xref: /linux/mm/hugetlb.c (revision 79ac11393328fb1717d17c12e3c0eef0e9fa0647)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 #include <linux/migrate.h>
34 #include <linux/nospec.h>
35 #include <linux/delayacct.h>
36 #include <linux/memory.h>
37 #include <linux/mm_inline.h>
38 
39 #include <asm/page.h>
40 #include <asm/pgalloc.h>
41 #include <asm/tlb.h>
42 
43 #include <linux/io.h>
44 #include <linux/hugetlb.h>
45 #include <linux/hugetlb_cgroup.h>
46 #include <linux/node.h>
47 #include <linux/page_owner.h>
48 #include "internal.h"
49 #include "hugetlb_vmemmap.h"
50 
51 int hugetlb_max_hstate __read_mostly;
52 unsigned int default_hstate_idx;
53 struct hstate hstates[HUGE_MAX_HSTATE];
54 
55 #ifdef CONFIG_CMA
56 static struct cma *hugetlb_cma[MAX_NUMNODES];
57 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
58 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
59 {
60 	return cma_pages_valid(hugetlb_cma[folio_nid(folio)], &folio->page,
61 				1 << order);
62 }
63 #else
64 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
65 {
66 	return false;
67 }
68 #endif
69 static unsigned long hugetlb_cma_size __initdata;
70 
71 __initdata LIST_HEAD(huge_boot_pages);
72 
73 /* for command line parsing */
74 static struct hstate * __initdata parsed_hstate;
75 static unsigned long __initdata default_hstate_max_huge_pages;
76 static bool __initdata parsed_valid_hugepagesz = true;
77 static bool __initdata parsed_default_hugepagesz;
78 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
79 
80 /*
81  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
82  * free_huge_pages, and surplus_huge_pages.
83  */
84 DEFINE_SPINLOCK(hugetlb_lock);
85 
86 /*
87  * Serializes faults on the same logical page.  This is used to
88  * prevent spurious OOMs when the hugepage pool is fully utilized.
89  */
90 static int num_fault_mutexes;
91 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
92 
93 /* Forward declaration */
94 static int hugetlb_acct_memory(struct hstate *h, long delta);
95 static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
96 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
97 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
98 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
99 		unsigned long start, unsigned long end);
100 static struct resv_map *vma_resv_map(struct vm_area_struct *vma);
101 
102 static inline bool subpool_is_free(struct hugepage_subpool *spool)
103 {
104 	if (spool->count)
105 		return false;
106 	if (spool->max_hpages != -1)
107 		return spool->used_hpages == 0;
108 	if (spool->min_hpages != -1)
109 		return spool->rsv_hpages == spool->min_hpages;
110 
111 	return true;
112 }
113 
114 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
115 						unsigned long irq_flags)
116 {
117 	spin_unlock_irqrestore(&spool->lock, irq_flags);
118 
119 	/* If no pages are used, and no other handles to the subpool
120 	 * remain, give up any reservations based on minimum size and
121 	 * free the subpool */
122 	if (subpool_is_free(spool)) {
123 		if (spool->min_hpages != -1)
124 			hugetlb_acct_memory(spool->hstate,
125 						-spool->min_hpages);
126 		kfree(spool);
127 	}
128 }
129 
130 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
131 						long min_hpages)
132 {
133 	struct hugepage_subpool *spool;
134 
135 	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
136 	if (!spool)
137 		return NULL;
138 
139 	spin_lock_init(&spool->lock);
140 	spool->count = 1;
141 	spool->max_hpages = max_hpages;
142 	spool->hstate = h;
143 	spool->min_hpages = min_hpages;
144 
145 	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
146 		kfree(spool);
147 		return NULL;
148 	}
149 	spool->rsv_hpages = min_hpages;
150 
151 	return spool;
152 }
153 
154 void hugepage_put_subpool(struct hugepage_subpool *spool)
155 {
156 	unsigned long flags;
157 
158 	spin_lock_irqsave(&spool->lock, flags);
159 	BUG_ON(!spool->count);
160 	spool->count--;
161 	unlock_or_release_subpool(spool, flags);
162 }
163 
164 /*
165  * Subpool accounting for allocating and reserving pages.
166  * Return -ENOMEM if there are not enough resources to satisfy the
167  * request.  Otherwise, return the number of pages by which the
168  * global pools must be adjusted (upward).  The returned value may
169  * only be different than the passed value (delta) in the case where
170  * a subpool minimum size must be maintained.
171  */
172 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
173 				      long delta)
174 {
175 	long ret = delta;
176 
177 	if (!spool)
178 		return ret;
179 
180 	spin_lock_irq(&spool->lock);
181 
182 	if (spool->max_hpages != -1) {		/* maximum size accounting */
183 		if ((spool->used_hpages + delta) <= spool->max_hpages)
184 			spool->used_hpages += delta;
185 		else {
186 			ret = -ENOMEM;
187 			goto unlock_ret;
188 		}
189 	}
190 
191 	/* minimum size accounting */
192 	if (spool->min_hpages != -1 && spool->rsv_hpages) {
193 		if (delta > spool->rsv_hpages) {
194 			/*
195 			 * Asking for more reserves than those already taken on
196 			 * behalf of subpool.  Return difference.
197 			 */
198 			ret = delta - spool->rsv_hpages;
199 			spool->rsv_hpages = 0;
200 		} else {
201 			ret = 0;	/* reserves already accounted for */
202 			spool->rsv_hpages -= delta;
203 		}
204 	}
205 
206 unlock_ret:
207 	spin_unlock_irq(&spool->lock);
208 	return ret;
209 }
210 
211 /*
212  * Subpool accounting for freeing and unreserving pages.
213  * Return the number of global page reservations that must be dropped.
214  * The return value may only be different than the passed value (delta)
215  * in the case where a subpool minimum size must be maintained.
216  */
217 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
218 				       long delta)
219 {
220 	long ret = delta;
221 	unsigned long flags;
222 
223 	if (!spool)
224 		return delta;
225 
226 	spin_lock_irqsave(&spool->lock, flags);
227 
228 	if (spool->max_hpages != -1)		/* maximum size accounting */
229 		spool->used_hpages -= delta;
230 
231 	 /* minimum size accounting */
232 	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
233 		if (spool->rsv_hpages + delta <= spool->min_hpages)
234 			ret = 0;
235 		else
236 			ret = spool->rsv_hpages + delta - spool->min_hpages;
237 
238 		spool->rsv_hpages += delta;
239 		if (spool->rsv_hpages > spool->min_hpages)
240 			spool->rsv_hpages = spool->min_hpages;
241 	}
242 
243 	/*
244 	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
245 	 * quota reference, free it now.
246 	 */
247 	unlock_or_release_subpool(spool, flags);
248 
249 	return ret;
250 }
251 
252 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
253 {
254 	return HUGETLBFS_SB(inode->i_sb)->spool;
255 }
256 
257 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
258 {
259 	return subpool_inode(file_inode(vma->vm_file));
260 }
261 
262 /*
263  * hugetlb vma_lock helper routines
264  */
265 void hugetlb_vma_lock_read(struct vm_area_struct *vma)
266 {
267 	if (__vma_shareable_lock(vma)) {
268 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
269 
270 		down_read(&vma_lock->rw_sema);
271 	} else if (__vma_private_lock(vma)) {
272 		struct resv_map *resv_map = vma_resv_map(vma);
273 
274 		down_read(&resv_map->rw_sema);
275 	}
276 }
277 
278 void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
279 {
280 	if (__vma_shareable_lock(vma)) {
281 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
282 
283 		up_read(&vma_lock->rw_sema);
284 	} else if (__vma_private_lock(vma)) {
285 		struct resv_map *resv_map = vma_resv_map(vma);
286 
287 		up_read(&resv_map->rw_sema);
288 	}
289 }
290 
291 void hugetlb_vma_lock_write(struct vm_area_struct *vma)
292 {
293 	if (__vma_shareable_lock(vma)) {
294 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
295 
296 		down_write(&vma_lock->rw_sema);
297 	} else if (__vma_private_lock(vma)) {
298 		struct resv_map *resv_map = vma_resv_map(vma);
299 
300 		down_write(&resv_map->rw_sema);
301 	}
302 }
303 
304 void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
305 {
306 	if (__vma_shareable_lock(vma)) {
307 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
308 
309 		up_write(&vma_lock->rw_sema);
310 	} else if (__vma_private_lock(vma)) {
311 		struct resv_map *resv_map = vma_resv_map(vma);
312 
313 		up_write(&resv_map->rw_sema);
314 	}
315 }
316 
317 int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
318 {
319 
320 	if (__vma_shareable_lock(vma)) {
321 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
322 
323 		return down_write_trylock(&vma_lock->rw_sema);
324 	} else if (__vma_private_lock(vma)) {
325 		struct resv_map *resv_map = vma_resv_map(vma);
326 
327 		return down_write_trylock(&resv_map->rw_sema);
328 	}
329 
330 	return 1;
331 }
332 
333 void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
334 {
335 	if (__vma_shareable_lock(vma)) {
336 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
337 
338 		lockdep_assert_held(&vma_lock->rw_sema);
339 	} else if (__vma_private_lock(vma)) {
340 		struct resv_map *resv_map = vma_resv_map(vma);
341 
342 		lockdep_assert_held(&resv_map->rw_sema);
343 	}
344 }
345 
346 void hugetlb_vma_lock_release(struct kref *kref)
347 {
348 	struct hugetlb_vma_lock *vma_lock = container_of(kref,
349 			struct hugetlb_vma_lock, refs);
350 
351 	kfree(vma_lock);
352 }
353 
354 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
355 {
356 	struct vm_area_struct *vma = vma_lock->vma;
357 
358 	/*
359 	 * vma_lock structure may or not be released as a result of put,
360 	 * it certainly will no longer be attached to vma so clear pointer.
361 	 * Semaphore synchronizes access to vma_lock->vma field.
362 	 */
363 	vma_lock->vma = NULL;
364 	vma->vm_private_data = NULL;
365 	up_write(&vma_lock->rw_sema);
366 	kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
367 }
368 
369 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
370 {
371 	if (__vma_shareable_lock(vma)) {
372 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
373 
374 		__hugetlb_vma_unlock_write_put(vma_lock);
375 	} else if (__vma_private_lock(vma)) {
376 		struct resv_map *resv_map = vma_resv_map(vma);
377 
378 		/* no free for anon vmas, but still need to unlock */
379 		up_write(&resv_map->rw_sema);
380 	}
381 }
382 
383 static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
384 {
385 	/*
386 	 * Only present in sharable vmas.
387 	 */
388 	if (!vma || !__vma_shareable_lock(vma))
389 		return;
390 
391 	if (vma->vm_private_data) {
392 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
393 
394 		down_write(&vma_lock->rw_sema);
395 		__hugetlb_vma_unlock_write_put(vma_lock);
396 	}
397 }
398 
399 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
400 {
401 	struct hugetlb_vma_lock *vma_lock;
402 
403 	/* Only establish in (flags) sharable vmas */
404 	if (!vma || !(vma->vm_flags & VM_MAYSHARE))
405 		return;
406 
407 	/* Should never get here with non-NULL vm_private_data */
408 	if (vma->vm_private_data)
409 		return;
410 
411 	vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
412 	if (!vma_lock) {
413 		/*
414 		 * If we can not allocate structure, then vma can not
415 		 * participate in pmd sharing.  This is only a possible
416 		 * performance enhancement and memory saving issue.
417 		 * However, the lock is also used to synchronize page
418 		 * faults with truncation.  If the lock is not present,
419 		 * unlikely races could leave pages in a file past i_size
420 		 * until the file is removed.  Warn in the unlikely case of
421 		 * allocation failure.
422 		 */
423 		pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
424 		return;
425 	}
426 
427 	kref_init(&vma_lock->refs);
428 	init_rwsem(&vma_lock->rw_sema);
429 	vma_lock->vma = vma;
430 	vma->vm_private_data = vma_lock;
431 }
432 
433 /* Helper that removes a struct file_region from the resv_map cache and returns
434  * it for use.
435  */
436 static struct file_region *
437 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
438 {
439 	struct file_region *nrg;
440 
441 	VM_BUG_ON(resv->region_cache_count <= 0);
442 
443 	resv->region_cache_count--;
444 	nrg = list_first_entry(&resv->region_cache, struct file_region, link);
445 	list_del(&nrg->link);
446 
447 	nrg->from = from;
448 	nrg->to = to;
449 
450 	return nrg;
451 }
452 
453 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
454 					      struct file_region *rg)
455 {
456 #ifdef CONFIG_CGROUP_HUGETLB
457 	nrg->reservation_counter = rg->reservation_counter;
458 	nrg->css = rg->css;
459 	if (rg->css)
460 		css_get(rg->css);
461 #endif
462 }
463 
464 /* Helper that records hugetlb_cgroup uncharge info. */
465 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
466 						struct hstate *h,
467 						struct resv_map *resv,
468 						struct file_region *nrg)
469 {
470 #ifdef CONFIG_CGROUP_HUGETLB
471 	if (h_cg) {
472 		nrg->reservation_counter =
473 			&h_cg->rsvd_hugepage[hstate_index(h)];
474 		nrg->css = &h_cg->css;
475 		/*
476 		 * The caller will hold exactly one h_cg->css reference for the
477 		 * whole contiguous reservation region. But this area might be
478 		 * scattered when there are already some file_regions reside in
479 		 * it. As a result, many file_regions may share only one css
480 		 * reference. In order to ensure that one file_region must hold
481 		 * exactly one h_cg->css reference, we should do css_get for
482 		 * each file_region and leave the reference held by caller
483 		 * untouched.
484 		 */
485 		css_get(&h_cg->css);
486 		if (!resv->pages_per_hpage)
487 			resv->pages_per_hpage = pages_per_huge_page(h);
488 		/* pages_per_hpage should be the same for all entries in
489 		 * a resv_map.
