xref: /linux/mm/hugetlb.c (revision 7f4f3b14e8079ecde096bd734af10e30d40c27b7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 #include <linux/migrate.h>
34 #include <linux/nospec.h>
35 #include <linux/delayacct.h>
36 #include <linux/memory.h>
37 #include <linux/mm_inline.h>
38 #include <linux/padata.h>
39 
40 #include <asm/page.h>
41 #include <asm/pgalloc.h>
42 #include <asm/tlb.h>
43 
44 #include <linux/io.h>
45 #include <linux/hugetlb.h>
46 #include <linux/hugetlb_cgroup.h>
47 #include <linux/node.h>
48 #include <linux/page_owner.h>
49 #include "internal.h"
50 #include "hugetlb_vmemmap.h"
51 
52 int hugetlb_max_hstate __read_mostly;
53 unsigned int default_hstate_idx;
54 struct hstate hstates[HUGE_MAX_HSTATE];
55 
56 #ifdef CONFIG_CMA
57 static struct cma *hugetlb_cma[MAX_NUMNODES];
58 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
59 #endif
60 static unsigned long hugetlb_cma_size __initdata;
61 
62 __initdata struct list_head huge_boot_pages[MAX_NUMNODES];
63 
64 /* for command line parsing */
65 static struct hstate * __initdata parsed_hstate;
66 static unsigned long __initdata default_hstate_max_huge_pages;
67 static bool __initdata parsed_valid_hugepagesz = true;
68 static bool __initdata parsed_default_hugepagesz;
69 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
70 
71 /*
72  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
73  * free_huge_pages, and surplus_huge_pages.
74  */
75 __cacheline_aligned_in_smp DEFINE_SPINLOCK(hugetlb_lock);
76 
77 /*
78  * Serializes faults on the same logical page.  This is used to
79  * prevent spurious OOMs when the hugepage pool is fully utilized.
80  */
81 static int num_fault_mutexes __ro_after_init;
82 struct mutex *hugetlb_fault_mutex_table __ro_after_init;
83 
84 /* Forward declaration */
85 static int hugetlb_acct_memory(struct hstate *h, long delta);
86 static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
87 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
88 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
89 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
90 		unsigned long start, unsigned long end);
91 static struct resv_map *vma_resv_map(struct vm_area_struct *vma);
92 
93 static void hugetlb_free_folio(struct folio *folio)
94 {
95 #ifdef CONFIG_CMA
96 	int nid = folio_nid(folio);
97 
98 	if (cma_free_folio(hugetlb_cma[nid], folio))
99 		return;
100 #endif
101 	folio_put(folio);
102 }
103 
104 static inline bool subpool_is_free(struct hugepage_subpool *spool)
105 {
106 	if (spool->count)
107 		return false;
108 	if (spool->max_hpages != -1)
109 		return spool->used_hpages == 0;
110 	if (spool->min_hpages != -1)
111 		return spool->rsv_hpages == spool->min_hpages;
112 
113 	return true;
114 }
115 
116 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
117 						unsigned long irq_flags)
118 {
119 	spin_unlock_irqrestore(&spool->lock, irq_flags);
120 
121 	/* If no pages are used, and no other handles to the subpool
122 	 * remain, give up any reservations based on minimum size and
123 	 * free the subpool */
124 	if (subpool_is_free(spool)) {
125 		if (spool->min_hpages != -1)
126 			hugetlb_acct_memory(spool->hstate,
127 						-spool->min_hpages);
128 		kfree(spool);
129 	}
130 }
131 
132 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
133 						long min_hpages)
134 {
135 	struct hugepage_subpool *spool;
136 
137 	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
138 	if (!spool)
139 		return NULL;
140 
141 	spin_lock_init(&spool->lock);
142 	spool->count = 1;
143 	spool->max_hpages = max_hpages;
144 	spool->hstate = h;
145 	spool->min_hpages = min_hpages;
146 
147 	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
148 		kfree(spool);
149 		return NULL;
150 	}
151 	spool->rsv_hpages = min_hpages;
152 
153 	return spool;
154 }
155 
156 void hugepage_put_subpool(struct hugepage_subpool *spool)
157 {
158 	unsigned long flags;
159 
160 	spin_lock_irqsave(&spool->lock, flags);
161 	BUG_ON(!spool->count);
162 	spool->count--;
163 	unlock_or_release_subpool(spool, flags);
164 }
165 
166 /*
167  * Subpool accounting for allocating and reserving pages.
168  * Return -ENOMEM if there are not enough resources to satisfy the
169  * request.  Otherwise, return the number of pages by which the
170  * global pools must be adjusted (upward).  The returned value may
171  * only be different than the passed value (delta) in the case where
172  * a subpool minimum size must be maintained.
173  */
174 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
175 				      long delta)
176 {
177 	long ret = delta;
178 
179 	if (!spool)
180 		return ret;
181 
182 	spin_lock_irq(&spool->lock);
183 
184 	if (spool->max_hpages != -1) {		/* maximum size accounting */
185 		if ((spool->used_hpages + delta) <= spool->max_hpages)
186 			spool->used_hpages += delta;
187 		else {
188 			ret = -ENOMEM;
189 			goto unlock_ret;
190 		}
191 	}
192 
193 	/* minimum size accounting */
194 	if (spool->min_hpages != -1 && spool->rsv_hpages) {
195 		if (delta > spool->rsv_hpages) {
196 			/*
197 			 * Asking for more reserves than those already taken on
198 			 * behalf of subpool.  Return difference.
199 			 */
200 			ret = delta - spool->rsv_hpages;
201 			spool->rsv_hpages = 0;
202 		} else {
203 			ret = 0;	/* reserves already accounted for */
204 			spool->rsv_hpages -= delta;
205 		}
206 	}
207 
208 unlock_ret:
209 	spin_unlock_irq(&spool->lock);
210 	return ret;
211 }
212 
213 /*
214  * Subpool accounting for freeing and unreserving pages.
215  * Return the number of global page reservations that must be dropped.
216  * The return value may only be different than the passed value (delta)
217  * in the case where a subpool minimum size must be maintained.
218  */
219 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
220 				       long delta)
221 {
222 	long ret = delta;
223 	unsigned long flags;
224 
225 	if (!spool)
226 		return delta;
227 
228 	spin_lock_irqsave(&spool->lock, flags);
229 
230 	if (spool->max_hpages != -1)		/* maximum size accounting */
231 		spool->used_hpages -= delta;
232 
233 	 /* minimum size accounting */
234 	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
235 		if (spool->rsv_hpages + delta <= spool->min_hpages)
236 			ret = 0;
237 		else
238 			ret = spool->rsv_hpages + delta - spool->min_hpages;
239 
240 		spool->rsv_hpages += delta;
241 		if (spool->rsv_hpages > spool->min_hpages)
242 			spool->rsv_hpages = spool->min_hpages;
243 	}
244 
245 	/*
246 	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
247 	 * quota reference, free it now.
248 	 */
249 	unlock_or_release_subpool(spool, flags);
250 
251 	return ret;
252 }
253 
254 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
255 {
256 	return HUGETLBFS_SB(inode->i_sb)->spool;
257 }
258 
259 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
260 {
261 	return subpool_inode(file_inode(vma->vm_file));
262 }
263 
264 /*
265  * hugetlb vma_lock helper routines
266  */
267 void hugetlb_vma_lock_read(struct vm_area_struct *vma)
268 {
269 	if (__vma_shareable_lock(vma)) {
270 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
271 
272 		down_read(&vma_lock->rw_sema);
273 	} else if (__vma_private_lock(vma)) {
274 		struct resv_map *resv_map = vma_resv_map(vma);
275 
276 		down_read(&resv_map->rw_sema);
277 	}
278 }
279 
280 void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
281 {
282 	if (__vma_shareable_lock(vma)) {
283 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
284 
285 		up_read(&vma_lock->rw_sema);
286 	} else if (__vma_private_lock(vma)) {
287 		struct resv_map *resv_map = vma_resv_map(vma);
288 
289 		up_read(&resv_map->rw_sema);
290 	}
291 }
292 
293 void hugetlb_vma_lock_write(struct vm_area_struct *vma)
294 {
295 	if (__vma_shareable_lock(vma)) {
296 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
297 
298 		down_write(&vma_lock->rw_sema);
299 	} else if (__vma_private_lock(vma)) {
300 		struct resv_map *resv_map = vma_resv_map(vma);
301 
302 		down_write(&resv_map->rw_sema);
303 	}
304 }
305 
306 void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
307 {
308 	if (__vma_shareable_lock(vma)) {
309 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
310 
311 		up_write(&vma_lock->rw_sema);
312 	} else if (__vma_private_lock(vma)) {
313 		struct resv_map *resv_map = vma_resv_map(vma);
314 
315 		up_write(&resv_map->rw_sema);
316 	}
317 }
318 
319 int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
320 {
321 
322 	if (__vma_shareable_lock(vma)) {
323 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
324 
325 		return down_write_trylock(&vma_lock->rw_sema);
326 	} else if (__vma_private_lock(vma)) {
327 		struct resv_map *resv_map = vma_resv_map(vma);
328 
329 		return down_write_trylock(&resv_map->rw_sema);
330 	}
331 
332 	return 1;
333 }
334 
335 void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
336 {
337 	if (__vma_shareable_lock(vma)) {
338 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
339 
340 		lockdep_assert_held(&vma_lock->rw_sema);
341 	} else if (__vma_private_lock(vma)) {
342 		struct resv_map *resv_map = vma_resv_map(vma);
343 
344 		lockdep_assert_held(&resv_map->rw_sema);
345 	}
346 }
347 
348 void hugetlb_vma_lock_release(struct kref *kref)
349 {
350 	struct hugetlb_vma_lock *vma_lock = container_of(kref,
351 			struct hugetlb_vma_lock, refs);
352 
353 	kfree(vma_lock);
354 }
355 
356 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
357 {
358 	struct vm_area_struct *vma = vma_lock->vma;
359 
360 	/*
361 	 * vma_lock structure may or not be released as a result of put,
362 	 * it certainly will no longer be attached to vma so clear pointer.
363 	 * Semaphore synchronizes access to vma_lock->vma field.
364 	 */
365 	vma_lock->vma = NULL;
366 	vma->vm_private_data = NULL;
367 	up_write(&vma_lock->rw_sema);
368 	kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
369 }
370 
371 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
372 {
373 	if (__vma_shareable_lock(vma)) {
374 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
375 
376 		__hugetlb_vma_unlock_write_put(vma_lock);
377 	} else if (__vma_private_lock(vma)) {
378 		struct resv_map *resv_map = vma_resv_map(vma);
379 
380 		/* no free for anon vmas, but still need to unlock */
381 		up_write(&resv_map->rw_sema);
382 	}
383 }
384 
385 static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
386 {
387 	/*
388 	 * Only present in sharable vmas.
389 	 */
390 	if (!vma || !__vma_shareable_lock(vma))
391 		return;
392 
393 	if (vma->vm_private_data) {
394 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
395 
396 		down_write(&vma_lock->rw_sema);
397 		__hugetlb_vma_unlock_write_put(vma_lock);
398 	}
399 }
400 
401 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
402 {
403 	struct hugetlb_vma_lock *vma_lock;
404 
405 	/* Only establish in (flags) sharable vmas */
406 	if (!vma || !(vma->vm_flags & VM_MAYSHARE))
407 		return;
408 
409 	/* Should never get here with non-NULL vm_private_data */
410 	if (vma->vm_private_data)
411 		return;
412 
413 	vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
414 	if (!vma_lock) {
415 		/*
416 		 * If we can not allocate structure, then vma can not
417 		 * participate in pmd sharing.  This is only a possible
418 		 * performance enhancement and memory saving issue.
419 		 * However, the lock is also used to synchronize page
420 		 * faults with truncation.  If the lock is not present,
421 		 * unlikely races could leave pages in a file past i_size
422 		 * until the file is removed.  Warn in the unlikely case of
423 		 * allocation failure.
424 		 */
425 		pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
426 		return;
427 	}
428 
429 	kref_init(&vma_lock->refs);
430 	init_rwsem(&vma_lock->rw_sema);
431 	vma_lock->vma = vma;
432 	vma->vm_private_data = vma_lock;
433 }
434 
435 /* Helper that removes a struct file_region from the resv_map cache and returns
436  * it for use.
437  */
438 static struct file_region *
439 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
440 {
441 	struct file_region *nrg;
442 
443 	VM_BUG_ON(resv->region_cache_count <= 0);
444 
445 	resv->region_cache_count--;
446 	nrg = list_first_entry(&resv->region_cache, struct file_region, link);
447 	list_del(&nrg->link);
448 
449 	nrg->from = from;
450 	nrg->to = to;
451 
452 	return nrg;
453 }
454 
455 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
456 					      struct file_region *rg)
457 {
458 #ifdef CONFIG_CGROUP_HUGETLB
459 	nrg->reservation_counter = rg->reservation_counter;
460 	nrg->css = rg->css;
461 	if (rg->css)
462 		css_get(rg->css);
463 #endif
464 }
465 
466 /* Helper that records hugetlb_cgroup uncharge info. */
467 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
468 						struct hstate *h,
469 						struct resv_map *resv,
470 						struct file_region *nrg)
471 {
472 #ifdef CONFIG_CGROUP_HUGETLB
473 	if (h_cg) {
474 		nrg->reservation_counter =
475 			&h_cg->rsvd_hugepage[hstate_index(h)];
476 		nrg->css = &h_cg->css;
477 		/*
478 		 * The caller will hold exactly one h_cg->css reference for the
479 		 * whole contiguous reservation region. But this area might be
480 		 * scattered when there are already some file_regions reside in
481 		 * it. As a result, many file_regions may share only one css
482 		 * reference. In order to ensure that one file_region must hold
483 		 * exactly one h_cg->css reference, we should do css_get for
484 		 * each file_region and leave the reference held by caller
485 		 * untouched.
486 		 */
487 		css_get(&h_cg->css);
488 		if (!resv->pages_per_hpage)
489 			resv->pages_per_hpage = pages_per_huge_page(h);
490 		/* pages_per_hpage should be the same for all entries in
491 		 * a resv_map.
492 		 */
493 		VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
494 	} else {
495 		nrg->reservation_counter = NULL;
496 		nrg->css = NULL;
497 	}
498 #endif
499 }
500 
501 static void put_uncharge_info(struct file_region *rg)
502 {
503 #ifdef CONFIG_CGROUP_HUGETLB
504 	if (rg->css)
505 		css_put(rg->css);
506 #endif
507 }
508 
509 static bool has_same_uncharge_info(struct file_region *rg,
510 				   struct file_region *org)
511 {
512 #ifdef CONFIG_CGROUP_HUGETLB
513 	return rg->reservation_counter == org->reservation_counter &&
514 	       rg->css == org->css;
515 
516 #else
517 	return true;
518 #endif
519 }
520 
521 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
522 {
523 	struct file_region *nrg, *prg;
524 
525 	prg = list_prev_entry(rg, link);
526 	if (&prg->link != &resv->regions && prg->to == rg->from &&
527 	    has_same_uncharge_info(prg, rg)) {
528 		prg->to = rg->to;
529 
530 		list_del(&rg->link);
531 		put_uncharge_info(rg);
532 		kfree(rg);
533 
534 		rg = prg;
535 	}
536 
537 	nrg = list_next_entry(rg, link);
538 	if (&nrg->link != &resv->regions && nrg->from == rg->to &&
539 	    has_same_uncharge_info(nrg, rg)) {
540 		nrg->from = rg->from;
541 
542 		list_del(&rg->link);
543 		put_uncharge_info(rg);
544 		kfree(rg);
545 	}
546 }
547 
548 static inline long
549 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
550 		     long to, struct hstate *h, struct hugetlb_cgroup *cg,
551 		     long *regions_needed)
552 {
553 	struct file_region *nrg;
554 
555 	if (!regions_needed) {
556 		nrg = get_file_region_entry_from_cache(map, from, to);
557 		record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
558 		list_add(&nrg->link, rg);
559 		coalesce_file_region(map, nrg);
560 	} else
561 		*regions_needed += 1;
562 
563 	return to - from;
564 }
565 
566 /*
567  * Must be called with resv->lock held.
568  *
569  * Calling this with regions_needed != NULL will count the number of pages
570  * to be added but will not modify the linked list. And regions_needed will
571  * indicate the number of file_regions needed in the cache to carry out to add
572  * the regions for this range.
573  */
574 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
575 				     struct hugetlb_cgroup *h_cg,
576 				     struct hstate *h, long *regions_needed)
577 {
578 	long add = 0;
579 	struct list_head *head = &resv->regions;
580 	long last_accounted_offset = f;
581 	struct file_region *iter, *trg = NULL;
582 	struct list_head *rg = NULL;
583 
584 	if (regions_needed)
585 		*regions_needed = 0;
586 
587 	/* In this loop, we essentially handle an entry for the range
588 	 * [last_accounted_offset, iter->from), at every iteration, with some
589 	 * bounds checking.
590 	 */
591 	list_for_each_entry_safe(iter, trg, head, link) {
592 		/* Skip irrelevant regions that start before our range. */
593 		if (iter->from < f) {
594 			/* If this region ends after the last accounted offset,
595 			 * then we need to update last_accounted_offset.
596 			 */
597 			if (iter->to > last_accounted_offset)
598 				last_accounted_offset = iter->to;
599 			continue;
600 		}
601 
602 		/* When we find a region that starts beyond our range, we've
603 		 * finished.
604 		 */
605 		if (iter->from >= t) {
606 			rg = iter->link.prev;
607 			break;
608 		}
609 
610 		/* Add an entry for last_accounted_offset -> iter->from, and
611 		 * update last_accounted_offset.
612 		 */
613 		if (iter->from > last_accounted_offset)
614 			add += hugetlb_resv_map_add(resv, iter->link.prev,
615 						    last_accounted_offset,
616 						    iter->from, h, h_cg,
617 						    regions_needed);
618 
619 		last_accounted_offset = iter->to;
620 	}
621 
622 	/* Handle the case where our range extends beyond
623 	 * last_accounted_offset.
624 	 */
625 	if (!rg)
626 		rg = head->prev;
627 	if (last_accounted_offset < t)
628 		add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
629 					    t, h, h_cg, regions_needed);
630 
631 	return add;
632 }
633 
634 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
635  */
636 static int allocate_file_region_entries(struct resv_map *resv,
637 					int regions_needed)
638 	__must_hold(&resv->lock)
639 {
640 	LIST_HEAD(allocated_regions);
641 	int to_allocate = 0, i = 0;
642 	struct file_region *trg = NULL, *rg = NULL;
643 
644 	VM_BUG_ON(regions_needed < 0);
645 
646 	/*
647 	 * Check for sufficient descriptors in the cache to accommodate
648 	 * the number of in progress add operations plus regions_needed.
649 	 *
650 	 * This is a while loop because when we drop the lock, some other call
651 	 * to region_add or region_del may have consumed some region_entries,
652 	 * so we keep looping here until we finally have enough entries for
653 	 * (adds_in_progress + regions_needed).
654 	 */
655 	while (resv->region_cache_count <
656 	       (resv->adds_in_progress + regions_needed)) {
657 		to_allocate = resv->adds_in_progress + regions_needed -
658 			      resv->region_cache_count;
659 
660 		/* At this point, we should have enough entries in the cache
661 		 * for all the existing adds_in_progress. We should only be
662 		 * needing to allocate for regions_needed.
663 		 */
664 		VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
665 
666 		spin_unlock(&resv->lock);
667 		for (i = 0; i < to_allocate; i++) {
668 			trg = kmalloc(sizeof(*trg), GFP_KERNEL);
669 			if (!trg)
670 				goto out_of_memory;
671 			list_add(&trg->link, &allocated_regions);
672 		}
673 
674 		spin_lock(&resv->lock);
675 
676 		list_splice(&allocated_regions, &resv->region_cache);
677 		resv->region_cache_count += to_allocate;
678 	}
679 
680 	return 0;
681 
682 out_of_memory:
683 	list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
684 		list_del(&rg->link);
685 		kfree(rg);
686 	}
687 	return -ENOMEM;
688 }
689 
690 /*
691  * Add the huge page range represented by [f, t) to the reserve
692  * map.  Regions will be taken from the cache to fill in this range.
693  * Sufficient regions should exist in the cache due to the previous
694  * call to region_chg with the same range, but in some cases the cache will not
695  * have sufficient entries due to races with other code doing region_add or
696  * region_del.  The extra needed entries will be allocated.
697  *
698  * regions_needed is the out value provided by a previous call to region_chg.
699  *
700  * Return the number of new huge pages added to the map.  This number is greater
701  * than or equal to zero.  If file_region entries needed to be allocated for
702  * this operation and we were not able to allocate, it returns -ENOMEM.
703  * region_add of regions of length 1 never allocate file_regions and cannot
704  * fail; region_chg will always allocate at least 1 entry and a region_add for
705  * 1 page will only require at most 1 entry.
706  */
707 static long region_add(struct resv_map *resv, long f, long t,
708 		       long in_regions_needed, struct hstate *h,
709 		       struct hugetlb_cgroup *h_cg)
710 {
711 	long add = 0, actual_regions_needed = 0;
712 
713 	spin_lock(&resv->lock);
714 retry:
715 
716 	/* Count how many regions are actually needed to execute this add. */
717 	add_reservation_in_range(resv, f, t, NULL, NULL,
718 				 &actual_regions_needed);
719 
720 	/*
721 	 * Check for sufficient descriptors in the cache to accommodate
722 	 * this add operation. Note that actual_regions_needed may be greater
723 	 * than in_regions_needed, as the resv_map may have been modified since
724 	 * the region_chg call. In this case, we need to make sure that we
725 	 * allocate extra entries, such that we have enough for all the
726 	 * existing adds_in_progress, plus the excess needed for this
727 	 * operation.
728 	 */
729 	if (actual_regions_needed > in_regions_needed &&
730 	    resv->region_cache_count <
731 		    resv->adds_in_progress +
732 			    (actual_regions_needed - in_regions_needed)) {
733 		/* region_add operation of range 1 should never need to
734 		 * allocate file_region entries.
735 		 */
736 		VM_BUG_ON(t - f <= 1);
737 
738 		if (allocate_file_region_entries(
739 			    resv, actual_regions_needed - in_regions_needed)) {
740 			return -ENOMEM;
741 		}
742 
743 		goto retry;
744 	}
745 
746 	add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
747 
748 	resv->adds_in_progress -= in_regions_needed;
749 
750 	spin_unlock(&resv->lock);
751 	return add;
752 }
753 
754 /*
755  * Examine the existing reserve map and determine how many
756  * huge pages in the specified range [f, t) are NOT currently
757  * represented.  This routine is called before a subsequent
758  * call to region_add that will actually modify the reserve
759  * map to add the specified range [f, t).  region_chg does
760  * not change the number of huge pages represented by the
761  * map.  A number of new file_region structures is added to the cache as a
762  * placeholder, for the subsequent region_add call to use. At least 1
763  * file_region structure is added.
764  *
765  * out_regions_needed is the number of regions added to the
766  * resv->adds_in_progress.  This value needs to be provided to a follow up call
767  * to region_add or region_abort for proper accounting.
768  *
769  * Returns the number of huge pages that need to be added to the existing
770  * reservation map for the range [f, t).  This number is greater or equal to
771  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
772  * is needed and can not be allocated.
773  */
774 static long region_chg(struct resv_map *resv, long f, long t,
775 		       long *out_regions_needed)
776 {
777 	long chg = 0;
778 
779 	spin_lock(&resv->lock);
780 
781 	/* Count how many hugepages in this range are NOT represented. */
782 	chg = add_reservation_in_range(resv, f, t, NULL, NULL,
783 				       out_regions_needed);
784 
785 	if (*out_regions_needed == 0)
786 		*out_regions_needed = 1;
787 
788 	if (allocate_file_region_entries(resv, *out_regions_needed))
789 		return -ENOMEM;
790 
791 	resv->adds_in_progress += *out_regions_needed;
792 
793 	spin_unlock(&resv->lock);
794 	return chg;
795 }
796 
797 /*
798  * Abort the in progress add operation.  The adds_in_progress field
799  * of the resv_map keeps track of the operations in progress between
800  * calls to region_chg and region_add.  Operations are sometimes
801  * aborted after the call to region_chg.  In such cases, region_abort
802  * is called to decrement the adds_in_progress counter. regions_needed
803  * is the value returned by the region_chg call, it is used to decrement
804  * the adds_in_progress counter.
805  *
806  * NOTE: The range arguments [f, t) are not needed or used in this
807  * routine.  They are kept to make reading the calling code easier as
808  * arguments will match the associated region_chg call.
809  */
810 static void region_abort(struct resv_map *resv, long f, long t,
811 			 long regions_needed)
812 {
813 	spin_lock(&resv->lock);
814 	VM_BUG_ON(!resv->region_cache_count);
815 	resv->adds_in_progress -= regions_needed;
816 	spin_unlock(&resv->lock);
817 }
818 
819 /*
820  * Delete the specified range [f, t) from the reserve map.  If the
821  * t parameter is LONG_MAX, this indicates that ALL regions after f
822  * should be deleted.  Locate the regions which intersect [f, t)
823  * and either trim, delete or split the existing regions.
824  *
825  * Returns the number of huge pages deleted from the reserve map.
826  * In the normal case, the return value is zero or more.  In the
827  * case where a region must be split, a new region descriptor must
828  * be allocated.  If the allocation fails, -ENOMEM will be returned.
829  * NOTE: If the parameter t == LONG_MAX, then we will never split
830  * a region and possibly return -ENOMEM.  Callers specifying
831  * t == LONG_MAX do not need to check for -ENOMEM error.
832  */
833 static long region_del(struct resv_map *resv, long f, long t)
834 {
835 	struct list_head *head = &resv->regions;
836 	struct file_region *rg, *trg;
837 	struct file_region *nrg = NULL;
838 	long del = 0;
839 
840 retry:
841 	spin_lock(&resv->lock);
842 	list_for_each_entry_safe(rg, trg, head, link) {
843 		/*
844 		 * Skip regions before the range to be deleted.  file_region
845 		 * ranges are normally of the form [from, to).  However, there
846 		 * may be a "placeholder" entry in the map which is of the form
847 		 * (from, to) with from == to.  Check for placeholder entries
848 		 * at the beginning of the range to be deleted.
849 		 */
850 		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
851 			continue;
852 
853 		if (rg->from >= t)
854 			break;
855 
856 		if (f > rg->from && t < rg->to) { /* Must split region */
857 			/*
858 			 * Check for an entry in the cache before dropping
859 			 * lock and attempting allocation.
860 			 */
861 			if (!nrg &&
862 			    resv->region_cache_count > resv->adds_in_progress) {
863 				nrg = list_first_entry(&resv->region_cache,
864 							struct file_region,
865 							link);
866 				list_del(&nrg->link);
867 				resv->region_cache_count--;
868 			}
869 
870 			if (!nrg) {
871 				spin_unlock(&resv->lock);
872 				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
873 				if (!nrg)
874 					return -ENOMEM;
875 				goto retry;
876 			}
877 
878 			del += t - f;
879 			hugetlb_cgroup_uncharge_file_region(
880 				resv, rg, t - f, false);
881 
882 			/* New entry for end of split region */
883 			nrg->from = t;
884 			nrg->to = rg->to;
885 
886 			copy_hugetlb_cgroup_uncharge_info(nrg, rg);
887 
888 			INIT_LIST_HEAD(&nrg->link);
889 
890 			/* Original entry is trimmed */
891 			rg->to = f;
892 
893 			list_add(&nrg->link, &rg->link);
894 			nrg = NULL;
895 			break;
896 		}
897 
898 		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
899 			del += rg->to - rg->from;
900 			hugetlb_cgroup_uncharge_file_region(resv, rg,
901 							    rg->to - rg->from, true);
902 			list_del(&rg->link);
903 			kfree(rg);
904 			continue;
905 		}
906 
907 		if (f <= rg->from) {	/* Trim beginning of region */
908 			hugetlb_cgroup_uncharge_file_region(resv, rg,
909 							    t - rg->from, false);
910 
911 			del += t - rg->from;
912 			rg->from = t;
913 		} else {		/* Trim end of region */
914 			hugetlb_cgroup_uncharge_file_region(resv, rg,
915 							    rg->to - f, false);
916 
917 			del += rg->to - f;
918 			rg->to = f;
919 		}
920 	}
921 
922 	spin_unlock(&resv->lock);
923 	kfree(nrg);
924 	return del;
925 }
926 
927 /*
928  * A rare out of memory error was encountered which prevented removal of
929  * the reserve map region for a page.  The huge page itself was free'ed
930  * and removed from the page cache.  This routine will adjust the subpool
931  * usage count, and the global reserve count if needed.  By incrementing
932  * these counts, the reserve map entry which could not be deleted will
933  * appear as a "reserved" entry instead of simply dangling with incorrect
934  * counts.
935  */
936 void hugetlb_fix_reserve_counts(struct inode *inode)
937 {
938 	struct hugepage_subpool *spool = subpool_inode(inode);
939 	long rsv_adjust;
940 	bool reserved = false;
941 
942 	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
943 	if (rsv_adjust > 0) {
944 		struct hstate *h = hstate_inode(inode);
945 
946 		if (!hugetlb_acct_memory(h, 1))
947 			reserved = true;
948 	} else if (!rsv_adjust) {
949 		reserved = true;
950 	}
951 
952 	if (!reserved)
953 		pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
954 }
955 
956 /*
957  * Count and return the number of huge pages in the reserve map
958  * that intersect with the range [f, t).
959  */
960 static long region_count(struct resv_map *resv, long f, long t)
961 {
962 	struct list_head *head = &resv->regions;
963 	struct file_region *rg;
964 	long chg = 0;
965 
966 	spin_lock(&resv->lock);
967 	/* Locate each segment we overlap with, and count that overlap. */
968 	list_for_each_entry(rg, head, link) {
969 		long seg_from;
970 		long seg_to;
971 
972 		if (rg->to <= f)
973 			continue;
974 		if (rg->from >= t)
975 			break;
976 
977 		seg_from = max(rg->from, f);
978 		seg_to = min(rg->to, t);
979 
980 		chg += seg_to - seg_from;
981 	}
982 	spin_unlock(&resv->lock);
983 
984 	return chg;
985 }
986 
987 /*
988  * Convert the address within this vma to the page offset within
989  * the mapping, huge page units here.
990  */
991 static pgoff_t vma_hugecache_offset(struct hstate *h,
992 			struct vm_area_struct *vma, unsigned long address)
993 {
994 	return ((address - vma->vm_start) >> huge_page_shift(h)) +
995 			(vma->vm_pgoff >> huge_page_order(h));
996 }
997 
998 /**
999  * vma_kernel_pagesize - Page size granularity for this VMA.
1000  * @vma: The user mapping.
1001  *
1002  * Folios in this VMA will be aligned to, and at least the size of the
1003  * number of bytes returned by this function.
1004  *
1005  * Return: The default size of the folios allocated when backing a VMA.
1006  */
1007 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
1008 {
1009 	if (vma->vm_ops && vma->vm_ops->pagesize)
1010 		return vma->vm_ops->pagesize(vma);
1011 	return PAGE_SIZE;
1012 }
1013 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
1014 
1015 /*
1016  * Return the page size being used by the MMU to back a VMA. In the majority
1017  * of cases, the page size used by the kernel matches the MMU size. On
1018  * architectures where it differs, an architecture-specific 'strong'
1019  * version of this symbol is required.
1020  */
1021 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
1022 {
1023 	return vma_kernel_pagesize(vma);
1024 }
1025 
1026 /*
1027  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
1028  * bits of the reservation map pointer, which are always clear due to
1029  * alignment.
1030  */
1031 #define HPAGE_RESV_OWNER    (1UL << 0)
1032 #define HPAGE_RESV_UNMAPPED (1UL << 1)
1033 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
1034 
1035 /*
1036  * These helpers are used to track how many pages are reserved for
1037  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
1038  * is guaranteed to have their future faults succeed.
1039  *
1040  * With the exception of hugetlb_dup_vma_private() which is called at fork(),
1041  * the reserve counters are updated with the hugetlb_lock held. It is safe
1042  * to reset the VMA at fork() time as it is not in use yet and there is no
1043  * chance of the global counters getting corrupted as a result of the values.
1044  *
1045  * The private mapping reservation is represented in a subtly different
1046  * manner to a shared mapping.  A shared mapping has a region map associated
1047  * with the underlying file, this region map represents the backing file
1048  * pages which have ever had a reservation assigned which this persists even
1049  * after the page is instantiated.  A private mapping has a region map
1050  * associated with the original mmap which is attached to all VMAs which
1051  * reference it, this region map represents those offsets which have consumed
1052  * reservation ie. where pages have been instantiated.
1053  */
1054 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
1055 {
1056 	return (unsigned long)vma->vm_private_data;
1057 }
1058 
1059 static void set_vma_private_data(struct vm_area_struct *vma,
1060 							unsigned long value)
1061 {
1062 	vma->vm_private_data = (void *)value;
1063 }
1064 
1065 static void
1066 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
1067 					  struct hugetlb_cgroup *h_cg,
1068 					  struct hstate *h)
1069 {
1070 #ifdef CONFIG_CGROUP_HUGETLB
1071 	if (!h_cg || !h) {
1072 		resv_map->reservation_counter = NULL;
1073 		resv_map->pages_per_hpage = 0;
1074 		resv_map->css = NULL;
1075 	} else {
1076 		resv_map->reservation_counter =
1077 			&h_cg->rsvd_hugepage[hstate_index(h)];
1078 		resv_map->pages_per_hpage = pages_per_huge_page(h);
1079 		resv_map->css = &h_cg->css;
1080 	}
1081 #endif
1082 }
1083 
1084 struct resv_map *resv_map_alloc(void)
1085 {
1086 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
1087 	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
1088 
1089 	if (!resv_map || !rg) {
1090 		kfree(resv_map);
1091 		kfree(rg);
1092 		return NULL;
1093 	}
1094 
1095 	kref_init(&resv_map->refs);
1096 	spin_lock_init(&resv_map->lock);
1097 	INIT_LIST_HEAD(&resv_map->regions);
1098 	init_rwsem(&resv_map->rw_sema);
1099 
1100 	resv_map->adds_in_progress = 0;
1101 	/*
1102 	 * Initialize these to 0. On shared mappings, 0's here indicate these
1103 	 * fields don't do cgroup accounting. On private mappings, these will be
1104 	 * re-initialized to the proper values, to indicate that hugetlb cgroup
1105 	 * reservations are to be un-charged from here.
