1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic hugetlb support. 4 * (C) Nadia Yvette Chambers, April 2004 5 */ 6 #include <linux/list.h> 7 #include <linux/init.h> 8 #include <linux/mm.h> 9 #include <linux/seq_file.h> 10 #include <linux/sysctl.h> 11 #include <linux/highmem.h> 12 #include <linux/mmu_notifier.h> 13 #include <linux/nodemask.h> 14 #include <linux/pagemap.h> 15 #include <linux/mempolicy.h> 16 #include <linux/compiler.h> 17 #include <linux/cpuset.h> 18 #include <linux/mutex.h> 19 #include <linux/memblock.h> 20 #include <linux/sysfs.h> 21 #include <linux/slab.h> 22 #include <linux/sched/mm.h> 23 #include <linux/mmdebug.h> 24 #include <linux/sched/signal.h> 25 #include <linux/rmap.h> 26 #include <linux/string_helpers.h> 27 #include <linux/swap.h> 28 #include <linux/swapops.h> 29 #include <linux/jhash.h> 30 #include <linux/numa.h> 31 #include <linux/llist.h> 32 #include <linux/cma.h> 33 #include <linux/migrate.h> 34 #include <linux/nospec.h> 35 #include <linux/delayacct.h> 36 #include <linux/memory.h> 37 #include <linux/mm_inline.h> 38 #include <linux/padata.h> 39 40 #include <asm/page.h> 41 #include <asm/pgalloc.h> 42 #include <asm/tlb.h> 43 44 #include <linux/io.h> 45 #include <linux/hugetlb.h> 46 #include <linux/hugetlb_cgroup.h> 47 #include <linux/node.h> 48 #include <linux/page_owner.h> 49 #include "internal.h" 50 #include "hugetlb_vmemmap.h" 51 #include <linux/page-isolation.h> 52 53 int hugetlb_max_hstate __read_mostly; 54 unsigned int default_hstate_idx; 55 struct hstate hstates[HUGE_MAX_HSTATE]; 56 57 #ifdef CONFIG_CMA 58 static struct cma *hugetlb_cma[MAX_NUMNODES]; 59 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata; 60 #endif 61 static unsigned long hugetlb_cma_size __initdata; 62 63 __initdata struct list_head huge_boot_pages[MAX_NUMNODES]; 64 65 /* for command line parsing */ 66 static struct hstate * __initdata parsed_hstate; 67 static unsigned long __initdata default_hstate_max_huge_pages; 68 static bool __initdata parsed_valid_hugepagesz = true; 69 static bool __initdata parsed_default_hugepagesz; 70 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata; 71 72 /* 73 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages, 74 * free_huge_pages, and surplus_huge_pages. 75 */ 76 __cacheline_aligned_in_smp DEFINE_SPINLOCK(hugetlb_lock); 77 78 /* 79 * Serializes faults on the same logical page. This is used to 80 * prevent spurious OOMs when the hugepage pool is fully utilized. 81 */ 82 static int num_fault_mutexes __ro_after_init; 83 struct mutex *hugetlb_fault_mutex_table __ro_after_init; 84 85 /* Forward declaration */ 86 static int hugetlb_acct_memory(struct hstate *h, long delta); 87 static void hugetlb_vma_lock_free(struct vm_area_struct *vma); 88 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma); 89 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma); 90 static void hugetlb_unshare_pmds(struct vm_area_struct *vma, 91 unsigned long start, unsigned long end); 92 static struct resv_map *vma_resv_map(struct vm_area_struct *vma); 93 94 static void hugetlb_free_folio(struct folio *folio) 95 { 96 #ifdef CONFIG_CMA 97 int nid = folio_nid(folio); 98 99 if (cma_free_folio(hugetlb_cma[nid], folio)) 100 return; 101 #endif 102 folio_put(folio); 103 } 104 105 static inline bool subpool_is_free(struct hugepage_subpool *spool) 106 { 107 if (spool->count) 108 return false; 109 if (spool->max_hpages != -1) 110 return spool->used_hpages == 0; 111 if (spool->min_hpages != -1) 112 return spool->rsv_hpages == spool->min_hpages; 113 114 return true; 115 } 116 117 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool, 118 unsigned long irq_flags) 119 { 120 spin_unlock_irqrestore(&spool->lock, irq_flags); 121 122 /* If no pages are used, and no other handles to the subpool 123 * remain, give up any reservations based on minimum size and 124 * free the subpool */ 125 if (subpool_is_free(spool)) { 126 if (spool->min_hpages != -1) 127 hugetlb_acct_memory(spool->hstate, 128 -spool->min_hpages); 129 kfree(spool); 130 } 131 } 132 133 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages, 134 long min_hpages) 135 { 136 struct hugepage_subpool *spool; 137 138 spool = kzalloc(sizeof(*spool), GFP_KERNEL); 139 if (!spool) 140 return NULL; 141 142 spin_lock_init(&spool->lock); 143 spool->count = 1; 144 spool->max_hpages = max_hpages; 145 spool->hstate = h; 146 spool->min_hpages = min_hpages; 147 148 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) { 149 kfree(spool); 150 return NULL; 151 } 152 spool->rsv_hpages = min_hpages; 153 154 return spool; 155 } 156 157 void hugepage_put_subpool(struct hugepage_subpool *spool) 158 { 159 unsigned long flags; 160 161 spin_lock_irqsave(&spool->lock, flags); 162 BUG_ON(!spool->count); 163 spool->count--; 164 unlock_or_release_subpool(spool, flags); 165 } 166 167 /* 168 * Subpool accounting for allocating and reserving pages. 169 * Return -ENOMEM if there are not enough resources to satisfy the 170 * request. Otherwise, return the number of pages by which the 171 * global pools must be adjusted (upward). The returned value may 172 * only be different than the passed value (delta) in the case where 173 * a subpool minimum size must be maintained. 174 */ 175 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool, 176 long delta) 177 { 178 long ret = delta; 179 180 if (!spool) 181 return ret; 182 183 spin_lock_irq(&spool->lock); 184 185 if (spool->max_hpages != -1) { /* maximum size accounting */ 186 if ((spool->used_hpages + delta) <= spool->max_hpages) 187 spool->used_hpages += delta; 188 else { 189 ret = -ENOMEM; 190 goto unlock_ret; 191 } 192 } 193 194 /* minimum size accounting */ 195 if (spool->min_hpages != -1 && spool->rsv_hpages) { 196 if (delta > spool->rsv_hpages) { 197 /* 198 * Asking for more reserves than those already taken on 199 * behalf of subpool. Return difference. 200 */ 201 ret = delta - spool->rsv_hpages; 202 spool->rsv_hpages = 0; 203 } else { 204 ret = 0; /* reserves already accounted for */ 205 spool->rsv_hpages -= delta; 206 } 207 } 208 209 unlock_ret: 210 spin_unlock_irq(&spool->lock); 211 return ret; 212 } 213 214 /* 215 * Subpool accounting for freeing and unreserving pages. 216 * Return the number of global page reservations that must be dropped. 217 * The return value may only be different than the passed value (delta) 218 * in the case where a subpool minimum size must be maintained. 219 */ 220 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool, 221 long delta) 222 { 223 long ret = delta; 224 unsigned long flags; 225 226 if (!spool) 227 return delta; 228 229 spin_lock_irqsave(&spool->lock, flags); 230 231 if (spool->max_hpages != -1) /* maximum size accounting */ 232 spool->used_hpages -= delta; 233 234 /* minimum size accounting */ 235 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) { 236 if (spool->rsv_hpages + delta <= spool->min_hpages) 237 ret = 0; 238 else 239 ret = spool->rsv_hpages + delta - spool->min_hpages; 240 241 spool->rsv_hpages += delta; 242 if (spool->rsv_hpages > spool->min_hpages) 243 spool->rsv_hpages = spool->min_hpages; 244 } 245 246 /* 247 * If hugetlbfs_put_super couldn't free spool due to an outstanding 248 * quota reference, free it now. 249 */ 250 unlock_or_release_subpool(spool, flags); 251 252 return ret; 253 } 254 255 static inline struct hugepage_subpool *subpool_inode(struct inode *inode) 256 { 257 return HUGETLBFS_SB(inode->i_sb)->spool; 258 } 259 260 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma) 261 { 262 return subpool_inode(file_inode(vma->vm_file)); 263 } 264 265 /* 266 * hugetlb vma_lock helper routines 267 */ 268 void hugetlb_vma_lock_read(struct vm_area_struct *vma) 269 { 270 if (__vma_shareable_lock(vma)) { 271 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 272 273 down_read(&vma_lock->rw_sema); 274 } else if (__vma_private_lock(vma)) { 275 struct resv_map *resv_map = vma_resv_map(vma); 276 277 down_read(&resv_map->rw_sema); 278 } 279 } 280 281 void hugetlb_vma_unlock_read(struct vm_area_struct *vma) 282 { 283 if (__vma_shareable_lock(vma)) { 284 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 285 286 up_read(&vma_lock->rw_sema); 287 } else if (__vma_private_lock(vma)) { 288 struct resv_map *resv_map = vma_resv_map(vma); 289 290 up_read(&resv_map->rw_sema); 291 } 292 } 293 294 void hugetlb_vma_lock_write(struct vm_area_struct *vma) 295 { 296 if (__vma_shareable_lock(vma)) { 297 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 298 299 down_write(&vma_lock->rw_sema); 300 } else if (__vma_private_lock(vma)) { 301 struct resv_map *resv_map = vma_resv_map(vma); 302 303 down_write(&resv_map->rw_sema); 304 } 305 } 306 307 void hugetlb_vma_unlock_write(struct vm_area_struct *vma) 308 { 309 if (__vma_shareable_lock(vma)) { 310 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 311 312 up_write(&vma_lock->rw_sema); 313 } else if (__vma_private_lock(vma)) { 314 struct resv_map *resv_map = vma_resv_map(vma); 315 316 up_write(&resv_map->rw_sema); 317 } 318 } 319 320 int hugetlb_vma_trylock_write(struct vm_area_struct *vma) 321 { 322 323 if (__vma_shareable_lock(vma)) { 324 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 325 326 return down_write_trylock(&vma_lock->rw_sema); 327 } else if (__vma_private_lock(vma)) { 328 struct resv_map *resv_map = vma_resv_map(vma); 329 330 return down_write_trylock(&resv_map->rw_sema); 331 } 332 333 return 1; 334 } 335 336 void hugetlb_vma_assert_locked(struct vm_area_struct *vma) 337 { 338 if (__vma_shareable_lock(vma)) { 339 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 340 341 lockdep_assert_held(&vma_lock->rw_sema); 342 } else if (__vma_private_lock(vma)) { 343 struct resv_map *resv_map = vma_resv_map(vma); 344 345 lockdep_assert_held(&resv_map->rw_sema); 346 } 347 } 348 349 void hugetlb_vma_lock_release(struct kref *kref) 350 { 351 struct hugetlb_vma_lock *vma_lock = container_of(kref, 352 struct hugetlb_vma_lock, refs); 353 354 kfree(vma_lock); 355 } 356 357 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock) 358 { 359 struct vm_area_struct *vma = vma_lock->vma; 360 361 /* 362 * vma_lock structure may or not be released as a result of put, 363 * it certainly will no longer be attached to vma so clear pointer. 364 * Semaphore synchronizes access to vma_lock->vma field. 365 */ 366 vma_lock->vma = NULL; 367 vma->vm_private_data = NULL; 368 up_write(&vma_lock->rw_sema); 369 kref_put(&vma_lock->refs, hugetlb_vma_lock_release); 370 } 371 372 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma) 373 { 374 if (__vma_shareable_lock(vma)) { 375 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 376 377 __hugetlb_vma_unlock_write_put(vma_lock); 378 } else if (__vma_private_lock(vma)) { 379 struct resv_map *resv_map = vma_resv_map(vma); 380 381 /* no free for anon vmas, but still need to unlock */ 382 up_write(&resv_map->rw_sema); 383 } 384 } 385 386 static void hugetlb_vma_lock_free(struct vm_area_struct *vma) 387 { 388 /* 389 * Only present in sharable vmas. 390 */ 391 if (!vma || !__vma_shareable_lock(vma)) 392 return; 393 394 if (vma->vm_private_data) { 395 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 396 397 down_write(&vma_lock->rw_sema); 398 __hugetlb_vma_unlock_write_put(vma_lock); 399 } 400 } 401 402 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma) 403 { 404 struct hugetlb_vma_lock *vma_lock; 405 406 /* Only establish in (flags) sharable vmas */ 407 if (!vma || !(vma->vm_flags & VM_MAYSHARE)) 408 return; 409 410 /* Should never get here with non-NULL vm_private_data */ 411 if (vma->vm_private_data) 412 return; 413 414 vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL); 415 if (!vma_lock) { 416 /* 417 * If we can not allocate structure, then vma can not 418 * participate in pmd sharing. This is only a possible 419 * performance enhancement and memory saving issue. 420 * However, the lock is also used to synchronize page 421 * faults with truncation. If the lock is not present, 422 * unlikely races could leave pages in a file past i_size 423 * until the file is removed. Warn in the unlikely case of 424 * allocation failure. 425 */ 426 pr_warn_once("HugeTLB: unable to allocate vma specific lock\n"); 427 return; 428 } 429 430 kref_init(&vma_lock->refs); 431 init_rwsem(&vma_lock->rw_sema); 432 vma_lock->vma = vma; 433 vma->vm_private_data = vma_lock; 434 } 435 436 /* Helper that removes a struct file_region from the resv_map cache and returns 437 * it for use. 438 */ 439 static struct file_region * 440 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to) 441 { 442 struct file_region *nrg; 443 444 VM_BUG_ON(resv->region_cache_count <= 0); 445 446 resv->region_cache_count--; 447 nrg = list_first_entry(&resv->region_cache, struct file_region, link); 448 list_del(&nrg->link); 449 450 nrg->from = from; 451 nrg->to = to; 452 453 return nrg; 454 } 455 456 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg, 457 struct file_region *rg) 458 { 459 #ifdef CONFIG_CGROUP_HUGETLB 460 nrg->reservation_counter = rg->reservation_counter; 461 nrg->css = rg->css; 462 if (rg->css) 463 css_get(rg->css); 464 #endif 465 } 466 467 /* Helper that records hugetlb_cgroup uncharge info. */ 468 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg, 469 struct hstate *h, 470 struct resv_map *resv, 471 struct file_region *nrg) 472 { 473 #ifdef CONFIG_CGROUP_HUGETLB 474 if (h_cg) { 475 nrg->reservation_counter = 476 &h_cg->rsvd_hugepage[hstate_index(h)]; 477 nrg->css = &h_cg->css; 478 /* 479 * The caller will hold exactly one h_cg->css reference for the 480 * whole contiguous reservation region. But this area might be 481 * scattered when there are already some file_regions reside in 482 * it. As a result, many file_regions may share only one css 483 * reference. In order to ensure that one file_region must hold 484 * exactly one h_cg->css reference, we should do css_get for 485 * each file_region and leave the reference held by caller 486 * untouched. 487 */ 488 css_get(&h_cg->css); 489 if (!resv->pages_per_hpage) 490 resv->pages_per_hpage = pages_per_huge_page(h); 491 /* pages_per_hpage should be the same for all entries in 492 * a resv_map. 493 */ 494 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h)); 495 } else { 496 nrg->reservation_counter = NULL; 497 nrg->css = NULL; 498 } 499 #endif 500 } 501 502 static void put_uncharge_info(struct file_region *rg) 503 { 504 #ifdef CONFIG_CGROUP_HUGETLB 505 if (rg->css) 506 css_put(rg->css); 507 #endif 508 } 509 510 static bool has_same_uncharge_info(struct file_region *rg, 511 struct file_region *org) 512 { 513 #ifdef CONFIG_CGROUP_HUGETLB 514 return rg->reservation_counter == org->reservation_counter && 515 rg->css == org->css; 516 517 #else 518 return true; 519 #endif 520 } 521 522 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg) 523 { 524 struct file_region *nrg, *prg; 525 526 prg = list_prev_entry(rg, link); 527 if (&prg->link != &resv->regions && prg->to == rg->from && 528 has_same_uncharge_info(prg, rg)) { 529 prg->to = rg->to; 530 531 list_del(&rg->link); 532 put_uncharge_info(rg); 533 kfree(rg); 534 535 rg = prg; 536 } 537 538 nrg = list_next_entry(rg, link); 539 if (&nrg->link != &resv->regions && nrg->from == rg->to && 540 has_same_uncharge_info(nrg, rg)) { 541 nrg->from = rg->from; 542 543 list_del(&rg->link); 544 put_uncharge_info(rg); 545 kfree(rg); 546 } 547 } 548 549 static inline long 550 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from, 551 long to, struct hstate *h, struct hugetlb_cgroup *cg, 552 long *regions_needed) 553 { 554 struct file_region *nrg; 555 556 if (!regions_needed) { 557 nrg = get_file_region_entry_from_cache(map, from, to); 558 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg); 559 list_add(&nrg->link, rg); 560 coalesce_file_region(map, nrg); 561 } else 562 *regions_needed += 1; 563 564 return to - from; 565 } 566 567 /* 568 * Must be called with resv->lock held. 569 * 570 * Calling this with regions_needed != NULL will count the number of pages 571 * to be added but will not modify the linked list. And regions_needed will 572 * indicate the number of file_regions needed in the cache to carry out to add 573 * the regions for this range. 574 */ 575 static long add_reservation_in_range(struct resv_map *resv, long f, long t, 576 struct hugetlb_cgroup *h_cg, 577 struct hstate *h, long *regions_needed) 578 { 579 long add = 0; 580 struct list_head *head = &resv->regions; 581 long last_accounted_offset = f; 582 struct file_region *iter, *trg = NULL; 583 struct list_head *rg = NULL; 584 585 if (regions_needed) 586 *regions_needed = 0; 587 588 /* In this loop, we essentially handle an entry for the range 589 * [last_accounted_offset, iter->from), at every iteration, with some 590 * bounds checking. 591 */ 592 list_for_each_entry_safe(iter, trg, head, link) { 593 /* Skip irrelevant regions that start before our range. */ 594 if (iter->from < f) { 595 /* If this region ends after the last accounted offset, 596 * then we need to update last_accounted_offset. 597 */ 598 if (iter->to > last_accounted_offset) 599 last_accounted_offset = iter->to; 600 continue; 601 } 602 603 /* When we find a region that starts beyond our range, we've 604 * finished. 605 */ 606 if (iter->from >= t) { 607 rg = iter->link.prev; 608 break; 609 } 610 611 /* Add an entry for last_accounted_offset -> iter->from, and 612 * update last_accounted_offset. 613 */ 614 if (iter->from > last_accounted_offset) 615 add += hugetlb_resv_map_add(resv, iter->link.prev, 616 last_accounted_offset, 617 iter->from, h, h_cg, 618 regions_needed); 619 620 last_accounted_offset = iter->to; 621 } 622 623 /* Handle the case where our range extends beyond 624 * last_accounted_offset. 625 */ 626 if (!rg) 627 rg = head->prev; 628 if (last_accounted_offset < t) 629 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset, 630 t, h, h_cg, regions_needed); 631 632 return add; 633 } 634 635 /* Must be called with resv->lock acquired. Will drop lock to allocate entries. 636 */ 637 static int allocate_file_region_entries(struct resv_map *resv, 638 int regions_needed) 639 __must_hold(&resv->lock) 640 { 641 LIST_HEAD(allocated_regions); 642 int to_allocate = 0, i = 0; 643 struct file_region *trg = NULL, *rg = NULL; 644 645 VM_BUG_ON(regions_needed < 0); 646 647 /* 648 * Check for sufficient descriptors in the cache to accommodate 649 * the number of in progress add operations plus regions_needed. 650 * 651 * This is a while loop because when we drop the lock, some other call 652 * to region_add or region_del may have consumed some region_entries, 653 * so we keep looping here until we finally have enough entries for 654 * (adds_in_progress + regions_needed). 655 */ 656 while (resv->region_cache_count < 657 (resv->adds_in_progress + regions_needed)) { 658 to_allocate = resv->adds_in_progress + regions_needed - 659 resv->region_cache_count; 660 661 /* At this point, we should have enough entries in the cache 662 * for all the existing adds_in_progress. We should only be 663 * needing to allocate for regions_needed. 664 */ 665 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress); 666 667 spin_unlock(&resv->lock); 668 for (i = 0; i < to_allocate; i++) { 669 trg = kmalloc(sizeof(*trg), GFP_KERNEL); 670 if (!trg) 671 goto out_of_memory; 672 list_add(&trg->link, &allocated_regions); 673 } 674 675 spin_lock(&resv->lock); 676 677 list_splice(&allocated_regions, &resv->region_cache); 678 resv->region_cache_count += to_allocate; 679 } 680 681 return 0; 682 683 out_of_memory: 684 list_for_each_entry_safe(rg, trg, &allocated_regions, link) { 685 list_del(&rg->link); 686 kfree(rg); 687 } 688 return -ENOMEM; 689 } 690 691 /* 692 * Add the huge page range represented by [f, t) to the reserve 693 * map. Regions will be taken from the cache to fill in this range. 694 * Sufficient regions should exist in the cache due to the previous 695 * call to region_chg with the same range, but in some cases the cache will not 696 * have sufficient entries due to races with other code doing region_add or 697 * region_del. The extra needed entries will be allocated. 698 * 699 * regions_needed is the out value provided by a previous call to region_chg. 700 * 701 * Return the number of new huge pages added to the map. This number is greater 702 * than or equal to zero. If file_region entries needed to be allocated for 703 * this operation and we were not able to allocate, it returns -ENOMEM. 704 * region_add of regions of length 1 never allocate file_regions and cannot 705 * fail; region_chg will always allocate at least 1 entry and a region_add for 706 * 1 page will only require at most 1 entry. 707 */ 708 static long region_add(struct resv_map *resv, long f, long t, 709 long in_regions_needed, struct hstate *h, 710 struct hugetlb_cgroup *h_cg) 711 { 712 long add = 0, actual_regions_needed = 0; 713 714 spin_lock(&resv->lock); 715 retry: 716 717 /* Count how many regions are actually needed to execute this add. */ 718 add_reservation_in_range(resv, f, t, NULL, NULL, 719 &actual_regions_needed); 720 721 /* 722 * Check for sufficient descriptors in the cache to accommodate 723 * this add operation. Note that actual_regions_needed may be greater 724 * than in_regions_needed, as the resv_map may have been modified since 725 * the region_chg call. In this case, we need to make sure that we 726 * allocate extra entries, such that we have enough for all the 727 * existing adds_in_progress, plus the excess needed for this 728 * operation. 729 */ 730 if (actual_regions_needed > in_regions_needed && 731 resv->region_cache_count < 732 resv->adds_in_progress + 733 (actual_regions_needed - in_regions_needed)) { 734 /* region_add operation of range 1 should never need to 735 * allocate file_region entries. 736 */ 737 VM_BUG_ON(t - f <= 1); 738 739 if (allocate_file_region_entries( 740 resv, actual_regions_needed - in_regions_needed)) { 741 return -ENOMEM; 742 } 743 744 goto retry; 745 } 746 747 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL); 748 749 resv->adds_in_progress -= in_regions_needed; 750 751 spin_unlock(&resv->lock); 752 return add; 753 } 754 755 /* 756 * Examine the existing reserve map and determine how many 757 * huge pages in the specified range [f, t) are NOT currently 758 * represented. This routine is called before a subsequent 759 * call to region_add that will actually modify the reserve 760 * map to add the specified range [f, t). region_chg does 761 * not change the number of huge pages represented by the 762 * map. A number of new file_region structures is added to the cache as a 763 * placeholder, for the subsequent region_add call to use. At least 1 764 * file_region structure is added. 765 * 766 * out_regions_needed is the number of regions added to the 767 * resv->adds_in_progress. This value needs to be provided to a follow up call 768 * to region_add or region_abort for proper accounting. 769 * 770 * Returns the number of huge pages that need to be added to the existing 771 * reservation map for the range [f, t). This number is greater or equal to 772 * zero. -ENOMEM is returned if a new file_region structure or cache entry 773 * is needed and can not be allocated. 774 */ 775 static long region_chg(struct resv_map *resv, long f, long t, 776 long *out_regions_needed) 777 { 778 long chg = 0; 779 780 spin_lock(&resv->lock); 781 782 /* Count how many hugepages in this range are NOT represented. */ 783 chg = add_reservation_in_range(resv, f, t, NULL, NULL, 784 out_regions_needed); 785 786 if (*out_regions_needed == 0) 787 *out_regions_needed = 1; 788 789 if (allocate_file_region_entries(resv, *out_regions_needed)) 790 return -ENOMEM; 791 792 resv->adds_in_progress += *out_regions_needed; 793 794 spin_unlock(&resv->lock); 795 return chg; 796 } 797 798 /* 799 * Abort the in progress add operation. The adds_in_progress field 800 * of the resv_map keeps track of the operations in progress between 801 * calls to region_chg and region_add. Operations are sometimes 802 * aborted after the call to region_chg. In such cases, region_abort 803 * is called to decrement the adds_in_progress counter. regions_needed 804 * is the value returned by the region_chg call, it is used to decrement 805 * the adds_in_progress counter. 806 * 807 * NOTE: The range arguments [f, t) are not needed or used in this 808 * routine. They are kept to make reading the calling code easier as 809 * arguments will match the associated region_chg call. 810 */ 811 static void region_abort(struct resv_map *resv, long f, long t, 812 long regions_needed) 813 { 814 spin_lock(&resv->lock); 815 VM_BUG_ON(!resv->region_cache_count); 816 resv->adds_in_progress -= regions_needed; 817 spin_unlock(&resv->lock); 818 } 819 820 /* 821 * Delete the specified range [f, t) from the reserve map. If the 822 * t parameter is LONG_MAX, this indicates that ALL regions after f 823 * should be deleted. Locate the regions which intersect [f, t) 824 * and either trim, delete or split the existing regions. 825 * 826 * Returns the number of huge pages deleted from the reserve map. 827 * In the normal case, the return value is zero or more. In the 828 * case where a region must be split, a new region descriptor must 829 * be allocated. If the allocation fails, -ENOMEM will be returned. 830 * NOTE: If the parameter t == LONG_MAX, then we will never split 831 * a region and possibly return -ENOMEM. Callers specifying 832 * t == LONG_MAX do not need to check for -ENOMEM error. 833 */ 834 static long region_del(struct resv_map *resv, long f, long t) 835 { 836 struct list_head *head = &resv->regions; 837 struct file_region *rg, *trg; 838 struct file_region *nrg = NULL; 839 long del = 0; 840 841 retry: 842 spin_lock(&resv->lock); 843 list_for_each_entry_safe(rg, trg, head, link) { 844 /* 845 * Skip regions before the range to be deleted. file_region 846 * ranges are normally of the form [from, to). However, there 847 * may be a "placeholder" entry in the map which is of the form 848 * (from, to) with from == to. Check for placeholder entries 849 * at the beginning of the range to be deleted. 850 */ 851 if (rg->to <= f && (rg->to != rg->from || rg->to != f)) 852 continue; 853 854 if (rg->from >= t) 855 break; 856 857 if (f > rg->from && t < rg->to) { /* Must split region */ 858 /* 859 * Check for an entry in the cache before dropping 860 * lock and attempting allocation. 861 */ 862 if (!nrg && 863 resv->region_cache_count > resv->adds_in_progress) { 864 nrg = list_first_entry(&resv->region_cache, 865 struct file_region, 866 link); 867 list_del(&nrg->link); 868 resv->region_cache_count--; 869 } 870 871 if (!nrg) { 872 spin_unlock(&resv->lock); 873 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 874 if (!nrg) 875 return -ENOMEM; 876 goto retry; 877 } 878 879 del += t - f; 880 hugetlb_cgroup_uncharge_file_region( 881 resv, rg, t - f, false); 882 883 /* New entry for end of split region */ 884 nrg->from = t; 885 nrg->to = rg->to; 886 887 copy_hugetlb_cgroup_uncharge_info(nrg, rg); 888 889 INIT_LIST_HEAD(&nrg->link); 890 891 /* Original entry is trimmed */ 892 rg->to = f; 893 894 list_add(&nrg->link, &rg->link); 895 nrg = NULL; 896 break; 897 } 898 899 if (f <= rg->from && t >= rg->to) { /* Remove entire region */ 900 del += rg->to - rg->from; 901 hugetlb_cgroup_uncharge_file_region(resv, rg, 902 rg->to - rg->from, true); 903 list_del(&rg->link); 904 kfree(rg); 905 continue; 906 } 907 908 if (f <= rg->from) { /* Trim beginning of region */ 909 hugetlb_cgroup_uncharge_file_region(resv, rg, 910 t - rg->from, false); 911 912 del += t - rg->from; 913 rg->from = t; 914 } else { /* Trim end of region */ 915 hugetlb_cgroup_uncharge_file_region(resv, rg, 916 rg->to - f, false); 917 918 del += rg->to - f; 919 rg->to = f; 920 } 921 } 922 923 spin_unlock(&resv->lock); 924 kfree(nrg); 925 return del; 926 } 927 928 /* 929 * A rare out of memory error was encountered which prevented removal of 930 * the reserve map region for a page. The huge page itself was free'ed 931 * and removed from the page cache. This routine will adjust the subpool 932 * usage count, and the global reserve count if needed. By incrementing 933 * these counts, the reserve map entry which could not be deleted will 934 * appear as a "reserved" entry instead of simply dangling with incorrect 935 * counts. 936 */ 937 void hugetlb_fix_reserve_counts(struct inode *inode) 938 { 939 struct hugepage_subpool *spool = subpool_inode(inode); 940 long rsv_adjust; 941 bool reserved = false; 942 943 rsv_adjust = hugepage_subpool_get_pages(spool, 1); 944 if (rsv_adjust > 0) { 945 struct hstate *h = hstate_inode(inode); 946 947 if (!hugetlb_acct_memory(h, 1)) 948 reserved = true; 949 } else if (!rsv_adjust) { 950 reserved = true; 951 } 952 953 if (!reserved) 954 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n"); 955 } 956 957 /* 958 * Count and return the number of huge pages in the reserve map 959 * that intersect with the range [f, t). 960 */ 961 static long region_count(struct resv_map *resv, long f, long t) 962 { 963 struct list_head *head = &resv->regions; 964 struct file_region *rg; 965 long chg = 0; 966 967 spin_lock(&resv->lock); 968 /* Locate each segment we overlap with, and count that overlap. */ 969 list_for_each_entry(rg, head, link) { 970 long seg_from; 971 long seg_to; 972 973 if (rg->to <= f) 974 continue; 975 if (rg->from >= t) 976 break; 977 978 seg_from = max(rg->from, f); 979 seg_to = min(rg->to, t); 980 981 chg += seg_to - seg_from; 982 } 983 spin_unlock(&resv->lock); 984 985 return chg; 986 } 987 988 /* 989 * Convert the address within this vma to the page offset within 990 * the mapping, huge page units here. 991 */ 992 static pgoff_t vma_hugecache_offset(struct hstate *h, 993 struct vm_area_struct *vma, unsigned long address) 994 { 995 return ((address - vma->vm_start) >> huge_page_shift(h)) + 996 (vma->vm_pgoff >> huge_page_order(h)); 997 } 998 999 /** 1000 * vma_kernel_pagesize - Page size granularity for this VMA. 1001 * @vma: The user mapping. 1002 * 1003 * Folios in this VMA will be aligned to, and at least the size of the 1004 * number of bytes returned by this function. 