490 		 */
491 		VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
492 	} else {
493 		nrg->reservation_counter = NULL;
494 		nrg->css = NULL;
495 	}
496 #endif
497 }
498 
499 static void put_uncharge_info(struct file_region *rg)
500 {
501 #ifdef CONFIG_CGROUP_HUGETLB
502 	if (rg->css)
503 		css_put(rg->css);
504 #endif
505 }
506 
507 static bool has_same_uncharge_info(struct file_region *rg,
508 				   struct file_region *org)
509 {
510 #ifdef CONFIG_CGROUP_HUGETLB
511 	return rg->reservation_counter == org->reservation_counter &&
512 	       rg->css == org->css;
513 
514 #else
515 	return true;
516 #endif
517 }
518 
519 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
520 {
521 	struct file_region *nrg, *prg;
522 
523 	prg = list_prev_entry(rg, link);
524 	if (&prg->link != &resv->regions && prg->to == rg->from &&
525 	    has_same_uncharge_info(prg, rg)) {
526 		prg->to = rg->to;
527 
528 		list_del(&rg->link);
529 		put_uncharge_info(rg);
530 		kfree(rg);
531 
532 		rg = prg;
533 	}
534 
535 	nrg = list_next_entry(rg, link);
536 	if (&nrg->link != &resv->regions && nrg->from == rg->to &&
537 	    has_same_uncharge_info(nrg, rg)) {
538 		nrg->from = rg->from;
539 
540 		list_del(&rg->link);
541 		put_uncharge_info(rg);
542 		kfree(rg);
543 	}
544 }
545 
546 static inline long
547 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
548 		     long to, struct hstate *h, struct hugetlb_cgroup *cg,
549 		     long *regions_needed)
550 {
551 	struct file_region *nrg;
552 
553 	if (!regions_needed) {
554 		nrg = get_file_region_entry_from_cache(map, from, to);
555 		record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
556 		list_add(&nrg->link, rg);
557 		coalesce_file_region(map, nrg);
558 	} else
559 		*regions_needed += 1;
560 
561 	return to - from;
562 }
563 
564 /*
565  * Must be called with resv->lock held.
566  *
567  * Calling this with regions_needed != NULL will count the number of pages
568  * to be added but will not modify the linked list. And regions_needed will
569  * indicate the number of file_regions needed in the cache to carry out to add
570  * the regions for this range.
571  */
572 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
573 				     struct hugetlb_cgroup *h_cg,
574 				     struct hstate *h, long *regions_needed)
575 {
576 	long add = 0;
577 	struct list_head *head = &resv->regions;
578 	long last_accounted_offset = f;
579 	struct file_region *iter, *trg = NULL;
580 	struct list_head *rg = NULL;
581 
582 	if (regions_needed)
583 		*regions_needed = 0;
584 
585 	/* In this loop, we essentially handle an entry for the range
586 	 * [last_accounted_offset, iter->from), at every iteration, with some
587 	 * bounds checking.
588 	 */
589 	list_for_each_entry_safe(iter, trg, head, link) {
590 		/* Skip irrelevant regions that start before our range. */
591 		if (iter->from < f) {
592 			/* If this region ends after the last accounted offset,
593 			 * then we need to update last_accounted_offset.
594 			 */
595 			if (iter->to > last_accounted_offset)
596 				last_accounted_offset = iter->to;
597 			continue;
598 		}
599 
600 		/* When we find a region that starts beyond our range, we've
601 		 * finished.
602 		 */
603 		if (iter->from >= t) {
604 			rg = iter->link.prev;
605 			break;
606 		}
607 
608 		/* Add an entry for last_accounted_offset -> iter->from, and
609 		 * update last_accounted_offset.
610 		 */
611 		if (iter->from > last_accounted_offset)
612 			add += hugetlb_resv_map_add(resv, iter->link.prev,
613 						    last_accounted_offset,
614 						    iter->from, h, h_cg,
615 						    regions_needed);
616 
617 		last_accounted_offset = iter->to;
618 	}
619 
620 	/* Handle the case where our range extends beyond
621 	 * last_accounted_offset.
622 	 */
623 	if (!rg)
624 		rg = head->prev;
625 	if (last_accounted_offset < t)
626 		add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
627 					    t, h, h_cg, regions_needed);
628 
629 	return add;
630 }
631 
632 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
633  */
634 static int allocate_file_region_entries(struct resv_map *resv,
635 					int regions_needed)
636 	__must_hold(&resv->lock)
637 {
638 	LIST_HEAD(allocated_regions);
639 	int to_allocate = 0, i = 0;
640 	struct file_region *trg = NULL, *rg = NULL;
641 
642 	VM_BUG_ON(regions_needed < 0);
643 
644 	/*
645 	 * Check for sufficient descriptors in the cache to accommodate
646 	 * the number of in progress add operations plus regions_needed.
647 	 *
648 	 * This is a while loop because when we drop the lock, some other call
649 	 * to region_add or region_del may have consumed some region_entries,
650 	 * so we keep looping here until we finally have enough entries for
651 	 * (adds_in_progress + regions_needed).
652 	 */
653 	while (resv->region_cache_count <
654 	       (resv->adds_in_progress + regions_needed)) {
655 		to_allocate = resv->adds_in_progress + regions_needed -
656 			      resv->region_cache_count;
657 
658 		/* At this point, we should have enough entries in the cache
659 		 * for all the existing adds_in_progress. We should only be
660 		 * needing to allocate for regions_needed.
661 		 */
662 		VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
663 
664 		spin_unlock(&resv->lock);
665 		for (i = 0; i < to_allocate; i++) {
666 			trg = kmalloc(sizeof(*trg), GFP_KERNEL);
667 			if (!trg)
668 				goto out_of_memory;
669 			list_add(&trg->link, &allocated_regions);
670 		}
671 
672 		spin_lock(&resv->lock);
673 
674 		list_splice(&allocated_regions, &resv->region_cache);
675 		resv->region_cache_count += to_allocate;
676 	}
677 
678 	return 0;
679 
680 out_of_memory:
681 	list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
682 		list_del(&rg->link);
683 		kfree(rg);
684 	}
685 	return -ENOMEM;
686 }
687 
688 /*
689  * Add the huge page range represented by [f, t) to the reserve
690  * map.  Regions will be taken from the cache to fill in this range.
691  * Sufficient regions should exist in the cache due to the previous
692  * call to region_chg with the same range, but in some cases the cache will not
693  * have sufficient entries due to races with other code doing region_add or
694  * region_del.  The extra needed entries will be allocated.
695  *
696  * regions_needed is the out value provided by a previous call to region_chg.
697  *
698  * Return the number of new huge pages added to the map.  This number is greater
699  * than or equal to zero.  If file_region entries needed to be allocated for
700  * this operation and we were not able to allocate, it returns -ENOMEM.
701  * region_add of regions of length 1 never allocate file_regions and cannot
702  * fail; region_chg will always allocate at least 1 entry and a region_add for
703  * 1 page will only require at most 1 entry.
704  */
705 static long region_add(struct resv_map *resv, long f, long t,
706 		       long in_regions_needed, struct hstate *h,
707 		       struct hugetlb_cgroup *h_cg)
708 {
709 	long add = 0, actual_regions_needed = 0;
710 
711 	spin_lock(&resv->lock);
712 retry:
713 
714 	/* Count how many regions are actually needed to execute this add. */
715 	add_reservation_in_range(resv, f, t, NULL, NULL,
716 				 &actual_regions_needed);
717 
718 	/*
719 	 * Check for sufficient descriptors in the cache to accommodate
720 	 * this add operation. Note that actual_regions_needed may be greater
721 	 * than in_regions_needed, as the resv_map may have been modified since
722 	 * the region_chg call. In this case, we need to make sure that we
723 	 * allocate extra entries, such that we have enough for all the
724 	 * existing adds_in_progress, plus the excess needed for this
725 	 * operation.
726 	 */
727 	if (actual_regions_needed > in_regions_needed &&
728 	    resv->region_cache_count <
729 		    resv->adds_in_progress +
730 			    (actual_regions_needed - in_regions_needed)) {
731 		/* region_add operation of range 1 should never need to
732 		 * allocate file_region entries.
733 		 */
734 		VM_BUG_ON(t - f <= 1);
735 
736 		if (allocate_file_region_entries(
737 			    resv, actual_regions_needed - in_regions_needed)) {
738 			return -ENOMEM;
739 		}
740 
741 		goto retry;
742 	}
743 
744 	add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
745 
746 	resv->adds_in_progress -= in_regions_needed;
747 
748 	spin_unlock(&resv->lock);
749 	return add;
750 }
751 
752 /*
753  * Examine the existing reserve map and determine how many
754  * huge pages in the specified range [f, t) are NOT currently
755  * represented.  This routine is called before a subsequent
756  * call to region_add that will actually modify the reserve
757  * map to add the specified range [f, t).  region_chg does
758  * not change the number of huge pages represented by the
759  * map.  A number of new file_region structures is added to the cache as a
760  * placeholder, for the subsequent region_add call to use. At least 1
761  * file_region structure is added.
762  *
763  * out_regions_needed is the number of regions added to the
764  * resv->adds_in_progress.  This value needs to be provided to a follow up call
765  * to region_add or region_abort for proper accounting.
766  *
767  * Returns the number of huge pages that need to be added to the existing
768  * reservation map for the range [f, t).  This number is greater or equal to
769  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
770  * is needed and can not be allocated.
771  */
772 static long region_chg(struct resv_map *resv, long f, long t,
773 		       long *out_regions_needed)
774 {
775 	long chg = 0;
776 
777 	spin_lock(&resv->lock);
778 
779 	/* Count how many hugepages in this range are NOT represented. */
780 	chg = add_reservation_in_range(resv, f, t, NULL, NULL,
781 				       out_regions_needed);
782 
783 	if (*out_regions_needed == 0)
784 		*out_regions_needed = 1;
785 
786 	if (allocate_file_region_entries(resv, *out_regions_needed))
787 		return -ENOMEM;
788 
789 	resv->adds_in_progress += *out_regions_needed;
790 
791 	spin_unlock(&resv->lock);
792 	return chg;
793 }
794 
795 /*
796  * Abort the in progress add operation.  The adds_in_progress field
797  * of the resv_map keeps track of the operations in progress between
798  * calls to region_chg and region_add.  Operations are sometimes
799  * aborted after the call to region_chg.  In such cases, region_abort
800  * is called to decrement the adds_in_progress counter. regions_needed
801  * is the value returned by the region_chg call, it is used to decrement
802  * the adds_in_progress counter.
803  *
804  * NOTE: The range arguments [f, t) are not needed or used in this
805  * routine.  They are kept to make reading the calling code easier as
806  * arguments will match the associated region_chg call.
807  */
808 static void region_abort(struct resv_map *resv, long f, long t,
809 			 long regions_needed)
810 {
811 	spin_lock(&resv->lock);
812 	VM_BUG_ON(!resv->region_cache_count);
813 	resv->adds_in_progress -= regions_needed;
814 	spin_unlock(&resv->lock);
815 }
816 
817 /*
818  * Delete the specified range [f, t) from the reserve map.  If the
819  * t parameter is LONG_MAX, this indicates that ALL regions after f
820  * should be deleted.  Locate the regions which intersect [f, t)
821  * and either trim, delete or split the existing regions.
822  *
823  * Returns the number of huge pages deleted from the reserve map.
824  * In the normal case, the return value is zero or more.  In the
825  * case where a region must be split, a new region descriptor must
826  * be allocated.  If the allocation fails, -ENOMEM will be returned.
827  * NOTE: If the parameter t == LONG_MAX, then we will never split
828  * a region and possibly return -ENOMEM.  Callers specifying
829  * t == LONG_MAX do not need to check for -ENOMEM error.
830  */
831 static long region_del(struct resv_map *resv, long f, long t)
832 {
833 	struct list_head *head = &resv->regions;
834 	struct file_region *rg, *trg;
835 	struct file_region *nrg = NULL;
836 	long del = 0;
837 
838 retry:
839 	spin_lock(&resv->lock);
840 	list_for_each_entry_safe(rg, trg, head, link) {
841 		/*
842 		 * Skip regions before the range to be deleted.  file_region
843 		 * ranges are normally of the form [from, to).  However, there
844 		 * may be a "placeholder" entry in the map which is of the form
845 		 * (from, to) with from == to.  Check for placeholder entries
846 		 * at the beginning of the range to be deleted.
847 		 */
848 		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
849 			continue;
850 
851 		if (rg->from >= t)
852 			break;
853 
854 		if (f > rg->from && t < rg->to) { /* Must split region */
855 			/*
856 			 * Check for an entry in the cache before dropping
857 			 * lock and attempting allocation.
858 			 */
859 			if (!nrg &&
860 			    resv->region_cache_count > resv->adds_in_progress) {
861 				nrg = list_first_entry(&resv->region_cache,
862 							struct file_region,
863 							link);
864 				list_del(&nrg->link);
865 				resv->region_cache_count--;
866 			}
867 
868 			if (!nrg) {
869 				spin_unlock(&resv->lock);
870 				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
871 				if (!nrg)
872 					return -ENOMEM;
873 				goto retry;
874 			}
875 
876 			del += t - f;
877 			hugetlb_cgroup_uncharge_file_region(
878 				resv, rg, t - f, false);
879 
880 			/* New entry for end of split region */
881 			nrg->from = t;
882 			nrg->to = rg->to;
883 
884 			copy_hugetlb_cgroup_uncharge_info(nrg, rg);
885 
886 			INIT_LIST_HEAD(&nrg->link);
887 
888 			/* Original entry is trimmed */
889 			rg->to = f;
890 
891 			list_add(&nrg->link, &rg->link);
892 			nrg = NULL;
893 			break;
894 		}
895 
896 		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
897 			del += rg->to - rg->from;
898 			hugetlb_cgroup_uncharge_file_region(resv, rg,
899 							    rg->to - rg->from, true);
900 			list_del(&rg->link);
901 			kfree(rg);
902 			continue;
903 		}
904 
905 		if (f <= rg->from) {	/* Trim beginning of region */
906 			hugetlb_cgroup_uncharge_file_region(resv, rg,
907 							    t - rg->from, false);
908 
909 			del += t - rg->from;
910 			rg->from = t;
911 		} else {		/* Trim end of region */
912 			hugetlb_cgroup_uncharge_file_region(resv, rg,
913 							    rg->to - f, false);
914 
915 			del += rg->to - f;
916 			rg->to = f;
917 		}
918 	}
919 
920 	spin_unlock(&resv->lock);
921 	kfree(nrg);
922 	return del;
923 }
924 
925 /*
926  * A rare out of memory error was encountered which prevented removal of
927  * the reserve map region for a page.  The huge page itself was free'ed
928  * and removed from the page cache.  This routine will adjust the subpool
929  * usage count, and the global reserve count if needed.  By incrementing
930  * these counts, the reserve map entry which could not be deleted will
931  * appear as a "reserved" entry instead of simply dangling with incorrect
932  * counts.
933  */
934 void hugetlb_fix_reserve_counts(struct inode *inode)
935 {
936 	struct hugepage_subpool *spool = subpool_inode(inode);
937 	long rsv_adjust;
938 	bool reserved = false;
939 
940 	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
941 	if (rsv_adjust > 0) {
942 		struct hstate *h = hstate_inode(inode);
943 
944 		if (!hugetlb_acct_memory(h, 1))
945 			reserved = true;
946 	} else if (!rsv_adjust) {
947 		reserved = true;
948 	}
949 
950 	if (!reserved)
951 		pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
952 }
953 
954 /*
955  * Count and return the number of huge pages in the reserve map
956  * that intersect with the range [f, t).
