xref: /linux/mm/hugetlb.c (revision 827634added7f38b7d724cab1dccdb2b004c13c3)
1 /*
2  * Generic hugetlb support.
3  * (C) Nadia Yvette Chambers, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/bootmem.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/rmap.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/page-isolation.h>
26 #include <linux/jhash.h>
27 
28 #include <asm/page.h>
29 #include <asm/pgtable.h>
30 #include <asm/tlb.h>
31 
32 #include <linux/io.h>
33 #include <linux/hugetlb.h>
34 #include <linux/hugetlb_cgroup.h>
35 #include <linux/node.h>
36 #include "internal.h"
37 
38 int hugepages_treat_as_movable;
39 
40 int hugetlb_max_hstate __read_mostly;
41 unsigned int default_hstate_idx;
42 struct hstate hstates[HUGE_MAX_HSTATE];
43 
44 __initdata LIST_HEAD(huge_boot_pages);
45 
46 /* for command line parsing */
47 static struct hstate * __initdata parsed_hstate;
48 static unsigned long __initdata default_hstate_max_huge_pages;
49 static unsigned long __initdata default_hstate_size;
50 
51 /*
52  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
53  * free_huge_pages, and surplus_huge_pages.
54  */
55 DEFINE_SPINLOCK(hugetlb_lock);
56 
57 /*
58  * Serializes faults on the same logical page.  This is used to
59  * prevent spurious OOMs when the hugepage pool is fully utilized.
60  */
61 static int num_fault_mutexes;
62 static struct mutex *htlb_fault_mutex_table ____cacheline_aligned_in_smp;
63 
64 /* Forward declaration */
65 static int hugetlb_acct_memory(struct hstate *h, long delta);
66 
67 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
68 {
69 	bool free = (spool->count == 0) && (spool->used_hpages == 0);
70 
71 	spin_unlock(&spool->lock);
72 
73 	/* If no pages are used, and no other handles to the subpool
74 	 * remain, give up any reservations mased on minimum size and
75 	 * free the subpool */
76 	if (free) {
77 		if (spool->min_hpages != -1)
78 			hugetlb_acct_memory(spool->hstate,
79 						-spool->min_hpages);
80 		kfree(spool);
81 	}
82 }
83 
84 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
85 						long min_hpages)
86 {
87 	struct hugepage_subpool *spool;
88 
89 	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
90 	if (!spool)
91 		return NULL;
92 
93 	spin_lock_init(&spool->lock);
94 	spool->count = 1;
95 	spool->max_hpages = max_hpages;
96 	spool->hstate = h;
97 	spool->min_hpages = min_hpages;
98 
99 	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
100 		kfree(spool);
101 		return NULL;
102 	}
103 	spool->rsv_hpages = min_hpages;
104 
105 	return spool;
106 }
107 
108 void hugepage_put_subpool(struct hugepage_subpool *spool)
109 {
110 	spin_lock(&spool->lock);
111 	BUG_ON(!spool->count);
112 	spool->count--;
113 	unlock_or_release_subpool(spool);
114 }
115 
116 /*
117  * Subpool accounting for allocating and reserving pages.
118  * Return -ENOMEM if there are not enough resources to satisfy the
119  * the request.  Otherwise, return the number of pages by which the
120  * global pools must be adjusted (upward).  The returned value may
121  * only be different than the passed value (delta) in the case where
122  * a subpool minimum size must be manitained.
123  */
124 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
125 				      long delta)
126 {
127 	long ret = delta;
128 
129 	if (!spool)
130 		return ret;
131 
132 	spin_lock(&spool->lock);
133 
134 	if (spool->max_hpages != -1) {		/* maximum size accounting */
135 		if ((spool->used_hpages + delta) <= spool->max_hpages)
136 			spool->used_hpages += delta;
137 		else {
138 			ret = -ENOMEM;
139 			goto unlock_ret;
140 		}
141 	}
142 
143 	if (spool->min_hpages != -1) {		/* minimum size accounting */
144 		if (delta > spool->rsv_hpages) {
145 			/*
146 			 * Asking for more reserves than those already taken on
147 			 * behalf of subpool.  Return difference.
148 			 */
149 			ret = delta - spool->rsv_hpages;
150 			spool->rsv_hpages = 0;
151 		} else {
152 			ret = 0;	/* reserves already accounted for */
153 			spool->rsv_hpages -= delta;
154 		}
155 	}
156 
157 unlock_ret:
158 	spin_unlock(&spool->lock);
159 	return ret;
160 }
161 
162 /*
163  * Subpool accounting for freeing and unreserving pages.
164  * Return the number of global page reservations that must be dropped.
165  * The return value may only be different than the passed value (delta)
166  * in the case where a subpool minimum size must be maintained.
167  */
168 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
169 				       long delta)
170 {
171 	long ret = delta;
172 
173 	if (!spool)
174 		return delta;
175 
176 	spin_lock(&spool->lock);
177 
178 	if (spool->max_hpages != -1)		/* maximum size accounting */
179 		spool->used_hpages -= delta;
180 
181 	if (spool->min_hpages != -1) {		/* minimum size accounting */
182 		if (spool->rsv_hpages + delta <= spool->min_hpages)
183 			ret = 0;
184 		else
185 			ret = spool->rsv_hpages + delta - spool->min_hpages;
186 
187 		spool->rsv_hpages += delta;
188 		if (spool->rsv_hpages > spool->min_hpages)
189 			spool->rsv_hpages = spool->min_hpages;
190 	}
191 
192 	/*
193 	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
194 	 * quota reference, free it now.
195 	 */
196 	unlock_or_release_subpool(spool);
197 
198 	return ret;
199 }
200 
201 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
202 {
203 	return HUGETLBFS_SB(inode->i_sb)->spool;
204 }
205 
206 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
207 {
208 	return subpool_inode(file_inode(vma->vm_file));
209 }
210 
211 /*
212  * Region tracking -- allows tracking of reservations and instantiated pages
213  *                    across the pages in a mapping.
214  *
215  * The region data structures are embedded into a resv_map and
216  * protected by a resv_map's lock
217  */
218 struct file_region {
219 	struct list_head link;
220 	long from;
221 	long to;
222 };
223 
224 static long region_add(struct resv_map *resv, long f, long t)
225 {
226 	struct list_head *head = &resv->regions;
227 	struct file_region *rg, *nrg, *trg;
228 
229 	spin_lock(&resv->lock);
230 	/* Locate the region we are either in or before. */
231 	list_for_each_entry(rg, head, link)
232 		if (f <= rg->to)
233 			break;
234 
235 	/* Round our left edge to the current segment if it encloses us. */
236 	if (f > rg->from)
237 		f = rg->from;
238 
239 	/* Check for and consume any regions we now overlap with. */
240 	nrg = rg;
241 	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
242 		if (&rg->link == head)
243 			break;
244 		if (rg->from > t)
245 			break;
246 
247 		/* If this area reaches higher then extend our area to
248 		 * include it completely.  If this is not the first area
249 		 * which we intend to reuse, free it. */
250 		if (rg->to > t)
251 			t = rg->to;
252 		if (rg != nrg) {
253 			list_del(&rg->link);
254 			kfree(rg);
255 		}
256 	}
257 	nrg->from = f;
258 	nrg->to = t;
259 	spin_unlock(&resv->lock);
260 	return 0;
261 }
262 
263 static long region_chg(struct resv_map *resv, long f, long t)
264 {
265 	struct list_head *head = &resv->regions;
266 	struct file_region *rg, *nrg = NULL;
267 	long chg = 0;
268 
269 retry:
270 	spin_lock(&resv->lock);
271 	/* Locate the region we are before or in. */
272 	list_for_each_entry(rg, head, link)
273 		if (f <= rg->to)
274 			break;
275 
276 	/* If we are below the current region then a new region is required.
277 	 * Subtle, allocate a new region at the position but make it zero
278 	 * size such that we can guarantee to record the reservation. */
279 	if (&rg->link == head || t < rg->from) {
280 		if (!nrg) {
281 			spin_unlock(&resv->lock);
282 			nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
283 			if (!nrg)
284 				return -ENOMEM;
285 
286 			nrg->from = f;
287 			nrg->to   = f;
288 			INIT_LIST_HEAD(&nrg->link);
289 			goto retry;
290 		}
291 
292 		list_add(&nrg->link, rg->link.prev);
293 		chg = t - f;
294 		goto out_nrg;
295 	}
296 
297 	/* Round our left edge to the current segment if it encloses us. */
298 	if (f > rg->from)
299 		f = rg->from;
300 	chg = t - f;
301 
302 	/* Check for and consume any regions we now overlap with. */
303 	list_for_each_entry(rg, rg->link.prev, link) {
304 		if (&rg->link == head)
305 			break;
306 		if (rg->from > t)
307 			goto out;
308 
309 		/* We overlap with this area, if it extends further than
310 		 * us then we must extend ourselves.  Account for its
311 		 * existing reservation. */
312 		if (rg->to > t) {
313 			chg += rg->to - t;
314 			t = rg->to;
315 		}
316 		chg -= rg->to - rg->from;
317 	}
318 
319 out:
320 	spin_unlock(&resv->lock);
321 	/*  We already know we raced and no longer need the new region */
322 	kfree(nrg);
323 	return chg;
324 out_nrg:
325 	spin_unlock(&resv->lock);
326 	return chg;
327 }
328 
329 static long region_truncate(struct resv_map *resv, long end)
330 {
331 	struct list_head *head = &resv->regions;
332 	struct file_region *rg, *trg;
333 	long chg = 0;
334 
335 	spin_lock(&resv->lock);
336 	/* Locate the region we are either in or before. */
337 	list_for_each_entry(rg, head, link)
338 		if (end <= rg->to)
339 			break;
340 	if (&rg->link == head)
341 		goto out;
342 
343 	/* If we are in the middle of a region then adjust it. */
344 	if (end > rg->from) {
345 		chg = rg->to - end;
346 		rg->to = end;
347 		rg = list_entry(rg->link.next, typeof(*rg), link);
348 	}
349 
350 	/* Drop any remaining regions. */
351 	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
352 		if (&rg->link == head)
353 			break;
354 		chg += rg->to - rg->from;
355 		list_del(&rg->link);
356 		kfree(rg);
357 	}
358 
359 out:
360 	spin_unlock(&resv->lock);
361 	return chg;
362 }
363 
364 static long region_count(struct resv_map *resv, long f, long t)
365 {
366 	struct list_head *head = &resv->regions;
367 	struct file_region *rg;
368 	long chg = 0;
369 
370 	spin_lock(&resv->lock);
371 	/* Locate each segment we overlap with, and count that overlap. */
372 	list_for_each_entry(rg, head, link) {
373 		long seg_from;
374 		long seg_to;
375 
376 		if (rg->to <= f)
377 			continue;
378 		if (rg->from >= t)
379 			break;
380 
381 		seg_from = max(rg->from, f);
382 		seg_to = min(rg->to, t);
383 
384 		chg += seg_to - seg_from;
385 	}
386 	spin_unlock(&resv->lock);
387 
388 	return chg;
389 }
390 
391 /*
392  * Convert the address within this vma to the page offset within
393  * the mapping, in pagecache page units; huge pages here.
394  */
395 static pgoff_t vma_hugecache_offset(struct hstate *h,
396 			struct vm_area_struct *vma, unsigned long address)
397 {
398 	return ((address - vma->vm_start) >> huge_page_shift(h)) +
399 			(vma->vm_pgoff >> huge_page_order(h));
400 }
401 
402 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
403 				     unsigned long address)
404 {
405 	return vma_hugecache_offset(hstate_vma(vma), vma, address);
406 }
407 
408 /*
409  * Return the size of the pages allocated when backing a VMA. In the majority
410  * cases this will be same size as used by the page table entries.
411  */
412 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
413 {
414 	struct hstate *hstate;
415 
416 	if (!is_vm_hugetlb_page(vma))
417 		return PAGE_SIZE;
418 
419 	hstate = hstate_vma(vma);
420 
421 	return 1UL << huge_page_shift(hstate);
422 }
423 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
424 
425 /*
426  * Return the page size being used by the MMU to back a VMA. In the majority
427  * of cases, the page size used by the kernel matches the MMU size. On
428  * architectures where it differs, an architecture-specific version of this
429  * function is required.
430  */
431 #ifndef vma_mmu_pagesize
432 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
433 {
434 	return vma_kernel_pagesize(vma);
435 }
436 #endif
437 
438 /*
439  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
440  * bits of the reservation map pointer, which are always clear due to
441  * alignment.
442  */
443 #define HPAGE_RESV_OWNER    (1UL << 0)
444 #define HPAGE_RESV_UNMAPPED (1UL << 1)
445 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
446 
447 /*
448  * These helpers are used to track how many pages are reserved for
449  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
450  * is guaranteed to have their future faults succeed.
451  *
452  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
453  * the reserve counters are updated with the hugetlb_lock held. It is safe
454  * to reset the VMA at fork() time as it is not in use yet and there is no
455  * chance of the global counters getting corrupted as a result of the values.
456  *
457  * The private mapping reservation is represented in a subtly different
458  * manner to a shared mapping.  A shared mapping has a region map associated
459  * with the underlying file, this region map represents the backing file
460  * pages which have ever had a reservation assigned which this persists even
461  * after the page is instantiated.  A private mapping has a region map
462  * associated with the original mmap which is attached to all VMAs which
463  * reference it, this region map represents those offsets which have consumed
464  * reservation ie. where pages have been instantiated.
465  */
466 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
467 {
468 	return (unsigned long)vma->vm_private_data;
469 }
470 
471 static void set_vma_private_data(struct vm_area_struct *vma,
472 							unsigned long value)
473 {
474 	vma->vm_private_data = (void *)value;
475 }
476 
477 struct resv_map *resv_map_alloc(void)
478 {
479 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
480 	if (!resv_map)
481 		return NULL;
482 
483 	kref_init(&resv_map->refs);
484 	spin_lock_init(&resv_map->lock);
485 	INIT_LIST_HEAD(&resv_map->regions);
486 
487 	return resv_map;
488 }
489 
490 void resv_map_release(struct kref *ref)
491 {
492 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
493 
494 	/* Clear out any active regions before we release the map. */
495 	region_truncate(resv_map, 0);
496 	kfree(resv_map);
497 }
498 
499 static inline struct resv_map *inode_resv_map(struct inode *inode)
500 {
501 	return inode->i_mapping->private_data;
502 }
503 
504 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
505 {
506 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
507 	if (vma->vm_flags & VM_MAYSHARE) {
508 		struct address_space *mapping = vma->vm_file->f_mapping;
509 		struct inode *inode = mapping->host;
510 
511 		return inode_resv_map(inode);
512 
513 	} else {
514 		return (struct resv_map *)(get_vma_private_data(vma) &
515 							~HPAGE_RESV_MASK);
516 	}
517 }
518 
519 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
520 {
521 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
522 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
523 
524 	set_vma_private_data(vma, (get_vma_private_data(vma) &
525 				HPAGE_RESV_MASK) | (unsigned long)map);
526 }
527 
528 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
529 {
530 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
531 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
532 
533 	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
534 }
535 
536 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
537 {
538 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
539 
540 	return (get_vma_private_data(vma) & flag) != 0;
541 }
542 
543 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
544 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
545 {
546 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
547 	if (!(vma->vm_flags & VM_MAYSHARE))
548 		vma->vm_private_data = (void *)0;
549 }
550 
551 /* Returns true if the VMA has associated reserve pages */
552 static int vma_has_reserves(struct vm_area_struct *vma, long chg)
553 {
554 	if (vma->vm_flags & VM_NORESERVE) {
555 		/*
556 		 * This address is already reserved by other process(chg == 0),
557 		 * so, we should decrement reserved count. Without decrementing,
558 		 * reserve count remains after releasing inode, because this
559 		 * allocated page will go into page cache and is regarded as
560 		 * coming from reserved pool in releasing step.  Currently, we
561 		 * don't have any other solution to deal with this situation
562 		 * properly, so add work-around here.
563 		 */
564 		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
565 			return 1;
566 		else
567 			return 0;
568 	}
569 
570 	/* Shared mappings always use reserves */
571 	if (vma->vm_flags & VM_MAYSHARE)
572 		return 1;
573 
574 	/*
575 	 * Only the process that called mmap() has reserves for
576 	 * private mappings.