1005 * 1006 * Return: The default size of the folios allocated when backing a VMA. 1007 */ 1008 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) 1009 { 1010 if (vma->vm_ops && vma->vm_ops->pagesize) 1011 return vma->vm_ops->pagesize(vma); 1012 return PAGE_SIZE; 1013 } 1014 EXPORT_SYMBOL_GPL(vma_kernel_pagesize); 1015 1016 /* 1017 * Return the page size being used by the MMU to back a VMA. In the majority 1018 * of cases, the page size used by the kernel matches the MMU size. On 1019 * architectures where it differs, an architecture-specific 'strong' 1020 * version of this symbol is required. 1021 */ 1022 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 1023 { 1024 return vma_kernel_pagesize(vma); 1025 } 1026 1027 /* 1028 * Flags for MAP_PRIVATE reservations. These are stored in the bottom 1029 * bits of the reservation map pointer, which are always clear due to 1030 * alignment. 1031 */ 1032 #define HPAGE_RESV_OWNER (1UL << 0) 1033 #define HPAGE_RESV_UNMAPPED (1UL << 1) 1034 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) 1035 1036 /* 1037 * These helpers are used to track how many pages are reserved for 1038 * faults in a MAP_PRIVATE mapping. Only the process that called mmap() 1039 * is guaranteed to have their future faults succeed. 1040 * 1041 * With the exception of hugetlb_dup_vma_private() which is called at fork(), 1042 * the reserve counters are updated with the hugetlb_lock held. It is safe 1043 * to reset the VMA at fork() time as it is not in use yet and there is no 1044 * chance of the global counters getting corrupted as a result of the values. 1045 * 1046 * The private mapping reservation is represented in a subtly different 1047 * manner to a shared mapping. A shared mapping has a region map associated 1048 * with the underlying file, this region map represents the backing file 1049 * pages which have ever had a reservation assigned which this persists even 1050 * after the page is instantiated. A private mapping has a region map 1051 * associated with the original mmap which is attached to all VMAs which 1052 * reference it, this region map represents those offsets which have consumed 1053 * reservation ie. where pages have been instantiated. 1054 */ 1055 static unsigned long get_vma_private_data(struct vm_area_struct *vma) 1056 { 1057 return (unsigned long)vma->vm_private_data; 1058 } 1059 1060 static void set_vma_private_data(struct vm_area_struct *vma, 1061 unsigned long value) 1062 { 1063 vma->vm_private_data = (void *)value; 1064 } 1065 1066 static void 1067 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map, 1068 struct hugetlb_cgroup *h_cg, 1069 struct hstate *h) 1070 { 1071 #ifdef CONFIG_CGROUP_HUGETLB 1072 if (!h_cg || !h) { 1073 resv_map->reservation_counter = NULL; 1074 resv_map->pages_per_hpage = 0; 1075 resv_map->css = NULL; 1076 } else { 1077 resv_map->reservation_counter = 1078 &h_cg->rsvd_hugepage[hstate_index(h)]; 1079 resv_map->pages_per_hpage = pages_per_huge_page(h); 1080 resv_map->css = &h_cg->css; 1081 } 1082 #endif 1083 } 1084 1085 struct resv_map *resv_map_alloc(void) 1086 { 1087 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); 1088 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL); 1089 1090 if (!resv_map || !rg) { 1091 kfree(resv_map); 1092 kfree(rg); 1093 return NULL; 1094 } 1095 1096 kref_init(&resv_map->refs); 1097 spin_lock_init(&resv_map->lock); 1098 INIT_LIST_HEAD(&resv_map->regions); 1099 init_rwsem(&resv_map->rw_sema); 1100 1101 resv_map->adds_in_progress = 0; 1102 /* 1103 * Initialize these to 0. On shared mappings, 0's here indicate these 1104 * fields don't do cgroup accounting. On private mappings, these will be 1105 * re-initialized to the proper values, to indicate that hugetlb cgroup 1106 * reservations are to be un-charged from here. 1107 */ 1108 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL); 1109 1110 INIT_LIST_HEAD(&resv_map->region_cache); 1111 list_add(&rg->link, &resv_map->region_cache); 1112 resv_map->region_cache_count = 1; 1113 1114 return resv_map; 1115 } 1116 1117 void resv_map_release(struct kref *ref) 1118 { 1119 struct resv_map *resv_map = container_of(ref, struct resv_map, refs); 1120 struct list_head *head = &resv_map->region_cache; 1121 struct file_region *rg, *trg; 1122 1123 /* Clear out any active regions before we release the map. */ 1124 region_del(resv_map, 0, LONG_MAX); 1125 1126 /* ... and any entries left in the cache */ 1127 list_for_each_entry_safe(rg, trg, head, link) { 1128 list_del(&rg->link); 1129 kfree(rg); 1130 } 1131 1132 VM_BUG_ON(resv_map->adds_in_progress); 1133 1134 kfree(resv_map); 1135 } 1136 1137 static inline struct resv_map *inode_resv_map(struct inode *inode) 1138 { 1139 /* 1140 * At inode evict time, i_mapping may not point to the original 1141 * address space within the inode. This original address space 1142 * contains the pointer to the resv_map. So, always use the 1143 * address space embedded within the inode. 1144 * The VERY common case is inode->mapping == &inode->i_data but, 1145 * this may not be true for device special inodes. 1146 */ 1147 return (struct resv_map *)(&inode->i_data)->i_private_data; 1148 } 1149 1150 static struct resv_map *vma_resv_map(struct vm_area_struct *vma) 1151 { 1152 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1153 if (vma->vm_flags & VM_MAYSHARE) { 1154 struct address_space *mapping = vma->vm_file->f_mapping; 1155 struct inode *inode = mapping->host; 1156 1157 return inode_resv_map(inode); 1158 1159 } else { 1160 return (struct resv_map *)(get_vma_private_data(vma) & 1161 ~HPAGE_RESV_MASK); 1162 } 1163 } 1164 1165 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) 1166 { 1167 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1168 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 1169 1170 set_vma_private_data(vma, (unsigned long)map); 1171 } 1172 1173 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) 1174 { 1175 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1176 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 1177 1178 set_vma_private_data(vma, get_vma_private_data(vma) | flags); 1179 } 1180 1181 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) 1182 { 1183 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1184 1185 return (get_vma_private_data(vma) & flag) != 0; 1186 } 1187 1188 bool __vma_private_lock(struct vm_area_struct *vma) 1189 { 1190 return !(vma->vm_flags & VM_MAYSHARE) && 1191 get_vma_private_data(vma) & ~HPAGE_RESV_MASK && 1192 is_vma_resv_set(vma, HPAGE_RESV_OWNER); 1193 } 1194 1195 void hugetlb_dup_vma_private(struct vm_area_struct *vma) 1196 { 1197 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1198 /* 1199 * Clear vm_private_data 1200 * - For shared mappings this is a per-vma semaphore that may be 1201 * allocated in a subsequent call to hugetlb_vm_op_open. 1202 * Before clearing, make sure pointer is not associated with vma 1203 * as this will leak the structure. This is the case when called 1204 * via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already 1205 * been called to allocate a new structure. 1206 * - For MAP_PRIVATE mappings, this is the reserve map which does 1207 * not apply to children. Faults generated by the children are 1208 * not guaranteed to succeed, even if read-only. 1209 */ 1210 if (vma->vm_flags & VM_MAYSHARE) { 1211 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 1212 1213 if (vma_lock && vma_lock->vma != vma) 1214 vma->vm_private_data = NULL; 1215 } else 1216 vma->vm_private_data = NULL; 1217 } 1218 1219 /* 1220 * Reset and decrement one ref on hugepage private reservation. 1221 * Called with mm->mmap_lock writer semaphore held. 1222 * This function should be only used by move_vma() and operate on 1223 * same sized vma. It should never come here with last ref on the 1224 * reservation. 1225 */ 1226 void clear_vma_resv_huge_pages(struct vm_area_struct *vma) 1227 { 1228 /* 1229 * Clear the old hugetlb private page reservation. 1230 * It has already been transferred to new_vma. 1231 * 1232 * During a mremap() operation of a hugetlb vma we call move_vma() 1233 * which copies vma into new_vma and unmaps vma. After the copy 1234 * operation both new_vma and vma share a reference to the resv_map 1235 * struct, and at that point vma is about to be unmapped. We don't 1236 * want to return the reservation to the pool at unmap of vma because 1237 * the reservation still lives on in new_vma, so simply decrement the 1238 * ref here and remove the resv_map reference from this vma. 1239 */ 1240 struct resv_map *reservations = vma_resv_map(vma); 1241 1242 if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 1243 resv_map_put_hugetlb_cgroup_uncharge_info(reservations); 1244 kref_put(&reservations->refs, resv_map_release); 1245 } 1246 1247 hugetlb_dup_vma_private(vma); 1248 } 1249 1250 static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio) 1251 { 1252 int nid = folio_nid(folio); 1253 1254 lockdep_assert_held(&hugetlb_lock); 1255 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio); 1256 1257 list_move(&folio->lru, &h->hugepage_freelists[nid]); 1258 h->free_huge_pages++; 1259 h->free_huge_pages_node[nid]++; 1260 folio_set_hugetlb_freed(folio); 1261 } 1262 1263 static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h, 1264 int nid) 1265 { 1266 struct folio *folio; 1267 bool pin = !!(current->flags & PF_MEMALLOC_PIN); 1268 1269 lockdep_assert_held(&hugetlb_lock); 1270 list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) { 1271 if (pin && !folio_is_longterm_pinnable(folio)) 1272 continue; 1273 1274 if (folio_test_hwpoison(folio)) 1275 continue; 1276 1277 if (is_migrate_isolate_page(&folio->page)) 1278 continue; 1279 1280 list_move(&folio->lru, &h->hugepage_activelist); 1281 folio_ref_unfreeze(folio, 1); 1282 folio_clear_hugetlb_freed(folio); 1283 h->free_huge_pages--; 1284 h->free_huge_pages_node[nid]--; 1285 return folio; 1286 } 1287 1288 return NULL; 1289 } 1290 1291 static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask, 1292 int nid, nodemask_t *nmask) 1293 { 1294 unsigned int cpuset_mems_cookie; 1295 struct zonelist *zonelist; 1296 struct zone *zone; 1297 struct zoneref *z; 1298 int node = NUMA_NO_NODE; 1299 1300 /* 'nid' should not be NUMA_NO_NODE. Try to catch any misuse of it and rectifiy. */ 1301 if (nid == NUMA_NO_NODE) 1302 nid = numa_node_id(); 1303 1304 zonelist = node_zonelist(nid, gfp_mask); 1305 1306 retry_cpuset: 1307 cpuset_mems_cookie = read_mems_allowed_begin(); 1308 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) { 1309 struct folio *folio; 1310 1311 if (!cpuset_zone_allowed(zone, gfp_mask)) 1312 continue; 1313 /* 1314 * no need to ask again on the same node. Pool is node rather than 1315 * zone aware 1316 */ 1317 if (zone_to_nid(zone) == node) 1318 continue; 1319 node = zone_to_nid(zone); 1320 1321 folio = dequeue_hugetlb_folio_node_exact(h, node); 1322 if (folio) 1323 return folio; 1324 } 1325 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie))) 1326 goto retry_cpuset; 1327 1328 return NULL; 1329 } 1330 1331 static unsigned long available_huge_pages(struct hstate *h) 1332 { 1333 return h->free_huge_pages - h->resv_huge_pages; 1334 } 1335 1336 static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h, 1337 struct vm_area_struct *vma, 1338 unsigned long address, long gbl_chg) 1339 { 1340 struct folio *folio = NULL; 1341 struct mempolicy *mpol; 1342 gfp_t gfp_mask; 1343 nodemask_t *nodemask; 1344 int nid; 1345 1346 /* 1347 * gbl_chg==1 means the allocation requires a new page that was not 1348 * reserved before. Making sure there's at least one free page. 1349 */ 1350 if (gbl_chg && !available_huge_pages(h)) 1351 goto err; 1352 1353 gfp_mask = htlb_alloc_mask(h); 1354 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 1355 1356 if (mpol_is_preferred_many(mpol)) { 1357 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, 1358 nid, nodemask); 1359 1360 /* Fallback to all nodes if page==NULL */ 1361 nodemask = NULL; 1362 } 1363 1364 if (!folio) 1365 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, 1366 nid, nodemask); 1367 1368 mpol_cond_put(mpol); 1369 return folio; 1370 1371 err: 1372 return NULL; 1373 } 1374 1375 /* 1376 * common helper functions for hstate_next_node_to_{alloc|free}. 1377 * We may have allocated or freed a huge page based on a different 1378 * nodes_allowed previously, so h->next_node_to_{alloc|free} might 1379 * be outside of *nodes_allowed. Ensure that we use an allowed 1380 * node for alloc or free. 1381 */ 1382 static int next_node_allowed(int nid, nodemask_t *nodes_allowed) 1383 { 1384 nid = next_node_in(nid, *nodes_allowed); 1385 VM_BUG_ON(nid >= MAX_NUMNODES); 1386 1387 return nid; 1388 } 1389 1390 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed) 1391 { 1392 if (!node_isset(nid, *nodes_allowed)) 1393 nid = next_node_allowed(nid, nodes_allowed); 1394 return nid; 1395 } 1396 1397 /* 1398 * returns the previously saved node ["this node"] from which to 1399 * allocate a persistent huge page for the pool and advance the 1400 * next node from which to allocate, handling wrap at end of node 1401 * mask. 1402 */ 1403 static int hstate_next_node_to_alloc(int *next_node, 1404 nodemask_t *nodes_allowed) 1405 { 1406 int nid; 1407 1408 VM_BUG_ON(!nodes_allowed); 1409 1410 nid = get_valid_node_allowed(*next_node, nodes_allowed); 1411 *next_node = next_node_allowed(nid, nodes_allowed); 1412 1413 return nid; 1414 } 1415 1416 /* 1417 * helper for remove_pool_hugetlb_folio() - return the previously saved 1418 * node ["this node"] from which to free a huge page. Advance the 1419 * next node id whether or not we find a free huge page to free so 1420 * that the next attempt to free addresses the next node. 1421 */ 1422 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed) 1423 { 1424 int nid; 1425 1426 VM_BUG_ON(!nodes_allowed); 1427 1428 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed); 1429 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed); 1430 1431 return nid; 1432 } 1433 1434 #define for_each_node_mask_to_alloc(next_node, nr_nodes, node, mask) \ 1435 for (nr_nodes = nodes_weight(*mask); \ 1436 nr_nodes > 0 && \ 1437 ((node = hstate_next_node_to_alloc(next_node, mask)) || 1); \ 1438 nr_nodes--) 1439 1440 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \ 1441 for (nr_nodes = nodes_weight(*mask); \ 1442 nr_nodes > 0 && \ 1443 ((node = hstate_next_node_to_free(hs, mask)) || 1); \ 1444 nr_nodes--) 1445 1446 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE 1447 #ifdef CONFIG_CONTIG_ALLOC 1448 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask, 1449 int nid, nodemask_t *nodemask) 1450 { 1451 struct folio *folio; 1452 int order = huge_page_order(h); 1453 bool retried = false; 1454 1455 if (nid == NUMA_NO_NODE) 1456 nid = numa_mem_id(); 1457 retry: 1458 folio = NULL; 1459 #ifdef CONFIG_CMA 1460 { 1461 int node; 1462 1463 if (hugetlb_cma[nid]) 1464 folio = cma_alloc_folio(hugetlb_cma[nid], order, gfp_mask); 1465 1466 if (!folio && !(gfp_mask & __GFP_THISNODE)) { 1467 for_each_node_mask(node, *nodemask) { 1468 if (node == nid || !hugetlb_cma[node]) 1469 continue; 1470 1471 folio = cma_alloc_folio(hugetlb_cma[node], order, gfp_mask); 1472 if (folio) 1473 break; 1474 } 1475 } 1476 } 1477 #endif 1478 if (!folio) { 1479 folio = folio_alloc_gigantic(order, gfp_mask, nid, nodemask); 1480 if (!folio) 1481 return NULL; 1482 } 1483 1484 if (folio_ref_freeze(folio, 1)) 1485 return folio; 1486 1487 pr_warn("HugeTLB: unexpected refcount on PFN %lu\n", folio_pfn(folio)); 1488 hugetlb_free_folio(folio); 1489 if (!retried) { 1490 retried = true; 1491 goto retry; 1492 } 1493 return NULL; 1494 } 1495 1496 #else /* !CONFIG_CONTIG_ALLOC */ 1497 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask, 1498 int nid, nodemask_t *nodemask) 1499 { 1500 return NULL; 1501 } 1502 #endif /* CONFIG_CONTIG_ALLOC */ 1503 1504 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */ 1505 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask, 1506 int nid, nodemask_t *nodemask) 1507 { 1508 return NULL; 1509 } 1510 #endif 1511 1512 /* 1513 * Remove hugetlb folio from lists. 1514 * If vmemmap exists for the folio, clear the hugetlb flag so that the 1515 * folio appears as just a compound page. Otherwise, wait until after 1516 * allocating vmemmap to clear the flag. 1517 * 1518 * Must be called with hugetlb lock held. 1519 */ 1520 static void remove_hugetlb_folio(struct hstate *h, struct folio *folio, 1521 bool adjust_surplus) 1522 { 1523 int nid = folio_nid(folio); 1524 1525 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio); 1526 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio); 1527 1528 lockdep_assert_held(&hugetlb_lock); 1529 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 1530 return; 1531 1532 list_del(&folio->lru); 1533 1534 if (folio_test_hugetlb_freed(folio)) { 1535 folio_clear_hugetlb_freed(folio); 1536 h->free_huge_pages--; 1537 h->free_huge_pages_node[nid]--; 1538 } 1539 if (adjust_surplus) { 1540 h->surplus_huge_pages--; 1541 h->surplus_huge_pages_node[nid]--; 1542 } 1543 1544 /* 1545 * We can only clear the hugetlb flag after allocating vmemmap 1546 * pages. Otherwise, someone (memory error handling) may try to write 1547 * to tail struct pages. 1548 */ 1549 if (!folio_test_hugetlb_vmemmap_optimized(folio)) 1550 __folio_clear_hugetlb(folio); 1551 1552 h->nr_huge_pages--; 1553 h->nr_huge_pages_node[nid]--; 1554 } 1555 1556 static void add_hugetlb_folio(struct hstate *h, struct folio *folio, 1557 bool adjust_surplus) 1558 { 1559 int nid = folio_nid(folio); 1560 1561 VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio); 1562 1563 lockdep_assert_held(&hugetlb_lock); 1564 1565 INIT_LIST_HEAD(&folio->lru); 1566 h->nr_huge_pages++; 1567 h->nr_huge_pages_node[nid]++; 1568 1569 if (adjust_surplus) { 1570 h->surplus_huge_pages++; 1571 h->surplus_huge_pages_node[nid]++; 1572 } 1573 1574 __folio_set_hugetlb(folio); 1575 folio_change_private(folio, NULL); 1576 /* 1577 * We have to set hugetlb_vmemmap_optimized again as above 1578 * folio_change_private(folio, NULL) cleared it. 1579 */ 1580 folio_set_hugetlb_vmemmap_optimized(folio); 1581 1582 arch_clear_hugetlb_flags(folio); 1583 enqueue_hugetlb_folio(h, folio); 1584 } 1585 1586 static void __update_and_free_hugetlb_folio(struct hstate *h, 1587 struct folio *folio) 1588 { 1589 bool clear_flag = folio_test_hugetlb_vmemmap_optimized(folio); 1590 1591 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 1592 return; 1593 1594 /* 1595 * If we don't know which subpages are hwpoisoned, we can't free 1596 * the hugepage, so it's leaked intentionally. 1597 */ 1598 if (folio_test_hugetlb_raw_hwp_unreliable(folio)) 1599 return; 1600 1601 /* 1602 * If folio is not vmemmap optimized (!clear_flag), then the folio 1603 * is no longer identified as a hugetlb page. hugetlb_vmemmap_restore_folio 1604 * can only be passed hugetlb pages and will BUG otherwise. 1605 */ 1606 if (clear_flag && hugetlb_vmemmap_restore_folio(h, folio)) { 1607 spin_lock_irq(&hugetlb_lock); 1608 /* 1609 * If we cannot allocate vmemmap pages, just refuse to free the 1610 * page and put the page back on the hugetlb free list and treat 1611 * as a surplus page. 1612 */ 1613 add_hugetlb_folio(h, folio, true); 1614 spin_unlock_irq(&hugetlb_lock); 1615 return; 1616 } 1617 1618 /* 1619 * If vmemmap pages were allocated above, then we need to clear the 1620 * hugetlb flag under the hugetlb lock. 1621 */ 1622 if (folio_test_hugetlb(folio)) { 1623 spin_lock_irq(&hugetlb_lock); 1624 __folio_clear_hugetlb(folio); 1625 spin_unlock_irq(&hugetlb_lock); 1626 } 1627 1628 /* 1629 * Move PageHWPoison flag from head page to the raw error pages, 1630 * which makes any healthy subpages reusable. 1631 */ 1632 if (unlikely(folio_test_hwpoison(folio))) 1633 folio_clear_hugetlb_hwpoison(folio); 1634 1635 folio_ref_unfreeze(folio, 1); 1636 1637 INIT_LIST_HEAD(&folio->_deferred_list); 1638 hugetlb_free_folio(folio); 1639 } 1640 1641 /* 1642 * As update_and_free_hugetlb_folio() can be called under any context, so we cannot 1643 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the 1644 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate 1645 * the vmemmap pages. 1646 * 1647 * free_hpage_workfn() locklessly retrieves the linked list of pages to be 1648 * freed and frees them one-by-one. As the page->mapping pointer is going 1649 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node 1650 * structure of a lockless linked list of huge pages to be freed. 1651 */ 1652 static LLIST_HEAD(hpage_freelist); 1653 1654 static void free_hpage_workfn(struct work_struct *work) 1655 { 1656 struct llist_node *node; 1657 1658 node = llist_del_all(&hpage_freelist); 1659 1660 while (node) { 1661 struct folio *folio; 1662 struct hstate *h; 1663 1664 folio = container_of((struct address_space **)node, 1665 struct folio, mapping); 1666 node = node->next; 1667 folio->mapping = NULL; 1668 /* 1669 * The VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio) in 1670 * folio_hstate() is going to trigger because a previous call to 1671 * remove_hugetlb_folio() will clear the hugetlb bit, so do 1672 * not use folio_hstate() directly. 1673 */ 1674 h = size_to_hstate(folio_size(folio)); 1675 1676 __update_and_free_hugetlb_folio(h, folio); 1677 1678 cond_resched(); 1679 } 1680 } 1681 static DECLARE_WORK(free_hpage_work, free_hpage_workfn); 1682 1683 static inline void flush_free_hpage_work(struct hstate *h) 1684 { 1685 if (hugetlb_vmemmap_optimizable(h)) 1686 flush_work(&free_hpage_work); 1687 } 1688 1689 static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio, 1690 bool atomic) 1691 { 1692 if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) { 1693 __update_and_free_hugetlb_folio(h, folio); 1694 return; 1695 } 1696 1697 /* 1698 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages. 1699 * 1700 * Only call schedule_work() if hpage_freelist is previously 1701 * empty. Otherwise, schedule_work() had been called but the workfn 1702 * hasn't retrieved the list yet. 1703 */ 1704 if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist)) 1705 schedule_work(&free_hpage_work); 1706 } 1707 1708 static void bulk_vmemmap_restore_error(struct hstate *h, 1709 struct list_head *folio_list, 1710 struct list_head *non_hvo_folios) 1711 { 1712 struct folio *folio, *t_folio; 1713 1714 if (!list_empty(non_hvo_folios)) { 1715 /* 1716 * Free any restored hugetlb pages so that restore of the 1717 * entire list can be retried. 1718 * The idea is that in the common case of ENOMEM errors freeing 1719 * hugetlb pages with vmemmap we will free up memory so that we 1720 * can allocate vmemmap for more hugetlb pages. 1721 */ 1722 list_for_each_entry_safe(folio, t_folio, non_hvo_folios, lru) { 1723 list_del(&folio->lru); 1724 spin_lock_irq(&hugetlb_lock); 1725 __folio_clear_hugetlb(folio); 1726 spin_unlock_irq(&hugetlb_lock); 1727 update_and_free_hugetlb_folio(h, folio, false); 1728 cond_resched(); 1729 } 1730 } else { 1731 /* 1732 * In the case where there are no folios which can be 1733 * immediately freed, we loop through the list trying to restore 1734 * vmemmap individually in the hope that someone elsewhere may 1735 * have done something to cause success (such as freeing some 1736 * memory). If unable to restore a hugetlb page, the hugetlb 1737 * page is made a surplus page and removed from the list. 1738 * If are able to restore vmemmap and free one hugetlb page, we 1739 * quit processing the list to retry the bulk operation. 1740 */ 1741 list_for_each_entry_safe(folio, t_folio, folio_list, lru) 1742 if (hugetlb_vmemmap_restore_folio(h, folio)) { 1743 list_del(&folio->lru); 1744 spin_lock_irq(&hugetlb_lock); 1745 add_hugetlb_folio(h, folio, true); 1746 spin_unlock_irq(&hugetlb_lock); 1747 } else { 1748 list_del(&folio->lru); 1749 spin_lock_irq(&hugetlb_lock); 1750 __folio_clear_hugetlb(folio); 1751 spin_unlock_irq(&hugetlb_lock); 1752 update_and_free_hugetlb_folio(h, folio, false); 1753 cond_resched(); 1754 break; 1755 } 1756 } 1757 } 1758 1759 static void update_and_free_pages_bulk(struct hstate *h, 1760 struct list_head *folio_list) 1761 { 1762 long ret; 1763 struct folio *folio, *t_folio; 1764 LIST_HEAD(non_hvo_folios); 1765 1766 /* 1767 * First allocate required vmemmmap (if necessary) for all folios. 1768 * Carefully handle errors and free up any available hugetlb pages 1769 * in an effort to make forward progress. 1770 */ 1771 retry: 1772 ret = hugetlb_vmemmap_restore_folios(h, folio_list, &non_hvo_folios); 1773 if (ret < 0) { 1774 bulk_vmemmap_restore_error(h, folio_list, &non_hvo_folios); 1775 goto retry; 1776 } 1777 1778 /* 1779 * At this point, list should be empty, ret should be >= 0 and there 1780 * should only be pages on the non_hvo_folios list. 1781 * Do note that the non_hvo_folios list could be empty. 1782 * Without HVO enabled, ret will be 0 and there is no need to call 1783 * __folio_clear_hugetlb as this was done previously. 1784 */ 1785 VM_WARN_ON(!list_empty(folio_list)); 1786 VM_WARN_ON(ret < 0); 1787 if (!list_empty(&non_hvo_folios) && ret) { 1788 spin_lock_irq(&hugetlb_lock); 1789 list_for_each_entry(folio, &non_hvo_folios, lru) 1790 __folio_clear_hugetlb(folio); 1791 spin_unlock_irq(&hugetlb_lock); 1792 } 1793 1794 list_for_each_entry_safe(folio, t_folio, &non_hvo_folios, lru) { 1795 update_and_free_hugetlb_folio(h, folio, false); 1796 cond_resched(); 1797 } 1798 } 1799 1800 struct hstate *size_to_hstate(unsigned long size) 1801 { 1802 struct hstate *h; 1803 1804 for_each_hstate(h) { 1805 if (huge_page_size(h) == size) 1806 return h; 1807 } 1808 return NULL; 1809 } 1810 1811 void free_huge_folio(struct folio *folio) 1812 { 1813 /* 1814 * Can't pass hstate in here because it is called from the 1815 * generic mm code. 1816 */ 1817 struct hstate *h = folio_hstate(folio); 1818 int nid = folio_nid(folio); 1819 struct hugepage_subpool *spool = hugetlb_folio_subpool(folio); 1820 bool restore_reserve; 1821 unsigned long flags; 1822 1823 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio); 1824 VM_BUG_ON_FOLIO(folio_mapcount(folio), folio); 1825 1826 hugetlb_set_folio_subpool(folio, NULL); 1827 if (folio_test_anon(folio)) 1828 __ClearPageAnonExclusive(&folio->page); 1829 folio->mapping = NULL; 1830 restore_reserve = folio_test_hugetlb_restore_reserve(folio); 1831 folio_clear_hugetlb_restore_reserve(folio); 1832 1833 /* 1834 * If HPageRestoreReserve was set on page, page allocation consumed a 1835 * reservation. If the page was associated with a subpool, there 1836 * would have been a page reserved in the subpool before allocation 1837 * via hugepage_subpool_get_pages(). Since we are 'restoring' the 1838 * reservation, do not call hugepage_subpool_put_pages() as this will 1839 * remove the reserved page from the subpool. 1840 */ 1841 if (!restore_reserve) { 1842 /* 1843 * A return code of zero implies that the subpool will be 1844 * under its minimum size if the reservation is not restored 1845 * after page is free. Therefore, force restore_reserve 1846 * operation. 1847 */ 1848 if (hugepage_subpool_put_pages(spool, 1) == 0) 1849 restore_reserve = true; 1850 } 1851 1852 spin_lock_irqsave(&hugetlb_lock, flags); 1853 folio_clear_hugetlb_migratable(folio); 1854 hugetlb_cgroup_uncharge_folio(hstate_index(h), 1855 pages_per_huge_page(h), folio); 1856 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h), 1857 pages_per_huge_page(h), folio); 1858 lruvec_stat_mod_folio(folio, NR_HUGETLB, -pages_per_huge_page(h)); 1859 mem_cgroup_uncharge(folio); 1860 if (restore_reserve) 1861 h->resv_huge_pages++; 1862 1863 if (folio_test_hugetlb_temporary(folio)) { 1864 remove_hugetlb_folio(h, folio, false); 1865 spin_unlock_irqrestore(&hugetlb_lock, flags); 1866 update_and_free_hugetlb_folio(h, folio, true); 1867 } else if (h->surplus_huge_pages_node[nid]) { 1868 /* remove the page from active list */ 1869 remove_hugetlb_folio(h, folio, true); 1870 spin_unlock_irqrestore(&hugetlb_lock, flags); 1871 update_and_free_hugetlb_folio(h, folio, true); 1872 } else { 1873 arch_clear_hugetlb_flags(folio); 1874 enqueue_hugetlb_folio(h, folio); 1875 spin_unlock_irqrestore(&hugetlb_lock, flags); 1876 } 1877 } 1878 1879 /* 1880 * Must be called with the hugetlb lock held 1881 */ 1882 static void __prep_account_new_huge_page(struct hstate *h, int nid) 1883 { 1884 lockdep_assert_held(&hugetlb_lock); 1885 h->nr_huge_pages++; 1886 h->nr_huge_pages_node[nid]++; 1887 } 1888 1889 static void init_new_hugetlb_folio(struct hstate *h, struct folio *folio) 1890 { 1891 __folio_set_hugetlb(folio); 1892 INIT_LIST_HEAD(&folio->lru); 1893 hugetlb_set_folio_subpool(folio, NULL); 1894 set_hugetlb_cgroup(folio, NULL); 1895 set_hugetlb_cgroup_rsvd(folio, NULL); 1896 } 1897 1898 static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio) 1899 { 1900 init_new_hugetlb_folio(h, folio); 1901 hugetlb_vmemmap_optimize_folio(h, folio); 1902 } 1903 1904 static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid) 1905 { 1906 __prep_new_hugetlb_folio(h, folio); 1907 spin_lock_irq(&hugetlb_lock); 1908 __prep_account_new_huge_page(h, nid); 1909 spin_unlock_irq(&hugetlb_lock); 1910 } 1911 1912 /* 1913 * Find and lock address space (mapping) in write mode. 1914 * 1915 * Upon entry, the folio is locked which means that folio_mapping() is 1916 * stable. Due to locking order, we can only trylock_write. If we can 1917 * not get the lock, simply return NULL to caller. 1918 */ 1919 struct address_space *hugetlb_folio_mapping_lock_write(struct folio *folio) 1920 { 1921 struct address_space *mapping = folio_mapping(folio); 1922 1923 if (!mapping) 1924 return mapping; 1925 1926 if (i_mmap_trylock_write(mapping)) 1927 return mapping; 1928 1929 return NULL; 1930 } 1931 1932 static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h, 1933 gfp_t gfp_mask, int nid, nodemask_t *nmask, 1934 nodemask_t *node_alloc_noretry) 1935 { 1936 int order = huge_page_order(h); 1937 struct folio *folio; 1938 bool alloc_try_hard = true; 1939 bool retry = true; 1940 1941 /* 1942 * By default we always try hard to allocate the folio with 1943 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating folios in 1944 * a loop (to adjust global huge page counts) and previous allocation 1945 * failed, do not continue to try hard on the same node. Use the 1946 * node_alloc_noretry bitmap to manage this state information. 