957  */
958 static long region_count(struct resv_map *resv, long f, long t)
959 {
960 	struct list_head *head = &resv->regions;
961 	struct file_region *rg;
962 	long chg = 0;
963 
964 	spin_lock(&resv->lock);
965 	/* Locate each segment we overlap with, and count that overlap. */
966 	list_for_each_entry(rg, head, link) {
967 		long seg_from;
968 		long seg_to;
969 
970 		if (rg->to <= f)
971 			continue;
972 		if (rg->from >= t)
973 			break;
974 
975 		seg_from = max(rg->from, f);
976 		seg_to = min(rg->to, t);
977 
978 		chg += seg_to - seg_from;
979 	}
980 	spin_unlock(&resv->lock);
981 
982 	return chg;
983 }
984 
985 /*
986  * Convert the address within this vma to the page offset within
987  * the mapping, huge page units here.
988  */
989 static pgoff_t vma_hugecache_offset(struct hstate *h,
990 			struct vm_area_struct *vma, unsigned long address)
991 {
992 	return ((address - vma->vm_start) >> huge_page_shift(h)) +
993 			(vma->vm_pgoff >> huge_page_order(h));
994 }
995 
996 /**
997  * vma_kernel_pagesize - Page size granularity for this VMA.
998  * @vma: The user mapping.
999  *
1000  * Folios in this VMA will be aligned to, and at least the size of the
1001  * number of bytes returned by this function.
1002  *
1003  * Return: The default size of the folios allocated when backing a VMA.
1004  */
1005 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
1006 {
1007 	if (vma->vm_ops && vma->vm_ops->pagesize)
1008 		return vma->vm_ops->pagesize(vma);
1009 	return PAGE_SIZE;
1010 }
1011 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
1012 
1013 /*
1014  * Return the page size being used by the MMU to back a VMA. In the majority
1015  * of cases, the page size used by the kernel matches the MMU size. On
1016  * architectures where it differs, an architecture-specific 'strong'
1017  * version of this symbol is required.
1018  */
1019 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
1020 {
1021 	return vma_kernel_pagesize(vma);
1022 }
1023 
1024 /*
1025  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
1026  * bits of the reservation map pointer, which are always clear due to
1027  * alignment.
1028  */
1029 #define HPAGE_RESV_OWNER    (1UL << 0)
1030 #define HPAGE_RESV_UNMAPPED (1UL << 1)
1031 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
1032 
1033 /*
1034  * These helpers are used to track how many pages are reserved for
1035  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
1036  * is guaranteed to have their future faults succeed.
1037  *
1038  * With the exception of hugetlb_dup_vma_private() which is called at fork(),
1039  * the reserve counters are updated with the hugetlb_lock held. It is safe
1040  * to reset the VMA at fork() time as it is not in use yet and there is no
1041  * chance of the global counters getting corrupted as a result of the values.
1042  *
1043  * The private mapping reservation is represented in a subtly different
1044  * manner to a shared mapping.  A shared mapping has a region map associated
1045  * with the underlying file, this region map represents the backing file
1046  * pages which have ever had a reservation assigned which this persists even
1047  * after the page is instantiated.  A private mapping has a region map
1048  * associated with the original mmap which is attached to all VMAs which
1049  * reference it, this region map represents those offsets which have consumed
1050  * reservation ie. where pages have been instantiated.
1051  */
1052 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
1053 {
1054 	return (unsigned long)vma->vm_private_data;
1055 }
1056 
1057 static void set_vma_private_data(struct vm_area_struct *vma,
1058 							unsigned long value)
1059 {
1060 	vma->vm_private_data = (void *)value;
1061 }
1062 
1063 static void
1064 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
1065 					  struct hugetlb_cgroup *h_cg,
1066 					  struct hstate *h)
1067 {
1068 #ifdef CONFIG_CGROUP_HUGETLB
1069 	if (!h_cg || !h) {
1070 		resv_map->reservation_counter = NULL;
1071 		resv_map->pages_per_hpage = 0;
1072 		resv_map->css = NULL;
1073 	} else {
1074 		resv_map->reservation_counter =
1075 			&h_cg->rsvd_hugepage[hstate_index(h)];
1076 		resv_map->pages_per_hpage = pages_per_huge_page(h);
1077 		resv_map->css = &h_cg->css;
1078 	}
1079 #endif
1080 }
1081 
1082 struct resv_map *resv_map_alloc(void)
1083 {
1084 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
1085 	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
1086 
1087 	if (!resv_map || !rg) {
1088 		kfree(resv_map);
1089 		kfree(rg);
1090 		return NULL;
1091 	}
1092 
1093 	kref_init(&resv_map->refs);
1094 	spin_lock_init(&resv_map->lock);
1095 	INIT_LIST_HEAD(&resv_map->regions);
1096 	init_rwsem(&resv_map->rw_sema);
1097 
1098 	resv_map->adds_in_progress = 0;
1099 	/*
1100 	 * Initialize these to 0. On shared mappings, 0's here indicate these
1101 	 * fields don't do cgroup accounting. On private mappings, these will be
1102 	 * re-initialized to the proper values, to indicate that hugetlb cgroup
1103 	 * reservations are to be un-charged from here.
1104 	 */
1105 	resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
1106 
1107 	INIT_LIST_HEAD(&resv_map->region_cache);
1108 	list_add(&rg->link, &resv_map->region_cache);
1109 	resv_map->region_cache_count = 1;
1110 
1111 	return resv_map;
1112 }
1113 
1114 void resv_map_release(struct kref *ref)
1115 {
1116 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
1117 	struct list_head *head = &resv_map->region_cache;
1118 	struct file_region *rg, *trg;
1119 
1120 	/* Clear out any active regions before we release the map. */
1121 	region_del(resv_map, 0, LONG_MAX);
1122 
1123 	/* ... and any entries left in the cache */
1124 	list_for_each_entry_safe(rg, trg, head, link) {
1125 		list_del(&rg->link);
1126 		kfree(rg);
1127 	}
1128 
1129 	VM_BUG_ON(resv_map->adds_in_progress);
1130 
1131 	kfree(resv_map);
1132 }
1133 
1134 static inline struct resv_map *inode_resv_map(struct inode *inode)
1135 {
1136 	/*
1137 	 * At inode evict time, i_mapping may not point to the original
1138 	 * address space within the inode.  This original address space
1139 	 * contains the pointer to the resv_map.  So, always use the
1140 	 * address space embedded within the inode.
1141 	 * The VERY common case is inode->mapping == &inode->i_data but,
1142 	 * this may not be true for device special inodes.
1143 	 */
1144 	return (struct resv_map *)(&inode->i_data)->private_data;
1145 }
1146 
1147 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
1148 {
1149 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1150 	if (vma->vm_flags & VM_MAYSHARE) {
1151 		struct address_space *mapping = vma->vm_file->f_mapping;
1152 		struct inode *inode = mapping->host;
1153 
1154 		return inode_resv_map(inode);
1155 
1156 	} else {
1157 		return (struct resv_map *)(get_vma_private_data(vma) &
1158 							~HPAGE_RESV_MASK);
1159 	}
1160 }
1161 
1162 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
1163 {
1164 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1165 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1166 
1167 	set_vma_private_data(vma, (unsigned long)map);
1168 }
1169 
1170 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
1171 {
1172 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1173 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1174 
1175 	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1176 }
1177 
1178 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1179 {
1180 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1181 
1182 	return (get_vma_private_data(vma) & flag) != 0;
1183 }
1184 
1185 void hugetlb_dup_vma_private(struct vm_area_struct *vma)
1186 {
1187 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1188 	/*
1189 	 * Clear vm_private_data
1190 	 * - For shared mappings this is a per-vma semaphore that may be
1191 	 *   allocated in a subsequent call to hugetlb_vm_op_open.
1192 	 *   Before clearing, make sure pointer is not associated with vma
1193 	 *   as this will leak the structure.  This is the case when called
1194 	 *   via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already
1195 	 *   been called to allocate a new structure.
1196 	 * - For MAP_PRIVATE mappings, this is the reserve map which does
1197 	 *   not apply to children.  Faults generated by the children are
1198 	 *   not guaranteed to succeed, even if read-only.
1199 	 */
1200 	if (vma->vm_flags & VM_MAYSHARE) {
1201 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1202 
1203 		if (vma_lock && vma_lock->vma != vma)
1204 			vma->vm_private_data = NULL;
1205 	} else
1206 		vma->vm_private_data = NULL;
1207 }
1208 
1209 /*
1210  * Reset and decrement one ref on hugepage private reservation.
1211  * Called with mm->mmap_lock writer semaphore held.
1212  * This function should be only used by move_vma() and operate on
1213  * same sized vma. It should never come here with last ref on the
1214  * reservation.
1215  */
1216 void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1217 {
1218 	/*
1219 	 * Clear the old hugetlb private page reservation.
1220 	 * It has already been transferred to new_vma.
1221 	 *
1222 	 * During a mremap() operation of a hugetlb vma we call move_vma()
1223 	 * which copies vma into new_vma and unmaps vma. After the copy
1224 	 * operation both new_vma and vma share a reference to the resv_map
1225 	 * struct, and at that point vma is about to be unmapped. We don't
1226 	 * want to return the reservation to the pool at unmap of vma because
1227 	 * the reservation still lives on in new_vma, so simply decrement the
1228 	 * ref here and remove the resv_map reference from this vma.
1229 	 */
1230 	struct resv_map *reservations = vma_resv_map(vma);
1231 
1232 	if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1233 		resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1234 		kref_put(&reservations->refs, resv_map_release);
1235 	}
1236 
1237 	hugetlb_dup_vma_private(vma);
1238 }
1239 
1240 /* Returns true if the VMA has associated reserve pages */
1241 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1242 {
1243 	if (vma->vm_flags & VM_NORESERVE) {
1244 		/*
1245 		 * This address is already reserved by other process(chg == 0),
1246 		 * so, we should decrement reserved count. Without decrementing,
1247 		 * reserve count remains after releasing inode, because this
1248 		 * allocated page will go into page cache and is regarded as
1249 		 * coming from reserved pool in releasing step.  Currently, we
1250 		 * don't have any other solution to deal with this situation
1251 		 * properly, so add work-around here.
1252 		 */
1253 		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1254 			return true;
1255 		else
1256 			return false;
1257 	}
1258 
1259 	/* Shared mappings always use reserves */
1260 	if (vma->vm_flags & VM_MAYSHARE) {
1261 		/*
1262 		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1263 		 * be a region map for all pages.  The only situation where
1264 		 * there is no region map is if a hole was punched via
1265 		 * fallocate.  In this case, there really are no reserves to
1266 		 * use.  This situation is indicated if chg != 0.
1267 		 */
1268 		if (chg)
1269 			return false;
1270 		else
1271 			return true;
1272 	}
1273 
1274 	/*
1275 	 * Only the process that called mmap() has reserves for
1276 	 * private mappings.
1277 	 */
1278 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1279 		/*
1280 		 * Like the shared case above, a hole punch or truncate
1281 		 * could have been performed on the private mapping.
1282 		 * Examine the value of chg to determine if reserves
1283 		 * actually exist or were previously consumed.
1284 		 * Very Subtle - The value of chg comes from a previous
1285 		 * call to vma_needs_reserves().  The reserve map for
1286 		 * private mappings has different (opposite) semantics
1287 		 * than that of shared mappings.  vma_needs_reserves()
1288 		 * has already taken this difference in semantics into
1289 		 * account.  Therefore, the meaning of chg is the same
1290 		 * as in the shared case above.  Code could easily be
1291 		 * combined, but keeping it separate draws attention to
1292 		 * subtle differences.
1293 		 */
1294 		if (chg)
1295 			return false;
1296 		else
1297 			return true;
1298 	}
1299 
1300 	return false;
1301 }
1302 
1303 static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio)
1304 {
1305 	int nid = folio_nid(folio);
1306 
1307 	lockdep_assert_held(&hugetlb_lock);
1308 	VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1309 
1310 	list_move(&folio->lru, &h->hugepage_freelists[nid]);
1311 	h->free_huge_pages++;
1312 	h->free_huge_pages_node[nid]++;
1313 	folio_set_hugetlb_freed(folio);
1314 }
1315 
1316 static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h,
1317 								int nid)
1318 {
1319 	struct folio *folio;
1320 	bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1321 
1322 	lockdep_assert_held(&hugetlb_lock);
1323 	list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) {
1324 		if (pin && !folio_is_longterm_pinnable(folio))
1325 			continue;
1326 
1327 		if (folio_test_hwpoison(folio))
1328 			continue;
1329 
1330 		list_move(&folio->lru, &h->hugepage_activelist);
1331 		folio_ref_unfreeze(folio, 1);
1332 		folio_clear_hugetlb_freed(folio);
1333 		h->free_huge_pages--;
1334 		h->free_huge_pages_node[nid]--;
1335 		return folio;
1336 	}
1337 
1338 	return NULL;
1339 }
1340 
1341 static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask,
1342 							int nid, nodemask_t *nmask)
1343 {
1344 	unsigned int cpuset_mems_cookie;
1345 	struct zonelist *zonelist;
1346 	struct zone *zone;
1347 	struct zoneref *z;
1348 	int node = NUMA_NO_NODE;
1349 
1350 	zonelist = node_zonelist(nid, gfp_mask);
1351 
1352 retry_cpuset:
1353 	cpuset_mems_cookie = read_mems_allowed_begin();
1354 	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1355 		struct folio *folio;
1356 
1357 		if (!cpuset_zone_allowed(zone, gfp_mask))
1358 			continue;
1359 		/*
1360 		 * no need to ask again on the same node. Pool is node rather than
1361 		 * zone aware
1362 		 */
1363 		if (zone_to_nid(zone) == node)
1364 			continue;
1365 		node = zone_to_nid(zone);
1366 
1367 		folio = dequeue_hugetlb_folio_node_exact(h, node);
1368 		if (folio)
1369 			return folio;
1370 	}
1371 	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1372 		goto retry_cpuset;
1373 
1374 	return NULL;
1375 }
1376 
1377 static unsigned long available_huge_pages(struct hstate *h)
1378 {
1379 	return h->free_huge_pages - h->resv_huge_pages;
1380 }
1381 
1382 static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h,
1383 				struct vm_area_struct *vma,
1384 				unsigned long address, int avoid_reserve,
1385 				long chg)
1386 {
1387 	struct folio *folio = NULL;
1388 	struct mempolicy *mpol;
1389 	gfp_t gfp_mask;
1390 	nodemask_t *nodemask;
1391 	int nid;
1392 
1393 	/*
1394 	 * A child process with MAP_PRIVATE mappings created by their parent
1395 	 * have no page reserves. This check ensures that reservations are
1396 	 * not "stolen". The child may still get SIGKILLed
1397 	 */
1398 	if (!vma_has_reserves(vma, chg) && !available_huge_pages(h))
1399 		goto err;
1400 
1401 	/* If reserves cannot be used, ensure enough pages are in the pool */
1402 	if (avoid_reserve && !available_huge_pages(h))
1403 		goto err;
1404 
1405 	gfp_mask = htlb_alloc_mask(h);
1406 	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1407 
1408 	if (mpol_is_preferred_many(mpol)) {
1409 		folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1410 							nid, nodemask);
1411 
1412 		/* Fallback to all nodes if page==NULL */
1413 		nodemask = NULL;
1414 	}
1415 
1416 	if (!folio)
1417 		folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1418 							nid, nodemask);
1419 
1420 	if (folio && !avoid_reserve && vma_has_reserves(vma, chg)) {
1421 		folio_set_hugetlb_restore_reserve(folio);
1422 		h->resv_huge_pages--;
1423 	}
1424 
1425 	mpol_cond_put(mpol);
1426 	return folio;
1427 
1428 err:
1429 	return NULL;
1430 }
1431 
1432 /*
1433  * common helper functions for hstate_next_node_to_{alloc|free}.