577 	 */
578 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
579 		return 1;
580 
581 	return 0;
582 }
583 
584 static void enqueue_huge_page(struct hstate *h, struct page *page)
585 {
586 	int nid = page_to_nid(page);
587 	list_move(&page->lru, &h->hugepage_freelists[nid]);
588 	h->free_huge_pages++;
589 	h->free_huge_pages_node[nid]++;
590 }
591 
592 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
593 {
594 	struct page *page;
595 
596 	list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
597 		if (!is_migrate_isolate_page(page))
598 			break;
599 	/*
600 	 * if 'non-isolated free hugepage' not found on the list,
601 	 * the allocation fails.
602 	 */
603 	if (&h->hugepage_freelists[nid] == &page->lru)
604 		return NULL;
605 	list_move(&page->lru, &h->hugepage_activelist);
606 	set_page_refcounted(page);
607 	h->free_huge_pages--;
608 	h->free_huge_pages_node[nid]--;
609 	return page;
610 }
611 
612 /* Movability of hugepages depends on migration support. */
613 static inline gfp_t htlb_alloc_mask(struct hstate *h)
614 {
615 	if (hugepages_treat_as_movable || hugepage_migration_supported(h))
616 		return GFP_HIGHUSER_MOVABLE;
617 	else
618 		return GFP_HIGHUSER;
619 }
620 
621 static struct page *dequeue_huge_page_vma(struct hstate *h,
622 				struct vm_area_struct *vma,
623 				unsigned long address, int avoid_reserve,
624 				long chg)
625 {
626 	struct page *page = NULL;
627 	struct mempolicy *mpol;
628 	nodemask_t *nodemask;
629 	struct zonelist *zonelist;
630 	struct zone *zone;
631 	struct zoneref *z;
632 	unsigned int cpuset_mems_cookie;
633 
634 	/*
635 	 * A child process with MAP_PRIVATE mappings created by their parent
636 	 * have no page reserves. This check ensures that reservations are
637 	 * not "stolen". The child may still get SIGKILLed
638 	 */
639 	if (!vma_has_reserves(vma, chg) &&
640 			h->free_huge_pages - h->resv_huge_pages == 0)
641 		goto err;
642 
643 	/* If reserves cannot be used, ensure enough pages are in the pool */
644 	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
645 		goto err;
646 
647 retry_cpuset:
648 	cpuset_mems_cookie = read_mems_allowed_begin();
649 	zonelist = huge_zonelist(vma, address,
650 					htlb_alloc_mask(h), &mpol, &nodemask);
651 
652 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
653 						MAX_NR_ZONES - 1, nodemask) {
654 		if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) {
655 			page = dequeue_huge_page_node(h, zone_to_nid(zone));
656 			if (page) {
657 				if (avoid_reserve)
658 					break;
659 				if (!vma_has_reserves(vma, chg))
660 					break;
661 
662 				SetPagePrivate(page);
663 				h->resv_huge_pages--;
664 				break;
665 			}
666 		}
667 	}
668 
669 	mpol_cond_put(mpol);
670 	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
671 		goto retry_cpuset;
672 	return page;
673 
674 err:
675 	return NULL;
676 }
677 
678 /*
679  * common helper functions for hstate_next_node_to_{alloc|free}.
680  * We may have allocated or freed a huge page based on a different
681  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
682  * be outside of *nodes_allowed.  Ensure that we use an allowed
683  * node for alloc or free.
684  */
685 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
686 {
687 	nid = next_node(nid, *nodes_allowed);
688 	if (nid == MAX_NUMNODES)
689 		nid = first_node(*nodes_allowed);
690 	VM_BUG_ON(nid >= MAX_NUMNODES);
691 
692 	return nid;
693 }
694 
695 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
696 {
697 	if (!node_isset(nid, *nodes_allowed))
698 		nid = next_node_allowed(nid, nodes_allowed);
699 	return nid;
700 }
701 
702 /*
703  * returns the previously saved node ["this node"] from which to
704  * allocate a persistent huge page for the pool and advance the
705  * next node from which to allocate, handling wrap at end of node
706  * mask.
707  */
708 static int hstate_next_node_to_alloc(struct hstate *h,
709 					nodemask_t *nodes_allowed)
710 {
711 	int nid;
712 
713 	VM_BUG_ON(!nodes_allowed);
714 
715 	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
716 	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
717 
718 	return nid;
719 }
720 
721 /*
722  * helper for free_pool_huge_page() - return the previously saved
723  * node ["this node"] from which to free a huge page.  Advance the
724  * next node id whether or not we find a free huge page to free so
725  * that the next attempt to free addresses the next node.
726  */
727 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
728 {
729 	int nid;
730 
731 	VM_BUG_ON(!nodes_allowed);
732 
733 	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
734 	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
735 
736 	return nid;
737 }
738 
739 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
740 	for (nr_nodes = nodes_weight(*mask);				\
741 		nr_nodes > 0 &&						\
742 		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
743 		nr_nodes--)
744 
745 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
746 	for (nr_nodes = nodes_weight(*mask);				\
747 		nr_nodes > 0 &&						\
748 		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
749 		nr_nodes--)
750 
751 #if defined(CONFIG_CMA) && defined(CONFIG_X86_64)
752 static void destroy_compound_gigantic_page(struct page *page,
753 					unsigned long order)
754 {
755 	int i;
756 	int nr_pages = 1 << order;
757 	struct page *p = page + 1;
758 
759 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
760 		__ClearPageTail(p);
761 		set_page_refcounted(p);
762 		p->first_page = NULL;
763 	}
764 
765 	set_compound_order(page, 0);
766 	__ClearPageHead(page);
767 }
768 
769 static void free_gigantic_page(struct page *page, unsigned order)
770 {
771 	free_contig_range(page_to_pfn(page), 1 << order);
772 }
773 
774 static int __alloc_gigantic_page(unsigned long start_pfn,
775 				unsigned long nr_pages)
776 {
777 	unsigned long end_pfn = start_pfn + nr_pages;
778 	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
779 }
780 
781 static bool pfn_range_valid_gigantic(unsigned long start_pfn,
782 				unsigned long nr_pages)
783 {
784 	unsigned long i, end_pfn = start_pfn + nr_pages;
785 	struct page *page;
786 
787 	for (i = start_pfn; i < end_pfn; i++) {
788 		if (!pfn_valid(i))
789 			return false;
790 
791 		page = pfn_to_page(i);
792 
793 		if (PageReserved(page))
794 			return false;
795 
796 		if (page_count(page) > 0)
797 			return false;
798 
799 		if (PageHuge(page))
800 			return false;
801 	}
802 
803 	return true;
804 }
805 
806 static bool zone_spans_last_pfn(const struct zone *zone,
807 			unsigned long start_pfn, unsigned long nr_pages)
808 {
809 	unsigned long last_pfn = start_pfn + nr_pages - 1;
810 	return zone_spans_pfn(zone, last_pfn);
811 }
812 
813 static struct page *alloc_gigantic_page(int nid, unsigned order)
814 {
815 	unsigned long nr_pages = 1 << order;
816 	unsigned long ret, pfn, flags;
817 	struct zone *z;
818 
819 	z = NODE_DATA(nid)->node_zones;
820 	for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
821 		spin_lock_irqsave(&z->lock, flags);
822 
823 		pfn = ALIGN(z->zone_start_pfn, nr_pages);
824 		while (zone_spans_last_pfn(z, pfn, nr_pages)) {
825 			if (pfn_range_valid_gigantic(pfn, nr_pages)) {
826 				/*
827 				 * We release the zone lock here because
828 				 * alloc_contig_range() will also lock the zone
829 				 * at some point. If there's an allocation
830 				 * spinning on this lock, it may win the race
831 				 * and cause alloc_contig_range() to fail...
832 				 */
833 				spin_unlock_irqrestore(&z->lock, flags);
834 				ret = __alloc_gigantic_page(pfn, nr_pages);
835 				if (!ret)
836 					return pfn_to_page(pfn);
837 				spin_lock_irqsave(&z->lock, flags);
838 			}
839 			pfn += nr_pages;
840 		}
841 
842 		spin_unlock_irqrestore(&z->lock, flags);
843 	}
844 
845 	return NULL;
846 }
847 
848 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
849 static void prep_compound_gigantic_page(struct page *page, unsigned long order);
850 
851 static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
852 {
853 	struct page *page;
854 
855 	page = alloc_gigantic_page(nid, huge_page_order(h));
856 	if (page) {
857 		prep_compound_gigantic_page(page, huge_page_order(h));
858 		prep_new_huge_page(h, page, nid);
859 	}
860 
861 	return page;
862 }
863 
864 static int alloc_fresh_gigantic_page(struct hstate *h,
865 				nodemask_t *nodes_allowed)
866 {
867 	struct page *page = NULL;
868 	int nr_nodes, node;
869 
870 	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
871 		page = alloc_fresh_gigantic_page_node(h, node);
872 		if (page)
873 			return 1;
874 	}
875 
876 	return 0;
877 }
878 
879 static inline bool gigantic_page_supported(void) { return true; }
880 #else
881 static inline bool gigantic_page_supported(void) { return false; }
882 static inline void free_gigantic_page(struct page *page, unsigned order) { }
883 static inline void destroy_compound_gigantic_page(struct page *page,
884 						unsigned long order) { }
885 static inline int alloc_fresh_gigantic_page(struct hstate *h,
886 					nodemask_t *nodes_allowed) { return 0; }
887 #endif
888 
889 static void update_and_free_page(struct hstate *h, struct page *page)
890 {
891 	int i;
892 
893 	if (hstate_is_gigantic(h) && !gigantic_page_supported())
894 		return;
895 
896 	h->nr_huge_pages--;
897 	h->nr_huge_pages_node[page_to_nid(page)]--;
898 	for (i = 0; i < pages_per_huge_page(h); i++) {
899 		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
900 				1 << PG_referenced | 1 << PG_dirty |
901 				1 << PG_active | 1 << PG_private |
902 				1 << PG_writeback);
903 	}
904 	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
905 	set_compound_page_dtor(page, NULL);
906 	set_page_refcounted(page);
907 	if (hstate_is_gigantic(h)) {
908 		destroy_compound_gigantic_page(page, huge_page_order(h));
909 		free_gigantic_page(page, huge_page_order(h));
910 	} else {
911 		arch_release_hugepage(page);
912 		__free_pages(page, huge_page_order(h));
913 	}
914 }
915 
916 struct hstate *size_to_hstate(unsigned long size)
917 {
918 	struct hstate *h;
919 
920 	for_each_hstate(h) {
921 		if (huge_page_size(h) == size)
922 			return h;
923 	}
924 	return NULL;
925 }
926 
927 /*
928  * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
929  * to hstate->hugepage_activelist.)
930  *
931  * This function can be called for tail pages, but never returns true for them.
932  */
933 bool page_huge_active(struct page *page)
934 {
935 	VM_BUG_ON_PAGE(!PageHuge(page), page);
936 	return PageHead(page) && PagePrivate(&page[1]);
937 }
938 
939 /* never called for tail page */
940 static void set_page_huge_active(struct page *page)
941 {
942 	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
943 	SetPagePrivate(&page[1]);
944 }
945 
946 static void clear_page_huge_active(struct page *page)
947 {
948 	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
949 	ClearPagePrivate(&page[1]);
950 }
951 
952 void free_huge_page(struct page *page)
953 {
954 	/*
955 	 * Can't pass hstate in here because it is called from the
956 	 * compound page destructor.
957 	 */
958 	struct hstate *h = page_hstate(page);
959 	int nid = page_to_nid(page);
960 	struct hugepage_subpool *spool =
961 		(struct hugepage_subpool *)page_private(page);
962 	bool restore_reserve;
963 
964 	set_page_private(page, 0);
965 	page->mapping = NULL;
966 	BUG_ON(page_count(page));
967 	BUG_ON(page_mapcount(page));
968 	restore_reserve = PagePrivate(page);
969 	ClearPagePrivate(page);
970 
971 	/*
972 	 * A return code of zero implies that the subpool will be under its
973 	 * minimum size if the reservation is not restored after page is free.
974 	 * Therefore, force restore_reserve operation.
975 	 */
976 	if (hugepage_subpool_put_pages(spool, 1) == 0)
977 		restore_reserve = true;
978 
979 	spin_lock(&hugetlb_lock);
980 	clear_page_huge_active(page);
981 	hugetlb_cgroup_uncharge_page(hstate_index(h),
982 				     pages_per_huge_page(h), page);
983 	if (restore_reserve)
984 		h->resv_huge_pages++;
985 
986 	if (h->surplus_huge_pages_node[nid]) {
987 		/* remove the page from active list */
988 		list_del(&page->lru);
989 		update_and_free_page(h, page);
990 		h->surplus_huge_pages--;
991 		h->surplus_huge_pages_node[nid]--;
992 	} else {
993 		arch_clear_hugepage_flags(page);
994 		enqueue_huge_page(h, page);
995 	}
996 	spin_unlock(&hugetlb_lock);
997 }
998 
999 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1000 {
1001 	INIT_LIST_HEAD(&page->lru);
1002 	set_compound_page_dtor(page, free_huge_page);
1003 	spin_lock(&hugetlb_lock);
1004 	set_hugetlb_cgroup(page, NULL);
1005 	h->nr_huge_pages++;
1006 	h->nr_huge_pages_node[nid]++;
1007 	spin_unlock(&hugetlb_lock);
1008 	put_page(page); /* free it into the hugepage allocator */
1009 }
1010 
1011 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
1012 {
1013 	int i;
1014 	int nr_pages = 1 << order;
1015 	struct page *p = page + 1;
1016 
1017 	/* we rely on prep_new_huge_page to set the destructor */
1018 	set_compound_order(page, order);
1019 	__SetPageHead(page);
1020 	__ClearPageReserved(page);
1021 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1022 		/*
1023 		 * For gigantic hugepages allocated through bootmem at
1024 		 * boot, it's safer to be consistent with the not-gigantic
1025 		 * hugepages and clear the PG_reserved bit from all tail pages
1026 		 * too.  Otherwse drivers using get_user_pages() to access tail
1027 		 * pages may get the reference counting wrong if they see
1028 		 * PG_reserved set on a tail page (despite the head page not
1029 		 * having PG_reserved set).  Enforcing this consistency between
1030 		 * head and tail pages allows drivers to optimize away a check
1031 		 * on the head page when they need know if put_page() is needed
1032 		 * after get_user_pages().
1033 		 */
1034 		__ClearPageReserved(p);
1035 		set_page_count(p, 0);
1036 		p->first_page = page;
1037 		/* Make sure p->first_page is always valid for PageTail() */
1038 		smp_wmb();
1039 		__SetPageTail(p);
1040 	}
1041 }
1042 
1043 /*
1044  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1045  * transparent huge pages.  See the PageTransHuge() documentation for more
1046  * details.
1047  */
1048 int PageHuge(struct page *page)
1049 {
1050 	if (!PageCompound(page))
1051 		return 0;
1052 
1053 	page = compound_head(page);
1054 	return get_compound_page_dtor(page) == free_huge_page;
1055 }
1056 EXPORT_SYMBOL_GPL(PageHuge);
1057 
1058 /*
1059  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1060  * normal or transparent huge pages.
1061  */
1062 int PageHeadHuge(struct page *page_head)
1063 {
1064 	if (!PageHead(page_head))
1065 		return 0;
1066 
1067 	return get_compound_page_dtor(page_head) == free_huge_page;
1068 }
1069 
1070 pgoff_t __basepage_index(struct page *page)
1071 {
1072 	struct page *page_head = compound_head(page);
1073 	pgoff_t index = page_index(page_head);
1074 	unsigned long compound_idx;
1075 
1076 	if (!PageHuge(page_head))
1077 		return page_index(page);
1078 
1079 	if (compound_order(page_head) >= MAX_ORDER)
1080 		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1081 	else
1082 		compound_idx = page - page_head;
1083 
1084 	return (index << compound_order(page_head)) + compound_idx;
1085 }
1086 
1087 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1088 {
1089 	struct page *page;
1090 
1091 	page = alloc_pages_exact_node(nid,
1092 		htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1093 						__GFP_REPEAT|__GFP_NOWARN,
1094 		huge_page_order(h));
1095 	if (page) {
1096 		if (arch_prepare_hugepage(page)) {
1097 			__free_pages(page, huge_page_order(h));
1098 			return NULL;
1099 		}
1100 		prep_new_huge_page(h, page, nid);
1101 	}
1102 
1103 	return page;
1104 }
1105 
1106 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1107 {
1108 	struct page *page;
1109 	int nr_nodes, node;
1110 	int ret = 0;
1111 
1112 	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1113 		page = alloc_fresh_huge_page_node(h, node);
1114 		if (page) {
1115 			ret = 1;
1116 			break;
1117 		}
1118 	}
1119 
1120 	if (ret)
1121 		count_vm_event(HTLB_BUDDY_PGALLOC);
1122 	else
1123 		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1124 
1125 	return ret;
1126 }
1127 
1128 /*
1129  * Free huge page from pool from next node to free.
