1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic hugetlb support. 4 * (C) Nadia Yvette Chambers, April 2004 5 */ 6 #include <linux/list.h> 7 #include <linux/init.h> 8 #include <linux/mm.h> 9 #include <linux/seq_file.h> 10 #include <linux/sysctl.h> 11 #include <linux/highmem.h> 12 #include <linux/mmu_notifier.h> 13 #include <linux/nodemask.h> 14 #include <linux/pagemap.h> 15 #include <linux/mempolicy.h> 16 #include <linux/compiler.h> 17 #include <linux/cpuset.h> 18 #include <linux/mutex.h> 19 #include <linux/memblock.h> 20 #include <linux/sysfs.h> 21 #include <linux/slab.h> 22 #include <linux/sched/mm.h> 23 #include <linux/mmdebug.h> 24 #include <linux/sched/signal.h> 25 #include <linux/rmap.h> 26 #include <linux/string_helpers.h> 27 #include <linux/swap.h> 28 #include <linux/swapops.h> 29 #include <linux/jhash.h> 30 #include <linux/numa.h> 31 #include <linux/llist.h> 32 #include <linux/cma.h> 33 #include <linux/migrate.h> 34 #include <linux/nospec.h> 35 #include <linux/delayacct.h> 36 #include <linux/memory.h> 37 38 #include <asm/page.h> 39 #include <asm/pgalloc.h> 40 #include <asm/tlb.h> 41 42 #include <linux/io.h> 43 #include <linux/hugetlb.h> 44 #include <linux/hugetlb_cgroup.h> 45 #include <linux/node.h> 46 #include <linux/page_owner.h> 47 #include "internal.h" 48 #include "hugetlb_vmemmap.h" 49 50 int hugetlb_max_hstate __read_mostly; 51 unsigned int default_hstate_idx; 52 struct hstate hstates[HUGE_MAX_HSTATE]; 53 54 #ifdef CONFIG_CMA 55 static struct cma *hugetlb_cma[MAX_NUMNODES]; 56 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata; 57 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order) 58 { 59 return cma_pages_valid(hugetlb_cma[folio_nid(folio)], &folio->page, 60 1 << order); 61 } 62 #else 63 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order) 64 { 65 return false; 66 } 67 #endif 68 static unsigned long hugetlb_cma_size __initdata; 69 70 __initdata LIST_HEAD(huge_boot_pages); 71 72 /* for command line parsing */ 73 static struct hstate * __initdata parsed_hstate; 74 static unsigned long __initdata default_hstate_max_huge_pages; 75 static bool __initdata parsed_valid_hugepagesz = true; 76 static bool __initdata parsed_default_hugepagesz; 77 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata; 78 79 /* 80 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages, 81 * free_huge_pages, and surplus_huge_pages. 82 */ 83 DEFINE_SPINLOCK(hugetlb_lock); 84 85 /* 86 * Serializes faults on the same logical page. This is used to 87 * prevent spurious OOMs when the hugepage pool is fully utilized. 88 */ 89 static int num_fault_mutexes; 90 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp; 91 92 /* Forward declaration */ 93 static int hugetlb_acct_memory(struct hstate *h, long delta); 94 static void hugetlb_vma_lock_free(struct vm_area_struct *vma); 95 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma); 96 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma); 97 static void hugetlb_unshare_pmds(struct vm_area_struct *vma, 98 unsigned long start, unsigned long end); 99 100 static inline bool subpool_is_free(struct hugepage_subpool *spool) 101 { 102 if (spool->count) 103 return false; 104 if (spool->max_hpages != -1) 105 return spool->used_hpages == 0; 106 if (spool->min_hpages != -1) 107 return spool->rsv_hpages == spool->min_hpages; 108 109 return true; 110 } 111 112 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool, 113 unsigned long irq_flags) 114 { 115 spin_unlock_irqrestore(&spool->lock, irq_flags); 116 117 /* If no pages are used, and no other handles to the subpool 118 * remain, give up any reservations based on minimum size and 119 * free the subpool */ 120 if (subpool_is_free(spool)) { 121 if (spool->min_hpages != -1) 122 hugetlb_acct_memory(spool->hstate, 123 -spool->min_hpages); 124 kfree(spool); 125 } 126 } 127 128 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages, 129 long min_hpages) 130 { 131 struct hugepage_subpool *spool; 132 133 spool = kzalloc(sizeof(*spool), GFP_KERNEL); 134 if (!spool) 135 return NULL; 136 137 spin_lock_init(&spool->lock); 138 spool->count = 1; 139 spool->max_hpages = max_hpages; 140 spool->hstate = h; 141 spool->min_hpages = min_hpages; 142 143 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) { 144 kfree(spool); 145 return NULL; 146 } 147 spool->rsv_hpages = min_hpages; 148 149 return spool; 150 } 151 152 void hugepage_put_subpool(struct hugepage_subpool *spool) 153 { 154 unsigned long flags; 155 156 spin_lock_irqsave(&spool->lock, flags); 157 BUG_ON(!spool->count); 158 spool->count--; 159 unlock_or_release_subpool(spool, flags); 160 } 161 162 /* 163 * Subpool accounting for allocating and reserving pages. 164 * Return -ENOMEM if there are not enough resources to satisfy the 165 * request. Otherwise, return the number of pages by which the 166 * global pools must be adjusted (upward). The returned value may 167 * only be different than the passed value (delta) in the case where 168 * a subpool minimum size must be maintained. 169 */ 170 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool, 171 long delta) 172 { 173 long ret = delta; 174 175 if (!spool) 176 return ret; 177 178 spin_lock_irq(&spool->lock); 179 180 if (spool->max_hpages != -1) { /* maximum size accounting */ 181 if ((spool->used_hpages + delta) <= spool->max_hpages) 182 spool->used_hpages += delta; 183 else { 184 ret = -ENOMEM; 185 goto unlock_ret; 186 } 187 } 188 189 /* minimum size accounting */ 190 if (spool->min_hpages != -1 && spool->rsv_hpages) { 191 if (delta > spool->rsv_hpages) { 192 /* 193 * Asking for more reserves than those already taken on 194 * behalf of subpool. Return difference. 195 */ 196 ret = delta - spool->rsv_hpages; 197 spool->rsv_hpages = 0; 198 } else { 199 ret = 0; /* reserves already accounted for */ 200 spool->rsv_hpages -= delta; 201 } 202 } 203 204 unlock_ret: 205 spin_unlock_irq(&spool->lock); 206 return ret; 207 } 208 209 /* 210 * Subpool accounting for freeing and unreserving pages. 211 * Return the number of global page reservations that must be dropped. 212 * The return value may only be different than the passed value (delta) 213 * in the case where a subpool minimum size must be maintained. 214 */ 215 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool, 216 long delta) 217 { 218 long ret = delta; 219 unsigned long flags; 220 221 if (!spool) 222 return delta; 223 224 spin_lock_irqsave(&spool->lock, flags); 225 226 if (spool->max_hpages != -1) /* maximum size accounting */ 227 spool->used_hpages -= delta; 228 229 /* minimum size accounting */ 230 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) { 231 if (spool->rsv_hpages + delta <= spool->min_hpages) 232 ret = 0; 233 else 234 ret = spool->rsv_hpages + delta - spool->min_hpages; 235 236 spool->rsv_hpages += delta; 237 if (spool->rsv_hpages > spool->min_hpages) 238 spool->rsv_hpages = spool->min_hpages; 239 } 240 241 /* 242 * If hugetlbfs_put_super couldn't free spool due to an outstanding 243 * quota reference, free it now. 244 */ 245 unlock_or_release_subpool(spool, flags); 246 247 return ret; 248 } 249 250 static inline struct hugepage_subpool *subpool_inode(struct inode *inode) 251 { 252 return HUGETLBFS_SB(inode->i_sb)->spool; 253 } 254 255 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma) 256 { 257 return subpool_inode(file_inode(vma->vm_file)); 258 } 259 260 /* 261 * hugetlb vma_lock helper routines 262 */ 263 void hugetlb_vma_lock_read(struct vm_area_struct *vma) 264 { 265 if (__vma_shareable_lock(vma)) { 266 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 267 268 down_read(&vma_lock->rw_sema); 269 } 270 } 271 272 void hugetlb_vma_unlock_read(struct vm_area_struct *vma) 273 { 274 if (__vma_shareable_lock(vma)) { 275 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 276 277 up_read(&vma_lock->rw_sema); 278 } 279 } 280 281 void hugetlb_vma_lock_write(struct vm_area_struct *vma) 282 { 283 if (__vma_shareable_lock(vma)) { 284 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 285 286 down_write(&vma_lock->rw_sema); 287 } 288 } 289 290 void hugetlb_vma_unlock_write(struct vm_area_struct *vma) 291 { 292 if (__vma_shareable_lock(vma)) { 293 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 294 295 up_write(&vma_lock->rw_sema); 296 } 297 } 298 299 int hugetlb_vma_trylock_write(struct vm_area_struct *vma) 300 { 301 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 302 303 if (!__vma_shareable_lock(vma)) 304 return 1; 305 306 return down_write_trylock(&vma_lock->rw_sema); 307 } 308 309 void hugetlb_vma_assert_locked(struct vm_area_struct *vma) 310 { 311 if (__vma_shareable_lock(vma)) { 312 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 313 314 lockdep_assert_held(&vma_lock->rw_sema); 315 } 316 } 317 318 void hugetlb_vma_lock_release(struct kref *kref) 319 { 320 struct hugetlb_vma_lock *vma_lock = container_of(kref, 321 struct hugetlb_vma_lock, refs); 322 323 kfree(vma_lock); 324 } 325 326 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock) 327 { 328 struct vm_area_struct *vma = vma_lock->vma; 329 330 /* 331 * vma_lock structure may or not be released as a result of put, 332 * it certainly will no longer be attached to vma so clear pointer. 333 * Semaphore synchronizes access to vma_lock->vma field. 334 */ 335 vma_lock->vma = NULL; 336 vma->vm_private_data = NULL; 337 up_write(&vma_lock->rw_sema); 338 kref_put(&vma_lock->refs, hugetlb_vma_lock_release); 339 } 340 341 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma) 342 { 343 if (__vma_shareable_lock(vma)) { 344 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 345 346 __hugetlb_vma_unlock_write_put(vma_lock); 347 } 348 } 349 350 static void hugetlb_vma_lock_free(struct vm_area_struct *vma) 351 { 352 /* 353 * Only present in sharable vmas. 354 */ 355 if (!vma || !__vma_shareable_lock(vma)) 356 return; 357 358 if (vma->vm_private_data) { 359 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 360 361 down_write(&vma_lock->rw_sema); 362 __hugetlb_vma_unlock_write_put(vma_lock); 363 } 364 } 365 366 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma) 367 { 368 struct hugetlb_vma_lock *vma_lock; 369 370 /* Only establish in (flags) sharable vmas */ 371 if (!vma || !(vma->vm_flags & VM_MAYSHARE)) 372 return; 373 374 /* Should never get here with non-NULL vm_private_data */ 375 if (vma->vm_private_data) 376 return; 377 378 vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL); 379 if (!vma_lock) { 380 /* 381 * If we can not allocate structure, then vma can not 382 * participate in pmd sharing. This is only a possible 383 * performance enhancement and memory saving issue. 384 * However, the lock is also used to synchronize page 385 * faults with truncation. If the lock is not present, 386 * unlikely races could leave pages in a file past i_size 387 * until the file is removed. Warn in the unlikely case of 388 * allocation failure. 389 */ 390 pr_warn_once("HugeTLB: unable to allocate vma specific lock\n"); 391 return; 392 } 393 394 kref_init(&vma_lock->refs); 395 init_rwsem(&vma_lock->rw_sema); 396 vma_lock->vma = vma; 397 vma->vm_private_data = vma_lock; 398 } 399 400 /* Helper that removes a struct file_region from the resv_map cache and returns 401 * it for use. 402 */ 403 static struct file_region * 404 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to) 405 { 406 struct file_region *nrg; 407 408 VM_BUG_ON(resv->region_cache_count <= 0); 409 410 resv->region_cache_count--; 411 nrg = list_first_entry(&resv->region_cache, struct file_region, link); 412 list_del(&nrg->link); 413 414 nrg->from = from; 415 nrg->to = to; 416 417 return nrg; 418 } 419 420 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg, 421 struct file_region *rg) 422 { 423 #ifdef CONFIG_CGROUP_HUGETLB 424 nrg->reservation_counter = rg->reservation_counter; 425 nrg->css = rg->css; 426 if (rg->css) 427 css_get(rg->css); 428 #endif 429 } 430 431 /* Helper that records hugetlb_cgroup uncharge info. */ 432 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg, 433 struct hstate *h, 434 struct resv_map *resv, 435 struct file_region *nrg) 436 { 437 #ifdef CONFIG_CGROUP_HUGETLB 438 if (h_cg) { 439 nrg->reservation_counter = 440 &h_cg->rsvd_hugepage[hstate_index(h)]; 441 nrg->css = &h_cg->css; 442 /* 443 * The caller will hold exactly one h_cg->css reference for the 444 * whole contiguous reservation region. But this area might be 445 * scattered when there are already some file_regions reside in 446 * it. As a result, many file_regions may share only one css 447 * reference. In order to ensure that one file_region must hold 448 * exactly one h_cg->css reference, we should do css_get for 449 * each file_region and leave the reference held by caller 450 * untouched. 451 */ 452 css_get(&h_cg->css); 453 if (!resv->pages_per_hpage) 454 resv->pages_per_hpage = pages_per_huge_page(h); 455 /* pages_per_hpage should be the same for all entries in 456 * a resv_map. 457 */ 458 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h)); 459 } else { 460 nrg->reservation_counter = NULL; 461 nrg->css = NULL; 462 } 463 #endif 464 } 465 466 static void put_uncharge_info(struct file_region *rg) 467 { 468 #ifdef CONFIG_CGROUP_HUGETLB 469 if (rg->css) 470 css_put(rg->css); 471 #endif 472 } 473 474 static bool has_same_uncharge_info(struct file_region *rg, 475 struct file_region *org) 476 { 477 #ifdef CONFIG_CGROUP_HUGETLB 478 return rg->reservation_counter == org->reservation_counter && 479 rg->css == org->css; 480 481 #else 482 return true; 483 #endif 484 } 485 486 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg) 487 { 488 struct file_region *nrg, *prg; 489 490 prg = list_prev_entry(rg, link); 491 if (&prg->link != &resv->regions && prg->to == rg->from && 492 has_same_uncharge_info(prg, rg)) { 493 prg->to = rg->to; 494 495 list_del(&rg->link); 496 put_uncharge_info(rg); 497 kfree(rg); 498 499 rg = prg; 500 } 501 502 nrg = list_next_entry(rg, link); 503 if (&nrg->link != &resv->regions && nrg->from == rg->to && 504 has_same_uncharge_info(nrg, rg)) { 505 nrg->from = rg->from; 506 507 list_del(&rg->link); 508 put_uncharge_info(rg); 509 kfree(rg); 510 } 511 } 512 513 static inline long 514 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from, 515 long to, struct hstate *h, struct hugetlb_cgroup *cg, 516 long *regions_needed) 517 { 518 struct file_region *nrg; 519 520 if (!regions_needed) { 521 nrg = get_file_region_entry_from_cache(map, from, to); 522 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg); 523 list_add(&nrg->link, rg); 524 coalesce_file_region(map, nrg); 525 } else 526 *regions_needed += 1; 527 528 return to - from; 529 } 530 531 /* 532 * Must be called with resv->lock held. 533 * 534 * Calling this with regions_needed != NULL will count the number of pages 535 * to be added but will not modify the linked list. And regions_needed will 536 * indicate the number of file_regions needed in the cache to carry out to add 537 * the regions for this range. 538 */ 539 static long add_reservation_in_range(struct resv_map *resv, long f, long t, 540 struct hugetlb_cgroup *h_cg, 541 struct hstate *h, long *regions_needed) 542 { 543 long add = 0; 544 struct list_head *head = &resv->regions; 545 long last_accounted_offset = f; 546 struct file_region *iter, *trg = NULL; 547 struct list_head *rg = NULL; 548 549 if (regions_needed) 550 *regions_needed = 0; 551 552 /* In this loop, we essentially handle an entry for the range 553 * [last_accounted_offset, iter->from), at every iteration, with some 554 * bounds checking. 555 */ 556 list_for_each_entry_safe(iter, trg, head, link) { 557 /* Skip irrelevant regions that start before our range. */ 558 if (iter->from < f) { 559 /* If this region ends after the last accounted offset, 560 * then we need to update last_accounted_offset. 561 */ 562 if (iter->to > last_accounted_offset) 563 last_accounted_offset = iter->to; 564 continue; 565 } 566 567 /* When we find a region that starts beyond our range, we've 568 * finished. 569 */ 570 if (iter->from >= t) { 571 rg = iter->link.prev; 572 break; 573 } 574 575 /* Add an entry for last_accounted_offset -> iter->from, and 576 * update last_accounted_offset. 577 */ 578 if (iter->from > last_accounted_offset) 579 add += hugetlb_resv_map_add(resv, iter->link.prev, 580 last_accounted_offset, 581 iter->from, h, h_cg, 582 regions_needed); 583 584 last_accounted_offset = iter->to; 585 } 586 587 /* Handle the case where our range extends beyond 588 * last_accounted_offset. 589 */ 590 if (!rg) 591 rg = head->prev; 592 if (last_accounted_offset < t) 593 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset, 594 t, h, h_cg, regions_needed); 595 596 return add; 597 } 598 599 /* Must be called with resv->lock acquired. Will drop lock to allocate entries. 600 */ 601 static int allocate_file_region_entries(struct resv_map *resv, 602 int regions_needed) 603 __must_hold(&resv->lock) 604 { 605 LIST_HEAD(allocated_regions); 606 int to_allocate = 0, i = 0; 607 struct file_region *trg = NULL, *rg = NULL; 608 609 VM_BUG_ON(regions_needed < 0); 610 611 /* 612 * Check for sufficient descriptors in the cache to accommodate 613 * the number of in progress add operations plus regions_needed. 614 * 615 * This is a while loop because when we drop the lock, some other call 616 * to region_add or region_del may have consumed some region_entries, 617 * so we keep looping here until we finally have enough entries for 618 * (adds_in_progress + regions_needed). 619 */ 620 while (resv->region_cache_count < 621 (resv->adds_in_progress + regions_needed)) { 622 to_allocate = resv->adds_in_progress + regions_needed - 623 resv->region_cache_count; 624 625 /* At this point, we should have enough entries in the cache 626 * for all the existing adds_in_progress. We should only be 627 * needing to allocate for regions_needed. 628 */ 629 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress); 630 631 spin_unlock(&resv->lock); 632 for (i = 0; i < to_allocate; i++) { 633 trg = kmalloc(sizeof(*trg), GFP_KERNEL); 634 if (!trg) 635 goto out_of_memory; 636 list_add(&trg->link, &allocated_regions); 637 } 638 639 spin_lock(&resv->lock); 640 641 list_splice(&allocated_regions, &resv->region_cache); 642 resv->region_cache_count += to_allocate; 643 } 644 645 return 0; 646 647 out_of_memory: 648 list_for_each_entry_safe(rg, trg, &allocated_regions, link) { 649 list_del(&rg->link); 650 kfree(rg); 651 } 652 return -ENOMEM; 653 } 654 655 /* 656 * Add the huge page range represented by [f, t) to the reserve 657 * map. Regions will be taken from the cache to fill in this range. 658 * Sufficient regions should exist in the cache due to the previous 659 * call to region_chg with the same range, but in some cases the cache will not 660 * have sufficient entries due to races with other code doing region_add or 661 * region_del. The extra needed entries will be allocated. 662 * 663 * regions_needed is the out value provided by a previous call to region_chg. 664 * 665 * Return the number of new huge pages added to the map. This number is greater 666 * than or equal to zero. If file_region entries needed to be allocated for 667 * this operation and we were not able to allocate, it returns -ENOMEM. 668 * region_add of regions of length 1 never allocate file_regions and cannot 669 * fail; region_chg will always allocate at least 1 entry and a region_add for 670 * 1 page will only require at most 1 entry. 671 */ 672 static long region_add(struct resv_map *resv, long f, long t, 673 long in_regions_needed, struct hstate *h, 674 struct hugetlb_cgroup *h_cg) 675 { 676 long add = 0, actual_regions_needed = 0; 677 678 spin_lock(&resv->lock); 679 retry: 680 681 /* Count how many regions are actually needed to execute this add. */ 682 add_reservation_in_range(resv, f, t, NULL, NULL, 683 &actual_regions_needed); 684 685 /* 686 * Check for sufficient descriptors in the cache to accommodate 687 * this add operation. Note that actual_regions_needed may be greater 688 * than in_regions_needed, as the resv_map may have been modified since 689 * the region_chg call. In this case, we need to make sure that we 690 * allocate extra entries, such that we have enough for all the 691 * existing adds_in_progress, plus the excess needed for this 692 * operation. 693 */ 694 if (actual_regions_needed > in_regions_needed && 695 resv->region_cache_count < 696 resv->adds_in_progress + 697 (actual_regions_needed - in_regions_needed)) { 698 /* region_add operation of range 1 should never need to 699 * allocate file_region entries. 700 */ 701 VM_BUG_ON(t - f <= 1); 702 703 if (allocate_file_region_entries( 704 resv, actual_regions_needed - in_regions_needed)) { 705 return -ENOMEM; 706 } 707 708 goto retry; 709 } 710 711 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL); 712 713 resv->adds_in_progress -= in_regions_needed; 714 715 spin_unlock(&resv->lock); 716 return add; 717 } 718 719 /* 720 * Examine the existing reserve map and determine how many 721 * huge pages in the specified range [f, t) are NOT currently 722 * represented. This routine is called before a subsequent 723 * call to region_add that will actually modify the reserve 724 * map to add the specified range [f, t). region_chg does 725 * not change the number of huge pages represented by the 726 * map. A number of new file_region structures is added to the cache as a 727 * placeholder, for the subsequent region_add call to use. At least 1 728 * file_region structure is added. 729 * 730 * out_regions_needed is the number of regions added to the 731 * resv->adds_in_progress. This value needs to be provided to a follow up call 732 * to region_add or region_abort for proper accounting. 733 * 734 * Returns the number of huge pages that need to be added to the existing 735 * reservation map for the range [f, t). This number is greater or equal to 736 * zero. -ENOMEM is returned if a new file_region structure or cache entry 737 * is needed and can not be allocated. 738 */ 739 static long region_chg(struct resv_map *resv, long f, long t, 740 long *out_regions_needed) 741 { 742 long chg = 0; 743 744 spin_lock(&resv->lock); 745 746 /* Count how many hugepages in this range are NOT represented. */ 747 chg = add_reservation_in_range(resv, f, t, NULL, NULL, 748 out_regions_needed); 749 750 if (*out_regions_needed == 0) 751 *out_regions_needed = 1; 752 753 if (allocate_file_region_entries(resv, *out_regions_needed)) 754 return -ENOMEM; 755 756 resv->adds_in_progress += *out_regions_needed; 757 758 spin_unlock(&resv->lock); 759 return chg; 760 } 761 762 /* 763 * Abort the in progress add operation. The adds_in_progress field 764 * of the resv_map keeps track of the operations in progress between 765 * calls to region_chg and region_add. Operations are sometimes 766 * aborted after the call to region_chg. In such cases, region_abort 767 * is called to decrement the adds_in_progress counter. regions_needed 768 * is the value returned by the region_chg call, it is used to decrement 769 * the adds_in_progress counter. 770 * 771 * NOTE: The range arguments [f, t) are not needed or used in this 772 * routine. They are kept to make reading the calling code easier as 773 * arguments will match the associated region_chg call. 774 */ 775 static void region_abort(struct resv_map *resv, long f, long t, 776 long regions_needed) 777 { 778 spin_lock(&resv->lock); 779 VM_BUG_ON(!resv->region_cache_count); 780 resv->adds_in_progress -= regions_needed; 781 spin_unlock(&resv->lock); 782 } 783 784 /* 785 * Delete the specified range [f, t) from the reserve map. If the 786 * t parameter is LONG_MAX, this indicates that ALL regions after f 787 * should be deleted. Locate the regions which intersect [f, t) 788 * and either trim, delete or split the existing regions. 789 * 790 * Returns the number of huge pages deleted from the reserve map. 791 * In the normal case, the return value is zero or more. In the 792 * case where a region must be split, a new region descriptor must 793 * be allocated. If the allocation fails, -ENOMEM will be returned. 794 * NOTE: If the parameter t == LONG_MAX, then we will never split 795 * a region and possibly return -ENOMEM. Callers specifying 796 * t == LONG_MAX do not need to check for -ENOMEM error. 797 */ 798 static long region_del(struct resv_map *resv, long f, long t) 799 { 800 struct list_head *head = &resv->regions; 801 struct file_region *rg, *trg; 802 struct file_region *nrg = NULL; 803 long del = 0; 804 805 retry: 806 spin_lock(&resv->lock); 807 list_for_each_entry_safe(rg, trg, head, link) { 808 /* 809 * Skip regions before the range to be deleted. file_region 810 * ranges are normally of the form [from, to). However, there 811 * may be a "placeholder" entry in the map which is of the form 812 * (from, to) with from == to. Check for placeholder entries 813 * at the beginning of the range to be deleted. 814 */ 815 if (rg->to <= f && (rg->to != rg->from || rg->to != f)) 816 continue; 817 818 if (rg->from >= t) 819 break; 820 821 if (f > rg->from && t < rg->to) { /* Must split region */ 822 /* 823 * Check for an entry in the cache before dropping 824 * lock and attempting allocation. 825 */ 826 if (!nrg && 827 resv->region_cache_count > resv->adds_in_progress) { 828 nrg = list_first_entry(&resv->region_cache, 829 struct file_region, 830 link); 831 list_del(&nrg->link); 832 resv->region_cache_count--; 833 } 834 835 if (!nrg) { 836 spin_unlock(&resv->lock); 837 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 838 if (!nrg) 839 return -ENOMEM; 840 goto retry; 841 } 842 843 del += t - f; 844 hugetlb_cgroup_uncharge_file_region( 845 resv, rg, t - f, false); 846 847 /* New entry for end of split region */ 848 nrg->from = t; 849 nrg->to = rg->to; 850 851 copy_hugetlb_cgroup_uncharge_info(nrg, rg); 852 853 INIT_LIST_HEAD(&nrg->link); 854 855 /* Original entry is trimmed */ 856 rg->to = f; 857 858 list_add(&nrg->link, &rg->link); 859 nrg = NULL; 860 break; 861 } 862 863 if (f <= rg->from && t >= rg->to) { /* Remove entire region */ 864 del += rg->to - rg->from; 865 hugetlb_cgroup_uncharge_file_region(resv, rg, 866 rg->to - rg->from, true); 867 list_del(&rg->link); 868 kfree(rg); 869 continue; 870 } 871 872 if (f <= rg->from) { /* Trim beginning of region */ 873 hugetlb_cgroup_uncharge_file_region(resv, rg, 874 t - rg->from, false); 875 876 del += t - rg->from; 877 rg->from = t; 878 } else { /* Trim end of region */ 879 hugetlb_cgroup_uncharge_file_region(resv, rg, 880 rg->to - f, false); 881 882 del += rg->to - f; 883 rg->to = f; 884 } 885 } 886 887 spin_unlock(&resv->lock); 888 kfree(nrg); 889 return del; 890 } 891 892 /* 893 * A rare out of memory error was encountered which prevented removal of 894 * the reserve map region for a page. The huge page itself was free'ed 895 * and removed from the page cache. This routine will adjust the subpool 896 * usage count, and the global reserve count if needed. By incrementing 897 * these counts, the reserve map entry which could not be deleted will 898 * appear as a "reserved" entry instead of simply dangling with incorrect 899 * counts. 900 */ 901 void hugetlb_fix_reserve_counts(struct inode *inode) 902 { 903 struct hugepage_subpool *spool = subpool_inode(inode); 904 long rsv_adjust; 905 bool reserved = false; 906 907 rsv_adjust = hugepage_subpool_get_pages(spool, 1); 908 if (rsv_adjust > 0) { 909 struct hstate *h = hstate_inode(inode); 910 911 if (!hugetlb_acct_memory(h, 1)) 912 reserved = true; 913 } else if (!rsv_adjust) { 914 reserved = true; 915 } 916 917 if (!reserved) 918 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n"); 919 } 920 921 /* 922 * Count and return the number of huge pages in the reserve map 923 * that intersect with the range [f, t). 924 */ 925 static long region_count(struct resv_map *resv, long f, long t) 926 { 927 struct list_head *head = &resv->regions; 928 struct file_region *rg; 929 long chg = 0; 930 931 spin_lock(&resv->lock); 932 /* Locate each segment we overlap with, and count that overlap. */ 933 list_for_each_entry(rg, head, link) { 934 long seg_from; 935 long seg_to; 936 937 if (rg->to <= f) 938 continue; 939 if (rg->from >= t) 940 break; 941 942 seg_from = max(rg->from, f); 943 seg_to = min(rg->to, t); 944 945 chg += seg_to - seg_from; 946 } 947 spin_unlock(&resv->lock); 948 949 return chg; 950 } 951 952 /* 953 * Convert the address within this vma to the page offset within 954 * the mapping, in pagecache page units; huge pages here. 955 */ 956 static pgoff_t vma_hugecache_offset(struct hstate *h, 957 struct vm_area_struct *vma, unsigned long address) 958 { 959 return ((address - vma->vm_start) >> huge_page_shift(h)) + 960 (vma->vm_pgoff >> huge_page_order(h)); 961 } 962 963 pgoff_t linear_hugepage_index(struct vm_area_struct *vma, 964 unsigned long address) 965 { 966 return vma_hugecache_offset(hstate_vma(vma), vma, address); 967 } 968 EXPORT_SYMBOL_GPL(linear_hugepage_index); 969 970 /* 971 * Return the size of the pages allocated when backing a VMA. In the majority 972 * cases this will be same size as used by the page table entries. 973 */ 974 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) 975 { 976 if (vma->vm_ops && vma->vm_ops->pagesize) 977 return vma->vm_ops->pagesize(vma); 978 return PAGE_SIZE; 979 } 980 EXPORT_SYMBOL_GPL(vma_kernel_pagesize); 981 982 /* 983 * Return the page size being used by the MMU to back a VMA. In the majority 984 * of cases, the page size used by the kernel matches the MMU size. On 985 * architectures where it differs, an architecture-specific 'strong' 986 * version of this symbol is required. 