1106 	 */
1107 	resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
1108 
1109 	INIT_LIST_HEAD(&resv_map->region_cache);
1110 	list_add(&rg->link, &resv_map->region_cache);
1111 	resv_map->region_cache_count = 1;
1112 
1113 	return resv_map;
1114 }
1115 
1116 void resv_map_release(struct kref *ref)
1117 {
1118 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
1119 	struct list_head *head = &resv_map->region_cache;
1120 	struct file_region *rg, *trg;
1121 
1122 	/* Clear out any active regions before we release the map. */
1123 	region_del(resv_map, 0, LONG_MAX);
1124 
1125 	/* ... and any entries left in the cache */
1126 	list_for_each_entry_safe(rg, trg, head, link) {
1127 		list_del(&rg->link);
1128 		kfree(rg);
1129 	}
1130 
1131 	VM_BUG_ON(resv_map->adds_in_progress);
1132 
1133 	kfree(resv_map);
1134 }
1135 
1136 static inline struct resv_map *inode_resv_map(struct inode *inode)
1137 {
1138 	/*
1139 	 * At inode evict time, i_mapping may not point to the original
1140 	 * address space within the inode.  This original address space
1141 	 * contains the pointer to the resv_map.  So, always use the
1142 	 * address space embedded within the inode.
1143 	 * The VERY common case is inode->mapping == &inode->i_data but,
1144 	 * this may not be true for device special inodes.
1145 	 */
1146 	return (struct resv_map *)(&inode->i_data)->i_private_data;
1147 }
1148 
1149 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
1150 {
1151 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1152 	if (vma->vm_flags & VM_MAYSHARE) {
1153 		struct address_space *mapping = vma->vm_file->f_mapping;
1154 		struct inode *inode = mapping->host;
1155 
1156 		return inode_resv_map(inode);
1157 
1158 	} else {
1159 		return (struct resv_map *)(get_vma_private_data(vma) &
1160 							~HPAGE_RESV_MASK);
1161 	}
1162 }
1163 
1164 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
1165 {
1166 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1167 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1168 
1169 	set_vma_private_data(vma, (unsigned long)map);
1170 }
1171 
1172 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
1173 {
1174 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1175 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1176 
1177 	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1178 }
1179 
1180 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1181 {
1182 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1183 
1184 	return (get_vma_private_data(vma) & flag) != 0;
1185 }
1186 
1187 bool __vma_private_lock(struct vm_area_struct *vma)
1188 {
1189 	return !(vma->vm_flags & VM_MAYSHARE) &&
1190 		get_vma_private_data(vma) & ~HPAGE_RESV_MASK &&
1191 		is_vma_resv_set(vma, HPAGE_RESV_OWNER);
1192 }
1193 
1194 void hugetlb_dup_vma_private(struct vm_area_struct *vma)
1195 {
1196 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1197 	/*
1198 	 * Clear vm_private_data
1199 	 * - For shared mappings this is a per-vma semaphore that may be
1200 	 *   allocated in a subsequent call to hugetlb_vm_op_open.
1201 	 *   Before clearing, make sure pointer is not associated with vma
1202 	 *   as this will leak the structure.  This is the case when called
1203 	 *   via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already
1204 	 *   been called to allocate a new structure.
1205 	 * - For MAP_PRIVATE mappings, this is the reserve map which does
1206 	 *   not apply to children.  Faults generated by the children are
1207 	 *   not guaranteed to succeed, even if read-only.
1208 	 */
1209 	if (vma->vm_flags & VM_MAYSHARE) {
1210 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1211 
1212 		if (vma_lock && vma_lock->vma != vma)
1213 			vma->vm_private_data = NULL;
1214 	} else
1215 		vma->vm_private_data = NULL;
1216 }
1217 
1218 /*
1219  * Reset and decrement one ref on hugepage private reservation.
1220  * Called with mm->mmap_lock writer semaphore held.
1221  * This function should be only used by move_vma() and operate on
1222  * same sized vma. It should never come here with last ref on the
1223  * reservation.
1224  */
1225 void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1226 {
1227 	/*
1228 	 * Clear the old hugetlb private page reservation.
1229 	 * It has already been transferred to new_vma.
1230 	 *
1231 	 * During a mremap() operation of a hugetlb vma we call move_vma()
1232 	 * which copies vma into new_vma and unmaps vma. After the copy
1233 	 * operation both new_vma and vma share a reference to the resv_map
1234 	 * struct, and at that point vma is about to be unmapped. We don't
1235 	 * want to return the reservation to the pool at unmap of vma because
1236 	 * the reservation still lives on in new_vma, so simply decrement the
1237 	 * ref here and remove the resv_map reference from this vma.
1238 	 */
1239 	struct resv_map *reservations = vma_resv_map(vma);
1240 
1241 	if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1242 		resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1243 		kref_put(&reservations->refs, resv_map_release);
1244 	}
1245 
1246 	hugetlb_dup_vma_private(vma);
1247 }
1248 
1249 /* Returns true if the VMA has associated reserve pages */
1250 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1251 {
1252 	if (vma->vm_flags & VM_NORESERVE) {
1253 		/*
1254 		 * This address is already reserved by other process(chg == 0),
1255 		 * so, we should decrement reserved count. Without decrementing,
1256 		 * reserve count remains after releasing inode, because this
1257 		 * allocated page will go into page cache and is regarded as
1258 		 * coming from reserved pool in releasing step.  Currently, we
1259 		 * don't have any other solution to deal with this situation
1260 		 * properly, so add work-around here.
1261 		 */
1262 		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1263 			return true;
1264 		else
1265 			return false;
1266 	}
1267 
1268 	/* Shared mappings always use reserves */
1269 	if (vma->vm_flags & VM_MAYSHARE) {
1270 		/*
1271 		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1272 		 * be a region map for all pages.  The only situation where
1273 		 * there is no region map is if a hole was punched via
1274 		 * fallocate.  In this case, there really are no reserves to
1275 		 * use.  This situation is indicated if chg != 0.
1276 		 */
1277 		if (chg)
1278 			return false;
1279 		else
1280 			return true;
1281 	}
1282 
1283 	/*
1284 	 * Only the process that called mmap() has reserves for
1285 	 * private mappings.
1286 	 */
1287 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1288 		/*
1289 		 * Like the shared case above, a hole punch or truncate
1290 		 * could have been performed on the private mapping.
1291 		 * Examine the value of chg to determine if reserves
1292 		 * actually exist or were previously consumed.
1293 		 * Very Subtle - The value of chg comes from a previous
1294 		 * call to vma_needs_reserves().  The reserve map for
1295 		 * private mappings has different (opposite) semantics
1296 		 * than that of shared mappings.  vma_needs_reserves()
1297 		 * has already taken this difference in semantics into
1298 		 * account.  Therefore, the meaning of chg is the same
1299 		 * as in the shared case above.  Code could easily be
1300 		 * combined, but keeping it separate draws attention to
1301 		 * subtle differences.
1302 		 */
1303 		if (chg)
1304 			return false;
1305 		else
1306 			return true;
1307 	}
1308 
1309 	return false;
1310 }
1311 
1312 static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio)
1313 {
1314 	int nid = folio_nid(folio);
1315 
1316 	lockdep_assert_held(&hugetlb_lock);
1317 	VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1318 
1319 	list_move(&folio->lru, &h->hugepage_freelists[nid]);
1320 	h->free_huge_pages++;
1321 	h->free_huge_pages_node[nid]++;
1322 	folio_set_hugetlb_freed(folio);
1323 }
1324 
1325 static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h,
1326 								int nid)
1327 {
1328 	struct folio *folio;
1329 	bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1330 
1331 	lockdep_assert_held(&hugetlb_lock);
1332 	list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) {
1333 		if (pin && !folio_is_longterm_pinnable(folio))
1334 			continue;
1335 
1336 		if (folio_test_hwpoison(folio))
1337 			continue;
1338 
1339 		list_move(&folio->lru, &h->hugepage_activelist);
1340 		folio_ref_unfreeze(folio, 1);
1341 		folio_clear_hugetlb_freed(folio);
1342 		h->free_huge_pages--;
1343 		h->free_huge_pages_node[nid]--;
1344 		return folio;
1345 	}
1346 
1347 	return NULL;
1348 }
1349 
1350 static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask,
1351 							int nid, nodemask_t *nmask)
1352 {
1353 	unsigned int cpuset_mems_cookie;
1354 	struct zonelist *zonelist;
1355 	struct zone *zone;
1356 	struct zoneref *z;
1357 	int node = NUMA_NO_NODE;
1358 
1359 	/* 'nid' should not be NUMA_NO_NODE. Try to catch any misuse of it and rectifiy. */
1360 	if (nid == NUMA_NO_NODE)
1361 		nid = numa_node_id();
1362 
1363 	zonelist = node_zonelist(nid, gfp_mask);
1364 
1365 retry_cpuset:
1366 	cpuset_mems_cookie = read_mems_allowed_begin();
1367 	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1368 		struct folio *folio;
1369 
1370 		if (!cpuset_zone_allowed(zone, gfp_mask))
1371 			continue;
1372 		/*
1373 		 * no need to ask again on the same node. Pool is node rather than
1374 		 * zone aware
1375 		 */
1376 		if (zone_to_nid(zone) == node)
1377 			continue;
1378 		node = zone_to_nid(zone);
1379 
1380 		folio = dequeue_hugetlb_folio_node_exact(h, node);
1381 		if (folio)
1382 			return folio;
1383 	}
1384 	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1385 		goto retry_cpuset;
1386 
1387 	return NULL;
1388 }
1389 
1390 static unsigned long available_huge_pages(struct hstate *h)
1391 {
1392 	return h->free_huge_pages - h->resv_huge_pages;
1393 }
1394 
1395 static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h,
1396 				struct vm_area_struct *vma,
1397 				unsigned long address, int avoid_reserve,
1398 				long chg)
1399 {
1400 	struct folio *folio = NULL;
1401 	struct mempolicy *mpol;
1402 	gfp_t gfp_mask;
1403 	nodemask_t *nodemask;
1404 	int nid;
1405 
1406 	/*
1407 	 * A child process with MAP_PRIVATE mappings created by their parent
1408 	 * have no page reserves. This check ensures that reservations are
1409 	 * not "stolen". The child may still get SIGKILLed
1410 	 */
1411 	if (!vma_has_reserves(vma, chg) && !available_huge_pages(h))
1412 		goto err;
1413 
1414 	/* If reserves cannot be used, ensure enough pages are in the pool */
1415 	if (avoid_reserve && !available_huge_pages(h))
1416 		goto err;
1417 
1418 	gfp_mask = htlb_alloc_mask(h);
1419 	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1420 
1421 	if (mpol_is_preferred_many(mpol)) {
1422 		folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1423 							nid, nodemask);
1424 
1425 		/* Fallback to all nodes if page==NULL */
1426 		nodemask = NULL;
1427 	}
1428 
1429 	if (!folio)
1430 		folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1431 							nid, nodemask);
1432 
1433 	if (folio && !avoid_reserve && vma_has_reserves(vma, chg)) {
1434 		folio_set_hugetlb_restore_reserve(folio);
1435 		h->resv_huge_pages--;
1436 	}
1437 
1438 	mpol_cond_put(mpol);
1439 	return folio;
1440 
1441 err:
1442 	return NULL;
1443 }
1444 
1445 /*
1446  * common helper functions for hstate_next_node_to_{alloc|free}.
1447  * We may have allocated or freed a huge page based on a different
1448  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1449  * be outside of *nodes_allowed.  Ensure that we use an allowed
1450  * node for alloc or free.
1451  */
1452 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1453 {
1454 	nid = next_node_in(nid, *nodes_allowed);
1455 	VM_BUG_ON(nid >= MAX_NUMNODES);
1456 
1457 	return nid;
1458 }
1459 
1460 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1461 {
1462 	if (!node_isset(nid, *nodes_allowed))
1463 		nid = next_node_allowed(nid, nodes_allowed);
1464 	return nid;
1465 }
1466 
1467 /*
1468  * returns the previously saved node ["this node"] from which to
1469  * allocate a persistent huge page for the pool and advance the
1470  * next node from which to allocate, handling wrap at end of node
1471  * mask.
1472  */
1473 static int hstate_next_node_to_alloc(int *next_node,
1474 					nodemask_t *nodes_allowed)
1475 {
1476 	int nid;
1477 
1478 	VM_BUG_ON(!nodes_allowed);
1479 
1480 	nid = get_valid_node_allowed(*next_node, nodes_allowed);
1481 	*next_node = next_node_allowed(nid, nodes_allowed);
1482 
1483 	return nid;
1484 }
1485 
1486 /*
1487  * helper for remove_pool_hugetlb_folio() - return the previously saved
1488  * node ["this node"] from which to free a huge page.  Advance the
1489  * next node id whether or not we find a free huge page to free so
1490  * that the next attempt to free addresses the next node.
1491  */
1492 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1493 {
1494 	int nid;
1495 
1496 	VM_BUG_ON(!nodes_allowed);
1497 
1498 	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1499 	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1500 
1501 	return nid;
1502 }
1503 
1504 #define for_each_node_mask_to_alloc(next_node, nr_nodes, node, mask)		\
1505 	for (nr_nodes = nodes_weight(*mask);				\
1506 		nr_nodes > 0 &&						\
1507 		((node = hstate_next_node_to_alloc(next_node, mask)) || 1);	\
1508 		nr_nodes--)
1509 
1510 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
1511 	for (nr_nodes = nodes_weight(*mask);				\
1512 		nr_nodes > 0 &&						\
1513 		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
1514 		nr_nodes--)
1515 
1516 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1517 #ifdef CONFIG_CONTIG_ALLOC
1518 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1519 		int nid, nodemask_t *nodemask)
1520 {
1521 	struct folio *folio;
1522 	int order = huge_page_order(h);
1523 	bool retried = false;
1524 
1525 	if (nid == NUMA_NO_NODE)
1526 		nid = numa_mem_id();
1527 retry:
1528 	folio = NULL;
1529 #ifdef CONFIG_CMA
1530 	{
1531 		int node;
1532 
1533 		if (hugetlb_cma[nid])
1534 			folio = cma_alloc_folio(hugetlb_cma[nid], order, gfp_mask);
1535 
1536 		if (!folio && !(gfp_mask & __GFP_THISNODE)) {
1537 			for_each_node_mask(node, *nodemask) {
1538 				if (node == nid || !hugetlb_cma[node])
1539 					continue;
1540 
1541 				folio = cma_alloc_folio(hugetlb_cma[node], order, gfp_mask);
1542 				if (folio)
1543 					break;
1544 			}
1545 		}
1546 	}
1547 #endif
1548 	if (!folio) {
1549 		folio = folio_alloc_gigantic(order, gfp_mask, nid, nodemask);
1550 		if (!folio)
1551 			return NULL;
1552 	}
1553 
1554 	if (folio_ref_freeze(folio, 1))
1555 		return folio;
1556 
1557 	pr_warn("HugeTLB: unexpected refcount on PFN %lu\n", folio_pfn(folio));
1558 	hugetlb_free_folio(folio);
1559 	if (!retried) {
1560 		retried = true;
1561 		goto retry;
1562 	}
1563 	return NULL;
1564 }
1565 
1566 #else /* !CONFIG_CONTIG_ALLOC */
1567 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1568 					int nid, nodemask_t *nodemask)
1569 {
1570 	return NULL;
1571 }
1572 #endif /* CONFIG_CONTIG_ALLOC */
1573 
1574 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1575 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1576 					int nid, nodemask_t *nodemask)
1577 {
1578 	return NULL;
1579 }
1580 #endif
1581 
1582 /*
1583  * Remove hugetlb folio from lists.
1584  * If vmemmap exists for the folio, clear the hugetlb flag so that the
1585  * folio appears as just a compound page.  Otherwise, wait until after
1586  * allocating vmemmap to clear the flag.
1587  *
1588  * Must be called with hugetlb lock held.
1589  */
1590 static void remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1591 							bool adjust_surplus)
1592 {
1593 	int nid = folio_nid(folio);
1594 
1595 	VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio);
1596 	VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio);
1597 
1598 	lockdep_assert_held(&hugetlb_lock);
1599 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1600 		return;
1601 
1602 	list_del(&folio->lru);
1603 
1604 	if (folio_test_hugetlb_freed(folio)) {
1605 		folio_clear_hugetlb_freed(folio);
1606 		h->free_huge_pages--;
1607 		h->free_huge_pages_node[nid]--;
1608 	}
1609 	if (adjust_surplus) {
1610 		h->surplus_huge_pages--;
1611 		h->surplus_huge_pages_node[nid]--;
1612 	}
1613 
1614 	/*
1615 	 * We can only clear the hugetlb flag after allocating vmemmap
1616 	 * pages.  Otherwise, someone (memory error handling) may try to write
1617 	 * to tail struct pages.
1618 	 */
1619 	if (!folio_test_hugetlb_vmemmap_optimized(folio))
1620 		__folio_clear_hugetlb(folio);
1621 
1622 	h->nr_huge_pages--;
1623 	h->nr_huge_pages_node[nid]--;
1624 }
1625 
1626 static void add_hugetlb_folio(struct hstate *h, struct folio *folio,
1627 			     bool adjust_surplus)
1628 {
1629 	int nid = folio_nid(folio);
1630 
1631 	VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio);
1632 
1633 	lockdep_assert_held(&hugetlb_lock);
1634 
1635 	INIT_LIST_HEAD(&folio->lru);
1636 	h->nr_huge_pages++;
1637 	h->nr_huge_pages_node[nid]++;
1638 
1639 	if (adjust_surplus) {
1640 		h->surplus_huge_pages++;
1641 		h->surplus_huge_pages_node[nid]++;
1642 	}
1643 
1644 	__folio_set_hugetlb(folio);
1645 	folio_change_private(folio, NULL);
1646 	/*
1647 	 * We have to set hugetlb_vmemmap_optimized again as above
1648 	 * folio_change_private(folio, NULL) cleared it.
1649 	 */
1650 	folio_set_hugetlb_vmemmap_optimized(folio);
1651 
1652 	arch_clear_hugetlb_flags(folio);
1653 	enqueue_hugetlb_folio(h, folio);
1654 }
1655 
1656 static void __update_and_free_hugetlb_folio(struct hstate *h,
1657 						struct folio *folio)
1658 {
1659 	bool clear_flag = folio_test_hugetlb_vmemmap_optimized(folio);
1660 
1661 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1662 		return;
1663 
1664 	/*
1665 	 * If we don't know which subpages are hwpoisoned, we can't free
1666 	 * the hugepage, so it's leaked intentionally.
1667 	 */
1668 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1669 		return;
1670 
1671 	/*
1672 	 * If folio is not vmemmap optimized (!clear_flag), then the folio
1673 	 * is no longer identified as a hugetlb page.  hugetlb_vmemmap_restore_folio
1674 	 * can only be passed hugetlb pages and will BUG otherwise.
1675 	 */
1676 	if (clear_flag && hugetlb_vmemmap_restore_folio(h, folio)) {
1677 		spin_lock_irq(&hugetlb_lock);
1678 		/*
1679 		 * If we cannot allocate vmemmap pages, just refuse to free the
1680 		 * page and put the page back on the hugetlb free list and treat
1681 		 * as a surplus page.
1682 		 */
1683 		add_hugetlb_folio(h, folio, true);
1684 		spin_unlock_irq(&hugetlb_lock);
1685 		return;
1686 	}
1687 
1688 	/*
1689 	 * If vmemmap pages were allocated above, then we need to clear the
1690 	 * hugetlb flag under the hugetlb lock.
1691 	 */
1692 	if (folio_test_hugetlb(folio)) {
1693 		spin_lock_irq(&hugetlb_lock);
1694 		__folio_clear_hugetlb(folio);
1695 		spin_unlock_irq(&hugetlb_lock);
1696 	}
1697 
1698 	/*
1699 	 * Move PageHWPoison flag from head page to the raw error pages,
1700 	 * which makes any healthy subpages reusable.
1701 	 */
1702 	if (unlikely(folio_test_hwpoison(folio)))
1703 		folio_clear_hugetlb_hwpoison(folio);
1704 
1705 	folio_ref_unfreeze(folio, 1);
1706 
1707 	INIT_LIST_HEAD(&folio->_deferred_list);
1708 	hugetlb_free_folio(folio);
1709 }
1710 
1711 /*
1712  * As update_and_free_hugetlb_folio() can be called under any context, so we cannot
1713  * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1714  * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1715  * the vmemmap pages.
1716  *
1717  * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1718  * freed and frees them one-by-one. As the page->mapping pointer is going
1719  * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1720  * structure of a lockless linked list of huge pages to be freed.
1721  */
1722 static LLIST_HEAD(hpage_freelist);
1723 
1724 static void free_hpage_workfn(struct work_struct *work)
1725 {
1726 	struct llist_node *node;
1727 
1728 	node = llist_del_all(&hpage_freelist);
1729 
1730 	while (node) {
1731 		struct folio *folio;
1732 		struct hstate *h;
1733 
1734 		folio = container_of((struct address_space **)node,
1735 				     struct folio, mapping);
1736 		node = node->next;
1737 		folio->mapping = NULL;
1738 		/*
1739 		 * The VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio) in
1740 		 * folio_hstate() is going to trigger because a previous call to
1741 		 * remove_hugetlb_folio() will clear the hugetlb bit, so do
1742 		 * not use folio_hstate() directly.
1743 		 */
1744 		h = size_to_hstate(folio_size(folio));
1745 
1746 		__update_and_free_hugetlb_folio(h, folio);
1747 
1748 		cond_resched();
1749 	}
1750 }
1751 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1752 
1753 static inline void flush_free_hpage_work(struct hstate *h)
1754 {
1755 	if (hugetlb_vmemmap_optimizable(h))
1756 		flush_work(&free_hpage_work);
1757 }
1758 
1759 static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio,
1760 				 bool atomic)
1761 {
1762 	if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) {
1763 		__update_and_free_hugetlb_folio(h, folio);
1764 		return;
1765 	}
1766 
1767 	/*
1768 	 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1769 	 *
1770 	 * Only call schedule_work() if hpage_freelist is previously
1771 	 * empty. Otherwise, schedule_work() had been called but the workfn
1772 	 * hasn't retrieved the list yet.
1773 	 */
1774 	if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist))
1775 		schedule_work(&free_hpage_work);
1776 }
1777 
1778 static void bulk_vmemmap_restore_error(struct hstate *h,
1779 					struct list_head *folio_list,
1780 					struct list_head *non_hvo_folios)
1781 {
1782 	struct folio *folio, *t_folio;
1783 
1784 	if (!list_empty(non_hvo_folios)) {
1785 		/*
1786 		 * Free any restored hugetlb pages so that restore of the
1787 		 * entire list can be retried.
1788 		 * The idea is that in the common case of ENOMEM errors freeing
1789 		 * hugetlb pages with vmemmap we will free up memory so that we
1790 		 * can allocate vmemmap for more hugetlb pages.
1791 		 */
1792 		list_for_each_entry_safe(folio, t_folio, non_hvo_folios, lru) {
1793 			list_del(&folio->lru);
1794 			spin_lock_irq(&hugetlb_lock);
1795 			__folio_clear_hugetlb(folio);
1796 			spin_unlock_irq(&hugetlb_lock);
1797 			update_and_free_hugetlb_folio(h, folio, false);
1798 			cond_resched();
1799 		}
1800 	} else {
1801 		/*
1802 		 * In the case where there are no folios which can be
1803 		 * immediately freed, we loop through the list trying to restore
1804 		 * vmemmap individually in the hope that someone elsewhere may
1805 		 * have done something to cause success (such as freeing some
1806 		 * memory).  If unable to restore a hugetlb page, the hugetlb
1807 		 * page is made a surplus page and removed from the list.
1808 		 * If are able to restore vmemmap and free one hugetlb page, we
1809 		 * quit processing the list to retry the bulk operation.
1810 		 */
1811 		list_for_each_entry_safe(folio, t_folio, folio_list, lru)
1812 			if (hugetlb_vmemmap_restore_folio(h, folio)) {
1813 				list_del(&folio->lru);
1814 				spin_lock_irq(&hugetlb_lock);
1815 				add_hugetlb_folio(h, folio, true);
1816 				spin_unlock_irq(&hugetlb_lock);
1817 			} else {
1818 				list_del(&folio->lru);
1819 				spin_lock_irq(&hugetlb_lock);
1820 				__folio_clear_hugetlb(folio);
1821 				spin_unlock_irq(&hugetlb_lock);
1822 				update_and_free_hugetlb_folio(h, folio, false);
1823 				cond_resched();
1824 				break;
1825 			}
1826 	}
1827 }
1828 
1829 static void update_and_free_pages_bulk(struct hstate *h,
1830 						struct list_head *folio_list)
1831 {
1832 	long ret;
1833 	struct folio *folio, *t_folio;
1834 	LIST_HEAD(non_hvo_folios);
1835 
1836 	/*
1837 	 * First allocate required vmemmmap (if necessary) for all folios.
1838 	 * Carefully handle errors and free up any available hugetlb pages
1839 	 * in an effort to make forward progress.
1840 	 */
1841 retry:
1842 	ret = hugetlb_vmemmap_restore_folios(h, folio_list, &non_hvo_folios);
1843 	if (ret < 0) {
1844 		bulk_vmemmap_restore_error(h, folio_list, &non_hvo_folios);
1845 		goto retry;
1846 	}
1847 
1848 	/*
1849 	 * At this point, list should be empty, ret should be >= 0 and there
1850 	 * should only be pages on the non_hvo_folios list.
1851 	 * Do note that the non_hvo_folios list could be empty.
1852 	 * Without HVO enabled, ret will be 0 and there is no need to call
1853 	 * __folio_clear_hugetlb as this was done previously.
1854 	 */
1855 	VM_WARN_ON(!list_empty(folio_list));
1856 	VM_WARN_ON(ret < 0);
1857 	if (!list_empty(&non_hvo_folios) && ret) {
1858 		spin_lock_irq(&hugetlb_lock);
1859 		list_for_each_entry(folio, &non_hvo_folios, lru)
1860 			__folio_clear_hugetlb(folio);
1861 		spin_unlock_irq(&hugetlb_lock);
1862 	}
1863 
1864 	list_for_each_entry_safe(folio, t_folio, &non_hvo_folios, lru) {
1865 		update_and_free_hugetlb_folio(h, folio, false);
1866 		cond_resched();
1867 	}
1868 }
1869 
1870 struct hstate *size_to_hstate(unsigned long size)
1871 {
1872 	struct hstate *h;
1873 
1874 	for_each_hstate(h) {
1875 		if (huge_page_size(h) == size)
1876 			return h;
1877 	}
1878 	return NULL;
1879 }
1880 
1881 void free_huge_folio(struct folio *folio)
1882 {
1883 	/*
1884 	 * Can't pass hstate in here because it is called from the
1885 	 * generic mm code.
1886 	 */
1887 	struct hstate *h = folio_hstate(folio);
1888 	int nid = folio_nid(folio);
1889 	struct hugepage_subpool *spool = hugetlb_folio_subpool(folio);
1890 	bool restore_reserve;
1891 	unsigned long flags;
1892 
1893 	VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1894 	VM_BUG_ON_FOLIO(folio_mapcount(folio), folio);
1895 
1896 	hugetlb_set_folio_subpool(folio, NULL);
1897 	if (folio_test_anon(folio))
1898 		__ClearPageAnonExclusive(&folio->page);
1899 	folio->mapping = NULL;
1900 	restore_reserve = folio_test_hugetlb_restore_reserve(folio);
1901 	folio_clear_hugetlb_restore_reserve(folio);
1902 
1903 	/*
1904 	 * If HPageRestoreReserve was set on page, page allocation consumed a
1905 	 * reservation.  If the page was associated with a subpool, there
1906 	 * would have been a page reserved in the subpool before allocation
1907 	 * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1908 	 * reservation, do not call hugepage_subpool_put_pages() as this will
1909 	 * remove the reserved page from the subpool.
1910 	 */
1911 	if (!restore_reserve) {
1912 		/*
1913 		 * A return code of zero implies that the subpool will be
1914 		 * under its minimum size if the reservation is not restored
1915 		 * after page is free.  Therefore, force restore_reserve
1916 		 * operation.
1917 		 */
1918 		if (hugepage_subpool_put_pages(spool, 1) == 0)
1919 			restore_reserve = true;
1920 	}
1921 
1922 	spin_lock_irqsave(&hugetlb_lock, flags);
1923 	folio_clear_hugetlb_migratable(folio);
1924 	hugetlb_cgroup_uncharge_folio(hstate_index(h),
1925 				     pages_per_huge_page(h), folio);
1926 	hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
1927 					  pages_per_huge_page(h), folio);
1928 	lruvec_stat_mod_folio(folio, NR_HUGETLB, -pages_per_huge_page(h));
1929 	mem_cgroup_uncharge(folio);
1930 	if (restore_reserve)
1931 		h->resv_huge_pages++;
1932 
1933 	if (folio_test_hugetlb_temporary(folio)) {
1934 		remove_hugetlb_folio(h, folio, false);
1935 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1936 		update_and_free_hugetlb_folio(h, folio, true);
1937 	} else if (h->surplus_huge_pages_node[nid]) {
1938 		/* remove the page from active list */
1939 		remove_hugetlb_folio(h, folio, true);
1940 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1941 		update_and_free_hugetlb_folio(h, folio, true);
1942 	} else {
1943 		arch_clear_hugetlb_flags(folio);
1944 		enqueue_hugetlb_folio(h, folio);
1945 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1946 	}
1947 }
1948 
1949 /*
1950  * Must be called with the hugetlb lock held
1951  */
1952 static void __prep_account_new_huge_page(struct hstate *h, int nid)
1953 {
1954 	lockdep_assert_held(&hugetlb_lock);
1955 	h->nr_huge_pages++;
1956 	h->nr_huge_pages_node[nid]++;
1957 }
1958 
1959 static void init_new_hugetlb_folio(struct hstate *h, struct folio *folio)
1960 {
1961 	__folio_set_hugetlb(folio);
1962 	INIT_LIST_HEAD(&folio->lru);
1963 	hugetlb_set_folio_subpool(folio, NULL);
1964 	set_hugetlb_cgroup(folio, NULL);
1965 	set_hugetlb_cgroup_rsvd(folio, NULL);
1966 }
1967 
1968 static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio)
1969 {
1970 	init_new_hugetlb_folio(h, folio);
1971 	hugetlb_vmemmap_optimize_folio(h, folio);
1972 }
1973 
1974 static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid)
1975 {
1976 	__prep_new_hugetlb_folio(h, folio);
1977 	spin_lock_irq(&hugetlb_lock);
1978 	__prep_account_new_huge_page(h, nid);
1979 	spin_unlock_irq(&hugetlb_lock);
1980 }
1981 
1982 /*
1983  * Find and lock address space (mapping) in write mode.
1984  *
1985  * Upon entry, the folio is locked which means that folio_mapping() is
1986  * stable.  Due to locking order, we can only trylock_write.  If we can
1987  * not get the lock, simply return NULL to caller.
1988  */
1989 struct address_space *hugetlb_folio_mapping_lock_write(struct folio *folio)
1990 {
1991 	struct address_space *mapping = folio_mapping(folio);
1992 
1993 	if (!mapping)
1994 		return mapping;
1995 
1996 	if (i_mmap_trylock_write(mapping))
1997 		return mapping;
1998 
1999 	return NULL;
2000 }
2001 
2002 static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h,
2003 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
2004 		nodemask_t *node_alloc_noretry)
2005 {
2006 	int order = huge_page_order(h);
2007 	struct folio *folio;
2008 	bool alloc_try_hard = true;
2009 	bool retry = true;
2010 
2011 	/*
2012 	 * By default we always try hard to allocate the folio with
2013 	 * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating folios in
2014 	 * a loop (to adjust global huge page counts) and previous allocation
2015 	 * failed, do not continue to try hard on the same node.  Use the
2016 	 * node_alloc_noretry bitmap to manage this state information.
2017 	 */
2018 	if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
2019 		alloc_try_hard = false;
2020 	if (alloc_try_hard)
2021 		gfp_mask |= __GFP_RETRY_MAYFAIL;
2022 	if (nid == NUMA_NO_NODE)
2023 		nid = numa_mem_id();
2024 retry:
2025 	folio = __folio_alloc(gfp_mask, order, nid, nmask);
2026 	/* Ensure hugetlb folio won't have large_rmappable flag set. */
2027 	if (folio)
2028 		folio_clear_large_rmappable(folio);
2029 
2030 	if (folio && !folio_ref_freeze(folio, 1)) {
2031 		folio_put(folio);
2032 		if (retry) {	/* retry once */
2033 			retry = false;
2034 			goto retry;
2035 		}
2036 		/* WOW!  twice in a row. */
2037 		pr_warn("HugeTLB unexpected inflated folio ref count\n");
2038 		folio = NULL;
2039 	}
2040 
2041 	/*
2042 	 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a
2043 	 * folio this indicates an overall state change.  Clear bit so
2044 	 * that we resume normal 'try hard' allocations.
2045 	 */
2046 	if (node_alloc_noretry && folio && !alloc_try_hard)
2047 		node_clear(nid, *node_alloc_noretry);
2048 
2049 	/*
2050 	 * If we tried hard to get a folio but failed, set bit so that
2051 	 * subsequent attempts will not try as hard until there is an
2052 	 * overall state change.