1434  * We may have allocated or freed a huge page based on a different
1435  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1436  * be outside of *nodes_allowed.  Ensure that we use an allowed
1437  * node for alloc or free.
1438  */
1439 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1440 {
1441 	nid = next_node_in(nid, *nodes_allowed);
1442 	VM_BUG_ON(nid >= MAX_NUMNODES);
1443 
1444 	return nid;
1445 }
1446 
1447 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1448 {
1449 	if (!node_isset(nid, *nodes_allowed))
1450 		nid = next_node_allowed(nid, nodes_allowed);
1451 	return nid;
1452 }
1453 
1454 /*
1455  * returns the previously saved node ["this node"] from which to
1456  * allocate a persistent huge page for the pool and advance the
1457  * next node from which to allocate, handling wrap at end of node
1458  * mask.
1459  */
1460 static int hstate_next_node_to_alloc(struct hstate *h,
1461 					nodemask_t *nodes_allowed)
1462 {
1463 	int nid;
1464 
1465 	VM_BUG_ON(!nodes_allowed);
1466 
1467 	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1468 	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1469 
1470 	return nid;
1471 }
1472 
1473 /*
1474  * helper for remove_pool_hugetlb_folio() - return the previously saved
1475  * node ["this node"] from which to free a huge page.  Advance the
1476  * next node id whether or not we find a free huge page to free so
1477  * that the next attempt to free addresses the next node.
1478  */
1479 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1480 {
1481 	int nid;
1482 
1483 	VM_BUG_ON(!nodes_allowed);
1484 
1485 	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1486 	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1487 
1488 	return nid;
1489 }
1490 
1491 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
1492 	for (nr_nodes = nodes_weight(*mask);				\
1493 		nr_nodes > 0 &&						\
1494 		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
1495 		nr_nodes--)
1496 
1497 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
1498 	for (nr_nodes = nodes_weight(*mask);				\
1499 		nr_nodes > 0 &&						\
1500 		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
1501 		nr_nodes--)
1502 
1503 /* used to demote non-gigantic_huge pages as well */
1504 static void __destroy_compound_gigantic_folio(struct folio *folio,
1505 					unsigned int order, bool demote)
1506 {
1507 	int i;
1508 	int nr_pages = 1 << order;
1509 	struct page *p;
1510 
1511 	atomic_set(&folio->_entire_mapcount, 0);
1512 	atomic_set(&folio->_nr_pages_mapped, 0);
1513 	atomic_set(&folio->_pincount, 0);
1514 
1515 	for (i = 1; i < nr_pages; i++) {
1516 		p = folio_page(folio, i);
1517 		p->flags &= ~PAGE_FLAGS_CHECK_AT_FREE;
1518 		p->mapping = NULL;
1519 		clear_compound_head(p);
1520 		if (!demote)
1521 			set_page_refcounted(p);
1522 	}
1523 
1524 	__folio_clear_head(folio);
1525 }
1526 
1527 static void destroy_compound_hugetlb_folio_for_demote(struct folio *folio,
1528 					unsigned int order)
1529 {
1530 	__destroy_compound_gigantic_folio(folio, order, true);
1531 }
1532 
1533 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1534 static void destroy_compound_gigantic_folio(struct folio *folio,
1535 					unsigned int order)
1536 {
1537 	__destroy_compound_gigantic_folio(folio, order, false);
1538 }
1539 
1540 static void free_gigantic_folio(struct folio *folio, unsigned int order)
1541 {
1542 	/*
1543 	 * If the page isn't allocated using the cma allocator,
1544 	 * cma_release() returns false.
1545 	 */
1546 #ifdef CONFIG_CMA
1547 	int nid = folio_nid(folio);
1548 
1549 	if (cma_release(hugetlb_cma[nid], &folio->page, 1 << order))
1550 		return;
1551 #endif
1552 
1553 	free_contig_range(folio_pfn(folio), 1 << order);
1554 }
1555 
1556 #ifdef CONFIG_CONTIG_ALLOC
1557 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1558 		int nid, nodemask_t *nodemask)
1559 {
1560 	struct page *page;
1561 	unsigned long nr_pages = pages_per_huge_page(h);
1562 	if (nid == NUMA_NO_NODE)
1563 		nid = numa_mem_id();
1564 
1565 #ifdef CONFIG_CMA
1566 	{
1567 		int node;
1568 
1569 		if (hugetlb_cma[nid]) {
1570 			page = cma_alloc(hugetlb_cma[nid], nr_pages,
1571 					huge_page_order(h), true);
1572 			if (page)
1573 				return page_folio(page);
1574 		}
1575 
1576 		if (!(gfp_mask & __GFP_THISNODE)) {
1577 			for_each_node_mask(node, *nodemask) {
1578 				if (node == nid || !hugetlb_cma[node])
1579 					continue;
1580 
1581 				page = cma_alloc(hugetlb_cma[node], nr_pages,
1582 						huge_page_order(h), true);
1583 				if (page)
1584 					return page_folio(page);
1585 			}
1586 		}
1587 	}
1588 #endif
1589 
1590 	page = alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1591 	return page ? page_folio(page) : NULL;
1592 }
1593 
1594 #else /* !CONFIG_CONTIG_ALLOC */
1595 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1596 					int nid, nodemask_t *nodemask)
1597 {
1598 	return NULL;
1599 }
1600 #endif /* CONFIG_CONTIG_ALLOC */
1601 
1602 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1603 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1604 					int nid, nodemask_t *nodemask)
1605 {
1606 	return NULL;
1607 }
1608 static inline void free_gigantic_folio(struct folio *folio,
1609 						unsigned int order) { }
1610 static inline void destroy_compound_gigantic_folio(struct folio *folio,
1611 						unsigned int order) { }
1612 #endif
1613 
1614 static inline void __clear_hugetlb_destructor(struct hstate *h,
1615 						struct folio *folio)
1616 {
1617 	lockdep_assert_held(&hugetlb_lock);
1618 
1619 	folio_clear_hugetlb(folio);
1620 }
1621 
1622 /*
1623  * Remove hugetlb folio from lists.
1624  * If vmemmap exists for the folio, update dtor so that the folio appears
1625  * as just a compound page.  Otherwise, wait until after allocating vmemmap
1626  * to update dtor.
1627  *
1628  * A reference is held on the folio, except in the case of demote.
1629  *
1630  * Must be called with hugetlb lock held.
1631  */
1632 static void __remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1633 							bool adjust_surplus,
1634 							bool demote)
1635 {
1636 	int nid = folio_nid(folio);
1637 
1638 	VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio);
1639 	VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio);
1640 
1641 	lockdep_assert_held(&hugetlb_lock);
1642 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1643 		return;
1644 
1645 	list_del(&folio->lru);
1646 
1647 	if (folio_test_hugetlb_freed(folio)) {
1648 		h->free_huge_pages--;
1649 		h->free_huge_pages_node[nid]--;
1650 	}
1651 	if (adjust_surplus) {
1652 		h->surplus_huge_pages--;
1653 		h->surplus_huge_pages_node[nid]--;
1654 	}
1655 
1656 	/*
1657 	 * We can only clear the hugetlb destructor after allocating vmemmap
1658 	 * pages.  Otherwise, someone (memory error handling) may try to write
1659 	 * to tail struct pages.
1660 	 */
1661 	if (!folio_test_hugetlb_vmemmap_optimized(folio))
1662 		__clear_hugetlb_destructor(h, folio);
1663 
1664 	 /*
1665 	  * In the case of demote we do not ref count the page as it will soon
1666 	  * be turned into a page of smaller size.
1667 	 */
1668 	if (!demote)
1669 		folio_ref_unfreeze(folio, 1);
1670 
1671 	h->nr_huge_pages--;
1672 	h->nr_huge_pages_node[nid]--;
1673 }
1674 
1675 static void remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1676 							bool adjust_surplus)
1677 {
1678 	__remove_hugetlb_folio(h, folio, adjust_surplus, false);
1679 }
1680 
1681 static void remove_hugetlb_folio_for_demote(struct hstate *h, struct folio *folio,
1682 							bool adjust_surplus)
1683 {
1684 	__remove_hugetlb_folio(h, folio, adjust_surplus, true);
1685 }
1686 
1687 static void add_hugetlb_folio(struct hstate *h, struct folio *folio,
1688 			     bool adjust_surplus)
1689 {
1690 	int zeroed;
1691 	int nid = folio_nid(folio);
1692 
1693 	VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio);
1694 
1695 	lockdep_assert_held(&hugetlb_lock);
1696 
1697 	INIT_LIST_HEAD(&folio->lru);
1698 	h->nr_huge_pages++;
1699 	h->nr_huge_pages_node[nid]++;
1700 
1701 	if (adjust_surplus) {
1702 		h->surplus_huge_pages++;
1703 		h->surplus_huge_pages_node[nid]++;
1704 	}
1705 
1706 	folio_set_hugetlb(folio);
1707 	folio_change_private(folio, NULL);
1708 	/*
1709 	 * We have to set hugetlb_vmemmap_optimized again as above
1710 	 * folio_change_private(folio, NULL) cleared it.
1711 	 */
1712 	folio_set_hugetlb_vmemmap_optimized(folio);
1713 
1714 	/*
1715 	 * This folio is about to be managed by the hugetlb allocator and
1716 	 * should have no users.  Drop our reference, and check for others
1717 	 * just in case.
1718 	 */
1719 	zeroed = folio_put_testzero(folio);
1720 	if (unlikely(!zeroed))
1721 		/*
1722 		 * It is VERY unlikely soneone else has taken a ref
1723 		 * on the folio.  In this case, we simply return as
1724 		 * free_huge_folio() will be called when this other ref
1725 		 * is dropped.
1726 		 */
1727 		return;
1728 
1729 	arch_clear_hugepage_flags(&folio->page);
1730 	enqueue_hugetlb_folio(h, folio);
1731 }
1732 
1733 static void __update_and_free_hugetlb_folio(struct hstate *h,
1734 						struct folio *folio)
1735 {
1736 	bool clear_dtor = folio_test_hugetlb_vmemmap_optimized(folio);
1737 
1738 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1739 		return;
1740 
1741 	/*
1742 	 * If we don't know which subpages are hwpoisoned, we can't free
1743 	 * the hugepage, so it's leaked intentionally.
1744 	 */
1745 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1746 		return;
1747 
1748 	/*
1749 	 * If folio is not vmemmap optimized (!clear_dtor), then the folio
1750 	 * is no longer identified as a hugetlb page.  hugetlb_vmemmap_restore_folio
1751 	 * can only be passed hugetlb pages and will BUG otherwise.
1752 	 */
1753 	if (clear_dtor && hugetlb_vmemmap_restore_folio(h, folio)) {
1754 		spin_lock_irq(&hugetlb_lock);
1755 		/*
1756 		 * If we cannot allocate vmemmap pages, just refuse to free the
1757 		 * page and put the page back on the hugetlb free list and treat
1758 		 * as a surplus page.
1759 		 */
1760 		add_hugetlb_folio(h, folio, true);
1761 		spin_unlock_irq(&hugetlb_lock);
1762 		return;
1763 	}
1764 
1765 	/*
1766 	 * Move PageHWPoison flag from head page to the raw error pages,
1767 	 * which makes any healthy subpages reusable.
1768 	 */
1769 	if (unlikely(folio_test_hwpoison(folio)))
1770 		folio_clear_hugetlb_hwpoison(folio);
1771 
1772 	/*
1773 	 * If vmemmap pages were allocated above, then we need to clear the
1774 	 * hugetlb destructor under the hugetlb lock.
1775 	 */
1776 	if (clear_dtor) {
1777 		spin_lock_irq(&hugetlb_lock);
1778 		__clear_hugetlb_destructor(h, folio);
1779 		spin_unlock_irq(&hugetlb_lock);
1780 	}
1781 
1782 	/*
1783 	 * Non-gigantic pages demoted from CMA allocated gigantic pages
1784 	 * need to be given back to CMA in free_gigantic_folio.
1785 	 */
1786 	if (hstate_is_gigantic(h) ||
1787 	    hugetlb_cma_folio(folio, huge_page_order(h))) {
1788 		destroy_compound_gigantic_folio(folio, huge_page_order(h));
1789 		free_gigantic_folio(folio, huge_page_order(h));
1790 	} else {
1791 		__free_pages(&folio->page, huge_page_order(h));
1792 	}
1793 }
1794 
1795 /*
1796  * As update_and_free_hugetlb_folio() can be called under any context, so we cannot
1797  * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1798  * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1799  * the vmemmap pages.
1800  *
1801  * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1802  * freed and frees them one-by-one. As the page->mapping pointer is going
1803  * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1804  * structure of a lockless linked list of huge pages to be freed.
1805  */
1806 static LLIST_HEAD(hpage_freelist);
1807 
1808 static void free_hpage_workfn(struct work_struct *work)
1809 {
1810 	struct llist_node *node;
1811 
1812 	node = llist_del_all(&hpage_freelist);
1813 
1814 	while (node) {
1815 		struct folio *folio;
1816 		struct hstate *h;
1817 
1818 		folio = container_of((struct address_space **)node,
1819 				     struct folio, mapping);
1820 		node = node->next;
1821 		folio->mapping = NULL;
1822 		/*
1823 		 * The VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio) in
1824 		 * folio_hstate() is going to trigger because a previous call to
1825 		 * remove_hugetlb_folio() will clear the hugetlb bit, so do
1826 		 * not use folio_hstate() directly.
1827 		 */
1828 		h = size_to_hstate(folio_size(folio));
1829 
1830 		__update_and_free_hugetlb_folio(h, folio);
1831 
1832 		cond_resched();
1833 	}
1834 }
1835 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1836 
1837 static inline void flush_free_hpage_work(struct hstate *h)
1838 {
1839 	if (hugetlb_vmemmap_optimizable(h))
1840 		flush_work(&free_hpage_work);
1841 }
1842 
1843 static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio,
1844 				 bool atomic)
1845 {
1846 	if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) {
1847 		__update_and_free_hugetlb_folio(h, folio);
1848 		return;
1849 	}
1850 
1851 	/*
1852 	 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1853 	 *
1854 	 * Only call schedule_work() if hpage_freelist is previously
1855 	 * empty. Otherwise, schedule_work() had been called but the workfn
1856 	 * hasn't retrieved the list yet.