1130  * Attempt to keep persistent huge pages more or less
1131  * balanced over allowed nodes.
1132  * Called with hugetlb_lock locked.
1133  */
1134 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1135 							 bool acct_surplus)
1136 {
1137 	int nr_nodes, node;
1138 	int ret = 0;
1139 
1140 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1141 		/*
1142 		 * If we're returning unused surplus pages, only examine
1143 		 * nodes with surplus pages.
1144 		 */
1145 		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1146 		    !list_empty(&h->hugepage_freelists[node])) {
1147 			struct page *page =
1148 				list_entry(h->hugepage_freelists[node].next,
1149 					  struct page, lru);
1150 			list_del(&page->lru);
1151 			h->free_huge_pages--;
1152 			h->free_huge_pages_node[node]--;
1153 			if (acct_surplus) {
1154 				h->surplus_huge_pages--;
1155 				h->surplus_huge_pages_node[node]--;
1156 			}
1157 			update_and_free_page(h, page);
1158 			ret = 1;
1159 			break;
1160 		}
1161 	}
1162 
1163 	return ret;
1164 }
1165 
1166 /*
1167  * Dissolve a given free hugepage into free buddy pages. This function does
1168  * nothing for in-use (including surplus) hugepages.
1169  */
1170 static void dissolve_free_huge_page(struct page *page)
1171 {
1172 	spin_lock(&hugetlb_lock);
1173 	if (PageHuge(page) && !page_count(page)) {
1174 		struct hstate *h = page_hstate(page);
1175 		int nid = page_to_nid(page);
1176 		list_del(&page->lru);
1177 		h->free_huge_pages--;
1178 		h->free_huge_pages_node[nid]--;
1179 		update_and_free_page(h, page);
1180 	}
1181 	spin_unlock(&hugetlb_lock);
1182 }
1183 
1184 /*
1185  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1186  * make specified memory blocks removable from the system.
1187  * Note that start_pfn should aligned with (minimum) hugepage size.
1188  */
1189 void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1190 {
1191 	unsigned int order = 8 * sizeof(void *);
1192 	unsigned long pfn;
1193 	struct hstate *h;
1194 
1195 	if (!hugepages_supported())
1196 		return;
1197 
1198 	/* Set scan step to minimum hugepage size */
1199 	for_each_hstate(h)
1200 		if (order > huge_page_order(h))
1201 			order = huge_page_order(h);
1202 	VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << order));
1203 	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order)
1204 		dissolve_free_huge_page(pfn_to_page(pfn));
1205 }
1206 
1207 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
1208 {
1209 	struct page *page;
1210 	unsigned int r_nid;
1211 
1212 	if (hstate_is_gigantic(h))
1213 		return NULL;
1214 
1215 	/*
1216 	 * Assume we will successfully allocate the surplus page to
1217 	 * prevent racing processes from causing the surplus to exceed
1218 	 * overcommit
1219 	 *
1220 	 * This however introduces a different race, where a process B
1221 	 * tries to grow the static hugepage pool while alloc_pages() is
1222 	 * called by process A. B will only examine the per-node
1223 	 * counters in determining if surplus huge pages can be
1224 	 * converted to normal huge pages in adjust_pool_surplus(). A
1225 	 * won't be able to increment the per-node counter, until the
1226 	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
1227 	 * no more huge pages can be converted from surplus to normal
1228 	 * state (and doesn't try to convert again). Thus, we have a
1229 	 * case where a surplus huge page exists, the pool is grown, and
1230 	 * the surplus huge page still exists after, even though it
1231 	 * should just have been converted to a normal huge page. This
1232 	 * does not leak memory, though, as the hugepage will be freed
1233 	 * once it is out of use. It also does not allow the counters to
1234 	 * go out of whack in adjust_pool_surplus() as we don't modify
1235 	 * the node values until we've gotten the hugepage and only the
1236 	 * per-node value is checked there.
1237 	 */
1238 	spin_lock(&hugetlb_lock);
1239 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1240 		spin_unlock(&hugetlb_lock);
1241 		return NULL;
1242 	} else {
1243 		h->nr_huge_pages++;
1244 		h->surplus_huge_pages++;
1245 	}
1246 	spin_unlock(&hugetlb_lock);
1247 
1248 	if (nid == NUMA_NO_NODE)
1249 		page = alloc_pages(htlb_alloc_mask(h)|__GFP_COMP|
1250 				   __GFP_REPEAT|__GFP_NOWARN,
1251 				   huge_page_order(h));
1252 	else
1253 		page = alloc_pages_exact_node(nid,
1254 			htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1255 			__GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
1256 
1257 	if (page && arch_prepare_hugepage(page)) {
1258 		__free_pages(page, huge_page_order(h));
1259 		page = NULL;
1260 	}
1261 
1262 	spin_lock(&hugetlb_lock);
1263 	if (page) {
1264 		INIT_LIST_HEAD(&page->lru);
1265 		r_nid = page_to_nid(page);
1266 		set_compound_page_dtor(page, free_huge_page);
1267 		set_hugetlb_cgroup(page, NULL);
1268 		/*
1269 		 * We incremented the global counters already
1270 		 */
1271 		h->nr_huge_pages_node[r_nid]++;
1272 		h->surplus_huge_pages_node[r_nid]++;
1273 		__count_vm_event(HTLB_BUDDY_PGALLOC);
1274 	} else {
1275 		h->nr_huge_pages--;
1276 		h->surplus_huge_pages--;
1277 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1278 	}
1279 	spin_unlock(&hugetlb_lock);
1280 
1281 	return page;
1282 }
1283 
1284 /*
1285  * This allocation function is useful in the context where vma is irrelevant.
1286  * E.g. soft-offlining uses this function because it only cares physical
1287  * address of error page.
1288  */
1289 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1290 {
1291 	struct page *page = NULL;
1292 
1293 	spin_lock(&hugetlb_lock);
1294 	if (h->free_huge_pages - h->resv_huge_pages > 0)
1295 		page = dequeue_huge_page_node(h, nid);
1296 	spin_unlock(&hugetlb_lock);
1297 
1298 	if (!page)
1299 		page = alloc_buddy_huge_page(h, nid);
1300 
1301 	return page;
1302 }
1303 
1304 /*
1305  * Increase the hugetlb pool such that it can accommodate a reservation
1306  * of size 'delta'.
1307  */
1308 static int gather_surplus_pages(struct hstate *h, int delta)
1309 {
1310 	struct list_head surplus_list;
1311 	struct page *page, *tmp;
1312 	int ret, i;
1313 	int needed, allocated;
1314 	bool alloc_ok = true;
1315 
1316 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1317 	if (needed <= 0) {
1318 		h->resv_huge_pages += delta;
1319 		return 0;
1320 	}
1321 
1322 	allocated = 0;
1323 	INIT_LIST_HEAD(&surplus_list);
1324 
1325 	ret = -ENOMEM;
1326 retry:
1327 	spin_unlock(&hugetlb_lock);
1328 	for (i = 0; i < needed; i++) {
1329 		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1330 		if (!page) {
1331 			alloc_ok = false;
1332 			break;
1333 		}
1334 		list_add(&page->lru, &surplus_list);
1335 	}
1336 	allocated += i;
1337 
1338 	/*
1339 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
1340 	 * because either resv_huge_pages or free_huge_pages may have changed.
1341 	 */
1342 	spin_lock(&hugetlb_lock);
1343 	needed = (h->resv_huge_pages + delta) -
1344 			(h->free_huge_pages + allocated);
1345 	if (needed > 0) {
1346 		if (alloc_ok)
1347 			goto retry;
1348 		/*
1349 		 * We were not able to allocate enough pages to
1350 		 * satisfy the entire reservation so we free what
1351 		 * we've allocated so far.
1352 		 */
1353 		goto free;
1354 	}
1355 	/*
1356 	 * The surplus_list now contains _at_least_ the number of extra pages
1357 	 * needed to accommodate the reservation.  Add the appropriate number
1358 	 * of pages to the hugetlb pool and free the extras back to the buddy
1359 	 * allocator.  Commit the entire reservation here to prevent another
1360 	 * process from stealing the pages as they are added to the pool but
1361 	 * before they are reserved.
1362 	 */
1363 	needed += allocated;
1364 	h->resv_huge_pages += delta;
1365 	ret = 0;
1366 
1367 	/* Free the needed pages to the hugetlb pool */
1368 	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1369 		if ((--needed) < 0)
1370 			break;
1371 		/*
1372 		 * This page is now managed by the hugetlb allocator and has
1373 		 * no users -- drop the buddy allocator's reference.
1374 		 */
1375 		put_page_testzero(page);
1376 		VM_BUG_ON_PAGE(page_count(page), page);
1377 		enqueue_huge_page(h, page);
1378 	}
1379 free:
1380 	spin_unlock(&hugetlb_lock);
1381 
1382 	/* Free unnecessary surplus pages to the buddy allocator */
1383 	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1384 		put_page(page);
1385 	spin_lock(&hugetlb_lock);
1386 
1387 	return ret;
1388 }
1389 
1390 /*
1391  * When releasing a hugetlb pool reservation, any surplus pages that were
1392  * allocated to satisfy the reservation must be explicitly freed if they were
1393  * never used.
1394  * Called with hugetlb_lock held.
1395  */
1396 static void return_unused_surplus_pages(struct hstate *h,
1397 					unsigned long unused_resv_pages)
1398 {
1399 	unsigned long nr_pages;
1400 
1401 	/* Uncommit the reservation */
1402 	h->resv_huge_pages -= unused_resv_pages;
1403 
1404 	/* Cannot return gigantic pages currently */
1405 	if (hstate_is_gigantic(h))
1406 		return;
1407 
1408 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1409 
1410 	/*
1411 	 * We want to release as many surplus pages as possible, spread
1412 	 * evenly across all nodes with memory. Iterate across these nodes
1413 	 * until we can no longer free unreserved surplus pages. This occurs
1414 	 * when the nodes with surplus pages have no free pages.
1415 	 * free_pool_huge_page() will balance the the freed pages across the
1416 	 * on-line nodes with memory and will handle the hstate accounting.
1417 	 */
1418 	while (nr_pages--) {
1419 		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1420 			break;
1421 		cond_resched_lock(&hugetlb_lock);
1422 	}
1423 }
1424 
1425 /*
1426  * Determine if the huge page at addr within the vma has an associated
1427  * reservation.  Where it does not we will need to logically increase
1428  * reservation and actually increase subpool usage before an allocation
1429  * can occur.  Where any new reservation would be required the
1430  * reservation change is prepared, but not committed.  Once the page
1431  * has been allocated from the subpool and instantiated the change should
1432  * be committed via vma_commit_reservation.  No action is required on
1433  * failure.
1434  */
1435 static long vma_needs_reservation(struct hstate *h,
1436 			struct vm_area_struct *vma, unsigned long addr)
1437 {
1438 	struct resv_map *resv;
1439 	pgoff_t idx;
1440 	long chg;
1441 
1442 	resv = vma_resv_map(vma);
1443 	if (!resv)
1444 		return 1;
1445 
1446 	idx = vma_hugecache_offset(h, vma, addr);
1447 	chg = region_chg(resv, idx, idx + 1);
1448 
1449 	if (vma->vm_flags & VM_MAYSHARE)
1450 		return chg;
1451 	else
1452 		return chg < 0 ? chg : 0;
1453 }
1454 static void vma_commit_reservation(struct hstate *h,
1455 			struct vm_area_struct *vma, unsigned long addr)
1456 {
1457 	struct resv_map *resv;
1458 	pgoff_t idx;
1459 
1460 	resv = vma_resv_map(vma);
1461 	if (!resv)
1462 		return;
1463 
1464 	idx = vma_hugecache_offset(h, vma, addr);
1465 	region_add(resv, idx, idx + 1);
1466 }
1467 
1468 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1469 				    unsigned long addr, int avoid_reserve)
1470 {
1471 	struct hugepage_subpool *spool = subpool_vma(vma);
1472 	struct hstate *h = hstate_vma(vma);
1473 	struct page *page;
1474 	long chg;
1475 	int ret, idx;
1476 	struct hugetlb_cgroup *h_cg;
1477 
1478 	idx = hstate_index(h);
1479 	/*
1480 	 * Processes that did not create the mapping will have no
1481 	 * reserves and will not have accounted against subpool
1482 	 * limit. Check that the subpool limit can be made before
1483 	 * satisfying the allocation MAP_NORESERVE mappings may also
1484 	 * need pages and subpool limit allocated allocated if no reserve
1485 	 * mapping overlaps.
1486 	 */
1487 	chg = vma_needs_reservation(h, vma, addr);
1488 	if (chg < 0)
1489 		return ERR_PTR(-ENOMEM);
1490 	if (chg || avoid_reserve)
1491 		if (hugepage_subpool_get_pages(spool, 1) < 0)
1492 			return ERR_PTR(-ENOSPC);
1493 
1494 	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1495 	if (ret)
1496 		goto out_subpool_put;
1497 
1498 	spin_lock(&hugetlb_lock);
1499 	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg);
1500 	if (!page) {
1501 		spin_unlock(&hugetlb_lock);
1502 		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1503 		if (!page)
1504 			goto out_uncharge_cgroup;
1505 
1506 		spin_lock(&hugetlb_lock);
1507 		list_move(&page->lru, &h->hugepage_activelist);
1508 		/* Fall through */
1509 	}
1510 	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1511 	spin_unlock(&hugetlb_lock);
1512 
1513 	set_page_private(page, (unsigned long)spool);
1514 
1515 	vma_commit_reservation(h, vma, addr);
1516 	return page;
1517 
1518 out_uncharge_cgroup:
1519 	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
1520 out_subpool_put:
1521 	if (chg || avoid_reserve)
1522 		hugepage_subpool_put_pages(spool, 1);
1523 	return ERR_PTR(-ENOSPC);
1524 }
1525 
1526 /*
1527  * alloc_huge_page()'s wrapper which simply returns the page if allocation
1528  * succeeds, otherwise NULL. This function is called from new_vma_page(),
1529  * where no ERR_VALUE is expected to be returned.
1530  */
1531 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1532 				unsigned long addr, int avoid_reserve)
1533 {
1534 	struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1535 	if (IS_ERR(page))
1536 		page = NULL;
1537 	return page;
1538 }
1539 
1540 int __weak alloc_bootmem_huge_page(struct hstate *h)
1541 {
1542 	struct huge_bootmem_page *m;
1543 	int nr_nodes, node;
1544 
1545 	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1546 		void *addr;
1547 
1548 		addr = memblock_virt_alloc_try_nid_nopanic(
1549 				huge_page_size(h), huge_page_size(h),
1550 				0, BOOTMEM_ALLOC_ACCESSIBLE, node);
1551 		if (addr) {
1552 			/*
1553 			 * Use the beginning of the huge page to store the
1554 			 * huge_bootmem_page struct (until gather_bootmem
1555 			 * puts them into the mem_map).
