xref: /linux/mm/hugetlb.c (revision 89713ce5518eda6b370c7a17edbcab4f97a39f68)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 #include <linux/migrate.h>
34 #include <linux/nospec.h>
35 #include <linux/delayacct.h>
36 #include <linux/memory.h>
37 #include <linux/mm_inline.h>
38 #include <linux/padata.h>
39 
40 #include <asm/page.h>
41 #include <asm/pgalloc.h>
42 #include <asm/tlb.h>
43 
44 #include <linux/io.h>
45 #include <linux/hugetlb.h>
46 #include <linux/hugetlb_cgroup.h>
47 #include <linux/node.h>
48 #include <linux/page_owner.h>
49 #include "internal.h"
50 #include "hugetlb_vmemmap.h"
51 
52 int hugetlb_max_hstate __read_mostly;
53 unsigned int default_hstate_idx;
54 struct hstate hstates[HUGE_MAX_HSTATE];
55 
56 #ifdef CONFIG_CMA
57 static struct cma *hugetlb_cma[MAX_NUMNODES];
58 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
59 #endif
60 static unsigned long hugetlb_cma_size __initdata;
61 
62 __initdata struct list_head huge_boot_pages[MAX_NUMNODES];
63 
64 /* for command line parsing */
65 static struct hstate * __initdata parsed_hstate;
66 static unsigned long __initdata default_hstate_max_huge_pages;
67 static bool __initdata parsed_valid_hugepagesz = true;
68 static bool __initdata parsed_default_hugepagesz;
69 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
70 
71 /*
72  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
73  * free_huge_pages, and surplus_huge_pages.
74  */
75 __cacheline_aligned_in_smp DEFINE_SPINLOCK(hugetlb_lock);
76 
77 /*
78  * Serializes faults on the same logical page.  This is used to
79  * prevent spurious OOMs when the hugepage pool is fully utilized.
80  */
81 static int num_fault_mutexes __ro_after_init;
82 struct mutex *hugetlb_fault_mutex_table __ro_after_init;
83 
84 /* Forward declaration */
85 static int hugetlb_acct_memory(struct hstate *h, long delta);
86 static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
87 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
88 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
89 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
90 		unsigned long start, unsigned long end);
91 static struct resv_map *vma_resv_map(struct vm_area_struct *vma);
92 
93 static void hugetlb_free_folio(struct folio *folio)
94 {
95 #ifdef CONFIG_CMA
96 	int nid = folio_nid(folio);
97 
98 	if (cma_free_folio(hugetlb_cma[nid], folio))
99 		return;
100 #endif
101 	folio_put(folio);
102 }
103 
104 static inline bool subpool_is_free(struct hugepage_subpool *spool)
105 {
106 	if (spool->count)
107 		return false;
108 	if (spool->max_hpages != -1)
109 		return spool->used_hpages == 0;
110 	if (spool->min_hpages != -1)
111 		return spool->rsv_hpages == spool->min_hpages;
112 
113 	return true;
114 }
115 
116 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
117 						unsigned long irq_flags)
118 {
119 	spin_unlock_irqrestore(&spool->lock, irq_flags);
120 
121 	/* If no pages are used, and no other handles to the subpool
122 	 * remain, give up any reservations based on minimum size and
123 	 * free the subpool */
124 	if (subpool_is_free(spool)) {
125 		if (spool->min_hpages != -1)
126 			hugetlb_acct_memory(spool->hstate,
127 						-spool->min_hpages);
128 		kfree(spool);
129 	}
130 }
131 
132 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
133 						long min_hpages)
134 {
135 	struct hugepage_subpool *spool;
136 
137 	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
138 	if (!spool)
139 		return NULL;
140 
141 	spin_lock_init(&spool->lock);
142 	spool->count = 1;
143 	spool->max_hpages = max_hpages;
144 	spool->hstate = h;
145 	spool->min_hpages = min_hpages;
146 
147 	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
148 		kfree(spool);
149 		return NULL;
150 	}
151 	spool->rsv_hpages = min_hpages;
152 
153 	return spool;
154 }
155 
156 void hugepage_put_subpool(struct hugepage_subpool *spool)
157 {
158 	unsigned long flags;
159 
160 	spin_lock_irqsave(&spool->lock, flags);
161 	BUG_ON(!spool->count);
162 	spool->count--;
163 	unlock_or_release_subpool(spool, flags);
164 }
165 
166 /*
167  * Subpool accounting for allocating and reserving pages.
168  * Return -ENOMEM if there are not enough resources to satisfy the
169  * request.  Otherwise, return the number of pages by which the
170  * global pools must be adjusted (upward).  The returned value may
171  * only be different than the passed value (delta) in the case where
172  * a subpool minimum size must be maintained.
173  */
174 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
175 				      long delta)
176 {
177 	long ret = delta;
178 
179 	if (!spool)
180 		return ret;
181 
182 	spin_lock_irq(&spool->lock);
183 
184 	if (spool->max_hpages != -1) {		/* maximum size accounting */
185 		if ((spool->used_hpages + delta) <= spool->max_hpages)
186 			spool->used_hpages += delta;
187 		else {
188 			ret = -ENOMEM;
189 			goto unlock_ret;
190 		}
191 	}
192 
193 	/* minimum size accounting */
194 	if (spool->min_hpages != -1 && spool->rsv_hpages) {
195 		if (delta > spool->rsv_hpages) {
196 			/*
197 			 * Asking for more reserves than those already taken on
198 			 * behalf of subpool.  Return difference.
199 			 */
200 			ret = delta - spool->rsv_hpages;
201 			spool->rsv_hpages = 0;
202 		} else {
203 			ret = 0;	/* reserves already accounted for */
204 			spool->rsv_hpages -= delta;
205 		}
206 	}
207 
208 unlock_ret:
209 	spin_unlock_irq(&spool->lock);
210 	return ret;
211 }
212 
213 /*
214  * Subpool accounting for freeing and unreserving pages.
215  * Return the number of global page reservations that must be dropped.
216  * The return value may only be different than the passed value (delta)
217  * in the case where a subpool minimum size must be maintained.
218  */
219 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
220 				       long delta)
221 {
222 	long ret = delta;
223 	unsigned long flags;
224 
225 	if (!spool)
226 		return delta;
227 
228 	spin_lock_irqsave(&spool->lock, flags);
229 
230 	if (spool->max_hpages != -1)		/* maximum size accounting */
231 		spool->used_hpages -= delta;
232 
233 	 /* minimum size accounting */
234 	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
235 		if (spool->rsv_hpages + delta <= spool->min_hpages)
236 			ret = 0;
237 		else
238 			ret = spool->rsv_hpages + delta - spool->min_hpages;
239 
240 		spool->rsv_hpages += delta;
241 		if (spool->rsv_hpages > spool->min_hpages)
242 			spool->rsv_hpages = spool->min_hpages;
243 	}
244 
245 	/*
246 	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
247 	 * quota reference, free it now.
248 	 */
249 	unlock_or_release_subpool(spool, flags);
250 
251 	return ret;
252 }
253 
254 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
255 {
256 	return HUGETLBFS_SB(inode->i_sb)->spool;
257 }
258 
259 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
260 {
261 	return subpool_inode(file_inode(vma->vm_file));
262 }
263 
264 /*
265  * hugetlb vma_lock helper routines
266  */
267 void hugetlb_vma_lock_read(struct vm_area_struct *vma)
268 {
269 	if (__vma_shareable_lock(vma)) {
270 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
271 
272 		down_read(&vma_lock->rw_sema);
273 	} else if (__vma_private_lock(vma)) {
274 		struct resv_map *resv_map = vma_resv_map(vma);
275 
276 		down_read(&resv_map->rw_sema);
277 	}
278 }
279 
280 void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
281 {
282 	if (__vma_shareable_lock(vma)) {
283 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
284 
285 		up_read(&vma_lock->rw_sema);
286 	} else if (__vma_private_lock(vma)) {
287 		struct resv_map *resv_map = vma_resv_map(vma);
288 
289 		up_read(&resv_map->rw_sema);
290 	}
291 }
292 
293 void hugetlb_vma_lock_write(struct vm_area_struct *vma)
294 {
295 	if (__vma_shareable_lock(vma)) {
296 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
297 
298 		down_write(&vma_lock->rw_sema);
299 	} else if (__vma_private_lock(vma)) {
300 		struct resv_map *resv_map = vma_resv_map(vma);
301 
302 		down_write(&resv_map->rw_sema);
303 	}
304 }
305 
306 void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
307 {
308 	if (__vma_shareable_lock(vma)) {
309 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
310 
311 		up_write(&vma_lock->rw_sema);
312 	} else if (__vma_private_lock(vma)) {
313 		struct resv_map *resv_map = vma_resv_map(vma);
314 
315 		up_write(&resv_map->rw_sema);
316 	}
317 }
318 
319 int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
320 {
321 
322 	if (__vma_shareable_lock(vma)) {
323 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
324 
325 		return down_write_trylock(&vma_lock->rw_sema);
326 	} else if (__vma_private_lock(vma)) {
327 		struct resv_map *resv_map = vma_resv_map(vma);
328 
329 		return down_write_trylock(&resv_map->rw_sema);
330 	}
331 
332 	return 1;
333 }
334 
335 void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
336 {
337 	if (__vma_shareable_lock(vma)) {
338 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
339 
340 		lockdep_assert_held(&vma_lock->rw_sema);
341 	} else if (__vma_private_lock(vma)) {
342 		struct resv_map *resv_map = vma_resv_map(vma);
343 
344 		lockdep_assert_held(&resv_map->rw_sema);
345 	}
346 }
347 
348 void hugetlb_vma_lock_release(struct kref *kref)
349 {
350 	struct hugetlb_vma_lock *vma_lock = container_of(kref,
351 			struct hugetlb_vma_lock, refs);
352 
353 	kfree(vma_lock);
354 }
355 
356 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
357 {
358 	struct vm_area_struct *vma = vma_lock->vma;
359 
360 	/*
361 	 * vma_lock structure may or not be released as a result of put,
362 	 * it certainly will no longer be attached to vma so clear pointer.
363 	 * Semaphore synchronizes access to vma_lock->vma field.
364 	 */
365 	vma_lock->vma = NULL;
366 	vma->vm_private_data = NULL;
367 	up_write(&vma_lock->rw_sema);
368 	kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
369 }
370 
371 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
372 {
373 	if (__vma_shareable_lock(vma)) {
374 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
375 
376 		__hugetlb_vma_unlock_write_put(vma_lock);
377 	} else if (__vma_private_lock(vma)) {
378 		struct resv_map *resv_map = vma_resv_map(vma);
379 
380 		/* no free for anon vmas, but still need to unlock */
381 		up_write(&resv_map->rw_sema);
382 	}
383 }
384 
385 static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
386 {
387 	/*
388 	 * Only present in sharable vmas.
389 	 */
390 	if (!vma || !__vma_shareable_lock(vma))
391 		return;
392 
393 	if (vma->vm_private_data) {
394 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
395 
396 		down_write(&vma_lock->rw_sema);
397 		__hugetlb_vma_unlock_write_put(vma_lock);
398 	}
399 }
400 
401 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
402 {
403 	struct hugetlb_vma_lock *vma_lock;
404 
405 	/* Only establish in (flags) sharable vmas */
406 	if (!vma || !(vma->vm_flags & VM_MAYSHARE))
407 		return;
408 
409 	/* Should never get here with non-NULL vm_private_data */
410 	if (vma->vm_private_data)
411 		return;
412 
413 	vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
414 	if (!vma_lock) {
415 		/*
416 		 * If we can not allocate structure, then vma can not
417 		 * participate in pmd sharing.  This is only a possible
418 		 * performance enhancement and memory saving issue.
419 		 * However, the lock is also used to synchronize page
420 		 * faults with truncation.  If the lock is not present,
421 		 * unlikely races could leave pages in a file past i_size
422 		 * until the file is removed.  Warn in the unlikely case of
423 		 * allocation failure.
424 		 */
425 		pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
426 		return;
427 	}
428 
429 	kref_init(&vma_lock->refs);
430 	init_rwsem(&vma_lock->rw_sema);
431 	vma_lock->vma = vma;
432 	vma->vm_private_data = vma_lock;
433 }
434 
435 /* Helper that removes a struct file_region from the resv_map cache and returns
436  * it for use.
437  */
438 static struct file_region *
439 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
440 {
441 	struct file_region *nrg;
442 
443 	VM_BUG_ON(resv->region_cache_count <= 0);
444 
445 	resv->region_cache_count--;
446 	nrg = list_first_entry(&resv->region_cache, struct file_region, link);
447 	list_del(&nrg->link);
448 
449 	nrg->from = from;
450 	nrg->to = to;
451 
452 	return nrg;
453 }
454 
455 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
456 					      struct file_region *rg)
457 {
458 #ifdef CONFIG_CGROUP_HUGETLB
459 	nrg->reservation_counter = rg->reservation_counter;
460 	nrg->css = rg->css;
461 	if (rg->css)
462 		css_get(rg->css);
463 #endif
464 }
465 
466 /* Helper that records hugetlb_cgroup uncharge info. */
467 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
468 						struct hstate *h,
469 						struct resv_map *resv,
470 						struct file_region *nrg)
471 {
472 #ifdef CONFIG_CGROUP_HUGETLB
473 	if (h_cg) {
474 		nrg->reservation_counter =
475 			&h_cg->rsvd_hugepage[hstate_index(h)];
476 		nrg->css = &h_cg->css;
477 		/*
478 		 * The caller will hold exactly one h_cg->css reference for the
479 		 * whole contiguous reservation region. But this area might be
480 		 * scattered when there are already some file_regions reside in
481 		 * it. As a result, many file_regions may share only one css
482 		 * reference. In order to ensure that one file_region must hold
483 		 * exactly one h_cg->css reference, we should do css_get for
484 		 * each file_region and leave the reference held by caller
485 		 * untouched.
486 		 */
487 		css_get(&h_cg->css);
488 		if (!resv->pages_per_hpage)
489 			resv->pages_per_hpage = pages_per_huge_page(h);
490 		/* pages_per_hpage should be the same for all entries in
491 		 * a resv_map.
492 		 */
493 		VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
494 	} else {
495 		nrg->reservation_counter = NULL;
496 		nrg->css = NULL;
497 	}
498 #endif
499 }
500 
501 static void put_uncharge_info(struct file_region *rg)
502 {
503 #ifdef CONFIG_CGROUP_HUGETLB
504 	if (rg->css)
505 		css_put(rg->css);
506 #endif
507 }
508 
509 static bool has_same_uncharge_info(struct file_region *rg,
510 				   struct file_region *org)
511 {
512 #ifdef CONFIG_CGROUP_HUGETLB
513 	return rg->reservation_counter == org->reservation_counter &&
514 	       rg->css == org->css;
515 
516 #else
517 	return true;
518 #endif
519 }
520 
521 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
522 {
523 	struct file_region *nrg, *prg;
524 
525 	prg = list_prev_entry(rg, link);
526 	if (&prg->link != &resv->regions && prg->to == rg->from &&
527 	    has_same_uncharge_info(prg, rg)) {
528 		prg->to = rg->to;
529 
530 		list_del(&rg->link);
531 		put_uncharge_info(rg);
532 		kfree(rg);
533 
534 		rg = prg;
535 	}
536 
537 	nrg = list_next_entry(rg, link);
538 	if (&nrg->link != &resv->regions && nrg->from == rg->to &&
539 	    has_same_uncharge_info(nrg, rg)) {
540 		nrg->from = rg->from;
541 
542 		list_del(&rg->link);
543 		put_uncharge_info(rg);
544 		kfree(rg);
545 	}
546 }
547 
548 static inline long
549 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
550 		     long to, struct hstate *h, struct hugetlb_cgroup *cg,
551 		     long *regions_needed)
552 {
553 	struct file_region *nrg;
554 
555 	if (!regions_needed) {
556 		nrg = get_file_region_entry_from_cache(map, from, to);
557 		record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
558 		list_add(&nrg->link, rg);
559 		coalesce_file_region(map, nrg);
560 	} else
561 		*regions_needed += 1;
562 
563 	return to - from;
564 }
565 
566 /*
567  * Must be called with resv->lock held.
568  *
569  * Calling this with regions_needed != NULL will count the number of pages
570  * to be added but will not modify the linked list. And regions_needed will
571  * indicate the number of file_regions needed in the cache to carry out to add
572  * the regions for this range.
573  */
574 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
575 				     struct hugetlb_cgroup *h_cg,
576 				     struct hstate *h, long *regions_needed)
577 {
578 	long add = 0;
579 	struct list_head *head = &resv->regions;
580 	long last_accounted_offset = f;
581 	struct file_region *iter, *trg = NULL;
582 	struct list_head *rg = NULL;
583 
584 	if (regions_needed)
585 		*regions_needed = 0;
586 
587 	/* In this loop, we essentially handle an entry for the range
588 	 * [last_accounted_offset, iter->from), at every iteration, with some
589 	 * bounds checking.
590 	 */
591 	list_for_each_entry_safe(iter, trg, head, link) {
592 		/* Skip irrelevant regions that start before our range. */
593 		if (iter->from < f) {
594 			/* If this region ends after the last accounted offset,
595 			 * then we need to update last_accounted_offset.
596 			 */
597 			if (iter->to > last_accounted_offset)
598 				last_accounted_offset = iter->to;
599 			continue;
600 		}
601 
602 		/* When we find a region that starts beyond our range, we've
603 		 * finished.
604 		 */
605 		if (iter->from >= t) {
606 			rg = iter->link.prev;
607 			break;
608 		}
609 
610 		/* Add an entry for last_accounted_offset -> iter->from, and
611 		 * update last_accounted_offset.
612 		 */
613 		if (iter->from > last_accounted_offset)
614 			add += hugetlb_resv_map_add(resv, iter->link.prev,
615 						    last_accounted_offset,
616 						    iter->from, h, h_cg,
617 						    regions_needed);
618 
619 		last_accounted_offset = iter->to;
620 	}
621 
622 	/* Handle the case where our range extends beyond
623 	 * last_accounted_offset.
624 	 */
625 	if (!rg)
626 		rg = head->prev;
627 	if (last_accounted_offset < t)
628 		add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
629 					    t, h, h_cg, regions_needed);
630 
631 	return add;
632 }
633 
634 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
635  */
636 static int allocate_file_region_entries(struct resv_map *resv,
637 					int regions_needed)
638 	__must_hold(&resv->lock)
639 {
640 	LIST_HEAD(allocated_regions);
641 	int to_allocate = 0, i = 0;
642 	struct file_region *trg = NULL, *rg = NULL;
643 
644 	VM_BUG_ON(regions_needed < 0);
645 
646 	/*
647 	 * Check for sufficient descriptors in the cache to accommodate
648 	 * the number of in progress add operations plus regions_needed.
649 	 *
650 	 * This is a while loop because when we drop the lock, some other call
651 	 * to region_add or region_del may have consumed some region_entries,
652 	 * so we keep looping here until we finally have enough entries for
653 	 * (adds_in_progress + regions_needed).
654 	 */
655 	while (resv->region_cache_count <
656 	       (resv->adds_in_progress + regions_needed)) {
657 		to_allocate = resv->adds_in_progress + regions_needed -
658 			      resv->region_cache_count;
659 
660 		/* At this point, we should have enough entries in the cache
661 		 * for all the existing adds_in_progress. We should only be
662 		 * needing to allocate for regions_needed.
663 		 */
664 		VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
665 
666 		spin_unlock(&resv->lock);
667 		for (i = 0; i < to_allocate; i++) {
668 			trg = kmalloc(sizeof(*trg), GFP_KERNEL);
669 			if (!trg)
670 				goto out_of_memory;
671 			list_add(&trg->link, &allocated_regions);
672 		}
673 
674 		spin_lock(&resv->lock);
675 
676 		list_splice(&allocated_regions, &resv->region_cache);
677 		resv->region_cache_count += to_allocate;
678 	}
679 
680 	return 0;
681 
682 out_of_memory:
683 	list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
684 		list_del(&rg->link);
685 		kfree(rg);
686 	}
687 	return -ENOMEM;
688 }
689 
690 /*
691  * Add the huge page range represented by [f, t) to the reserve
692  * map.  Regions will be taken from the cache to fill in this range.
693  * Sufficient regions should exist in the cache due to the previous
694  * call to region_chg with the same range, but in some cases the cache will not
695  * have sufficient entries due to races with other code doing region_add or
696  * region_del.  The extra needed entries will be allocated.
697  *
698  * regions_needed is the out value provided by a previous call to region_chg.
699  *
700  * Return the number of new huge pages added to the map.  This number is greater
701  * than or equal to zero.  If file_region entries needed to be allocated for
702  * this operation and we were not able to allocate, it returns -ENOMEM.
703  * region_add of regions of length 1 never allocate file_regions and cannot
704  * fail; region_chg will always allocate at least 1 entry and a region_add for
705  * 1 page will only require at most 1 entry.
706  */
707 static long region_add(struct resv_map *resv, long f, long t,
708 		       long in_regions_needed, struct hstate *h,
709 		       struct hugetlb_cgroup *h_cg)
710 {
711 	long add = 0, actual_regions_needed = 0;
712 
713 	spin_lock(&resv->lock);
714 retry:
715 
716 	/* Count how many regions are actually needed to execute this add. */
717 	add_reservation_in_range(resv, f, t, NULL, NULL,
718 				 &actual_regions_needed);
719 
720 	/*
721 	 * Check for sufficient descriptors in the cache to accommodate
722 	 * this add operation. Note that actual_regions_needed may be greater
723 	 * than in_regions_needed, as the resv_map may have been modified since
724 	 * the region_chg call. In this case, we need to make sure that we
725 	 * allocate extra entries, such that we have enough for all the
726 	 * existing adds_in_progress, plus the excess needed for this
727 	 * operation.
728 	 */
729 	if (actual_regions_needed > in_regions_needed &&
730 	    resv->region_cache_count <
731 		    resv->adds_in_progress +
732 			    (actual_regions_needed - in_regions_needed)) {
733 		/* region_add operation of range 1 should never need to
734 		 * allocate file_region entries.
735 		 */
736 		VM_BUG_ON(t - f <= 1);
737 
738 		if (allocate_file_region_entries(
739 			    resv, actual_regions_needed - in_regions_needed)) {
740 			return -ENOMEM;
741 		}
742 
743 		goto retry;
744 	}
745 
746 	add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
747 
748 	resv->adds_in_progress -= in_regions_needed;
749 
750 	spin_unlock(&resv->lock);
751 	return add;
752 }
753 
754 /*
755  * Examine the existing reserve map and determine how many
756  * huge pages in the specified range [f, t) are NOT currently
757  * represented.  This routine is called before a subsequent
758  * call to region_add that will actually modify the reserve
759  * map to add the specified range [f, t).  region_chg does
760  * not change the number of huge pages represented by the
761  * map.  A number of new file_region structures is added to the cache as a
762  * placeholder, for the subsequent region_add call to use. At least 1
763  * file_region structure is added.
764  *
765  * out_regions_needed is the number of regions added to the
766  * resv->adds_in_progress.  This value needs to be provided to a follow up call
767  * to region_add or region_abort for proper accounting.
768  *
769  * Returns the number of huge pages that need to be added to the existing
770  * reservation map for the range [f, t).  This number is greater or equal to
771  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
772  * is needed and can not be allocated.
773  */
774 static long region_chg(struct resv_map *resv, long f, long t,
775 		       long *out_regions_needed)
776 {
777 	long chg = 0;
778 
779 	spin_lock(&resv->lock);
780 
781 	/* Count how many hugepages in this range are NOT represented. */
782 	chg = add_reservation_in_range(resv, f, t, NULL, NULL,
783 				       out_regions_needed);
784 
785 	if (*out_regions_needed == 0)
786 		*out_regions_needed = 1;
787 
788 	if (allocate_file_region_entries(resv, *out_regions_needed))
789 		return -ENOMEM;
790 
791 	resv->adds_in_progress += *out_regions_needed;
792 
793 	spin_unlock(&resv->lock);
794 	return chg;
795 }
796 
797 /*
798  * Abort the in progress add operation.  The adds_in_progress field
799  * of the resv_map keeps track of the operations in progress between
800  * calls to region_chg and region_add.  Operations are sometimes
801  * aborted after the call to region_chg.  In such cases, region_abort
802  * is called to decrement the adds_in_progress counter. regions_needed
803  * is the value returned by the region_chg call, it is used to decrement
804  * the adds_in_progress counter.
805  *
806  * NOTE: The range arguments [f, t) are not needed or used in this
807  * routine.  They are kept to make reading the calling code easier as
808  * arguments will match the associated region_chg call.
809  */
810 static void region_abort(struct resv_map *resv, long f, long t,
811 			 long regions_needed)
812 {
813 	spin_lock(&resv->lock);
814 	VM_BUG_ON(!resv->region_cache_count);
815 	resv->adds_in_progress -= regions_needed;
816 	spin_unlock(&resv->lock);
817 }
818 
819 /*
820  * Delete the specified range [f, t) from the reserve map.  If the
821  * t parameter is LONG_MAX, this indicates that ALL regions after f
822  * should be deleted.  Locate the regions which intersect [f, t)
823  * and either trim, delete or split the existing regions.
824  *
825  * Returns the number of huge pages deleted from the reserve map.
826  * In the normal case, the return value is zero or more.  In the
827  * case where a region must be split, a new region descriptor must
828  * be allocated.  If the allocation fails, -ENOMEM will be returned.
829  * NOTE: If the parameter t == LONG_MAX, then we will never split
830  * a region and possibly return -ENOMEM.  Callers specifying
831  * t == LONG_MAX do not need to check for -ENOMEM error.
832  */
833 static long region_del(struct resv_map *resv, long f, long t)
834 {
835 	struct list_head *head = &resv->regions;
836 	struct file_region *rg, *trg;
837 	struct file_region *nrg = NULL;
838 	long del = 0;
839 
840 retry:
841 	spin_lock(&resv->lock);
842 	list_for_each_entry_safe(rg, trg, head, link) {
843 		/*
844 		 * Skip regions before the range to be deleted.  file_region
845 		 * ranges are normally of the form [from, to).  However, there
846 		 * may be a "placeholder" entry in the map which is of the form
847 		 * (from, to) with from == to.  Check for placeholder entries
848 		 * at the beginning of the range to be deleted.
849 		 */
850 		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
851 			continue;
852 
853 		if (rg->from >= t)
854 			break;
855 
856 		if (f > rg->from && t < rg->to) { /* Must split region */
857 			/*
858 			 * Check for an entry in the cache before dropping
859 			 * lock and attempting allocation.
860 			 */
861 			if (!nrg &&
862 			    resv->region_cache_count > resv->adds_in_progress) {
863 				nrg = list_first_entry(&resv->region_cache,
864 							struct file_region,
865 							link);
866 				list_del(&nrg->link);
867 				resv->region_cache_count--;
868 			}
869 
870 			if (!nrg) {
871 				spin_unlock(&resv->lock);
872 				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
873 				if (!nrg)
874 					return -ENOMEM;
875 				goto retry;
876 			}
877 
878 			del += t - f;
879 			hugetlb_cgroup_uncharge_file_region(
880 				resv, rg, t - f, false);
881 
882 			/* New entry for end of split region */
883 			nrg->from = t;
884 			nrg->to = rg->to;
885 
886 			copy_hugetlb_cgroup_uncharge_info(nrg, rg);
887 
888 			INIT_LIST_HEAD(&nrg->link);
889 
890 			/* Original entry is trimmed */
891 			rg->to = f;
892 
893 			list_add(&nrg->link, &rg->link);
894 			nrg = NULL;
895 			break;
896 		}
897 
898 		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
899 			del += rg->to - rg->from;
900 			hugetlb_cgroup_uncharge_file_region(resv, rg,
901 							    rg->to - rg->from, true);
902 			list_del(&rg->link);
903 			kfree(rg);
904 			continue;
905 		}
906 
907 		if (f <= rg->from) {	/* Trim beginning of region */
908 			hugetlb_cgroup_uncharge_file_region(resv, rg,
909 							    t - rg->from, false);
910 
911 			del += t - rg->from;
912 			rg->from = t;
913 		} else {		/* Trim end of region */
914 			hugetlb_cgroup_uncharge_file_region(resv, rg,
915 							    rg->to - f, false);
916 
917 			del += rg->to - f;
918 			rg->to = f;
919 		}
920 	}
921 
922 	spin_unlock(&resv->lock);
923 	kfree(nrg);
924 	return del;
925 }
926 
927 /*
928  * A rare out of memory error was encountered which prevented removal of
929  * the reserve map region for a page.  The huge page itself was free'ed
930  * and removed from the page cache.  This routine will adjust the subpool
931  * usage count, and the global reserve count if needed.  By incrementing
932  * these counts, the reserve map entry which could not be deleted will
933  * appear as a "reserved" entry instead of simply dangling with incorrect
934  * counts.
935  */
936 void hugetlb_fix_reserve_counts(struct inode *inode)
937 {
938 	struct hugepage_subpool *spool = subpool_inode(inode);
939 	long rsv_adjust;
940 	bool reserved = false;
941 
942 	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
943 	if (rsv_adjust > 0) {
944 		struct hstate *h = hstate_inode(inode);
945 
946 		if (!hugetlb_acct_memory(h, 1))
947 			reserved = true;
948 	} else if (!rsv_adjust) {
949 		reserved = true;
950 	}
951 
952 	if (!reserved)
953 		pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
954 }
955 
956 /*
957  * Count and return the number of huge pages in the reserve map
958  * that intersect with the range [f, t).
959  */
960 static long region_count(struct resv_map *resv, long f, long t)
961 {
962 	struct list_head *head = &resv->regions;
963 	struct file_region *rg;
964 	long chg = 0;
965 
966 	spin_lock(&resv->lock);
967 	/* Locate each segment we overlap with, and count that overlap. */
968 	list_for_each_entry(rg, head, link) {
969 		long seg_from;
970 		long seg_to;
971 
972 		if (rg->to <= f)
973 			continue;
974 		if (rg->from >= t)
975 			break;
976 
977 		seg_from = max(rg->from, f);
978 		seg_to = min(rg->to, t);
979 
980 		chg += seg_to - seg_from;
981 	}
982 	spin_unlock(&resv->lock);
983 
984 	return chg;
985 }
986 
987 /*
988  * Convert the address within this vma to the page offset within
989  * the mapping, huge page units here.
990  */
991 static pgoff_t vma_hugecache_offset(struct hstate *h,
992 			struct vm_area_struct *vma, unsigned long address)
993 {
994 	return ((address - vma->vm_start) >> huge_page_shift(h)) +
995 			(vma->vm_pgoff >> huge_page_order(h));
996 }
997 
998 /**
999  * vma_kernel_pagesize - Page size granularity for this VMA.
1000  * @vma: The user mapping.
1001  *
1002  * Folios in this VMA will be aligned to, and at least the size of the
1003  * number of bytes returned by this function.
1004  *
1005  * Return: The default size of the folios allocated when backing a VMA.
1006  */
1007 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
1008 {
1009 	if (vma->vm_ops && vma->vm_ops->pagesize)
1010 		return vma->vm_ops->pagesize(vma);
1011 	return PAGE_SIZE;
1012 }
1013 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
1014 
1015 /*
1016  * Return the page size being used by the MMU to back a VMA. In the majority
1017  * of cases, the page size used by the kernel matches the MMU size. On
1018  * architectures where it differs, an architecture-specific 'strong'
1019  * version of this symbol is required.
1020  */
1021 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
1022 {
1023 	return vma_kernel_pagesize(vma);
1024 }
1025 
1026 /*
1027  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
1028  * bits of the reservation map pointer, which are always clear due to
1029  * alignment.
1030  */
1031 #define HPAGE_RESV_OWNER    (1UL << 0)
1032 #define HPAGE_RESV_UNMAPPED (1UL << 1)
1033 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
1034 
1035 /*
1036  * These helpers are used to track how many pages are reserved for
1037  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
1038  * is guaranteed to have their future faults succeed.
1039  *
1040  * With the exception of hugetlb_dup_vma_private() which is called at fork(),
1041  * the reserve counters are updated with the hugetlb_lock held. It is safe
1042  * to reset the VMA at fork() time as it is not in use yet and there is no
1043  * chance of the global counters getting corrupted as a result of the values.
1044  *
1045  * The private mapping reservation is represented in a subtly different
1046  * manner to a shared mapping.  A shared mapping has a region map associated
1047  * with the underlying file, this region map represents the backing file
1048  * pages which have ever had a reservation assigned which this persists even
1049  * after the page is instantiated.  A private mapping has a region map
1050  * associated with the original mmap which is attached to all VMAs which
1051  * reference it, this region map represents those offsets which have consumed
1052  * reservation ie. where pages have been instantiated.
1053  */
1054 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
1055 {
1056 	return (unsigned long)vma->vm_private_data;
1057 }
1058 
1059 static void set_vma_private_data(struct vm_area_struct *vma,
1060 							unsigned long value)
1061 {
1062 	vma->vm_private_data = (void *)value;
1063 }
1064 
1065 static void
1066 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
1067 					  struct hugetlb_cgroup *h_cg,
1068 					  struct hstate *h)
1069 {
1070 #ifdef CONFIG_CGROUP_HUGETLB
1071 	if (!h_cg || !h) {
1072 		resv_map->reservation_counter = NULL;
1073 		resv_map->pages_per_hpage = 0;
1074 		resv_map->css = NULL;
1075 	} else {
1076 		resv_map->reservation_counter =
1077 			&h_cg->rsvd_hugepage[hstate_index(h)];
1078 		resv_map->pages_per_hpage = pages_per_huge_page(h);
1079 		resv_map->css = &h_cg->css;
1080 	}
1081 #endif
1082 }
1083 
1084 struct resv_map *resv_map_alloc(void)
1085 {
1086 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
1087 	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
1088 
1089 	if (!resv_map || !rg) {
1090 		kfree(resv_map);
1091 		kfree(rg);
1092 		return NULL;
1093 	}
1094 
1095 	kref_init(&resv_map->refs);
1096 	spin_lock_init(&resv_map->lock);
1097 	INIT_LIST_HEAD(&resv_map->regions);
1098 	init_rwsem(&resv_map->rw_sema);
1099 
1100 	resv_map->adds_in_progress = 0;
1101 	/*
1102 	 * Initialize these to 0. On shared mappings, 0's here indicate these
1103 	 * fields don't do cgroup accounting. On private mappings, these will be
1104 	 * re-initialized to the proper values, to indicate that hugetlb cgroup
1105 	 * reservations are to be un-charged from here.
