contig_range and them. Return -ENOMEM as this has the effect
3133 	 * of bailing out right away without further retrying.
3134 	 */
3135 	if (hstate_is_gigantic(h))
3136 		return -ENOMEM;
3137 
3138 	if (folio_ref_count(folio) && isolate_hugetlb(folio, list))
3139 		ret = 0;
3140 	else if (!folio_ref_count(folio))
3141 		ret = alloc_and_dissolve_hugetlb_folio(h, folio, list);
3142 
3143 	return ret;
3144 }
3145 
3146 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
3147 				    unsigned long addr, int avoid_reserve)
3148 {
3149 	struct hugepage_subpool *spool = subpool_vma(vma);
3150 	struct hstate *h = hstate_vma(vma);
3151 	struct folio *folio;
3152 	long map_chg, map_commit, nr_pages = pages_per_huge_page(h);
3153 	long gbl_chg;
3154 	int memcg_charge_ret, ret, idx;
3155 	struct hugetlb_cgroup *h_cg = NULL;
3156 	struct mem_cgroup *memcg;
3157 	bool deferred_reserve;
3158 	gfp_t gfp = htlb_alloc_mask(h) | __GFP_RETRY_MAYFAIL;
3159 
3160 	memcg = get_mem_cgroup_from_current();
3161 	memcg_charge_ret = mem_cgroup_hugetlb_try_charge(memcg, gfp, nr_pages);
3162 	if (memcg_charge_ret == -ENOMEM) {
3163 		mem_cgroup_put(memcg);
3164 		return ERR_PTR(-ENOMEM);
3165 	}
3166 
3167 	idx = hstate_index(h);
3168 	/*
3169 	 * Examine the region/reserve map to determine if the process
3170 	 * has a reservation for the page to be allocated.  A return
3171 	 * code of zero indicates a reservation exists (no change).
3172 	 */
3173 	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
3174 	if (map_chg < 0) {
3175 		if (!memcg_charge_ret)
3176 			mem_cgroup_cancel_charge(memcg, nr_pages);
3177 		mem_cgroup_put(memcg);
3178 		return ERR_PTR(-ENOMEM);
3179 	}
3180 
3181 	/*
3182 	 * Processes that did not create the mapping will have no
3183 	 * reserves as indicated by the region/reserve map. Check
3184 	 * that the allocation will not exceed the subpool limit.
3185 	 * Allocations for MAP_NORESERVE mappings also need to be
3186 	 * checked against any subpool limit.
3187 	 */
3188 	if (map_chg || avoid_reserve) {
3189 		gbl_chg = hugepage_subpool_get_pages(spool, 1);
3190 		if (gbl_chg < 0)
3191 			goto out_end_reservation;
3192 
3193 		/*
3194 		 * Even though there was no reservation in the region/reserve
3195 		 * map, there could be reservations associated with the
3196 		 * subpool that can be used.  This would be indicated if the
3197 		 * return value of hugepage_subpool_get_pages() is zero.
3198 		 * However, if avoid_reserve is specified we still avoid even
3199 		 * the subpool reservations.
3200 		 */
3201 		if (avoid_reserve)
3202 			gbl_chg = 1;
3203 	}
3204 
3205 	/* If this allocation is not consuming a reservation, charge it now.
3206 	 */
3207 	deferred_reserve = map_chg || avoid_reserve;
3208 	if (deferred_reserve) {
3209 		ret = hugetlb_cgroup_charge_cgroup_rsvd(
3210 			idx, pages_per_huge_page(h), &h_cg);
3211 		if (ret)
3212 			goto out_subpool_put;
3213 	}
3214 
3215 	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
3216 	if (ret)
3217 		goto out_uncharge_cgroup_reservation;
3218 
3219 	spin_lock_irq(&hugetlb_lock);
3220 	/*
3221 	 * glb_chg is passed to indicate whether or not a page must be taken
3222 	 * from the global free pool (global change).  gbl_chg == 0 indicates
3223 	 * a reservation exists for the allocation.
3224 	 */
3225 	folio = dequeue_hugetlb_folio_vma(h, vma, addr, avoid_reserve, gbl_chg);
3226 	if (!folio) {
3227 		spin_unlock_irq(&hugetlb_lock);
3228 		folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr);
3229 		if (!folio)
3230 			goto out_uncharge_cgroup;
3231 		spin_lock_irq(&hugetlb_lock);
3232 		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
3233 			folio_set_hugetlb_restore_reserve(folio);
3234 			h->resv_huge_pages--;
3235 		}
3236 		list_add(&folio->lru, &h->hugepage_activelist);
3237 		folio_ref_unfreeze(folio, 1);
3238 		/* Fall through */
3239 	}
3240 
3241 	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio);
3242 	/* If allocation is not consuming a reservation, also store the
3243 	 * hugetlb_cgroup pointer on the page.
3244 	 */
3245 	if (deferred_reserve) {
3246 		hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
3247 						  h_cg, folio);
3248 	}
3249 
3250 	spin_unlock_irq(&hugetlb_lock);
3251 
3252 	hugetlb_set_folio_subpool(folio, spool);
3253 
3254 	map_commit = vma_commit_reservation(h, vma, addr);
3255 	if (unlikely(map_chg > map_commit)) {
3256 		/*
3257 		 * The page was added to the reservation map between
3258 		 * vma_needs_reservation and vma_commit_reservation.
3259 		 * This indicates a race with hugetlb_reserve_pages.
3260 		 * Adjust for the subpool count incremented above AND
3261 		 * in hugetlb_reserve_pages for the same page.  Also,
3262 		 * the reservation count added in hugetlb_reserve_pages
3263 		 * no longer applies.
3264 		 */
3265 		long rsv_adjust;
3266 
3267 		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
3268 		hugetlb_acct_memory(h, -rsv_adjust);
3269 		if (deferred_reserve)
3270 			hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
3271 					pages_per_huge_page(h), folio);
3272 	}
3273 
3274 	if (!memcg_charge_ret)
3275 		mem_cgroup_commit_charge(folio, memcg);
3276 	mem_cgroup_put(memcg);
3277 
3278 	return folio;
3279 
3280 out_uncharge_cgroup:
3281 	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
3282 out_uncharge_cgroup_reservation:
3283 	if (deferred_reserve)
3284 		hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
3285 						    h_cg);
3286 out_subpool_put:
3287 	if (map_chg || avoid_reserve)
3288 		hugepage_subpool_put_pages(spool, 1);
3289 out_end_reservation:
3290 	vma_end_reservation(h, vma, addr);
3291 	if (!memcg_charge_ret)
3292 		mem_cgroup_cancel_charge(memcg, nr_pages);
3293 	mem_cgroup_put(memcg);
3294 	return ERR_PTR(-ENOSPC);
3295 }
3296 
3297 int alloc_bootmem_huge_page(struct hstate *h, int nid)
3298 	__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
3299 int __alloc_bootmem_huge_page(struct hstate *h, int nid)
3300 {
3301 	struct huge_bootmem_page *m = NULL; /* initialize for clang */
3302 	int nr_nodes, node;
3303 
3304 	/* do node specific alloc */
3305 	if (nid != NUMA_NO_NODE) {
3306 		m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
3307 				0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3308 		if (!m)
3309 			return 0;
3310 		goto found;
3311 	}
3312 	/* allocate from next node when distributing huge pages */
3313 	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
3314 		m = memblock_alloc_try_nid_raw(
3315 				huge_page_size(h), huge_page_size(h),
3316 				0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
3317 		/*
3318 		 * Use the beginning of the huge page to store the
3319 		 * huge_bootmem_page struct (until gather_bootmem
3320 		 * puts them into the mem_map).
3321 		 */
3322 		if (!m)
3323 			return 0;
3324 		goto found;
3325 	}
3326 
3327 found:
3328 
3329 	/*
3330 	 * Only initialize the head struct page in memmap_init_reserved_pages,
3331 	 * rest of the struct pages will be initialized by the HugeTLB
3332 	 * subsystem itself.
3333 	 * The head struct page is used to get folio information by the HugeTLB
3334 	 * subsystem like zone id and node id.
3335 	 */
3336 	memblock_reserved_mark_noinit(virt_to_phys((void *)m + PAGE_SIZE),
3337 		huge_page_size(h) - PAGE_SIZE);
3338 	/* Put them into a private list first because mem_map is not up yet */
3339 	INIT_LIST_HEAD(&m->list);
3340 	list_add(&m->list, &huge_boot_pages);
3341 	m->hstate = h;
3342 	return 1;
3343 }
3344 
3345 /* Initialize [start_page:end_page_number] tail struct pages of a hugepage */
3346 static void __init hugetlb_folio_init_tail_vmemmap(struct folio *folio,
3347 					unsigned long start_page_number,
3348 					unsigned long end_page_number)
3349 {
3350 	enum zone_type zone = zone_idx(folio_zone(folio));
3351 	int nid = folio_nid(folio);
3352 	unsigned long head_pfn = folio_pfn(folio);
3353 	unsigned long pfn, end_pfn = head_pfn + end_page_number;
3354 	int ret;
3355 
3356 	for (pfn = head_pfn + start_page_number; pfn < end_pfn; pfn++) {
3357 		struct page *page = pfn_to_page(pfn);
3358 
3359 		__init_single_page(page, pfn, zone, nid);
3360 		prep_compound_tail((struct page *)folio, pfn - head_pfn);
3361 		ret = page_ref_freeze(page, 1);
3362 		VM_BUG_ON(!ret);
3363 	}
3364 }
3365 
3366 static void __init hugetlb_folio_init_vmemmap(struct folio *folio,
3367 					      struct hstate *h,
3368 					      unsigned long nr_pages)
3369 {
3370 	int ret;
3371 
3372 	/* Prepare folio head */
3373 	__folio_clear_reserved(folio);
3374 	__folio_set_head(folio);
3375 	ret = folio_ref_freeze(folio, 1);
3376 	VM_BUG_ON(!ret);
3377 	/* Initialize the necessary tail struct pages */
3378 	hugetlb_folio_init_tail_vmemmap(folio, 1, nr_pages);
3379 	prep_compound_head((struct page *)folio, huge_page_order(h));
3380 }
3381 
3382 static void __init prep_and_add_bootmem_folios(struct hstate *h,
3383 					struct list_head *folio_list)
3384 {
3385 	unsigned long flags;
3386 	struct folio *folio, *tmp_f;
3387 
3388 	/* Send list for bulk vmemmap optimization processing */
3389 	hugetlb_vmemmap_optimize_folios(h, folio_list);
3390 
3391 	/* Add all new pool pages to free lists in one lock cycle */
3392 	spin_lock_irqsave(&hugetlb_lock, flags);
3393 	list_for_each_entry_safe(folio, tmp_f, folio_list, lru) {
3394 		if (!folio_test_hugetlb_vmemmap_optimized(folio)) {
3395 			/*
3396 			 * If HVO fails, initialize all tail struct pages
3397 			 * We do not worry about potential long lock hold
3398 			 * time as this is early in boot and there should
3399 			 * be no contention.
3400 			 */
3401 			hugetlb_folio_init_tail_vmemmap(folio,
3402 					HUGETLB_VMEMMAP_RESERVE_PAGES,
3403 					pages_per_huge_page(h));
3404 		}
3405 		__prep_account_new_huge_page(h, folio_nid(folio));
3406 		enqueue_hugetlb_folio(h, folio);
3407 	}
3408 	spin_unlock_irqrestore(&hugetlb_lock, flags);
3409 }
3410 
3411 /*
3412  * Put bootmem huge pages into the standard lists after mem_map is up.
3413  * Note: This only applies to gigantic (order > MAX_ORDER) pages.
3414  */
3415 static void __init gather_bootmem_prealloc(void)
3416 {
3417 	LIST_HEAD(folio_list);
3418 	struct huge_bootmem_page *m;
3419 	struct hstate *h = NULL, *prev_h = NULL;
3420 
3421 	list_for_each_entry(m, &huge_boot_pages, list) {
3422 		struct page *page = virt_to_page(m);
3423 		struct folio *folio = (void *)page;
3424 
3425 		h = m->hstate;
3426 		/*
3427 		 * It is possible to have multiple huge page sizes (hstates)
3428 		 * in this list.  If so, process each size separately.
3429 		 */
3430 		if (h != prev_h && prev_h != NULL)
3431 			prep_and_add_bootmem_folios(prev_h, &folio_list);
3432 		prev_h = h;
3433 
3434 		VM_BUG_ON(!hstate_is_gigantic(h));
3435 		WARN_ON(folio_ref_count(folio) != 1);
3436 
3437 		hugetlb_folio_init_vmemmap(folio, h,
3438 					   HUGETLB_VMEMMAP_RESERVE_PAGES);
3439 		init_new_hugetlb_folio(h, folio);
3440 		list_add(&folio->lru, &folio_list);
3441 
3442 		/*
3443 		 * We need to restore the 'stolen' pages to totalram_pages
3444 		 * in order to fix confusing memory reports from free(1) and
3445 		 * other side-effects, like CommitLimit going negative.
3446 		 */
3447 		adjust_managed_page_count(page, pages_per_huge_page(h));
3448 		cond_resched();
3449 	}
3450 
3451 	prep_and_add_bootmem_folios(h, &folio_list);
3452 }
3453 
3454 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3455 {
3456 	unsigned long i;
3457 	char buf[32];
3458 
3459 	for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3460 		if (hstate_is_gigantic(h)) {
3461 			if (!alloc_bootmem_huge_page(h, nid))
3462 				break;
3463 		} else {
3464 			struct folio *folio;
3465 			gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3466 
3467 			folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid,
3468 					&node_states[N_MEMORY], NULL);
3469 			if (!folio)
3470 				break;
3471 			free_huge_folio(folio); /* free it into the hugepage allocator */
3472 		}
3473 		cond_resched();
3474 	}
3475 	if (i == h->max_huge_pages_node[nid])
3476 		return;
3477 
3478 	string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3479 	pr_warn("HugeTLB: allocating %u of page size %s failed node%d.  Only allocated %lu hugepages.\n",
3480 		h->max_huge_pages_node[nid], buf, nid, i);
3481 	h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3482 	h->max_huge_pages_node[nid] = i;
3483 }
3484 
3485 /*
3486  * NOTE: this routine is called in different contexts for gigantic and
3487  * non-gigantic pages.
3488  * - For gigantic pages, this is called early in the boot process and
3489  *   pages are allocated from memblock allocated or something similar.
3490  *   Gigantic pages are actually added to pools later with the routine
3491  *   gather_bootmem_prealloc.
3492  * - For non-gigantic pages, this is called later in the boot process after
3493  *   all of mm is up and functional.  Pages are allocated from buddy and
3494  *   then added to hugetlb pools.
3495  */
3496 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3497 {
3498 	unsigned long i;
3499 	struct folio *folio;
3500 	LIST_HEAD(folio_list);
3501 	nodemask_t *node_alloc_noretry;
3502 	bool node_specific_alloc = false;
3503 
3504 	/* skip gigantic hugepages allocation if hugetlb_cma enabled */
3505 	if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3506 		pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3507 		return;
3508 	}
3509 
3510 	/* do node specific alloc */
3511 	for_each_online_node(i) {
3512 		if (h->max_huge_pages_node[i] > 0) {
3513 			hugetlb_hstate_alloc_pages_onenode(h, i);
3514 			node_specific_alloc = true;
3515 		}
3516 	}
3517 
3518 	if (node_specific_alloc)
3519 		return;
3520 
3521 	/* below will do all node balanced alloc */
3522 	if (!hstate_is_gigantic(h)) {
3523 		/*
3524 		 * Bit mask controlling how hard we retry per-node allocations.
3525 		 * Ignore errors as lower level routines can deal with
3526 		 * node_alloc_noretry == NULL.  If this kmalloc fails at boot
3527 		 * time, we are likely in bigger trouble.
3528 		 */
3529 		node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
3530 						GFP_KERNEL);
3531 	} else {
3532 		/* allocations done at boot time */
3533 		node_alloc_noretry = NULL;
3534 	}
3535 
3536 	/* bit mask controlling how hard we retry per-node allocations */
3537 	if (node_alloc_noretry)
3538 		nodes_clear(*node_alloc_noretry);
3539 
3540 	for (i = 0; i < h->max_huge_pages; ++i) {
3541 		if (hstate_is_gigantic(h)) {
3542 			/*
3543 			 * gigantic pages not added to list as they are not
3544 			 * added to pools now.
3545 			 */
3546 			if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3547 				break;
3548 		} else {
3549 			folio = alloc_pool_huge_folio(h, &node_states[N_MEMORY],
3550 							node_alloc_noretry);
3551 			if (!folio)
3552 				break;
3553 			list_add(&folio->lru, &folio_list);
3554 		}
3555 		cond_resched();
3556 	}
3557 
3558 	/* list will be empty if hstate_is_gigantic */
3559 	prep_and_add_allocated_folios(h, &folio_list);
3560 
3561 	if (i < h->max_huge_pages) {
3562 		char buf[32];
3563 
3564 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3565 		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
3566 			h->max_huge_pages, buf, i);
3567 		h->max_huge_pages = i;
3568 	}
3569 	kfree(node_alloc_noretry);
3570 }
3571 
3572 static void __init hugetlb_init_hstates(void)
3573 {
3574 	struct hstate *h, *h2;
3575 
3576 	for_each_hstate(h) {
3577 		/* oversize hugepages were init'ed in early boot */
3578 		if (!hstate_is_gigantic(h))
3579 			hugetlb_hstate_alloc_pages(h);
3580 
3581 		/*
3582 		 * Set demote order for each hstate.  Note that
3583 		 * h->demote_order is initially 0.
3584 		 * - We can not demote gigantic pages if runtime freeing
3585 		 *   is not supported, so skip this.
3586 		 * - If CMA allocation is possible, we can not demote
3587 		 *   HUGETLB_PAGE_ORDER or smaller size pages.
3588 		 */
3589 		if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3590 			continue;
3591 		if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3592 			continue;
3593 		for_each_hstate(h2) {
3594 			if (h2 == h)
3595 				continue;
3596 			if (h2->order < h->order &&
3597 			    h2->order > h->demote_order)
3598 				h->demote_order = h2->order;
3599 		}
3600 	}
3601 }
3602 
3603 static void __init report_hugepages(void)
3604 {
3605 	struct hstate *h;
3606 
3607 	for_each_hstate(h) {
3608 		char buf[32];
3609 
3610 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3611 		pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
3612 			buf, h->free_huge_pages);
3613 		pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3614 			hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
3615 	}
3616 }
3617 
3618 #ifdef CONFIG_HIGHMEM
3619 static void try_to_free_low(struct hstate *h, unsigned long count,
3620 						nodemask_t *nodes_allowed)
3621 {
3622 	int i;
3623 	LIST_HEAD(page_list);
3624 
3625 	lockdep_assert_held(&hugetlb_lock);
3626 	if (hstate_is_gigantic(h))
3627 		return;
3628 
3629 	/*
3630 	 * Collect pages to be freed on a list, and free after dropping lock
3631 	 */
3632 	for_each_node_mask(i, *nodes_allowed) {
3633 		struct folio *folio, *next;
3634 		struct list_head *freel = &h->hugepage_freelists[i];
3635 		list_for_each_entry_safe(folio, next, freel, lru) {
3636 			if (count >= h->nr_huge_pages)
3637 				goto out;
3638 			if (folio_test_highmem(folio))
3639 				continue;
3640 			remove_hugetlb_folio(h, folio, false);
3641 			list_add(&folio->lru, &page_list);
3642 		}
3643 	}
3644 
3645 out:
3646 	spin_unlock_irq(&hugetlb_lock);
3647 	update_and_free_pages_bulk(h, &page_list);
3648 	spin_lock_irq(&hugetlb_lock);
3649 }
3650 #else
3651 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3652 						nodemask_t *nodes_allowed)
3653 {
3654 }
3655 #endif
3656 
3657 /*
3658  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
3659  * balanced by operating on them in a round-robin fashion.
3660  * Returns 1 if an adjustment was made.
3661  */
3662 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3663 				int delta)
3664 {
3665 	int nr_nodes, node;
3666 
3667 	lockdep_assert_held(&hugetlb_lock);
3668 	VM_BUG_ON(delta != -1 && delta != 1);
3669 
3670 	if (delta < 0) {
3671 		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
3672 			if (h->surplus_huge_pages_node[node])
3673 				goto found;
3674 		}
3675 	} else {
3676 		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3677 			if (h->surplus_huge_pages_node[node] <
3678 					h->nr_huge_pages_node[node])
3679 				goto found;
3680 		}
3681 	}
3682 	return 0;
3683 
3684 found:
3685 	h->surplus_huge_pages += delta;
3686 	h->surplus_huge_pages_node[node] += delta;
3687 	return 1;
3688 }
3689 
3690 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3691 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3692 			      nodemask_t *nodes_allowed)
3693 {
3694 	unsigned long min_count;
3695 	unsigned long allocated;
3696 	struct folio *folio;
3697 	LIST_HEAD(page_list);
3698 	NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3699 
3700 	/*
3701 	 * Bit mask controlling how hard we retry per-node allocations.