2053 	 */
2054 	if (node_alloc_noretry && !folio && alloc_try_hard)
2055 		node_set(nid, *node_alloc_noretry);
2056 
2057 	if (!folio) {
2058 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
2059 		return NULL;
2060 	}
2061 
2062 	__count_vm_event(HTLB_BUDDY_PGALLOC);
2063 	return folio;
2064 }
2065 
2066 static struct folio *only_alloc_fresh_hugetlb_folio(struct hstate *h,
2067 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
2068 		nodemask_t *node_alloc_noretry)
2069 {
2070 	struct folio *folio;
2071 
2072 	if (hstate_is_gigantic(h))
2073 		folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
2074 	else
2075 		folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, nmask, node_alloc_noretry);
2076 	if (folio)
2077 		init_new_hugetlb_folio(h, folio);
2078 	return folio;
2079 }
2080 
2081 /*
2082  * Common helper to allocate a fresh hugetlb page. All specific allocators
2083  * should use this function to get new hugetlb pages
2084  *
2085  * Note that returned page is 'frozen':  ref count of head page and all tail
2086  * pages is zero.
2087  */
2088 static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h,
2089 		gfp_t gfp_mask, int nid, nodemask_t *nmask)
2090 {
2091 	struct folio *folio;
2092 
2093 	if (hstate_is_gigantic(h))
2094 		folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
2095 	else
2096 		folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2097 	if (!folio)
2098 		return NULL;
2099 
2100 	prep_new_hugetlb_folio(h, folio, folio_nid(folio));
2101 	return folio;
2102 }
2103 
2104 static void prep_and_add_allocated_folios(struct hstate *h,
2105 					struct list_head *folio_list)
2106 {
2107 	unsigned long flags;
2108 	struct folio *folio, *tmp_f;
2109 
2110 	/* Send list for bulk vmemmap optimization processing */
2111 	hugetlb_vmemmap_optimize_folios(h, folio_list);
2112 
2113 	/* Add all new pool pages to free lists in one lock cycle */
2114 	spin_lock_irqsave(&hugetlb_lock, flags);
2115 	list_for_each_entry_safe(folio, tmp_f, folio_list, lru) {
2116 		__prep_account_new_huge_page(h, folio_nid(folio));
2117 		enqueue_hugetlb_folio(h, folio);
2118 	}
2119 	spin_unlock_irqrestore(&hugetlb_lock, flags);
2120 }
2121 
2122 /*
2123  * Allocates a fresh hugetlb page in a node interleaved manner.  The page
2124  * will later be added to the appropriate hugetlb pool.
2125  */
2126 static struct folio *alloc_pool_huge_folio(struct hstate *h,
2127 					nodemask_t *nodes_allowed,
2128 					nodemask_t *node_alloc_noretry,
2129 					int *next_node)
2130 {
2131 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2132 	int nr_nodes, node;
2133 
2134 	for_each_node_mask_to_alloc(next_node, nr_nodes, node, nodes_allowed) {
2135 		struct folio *folio;
2136 
2137 		folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, node,
2138 					nodes_allowed, node_alloc_noretry);
2139 		if (folio)
2140 			return folio;
2141 	}
2142 
2143 	return NULL;
2144 }
2145 
2146 /*
2147  * Remove huge page from pool from next node to free.  Attempt to keep
2148  * persistent huge pages more or less balanced over allowed nodes.
2149  * This routine only 'removes' the hugetlb page.  The caller must make
2150  * an additional call to free the page to low level allocators.
2151  * Called with hugetlb_lock locked.
2152  */
2153 static struct folio *remove_pool_hugetlb_folio(struct hstate *h,
2154 		nodemask_t *nodes_allowed, bool acct_surplus)
2155 {
2156 	int nr_nodes, node;
2157 	struct folio *folio = NULL;
2158 
2159 	lockdep_assert_held(&hugetlb_lock);
2160 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2161 		/*
2162 		 * If we're returning unused surplus pages, only examine
2163 		 * nodes with surplus pages.
2164 		 */
2165 		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2166 		    !list_empty(&h->hugepage_freelists[node])) {
2167 			folio = list_entry(h->hugepage_freelists[node].next,
2168 					  struct folio, lru);
2169 			remove_hugetlb_folio(h, folio, acct_surplus);
2170 			break;
2171 		}
2172 	}
2173 
2174 	return folio;
2175 }
2176 
2177 /*
2178  * Dissolve a given free hugetlb folio into free buddy pages. This function
2179  * does nothing for in-use hugetlb folios and non-hugetlb folios.
2180  * This function returns values like below:
2181  *
2182  *  -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2183  *           when the system is under memory pressure and the feature of
2184  *           freeing unused vmemmap pages associated with each hugetlb page
2185  *           is enabled.
2186  *  -EBUSY:  failed to dissolved free hugepages or the hugepage is in-use
2187  *           (allocated or reserved.)
2188  *       0:  successfully dissolved free hugepages or the page is not a
2189  *           hugepage (considered as already dissolved)
2190  */
2191 int dissolve_free_hugetlb_folio(struct folio *folio)
2192 {
2193 	int rc = -EBUSY;
2194 
2195 retry:
2196 	/* Not to disrupt normal path by vainly holding hugetlb_lock */
2197 	if (!folio_test_hugetlb(folio))
2198 		return 0;
2199 
2200 	spin_lock_irq(&hugetlb_lock);
2201 	if (!folio_test_hugetlb(folio)) {
2202 		rc = 0;
2203 		goto out;
2204 	}
2205 
2206 	if (!folio_ref_count(folio)) {
2207 		struct hstate *h = folio_hstate(folio);
2208 		if (!available_huge_pages(h))
2209 			goto out;
2210 
2211 		/*
2212 		 * We should make sure that the page is already on the free list
2213 		 * when it is dissolved.
2214 		 */
2215 		if (unlikely(!folio_test_hugetlb_freed(folio))) {
2216 			spin_unlock_irq(&hugetlb_lock);
2217 			cond_resched();
2218 
2219 			/*
2220 			 * Theoretically, we should return -EBUSY when we
2221 			 * encounter this race. In fact, we have a chance
2222 			 * to successfully dissolve the page if we do a
2223 			 * retry. Because the race window is quite small.
2224 			 * If we seize this opportunity, it is an optimization
2225 			 * for increasing the success rate of dissolving page.
2226 			 */
2227 			goto retry;
2228 		}
2229 
2230 		remove_hugetlb_folio(h, folio, false);
2231 		h->max_huge_pages--;
2232 		spin_unlock_irq(&hugetlb_lock);
2233 
2234 		/*
2235 		 * Normally update_and_free_hugtlb_folio will allocate required vmemmmap
2236 		 * before freeing the page.  update_and_free_hugtlb_folio will fail to
2237 		 * free the page if it can not allocate required vmemmap.  We
2238 		 * need to adjust max_huge_pages if the page is not freed.
2239 		 * Attempt to allocate vmemmmap here so that we can take
2240 		 * appropriate action on failure.
2241 		 *
2242 		 * The folio_test_hugetlb check here is because
2243 		 * remove_hugetlb_folio will clear hugetlb folio flag for
2244 		 * non-vmemmap optimized hugetlb folios.
2245 		 */
2246 		if (folio_test_hugetlb(folio)) {
2247 			rc = hugetlb_vmemmap_restore_folio(h, folio);
2248 			if (rc) {
2249 				spin_lock_irq(&hugetlb_lock);
2250 				add_hugetlb_folio(h, folio, false);
2251 				h->max_huge_pages++;
2252 				goto out;
2253 			}
2254 		} else
2255 			rc = 0;
2256 
2257 		update_and_free_hugetlb_folio(h, folio, false);
2258 		return rc;
2259 	}
2260 out:
2261 	spin_unlock_irq(&hugetlb_lock);
2262 	return rc;
2263 }
2264 
2265 /*
2266  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2267  * make specified memory blocks removable from the system.
2268  * Note that this will dissolve a free gigantic hugepage completely, if any
2269  * part of it lies within the given range.
2270  * Also note that if dissolve_free_hugetlb_folio() returns with an error, all
2271  * free hugetlb folios that were dissolved before that error are lost.
2272  */
2273 int dissolve_free_hugetlb_folios(unsigned long start_pfn, unsigned long end_pfn)
2274 {
2275 	unsigned long pfn;
2276 	struct folio *folio;
2277 	int rc = 0;
2278 	unsigned int order;
2279 	struct hstate *h;
2280 
2281 	if (!hugepages_supported())
2282 		return rc;
2283 
2284 	order = huge_page_order(&default_hstate);
2285 	for_each_hstate(h)
2286 		order = min(order, huge_page_order(h));
2287 
2288 	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
2289 		folio = pfn_folio(pfn);
2290 		rc = dissolve_free_hugetlb_folio(folio);
2291 		if (rc)
2292 			break;
2293 	}
2294 
2295 	return rc;
2296 }
2297 
2298 /*
2299  * Allocates a fresh surplus page from the page allocator.
2300  */
2301 static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h,
2302 				gfp_t gfp_mask,	int nid, nodemask_t *nmask)
2303 {
2304 	struct folio *folio = NULL;
2305 
2306 	if (hstate_is_gigantic(h))
2307 		return NULL;
2308 
2309 	spin_lock_irq(&hugetlb_lock);
2310 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2311 		goto out_unlock;
2312 	spin_unlock_irq(&hugetlb_lock);
2313 
2314 	folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask);
2315 	if (!folio)
2316 		return NULL;
2317 
2318 	spin_lock_irq(&hugetlb_lock);
2319 	/*
2320 	 * We could have raced with the pool size change.
2321 	 * Double check that and simply deallocate the new page
2322 	 * if we would end up overcommiting the surpluses. Abuse
2323 	 * temporary page to workaround the nasty free_huge_folio
2324 	 * codeflow
2325 	 */
2326 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2327 		folio_set_hugetlb_temporary(folio);
2328 		spin_unlock_irq(&hugetlb_lock);
2329 		free_huge_folio(folio);
2330 		return NULL;
2331 	}
2332 
2333 	h->surplus_huge_pages++;
2334 	h->surplus_huge_pages_node[folio_nid(folio)]++;
2335 
2336 out_unlock:
2337 	spin_unlock_irq(&hugetlb_lock);
2338 
2339 	return folio;
2340 }
2341 
2342 static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask,
2343 				     int nid, nodemask_t *nmask)
2344 {
2345 	struct folio *folio;
2346 
2347 	if (hstate_is_gigantic(h))
2348 		return NULL;
2349 
2350 	folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask);
2351 	if (!folio)
2352 		return NULL;
2353 
2354 	/* fresh huge pages are frozen */
2355 	folio_ref_unfreeze(folio, 1);
2356 	/*
2357 	 * We do not account these pages as surplus because they are only
2358 	 * temporary and will be released properly on the last reference
2359 	 */
2360 	folio_set_hugetlb_temporary(folio);
2361 
2362 	return folio;
2363 }
2364 
2365 /*
2366  * Use the VMA's mpolicy to allocate a huge page from the buddy.
2367  */
2368 static
2369 struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h,
2370 		struct vm_area_struct *vma, unsigned long addr)
2371 {
2372 	struct folio *folio = NULL;
2373 	struct mempolicy *mpol;
2374 	gfp_t gfp_mask = htlb_alloc_mask(h);
2375 	int nid;
2376 	nodemask_t *nodemask;
2377 
2378 	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2379 	if (mpol_is_preferred_many(mpol)) {
2380 		gfp_t gfp = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2381 
2382 		folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask);
2383 
2384 		/* Fallback to all nodes if page==NULL */
2385 		nodemask = NULL;
2386 	}
2387 
2388 	if (!folio)
2389 		folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask);
2390 	mpol_cond_put(mpol);
2391 	return folio;
2392 }
2393 
2394 struct folio *alloc_hugetlb_folio_reserve(struct hstate *h, int preferred_nid,
2395 		nodemask_t *nmask, gfp_t gfp_mask)
2396 {
2397 	struct folio *folio;
2398 
2399 	spin_lock_irq(&hugetlb_lock);
2400 	folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, preferred_nid,
2401 					       nmask);
2402 	if (folio) {
2403 		VM_BUG_ON(!h->resv_huge_pages);
2404 		h->resv_huge_pages--;
2405 	}
2406 
2407 	spin_unlock_irq(&hugetlb_lock);
2408 	return folio;
2409 }
2410 
2411 /* folio migration callback function */
2412 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
2413 		nodemask_t *nmask, gfp_t gfp_mask, bool allow_alloc_fallback)
2414 {
2415 	spin_lock_irq(&hugetlb_lock);
2416 	if (available_huge_pages(h)) {
2417 		struct folio *folio;
2418 
2419 		folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
2420 						preferred_nid, nmask);
2421 		if (folio) {
2422 			spin_unlock_irq(&hugetlb_lock);
2423 			return folio;
2424 		}
2425 	}
2426 	spin_unlock_irq(&hugetlb_lock);
2427 
2428 	/* We cannot fallback to other nodes, as we could break the per-node pool. */
2429 	if (!allow_alloc_fallback)
2430 		gfp_mask |= __GFP_THISNODE;
2431 
2432 	return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask);
2433 }
2434 
2435 static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
2436 {
2437 #ifdef CONFIG_NUMA
2438 	struct mempolicy *mpol = get_task_policy(current);
2439 
2440 	/*
2441 	 * Only enforce MPOL_BIND policy which overlaps with cpuset policy
2442 	 * (from policy_nodemask) specifically for hugetlb case
2443 	 */
2444 	if (mpol->mode == MPOL_BIND &&
2445 		(apply_policy_zone(mpol, gfp_zone(gfp)) &&
2446 		 cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
2447 		return &mpol->nodes;
2448 #endif
2449 	return NULL;
2450 }
2451 
2452 /*
2453  * Increase the hugetlb pool such that it can accommodate a reservation
2454  * of size 'delta'.
2455  */
2456 static int gather_surplus_pages(struct hstate *h, long delta)
2457 	__must_hold(&hugetlb_lock)
2458 {
2459 	LIST_HEAD(surplus_list);
2460 	struct folio *folio, *tmp;
2461 	int ret;
2462 	long i;
2463 	long needed, allocated;
2464 	bool alloc_ok = true;
2465 	int node;
2466 	nodemask_t *mbind_nodemask = policy_mbind_nodemask(htlb_alloc_mask(h));
2467 
2468 	lockdep_assert_held(&hugetlb_lock);
2469 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2470 	if (needed <= 0) {
2471 		h->resv_huge_pages += delta;
2472 		return 0;
2473 	}
2474 
2475 	allocated = 0;
2476 
2477 	ret = -ENOMEM;
2478 retry:
2479 	spin_unlock_irq(&hugetlb_lock);
2480 	for (i = 0; i < needed; i++) {
2481 		folio = NULL;
2482 		for_each_node_mask(node, cpuset_current_mems_allowed) {
2483 			if (!mbind_nodemask || node_isset(node, *mbind_nodemask)) {
2484 				folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h),
2485 						node, NULL);
2486 				if (folio)
2487 					break;
2488 			}
2489 		}
2490 		if (!folio) {
2491 			alloc_ok = false;
2492 			break;
2493 		}
2494 		list_add(&folio->lru, &surplus_list);
2495 		cond_resched();
2496 	}
2497 	allocated += i;
2498 
2499 	/*
2500 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
2501 	 * because either resv_huge_pages or free_huge_pages may have changed.
2502 	 */
2503 	spin_lock_irq(&hugetlb_lock);
2504 	needed = (h->resv_huge_pages + delta) -
2505 			(h->free_huge_pages + allocated);
2506 	if (needed > 0) {
2507 		if (alloc_ok)
2508 			goto retry;
2509 		/*
2510 		 * We were not able to allocate enough pages to
2511 		 * satisfy the entire reservation so we free what
2512 		 * we've allocated so far.
2513 		 */
2514 		goto free;
2515 	}
2516 	/*
2517 	 * The surplus_list now contains _at_least_ the number of extra pages
2518 	 * needed to accommodate the reservation.  Add the appropriate number
2519 	 * of pages to the hugetlb pool and free the extras back to the buddy
2520 	 * allocator.  Commit the entire reservation here to prevent another
2521 	 * process from stealing the pages as they are added to the pool but
2522 	 * before they are reserved.
2523 	 */
2524 	needed += allocated;
2525 	h->resv_huge_pages += delta;
2526 	ret = 0;
2527 
2528 	/* Free the needed pages to the hugetlb pool */
2529 	list_for_each_entry_safe(folio, tmp, &surplus_list, lru) {
2530 		if ((--needed) < 0)
2531 			break;
2532 		/* Add the page to the hugetlb allocator */
2533 		enqueue_hugetlb_folio(h, folio);
2534 	}
2535 free:
2536 	spin_unlock_irq(&hugetlb_lock);
2537 
2538 	/*
2539 	 * Free unnecessary surplus pages to the buddy allocator.
2540 	 * Pages have no ref count, call free_huge_folio directly.
2541 	 */
2542 	list_for_each_entry_safe(folio, tmp, &surplus_list, lru)
2543 		free_huge_folio(folio);
2544 	spin_lock_irq(&hugetlb_lock);
2545 
2546 	return ret;
2547 }
2548 
2549 /*
2550  * This routine has two main purposes:
2551  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2552  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2553  *    to the associated reservation map.
2554  * 2) Free any unused surplus pages that may have been allocated to satisfy
2555  *    the reservation.  As many as unused_resv_pages may be freed.
2556  */
2557 static void return_unused_surplus_pages(struct hstate *h,
2558 					unsigned long unused_resv_pages)
2559 {
2560 	unsigned long nr_pages;
2561 	LIST_HEAD(page_list);
2562 
2563 	lockdep_assert_held(&hugetlb_lock);
2564 	/* Uncommit the reservation */
2565 	h->resv_huge_pages -= unused_resv_pages;
2566 
2567 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2568 		goto out;
2569 
2570 	/*
2571 	 * Part (or even all) of the reservation could have been backed
2572 	 * by pre-allocated pages. Only free surplus pages.
2573 	 */
2574 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2575 
2576 	/*
2577 	 * We want to release as many surplus pages as possible, spread
2578 	 * evenly across all nodes with memory. Iterate across these nodes
2579 	 * until we can no longer free unreserved surplus pages. This occurs
2580 	 * when the nodes with surplus pages have no free pages.
2581 	 * remove_pool_hugetlb_folio() will balance the freed pages across the
2582 	 * on-line nodes with memory and will handle the hstate accounting.
2583 	 */
2584 	while (nr_pages--) {
2585 		struct folio *folio;
2586 
2587 		folio = remove_pool_hugetlb_folio(h, &node_states[N_MEMORY], 1);
2588 		if (!folio)
2589 			goto out;
2590 
2591 		list_add(&folio->lru, &page_list);
2592 	}
2593 
2594 out:
2595 	spin_unlock_irq(&hugetlb_lock);
2596 	update_and_free_pages_bulk(h, &page_list);
2597 	spin_lock_irq(&hugetlb_lock);
2598 }
2599 
2600 
2601 /*
2602  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2603  * are used by the huge page allocation routines to manage reservations.
2604  *
2605  * vma_needs_reservation is called to determine if the huge page at addr
2606  * within the vma has an associated reservation.  If a reservation is
2607  * needed, the value 1 is returned.  The caller is then responsible for
2608  * managing the global reservation and subpool usage counts.  After
2609  * the huge page has been allocated, vma_commit_reservation is called
2610  * to add the page to the reservation map.  If the page allocation fails,
2611  * the reservation must be ended instead of committed.  vma_end_reservation
2612  * is called in such cases.
2613  *
2614  * In the normal case, vma_commit_reservation returns the same value
2615  * as the preceding vma_needs_reservation call.  The only time this
2616  * is not the case is if a reserve map was changed between calls.  It
2617  * is the responsibility of the caller to notice the difference and
2618  * take appropriate action.
2619  *
2620  * vma_add_reservation is used in error paths where a reservation must
2621  * be restored when a newly allocated huge page must be freed.  It is
2622  * to be called after calling vma_needs_reservation to determine if a
2623  * reservation exists.
2624  *
2625  * vma_del_reservation is used in error paths where an entry in the reserve
2626  * map was created during huge page allocation and must be removed.  It is to
2627  * be called after calling vma_needs_reservation to determine if a reservation
2628  * exists.
2629  */
2630 enum vma_resv_mode {
2631 	VMA_NEEDS_RESV,
2632 	VMA_COMMIT_RESV,
2633 	VMA_END_RESV,
2634 	VMA_ADD_RESV,
2635 	VMA_DEL_RESV,
2636 };
2637 static long __vma_reservation_common(struct hstate *h,
2638 				struct vm_area_struct *vma, unsigned long addr,
2639 				enum vma_resv_mode mode)
2640 {
2641 	struct resv_map *resv;
2642 	pgoff_t idx;
2643 	long ret;
2644 	long dummy_out_regions_needed;
2645 
2646 	resv = vma_resv_map(vma);
2647 	if (!resv)
2648 		return 1;
2649 
2650 	idx = vma_hugecache_offset(h, vma, addr);
2651 	switch (mode) {
2652 	case VMA_NEEDS_RESV:
2653 		ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2654 		/* We assume that vma_reservation_* routines always operate on
2655 		 * 1 page, and that adding to resv map a 1 page entry can only
2656 		 * ever require 1 region.
2657 		 */
2658 		VM_BUG_ON(dummy_out_regions_needed != 1);
2659 		break;
2660 	case VMA_COMMIT_RESV:
2661 		ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2662 		/* region_add calls of range 1 should never fail. */
2663 		VM_BUG_ON(ret < 0);
2664 		break;
2665 	case VMA_END_RESV:
2666 		region_abort(resv, idx, idx + 1, 1);
2667 		ret = 0;
2668 		break;
2669 	case VMA_ADD_RESV:
2670 		if (vma->vm_flags & VM_MAYSHARE) {
2671 			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2672 			/* region_add calls of range 1 should never fail. */
2673 			VM_BUG_ON(ret < 0);
2674 		} else {
2675 			region_abort(resv, idx, idx + 1, 1);
2676 			ret = region_del(resv, idx, idx + 1);
2677 		}
2678 		break;
2679 	case VMA_DEL_RESV:
2680 		if (vma->vm_flags & VM_MAYSHARE) {
2681 			region_abort(resv, idx, idx + 1, 1);
2682 			ret = region_del(resv, idx, idx + 1);
2683 		} else {
2684 			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2685 			/* region_add calls of range 1 should never fail. */
2686 			VM_BUG_ON(ret < 0);
2687 		}
2688 		break;
2689 	default:
2690 		BUG();
2691 	}
2692 
2693 	if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2694 		return ret;
2695 	/*
2696 	 * We know private mapping must have HPAGE_RESV_OWNER set.
2697 	 *
2698 	 * In most cases, reserves always exist for private mappings.
2699 	 * However, a file associated with mapping could have been
2700 	 * hole punched or truncated after reserves were consumed.
2701 	 * As subsequent fault on such a range will not use reserves.
2702 	 * Subtle - The reserve map for private mappings has the
2703 	 * opposite meaning than that of shared mappings.  If NO
2704 	 * entry is in the reserve map, it means a reservation exists.
2705 	 * If an entry exists in the reserve map, it means the
2706 	 * reservation has already been consumed.  As a result, the
2707 	 * return value of this routine is the opposite of the
2708 	 * value returned from reserve map manipulation routines above.
2709 	 */
2710 	if (ret > 0)
2711 		return 0;
2712 	if (ret == 0)
2713 		return 1;
2714 	return ret;
2715 }
2716 
2717 static long vma_needs_reservation(struct hstate *h,
2718 			struct vm_area_struct *vma, unsigned long addr)
2719 {
2720 	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2721 }
2722 
2723 static long vma_commit_reservation(struct hstate *h,
2724 			struct vm_area_struct *vma, unsigned long addr)
2725 {
2726 	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2727 }
2728 
2729 static void vma_end_reservation(struct hstate *h,
2730 			struct vm_area_struct *vma, unsigned long addr)
2731 {
2732 	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2733 }
2734 
2735 static long vma_add_reservation(struct hstate *h,
2736 			struct vm_area_struct *vma, unsigned long addr)
2737 {
2738 	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2739 }
2740 
2741 static long vma_del_reservation(struct hstate *h,
2742 			struct vm_area_struct *vma, unsigned long addr)
2743 {
2744 	return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2745 }
2746 
2747 /*
2748  * This routine is called to restore reservation information on error paths.
2749  * It should ONLY be called for folios allocated via alloc_hugetlb_folio(),
2750  * and the hugetlb mutex should remain held when calling this routine.
2751  *
2752  * It handles two specific cases:
2753  * 1) A reservation was in place and the folio consumed the reservation.
2754  *    hugetlb_restore_reserve is set in the folio.
2755  * 2) No reservation was in place for the page, so hugetlb_restore_reserve is
2756  *    not set.  However, alloc_hugetlb_folio always updates the reserve map.
2757  *
2758  * In case 1, free_huge_folio later in the error path will increment the
2759  * global reserve count.  But, free_huge_folio does not have enough context
2760  * to adjust the reservation map.  This case deals primarily with private
2761  * mappings.  Adjust the reserve map here to be consistent with global
2762  * reserve count adjustments to be made by free_huge_folio.  Make sure the
2763  * reserve map indicates there is a reservation present.
2764  *
2765  * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio.
2766  */
2767 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2768 			unsigned long address, struct folio *folio)
2769 {
2770 	long rc = vma_needs_reservation(h, vma, address);
2771 
2772 	if (folio_test_hugetlb_restore_reserve(folio)) {
2773 		if (unlikely(rc < 0))
2774 			/*
2775 			 * Rare out of memory condition in reserve map
2776 			 * manipulation.  Clear hugetlb_restore_reserve so
2777 			 * that global reserve count will not be incremented
2778 			 * by free_huge_folio.  This will make it appear
2779 			 * as though the reservation for this folio was
2780 			 * consumed.  This may prevent the task from
2781 			 * faulting in the folio at a later time.  This
2782 			 * is better than inconsistent global huge page
2783 			 * accounting of reserve counts.
2784 			 */
2785 			folio_clear_hugetlb_restore_reserve(folio);
2786 		else if (rc)
2787 			(void)vma_add_reservation(h, vma, address);
2788 		else
2789 			vma_end_reservation(h, vma, address);
2790 	} else {
2791 		if (!rc) {
2792 			/*
2793 			 * This indicates there is an entry in the reserve map
2794 			 * not added by alloc_hugetlb_folio.  We know it was added
2795 			 * before the alloc_hugetlb_folio call, otherwise
2796 			 * hugetlb_restore_reserve would be set on the folio.
2797 			 * Remove the entry so that a subsequent allocation
2798 			 * does not consume a reservation.
2799 			 */
2800 			rc = vma_del_reservation(h, vma, address);
2801 			if (rc < 0)
2802 				/*
2803 				 * VERY rare out of memory condition.  Since
2804 				 * we can not delete the entry, set
2805 				 * hugetlb_restore_reserve so that the reserve
2806 				 * count will be incremented when the folio
2807 				 * is freed.  This reserve will be consumed
2808 				 * on a subsequent allocation.
2809 				 */
2810 				folio_set_hugetlb_restore_reserve(folio);
2811 		} else if (rc < 0) {
2812 			/*
2813 			 * Rare out of memory condition from
2814 			 * vma_needs_reservation call.  Memory allocation is
2815 			 * only attempted if a new entry is needed.  Therefore,
2816 			 * this implies there is not an entry in the
2817 			 * reserve map.
2818 			 *
2819 			 * For shared mappings, no entry in the map indicates
2820 			 * no reservation.  We are done.
2821 			 */
2822 			if (!(vma->vm_flags & VM_MAYSHARE))
2823 				/*
2824 				 * For private mappings, no entry indicates
2825 				 * a reservation is present.  Since we can
2826 				 * not add an entry, set hugetlb_restore_reserve
2827 				 * on the folio so reserve count will be
2828 				 * incremented when freed.  This reserve will
2829 				 * be consumed on a subsequent allocation.
2830 				 */
2831 				folio_set_hugetlb_restore_reserve(folio);
2832 		} else
2833 			/*
2834 			 * No reservation present, do nothing
2835 			 */
2836 			 vma_end_reservation(h, vma, address);
2837 	}
2838 }
2839 
2840 /*
2841  * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve
2842  * the old one
2843  * @h: struct hstate old page belongs to
2844  * @old_folio: Old folio to dissolve
2845  * @list: List to isolate the page in case we need to
2846  * Returns 0 on success, otherwise negated error.
2847  */
2848 static int alloc_and_dissolve_hugetlb_folio(struct hstate *h,
2849 			struct folio *old_folio, struct list_head *list)
2850 {
2851 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2852 	int nid = folio_nid(old_folio);
2853 	struct folio *new_folio = NULL;
2854 	int ret = 0;
2855 
2856 retry:
2857 	spin_lock_irq(&hugetlb_lock);
2858 	if (!folio_test_hugetlb(old_folio)) {
2859 		/*
2860 		 * Freed from under us. Drop new_folio too.
2861 		 */
2862 		goto free_new;
2863 	} else if (folio_ref_count(old_folio)) {
2864 		bool isolated;
2865 
2866 		/*
2867 		 * Someone has grabbed the folio, try to isolate it here.
2868 		 * Fail with -EBUSY if not possible.
2869 		 */
2870 		spin_unlock_irq(&hugetlb_lock);
2871 		isolated = isolate_hugetlb(old_folio, list);
2872 		ret = isolated ? 0 : -EBUSY;
2873 		spin_lock_irq(&hugetlb_lock);
2874 		goto free_new;
2875 	} else if (!folio_test_hugetlb_freed(old_folio)) {
2876 		/*
2877 		 * Folio's refcount is 0 but it has not been enqueued in the
2878 		 * freelist yet. Race window is small, so we can succeed here if
2879 		 * we retry.
2880 		 */
2881 		spin_unlock_irq(&hugetlb_lock);
2882 		cond_resched();
2883 		goto retry;
2884 	} else {
2885 		if (!new_folio) {
2886 			spin_unlock_irq(&hugetlb_lock);
2887 			new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid,
2888 							      NULL, NULL);
2889 			if (!new_folio)
2890 				return -ENOMEM;
2891 			__prep_new_hugetlb_folio(h, new_folio);
2892 			goto retry;
2893 		}
2894 
2895 		/*
2896 		 * Ok, old_folio is still a genuine free hugepage. Remove it from
2897 		 * the freelist and decrease the counters. These will be
2898 		 * incremented again when calling __prep_account_new_huge_page()
2899 		 * and enqueue_hugetlb_folio() for new_folio. The counters will
2900 		 * remain stable since this happens under the lock.
2901 		 */
2902 		remove_hugetlb_folio(h, old_folio, false);
2903 
2904 		/*
2905 		 * Ref count on new_folio is already zero as it was dropped
2906 		 * earlier.  It can be directly added to the pool free list.
2907 		 */
2908 		__prep_account_new_huge_page(h, nid);
2909 		enqueue_hugetlb_folio(h, new_folio);
2910 
2911 		/*
2912 		 * Folio has been replaced, we can safely free the old one.
2913 		 */
2914 		spin_unlock_irq(&hugetlb_lock);
2915 		update_and_free_hugetlb_folio(h, old_folio, false);
2916 	}
2917 
2918 	return ret;
2919 
2920 free_new:
2921 	spin_unlock_irq(&hugetlb_lock);
2922 	if (new_folio)
2923 		update_and_free_hugetlb_folio(h, new_folio, false);
2924 
2925 	return ret;
2926 }
2927 
2928 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
2929 {
2930 	struct hstate *h;
2931 	struct folio *folio = page_folio(page);
2932 	int ret = -EBUSY;
2933 
2934 	/*
2935 	 * The page might have been dissolved from under our feet, so make sure
2936 	 * to carefully check the state under the lock.
2937 	 * Return success when racing as if we dissolved the page ourselves.
2938 	 */
2939 	spin_lock_irq(&hugetlb_lock);
2940 	if (folio_test_hugetlb(folio)) {
2941 		h = folio_hstate(folio);
2942 	} else {
2943 		spin_unlock_irq(&hugetlb_lock);
2944 		return 0;
2945 	}
2946 	spin_unlock_irq(&hugetlb_lock);
2947 
2948 	/*
2949 	 * Fence off gigantic pages as there is a cyclic dependency between
2950 	 * alloc_contig_range and them. Return -ENOMEM as this has the effect
2951 	 * of bailing out right away without further retrying.
2952 	 */
2953 	if (hstate_is_gigantic(h))
2954 		return -ENOMEM;
2955 
2956 	if (folio_ref_count(folio) && isolate_hugetlb(folio, list))
2957 		ret = 0;
2958 	else if (!folio_ref_count(folio))
2959 		ret = alloc_and_dissolve_hugetlb_folio(h, folio, list);
2960 
2961 	return ret;
2962 }
2963 
2964 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
2965 				    unsigned long addr, int avoid_reserve)
2966 {
2967 	struct hugepage_subpool *spool = subpool_vma(vma);
2968 	struct hstate *h = hstate_vma(vma);
2969 	struct folio *folio;
2970 	long map_chg, map_commit, nr_pages = pages_per_huge_page(h);
2971 	long gbl_chg;
2972 	int memcg_charge_ret, ret, idx;
2973 	struct hugetlb_cgroup *h_cg = NULL;
2974 	struct mem_cgroup *memcg;
2975 	bool deferred_reserve;
2976 	gfp_t gfp = htlb_alloc_mask(h) | __GFP_RETRY_MAYFAIL;
2977 
2978 	memcg = get_mem_cgroup_from_current();
2979 	memcg_charge_ret = mem_cgroup_hugetlb_try_charge(memcg, gfp, nr_pages);
2980 	if (memcg_charge_ret == -ENOMEM) {
2981 		mem_cgroup_put(memcg);
2982 		return ERR_PTR(-ENOMEM);
2983 	}
2984 
2985 	idx = hstate_index(h);
2986 	/*
2987 	 * Examine the region/reserve map to determine if the process
2988 	 * has a reservation for the page to be allocated.  A return
2989 	 * code of zero indicates a reservation exists (no change).
2990 	 */
2991 	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2992 	if (map_chg < 0) {
2993 		if (!memcg_charge_ret)
2994 			mem_cgroup_cancel_charge(memcg, nr_pages);
2995 		mem_cgroup_put(memcg);
2996 		return ERR_PTR(-ENOMEM);
2997 	}
2998 
2999 	/*
3000 	 * Processes that did not create the mapping will have no
3001 	 * reserves as indicated by the region/reserve map. Check
3002 	 * that the allocation will not exceed the subpool limit.
3003 	 * Allocations for MAP_NORESERVE mappings also need to be
3004 	 * checked against any subpool limit.