1106 	 */
1107 	resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
1108 
1109 	INIT_LIST_HEAD(&resv_map->region_cache);
1110 	list_add(&rg->link, &resv_map->region_cache);
1111 	resv_map->region_cache_count = 1;
1112 
1113 	return resv_map;
1114 }
1115 
1116 void resv_map_release(struct kref *ref)
1117 {
1118 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
1119 	struct list_head *head = &resv_map->region_cache;
1120 	struct file_region *rg, *trg;
1121 
1122 	/* Clear out any active regions before we release the map. */
1123 	region_del(resv_map, 0, LONG_MAX);
1124 
1125 	/* ... and any entries left in the cache */
1126 	list_for_each_entry_safe(rg, trg, head, link) {
1127 		list_del(&rg->link);
1128 		kfree(rg);
1129 	}
1130 
1131 	VM_BUG_ON(resv_map->adds_in_progress);
1132 
1133 	kfree(resv_map);
1134 }
1135 
1136 static inline struct resv_map *inode_resv_map(struct inode *inode)
1137 {
1138 	/*
1139 	 * At inode evict time, i_mapping may not point to the original
1140 	 * address space within the inode.  This original address space
1141 	 * contains the pointer to the resv_map.  So, always use the
1142 	 * address space embedded within the inode.
1143 	 * The VERY common case is inode->mapping == &inode->i_data but,
1144 	 * this may not be true for device special inodes.
1145 	 */
1146 	return (struct resv_map *)(&inode->i_data)->i_private_data;
1147 }
1148 
1149 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
1150 {
1151 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1152 	if (vma->vm_flags & VM_MAYSHARE) {
1153 		struct address_space *mapping = vma->vm_file->f_mapping;
1154 		struct inode *inode = mapping->host;
1155 
1156 		return inode_resv_map(inode);
1157 
1158 	} else {
1159 		return (struct resv_map *)(get_vma_private_data(vma) &
1160 							~HPAGE_RESV_MASK);
1161 	}
1162 }
1163 
1164 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
1165 {
1166 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1167 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1168 
1169 	set_vma_private_data(vma, (unsigned long)map);
1170 }
1171 
1172 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
1173 {
1174 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1175 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1176 
1177 	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1178 }
1179 
1180 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1181 {
1182 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1183 
1184 	return (get_vma_private_data(vma) & flag) != 0;
1185 }
1186 
1187 bool __vma_private_lock(struct vm_area_struct *vma)
1188 {
1189 	return !(vma->vm_flags & VM_MAYSHARE) &&
1190 		get_vma_private_data(vma) & ~HPAGE_RESV_MASK &&
1191 		is_vma_resv_set(vma, HPAGE_RESV_OWNER);
1192 }
1193 
1194 void hugetlb_dup_vma_private(struct vm_area_struct *vma)
1195 {
1196 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1197 	/*
1198 	 * Clear vm_private_data
1199 	 * - For shared mappings this is a per-vma semaphore that may be
1200 	 *   allocated in a subsequent call to hugetlb_vm_op_open.
1201 	 *   Before clearing, make sure pointer is not associated with vma
1202 	 *   as this will leak the structure.  This is the case when called
1203 	 *   via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already
1204 	 *   been called to allocate a new structure.
1205 	 * - For MAP_PRIVATE mappings, this is the reserve map which does
1206 	 *   not apply to children.  Faults generated by the children are
1207 	 *   not guaranteed to succeed, even if read-only.
1208 	 */
1209 	if (vma->vm_flags & VM_MAYSHARE) {
1210 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1211 
1212 		if (vma_lock && vma_lock->vma != vma)
1213 			vma->vm_private_data = NULL;
1214 	} else
1215 		vma->vm_private_data = NULL;
1216 }
1217 
1218 /*
1219  * Reset and decrement one ref on hugepage private reservation.
1220  * Called with mm->mmap_lock writer semaphore held.
1221  * This function should be only used by move_vma() and operate on
1222  * same sized vma. It should never come here with last ref on the
1223  * reservation.
1224  */
1225 void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1226 {
1227 	/*
1228 	 * Clear the old hugetlb private page reservation.
1229 	 * It has already been transferred to new_vma.
1230 	 *
1231 	 * During a mremap() operation of a hugetlb vma we call move_vma()
1232 	 * which copies vma into new_vma and unmaps vma. After the copy
1233 	 * operation both new_vma and vma share a reference to the resv_map
1234 	 * struct, and at that point vma is about to be unmapped. We don't
1235 	 * want to return the reservation to the pool at unmap of vma because
1236 	 * the reservation still lives on in new_vma, so simply decrement the
1237 	 * ref here and remove the resv_map reference from this vma.
1238 	 */
1239 	struct resv_map *reservations = vma_resv_map(vma);
1240 
1241 	if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1242 		resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1243 		kref_put(&reservations->refs, resv_map_release);
1244 	}
1245 
1246 	hugetlb_dup_vma_private(vma);
1247 }
1248 
1249 /* Returns true if the VMA has associated reserve pages */
1250 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1251 {
1252 	if (vma->vm_flags & VM_NORESERVE) {
1253 		/*
1254 		 * This address is already reserved by other process(chg == 0),
1255 		 * so, we should decrement reserved count. Without decrementing,
1256 		 * reserve count remains after releasing inode, because this
1257 		 * allocated page will go into page cache and is regarded as
1258 		 * coming from reserved pool in releasing step.  Currently, we
1259 		 * don't have any other solution to deal with this situation
1260 		 * properly, so add work-around here.
1261 		 */
1262 		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1263 			return true;
1264 		else
1265 			return false;
1266 	}
1267 
1268 	/* Shared mappings always use reserves */
1269 	if (vma->vm_flags & VM_MAYSHARE) {
1270 		/*
1271 		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1272 		 * be a region map for all pages.  The only situation where
1273 		 * there is no region map is if a hole was punched via
1274 		 * fallocate.  In this case, there really are no reserves to
1275 		 * use.  This situation is indicated if chg != 0.
1276 		 */
1277 		if (chg)
1278 			return false;
1279 		else
1280 			return true;
1281 	}
1282 
1283 	/*
1284 	 * Only the process that called mmap() has reserves for
1285 	 * private mappings.
1286 	 */
1287 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1288 		/*
1289 		 * Like the shared case above, a hole punch or truncate
1290 		 * could have been performed on the private mapping.
1291 		 * Examine the value of chg to determine if reserves
1292 		 * actually exist or were previously consumed.
1293 		 * Very Subtle - The value of chg comes from a previous
1294 		 * call to vma_needs_reserves().  The reserve map for
1295 		 * private mappings has different (opposite) semantics
1296 		 * than that of shared mappings.  vma_needs_reserves()
1297 		 * has already taken this difference in semantics into
1298 		 * account.  Therefore, the meaning of chg is the same
1299 		 * as in the shared case above.  Code could easily be
1300 		 * combined, but keeping it separate draws attention to
1301 		 * subtle differences.
1302 		 */
1303 		if (chg)
1304 			return false;
1305 		else
1306 			return true;
1307 	}
1308 
1309 	return false;
1310 }
1311 
1312 static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio)
1313 {
1314 	int nid = folio_nid(folio);
1315 
1316 	lockdep_assert_held(&hugetlb_lock);
1317 	VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1318 
1319 	list_move(&folio->lru, &h->hugepage_freelists[nid]);
1320 	h->free_huge_pages++;
1321 	h->free_huge_pages_node[nid]++;
1322 	folio_set_hugetlb_freed(folio);
1323 }
1324 
1325 static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h,
1326 								int nid)
1327 {
1328 	struct folio *folio;
1329 	bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1330 
1331 	lockdep_assert_held(&hugetlb_lock);
1332 	list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) {
1333 		if (pin && !folio_is_longterm_pinnable(folio))
1334 			continue;
1335 
1336 		if (folio_test_hwpoison(folio))
1337 			continue;
1338 
1339 		list_move(&folio->lru, &h->hugepage_activelist);
1340 		folio_ref_unfreeze(folio, 1);
1341 		folio_clear_hugetlb_freed(folio);
1342 		h->free_huge_pages--;
1343 		h->free_huge_pages_node[nid]--;
1344 		return folio;
1345 	}
1346 
1347 	return NULL;
1348 }
1349 
1350 static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask,
1351 							int nid, nodemask_t *nmask)
1352 {
1353 	unsigned int cpuset_mems_cookie;
1354 	struct zonelist *zonelist;
1355 	struct zone *zone;
1356 	struct zoneref *z;
1357 	int node = NUMA_NO_NODE;
1358 
1359 	/* 'nid' should not be NUMA_NO_NODE. Try to catch any misuse of it and rectifiy. */
1360 	if (nid == NUMA_NO_NODE)
1361 		nid = numa_node_id();
1362 
1363 	zonelist = node_zonelist(nid, gfp_mask);
1364 
1365 retry_cpuset:
1366 	cpuset_mems_cookie = read_mems_allowed_begin();
1367 	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1368 		struct folio *folio;
1369 
1370 		if (!cpuset_zone_allowed(zone, gfp_mask))
1371 			continue;
1372 		/*
1373 		 * no need to ask again on the same node. Pool is node rather than
1374 		 * zone aware
1375 		 */
1376 		if (zone_to_nid(zone) == node)
1377 			continue;
1378 		node = zone_to_nid(zone);
1379 
1380 		folio = dequeue_hugetlb_folio_node_exact(h, node);
1381 		if (folio)
1382 			return folio;
1383 	}
1384 	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1385 		goto retry_cpuset;
1386 
1387 	return NULL;
1388 }
1389 
1390 static unsigned long available_huge_pages(struct hstate *h)
1391 {
1392 	return h->free_huge_pages - h->resv_huge_pages;
1393 }
1394 
1395 static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h,
1396 				struct vm_area_struct *vma,
1397 				unsigned long address, int avoid_reserve,
1398 				long chg)
1399 {
1400 	struct folio *folio = NULL;
1401 	struct mempolicy *mpol;
1402 	gfp_t gfp_mask;
1403 	nodemask_t *nodemask;
1404 	int nid;
1405 
1406 	/*
1407 	 * A child process with MAP_PRIVATE mappings created by their parent
1408 	 * have no page reserves. This check ensures that reservations are
1409 	 * not "stolen". The child may still get SIGKILLed
1410 	 */
1411 	if (!vma_has_reserves(vma, chg) && !available_huge_pages(h))
1412 		goto err;
1413 
1414 	/* If reserves cannot be used, ensure enough pages are in the pool */
1415 	if (avoid_reserve && !available_huge_pages(h))
1416 		goto err;
1417 
1418 	gfp_mask = htlb_alloc_mask(h);
1419 	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1420 
1421 	if (mpol_is_preferred_many(mpol)) {
1422 		folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1423 							nid, nodemask);
1424 
1425 		/* Fallback to all nodes if page==NULL */
1426 		nodemask = NULL;
1427 	}
1428 
1429 	if (!folio)
1430 		folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1431 							nid, nodemask);
1432 
1433 	if (folio && !avoid_reserve && vma_has_reserves(vma, chg)) {
1434 		folio_set_hugetlb_restore_reserve(folio);
1435 		h->resv_huge_pages--;
1436 	}
1437 
1438 	mpol_cond_put(mpol);
1439 	return folio;
1440 
1441 err:
1442 	return NULL;
1443 }
1444 
1445 /*
1446  * common helper functions for hstate_next_node_to_{alloc|free}.
1447  * We may have allocated or freed a huge page based on a different
1448  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1449  * be outside of *nodes_allowed.  Ensure that we use an allowed
1450  * node for alloc or free.
1451  */
1452 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1453 {
1454 	nid = next_node_in(nid, *nodes_allowed);
1455 	VM_BUG_ON(nid >= MAX_NUMNODES);
1456 
1457 	return nid;
1458 }
1459 
1460 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1461 {
1462 	if (!node_isset(nid, *nodes_allowed))
1463 		nid = next_node_allowed(nid, nodes_allowed);
1464 	return nid;
1465 }
1466 
1467 /*
1468  * returns the previously saved node ["this node"] from which to
1469  * allocate a persistent huge page for the pool and advance the
1470  * next node from which to allocate, handling wrap at end of node
1471  * mask.
1472  */
1473 static int hstate_next_node_to_alloc(int *next_node,
1474 					nodemask_t *nodes_allowed)
1475 {
1476 	int nid;
1477 
1478 	VM_BUG_ON(!nodes_allowed);
1479 
1480 	nid = get_valid_node_allowed(*next_node, nodes_allowed);
1481 	*next_node = next_node_allowed(nid, nodes_allowed);
1482 
1483 	return nid;
1484 }
1485 
1486 /*
1487  * helper for remove_pool_hugetlb_folio() - return the previously saved
1488  * node ["this node"] from which to free a huge page.  Advance the
1489  * next node id whether or not we find a free huge page to free so
1490  * that the next attempt to free addresses the next node.
1491  */
1492 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1493 {
1494 	int nid;
1495 
1496 	VM_BUG_ON(!nodes_allowed);
1497 
1498 	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1499 	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1500 
1501 	return nid;
1502 }
1503 
1504 #define for_each_node_mask_to_alloc(next_node, nr_nodes, node, mask)		\
1505 	for (nr_nodes = nodes_weight(*mask);				\
1506 		nr_nodes > 0 &&						\
1507 		((node = hstate_next_node_to_alloc(next_node, mask)) || 1);	\
1508 		nr_nodes--)
1509 
1510 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
1511 	for (nr_nodes = nodes_weight(*mask);				\
1512 		nr_nodes > 0 &&						\
1513 		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
1514 		nr_nodes--)
1515 
1516 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1517 #ifdef CONFIG_CONTIG_ALLOC
1518 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1519 		int nid, nodemask_t *nodemask)
1520 {
1521 	struct folio *folio;
1522 	int order = huge_page_order(h);
1523 	bool retried = false;
1524 
1525 	if (nid == NUMA_NO_NODE)
1526 		nid = numa_mem_id();
1527 retry:
1528 	folio = NULL;
1529 #ifdef CONFIG_CMA
1530 	{
1531 		int node;
1532 
1533 		if (hugetlb_cma[nid])
1534 			folio = cma_alloc_folio(hugetlb_cma[nid], order, gfp_mask);
1535 
1536 		if (!folio && !(gfp_mask & __GFP_THISNODE)) {
1537 			for_each_node_mask(node, *nodemask) {
1538 				if (node == nid || !hugetlb_cma[node])
1539 					continue;
1540 
1541 				folio = cma_alloc_folio(hugetlb_cma[node], order, gfp_mask);
1542 				if (folio)
1543 					break;
1544 			}
1545 		}
1546 	}
1547 #endif
1548 	if (!folio) {
1549 		folio = folio_alloc_gigantic(order, gfp_mask, nid, nodemask);
1550 		if (!folio)
1551 			return NULL;
1552 	}
1553 
1554 	if (folio_ref_freeze(folio, 1))
1555 		return folio;
1556 
1557 	pr_warn("HugeTLB: unexpected refcount on PFN %lu\n", folio_pfn(folio));
1558 	hugetlb_free_folio(folio);
1559 	if (!retried) {
1560 		retried = true;
1561 		goto retry;
1562 	}
1563 	return NULL;
1564 }
1565 
1566 #else /* !CONFIG_CONTIG_ALLOC */
1567 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1568 					int nid, nodemask_t *nodemask)
1569 {
1570 	return NULL;
1571 }
1572 #endif /* CONFIG_CONTIG_ALLOC */
1573 
1574 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1575 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1576 					int nid, nodemask_t *nodemask)
1577 {
1578 	return NULL;
1579 }
1580 #endif
1581 
1582 /*
1583  * Remove hugetlb folio from lists.
1584  * If vmemmap exists for the folio, clear the hugetlb flag so that the
1585  * folio appears as just a compound page.  Otherwise, wait until after
1586  * allocating vmemmap to clear the flag.
1587  *
1588  * Must be called with hugetlb lock held.
1589  */
1590 static void remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1591 							bool adjust_surplus)
1592 {
1593 	int nid = folio_nid(folio);
1594 
1595 	VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio);
1596 	VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio);
1597 
1598 	lockdep_assert_held(&hugetlb_lock);
1599 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1600 		return;
1601 
1602 	list_del(&folio->lru);
1603 
1604 	if (folio_test_hugetlb_freed(folio)) {
1605 		folio_clear_hugetlb_freed(folio);
1606 		h->free_huge_pages--;
1607 		h->free_huge_pages_node[nid]--;
1608 	}
1609 	if (adjust_surplus) {
1610 		h->surplus_huge_pages--;
1611 		h->surplus_huge_pages_node[nid]--;
1612 	}
1613 
1614 	/*
1615 	 * We can only clear the hugetlb flag after allocating vmemmap
1616 	 * pages.  Otherwise, someone (memory error handling) may try to write
1617 	 * to tail struct pages.
1618 	 */
1619 	if (!folio_test_hugetlb_vmemmap_optimized(folio))
1620 		__folio_clear_hugetlb(folio);
1621 
1622 	h->nr_huge_pages--;
1623 	h->nr_huge_pages_node[nid]--;
1624 }
1625 
1626 static void add_hugetlb_folio(struct hstate *h, struct folio *folio,
1627 			     bool adjust_surplus)
1628 {
1629 	int nid = folio_nid(folio);
1630 
1631 	VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio);
1632 
1633 	lockdep_assert_held(&hugetlb_lock);
1634 
1635 	INIT_LIST_HEAD(&folio->lru);
1636 	h->nr_huge_pages++;
1637 	h->nr_huge_pages_node[nid]++;
1638 
1639 	if (adjust_surplus) {
1640 		h->surplus_huge_pages++;
1641 		h->surplus_huge_pages_node[nid]++;
1642 	}
1643 
1644 	__folio_set_hugetlb(folio);
1645 	folio_change_private(folio, NULL);
1646 	/*
1647 	 * We have to set hugetlb_vmemmap_optimized again as above
1648 	 * folio_change_private(folio, NULL) cleared it.
1649 	 */
1650 	folio_set_hugetlb_vmemmap_optimized(folio);
1651 
1652 	arch_clear_hugetlb_flags(folio);
1653 	enqueue_hugetlb_folio(h, folio);
1654 }
1655 
1656 static void __update_and_free_hugetlb_folio(struct hstate *h,
1657 						struct folio *folio)
1658 {
1659 	bool clear_flag = folio_test_hugetlb_vmemmap_optimized(folio);
1660 
1661 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1662 		return;
1663 
1664 	/*
1665 	 * If we don't know which subpages are hwpoisoned, we can't free
1666 	 * the hugepage, so it's leaked intentionally.
1667 	 */
1668 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1669 		return;
1670 
1671 	/*
1672 	 * If folio is not vmemmap optimized (!clear_flag), then the folio
1673 	 * is no longer identified as a hugetlb page.  hugetlb_vmemmap_restore_folio
1674 	 * can only be passed hugetlb pages and will BUG otherwise.
1675 	 */
1676 	if (clear_flag && hugetlb_vmemmap_restore_folio(h, folio)) {
1677 		spin_lock_irq(&hugetlb_lock);
1678 		/*
1679 		 * If we cannot allocate vmemmap pages, just refuse to free the
1680 		 * page and put the page back on the hugetlb free list and treat
1681 		 * as a surplus page.
1682 		 */
1683 		add_hugetlb_folio(h, folio, true);
1684 		spin_unlock_irq(&hugetlb_lock);
1685 		return;
1686 	}
1687 
1688 	/*
1689 	 * If vmemmap pages were allocated above, then we need to clear the
1690 	 * hugetlb flag under the hugetlb lock.
1691 	 */
1692 	if (folio_test_hugetlb(folio)) {
1693 		spin_lock_irq(&hugetlb_lock);
1694 		__folio_clear_hugetlb(folio);
1695 		spin_unlock_irq(&hugetlb_lock);
1696 	}
1697 
1698 	/*
1699 	 * Move PageHWPoison flag from head page to the raw error pages,
1700 	 * which makes any healthy subpages reusable.
1701 	 */
1702 	if (unlikely(folio_test_hwpoison(folio)))
1703 		folio_clear_hugetlb_hwpoison(folio);
1704 
1705 	folio_ref_unfreeze(folio, 1);
1706 
1707 	INIT_LIST_HEAD(&folio->_deferred_list);
1708 	hugetlb_free_folio(folio);
1709 }
1710 
1711 /*
1712  * As update_and_free_hugetlb_folio() can be called under any context, so we cannot
1713  * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1714  * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1715  * the vmemmap pages.
1716  *
1717  * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1718  * freed and frees them one-by-one. As the page->mapping pointer is going
1719  * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1720  * structure of a lockless linked list of huge pages to be freed.
1721  */
1722 static LLIST_HEAD(hpage_freelist);
1723 
1724 static void free_hpage_workfn(struct work_struct *work)
1725 {
1726 	struct llist_node *node;
1727 
1728 	node = llist_del_all(&hpage_freelist);
1729 
1730 	while (node) {
1731 		struct folio *folio;
1732 		struct hstate *h;
1733 
1734 		folio = container_of((struct address_space **)node,
1735 				     struct folio, mapping);
1736 		node = node->next;
1737 		folio->mapping = NULL;
1738 		/*
1739 		 * The VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio) in
1740 		 * folio_hstate() is going to trigger because a previous call to
1741 		 * remove_hugetlb_folio() will clear the hugetlb bit, so do
1742 		 * not use folio_hstate() directly.
1743 		 */
1744 		h = size_to_hstate(folio_size(folio));
1745 
1746 		__update_and_free_hugetlb_folio(h, folio);
1747 
1748 		cond_resched();
1749 	}
1750 }
1751 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1752 
1753 static inline void flush_free_hpage_work(struct hstate *h)
1754 {
1755 	if (hugetlb_vmemmap_optimizable(h))
1756 		flush_work(&free_hpage_work);
1757 }
1758 
1759 static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio,
1760 				 bool atomic)
1761 {
1762 	if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) {
1763 		__update_and_free_hugetlb_folio(h, folio);
1764 		return;
1765 	}
1766 
1767 	/*
1768 	 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1769 	 *
1770 	 * Only call schedule_work() if hpage_freelist is previously
1771 	 * empty. Otherwise, schedule_work() had been called but the workfn
1772 	 * hasn't retrieved the list yet.
1773 	 */
1774 	if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist))
1775 		schedule_work(&free_hpage_work);
1776 }
1777 
1778 static void bulk_vmemmap_restore_error(struct hstate *h,
1779 					struct list_head *folio_list,
1780 					struct list_head *non_hvo_folios)
1781 {
1782 	struct folio *folio, *t_folio;
1783 
1784 	if (!list_empty(non_hvo_folios)) {
1785 		/*
1786 		 * Free any restored hugetlb pages so that restore of the
1787 		 * entire list can be retried.
1788 		 * The idea is that in the common case of ENOMEM errors freeing
1789 		 * hugetlb pages with vmemmap we will free up memory so that we
1790 		 * can allocate vmemmap for more hugetlb pages.
1791 		 */
1792 		list_for_each_entry_safe(folio, t_folio, non_hvo_folios, lru) {
1793 			list_del(&folio->lru);
1794 			spin_lock_irq(&hugetlb_lock);
1795 			__folio_clear_hugetlb(folio);
1796 			spin_unlock_irq(&hugetlb_lock);
1797 			update_and_free_hugetlb_folio(h, folio, false);
1798 			cond_resched();
1799 		}
1800 	} else {
1801 		/*
1802 		 * In the case where there are no folios which can be
1803 		 * immediately freed, we loop through the list trying to restore
1804 		 * vmemmap individually in the hope that someone elsewhere may
1805 		 * have done something to cause success (such as freeing some
1806 		 * memory).  If unable to restore a hugetlb page, the hugetlb
1807 		 * page is made a surplus page and removed from the list.
1808 		 * If are able to restore vmemmap and free one hugetlb page, we
1809 		 * quit processing the list to retry the bulk operation.
1810 		 */
1811 		list_for_each_entry_safe(folio, t_folio, folio_list, lru)
1812 			if (hugetlb_vmemmap_restore_folio(h, folio)) {
1813 				list_del(&folio->lru);
1814 				spin_lock_irq(&hugetlb_lock);
1815 				add_hugetlb_folio(h, folio, true);
1816 				spin_unlock_irq(&hugetlb_lock);
1817 			} else {
1818 				list_del(&folio->lru);
1819 				spin_lock_irq(&hugetlb_lock);
1820 				__folio_clear_hugetlb(folio);
1821 				spin_unlock_irq(&hugetlb_lock);
1822 				update_and_free_hugetlb_folio(h, folio, false);
1823 				cond_resched();
1824 				break;
1825 			}
1826 	}
1827 }
1828 
1829 static void update_and_free_pages_bulk(struct hstate *h,
1830 						struct list_head *folio_list)
1831 {
1832 	long ret;
1833 	struct folio *folio, *t_folio;
1834 	LIST_HEAD(non_hvo_folios);
1835 
1836 	/*
1837 	 * First allocate required vmemmmap (if necessary) for all folios.
1838 	 * Carefully handle errors and free up any available hugetlb pages
1839 	 * in an effort to make forward progress.
1840 	 */
1841 retry:
1842 	ret = hugetlb_vmemmap_restore_folios(h, folio_list, &non_hvo_folios);
1843 	if (ret < 0) {
1844 		bulk_vmemmap_restore_error(h, folio_list, &non_hvo_folios);
1845 		goto retry;
1846 	}
1847 
1848 	/*
1849 	 * At this point, list should be empty, ret should be >= 0 and there
1850 	 * should only be pages on the non_hvo_folios list.
1851 	 * Do note that the non_hvo_folios list could be empty.
1852 	 * Without HVO enabled, ret will be 0 and there is no need to call
1853 	 * __folio_clear_hugetlb as this was done previously.
1854 	 */
1855 	VM_WARN_ON(!list_empty(folio_list));
1856 	VM_WARN_ON(ret < 0);
1857 	if (!list_empty(&non_hvo_folios) && ret) {
1858 		spin_lock_irq(&hugetlb_lock);
1859 		list_for_each_entry(folio, &non_hvo_folios, lru)
1860 			__folio_clear_hugetlb(folio);
1861 		spin_unlock_irq(&hugetlb_lock);
1862 	}
1863 
1864 	list_for_each_entry_safe(folio, t_folio, &non_hvo_folios, lru) {
1865 		update_and_free_hugetlb_folio(h, folio, false);
1866 		cond_resched();
1867 	}
1868 }
1869 
1870 struct hstate *size_to_hstate(unsigned long size)
1871 {
1872 	struct hstate *h;
1873 
1874 	for_each_hstate(h) {
1875 		if (huge_page_size(h) == size)
1876 			return h;
1877 	}
1878 	return NULL;
1879 }
1880 
1881 void free_huge_folio(struct folio *folio)
1882 {
1883 	/*
1884 	 * Can't pass hstate in here because it is called from the
1885 	 * generic mm code.
1886 	 */
1887 	struct hstate *h = folio_hstate(folio);
1888 	int nid = folio_nid(folio);
1889 	struct hugepage_subpool *spool = hugetlb_folio_subpool(folio);
1890 	bool restore_reserve;
1891 	unsigned long flags;
1892 
1893 	VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1894 	VM_BUG_ON_FOLIO(folio_mapcount(folio), folio);
1895 
1896 	hugetlb_set_folio_subpool(folio, NULL);
1897 	if (folio_test_anon(folio))
1898 		__ClearPageAnonExclusive(&folio->page);
1899 	folio->mapping = NULL;
1900 	restore_reserve = folio_test_hugetlb_restore_reserve(folio);
1901 	folio_clear_hugetlb_restore_reserve(folio);
1902 
1903 	/*
1904 	 * If HPageRestoreReserve was set on page, page allocation consumed a
1905 	 * reservation.  If the page was associated with a subpool, there
1906 	 * would have been a page reserved in the subpool before allocation
1907 	 * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1908 	 * reservation, do not call hugepage_subpool_put_pages() as this will
1909 	 * remove the reserved page from the subpool.
1910 	 */
1911 	if (!restore_reserve) {
1912 		/*
1913 		 * A return code of zero implies that the subpool will be
1914 		 * under its minimum size if the reservation is not restored
1915 		 * after page is free.  Therefore, force restore_reserve
1916 		 * operation.
1917 		 */
1918 		if (hugepage_subpool_put_pages(spool, 1) == 0)
1919 			restore_reserve = true;
1920 	}
1921 
1922 	spin_lock_irqsave(&hugetlb_lock, flags);
1923 	folio_clear_hugetlb_migratable(folio);
1924 	hugetlb_cgroup_uncharge_folio(hstate_index(h),
1925 				     pages_per_huge_page(h), folio);
1926 	hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
1927 					  pages_per_huge_page(h), folio);
1928 	mem_cgroup_uncharge(folio);
1929 	if (restore_reserve)
1930 		h->resv_huge_pages++;
1931 
1932 	if (folio_test_hugetlb_temporary(folio)) {
1933 		remove_hugetlb_folio(h, folio, false);
1934 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1935 		update_and_free_hugetlb_folio(h, folio, true);
1936 	} else if (h->surplus_huge_pages_node[nid]) {
1937 		/* remove the page from active list */
1938 		remove_hugetlb_folio(h, folio, true);
1939 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1940 		update_and_free_hugetlb_folio(h, folio, true);
1941 	} else {
1942 		arch_clear_hugetlb_flags(folio);
1943 		enqueue_hugetlb_folio(h, folio);
1944 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1945 	}
1946 }
1947 
1948 /*
1949  * Must be called with the hugetlb lock held
1950  */
1951 static void __prep_account_new_huge_page(struct hstate *h, int nid)
1952 {
1953 	lockdep_assert_held(&hugetlb_lock);
1954 	h->nr_huge_pages++;
1955 	h->nr_huge_pages_node[nid]++;
1956 }
1957 
1958 static void init_new_hugetlb_folio(struct hstate *h, struct folio *folio)
1959 {
1960 	__folio_set_hugetlb(folio);
1961 	INIT_LIST_HEAD(&folio->lru);
1962 	hugetlb_set_folio_subpool(folio, NULL);
1963 	set_hugetlb_cgroup(folio, NULL);
1964 	set_hugetlb_cgroup_rsvd(folio, NULL);
1965 }
1966 
1967 static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio)
1968 {
1969 	init_new_hugetlb_folio(h, folio);
1970 	hugetlb_vmemmap_optimize_folio(h, folio);
1971 }
1972 
1973 static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid)
1974 {
1975 	__prep_new_hugetlb_folio(h, folio);
1976 	spin_lock_irq(&hugetlb_lock);
1977 	__prep_account_new_huge_page(h, nid);
1978 	spin_unlock_irq(&hugetlb_lock);
1979 }
1980 
1981 /*
1982  * Find and lock address space (mapping) in write mode.
1983  *
1984  * Upon entry, the folio is locked which means that folio_mapping() is
1985  * stable.  Due to locking order, we can only trylock_write.  If we can
1986  * not get the lock, simply return NULL to caller.
1987  */
1988 struct address_space *hugetlb_folio_mapping_lock_write(struct folio *folio)
1989 {
1990 	struct address_space *mapping = folio_mapping(folio);
1991 
1992 	if (!mapping)
1993 		return mapping;
1994 
1995 	if (i_mmap_trylock_write(mapping))
1996 		return mapping;
1997 
1998 	return NULL;
1999 }
2000 
2001 static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h,
2002 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
2003 		nodemask_t *node_alloc_noretry)
2004 {
2005 	int order = huge_page_order(h);
2006 	struct folio *folio;
2007 	bool alloc_try_hard = true;
2008 	bool retry = true;
2009 
2010 	/*
2011 	 * By default we always try hard to allocate the folio with
2012 	 * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating folios in
2013 	 * a loop (to adjust global huge page counts) and previous allocation
2014 	 * failed, do not continue to try hard on the same node.  Use the
2015 	 * node_alloc_noretry bitmap to manage this state information.
2016 	 */
2017 	if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
2018 		alloc_try_hard = false;
2019 	if (alloc_try_hard)
2020 		gfp_mask |= __GFP_RETRY_MAYFAIL;
2021 	if (nid == NUMA_NO_NODE)
2022 		nid = numa_mem_id();
2023 retry:
2024 	folio = __folio_alloc(gfp_mask, order, nid, nmask);
2025 	/* Ensure hugetlb folio won't have large_rmappable flag set. */
2026 	if (folio)
2027 		folio_clear_large_rmappable(folio);
2028 
2029 	if (folio && !folio_ref_freeze(folio, 1)) {
2030 		folio_put(folio);
2031 		if (retry) {	/* retry once */
2032 			retry = false;
2033 			goto retry;
2034 		}
2035 		/* WOW!  twice in a row. */
2036 		pr_warn("HugeTLB unexpected inflated folio ref count\n");
2037 		folio = NULL;
2038 	}
2039 
2040 	/*
2041 	 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a
2042 	 * folio this indicates an overall state change.  Clear bit so
2043 	 * that we resume normal 'try hard' allocations.
2044 	 */
2045 	if (node_alloc_noretry && folio && !alloc_try_hard)
2046 		node_clear(nid, *node_alloc_noretry);
2047 
2048 	/*
2049 	 * If we tried hard to get a folio but failed, set bit so that
2050 	 * subsequent attempts will not try as hard until there is an
2051 	 * overall state change.