3702 	 * If we can not allocate the bit mask, do not attempt to allocate
3703 	 * the requested huge pages.
3704 	 */
3705 	if (node_alloc_noretry)
3706 		nodes_clear(*node_alloc_noretry);
3707 	else
3708 		return -ENOMEM;
3709 
3710 	/*
3711 	 * resize_lock mutex prevents concurrent adjustments to number of
3712 	 * pages in hstate via the proc/sysfs interfaces.
3713 	 */
3714 	mutex_lock(&h->resize_lock);
3715 	flush_free_hpage_work(h);
3716 	spin_lock_irq(&hugetlb_lock);
3717 
3718 	/*
3719 	 * Check for a node specific request.
3720 	 * Changing node specific huge page count may require a corresponding
3721 	 * change to the global count.  In any case, the passed node mask
3722 	 * (nodes_allowed) will restrict alloc/free to the specified node.
3723 	 */
3724 	if (nid != NUMA_NO_NODE) {
3725 		unsigned long old_count = count;
3726 
3727 		count += persistent_huge_pages(h) -
3728 			 (h->nr_huge_pages_node[nid] -
3729 			  h->surplus_huge_pages_node[nid]);
3730 		/*
3731 		 * User may have specified a large count value which caused the
3732 		 * above calculation to overflow.  In this case, they wanted
3733 		 * to allocate as many huge pages as possible.  Set count to
3734 		 * largest possible value to align with their intention.
3735 		 */
3736 		if (count < old_count)
3737 			count = ULONG_MAX;
3738 	}
3739 
3740 	/*
3741 	 * Gigantic pages runtime allocation depend on the capability for large
3742 	 * page range allocation.
3743 	 * If the system does not provide this feature, return an error when
3744 	 * the user tries to allocate gigantic pages but let the user free the
3745 	 * boottime allocated gigantic pages.
3746 	 */
3747 	if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3748 		if (count > persistent_huge_pages(h)) {
3749 			spin_unlock_irq(&hugetlb_lock);
3750 			mutex_unlock(&h->resize_lock);
3751 			NODEMASK_FREE(node_alloc_noretry);
3752 			return -EINVAL;
3753 		}
3754 		/* Fall through to decrease pool */
3755 	}
3756 
3757 	/*
3758 	 * Increase the pool size
3759 	 * First take pages out of surplus state.  Then make up the
3760 	 * remaining difference by allocating fresh huge pages.
3761 	 *
3762 	 * We might race with alloc_surplus_hugetlb_folio() here and be unable
3763 	 * to convert a surplus huge page to a normal huge page. That is
3764 	 * not critical, though, it just means the overall size of the
3765 	 * pool might be one hugepage larger than it needs to be, but
3766 	 * within all the constraints specified by the sysctls.
3767 	 */
3768 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3769 		if (!adjust_pool_surplus(h, nodes_allowed, -1))
3770 			break;
3771 	}
3772 
3773 	allocated = 0;
3774 	while (count > (persistent_huge_pages(h) + allocated)) {
3775 		/*
3776 		 * If this allocation races such that we no longer need the
3777 		 * page, free_huge_folio will handle it by freeing the page
3778 		 * and reducing the surplus.
3779 		 */
3780 		spin_unlock_irq(&hugetlb_lock);
3781 
3782 		/* yield cpu to avoid soft lockup */
3783 		cond_resched();
3784 
3785 		folio = alloc_pool_huge_folio(h, nodes_allowed,
3786 						node_alloc_noretry);
3787 		if (!folio) {
3788 			prep_and_add_allocated_folios(h, &page_list);
3789 			spin_lock_irq(&hugetlb_lock);
3790 			goto out;
3791 		}
3792 
3793 		list_add(&folio->lru, &page_list);
3794 		allocated++;
3795 
3796 		/* Bail for signals. Probably ctrl-c from user */
3797 		if (signal_pending(current)) {
3798 			prep_and_add_allocated_folios(h, &page_list);
3799 			spin_lock_irq(&hugetlb_lock);
3800 			goto out;
3801 		}
3802 
3803 		spin_lock_irq(&hugetlb_lock);
3804 	}
3805 
3806 	/* Add allocated pages to the pool */
3807 	if (!list_empty(&page_list)) {
3808 		spin_unlock_irq(&hugetlb_lock);
3809 		prep_and_add_allocated_folios(h, &page_list);
3810 		spin_lock_irq(&hugetlb_lock);
3811 	}
3812 
3813 	/*
3814 	 * Decrease the pool size
3815 	 * First return free pages to the buddy allocator (being careful
3816 	 * to keep enough around to satisfy reservations).  Then place
3817 	 * pages into surplus state as needed so the pool will shrink
3818 	 * to the desired size as pages become free.
3819 	 *
3820 	 * By placing pages into the surplus state independent of the
3821 	 * overcommit value, we are allowing the surplus pool size to
3822 	 * exceed overcommit. There are few sane options here. Since
3823 	 * alloc_surplus_hugetlb_folio() is checking the global counter,
3824 	 * though, we'll note that we're not allowed to exceed surplus
3825 	 * and won't grow the pool anywhere else. Not until one of the
3826 	 * sysctls are changed, or the surplus pages go out of use.
3827 	 */
3828 	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3829 	min_count = max(count, min_count);
3830 	try_to_free_low(h, min_count, nodes_allowed);
3831 
3832 	/*
3833 	 * Collect pages to be removed on list without dropping lock
3834 	 */
3835 	while (min_count < persistent_huge_pages(h)) {
3836 		folio = remove_pool_hugetlb_folio(h, nodes_allowed, 0);
3837 		if (!folio)
3838 			break;
3839 
3840 		list_add(&folio->lru, &page_list);
3841 	}
3842 	/* free the pages after dropping lock */
3843 	spin_unlock_irq(&hugetlb_lock);
3844 	update_and_free_pages_bulk(h, &page_list);
3845 	flush_free_hpage_work(h);
3846 	spin_lock_irq(&hugetlb_lock);
3847 
3848 	while (count < persistent_huge_pages(h)) {
3849 		if (!adjust_pool_surplus(h, nodes_allowed, 1))
3850 			break;
3851 	}
3852 out:
3853 	h->max_huge_pages = persistent_huge_pages(h);
3854 	spin_unlock_irq(&hugetlb_lock);
3855 	mutex_unlock(&h->resize_lock);
3856 
3857 	NODEMASK_FREE(node_alloc_noretry);
3858 
3859 	return 0;
3860 }
3861 
3862 static int demote_free_hugetlb_folio(struct hstate *h, struct folio *folio)
3863 {
3864 	int i, nid = folio_nid(folio);
3865 	struct hstate *target_hstate;
3866 	struct page *subpage;
3867 	struct folio *inner_folio;
3868 	int rc = 0;
3869 
3870 	target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3871 
3872 	remove_hugetlb_folio_for_demote(h, folio, false);
3873 	spin_unlock_irq(&hugetlb_lock);
3874 
3875 	/*
3876 	 * If vmemmap already existed for folio, the remove routine above would
3877 	 * have cleared the hugetlb folio flag.  Hence the folio is technically
3878 	 * no longer a hugetlb folio.  hugetlb_vmemmap_restore_folio can only be
3879 	 * passed hugetlb folios and will BUG otherwise.
3880 	 */
3881 	if (folio_test_hugetlb(folio)) {
3882 		rc = hugetlb_vmemmap_restore_folio(h, folio);
3883 		if (rc) {
3884 			/* Allocation of vmemmmap failed, we can not demote folio */
3885 			spin_lock_irq(&hugetlb_lock);
3886 			folio_ref_unfreeze(folio, 1);
3887 			add_hugetlb_folio(h, folio, false);
3888 			return rc;
3889 		}
3890 	}
3891 
3892 	/*
3893 	 * Use destroy_compound_hugetlb_folio_for_demote for all huge page
3894 	 * sizes as it will not ref count folios.
3895 	 */
3896 	destroy_compound_hugetlb_folio_for_demote(folio, huge_page_order(h));
3897 
3898 	/*
3899 	 * Taking target hstate mutex synchronizes with set_max_huge_pages.
3900 	 * Without the mutex, pages added to target hstate could be marked
3901 	 * as surplus.
3902 	 *
3903 	 * Note that we already hold h->resize_lock.  To prevent deadlock,
3904 	 * use the convention of always taking larger size hstate mutex first.
3905 	 */
3906 	mutex_lock(&target_hstate->resize_lock);
3907 	for (i = 0; i < pages_per_huge_page(h);
3908 				i += pages_per_huge_page(target_hstate)) {
3909 		subpage = folio_page(folio, i);
3910 		inner_folio = page_folio(subpage);
3911 		if (hstate_is_gigantic(target_hstate))
3912 			prep_compound_gigantic_folio_for_demote(inner_folio,
3913 							target_hstate->order);
3914 		else
3915 			prep_compound_page(subpage, target_hstate->order);
3916 		folio_change_private(inner_folio, NULL);
3917 		prep_new_hugetlb_folio(target_hstate, inner_folio, nid);
3918 		free_huge_folio(inner_folio);
3919 	}
3920 	mutex_unlock(&target_hstate->resize_lock);
3921 
3922 	spin_lock_irq(&hugetlb_lock);
3923 
3924 	/*
3925 	 * Not absolutely necessary, but for consistency update max_huge_pages
3926 	 * based on pool changes for the demoted page.
3927 	 */
3928 	h->max_huge_pages--;
3929 	target_hstate->max_huge_pages +=
3930 		pages_per_huge_page(h) / pages_per_huge_page(target_hstate);
3931 
3932 	return rc;
3933 }
3934 
3935 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
3936 	__must_hold(&hugetlb_lock)
3937 {
3938 	int nr_nodes, node;
3939 	struct folio *folio;
3940 
3941 	lockdep_assert_held(&hugetlb_lock);
3942 
3943 	/* We should never get here if no demote order */
3944 	if (!h->demote_order) {
3945 		pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3946 		return -EINVAL;		/* internal error */
3947 	}
3948 
3949 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3950 		list_for_each_entry(folio, &h->hugepage_freelists[node], lru) {
3951 			if (folio_test_hwpoison(folio))
3952 				continue;
3953 			return demote_free_hugetlb_folio(h, folio);
3954 		}
3955 	}
3956 
3957 	/*
3958 	 * Only way to get here is if all pages on free lists are poisoned.
3959 	 * Return -EBUSY so that caller will not retry.
3960 	 */
3961 	return -EBUSY;
3962 }
3963 
3964 #define HSTATE_ATTR_RO(_name) \
3965 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3966 
3967 #define HSTATE_ATTR_WO(_name) \
3968 	static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
3969 
3970 #define HSTATE_ATTR(_name) \
3971 	static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3972 
3973 static struct kobject *hugepages_kobj;
3974 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3975 
3976 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3977 
3978 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3979 {
3980 	int i;
3981 
3982 	for (i = 0; i < HUGE_MAX_HSTATE; i++)
3983 		if (hstate_kobjs[i] == kobj) {
3984 			if (nidp)
3985 				*nidp = NUMA_NO_NODE;
3986 			return &hstates[i];
3987 		}
3988 
3989 	return kobj_to_node_hstate(kobj, nidp);
3990 }
3991 
3992 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3993 					struct kobj_attribute *attr, char *buf)
3994 {
3995 	struct hstate *h;
3996 	unsigned long nr_huge_pages;
3997 	int nid;
3998 
3999 	h = kobj_to_hstate(kobj, &nid);
4000 	if (nid == NUMA_NO_NODE)
4001 		nr_huge_pages = h->nr_huge_pages;
4002 	else
4003 		nr_huge_pages = h->nr_huge_pages_node[nid];
4004 
4005 	return sysfs_emit(buf, "%lu\n", nr_huge_pages);
4006 }
4007 
4008 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
4009 					   struct hstate *h, int nid,
4010 					   unsigned long count, size_t len)
4011 {
4012 	int err;
4013 	nodemask_t nodes_allowed, *n_mask;
4014 
4015 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
4016 		return -EINVAL;
4017 
4018 	if (nid == NUMA_NO_NODE) {
4019 		/*
4020 		 * global hstate attribute
4021 		 */
4022 		if (!(obey_mempolicy &&
4023 				init_nodemask_of_mempolicy(&nodes_allowed)))
4024 			n_mask = &node_states[N_MEMORY];
4025 		else
4026 			n_mask = &nodes_allowed;
4027 	} else {
4028 		/*
4029 		 * Node specific request.  count adjustment happens in
4030 		 * set_max_huge_pages() after acquiring hugetlb_lock.
4031 		 */
4032 		init_nodemask_of_node(&nodes_allowed, nid);
4033 		n_mask = &nodes_allowed;
4034 	}
4035 
4036 	err = set_max_huge_pages(h, count, nid, n_mask);
4037 
4038 	return err ? err : len;
4039 }
4040 
4041 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
4042 					 struct kobject *kobj, const char *buf,
4043 					 size_t len)
4044 {
4045 	struct hstate *h;
4046 	unsigned long count;
4047 	int nid;
4048 	int err;
4049 
4050 	err = kstrtoul(buf, 10, &count);
4051 	if (err)
4052 		return err;
4053 
4054 	h = kobj_to_hstate(kobj, &nid);
4055 	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
4056 }
4057 
4058 static ssize_t nr_hugepages_show(struct kobject *kobj,
4059 				       struct kobj_attribute *attr, char *buf)
4060 {
4061 	return nr_hugepages_show_common(kobj, attr, buf);
4062 }
4063 
4064 static ssize_t nr_hugepages_store(struct kobject *kobj,
4065 	       struct kobj_attribute *attr, const char *buf, size_t len)
4066 {
4067 	return nr_hugepages_store_common(false, kobj, buf, len);
4068 }
4069 HSTATE_ATTR(nr_hugepages);
4070 
4071 #ifdef CONFIG_NUMA
4072 
4073 /*
4074  * hstate attribute for optionally mempolicy-based constraint on persistent
4075  * huge page alloc/free.
4076  */
4077 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
4078 					   struct kobj_attribute *attr,
4079 					   char *buf)
4080 {
4081 	return nr_hugepages_show_common(kobj, attr, buf);
4082 }
4083 
4084 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
4085 	       struct kobj_attribute *attr, const char *buf, size_t len)
4086 {
4087 	return nr_hugepages_store_common(true, kobj, buf, len);
4088 }
4089 HSTATE_ATTR(nr_hugepages_mempolicy);
4090 #endif
4091 
4092 
4093 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
4094 					struct kobj_attribute *attr, char *buf)
4095 {
4096 	struct hstate *h = kobj_to_hstate(kobj, NULL);
4097 	return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
4098 }
4099 
4100 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
4101 		struct kobj_attribute *attr, const char *buf, size_t count)
4102 {
4103 	int err;
4104 	unsigned long input;
4105 	struct hstate *h = kobj_to_hstate(kobj, NULL);
4106 
4107 	if (hstate_is_gigantic(h))
4108 		return -EINVAL;
4109 
4110 	err = kstrtoul(buf, 10, &input);
4111 	if (err)
4112 		return err;
4113 
4114 	spin_lock_irq(&hugetlb_lock);
4115 	h->nr_overcommit_huge_pages = input;
4116 	spin_unlock_irq(&hugetlb_lock);
4117 
4118 	return count;
4119 }
4120 HSTATE_ATTR(nr_overcommit_hugepages);
4121 
4122 static ssize_t free_hugepages_show(struct kobject *kobj,
4123 					struct kobj_attribute *attr, char *buf)
4124 {
4125 	struct hstate *h;
4126 	unsigned long free_huge_pages;
4127 	int nid;
4128 
4129 	h = kobj_to_hstate(kobj, &nid);
4130 	if (nid == NUMA_NO_NODE)
4131 		free_huge_pages = h->free_huge_pages;
4132 	else
4133 		free_huge_pages = h->free_huge_pages_node[nid];
4134 
4135 	return sysfs_emit(buf, "%lu\n", free_huge_pages);
4136 }
4137 HSTATE_ATTR_RO(free_hugepages);
4138 
4139 static ssize_t resv_hugepages_show(struct kobject *kobj,
4140 					struct kobj_attribute *attr, char *buf)
4141 {
4142 	struct hstate *h = kobj_to_hstate(kobj, NULL);
4143 	return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
4144 }
4145 HSTATE_ATTR_RO(resv_hugepages);
4146 
4147 static ssize_t surplus_hugepages_show(struct kobject *kobj,
4148 					struct kobj_attribute *attr, char *buf)
4149 {
4150 	struct hstate *h;
4151 	unsigned long surplus_huge_pages;
4152 	int nid;
4153 
4154 	h = kobj_to_hstate(kobj, &nid);
4155 	if (nid == NUMA_NO_NODE)
4156 		surplus_huge_pages = h->surplus_huge_pages;
4157 	else
4158 		surplus_huge_pages = h->surplus_huge_pages_node[nid];
4159 
4160 	return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
4161 }
4162 HSTATE_ATTR_RO(surplus_hugepages);
4163 
4164 static ssize_t demote_store(struct kobject *kobj,
4165 	       struct kobj_attribute *attr, const char *buf, size_t len)
4166 {
4167 	unsigned long nr_demote;
4168 	unsigned long nr_available;
4169 	nodemask_t nodes_allowed, *n_mask;
4170 	struct hstate *h;
4171 	int err;
4172 	int nid;
4173 
4174 	err = kstrtoul(buf, 10, &nr_demote);
4175 	if (err)
4176 		return err;
4177 	h = kobj_to_hstate(kobj, &nid);
4178 
4179 	if (nid != NUMA_NO_NODE) {
4180 		init_nodemask_of_node(&nodes_allowed, nid);
4181 		n_mask = &nodes_allowed;
4182 	} else {
4183 		n_mask = &node_states[N_MEMORY];
4184 	}
4185 
4186 	/* Synchronize with other sysfs operations modifying huge pages */
4187 	mutex_lock(&h->resize_lock);
4188 	spin_lock_irq(&hugetlb_lock);
4189 
4190 	while (nr_demote) {
4191 		/*
4192 		 * Check for available pages to demote each time thorough the
4193 		 * loop as demote_pool_huge_page will drop hugetlb_lock.
4194 		 */
4195 		if (nid != NUMA_NO_NODE)
4196 			nr_available = h->free_huge_pages_node[nid];
4197 		else
4198 			nr_available = h->free_huge_pages;
4199 		nr_available -= h->resv_huge_pages;
4200 		if (!nr_available)
4201 			break;
4202 
4203 		err = demote_pool_huge_page(h, n_mask);
4204 		if (err)
4205 			break;
4206 
4207 		nr_demote--;
4208 	}
4209 
4210 	spin_unlock_irq(&hugetlb_lock);
4211 	mutex_unlock(&h->resize_lock);
4212 
4213 	if (err)
4214 		return err;
4215 	return len;
4216 }
4217 HSTATE_ATTR_WO(demote);
4218 
4219 static ssize_t demote_size_show(struct kobject *kobj,
4220 					struct kobj_attribute *attr, char *buf)
4221 {
4222 	struct hstate *h = kobj_to_hstate(kobj, NULL);
4223 	unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
4224 
4225 	return sysfs_emit(buf, "%lukB\n", demote_size);
4226 }
4227 
4228 static ssize_t demote_size_store(struct kobject *kobj,
4229 					struct kobj_attribute *attr,
4230 					const char *buf, size_t count)
4231 {
4232 	struct hstate *h, *demote_hstate;
4233 	unsigned long demote_size;
4234 	unsigned int demote_order;
4235 
4236 	demote_size = (unsigned long)memparse(buf, NULL);
4237 
4238 	demote_hstate = size_to_hstate(demote_size);
4239 	if (!demote_hstate)
4240 		return -EINVAL;
4241 	demote_order = demote_hstate->order;
4242 	if (demote_order < HUGETLB_PAGE_ORDER)
4243 		return -EINVAL;
4244 
4245 	/* demote order must be smaller than hstate order */
4246 	h = kobj_to_hstate(kobj, NULL);
4247 	if (demote_order >= h->order)
4248 		return -EINVAL;
4249 
4250 	/* resize_lock synchronizes access to demote size and writes */
4251 	mutex_lock(&h->resize_lock);
4252 	h->demote_order = demote_order;
4253 	mutex_unlock(&h->resize_lock);
4254 
4255 	return count;
4256 }
4257 HSTATE_ATTR(demote_size);
4258 
4259 static struct attribute *hstate_attrs[] = {
4260 	&nr_hugepages_attr.attr,
4261 	&nr_overcommit_hugepages_attr.attr,
4262 	&free_hugepages_attr.attr,
4263 	&resv_hugepages_attr.attr,
4264 	&surplus_hugepages_attr.attr,
4265 #ifdef CONFIG_NUMA
4266 	&nr_hugepages_mempolicy_attr.attr,
4267 #endif
4268 	NULL,
4269 };
4270 
4271 static const struct attribute_group hstate_attr_group = {
4272 	.attrs = hstate_attrs,
4273 };
4274 
4275 static struct attribute *hstate_demote_attrs[] = {
4276 	&demote_size_attr.attr,
4277 	&demote_attr.attr,
4278 	NULL,
4279 };
4280 
4281 static const struct attribute_group hstate_demote_attr_group = {
4282 	.attrs = hstate_demote_attrs,
4283 };
4284 
4285 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
4286 				    struct kobject **hstate_kobjs,
4287 				    const struct attribute_group *hstate_attr_group)
4288 {
4289 	int retval;
4290 	int hi = hstate_index(h);
4291 
4292 	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
4293 	if (!hstate_kobjs[hi])
4294 		return -ENOMEM;
4295 
4296 	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
4297 	if (retval) {
4298 		kobject_put(hstate_kobjs[hi]);
4299 		hstate_kobjs[hi] = NULL;
4300 		return retval;
4301 	}
4302 
4303 	if (h->demote_order) {
4304 		retval = sysfs_create_group(hstate_kobjs[hi],
4305 					    &hstate_demote_attr_group);
4306 		if (retval) {
4307 			pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
4308 			sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
4309 			kobject_put(hstate_kobjs[hi]);
4310 			hstate_kobjs[hi] = NULL;
4311 			return retval;
4312 		}
4313 	}
4314 
4315 	return 0;
4316 }
4317 
4318 #ifdef CONFIG_NUMA
4319 static bool hugetlb_sysfs_initialized __ro_after_init;
4320 
4321 /*
4322  * node_hstate/s - associate per node hstate attributes, via their kobjects,
4323  * with node devices in node_devices[] using a parallel array.  The array
4324  * index of a node device or _hstate == node id.