1857 	 */
1858 	if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist))
1859 		schedule_work(&free_hpage_work);
1860 }
1861 
1862 static void bulk_vmemmap_restore_error(struct hstate *h,
1863 					struct list_head *folio_list,
1864 					struct list_head *non_hvo_folios)
1865 {
1866 	struct folio *folio, *t_folio;
1867 
1868 	if (!list_empty(non_hvo_folios)) {
1869 		/*
1870 		 * Free any restored hugetlb pages so that restore of the
1871 		 * entire list can be retried.
1872 		 * The idea is that in the common case of ENOMEM errors freeing
1873 		 * hugetlb pages with vmemmap we will free up memory so that we
1874 		 * can allocate vmemmap for more hugetlb pages.
1875 		 */
1876 		list_for_each_entry_safe(folio, t_folio, non_hvo_folios, lru) {
1877 			list_del(&folio->lru);
1878 			spin_lock_irq(&hugetlb_lock);
1879 			__clear_hugetlb_destructor(h, folio);
1880 			spin_unlock_irq(&hugetlb_lock);
1881 			update_and_free_hugetlb_folio(h, folio, false);
1882 			cond_resched();
1883 		}
1884 	} else {
1885 		/*
1886 		 * In the case where there are no folios which can be
1887 		 * immediately freed, we loop through the list trying to restore
1888 		 * vmemmap individually in the hope that someone elsewhere may
1889 		 * have done something to cause success (such as freeing some
1890 		 * memory).  If unable to restore a hugetlb page, the hugetlb
1891 		 * page is made a surplus page and removed from the list.
1892 		 * If are able to restore vmemmap and free one hugetlb page, we
1893 		 * quit processing the list to retry the bulk operation.
1894 		 */
1895 		list_for_each_entry_safe(folio, t_folio, folio_list, lru)
1896 			if (hugetlb_vmemmap_restore_folio(h, folio)) {
1897 				list_del(&folio->lru);
1898 				spin_lock_irq(&hugetlb_lock);
1899 				add_hugetlb_folio(h, folio, true);
1900 				spin_unlock_irq(&hugetlb_lock);
1901 			} else {
1902 				list_del(&folio->lru);
1903 				spin_lock_irq(&hugetlb_lock);
1904 				__clear_hugetlb_destructor(h, folio);
1905 				spin_unlock_irq(&hugetlb_lock);
1906 				update_and_free_hugetlb_folio(h, folio, false);
1907 				cond_resched();
1908 				break;
1909 			}
1910 	}
1911 }
1912 
1913 static void update_and_free_pages_bulk(struct hstate *h,
1914 						struct list_head *folio_list)
1915 {
1916 	long ret;
1917 	struct folio *folio, *t_folio;
1918 	LIST_HEAD(non_hvo_folios);
1919 
1920 	/*
1921 	 * First allocate required vmemmmap (if necessary) for all folios.
1922 	 * Carefully handle errors and free up any available hugetlb pages
1923 	 * in an effort to make forward progress.
1924 	 */
1925 retry:
1926 	ret = hugetlb_vmemmap_restore_folios(h, folio_list, &non_hvo_folios);
1927 	if (ret < 0) {
1928 		bulk_vmemmap_restore_error(h, folio_list, &non_hvo_folios);
1929 		goto retry;
1930 	}
1931 
1932 	/*
1933 	 * At this point, list should be empty, ret should be >= 0 and there
1934 	 * should only be pages on the non_hvo_folios list.
1935 	 * Do note that the non_hvo_folios list could be empty.
1936 	 * Without HVO enabled, ret will be 0 and there is no need to call
1937 	 * __clear_hugetlb_destructor as this was done previously.
1938 	 */
1939 	VM_WARN_ON(!list_empty(folio_list));
1940 	VM_WARN_ON(ret < 0);
1941 	if (!list_empty(&non_hvo_folios) && ret) {
1942 		spin_lock_irq(&hugetlb_lock);
1943 		list_for_each_entry(folio, &non_hvo_folios, lru)
1944 			__clear_hugetlb_destructor(h, folio);
1945 		spin_unlock_irq(&hugetlb_lock);
1946 	}
1947 
1948 	list_for_each_entry_safe(folio, t_folio, &non_hvo_folios, lru) {
1949 		update_and_free_hugetlb_folio(h, folio, false);
1950 		cond_resched();
1951 	}
1952 }
1953 
1954 struct hstate *size_to_hstate(unsigned long size)
1955 {
1956 	struct hstate *h;
1957 
1958 	for_each_hstate(h) {
1959 		if (huge_page_size(h) == size)
1960 			return h;
1961 	}
1962 	return NULL;
1963 }
1964 
1965 void free_huge_folio(struct folio *folio)
1966 {
1967 	/*
1968 	 * Can't pass hstate in here because it is called from the
1969 	 * compound page destructor.
1970 	 */
1971 	struct hstate *h = folio_hstate(folio);
1972 	int nid = folio_nid(folio);
1973 	struct hugepage_subpool *spool = hugetlb_folio_subpool(folio);
1974 	bool restore_reserve;
1975 	unsigned long flags;
1976 
1977 	VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1978 	VM_BUG_ON_FOLIO(folio_mapcount(folio), folio);
1979 
1980 	hugetlb_set_folio_subpool(folio, NULL);
1981 	if (folio_test_anon(folio))
1982 		__ClearPageAnonExclusive(&folio->page);
1983 	folio->mapping = NULL;
1984 	restore_reserve = folio_test_hugetlb_restore_reserve(folio);
1985 	folio_clear_hugetlb_restore_reserve(folio);
1986 
1987 	/*
1988 	 * If HPageRestoreReserve was set on page, page allocation consumed a
1989 	 * reservation.  If the page was associated with a subpool, there
1990 	 * would have been a page reserved in the subpool before allocation
1991 	 * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1992 	 * reservation, do not call hugepage_subpool_put_pages() as this will
1993 	 * remove the reserved page from the subpool.
1994 	 */
1995 	if (!restore_reserve) {
1996 		/*
1997 		 * A return code of zero implies that the subpool will be
1998 		 * under its minimum size if the reservation is not restored
1999 		 * after page is free.  Therefore, force restore_reserve
2000 		 * operation.
2001 		 */
2002 		if (hugepage_subpool_put_pages(spool, 1) == 0)
2003 			restore_reserve = true;
2004 	}
2005 
2006 	spin_lock_irqsave(&hugetlb_lock, flags);
2007 	folio_clear_hugetlb_migratable(folio);
2008 	hugetlb_cgroup_uncharge_folio(hstate_index(h),
2009 				     pages_per_huge_page(h), folio);
2010 	hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
2011 					  pages_per_huge_page(h), folio);
2012 	mem_cgroup_uncharge(folio);
2013 	if (restore_reserve)
2014 		h->resv_huge_pages++;
2015 
2016 	if (folio_test_hugetlb_temporary(folio)) {
2017 		remove_hugetlb_folio(h, folio, false);
2018 		spin_unlock_irqrestore(&hugetlb_lock, flags);
2019 		update_and_free_hugetlb_folio(h, folio, true);
2020 	} else if (h->surplus_huge_pages_node[nid]) {
2021 		/* remove the page from active list */
2022 		remove_hugetlb_folio(h, folio, true);
2023 		spin_unlock_irqrestore(&hugetlb_lock, flags);
2024 		update_and_free_hugetlb_folio(h, folio, true);
2025 	} else {
2026 		arch_clear_hugepage_flags(&folio->page);
2027 		enqueue_hugetlb_folio(h, folio);
2028 		spin_unlock_irqrestore(&hugetlb_lock, flags);
2029 	}
2030 }
2031 
2032 /*
2033  * Must be called with the hugetlb lock held
2034  */
2035 static void __prep_account_new_huge_page(struct hstate *h, int nid)
2036 {
2037 	lockdep_assert_held(&hugetlb_lock);
2038 	h->nr_huge_pages++;
2039 	h->nr_huge_pages_node[nid]++;
2040 }
2041 
2042 static void init_new_hugetlb_folio(struct hstate *h, struct folio *folio)
2043 {
2044 	folio_set_hugetlb(folio);
2045 	INIT_LIST_HEAD(&folio->lru);
2046 	hugetlb_set_folio_subpool(folio, NULL);
2047 	set_hugetlb_cgroup(folio, NULL);
2048 	set_hugetlb_cgroup_rsvd(folio, NULL);
2049 }
2050 
2051 static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio)
2052 {
2053 	init_new_hugetlb_folio(h, folio);
2054 	hugetlb_vmemmap_optimize_folio(h, folio);
2055 }
2056 
2057 static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid)
2058 {
2059 	__prep_new_hugetlb_folio(h, folio);
2060 	spin_lock_irq(&hugetlb_lock);
2061 	__prep_account_new_huge_page(h, nid);
2062 	spin_unlock_irq(&hugetlb_lock);
2063 }
2064 
2065 static bool __prep_compound_gigantic_folio(struct folio *folio,
2066 					unsigned int order, bool demote)
2067 {
2068 	int i, j;
2069 	int nr_pages = 1 << order;
2070 	struct page *p;
2071 
2072 	__folio_clear_reserved(folio);
2073 	for (i = 0; i < nr_pages; i++) {
2074 		p = folio_page(folio, i);
2075 
2076 		/*
2077 		 * For gigantic hugepages allocated through bootmem at
2078 		 * boot, it's safer to be consistent with the not-gigantic
2079 		 * hugepages and clear the PG_reserved bit from all tail pages
2080 		 * too.  Otherwise drivers using get_user_pages() to access tail
2081 		 * pages may get the reference counting wrong if they see
2082 		 * PG_reserved set on a tail page (despite the head page not
2083 		 * having PG_reserved set).  Enforcing this consistency between
2084 		 * head and tail pages allows drivers to optimize away a check
2085 		 * on the head page when they need know if put_page() is needed
2086 		 * after get_user_pages().
2087 		 */
2088 		if (i != 0)	/* head page cleared above */
2089 			__ClearPageReserved(p);
2090 		/*
2091 		 * Subtle and very unlikely
2092 		 *
2093 		 * Gigantic 'page allocators' such as memblock or cma will
2094 		 * return a set of pages with each page ref counted.  We need
2095 		 * to turn this set of pages into a compound page with tail
2096 		 * page ref counts set to zero.  Code such as speculative page
2097 		 * cache adding could take a ref on a 'to be' tail page.
2098 		 * We need to respect any increased ref count, and only set
2099 		 * the ref count to zero if count is currently 1.  If count
2100 		 * is not 1, we return an error.  An error return indicates
2101 		 * the set of pages can not be converted to a gigantic page.
2102 		 * The caller who allocated the pages should then discard the
2103 		 * pages using the appropriate free interface.
2104 		 *
2105 		 * In the case of demote, the ref count will be zero.
2106 		 */
2107 		if (!demote) {
2108 			if (!page_ref_freeze(p, 1)) {
2109 				pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
2110 				goto out_error;
2111 			}
2112 		} else {
2113 			VM_BUG_ON_PAGE(page_count(p), p);
2114 		}
2115 		if (i != 0)
2116 			set_compound_head(p, &folio->page);
2117 	}
2118 	__folio_set_head(folio);
2119 	/* we rely on prep_new_hugetlb_folio to set the destructor */
2120 	folio_set_order(folio, order);
2121 	atomic_set(&folio->_entire_mapcount, -1);
2122 	atomic_set(&folio->_nr_pages_mapped, 0);
2123 	atomic_set(&folio->_pincount, 0);
2124 	return true;
2125 
2126 out_error:
2127 	/* undo page modifications made above */
2128 	for (j = 0; j < i; j++) {
2129 		p = folio_page(folio, j);
2130 		if (j != 0)
2131 			clear_compound_head(p);
2132 		set_page_refcounted(p);
2133 	}
2134 	/* need to clear PG_reserved on remaining tail pages  */
2135 	for (; j < nr_pages; j++) {
2136 		p = folio_page(folio, j);
2137 		__ClearPageReserved(p);
2138 	}
2139 	return false;
2140 }
2141 
2142 static bool prep_compound_gigantic_folio(struct folio *folio,
2143 							unsigned int order)
2144 {
2145 	return __prep_compound_gigantic_folio(folio, order, false);
2146 }
2147 
2148 static bool prep_compound_gigantic_folio_for_demote(struct folio *folio,
2149 							unsigned int order)
2150 {
2151 	return __prep_compound_gigantic_folio(folio, order, true);
2152 }
2153 
2154 /*
2155  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
2156  * transparent huge pages.  See the PageTransHuge() documentation for more
2157  * details.
2158  */
2159 int PageHuge(struct page *page)
2160 {
2161 	struct folio *folio;
2162 
2163 	if (!PageCompound(page))
2164 		return 0;
2165 	folio = page_folio(page);
2166 	return folio_test_hugetlb(folio);
2167 }
2168 EXPORT_SYMBOL_GPL(PageHuge);
2169 
2170 /*
2171  * Find and lock address space (mapping) in write mode.
2172  *
2173  * Upon entry, the page is locked which means that page_mapping() is
2174  * stable.  Due to locking order, we can only trylock_write.  If we can
2175  * not get the lock, simply return NULL to caller.
2176  */
2177 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
2178 {
2179 	struct address_space *mapping = page_mapping(hpage);
2180 
2181 	if (!mapping)
2182 		return mapping;
2183 
2184 	if (i_mmap_trylock_write(mapping))
2185 		return mapping;
2186 
2187 	return NULL;
2188 }
2189 
2190 static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h,
2191 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
2192 		nodemask_t *node_alloc_noretry)
2193 {
2194 	int order = huge_page_order(h);
2195 	struct page *page;
2196 	bool alloc_try_hard = true;
2197 	bool retry = true;
2198 
2199 	/*
2200 	 * By default we always try hard to allocate the page with
2201 	 * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
2202 	 * a loop (to adjust global huge page counts) and previous allocation
2203 	 * failed, do not continue to try hard on the same node.  Use the
2204 	 * node_alloc_noretry bitmap to manage this state information.
2205 	 */
2206 	if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
2207 		alloc_try_hard = false;
2208 	gfp_mask |= __GFP_COMP|__GFP_NOWARN;
2209 	if (alloc_try_hard)
2210 		gfp_mask |= __GFP_RETRY_MAYFAIL;
2211 	if (nid == NUMA_NO_NODE)
2212 		nid = numa_mem_id();
2213 retry:
2214 	page = __alloc_pages(gfp_mask, order, nid, nmask);
2215 
2216 	/* Freeze head page */
2217 	if (page && !page_ref_freeze(page, 1)) {
2218 		__free_pages(page, order);
2219 		if (retry) {	/* retry once */
2220 			retry = false;
2221 			goto retry;
2222 		}
2223 		/* WOW!  twice in a row. */
2224 		pr_warn("HugeTLB head page unexpected inflated ref count\n");
2225 		page = NULL;
2226 	}
2227 
2228 	/*
2229 	 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
2230 	 * indicates an overall state change.  Clear bit so that we resume
2231 	 * normal 'try hard' allocations.