2052 	 */
2053 	if (node_alloc_noretry && !folio && alloc_try_hard)
2054 		node_set(nid, *node_alloc_noretry);
2055 
2056 	if (!folio) {
2057 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
2058 		return NULL;
2059 	}
2060 
2061 	__count_vm_event(HTLB_BUDDY_PGALLOC);
2062 	return folio;
2063 }
2064 
2065 static struct folio *only_alloc_fresh_hugetlb_folio(struct hstate *h,
2066 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
2067 		nodemask_t *node_alloc_noretry)
2068 {
2069 	struct folio *folio;
2070 
2071 	if (hstate_is_gigantic(h))
2072 		folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
2073 	else
2074 		folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, nmask, node_alloc_noretry);
2075 	if (folio)
2076 		init_new_hugetlb_folio(h, folio);
2077 	return folio;
2078 }
2079 
2080 /*
2081  * Common helper to allocate a fresh hugetlb page. All specific allocators
2082  * should use this function to get new hugetlb pages
2083  *
2084  * Note that returned page is 'frozen':  ref count of head page and all tail
2085  * pages is zero.
2086  */
2087 static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h,
2088 		gfp_t gfp_mask, int nid, nodemask_t *nmask)
2089 {
2090 	struct folio *folio;
2091 
2092 	if (hstate_is_gigantic(h))
2093 		folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
2094 	else
2095 		folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2096 	if (!folio)
2097 		return NULL;
2098 
2099 	prep_new_hugetlb_folio(h, folio, folio_nid(folio));
2100 	return folio;
2101 }
2102 
2103 static void prep_and_add_allocated_folios(struct hstate *h,
2104 					struct list_head *folio_list)
2105 {
2106 	unsigned long flags;
2107 	struct folio *folio, *tmp_f;
2108 
2109 	/* Send list for bulk vmemmap optimization processing */
2110 	hugetlb_vmemmap_optimize_folios(h, folio_list);
2111 
2112 	/* Add all new pool pages to free lists in one lock cycle */
2113 	spin_lock_irqsave(&hugetlb_lock, flags);
2114 	list_for_each_entry_safe(folio, tmp_f, folio_list, lru) {
2115 		__prep_account_new_huge_page(h, folio_nid(folio));
2116 		enqueue_hugetlb_folio(h, folio);
2117 	}
2118 	spin_unlock_irqrestore(&hugetlb_lock, flags);
2119 }
2120 
2121 /*
2122  * Allocates a fresh hugetlb page in a node interleaved manner.  The page
2123  * will later be added to the appropriate hugetlb pool.
2124  */
2125 static struct folio *alloc_pool_huge_folio(struct hstate *h,
2126 					nodemask_t *nodes_allowed,
2127 					nodemask_t *node_alloc_noretry,
2128 					int *next_node)
2129 {
2130 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2131 	int nr_nodes, node;
2132 
2133 	for_each_node_mask_to_alloc(next_node, nr_nodes, node, nodes_allowed) {
2134 		struct folio *folio;
2135 
2136 		folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, node,
2137 					nodes_allowed, node_alloc_noretry);
2138 		if (folio)
2139 			return folio;
2140 	}
2141 
2142 	return NULL;
2143 }
2144 
2145 /*
2146  * Remove huge page from pool from next node to free.  Attempt to keep
2147  * persistent huge pages more or less balanced over allowed nodes.
2148  * This routine only 'removes' the hugetlb page.  The caller must make
2149  * an additional call to free the page to low level allocators.
2150  * Called with hugetlb_lock locked.
2151  */
2152 static struct folio *remove_pool_hugetlb_folio(struct hstate *h,
2153 		nodemask_t *nodes_allowed, bool acct_surplus)
2154 {
2155 	int nr_nodes, node;
2156 	struct folio *folio = NULL;
2157 
2158 	lockdep_assert_held(&hugetlb_lock);
2159 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2160 		/*
2161 		 * If we're returning unused surplus pages, only examine
2162 		 * nodes with surplus pages.
2163 		 */
2164 		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2165 		    !list_empty(&h->hugepage_freelists[node])) {
2166 			folio = list_entry(h->hugepage_freelists[node].next,
2167 					  struct folio, lru);
2168 			remove_hugetlb_folio(h, folio, acct_surplus);
2169 			break;
2170 		}
2171 	}
2172 
2173 	return folio;
2174 }
2175 
2176 /*
2177  * Dissolve a given free hugetlb folio into free buddy pages. This function
2178  * does nothing for in-use hugetlb folios and non-hugetlb folios.
2179  * This function returns values like below:
2180  *
2181  *  -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2182  *           when the system is under memory pressure and the feature of
2183  *           freeing unused vmemmap pages associated with each hugetlb page
2184  *           is enabled.
2185  *  -EBUSY:  failed to dissolved free hugepages or the hugepage is in-use
2186  *           (allocated or reserved.)
2187  *       0:  successfully dissolved free hugepages or the page is not a
2188  *           hugepage (considered as already dissolved)
2189  */
2190 int dissolve_free_hugetlb_folio(struct folio *folio)
2191 {
2192 	int rc = -EBUSY;
2193 
2194 retry:
2195 	/* Not to disrupt normal path by vainly holding hugetlb_lock */
2196 	if (!folio_test_hugetlb(folio))
2197 		return 0;
2198 
2199 	spin_lock_irq(&hugetlb_lock);
2200 	if (!folio_test_hugetlb(folio)) {
2201 		rc = 0;
2202 		goto out;
2203 	}
2204 
2205 	if (!folio_ref_count(folio)) {
2206 		struct hstate *h = folio_hstate(folio);
2207 		if (!available_huge_pages(h))
2208 			goto out;
2209 
2210 		/*
2211 		 * We should make sure that the page is already on the free list
2212 		 * when it is dissolved.
2213 		 */
2214 		if (unlikely(!folio_test_hugetlb_freed(folio))) {
2215 			spin_unlock_irq(&hugetlb_lock);
2216 			cond_resched();
2217 
2218 			/*
2219 			 * Theoretically, we should return -EBUSY when we
2220 			 * encounter this race. In fact, we have a chance
2221 			 * to successfully dissolve the page if we do a
2222 			 * retry. Because the race window is quite small.
2223 			 * If we seize this opportunity, it is an optimization
2224 			 * for increasing the success rate of dissolving page.
2225 			 */
2226 			goto retry;
2227 		}
2228 
2229 		remove_hugetlb_folio(h, folio, false);
2230 		h->max_huge_pages--;
2231 		spin_unlock_irq(&hugetlb_lock);
2232 
2233 		/*
2234 		 * Normally update_and_free_hugtlb_folio will allocate required vmemmmap
2235 		 * before freeing the page.  update_and_free_hugtlb_folio will fail to
2236 		 * free the page if it can not allocate required vmemmap.  We
2237 		 * need to adjust max_huge_pages if the page is not freed.
2238 		 * Attempt to allocate vmemmmap here so that we can take
2239 		 * appropriate action on failure.
2240 		 *
2241 		 * The folio_test_hugetlb check here is because
2242 		 * remove_hugetlb_folio will clear hugetlb folio flag for
2243 		 * non-vmemmap optimized hugetlb folios.
2244 		 */
2245 		if (folio_test_hugetlb(folio)) {
2246 			rc = hugetlb_vmemmap_restore_folio(h, folio);
2247 			if (rc) {
2248 				spin_lock_irq(&hugetlb_lock);
2249 				add_hugetlb_folio(h, folio, false);
2250 				h->max_huge_pages++;
2251 				goto out;
2252 			}
2253 		} else
2254 			rc = 0;
2255 
2256 		update_and_free_hugetlb_folio(h, folio, false);
2257 		return rc;
2258 	}
2259 out:
2260 	spin_unlock_irq(&hugetlb_lock);
2261 	return rc;
2262 }
2263 
2264 /*
2265  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2266  * make specified memory blocks removable from the system.
2267  * Note that this will dissolve a free gigantic hugepage completely, if any
2268  * part of it lies within the given range.
2269  * Also note that if dissolve_free_hugetlb_folio() returns with an error, all
2270  * free hugetlb folios that were dissolved before that error are lost.
2271  */
2272 int dissolve_free_hugetlb_folios(unsigned long start_pfn, unsigned long end_pfn)
2273 {
2274 	unsigned long pfn;
2275 	struct folio *folio;
2276 	int rc = 0;
2277 	unsigned int order;
2278 	struct hstate *h;
2279 
2280 	if (!hugepages_supported())
2281 		return rc;
2282 
2283 	order = huge_page_order(&default_hstate);
2284 	for_each_hstate(h)
2285 		order = min(order, huge_page_order(h));
2286 
2287 	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
2288 		folio = pfn_folio(pfn);
2289 		rc = dissolve_free_hugetlb_folio(folio);
2290 		if (rc)
2291 			break;
2292 	}
2293 
2294 	return rc;
2295 }
2296 
2297 /*
2298  * Allocates a fresh surplus page from the page allocator.
2299  */
2300 static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h,
2301 				gfp_t gfp_mask,	int nid, nodemask_t *nmask)
2302 {
2303 	struct folio *folio = NULL;
2304 
2305 	if (hstate_is_gigantic(h))
2306 		return NULL;
2307 
2308 	spin_lock_irq(&hugetlb_lock);
2309 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2310 		goto out_unlock;
2311 	spin_unlock_irq(&hugetlb_lock);
2312 
2313 	folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask);
2314 	if (!folio)
2315 		return NULL;
2316 
2317 	spin_lock_irq(&hugetlb_lock);
2318 	/*
2319 	 * We could have raced with the pool size change.
2320 	 * Double check that and simply deallocate the new page
2321 	 * if we would end up overcommiting the surpluses. Abuse
2322 	 * temporary page to workaround the nasty free_huge_folio
2323 	 * codeflow
2324 	 */
2325 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2326 		folio_set_hugetlb_temporary(folio);
2327 		spin_unlock_irq(&hugetlb_lock);
2328 		free_huge_folio(folio);
2329 		return NULL;
2330 	}
2331 
2332 	h->surplus_huge_pages++;
2333 	h->surplus_huge_pages_node[folio_nid(folio)]++;
2334 
2335 out_unlock:
2336 	spin_unlock_irq(&hugetlb_lock);
2337 
2338 	return folio;
2339 }
2340 
2341 static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask,
2342 				     int nid, nodemask_t *nmask)
2343 {
2344 	struct folio *folio;
2345 
2346 	if (hstate_is_gigantic(h))
2347 		return NULL;
2348 
2349 	folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask);
2350 	if (!folio)
2351 		return NULL;
2352 
2353 	/* fresh huge pages are frozen */
2354 	folio_ref_unfreeze(folio, 1);
2355 	/*
2356 	 * We do not account these pages as surplus because they are only
2357 	 * temporary and will be released properly on the last reference
2358 	 */
2359 	folio_set_hugetlb_temporary(folio);
2360 
2361 	return folio;
2362 }
2363 
2364 /*
2365  * Use the VMA's mpolicy to allocate a huge page from the buddy.
2366  */
2367 static
2368 struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h,
2369 		struct vm_area_struct *vma, unsigned long addr)
2370 {
2371 	struct folio *folio = NULL;
2372 	struct mempolicy *mpol;
2373 	gfp_t gfp_mask = htlb_alloc_mask(h);
2374 	int nid;
2375 	nodemask_t *nodemask;
2376 
2377 	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2378 	if (mpol_is_preferred_many(mpol)) {
2379 		gfp_t gfp = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2380 
2381 		folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask);
2382 
2383 		/* Fallback to all nodes if page==NULL */
2384 		nodemask = NULL;
2385 	}
2386 
2387 	if (!folio)
2388 		folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask);
2389 	mpol_cond_put(mpol);
2390 	return folio;
2391 }
2392 
2393 struct folio *alloc_hugetlb_folio_reserve(struct hstate *h, int preferred_nid,
2394 		nodemask_t *nmask, gfp_t gfp_mask)
2395 {
2396 	struct folio *folio;
2397 
2398 	spin_lock_irq(&hugetlb_lock);
2399 	folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, preferred_nid,
2400 					       nmask);
2401 	if (folio) {
2402 		VM_BUG_ON(!h->resv_huge_pages);
2403 		h->resv_huge_pages--;
2404 	}
2405 
2406 	spin_unlock_irq(&hugetlb_lock);
2407 	return folio;
2408 }
2409 
2410 /* folio migration callback function */
2411 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
2412 		nodemask_t *nmask, gfp_t gfp_mask, bool allow_alloc_fallback)
2413 {
2414 	spin_lock_irq(&hugetlb_lock);
2415 	if (available_huge_pages(h)) {
2416 		struct folio *folio;
2417 
2418 		folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
2419 						preferred_nid, nmask);
2420 		if (folio) {
2421 			spin_unlock_irq(&hugetlb_lock);
2422 			return folio;
2423 		}
2424 	}
2425 	spin_unlock_irq(&hugetlb_lock);
2426 
2427 	/* We cannot fallback to other nodes, as we could break the per-node pool. */
2428 	if (!allow_alloc_fallback)
2429 		gfp_mask |= __GFP_THISNODE;
2430 
2431 	return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask);
2432 }
2433 
2434 static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
2435 {
2436 #ifdef CONFIG_NUMA
2437 	struct mempolicy *mpol = get_task_policy(current);
2438 
2439 	/*
2440 	 * Only enforce MPOL_BIND policy which overlaps with cpuset policy
2441 	 * (from policy_nodemask) specifically for hugetlb case
2442 	 */
2443 	if (mpol->mode == MPOL_BIND &&
2444 		(apply_policy_zone(mpol, gfp_zone(gfp)) &&
2445 		 cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
2446 		return &mpol->nodes;
2447 #endif
2448 	return NULL;
2449 }
2450 
2451 /*
2452  * Increase the hugetlb pool such that it can accommodate a reservation
2453  * of size 'delta'.
2454  */
2455 static int gather_surplus_pages(struct hstate *h, long delta)
2456 	__must_hold(&hugetlb_lock)
2457 {
2458 	LIST_HEAD(surplus_list);
2459 	struct folio *folio, *tmp;
2460 	int ret;
2461 	long i;
2462 	long needed, allocated;
2463 	bool alloc_ok = true;
2464 	int node;
2465 	nodemask_t *mbind_nodemask = policy_mbind_nodemask(htlb_alloc_mask(h));
2466 
2467 	lockdep_assert_held(&hugetlb_lock);
2468 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2469 	if (needed <= 0) {
2470 		h->resv_huge_pages += delta;
2471 		return 0;
2472 	}
2473 
2474 	allocated = 0;
2475 
2476 	ret = -ENOMEM;
2477 retry:
2478 	spin_unlock_irq(&hugetlb_lock);
2479 	for (i = 0; i < needed; i++) {
2480 		folio = NULL;
2481 		for_each_node_mask(node, cpuset_current_mems_allowed) {
2482 			if (!mbind_nodemask || node_isset(node, *mbind_nodemask)) {
2483 				folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h),
2484 						node, NULL);
2485 				if (folio)
2486 					break;
2487 			}
2488 		}
2489 		if (!folio) {
2490 			alloc_ok = false;
2491 			break;
2492 		}
2493 		list_add(&folio->lru, &surplus_list);
2494 		cond_resched();
2495 	}
2496 	allocated += i;
2497 
2498 	/*
2499 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
2500 	 * because either resv_huge_pages or free_huge_pages may have changed.
2501 	 */
2502 	spin_lock_irq(&hugetlb_lock);
2503 	needed = (h->resv_huge_pages + delta) -
2504 			(h->free_huge_pages + allocated);
2505 	if (needed > 0) {
2506 		if (alloc_ok)
2507 			goto retry;
2508 		/*
2509 		 * We were not able to allocate enough pages to
2510 		 * satisfy the entire reservation so we free what
2511 		 * we've allocated so far.
2512 		 */
2513 		goto free;
2514 	}
2515 	/*
2516 	 * The surplus_list now contains _at_least_ the number of extra pages
2517 	 * needed to accommodate the reservation.  Add the appropriate number
2518 	 * of pages to the hugetlb pool and free the extras back to the buddy
2519 	 * allocator.  Commit the entire reservation here to prevent another
2520 	 * process from stealing the pages as they are added to the pool but
2521 	 * before they are reserved.
2522 	 */
2523 	needed += allocated;
2524 	h->resv_huge_pages += delta;
2525 	ret = 0;
2526 
2527 	/* Free the needed pages to the hugetlb pool */
2528 	list_for_each_entry_safe(folio, tmp, &surplus_list, lru) {
2529 		if ((--needed) < 0)
2530 			break;
2531 		/* Add the page to the hugetlb allocator */
2532 		enqueue_hugetlb_folio(h, folio);
2533 	}
2534 free:
2535 	spin_unlock_irq(&hugetlb_lock);
2536 
2537 	/*
2538 	 * Free unnecessary surplus pages to the buddy allocator.
2539 	 * Pages have no ref count, call free_huge_folio directly.
2540 	 */
2541 	list_for_each_entry_safe(folio, tmp, &surplus_list, lru)
2542 		free_huge_folio(folio);
2543 	spin_lock_irq(&hugetlb_lock);
2544 
2545 	return ret;
2546 }
2547 
2548 /*
2549  * This routine has two main purposes:
2550  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2551  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2552  *    to the associated reservation map.
2553  * 2) Free any unused surplus pages that may have been allocated to satisfy
2554  *    the reservation.  As many as unused_resv_pages may be freed.
2555  */
2556 static void return_unused_surplus_pages(struct hstate *h,
2557 					unsigned long unused_resv_pages)
2558 {
2559 	unsigned long nr_pages;
2560 	LIST_HEAD(page_list);
2561 
2562 	lockdep_assert_held(&hugetlb_lock);
2563 	/* Uncommit the reservation */
2564 	h->resv_huge_pages -= unused_resv_pages;
2565 
2566 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2567 		goto out;
2568 
2569 	/*
2570 	 * Part (or even all) of the reservation could have been backed
2571 	 * by pre-allocated pages. Only free surplus pages.
2572 	 */
2573 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2574 
2575 	/*
2576 	 * We want to release as many surplus pages as possible, spread
2577 	 * evenly across all nodes with memory. Iterate across these nodes
2578 	 * until we can no longer free unreserved surplus pages. This occurs
2579 	 * when the nodes with surplus pages have no free pages.
2580 	 * remove_pool_hugetlb_folio() will balance the freed pages across the
2581 	 * on-line nodes with memory and will handle the hstate accounting.
2582 	 */
2583 	while (nr_pages--) {
2584 		struct folio *folio;
2585 
2586 		folio = remove_pool_hugetlb_folio(h, &node_states[N_MEMORY], 1);
2587 		if (!folio)
2588 			goto out;
2589 
2590 		list_add(&folio->lru, &page_list);
2591 	}
2592 
2593 out:
2594 	spin_unlock_irq(&hugetlb_lock);
2595 	update_and_free_pages_bulk(h, &page_list);
2596 	spin_lock_irq(&hugetlb_lock);
2597 }
2598 
2599 
2600 /*
2601  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2602  * are used by the huge page allocation routines to manage reservations.
2603  *
2604  * vma_needs_reservation is called to determine if the huge page at addr
2605  * within the vma has an associated reservation.  If a reservation is
2606  * needed, the value 1 is returned.  The caller is then responsible for
2607  * managing the global reservation and subpool usage counts.  After
2608  * the huge page has been allocated, vma_commit_reservation is called
2609  * to add the page to the reservation map.  If the page allocation fails,
2610  * the reservation must be ended instead of committed.  vma_end_reservation
2611  * is called in such cases.
2612  *
2613  * In the normal case, vma_commit_reservation returns the same value
2614  * as the preceding vma_needs_reservation call.  The only time this
2615  * is not the case is if a reserve map was changed between calls.  It
2616  * is the responsibility of the caller to notice the difference and
2617  * take appropriate action.
2618  *
2619  * vma_add_reservation is used in error paths where a reservation must
2620  * be restored when a newly allocated huge page must be freed.  It is
2621  * to be called after calling vma_needs_reservation to determine if a
2622  * reservation exists.
2623  *
2624  * vma_del_reservation is used in error paths where an entry in the reserve
2625  * map was created during huge page allocation and must be removed.  It is to
2626  * be called after calling vma_needs_reservation to determine if a reservation
2627  * exists.
2628  */
2629 enum vma_resv_mode {
2630 	VMA_NEEDS_RESV,
2631 	VMA_COMMIT_RESV,
2632 	VMA_END_RESV,
2633 	VMA_ADD_RESV,
2634 	VMA_DEL_RESV,
2635 };
2636 static long __vma_reservation_common(struct hstate *h,
2637 				struct vm_area_struct *vma, unsigned long addr,
2638 				enum vma_resv_mode mode)
2639 {
2640 	struct resv_map *resv;
2641 	pgoff_t idx;
2642 	long ret;
2643 	long dummy_out_regions_needed;
2644 
2645 	resv = vma_resv_map(vma);
2646 	if (!resv)
2647 		return 1;
2648 
2649 	idx = vma_hugecache_offset(h, vma, addr);
2650 	switch (mode) {
2651 	case VMA_NEEDS_RESV:
2652 		ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2653 		/* We assume that vma_reservation_* routines always operate on
2654 		 * 1 page, and that adding to resv map a 1 page entry can only
2655 		 * ever require 1 region.
2656 		 */
2657 		VM_BUG_ON(dummy_out_regions_needed != 1);
2658 		break;
2659 	case VMA_COMMIT_RESV:
2660 		ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2661 		/* region_add calls of range 1 should never fail. */
2662 		VM_BUG_ON(ret < 0);
2663 		break;
2664 	case VMA_END_RESV:
2665 		region_abort(resv, idx, idx + 1, 1);
2666 		ret = 0;
2667 		break;
2668 	case VMA_ADD_RESV:
2669 		if (vma->vm_flags & VM_MAYSHARE) {
2670 			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2671 			/* region_add calls of range 1 should never fail. */
2672 			VM_BUG_ON(ret < 0);
2673 		} else {
2674 			region_abort(resv, idx, idx + 1, 1);
2675 			ret = region_del(resv, idx, idx + 1);
2676 		}
2677 		break;
2678 	case VMA_DEL_RESV:
2679 		if (vma->vm_flags & VM_MAYSHARE) {
2680 			region_abort(resv, idx, idx + 1, 1);
2681 			ret = region_del(resv, idx, idx + 1);
2682 		} else {
2683 			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2684 			/* region_add calls of range 1 should never fail. */
2685 			VM_BUG_ON(ret < 0);
2686 		}
2687 		break;
2688 	default:
2689 		BUG();
2690 	}
2691 
2692 	if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2693 		return ret;
2694 	/*
2695 	 * We know private mapping must have HPAGE_RESV_OWNER set.
2696 	 *
2697 	 * In most cases, reserves always exist for private mappings.
2698 	 * However, a file associated with mapping could have been
2699 	 * hole punched or truncated after reserves were consumed.
2700 	 * As subsequent fault on such a range will not use reserves.
2701 	 * Subtle - The reserve map for private mappings has the
2702 	 * opposite meaning than that of shared mappings.  If NO
2703 	 * entry is in the reserve map, it means a reservation exists.
2704 	 * If an entry exists in the reserve map, it means the
2705 	 * reservation has already been consumed.  As a result, the
2706 	 * return value of this routine is the opposite of the
2707 	 * value returned from reserve map manipulation routines above.
2708 	 */
2709 	if (ret > 0)
2710 		return 0;
2711 	if (ret == 0)
2712 		return 1;
2713 	return ret;
2714 }
2715 
2716 static long vma_needs_reservation(struct hstate *h,
2717 			struct vm_area_struct *vma, unsigned long addr)
2718 {
2719 	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2720 }
2721 
2722 static long vma_commit_reservation(struct hstate *h,
2723 			struct vm_area_struct *vma, unsigned long addr)
2724 {
2725 	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2726 }
2727 
2728 static void vma_end_reservation(struct hstate *h,
2729 			struct vm_area_struct *vma, unsigned long addr)
2730 {
2731 	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2732 }
2733 
2734 static long vma_add_reservation(struct hstate *h,
2735 			struct vm_area_struct *vma, unsigned long addr)
2736 {
2737 	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2738 }
2739 
2740 static long vma_del_reservation(struct hstate *h,
2741 			struct vm_area_struct *vma, unsigned long addr)
2742 {
2743 	return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2744 }
2745 
2746 /*
2747  * This routine is called to restore reservation information on error paths.
2748  * It should ONLY be called for folios allocated via alloc_hugetlb_folio(),
2749  * and the hugetlb mutex should remain held when calling this routine.
2750  *
2751  * It handles two specific cases:
2752  * 1) A reservation was in place and the folio consumed the reservation.
2753  *    hugetlb_restore_reserve is set in the folio.
2754  * 2) No reservation was in place for the page, so hugetlb_restore_reserve is
2755  *    not set.  However, alloc_hugetlb_folio always updates the reserve map.
2756  *
2757  * In case 1, free_huge_folio later in the error path will increment the
2758  * global reserve count.  But, free_huge_folio does not have enough context
2759  * to adjust the reservation map.  This case deals primarily with private
2760  * mappings.  Adjust the reserve map here to be consistent with global
2761  * reserve count adjustments to be made by free_huge_folio.  Make sure the
2762  * reserve map indicates there is a reservation present.
2763  *
2764  * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio.
2765  */
2766 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2767 			unsigned long address, struct folio *folio)
2768 {
2769 	long rc = vma_needs_reservation(h, vma, address);
2770 
2771 	if (folio_test_hugetlb_restore_reserve(folio)) {
2772 		if (unlikely(rc < 0))
2773 			/*
2774 			 * Rare out of memory condition in reserve map
2775 			 * manipulation.  Clear hugetlb_restore_reserve so
2776 			 * that global reserve count will not be incremented
2777 			 * by free_huge_folio.  This will make it appear
2778 			 * as though the reservation for this folio was
2779 			 * consumed.  This may prevent the task from
2780 			 * faulting in the folio at a later time.  This
2781 			 * is better than inconsistent global huge page
2782 			 * accounting of reserve counts.
2783 			 */
2784 			folio_clear_hugetlb_restore_reserve(folio);
2785 		else if (rc)
2786 			(void)vma_add_reservation(h, vma, address);
2787 		else
2788 			vma_end_reservation(h, vma, address);
2789 	} else {
2790 		if (!rc) {
2791 			/*
2792 			 * This indicates there is an entry in the reserve map
2793 			 * not added by alloc_hugetlb_folio.  We know it was added
2794 			 * before the alloc_hugetlb_folio call, otherwise
2795 			 * hugetlb_restore_reserve would be set on the folio.
2796 			 * Remove the entry so that a subsequent allocation
2797 			 * does not consume a reservation.
2798 			 */
2799 			rc = vma_del_reservation(h, vma, address);
2800 			if (rc < 0)
2801 				/*
2802 				 * VERY rare out of memory condition.  Since
2803 				 * we can not delete the entry, set
2804 				 * hugetlb_restore_reserve so that the reserve
2805 				 * count will be incremented when the folio
2806 				 * is freed.  This reserve will be consumed
2807 				 * on a subsequent allocation.
2808 				 */
2809 				folio_set_hugetlb_restore_reserve(folio);
2810 		} else if (rc < 0) {
2811 			/*
2812 			 * Rare out of memory condition from
2813 			 * vma_needs_reservation call.  Memory allocation is
2814 			 * only attempted if a new entry is needed.  Therefore,
2815 			 * this implies there is not an entry in the
2816 			 * reserve map.
2817 			 *
2818 			 * For shared mappings, no entry in the map indicates
2819 			 * no reservation.  We are done.
2820 			 */
2821 			if (!(vma->vm_flags & VM_MAYSHARE))
2822 				/*
2823 				 * For private mappings, no entry indicates
2824 				 * a reservation is present.  Since we can
2825 				 * not add an entry, set hugetlb_restore_reserve
2826 				 * on the folio so reserve count will be
2827 				 * incremented when freed.  This reserve will
2828 				 * be consumed on a subsequent allocation.
2829 				 */
2830 				folio_set_hugetlb_restore_reserve(folio);
2831 		} else
2832 			/*
2833 			 * No reservation present, do nothing
2834 			 */
2835 			 vma_end_reservation(h, vma, address);
2836 	}
2837 }
2838 
2839 /*
2840  * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve
2841  * the old one
2842  * @h: struct hstate old page belongs to
2843  * @old_folio: Old folio to dissolve
2844  * @list: List to isolate the page in case we need to
2845  * Returns 0 on success, otherwise negated error.
2846  */
2847 static int alloc_and_dissolve_hugetlb_folio(struct hstate *h,
2848 			struct folio *old_folio, struct list_head *list)
2849 {
2850 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2851 	int nid = folio_nid(old_folio);
2852 	struct folio *new_folio = NULL;
2853 	int ret = 0;
2854 
2855 retry:
2856 	spin_lock_irq(&hugetlb_lock);
2857 	if (!folio_test_hugetlb(old_folio)) {
2858 		/*
2859 		 * Freed from under us. Drop new_folio too.
2860 		 */
2861 		goto free_new;
2862 	} else if (folio_ref_count(old_folio)) {
2863 		bool isolated;
2864 
2865 		/*
2866 		 * Someone has grabbed the folio, try to isolate it here.
2867 		 * Fail with -EBUSY if not possible.
2868 		 */
2869 		spin_unlock_irq(&hugetlb_lock);
2870 		isolated = isolate_hugetlb(old_folio, list);
2871 		ret = isolated ? 0 : -EBUSY;
2872 		spin_lock_irq(&hugetlb_lock);
2873 		goto free_new;
2874 	} else if (!folio_test_hugetlb_freed(old_folio)) {
2875 		/*
2876 		 * Folio's refcount is 0 but it has not been enqueued in the
2877 		 * freelist yet. Race window is small, so we can succeed here if
2878 		 * we retry.
2879 		 */
2880 		spin_unlock_irq(&hugetlb_lock);
2881 		cond_resched();
2882 		goto retry;
2883 	} else {
2884 		if (!new_folio) {
2885 			spin_unlock_irq(&hugetlb_lock);
2886 			new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid,
2887 							      NULL, NULL);
2888 			if (!new_folio)
2889 				return -ENOMEM;
2890 			__prep_new_hugetlb_folio(h, new_folio);
2891 			goto retry;
2892 		}
2893 
2894 		/*
2895 		 * Ok, old_folio is still a genuine free hugepage. Remove it from
2896 		 * the freelist and decrease the counters. These will be
2897 		 * incremented again when calling __prep_account_new_huge_page()
2898 		 * and enqueue_hugetlb_folio() for new_folio. The counters will
2899 		 * remain stable since this happens under the lock.
2900 		 */
2901 		remove_hugetlb_folio(h, old_folio, false);
2902 
2903 		/*
2904 		 * Ref count on new_folio is already zero as it was dropped
2905 		 * earlier.  It can be directly added to the pool free list.
2906 		 */
2907 		__prep_account_new_huge_page(h, nid);
2908 		enqueue_hugetlb_folio(h, new_folio);
2909 
2910 		/*
2911 		 * Folio has been replaced, we can safely free the old one.
2912 		 */
2913 		spin_unlock_irq(&hugetlb_lock);
2914 		update_and_free_hugetlb_folio(h, old_folio, false);
2915 	}
2916 
2917 	return ret;
2918 
2919 free_new:
2920 	spin_unlock_irq(&hugetlb_lock);
2921 	if (new_folio)
2922 		update_and_free_hugetlb_folio(h, new_folio, false);
2923 
2924 	return ret;
2925 }
2926 
2927 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
2928 {
2929 	struct hstate *h;
2930 	struct folio *folio = page_folio(page);
2931 	int ret = -EBUSY;
2932 
2933 	/*
2934 	 * The page might have been dissolved from under our feet, so make sure
2935 	 * to carefully check the state under the lock.
2936 	 * Return success when racing as if we dissolved the page ourselves.
2937 	 */
2938 	spin_lock_irq(&hugetlb_lock);
2939 	if (folio_test_hugetlb(folio)) {
2940 		h = folio_hstate(folio);
2941 	} else {
2942 		spin_unlock_irq(&hugetlb_lock);
2943 		return 0;
2944 	}
2945 	spin_unlock_irq(&hugetlb_lock);
2946 
2947 	/*
2948 	 * Fence off gigantic pages as there is a cyclic dependency between
2949 	 * alloc_contig_range and them. Return -ENOMEM as this has the effect
2950 	 * of bailing out right away without further retrying.
2951 	 */
2952 	if (hstate_is_gigantic(h))
2953 		return -ENOMEM;
2954 
2955 	if (folio_ref_count(folio) && isolate_hugetlb(folio, list))
2956 		ret = 0;
2957 	else if (!folio_ref_count(folio))
2958 		ret = alloc_and_dissolve_hugetlb_folio(h, folio, list);
2959 
2960 	return ret;
2961 }
2962 
2963 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
2964 				    unsigned long addr, int avoid_reserve)
2965 {
2966 	struct hugepage_subpool *spool = subpool_vma(vma);
2967 	struct hstate *h = hstate_vma(vma);
2968 	struct folio *folio;
2969 	long map_chg, map_commit, nr_pages = pages_per_huge_page(h);
2970 	long gbl_chg;
2971 	int memcg_charge_ret, ret, idx;
2972 	struct hugetlb_cgroup *h_cg = NULL;
2973 	struct mem_cgroup *memcg;
2974 	bool deferred_reserve;
2975 	gfp_t gfp = htlb_alloc_mask(h) | __GFP_RETRY_MAYFAIL;
2976 
2977 	memcg = get_mem_cgroup_from_current();
2978 	memcg_charge_ret = mem_cgroup_hugetlb_try_charge(memcg, gfp, nr_pages);
2979 	if (memcg_charge_ret == -ENOMEM) {
2980 		mem_cgroup_put(memcg);
2981 		return ERR_PTR(-ENOMEM);
2982 	}
2983 
2984 	idx = hstate_index(h);
2985 	/*
2986 	 * Examine the region/reserve map to determine if the process
2987 	 * has a reservation for the page to be allocated.  A return
2988 	 * code of zero indicates a reservation exists (no change).
2989 	 */
2990 	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2991 	if (map_chg < 0) {
2992 		if (!memcg_charge_ret)
2993 			mem_cgroup_cancel_charge(memcg, nr_pages);
2994 		mem_cgroup_put(memcg);
2995 		return ERR_PTR(-ENOMEM);
2996 	}
2997 
2998 	/*
2999 	 * Processes that did not create the mapping will have no
3000 	 * reserves as indicated by the region/reserve map. Check
3001 	 * that the allocation will not exceed the subpool limit.