1947 */ 1948 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry)) 1949 alloc_try_hard = false; 1950 if (alloc_try_hard) 1951 gfp_mask |= __GFP_RETRY_MAYFAIL; 1952 if (nid == NUMA_NO_NODE) 1953 nid = numa_mem_id(); 1954 retry: 1955 folio = __folio_alloc(gfp_mask, order, nid, nmask); 1956 /* Ensure hugetlb folio won't have large_rmappable flag set. */ 1957 if (folio) 1958 folio_clear_large_rmappable(folio); 1959 1960 if (folio && !folio_ref_freeze(folio, 1)) { 1961 folio_put(folio); 1962 if (retry) { /* retry once */ 1963 retry = false; 1964 goto retry; 1965 } 1966 /* WOW! twice in a row. */ 1967 pr_warn("HugeTLB unexpected inflated folio ref count\n"); 1968 folio = NULL; 1969 } 1970 1971 /* 1972 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a 1973 * folio this indicates an overall state change. Clear bit so 1974 * that we resume normal 'try hard' allocations. 1975 */ 1976 if (node_alloc_noretry && folio && !alloc_try_hard) 1977 node_clear(nid, *node_alloc_noretry); 1978 1979 /* 1980 * If we tried hard to get a folio but failed, set bit so that 1981 * subsequent attempts will not try as hard until there is an 1982 * overall state change. 1983 */ 1984 if (node_alloc_noretry && !folio && alloc_try_hard) 1985 node_set(nid, *node_alloc_noretry); 1986 1987 if (!folio) { 1988 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 1989 return NULL; 1990 } 1991 1992 __count_vm_event(HTLB_BUDDY_PGALLOC); 1993 return folio; 1994 } 1995 1996 static struct folio *only_alloc_fresh_hugetlb_folio(struct hstate *h, 1997 gfp_t gfp_mask, int nid, nodemask_t *nmask, 1998 nodemask_t *node_alloc_noretry) 1999 { 2000 struct folio *folio; 2001 2002 if (hstate_is_gigantic(h)) 2003 folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask); 2004 else 2005 folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, nmask, node_alloc_noretry); 2006 if (folio) 2007 init_new_hugetlb_folio(h, folio); 2008 return folio; 2009 } 2010 2011 /* 2012 * Common helper to allocate a fresh hugetlb page. All specific allocators 2013 * should use this function to get new hugetlb pages 2014 * 2015 * Note that returned page is 'frozen': ref count of head page and all tail 2016 * pages is zero. 2017 */ 2018 static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h, 2019 gfp_t gfp_mask, int nid, nodemask_t *nmask) 2020 { 2021 struct folio *folio; 2022 2023 if (hstate_is_gigantic(h)) 2024 folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask); 2025 else 2026 folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, nmask, NULL); 2027 if (!folio) 2028 return NULL; 2029 2030 prep_new_hugetlb_folio(h, folio, folio_nid(folio)); 2031 return folio; 2032 } 2033 2034 static void prep_and_add_allocated_folios(struct hstate *h, 2035 struct list_head *folio_list) 2036 { 2037 unsigned long flags; 2038 struct folio *folio, *tmp_f; 2039 2040 /* Send list for bulk vmemmap optimization processing */ 2041 hugetlb_vmemmap_optimize_folios(h, folio_list); 2042 2043 /* Add all new pool pages to free lists in one lock cycle */ 2044 spin_lock_irqsave(&hugetlb_lock, flags); 2045 list_for_each_entry_safe(folio, tmp_f, folio_list, lru) { 2046 __prep_account_new_huge_page(h, folio_nid(folio)); 2047 enqueue_hugetlb_folio(h, folio); 2048 } 2049 spin_unlock_irqrestore(&hugetlb_lock, flags); 2050 } 2051 2052 /* 2053 * Allocates a fresh hugetlb page in a node interleaved manner. The page 2054 * will later be added to the appropriate hugetlb pool. 2055 */ 2056 static struct folio *alloc_pool_huge_folio(struct hstate *h, 2057 nodemask_t *nodes_allowed, 2058 nodemask_t *node_alloc_noretry, 2059 int *next_node) 2060 { 2061 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 2062 int nr_nodes, node; 2063 2064 for_each_node_mask_to_alloc(next_node, nr_nodes, node, nodes_allowed) { 2065 struct folio *folio; 2066 2067 folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, node, 2068 nodes_allowed, node_alloc_noretry); 2069 if (folio) 2070 return folio; 2071 } 2072 2073 return NULL; 2074 } 2075 2076 /* 2077 * Remove huge page from pool from next node to free. Attempt to keep 2078 * persistent huge pages more or less balanced over allowed nodes. 2079 * This routine only 'removes' the hugetlb page. The caller must make 2080 * an additional call to free the page to low level allocators. 2081 * Called with hugetlb_lock locked. 2082 */ 2083 static struct folio *remove_pool_hugetlb_folio(struct hstate *h, 2084 nodemask_t *nodes_allowed, bool acct_surplus) 2085 { 2086 int nr_nodes, node; 2087 struct folio *folio = NULL; 2088 2089 lockdep_assert_held(&hugetlb_lock); 2090 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 2091 /* 2092 * If we're returning unused surplus pages, only examine 2093 * nodes with surplus pages. 2094 */ 2095 if ((!acct_surplus || h->surplus_huge_pages_node[node]) && 2096 !list_empty(&h->hugepage_freelists[node])) { 2097 folio = list_entry(h->hugepage_freelists[node].next, 2098 struct folio, lru); 2099 remove_hugetlb_folio(h, folio, acct_surplus); 2100 break; 2101 } 2102 } 2103 2104 return folio; 2105 } 2106 2107 /* 2108 * Dissolve a given free hugetlb folio into free buddy pages. This function 2109 * does nothing for in-use hugetlb folios and non-hugetlb folios. 2110 * This function returns values like below: 2111 * 2112 * -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages 2113 * when the system is under memory pressure and the feature of 2114 * freeing unused vmemmap pages associated with each hugetlb page 2115 * is enabled. 2116 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use 2117 * (allocated or reserved.) 2118 * 0: successfully dissolved free hugepages or the page is not a 2119 * hugepage (considered as already dissolved) 2120 */ 2121 int dissolve_free_hugetlb_folio(struct folio *folio) 2122 { 2123 int rc = -EBUSY; 2124 2125 retry: 2126 /* Not to disrupt normal path by vainly holding hugetlb_lock */ 2127 if (!folio_test_hugetlb(folio)) 2128 return 0; 2129 2130 spin_lock_irq(&hugetlb_lock); 2131 if (!folio_test_hugetlb(folio)) { 2132 rc = 0; 2133 goto out; 2134 } 2135 2136 if (!folio_ref_count(folio)) { 2137 struct hstate *h = folio_hstate(folio); 2138 if (!available_huge_pages(h)) 2139 goto out; 2140 2141 /* 2142 * We should make sure that the page is already on the free list 2143 * when it is dissolved. 2144 */ 2145 if (unlikely(!folio_test_hugetlb_freed(folio))) { 2146 spin_unlock_irq(&hugetlb_lock); 2147 cond_resched(); 2148 2149 /* 2150 * Theoretically, we should return -EBUSY when we 2151 * encounter this race. In fact, we have a chance 2152 * to successfully dissolve the page if we do a 2153 * retry. Because the race window is quite small. 2154 * If we seize this opportunity, it is an optimization 2155 * for increasing the success rate of dissolving page. 2156 */ 2157 goto retry; 2158 } 2159 2160 remove_hugetlb_folio(h, folio, false); 2161 h->max_huge_pages--; 2162 spin_unlock_irq(&hugetlb_lock); 2163 2164 /* 2165 * Normally update_and_free_hugtlb_folio will allocate required vmemmmap 2166 * before freeing the page. update_and_free_hugtlb_folio will fail to 2167 * free the page if it can not allocate required vmemmap. We 2168 * need to adjust max_huge_pages if the page is not freed. 2169 * Attempt to allocate vmemmmap here so that we can take 2170 * appropriate action on failure. 2171 * 2172 * The folio_test_hugetlb check here is because 2173 * remove_hugetlb_folio will clear hugetlb folio flag for 2174 * non-vmemmap optimized hugetlb folios. 2175 */ 2176 if (folio_test_hugetlb(folio)) { 2177 rc = hugetlb_vmemmap_restore_folio(h, folio); 2178 if (rc) { 2179 spin_lock_irq(&hugetlb_lock); 2180 add_hugetlb_folio(h, folio, false); 2181 h->max_huge_pages++; 2182 goto out; 2183 } 2184 } else 2185 rc = 0; 2186 2187 update_and_free_hugetlb_folio(h, folio, false); 2188 return rc; 2189 } 2190 out: 2191 spin_unlock_irq(&hugetlb_lock); 2192 return rc; 2193 } 2194 2195 /* 2196 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to 2197 * make specified memory blocks removable from the system. 2198 * Note that this will dissolve a free gigantic hugepage completely, if any 2199 * part of it lies within the given range. 2200 * Also note that if dissolve_free_hugetlb_folio() returns with an error, all 2201 * free hugetlb folios that were dissolved before that error are lost. 2202 */ 2203 int dissolve_free_hugetlb_folios(unsigned long start_pfn, unsigned long end_pfn) 2204 { 2205 unsigned long pfn; 2206 struct folio *folio; 2207 int rc = 0; 2208 unsigned int order; 2209 struct hstate *h; 2210 2211 if (!hugepages_supported()) 2212 return rc; 2213 2214 order = huge_page_order(&default_hstate); 2215 for_each_hstate(h) 2216 order = min(order, huge_page_order(h)); 2217 2218 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) { 2219 folio = pfn_folio(pfn); 2220 rc = dissolve_free_hugetlb_folio(folio); 2221 if (rc) 2222 break; 2223 } 2224 2225 return rc; 2226 } 2227 2228 /* 2229 * Allocates a fresh surplus page from the page allocator. 2230 */ 2231 static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h, 2232 gfp_t gfp_mask, int nid, nodemask_t *nmask) 2233 { 2234 struct folio *folio = NULL; 2235 2236 if (hstate_is_gigantic(h)) 2237 return NULL; 2238 2239 spin_lock_irq(&hugetlb_lock); 2240 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) 2241 goto out_unlock; 2242 spin_unlock_irq(&hugetlb_lock); 2243 2244 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask); 2245 if (!folio) 2246 return NULL; 2247 2248 spin_lock_irq(&hugetlb_lock); 2249 /* 2250 * We could have raced with the pool size change. 2251 * Double check that and simply deallocate the new page 2252 * if we would end up overcommiting the surpluses. Abuse 2253 * temporary page to workaround the nasty free_huge_folio 2254 * codeflow 2255 */ 2256 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { 2257 folio_set_hugetlb_temporary(folio); 2258 spin_unlock_irq(&hugetlb_lock); 2259 free_huge_folio(folio); 2260 return NULL; 2261 } 2262 2263 h->surplus_huge_pages++; 2264 h->surplus_huge_pages_node[folio_nid(folio)]++; 2265 2266 out_unlock: 2267 spin_unlock_irq(&hugetlb_lock); 2268 2269 return folio; 2270 } 2271 2272 static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask, 2273 int nid, nodemask_t *nmask) 2274 { 2275 struct folio *folio; 2276 2277 if (hstate_is_gigantic(h)) 2278 return NULL; 2279 2280 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask); 2281 if (!folio) 2282 return NULL; 2283 2284 /* fresh huge pages are frozen */ 2285 folio_ref_unfreeze(folio, 1); 2286 /* 2287 * We do not account these pages as surplus because they are only 2288 * temporary and will be released properly on the last reference 2289 */ 2290 folio_set_hugetlb_temporary(folio); 2291 2292 return folio; 2293 } 2294 2295 /* 2296 * Use the VMA's mpolicy to allocate a huge page from the buddy. 2297 */ 2298 static 2299 struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h, 2300 struct vm_area_struct *vma, unsigned long addr) 2301 { 2302 struct folio *folio = NULL; 2303 struct mempolicy *mpol; 2304 gfp_t gfp_mask = htlb_alloc_mask(h); 2305 int nid; 2306 nodemask_t *nodemask; 2307 2308 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask); 2309 if (mpol_is_preferred_many(mpol)) { 2310 gfp_t gfp = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL); 2311 2312 folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask); 2313 2314 /* Fallback to all nodes if page==NULL */ 2315 nodemask = NULL; 2316 } 2317 2318 if (!folio) 2319 folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask); 2320 mpol_cond_put(mpol); 2321 return folio; 2322 } 2323 2324 struct folio *alloc_hugetlb_folio_reserve(struct hstate *h, int preferred_nid, 2325 nodemask_t *nmask, gfp_t gfp_mask) 2326 { 2327 struct folio *folio; 2328 2329 spin_lock_irq(&hugetlb_lock); 2330 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, preferred_nid, 2331 nmask); 2332 if (folio) { 2333 VM_BUG_ON(!h->resv_huge_pages); 2334 h->resv_huge_pages--; 2335 } 2336 2337 spin_unlock_irq(&hugetlb_lock); 2338 return folio; 2339 } 2340 2341 /* folio migration callback function */ 2342 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid, 2343 nodemask_t *nmask, gfp_t gfp_mask, bool allow_alloc_fallback) 2344 { 2345 spin_lock_irq(&hugetlb_lock); 2346 if (available_huge_pages(h)) { 2347 struct folio *folio; 2348 2349 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, 2350 preferred_nid, nmask); 2351 if (folio) { 2352 spin_unlock_irq(&hugetlb_lock); 2353 return folio; 2354 } 2355 } 2356 spin_unlock_irq(&hugetlb_lock); 2357 2358 /* We cannot fallback to other nodes, as we could break the per-node pool. */ 2359 if (!allow_alloc_fallback) 2360 gfp_mask |= __GFP_THISNODE; 2361 2362 return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask); 2363 } 2364 2365 static nodemask_t *policy_mbind_nodemask(gfp_t gfp) 2366 { 2367 #ifdef CONFIG_NUMA 2368 struct mempolicy *mpol = get_task_policy(current); 2369 2370 /* 2371 * Only enforce MPOL_BIND policy which overlaps with cpuset policy 2372 * (from policy_nodemask) specifically for hugetlb case 2373 */ 2374 if (mpol->mode == MPOL_BIND && 2375 (apply_policy_zone(mpol, gfp_zone(gfp)) && 2376 cpuset_nodemask_valid_mems_allowed(&mpol->nodes))) 2377 return &mpol->nodes; 2378 #endif 2379 return NULL; 2380 } 2381 2382 /* 2383 * Increase the hugetlb pool such that it can accommodate a reservation 2384 * of size 'delta'. 2385 */ 2386 static int gather_surplus_pages(struct hstate *h, long delta) 2387 __must_hold(&hugetlb_lock) 2388 { 2389 LIST_HEAD(surplus_list); 2390 struct folio *folio, *tmp; 2391 int ret; 2392 long i; 2393 long needed, allocated; 2394 bool alloc_ok = true; 2395 int node; 2396 nodemask_t *mbind_nodemask, alloc_nodemask; 2397 2398 mbind_nodemask = policy_mbind_nodemask(htlb_alloc_mask(h)); 2399 if (mbind_nodemask) 2400 nodes_and(alloc_nodemask, *mbind_nodemask, cpuset_current_mems_allowed); 2401 else 2402 alloc_nodemask = cpuset_current_mems_allowed; 2403 2404 lockdep_assert_held(&hugetlb_lock); 2405 needed = (h->resv_huge_pages + delta) - h->free_huge_pages; 2406 if (needed <= 0) { 2407 h->resv_huge_pages += delta; 2408 return 0; 2409 } 2410 2411 allocated = 0; 2412 2413 ret = -ENOMEM; 2414 retry: 2415 spin_unlock_irq(&hugetlb_lock); 2416 for (i = 0; i < needed; i++) { 2417 folio = NULL; 2418 2419 /* Prioritize current node */ 2420 if (node_isset(numa_mem_id(), alloc_nodemask)) 2421 folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h), 2422 numa_mem_id(), NULL); 2423 2424 if (!folio) { 2425 for_each_node_mask(node, alloc_nodemask) { 2426 if (node == numa_mem_id()) 2427 continue; 2428 folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h), 2429 node, NULL); 2430 if (folio) 2431 break; 2432 } 2433 } 2434 if (!folio) { 2435 alloc_ok = false; 2436 break; 2437 } 2438 list_add(&folio->lru, &surplus_list); 2439 cond_resched(); 2440 } 2441 allocated += i; 2442 2443 /* 2444 * After retaking hugetlb_lock, we need to recalculate 'needed' 2445 * because either resv_huge_pages or free_huge_pages may have changed. 2446 */ 2447 spin_lock_irq(&hugetlb_lock); 2448 needed = (h->resv_huge_pages + delta) - 2449 (h->free_huge_pages + allocated); 2450 if (needed > 0) { 2451 if (alloc_ok) 2452 goto retry; 2453 /* 2454 * We were not able to allocate enough pages to 2455 * satisfy the entire reservation so we free what 2456 * we've allocated so far. 2457 */ 2458 goto free; 2459 } 2460 /* 2461 * The surplus_list now contains _at_least_ the number of extra pages 2462 * needed to accommodate the reservation. Add the appropriate number 2463 * of pages to the hugetlb pool and free the extras back to the buddy 2464 * allocator. Commit the entire reservation here to prevent another 2465 * process from stealing the pages as they are added to the pool but 2466 * before they are reserved. 2467 */ 2468 needed += allocated; 2469 h->resv_huge_pages += delta; 2470 ret = 0; 2471 2472 /* Free the needed pages to the hugetlb pool */ 2473 list_for_each_entry_safe(folio, tmp, &surplus_list, lru) { 2474 if ((--needed) < 0) 2475 break; 2476 /* Add the page to the hugetlb allocator */ 2477 enqueue_hugetlb_folio(h, folio); 2478 } 2479 free: 2480 spin_unlock_irq(&hugetlb_lock); 2481 2482 /* 2483 * Free unnecessary surplus pages to the buddy allocator. 2484 * Pages have no ref count, call free_huge_folio directly. 2485 */ 2486 list_for_each_entry_safe(folio, tmp, &surplus_list, lru) 2487 free_huge_folio(folio); 2488 spin_lock_irq(&hugetlb_lock); 2489 2490 return ret; 2491 } 2492 2493 /* 2494 * This routine has two main purposes: 2495 * 1) Decrement the reservation count (resv_huge_pages) by the value passed 2496 * in unused_resv_pages. This corresponds to the prior adjustments made 2497 * to the associated reservation map. 2498 * 2) Free any unused surplus pages that may have been allocated to satisfy 2499 * the reservation. As many as unused_resv_pages may be freed. 2500 */ 2501 static void return_unused_surplus_pages(struct hstate *h, 2502 unsigned long unused_resv_pages) 2503 { 2504 unsigned long nr_pages; 2505 LIST_HEAD(page_list); 2506 2507 lockdep_assert_held(&hugetlb_lock); 2508 /* Uncommit the reservation */ 2509 h->resv_huge_pages -= unused_resv_pages; 2510 2511 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 2512 goto out; 2513 2514 /* 2515 * Part (or even all) of the reservation could have been backed 2516 * by pre-allocated pages. Only free surplus pages. 2517 */ 2518 nr_pages = min(unused_resv_pages, h->surplus_huge_pages); 2519 2520 /* 2521 * We want to release as many surplus pages as possible, spread 2522 * evenly across all nodes with memory. Iterate across these nodes 2523 * until we can no longer free unreserved surplus pages. This occurs 2524 * when the nodes with surplus pages have no free pages. 2525 * remove_pool_hugetlb_folio() will balance the freed pages across the 2526 * on-line nodes with memory and will handle the hstate accounting. 2527 */ 2528 while (nr_pages--) { 2529 struct folio *folio; 2530 2531 folio = remove_pool_hugetlb_folio(h, &node_states[N_MEMORY], 1); 2532 if (!folio) 2533 goto out; 2534 2535 list_add(&folio->lru, &page_list); 2536 } 2537 2538 out: 2539 spin_unlock_irq(&hugetlb_lock); 2540 update_and_free_pages_bulk(h, &page_list); 2541 spin_lock_irq(&hugetlb_lock); 2542 } 2543 2544 2545 /* 2546 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation 2547 * are used by the huge page allocation routines to manage reservations. 2548 * 2549 * vma_needs_reservation is called to determine if the huge page at addr 2550 * within the vma has an associated reservation. If a reservation is 2551 * needed, the value 1 is returned. The caller is then responsible for 2552 * managing the global reservation and subpool usage counts. After 2553 * the huge page has been allocated, vma_commit_reservation is called 2554 * to add the page to the reservation map. If the page allocation fails, 2555 * the reservation must be ended instead of committed. vma_end_reservation 2556 * is called in such cases. 2557 * 2558 * In the normal case, vma_commit_reservation returns the same value 2559 * as the preceding vma_needs_reservation call. The only time this 2560 * is not the case is if a reserve map was changed between calls. It 2561 * is the responsibility of the caller to notice the difference and 2562 * take appropriate action. 2563 * 2564 * vma_add_reservation is used in error paths where a reservation must 2565 * be restored when a newly allocated huge page must be freed. It is 2566 * to be called after calling vma_needs_reservation to determine if a 2567 * reservation exists. 2568 * 2569 * vma_del_reservation is used in error paths where an entry in the reserve 2570 * map was created during huge page allocation and must be removed. It is to 2571 * be called after calling vma_needs_reservation to determine if a reservation 2572 * exists. 2573 */ 2574 enum vma_resv_mode { 2575 VMA_NEEDS_RESV, 2576 VMA_COMMIT_RESV, 2577 VMA_END_RESV, 2578 VMA_ADD_RESV, 2579 VMA_DEL_RESV, 2580 }; 2581 static long __vma_reservation_common(struct hstate *h, 2582 struct vm_area_struct *vma, unsigned long addr, 2583 enum vma_resv_mode mode) 2584 { 2585 struct resv_map *resv; 2586 pgoff_t idx; 2587 long ret; 2588 long dummy_out_regions_needed; 2589 2590 resv = vma_resv_map(vma); 2591 if (!resv) 2592 return 1; 2593 2594 idx = vma_hugecache_offset(h, vma, addr); 2595 switch (mode) { 2596 case VMA_NEEDS_RESV: 2597 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed); 2598 /* We assume that vma_reservation_* routines always operate on 2599 * 1 page, and that adding to resv map a 1 page entry can only 2600 * ever require 1 region. 2601 */ 2602 VM_BUG_ON(dummy_out_regions_needed != 1); 2603 break; 2604 case VMA_COMMIT_RESV: 2605 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2606 /* region_add calls of range 1 should never fail. */ 2607 VM_BUG_ON(ret < 0); 2608 break; 2609 case VMA_END_RESV: 2610 region_abort(resv, idx, idx + 1, 1); 2611 ret = 0; 2612 break; 2613 case VMA_ADD_RESV: 2614 if (vma->vm_flags & VM_MAYSHARE) { 2615 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2616 /* region_add calls of range 1 should never fail. */ 2617 VM_BUG_ON(ret < 0); 2618 } else { 2619 region_abort(resv, idx, idx + 1, 1); 2620 ret = region_del(resv, idx, idx + 1); 2621 } 2622 break; 2623 case VMA_DEL_RESV: 2624 if (vma->vm_flags & VM_MAYSHARE) { 2625 region_abort(resv, idx, idx + 1, 1); 2626 ret = region_del(resv, idx, idx + 1); 2627 } else { 2628 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2629 /* region_add calls of range 1 should never fail. */ 2630 VM_BUG_ON(ret < 0); 2631 } 2632 break; 2633 default: 2634 BUG(); 2635 } 2636 2637 if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV) 2638 return ret; 2639 /* 2640 * We know private mapping must have HPAGE_RESV_OWNER set. 2641 * 2642 * In most cases, reserves always exist for private mappings. 2643 * However, a file associated with mapping could have been 2644 * hole punched or truncated after reserves were consumed. 2645 * As subsequent fault on such a range will not use reserves. 2646 * Subtle - The reserve map for private mappings has the 2647 * opposite meaning than that of shared mappings. If NO 2648 * entry is in the reserve map, it means a reservation exists. 2649 * If an entry exists in the reserve map, it means the 2650 * reservation has already been consumed. As a result, the 2651 * return value of this routine is the opposite of the 2652 * value returned from reserve map manipulation routines above. 2653 */ 2654 if (ret > 0) 2655 return 0; 2656 if (ret == 0) 2657 return 1; 2658 return ret; 2659 } 2660 2661 static long vma_needs_reservation(struct hstate *h, 2662 struct vm_area_struct *vma, unsigned long addr) 2663 { 2664 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV); 2665 } 2666 2667 static long vma_commit_reservation(struct hstate *h, 2668 struct vm_area_struct *vma, unsigned long addr) 2669 { 2670 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV); 2671 } 2672 2673 static void vma_end_reservation(struct hstate *h, 2674 struct vm_area_struct *vma, unsigned long addr) 2675 { 2676 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV); 2677 } 2678 2679 static long vma_add_reservation(struct hstate *h, 2680 struct vm_area_struct *vma, unsigned long addr) 2681 { 2682 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV); 2683 } 2684 2685 static long vma_del_reservation(struct hstate *h, 2686 struct vm_area_struct *vma, unsigned long addr) 2687 { 2688 return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV); 2689 } 2690 2691 /* 2692 * This routine is called to restore reservation information on error paths. 2693 * It should ONLY be called for folios allocated via alloc_hugetlb_folio(), 2694 * and the hugetlb mutex should remain held when calling this routine. 2695 * 2696 * It handles two specific cases: 2697 * 1) A reservation was in place and the folio consumed the reservation. 2698 * hugetlb_restore_reserve is set in the folio. 2699 * 2) No reservation was in place for the page, so hugetlb_restore_reserve is 2700 * not set. However, alloc_hugetlb_folio always updates the reserve map. 2701 * 2702 * In case 1, free_huge_folio later in the error path will increment the 2703 * global reserve count. But, free_huge_folio does not have enough context 2704 * to adjust the reservation map. This case deals primarily with private 2705 * mappings. Adjust the reserve map here to be consistent with global 2706 * reserve count adjustments to be made by free_huge_folio. Make sure the 2707 * reserve map indicates there is a reservation present. 2708 * 2709 * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio. 2710 */ 2711 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma, 2712 unsigned long address, struct folio *folio) 2713 { 2714 long rc = vma_needs_reservation(h, vma, address); 2715 2716 if (folio_test_hugetlb_restore_reserve(folio)) { 2717 if (unlikely(rc < 0)) 2718 /* 2719 * Rare out of memory condition in reserve map 2720 * manipulation. Clear hugetlb_restore_reserve so 2721 * that global reserve count will not be incremented 2722 * by free_huge_folio. This will make it appear 2723 * as though the reservation for this folio was 2724 * consumed. This may prevent the task from 2725 * faulting in the folio at a later time. This 2726 * is better than inconsistent global huge page 2727 * accounting of reserve counts. 2728 */ 2729 folio_clear_hugetlb_restore_reserve(folio); 2730 else if (rc) 2731 (void)vma_add_reservation(h, vma, address); 2732 else 2733 vma_end_reservation(h, vma, address); 2734 } else { 2735 if (!rc) { 2736 /* 2737 * This indicates there is an entry in the reserve map 2738 * not added by alloc_hugetlb_folio. We know it was added 2739 * before the alloc_hugetlb_folio call, otherwise 2740 * hugetlb_restore_reserve would be set on the folio. 2741 * Remove the entry so that a subsequent allocation 2742 * does not consume a reservation. 2743 */ 2744 rc = vma_del_reservation(h, vma, address); 2745 if (rc < 0) 2746 /* 2747 * VERY rare out of memory condition. Since 2748 * we can not delete the entry, set 2749 * hugetlb_restore_reserve so that the reserve 2750 * count will be incremented when the folio 2751 * is freed. This reserve will be consumed 2752 * on a subsequent allocation. 2753 */ 2754 folio_set_hugetlb_restore_reserve(folio); 2755 } else if (rc < 0) { 2756 /* 2757 * Rare out of memory condition from 2758 * vma_needs_reservation call. Memory allocation is 2759 * only attempted if a new entry is needed. Therefore, 2760 * this implies there is not an entry in the 2761 * reserve map. 2762 * 2763 * For shared mappings, no entry in the map indicates 2764 * no reservation. We are done. 2765 */ 2766 if (!(vma->vm_flags & VM_MAYSHARE)) 2767 /* 2768 * For private mappings, no entry indicates 2769 * a reservation is present. Since we can 2770 * not add an entry, set hugetlb_restore_reserve 2771 * on the folio so reserve count will be 2772 * incremented when freed. This reserve will 2773 * be consumed on a subsequent allocation. 2774 */ 2775 folio_set_hugetlb_restore_reserve(folio); 2776 } else 2777 /* 2778 * No reservation present, do nothing 2779 */ 2780 vma_end_reservation(h, vma, address); 2781 } 2782 } 2783 2784 /* 2785 * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve 2786 * the old one 2787 * @h: struct hstate old page belongs to 2788 * @old_folio: Old folio to dissolve 2789 * @list: List to isolate the page in case we need to 2790 * Returns 0 on success, otherwise negated error. 2791 */ 2792 static int alloc_and_dissolve_hugetlb_folio(struct hstate *h, 2793 struct folio *old_folio, struct list_head *list) 2794 { 2795 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 2796 int nid = folio_nid(old_folio); 2797 struct folio *new_folio = NULL; 2798 int ret = 0; 2799 2800 retry: 2801 spin_lock_irq(&hugetlb_lock); 2802 if (!folio_test_hugetlb(old_folio)) { 2803 /* 2804 * Freed from under us. Drop new_folio too. 2805 */ 2806 goto free_new; 2807 } else if (folio_ref_count(old_folio)) { 2808 bool isolated; 2809 2810 /* 2811 * Someone has grabbed the folio, try to isolate it here. 2812 * Fail with -EBUSY if not possible. 2813 */ 2814 spin_unlock_irq(&hugetlb_lock); 2815 isolated = folio_isolate_hugetlb(old_folio, list); 2816 ret = isolated ? 0 : -EBUSY; 2817 spin_lock_irq(&hugetlb_lock); 2818 goto free_new; 2819 } else if (!folio_test_hugetlb_freed(old_folio)) { 2820 /* 2821 * Folio's refcount is 0 but it has not been enqueued in the 2822 * freelist yet. Race window is small, so we can succeed here if 2823 * we retry. 2824 */ 2825 spin_unlock_irq(&hugetlb_lock); 2826 cond_resched(); 2827 goto retry; 2828 } else { 2829 if (!new_folio) { 2830 spin_unlock_irq(&hugetlb_lock); 2831 new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, 2832 NULL, NULL); 2833 if (!new_folio) 2834 return -ENOMEM; 2835 __prep_new_hugetlb_folio(h, new_folio); 2836 goto retry; 2837 } 2838 2839 /* 2840 * Ok, old_folio is still a genuine free hugepage. Remove it from 2841 * the freelist and decrease the counters. These will be 2842 * incremented again when calling __prep_account_new_huge_page() 2843 * and enqueue_hugetlb_folio() for new_folio. The counters will 2844 * remain stable since this happens under the lock. 2845 */ 2846 remove_hugetlb_folio(h, old_folio, false); 2847 2848 /* 2849 * Ref count on new_folio is already zero as it was dropped 2850 * earlier. It can be directly added to the pool free list. 2851 */ 2852 __prep_account_new_huge_page(h, nid); 2853 enqueue_hugetlb_folio(h, new_folio); 2854 2855 /* 2856 * Folio has been replaced, we can safely free the old one. 2857 */ 2858 spin_unlock_irq(&hugetlb_lock); 2859 update_and_free_hugetlb_folio(h, old_folio, false); 2860 } 2861 2862 return ret; 2863 2864 free_new: 2865 spin_unlock_irq(&hugetlb_lock); 2866 if (new_folio) 2867 update_and_free_hugetlb_folio(h, new_folio, false); 2868 2869 return ret; 2870 } 2871 2872 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list) 2873 { 2874 struct hstate *h; 2875 struct folio *folio = page_folio(page); 2876 int ret = -EBUSY; 2877 2878 /* 2879 * The page might have been dissolved from under our feet, so make sure 2880 * to carefully check the state under the lock. 2881 * Return success when racing as if we dissolved the page ourselves. 