2232 	 */
2233 	if (node_alloc_noretry && page && !alloc_try_hard)
2234 		node_clear(nid, *node_alloc_noretry);
2235 
2236 	/*
2237 	 * If we tried hard to get a page but failed, set bit so that
2238 	 * subsequent attempts will not try as hard until there is an
2239 	 * overall state change.
2240 	 */
2241 	if (node_alloc_noretry && !page && alloc_try_hard)
2242 		node_set(nid, *node_alloc_noretry);
2243 
2244 	if (!page) {
2245 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
2246 		return NULL;
2247 	}
2248 
2249 	__count_vm_event(HTLB_BUDDY_PGALLOC);
2250 	return page_folio(page);
2251 }
2252 
2253 static struct folio *__alloc_fresh_hugetlb_folio(struct hstate *h,
2254 				gfp_t gfp_mask, int nid, nodemask_t *nmask,
2255 				nodemask_t *node_alloc_noretry)
2256 {
2257 	struct folio *folio;
2258 	bool retry = false;
2259 
2260 retry:
2261 	if (hstate_is_gigantic(h))
2262 		folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
2263 	else
2264 		folio = alloc_buddy_hugetlb_folio(h, gfp_mask,
2265 				nid, nmask, node_alloc_noretry);
2266 	if (!folio)
2267 		return NULL;
2268 
2269 	if (hstate_is_gigantic(h)) {
2270 		if (!prep_compound_gigantic_folio(folio, huge_page_order(h))) {
2271 			/*
2272 			 * Rare failure to convert pages to compound page.
2273 			 * Free pages and try again - ONCE!
2274 			 */
2275 			free_gigantic_folio(folio, huge_page_order(h));
2276 			if (!retry) {
2277 				retry = true;
2278 				goto retry;
2279 			}
2280 			return NULL;
2281 		}
2282 	}
2283 
2284 	return folio;
2285 }
2286 
2287 static struct folio *only_alloc_fresh_hugetlb_folio(struct hstate *h,
2288 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
2289 		nodemask_t *node_alloc_noretry)
2290 {
2291 	struct folio *folio;
2292 
2293 	folio = __alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask,
2294 						node_alloc_noretry);
2295 	if (folio)
2296 		init_new_hugetlb_folio(h, folio);
2297 	return folio;
2298 }
2299 
2300 /*
2301  * Common helper to allocate a fresh hugetlb page. All specific allocators
2302  * should use this function to get new hugetlb pages
2303  *
2304  * Note that returned page is 'frozen':  ref count of head page and all tail
2305  * pages is zero.
2306  */
2307 static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h,
2308 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
2309 		nodemask_t *node_alloc_noretry)
2310 {
2311 	struct folio *folio;
2312 
2313 	folio = __alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask,
2314 						node_alloc_noretry);
2315 	if (!folio)
2316 		return NULL;
2317 
2318 	prep_new_hugetlb_folio(h, folio, folio_nid(folio));
2319 	return folio;
2320 }
2321 
2322 static void prep_and_add_allocated_folios(struct hstate *h,
2323 					struct list_head *folio_list)
2324 {
2325 	unsigned long flags;
2326 	struct folio *folio, *tmp_f;
2327 
2328 	/* Send list for bulk vmemmap optimization processing */
2329 	hugetlb_vmemmap_optimize_folios(h, folio_list);
2330 
2331 	/* Add all new pool pages to free lists in one lock cycle */
2332 	spin_lock_irqsave(&hugetlb_lock, flags);
2333 	list_for_each_entry_safe(folio, tmp_f, folio_list, lru) {
2334 		__prep_account_new_huge_page(h, folio_nid(folio));
2335 		enqueue_hugetlb_folio(h, folio);
2336 	}
2337 	spin_unlock_irqrestore(&hugetlb_lock, flags);
2338 }
2339 
2340 /*
2341  * Allocates a fresh hugetlb page in a node interleaved manner.  The page
2342  * will later be added to the appropriate hugetlb pool.
2343  */
2344 static struct folio *alloc_pool_huge_folio(struct hstate *h,
2345 					nodemask_t *nodes_allowed,
2346 					nodemask_t *node_alloc_noretry)
2347 {
2348 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2349 	int nr_nodes, node;
2350 
2351 	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2352 		struct folio *folio;
2353 
2354 		folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, node,
2355 					nodes_allowed, node_alloc_noretry);
2356 		if (folio)
2357 			return folio;
2358 	}
2359 
2360 	return NULL;
2361 }
2362 
2363 /*
2364  * Remove huge page from pool from next node to free.  Attempt to keep
2365  * persistent huge pages more or less balanced over allowed nodes.
2366  * This routine only 'removes' the hugetlb page.  The caller must make
2367  * an additional call to free the page to low level allocators.
2368  * Called with hugetlb_lock locked.
2369  */
2370 static struct folio *remove_pool_hugetlb_folio(struct hstate *h,
2371 		nodemask_t *nodes_allowed, bool acct_surplus)
2372 {
2373 	int nr_nodes, node;
2374 	struct folio *folio = NULL;
2375 
2376 	lockdep_assert_held(&hugetlb_lock);
2377 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2378 		/*
2379 		 * If we're returning unused surplus pages, only examine
2380 		 * nodes with surplus pages.
2381 		 */
2382 		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2383 		    !list_empty(&h->hugepage_freelists[node])) {
2384 			folio = list_entry(h->hugepage_freelists[node].next,
2385 					  struct folio, lru);
2386 			remove_hugetlb_folio(h, folio, acct_surplus);
2387 			break;
2388 		}
2389 	}
2390 
2391 	return folio;
2392 }
2393 
2394 /*
2395  * Dissolve a given free hugepage into free buddy pages. This function does
2396  * nothing for in-use hugepages and non-hugepages.
2397  * This function returns values like below:
2398  *
2399  *  -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2400  *           when the system is under memory pressure and the feature of
2401  *           freeing unused vmemmap pages associated with each hugetlb page
2402  *           is enabled.
2403  *  -EBUSY:  failed to dissolved free hugepages or the hugepage is in-use
2404  *           (allocated or reserved.)
2405  *       0:  successfully dissolved free hugepages or the page is not a
2406  *           hugepage (considered as already dissolved)
2407  */
2408 int dissolve_free_huge_page(struct page *page)
2409 {
2410 	int rc = -EBUSY;
2411 	struct folio *folio = page_folio(page);
2412 
2413 retry:
2414 	/* Not to disrupt normal path by vainly holding hugetlb_lock */
2415 	if (!folio_test_hugetlb(folio))
2416 		return 0;
2417 
2418 	spin_lock_irq(&hugetlb_lock);
2419 	if (!folio_test_hugetlb(folio)) {
2420 		rc = 0;
2421 		goto out;
2422 	}
2423 
2424 	if (!folio_ref_count(folio)) {
2425 		struct hstate *h = folio_hstate(folio);
2426 		if (!available_huge_pages(h))
2427 			goto out;
2428 
2429 		/*
2430 		 * We should make sure that the page is already on the free list
2431 		 * when it is dissolved.
2432 		 */
2433 		if (unlikely(!folio_test_hugetlb_freed(folio))) {
2434 			spin_unlock_irq(&hugetlb_lock);
2435 			cond_resched();
2436 
2437 			/*
2438 			 * Theoretically, we should return -EBUSY when we
2439 			 * encounter this race. In fact, we have a chance
2440 			 * to successfully dissolve the page if we do a
2441 			 * retry. Because the race window is quite small.
2442 			 * If we seize this opportunity, it is an optimization
2443 			 * for increasing the success rate of dissolving page.
2444 			 */
2445 			goto retry;
2446 		}
2447 
2448 		remove_hugetlb_folio(h, folio, false);
2449 		h->max_huge_pages--;
2450 		spin_unlock_irq(&hugetlb_lock);
2451 
2452 		/*
2453 		 * Normally update_and_free_hugtlb_folio will allocate required vmemmmap
2454 		 * before freeing the page.  update_and_free_hugtlb_folio will fail to
2455 		 * free the page if it can not allocate required vmemmap.  We
2456 		 * need to adjust max_huge_pages if the page is not freed.
2457 		 * Attempt to allocate vmemmmap here so that we can take
2458 		 * appropriate action on failure.
2459 		 *
2460 		 * The folio_test_hugetlb check here is because
2461 		 * remove_hugetlb_folio will clear hugetlb folio flag for
2462 		 * non-vmemmap optimized hugetlb folios.
2463 		 */
2464 		if (folio_test_hugetlb(folio)) {
2465 			rc = hugetlb_vmemmap_restore_folio(h, folio);
2466 			if (rc) {
2467 				spin_lock_irq(&hugetlb_lock);
2468 				add_hugetlb_folio(h, folio, false);
2469 				h->max_huge_pages++;
2470 				goto out;
2471 			}
2472 		} else
2473 			rc = 0;
2474 
2475 		update_and_free_hugetlb_folio(h, folio, false);
2476 		return rc;
2477 	}
2478 out:
2479 	spin_unlock_irq(&hugetlb_lock);
2480 	return rc;
2481 }
2482 
2483 /*
2484  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2485  * make specified memory blocks removable from the system.
2486  * Note that this will dissolve a free gigantic hugepage completely, if any
2487  * part of it lies within the given range.
2488  * Also note that if dissolve_free_huge_page() returns with an error, all
2489  * free hugepages that were dissolved before that error are lost.
2490  */
2491 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
2492 {
2493 	unsigned long pfn;
2494 	struct page *page;
2495 	int rc = 0;
2496 	unsigned int order;
2497 	struct hstate *h;
2498 
2499 	if (!hugepages_supported())
2500 		return rc;
2501 
2502 	order = huge_page_order(&default_hstate);
2503 	for_each_hstate(h)
2504 		order = min(order, huge_page_order(h));
2505 
2506 	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
2507 		page = pfn_to_page(pfn);
2508 		rc = dissolve_free_huge_page(page);
2509 		if (rc)
2510 			break;
2511 	}
2512 
2513 	return rc;
2514 }
2515 
2516 /*
2517  * Allocates a fresh surplus page from the page allocator.
2518  */
2519 static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h,
2520 				gfp_t gfp_mask,	int nid, nodemask_t *nmask)
2521 {
2522 	struct folio *folio = NULL;
2523 
2524 	if (hstate_is_gigantic(h))
2525 		return NULL;
2526 
2527 	spin_lock_irq(&hugetlb_lock);
2528 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2529 		goto out_unlock;
2530 	spin_unlock_irq(&hugetlb_lock);
2531 
2532 	folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2533 	if (!folio)
2534 		return NULL;
2535 
2536 	spin_lock_irq(&hugetlb_lock);
2537 	/*
2538 	 * We could have raced with the pool size change.
2539 	 * Double check that and simply deallocate the new page
2540 	 * if we would end up overcommiting the surpluses. Abuse
2541 	 * temporary page to workaround the nasty free_huge_folio
2542 	 * codeflow
2543 	 */
2544 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2545 		folio_set_hugetlb_temporary(folio);
2546 		spin_unlock_irq(&hugetlb_lock);
2547 		free_huge_folio(folio);
2548 		return NULL;
2549 	}
2550 
2551 	h->surplus_huge_pages++;
2552 	h->surplus_huge_pages_node[folio_nid(folio)]++;
2553 
2554 out_unlock:
2555 	spin_unlock_irq(&hugetlb_lock);
2556 
2557 	return folio;
2558 }
2559 
2560 static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask,
2561 				     int nid, nodemask_t *nmask)
2562 {
2563 	struct folio *folio;
2564 
2565 	if (hstate_is_gigantic(h))
2566 		return NULL;
2567 
2568 	folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2569 	if (!folio)
2570 		return NULL;
2571 
2572 	/* fresh huge pages are frozen */
2573 	folio_ref_unfreeze(folio, 1);
2574 	/*
2575 	 * We do not account these pages as surplus because they are only
2576 	 * temporary and will be released properly on the last reference
2577 	 */
2578 	folio_set_hugetlb_temporary(folio);
2579 
2580 	return folio;
2581 }
2582 
2583 /*
2584  * Use the VMA's mpolicy to allocate a huge page from the buddy.
2585  */
2586 static
2587 struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h,
2588 		struct vm_area_struct *vma, unsigned long addr)
2589 {
2590 	struct folio *folio = NULL;
2591 	struct mempolicy *mpol;
2592 	gfp_t gfp_mask = htlb_alloc_mask(h);
2593 	int nid;
2594 	nodemask_t *nodemask;
2595 
2596 	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2597 	if (mpol_is_preferred_many(mpol)) {
2598 		gfp_t gfp = gfp_mask | __GFP_NOWARN;
2599 
2600 		gfp &=  ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2601 		folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask);
2602 
2603 		/* Fallback to all nodes if page==NULL */
2604 		nodemask = NULL;
2605 	}
2606 
2607 	if (!folio)
2608 		folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask);
2609 	mpol_cond_put(mpol);
2610 	return folio;
2611 }
2612 
2613 /* folio migration callback function */
2614 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
2615 		nodemask_t *nmask, gfp_t gfp_mask)
2616 {
2617 	spin_lock_irq(&hugetlb_lock);
2618 	if (available_huge_pages(h)) {
2619 		struct folio *folio;
2620 
2621 		folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
2622 						preferred_nid, nmask);
2623 		if (folio) {
2624 			spin_unlock_irq(&hugetlb_lock);
2625 			return folio;
2626 		}
2627 	}
2628 	spin_unlock_irq(&hugetlb_lock);
2629 
2630 	return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask);
2631 }
2632 
2633 /*
2634  * Increase the hugetlb pool such that it can accommodate a reservation
2635  * of size 'delta'.
2636  */
2637 static int gather_surplus_pages(struct hstate *h, long delta)
2638 	__must_hold(&hugetlb_lock)
2639 {
2640 	LIST_HEAD(surplus_list);
2641 	struct folio *folio, *tmp;
2642 	int ret;
2643 	long i;
2644 	long needed, allocated;
2645 	bool alloc_ok = true;
2646 
2647 	lockdep_assert_held(&hugetlb_lock);
2648 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2649 	if (needed <= 0) {
2650 		h->resv_huge_pages += delta;
2651 		return 0;
2652 	}
2653 
2654 	allocated = 0;
2655 
2656 	ret = -ENOMEM;
2657 retry:
2658 	spin_unlock_irq(&hugetlb_lock);
2659 	for (i = 0; i < needed; i++) {
2660 		folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h),
2661 				NUMA_NO_NODE, NULL);
2662 		if (!folio) {
2663 			alloc_ok = false;
2664 			break;
2665 		}
2666 		list_add(&folio->lru, &surplus_list);
2667 		cond_resched();
2668 	}
2669 	allocated += i;
2670 
2671 	/*
2672 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
2673 	 * because either resv_huge_pages or free_huge_pages may have changed.