987 */ 988 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 989 { 990 return vma_kernel_pagesize(vma); 991 } 992 993 /* 994 * Flags for MAP_PRIVATE reservations. These are stored in the bottom 995 * bits of the reservation map pointer, which are always clear due to 996 * alignment. 997 */ 998 #define HPAGE_RESV_OWNER (1UL << 0) 999 #define HPAGE_RESV_UNMAPPED (1UL << 1) 1000 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) 1001 1002 /* 1003 * These helpers are used to track how many pages are reserved for 1004 * faults in a MAP_PRIVATE mapping. Only the process that called mmap() 1005 * is guaranteed to have their future faults succeed. 1006 * 1007 * With the exception of hugetlb_dup_vma_private() which is called at fork(), 1008 * the reserve counters are updated with the hugetlb_lock held. It is safe 1009 * to reset the VMA at fork() time as it is not in use yet and there is no 1010 * chance of the global counters getting corrupted as a result of the values. 1011 * 1012 * The private mapping reservation is represented in a subtly different 1013 * manner to a shared mapping. A shared mapping has a region map associated 1014 * with the underlying file, this region map represents the backing file 1015 * pages which have ever had a reservation assigned which this persists even 1016 * after the page is instantiated. A private mapping has a region map 1017 * associated with the original mmap which is attached to all VMAs which 1018 * reference it, this region map represents those offsets which have consumed 1019 * reservation ie. where pages have been instantiated. 1020 */ 1021 static unsigned long get_vma_private_data(struct vm_area_struct *vma) 1022 { 1023 return (unsigned long)vma->vm_private_data; 1024 } 1025 1026 static void set_vma_private_data(struct vm_area_struct *vma, 1027 unsigned long value) 1028 { 1029 vma->vm_private_data = (void *)value; 1030 } 1031 1032 static void 1033 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map, 1034 struct hugetlb_cgroup *h_cg, 1035 struct hstate *h) 1036 { 1037 #ifdef CONFIG_CGROUP_HUGETLB 1038 if (!h_cg || !h) { 1039 resv_map->reservation_counter = NULL; 1040 resv_map->pages_per_hpage = 0; 1041 resv_map->css = NULL; 1042 } else { 1043 resv_map->reservation_counter = 1044 &h_cg->rsvd_hugepage[hstate_index(h)]; 1045 resv_map->pages_per_hpage = pages_per_huge_page(h); 1046 resv_map->css = &h_cg->css; 1047 } 1048 #endif 1049 } 1050 1051 struct resv_map *resv_map_alloc(void) 1052 { 1053 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); 1054 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL); 1055 1056 if (!resv_map || !rg) { 1057 kfree(resv_map); 1058 kfree(rg); 1059 return NULL; 1060 } 1061 1062 kref_init(&resv_map->refs); 1063 spin_lock_init(&resv_map->lock); 1064 INIT_LIST_HEAD(&resv_map->regions); 1065 1066 resv_map->adds_in_progress = 0; 1067 /* 1068 * Initialize these to 0. On shared mappings, 0's here indicate these 1069 * fields don't do cgroup accounting. On private mappings, these will be 1070 * re-initialized to the proper values, to indicate that hugetlb cgroup 1071 * reservations are to be un-charged from here. 1072 */ 1073 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL); 1074 1075 INIT_LIST_HEAD(&resv_map->region_cache); 1076 list_add(&rg->link, &resv_map->region_cache); 1077 resv_map->region_cache_count = 1; 1078 1079 return resv_map; 1080 } 1081 1082 void resv_map_release(struct kref *ref) 1083 { 1084 struct resv_map *resv_map = container_of(ref, struct resv_map, refs); 1085 struct list_head *head = &resv_map->region_cache; 1086 struct file_region *rg, *trg; 1087 1088 /* Clear out any active regions before we release the map. */ 1089 region_del(resv_map, 0, LONG_MAX); 1090 1091 /* ... and any entries left in the cache */ 1092 list_for_each_entry_safe(rg, trg, head, link) { 1093 list_del(&rg->link); 1094 kfree(rg); 1095 } 1096 1097 VM_BUG_ON(resv_map->adds_in_progress); 1098 1099 kfree(resv_map); 1100 } 1101 1102 static inline struct resv_map *inode_resv_map(struct inode *inode) 1103 { 1104 /* 1105 * At inode evict time, i_mapping may not point to the original 1106 * address space within the inode. This original address space 1107 * contains the pointer to the resv_map. So, always use the 1108 * address space embedded within the inode. 1109 * The VERY common case is inode->mapping == &inode->i_data but, 1110 * this may not be true for device special inodes. 1111 */ 1112 return (struct resv_map *)(&inode->i_data)->private_data; 1113 } 1114 1115 static struct resv_map *vma_resv_map(struct vm_area_struct *vma) 1116 { 1117 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1118 if (vma->vm_flags & VM_MAYSHARE) { 1119 struct address_space *mapping = vma->vm_file->f_mapping; 1120 struct inode *inode = mapping->host; 1121 1122 return inode_resv_map(inode); 1123 1124 } else { 1125 return (struct resv_map *)(get_vma_private_data(vma) & 1126 ~HPAGE_RESV_MASK); 1127 } 1128 } 1129 1130 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) 1131 { 1132 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1133 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 1134 1135 set_vma_private_data(vma, (get_vma_private_data(vma) & 1136 HPAGE_RESV_MASK) | (unsigned long)map); 1137 } 1138 1139 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) 1140 { 1141 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1142 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 1143 1144 set_vma_private_data(vma, get_vma_private_data(vma) | flags); 1145 } 1146 1147 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) 1148 { 1149 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1150 1151 return (get_vma_private_data(vma) & flag) != 0; 1152 } 1153 1154 void hugetlb_dup_vma_private(struct vm_area_struct *vma) 1155 { 1156 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1157 /* 1158 * Clear vm_private_data 1159 * - For shared mappings this is a per-vma semaphore that may be 1160 * allocated in a subsequent call to hugetlb_vm_op_open. 1161 * Before clearing, make sure pointer is not associated with vma 1162 * as this will leak the structure. This is the case when called 1163 * via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already 1164 * been called to allocate a new structure. 1165 * - For MAP_PRIVATE mappings, this is the reserve map which does 1166 * not apply to children. Faults generated by the children are 1167 * not guaranteed to succeed, even if read-only. 1168 */ 1169 if (vma->vm_flags & VM_MAYSHARE) { 1170 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 1171 1172 if (vma_lock && vma_lock->vma != vma) 1173 vma->vm_private_data = NULL; 1174 } else 1175 vma->vm_private_data = NULL; 1176 } 1177 1178 /* 1179 * Reset and decrement one ref on hugepage private reservation. 1180 * Called with mm->mmap_lock writer semaphore held. 1181 * This function should be only used by move_vma() and operate on 1182 * same sized vma. It should never come here with last ref on the 1183 * reservation. 1184 */ 1185 void clear_vma_resv_huge_pages(struct vm_area_struct *vma) 1186 { 1187 /* 1188 * Clear the old hugetlb private page reservation. 1189 * It has already been transferred to new_vma. 1190 * 1191 * During a mremap() operation of a hugetlb vma we call move_vma() 1192 * which copies vma into new_vma and unmaps vma. After the copy 1193 * operation both new_vma and vma share a reference to the resv_map 1194 * struct, and at that point vma is about to be unmapped. We don't 1195 * want to return the reservation to the pool at unmap of vma because 1196 * the reservation still lives on in new_vma, so simply decrement the 1197 * ref here and remove the resv_map reference from this vma. 1198 */ 1199 struct resv_map *reservations = vma_resv_map(vma); 1200 1201 if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 1202 resv_map_put_hugetlb_cgroup_uncharge_info(reservations); 1203 kref_put(&reservations->refs, resv_map_release); 1204 } 1205 1206 hugetlb_dup_vma_private(vma); 1207 } 1208 1209 /* Returns true if the VMA has associated reserve pages */ 1210 static bool vma_has_reserves(struct vm_area_struct *vma, long chg) 1211 { 1212 if (vma->vm_flags & VM_NORESERVE) { 1213 /* 1214 * This address is already reserved by other process(chg == 0), 1215 * so, we should decrement reserved count. Without decrementing, 1216 * reserve count remains after releasing inode, because this 1217 * allocated page will go into page cache and is regarded as 1218 * coming from reserved pool in releasing step. Currently, we 1219 * don't have any other solution to deal with this situation 1220 * properly, so add work-around here. 1221 */ 1222 if (vma->vm_flags & VM_MAYSHARE && chg == 0) 1223 return true; 1224 else 1225 return false; 1226 } 1227 1228 /* Shared mappings always use reserves */ 1229 if (vma->vm_flags & VM_MAYSHARE) { 1230 /* 1231 * We know VM_NORESERVE is not set. Therefore, there SHOULD 1232 * be a region map for all pages. The only situation where 1233 * there is no region map is if a hole was punched via 1234 * fallocate. In this case, there really are no reserves to 1235 * use. This situation is indicated if chg != 0. 1236 */ 1237 if (chg) 1238 return false; 1239 else 1240 return true; 1241 } 1242 1243 /* 1244 * Only the process that called mmap() has reserves for 1245 * private mappings. 1246 */ 1247 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 1248 /* 1249 * Like the shared case above, a hole punch or truncate 1250 * could have been performed on the private mapping. 1251 * Examine the value of chg to determine if reserves 1252 * actually exist or were previously consumed. 1253 * Very Subtle - The value of chg comes from a previous 1254 * call to vma_needs_reserves(). The reserve map for 1255 * private mappings has different (opposite) semantics 1256 * than that of shared mappings. vma_needs_reserves() 1257 * has already taken this difference in semantics into 1258 * account. Therefore, the meaning of chg is the same 1259 * as in the shared case above. Code could easily be 1260 * combined, but keeping it separate draws attention to 1261 * subtle differences. 1262 */ 1263 if (chg) 1264 return false; 1265 else 1266 return true; 1267 } 1268 1269 return false; 1270 } 1271 1272 static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio) 1273 { 1274 int nid = folio_nid(folio); 1275 1276 lockdep_assert_held(&hugetlb_lock); 1277 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio); 1278 1279 list_move(&folio->lru, &h->hugepage_freelists[nid]); 1280 h->free_huge_pages++; 1281 h->free_huge_pages_node[nid]++; 1282 folio_set_hugetlb_freed(folio); 1283 } 1284 1285 static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h, 1286 int nid) 1287 { 1288 struct folio *folio; 1289 bool pin = !!(current->flags & PF_MEMALLOC_PIN); 1290 1291 lockdep_assert_held(&hugetlb_lock); 1292 list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) { 1293 if (pin && !folio_is_longterm_pinnable(folio)) 1294 continue; 1295 1296 if (folio_test_hwpoison(folio)) 1297 continue; 1298 1299 list_move(&folio->lru, &h->hugepage_activelist); 1300 folio_ref_unfreeze(folio, 1); 1301 folio_clear_hugetlb_freed(folio); 1302 h->free_huge_pages--; 1303 h->free_huge_pages_node[nid]--; 1304 return folio; 1305 } 1306 1307 return NULL; 1308 } 1309 1310 static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask, 1311 int nid, nodemask_t *nmask) 1312 { 1313 unsigned int cpuset_mems_cookie; 1314 struct zonelist *zonelist; 1315 struct zone *zone; 1316 struct zoneref *z; 1317 int node = NUMA_NO_NODE; 1318 1319 zonelist = node_zonelist(nid, gfp_mask); 1320 1321 retry_cpuset: 1322 cpuset_mems_cookie = read_mems_allowed_begin(); 1323 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) { 1324 struct folio *folio; 1325 1326 if (!cpuset_zone_allowed(zone, gfp_mask)) 1327 continue; 1328 /* 1329 * no need to ask again on the same node. Pool is node rather than 1330 * zone aware 1331 */ 1332 if (zone_to_nid(zone) == node) 1333 continue; 1334 node = zone_to_nid(zone); 1335 1336 folio = dequeue_hugetlb_folio_node_exact(h, node); 1337 if (folio) 1338 return folio; 1339 } 1340 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie))) 1341 goto retry_cpuset; 1342 1343 return NULL; 1344 } 1345 1346 static unsigned long available_huge_pages(struct hstate *h) 1347 { 1348 return h->free_huge_pages - h->resv_huge_pages; 1349 } 1350 1351 static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h, 1352 struct vm_area_struct *vma, 1353 unsigned long address, int avoid_reserve, 1354 long chg) 1355 { 1356 struct folio *folio = NULL; 1357 struct mempolicy *mpol; 1358 gfp_t gfp_mask; 1359 nodemask_t *nodemask; 1360 int nid; 1361 1362 /* 1363 * A child process with MAP_PRIVATE mappings created by their parent 1364 * have no page reserves. This check ensures that reservations are 1365 * not "stolen". The child may still get SIGKILLed 1366 */ 1367 if (!vma_has_reserves(vma, chg) && !available_huge_pages(h)) 1368 goto err; 1369 1370 /* If reserves cannot be used, ensure enough pages are in the pool */ 1371 if (avoid_reserve && !available_huge_pages(h)) 1372 goto err; 1373 1374 gfp_mask = htlb_alloc_mask(h); 1375 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 1376 1377 if (mpol_is_preferred_many(mpol)) { 1378 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, 1379 nid, nodemask); 1380 1381 /* Fallback to all nodes if page==NULL */ 1382 nodemask = NULL; 1383 } 1384 1385 if (!folio) 1386 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, 1387 nid, nodemask); 1388 1389 if (folio && !avoid_reserve && vma_has_reserves(vma, chg)) { 1390 folio_set_hugetlb_restore_reserve(folio); 1391 h->resv_huge_pages--; 1392 } 1393 1394 mpol_cond_put(mpol); 1395 return folio; 1396 1397 err: 1398 return NULL; 1399 } 1400 1401 /* 1402 * common helper functions for hstate_next_node_to_{alloc|free}. 1403 * We may have allocated or freed a huge page based on a different 1404 * nodes_allowed previously, so h->next_node_to_{alloc|free} might 1405 * be outside of *nodes_allowed. Ensure that we use an allowed 1406 * node for alloc or free. 1407 */ 1408 static int next_node_allowed(int nid, nodemask_t *nodes_allowed) 1409 { 1410 nid = next_node_in(nid, *nodes_allowed); 1411 VM_BUG_ON(nid >= MAX_NUMNODES); 1412 1413 return nid; 1414 } 1415 1416 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed) 1417 { 1418 if (!node_isset(nid, *nodes_allowed)) 1419 nid = next_node_allowed(nid, nodes_allowed); 1420 return nid; 1421 } 1422 1423 /* 1424 * returns the previously saved node ["this node"] from which to 1425 * allocate a persistent huge page for the pool and advance the 1426 * next node from which to allocate, handling wrap at end of node 1427 * mask. 1428 */ 1429 static int hstate_next_node_to_alloc(struct hstate *h, 1430 nodemask_t *nodes_allowed) 1431 { 1432 int nid; 1433 1434 VM_BUG_ON(!nodes_allowed); 1435 1436 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed); 1437 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed); 1438 1439 return nid; 1440 } 1441 1442 /* 1443 * helper for remove_pool_huge_page() - return the previously saved 1444 * node ["this node"] from which to free a huge page. Advance the 1445 * next node id whether or not we find a free huge page to free so 1446 * that the next attempt to free addresses the next node. 1447 */ 1448 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed) 1449 { 1450 int nid; 1451 1452 VM_BUG_ON(!nodes_allowed); 1453 1454 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed); 1455 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed); 1456 1457 return nid; 1458 } 1459 1460 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \ 1461 for (nr_nodes = nodes_weight(*mask); \ 1462 nr_nodes > 0 && \ 1463 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \ 1464 nr_nodes--) 1465 1466 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \ 1467 for (nr_nodes = nodes_weight(*mask); \ 1468 nr_nodes > 0 && \ 1469 ((node = hstate_next_node_to_free(hs, mask)) || 1); \ 1470 nr_nodes--) 1471 1472 /* used to demote non-gigantic_huge pages as well */ 1473 static void __destroy_compound_gigantic_folio(struct folio *folio, 1474 unsigned int order, bool demote) 1475 { 1476 int i; 1477 int nr_pages = 1 << order; 1478 struct page *p; 1479 1480 atomic_set(&folio->_entire_mapcount, 0); 1481 atomic_set(&folio->_nr_pages_mapped, 0); 1482 atomic_set(&folio->_pincount, 0); 1483 1484 for (i = 1; i < nr_pages; i++) { 1485 p = folio_page(folio, i); 1486 p->mapping = NULL; 1487 clear_compound_head(p); 1488 if (!demote) 1489 set_page_refcounted(p); 1490 } 1491 1492 __folio_clear_head(folio); 1493 } 1494 1495 static void destroy_compound_hugetlb_folio_for_demote(struct folio *folio, 1496 unsigned int order) 1497 { 1498 __destroy_compound_gigantic_folio(folio, order, true); 1499 } 1500 1501 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE 1502 static void destroy_compound_gigantic_folio(struct folio *folio, 1503 unsigned int order) 1504 { 1505 __destroy_compound_gigantic_folio(folio, order, false); 1506 } 1507 1508 static void free_gigantic_folio(struct folio *folio, unsigned int order) 1509 { 1510 /* 1511 * If the page isn't allocated using the cma allocator, 1512 * cma_release() returns false. 1513 */ 1514 #ifdef CONFIG_CMA 1515 int nid = folio_nid(folio); 1516 1517 if (cma_release(hugetlb_cma[nid], &folio->page, 1 << order)) 1518 return; 1519 #endif 1520 1521 free_contig_range(folio_pfn(folio), 1 << order); 1522 } 1523 1524 #ifdef CONFIG_CONTIG_ALLOC 1525 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask, 1526 int nid, nodemask_t *nodemask) 1527 { 1528 struct page *page; 1529 unsigned long nr_pages = pages_per_huge_page(h); 1530 if (nid == NUMA_NO_NODE) 1531 nid = numa_mem_id(); 1532 1533 #ifdef CONFIG_CMA 1534 { 1535 int node; 1536 1537 if (hugetlb_cma[nid]) { 1538 page = cma_alloc(hugetlb_cma[nid], nr_pages, 1539 huge_page_order(h), true); 1540 if (page) 1541 return page_folio(page); 1542 } 1543 1544 if (!(gfp_mask & __GFP_THISNODE)) { 1545 for_each_node_mask(node, *nodemask) { 1546 if (node == nid || !hugetlb_cma[node]) 1547 continue; 1548 1549 page = cma_alloc(hugetlb_cma[node], nr_pages, 1550 huge_page_order(h), true); 1551 if (page) 1552 return page_folio(page); 1553 } 1554 } 1555 } 1556 #endif 1557 1558 page = alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask); 1559 return page ? page_folio(page) : NULL; 1560 } 1561 1562 #else /* !CONFIG_CONTIG_ALLOC */ 1563 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask, 1564 int nid, nodemask_t *nodemask) 1565 { 1566 return NULL; 1567 } 1568 #endif /* CONFIG_CONTIG_ALLOC */ 1569 1570 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */ 1571 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask, 1572 int nid, nodemask_t *nodemask) 1573 { 1574 return NULL; 1575 } 1576 static inline void free_gigantic_folio(struct folio *folio, 1577 unsigned int order) { } 1578 static inline void destroy_compound_gigantic_folio(struct folio *folio, 1579 unsigned int order) { } 1580 #endif 1581 1582 /* 1583 * Remove hugetlb folio from lists, and update dtor so that the folio appears 1584 * as just a compound page. 1585 * 1586 * A reference is held on the folio, except in the case of demote. 1587 * 1588 * Must be called with hugetlb lock held. 1589 */ 1590 static void __remove_hugetlb_folio(struct hstate *h, struct folio *folio, 1591 bool adjust_surplus, 1592 bool demote) 1593 { 1594 int nid = folio_nid(folio); 1595 1596 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio); 1597 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio); 1598 1599 lockdep_assert_held(&hugetlb_lock); 1600 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 1601 return; 1602 1603 list_del(&folio->lru); 1604 1605 if (folio_test_hugetlb_freed(folio)) { 1606 h->free_huge_pages--; 1607 h->free_huge_pages_node[nid]--; 1608 } 1609 if (adjust_surplus) { 1610 h->surplus_huge_pages--; 1611 h->surplus_huge_pages_node[nid]--; 1612 } 1613 1614 /* 1615 * Very subtle 1616 * 1617 * For non-gigantic pages set the destructor to the normal compound 1618 * page dtor. This is needed in case someone takes an additional 1619 * temporary ref to the page, and freeing is delayed until they drop 1620 * their reference. 1621 * 1622 * For gigantic pages set the destructor to the null dtor. This 1623 * destructor will never be called. Before freeing the gigantic 1624 * page destroy_compound_gigantic_folio will turn the folio into a 1625 * simple group of pages. After this the destructor does not 1626 * apply. 1627 * 1628 * This handles the case where more than one ref is held when and 1629 * after update_and_free_hugetlb_folio is called. 1630 * 1631 * In the case of demote we do not ref count the page as it will soon 1632 * be turned into a page of smaller size. 1633 */ 1634 if (!demote) 1635 folio_ref_unfreeze(folio, 1); 1636 if (hstate_is_gigantic(h)) 1637 folio_set_compound_dtor(folio, NULL_COMPOUND_DTOR); 1638 else 1639 folio_set_compound_dtor(folio, COMPOUND_PAGE_DTOR); 1640 1641 h->nr_huge_pages--; 1642 h->nr_huge_pages_node[nid]--; 1643 } 1644 1645 static void remove_hugetlb_folio(struct hstate *h, struct folio *folio, 1646 bool adjust_surplus) 1647 { 1648 __remove_hugetlb_folio(h, folio, adjust_surplus, false); 1649 } 1650 1651 static void remove_hugetlb_folio_for_demote(struct hstate *h, struct folio *folio, 1652 bool adjust_surplus) 1653 { 1654 __remove_hugetlb_folio(h, folio, adjust_surplus, true); 1655 } 1656 1657 static void add_hugetlb_folio(struct hstate *h, struct folio *folio, 1658 bool adjust_surplus) 1659 { 1660 int zeroed; 1661 int nid = folio_nid(folio); 1662 1663 VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio); 1664 1665 lockdep_assert_held(&hugetlb_lock); 1666 1667 INIT_LIST_HEAD(&folio->lru); 1668 h->nr_huge_pages++; 1669 h->nr_huge_pages_node[nid]++; 1670 1671 if (adjust_surplus) { 1672 h->surplus_huge_pages++; 1673 h->surplus_huge_pages_node[nid]++; 1674 } 1675 1676 folio_set_compound_dtor(folio, HUGETLB_PAGE_DTOR); 1677 folio_change_private(folio, NULL); 1678 /* 1679 * We have to set hugetlb_vmemmap_optimized again as above 1680 * folio_change_private(folio, NULL) cleared it. 1681 */ 1682 folio_set_hugetlb_vmemmap_optimized(folio); 1683 1684 /* 1685 * This folio is about to be managed by the hugetlb allocator and 1686 * should have no users. Drop our reference, and check for others 1687 * just in case. 1688 */ 1689 zeroed = folio_put_testzero(folio); 1690 if (unlikely(!zeroed)) 1691 /* 1692 * It is VERY unlikely soneone else has taken a ref on 1693 * the page. In this case, we simply return as the 1694 * hugetlb destructor (free_huge_page) will be called 1695 * when this other ref is dropped. 1696 */ 1697 return; 1698 1699 arch_clear_hugepage_flags(&folio->page); 1700 enqueue_hugetlb_folio(h, folio); 1701 } 1702 1703 static void __update_and_free_hugetlb_folio(struct hstate *h, 1704 struct folio *folio) 1705 { 1706 int i; 1707 struct page *subpage; 1708 1709 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 1710 return; 1711 1712 /* 1713 * If we don't know which subpages are hwpoisoned, we can't free 1714 * the hugepage, so it's leaked intentionally. 1715 */ 1716 if (folio_test_hugetlb_raw_hwp_unreliable(folio)) 1717 return; 1718 1719 if (hugetlb_vmemmap_restore(h, &folio->page)) { 1720 spin_lock_irq(&hugetlb_lock); 1721 /* 1722 * If we cannot allocate vmemmap pages, just refuse to free the 1723 * page and put the page back on the hugetlb free list and treat 1724 * as a surplus page. 1725 */ 1726 add_hugetlb_folio(h, folio, true); 1727 spin_unlock_irq(&hugetlb_lock); 1728 return; 1729 } 1730 1731 /* 1732 * Move PageHWPoison flag from head page to the raw error pages, 1733 * which makes any healthy subpages reusable. 1734 */ 1735 if (unlikely(folio_test_hwpoison(folio))) 1736 folio_clear_hugetlb_hwpoison(folio); 1737 1738 for (i = 0; i < pages_per_huge_page(h); i++) { 1739 subpage = folio_page(folio, i); 1740 subpage->flags &= ~(1 << PG_locked | 1 << PG_error | 1741 1 << PG_referenced | 1 << PG_dirty | 1742 1 << PG_active | 1 << PG_private | 1743 1 << PG_writeback); 1744 } 1745 1746 /* 1747 * Non-gigantic pages demoted from CMA allocated gigantic pages 1748 * need to be given back to CMA in free_gigantic_folio. 1749 */ 1750 if (hstate_is_gigantic(h) || 1751 hugetlb_cma_folio(folio, huge_page_order(h))) { 1752 destroy_compound_gigantic_folio(folio, huge_page_order(h)); 1753 free_gigantic_folio(folio, huge_page_order(h)); 1754 } else { 1755 __free_pages(&folio->page, huge_page_order(h)); 1756 } 1757 } 1758 1759 /* 1760 * As update_and_free_hugetlb_folio() can be called under any context, so we cannot 1761 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the 1762 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate 1763 * the vmemmap pages. 1764 * 1765 * free_hpage_workfn() locklessly retrieves the linked list of pages to be 1766 * freed and frees them one-by-one. As the page->mapping pointer is going 1767 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node 1768 * structure of a lockless linked list of huge pages to be freed. 1769 */ 1770 static LLIST_HEAD(hpage_freelist); 1771 1772 static void free_hpage_workfn(struct work_struct *work) 1773 { 1774 struct llist_node *node; 1775 1776 node = llist_del_all(&hpage_freelist); 1777 1778 while (node) { 1779 struct page *page; 1780 struct hstate *h; 1781 1782 page = container_of((struct address_space **)node, 1783 struct page, mapping); 1784 node = node->next; 1785 page->mapping = NULL; 1786 /* 1787 * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate() 1788 * is going to trigger because a previous call to 1789 * remove_hugetlb_folio() will call folio_set_compound_dtor 1790 * (folio, NULL_COMPOUND_DTOR), so do not use page_hstate() 1791 * directly. 1792 */ 1793 h = size_to_hstate(page_size(page)); 1794 1795 __update_and_free_hugetlb_folio(h, page_folio(page)); 1796 1797 cond_resched(); 1798 } 1799 } 1800 static DECLARE_WORK(free_hpage_work, free_hpage_workfn); 1801 1802 static inline void flush_free_hpage_work(struct hstate *h) 1803 { 1804 if (hugetlb_vmemmap_optimizable(h)) 1805 flush_work(&free_hpage_work); 1806 } 1807 1808 static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio, 1809 bool atomic) 1810 { 1811 if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) { 1812 __update_and_free_hugetlb_folio(h, folio); 1813 return; 1814 } 1815 1816 /* 1817 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages. 1818 * 1819 * Only call schedule_work() if hpage_freelist is previously 1820 * empty. Otherwise, schedule_work() had been called but the workfn 1821 * hasn't retrieved the list yet. 1822 */ 1823 if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist)) 1824 schedule_work(&free_hpage_work); 1825 } 1826 1827 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list) 1828 { 1829 struct page *page, *t_page; 1830 struct folio *folio; 1831 1832 list_for_each_entry_safe(page, t_page, list, lru) { 1833 folio = page_folio(page); 1834 update_and_free_hugetlb_folio(h, folio, false); 1835 cond_resched(); 1836 } 1837 } 1838 1839 struct hstate *size_to_hstate(unsigned long size) 1840 { 1841 struct hstate *h; 1842 1843 for_each_hstate(h) { 1844 if (huge_page_size(h) == size) 1845 return h; 1846 } 1847 return NULL; 1848 } 1849 1850 void free_huge_page(struct page *page) 1851 { 1852 /* 1853 * Can't pass hstate in here because it is called from the 1854 * compound page destructor. 1855 */ 1856 struct folio *folio = page_folio(page); 1857 struct hstate *h = folio_hstate(folio); 1858 int nid = folio_nid(folio); 1859 struct hugepage_subpool *spool = hugetlb_folio_subpool(folio); 1860 bool restore_reserve; 1861 unsigned long flags; 1862 1863 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio); 1864 VM_BUG_ON_FOLIO(folio_mapcount(folio), folio); 1865 1866 hugetlb_set_folio_subpool(folio, NULL); 1867 if (folio_test_anon(folio)) 1868 __ClearPageAnonExclusive(&folio->page); 1869 folio->mapping = NULL; 1870 restore_reserve = folio_test_hugetlb_restore_reserve(folio); 1871 folio_clear_hugetlb_restore_reserve(folio); 1872 1873 /* 1874 * If HPageRestoreReserve was set on page, page allocation consumed a 1875 * reservation. If the page was associated with a subpool, there 1876 * would have been a page reserved in the subpool before allocation 1877 * via hugepage_subpool_get_pages(). Since we are 'restoring' the 1878 * reservation, do not call hugepage_subpool_put_pages() as this will 1879 * remove the reserved page from the subpool. 1880 */ 1881 if (!restore_reserve) { 1882 /* 1883 * A return code of zero implies that the subpool will be 1884 * under its minimum size if the reservation is not restored 1885 * after page is free. Therefore, force restore_reserve 1886 * operation. 