3002 	 * Allocations for MAP_NORESERVE mappings also need to be
3003 	 * checked against any subpool limit.
3004 	 */
3005 	if (map_chg || avoid_reserve) {
3006 		gbl_chg = hugepage_subpool_get_pages(spool, 1);
3007 		if (gbl_chg < 0)
3008 			goto out_end_reservation;
3009 
3010 		/*
3011 		 * Even though there was no reservation in the region/reserve
3012 		 * map, there could be reservations associated with the
3013 		 * subpool that can be used.  This would be indicated if the
3014 		 * return value of hugepage_subpool_get_pages() is zero.
3015 		 * However, if avoid_reserve is specified we still avoid even
3016 		 * the subpool reservations.
3017 		 */
3018 		if (avoid_reserve)
3019 			gbl_chg = 1;
3020 	}
3021 
3022 	/* If this allocation is not consuming a reservation, charge it now.
3023 	 */
3024 	deferred_reserve = map_chg || avoid_reserve;
3025 	if (deferred_reserve) {
3026 		ret = hugetlb_cgroup_charge_cgroup_rsvd(
3027 			idx, pages_per_huge_page(h), &h_cg);
3028 		if (ret)
3029 			goto out_subpool_put;
3030 	}
3031 
3032 	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
3033 	if (ret)
3034 		goto out_uncharge_cgroup_reservation;
3035 
3036 	spin_lock_irq(&hugetlb_lock);
3037 	/*
3038 	 * glb_chg is passed to indicate whether or not a page must be taken
3039 	 * from the global free pool (global change).  gbl_chg == 0 indicates
3040 	 * a reservation exists for the allocation.
3041 	 */
3042 	folio = dequeue_hugetlb_folio_vma(h, vma, addr, avoid_reserve, gbl_chg);
3043 	if (!folio) {
3044 		spin_unlock_irq(&hugetlb_lock);
3045 		folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr);
3046 		if (!folio)
3047 			goto out_uncharge_cgroup;
3048 		spin_lock_irq(&hugetlb_lock);
3049 		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
3050 			folio_set_hugetlb_restore_reserve(folio);
3051 			h->resv_huge_pages--;
3052 		}
3053 		list_add(&folio->lru, &h->hugepage_activelist);
3054 		folio_ref_unfreeze(folio, 1);
3055 		/* Fall through */
3056 	}
3057 
3058 	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio);
3059 	/* If allocation is not consuming a reservation, also store the
3060 	 * hugetlb_cgroup pointer on the page.
3061 	 */
3062 	if (deferred_reserve) {
3063 		hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
3064 						  h_cg, folio);
3065 	}
3066 
3067 	spin_unlock_irq(&hugetlb_lock);
3068 
3069 	hugetlb_set_folio_subpool(folio, spool);
3070 
3071 	map_commit = vma_commit_reservation(h, vma, addr);
3072 	if (unlikely(map_chg > map_commit)) {
3073 		/*
3074 		 * The page was added to the reservation map between
3075 		 * vma_needs_reservation and vma_commit_reservation.
3076 		 * This indicates a race with hugetlb_reserve_pages.
3077 		 * Adjust for the subpool count incremented above AND
3078 		 * in hugetlb_reserve_pages for the same page.  Also,
3079 		 * the reservation count added in hugetlb_reserve_pages
3080 		 * no longer applies.
3081 		 */
3082 		long rsv_adjust;
3083 
3084 		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
3085 		hugetlb_acct_memory(h, -rsv_adjust);
3086 		if (deferred_reserve) {
3087 			spin_lock_irq(&hugetlb_lock);
3088 			hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
3089 					pages_per_huge_page(h), folio);
3090 			spin_unlock_irq(&hugetlb_lock);
3091 		}
3092 	}
3093 
3094 	if (!memcg_charge_ret)
3095 		mem_cgroup_commit_charge(folio, memcg);
3096 	mem_cgroup_put(memcg);
3097 
3098 	return folio;
3099 
3100 out_uncharge_cgroup:
3101 	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
3102 out_uncharge_cgroup_reservation:
3103 	if (deferred_reserve)
3104 		hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
3105 						    h_cg);
3106 out_subpool_put:
3107 	if (map_chg || avoid_reserve)
3108 		hugepage_subpool_put_pages(spool, 1);
3109 out_end_reservation:
3110 	vma_end_reservation(h, vma, addr);
3111 	if (!memcg_charge_ret)
3112 		mem_cgroup_cancel_charge(memcg, nr_pages);
3113 	mem_cgroup_put(memcg);
3114 	return ERR_PTR(-ENOSPC);
3115 }
3116 
3117 int alloc_bootmem_huge_page(struct hstate *h, int nid)
3118 	__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
3119 int __alloc_bootmem_huge_page(struct hstate *h, int nid)
3120 {
3121 	struct huge_bootmem_page *m = NULL; /* initialize for clang */
3122 	int nr_nodes, node = nid;
3123 
3124 	/* do node specific alloc */
3125 	if (nid != NUMA_NO_NODE) {
3126 		m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
3127 				0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3128 		if (!m)
3129 			return 0;
3130 		goto found;
3131 	}
3132 	/* allocate from next node when distributing huge pages */
3133 	for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, &node_states[N_MEMORY]) {
3134 		m = memblock_alloc_try_nid_raw(
3135 				huge_page_size(h), huge_page_size(h),
3136 				0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
3137 		/*
3138 		 * Use the beginning of the huge page to store the
3139 		 * huge_bootmem_page struct (until gather_bootmem
3140 		 * puts them into the mem_map).
3141 		 */
3142 		if (!m)
3143 			return 0;
3144 		goto found;
3145 	}
3146 
3147 found:
3148 
3149 	/*
3150 	 * Only initialize the head struct page in memmap_init_reserved_pages,
3151 	 * rest of the struct pages will be initialized by the HugeTLB
3152 	 * subsystem itself.
3153 	 * The head struct page is used to get folio information by the HugeTLB
3154 	 * subsystem like zone id and node id.
3155 	 */
3156 	memblock_reserved_mark_noinit(virt_to_phys((void *)m + PAGE_SIZE),
3157 		huge_page_size(h) - PAGE_SIZE);
3158 	/* Put them into a private list first because mem_map is not up yet */
3159 	INIT_LIST_HEAD(&m->list);
3160 	list_add(&m->list, &huge_boot_pages[node]);
3161 	m->hstate = h;
3162 	return 1;
3163 }
3164 
3165 /* Initialize [start_page:end_page_number] tail struct pages of a hugepage */
3166 static void __init hugetlb_folio_init_tail_vmemmap(struct folio *folio,
3167 					unsigned long start_page_number,
3168 					unsigned long end_page_number)
3169 {
3170 	enum zone_type zone = zone_idx(folio_zone(folio));
3171 	int nid = folio_nid(folio);
3172 	unsigned long head_pfn = folio_pfn(folio);
3173 	unsigned long pfn, end_pfn = head_pfn + end_page_number;
3174 	int ret;
3175 
3176 	for (pfn = head_pfn + start_page_number; pfn < end_pfn; pfn++) {
3177 		struct page *page = pfn_to_page(pfn);
3178 
3179 		__ClearPageReserved(folio_page(folio, pfn - head_pfn));
3180 		__init_single_page(page, pfn, zone, nid);
3181 		prep_compound_tail((struct page *)folio, pfn - head_pfn);
3182 		ret = page_ref_freeze(page, 1);
3183 		VM_BUG_ON(!ret);
3184 	}
3185 }
3186 
3187 static void __init hugetlb_folio_init_vmemmap(struct folio *folio,
3188 					      struct hstate *h,
3189 					      unsigned long nr_pages)
3190 {
3191 	int ret;
3192 
3193 	/* Prepare folio head */
3194 	__folio_clear_reserved(folio);
3195 	__folio_set_head(folio);
3196 	ret = folio_ref_freeze(folio, 1);
3197 	VM_BUG_ON(!ret);
3198 	/* Initialize the necessary tail struct pages */
3199 	hugetlb_folio_init_tail_vmemmap(folio, 1, nr_pages);
3200 	prep_compound_head((struct page *)folio, huge_page_order(h));
3201 }
3202 
3203 static void __init prep_and_add_bootmem_folios(struct hstate *h,
3204 					struct list_head *folio_list)
3205 {
3206 	unsigned long flags;
3207 	struct folio *folio, *tmp_f;
3208 
3209 	/* Send list for bulk vmemmap optimization processing */
3210 	hugetlb_vmemmap_optimize_folios(h, folio_list);
3211 
3212 	list_for_each_entry_safe(folio, tmp_f, folio_list, lru) {
3213 		if (!folio_test_hugetlb_vmemmap_optimized(folio)) {
3214 			/*
3215 			 * If HVO fails, initialize all tail struct pages
3216 			 * We do not worry about potential long lock hold
3217 			 * time as this is early in boot and there should
3218 			 * be no contention.
3219 			 */
3220 			hugetlb_folio_init_tail_vmemmap(folio,
3221 					HUGETLB_VMEMMAP_RESERVE_PAGES,
3222 					pages_per_huge_page(h));
3223 		}
3224 		/* Subdivide locks to achieve better parallel performance */
3225 		spin_lock_irqsave(&hugetlb_lock, flags);
3226 		__prep_account_new_huge_page(h, folio_nid(folio));
3227 		enqueue_hugetlb_folio(h, folio);
3228 		spin_unlock_irqrestore(&hugetlb_lock, flags);
3229 	}
3230 }
3231 
3232 /*
3233  * Put bootmem huge pages into the standard lists after mem_map is up.
3234  * Note: This only applies to gigantic (order > MAX_PAGE_ORDER) pages.
3235  */
3236 static void __init gather_bootmem_prealloc_node(unsigned long nid)
3237 {
3238 	LIST_HEAD(folio_list);
3239 	struct huge_bootmem_page *m;
3240 	struct hstate *h = NULL, *prev_h = NULL;
3241 
3242 	list_for_each_entry(m, &huge_boot_pages[nid], list) {
3243 		struct page *page = virt_to_page(m);
3244 		struct folio *folio = (void *)page;
3245 
3246 		h = m->hstate;
3247 		/*
3248 		 * It is possible to have multiple huge page sizes (hstates)
3249 		 * in this list.  If so, process each size separately.
3250 		 */
3251 		if (h != prev_h && prev_h != NULL)
3252 			prep_and_add_bootmem_folios(prev_h, &folio_list);
3253 		prev_h = h;
3254 
3255 		VM_BUG_ON(!hstate_is_gigantic(h));
3256 		WARN_ON(folio_ref_count(folio) != 1);
3257 
3258 		hugetlb_folio_init_vmemmap(folio, h,
3259 					   HUGETLB_VMEMMAP_RESERVE_PAGES);
3260 		init_new_hugetlb_folio(h, folio);
3261 		list_add(&folio->lru, &folio_list);
3262 
3263 		/*
3264 		 * We need to restore the 'stolen' pages to totalram_pages
3265 		 * in order to fix confusing memory reports from free(1) and
3266 		 * other side-effects, like CommitLimit going negative.
3267 		 */
3268 		adjust_managed_page_count(page, pages_per_huge_page(h));
3269 		cond_resched();
3270 	}
3271 
3272 	prep_and_add_bootmem_folios(h, &folio_list);
3273 }
3274 
3275 static void __init gather_bootmem_prealloc_parallel(unsigned long start,
3276 						    unsigned long end, void *arg)
3277 {
3278 	int nid;
3279 
3280 	for (nid = start; nid < end; nid++)
3281 		gather_bootmem_prealloc_node(nid);
3282 }
3283 
3284 static void __init gather_bootmem_prealloc(void)
3285 {
3286 	struct padata_mt_job job = {
3287 		.thread_fn	= gather_bootmem_prealloc_parallel,
3288 		.fn_arg		= NULL,
3289 		.start		= 0,
3290 		.size		= num_node_state(N_MEMORY),
3291 		.align		= 1,
3292 		.min_chunk	= 1,
3293 		.max_threads	= num_node_state(N_MEMORY),
3294 		.numa_aware	= true,
3295 	};
3296 
3297 	padata_do_multithreaded(&job);
3298 }
3299 
3300 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3301 {
3302 	unsigned long i;
3303 	char buf[32];
3304 
3305 	for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3306 		if (hstate_is_gigantic(h)) {
3307 			if (!alloc_bootmem_huge_page(h, nid))
3308 				break;
3309 		} else {
3310 			struct folio *folio;
3311 			gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3312 
3313 			folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid,
3314 					&node_states[N_MEMORY]);
3315 			if (!folio)
3316 				break;
3317 			free_huge_folio(folio); /* free it into the hugepage allocator */
3318 		}
3319 		cond_resched();
3320 	}
3321 	if (i == h->max_huge_pages_node[nid])
3322 		return;
3323 
3324 	string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3325 	pr_warn("HugeTLB: allocating %u of page size %s failed node%d.  Only allocated %lu hugepages.\n",
3326 		h->max_huge_pages_node[nid], buf, nid, i);
3327 	h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3328 	h->max_huge_pages_node[nid] = i;
3329 }
3330 
3331 static bool __init hugetlb_hstate_alloc_pages_specific_nodes(struct hstate *h)
3332 {
3333 	int i;
3334 	bool node_specific_alloc = false;
3335 
3336 	for_each_online_node(i) {
3337 		if (h->max_huge_pages_node[i] > 0) {
3338 			hugetlb_hstate_alloc_pages_onenode(h, i);
3339 			node_specific_alloc = true;
3340 		}
3341 	}
3342 
3343 	return node_specific_alloc;
3344 }
3345 
3346 static void __init hugetlb_hstate_alloc_pages_errcheck(unsigned long allocated, struct hstate *h)
3347 {
3348 	if (allocated < h->max_huge_pages) {
3349 		char buf[32];
3350 
3351 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3352 		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
3353 			h->max_huge_pages, buf, allocated);
3354 		h->max_huge_pages = allocated;
3355 	}
3356 }
3357 
3358 static void __init hugetlb_pages_alloc_boot_node(unsigned long start, unsigned long end, void *arg)
3359 {
3360 	struct hstate *h = (struct hstate *)arg;
3361 	int i, num = end - start;
3362 	nodemask_t node_alloc_noretry;
3363 	LIST_HEAD(folio_list);
3364 	int next_node = first_online_node;
3365 
3366 	/* Bit mask controlling how hard we retry per-node allocations.*/
3367 	nodes_clear(node_alloc_noretry);
3368 
3369 	for (i = 0; i < num; ++i) {
3370 		struct folio *folio = alloc_pool_huge_folio(h, &node_states[N_MEMORY],
3371 						&node_alloc_noretry, &next_node);
3372 		if (!folio)
3373 			break;
3374 
3375 		list_move(&folio->lru, &folio_list);
3376 		cond_resched();
3377 	}
3378 
3379 	prep_and_add_allocated_folios(h, &folio_list);
3380 }
3381 
3382 static unsigned long __init hugetlb_gigantic_pages_alloc_boot(struct hstate *h)
3383 {
3384 	unsigned long i;
3385 
3386 	for (i = 0; i < h->max_huge_pages; ++i) {
3387 		if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3388 			break;
3389 		cond_resched();
3390 	}
3391 
3392 	return i;
3393 }
3394 
3395 static unsigned long __init hugetlb_pages_alloc_boot(struct hstate *h)
3396 {
3397 	struct padata_mt_job job = {
3398 		.fn_arg		= h,
3399 		.align		= 1,
3400 		.numa_aware	= true
3401 	};
3402 
3403 	job.thread_fn	= hugetlb_pages_alloc_boot_node;
3404 	job.start	= 0;
3405 	job.size	= h->max_huge_pages;
3406 
3407 	/*
3408 	 * job.max_threads is twice the num_node_state(N_MEMORY),
3409 	 *
3410 	 * Tests below indicate that a multiplier of 2 significantly improves
3411 	 * performance, and although larger values also provide improvements,
3412 	 * the gains are marginal.
3413 	 *
3414 	 * Therefore, choosing 2 as the multiplier strikes a good balance between
3415 	 * enhancing parallel processing capabilities and maintaining efficient
3416 	 * resource management.
3417 	 *
3418 	 * +------------+-------+-------+-------+-------+-------+
3419 	 * | multiplier |   1   |   2   |   3   |   4   |   5   |
3420 	 * +------------+-------+-------+-------+-------+-------+
3421 	 * | 256G 2node | 358ms | 215ms | 157ms | 134ms | 126ms |
3422 	 * | 2T   4node | 979ms | 679ms | 543ms | 489ms | 481ms |
3423 	 * | 50G  2node | 71ms  | 44ms  | 37ms  | 30ms  | 31ms  |
3424 	 * +------------+-------+-------+-------+-------+-------+
3425 	 */
3426 	job.max_threads	= num_node_state(N_MEMORY) * 2;
3427 	job.min_chunk	= h->max_huge_pages / num_node_state(N_MEMORY) / 2;
3428 	padata_do_multithreaded(&job);
3429 
3430 	return h->nr_huge_pages;
3431 }
3432 
3433 /*
3434  * NOTE: this routine is called in different contexts for gigantic and
3435  * non-gigantic pages.
3436  * - For gigantic pages, this is called early in the boot process and
3437  *   pages are allocated from memblock allocated or something similar.
3438  *   Gigantic pages are actually added to pools later with the routine
3439  *   gather_bootmem_prealloc.
3440  * - For non-gigantic pages, this is called later in the boot process after
3441  *   all of mm is up and functional.  Pages are allocated from buddy and
3442  *   then added to hugetlb pools.
3443  */
3444 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3445 {
3446 	unsigned long allocated;
3447 	static bool initialized __initdata;
3448 
3449 	/* skip gigantic hugepages allocation if hugetlb_cma enabled */
3450 	if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3451 		pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3452 		return;
3453 	}
3454 
3455 	/* hugetlb_hstate_alloc_pages will be called many times, initialize huge_boot_pages once */
3456 	if (!initialized) {
3457 		int i = 0;
3458 
3459 		for (i = 0; i < MAX_NUMNODES; i++)
3460 			INIT_LIST_HEAD(&huge_boot_pages[i]);
3461 		initialized = true;
3462 	}
3463 
3464 	/* do node specific alloc */
3465 	if (hugetlb_hstate_alloc_pages_specific_nodes(h))
3466 		return;
3467 
3468 	/* below will do all node balanced alloc */
3469 	if (hstate_is_gigantic(h))
3470 		allocated = hugetlb_gigantic_pages_alloc_boot(h);
3471 	else
3472 		allocated = hugetlb_pages_alloc_boot(h);
3473 
3474 	hugetlb_hstate_alloc_pages_errcheck(allocated, h);
3475 }
3476 
3477 static void __init hugetlb_init_hstates(void)
3478 {
3479 	struct hstate *h, *h2;
3480 
3481 	for_each_hstate(h) {
3482 		/* oversize hugepages were init'ed in early boot */
3483 		if (!hstate_is_gigantic(h))
3484 			hugetlb_hstate_alloc_pages(h);
3485 
3486 		/*
3487 		 * Set demote order for each hstate.  Note that
3488 		 * h->demote_order is initially 0.
3489 		 * - We can not demote gigantic pages if runtime freeing
3490 		 *   is not supported, so skip this.
3491 		 * - If CMA allocation is possible, we can not demote
3492 		 *   HUGETLB_PAGE_ORDER or smaller size pages.
3493 		 */
3494 		if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3495 			continue;
3496 		if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3497 			continue;
3498 		for_each_hstate(h2) {
3499 			if (h2 == h)
3500 				continue;
3501 			if (h2->order < h->order &&
3502 			    h2->order > h->demote_order)
3503 				h->demote_order = h2->order;
3504 		}
3505 	}
3506 }
3507 
3508 static void __init report_hugepages(void)
3509 {
3510 	struct hstate *h;
3511 
3512 	for_each_hstate(h) {
3513 		char buf[32];
3514 
3515 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3516 		pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
3517 			buf, h->free_huge_pages);
3518 		pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3519 			hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
3520 	}
3521 }
3522 
3523 #ifdef CONFIG_HIGHMEM
3524 static void try_to_free_low(struct hstate *h, unsigned long count,
3525 						nodemask_t *nodes_allowed)
3526 {
3527 	int i;
3528 	LIST_HEAD(page_list);
3529 
3530 	lockdep_assert_held(&hugetlb_lock);
3531 	if (hstate_is_gigantic(h))
3532 		return;
3533 
3534 	/*
3535 	 * Collect pages to be freed on a list, and free after dropping lock
3536 	 */
3537 	for_each_node_mask(i, *nodes_allowed) {
3538 		struct folio *folio, *next;
3539 		struct list_head *freel = &h->hugepage_freelists[i];
3540 		list_for_each_entry_safe(folio, next, freel, lru) {
3541 			if (count >= h->nr_huge_pages)
3542 				goto out;
3543 			if (folio_test_highmem(folio))
3544 				continue;
3545 			remove_hugetlb_folio(h, folio, false);
3546 			list_add(&folio->lru, &page_list);
3547 		}
3548 	}
3549 
3550 out:
3551 	spin_unlock_irq(&hugetlb_lock);
3552 	update_and_free_pages_bulk(h, &page_list);
3553 	spin_lock_irq(&hugetlb_lock);
3554 }
3555 #else
3556 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3557 						nodemask_t *nodes_allowed)
3558 {
3559 }
3560 #endif
3561 
3562 /*
3563  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
3564  * balanced by operating on them in a round-robin fashion.
3565  * Returns 1 if an adjustment was made.
3566  */
3567 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3568 				int delta)
3569 {
3570 	int nr_nodes, node;
3571 
3572 	lockdep_assert_held(&hugetlb_lock);
3573 	VM_BUG_ON(delta != -1 && delta != 1);
3574 
3575 	if (delta < 0) {
3576 		for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, nodes_allowed) {
3577 			if (h->surplus_huge_pages_node[node])
3578 				goto found;
3579 		}
3580 	} else {
3581 		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3582 			if (h->surplus_huge_pages_node[node] <
3583 					h->nr_huge_pages_node[node])
3584 				goto found;
3585 		}
3586 	}
3587 	return 0;
3588 
3589 found:
3590 	h->surplus_huge_pages += delta;
3591 	h->surplus_huge_pages_node[node] += delta;
3592 	return 1;
3593 }
3594 
3595 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3596 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3597 			      nodemask_t *nodes_allowed)
3598 {
3599 	unsigned long min_count;
3600 	unsigned long allocated;
3601 	struct folio *folio;
3602 	LIST_HEAD(page_list);
3603 	NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3604 
3605 	/*
3606 	 * Bit mask controlling how hard we retry per-node allocations.
3607 	 * If we can not allocate the bit mask, do not attempt to allocate
3608 	 * the requested huge pages.
3609 	 */
3610 	if (node_alloc_noretry)
3611 		nodes_clear(*node_alloc_noretry);
3612 	else
3613 		return -ENOMEM;
3614 
3615 	/*
3616 	 * resize_lock mutex prevents concurrent adjustments to number of
3617 	 * pages in hstate via the proc/sysfs interfaces.
3618 	 */
3619 	mutex_lock(&h->resize_lock);
3620 	flush_free_hpage_work(h);
3621 	spin_lock_irq(&hugetlb_lock);
3622 
3623 	/*
3624 	 * Check for a node specific request.
3625 	 * Changing node specific huge page count may require a corresponding
3626 	 * change to the global count.  In any case, the passed node mask
3627 	 * (nodes_allowed) will restrict alloc/free to the specified node.
3628 	 */
3629 	if (nid != NUMA_NO_NODE) {
3630 		unsigned long old_count = count;
3631 
3632 		count += persistent_huge_pages(h) -
3633 			 (h->nr_huge_pages_node[nid] -
3634 			  h->surplus_huge_pages_node[nid]);
3635 		/*
3636 		 * User may have specified a large count value which caused the
3637 		 * above calculation to overflow.  In this case, they wanted
3638 		 * to allocate as many huge pages as possible.  Set count to
3639 		 * largest possible value to align with their intention.
3640 		 */
3641 		if (count < old_count)
3642 			count = ULONG_MAX;
3643 	}
3644 
3645 	/*
3646 	 * Gigantic pages runtime allocation depend on the capability for large
3647 	 * page range allocation.
3648 	 * If the system does not provide this feature, return an error when
3649 	 * the user tries to allocate gigantic pages but let the user free the
3650 	 * boottime allocated gigantic pages.
3651 	 */
3652 	if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3653 		if (count > persistent_huge_pages(h)) {
3654 			spin_unlock_irq(&hugetlb_lock);
3655 			mutex_unlock(&h->resize_lock);
3656 			NODEMASK_FREE(node_alloc_noretry);
3657 			return -EINVAL;
3658 		}
3659 		/* Fall through to decrease pool */
3660 	}
3661 
3662 	/*
3663 	 * Increase the pool size
3664 	 * First take pages out of surplus state.  Then make up the
3665 	 * remaining difference by allocating fresh huge pages.
3666 	 *
3667 	 * We might race with alloc_surplus_hugetlb_folio() here and be unable
3668 	 * to convert a surplus huge page to a normal huge page. That is
3669 	 * not critical, though, it just means the overall size of the
3670 	 * pool might be one hugepage larger than it needs to be, but
3671 	 * within all the constraints specified by the sysctls.
3672 	 */
3673 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3674 		if (!adjust_pool_surplus(h, nodes_allowed, -1))
3675 			break;
3676 	}
3677 
3678 	allocated = 0;
3679 	while (count > (persistent_huge_pages(h) + allocated)) {
3680 		/*
3681 		 * If this allocation races such that we no longer need the
3682 		 * page, free_huge_folio will handle it by freeing the page
3683 		 * and reducing the surplus.
3684 		 */
3685 		spin_unlock_irq(&hugetlb_lock);
3686 
3687 		/* yield cpu to avoid soft lockup */
3688 		cond_resched();
3689 
3690 		folio = alloc_pool_huge_folio(h, nodes_allowed,
3691 						node_alloc_noretry,
3692 						&h->next_nid_to_alloc);
3693 		if (!folio) {
3694 			prep_and_add_allocated_folios(h, &page_list);
3695 			spin_lock_irq(&hugetlb_lock);
3696 			goto out;
3697 		}
3698 
3699 		list_add(&folio->lru, &page_list);
3700 		allocated++;
3701 
3702 		/* Bail for signals. Probably ctrl-c from user */
3703 		if (signal_pending(current)) {
3704 			prep_and_add_allocated_folios(h, &page_list);
3705 			spin_lock_irq(&hugetlb_lock);
3706 			goto out;
3707 		}
3708 
3709 		spin_lock_irq(&hugetlb_lock);
3710 	}
3711 
3712 	/* Add allocated pages to the pool */
3713 	if (!list_empty(&page_list)) {
3714 		spin_unlock_irq(&hugetlb_lock);
3715 		prep_and_add_allocated_folios(h, &page_list);
3716 		spin_lock_irq(&hugetlb_lock);
3717 	}
3718 
3719 	/*
3720 	 * Decrease the pool size
3721 	 * First return free pages to the buddy allocator (being careful
3722 	 * to keep enough around to satisfy reservations).  Then place
3723 	 * pages into surplus state as needed so the pool will shrink
3724 	 * to the desired size as pages become free.
3725 	 *
3726 	 * By placing pages into the surplus state independent of the
3727 	 * overcommit value, we are allowing the surplus pool size to
3728 	 * exceed overcommit. There are few sane options here. Since
3729 	 * alloc_surplus_hugetlb_folio() is checking the global counter,
3730 	 * though, we'll note that we're not allowed to exceed surplus
3731 	 * and won't grow the pool anywhere else. Not until one of the
3732 	 * sysctls are changed, or the surplus pages go out of use.
3733 	 */
3734 	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3735 	min_count = max(count, min_count);
3736 	try_to_free_low(h, min_count, nodes_allowed);
3737 
3738 	/*
3739 	 * Collect pages to be removed on list without dropping lock
3740 	 */
3741 	while (min_count < persistent_huge_pages(h)) {
3742 		folio = remove_pool_hugetlb_folio(h, nodes_allowed, 0);
3743 		if (!folio)
3744 			break;
3745 
3746 		list_add(&folio->lru, &page_list);
3747 	}
3748 	/* free the pages after dropping lock */
3749 	spin_unlock_irq(&hugetlb_lock);
3750 	update_and_free_pages_bulk(h, &page_list);
3751 	flush_free_hpage_work(h);
3752 	spin_lock_irq(&hugetlb_lock);
3753 
3754 	while (count < persistent_huge_pages(h)) {
3755 		if (!adjust_pool_surplus(h, nodes_allowed, 1))
3756 			break;
3757 	}
3758 out:
3759 	h->max_huge_pages = persistent_huge_pages(h);
3760 	spin_unlock_irq(&hugetlb_lock);
3761 	mutex_unlock(&h->resize_lock);
3762 
3763 	NODEMASK_FREE(node_alloc_noretry);
3764 
3765 	return 0;
3766 }
3767 
3768 static long demote_free_hugetlb_folios(struct hstate *src, struct hstate *dst,
3769 				       struct list_head *src_list)
3770 {
3771 	long rc;
3772 	struct folio *folio, *next;
3773 	LIST_HEAD(dst_list);
3774 	LIST_HEAD(ret_list);
3775 
3776 	rc = hugetlb_vmemmap_restore_folios(src, src_list, &ret_list);
3777 	list_splice_init(&ret_list, src_list);
3778 
3779 	/*
3780 	 * Taking target hstate mutex synchronizes with set_max_huge_pages.
3781 	 * Without the mutex, pages added to target hstate could be marked
3782 	 * as surplus.
3783 	 *
3784 	 * Note that we already hold src->resize_lock.  To prevent deadlock,
3785 	 * use the convention of always taking larger size hstate mutex first.
3786 	 */
3787 	mutex_lock(&dst->resize_lock);
3788 
3789 	list_for_each_entry_safe(folio, next, src_list, lru) {
3790 		int i;
3791 
3792 		if (folio_test_hugetlb_vmemmap_optimized(folio))
3793 			continue;
3794 
3795 		list_del(&folio->lru);
3796 
3797 		split_page_owner(&folio->page, huge_page_order(src), huge_page_order(dst));
3798 		pgalloc_tag_split(folio, huge_page_order(src), huge_page_order(dst));
3799 
3800 		for (i = 0; i < pages_per_huge_page(src); i += pages_per_huge_page(dst)) {
3801 			struct page *page = folio_page(folio, i);
3802 
3803 			page->mapping = NULL;
3804 			clear_compound_head(page);
3805 			prep_compound_page(page, dst->order);
3806 
3807 			init_new_hugetlb_folio(dst, page_folio(page));
3808 			list_add(&page->lru, &dst_list);
3809 		}
3810 	}
3811 
3812 	prep_and_add_allocated_folios(dst, &dst_list);
3813 
3814 	mutex_unlock(&dst->resize_lock);
3815 
3816 	return rc;
3817 }
3818 
3819 static long demote_pool_huge_page(struct hstate *src, nodemask_t *nodes_allowed,
3820 				  unsigned long nr_to_demote)
3821 	__must_hold(&hugetlb_lock)
3822 {
3823 	int nr_nodes, node;
3824 	struct hstate *dst;
3825 	long rc = 0;
3826 	long nr_demoted = 0;
3827 
3828 	lockdep_assert_held(&hugetlb_lock);
3829 
3830 	/* We should never get here if no demote order */
3831 	if (!src->demote_order) {
3832 		pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3833 		return -EINVAL;		/* internal error */
3834 	}
3835 	dst = size_to_hstate(PAGE_SIZE << src->demote_order);
3836 
3837 	for_each_node_mask_to_free(src, nr_nodes, node, nodes_allowed) {
3838 		LIST_HEAD(list);
3839 		struct folio *folio, *next;
3840 
3841 		list_for_each_entry_safe(folio, next, &src->hugepage_freelists[node], lru) {
3842 			if (folio_test_hwpoison(folio))
3843 				continue;
3844 
3845 			remove_hugetlb_folio(src, folio, false);
3846 			list_add(&folio->lru, &list);
3847 
3848 			if (++nr_demoted == nr_to_demote)
3849 				break;
3850 		}
3851 
3852 		spin_unlock_irq(&hugetlb_lock);
3853 
3854 		rc = demote_free_hugetlb_folios(src, dst, &list);
3855 
3856 		spin_lock_irq(&hugetlb_lock);
3857 
3858 		list_for_each_entry_safe(folio, next, &list, lru) {
3859 			list_del(&folio->lru);
3860 			add_hugetlb_folio(src, folio, false);
3861 
3862 			nr_demoted--;
3863 		}
3864 
3865 		if (rc < 0 || nr_demoted == nr_to_demote)
3866 			break;
3867 	}
3868 
3869 	/*
3870 	 * Not absolutely necessary, but for consistency update max_huge_pages
3871 	 * based on pool changes for the demoted page.
3872 	 */
3873 	src->max_huge_pages -= nr_demoted;
3874 	dst->max_huge_pages += nr_demoted << (huge_page_order(src) - huge_page_order(dst));
3875 
3876 	if (rc < 0)
3877 		return rc;
3878 
3879 	if (nr_demoted)
3880 		return nr_demoted;
3881 	/*
3882 	 * Only way to get here is if all pages on free lists are poisoned.
3883 	 * Return -EBUSY so that caller will not retry.