3005 	 */
3006 	if (map_chg || avoid_reserve) {
3007 		gbl_chg = hugepage_subpool_get_pages(spool, 1);
3008 		if (gbl_chg < 0)
3009 			goto out_end_reservation;
3010 
3011 		/*
3012 		 * Even though there was no reservation in the region/reserve
3013 		 * map, there could be reservations associated with the
3014 		 * subpool that can be used.  This would be indicated if the
3015 		 * return value of hugepage_subpool_get_pages() is zero.
3016 		 * However, if avoid_reserve is specified we still avoid even
3017 		 * the subpool reservations.
3018 		 */
3019 		if (avoid_reserve)
3020 			gbl_chg = 1;
3021 	}
3022 
3023 	/* If this allocation is not consuming a reservation, charge it now.
3024 	 */
3025 	deferred_reserve = map_chg || avoid_reserve;
3026 	if (deferred_reserve) {
3027 		ret = hugetlb_cgroup_charge_cgroup_rsvd(
3028 			idx, pages_per_huge_page(h), &h_cg);
3029 		if (ret)
3030 			goto out_subpool_put;
3031 	}
3032 
3033 	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
3034 	if (ret)
3035 		goto out_uncharge_cgroup_reservation;
3036 
3037 	spin_lock_irq(&hugetlb_lock);
3038 	/*
3039 	 * glb_chg is passed to indicate whether or not a page must be taken
3040 	 * from the global free pool (global change).  gbl_chg == 0 indicates
3041 	 * a reservation exists for the allocation.
3042 	 */
3043 	folio = dequeue_hugetlb_folio_vma(h, vma, addr, avoid_reserve, gbl_chg);
3044 	if (!folio) {
3045 		spin_unlock_irq(&hugetlb_lock);
3046 		folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr);
3047 		if (!folio)
3048 			goto out_uncharge_cgroup;
3049 		spin_lock_irq(&hugetlb_lock);
3050 		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
3051 			folio_set_hugetlb_restore_reserve(folio);
3052 			h->resv_huge_pages--;
3053 		}
3054 		list_add(&folio->lru, &h->hugepage_activelist);
3055 		folio_ref_unfreeze(folio, 1);
3056 		/* Fall through */
3057 	}
3058 
3059 	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio);
3060 	/* If allocation is not consuming a reservation, also store the
3061 	 * hugetlb_cgroup pointer on the page.
3062 	 */
3063 	if (deferred_reserve) {
3064 		hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
3065 						  h_cg, folio);
3066 	}
3067 
3068 	spin_unlock_irq(&hugetlb_lock);
3069 
3070 	hugetlb_set_folio_subpool(folio, spool);
3071 
3072 	map_commit = vma_commit_reservation(h, vma, addr);
3073 	if (unlikely(map_chg > map_commit)) {
3074 		/*
3075 		 * The page was added to the reservation map between
3076 		 * vma_needs_reservation and vma_commit_reservation.
3077 		 * This indicates a race with hugetlb_reserve_pages.
3078 		 * Adjust for the subpool count incremented above AND
3079 		 * in hugetlb_reserve_pages for the same page.  Also,
3080 		 * the reservation count added in hugetlb_reserve_pages
3081 		 * no longer applies.
3082 		 */
3083 		long rsv_adjust;
3084 
3085 		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
3086 		hugetlb_acct_memory(h, -rsv_adjust);
3087 		if (deferred_reserve) {
3088 			spin_lock_irq(&hugetlb_lock);
3089 			hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
3090 					pages_per_huge_page(h), folio);
3091 			spin_unlock_irq(&hugetlb_lock);
3092 		}
3093 	}
3094 
3095 	if (!memcg_charge_ret)
3096 		mem_cgroup_commit_charge(folio, memcg);
3097 	lruvec_stat_mod_folio(folio, NR_HUGETLB, pages_per_huge_page(h));
3098 	mem_cgroup_put(memcg);
3099 
3100 	return folio;
3101 
3102 out_uncharge_cgroup:
3103 	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
3104 out_uncharge_cgroup_reservation:
3105 	if (deferred_reserve)
3106 		hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
3107 						    h_cg);
3108 out_subpool_put:
3109 	if (map_chg || avoid_reserve)
3110 		hugepage_subpool_put_pages(spool, 1);
3111 out_end_reservation:
3112 	vma_end_reservation(h, vma, addr);
3113 	if (!memcg_charge_ret)
3114 		mem_cgroup_cancel_charge(memcg, nr_pages);
3115 	mem_cgroup_put(memcg);
3116 	return ERR_PTR(-ENOSPC);
3117 }
3118 
3119 int alloc_bootmem_huge_page(struct hstate *h, int nid)
3120 	__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
3121 int __alloc_bootmem_huge_page(struct hstate *h, int nid)
3122 {
3123 	struct huge_bootmem_page *m = NULL; /* initialize for clang */
3124 	int nr_nodes, node = nid;
3125 
3126 	/* do node specific alloc */
3127 	if (nid != NUMA_NO_NODE) {
3128 		m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
3129 				0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3130 		if (!m)
3131 			return 0;
3132 		goto found;
3133 	}
3134 	/* allocate from next node when distributing huge pages */
3135 	for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, &node_states[N_MEMORY]) {
3136 		m = memblock_alloc_try_nid_raw(
3137 				huge_page_size(h), huge_page_size(h),
3138 				0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
3139 		/*
3140 		 * Use the beginning of the huge page to store the
3141 		 * huge_bootmem_page struct (until gather_bootmem
3142 		 * puts them into the mem_map).
3143 		 */
3144 		if (!m)
3145 			return 0;
3146 		goto found;
3147 	}
3148 
3149 found:
3150 
3151 	/*
3152 	 * Only initialize the head struct page in memmap_init_reserved_pages,
3153 	 * rest of the struct pages will be initialized by the HugeTLB
3154 	 * subsystem itself.
3155 	 * The head struct page is used to get folio information by the HugeTLB
3156 	 * subsystem like zone id and node id.
3157 	 */
3158 	memblock_reserved_mark_noinit(virt_to_phys((void *)m + PAGE_SIZE),
3159 		huge_page_size(h) - PAGE_SIZE);
3160 	/* Put them into a private list first because mem_map is not up yet */
3161 	INIT_LIST_HEAD(&m->list);
3162 	list_add(&m->list, &huge_boot_pages[node]);
3163 	m->hstate = h;
3164 	return 1;
3165 }
3166 
3167 /* Initialize [start_page:end_page_number] tail struct pages of a hugepage */
3168 static void __init hugetlb_folio_init_tail_vmemmap(struct folio *folio,
3169 					unsigned long start_page_number,
3170 					unsigned long end_page_number)
3171 {
3172 	enum zone_type zone = zone_idx(folio_zone(folio));
3173 	int nid = folio_nid(folio);
3174 	unsigned long head_pfn = folio_pfn(folio);
3175 	unsigned long pfn, end_pfn = head_pfn + end_page_number;
3176 	int ret;
3177 
3178 	for (pfn = head_pfn + start_page_number; pfn < end_pfn; pfn++) {
3179 		struct page *page = pfn_to_page(pfn);
3180 
3181 		__ClearPageReserved(folio_page(folio, pfn - head_pfn));
3182 		__init_single_page(page, pfn, zone, nid);
3183 		prep_compound_tail((struct page *)folio, pfn - head_pfn);
3184 		ret = page_ref_freeze(page, 1);
3185 		VM_BUG_ON(!ret);
3186 	}
3187 }
3188 
3189 static void __init hugetlb_folio_init_vmemmap(struct folio *folio,
3190 					      struct hstate *h,
3191 					      unsigned long nr_pages)
3192 {
3193 	int ret;
3194 
3195 	/* Prepare folio head */
3196 	__folio_clear_reserved(folio);
3197 	__folio_set_head(folio);
3198 	ret = folio_ref_freeze(folio, 1);
3199 	VM_BUG_ON(!ret);
3200 	/* Initialize the necessary tail struct pages */
3201 	hugetlb_folio_init_tail_vmemmap(folio, 1, nr_pages);
3202 	prep_compound_head((struct page *)folio, huge_page_order(h));
3203 }
3204 
3205 static void __init prep_and_add_bootmem_folios(struct hstate *h,
3206 					struct list_head *folio_list)
3207 {
3208 	unsigned long flags;
3209 	struct folio *folio, *tmp_f;
3210 
3211 	/* Send list for bulk vmemmap optimization processing */
3212 	hugetlb_vmemmap_optimize_folios(h, folio_list);
3213 
3214 	list_for_each_entry_safe(folio, tmp_f, folio_list, lru) {
3215 		if (!folio_test_hugetlb_vmemmap_optimized(folio)) {
3216 			/*
3217 			 * If HVO fails, initialize all tail struct pages
3218 			 * We do not worry about potential long lock hold
3219 			 * time as this is early in boot and there should
3220 			 * be no contention.
3221 			 */
3222 			hugetlb_folio_init_tail_vmemmap(folio,
3223 					HUGETLB_VMEMMAP_RESERVE_PAGES,
3224 					pages_per_huge_page(h));
3225 		}
3226 		/* Subdivide locks to achieve better parallel performance */
3227 		spin_lock_irqsave(&hugetlb_lock, flags);
3228 		__prep_account_new_huge_page(h, folio_nid(folio));
3229 		enqueue_hugetlb_folio(h, folio);
3230 		spin_unlock_irqrestore(&hugetlb_lock, flags);
3231 	}
3232 }
3233 
3234 /*
3235  * Put bootmem huge pages into the standard lists after mem_map is up.
3236  * Note: This only applies to gigantic (order > MAX_PAGE_ORDER) pages.
3237  */
3238 static void __init gather_bootmem_prealloc_node(unsigned long nid)
3239 {
3240 	LIST_HEAD(folio_list);
3241 	struct huge_bootmem_page *m;
3242 	struct hstate *h = NULL, *prev_h = NULL;
3243 
3244 	list_for_each_entry(m, &huge_boot_pages[nid], list) {
3245 		struct page *page = virt_to_page(m);
3246 		struct folio *folio = (void *)page;
3247 
3248 		h = m->hstate;
3249 		/*
3250 		 * It is possible to have multiple huge page sizes (hstates)
3251 		 * in this list.  If so, process each size separately.
3252 		 */
3253 		if (h != prev_h && prev_h != NULL)
3254 			prep_and_add_bootmem_folios(prev_h, &folio_list);
3255 		prev_h = h;
3256 
3257 		VM_BUG_ON(!hstate_is_gigantic(h));
3258 		WARN_ON(folio_ref_count(folio) != 1);
3259 
3260 		hugetlb_folio_init_vmemmap(folio, h,
3261 					   HUGETLB_VMEMMAP_RESERVE_PAGES);
3262 		init_new_hugetlb_folio(h, folio);
3263 		list_add(&folio->lru, &folio_list);
3264 
3265 		/*
3266 		 * We need to restore the 'stolen' pages to totalram_pages
3267 		 * in order to fix confusing memory reports from free(1) and
3268 		 * other side-effects, like CommitLimit going negative.
3269 		 */
3270 		adjust_managed_page_count(page, pages_per_huge_page(h));
3271 		cond_resched();
3272 	}
3273 
3274 	prep_and_add_bootmem_folios(h, &folio_list);
3275 }
3276 
3277 static void __init gather_bootmem_prealloc_parallel(unsigned long start,
3278 						    unsigned long end, void *arg)
3279 {
3280 	int nid;
3281 
3282 	for (nid = start; nid < end; nid++)
3283 		gather_bootmem_prealloc_node(nid);
3284 }
3285 
3286 static void __init gather_bootmem_prealloc(void)
3287 {
3288 	struct padata_mt_job job = {
3289 		.thread_fn	= gather_bootmem_prealloc_parallel,
3290 		.fn_arg		= NULL,
3291 		.start		= 0,
3292 		.size		= num_node_state(N_MEMORY),
3293 		.align		= 1,
3294 		.min_chunk	= 1,
3295 		.max_threads	= num_node_state(N_MEMORY),
3296 		.numa_aware	= true,
3297 	};
3298 
3299 	padata_do_multithreaded(&job);
3300 }
3301 
3302 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3303 {
3304 	unsigned long i;
3305 	char buf[32];
3306 	LIST_HEAD(folio_list);
3307 
3308 	for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3309 		if (hstate_is_gigantic(h)) {
3310 			if (!alloc_bootmem_huge_page(h, nid))
3311 				break;
3312 		} else {
3313 			struct folio *folio;
3314 			gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3315 
3316 			folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, nid,
3317 					&node_states[N_MEMORY], NULL);
3318 			if (!folio)
3319 				break;
3320 			list_add(&folio->lru, &folio_list);
3321 		}
3322 		cond_resched();
3323 	}
3324 
3325 	if (!list_empty(&folio_list))
3326 		prep_and_add_allocated_folios(h, &folio_list);
3327 
3328 	if (i == h->max_huge_pages_node[nid])
3329 		return;
3330 
3331 	string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3332 	pr_warn("HugeTLB: allocating %u of page size %s failed node%d.  Only allocated %lu hugepages.\n",
3333 		h->max_huge_pages_node[nid], buf, nid, i);
3334 	h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3335 	h->max_huge_pages_node[nid] = i;
3336 }
3337 
3338 static bool __init hugetlb_hstate_alloc_pages_specific_nodes(struct hstate *h)
3339 {
3340 	int i;
3341 	bool node_specific_alloc = false;
3342 
3343 	for_each_online_node(i) {
3344 		if (h->max_huge_pages_node[i] > 0) {
3345 			hugetlb_hstate_alloc_pages_onenode(h, i);
3346 			node_specific_alloc = true;
3347 		}
3348 	}
3349 
3350 	return node_specific_alloc;
3351 }
3352 
3353 static void __init hugetlb_hstate_alloc_pages_errcheck(unsigned long allocated, struct hstate *h)
3354 {
3355 	if (allocated < h->max_huge_pages) {
3356 		char buf[32];
3357 
3358 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3359 		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
3360 			h->max_huge_pages, buf, allocated);
3361 		h->max_huge_pages = allocated;
3362 	}
3363 }
3364 
3365 static void __init hugetlb_pages_alloc_boot_node(unsigned long start, unsigned long end, void *arg)
3366 {
3367 	struct hstate *h = (struct hstate *)arg;
3368 	int i, num = end - start;
3369 	nodemask_t node_alloc_noretry;
3370 	LIST_HEAD(folio_list);
3371 	int next_node = first_online_node;
3372 
3373 	/* Bit mask controlling how hard we retry per-node allocations.*/
3374 	nodes_clear(node_alloc_noretry);
3375 
3376 	for (i = 0; i < num; ++i) {
3377 		struct folio *folio = alloc_pool_huge_folio(h, &node_states[N_MEMORY],
3378 						&node_alloc_noretry, &next_node);
3379 		if (!folio)
3380 			break;
3381 
3382 		list_move(&folio->lru, &folio_list);
3383 		cond_resched();
3384 	}
3385 
3386 	prep_and_add_allocated_folios(h, &folio_list);
3387 }
3388 
3389 static unsigned long __init hugetlb_gigantic_pages_alloc_boot(struct hstate *h)
3390 {
3391 	unsigned long i;
3392 
3393 	for (i = 0; i < h->max_huge_pages; ++i) {
3394 		if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3395 			break;
3396 		cond_resched();
3397 	}
3398 
3399 	return i;
3400 }
3401 
3402 static unsigned long __init hugetlb_pages_alloc_boot(struct hstate *h)
3403 {
3404 	struct padata_mt_job job = {
3405 		.fn_arg		= h,
3406 		.align		= 1,
3407 		.numa_aware	= true
3408 	};
3409 
3410 	job.thread_fn	= hugetlb_pages_alloc_boot_node;
3411 	job.start	= 0;
3412 	job.size	= h->max_huge_pages;
3413 
3414 	/*
3415 	 * job.max_threads is twice the num_node_state(N_MEMORY),
3416 	 *
3417 	 * Tests below indicate that a multiplier of 2 significantly improves
3418 	 * performance, and although larger values also provide improvements,
3419 	 * the gains are marginal.
3420 	 *
3421 	 * Therefore, choosing 2 as the multiplier strikes a good balance between
3422 	 * enhancing parallel processing capabilities and maintaining efficient
3423 	 * resource management.
3424 	 *
3425 	 * +------------+-------+-------+-------+-------+-------+
3426 	 * | multiplier |   1   |   2   |   3   |   4   |   5   |
3427 	 * +------------+-------+-------+-------+-------+-------+
3428 	 * | 256G 2node | 358ms | 215ms | 157ms | 134ms | 126ms |
3429 	 * | 2T   4node | 979ms | 679ms | 543ms | 489ms | 481ms |
3430 	 * | 50G  2node | 71ms  | 44ms  | 37ms  | 30ms  | 31ms  |
3431 	 * +------------+-------+-------+-------+-------+-------+
3432 	 */
3433 	job.max_threads	= num_node_state(N_MEMORY) * 2;
3434 	job.min_chunk	= h->max_huge_pages / num_node_state(N_MEMORY) / 2;
3435 	padata_do_multithreaded(&job);
3436 
3437 	return h->nr_huge_pages;
3438 }
3439 
3440 /*
3441  * NOTE: this routine is called in different contexts for gigantic and
3442  * non-gigantic pages.
3443  * - For gigantic pages, this is called early in the boot process and
3444  *   pages are allocated from memblock allocated or something similar.
3445  *   Gigantic pages are actually added to pools later with the routine
3446  *   gather_bootmem_prealloc.
3447  * - For non-gigantic pages, this is called later in the boot process after
3448  *   all of mm is up and functional.  Pages are allocated from buddy and
3449  *   then added to hugetlb pools.
3450  */
3451 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3452 {
3453 	unsigned long allocated;
3454 	static bool initialized __initdata;
3455 
3456 	/* skip gigantic hugepages allocation if hugetlb_cma enabled */
3457 	if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3458 		pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3459 		return;
3460 	}
3461 
3462 	/* hugetlb_hstate_alloc_pages will be called many times, initialize huge_boot_pages once */
3463 	if (!initialized) {
3464 		int i = 0;
3465 
3466 		for (i = 0; i < MAX_NUMNODES; i++)
3467 			INIT_LIST_HEAD(&huge_boot_pages[i]);
3468 		initialized = true;
3469 	}
3470 
3471 	/* do node specific alloc */
3472 	if (hugetlb_hstate_alloc_pages_specific_nodes(h))
3473 		return;
3474 
3475 	/* below will do all node balanced alloc */
3476 	if (hstate_is_gigantic(h))
3477 		allocated = hugetlb_gigantic_pages_alloc_boot(h);
3478 	else
3479 		allocated = hugetlb_pages_alloc_boot(h);
3480 
3481 	hugetlb_hstate_alloc_pages_errcheck(allocated, h);
3482 }
3483 
3484 static void __init hugetlb_init_hstates(void)
3485 {
3486 	struct hstate *h, *h2;
3487 
3488 	for_each_hstate(h) {
3489 		/* oversize hugepages were init'ed in early boot */
3490 		if (!hstate_is_gigantic(h))
3491 			hugetlb_hstate_alloc_pages(h);
3492 
3493 		/*
3494 		 * Set demote order for each hstate.  Note that
3495 		 * h->demote_order is initially 0.
3496 		 * - We can not demote gigantic pages if runtime freeing
3497 		 *   is not supported, so skip this.
3498 		 * - If CMA allocation is possible, we can not demote
3499 		 *   HUGETLB_PAGE_ORDER or smaller size pages.
3500 		 */
3501 		if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3502 			continue;
3503 		if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3504 			continue;
3505 		for_each_hstate(h2) {
3506 			if (h2 == h)
3507 				continue;
3508 			if (h2->order < h->order &&
3509 			    h2->order > h->demote_order)
3510 				h->demote_order = h2->order;
3511 		}
3512 	}
3513 }
3514 
3515 static void __init report_hugepages(void)
3516 {
3517 	struct hstate *h;
3518 
3519 	for_each_hstate(h) {
3520 		char buf[32];
3521 
3522 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3523 		pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
3524 			buf, h->free_huge_pages);
3525 		pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3526 			hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
3527 	}
3528 }
3529 
3530 #ifdef CONFIG_HIGHMEM
3531 static void try_to_free_low(struct hstate *h, unsigned long count,
3532 						nodemask_t *nodes_allowed)
3533 {
3534 	int i;
3535 	LIST_HEAD(page_list);
3536 
3537 	lockdep_assert_held(&hugetlb_lock);
3538 	if (hstate_is_gigantic(h))
3539 		return;
3540 
3541 	/*
3542 	 * Collect pages to be freed on a list, and free after dropping lock
3543 	 */
3544 	for_each_node_mask(i, *nodes_allowed) {
3545 		struct folio *folio, *next;
3546 		struct list_head *freel = &h->hugepage_freelists[i];
3547 		list_for_each_entry_safe(folio, next, freel, lru) {
3548 			if (count >= h->nr_huge_pages)
3549 				goto out;
3550 			if (folio_test_highmem(folio))
3551 				continue;
3552 			remove_hugetlb_folio(h, folio, false);
3553 			list_add(&folio->lru, &page_list);
3554 		}
3555 	}
3556 
3557 out:
3558 	spin_unlock_irq(&hugetlb_lock);
3559 	update_and_free_pages_bulk(h, &page_list);
3560 	spin_lock_irq(&hugetlb_lock);
3561 }
3562 #else
3563 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3564 						nodemask_t *nodes_allowed)
3565 {
3566 }
3567 #endif
3568 
3569 /*
3570  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
3571  * balanced by operating on them in a round-robin fashion.
3572  * Returns 1 if an adjustment was made.
3573  */
3574 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3575 				int delta)
3576 {
3577 	int nr_nodes, node;
3578 
3579 	lockdep_assert_held(&hugetlb_lock);
3580 	VM_BUG_ON(delta != -1 && delta != 1);
3581 
3582 	if (delta < 0) {
3583 		for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, nodes_allowed) {
3584 			if (h->surplus_huge_pages_node[node])
3585 				goto found;
3586 		}
3587 	} else {
3588 		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3589 			if (h->surplus_huge_pages_node[node] <
3590 					h->nr_huge_pages_node[node])
3591 				goto found;
3592 		}
3593 	}
3594 	return 0;
3595 
3596 found:
3597 	h->surplus_huge_pages += delta;
3598 	h->surplus_huge_pages_node[node] += delta;
3599 	return 1;
3600 }
3601 
3602 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3603 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3604 			      nodemask_t *nodes_allowed)
3605 {
3606 	unsigned long min_count;
3607 	unsigned long allocated;
3608 	struct folio *folio;
3609 	LIST_HEAD(page_list);
3610 	NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3611 
3612 	/*
3613 	 * Bit mask controlling how hard we retry per-node allocations.
3614 	 * If we can not allocate the bit mask, do not attempt to allocate
3615 	 * the requested huge pages.
3616 	 */
3617 	if (node_alloc_noretry)
3618 		nodes_clear(*node_alloc_noretry);
3619 	else
3620 		return -ENOMEM;
3621 
3622 	/*
3623 	 * resize_lock mutex prevents concurrent adjustments to number of
3624 	 * pages in hstate via the proc/sysfs interfaces.
3625 	 */
3626 	mutex_lock(&h->resize_lock);
3627 	flush_free_hpage_work(h);
3628 	spin_lock_irq(&hugetlb_lock);
3629 
3630 	/*
3631 	 * Check for a node specific request.
3632 	 * Changing node specific huge page count may require a corresponding
3633 	 * change to the global count.  In any case, the passed node mask
3634 	 * (nodes_allowed) will restrict alloc/free to the specified node.
3635 	 */
3636 	if (nid != NUMA_NO_NODE) {
3637 		unsigned long old_count = count;
3638 
3639 		count += persistent_huge_pages(h) -
3640 			 (h->nr_huge_pages_node[nid] -
3641 			  h->surplus_huge_pages_node[nid]);
3642 		/*
3643 		 * User may have specified a large count value which caused the
3644 		 * above calculation to overflow.  In this case, they wanted
3645 		 * to allocate as many huge pages as possible.  Set count to
3646 		 * largest possible value to align with their intention.
3647 		 */
3648 		if (count < old_count)
3649 			count = ULONG_MAX;
3650 	}
3651 
3652 	/*
3653 	 * Gigantic pages runtime allocation depend on the capability for large
3654 	 * page range allocation.
3655 	 * If the system does not provide this feature, return an error when
3656 	 * the user tries to allocate gigantic pages but let the user free the
3657 	 * boottime allocated gigantic pages.
3658 	 */
3659 	if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3660 		if (count > persistent_huge_pages(h)) {
3661 			spin_unlock_irq(&hugetlb_lock);
3662 			mutex_unlock(&h->resize_lock);
3663 			NODEMASK_FREE(node_alloc_noretry);
3664 			return -EINVAL;
3665 		}
3666 		/* Fall through to decrease pool */
3667 	}
3668 
3669 	/*
3670 	 * Increase the pool size
3671 	 * First take pages out of surplus state.  Then make up the
3672 	 * remaining difference by allocating fresh huge pages.
3673 	 *
3674 	 * We might race with alloc_surplus_hugetlb_folio() here and be unable
3675 	 * to convert a surplus huge page to a normal huge page. That is
3676 	 * not critical, though, it just means the overall size of the
3677 	 * pool might be one hugepage larger than it needs to be, but
3678 	 * within all the constraints specified by the sysctls.
3679 	 */
3680 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3681 		if (!adjust_pool_surplus(h, nodes_allowed, -1))
3682 			break;
3683 	}
3684 
3685 	allocated = 0;
3686 	while (count > (persistent_huge_pages(h) + allocated)) {
3687 		/*
3688 		 * If this allocation races such that we no longer need the
3689 		 * page, free_huge_folio will handle it by freeing the page
3690 		 * and reducing the surplus.
3691 		 */
3692 		spin_unlock_irq(&hugetlb_lock);
3693 
3694 		/* yield cpu to avoid soft lockup */
3695 		cond_resched();
3696 
3697 		folio = alloc_pool_huge_folio(h, nodes_allowed,
3698 						node_alloc_noretry,
3699 						&h->next_nid_to_alloc);
3700 		if (!folio) {
3701 			prep_and_add_allocated_folios(h, &page_list);
3702 			spin_lock_irq(&hugetlb_lock);
3703 			goto out;
3704 		}
3705 
3706 		list_add(&folio->lru, &page_list);
3707 		allocated++;
3708 
3709 		/* Bail for signals. Probably ctrl-c from user */
3710 		if (signal_pending(current)) {
3711 			prep_and_add_allocated_folios(h, &page_list);
3712 			spin_lock_irq(&hugetlb_lock);
3713 			goto out;
3714 		}
3715 
3716 		spin_lock_irq(&hugetlb_lock);
3717 	}
3718 
3719 	/* Add allocated pages to the pool */
3720 	if (!list_empty(&page_list)) {
3721 		spin_unlock_irq(&hugetlb_lock);
3722 		prep_and_add_allocated_folios(h, &page_list);
3723 		spin_lock_irq(&hugetlb_lock);
3724 	}
3725 
3726 	/*
3727 	 * Decrease the pool size
3728 	 * First return free pages to the buddy allocator (being careful
3729 	 * to keep enough around to satisfy reservations).  Then place
3730 	 * pages into surplus state as needed so the pool will shrink
3731 	 * to the desired size as pages become free.
3732 	 *
3733 	 * By placing pages into the surplus state independent of the
3734 	 * overcommit value, we are allowing the surplus pool size to
3735 	 * exceed overcommit. There are few sane options here. Since
3736 	 * alloc_surplus_hugetlb_folio() is checking the global counter,
3737 	 * though, we'll note that we're not allowed to exceed surplus
3738 	 * and won't grow the pool anywhere else. Not until one of the
3739 	 * sysctls are changed, or the surplus pages go out of use.
3740 	 */
3741 	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3742 	min_count = max(count, min_count);
3743 	try_to_free_low(h, min_count, nodes_allowed);
3744 
3745 	/*
3746 	 * Collect pages to be removed on list without dropping lock
3747 	 */
3748 	while (min_count < persistent_huge_pages(h)) {
3749 		folio = remove_pool_hugetlb_folio(h, nodes_allowed, 0);
3750 		if (!folio)
3751 			break;
3752 
3753 		list_add(&folio->lru, &page_list);
3754 	}
3755 	/* free the pages after dropping lock */
3756 	spin_unlock_irq(&hugetlb_lock);
3757 	update_and_free_pages_bulk(h, &page_list);
3758 	flush_free_hpage_work(h);
3759 	spin_lock_irq(&hugetlb_lock);
3760 
3761 	while (count < persistent_huge_pages(h)) {
3762 		if (!adjust_pool_surplus(h, nodes_allowed, 1))
3763 			break;
3764 	}
3765 out:
3766 	h->max_huge_pages = persistent_huge_pages(h);
3767 	spin_unlock_irq(&hugetlb_lock);
3768 	mutex_unlock(&h->resize_lock);
3769 
3770 	NODEMASK_FREE(node_alloc_noretry);
3771 
3772 	return 0;
3773 }
3774 
3775 static long demote_free_hugetlb_folios(struct hstate *src, struct hstate *dst,
3776 				       struct list_head *src_list)
3777 {
3778 	long rc;
3779 	struct folio *folio, *next;
3780 	LIST_HEAD(dst_list);
3781 	LIST_HEAD(ret_list);
3782 
3783 	rc = hugetlb_vmemmap_restore_folios(src, src_list, &ret_list);
3784 	list_splice_init(&ret_list, src_list);
3785 
3786 	/*
3787 	 * Taking target hstate mutex synchronizes with set_max_huge_pages.
3788 	 * Without the mutex, pages added to target hstate could be marked
3789 	 * as surplus.
3790 	 *
3791 	 * Note that we already hold src->resize_lock.  To prevent deadlock,
3792 	 * use the convention of always taking larger size hstate mutex first.
3793 	 */
3794 	mutex_lock(&dst->resize_lock);
3795 
3796 	list_for_each_entry_safe(folio, next, src_list, lru) {
3797 		int i;
3798 
3799 		if (folio_test_hugetlb_vmemmap_optimized(folio))
3800 			continue;
3801 
3802 		list_del(&folio->lru);
3803 
3804 		split_page_owner(&folio->page, huge_page_order(src), huge_page_order(dst));
3805 		pgalloc_tag_split(folio, huge_page_order(src), huge_page_order(dst));
3806 
3807 		for (i = 0; i < pages_per_huge_page(src); i += pages_per_huge_page(dst)) {
3808 			struct page *page = folio_page(folio, i);
3809 
3810 			page->mapping = NULL;
3811 			clear_compound_head(page);
3812 			prep_compound_page(page, dst->order);
3813 
3814 			init_new_hugetlb_folio(dst, page_folio(page));
3815 			list_add(&page->lru, &dst_list);
3816 		}
3817 	}
3818 
3819 	prep_and_add_allocated_folios(dst, &dst_list);
3820 
3821 	mutex_unlock(&dst->resize_lock);
3822 
3823 	return rc;
3824 }
3825 
3826 static long demote_pool_huge_page(struct hstate *src, nodemask_t *nodes_allowed,
3827 				  unsigned long nr_to_demote)
3828 	__must_hold(&hugetlb_lock)
3829 {
3830 	int nr_nodes, node;
3831 	struct hstate *dst;
3832 	long rc = 0;
3833 	long nr_demoted = 0;
3834 
3835 	lockdep_assert_held(&hugetlb_lock);
3836 
3837 	/* We should never get here if no demote order */
3838 	if (!src->demote_order) {
3839 		pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3840 		return -EINVAL;		/* internal error */
3841 	}
3842 	dst = size_to_hstate(PAGE_SIZE << src->demote_order);
3843 
3844 	for_each_node_mask_to_free(src, nr_nodes, node, nodes_allowed) {
3845 		LIST_HEAD(list);
3846 		struct folio *folio, *next;
3847 
3848 		list_for_each_entry_safe(folio, next, &src->hugepage_freelists[node], lru) {
3849 			if (folio_test_hwpoison(folio))
3850 				continue;
3851 
3852 			remove_hugetlb_folio(src, folio, false);
3853 			list_add(&folio->lru, &list);
3854 
3855 			if (++nr_demoted == nr_to_demote)
3856 				break;
3857 		}
3858 
3859 		spin_unlock_irq(&hugetlb_lock);
3860 
3861 		rc = demote_free_hugetlb_folios(src, dst, &list);
3862 
3863 		spin_lock_irq(&hugetlb_lock);
3864 
3865 		list_for_each_entry_safe(folio, next, &list, lru) {
3866 			list_del(&folio->lru);
3867 			add_hugetlb_folio(src, folio, false);
3868 
3869 			nr_demoted--;
3870 		}
3871 
3872 		if (rc < 0 || nr_demoted == nr_to_demote)
3873 			break;
3874 	}
3875 
3876 	/*
3877 	 * Not absolutely necessary, but for consistency update max_huge_pages
3878 	 * based on pool changes for the demoted page.
3879 	 */
3880 	src->max_huge_pages -= nr_demoted;
3881 	dst->max_huge_pages += nr_demoted << (huge_page_order(src) - huge_page_order(dst));
3882 
3883 	if (rc < 0)
3884 		return rc;
3885 
3886 	if (nr_demoted)
3887 		return nr_demoted;
3888 	/*
3889 	 * Only way to get here is if all pages on free lists are poisoned.
3890 	 * Return -EBUSY so that caller will not retry.