1556 			 */
1557 			m = addr;
1558 			goto found;
1559 		}
1560 	}
1561 	return 0;
1562 
1563 found:
1564 	BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
1565 	/* Put them into a private list first because mem_map is not up yet */
1566 	list_add(&m->list, &huge_boot_pages);
1567 	m->hstate = h;
1568 	return 1;
1569 }
1570 
1571 static void __init prep_compound_huge_page(struct page *page, int order)
1572 {
1573 	if (unlikely(order > (MAX_ORDER - 1)))
1574 		prep_compound_gigantic_page(page, order);
1575 	else
1576 		prep_compound_page(page, order);
1577 }
1578 
1579 /* Put bootmem huge pages into the standard lists after mem_map is up */
1580 static void __init gather_bootmem_prealloc(void)
1581 {
1582 	struct huge_bootmem_page *m;
1583 
1584 	list_for_each_entry(m, &huge_boot_pages, list) {
1585 		struct hstate *h = m->hstate;
1586 		struct page *page;
1587 
1588 #ifdef CONFIG_HIGHMEM
1589 		page = pfn_to_page(m->phys >> PAGE_SHIFT);
1590 		memblock_free_late(__pa(m),
1591 				   sizeof(struct huge_bootmem_page));
1592 #else
1593 		page = virt_to_page(m);
1594 #endif
1595 		WARN_ON(page_count(page) != 1);
1596 		prep_compound_huge_page(page, h->order);
1597 		WARN_ON(PageReserved(page));
1598 		prep_new_huge_page(h, page, page_to_nid(page));
1599 		/*
1600 		 * If we had gigantic hugepages allocated at boot time, we need
1601 		 * to restore the 'stolen' pages to totalram_pages in order to
1602 		 * fix confusing memory reports from free(1) and another
1603 		 * side-effects, like CommitLimit going negative.
1604 		 */
1605 		if (hstate_is_gigantic(h))
1606 			adjust_managed_page_count(page, 1 << h->order);
1607 	}
1608 }
1609 
1610 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1611 {
1612 	unsigned long i;
1613 
1614 	for (i = 0; i < h->max_huge_pages; ++i) {
1615 		if (hstate_is_gigantic(h)) {
1616 			if (!alloc_bootmem_huge_page(h))
1617 				break;
1618 		} else if (!alloc_fresh_huge_page(h,
1619 					 &node_states[N_MEMORY]))
1620 			break;
1621 	}
1622 	h->max_huge_pages = i;
1623 }
1624 
1625 static void __init hugetlb_init_hstates(void)
1626 {
1627 	struct hstate *h;
1628 
1629 	for_each_hstate(h) {
1630 		/* oversize hugepages were init'ed in early boot */
1631 		if (!hstate_is_gigantic(h))
1632 			hugetlb_hstate_alloc_pages(h);
1633 	}
1634 }
1635 
1636 static char * __init memfmt(char *buf, unsigned long n)
1637 {
1638 	if (n >= (1UL << 30))
1639 		sprintf(buf, "%lu GB", n >> 30);
1640 	else if (n >= (1UL << 20))
1641 		sprintf(buf, "%lu MB", n >> 20);
1642 	else
1643 		sprintf(buf, "%lu KB", n >> 10);
1644 	return buf;
1645 }
1646 
1647 static void __init report_hugepages(void)
1648 {
1649 	struct hstate *h;
1650 
1651 	for_each_hstate(h) {
1652 		char buf[32];
1653 		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
1654 			memfmt(buf, huge_page_size(h)),
1655 			h->free_huge_pages);
1656 	}
1657 }
1658 
1659 #ifdef CONFIG_HIGHMEM
1660 static void try_to_free_low(struct hstate *h, unsigned long count,
1661 						nodemask_t *nodes_allowed)
1662 {
1663 	int i;
1664 
1665 	if (hstate_is_gigantic(h))
1666 		return;
1667 
1668 	for_each_node_mask(i, *nodes_allowed) {
1669 		struct page *page, *next;
1670 		struct list_head *freel = &h->hugepage_freelists[i];
1671 		list_for_each_entry_safe(page, next, freel, lru) {
1672 			if (count >= h->nr_huge_pages)
1673 				return;
1674 			if (PageHighMem(page))
1675 				continue;
1676 			list_del(&page->lru);
1677 			update_and_free_page(h, page);
1678 			h->free_huge_pages--;
1679 			h->free_huge_pages_node[page_to_nid(page)]--;
1680 		}
1681 	}
1682 }
1683 #else
1684 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1685 						nodemask_t *nodes_allowed)
1686 {
1687 }
1688 #endif
1689 
1690 /*
1691  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
1692  * balanced by operating on them in a round-robin fashion.
1693  * Returns 1 if an adjustment was made.
1694  */
1695 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1696 				int delta)
1697 {
1698 	int nr_nodes, node;
1699 
1700 	VM_BUG_ON(delta != -1 && delta != 1);
1701 
1702 	if (delta < 0) {
1703 		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1704 			if (h->surplus_huge_pages_node[node])
1705 				goto found;
1706 		}
1707 	} else {
1708 		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1709 			if (h->surplus_huge_pages_node[node] <
1710 					h->nr_huge_pages_node[node])
1711 				goto found;
1712 		}
1713 	}
1714 	return 0;
1715 
1716 found:
1717 	h->surplus_huge_pages += delta;
1718 	h->surplus_huge_pages_node[node] += delta;
1719 	return 1;
1720 }
1721 
1722 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1723 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1724 						nodemask_t *nodes_allowed)
1725 {
1726 	unsigned long min_count, ret;
1727 
1728 	if (hstate_is_gigantic(h) && !gigantic_page_supported())
1729 		return h->max_huge_pages;
1730 
1731 	/*
1732 	 * Increase the pool size
1733 	 * First take pages out of surplus state.  Then make up the
1734 	 * remaining difference by allocating fresh huge pages.
1735 	 *
1736 	 * We might race with alloc_buddy_huge_page() here and be unable
1737 	 * to convert a surplus huge page to a normal huge page. That is
1738 	 * not critical, though, it just means the overall size of the
1739 	 * pool might be one hugepage larger than it needs to be, but
1740 	 * within all the constraints specified by the sysctls.
1741 	 */
1742 	spin_lock(&hugetlb_lock);
1743 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1744 		if (!adjust_pool_surplus(h, nodes_allowed, -1))
1745 			break;
1746 	}
1747 
1748 	while (count > persistent_huge_pages(h)) {
1749 		/*
1750 		 * If this allocation races such that we no longer need the
1751 		 * page, free_huge_page will handle it by freeing the page
1752 		 * and reducing the surplus.
1753 		 */
1754 		spin_unlock(&hugetlb_lock);
1755 		if (hstate_is_gigantic(h))
1756 			ret = alloc_fresh_gigantic_page(h, nodes_allowed);
1757 		else
1758 			ret = alloc_fresh_huge_page(h, nodes_allowed);
1759 		spin_lock(&hugetlb_lock);
1760 		if (!ret)
1761 			goto out;
1762 
1763 		/* Bail for signals. Probably ctrl-c from user */
1764 		if (signal_pending(current))
1765 			goto out;
1766 	}
1767 
1768 	/*
1769 	 * Decrease the pool size
1770 	 * First return free pages to the buddy allocator (being careful
1771 	 * to keep enough around to satisfy reservations).  Then place
1772 	 * pages into surplus state as needed so the pool will shrink
1773 	 * to the desired size as pages become free.
1774 	 *
1775 	 * By placing pages into the surplus state independent of the
1776 	 * overcommit value, we are allowing the surplus pool size to
1777 	 * exceed overcommit. There are few sane options here. Since
1778 	 * alloc_buddy_huge_page() is checking the global counter,
1779 	 * though, we'll note that we're not allowed to exceed surplus
1780 	 * and won't grow the pool anywhere else. Not until one of the
1781 	 * sysctls are changed, or the surplus pages go out of use.
1782 	 */
1783 	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1784 	min_count = max(count, min_count);
1785 	try_to_free_low(h, min_count, nodes_allowed);
1786 	while (min_count < persistent_huge_pages(h)) {
1787 		if (!free_pool_huge_page(h, nodes_allowed, 0))
1788 			break;
1789 		cond_resched_lock(&hugetlb_lock);
1790 	}
1791 	while (count < persistent_huge_pages(h)) {
1792 		if (!adjust_pool_surplus(h, nodes_allowed, 1))
1793 			break;
1794 	}
1795 out:
1796 	ret = persistent_huge_pages(h);
1797 	spin_unlock(&hugetlb_lock);
1798 	return ret;
1799 }
1800 
1801 #define HSTATE_ATTR_RO(_name) \
1802 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1803 
1804 #define HSTATE_ATTR(_name) \
1805 	static struct kobj_attribute _name##_attr = \
1806 		__ATTR(_name, 0644, _name##_show, _name##_store)
1807 
1808 static struct kobject *hugepages_kobj;
1809 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1810 
1811 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1812 
1813 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1814 {
1815 	int i;
1816 
1817 	for (i = 0; i < HUGE_MAX_HSTATE; i++)
1818 		if (hstate_kobjs[i] == kobj) {
1819 			if (nidp)
1820 				*nidp = NUMA_NO_NODE;
1821 			return &hstates[i];
1822 		}
1823 
1824 	return kobj_to_node_hstate(kobj, nidp);
1825 }
1826 
1827 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1828 					struct kobj_attribute *attr, char *buf)
1829 {
1830 	struct hstate *h;
1831 	unsigned long nr_huge_pages;
1832 	int nid;
1833 
1834 	h = kobj_to_hstate(kobj, &nid);
1835 	if (nid == NUMA_NO_NODE)
1836 		nr_huge_pages = h->nr_huge_pages;
1837 	else
1838 		nr_huge_pages = h->nr_huge_pages_node[nid];
1839 
1840 	return sprintf(buf, "%lu\n", nr_huge_pages);
1841 }
1842 
1843 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
1844 					   struct hstate *h, int nid,
1845 					   unsigned long count, size_t len)
1846 {
1847 	int err;
1848 	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1849 
1850 	if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
1851 		err = -EINVAL;
1852 		goto out;
1853 	}
1854 
1855 	if (nid == NUMA_NO_NODE) {
1856 		/*
1857 		 * global hstate attribute
1858 		 */
1859 		if (!(obey_mempolicy &&
1860 				init_nodemask_of_mempolicy(nodes_allowed))) {
1861 			NODEMASK_FREE(nodes_allowed);
1862 			nodes_allowed = &node_states[N_MEMORY];
1863 		}
1864 	} else if (nodes_allowed) {
1865 		/*
1866 		 * per node hstate attribute: adjust count to global,
1867 		 * but restrict alloc/free to the specified node.
1868 		 */
1869 		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1870 		init_nodemask_of_node(nodes_allowed, nid);
1871 	} else
1872 		nodes_allowed = &node_states[N_MEMORY];
1873 
1874 	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1875 
1876 	if (nodes_allowed != &node_states[N_MEMORY])
1877 		NODEMASK_FREE(nodes_allowed);
1878 
1879 	return len;
1880 out:
1881 	NODEMASK_FREE(nodes_allowed);
1882 	return err;
1883 }
1884 
1885 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1886 					 struct kobject *kobj, const char *buf,
1887 					 size_t len)
1888 {
1889 	struct hstate *h;
1890 	unsigned long count;
1891 	int nid;
1892 	int err;
1893 
1894 	err = kstrtoul(buf, 10, &count);
1895 	if (err)
1896 		return err;
1897 
1898 	h = kobj_to_hstate(kobj, &nid);
1899 	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
1900 }
1901 
1902 static ssize_t nr_hugepages_show(struct kobject *kobj,
1903 				       struct kobj_attribute *attr, char *buf)
1904 {
1905 	return nr_hugepages_show_common(kobj, attr, buf);
1906 }
1907 
1908 static ssize_t nr_hugepages_store(struct kobject *kobj,
1909 	       struct kobj_attribute *attr, const char *buf, size_t len)
1910 {
1911 	return nr_hugepages_store_common(false, kobj, buf, len);
1912 }
1913 HSTATE_ATTR(nr_hugepages);
1914 
1915 #ifdef CONFIG_NUMA
1916 
1917 /*
1918  * hstate attribute for optionally mempolicy-based constraint on persistent
1919  * huge page alloc/free.
1920  */
1921 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1922 				       struct kobj_attribute *attr, char *buf)
1923 {
1924 	return nr_hugepages_show_common(kobj, attr, buf);
1925 }
1926 
1927 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1928 	       struct kobj_attribute *attr, const char *buf, size_t len)
1929 {
1930 	return nr_hugepages_store_common(true, kobj, buf, len);
1931 }
1932 HSTATE_ATTR(nr_hugepages_mempolicy);
1933 #endif
1934 
1935 
1936 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1937 					struct kobj_attribute *attr, char *buf)
1938 {
1939 	struct hstate *h = kobj_to_hstate(kobj, NULL);
1940 	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1941 }
1942 
1943 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1944 		struct kobj_attribute *attr, const char *buf, size_t count)
1945 {
1946 	int err;
1947 	unsigned long input;
1948 	struct hstate *h = kobj_to_hstate(kobj, NULL);
1949 
1950 	if (hstate_is_gigantic(h))
1951 		return -EINVAL;
1952 
1953 	err = kstrtoul(buf, 10, &input);
1954 	if (err)
1955 		return err;
1956 
1957 	spin_lock(&hugetlb_lock);
1958 	h->nr_overcommit_huge_pages = input;
1959 	spin_unlock(&hugetlb_lock);
1960 
1961 	return count;
1962 }
1963 HSTATE_ATTR(nr_overcommit_hugepages);
1964 
1965 static ssize_t free_hugepages_show(struct kobject *kobj,
1966 					struct kobj_attribute *attr, char *buf)
1967 {
1968 	struct hstate *h;
1969 	unsigned long free_huge_pages;
1970 	int nid;
1971 
1972 	h = kobj_to_hstate(kobj, &nid);
1973 	if (nid == NUMA_NO_NODE)
1974 		free_huge_pages = h->free_huge_pages;
1975 	else
1976 		free_huge_pages = h->free_huge_pages_node[nid];
1977 
1978 	return sprintf(buf, "%lu\n", free_huge_pages);
1979 }
1980 HSTATE_ATTR_RO(free_hugepages);
1981 
1982 static ssize_t resv_hugepages_show(struct kobject *kobj,
1983 					struct kobj_attribute *attr, char *buf)
1984 {
1985 	struct hstate *h = kobj_to_hstate(kobj, NULL);
1986 	return sprintf(buf, "%lu\n", h->resv_huge_pages);
1987 }
1988 HSTATE_ATTR_RO(resv_hugepages);
1989 
1990 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1991 					struct kobj_attribute *attr, char *buf)
1992 {
1993 	struct hstate *h;
1994 	unsigned long surplus_huge_pages;
1995 	int nid;
1996 
1997 	h = kobj_to_hstate(kobj, &nid);
1998 	if (nid == NUMA_NO_NODE)
1999 		surplus_huge_pages = h->surplus_huge_pages;
2000 	else
2001 		surplus_huge_pages = h->surplus_huge_pages_node[nid];
2002 
2003 	return sprintf(buf, "%lu\n", surplus_huge_pages);
2004 }
2005 HSTATE_ATTR_RO(surplus_hugepages);
2006 
2007 static struct attribute *hstate_attrs[] = {
2008 	&nr_hugepages_attr.attr,
2009 	&nr_overcommit_hugepages_attr.attr,
2010 	&free_hugepages_attr.attr,
2011 	&resv_hugepages_attr.attr,
2012 	&surplus_hugepages_attr.attr,
2013 #ifdef CONFIG_NUMA
2014 	&nr_hugepages_mempolicy_attr.attr,
2015 #endif
2016 	NULL,
2017 };
2018 
2019 static struct attribute_group hstate_attr_group = {
2020 	.attrs = hstate_attrs,
2021 };
2022 
2023 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2024 				    struct kobject **hstate_kobjs,
2025 				    struct attribute_group *hstate_attr_group)
2026 {
2027 	int retval;
2028 	int hi = hstate_index(h);
2029 
2030 	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2031 	if (!hstate_kobjs[hi])
2032 		return -ENOMEM;
2033 
2034 	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2035 	if (retval)
2036 		kobject_put(hstate_kobjs[hi]);
2037 
2038 	return retval;
2039 }
2040 
2041 static void __init hugetlb_sysfs_init(void)
2042 {
2043 	struct hstate *h;
2044 	int err;
2045 
2046 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2047 	if (!hugepages_kobj)
2048 		return;
2049 
2050 	for_each_hstate(h) {
2051 		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2052 					 hstate_kobjs, &hstate_attr_group);
2053 		if (err)
2054 			pr_err("Hugetlb: Unable to add hstate %s", h->name);
2055 	}
2056 }
2057 
2058 #ifdef CONFIG_NUMA
2059 
2060 /*
2061  * node_hstate/s - associate per node hstate attributes, via their kobjects,
2062  * with node devices in node_devices[] using a parallel array.  The array
2063  * index of a node device or _hstate == node id.