2674 	 */
2675 	spin_lock_irq(&hugetlb_lock);
2676 	needed = (h->resv_huge_pages + delta) -
2677 			(h->free_huge_pages + allocated);
2678 	if (needed > 0) {
2679 		if (alloc_ok)
2680 			goto retry;
2681 		/*
2682 		 * We were not able to allocate enough pages to
2683 		 * satisfy the entire reservation so we free what
2684 		 * we've allocated so far.
2685 		 */
2686 		goto free;
2687 	}
2688 	/*
2689 	 * The surplus_list now contains _at_least_ the number of extra pages
2690 	 * needed to accommodate the reservation.  Add the appropriate number
2691 	 * of pages to the hugetlb pool and free the extras back to the buddy
2692 	 * allocator.  Commit the entire reservation here to prevent another
2693 	 * process from stealing the pages as they are added to the pool but
2694 	 * before they are reserved.
2695 	 */
2696 	needed += allocated;
2697 	h->resv_huge_pages += delta;
2698 	ret = 0;
2699 
2700 	/* Free the needed pages to the hugetlb pool */
2701 	list_for_each_entry_safe(folio, tmp, &surplus_list, lru) {
2702 		if ((--needed) < 0)
2703 			break;
2704 		/* Add the page to the hugetlb allocator */
2705 		enqueue_hugetlb_folio(h, folio);
2706 	}
2707 free:
2708 	spin_unlock_irq(&hugetlb_lock);
2709 
2710 	/*
2711 	 * Free unnecessary surplus pages to the buddy allocator.
2712 	 * Pages have no ref count, call free_huge_folio directly.
2713 	 */
2714 	list_for_each_entry_safe(folio, tmp, &surplus_list, lru)
2715 		free_huge_folio(folio);
2716 	spin_lock_irq(&hugetlb_lock);
2717 
2718 	return ret;
2719 }
2720 
2721 /*
2722  * This routine has two main purposes:
2723  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2724  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2725  *    to the associated reservation map.
2726  * 2) Free any unused surplus pages that may have been allocated to satisfy
2727  *    the reservation.  As many as unused_resv_pages may be freed.
2728  */
2729 static void return_unused_surplus_pages(struct hstate *h,
2730 					unsigned long unused_resv_pages)
2731 {
2732 	unsigned long nr_pages;
2733 	LIST_HEAD(page_list);
2734 
2735 	lockdep_assert_held(&hugetlb_lock);
2736 	/* Uncommit the reservation */
2737 	h->resv_huge_pages -= unused_resv_pages;
2738 
2739 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2740 		goto out;
2741 
2742 	/*
2743 	 * Part (or even all) of the reservation could have been backed
2744 	 * by pre-allocated pages. Only free surplus pages.
2745 	 */
2746 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2747 
2748 	/*
2749 	 * We want to release as many surplus pages as possible, spread
2750 	 * evenly across all nodes with memory. Iterate across these nodes
2751 	 * until we can no longer free unreserved surplus pages. This occurs
2752 	 * when the nodes with surplus pages have no free pages.
2753 	 * remove_pool_hugetlb_folio() will balance the freed pages across the
2754 	 * on-line nodes with memory and will handle the hstate accounting.
2755 	 */
2756 	while (nr_pages--) {
2757 		struct folio *folio;
2758 
2759 		folio = remove_pool_hugetlb_folio(h, &node_states[N_MEMORY], 1);
2760 		if (!folio)
2761 			goto out;
2762 
2763 		list_add(&folio->lru, &page_list);
2764 	}
2765 
2766 out:
2767 	spin_unlock_irq(&hugetlb_lock);
2768 	update_and_free_pages_bulk(h, &page_list);
2769 	spin_lock_irq(&hugetlb_lock);
2770 }
2771 
2772 
2773 /*
2774  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2775  * are used by the huge page allocation routines to manage reservations.
2776  *
2777  * vma_needs_reservation is called to determine if the huge page at addr
2778  * within the vma has an associated reservation.  If a reservation is
2779  * needed, the value 1 is returned.  The caller is then responsible for
2780  * managing the global reservation and subpool usage counts.  After
2781  * the huge page has been allocated, vma_commit_reservation is called
2782  * to add the page to the reservation map.  If the page allocation fails,
2783  * the reservation must be ended instead of committed.  vma_end_reservation
2784  * is called in such cases.
2785  *
2786  * In the normal case, vma_commit_reservation returns the same value
2787  * as the preceding vma_needs_reservation call.  The only time this
2788  * is not the case is if a reserve map was changed between calls.  It
2789  * is the responsibility of the caller to notice the difference and
2790  * take appropriate action.
2791  *
2792  * vma_add_reservation is used in error paths where a reservation must
2793  * be restored when a newly allocated huge page must be freed.  It is
2794  * to be called after calling vma_needs_reservation to determine if a
2795  * reservation exists.
2796  *
2797  * vma_del_reservation is used in error paths where an entry in the reserve
2798  * map was created during huge page allocation and must be removed.  It is to
2799  * be called after calling vma_needs_reservation to determine if a reservation
2800  * exists.
2801  */
2802 enum vma_resv_mode {
2803 	VMA_NEEDS_RESV,
2804 	VMA_COMMIT_RESV,
2805 	VMA_END_RESV,
2806 	VMA_ADD_RESV,
2807 	VMA_DEL_RESV,
2808 };
2809 static long __vma_reservation_common(struct hstate *h,
2810 				struct vm_area_struct *vma, unsigned long addr,
2811 				enum vma_resv_mode mode)
2812 {
2813 	struct resv_map *resv;
2814 	pgoff_t idx;
2815 	long ret;
2816 	long dummy_out_regions_needed;
2817 
2818 	resv = vma_resv_map(vma);
2819 	if (!resv)
2820 		return 1;
2821 
2822 	idx = vma_hugecache_offset(h, vma, addr);
2823 	switch (mode) {
2824 	case VMA_NEEDS_RESV:
2825 		ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2826 		/* We assume that vma_reservation_* routines always operate on
2827 		 * 1 page, and that adding to resv map a 1 page entry can only
2828 		 * ever require 1 region.
2829 		 */
2830 		VM_BUG_ON(dummy_out_regions_needed != 1);
2831 		break;
2832 	case VMA_COMMIT_RESV:
2833 		ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2834 		/* region_add calls of range 1 should never fail. */
2835 		VM_BUG_ON(ret < 0);
2836 		break;
2837 	case VMA_END_RESV:
2838 		region_abort(resv, idx, idx + 1, 1);
2839 		ret = 0;
2840 		break;
2841 	case VMA_ADD_RESV:
2842 		if (vma->vm_flags & VM_MAYSHARE) {
2843 			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2844 			/* region_add calls of range 1 should never fail. */
2845 			VM_BUG_ON(ret < 0);
2846 		} else {
2847 			region_abort(resv, idx, idx + 1, 1);
2848 			ret = region_del(resv, idx, idx + 1);
2849 		}
2850 		break;
2851 	case VMA_DEL_RESV:
2852 		if (vma->vm_flags & VM_MAYSHARE) {
2853 			region_abort(resv, idx, idx + 1, 1);
2854 			ret = region_del(resv, idx, idx + 1);
2855 		} else {
2856 			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2857 			/* region_add calls of range 1 should never fail. */
2858 			VM_BUG_ON(ret < 0);
2859 		}
2860 		break;
2861 	default:
2862 		BUG();
2863 	}
2864 
2865 	if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2866 		return ret;
2867 	/*
2868 	 * We know private mapping must have HPAGE_RESV_OWNER set.
2869 	 *
2870 	 * In most cases, reserves always exist for private mappings.
2871 	 * However, a file associated with mapping could have been
2872 	 * hole punched or truncated after reserves were consumed.
2873 	 * As subsequent fault on such a range will not use reserves.
2874 	 * Subtle - The reserve map for private mappings has the
2875 	 * opposite meaning than that of shared mappings.  If NO
2876 	 * entry is in the reserve map, it means a reservation exists.
2877 	 * If an entry exists in the reserve map, it means the
2878 	 * reservation has already been consumed.  As a result, the
2879 	 * return value of this routine is the opposite of the
2880 	 * value returned from reserve map manipulation routines above.
2881 	 */
2882 	if (ret > 0)
2883 		return 0;
2884 	if (ret == 0)
2885 		return 1;
2886 	return ret;
2887 }
2888 
2889 static long vma_needs_reservation(struct hstate *h,
2890 			struct vm_area_struct *vma, unsigned long addr)
2891 {
2892 	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2893 }
2894 
2895 static long vma_commit_reservation(struct hstate *h,
2896 			struct vm_area_struct *vma, unsigned long addr)
2897 {
2898 	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2899 }
2900 
2901 static void vma_end_reservation(struct hstate *h,
2902 			struct vm_area_struct *vma, unsigned long addr)
2903 {
2904 	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2905 }
2906 
2907 static long vma_add_reservation(struct hstate *h,
2908 			struct vm_area_struct *vma, unsigned long addr)
2909 {
2910 	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2911 }
2912 
2913 static long vma_del_reservation(struct hstate *h,
2914 			struct vm_area_struct *vma, unsigned long addr)
2915 {
2916 	return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2917 }
2918 
2919 /*
2920  * This routine is called to restore reservation information on error paths.
2921  * It should ONLY be called for folios allocated via alloc_hugetlb_folio(),
2922  * and the hugetlb mutex should remain held when calling this routine.
2923  *
2924  * It handles two specific cases:
2925  * 1) A reservation was in place and the folio consumed the reservation.
2926  *    hugetlb_restore_reserve is set in the folio.
2927  * 2) No reservation was in place for the page, so hugetlb_restore_reserve is
2928  *    not set.  However, alloc_hugetlb_folio always updates the reserve map.
2929  *
2930  * In case 1, free_huge_folio later in the error path will increment the
2931  * global reserve count.  But, free_huge_folio does not have enough context
2932  * to adjust the reservation map.  This case deals primarily with private
2933  * mappings.  Adjust the reserve map here to be consistent with global
2934  * reserve count adjustments to be made by free_huge_folio.  Make sure the
2935  * reserve map indicates there is a reservation present.
2936  *
2937  * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio.
2938  */
2939 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2940 			unsigned long address, struct folio *folio)
2941 {
2942 	long rc = vma_needs_reservation(h, vma, address);
2943 
2944 	if (folio_test_hugetlb_restore_reserve(folio)) {
2945 		if (unlikely(rc < 0))
2946 			/*
2947 			 * Rare out of memory condition in reserve map
2948 			 * manipulation.  Clear hugetlb_restore_reserve so
2949 			 * that global reserve count will not be incremented
2950 			 * by free_huge_folio.  This will make it appear
2951 			 * as though the reservation for this folio was
2952 			 * consumed.  This may prevent the task from
2953 			 * faulting in the folio at a later time.  This
2954 			 * is better than inconsistent global huge page
2955 			 * accounting of reserve counts.
2956 			 */
2957 			folio_clear_hugetlb_restore_reserve(folio);
2958 		else if (rc)
2959 			(void)vma_add_reservation(h, vma, address);
2960 		else
2961 			vma_end_reservation(h, vma, address);
2962 	} else {
2963 		if (!rc) {
2964 			/*
2965 			 * This indicates there is an entry in the reserve map
2966 			 * not added by alloc_hugetlb_folio.  We know it was added
2967 			 * before the alloc_hugetlb_folio call, otherwise
2968 			 * hugetlb_restore_reserve would be set on the folio.
2969 			 * Remove the entry so that a subsequent allocation
2970 			 * does not consume a reservation.
2971 			 */
2972 			rc = vma_del_reservation(h, vma, address);
2973 			if (rc < 0)
2974 				/*
2975 				 * VERY rare out of memory condition.  Since
2976 				 * we can not delete the entry, set
2977 				 * hugetlb_restore_reserve so that the reserve
2978 				 * count will be incremented when the folio
2979 				 * is freed.  This reserve will be consumed
2980 				 * on a subsequent allocation.
2981 				 */
2982 				folio_set_hugetlb_restore_reserve(folio);
2983 		} else if (rc < 0) {
2984 			/*
2985 			 * Rare out of memory condition from
2986 			 * vma_needs_reservation call.  Memory allocation is
2987 			 * only attempted if a new entry is needed.  Therefore,
2988 			 * this implies there is not an entry in the
2989 			 * reserve map.
2990 			 *
2991 			 * For shared mappings, no entry in the map indicates
2992 			 * no reservation.  We are done.
2993 			 */
2994 			if (!(vma->vm_flags & VM_MAYSHARE))
2995 				/*
2996 				 * For private mappings, no entry indicates
2997 				 * a reservation is present.  Since we can
2998 				 * not add an entry, set hugetlb_restore_reserve
2999 				 * on the folio so reserve count will be
3000 				 * incremented when freed.  This reserve will
3001 				 * be consumed on a subsequent allocation.
3002 				 */
3003 				folio_set_hugetlb_restore_reserve(folio);
3004 		} else
3005 			/*
3006 			 * No reservation present, do nothing
3007 			 */
3008 			 vma_end_reservation(h, vma, address);
3009 	}
3010 }
3011 
3012 /*
3013  * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve
3014  * the old one
3015  * @h: struct hstate old page belongs to
3016  * @old_folio: Old folio to dissolve
3017  * @list: List to isolate the page in case we need to
3018  * Returns 0 on success, otherwise negated error.
3019  */
3020 static int alloc_and_dissolve_hugetlb_folio(struct hstate *h,
3021 			struct folio *old_folio, struct list_head *list)
3022 {
3023 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3024 	int nid = folio_nid(old_folio);
3025 	struct folio *new_folio;
3026 	int ret = 0;
3027 
3028 	/*
3029 	 * Before dissolving the folio, we need to allocate a new one for the
3030 	 * pool to remain stable.  Here, we allocate the folio and 'prep' it
3031 	 * by doing everything but actually updating counters and adding to
3032 	 * the pool.  This simplifies and let us do most of the processing
3033 	 * under the lock.
3034 	 */
3035 	new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, NULL, NULL);
3036 	if (!new_folio)
3037 		return -ENOMEM;
3038 	__prep_new_hugetlb_folio(h, new_folio);
3039 
3040 retry:
3041 	spin_lock_irq(&hugetlb_lock);
3042 	if (!folio_test_hugetlb(old_folio)) {
3043 		/*
3044 		 * Freed from under us. Drop new_folio too.
3045 		 */
3046 		goto free_new;
3047 	} else if (folio_ref_count(old_folio)) {
3048 		bool isolated;
3049 
3050 		/*
3051 		 * Someone has grabbed the folio, try to isolate it here.
3052 		 * Fail with -EBUSY if not possible.