3891 	 */
3892 	return -EBUSY;
3893 }
3894 
3895 #define HSTATE_ATTR_RO(_name) \
3896 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3897 
3898 #define HSTATE_ATTR_WO(_name) \
3899 	static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
3900 
3901 #define HSTATE_ATTR(_name) \
3902 	static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3903 
3904 static struct kobject *hugepages_kobj;
3905 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3906 
3907 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3908 
3909 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3910 {
3911 	int i;
3912 
3913 	for (i = 0; i < HUGE_MAX_HSTATE; i++)
3914 		if (hstate_kobjs[i] == kobj) {
3915 			if (nidp)
3916 				*nidp = NUMA_NO_NODE;
3917 			return &hstates[i];
3918 		}
3919 
3920 	return kobj_to_node_hstate(kobj, nidp);
3921 }
3922 
3923 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3924 					struct kobj_attribute *attr, char *buf)
3925 {
3926 	struct hstate *h;
3927 	unsigned long nr_huge_pages;
3928 	int nid;
3929 
3930 	h = kobj_to_hstate(kobj, &nid);
3931 	if (nid == NUMA_NO_NODE)
3932 		nr_huge_pages = h->nr_huge_pages;
3933 	else
3934 		nr_huge_pages = h->nr_huge_pages_node[nid];
3935 
3936 	return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3937 }
3938 
3939 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3940 					   struct hstate *h, int nid,
3941 					   unsigned long count, size_t len)
3942 {
3943 	int err;
3944 	nodemask_t nodes_allowed, *n_mask;
3945 
3946 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3947 		return -EINVAL;
3948 
3949 	if (nid == NUMA_NO_NODE) {
3950 		/*
3951 		 * global hstate attribute
3952 		 */
3953 		if (!(obey_mempolicy &&
3954 				init_nodemask_of_mempolicy(&nodes_allowed)))
3955 			n_mask = &node_states[N_MEMORY];
3956 		else
3957 			n_mask = &nodes_allowed;
3958 	} else {
3959 		/*
3960 		 * Node specific request.  count adjustment happens in
3961 		 * set_max_huge_pages() after acquiring hugetlb_lock.
3962 		 */
3963 		init_nodemask_of_node(&nodes_allowed, nid);
3964 		n_mask = &nodes_allowed;
3965 	}
3966 
3967 	err = set_max_huge_pages(h, count, nid, n_mask);
3968 
3969 	return err ? err : len;
3970 }
3971 
3972 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3973 					 struct kobject *kobj, const char *buf,
3974 					 size_t len)
3975 {
3976 	struct hstate *h;
3977 	unsigned long count;
3978 	int nid;
3979 	int err;
3980 
3981 	err = kstrtoul(buf, 10, &count);
3982 	if (err)
3983 		return err;
3984 
3985 	h = kobj_to_hstate(kobj, &nid);
3986 	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3987 }
3988 
3989 static ssize_t nr_hugepages_show(struct kobject *kobj,
3990 				       struct kobj_attribute *attr, char *buf)
3991 {
3992 	return nr_hugepages_show_common(kobj, attr, buf);
3993 }
3994 
3995 static ssize_t nr_hugepages_store(struct kobject *kobj,
3996 	       struct kobj_attribute *attr, const char *buf, size_t len)
3997 {
3998 	return nr_hugepages_store_common(false, kobj, buf, len);
3999 }
4000 HSTATE_ATTR(nr_hugepages);
4001 
4002 #ifdef CONFIG_NUMA
4003 
4004 /*
4005  * hstate attribute for optionally mempolicy-based constraint on persistent
4006  * huge page alloc/free.
4007  */
4008 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
4009 					   struct kobj_attribute *attr,
4010 					   char *buf)
4011 {
4012 	return nr_hugepages_show_common(kobj, attr, buf);
4013 }
4014 
4015 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
4016 	       struct kobj_attribute *attr, const char *buf, size_t len)
4017 {
4018 	return nr_hugepages_store_common(true, kobj, buf, len);
4019 }
4020 HSTATE_ATTR(nr_hugepages_mempolicy);
4021 #endif
4022 
4023 
4024 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
4025 					struct kobj_attribute *attr, char *buf)
4026 {
4027 	struct hstate *h = kobj_to_hstate(kobj, NULL);
4028 	return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
4029 }
4030 
4031 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
4032 		struct kobj_attribute *attr, const char *buf, size_t count)
4033 {
4034 	int err;
4035 	unsigned long input;
4036 	struct hstate *h = kobj_to_hstate(kobj, NULL);
4037 
4038 	if (hstate_is_gigantic(h))
4039 		return -EINVAL;
4040 
4041 	err = kstrtoul(buf, 10, &input);
4042 	if (err)
4043 		return err;
4044 
4045 	spin_lock_irq(&hugetlb_lock);
4046 	h->nr_overcommit_huge_pages = input;
4047 	spin_unlock_irq(&hugetlb_lock);
4048 
4049 	return count;
4050 }
4051 HSTATE_ATTR(nr_overcommit_hugepages);
4052 
4053 static ssize_t free_hugepages_show(struct kobject *kobj,
4054 					struct kobj_attribute *attr, char *buf)
4055 {
4056 	struct hstate *h;
4057 	unsigned long free_huge_pages;
4058 	int nid;
4059 
4060 	h = kobj_to_hstate(kobj, &nid);
4061 	if (nid == NUMA_NO_NODE)
4062 		free_huge_pages = h->free_huge_pages;
4063 	else
4064 		free_huge_pages = h->free_huge_pages_node[nid];
4065 
4066 	return sysfs_emit(buf, "%lu\n", free_huge_pages);
4067 }
4068 HSTATE_ATTR_RO(free_hugepages);
4069 
4070 static ssize_t resv_hugepages_show(struct kobject *kobj,
4071 					struct kobj_attribute *attr, char *buf)
4072 {
4073 	struct hstate *h = kobj_to_hstate(kobj, NULL);
4074 	return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
4075 }
4076 HSTATE_ATTR_RO(resv_hugepages);
4077 
4078 static ssize_t surplus_hugepages_show(struct kobject *kobj,
4079 					struct kobj_attribute *attr, char *buf)
4080 {
4081 	struct hstate *h;
4082 	unsigned long surplus_huge_pages;
4083 	int nid;
4084 
4085 	h = kobj_to_hstate(kobj, &nid);
4086 	if (nid == NUMA_NO_NODE)
4087 		surplus_huge_pages = h->surplus_huge_pages;
4088 	else
4089 		surplus_huge_pages = h->surplus_huge_pages_node[nid];
4090 
4091 	return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
4092 }
4093 HSTATE_ATTR_RO(surplus_hugepages);
4094 
4095 static ssize_t demote_store(struct kobject *kobj,
4096 	       struct kobj_attribute *attr, const char *buf, size_t len)
4097 {
4098 	unsigned long nr_demote;
4099 	unsigned long nr_available;
4100 	nodemask_t nodes_allowed, *n_mask;
4101 	struct hstate *h;
4102 	int err;
4103 	int nid;
4104 
4105 	err = kstrtoul(buf, 10, &nr_demote);
4106 	if (err)
4107 		return err;
4108 	h = kobj_to_hstate(kobj, &nid);
4109 
4110 	if (nid != NUMA_NO_NODE) {
4111 		init_nodemask_of_node(&nodes_allowed, nid);
4112 		n_mask = &nodes_allowed;
4113 	} else {
4114 		n_mask = &node_states[N_MEMORY];
4115 	}
4116 
4117 	/* Synchronize with other sysfs operations modifying huge pages */
4118 	mutex_lock(&h->resize_lock);
4119 	spin_lock_irq(&hugetlb_lock);
4120 
4121 	while (nr_demote) {
4122 		long rc;
4123 
4124 		/*
4125 		 * Check for available pages to demote each time thorough the
4126 		 * loop as demote_pool_huge_page will drop hugetlb_lock.
4127 		 */
4128 		if (nid != NUMA_NO_NODE)
4129 			nr_available = h->free_huge_pages_node[nid];
4130 		else
4131 			nr_available = h->free_huge_pages;
4132 		nr_available -= h->resv_huge_pages;
4133 		if (!nr_available)
4134 			break;
4135 
4136 		rc = demote_pool_huge_page(h, n_mask, nr_demote);
4137 		if (rc < 0) {
4138 			err = rc;
4139 			break;
4140 		}
4141 
4142 		nr_demote -= rc;
4143 	}
4144 
4145 	spin_unlock_irq(&hugetlb_lock);
4146 	mutex_unlock(&h->resize_lock);
4147 
4148 	if (err)
4149 		return err;
4150 	return len;
4151 }
4152 HSTATE_ATTR_WO(demote);
4153 
4154 static ssize_t demote_size_show(struct kobject *kobj,
4155 					struct kobj_attribute *attr, char *buf)
4156 {
4157 	struct hstate *h = kobj_to_hstate(kobj, NULL);
4158 	unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
4159 
4160 	return sysfs_emit(buf, "%lukB\n", demote_size);
4161 }
4162 
4163 static ssize_t demote_size_store(struct kobject *kobj,
4164 					struct kobj_attribute *attr,
4165 					const char *buf, size_t count)
4166 {
4167 	struct hstate *h, *demote_hstate;
4168 	unsigned long demote_size;
4169 	unsigned int demote_order;
4170 
4171 	demote_size = (unsigned long)memparse(buf, NULL);
4172 
4173 	demote_hstate = size_to_hstate(demote_size);
4174 	if (!demote_hstate)
4175 		return -EINVAL;
4176 	demote_order = demote_hstate->order;
4177 	if (demote_order < HUGETLB_PAGE_ORDER)
4178 		return -EINVAL;
4179 
4180 	/* demote order must be smaller than hstate order */
4181 	h = kobj_to_hstate(kobj, NULL);
4182 	if (demote_order >= h->order)
4183 		return -EINVAL;
4184 
4185 	/* resize_lock synchronizes access to demote size and writes */
4186 	mutex_lock(&h->resize_lock);
4187 	h->demote_order = demote_order;
4188 	mutex_unlock(&h->resize_lock);
4189 
4190 	return count;
4191 }
4192 HSTATE_ATTR(demote_size);
4193 
4194 static struct attribute *hstate_attrs[] = {
4195 	&nr_hugepages_attr.attr,
4196 	&nr_overcommit_hugepages_attr.attr,
4197 	&free_hugepages_attr.attr,
4198 	&resv_hugepages_attr.attr,
4199 	&surplus_hugepages_attr.attr,
4200 #ifdef CONFIG_NUMA
4201 	&nr_hugepages_mempolicy_attr.attr,
4202 #endif
4203 	NULL,
4204 };
4205 
4206 static const struct attribute_group hstate_attr_group = {
4207 	.attrs = hstate_attrs,
4208 };
4209 
4210 static struct attribute *hstate_demote_attrs[] = {
4211 	&demote_size_attr.attr,
4212 	&demote_attr.attr,
4213 	NULL,
4214 };
4215 
4216 static const struct attribute_group hstate_demote_attr_group = {
4217 	.attrs = hstate_demote_attrs,
4218 };
4219 
4220 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
4221 				    struct kobject **hstate_kobjs,
4222 				    const struct attribute_group *hstate_attr_group)
4223 {
4224 	int retval;
4225 	int hi = hstate_index(h);
4226 
4227 	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
4228 	if (!hstate_kobjs[hi])
4229 		return -ENOMEM;
4230 
4231 	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
4232 	if (retval) {
4233 		kobject_put(hstate_kobjs[hi]);
4234 		hstate_kobjs[hi] = NULL;
4235 		return retval;
4236 	}
4237 
4238 	if (h->demote_order) {
4239 		retval = sysfs_create_group(hstate_kobjs[hi],
4240 					    &hstate_demote_attr_group);
4241 		if (retval) {
4242 			pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
4243 			sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
4244 			kobject_put(hstate_kobjs[hi]);
4245 			hstate_kobjs[hi] = NULL;
4246 			return retval;
4247 		}
4248 	}
4249 
4250 	return 0;
4251 }
4252 
4253 #ifdef CONFIG_NUMA
4254 static bool hugetlb_sysfs_initialized __ro_after_init;
4255 
4256 /*
4257  * node_hstate/s - associate per node hstate attributes, via their kobjects,
4258  * with node devices in node_devices[] using a parallel array.  The array
4259  * index of a node device or _hstate == node id.
4260  * This is here to avoid any static dependency of the node device driver, in
4261  * the base kernel, on the hugetlb module.
4262  */
4263 struct node_hstate {
4264 	struct kobject		*hugepages_kobj;
4265 	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
4266 };
4267 static struct node_hstate node_hstates[MAX_NUMNODES];
4268 
4269 /*
4270  * A subset of global hstate attributes for node devices
4271  */
4272 static struct attribute *per_node_hstate_attrs[] = {
4273 	&nr_hugepages_attr.attr,
4274 	&free_hugepages_attr.attr,
4275 	&surplus_hugepages_attr.attr,
4276 	NULL,
4277 };
4278 
4279 static const struct attribute_group per_node_hstate_attr_group = {
4280 	.attrs = per_node_hstate_attrs,
4281 };
4282 
4283 /*
4284  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
4285  * Returns node id via non-NULL nidp.
4286  */
4287 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4288 {
4289 	int nid;
4290 
4291 	for (nid = 0; nid < nr_node_ids; nid++) {
4292 		struct node_hstate *nhs = &node_hstates[nid];
4293 		int i;
4294 		for (i = 0; i < HUGE_MAX_HSTATE; i++)
4295 			if (nhs->hstate_kobjs[i] == kobj) {
4296 				if (nidp)
4297 					*nidp = nid;
4298 				return &hstates[i];
4299 			}
4300 	}
4301 
4302 	BUG();
4303 	return NULL;
4304 }
4305 
4306 /*
4307  * Unregister hstate attributes from a single node device.
4308  * No-op if no hstate attributes attached.
4309  */
4310 void hugetlb_unregister_node(struct node *node)
4311 {
4312 	struct hstate *h;
4313 	struct node_hstate *nhs = &node_hstates[node->dev.id];
4314 
4315 	if (!nhs->hugepages_kobj)
4316 		return;		/* no hstate attributes */
4317 
4318 	for_each_hstate(h) {
4319 		int idx = hstate_index(h);
4320 		struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
4321 
4322 		if (!hstate_kobj)
4323 			continue;
4324 		if (h->demote_order)
4325 			sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
4326 		sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
4327 		kobject_put(hstate_kobj);
4328 		nhs->hstate_kobjs[idx] = NULL;
4329 	}
4330 
4331 	kobject_put(nhs->hugepages_kobj);
4332 	nhs->hugepages_kobj = NULL;
4333 }
4334 
4335 
4336 /*
4337  * Register hstate attributes for a single node device.
4338  * No-op if attributes already registered.
4339  */
4340 void hugetlb_register_node(struct node *node)
4341 {
4342 	struct hstate *h;
4343 	struct node_hstate *nhs = &node_hstates[node->dev.id];
4344 	int err;
4345 
4346 	if (!hugetlb_sysfs_initialized)
4347 		return;
4348 
4349 	if (nhs->hugepages_kobj)
4350 		return;		/* already allocated */
4351 
4352 	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
4353 							&node->dev.kobj);
4354 	if (!nhs->hugepages_kobj)
4355 		return;
4356 
4357 	for_each_hstate(h) {
4358 		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
4359 						nhs->hstate_kobjs,
4360 						&per_node_hstate_attr_group);
4361 		if (err) {
4362 			pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
4363 				h->name, node->dev.id);
4364 			hugetlb_unregister_node(node);
4365 			break;
4366 		}
4367 	}
4368 }
4369 
4370 /*
4371  * hugetlb init time:  register hstate attributes for all registered node
4372  * devices of nodes that have memory.  All on-line nodes should have
4373  * registered their associated device by this time.
4374  */
4375 static void __init hugetlb_register_all_nodes(void)
4376 {
4377 	int nid;
4378 
4379 	for_each_online_node(nid)
4380 		hugetlb_register_node(node_devices[nid]);
4381 }
4382 #else	/* !CONFIG_NUMA */
4383 
4384 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4385 {
4386 	BUG();
4387 	if (nidp)
4388 		*nidp = -1;
4389 	return NULL;
4390 }
4391 
4392 static void hugetlb_register_all_nodes(void) { }
4393 
4394 #endif
4395 
4396 #ifdef CONFIG_CMA
4397 static void __init hugetlb_cma_check(void);
4398 #else
4399 static inline __init void hugetlb_cma_check(void)
4400 {
4401 }
4402 #endif
4403 
4404 static void __init hugetlb_sysfs_init(void)
4405 {
4406 	struct hstate *h;
4407 	int err;
4408 
4409 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
4410 	if (!hugepages_kobj)
4411 		return;
4412 
4413 	for_each_hstate(h) {
4414 		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
4415 					 hstate_kobjs, &hstate_attr_group);
4416 		if (err)
4417 			pr_err("HugeTLB: Unable to add hstate %s", h->name);
4418 	}
4419 
4420 #ifdef CONFIG_NUMA
4421 	hugetlb_sysfs_initialized = true;
4422 #endif
4423 	hugetlb_register_all_nodes();
4424 }
4425 
4426 #ifdef CONFIG_SYSCTL
4427 static void hugetlb_sysctl_init(void);
4428 #else
4429 static inline void hugetlb_sysctl_init(void) { }
4430 #endif
4431 
4432 static int __init hugetlb_init(void)
4433 {
4434 	int i;
4435 
4436 	BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4437 			__NR_HPAGEFLAGS);
4438 
4439 	if (!hugepages_supported()) {
4440 		if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4441 			pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4442 		return 0;
4443 	}
4444 
4445 	/*
4446 	 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
4447 	 * architectures depend on setup being done here.
4448 	 */
4449 	hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4450 	if (!parsed_default_hugepagesz) {
4451 		/*
4452 		 * If we did not parse a default huge page size, set
4453 		 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4454 		 * number of huge pages for this default size was implicitly
4455 		 * specified, set that here as well.
4456 		 * Note that the implicit setting will overwrite an explicit
4457 		 * setting.  A warning will be printed in this case.
4458 		 */
4459 		default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4460 		if (default_hstate_max_huge_pages) {
4461 			if (default_hstate.max_huge_pages) {
4462 				char buf[32];
4463 
4464 				string_get_size(huge_page_size(&default_hstate),
4465 					1, STRING_UNITS_2, buf, 32);
4466 				pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4467 					default_hstate.max_huge_pages, buf);
4468 				pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4469 					default_hstate_max_huge_pages);
4470 			}
4471 			default_hstate.max_huge_pages =
4472 				default_hstate_max_huge_pages;
4473 
4474 			for_each_online_node(i)
4475 				default_hstate.max_huge_pages_node[i] =
4476 					default_hugepages_in_node[i];
4477 		}
4478 	}
4479 
4480 	hugetlb_cma_check();
4481 	hugetlb_init_hstates();
4482 	gather_bootmem_prealloc();
4483 	report_hugepages();
4484 
4485 	hugetlb_sysfs_init();
4486 	hugetlb_cgroup_file_init();
4487 	hugetlb_sysctl_init();
4488 
4489 #ifdef CONFIG_SMP
4490 	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4491 #else
4492 	num_fault_mutexes = 1;
4493 #endif
4494 	hugetlb_fault_mutex_table =
4495 		kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4496 			      GFP_KERNEL);
4497 	BUG_ON(!hugetlb_fault_mutex_table);
4498 
4499 	for (i = 0; i < num_fault_mutexes; i++)
4500 		mutex_init(&hugetlb_fault_mutex_table[i]);
4501 	return 0;
4502 }
4503 subsys_initcall(hugetlb_init);
4504 
4505 /* Overwritten by architectures with more huge page sizes */
4506 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4507 {
4508 	return size == HPAGE_SIZE;
4509 }
4510 
4511 void __init hugetlb_add_hstate(unsigned int order)
4512 {
4513 	struct hstate *h;
4514 	unsigned long i;
4515 
4516 	if (size_to_hstate(PAGE_SIZE << order)) {
4517 		return;
4518 	}
4519 	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4520 	BUG_ON(order < order_base_2(__NR_USED_SUBPAGE));
4521 	h = &hstates[hugetlb_max_hstate++];
4522 	__mutex_init(&h->resize_lock, "resize mutex", &h->resize_key);
4523 	h->order = order;
4524 	h->mask = ~(huge_page_size(h) - 1);
4525 	for (i = 0; i < MAX_NUMNODES; ++i)
4526 		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4527 	INIT_LIST_HEAD(&h->hugepage_activelist);
4528 	h->next_nid_to_alloc = first_memory_node;
4529 	h->next_nid_to_free = first_memory_node;
4530 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4531 					huge_page_size(h)/SZ_1K);
4532 
4533 	parsed_hstate = h;
4534 }
4535 
4536 bool __init __weak hugetlb_node_alloc_supported(void)
4537 {
4538 	return true;
4539 }
4540 
4541 static void __init hugepages_clear_pages_in_node(void)
4542 {
4543 	if (!hugetlb_max_hstate) {
4544 		default_hstate_max_huge_pages = 0;
4545 		memset(default_hugepages_in_node, 0,
4546 			sizeof(default_hugepages_in_node));
4547 	} else {
4548 		parsed_hstate->max_huge_pages = 0;
4549 		memset(parsed_hstate->max_huge_pages_node, 0,
4550 			sizeof(parsed_hstate->max_huge_pages_node));
4551 	}
4552 }
4553 
4554 /*
4555  * hugepages command line processing
4556  * hugepages normally follows a valid hugepagsz or default_hugepagsz
4557  * specification.  If not, ignore the hugepages value.  hugepages can also
4558  * be the first huge page command line  option in which case it implicitly
4559  * specifies the number of huge pages for the default size.
4560  */
4561 static int __init hugepages_setup(char *s)
4562 {
4563 	unsigned long *mhp;
4564 	static unsigned long *last_mhp;
4565 	int node = NUMA_NO_NODE;
4566 	int count;
4567 	unsigned long tmp;
4568 	char *p = s;
4569 
4570 	if (!parsed_valid_hugepagesz) {
4571 		pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4572 		parsed_valid_hugepagesz = true;
4573 		return 1;
4574 	}
4575 
4576 	/*
4577 	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4578 	 * yet, so this hugepages= parameter goes to the "default hstate".
4579 	 * Otherwise, it goes with the previously parsed hugepagesz or
4580 	 * default_hugepagesz.
4581 	 */
4582 	else if (!hugetlb_max_hstate)
4583 		mhp = &default_hstate_max_huge_pages;
4584 	else
4585 		mhp = &parsed_hstate->max_huge_pages;
4586 
4587 	if (mhp == last_mhp) {
4588 		pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4589 		return 1;
4590 	}
4591 
4592 	while (*p) {
4593 		count = 0;
4594 		if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4595 			goto invalid;
4596 		/* Parameter is node format */
4597 		if (p[count] == ':') {
4598 			if (!hugetlb_node_alloc_supported()) {
4599 				pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4600 				return 1;
4601 			}
4602 			if (tmp >= MAX_NUMNODES || !node_online(tmp))
4603 				goto invalid;
4604 			node = array_index_nospec(tmp, MAX_NUMNODES);
4605 			p += count + 1;
4606 			/* Parse hugepages */
4607 			if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4608 				goto invalid;
4609 			if (!hugetlb_max_hstate)
4610 				default_hugepages_in_node[node] = tmp;
4611 			else
4612 				parsed_hstate->max_huge_pages_node[node] = tmp;
4613 			*mhp += tmp;
4614 			/* Go to parse next node*/
4615 			if (p[count] == ',')
4616 				p += count + 1;
4617 			else
4618 				break;
4619 		} else {
4620 			if (p != s)
4621 				goto invalid;
4622 			*mhp = tmp;
4623 			break;
4624 		}
4625 	}
4626 
4627 	/*
4628 	 * Global state is always initialized later in hugetlb_init.
4629 	 * But we need to allocate gigantic hstates here early to still
4630 	 * use the bootmem allocator.
4631 	 */
4632 	if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4633 		hugetlb_hstate_alloc_pages(parsed_hstate);
4634 
4635 	last_mhp = mhp;
4636 
4637 	return 1;
4638 
4639 invalid:
4640 	pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4641 	hugepages_clear_pages_in_node();
4642 	return 1;
4643 }
4644 __setup("hugepages=", hugepages_setup);
4645 
4646 /*
4647  * hugepagesz command line processing
4648  * A specific huge page size can only be specified once with hugepagesz.
4649  * hugepagesz is followed by hugepages on the command line.  The global
4650  * variable 'parsed_valid_hugepagesz' is used to determine if prior
4651  * hugepagesz argument was valid.
4652  */
4653 static int __init hugepagesz_setup(char *s)
4654 {
4655 	unsigned long size;
4656 	struct hstate *h;
4657 
4658 	parsed_valid_hugepagesz = false;
4659 	size = (unsigned long)memparse(s, NULL);
4660 
4661 	if (!arch_hugetlb_valid_size(size)) {
4662 		pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4663 		return 1;
4664 	}
4665 
4666 	h = size_to_hstate(size);
4667 	if (h) {
4668 		/*
4669 		 * hstate for this size already exists.  This is normally
4670 		 * an error, but is allowed if the existing hstate is the
4671 		 * default hstate.  More specifically, it is only allowed if
4672 		 * the number of huge pages for the default hstate was not
4673 		 * previously specified.
4674 		 */
4675 		if (!parsed_default_hugepagesz ||  h != &default_hstate ||
4676 		    default_hstate.max_huge_pages) {
4677 			pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4678 			return 1;
4679 		}
4680 
4681 		/*
4682 		 * No need to call hugetlb_add_hstate() as hstate already
4683 		 * exists.  But, do set parsed_hstate so that a following
4684 		 * hugepages= parameter will be applied to this hstate.
4685 		 */
4686 		parsed_hstate = h;
4687 		parsed_valid_hugepagesz = true;
4688 		return 1;
4689 	}
4690 
4691 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4692 	parsed_valid_hugepagesz = true;
4693 	return 1;
4694 }
4695 __setup("hugepagesz=", hugepagesz_setup);
4696 
4697 /*
4698  * default_hugepagesz command line input
4699  * Only one instance of default_hugepagesz allowed on command line.
4700  */
4701 static int __init default_hugepagesz_setup(char *s)
4702 {
4703 	unsigned long size;
4704 	int i;
4705 
4706 	parsed_valid_hugepagesz = false;
4707 	if (parsed_default_hugepagesz) {
4708 		pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4709 		return 1;
4710 	}
4711 
4712 	size = (unsigned long)memparse(s, NULL);
4713 
4714 	if (!arch_hugetlb_valid_size(size)) {
4715 		pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4716 		return 1;
4717 	}
4718 
4719 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4720 	parsed_valid_hugepagesz = true;
4721 	parsed_default_hugepagesz = true;
4722 	default_hstate_idx = hstate_index(size_to_hstate(size));
4723 
4724 	/*
4725 	 * The number of default huge pages (for this size) could have been
4726 	 * specified as the first hugetlb parameter: hugepages=X.  If so,
4727 	 * then default_hstate_max_huge_pages is set.  If the default huge
4728 	 * page size is gigantic (> MAX_PAGE_ORDER), then the pages must be
4729 	 * allocated here from bootmem allocator.
4730 	 */
4731 	if (default_hstate_max_huge_pages) {
4732 		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4733 		for_each_online_node(i)
4734 			default_hstate.max_huge_pages_node[i] =
4735 				default_hugepages_in_node[i];
4736 		if (hstate_is_gigantic(&default_hstate))
4737 			hugetlb_hstate_alloc_pages(&default_hstate);
4738 		default_hstate_max_huge_pages = 0;
4739 	}
4740 
4741 	return 1;
4742 }
4743 __setup("default_hugepagesz=", default_hugepagesz_setup);
4744 
4745 static unsigned int allowed_mems_nr(struct hstate *h)
4746 {
4747 	int node;
4748 	unsigned int nr = 0;
4749 	nodemask_t *mbind_nodemask;
4750 	unsigned int *array = h->free_huge_pages_node;
4751 	gfp_t gfp_mask = htlb_alloc_mask(h);
4752 
4753 	mbind_nodemask = policy_mbind_nodemask(gfp_mask);
4754 	for_each_node_mask(node, cpuset_current_mems_allowed) {
4755 		if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
4756 			nr += array[node];
4757 	}
4758 
4759 	return nr;
4760 }
4761 
4762 #ifdef CONFIG_SYSCTL
4763 static int proc_hugetlb_doulongvec_minmax(const struct ctl_table *table, int write,
4764 					  void *buffer, size_t *length,
4765 					  loff_t *ppos, unsigned long *out)
4766 {
4767 	struct ctl_table dup_table;
4768 
4769 	/*
4770 	 * In order to avoid races with __do_proc_doulongvec_minmax(), we
4771 	 * can duplicate the @table and alter the duplicate of it.
4772 	 */
4773 	dup_table = *table;
4774 	dup_table.data = out;
4775 
4776 	return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4777 }
4778 
4779 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4780 			 const struct ctl_table *table, int write,
4781 			 void *buffer, size_t *length, loff_t *ppos)
4782 {
4783 	struct hstate *h = &default_hstate;
4784 	unsigned long tmp = h->max_huge_pages;
4785 	int ret;
4786 
4787 	if (!hugepages_supported())
4788 		return -EOPNOTSUPP;
4789 
4790 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4791 					     &tmp);
4792 	if (ret)
4793 		goto out;
4794 
4795 	if (write)
4796 		ret = __nr_hugepages_store_common(obey_mempolicy, h,
4797 						  NUMA_NO_NODE, tmp, *length);
4798 out:
4799 	return ret;
4800 }
4801 
4802 static int hugetlb_sysctl_handler(const struct ctl_table *table, int write,
4803 			  void *buffer, size_t *length, loff_t *ppos)
4804 {
4805 
4806 	return hugetlb_sysctl_handler_common(false, table, write,
4807 							buffer, length, ppos);
4808 }
4809 
4810 #ifdef CONFIG_NUMA
4811 static int hugetlb_mempolicy_sysctl_handler(const struct ctl_table *table, int write,
4812 			  void *buffer, size_t *length, loff_t *ppos)
4813 {
4814 	return hugetlb_sysctl_handler_common(true, table, write,
4815 							buffer, length, ppos);
4816 }
4817 #endif /* CONFIG_NUMA */
4818 
4819 static int hugetlb_overcommit_handler(const struct ctl_table *table, int write,
4820 		void *buffer, size_t *length, loff_t *ppos)
4821 {
4822 	struct hstate *h = &default_hstate;
4823 	unsigned long tmp;
4824 	int ret;
4825 
4826 	if (!hugepages_supported())
4827 		return -EOPNOTSUPP;
4828 
4829 	tmp = h->nr_overcommit_huge_pages;
4830 
4831 	if (write && hstate_is_gigantic(h))
4832 		return -EINVAL;
4833 
4834 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4835 					     &tmp);
4836 	if (ret)
4837 		goto out;
4838 
4839 	if (write) {
4840 		spin_lock_irq(&hugetlb_lock);
4841 		h->nr_overcommit_huge_pages = tmp;
4842 		spin_unlock_irq(&hugetlb_lock);
4843 	}
4844 out:
4845 	return ret;
4846 }
4847 
4848 static struct ctl_table hugetlb_table[] = {
4849 	{
4850 		.procname	= "nr_hugepages",
4851 		.data		= NULL,
4852 		.maxlen		= sizeof(unsigned long),
4853 		.mode		= 0644,
4854 		.proc_handler	= hugetlb_sysctl_handler,
4855 	},
4856 #ifdef CONFIG_NUMA
4857 	{
4858 		.procname       = "nr_hugepages_mempolicy",
4859 		.data           = NULL,
4860 		.maxlen         = sizeof(unsigned long),
4861 		.mode           = 0644,
4862 		.proc_handler   = &hugetlb_mempolicy_sysctl_handler,
4863 	},
4864 #endif
4865 	{
4866 		.procname	= "hugetlb_shm_group",
4867 		.data		= &sysctl_hugetlb_shm_group,
4868 		.maxlen		= sizeof(gid_t),
4869 		.mode		= 0644,
4870 		.proc_handler	= proc_dointvec,
4871 	},
4872 	{
4873 		.procname	= "nr_overcommit_hugepages",
4874 		.data		= NULL,
4875 		.maxlen		= sizeof(unsigned long),
4876 		.mode		= 0644,
4877 		.proc_handler	= hugetlb_overcommit_handler,
4878 	},
4879 };
4880 
4881 static void hugetlb_sysctl_init(void)
4882 {
4883 	register_sysctl_init("vm", hugetlb_table);
4884 }
4885 #endif /* CONFIG_SYSCTL */
4886 
4887 void hugetlb_report_meminfo(struct seq_file *m)
4888 {
4889 	struct hstate *h;
4890 	unsigned long total = 0;
4891 
4892 	if (!hugepages_supported())
4893 		return;
4894 
4895 	for_each_hstate(h) {
4896 		unsigned long count = h->nr_huge_pages;
4897 
4898 		total += huge_page_size(h) * count;
4899 
4900 		if (h == &default_hstate)
4901 			seq_printf(m,
4902 				   "HugePages_Total:   %5lu\n"
4903 				   "HugePages_Free:    %5lu\n"
4904 				   "HugePages_Rsvd:    %5lu\n"
4905 				   "HugePages_Surp:    %5lu\n"
4906 				   "Hugepagesize:   %8lu kB\n",
4907 				   count,
4908 				   h->free_huge_pages,
4909 				   h->resv_huge_pages,
4910 				   h->surplus_huge_pages,
4911 				   huge_page_size(h) / SZ_1K);
4912 	}
4913 
4914 	seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
4915 }
4916 
4917 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
4918 {
4919 	struct hstate *h = &default_hstate;
4920 
4921 	if (!hugepages_supported())
4922 		return 0;
4923 
4924 	return sysfs_emit_at(buf, len,
4925 			     "Node %d HugePages_Total: %5u\n"
4926 			     "Node %d HugePages_Free:  %5u\n"
4927 			     "Node %d HugePages_Surp:  %5u\n",
4928 			     nid, h->nr_huge_pages_node[nid],
4929 			     nid, h->free_huge_pages_node[nid],
4930 			     nid, h->surplus_huge_pages_node[nid]);
4931 }
4932 
4933 void hugetlb_show_meminfo_node(int nid)
4934 {
4935 	struct hstate *h;
4936 
4937 	if (!hugepages_supported())
4938 		return;
4939 
4940 	for_each_hstate(h)
4941 		printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4942 			nid,
4943 			h->nr_huge_pages_node[nid],
4944 			h->free_huge_pages_node[nid],
4945 			h->surplus_huge_pages_node[nid],
4946 			huge_page_size(h) / SZ_1K);
4947 }
4948 
4949 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4950 {
4951 	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4952 		   K(atomic_long_read(&mm->hugetlb_usage)));
4953 }
4954 
4955 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
4956 unsigned long hugetlb_total_pages(void)
4957 {
4958 	struct hstate *h;
4959 	unsigned long nr_total_pages = 0;
4960 
4961 	for_each_hstate(h)
4962 		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4963 	return nr_total_pages;
4964 }
4965 
4966 static int hugetlb_acct_memory(struct hstate *h, long delta)
4967 {
4968 	int ret = -ENOMEM;
4969 
4970 	if (!delta)
4971 		return 0;
4972 
4973 	spin_lock_irq(&hugetlb_lock);
4974 	/*
4975 	 * When cpuset is configured, it breaks the strict hugetlb page
4976 	 * reservation as the accounting is done on a global variable. Such
4977 	 * reservation is completely rubbish in the presence of cpuset because
4978 	 * the reservation is not checked against page availability for the
4979 	 * current cpuset. Application can still potentially OOM'ed by kernel
4980 	 * with lack of free htlb page in cpuset that the task is in.