1887 */ 1888 if (hugepage_subpool_put_pages(spool, 1) == 0) 1889 restore_reserve = true; 1890 } 1891 1892 spin_lock_irqsave(&hugetlb_lock, flags); 1893 folio_clear_hugetlb_migratable(folio); 1894 hugetlb_cgroup_uncharge_folio(hstate_index(h), 1895 pages_per_huge_page(h), folio); 1896 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h), 1897 pages_per_huge_page(h), folio); 1898 if (restore_reserve) 1899 h->resv_huge_pages++; 1900 1901 if (folio_test_hugetlb_temporary(folio)) { 1902 remove_hugetlb_folio(h, folio, false); 1903 spin_unlock_irqrestore(&hugetlb_lock, flags); 1904 update_and_free_hugetlb_folio(h, folio, true); 1905 } else if (h->surplus_huge_pages_node[nid]) { 1906 /* remove the page from active list */ 1907 remove_hugetlb_folio(h, folio, true); 1908 spin_unlock_irqrestore(&hugetlb_lock, flags); 1909 update_and_free_hugetlb_folio(h, folio, true); 1910 } else { 1911 arch_clear_hugepage_flags(page); 1912 enqueue_hugetlb_folio(h, folio); 1913 spin_unlock_irqrestore(&hugetlb_lock, flags); 1914 } 1915 } 1916 1917 /* 1918 * Must be called with the hugetlb lock held 1919 */ 1920 static void __prep_account_new_huge_page(struct hstate *h, int nid) 1921 { 1922 lockdep_assert_held(&hugetlb_lock); 1923 h->nr_huge_pages++; 1924 h->nr_huge_pages_node[nid]++; 1925 } 1926 1927 static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio) 1928 { 1929 hugetlb_vmemmap_optimize(h, &folio->page); 1930 INIT_LIST_HEAD(&folio->lru); 1931 folio_set_compound_dtor(folio, HUGETLB_PAGE_DTOR); 1932 hugetlb_set_folio_subpool(folio, NULL); 1933 set_hugetlb_cgroup(folio, NULL); 1934 set_hugetlb_cgroup_rsvd(folio, NULL); 1935 } 1936 1937 static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid) 1938 { 1939 __prep_new_hugetlb_folio(h, folio); 1940 spin_lock_irq(&hugetlb_lock); 1941 __prep_account_new_huge_page(h, nid); 1942 spin_unlock_irq(&hugetlb_lock); 1943 } 1944 1945 static bool __prep_compound_gigantic_folio(struct folio *folio, 1946 unsigned int order, bool demote) 1947 { 1948 int i, j; 1949 int nr_pages = 1 << order; 1950 struct page *p; 1951 1952 __folio_clear_reserved(folio); 1953 for (i = 0; i < nr_pages; i++) { 1954 p = folio_page(folio, i); 1955 1956 /* 1957 * For gigantic hugepages allocated through bootmem at 1958 * boot, it's safer to be consistent with the not-gigantic 1959 * hugepages and clear the PG_reserved bit from all tail pages 1960 * too. Otherwise drivers using get_user_pages() to access tail 1961 * pages may get the reference counting wrong if they see 1962 * PG_reserved set on a tail page (despite the head page not 1963 * having PG_reserved set). Enforcing this consistency between 1964 * head and tail pages allows drivers to optimize away a check 1965 * on the head page when they need know if put_page() is needed 1966 * after get_user_pages(). 1967 */ 1968 if (i != 0) /* head page cleared above */ 1969 __ClearPageReserved(p); 1970 /* 1971 * Subtle and very unlikely 1972 * 1973 * Gigantic 'page allocators' such as memblock or cma will 1974 * return a set of pages with each page ref counted. We need 1975 * to turn this set of pages into a compound page with tail 1976 * page ref counts set to zero. Code such as speculative page 1977 * cache adding could take a ref on a 'to be' tail page. 1978 * We need to respect any increased ref count, and only set 1979 * the ref count to zero if count is currently 1. If count 1980 * is not 1, we return an error. An error return indicates 1981 * the set of pages can not be converted to a gigantic page. 1982 * The caller who allocated the pages should then discard the 1983 * pages using the appropriate free interface. 1984 * 1985 * In the case of demote, the ref count will be zero. 1986 */ 1987 if (!demote) { 1988 if (!page_ref_freeze(p, 1)) { 1989 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n"); 1990 goto out_error; 1991 } 1992 } else { 1993 VM_BUG_ON_PAGE(page_count(p), p); 1994 } 1995 if (i != 0) 1996 set_compound_head(p, &folio->page); 1997 } 1998 __folio_set_head(folio); 1999 /* we rely on prep_new_hugetlb_folio to set the destructor */ 2000 folio_set_order(folio, order); 2001 atomic_set(&folio->_entire_mapcount, -1); 2002 atomic_set(&folio->_nr_pages_mapped, 0); 2003 atomic_set(&folio->_pincount, 0); 2004 return true; 2005 2006 out_error: 2007 /* undo page modifications made above */ 2008 for (j = 0; j < i; j++) { 2009 p = folio_page(folio, j); 2010 if (j != 0) 2011 clear_compound_head(p); 2012 set_page_refcounted(p); 2013 } 2014 /* need to clear PG_reserved on remaining tail pages */ 2015 for (; j < nr_pages; j++) { 2016 p = folio_page(folio, j); 2017 __ClearPageReserved(p); 2018 } 2019 return false; 2020 } 2021 2022 static bool prep_compound_gigantic_folio(struct folio *folio, 2023 unsigned int order) 2024 { 2025 return __prep_compound_gigantic_folio(folio, order, false); 2026 } 2027 2028 static bool prep_compound_gigantic_folio_for_demote(struct folio *folio, 2029 unsigned int order) 2030 { 2031 return __prep_compound_gigantic_folio(folio, order, true); 2032 } 2033 2034 /* 2035 * PageHuge() only returns true for hugetlbfs pages, but not for normal or 2036 * transparent huge pages. See the PageTransHuge() documentation for more 2037 * details. 2038 */ 2039 int PageHuge(struct page *page) 2040 { 2041 struct folio *folio; 2042 2043 if (!PageCompound(page)) 2044 return 0; 2045 folio = page_folio(page); 2046 return folio->_folio_dtor == HUGETLB_PAGE_DTOR; 2047 } 2048 EXPORT_SYMBOL_GPL(PageHuge); 2049 2050 /** 2051 * folio_test_hugetlb - Determine if the folio belongs to hugetlbfs 2052 * @folio: The folio to test. 2053 * 2054 * Context: Any context. Caller should have a reference on the folio to 2055 * prevent it from being turned into a tail page. 2056 * Return: True for hugetlbfs folios, false for anon folios or folios 2057 * belonging to other filesystems. 2058 */ 2059 bool folio_test_hugetlb(struct folio *folio) 2060 { 2061 if (!folio_test_large(folio)) 2062 return false; 2063 2064 return folio->_folio_dtor == HUGETLB_PAGE_DTOR; 2065 } 2066 EXPORT_SYMBOL_GPL(folio_test_hugetlb); 2067 2068 /* 2069 * Find and lock address space (mapping) in write mode. 2070 * 2071 * Upon entry, the page is locked which means that page_mapping() is 2072 * stable. Due to locking order, we can only trylock_write. If we can 2073 * not get the lock, simply return NULL to caller. 2074 */ 2075 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage) 2076 { 2077 struct address_space *mapping = page_mapping(hpage); 2078 2079 if (!mapping) 2080 return mapping; 2081 2082 if (i_mmap_trylock_write(mapping)) 2083 return mapping; 2084 2085 return NULL; 2086 } 2087 2088 pgoff_t hugetlb_basepage_index(struct page *page) 2089 { 2090 struct page *page_head = compound_head(page); 2091 pgoff_t index = page_index(page_head); 2092 unsigned long compound_idx; 2093 2094 if (compound_order(page_head) > MAX_ORDER) 2095 compound_idx = page_to_pfn(page) - page_to_pfn(page_head); 2096 else 2097 compound_idx = page - page_head; 2098 2099 return (index << compound_order(page_head)) + compound_idx; 2100 } 2101 2102 static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h, 2103 gfp_t gfp_mask, int nid, nodemask_t *nmask, 2104 nodemask_t *node_alloc_noretry) 2105 { 2106 int order = huge_page_order(h); 2107 struct page *page; 2108 bool alloc_try_hard = true; 2109 bool retry = true; 2110 2111 /* 2112 * By default we always try hard to allocate the page with 2113 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in 2114 * a loop (to adjust global huge page counts) and previous allocation 2115 * failed, do not continue to try hard on the same node. Use the 2116 * node_alloc_noretry bitmap to manage this state information. 2117 */ 2118 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry)) 2119 alloc_try_hard = false; 2120 gfp_mask |= __GFP_COMP|__GFP_NOWARN; 2121 if (alloc_try_hard) 2122 gfp_mask |= __GFP_RETRY_MAYFAIL; 2123 if (nid == NUMA_NO_NODE) 2124 nid = numa_mem_id(); 2125 retry: 2126 page = __alloc_pages(gfp_mask, order, nid, nmask); 2127 2128 /* Freeze head page */ 2129 if (page && !page_ref_freeze(page, 1)) { 2130 __free_pages(page, order); 2131 if (retry) { /* retry once */ 2132 retry = false; 2133 goto retry; 2134 } 2135 /* WOW! twice in a row. */ 2136 pr_warn("HugeTLB head page unexpected inflated ref count\n"); 2137 page = NULL; 2138 } 2139 2140 /* 2141 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this 2142 * indicates an overall state change. Clear bit so that we resume 2143 * normal 'try hard' allocations. 2144 */ 2145 if (node_alloc_noretry && page && !alloc_try_hard) 2146 node_clear(nid, *node_alloc_noretry); 2147 2148 /* 2149 * If we tried hard to get a page but failed, set bit so that 2150 * subsequent attempts will not try as hard until there is an 2151 * overall state change. 2152 */ 2153 if (node_alloc_noretry && !page && alloc_try_hard) 2154 node_set(nid, *node_alloc_noretry); 2155 2156 if (!page) { 2157 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 2158 return NULL; 2159 } 2160 2161 __count_vm_event(HTLB_BUDDY_PGALLOC); 2162 return page_folio(page); 2163 } 2164 2165 /* 2166 * Common helper to allocate a fresh hugetlb page. All specific allocators 2167 * should use this function to get new hugetlb pages 2168 * 2169 * Note that returned page is 'frozen': ref count of head page and all tail 2170 * pages is zero. 2171 */ 2172 static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h, 2173 gfp_t gfp_mask, int nid, nodemask_t *nmask, 2174 nodemask_t *node_alloc_noretry) 2175 { 2176 struct folio *folio; 2177 bool retry = false; 2178 2179 retry: 2180 if (hstate_is_gigantic(h)) 2181 folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask); 2182 else 2183 folio = alloc_buddy_hugetlb_folio(h, gfp_mask, 2184 nid, nmask, node_alloc_noretry); 2185 if (!folio) 2186 return NULL; 2187 if (hstate_is_gigantic(h)) { 2188 if (!prep_compound_gigantic_folio(folio, huge_page_order(h))) { 2189 /* 2190 * Rare failure to convert pages to compound page. 2191 * Free pages and try again - ONCE! 2192 */ 2193 free_gigantic_folio(folio, huge_page_order(h)); 2194 if (!retry) { 2195 retry = true; 2196 goto retry; 2197 } 2198 return NULL; 2199 } 2200 } 2201 prep_new_hugetlb_folio(h, folio, folio_nid(folio)); 2202 2203 return folio; 2204 } 2205 2206 /* 2207 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved 2208 * manner. 2209 */ 2210 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed, 2211 nodemask_t *node_alloc_noretry) 2212 { 2213 struct folio *folio; 2214 int nr_nodes, node; 2215 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 2216 2217 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 2218 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, node, 2219 nodes_allowed, node_alloc_noretry); 2220 if (folio) { 2221 free_huge_page(&folio->page); /* free it into the hugepage allocator */ 2222 return 1; 2223 } 2224 } 2225 2226 return 0; 2227 } 2228 2229 /* 2230 * Remove huge page from pool from next node to free. Attempt to keep 2231 * persistent huge pages more or less balanced over allowed nodes. 2232 * This routine only 'removes' the hugetlb page. The caller must make 2233 * an additional call to free the page to low level allocators. 2234 * Called with hugetlb_lock locked. 2235 */ 2236 static struct page *remove_pool_huge_page(struct hstate *h, 2237 nodemask_t *nodes_allowed, 2238 bool acct_surplus) 2239 { 2240 int nr_nodes, node; 2241 struct page *page = NULL; 2242 struct folio *folio; 2243 2244 lockdep_assert_held(&hugetlb_lock); 2245 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 2246 /* 2247 * If we're returning unused surplus pages, only examine 2248 * nodes with surplus pages. 2249 */ 2250 if ((!acct_surplus || h->surplus_huge_pages_node[node]) && 2251 !list_empty(&h->hugepage_freelists[node])) { 2252 page = list_entry(h->hugepage_freelists[node].next, 2253 struct page, lru); 2254 folio = page_folio(page); 2255 remove_hugetlb_folio(h, folio, acct_surplus); 2256 break; 2257 } 2258 } 2259 2260 return page; 2261 } 2262 2263 /* 2264 * Dissolve a given free hugepage into free buddy pages. This function does 2265 * nothing for in-use hugepages and non-hugepages. 2266 * This function returns values like below: 2267 * 2268 * -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages 2269 * when the system is under memory pressure and the feature of 2270 * freeing unused vmemmap pages associated with each hugetlb page 2271 * is enabled. 2272 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use 2273 * (allocated or reserved.) 2274 * 0: successfully dissolved free hugepages or the page is not a 2275 * hugepage (considered as already dissolved) 2276 */ 2277 int dissolve_free_huge_page(struct page *page) 2278 { 2279 int rc = -EBUSY; 2280 struct folio *folio = page_folio(page); 2281 2282 retry: 2283 /* Not to disrupt normal path by vainly holding hugetlb_lock */ 2284 if (!folio_test_hugetlb(folio)) 2285 return 0; 2286 2287 spin_lock_irq(&hugetlb_lock); 2288 if (!folio_test_hugetlb(folio)) { 2289 rc = 0; 2290 goto out; 2291 } 2292 2293 if (!folio_ref_count(folio)) { 2294 struct hstate *h = folio_hstate(folio); 2295 if (!available_huge_pages(h)) 2296 goto out; 2297 2298 /* 2299 * We should make sure that the page is already on the free list 2300 * when it is dissolved. 2301 */ 2302 if (unlikely(!folio_test_hugetlb_freed(folio))) { 2303 spin_unlock_irq(&hugetlb_lock); 2304 cond_resched(); 2305 2306 /* 2307 * Theoretically, we should return -EBUSY when we 2308 * encounter this race. In fact, we have a chance 2309 * to successfully dissolve the page if we do a 2310 * retry. Because the race window is quite small. 2311 * If we seize this opportunity, it is an optimization 2312 * for increasing the success rate of dissolving page. 2313 */ 2314 goto retry; 2315 } 2316 2317 remove_hugetlb_folio(h, folio, false); 2318 h->max_huge_pages--; 2319 spin_unlock_irq(&hugetlb_lock); 2320 2321 /* 2322 * Normally update_and_free_hugtlb_folio will allocate required vmemmmap 2323 * before freeing the page. update_and_free_hugtlb_folio will fail to 2324 * free the page if it can not allocate required vmemmap. We 2325 * need to adjust max_huge_pages if the page is not freed. 2326 * Attempt to allocate vmemmmap here so that we can take 2327 * appropriate action on failure. 2328 */ 2329 rc = hugetlb_vmemmap_restore(h, &folio->page); 2330 if (!rc) { 2331 update_and_free_hugetlb_folio(h, folio, false); 2332 } else { 2333 spin_lock_irq(&hugetlb_lock); 2334 add_hugetlb_folio(h, folio, false); 2335 h->max_huge_pages++; 2336 spin_unlock_irq(&hugetlb_lock); 2337 } 2338 2339 return rc; 2340 } 2341 out: 2342 spin_unlock_irq(&hugetlb_lock); 2343 return rc; 2344 } 2345 2346 /* 2347 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to 2348 * make specified memory blocks removable from the system. 2349 * Note that this will dissolve a free gigantic hugepage completely, if any 2350 * part of it lies within the given range. 2351 * Also note that if dissolve_free_huge_page() returns with an error, all 2352 * free hugepages that were dissolved before that error are lost. 2353 */ 2354 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn) 2355 { 2356 unsigned long pfn; 2357 struct page *page; 2358 int rc = 0; 2359 unsigned int order; 2360 struct hstate *h; 2361 2362 if (!hugepages_supported()) 2363 return rc; 2364 2365 order = huge_page_order(&default_hstate); 2366 for_each_hstate(h) 2367 order = min(order, huge_page_order(h)); 2368 2369 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) { 2370 page = pfn_to_page(pfn); 2371 rc = dissolve_free_huge_page(page); 2372 if (rc) 2373 break; 2374 } 2375 2376 return rc; 2377 } 2378 2379 /* 2380 * Allocates a fresh surplus page from the page allocator. 2381 */ 2382 static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h, 2383 gfp_t gfp_mask, int nid, nodemask_t *nmask) 2384 { 2385 struct folio *folio = NULL; 2386 2387 if (hstate_is_gigantic(h)) 2388 return NULL; 2389 2390 spin_lock_irq(&hugetlb_lock); 2391 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) 2392 goto out_unlock; 2393 spin_unlock_irq(&hugetlb_lock); 2394 2395 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL); 2396 if (!folio) 2397 return NULL; 2398 2399 spin_lock_irq(&hugetlb_lock); 2400 /* 2401 * We could have raced with the pool size change. 2402 * Double check that and simply deallocate the new page 2403 * if we would end up overcommiting the surpluses. Abuse 2404 * temporary page to workaround the nasty free_huge_page 2405 * codeflow 2406 */ 2407 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { 2408 folio_set_hugetlb_temporary(folio); 2409 spin_unlock_irq(&hugetlb_lock); 2410 free_huge_page(&folio->page); 2411 return NULL; 2412 } 2413 2414 h->surplus_huge_pages++; 2415 h->surplus_huge_pages_node[folio_nid(folio)]++; 2416 2417 out_unlock: 2418 spin_unlock_irq(&hugetlb_lock); 2419 2420 return folio; 2421 } 2422 2423 static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask, 2424 int nid, nodemask_t *nmask) 2425 { 2426 struct folio *folio; 2427 2428 if (hstate_is_gigantic(h)) 2429 return NULL; 2430 2431 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL); 2432 if (!folio) 2433 return NULL; 2434 2435 /* fresh huge pages are frozen */ 2436 folio_ref_unfreeze(folio, 1); 2437 /* 2438 * We do not account these pages as surplus because they are only 2439 * temporary and will be released properly on the last reference 2440 */ 2441 folio_set_hugetlb_temporary(folio); 2442 2443 return folio; 2444 } 2445 2446 /* 2447 * Use the VMA's mpolicy to allocate a huge page from the buddy. 2448 */ 2449 static 2450 struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h, 2451 struct vm_area_struct *vma, unsigned long addr) 2452 { 2453 struct folio *folio = NULL; 2454 struct mempolicy *mpol; 2455 gfp_t gfp_mask = htlb_alloc_mask(h); 2456 int nid; 2457 nodemask_t *nodemask; 2458 2459 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask); 2460 if (mpol_is_preferred_many(mpol)) { 2461 gfp_t gfp = gfp_mask | __GFP_NOWARN; 2462 2463 gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL); 2464 folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask); 2465 2466 /* Fallback to all nodes if page==NULL */ 2467 nodemask = NULL; 2468 } 2469 2470 if (!folio) 2471 folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask); 2472 mpol_cond_put(mpol); 2473 return folio; 2474 } 2475 2476 /* folio migration callback function */ 2477 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid, 2478 nodemask_t *nmask, gfp_t gfp_mask) 2479 { 2480 spin_lock_irq(&hugetlb_lock); 2481 if (available_huge_pages(h)) { 2482 struct folio *folio; 2483 2484 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, 2485 preferred_nid, nmask); 2486 if (folio) { 2487 spin_unlock_irq(&hugetlb_lock); 2488 return folio; 2489 } 2490 } 2491 spin_unlock_irq(&hugetlb_lock); 2492 2493 return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask); 2494 } 2495 2496 /* mempolicy aware migration callback */ 2497 struct folio *alloc_hugetlb_folio_vma(struct hstate *h, struct vm_area_struct *vma, 2498 unsigned long address) 2499 { 2500 struct mempolicy *mpol; 2501 nodemask_t *nodemask; 2502 struct folio *folio; 2503 gfp_t gfp_mask; 2504 int node; 2505 2506 gfp_mask = htlb_alloc_mask(h); 2507 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 2508 folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask); 2509 mpol_cond_put(mpol); 2510 2511 return folio; 2512 } 2513 2514 /* 2515 * Increase the hugetlb pool such that it can accommodate a reservation 2516 * of size 'delta'. 2517 */ 2518 static int gather_surplus_pages(struct hstate *h, long delta) 2519 __must_hold(&hugetlb_lock) 2520 { 2521 LIST_HEAD(surplus_list); 2522 struct folio *folio; 2523 struct page *page, *tmp; 2524 int ret; 2525 long i; 2526 long needed, allocated; 2527 bool alloc_ok = true; 2528 2529 lockdep_assert_held(&hugetlb_lock); 2530 needed = (h->resv_huge_pages + delta) - h->free_huge_pages; 2531 if (needed <= 0) { 2532 h->resv_huge_pages += delta; 2533 return 0; 2534 } 2535 2536 allocated = 0; 2537 2538 ret = -ENOMEM; 2539 retry: 2540 spin_unlock_irq(&hugetlb_lock); 2541 for (i = 0; i < needed; i++) { 2542 folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h), 2543 NUMA_NO_NODE, NULL); 2544 if (!folio) { 2545 alloc_ok = false; 2546 break; 2547 } 2548 list_add(&folio->lru, &surplus_list); 2549 cond_resched(); 2550 } 2551 allocated += i; 2552 2553 /* 2554 * After retaking hugetlb_lock, we need to recalculate 'needed' 2555 * because either resv_huge_pages or free_huge_pages may have changed. 2556 */ 2557 spin_lock_irq(&hugetlb_lock); 2558 needed = (h->resv_huge_pages + delta) - 2559 (h->free_huge_pages + allocated); 2560 if (needed > 0) { 2561 if (alloc_ok) 2562 goto retry; 2563 /* 2564 * We were not able to allocate enough pages to 2565 * satisfy the entire reservation so we free what 2566 * we've allocated so far. 2567 */ 2568 goto free; 2569 } 2570 /* 2571 * The surplus_list now contains _at_least_ the number of extra pages 2572 * needed to accommodate the reservation. Add the appropriate number 2573 * of pages to the hugetlb pool and free the extras back to the buddy 2574 * allocator. Commit the entire reservation here to prevent another 2575 * process from stealing the pages as they are added to the pool but 2576 * before they are reserved. 2577 */ 2578 needed += allocated; 2579 h->resv_huge_pages += delta; 2580 ret = 0; 2581 2582 /* Free the needed pages to the hugetlb pool */ 2583 list_for_each_entry_safe(page, tmp, &surplus_list, lru) { 2584 if ((--needed) < 0) 2585 break; 2586 /* Add the page to the hugetlb allocator */ 2587 enqueue_hugetlb_folio(h, page_folio(page)); 2588 } 2589 free: 2590 spin_unlock_irq(&hugetlb_lock); 2591 2592 /* 2593 * Free unnecessary surplus pages to the buddy allocator. 2594 * Pages have no ref count, call free_huge_page directly. 2595 */ 2596 list_for_each_entry_safe(page, tmp, &surplus_list, lru) 2597 free_huge_page(page); 2598 spin_lock_irq(&hugetlb_lock); 2599 2600 return ret; 2601 } 2602 2603 /* 2604 * This routine has two main purposes: 2605 * 1) Decrement the reservation count (resv_huge_pages) by the value passed 2606 * in unused_resv_pages. This corresponds to the prior adjustments made 2607 * to the associated reservation map. 2608 * 2) Free any unused surplus pages that may have been allocated to satisfy 2609 * the reservation. As many as unused_resv_pages may be freed. 2610 */ 2611 static void return_unused_surplus_pages(struct hstate *h, 2612 unsigned long unused_resv_pages) 2613 { 2614 unsigned long nr_pages; 2615 struct page *page; 2616 LIST_HEAD(page_list); 2617 2618 lockdep_assert_held(&hugetlb_lock); 2619 /* Uncommit the reservation */ 2620 h->resv_huge_pages -= unused_resv_pages; 2621 2622 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 2623 goto out; 2624 2625 /* 2626 * Part (or even all) of the reservation could have been backed 2627 * by pre-allocated pages. Only free surplus pages. 2628 */ 2629 nr_pages = min(unused_resv_pages, h->surplus_huge_pages); 2630 2631 /* 2632 * We want to release as many surplus pages as possible, spread 2633 * evenly across all nodes with memory. Iterate across these nodes 2634 * until we can no longer free unreserved surplus pages. This occurs 2635 * when the nodes with surplus pages have no free pages. 2636 * remove_pool_huge_page() will balance the freed pages across the 2637 * on-line nodes with memory and will handle the hstate accounting. 2638 */ 2639 while (nr_pages--) { 2640 page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1); 2641 if (!page) 2642 goto out; 2643 2644 list_add(&page->lru, &page_list); 2645 } 2646 2647 out: 2648 spin_unlock_irq(&hugetlb_lock); 2649 update_and_free_pages_bulk(h, &page_list); 2650 spin_lock_irq(&hugetlb_lock); 2651 } 2652 2653 2654 /* 2655 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation 2656 * are used by the huge page allocation routines to manage reservations. 2657 * 2658 * vma_needs_reservation is called to determine if the huge page at addr 2659 * within the vma has an associated reservation. If a reservation is 2660 * needed, the value 1 is returned. The caller is then responsible for 2661 * managing the global reservation and subpool usage counts. After 2662 * the huge page has been allocated, vma_commit_reservation is called 2663 * to add the page to the reservation map. If the page allocation fails, 2664 * the reservation must be ended instead of committed. vma_end_reservation 2665 * is called in such cases. 2666 * 2667 * In the normal case, vma_commit_reservation returns the same value 2668 * as the preceding vma_needs_reservation call. The only time this 2669 * is not the case is if a reserve map was changed between calls. It 2670 * is the responsibility of the caller to notice the difference and 2671 * take appropriate action. 2672 * 2673 * vma_add_reservation is used in error paths where a reservation must 2674 * be restored when a newly allocated huge page must be freed. It is 2675 * to be called after calling vma_needs_reservation to determine if a 2676 * reservation exists. 2677 * 2678 * vma_del_reservation is used in error paths where an entry in the reserve 2679 * map was created during huge page allocation and must be removed. It is to 2680 * be called after calling vma_needs_reservation to determine if a reservation 2681 * exists. 2682 */ 2683 enum vma_resv_mode { 2684 VMA_NEEDS_RESV, 2685 VMA_COMMIT_RESV, 2686 VMA_END_RESV, 2687 VMA_ADD_RESV, 2688 VMA_DEL_RESV, 2689 }; 2690 static long __vma_reservation_common(struct hstate *h, 2691 struct vm_area_struct *vma, unsigned long addr, 2692 enum vma_resv_mode mode) 2693 { 2694 struct resv_map *resv; 2695 pgoff_t idx; 2696 long ret; 2697 long dummy_out_regions_needed; 2698 2699 resv = vma_resv_map(vma); 2700 if (!resv) 2701 return 1; 2702 2703 idx = vma_hugecache_offset(h, vma, addr); 2704 switch (mode) { 2705 case VMA_NEEDS_RESV: 2706 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed); 2707 /* We assume that vma_reservation_* routines always operate on 2708 * 1 page, and that adding to resv map a 1 page entry can only 2709 * ever require 1 region. 2710 */ 2711 VM_BUG_ON(dummy_out_regions_needed != 1); 2712 break; 2713 case VMA_COMMIT_RESV: 2714 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2715 /* region_add calls of range 1 should never fail. */ 2716 VM_BUG_ON(ret < 0); 2717 break; 2718 case VMA_END_RESV: 2719 region_abort(resv, idx, idx + 1, 1); 2720 ret = 0; 2721 break; 2722 case VMA_ADD_RESV: 2723 if (vma->vm_flags & VM_MAYSHARE) { 2724 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2725 /* region_add calls of range 1 should never fail. */ 2726 VM_BUG_ON(ret < 0); 2727 } else { 2728 region_abort(resv, idx, idx + 1, 1); 2729 ret = region_del(resv, idx, idx + 1); 2730 } 2731 break; 2732 case VMA_DEL_RESV: 2733 if (vma->vm_flags & VM_MAYSHARE) { 2734 region_abort(resv, idx, idx + 1, 1); 2735 ret = region_del(resv, idx, idx + 1); 2736 } else { 2737 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2738 /* region_add calls of range 1 should never fail. */ 2739 VM_BUG_ON(ret < 0); 2740 } 2741 break; 2742 default: 2743 BUG(); 2744 } 2745 2746 if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV) 2747 return ret; 2748 /* 2749 * We know private mapping must have HPAGE_RESV_OWNER set. 2750 * 2751 * In most cases, reserves always exist for private mappings. 2752 * However, a file associated with mapping could have been 2753 * hole punched or truncated after reserves were consumed. 2754 * As subsequent fault on such a range will not use reserves. 2755 * Subtle - The reserve map for private mappings has the 2756 * opposite meaning than that of shared mappings. If NO 2757 * entry is in the reserve map, it means a reservation exists. 2758 * If an entry exists in the reserve map, it means the 2759 * reservation has already been consumed. As a result, the 2760 * return value of this routine is the opposite of the 2761 * value returned from reserve map manipulation routines above. 2762 */ 2763 if (ret > 0) 2764 return 0; 2765 if (ret == 0) 2766 return 1; 2767 return ret; 2768 } 2769 2770 static long vma_needs_reservation(struct hstate *h, 2771 struct vm_area_struct *vma, unsigned long addr) 2772 { 2773 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV); 2774 } 2775 2776 static long vma_commit_reservation(struct hstate *h, 2777 struct vm_area_struct *vma, unsigned long addr) 2778 { 2779 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV); 2780 } 2781 2782 static void vma_end_reservation(struct hstate *h, 2783 struct vm_area_struct *vma, unsigned long addr) 2784 { 2785 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV); 2786 } 2787 2788 static long vma_add_reservation(struct hstate *h, 2789 struct vm_area_struct *vma, unsigned long addr) 2790 { 2791 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV); 2792 } 2793 2794 static long vma_del_reservation(struct hstate *h, 2795 struct vm_area_struct *vma, unsigned long addr) 2796 { 2797 return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV); 2798 } 2799 2800 /* 2801 * This routine is called to restore reservation information on error paths. 2802 * It should ONLY be called for folios allocated via alloc_hugetlb_folio(), 2803 * and the hugetlb mutex should remain held when calling this routine. 2804 * 2805 * It handles two specific cases: 2806 * 1) A reservation was in place and the folio consumed the reservation. 2807 * hugetlb_restore_reserve is set in the folio. 2808 * 2) No reservation was in place for the page, so hugetlb_restore_reserve is 2809 * not set. However, alloc_hugetlb_folio always updates the reserve map. 2810 * 2811 * In case 1, free_huge_page later in the error path will increment the 2812 * global reserve count. But, free_huge_page does not have enough context 2813 * to adjust the reservation map. This case deals primarily with private 2814 * mappings. Adjust the reserve map here to be consistent with global 2815 * reserve count adjustments to be made by free_huge_page. Make sure the 2816 * reserve map indicates there is a reservation present. 