4325  * This is here to avoid any static dependency of the node device driver, in
4326  * the base kernel, on the hugetlb module.
4327  */
4328 struct node_hstate {
4329 	struct kobject		*hugepages_kobj;
4330 	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
4331 };
4332 static struct node_hstate node_hstates[MAX_NUMNODES];
4333 
4334 /*
4335  * A subset of global hstate attributes for node devices
4336  */
4337 static struct attribute *per_node_hstate_attrs[] = {
4338 	&nr_hugepages_attr.attr,
4339 	&free_hugepages_attr.attr,
4340 	&surplus_hugepages_attr.attr,
4341 	NULL,
4342 };
4343 
4344 static const struct attribute_group per_node_hstate_attr_group = {
4345 	.attrs = per_node_hstate_attrs,
4346 };
4347 
4348 /*
4349  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
4350  * Returns node id via non-NULL nidp.
4351  */
4352 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4353 {
4354 	int nid;
4355 
4356 	for (nid = 0; nid < nr_node_ids; nid++) {
4357 		struct node_hstate *nhs = &node_hstates[nid];
4358 		int i;
4359 		for (i = 0; i < HUGE_MAX_HSTATE; i++)
4360 			if (nhs->hstate_kobjs[i] == kobj) {
4361 				if (nidp)
4362 					*nidp = nid;
4363 				return &hstates[i];
4364 			}
4365 	}
4366 
4367 	BUG();
4368 	return NULL;
4369 }
4370 
4371 /*
4372  * Unregister hstate attributes from a single node device.
4373  * No-op if no hstate attributes attached.
4374  */
4375 void hugetlb_unregister_node(struct node *node)
4376 {
4377 	struct hstate *h;
4378 	struct node_hstate *nhs = &node_hstates[node->dev.id];
4379 
4380 	if (!nhs->hugepages_kobj)
4381 		return;		/* no hstate attributes */
4382 
4383 	for_each_hstate(h) {
4384 		int idx = hstate_index(h);
4385 		struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
4386 
4387 		if (!hstate_kobj)
4388 			continue;
4389 		if (h->demote_order)
4390 			sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
4391 		sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
4392 		kobject_put(hstate_kobj);
4393 		nhs->hstate_kobjs[idx] = NULL;
4394 	}
4395 
4396 	kobject_put(nhs->hugepages_kobj);
4397 	nhs->hugepages_kobj = NULL;
4398 }
4399 
4400 
4401 /*
4402  * Register hstate attributes for a single node device.
4403  * No-op if attributes already registered.
4404  */
4405 void hugetlb_register_node(struct node *node)
4406 {
4407 	struct hstate *h;
4408 	struct node_hstate *nhs = &node_hstates[node->dev.id];
4409 	int err;
4410 
4411 	if (!hugetlb_sysfs_initialized)
4412 		return;
4413 
4414 	if (nhs->hugepages_kobj)
4415 		return;		/* already allocated */
4416 
4417 	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
4418 							&node->dev.kobj);
4419 	if (!nhs->hugepages_kobj)
4420 		return;
4421 
4422 	for_each_hstate(h) {
4423 		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
4424 						nhs->hstate_kobjs,
4425 						&per_node_hstate_attr_group);
4426 		if (err) {
4427 			pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
4428 				h->name, node->dev.id);
4429 			hugetlb_unregister_node(node);
4430 			break;
4431 		}
4432 	}
4433 }
4434 
4435 /*
4436  * hugetlb init time:  register hstate attributes for all registered node
4437  * devices of nodes that have memory.  All on-line nodes should have
4438  * registered their associated device by this time.
4439  */
4440 static void __init hugetlb_register_all_nodes(void)
4441 {
4442 	int nid;
4443 
4444 	for_each_online_node(nid)
4445 		hugetlb_register_node(node_devices[nid]);
4446 }
4447 #else	/* !CONFIG_NUMA */
4448 
4449 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4450 {
4451 	BUG();
4452 	if (nidp)
4453 		*nidp = -1;
4454 	return NULL;
4455 }
4456 
4457 static void hugetlb_register_all_nodes(void) { }
4458 
4459 #endif
4460 
4461 #ifdef CONFIG_CMA
4462 static void __init hugetlb_cma_check(void);
4463 #else
4464 static inline __init void hugetlb_cma_check(void)
4465 {
4466 }
4467 #endif
4468 
4469 static void __init hugetlb_sysfs_init(void)
4470 {
4471 	struct hstate *h;
4472 	int err;
4473 
4474 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
4475 	if (!hugepages_kobj)
4476 		return;
4477 
4478 	for_each_hstate(h) {
4479 		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
4480 					 hstate_kobjs, &hstate_attr_group);
4481 		if (err)
4482 			pr_err("HugeTLB: Unable to add hstate %s", h->name);
4483 	}
4484 
4485 #ifdef CONFIG_NUMA
4486 	hugetlb_sysfs_initialized = true;
4487 #endif
4488 	hugetlb_register_all_nodes();
4489 }
4490 
4491 #ifdef CONFIG_SYSCTL
4492 static void hugetlb_sysctl_init(void);
4493 #else
4494 static inline void hugetlb_sysctl_init(void) { }
4495 #endif
4496 
4497 static int __init hugetlb_init(void)
4498 {
4499 	int i;
4500 
4501 	BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4502 			__NR_HPAGEFLAGS);
4503 
4504 	if (!hugepages_supported()) {
4505 		if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4506 			pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4507 		return 0;
4508 	}
4509 
4510 	/*
4511 	 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
4512 	 * architectures depend on setup being done here.
4513 	 */
4514 	hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4515 	if (!parsed_default_hugepagesz) {
4516 		/*
4517 		 * If we did not parse a default huge page size, set
4518 		 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4519 		 * number of huge pages for this default size was implicitly
4520 		 * specified, set that here as well.
4521 		 * Note that the implicit setting will overwrite an explicit
4522 		 * setting.  A warning will be printed in this case.
4523 		 */
4524 		default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4525 		if (default_hstate_max_huge_pages) {
4526 			if (default_hstate.max_huge_pages) {
4527 				char buf[32];
4528 
4529 				string_get_size(huge_page_size(&default_hstate),
4530 					1, STRING_UNITS_2, buf, 32);
4531 				pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4532 					default_hstate.max_huge_pages, buf);
4533 				pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4534 					default_hstate_max_huge_pages);
4535 			}
4536 			default_hstate.max_huge_pages =
4537 				default_hstate_max_huge_pages;
4538 
4539 			for_each_online_node(i)
4540 				default_hstate.max_huge_pages_node[i] =
4541 					default_hugepages_in_node[i];
4542 		}
4543 	}
4544 
4545 	hugetlb_cma_check();
4546 	hugetlb_init_hstates();
4547 	gather_bootmem_prealloc();
4548 	report_hugepages();
4549 
4550 	hugetlb_sysfs_init();
4551 	hugetlb_cgroup_file_init();
4552 	hugetlb_sysctl_init();
4553 
4554 #ifdef CONFIG_SMP
4555 	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4556 #else
4557 	num_fault_mutexes = 1;
4558 #endif
4559 	hugetlb_fault_mutex_table =
4560 		kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4561 			      GFP_KERNEL);
4562 	BUG_ON(!hugetlb_fault_mutex_table);
4563 
4564 	for (i = 0; i < num_fault_mutexes; i++)
4565 		mutex_init(&hugetlb_fault_mutex_table[i]);
4566 	return 0;
4567 }
4568 subsys_initcall(hugetlb_init);
4569 
4570 /* Overwritten by architectures with more huge page sizes */
4571 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4572 {
4573 	return size == HPAGE_SIZE;
4574 }
4575 
4576 void __init hugetlb_add_hstate(unsigned int order)
4577 {
4578 	struct hstate *h;
4579 	unsigned long i;
4580 
4581 	if (size_to_hstate(PAGE_SIZE << order)) {
4582 		return;
4583 	}
4584 	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4585 	BUG_ON(order < order_base_2(__NR_USED_SUBPAGE));
4586 	h = &hstates[hugetlb_max_hstate++];
4587 	mutex_init(&h->resize_lock);
4588 	h->order = order;
4589 	h->mask = ~(huge_page_size(h) - 1);
4590 	for (i = 0; i < MAX_NUMNODES; ++i)
4591 		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4592 	INIT_LIST_HEAD(&h->hugepage_activelist);
4593 	h->next_nid_to_alloc = first_memory_node;
4594 	h->next_nid_to_free = first_memory_node;
4595 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4596 					huge_page_size(h)/SZ_1K);
4597 
4598 	parsed_hstate = h;
4599 }
4600 
4601 bool __init __weak hugetlb_node_alloc_supported(void)
4602 {
4603 	return true;
4604 }
4605 
4606 static void __init hugepages_clear_pages_in_node(void)
4607 {
4608 	if (!hugetlb_max_hstate) {
4609 		default_hstate_max_huge_pages = 0;
4610 		memset(default_hugepages_in_node, 0,
4611 			sizeof(default_hugepages_in_node));
4612 	} else {
4613 		parsed_hstate->max_huge_pages = 0;
4614 		memset(parsed_hstate->max_huge_pages_node, 0,
4615 			sizeof(parsed_hstate->max_huge_pages_node));
4616 	}
4617 }
4618 
4619 /*
4620  * hugepages command line processing
4621  * hugepages normally follows a valid hugepagsz or default_hugepagsz
4622  * specification.  If not, ignore the hugepages value.  hugepages can also
4623  * be the first huge page command line  option in which case it implicitly
4624  * specifies the number of huge pages for the default size.
4625  */
4626 static int __init hugepages_setup(char *s)
4627 {
4628 	unsigned long *mhp;
4629 	static unsigned long *last_mhp;
4630 	int node = NUMA_NO_NODE;
4631 	int count;
4632 	unsigned long tmp;
4633 	char *p = s;
4634 
4635 	if (!parsed_valid_hugepagesz) {
4636 		pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4637 		parsed_valid_hugepagesz = true;
4638 		return 1;
4639 	}
4640 
4641 	/*
4642 	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4643 	 * yet, so this hugepages= parameter goes to the "default hstate".
4644 	 * Otherwise, it goes with the previously parsed hugepagesz or
4645 	 * default_hugepagesz.
4646 	 */
4647 	else if (!hugetlb_max_hstate)
4648 		mhp = &default_hstate_max_huge_pages;
4649 	else
4650 		mhp = &parsed_hstate->max_huge_pages;
4651 
4652 	if (mhp == last_mhp) {
4653 		pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4654 		return 1;
4655 	}
4656 
4657 	while (*p) {
4658 		count = 0;
4659 		if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4660 			goto invalid;
4661 		/* Parameter is node format */
4662 		if (p[count] == ':') {
4663 			if (!hugetlb_node_alloc_supported()) {
4664 				pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4665 				return 1;
4666 			}
4667 			if (tmp >= MAX_NUMNODES || !node_online(tmp))
4668 				goto invalid;
4669 			node = array_index_nospec(tmp, MAX_NUMNODES);
4670 			p += count + 1;
4671 			/* Parse hugepages */
4672 			if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4673 				goto invalid;
4674 			if (!hugetlb_max_hstate)
4675 				default_hugepages_in_node[node] = tmp;
4676 			else
4677 				parsed_hstate->max_huge_pages_node[node] = tmp;
4678 			*mhp += tmp;
4679 			/* Go to parse next node*/
4680 			if (p[count] == ',')
4681 				p += count + 1;
4682 			else
4683 				break;
4684 		} else {
4685 			if (p != s)
4686 				goto invalid;
4687 			*mhp = tmp;
4688 			break;
4689 		}
4690 	}
4691 
4692 	/*
4693 	 * Global state is always initialized later in hugetlb_init.
4694 	 * But we need to allocate gigantic hstates here early to still
4695 	 * use the bootmem allocator.
4696 	 */
4697 	if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4698 		hugetlb_hstate_alloc_pages(parsed_hstate);
4699 
4700 	last_mhp = mhp;
4701 
4702 	return 1;
4703 
4704 invalid:
4705 	pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4706 	hugepages_clear_pages_in_node();
4707 	return 1;
4708 }
4709 __setup("hugepages=", hugepages_setup);
4710 
4711 /*
4712  * hugepagesz command line processing
4713  * A specific huge page size can only be specified once with hugepagesz.
4714  * hugepagesz is followed by hugepages on the command line.  The global
4715  * variable 'parsed_valid_hugepagesz' is used to determine if prior
4716  * hugepagesz argument was valid.
4717  */
4718 static int __init hugepagesz_setup(char *s)
4719 {
4720 	unsigned long size;
4721 	struct hstate *h;
4722 
4723 	parsed_valid_hugepagesz = false;
4724 	size = (unsigned long)memparse(s, NULL);
4725 
4726 	if (!arch_hugetlb_valid_size(size)) {
4727 		pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4728 		return 1;
4729 	}
4730 
4731 	h = size_to_hstate(size);
4732 	if (h) {
4733 		/*
4734 		 * hstate for this size already exists.  This is normally
4735 		 * an error, but is allowed if the existing hstate is the
4736 		 * default hstate.  More specifically, it is only allowed if
4737 		 * the number of huge pages for the default hstate was not
4738 		 * previously specified.
4739 		 */
4740 		if (!parsed_default_hugepagesz ||  h != &default_hstate ||
4741 		    default_hstate.max_huge_pages) {
4742 			pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4743 			return 1;
4744 		}
4745 
4746 		/*
4747 		 * No need to call hugetlb_add_hstate() as hstate already
4748 		 * exists.  But, do set parsed_hstate so that a following
4749 		 * hugepages= parameter will be applied to this hstate.
4750 		 */
4751 		parsed_hstate = h;
4752 		parsed_valid_hugepagesz = true;
4753 		return 1;
4754 	}
4755 
4756 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4757 	parsed_valid_hugepagesz = true;
4758 	return 1;
4759 }
4760 __setup("hugepagesz=", hugepagesz_setup);
4761 
4762 /*
4763  * default_hugepagesz command line input
4764  * Only one instance of default_hugepagesz allowed on command line.
4765  */
4766 static int __init default_hugepagesz_setup(char *s)
4767 {
4768 	unsigned long size;
4769 	int i;
4770 
4771 	parsed_valid_hugepagesz = false;
4772 	if (parsed_default_hugepagesz) {
4773 		pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4774 		return 1;
4775 	}
4776 
4777 	size = (unsigned long)memparse(s, NULL);
4778 
4779 	if (!arch_hugetlb_valid_size(size)) {
4780 		pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4781 		return 1;
4782 	}
4783 
4784 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4785 	parsed_valid_hugepagesz = true;
4786 	parsed_default_hugepagesz = true;
4787 	default_hstate_idx = hstate_index(size_to_hstate(size));
4788 
4789 	/*
4790 	 * The number of default huge pages (for this size) could have been
4791 	 * specified as the first hugetlb parameter: hugepages=X.  If so,
4792 	 * then default_hstate_max_huge_pages is set.  If the default huge
4793 	 * page size is gigantic (> MAX_ORDER), then the pages must be
4794 	 * allocated here from bootmem allocator.
4795 	 */
4796 	if (default_hstate_max_huge_pages) {
4797 		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4798 		for_each_online_node(i)
4799 			default_hstate.max_huge_pages_node[i] =
4800 				default_hugepages_in_node[i];
4801 		if (hstate_is_gigantic(&default_hstate))
4802 			hugetlb_hstate_alloc_pages(&default_hstate);
4803 		default_hstate_max_huge_pages = 0;
4804 	}
4805 
4806 	return 1;
4807 }
4808 __setup("default_hugepagesz=", default_hugepagesz_setup);
4809 
4810 static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
4811 {
4812 #ifdef CONFIG_NUMA
4813 	struct mempolicy *mpol = get_task_policy(current);
4814 
4815 	/*
4816 	 * Only enforce MPOL_BIND policy which overlaps with cpuset policy
4817 	 * (from policy_nodemask) specifically for hugetlb case
4818 	 */
4819 	if (mpol->mode == MPOL_BIND &&
4820 		(apply_policy_zone(mpol, gfp_zone(gfp)) &&
4821 		 cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
4822 		return &mpol->nodes;
4823 #endif
4824 	return NULL;
4825 }
4826 
4827 static unsigned int allowed_mems_nr(struct hstate *h)
4828 {
4829 	int node;
4830 	unsigned int nr = 0;
4831 	nodemask_t *mbind_nodemask;
4832 	unsigned int *array = h->free_huge_pages_node;
4833 	gfp_t gfp_mask = htlb_alloc_mask(h);
4834 
4835 	mbind_nodemask = policy_mbind_nodemask(gfp_mask);
4836 	for_each_node_mask(node, cpuset_current_mems_allowed) {
4837 		if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
4838 			nr += array[node];
4839 	}
4840 
4841 	return nr;
4842 }
4843 
4844 #ifdef CONFIG_SYSCTL
4845 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
4846 					  void *buffer, size_t *length,
4847 					  loff_t *ppos, unsigned long *out)
4848 {
4849 	struct ctl_table dup_table;
4850 
4851 	/*
4852 	 * In order to avoid races with __do_proc_doulongvec_minmax(), we
4853 	 * can duplicate the @table and alter the duplicate of it.