4981 	 * Attempt to enforce strict accounting with cpuset is almost
4982 	 * impossible (or too ugly) because cpuset is too fluid that
4983 	 * task or memory node can be dynamically moved between cpusets.
4984 	 *
4985 	 * The change of semantics for shared hugetlb mapping with cpuset is
4986 	 * undesirable. However, in order to preserve some of the semantics,
4987 	 * we fall back to check against current free page availability as
4988 	 * a best attempt and hopefully to minimize the impact of changing
4989 	 * semantics that cpuset has.
4990 	 *
4991 	 * Apart from cpuset, we also have memory policy mechanism that
4992 	 * also determines from which node the kernel will allocate memory
4993 	 * in a NUMA system. So similar to cpuset, we also should consider
4994 	 * the memory policy of the current task. Similar to the description
4995 	 * above.
4996 	 */
4997 	if (delta > 0) {
4998 		if (gather_surplus_pages(h, delta) < 0)
4999 			goto out;
5000 
5001 		if (delta > allowed_mems_nr(h)) {
5002 			return_unused_surplus_pages(h, delta);
5003 			goto out;
5004 		}
5005 	}
5006 
5007 	ret = 0;
5008 	if (delta < 0)
5009 		return_unused_surplus_pages(h, (unsigned long) -delta);
5010 
5011 out:
5012 	spin_unlock_irq(&hugetlb_lock);
5013 	return ret;
5014 }
5015 
5016 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
5017 {
5018 	struct resv_map *resv = vma_resv_map(vma);
5019 
5020 	/*
5021 	 * HPAGE_RESV_OWNER indicates a private mapping.
5022 	 * This new VMA should share its siblings reservation map if present.
5023 	 * The VMA will only ever have a valid reservation map pointer where
5024 	 * it is being copied for another still existing VMA.  As that VMA
5025 	 * has a reference to the reservation map it cannot disappear until
5026 	 * after this open call completes.  It is therefore safe to take a
5027 	 * new reference here without additional locking.
5028 	 */
5029 	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
5030 		resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
5031 		kref_get(&resv->refs);
5032 	}
5033 
5034 	/*
5035 	 * vma_lock structure for sharable mappings is vma specific.
5036 	 * Clear old pointer (if copied via vm_area_dup) and allocate
5037 	 * new structure.  Before clearing, make sure vma_lock is not
5038 	 * for this vma.
5039 	 */
5040 	if (vma->vm_flags & VM_MAYSHARE) {
5041 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
5042 
5043 		if (vma_lock) {
5044 			if (vma_lock->vma != vma) {
5045 				vma->vm_private_data = NULL;
5046 				hugetlb_vma_lock_alloc(vma);
5047 			} else
5048 				pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__);
5049 		} else
5050 			hugetlb_vma_lock_alloc(vma);
5051 	}
5052 }
5053 
5054 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
5055 {
5056 	struct hstate *h = hstate_vma(vma);
5057 	struct resv_map *resv;
5058 	struct hugepage_subpool *spool = subpool_vma(vma);
5059 	unsigned long reserve, start, end;
5060 	long gbl_reserve;
5061 
5062 	hugetlb_vma_lock_free(vma);
5063 
5064 	resv = vma_resv_map(vma);
5065 	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5066 		return;
5067 
5068 	start = vma_hugecache_offset(h, vma, vma->vm_start);
5069 	end = vma_hugecache_offset(h, vma, vma->vm_end);
5070 
5071 	reserve = (end - start) - region_count(resv, start, end);
5072 	hugetlb_cgroup_uncharge_counter(resv, start, end);
5073 	if (reserve) {
5074 		/*
5075 		 * Decrement reserve counts.  The global reserve count may be
5076 		 * adjusted if the subpool has a minimum size.
5077 		 */
5078 		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
5079 		hugetlb_acct_memory(h, -gbl_reserve);
5080 	}
5081 
5082 	kref_put(&resv->refs, resv_map_release);
5083 }
5084 
5085 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
5086 {
5087 	if (addr & ~(huge_page_mask(hstate_vma(vma))))
5088 		return -EINVAL;
5089 
5090 	/*
5091 	 * PMD sharing is only possible for PUD_SIZE-aligned address ranges
5092 	 * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this
5093 	 * split, unshare PMDs in the PUD_SIZE interval surrounding addr now.
5094 	 */
5095 	if (addr & ~PUD_MASK) {
5096 		/*
5097 		 * hugetlb_vm_op_split is called right before we attempt to
5098 		 * split the VMA. We will need to unshare PMDs in the old and
5099 		 * new VMAs, so let's unshare before we split.
5100 		 */
5101 		unsigned long floor = addr & PUD_MASK;
5102 		unsigned long ceil = floor + PUD_SIZE;
5103 
5104 		if (floor >= vma->vm_start && ceil <= vma->vm_end)
5105 			hugetlb_unshare_pmds(vma, floor, ceil);
5106 	}
5107 
5108 	return 0;
5109 }
5110 
5111 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
5112 {
5113 	return huge_page_size(hstate_vma(vma));
5114 }
5115 
5116 /*
5117  * We cannot handle pagefaults against hugetlb pages at all.  They cause
5118  * handle_mm_fault() to try to instantiate regular-sized pages in the
5119  * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
5120  * this far.
5121  */
5122 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
5123 {
5124 	BUG();
5125 	return 0;
5126 }
5127 
5128 /*
5129  * When a new function is introduced to vm_operations_struct and added
5130  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
5131  * This is because under System V memory model, mappings created via
5132  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
5133  * their original vm_ops are overwritten with shm_vm_ops.
5134  */
5135 const struct vm_operations_struct hugetlb_vm_ops = {
5136 	.fault = hugetlb_vm_op_fault,
5137 	.open = hugetlb_vm_op_open,
5138 	.close = hugetlb_vm_op_close,
5139 	.may_split = hugetlb_vm_op_split,
5140 	.pagesize = hugetlb_vm_op_pagesize,
5141 };
5142 
5143 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
5144 				int writable)
5145 {
5146 	pte_t entry;
5147 	unsigned int shift = huge_page_shift(hstate_vma(vma));
5148 
5149 	if (writable) {
5150 		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
5151 					 vma->vm_page_prot)));
5152 	} else {
5153 		entry = huge_pte_wrprotect(mk_huge_pte(page,
5154 					   vma->vm_page_prot));
5155 	}
5156 	entry = pte_mkyoung(entry);
5157 	entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
5158 
5159 	return entry;
5160 }
5161 
5162 static void set_huge_ptep_writable(struct vm_area_struct *vma,
5163 				   unsigned long address, pte_t *ptep)
5164 {
5165 	pte_t entry;
5166 
5167 	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(vma->vm_mm, address, ptep)));
5168 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
5169 		update_mmu_cache(vma, address, ptep);
5170 }
5171 
5172 bool is_hugetlb_entry_migration(pte_t pte)
5173 {
5174 	swp_entry_t swp;
5175 
5176 	if (huge_pte_none(pte) || pte_present(pte))
5177 		return false;
5178 	swp = pte_to_swp_entry(pte);
5179 	if (is_migration_entry(swp))
5180 		return true;
5181 	else
5182 		return false;
5183 }
5184 
5185 bool is_hugetlb_entry_hwpoisoned(pte_t pte)
5186 {
5187 	swp_entry_t swp;
5188 
5189 	if (huge_pte_none(pte) || pte_present(pte))
5190 		return false;
5191 	swp = pte_to_swp_entry(pte);
5192 	if (is_hwpoison_entry(swp))
5193 		return true;
5194 	else
5195 		return false;
5196 }
5197 
5198 static void
5199 hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
5200 		      struct folio *new_folio, pte_t old, unsigned long sz)
5201 {
5202 	pte_t newpte = make_huge_pte(vma, &new_folio->page, 1);
5203 
5204 	__folio_mark_uptodate(new_folio);
5205 	hugetlb_add_new_anon_rmap(new_folio, vma, addr);
5206 	if (userfaultfd_wp(vma) && huge_pte_uffd_wp(old))
5207 		newpte = huge_pte_mkuffd_wp(newpte);
5208 	set_huge_pte_at(vma->vm_mm, addr, ptep, newpte, sz);
5209 	hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
5210 	folio_set_hugetlb_migratable(new_folio);
5211 }
5212 
5213 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
5214 			    struct vm_area_struct *dst_vma,
5215 			    struct vm_area_struct *src_vma)
5216 {
5217 	pte_t *src_pte, *dst_pte, entry;
5218 	struct folio *pte_folio;
5219 	unsigned long addr;
5220 	bool cow = is_cow_mapping(src_vma->vm_flags);
5221 	struct hstate *h = hstate_vma(src_vma);
5222 	unsigned long sz = huge_page_size(h);
5223 	unsigned long npages = pages_per_huge_page(h);
5224 	struct mmu_notifier_range range;
5225 	unsigned long last_addr_mask;
5226 	int ret = 0;
5227 
5228 	if (cow) {
5229 		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src,
5230 					src_vma->vm_start,
5231 					src_vma->vm_end);
5232 		mmu_notifier_invalidate_range_start(&range);
5233 		vma_assert_write_locked(src_vma);
5234 		raw_write_seqcount_begin(&src->write_protect_seq);
5235 	} else {
5236 		/*
5237 		 * For shared mappings the vma lock must be held before
5238 		 * calling hugetlb_walk() in the src vma. Otherwise, the
5239 		 * returned ptep could go away if part of a shared pmd and
5240 		 * another thread calls huge_pmd_unshare.
5241 		 */
5242 		hugetlb_vma_lock_read(src_vma);
5243 	}
5244 
5245 	last_addr_mask = hugetlb_mask_last_page(h);
5246 	for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
5247 		spinlock_t *src_ptl, *dst_ptl;
5248 		src_pte = hugetlb_walk(src_vma, addr, sz);
5249 		if (!src_pte) {
5250 			addr |= last_addr_mask;
5251 			continue;
5252 		}
5253 		dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
5254 		if (!dst_pte) {
5255 			ret = -ENOMEM;
5256 			break;
5257 		}
5258 
5259 		/*
5260 		 * If the pagetables are shared don't copy or take references.
5261 		 *
5262 		 * dst_pte == src_pte is the common case of src/dest sharing.
5263 		 * However, src could have 'unshared' and dst shares with
5264 		 * another vma. So page_count of ptep page is checked instead
5265 		 * to reliably determine whether pte is shared.
5266 		 */
5267 		if (page_count(virt_to_page(dst_pte)) > 1) {
5268 			addr |= last_addr_mask;
5269 			continue;
5270 		}
5271 
5272 		dst_ptl = huge_pte_lock(h, dst, dst_pte);
5273 		src_ptl = huge_pte_lockptr(h, src, src_pte);
5274 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5275 		entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte);
5276 again:
5277 		if (huge_pte_none(entry)) {
5278 			/*
5279 			 * Skip if src entry none.
5280 			 */
5281 			;
5282 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
5283 			if (!userfaultfd_wp(dst_vma))
5284 				entry = huge_pte_clear_uffd_wp(entry);
5285 			set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5286 		} else if (unlikely(is_hugetlb_entry_migration(entry))) {
5287 			swp_entry_t swp_entry = pte_to_swp_entry(entry);
5288 			bool uffd_wp = pte_swp_uffd_wp(entry);
5289 
5290 			if (!is_readable_migration_entry(swp_entry) && cow) {
5291 				/*
5292 				 * COW mappings require pages in both
5293 				 * parent and child to be set to read.
5294 				 */
5295 				swp_entry = make_readable_migration_entry(
5296 							swp_offset(swp_entry));
5297 				entry = swp_entry_to_pte(swp_entry);
5298 				if (userfaultfd_wp(src_vma) && uffd_wp)
5299 					entry = pte_swp_mkuffd_wp(entry);
5300 				set_huge_pte_at(src, addr, src_pte, entry, sz);
5301 			}
5302 			if (!userfaultfd_wp(dst_vma))
5303 				entry = huge_pte_clear_uffd_wp(entry);
5304 			set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5305 		} else if (unlikely(is_pte_marker(entry))) {
5306 			pte_marker marker = copy_pte_marker(
5307 				pte_to_swp_entry(entry), dst_vma);
5308 
5309 			if (marker)
5310 				set_huge_pte_at(dst, addr, dst_pte,
5311 						make_pte_marker(marker), sz);
5312 		} else {
5313 			entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte);
5314 			pte_folio = page_folio(pte_page(entry));
5315 			folio_get(pte_folio);
5316 
5317 			/*
5318 			 * Failing to duplicate the anon rmap is a rare case
5319 			 * where we see pinned hugetlb pages while they're
5320 			 * prone to COW. We need to do the COW earlier during
5321 			 * fork.
5322 			 *
5323 			 * When pre-allocating the page or copying data, we
5324 			 * need to be without the pgtable locks since we could
5325 			 * sleep during the process.
5326 			 */
5327 			if (!folio_test_anon(pte_folio)) {
5328 				hugetlb_add_file_rmap(pte_folio);
5329 			} else if (hugetlb_try_dup_anon_rmap(pte_folio, src_vma)) {
5330 				pte_t src_pte_old = entry;
5331 				struct folio *new_folio;
5332 
5333 				spin_unlock(src_ptl);
5334 				spin_unlock(dst_ptl);
5335 				/* Do not use reserve as it's private owned */
5336 				new_folio = alloc_hugetlb_folio(dst_vma, addr, 1);
5337 				if (IS_ERR(new_folio)) {
5338 					folio_put(pte_folio);
5339 					ret = PTR_ERR(new_folio);
5340 					break;
5341 				}
5342 				ret = copy_user_large_folio(new_folio, pte_folio,
5343 						ALIGN_DOWN(addr, sz), dst_vma);
5344 				folio_put(pte_folio);
5345 				if (ret) {
5346 					folio_put(new_folio);
5347 					break;
5348 				}
5349 
5350 				/* Install the new hugetlb folio if src pte stable */
5351 				dst_ptl = huge_pte_lock(h, dst, dst_pte);
5352 				src_ptl = huge_pte_lockptr(h, src, src_pte);
5353 				spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5354 				entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte);
5355 				if (!pte_same(src_pte_old, entry)) {
5356 					restore_reserve_on_error(h, dst_vma, addr,
5357 								new_folio);
5358 					folio_put(new_folio);
5359 					/* huge_ptep of dst_pte won't change as in child */
5360 					goto again;
5361 				}
5362 				hugetlb_install_folio(dst_vma, dst_pte, addr,
5363 						      new_folio, src_pte_old, sz);
5364 				spin_unlock(src_ptl);
5365 				spin_unlock(dst_ptl);
5366 				continue;
5367 			}
5368 
5369 			if (cow) {
5370 				/*
5371 				 * No need to notify as we are downgrading page
5372 				 * table protection not changing it to point
5373 				 * to a new page.
5374 				 *
5375 				 * See Documentation/mm/mmu_notifier.rst
5376 				 */
5377 				huge_ptep_set_wrprotect(src, addr, src_pte);
5378 				entry = huge_pte_wrprotect(entry);
5379 			}
5380 
5381 			if (!userfaultfd_wp(dst_vma))
5382 				entry = huge_pte_clear_uffd_wp(entry);
5383 
5384 			set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5385 			hugetlb_count_add(npages, dst);
5386 		}
5387 		spin_unlock(src_ptl);
5388 		spin_unlock(dst_ptl);
5389 	}
5390 
5391 	if (cow) {
5392 		raw_write_seqcount_end(&src->write_protect_seq);
5393 		mmu_notifier_invalidate_range_end(&range);
5394 	} else {
5395 		hugetlb_vma_unlock_read(src_vma);
5396 	}
5397 
5398 	return ret;
5399 }
5400 
5401 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
5402 			  unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte,
5403 			  unsigned long sz)
5404 {
5405 	struct hstate *h = hstate_vma(vma);
5406 	struct mm_struct *mm = vma->vm_mm;
5407 	spinlock_t *src_ptl, *dst_ptl;
5408 	pte_t pte;
5409 
5410 	dst_ptl = huge_pte_lock(h, mm, dst_pte);
5411 	src_ptl = huge_pte_lockptr(h, mm, src_pte);
5412 
5413 	/*
5414 	 * We don't have to worry about the ordering of src and dst ptlocks
5415 	 * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock.
5416 	 */
5417 	if (src_ptl != dst_ptl)
5418 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5419 
5420 	pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
5421 	set_huge_pte_at(mm, new_addr, dst_pte, pte, sz);
5422 
5423 	if (src_ptl != dst_ptl)
5424 		spin_unlock(src_ptl);
5425 	spin_unlock(dst_ptl);
5426 }
5427 
5428 int move_hugetlb_page_tables(struct vm_area_struct *vma,
5429 			     struct vm_area_struct *new_vma,
5430 			     unsigned long old_addr, unsigned long new_addr,
5431 			     unsigned long len)
5432 {
5433 	struct hstate *h = hstate_vma(vma);
5434 	struct address_space *mapping = vma->vm_file->f_mapping;
5435 	unsigned long sz = huge_page_size(h);
5436 	struct mm_struct *mm = vma->vm_mm;
5437 	unsigned long old_end = old_addr + len;
5438 	unsigned long last_addr_mask;
5439 	pte_t *src_pte, *dst_pte;
5440 	struct mmu_notifier_range range;
5441 	bool shared_pmd = false;
5442 
5443 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr,
5444 				old_end);
5445 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5446 	/*
5447 	 * In case of shared PMDs, we should cover the maximum possible
5448 	 * range.
5449 	 */
5450 	flush_cache_range(vma, range.start, range.end);
5451 
5452 	mmu_notifier_invalidate_range_start(&range);
5453 	last_addr_mask = hugetlb_mask_last_page(h);
5454 	/* Prevent race with file truncation */
5455 	hugetlb_vma_lock_write(vma);
5456 	i_mmap_lock_write(mapping);
5457 	for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
5458 		src_pte = hugetlb_walk(vma, old_addr, sz);
5459 		if (!src_pte) {
5460 			old_addr |= last_addr_mask;
5461 			new_addr |= last_addr_mask;
5462 			continue;
5463 		}
5464 		if (huge_pte_none(huge_ptep_get(mm, old_addr, src_pte)))
5465 			continue;
5466 
5467 		if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
5468 			shared_pmd = true;
5469 			old_addr |= last_addr_mask;
5470 			new_addr |= last_addr_mask;
5471 			continue;
5472 		}
5473 
5474 		dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5475 		if (!dst_pte)
5476 			break;
5477 
5478 		move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte, sz);
5479 	}
5480 
5481 	if (shared_pmd)
5482 		flush_hugetlb_tlb_range(vma, range.start, range.end);
5483 	else
5484 		flush_hugetlb_tlb_range(vma, old_end - len, old_end);
5485 	mmu_notifier_invalidate_range_end(&range);
5486 	i_mmap_unlock_write(mapping);
5487 	hugetlb_vma_unlock_write(vma);
5488 
5489 	return len + old_addr - old_end;
5490 }
5491 
5492 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5493 			    unsigned long start, unsigned long end,
5494 			    struct page *ref_page, zap_flags_t zap_flags)
5495 {
5496 	struct mm_struct *mm = vma->vm_mm;
5497 	unsigned long address;
5498 	pte_t *ptep;
5499 	pte_t pte;
5500 	spinlock_t *ptl;
5501 	struct page *page;
5502 	struct hstate *h = hstate_vma(vma);
5503 	unsigned long sz = huge_page_size(h);
5504 	bool adjust_reservation = false;
5505 	unsigned long last_addr_mask;
5506 	bool force_flush = false;
5507 
5508 	WARN_ON(!is_vm_hugetlb_page(vma));
5509 	BUG_ON(start & ~huge_page_mask(h));
5510 	BUG_ON(end & ~huge_page_mask(h));
5511 
5512 	/*
5513 	 * This is a hugetlb vma, all the pte entries should point
5514 	 * to huge page.
5515 	 */
5516 	tlb_change_page_size(tlb, sz);
5517 	tlb_start_vma(tlb, vma);
5518 
5519 	last_addr_mask = hugetlb_mask_last_page(h);
5520 	address = start;
5521 	for (; address < end; address += sz) {
5522 		ptep = hugetlb_walk(vma, address, sz);
5523 		if (!ptep) {
5524 			address |= last_addr_mask;
5525 			continue;
5526 		}
5527 
5528 		ptl = huge_pte_lock(h, mm, ptep);
5529 		if (huge_pmd_unshare(mm, vma, address, ptep)) {
5530 			spin_unlock(ptl);
5531 			tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5532 			force_flush = true;
5533 			address |= last_addr_mask;
5534 			continue;
5535 		}
5536 
5537 		pte = huge_ptep_get(mm, address, ptep);
5538 		if (huge_pte_none(pte)) {
5539 			spin_unlock(ptl);
5540 			continue;
5541 		}
5542 
5543 		/*
5544 		 * Migrating hugepage or HWPoisoned hugepage is already
5545 		 * unmapped and its refcount is dropped, so just clear pte here.
5546 		 */
5547 		if (unlikely(!pte_present(pte))) {
5548 			/*
5549 			 * If the pte was wr-protected by uffd-wp in any of the
5550 			 * swap forms, meanwhile the caller does not want to
5551 			 * drop the uffd-wp bit in this zap, then replace the
5552 			 * pte with a marker.
5553 			 */
5554 			if (pte_swp_uffd_wp_any(pte) &&
5555 			    !(zap_flags & ZAP_FLAG_DROP_MARKER))
5556 				set_huge_pte_at(mm, address, ptep,
5557 						make_pte_marker(PTE_MARKER_UFFD_WP),
5558 						sz);
5559 			else
5560 				huge_pte_clear(mm, address, ptep, sz);
5561 			spin_unlock(ptl);
5562 			continue;
5563 		}
5564 
5565 		page = pte_page(pte);
5566 		/*
5567 		 * If a reference page is supplied, it is because a specific
5568 		 * page is being unmapped, not a range. Ensure the page we
5569 		 * are about to unmap is the actual page of interest.
5570 		 */
5571 		if (ref_page) {
5572 			if (page != ref_page) {
5573 				spin_unlock(ptl);
5574 				continue;
5575 			}
5576 			/*
5577 			 * Mark the VMA as having unmapped its page so that
5578 			 * future faults in this VMA will fail rather than
5579 			 * looking like data was lost
5580 			 */
5581 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5582 		}
5583 
5584 		pte = huge_ptep_get_and_clear(mm, address, ptep);
5585 		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5586 		if (huge_pte_dirty(pte))
5587 			set_page_dirty(page);
5588 		/* Leave a uffd-wp pte marker if needed */
5589 		if (huge_pte_uffd_wp(pte) &&
5590 		    !(zap_flags & ZAP_FLAG_DROP_MARKER))
5591 			set_huge_pte_at(mm, address, ptep,
5592 					make_pte_marker(PTE_MARKER_UFFD_WP),
5593 					sz);
5594 		hugetlb_count_sub(pages_per_huge_page(h), mm);
5595 		hugetlb_remove_rmap(page_folio(page));
5596 
5597 		/*
5598 		 * Restore the reservation for anonymous page, otherwise the
5599 		 * backing page could be stolen by someone.
5600 		 * If there we are freeing a surplus, do not set the restore
5601 		 * reservation bit.
5602 		 */
5603 		if (!h->surplus_huge_pages && __vma_private_lock(vma) &&
5604 		    folio_test_anon(page_folio(page))) {
5605 			folio_set_hugetlb_restore_reserve(page_folio(page));
5606 			/* Reservation to be adjusted after the spin lock */
5607 			adjust_reservation = true;
5608 		}
5609 
5610 		spin_unlock(ptl);
5611 
5612 		/*
5613 		 * Adjust the reservation for the region that will have the
5614 		 * reserve restored. Keep in mind that vma_needs_reservation() changes
5615 		 * resv->adds_in_progress if it succeeds. If this is not done,
5616 		 * do_exit() will not see it, and will keep the reservation
5617 		 * forever.
5618 		 */
5619 		if (adjust_reservation) {
5620 			int rc = vma_needs_reservation(h, vma, address);
5621 
5622 			if (rc < 0)
5623 				/* Pressumably allocate_file_region_entries failed
5624 				 * to allocate a file_region struct. Clear
5625 				 * hugetlb_restore_reserve so that global reserve
5626 				 * count will not be incremented by free_huge_folio.
5627 				 * Act as if we consumed the reservation.
5628 				 */
5629 				folio_clear_hugetlb_restore_reserve(page_folio(page));
5630 			else if (rc)
5631 				vma_add_reservation(h, vma, address);
5632 		}
5633 
5634 		tlb_remove_page_size(tlb, page, huge_page_size(h));
5635 		/*
5636 		 * Bail out after unmapping reference page if supplied
5637 		 */
5638 		if (ref_page)
5639 			break;
5640 	}
5641 	tlb_end_vma(tlb, vma);
5642 
5643 	/*
5644 	 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5645 	 * could defer the flush until now, since by holding i_mmap_rwsem we
5646 	 * guaranteed that the last refernece would not be dropped. But we must
5647 	 * do the flushing before we return, as otherwise i_mmap_rwsem will be
5648 	 * dropped and the last reference to the shared PMDs page might be
5649 	 * dropped as well.
5650 	 *
5651 	 * In theory we could defer the freeing of the PMD pages as well, but
5652 	 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5653 	 * detect sharing, so we cannot defer the release of the page either.
5654 	 * Instead, do flush now.
5655 	 */
5656 	if (force_flush)
5657 		tlb_flush_mmu_tlbonly(tlb);
5658 }
5659 
5660 void __hugetlb_zap_begin(struct vm_area_struct *vma,
5661 			 unsigned long *start, unsigned long *end)
5662 {
5663 	if (!vma->vm_file)	/* hugetlbfs_file_mmap error */
5664 		return;
5665 
5666 	adjust_range_if_pmd_sharing_possible(vma, start, end);
5667 	hugetlb_vma_lock_write(vma);
5668 	if (vma->vm_file)
5669 		i_mmap_lock_write(vma->vm_file->f_mapping);
5670 }
5671 
5672 void __hugetlb_zap_end(struct vm_area_struct *vma,
5673 		       struct zap_details *details)
5674 {
5675 	zap_flags_t zap_flags = details ? details->zap_flags : 0;
5676 
5677 	if (!vma->vm_file)	/* hugetlbfs_file_mmap error */
5678 		return;
5679 
5680 	if (zap_flags & ZAP_FLAG_UNMAP) {	/* final unmap */
5681 		/*
5682 		 * Unlock and free the vma lock before releasing i_mmap_rwsem.
5683 		 * When the vma_lock is freed, this makes the vma ineligible
5684 		 * for pmd sharing.  And, i_mmap_rwsem is required to set up
5685 		 * pmd sharing.  This is important as page tables for this
5686 		 * unmapped range will be asynchrously deleted.  If the page
5687 		 * tables are shared, there will be issues when accessed by
5688 		 * someone else.
5689 		 */
5690 		__hugetlb_vma_unlock_write_free(vma);
5691 	} else {
5692 		hugetlb_vma_unlock_write(vma);
5693 	}
5694 
5695 	if (vma->vm_file)
5696 		i_mmap_unlock_write(vma->vm_file->f_mapping);
5697 }
5698 
5699 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5700 			  unsigned long end, struct page *ref_page,
5701 			  zap_flags_t zap_flags)
5702 {
5703 	struct mmu_notifier_range range;
5704 	struct mmu_gather tlb;
5705 
5706 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
5707 				start, end);
5708 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5709 	mmu_notifier_invalidate_range_start(&range);
5710 	tlb_gather_mmu(&tlb, vma->vm_mm);
5711 
5712 	__unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
5713 
5714 	mmu_notifier_invalidate_range_end(&range);
5715 	tlb_finish_mmu(&tlb);
5716 }
5717 
5718 /*
5719  * This is called when the original mapper is failing to COW a MAP_PRIVATE
5720  * mapping it owns the reserve page for. The intention is to unmap the page
5721  * from other VMAs and let the children be SIGKILLed if they are faulting the
5722  * same region.
5723  */
5724 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5725 			      struct page *page, unsigned long address)
5726 {
5727 	struct hstate *h = hstate_vma(vma);
5728 	struct vm_area_struct *iter_vma;
5729 	struct address_space *mapping;
5730 	pgoff_t pgoff;
5731 
5732 	/*
5733 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5734 	 * from page cache lookup which is in HPAGE_SIZE units.
5735 	 */
5736 	address = address & huge_page_mask(h);
5737 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5738 			vma->vm_pgoff;
5739 	mapping = vma->vm_file->f_mapping;
5740 
5741 	/*
5742 	 * Take the mapping lock for the duration of the table walk. As
5743 	 * this mapping should be shared between all the VMAs,
5744 	 * __unmap_hugepage_range() is called as the lock is already held
5745 	 */
5746 	i_mmap_lock_write(mapping);
5747 	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5748 		/* Do not unmap the current VMA */
5749 		if (iter_vma == vma)
5750 			continue;
5751 
5752 		/*
5753 		 * Shared VMAs have their own reserves and do not affect
5754 		 * MAP_PRIVATE accounting but it is possible that a shared
5755 		 * VMA is using the same page so check and skip such VMAs.
5756 		 */
5757 		if (iter_vma->vm_flags & VM_MAYSHARE)
5758 			continue;
5759 
5760 		/*
5761 		 * Unmap the page from other VMAs without their own reserves.
5762 		 * They get marked to be SIGKILLed if they fault in these
5763 		 * areas. This is because a future no-page fault on this VMA
5764 		 * could insert a zeroed page instead of the data existing
5765 		 * from the time of fork. This would look like data corruption
5766 		 */
5767 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5768 			unmap_hugepage_range(iter_vma, address,
5769 					     address + huge_page_size(h), page, 0);
5770 	}
5771 	i_mmap_unlock_write(mapping);
5772 }
5773 
5774 /*
5775  * hugetlb_wp() should be called with page lock of the original hugepage held.
5776  * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5777  * cannot race with other handlers or page migration.
5778  * Keep the pte_same checks anyway to make transition from the mutex easier.
5779  */
5780 static vm_fault_t hugetlb_wp(struct folio *pagecache_folio,
5781 		       struct vm_fault *vmf)
5782 {
5783 	struct vm_area_struct *vma = vmf->vma;
5784 	struct mm_struct *mm = vma->vm_mm;
5785 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
5786 	pte_t pte = huge_ptep_get(mm, vmf->address, vmf->pte);
5787 	struct hstate *h = hstate_vma(vma);
5788 	struct folio *old_folio;
5789 	struct folio *new_folio;
5790 	int outside_reserve = 0;
5791 	vm_fault_t ret = 0;
5792 	struct mmu_notifier_range range;
5793 
5794 	/*
5795 	 * Never handle CoW for uffd-wp protected pages.  It should be only
5796 	 * handled when the uffd-wp protection is removed.
5797 	 *
5798 	 * Note that only the CoW optimization path (in hugetlb_no_page())
5799 	 * can trigger this, because hugetlb_fault() will always resolve
5800 	 * uffd-wp bit first.
5801 	 */
5802 	if (!unshare && huge_pte_uffd_wp(pte))
5803 		return 0;
5804 
5805 	/*
5806 	 * hugetlb does not support FOLL_FORCE-style write faults that keep the
5807 	 * PTE mapped R/O such as maybe_mkwrite() would do.
5808 	 */
5809 	if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE)))
5810 		return VM_FAULT_SIGSEGV;
5811 
5812 	/* Let's take out MAP_SHARED mappings first. */
5813 	if (vma->vm_flags & VM_MAYSHARE) {
5814 		set_huge_ptep_writable(vma, vmf->address, vmf->pte);
5815 		return 0;
5816 	}
5817 
5818 	old_folio = page_folio(pte_page(pte));
5819 
5820 	delayacct_wpcopy_start();
5821 
5822 retry_avoidcopy:
5823 	/*
5824 	 * If no-one else is actually using this page, we're the exclusive
5825 	 * owner and can reuse this page.
5826 	 *
5827 	 * Note that we don't rely on the (safer) folio refcount here, because
5828 	 * copying the hugetlb folio when there are unexpected (temporary)
5829 	 * folio references could harm simple fork()+exit() users when
5830 	 * we run out of free hugetlb folios: we would have to kill processes
5831 	 * in scenarios that used to work. As a side effect, there can still
5832 	 * be leaks between processes, for example, with FOLL_GET users.
5833 	 */
5834 	if (folio_mapcount(old_folio) == 1 && folio_test_anon(old_folio)) {
5835 		if (!PageAnonExclusive(&old_folio->page)) {
5836 			folio_move_anon_rmap(old_folio, vma);
5837 			SetPageAnonExclusive(&old_folio->page);
5838 		}
5839 		if (likely(!unshare))
5840 			set_huge_ptep_writable(vma, vmf->address, vmf->pte);
5841 
5842 		delayacct_wpcopy_end();
5843 		return 0;
5844 	}
5845 	VM_BUG_ON_PAGE(folio_test_anon(old_folio) &&
5846 		       PageAnonExclusive(&old_folio->page), &old_folio->page);
5847 
5848 	/*
5849 	 * If the process that created a MAP_PRIVATE mapping is about to
5850 	 * perform a COW due to a shared page count, attempt to satisfy
5851 	 * the allocation without using the existing reserves. The pagecache
5852 	 * page is used to determine if the reserve at this address was
5853 	 * consumed or not. If reserves were used, a partial faulted mapping
5854 	 * at the time of fork() could consume its reserves on COW instead
5855 	 * of the full address range.