2817 * 2818 * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio. 2819 */ 2820 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma, 2821 unsigned long address, struct folio *folio) 2822 { 2823 long rc = vma_needs_reservation(h, vma, address); 2824 2825 if (folio_test_hugetlb_restore_reserve(folio)) { 2826 if (unlikely(rc < 0)) 2827 /* 2828 * Rare out of memory condition in reserve map 2829 * manipulation. Clear hugetlb_restore_reserve so 2830 * that global reserve count will not be incremented 2831 * by free_huge_page. This will make it appear 2832 * as though the reservation for this folio was 2833 * consumed. This may prevent the task from 2834 * faulting in the folio at a later time. This 2835 * is better than inconsistent global huge page 2836 * accounting of reserve counts. 2837 */ 2838 folio_clear_hugetlb_restore_reserve(folio); 2839 else if (rc) 2840 (void)vma_add_reservation(h, vma, address); 2841 else 2842 vma_end_reservation(h, vma, address); 2843 } else { 2844 if (!rc) { 2845 /* 2846 * This indicates there is an entry in the reserve map 2847 * not added by alloc_hugetlb_folio. We know it was added 2848 * before the alloc_hugetlb_folio call, otherwise 2849 * hugetlb_restore_reserve would be set on the folio. 2850 * Remove the entry so that a subsequent allocation 2851 * does not consume a reservation. 2852 */ 2853 rc = vma_del_reservation(h, vma, address); 2854 if (rc < 0) 2855 /* 2856 * VERY rare out of memory condition. Since 2857 * we can not delete the entry, set 2858 * hugetlb_restore_reserve so that the reserve 2859 * count will be incremented when the folio 2860 * is freed. This reserve will be consumed 2861 * on a subsequent allocation. 2862 */ 2863 folio_set_hugetlb_restore_reserve(folio); 2864 } else if (rc < 0) { 2865 /* 2866 * Rare out of memory condition from 2867 * vma_needs_reservation call. Memory allocation is 2868 * only attempted if a new entry is needed. Therefore, 2869 * this implies there is not an entry in the 2870 * reserve map. 2871 * 2872 * For shared mappings, no entry in the map indicates 2873 * no reservation. We are done. 2874 */ 2875 if (!(vma->vm_flags & VM_MAYSHARE)) 2876 /* 2877 * For private mappings, no entry indicates 2878 * a reservation is present. Since we can 2879 * not add an entry, set hugetlb_restore_reserve 2880 * on the folio so reserve count will be 2881 * incremented when freed. This reserve will 2882 * be consumed on a subsequent allocation. 2883 */ 2884 folio_set_hugetlb_restore_reserve(folio); 2885 } else 2886 /* 2887 * No reservation present, do nothing 2888 */ 2889 vma_end_reservation(h, vma, address); 2890 } 2891 } 2892 2893 /* 2894 * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve 2895 * the old one 2896 * @h: struct hstate old page belongs to 2897 * @old_folio: Old folio to dissolve 2898 * @list: List to isolate the page in case we need to 2899 * Returns 0 on success, otherwise negated error. 2900 */ 2901 static int alloc_and_dissolve_hugetlb_folio(struct hstate *h, 2902 struct folio *old_folio, struct list_head *list) 2903 { 2904 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 2905 int nid = folio_nid(old_folio); 2906 struct folio *new_folio; 2907 int ret = 0; 2908 2909 /* 2910 * Before dissolving the folio, we need to allocate a new one for the 2911 * pool to remain stable. Here, we allocate the folio and 'prep' it 2912 * by doing everything but actually updating counters and adding to 2913 * the pool. This simplifies and let us do most of the processing 2914 * under the lock. 2915 */ 2916 new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, NULL, NULL); 2917 if (!new_folio) 2918 return -ENOMEM; 2919 __prep_new_hugetlb_folio(h, new_folio); 2920 2921 retry: 2922 spin_lock_irq(&hugetlb_lock); 2923 if (!folio_test_hugetlb(old_folio)) { 2924 /* 2925 * Freed from under us. Drop new_folio too. 2926 */ 2927 goto free_new; 2928 } else if (folio_ref_count(old_folio)) { 2929 bool isolated; 2930 2931 /* 2932 * Someone has grabbed the folio, try to isolate it here. 2933 * Fail with -EBUSY if not possible. 2934 */ 2935 spin_unlock_irq(&hugetlb_lock); 2936 isolated = isolate_hugetlb(old_folio, list); 2937 ret = isolated ? 0 : -EBUSY; 2938 spin_lock_irq(&hugetlb_lock); 2939 goto free_new; 2940 } else if (!folio_test_hugetlb_freed(old_folio)) { 2941 /* 2942 * Folio's refcount is 0 but it has not been enqueued in the 2943 * freelist yet. Race window is small, so we can succeed here if 2944 * we retry. 2945 */ 2946 spin_unlock_irq(&hugetlb_lock); 2947 cond_resched(); 2948 goto retry; 2949 } else { 2950 /* 2951 * Ok, old_folio is still a genuine free hugepage. Remove it from 2952 * the freelist and decrease the counters. These will be 2953 * incremented again when calling __prep_account_new_huge_page() 2954 * and enqueue_hugetlb_folio() for new_folio. The counters will 2955 * remain stable since this happens under the lock. 2956 */ 2957 remove_hugetlb_folio(h, old_folio, false); 2958 2959 /* 2960 * Ref count on new_folio is already zero as it was dropped 2961 * earlier. It can be directly added to the pool free list. 2962 */ 2963 __prep_account_new_huge_page(h, nid); 2964 enqueue_hugetlb_folio(h, new_folio); 2965 2966 /* 2967 * Folio has been replaced, we can safely free the old one. 2968 */ 2969 spin_unlock_irq(&hugetlb_lock); 2970 update_and_free_hugetlb_folio(h, old_folio, false); 2971 } 2972 2973 return ret; 2974 2975 free_new: 2976 spin_unlock_irq(&hugetlb_lock); 2977 /* Folio has a zero ref count, but needs a ref to be freed */ 2978 folio_ref_unfreeze(new_folio, 1); 2979 update_and_free_hugetlb_folio(h, new_folio, false); 2980 2981 return ret; 2982 } 2983 2984 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list) 2985 { 2986 struct hstate *h; 2987 struct folio *folio = page_folio(page); 2988 int ret = -EBUSY; 2989 2990 /* 2991 * The page might have been dissolved from under our feet, so make sure 2992 * to carefully check the state under the lock. 2993 * Return success when racing as if we dissolved the page ourselves. 2994 */ 2995 spin_lock_irq(&hugetlb_lock); 2996 if (folio_test_hugetlb(folio)) { 2997 h = folio_hstate(folio); 2998 } else { 2999 spin_unlock_irq(&hugetlb_lock); 3000 return 0; 3001 } 3002 spin_unlock_irq(&hugetlb_lock); 3003 3004 /* 3005 * Fence off gigantic pages as there is a cyclic dependency between 3006 * alloc_contig_range and them. Return -ENOMEM as this has the effect 3007 * of bailing out right away without further retrying. 3008 */ 3009 if (hstate_is_gigantic(h)) 3010 return -ENOMEM; 3011 3012 if (folio_ref_count(folio) && isolate_hugetlb(folio, list)) 3013 ret = 0; 3014 else if (!folio_ref_count(folio)) 3015 ret = alloc_and_dissolve_hugetlb_folio(h, folio, list); 3016 3017 return ret; 3018 } 3019 3020 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma, 3021 unsigned long addr, int avoid_reserve) 3022 { 3023 struct hugepage_subpool *spool = subpool_vma(vma); 3024 struct hstate *h = hstate_vma(vma); 3025 struct folio *folio; 3026 long map_chg, map_commit; 3027 long gbl_chg; 3028 int ret, idx; 3029 struct hugetlb_cgroup *h_cg = NULL; 3030 bool deferred_reserve; 3031 3032 idx = hstate_index(h); 3033 /* 3034 * Examine the region/reserve map to determine if the process 3035 * has a reservation for the page to be allocated. A return 3036 * code of zero indicates a reservation exists (no change). 3037 */ 3038 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr); 3039 if (map_chg < 0) 3040 return ERR_PTR(-ENOMEM); 3041 3042 /* 3043 * Processes that did not create the mapping will have no 3044 * reserves as indicated by the region/reserve map. Check 3045 * that the allocation will not exceed the subpool limit. 3046 * Allocations for MAP_NORESERVE mappings also need to be 3047 * checked against any subpool limit. 3048 */ 3049 if (map_chg || avoid_reserve) { 3050 gbl_chg = hugepage_subpool_get_pages(spool, 1); 3051 if (gbl_chg < 0) { 3052 vma_end_reservation(h, vma, addr); 3053 return ERR_PTR(-ENOSPC); 3054 } 3055 3056 /* 3057 * Even though there was no reservation in the region/reserve 3058 * map, there could be reservations associated with the 3059 * subpool that can be used. This would be indicated if the 3060 * return value of hugepage_subpool_get_pages() is zero. 3061 * However, if avoid_reserve is specified we still avoid even 3062 * the subpool reservations. 3063 */ 3064 if (avoid_reserve) 3065 gbl_chg = 1; 3066 } 3067 3068 /* If this allocation is not consuming a reservation, charge it now. 3069 */ 3070 deferred_reserve = map_chg || avoid_reserve; 3071 if (deferred_reserve) { 3072 ret = hugetlb_cgroup_charge_cgroup_rsvd( 3073 idx, pages_per_huge_page(h), &h_cg); 3074 if (ret) 3075 goto out_subpool_put; 3076 } 3077 3078 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg); 3079 if (ret) 3080 goto out_uncharge_cgroup_reservation; 3081 3082 spin_lock_irq(&hugetlb_lock); 3083 /* 3084 * glb_chg is passed to indicate whether or not a page must be taken 3085 * from the global free pool (global change). gbl_chg == 0 indicates 3086 * a reservation exists for the allocation. 3087 */ 3088 folio = dequeue_hugetlb_folio_vma(h, vma, addr, avoid_reserve, gbl_chg); 3089 if (!folio) { 3090 spin_unlock_irq(&hugetlb_lock); 3091 folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr); 3092 if (!folio) 3093 goto out_uncharge_cgroup; 3094 spin_lock_irq(&hugetlb_lock); 3095 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) { 3096 folio_set_hugetlb_restore_reserve(folio); 3097 h->resv_huge_pages--; 3098 } 3099 list_add(&folio->lru, &h->hugepage_activelist); 3100 folio_ref_unfreeze(folio, 1); 3101 /* Fall through */ 3102 } 3103 3104 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio); 3105 /* If allocation is not consuming a reservation, also store the 3106 * hugetlb_cgroup pointer on the page. 3107 */ 3108 if (deferred_reserve) { 3109 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h), 3110 h_cg, folio); 3111 } 3112 3113 spin_unlock_irq(&hugetlb_lock); 3114 3115 hugetlb_set_folio_subpool(folio, spool); 3116 3117 map_commit = vma_commit_reservation(h, vma, addr); 3118 if (unlikely(map_chg > map_commit)) { 3119 /* 3120 * The page was added to the reservation map between 3121 * vma_needs_reservation and vma_commit_reservation. 3122 * This indicates a race with hugetlb_reserve_pages. 3123 * Adjust for the subpool count incremented above AND 3124 * in hugetlb_reserve_pages for the same page. Also, 3125 * the reservation count added in hugetlb_reserve_pages 3126 * no longer applies. 3127 */ 3128 long rsv_adjust; 3129 3130 rsv_adjust = hugepage_subpool_put_pages(spool, 1); 3131 hugetlb_acct_memory(h, -rsv_adjust); 3132 if (deferred_reserve) 3133 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h), 3134 pages_per_huge_page(h), folio); 3135 } 3136 return folio; 3137 3138 out_uncharge_cgroup: 3139 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg); 3140 out_uncharge_cgroup_reservation: 3141 if (deferred_reserve) 3142 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h), 3143 h_cg); 3144 out_subpool_put: 3145 if (map_chg || avoid_reserve) 3146 hugepage_subpool_put_pages(spool, 1); 3147 vma_end_reservation(h, vma, addr); 3148 return ERR_PTR(-ENOSPC); 3149 } 3150 3151 int alloc_bootmem_huge_page(struct hstate *h, int nid) 3152 __attribute__ ((weak, alias("__alloc_bootmem_huge_page"))); 3153 int __alloc_bootmem_huge_page(struct hstate *h, int nid) 3154 { 3155 struct huge_bootmem_page *m = NULL; /* initialize for clang */ 3156 int nr_nodes, node; 3157 3158 /* do node specific alloc */ 3159 if (nid != NUMA_NO_NODE) { 3160 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h), 3161 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid); 3162 if (!m) 3163 return 0; 3164 goto found; 3165 } 3166 /* allocate from next node when distributing huge pages */ 3167 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) { 3168 m = memblock_alloc_try_nid_raw( 3169 huge_page_size(h), huge_page_size(h), 3170 0, MEMBLOCK_ALLOC_ACCESSIBLE, node); 3171 /* 3172 * Use the beginning of the huge page to store the 3173 * huge_bootmem_page struct (until gather_bootmem 3174 * puts them into the mem_map). 3175 */ 3176 if (!m) 3177 return 0; 3178 goto found; 3179 } 3180 3181 found: 3182 /* Put them into a private list first because mem_map is not up yet */ 3183 INIT_LIST_HEAD(&m->list); 3184 list_add(&m->list, &huge_boot_pages); 3185 m->hstate = h; 3186 return 1; 3187 } 3188 3189 /* 3190 * Put bootmem huge pages into the standard lists after mem_map is up. 3191 * Note: This only applies to gigantic (order > MAX_ORDER) pages. 3192 */ 3193 static void __init gather_bootmem_prealloc(void) 3194 { 3195 struct huge_bootmem_page *m; 3196 3197 list_for_each_entry(m, &huge_boot_pages, list) { 3198 struct page *page = virt_to_page(m); 3199 struct folio *folio = page_folio(page); 3200 struct hstate *h = m->hstate; 3201 3202 VM_BUG_ON(!hstate_is_gigantic(h)); 3203 WARN_ON(folio_ref_count(folio) != 1); 3204 if (prep_compound_gigantic_folio(folio, huge_page_order(h))) { 3205 WARN_ON(folio_test_reserved(folio)); 3206 prep_new_hugetlb_folio(h, folio, folio_nid(folio)); 3207 free_huge_page(page); /* add to the hugepage allocator */ 3208 } else { 3209 /* VERY unlikely inflated ref count on a tail page */ 3210 free_gigantic_folio(folio, huge_page_order(h)); 3211 } 3212 3213 /* 3214 * We need to restore the 'stolen' pages to totalram_pages 3215 * in order to fix confusing memory reports from free(1) and 3216 * other side-effects, like CommitLimit going negative. 3217 */ 3218 adjust_managed_page_count(page, pages_per_huge_page(h)); 3219 cond_resched(); 3220 } 3221 } 3222 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid) 3223 { 3224 unsigned long i; 3225 char buf[32]; 3226 3227 for (i = 0; i < h->max_huge_pages_node[nid]; ++i) { 3228 if (hstate_is_gigantic(h)) { 3229 if (!alloc_bootmem_huge_page(h, nid)) 3230 break; 3231 } else { 3232 struct folio *folio; 3233 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 3234 3235 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, 3236 &node_states[N_MEMORY], NULL); 3237 if (!folio) 3238 break; 3239 free_huge_page(&folio->page); /* free it into the hugepage allocator */ 3240 } 3241 cond_resched(); 3242 } 3243 if (i == h->max_huge_pages_node[nid]) 3244 return; 3245 3246 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3247 pr_warn("HugeTLB: allocating %u of page size %s failed node%d. Only allocated %lu hugepages.\n", 3248 h->max_huge_pages_node[nid], buf, nid, i); 3249 h->max_huge_pages -= (h->max_huge_pages_node[nid] - i); 3250 h->max_huge_pages_node[nid] = i; 3251 } 3252 3253 static void __init hugetlb_hstate_alloc_pages(struct hstate *h) 3254 { 3255 unsigned long i; 3256 nodemask_t *node_alloc_noretry; 3257 bool node_specific_alloc = false; 3258 3259 /* skip gigantic hugepages allocation if hugetlb_cma enabled */ 3260 if (hstate_is_gigantic(h) && hugetlb_cma_size) { 3261 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n"); 3262 return; 3263 } 3264 3265 /* do node specific alloc */ 3266 for_each_online_node(i) { 3267 if (h->max_huge_pages_node[i] > 0) { 3268 hugetlb_hstate_alloc_pages_onenode(h, i); 3269 node_specific_alloc = true; 3270 } 3271 } 3272 3273 if (node_specific_alloc) 3274 return; 3275 3276 /* below will do all node balanced alloc */ 3277 if (!hstate_is_gigantic(h)) { 3278 /* 3279 * Bit mask controlling how hard we retry per-node allocations. 3280 * Ignore errors as lower level routines can deal with 3281 * node_alloc_noretry == NULL. If this kmalloc fails at boot 3282 * time, we are likely in bigger trouble. 3283 */ 3284 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry), 3285 GFP_KERNEL); 3286 } else { 3287 /* allocations done at boot time */ 3288 node_alloc_noretry = NULL; 3289 } 3290 3291 /* bit mask controlling how hard we retry per-node allocations */ 3292 if (node_alloc_noretry) 3293 nodes_clear(*node_alloc_noretry); 3294 3295 for (i = 0; i < h->max_huge_pages; ++i) { 3296 if (hstate_is_gigantic(h)) { 3297 if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE)) 3298 break; 3299 } else if (!alloc_pool_huge_page(h, 3300 &node_states[N_MEMORY], 3301 node_alloc_noretry)) 3302 break; 3303 cond_resched(); 3304 } 3305 if (i < h->max_huge_pages) { 3306 char buf[32]; 3307 3308 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3309 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n", 3310 h->max_huge_pages, buf, i); 3311 h->max_huge_pages = i; 3312 } 3313 kfree(node_alloc_noretry); 3314 } 3315 3316 static void __init hugetlb_init_hstates(void) 3317 { 3318 struct hstate *h, *h2; 3319 3320 for_each_hstate(h) { 3321 /* oversize hugepages were init'ed in early boot */ 3322 if (!hstate_is_gigantic(h)) 3323 hugetlb_hstate_alloc_pages(h); 3324 3325 /* 3326 * Set demote order for each hstate. Note that 3327 * h->demote_order is initially 0. 3328 * - We can not demote gigantic pages if runtime freeing 3329 * is not supported, so skip this. 3330 * - If CMA allocation is possible, we can not demote 3331 * HUGETLB_PAGE_ORDER or smaller size pages. 3332 */ 3333 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 3334 continue; 3335 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER) 3336 continue; 3337 for_each_hstate(h2) { 3338 if (h2 == h) 3339 continue; 3340 if (h2->order < h->order && 3341 h2->order > h->demote_order) 3342 h->demote_order = h2->order; 3343 } 3344 } 3345 } 3346 3347 static void __init report_hugepages(void) 3348 { 3349 struct hstate *h; 3350 3351 for_each_hstate(h) { 3352 char buf[32]; 3353 3354 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3355 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n", 3356 buf, h->free_huge_pages); 3357 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n", 3358 hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf); 3359 } 3360 } 3361 3362 #ifdef CONFIG_HIGHMEM 3363 static void try_to_free_low(struct hstate *h, unsigned long count, 3364 nodemask_t *nodes_allowed) 3365 { 3366 int i; 3367 LIST_HEAD(page_list); 3368 3369 lockdep_assert_held(&hugetlb_lock); 3370 if (hstate_is_gigantic(h)) 3371 return; 3372 3373 /* 3374 * Collect pages to be freed on a list, and free after dropping lock 3375 */ 3376 for_each_node_mask(i, *nodes_allowed) { 3377 struct page *page, *next; 3378 struct list_head *freel = &h->hugepage_freelists[i]; 3379 list_for_each_entry_safe(page, next, freel, lru) { 3380 if (count >= h->nr_huge_pages) 3381 goto out; 3382 if (PageHighMem(page)) 3383 continue; 3384 remove_hugetlb_folio(h, page_folio(page), false); 3385 list_add(&page->lru, &page_list); 3386 } 3387 } 3388 3389 out: 3390 spin_unlock_irq(&hugetlb_lock); 3391 update_and_free_pages_bulk(h, &page_list); 3392 spin_lock_irq(&hugetlb_lock); 3393 } 3394 #else 3395 static inline void try_to_free_low(struct hstate *h, unsigned long count, 3396 nodemask_t *nodes_allowed) 3397 { 3398 } 3399 #endif 3400 3401 /* 3402 * Increment or decrement surplus_huge_pages. Keep node-specific counters 3403 * balanced by operating on them in a round-robin fashion. 3404 * Returns 1 if an adjustment was made. 3405 */ 3406 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed, 3407 int delta) 3408 { 3409 int nr_nodes, node; 3410 3411 lockdep_assert_held(&hugetlb_lock); 3412 VM_BUG_ON(delta != -1 && delta != 1); 3413 3414 if (delta < 0) { 3415 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 3416 if (h->surplus_huge_pages_node[node]) 3417 goto found; 3418 } 3419 } else { 3420 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 3421 if (h->surplus_huge_pages_node[node] < 3422 h->nr_huge_pages_node[node]) 3423 goto found; 3424 } 3425 } 3426 return 0; 3427 3428 found: 3429 h->surplus_huge_pages += delta; 3430 h->surplus_huge_pages_node[node] += delta; 3431 return 1; 3432 } 3433 3434 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) 3435 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid, 3436 nodemask_t *nodes_allowed) 3437 { 3438 unsigned long min_count, ret; 3439 struct page *page; 3440 LIST_HEAD(page_list); 3441 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL); 3442 3443 /* 3444 * Bit mask controlling how hard we retry per-node allocations. 3445 * If we can not allocate the bit mask, do not attempt to allocate 3446 * the requested huge pages. 3447 */ 3448 if (node_alloc_noretry) 3449 nodes_clear(*node_alloc_noretry); 3450 else 3451 return -ENOMEM; 3452 3453 /* 3454 * resize_lock mutex prevents concurrent adjustments to number of 3455 * pages in hstate via the proc/sysfs interfaces. 3456 */ 3457 mutex_lock(&h->resize_lock); 3458 flush_free_hpage_work(h); 3459 spin_lock_irq(&hugetlb_lock); 3460 3461 /* 3462 * Check for a node specific request. 3463 * Changing node specific huge page count may require a corresponding 3464 * change to the global count. In any case, the passed node mask 3465 * (nodes_allowed) will restrict alloc/free to the specified node. 3466 */ 3467 if (nid != NUMA_NO_NODE) { 3468 unsigned long old_count = count; 3469 3470 count += h->nr_huge_pages - h->nr_huge_pages_node[nid]; 3471 /* 3472 * User may have specified a large count value which caused the 3473 * above calculation to overflow. In this case, they wanted 3474 * to allocate as many huge pages as possible. Set count to 3475 * largest possible value to align with their intention. 3476 */ 3477 if (count < old_count) 3478 count = ULONG_MAX; 3479 } 3480 3481 /* 3482 * Gigantic pages runtime allocation depend on the capability for large 3483 * page range allocation. 3484 * If the system does not provide this feature, return an error when 3485 * the user tries to allocate gigantic pages but let the user free the 3486 * boottime allocated gigantic pages. 3487 */ 3488 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) { 3489 if (count > persistent_huge_pages(h)) { 3490 spin_unlock_irq(&hugetlb_lock); 3491 mutex_unlock(&h->resize_lock); 3492 NODEMASK_FREE(node_alloc_noretry); 3493 return -EINVAL; 3494 } 3495 /* Fall through to decrease pool */ 3496 } 3497 3498 /* 3499 * Increase the pool size 3500 * First take pages out of surplus state. Then make up the 3501 * remaining difference by allocating fresh huge pages. 3502 * 3503 * We might race with alloc_surplus_hugetlb_folio() here and be unable 3504 * to convert a surplus huge page to a normal huge page. That is 3505 * not critical, though, it just means the overall size of the 3506 * pool might be one hugepage larger than it needs to be, but 3507 * within all the constraints specified by the sysctls. 3508 */ 3509 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { 3510 if (!adjust_pool_surplus(h, nodes_allowed, -1)) 3511 break; 3512 } 3513 3514 while (count > persistent_huge_pages(h)) { 3515 /* 3516 * If this allocation races such that we no longer need the 3517 * page, free_huge_page will handle it by freeing the page 3518 * and reducing the surplus. 3519 */ 3520 spin_unlock_irq(&hugetlb_lock); 3521 3522 /* yield cpu to avoid soft lockup */ 3523 cond_resched(); 3524 3525 ret = alloc_pool_huge_page(h, nodes_allowed, 3526 node_alloc_noretry); 3527 spin_lock_irq(&hugetlb_lock); 3528 if (!ret) 3529 goto out; 3530 3531 /* Bail for signals. Probably ctrl-c from user */ 3532 if (signal_pending(current)) 3533 goto out; 3534 } 3535 3536 /* 3537 * Decrease the pool size 3538 * First return free pages to the buddy allocator (being careful 3539 * to keep enough around to satisfy reservations). Then place 3540 * pages into surplus state as needed so the pool will shrink 3541 * to the desired size as pages become free. 3542 * 3543 * By placing pages into the surplus state independent of the 3544 * overcommit value, we are allowing the surplus pool size to 3545 * exceed overcommit. There are few sane options here. Since 3546 * alloc_surplus_hugetlb_folio() is checking the global counter, 3547 * though, we'll note that we're not allowed to exceed surplus 3548 * and won't grow the pool anywhere else. Not until one of the 3549 * sysctls are changed, or the surplus pages go out of use. 3550 */ 3551 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages; 3552 min_count = max(count, min_count); 3553 try_to_free_low(h, min_count, nodes_allowed); 3554 3555 /* 3556 * Collect pages to be removed on list without dropping lock 3557 */ 3558 while (min_count < persistent_huge_pages(h)) { 3559 page = remove_pool_huge_page(h, nodes_allowed, 0); 3560 if (!page) 3561 break; 3562 3563 list_add(&page->lru, &page_list); 3564 } 3565 /* free the pages after dropping lock */ 3566 spin_unlock_irq(&hugetlb_lock); 3567 update_and_free_pages_bulk(h, &page_list); 3568 flush_free_hpage_work(h); 3569 spin_lock_irq(&hugetlb_lock); 3570 3571 while (count < persistent_huge_pages(h)) { 3572 if (!adjust_pool_surplus(h, nodes_allowed, 1)) 3573 break; 3574 } 3575 out: 3576 h->max_huge_pages = persistent_huge_pages(h); 3577 spin_unlock_irq(&hugetlb_lock); 3578 mutex_unlock(&h->resize_lock); 3579 3580 NODEMASK_FREE(node_alloc_noretry); 3581 3582 return 0; 3583 } 3584 3585 static int demote_free_hugetlb_folio(struct hstate *h, struct folio *folio) 3586 { 3587 int i, nid = folio_nid(folio); 3588 struct hstate *target_hstate; 3589 struct page *subpage; 3590 struct folio *inner_folio; 3591 int rc = 0; 3592 3593 target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order); 3594 3595 remove_hugetlb_folio_for_demote(h, folio, false); 3596 spin_unlock_irq(&hugetlb_lock); 3597 3598 rc = hugetlb_vmemmap_restore(h, &folio->page); 3599 if (rc) { 3600 /* Allocation of vmemmmap failed, we can not demote folio */ 3601 spin_lock_irq(&hugetlb_lock); 3602 folio_ref_unfreeze(folio, 1); 3603 add_hugetlb_folio(h, folio, false); 3604 return rc; 3605 } 3606 3607 /* 3608 * Use destroy_compound_hugetlb_folio_for_demote for all huge page 3609 * sizes as it will not ref count folios. 3610 */ 3611 destroy_compound_hugetlb_folio_for_demote(folio, huge_page_order(h)); 3612 3613 /* 3614 * Taking target hstate mutex synchronizes with set_max_huge_pages. 3615 * Without the mutex, pages added to target hstate could be marked 3616 * as surplus. 3617 * 3618 * Note that we already hold h->resize_lock. To prevent deadlock, 3619 * use the convention of always taking larger size hstate mutex first. 3620 */ 3621 mutex_lock(&target_hstate->resize_lock); 3622 for (i = 0; i < pages_per_huge_page(h); 3623 i += pages_per_huge_page(target_hstate)) { 3624 subpage = folio_page(folio, i); 3625 inner_folio = page_folio(subpage); 3626 if (hstate_is_gigantic(target_hstate)) 3627 prep_compound_gigantic_folio_for_demote(inner_folio, 3628 target_hstate->order); 3629 else 3630 prep_compound_page(subpage, target_hstate->order); 3631 folio_change_private(inner_folio, NULL); 3632 prep_new_hugetlb_folio(target_hstate, inner_folio, nid); 3633 free_huge_page(subpage); 3634 } 3635 mutex_unlock(&target_hstate->resize_lock); 3636 3637 spin_lock_irq(&hugetlb_lock); 3638 3639 /* 3640 * Not absolutely necessary, but for consistency update max_huge_pages 3641 * based on pool changes for the demoted page. 3642 */ 3643 h->max_huge_pages--; 3644 target_hstate->max_huge_pages += 3645 pages_per_huge_page(h) / pages_per_huge_page(target_hstate); 3646 3647 return rc; 3648 } 3649 3650 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed) 3651 __must_hold(&hugetlb_lock) 3652 { 3653 int nr_nodes, node; 3654 struct folio *folio; 3655 3656 lockdep_assert_held(&hugetlb_lock); 3657 3658 /* We should never get here if no demote order */ 3659 if (!h->demote_order) { 3660 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n"); 3661 return -EINVAL; /* internal error */ 3662 } 3663 3664 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 3665 list_for_each_entry(folio, &h->hugepage_freelists[node], lru) { 3666 if (folio_test_hwpoison(folio)) 3667 continue; 3668 return demote_free_hugetlb_folio(h, folio); 3669 } 3670 } 3671 3672 /* 3673 * Only way to get here is if all pages on free lists are poisoned. 3674 * Return -EBUSY so that caller will not retry. 3675 */ 3676 return -EBUSY; 3677 } 3678 3679 #define HSTATE_ATTR_RO(_name) \ 3680 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 3681 3682 #define HSTATE_ATTR_WO(_name) \ 3683 static struct kobj_attribute _name##_attr = __ATTR_WO(_name) 3684 3685 #define HSTATE_ATTR(_name) \ 3686 static struct kobj_attribute _name##_attr = __ATTR_RW(_name) 3687 3688 static struct kobject *hugepages_kobj; 3689 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 3690 3691 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp); 3692 3693 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp) 3694 { 3695 int i; 3696 3697 for (i = 0; i < HUGE_MAX_HSTATE; i++) 3698 if (hstate_kobjs[i] == kobj) { 3699 if (nidp) 3700 *nidp = NUMA_NO_NODE; 3701 return &hstates[i]; 3702 } 3703 3704 return kobj_to_node_hstate(kobj, nidp); 3705 } 3706 3707 static ssize_t nr_hugepages_show_common(struct kobject *kobj, 3708 struct kobj_attribute *attr, char *buf) 3709 { 3710 struct hstate *h; 3711 unsigned long nr_huge_pages; 3712 int nid; 3713 3714 h = kobj_to_hstate(kobj, &nid); 3715 if (nid == NUMA_NO_NODE) 3716 nr_huge_pages = h->nr_huge_pages; 3717 else 3718 nr_huge_pages = h->nr_huge_pages_node[nid]; 3719 3720 return sysfs_emit(buf, "%lu\n", nr_huge_pages); 3721 } 3722 3723 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy, 3724 struct hstate *h, int nid, 3725 unsigned long count, size_t len) 3726 { 3727 int err; 3728 nodemask_t nodes_allowed, *n_mask; 3729 3730 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 3731 return -EINVAL; 3732 3733 if (nid == NUMA_NO_NODE) { 3734 /* 3735 * global hstate attribute 3736 */ 3737 if (!