2064  * This is here to avoid any static dependency of the node device driver, in
2065  * the base kernel, on the hugetlb module.
2066  */
2067 struct node_hstate {
2068 	struct kobject		*hugepages_kobj;
2069 	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
2070 };
2071 struct node_hstate node_hstates[MAX_NUMNODES];
2072 
2073 /*
2074  * A subset of global hstate attributes for node devices
2075  */
2076 static struct attribute *per_node_hstate_attrs[] = {
2077 	&nr_hugepages_attr.attr,
2078 	&free_hugepages_attr.attr,
2079 	&surplus_hugepages_attr.attr,
2080 	NULL,
2081 };
2082 
2083 static struct attribute_group per_node_hstate_attr_group = {
2084 	.attrs = per_node_hstate_attrs,
2085 };
2086 
2087 /*
2088  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2089  * Returns node id via non-NULL nidp.
2090  */
2091 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2092 {
2093 	int nid;
2094 
2095 	for (nid = 0; nid < nr_node_ids; nid++) {
2096 		struct node_hstate *nhs = &node_hstates[nid];
2097 		int i;
2098 		for (i = 0; i < HUGE_MAX_HSTATE; i++)
2099 			if (nhs->hstate_kobjs[i] == kobj) {
2100 				if (nidp)
2101 					*nidp = nid;
2102 				return &hstates[i];
2103 			}
2104 	}
2105 
2106 	BUG();
2107 	return NULL;
2108 }
2109 
2110 /*
2111  * Unregister hstate attributes from a single node device.
2112  * No-op if no hstate attributes attached.
2113  */
2114 static void hugetlb_unregister_node(struct node *node)
2115 {
2116 	struct hstate *h;
2117 	struct node_hstate *nhs = &node_hstates[node->dev.id];
2118 
2119 	if (!nhs->hugepages_kobj)
2120 		return;		/* no hstate attributes */
2121 
2122 	for_each_hstate(h) {
2123 		int idx = hstate_index(h);
2124 		if (nhs->hstate_kobjs[idx]) {
2125 			kobject_put(nhs->hstate_kobjs[idx]);
2126 			nhs->hstate_kobjs[idx] = NULL;
2127 		}
2128 	}
2129 
2130 	kobject_put(nhs->hugepages_kobj);
2131 	nhs->hugepages_kobj = NULL;
2132 }
2133 
2134 /*
2135  * hugetlb module exit:  unregister hstate attributes from node devices
2136  * that have them.
2137  */
2138 static void hugetlb_unregister_all_nodes(void)
2139 {
2140 	int nid;
2141 
2142 	/*
2143 	 * disable node device registrations.
2144 	 */
2145 	register_hugetlbfs_with_node(NULL, NULL);
2146 
2147 	/*
2148 	 * remove hstate attributes from any nodes that have them.
2149 	 */
2150 	for (nid = 0; nid < nr_node_ids; nid++)
2151 		hugetlb_unregister_node(node_devices[nid]);
2152 }
2153 
2154 /*
2155  * Register hstate attributes for a single node device.
2156  * No-op if attributes already registered.
2157  */
2158 static void hugetlb_register_node(struct node *node)
2159 {
2160 	struct hstate *h;
2161 	struct node_hstate *nhs = &node_hstates[node->dev.id];
2162 	int err;
2163 
2164 	if (nhs->hugepages_kobj)
2165 		return;		/* already allocated */
2166 
2167 	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2168 							&node->dev.kobj);
2169 	if (!nhs->hugepages_kobj)
2170 		return;
2171 
2172 	for_each_hstate(h) {
2173 		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2174 						nhs->hstate_kobjs,
2175 						&per_node_hstate_attr_group);
2176 		if (err) {
2177 			pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2178 				h->name, node->dev.id);
2179 			hugetlb_unregister_node(node);
2180 			break;
2181 		}
2182 	}
2183 }
2184 
2185 /*
2186  * hugetlb init time:  register hstate attributes for all registered node
2187  * devices of nodes that have memory.  All on-line nodes should have
2188  * registered their associated device by this time.
2189  */
2190 static void __init hugetlb_register_all_nodes(void)
2191 {
2192 	int nid;
2193 
2194 	for_each_node_state(nid, N_MEMORY) {
2195 		struct node *node = node_devices[nid];
2196 		if (node->dev.id == nid)
2197 			hugetlb_register_node(node);
2198 	}
2199 
2200 	/*
2201 	 * Let the node device driver know we're here so it can
2202 	 * [un]register hstate attributes on node hotplug.
2203 	 */
2204 	register_hugetlbfs_with_node(hugetlb_register_node,
2205 				     hugetlb_unregister_node);
2206 }
2207 #else	/* !CONFIG_NUMA */
2208 
2209 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2210 {
2211 	BUG();
2212 	if (nidp)
2213 		*nidp = -1;
2214 	return NULL;
2215 }
2216 
2217 static void hugetlb_unregister_all_nodes(void) { }
2218 
2219 static void hugetlb_register_all_nodes(void) { }
2220 
2221 #endif
2222 
2223 static void __exit hugetlb_exit(void)
2224 {
2225 	struct hstate *h;
2226 
2227 	hugetlb_unregister_all_nodes();
2228 
2229 	for_each_hstate(h) {
2230 		kobject_put(hstate_kobjs[hstate_index(h)]);
2231 	}
2232 
2233 	kobject_put(hugepages_kobj);
2234 	kfree(htlb_fault_mutex_table);
2235 }
2236 module_exit(hugetlb_exit);
2237 
2238 static int __init hugetlb_init(void)
2239 {
2240 	int i;
2241 
2242 	if (!hugepages_supported())
2243 		return 0;
2244 
2245 	if (!size_to_hstate(default_hstate_size)) {
2246 		default_hstate_size = HPAGE_SIZE;
2247 		if (!size_to_hstate(default_hstate_size))
2248 			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2249 	}
2250 	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2251 	if (default_hstate_max_huge_pages)
2252 		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2253 
2254 	hugetlb_init_hstates();
2255 	gather_bootmem_prealloc();
2256 	report_hugepages();
2257 
2258 	hugetlb_sysfs_init();
2259 	hugetlb_register_all_nodes();
2260 	hugetlb_cgroup_file_init();
2261 
2262 #ifdef CONFIG_SMP
2263 	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2264 #else
2265 	num_fault_mutexes = 1;
2266 #endif
2267 	htlb_fault_mutex_table =
2268 		kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2269 	BUG_ON(!htlb_fault_mutex_table);
2270 
2271 	for (i = 0; i < num_fault_mutexes; i++)
2272 		mutex_init(&htlb_fault_mutex_table[i]);
2273 	return 0;
2274 }
2275 module_init(hugetlb_init);
2276 
2277 /* Should be called on processing a hugepagesz=... option */
2278 void __init hugetlb_add_hstate(unsigned order)
2279 {
2280 	struct hstate *h;
2281 	unsigned long i;
2282 
2283 	if (size_to_hstate(PAGE_SIZE << order)) {
2284 		pr_warning("hugepagesz= specified twice, ignoring\n");
2285 		return;
2286 	}
2287 	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2288 	BUG_ON(order == 0);
2289 	h = &hstates[hugetlb_max_hstate++];
2290 	h->order = order;
2291 	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2292 	h->nr_huge_pages = 0;
2293 	h->free_huge_pages = 0;
2294 	for (i = 0; i < MAX_NUMNODES; ++i)
2295 		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2296 	INIT_LIST_HEAD(&h->hugepage_activelist);
2297 	h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
2298 	h->next_nid_to_free = first_node(node_states[N_MEMORY]);
2299 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2300 					huge_page_size(h)/1024);
2301 
2302 	parsed_hstate = h;
2303 }
2304 
2305 static int __init hugetlb_nrpages_setup(char *s)
2306 {
2307 	unsigned long *mhp;
2308 	static unsigned long *last_mhp;
2309 
2310 	/*
2311 	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2312 	 * so this hugepages= parameter goes to the "default hstate".
2313 	 */
2314 	if (!hugetlb_max_hstate)
2315 		mhp = &default_hstate_max_huge_pages;
2316 	else
2317 		mhp = &parsed_hstate->max_huge_pages;
2318 
2319 	if (mhp == last_mhp) {
2320 		pr_warning("hugepages= specified twice without "
2321 			   "interleaving hugepagesz=, ignoring\n");
2322 		return 1;
2323 	}
2324 
2325 	if (sscanf(s, "%lu", mhp) <= 0)
2326 		*mhp = 0;
2327 
2328 	/*
2329 	 * Global state is always initialized later in hugetlb_init.
2330 	 * But we need to allocate >= MAX_ORDER hstates here early to still
2331 	 * use the bootmem allocator.
2332 	 */
2333 	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2334 		hugetlb_hstate_alloc_pages(parsed_hstate);
2335 
2336 	last_mhp = mhp;
2337 
2338 	return 1;
2339 }
2340 __setup("hugepages=", hugetlb_nrpages_setup);
2341 
2342 static int __init hugetlb_default_setup(char *s)
2343 {
2344 	default_hstate_size = memparse(s, &s);
2345 	return 1;
2346 }
2347 __setup("default_hugepagesz=", hugetlb_default_setup);
2348 
2349 static unsigned int cpuset_mems_nr(unsigned int *array)
2350 {
2351 	int node;
2352 	unsigned int nr = 0;
2353 
2354 	for_each_node_mask(node, cpuset_current_mems_allowed)
2355 		nr += array[node];
2356 
2357 	return nr;
2358 }
2359 
2360 #ifdef CONFIG_SYSCTL
2361 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2362 			 struct ctl_table *table, int write,
2363 			 void __user *buffer, size_t *length, loff_t *ppos)
2364 {
2365 	struct hstate *h = &default_hstate;
2366 	unsigned long tmp = h->max_huge_pages;
2367 	int ret;
2368 
2369 	if (!hugepages_supported())
2370 		return -ENOTSUPP;
2371 
2372 	table->data = &tmp;
2373 	table->maxlen = sizeof(unsigned long);
2374 	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2375 	if (ret)
2376 		goto out;
2377 
2378 	if (write)
2379 		ret = __nr_hugepages_store_common(obey_mempolicy, h,
2380 						  NUMA_NO_NODE, tmp, *length);
2381 out:
2382 	return ret;
2383 }
2384 
2385 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2386 			  void __user *buffer, size_t *length, loff_t *ppos)
2387 {
2388 
2389 	return hugetlb_sysctl_handler_common(false, table, write,
2390 							buffer, length, ppos);
2391 }
2392 
2393 #ifdef CONFIG_NUMA
2394 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2395 			  void __user *buffer, size_t *length, loff_t *ppos)
2396 {
2397 	return hugetlb_sysctl_handler_common(true, table, write,
2398 							buffer, length, ppos);
2399 }
2400 #endif /* CONFIG_NUMA */
2401 
2402 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2403 			void __user *buffer,
2404 			size_t *length, loff_t *ppos)
2405 {
2406 	struct hstate *h = &default_hstate;
2407 	unsigned long tmp;
2408 	int ret;
2409 
2410 	if (!hugepages_supported())
2411 		return -ENOTSUPP;
2412 
2413 	tmp = h->nr_overcommit_huge_pages;
2414 
2415 	if (write && hstate_is_gigantic(h))
2416 		return -EINVAL;
2417 
2418 	table->data = &tmp;
2419 	table->maxlen = sizeof(unsigned long);
2420 	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2421 	if (ret)
2422 		goto out;
2423 
2424 	if (write) {
2425 		spin_lock(&hugetlb_lock);
2426 		h->nr_overcommit_huge_pages = tmp;
2427 		spin_unlock(&hugetlb_lock);
2428 	}
2429 out:
2430 	return ret;
2431 }
2432 
2433 #endif /* CONFIG_SYSCTL */
2434 
2435 void hugetlb_report_meminfo(struct seq_file *m)
2436 {
2437 	struct hstate *h = &default_hstate;
2438 	if (!hugepages_supported())
2439 		return;
2440 	seq_printf(m,
2441 			"HugePages_Total:   %5lu\n"
2442 			"HugePages_Free:    %5lu\n"
2443 			"HugePages_Rsvd:    %5lu\n"
2444 			"HugePages_Surp:    %5lu\n"
2445 			"Hugepagesize:   %8lu kB\n",
2446 			h->nr_huge_pages,
2447 			h->free_huge_pages,
2448 			h->resv_huge_pages,
2449 			h->surplus_huge_pages,
2450 			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2451 }
2452 
2453 int hugetlb_report_node_meminfo(int nid, char *buf)
2454 {
2455 	struct hstate *h = &default_hstate;
2456 	if (!hugepages_supported())
2457 		return 0;
2458 	return sprintf(buf,
2459 		"Node %d HugePages_Total: %5u\n"
2460 		"Node %d HugePages_Free:  %5u\n"
2461 		"Node %d HugePages_Surp:  %5u\n",
2462 		nid, h->nr_huge_pages_node[nid],
2463 		nid, h->free_huge_pages_node[nid],
2464 		nid, h->surplus_huge_pages_node[nid]);
2465 }
2466 
2467 void hugetlb_show_meminfo(void)
2468 {
2469 	struct hstate *h;
2470 	int nid;
2471 
2472 	if (!hugepages_supported())
2473 		return;
2474 
2475 	for_each_node_state(nid, N_MEMORY)
2476 		for_each_hstate(h)
2477 			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2478 				nid,
2479 				h->nr_huge_pages_node[nid],
2480 				h->free_huge_pages_node[nid],
2481 				h->surplus_huge_pages_node[nid],
2482 				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2483 }
2484 
2485 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2486 unsigned long hugetlb_total_pages(void)
2487 {
2488 	struct hstate *h;
2489 	unsigned long nr_total_pages = 0;
2490 
2491 	for_each_hstate(h)
2492 		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2493 	return nr_total_pages;
2494 }
2495 
2496 static int hugetlb_acct_memory(struct hstate *h, long delta)
2497 {
2498 	int ret = -ENOMEM;
2499 
2500 	spin_lock(&hugetlb_lock);
2501 	/*
2502 	 * When cpuset is configured, it breaks the strict hugetlb page
2503 	 * reservation as the accounting is done on a global variable. Such
2504 	 * reservation is completely rubbish in the presence of cpuset because
2505 	 * the reservation is not checked against page availability for the
2506 	 * current cpuset. Application can still potentially OOM'ed by kernel
2507 	 * with lack of free htlb page in cpuset that the task is in.
2508 	 * Attempt to enforce strict accounting with cpuset is almost
2509 	 * impossible (or too ugly) because cpuset is too fluid that
2510 	 * task or memory node can be dynamically moved between cpusets.
2511 	 *
2512 	 * The change of semantics for shared hugetlb mapping with cpuset is
2513 	 * undesirable. However, in order to preserve some of the semantics,
2514 	 * we fall back to check against current free page availability as
2515 	 * a best attempt and hopefully to minimize the impact of changing
2516 	 * semantics that cpuset has.
2517 	 */
2518 	if (delta > 0) {
2519 		if (gather_surplus_pages(h, delta) < 0)
2520 			goto out;
2521 
2522 		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2523 			return_unused_surplus_pages(h, delta);
2524 			goto out;
2525 		}
2526 	}
2527 
2528 	ret = 0;
2529 	if (delta < 0)
2530 		return_unused_surplus_pages(h, (unsigned long) -delta);
2531 
2532 out:
2533 	spin_unlock(&hugetlb_lock);
2534 	return ret;
2535 }
2536 
2537 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2538 {
2539 	struct resv_map *resv = vma_resv_map(vma);
2540 
2541 	/*
2542 	 * This new VMA should share its siblings reservation map if present.
2543 	 * The VMA will only ever have a valid reservation map pointer where
2544 	 * it is being copied for another still existing VMA.  As that VMA
2545 	 * has a reference to the reservation map it cannot disappear until
2546 	 * after this open call completes.  It is therefore safe to take a
2547 	 * new reference here without additional locking.