4854 	 */
4855 	dup_table = *table;
4856 	dup_table.data = out;
4857 
4858 	return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4859 }
4860 
4861 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4862 			 struct ctl_table *table, int write,
4863 			 void *buffer, size_t *length, loff_t *ppos)
4864 {
4865 	struct hstate *h = &default_hstate;
4866 	unsigned long tmp = h->max_huge_pages;
4867 	int ret;
4868 
4869 	if (!hugepages_supported())
4870 		return -EOPNOTSUPP;
4871 
4872 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4873 					     &tmp);
4874 	if (ret)
4875 		goto out;
4876 
4877 	if (write)
4878 		ret = __nr_hugepages_store_common(obey_mempolicy, h,
4879 						  NUMA_NO_NODE, tmp, *length);
4880 out:
4881 	return ret;
4882 }
4883 
4884 static int hugetlb_sysctl_handler(struct ctl_table *table, int write,
4885 			  void *buffer, size_t *length, loff_t *ppos)
4886 {
4887 
4888 	return hugetlb_sysctl_handler_common(false, table, write,
4889 							buffer, length, ppos);
4890 }
4891 
4892 #ifdef CONFIG_NUMA
4893 static int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
4894 			  void *buffer, size_t *length, loff_t *ppos)
4895 {
4896 	return hugetlb_sysctl_handler_common(true, table, write,
4897 							buffer, length, ppos);
4898 }
4899 #endif /* CONFIG_NUMA */
4900 
4901 static int hugetlb_overcommit_handler(struct ctl_table *table, int write,
4902 		void *buffer, size_t *length, loff_t *ppos)
4903 {
4904 	struct hstate *h = &default_hstate;
4905 	unsigned long tmp;
4906 	int ret;
4907 
4908 	if (!hugepages_supported())
4909 		return -EOPNOTSUPP;
4910 
4911 	tmp = h->nr_overcommit_huge_pages;
4912 
4913 	if (write && hstate_is_gigantic(h))
4914 		return -EINVAL;
4915 
4916 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4917 					     &tmp);
4918 	if (ret)
4919 		goto out;
4920 
4921 	if (write) {
4922 		spin_lock_irq(&hugetlb_lock);
4923 		h->nr_overcommit_huge_pages = tmp;
4924 		spin_unlock_irq(&hugetlb_lock);
4925 	}
4926 out:
4927 	return ret;
4928 }
4929 
4930 static struct ctl_table hugetlb_table[] = {
4931 	{
4932 		.procname	= "nr_hugepages",
4933 		.data		= NULL,
4934 		.maxlen		= sizeof(unsigned long),
4935 		.mode		= 0644,
4936 		.proc_handler	= hugetlb_sysctl_handler,
4937 	},
4938 #ifdef CONFIG_NUMA
4939 	{
4940 		.procname       = "nr_hugepages_mempolicy",
4941 		.data           = NULL,
4942 		.maxlen         = sizeof(unsigned long),
4943 		.mode           = 0644,
4944 		.proc_handler   = &hugetlb_mempolicy_sysctl_handler,
4945 	},
4946 #endif
4947 	{
4948 		.procname	= "hugetlb_shm_group",
4949 		.data		= &sysctl_hugetlb_shm_group,
4950 		.maxlen		= sizeof(gid_t),
4951 		.mode		= 0644,
4952 		.proc_handler	= proc_dointvec,
4953 	},
4954 	{
4955 		.procname	= "nr_overcommit_hugepages",
4956 		.data		= NULL,
4957 		.maxlen		= sizeof(unsigned long),
4958 		.mode		= 0644,
4959 		.proc_handler	= hugetlb_overcommit_handler,
4960 	},
4961 	{ }
4962 };
4963 
4964 static void hugetlb_sysctl_init(void)
4965 {
4966 	register_sysctl_init("vm", hugetlb_table);
4967 }
4968 #endif /* CONFIG_SYSCTL */
4969 
4970 void hugetlb_report_meminfo(struct seq_file *m)
4971 {
4972 	struct hstate *h;
4973 	unsigned long total = 0;
4974 
4975 	if (!hugepages_supported())
4976 		return;
4977 
4978 	for_each_hstate(h) {
4979 		unsigned long count = h->nr_huge_pages;
4980 
4981 		total += huge_page_size(h) * count;
4982 
4983 		if (h == &default_hstate)
4984 			seq_printf(m,
4985 				   "HugePages_Total:   %5lu\n"
4986 				   "HugePages_Free:    %5lu\n"
4987 				   "HugePages_Rsvd:    %5lu\n"
4988 				   "HugePages_Surp:    %5lu\n"
4989 				   "Hugepagesize:   %8lu kB\n",
4990 				   count,
4991 				   h->free_huge_pages,
4992 				   h->resv_huge_pages,
4993 				   h->surplus_huge_pages,
4994 				   huge_page_size(h) / SZ_1K);
4995 	}
4996 
4997 	seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
4998 }
4999 
5000 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
5001 {
5002 	struct hstate *h = &default_hstate;
5003 
5004 	if (!hugepages_supported())
5005 		return 0;
5006 
5007 	return sysfs_emit_at(buf, len,
5008 			     "Node %d HugePages_Total: %5u\n"
5009 			     "Node %d HugePages_Free:  %5u\n"
5010 			     "Node %d HugePages_Surp:  %5u\n",
5011 			     nid, h->nr_huge_pages_node[nid],
5012 			     nid, h->free_huge_pages_node[nid],
5013 			     nid, h->surplus_huge_pages_node[nid]);
5014 }
5015 
5016 void hugetlb_show_meminfo_node(int nid)
5017 {
5018 	struct hstate *h;
5019 
5020 	if (!hugepages_supported())
5021 		return;
5022 
5023 	for_each_hstate(h)
5024 		printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
5025 			nid,
5026 			h->nr_huge_pages_node[nid],
5027 			h->free_huge_pages_node[nid],
5028 			h->surplus_huge_pages_node[nid],
5029 			huge_page_size(h) / SZ_1K);
5030 }
5031 
5032 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
5033 {
5034 	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
5035 		   K(atomic_long_read(&mm->hugetlb_usage)));
5036 }
5037 
5038 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
5039 unsigned long hugetlb_total_pages(void)
5040 {
5041 	struct hstate *h;
5042 	unsigned long nr_total_pages = 0;
5043 
5044 	for_each_hstate(h)
5045 		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
5046 	return nr_total_pages;
5047 }
5048 
5049 static int hugetlb_acct_memory(struct hstate *h, long delta)
5050 {
5051 	int ret = -ENOMEM;
5052 
5053 	if (!delta)
5054 		return 0;
5055 
5056 	spin_lock_irq(&hugetlb_lock);
5057 	/*
5058 	 * When cpuset is configured, it breaks the strict hugetlb page
5059 	 * reservation as the accounting is done on a global variable. Such
5060 	 * reservation is completely rubbish in the presence of cpuset because
5061 	 * the reservation is not checked against page availability for the
5062 	 * current cpuset. Application can still potentially OOM'ed by kernel
5063 	 * with lack of free htlb page in cpuset that the task is in.
5064 	 * Attempt to enforce strict accounting with cpuset is almost
5065 	 * impossible (or too ugly) because cpuset is too fluid that
5066 	 * task or memory node can be dynamically moved between cpusets.
5067 	 *
5068 	 * The change of semantics for shared hugetlb mapping with cpuset is
5069 	 * undesirable. However, in order to preserve some of the semantics,
5070 	 * we fall back to check against current free page availability as
5071 	 * a best attempt and hopefully to minimize the impact of changing
5072 	 * semantics that cpuset has.
5073 	 *
5074 	 * Apart from cpuset, we also have memory policy mechanism that
5075 	 * also determines from which node the kernel will allocate memory
5076 	 * in a NUMA system. So similar to cpuset, we also should consider
5077 	 * the memory policy of the current task. Similar to the description
5078 	 * above.
5079 	 */
5080 	if (delta > 0) {
5081 		if (gather_surplus_pages(h, delta) < 0)
5082 			goto out;
5083 
5084 		if (delta > allowed_mems_nr(h)) {
5085 			return_unused_surplus_pages(h, delta);
5086 			goto out;
5087 		}
5088 	}
5089 
5090 	ret = 0;
5091 	if (delta < 0)
5092 		return_unused_surplus_pages(h, (unsigned long) -delta);
5093 
5094 out:
5095 	spin_unlock_irq(&hugetlb_lock);
5096 	return ret;
5097 }
5098 
5099 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
5100 {
5101 	struct resv_map *resv = vma_resv_map(vma);
5102 
5103 	/*
5104 	 * HPAGE_RESV_OWNER indicates a private mapping.
5105 	 * This new VMA should share its siblings reservation map if present.
5106 	 * The VMA will only ever have a valid reservation map pointer where
5107 	 * it is being copied for another still existing VMA.  As that VMA
5108 	 * has a reference to the reservation map it cannot disappear until
5109 	 * after this open call completes.  It is therefore safe to take a
5110 	 * new reference here without additional locking.
5111 	 */
5112 	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
5113 		resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
5114 		kref_get(&resv->refs);
5115 	}
5116 
5117 	/*
5118 	 * vma_lock structure for sharable mappings is vma specific.
5119 	 * Clear old pointer (if copied via vm_area_dup) and allocate
5120 	 * new structure.  Before clearing, make sure vma_lock is not
5121 	 * for this vma.
5122 	 */
5123 	if (vma->vm_flags & VM_MAYSHARE) {
5124 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
5125 
5126 		if (vma_lock) {
5127 			if (vma_lock->vma != vma) {
5128 				vma->vm_private_data = NULL;
5129 				hugetlb_vma_lock_alloc(vma);
5130 			} else
5131 				pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__);
5132 		} else
5133 			hugetlb_vma_lock_alloc(vma);
5134 	}
5135 }
5136 
5137 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
5138 {
5139 	struct hstate *h = hstate_vma(vma);
5140 	struct resv_map *resv;
5141 	struct hugepage_subpool *spool = subpool_vma(vma);
5142 	unsigned long reserve, start, end;
5143 	long gbl_reserve;
5144 
5145 	hugetlb_vma_lock_free(vma);
5146 
5147 	resv = vma_resv_map(vma);
5148 	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5149 		return;
5150 
5151 	start = vma_hugecache_offset(h, vma, vma->vm_start);
5152 	end = vma_hugecache_offset(h, vma, vma->vm_end);
5153 
5154 	reserve = (end - start) - region_count(resv, start, end);
5155 	hugetlb_cgroup_uncharge_counter(resv, start, end);
5156 	if (reserve) {
5157 		/*
5158 		 * Decrement reserve counts.  The global reserve count may be
5159 		 * adjusted if the subpool has a minimum size.
5160 		 */
5161 		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
5162 		hugetlb_acct_memory(h, -gbl_reserve);
5163 	}
5164 
5165 	kref_put(&resv->refs, resv_map_release);
5166 }
5167 
5168 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
5169 {
5170 	if (addr & ~(huge_page_mask(hstate_vma(vma))))
5171 		return -EINVAL;
5172 
5173 	/*
5174 	 * PMD sharing is only possible for PUD_SIZE-aligned address ranges
5175 	 * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this
5176 	 * split, unshare PMDs in the PUD_SIZE interval surrounding addr now.
5177 	 */
5178 	if (addr & ~PUD_MASK) {
5179 		/*
5180 		 * hugetlb_vm_op_split is called right before we attempt to
5181 		 * split the VMA. We will need to unshare PMDs in the old and
5182 		 * new VMAs, so let's unshare before we split.
5183 		 */
5184 		unsigned long floor = addr & PUD_MASK;
5185 		unsigned long ceil = floor + PUD_SIZE;
5186 
5187 		if (floor >= vma->vm_start && ceil <= vma->vm_end)
5188 			hugetlb_unshare_pmds(vma, floor, ceil);
5189 	}
5190 
5191 	return 0;
5192 }
5193 
5194 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
5195 {
5196 	return huge_page_size(hstate_vma(vma));
5197 }
5198 
5199 /*
5200  * We cannot handle pagefaults against hugetlb pages at all.  They cause
5201  * handle_mm_fault() to try to instantiate regular-sized pages in the
5202  * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
5203  * this far.
5204  */
5205 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
5206 {
5207 	BUG();
5208 	return 0;
5209 }
5210 
5211 /*
5212  * When a new function is introduced to vm_operations_struct and added
5213  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
5214  * This is because under System V memory model, mappings created via
5215  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
5216  * their original vm_ops are overwritten with shm_vm_ops.
5217  */
5218 const struct vm_operations_struct hugetlb_vm_ops = {
5219 	.fault = hugetlb_vm_op_fault,
5220 	.open = hugetlb_vm_op_open,
5221 	.close = hugetlb_vm_op_close,
5222 	.may_split = hugetlb_vm_op_split,
5223 	.pagesize = hugetlb_vm_op_pagesize,
5224 };
5225 
5226 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
5227 				int writable)
5228 {
5229 	pte_t entry;
5230 	unsigned int shift = huge_page_shift(hstate_vma(vma));
5231 
5232 	if (writable) {
5233 		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
5234 					 vma->vm_page_prot)));
5235 	} else {
5236 		entry = huge_pte_wrprotect(mk_huge_pte(page,
5237 					   vma->vm_page_prot));
5238 	}
5239 	entry = pte_mkyoung(entry);
5240 	entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
5241 
5242 	return entry;
5243 }
5244 
5245 static void set_huge_ptep_writable(struct vm_area_struct *vma,
5246 				   unsigned long address, pte_t *ptep)
5247 {
5248 	pte_t entry;
5249 
5250 	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
5251 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
5252 		update_mmu_cache(vma, address, ptep);
5253 }
5254 
5255 bool is_hugetlb_entry_migration(pte_t pte)
5256 {
5257 	swp_entry_t swp;
5258 
5259 	if (huge_pte_none(pte) || pte_present(pte))
5260 		return false;
5261 	swp = pte_to_swp_entry(pte);
5262 	if (is_migration_entry(swp))
5263 		return true;
5264 	else
5265 		return false;
5266 }
5267 
5268 bool is_hugetlb_entry_hwpoisoned(pte_t pte)
5269 {
5270 	swp_entry_t swp;
5271 
5272 	if (huge_pte_none(pte) || pte_present(pte))
5273 		return false;
5274 	swp = pte_to_swp_entry(pte);
5275 	if (is_hwpoison_entry(swp))
5276 		return true;
5277 	else
5278 		return false;
5279 }
5280 
5281 static void
5282 hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
5283 		      struct folio *new_folio, pte_t old, unsigned long sz)
5284 {
5285 	pte_t newpte = make_huge_pte(vma, &new_folio->page, 1);
5286 
5287 	__folio_mark_uptodate(new_folio);
5288 	hugepage_add_new_anon_rmap(new_folio, vma, addr);
5289 	if (userfaultfd_wp(vma) && huge_pte_uffd_wp(old))
5290 		newpte = huge_pte_mkuffd_wp(newpte);
5291 	set_huge_pte_at(vma->vm_mm, addr, ptep, newpte, sz);
5292 	hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
5293 	folio_set_hugetlb_migratable(new_folio);
5294 }
5295 
5296 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
5297 			    struct vm_area_struct *dst_vma,
5298 			    struct vm_area_struct *src_vma)
5299 {
5300 	pte_t *src_pte, *dst_pte, entry;
5301 	struct folio *pte_folio;
5302 	unsigned long addr;
5303 	bool cow = is_cow_mapping(src_vma->vm_flags);
5304 	struct hstate *h = hstate_vma(src_vma);
5305 	unsigned long sz = huge_page_size(h);
5306 	unsigned long npages = pages_per_huge_page(h);
5307 	struct mmu_notifier_range range;
5308 	unsigned long last_addr_mask;
5309 	int ret = 0;
5310 
5311 	if (cow) {
5312 		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src,
5313 					src_vma->vm_start,
5314 					src_vma->vm_end);
5315 		mmu_notifier_invalidate_range_start(&range);
5316 		vma_assert_write_locked(src_vma);
5317 		raw_write_seqcount_begin(&src->write_protect_seq);
5318 	} else {
5319 		/*
5320 		 * For shared mappings the vma lock must be held before
5321 		 * calling hugetlb_walk() in the src vma. Otherwise, the
5322 		 * returned ptep could go away if part of a shared pmd and
5323 		 * another thread calls huge_pmd_unshare.
5324 		 */
5325 		hugetlb_vma_lock_read(src_vma);
5326 	}
5327 
5328 	last_addr_mask = hugetlb_mask_last_page(h);
5329 	for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
5330 		spinlock_t *src_ptl, *dst_ptl;
5331 		src_pte = hugetlb_walk(src_vma, addr, sz);
5332 		if (!src_pte) {
5333 			addr |= last_addr_mask;
5334 			continue;
5335 		}
5336 		dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
5337 		if (!dst_pte) {
5338 			ret = -ENOMEM;
5339 			break;
5340 		}
5341 
5342 		/*
5343 		 * If the pagetables are shared don't copy or take references.
5344 		 *
5345 		 * dst_pte == src_pte is the common case of src/dest sharing.
5346 		 * However, src could have 'unshared' and dst shares with
5347 		 * another vma. So page_count of ptep page is checked instead
5348 		 * to reliably determine whether pte is shared.
5349 		 */
5350 		if (page_count(virt_to_page(dst_pte)) > 1) {
5351 			addr |= last_addr_mask;
5352 			continue;
5353 		}
5354 
5355 		dst_ptl = huge_pte_lock(h, dst, dst_pte);
5356 		src_ptl = huge_pte_lockptr(h, src, src_pte);
5357 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5358 		entry = huge_ptep_get(src_pte);
5359 again:
5360 		if (huge_pte_none(entry)) {
5361 			/*
5362 			 * Skip if src entry none.
5363 			 */
5364 			;
5365 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
5366 			if (!userfaultfd_wp(dst_vma))
5367 				entry = huge_pte_clear_uffd_wp(entry);
5368 			set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5369 		} else if (unlikely(is_hugetlb_entry_migration(entry))) {
5370 			swp_entry_t swp_entry = pte_to_swp_entry(entry);
5371 			bool uffd_wp = pte_swp_uffd_wp(entry);
5372 
5373 			if (!is_readable_migration_entry(swp_entry) && cow) {
5374 				/*
5375 				 * COW mappings require pages in both
5376 				 * parent and child to be set to read.
5377 				 */
5378 				swp_entry = make_readable_migration_entry(
5379 							swp_offset(swp_entry));
5380 				entry = swp_entry_to_pte(swp_entry);
5381 				if (userfaultfd_wp(src_vma) && uffd_wp)
5382 					entry = pte_swp_mkuffd_wp(entry);
5383 				set_huge_pte_at(src, addr, src_pte, entry, sz);
5384 			}
5385 			if (!userfaultfd_wp(dst_vma))
5386 				entry = huge_pte_clear_uffd_wp(entry);
5387 			set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5388 		} else if (unlikely(is_pte_marker(entry))) {
5389 			pte_marker marker = copy_pte_marker(
5390 				pte_to_swp_entry(entry), dst_vma);
5391 
5392 			if (marker)
5393 				set_huge_pte_at(dst, addr, dst_pte,
5394 						make_pte_marker(marker), sz);
5395 		} else {
5396 			entry = huge_ptep_get(src_pte);
5397 			pte_folio = page_folio(pte_page(entry));
5398 			folio_get(pte_folio);
5399 
5400 			/*
5401 			 * Failing to duplicate the anon rmap is a rare case
5402 			 * where we see pinned hugetlb pages while they're
5403 			 * prone to COW. We need to do the COW earlier during
5404 			 * fork.
5405 			 *
5406 			 * When pre-allocating the page or copying data, we
5407 			 * need to be without the pgtable locks since we could
5408 			 * sleep during the process.
5409 			 */
5410 			if (!folio_test_anon(pte_folio)) {
5411 				page_dup_file_rmap(&pte_folio->page, true);
5412 			} else if (page_try_dup_anon_rmap(&pte_folio->page,
5413 							  true, src_vma)) {
5414 				pte_t src_pte_old = entry;
5415 				struct folio *new_folio;
5416 
5417 				spin_unlock(src_ptl);
5418 				spin_unlock(dst_ptl);
5419 				/* Do not use reserve as it's private owned */
5420 				new_folio = alloc_hugetlb_folio(dst_vma, addr, 1);
5421 				if (IS_ERR(new_folio)) {
5422 					folio_put(pte_folio);
5423 					ret = PTR_ERR(new_folio);
5424 					break;
5425 				}
5426 				ret = copy_user_large_folio(new_folio,
5427 							    pte_folio,
5428 							    addr, dst_vma);
5429 				folio_put(pte_folio);
5430 				if (ret) {
5431 					folio_put(new_folio);
5432 					break;
5433 				}
5434 
5435 				/* Install the new hugetlb folio if src pte stable */
5436 				dst_ptl = huge_pte_lock(h, dst, dst_pte);
5437 				src_ptl = huge_pte_lockptr(h, src, src_pte);
5438 				spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5439 				entry = huge_ptep_get(src_pte);
5440 				if (!pte_same(src_pte_old, entry)) {
5441 					restore_reserve_on_error(h, dst_vma, addr,
5442 								new_folio);
5443 					folio_put(new_folio);
5444 					/* huge_ptep of dst_pte won't change as in child */
5445 					goto again;
5446 				}
5447 				hugetlb_install_folio(dst_vma, dst_pte, addr,
5448 						      new_folio, src_pte_old, sz);
5449 				spin_unlock(src_ptl);
5450 				spin_unlock(dst_ptl);
5451 				continue;
5452 			}
5453 
5454 			if (cow) {
5455 				/*
5456 				 * No need to notify as we are downgrading page
5457 				 * table protection not changing it to point
5458 				 * to a new page.
5459 				 *
5460 				 * See Documentation/mm/mmu_notifier.rst
5461 				 */
5462 				huge_ptep_set_wrprotect(src, addr, src_pte);
5463 				entry = huge_pte_wrprotect(entry);
5464 			}
5465 
5466 			if (!userfaultfd_wp(dst_vma))
5467 				entry = huge_pte_clear_uffd_wp(entry);
5468 
5469 			set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5470 			hugetlb_count_add(npages, dst);
5471 		}
5472 		spin_unlock(src_ptl);
5473 		spin_unlock(dst_ptl);
5474 	}
5475 
5476 	if (cow) {
5477 		raw_write_seqcount_end(&src->write_protect_seq);
5478 		mmu_notifier_invalidate_range_end(&range);
5479 	} else {
5480 		hugetlb_vma_unlock_read(src_vma);
5481 	}
5482 
5483 	return ret;
5484 }
5485 
5486 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
5487 			  unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte,
5488 			  unsigned long sz)
5489 {
5490 	struct hstate *h = hstate_vma(vma);
5491 	struct mm_struct *mm = vma->vm_mm;
5492 	spinlock_t *src_ptl, *dst_ptl;
5493 	pte_t pte;
5494 
5495 	dst_ptl = huge_pte_lock(h, mm, dst_pte);
5496 	src_ptl = huge_pte_lockptr(h, mm, src_pte);
5497 
5498 	/*
5499 	 * We don't have to worry about the ordering of src and dst ptlocks
5500 	 * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock.