(obey_mempolicy && 3738 init_nodemask_of_mempolicy(&nodes_allowed))) 3739 n_mask = &node_states[N_MEMORY]; 3740 else 3741 n_mask = &nodes_allowed; 3742 } else { 3743 /* 3744 * Node specific request. count adjustment happens in 3745 * set_max_huge_pages() after acquiring hugetlb_lock. 3746 */ 3747 init_nodemask_of_node(&nodes_allowed, nid); 3748 n_mask = &nodes_allowed; 3749 } 3750 3751 err = set_max_huge_pages(h, count, nid, n_mask); 3752 3753 return err ? err : len; 3754 } 3755 3756 static ssize_t nr_hugepages_store_common(bool obey_mempolicy, 3757 struct kobject *kobj, const char *buf, 3758 size_t len) 3759 { 3760 struct hstate *h; 3761 unsigned long count; 3762 int nid; 3763 int err; 3764 3765 err = kstrtoul(buf, 10, &count); 3766 if (err) 3767 return err; 3768 3769 h = kobj_to_hstate(kobj, &nid); 3770 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len); 3771 } 3772 3773 static ssize_t nr_hugepages_show(struct kobject *kobj, 3774 struct kobj_attribute *attr, char *buf) 3775 { 3776 return nr_hugepages_show_common(kobj, attr, buf); 3777 } 3778 3779 static ssize_t nr_hugepages_store(struct kobject *kobj, 3780 struct kobj_attribute *attr, const char *buf, size_t len) 3781 { 3782 return nr_hugepages_store_common(false, kobj, buf, len); 3783 } 3784 HSTATE_ATTR(nr_hugepages); 3785 3786 #ifdef CONFIG_NUMA 3787 3788 /* 3789 * hstate attribute for optionally mempolicy-based constraint on persistent 3790 * huge page alloc/free. 3791 */ 3792 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj, 3793 struct kobj_attribute *attr, 3794 char *buf) 3795 { 3796 return nr_hugepages_show_common(kobj, attr, buf); 3797 } 3798 3799 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj, 3800 struct kobj_attribute *attr, const char *buf, size_t len) 3801 { 3802 return nr_hugepages_store_common(true, kobj, buf, len); 3803 } 3804 HSTATE_ATTR(nr_hugepages_mempolicy); 3805 #endif 3806 3807 3808 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, 3809 struct kobj_attribute *attr, char *buf) 3810 { 3811 struct hstate *h = kobj_to_hstate(kobj, NULL); 3812 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages); 3813 } 3814 3815 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, 3816 struct kobj_attribute *attr, const char *buf, size_t count) 3817 { 3818 int err; 3819 unsigned long input; 3820 struct hstate *h = kobj_to_hstate(kobj, NULL); 3821 3822 if (hstate_is_gigantic(h)) 3823 return -EINVAL; 3824 3825 err = kstrtoul(buf, 10, &input); 3826 if (err) 3827 return err; 3828 3829 spin_lock_irq(&hugetlb_lock); 3830 h->nr_overcommit_huge_pages = input; 3831 spin_unlock_irq(&hugetlb_lock); 3832 3833 return count; 3834 } 3835 HSTATE_ATTR(nr_overcommit_hugepages); 3836 3837 static ssize_t free_hugepages_show(struct kobject *kobj, 3838 struct kobj_attribute *attr, char *buf) 3839 { 3840 struct hstate *h; 3841 unsigned long free_huge_pages; 3842 int nid; 3843 3844 h = kobj_to_hstate(kobj, &nid); 3845 if (nid == NUMA_NO_NODE) 3846 free_huge_pages = h->free_huge_pages; 3847 else 3848 free_huge_pages = h->free_huge_pages_node[nid]; 3849 3850 return sysfs_emit(buf, "%lu\n", free_huge_pages); 3851 } 3852 HSTATE_ATTR_RO(free_hugepages); 3853 3854 static ssize_t resv_hugepages_show(struct kobject *kobj, 3855 struct kobj_attribute *attr, char *buf) 3856 { 3857 struct hstate *h = kobj_to_hstate(kobj, NULL); 3858 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages); 3859 } 3860 HSTATE_ATTR_RO(resv_hugepages); 3861 3862 static ssize_t surplus_hugepages_show(struct kobject *kobj, 3863 struct kobj_attribute *attr, char *buf) 3864 { 3865 struct hstate *h; 3866 unsigned long surplus_huge_pages; 3867 int nid; 3868 3869 h = kobj_to_hstate(kobj, &nid); 3870 if (nid == NUMA_NO_NODE) 3871 surplus_huge_pages = h->surplus_huge_pages; 3872 else 3873 surplus_huge_pages = h->surplus_huge_pages_node[nid]; 3874 3875 return sysfs_emit(buf, "%lu\n", surplus_huge_pages); 3876 } 3877 HSTATE_ATTR_RO(surplus_hugepages); 3878 3879 static ssize_t demote_store(struct kobject *kobj, 3880 struct kobj_attribute *attr, const char *buf, size_t len) 3881 { 3882 unsigned long nr_demote; 3883 unsigned long nr_available; 3884 nodemask_t nodes_allowed, *n_mask; 3885 struct hstate *h; 3886 int err; 3887 int nid; 3888 3889 err = kstrtoul(buf, 10, &nr_demote); 3890 if (err) 3891 return err; 3892 h = kobj_to_hstate(kobj, &nid); 3893 3894 if (nid != NUMA_NO_NODE) { 3895 init_nodemask_of_node(&nodes_allowed, nid); 3896 n_mask = &nodes_allowed; 3897 } else { 3898 n_mask = &node_states[N_MEMORY]; 3899 } 3900 3901 /* Synchronize with other sysfs operations modifying huge pages */ 3902 mutex_lock(&h->resize_lock); 3903 spin_lock_irq(&hugetlb_lock); 3904 3905 while (nr_demote) { 3906 /* 3907 * Check for available pages to demote each time thorough the 3908 * loop as demote_pool_huge_page will drop hugetlb_lock. 3909 */ 3910 if (nid != NUMA_NO_NODE) 3911 nr_available = h->free_huge_pages_node[nid]; 3912 else 3913 nr_available = h->free_huge_pages; 3914 nr_available -= h->resv_huge_pages; 3915 if (!nr_available) 3916 break; 3917 3918 err = demote_pool_huge_page(h, n_mask); 3919 if (err) 3920 break; 3921 3922 nr_demote--; 3923 } 3924 3925 spin_unlock_irq(&hugetlb_lock); 3926 mutex_unlock(&h->resize_lock); 3927 3928 if (err) 3929 return err; 3930 return len; 3931 } 3932 HSTATE_ATTR_WO(demote); 3933 3934 static ssize_t demote_size_show(struct kobject *kobj, 3935 struct kobj_attribute *attr, char *buf) 3936 { 3937 struct hstate *h = kobj_to_hstate(kobj, NULL); 3938 unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K; 3939 3940 return sysfs_emit(buf, "%lukB\n", demote_size); 3941 } 3942 3943 static ssize_t demote_size_store(struct kobject *kobj, 3944 struct kobj_attribute *attr, 3945 const char *buf, size_t count) 3946 { 3947 struct hstate *h, *demote_hstate; 3948 unsigned long demote_size; 3949 unsigned int demote_order; 3950 3951 demote_size = (unsigned long)memparse(buf, NULL); 3952 3953 demote_hstate = size_to_hstate(demote_size); 3954 if (!demote_hstate) 3955 return -EINVAL; 3956 demote_order = demote_hstate->order; 3957 if (demote_order < HUGETLB_PAGE_ORDER) 3958 return -EINVAL; 3959 3960 /* demote order must be smaller than hstate order */ 3961 h = kobj_to_hstate(kobj, NULL); 3962 if (demote_order >= h->order) 3963 return -EINVAL; 3964 3965 /* resize_lock synchronizes access to demote size and writes */ 3966 mutex_lock(&h->resize_lock); 3967 h->demote_order = demote_order; 3968 mutex_unlock(&h->resize_lock); 3969 3970 return count; 3971 } 3972 HSTATE_ATTR(demote_size); 3973 3974 static struct attribute *hstate_attrs[] = { 3975 &nr_hugepages_attr.attr, 3976 &nr_overcommit_hugepages_attr.attr, 3977 &free_hugepages_attr.attr, 3978 &resv_hugepages_attr.attr, 3979 &surplus_hugepages_attr.attr, 3980 #ifdef CONFIG_NUMA 3981 &nr_hugepages_mempolicy_attr.attr, 3982 #endif 3983 NULL, 3984 }; 3985 3986 static const struct attribute_group hstate_attr_group = { 3987 .attrs = hstate_attrs, 3988 }; 3989 3990 static struct attribute *hstate_demote_attrs[] = { 3991 &demote_size_attr.attr, 3992 &demote_attr.attr, 3993 NULL, 3994 }; 3995 3996 static const struct attribute_group hstate_demote_attr_group = { 3997 .attrs = hstate_demote_attrs, 3998 }; 3999 4000 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent, 4001 struct kobject **hstate_kobjs, 4002 const struct attribute_group *hstate_attr_group) 4003 { 4004 int retval; 4005 int hi = hstate_index(h); 4006 4007 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent); 4008 if (!hstate_kobjs[hi]) 4009 return -ENOMEM; 4010 4011 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group); 4012 if (retval) { 4013 kobject_put(hstate_kobjs[hi]); 4014 hstate_kobjs[hi] = NULL; 4015 return retval; 4016 } 4017 4018 if (h->demote_order) { 4019 retval = sysfs_create_group(hstate_kobjs[hi], 4020 &hstate_demote_attr_group); 4021 if (retval) { 4022 pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name); 4023 sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group); 4024 kobject_put(hstate_kobjs[hi]); 4025 hstate_kobjs[hi] = NULL; 4026 return retval; 4027 } 4028 } 4029 4030 return 0; 4031 } 4032 4033 #ifdef CONFIG_NUMA 4034 static bool hugetlb_sysfs_initialized __ro_after_init; 4035 4036 /* 4037 * node_hstate/s - associate per node hstate attributes, via their kobjects, 4038 * with node devices in node_devices[] using a parallel array. The array 4039 * index of a node device or _hstate == node id. 4040 * This is here to avoid any static dependency of the node device driver, in 4041 * the base kernel, on the hugetlb module. 4042 */ 4043 struct node_hstate { 4044 struct kobject *hugepages_kobj; 4045 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 4046 }; 4047 static struct node_hstate node_hstates[MAX_NUMNODES]; 4048 4049 /* 4050 * A subset of global hstate attributes for node devices 4051 */ 4052 static struct attribute *per_node_hstate_attrs[] = { 4053 &nr_hugepages_attr.attr, 4054 &free_hugepages_attr.attr, 4055 &surplus_hugepages_attr.attr, 4056 NULL, 4057 }; 4058 4059 static const struct attribute_group per_node_hstate_attr_group = { 4060 .attrs = per_node_hstate_attrs, 4061 }; 4062 4063 /* 4064 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj. 4065 * Returns node id via non-NULL nidp. 4066 */ 4067 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 4068 { 4069 int nid; 4070 4071 for (nid = 0; nid < nr_node_ids; nid++) { 4072 struct node_hstate *nhs = &node_hstates[nid]; 4073 int i; 4074 for (i = 0; i < HUGE_MAX_HSTATE; i++) 4075 if (nhs->hstate_kobjs[i] == kobj) { 4076 if (nidp) 4077 *nidp = nid; 4078 return &hstates[i]; 4079 } 4080 } 4081 4082 BUG(); 4083 return NULL; 4084 } 4085 4086 /* 4087 * Unregister hstate attributes from a single node device. 4088 * No-op if no hstate attributes attached. 4089 */ 4090 void hugetlb_unregister_node(struct node *node) 4091 { 4092 struct hstate *h; 4093 struct node_hstate *nhs = &node_hstates[node->dev.id]; 4094 4095 if (!nhs->hugepages_kobj) 4096 return; /* no hstate attributes */ 4097 4098 for_each_hstate(h) { 4099 int idx = hstate_index(h); 4100 struct kobject *hstate_kobj = nhs->hstate_kobjs[idx]; 4101 4102 if (!hstate_kobj) 4103 continue; 4104 if (h->demote_order) 4105 sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group); 4106 sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group); 4107 kobject_put(hstate_kobj); 4108 nhs->hstate_kobjs[idx] = NULL; 4109 } 4110 4111 kobject_put(nhs->hugepages_kobj); 4112 nhs->hugepages_kobj = NULL; 4113 } 4114 4115 4116 /* 4117 * Register hstate attributes for a single node device. 4118 * No-op if attributes already registered. 4119 */ 4120 void hugetlb_register_node(struct node *node) 4121 { 4122 struct hstate *h; 4123 struct node_hstate *nhs = &node_hstates[node->dev.id]; 4124 int err; 4125 4126 if (!hugetlb_sysfs_initialized) 4127 return; 4128 4129 if (nhs->hugepages_kobj) 4130 return; /* already allocated */ 4131 4132 nhs->hugepages_kobj = kobject_create_and_add("hugepages", 4133 &node->dev.kobj); 4134 if (!nhs->hugepages_kobj) 4135 return; 4136 4137 for_each_hstate(h) { 4138 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj, 4139 nhs->hstate_kobjs, 4140 &per_node_hstate_attr_group); 4141 if (err) { 4142 pr_err("HugeTLB: Unable to add hstate %s for node %d\n", 4143 h->name, node->dev.id); 4144 hugetlb_unregister_node(node); 4145 break; 4146 } 4147 } 4148 } 4149 4150 /* 4151 * hugetlb init time: register hstate attributes for all registered node 4152 * devices of nodes that have memory. All on-line nodes should have 4153 * registered their associated device by this time. 4154 */ 4155 static void __init hugetlb_register_all_nodes(void) 4156 { 4157 int nid; 4158 4159 for_each_online_node(nid) 4160 hugetlb_register_node(node_devices[nid]); 4161 } 4162 #else /* !CONFIG_NUMA */ 4163 4164 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 4165 { 4166 BUG(); 4167 if (nidp) 4168 *nidp = -1; 4169 return NULL; 4170 } 4171 4172 static void hugetlb_register_all_nodes(void) { } 4173 4174 #endif 4175 4176 #ifdef CONFIG_CMA 4177 static void __init hugetlb_cma_check(void); 4178 #else 4179 static inline __init void hugetlb_cma_check(void) 4180 { 4181 } 4182 #endif 4183 4184 static void __init hugetlb_sysfs_init(void) 4185 { 4186 struct hstate *h; 4187 int err; 4188 4189 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); 4190 if (!hugepages_kobj) 4191 return; 4192 4193 for_each_hstate(h) { 4194 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj, 4195 hstate_kobjs, &hstate_attr_group); 4196 if (err) 4197 pr_err("HugeTLB: Unable to add hstate %s", h->name); 4198 } 4199 4200 #ifdef CONFIG_NUMA 4201 hugetlb_sysfs_initialized = true; 4202 #endif 4203 hugetlb_register_all_nodes(); 4204 } 4205 4206 #ifdef CONFIG_SYSCTL 4207 static void hugetlb_sysctl_init(void); 4208 #else 4209 static inline void hugetlb_sysctl_init(void) { } 4210 #endif 4211 4212 static int __init hugetlb_init(void) 4213 { 4214 int i; 4215 4216 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE < 4217 __NR_HPAGEFLAGS); 4218 4219 if (!hugepages_supported()) { 4220 if (hugetlb_max_hstate || default_hstate_max_huge_pages) 4221 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n"); 4222 return 0; 4223 } 4224 4225 /* 4226 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some 4227 * architectures depend on setup being done here. 4228 */ 4229 hugetlb_add_hstate(HUGETLB_PAGE_ORDER); 4230 if (!parsed_default_hugepagesz) { 4231 /* 4232 * If we did not parse a default huge page size, set 4233 * default_hstate_idx to HPAGE_SIZE hstate. And, if the 4234 * number of huge pages for this default size was implicitly 4235 * specified, set that here as well. 4236 * Note that the implicit setting will overwrite an explicit 4237 * setting. A warning will be printed in this case. 4238 */ 4239 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE)); 4240 if (default_hstate_max_huge_pages) { 4241 if (default_hstate.max_huge_pages) { 4242 char buf[32]; 4243 4244 string_get_size(huge_page_size(&default_hstate), 4245 1, STRING_UNITS_2, buf, 32); 4246 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n", 4247 default_hstate.max_huge_pages, buf); 4248 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n", 4249 default_hstate_max_huge_pages); 4250 } 4251 default_hstate.max_huge_pages = 4252 default_hstate_max_huge_pages; 4253 4254 for_each_online_node(i) 4255 default_hstate.max_huge_pages_node[i] = 4256 default_hugepages_in_node[i]; 4257 } 4258 } 4259 4260 hugetlb_cma_check(); 4261 hugetlb_init_hstates(); 4262 gather_bootmem_prealloc(); 4263 report_hugepages(); 4264 4265 hugetlb_sysfs_init(); 4266 hugetlb_cgroup_file_init(); 4267 hugetlb_sysctl_init(); 4268 4269 #ifdef CONFIG_SMP 4270 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus()); 4271 #else 4272 num_fault_mutexes = 1; 4273 #endif 4274 hugetlb_fault_mutex_table = 4275 kmalloc_array(num_fault_mutexes, sizeof(struct mutex), 4276 GFP_KERNEL); 4277 BUG_ON(!hugetlb_fault_mutex_table); 4278 4279 for (i = 0; i < num_fault_mutexes; i++) 4280 mutex_init(&hugetlb_fault_mutex_table[i]); 4281 return 0; 4282 } 4283 subsys_initcall(hugetlb_init); 4284 4285 /* Overwritten by architectures with more huge page sizes */ 4286 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size) 4287 { 4288 return size == HPAGE_SIZE; 4289 } 4290 4291 void __init hugetlb_add_hstate(unsigned int order) 4292 { 4293 struct hstate *h; 4294 unsigned long i; 4295 4296 if (size_to_hstate(PAGE_SIZE << order)) { 4297 return; 4298 } 4299 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE); 4300 BUG_ON(order == 0); 4301 h = &hstates[hugetlb_max_hstate++]; 4302 mutex_init(&h->resize_lock); 4303 h->order = order; 4304 h->mask = ~(huge_page_size(h) - 1); 4305 for (i = 0; i < MAX_NUMNODES; ++i) 4306 INIT_LIST_HEAD(&h->hugepage_freelists[i]); 4307 INIT_LIST_HEAD(&h->hugepage_activelist); 4308 h->next_nid_to_alloc = first_memory_node; 4309 h->next_nid_to_free = first_memory_node; 4310 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", 4311 huge_page_size(h)/SZ_1K); 4312 4313 parsed_hstate = h; 4314 } 4315 4316 bool __init __weak hugetlb_node_alloc_supported(void) 4317 { 4318 return true; 4319 } 4320 4321 static void __init hugepages_clear_pages_in_node(void) 4322 { 4323 if (!hugetlb_max_hstate) { 4324 default_hstate_max_huge_pages = 0; 4325 memset(default_hugepages_in_node, 0, 4326 sizeof(default_hugepages_in_node)); 4327 } else { 4328 parsed_hstate->max_huge_pages = 0; 4329 memset(parsed_hstate->max_huge_pages_node, 0, 4330 sizeof(parsed_hstate->max_huge_pages_node)); 4331 } 4332 } 4333 4334 /* 4335 * hugepages command line processing 4336 * hugepages normally follows a valid hugepagsz or default_hugepagsz 4337 * specification. If not, ignore the hugepages value. hugepages can also 4338 * be the first huge page command line option in which case it implicitly 4339 * specifies the number of huge pages for the default size. 4340 */ 4341 static int __init hugepages_setup(char *s) 4342 { 4343 unsigned long *mhp; 4344 static unsigned long *last_mhp; 4345 int node = NUMA_NO_NODE; 4346 int count; 4347 unsigned long tmp; 4348 char *p = s; 4349 4350 if (!parsed_valid_hugepagesz) { 4351 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s); 4352 parsed_valid_hugepagesz = true; 4353 return 1; 4354 } 4355 4356 /* 4357 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter 4358 * yet, so this hugepages= parameter goes to the "default hstate". 4359 * Otherwise, it goes with the previously parsed hugepagesz or 4360 * default_hugepagesz. 4361 */ 4362 else if (!hugetlb_max_hstate) 4363 mhp = &default_hstate_max_huge_pages; 4364 else 4365 mhp = &parsed_hstate->max_huge_pages; 4366 4367 if (mhp == last_mhp) { 4368 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s); 4369 return 1; 4370 } 4371 4372 while (*p) { 4373 count = 0; 4374 if (sscanf(p, "%lu%n", &tmp, &count) != 1) 4375 goto invalid; 4376 /* Parameter is node format */ 4377 if (p[count] == ':') { 4378 if (!hugetlb_node_alloc_supported()) { 4379 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n"); 4380 return 1; 4381 } 4382 if (tmp >= MAX_NUMNODES || !node_online(tmp)) 4383 goto invalid; 4384 node = array_index_nospec(tmp, MAX_NUMNODES); 4385 p += count + 1; 4386 /* Parse hugepages */ 4387 if (sscanf(p, "%lu%n", &tmp, &count) != 1) 4388 goto invalid; 4389 if (!hugetlb_max_hstate) 4390 default_hugepages_in_node[node] = tmp; 4391 else 4392 parsed_hstate->max_huge_pages_node[node] = tmp; 4393 *mhp += tmp; 4394 /* Go to parse next node*/ 4395 if (p[count] == ',') 4396 p += count + 1; 4397 else 4398 break; 4399 } else { 4400 if (p != s) 4401 goto invalid; 4402 *mhp = tmp; 4403 break; 4404 } 4405 } 4406 4407 /* 4408 * Global state is always initialized later in hugetlb_init. 4409 * But we need to allocate gigantic hstates here early to still 4410 * use the bootmem allocator. 4411 */ 4412 if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate)) 4413 hugetlb_hstate_alloc_pages(parsed_hstate); 4414 4415 last_mhp = mhp; 4416 4417 return 1; 4418 4419 invalid: 4420 pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p); 4421 hugepages_clear_pages_in_node(); 4422 return 1; 4423 } 4424 __setup("hugepages=", hugepages_setup); 4425 4426 /* 4427 * hugepagesz command line processing 4428 * A specific huge page size can only be specified once with hugepagesz. 4429 * hugepagesz is followed by hugepages on the command line. The global 4430 * variable 'parsed_valid_hugepagesz' is used to determine if prior 4431 * hugepagesz argument was valid. 4432 */ 4433 static int __init hugepagesz_setup(char *s) 4434 { 4435 unsigned long size; 4436 struct hstate *h; 4437 4438 parsed_valid_hugepagesz = false; 4439 size = (unsigned long)memparse(s, NULL); 4440 4441 if (!arch_hugetlb_valid_size(size)) { 4442 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s); 4443 return 1; 4444 } 4445 4446 h = size_to_hstate(size); 4447 if (h) { 4448 /* 4449 * hstate for this size already exists. This is normally 4450 * an error, but is allowed if the existing hstate is the 4451 * default hstate. More specifically, it is only allowed if 4452 * the number of huge pages for the default hstate was not 4453 * previously specified. 4454 */ 4455 if (!parsed_default_hugepagesz || h != &default_hstate || 4456 default_hstate.max_huge_pages) { 4457 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s); 4458 return 1; 4459 } 4460 4461 /* 4462 * No need to call hugetlb_add_hstate() as hstate already 4463 * exists. But, do set parsed_hstate so that a following 4464 * hugepages= parameter will be applied to this hstate. 4465 */ 4466 parsed_hstate = h; 4467 parsed_valid_hugepagesz = true; 4468 return 1; 4469 } 4470 4471 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); 4472 parsed_valid_hugepagesz = true; 4473 return 1; 4474 } 4475 __setup("hugepagesz=", hugepagesz_setup); 4476 4477 /* 4478 * default_hugepagesz command line input 4479 * Only one instance of default_hugepagesz allowed on command line. 4480 */ 4481 static int __init default_hugepagesz_setup(char *s) 4482 { 4483 unsigned long size; 4484 int i; 4485 4486 parsed_valid_hugepagesz = false; 4487 if (parsed_default_hugepagesz) { 4488 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s); 4489 return 1; 4490 } 4491 4492 size = (unsigned long)memparse(s, NULL); 4493 4494 if (!arch_hugetlb_valid_size(size)) { 4495 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s); 4496 return 1; 4497 } 4498 4499 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); 4500 parsed_valid_hugepagesz = true; 4501 parsed_default_hugepagesz = true; 4502 default_hstate_idx = hstate_index(size_to_hstate(size)); 4503 4504 /* 4505 * The number of default huge pages (for this size) could have been 4506 * specified as the first hugetlb parameter: hugepages=X. If so, 4507 * then default_hstate_max_huge_pages is set. If the default huge 4508 * page size is gigantic (> MAX_ORDER), then the pages must be 4509 * allocated here from bootmem allocator. 4510 */ 4511 if (default_hstate_max_huge_pages) { 4512 default_hstate.max_huge_pages = default_hstate_max_huge_pages; 4513 for_each_online_node(i) 4514 default_hstate.max_huge_pages_node[i] = 4515 default_hugepages_in_node[i]; 4516 if (hstate_is_gigantic(&default_hstate)) 4517 hugetlb_hstate_alloc_pages(&default_hstate); 4518 default_hstate_max_huge_pages = 0; 4519 } 4520 4521 return 1; 4522 } 4523 __setup("default_hugepagesz=", default_hugepagesz_setup); 4524 4525 static nodemask_t *policy_mbind_nodemask(gfp_t gfp) 4526 { 4527 #ifdef CONFIG_NUMA 4528 struct mempolicy *mpol = get_task_policy(current); 4529 4530 /* 4531 * Only enforce MPOL_BIND policy which overlaps with cpuset policy 4532 * (from policy_nodemask) specifically for hugetlb case 4533 */ 4534 if (mpol->mode == MPOL_BIND && 4535 (apply_policy_zone(mpol, gfp_zone(gfp)) && 4536 cpuset_nodemask_valid_mems_allowed(&mpol->nodes))) 4537 return &mpol->nodes; 4538 #endif 4539 return NULL; 4540 } 4541 4542 static unsigned int allowed_mems_nr(struct hstate *h) 4543 { 4544 int node; 4545 unsigned int nr = 0; 4546 nodemask_t *mbind_nodemask; 4547 unsigned int *array = h->free_huge_pages_node; 4548 gfp_t gfp_mask = htlb_alloc_mask(h); 4549 4550 mbind_nodemask = policy_mbind_nodemask(gfp_mask); 4551 for_each_node_mask(node, cpuset_current_mems_allowed) { 4552 if (!mbind_nodemask || node_isset(node, *mbind_nodemask)) 4553 nr += array[node]; 4554 } 4555 4556 return nr; 4557 } 4558 4559 #ifdef CONFIG_SYSCTL 4560 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write, 4561 void *buffer, size_t *length, 4562 loff_t *ppos, unsigned long *out) 4563 { 4564 struct ctl_table dup_table; 4565 4566 /* 4567 * In order to avoid races with __do_proc_doulongvec_minmax(), we 4568 * can duplicate the @table and alter the duplicate of it. 4569 */ 4570 dup_table = *table; 4571 dup_table.data = out; 4572 4573 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos); 4574 } 4575 4576 static int hugetlb_sysctl_handler_common(bool obey_mempolicy, 4577 struct ctl_table *table, int write, 4578 void *buffer, size_t *length, loff_t *ppos) 4579 { 4580 struct hstate *h = &default_hstate; 4581 unsigned long tmp = h->max_huge_pages; 4582 int ret; 4583 4584 if (!hugepages_supported()) 4585 return -EOPNOTSUPP; 4586 4587 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, 4588 &tmp); 4589 if (ret) 4590 goto out; 4591 4592 if (write) 4593 ret = __nr_hugepages_store_common(obey_mempolicy, h, 4594 NUMA_NO_NODE, tmp, *length); 4595 out: 4596 return ret; 4597 } 4598 4599 static int hugetlb_sysctl_handler(struct ctl_table *table, int write, 4600 void *buffer, size_t *length, loff_t *ppos) 4601 { 4602 4603 return hugetlb_sysctl_handler_common(false, table, write, 4604 buffer, length, ppos); 4605 } 4606 4607 #ifdef CONFIG_NUMA 4608 static int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write, 4609 void *buffer, size_t *length, loff_t *ppos) 4610 { 4611 return hugetlb_sysctl_handler_common(true, table, write, 4612 buffer, length, ppos); 4613 } 4614 #endif /* CONFIG_NUMA */ 4615 4616 static int hugetlb_overcommit_handler(struct ctl_table *table, int write, 4617 void *buffer, size_t *length, loff_t *ppos) 4618 { 4619 struct hstate *h = &default_hstate; 4620 unsigned long tmp; 4621 int ret; 4622 4623 if (!hugepages_supported()) 4624 return -EOPNOTSUPP; 4625 4626 tmp = h->nr_overcommit_huge_pages; 4627 4628 if (write && hstate_is_gigantic(h)) 4629 return -EINVAL; 4630 4631 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, 4632 &tmp); 4633 if (ret) 4634 goto out; 4635 4636 if (write) { 4637 spin_lock_irq(&hugetlb_lock); 4638 h->nr_overcommit_huge_pages = tmp; 4639 spin_unlock_irq(&hugetlb_lock); 4640 } 4641 out: 4642 return ret; 4643 } 4644 4645 static struct ctl_table hugetlb_table[] = { 4646 { 4647 .procname = "nr_hugepages", 4648 .data = NULL, 4649 .maxlen = sizeof(unsigned long), 4650 .mode = 0644, 4651 .proc_handler = hugetlb_sysctl_handler, 4652 }, 4653 #ifdef CONFIG_NUMA 4654 { 4655 .procname = "nr_hugepages_mempolicy", 4656 .data = NULL, 4657 .maxlen = sizeof(unsigned long), 4658 .mode = 0644, 4659 .proc_handler = &hugetlb_mempolicy_sysctl_handler, 4660 }, 4661 #endif 4662 { 4663 .procname = "hugetlb_shm_group", 4664 .data = &sysctl_hugetlb_shm_group, 4665 .maxlen = sizeof(gid_t), 4666 .mode = 0644, 4667 .proc_handler = proc_dointvec, 4668 }, 4669 { 4670 .procname = "nr_overcommit_hugepages", 4671 .data = NULL, 4672 .maxlen = sizeof(unsigned long), 4673 .mode = 0644, 4674 .proc_handler = hugetlb_overcommit_handler, 4675 }, 4676 { } 4677 }; 4678 4679 static void hugetlb_sysctl_init(void) 4680 { 4681 register_sysctl_init("vm", hugetlb_table); 4682 } 4683 #endif /* CONFIG_SYSCTL */ 4684 4685 void hugetlb_report_meminfo(struct seq_file *m) 4686 { 4687 struct hstate *h; 4688 unsigned long total = 0; 4689 4690 if (!hugepages_supported()) 4691 return; 4692 4693 for_each_hstate(h) { 4694 unsigned long count = h->nr_huge_pages; 4695 4696 total += huge_page_size(h) * count; 4697 4698 if (h == &default_hstate) 4699 seq_printf(m, 4700 "HugePages_Total: %5lu\n" 4701 "HugePages_Free: %5lu\n" 4702 "HugePages_Rsvd: %5lu\n" 4703 "HugePages_Surp: %5lu\n" 4704 "Hugepagesize: %8lu kB\n", 4705 count, 4706 h->free_huge_pages, 4707 h->resv_huge_pages, 4708 h->surplus_huge_pages, 4709 huge_page_size(h) / SZ_1K); 4710 } 4711 4712 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K); 4713 } 4714 4715 int hugetlb_report_node_meminfo(char *buf, int len, int nid) 4716 { 4717 struct hstate *h = &default_hstate; 4718 4719 if (!hugepages_supported()) 4720 return 0; 4721 4722 return sysfs_emit_at(buf, len, 4723 "Node %d HugePages_Total: %5u\n" 4724 "Node %d HugePages_Free: %5u\n" 4725 "Node %d HugePages_Surp: %5u\n", 4726 nid, h->nr_huge_pages_node[nid], 4727 nid, h->free_huge_pages_node[nid], 4728 nid, h->surplus_huge_pages_node[nid]); 4729 } 4730 4731 void hugetlb_show_meminfo_node(int nid) 4732 { 4733 struct hstate *h; 4734 4735 if (!hugepages_supported()) 4736 return; 4737 4738 for_each_hstate(h) 4739 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n", 4740 nid, 4741 h->nr_huge_pages_node[nid], 4742 h->free_huge_pages_node[nid], 4743 h->surplus_huge_pages_node[nid], 4744 huge_page_size(h) / SZ_1K); 4745 } 4746 4747 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm) 4748 { 4749 seq_printf(m, "HugetlbPages:\t%8lu kB\n", 4750 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10)); 4751 } 4752 4753 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ 4754 unsigned long hugetlb_total_pages(void) 4755 { 4756 struct hstate *h; 4757 unsigned long nr_total_pages = 0; 4758 4759 for_each_hstate(h) 4760 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h); 4761 return nr_total_pages; 4762 } 4763 4764 static int hugetlb_acct_memory(struct hstate *h, long delta) 4765 { 4766 int ret = -ENOMEM; 4767 4768 if (!delta) 4769 return 0; 4770 4771 spin_lock_irq(&hugetlb_lock); 4772 /* 4773 * When cpuset is configured, it breaks the strict hugetlb page 4774 * reservation as the accounting is done on a global variable. Such 4775 * reservation is completely rubbish in the presence of cpuset because 4776 * the reservation is not checked against page availability for the 4777 * current cpuset. Application can still potentially OOM'ed by kernel 4778 * with lack of free htlb page in cpuset that the task is in. 4779 * Attempt to enforce strict accounting with cpuset is almost 4780 * impossible (or too ugly) because cpuset is too fluid that 4781 * task or memory node can be dynamically moved between cpusets. 4782 * 4783 * The change of semantics for shared hugetlb mapping with cpuset is 4784 * undesirable. However, in order to preserve some of the semantics, 4785 * we fall back to check against current free page availability as 4786 * a best attempt and hopefully to minimize the impact of changing 4787 * semantics that cpuset has. 4788 * 4789 * Apart from cpuset, we also have memory policy mechanism that 4790 * also determines from which node the kernel will allocate memory 4791 * in a NUMA system. So similar to cpuset, we also should consider 4792 * the memory policy of the current task. Similar to the description 4793 * above. 