2548 	 */
2549 	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2550 		kref_get(&resv->refs);
2551 }
2552 
2553 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2554 {
2555 	struct hstate *h = hstate_vma(vma);
2556 	struct resv_map *resv = vma_resv_map(vma);
2557 	struct hugepage_subpool *spool = subpool_vma(vma);
2558 	unsigned long reserve, start, end;
2559 	long gbl_reserve;
2560 
2561 	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2562 		return;
2563 
2564 	start = vma_hugecache_offset(h, vma, vma->vm_start);
2565 	end = vma_hugecache_offset(h, vma, vma->vm_end);
2566 
2567 	reserve = (end - start) - region_count(resv, start, end);
2568 
2569 	kref_put(&resv->refs, resv_map_release);
2570 
2571 	if (reserve) {
2572 		/*
2573 		 * Decrement reserve counts.  The global reserve count may be
2574 		 * adjusted if the subpool has a minimum size.
2575 		 */
2576 		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
2577 		hugetlb_acct_memory(h, -gbl_reserve);
2578 	}
2579 }
2580 
2581 /*
2582  * We cannot handle pagefaults against hugetlb pages at all.  They cause
2583  * handle_mm_fault() to try to instantiate regular-sized pages in the
2584  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
2585  * this far.
2586  */
2587 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2588 {
2589 	BUG();
2590 	return 0;
2591 }
2592 
2593 const struct vm_operations_struct hugetlb_vm_ops = {
2594 	.fault = hugetlb_vm_op_fault,
2595 	.open = hugetlb_vm_op_open,
2596 	.close = hugetlb_vm_op_close,
2597 };
2598 
2599 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2600 				int writable)
2601 {
2602 	pte_t entry;
2603 
2604 	if (writable) {
2605 		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2606 					 vma->vm_page_prot)));
2607 	} else {
2608 		entry = huge_pte_wrprotect(mk_huge_pte(page,
2609 					   vma->vm_page_prot));
2610 	}
2611 	entry = pte_mkyoung(entry);
2612 	entry = pte_mkhuge(entry);
2613 	entry = arch_make_huge_pte(entry, vma, page, writable);
2614 
2615 	return entry;
2616 }
2617 
2618 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2619 				   unsigned long address, pte_t *ptep)
2620 {
2621 	pte_t entry;
2622 
2623 	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
2624 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2625 		update_mmu_cache(vma, address, ptep);
2626 }
2627 
2628 static int is_hugetlb_entry_migration(pte_t pte)
2629 {
2630 	swp_entry_t swp;
2631 
2632 	if (huge_pte_none(pte) || pte_present(pte))
2633 		return 0;
2634 	swp = pte_to_swp_entry(pte);
2635 	if (non_swap_entry(swp) && is_migration_entry(swp))
2636 		return 1;
2637 	else
2638 		return 0;
2639 }
2640 
2641 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2642 {
2643 	swp_entry_t swp;
2644 
2645 	if (huge_pte_none(pte) || pte_present(pte))
2646 		return 0;
2647 	swp = pte_to_swp_entry(pte);
2648 	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2649 		return 1;
2650 	else
2651 		return 0;
2652 }
2653 
2654 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2655 			    struct vm_area_struct *vma)
2656 {
2657 	pte_t *src_pte, *dst_pte, entry;
2658 	struct page *ptepage;
2659 	unsigned long addr;
2660 	int cow;
2661 	struct hstate *h = hstate_vma(vma);
2662 	unsigned long sz = huge_page_size(h);
2663 	unsigned long mmun_start;	/* For mmu_notifiers */
2664 	unsigned long mmun_end;		/* For mmu_notifiers */
2665 	int ret = 0;
2666 
2667 	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2668 
2669 	mmun_start = vma->vm_start;
2670 	mmun_end = vma->vm_end;
2671 	if (cow)
2672 		mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
2673 
2674 	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2675 		spinlock_t *src_ptl, *dst_ptl;
2676 		src_pte = huge_pte_offset(src, addr);
2677 		if (!src_pte)
2678 			continue;
2679 		dst_pte = huge_pte_alloc(dst, addr, sz);
2680 		if (!dst_pte) {
2681 			ret = -ENOMEM;
2682 			break;
2683 		}
2684 
2685 		/* If the pagetables are shared don't copy or take references */
2686 		if (dst_pte == src_pte)
2687 			continue;
2688 
2689 		dst_ptl = huge_pte_lock(h, dst, dst_pte);
2690 		src_ptl = huge_pte_lockptr(h, src, src_pte);
2691 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
2692 		entry = huge_ptep_get(src_pte);
2693 		if (huge_pte_none(entry)) { /* skip none entry */
2694 			;
2695 		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
2696 				    is_hugetlb_entry_hwpoisoned(entry))) {
2697 			swp_entry_t swp_entry = pte_to_swp_entry(entry);
2698 
2699 			if (is_write_migration_entry(swp_entry) && cow) {
2700 				/*
2701 				 * COW mappings require pages in both
2702 				 * parent and child to be set to read.
2703 				 */
2704 				make_migration_entry_read(&swp_entry);
2705 				entry = swp_entry_to_pte(swp_entry);
2706 				set_huge_pte_at(src, addr, src_pte, entry);
2707 			}
2708 			set_huge_pte_at(dst, addr, dst_pte, entry);
2709 		} else {
2710 			if (cow) {
2711 				huge_ptep_set_wrprotect(src, addr, src_pte);
2712 				mmu_notifier_invalidate_range(src, mmun_start,
2713 								   mmun_end);
2714 			}
2715 			entry = huge_ptep_get(src_pte);
2716 			ptepage = pte_page(entry);
2717 			get_page(ptepage);
2718 			page_dup_rmap(ptepage);
2719 			set_huge_pte_at(dst, addr, dst_pte, entry);
2720 		}
2721 		spin_unlock(src_ptl);
2722 		spin_unlock(dst_ptl);
2723 	}
2724 
2725 	if (cow)
2726 		mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
2727 
2728 	return ret;
2729 }
2730 
2731 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2732 			    unsigned long start, unsigned long end,
2733 			    struct page *ref_page)
2734 {
2735 	int force_flush = 0;
2736 	struct mm_struct *mm = vma->vm_mm;
2737 	unsigned long address;
2738 	pte_t *ptep;
2739 	pte_t pte;
2740 	spinlock_t *ptl;
2741 	struct page *page;
2742 	struct hstate *h = hstate_vma(vma);
2743 	unsigned long sz = huge_page_size(h);
2744 	const unsigned long mmun_start = start;	/* For mmu_notifiers */
2745 	const unsigned long mmun_end   = end;	/* For mmu_notifiers */
2746 
2747 	WARN_ON(!is_vm_hugetlb_page(vma));
2748 	BUG_ON(start & ~huge_page_mask(h));
2749 	BUG_ON(end & ~huge_page_mask(h));
2750 
2751 	tlb_start_vma(tlb, vma);
2752 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2753 	address = start;
2754 again:
2755 	for (; address < end; address += sz) {
2756 		ptep = huge_pte_offset(mm, address);
2757 		if (!ptep)
2758 			continue;
2759 
2760 		ptl = huge_pte_lock(h, mm, ptep);
2761 		if (huge_pmd_unshare(mm, &address, ptep))
2762 			goto unlock;
2763 
2764 		pte = huge_ptep_get(ptep);
2765 		if (huge_pte_none(pte))
2766 			goto unlock;
2767 
2768 		/*
2769 		 * Migrating hugepage or HWPoisoned hugepage is already
2770 		 * unmapped and its refcount is dropped, so just clear pte here.
2771 		 */
2772 		if (unlikely(!pte_present(pte))) {
2773 			huge_pte_clear(mm, address, ptep);
2774 			goto unlock;
2775 		}
2776 
2777 		page = pte_page(pte);
2778 		/*
2779 		 * If a reference page is supplied, it is because a specific
2780 		 * page is being unmapped, not a range. Ensure the page we
2781 		 * are about to unmap is the actual page of interest.
2782 		 */
2783 		if (ref_page) {
2784 			if (page != ref_page)
2785 				goto unlock;
2786 
2787 			/*
2788 			 * Mark the VMA as having unmapped its page so that
2789 			 * future faults in this VMA will fail rather than
2790 			 * looking like data was lost
2791 			 */
2792 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2793 		}
2794 
2795 		pte = huge_ptep_get_and_clear(mm, address, ptep);
2796 		tlb_remove_tlb_entry(tlb, ptep, address);
2797 		if (huge_pte_dirty(pte))
2798 			set_page_dirty(page);
2799 
2800 		page_remove_rmap(page);
2801 		force_flush = !__tlb_remove_page(tlb, page);
2802 		if (force_flush) {
2803 			address += sz;
2804 			spin_unlock(ptl);
2805 			break;
2806 		}
2807 		/* Bail out after unmapping reference page if supplied */
2808 		if (ref_page) {
2809 			spin_unlock(ptl);
2810 			break;
2811 		}
2812 unlock:
2813 		spin_unlock(ptl);
2814 	}
2815 	/*
2816 	 * mmu_gather ran out of room to batch pages, we break out of
2817 	 * the PTE lock to avoid doing the potential expensive TLB invalidate
2818 	 * and page-free while holding it.
2819 	 */
2820 	if (force_flush) {
2821 		force_flush = 0;
2822 		tlb_flush_mmu(tlb);
2823 		if (address < end && !ref_page)
2824 			goto again;
2825 	}
2826 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2827 	tlb_end_vma(tlb, vma);
2828 }
2829 
2830 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
2831 			  struct vm_area_struct *vma, unsigned long start,
2832 			  unsigned long end, struct page *ref_page)
2833 {
2834 	__unmap_hugepage_range(tlb, vma, start, end, ref_page);
2835 
2836 	/*
2837 	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
2838 	 * test will fail on a vma being torn down, and not grab a page table
2839 	 * on its way out.  We're lucky that the flag has such an appropriate
2840 	 * name, and can in fact be safely cleared here. We could clear it
2841 	 * before the __unmap_hugepage_range above, but all that's necessary
2842 	 * is to clear it before releasing the i_mmap_rwsem. This works
2843 	 * because in the context this is called, the VMA is about to be
2844 	 * destroyed and the i_mmap_rwsem is held.
2845 	 */
2846 	vma->vm_flags &= ~VM_MAYSHARE;
2847 }
2848 
2849 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2850 			  unsigned long end, struct page *ref_page)
2851 {
2852 	struct mm_struct *mm;
2853 	struct mmu_gather tlb;
2854 
2855 	mm = vma->vm_mm;
2856 
2857 	tlb_gather_mmu(&tlb, mm, start, end);
2858 	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2859 	tlb_finish_mmu(&tlb, start, end);
2860 }
2861 
2862 /*
2863  * This is called when the original mapper is failing to COW a MAP_PRIVATE
2864  * mappping it owns the reserve page for. The intention is to unmap the page
2865  * from other VMAs and let the children be SIGKILLed if they are faulting the
2866  * same region.
2867  */
2868 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2869 			      struct page *page, unsigned long address)
2870 {
2871 	struct hstate *h = hstate_vma(vma);
2872 	struct vm_area_struct *iter_vma;
2873 	struct address_space *mapping;
2874 	pgoff_t pgoff;
2875 
2876 	/*
2877 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2878 	 * from page cache lookup which is in HPAGE_SIZE units.
2879 	 */
2880 	address = address & huge_page_mask(h);
2881 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2882 			vma->vm_pgoff;
2883 	mapping = file_inode(vma->vm_file)->i_mapping;
2884 
2885 	/*
2886 	 * Take the mapping lock for the duration of the table walk. As
2887 	 * this mapping should be shared between all the VMAs,
2888 	 * __unmap_hugepage_range() is called as the lock is already held
2889 	 */
2890 	i_mmap_lock_write(mapping);
2891 	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
2892 		/* Do not unmap the current VMA */
2893 		if (iter_vma == vma)
2894 			continue;
2895 
2896 		/*
2897 		 * Unmap the page from other VMAs without their own reserves.
2898 		 * They get marked to be SIGKILLed if they fault in these
2899 		 * areas. This is because a future no-page fault on this VMA
2900 		 * could insert a zeroed page instead of the data existing
2901 		 * from the time of fork. This would look like data corruption
2902 		 */
2903 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2904 			unmap_hugepage_range(iter_vma, address,
2905 					     address + huge_page_size(h), page);
2906 	}
2907 	i_mmap_unlock_write(mapping);
2908 }
2909 
2910 /*
2911  * Hugetlb_cow() should be called with page lock of the original hugepage held.
2912  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2913  * cannot race with other handlers or page migration.
2914  * Keep the pte_same checks anyway to make transition from the mutex easier.
2915  */
2916 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2917 			unsigned long address, pte_t *ptep, pte_t pte,
2918 			struct page *pagecache_page, spinlock_t *ptl)
2919 {
2920 	struct hstate *h = hstate_vma(vma);
2921 	struct page *old_page, *new_page;
2922 	int ret = 0, outside_reserve = 0;
2923 	unsigned long mmun_start;	/* For mmu_notifiers */
2924 	unsigned long mmun_end;		/* For mmu_notifiers */
2925 
2926 	old_page = pte_page(pte);
2927 
2928 retry_avoidcopy:
2929 	/* If no-one else is actually using this page, avoid the copy
2930 	 * and just make the page writable */
2931 	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
2932 		page_move_anon_rmap(old_page, vma, address);
2933 		set_huge_ptep_writable(vma, address, ptep);
2934 		return 0;
2935 	}
2936 
2937 	/*
2938 	 * If the process that created a MAP_PRIVATE mapping is about to
2939 	 * perform a COW due to a shared page count, attempt to satisfy
2940 	 * the allocation without using the existing reserves. The pagecache
2941 	 * page is used to determine if the reserve at this address was
2942 	 * consumed or not. If reserves were used, a partial faulted mapping
2943 	 * at the time of fork() could consume its reserves on COW instead
2944 	 * of the full address range.
2945 	 */
2946 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2947 			old_page != pagecache_page)
2948 		outside_reserve = 1;
2949 
2950 	page_cache_get(old_page);
2951 
2952 	/*
2953 	 * Drop page table lock as buddy allocator may be called. It will
2954 	 * be acquired again before returning to the caller, as expected.
2955 	 */
2956 	spin_unlock(ptl);
2957 	new_page = alloc_huge_page(vma, address, outside_reserve);
2958 
2959 	if (IS_ERR(new_page)) {
2960 		/*
2961 		 * If a process owning a MAP_PRIVATE mapping fails to COW,
2962 		 * it is due to references held by a child and an insufficient
2963 		 * huge page pool. To guarantee the original mappers
2964 		 * reliability, unmap the page from child processes. The child
2965 		 * may get SIGKILLed if it later faults.
2966 		 */
2967 		if (outside_reserve) {
2968 			page_cache_release(old_page);
2969 			BUG_ON(huge_pte_none(pte));
2970 			unmap_ref_private(mm, vma, old_page, address);
2971 			BUG_ON(huge_pte_none(pte));
2972 			spin_lock(ptl);
2973 			ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2974 			if (likely(ptep &&
2975 				   pte_same(huge_ptep_get(ptep), pte)))
2976 				goto retry_avoidcopy;
2977 			/*
2978 			 * race occurs while re-acquiring page table
2979 			 * lock, and our job is done.
2980 			 */
2981 			return 0;
2982 		}
2983 
2984 		ret = (PTR_ERR(new_page) == -ENOMEM) ?
2985 			VM_FAULT_OOM : VM_FAULT_SIGBUS;
2986 		goto out_release_old;
2987 	}
2988 
2989 	/*
2990 	 * When the original hugepage is shared one, it does not have
2991 	 * anon_vma prepared.