5501 	 */
5502 	if (src_ptl != dst_ptl)
5503 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5504 
5505 	pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
5506 	set_huge_pte_at(mm, new_addr, dst_pte, pte, sz);
5507 
5508 	if (src_ptl != dst_ptl)
5509 		spin_unlock(src_ptl);
5510 	spin_unlock(dst_ptl);
5511 }
5512 
5513 int move_hugetlb_page_tables(struct vm_area_struct *vma,
5514 			     struct vm_area_struct *new_vma,
5515 			     unsigned long old_addr, unsigned long new_addr,
5516 			     unsigned long len)
5517 {
5518 	struct hstate *h = hstate_vma(vma);
5519 	struct address_space *mapping = vma->vm_file->f_mapping;
5520 	unsigned long sz = huge_page_size(h);
5521 	struct mm_struct *mm = vma->vm_mm;
5522 	unsigned long old_end = old_addr + len;
5523 	unsigned long last_addr_mask;
5524 	pte_t *src_pte, *dst_pte;
5525 	struct mmu_notifier_range range;
5526 	bool shared_pmd = false;
5527 
5528 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr,
5529 				old_end);
5530 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5531 	/*
5532 	 * In case of shared PMDs, we should cover the maximum possible
5533 	 * range.
5534 	 */
5535 	flush_cache_range(vma, range.start, range.end);
5536 
5537 	mmu_notifier_invalidate_range_start(&range);
5538 	last_addr_mask = hugetlb_mask_last_page(h);
5539 	/* Prevent race with file truncation */
5540 	hugetlb_vma_lock_write(vma);
5541 	i_mmap_lock_write(mapping);
5542 	for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
5543 		src_pte = hugetlb_walk(vma, old_addr, sz);
5544 		if (!src_pte) {
5545 			old_addr |= last_addr_mask;
5546 			new_addr |= last_addr_mask;
5547 			continue;
5548 		}
5549 		if (huge_pte_none(huge_ptep_get(src_pte)))
5550 			continue;
5551 
5552 		if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
5553 			shared_pmd = true;
5554 			old_addr |= last_addr_mask;
5555 			new_addr |= last_addr_mask;
5556 			continue;
5557 		}
5558 
5559 		dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5560 		if (!dst_pte)
5561 			break;
5562 
5563 		move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte, sz);
5564 	}
5565 
5566 	if (shared_pmd)
5567 		flush_hugetlb_tlb_range(vma, range.start, range.end);
5568 	else
5569 		flush_hugetlb_tlb_range(vma, old_end - len, old_end);
5570 	mmu_notifier_invalidate_range_end(&range);
5571 	i_mmap_unlock_write(mapping);
5572 	hugetlb_vma_unlock_write(vma);
5573 
5574 	return len + old_addr - old_end;
5575 }
5576 
5577 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5578 			    unsigned long start, unsigned long end,
5579 			    struct page *ref_page, zap_flags_t zap_flags)
5580 {
5581 	struct mm_struct *mm = vma->vm_mm;
5582 	unsigned long address;
5583 	pte_t *ptep;
5584 	pte_t pte;
5585 	spinlock_t *ptl;
5586 	struct page *page;
5587 	struct hstate *h = hstate_vma(vma);
5588 	unsigned long sz = huge_page_size(h);
5589 	unsigned long last_addr_mask;
5590 	bool force_flush = false;
5591 
5592 	WARN_ON(!is_vm_hugetlb_page(vma));
5593 	BUG_ON(start & ~huge_page_mask(h));
5594 	BUG_ON(end & ~huge_page_mask(h));
5595 
5596 	/*
5597 	 * This is a hugetlb vma, all the pte entries should point
5598 	 * to huge page.
5599 	 */
5600 	tlb_change_page_size(tlb, sz);
5601 	tlb_start_vma(tlb, vma);
5602 
5603 	last_addr_mask = hugetlb_mask_last_page(h);
5604 	address = start;
5605 	for (; address < end; address += sz) {
5606 		ptep = hugetlb_walk(vma, address, sz);
5607 		if (!ptep) {
5608 			address |= last_addr_mask;
5609 			continue;
5610 		}
5611 
5612 		ptl = huge_pte_lock(h, mm, ptep);
5613 		if (huge_pmd_unshare(mm, vma, address, ptep)) {
5614 			spin_unlock(ptl);
5615 			tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5616 			force_flush = true;
5617 			address |= last_addr_mask;
5618 			continue;
5619 		}
5620 
5621 		pte = huge_ptep_get(ptep);
5622 		if (huge_pte_none(pte)) {
5623 			spin_unlock(ptl);
5624 			continue;
5625 		}
5626 
5627 		/*
5628 		 * Migrating hugepage or HWPoisoned hugepage is already
5629 		 * unmapped and its refcount is dropped, so just clear pte here.
5630 		 */
5631 		if (unlikely(!pte_present(pte))) {
5632 			/*
5633 			 * If the pte was wr-protected by uffd-wp in any of the
5634 			 * swap forms, meanwhile the caller does not want to
5635 			 * drop the uffd-wp bit in this zap, then replace the
5636 			 * pte with a marker.
5637 			 */
5638 			if (pte_swp_uffd_wp_any(pte) &&
5639 			    !(zap_flags & ZAP_FLAG_DROP_MARKER))
5640 				set_huge_pte_at(mm, address, ptep,
5641 						make_pte_marker(PTE_MARKER_UFFD_WP),
5642 						sz);
5643 			else
5644 				huge_pte_clear(mm, address, ptep, sz);
5645 			spin_unlock(ptl);
5646 			continue;
5647 		}
5648 
5649 		page = pte_page(pte);
5650 		/*
5651 		 * If a reference page is supplied, it is because a specific
5652 		 * page is being unmapped, not a range. Ensure the page we
5653 		 * are about to unmap is the actual page of interest.
5654 		 */
5655 		if (ref_page) {
5656 			if (page != ref_page) {
5657 				spin_unlock(ptl);
5658 				continue;
5659 			}
5660 			/*
5661 			 * Mark the VMA as having unmapped its page so that
5662 			 * future faults in this VMA will fail rather than
5663 			 * looking like data was lost
5664 			 */
5665 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5666 		}
5667 
5668 		pte = huge_ptep_get_and_clear(mm, address, ptep);
5669 		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5670 		if (huge_pte_dirty(pte))
5671 			set_page_dirty(page);
5672 		/* Leave a uffd-wp pte marker if needed */
5673 		if (huge_pte_uffd_wp(pte) &&
5674 		    !(zap_flags & ZAP_FLAG_DROP_MARKER))
5675 			set_huge_pte_at(mm, address, ptep,
5676 					make_pte_marker(PTE_MARKER_UFFD_WP),
5677 					sz);
5678 		hugetlb_count_sub(pages_per_huge_page(h), mm);
5679 		page_remove_rmap(page, vma, true);
5680 
5681 		spin_unlock(ptl);
5682 		tlb_remove_page_size(tlb, page, huge_page_size(h));
5683 		/*
5684 		 * Bail out after unmapping reference page if supplied
5685 		 */
5686 		if (ref_page)
5687 			break;
5688 	}
5689 	tlb_end_vma(tlb, vma);
5690 
5691 	/*
5692 	 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5693 	 * could defer the flush until now, since by holding i_mmap_rwsem we
5694 	 * guaranteed that the last refernece would not be dropped. But we must
5695 	 * do the flushing before we return, as otherwise i_mmap_rwsem will be
5696 	 * dropped and the last reference to the shared PMDs page might be
5697 	 * dropped as well.
5698 	 *
5699 	 * In theory we could defer the freeing of the PMD pages as well, but
5700 	 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5701 	 * detect sharing, so we cannot defer the release of the page either.
5702 	 * Instead, do flush now.
5703 	 */
5704 	if (force_flush)
5705 		tlb_flush_mmu_tlbonly(tlb);
5706 }
5707 
5708 void __hugetlb_zap_begin(struct vm_area_struct *vma,
5709 			 unsigned long *start, unsigned long *end)
5710 {
5711 	if (!vma->vm_file)	/* hugetlbfs_file_mmap error */
5712 		return;
5713 
5714 	adjust_range_if_pmd_sharing_possible(vma, start, end);
5715 	hugetlb_vma_lock_write(vma);
5716 	if (vma->vm_file)
5717 		i_mmap_lock_write(vma->vm_file->f_mapping);
5718 }
5719 
5720 void __hugetlb_zap_end(struct vm_area_struct *vma,
5721 		       struct zap_details *details)
5722 {
5723 	zap_flags_t zap_flags = details ? details->zap_flags : 0;
5724 
5725 	if (!vma->vm_file)	/* hugetlbfs_file_mmap error */
5726 		return;
5727 
5728 	if (zap_flags & ZAP_FLAG_UNMAP) {	/* final unmap */
5729 		/*
5730 		 * Unlock and free the vma lock before releasing i_mmap_rwsem.
5731 		 * When the vma_lock is freed, this makes the vma ineligible
5732 		 * for pmd sharing.  And, i_mmap_rwsem is required to set up
5733 		 * pmd sharing.  This is important as page tables for this
5734 		 * unmapped range will be asynchrously deleted.  If the page
5735 		 * tables are shared, there will be issues when accessed by
5736 		 * someone else.
5737 		 */
5738 		__hugetlb_vma_unlock_write_free(vma);
5739 	} else {
5740 		hugetlb_vma_unlock_write(vma);
5741 	}
5742 
5743 	if (vma->vm_file)
5744 		i_mmap_unlock_write(vma->vm_file->f_mapping);
5745 }
5746 
5747 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5748 			  unsigned long end, struct page *ref_page,
5749 			  zap_flags_t zap_flags)
5750 {
5751 	struct mmu_notifier_range range;
5752 	struct mmu_gather tlb;
5753 
5754 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
5755 				start, end);
5756 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5757 	mmu_notifier_invalidate_range_start(&range);
5758 	tlb_gather_mmu(&tlb, vma->vm_mm);
5759 
5760 	__unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
5761 
5762 	mmu_notifier_invalidate_range_end(&range);
5763 	tlb_finish_mmu(&tlb);
5764 }
5765 
5766 /*
5767  * This is called when the original mapper is failing to COW a MAP_PRIVATE
5768  * mapping it owns the reserve page for. The intention is to unmap the page
5769  * from other VMAs and let the children be SIGKILLed if they are faulting the
5770  * same region.
5771  */
5772 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5773 			      struct page *page, unsigned long address)
5774 {
5775 	struct hstate *h = hstate_vma(vma);
5776 	struct vm_area_struct *iter_vma;
5777 	struct address_space *mapping;
5778 	pgoff_t pgoff;
5779 
5780 	/*
5781 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5782 	 * from page cache lookup which is in HPAGE_SIZE units.
5783 	 */
5784 	address = address & huge_page_mask(h);
5785 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5786 			vma->vm_pgoff;
5787 	mapping = vma->vm_file->f_mapping;
5788 
5789 	/*
5790 	 * Take the mapping lock for the duration of the table walk. As
5791 	 * this mapping should be shared between all the VMAs,
5792 	 * __unmap_hugepage_range() is called as the lock is already held
5793 	 */
5794 	i_mmap_lock_write(mapping);
5795 	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5796 		/* Do not unmap the current VMA */
5797 		if (iter_vma == vma)
5798 			continue;
5799 
5800 		/*
5801 		 * Shared VMAs have their own reserves and do not affect
5802 		 * MAP_PRIVATE accounting but it is possible that a shared
5803 		 * VMA is using the same page so check and skip such VMAs.
5804 		 */
5805 		if (iter_vma->vm_flags & VM_MAYSHARE)
5806 			continue;
5807 
5808 		/*
5809 		 * Unmap the page from other VMAs without their own reserves.
5810 		 * They get marked to be SIGKILLed if they fault in these
5811 		 * areas. This is because a future no-page fault on this VMA
5812 		 * could insert a zeroed page instead of the data existing
5813 		 * from the time of fork. This would look like data corruption
5814 		 */
5815 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5816 			unmap_hugepage_range(iter_vma, address,
5817 					     address + huge_page_size(h), page, 0);
5818 	}
5819 	i_mmap_unlock_write(mapping);
5820 }
5821 
5822 /*
5823  * hugetlb_wp() should be called with page lock of the original hugepage held.
5824  * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5825  * cannot race with other handlers or page migration.
5826  * Keep the pte_same checks anyway to make transition from the mutex easier.
5827  */
5828 static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma,
5829 		       unsigned long address, pte_t *ptep, unsigned int flags,
5830 		       struct folio *pagecache_folio, spinlock_t *ptl)
5831 {
5832 	const bool unshare = flags & FAULT_FLAG_UNSHARE;
5833 	pte_t pte = huge_ptep_get(ptep);
5834 	struct hstate *h = hstate_vma(vma);
5835 	struct folio *old_folio;
5836 	struct folio *new_folio;
5837 	int outside_reserve = 0;
5838 	vm_fault_t ret = 0;
5839 	unsigned long haddr = address & huge_page_mask(h);
5840 	struct mmu_notifier_range range;
5841 
5842 	/*
5843 	 * Never handle CoW for uffd-wp protected pages.  It should be only
5844 	 * handled when the uffd-wp protection is removed.
5845 	 *
5846 	 * Note that only the CoW optimization path (in hugetlb_no_page())
5847 	 * can trigger this, because hugetlb_fault() will always resolve
5848 	 * uffd-wp bit first.
5849 	 */
5850 	if (!unshare && huge_pte_uffd_wp(pte))
5851 		return 0;
5852 
5853 	/*
5854 	 * hugetlb does not support FOLL_FORCE-style write faults that keep the
5855 	 * PTE mapped R/O such as maybe_mkwrite() would do.
5856 	 */
5857 	if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE)))
5858 		return VM_FAULT_SIGSEGV;
5859 
5860 	/* Let's take out MAP_SHARED mappings first. */
5861 	if (vma->vm_flags & VM_MAYSHARE) {
5862 		set_huge_ptep_writable(vma, haddr, ptep);
5863 		return 0;
5864 	}
5865 
5866 	old_folio = page_folio(pte_page(pte));
5867 
5868 	delayacct_wpcopy_start();
5869 
5870 retry_avoidcopy:
5871 	/*
5872 	 * If no-one else is actually using this page, we're the exclusive
5873 	 * owner and can reuse this page.
5874 	 */
5875 	if (folio_mapcount(old_folio) == 1 && folio_test_anon(old_folio)) {
5876 		if (!PageAnonExclusive(&old_folio->page)) {
5877 			folio_move_anon_rmap(old_folio, vma);
5878 			SetPageAnonExclusive(&old_folio->page);
5879 		}
5880 		if (likely(!unshare))
5881 			set_huge_ptep_writable(vma, haddr, ptep);
5882 
5883 		delayacct_wpcopy_end();
5884 		return 0;
5885 	}
5886 	VM_BUG_ON_PAGE(folio_test_anon(old_folio) &&
5887 		       PageAnonExclusive(&old_folio->page), &old_folio->page);
5888 
5889 	/*
5890 	 * If the process that created a MAP_PRIVATE mapping is about to
5891 	 * perform a COW due to a shared page count, attempt to satisfy
5892 	 * the allocation without using the existing reserves. The pagecache
5893 	 * page is used to determine if the reserve at this address was
5894 	 * consumed or not. If reserves were used, a partial faulted mapping
5895 	 * at the time of fork() could consume its reserves on COW instead
5896 	 * of the full address range.
5897 	 */
5898 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5899 			old_folio != pagecache_folio)
5900 		outside_reserve = 1;
5901 
5902 	folio_get(old_folio);
5903 
5904 	/*
5905 	 * Drop page table lock as buddy allocator may be called. It will
5906 	 * be acquired again before returning to the caller, as expected.
5907 	 */
5908 	spin_unlock(ptl);
5909 	new_folio = alloc_hugetlb_folio(vma, haddr, outside_reserve);
5910 
5911 	if (IS_ERR(new_folio)) {
5912 		/*
5913 		 * If a process owning a MAP_PRIVATE mapping fails to COW,
5914 		 * it is due to references held by a child and an insufficient
5915 		 * huge page pool. To guarantee the original mappers
5916 		 * reliability, unmap the page from child processes. The child
5917 		 * may get SIGKILLed if it later faults.
5918 		 */
5919 		if (outside_reserve) {
5920 			struct address_space *mapping = vma->vm_file->f_mapping;
5921 			pgoff_t idx;
5922 			u32 hash;
5923 
5924 			folio_put(old_folio);
5925 			/*
5926 			 * Drop hugetlb_fault_mutex and vma_lock before
5927 			 * unmapping.  unmapping needs to hold vma_lock
5928 			 * in write mode.  Dropping vma_lock in read mode
5929 			 * here is OK as COW mappings do not interact with
5930 			 * PMD sharing.
5931 			 *
5932 			 * Reacquire both after unmap operation.
5933 			 */
5934 			idx = vma_hugecache_offset(h, vma, haddr);
5935 			hash = hugetlb_fault_mutex_hash(mapping, idx);
5936 			hugetlb_vma_unlock_read(vma);
5937 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5938 
5939 			unmap_ref_private(mm, vma, &old_folio->page, haddr);
5940 
5941 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
5942 			hugetlb_vma_lock_read(vma);
5943 			spin_lock(ptl);
5944 			ptep = hugetlb_walk(vma, haddr, huge_page_size(h));
5945 			if (likely(ptep &&
5946 				   pte_same(huge_ptep_get(ptep), pte)))
5947 				goto retry_avoidcopy;
5948 			/*
5949 			 * race occurs while re-acquiring page table
5950 			 * lock, and our job is done.
5951 			 */
5952 			delayacct_wpcopy_end();
5953 			return 0;
5954 		}
5955 
5956 		ret = vmf_error(PTR_ERR(new_folio));
5957 		goto out_release_old;
5958 	}
5959 
5960 	/*
5961 	 * When the original hugepage is shared one, it does not have
5962 	 * anon_vma prepared.
5963 	 */
5964 	if (unlikely(anon_vma_prepare(vma))) {
5965 		ret = VM_FAULT_OOM;
5966 		goto out_release_all;
5967 	}
5968 
5969 	if (copy_user_large_folio(new_folio, old_folio, address, vma)) {
5970 		ret = VM_FAULT_HWPOISON_LARGE;
5971 		goto out_release_all;
5972 	}
5973 	__folio_mark_uptodate(new_folio);
5974 
5975 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, haddr,
5976 				haddr + huge_page_size(h));
5977 	mmu_notifier_invalidate_range_start(&range);
5978 
5979 	/*
5980 	 * Retake the page table lock to check for racing updates
5981 	 * before the page tables are altered
5982 	 */
5983 	spin_lock(ptl);
5984 	ptep = hugetlb_walk(vma, haddr, huge_page_size(h));
5985 	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
5986 		pte_t newpte = make_huge_pte(vma, &new_folio->page, !unshare);
5987 
5988 		/* Break COW or unshare */
5989 		huge_ptep_clear_flush(vma, haddr, ptep);
5990 		page_remove_rmap(&old_folio->page, vma, true);
5991 		hugepage_add_new_anon_rmap(new_folio, vma, haddr);
5992 		if (huge_pte_uffd_wp(pte))
5993 			newpte = huge_pte_mkuffd_wp(newpte);
5994 		set_huge_pte_at(mm, haddr, ptep, newpte, huge_page_size(h));
5995 		folio_set_hugetlb_migratable(new_folio);
5996 		/* Make the old page be freed below */
5997 		new_folio = old_folio;
5998 	}
5999 	spin_unlock(ptl);
6000 	mmu_notifier_invalidate_range_end(&range);
6001 out_release_all:
6002 	/*
6003 	 * No restore in case of successful pagetable update (Break COW or
6004 	 * unshare)
6005 	 */
6006 	if (new_folio != old_folio)
6007 		restore_reserve_on_error(h, vma, haddr, new_folio);
6008 	folio_put(new_folio);
6009 out_release_old:
6010 	folio_put(old_folio);
6011 
6012 	spin_lock(ptl); /* Caller expects lock to be held */
6013 
6014 	delayacct_wpcopy_end();
6015 	return ret;
6016 }
6017 
6018 /*
6019  * Return whether there is a pagecache page to back given address within VMA.
6020  */
6021 static bool hugetlbfs_pagecache_present(struct hstate *h,
6022 			struct vm_area_struct *vma, unsigned long address)
6023 {
6024 	struct address_space *mapping = vma->vm_file->f_mapping;
6025 	pgoff_t idx = linear_page_index(vma, address);
6026 	struct folio *folio;
6027 
6028 	folio = filemap_get_folio(mapping, idx);
6029 	if (IS_ERR(folio))
6030 		return false;
6031 	folio_put(folio);
6032 	return true;
6033 }
6034 
6035 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping,
6036 			   pgoff_t idx)
6037 {
6038 	struct inode *inode = mapping->host;
6039 	struct hstate *h = hstate_inode(inode);
6040 	int err;
6041 
6042 	idx <<= huge_page_order(h);
6043 	__folio_set_locked(folio);
6044 	err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
6045 
6046 	if (unlikely(err)) {
6047 		__folio_clear_locked(folio);
6048 		return err;
6049 	}
6050 	folio_clear_hugetlb_restore_reserve(folio);
6051 
6052 	/*
6053 	 * mark folio dirty so that it will not be removed from cache/file
6054 	 * by non-hugetlbfs specific code paths.