4794 */ 4795 if (delta > 0) { 4796 if (gather_surplus_pages(h, delta) < 0) 4797 goto out; 4798 4799 if (delta > allowed_mems_nr(h)) { 4800 return_unused_surplus_pages(h, delta); 4801 goto out; 4802 } 4803 } 4804 4805 ret = 0; 4806 if (delta < 0) 4807 return_unused_surplus_pages(h, (unsigned long) -delta); 4808 4809 out: 4810 spin_unlock_irq(&hugetlb_lock); 4811 return ret; 4812 } 4813 4814 static void hugetlb_vm_op_open(struct vm_area_struct *vma) 4815 { 4816 struct resv_map *resv = vma_resv_map(vma); 4817 4818 /* 4819 * HPAGE_RESV_OWNER indicates a private mapping. 4820 * This new VMA should share its siblings reservation map if present. 4821 * The VMA will only ever have a valid reservation map pointer where 4822 * it is being copied for another still existing VMA. As that VMA 4823 * has a reference to the reservation map it cannot disappear until 4824 * after this open call completes. It is therefore safe to take a 4825 * new reference here without additional locking. 4826 */ 4827 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 4828 resv_map_dup_hugetlb_cgroup_uncharge_info(resv); 4829 kref_get(&resv->refs); 4830 } 4831 4832 /* 4833 * vma_lock structure for sharable mappings is vma specific. 4834 * Clear old pointer (if copied via vm_area_dup) and allocate 4835 * new structure. Before clearing, make sure vma_lock is not 4836 * for this vma. 4837 */ 4838 if (vma->vm_flags & VM_MAYSHARE) { 4839 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 4840 4841 if (vma_lock) { 4842 if (vma_lock->vma != vma) { 4843 vma->vm_private_data = NULL; 4844 hugetlb_vma_lock_alloc(vma); 4845 } else 4846 pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__); 4847 } else 4848 hugetlb_vma_lock_alloc(vma); 4849 } 4850 } 4851 4852 static void hugetlb_vm_op_close(struct vm_area_struct *vma) 4853 { 4854 struct hstate *h = hstate_vma(vma); 4855 struct resv_map *resv; 4856 struct hugepage_subpool *spool = subpool_vma(vma); 4857 unsigned long reserve, start, end; 4858 long gbl_reserve; 4859 4860 hugetlb_vma_lock_free(vma); 4861 4862 resv = vma_resv_map(vma); 4863 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 4864 return; 4865 4866 start = vma_hugecache_offset(h, vma, vma->vm_start); 4867 end = vma_hugecache_offset(h, vma, vma->vm_end); 4868 4869 reserve = (end - start) - region_count(resv, start, end); 4870 hugetlb_cgroup_uncharge_counter(resv, start, end); 4871 if (reserve) { 4872 /* 4873 * Decrement reserve counts. The global reserve count may be 4874 * adjusted if the subpool has a minimum size. 4875 */ 4876 gbl_reserve = hugepage_subpool_put_pages(spool, reserve); 4877 hugetlb_acct_memory(h, -gbl_reserve); 4878 } 4879 4880 kref_put(&resv->refs, resv_map_release); 4881 } 4882 4883 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr) 4884 { 4885 if (addr & ~(huge_page_mask(hstate_vma(vma)))) 4886 return -EINVAL; 4887 4888 /* 4889 * PMD sharing is only possible for PUD_SIZE-aligned address ranges 4890 * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this 4891 * split, unshare PMDs in the PUD_SIZE interval surrounding addr now. 4892 */ 4893 if (addr & ~PUD_MASK) { 4894 /* 4895 * hugetlb_vm_op_split is called right before we attempt to 4896 * split the VMA. We will need to unshare PMDs in the old and 4897 * new VMAs, so let's unshare before we split. 4898 */ 4899 unsigned long floor = addr & PUD_MASK; 4900 unsigned long ceil = floor + PUD_SIZE; 4901 4902 if (floor >= vma->vm_start && ceil <= vma->vm_end) 4903 hugetlb_unshare_pmds(vma, floor, ceil); 4904 } 4905 4906 return 0; 4907 } 4908 4909 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma) 4910 { 4911 return huge_page_size(hstate_vma(vma)); 4912 } 4913 4914 /* 4915 * We cannot handle pagefaults against hugetlb pages at all. They cause 4916 * handle_mm_fault() to try to instantiate regular-sized pages in the 4917 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get 4918 * this far. 4919 */ 4920 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf) 4921 { 4922 BUG(); 4923 return 0; 4924 } 4925 4926 /* 4927 * When a new function is introduced to vm_operations_struct and added 4928 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops. 4929 * This is because under System V memory model, mappings created via 4930 * shmget/shmat with "huge page" specified are backed by hugetlbfs files, 4931 * their original vm_ops are overwritten with shm_vm_ops. 4932 */ 4933 const struct vm_operations_struct hugetlb_vm_ops = { 4934 .fault = hugetlb_vm_op_fault, 4935 .open = hugetlb_vm_op_open, 4936 .close = hugetlb_vm_op_close, 4937 .may_split = hugetlb_vm_op_split, 4938 .pagesize = hugetlb_vm_op_pagesize, 4939 }; 4940 4941 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, 4942 int writable) 4943 { 4944 pte_t entry; 4945 unsigned int shift = huge_page_shift(hstate_vma(vma)); 4946 4947 if (writable) { 4948 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page, 4949 vma->vm_page_prot))); 4950 } else { 4951 entry = huge_pte_wrprotect(mk_huge_pte(page, 4952 vma->vm_page_prot)); 4953 } 4954 entry = pte_mkyoung(entry); 4955 entry = arch_make_huge_pte(entry, shift, vma->vm_flags); 4956 4957 return entry; 4958 } 4959 4960 static void set_huge_ptep_writable(struct vm_area_struct *vma, 4961 unsigned long address, pte_t *ptep) 4962 { 4963 pte_t entry; 4964 4965 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep))); 4966 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) 4967 update_mmu_cache(vma, address, ptep); 4968 } 4969 4970 bool is_hugetlb_entry_migration(pte_t pte) 4971 { 4972 swp_entry_t swp; 4973 4974 if (huge_pte_none(pte) || pte_present(pte)) 4975 return false; 4976 swp = pte_to_swp_entry(pte); 4977 if (is_migration_entry(swp)) 4978 return true; 4979 else 4980 return false; 4981 } 4982 4983 static bool is_hugetlb_entry_hwpoisoned(pte_t pte) 4984 { 4985 swp_entry_t swp; 4986 4987 if (huge_pte_none(pte) || pte_present(pte)) 4988 return false; 4989 swp = pte_to_swp_entry(pte); 4990 if (is_hwpoison_entry(swp)) 4991 return true; 4992 else 4993 return false; 4994 } 4995 4996 static void 4997 hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr, 4998 struct folio *new_folio, pte_t old) 4999 { 5000 pte_t newpte = make_huge_pte(vma, &new_folio->page, 1); 5001 5002 __folio_mark_uptodate(new_folio); 5003 hugepage_add_new_anon_rmap(new_folio, vma, addr); 5004 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(old)) 5005 newpte = huge_pte_mkuffd_wp(newpte); 5006 set_huge_pte_at(vma->vm_mm, addr, ptep, newpte); 5007 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm); 5008 folio_set_hugetlb_migratable(new_folio); 5009 } 5010 5011 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, 5012 struct vm_area_struct *dst_vma, 5013 struct vm_area_struct *src_vma) 5014 { 5015 pte_t *src_pte, *dst_pte, entry; 5016 struct folio *pte_folio; 5017 unsigned long addr; 5018 bool cow = is_cow_mapping(src_vma->vm_flags); 5019 struct hstate *h = hstate_vma(src_vma); 5020 unsigned long sz = huge_page_size(h); 5021 unsigned long npages = pages_per_huge_page(h); 5022 struct mmu_notifier_range range; 5023 unsigned long last_addr_mask; 5024 int ret = 0; 5025 5026 if (cow) { 5027 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src, 5028 src_vma->vm_start, 5029 src_vma->vm_end); 5030 mmu_notifier_invalidate_range_start(&range); 5031 mmap_assert_write_locked(src); 5032 raw_write_seqcount_begin(&src->write_protect_seq); 5033 } else { 5034 /* 5035 * For shared mappings the vma lock must be held before 5036 * calling hugetlb_walk() in the src vma. Otherwise, the 5037 * returned ptep could go away if part of a shared pmd and 5038 * another thread calls huge_pmd_unshare. 5039 */ 5040 hugetlb_vma_lock_read(src_vma); 5041 } 5042 5043 last_addr_mask = hugetlb_mask_last_page(h); 5044 for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) { 5045 spinlock_t *src_ptl, *dst_ptl; 5046 src_pte = hugetlb_walk(src_vma, addr, sz); 5047 if (!src_pte) { 5048 addr |= last_addr_mask; 5049 continue; 5050 } 5051 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz); 5052 if (!dst_pte) { 5053 ret = -ENOMEM; 5054 break; 5055 } 5056 5057 /* 5058 * If the pagetables are shared don't copy or take references. 5059 * 5060 * dst_pte == src_pte is the common case of src/dest sharing. 5061 * However, src could have 'unshared' and dst shares with 5062 * another vma. So page_count of ptep page is checked instead 5063 * to reliably determine whether pte is shared. 5064 */ 5065 if (page_count(virt_to_page(dst_pte)) > 1) { 5066 addr |= last_addr_mask; 5067 continue; 5068 } 5069 5070 dst_ptl = huge_pte_lock(h, dst, dst_pte); 5071 src_ptl = huge_pte_lockptr(h, src, src_pte); 5072 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 5073 entry = huge_ptep_get(src_pte); 5074 again: 5075 if (huge_pte_none(entry)) { 5076 /* 5077 * Skip if src entry none. 5078 */ 5079 ; 5080 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) { 5081 if (!userfaultfd_wp(dst_vma)) 5082 entry = huge_pte_clear_uffd_wp(entry); 5083 set_huge_pte_at(dst, addr, dst_pte, entry); 5084 } else if (unlikely(is_hugetlb_entry_migration(entry))) { 5085 swp_entry_t swp_entry = pte_to_swp_entry(entry); 5086 bool uffd_wp = pte_swp_uffd_wp(entry); 5087 5088 if (!is_readable_migration_entry(swp_entry) && cow) { 5089 /* 5090 * COW mappings require pages in both 5091 * parent and child to be set to read. 5092 */ 5093 swp_entry = make_readable_migration_entry( 5094 swp_offset(swp_entry)); 5095 entry = swp_entry_to_pte(swp_entry); 5096 if (userfaultfd_wp(src_vma) && uffd_wp) 5097 entry = pte_swp_mkuffd_wp(entry); 5098 set_huge_pte_at(src, addr, src_pte, entry); 5099 } 5100 if (!userfaultfd_wp(dst_vma)) 5101 entry = huge_pte_clear_uffd_wp(entry); 5102 set_huge_pte_at(dst, addr, dst_pte, entry); 5103 } else if (unlikely(is_pte_marker(entry))) { 5104 /* No swap on hugetlb */ 5105 WARN_ON_ONCE( 5106 is_swapin_error_entry(pte_to_swp_entry(entry))); 5107 /* 5108 * We copy the pte marker only if the dst vma has 5109 * uffd-wp enabled. 5110 */ 5111 if (userfaultfd_wp(dst_vma)) 5112 set_huge_pte_at(dst, addr, dst_pte, entry); 5113 } else { 5114 entry = huge_ptep_get(src_pte); 5115 pte_folio = page_folio(pte_page(entry)); 5116 folio_get(pte_folio); 5117 5118 /* 5119 * Failing to duplicate the anon rmap is a rare case 5120 * where we see pinned hugetlb pages while they're 5121 * prone to COW. We need to do the COW earlier during 5122 * fork. 5123 * 5124 * When pre-allocating the page or copying data, we 5125 * need to be without the pgtable locks since we could 5126 * sleep during the process. 5127 */ 5128 if (!folio_test_anon(pte_folio)) { 5129 page_dup_file_rmap(&pte_folio->page, true); 5130 } else if (page_try_dup_anon_rmap(&pte_folio->page, 5131 true, src_vma)) { 5132 pte_t src_pte_old = entry; 5133 struct folio *new_folio; 5134 5135 spin_unlock(src_ptl); 5136 spin_unlock(dst_ptl); 5137 /* Do not use reserve as it's private owned */ 5138 new_folio = alloc_hugetlb_folio(dst_vma, addr, 1); 5139 if (IS_ERR(new_folio)) { 5140 folio_put(pte_folio); 5141 ret = PTR_ERR(new_folio); 5142 break; 5143 } 5144 ret = copy_user_large_folio(new_folio, 5145 pte_folio, 5146 addr, dst_vma); 5147 folio_put(pte_folio); 5148 if (ret) { 5149 folio_put(new_folio); 5150 break; 5151 } 5152 5153 /* Install the new hugetlb folio if src pte stable */ 5154 dst_ptl = huge_pte_lock(h, dst, dst_pte); 5155 src_ptl = huge_pte_lockptr(h, src, src_pte); 5156 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 5157 entry = huge_ptep_get(src_pte); 5158 if (!pte_same(src_pte_old, entry)) { 5159 restore_reserve_on_error(h, dst_vma, addr, 5160 new_folio); 5161 folio_put(new_folio); 5162 /* huge_ptep of dst_pte won't change as in child */ 5163 goto again; 5164 } 5165 hugetlb_install_folio(dst_vma, dst_pte, addr, 5166 new_folio, src_pte_old); 5167 spin_unlock(src_ptl); 5168 spin_unlock(dst_ptl); 5169 continue; 5170 } 5171 5172 if (cow) { 5173 /* 5174 * No need to notify as we are downgrading page 5175 * table protection not changing it to point 5176 * to a new page. 5177 * 5178 * See Documentation/mm/mmu_notifier.rst 5179 */ 5180 huge_ptep_set_wrprotect(src, addr, src_pte); 5181 entry = huge_pte_wrprotect(entry); 5182 } 5183 5184 if (!userfaultfd_wp(dst_vma)) 5185 entry = huge_pte_clear_uffd_wp(entry); 5186 5187 set_huge_pte_at(dst, addr, dst_pte, entry); 5188 hugetlb_count_add(npages, dst); 5189 } 5190 spin_unlock(src_ptl); 5191 spin_unlock(dst_ptl); 5192 } 5193 5194 if (cow) { 5195 raw_write_seqcount_end(&src->write_protect_seq); 5196 mmu_notifier_invalidate_range_end(&range); 5197 } else { 5198 hugetlb_vma_unlock_read(src_vma); 5199 } 5200 5201 return ret; 5202 } 5203 5204 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr, 5205 unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte) 5206 { 5207 struct hstate *h = hstate_vma(vma); 5208 struct mm_struct *mm = vma->vm_mm; 5209 spinlock_t *src_ptl, *dst_ptl; 5210 pte_t pte; 5211 5212 dst_ptl = huge_pte_lock(h, mm, dst_pte); 5213 src_ptl = huge_pte_lockptr(h, mm, src_pte); 5214 5215 /* 5216 * We don't have to worry about the ordering of src and dst ptlocks 5217 * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock. 5218 */ 5219 if (src_ptl != dst_ptl) 5220 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 5221 5222 pte = huge_ptep_get_and_clear(mm, old_addr, src_pte); 5223 set_huge_pte_at(mm, new_addr, dst_pte, pte); 5224 5225 if (src_ptl != dst_ptl) 5226 spin_unlock(src_ptl); 5227 spin_unlock(dst_ptl); 5228 } 5229 5230 int move_hugetlb_page_tables(struct vm_area_struct *vma, 5231 struct vm_area_struct *new_vma, 5232 unsigned long old_addr, unsigned long new_addr, 5233 unsigned long len) 5234 { 5235 struct hstate *h = hstate_vma(vma); 5236 struct address_space *mapping = vma->vm_file->f_mapping; 5237 unsigned long sz = huge_page_size(h); 5238 struct mm_struct *mm = vma->vm_mm; 5239 unsigned long old_end = old_addr + len; 5240 unsigned long last_addr_mask; 5241 pte_t *src_pte, *dst_pte; 5242 struct mmu_notifier_range range; 5243 bool shared_pmd = false; 5244 5245 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr, 5246 old_end); 5247 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 5248 /* 5249 * In case of shared PMDs, we should cover the maximum possible 5250 * range. 5251 */ 5252 flush_cache_range(vma, range.start, range.end); 5253 5254 mmu_notifier_invalidate_range_start(&range); 5255 last_addr_mask = hugetlb_mask_last_page(h); 5256 /* Prevent race with file truncation */ 5257 hugetlb_vma_lock_write(vma); 5258 i_mmap_lock_write(mapping); 5259 for (; old_addr < old_end; old_addr += sz, new_addr += sz) { 5260 src_pte = hugetlb_walk(vma, old_addr, sz); 5261 if (!src_pte) { 5262 old_addr |= last_addr_mask; 5263 new_addr |= last_addr_mask; 5264 continue; 5265 } 5266 if (huge_pte_none(huge_ptep_get(src_pte))) 5267 continue; 5268 5269 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) { 5270 shared_pmd = true; 5271 old_addr |= last_addr_mask; 5272 new_addr |= last_addr_mask; 5273 continue; 5274 } 5275 5276 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz); 5277 if (!dst_pte) 5278 break; 5279 5280 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte); 5281 } 5282 5283 if (shared_pmd) 5284 flush_tlb_range(vma, range.start, range.end); 5285 else 5286 flush_tlb_range(vma, old_end - len, old_end); 5287 mmu_notifier_invalidate_range_end(&range); 5288 i_mmap_unlock_write(mapping); 5289 hugetlb_vma_unlock_write(vma); 5290 5291 return len + old_addr - old_end; 5292 } 5293 5294 static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma, 5295 unsigned long start, unsigned long end, 5296 struct page *ref_page, zap_flags_t zap_flags) 5297 { 5298 struct mm_struct *mm = vma->vm_mm; 5299 unsigned long address; 5300 pte_t *ptep; 5301 pte_t pte; 5302 spinlock_t *ptl; 5303 struct page *page; 5304 struct hstate *h = hstate_vma(vma); 5305 unsigned long sz = huge_page_size(h); 5306 unsigned long last_addr_mask; 5307 bool force_flush = false; 5308 5309 WARN_ON(!is_vm_hugetlb_page(vma)); 5310 BUG_ON(start & ~huge_page_mask(h)); 5311 BUG_ON(end & ~huge_page_mask(h)); 5312 5313 /* 5314 * This is a hugetlb vma, all the pte entries should point 5315 * to huge page. 5316 */ 5317 tlb_change_page_size(tlb, sz); 5318 tlb_start_vma(tlb, vma); 5319 5320 last_addr_mask = hugetlb_mask_last_page(h); 5321 address = start; 5322 for (; address < end; address += sz) { 5323 ptep = hugetlb_walk(vma, address, sz); 5324 if (!ptep) { 5325 address |= last_addr_mask; 5326 continue; 5327 } 5328 5329 ptl = huge_pte_lock(h, mm, ptep); 5330 if (huge_pmd_unshare(mm, vma, address, ptep)) { 5331 spin_unlock(ptl); 5332 tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE); 5333 force_flush = true; 5334 address |= last_addr_mask; 5335 continue; 5336 } 5337 5338 pte = huge_ptep_get(ptep); 5339 if (huge_pte_none(pte)) { 5340 spin_unlock(ptl); 5341 continue; 5342 } 5343 5344 /* 5345 * Migrating hugepage or HWPoisoned hugepage is already 5346 * unmapped and its refcount is dropped, so just clear pte here. 5347 */ 5348 if (unlikely(!pte_present(pte))) { 5349 /* 5350 * If the pte was wr-protected by uffd-wp in any of the 5351 * swap forms, meanwhile the caller does not want to 5352 * drop the uffd-wp bit in this zap, then replace the 5353 * pte with a marker. 5354 */ 5355 if (pte_swp_uffd_wp_any(pte) && 5356 !(zap_flags & ZAP_FLAG_DROP_MARKER)) 5357 set_huge_pte_at(mm, address, ptep, 5358 make_pte_marker(PTE_MARKER_UFFD_WP)); 5359 else 5360 huge_pte_clear(mm, address, ptep, sz); 5361 spin_unlock(ptl); 5362 continue; 5363 } 5364 5365 page = pte_page(pte); 5366 /* 5367 * If a reference page is supplied, it is because a specific 5368 * page is being unmapped, not a range. Ensure the page we 5369 * are about to unmap is the actual page of interest. 5370 */ 5371 if (ref_page) { 5372 if (page != ref_page) { 5373 spin_unlock(ptl); 5374 continue; 5375 } 5376 /* 5377 * Mark the VMA as having unmapped its page so that 5378 * future faults in this VMA will fail rather than 5379 * looking like data was lost 5380 */ 5381 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); 5382 } 5383 5384 pte = huge_ptep_get_and_clear(mm, address, ptep); 5385 tlb_remove_huge_tlb_entry(h, tlb, ptep, address); 5386 if (huge_pte_dirty(pte)) 5387 set_page_dirty(page); 5388 /* Leave a uffd-wp pte marker if needed */ 5389 if (huge_pte_uffd_wp(pte) && 5390 !(zap_flags & ZAP_FLAG_DROP_MARKER)) 5391 set_huge_pte_at(mm, address, ptep, 5392 make_pte_marker(PTE_MARKER_UFFD_WP)); 5393 hugetlb_count_sub(pages_per_huge_page(h), mm); 5394 page_remove_rmap(page, vma, true); 5395 5396 spin_unlock(ptl); 5397 tlb_remove_page_size(tlb, page, huge_page_size(h)); 5398 /* 5399 * Bail out after unmapping reference page if supplied 5400 */ 5401 if (ref_page) 5402 break; 5403 } 5404 tlb_end_vma(tlb, vma); 5405 5406 /* 5407 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We 5408 * could defer the flush until now, since by holding i_mmap_rwsem we 5409 * guaranteed that the last refernece would not be dropped. But we must 5410 * do the flushing before we return, as otherwise i_mmap_rwsem will be 5411 * dropped and the last reference to the shared PMDs page might be 5412 * dropped as well. 5413 * 5414 * In theory we could defer the freeing of the PMD pages as well, but 5415 * huge_pmd_unshare() relies on the exact page_count for the PMD page to 5416 * detect sharing, so we cannot defer the release of the page either. 5417 * Instead, do flush now. 5418 */ 5419 if (force_flush) 5420 tlb_flush_mmu_tlbonly(tlb); 5421 } 5422 5423 void __unmap_hugepage_range_final(struct mmu_gather *tlb, 5424 struct vm_area_struct *vma, unsigned long start, 5425 unsigned long end, struct page *ref_page, 5426 zap_flags_t zap_flags) 5427 { 5428 hugetlb_vma_lock_write(vma); 5429 i_mmap_lock_write(vma->vm_file->f_mapping); 5430 5431 /* mmu notification performed in caller */ 5432 __unmap_hugepage_range(tlb, vma, start, end, ref_page, zap_flags); 5433 5434 if (zap_flags & ZAP_FLAG_UNMAP) { /* final unmap */ 5435 /* 5436 * Unlock and free the vma lock before releasing i_mmap_rwsem. 5437 * When the vma_lock is freed, this makes the vma ineligible 5438 * for pmd sharing. And, i_mmap_rwsem is required to set up 5439 * pmd sharing. This is important as page tables for this 5440 * unmapped range will be asynchrously deleted. If the page 5441 * tables are shared, there will be issues when accessed by 5442 * someone else. 5443 */ 5444 __hugetlb_vma_unlock_write_free(vma); 5445 i_mmap_unlock_write(vma->vm_file->f_mapping); 5446 } else { 5447 i_mmap_unlock_write(vma->vm_file->f_mapping); 5448 hugetlb_vma_unlock_write(vma); 5449 } 5450 } 5451 5452 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, 5453 unsigned long end, struct page *ref_page, 5454 zap_flags_t zap_flags) 5455 { 5456 struct mmu_notifier_range range; 5457 struct mmu_gather tlb; 5458 5459 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 5460 start, end); 5461 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 5462 mmu_notifier_invalidate_range_start(&range); 5463 tlb_gather_mmu(&tlb, vma->vm_mm); 5464 5465 __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags); 5466 5467 mmu_notifier_invalidate_range_end(&range); 5468 tlb_finish_mmu(&tlb); 5469 } 5470 5471 /* 5472 * This is called when the original mapper is failing to COW a MAP_PRIVATE 5473 * mapping it owns the reserve page for. The intention is to unmap the page 5474 * from other VMAs and let the children be SIGKILLed if they are faulting the 5475 * same region. 5476 */ 5477 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, 5478 struct page *page, unsigned long address) 5479 { 5480 struct hstate *h = hstate_vma(vma); 5481 struct vm_area_struct *iter_vma; 5482 struct address_space *mapping; 5483 pgoff_t pgoff; 5484 5485 /* 5486 * vm_pgoff is in PAGE_SIZE units, hence the different calculation 5487 * from page cache lookup which is in HPAGE_SIZE units. 5488 */ 5489 address = address & huge_page_mask(h); 5490 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + 5491 vma->vm_pgoff; 5492 mapping = vma->vm_file->f_mapping; 5493 5494 /* 5495 * Take the mapping lock for the duration of the table walk. As 5496 * this mapping should be shared between all the VMAs, 5497 * __unmap_hugepage_range() is called as the lock is already held 5498 */ 5499 i_mmap_lock_write(mapping); 5500 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) { 5501 /* Do not unmap the current VMA */ 5502 if (iter_vma == vma) 5503 continue; 5504 5505 /* 5506 * Shared VMAs have their own reserves and do not affect 5507 * MAP_PRIVATE accounting but it is possible that a shared 5508 * VMA is using the same page so check and skip such VMAs. 5509 */ 5510 if (iter_vma->vm_flags & VM_MAYSHARE) 5511 continue; 5512 5513 /* 5514 * Unmap the page from other VMAs without their own reserves. 5515 * They get marked to be SIGKILLed if they fault in these 5516 * areas. This is because a future no-page fault on this VMA 5517 * could insert a zeroed page instead of the data existing 5518 * from the time of fork. This would look like data corruption 5519 */ 5520 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) 5521 unmap_hugepage_range(iter_vma, address, 5522 address + huge_page_size(h), page, 0); 5523 } 5524 i_mmap_unlock_write(mapping); 5525 } 5526 5527 /* 5528 * hugetlb_wp() should be called with page lock of the original hugepage held. 5529 * Called with hugetlb_fault_mutex_table held and pte_page locked so we 5530 * cannot race with other handlers or page migration. 5531 * Keep the pte_same checks anyway to make transition from the mutex easier. 5532 */ 5533 static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma, 5534 unsigned long address, pte_t *ptep, unsigned int flags, 5535 struct folio *pagecache_folio, spinlock_t *ptl) 5536 { 5537 const bool unshare = flags & FAULT_FLAG_UNSHARE; 5538 pte_t pte = huge_ptep_get(ptep); 5539 struct hstate *h = hstate_vma(vma); 5540 struct folio *old_folio; 5541 struct folio *new_folio; 5542 int outside_reserve = 0; 5543 vm_fault_t ret = 0; 5544 unsigned long haddr = address & huge_page_mask(h); 5545 struct mmu_notifier_range range; 5546 5547 /* 5548 * Never handle CoW for uffd-wp protected pages. It should be only 5549 * handled when the uffd-wp protection is removed. 5550 * 5551 * Note that only the CoW optimization path (in hugetlb_no_page()) 5552 * can trigger this, because hugetlb_fault() will always resolve 5553 * uffd-wp bit first. 5554 */ 5555 if (!unshare && huge_pte_uffd_wp(pte)) 5556 return 0; 5557 5558 /* 5559 * hugetlb does not support FOLL_FORCE-style write faults that keep the 5560 * PTE mapped R/O such as maybe_mkwrite() would do. 5561 */ 5562 if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE))) 5563 return VM_FAULT_SIGSEGV; 5564 5565 /* Let's take out MAP_SHARED mappings first. */ 5566 if (vma->vm_flags & VM_MAYSHARE) { 5567 set_huge_ptep_writable(vma, haddr, ptep); 5568 return 0; 5569 } 5570 5571 old_folio = page_folio(pte_page(pte)); 5572 5573 delayacct_wpcopy_start(); 5574 5575 retry_avoidcopy: 5576 /* 5577 * If no-one else is actually using this page, we're the exclusive 5578 * owner and can reuse this page. 5579 */ 5580 if (folio_mapcount(old_folio) == 1 && folio_test_anon(old_folio)) { 5581 if (!PageAnonExclusive(&old_folio->page)) 5582 page_move_anon_rmap(&old_folio->page, vma); 5583 if (likely(!unshare)) 5584 set_huge_ptep_writable(vma, haddr, ptep); 5585 5586 delayacct_wpcopy_end(); 5587 return 0; 5588 } 5589 VM_BUG_ON_PAGE(folio_test_anon(old_folio) && 5590 PageAnonExclusive(&old_folio->page), &old_folio->page); 5591 5592 /* 5593 * If the process that created a MAP_PRIVATE mapping is about to 5594 * perform a COW due to a shared page count, attempt to satisfy 5595 * the allocation without using the existing reserves. The pagecache 5596 * page is used to determine if the reserve at this address was 5597 * consumed or not. If reserves were used, a partial faulted mapping 5598 * at the time of fork() could consume its reserves on COW instead 5599 * of the full address range. 5600 */ 5601 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && 5602 old_folio != pagecache_folio) 5603 outside_reserve = 1; 5604 5605 folio_get(old_folio); 5606 5607 /* 5608 * Drop page table lock as buddy allocator may be called. It will 5609 * be acquired again before returning to the caller, as expected. 5610 */ 5611 spin_unlock(ptl); 5612 new_folio = alloc_hugetlb_folio(vma, haddr, outside_reserve); 5613 5614 if (IS_ERR(new_folio)) { 5615 /* 5616 * If a process owning a MAP_PRIVATE mapping fails to COW, 5617 * it is due to references held by a child and an insufficient 5618 * huge page pool. To guarantee the original mappers 5619 * reliability, unmap the page from child processes. The child 5620 * may get SIGKILLed if it later faults. 5621 */ 5622 if (outside_reserve) { 5623 struct address_space *mapping = vma->vm_file->f_mapping; 5624 pgoff_t idx; 5625 u32 hash; 5626 5627 folio_put(old_folio); 5628 /* 5629 * Drop hugetlb_fault_mutex and vma_lock before 5630 * unmapping. unmapping needs to hold vma_lock 5631 * in write mode. Dropping vma_lock in read mode 5632 * here is OK as COW mappings do not interact with 5633 * PMD sharing. 5634 * 5635 * Reacquire both after unmap operation. 5636 */ 5637 idx = vma_hugecache_offset(h, vma, haddr); 5638 hash = hugetlb_fault_mutex_hash(mapping, idx); 5639 hugetlb_vma_unlock_read(vma); 5640 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 5641 5642 unmap_ref_private(mm, vma, &old_folio->page, haddr); 5643 5644 mutex_lock(&hugetlb_fault_mutex_table[hash]); 5645 hugetlb_vma_lock_read(vma); 5646 spin_lock(ptl); 5647 ptep = hugetlb_walk(vma, haddr, huge_page_size(h)); 5648 if (likely(ptep && 5649 pte_same(huge_ptep_get(ptep), pte))) 5650 goto retry_avoidcopy; 5651 /* 5652 * race occurs while re-acquiring page table 5653 * lock, and our job is done. 5654 */ 5655 delayacct_wpcopy_end(); 5656 return 0; 5657 } 5658 5659 ret = vmf_error(PTR_ERR(new_folio)); 5660 goto out_release_old; 5661 } 5662 5663 /* 5664 * When the original hugepage is shared one, it does not have 5665 * anon_vma prepared. 