3884 	 */
3885 	return -EBUSY;
3886 }
3887 
3888 #define HSTATE_ATTR_RO(_name) \
3889 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3890 
3891 #define HSTATE_ATTR_WO(_name) \
3892 	static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
3893 
3894 #define HSTATE_ATTR(_name) \
3895 	static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3896 
3897 static struct kobject *hugepages_kobj;
3898 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3899 
3900 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3901 
3902 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3903 {
3904 	int i;
3905 
3906 	for (i = 0; i < HUGE_MAX_HSTATE; i++)
3907 		if (hstate_kobjs[i] == kobj) {
3908 			if (nidp)
3909 				*nidp = NUMA_NO_NODE;
3910 			return &hstates[i];
3911 		}
3912 
3913 	return kobj_to_node_hstate(kobj, nidp);
3914 }
3915 
3916 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3917 					struct kobj_attribute *attr, char *buf)
3918 {
3919 	struct hstate *h;
3920 	unsigned long nr_huge_pages;
3921 	int nid;
3922 
3923 	h = kobj_to_hstate(kobj, &nid);
3924 	if (nid == NUMA_NO_NODE)
3925 		nr_huge_pages = h->nr_huge_pages;
3926 	else
3927 		nr_huge_pages = h->nr_huge_pages_node[nid];
3928 
3929 	return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3930 }
3931 
3932 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3933 					   struct hstate *h, int nid,
3934 					   unsigned long count, size_t len)
3935 {
3936 	int err;
3937 	nodemask_t nodes_allowed, *n_mask;
3938 
3939 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3940 		return -EINVAL;
3941 
3942 	if (nid == NUMA_NO_NODE) {
3943 		/*
3944 		 * global hstate attribute
3945 		 */
3946 		if (!(obey_mempolicy &&
3947 				init_nodemask_of_mempolicy(&nodes_allowed)))
3948 			n_mask = &node_states[N_MEMORY];
3949 		else
3950 			n_mask = &nodes_allowed;
3951 	} else {
3952 		/*
3953 		 * Node specific request.  count adjustment happens in
3954 		 * set_max_huge_pages() after acquiring hugetlb_lock.
3955 		 */
3956 		init_nodemask_of_node(&nodes_allowed, nid);
3957 		n_mask = &nodes_allowed;
3958 	}
3959 
3960 	err = set_max_huge_pages(h, count, nid, n_mask);
3961 
3962 	return err ? err : len;
3963 }
3964 
3965 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3966 					 struct kobject *kobj, const char *buf,
3967 					 size_t len)
3968 {
3969 	struct hstate *h;
3970 	unsigned long count;
3971 	int nid;
3972 	int err;
3973 
3974 	err = kstrtoul(buf, 10, &count);
3975 	if (err)
3976 		return err;
3977 
3978 	h = kobj_to_hstate(kobj, &nid);
3979 	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3980 }
3981 
3982 static ssize_t nr_hugepages_show(struct kobject *kobj,
3983 				       struct kobj_attribute *attr, char *buf)
3984 {
3985 	return nr_hugepages_show_common(kobj, attr, buf);
3986 }
3987 
3988 static ssize_t nr_hugepages_store(struct kobject *kobj,
3989 	       struct kobj_attribute *attr, const char *buf, size_t len)
3990 {
3991 	return nr_hugepages_store_common(false, kobj, buf, len);
3992 }
3993 HSTATE_ATTR(nr_hugepages);
3994 
3995 #ifdef CONFIG_NUMA
3996 
3997 /*
3998  * hstate attribute for optionally mempolicy-based constraint on persistent
3999  * huge page alloc/free.
4000  */
4001 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
4002 					   struct kobj_attribute *attr,
4003 					   char *buf)
4004 {
4005 	return nr_hugepages_show_common(kobj, attr, buf);
4006 }
4007 
4008 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
4009 	       struct kobj_attribute *attr, const char *buf, size_t len)
4010 {
4011 	return nr_hugepages_store_common(true, kobj, buf, len);
4012 }
4013 HSTATE_ATTR(nr_hugepages_mempolicy);
4014 #endif
4015 
4016 
4017 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
4018 					struct kobj_attribute *attr, char *buf)
4019 {
4020 	struct hstate *h = kobj_to_hstate(kobj, NULL);
4021 	return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
4022 }
4023 
4024 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
4025 		struct kobj_attribute *attr, const char *buf, size_t count)
4026 {
4027 	int err;
4028 	unsigned long input;
4029 	struct hstate *h = kobj_to_hstate(kobj, NULL);
4030 
4031 	if (hstate_is_gigantic(h))
4032 		return -EINVAL;
4033 
4034 	err = kstrtoul(buf, 10, &input);
4035 	if (err)
4036 		return err;
4037 
4038 	spin_lock_irq(&hugetlb_lock);
4039 	h->nr_overcommit_huge_pages = input;
4040 	spin_unlock_irq(&hugetlb_lock);
4041 
4042 	return count;
4043 }
4044 HSTATE_ATTR(nr_overcommit_hugepages);
4045 
4046 static ssize_t free_hugepages_show(struct kobject *kobj,
4047 					struct kobj_attribute *attr, char *buf)
4048 {
4049 	struct hstate *h;
4050 	unsigned long free_huge_pages;
4051 	int nid;
4052 
4053 	h = kobj_to_hstate(kobj, &nid);
4054 	if (nid == NUMA_NO_NODE)
4055 		free_huge_pages = h->free_huge_pages;
4056 	else
4057 		free_huge_pages = h->free_huge_pages_node[nid];
4058 
4059 	return sysfs_emit(buf, "%lu\n", free_huge_pages);
4060 }
4061 HSTATE_ATTR_RO(free_hugepages);
4062 
4063 static ssize_t resv_hugepages_show(struct kobject *kobj,
4064 					struct kobj_attribute *attr, char *buf)
4065 {
4066 	struct hstate *h = kobj_to_hstate(kobj, NULL);
4067 	return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
4068 }
4069 HSTATE_ATTR_RO(resv_hugepages);
4070 
4071 static ssize_t surplus_hugepages_show(struct kobject *kobj,
4072 					struct kobj_attribute *attr, char *buf)
4073 {
4074 	struct hstate *h;
4075 	unsigned long surplus_huge_pages;
4076 	int nid;
4077 
4078 	h = kobj_to_hstate(kobj, &nid);
4079 	if (nid == NUMA_NO_NODE)
4080 		surplus_huge_pages = h->surplus_huge_pages;
4081 	else
4082 		surplus_huge_pages = h->surplus_huge_pages_node[nid];
4083 
4084 	return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
4085 }
4086 HSTATE_ATTR_RO(surplus_hugepages);
4087 
4088 static ssize_t demote_store(struct kobject *kobj,
4089 	       struct kobj_attribute *attr, const char *buf, size_t len)
4090 {
4091 	unsigned long nr_demote;
4092 	unsigned long nr_available;
4093 	nodemask_t nodes_allowed, *n_mask;
4094 	struct hstate *h;
4095 	int err;
4096 	int nid;
4097 
4098 	err = kstrtoul(buf, 10, &nr_demote);
4099 	if (err)
4100 		return err;
4101 	h = kobj_to_hstate(kobj, &nid);
4102 
4103 	if (nid != NUMA_NO_NODE) {
4104 		init_nodemask_of_node(&nodes_allowed, nid);
4105 		n_mask = &nodes_allowed;
4106 	} else {
4107 		n_mask = &node_states[N_MEMORY];
4108 	}
4109 
4110 	/* Synchronize with other sysfs operations modifying huge pages */
4111 	mutex_lock(&h->resize_lock);
4112 	spin_lock_irq(&hugetlb_lock);
4113 
4114 	while (nr_demote) {
4115 		long rc;
4116 
4117 		/*
4118 		 * Check for available pages to demote each time thorough the
4119 		 * loop as demote_pool_huge_page will drop hugetlb_lock.
4120 		 */
4121 		if (nid != NUMA_NO_NODE)
4122 			nr_available = h->free_huge_pages_node[nid];
4123 		else
4124 			nr_available = h->free_huge_pages;
4125 		nr_available -= h->resv_huge_pages;
4126 		if (!nr_available)
4127 			break;
4128 
4129 		rc = demote_pool_huge_page(h, n_mask, nr_demote);
4130 		if (rc < 0) {
4131 			err = rc;
4132 			break;
4133 		}
4134 
4135 		nr_demote -= rc;
4136 	}
4137 
4138 	spin_unlock_irq(&hugetlb_lock);
4139 	mutex_unlock(&h->resize_lock);
4140 
4141 	if (err)
4142 		return err;
4143 	return len;
4144 }
4145 HSTATE_ATTR_WO(demote);
4146 
4147 static ssize_t demote_size_show(struct kobject *kobj,
4148 					struct kobj_attribute *attr, char *buf)
4149 {
4150 	struct hstate *h = kobj_to_hstate(kobj, NULL);
4151 	unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
4152 
4153 	return sysfs_emit(buf, "%lukB\n", demote_size);
4154 }
4155 
4156 static ssize_t demote_size_store(struct kobject *kobj,
4157 					struct kobj_attribute *attr,
4158 					const char *buf, size_t count)
4159 {
4160 	struct hstate *h, *demote_hstate;
4161 	unsigned long demote_size;
4162 	unsigned int demote_order;
4163 
4164 	demote_size = (unsigned long)memparse(buf, NULL);
4165 
4166 	demote_hstate = size_to_hstate(demote_size);
4167 	if (!demote_hstate)
4168 		return -EINVAL;
4169 	demote_order = demote_hstate->order;
4170 	if (demote_order < HUGETLB_PAGE_ORDER)
4171 		return -EINVAL;
4172 
4173 	/* demote order must be smaller than hstate order */
4174 	h = kobj_to_hstate(kobj, NULL);
4175 	if (demote_order >= h->order)
4176 		return -EINVAL;
4177 
4178 	/* resize_lock synchronizes access to demote size and writes */
4179 	mutex_lock(&h->resize_lock);
4180 	h->demote_order = demote_order;
4181 	mutex_unlock(&h->resize_lock);
4182 
4183 	return count;
4184 }
4185 HSTATE_ATTR(demote_size);
4186 
4187 static struct attribute *hstate_attrs[] = {
4188 	&nr_hugepages_attr.attr,
4189 	&nr_overcommit_hugepages_attr.attr,
4190 	&free_hugepages_attr.attr,
4191 	&resv_hugepages_attr.attr,
4192 	&surplus_hugepages_attr.attr,
4193 #ifdef CONFIG_NUMA
4194 	&nr_hugepages_mempolicy_attr.attr,
4195 #endif
4196 	NULL,
4197 };
4198 
4199 static const struct attribute_group hstate_attr_group = {
4200 	.attrs = hstate_attrs,
4201 };
4202 
4203 static struct attribute *hstate_demote_attrs[] = {
4204 	&demote_size_attr.attr,
4205 	&demote_attr.attr,
4206 	NULL,
4207 };
4208 
4209 static const struct attribute_group hstate_demote_attr_group = {
4210 	.attrs = hstate_demote_attrs,
4211 };
4212 
4213 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
4214 				    struct kobject **hstate_kobjs,
4215 				    const struct attribute_group *hstate_attr_group)
4216 {
4217 	int retval;
4218 	int hi = hstate_index(h);
4219 
4220 	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
4221 	if (!hstate_kobjs[hi])
4222 		return -ENOMEM;
4223 
4224 	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
4225 	if (retval) {
4226 		kobject_put(hstate_kobjs[hi]);
4227 		hstate_kobjs[hi] = NULL;
4228 		return retval;
4229 	}
4230 
4231 	if (h->demote_order) {
4232 		retval = sysfs_create_group(hstate_kobjs[hi],
4233 					    &hstate_demote_attr_group);
4234 		if (retval) {
4235 			pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
4236 			sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
4237 			kobject_put(hstate_kobjs[hi]);
4238 			hstate_kobjs[hi] = NULL;
4239 			return retval;
4240 		}
4241 	}
4242 
4243 	return 0;
4244 }
4245 
4246 #ifdef CONFIG_NUMA
4247 static bool hugetlb_sysfs_initialized __ro_after_init;
4248 
4249 /*
4250  * node_hstate/s - associate per node hstate attributes, via their kobjects,
4251  * with node devices in node_devices[] using a parallel array.  The array
4252  * index of a node device or _hstate == node id.
4253  * This is here to avoid any static dependency of the node device driver, in
4254  * the base kernel, on the hugetlb module.
4255  */
4256 struct node_hstate {
4257 	struct kobject		*hugepages_kobj;
4258 	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
4259 };
4260 static struct node_hstate node_hstates[MAX_NUMNODES];
4261 
4262 /*
4263  * A subset of global hstate attributes for node devices
4264  */
4265 static struct attribute *per_node_hstate_attrs[] = {
4266 	&nr_hugepages_attr.attr,
4267 	&free_hugepages_attr.attr,
4268 	&surplus_hugepages_attr.attr,
4269 	NULL,
4270 };
4271 
4272 static const struct attribute_group per_node_hstate_attr_group = {
4273 	.attrs = per_node_hstate_attrs,
4274 };
4275 
4276 /*
4277  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
4278  * Returns node id via non-NULL nidp.
4279  */
4280 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4281 {
4282 	int nid;
4283 
4284 	for (nid = 0; nid < nr_node_ids; nid++) {
4285 		struct node_hstate *nhs = &node_hstates[nid];
4286 		int i;
4287 		for (i = 0; i < HUGE_MAX_HSTATE; i++)
4288 			if (nhs->hstate_kobjs[i] == kobj) {
4289 				if (nidp)
4290 					*nidp = nid;
4291 				return &hstates[i];
4292 			}
4293 	}
4294 
4295 	BUG();
4296 	return NULL;
4297 }
4298 
4299 /*
4300  * Unregister hstate attributes from a single node device.
4301  * No-op if no hstate attributes attached.
4302  */
4303 void hugetlb_unregister_node(struct node *node)
4304 {
4305 	struct hstate *h;
4306 	struct node_hstate *nhs = &node_hstates[node->dev.id];
4307 
4308 	if (!nhs->hugepages_kobj)
4309 		return;		/* no hstate attributes */
4310 
4311 	for_each_hstate(h) {
4312 		int idx = hstate_index(h);
4313 		struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
4314 
4315 		if (!hstate_kobj)
4316 			continue;
4317 		if (h->demote_order)
4318 			sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
4319 		sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
4320 		kobject_put(hstate_kobj);
4321 		nhs->hstate_kobjs[idx] = NULL;
4322 	}
4323 
4324 	kobject_put(nhs->hugepages_kobj);
4325 	nhs->hugepages_kobj = NULL;
4326 }
4327 
4328 
4329 /*
4330  * Register hstate attributes for a single node device.
4331  * No-op if attributes already registered.
4332  */
4333 void hugetlb_register_node(struct node *node)
4334 {
4335 	struct hstate *h;
4336 	struct node_hstate *nhs = &node_hstates[node->dev.id];
4337 	int err;
4338 
4339 	if (!hugetlb_sysfs_initialized)
4340 		return;
4341 
4342 	if (nhs->hugepages_kobj)
4343 		return;		/* already allocated */
4344 
4345 	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
4346 							&node->dev.kobj);
4347 	if (!nhs->hugepages_kobj)
4348 		return;
4349 
4350 	for_each_hstate(h) {
4351 		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
4352 						nhs->hstate_kobjs,
4353 						&per_node_hstate_attr_group);
4354 		if (err) {
4355 			pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
4356 				h->name, node->dev.id);
4357 			hugetlb_unregister_node(node);
4358 			break;
4359 		}
4360 	}
4361 }
4362 
4363 /*
4364  * hugetlb init time:  register hstate attributes for all registered node
4365  * devices of nodes that have memory.  All on-line nodes should have
4366  * registered their associated device by this time.
4367  */
4368 static void __init hugetlb_register_all_nodes(void)
4369 {
4370 	int nid;
4371 
4372 	for_each_online_node(nid)
4373 		hugetlb_register_node(node_devices[nid]);
4374 }
4375 #else	/* !CONFIG_NUMA */
4376 
4377 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4378 {
4379 	BUG();
4380 	if (nidp)
4381 		*nidp = -1;
4382 	return NULL;
4383 }
4384 
4385 static void hugetlb_register_all_nodes(void) { }
4386 
4387 #endif
4388 
4389 #ifdef CONFIG_CMA
4390 static void __init hugetlb_cma_check(void);
4391 #else
4392 static inline __init void hugetlb_cma_check(void)
4393 {
4394 }
4395 #endif
4396 
4397 static void __init hugetlb_sysfs_init(void)
4398 {
4399 	struct hstate *h;
4400 	int err;
4401 
4402 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
4403 	if (!hugepages_kobj)
4404 		return;
4405 
4406 	for_each_hstate(h) {
4407 		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
4408 					 hstate_kobjs, &hstate_attr_group);
4409 		if (err)
4410 			pr_err("HugeTLB: Unable to add hstate %s", h->name);
4411 	}
4412 
4413 #ifdef CONFIG_NUMA
4414 	hugetlb_sysfs_initialized = true;
4415 #endif
4416 	hugetlb_register_all_nodes();
4417 }
4418 
4419 #ifdef CONFIG_SYSCTL
4420 static void hugetlb_sysctl_init(void);
4421 #else
4422 static inline void hugetlb_sysctl_init(void) { }
4423 #endif
4424 
4425 static int __init hugetlb_init(void)
4426 {
4427 	int i;
4428 
4429 	BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4430 			__NR_HPAGEFLAGS);
4431 
4432 	if (!hugepages_supported()) {
4433 		if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4434 			pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4435 		return 0;
4436 	}
4437 
4438 	/*
4439 	 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
4440 	 * architectures depend on setup being done here.
4441 	 */
4442 	hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4443 	if (!parsed_default_hugepagesz) {
4444 		/*
4445 		 * If we did not parse a default huge page size, set
4446 		 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4447 		 * number of huge pages for this default size was implicitly
4448 		 * specified, set that here as well.
4449 		 * Note that the implicit setting will overwrite an explicit
4450 		 * setting.  A warning will be printed in this case.
4451 		 */
4452 		default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4453 		if (default_hstate_max_huge_pages) {
4454 			if (default_hstate.max_huge_pages) {
4455 				char buf[32];
4456 
4457 				string_get_size(huge_page_size(&default_hstate),
4458 					1, STRING_UNITS_2, buf, 32);
4459 				pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4460 					default_hstate.max_huge_pages, buf);
4461 				pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4462 					default_hstate_max_huge_pages);
4463 			}
4464 			default_hstate.max_huge_pages =
4465 				default_hstate_max_huge_pages;
4466 
4467 			for_each_online_node(i)
4468 				default_hstate.max_huge_pages_node[i] =
4469 					default_hugepages_in_node[i];
4470 		}
4471 	}
4472 
4473 	hugetlb_cma_check();
4474 	hugetlb_init_hstates();
4475 	gather_bootmem_prealloc();
4476 	report_hugepages();
4477 
4478 	hugetlb_sysfs_init();
4479 	hugetlb_cgroup_file_init();
4480 	hugetlb_sysctl_init();
4481 
4482 #ifdef CONFIG_SMP
4483 	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4484 #else
4485 	num_fault_mutexes = 1;
4486 #endif
4487 	hugetlb_fault_mutex_table =
4488 		kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4489 			      GFP_KERNEL);
4490 	BUG_ON(!hugetlb_fault_mutex_table);
4491 
4492 	for (i = 0; i < num_fault_mutexes; i++)
4493 		mutex_init(&hugetlb_fault_mutex_table[i]);
4494 	return 0;
4495 }
4496 subsys_initcall(hugetlb_init);
4497 
4498 /* Overwritten by architectures with more huge page sizes */
4499 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4500 {
4501 	return size == HPAGE_SIZE;
4502 }
4503 
4504 void __init hugetlb_add_hstate(unsigned int order)
4505 {
4506 	struct hstate *h;
4507 	unsigned long i;
4508 
4509 	if (size_to_hstate(PAGE_SIZE << order)) {
4510 		return;
4511 	}
4512 	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4513 	BUG_ON(order < order_base_2(__NR_USED_SUBPAGE));
4514 	h = &hstates[hugetlb_max_hstate++];
4515 	__mutex_init(&h->resize_lock, "resize mutex", &h->resize_key);
4516 	h->order = order;
4517 	h->mask = ~(huge_page_size(h) - 1);
4518 	for (i = 0; i < MAX_NUMNODES; ++i)
4519 		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4520 	INIT_LIST_HEAD(&h->hugepage_activelist);
4521 	h->next_nid_to_alloc = first_memory_node;
4522 	h->next_nid_to_free = first_memory_node;
4523 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4524 					huge_page_size(h)/SZ_1K);
4525 
4526 	parsed_hstate = h;
4527 }
4528 
4529 bool __init __weak hugetlb_node_alloc_supported(void)
4530 {
4531 	return true;
4532 }
4533 
4534 static void __init hugepages_clear_pages_in_node(void)
4535 {
4536 	if (!hugetlb_max_hstate) {
4537 		default_hstate_max_huge_pages = 0;
4538 		memset(default_hugepages_in_node, 0,
4539 			sizeof(default_hugepages_in_node));
4540 	} else {
4541 		parsed_hstate->max_huge_pages = 0;
4542 		memset(parsed_hstate->max_huge_pages_node, 0,
4543 			sizeof(parsed_hstate->max_huge_pages_node));
4544 	}
4545 }
4546 
4547 /*
4548  * hugepages command line processing
4549  * hugepages normally follows a valid hugepagsz or default_hugepagsz
4550  * specification.  If not, ignore the hugepages value.  hugepages can also
4551  * be the first huge page command line  option in which case it implicitly
4552  * specifies the number of huge pages for the default size.
4553  */
4554 static int __init hugepages_setup(char *s)
4555 {
4556 	unsigned long *mhp;
4557 	static unsigned long *last_mhp;
4558 	int node = NUMA_NO_NODE;
4559 	int count;
4560 	unsigned long tmp;
4561 	char *p = s;
4562 
4563 	if (!parsed_valid_hugepagesz) {
4564 		pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4565 		parsed_valid_hugepagesz = true;
4566 		return 1;
4567 	}
4568 
4569 	/*
4570 	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4571 	 * yet, so this hugepages= parameter goes to the "default hstate".
4572 	 * Otherwise, it goes with the previously parsed hugepagesz or
4573 	 * default_hugepagesz.
4574 	 */
4575 	else if (!hugetlb_max_hstate)
4576 		mhp = &default_hstate_max_huge_pages;
4577 	else
4578 		mhp = &parsed_hstate->max_huge_pages;
4579 
4580 	if (mhp == last_mhp) {
4581 		pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4582 		return 1;
4583 	}
4584 
4585 	while (*p) {
4586 		count = 0;
4587 		if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4588 			goto invalid;
4589 		/* Parameter is node format */
4590 		if (p[count] == ':') {
4591 			if (!hugetlb_node_alloc_supported()) {
4592 				pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4593 				return 1;
4594 			}
4595 			if (tmp >= MAX_NUMNODES || !node_online(tmp))
4596 				goto invalid;
4597 			node = array_index_nospec(tmp, MAX_NUMNODES);
4598 			p += count + 1;
4599 			/* Parse hugepages */
4600 			if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4601 				goto invalid;
4602 			if (!hugetlb_max_hstate)
4603 				default_hugepages_in_node[node] = tmp;
4604 			else
4605 				parsed_hstate->max_huge_pages_node[node] = tmp;
4606 			*mhp += tmp;
4607 			/* Go to parse next node*/
4608 			if (p[count] == ',')
4609 				p += count + 1;
4610 			else
4611 				break;
4612 		} else {
4613 			if (p != s)
4614 				goto invalid;
4615 			*mhp = tmp;
4616 			break;
4617 		}
4618 	}
4619 
4620 	/*
4621 	 * Global state is always initialized later in hugetlb_init.
4622 	 * But we need to allocate gigantic hstates here early to still
4623 	 * use the bootmem allocator.
4624 	 */
4625 	if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4626 		hugetlb_hstate_alloc_pages(parsed_hstate);
4627 
4628 	last_mhp = mhp;
4629 
4630 	return 1;
4631 
4632 invalid:
4633 	pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4634 	hugepages_clear_pages_in_node();
4635 	return 1;
4636 }
4637 __setup("hugepages=", hugepages_setup);
4638 
4639 /*
4640  * hugepagesz command line processing
4641  * A specific huge page size can only be specified once with hugepagesz.
4642  * hugepagesz is followed by hugepages on the command line.  The global
4643  * variable 'parsed_valid_hugepagesz' is used to determine if prior
4644  * hugepagesz argument was valid.
4645  */
4646 static int __init hugepagesz_setup(char *s)
4647 {
4648 	unsigned long size;
4649 	struct hstate *h;
4650 
4651 	parsed_valid_hugepagesz = false;
4652 	size = (unsigned long)memparse(s, NULL);
4653 
4654 	if (!arch_hugetlb_valid_size(size)) {
4655 		pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4656 		return 1;
4657 	}
4658 
4659 	h = size_to_hstate(size);
4660 	if (h) {
4661 		/*
4662 		 * hstate for this size already exists.  This is normally
4663 		 * an error, but is allowed if the existing hstate is the
4664 		 * default hstate.  More specifically, it is only allowed if
4665 		 * the number of huge pages for the default hstate was not
4666 		 * previously specified.
4667 		 */
4668 		if (!parsed_default_hugepagesz ||  h != &default_hstate ||
4669 		    default_hstate.max_huge_pages) {
4670 			pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4671 			return 1;
4672 		}
4673 
4674 		/*
4675 		 * No need to call hugetlb_add_hstate() as hstate already
4676 		 * exists.  But, do set parsed_hstate so that a following
4677 		 * hugepages= parameter will be applied to this hstate.
4678 		 */
4679 		parsed_hstate = h;
4680 		parsed_valid_hugepagesz = true;
4681 		return 1;
4682 	}
4683 
4684 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4685 	parsed_valid_hugepagesz = true;
4686 	return 1;
4687 }
4688 __setup("hugepagesz=", hugepagesz_setup);
4689 
4690 /*
4691  * default_hugepagesz command line input
4692  * Only one instance of default_hugepagesz allowed on command line.
4693  */
4694 static int __init default_hugepagesz_setup(char *s)
4695 {
4696 	unsigned long size;
4697 	int i;
4698 
4699 	parsed_valid_hugepagesz = false;
4700 	if (parsed_default_hugepagesz) {
4701 		pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4702 		return 1;
4703 	}
4704 
4705 	size = (unsigned long)memparse(s, NULL);
4706 
4707 	if (!arch_hugetlb_valid_size(size)) {
4708 		pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4709 		return 1;
4710 	}
4711 
4712 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4713 	parsed_valid_hugepagesz = true;
4714 	parsed_default_hugepagesz = true;
4715 	default_hstate_idx = hstate_index(size_to_hstate(size));
4716 
4717 	/*
4718 	 * The number of default huge pages (for this size) could have been
4719 	 * specified as the first hugetlb parameter: hugepages=X.  If so,
4720 	 * then default_hstate_max_huge_pages is set.  If the default huge
4721 	 * page size is gigantic (> MAX_PAGE_ORDER), then the pages must be
4722 	 * allocated here from bootmem allocator.
4723 	 */
4724 	if (default_hstate_max_huge_pages) {
4725 		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4726 		for_each_online_node(i)
4727 			default_hstate.max_huge_pages_node[i] =
4728 				default_hugepages_in_node[i];
4729 		if (hstate_is_gigantic(&default_hstate))
4730 			hugetlb_hstate_alloc_pages(&default_hstate);
4731 		default_hstate_max_huge_pages = 0;
4732 	}
4733 
4734 	return 1;
4735 }
4736 __setup("default_hugepagesz=", default_hugepagesz_setup);
4737 
4738 static unsigned int allowed_mems_nr(struct hstate *h)
4739 {
4740 	int node;
4741 	unsigned int nr = 0;
4742 	nodemask_t *mbind_nodemask;
4743 	unsigned int *array = h->free_huge_pages_node;
4744 	gfp_t gfp_mask = htlb_alloc_mask(h);
4745 
4746 	mbind_nodemask = policy_mbind_nodemask(gfp_mask);
4747 	for_each_node_mask(node, cpuset_current_mems_allowed) {
4748 		if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
4749 			nr += array[node];
4750 	}
4751 
4752 	return nr;
4753 }
4754 
4755 #ifdef CONFIG_SYSCTL
4756 static int proc_hugetlb_doulongvec_minmax(const struct ctl_table *table, int write,
4757 					  void *buffer, size_t *length,
4758 					  loff_t *ppos, unsigned long *out)
4759 {
4760 	struct ctl_table dup_table;
4761 
4762 	/*
4763 	 * In order to avoid races with __do_proc_doulongvec_minmax(), we
4764 	 * can duplicate the @table and alter the duplicate of it.
4765 	 */
4766 	dup_table = *table;
4767 	dup_table.data = out;
4768 
4769 	return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4770 }
4771 
4772 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4773 			 const struct ctl_table *table, int write,
4774 			 void *buffer, size_t *length, loff_t *ppos)
4775 {
4776 	struct hstate *h = &default_hstate;
4777 	unsigned long tmp = h->max_huge_pages;
4778 	int ret;
4779 
4780 	if (!hugepages_supported())
4781 		return -EOPNOTSUPP;
4782 
4783 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4784 					     &tmp);
4785 	if (ret)
4786 		goto out;
4787 
4788 	if (write)
4789 		ret = __nr_hugepages_store_common(obey_mempolicy, h,
4790 						  NUMA_NO_NODE, tmp, *length);
4791 out:
4792 	return ret;
4793 }
4794 
4795 static int hugetlb_sysctl_handler(const struct ctl_table *table, int write,
4796 			  void *buffer, size_t *length, loff_t *ppos)
4797 {
4798 
4799 	return hugetlb_sysctl_handler_common(false, table, write,
4800 							buffer, length, ppos);
4801 }
4802 
4803 #ifdef CONFIG_NUMA
4804 static int hugetlb_mempolicy_sysctl_handler(const struct ctl_table *table, int write,
4805 			  void *buffer, size_t *length, loff_t *ppos)
4806 {
4807 	return hugetlb_sysctl_handler_common(true, table, write,
4808 							buffer, length, ppos);
4809 }
4810 #endif /* CONFIG_NUMA */
4811 
4812 static int hugetlb_overcommit_handler(const struct ctl_table *table, int write,
4813 		void *buffer, size_t *length, loff_t *ppos)
4814 {
4815 	struct hstate *h = &default_hstate;
4816 	unsigned long tmp;
4817 	int ret;
4818 
4819 	if (!hugepages_supported())
4820 		return -EOPNOTSUPP;
4821 
4822 	tmp = h->nr_overcommit_huge_pages;
4823 
4824 	if (write && hstate_is_gigantic(h))
4825 		return -EINVAL;
4826 
4827 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4828 					     &tmp);
4829 	if (ret)
4830 		goto out;
4831 
4832 	if (write) {
4833 		spin_lock_irq(&hugetlb_lock);
4834 		h->nr_overcommit_huge_pages = tmp;
4835 		spin_unlock_irq(&hugetlb_lock);
4836 	}
4837 out:
4838 	return ret;
4839 }
4840 
4841 static struct ctl_table hugetlb_table[] = {
4842 	{
4843 		.procname	= "nr_hugepages",
4844 		.data		= NULL,
4845 		.maxlen		= sizeof(unsigned long),
4846 		.mode		= 0644,
4847 		.proc_handler	= hugetlb_sysctl_handler,
4848 	},
4849 #ifdef CONFIG_NUMA
4850 	{
4851 		.procname       = "nr_hugepages_mempolicy",
4852 		.data           = NULL,
4853 		.maxlen         = sizeof(unsigned long),
4854 		.mode           = 0644,
4855 		.proc_handler   = &hugetlb_mempolicy_sysctl_handler,
4856 	},
4857 #endif
4858 	{
4859 		.procname	= "hugetlb_shm_group",
4860 		.data		= &sysctl_hugetlb_shm_group,
4861 		.maxlen		= sizeof(gid_t),
4862 		.mode		= 0644,
4863 		.proc_handler	= proc_dointvec,
4864 	},
4865 	{
4866 		.procname	= "nr_overcommit_hugepages",
4867 		.data		= NULL,
4868 		.maxlen		= sizeof(unsigned long),
4869 		.mode		= 0644,
4870 		.proc_handler	= hugetlb_overcommit_handler,
4871 	},
4872 };
4873 
4874 static void hugetlb_sysctl_init(void)
4875 {
4876 	register_sysctl_init("vm", hugetlb_table);
4877 }
4878 #endif /* CONFIG_SYSCTL */
4879 
4880 void hugetlb_report_meminfo(struct seq_file *m)
4881 {
4882 	struct hstate *h;
4883 	unsigned long total = 0;
4884 
4885 	if (!hugepages_supported())
4886 		return;
4887 
4888 	for_each_hstate(h) {
4889 		unsigned long count = h->nr_huge_pages;
4890 
4891 		total += huge_page_size(h) * count;
4892 
4893 		if (h == &default_hstate)
4894 			seq_printf(m,
4895 				   "HugePages_Total:   %5lu\n"
4896 				   "HugePages_Free:    %5lu\n"
4897 				   "HugePages_Rsvd:    %5lu\n"
4898 				   "HugePages_Surp:    %5lu\n"
4899 				   "Hugepagesize:   %8lu kB\n",
4900 				   count,
4901 				   h->free_huge_pages,
4902 				   h->resv_huge_pages,
4903 				   h->surplus_huge_pages,
4904 				   huge_page_size(h) / SZ_1K);
4905 	}
4906 
4907 	seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
4908 }
4909 
4910 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
4911 {
4912 	struct hstate *h = &default_hstate;
4913 
4914 	if (!hugepages_supported())
4915 		return 0;
4916 
4917 	return sysfs_emit_at(buf, len,
4918 			     "Node %d HugePages_Total: %5u\n"
4919 			     "Node %d HugePages_Free:  %5u\n"
4920 			     "Node %d HugePages_Surp:  %5u\n",
4921 			     nid, h->nr_huge_pages_node[nid],
4922 			     nid, h->free_huge_pages_node[nid],
4923 			     nid, h->surplus_huge_pages_node[nid]);
4924 }
4925 
4926 void hugetlb_show_meminfo_node(int nid)
4927 {
4928 	struct hstate *h;
4929 
4930 	if (!hugepages_supported())
4931 		return;
4932 
4933 	for_each_hstate(h)
4934 		printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4935 			nid,
4936 			h->nr_huge_pages_node[nid],
4937 			h->free_huge_pages_node[nid],
4938 			h->surplus_huge_pages_node[nid],
4939 			huge_page_size(h) / SZ_1K);
4940 }
4941 
4942 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4943 {
4944 	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4945 		   K(atomic_long_read(&mm->hugetlb_usage)));
4946 }
4947 
4948 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
4949 unsigned long hugetlb_total_pages(void)
4950 {
4951 	struct hstate *h;
4952 	unsigned long nr_total_pages = 0;
4953 
4954 	for_each_hstate(h)
4955 		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4956 	return nr_total_pages;
4957 }
4958 
4959 static int hugetlb_acct_memory(struct hstate *h, long delta)
4960 {
4961 	int ret = -ENOMEM;
4962 
4963 	if (!delta)
4964 		return 0;
4965 
4966 	spin_lock_irq(&hugetlb_lock);
4967 	/*
4968 	 * When cpuset is configured, it breaks the strict hugetlb page
4969 	 * reservation as the accounting is done on a global variable. Such
4970 	 * reservation is completely rubbish in the presence of cpuset because
4971 	 * the reservation is not checked against page availability for the
4972 	 * current cpuset. Application can still potentially OOM'ed by kernel
4973 	 * with lack of free htlb page in cpuset that the task is in.