2882 */ 2883 spin_lock_irq(&hugetlb_lock); 2884 if (folio_test_hugetlb(folio)) { 2885 h = folio_hstate(folio); 2886 } else { 2887 spin_unlock_irq(&hugetlb_lock); 2888 return 0; 2889 } 2890 spin_unlock_irq(&hugetlb_lock); 2891 2892 /* 2893 * Fence off gigantic pages as there is a cyclic dependency between 2894 * alloc_contig_range and them. Return -ENOMEM as this has the effect 2895 * of bailing out right away without further retrying. 2896 */ 2897 if (hstate_is_gigantic(h)) 2898 return -ENOMEM; 2899 2900 if (folio_ref_count(folio) && folio_isolate_hugetlb(folio, list)) 2901 ret = 0; 2902 else if (!folio_ref_count(folio)) 2903 ret = alloc_and_dissolve_hugetlb_folio(h, folio, list); 2904 2905 return ret; 2906 } 2907 2908 /* 2909 * replace_free_hugepage_folios - Replace free hugepage folios in a given pfn 2910 * range with new folios. 2911 * @start_pfn: start pfn of the given pfn range 2912 * @end_pfn: end pfn of the given pfn range 2913 * Returns 0 on success, otherwise negated error. 2914 */ 2915 int replace_free_hugepage_folios(unsigned long start_pfn, unsigned long end_pfn) 2916 { 2917 struct hstate *h; 2918 struct folio *folio; 2919 int ret = 0; 2920 2921 LIST_HEAD(isolate_list); 2922 2923 while (start_pfn < end_pfn) { 2924 folio = pfn_folio(start_pfn); 2925 if (folio_test_hugetlb(folio)) { 2926 h = folio_hstate(folio); 2927 } else { 2928 start_pfn++; 2929 continue; 2930 } 2931 2932 if (!folio_ref_count(folio)) { 2933 ret = alloc_and_dissolve_hugetlb_folio(h, folio, 2934 &isolate_list); 2935 if (ret) 2936 break; 2937 2938 putback_movable_pages(&isolate_list); 2939 } 2940 start_pfn++; 2941 } 2942 2943 return ret; 2944 } 2945 2946 typedef enum { 2947 /* 2948 * For either 0/1: we checked the per-vma resv map, and one resv 2949 * count either can be reused (0), or an extra needed (1). 2950 */ 2951 MAP_CHG_REUSE = 0, 2952 MAP_CHG_NEEDED = 1, 2953 /* 2954 * Cannot use per-vma resv count can be used, hence a new resv 2955 * count is enforced. 2956 * 2957 * NOTE: This is mostly identical to MAP_CHG_NEEDED, except 2958 * that currently vma_needs_reservation() has an unwanted side 2959 * effect to either use end() or commit() to complete the 2960 * transaction. Hence it needs to differenciate from NEEDED. 2961 */ 2962 MAP_CHG_ENFORCED = 2, 2963 } map_chg_state; 2964 2965 /* 2966 * NOTE! "cow_from_owner" represents a very hacky usage only used in CoW 2967 * faults of hugetlb private mappings on top of a non-page-cache folio (in 2968 * which case even if there's a private vma resv map it won't cover such 2969 * allocation). New call sites should (probably) never set it to true!! 2970 * When it's set, the allocation will bypass all vma level reservations. 2971 */ 2972 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma, 2973 unsigned long addr, bool cow_from_owner) 2974 { 2975 struct hugepage_subpool *spool = subpool_vma(vma); 2976 struct hstate *h = hstate_vma(vma); 2977 struct folio *folio; 2978 long retval, gbl_chg; 2979 map_chg_state map_chg; 2980 int ret, idx; 2981 struct hugetlb_cgroup *h_cg = NULL; 2982 gfp_t gfp = htlb_alloc_mask(h) | __GFP_RETRY_MAYFAIL; 2983 2984 idx = hstate_index(h); 2985 2986 /* Whether we need a separate per-vma reservation? */ 2987 if (cow_from_owner) { 2988 /* 2989 * Special case! Since it's a CoW on top of a reserved 2990 * page, the private resv map doesn't count. So it cannot 2991 * consume the per-vma resv map even if it's reserved. 2992 */ 2993 map_chg = MAP_CHG_ENFORCED; 2994 } else { 2995 /* 2996 * Examine the region/reserve map to determine if the process 2997 * has a reservation for the page to be allocated. A return 2998 * code of zero indicates a reservation exists (no change). 2999 */ 3000 retval = vma_needs_reservation(h, vma, addr); 3001 if (retval < 0) 3002 return ERR_PTR(-ENOMEM); 3003 map_chg = retval ? MAP_CHG_NEEDED : MAP_CHG_REUSE; 3004 } 3005 3006 /* 3007 * Whether we need a separate global reservation? 3008 * 3009 * Processes that did not create the mapping will have no 3010 * reserves as indicated by the region/reserve map. Check 3011 * that the allocation will not exceed the subpool limit. 3012 * Or if it can get one from the pool reservation directly. 3013 */ 3014 if (map_chg) { 3015 gbl_chg = hugepage_subpool_get_pages(spool, 1); 3016 if (gbl_chg < 0) 3017 goto out_end_reservation; 3018 } else { 3019 /* 3020 * If we have the vma reservation ready, no need for extra 3021 * global reservation. 3022 */ 3023 gbl_chg = 0; 3024 } 3025 3026 /* 3027 * If this allocation is not consuming a per-vma reservation, 3028 * charge the hugetlb cgroup now. 3029 */ 3030 if (map_chg) { 3031 ret = hugetlb_cgroup_charge_cgroup_rsvd( 3032 idx, pages_per_huge_page(h), &h_cg); 3033 if (ret) 3034 goto out_subpool_put; 3035 } 3036 3037 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg); 3038 if (ret) 3039 goto out_uncharge_cgroup_reservation; 3040 3041 spin_lock_irq(&hugetlb_lock); 3042 /* 3043 * glb_chg is passed to indicate whether or not a page must be taken 3044 * from the global free pool (global change). gbl_chg == 0 indicates 3045 * a reservation exists for the allocation. 3046 */ 3047 folio = dequeue_hugetlb_folio_vma(h, vma, addr, gbl_chg); 3048 if (!folio) { 3049 spin_unlock_irq(&hugetlb_lock); 3050 folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr); 3051 if (!folio) 3052 goto out_uncharge_cgroup; 3053 spin_lock_irq(&hugetlb_lock); 3054 list_add(&folio->lru, &h->hugepage_activelist); 3055 folio_ref_unfreeze(folio, 1); 3056 /* Fall through */ 3057 } 3058 3059 /* 3060 * Either dequeued or buddy-allocated folio needs to add special 3061 * mark to the folio when it consumes a global reservation. 3062 */ 3063 if (!gbl_chg) { 3064 folio_set_hugetlb_restore_reserve(folio); 3065 h->resv_huge_pages--; 3066 } 3067 3068 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio); 3069 /* If allocation is not consuming a reservation, also store the 3070 * hugetlb_cgroup pointer on the page. 3071 */ 3072 if (map_chg) { 3073 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h), 3074 h_cg, folio); 3075 } 3076 3077 spin_unlock_irq(&hugetlb_lock); 3078 3079 hugetlb_set_folio_subpool(folio, spool); 3080 3081 if (map_chg != MAP_CHG_ENFORCED) { 3082 /* commit() is only needed if the map_chg is not enforced */ 3083 retval = vma_commit_reservation(h, vma, addr); 3084 /* 3085 * Check for possible race conditions. When it happens.. 3086 * The page was added to the reservation map between 3087 * vma_needs_reservation and vma_commit_reservation. 3088 * This indicates a race with hugetlb_reserve_pages. 3089 * Adjust for the subpool count incremented above AND 3090 * in hugetlb_reserve_pages for the same page. Also, 3091 * the reservation count added in hugetlb_reserve_pages 3092 * no longer applies. 3093 */ 3094 if (unlikely(map_chg == MAP_CHG_NEEDED && retval == 0)) { 3095 long rsv_adjust; 3096 3097 rsv_adjust = hugepage_subpool_put_pages(spool, 1); 3098 hugetlb_acct_memory(h, -rsv_adjust); 3099 if (map_chg) { 3100 spin_lock_irq(&hugetlb_lock); 3101 hugetlb_cgroup_uncharge_folio_rsvd( 3102 hstate_index(h), pages_per_huge_page(h), 3103 folio); 3104 spin_unlock_irq(&hugetlb_lock); 3105 } 3106 } 3107 } 3108 3109 ret = mem_cgroup_charge_hugetlb(folio, gfp); 3110 /* 3111 * Unconditionally increment NR_HUGETLB here. If it turns out that 3112 * mem_cgroup_charge_hugetlb failed, then immediately free the page and 3113 * decrement NR_HUGETLB. 3114 */ 3115 lruvec_stat_mod_folio(folio, NR_HUGETLB, pages_per_huge_page(h)); 3116 3117 if (ret == -ENOMEM) { 3118 free_huge_folio(folio); 3119 return ERR_PTR(-ENOMEM); 3120 } 3121 3122 return folio; 3123 3124 out_uncharge_cgroup: 3125 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg); 3126 out_uncharge_cgroup_reservation: 3127 if (map_chg) 3128 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h), 3129 h_cg); 3130 out_subpool_put: 3131 if (map_chg) 3132 hugepage_subpool_put_pages(spool, 1); 3133 out_end_reservation: 3134 if (map_chg != MAP_CHG_ENFORCED) 3135 vma_end_reservation(h, vma, addr); 3136 return ERR_PTR(-ENOSPC); 3137 } 3138 3139 int alloc_bootmem_huge_page(struct hstate *h, int nid) 3140 __attribute__ ((weak, alias("__alloc_bootmem_huge_page"))); 3141 int __alloc_bootmem_huge_page(struct hstate *h, int nid) 3142 { 3143 struct huge_bootmem_page *m = NULL; /* initialize for clang */ 3144 int nr_nodes, node = nid; 3145 3146 /* do node specific alloc */ 3147 if (nid != NUMA_NO_NODE) { 3148 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h), 3149 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid); 3150 if (!m) 3151 return 0; 3152 goto found; 3153 } 3154 /* allocate from next node when distributing huge pages */ 3155 for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, &node_states[N_MEMORY]) { 3156 m = memblock_alloc_try_nid_raw( 3157 huge_page_size(h), huge_page_size(h), 3158 0, MEMBLOCK_ALLOC_ACCESSIBLE, node); 3159 /* 3160 * Use the beginning of the huge page to store the 3161 * huge_bootmem_page struct (until gather_bootmem 3162 * puts them into the mem_map). 3163 */ 3164 if (!m) 3165 return 0; 3166 goto found; 3167 } 3168 3169 found: 3170 3171 /* 3172 * Only initialize the head struct page in memmap_init_reserved_pages, 3173 * rest of the struct pages will be initialized by the HugeTLB 3174 * subsystem itself. 3175 * The head struct page is used to get folio information by the HugeTLB 3176 * subsystem like zone id and node id. 3177 */ 3178 memblock_reserved_mark_noinit(virt_to_phys((void *)m + PAGE_SIZE), 3179 huge_page_size(h) - PAGE_SIZE); 3180 /* Put them into a private list first because mem_map is not up yet */ 3181 INIT_LIST_HEAD(&m->list); 3182 list_add(&m->list, &huge_boot_pages[node]); 3183 m->hstate = h; 3184 return 1; 3185 } 3186 3187 /* Initialize [start_page:end_page_number] tail struct pages of a hugepage */ 3188 static void __init hugetlb_folio_init_tail_vmemmap(struct folio *folio, 3189 unsigned long start_page_number, 3190 unsigned long end_page_number) 3191 { 3192 enum zone_type zone = zone_idx(folio_zone(folio)); 3193 int nid = folio_nid(folio); 3194 unsigned long head_pfn = folio_pfn(folio); 3195 unsigned long pfn, end_pfn = head_pfn + end_page_number; 3196 int ret; 3197 3198 for (pfn = head_pfn + start_page_number; pfn < end_pfn; pfn++) { 3199 struct page *page = pfn_to_page(pfn); 3200 3201 __ClearPageReserved(folio_page(folio, pfn - head_pfn)); 3202 __init_single_page(page, pfn, zone, nid); 3203 prep_compound_tail((struct page *)folio, pfn - head_pfn); 3204 ret = page_ref_freeze(page, 1); 3205 VM_BUG_ON(!ret); 3206 } 3207 } 3208 3209 static void __init hugetlb_folio_init_vmemmap(struct folio *folio, 3210 struct hstate *h, 3211 unsigned long nr_pages) 3212 { 3213 int ret; 3214 3215 /* Prepare folio head */ 3216 __folio_clear_reserved(folio); 3217 __folio_set_head(folio); 3218 ret = folio_ref_freeze(folio, 1); 3219 VM_BUG_ON(!ret); 3220 /* Initialize the necessary tail struct pages */ 3221 hugetlb_folio_init_tail_vmemmap(folio, 1, nr_pages); 3222 prep_compound_head((struct page *)folio, huge_page_order(h)); 3223 } 3224 3225 static void __init prep_and_add_bootmem_folios(struct hstate *h, 3226 struct list_head *folio_list) 3227 { 3228 unsigned long flags; 3229 struct folio *folio, *tmp_f; 3230 3231 /* Send list for bulk vmemmap optimization processing */ 3232 hugetlb_vmemmap_optimize_folios(h, folio_list); 3233 3234 list_for_each_entry_safe(folio, tmp_f, folio_list, lru) { 3235 if (!folio_test_hugetlb_vmemmap_optimized(folio)) { 3236 /* 3237 * If HVO fails, initialize all tail struct pages 3238 * We do not worry about potential long lock hold 3239 * time as this is early in boot and there should 3240 * be no contention. 3241 */ 3242 hugetlb_folio_init_tail_vmemmap(folio, 3243 HUGETLB_VMEMMAP_RESERVE_PAGES, 3244 pages_per_huge_page(h)); 3245 } 3246 /* Subdivide locks to achieve better parallel performance */ 3247 spin_lock_irqsave(&hugetlb_lock, flags); 3248 __prep_account_new_huge_page(h, folio_nid(folio)); 3249 enqueue_hugetlb_folio(h, folio); 3250 spin_unlock_irqrestore(&hugetlb_lock, flags); 3251 } 3252 } 3253 3254 /* 3255 * Put bootmem huge pages into the standard lists after mem_map is up. 3256 * Note: This only applies to gigantic (order > MAX_PAGE_ORDER) pages. 3257 */ 3258 static void __init gather_bootmem_prealloc_node(unsigned long nid) 3259 { 3260 LIST_HEAD(folio_list); 3261 struct huge_bootmem_page *m; 3262 struct hstate *h = NULL, *prev_h = NULL; 3263 3264 list_for_each_entry(m, &huge_boot_pages[nid], list) { 3265 struct page *page = virt_to_page(m); 3266 struct folio *folio = (void *)page; 3267 3268 h = m->hstate; 3269 /* 3270 * It is possible to have multiple huge page sizes (hstates) 3271 * in this list. If so, process each size separately. 3272 */ 3273 if (h != prev_h && prev_h != NULL) 3274 prep_and_add_bootmem_folios(prev_h, &folio_list); 3275 prev_h = h; 3276 3277 VM_BUG_ON(!hstate_is_gigantic(h)); 3278 WARN_ON(folio_ref_count(folio) != 1); 3279 3280 hugetlb_folio_init_vmemmap(folio, h, 3281 HUGETLB_VMEMMAP_RESERVE_PAGES); 3282 init_new_hugetlb_folio(h, folio); 3283 list_add(&folio->lru, &folio_list); 3284 3285 /* 3286 * We need to restore the 'stolen' pages to totalram_pages 3287 * in order to fix confusing memory reports from free(1) and 3288 * other side-effects, like CommitLimit going negative. 3289 */ 3290 adjust_managed_page_count(page, pages_per_huge_page(h)); 3291 cond_resched(); 3292 } 3293 3294 prep_and_add_bootmem_folios(h, &folio_list); 3295 } 3296 3297 static void __init gather_bootmem_prealloc_parallel(unsigned long start, 3298 unsigned long end, void *arg) 3299 { 3300 int nid; 3301 3302 for (nid = start; nid < end; nid++) 3303 gather_bootmem_prealloc_node(nid); 3304 } 3305 3306 static void __init gather_bootmem_prealloc(void) 3307 { 3308 struct padata_mt_job job = { 3309 .thread_fn = gather_bootmem_prealloc_parallel, 3310 .fn_arg = NULL, 3311 .start = 0, 3312 .size = nr_node_ids, 3313 .align = 1, 3314 .min_chunk = 1, 3315 .max_threads = num_node_state(N_MEMORY), 3316 .numa_aware = true, 3317 }; 3318 3319 padata_do_multithreaded(&job); 3320 } 3321 3322 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid) 3323 { 3324 unsigned long i; 3325 char buf[32]; 3326 LIST_HEAD(folio_list); 3327 3328 for (i = 0; i < h->max_huge_pages_node[nid]; ++i) { 3329 if (hstate_is_gigantic(h)) { 3330 if (!alloc_bootmem_huge_page(h, nid)) 3331 break; 3332 } else { 3333 struct folio *folio; 3334 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 3335 3336 folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, nid, 3337 &node_states[N_MEMORY], NULL); 3338 if (!folio) 3339 break; 3340 list_add(&folio->lru, &folio_list); 3341 } 3342 cond_resched(); 3343 } 3344 3345 if (!list_empty(&folio_list)) 3346 prep_and_add_allocated_folios(h, &folio_list); 3347 3348 if (i == h->max_huge_pages_node[nid]) 3349 return; 3350 3351 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3352 pr_warn("HugeTLB: allocating %u of page size %s failed node%d. Only allocated %lu hugepages.\n", 3353 h->max_huge_pages_node[nid], buf, nid, i); 3354 h->max_huge_pages -= (h->max_huge_pages_node[nid] - i); 3355 h->max_huge_pages_node[nid] = i; 3356 } 3357 3358 static bool __init hugetlb_hstate_alloc_pages_specific_nodes(struct hstate *h) 3359 { 3360 int i; 3361 bool node_specific_alloc = false; 3362 3363 for_each_online_node(i) { 3364 if (h->max_huge_pages_node[i] > 0) { 3365 hugetlb_hstate_alloc_pages_onenode(h, i); 3366 node_specific_alloc = true; 3367 } 3368 } 3369 3370 return node_specific_alloc; 3371 } 3372 3373 static void __init hugetlb_hstate_alloc_pages_errcheck(unsigned long allocated, struct hstate *h) 3374 { 3375 if (allocated < h->max_huge_pages) { 3376 char buf[32]; 3377 3378 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3379 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n", 3380 h->max_huge_pages, buf, allocated); 3381 h->max_huge_pages = allocated; 3382 } 3383 } 3384 3385 static void __init hugetlb_pages_alloc_boot_node(unsigned long start, unsigned long end, void *arg) 3386 { 3387 struct hstate *h = (struct hstate *)arg; 3388 int i, num = end - start; 3389 nodemask_t node_alloc_noretry; 3390 LIST_HEAD(folio_list); 3391 int next_node = first_online_node; 3392 3393 /* Bit mask controlling how hard we retry per-node allocations.*/ 3394 nodes_clear(node_alloc_noretry); 3395 3396 for (i = 0; i < num; ++i) { 3397 struct folio *folio = alloc_pool_huge_folio(h, &node_states[N_MEMORY], 3398 &node_alloc_noretry, &next_node); 3399 if (!folio) 3400 break; 3401 3402 list_move(&folio->lru, &folio_list); 3403 cond_resched(); 3404 } 3405 3406 prep_and_add_allocated_folios(h, &folio_list); 3407 } 3408 3409 static unsigned long __init hugetlb_gigantic_pages_alloc_boot(struct hstate *h) 3410 { 3411 unsigned long i; 3412 3413 for (i = 0; i < h->max_huge_pages; ++i) { 3414 if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE)) 3415 break; 3416 cond_resched(); 3417 } 3418 3419 return i; 3420 } 3421 3422 static unsigned long __init hugetlb_pages_alloc_boot(struct hstate *h) 3423 { 3424 struct padata_mt_job job = { 3425 .fn_arg = h, 3426 .align = 1, 3427 .numa_aware = true 3428 }; 3429 3430 job.thread_fn = hugetlb_pages_alloc_boot_node; 3431 job.start = 0; 3432 job.size = h->max_huge_pages; 3433 3434 /* 3435 * job.max_threads is twice the num_node_state(N_MEMORY), 3436 * 3437 * Tests below indicate that a multiplier of 2 significantly improves 3438 * performance, and although larger values also provide improvements, 3439 * the gains are marginal. 3440 * 3441 * Therefore, choosing 2 as the multiplier strikes a good balance between 3442 * enhancing parallel processing capabilities and maintaining efficient 3443 * resource management. 3444 * 3445 * +------------+-------+-------+-------+-------+-------+ 3446 * | multiplier | 1 | 2 | 3 | 4 | 5 | 3447 * +------------+-------+-------+-------+-------+-------+ 3448 * | 256G 2node | 358ms | 215ms | 157ms | 134ms | 126ms | 3449 * | 2T 4node | 979ms | 679ms | 543ms | 489ms | 481ms | 3450 * | 50G 2node | 71ms | 44ms | 37ms | 30ms | 31ms | 3451 * +------------+-------+-------+-------+-------+-------+ 3452 */ 3453 job.max_threads = num_node_state(N_MEMORY) * 2; 3454 job.min_chunk = h->max_huge_pages / num_node_state(N_MEMORY) / 2; 3455 padata_do_multithreaded(&job); 3456 3457 return h->nr_huge_pages; 3458 } 3459 3460 /* 3461 * NOTE: this routine is called in different contexts for gigantic and 3462 * non-gigantic pages. 3463 * - For gigantic pages, this is called early in the boot process and 3464 * pages are allocated from memblock allocated or something similar. 3465 * Gigantic pages are actually added to pools later with the routine 3466 * gather_bootmem_prealloc. 3467 * - For non-gigantic pages, this is called later in the boot process after 3468 * all of mm is up and functional. Pages are allocated from buddy and 3469 * then added to hugetlb pools. 3470 */ 3471 static void __init hugetlb_hstate_alloc_pages(struct hstate *h) 3472 { 3473 unsigned long allocated; 3474 static bool initialized __initdata; 3475 3476 /* skip gigantic hugepages allocation if hugetlb_cma enabled */ 3477 if (hstate_is_gigantic(h) && hugetlb_cma_size) { 3478 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n"); 3479 return; 3480 } 3481 3482 /* hugetlb_hstate_alloc_pages will be called many times, initialize huge_boot_pages once */ 3483 if (!initialized) { 3484 int i = 0; 3485 3486 for (i = 0; i < MAX_NUMNODES; i++) 3487 INIT_LIST_HEAD(&huge_boot_pages[i]); 3488 initialized = true; 3489 } 3490 3491 /* do node specific alloc */ 3492 if (hugetlb_hstate_alloc_pages_specific_nodes(h)) 3493 return; 3494 3495 /* below will do all node balanced alloc */ 3496 if (hstate_is_gigantic(h)) 3497 allocated = hugetlb_gigantic_pages_alloc_boot(h); 3498 else 3499 allocated = hugetlb_pages_alloc_boot(h); 3500 3501 hugetlb_hstate_alloc_pages_errcheck(allocated, h); 3502 } 3503 3504 static void __init hugetlb_init_hstates(void) 3505 { 3506 struct hstate *h, *h2; 3507 3508 for_each_hstate(h) { 3509 /* oversize hugepages were init'ed in early boot */ 3510 if (!hstate_is_gigantic(h)) 3511 hugetlb_hstate_alloc_pages(h); 3512 3513 /* 3514 * Set demote order for each hstate. Note that 3515 * h->demote_order is initially 0. 3516 * - We can not demote gigantic pages if runtime freeing 3517 * is not supported, so skip this. 3518 * - If CMA allocation is possible, we can not demote 3519 * HUGETLB_PAGE_ORDER or smaller size pages. 3520 */ 3521 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 3522 continue; 3523 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER) 3524 continue; 3525 for_each_hstate(h2) { 3526 if (h2 == h) 3527 continue; 3528 if (h2->order < h->order && 3529 h2->order > h->demote_order) 3530 h->demote_order = h2->order; 3531 } 3532 } 3533 } 3534 3535 static void __init report_hugepages(void) 3536 { 3537 struct hstate *h; 3538 3539 for_each_hstate(h) { 3540 char buf[32]; 3541 3542 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3543 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n", 3544 buf, h->free_huge_pages); 3545 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n", 3546 hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf); 3547 } 3548 } 3549 3550 #ifdef CONFIG_HIGHMEM 3551 static void try_to_free_low(struct hstate *h, unsigned long count, 3552 nodemask_t *nodes_allowed) 3553 { 3554 int i; 3555 LIST_HEAD(page_list); 3556 3557 lockdep_assert_held(&hugetlb_lock); 3558 if (hstate_is_gigantic(h)) 3559 return; 3560 3561 /* 3562 * Collect pages to be freed on a list, and free after dropping lock 3563 */ 3564 for_each_node_mask(i, *nodes_allowed) { 3565 struct folio *folio, *next; 3566 struct list_head *freel = &h->hugepage_freelists[i]; 3567 list_for_each_entry_safe(folio, next, freel, lru) { 3568 if (count >= h->nr_huge_pages) 3569 goto out; 3570 if (folio_test_highmem(folio)) 3571 continue; 3572 remove_hugetlb_folio(h, folio, false); 3573 list_add(&folio->lru, &page_list); 3574 } 3575 } 3576 3577 out: 3578 spin_unlock_irq(&hugetlb_lock); 3579 update_and_free_pages_bulk(h, &page_list); 3580 spin_lock_irq(&hugetlb_lock); 3581 } 3582 #else 3583 static inline void try_to_free_low(struct hstate *h, unsigned long count, 3584 nodemask_t *nodes_allowed) 3585 { 3586 } 3587 #endif 3588 3589 /* 3590 * Increment or decrement surplus_huge_pages. Keep node-specific counters 3591 * balanced by operating on them in a round-robin fashion. 3592 * Returns 1 if an adjustment was made. 3593 */ 3594 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed, 3595 int delta) 3596 { 3597 int nr_nodes, node; 3598 3599 lockdep_assert_held(&hugetlb_lock); 3600 VM_BUG_ON(delta != -1 && delta != 1); 3601 3602 if (delta < 0) { 3603 for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, nodes_allowed) { 3604 if (h->surplus_huge_pages_node[node]) 3605 goto found; 3606 } 3607 } else { 3608 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 3609 if (h->surplus_huge_pages_node[node] < 3610 h->nr_huge_pages_node[node]) 3611 goto found; 3612 } 3613 } 3614 return 0; 3615 3616 found: 3617 h->surplus_huge_pages += delta; 3618 h->surplus_huge_pages_node[node] += delta; 3619 return 1; 3620 } 3621 3622 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) 3623 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid, 3624 nodemask_t *nodes_allowed) 3625 { 3626 unsigned long min_count; 3627 unsigned long allocated; 3628 struct folio *folio; 3629 LIST_HEAD(page_list); 3630 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL); 3631 3632 /* 3633 * Bit mask controlling how hard we retry per-node allocations. 3634 * If we can not allocate the bit mask, do not attempt to allocate 3635 * the requested huge pages. 3636 */ 3637 if (node_alloc_noretry) 3638 nodes_clear(*node_alloc_noretry); 3639 else 3640 return -ENOMEM; 3641 3642 /* 3643 * resize_lock mutex prevents concurrent adjustments to number of 3644 * pages in hstate via the proc/sysfs interfaces. 3645 */ 3646 mutex_lock(&h->resize_lock); 3647 flush_free_hpage_work(h); 3648 spin_lock_irq(&hugetlb_lock); 3649 3650 /* 3651 * Check for a node specific request. 3652 * Changing node specific huge page count may require a corresponding 3653 * change to the global count. In any case, the passed node mask 3654 * (nodes_allowed) will restrict alloc/free to the specified node. 3655 */ 3656 if (nid != NUMA_NO_NODE) { 3657 unsigned long old_count = count; 3658 3659 count += persistent_huge_pages(h) - 3660 (h->nr_huge_pages_node[nid] - 3661 h->surplus_huge_pages_node[nid]); 3662 /* 3663 * User may have specified a large count value which caused the 3664 * above calculation to overflow. In this case, they wanted 3665 * to allocate as many huge pages as possible. Set count to 3666 * largest possible value to align with their intention. 3667 */ 3668 if (count < old_count) 3669 count = ULONG_MAX; 3670 } 3671 3672 /* 3673 * Gigantic pages runtime allocation depend on the capability for large 3674 * page range allocation. 3675 * If the system does not provide this feature, return an error when 3676 * the user tries to allocate gigantic pages but let the user free the 3677 * boottime allocated gigantic pages. 3678 */ 3679 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) { 3680 if (count > persistent_huge_pages(h)) { 3681 spin_unlock_irq(&hugetlb_lock); 3682 mutex_unlock(&h->resize_lock); 3683 NODEMASK_FREE(node_alloc_noretry); 3684 return -EINVAL; 3685 } 3686 /* Fall through to decrease pool */ 3687 } 3688 3689 /* 3690 * Increase the pool size 3691 * First take pages out of surplus state. Then make up the 3692 * remaining difference by allocating fresh huge pages. 3693 * 3694 * We might race with alloc_surplus_hugetlb_folio() here and be unable 3695 * to convert a surplus huge page to a normal huge page. That is 3696 * not critical, though, it just means the overall size of the 3697 * pool might be one hugepage larger than it needs to be, but 3698 * within all the constraints specified by the sysctls. 3699 */ 3700 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { 3701 if (!adjust_pool_surplus(h, nodes_allowed, -1)) 3702 break; 3703 } 3704 3705 allocated = 0; 3706 while (count > (persistent_huge_pages(h) + allocated)) { 3707 /* 3708 * If this allocation races such that we no longer need the 3709 * page, free_huge_folio will handle it by freeing the page 3710 * and reducing the surplus. 3711 */ 3712 spin_unlock_irq(&hugetlb_lock); 3713 3714 /* yield cpu to avoid soft lockup */ 3715 cond_resched(); 3716 3717 folio = alloc_pool_huge_folio(h, nodes_allowed, 3718 node_alloc_noretry, 3719 &h->next_nid_to_alloc); 3720 if (!folio) { 3721 prep_and_add_allocated_folios(h, &page_list); 3722 spin_lock_irq(&hugetlb_lock); 3723 goto out; 3724 } 3725 3726 list_add(&folio->lru, &page_list); 3727 allocated++; 3728 3729 /* Bail for signals. Probably ctrl-c from user */ 3730 if (signal_pending(current)) { 3731 prep_and_add_allocated_folios(h, &page_list); 3732 spin_lock_irq(&hugetlb_lock); 3733 goto out; 3734 } 3735 3736 spin_lock_irq(&hugetlb_lock); 3737 } 3738 3739 /* Add allocated pages to the pool */ 3740 if (!list_empty(&page_list)) { 3741 spin_unlock_irq(&hugetlb_lock); 3742 prep_and_add_allocated_folios(h, &page_list); 3743 spin_lock_irq(&hugetlb_lock); 3744 } 3745 3746 /* 3747 * Decrease the pool size 3748 * First return free pages to the buddy allocator (being careful 3749 * to keep enough around to satisfy reservations). Then place 3750 * pages into surplus state as needed so the pool will shrink 3751 * to the desired size as pages become free. 3752 * 3753 * By placing pages into the surplus state independent of the 3754 * overcommit value, we are allowing the surplus pool size to 3755 * exceed overcommit. There are few sane options here. Since 3756 * alloc_surplus_hugetlb_folio() is checking the global counter, 3757 * though, we'll note that we're not allowed to exceed surplus 3758 * and won't grow the pool anywhere else. Not until one of the 3759 * sysctls are changed, or the surplus pages go out of use. 3760 */ 3761 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages; 3762 min_count = max(count, min_count); 3763 try_to_free_low(h, min_count, nodes_allowed); 3764 3765 /* 3766 * Collect pages to be removed on list without dropping lock 3767 */ 3768 while (min_count < persistent_huge_pages(h)) { 3769 folio = remove_pool_hugetlb_folio(h, nodes_allowed, 0); 3770 if (!folio) 3771 break; 3772 3773 list_add(&folio->lru, &page_list); 3774 } 3775 /* free the pages after dropping lock */ 3776 spin_unlock_irq(&hugetlb_lock); 3777 update_and_free_pages_bulk(h, &page_list); 3778 flush_free_hpage_work(h); 3779 spin_lock_irq(&hugetlb_lock); 3780 3781 while (count < persistent_huge_pages(h)) { 3782 if (!adjust_pool_surplus(h, nodes_allowed, 1)) 3783 break; 3784 } 3785 out: 3786 h->max_huge_pages = persistent_huge_pages(h); 3787 spin_unlock_irq(&hugetlb_lock); 3788 mutex_unlock(&h->resize_lock); 3789 3790 NODEMASK_FREE(node_alloc_noretry); 3791 3792 return 0; 3793 } 3794 3795 static long demote_free_hugetlb_folios(struct hstate *src, struct hstate *dst, 3796 struct list_head *src_list) 3797 { 3798 long rc; 3799 struct folio *folio, *next; 3800 LIST_HEAD(dst_list); 3801 LIST_HEAD(ret_list); 3802 3803 rc = hugetlb_vmemmap_restore_folios(src, src_list, &ret_list); 3804 list_splice_init(&ret_list, src_list); 3805 3806 /* 3807 * Taking target hstate mutex synchronizes with set_max_huge_pages. 3808 * Without the mutex, pages added to target hstate could be marked 3809 * as surplus. 3810 * 3811 * Note that we already hold src->resize_lock. To prevent deadlock, 3812 * use the convention of always taking larger size hstate mutex first. 