6055 	 */
6056 	folio_mark_dirty(folio);
6057 
6058 	spin_lock(&inode->i_lock);
6059 	inode->i_blocks += blocks_per_huge_page(h);
6060 	spin_unlock(&inode->i_lock);
6061 	return 0;
6062 }
6063 
6064 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
6065 						  struct address_space *mapping,
6066 						  pgoff_t idx,
6067 						  unsigned int flags,
6068 						  unsigned long haddr,
6069 						  unsigned long addr,
6070 						  unsigned long reason)
6071 {
6072 	u32 hash;
6073 	struct vm_fault vmf = {
6074 		.vma = vma,
6075 		.address = haddr,
6076 		.real_address = addr,
6077 		.flags = flags,
6078 
6079 		/*
6080 		 * Hard to debug if it ends up being
6081 		 * used by a callee that assumes
6082 		 * something about the other
6083 		 * uninitialized fields... same as in
6084 		 * memory.c
6085 		 */
6086 	};
6087 
6088 	/*
6089 	 * vma_lock and hugetlb_fault_mutex must be dropped before handling
6090 	 * userfault. Also mmap_lock could be dropped due to handling
6091 	 * userfault, any vma operation should be careful from here.
6092 	 */
6093 	hugetlb_vma_unlock_read(vma);
6094 	hash = hugetlb_fault_mutex_hash(mapping, idx);
6095 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6096 	return handle_userfault(&vmf, reason);
6097 }
6098 
6099 /*
6100  * Recheck pte with pgtable lock.  Returns true if pte didn't change, or
6101  * false if pte changed or is changing.
6102  */
6103 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm,
6104 			       pte_t *ptep, pte_t old_pte)
6105 {
6106 	spinlock_t *ptl;
6107 	bool same;
6108 
6109 	ptl = huge_pte_lock(h, mm, ptep);
6110 	same = pte_same(huge_ptep_get(ptep), old_pte);
6111 	spin_unlock(ptl);
6112 
6113 	return same;
6114 }
6115 
6116 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
6117 			struct vm_area_struct *vma,
6118 			struct address_space *mapping, pgoff_t idx,
6119 			unsigned long address, pte_t *ptep,
6120 			pte_t old_pte, unsigned int flags)
6121 {
6122 	struct hstate *h = hstate_vma(vma);
6123 	vm_fault_t ret = VM_FAULT_SIGBUS;
6124 	int anon_rmap = 0;
6125 	unsigned long size;
6126 	struct folio *folio;
6127 	pte_t new_pte;
6128 	spinlock_t *ptl;
6129 	unsigned long haddr = address & huge_page_mask(h);
6130 	bool new_folio, new_pagecache_folio = false;
6131 	u32 hash = hugetlb_fault_mutex_hash(mapping, idx);
6132 
6133 	/*
6134 	 * Currently, we are forced to kill the process in the event the
6135 	 * original mapper has unmapped pages from the child due to a failed
6136 	 * COW/unsharing. Warn that such a situation has occurred as it may not
6137 	 * be obvious.
6138 	 */
6139 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
6140 		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
6141 			   current->pid);
6142 		goto out;
6143 	}
6144 
6145 	/*
6146 	 * Use page lock to guard against racing truncation
6147 	 * before we get page_table_lock.
6148 	 */
6149 	new_folio = false;
6150 	folio = filemap_lock_hugetlb_folio(h, mapping, idx);
6151 	if (IS_ERR(folio)) {
6152 		size = i_size_read(mapping->host) >> huge_page_shift(h);
6153 		if (idx >= size)
6154 			goto out;
6155 		/* Check for page in userfault range */
6156 		if (userfaultfd_missing(vma)) {
6157 			/*
6158 			 * Since hugetlb_no_page() was examining pte
6159 			 * without pgtable lock, we need to re-test under
6160 			 * lock because the pte may not be stable and could
6161 			 * have changed from under us.  Try to detect
6162 			 * either changed or during-changing ptes and retry
6163 			 * properly when needed.
6164 			 *
6165 			 * Note that userfaultfd is actually fine with
6166 			 * false positives (e.g. caused by pte changed),
6167 			 * but not wrong logical events (e.g. caused by
6168 			 * reading a pte during changing).  The latter can
6169 			 * confuse the userspace, so the strictness is very
6170 			 * much preferred.  E.g., MISSING event should
6171 			 * never happen on the page after UFFDIO_COPY has
6172 			 * correctly installed the page and returned.
6173 			 */
6174 			if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
6175 				ret = 0;
6176 				goto out;
6177 			}
6178 
6179 			return hugetlb_handle_userfault(vma, mapping, idx, flags,
6180 							haddr, address,
6181 							VM_UFFD_MISSING);
6182 		}
6183 
6184 		folio = alloc_hugetlb_folio(vma, haddr, 0);
6185 		if (IS_ERR(folio)) {
6186 			/*
6187 			 * Returning error will result in faulting task being
6188 			 * sent SIGBUS.  The hugetlb fault mutex prevents two
6189 			 * tasks from racing to fault in the same page which
6190 			 * could result in false unable to allocate errors.
6191 			 * Page migration does not take the fault mutex, but
6192 			 * does a clear then write of pte's under page table
6193 			 * lock.  Page fault code could race with migration,
6194 			 * notice the clear pte and try to allocate a page
6195 			 * here.  Before returning error, get ptl and make
6196 			 * sure there really is no pte entry.
6197 			 */
6198 			if (hugetlb_pte_stable(h, mm, ptep, old_pte))
6199 				ret = vmf_error(PTR_ERR(folio));
6200 			else
6201 				ret = 0;
6202 			goto out;
6203 		}
6204 		clear_huge_page(&folio->page, address, pages_per_huge_page(h));
6205 		__folio_mark_uptodate(folio);
6206 		new_folio = true;
6207 
6208 		if (vma->vm_flags & VM_MAYSHARE) {
6209 			int err = hugetlb_add_to_page_cache(folio, mapping, idx);
6210 			if (err) {
6211 				/*
6212 				 * err can't be -EEXIST which implies someone
6213 				 * else consumed the reservation since hugetlb
6214 				 * fault mutex is held when add a hugetlb page
6215 				 * to the page cache. So it's safe to call
6216 				 * restore_reserve_on_error() here.
6217 				 */
6218 				restore_reserve_on_error(h, vma, haddr, folio);
6219 				folio_put(folio);
6220 				goto out;
6221 			}
6222 			new_pagecache_folio = true;
6223 		} else {
6224 			folio_lock(folio);
6225 			if (unlikely(anon_vma_prepare(vma))) {
6226 				ret = VM_FAULT_OOM;
6227 				goto backout_unlocked;
6228 			}
6229 			anon_rmap = 1;
6230 		}
6231 	} else {
6232 		/*
6233 		 * If memory error occurs between mmap() and fault, some process
6234 		 * don't have hwpoisoned swap entry for errored virtual address.
6235 		 * So we need to block hugepage fault by PG_hwpoison bit check.
6236 		 */
6237 		if (unlikely(folio_test_hwpoison(folio))) {
6238 			ret = VM_FAULT_HWPOISON_LARGE |
6239 				VM_FAULT_SET_HINDEX(hstate_index(h));
6240 			goto backout_unlocked;
6241 		}
6242 
6243 		/* Check for page in userfault range. */
6244 		if (userfaultfd_minor(vma)) {
6245 			folio_unlock(folio);
6246 			folio_put(folio);
6247 			/* See comment in userfaultfd_missing() block above */
6248 			if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
6249 				ret = 0;
6250 				goto out;
6251 			}
6252 			return hugetlb_handle_userfault(vma, mapping, idx, flags,
6253 							haddr, address,
6254 							VM_UFFD_MINOR);
6255 		}
6256 	}
6257 
6258 	/*
6259 	 * If we are going to COW a private mapping later, we examine the
6260 	 * pending reservations for this page now. This will ensure that
6261 	 * any allocations necessary to record that reservation occur outside
6262 	 * the spinlock.
6263 	 */
6264 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
6265 		if (vma_needs_reservation(h, vma, haddr) < 0) {
6266 			ret = VM_FAULT_OOM;
6267 			goto backout_unlocked;
6268 		}
6269 		/* Just decrements count, does not deallocate */
6270 		vma_end_reservation(h, vma, haddr);
6271 	}
6272 
6273 	ptl = huge_pte_lock(h, mm, ptep);
6274 	ret = 0;
6275 	/* If pte changed from under us, retry */
6276 	if (!pte_same(huge_ptep_get(ptep), old_pte))
6277 		goto backout;
6278 
6279 	if (anon_rmap)
6280 		hugepage_add_new_anon_rmap(folio, vma, haddr);
6281 	else
6282 		page_dup_file_rmap(&folio->page, true);
6283 	new_pte = make_huge_pte(vma, &folio->page, ((vma->vm_flags & VM_WRITE)
6284 				&& (vma->vm_flags & VM_SHARED)));
6285 	/*
6286 	 * If this pte was previously wr-protected, keep it wr-protected even
6287 	 * if populated.
6288 	 */
6289 	if (unlikely(pte_marker_uffd_wp(old_pte)))
6290 		new_pte = huge_pte_mkuffd_wp(new_pte);
6291 	set_huge_pte_at(mm, haddr, ptep, new_pte, huge_page_size(h));
6292 
6293 	hugetlb_count_add(pages_per_huge_page(h), mm);
6294 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
6295 		/* Optimization, do the COW without a second fault */
6296 		ret = hugetlb_wp(mm, vma, address, ptep, flags, folio, ptl);
6297 	}
6298 
6299 	spin_unlock(ptl);
6300 
6301 	/*
6302 	 * Only set hugetlb_migratable in newly allocated pages.  Existing pages
6303 	 * found in the pagecache may not have hugetlb_migratable if they have
6304 	 * been isolated for migration.
6305 	 */
6306 	if (new_folio)
6307 		folio_set_hugetlb_migratable(folio);
6308 
6309 	folio_unlock(folio);
6310 out:
6311 	hugetlb_vma_unlock_read(vma);
6312 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6313 	return ret;
6314 
6315 backout:
6316 	spin_unlock(ptl);
6317 backout_unlocked:
6318 	if (new_folio && !new_pagecache_folio)
6319 		restore_reserve_on_error(h, vma, haddr, folio);
6320 
6321 	folio_unlock(folio);
6322 	folio_put(folio);
6323 	goto out;
6324 }
6325 
6326 #ifdef CONFIG_SMP
6327 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6328 {
6329 	unsigned long key[2];
6330 	u32 hash;
6331 
6332 	key[0] = (unsigned long) mapping;
6333 	key[1] = idx;
6334 
6335 	hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
6336 
6337 	return hash & (num_fault_mutexes - 1);
6338 }
6339 #else
6340 /*
6341  * For uniprocessor systems we always use a single mutex, so just
6342  * return 0 and avoid the hashing overhead.
6343  */
6344 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6345 {
6346 	return 0;
6347 }
6348 #endif
6349 
6350 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
6351 			unsigned long address, unsigned int flags)
6352 {
6353 	pte_t *ptep, entry;
6354 	spinlock_t *ptl;
6355 	vm_fault_t ret;
6356 	u32 hash;
6357 	pgoff_t idx;
6358 	struct folio *folio = NULL;
6359 	struct folio *pagecache_folio = NULL;
6360 	struct hstate *h = hstate_vma(vma);
6361 	struct address_space *mapping;
6362 	int need_wait_lock = 0;
6363 	unsigned long haddr = address & huge_page_mask(h);
6364 
6365 	/* TODO: Handle faults under the VMA lock */
6366 	if (flags & FAULT_FLAG_VMA_LOCK) {
6367 		vma_end_read(vma);
6368 		return VM_FAULT_RETRY;
6369 	}
6370 
6371 	/*
6372 	 * Serialize hugepage allocation and instantiation, so that we don't
6373 	 * get spurious allocation failures if two CPUs race to instantiate
6374 	 * the same page in the page cache.
6375 	 */
6376 	mapping = vma->vm_file->f_mapping;
6377 	idx = vma_hugecache_offset(h, vma, haddr);
6378 	hash = hugetlb_fault_mutex_hash(mapping, idx);
6379 	mutex_lock(&hugetlb_fault_mutex_table[hash]);
6380 
6381 	/*
6382 	 * Acquire vma lock before calling huge_pte_alloc and hold
6383 	 * until finished with ptep.  This prevents huge_pmd_unshare from
6384 	 * being called elsewhere and making the ptep no longer valid.
6385 	 */
6386 	hugetlb_vma_lock_read(vma);
6387 	ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
6388 	if (!ptep) {
6389 		hugetlb_vma_unlock_read(vma);
6390 		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6391 		return VM_FAULT_OOM;
6392 	}
6393 
6394 	entry = huge_ptep_get(ptep);
6395 	if (huge_pte_none_mostly(entry)) {
6396 		if (is_pte_marker(entry)) {
6397 			pte_marker marker =
6398 				pte_marker_get(pte_to_swp_entry(entry));
6399 
6400 			if (marker & PTE_MARKER_POISONED) {
6401 				ret = VM_FAULT_HWPOISON_LARGE;
6402 				goto out_mutex;
6403 			}
6404 		}
6405 
6406 		/*
6407 		 * Other PTE markers should be handled the same way as none PTE.
6408 		 *
6409 		 * hugetlb_no_page will drop vma lock and hugetlb fault
6410 		 * mutex internally, which make us return immediately.
6411 		 */
6412 		return hugetlb_no_page(mm, vma, mapping, idx, address, ptep,
6413 				      entry, flags);
6414 	}
6415 
6416 	ret = 0;
6417 
6418 	/*
6419 	 * entry could be a migration/hwpoison entry at this point, so this
6420 	 * check prevents the kernel from going below assuming that we have
6421 	 * an active hugepage in pagecache. This goto expects the 2nd page
6422 	 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
6423 	 * properly handle it.
6424 	 */
6425 	if (!pte_present(entry)) {
6426 		if (unlikely(is_hugetlb_entry_migration(entry))) {
6427 			/*
6428 			 * Release the hugetlb fault lock now, but retain
6429 			 * the vma lock, because it is needed to guard the
6430 			 * huge_pte_lockptr() later in
6431 			 * migration_entry_wait_huge(). The vma lock will
6432 			 * be released there.
6433 			 */
6434 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6435 			migration_entry_wait_huge(vma, ptep);
6436 			return 0;
6437 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
6438 			ret = VM_FAULT_HWPOISON_LARGE |
6439 			    VM_FAULT_SET_HINDEX(hstate_index(h));
6440 		goto out_mutex;
6441 	}
6442 
6443 	/*
6444 	 * If we are going to COW/unshare the mapping later, we examine the
6445 	 * pending reservations for this page now. This will ensure that any
6446 	 * allocations necessary to record that reservation occur outside the
6447 	 * spinlock. Also lookup the pagecache page now as it is used to
6448 	 * determine if a reservation has been consumed.
6449 	 */
6450 	if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
6451 	    !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) {
6452 		if (vma_needs_reservation(h, vma, haddr) < 0) {
6453 			ret = VM_FAULT_OOM;
6454 			goto out_mutex;
6455 		}
6456 		/* Just decrements count, does not deallocate */
6457 		vma_end_reservation(h, vma, haddr);
6458 
6459 		pagecache_folio = filemap_lock_hugetlb_folio(h, mapping, idx);
6460 		if (IS_ERR(pagecache_folio))
6461 			pagecache_folio = NULL;
6462 	}
6463 
6464 	ptl = huge_pte_lock(h, mm, ptep);
6465 
6466 	/* Check for a racing update before calling hugetlb_wp() */
6467 	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
6468 		goto out_ptl;
6469 
6470 	/* Handle userfault-wp first, before trying to lock more pages */
6471 	if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) &&
6472 	    (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
6473 		if (!userfaultfd_wp_async(vma)) {
6474 			struct vm_fault vmf = {
6475 				.vma = vma,
6476 				.address = haddr,
6477 				.real_address = address,
6478 				.flags = flags,
6479 			};
6480 
6481 			spin_unlock(ptl);
6482 			if (pagecache_folio) {
6483 				folio_unlock(pagecache_folio);
6484 				folio_put(pagecache_folio);
6485 			}
6486 			hugetlb_vma_unlock_read(vma);
6487 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6488 			return handle_userfault(&vmf, VM_UFFD_WP);
6489 		}
6490 
6491 		entry = huge_pte_clear_uffd_wp(entry);
6492 		set_huge_pte_at(mm, haddr, ptep, entry,
6493 				huge_page_size(hstate_vma(vma)));
6494 		/* Fallthrough to CoW */
6495 	}
6496 
6497 	/*
6498 	 * hugetlb_wp() requires page locks of pte_page(entry) and
6499 	 * pagecache_folio, so here we need take the former one
6500 	 * when folio != pagecache_folio or !pagecache_folio.
6501 	 */
6502 	folio = page_folio(pte_page(entry));
6503 	if (folio != pagecache_folio)
6504 		if (!folio_trylock(folio)) {
6505 			need_wait_lock = 1;
6506 			goto out_ptl;
6507 		}
6508 
6509 	folio_get(folio);
6510 
6511 	if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
6512 		if (!huge_pte_write(entry)) {
6513 			ret = hugetlb_wp(mm, vma, address, ptep, flags,
6514 					 pagecache_folio, ptl);
6515 			goto out_put_page;
6516 		} else if (likely(flags & FAULT_FLAG_WRITE)) {
6517 			entry = huge_pte_mkdirty(entry);
6518 		}
6519 	}
6520 	entry = pte_mkyoung(entry);
6521 	if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
6522 						flags & FAULT_FLAG_WRITE))
6523 		update_mmu_cache(vma, haddr, ptep);
6524 out_put_page:
6525 	if (folio != pagecache_folio)
6526 		folio_unlock(folio);
6527 	folio_put(folio);
6528 out_ptl:
6529 	spin_unlock(ptl);
6530 
6531 	if (pagecache_folio) {
6532 		folio_unlock(pagecache_folio);
6533 		folio_put(pagecache_folio);
6534 	}
6535 out_mutex:
6536 	hugetlb_vma_unlock_read(vma);
6537 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6538 	/*
6539 	 * Generally it's safe to hold refcount during waiting page lock. But
6540 	 * here we just wait to defer the next page fault to avoid busy loop and
6541 	 * the page is not used after unlocked before returning from the current
6542 	 * page fault. So we are safe from accessing freed page, even if we wait
6543 	 * here without taking refcount.
6544 	 */
6545 	if (need_wait_lock)
6546 		folio_wait_locked(folio);
6547 	return ret;
6548 }
6549 
6550 #ifdef CONFIG_USERFAULTFD
6551 /*
6552  * Can probably be eliminated, but still used by hugetlb_mfill_atomic_pte().
6553  */
6554 static struct folio *alloc_hugetlb_folio_vma(struct hstate *h,
6555 		struct vm_area_struct *vma, unsigned long address)
6556 {
6557 	struct mempolicy *mpol;
6558 	nodemask_t *nodemask;
6559 	struct folio *folio;
6560 	gfp_t gfp_mask;
6561 	int node;
6562 
6563 	gfp_mask = htlb_alloc_mask(h);
6564 	node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
6565 	folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask);
6566 	mpol_cond_put(mpol);
6567 
6568 	return folio;
6569 }
6570 
6571 /*
6572  * Used by userfaultfd UFFDIO_* ioctls. Based on userfaultfd's mfill_atomic_pte
6573  * with modifications for hugetlb pages.
6574  */
6575 int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
6576 			     struct vm_area_struct *dst_vma,
6577 			     unsigned long dst_addr,
6578 			     unsigned long src_addr,
6579 			     uffd_flags_t flags,
6580 			     struct folio **foliop)
6581 {
6582 	struct mm_struct *dst_mm = dst_vma->vm_mm;
6583 	bool is_continue = uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE);
6584 	bool wp_enabled = (flags & MFILL_ATOMIC_WP);
6585 	struct hstate *h = hstate_vma(dst_vma);
6586 	struct address_space *mapping = dst_vma->vm_file->f_mapping;
6587 	pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
6588 	unsigned long size;
6589 	int vm_shared = dst_vma->vm_flags & VM_SHARED;
6590 	pte_t _dst_pte;
6591 	spinlock_t *ptl;
6592 	int ret = -ENOMEM;
6593 	struct folio *folio;
6594 	int writable;
6595 	bool folio_in_pagecache = false;
6596 
6597 	if (uffd_flags_mode_is(flags, MFILL_ATOMIC_POISON)) {
6598 		ptl = huge_pte_lock(h, dst_mm, dst_pte);
6599 
6600 		/* Don't overwrite any existing PTEs (even markers) */
6601 		if (!huge_pte_none(huge_ptep_get(dst_pte))) {
6602 			spin_unlock(ptl);
6603 			return -EEXIST;
6604 		}
6605 
6606 		_dst_pte = make_pte_marker(PTE_MARKER_POISONED);
6607 		set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte,
6608 				huge_page_size(h));
6609 
6610 		/* No need to invalidate - it was non-present before */
6611 		update_mmu_cache(dst_vma, dst_addr, dst_pte);
6612 
6613 		spin_unlock(ptl);
6614 		return 0;
6615 	}
6616 
6617 	if (is_continue) {
6618 		ret = -EFAULT;
6619 		folio = filemap_lock_hugetlb_folio(h, mapping, idx);
6620 		if (IS_ERR(folio))
6621 			goto out;
6622 		folio_in_pagecache = true;
6623 	} else if (!*foliop) {
6624 		/* If a folio already exists, then it's UFFDIO_COPY for
6625 		 * a non-missing case. Return -EEXIST.