4974 	 * Attempt to enforce strict accounting with cpuset is almost
4975 	 * impossible (or too ugly) because cpuset is too fluid that
4976 	 * task or memory node can be dynamically moved between cpusets.
4977 	 *
4978 	 * The change of semantics for shared hugetlb mapping with cpuset is
4979 	 * undesirable. However, in order to preserve some of the semantics,
4980 	 * we fall back to check against current free page availability as
4981 	 * a best attempt and hopefully to minimize the impact of changing
4982 	 * semantics that cpuset has.
4983 	 *
4984 	 * Apart from cpuset, we also have memory policy mechanism that
4985 	 * also determines from which node the kernel will allocate memory
4986 	 * in a NUMA system. So similar to cpuset, we also should consider
4987 	 * the memory policy of the current task. Similar to the description
4988 	 * above.
4989 	 */
4990 	if (delta > 0) {
4991 		if (gather_surplus_pages(h, delta) < 0)
4992 			goto out;
4993 
4994 		if (delta > allowed_mems_nr(h)) {
4995 			return_unused_surplus_pages(h, delta);
4996 			goto out;
4997 		}
4998 	}
4999 
5000 	ret = 0;
5001 	if (delta < 0)
5002 		return_unused_surplus_pages(h, (unsigned long) -delta);
5003 
5004 out:
5005 	spin_unlock_irq(&hugetlb_lock);
5006 	return ret;
5007 }
5008 
5009 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
5010 {
5011 	struct resv_map *resv = vma_resv_map(vma);
5012 
5013 	/*
5014 	 * HPAGE_RESV_OWNER indicates a private mapping.
5015 	 * This new VMA should share its siblings reservation map if present.
5016 	 * The VMA will only ever have a valid reservation map pointer where
5017 	 * it is being copied for another still existing VMA.  As that VMA
5018 	 * has a reference to the reservation map it cannot disappear until
5019 	 * after this open call completes.  It is therefore safe to take a
5020 	 * new reference here without additional locking.
5021 	 */
5022 	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
5023 		resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
5024 		kref_get(&resv->refs);
5025 	}
5026 
5027 	/*
5028 	 * vma_lock structure for sharable mappings is vma specific.
5029 	 * Clear old pointer (if copied via vm_area_dup) and allocate
5030 	 * new structure.  Before clearing, make sure vma_lock is not
5031 	 * for this vma.
5032 	 */
5033 	if (vma->vm_flags & VM_MAYSHARE) {
5034 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
5035 
5036 		if (vma_lock) {
5037 			if (vma_lock->vma != vma) {
5038 				vma->vm_private_data = NULL;
5039 				hugetlb_vma_lock_alloc(vma);
5040 			} else
5041 				pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__);
5042 		} else
5043 			hugetlb_vma_lock_alloc(vma);
5044 	}
5045 }
5046 
5047 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
5048 {
5049 	struct hstate *h = hstate_vma(vma);
5050 	struct resv_map *resv;
5051 	struct hugepage_subpool *spool = subpool_vma(vma);
5052 	unsigned long reserve, start, end;
5053 	long gbl_reserve;
5054 
5055 	hugetlb_vma_lock_free(vma);
5056 
5057 	resv = vma_resv_map(vma);
5058 	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5059 		return;
5060 
5061 	start = vma_hugecache_offset(h, vma, vma->vm_start);
5062 	end = vma_hugecache_offset(h, vma, vma->vm_end);
5063 
5064 	reserve = (end - start) - region_count(resv, start, end);
5065 	hugetlb_cgroup_uncharge_counter(resv, start, end);
5066 	if (reserve) {
5067 		/*
5068 		 * Decrement reserve counts.  The global reserve count may be
5069 		 * adjusted if the subpool has a minimum size.
5070 		 */
5071 		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
5072 		hugetlb_acct_memory(h, -gbl_reserve);
5073 	}
5074 
5075 	kref_put(&resv->refs, resv_map_release);
5076 }
5077 
5078 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
5079 {
5080 	if (addr & ~(huge_page_mask(hstate_vma(vma))))
5081 		return -EINVAL;
5082 
5083 	/*
5084 	 * PMD sharing is only possible for PUD_SIZE-aligned address ranges
5085 	 * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this
5086 	 * split, unshare PMDs in the PUD_SIZE interval surrounding addr now.
5087 	 */
5088 	if (addr & ~PUD_MASK) {
5089 		/*
5090 		 * hugetlb_vm_op_split is called right before we attempt to
5091 		 * split the VMA. We will need to unshare PMDs in the old and
5092 		 * new VMAs, so let's unshare before we split.
5093 		 */
5094 		unsigned long floor = addr & PUD_MASK;
5095 		unsigned long ceil = floor + PUD_SIZE;
5096 
5097 		if (floor >= vma->vm_start && ceil <= vma->vm_end)
5098 			hugetlb_unshare_pmds(vma, floor, ceil);
5099 	}
5100 
5101 	return 0;
5102 }
5103 
5104 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
5105 {
5106 	return huge_page_size(hstate_vma(vma));
5107 }
5108 
5109 /*
5110  * We cannot handle pagefaults against hugetlb pages at all.  They cause
5111  * handle_mm_fault() to try to instantiate regular-sized pages in the
5112  * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
5113  * this far.
5114  */
5115 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
5116 {
5117 	BUG();
5118 	return 0;
5119 }
5120 
5121 /*
5122  * When a new function is introduced to vm_operations_struct and added
5123  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
5124  * This is because under System V memory model, mappings created via
5125  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
5126  * their original vm_ops are overwritten with shm_vm_ops.
5127  */
5128 const struct vm_operations_struct hugetlb_vm_ops = {
5129 	.fault = hugetlb_vm_op_fault,
5130 	.open = hugetlb_vm_op_open,
5131 	.close = hugetlb_vm_op_close,
5132 	.may_split = hugetlb_vm_op_split,
5133 	.pagesize = hugetlb_vm_op_pagesize,
5134 };
5135 
5136 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
5137 				int writable)
5138 {
5139 	pte_t entry;
5140 	unsigned int shift = huge_page_shift(hstate_vma(vma));
5141 
5142 	if (writable) {
5143 		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
5144 					 vma->vm_page_prot)));
5145 	} else {
5146 		entry = huge_pte_wrprotect(mk_huge_pte(page,
5147 					   vma->vm_page_prot));
5148 	}
5149 	entry = pte_mkyoung(entry);
5150 	entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
5151 
5152 	return entry;
5153 }
5154 
5155 static void set_huge_ptep_writable(struct vm_area_struct *vma,
5156 				   unsigned long address, pte_t *ptep)
5157 {
5158 	pte_t entry;
5159 
5160 	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(vma->vm_mm, address, ptep)));
5161 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
5162 		update_mmu_cache(vma, address, ptep);
5163 }
5164 
5165 bool is_hugetlb_entry_migration(pte_t pte)
5166 {
5167 	swp_entry_t swp;
5168 
5169 	if (huge_pte_none(pte) || pte_present(pte))
5170 		return false;
5171 	swp = pte_to_swp_entry(pte);
5172 	if (is_migration_entry(swp))
5173 		return true;
5174 	else
5175 		return false;
5176 }
5177 
5178 bool is_hugetlb_entry_hwpoisoned(pte_t pte)
5179 {
5180 	swp_entry_t swp;
5181 
5182 	if (huge_pte_none(pte) || pte_present(pte))
5183 		return false;
5184 	swp = pte_to_swp_entry(pte);
5185 	if (is_hwpoison_entry(swp))
5186 		return true;
5187 	else
5188 		return false;
5189 }
5190 
5191 static void
5192 hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
5193 		      struct folio *new_folio, pte_t old, unsigned long sz)
5194 {
5195 	pte_t newpte = make_huge_pte(vma, &new_folio->page, 1);
5196 
5197 	__folio_mark_uptodate(new_folio);
5198 	hugetlb_add_new_anon_rmap(new_folio, vma, addr);
5199 	if (userfaultfd_wp(vma) && huge_pte_uffd_wp(old))
5200 		newpte = huge_pte_mkuffd_wp(newpte);
5201 	set_huge_pte_at(vma->vm_mm, addr, ptep, newpte, sz);
5202 	hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
5203 	folio_set_hugetlb_migratable(new_folio);
5204 }
5205 
5206 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
5207 			    struct vm_area_struct *dst_vma,
5208 			    struct vm_area_struct *src_vma)
5209 {
5210 	pte_t *src_pte, *dst_pte, entry;
5211 	struct folio *pte_folio;
5212 	unsigned long addr;
5213 	bool cow = is_cow_mapping(src_vma->vm_flags);
5214 	struct hstate *h = hstate_vma(src_vma);
5215 	unsigned long sz = huge_page_size(h);
5216 	unsigned long npages = pages_per_huge_page(h);
5217 	struct mmu_notifier_range range;
5218 	unsigned long last_addr_mask;
5219 	int ret = 0;
5220 
5221 	if (cow) {
5222 		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src,
5223 					src_vma->vm_start,
5224 					src_vma->vm_end);
5225 		mmu_notifier_invalidate_range_start(&range);
5226 		vma_assert_write_locked(src_vma);
5227 		raw_write_seqcount_begin(&src->write_protect_seq);
5228 	} else {
5229 		/*
5230 		 * For shared mappings the vma lock must be held before
5231 		 * calling hugetlb_walk() in the src vma. Otherwise, the
5232 		 * returned ptep could go away if part of a shared pmd and
5233 		 * another thread calls huge_pmd_unshare.
5234 		 */
5235 		hugetlb_vma_lock_read(src_vma);
5236 	}
5237 
5238 	last_addr_mask = hugetlb_mask_last_page(h);
5239 	for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
5240 		spinlock_t *src_ptl, *dst_ptl;
5241 		src_pte = hugetlb_walk(src_vma, addr, sz);
5242 		if (!src_pte) {
5243 			addr |= last_addr_mask;
5244 			continue;
5245 		}
5246 		dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
5247 		if (!dst_pte) {
5248 			ret = -ENOMEM;
5249 			break;
5250 		}
5251 
5252 		/*
5253 		 * If the pagetables are shared don't copy or take references.
5254 		 *
5255 		 * dst_pte == src_pte is the common case of src/dest sharing.
5256 		 * However, src could have 'unshared' and dst shares with
5257 		 * another vma. So page_count of ptep page is checked instead
5258 		 * to reliably determine whether pte is shared.
5259 		 */
5260 		if (page_count(virt_to_page(dst_pte)) > 1) {
5261 			addr |= last_addr_mask;
5262 			continue;
5263 		}
5264 
5265 		dst_ptl = huge_pte_lock(h, dst, dst_pte);
5266 		src_ptl = huge_pte_lockptr(h, src, src_pte);
5267 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5268 		entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte);
5269 again:
5270 		if (huge_pte_none(entry)) {
5271 			/*
5272 			 * Skip if src entry none.
5273 			 */
5274 			;
5275 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
5276 			if (!userfaultfd_wp(dst_vma))
5277 				entry = huge_pte_clear_uffd_wp(entry);
5278 			set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5279 		} else if (unlikely(is_hugetlb_entry_migration(entry))) {
5280 			swp_entry_t swp_entry = pte_to_swp_entry(entry);
5281 			bool uffd_wp = pte_swp_uffd_wp(entry);
5282 
5283 			if (!is_readable_migration_entry(swp_entry) && cow) {
5284 				/*
5285 				 * COW mappings require pages in both
5286 				 * parent and child to be set to read.
5287 				 */
5288 				swp_entry = make_readable_migration_entry(
5289 							swp_offset(swp_entry));
5290 				entry = swp_entry_to_pte(swp_entry);
5291 				if (userfaultfd_wp(src_vma) && uffd_wp)
5292 					entry = pte_swp_mkuffd_wp(entry);
5293 				set_huge_pte_at(src, addr, src_pte, entry, sz);
5294 			}
5295 			if (!userfaultfd_wp(dst_vma))
5296 				entry = huge_pte_clear_uffd_wp(entry);
5297 			set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5298 		} else if (unlikely(is_pte_marker(entry))) {
5299 			pte_marker marker = copy_pte_marker(
5300 				pte_to_swp_entry(entry), dst_vma);
5301 
5302 			if (marker)
5303 				set_huge_pte_at(dst, addr, dst_pte,
5304 						make_pte_marker(marker), sz);
5305 		} else {
5306 			entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte);
5307 			pte_folio = page_folio(pte_page(entry));
5308 			folio_get(pte_folio);
5309 
5310 			/*
5311 			 * Failing to duplicate the anon rmap is a rare case
5312 			 * where we see pinned hugetlb pages while they're
5313 			 * prone to COW. We need to do the COW earlier during
5314 			 * fork.
5315 			 *
5316 			 * When pre-allocating the page or copying data, we
5317 			 * need to be without the pgtable locks since we could
5318 			 * sleep during the process.
5319 			 */
5320 			if (!folio_test_anon(pte_folio)) {
5321 				hugetlb_add_file_rmap(pte_folio);
5322 			} else if (hugetlb_try_dup_anon_rmap(pte_folio, src_vma)) {
5323 				pte_t src_pte_old = entry;
5324 				struct folio *new_folio;
5325 
5326 				spin_unlock(src_ptl);
5327 				spin_unlock(dst_ptl);
5328 				/* Do not use reserve as it's private owned */
5329 				new_folio = alloc_hugetlb_folio(dst_vma, addr, 1);
5330 				if (IS_ERR(new_folio)) {
5331 					folio_put(pte_folio);
5332 					ret = PTR_ERR(new_folio);
5333 					break;
5334 				}
5335 				ret = copy_user_large_folio(new_folio, pte_folio,
5336 						ALIGN_DOWN(addr, sz), dst_vma);
5337 				folio_put(pte_folio);
5338 				if (ret) {
5339 					folio_put(new_folio);
5340 					break;
5341 				}
5342 
5343 				/* Install the new hugetlb folio if src pte stable */
5344 				dst_ptl = huge_pte_lock(h, dst, dst_pte);
5345 				src_ptl = huge_pte_lockptr(h, src, src_pte);
5346 				spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5347 				entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte);
5348 				if (!pte_same(src_pte_old, entry)) {
5349 					restore_reserve_on_error(h, dst_vma, addr,
5350 								new_folio);
5351 					folio_put(new_folio);
5352 					/* huge_ptep of dst_pte won't change as in child */
5353 					goto again;
5354 				}
5355 				hugetlb_install_folio(dst_vma, dst_pte, addr,
5356 						      new_folio, src_pte_old, sz);
5357 				spin_unlock(src_ptl);
5358 				spin_unlock(dst_ptl);
5359 				continue;
5360 			}
5361 
5362 			if (cow) {
5363 				/*
5364 				 * No need to notify as we are downgrading page
5365 				 * table protection not changing it to point
5366 				 * to a new page.
5367 				 *
5368 				 * See Documentation/mm/mmu_notifier.rst
5369 				 */
5370 				huge_ptep_set_wrprotect(src, addr, src_pte);
5371 				entry = huge_pte_wrprotect(entry);
5372 			}
5373 
5374 			if (!userfaultfd_wp(dst_vma))
5375 				entry = huge_pte_clear_uffd_wp(entry);
5376 
5377 			set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5378 			hugetlb_count_add(npages, dst);
5379 		}
5380 		spin_unlock(src_ptl);
5381 		spin_unlock(dst_ptl);
5382 	}
5383 
5384 	if (cow) {
5385 		raw_write_seqcount_end(&src->write_protect_seq);
5386 		mmu_notifier_invalidate_range_end(&range);
5387 	} else {
5388 		hugetlb_vma_unlock_read(src_vma);
5389 	}
5390 
5391 	return ret;
5392 }
5393 
5394 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
5395 			  unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte,
5396 			  unsigned long sz)
5397 {
5398 	struct hstate *h = hstate_vma(vma);
5399 	struct mm_struct *mm = vma->vm_mm;
5400 	spinlock_t *src_ptl, *dst_ptl;
5401 	pte_t pte;
5402 
5403 	dst_ptl = huge_pte_lock(h, mm, dst_pte);
5404 	src_ptl = huge_pte_lockptr(h, mm, src_pte);
5405 
5406 	/*
5407 	 * We don't have to worry about the ordering of src and dst ptlocks
5408 	 * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock.
5409 	 */
5410 	if (src_ptl != dst_ptl)
5411 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5412 
5413 	pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
5414 	set_huge_pte_at(mm, new_addr, dst_pte, pte, sz);
5415 
5416 	if (src_ptl != dst_ptl)
5417 		spin_unlock(src_ptl);
5418 	spin_unlock(dst_ptl);
5419 }
5420 
5421 int move_hugetlb_page_tables(struct vm_area_struct *vma,
5422 			     struct vm_area_struct *new_vma,
5423 			     unsigned long old_addr, unsigned long new_addr,
5424 			     unsigned long len)
5425 {
5426 	struct hstate *h = hstate_vma(vma);
5427 	struct address_space *mapping = vma->vm_file->f_mapping;
5428 	unsigned long sz = huge_page_size(h);
5429 	struct mm_struct *mm = vma->vm_mm;
5430 	unsigned long old_end = old_addr + len;
5431 	unsigned long last_addr_mask;
5432 	pte_t *src_pte, *dst_pte;
5433 	struct mmu_notifier_range range;
5434 	bool shared_pmd = false;
5435 
5436 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr,
5437 				old_end);
5438 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5439 	/*
5440 	 * In case of shared PMDs, we should cover the maximum possible
5441 	 * range.
5442 	 */
5443 	flush_cache_range(vma, range.start, range.end);
5444 
5445 	mmu_notifier_invalidate_range_start(&range);
5446 	last_addr_mask = hugetlb_mask_last_page(h);
5447 	/* Prevent race with file truncation */
5448 	hugetlb_vma_lock_write(vma);
5449 	i_mmap_lock_write(mapping);
5450 	for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
5451 		src_pte = hugetlb_walk(vma, old_addr, sz);
5452 		if (!src_pte) {
5453 			old_addr |= last_addr_mask;
5454 			new_addr |= last_addr_mask;
5455 			continue;
5456 		}
5457 		if (huge_pte_none(huge_ptep_get(mm, old_addr, src_pte)))
5458 			continue;
5459 
5460 		if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
5461 			shared_pmd = true;
5462 			old_addr |= last_addr_mask;
5463 			new_addr |= last_addr_mask;
5464 			continue;
5465 		}
5466 
5467 		dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5468 		if (!dst_pte)
5469 			break;
5470 
5471 		move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte, sz);
5472 	}
5473 
5474 	if (shared_pmd)
5475 		flush_hugetlb_tlb_range(vma, range.start, range.end);
5476 	else
5477 		flush_hugetlb_tlb_range(vma, old_end - len, old_end);
5478 	mmu_notifier_invalidate_range_end(&range);
5479 	i_mmap_unlock_write(mapping);
5480 	hugetlb_vma_unlock_write(vma);
5481 
5482 	return len + old_addr - old_end;
5483 }
5484 
5485 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5486 			    unsigned long start, unsigned long end,
5487 			    struct page *ref_page, zap_flags_t zap_flags)
5488 {
5489 	struct mm_struct *mm = vma->vm_mm;
5490 	unsigned long address;
5491 	pte_t *ptep;
5492 	pte_t pte;
5493 	spinlock_t *ptl;
5494 	struct page *page;
5495 	struct hstate *h = hstate_vma(vma);
5496 	unsigned long sz = huge_page_size(h);
5497 	bool adjust_reservation = false;
5498 	unsigned long last_addr_mask;
5499 	bool force_flush = false;
5500 
5501 	WARN_ON(!is_vm_hugetlb_page(vma));
5502 	BUG_ON(start & ~huge_page_mask(h));
5503 	BUG_ON(end & ~huge_page_mask(h));
5504 
5505 	/*
5506 	 * This is a hugetlb vma, all the pte entries should point
5507 	 * to huge page.
5508 	 */
5509 	tlb_change_page_size(tlb, sz);
5510 	tlb_start_vma(tlb, vma);
5511 
5512 	last_addr_mask = hugetlb_mask_last_page(h);
5513 	address = start;
5514 	for (; address < end; address += sz) {
5515 		ptep = hugetlb_walk(vma, address, sz);
5516 		if (!ptep) {
5517 			address |= last_addr_mask;
5518 			continue;
5519 		}
5520 
5521 		ptl = huge_pte_lock(h, mm, ptep);
5522 		if (huge_pmd_unshare(mm, vma, address, ptep)) {
5523 			spin_unlock(ptl);
5524 			tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5525 			force_flush = true;
5526 			address |= last_addr_mask;
5527 			continue;
5528 		}
5529 
5530 		pte = huge_ptep_get(mm, address, ptep);
5531 		if (huge_pte_none(pte)) {
5532 			spin_unlock(ptl);
5533 			continue;
5534 		}
5535 
5536 		/*
5537 		 * Migrating hugepage or HWPoisoned hugepage is already
5538 		 * unmapped and its refcount is dropped, so just clear pte here.
5539 		 */
5540 		if (unlikely(!pte_present(pte))) {
5541 			/*
5542 			 * If the pte was wr-protected by uffd-wp in any of the
5543 			 * swap forms, meanwhile the caller does not want to
5544 			 * drop the uffd-wp bit in this zap, then replace the
5545 			 * pte with a marker.
5546 			 */
5547 			if (pte_swp_uffd_wp_any(pte) &&
5548 			    !(zap_flags & ZAP_FLAG_DROP_MARKER))
5549 				set_huge_pte_at(mm, address, ptep,
5550 						make_pte_marker(PTE_MARKER_UFFD_WP),
5551 						sz);
5552 			else
5553 				huge_pte_clear(mm, address, ptep, sz);
5554 			spin_unlock(ptl);
5555 			continue;
5556 		}
5557 
5558 		page = pte_page(pte);
5559 		/*
5560 		 * If a reference page is supplied, it is because a specific
5561 		 * page is being unmapped, not a range. Ensure the page we
5562 		 * are about to unmap is the actual page of interest.
5563 		 */
5564 		if (ref_page) {
5565 			if (page != ref_page) {
5566 				spin_unlock(ptl);
5567 				continue;
5568 			}
5569 			/*
5570 			 * Mark the VMA as having unmapped its page so that
5571 			 * future faults in this VMA will fail rather than
5572 			 * looking like data was lost
5573 			 */
5574 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5575 		}
5576 
5577 		pte = huge_ptep_get_and_clear(mm, address, ptep);
5578 		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5579 		if (huge_pte_dirty(pte))
5580 			set_page_dirty(page);
5581 		/* Leave a uffd-wp pte marker if needed */
5582 		if (huge_pte_uffd_wp(pte) &&
5583 		    !(zap_flags & ZAP_FLAG_DROP_MARKER))
5584 			set_huge_pte_at(mm, address, ptep,
5585 					make_pte_marker(PTE_MARKER_UFFD_WP),
5586 					sz);
5587 		hugetlb_count_sub(pages_per_huge_page(h), mm);
5588 		hugetlb_remove_rmap(page_folio(page));
5589 
5590 		/*
5591 		 * Restore the reservation for anonymous page, otherwise the
5592 		 * backing page could be stolen by someone.
5593 		 * If there we are freeing a surplus, do not set the restore
5594 		 * reservation bit.
5595 		 */
5596 		if (!h->surplus_huge_pages && __vma_private_lock(vma) &&
5597 		    folio_test_anon(page_folio(page))) {
5598 			folio_set_hugetlb_restore_reserve(page_folio(page));
5599 			/* Reservation to be adjusted after the spin lock */
5600 			adjust_reservation = true;
5601 		}
5602 
5603 		spin_unlock(ptl);
5604 
5605 		/*
5606 		 * Adjust the reservation for the region that will have the
5607 		 * reserve restored. Keep in mind that vma_needs_reservation() changes
5608 		 * resv->adds_in_progress if it succeeds. If this is not done,
5609 		 * do_exit() will not see it, and will keep the reservation
5610 		 * forever.
5611 		 */
5612 		if (adjust_reservation) {
5613 			int rc = vma_needs_reservation(h, vma, address);
5614 
5615 			if (rc < 0)
5616 				/* Pressumably allocate_file_region_entries failed
5617 				 * to allocate a file_region struct. Clear
5618 				 * hugetlb_restore_reserve so that global reserve
5619 				 * count will not be incremented by free_huge_folio.
5620 				 * Act as if we consumed the reservation.
5621 				 */
5622 				folio_clear_hugetlb_restore_reserve(page_folio(page));
5623 			else if (rc)
5624 				vma_add_reservation(h, vma, address);
5625 		}
5626 
5627 		tlb_remove_page_size(tlb, page, huge_page_size(h));
5628 		/*
5629 		 * Bail out after unmapping reference page if supplied
5630 		 */
5631 		if (ref_page)
5632 			break;
5633 	}
5634 	tlb_end_vma(tlb, vma);
5635 
5636 	/*
5637 	 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5638 	 * could defer the flush until now, since by holding i_mmap_rwsem we
5639 	 * guaranteed that the last refernece would not be dropped. But we must
5640 	 * do the flushing before we return, as otherwise i_mmap_rwsem will be
5641 	 * dropped and the last reference to the shared PMDs page might be
5642 	 * dropped as well.
5643 	 *
5644 	 * In theory we could defer the freeing of the PMD pages as well, but
5645 	 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5646 	 * detect sharing, so we cannot defer the release of the page either.
5647 	 * Instead, do flush now.
5648 	 */
5649 	if (force_flush)
5650 		tlb_flush_mmu_tlbonly(tlb);
5651 }
5652 
5653 void __hugetlb_zap_begin(struct vm_area_struct *vma,
5654 			 unsigned long *start, unsigned long *end)
5655 {
5656 	if (!vma->vm_file)	/* hugetlbfs_file_mmap error */
5657 		return;
5658 
5659 	adjust_range_if_pmd_sharing_possible(vma, start, end);
5660 	hugetlb_vma_lock_write(vma);
5661 	if (vma->vm_file)
5662 		i_mmap_lock_write(vma->vm_file->f_mapping);
5663 }
5664 
5665 void __hugetlb_zap_end(struct vm_area_struct *vma,
5666 		       struct zap_details *details)
5667 {
5668 	zap_flags_t zap_flags = details ? details->zap_flags : 0;
5669 
5670 	if (!vma->vm_file)	/* hugetlbfs_file_mmap error */
5671 		return;
5672 
5673 	if (zap_flags & ZAP_FLAG_UNMAP) {	/* final unmap */
5674 		/*
5675 		 * Unlock and free the vma lock before releasing i_mmap_rwsem.
5676 		 * When the vma_lock is freed, this makes the vma ineligible
5677 		 * for pmd sharing.  And, i_mmap_rwsem is required to set up
5678 		 * pmd sharing.  This is important as page tables for this
5679 		 * unmapped range will be asynchrously deleted.  If the page
5680 		 * tables are shared, there will be issues when accessed by
5681 		 * someone else.
5682 		 */
5683 		__hugetlb_vma_unlock_write_free(vma);
5684 	} else {
5685 		hugetlb_vma_unlock_write(vma);
5686 	}
5687 
5688 	if (vma->vm_file)
5689 		i_mmap_unlock_write(vma->vm_file->f_mapping);
5690 }
5691 
5692 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5693 			  unsigned long end, struct page *ref_page,
5694 			  zap_flags_t zap_flags)
5695 {
5696 	struct mmu_notifier_range range;
5697 	struct mmu_gather tlb;
5698 
5699 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
5700 				start, end);
5701 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5702 	mmu_notifier_invalidate_range_start(&range);
5703 	tlb_gather_mmu(&tlb, vma->vm_mm);
5704 
5705 	__unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
5706 
5707 	mmu_notifier_invalidate_range_end(&range);
5708 	tlb_finish_mmu(&tlb);
5709 }
5710 
5711 /*
5712  * This is called when the original mapper is failing to COW a MAP_PRIVATE
5713  * mapping it owns the reserve page for. The intention is to unmap the page
5714  * from other VMAs and let the children be SIGKILLed if they are faulting the
5715  * same region.
5716  */
5717 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5718 			      struct page *page, unsigned long address)
5719 {
5720 	struct hstate *h = hstate_vma(vma);
5721 	struct vm_area_struct *iter_vma;
5722 	struct address_space *mapping;
5723 	pgoff_t pgoff;
5724 
5725 	/*
5726 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5727 	 * from page cache lookup which is in HPAGE_SIZE units.
5728 	 */
5729 	address = address & huge_page_mask(h);
5730 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5731 			vma->vm_pgoff;
5732 	mapping = vma->vm_file->f_mapping;
5733 
5734 	/*
5735 	 * Take the mapping lock for the duration of the table walk. As
5736 	 * this mapping should be shared between all the VMAs,
5737 	 * __unmap_hugepage_range() is called as the lock is already held
5738 	 */
5739 	i_mmap_lock_write(mapping);
5740 	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5741 		/* Do not unmap the current VMA */
5742 		if (iter_vma == vma)
5743 			continue;
5744 
5745 		/*
5746 		 * Shared VMAs have their own reserves and do not affect
5747 		 * MAP_PRIVATE accounting but it is possible that a shared
5748 		 * VMA is using the same page so check and skip such VMAs.
5749 		 */
5750 		if (iter_vma->vm_flags & VM_MAYSHARE)
5751 			continue;
5752 
5753 		/*
5754 		 * Unmap the page from other VMAs without their own reserves.
5755 		 * They get marked to be SIGKILLed if they fault in these
5756 		 * areas. This is because a future no-page fault on this VMA
5757 		 * could insert a zeroed page instead of the data existing
5758 		 * from the time of fork. This would look like data corruption
5759 		 */
5760 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5761 			unmap_hugepage_range(iter_vma, address,
5762 					     address + huge_page_size(h), page, 0);
5763 	}
5764 	i_mmap_unlock_write(mapping);
5765 }
5766 
5767 /*
5768  * hugetlb_wp() should be called with page lock of the original hugepage held.
5769  * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5770  * cannot race with other handlers or page migration.
5771  * Keep the pte_same checks anyway to make transition from the mutex easier.
5772  */
5773 static vm_fault_t hugetlb_wp(struct folio *pagecache_folio,
5774 		       struct vm_fault *vmf)
5775 {
5776 	struct vm_area_struct *vma = vmf->vma;
5777 	struct mm_struct *mm = vma->vm_mm;
5778 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
5779 	pte_t pte = huge_ptep_get(mm, vmf->address, vmf->pte);
5780 	struct hstate *h = hstate_vma(vma);
5781 	struct folio *old_folio;
5782 	struct folio *new_folio;
5783 	int outside_reserve = 0;
5784 	vm_fault_t ret = 0;
5785 	struct mmu_notifier_range range;
5786 
5787 	/*
5788 	 * Never handle CoW for uffd-wp protected pages.  It should be only
5789 	 * handled when the uffd-wp protection is removed.
5790 	 *
5791 	 * Note that only the CoW optimization path (in hugetlb_no_page())
5792 	 * can trigger this, because hugetlb_fault() will always resolve
5793 	 * uffd-wp bit first.
5794 	 */
5795 	if (!unshare && huge_pte_uffd_wp(pte))
5796 		return 0;
5797 
5798 	/*
5799 	 * hugetlb does not support FOLL_FORCE-style write faults that keep the
5800 	 * PTE mapped R/O such as maybe_mkwrite() would do.
5801 	 */
5802 	if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE)))
5803 		return VM_FAULT_SIGSEGV;
5804 
5805 	/* Let's take out MAP_SHARED mappings first. */
5806 	if (vma->vm_flags & VM_MAYSHARE) {
5807 		set_huge_ptep_writable(vma, vmf->address, vmf->pte);
5808 		return 0;
5809 	}
5810 
5811 	old_folio = page_folio(pte_page(pte));
5812 
5813 	delayacct_wpcopy_start();
5814 
5815 retry_avoidcopy:
5816 	/*
5817 	 * If no-one else is actually using this page, we're the exclusive
5818 	 * owner and can reuse this page.
5819 	 *
5820 	 * Note that we don't rely on the (safer) folio refcount here, because
5821 	 * copying the hugetlb folio when there are unexpected (temporary)
5822 	 * folio references could harm simple fork()+exit() users when
5823 	 * we run out of free hugetlb folios: we would have to kill processes
5824 	 * in scenarios that used to work. As a side effect, there can still
5825 	 * be leaks between processes, for example, with FOLL_GET users.
5826 	 */
5827 	if (folio_mapcount(old_folio) == 1 && folio_test_anon(old_folio)) {
5828 		if (!PageAnonExclusive(&old_folio->page)) {
5829 			folio_move_anon_rmap(old_folio, vma);
5830 			SetPageAnonExclusive(&old_folio->page);
5831 		}
5832 		if (likely(!unshare))
5833 			set_huge_ptep_writable(vma, vmf->address, vmf->pte);
5834 
5835 		delayacct_wpcopy_end();
5836 		return 0;
5837 	}
5838 	VM_BUG_ON_PAGE(folio_test_anon(old_folio) &&
5839 		       PageAnonExclusive(&old_folio->page), &old_folio->page);
5840 
5841 	/*
5842 	 * If the process that created a MAP_PRIVATE mapping is about to
5843 	 * perform a COW due to a shared page count, attempt to satisfy
5844 	 * the allocation without using the existing reserves. The pagecache
5845 	 * page is used to determine if the reserve at this address was
5846 	 * consumed or not. If reserves were used, a partial faulted mapping
5847 	 * at the time of fork() could consume its reserves on COW instead
5848 	 * of the full address range.