3813 */ 3814 mutex_lock(&dst->resize_lock); 3815 3816 list_for_each_entry_safe(folio, next, src_list, lru) { 3817 int i; 3818 3819 if (folio_test_hugetlb_vmemmap_optimized(folio)) 3820 continue; 3821 3822 list_del(&folio->lru); 3823 3824 split_page_owner(&folio->page, huge_page_order(src), huge_page_order(dst)); 3825 pgalloc_tag_split(folio, huge_page_order(src), huge_page_order(dst)); 3826 3827 for (i = 0; i < pages_per_huge_page(src); i += pages_per_huge_page(dst)) { 3828 struct page *page = folio_page(folio, i); 3829 /* Careful: see __split_huge_page_tail() */ 3830 struct folio *new_folio = (struct folio *)page; 3831 3832 clear_compound_head(page); 3833 prep_compound_page(page, dst->order); 3834 3835 new_folio->mapping = NULL; 3836 init_new_hugetlb_folio(dst, new_folio); 3837 list_add(&new_folio->lru, &dst_list); 3838 } 3839 } 3840 3841 prep_and_add_allocated_folios(dst, &dst_list); 3842 3843 mutex_unlock(&dst->resize_lock); 3844 3845 return rc; 3846 } 3847 3848 static long demote_pool_huge_page(struct hstate *src, nodemask_t *nodes_allowed, 3849 unsigned long nr_to_demote) 3850 __must_hold(&hugetlb_lock) 3851 { 3852 int nr_nodes, node; 3853 struct hstate *dst; 3854 long rc = 0; 3855 long nr_demoted = 0; 3856 3857 lockdep_assert_held(&hugetlb_lock); 3858 3859 /* We should never get here if no demote order */ 3860 if (!src->demote_order) { 3861 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n"); 3862 return -EINVAL; /* internal error */ 3863 } 3864 dst = size_to_hstate(PAGE_SIZE << src->demote_order); 3865 3866 for_each_node_mask_to_free(src, nr_nodes, node, nodes_allowed) { 3867 LIST_HEAD(list); 3868 struct folio *folio, *next; 3869 3870 list_for_each_entry_safe(folio, next, &src->hugepage_freelists[node], lru) { 3871 if (folio_test_hwpoison(folio)) 3872 continue; 3873 3874 remove_hugetlb_folio(src, folio, false); 3875 list_add(&folio->lru, &list); 3876 3877 if (++nr_demoted == nr_to_demote) 3878 break; 3879 } 3880 3881 spin_unlock_irq(&hugetlb_lock); 3882 3883 rc = demote_free_hugetlb_folios(src, dst, &list); 3884 3885 spin_lock_irq(&hugetlb_lock); 3886 3887 list_for_each_entry_safe(folio, next, &list, lru) { 3888 list_del(&folio->lru); 3889 add_hugetlb_folio(src, folio, false); 3890 3891 nr_demoted--; 3892 } 3893 3894 if (rc < 0 || nr_demoted == nr_to_demote) 3895 break; 3896 } 3897 3898 /* 3899 * Not absolutely necessary, but for consistency update max_huge_pages 3900 * based on pool changes for the demoted page. 3901 */ 3902 src->max_huge_pages -= nr_demoted; 3903 dst->max_huge_pages += nr_demoted << (huge_page_order(src) - huge_page_order(dst)); 3904 3905 if (rc < 0) 3906 return rc; 3907 3908 if (nr_demoted) 3909 return nr_demoted; 3910 /* 3911 * Only way to get here is if all pages on free lists are poisoned. 3912 * Return -EBUSY so that caller will not retry. 3913 */ 3914 return -EBUSY; 3915 } 3916 3917 #define HSTATE_ATTR_RO(_name) \ 3918 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 3919 3920 #define HSTATE_ATTR_WO(_name) \ 3921 static struct kobj_attribute _name##_attr = __ATTR_WO(_name) 3922 3923 #define HSTATE_ATTR(_name) \ 3924 static struct kobj_attribute _name##_attr = __ATTR_RW(_name) 3925 3926 static struct kobject *hugepages_kobj; 3927 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 3928 3929 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp); 3930 3931 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp) 3932 { 3933 int i; 3934 3935 for (i = 0; i < HUGE_MAX_HSTATE; i++) 3936 if (hstate_kobjs[i] == kobj) { 3937 if (nidp) 3938 *nidp = NUMA_NO_NODE; 3939 return &hstates[i]; 3940 } 3941 3942 return kobj_to_node_hstate(kobj, nidp); 3943 } 3944 3945 static ssize_t nr_hugepages_show_common(struct kobject *kobj, 3946 struct kobj_attribute *attr, char *buf) 3947 { 3948 struct hstate *h; 3949 unsigned long nr_huge_pages; 3950 int nid; 3951 3952 h = kobj_to_hstate(kobj, &nid); 3953 if (nid == NUMA_NO_NODE) 3954 nr_huge_pages = h->nr_huge_pages; 3955 else 3956 nr_huge_pages = h->nr_huge_pages_node[nid]; 3957 3958 return sysfs_emit(buf, "%lu\n", nr_huge_pages); 3959 } 3960 3961 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy, 3962 struct hstate *h, int nid, 3963 unsigned long count, size_t len) 3964 { 3965 int err; 3966 nodemask_t nodes_allowed, *n_mask; 3967 3968 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 3969 return -EINVAL; 3970 3971 if (nid == NUMA_NO_NODE) { 3972 /* 3973 * global hstate attribute 3974 */ 3975 if (!(obey_mempolicy && 3976 init_nodemask_of_mempolicy(&nodes_allowed))) 3977 n_mask = &node_states[N_MEMORY]; 3978 else 3979 n_mask = &nodes_allowed; 3980 } else { 3981 /* 3982 * Node specific request. count adjustment happens in 3983 * set_max_huge_pages() after acquiring hugetlb_lock. 3984 */ 3985 init_nodemask_of_node(&nodes_allowed, nid); 3986 n_mask = &nodes_allowed; 3987 } 3988 3989 err = set_max_huge_pages(h, count, nid, n_mask); 3990 3991 return err ? err : len; 3992 } 3993 3994 static ssize_t nr_hugepages_store_common(bool obey_mempolicy, 3995 struct kobject *kobj, const char *buf, 3996 size_t len) 3997 { 3998 struct hstate *h; 3999 unsigned long count; 4000 int nid; 4001 int err; 4002 4003 err = kstrtoul(buf, 10, &count); 4004 if (err) 4005 return err; 4006 4007 h = kobj_to_hstate(kobj, &nid); 4008 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len); 4009 } 4010 4011 static ssize_t nr_hugepages_show(struct kobject *kobj, 4012 struct kobj_attribute *attr, char *buf) 4013 { 4014 return nr_hugepages_show_common(kobj, attr, buf); 4015 } 4016 4017 static ssize_t nr_hugepages_store(struct kobject *kobj, 4018 struct kobj_attribute *attr, const char *buf, size_t len) 4019 { 4020 return nr_hugepages_store_common(false, kobj, buf, len); 4021 } 4022 HSTATE_ATTR(nr_hugepages); 4023 4024 #ifdef CONFIG_NUMA 4025 4026 /* 4027 * hstate attribute for optionally mempolicy-based constraint on persistent 4028 * huge page alloc/free. 4029 */ 4030 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj, 4031 struct kobj_attribute *attr, 4032 char *buf) 4033 { 4034 return nr_hugepages_show_common(kobj, attr, buf); 4035 } 4036 4037 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj, 4038 struct kobj_attribute *attr, const char *buf, size_t len) 4039 { 4040 return nr_hugepages_store_common(true, kobj, buf, len); 4041 } 4042 HSTATE_ATTR(nr_hugepages_mempolicy); 4043 #endif 4044 4045 4046 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, 4047 struct kobj_attribute *attr, char *buf) 4048 { 4049 struct hstate *h = kobj_to_hstate(kobj, NULL); 4050 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages); 4051 } 4052 4053 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, 4054 struct kobj_attribute *attr, const char *buf, size_t count) 4055 { 4056 int err; 4057 unsigned long input; 4058 struct hstate *h = kobj_to_hstate(kobj, NULL); 4059 4060 if (hstate_is_gigantic(h)) 4061 return -EINVAL; 4062 4063 err = kstrtoul(buf, 10, &input); 4064 if (err) 4065 return err; 4066 4067 spin_lock_irq(&hugetlb_lock); 4068 h->nr_overcommit_huge_pages = input; 4069 spin_unlock_irq(&hugetlb_lock); 4070 4071 return count; 4072 } 4073 HSTATE_ATTR(nr_overcommit_hugepages); 4074 4075 static ssize_t free_hugepages_show(struct kobject *kobj, 4076 struct kobj_attribute *attr, char *buf) 4077 { 4078 struct hstate *h; 4079 unsigned long free_huge_pages; 4080 int nid; 4081 4082 h = kobj_to_hstate(kobj, &nid); 4083 if (nid == NUMA_NO_NODE) 4084 free_huge_pages = h->free_huge_pages; 4085 else 4086 free_huge_pages = h->free_huge_pages_node[nid]; 4087 4088 return sysfs_emit(buf, "%lu\n", free_huge_pages); 4089 } 4090 HSTATE_ATTR_RO(free_hugepages); 4091 4092 static ssize_t resv_hugepages_show(struct kobject *kobj, 4093 struct kobj_attribute *attr, char *buf) 4094 { 4095 struct hstate *h = kobj_to_hstate(kobj, NULL); 4096 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages); 4097 } 4098 HSTATE_ATTR_RO(resv_hugepages); 4099 4100 static ssize_t surplus_hugepages_show(struct kobject *kobj, 4101 struct kobj_attribute *attr, char *buf) 4102 { 4103 struct hstate *h; 4104 unsigned long surplus_huge_pages; 4105 int nid; 4106 4107 h = kobj_to_hstate(kobj, &nid); 4108 if (nid == NUMA_NO_NODE) 4109 surplus_huge_pages = h->surplus_huge_pages; 4110 else 4111 surplus_huge_pages = h->surplus_huge_pages_node[nid]; 4112 4113 return sysfs_emit(buf, "%lu\n", surplus_huge_pages); 4114 } 4115 HSTATE_ATTR_RO(surplus_hugepages); 4116 4117 static ssize_t demote_store(struct kobject *kobj, 4118 struct kobj_attribute *attr, const char *buf, size_t len) 4119 { 4120 unsigned long nr_demote; 4121 unsigned long nr_available; 4122 nodemask_t nodes_allowed, *n_mask; 4123 struct hstate *h; 4124 int err; 4125 int nid; 4126 4127 err = kstrtoul(buf, 10, &nr_demote); 4128 if (err) 4129 return err; 4130 h = kobj_to_hstate(kobj, &nid); 4131 4132 if (nid != NUMA_NO_NODE) { 4133 init_nodemask_of_node(&nodes_allowed, nid); 4134 n_mask = &nodes_allowed; 4135 } else { 4136 n_mask = &node_states[N_MEMORY]; 4137 } 4138 4139 /* Synchronize with other sysfs operations modifying huge pages */ 4140 mutex_lock(&h->resize_lock); 4141 spin_lock_irq(&hugetlb_lock); 4142 4143 while (nr_demote) { 4144 long rc; 4145 4146 /* 4147 * Check for available pages to demote each time thorough the 4148 * loop as demote_pool_huge_page will drop hugetlb_lock. 4149 */ 4150 if (nid != NUMA_NO_NODE) 4151 nr_available = h->free_huge_pages_node[nid]; 4152 else 4153 nr_available = h->free_huge_pages; 4154 nr_available -= h->resv_huge_pages; 4155 if (!nr_available) 4156 break; 4157 4158 rc = demote_pool_huge_page(h, n_mask, nr_demote); 4159 if (rc < 0) { 4160 err = rc; 4161 break; 4162 } 4163 4164 nr_demote -= rc; 4165 } 4166 4167 spin_unlock_irq(&hugetlb_lock); 4168 mutex_unlock(&h->resize_lock); 4169 4170 if (err) 4171 return err; 4172 return len; 4173 } 4174 HSTATE_ATTR_WO(demote); 4175 4176 static ssize_t demote_size_show(struct kobject *kobj, 4177 struct kobj_attribute *attr, char *buf) 4178 { 4179 struct hstate *h = kobj_to_hstate(kobj, NULL); 4180 unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K; 4181 4182 return sysfs_emit(buf, "%lukB\n", demote_size); 4183 } 4184 4185 static ssize_t demote_size_store(struct kobject *kobj, 4186 struct kobj_attribute *attr, 4187 const char *buf, size_t count) 4188 { 4189 struct hstate *h, *demote_hstate; 4190 unsigned long demote_size; 4191 unsigned int demote_order; 4192 4193 demote_size = (unsigned long)memparse(buf, NULL); 4194 4195 demote_hstate = size_to_hstate(demote_size); 4196 if (!demote_hstate) 4197 return -EINVAL; 4198 demote_order = demote_hstate->order; 4199 if (demote_order < HUGETLB_PAGE_ORDER) 4200 return -EINVAL; 4201 4202 /* demote order must be smaller than hstate order */ 4203 h = kobj_to_hstate(kobj, NULL); 4204 if (demote_order >= h->order) 4205 return -EINVAL; 4206 4207 /* resize_lock synchronizes access to demote size and writes */ 4208 mutex_lock(&h->resize_lock); 4209 h->demote_order = demote_order; 4210 mutex_unlock(&h->resize_lock); 4211 4212 return count; 4213 } 4214 HSTATE_ATTR(demote_size); 4215 4216 static struct attribute *hstate_attrs[] = { 4217 &nr_hugepages_attr.attr, 4218 &nr_overcommit_hugepages_attr.attr, 4219 &free_hugepages_attr.attr, 4220 &resv_hugepages_attr.attr, 4221 &surplus_hugepages_attr.attr, 4222 #ifdef CONFIG_NUMA 4223 &nr_hugepages_mempolicy_attr.attr, 4224 #endif 4225 NULL, 4226 }; 4227 4228 static const struct attribute_group hstate_attr_group = { 4229 .attrs = hstate_attrs, 4230 }; 4231 4232 static struct attribute *hstate_demote_attrs[] = { 4233 &demote_size_attr.attr, 4234 &demote_attr.attr, 4235 NULL, 4236 }; 4237 4238 static const struct attribute_group hstate_demote_attr_group = { 4239 .attrs = hstate_demote_attrs, 4240 }; 4241 4242 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent, 4243 struct kobject **hstate_kobjs, 4244 const struct attribute_group *hstate_attr_group) 4245 { 4246 int retval; 4247 int hi = hstate_index(h); 4248 4249 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent); 4250 if (!hstate_kobjs[hi]) 4251 return -ENOMEM; 4252 4253 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group); 4254 if (retval) { 4255 kobject_put(hstate_kobjs[hi]); 4256 hstate_kobjs[hi] = NULL; 4257 return retval; 4258 } 4259 4260 if (h->demote_order) { 4261 retval = sysfs_create_group(hstate_kobjs[hi], 4262 &hstate_demote_attr_group); 4263 if (retval) { 4264 pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name); 4265 sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group); 4266 kobject_put(hstate_kobjs[hi]); 4267 hstate_kobjs[hi] = NULL; 4268 return retval; 4269 } 4270 } 4271 4272 return 0; 4273 } 4274 4275 #ifdef CONFIG_NUMA 4276 static bool hugetlb_sysfs_initialized __ro_after_init; 4277 4278 /* 4279 * node_hstate/s - associate per node hstate attributes, via their kobjects, 4280 * with node devices in node_devices[] using a parallel array. The array 4281 * index of a node device or _hstate == node id. 4282 * This is here to avoid any static dependency of the node device driver, in 4283 * the base kernel, on the hugetlb module. 4284 */ 4285 struct node_hstate { 4286 struct kobject *hugepages_kobj; 4287 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 4288 }; 4289 static struct node_hstate node_hstates[MAX_NUMNODES]; 4290 4291 /* 4292 * A subset of global hstate attributes for node devices 4293 */ 4294 static struct attribute *per_node_hstate_attrs[] = { 4295 &nr_hugepages_attr.attr, 4296 &free_hugepages_attr.attr, 4297 &surplus_hugepages_attr.attr, 4298 NULL, 4299 }; 4300 4301 static const struct attribute_group per_node_hstate_attr_group = { 4302 .attrs = per_node_hstate_attrs, 4303 }; 4304 4305 /* 4306 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj. 4307 * Returns node id via non-NULL nidp. 4308 */ 4309 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 4310 { 4311 int nid; 4312 4313 for (nid = 0; nid < nr_node_ids; nid++) { 4314 struct node_hstate *nhs = &node_hstates[nid]; 4315 int i; 4316 for (i = 0; i < HUGE_MAX_HSTATE; i++) 4317 if (nhs->hstate_kobjs[i] == kobj) { 4318 if (nidp) 4319 *nidp = nid; 4320 return &hstates[i]; 4321 } 4322 } 4323 4324 BUG(); 4325 return NULL; 4326 } 4327 4328 /* 4329 * Unregister hstate attributes from a single node device. 4330 * No-op if no hstate attributes attached. 4331 */ 4332 void hugetlb_unregister_node(struct node *node) 4333 { 4334 struct hstate *h; 4335 struct node_hstate *nhs = &node_hstates[node->dev.id]; 4336 4337 if (!nhs->hugepages_kobj) 4338 return; /* no hstate attributes */ 4339 4340 for_each_hstate(h) { 4341 int idx = hstate_index(h); 4342 struct kobject *hstate_kobj = nhs->hstate_kobjs[idx]; 4343 4344 if (!hstate_kobj) 4345 continue; 4346 if (h->demote_order) 4347 sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group); 4348 sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group); 4349 kobject_put(hstate_kobj); 4350 nhs->hstate_kobjs[idx] = NULL; 4351 } 4352 4353 kobject_put(nhs->hugepages_kobj); 4354 nhs->hugepages_kobj = NULL; 4355 } 4356 4357 4358 /* 4359 * Register hstate attributes for a single node device. 4360 * No-op if attributes already registered. 4361 */ 4362 void hugetlb_register_node(struct node *node) 4363 { 4364 struct hstate *h; 4365 struct node_hstate *nhs = &node_hstates[node->dev.id]; 4366 int err; 4367 4368 if (!hugetlb_sysfs_initialized) 4369 return; 4370 4371 if (nhs->hugepages_kobj) 4372 return; /* already allocated */ 4373 4374 nhs->hugepages_kobj = kobject_create_and_add("hugepages", 4375 &node->dev.kobj); 4376 if (!nhs->hugepages_kobj) 4377 return; 4378 4379 for_each_hstate(h) { 4380 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj, 4381 nhs->hstate_kobjs, 4382 &per_node_hstate_attr_group); 4383 if (err) { 4384 pr_err("HugeTLB: Unable to add hstate %s for node %d\n", 4385 h->name, node->dev.id); 4386 hugetlb_unregister_node(node); 4387 break; 4388 } 4389 } 4390 } 4391 4392 /* 4393 * hugetlb init time: register hstate attributes for all registered node 4394 * devices of nodes that have memory. All on-line nodes should have 4395 * registered their associated device by this time. 4396 */ 4397 static void __init hugetlb_register_all_nodes(void) 4398 { 4399 int nid; 4400 4401 for_each_online_node(nid) 4402 hugetlb_register_node(node_devices[nid]); 4403 } 4404 #else /* !CONFIG_NUMA */ 4405 4406 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 4407 { 4408 BUG(); 4409 if (nidp) 4410 *nidp = -1; 4411 return NULL; 4412 } 4413 4414 static void hugetlb_register_all_nodes(void) { } 4415 4416 #endif 4417 4418 #ifdef CONFIG_CMA 4419 static void __init hugetlb_cma_check(void); 4420 #else 4421 static inline __init void hugetlb_cma_check(void) 4422 { 4423 } 4424 #endif 4425 4426 static void __init hugetlb_sysfs_init(void) 4427 { 4428 struct hstate *h; 4429 int err; 4430 4431 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); 4432 if (!hugepages_kobj) 4433 return; 4434 4435 for_each_hstate(h) { 4436 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj, 4437 hstate_kobjs, &hstate_attr_group); 4438 if (err) 4439 pr_err("HugeTLB: Unable to add hstate %s", h->name); 4440 } 4441 4442 #ifdef CONFIG_NUMA 4443 hugetlb_sysfs_initialized = true; 4444 #endif 4445 hugetlb_register_all_nodes(); 4446 } 4447 4448 #ifdef CONFIG_SYSCTL 4449 static void hugetlb_sysctl_init(void); 4450 #else 4451 static inline void hugetlb_sysctl_init(void) { } 4452 #endif 4453 4454 static int __init hugetlb_init(void) 4455 { 4456 int i; 4457 4458 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE < 4459 __NR_HPAGEFLAGS); 4460 4461 if (!hugepages_supported()) { 4462 if (hugetlb_max_hstate || default_hstate_max_huge_pages) 4463 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n"); 4464 return 0; 4465 } 4466 4467 /* 4468 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some 4469 * architectures depend on setup being done here. 4470 */ 4471 hugetlb_add_hstate(HUGETLB_PAGE_ORDER); 4472 if (!parsed_default_hugepagesz) { 4473 /* 4474 * If we did not parse a default huge page size, set 4475 * default_hstate_idx to HPAGE_SIZE hstate. And, if the 4476 * number of huge pages for this default size was implicitly 4477 * specified, set that here as well. 4478 * Note that the implicit setting will overwrite an explicit 4479 * setting. A warning will be printed in this case. 4480 */ 4481 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE)); 4482 if (default_hstate_max_huge_pages) { 4483 if (default_hstate.max_huge_pages) { 4484 char buf[32]; 4485 4486 string_get_size(huge_page_size(&default_hstate), 4487 1, STRING_UNITS_2, buf, 32); 4488 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n", 4489 default_hstate.max_huge_pages, buf); 4490 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n", 4491 default_hstate_max_huge_pages); 4492 } 4493 default_hstate.max_huge_pages = 4494 default_hstate_max_huge_pages; 4495 4496 for_each_online_node(i) 4497 default_hstate.max_huge_pages_node[i] = 4498 default_hugepages_in_node[i]; 4499 } 4500 } 4501 4502 hugetlb_cma_check(); 4503 hugetlb_init_hstates(); 4504 gather_bootmem_prealloc(); 4505 report_hugepages(); 4506 4507 hugetlb_sysfs_init(); 4508 hugetlb_cgroup_file_init(); 4509 hugetlb_sysctl_init(); 4510 4511 #ifdef CONFIG_SMP 4512 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus()); 4513 #else 4514 num_fault_mutexes = 1; 4515 #endif 4516 hugetlb_fault_mutex_table = 4517 kmalloc_array(num_fault_mutexes, sizeof(struct mutex), 4518 GFP_KERNEL); 4519 BUG_ON(!hugetlb_fault_mutex_table); 4520 4521 for (i = 0; i < num_fault_mutexes; i++) 4522 mutex_init(&hugetlb_fault_mutex_table[i]); 4523 return 0; 4524 } 4525 subsys_initcall(hugetlb_init); 4526 4527 /* Overwritten by architectures with more huge page sizes */ 4528 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size) 4529 { 4530 return size == HPAGE_SIZE; 4531 } 4532 4533 void __init hugetlb_add_hstate(unsigned int order) 4534 { 4535 struct hstate *h; 4536 unsigned long i; 4537 4538 if (size_to_hstate(PAGE_SIZE << order)) { 4539 return; 4540 } 4541 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE); 4542 BUG_ON(order < order_base_2(__NR_USED_SUBPAGE)); 4543 h = &hstates[hugetlb_max_hstate++]; 4544 __mutex_init(&h->resize_lock, "resize mutex", &h->resize_key); 4545 h->order = order; 4546 h->mask = ~(huge_page_size(h) - 1); 4547 for (i = 0; i < MAX_NUMNODES; ++i) 4548 INIT_LIST_HEAD(&h->hugepage_freelists[i]); 4549 INIT_LIST_HEAD(&h->hugepage_activelist); 4550 h->next_nid_to_alloc = first_memory_node; 4551 h->next_nid_to_free = first_memory_node; 4552 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", 4553 huge_page_size(h)/SZ_1K); 4554 4555 parsed_hstate = h; 4556 } 4557 4558 bool __init __weak hugetlb_node_alloc_supported(void) 4559 { 4560 return true; 4561 } 4562 4563 static void __init hugepages_clear_pages_in_node(void) 4564 { 4565 if (!hugetlb_max_hstate) { 4566 default_hstate_max_huge_pages = 0; 4567 memset(default_hugepages_in_node, 0, 4568 sizeof(default_hugepages_in_node)); 4569 } else { 4570 parsed_hstate->max_huge_pages = 0; 4571 memset(parsed_hstate->max_huge_pages_node, 0, 4572 sizeof(parsed_hstate->max_huge_pages_node)); 4573 } 4574 } 4575 4576 /* 4577 * hugepages command line processing 4578 * hugepages normally follows a valid hugepagsz or default_hugepagsz 4579 * specification. If not, ignore the hugepages value. hugepages can also 4580 * be the first huge page command line option in which case it implicitly 4581 * specifies the number of huge pages for the default size. 4582 */ 4583 static int __init hugepages_setup(char *s) 4584 { 4585 unsigned long *mhp; 4586 static unsigned long *last_mhp; 4587 int node = NUMA_NO_NODE; 4588 int count; 4589 unsigned long tmp; 4590 char *p = s; 4591 4592 if (!parsed_valid_hugepagesz) { 4593 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s); 4594 parsed_valid_hugepagesz = true; 4595 return 1; 4596 } 4597 4598 /* 4599 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter 4600 * yet, so this hugepages= parameter goes to the "default hstate". 4601 * Otherwise, it goes with the previously parsed hugepagesz or 4602 * default_hugepagesz. 4603 */ 4604 else if (!hugetlb_max_hstate) 4605 mhp = &default_hstate_max_huge_pages; 4606 else 4607 mhp = &parsed_hstate->max_huge_pages; 4608 4609 if (mhp == last_mhp) { 4610 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s); 4611 return 1; 4612 } 4613 4614 while (*p) { 4615 count = 0; 4616 if (sscanf(p, "%lu%n", &tmp, &count) != 1) 4617 goto invalid; 4618 /* Parameter is node format */ 4619 if (p[count] == ':') { 4620 if (!hugetlb_node_alloc_supported()) { 4621 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n"); 4622 return 1; 4623 } 4624 if (tmp >= MAX_NUMNODES || !node_online(tmp)) 4625 goto invalid; 4626 node = array_index_nospec(tmp, MAX_NUMNODES); 4627 p += count + 1; 4628 /* Parse hugepages */ 4629 if (sscanf(p, "%lu%n", &tmp, &count) != 1) 4630 goto invalid; 4631 if (!hugetlb_max_hstate) 4632 default_hugepages_in_node[node] = tmp; 4633 else 4634 parsed_hstate->max_huge_pages_node[node] = tmp; 4635 *mhp += tmp; 4636 /* Go to parse next node*/ 4637 if (p[count] == ',') 4638 p += count + 1; 4639 else 4640 break; 4641 } else { 4642 if (p != s) 4643 goto invalid; 4644 *mhp = tmp; 4645 break; 4646 } 4647 } 4648 4649 /* 4650 * Global state is always initialized later in hugetlb_init. 4651 * But we need to allocate gigantic hstates here early to still 4652 * use the bootmem allocator. 4653 */ 4654 if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate)) 4655 hugetlb_hstate_alloc_pages(parsed_hstate); 4656 4657 last_mhp = mhp; 4658 4659 return 1; 4660 4661 invalid: 4662 pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p); 4663 hugepages_clear_pages_in_node(); 4664 return 1; 4665 } 4666 __setup("hugepages=", hugepages_setup); 4667 4668 /* 4669 * hugepagesz command line processing 4670 * A specific huge page size can only be specified once with hugepagesz. 4671 * hugepagesz is followed by hugepages on the command line. The global 4672 * variable 'parsed_valid_hugepagesz' is used to determine if prior 4673 * hugepagesz argument was valid. 4674 */ 4675 static int __init hugepagesz_setup(char *s) 4676 { 4677 unsigned long size; 4678 struct hstate *h; 4679 4680 parsed_valid_hugepagesz = false; 4681 size = (unsigned long)memparse(s, NULL); 4682 4683 if (!arch_hugetlb_valid_size(size)) { 4684 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s); 4685 return 1; 4686 } 4687 4688 h = size_to_hstate(size); 4689 if (h) { 4690 /* 4691 * hstate for this size already exists. This is normally 4692 * an error, but is allowed if the existing hstate is the 4693 * default hstate. More specifically, it is only allowed if 4694 * the number of huge pages for the default hstate was not 4695 * previously specified. 4696 */ 4697 if (!parsed_default_hugepagesz || h != &default_hstate || 4698 default_hstate.max_huge_pages) { 4699 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s); 4700 return 1; 4701 } 4702 4703 /* 4704 * No need to call hugetlb_add_hstate() as hstate already 4705 * exists. But, do set parsed_hstate so that a following 4706 * hugepages= parameter will be applied to this hstate. 4707 */ 4708 parsed_hstate = h; 4709 parsed_valid_hugepagesz = true; 4710 return 1; 4711 } 4712 4713 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); 4714 parsed_valid_hugepagesz = true; 4715 return 1; 4716 } 4717 __setup("hugepagesz=", hugepagesz_setup); 4718 4719 /* 4720 * default_hugepagesz command line input 4721 * Only one instance of default_hugepagesz allowed on command line. 4722 */ 4723 static int __init default_hugepagesz_setup(char *s) 4724 { 4725 unsigned long size; 4726 int i; 4727 4728 parsed_valid_hugepagesz = false; 4729 if (parsed_default_hugepagesz) { 4730 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s); 4731 return 1; 4732 } 4733 4734 size = (unsigned long)memparse(s, NULL); 4735 4736 if (!arch_hugetlb_valid_size(size)) { 4737 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s); 4738 return 1; 4739 } 4740 4741 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); 4742 parsed_valid_hugepagesz = true; 4743 parsed_default_hugepagesz = true; 4744 default_hstate_idx = hstate_index(size_to_hstate(size)); 4745 4746 /* 4747 * The number of default huge pages (for this size) could have been 4748 * specified as the first hugetlb parameter: hugepages=X. If so, 4749 * then default_hstate_max_huge_pages is set. If the default huge 4750 * page size is gigantic (> MAX_PAGE_ORDER), then the pages must be 4751 * allocated here from bootmem allocator. 4752 */ 4753 if (default_hstate_max_huge_pages) { 4754 default_hstate.max_huge_pages = default_hstate_max_huge_pages; 4755 for_each_online_node(i) 4756 default_hstate.max_huge_pages_node[i] = 4757 default_hugepages_in_node[i]; 4758 if (hstate_is_gigantic(&default_hstate)) 4759 hugetlb_hstate_alloc_pages(&default_hstate); 4760 default_hstate_max_huge_pages = 0; 4761 } 4762 4763 return 1; 4764 } 4765 __setup("default_hugepagesz=", default_hugepagesz_setup); 4766 4767 static unsigned int allowed_mems_nr(struct hstate *h) 4768 { 4769 int node; 4770 unsigned int nr = 0; 4771 nodemask_t *mbind_nodemask; 4772 unsigned int *array = h->free_huge_pages_node; 4773 gfp_t gfp_mask = htlb_alloc_mask(h); 4774 4775 mbind_nodemask = policy_mbind_nodemask(gfp_mask); 4776 for_each_node_mask(node, cpuset_current_mems_allowed) { 4777 if (!mbind_nodemask || node_isset(node, *mbind_nodemask)) 4778 nr += array[node]; 4779 } 4780 4781 return nr; 4782 } 4783 4784 #ifdef CONFIG_SYSCTL 4785 static int proc_hugetlb_doulongvec_minmax(const struct ctl_table *table, int write, 4786 void *buffer, size_t *length, 4787 loff_t *ppos, unsigned long *out) 4788 { 4789 struct ctl_table dup_table; 4790 4791 /* 4792 * In order to avoid races with __do_proc_doulongvec_minmax(), we 4793 * can duplicate the @table and alter the duplicate of it. 4794 */ 4795 dup_table = *table; 4796 dup_table.data = out; 4797 4798 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos); 4799 } 4800 4801 static int hugetlb_sysctl_handler_common(bool obey_mempolicy, 4802 const struct ctl_table *table, int write, 4803 void *buffer, size_t *length, loff_t *ppos) 4804 { 4805 struct hstate *h = &default_hstate; 4806 unsigned long tmp = h->max_huge_pages; 4807 int ret; 4808 4809 if (!hugepages_supported()) 4810 return -EOPNOTSUPP; 4811 4812 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, 4813 &tmp); 4814 if (ret) 4815 goto out; 4816 4817 if (write) 4818 ret = __nr_hugepages_store_common(obey_mempolicy, h, 4819 NUMA_NO_NODE, tmp, *length); 4820 out: 4821 return ret; 4822 } 4823 4824 static int hugetlb_sysctl_handler(const struct ctl_table *table, int write, 4825 void *buffer, size_t *length, loff_t *ppos) 4826 { 4827 4828 return hugetlb_sysctl_handler_common(false, table, write, 4829 buffer, length, ppos); 4830 } 4831 4832 #ifdef CONFIG_NUMA 4833 static int hugetlb_mempolicy_sysctl_handler(const struct ctl_table *table, int write, 4834 void *buffer, size_t *length, loff_t *ppos) 4835 { 4836 return hugetlb_sysctl_handler_common(true, table, write, 4837 buffer, length, ppos); 4838 } 4839 #endif /* CONFIG_NUMA */ 4840 4841 static int hugetlb_overcommit_handler(const struct ctl_table *table, int write, 4842 void *buffer, size_t *length, loff_t *ppos) 4843 { 4844 struct hstate *h = &default_hstate; 4845 unsigned long tmp; 4846 int ret; 4847 4848 if (!hugepages_supported()) 4849 return -EOPNOTSUPP; 4850 4851 tmp = h->nr_overcommit_huge_pages; 4852 4853 if (write && hstate_is_gigantic(h)) 4854 return -EINVAL; 4855 4856 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, 4857 &tmp); 4858 if (ret) 4859 goto out; 4860 4861 if (write) { 4862 spin_lock_irq(&hugetlb_lock); 4863 h->nr_overcommit_huge_pages = tmp; 4864 spin_unlock_irq(&hugetlb_lock); 4865 } 4866 out: 4867 return ret; 4868 } 4869 4870 static const struct ctl_table hugetlb_table[] = { 4871 { 4872 .procname = "nr_hugepages", 4873 .data = NULL, 4874 .maxlen = sizeof(unsigned long), 4875 .mode = 0644, 4876 .proc_handler = hugetlb_sysctl_handler, 4877 }, 4878 #ifdef CONFIG_NUMA 4879 { 4880 .procname = "nr_hugepages_mempolicy", 4881 .data = NULL, 4882 .maxlen = sizeof(unsigned long), 4883 .mode = 0644, 4884 .proc_handler = &hugetlb_mempolicy_sysctl_handler, 4885 }, 4886 #endif 4887 { 4888 .procname = "hugetlb_shm_group", 4889 .data = &sysctl_hugetlb_shm_group, 4890 .maxlen = sizeof(gid_t), 4891 .mode = 0644, 4892 .proc_handler = proc_dointvec, 4893 }, 4894 { 4895 .procname = "nr_overcommit_hugepages", 4896 .data = NULL, 4897 .maxlen = sizeof(unsigned long), 4898 .mode = 0644, 4899 .proc_handler = hugetlb_overcommit_handler, 4900 }, 4901 }; 4902 4903 static void hugetlb_sysctl_init(void) 4904 { 4905 register_sysctl_init("vm", hugetlb_table); 4906 } 4907 #endif /* CONFIG_SYSCTL */ 4908 4909 void hugetlb_report_meminfo(struct seq_file *m) 4910 { 4911 struct hstate *h; 4912 unsigned long total = 0; 4913 4914 if (!hugepages_supported()) 4915 return; 4916 4917 for_each_hstate(h) { 4918 unsigned long count = h->nr_huge_pages; 4919 4920 total += huge_page_size(h) * count; 4921 4922 if (h == &default_hstate) 4923 seq_printf(m, 4924 "HugePages_Total: %5lu\n" 4925 "HugePages_Free: %5lu\n" 4926 "HugePages_Rsvd: %5lu\n" 4927 "HugePages_Surp: %5lu\n" 4928 "Hugepagesize: %8lu kB\n", 4929 count, 4930 h->free_huge_pages, 4931 h->resv_huge_pages, 4932 h->surplus_huge_pages, 4933 huge_page_size(h) / SZ_1K); 4934 } 4935 4936 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K); 4937 } 4938 4939 int hugetlb_report_node_meminfo(char *buf, int len, int nid) 4940 { 4941 struct hstate *h = &default_hstate; 4942 4943 if (!hugepages_supported()) 4944 return 0; 4945 4946 return sysfs_emit_at(buf, len, 4947 "Node %d HugePages_Total: %5u\n" 4948 "Node %d HugePages_Free: %5u\n" 4949 "Node %d HugePages_Surp: %5u\n", 4950 nid, h->nr_huge_pages_node[nid], 4951 nid, h->free_huge_pages_node[nid], 4952 nid, h->surplus_huge_pages_node[nid]); 4953 } 4954 4955 void hugetlb_show_meminfo_node(int nid) 4956 { 4957 struct hstate *h; 4958 4959 if (!hugepages_supported()) 4960 return; 4961 4962 for_each_hstate(h) 4963 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n", 4964 nid, 4965 h->nr_huge_pages_node[nid], 4966 h->free_huge_pages_node[nid], 4967 h->surplus_huge_pages_node[nid], 4968 huge_page_size(h) / SZ_1K); 4969 } 4970 4971 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm) 4972 { 4973 seq_printf(m, "HugetlbPages:\t%8lu kB\n", 4974 K(atomic_long_read(&mm->hugetlb_usage))); 4975 } 4976 4977 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ 4978 unsigned long hugetlb_total_pages(void) 4979 { 4980 struct hstate *h; 4981 unsigned long nr_total_pages = 0; 4982 4983 for_each_hstate(h) 4984 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h); 4985 return nr_total_pages; 4986 } 4987 4988 static int hugetlb_acct_memory(struct hstate *h, long delta) 4989 { 4990 int ret = -ENOMEM; 4991 4992 if (!delta) 4993 return 0; 4994 4995 spin_lock_irq(&hugetlb_lock); 4996 /* 4997 * When cpuset is configured, it breaks the strict hugetlb page 4998 * reservation as the accounting is done on a global variable. Such 4999 * reservation is completely rubbish in the presence of cpuset because 5000 * the reservation is not checked against page availability for the 5001 * current cpuset. Application can still potentially OOM'ed by kernel 5002 * with lack of free htlb page in cpuset that the task is in. 5003 * Attempt to enforce strict accounting with cpuset is almost 5004 * impossible (or too ugly) because cpuset is too fluid that 5005 * task or memory node can be dynamically moved between cpusets. 