5856 	 */
5857 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5858 			old_folio != pagecache_folio)
5859 		outside_reserve = 1;
5860 
5861 	folio_get(old_folio);
5862 
5863 	/*
5864 	 * Drop page table lock as buddy allocator may be called. It will
5865 	 * be acquired again before returning to the caller, as expected.
5866 	 */
5867 	spin_unlock(vmf->ptl);
5868 	new_folio = alloc_hugetlb_folio(vma, vmf->address, outside_reserve);
5869 
5870 	if (IS_ERR(new_folio)) {
5871 		/*
5872 		 * If a process owning a MAP_PRIVATE mapping fails to COW,
5873 		 * it is due to references held by a child and an insufficient
5874 		 * huge page pool. To guarantee the original mappers
5875 		 * reliability, unmap the page from child processes. The child
5876 		 * may get SIGKILLed if it later faults.
5877 		 */
5878 		if (outside_reserve) {
5879 			struct address_space *mapping = vma->vm_file->f_mapping;
5880 			pgoff_t idx;
5881 			u32 hash;
5882 
5883 			folio_put(old_folio);
5884 			/*
5885 			 * Drop hugetlb_fault_mutex and vma_lock before
5886 			 * unmapping.  unmapping needs to hold vma_lock
5887 			 * in write mode.  Dropping vma_lock in read mode
5888 			 * here is OK as COW mappings do not interact with
5889 			 * PMD sharing.
5890 			 *
5891 			 * Reacquire both after unmap operation.
5892 			 */
5893 			idx = vma_hugecache_offset(h, vma, vmf->address);
5894 			hash = hugetlb_fault_mutex_hash(mapping, idx);
5895 			hugetlb_vma_unlock_read(vma);
5896 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5897 
5898 			unmap_ref_private(mm, vma, &old_folio->page,
5899 					vmf->address);
5900 
5901 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
5902 			hugetlb_vma_lock_read(vma);
5903 			spin_lock(vmf->ptl);
5904 			vmf->pte = hugetlb_walk(vma, vmf->address,
5905 					huge_page_size(h));
5906 			if (likely(vmf->pte &&
5907 				   pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), pte)))
5908 				goto retry_avoidcopy;
5909 			/*
5910 			 * race occurs while re-acquiring page table
5911 			 * lock, and our job is done.
5912 			 */
5913 			delayacct_wpcopy_end();
5914 			return 0;
5915 		}
5916 
5917 		ret = vmf_error(PTR_ERR(new_folio));
5918 		goto out_release_old;
5919 	}
5920 
5921 	/*
5922 	 * When the original hugepage is shared one, it does not have
5923 	 * anon_vma prepared.
5924 	 */
5925 	ret = __vmf_anon_prepare(vmf);
5926 	if (unlikely(ret))
5927 		goto out_release_all;
5928 
5929 	if (copy_user_large_folio(new_folio, old_folio, vmf->real_address, vma)) {
5930 		ret = VM_FAULT_HWPOISON_LARGE | VM_FAULT_SET_HINDEX(hstate_index(h));
5931 		goto out_release_all;
5932 	}
5933 	__folio_mark_uptodate(new_folio);
5934 
5935 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, vmf->address,
5936 				vmf->address + huge_page_size(h));
5937 	mmu_notifier_invalidate_range_start(&range);
5938 
5939 	/*
5940 	 * Retake the page table lock to check for racing updates
5941 	 * before the page tables are altered
5942 	 */
5943 	spin_lock(vmf->ptl);
5944 	vmf->pte = hugetlb_walk(vma, vmf->address, huge_page_size(h));
5945 	if (likely(vmf->pte && pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), pte))) {
5946 		pte_t newpte = make_huge_pte(vma, &new_folio->page, !unshare);
5947 
5948 		/* Break COW or unshare */
5949 		huge_ptep_clear_flush(vma, vmf->address, vmf->pte);
5950 		hugetlb_remove_rmap(old_folio);
5951 		hugetlb_add_new_anon_rmap(new_folio, vma, vmf->address);
5952 		if (huge_pte_uffd_wp(pte))
5953 			newpte = huge_pte_mkuffd_wp(newpte);
5954 		set_huge_pte_at(mm, vmf->address, vmf->pte, newpte,
5955 				huge_page_size(h));
5956 		folio_set_hugetlb_migratable(new_folio);
5957 		/* Make the old page be freed below */
5958 		new_folio = old_folio;
5959 	}
5960 	spin_unlock(vmf->ptl);
5961 	mmu_notifier_invalidate_range_end(&range);
5962 out_release_all:
5963 	/*
5964 	 * No restore in case of successful pagetable update (Break COW or
5965 	 * unshare)
5966 	 */
5967 	if (new_folio != old_folio)
5968 		restore_reserve_on_error(h, vma, vmf->address, new_folio);
5969 	folio_put(new_folio);
5970 out_release_old:
5971 	folio_put(old_folio);
5972 
5973 	spin_lock(vmf->ptl); /* Caller expects lock to be held */
5974 
5975 	delayacct_wpcopy_end();
5976 	return ret;
5977 }
5978 
5979 /*
5980  * Return whether there is a pagecache page to back given address within VMA.
5981  */
5982 bool hugetlbfs_pagecache_present(struct hstate *h,
5983 				 struct vm_area_struct *vma, unsigned long address)
5984 {
5985 	struct address_space *mapping = vma->vm_file->f_mapping;
5986 	pgoff_t idx = linear_page_index(vma, address);
5987 	struct folio *folio;
5988 
5989 	folio = filemap_get_folio(mapping, idx);
5990 	if (IS_ERR(folio))
5991 		return false;
5992 	folio_put(folio);
5993 	return true;
5994 }
5995 
5996 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping,
5997 			   pgoff_t idx)
5998 {
5999 	struct inode *inode = mapping->host;
6000 	struct hstate *h = hstate_inode(inode);
6001 	int err;
6002 
6003 	idx <<= huge_page_order(h);
6004 	__folio_set_locked(folio);
6005 	err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
6006 
6007 	if (unlikely(err)) {
6008 		__folio_clear_locked(folio);
6009 		return err;
6010 	}
6011 	folio_clear_hugetlb_restore_reserve(folio);
6012 
6013 	/*
6014 	 * mark folio dirty so that it will not be removed from cache/file
6015 	 * by non-hugetlbfs specific code paths.
6016 	 */
6017 	folio_mark_dirty(folio);
6018 
6019 	spin_lock(&inode->i_lock);
6020 	inode->i_blocks += blocks_per_huge_page(h);
6021 	spin_unlock(&inode->i_lock);
6022 	return 0;
6023 }
6024 
6025 static inline vm_fault_t hugetlb_handle_userfault(struct vm_fault *vmf,
6026 						  struct address_space *mapping,
6027 						  unsigned long reason)
6028 {
6029 	u32 hash;
6030 
6031 	/*
6032 	 * vma_lock and hugetlb_fault_mutex must be dropped before handling
6033 	 * userfault. Also mmap_lock could be dropped due to handling
6034 	 * userfault, any vma operation should be careful from here.
6035 	 */
6036 	hugetlb_vma_unlock_read(vmf->vma);
6037 	hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff);
6038 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6039 	return handle_userfault(vmf, reason);
6040 }
6041 
6042 /*
6043  * Recheck pte with pgtable lock.  Returns true if pte didn't change, or
6044  * false if pte changed or is changing.
6045  */
6046 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm, unsigned long addr,
6047 			       pte_t *ptep, pte_t old_pte)
6048 {
6049 	spinlock_t *ptl;
6050 	bool same;
6051 
6052 	ptl = huge_pte_lock(h, mm, ptep);
6053 	same = pte_same(huge_ptep_get(mm, addr, ptep), old_pte);
6054 	spin_unlock(ptl);
6055 
6056 	return same;
6057 }
6058 
6059 static vm_fault_t hugetlb_no_page(struct address_space *mapping,
6060 			struct vm_fault *vmf)
6061 {
6062 	struct vm_area_struct *vma = vmf->vma;
6063 	struct mm_struct *mm = vma->vm_mm;
6064 	struct hstate *h = hstate_vma(vma);
6065 	vm_fault_t ret = VM_FAULT_SIGBUS;
6066 	int anon_rmap = 0;
6067 	unsigned long size;
6068 	struct folio *folio;
6069 	pte_t new_pte;
6070 	bool new_folio, new_pagecache_folio = false;
6071 	u32 hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff);
6072 
6073 	/*
6074 	 * Currently, we are forced to kill the process in the event the
6075 	 * original mapper has unmapped pages from the child due to a failed
6076 	 * COW/unsharing. Warn that such a situation has occurred as it may not
6077 	 * be obvious.
6078 	 */
6079 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
6080 		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
6081 			   current->pid);
6082 		goto out;
6083 	}
6084 
6085 	/*
6086 	 * Use page lock to guard against racing truncation
6087 	 * before we get page_table_lock.
6088 	 */
6089 	new_folio = false;
6090 	folio = filemap_lock_hugetlb_folio(h, mapping, vmf->pgoff);
6091 	if (IS_ERR(folio)) {
6092 		size = i_size_read(mapping->host) >> huge_page_shift(h);
6093 		if (vmf->pgoff >= size)
6094 			goto out;
6095 		/* Check for page in userfault range */
6096 		if (userfaultfd_missing(vma)) {
6097 			/*
6098 			 * Since hugetlb_no_page() was examining pte
6099 			 * without pgtable lock, we need to re-test under
6100 			 * lock because the pte may not be stable and could
6101 			 * have changed from under us.  Try to detect
6102 			 * either changed or during-changing ptes and retry
6103 			 * properly when needed.
6104 			 *
6105 			 * Note that userfaultfd is actually fine with
6106 			 * false positives (e.g. caused by pte changed),
6107 			 * but not wrong logical events (e.g. caused by
6108 			 * reading a pte during changing).  The latter can
6109 			 * confuse the userspace, so the strictness is very
6110 			 * much preferred.  E.g., MISSING event should
6111 			 * never happen on the page after UFFDIO_COPY has
6112 			 * correctly installed the page and returned.
6113 			 */
6114 			if (!hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte)) {
6115 				ret = 0;
6116 				goto out;
6117 			}
6118 
6119 			return hugetlb_handle_userfault(vmf, mapping,
6120 							VM_UFFD_MISSING);
6121 		}
6122 
6123 		if (!(vma->vm_flags & VM_MAYSHARE)) {
6124 			ret = __vmf_anon_prepare(vmf);
6125 			if (unlikely(ret))
6126 				goto out;
6127 		}
6128 
6129 		folio = alloc_hugetlb_folio(vma, vmf->address, 0);
6130 		if (IS_ERR(folio)) {
6131 			/*
6132 			 * Returning error will result in faulting task being
6133 			 * sent SIGBUS.  The hugetlb fault mutex prevents two
6134 			 * tasks from racing to fault in the same page which
6135 			 * could result in false unable to allocate errors.
6136 			 * Page migration does not take the fault mutex, but
6137 			 * does a clear then write of pte's under page table
6138 			 * lock.  Page fault code could race with migration,
6139 			 * notice the clear pte and try to allocate a page
6140 			 * here.  Before returning error, get ptl and make
6141 			 * sure there really is no pte entry.
6142 			 */
6143 			if (hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte))
6144 				ret = vmf_error(PTR_ERR(folio));
6145 			else
6146 				ret = 0;
6147 			goto out;
6148 		}
6149 		folio_zero_user(folio, vmf->real_address);
6150 		__folio_mark_uptodate(folio);
6151 		new_folio = true;
6152 
6153 		if (vma->vm_flags & VM_MAYSHARE) {
6154 			int err = hugetlb_add_to_page_cache(folio, mapping,
6155 							vmf->pgoff);
6156 			if (err) {
6157 				/*
6158 				 * err can't be -EEXIST which implies someone
6159 				 * else consumed the reservation since hugetlb
6160 				 * fault mutex is held when add a hugetlb page
6161 				 * to the page cache. So it's safe to call
6162 				 * restore_reserve_on_error() here.
6163 				 */
6164 				restore_reserve_on_error(h, vma, vmf->address,
6165 							folio);
6166 				folio_put(folio);
6167 				ret = VM_FAULT_SIGBUS;
6168 				goto out;
6169 			}
6170 			new_pagecache_folio = true;
6171 		} else {
6172 			folio_lock(folio);
6173 			anon_rmap = 1;
6174 		}
6175 	} else {
6176 		/*
6177 		 * If memory error occurs between mmap() and fault, some process
6178 		 * don't have hwpoisoned swap entry for errored virtual address.
6179 		 * So we need to block hugepage fault by PG_hwpoison bit check.
6180 		 */
6181 		if (unlikely(folio_test_hwpoison(folio))) {
6182 			ret = VM_FAULT_HWPOISON_LARGE |
6183 				VM_FAULT_SET_HINDEX(hstate_index(h));
6184 			goto backout_unlocked;
6185 		}
6186 
6187 		/* Check for page in userfault range. */
6188 		if (userfaultfd_minor(vma)) {
6189 			folio_unlock(folio);
6190 			folio_put(folio);
6191 			/* See comment in userfaultfd_missing() block above */
6192 			if (!hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte)) {
6193 				ret = 0;
6194 				goto out;
6195 			}
6196 			return hugetlb_handle_userfault(vmf, mapping,
6197 							VM_UFFD_MINOR);
6198 		}
6199 	}
6200 
6201 	/*
6202 	 * If we are going to COW a private mapping later, we examine the
6203 	 * pending reservations for this page now. This will ensure that
6204 	 * any allocations necessary to record that reservation occur outside
6205 	 * the spinlock.
6206 	 */
6207 	if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
6208 		if (vma_needs_reservation(h, vma, vmf->address) < 0) {
6209 			ret = VM_FAULT_OOM;
6210 			goto backout_unlocked;
6211 		}
6212 		/* Just decrements count, does not deallocate */
6213 		vma_end_reservation(h, vma, vmf->address);
6214 	}
6215 
6216 	vmf->ptl = huge_pte_lock(h, mm, vmf->pte);
6217 	ret = 0;
6218 	/* If pte changed from under us, retry */
6219 	if (!pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), vmf->orig_pte))
6220 		goto backout;
6221 
6222 	if (anon_rmap)
6223 		hugetlb_add_new_anon_rmap(folio, vma, vmf->address);
6224 	else
6225 		hugetlb_add_file_rmap(folio);
6226 	new_pte = make_huge_pte(vma, &folio->page, ((vma->vm_flags & VM_WRITE)
6227 				&& (vma->vm_flags & VM_SHARED)));
6228 	/*
6229 	 * If this pte was previously wr-protected, keep it wr-protected even
6230 	 * if populated.
6231 	 */
6232 	if (unlikely(pte_marker_uffd_wp(vmf->orig_pte)))
6233 		new_pte = huge_pte_mkuffd_wp(new_pte);
6234 	set_huge_pte_at(mm, vmf->address, vmf->pte, new_pte, huge_page_size(h));
6235 
6236 	hugetlb_count_add(pages_per_huge_page(h), mm);
6237 	if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
6238 		/* Optimization, do the COW without a second fault */
6239 		ret = hugetlb_wp(folio, vmf);
6240 	}
6241 
6242 	spin_unlock(vmf->ptl);
6243 
6244 	/*
6245 	 * Only set hugetlb_migratable in newly allocated pages.  Existing pages
6246 	 * found in the pagecache may not have hugetlb_migratable if they have
6247 	 * been isolated for migration.
6248 	 */
6249 	if (new_folio)
6250 		folio_set_hugetlb_migratable(folio);
6251 
6252 	folio_unlock(folio);
6253 out:
6254 	hugetlb_vma_unlock_read(vma);
6255 
6256 	/*
6257 	 * We must check to release the per-VMA lock. __vmf_anon_prepare() is
6258 	 * the only way ret can be set to VM_FAULT_RETRY.
6259 	 */
6260 	if (unlikely(ret & VM_FAULT_RETRY))
6261 		vma_end_read(vma);
6262 
6263 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6264 	return ret;
6265 
6266 backout:
6267 	spin_unlock(vmf->ptl);
6268 backout_unlocked:
6269 	if (new_folio && !new_pagecache_folio)
6270 		restore_reserve_on_error(h, vma, vmf->address, folio);
6271 
6272 	folio_unlock(folio);
6273 	folio_put(folio);
6274 	goto out;
6275 }
6276 
6277 #ifdef CONFIG_SMP
6278 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6279 {
6280 	unsigned long key[2];
6281 	u32 hash;
6282 
6283 	key[0] = (unsigned long) mapping;
6284 	key[1] = idx;
6285 
6286 	hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
6287 
6288 	return hash & (num_fault_mutexes - 1);
6289 }
6290 #else
6291 /*
6292  * For uniprocessor systems we always use a single mutex, so just
6293  * return 0 and avoid the hashing overhead.
6294  */
6295 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6296 {
6297 	return 0;
6298 }
6299 #endif
6300 
6301 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
6302 			unsigned long address, unsigned int flags)
6303 {
6304 	vm_fault_t ret;
6305 	u32 hash;
6306 	struct folio *folio = NULL;
6307 	struct folio *pagecache_folio = NULL;
6308 	struct hstate *h = hstate_vma(vma);
6309 	struct address_space *mapping;
6310 	int need_wait_lock = 0;
6311 	struct vm_fault vmf = {
6312 		.vma = vma,
6313 		.address = address & huge_page_mask(h),
6314 		.real_address = address,
6315 		.flags = flags,
6316 		.pgoff = vma_hugecache_offset(h, vma,
6317 				address & huge_page_mask(h)),
6318 		/* TODO: Track hugetlb faults using vm_fault */
6319 
6320 		/*
6321 		 * Some fields may not be initialized, be careful as it may
6322 		 * be hard to debug if called functions make assumptions
6323 		 */
6324 	};
6325 
6326 	/*
6327 	 * Serialize hugepage allocation and instantiation, so that we don't
6328 	 * get spurious allocation failures if two CPUs race to instantiate
6329 	 * the same page in the page cache.
6330 	 */
6331 	mapping = vma->vm_file->f_mapping;
6332 	hash = hugetlb_fault_mutex_hash(mapping, vmf.pgoff);
6333 	mutex_lock(&hugetlb_fault_mutex_table[hash]);
6334 
6335 	/*
6336 	 * Acquire vma lock before calling huge_pte_alloc and hold
6337 	 * until finished with vmf.pte.  This prevents huge_pmd_unshare from
6338 	 * being called elsewhere and making the vmf.pte no longer valid.
6339 	 */
6340 	hugetlb_vma_lock_read(vma);
6341 	vmf.pte = huge_pte_alloc(mm, vma, vmf.address, huge_page_size(h));
6342 	if (!vmf.pte) {
6343 		hugetlb_vma_unlock_read(vma);
6344 		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6345 		return VM_FAULT_OOM;
6346 	}
6347 
6348 	vmf.orig_pte = huge_ptep_get(mm, vmf.address, vmf.pte);
6349 	if (huge_pte_none_mostly(vmf.orig_pte)) {
6350 		if (is_pte_marker(vmf.orig_pte)) {
6351 			pte_marker marker =
6352 				pte_marker_get(pte_to_swp_entry(vmf.orig_pte));
6353 
6354 			if (marker & PTE_MARKER_POISONED) {
6355 				ret = VM_FAULT_HWPOISON_LARGE |
6356 				      VM_FAULT_SET_HINDEX(hstate_index(h));
6357 				goto out_mutex;
6358 			} else if (WARN_ON_ONCE(marker & PTE_MARKER_GUARD)) {
6359 				/* This isn't supported in hugetlb. */
6360 				ret = VM_FAULT_SIGSEGV;
6361 				goto out_mutex;
6362 			}
6363 		}
6364 
6365 		/*
6366 		 * Other PTE markers should be handled the same way as none PTE.
6367 		 *
6368 		 * hugetlb_no_page will drop vma lock and hugetlb fault
6369 		 * mutex internally, which make us return immediately.
6370 		 */
6371 		return hugetlb_no_page(mapping, &vmf);
6372 	}
6373 
6374 	ret = 0;
6375 
6376 	/*
6377 	 * vmf.orig_pte could be a migration/hwpoison vmf.orig_pte at this
6378 	 * point, so this check prevents the kernel from going below assuming
6379 	 * that we have an active hugepage in pagecache. This goto expects
6380 	 * the 2nd page fault, and is_hugetlb_entry_(migration|hwpoisoned)
6381 	 * check will properly handle it.
6382 	 */
6383 	if (!pte_present(vmf.orig_pte)) {
6384 		if (unlikely(is_hugetlb_entry_migration(vmf.orig_pte))) {
6385 			/*
6386 			 * Release the hugetlb fault lock now, but retain
6387 			 * the vma lock, because it is needed to guard the
6388 			 * huge_pte_lockptr() later in
6389 			 * migration_entry_wait_huge(). The vma lock will
6390 			 * be released there.
6391 			 */
6392 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6393 			migration_entry_wait_huge(vma, vmf.address, vmf.pte);
6394 			return 0;
6395 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(vmf.orig_pte)))
6396 			ret = VM_FAULT_HWPOISON_LARGE |
6397 			    VM_FAULT_SET_HINDEX(hstate_index(h));
6398 		goto out_mutex;
6399 	}
6400 
6401 	/*
6402 	 * If we are going to COW/unshare the mapping later, we examine the
6403 	 * pending reservations for this page now. This will ensure that any
6404 	 * allocations necessary to record that reservation occur outside the
6405 	 * spinlock. Also lookup the pagecache page now as it is used to
6406 	 * determine if a reservation has been consumed.
6407 	 */
6408 	if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
6409 	    !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(vmf.orig_pte)) {
6410 		if (vma_needs_reservation(h, vma, vmf.address) < 0) {
6411 			ret = VM_FAULT_OOM;
6412 			goto out_mutex;
6413 		}
6414 		/* Just decrements count, does not deallocate */
6415 		vma_end_reservation(h, vma, vmf.address);
6416 
6417 		pagecache_folio = filemap_lock_hugetlb_folio(h, mapping,
6418 							     vmf.pgoff);
6419 		if (IS_ERR(pagecache_folio))
6420 			pagecache_folio = NULL;
6421 	}
6422 
6423 	vmf.ptl = huge_pte_lock(h, mm, vmf.pte);
6424 
6425 	/* Check for a racing update before calling hugetlb_wp() */
6426 	if (unlikely(!pte_same(vmf.orig_pte, huge_ptep_get(mm, vmf.address, vmf.pte))))
6427 		goto out_ptl;
6428 
6429 	/* Handle userfault-wp first, before trying to lock more pages */
6430 	if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(mm, vmf.address, vmf.pte)) &&
6431 	    (flags & FAULT_FLAG_WRITE) && !huge_pte_write(vmf.orig_pte)) {
6432 		if (!userfaultfd_wp_async(vma)) {
6433 			spin_unlock(vmf.ptl);
6434 			if (pagecache_folio) {
6435 				folio_unlock(pagecache_folio);
6436 				folio_put(pagecache_folio);
6437 			}
6438 			hugetlb_vma_unlock_read(vma);
6439 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6440 			return handle_userfault(&vmf, VM_UFFD_WP);
6441 		}
6442 
6443 		vmf.orig_pte = huge_pte_clear_uffd_wp(vmf.orig_pte);
6444 		set_huge_pte_at(mm, vmf.address, vmf.pte, vmf.orig_pte,
6445 				huge_page_size(hstate_vma(vma)));
6446 		/* Fallthrough to CoW */
6447 	}
6448 
6449 	/*
6450 	 * hugetlb_wp() requires page locks of pte_page(vmf.orig_pte) and
6451 	 * pagecache_folio, so here we need take the former one
6452 	 * when folio != pagecache_folio or !pagecache_folio.
6453 	 */
6454 	folio = page_folio(pte_page(vmf.orig_pte));
6455 	if (folio != pagecache_folio)
6456 		if (!folio_trylock(folio)) {
6457 			need_wait_lock = 1;
6458 			goto out_ptl;
6459 		}
6460 
6461 	folio_get(folio);
6462 
6463 	if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
6464 		if (!huge_pte_write(vmf.orig_pte)) {
6465 			ret = hugetlb_wp(pagecache_folio, &vmf);
6466 			goto out_put_page;
6467 		} else if (likely(flags & FAULT_FLAG_WRITE)) {
6468 			vmf.orig_pte = huge_pte_mkdirty(vmf.orig_pte);
6469 		}
6470 	}
6471 	vmf.orig_pte = pte_mkyoung(vmf.orig_pte);
6472 	if (huge_ptep_set_access_flags(vma, vmf.address, vmf.pte, vmf.orig_pte,
6473 						flags & FAULT_FLAG_WRITE))
6474 		update_mmu_cache(vma, vmf.address, vmf.pte);
6475 out_put_page:
6476 	if (folio != pagecache_folio)
6477 		folio_unlock(folio);
6478 	folio_put(folio);
6479 out_ptl:
6480 	spin_unlock(vmf.ptl);
6481 
6482 	if (pagecache_folio) {
6483 		folio_unlock(pagecache_folio);
6484 		folio_put(pagecache_folio);
6485 	}
6486 out_mutex:
6487 	hugetlb_vma_unlock_read(vma);
6488 
6489 	/*
6490 	 * We must check to release the per-VMA lock. __vmf_anon_prepare() in
6491 	 * hugetlb_wp() is the only way ret can be set to VM_FAULT_RETRY.
6492 	 */
6493 	if (unlikely(ret & VM_FAULT_RETRY))
6494 		vma_end_read(vma);
6495 
6496 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6497 	/*
6498 	 * Generally it's safe to hold refcount during waiting page lock. But
6499 	 * here we just wait to defer the next page fault to avoid busy loop and
6500 	 * the page is not used after unlocked before returning from the current
6501 	 * page fault. So we are safe from accessing freed page, even if we wait
6502 	 * here without taking refcount.
6503 	 */
6504 	if (need_wait_lock)
6505 		folio_wait_locked(folio);
6506 	return ret;
6507 }
6508 
6509 #ifdef CONFIG_USERFAULTFD
6510 /*
6511  * Can probably be eliminated, but still used by hugetlb_mfill_atomic_pte().
6512  */
6513 static struct folio *alloc_hugetlb_folio_vma(struct hstate *h,
6514 		struct vm_area_struct *vma, unsigned long address)
6515 {
6516 	struct mempolicy *mpol;
6517 	nodemask_t *nodemask;
6518 	struct folio *folio;
6519 	gfp_t gfp_mask;
6520 	int node;
6521 
6522 	gfp_mask = htlb_alloc_mask(h);
6523 	node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
6524 	/*
6525 	 * This is used to allocate a temporary hugetlb to hold the copied
6526 	 * content, which will then be copied again to the final hugetlb
6527 	 * consuming a reservation. Set the alloc_fallback to false to indicate
6528 	 * that breaking the per-node hugetlb pool is not allowed in this case.
6529 	 */
6530 	folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask, false);
6531 	mpol_cond_put(mpol);
6532 
6533 	return folio;
6534 }
6535 
6536 /*
6537  * Used by userfaultfd UFFDIO_* ioctls. Based on userfaultfd's mfill_atomic_pte
6538  * with modifications for hugetlb pages.
6539  */
6540 int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
6541 			     struct vm_area_struct *dst_vma,
6542 			     unsigned long dst_addr,
6543 			     unsigned long src_addr,
6544 			     uffd_flags_t flags,
6545 			     struct folio **foliop)
6546 {
6547 	struct mm_struct *dst_mm = dst_vma->vm_mm;
6548 	bool is_continue = uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE);
6549 	bool wp_enabled = (flags & MFILL_ATOMIC_WP);
6550 	struct hstate *h = hstate_vma(dst_vma);
6551 	struct address_space *mapping = dst_vma->vm_file->f_mapping;
6552 	pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
6553 	unsigned long size = huge_page_size(h);
6554 	int vm_shared = dst_vma->vm_flags & VM_SHARED;
6555 	pte_t _dst_pte;
6556 	spinlock_t *ptl;
6557 	int ret = -ENOMEM;
6558 	struct folio *folio;
6559 	int writable;
6560 	bool folio_in_pagecache = false;
6561 
6562 	if (uffd_flags_mode_is(flags, MFILL_ATOMIC_POISON)) {
6563 		ptl = huge_pte_lock(h, dst_mm, dst_pte);
6564 
6565 		/* Don't overwrite any existing PTEs (even markers) */
6566 		if (!huge_pte_none(huge_ptep_get(dst_mm, dst_addr, dst_pte))) {
6567 			spin_unlock(ptl);
6568 			return -EEXIST;
6569 		}
6570 
6571 		_dst_pte = make_pte_marker(PTE_MARKER_POISONED);
6572 		set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, size);
6573 
6574 		/* No need to invalidate - it was non-present before */
6575 		update_mmu_cache(dst_vma, dst_addr, dst_pte);
6576 
6577 		spin_unlock(ptl);
6578 		return 0;
6579 	}
6580 
6581 	if (is_continue) {
6582 		ret = -EFAULT;
6583 		folio = filemap_lock_hugetlb_folio(h, mapping, idx);
6584 		if (IS_ERR(folio))
6585 			goto out;
6586 		folio_in_pagecache = true;
6587 	} else if (!*foliop) {
6588 		/* If a folio already exists, then it's UFFDIO_COPY for
6589 		 * a non-missing case. Return -EEXIST.
6590 		 */
6591 		if (vm_shared &&
6592 		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6593 			ret = -EEXIST;
6594 			goto out;
6595 		}
6596 
6597 		folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6598 		if (IS_ERR(folio)) {
6599 			ret = -ENOMEM;
6600 			goto out;
6601 		}
6602 
6603 		ret = copy_folio_from_user(folio, (const void __user *) src_addr,
6604 					   false);
6605 
6606 		/* fallback to copy_from_user outside mmap_lock */
6607 		if (unlikely(ret)) {
6608 			ret = -ENOENT;
6609 			/* Free the allocated folio which may have
6610 			 * consumed a reservation.
6611 			 */
6612 			restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6613 			folio_put(folio);
6614 
6615 			/* Allocate a temporary folio to hold the copied
6616 			 * contents.
6617 			 */
6618 			folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr);
6619 			if (!folio) {
6620 				ret = -ENOMEM;
6621 				goto out;
6622 			}
6623 			*foliop = folio;
6624 			/* Set the outparam foliop and return to the caller to
6625 			 * copy the contents outside the lock. Don't free the
6626 			 * folio.
6627 			 */
6628 			goto out;
6629 		}
6630 	} else {
6631 		if (vm_shared &&
6632 		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6633 			folio_put(*foliop);
6634 			ret = -EEXIST;
6635 			*foliop = NULL;
6636 			goto out;
6637 		}
6638 
6639 		folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6640 		if (IS_ERR(folio)) {
6641 			folio_put(*foliop);
6642 			ret = -ENOMEM;
6643 			*foliop = NULL;
6644 			goto out;
6645 		}
6646 		ret = copy_user_large_folio(folio, *foliop,
6647 					    ALIGN_DOWN(dst_addr, size), dst_vma);
6648 		folio_put(*foliop);
6649 		*foliop = NULL;
6650 		if (ret) {
6651 			folio_put(folio);
6652 			goto out;
6653 		}
6654 	}
6655 
6656 	/*
6657 	 * If we just allocated a new page, we need a memory barrier to ensure
6658 	 * that preceding stores to the page become visible before the
6659 	 * set_pte_at() write. The memory barrier inside __folio_mark_uptodate
6660 	 * is what we need.
6661 	 *
6662 	 * In the case where we have not allocated a new page (is_continue),
6663 	 * the page must already be uptodate. UFFDIO_CONTINUE already includes
6664 	 * an earlier smp_wmb() to ensure that prior stores will be visible
6665 	 * before the set_pte_at() write.
6666 	 */
6667 	if (!is_continue)
6668 		__folio_mark_uptodate(folio);
6669 	else
6670 		WARN_ON_ONCE(!folio_test_uptodate(folio));
6671 
6672 	/* Add shared, newly allocated pages to the page cache. */
6673 	if (vm_shared && !is_continue) {
6674 		ret = -EFAULT;
6675 		if (idx >= (i_size_read(mapping->host) >> huge_page_shift(h)))
6676 			goto out_release_nounlock;
6677 
6678 		/*
6679 		 * Serialization between remove_inode_hugepages() and
6680 		 * hugetlb_add_to_page_cache() below happens through the
6681 		 * hugetlb_fault_mutex_table that here must be hold by
6682 		 * the caller.
6683 		 */
6684 		ret = hugetlb_add_to_page_cache(folio, mapping, idx);
6685 		if (ret)
6686 			goto out_release_nounlock;
6687 		folio_in_pagecache = true;
6688 	}
6689 
6690 	ptl = huge_pte_lock(h, dst_mm, dst_pte);
6691 
6692 	ret = -EIO;
6693 	if (folio_test_hwpoison(folio))
6694 		goto out_release_unlock;
6695 
6696 	/*
6697 	 * We allow to overwrite a pte marker: consider when both MISSING|WP
6698 	 * registered, we firstly wr-protect a none pte which has no page cache
6699 	 * page backing it, then access the page.
6700 	 */
6701 	ret = -EEXIST;
6702 	if (!huge_pte_none_mostly(huge_ptep_get(dst_mm, dst_addr, dst_pte)))
6703 		goto out_release_unlock;
6704 
6705 	if (folio_in_pagecache)
6706 		hugetlb_add_file_rmap(folio);
6707 	else
6708 		hugetlb_add_new_anon_rmap(folio, dst_vma, dst_addr);
6709 
6710 	/*
6711 	 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6712 	 * with wp flag set, don't set pte write bit.
6713 	 */
6714 	if (wp_enabled || (is_continue && !vm_shared))
6715 		writable = 0;
6716 	else
6717 		writable = dst_vma->vm_flags & VM_WRITE;
6718 
6719 	_dst_pte = make_huge_pte(dst_vma, &folio->page, writable);
6720 	/*
6721 	 * Always mark UFFDIO_COPY page dirty; note that this may not be
6722 	 * extremely important for hugetlbfs for now since swapping is not
6723 	 * supported, but we should still be clear in that this page cannot be
6724 	 * thrown away at will, even if write bit not set.