5849 	 */
5850 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5851 			old_folio != pagecache_folio)
5852 		outside_reserve = 1;
5853 
5854 	folio_get(old_folio);
5855 
5856 	/*
5857 	 * Drop page table lock as buddy allocator may be called. It will
5858 	 * be acquired again before returning to the caller, as expected.
5859 	 */
5860 	spin_unlock(vmf->ptl);
5861 	new_folio = alloc_hugetlb_folio(vma, vmf->address, outside_reserve);
5862 
5863 	if (IS_ERR(new_folio)) {
5864 		/*
5865 		 * If a process owning a MAP_PRIVATE mapping fails to COW,
5866 		 * it is due to references held by a child and an insufficient
5867 		 * huge page pool. To guarantee the original mappers
5868 		 * reliability, unmap the page from child processes. The child
5869 		 * may get SIGKILLed if it later faults.
5870 		 */
5871 		if (outside_reserve) {
5872 			struct address_space *mapping = vma->vm_file->f_mapping;
5873 			pgoff_t idx;
5874 			u32 hash;
5875 
5876 			folio_put(old_folio);
5877 			/*
5878 			 * Drop hugetlb_fault_mutex and vma_lock before
5879 			 * unmapping.  unmapping needs to hold vma_lock
5880 			 * in write mode.  Dropping vma_lock in read mode
5881 			 * here is OK as COW mappings do not interact with
5882 			 * PMD sharing.
5883 			 *
5884 			 * Reacquire both after unmap operation.
5885 			 */
5886 			idx = vma_hugecache_offset(h, vma, vmf->address);
5887 			hash = hugetlb_fault_mutex_hash(mapping, idx);
5888 			hugetlb_vma_unlock_read(vma);
5889 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5890 
5891 			unmap_ref_private(mm, vma, &old_folio->page,
5892 					vmf->address);
5893 
5894 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
5895 			hugetlb_vma_lock_read(vma);
5896 			spin_lock(vmf->ptl);
5897 			vmf->pte = hugetlb_walk(vma, vmf->address,
5898 					huge_page_size(h));
5899 			if (likely(vmf->pte &&
5900 				   pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), pte)))
5901 				goto retry_avoidcopy;
5902 			/*
5903 			 * race occurs while re-acquiring page table
5904 			 * lock, and our job is done.
5905 			 */
5906 			delayacct_wpcopy_end();
5907 			return 0;
5908 		}
5909 
5910 		ret = vmf_error(PTR_ERR(new_folio));
5911 		goto out_release_old;
5912 	}
5913 
5914 	/*
5915 	 * When the original hugepage is shared one, it does not have
5916 	 * anon_vma prepared.
5917 	 */
5918 	ret = __vmf_anon_prepare(vmf);
5919 	if (unlikely(ret))
5920 		goto out_release_all;
5921 
5922 	if (copy_user_large_folio(new_folio, old_folio, vmf->real_address, vma)) {
5923 		ret = VM_FAULT_HWPOISON_LARGE | VM_FAULT_SET_HINDEX(hstate_index(h));
5924 		goto out_release_all;
5925 	}
5926 	__folio_mark_uptodate(new_folio);
5927 
5928 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, vmf->address,
5929 				vmf->address + huge_page_size(h));
5930 	mmu_notifier_invalidate_range_start(&range);
5931 
5932 	/*
5933 	 * Retake the page table lock to check for racing updates
5934 	 * before the page tables are altered
5935 	 */
5936 	spin_lock(vmf->ptl);
5937 	vmf->pte = hugetlb_walk(vma, vmf->address, huge_page_size(h));
5938 	if (likely(vmf->pte && pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), pte))) {
5939 		pte_t newpte = make_huge_pte(vma, &new_folio->page, !unshare);
5940 
5941 		/* Break COW or unshare */
5942 		huge_ptep_clear_flush(vma, vmf->address, vmf->pte);
5943 		hugetlb_remove_rmap(old_folio);
5944 		hugetlb_add_new_anon_rmap(new_folio, vma, vmf->address);
5945 		if (huge_pte_uffd_wp(pte))
5946 			newpte = huge_pte_mkuffd_wp(newpte);
5947 		set_huge_pte_at(mm, vmf->address, vmf->pte, newpte,
5948 				huge_page_size(h));
5949 		folio_set_hugetlb_migratable(new_folio);
5950 		/* Make the old page be freed below */
5951 		new_folio = old_folio;
5952 	}
5953 	spin_unlock(vmf->ptl);
5954 	mmu_notifier_invalidate_range_end(&range);
5955 out_release_all:
5956 	/*
5957 	 * No restore in case of successful pagetable update (Break COW or
5958 	 * unshare)
5959 	 */
5960 	if (new_folio != old_folio)
5961 		restore_reserve_on_error(h, vma, vmf->address, new_folio);
5962 	folio_put(new_folio);
5963 out_release_old:
5964 	folio_put(old_folio);
5965 
5966 	spin_lock(vmf->ptl); /* Caller expects lock to be held */
5967 
5968 	delayacct_wpcopy_end();
5969 	return ret;
5970 }
5971 
5972 /*
5973  * Return whether there is a pagecache page to back given address within VMA.
5974  */
5975 bool hugetlbfs_pagecache_present(struct hstate *h,
5976 				 struct vm_area_struct *vma, unsigned long address)
5977 {
5978 	struct address_space *mapping = vma->vm_file->f_mapping;
5979 	pgoff_t idx = linear_page_index(vma, address);
5980 	struct folio *folio;
5981 
5982 	folio = filemap_get_folio(mapping, idx);
5983 	if (IS_ERR(folio))
5984 		return false;
5985 	folio_put(folio);
5986 	return true;
5987 }
5988 
5989 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping,
5990 			   pgoff_t idx)
5991 {
5992 	struct inode *inode = mapping->host;
5993 	struct hstate *h = hstate_inode(inode);
5994 	int err;
5995 
5996 	idx <<= huge_page_order(h);
5997 	__folio_set_locked(folio);
5998 	err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
5999 
6000 	if (unlikely(err)) {
6001 		__folio_clear_locked(folio);
6002 		return err;
6003 	}
6004 	folio_clear_hugetlb_restore_reserve(folio);
6005 
6006 	/*
6007 	 * mark folio dirty so that it will not be removed from cache/file
6008 	 * by non-hugetlbfs specific code paths.
6009 	 */
6010 	folio_mark_dirty(folio);
6011 
6012 	spin_lock(&inode->i_lock);
6013 	inode->i_blocks += blocks_per_huge_page(h);
6014 	spin_unlock(&inode->i_lock);
6015 	return 0;
6016 }
6017 
6018 static inline vm_fault_t hugetlb_handle_userfault(struct vm_fault *vmf,
6019 						  struct address_space *mapping,
6020 						  unsigned long reason)
6021 {
6022 	u32 hash;
6023 
6024 	/*
6025 	 * vma_lock and hugetlb_fault_mutex must be dropped before handling
6026 	 * userfault. Also mmap_lock could be dropped due to handling
6027 	 * userfault, any vma operation should be careful from here.
6028 	 */
6029 	hugetlb_vma_unlock_read(vmf->vma);
6030 	hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff);
6031 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6032 	return handle_userfault(vmf, reason);
6033 }
6034 
6035 /*
6036  * Recheck pte with pgtable lock.  Returns true if pte didn't change, or
6037  * false if pte changed or is changing.
6038  */
6039 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm, unsigned long addr,
6040 			       pte_t *ptep, pte_t old_pte)
6041 {
6042 	spinlock_t *ptl;
6043 	bool same;
6044 
6045 	ptl = huge_pte_lock(h, mm, ptep);
6046 	same = pte_same(huge_ptep_get(mm, addr, ptep), old_pte);
6047 	spin_unlock(ptl);
6048 
6049 	return same;
6050 }
6051 
6052 static vm_fault_t hugetlb_no_page(struct address_space *mapping,
6053 			struct vm_fault *vmf)
6054 {
6055 	struct vm_area_struct *vma = vmf->vma;
6056 	struct mm_struct *mm = vma->vm_mm;
6057 	struct hstate *h = hstate_vma(vma);
6058 	vm_fault_t ret = VM_FAULT_SIGBUS;
6059 	int anon_rmap = 0;
6060 	unsigned long size;
6061 	struct folio *folio;
6062 	pte_t new_pte;
6063 	bool new_folio, new_pagecache_folio = false;
6064 	u32 hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff);
6065 
6066 	/*
6067 	 * Currently, we are forced to kill the process in the event the
6068 	 * original mapper has unmapped pages from the child due to a failed
6069 	 * COW/unsharing. Warn that such a situation has occurred as it may not
6070 	 * be obvious.
6071 	 */
6072 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
6073 		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
6074 			   current->pid);
6075 		goto out;
6076 	}
6077 
6078 	/*
6079 	 * Use page lock to guard against racing truncation
6080 	 * before we get page_table_lock.
6081 	 */
6082 	new_folio = false;
6083 	folio = filemap_lock_hugetlb_folio(h, mapping, vmf->pgoff);
6084 	if (IS_ERR(folio)) {
6085 		size = i_size_read(mapping->host) >> huge_page_shift(h);
6086 		if (vmf->pgoff >= size)
6087 			goto out;
6088 		/* Check for page in userfault range */
6089 		if (userfaultfd_missing(vma)) {
6090 			/*
6091 			 * Since hugetlb_no_page() was examining pte
6092 			 * without pgtable lock, we need to re-test under
6093 			 * lock because the pte may not be stable and could
6094 			 * have changed from under us.  Try to detect
6095 			 * either changed or during-changing ptes and retry
6096 			 * properly when needed.
6097 			 *
6098 			 * Note that userfaultfd is actually fine with
6099 			 * false positives (e.g. caused by pte changed),
6100 			 * but not wrong logical events (e.g. caused by
6101 			 * reading a pte during changing).  The latter can
6102 			 * confuse the userspace, so the strictness is very
6103 			 * much preferred.  E.g., MISSING event should
6104 			 * never happen on the page after UFFDIO_COPY has
6105 			 * correctly installed the page and returned.
6106 			 */
6107 			if (!hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte)) {
6108 				ret = 0;
6109 				goto out;
6110 			}
6111 
6112 			return hugetlb_handle_userfault(vmf, mapping,
6113 							VM_UFFD_MISSING);
6114 		}
6115 
6116 		if (!(vma->vm_flags & VM_MAYSHARE)) {
6117 			ret = __vmf_anon_prepare(vmf);
6118 			if (unlikely(ret))
6119 				goto out;
6120 		}
6121 
6122 		folio = alloc_hugetlb_folio(vma, vmf->address, 0);
6123 		if (IS_ERR(folio)) {
6124 			/*
6125 			 * Returning error will result in faulting task being
6126 			 * sent SIGBUS.  The hugetlb fault mutex prevents two
6127 			 * tasks from racing to fault in the same page which
6128 			 * could result in false unable to allocate errors.
6129 			 * Page migration does not take the fault mutex, but
6130 			 * does a clear then write of pte's under page table
6131 			 * lock.  Page fault code could race with migration,
6132 			 * notice the clear pte and try to allocate a page
6133 			 * here.  Before returning error, get ptl and make
6134 			 * sure there really is no pte entry.
6135 			 */
6136 			if (hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte))
6137 				ret = vmf_error(PTR_ERR(folio));
6138 			else
6139 				ret = 0;
6140 			goto out;
6141 		}
6142 		folio_zero_user(folio, vmf->real_address);
6143 		__folio_mark_uptodate(folio);
6144 		new_folio = true;
6145 
6146 		if (vma->vm_flags & VM_MAYSHARE) {
6147 			int err = hugetlb_add_to_page_cache(folio, mapping,
6148 							vmf->pgoff);
6149 			if (err) {
6150 				/*
6151 				 * err can't be -EEXIST which implies someone
6152 				 * else consumed the reservation since hugetlb
6153 				 * fault mutex is held when add a hugetlb page
6154 				 * to the page cache. So it's safe to call
6155 				 * restore_reserve_on_error() here.
6156 				 */
6157 				restore_reserve_on_error(h, vma, vmf->address,
6158 							folio);
6159 				folio_put(folio);
6160 				ret = VM_FAULT_SIGBUS;
6161 				goto out;
6162 			}
6163 			new_pagecache_folio = true;
6164 		} else {
6165 			folio_lock(folio);
6166 			anon_rmap = 1;
6167 		}
6168 	} else {
6169 		/*
6170 		 * If memory error occurs between mmap() and fault, some process
6171 		 * don't have hwpoisoned swap entry for errored virtual address.
6172 		 * So we need to block hugepage fault by PG_hwpoison bit check.
6173 		 */
6174 		if (unlikely(folio_test_hwpoison(folio))) {
6175 			ret = VM_FAULT_HWPOISON_LARGE |
6176 				VM_FAULT_SET_HINDEX(hstate_index(h));
6177 			goto backout_unlocked;
6178 		}
6179 
6180 		/* Check for page in userfault range. */
6181 		if (userfaultfd_minor(vma)) {
6182 			folio_unlock(folio);
6183 			folio_put(folio);
6184 			/* See comment in userfaultfd_missing() block above */
6185 			if (!hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte)) {
6186 				ret = 0;
6187 				goto out;
6188 			}
6189 			return hugetlb_handle_userfault(vmf, mapping,
6190 							VM_UFFD_MINOR);
6191 		}
6192 	}
6193 
6194 	/*
6195 	 * If we are going to COW a private mapping later, we examine the
6196 	 * pending reservations for this page now. This will ensure that
6197 	 * any allocations necessary to record that reservation occur outside
6198 	 * the spinlock.
6199 	 */
6200 	if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
6201 		if (vma_needs_reservation(h, vma, vmf->address) < 0) {
6202 			ret = VM_FAULT_OOM;
6203 			goto backout_unlocked;
6204 		}
6205 		/* Just decrements count, does not deallocate */
6206 		vma_end_reservation(h, vma, vmf->address);
6207 	}
6208 
6209 	vmf->ptl = huge_pte_lock(h, mm, vmf->pte);
6210 	ret = 0;
6211 	/* If pte changed from under us, retry */
6212 	if (!pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), vmf->orig_pte))
6213 		goto backout;
6214 
6215 	if (anon_rmap)
6216 		hugetlb_add_new_anon_rmap(folio, vma, vmf->address);
6217 	else
6218 		hugetlb_add_file_rmap(folio);
6219 	new_pte = make_huge_pte(vma, &folio->page, ((vma->vm_flags & VM_WRITE)
6220 				&& (vma->vm_flags & VM_SHARED)));
6221 	/*
6222 	 * If this pte was previously wr-protected, keep it wr-protected even
6223 	 * if populated.
6224 	 */
6225 	if (unlikely(pte_marker_uffd_wp(vmf->orig_pte)))
6226 		new_pte = huge_pte_mkuffd_wp(new_pte);
6227 	set_huge_pte_at(mm, vmf->address, vmf->pte, new_pte, huge_page_size(h));
6228 
6229 	hugetlb_count_add(pages_per_huge_page(h), mm);
6230 	if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
6231 		/* Optimization, do the COW without a second fault */
6232 		ret = hugetlb_wp(folio, vmf);
6233 	}
6234 
6235 	spin_unlock(vmf->ptl);
6236 
6237 	/*
6238 	 * Only set hugetlb_migratable in newly allocated pages.  Existing pages
6239 	 * found in the pagecache may not have hugetlb_migratable if they have
6240 	 * been isolated for migration.
6241 	 */
6242 	if (new_folio)
6243 		folio_set_hugetlb_migratable(folio);
6244 
6245 	folio_unlock(folio);
6246 out:
6247 	hugetlb_vma_unlock_read(vma);
6248 
6249 	/*
6250 	 * We must check to release the per-VMA lock. __vmf_anon_prepare() is
6251 	 * the only way ret can be set to VM_FAULT_RETRY.
6252 	 */
6253 	if (unlikely(ret & VM_FAULT_RETRY))
6254 		vma_end_read(vma);
6255 
6256 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6257 	return ret;
6258 
6259 backout:
6260 	spin_unlock(vmf->ptl);
6261 backout_unlocked:
6262 	if (new_folio && !new_pagecache_folio)
6263 		restore_reserve_on_error(h, vma, vmf->address, folio);
6264 
6265 	folio_unlock(folio);
6266 	folio_put(folio);
6267 	goto out;
6268 }
6269 
6270 #ifdef CONFIG_SMP
6271 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6272 {
6273 	unsigned long key[2];
6274 	u32 hash;
6275 
6276 	key[0] = (unsigned long) mapping;
6277 	key[1] = idx;
6278 
6279 	hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
6280 
6281 	return hash & (num_fault_mutexes - 1);
6282 }
6283 #else
6284 /*
6285  * For uniprocessor systems we always use a single mutex, so just
6286  * return 0 and avoid the hashing overhead.
6287  */
6288 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6289 {
6290 	return 0;
6291 }
6292 #endif
6293 
6294 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
6295 			unsigned long address, unsigned int flags)
6296 {
6297 	vm_fault_t ret;
6298 	u32 hash;
6299 	struct folio *folio = NULL;
6300 	struct folio *pagecache_folio = NULL;
6301 	struct hstate *h = hstate_vma(vma);
6302 	struct address_space *mapping;
6303 	int need_wait_lock = 0;
6304 	struct vm_fault vmf = {
6305 		.vma = vma,
6306 		.address = address & huge_page_mask(h),
6307 		.real_address = address,
6308 		.flags = flags,
6309 		.pgoff = vma_hugecache_offset(h, vma,
6310 				address & huge_page_mask(h)),
6311 		/* TODO: Track hugetlb faults using vm_fault */
6312 
6313 		/*
6314 		 * Some fields may not be initialized, be careful as it may
6315 		 * be hard to debug if called functions make assumptions
6316 		 */
6317 	};
6318 
6319 	/*
6320 	 * Serialize hugepage allocation and instantiation, so that we don't
6321 	 * get spurious allocation failures if two CPUs race to instantiate
6322 	 * the same page in the page cache.
6323 	 */
6324 	mapping = vma->vm_file->f_mapping;
6325 	hash = hugetlb_fault_mutex_hash(mapping, vmf.pgoff);
6326 	mutex_lock(&hugetlb_fault_mutex_table[hash]);
6327 
6328 	/*
6329 	 * Acquire vma lock before calling huge_pte_alloc and hold
6330 	 * until finished with vmf.pte.  This prevents huge_pmd_unshare from
6331 	 * being called elsewhere and making the vmf.pte no longer valid.
6332 	 */
6333 	hugetlb_vma_lock_read(vma);
6334 	vmf.pte = huge_pte_alloc(mm, vma, vmf.address, huge_page_size(h));
6335 	if (!vmf.pte) {
6336 		hugetlb_vma_unlock_read(vma);
6337 		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6338 		return VM_FAULT_OOM;
6339 	}
6340 
6341 	vmf.orig_pte = huge_ptep_get(mm, vmf.address, vmf.pte);
6342 	if (huge_pte_none_mostly(vmf.orig_pte)) {
6343 		if (is_pte_marker(vmf.orig_pte)) {
6344 			pte_marker marker =
6345 				pte_marker_get(pte_to_swp_entry(vmf.orig_pte));
6346 
6347 			if (marker & PTE_MARKER_POISONED) {
6348 				ret = VM_FAULT_HWPOISON_LARGE |
6349 				      VM_FAULT_SET_HINDEX(hstate_index(h));
6350 				goto out_mutex;
6351 			}
6352 		}
6353 
6354 		/*
6355 		 * Other PTE markers should be handled the same way as none PTE.
6356 		 *
6357 		 * hugetlb_no_page will drop vma lock and hugetlb fault
6358 		 * mutex internally, which make us return immediately.
6359 		 */
6360 		return hugetlb_no_page(mapping, &vmf);
6361 	}
6362 
6363 	ret = 0;
6364 
6365 	/*
6366 	 * vmf.orig_pte could be a migration/hwpoison vmf.orig_pte at this
6367 	 * point, so this check prevents the kernel from going below assuming
6368 	 * that we have an active hugepage in pagecache. This goto expects
6369 	 * the 2nd page fault, and is_hugetlb_entry_(migration|hwpoisoned)
6370 	 * check will properly handle it.
6371 	 */
6372 	if (!pte_present(vmf.orig_pte)) {
6373 		if (unlikely(is_hugetlb_entry_migration(vmf.orig_pte))) {
6374 			/*
6375 			 * Release the hugetlb fault lock now, but retain
6376 			 * the vma lock, because it is needed to guard the
6377 			 * huge_pte_lockptr() later in
6378 			 * migration_entry_wait_huge(). The vma lock will
6379 			 * be released there.
6380 			 */
6381 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6382 			migration_entry_wait_huge(vma, vmf.address, vmf.pte);
6383 			return 0;
6384 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(vmf.orig_pte)))
6385 			ret = VM_FAULT_HWPOISON_LARGE |
6386 			    VM_FAULT_SET_HINDEX(hstate_index(h));
6387 		goto out_mutex;
6388 	}
6389 
6390 	/*
6391 	 * If we are going to COW/unshare the mapping later, we examine the
6392 	 * pending reservations for this page now. This will ensure that any
6393 	 * allocations necessary to record that reservation occur outside the
6394 	 * spinlock. Also lookup the pagecache page now as it is used to
6395 	 * determine if a reservation has been consumed.
6396 	 */
6397 	if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
6398 	    !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(vmf.orig_pte)) {
6399 		if (vma_needs_reservation(h, vma, vmf.address) < 0) {
6400 			ret = VM_FAULT_OOM;
6401 			goto out_mutex;
6402 		}
6403 		/* Just decrements count, does not deallocate */
6404 		vma_end_reservation(h, vma, vmf.address);
6405 
6406 		pagecache_folio = filemap_lock_hugetlb_folio(h, mapping,
6407 							     vmf.pgoff);
6408 		if (IS_ERR(pagecache_folio))
6409 			pagecache_folio = NULL;
6410 	}
6411 
6412 	vmf.ptl = huge_pte_lock(h, mm, vmf.pte);
6413 
6414 	/* Check for a racing update before calling hugetlb_wp() */
6415 	if (unlikely(!pte_same(vmf.orig_pte, huge_ptep_get(mm, vmf.address, vmf.pte))))
6416 		goto out_ptl;
6417 
6418 	/* Handle userfault-wp first, before trying to lock more pages */
6419 	if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(mm, vmf.address, vmf.pte)) &&
6420 	    (flags & FAULT_FLAG_WRITE) && !huge_pte_write(vmf.orig_pte)) {
6421 		if (!userfaultfd_wp_async(vma)) {
6422 			spin_unlock(vmf.ptl);
6423 			if (pagecache_folio) {
6424 				folio_unlock(pagecache_folio);
6425 				folio_put(pagecache_folio);
6426 			}
6427 			hugetlb_vma_unlock_read(vma);
6428 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6429 			return handle_userfault(&vmf, VM_UFFD_WP);
6430 		}
6431 
6432 		vmf.orig_pte = huge_pte_clear_uffd_wp(vmf.orig_pte);
6433 		set_huge_pte_at(mm, vmf.address, vmf.pte, vmf.orig_pte,
6434 				huge_page_size(hstate_vma(vma)));
6435 		/* Fallthrough to CoW */
6436 	}
6437 
6438 	/*
6439 	 * hugetlb_wp() requires page locks of pte_page(vmf.orig_pte) and
6440 	 * pagecache_folio, so here we need take the former one
6441 	 * when folio != pagecache_folio or !pagecache_folio.
6442 	 */
6443 	folio = page_folio(pte_page(vmf.orig_pte));
6444 	if (folio != pagecache_folio)
6445 		if (!folio_trylock(folio)) {
6446 			need_wait_lock = 1;
6447 			goto out_ptl;
6448 		}
6449 
6450 	folio_get(folio);
6451 
6452 	if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
6453 		if (!huge_pte_write(vmf.orig_pte)) {
6454 			ret = hugetlb_wp(pagecache_folio, &vmf);
6455 			goto out_put_page;
6456 		} else if (likely(flags & FAULT_FLAG_WRITE)) {
6457 			vmf.orig_pte = huge_pte_mkdirty(vmf.orig_pte);
6458 		}
6459 	}
6460 	vmf.orig_pte = pte_mkyoung(vmf.orig_pte);
6461 	if (huge_ptep_set_access_flags(vma, vmf.address, vmf.pte, vmf.orig_pte,
6462 						flags & FAULT_FLAG_WRITE))
6463 		update_mmu_cache(vma, vmf.address, vmf.pte);
6464 out_put_page:
6465 	if (folio != pagecache_folio)
6466 		folio_unlock(folio);
6467 	folio_put(folio);
6468 out_ptl:
6469 	spin_unlock(vmf.ptl);
6470 
6471 	if (pagecache_folio) {
6472 		folio_unlock(pagecache_folio);
6473 		folio_put(pagecache_folio);
6474 	}
6475 out_mutex:
6476 	hugetlb_vma_unlock_read(vma);
6477 
6478 	/*
6479 	 * We must check to release the per-VMA lock. __vmf_anon_prepare() in
6480 	 * hugetlb_wp() is the only way ret can be set to VM_FAULT_RETRY.
6481 	 */
6482 	if (unlikely(ret & VM_FAULT_RETRY))
6483 		vma_end_read(vma);
6484 
6485 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6486 	/*
6487 	 * Generally it's safe to hold refcount during waiting page lock. But
6488 	 * here we just wait to defer the next page fault to avoid busy loop and
6489 	 * the page is not used after unlocked before returning from the current
6490 	 * page fault. So we are safe from accessing freed page, even if we wait
6491 	 * here without taking refcount.
6492 	 */
6493 	if (need_wait_lock)
6494 		folio_wait_locked(folio);
6495 	return ret;
6496 }
6497 
6498 #ifdef CONFIG_USERFAULTFD
6499 /*
6500  * Can probably be eliminated, but still used by hugetlb_mfill_atomic_pte().
6501  */
6502 static struct folio *alloc_hugetlb_folio_vma(struct hstate *h,
6503 		struct vm_area_struct *vma, unsigned long address)
6504 {
6505 	struct mempolicy *mpol;
6506 	nodemask_t *nodemask;
6507 	struct folio *folio;
6508 	gfp_t gfp_mask;
6509 	int node;
6510 
6511 	gfp_mask = htlb_alloc_mask(h);
6512 	node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
6513 	/*
6514 	 * This is used to allocate a temporary hugetlb to hold the copied
6515 	 * content, which will then be copied again to the final hugetlb
6516 	 * consuming a reservation. Set the alloc_fallback to false to indicate
6517 	 * that breaking the per-node hugetlb pool is not allowed in this case.
6518 	 */
6519 	folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask, false);
6520 	mpol_cond_put(mpol);
6521 
6522 	return folio;
6523 }
6524 
6525 /*
6526  * Used by userfaultfd UFFDIO_* ioctls. Based on userfaultfd's mfill_atomic_pte
6527  * with modifications for hugetlb pages.
6528  */
6529 int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
6530 			     struct vm_area_struct *dst_vma,
6531 			     unsigned long dst_addr,
6532 			     unsigned long src_addr,
6533 			     uffd_flags_t flags,
6534 			     struct folio **foliop)
6535 {
6536 	struct mm_struct *dst_mm = dst_vma->vm_mm;
6537 	bool is_continue = uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE);
6538 	bool wp_enabled = (flags & MFILL_ATOMIC_WP);
6539 	struct hstate *h = hstate_vma(dst_vma);
6540 	struct address_space *mapping = dst_vma->vm_file->f_mapping;
6541 	pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
6542 	unsigned long size = huge_page_size(h);
6543 	int vm_shared = dst_vma->vm_flags & VM_SHARED;
6544 	pte_t _dst_pte;
6545 	spinlock_t *ptl;
6546 	int ret = -ENOMEM;
6547 	struct folio *folio;
6548 	int writable;
6549 	bool folio_in_pagecache = false;
6550 
6551 	if (uffd_flags_mode_is(flags, MFILL_ATOMIC_POISON)) {
6552 		ptl = huge_pte_lock(h, dst_mm, dst_pte);
6553 
6554 		/* Don't overwrite any existing PTEs (even markers) */
6555 		if (!huge_pte_none(huge_ptep_get(dst_mm, dst_addr, dst_pte))) {
6556 			spin_unlock(ptl);
6557 			return -EEXIST;
6558 		}
6559 
6560 		_dst_pte = make_pte_marker(PTE_MARKER_POISONED);
6561 		set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, size);
6562 
6563 		/* No need to invalidate - it was non-present before */
6564 		update_mmu_cache(dst_vma, dst_addr, dst_pte);
6565 
6566 		spin_unlock(ptl);
6567 		return 0;
6568 	}
6569 
6570 	if (is_continue) {
6571 		ret = -EFAULT;
6572 		folio = filemap_lock_hugetlb_folio(h, mapping, idx);
6573 		if (IS_ERR(folio))
6574 			goto out;
6575 		folio_in_pagecache = true;
6576 	} else if (!*foliop) {
6577 		/* If a folio already exists, then it's UFFDIO_COPY for
6578 		 * a non-missing case. Return -EEXIST.
6579 		 */
6580 		if (vm_shared &&
6581 		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6582 			ret = -EEXIST;
6583 			goto out;
6584 		}
6585 
6586 		folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6587 		if (IS_ERR(folio)) {
6588 			ret = -ENOMEM;
6589 			goto out;
6590 		}
6591 
6592 		ret = copy_folio_from_user(folio, (const void __user *) src_addr,
6593 					   false);
6594 
6595 		/* fallback to copy_from_user outside mmap_lock */
6596 		if (unlikely(ret)) {
6597 			ret = -ENOENT;
6598 			/* Free the allocated folio which may have
6599 			 * consumed a reservation.
6600 			 */
6601 			restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6602 			folio_put(folio);
6603 
6604 			/* Allocate a temporary folio to hold the copied
6605 			 * contents.
6606 			 */
6607 			folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr);
6608 			if (!folio) {
6609 				ret = -ENOMEM;
6610 				goto out;
6611 			}
6612 			*foliop = folio;
6613 			/* Set the outparam foliop and return to the caller to
6614 			 * copy the contents outside the lock. Don't free the
6615 			 * folio.
6616 			 */
6617 			goto out;
6618 		}
6619 	} else {
6620 		if (vm_shared &&
6621 		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6622 			folio_put(*foliop);
6623 			ret = -EEXIST;
6624 			*foliop = NULL;
6625 			goto out;
6626 		}
6627 
6628 		folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6629 		if (IS_ERR(folio)) {
6630 			folio_put(*foliop);
6631 			ret = -ENOMEM;
6632 			*foliop = NULL;
6633 			goto out;
6634 		}
6635 		ret = copy_user_large_folio(folio, *foliop,
6636 					    ALIGN_DOWN(dst_addr, size), dst_vma);
6637 		folio_put(*foliop);
6638 		*foliop = NULL;
6639 		if (ret) {
6640 			folio_put(folio);
6641 			goto out;
6642 		}
6643 	}
6644 
6645 	/*
6646 	 * If we just allocated a new page, we need a memory barrier to ensure
6647 	 * that preceding stores to the page become visible before the
6648 	 * set_pte_at() write. The memory barrier inside __folio_mark_uptodate
6649 	 * is what we need.
6650 	 *
6651 	 * In the case where we have not allocated a new page (is_continue),
6652 	 * the page must already be uptodate. UFFDIO_CONTINUE already includes
6653 	 * an earlier smp_wmb() to ensure that prior stores will be visible
6654 	 * before the set_pte_at() write.
6655 	 */
6656 	if (!is_continue)
6657 		__folio_mark_uptodate(folio);
6658 	else
6659 		WARN_ON_ONCE(!folio_test_uptodate(folio));
6660 
6661 	/* Add shared, newly allocated pages to the page cache. */
6662 	if (vm_shared && !is_continue) {
6663 		ret = -EFAULT;
6664 		if (idx >= (i_size_read(mapping->host) >> huge_page_shift(h)))
6665 			goto out_release_nounlock;
6666 
6667 		/*
6668 		 * Serialization between remove_inode_hugepages() and
6669 		 * hugetlb_add_to_page_cache() below happens through the
6670 		 * hugetlb_fault_mutex_table that here must be hold by
6671 		 * the caller.
6672 		 */
6673 		ret = hugetlb_add_to_page_cache(folio, mapping, idx);
6674 		if (ret)
6675 			goto out_release_nounlock;
6676 		folio_in_pagecache = true;
6677 	}
6678 
6679 	ptl = huge_pte_lock(h, dst_mm, dst_pte);
6680 
6681 	ret = -EIO;
6682 	if (folio_test_hwpoison(folio))
6683 		goto out_release_unlock;
6684 
6685 	/*
6686 	 * We allow to overwrite a pte marker: consider when both MISSING|WP
6687 	 * registered, we firstly wr-protect a none pte which has no page cache
6688 	 * page backing it, then access the page.
6689 	 */
6690 	ret = -EEXIST;
6691 	if (!huge_pte_none_mostly(huge_ptep_get(dst_mm, dst_addr, dst_pte)))
6692 		goto out_release_unlock;
6693 
6694 	if (folio_in_pagecache)
6695 		hugetlb_add_file_rmap(folio);
6696 	else
6697 		hugetlb_add_new_anon_rmap(folio, dst_vma, dst_addr);
6698 
6699 	/*
6700 	 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6701 	 * with wp flag set, don't set pte write bit.
6702 	 */
6703 	if (wp_enabled || (is_continue && !vm_shared))
6704 		writable = 0;
6705 	else
6706 		writable = dst_vma->vm_flags & VM_WRITE;
6707 
6708 	_dst_pte = make_huge_pte(dst_vma, &folio->page, writable);
6709 	/*
6710 	 * Always mark UFFDIO_COPY page dirty; note that this may not be
6711 	 * extremely important for hugetlbfs for now since swapping is not
6712 	 * supported, but we should still be clear in that this page cannot be
6713 	 * thrown away at will, even if write bit not set.