5006 * 5007 * The change of semantics for shared hugetlb mapping with cpuset is 5008 * undesirable. However, in order to preserve some of the semantics, 5009 * we fall back to check against current free page availability as 5010 * a best attempt and hopefully to minimize the impact of changing 5011 * semantics that cpuset has. 5012 * 5013 * Apart from cpuset, we also have memory policy mechanism that 5014 * also determines from which node the kernel will allocate memory 5015 * in a NUMA system. So similar to cpuset, we also should consider 5016 * the memory policy of the current task. Similar to the description 5017 * above. 5018 */ 5019 if (delta > 0) { 5020 if (gather_surplus_pages(h, delta) < 0) 5021 goto out; 5022 5023 if (delta > allowed_mems_nr(h)) { 5024 return_unused_surplus_pages(h, delta); 5025 goto out; 5026 } 5027 } 5028 5029 ret = 0; 5030 if (delta < 0) 5031 return_unused_surplus_pages(h, (unsigned long) -delta); 5032 5033 out: 5034 spin_unlock_irq(&hugetlb_lock); 5035 return ret; 5036 } 5037 5038 static void hugetlb_vm_op_open(struct vm_area_struct *vma) 5039 { 5040 struct resv_map *resv = vma_resv_map(vma); 5041 5042 /* 5043 * HPAGE_RESV_OWNER indicates a private mapping. 5044 * This new VMA should share its siblings reservation map if present. 5045 * The VMA will only ever have a valid reservation map pointer where 5046 * it is being copied for another still existing VMA. As that VMA 5047 * has a reference to the reservation map it cannot disappear until 5048 * after this open call completes. It is therefore safe to take a 5049 * new reference here without additional locking. 5050 */ 5051 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 5052 resv_map_dup_hugetlb_cgroup_uncharge_info(resv); 5053 kref_get(&resv->refs); 5054 } 5055 5056 /* 5057 * vma_lock structure for sharable mappings is vma specific. 5058 * Clear old pointer (if copied via vm_area_dup) and allocate 5059 * new structure. Before clearing, make sure vma_lock is not 5060 * for this vma. 5061 */ 5062 if (vma->vm_flags & VM_MAYSHARE) { 5063 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 5064 5065 if (vma_lock) { 5066 if (vma_lock->vma != vma) { 5067 vma->vm_private_data = NULL; 5068 hugetlb_vma_lock_alloc(vma); 5069 } else 5070 pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__); 5071 } else 5072 hugetlb_vma_lock_alloc(vma); 5073 } 5074 } 5075 5076 static void hugetlb_vm_op_close(struct vm_area_struct *vma) 5077 { 5078 struct hstate *h = hstate_vma(vma); 5079 struct resv_map *resv; 5080 struct hugepage_subpool *spool = subpool_vma(vma); 5081 unsigned long reserve, start, end; 5082 long gbl_reserve; 5083 5084 hugetlb_vma_lock_free(vma); 5085 5086 resv = vma_resv_map(vma); 5087 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 5088 return; 5089 5090 start = vma_hugecache_offset(h, vma, vma->vm_start); 5091 end = vma_hugecache_offset(h, vma, vma->vm_end); 5092 5093 reserve = (end - start) - region_count(resv, start, end); 5094 hugetlb_cgroup_uncharge_counter(resv, start, end); 5095 if (reserve) { 5096 /* 5097 * Decrement reserve counts. The global reserve count may be 5098 * adjusted if the subpool has a minimum size. 5099 */ 5100 gbl_reserve = hugepage_subpool_put_pages(spool, reserve); 5101 hugetlb_acct_memory(h, -gbl_reserve); 5102 } 5103 5104 kref_put(&resv->refs, resv_map_release); 5105 } 5106 5107 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr) 5108 { 5109 if (addr & ~(huge_page_mask(hstate_vma(vma)))) 5110 return -EINVAL; 5111 5112 /* 5113 * PMD sharing is only possible for PUD_SIZE-aligned address ranges 5114 * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this 5115 * split, unshare PMDs in the PUD_SIZE interval surrounding addr now. 5116 */ 5117 if (addr & ~PUD_MASK) { 5118 /* 5119 * hugetlb_vm_op_split is called right before we attempt to 5120 * split the VMA. We will need to unshare PMDs in the old and 5121 * new VMAs, so let's unshare before we split. 5122 */ 5123 unsigned long floor = addr & PUD_MASK; 5124 unsigned long ceil = floor + PUD_SIZE; 5125 5126 if (floor >= vma->vm_start && ceil <= vma->vm_end) 5127 hugetlb_unshare_pmds(vma, floor, ceil); 5128 } 5129 5130 return 0; 5131 } 5132 5133 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma) 5134 { 5135 return huge_page_size(hstate_vma(vma)); 5136 } 5137 5138 /* 5139 * We cannot handle pagefaults against hugetlb pages at all. They cause 5140 * handle_mm_fault() to try to instantiate regular-sized pages in the 5141 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get 5142 * this far. 5143 */ 5144 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf) 5145 { 5146 BUG(); 5147 return 0; 5148 } 5149 5150 /* 5151 * When a new function is introduced to vm_operations_struct and added 5152 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops. 5153 * This is because under System V memory model, mappings created via 5154 * shmget/shmat with "huge page" specified are backed by hugetlbfs files, 5155 * their original vm_ops are overwritten with shm_vm_ops. 5156 */ 5157 const struct vm_operations_struct hugetlb_vm_ops = { 5158 .fault = hugetlb_vm_op_fault, 5159 .open = hugetlb_vm_op_open, 5160 .close = hugetlb_vm_op_close, 5161 .may_split = hugetlb_vm_op_split, 5162 .pagesize = hugetlb_vm_op_pagesize, 5163 }; 5164 5165 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, 5166 bool try_mkwrite) 5167 { 5168 pte_t entry; 5169 unsigned int shift = huge_page_shift(hstate_vma(vma)); 5170 5171 if (try_mkwrite && (vma->vm_flags & VM_WRITE)) { 5172 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page, 5173 vma->vm_page_prot))); 5174 } else { 5175 entry = huge_pte_wrprotect(mk_huge_pte(page, 5176 vma->vm_page_prot)); 5177 } 5178 entry = pte_mkyoung(entry); 5179 entry = arch_make_huge_pte(entry, shift, vma->vm_flags); 5180 5181 return entry; 5182 } 5183 5184 static void set_huge_ptep_writable(struct vm_area_struct *vma, 5185 unsigned long address, pte_t *ptep) 5186 { 5187 pte_t entry; 5188 5189 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(vma->vm_mm, address, ptep))); 5190 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) 5191 update_mmu_cache(vma, address, ptep); 5192 } 5193 5194 static void set_huge_ptep_maybe_writable(struct vm_area_struct *vma, 5195 unsigned long address, pte_t *ptep) 5196 { 5197 if (vma->vm_flags & VM_WRITE) 5198 set_huge_ptep_writable(vma, address, ptep); 5199 } 5200 5201 bool is_hugetlb_entry_migration(pte_t pte) 5202 { 5203 swp_entry_t swp; 5204 5205 if (huge_pte_none(pte) || pte_present(pte)) 5206 return false; 5207 swp = pte_to_swp_entry(pte); 5208 if (is_migration_entry(swp)) 5209 return true; 5210 else 5211 return false; 5212 } 5213 5214 bool is_hugetlb_entry_hwpoisoned(pte_t pte) 5215 { 5216 swp_entry_t swp; 5217 5218 if (huge_pte_none(pte) || pte_present(pte)) 5219 return false; 5220 swp = pte_to_swp_entry(pte); 5221 if (is_hwpoison_entry(swp)) 5222 return true; 5223 else 5224 return false; 5225 } 5226 5227 static void 5228 hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr, 5229 struct folio *new_folio, pte_t old, unsigned long sz) 5230 { 5231 pte_t newpte = make_huge_pte(vma, &new_folio->page, true); 5232 5233 __folio_mark_uptodate(new_folio); 5234 hugetlb_add_new_anon_rmap(new_folio, vma, addr); 5235 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(old)) 5236 newpte = huge_pte_mkuffd_wp(newpte); 5237 set_huge_pte_at(vma->vm_mm, addr, ptep, newpte, sz); 5238 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm); 5239 folio_set_hugetlb_migratable(new_folio); 5240 } 5241 5242 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, 5243 struct vm_area_struct *dst_vma, 5244 struct vm_area_struct *src_vma) 5245 { 5246 pte_t *src_pte, *dst_pte, entry; 5247 struct folio *pte_folio; 5248 unsigned long addr; 5249 bool cow = is_cow_mapping(src_vma->vm_flags); 5250 struct hstate *h = hstate_vma(src_vma); 5251 unsigned long sz = huge_page_size(h); 5252 unsigned long npages = pages_per_huge_page(h); 5253 struct mmu_notifier_range range; 5254 unsigned long last_addr_mask; 5255 int ret = 0; 5256 5257 if (cow) { 5258 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src, 5259 src_vma->vm_start, 5260 src_vma->vm_end); 5261 mmu_notifier_invalidate_range_start(&range); 5262 vma_assert_write_locked(src_vma); 5263 raw_write_seqcount_begin(&src->write_protect_seq); 5264 } else { 5265 /* 5266 * For shared mappings the vma lock must be held before 5267 * calling hugetlb_walk() in the src vma. Otherwise, the 5268 * returned ptep could go away if part of a shared pmd and 5269 * another thread calls huge_pmd_unshare. 5270 */ 5271 hugetlb_vma_lock_read(src_vma); 5272 } 5273 5274 last_addr_mask = hugetlb_mask_last_page(h); 5275 for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) { 5276 spinlock_t *src_ptl, *dst_ptl; 5277 src_pte = hugetlb_walk(src_vma, addr, sz); 5278 if (!src_pte) { 5279 addr |= last_addr_mask; 5280 continue; 5281 } 5282 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz); 5283 if (!dst_pte) { 5284 ret = -ENOMEM; 5285 break; 5286 } 5287 5288 /* 5289 * If the pagetables are shared don't copy or take references. 5290 * 5291 * dst_pte == src_pte is the common case of src/dest sharing. 5292 * However, src could have 'unshared' and dst shares with 5293 * another vma. So page_count of ptep page is checked instead 5294 * to reliably determine whether pte is shared. 5295 */ 5296 if (page_count(virt_to_page(dst_pte)) > 1) { 5297 addr |= last_addr_mask; 5298 continue; 5299 } 5300 5301 dst_ptl = huge_pte_lock(h, dst, dst_pte); 5302 src_ptl = huge_pte_lockptr(h, src, src_pte); 5303 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 5304 entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte); 5305 again: 5306 if (huge_pte_none(entry)) { 5307 /* 5308 * Skip if src entry none. 5309 */ 5310 ; 5311 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) { 5312 if (!userfaultfd_wp(dst_vma)) 5313 entry = huge_pte_clear_uffd_wp(entry); 5314 set_huge_pte_at(dst, addr, dst_pte, entry, sz); 5315 } else if (unlikely(is_hugetlb_entry_migration(entry))) { 5316 swp_entry_t swp_entry = pte_to_swp_entry(entry); 5317 bool uffd_wp = pte_swp_uffd_wp(entry); 5318 5319 if (!is_readable_migration_entry(swp_entry) && cow) { 5320 /* 5321 * COW mappings require pages in both 5322 * parent and child to be set to read. 5323 */ 5324 swp_entry = make_readable_migration_entry( 5325 swp_offset(swp_entry)); 5326 entry = swp_entry_to_pte(swp_entry); 5327 if (userfaultfd_wp(src_vma) && uffd_wp) 5328 entry = pte_swp_mkuffd_wp(entry); 5329 set_huge_pte_at(src, addr, src_pte, entry, sz); 5330 } 5331 if (!userfaultfd_wp(dst_vma)) 5332 entry = huge_pte_clear_uffd_wp(entry); 5333 set_huge_pte_at(dst, addr, dst_pte, entry, sz); 5334 } else if (unlikely(is_pte_marker(entry))) { 5335 pte_marker marker = copy_pte_marker( 5336 pte_to_swp_entry(entry), dst_vma); 5337 5338 if (marker) 5339 set_huge_pte_at(dst, addr, dst_pte, 5340 make_pte_marker(marker), sz); 5341 } else { 5342 entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte); 5343 pte_folio = page_folio(pte_page(entry)); 5344 folio_get(pte_folio); 5345 5346 /* 5347 * Failing to duplicate the anon rmap is a rare case 5348 * where we see pinned hugetlb pages while they're 5349 * prone to COW. We need to do the COW earlier during 5350 * fork. 5351 * 5352 * When pre-allocating the page or copying data, we 5353 * need to be without the pgtable locks since we could 5354 * sleep during the process. 5355 */ 5356 if (!folio_test_anon(pte_folio)) { 5357 hugetlb_add_file_rmap(pte_folio); 5358 } else if (hugetlb_try_dup_anon_rmap(pte_folio, src_vma)) { 5359 pte_t src_pte_old = entry; 5360 struct folio *new_folio; 5361 5362 spin_unlock(src_ptl); 5363 spin_unlock(dst_ptl); 5364 /* Do not use reserve as it's private owned */ 5365 new_folio = alloc_hugetlb_folio(dst_vma, addr, false); 5366 if (IS_ERR(new_folio)) { 5367 folio_put(pte_folio); 5368 ret = PTR_ERR(new_folio); 5369 break; 5370 } 5371 ret = copy_user_large_folio(new_folio, pte_folio, 5372 addr, dst_vma); 5373 folio_put(pte_folio); 5374 if (ret) { 5375 folio_put(new_folio); 5376 break; 5377 } 5378 5379 /* Install the new hugetlb folio if src pte stable */ 5380 dst_ptl = huge_pte_lock(h, dst, dst_pte); 5381 src_ptl = huge_pte_lockptr(h, src, src_pte); 5382 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 5383 entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte); 5384 if (!pte_same(src_pte_old, entry)) { 5385 restore_reserve_on_error(h, dst_vma, addr, 5386 new_folio); 5387 folio_put(new_folio); 5388 /* huge_ptep of dst_pte won't change as in child */ 5389 goto again; 5390 } 5391 hugetlb_install_folio(dst_vma, dst_pte, addr, 5392 new_folio, src_pte_old, sz); 5393 spin_unlock(src_ptl); 5394 spin_unlock(dst_ptl); 5395 continue; 5396 } 5397 5398 if (cow) { 5399 /* 5400 * No need to notify as we are downgrading page 5401 * table protection not changing it to point 5402 * to a new page. 5403 * 5404 * See Documentation/mm/mmu_notifier.rst 5405 */ 5406 huge_ptep_set_wrprotect(src, addr, src_pte); 5407 entry = huge_pte_wrprotect(entry); 5408 } 5409 5410 if (!userfaultfd_wp(dst_vma)) 5411 entry = huge_pte_clear_uffd_wp(entry); 5412 5413 set_huge_pte_at(dst, addr, dst_pte, entry, sz); 5414 hugetlb_count_add(npages, dst); 5415 } 5416 spin_unlock(src_ptl); 5417 spin_unlock(dst_ptl); 5418 } 5419 5420 if (cow) { 5421 raw_write_seqcount_end(&src->write_protect_seq); 5422 mmu_notifier_invalidate_range_end(&range); 5423 } else { 5424 hugetlb_vma_unlock_read(src_vma); 5425 } 5426 5427 return ret; 5428 } 5429 5430 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr, 5431 unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte, 5432 unsigned long sz) 5433 { 5434 bool need_clear_uffd_wp = vma_has_uffd_without_event_remap(vma); 5435 struct hstate *h = hstate_vma(vma); 5436 struct mm_struct *mm = vma->vm_mm; 5437 spinlock_t *src_ptl, *dst_ptl; 5438 pte_t pte; 5439 5440 dst_ptl = huge_pte_lock(h, mm, dst_pte); 5441 src_ptl = huge_pte_lockptr(h, mm, src_pte); 5442 5443 /* 5444 * We don't have to worry about the ordering of src and dst ptlocks 5445 * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock. 5446 */ 5447 if (src_ptl != dst_ptl) 5448 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 5449 5450 pte = huge_ptep_get_and_clear(mm, old_addr, src_pte); 5451 5452 if (need_clear_uffd_wp && pte_marker_uffd_wp(pte)) 5453 huge_pte_clear(mm, new_addr, dst_pte, sz); 5454 else { 5455 if (need_clear_uffd_wp) { 5456 if (pte_present(pte)) 5457 pte = huge_pte_clear_uffd_wp(pte); 5458 else if (is_swap_pte(pte)) 5459 pte = pte_swp_clear_uffd_wp(pte); 5460 } 5461 set_huge_pte_at(mm, new_addr, dst_pte, pte, sz); 5462 } 5463 5464 if (src_ptl != dst_ptl) 5465 spin_unlock(src_ptl); 5466 spin_unlock(dst_ptl); 5467 } 5468 5469 int move_hugetlb_page_tables(struct vm_area_struct *vma, 5470 struct vm_area_struct *new_vma, 5471 unsigned long old_addr, unsigned long new_addr, 5472 unsigned long len) 5473 { 5474 struct hstate *h = hstate_vma(vma); 5475 struct address_space *mapping = vma->vm_file->f_mapping; 5476 unsigned long sz = huge_page_size(h); 5477 struct mm_struct *mm = vma->vm_mm; 5478 unsigned long old_end = old_addr + len; 5479 unsigned long last_addr_mask; 5480 pte_t *src_pte, *dst_pte; 5481 struct mmu_notifier_range range; 5482 bool shared_pmd = false; 5483 5484 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr, 5485 old_end); 5486 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 5487 /* 5488 * In case of shared PMDs, we should cover the maximum possible 5489 * range. 5490 */ 5491 flush_cache_range(vma, range.start, range.end); 5492 5493 mmu_notifier_invalidate_range_start(&range); 5494 last_addr_mask = hugetlb_mask_last_page(h); 5495 /* Prevent race with file truncation */ 5496 hugetlb_vma_lock_write(vma); 5497 i_mmap_lock_write(mapping); 5498 for (; old_addr < old_end; old_addr += sz, new_addr += sz) { 5499 src_pte = hugetlb_walk(vma, old_addr, sz); 5500 if (!src_pte) { 5501 old_addr |= last_addr_mask; 5502 new_addr |= last_addr_mask; 5503 continue; 5504 } 5505 if (huge_pte_none(huge_ptep_get(mm, old_addr, src_pte))) 5506 continue; 5507 5508 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) { 5509 shared_pmd = true; 5510 old_addr |= last_addr_mask; 5511 new_addr |= last_addr_mask; 5512 continue; 5513 } 5514 5515 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz); 5516 if (!dst_pte) 5517 break; 5518 5519 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte, sz); 5520 } 5521 5522 if (shared_pmd) 5523 flush_hugetlb_tlb_range(vma, range.start, range.end); 5524 else 5525 flush_hugetlb_tlb_range(vma, old_end - len, old_end); 5526 mmu_notifier_invalidate_range_end(&range); 5527 i_mmap_unlock_write(mapping); 5528 hugetlb_vma_unlock_write(vma); 5529 5530 return len + old_addr - old_end; 5531 } 5532 5533 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma, 5534 unsigned long start, unsigned long end, 5535 struct page *ref_page, zap_flags_t zap_flags) 5536 { 5537 struct mm_struct *mm = vma->vm_mm; 5538 unsigned long address; 5539 pte_t *ptep; 5540 pte_t pte; 5541 spinlock_t *ptl; 5542 struct page *page; 5543 struct hstate *h = hstate_vma(vma); 5544 unsigned long sz = huge_page_size(h); 5545 bool adjust_reservation = false; 5546 unsigned long last_addr_mask; 5547 bool force_flush = false; 5548 5549 WARN_ON(!is_vm_hugetlb_page(vma)); 5550 BUG_ON(start & ~huge_page_mask(h)); 5551 BUG_ON(end & ~huge_page_mask(h)); 5552 5553 /* 5554 * This is a hugetlb vma, all the pte entries should point 5555 * to huge page. 5556 */ 5557 tlb_change_page_size(tlb, sz); 5558 tlb_start_vma(tlb, vma); 5559 5560 last_addr_mask = hugetlb_mask_last_page(h); 5561 address = start; 5562 for (; address < end; address += sz) { 5563 ptep = hugetlb_walk(vma, address, sz); 5564 if (!ptep) { 5565 address |= last_addr_mask; 5566 continue; 5567 } 5568 5569 ptl = huge_pte_lock(h, mm, ptep); 5570 if (huge_pmd_unshare(mm, vma, address, ptep)) { 5571 spin_unlock(ptl); 5572 tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE); 5573 force_flush = true; 5574 address |= last_addr_mask; 5575 continue; 5576 } 5577 5578 pte = huge_ptep_get(mm, address, ptep); 5579 if (huge_pte_none(pte)) { 5580 spin_unlock(ptl); 5581 continue; 5582 } 5583 5584 /* 5585 * Migrating hugepage or HWPoisoned hugepage is already 5586 * unmapped and its refcount is dropped, so just clear pte here. 5587 */ 5588 if (unlikely(!pte_present(pte))) { 5589 /* 5590 * If the pte was wr-protected by uffd-wp in any of the 5591 * swap forms, meanwhile the caller does not want to 5592 * drop the uffd-wp bit in this zap, then replace the 5593 * pte with a marker. 5594 */ 5595 if (pte_swp_uffd_wp_any(pte) && 5596 !(zap_flags & ZAP_FLAG_DROP_MARKER)) 5597 set_huge_pte_at(mm, address, ptep, 5598 make_pte_marker(PTE_MARKER_UFFD_WP), 5599 sz); 5600 else 5601 huge_pte_clear(mm, address, ptep, sz); 5602 spin_unlock(ptl); 5603 continue; 5604 } 5605 5606 page = pte_page(pte); 5607 /* 5608 * If a reference page is supplied, it is because a specific 5609 * page is being unmapped, not a range. Ensure the page we 5610 * are about to unmap is the actual page of interest. 5611 */ 5612 if (ref_page) { 5613 if (page != ref_page) { 5614 spin_unlock(ptl); 5615 continue; 5616 } 5617 /* 5618 * Mark the VMA as having unmapped its page so that 5619 * future faults in this VMA will fail rather than 5620 * looking like data was lost 5621 */ 5622 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); 5623 } 5624 5625 pte = huge_ptep_get_and_clear(mm, address, ptep); 5626 tlb_remove_huge_tlb_entry(h, tlb, ptep, address); 5627 if (huge_pte_dirty(pte)) 5628 set_page_dirty(page); 5629 /* Leave a uffd-wp pte marker if needed */ 5630 if (huge_pte_uffd_wp(pte) && 5631 !(zap_flags & ZAP_FLAG_DROP_MARKER)) 5632 set_huge_pte_at(mm, address, ptep, 5633 make_pte_marker(PTE_MARKER_UFFD_WP), 5634 sz); 5635 hugetlb_count_sub(pages_per_huge_page(h), mm); 5636 hugetlb_remove_rmap(page_folio(page)); 5637 5638 /* 5639 * Restore the reservation for anonymous page, otherwise the 5640 * backing page could be stolen by someone. 5641 * If there we are freeing a surplus, do not set the restore 5642 * reservation bit. 5643 */ 5644 if (!h->surplus_huge_pages && __vma_private_lock(vma) && 5645 folio_test_anon(page_folio(page))) { 5646 folio_set_hugetlb_restore_reserve(page_folio(page)); 5647 /* Reservation to be adjusted after the spin lock */ 5648 adjust_reservation = true; 5649 } 5650 5651 spin_unlock(ptl); 5652 5653 /* 5654 * Adjust the reservation for the region that will have the 5655 * reserve restored. Keep in mind that vma_needs_reservation() changes 5656 * resv->adds_in_progress if it succeeds. If this is not done, 5657 * do_exit() will not see it, and will keep the reservation 5658 * forever. 5659 */ 5660 if (adjust_reservation) { 5661 int rc = vma_needs_reservation(h, vma, address); 5662 5663 if (rc < 0) 5664 /* Pressumably allocate_file_region_entries failed 5665 * to allocate a file_region struct. Clear 5666 * hugetlb_restore_reserve so that global reserve 5667 * count will not be incremented by free_huge_folio. 5668 * Act as if we consumed the reservation. 5669 */ 5670 folio_clear_hugetlb_restore_reserve(page_folio(page)); 5671 else if (rc) 5672 vma_add_reservation(h, vma, address); 5673 } 5674 5675 tlb_remove_page_size(tlb, page, huge_page_size(h)); 5676 /* 5677 * Bail out after unmapping reference page if supplied 5678 */ 5679 if (ref_page) 5680 break; 5681 } 5682 tlb_end_vma(tlb, vma); 5683 5684 /* 5685 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We 5686 * could defer the flush until now, since by holding i_mmap_rwsem we 5687 * guaranteed that the last refernece would not be dropped. But we must 5688 * do the flushing before we return, as otherwise i_mmap_rwsem will be 5689 * dropped and the last reference to the shared PMDs page might be 5690 * dropped as well. 5691 * 5692 * In theory we could defer the freeing of the PMD pages as well, but 5693 * huge_pmd_unshare() relies on the exact page_count for the PMD page to 5694 * detect sharing, so we cannot defer the release of the page either. 5695 * Instead, do flush now. 5696 */ 5697 if (force_flush) 5698 tlb_flush_mmu_tlbonly(tlb); 5699 } 5700 5701 void __hugetlb_zap_begin(struct vm_area_struct *vma, 5702 unsigned long *start, unsigned long *end) 5703 { 5704 if (!vma->vm_file) /* hugetlbfs_file_mmap error */ 5705 return; 5706 5707 adjust_range_if_pmd_sharing_possible(vma, start, end); 5708 hugetlb_vma_lock_write(vma); 5709 if (vma->vm_file) 5710 i_mmap_lock_write(vma->vm_file->f_mapping); 5711 } 5712 5713 void __hugetlb_zap_end(struct vm_area_struct *vma, 5714 struct zap_details *details) 5715 { 5716 zap_flags_t zap_flags = details ? details->zap_flags : 0; 5717 5718 if (!vma->vm_file) /* hugetlbfs_file_mmap error */ 5719 return; 5720 5721 if (zap_flags & ZAP_FLAG_UNMAP) { /* final unmap */ 5722 /* 5723 * Unlock and free the vma lock before releasing i_mmap_rwsem. 5724 * When the vma_lock is freed, this makes the vma ineligible 5725 * for pmd sharing. And, i_mmap_rwsem is required to set up 5726 * pmd sharing. This is important as page tables for this 5727 * unmapped range will be asynchrously deleted. If the page 5728 * tables are shared, there will be issues when accessed by 5729 * someone else. 5730 */ 5731 __hugetlb_vma_unlock_write_free(vma); 5732 } else { 5733 hugetlb_vma_unlock_write(vma); 5734 } 5735 5736 if (vma->vm_file) 5737 i_mmap_unlock_write(vma->vm_file->f_mapping); 5738 } 5739 5740 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, 5741 unsigned long end, struct page *ref_page, 5742 zap_flags_t zap_flags) 5743 { 5744 struct mmu_notifier_range range; 5745 struct mmu_gather tlb; 5746 5747 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 5748 start, end); 5749 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 5750 mmu_notifier_invalidate_range_start(&range); 5751 tlb_gather_mmu(&tlb, vma->vm_mm); 5752 5753 __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags); 5754 5755 mmu_notifier_invalidate_range_end(&range); 5756 tlb_finish_mmu(&tlb); 5757 } 5758 5759 /* 5760 * This is called when the original mapper is failing to COW a MAP_PRIVATE 5761 * mapping it owns the reserve page for. The intention is to unmap the page 5762 * from other VMAs and let the children be SIGKILLed if they are faulting the 5763 * same region. 5764 */ 5765 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, 5766 struct page *page, unsigned long address) 5767 { 5768 struct hstate *h = hstate_vma(vma); 5769 struct vm_area_struct *iter_vma; 5770 struct address_space *mapping; 5771 pgoff_t pgoff; 5772 5773 /* 5774 * vm_pgoff is in PAGE_SIZE units, hence the different calculation 5775 * from page cache lookup which is in HPAGE_SIZE units. 5776 */ 5777 address = address & huge_page_mask(h); 5778 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + 5779 vma->vm_pgoff; 5780 mapping = vma->vm_file->f_mapping; 5781 5782 /* 5783 * Take the mapping lock for the duration of the table walk. As 5784 * this mapping should be shared between all the VMAs, 5785 * __unmap_hugepage_range() is called as the lock is already held 5786 */ 5787 i_mmap_lock_write(mapping); 5788 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) { 5789 /* Do not unmap the current VMA */ 5790 if (iter_vma == vma) 5791 continue; 5792 5793 /* 5794 * Shared VMAs have their own reserves and do not affect 5795 * MAP_PRIVATE accounting but it is possible that a shared 5796 * VMA is using the same page so check and skip such VMAs. 5797 */ 5798 if (iter_vma->vm_flags & VM_MAYSHARE) 5799 continue; 5800 5801 /* 5802 * Unmap the page from other VMAs without their own reserves. 5803 * They get marked to be SIGKILLed if they fault in these 5804 * areas. This is because a future no-page fault on this VMA 5805 * could insert a zeroed page instead of the data existing 5806 * from the time of fork. This would look like data corruption 5807 */ 5808 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) 5809 unmap_hugepage_range(iter_vma, address, 5810 address + huge_page_size(h), page, 0); 5811 } 5812 i_mmap_unlock_write(mapping); 5813 } 5814 5815 /* 5816 * hugetlb_wp() should be called with page lock of the original hugepage held. 5817 * Called with hugetlb_fault_mutex_table held and pte_page locked so we 5818 * cannot race with other handlers or page migration. 5819 * Keep the pte_same checks anyway to make transition from the mutex easier. 5820 */ 5821 static vm_fault_t hugetlb_wp(struct folio *pagecache_folio, 5822 struct vm_fault *vmf) 5823 { 5824 struct vm_area_struct *vma = vmf->vma; 5825 struct mm_struct *mm = vma->vm_mm; 5826 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 5827 pte_t pte = huge_ptep_get(mm, vmf->address, vmf->pte); 5828 struct hstate *h = hstate_vma(vma); 5829 struct folio *old_folio; 5830 struct folio *new_folio; 5831 bool cow_from_owner = 0; 5832 vm_fault_t ret = 0; 5833 struct mmu_notifier_range range; 5834 5835 /* 5836 * Never handle CoW for uffd-wp protected pages. It should be only 5837 * handled when the uffd-wp protection is removed. 5838 * 5839 * Note that only the CoW optimization path (in hugetlb_no_page()) 5840 * can trigger this, because hugetlb_fault() will always resolve 5841 * uffd-wp bit first. 5842 */ 5843 if (!unshare && huge_pte_uffd_wp(pte)) 5844 return 0; 5845 5846 /* Let's take out MAP_SHARED mappings first. */ 5847 if (vma->vm_flags & VM_MAYSHARE) { 5848 set_huge_ptep_writable(vma, vmf->address, vmf->pte); 5849 return 0; 5850 } 5851 5852 old_folio = page_folio(pte_page(pte)); 5853 5854 delayacct_wpcopy_start(); 5855 5856 retry_avoidcopy: 5857 /* 5858 * If no-one else is actually using this page, we're the exclusive 5859 * owner and can reuse this page. 5860 * 5861 * Note that we don't rely on the (safer) folio refcount here, because 5862 * copying the hugetlb folio when there are unexpected (temporary) 5863 * folio references could harm simple fork()+exit() users when 5864 * we run out of free hugetlb folios: we would have to kill processes 5865 * in scenarios that used to work. As a side effect, there can still 5866 * be leaks between processes, for example, with FOLL_GET users. 