6626 		 */
6627 		if (vm_shared &&
6628 		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6629 			ret = -EEXIST;
6630 			goto out;
6631 		}
6632 
6633 		folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6634 		if (IS_ERR(folio)) {
6635 			ret = -ENOMEM;
6636 			goto out;
6637 		}
6638 
6639 		ret = copy_folio_from_user(folio, (const void __user *) src_addr,
6640 					   false);
6641 
6642 		/* fallback to copy_from_user outside mmap_lock */
6643 		if (unlikely(ret)) {
6644 			ret = -ENOENT;
6645 			/* Free the allocated folio which may have
6646 			 * consumed a reservation.
6647 			 */
6648 			restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6649 			folio_put(folio);
6650 
6651 			/* Allocate a temporary folio to hold the copied
6652 			 * contents.
6653 			 */
6654 			folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr);
6655 			if (!folio) {
6656 				ret = -ENOMEM;
6657 				goto out;
6658 			}
6659 			*foliop = folio;
6660 			/* Set the outparam foliop and return to the caller to
6661 			 * copy the contents outside the lock. Don't free the
6662 			 * folio.
6663 			 */
6664 			goto out;
6665 		}
6666 	} else {
6667 		if (vm_shared &&
6668 		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6669 			folio_put(*foliop);
6670 			ret = -EEXIST;
6671 			*foliop = NULL;
6672 			goto out;
6673 		}
6674 
6675 		folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6676 		if (IS_ERR(folio)) {
6677 			folio_put(*foliop);
6678 			ret = -ENOMEM;
6679 			*foliop = NULL;
6680 			goto out;
6681 		}
6682 		ret = copy_user_large_folio(folio, *foliop, dst_addr, dst_vma);
6683 		folio_put(*foliop);
6684 		*foliop = NULL;
6685 		if (ret) {
6686 			folio_put(folio);
6687 			goto out;
6688 		}
6689 	}
6690 
6691 	/*
6692 	 * The memory barrier inside __folio_mark_uptodate makes sure that
6693 	 * preceding stores to the page contents become visible before
6694 	 * the set_pte_at() write.
6695 	 */
6696 	__folio_mark_uptodate(folio);
6697 
6698 	/* Add shared, newly allocated pages to the page cache. */
6699 	if (vm_shared && !is_continue) {
6700 		size = i_size_read(mapping->host) >> huge_page_shift(h);
6701 		ret = -EFAULT;
6702 		if (idx >= size)
6703 			goto out_release_nounlock;
6704 
6705 		/*
6706 		 * Serialization between remove_inode_hugepages() and
6707 		 * hugetlb_add_to_page_cache() below happens through the
6708 		 * hugetlb_fault_mutex_table that here must be hold by
6709 		 * the caller.
6710 		 */
6711 		ret = hugetlb_add_to_page_cache(folio, mapping, idx);
6712 		if (ret)
6713 			goto out_release_nounlock;
6714 		folio_in_pagecache = true;
6715 	}
6716 
6717 	ptl = huge_pte_lock(h, dst_mm, dst_pte);
6718 
6719 	ret = -EIO;
6720 	if (folio_test_hwpoison(folio))
6721 		goto out_release_unlock;
6722 
6723 	/*
6724 	 * We allow to overwrite a pte marker: consider when both MISSING|WP
6725 	 * registered, we firstly wr-protect a none pte which has no page cache
6726 	 * page backing it, then access the page.
6727 	 */
6728 	ret = -EEXIST;
6729 	if (!huge_pte_none_mostly(huge_ptep_get(dst_pte)))
6730 		goto out_release_unlock;
6731 
6732 	if (folio_in_pagecache)
6733 		page_dup_file_rmap(&folio->page, true);
6734 	else
6735 		hugepage_add_new_anon_rmap(folio, dst_vma, dst_addr);
6736 
6737 	/*
6738 	 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6739 	 * with wp flag set, don't set pte write bit.
6740 	 */
6741 	if (wp_enabled || (is_continue && !vm_shared))
6742 		writable = 0;
6743 	else
6744 		writable = dst_vma->vm_flags & VM_WRITE;
6745 
6746 	_dst_pte = make_huge_pte(dst_vma, &folio->page, writable);
6747 	/*
6748 	 * Always mark UFFDIO_COPY page dirty; note that this may not be
6749 	 * extremely important for hugetlbfs for now since swapping is not
6750 	 * supported, but we should still be clear in that this page cannot be
6751 	 * thrown away at will, even if write bit not set.
6752 	 */
6753 	_dst_pte = huge_pte_mkdirty(_dst_pte);
6754 	_dst_pte = pte_mkyoung(_dst_pte);
6755 
6756 	if (wp_enabled)
6757 		_dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6758 
6759 	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, huge_page_size(h));
6760 
6761 	hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6762 
6763 	/* No need to invalidate - it was non-present before */
6764 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
6765 
6766 	spin_unlock(ptl);
6767 	if (!is_continue)
6768 		folio_set_hugetlb_migratable(folio);
6769 	if (vm_shared || is_continue)
6770 		folio_unlock(folio);
6771 	ret = 0;
6772 out:
6773 	return ret;
6774 out_release_unlock:
6775 	spin_unlock(ptl);
6776 	if (vm_shared || is_continue)
6777 		folio_unlock(folio);
6778 out_release_nounlock:
6779 	if (!folio_in_pagecache)
6780 		restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6781 	folio_put(folio);
6782 	goto out;
6783 }
6784 #endif /* CONFIG_USERFAULTFD */
6785 
6786 struct page *hugetlb_follow_page_mask(struct vm_area_struct *vma,
6787 				      unsigned long address, unsigned int flags,
6788 				      unsigned int *page_mask)
6789 {
6790 	struct hstate *h = hstate_vma(vma);
6791 	struct mm_struct *mm = vma->vm_mm;
6792 	unsigned long haddr = address & huge_page_mask(h);
6793 	struct page *page = NULL;
6794 	spinlock_t *ptl;
6795 	pte_t *pte, entry;
6796 	int ret;
6797 
6798 	hugetlb_vma_lock_read(vma);
6799 	pte = hugetlb_walk(vma, haddr, huge_page_size(h));
6800 	if (!pte)
6801 		goto out_unlock;
6802 
6803 	ptl = huge_pte_lock(h, mm, pte);
6804 	entry = huge_ptep_get(pte);
6805 	if (pte_present(entry)) {
6806 		page = pte_page(entry);
6807 
6808 		if (!huge_pte_write(entry)) {
6809 			if (flags & FOLL_WRITE) {
6810 				page = NULL;
6811 				goto out;
6812 			}
6813 
6814 			if (gup_must_unshare(vma, flags, page)) {
6815 				/* Tell the caller to do unsharing */
6816 				page = ERR_PTR(-EMLINK);
6817 				goto out;
6818 			}
6819 		}
6820 
6821 		page = nth_page(page, ((address & ~huge_page_mask(h)) >> PAGE_SHIFT));
6822 
6823 		/*
6824 		 * Note that page may be a sub-page, and with vmemmap
6825 		 * optimizations the page struct may be read only.
6826 		 * try_grab_page() will increase the ref count on the
6827 		 * head page, so this will be OK.
6828 		 *
6829 		 * try_grab_page() should always be able to get the page here,
6830 		 * because we hold the ptl lock and have verified pte_present().
6831 		 */
6832 		ret = try_grab_page(page, flags);
6833 
6834 		if (WARN_ON_ONCE(ret)) {
6835 			page = ERR_PTR(ret);
6836 			goto out;
6837 		}
6838 
6839 		*page_mask = (1U << huge_page_order(h)) - 1;
6840 	}
6841 out:
6842 	spin_unlock(ptl);
6843 out_unlock:
6844 	hugetlb_vma_unlock_read(vma);
6845 
6846 	/*
6847 	 * Fixup retval for dump requests: if pagecache doesn't exist,
6848 	 * don't try to allocate a new page but just skip it.
6849 	 */
6850 	if (!page && (flags & FOLL_DUMP) &&
6851 	    !hugetlbfs_pagecache_present(h, vma, address))
6852 		page = ERR_PTR(-EFAULT);
6853 
6854 	return page;
6855 }
6856 
6857 long hugetlb_change_protection(struct vm_area_struct *vma,
6858 		unsigned long address, unsigned long end,
6859 		pgprot_t newprot, unsigned long cp_flags)
6860 {
6861 	struct mm_struct *mm = vma->vm_mm;
6862 	unsigned long start = address;
6863 	pte_t *ptep;
6864 	pte_t pte;
6865 	struct hstate *h = hstate_vma(vma);
6866 	long pages = 0, psize = huge_page_size(h);
6867 	bool shared_pmd = false;
6868 	struct mmu_notifier_range range;
6869 	unsigned long last_addr_mask;
6870 	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6871 	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
6872 
6873 	/*
6874 	 * In the case of shared PMDs, the area to flush could be beyond
6875 	 * start/end.  Set range.start/range.end to cover the maximum possible
6876 	 * range if PMD sharing is possible.
6877 	 */
6878 	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6879 				0, mm, start, end);
6880 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6881 
6882 	BUG_ON(address >= end);
6883 	flush_cache_range(vma, range.start, range.end);
6884 
6885 	mmu_notifier_invalidate_range_start(&range);
6886 	hugetlb_vma_lock_write(vma);
6887 	i_mmap_lock_write(vma->vm_file->f_mapping);
6888 	last_addr_mask = hugetlb_mask_last_page(h);
6889 	for (; address < end; address += psize) {
6890 		spinlock_t *ptl;
6891 		ptep = hugetlb_walk(vma, address, psize);
6892 		if (!ptep) {
6893 			if (!uffd_wp) {
6894 				address |= last_addr_mask;
6895 				continue;
6896 			}
6897 			/*
6898 			 * Userfaultfd wr-protect requires pgtable
6899 			 * pre-allocations to install pte markers.
6900 			 */
6901 			ptep = huge_pte_alloc(mm, vma, address, psize);
6902 			if (!ptep) {
6903 				pages = -ENOMEM;
6904 				break;
6905 			}
6906 		}
6907 		ptl = huge_pte_lock(h, mm, ptep);
6908 		if (huge_pmd_unshare(mm, vma, address, ptep)) {
6909 			/*
6910 			 * When uffd-wp is enabled on the vma, unshare
6911 			 * shouldn't happen at all.  Warn about it if it
6912 			 * happened due to some reason.
6913 			 */
6914 			WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
6915 			pages++;
6916 			spin_unlock(ptl);
6917 			shared_pmd = true;
6918 			address |= last_addr_mask;
6919 			continue;
6920 		}
6921 		pte = huge_ptep_get(ptep);
6922 		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6923 			/* Nothing to do. */
6924 		} else if (unlikely(is_hugetlb_entry_migration(pte))) {
6925 			swp_entry_t entry = pte_to_swp_entry(pte);
6926 			struct page *page = pfn_swap_entry_to_page(entry);
6927 			pte_t newpte = pte;
6928 
6929 			if (is_writable_migration_entry(entry)) {
6930 				if (PageAnon(page))
6931 					entry = make_readable_exclusive_migration_entry(
6932 								swp_offset(entry));
6933 				else
6934 					entry = make_readable_migration_entry(
6935 								swp_offset(entry));
6936 				newpte = swp_entry_to_pte(entry);
6937 				pages++;
6938 			}
6939 
6940 			if (uffd_wp)
6941 				newpte = pte_swp_mkuffd_wp(newpte);
6942 			else if (uffd_wp_resolve)
6943 				newpte = pte_swp_clear_uffd_wp(newpte);
6944 			if (!pte_same(pte, newpte))
6945 				set_huge_pte_at(mm, address, ptep, newpte, psize);
6946 		} else if (unlikely(is_pte_marker(pte))) {
6947 			/* No other markers apply for now. */
6948 			WARN_ON_ONCE(!pte_marker_uffd_wp(pte));
6949 			if (uffd_wp_resolve)
6950 				/* Safe to modify directly (non-present->none). */
6951 				huge_pte_clear(mm, address, ptep, psize);
6952 		} else if (!huge_pte_none(pte)) {
6953 			pte_t old_pte;
6954 			unsigned int shift = huge_page_shift(hstate_vma(vma));
6955 
6956 			old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6957 			pte = huge_pte_modify(old_pte, newprot);
6958 			pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6959 			if (uffd_wp)
6960 				pte = huge_pte_mkuffd_wp(pte);
6961 			else if (uffd_wp_resolve)
6962 				pte = huge_pte_clear_uffd_wp(pte);
6963 			huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6964 			pages++;
6965 		} else {
6966 			/* None pte */
6967 			if (unlikely(uffd_wp))
6968 				/* Safe to modify directly (none->non-present). */
6969 				set_huge_pte_at(mm, address, ptep,
6970 						make_pte_marker(PTE_MARKER_UFFD_WP),
6971 						psize);
6972 		}
6973 		spin_unlock(ptl);
6974 	}
6975 	/*
6976 	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
6977 	 * may have cleared our pud entry and done put_page on the page table:
6978 	 * once we release i_mmap_rwsem, another task can do the final put_page
6979 	 * and that page table be reused and filled with junk.  If we actually
6980 	 * did unshare a page of pmds, flush the range corresponding to the pud.
6981 	 */
6982 	if (shared_pmd)
6983 		flush_hugetlb_tlb_range(vma, range.start, range.end);
6984 	else
6985 		flush_hugetlb_tlb_range(vma, start, end);
6986 	/*
6987 	 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs() we are
6988 	 * downgrading page table protection not changing it to point to a new
6989 	 * page.
6990 	 *
6991 	 * See Documentation/mm/mmu_notifier.rst
6992 	 */
6993 	i_mmap_unlock_write(vma->vm_file->f_mapping);
6994 	hugetlb_vma_unlock_write(vma);
6995 	mmu_notifier_invalidate_range_end(&range);
6996 
6997 	return pages > 0 ? (pages << h->order) : pages;
6998 }
6999 
7000 /* Return true if reservation was successful, false otherwise.  */
7001 bool hugetlb_reserve_pages(struct inode *inode,
7002 					long from, long to,
7003 					struct vm_area_struct *vma,
7004 					vm_flags_t vm_flags)
7005 {
7006 	long chg = -1, add = -1;
7007 	struct hstate *h = hstate_inode(inode);
7008 	struct hugepage_subpool *spool = subpool_inode(inode);
7009 	struct resv_map *resv_map;
7010 	struct hugetlb_cgroup *h_cg = NULL;
7011 	long gbl_reserve, regions_needed = 0;
7012 
7013 	/* This should never happen */
7014 	if (from > to) {
7015 		VM_WARN(1, "%s called with a negative range\n", __func__);
7016 		return false;
7017 	}
7018 
7019 	/*
7020 	 * vma specific semaphore used for pmd sharing and fault/truncation
7021 	 * synchronization
7022 	 */
7023 	hugetlb_vma_lock_alloc(vma);
7024 
7025 	/*
7026 	 * Only apply hugepage reservation if asked. At fault time, an
7027 	 * attempt will be made for VM_NORESERVE to allocate a page
7028 	 * without using reserves
7029 	 */
7030 	if (vm_flags & VM_NORESERVE)
7031 		return true;
7032 
7033 	/*
7034 	 * Shared mappings base their reservation on the number of pages that
7035 	 * are already allocated on behalf of the file. Private mappings need
7036 	 * to reserve the full area even if read-only as mprotect() may be
7037 	 * called to make the mapping read-write. Assume !vma is a shm mapping
7038 	 */
7039 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
7040 		/*
7041 		 * resv_map can not be NULL as hugetlb_reserve_pages is only
7042 		 * called for inodes for which resv_maps were created (see
7043 		 * hugetlbfs_get_inode).
7044 		 */
7045 		resv_map = inode_resv_map(inode);
7046 
7047 		chg = region_chg(resv_map, from, to, &regions_needed);
7048 	} else {
7049 		/* Private mapping. */
7050 		resv_map = resv_map_alloc();
7051 		if (!resv_map)
7052 			goto out_err;
7053 
7054 		chg = to - from;
7055 
7056 		set_vma_resv_map(vma, resv_map);
7057 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
7058 	}
7059 
7060 	if (chg < 0)
7061 		goto out_err;
7062 
7063 	if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
7064 				chg * pages_per_huge_page(h), &h_cg) < 0)
7065 		goto out_err;
7066 
7067 	if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
7068 		/* For private mappings, the hugetlb_cgroup uncharge info hangs
7069 		 * of the resv_map.
7070 		 */
7071 		resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
7072 	}
7073 
7074 	/*
7075 	 * There must be enough pages in the subpool for the mapping. If
7076 	 * the subpool has a minimum size, there may be some global
7077 	 * reservations already in place (gbl_reserve).
7078 	 */
7079 	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
7080 	if (gbl_reserve < 0)
7081 		goto out_uncharge_cgroup;
7082 
7083 	/*
7084 	 * Check enough hugepages are available for the reservation.
7085 	 * Hand the pages back to the subpool if there are not
7086 	 */
7087 	if (hugetlb_acct_memory(h, gbl_reserve) < 0)
7088 		goto out_put_pages;
7089 
7090 	/*
7091 	 * Account for the reservations made. Shared mappings record regions
7092 	 * that have reservations as they are shared by multiple VMAs.
7093 	 * When the last VMA disappears, the region map says how much
7094 	 * the reservation was and the page cache tells how much of
7095 	 * the reservation was consumed. Private mappings are per-VMA and
7096 	 * only the consumed reservations are tracked. When the VMA
7097 	 * disappears, the original reservation is the VMA size and the
7098 	 * consumed reservations are stored in the map. Hence, nothing
7099 	 * else has to be done for private mappings here
7100 	 */
7101 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
7102 		add = region_add(resv_map, from, to, regions_needed, h, h_cg);
7103 
7104 		if (unlikely(add < 0)) {
7105 			hugetlb_acct_memory(h, -gbl_reserve);
7106 			goto out_put_pages;
7107 		} else if (unlikely(chg > add)) {
7108 			/*
7109 			 * pages in this range were added to the reserve
7110 			 * map between region_chg and region_add.  This
7111 			 * indicates a race with alloc_hugetlb_folio.  Adjust
7112 			 * the subpool and reserve counts modified above
7113 			 * based on the difference.
7114 			 */
7115 			long rsv_adjust;
7116 
7117 			/*
7118 			 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
7119 			 * reference to h_cg->css. See comment below for detail.
7120 			 */
7121 			hugetlb_cgroup_uncharge_cgroup_rsvd(
7122 				hstate_index(h),
7123 				(chg - add) * pages_per_huge_page(h), h_cg);
7124 
7125 			rsv_adjust = hugepage_subpool_put_pages(spool,
7126 								chg - add);
7127 			hugetlb_acct_memory(h, -rsv_adjust);
7128 		} else if (h_cg) {
7129 			/*
7130 			 * The file_regions will hold their own reference to
7131 			 * h_cg->css. So we should release the reference held
7132 			 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
7133 			 * done.
7134 			 */
7135 			hugetlb_cgroup_put_rsvd_cgroup(h_cg);
7136 		}
7137 	}
7138 	return true;
7139 
7140 out_put_pages:
7141 	/* put back original number of pages, chg */
7142 	(void)hugepage_subpool_put_pages(spool, chg);
7143 out_uncharge_cgroup:
7144 	hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
7145 					    chg * pages_per_huge_page(h), h_cg);
7146 out_err:
7147 	hugetlb_vma_lock_free(vma);
7148 	if (!vma || vma->vm_flags & VM_MAYSHARE)
7149 		/* Only call region_abort if the region_chg succeeded but the
7150 		 * region_add failed or didn't run.
7151 		 */
7152 		if (chg >= 0 && add < 0)
7153 			region_abort(resv_map, from, to, regions_needed);
7154 	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
7155 		kref_put(&resv_map->refs, resv_map_release);
7156 		set_vma_resv_map(vma, NULL);
7157 	}
7158 	return false;
7159 }
7160 
7161 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
7162 								long freed)
7163 {
7164 	struct hstate *h = hstate_inode(inode);
7165 	struct resv_map *resv_map = inode_resv_map(inode);
7166 	long chg = 0;
7167 	struct hugepage_subpool *spool = subpool_inode(inode);
7168 	long gbl_reserve;
7169 
7170 	/*
7171 	 * Since this routine can be called in the evict inode path for all
7172 	 * hugetlbfs inodes, resv_map could be NULL.