2992 	 */
2993 	if (unlikely(anon_vma_prepare(vma))) {
2994 		ret = VM_FAULT_OOM;
2995 		goto out_release_all;
2996 	}
2997 
2998 	copy_user_huge_page(new_page, old_page, address, vma,
2999 			    pages_per_huge_page(h));
3000 	__SetPageUptodate(new_page);
3001 	set_page_huge_active(new_page);
3002 
3003 	mmun_start = address & huge_page_mask(h);
3004 	mmun_end = mmun_start + huge_page_size(h);
3005 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3006 
3007 	/*
3008 	 * Retake the page table lock to check for racing updates
3009 	 * before the page tables are altered
3010 	 */
3011 	spin_lock(ptl);
3012 	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3013 	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3014 		ClearPagePrivate(new_page);
3015 
3016 		/* Break COW */
3017 		huge_ptep_clear_flush(vma, address, ptep);
3018 		mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3019 		set_huge_pte_at(mm, address, ptep,
3020 				make_huge_pte(vma, new_page, 1));
3021 		page_remove_rmap(old_page);
3022 		hugepage_add_new_anon_rmap(new_page, vma, address);
3023 		/* Make the old page be freed below */
3024 		new_page = old_page;
3025 	}
3026 	spin_unlock(ptl);
3027 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3028 out_release_all:
3029 	page_cache_release(new_page);
3030 out_release_old:
3031 	page_cache_release(old_page);
3032 
3033 	spin_lock(ptl); /* Caller expects lock to be held */
3034 	return ret;
3035 }
3036 
3037 /* Return the pagecache page at a given address within a VMA */
3038 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3039 			struct vm_area_struct *vma, unsigned long address)
3040 {
3041 	struct address_space *mapping;
3042 	pgoff_t idx;
3043 
3044 	mapping = vma->vm_file->f_mapping;
3045 	idx = vma_hugecache_offset(h, vma, address);
3046 
3047 	return find_lock_page(mapping, idx);
3048 }
3049 
3050 /*
3051  * Return whether there is a pagecache page to back given address within VMA.
3052  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3053  */
3054 static bool hugetlbfs_pagecache_present(struct hstate *h,
3055 			struct vm_area_struct *vma, unsigned long address)
3056 {
3057 	struct address_space *mapping;
3058 	pgoff_t idx;
3059 	struct page *page;
3060 
3061 	mapping = vma->vm_file->f_mapping;
3062 	idx = vma_hugecache_offset(h, vma, address);
3063 
3064 	page = find_get_page(mapping, idx);
3065 	if (page)
3066 		put_page(page);
3067 	return page != NULL;
3068 }
3069 
3070 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3071 			   struct address_space *mapping, pgoff_t idx,
3072 			   unsigned long address, pte_t *ptep, unsigned int flags)
3073 {
3074 	struct hstate *h = hstate_vma(vma);
3075 	int ret = VM_FAULT_SIGBUS;
3076 	int anon_rmap = 0;
3077 	unsigned long size;
3078 	struct page *page;
3079 	pte_t new_pte;
3080 	spinlock_t *ptl;
3081 
3082 	/*
3083 	 * Currently, we are forced to kill the process in the event the
3084 	 * original mapper has unmapped pages from the child due to a failed
3085 	 * COW. Warn that such a situation has occurred as it may not be obvious
3086 	 */
3087 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3088 		pr_warning("PID %d killed due to inadequate hugepage pool\n",
3089 			   current->pid);
3090 		return ret;
3091 	}
3092 
3093 	/*
3094 	 * Use page lock to guard against racing truncation
3095 	 * before we get page_table_lock.
3096 	 */
3097 retry:
3098 	page = find_lock_page(mapping, idx);
3099 	if (!page) {
3100 		size = i_size_read(mapping->host) >> huge_page_shift(h);
3101 		if (idx >= size)
3102 			goto out;
3103 		page = alloc_huge_page(vma, address, 0);
3104 		if (IS_ERR(page)) {
3105 			ret = PTR_ERR(page);
3106 			if (ret == -ENOMEM)
3107 				ret = VM_FAULT_OOM;
3108 			else
3109 				ret = VM_FAULT_SIGBUS;
3110 			goto out;
3111 		}
3112 		clear_huge_page(page, address, pages_per_huge_page(h));
3113 		__SetPageUptodate(page);
3114 		set_page_huge_active(page);
3115 
3116 		if (vma->vm_flags & VM_MAYSHARE) {
3117 			int err;
3118 			struct inode *inode = mapping->host;
3119 
3120 			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3121 			if (err) {
3122 				put_page(page);
3123 				if (err == -EEXIST)
3124 					goto retry;
3125 				goto out;
3126 			}
3127 			ClearPagePrivate(page);
3128 
3129 			spin_lock(&inode->i_lock);
3130 			inode->i_blocks += blocks_per_huge_page(h);
3131 			spin_unlock(&inode->i_lock);
3132 		} else {
3133 			lock_page(page);
3134 			if (unlikely(anon_vma_prepare(vma))) {
3135 				ret = VM_FAULT_OOM;
3136 				goto backout_unlocked;
3137 			}
3138 			anon_rmap = 1;
3139 		}
3140 	} else {
3141 		/*
3142 		 * If memory error occurs between mmap() and fault, some process
3143 		 * don't have hwpoisoned swap entry for errored virtual address.
3144 		 * So we need to block hugepage fault by PG_hwpoison bit check.
3145 		 */
3146 		if (unlikely(PageHWPoison(page))) {
3147 			ret = VM_FAULT_HWPOISON |
3148 				VM_FAULT_SET_HINDEX(hstate_index(h));
3149 			goto backout_unlocked;
3150 		}
3151 	}
3152 
3153 	/*
3154 	 * If we are going to COW a private mapping later, we examine the
3155 	 * pending reservations for this page now. This will ensure that
3156 	 * any allocations necessary to record that reservation occur outside
3157 	 * the spinlock.
3158 	 */
3159 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
3160 		if (vma_needs_reservation(h, vma, address) < 0) {
3161 			ret = VM_FAULT_OOM;
3162 			goto backout_unlocked;
3163 		}
3164 
3165 	ptl = huge_pte_lockptr(h, mm, ptep);
3166 	spin_lock(ptl);
3167 	size = i_size_read(mapping->host) >> huge_page_shift(h);
3168 	if (idx >= size)
3169 		goto backout;
3170 
3171 	ret = 0;
3172 	if (!huge_pte_none(huge_ptep_get(ptep)))
3173 		goto backout;
3174 
3175 	if (anon_rmap) {
3176 		ClearPagePrivate(page);
3177 		hugepage_add_new_anon_rmap(page, vma, address);
3178 	} else
3179 		page_dup_rmap(page);
3180 	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3181 				&& (vma->vm_flags & VM_SHARED)));
3182 	set_huge_pte_at(mm, address, ptep, new_pte);
3183 
3184 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3185 		/* Optimization, do the COW without a second fault */
3186 		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
3187 	}
3188 
3189 	spin_unlock(ptl);
3190 	unlock_page(page);
3191 out:
3192 	return ret;
3193 
3194 backout:
3195 	spin_unlock(ptl);
3196 backout_unlocked:
3197 	unlock_page(page);
3198 	put_page(page);
3199 	goto out;
3200 }
3201 
3202 #ifdef CONFIG_SMP
3203 static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3204 			    struct vm_area_struct *vma,
3205 			    struct address_space *mapping,
3206 			    pgoff_t idx, unsigned long address)
3207 {
3208 	unsigned long key[2];
3209 	u32 hash;
3210 
3211 	if (vma->vm_flags & VM_SHARED) {
3212 		key[0] = (unsigned long) mapping;
3213 		key[1] = idx;
3214 	} else {
3215 		key[0] = (unsigned long) mm;
3216 		key[1] = address >> huge_page_shift(h);
3217 	}
3218 
3219 	hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3220 
3221 	return hash & (num_fault_mutexes - 1);
3222 }
3223 #else
3224 /*
3225  * For uniprocesor systems we always use a single mutex, so just
3226  * return 0 and avoid the hashing overhead.
3227  */
3228 static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3229 			    struct vm_area_struct *vma,
3230 			    struct address_space *mapping,
3231 			    pgoff_t idx, unsigned long address)
3232 {
3233 	return 0;
3234 }
3235 #endif
3236 
3237 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3238 			unsigned long address, unsigned int flags)
3239 {
3240 	pte_t *ptep, entry;
3241 	spinlock_t *ptl;
3242 	int ret;
3243 	u32 hash;
3244 	pgoff_t idx;
3245 	struct page *page = NULL;
3246 	struct page *pagecache_page = NULL;
3247 	struct hstate *h = hstate_vma(vma);
3248 	struct address_space *mapping;
3249 	int need_wait_lock = 0;
3250 
3251 	address &= huge_page_mask(h);
3252 
3253 	ptep = huge_pte_offset(mm, address);
3254 	if (ptep) {
3255 		entry = huge_ptep_get(ptep);
3256 		if (unlikely(is_hugetlb_entry_migration(entry))) {
3257 			migration_entry_wait_huge(vma, mm, ptep);
3258 			return 0;
3259 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3260 			return VM_FAULT_HWPOISON_LARGE |
3261 				VM_FAULT_SET_HINDEX(hstate_index(h));
3262 	}
3263 
3264 	ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3265 	if (!ptep)
3266 		return VM_FAULT_OOM;
3267 
3268 	mapping = vma->vm_file->f_mapping;
3269 	idx = vma_hugecache_offset(h, vma, address);
3270 
3271 	/*
3272 	 * Serialize hugepage allocation and instantiation, so that we don't
3273 	 * get spurious allocation failures if two CPUs race to instantiate
3274 	 * the same page in the page cache.
3275 	 */
3276 	hash = fault_mutex_hash(h, mm, vma, mapping, idx, address);
3277 	mutex_lock(&htlb_fault_mutex_table[hash]);
3278 
3279 	entry = huge_ptep_get(ptep);
3280 	if (huge_pte_none(entry)) {
3281 		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3282 		goto out_mutex;
3283 	}
3284 
3285 	ret = 0;
3286 
3287 	/*
3288 	 * entry could be a migration/hwpoison entry at this point, so this
3289 	 * check prevents the kernel from going below assuming that we have
3290 	 * a active hugepage in pagecache. This goto expects the 2nd page fault,
3291 	 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3292 	 * handle it.
3293 	 */
3294 	if (!pte_present(entry))
3295 		goto out_mutex;
3296 
3297 	/*
3298 	 * If we are going to COW the mapping later, we examine the pending
3299 	 * reservations for this page now. This will ensure that any
3300 	 * allocations necessary to record that reservation occur outside the
3301 	 * spinlock. For private mappings, we also lookup the pagecache
3302 	 * page now as it is used to determine if a reservation has been
3303 	 * consumed.
3304 	 */
3305 	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3306 		if (vma_needs_reservation(h, vma, address) < 0) {
3307 			ret = VM_FAULT_OOM;
3308 			goto out_mutex;
3309 		}
3310 
3311 		if (!(vma->vm_flags & VM_MAYSHARE))
3312 			pagecache_page = hugetlbfs_pagecache_page(h,
3313 								vma, address);
3314 	}
3315 
3316 	ptl = huge_pte_lock(h, mm, ptep);
3317 
3318 	/* Check for a racing update before calling hugetlb_cow */
3319 	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3320 		goto out_ptl;
3321 
3322 	/*
3323 	 * hugetlb_cow() requires page locks of pte_page(entry) and
3324 	 * pagecache_page, so here we need take the former one
3325 	 * when page != pagecache_page or !pagecache_page.
3326 	 */
3327 	page = pte_page(entry);
3328 	if (page != pagecache_page)
3329 		if (!trylock_page(page)) {
3330 			need_wait_lock = 1;
3331 			goto out_ptl;
3332 		}
3333 
3334 	get_page(page);
3335 
3336 	if (flags & FAULT_FLAG_WRITE) {
3337 		if (!huge_pte_write(entry)) {
3338 			ret = hugetlb_cow(mm, vma, address, ptep, entry,
3339 					pagecache_page, ptl);
3340 			goto out_put_page;
3341 		}
3342 		entry = huge_pte_mkdirty(entry);
3343 	}
3344 	entry = pte_mkyoung(entry);
3345 	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3346 						flags & FAULT_FLAG_WRITE))
3347 		update_mmu_cache(vma, address, ptep);
3348 out_put_page:
3349 	if (page != pagecache_page)
3350 		unlock_page(page);
3351 	put_page(page);
3352 out_ptl:
3353 	spin_unlock(ptl);
3354 
3355 	if (pagecache_page) {
3356 		unlock_page(pagecache_page);
3357 		put_page(pagecache_page);
3358 	}
3359 out_mutex:
3360 	mutex_unlock(&htlb_fault_mutex_table[hash]);
3361 	/*
3362 	 * Generally it's safe to hold refcount during waiting page lock. But
3363 	 * here we just wait to defer the next page fault to avoid busy loop and
3364 	 * the page is not used after unlocked before returning from the current
3365 	 * page fault. So we are safe from accessing freed page, even if we wait
3366 	 * here without taking refcount.
3367 	 */
3368 	if (need_wait_lock)
3369 		wait_on_page_locked(page);
3370 	return ret;
3371 }
3372 
3373 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3374 			 struct page **pages, struct vm_area_struct **vmas,
3375 			 unsigned long *position, unsigned long *nr_pages,
3376 			 long i, unsigned int flags)
3377 {
3378 	unsigned long pfn_offset;
3379 	unsigned long vaddr = *position;
3380 	unsigned long remainder = *nr_pages;
3381 	struct hstate *h = hstate_vma(vma);
3382 
3383 	while (vaddr < vma->vm_end && remainder) {
3384 		pte_t *pte;
3385 		spinlock_t *ptl = NULL;
3386 		int absent;
3387 		struct page *page;
3388 
3389 		/*
3390 		 * If we have a pending SIGKILL, don't keep faulting pages and
3391 		 * potentially allocating memory.
3392 		 */
3393 		if (unlikely(fatal_signal_pending(current))) {
3394 			remainder = 0;
3395 			break;
3396 		}
3397 
3398 		/*
3399 		 * Some archs (sparc64, sh*) have multiple pte_ts to
3400 		 * each hugepage.  We have to make sure we get the
3401 		 * first, for the page indexing below to work.
3402 		 *
3403 		 * Note that page table lock is not held when pte is null.
3404 		 */
3405 		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3406 		if (pte)
3407 			ptl = huge_pte_lock(h, mm, pte);
3408 		absent = !pte || huge_pte_none(huge_ptep_get(pte));
3409 
3410 		/*
3411 		 * When coredumping, it suits get_dump_page if we just return
3412 		 * an error where there's an empty slot with no huge pagecache
3413 		 * to back it.  This way, we avoid allocating a hugepage, and
3414 		 * the sparse dumpfile avoids allocating disk blocks, but its
3415 		 * huge holes still show up with zeroes where they need to be.
3416 		 */
3417 		if (absent && (flags & FOLL_DUMP) &&
3418 		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3419 			if (pte)
3420 				spin_unlock(ptl);
3421 			remainder = 0;
3422 			break;
3423 		}
3424 
3425 		/*
3426 		 * We need call hugetlb_fault for both hugepages under migration
3427 		 * (in which case hugetlb_fault waits for the migration,) and
3428 		 * hwpoisoned hugepages (in which case we need to prevent the
3429 		 * caller from accessing to them.) In order to do this, we use
3430 		 * here is_swap_pte instead of is_hugetlb_entry_migration and
3431 		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3432 		 * both cases, and because we can't follow correct pages
3433 		 * directly from any kind of swap entries.
3434 		 */
3435 		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3436 		    ((flags & FOLL_WRITE) &&
3437 		      !huge_pte_write(huge_ptep_get(pte)))) {
3438 			int ret;
3439 
3440 			if (pte)
3441 				spin_unlock(ptl);
3442 			ret = hugetlb_fault(mm, vma, vaddr,
3443 				(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3444 			if (!(ret & VM_FAULT_ERROR))
3445 				continue;
3446 
3447 			remainder = 0;
3448 			break;
3449 		}
3450 
3451 		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3452 		page = pte_page(huge_ptep_get(pte));
3453 same_page:
3454 		if (pages) {
3455 			pages[i] = mem_map_offset(page, pfn_offset);
3456 			get_page_foll(pages[i]);
3457 		}
3458 
3459 		if (vmas)
3460 			vmas[i] = vma;
3461 
3462 		vaddr += PAGE_SIZE;
3463 		++pfn_offset;
3464 		--remainder;
3465 		++i;
3466 		if (vaddr < vma->vm_end && remainder &&
3467 				pfn_offset < pages_per_huge_page(h)) {
3468 			/*
3469 			 * We use pfn_offset to avoid touching the pageframes
3470 			 * of this compound page.