5867 */ 5868 if (folio_mapcount(old_folio) == 1 && folio_test_anon(old_folio)) { 5869 if (!PageAnonExclusive(&old_folio->page)) { 5870 folio_move_anon_rmap(old_folio, vma); 5871 SetPageAnonExclusive(&old_folio->page); 5872 } 5873 if (likely(!unshare)) 5874 set_huge_ptep_maybe_writable(vma, vmf->address, 5875 vmf->pte); 5876 5877 delayacct_wpcopy_end(); 5878 return 0; 5879 } 5880 VM_BUG_ON_PAGE(folio_test_anon(old_folio) && 5881 PageAnonExclusive(&old_folio->page), &old_folio->page); 5882 5883 /* 5884 * If the process that created a MAP_PRIVATE mapping is about to 5885 * perform a COW due to a shared page count, attempt to satisfy 5886 * the allocation without using the existing reserves. The pagecache 5887 * page is used to determine if the reserve at this address was 5888 * consumed or not. If reserves were used, a partial faulted mapping 5889 * at the time of fork() could consume its reserves on COW instead 5890 * of the full address range. 5891 */ 5892 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && 5893 old_folio != pagecache_folio) 5894 cow_from_owner = true; 5895 5896 folio_get(old_folio); 5897 5898 /* 5899 * Drop page table lock as buddy allocator may be called. It will 5900 * be acquired again before returning to the caller, as expected. 5901 */ 5902 spin_unlock(vmf->ptl); 5903 new_folio = alloc_hugetlb_folio(vma, vmf->address, cow_from_owner); 5904 5905 if (IS_ERR(new_folio)) { 5906 /* 5907 * If a process owning a MAP_PRIVATE mapping fails to COW, 5908 * it is due to references held by a child and an insufficient 5909 * huge page pool. To guarantee the original mappers 5910 * reliability, unmap the page from child processes. The child 5911 * may get SIGKILLed if it later faults. 5912 */ 5913 if (cow_from_owner) { 5914 struct address_space *mapping = vma->vm_file->f_mapping; 5915 pgoff_t idx; 5916 u32 hash; 5917 5918 folio_put(old_folio); 5919 /* 5920 * Drop hugetlb_fault_mutex and vma_lock before 5921 * unmapping. unmapping needs to hold vma_lock 5922 * in write mode. Dropping vma_lock in read mode 5923 * here is OK as COW mappings do not interact with 5924 * PMD sharing. 5925 * 5926 * Reacquire both after unmap operation. 5927 */ 5928 idx = vma_hugecache_offset(h, vma, vmf->address); 5929 hash = hugetlb_fault_mutex_hash(mapping, idx); 5930 hugetlb_vma_unlock_read(vma); 5931 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 5932 5933 unmap_ref_private(mm, vma, &old_folio->page, 5934 vmf->address); 5935 5936 mutex_lock(&hugetlb_fault_mutex_table[hash]); 5937 hugetlb_vma_lock_read(vma); 5938 spin_lock(vmf->ptl); 5939 vmf->pte = hugetlb_walk(vma, vmf->address, 5940 huge_page_size(h)); 5941 if (likely(vmf->pte && 5942 pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), pte))) 5943 goto retry_avoidcopy; 5944 /* 5945 * race occurs while re-acquiring page table 5946 * lock, and our job is done. 5947 */ 5948 delayacct_wpcopy_end(); 5949 return 0; 5950 } 5951 5952 ret = vmf_error(PTR_ERR(new_folio)); 5953 goto out_release_old; 5954 } 5955 5956 /* 5957 * When the original hugepage is shared one, it does not have 5958 * anon_vma prepared. 5959 */ 5960 ret = __vmf_anon_prepare(vmf); 5961 if (unlikely(ret)) 5962 goto out_release_all; 5963 5964 if (copy_user_large_folio(new_folio, old_folio, vmf->real_address, vma)) { 5965 ret = VM_FAULT_HWPOISON_LARGE | VM_FAULT_SET_HINDEX(hstate_index(h)); 5966 goto out_release_all; 5967 } 5968 __folio_mark_uptodate(new_folio); 5969 5970 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, vmf->address, 5971 vmf->address + huge_page_size(h)); 5972 mmu_notifier_invalidate_range_start(&range); 5973 5974 /* 5975 * Retake the page table lock to check for racing updates 5976 * before the page tables are altered 5977 */ 5978 spin_lock(vmf->ptl); 5979 vmf->pte = hugetlb_walk(vma, vmf->address, huge_page_size(h)); 5980 if (likely(vmf->pte && pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), pte))) { 5981 pte_t newpte = make_huge_pte(vma, &new_folio->page, !unshare); 5982 5983 /* Break COW or unshare */ 5984 huge_ptep_clear_flush(vma, vmf->address, vmf->pte); 5985 hugetlb_remove_rmap(old_folio); 5986 hugetlb_add_new_anon_rmap(new_folio, vma, vmf->address); 5987 if (huge_pte_uffd_wp(pte)) 5988 newpte = huge_pte_mkuffd_wp(newpte); 5989 set_huge_pte_at(mm, vmf->address, vmf->pte, newpte, 5990 huge_page_size(h)); 5991 folio_set_hugetlb_migratable(new_folio); 5992 /* Make the old page be freed below */ 5993 new_folio = old_folio; 5994 } 5995 spin_unlock(vmf->ptl); 5996 mmu_notifier_invalidate_range_end(&range); 5997 out_release_all: 5998 /* 5999 * No restore in case of successful pagetable update (Break COW or 6000 * unshare) 6001 */ 6002 if (new_folio != old_folio) 6003 restore_reserve_on_error(h, vma, vmf->address, new_folio); 6004 folio_put(new_folio); 6005 out_release_old: 6006 folio_put(old_folio); 6007 6008 spin_lock(vmf->ptl); /* Caller expects lock to be held */ 6009 6010 delayacct_wpcopy_end(); 6011 return ret; 6012 } 6013 6014 /* 6015 * Return whether there is a pagecache page to back given address within VMA. 6016 */ 6017 bool hugetlbfs_pagecache_present(struct hstate *h, 6018 struct vm_area_struct *vma, unsigned long address) 6019 { 6020 struct address_space *mapping = vma->vm_file->f_mapping; 6021 pgoff_t idx = linear_page_index(vma, address); 6022 struct folio *folio; 6023 6024 folio = filemap_get_folio(mapping, idx); 6025 if (IS_ERR(folio)) 6026 return false; 6027 folio_put(folio); 6028 return true; 6029 } 6030 6031 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping, 6032 pgoff_t idx) 6033 { 6034 struct inode *inode = mapping->host; 6035 struct hstate *h = hstate_inode(inode); 6036 int err; 6037 6038 idx <<= huge_page_order(h); 6039 __folio_set_locked(folio); 6040 err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL); 6041 6042 if (unlikely(err)) { 6043 __folio_clear_locked(folio); 6044 return err; 6045 } 6046 folio_clear_hugetlb_restore_reserve(folio); 6047 6048 /* 6049 * mark folio dirty so that it will not be removed from cache/file 6050 * by non-hugetlbfs specific code paths. 6051 */ 6052 folio_mark_dirty(folio); 6053 6054 spin_lock(&inode->i_lock); 6055 inode->i_blocks += blocks_per_huge_page(h); 6056 spin_unlock(&inode->i_lock); 6057 return 0; 6058 } 6059 6060 static inline vm_fault_t hugetlb_handle_userfault(struct vm_fault *vmf, 6061 struct address_space *mapping, 6062 unsigned long reason) 6063 { 6064 u32 hash; 6065 6066 /* 6067 * vma_lock and hugetlb_fault_mutex must be dropped before handling 6068 * userfault. Also mmap_lock could be dropped due to handling 6069 * userfault, any vma operation should be careful from here. 6070 */ 6071 hugetlb_vma_unlock_read(vmf->vma); 6072 hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff); 6073 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6074 return handle_userfault(vmf, reason); 6075 } 6076 6077 /* 6078 * Recheck pte with pgtable lock. Returns true if pte didn't change, or 6079 * false if pte changed or is changing. 6080 */ 6081 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm, unsigned long addr, 6082 pte_t *ptep, pte_t old_pte) 6083 { 6084 spinlock_t *ptl; 6085 bool same; 6086 6087 ptl = huge_pte_lock(h, mm, ptep); 6088 same = pte_same(huge_ptep_get(mm, addr, ptep), old_pte); 6089 spin_unlock(ptl); 6090 6091 return same; 6092 } 6093 6094 static vm_fault_t hugetlb_no_page(struct address_space *mapping, 6095 struct vm_fault *vmf) 6096 { 6097 struct vm_area_struct *vma = vmf->vma; 6098 struct mm_struct *mm = vma->vm_mm; 6099 struct hstate *h = hstate_vma(vma); 6100 vm_fault_t ret = VM_FAULT_SIGBUS; 6101 int anon_rmap = 0; 6102 unsigned long size; 6103 struct folio *folio; 6104 pte_t new_pte; 6105 bool new_folio, new_pagecache_folio = false; 6106 u32 hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff); 6107 6108 /* 6109 * Currently, we are forced to kill the process in the event the 6110 * original mapper has unmapped pages from the child due to a failed 6111 * COW/unsharing. Warn that such a situation has occurred as it may not 6112 * be obvious. 6113 */ 6114 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { 6115 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n", 6116 current->pid); 6117 goto out; 6118 } 6119 6120 /* 6121 * Use page lock to guard against racing truncation 6122 * before we get page_table_lock. 6123 */ 6124 new_folio = false; 6125 folio = filemap_lock_hugetlb_folio(h, mapping, vmf->pgoff); 6126 if (IS_ERR(folio)) { 6127 size = i_size_read(mapping->host) >> huge_page_shift(h); 6128 if (vmf->pgoff >= size) 6129 goto out; 6130 /* Check for page in userfault range */ 6131 if (userfaultfd_missing(vma)) { 6132 /* 6133 * Since hugetlb_no_page() was examining pte 6134 * without pgtable lock, we need to re-test under 6135 * lock because the pte may not be stable and could 6136 * have changed from under us. Try to detect 6137 * either changed or during-changing ptes and retry 6138 * properly when needed. 6139 * 6140 * Note that userfaultfd is actually fine with 6141 * false positives (e.g. caused by pte changed), 6142 * but not wrong logical events (e.g. caused by 6143 * reading a pte during changing). The latter can 6144 * confuse the userspace, so the strictness is very 6145 * much preferred. E.g., MISSING event should 6146 * never happen on the page after UFFDIO_COPY has 6147 * correctly installed the page and returned. 6148 */ 6149 if (!hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte)) { 6150 ret = 0; 6151 goto out; 6152 } 6153 6154 return hugetlb_handle_userfault(vmf, mapping, 6155 VM_UFFD_MISSING); 6156 } 6157 6158 if (!(vma->vm_flags & VM_MAYSHARE)) { 6159 ret = __vmf_anon_prepare(vmf); 6160 if (unlikely(ret)) 6161 goto out; 6162 } 6163 6164 folio = alloc_hugetlb_folio(vma, vmf->address, false); 6165 if (IS_ERR(folio)) { 6166 /* 6167 * Returning error will result in faulting task being 6168 * sent SIGBUS. The hugetlb fault mutex prevents two 6169 * tasks from racing to fault in the same page which 6170 * could result in false unable to allocate errors. 6171 * Page migration does not take the fault mutex, but 6172 * does a clear then write of pte's under page table 6173 * lock. Page fault code could race with migration, 6174 * notice the clear pte and try to allocate a page 6175 * here. Before returning error, get ptl and make 6176 * sure there really is no pte entry. 6177 */ 6178 if (hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte)) 6179 ret = vmf_error(PTR_ERR(folio)); 6180 else 6181 ret = 0; 6182 goto out; 6183 } 6184 folio_zero_user(folio, vmf->real_address); 6185 __folio_mark_uptodate(folio); 6186 new_folio = true; 6187 6188 if (vma->vm_flags & VM_MAYSHARE) { 6189 int err = hugetlb_add_to_page_cache(folio, mapping, 6190 vmf->pgoff); 6191 if (err) { 6192 /* 6193 * err can't be -EEXIST which implies someone 6194 * else consumed the reservation since hugetlb 6195 * fault mutex is held when add a hugetlb page 6196 * to the page cache. So it's safe to call 6197 * restore_reserve_on_error() here. 6198 */ 6199 restore_reserve_on_error(h, vma, vmf->address, 6200 folio); 6201 folio_put(folio); 6202 ret = VM_FAULT_SIGBUS; 6203 goto out; 6204 } 6205 new_pagecache_folio = true; 6206 } else { 6207 folio_lock(folio); 6208 anon_rmap = 1; 6209 } 6210 } else { 6211 /* 6212 * If memory error occurs between mmap() and fault, some process 6213 * don't have hwpoisoned swap entry for errored virtual address. 6214 * So we need to block hugepage fault by PG_hwpoison bit check. 6215 */ 6216 if (unlikely(folio_test_hwpoison(folio))) { 6217 ret = VM_FAULT_HWPOISON_LARGE | 6218 VM_FAULT_SET_HINDEX(hstate_index(h)); 6219 goto backout_unlocked; 6220 } 6221 6222 /* Check for page in userfault range. */ 6223 if (userfaultfd_minor(vma)) { 6224 folio_unlock(folio); 6225 folio_put(folio); 6226 /* See comment in userfaultfd_missing() block above */ 6227 if (!hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte)) { 6228 ret = 0; 6229 goto out; 6230 } 6231 return hugetlb_handle_userfault(vmf, mapping, 6232 VM_UFFD_MINOR); 6233 } 6234 } 6235 6236 /* 6237 * If we are going to COW a private mapping later, we examine the 6238 * pending reservations for this page now. This will ensure that 6239 * any allocations necessary to record that reservation occur outside 6240 * the spinlock. 6241 */ 6242 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 6243 if (vma_needs_reservation(h, vma, vmf->address) < 0) { 6244 ret = VM_FAULT_OOM; 6245 goto backout_unlocked; 6246 } 6247 /* Just decrements count, does not deallocate */ 6248 vma_end_reservation(h, vma, vmf->address); 6249 } 6250 6251 vmf->ptl = huge_pte_lock(h, mm, vmf->pte); 6252 ret = 0; 6253 /* If pte changed from under us, retry */ 6254 if (!pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), vmf->orig_pte)) 6255 goto backout; 6256 6257 if (anon_rmap) 6258 hugetlb_add_new_anon_rmap(folio, vma, vmf->address); 6259 else 6260 hugetlb_add_file_rmap(folio); 6261 new_pte = make_huge_pte(vma, &folio->page, vma->vm_flags & VM_SHARED); 6262 /* 6263 * If this pte was previously wr-protected, keep it wr-protected even 6264 * if populated. 6265 */ 6266 if (unlikely(pte_marker_uffd_wp(vmf->orig_pte))) 6267 new_pte = huge_pte_mkuffd_wp(new_pte); 6268 set_huge_pte_at(mm, vmf->address, vmf->pte, new_pte, huge_page_size(h)); 6269 6270 hugetlb_count_add(pages_per_huge_page(h), mm); 6271 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 6272 /* Optimization, do the COW without a second fault */ 6273 ret = hugetlb_wp(folio, vmf); 6274 } 6275 6276 spin_unlock(vmf->ptl); 6277 6278 /* 6279 * Only set hugetlb_migratable in newly allocated pages. Existing pages 6280 * found in the pagecache may not have hugetlb_migratable if they have 6281 * been isolated for migration. 6282 */ 6283 if (new_folio) 6284 folio_set_hugetlb_migratable(folio); 6285 6286 folio_unlock(folio); 6287 out: 6288 hugetlb_vma_unlock_read(vma); 6289 6290 /* 6291 * We must check to release the per-VMA lock. __vmf_anon_prepare() is 6292 * the only way ret can be set to VM_FAULT_RETRY. 6293 */ 6294 if (unlikely(ret & VM_FAULT_RETRY)) 6295 vma_end_read(vma); 6296 6297 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6298 return ret; 6299 6300 backout: 6301 spin_unlock(vmf->ptl); 6302 backout_unlocked: 6303 if (new_folio && !new_pagecache_folio) 6304 restore_reserve_on_error(h, vma, vmf->address, folio); 6305 6306 folio_unlock(folio); 6307 folio_put(folio); 6308 goto out; 6309 } 6310 6311 #ifdef CONFIG_SMP 6312 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 6313 { 6314 unsigned long key[2]; 6315 u32 hash; 6316 6317 key[0] = (unsigned long) mapping; 6318 key[1] = idx; 6319 6320 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0); 6321 6322 return hash & (num_fault_mutexes - 1); 6323 } 6324 #else 6325 /* 6326 * For uniprocessor systems we always use a single mutex, so just 6327 * return 0 and avoid the hashing overhead. 6328 */ 6329 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 6330 { 6331 return 0; 6332 } 6333 #endif 6334 6335 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, 6336 unsigned long address, unsigned int flags) 6337 { 6338 vm_fault_t ret; 6339 u32 hash; 6340 struct folio *folio = NULL; 6341 struct folio *pagecache_folio = NULL; 6342 struct hstate *h = hstate_vma(vma); 6343 struct address_space *mapping; 6344 int need_wait_lock = 0; 6345 struct vm_fault vmf = { 6346 .vma = vma, 6347 .address = address & huge_page_mask(h), 6348 .real_address = address, 6349 .flags = flags, 6350 .pgoff = vma_hugecache_offset(h, vma, 6351 address & huge_page_mask(h)), 6352 /* TODO: Track hugetlb faults using vm_fault */ 6353 6354 /* 6355 * Some fields may not be initialized, be careful as it may 6356 * be hard to debug if called functions make assumptions 6357 */ 6358 }; 6359 6360 /* 6361 * Serialize hugepage allocation and instantiation, so that we don't 6362 * get spurious allocation failures if two CPUs race to instantiate 6363 * the same page in the page cache. 6364 */ 6365 mapping = vma->vm_file->f_mapping; 6366 hash = hugetlb_fault_mutex_hash(mapping, vmf.pgoff); 6367 mutex_lock(&hugetlb_fault_mutex_table[hash]); 6368 6369 /* 6370 * Acquire vma lock before calling huge_pte_alloc and hold 6371 * until finished with vmf.pte. This prevents huge_pmd_unshare from 6372 * being called elsewhere and making the vmf.pte no longer valid. 6373 */ 6374 hugetlb_vma_lock_read(vma); 6375 vmf.pte = huge_pte_alloc(mm, vma, vmf.address, huge_page_size(h)); 6376 if (!vmf.pte) { 6377 hugetlb_vma_unlock_read(vma); 6378 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6379 return VM_FAULT_OOM; 6380 } 6381 6382 vmf.orig_pte = huge_ptep_get(mm, vmf.address, vmf.pte); 6383 if (huge_pte_none_mostly(vmf.orig_pte)) { 6384 if (is_pte_marker(vmf.orig_pte)) { 6385 pte_marker marker = 6386 pte_marker_get(pte_to_swp_entry(vmf.orig_pte)); 6387 6388 if (marker & PTE_MARKER_POISONED) { 6389 ret = VM_FAULT_HWPOISON_LARGE | 6390 VM_FAULT_SET_HINDEX(hstate_index(h)); 6391 goto out_mutex; 6392 } else if (WARN_ON_ONCE(marker & PTE_MARKER_GUARD)) { 6393 /* This isn't supported in hugetlb. */ 6394 ret = VM_FAULT_SIGSEGV; 6395 goto out_mutex; 6396 } 6397 } 6398 6399 /* 6400 * Other PTE markers should be handled the same way as none PTE. 6401 * 6402 * hugetlb_no_page will drop vma lock and hugetlb fault 6403 * mutex internally, which make us return immediately. 6404 */ 6405 return hugetlb_no_page(mapping, &vmf); 6406 } 6407 6408 ret = 0; 6409 6410 /* 6411 * vmf.orig_pte could be a migration/hwpoison vmf.orig_pte at this 6412 * point, so this check prevents the kernel from going below assuming 6413 * that we have an active hugepage in pagecache. This goto expects 6414 * the 2nd page fault, and is_hugetlb_entry_(migration|hwpoisoned) 6415 * check will properly handle it. 6416 */ 6417 if (!pte_present(vmf.orig_pte)) { 6418 if (unlikely(is_hugetlb_entry_migration(vmf.orig_pte))) { 6419 /* 6420 * Release the hugetlb fault lock now, but retain 6421 * the vma lock, because it is needed to guard the 6422 * huge_pte_lockptr() later in 6423 * migration_entry_wait_huge(). The vma lock will 6424 * be released there. 6425 */ 6426 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6427 migration_entry_wait_huge(vma, vmf.address, vmf.pte); 6428 return 0; 6429 } else if (unlikely(is_hugetlb_entry_hwpoisoned(vmf.orig_pte))) 6430 ret = VM_FAULT_HWPOISON_LARGE | 6431 VM_FAULT_SET_HINDEX(hstate_index(h)); 6432 goto out_mutex; 6433 } 6434 6435 /* 6436 * If we are going to COW/unshare the mapping later, we examine the 6437 * pending reservations for this page now. This will ensure that any 6438 * allocations necessary to record that reservation occur outside the 6439 * spinlock. Also lookup the pagecache page now as it is used to 6440 * determine if a reservation has been consumed. 6441 */ 6442 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) && 6443 !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(vmf.orig_pte)) { 6444 if (vma_needs_reservation(h, vma, vmf.address) < 0) { 6445 ret = VM_FAULT_OOM; 6446 goto out_mutex; 6447 } 6448 /* Just decrements count, does not deallocate */ 6449 vma_end_reservation(h, vma, vmf.address); 6450 6451 pagecache_folio = filemap_lock_hugetlb_folio(h, mapping, 6452 vmf.pgoff); 6453 if (IS_ERR(pagecache_folio)) 6454 pagecache_folio = NULL; 6455 } 6456 6457 vmf.ptl = huge_pte_lock(h, mm, vmf.pte); 6458 6459 /* Check for a racing update before calling hugetlb_wp() */ 6460 if (unlikely(!pte_same(vmf.orig_pte, huge_ptep_get(mm, vmf.address, vmf.pte)))) 6461 goto out_ptl; 6462 6463 /* Handle userfault-wp first, before trying to lock more pages */ 6464 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(mm, vmf.address, vmf.pte)) && 6465 (flags & FAULT_FLAG_WRITE) && !huge_pte_write(vmf.orig_pte)) { 6466 if (!userfaultfd_wp_async(vma)) { 6467 spin_unlock(vmf.ptl); 6468 if (pagecache_folio) { 6469 folio_unlock(pagecache_folio); 6470 folio_put(pagecache_folio); 6471 } 6472 hugetlb_vma_unlock_read(vma); 6473 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6474 return handle_userfault(&vmf, VM_UFFD_WP); 6475 } 6476 6477 vmf.orig_pte = huge_pte_clear_uffd_wp(vmf.orig_pte); 6478 set_huge_pte_at(mm, vmf.address, vmf.pte, vmf.orig_pte, 6479 huge_page_size(hstate_vma(vma))); 6480 /* Fallthrough to CoW */ 6481 } 6482 6483 /* 6484 * hugetlb_wp() requires page locks of pte_page(vmf.orig_pte) and 6485 * pagecache_folio, so here we need take the former one 6486 * when folio != pagecache_folio or !pagecache_folio. 6487 */ 6488 folio = page_folio(pte_page(vmf.orig_pte)); 6489 if (folio != pagecache_folio) 6490 if (!folio_trylock(folio)) { 6491 need_wait_lock = 1; 6492 goto out_ptl; 6493 } 6494 6495 folio_get(folio); 6496 6497 if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) { 6498 if (!huge_pte_write(vmf.orig_pte)) { 6499 ret = hugetlb_wp(pagecache_folio, &vmf); 6500 goto out_put_page; 6501 } else if (likely(flags & FAULT_FLAG_WRITE)) { 6502 vmf.orig_pte = huge_pte_mkdirty(vmf.orig_pte); 6503 } 6504 } 6505 vmf.orig_pte = pte_mkyoung(vmf.orig_pte); 6506 if (huge_ptep_set_access_flags(vma, vmf.address, vmf.pte, vmf.orig_pte, 6507 flags & FAULT_FLAG_WRITE)) 6508 update_mmu_cache(vma, vmf.address, vmf.pte); 6509 out_put_page: 6510 if (folio != pagecache_folio) 6511 folio_unlock(folio); 6512 folio_put(folio); 6513 out_ptl: 6514 spin_unlock(vmf.ptl); 6515 6516 if (pagecache_folio) { 6517 folio_unlock(pagecache_folio); 6518 folio_put(pagecache_folio); 6519 } 6520 out_mutex: 6521 hugetlb_vma_unlock_read(vma); 6522 6523 /* 6524 * We must check to release the per-VMA lock. __vmf_anon_prepare() in 6525 * hugetlb_wp() is the only way ret can be set to VM_FAULT_RETRY. 6526 */ 6527 if (unlikely(ret & VM_FAULT_RETRY)) 6528 vma_end_read(vma); 6529 6530 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6531 /* 6532 * Generally it's safe to hold refcount during waiting page lock. But 6533 * here we just wait to defer the next page fault to avoid busy loop and 6534 * the page is not used after unlocked before returning from the current 6535 * page fault. So we are safe from accessing freed page, even if we wait 6536 * here without taking refcount. 6537 */ 6538 if (need_wait_lock) 6539 folio_wait_locked(folio); 6540 return ret; 6541 } 6542 6543 #ifdef CONFIG_USERFAULTFD 6544 /* 6545 * Can probably be eliminated, but still used by hugetlb_mfill_atomic_pte(). 6546 */ 6547 static struct folio *alloc_hugetlb_folio_vma(struct hstate *h, 6548 struct vm_area_struct *vma, unsigned long address) 6549 { 6550 struct mempolicy *mpol; 6551 nodemask_t *nodemask; 6552 struct folio *folio; 6553 gfp_t gfp_mask; 6554 int node; 6555 6556 gfp_mask = htlb_alloc_mask(h); 6557 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 6558 /* 6559 * This is used to allocate a temporary hugetlb to hold the copied 6560 * content, which will then be copied again to the final hugetlb 6561 * consuming a reservation. Set the alloc_fallback to false to indicate 6562 * that breaking the per-node hugetlb pool is not allowed in this case. 6563 */ 6564 folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask, false); 6565 mpol_cond_put(mpol); 6566 6567 return folio; 6568 } 6569 6570 /* 6571 * Used by userfaultfd UFFDIO_* ioctls. Based on userfaultfd's mfill_atomic_pte 6572 * with modifications for hugetlb pages. 6573 */ 6574 int hugetlb_mfill_atomic_pte(pte_t *dst_pte, 6575 struct vm_area_struct *dst_vma, 6576 unsigned long dst_addr, 6577 unsigned long src_addr, 6578 uffd_flags_t flags, 6579 struct folio **foliop) 6580 { 6581 struct mm_struct *dst_mm = dst_vma->vm_mm; 6582 bool is_continue = uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE); 6583 bool wp_enabled = (flags & MFILL_ATOMIC_WP); 6584 struct hstate *h = hstate_vma(dst_vma); 6585 struct address_space *mapping = dst_vma->vm_file->f_mapping; 6586 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr); 6587 unsigned long size = huge_page_size(h); 6588 int vm_shared = dst_vma->vm_flags & VM_SHARED; 6589 pte_t _dst_pte; 6590 spinlock_t *ptl; 6591 int ret = -ENOMEM; 6592 struct folio *folio; 6593 bool folio_in_pagecache = false; 6594 6595 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_POISON)) { 6596 ptl = huge_pte_lock(h, dst_mm, dst_pte); 6597 6598 /* Don't overwrite any existing PTEs (even markers) */ 6599 if (!huge_pte_none(huge_ptep_get(dst_mm, dst_addr, dst_pte))) { 6600 spin_unlock(ptl); 6601 return -EEXIST; 6602 } 6603 6604 _dst_pte = make_pte_marker(PTE_MARKER_POISONED); 6605 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, size); 6606 6607 /* No need to invalidate - it was non-present before */ 6608 update_mmu_cache(dst_vma, dst_addr, dst_pte); 6609 6610 spin_unlock(ptl); 6611 return 0; 6612 } 6613 6614 if (is_continue) { 6615 ret = -EFAULT; 6616 folio = filemap_lock_hugetlb_folio(h, mapping, idx); 6617 if (IS_ERR(folio)) 6618 goto out; 6619 folio_in_pagecache = true; 6620 } else if (!*foliop) { 6621 /* If a folio already exists, then it's UFFDIO_COPY for 6622 * a non-missing case. Return -EEXIST. 6623 */ 6624 if (vm_shared && 6625 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) { 6626 ret = -EEXIST; 6627 goto out; 6628 } 6629 6630 folio = alloc_hugetlb_folio(dst_vma, dst_addr, false); 6631 if (IS_ERR(folio)) { 6632 ret = -ENOMEM; 6633 goto out; 6634 } 6635 6636 ret = copy_folio_from_user(folio, (const void __user *) src_addr, 6637 false); 6638 6639 /* fallback to copy_from_user outside mmap_lock */ 6640 if (unlikely(ret)) { 6641 ret = -ENOENT; 6642 /* Free the allocated folio which may have 6643 * consumed a reservation. 6644 */ 6645 restore_reserve_on_error(h, dst_vma, dst_addr, folio); 6646 folio_put(folio); 6647 6648 /* Allocate a temporary folio to hold the copied 6649 * contents. 6650 */ 6651 folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr); 6652 if (!folio) { 6653 ret = -ENOMEM; 6654 goto out; 6655 } 6656 *foliop = folio; 6657 /* Set the outparam foliop and return to the caller to 6658 * copy the contents outside the lock. Don't free the 6659 * folio. 6660 */ 6661 goto out; 6662 } 6663 } else { 6664 if (vm_shared && 6665 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) { 6666 folio_put(*foliop); 6667 ret = -EEXIST; 6668 *foliop = NULL; 6669 goto out; 6670 } 6671 6672 folio = alloc_hugetlb_folio(dst_vma, dst_addr, false); 6673 if (IS_ERR(folio)) { 6674 folio_put(*foliop); 6675 ret = -ENOMEM; 6676 *foliop = NULL; 6677 goto out; 6678 } 6679 ret = copy_user_large_folio(folio, *foliop, dst_addr, dst_vma); 6680 folio_put(*foliop); 6681 *foliop = NULL; 6682 if (ret) { 6683 folio_put(folio); 6684 goto out; 6685 } 6686 } 6687 6688 /* 6689 * If we just allocated a new page, we need a memory barrier to ensure 6690 * that preceding stores to the page become visible before the 6691 * set_pte_at() write. The memory barrier inside __folio_mark_uptodate 6692 * is what we need. 6693 * 6694 * In the case where we have not allocated a new page (is_continue), 6695 * the page must already be uptodate. UFFDIO_CONTINUE already includes 6696 * an earlier smp_wmb() to ensure that prior stores will be visible 6697 * before the set_pte_at() write. 6698 */ 6699 if (!is_continue) 6700 __folio_mark_uptodate(folio); 6701 else 6702 WARN_ON_ONCE(!folio_test_uptodate(folio)); 6703 6704 /* Add shared, newly allocated pages to the page cache. */ 6705 if (vm_shared && !is_continue) { 6706 ret = -EFAULT; 6707 if (idx >= (i_size_read(mapping->host) >> huge_page_shift(h))) 6708 goto out_release_nounlock; 6709 6710 /* 6711 * Serialization between remove_inode_hugepages() and 6712 * hugetlb_add_to_page_cache() below happens through the 6713 * hugetlb_fault_mutex_table that here must be hold by 6714 * the caller. 6715 */ 6716 ret = hugetlb_add_to_page_cache(folio, mapping, idx); 6717 if (ret) 6718 goto out_release_nounlock; 6719 folio_in_pagecache = true; 6720 } 6721 6722 ptl = huge_pte_lock(h, dst_mm, dst_pte); 6723 6724 ret = -EIO; 6725 if (folio_test_hwpoison(folio)) 6726 goto out_release_unlock; 6727 6728 /* 6729 * We allow to overwrite a pte marker: consider when both MISSING|WP 6730 * registered, we firstly wr-protect a none pte which has no page cache 6731 * page backing it, then access the page. 6732 */ 6733 ret = -EEXIST; 6734 if (!huge_pte_none_mostly(huge_ptep_get(dst_mm, dst_addr, dst_pte))) 6735 goto out_release_unlock; 6736 6737 if (folio_in_pagecache) 6738 hugetlb_add_file_rmap(folio); 6739 else 6740 hugetlb_add_new_anon_rmap(folio, dst_vma, dst_addr); 6741 6742 /* 6743 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY 6744 * with wp flag set, don't set pte write bit. 6745 */ 6746 _dst_pte = make_huge_pte(dst_vma, &folio->page, 6747 !wp_enabled && !(is_continue && !vm_shared)); 6748 /* 6749 * Always mark UFFDIO_COPY page dirty; note that this may not be 6750 * extremely important for hugetlbfs for now since swapping is not 6751 * supported, but we should still be clear in that this page cannot be 6752 * thrown away at will, even if write bit not set. 6753 */ 6754 _dst_pte = huge_pte_mkdirty(_dst_pte); 6755 _dst_pte = pte_mkyoung(_dst_pte); 6756 6757 if (wp_enabled) 6758 _dst_pte = huge_pte_mkuffd_wp(_dst_pte); 6759 6760 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, size); 6761 6762 hugetlb_count_add(pages_per_huge_page(h), dst_mm); 6763 6764 /* No need to invalidate - it was non-present before */ 6765 update_mmu_cache(dst_vma, dst_addr, dst_pte); 6766 6767 spin_unlock(ptl); 6768 if (!is_continue) 6769 folio_set_hugetlb_migratable(folio); 6770 if (vm_shared || is_continue) 6771 folio_unlock(folio); 6772 ret = 0; 6773 out: 6774 return ret; 6775 out_release_unlock: 6776 spin_unlock(ptl); 6777 if (vm_shared || is_continue) 6778 folio_unlock(folio); 6779 out_release_nounlock: 6780 if (!folio_in_pagecache) 6781 restore_reserve_on_error(h, dst_vma, dst_addr, folio); 6782 folio_put(folio); 6783 goto out; 6784 } 6785 #endif /* CONFIG_USERFAULTFD */ 6786 6787 long hugetlb_change_protection(struct vm_area_struct *vma, 6788 unsigned long address, unsigned long end, 6789 pgprot_t newprot, unsigned long cp_flags) 6790 { 6791 struct mm_struct *mm = vma->vm_mm; 6792 unsigned long start = address; 6793 pte_t *ptep; 6794 pte_t pte; 6795 struct hstate *h = hstate_vma(vma); 6796 long pages = 0, psize = huge_page_size(h); 6797 bool shared_pmd = false; 6798 struct mmu_notifier_range range; 6799 unsigned long last_addr_mask; 6800 bool uffd_wp = cp_flags & MM_CP_UFFD_WP; 6801 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE; 6802 6803 /* 6804 * In the case of shared PMDs, the area to flush could be beyond 6805 * start/end. Set range.start/range.end to cover the maximum possible 6806 * range if PMD sharing is possible. 