5666 */ 5667 if (unlikely(anon_vma_prepare(vma))) { 5668 ret = VM_FAULT_OOM; 5669 goto out_release_all; 5670 } 5671 5672 if (copy_user_large_folio(new_folio, old_folio, address, vma)) { 5673 ret = VM_FAULT_HWPOISON_LARGE; 5674 goto out_release_all; 5675 } 5676 __folio_mark_uptodate(new_folio); 5677 5678 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, haddr, 5679 haddr + huge_page_size(h)); 5680 mmu_notifier_invalidate_range_start(&range); 5681 5682 /* 5683 * Retake the page table lock to check for racing updates 5684 * before the page tables are altered 5685 */ 5686 spin_lock(ptl); 5687 ptep = hugetlb_walk(vma, haddr, huge_page_size(h)); 5688 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) { 5689 pte_t newpte = make_huge_pte(vma, &new_folio->page, !unshare); 5690 5691 /* Break COW or unshare */ 5692 huge_ptep_clear_flush(vma, haddr, ptep); 5693 mmu_notifier_invalidate_range(mm, range.start, range.end); 5694 page_remove_rmap(&old_folio->page, vma, true); 5695 hugepage_add_new_anon_rmap(new_folio, vma, haddr); 5696 if (huge_pte_uffd_wp(pte)) 5697 newpte = huge_pte_mkuffd_wp(newpte); 5698 set_huge_pte_at(mm, haddr, ptep, newpte); 5699 folio_set_hugetlb_migratable(new_folio); 5700 /* Make the old page be freed below */ 5701 new_folio = old_folio; 5702 } 5703 spin_unlock(ptl); 5704 mmu_notifier_invalidate_range_end(&range); 5705 out_release_all: 5706 /* 5707 * No restore in case of successful pagetable update (Break COW or 5708 * unshare) 5709 */ 5710 if (new_folio != old_folio) 5711 restore_reserve_on_error(h, vma, haddr, new_folio); 5712 folio_put(new_folio); 5713 out_release_old: 5714 folio_put(old_folio); 5715 5716 spin_lock(ptl); /* Caller expects lock to be held */ 5717 5718 delayacct_wpcopy_end(); 5719 return ret; 5720 } 5721 5722 /* 5723 * Return whether there is a pagecache page to back given address within VMA. 5724 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page. 5725 */ 5726 static bool hugetlbfs_pagecache_present(struct hstate *h, 5727 struct vm_area_struct *vma, unsigned long address) 5728 { 5729 struct address_space *mapping = vma->vm_file->f_mapping; 5730 pgoff_t idx = vma_hugecache_offset(h, vma, address); 5731 struct folio *folio; 5732 5733 folio = filemap_get_folio(mapping, idx); 5734 if (IS_ERR(folio)) 5735 return false; 5736 folio_put(folio); 5737 return true; 5738 } 5739 5740 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping, 5741 pgoff_t idx) 5742 { 5743 struct inode *inode = mapping->host; 5744 struct hstate *h = hstate_inode(inode); 5745 int err; 5746 5747 __folio_set_locked(folio); 5748 err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL); 5749 5750 if (unlikely(err)) { 5751 __folio_clear_locked(folio); 5752 return err; 5753 } 5754 folio_clear_hugetlb_restore_reserve(folio); 5755 5756 /* 5757 * mark folio dirty so that it will not be removed from cache/file 5758 * by non-hugetlbfs specific code paths. 5759 */ 5760 folio_mark_dirty(folio); 5761 5762 spin_lock(&inode->i_lock); 5763 inode->i_blocks += blocks_per_huge_page(h); 5764 spin_unlock(&inode->i_lock); 5765 return 0; 5766 } 5767 5768 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma, 5769 struct address_space *mapping, 5770 pgoff_t idx, 5771 unsigned int flags, 5772 unsigned long haddr, 5773 unsigned long addr, 5774 unsigned long reason) 5775 { 5776 u32 hash; 5777 struct vm_fault vmf = { 5778 .vma = vma, 5779 .address = haddr, 5780 .real_address = addr, 5781 .flags = flags, 5782 5783 /* 5784 * Hard to debug if it ends up being 5785 * used by a callee that assumes 5786 * something about the other 5787 * uninitialized fields... same as in 5788 * memory.c 5789 */ 5790 }; 5791 5792 /* 5793 * vma_lock and hugetlb_fault_mutex must be dropped before handling 5794 * userfault. Also mmap_lock could be dropped due to handling 5795 * userfault, any vma operation should be careful from here. 5796 */ 5797 hugetlb_vma_unlock_read(vma); 5798 hash = hugetlb_fault_mutex_hash(mapping, idx); 5799 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 5800 return handle_userfault(&vmf, reason); 5801 } 5802 5803 /* 5804 * Recheck pte with pgtable lock. Returns true if pte didn't change, or 5805 * false if pte changed or is changing. 5806 */ 5807 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm, 5808 pte_t *ptep, pte_t old_pte) 5809 { 5810 spinlock_t *ptl; 5811 bool same; 5812 5813 ptl = huge_pte_lock(h, mm, ptep); 5814 same = pte_same(huge_ptep_get(ptep), old_pte); 5815 spin_unlock(ptl); 5816 5817 return same; 5818 } 5819 5820 static vm_fault_t hugetlb_no_page(struct mm_struct *mm, 5821 struct vm_area_struct *vma, 5822 struct address_space *mapping, pgoff_t idx, 5823 unsigned long address, pte_t *ptep, 5824 pte_t old_pte, unsigned int flags) 5825 { 5826 struct hstate *h = hstate_vma(vma); 5827 vm_fault_t ret = VM_FAULT_SIGBUS; 5828 int anon_rmap = 0; 5829 unsigned long size; 5830 struct folio *folio; 5831 pte_t new_pte; 5832 spinlock_t *ptl; 5833 unsigned long haddr = address & huge_page_mask(h); 5834 bool new_folio, new_pagecache_folio = false; 5835 u32 hash = hugetlb_fault_mutex_hash(mapping, idx); 5836 5837 /* 5838 * Currently, we are forced to kill the process in the event the 5839 * original mapper has unmapped pages from the child due to a failed 5840 * COW/unsharing. Warn that such a situation has occurred as it may not 5841 * be obvious. 5842 */ 5843 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { 5844 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n", 5845 current->pid); 5846 goto out; 5847 } 5848 5849 /* 5850 * Use page lock to guard against racing truncation 5851 * before we get page_table_lock. 5852 */ 5853 new_folio = false; 5854 folio = filemap_lock_folio(mapping, idx); 5855 if (IS_ERR(folio)) { 5856 size = i_size_read(mapping->host) >> huge_page_shift(h); 5857 if (idx >= size) 5858 goto out; 5859 /* Check for page in userfault range */ 5860 if (userfaultfd_missing(vma)) { 5861 /* 5862 * Since hugetlb_no_page() was examining pte 5863 * without pgtable lock, we need to re-test under 5864 * lock because the pte may not be stable and could 5865 * have changed from under us. Try to detect 5866 * either changed or during-changing ptes and retry 5867 * properly when needed. 5868 * 5869 * Note that userfaultfd is actually fine with 5870 * false positives (e.g. caused by pte changed), 5871 * but not wrong logical events (e.g. caused by 5872 * reading a pte during changing). The latter can 5873 * confuse the userspace, so the strictness is very 5874 * much preferred. E.g., MISSING event should 5875 * never happen on the page after UFFDIO_COPY has 5876 * correctly installed the page and returned. 5877 */ 5878 if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) { 5879 ret = 0; 5880 goto out; 5881 } 5882 5883 return hugetlb_handle_userfault(vma, mapping, idx, flags, 5884 haddr, address, 5885 VM_UFFD_MISSING); 5886 } 5887 5888 folio = alloc_hugetlb_folio(vma, haddr, 0); 5889 if (IS_ERR(folio)) { 5890 /* 5891 * Returning error will result in faulting task being 5892 * sent SIGBUS. The hugetlb fault mutex prevents two 5893 * tasks from racing to fault in the same page which 5894 * could result in false unable to allocate errors. 5895 * Page migration does not take the fault mutex, but 5896 * does a clear then write of pte's under page table 5897 * lock. Page fault code could race with migration, 5898 * notice the clear pte and try to allocate a page 5899 * here. Before returning error, get ptl and make 5900 * sure there really is no pte entry. 5901 */ 5902 if (hugetlb_pte_stable(h, mm, ptep, old_pte)) 5903 ret = vmf_error(PTR_ERR(folio)); 5904 else 5905 ret = 0; 5906 goto out; 5907 } 5908 clear_huge_page(&folio->page, address, pages_per_huge_page(h)); 5909 __folio_mark_uptodate(folio); 5910 new_folio = true; 5911 5912 if (vma->vm_flags & VM_MAYSHARE) { 5913 int err = hugetlb_add_to_page_cache(folio, mapping, idx); 5914 if (err) { 5915 /* 5916 * err can't be -EEXIST which implies someone 5917 * else consumed the reservation since hugetlb 5918 * fault mutex is held when add a hugetlb page 5919 * to the page cache. So it's safe to call 5920 * restore_reserve_on_error() here. 5921 */ 5922 restore_reserve_on_error(h, vma, haddr, folio); 5923 folio_put(folio); 5924 goto out; 5925 } 5926 new_pagecache_folio = true; 5927 } else { 5928 folio_lock(folio); 5929 if (unlikely(anon_vma_prepare(vma))) { 5930 ret = VM_FAULT_OOM; 5931 goto backout_unlocked; 5932 } 5933 anon_rmap = 1; 5934 } 5935 } else { 5936 /* 5937 * If memory error occurs between mmap() and fault, some process 5938 * don't have hwpoisoned swap entry for errored virtual address. 5939 * So we need to block hugepage fault by PG_hwpoison bit check. 5940 */ 5941 if (unlikely(folio_test_hwpoison(folio))) { 5942 ret = VM_FAULT_HWPOISON_LARGE | 5943 VM_FAULT_SET_HINDEX(hstate_index(h)); 5944 goto backout_unlocked; 5945 } 5946 5947 /* Check for page in userfault range. */ 5948 if (userfaultfd_minor(vma)) { 5949 folio_unlock(folio); 5950 folio_put(folio); 5951 /* See comment in userfaultfd_missing() block above */ 5952 if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) { 5953 ret = 0; 5954 goto out; 5955 } 5956 return hugetlb_handle_userfault(vma, mapping, idx, flags, 5957 haddr, address, 5958 VM_UFFD_MINOR); 5959 } 5960 } 5961 5962 /* 5963 * If we are going to COW a private mapping later, we examine the 5964 * pending reservations for this page now. This will ensure that 5965 * any allocations necessary to record that reservation occur outside 5966 * the spinlock. 5967 */ 5968 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 5969 if (vma_needs_reservation(h, vma, haddr) < 0) { 5970 ret = VM_FAULT_OOM; 5971 goto backout_unlocked; 5972 } 5973 /* Just decrements count, does not deallocate */ 5974 vma_end_reservation(h, vma, haddr); 5975 } 5976 5977 ptl = huge_pte_lock(h, mm, ptep); 5978 ret = 0; 5979 /* If pte changed from under us, retry */ 5980 if (!pte_same(huge_ptep_get(ptep), old_pte)) 5981 goto backout; 5982 5983 if (anon_rmap) 5984 hugepage_add_new_anon_rmap(folio, vma, haddr); 5985 else 5986 page_dup_file_rmap(&folio->page, true); 5987 new_pte = make_huge_pte(vma, &folio->page, ((vma->vm_flags & VM_WRITE) 5988 && (vma->vm_flags & VM_SHARED))); 5989 /* 5990 * If this pte was previously wr-protected, keep it wr-protected even 5991 * if populated. 5992 */ 5993 if (unlikely(pte_marker_uffd_wp(old_pte))) 5994 new_pte = huge_pte_mkuffd_wp(new_pte); 5995 set_huge_pte_at(mm, haddr, ptep, new_pte); 5996 5997 hugetlb_count_add(pages_per_huge_page(h), mm); 5998 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 5999 /* Optimization, do the COW without a second fault */ 6000 ret = hugetlb_wp(mm, vma, address, ptep, flags, folio, ptl); 6001 } 6002 6003 spin_unlock(ptl); 6004 6005 /* 6006 * Only set hugetlb_migratable in newly allocated pages. Existing pages 6007 * found in the pagecache may not have hugetlb_migratable if they have 6008 * been isolated for migration. 6009 */ 6010 if (new_folio) 6011 folio_set_hugetlb_migratable(folio); 6012 6013 folio_unlock(folio); 6014 out: 6015 hugetlb_vma_unlock_read(vma); 6016 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6017 return ret; 6018 6019 backout: 6020 spin_unlock(ptl); 6021 backout_unlocked: 6022 if (new_folio && !new_pagecache_folio) 6023 restore_reserve_on_error(h, vma, haddr, folio); 6024 6025 folio_unlock(folio); 6026 folio_put(folio); 6027 goto out; 6028 } 6029 6030 #ifdef CONFIG_SMP 6031 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 6032 { 6033 unsigned long key[2]; 6034 u32 hash; 6035 6036 key[0] = (unsigned long) mapping; 6037 key[1] = idx; 6038 6039 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0); 6040 6041 return hash & (num_fault_mutexes - 1); 6042 } 6043 #else 6044 /* 6045 * For uniprocessor systems we always use a single mutex, so just 6046 * return 0 and avoid the hashing overhead. 6047 */ 6048 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 6049 { 6050 return 0; 6051 } 6052 #endif 6053 6054 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, 6055 unsigned long address, unsigned int flags) 6056 { 6057 pte_t *ptep, entry; 6058 spinlock_t *ptl; 6059 vm_fault_t ret; 6060 u32 hash; 6061 pgoff_t idx; 6062 struct folio *folio = NULL; 6063 struct folio *pagecache_folio = NULL; 6064 struct hstate *h = hstate_vma(vma); 6065 struct address_space *mapping; 6066 int need_wait_lock = 0; 6067 unsigned long haddr = address & huge_page_mask(h); 6068 6069 /* 6070 * Serialize hugepage allocation and instantiation, so that we don't 6071 * get spurious allocation failures if two CPUs race to instantiate 6072 * the same page in the page cache. 6073 */ 6074 mapping = vma->vm_file->f_mapping; 6075 idx = vma_hugecache_offset(h, vma, haddr); 6076 hash = hugetlb_fault_mutex_hash(mapping, idx); 6077 mutex_lock(&hugetlb_fault_mutex_table[hash]); 6078 6079 /* 6080 * Acquire vma lock before calling huge_pte_alloc and hold 6081 * until finished with ptep. This prevents huge_pmd_unshare from 6082 * being called elsewhere and making the ptep no longer valid. 6083 */ 6084 hugetlb_vma_lock_read(vma); 6085 ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h)); 6086 if (!ptep) { 6087 hugetlb_vma_unlock_read(vma); 6088 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6089 return VM_FAULT_OOM; 6090 } 6091 6092 entry = huge_ptep_get(ptep); 6093 /* PTE markers should be handled the same way as none pte */ 6094 if (huge_pte_none_mostly(entry)) 6095 /* 6096 * hugetlb_no_page will drop vma lock and hugetlb fault 6097 * mutex internally, which make us return immediately. 6098 */ 6099 return hugetlb_no_page(mm, vma, mapping, idx, address, ptep, 6100 entry, flags); 6101 6102 ret = 0; 6103 6104 /* 6105 * entry could be a migration/hwpoison entry at this point, so this 6106 * check prevents the kernel from going below assuming that we have 6107 * an active hugepage in pagecache. This goto expects the 2nd page 6108 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will 6109 * properly handle it. 6110 */ 6111 if (!pte_present(entry)) { 6112 if (unlikely(is_hugetlb_entry_migration(entry))) { 6113 /* 6114 * Release the hugetlb fault lock now, but retain 6115 * the vma lock, because it is needed to guard the 6116 * huge_pte_lockptr() later in 6117 * migration_entry_wait_huge(). The vma lock will 6118 * be released there. 6119 */ 6120 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6121 migration_entry_wait_huge(vma, ptep); 6122 return 0; 6123 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) 6124 ret = VM_FAULT_HWPOISON_LARGE | 6125 VM_FAULT_SET_HINDEX(hstate_index(h)); 6126 goto out_mutex; 6127 } 6128 6129 /* 6130 * If we are going to COW/unshare the mapping later, we examine the 6131 * pending reservations for this page now. This will ensure that any 6132 * allocations necessary to record that reservation occur outside the 6133 * spinlock. Also lookup the pagecache page now as it is used to 6134 * determine if a reservation has been consumed. 6135 */ 6136 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) && 6137 !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) { 6138 if (vma_needs_reservation(h, vma, haddr) < 0) { 6139 ret = VM_FAULT_OOM; 6140 goto out_mutex; 6141 } 6142 /* Just decrements count, does not deallocate */ 6143 vma_end_reservation(h, vma, haddr); 6144 6145 pagecache_folio = filemap_lock_folio(mapping, idx); 6146 if (IS_ERR(pagecache_folio)) 6147 pagecache_folio = NULL; 6148 } 6149 6150 ptl = huge_pte_lock(h, mm, ptep); 6151 6152 /* Check for a racing update before calling hugetlb_wp() */ 6153 if (unlikely(!pte_same(entry, huge_ptep_get(ptep)))) 6154 goto out_ptl; 6155 6156 /* Handle userfault-wp first, before trying to lock more pages */ 6157 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) && 6158 (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) { 6159 struct vm_fault vmf = { 6160 .vma = vma, 6161 .address = haddr, 6162 .real_address = address, 6163 .flags = flags, 6164 }; 6165 6166 spin_unlock(ptl); 6167 if (pagecache_folio) { 6168 folio_unlock(pagecache_folio); 6169 folio_put(pagecache_folio); 6170 } 6171 hugetlb_vma_unlock_read(vma); 6172 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6173 return handle_userfault(&vmf, VM_UFFD_WP); 6174 } 6175 6176 /* 6177 * hugetlb_wp() requires page locks of pte_page(entry) and 6178 * pagecache_folio, so here we need take the former one 6179 * when folio != pagecache_folio or !pagecache_folio. 6180 */ 6181 folio = page_folio(pte_page(entry)); 6182 if (folio != pagecache_folio) 6183 if (!folio_trylock(folio)) { 6184 need_wait_lock = 1; 6185 goto out_ptl; 6186 } 6187 6188 folio_get(folio); 6189 6190 if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) { 6191 if (!huge_pte_write(entry)) { 6192 ret = hugetlb_wp(mm, vma, address, ptep, flags, 6193 pagecache_folio, ptl); 6194 goto out_put_page; 6195 } else if (likely(flags & FAULT_FLAG_WRITE)) { 6196 entry = huge_pte_mkdirty(entry); 6197 } 6198 } 6199 entry = pte_mkyoung(entry); 6200 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry, 6201 flags & FAULT_FLAG_WRITE)) 6202 update_mmu_cache(vma, haddr, ptep); 6203 out_put_page: 6204 if (folio != pagecache_folio) 6205 folio_unlock(folio); 6206 folio_put(folio); 6207 out_ptl: 6208 spin_unlock(ptl); 6209 6210 if (pagecache_folio) { 6211 folio_unlock(pagecache_folio); 6212 folio_put(pagecache_folio); 6213 } 6214 out_mutex: 6215 hugetlb_vma_unlock_read(vma); 6216 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6217 /* 6218 * Generally it's safe to hold refcount during waiting page lock. But 6219 * here we just wait to defer the next page fault to avoid busy loop and 6220 * the page is not used after unlocked before returning from the current 6221 * page fault. So we are safe from accessing freed page, even if we wait 6222 * here without taking refcount. 6223 */ 6224 if (need_wait_lock) 6225 folio_wait_locked(folio); 6226 return ret; 6227 } 6228 6229 #ifdef CONFIG_USERFAULTFD 6230 /* 6231 * Used by userfaultfd UFFDIO_* ioctls. Based on userfaultfd's mfill_atomic_pte 6232 * with modifications for hugetlb pages. 6233 */ 6234 int hugetlb_mfill_atomic_pte(pte_t *dst_pte, 6235 struct vm_area_struct *dst_vma, 6236 unsigned long dst_addr, 6237 unsigned long src_addr, 6238 uffd_flags_t flags, 6239 struct folio **foliop) 6240 { 6241 struct mm_struct *dst_mm = dst_vma->vm_mm; 6242 bool is_continue = uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE); 6243 bool wp_enabled = (flags & MFILL_ATOMIC_WP); 6244 struct hstate *h = hstate_vma(dst_vma); 6245 struct address_space *mapping = dst_vma->vm_file->f_mapping; 6246 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr); 6247 unsigned long size; 6248 int vm_shared = dst_vma->vm_flags & VM_SHARED; 6249 pte_t _dst_pte; 6250 spinlock_t *ptl; 6251 int ret = -ENOMEM; 6252 struct folio *folio; 6253 int writable; 6254 bool folio_in_pagecache = false; 6255 6256 if (is_continue) { 6257 ret = -EFAULT; 6258 folio = filemap_lock_folio(mapping, idx); 6259 if (IS_ERR(folio)) 6260 goto out; 6261 folio_in_pagecache = true; 6262 } else if (!*foliop) { 6263 /* If a folio already exists, then it's UFFDIO_COPY for 6264 * a non-missing case. Return -EEXIST. 6265 */ 6266 if (vm_shared && 6267 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) { 6268 ret = -EEXIST; 6269 goto out; 6270 } 6271 6272 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0); 6273 if (IS_ERR(folio)) { 6274 ret = -ENOMEM; 6275 goto out; 6276 } 6277 6278 ret = copy_folio_from_user(folio, (const void __user *) src_addr, 6279 false); 6280 6281 /* fallback to copy_from_user outside mmap_lock */ 6282 if (unlikely(ret)) { 6283 ret = -ENOENT; 6284 /* Free the allocated folio which may have 6285 * consumed a reservation. 6286 */ 6287 restore_reserve_on_error(h, dst_vma, dst_addr, folio); 6288 folio_put(folio); 6289 6290 /* Allocate a temporary folio to hold the copied 6291 * contents. 6292 */ 6293 folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr); 6294 if (!folio) { 6295 ret = -ENOMEM; 6296 goto out; 6297 } 6298 *foliop = folio; 6299 /* Set the outparam foliop and return to the caller to 6300 * copy the contents outside the lock. Don't free the 6301 * folio. 6302 */ 6303 goto out; 6304 } 6305 } else { 6306 if (vm_shared && 6307 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) { 6308 folio_put(*foliop); 6309 ret = -EEXIST; 6310 *foliop = NULL; 6311 goto out; 6312 } 6313 6314 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0); 6315 if (IS_ERR(folio)) { 6316 folio_put(*foliop); 6317 ret = -ENOMEM; 6318 *foliop = NULL; 6319 goto out; 6320 } 6321 ret = copy_user_large_folio(folio, *foliop, dst_addr, dst_vma); 6322 folio_put(*foliop); 6323 *foliop = NULL; 6324 if (ret) { 6325 folio_put(folio); 6326 goto out; 6327 } 6328 } 6329 6330 /* 6331 * The memory barrier inside __folio_mark_uptodate makes sure that 6332 * preceding stores to the page contents become visible before 6333 * the set_pte_at() write. 6334 */ 6335 __folio_mark_uptodate(folio); 6336 6337 /* Add shared, newly allocated pages to the page cache. */ 6338 if (vm_shared && !is_continue) { 6339 size = i_size_read(mapping->host) >> huge_page_shift(h); 6340 ret = -EFAULT; 6341 if (idx >= size) 6342 goto out_release_nounlock; 6343 6344 /* 6345 * Serialization between remove_inode_hugepages() and 6346 * hugetlb_add_to_page_cache() below happens through the 6347 * hugetlb_fault_mutex_table that here must be hold by 6348 * the caller. 6349 */ 6350 ret = hugetlb_add_to_page_cache(folio, mapping, idx); 6351 if (ret) 6352 goto out_release_nounlock; 6353 folio_in_pagecache = true; 6354 } 6355 6356 ptl = huge_pte_lock(h, dst_mm, dst_pte); 6357 6358 ret = -EIO; 6359 if (folio_test_hwpoison(folio)) 6360 goto out_release_unlock; 6361 6362 /* 6363 * We allow to overwrite a pte marker: consider when both MISSING|WP 6364 * registered, we firstly wr-protect a none pte which has no page cache 6365 * page backing it, then access the page. 6366 */ 6367 ret = -EEXIST; 6368 if (!huge_pte_none_mostly(huge_ptep_get(dst_pte))) 6369 goto out_release_unlock; 6370 6371 if (folio_in_pagecache) 6372 page_dup_file_rmap(&folio->page, true); 6373 else 6374 hugepage_add_new_anon_rmap(folio, dst_vma, dst_addr); 6375 6376 /* 6377 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY 6378 * with wp flag set, don't set pte write bit. 6379 */ 6380 if (wp_enabled || (is_continue && !vm_shared)) 6381 writable = 0; 6382 else 6383 writable = dst_vma->vm_flags & VM_WRITE; 6384 6385 _dst_pte = make_huge_pte(dst_vma, &folio->page, writable); 6386 /* 6387 * Always mark UFFDIO_COPY page dirty; note that this may not be 6388 * extremely important for hugetlbfs for now since swapping is not 6389 * supported, but we should still be clear in that this page cannot be 6390 * thrown away at will, even if write bit not set. 6391 */ 6392 _dst_pte = huge_pte_mkdirty(_dst_pte); 6393 _dst_pte = pte_mkyoung(_dst_pte); 6394 6395 if (wp_enabled) 6396 _dst_pte = huge_pte_mkuffd_wp(_dst_pte); 6397 6398 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte); 6399 6400 hugetlb_count_add(pages_per_huge_page(h), dst_mm); 6401 6402 /* No need to invalidate - it was non-present before */ 6403 update_mmu_cache(dst_vma, dst_addr, dst_pte); 6404 6405 spin_unlock(ptl); 6406 if (!is_continue) 6407 folio_set_hugetlb_migratable(folio); 6408 if (vm_shared || is_continue) 6409 folio_unlock(folio); 6410 ret = 0; 6411 out: 6412 return ret; 6413 out_release_unlock: 6414 spin_unlock(ptl); 6415 if (vm_shared || is_continue) 6416 folio_unlock(folio); 6417 out_release_nounlock: 6418 if (!folio_in_pagecache) 6419 restore_reserve_on_error(h, dst_vma, dst_addr, folio); 6420 folio_put(folio); 6421 goto out; 6422 } 6423 #endif /* CONFIG_USERFAULTFD */ 6424 6425 static void record_subpages(struct page *page, struct vm_area_struct *vma, 6426 int refs, struct page **pages) 6427 { 6428 int nr; 6429 6430 for (nr = 0; nr < refs; nr++) { 6431 if (likely(pages)) 6432 pages[nr] = nth_page(page, nr); 6433 } 6434 } 6435 6436 static inline bool __follow_hugetlb_must_fault(struct vm_area_struct *vma, 6437 unsigned int flags, pte_t *pte, 6438 bool *unshare) 6439 { 6440 pte_t pteval = huge_ptep_get(pte); 6441 6442 *unshare = false; 6443 if (is_swap_pte(pteval)) 6444 return true; 6445 if (huge_pte_write(pteval)) 6446 return false; 6447 if (flags & FOLL_WRITE) 6448 return true; 6449 if (gup_must_unshare(vma, flags, pte_page(pteval))) { 6450 *unshare = true; 6451 return true; 6452 } 6453 return false; 6454 } 6455 6456 struct page *hugetlb_follow_page_mask(struct vm_area_struct *vma, 6457 unsigned long address, unsigned int flags) 6458 { 6459 struct hstate *h = hstate_vma(vma); 6460 struct mm_struct *mm = vma->vm_mm; 6461 unsigned long haddr = address & huge_page_mask(h); 6462 struct page *page = NULL; 6463 spinlock_t *ptl; 6464 pte_t *pte, entry; 6465 6466 /* 6467 * FOLL_PIN is not supported for follow_page(). Ordinary GUP goes via 6468 * follow_hugetlb_page(). 6469 */ 6470 if (WARN_ON_ONCE(flags & FOLL_PIN)) 6471 return NULL; 6472 6473 hugetlb_vma_lock_read(vma); 6474 pte = hugetlb_walk(vma, haddr, huge_page_size(h)); 6475 if (!pte) 6476 goto out_unlock; 6477 6478 ptl = huge_pte_lock(h, mm, pte); 6479 entry = huge_ptep_get(pte); 6480 if (pte_present(entry)) { 6481 page = pte_page(entry) + 6482 ((address & ~huge_page_mask(h)) >> PAGE_SHIFT); 6483 /* 6484 * Note that page may be a sub-page, and with vmemmap 6485 * optimizations the page struct may be read only. 6486 * try_grab_page() will increase the ref count on the 6487 * head page, so this will be OK. 6488 * 6489 * try_grab_page() should always be able to get the page here, 6490 * because we hold the ptl lock and have verified pte_present(). 6491 */ 6492 if (try_grab_page(page, flags)) { 6493 page = NULL; 6494 goto out; 6495 } 6496 } 6497 out: 6498 spin_unlock(ptl); 6499 out_unlock: 6500 hugetlb_vma_unlock_read(vma); 6501 return page; 6502 } 6503 6504 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, 6505 struct page **pages, unsigned long *position, 6506 unsigned long *nr_pages, long i, unsigned int flags, 6507 int *locked) 6508 { 6509 unsigned long pfn_offset; 6510 unsigned long vaddr = *position; 6511 unsigned long remainder = *nr_pages; 6512 struct hstate *h = hstate_vma(vma); 6513 int err = -EFAULT, refs; 6514 6515 while (vaddr < vma->vm_end && remainder) { 6516 pte_t *pte; 6517 spinlock_t *ptl = NULL; 6518 bool unshare = false; 6519 int absent; 6520 struct page *page; 6521 6522 /* 6523 * If we have a pending SIGKILL, don't keep faulting pages and 6524 * potentially allocating memory. 6525 */ 6526 if (fatal_signal_pending(current)) { 6527 remainder = 0; 6528 break; 6529 } 6530 6531 hugetlb_vma_lock_read(vma); 6532 /* 6533 * Some archs (sparc64, sh*) have multiple pte_ts to 6534 * each hugepage. We have to make sure we get the 6535 * first, for the page indexing below to work. 6536 * 6537 * Note that page table lock is not held when pte is null. 6538 */ 6539 pte = hugetlb_walk(vma, vaddr & huge_page_mask(h), 6540 huge_page_size(h)); 6541 if (pte) 6542 ptl = huge_pte_lock(h, mm, pte); 6543 absent = !pte || huge_pte_none(huge_ptep_get(pte)); 6544 6545 /* 6546 * When coredumping, it suits get_dump_page if we just return 6547 * an error where there's an empty slot with no huge pagecache 6548 * to back it. This way, we avoid allocating a hugepage, and 6549 * the sparse dumpfile avoids allocating disk blocks, but its 6550 * huge holes still show up with zeroes where they need to be. 6551 */ 6552 if (absent && (flags & FOLL_DUMP) && 6553 !hugetlbfs_pagecache_present(h, vma, vaddr)) { 6554 if (pte) 6555 spin_unlock(ptl); 6556 hugetlb_vma_unlock_read(vma); 6557 remainder = 0; 6558 break; 6559 } 6560 6561 /* 6562 * We need call hugetlb_fault for both hugepages under migration 6563 * (in which case hugetlb_fault waits for the migration,) and 6564 * hwpoisoned hugepages (in which case we need to prevent the 6565 * caller from accessing to them.) In order to do this, we use 6566 * here is_swap_pte instead of is_hugetlb_entry_migration and 6567 * is_hugetlb_entry_hwpoisoned. This is because it simply covers 6568 * both cases, and because we can't follow correct pages 6569 * directly from any kind of swap entries. 6570 */ 6571 if (absent || 6572 __follow_hugetlb_must_fault(vma, flags, pte, &unshare)) { 6573 vm_fault_t ret; 6574 unsigned int fault_flags = 0; 6575 6576 if (pte) 6577 spin_unlock(ptl); 6578 hugetlb_vma_unlock_read(vma); 6579 6580 if (flags & FOLL_WRITE) 6581 fault_flags |= FAULT_FLAG_WRITE; 6582 else if (unshare) 6583 fault_flags |= FAULT_FLAG_UNSHARE; 6584 if (locked) { 6585 fault_flags |= FAULT_FLAG_ALLOW_RETRY | 6586 FAULT_FLAG_KILLABLE; 6587 if (flags & FOLL_INTERRUPTIBLE) 6588 fault_flags |= FAULT_FLAG_INTERRUPTIBLE; 6589 } 6590 if (flags & FOLL_NOWAIT) 6591 fault_flags |= FAULT_FLAG_ALLOW_RETRY | 6592 FAULT_FLAG_RETRY_NOWAIT; 6593 if (flags & FOLL_TRIED) { 6594 /* 6595 * Note: FAULT_FLAG_ALLOW_RETRY and 6596 * FAULT_FLAG_TRIED can co-exist 6597 */ 6598 fault_flags |= FAULT_FLAG_TRIED; 6599 } 6600 ret = hugetlb_fault(mm, vma, vaddr, fault_flags); 6601 if (ret & VM_FAULT_ERROR) { 6602 err = vm_fault_to_errno(ret, flags); 6603 remainder = 0; 6604 break; 6605 } 6606 if (ret & VM_FAULT_RETRY) { 6607 if (locked && 6608 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) 6609 *locked = 0; 6610 *nr_pages = 0; 6611 /* 6612 * VM_FAULT_RETRY must not return an 6613 * error, it will return zero 6614 * instead. 6615 * 6616 * No need to update "position" as the 6617 * caller will not check it after 6618 * *nr_pages is set to 0. 6619 */ 6620 return i; 6621 } 6622 continue; 6623 } 6624 6625 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT; 6626 page = pte_page(huge_ptep_get(pte)); 6627 6628 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) && 6629 !PageAnonExclusive(page), page); 6630 6631 /* 6632 * If subpage information not requested, update counters 6633 * and skip the same_page loop below. 6634 */ 6635 if (!pages && !pfn_offset && 6636 (vaddr + huge_page_size(h) < vma->vm_end) && 6637 (remainder >= pages_per_huge_page(h))) { 6638 vaddr += huge_page_size(h); 6639 remainder -= pages_per_huge_page(h); 6640 i += pages_per_huge_page(h); 6641 spin_unlock(ptl); 6642 hugetlb_vma_unlock_read(vma); 6643 continue; 6644 } 6645 6646 /* vaddr may not be aligned to PAGE_SIZE */ 6647 refs = min3(pages_per_huge_page(h) - pfn_offset, remainder, 6648 (vma->vm_end - ALIGN_DOWN(vaddr, PAGE_SIZE)) >> PAGE_SHIFT); 6649 6650 if (pages) 6651 record_subpages(nth_page(page, pfn_offset), 6652 vma, refs, 6653 likely(pages) ? pages + i : NULL); 6654 6655 if (pages) { 6656 /* 6657 * try_grab_folio() should always succeed here, 6658 * because: a) we hold the ptl lock, and b) we've just 6659 * checked that the huge page is present in the page 6660 * tables. If the huge page is present, then the tail 6661 * pages must also be present. The ptl prevents the 6662 * head page and tail pages from being rearranged in 6663 * any way. As this is hugetlb, the pages will never 6664 * be p2pdma or not longterm pinable. So this page 6665 * must be available at this point, unless the page 6666 * refcount overflowed: 6667 */ 6668 if (WARN_ON_ONCE(!try_grab_folio(pages[i], refs, 6669 flags))) { 6670 spin_unlock(ptl); 6671 hugetlb_vma_unlock_read(vma); 6672 remainder = 0; 6673 err = -ENOMEM; 6674 break; 6675 } 6676 } 6677 6678 vaddr += (refs << PAGE_SHIFT); 6679 remainder -= refs; 6680 i += refs; 6681 6682 spin_unlock(ptl); 6683 hugetlb_vma_unlock_read(vma); 6684 } 6685 *nr_pages = remainder; 6686 /* 6687 * setting position is actually required only if remainder is 6688 * not zero but it's faster not to add a "if (remainder)" 6689 * branch. 