6725 	 */
6726 	_dst_pte = huge_pte_mkdirty(_dst_pte);
6727 	_dst_pte = pte_mkyoung(_dst_pte);
6728 
6729 	if (wp_enabled)
6730 		_dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6731 
6732 	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, size);
6733 
6734 	hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6735 
6736 	/* No need to invalidate - it was non-present before */
6737 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
6738 
6739 	spin_unlock(ptl);
6740 	if (!is_continue)
6741 		folio_set_hugetlb_migratable(folio);
6742 	if (vm_shared || is_continue)
6743 		folio_unlock(folio);
6744 	ret = 0;
6745 out:
6746 	return ret;
6747 out_release_unlock:
6748 	spin_unlock(ptl);
6749 	if (vm_shared || is_continue)
6750 		folio_unlock(folio);
6751 out_release_nounlock:
6752 	if (!folio_in_pagecache)
6753 		restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6754 	folio_put(folio);
6755 	goto out;
6756 }
6757 #endif /* CONFIG_USERFAULTFD */
6758 
6759 long hugetlb_change_protection(struct vm_area_struct *vma,
6760 		unsigned long address, unsigned long end,
6761 		pgprot_t newprot, unsigned long cp_flags)
6762 {
6763 	struct mm_struct *mm = vma->vm_mm;
6764 	unsigned long start = address;
6765 	pte_t *ptep;
6766 	pte_t pte;
6767 	struct hstate *h = hstate_vma(vma);
6768 	long pages = 0, psize = huge_page_size(h);
6769 	bool shared_pmd = false;
6770 	struct mmu_notifier_range range;
6771 	unsigned long last_addr_mask;
6772 	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6773 	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
6774 
6775 	/*
6776 	 * In the case of shared PMDs, the area to flush could be beyond
6777 	 * start/end.  Set range.start/range.end to cover the maximum possible
6778 	 * range if PMD sharing is possible.
6779 	 */
6780 	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6781 				0, mm, start, end);
6782 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6783 
6784 	BUG_ON(address >= end);
6785 	flush_cache_range(vma, range.start, range.end);
6786 
6787 	mmu_notifier_invalidate_range_start(&range);
6788 	hugetlb_vma_lock_write(vma);
6789 	i_mmap_lock_write(vma->vm_file->f_mapping);
6790 	last_addr_mask = hugetlb_mask_last_page(h);
6791 	for (; address < end; address += psize) {
6792 		spinlock_t *ptl;
6793 		ptep = hugetlb_walk(vma, address, psize);
6794 		if (!ptep) {
6795 			if (!uffd_wp) {
6796 				address |= last_addr_mask;
6797 				continue;
6798 			}
6799 			/*
6800 			 * Userfaultfd wr-protect requires pgtable
6801 			 * pre-allocations to install pte markers.
6802 			 */
6803 			ptep = huge_pte_alloc(mm, vma, address, psize);
6804 			if (!ptep) {
6805 				pages = -ENOMEM;
6806 				break;
6807 			}
6808 		}
6809 		ptl = huge_pte_lock(h, mm, ptep);
6810 		if (huge_pmd_unshare(mm, vma, address, ptep)) {
6811 			/*
6812 			 * When uffd-wp is enabled on the vma, unshare
6813 			 * shouldn't happen at all.  Warn about it if it
6814 			 * happened due to some reason.
6815 			 */
6816 			WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
6817 			pages++;
6818 			spin_unlock(ptl);
6819 			shared_pmd = true;
6820 			address |= last_addr_mask;
6821 			continue;
6822 		}
6823 		pte = huge_ptep_get(mm, address, ptep);
6824 		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6825 			/* Nothing to do. */
6826 		} else if (unlikely(is_hugetlb_entry_migration(pte))) {
6827 			swp_entry_t entry = pte_to_swp_entry(pte);
6828 			struct page *page = pfn_swap_entry_to_page(entry);
6829 			pte_t newpte = pte;
6830 
6831 			if (is_writable_migration_entry(entry)) {
6832 				if (PageAnon(page))
6833 					entry = make_readable_exclusive_migration_entry(
6834 								swp_offset(entry));
6835 				else
6836 					entry = make_readable_migration_entry(
6837 								swp_offset(entry));
6838 				newpte = swp_entry_to_pte(entry);
6839 				pages++;
6840 			}
6841 
6842 			if (uffd_wp)
6843 				newpte = pte_swp_mkuffd_wp(newpte);
6844 			else if (uffd_wp_resolve)
6845 				newpte = pte_swp_clear_uffd_wp(newpte);
6846 			if (!pte_same(pte, newpte))
6847 				set_huge_pte_at(mm, address, ptep, newpte, psize);
6848 		} else if (unlikely(is_pte_marker(pte))) {
6849 			/*
6850 			 * Do nothing on a poison marker; page is
6851 			 * corrupted, permissons do not apply.  Here
6852 			 * pte_marker_uffd_wp()==true implies !poison
6853 			 * because they're mutual exclusive.
6854 			 */
6855 			if (pte_marker_uffd_wp(pte) && uffd_wp_resolve)
6856 				/* Safe to modify directly (non-present->none). */
6857 				huge_pte_clear(mm, address, ptep, psize);
6858 		} else if (!huge_pte_none(pte)) {
6859 			pte_t old_pte;
6860 			unsigned int shift = huge_page_shift(hstate_vma(vma));
6861 
6862 			old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6863 			pte = huge_pte_modify(old_pte, newprot);
6864 			pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6865 			if (uffd_wp)
6866 				pte = huge_pte_mkuffd_wp(pte);
6867 			else if (uffd_wp_resolve)
6868 				pte = huge_pte_clear_uffd_wp(pte);
6869 			huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6870 			pages++;
6871 		} else {
6872 			/* None pte */
6873 			if (unlikely(uffd_wp))
6874 				/* Safe to modify directly (none->non-present). */
6875 				set_huge_pte_at(mm, address, ptep,
6876 						make_pte_marker(PTE_MARKER_UFFD_WP),
6877 						psize);
6878 		}
6879 		spin_unlock(ptl);
6880 	}
6881 	/*
6882 	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
6883 	 * may have cleared our pud entry and done put_page on the page table:
6884 	 * once we release i_mmap_rwsem, another task can do the final put_page
6885 	 * and that page table be reused and filled with junk.  If we actually
6886 	 * did unshare a page of pmds, flush the range corresponding to the pud.
6887 	 */
6888 	if (shared_pmd)
6889 		flush_hugetlb_tlb_range(vma, range.start, range.end);
6890 	else
6891 		flush_hugetlb_tlb_range(vma, start, end);
6892 	/*
6893 	 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs() we are
6894 	 * downgrading page table protection not changing it to point to a new
6895 	 * page.
6896 	 *
6897 	 * See Documentation/mm/mmu_notifier.rst
6898 	 */
6899 	i_mmap_unlock_write(vma->vm_file->f_mapping);
6900 	hugetlb_vma_unlock_write(vma);
6901 	mmu_notifier_invalidate_range_end(&range);
6902 
6903 	return pages > 0 ? (pages << h->order) : pages;
6904 }
6905 
6906 /* Return true if reservation was successful, false otherwise.  */
6907 bool hugetlb_reserve_pages(struct inode *inode,
6908 					long from, long to,
6909 					struct vm_area_struct *vma,
6910 					vm_flags_t vm_flags)
6911 {
6912 	long chg = -1, add = -1;
6913 	struct hstate *h = hstate_inode(inode);
6914 	struct hugepage_subpool *spool = subpool_inode(inode);
6915 	struct resv_map *resv_map;
6916 	struct hugetlb_cgroup *h_cg = NULL;
6917 	long gbl_reserve, regions_needed = 0;
6918 
6919 	/* This should never happen */
6920 	if (from > to) {
6921 		VM_WARN(1, "%s called with a negative range\n", __func__);
6922 		return false;
6923 	}
6924 
6925 	/*
6926 	 * vma specific semaphore used for pmd sharing and fault/truncation
6927 	 * synchronization
6928 	 */
6929 	hugetlb_vma_lock_alloc(vma);
6930 
6931 	/*
6932 	 * Only apply hugepage reservation if asked. At fault time, an
6933 	 * attempt will be made for VM_NORESERVE to allocate a page
6934 	 * without using reserves
6935 	 */
6936 	if (vm_flags & VM_NORESERVE)
6937 		return true;
6938 
6939 	/*
6940 	 * Shared mappings base their reservation on the number of pages that
6941 	 * are already allocated on behalf of the file. Private mappings need
6942 	 * to reserve the full area even if read-only as mprotect() may be
6943 	 * called to make the mapping read-write. Assume !vma is a shm mapping
6944 	 */
6945 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
6946 		/*
6947 		 * resv_map can not be NULL as hugetlb_reserve_pages is only
6948 		 * called for inodes for which resv_maps were created (see
6949 		 * hugetlbfs_get_inode).
6950 		 */
6951 		resv_map = inode_resv_map(inode);
6952 
6953 		chg = region_chg(resv_map, from, to, &regions_needed);
6954 	} else {
6955 		/* Private mapping. */
6956 		resv_map = resv_map_alloc();
6957 		if (!resv_map)
6958 			goto out_err;
6959 
6960 		chg = to - from;
6961 
6962 		set_vma_resv_map(vma, resv_map);
6963 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
6964 	}
6965 
6966 	if (chg < 0)
6967 		goto out_err;
6968 
6969 	if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
6970 				chg * pages_per_huge_page(h), &h_cg) < 0)
6971 		goto out_err;
6972 
6973 	if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
6974 		/* For private mappings, the hugetlb_cgroup uncharge info hangs
6975 		 * of the resv_map.
6976 		 */
6977 		resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
6978 	}
6979 
6980 	/*
6981 	 * There must be enough pages in the subpool for the mapping. If
6982 	 * the subpool has a minimum size, there may be some global
6983 	 * reservations already in place (gbl_reserve).
6984 	 */
6985 	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
6986 	if (gbl_reserve < 0)
6987 		goto out_uncharge_cgroup;
6988 
6989 	/*
6990 	 * Check enough hugepages are available for the reservation.
6991 	 * Hand the pages back to the subpool if there are not
6992 	 */
6993 	if (hugetlb_acct_memory(h, gbl_reserve) < 0)
6994 		goto out_put_pages;
6995 
6996 	/*
6997 	 * Account for the reservations made. Shared mappings record regions
6998 	 * that have reservations as they are shared by multiple VMAs.
6999 	 * When the last VMA disappears, the region map says how much
7000 	 * the reservation was and the page cache tells how much of
7001 	 * the reservation was consumed. Private mappings are per-VMA and
7002 	 * only the consumed reservations are tracked. When the VMA
7003 	 * disappears, the original reservation is the VMA size and the
7004 	 * consumed reservations are stored in the map. Hence, nothing
7005 	 * else has to be done for private mappings here
7006 	 */
7007 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
7008 		add = region_add(resv_map, from, to, regions_needed, h, h_cg);
7009 
7010 		if (unlikely(add < 0)) {
7011 			hugetlb_acct_memory(h, -gbl_reserve);
7012 			goto out_put_pages;
7013 		} else if (unlikely(chg > add)) {
7014 			/*
7015 			 * pages in this range were added to the reserve
7016 			 * map between region_chg and region_add.  This
7017 			 * indicates a race with alloc_hugetlb_folio.  Adjust
7018 			 * the subpool and reserve counts modified above
7019 			 * based on the difference.
7020 			 */
7021 			long rsv_adjust;
7022 
7023 			/*
7024 			 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
7025 			 * reference to h_cg->css. See comment below for detail.
7026 			 */
7027 			hugetlb_cgroup_uncharge_cgroup_rsvd(
7028 				hstate_index(h),
7029 				(chg - add) * pages_per_huge_page(h), h_cg);
7030 
7031 			rsv_adjust = hugepage_subpool_put_pages(spool,
7032 								chg - add);
7033 			hugetlb_acct_memory(h, -rsv_adjust);
7034 		} else if (h_cg) {
7035 			/*
7036 			 * The file_regions will hold their own reference to
7037 			 * h_cg->css. So we should release the reference held
7038 			 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
7039 			 * done.
7040 			 */
7041 			hugetlb_cgroup_put_rsvd_cgroup(h_cg);
7042 		}
7043 	}
7044 	return true;
7045 
7046 out_put_pages:
7047 	/* put back original number of pages, chg */
7048 	(void)hugepage_subpool_put_pages(spool, chg);
7049 out_uncharge_cgroup:
7050 	hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
7051 					    chg * pages_per_huge_page(h), h_cg);
7052 out_err:
7053 	hugetlb_vma_lock_free(vma);
7054 	if (!vma || vma->vm_flags & VM_MAYSHARE)
7055 		/* Only call region_abort if the region_chg succeeded but the
7056 		 * region_add failed or didn't run.
7057 		 */
7058 		if (chg >= 0 && add < 0)
7059 			region_abort(resv_map, from, to, regions_needed);
7060 	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
7061 		kref_put(&resv_map->refs, resv_map_release);
7062 		set_vma_resv_map(vma, NULL);
7063 	}
7064 	return false;
7065 }
7066 
7067 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
7068 								long freed)
7069 {
7070 	struct hstate *h = hstate_inode(inode);
7071 	struct resv_map *resv_map = inode_resv_map(inode);
7072 	long chg = 0;
7073 	struct hugepage_subpool *spool = subpool_inode(inode);
7074 	long gbl_reserve;
7075 
7076 	/*
7077 	 * Since this routine can be called in the evict inode path for all
7078 	 * hugetlbfs inodes, resv_map could be NULL.
7079 	 */
7080 	if (resv_map) {
7081 		chg = region_del(resv_map, start, end);
7082 		/*
7083 		 * region_del() can fail in the rare case where a region
7084 		 * must be split and another region descriptor can not be
7085 		 * allocated.  If end == LONG_MAX, it will not fail.
7086 		 */
7087 		if (chg < 0)
7088 			return chg;
7089 	}
7090 
7091 	spin_lock(&inode->i_lock);
7092 	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
7093 	spin_unlock(&inode->i_lock);
7094 
7095 	/*
7096 	 * If the subpool has a minimum size, the number of global
7097 	 * reservations to be released may be adjusted.
7098 	 *
7099 	 * Note that !resv_map implies freed == 0. So (chg - freed)
7100 	 * won't go negative.
7101 	 */
7102 	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
7103 	hugetlb_acct_memory(h, -gbl_reserve);
7104 
7105 	return 0;
7106 }
7107 
7108 #ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING
7109 static unsigned long page_table_shareable(struct vm_area_struct *svma,
7110 				struct vm_area_struct *vma,
7111 				unsigned long addr, pgoff_t idx)
7112 {
7113 	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
7114 				svma->vm_start;
7115 	unsigned long sbase = saddr & PUD_MASK;
7116 	unsigned long s_end = sbase + PUD_SIZE;
7117 
7118 	/* Allow segments to share if only one is marked locked */
7119 	unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED_MASK;
7120 	unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED_MASK;
7121 
7122 	/*
7123 	 * match the virtual addresses, permission and the alignment of the
7124 	 * page table page.
7125 	 *
7126 	 * Also, vma_lock (vm_private_data) is required for sharing.
7127 	 */
7128 	if (pmd_index(addr) != pmd_index(saddr) ||
7129 	    vm_flags != svm_flags ||
7130 	    !range_in_vma(svma, sbase, s_end) ||
7131 	    !svma->vm_private_data)
7132 		return 0;
7133 
7134 	return saddr;
7135 }
7136 
7137 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7138 {
7139 	unsigned long start = addr & PUD_MASK;
7140 	unsigned long end = start + PUD_SIZE;
7141 
7142 #ifdef CONFIG_USERFAULTFD
7143 	if (uffd_disable_huge_pmd_share(vma))
7144 		return false;
7145 #endif
7146 	/*
7147 	 * check on proper vm_flags and page table alignment
7148 	 */
7149 	if (!(vma->vm_flags & VM_MAYSHARE))
7150 		return false;
7151 	if (!vma->vm_private_data)	/* vma lock required for sharing */
7152 		return false;
7153 	if (!range_in_vma(vma, start, end))
7154 		return false;
7155 	return true;
7156 }
7157 
7158 /*
7159  * Determine if start,end range within vma could be mapped by shared pmd.
7160  * If yes, adjust start and end to cover range associated with possible
7161  * shared pmd mappings.
7162  */
7163 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7164 				unsigned long *start, unsigned long *end)
7165 {
7166 	unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
7167 		v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
7168 
7169 	/*
7170 	 * vma needs to span at least one aligned PUD size, and the range
7171 	 * must be at least partially within in.
7172 	 */
7173 	if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
7174 		(*end <= v_start) || (*start >= v_end))
7175 		return;
7176 
7177 	/* Extend the range to be PUD aligned for a worst case scenario */
7178 	if (*start > v_start)
7179 		*start = ALIGN_DOWN(*start, PUD_SIZE);
7180 
7181 	if (*end < v_end)
7182 		*end = ALIGN(*end, PUD_SIZE);
7183 }
7184 
7185 /*
7186  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
7187  * and returns the corresponding pte. While this is not necessary for the
7188  * !shared pmd case because we can allocate the pmd later as well, it makes the
7189  * code much cleaner. pmd allocation is essential for the shared case because
7190  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
7191  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
7192  * bad pmd for sharing.
7193  */
7194 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7195 		      unsigned long addr, pud_t *pud)
7196 {
7197 	struct address_space *mapping = vma->vm_file->f_mapping;
7198 	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
7199 			vma->vm_pgoff;
7200 	struct vm_area_struct *svma;
7201 	unsigned long saddr;
7202 	pte_t *spte = NULL;
7203 	pte_t *pte;
7204 
7205 	i_mmap_lock_read(mapping);
7206 	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
7207 		if (svma == vma)
7208 			continue;
7209 
7210 		saddr = page_table_shareable(svma, vma, addr, idx);
7211 		if (saddr) {
7212 			spte = hugetlb_walk(svma, saddr,
7213 					    vma_mmu_pagesize(svma));
7214 			if (spte) {
7215 				get_page(virt_to_page(spte));
7216 				break;
7217 			}
7218 		}
7219 	}
7220 
7221 	if (!spte)
7222 		goto out;
7223 
7224 	spin_lock(&mm->page_table_lock);
7225 	if (pud_none(*pud)) {
7226 		pud_populate(mm, pud,
7227 				(pmd_t *)((unsigned long)spte & PAGE_MASK));
7228 		mm_inc_nr_pmds(mm);
7229 	} else {
7230 		put_page(virt_to_page(spte));
7231 	}
7232 	spin_unlock(&mm->page_table_lock);
7233 out:
7234 	pte = (pte_t *)pmd_alloc(mm, pud, addr);
7235 	i_mmap_unlock_read(mapping);
7236 	return pte;
7237 }
7238 
7239 /*
7240  * unmap huge page backed by shared pte.
7241  *
7242  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
7243  * indicated by page_count > 1, unmap is achieved by clearing pud and
7244  * decrementing the ref count. If count == 1, the pte page is not shared.
7245  *
7246  * Called with page table lock held.
7247  *
7248  * returns: 1 successfully unmapped a shared pte page
7249  *	    0 the underlying pte page is not shared, or it is the last user
7250  */
7251 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7252 					unsigned long addr, pte_t *ptep)
7253 {
7254 	pgd_t *pgd = pgd_offset(mm, addr);
7255 	p4d_t *p4d = p4d_offset(pgd, addr);
7256 	pud_t *pud = pud_offset(p4d, addr);
7257 
7258 	i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7259 	hugetlb_vma_assert_locked(vma);
7260 	BUG_ON(page_count(virt_to_page(ptep)) == 0);
7261 	if (page_count(virt_to_page(ptep)) == 1)
7262 		return 0;
7263 
7264 	pud_clear(pud);
7265 	put_page(virt_to_page(ptep));
7266 	mm_dec_nr_pmds(mm);
7267 	return 1;
7268 }
7269 
7270 #else /* !CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING */
7271 
7272 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7273 		      unsigned long addr, pud_t *pud)
7274 {
7275 	return NULL;
7276 }
7277 
7278 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7279 				unsigned long addr, pte_t *ptep)
7280 {
7281 	return 0;
7282 }
7283 
7284 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7285 				unsigned long *start, unsigned long *end)
7286 {
7287 }
7288 
7289 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7290 {
7291 	return false;
7292 }
7293 #endif /* CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING */
7294 
7295 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
7296 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
7297 			unsigned long addr, unsigned long sz)
7298 {
7299 	pgd_t *pgd;
7300 	p4d_t *p4d;
7301 	pud_t *pud;
7302 	pte_t *pte = NULL;
7303 
7304 	pgd = pgd_offset(mm, addr);
7305 	p4d = p4d_alloc(mm, pgd, addr);
7306 	if (!p4d)
7307 		return NULL;
7308 	pud = pud_alloc(mm, p4d, addr);
7309 	if (pud) {
7310 		if (sz == PUD_SIZE) {
7311 			pte = (pte_t *)pud;
7312 		} else {
7313 			BUG_ON(sz != PMD_SIZE);
7314 			if (want_pmd_share(vma, addr) && pud_none(*pud))
7315 				pte = huge_pmd_share(mm, vma, addr, pud);
7316 			else
7317 				pte = (pte_t *)pmd_alloc(mm, pud, addr);
7318 		}
7319 	}
7320 
7321 	if (pte) {
7322 		pte_t pteval = ptep_get_lockless(pte);
7323 
7324 		BUG_ON(pte_present(pteval) && !pte_huge(pteval));
7325 	}
7326 
7327 	return pte;
7328 }
7329 
7330 /*
7331  * huge_pte_offset() - Walk the page table to resolve the hugepage
7332  * entry at address @addr
7333  *
7334  * Return: Pointer to page table entry (PUD or PMD) for
7335  * address @addr, or NULL if a !p*d_present() entry is encountered and the
7336  * size @sz doesn't match the hugepage size at this level of the page
7337  * table.
7338  */
7339 pte_t *huge_pte_offset(struct mm_struct *mm,
7340 		       unsigned long addr, unsigned long sz)
7341 {
7342 	pgd_t *pgd;
7343 	p4d_t *p4d;
7344 	pud_t *pud;
7345 	pmd_t *pmd;
7346 
7347 	pgd = pgd_offset(mm, addr);
7348 	if (!pgd_present(*pgd))
7349 		return NULL;
7350 	p4d = p4d_offset(pgd, addr);
7351 	if (!p4d_present(*p4d))
7352 		return NULL;
7353 
7354 	pud = pud_offset(p4d, addr);
7355 	if (sz == PUD_SIZE)
7356 		/* must be pud huge, non-present or none */
7357 		return (pte_t *)pud;
7358 	if (!pud_present(*pud))
7359 		return NULL;
7360 	/* must have a valid entry and size to go further */
7361 
7362 	pmd = pmd_offset(pud, addr);
7363 	/* must be pmd huge, non-present or none */
7364 	return (pte_t *)pmd;
7365 }
7366 
7367 /*
7368  * Return a mask that can be used to update an address to the last huge
7369  * page in a page table page mapping size.  Used to skip non-present
7370  * page table entries when linearly scanning address ranges.  Architectures
7371  * with unique huge page to page table relationships can define their own
7372  * version of this routine.
7373  */
7374 unsigned long hugetlb_mask_last_page(struct hstate *h)
7375 {
7376 	unsigned long hp_size = huge_page_size(h);
7377 
7378 	if (hp_size == PUD_SIZE)
7379 		return P4D_SIZE - PUD_SIZE;
7380 	else if (hp_size == PMD_SIZE)
7381 		return PUD_SIZE - PMD_SIZE;
7382 	else
7383 		return 0UL;
7384 }
7385 
7386 #else
7387 
7388 /* See description above.  Architectures can provide their own version. */
7389 __weak unsigned long hugetlb_mask_last_page(struct hstate *h)
7390 {
7391 #ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING
7392 	if (huge_page_size(h) == PMD_SIZE)
7393 		return PUD_SIZE - PMD_SIZE;
7394 #endif
7395 	return 0UL;
7396 }
7397 
7398 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
7399 
7400 bool isolate_hugetlb(struct folio *folio, struct list_head *list)
7401 {
7402 	bool ret = true;
7403 
7404 	spin_lock_irq(&hugetlb_lock);
7405 	if (!folio_test_hugetlb(folio) ||
7406 	    !folio_test_hugetlb_migratable(folio) ||
7407 	    !folio_try_get(folio)) {
7408 		ret = false;
7409 		goto unlock;
7410 	}
7411 	folio_clear_hugetlb_migratable(folio);
7412 	list_move_tail(&folio->lru, list);
7413 unlock:
7414 	spin_unlock_irq(&hugetlb_lock);
7415 	return ret;
7416 }
7417 
7418 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison)
7419 {
7420 	int ret = 0;
7421 
7422 	*hugetlb = false;
7423 	spin_lock_irq(&hugetlb_lock);
7424 	if (folio_test_hugetlb(folio)) {
7425 		*hugetlb = true;
7426 		if (folio_test_hugetlb_freed(folio))
7427 			ret = 0;
7428 		else if (folio_test_hugetlb_migratable(folio) || unpoison)
7429 			ret = folio_try_get(folio);
7430 		else
7431 			ret = -EBUSY;
7432 	}
7433 	spin_unlock_irq(&hugetlb_lock);
7434 	return ret;
7435 }
7436 
7437 int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
7438 				bool *migratable_cleared)
7439 {
7440 	int ret;
7441 
7442 	spin_lock_irq(&hugetlb_lock);
7443 	ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared);
7444 	spin_unlock_irq(&hugetlb_lock);
7445 	return ret;
7446 }
7447 
7448 void folio_putback_active_hugetlb(struct folio *folio)
7449 {
7450 	spin_lock_irq(&hugetlb_lock);
7451 	folio_set_hugetlb_migratable(folio);
7452 	list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist);
7453 	spin_unlock_irq(&hugetlb_lock);
7454 	folio_put(folio);
7455 }
7456 
7457 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason)
7458 {
7459 	struct hstate *h = folio_hstate(old_folio);
7460 
7461 	hugetlb_cgroup_migrate(old_folio, new_folio);
7462 	set_page_owner_migrate_reason(&new_folio->page, reason);
7463 
7464 	/*
7465 	 * transfer temporary state of the new hugetlb folio. This is
7466 	 * reverse to other transitions because the newpage is going to
7467 	 * be final while the old one will be freed so it takes over
7468 	 * the temporary status.
7469 	 *
7470 	 * Also note that we have to transfer the per-node surplus state
7471 	 * here as well otherwise the global surplus count will not match
7472 	 * the per-node's.
7473 	 */
7474 	if (folio_test_hugetlb_temporary(new_folio)) {
7475 		int old_nid = folio_nid(old_folio);
7476 		int new_nid = folio_nid(new_folio);
7477 
7478 		folio_set_hugetlb_temporary(old_folio);
7479 		folio_clear_hugetlb_temporary(new_folio);
7480 
7481 
7482 		/*
7483 		 * There is no need to transfer the per-node surplus state
7484 		 * when we do not cross the node.
7485 		 */
7486 		if (new_nid == old_nid)
7487 			return;
7488 		spin_lock_irq(&hugetlb_lock);
7489 		if (h->surplus_huge_pages_node[old_nid]) {
7490 			h->surplus_huge_pages_node[old_nid]--;
7491 			h->surplus_huge_pages_node[new_nid]++;
7492 		}
7493 		spin_unlock_irq(&hugetlb_lock);
7494 	}
7495 }
7496 
7497 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
7498 				   unsigned long start,
7499 				   unsigned long end)
7500 {
7501 	struct hstate *h = hstate_vma(vma);
7502 	unsigned long sz = huge_page_size(h);
7503 	struct mm_struct *mm = vma->vm_mm;
7504 	struct mmu_notifier_range range;
7505 	unsigned long address;
7506 	spinlock_t *ptl;
7507 	pte_t *ptep;
7508 
7509 	if (!(vma->vm_flags & VM_MAYSHARE))
7510 		return;
7511 
7512 	if (start >= end)
7513 		return;
7514 
7515 	flush_cache_range(vma, start, end);
7516 	/*
7517 	 * No need to call adjust_range_if_pmd_sharing_possible(), because
7518 	 * we have already done the PUD_SIZE alignment.
7519 	 */
7520 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
7521 				start, end);
7522 	mmu_notifier_invalidate_range_start(&range);
7523 	hugetlb_vma_lock_write(vma);
7524 	i_mmap_lock_write(vma->vm_file->f_mapping);
7525 	for (address = start; address < end; address += PUD_SIZE) {
7526 		ptep = hugetlb_walk(vma, address, sz);
7527 		if (!ptep)
7528 			continue;
7529 		ptl = huge_pte_lock(h, mm, ptep);
7530 		huge_pmd_unshare(mm, vma, address, ptep);
7531 		spin_unlock(ptl);
7532 	}
7533 	flush_hugetlb_tlb_range(vma, start, end);
7534 	i_mmap_unlock_write(vma->vm_file->f_mapping);
7535 	hugetlb_vma_unlock_write(vma);
7536 	/*
7537 	 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs(), see
7538 	 * Documentation/mm/mmu_notifier.rst.
7539 	 */
7540 	mmu_notifier_invalidate_range_end(&range);
7541 }
7542 
7543 /*
7544  * This function will unconditionally remove all the shared pmd pgtable entries
7545  * within the specific vma for a hugetlbfs memory range.
7546  */
7547 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7548 {
7549 	hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE),
7550 			ALIGN_DOWN(vma->vm_end, PUD_SIZE));
7551 }
7552 
7553 #ifdef CONFIG_CMA
7554 static bool cma_reserve_called __initdata;
7555 
7556 static int __init cmdline_parse_hugetlb_cma(char *p)
7557 {
7558 	int nid, count = 0;
7559 	unsigned long tmp;
7560 	char *s = p;
7561 
7562 	while (*s) {
7563 		if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7564 			break;
7565 
7566 		if (s[count] == ':') {
7567 			if (tmp >= MAX_NUMNODES)
7568 				break;
7569 			nid = array_index_nospec(tmp, MAX_NUMNODES);
7570 
7571 			s += count + 1;
7572 			tmp = memparse(s, &s);
7573 			hugetlb_cma_size_in_node[nid] = tmp;
7574 			hugetlb_cma_size += tmp;
7575 
7576 			/*
7577 			 * Skip the separator if have one, otherwise
7578 			 * break the parsing.
7579 			 */
7580 			if (*s == ',')
7581 				s++;
7582 			else
7583 				break;
7584 		} else {
7585 			hugetlb_cma_size = memparse(p, &p);
7586 			break;
7587 		}
7588 	}
7589 
7590 	return 0;
7591 }
7592 
7593 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7594 
7595 void __init hugetlb_cma_reserve(int order)
7596 {
7597 	unsigned long size, reserved, per_node;
7598 	bool node_specific_cma_alloc = false;
7599 	int nid;
7600 
7601 	/*
7602 	 * HugeTLB CMA reservation is required for gigantic
7603 	 * huge pages which could not be allocated via the
7604 	 * page allocator. Just warn if there is any change
7605 	 * breaking this assumption.
7606 	 */
7607 	VM_WARN_ON(order <= MAX_PAGE_ORDER);
7608 	cma_reserve_called = true;
7609 
7610 	if (!hugetlb_cma_size)
7611 		return;
7612 
7613 	for (nid = 0; nid < MAX_NUMNODES; nid++) {
7614 		if (hugetlb_cma_size_in_node[nid] == 0)
7615 			continue;
7616 
7617 		if (!node_online(nid)) {
7618 			pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7619 			hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7620 			hugetlb_cma_size_in_node[nid] = 0;
7621 			continue;
7622 		}
7623 
7624 		if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7625 			pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7626 				nid, (PAGE_SIZE << order) / SZ_1M);
7627 			hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7628 			hugetlb_cma_size_in_node[nid] = 0;
7629 		} else {
7630 			node_specific_cma_alloc = true;
7631 		}
7632 	}
7633 
7634 	/* Validate the CMA size again in case some invalid nodes specified. */
7635 	if (!hugetlb_cma_size)
7636 		return;
7637 
7638 	if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7639 		pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7640 			(PAGE_SIZE << order) / SZ_1M);
7641 		hugetlb_cma_size = 0;
7642 		return;
7643 	}
7644 
7645 	if (!node_specific_cma_alloc) {
7646 		/*
7647 		 * If 3 GB area is requested on a machine with 4 numa nodes,
7648 		 * let's allocate 1 GB on first three nodes and ignore the last one.
7649 		 */
7650 		per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7651 		pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7652 			hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7653 	}
7654 
7655 	reserved = 0;
7656 	for_each_online_node(nid) {
7657 		int res;
7658 		char name[CMA_MAX_NAME];
7659 
7660 		if (node_specific_cma_alloc) {
7661 			if (hugetlb_cma_size_in_node[nid] == 0)
7662 				continue;
7663 
7664 			size = hugetlb_cma_size_in_node[nid];
7665 		} else {
7666 			size = min(per_node, hugetlb_cma_size - reserved);
7667 		}
7668 
7669 		size = round_up(size, PAGE_SIZE << order);
7670 
7671 		snprintf(name, sizeof(name), "hugetlb%d", nid);
7672 		/*
7673 		 * Note that 'order per bit' is based on smallest size that
7674 		 * may be returned to CMA allocator in the case of
7675 		 * huge page demotion.
7676 		 */
7677 		res = cma_declare_contiguous_nid(0, size, 0,
7678 					PAGE_SIZE << order,
7679 					HUGETLB_PAGE_ORDER, false, name,
7680 					&hugetlb_cma[nid], nid);
7681 		if (res) {
7682 			pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7683 				res, nid);
7684 			continue;
7685 		}
7686 
7687 		reserved += size;
7688 		pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7689 			size / SZ_1M, nid);
7690 
7691 		if (reserved >= hugetlb_cma_size)
7692 			break;
7693 	}
7694 
7695 	if (!reserved)
7696 		/*
7697 		 * hugetlb_cma_size is used to determine if allocations from
7698 		 * cma are possible.  Set to zero if no cma regions are set up.
7699 		 */
7700 		hugetlb_cma_size = 0;
7701 }
7702 
7703 static void __init hugetlb_cma_check(void)
7704 {
7705 	if (!hugetlb_cma_size || cma_reserve_called)
7706 		return;
7707 
7708 	pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7709 }
7710 
7711 #endif /* CONFIG_CMA */
7712