6807 */ 6808 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA, 6809 0, mm, start, end); 6810 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 6811 6812 BUG_ON(address >= end); 6813 flush_cache_range(vma, range.start, range.end); 6814 6815 mmu_notifier_invalidate_range_start(&range); 6816 hugetlb_vma_lock_write(vma); 6817 i_mmap_lock_write(vma->vm_file->f_mapping); 6818 last_addr_mask = hugetlb_mask_last_page(h); 6819 for (; address < end; address += psize) { 6820 spinlock_t *ptl; 6821 ptep = hugetlb_walk(vma, address, psize); 6822 if (!ptep) { 6823 if (!uffd_wp) { 6824 address |= last_addr_mask; 6825 continue; 6826 } 6827 /* 6828 * Userfaultfd wr-protect requires pgtable 6829 * pre-allocations to install pte markers. 6830 */ 6831 ptep = huge_pte_alloc(mm, vma, address, psize); 6832 if (!ptep) { 6833 pages = -ENOMEM; 6834 break; 6835 } 6836 } 6837 ptl = huge_pte_lock(h, mm, ptep); 6838 if (huge_pmd_unshare(mm, vma, address, ptep)) { 6839 /* 6840 * When uffd-wp is enabled on the vma, unshare 6841 * shouldn't happen at all. Warn about it if it 6842 * happened due to some reason. 6843 */ 6844 WARN_ON_ONCE(uffd_wp || uffd_wp_resolve); 6845 pages++; 6846 spin_unlock(ptl); 6847 shared_pmd = true; 6848 address |= last_addr_mask; 6849 continue; 6850 } 6851 pte = huge_ptep_get(mm, address, ptep); 6852 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) { 6853 /* Nothing to do. */ 6854 } else if (unlikely(is_hugetlb_entry_migration(pte))) { 6855 swp_entry_t entry = pte_to_swp_entry(pte); 6856 struct page *page = pfn_swap_entry_to_page(entry); 6857 pte_t newpte = pte; 6858 6859 if (is_writable_migration_entry(entry)) { 6860 if (PageAnon(page)) 6861 entry = make_readable_exclusive_migration_entry( 6862 swp_offset(entry)); 6863 else 6864 entry = make_readable_migration_entry( 6865 swp_offset(entry)); 6866 newpte = swp_entry_to_pte(entry); 6867 pages++; 6868 } 6869 6870 if (uffd_wp) 6871 newpte = pte_swp_mkuffd_wp(newpte); 6872 else if (uffd_wp_resolve) 6873 newpte = pte_swp_clear_uffd_wp(newpte); 6874 if (!pte_same(pte, newpte)) 6875 set_huge_pte_at(mm, address, ptep, newpte, psize); 6876 } else if (unlikely(is_pte_marker(pte))) { 6877 /* 6878 * Do nothing on a poison marker; page is 6879 * corrupted, permissons do not apply. Here 6880 * pte_marker_uffd_wp()==true implies !poison 6881 * because they're mutual exclusive. 6882 */ 6883 if (pte_marker_uffd_wp(pte) && uffd_wp_resolve) 6884 /* Safe to modify directly (non-present->none). */ 6885 huge_pte_clear(mm, address, ptep, psize); 6886 } else if (!huge_pte_none(pte)) { 6887 pte_t old_pte; 6888 unsigned int shift = huge_page_shift(hstate_vma(vma)); 6889 6890 old_pte = huge_ptep_modify_prot_start(vma, address, ptep); 6891 pte = huge_pte_modify(old_pte, newprot); 6892 pte = arch_make_huge_pte(pte, shift, vma->vm_flags); 6893 if (uffd_wp) 6894 pte = huge_pte_mkuffd_wp(pte); 6895 else if (uffd_wp_resolve) 6896 pte = huge_pte_clear_uffd_wp(pte); 6897 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte); 6898 pages++; 6899 } else { 6900 /* None pte */ 6901 if (unlikely(uffd_wp)) 6902 /* Safe to modify directly (none->non-present). */ 6903 set_huge_pte_at(mm, address, ptep, 6904 make_pte_marker(PTE_MARKER_UFFD_WP), 6905 psize); 6906 } 6907 spin_unlock(ptl); 6908 } 6909 /* 6910 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare 6911 * may have cleared our pud entry and done put_page on the page table: 6912 * once we release i_mmap_rwsem, another task can do the final put_page 6913 * and that page table be reused and filled with junk. If we actually 6914 * did unshare a page of pmds, flush the range corresponding to the pud. 6915 */ 6916 if (shared_pmd) 6917 flush_hugetlb_tlb_range(vma, range.start, range.end); 6918 else 6919 flush_hugetlb_tlb_range(vma, start, end); 6920 /* 6921 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs() we are 6922 * downgrading page table protection not changing it to point to a new 6923 * page. 6924 * 6925 * See Documentation/mm/mmu_notifier.rst 6926 */ 6927 i_mmap_unlock_write(vma->vm_file->f_mapping); 6928 hugetlb_vma_unlock_write(vma); 6929 mmu_notifier_invalidate_range_end(&range); 6930 6931 return pages > 0 ? (pages << h->order) : pages; 6932 } 6933 6934 /* Return true if reservation was successful, false otherwise. */ 6935 bool hugetlb_reserve_pages(struct inode *inode, 6936 long from, long to, 6937 struct vm_area_struct *vma, 6938 vm_flags_t vm_flags) 6939 { 6940 long chg = -1, add = -1; 6941 struct hstate *h = hstate_inode(inode); 6942 struct hugepage_subpool *spool = subpool_inode(inode); 6943 struct resv_map *resv_map; 6944 struct hugetlb_cgroup *h_cg = NULL; 6945 long gbl_reserve, regions_needed = 0; 6946 6947 /* This should never happen */ 6948 if (from > to) { 6949 VM_WARN(1, "%s called with a negative range\n", __func__); 6950 return false; 6951 } 6952 6953 /* 6954 * vma specific semaphore used for pmd sharing and fault/truncation 6955 * synchronization 6956 */ 6957 hugetlb_vma_lock_alloc(vma); 6958 6959 /* 6960 * Only apply hugepage reservation if asked. At fault time, an 6961 * attempt will be made for VM_NORESERVE to allocate a page 6962 * without using reserves 6963 */ 6964 if (vm_flags & VM_NORESERVE) 6965 return true; 6966 6967 /* 6968 * Shared mappings base their reservation on the number of pages that 6969 * are already allocated on behalf of the file. Private mappings need 6970 * to reserve the full area even if read-only as mprotect() may be 6971 * called to make the mapping read-write. Assume !vma is a shm mapping 6972 */ 6973 if (!vma || vma->vm_flags & VM_MAYSHARE) { 6974 /* 6975 * resv_map can not be NULL as hugetlb_reserve_pages is only 6976 * called for inodes for which resv_maps were created (see 6977 * hugetlbfs_get_inode). 6978 */ 6979 resv_map = inode_resv_map(inode); 6980 6981 chg = region_chg(resv_map, from, to, ®ions_needed); 6982 } else { 6983 /* Private mapping. */ 6984 resv_map = resv_map_alloc(); 6985 if (!resv_map) 6986 goto out_err; 6987 6988 chg = to - from; 6989 6990 set_vma_resv_map(vma, resv_map); 6991 set_vma_resv_flags(vma, HPAGE_RESV_OWNER); 6992 } 6993 6994 if (chg < 0) 6995 goto out_err; 6996 6997 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h), 6998 chg * pages_per_huge_page(h), &h_cg) < 0) 6999 goto out_err; 7000 7001 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) { 7002 /* For private mappings, the hugetlb_cgroup uncharge info hangs 7003 * of the resv_map. 7004 */ 7005 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h); 7006 } 7007 7008 /* 7009 * There must be enough pages in the subpool for the mapping. If 7010 * the subpool has a minimum size, there may be some global 7011 * reservations already in place (gbl_reserve). 7012 */ 7013 gbl_reserve = hugepage_subpool_get_pages(spool, chg); 7014 if (gbl_reserve < 0) 7015 goto out_uncharge_cgroup; 7016 7017 /* 7018 * Check enough hugepages are available for the reservation. 7019 * Hand the pages back to the subpool if there are not 7020 */ 7021 if (hugetlb_acct_memory(h, gbl_reserve) < 0) 7022 goto out_put_pages; 7023 7024 /* 7025 * Account for the reservations made. Shared mappings record regions 7026 * that have reservations as they are shared by multiple VMAs. 7027 * When the last VMA disappears, the region map says how much 7028 * the reservation was and the page cache tells how much of 7029 * the reservation was consumed. Private mappings are per-VMA and 7030 * only the consumed reservations are tracked. When the VMA 7031 * disappears, the original reservation is the VMA size and the 7032 * consumed reservations are stored in the map. Hence, nothing 7033 * else has to be done for private mappings here 7034 */ 7035 if (!vma || vma->vm_flags & VM_MAYSHARE) { 7036 add = region_add(resv_map, from, to, regions_needed, h, h_cg); 7037 7038 if (unlikely(add < 0)) { 7039 hugetlb_acct_memory(h, -gbl_reserve); 7040 goto out_put_pages; 7041 } else if (unlikely(chg > add)) { 7042 /* 7043 * pages in this range were added to the reserve 7044 * map between region_chg and region_add. This 7045 * indicates a race with alloc_hugetlb_folio. Adjust 7046 * the subpool and reserve counts modified above 7047 * based on the difference. 7048 */ 7049 long rsv_adjust; 7050 7051 /* 7052 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the 7053 * reference to h_cg->css. See comment below for detail. 7054 */ 7055 hugetlb_cgroup_uncharge_cgroup_rsvd( 7056 hstate_index(h), 7057 (chg - add) * pages_per_huge_page(h), h_cg); 7058 7059 rsv_adjust = hugepage_subpool_put_pages(spool, 7060 chg - add); 7061 hugetlb_acct_memory(h, -rsv_adjust); 7062 } else if (h_cg) { 7063 /* 7064 * The file_regions will hold their own reference to 7065 * h_cg->css. So we should release the reference held 7066 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are 7067 * done. 7068 */ 7069 hugetlb_cgroup_put_rsvd_cgroup(h_cg); 7070 } 7071 } 7072 return true; 7073 7074 out_put_pages: 7075 /* put back original number of pages, chg */ 7076 (void)hugepage_subpool_put_pages(spool, chg); 7077 out_uncharge_cgroup: 7078 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h), 7079 chg * pages_per_huge_page(h), h_cg); 7080 out_err: 7081 hugetlb_vma_lock_free(vma); 7082 if (!vma || vma->vm_flags & VM_MAYSHARE) 7083 /* Only call region_abort if the region_chg succeeded but the 7084 * region_add failed or didn't run. 7085 */ 7086 if (chg >= 0 && add < 0) 7087 region_abort(resv_map, from, to, regions_needed); 7088 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 7089 kref_put(&resv_map->refs, resv_map_release); 7090 set_vma_resv_map(vma, NULL); 7091 } 7092 return false; 7093 } 7094 7095 long hugetlb_unreserve_pages(struct inode *inode, long start, long end, 7096 long freed) 7097 { 7098 struct hstate *h = hstate_inode(inode); 7099 struct resv_map *resv_map = inode_resv_map(inode); 7100 long chg = 0; 7101 struct hugepage_subpool *spool = subpool_inode(inode); 7102 long gbl_reserve; 7103 7104 /* 7105 * Since this routine can be called in the evict inode path for all 7106 * hugetlbfs inodes, resv_map could be NULL. 7107 */ 7108 if (resv_map) { 7109 chg = region_del(resv_map, start, end); 7110 /* 7111 * region_del() can fail in the rare case where a region 7112 * must be split and another region descriptor can not be 7113 * allocated. If end == LONG_MAX, it will not fail. 7114 */ 7115 if (chg < 0) 7116 return chg; 7117 } 7118 7119 spin_lock(&inode->i_lock); 7120 inode->i_blocks -= (blocks_per_huge_page(h) * freed); 7121 spin_unlock(&inode->i_lock); 7122 7123 /* 7124 * If the subpool has a minimum size, the number of global 7125 * reservations to be released may be adjusted. 7126 * 7127 * Note that !resv_map implies freed == 0. So (chg - freed) 7128 * won't go negative. 7129 */ 7130 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed)); 7131 hugetlb_acct_memory(h, -gbl_reserve); 7132 7133 return 0; 7134 } 7135 7136 #ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING 7137 static unsigned long page_table_shareable(struct vm_area_struct *svma, 7138 struct vm_area_struct *vma, 7139 unsigned long addr, pgoff_t idx) 7140 { 7141 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) + 7142 svma->vm_start; 7143 unsigned long sbase = saddr & PUD_MASK; 7144 unsigned long s_end = sbase + PUD_SIZE; 7145 7146 /* Allow segments to share if only one is marked locked */ 7147 unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED_MASK; 7148 unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED_MASK; 7149 7150 /* 7151 * match the virtual addresses, permission and the alignment of the 7152 * page table page. 7153 * 7154 * Also, vma_lock (vm_private_data) is required for sharing. 7155 */ 7156 if (pmd_index(addr) != pmd_index(saddr) || 7157 vm_flags != svm_flags || 7158 !range_in_vma(svma, sbase, s_end) || 7159 !svma->vm_private_data) 7160 return 0; 7161 7162 return saddr; 7163 } 7164 7165 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr) 7166 { 7167 unsigned long start = addr & PUD_MASK; 7168 unsigned long end = start + PUD_SIZE; 7169 7170 #ifdef CONFIG_USERFAULTFD 7171 if (uffd_disable_huge_pmd_share(vma)) 7172 return false; 7173 #endif 7174 /* 7175 * check on proper vm_flags and page table alignment 7176 */ 7177 if (!(vma->vm_flags & VM_MAYSHARE)) 7178 return false; 7179 if (!vma->vm_private_data) /* vma lock required for sharing */ 7180 return false; 7181 if (!range_in_vma(vma, start, end)) 7182 return false; 7183 return true; 7184 } 7185 7186 /* 7187 * Determine if start,end range within vma could be mapped by shared pmd. 7188 * If yes, adjust start and end to cover range associated with possible 7189 * shared pmd mappings. 7190 */ 7191 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 7192 unsigned long *start, unsigned long *end) 7193 { 7194 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE), 7195 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE); 7196 7197 /* 7198 * vma needs to span at least one aligned PUD size, and the range 7199 * must be at least partially within in. 7200 */ 7201 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) || 7202 (*end <= v_start) || (*start >= v_end)) 7203 return; 7204 7205 /* Extend the range to be PUD aligned for a worst case scenario */ 7206 if (*start > v_start) 7207 *start = ALIGN_DOWN(*start, PUD_SIZE); 7208 7209 if (*end < v_end) 7210 *end = ALIGN(*end, PUD_SIZE); 7211 } 7212 7213 /* 7214 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc() 7215 * and returns the corresponding pte. While this is not necessary for the 7216 * !shared pmd case because we can allocate the pmd later as well, it makes the 7217 * code much cleaner. pmd allocation is essential for the shared case because 7218 * pud has to be populated inside the same i_mmap_rwsem section - otherwise 7219 * racing tasks could either miss the sharing (see huge_pte_offset) or select a 7220 * bad pmd for sharing. 7221 */ 7222 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, 7223 unsigned long addr, pud_t *pud) 7224 { 7225 struct address_space *mapping = vma->vm_file->f_mapping; 7226 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + 7227 vma->vm_pgoff; 7228 struct vm_area_struct *svma; 7229 unsigned long saddr; 7230 pte_t *spte = NULL; 7231 pte_t *pte; 7232 7233 i_mmap_lock_read(mapping); 7234 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) { 7235 if (svma == vma) 7236 continue; 7237 7238 saddr = page_table_shareable(svma, vma, addr, idx); 7239 if (saddr) { 7240 spte = hugetlb_walk(svma, saddr, 7241 vma_mmu_pagesize(svma)); 7242 if (spte) { 7243 ptdesc_pmd_pts_inc(virt_to_ptdesc(spte)); 7244 break; 7245 } 7246 } 7247 } 7248 7249 if (!spte) 7250 goto out; 7251 7252 spin_lock(&mm->page_table_lock); 7253 if (pud_none(*pud)) { 7254 pud_populate(mm, pud, 7255 (pmd_t *)((unsigned long)spte & PAGE_MASK)); 7256 mm_inc_nr_pmds(mm); 7257 } else { 7258 ptdesc_pmd_pts_dec(virt_to_ptdesc(spte)); 7259 } 7260 spin_unlock(&mm->page_table_lock); 7261 out: 7262 pte = (pte_t *)pmd_alloc(mm, pud, addr); 7263 i_mmap_unlock_read(mapping); 7264 return pte; 7265 } 7266 7267 /* 7268 * unmap huge page backed by shared pte. 7269 * 7270 * Called with page table lock held. 7271 * 7272 * returns: 1 successfully unmapped a shared pte page 7273 * 0 the underlying pte page is not shared, or it is the last user 7274 */ 7275 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, 7276 unsigned long addr, pte_t *ptep) 7277 { 7278 unsigned long sz = huge_page_size(hstate_vma(vma)); 7279 pgd_t *pgd = pgd_offset(mm, addr); 7280 p4d_t *p4d = p4d_offset(pgd, addr); 7281 pud_t *pud = pud_offset(p4d, addr); 7282 7283 i_mmap_assert_write_locked(vma->vm_file->f_mapping); 7284 hugetlb_vma_assert_locked(vma); 7285 if (sz != PMD_SIZE) 7286 return 0; 7287 if (!ptdesc_pmd_pts_count(virt_to_ptdesc(ptep))) 7288 return 0; 7289 7290 pud_clear(pud); 7291 ptdesc_pmd_pts_dec(virt_to_ptdesc(ptep)); 7292 mm_dec_nr_pmds(mm); 7293 return 1; 7294 } 7295 7296 #else /* !CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING */ 7297 7298 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, 7299 unsigned long addr, pud_t *pud) 7300 { 7301 return NULL; 7302 } 7303 7304 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, 7305 unsigned long addr, pte_t *ptep) 7306 { 7307 return 0; 7308 } 7309 7310 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 7311 unsigned long *start, unsigned long *end) 7312 { 7313 } 7314 7315 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr) 7316 { 7317 return false; 7318 } 7319 #endif /* CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING */ 7320 7321 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB 7322 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 7323 unsigned long addr, unsigned long sz) 7324 { 7325 pgd_t *pgd; 7326 p4d_t *p4d; 7327 pud_t *pud; 7328 pte_t *pte = NULL; 7329 7330 pgd = pgd_offset(mm, addr); 7331 p4d = p4d_alloc(mm, pgd, addr); 7332 if (!p4d) 7333 return NULL; 7334 pud = pud_alloc(mm, p4d, addr); 7335 if (pud) { 7336 if (sz == PUD_SIZE) { 7337 pte = (pte_t *)pud; 7338 } else { 7339 BUG_ON(sz != PMD_SIZE); 7340 if (want_pmd_share(vma, addr) && pud_none(*pud)) 7341 pte = huge_pmd_share(mm, vma, addr, pud); 7342 else 7343 pte = (pte_t *)pmd_alloc(mm, pud, addr); 7344 } 7345 } 7346 7347 if (pte) { 7348 pte_t pteval = ptep_get_lockless(pte); 7349 7350 BUG_ON(pte_present(pteval) && !pte_huge(pteval)); 7351 } 7352 7353 return pte; 7354 } 7355 7356 /* 7357 * huge_pte_offset() - Walk the page table to resolve the hugepage 7358 * entry at address @addr 7359 * 7360 * Return: Pointer to page table entry (PUD or PMD) for 7361 * address @addr, or NULL if a !p*d_present() entry is encountered and the 7362 * size @sz doesn't match the hugepage size at this level of the page 7363 * table. 7364 */ 7365 pte_t *huge_pte_offset(struct mm_struct *mm, 7366 unsigned long addr, unsigned long sz) 7367 { 7368 pgd_t *pgd; 7369 p4d_t *p4d; 7370 pud_t *pud; 7371 pmd_t *pmd; 7372 7373 pgd = pgd_offset(mm, addr); 7374 if (!pgd_present(*pgd)) 7375 return NULL; 7376 p4d = p4d_offset(pgd, addr); 7377 if (!p4d_present(*p4d)) 7378 return NULL; 7379 7380 pud = pud_offset(p4d, addr); 7381 if (sz == PUD_SIZE) 7382 /* must be pud huge, non-present or none */ 7383 return (pte_t *)pud; 7384 if (!pud_present(*pud)) 7385 return NULL; 7386 /* must have a valid entry and size to go further */ 7387 7388 pmd = pmd_offset(pud, addr); 7389 /* must be pmd huge, non-present or none */ 7390 return (pte_t *)pmd; 7391 } 7392 7393 /* 7394 * Return a mask that can be used to update an address to the last huge 7395 * page in a page table page mapping size. Used to skip non-present 7396 * page table entries when linearly scanning address ranges. Architectures 7397 * with unique huge page to page table relationships can define their own 7398 * version of this routine. 7399 */ 7400 unsigned long hugetlb_mask_last_page(struct hstate *h) 7401 { 7402 unsigned long hp_size = huge_page_size(h); 7403 7404 if (hp_size == PUD_SIZE) 7405 return P4D_SIZE - PUD_SIZE; 7406 else if (hp_size == PMD_SIZE) 7407 return PUD_SIZE - PMD_SIZE; 7408 else 7409 return 0UL; 7410 } 7411 7412 #else 7413 7414 /* See description above. Architectures can provide their own version. */ 7415 __weak unsigned long hugetlb_mask_last_page(struct hstate *h) 7416 { 7417 #ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING 7418 if (huge_page_size(h) == PMD_SIZE) 7419 return PUD_SIZE - PMD_SIZE; 7420 #endif 7421 return 0UL; 7422 } 7423 7424 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */ 7425 7426 /** 7427 * folio_isolate_hugetlb - try to isolate an allocated hugetlb folio 7428 * @folio: the folio to isolate 7429 * @list: the list to add the folio to on success 7430 * 7431 * Isolate an allocated (refcount > 0) hugetlb folio, marking it as 7432 * isolated/non-migratable, and moving it from the active list to the 7433 * given list. 7434 * 7435 * Isolation will fail if @folio is not an allocated hugetlb folio, or if 7436 * it is already isolated/non-migratable. 7437 * 7438 * On success, an additional folio reference is taken that must be dropped 7439 * using folio_putback_hugetlb() to undo the isolation. 7440 * 7441 * Return: True if isolation worked, otherwise False. 7442 */ 7443 bool folio_isolate_hugetlb(struct folio *folio, struct list_head *list) 7444 { 7445 bool ret = true; 7446 7447 spin_lock_irq(&hugetlb_lock); 7448 if (!folio_test_hugetlb(folio) || 7449 !folio_test_hugetlb_migratable(folio) || 7450 !folio_try_get(folio)) { 7451 ret = false; 7452 goto unlock; 7453 } 7454 folio_clear_hugetlb_migratable(folio); 7455 list_move_tail(&folio->lru, list); 7456 unlock: 7457 spin_unlock_irq(&hugetlb_lock); 7458 return ret; 7459 } 7460 7461 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison) 7462 { 7463 int ret = 0; 7464 7465 *hugetlb = false; 7466 spin_lock_irq(&hugetlb_lock); 7467 if (folio_test_hugetlb(folio)) { 7468 *hugetlb = true; 7469 if (folio_test_hugetlb_freed(folio)) 7470 ret = 0; 7471 else if (folio_test_hugetlb_migratable(folio) || unpoison) 7472 ret = folio_try_get(folio); 7473 else 7474 ret = -EBUSY; 7475 } 7476 spin_unlock_irq(&hugetlb_lock); 7477 return ret; 7478 } 7479 7480 int get_huge_page_for_hwpoison(unsigned long pfn, int flags, 7481 bool *migratable_cleared) 7482 { 7483 int ret; 7484 7485 spin_lock_irq(&hugetlb_lock); 7486 ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared); 7487 spin_unlock_irq(&hugetlb_lock); 7488 return ret; 7489 } 7490 7491 /** 7492 * folio_putback_hugetlb - unisolate a hugetlb folio 7493 * @folio: the isolated hugetlb folio 7494 * 7495 * Putback/un-isolate the hugetlb folio that was previous isolated using 7496 * folio_isolate_hugetlb(): marking it non-isolated/migratable and putting it 7497 * back onto the active list. 7498 * 7499 * Will drop the additional folio reference obtained through 7500 * folio_isolate_hugetlb(). 7501 */ 7502 void folio_putback_hugetlb(struct folio *folio) 7503 { 7504 spin_lock_irq(&hugetlb_lock); 7505 folio_set_hugetlb_migratable(folio); 7506 list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist); 7507 spin_unlock_irq(&hugetlb_lock); 7508 folio_put(folio); 7509 } 7510 7511 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason) 7512 { 7513 struct hstate *h = folio_hstate(old_folio); 7514 7515 hugetlb_cgroup_migrate(old_folio, new_folio); 7516 set_page_owner_migrate_reason(&new_folio->page, reason); 7517 7518 /* 7519 * transfer temporary state of the new hugetlb folio. This is 7520 * reverse to other transitions because the newpage is going to 7521 * be final while the old one will be freed so it takes over 7522 * the temporary status. 7523 * 7524 * Also note that we have to transfer the per-node surplus state 7525 * here as well otherwise the global surplus count will not match 7526 * the per-node's. 7527 */ 7528 if (folio_test_hugetlb_temporary(new_folio)) { 7529 int old_nid = folio_nid(old_folio); 7530 int new_nid = folio_nid(new_folio); 7531 7532 folio_set_hugetlb_temporary(old_folio); 7533 folio_clear_hugetlb_temporary(new_folio); 7534 7535 7536 /* 7537 * There is no need to transfer the per-node surplus state 7538 * when we do not cross the node. 7539 */ 7540 if (new_nid == old_nid) 7541 return; 7542 spin_lock_irq(&hugetlb_lock); 7543 if (h->surplus_huge_pages_node[old_nid]) { 7544 h->surplus_huge_pages_node[old_nid]--; 7545 h->surplus_huge_pages_node[new_nid]++; 7546 } 7547 spin_unlock_irq(&hugetlb_lock); 7548 } 7549 7550 /* 7551 * Our old folio is isolated and has "migratable" cleared until it 7552 * is putback. As migration succeeded, set the new folio "migratable" 7553 * and add it to the active list. 7554 */ 7555 spin_lock_irq(&hugetlb_lock); 7556 folio_set_hugetlb_migratable(new_folio); 7557 list_move_tail(&new_folio->lru, &(folio_hstate(new_folio))->hugepage_activelist); 7558 spin_unlock_irq(&hugetlb_lock); 7559 } 7560 7561 static void hugetlb_unshare_pmds(struct vm_area_struct *vma, 7562 unsigned long start, 7563 unsigned long end) 7564 { 7565 struct hstate *h = hstate_vma(vma); 7566 unsigned long sz = huge_page_size(h); 7567 struct mm_struct *mm = vma->vm_mm; 7568 struct mmu_notifier_range range; 7569 unsigned long address; 7570 spinlock_t *ptl; 7571 pte_t *ptep; 7572 7573 if (!(vma->vm_flags & VM_MAYSHARE)) 7574 return; 7575 7576 if (start >= end) 7577 return; 7578 7579 flush_cache_range(vma, start, end); 7580 /* 7581 * No need to call adjust_range_if_pmd_sharing_possible(), because 7582 * we have already done the PUD_SIZE alignment. 7583 */ 7584 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 7585 start, end); 7586 mmu_notifier_invalidate_range_start(&range); 7587 hugetlb_vma_lock_write(vma); 7588 i_mmap_lock_write(vma->vm_file->f_mapping); 7589 for (address = start; address < end; address += PUD_SIZE) { 7590 ptep = hugetlb_walk(vma, address, sz); 7591 if (!ptep) 7592 continue; 7593 ptl = huge_pte_lock(h, mm, ptep); 7594 huge_pmd_unshare(mm, vma, address, ptep); 7595 spin_unlock(ptl); 7596 } 7597 flush_hugetlb_tlb_range(vma, start, end); 7598 i_mmap_unlock_write(vma->vm_file->f_mapping); 7599 hugetlb_vma_unlock_write(vma); 7600 /* 7601 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs(), see 7602 * Documentation/mm/mmu_notifier.rst. 7603 */ 7604 mmu_notifier_invalidate_range_end(&range); 7605 } 7606 7607 /* 7608 * This function will unconditionally remove all the shared pmd pgtable entries 7609 * within the specific vma for a hugetlbfs memory range. 7610 */ 7611 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma) 7612 { 7613 hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE), 7614 ALIGN_DOWN(vma->vm_end, PUD_SIZE)); 7615 } 7616 7617 #ifdef CONFIG_CMA 7618 static bool cma_reserve_called __initdata; 7619 7620 static int __init cmdline_parse_hugetlb_cma(char *p) 7621 { 7622 int nid, count = 0; 7623 unsigned long tmp; 7624 char *s = p; 7625 7626 while (*s) { 7627 if (sscanf(s, "%lu%n", &tmp, &count) != 1) 7628 break; 7629 7630 if (s[count] == ':') { 7631 if (tmp >= MAX_NUMNODES) 7632 break; 7633 nid = array_index_nospec(tmp, MAX_NUMNODES); 7634 7635 s += count + 1; 7636 tmp = memparse(s, &s); 7637 hugetlb_cma_size_in_node[nid] = tmp; 7638 hugetlb_cma_size += tmp; 7639 7640 /* 7641 * Skip the separator if have one, otherwise 7642 * break the parsing. 7643 */ 7644 if (*s == ',') 7645 s++; 7646 else 7647 break; 7648 } else { 7649 hugetlb_cma_size = memparse(p, &p); 7650 break; 7651 } 7652 } 7653 7654 return 0; 7655 } 7656 7657 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma); 7658 7659 void __init hugetlb_cma_reserve(int order) 7660 { 7661 unsigned long size, reserved, per_node; 7662 bool node_specific_cma_alloc = false; 7663 int nid; 7664 7665 /* 7666 * HugeTLB CMA reservation is required for gigantic 7667 * huge pages which could not be allocated via the 7668 * page allocator. Just warn if there is any change 7669 * breaking this assumption. 7670 */ 7671 VM_WARN_ON(order <= MAX_PAGE_ORDER); 7672 cma_reserve_called = true; 7673 7674 if (!hugetlb_cma_size) 7675 return; 7676 7677 for (nid = 0; nid < MAX_NUMNODES; nid++) { 7678 if (hugetlb_cma_size_in_node[nid] == 0) 7679 continue; 7680 7681 if (!node_online(nid)) { 7682 pr_warn("hugetlb_cma: invalid node %d specified\n", nid); 7683 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid]; 7684 hugetlb_cma_size_in_node[nid] = 0; 7685 continue; 7686 } 7687 7688 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) { 7689 pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n", 7690 nid, (PAGE_SIZE << order) / SZ_1M); 7691 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid]; 7692 hugetlb_cma_size_in_node[nid] = 0; 7693 } else { 7694 node_specific_cma_alloc = true; 7695 } 7696 } 7697 7698 /* Validate the CMA size again in case some invalid nodes specified. */ 7699 if (!hugetlb_cma_size) 7700 return; 7701 7702 if (hugetlb_cma_size < (PAGE_SIZE << order)) { 7703 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n", 7704 (PAGE_SIZE << order) / SZ_1M); 7705 hugetlb_cma_size = 0; 7706 return; 7707 } 7708 7709 if (!node_specific_cma_alloc) { 7710 /* 7711 * If 3 GB area is requested on a machine with 4 numa nodes, 7712 * let's allocate 1 GB on first three nodes and ignore the last one. 7713 */ 7714 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes); 7715 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n", 7716 hugetlb_cma_size / SZ_1M, per_node / SZ_1M); 7717 } 7718 7719 reserved = 0; 7720 for_each_online_node(nid) { 7721 int res; 7722 char name[CMA_MAX_NAME]; 7723 7724 if (node_specific_cma_alloc) { 7725 if (hugetlb_cma_size_in_node[nid] == 0) 7726 continue; 7727 7728 size = hugetlb_cma_size_in_node[nid]; 7729 } else { 7730 size = min(per_node, hugetlb_cma_size - reserved); 7731 } 7732 7733 size = round_up(size, PAGE_SIZE << order); 7734 7735 snprintf(name, sizeof(name), "hugetlb%d", nid); 7736 /* 7737 * Note that 'order per bit' is based on smallest size that 7738 * may be returned to CMA allocator in the case of 7739 * huge page demotion. 7740 */ 7741 res = cma_declare_contiguous_nid(0, size, 0, 7742 PAGE_SIZE << order, 7743 HUGETLB_PAGE_ORDER, false, name, 7744 &hugetlb_cma[nid], nid); 7745 if (res) { 7746 pr_warn("hugetlb_cma: reservation failed: err %d, node %d", 7747 res, nid); 7748 continue; 7749 } 7750 7751 reserved += size; 7752 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n", 7753 size / SZ_1M, nid); 7754 7755 if (reserved >= hugetlb_cma_size) 7756 break; 7757 } 7758 7759 if (!reserved) 7760 /* 7761 * hugetlb_cma_size is used to determine if allocations from 7762 * cma are possible. Set to zero if no cma regions are set up. 7763 */ 7764 hugetlb_cma_size = 0; 7765 } 7766 7767 static void __init hugetlb_cma_check(void) 7768 { 7769 if (!hugetlb_cma_size || cma_reserve_called) 7770 return; 7771 7772 pr_warn("hugetlb_cma: the option isn't supported by current arch\n"); 7773 } 7774 7775 #endif /* CONFIG_CMA */ 7776