6690 */ 6691 *position = vaddr; 6692 6693 return i ? i : err; 6694 } 6695 6696 long hugetlb_change_protection(struct vm_area_struct *vma, 6697 unsigned long address, unsigned long end, 6698 pgprot_t newprot, unsigned long cp_flags) 6699 { 6700 struct mm_struct *mm = vma->vm_mm; 6701 unsigned long start = address; 6702 pte_t *ptep; 6703 pte_t pte; 6704 struct hstate *h = hstate_vma(vma); 6705 long pages = 0, psize = huge_page_size(h); 6706 bool shared_pmd = false; 6707 struct mmu_notifier_range range; 6708 unsigned long last_addr_mask; 6709 bool uffd_wp = cp_flags & MM_CP_UFFD_WP; 6710 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE; 6711 6712 /* 6713 * In the case of shared PMDs, the area to flush could be beyond 6714 * start/end. Set range.start/range.end to cover the maximum possible 6715 * range if PMD sharing is possible. 6716 */ 6717 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA, 6718 0, mm, start, end); 6719 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 6720 6721 BUG_ON(address >= end); 6722 flush_cache_range(vma, range.start, range.end); 6723 6724 mmu_notifier_invalidate_range_start(&range); 6725 hugetlb_vma_lock_write(vma); 6726 i_mmap_lock_write(vma->vm_file->f_mapping); 6727 last_addr_mask = hugetlb_mask_last_page(h); 6728 for (; address < end; address += psize) { 6729 spinlock_t *ptl; 6730 ptep = hugetlb_walk(vma, address, psize); 6731 if (!ptep) { 6732 if (!uffd_wp) { 6733 address |= last_addr_mask; 6734 continue; 6735 } 6736 /* 6737 * Userfaultfd wr-protect requires pgtable 6738 * pre-allocations to install pte markers. 6739 */ 6740 ptep = huge_pte_alloc(mm, vma, address, psize); 6741 if (!ptep) { 6742 pages = -ENOMEM; 6743 break; 6744 } 6745 } 6746 ptl = huge_pte_lock(h, mm, ptep); 6747 if (huge_pmd_unshare(mm, vma, address, ptep)) { 6748 /* 6749 * When uffd-wp is enabled on the vma, unshare 6750 * shouldn't happen at all. Warn about it if it 6751 * happened due to some reason. 6752 */ 6753 WARN_ON_ONCE(uffd_wp || uffd_wp_resolve); 6754 pages++; 6755 spin_unlock(ptl); 6756 shared_pmd = true; 6757 address |= last_addr_mask; 6758 continue; 6759 } 6760 pte = huge_ptep_get(ptep); 6761 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) { 6762 /* Nothing to do. */ 6763 } else if (unlikely(is_hugetlb_entry_migration(pte))) { 6764 swp_entry_t entry = pte_to_swp_entry(pte); 6765 struct page *page = pfn_swap_entry_to_page(entry); 6766 pte_t newpte = pte; 6767 6768 if (is_writable_migration_entry(entry)) { 6769 if (PageAnon(page)) 6770 entry = make_readable_exclusive_migration_entry( 6771 swp_offset(entry)); 6772 else 6773 entry = make_readable_migration_entry( 6774 swp_offset(entry)); 6775 newpte = swp_entry_to_pte(entry); 6776 pages++; 6777 } 6778 6779 if (uffd_wp) 6780 newpte = pte_swp_mkuffd_wp(newpte); 6781 else if (uffd_wp_resolve) 6782 newpte = pte_swp_clear_uffd_wp(newpte); 6783 if (!pte_same(pte, newpte)) 6784 set_huge_pte_at(mm, address, ptep, newpte); 6785 } else if (unlikely(is_pte_marker(pte))) { 6786 /* No other markers apply for now. */ 6787 WARN_ON_ONCE(!pte_marker_uffd_wp(pte)); 6788 if (uffd_wp_resolve) 6789 /* Safe to modify directly (non-present->none). */ 6790 huge_pte_clear(mm, address, ptep, psize); 6791 } else if (!huge_pte_none(pte)) { 6792 pte_t old_pte; 6793 unsigned int shift = huge_page_shift(hstate_vma(vma)); 6794 6795 old_pte = huge_ptep_modify_prot_start(vma, address, ptep); 6796 pte = huge_pte_modify(old_pte, newprot); 6797 pte = arch_make_huge_pte(pte, shift, vma->vm_flags); 6798 if (uffd_wp) 6799 pte = huge_pte_mkuffd_wp(pte); 6800 else if (uffd_wp_resolve) 6801 pte = huge_pte_clear_uffd_wp(pte); 6802 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte); 6803 pages++; 6804 } else { 6805 /* None pte */ 6806 if (unlikely(uffd_wp)) 6807 /* Safe to modify directly (none->non-present). */ 6808 set_huge_pte_at(mm, address, ptep, 6809 make_pte_marker(PTE_MARKER_UFFD_WP)); 6810 } 6811 spin_unlock(ptl); 6812 } 6813 /* 6814 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare 6815 * may have cleared our pud entry and done put_page on the page table: 6816 * once we release i_mmap_rwsem, another task can do the final put_page 6817 * and that page table be reused and filled with junk. If we actually 6818 * did unshare a page of pmds, flush the range corresponding to the pud. 6819 */ 6820 if (shared_pmd) 6821 flush_hugetlb_tlb_range(vma, range.start, range.end); 6822 else 6823 flush_hugetlb_tlb_range(vma, start, end); 6824 /* 6825 * No need to call mmu_notifier_invalidate_range() we are downgrading 6826 * page table protection not changing it to point to a new page. 6827 * 6828 * See Documentation/mm/mmu_notifier.rst 6829 */ 6830 i_mmap_unlock_write(vma->vm_file->f_mapping); 6831 hugetlb_vma_unlock_write(vma); 6832 mmu_notifier_invalidate_range_end(&range); 6833 6834 return pages > 0 ? (pages << h->order) : pages; 6835 } 6836 6837 /* Return true if reservation was successful, false otherwise. */ 6838 bool hugetlb_reserve_pages(struct inode *inode, 6839 long from, long to, 6840 struct vm_area_struct *vma, 6841 vm_flags_t vm_flags) 6842 { 6843 long chg = -1, add = -1; 6844 struct hstate *h = hstate_inode(inode); 6845 struct hugepage_subpool *spool = subpool_inode(inode); 6846 struct resv_map *resv_map; 6847 struct hugetlb_cgroup *h_cg = NULL; 6848 long gbl_reserve, regions_needed = 0; 6849 6850 /* This should never happen */ 6851 if (from > to) { 6852 VM_WARN(1, "%s called with a negative range\n", __func__); 6853 return false; 6854 } 6855 6856 /* 6857 * vma specific semaphore used for pmd sharing and fault/truncation 6858 * synchronization 6859 */ 6860 hugetlb_vma_lock_alloc(vma); 6861 6862 /* 6863 * Only apply hugepage reservation if asked. At fault time, an 6864 * attempt will be made for VM_NORESERVE to allocate a page 6865 * without using reserves 6866 */ 6867 if (vm_flags & VM_NORESERVE) 6868 return true; 6869 6870 /* 6871 * Shared mappings base their reservation on the number of pages that 6872 * are already allocated on behalf of the file. Private mappings need 6873 * to reserve the full area even if read-only as mprotect() may be 6874 * called to make the mapping read-write. Assume !vma is a shm mapping 6875 */ 6876 if (!vma || vma->vm_flags & VM_MAYSHARE) { 6877 /* 6878 * resv_map can not be NULL as hugetlb_reserve_pages is only 6879 * called for inodes for which resv_maps were created (see 6880 * hugetlbfs_get_inode). 6881 */ 6882 resv_map = inode_resv_map(inode); 6883 6884 chg = region_chg(resv_map, from, to, ®ions_needed); 6885 } else { 6886 /* Private mapping. */ 6887 resv_map = resv_map_alloc(); 6888 if (!resv_map) 6889 goto out_err; 6890 6891 chg = to - from; 6892 6893 set_vma_resv_map(vma, resv_map); 6894 set_vma_resv_flags(vma, HPAGE_RESV_OWNER); 6895 } 6896 6897 if (chg < 0) 6898 goto out_err; 6899 6900 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h), 6901 chg * pages_per_huge_page(h), &h_cg) < 0) 6902 goto out_err; 6903 6904 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) { 6905 /* For private mappings, the hugetlb_cgroup uncharge info hangs 6906 * of the resv_map. 6907 */ 6908 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h); 6909 } 6910 6911 /* 6912 * There must be enough pages in the subpool for the mapping. If 6913 * the subpool has a minimum size, there may be some global 6914 * reservations already in place (gbl_reserve). 6915 */ 6916 gbl_reserve = hugepage_subpool_get_pages(spool, chg); 6917 if (gbl_reserve < 0) 6918 goto out_uncharge_cgroup; 6919 6920 /* 6921 * Check enough hugepages are available for the reservation. 6922 * Hand the pages back to the subpool if there are not 6923 */ 6924 if (hugetlb_acct_memory(h, gbl_reserve) < 0) 6925 goto out_put_pages; 6926 6927 /* 6928 * Account for the reservations made. Shared mappings record regions 6929 * that have reservations as they are shared by multiple VMAs. 6930 * When the last VMA disappears, the region map says how much 6931 * the reservation was and the page cache tells how much of 6932 * the reservation was consumed. Private mappings are per-VMA and 6933 * only the consumed reservations are tracked. When the VMA 6934 * disappears, the original reservation is the VMA size and the 6935 * consumed reservations are stored in the map. Hence, nothing 6936 * else has to be done for private mappings here 6937 */ 6938 if (!vma || vma->vm_flags & VM_MAYSHARE) { 6939 add = region_add(resv_map, from, to, regions_needed, h, h_cg); 6940 6941 if (unlikely(add < 0)) { 6942 hugetlb_acct_memory(h, -gbl_reserve); 6943 goto out_put_pages; 6944 } else if (unlikely(chg > add)) { 6945 /* 6946 * pages in this range were added to the reserve 6947 * map between region_chg and region_add. This 6948 * indicates a race with alloc_hugetlb_folio. Adjust 6949 * the subpool and reserve counts modified above 6950 * based on the difference. 6951 */ 6952 long rsv_adjust; 6953 6954 /* 6955 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the 6956 * reference to h_cg->css. See comment below for detail. 6957 */ 6958 hugetlb_cgroup_uncharge_cgroup_rsvd( 6959 hstate_index(h), 6960 (chg - add) * pages_per_huge_page(h), h_cg); 6961 6962 rsv_adjust = hugepage_subpool_put_pages(spool, 6963 chg - add); 6964 hugetlb_acct_memory(h, -rsv_adjust); 6965 } else if (h_cg) { 6966 /* 6967 * The file_regions will hold their own reference to 6968 * h_cg->css. So we should release the reference held 6969 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are 6970 * done. 6971 */ 6972 hugetlb_cgroup_put_rsvd_cgroup(h_cg); 6973 } 6974 } 6975 return true; 6976 6977 out_put_pages: 6978 /* put back original number of pages, chg */ 6979 (void)hugepage_subpool_put_pages(spool, chg); 6980 out_uncharge_cgroup: 6981 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h), 6982 chg * pages_per_huge_page(h), h_cg); 6983 out_err: 6984 hugetlb_vma_lock_free(vma); 6985 if (!vma || vma->vm_flags & VM_MAYSHARE) 6986 /* Only call region_abort if the region_chg succeeded but the 6987 * region_add failed or didn't run. 6988 */ 6989 if (chg >= 0 && add < 0) 6990 region_abort(resv_map, from, to, regions_needed); 6991 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 6992 kref_put(&resv_map->refs, resv_map_release); 6993 return false; 6994 } 6995 6996 long hugetlb_unreserve_pages(struct inode *inode, long start, long end, 6997 long freed) 6998 { 6999 struct hstate *h = hstate_inode(inode); 7000 struct resv_map *resv_map = inode_resv_map(inode); 7001 long chg = 0; 7002 struct hugepage_subpool *spool = subpool_inode(inode); 7003 long gbl_reserve; 7004 7005 /* 7006 * Since this routine can be called in the evict inode path for all 7007 * hugetlbfs inodes, resv_map could be NULL. 7008 */ 7009 if (resv_map) { 7010 chg = region_del(resv_map, start, end); 7011 /* 7012 * region_del() can fail in the rare case where a region 7013 * must be split and another region descriptor can not be 7014 * allocated. If end == LONG_MAX, it will not fail. 7015 */ 7016 if (chg < 0) 7017 return chg; 7018 } 7019 7020 spin_lock(&inode->i_lock); 7021 inode->i_blocks -= (blocks_per_huge_page(h) * freed); 7022 spin_unlock(&inode->i_lock); 7023 7024 /* 7025 * If the subpool has a minimum size, the number of global 7026 * reservations to be released may be adjusted. 7027 * 7028 * Note that !resv_map implies freed == 0. So (chg - freed) 7029 * won't go negative. 7030 */ 7031 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed)); 7032 hugetlb_acct_memory(h, -gbl_reserve); 7033 7034 return 0; 7035 } 7036 7037 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE 7038 static unsigned long page_table_shareable(struct vm_area_struct *svma, 7039 struct vm_area_struct *vma, 7040 unsigned long addr, pgoff_t idx) 7041 { 7042 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) + 7043 svma->vm_start; 7044 unsigned long sbase = saddr & PUD_MASK; 7045 unsigned long s_end = sbase + PUD_SIZE; 7046 7047 /* Allow segments to share if only one is marked locked */ 7048 unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED_MASK; 7049 unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED_MASK; 7050 7051 /* 7052 * match the virtual addresses, permission and the alignment of the 7053 * page table page. 7054 * 7055 * Also, vma_lock (vm_private_data) is required for sharing. 7056 */ 7057 if (pmd_index(addr) != pmd_index(saddr) || 7058 vm_flags != svm_flags || 7059 !range_in_vma(svma, sbase, s_end) || 7060 !svma->vm_private_data) 7061 return 0; 7062 7063 return saddr; 7064 } 7065 7066 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr) 7067 { 7068 unsigned long start = addr & PUD_MASK; 7069 unsigned long end = start + PUD_SIZE; 7070 7071 #ifdef CONFIG_USERFAULTFD 7072 if (uffd_disable_huge_pmd_share(vma)) 7073 return false; 7074 #endif 7075 /* 7076 * check on proper vm_flags and page table alignment 7077 */ 7078 if (!(vma->vm_flags & VM_MAYSHARE)) 7079 return false; 7080 if (!vma->vm_private_data) /* vma lock required for sharing */ 7081 return false; 7082 if (!range_in_vma(vma, start, end)) 7083 return false; 7084 return true; 7085 } 7086 7087 /* 7088 * Determine if start,end range within vma could be mapped by shared pmd. 7089 * If yes, adjust start and end to cover range associated with possible 7090 * shared pmd mappings. 7091 */ 7092 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 7093 unsigned long *start, unsigned long *end) 7094 { 7095 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE), 7096 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE); 7097 7098 /* 7099 * vma needs to span at least one aligned PUD size, and the range 7100 * must be at least partially within in. 7101 */ 7102 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) || 7103 (*end <= v_start) || (*start >= v_end)) 7104 return; 7105 7106 /* Extend the range to be PUD aligned for a worst case scenario */ 7107 if (*start > v_start) 7108 *start = ALIGN_DOWN(*start, PUD_SIZE); 7109 7110 if (*end < v_end) 7111 *end = ALIGN(*end, PUD_SIZE); 7112 } 7113 7114 /* 7115 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc() 7116 * and returns the corresponding pte. While this is not necessary for the 7117 * !shared pmd case because we can allocate the pmd later as well, it makes the 7118 * code much cleaner. pmd allocation is essential for the shared case because 7119 * pud has to be populated inside the same i_mmap_rwsem section - otherwise 7120 * racing tasks could either miss the sharing (see huge_pte_offset) or select a 7121 * bad pmd for sharing. 7122 */ 7123 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, 7124 unsigned long addr, pud_t *pud) 7125 { 7126 struct address_space *mapping = vma->vm_file->f_mapping; 7127 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + 7128 vma->vm_pgoff; 7129 struct vm_area_struct *svma; 7130 unsigned long saddr; 7131 pte_t *spte = NULL; 7132 pte_t *pte; 7133 7134 i_mmap_lock_read(mapping); 7135 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) { 7136 if (svma == vma) 7137 continue; 7138 7139 saddr = page_table_shareable(svma, vma, addr, idx); 7140 if (saddr) { 7141 spte = hugetlb_walk(svma, saddr, 7142 vma_mmu_pagesize(svma)); 7143 if (spte) { 7144 get_page(virt_to_page(spte)); 7145 break; 7146 } 7147 } 7148 } 7149 7150 if (!spte) 7151 goto out; 7152 7153 spin_lock(&mm->page_table_lock); 7154 if (pud_none(*pud)) { 7155 pud_populate(mm, pud, 7156 (pmd_t *)((unsigned long)spte & PAGE_MASK)); 7157 mm_inc_nr_pmds(mm); 7158 } else { 7159 put_page(virt_to_page(spte)); 7160 } 7161 spin_unlock(&mm->page_table_lock); 7162 out: 7163 pte = (pte_t *)pmd_alloc(mm, pud, addr); 7164 i_mmap_unlock_read(mapping); 7165 return pte; 7166 } 7167 7168 /* 7169 * unmap huge page backed by shared pte. 7170 * 7171 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared 7172 * indicated by page_count > 1, unmap is achieved by clearing pud and 7173 * decrementing the ref count. If count == 1, the pte page is not shared. 7174 * 7175 * Called with page table lock held. 7176 * 7177 * returns: 1 successfully unmapped a shared pte page 7178 * 0 the underlying pte page is not shared, or it is the last user 7179 */ 7180 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, 7181 unsigned long addr, pte_t *ptep) 7182 { 7183 pgd_t *pgd = pgd_offset(mm, addr); 7184 p4d_t *p4d = p4d_offset(pgd, addr); 7185 pud_t *pud = pud_offset(p4d, addr); 7186 7187 i_mmap_assert_write_locked(vma->vm_file->f_mapping); 7188 hugetlb_vma_assert_locked(vma); 7189 BUG_ON(page_count(virt_to_page(ptep)) == 0); 7190 if (page_count(virt_to_page(ptep)) == 1) 7191 return 0; 7192 7193 pud_clear(pud); 7194 put_page(virt_to_page(ptep)); 7195 mm_dec_nr_pmds(mm); 7196 return 1; 7197 } 7198 7199 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 7200 7201 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, 7202 unsigned long addr, pud_t *pud) 7203 { 7204 return NULL; 7205 } 7206 7207 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, 7208 unsigned long addr, pte_t *ptep) 7209 { 7210 return 0; 7211 } 7212 7213 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 7214 unsigned long *start, unsigned long *end) 7215 { 7216 } 7217 7218 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr) 7219 { 7220 return false; 7221 } 7222 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 7223 7224 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB 7225 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 7226 unsigned long addr, unsigned long sz) 7227 { 7228 pgd_t *pgd; 7229 p4d_t *p4d; 7230 pud_t *pud; 7231 pte_t *pte = NULL; 7232 7233 pgd = pgd_offset(mm, addr); 7234 p4d = p4d_alloc(mm, pgd, addr); 7235 if (!p4d) 7236 return NULL; 7237 pud = pud_alloc(mm, p4d, addr); 7238 if (pud) { 7239 if (sz == PUD_SIZE) { 7240 pte = (pte_t *)pud; 7241 } else { 7242 BUG_ON(sz != PMD_SIZE); 7243 if (want_pmd_share(vma, addr) && pud_none(*pud)) 7244 pte = huge_pmd_share(mm, vma, addr, pud); 7245 else 7246 pte = (pte_t *)pmd_alloc(mm, pud, addr); 7247 } 7248 } 7249 BUG_ON(pte && pte_present(ptep_get(pte)) && !pte_huge(ptep_get(pte))); 7250 7251 return pte; 7252 } 7253 7254 /* 7255 * huge_pte_offset() - Walk the page table to resolve the hugepage 7256 * entry at address @addr 7257 * 7258 * Return: Pointer to page table entry (PUD or PMD) for 7259 * address @addr, or NULL if a !p*d_present() entry is encountered and the 7260 * size @sz doesn't match the hugepage size at this level of the page 7261 * table. 7262 */ 7263 pte_t *huge_pte_offset(struct mm_struct *mm, 7264 unsigned long addr, unsigned long sz) 7265 { 7266 pgd_t *pgd; 7267 p4d_t *p4d; 7268 pud_t *pud; 7269 pmd_t *pmd; 7270 7271 pgd = pgd_offset(mm, addr); 7272 if (!pgd_present(*pgd)) 7273 return NULL; 7274 p4d = p4d_offset(pgd, addr); 7275 if (!p4d_present(*p4d)) 7276 return NULL; 7277 7278 pud = pud_offset(p4d, addr); 7279 if (sz == PUD_SIZE) 7280 /* must be pud huge, non-present or none */ 7281 return (pte_t *)pud; 7282 if (!pud_present(*pud)) 7283 return NULL; 7284 /* must have a valid entry and size to go further */ 7285 7286 pmd = pmd_offset(pud, addr); 7287 /* must be pmd huge, non-present or none */ 7288 return (pte_t *)pmd; 7289 } 7290 7291 /* 7292 * Return a mask that can be used to update an address to the last huge 7293 * page in a page table page mapping size. Used to skip non-present 7294 * page table entries when linearly scanning address ranges. Architectures 7295 * with unique huge page to page table relationships can define their own 7296 * version of this routine. 7297 */ 7298 unsigned long hugetlb_mask_last_page(struct hstate *h) 7299 { 7300 unsigned long hp_size = huge_page_size(h); 7301 7302 if (hp_size == PUD_SIZE) 7303 return P4D_SIZE - PUD_SIZE; 7304 else if (hp_size == PMD_SIZE) 7305 return PUD_SIZE - PMD_SIZE; 7306 else 7307 return 0UL; 7308 } 7309 7310 #else 7311 7312 /* See description above. Architectures can provide their own version. */ 7313 __weak unsigned long hugetlb_mask_last_page(struct hstate *h) 7314 { 7315 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE 7316 if (huge_page_size(h) == PMD_SIZE) 7317 return PUD_SIZE - PMD_SIZE; 7318 #endif 7319 return 0UL; 7320 } 7321 7322 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */ 7323 7324 /* 7325 * These functions are overwritable if your architecture needs its own 7326 * behavior. 7327 */ 7328 bool isolate_hugetlb(struct folio *folio, struct list_head *list) 7329 { 7330 bool ret = true; 7331 7332 spin_lock_irq(&hugetlb_lock); 7333 if (!folio_test_hugetlb(folio) || 7334 !folio_test_hugetlb_migratable(folio) || 7335 !folio_try_get(folio)) { 7336 ret = false; 7337 goto unlock; 7338 } 7339 folio_clear_hugetlb_migratable(folio); 7340 list_move_tail(&folio->lru, list); 7341 unlock: 7342 spin_unlock_irq(&hugetlb_lock); 7343 return ret; 7344 } 7345 7346 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison) 7347 { 7348 int ret = 0; 7349 7350 *hugetlb = false; 7351 spin_lock_irq(&hugetlb_lock); 7352 if (folio_test_hugetlb(folio)) { 7353 *hugetlb = true; 7354 if (folio_test_hugetlb_freed(folio)) 7355 ret = 0; 7356 else if (folio_test_hugetlb_migratable(folio) || unpoison) 7357 ret = folio_try_get(folio); 7358 else 7359 ret = -EBUSY; 7360 } 7361 spin_unlock_irq(&hugetlb_lock); 7362 return ret; 7363 } 7364 7365 int get_huge_page_for_hwpoison(unsigned long pfn, int flags, 7366 bool *migratable_cleared) 7367 { 7368 int ret; 7369 7370 spin_lock_irq(&hugetlb_lock); 7371 ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared); 7372 spin_unlock_irq(&hugetlb_lock); 7373 return ret; 7374 } 7375 7376 void folio_putback_active_hugetlb(struct folio *folio) 7377 { 7378 spin_lock_irq(&hugetlb_lock); 7379 folio_set_hugetlb_migratable(folio); 7380 list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist); 7381 spin_unlock_irq(&hugetlb_lock); 7382 folio_put(folio); 7383 } 7384 7385 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason) 7386 { 7387 struct hstate *h = folio_hstate(old_folio); 7388 7389 hugetlb_cgroup_migrate(old_folio, new_folio); 7390 set_page_owner_migrate_reason(&new_folio->page, reason); 7391 7392 /* 7393 * transfer temporary state of the new hugetlb folio. This is 7394 * reverse to other transitions because the newpage is going to 7395 * be final while the old one will be freed so it takes over 7396 * the temporary status. 7397 * 7398 * Also note that we have to transfer the per-node surplus state 7399 * here as well otherwise the global surplus count will not match 7400 * the per-node's. 7401 */ 7402 if (folio_test_hugetlb_temporary(new_folio)) { 7403 int old_nid = folio_nid(old_folio); 7404 int new_nid = folio_nid(new_folio); 7405 7406 folio_set_hugetlb_temporary(old_folio); 7407 folio_clear_hugetlb_temporary(new_folio); 7408 7409 7410 /* 7411 * There is no need to transfer the per-node surplus state 7412 * when we do not cross the node. 7413 */ 7414 if (new_nid == old_nid) 7415 return; 7416 spin_lock_irq(&hugetlb_lock); 7417 if (h->surplus_huge_pages_node[old_nid]) { 7418 h->surplus_huge_pages_node[old_nid]--; 7419 h->surplus_huge_pages_node[new_nid]++; 7420 } 7421 spin_unlock_irq(&hugetlb_lock); 7422 } 7423 } 7424 7425 static void hugetlb_unshare_pmds(struct vm_area_struct *vma, 7426 unsigned long start, 7427 unsigned long end) 7428 { 7429 struct hstate *h = hstate_vma(vma); 7430 unsigned long sz = huge_page_size(h); 7431 struct mm_struct *mm = vma->vm_mm; 7432 struct mmu_notifier_range range; 7433 unsigned long address; 7434 spinlock_t *ptl; 7435 pte_t *ptep; 7436 7437 if (!(vma->vm_flags & VM_MAYSHARE)) 7438 return; 7439 7440 if (start >= end) 7441 return; 7442 7443 flush_cache_range(vma, start, end); 7444 /* 7445 * No need to call adjust_range_if_pmd_sharing_possible(), because 7446 * we have already done the PUD_SIZE alignment. 7447 */ 7448 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 7449 start, end); 7450 mmu_notifier_invalidate_range_start(&range); 7451 hugetlb_vma_lock_write(vma); 7452 i_mmap_lock_write(vma->vm_file->f_mapping); 7453 for (address = start; address < end; address += PUD_SIZE) { 7454 ptep = hugetlb_walk(vma, address, sz); 7455 if (!ptep) 7456 continue; 7457 ptl = huge_pte_lock(h, mm, ptep); 7458 huge_pmd_unshare(mm, vma, address, ptep); 7459 spin_unlock(ptl); 7460 } 7461 flush_hugetlb_tlb_range(vma, start, end); 7462 i_mmap_unlock_write(vma->vm_file->f_mapping); 7463 hugetlb_vma_unlock_write(vma); 7464 /* 7465 * No need to call mmu_notifier_invalidate_range(), see 7466 * Documentation/mm/mmu_notifier.rst. 7467 */ 7468 mmu_notifier_invalidate_range_end(&range); 7469 } 7470 7471 /* 7472 * This function will unconditionally remove all the shared pmd pgtable entries 7473 * within the specific vma for a hugetlbfs memory range. 7474 */ 7475 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma) 7476 { 7477 hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE), 7478 ALIGN_DOWN(vma->vm_end, PUD_SIZE)); 7479 } 7480 7481 #ifdef CONFIG_CMA 7482 static bool cma_reserve_called __initdata; 7483 7484 static int __init cmdline_parse_hugetlb_cma(char *p) 7485 { 7486 int nid, count = 0; 7487 unsigned long tmp; 7488 char *s = p; 7489 7490 while (*s) { 7491 if (sscanf(s, "%lu%n", &tmp, &count) != 1) 7492 break; 7493 7494 if (s[count] == ':') { 7495 if (tmp >= MAX_NUMNODES) 7496 break; 7497 nid = array_index_nospec(tmp, MAX_NUMNODES); 7498 7499 s += count + 1; 7500 tmp = memparse(s, &s); 7501 hugetlb_cma_size_in_node[nid] = tmp; 7502 hugetlb_cma_size += tmp; 7503 7504 /* 7505 * Skip the separator if have one, otherwise 7506 * break the parsing. 7507 */ 7508 if (*s == ',') 7509 s++; 7510 else 7511 break; 7512 } else { 7513 hugetlb_cma_size = memparse(p, &p); 7514 break; 7515 } 7516 } 7517 7518 return 0; 7519 } 7520 7521 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma); 7522 7523 void __init hugetlb_cma_reserve(int order) 7524 { 7525 unsigned long size, reserved, per_node; 7526 bool node_specific_cma_alloc = false; 7527 int nid; 7528 7529 cma_reserve_called = true; 7530 7531 if (!hugetlb_cma_size) 7532 return; 7533 7534 for (nid = 0; nid < MAX_NUMNODES; nid++) { 7535 if (hugetlb_cma_size_in_node[nid] == 0) 7536 continue; 7537 7538 if (!node_online(nid)) { 7539 pr_warn("hugetlb_cma: invalid node %d specified\n", nid); 7540 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid]; 7541 hugetlb_cma_size_in_node[nid] = 0; 7542 continue; 7543 } 7544 7545 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) { 7546 pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n", 7547 nid, (PAGE_SIZE << order) / SZ_1M); 7548 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid]; 7549 hugetlb_cma_size_in_node[nid] = 0; 7550 } else { 7551 node_specific_cma_alloc = true; 7552 } 7553 } 7554 7555 /* Validate the CMA size again in case some invalid nodes specified. */ 7556 if (!hugetlb_cma_size) 7557 return; 7558 7559 if (hugetlb_cma_size < (PAGE_SIZE << order)) { 7560 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n", 7561 (PAGE_SIZE << order) / SZ_1M); 7562 hugetlb_cma_size = 0; 7563 return; 7564 } 7565 7566 if (!node_specific_cma_alloc) { 7567 /* 7568 * If 3 GB area is requested on a machine with 4 numa nodes, 7569 * let's allocate 1 GB on first three nodes and ignore the last one. 7570 */ 7571 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes); 7572 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n", 7573 hugetlb_cma_size / SZ_1M, per_node / SZ_1M); 7574 } 7575 7576 reserved = 0; 7577 for_each_online_node(nid) { 7578 int res; 7579 char name[CMA_MAX_NAME]; 7580 7581 if (node_specific_cma_alloc) { 7582 if (hugetlb_cma_size_in_node[nid] == 0) 7583 continue; 7584 7585 size = hugetlb_cma_size_in_node[nid]; 7586 } else { 7587 size = min(per_node, hugetlb_cma_size - reserved); 7588 } 7589 7590 size = round_up(size, PAGE_SIZE << order); 7591 7592 snprintf(name, sizeof(name), "hugetlb%d", nid); 7593 /* 7594 * Note that 'order per bit' is based on smallest size that 7595 * may be returned to CMA allocator in the case of 7596 * huge page demotion. 7597 */ 7598 res = cma_declare_contiguous_nid(0, size, 0, 7599 PAGE_SIZE << HUGETLB_PAGE_ORDER, 7600 0, false, name, 7601 &hugetlb_cma[nid], nid); 7602 if (res) { 7603 pr_warn("hugetlb_cma: reservation failed: err %d, node %d", 7604 res, nid); 7605 continue; 7606 } 7607 7608 reserved += size; 7609 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n", 7610 size / SZ_1M, nid); 7611 7612 if (reserved >= hugetlb_cma_size) 7613 break; 7614 } 7615 7616 if (!reserved) 7617 /* 7618 * hugetlb_cma_size is used to determine if allocations from 7619 * cma are possible. Set to zero if no cma regions are set up. 7620 */ 7621 hugetlb_cma_size = 0; 7622 } 7623 7624 static void __init hugetlb_cma_check(void) 7625 { 7626 if (!hugetlb_cma_size || cma_reserve_called) 7627 return; 7628 7629 pr_warn("hugetlb_cma: the option isn't supported by current arch\n"); 7630 } 7631 7632 #endif /* CONFIG_CMA */ 7633