3471 			 */
3472 			goto same_page;
3473 		}
3474 		spin_unlock(ptl);
3475 	}
3476 	*nr_pages = remainder;
3477 	*position = vaddr;
3478 
3479 	return i ? i : -EFAULT;
3480 }
3481 
3482 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3483 		unsigned long address, unsigned long end, pgprot_t newprot)
3484 {
3485 	struct mm_struct *mm = vma->vm_mm;
3486 	unsigned long start = address;
3487 	pte_t *ptep;
3488 	pte_t pte;
3489 	struct hstate *h = hstate_vma(vma);
3490 	unsigned long pages = 0;
3491 
3492 	BUG_ON(address >= end);
3493 	flush_cache_range(vma, address, end);
3494 
3495 	mmu_notifier_invalidate_range_start(mm, start, end);
3496 	i_mmap_lock_write(vma->vm_file->f_mapping);
3497 	for (; address < end; address += huge_page_size(h)) {
3498 		spinlock_t *ptl;
3499 		ptep = huge_pte_offset(mm, address);
3500 		if (!ptep)
3501 			continue;
3502 		ptl = huge_pte_lock(h, mm, ptep);
3503 		if (huge_pmd_unshare(mm, &address, ptep)) {
3504 			pages++;
3505 			spin_unlock(ptl);
3506 			continue;
3507 		}
3508 		pte = huge_ptep_get(ptep);
3509 		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
3510 			spin_unlock(ptl);
3511 			continue;
3512 		}
3513 		if (unlikely(is_hugetlb_entry_migration(pte))) {
3514 			swp_entry_t entry = pte_to_swp_entry(pte);
3515 
3516 			if (is_write_migration_entry(entry)) {
3517 				pte_t newpte;
3518 
3519 				make_migration_entry_read(&entry);
3520 				newpte = swp_entry_to_pte(entry);
3521 				set_huge_pte_at(mm, address, ptep, newpte);
3522 				pages++;
3523 			}
3524 			spin_unlock(ptl);
3525 			continue;
3526 		}
3527 		if (!huge_pte_none(pte)) {
3528 			pte = huge_ptep_get_and_clear(mm, address, ptep);
3529 			pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3530 			pte = arch_make_huge_pte(pte, vma, NULL, 0);
3531 			set_huge_pte_at(mm, address, ptep, pte);
3532 			pages++;
3533 		}
3534 		spin_unlock(ptl);
3535 	}
3536 	/*
3537 	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
3538 	 * may have cleared our pud entry and done put_page on the page table:
3539 	 * once we release i_mmap_rwsem, another task can do the final put_page
3540 	 * and that page table be reused and filled with junk.
3541 	 */
3542 	flush_tlb_range(vma, start, end);
3543 	mmu_notifier_invalidate_range(mm, start, end);
3544 	i_mmap_unlock_write(vma->vm_file->f_mapping);
3545 	mmu_notifier_invalidate_range_end(mm, start, end);
3546 
3547 	return pages << h->order;
3548 }
3549 
3550 int hugetlb_reserve_pages(struct inode *inode,
3551 					long from, long to,
3552 					struct vm_area_struct *vma,
3553 					vm_flags_t vm_flags)
3554 {
3555 	long ret, chg;
3556 	struct hstate *h = hstate_inode(inode);
3557 	struct hugepage_subpool *spool = subpool_inode(inode);
3558 	struct resv_map *resv_map;
3559 	long gbl_reserve;
3560 
3561 	/*
3562 	 * Only apply hugepage reservation if asked. At fault time, an
3563 	 * attempt will be made for VM_NORESERVE to allocate a page
3564 	 * without using reserves
3565 	 */
3566 	if (vm_flags & VM_NORESERVE)
3567 		return 0;
3568 
3569 	/*
3570 	 * Shared mappings base their reservation on the number of pages that
3571 	 * are already allocated on behalf of the file. Private mappings need
3572 	 * to reserve the full area even if read-only as mprotect() may be
3573 	 * called to make the mapping read-write. Assume !vma is a shm mapping
3574 	 */
3575 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
3576 		resv_map = inode_resv_map(inode);
3577 
3578 		chg = region_chg(resv_map, from, to);
3579 
3580 	} else {
3581 		resv_map = resv_map_alloc();
3582 		if (!resv_map)
3583 			return -ENOMEM;
3584 
3585 		chg = to - from;
3586 
3587 		set_vma_resv_map(vma, resv_map);
3588 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3589 	}
3590 
3591 	if (chg < 0) {
3592 		ret = chg;
3593 		goto out_err;
3594 	}
3595 
3596 	/*
3597 	 * There must be enough pages in the subpool for the mapping. If
3598 	 * the subpool has a minimum size, there may be some global
3599 	 * reservations already in place (gbl_reserve).
3600 	 */
3601 	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
3602 	if (gbl_reserve < 0) {
3603 		ret = -ENOSPC;
3604 		goto out_err;
3605 	}
3606 
3607 	/*
3608 	 * Check enough hugepages are available for the reservation.
3609 	 * Hand the pages back to the subpool if there are not
3610 	 */
3611 	ret = hugetlb_acct_memory(h, gbl_reserve);
3612 	if (ret < 0) {
3613 		/* put back original number of pages, chg */
3614 		(void)hugepage_subpool_put_pages(spool, chg);
3615 		goto out_err;
3616 	}
3617 
3618 	/*
3619 	 * Account for the reservations made. Shared mappings record regions
3620 	 * that have reservations as they are shared by multiple VMAs.
3621 	 * When the last VMA disappears, the region map says how much
3622 	 * the reservation was and the page cache tells how much of
3623 	 * the reservation was consumed. Private mappings are per-VMA and
3624 	 * only the consumed reservations are tracked. When the VMA
3625 	 * disappears, the original reservation is the VMA size and the
3626 	 * consumed reservations are stored in the map. Hence, nothing
3627 	 * else has to be done for private mappings here
3628 	 */
3629 	if (!vma || vma->vm_flags & VM_MAYSHARE)
3630 		region_add(resv_map, from, to);
3631 	return 0;
3632 out_err:
3633 	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3634 		kref_put(&resv_map->refs, resv_map_release);
3635 	return ret;
3636 }
3637 
3638 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3639 {
3640 	struct hstate *h = hstate_inode(inode);
3641 	struct resv_map *resv_map = inode_resv_map(inode);
3642 	long chg = 0;
3643 	struct hugepage_subpool *spool = subpool_inode(inode);
3644 	long gbl_reserve;
3645 
3646 	if (resv_map)
3647 		chg = region_truncate(resv_map, offset);
3648 	spin_lock(&inode->i_lock);
3649 	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
3650 	spin_unlock(&inode->i_lock);
3651 
3652 	/*
3653 	 * If the subpool has a minimum size, the number of global
3654 	 * reservations to be released may be adjusted.
3655 	 */
3656 	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
3657 	hugetlb_acct_memory(h, -gbl_reserve);
3658 }
3659 
3660 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
3661 static unsigned long page_table_shareable(struct vm_area_struct *svma,
3662 				struct vm_area_struct *vma,
3663 				unsigned long addr, pgoff_t idx)
3664 {
3665 	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
3666 				svma->vm_start;
3667 	unsigned long sbase = saddr & PUD_MASK;
3668 	unsigned long s_end = sbase + PUD_SIZE;
3669 
3670 	/* Allow segments to share if only one is marked locked */
3671 	unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
3672 	unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
3673 
3674 	/*
3675 	 * match the virtual addresses, permission and the alignment of the
3676 	 * page table page.
3677 	 */
3678 	if (pmd_index(addr) != pmd_index(saddr) ||
3679 	    vm_flags != svm_flags ||
3680 	    sbase < svma->vm_start || svma->vm_end < s_end)
3681 		return 0;
3682 
3683 	return saddr;
3684 }
3685 
3686 static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3687 {
3688 	unsigned long base = addr & PUD_MASK;
3689 	unsigned long end = base + PUD_SIZE;
3690 
3691 	/*
3692 	 * check on proper vm_flags and page table alignment
3693 	 */
3694 	if (vma->vm_flags & VM_MAYSHARE &&
3695 	    vma->vm_start <= base && end <= vma->vm_end)
3696 		return 1;
3697 	return 0;
3698 }
3699 
3700 /*
3701  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
3702  * and returns the corresponding pte. While this is not necessary for the
3703  * !shared pmd case because we can allocate the pmd later as well, it makes the
3704  * code much cleaner. pmd allocation is essential for the shared case because
3705  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
3706  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
3707  * bad pmd for sharing.
3708  */
3709 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3710 {
3711 	struct vm_area_struct *vma = find_vma(mm, addr);
3712 	struct address_space *mapping = vma->vm_file->f_mapping;
3713 	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
3714 			vma->vm_pgoff;
3715 	struct vm_area_struct *svma;
3716 	unsigned long saddr;
3717 	pte_t *spte = NULL;
3718 	pte_t *pte;
3719 	spinlock_t *ptl;
3720 
3721 	if (!vma_shareable(vma, addr))
3722 		return (pte_t *)pmd_alloc(mm, pud, addr);
3723 
3724 	i_mmap_lock_write(mapping);
3725 	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
3726 		if (svma == vma)
3727 			continue;
3728 
3729 		saddr = page_table_shareable(svma, vma, addr, idx);
3730 		if (saddr) {
3731 			spte = huge_pte_offset(svma->vm_mm, saddr);
3732 			if (spte) {
3733 				mm_inc_nr_pmds(mm);
3734 				get_page(virt_to_page(spte));
3735 				break;
3736 			}
3737 		}
3738 	}
3739 
3740 	if (!spte)
3741 		goto out;
3742 
3743 	ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
3744 	spin_lock(ptl);
3745 	if (pud_none(*pud)) {
3746 		pud_populate(mm, pud,
3747 				(pmd_t *)((unsigned long)spte & PAGE_MASK));
3748 	} else {
3749 		put_page(virt_to_page(spte));
3750 		mm_inc_nr_pmds(mm);
3751 	}
3752 	spin_unlock(ptl);
3753 out:
3754 	pte = (pte_t *)pmd_alloc(mm, pud, addr);
3755 	i_mmap_unlock_write(mapping);
3756 	return pte;
3757 }
3758 
3759 /*
3760  * unmap huge page backed by shared pte.
3761  *
3762  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
3763  * indicated by page_count > 1, unmap is achieved by clearing pud and
3764  * decrementing the ref count. If count == 1, the pte page is not shared.
3765  *
3766  * called with page table lock held.
3767  *
3768  * returns: 1 successfully unmapped a shared pte page
3769  *	    0 the underlying pte page is not shared, or it is the last user
3770  */
3771 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
3772 {
3773 	pgd_t *pgd = pgd_offset(mm, *addr);
3774 	pud_t *pud = pud_offset(pgd, *addr);
3775 
3776 	BUG_ON(page_count(virt_to_page(ptep)) == 0);
3777 	if (page_count(virt_to_page(ptep)) == 1)
3778 		return 0;
3779 
3780 	pud_clear(pud);
3781 	put_page(virt_to_page(ptep));
3782 	mm_dec_nr_pmds(mm);
3783 	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
3784 	return 1;
3785 }
3786 #define want_pmd_share()	(1)
3787 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3788 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3789 {
3790 	return NULL;
3791 }
3792 #define want_pmd_share()	(0)
3793 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3794 
3795 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
3796 pte_t *huge_pte_alloc(struct mm_struct *mm,
3797 			unsigned long addr, unsigned long sz)
3798 {
3799 	pgd_t *pgd;
3800 	pud_t *pud;
3801 	pte_t *pte = NULL;
3802 
3803 	pgd = pgd_offset(mm, addr);
3804 	pud = pud_alloc(mm, pgd, addr);
3805 	if (pud) {
3806 		if (sz == PUD_SIZE) {
3807 			pte = (pte_t *)pud;
3808 		} else {
3809 			BUG_ON(sz != PMD_SIZE);
3810 			if (want_pmd_share() && pud_none(*pud))
3811 				pte = huge_pmd_share(mm, addr, pud);
3812 			else
3813 				pte = (pte_t *)pmd_alloc(mm, pud, addr);
3814 		}
3815 	}
3816 	BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
3817 
3818 	return pte;
3819 }
3820 
3821 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
3822 {
3823 	pgd_t *pgd;
3824 	pud_t *pud;
3825 	pmd_t *pmd = NULL;
3826 
3827 	pgd = pgd_offset(mm, addr);
3828 	if (pgd_present(*pgd)) {
3829 		pud = pud_offset(pgd, addr);
3830 		if (pud_present(*pud)) {
3831 			if (pud_huge(*pud))
3832 				return (pte_t *)pud;
3833 			pmd = pmd_offset(pud, addr);
3834 		}
3835 	}
3836 	return (pte_t *) pmd;
3837 }
3838 
3839 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3840 
3841 /*
3842  * These functions are overwritable if your architecture needs its own
3843  * behavior.
3844  */
3845 struct page * __weak
3846 follow_huge_addr(struct mm_struct *mm, unsigned long address,
3847 			      int write)
3848 {
3849 	return ERR_PTR(-EINVAL);
3850 }
3851 
3852 struct page * __weak
3853 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
3854 		pmd_t *pmd, int flags)
3855 {
3856 	struct page *page = NULL;
3857 	spinlock_t *ptl;
3858 retry:
3859 	ptl = pmd_lockptr(mm, pmd);
3860 	spin_lock(ptl);
3861 	/*
3862 	 * make sure that the address range covered by this pmd is not
3863 	 * unmapped from other threads.
3864 	 */
3865 	if (!pmd_huge(*pmd))
3866 		goto out;
3867 	if (pmd_present(*pmd)) {
3868 		page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
3869 		if (flags & FOLL_GET)
3870 			get_page(page);
3871 	} else {
3872 		if (is_hugetlb_entry_migration(huge_ptep_get((pte_t *)pmd))) {
3873 			spin_unlock(ptl);
3874 			__migration_entry_wait(mm, (pte_t *)pmd, ptl);
3875 			goto retry;
3876 		}
3877 		/*
3878 		 * hwpoisoned entry is treated as no_page_table in
3879 		 * follow_page_mask().
3880 		 */
3881 	}
3882 out:
3883 	spin_unlock(ptl);
3884 	return page;
3885 }
3886 
3887 struct page * __weak
3888 follow_huge_pud(struct mm_struct *mm, unsigned long address,
3889 		pud_t *pud, int flags)
3890 {
3891 	if (flags & FOLL_GET)
3892 		return NULL;
3893 
3894 	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
3895 }
3896 
3897 #ifdef CONFIG_MEMORY_FAILURE
3898 
3899 /*
3900  * This function is called from memory failure code.
3901  * Assume the caller holds page lock of the head page.
3902  */
3903 int dequeue_hwpoisoned_huge_page(struct page *hpage)
3904 {
3905 	struct hstate *h = page_hstate(hpage);
3906 	int nid = page_to_nid(hpage);
3907 	int ret = -EBUSY;
3908 
3909 	spin_lock(&hugetlb_lock);
3910 	/*
3911 	 * Just checking !page_huge_active is not enough, because that could be
3912 	 * an isolated/hwpoisoned hugepage (which have >0 refcount).
3913 	 */
3914 	if (!page_huge_active(hpage) && !page_count(hpage)) {
3915 		/*
3916 		 * Hwpoisoned hugepage isn't linked to activelist or freelist,
3917 		 * but dangling hpage->lru can trigger list-debug warnings
3918 		 * (this happens when we call unpoison_memory() on it),
3919 		 * so let it point to itself with list_del_init().
3920 		 */
3921 		list_del_init(&hpage->lru);
3922 		set_page_refcounted(hpage);
3923 		h->free_huge_pages--;
3924 		h->free_huge_pages_node[nid]--;
3925 		ret = 0;
3926 	}
3927 	spin_unlock(&hugetlb_lock);
3928 	return ret;
3929 }
3930 #endif
3931 
3932 bool isolate_huge_page(struct page *page, struct list_head *list)
3933 {
3934 	bool ret = true;
3935 
3936 	VM_BUG_ON_PAGE(!PageHead(page), page);
3937 	spin_lock(&hugetlb_lock);
3938 	if (!page_huge_active(page) || !get_page_unless_zero(page)) {
3939 		ret = false;
3940 		goto unlock;
3941 	}
3942 	clear_page_huge_active(page);
3943 	list_move_tail(&page->lru, list);
3944 unlock:
3945 	spin_unlock(&hugetlb_lock);
3946 	return ret;
3947 }
3948 
3949 void putback_active_hugepage(struct page *page)
3950 {
3951 	VM_BUG_ON_PAGE(!PageHead(page), page);
3952 	spin_lock(&hugetlb_lock);
3953 	set_page_huge_active(page);
3954 	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
3955 	spin_unlock(&hugetlb_lock);
3956 	put_page(page);
3957 }
3958