7173 	 */
7174 	if (resv_map) {
7175 		chg = region_del(resv_map, start, end);
7176 		/*
7177 		 * region_del() can fail in the rare case where a region
7178 		 * must be split and another region descriptor can not be
7179 		 * allocated.  If end == LONG_MAX, it will not fail.
7180 		 */
7181 		if (chg < 0)
7182 			return chg;
7183 	}
7184 
7185 	spin_lock(&inode->i_lock);
7186 	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
7187 	spin_unlock(&inode->i_lock);
7188 
7189 	/*
7190 	 * If the subpool has a minimum size, the number of global
7191 	 * reservations to be released may be adjusted.
7192 	 *
7193 	 * Note that !resv_map implies freed == 0. So (chg - freed)
7194 	 * won't go negative.
7195 	 */
7196 	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
7197 	hugetlb_acct_memory(h, -gbl_reserve);
7198 
7199 	return 0;
7200 }
7201 
7202 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7203 static unsigned long page_table_shareable(struct vm_area_struct *svma,
7204 				struct vm_area_struct *vma,
7205 				unsigned long addr, pgoff_t idx)
7206 {
7207 	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
7208 				svma->vm_start;
7209 	unsigned long sbase = saddr & PUD_MASK;
7210 	unsigned long s_end = sbase + PUD_SIZE;
7211 
7212 	/* Allow segments to share if only one is marked locked */
7213 	unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED_MASK;
7214 	unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED_MASK;
7215 
7216 	/*
7217 	 * match the virtual addresses, permission and the alignment of the
7218 	 * page table page.
7219 	 *
7220 	 * Also, vma_lock (vm_private_data) is required for sharing.
7221 	 */
7222 	if (pmd_index(addr) != pmd_index(saddr) ||
7223 	    vm_flags != svm_flags ||
7224 	    !range_in_vma(svma, sbase, s_end) ||
7225 	    !svma->vm_private_data)
7226 		return 0;
7227 
7228 	return saddr;
7229 }
7230 
7231 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7232 {
7233 	unsigned long start = addr & PUD_MASK;
7234 	unsigned long end = start + PUD_SIZE;
7235 
7236 #ifdef CONFIG_USERFAULTFD
7237 	if (uffd_disable_huge_pmd_share(vma))
7238 		return false;
7239 #endif
7240 	/*
7241 	 * check on proper vm_flags and page table alignment
7242 	 */
7243 	if (!(vma->vm_flags & VM_MAYSHARE))
7244 		return false;
7245 	if (!vma->vm_private_data)	/* vma lock required for sharing */
7246 		return false;
7247 	if (!range_in_vma(vma, start, end))
7248 		return false;
7249 	return true;
7250 }
7251 
7252 /*
7253  * Determine if start,end range within vma could be mapped by shared pmd.
7254  * If yes, adjust start and end to cover range associated with possible
7255  * shared pmd mappings.
7256  */
7257 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7258 				unsigned long *start, unsigned long *end)
7259 {
7260 	unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
7261 		v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
7262 
7263 	/*
7264 	 * vma needs to span at least one aligned PUD size, and the range
7265 	 * must be at least partially within in.
7266 	 */
7267 	if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
7268 		(*end <= v_start) || (*start >= v_end))
7269 		return;
7270 
7271 	/* Extend the range to be PUD aligned for a worst case scenario */
7272 	if (*start > v_start)
7273 		*start = ALIGN_DOWN(*start, PUD_SIZE);
7274 
7275 	if (*end < v_end)
7276 		*end = ALIGN(*end, PUD_SIZE);
7277 }
7278 
7279 /*
7280  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
7281  * and returns the corresponding pte. While this is not necessary for the
7282  * !shared pmd case because we can allocate the pmd later as well, it makes the
7283  * code much cleaner. pmd allocation is essential for the shared case because
7284  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
7285  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
7286  * bad pmd for sharing.
7287  */
7288 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7289 		      unsigned long addr, pud_t *pud)
7290 {
7291 	struct address_space *mapping = vma->vm_file->f_mapping;
7292 	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
7293 			vma->vm_pgoff;
7294 	struct vm_area_struct *svma;
7295 	unsigned long saddr;
7296 	pte_t *spte = NULL;
7297 	pte_t *pte;
7298 
7299 	i_mmap_lock_read(mapping);
7300 	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
7301 		if (svma == vma)
7302 			continue;
7303 
7304 		saddr = page_table_shareable(svma, vma, addr, idx);
7305 		if (saddr) {
7306 			spte = hugetlb_walk(svma, saddr,
7307 					    vma_mmu_pagesize(svma));
7308 			if (spte) {
7309 				get_page(virt_to_page(spte));
7310 				break;
7311 			}
7312 		}
7313 	}
7314 
7315 	if (!spte)
7316 		goto out;
7317 
7318 	spin_lock(&mm->page_table_lock);
7319 	if (pud_none(*pud)) {
7320 		pud_populate(mm, pud,
7321 				(pmd_t *)((unsigned long)spte & PAGE_MASK));
7322 		mm_inc_nr_pmds(mm);
7323 	} else {
7324 		put_page(virt_to_page(spte));
7325 	}
7326 	spin_unlock(&mm->page_table_lock);
7327 out:
7328 	pte = (pte_t *)pmd_alloc(mm, pud, addr);
7329 	i_mmap_unlock_read(mapping);
7330 	return pte;
7331 }
7332 
7333 /*
7334  * unmap huge page backed by shared pte.
7335  *
7336  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
7337  * indicated by page_count > 1, unmap is achieved by clearing pud and
7338  * decrementing the ref count. If count == 1, the pte page is not shared.
7339  *
7340  * Called with page table lock held.
7341  *
7342  * returns: 1 successfully unmapped a shared pte page
7343  *	    0 the underlying pte page is not shared, or it is the last user
7344  */
7345 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7346 					unsigned long addr, pte_t *ptep)
7347 {
7348 	pgd_t *pgd = pgd_offset(mm, addr);
7349 	p4d_t *p4d = p4d_offset(pgd, addr);
7350 	pud_t *pud = pud_offset(p4d, addr);
7351 
7352 	i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7353 	hugetlb_vma_assert_locked(vma);
7354 	BUG_ON(page_count(virt_to_page(ptep)) == 0);
7355 	if (page_count(virt_to_page(ptep)) == 1)
7356 		return 0;
7357 
7358 	pud_clear(pud);
7359 	put_page(virt_to_page(ptep));
7360 	mm_dec_nr_pmds(mm);
7361 	return 1;
7362 }
7363 
7364 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7365 
7366 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7367 		      unsigned long addr, pud_t *pud)
7368 {
7369 	return NULL;
7370 }
7371 
7372 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7373 				unsigned long addr, pte_t *ptep)
7374 {
7375 	return 0;
7376 }
7377 
7378 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7379 				unsigned long *start, unsigned long *end)
7380 {
7381 }
7382 
7383 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7384 {
7385 	return false;
7386 }
7387 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7388 
7389 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
7390 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
7391 			unsigned long addr, unsigned long sz)
7392 {
7393 	pgd_t *pgd;
7394 	p4d_t *p4d;
7395 	pud_t *pud;
7396 	pte_t *pte = NULL;
7397 
7398 	pgd = pgd_offset(mm, addr);
7399 	p4d = p4d_alloc(mm, pgd, addr);
7400 	if (!p4d)
7401 		return NULL;
7402 	pud = pud_alloc(mm, p4d, addr);
7403 	if (pud) {
7404 		if (sz == PUD_SIZE) {
7405 			pte = (pte_t *)pud;
7406 		} else {
7407 			BUG_ON(sz != PMD_SIZE);
7408 			if (want_pmd_share(vma, addr) && pud_none(*pud))
7409 				pte = huge_pmd_share(mm, vma, addr, pud);
7410 			else
7411 				pte = (pte_t *)pmd_alloc(mm, pud, addr);
7412 		}
7413 	}
7414 
7415 	if (pte) {
7416 		pte_t pteval = ptep_get_lockless(pte);
7417 
7418 		BUG_ON(pte_present(pteval) && !pte_huge(pteval));
7419 	}
7420 
7421 	return pte;
7422 }
7423 
7424 /*
7425  * huge_pte_offset() - Walk the page table to resolve the hugepage
7426  * entry at address @addr
7427  *
7428  * Return: Pointer to page table entry (PUD or PMD) for
7429  * address @addr, or NULL if a !p*d_present() entry is encountered and the
7430  * size @sz doesn't match the hugepage size at this level of the page
7431  * table.
7432  */
7433 pte_t *huge_pte_offset(struct mm_struct *mm,
7434 		       unsigned long addr, unsigned long sz)
7435 {
7436 	pgd_t *pgd;
7437 	p4d_t *p4d;
7438 	pud_t *pud;
7439 	pmd_t *pmd;
7440 
7441 	pgd = pgd_offset(mm, addr);
7442 	if (!pgd_present(*pgd))
7443 		return NULL;
7444 	p4d = p4d_offset(pgd, addr);
7445 	if (!p4d_present(*p4d))
7446 		return NULL;
7447 
7448 	pud = pud_offset(p4d, addr);
7449 	if (sz == PUD_SIZE)
7450 		/* must be pud huge, non-present or none */
7451 		return (pte_t *)pud;
7452 	if (!pud_present(*pud))
7453 		return NULL;
7454 	/* must have a valid entry and size to go further */
7455 
7456 	pmd = pmd_offset(pud, addr);
7457 	/* must be pmd huge, non-present or none */
7458 	return (pte_t *)pmd;
7459 }
7460 
7461 /*
7462  * Return a mask that can be used to update an address to the last huge
7463  * page in a page table page mapping size.  Used to skip non-present
7464  * page table entries when linearly scanning address ranges.  Architectures
7465  * with unique huge page to page table relationships can define their own
7466  * version of this routine.
7467  */
7468 unsigned long hugetlb_mask_last_page(struct hstate *h)
7469 {
7470 	unsigned long hp_size = huge_page_size(h);
7471 
7472 	if (hp_size == PUD_SIZE)
7473 		return P4D_SIZE - PUD_SIZE;
7474 	else if (hp_size == PMD_SIZE)
7475 		return PUD_SIZE - PMD_SIZE;
7476 	else
7477 		return 0UL;
7478 }
7479 
7480 #else
7481 
7482 /* See description above.  Architectures can provide their own version. */
7483 __weak unsigned long hugetlb_mask_last_page(struct hstate *h)
7484 {
7485 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7486 	if (huge_page_size(h) == PMD_SIZE)
7487 		return PUD_SIZE - PMD_SIZE;
7488 #endif
7489 	return 0UL;
7490 }
7491 
7492 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
7493 
7494 /*
7495  * These functions are overwritable if your architecture needs its own
7496  * behavior.
7497  */
7498 bool isolate_hugetlb(struct folio *folio, struct list_head *list)
7499 {
7500 	bool ret = true;
7501 
7502 	spin_lock_irq(&hugetlb_lock);
7503 	if (!folio_test_hugetlb(folio) ||
7504 	    !folio_test_hugetlb_migratable(folio) ||
7505 	    !folio_try_get(folio)) {
7506 		ret = false;
7507 		goto unlock;
7508 	}
7509 	folio_clear_hugetlb_migratable(folio);
7510 	list_move_tail(&folio->lru, list);
7511 unlock:
7512 	spin_unlock_irq(&hugetlb_lock);
7513 	return ret;
7514 }
7515 
7516 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison)
7517 {
7518 	int ret = 0;
7519 
7520 	*hugetlb = false;
7521 	spin_lock_irq(&hugetlb_lock);
7522 	if (folio_test_hugetlb(folio)) {
7523 		*hugetlb = true;
7524 		if (folio_test_hugetlb_freed(folio))
7525 			ret = 0;
7526 		else if (folio_test_hugetlb_migratable(folio) || unpoison)
7527 			ret = folio_try_get(folio);
7528 		else
7529 			ret = -EBUSY;
7530 	}
7531 	spin_unlock_irq(&hugetlb_lock);
7532 	return ret;
7533 }
7534 
7535 int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
7536 				bool *migratable_cleared)
7537 {
7538 	int ret;
7539 
7540 	spin_lock_irq(&hugetlb_lock);
7541 	ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared);
7542 	spin_unlock_irq(&hugetlb_lock);
7543 	return ret;
7544 }
7545 
7546 void folio_putback_active_hugetlb(struct folio *folio)
7547 {
7548 	spin_lock_irq(&hugetlb_lock);
7549 	folio_set_hugetlb_migratable(folio);
7550 	list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist);
7551 	spin_unlock_irq(&hugetlb_lock);
7552 	folio_put(folio);
7553 }
7554 
7555 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason)
7556 {
7557 	struct hstate *h = folio_hstate(old_folio);
7558 
7559 	hugetlb_cgroup_migrate(old_folio, new_folio);
7560 	set_page_owner_migrate_reason(&new_folio->page, reason);
7561 
7562 	/*
7563 	 * transfer temporary state of the new hugetlb folio. This is
7564 	 * reverse to other transitions because the newpage is going to
7565 	 * be final while the old one will be freed so it takes over
7566 	 * the temporary status.
7567 	 *
7568 	 * Also note that we have to transfer the per-node surplus state
7569 	 * here as well otherwise the global surplus count will not match
7570 	 * the per-node's.
7571 	 */
7572 	if (folio_test_hugetlb_temporary(new_folio)) {
7573 		int old_nid = folio_nid(old_folio);
7574 		int new_nid = folio_nid(new_folio);
7575 
7576 		folio_set_hugetlb_temporary(old_folio);
7577 		folio_clear_hugetlb_temporary(new_folio);
7578 
7579 
7580 		/*
7581 		 * There is no need to transfer the per-node surplus state
7582 		 * when we do not cross the node.
7583 		 */
7584 		if (new_nid == old_nid)
7585 			return;
7586 		spin_lock_irq(&hugetlb_lock);
7587 		if (h->surplus_huge_pages_node[old_nid]) {
7588 			h->surplus_huge_pages_node[old_nid]--;
7589 			h->surplus_huge_pages_node[new_nid]++;
7590 		}
7591 		spin_unlock_irq(&hugetlb_lock);
7592 	}
7593 }
7594 
7595 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
7596 				   unsigned long start,
7597 				   unsigned long end)
7598 {
7599 	struct hstate *h = hstate_vma(vma);
7600 	unsigned long sz = huge_page_size(h);
7601 	struct mm_struct *mm = vma->vm_mm;
7602 	struct mmu_notifier_range range;
7603 	unsigned long address;
7604 	spinlock_t *ptl;
7605 	pte_t *ptep;
7606 
7607 	if (!(vma->vm_flags & VM_MAYSHARE))
7608 		return;
7609 
7610 	if (start >= end)
7611 		return;
7612 
7613 	flush_cache_range(vma, start, end);
7614 	/*
7615 	 * No need to call adjust_range_if_pmd_sharing_possible(), because
7616 	 * we have already done the PUD_SIZE alignment.
7617 	 */
7618 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
7619 				start, end);
7620 	mmu_notifier_invalidate_range_start(&range);
7621 	hugetlb_vma_lock_write(vma);
7622 	i_mmap_lock_write(vma->vm_file->f_mapping);
7623 	for (address = start; address < end; address += PUD_SIZE) {
7624 		ptep = hugetlb_walk(vma, address, sz);
7625 		if (!ptep)
7626 			continue;
7627 		ptl = huge_pte_lock(h, mm, ptep);
7628 		huge_pmd_unshare(mm, vma, address, ptep);
7629 		spin_unlock(ptl);
7630 	}
7631 	flush_hugetlb_tlb_range(vma, start, end);
7632 	i_mmap_unlock_write(vma->vm_file->f_mapping);
7633 	hugetlb_vma_unlock_write(vma);
7634 	/*
7635 	 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs(), see
7636 	 * Documentation/mm/mmu_notifier.rst.
7637 	 */
7638 	mmu_notifier_invalidate_range_end(&range);
7639 }
7640 
7641 /*
7642  * This function will unconditionally remove all the shared pmd pgtable entries
7643  * within the specific vma for a hugetlbfs memory range.
7644  */
7645 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7646 {
7647 	hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE),
7648 			ALIGN_DOWN(vma->vm_end, PUD_SIZE));
7649 }
7650 
7651 #ifdef CONFIG_CMA
7652 static bool cma_reserve_called __initdata;
7653 
7654 static int __init cmdline_parse_hugetlb_cma(char *p)
7655 {
7656 	int nid, count = 0;
7657 	unsigned long tmp;
7658 	char *s = p;
7659 
7660 	while (*s) {
7661 		if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7662 			break;
7663 
7664 		if (s[count] == ':') {
7665 			if (tmp >= MAX_NUMNODES)
7666 				break;
7667 			nid = array_index_nospec(tmp, MAX_NUMNODES);
7668 
7669 			s += count + 1;
7670 			tmp = memparse(s, &s);
7671 			hugetlb_cma_size_in_node[nid] = tmp;
7672 			hugetlb_cma_size += tmp;
7673 
7674 			/*
7675 			 * Skip the separator if have one, otherwise
7676 			 * break the parsing.
7677 			 */
7678 			if (*s == ',')
7679 				s++;
7680 			else
7681 				break;
7682 		} else {
7683 			hugetlb_cma_size = memparse(p, &p);
7684 			break;
7685 		}
7686 	}
7687 
7688 	return 0;
7689 }
7690 
7691 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7692 
7693 void __init hugetlb_cma_reserve(int order)
7694 {
7695 	unsigned long size, reserved, per_node;
7696 	bool node_specific_cma_alloc = false;
7697 	int nid;
7698 
7699 	cma_reserve_called = true;
7700 
7701 	if (!hugetlb_cma_size)
7702 		return;
7703 
7704 	for (nid = 0; nid < MAX_NUMNODES; nid++) {
7705 		if (hugetlb_cma_size_in_node[nid] == 0)
7706 			continue;
7707 
7708 		if (!node_online(nid)) {
7709 			pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7710 			hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7711 			hugetlb_cma_size_in_node[nid] = 0;
7712 			continue;
7713 		}
7714 
7715 		if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7716 			pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7717 				nid, (PAGE_SIZE << order) / SZ_1M);
7718 			hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7719 			hugetlb_cma_size_in_node[nid] = 0;
7720 		} else {
7721 			node_specific_cma_alloc = true;
7722 		}
7723 	}
7724 
7725 	/* Validate the CMA size again in case some invalid nodes specified. */
7726 	if (!hugetlb_cma_size)
7727 		return;
7728 
7729 	if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7730 		pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7731 			(PAGE_SIZE << order) / SZ_1M);
7732 		hugetlb_cma_size = 0;
7733 		return;
7734 	}
7735 
7736 	if (!node_specific_cma_alloc) {
7737 		/*
7738 		 * If 3 GB area is requested on a machine with 4 numa nodes,
7739 		 * let's allocate 1 GB on first three nodes and ignore the last one.
7740 		 */
7741 		per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7742 		pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7743 			hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7744 	}
7745 
7746 	reserved = 0;
7747 	for_each_online_node(nid) {
7748 		int res;
7749 		char name[CMA_MAX_NAME];
7750 
7751 		if (node_specific_cma_alloc) {
7752 			if (hugetlb_cma_size_in_node[nid] == 0)
7753 				continue;
7754 
7755 			size = hugetlb_cma_size_in_node[nid];
7756 		} else {
7757 			size = min(per_node, hugetlb_cma_size - reserved);
7758 		}
7759 
7760 		size = round_up(size, PAGE_SIZE << order);
7761 
7762 		snprintf(name, sizeof(name), "hugetlb%d", nid);
7763 		/*
7764 		 * Note that 'order per bit' is based on smallest size that
7765 		 * may be returned to CMA allocator in the case of
7766 		 * huge page demotion.
7767 		 */
7768 		res = cma_declare_contiguous_nid(0, size, 0,
7769 						PAGE_SIZE << HUGETLB_PAGE_ORDER,
7770 						 0, false, name,
7771 						 &hugetlb_cma[nid], nid);
7772 		if (res) {
7773 			pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7774 				res, nid);
7775 			continue;
7776 		}
7777 
7778 		reserved += size;
7779 		pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7780 			size / SZ_1M, nid);
7781 
7782 		if (reserved >= hugetlb_cma_size)
7783 			break;
7784 	}
7785 
7786 	if (!reserved)
7787 		/*
7788 		 * hugetlb_cma_size is used to determine if allocations from
7789 		 * cma are possible.  Set to zero if no cma regions are set up.
7790 		 */
7791 		hugetlb_cma_size = 0;
7792 }
7793 
7794 static void __init hugetlb_cma_check(void)
7795 {
7796 	if (!hugetlb_cma_size || cma_reserve_called)
7797 		return;
7798 
7799 	pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7800 }
7801 
7802 #endif /* CONFIG_CMA */
7803