6714 	 */
6715 	_dst_pte = huge_pte_mkdirty(_dst_pte);
6716 	_dst_pte = pte_mkyoung(_dst_pte);
6717 
6718 	if (wp_enabled)
6719 		_dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6720 
6721 	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, size);
6722 
6723 	hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6724 
6725 	/* No need to invalidate - it was non-present before */
6726 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
6727 
6728 	spin_unlock(ptl);
6729 	if (!is_continue)
6730 		folio_set_hugetlb_migratable(folio);
6731 	if (vm_shared || is_continue)
6732 		folio_unlock(folio);
6733 	ret = 0;
6734 out:
6735 	return ret;
6736 out_release_unlock:
6737 	spin_unlock(ptl);
6738 	if (vm_shared || is_continue)
6739 		folio_unlock(folio);
6740 out_release_nounlock:
6741 	if (!folio_in_pagecache)
6742 		restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6743 	folio_put(folio);
6744 	goto out;
6745 }
6746 #endif /* CONFIG_USERFAULTFD */
6747 
6748 long hugetlb_change_protection(struct vm_area_struct *vma,
6749 		unsigned long address, unsigned long end,
6750 		pgprot_t newprot, unsigned long cp_flags)
6751 {
6752 	struct mm_struct *mm = vma->vm_mm;
6753 	unsigned long start = address;
6754 	pte_t *ptep;
6755 	pte_t pte;
6756 	struct hstate *h = hstate_vma(vma);
6757 	long pages = 0, psize = huge_page_size(h);
6758 	bool shared_pmd = false;
6759 	struct mmu_notifier_range range;
6760 	unsigned long last_addr_mask;
6761 	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6762 	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
6763 
6764 	/*
6765 	 * In the case of shared PMDs, the area to flush could be beyond
6766 	 * start/end.  Set range.start/range.end to cover the maximum possible
6767 	 * range if PMD sharing is possible.
6768 	 */
6769 	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6770 				0, mm, start, end);
6771 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6772 
6773 	BUG_ON(address >= end);
6774 	flush_cache_range(vma, range.start, range.end);
6775 
6776 	mmu_notifier_invalidate_range_start(&range);
6777 	hugetlb_vma_lock_write(vma);
6778 	i_mmap_lock_write(vma->vm_file->f_mapping);
6779 	last_addr_mask = hugetlb_mask_last_page(h);
6780 	for (; address < end; address += psize) {
6781 		spinlock_t *ptl;
6782 		ptep = hugetlb_walk(vma, address, psize);
6783 		if (!ptep) {
6784 			if (!uffd_wp) {
6785 				address |= last_addr_mask;
6786 				continue;
6787 			}
6788 			/*
6789 			 * Userfaultfd wr-protect requires pgtable
6790 			 * pre-allocations to install pte markers.
6791 			 */
6792 			ptep = huge_pte_alloc(mm, vma, address, psize);
6793 			if (!ptep) {
6794 				pages = -ENOMEM;
6795 				break;
6796 			}
6797 		}
6798 		ptl = huge_pte_lock(h, mm, ptep);
6799 		if (huge_pmd_unshare(mm, vma, address, ptep)) {
6800 			/*
6801 			 * When uffd-wp is enabled on the vma, unshare
6802 			 * shouldn't happen at all.  Warn about it if it
6803 			 * happened due to some reason.
6804 			 */
6805 			WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
6806 			pages++;
6807 			spin_unlock(ptl);
6808 			shared_pmd = true;
6809 			address |= last_addr_mask;
6810 			continue;
6811 		}
6812 		pte = huge_ptep_get(mm, address, ptep);
6813 		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6814 			/* Nothing to do. */
6815 		} else if (unlikely(is_hugetlb_entry_migration(pte))) {
6816 			swp_entry_t entry = pte_to_swp_entry(pte);
6817 			struct page *page = pfn_swap_entry_to_page(entry);
6818 			pte_t newpte = pte;
6819 
6820 			if (is_writable_migration_entry(entry)) {
6821 				if (PageAnon(page))
6822 					entry = make_readable_exclusive_migration_entry(
6823 								swp_offset(entry));
6824 				else
6825 					entry = make_readable_migration_entry(
6826 								swp_offset(entry));
6827 				newpte = swp_entry_to_pte(entry);
6828 				pages++;
6829 			}
6830 
6831 			if (uffd_wp)
6832 				newpte = pte_swp_mkuffd_wp(newpte);
6833 			else if (uffd_wp_resolve)
6834 				newpte = pte_swp_clear_uffd_wp(newpte);
6835 			if (!pte_same(pte, newpte))
6836 				set_huge_pte_at(mm, address, ptep, newpte, psize);
6837 		} else if (unlikely(is_pte_marker(pte))) {
6838 			/*
6839 			 * Do nothing on a poison marker; page is
6840 			 * corrupted, permissons do not apply.  Here
6841 			 * pte_marker_uffd_wp()==true implies !poison
6842 			 * because they're mutual exclusive.
6843 			 */
6844 			if (pte_marker_uffd_wp(pte) && uffd_wp_resolve)
6845 				/* Safe to modify directly (non-present->none). */
6846 				huge_pte_clear(mm, address, ptep, psize);
6847 		} else if (!huge_pte_none(pte)) {
6848 			pte_t old_pte;
6849 			unsigned int shift = huge_page_shift(hstate_vma(vma));
6850 
6851 			old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6852 			pte = huge_pte_modify(old_pte, newprot);
6853 			pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6854 			if (uffd_wp)
6855 				pte = huge_pte_mkuffd_wp(pte);
6856 			else if (uffd_wp_resolve)
6857 				pte = huge_pte_clear_uffd_wp(pte);
6858 			huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6859 			pages++;
6860 		} else {
6861 			/* None pte */
6862 			if (unlikely(uffd_wp))
6863 				/* Safe to modify directly (none->non-present). */
6864 				set_huge_pte_at(mm, address, ptep,
6865 						make_pte_marker(PTE_MARKER_UFFD_WP),
6866 						psize);
6867 		}
6868 		spin_unlock(ptl);
6869 	}
6870 	/*
6871 	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
6872 	 * may have cleared our pud entry and done put_page on the page table:
6873 	 * once we release i_mmap_rwsem, another task can do the final put_page
6874 	 * and that page table be reused and filled with junk.  If we actually
6875 	 * did unshare a page of pmds, flush the range corresponding to the pud.
6876 	 */
6877 	if (shared_pmd)
6878 		flush_hugetlb_tlb_range(vma, range.start, range.end);
6879 	else
6880 		flush_hugetlb_tlb_range(vma, start, end);
6881 	/*
6882 	 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs() we are
6883 	 * downgrading page table protection not changing it to point to a new
6884 	 * page.
6885 	 *
6886 	 * See Documentation/mm/mmu_notifier.rst
6887 	 */
6888 	i_mmap_unlock_write(vma->vm_file->f_mapping);
6889 	hugetlb_vma_unlock_write(vma);
6890 	mmu_notifier_invalidate_range_end(&range);
6891 
6892 	return pages > 0 ? (pages << h->order) : pages;
6893 }
6894 
6895 /* Return true if reservation was successful, false otherwise.  */
6896 bool hugetlb_reserve_pages(struct inode *inode,
6897 					long from, long to,
6898 					struct vm_area_struct *vma,
6899 					vm_flags_t vm_flags)
6900 {
6901 	long chg = -1, add = -1;
6902 	struct hstate *h = hstate_inode(inode);
6903 	struct hugepage_subpool *spool = subpool_inode(inode);
6904 	struct resv_map *resv_map;
6905 	struct hugetlb_cgroup *h_cg = NULL;
6906 	long gbl_reserve, regions_needed = 0;
6907 
6908 	/* This should never happen */
6909 	if (from > to) {
6910 		VM_WARN(1, "%s called with a negative range\n", __func__);
6911 		return false;
6912 	}
6913 
6914 	/*
6915 	 * vma specific semaphore used for pmd sharing and fault/truncation
6916 	 * synchronization
6917 	 */
6918 	hugetlb_vma_lock_alloc(vma);
6919 
6920 	/*
6921 	 * Only apply hugepage reservation if asked. At fault time, an
6922 	 * attempt will be made for VM_NORESERVE to allocate a page
6923 	 * without using reserves
6924 	 */
6925 	if (vm_flags & VM_NORESERVE)
6926 		return true;
6927 
6928 	/*
6929 	 * Shared mappings base their reservation on the number of pages that
6930 	 * are already allocated on behalf of the file. Private mappings need
6931 	 * to reserve the full area even if read-only as mprotect() may be
6932 	 * called to make the mapping read-write. Assume !vma is a shm mapping
6933 	 */
6934 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
6935 		/*
6936 		 * resv_map can not be NULL as hugetlb_reserve_pages is only
6937 		 * called for inodes for which resv_maps were created (see
6938 		 * hugetlbfs_get_inode).
6939 		 */
6940 		resv_map = inode_resv_map(inode);
6941 
6942 		chg = region_chg(resv_map, from, to, &regions_needed);
6943 	} else {
6944 		/* Private mapping. */
6945 		resv_map = resv_map_alloc();
6946 		if (!resv_map)
6947 			goto out_err;
6948 
6949 		chg = to - from;
6950 
6951 		set_vma_resv_map(vma, resv_map);
6952 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
6953 	}
6954 
6955 	if (chg < 0)
6956 		goto out_err;
6957 
6958 	if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
6959 				chg * pages_per_huge_page(h), &h_cg) < 0)
6960 		goto out_err;
6961 
6962 	if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
6963 		/* For private mappings, the hugetlb_cgroup uncharge info hangs
6964 		 * of the resv_map.
6965 		 */
6966 		resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
6967 	}
6968 
6969 	/*
6970 	 * There must be enough pages in the subpool for the mapping. If
6971 	 * the subpool has a minimum size, there may be some global
6972 	 * reservations already in place (gbl_reserve).
6973 	 */
6974 	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
6975 	if (gbl_reserve < 0)
6976 		goto out_uncharge_cgroup;
6977 
6978 	/*
6979 	 * Check enough hugepages are available for the reservation.
6980 	 * Hand the pages back to the subpool if there are not
6981 	 */
6982 	if (hugetlb_acct_memory(h, gbl_reserve) < 0)
6983 		goto out_put_pages;
6984 
6985 	/*
6986 	 * Account for the reservations made. Shared mappings record regions
6987 	 * that have reservations as they are shared by multiple VMAs.
6988 	 * When the last VMA disappears, the region map says how much
6989 	 * the reservation was and the page cache tells how much of
6990 	 * the reservation was consumed. Private mappings are per-VMA and
6991 	 * only the consumed reservations are tracked. When the VMA
6992 	 * disappears, the original reservation is the VMA size and the
6993 	 * consumed reservations are stored in the map. Hence, nothing
6994 	 * else has to be done for private mappings here
6995 	 */
6996 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
6997 		add = region_add(resv_map, from, to, regions_needed, h, h_cg);
6998 
6999 		if (unlikely(add < 0)) {
7000 			hugetlb_acct_memory(h, -gbl_reserve);
7001 			goto out_put_pages;
7002 		} else if (unlikely(chg > add)) {
7003 			/*
7004 			 * pages in this range were added to the reserve
7005 			 * map between region_chg and region_add.  This
7006 			 * indicates a race with alloc_hugetlb_folio.  Adjust
7007 			 * the subpool and reserve counts modified above
7008 			 * based on the difference.
7009 			 */
7010 			long rsv_adjust;
7011 
7012 			/*
7013 			 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
7014 			 * reference to h_cg->css. See comment below for detail.
7015 			 */
7016 			hugetlb_cgroup_uncharge_cgroup_rsvd(
7017 				hstate_index(h),
7018 				(chg - add) * pages_per_huge_page(h), h_cg);
7019 
7020 			rsv_adjust = hugepage_subpool_put_pages(spool,
7021 								chg - add);
7022 			hugetlb_acct_memory(h, -rsv_adjust);
7023 		} else if (h_cg) {
7024 			/*
7025 			 * The file_regions will hold their own reference to
7026 			 * h_cg->css. So we should release the reference held
7027 			 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
7028 			 * done.
7029 			 */
7030 			hugetlb_cgroup_put_rsvd_cgroup(h_cg);
7031 		}
7032 	}
7033 	return true;
7034 
7035 out_put_pages:
7036 	/* put back original number of pages, chg */
7037 	(void)hugepage_subpool_put_pages(spool, chg);
7038 out_uncharge_cgroup:
7039 	hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
7040 					    chg * pages_per_huge_page(h), h_cg);
7041 out_err:
7042 	hugetlb_vma_lock_free(vma);
7043 	if (!vma || vma->vm_flags & VM_MAYSHARE)
7044 		/* Only call region_abort if the region_chg succeeded but the
7045 		 * region_add failed or didn't run.
7046 		 */
7047 		if (chg >= 0 && add < 0)
7048 			region_abort(resv_map, from, to, regions_needed);
7049 	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
7050 		kref_put(&resv_map->refs, resv_map_release);
7051 		set_vma_resv_map(vma, NULL);
7052 	}
7053 	return false;
7054 }
7055 
7056 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
7057 								long freed)
7058 {
7059 	struct hstate *h = hstate_inode(inode);
7060 	struct resv_map *resv_map = inode_resv_map(inode);
7061 	long chg = 0;
7062 	struct hugepage_subpool *spool = subpool_inode(inode);
7063 	long gbl_reserve;
7064 
7065 	/*
7066 	 * Since this routine can be called in the evict inode path for all
7067 	 * hugetlbfs inodes, resv_map could be NULL.
7068 	 */
7069 	if (resv_map) {
7070 		chg = region_del(resv_map, start, end);
7071 		/*
7072 		 * region_del() can fail in the rare case where a region
7073 		 * must be split and another region descriptor can not be
7074 		 * allocated.  If end == LONG_MAX, it will not fail.
7075 		 */
7076 		if (chg < 0)
7077 			return chg;
7078 	}
7079 
7080 	spin_lock(&inode->i_lock);
7081 	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
7082 	spin_unlock(&inode->i_lock);
7083 
7084 	/*
7085 	 * If the subpool has a minimum size, the number of global
7086 	 * reservations to be released may be adjusted.
7087 	 *
7088 	 * Note that !resv_map implies freed == 0. So (chg - freed)
7089 	 * won't go negative.
7090 	 */
7091 	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
7092 	hugetlb_acct_memory(h, -gbl_reserve);
7093 
7094 	return 0;
7095 }
7096 
7097 #ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING
7098 static unsigned long page_table_shareable(struct vm_area_struct *svma,
7099 				struct vm_area_struct *vma,
7100 				unsigned long addr, pgoff_t idx)
7101 {
7102 	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
7103 				svma->vm_start;
7104 	unsigned long sbase = saddr & PUD_MASK;
7105 	unsigned long s_end = sbase + PUD_SIZE;
7106 
7107 	/* Allow segments to share if only one is marked locked */
7108 	unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED_MASK;
7109 	unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED_MASK;
7110 
7111 	/*
7112 	 * match the virtual addresses, permission and the alignment of the
7113 	 * page table page.
7114 	 *
7115 	 * Also, vma_lock (vm_private_data) is required for sharing.
7116 	 */
7117 	if (pmd_index(addr) != pmd_index(saddr) ||
7118 	    vm_flags != svm_flags ||
7119 	    !range_in_vma(svma, sbase, s_end) ||
7120 	    !svma->vm_private_data)
7121 		return 0;
7122 
7123 	return saddr;
7124 }
7125 
7126 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7127 {
7128 	unsigned long start = addr & PUD_MASK;
7129 	unsigned long end = start + PUD_SIZE;
7130 
7131 #ifdef CONFIG_USERFAULTFD
7132 	if (uffd_disable_huge_pmd_share(vma))
7133 		return false;
7134 #endif
7135 	/*
7136 	 * check on proper vm_flags and page table alignment
7137 	 */
7138 	if (!(vma->vm_flags & VM_MAYSHARE))
7139 		return false;
7140 	if (!vma->vm_private_data)	/* vma lock required for sharing */
7141 		return false;
7142 	if (!range_in_vma(vma, start, end))
7143 		return false;
7144 	return true;
7145 }
7146 
7147 /*
7148  * Determine if start,end range within vma could be mapped by shared pmd.
7149  * If yes, adjust start and end to cover range associated with possible
7150  * shared pmd mappings.
7151  */
7152 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7153 				unsigned long *start, unsigned long *end)
7154 {
7155 	unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
7156 		v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
7157 
7158 	/*
7159 	 * vma needs to span at least one aligned PUD size, and the range
7160 	 * must be at least partially within in.
7161 	 */
7162 	if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
7163 		(*end <= v_start) || (*start >= v_end))
7164 		return;
7165 
7166 	/* Extend the range to be PUD aligned for a worst case scenario */
7167 	if (*start > v_start)
7168 		*start = ALIGN_DOWN(*start, PUD_SIZE);
7169 
7170 	if (*end < v_end)
7171 		*end = ALIGN(*end, PUD_SIZE);
7172 }
7173 
7174 /*
7175  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
7176  * and returns the corresponding pte. While this is not necessary for the
7177  * !shared pmd case because we can allocate the pmd later as well, it makes the
7178  * code much cleaner. pmd allocation is essential for the shared case because
7179  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
7180  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
7181  * bad pmd for sharing.
7182  */
7183 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7184 		      unsigned long addr, pud_t *pud)
7185 {
7186 	struct address_space *mapping = vma->vm_file->f_mapping;
7187 	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
7188 			vma->vm_pgoff;
7189 	struct vm_area_struct *svma;
7190 	unsigned long saddr;
7191 	pte_t *spte = NULL;
7192 	pte_t *pte;
7193 
7194 	i_mmap_lock_read(mapping);
7195 	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
7196 		if (svma == vma)
7197 			continue;
7198 
7199 		saddr = page_table_shareable(svma, vma, addr, idx);
7200 		if (saddr) {
7201 			spte = hugetlb_walk(svma, saddr,
7202 					    vma_mmu_pagesize(svma));
7203 			if (spte) {
7204 				get_page(virt_to_page(spte));
7205 				break;
7206 			}
7207 		}
7208 	}
7209 
7210 	if (!spte)
7211 		goto out;
7212 
7213 	spin_lock(&mm->page_table_lock);
7214 	if (pud_none(*pud)) {
7215 		pud_populate(mm, pud,
7216 				(pmd_t *)((unsigned long)spte & PAGE_MASK));
7217 		mm_inc_nr_pmds(mm);
7218 	} else {
7219 		put_page(virt_to_page(spte));
7220 	}
7221 	spin_unlock(&mm->page_table_lock);
7222 out:
7223 	pte = (pte_t *)pmd_alloc(mm, pud, addr);
7224 	i_mmap_unlock_read(mapping);
7225 	return pte;
7226 }
7227 
7228 /*
7229  * unmap huge page backed by shared pte.
7230  *
7231  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
7232  * indicated by page_count > 1, unmap is achieved by clearing pud and
7233  * decrementing the ref count. If count == 1, the pte page is not shared.
7234  *
7235  * Called with page table lock held.
7236  *
7237  * returns: 1 successfully unmapped a shared pte page
7238  *	    0 the underlying pte page is not shared, or it is the last user
7239  */
7240 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7241 					unsigned long addr, pte_t *ptep)
7242 {
7243 	pgd_t *pgd = pgd_offset(mm, addr);
7244 	p4d_t *p4d = p4d_offset(pgd, addr);
7245 	pud_t *pud = pud_offset(p4d, addr);
7246 
7247 	i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7248 	hugetlb_vma_assert_locked(vma);
7249 	BUG_ON(page_count(virt_to_page(ptep)) == 0);
7250 	if (page_count(virt_to_page(ptep)) == 1)
7251 		return 0;
7252 
7253 	pud_clear(pud);
7254 	put_page(virt_to_page(ptep));
7255 	mm_dec_nr_pmds(mm);
7256 	return 1;
7257 }
7258 
7259 #else /* !CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING */
7260 
7261 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7262 		      unsigned long addr, pud_t *pud)
7263 {
7264 	return NULL;
7265 }
7266 
7267 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7268 				unsigned long addr, pte_t *ptep)
7269 {
7270 	return 0;
7271 }
7272 
7273 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7274 				unsigned long *start, unsigned long *end)
7275 {
7276 }
7277 
7278 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7279 {
7280 	return false;
7281 }
7282 #endif /* CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING */
7283 
7284 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
7285 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
7286 			unsigned long addr, unsigned long sz)
7287 {
7288 	pgd_t *pgd;
7289 	p4d_t *p4d;
7290 	pud_t *pud;
7291 	pte_t *pte = NULL;
7292 
7293 	pgd = pgd_offset(mm, addr);
7294 	p4d = p4d_alloc(mm, pgd, addr);
7295 	if (!p4d)
7296 		return NULL;
7297 	pud = pud_alloc(mm, p4d, addr);
7298 	if (pud) {
7299 		if (sz == PUD_SIZE) {
7300 			pte = (pte_t *)pud;
7301 		} else {
7302 			BUG_ON(sz != PMD_SIZE);
7303 			if (want_pmd_share(vma, addr) && pud_none(*pud))
7304 				pte = huge_pmd_share(mm, vma, addr, pud);
7305 			else
7306 				pte = (pte_t *)pmd_alloc(mm, pud, addr);
7307 		}
7308 	}
7309 
7310 	if (pte) {
7311 		pte_t pteval = ptep_get_lockless(pte);
7312 
7313 		BUG_ON(pte_present(pteval) && !pte_huge(pteval));
7314 	}
7315 
7316 	return pte;
7317 }
7318 
7319 /*
7320  * huge_pte_offset() - Walk the page table to resolve the hugepage
7321  * entry at address @addr
7322  *
7323  * Return: Pointer to page table entry (PUD or PMD) for
7324  * address @addr, or NULL if a !p*d_present() entry is encountered and the
7325  * size @sz doesn't match the hugepage size at this level of the page
7326  * table.
7327  */
7328 pte_t *huge_pte_offset(struct mm_struct *mm,
7329 		       unsigned long addr, unsigned long sz)
7330 {
7331 	pgd_t *pgd;
7332 	p4d_t *p4d;
7333 	pud_t *pud;
7334 	pmd_t *pmd;
7335 
7336 	pgd = pgd_offset(mm, addr);
7337 	if (!pgd_present(*pgd))
7338 		return NULL;
7339 	p4d = p4d_offset(pgd, addr);
7340 	if (!p4d_present(*p4d))
7341 		return NULL;
7342 
7343 	pud = pud_offset(p4d, addr);
7344 	if (sz == PUD_SIZE)
7345 		/* must be pud huge, non-present or none */
7346 		return (pte_t *)pud;
7347 	if (!pud_present(*pud))
7348 		return NULL;
7349 	/* must have a valid entry and size to go further */
7350 
7351 	pmd = pmd_offset(pud, addr);
7352 	/* must be pmd huge, non-present or none */
7353 	return (pte_t *)pmd;
7354 }
7355 
7356 /*
7357  * Return a mask that can be used to update an address to the last huge
7358  * page in a page table page mapping size.  Used to skip non-present
7359  * page table entries when linearly scanning address ranges.  Architectures
7360  * with unique huge page to page table relationships can define their own
7361  * version of this routine.
7362  */
7363 unsigned long hugetlb_mask_last_page(struct hstate *h)
7364 {
7365 	unsigned long hp_size = huge_page_size(h);
7366 
7367 	if (hp_size == PUD_SIZE)
7368 		return P4D_SIZE - PUD_SIZE;
7369 	else if (hp_size == PMD_SIZE)
7370 		return PUD_SIZE - PMD_SIZE;
7371 	else
7372 		return 0UL;
7373 }
7374 
7375 #else
7376 
7377 /* See description above.  Architectures can provide their own version. */
7378 __weak unsigned long hugetlb_mask_last_page(struct hstate *h)
7379 {
7380 #ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING
7381 	if (huge_page_size(h) == PMD_SIZE)
7382 		return PUD_SIZE - PMD_SIZE;
7383 #endif
7384 	return 0UL;
7385 }
7386 
7387 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
7388 
7389 bool isolate_hugetlb(struct folio *folio, struct list_head *list)
7390 {
7391 	bool ret = true;
7392 
7393 	spin_lock_irq(&hugetlb_lock);
7394 	if (!folio_test_hugetlb(folio) ||
7395 	    !folio_test_hugetlb_migratable(folio) ||
7396 	    !folio_try_get(folio)) {
7397 		ret = false;
7398 		goto unlock;
7399 	}
7400 	folio_clear_hugetlb_migratable(folio);
7401 	list_move_tail(&folio->lru, list);
7402 unlock:
7403 	spin_unlock_irq(&hugetlb_lock);
7404 	return ret;
7405 }
7406 
7407 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison)
7408 {
7409 	int ret = 0;
7410 
7411 	*hugetlb = false;
7412 	spin_lock_irq(&hugetlb_lock);
7413 	if (folio_test_hugetlb(folio)) {
7414 		*hugetlb = true;
7415 		if (folio_test_hugetlb_freed(folio))
7416 			ret = 0;
7417 		else if (folio_test_hugetlb_migratable(folio) || unpoison)
7418 			ret = folio_try_get(folio);
7419 		else
7420 			ret = -EBUSY;
7421 	}
7422 	spin_unlock_irq(&hugetlb_lock);
7423 	return ret;
7424 }
7425 
7426 int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
7427 				bool *migratable_cleared)
7428 {
7429 	int ret;
7430 
7431 	spin_lock_irq(&hugetlb_lock);
7432 	ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared);
7433 	spin_unlock_irq(&hugetlb_lock);
7434 	return ret;
7435 }
7436 
7437 void folio_putback_active_hugetlb(struct folio *folio)
7438 {
7439 	spin_lock_irq(&hugetlb_lock);
7440 	folio_set_hugetlb_migratable(folio);
7441 	list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist);
7442 	spin_unlock_irq(&hugetlb_lock);
7443 	folio_put(folio);
7444 }
7445 
7446 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason)
7447 {
7448 	struct hstate *h = folio_hstate(old_folio);
7449 
7450 	hugetlb_cgroup_migrate(old_folio, new_folio);
7451 	set_page_owner_migrate_reason(&new_folio->page, reason);
7452 
7453 	/*
7454 	 * transfer temporary state of the new hugetlb folio. This is
7455 	 * reverse to other transitions because the newpage is going to
7456 	 * be final while the old one will be freed so it takes over
7457 	 * the temporary status.
7458 	 *
7459 	 * Also note that we have to transfer the per-node surplus state
7460 	 * here as well otherwise the global surplus count will not match
7461 	 * the per-node's.
7462 	 */
7463 	if (folio_test_hugetlb_temporary(new_folio)) {
7464 		int old_nid = folio_nid(old_folio);
7465 		int new_nid = folio_nid(new_folio);
7466 
7467 		folio_set_hugetlb_temporary(old_folio);
7468 		folio_clear_hugetlb_temporary(new_folio);
7469 
7470 
7471 		/*
7472 		 * There is no need to transfer the per-node surplus state
7473 		 * when we do not cross the node.
7474 		 */
7475 		if (new_nid == old_nid)
7476 			return;
7477 		spin_lock_irq(&hugetlb_lock);
7478 		if (h->surplus_huge_pages_node[old_nid]) {
7479 			h->surplus_huge_pages_node[old_nid]--;
7480 			h->surplus_huge_pages_node[new_nid]++;
7481 		}
7482 		spin_unlock_irq(&hugetlb_lock);
7483 	}
7484 }
7485 
7486 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
7487 				   unsigned long start,
7488 				   unsigned long end)
7489 {
7490 	struct hstate *h = hstate_vma(vma);
7491 	unsigned long sz = huge_page_size(h);
7492 	struct mm_struct *mm = vma->vm_mm;
7493 	struct mmu_notifier_range range;
7494 	unsigned long address;
7495 	spinlock_t *ptl;
7496 	pte_t *ptep;
7497 
7498 	if (!(vma->vm_flags & VM_MAYSHARE))
7499 		return;
7500 
7501 	if (start >= end)
7502 		return;
7503 
7504 	flush_cache_range(vma, start, end);
7505 	/*
7506 	 * No need to call adjust_range_if_pmd_sharing_possible(), because
7507 	 * we have already done the PUD_SIZE alignment.
7508 	 */
7509 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
7510 				start, end);
7511 	mmu_notifier_invalidate_range_start(&range);
7512 	hugetlb_vma_lock_write(vma);
7513 	i_mmap_lock_write(vma->vm_file->f_mapping);
7514 	for (address = start; address < end; address += PUD_SIZE) {
7515 		ptep = hugetlb_walk(vma, address, sz);
7516 		if (!ptep)
7517 			continue;
7518 		ptl = huge_pte_lock(h, mm, ptep);
7519 		huge_pmd_unshare(mm, vma, address, ptep);
7520 		spin_unlock(ptl);
7521 	}
7522 	flush_hugetlb_tlb_range(vma, start, end);
7523 	i_mmap_unlock_write(vma->vm_file->f_mapping);
7524 	hugetlb_vma_unlock_write(vma);
7525 	/*
7526 	 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs(), see
7527 	 * Documentation/mm/mmu_notifier.rst.
7528 	 */
7529 	mmu_notifier_invalidate_range_end(&range);
7530 }
7531 
7532 /*
7533  * This function will unconditionally remove all the shared pmd pgtable entries
7534  * within the specific vma for a hugetlbfs memory range.
7535  */
7536 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7537 {
7538 	hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE),
7539 			ALIGN_DOWN(vma->vm_end, PUD_SIZE));
7540 }
7541 
7542 #ifdef CONFIG_CMA
7543 static bool cma_reserve_called __initdata;
7544 
7545 static int __init cmdline_parse_hugetlb_cma(char *p)
7546 {
7547 	int nid, count = 0;
7548 	unsigned long tmp;
7549 	char *s = p;
7550 
7551 	while (*s) {
7552 		if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7553 			break;
7554 
7555 		if (s[count] == ':') {
7556 			if (tmp >= MAX_NUMNODES)
7557 				break;
7558 			nid = array_index_nospec(tmp, MAX_NUMNODES);
7559 
7560 			s += count + 1;
7561 			tmp = memparse(s, &s);
7562 			hugetlb_cma_size_in_node[nid] = tmp;
7563 			hugetlb_cma_size += tmp;
7564 
7565 			/*
7566 			 * Skip the separator if have one, otherwise
7567 			 * break the parsing.
7568 			 */
7569 			if (*s == ',')
7570 				s++;
7571 			else
7572 				break;
7573 		} else {
7574 			hugetlb_cma_size = memparse(p, &p);
7575 			break;
7576 		}
7577 	}
7578 
7579 	return 0;
7580 }
7581 
7582 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7583 
7584 void __init hugetlb_cma_reserve(int order)
7585 {
7586 	unsigned long size, reserved, per_node;
7587 	bool node_specific_cma_alloc = false;
7588 	int nid;
7589 
7590 	/*
7591 	 * HugeTLB CMA reservation is required for gigantic
7592 	 * huge pages which could not be allocated via the
7593 	 * page allocator. Just warn if there is any change
7594 	 * breaking this assumption.
7595 	 */
7596 	VM_WARN_ON(order <= MAX_PAGE_ORDER);
7597 	cma_reserve_called = true;
7598 
7599 	if (!hugetlb_cma_size)
7600 		return;
7601 
7602 	for (nid = 0; nid < MAX_NUMNODES; nid++) {
7603 		if (hugetlb_cma_size_in_node[nid] == 0)
7604 			continue;
7605 
7606 		if (!node_online(nid)) {
7607 			pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7608 			hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7609 			hugetlb_cma_size_in_node[nid] = 0;
7610 			continue;
7611 		}
7612 
7613 		if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7614 			pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7615 				nid, (PAGE_SIZE << order) / SZ_1M);
7616 			hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7617 			hugetlb_cma_size_in_node[nid] = 0;
7618 		} else {
7619 			node_specific_cma_alloc = true;
7620 		}
7621 	}
7622 
7623 	/* Validate the CMA size again in case some invalid nodes specified. */
7624 	if (!hugetlb_cma_size)
7625 		return;
7626 
7627 	if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7628 		pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7629 			(PAGE_SIZE << order) / SZ_1M);
7630 		hugetlb_cma_size = 0;
7631 		return;
7632 	}
7633 
7634 	if (!node_specific_cma_alloc) {
7635 		/*
7636 		 * If 3 GB area is requested on a machine with 4 numa nodes,
7637 		 * let's allocate 1 GB on first three nodes and ignore the last one.
7638 		 */
7639 		per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7640 		pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7641 			hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7642 	}
7643 
7644 	reserved = 0;
7645 	for_each_online_node(nid) {
7646 		int res;
7647 		char name[CMA_MAX_NAME];
7648 
7649 		if (node_specific_cma_alloc) {
7650 			if (hugetlb_cma_size_in_node[nid] == 0)
7651 				continue;
7652 
7653 			size = hugetlb_cma_size_in_node[nid];
7654 		} else {
7655 			size = min(per_node, hugetlb_cma_size - reserved);
7656 		}
7657 
7658 		size = round_up(size, PAGE_SIZE << order);
7659 
7660 		snprintf(name, sizeof(name), "hugetlb%d", nid);
7661 		/*
7662 		 * Note that 'order per bit' is based on smallest size that
7663 		 * may be returned to CMA allocator in the case of
7664 		 * huge page demotion.
7665 		 */
7666 		res = cma_declare_contiguous_nid(0, size, 0,
7667 					PAGE_SIZE << order,
7668 					HUGETLB_PAGE_ORDER, false, name,
7669 					&hugetlb_cma[nid], nid);
7670 		if (res) {
7671 			pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7672 				res, nid);
7673 			continue;
7674 		}
7675 
7676 		reserved += size;
7677 		pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7678 			size / SZ_1M, nid);
7679 
7680 		if (reserved >= hugetlb_cma_size)
7681 			break;
7682 	}
7683 
7684 	if (!reserved)
7685 		/*
7686 		 * hugetlb_cma_size is used to determine if allocations from
7687 		 * cma are possible.  Set to zero if no cma regions are set up.
7688 		 */
7689 		hugetlb_cma_size = 0;
7690 }
7691 
7692 static void __init hugetlb_cma_check(void)
7693 {
7694 	if (!hugetlb_cma_size || cma_reserve_called)
7695 		return;
7696 
7697 	pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7698 }
7699 
7700 #endif /* CONFIG_CMA */
7701