3053 		 */
3054 		spin_unlock_irq(&hugetlb_lock);
3055 		isolated = isolate_hugetlb(old_folio, list);
3056 		ret = isolated ? 0 : -EBUSY;
3057 		spin_lock_irq(&hugetlb_lock);
3058 		goto free_new;
3059 	} else if (!folio_test_hugetlb_freed(old_folio)) {
3060 		/*
3061 		 * Folio's refcount is 0 but it has not been enqueued in the
3062 		 * freelist yet. Race window is small, so we can succeed here if
3063 		 * we retry.
3064 		 */
3065 		spin_unlock_irq(&hugetlb_lock);
3066 		cond_resched();
3067 		goto retry;
3068 	} else {
3069 		/*
3070 		 * Ok, old_folio is still a genuine free hugepage. Remove it from
3071 		 * the freelist and decrease the counters. These will be
3072 		 * incremented again when calling __prep_account_new_huge_page()
3073 		 * and enqueue_hugetlb_folio() for new_folio. The counters will
3074 		 * remain stable since this happens under the lock.
3075 		 */
3076 		remove_hugetlb_folio(h, old_folio, false);
3077 
3078 		/*
3079 		 * Ref count on new_folio is already zero as it was dropped
3080 		 * earlier.  It can be directly added to the pool free list.
3081 		 */
3082 		__prep_account_new_huge_page(h, nid);
3083 		enqueue_hugetlb_folio(h, new_folio);
3084 
3085 		/*
3086 		 * Folio has been replaced, we can safely free the old one.
3087 		 */
3088 		spin_unlock_irq(&hugetlb_lock);
3089 		update_and_free_hugetlb_folio(h, old_folio, false);
3090 	}
3091 
3092 	return ret;
3093 
3094 free_new:
3095 	spin_unlock_irq(&hugetlb_lock);
3096 	/* Folio has a zero ref count, but needs a ref to be freed */
3097 	folio_ref_unfreeze(new_folio, 1);
3098 	update_and_free_hugetlb_folio(h, new_folio, false);
3099 
3100 	return ret;
3101 }
3102 
3103 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
3104 {
3105 	struct hstate *h;
3106 	struct folio *folio = page_folio(page);
3107 	int ret = -EBUSY;
3108 
3109 	/*
3110 	 * The page might have been dissolved from under our feet, so make sure
3111 	 * to carefully check the state under the lock.
3112 	 * Return success when racing as if we dissolved the page ourselves.
3113 	 */
3114 	spin_lock_irq(&hugetlb_lock);
3115 	if (folio_test_hugetlb(folio)) {
3116 		h = folio_hstate(folio);
3117 	} else {
3118 		spin_unlock_irq(&hugetlb_lock);
3119 		return 0;
3120 	}
3121 	spin_unlock_irq(&hugetlb_lock);
3122 
3123 	/*
3124 	 * Fence off gigantic pages as there is a cyclic dependency between
3125 	 * alloc_contig_range and them. Return -ENOMEM as this has the effect
3126 	 * of bailing out right away without further retrying.
3127 	 */
3128 	if (hstate_is_gigantic(h))
3129 		return -ENOMEM;
3130 
3131 	if (folio_ref_count(folio) && isolate_hugetlb(folio, list))
3132 		ret = 0;
3133 	else if (!folio_ref_count(folio))
3134 		ret = alloc_and_dissolve_hugetlb_folio(h, folio, list);
3135 
3136 	return ret;
3137 }
3138 
3139 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
3140 				    unsigned long addr, int avoid_reserve)
3141 {
3142 	struct hugepage_subpool *spool = subpool_vma(vma);
3143 	struct hstate *h = hstate_vma(vma);
3144 	struct folio *folio;
3145 	long map_chg, map_commit, nr_pages = pages_per_huge_page(h);
3146 	long gbl_chg;
3147 	int memcg_charge_ret, ret, idx;
3148 	struct hugetlb_cgroup *h_cg = NULL;
3149 	struct mem_cgroup *memcg;
3150 	bool deferred_reserve;
3151 	gfp_t gfp = htlb_alloc_mask(h) | __GFP_RETRY_MAYFAIL;
3152 
3153 	memcg = get_mem_cgroup_from_current();
3154 	memcg_charge_ret = mem_cgroup_hugetlb_try_charge(memcg, gfp, nr_pages);
3155 	if (memcg_charge_ret == -ENOMEM) {
3156 		mem_cgroup_put(memcg);
3157 		return ERR_PTR(-ENOMEM);
3158 	}
3159 
3160 	idx = hstate_index(h);
3161 	/*
3162 	 * Examine the region/reserve map to determine if the process
3163 	 * has a reservation for the page to be allocated.  A return
3164 	 * code of zero indicates a reservation exists (no change).
3165 	 */
3166 	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
3167 	if (map_chg < 0) {
3168 		if (!memcg_charge_ret)
3169 			mem_cgroup_cancel_charge(memcg, nr_pages);
3170 		mem_cgroup_put(memcg);
3171 		return ERR_PTR(-ENOMEM);
3172 	}
3173 
3174 	/*
3175 	 * Processes that did not create the mapping will have no
3176 	 * reserves as indicated by the region/reserve map. Check
3177 	 * that the allocation will not exceed the subpool limit.
3178 	 * Allocations for MAP_NORESERVE mappings also need to be
3179 	 * checked against any subpool limit.
3180 	 */
3181 	if (map_chg || avoid_reserve) {
3182 		gbl_chg = hugepage_subpool_get_pages(spool, 1);
3183 		if (gbl_chg < 0)
3184 			goto out_end_reservation;
3185 
3186 		/*
3187 		 * Even though there was no reservation in the region/reserve
3188 		 * map, there could be reservations associated with the
3189 		 * subpool that can be used.  This would be indicated if the
3190 		 * return value of hugepage_subpool_get_pages() is zero.
3191 		 * However, if avoid_reserve is specified we still avoid even
3192 		 * the subpool reservations.
3193 		 */
3194 		if (avoid_reserve)
3195 			gbl_chg = 1;
3196 	}
3197 
3198 	/* If this allocation is not consuming a reservation, charge it now.
3199 	 */
3200 	deferred_reserve = map_chg || avoid_reserve;
3201 	if (deferred_reserve) {
3202 		ret = hugetlb_cgroup_charge_cgroup_rsvd(
3203 			idx, pages_per_huge_page(h), &h_cg);
3204 		if (ret)
3205 			goto out_subpool_put;
3206 	}
3207 
3208 	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
3209 	if (ret)
3210 		goto out_uncharge_cgroup_reservation;
3211 
3212 	spin_lock_irq(&hugetlb_lock);
3213 	/*
3214 	 * glb_chg is passed to indicate whether or not a page must be taken
3215 	 * from the global free pool (global change).  gbl_chg == 0 indicates
3216 	 * a reservation exists for the allocation.
3217 	 */
3218 	folio = dequeue_hugetlb_folio_vma(h, vma, addr, avoid_reserve, gbl_chg);
3219 	if (!folio) {
3220 		spin_unlock_irq(&hugetlb_lock);
3221 		folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr);
3222 		if (!folio)
3223 			goto out_uncharge_cgroup;
3224 		spin_lock_irq(&hugetlb_lock);
3225 		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
3226 			folio_set_hugetlb_restore_reserve(folio);
3227 			h->resv_huge_pages--;
3228 		}
3229 		list_add(&folio->lru, &h->hugepage_activelist);
3230 		folio_ref_unfreeze(folio, 1);
3231 		/* Fall through */
3232 	}
3233 
3234 	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio);
3235 	/* If allocation is not consuming a reservation, also store the
3236 	 * hugetlb_cgroup pointer on the page.
3237 	 */
3238 	if (deferred_reserve) {
3239 		hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
3240 						  h_cg, folio);
3241 	}
3242 
3243 	spin_unlock_irq(&hugetlb_lock);
3244 
3245 	hugetlb_set_folio_subpool(folio, spool);
3246 
3247 	map_commit = vma_commit_reservation(h, vma, addr);
3248 	if (unlikely(map_chg > map_commit)) {
3249 		/*
3250 		 * The page was added to the reservation map between
3251 		 * vma_needs_reservation and vma_commit_reservation.
3252 		 * This indicates a race with hugetlb_reserve_pages.
3253 		 * Adjust for the subpool count incremented above AND
3254 		 * in hugetlb_reserve_pages for the same page.  Also,
3255 		 * the reservation count added in hugetlb_reserve_pages
3256 		 * no longer applies.
3257 		 */
3258 		long rsv_adjust;
3259 
3260 		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
3261 		hugetlb_acct_memory(h, -rsv_adjust);
3262 		if (deferred_reserve)
3263 			hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
3264 					pages_per_huge_page(h), folio);
3265 	}
3266 
3267 	if (!memcg_charge_ret)
3268 		mem_cgroup_commit_charge(folio, memcg);
3269 	mem_cgroup_put(memcg);
3270 
3271 	return folio;
3272 
3273 out_uncharge_cgroup:
3274 	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
3275 out_uncharge_cgroup_reservation:
3276 	if (deferred_reserve)
3277 		hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
3278 						    h_cg);
3279 out_subpool_put:
3280 	if (map_chg || avoid_reserve)
3281 		hugepage_subpool_put_pages(spool, 1);
3282 out_end_reservation:
3283 	vma_end_reservation(h, vma, addr);
3284 	if (!memcg_charge_ret)
3285 		mem_cgroup_cancel_charge(memcg, nr_pages);
3286 	mem_cgroup_put(memcg);
3287 	return ERR_PTR(-ENOSPC);
3288 }
3289 
3290 int alloc_bootmem_huge_page(struct hstate *h, int nid)
3291 	__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
3292 int __alloc_bootmem_huge_page(struct hstate *h, int nid)
3293 {
3294 	struct huge_bootmem_page *m = NULL; /* initialize for clang */
3295 	int nr_nodes, node;
3296 
3297 	/* do node specific alloc */
3298 	if (nid != NUMA_NO_NODE) {
3299 		m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
3300 				0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3301 		if (!m)
3302 			return 0;
3303 		goto found;
3304 	}
3305 	/* allocate from next node when distributing huge pages */
3306 	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
3307 		m = memblock_alloc_try_nid_raw(
3308 				huge_page_size(h), huge_page_size(h),
3309 				0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
3310 		/*
3311 		 * Use the beginning of the huge page to store the
3312 		 * huge_bootmem_page struct (until gather_bootmem
3313 		 * puts them into the mem_map).
3314 		 */
3315 		if (!m)
3316 			return 0;
3317 		goto found;
3318 	}
3319 
3320 found:
3321 
3322 	/*
3323 	 * Only initialize the head struct page in memmap_init_reserved_pages,
3324 	 * rest of the struct pages will be initialized by the HugeTLB
3325 	 * subsystem itself.
3326 	 * The head struct page is used to get folio information by the HugeTLB
3327 	 * subsystem like zone id and node id.
3328 	 */
3329 	memblock_reserved_mark_noinit(virt_to_phys((void *)m + PAGE_SIZE),
3330 		huge_page_size(h) - PAGE_SIZE);
3331 	/* Put them into a private list first because mem_map is not up yet */
3332 	INIT_LIST_HEAD(&m->list);
3333 	list_add(&m->list, &huge_boot_pages);
3334 	m->hstate = h;
3335 	return 1;
3336 }
3337 
3338 /* Initialize [start_page:end_page_number] tail struct pages of a hugepage */
3339 static void __init hugetlb_folio_init_tail_vmemmap(struct folio *folio,
3340 					unsigned long start_page_number,
3341 					unsigned long end_page_number)
3342 {
3343 	enum zone_type zone = zone_idx(folio_zone(folio));
3344 	int nid = folio_nid(folio);
3345 	unsigned long head_pfn = folio_pfn(folio);
3346 	unsigned long pfn, end_pfn = head_pfn + end_page_number;
3347 	int ret;
3348 
3349 	for (pfn = head_pfn + start_page_number; pfn < end_pfn; pfn++) {
3350 		struct page *page = pfn_to_page(pfn);
3351 
3352 		__init_single_page(page, pfn, zone, nid);
3353 		prep_compound_tail((struct page *)folio, pfn - head_pfn);
3354 		ret = page_ref_freeze(page, 1);
3355 		VM_BUG_ON(!ret);
3356 	}
3357 }
3358 
3359 static void __init hugetlb_folio_init_vmemmap(struct folio *folio,
3360 					      struct hstate *h,
3361 					      unsigned long nr_pages)
3362 {
3363 	int ret;
3364 
3365 	/* Prepare folio head */
3366 	__folio_clear_reserved(folio);
3367 	__folio_set_head(folio);
3368 	ret = folio_ref_freeze(folio, 1);
3369 	VM_BUG_ON(!ret);
3370 	/* Initialize the necessary tail struct pages */
3371 	hugetlb_folio_init_tail_vmemmap(folio, 1, nr_pages);
3372 	prep_compound_head((struct page *)folio, huge_page_order(h));
3373 }
3374 
3375 static void __init prep_and_add_bootmem_folios(struct hstate *h,
3376 					struct list_head *folio_list)
3377 {
3378 	unsigned long flags;
3379 	struct folio *folio, *tmp_f;
3380 
3381 	/* Send list for bulk vmemmap optimization processing */
3382 	hugetlb_vmemmap_optimize_folios(h, folio_list);
3383 
3384 	/* Add all new pool pages to free lists in one lock cycle */
3385 	spin_lock_irqsave(&hugetlb_lock, flags);
3386 	list_for_each_entry_safe(folio, tmp_f, folio_list, lru) {
3387 		if (!folio_test_hugetlb_vmemmap_optimized(folio)) {
3388 			/*
3389 			 * If HVO fails, initialize all tail struct pages
3390 			 * We do not worry about potential long lock hold
3391 			 * time as this is early in boot and there should
3392 			 * be no contention.
3393 			 */
3394 			hugetlb_folio_init_tail_vmemmap(folio,
3395 					HUGETLB_VMEMMAP_RESERVE_PAGES,
3396 					pages_per_huge_page(h));
3397 		}
3398 		__prep_account_new_huge_page(h, folio_nid(folio));
3399 		enqueue_hugetlb_folio(h, folio);
3400 	}
3401 	spin_unlock_irqrestore(&hugetlb_lock, flags);
3402 }
3403 
3404 /*
3405  * Put bootmem huge pages into the standard lists after mem_map is up.
3406  * Note: This only applies to gigantic (order > MAX_ORDER) pages.
3407  */
3408 static void __init gather_bootmem_prealloc(void)
3409 {
3410 	LIST_HEAD(folio_list);
3411 	struct huge_bootmem_page *m;
3412 	struct hstate *h = NULL, *prev_h = NULL;
3413 
3414 	list_for_each_entry(m, &huge_boot_pages, list) {
3415 		struct page *page = virt_to_page(m);
3416 		struct folio *folio = (void *)page;
3417 
3418 		h = m->hstate;
3419 		/*
3420 		 * It is possible to have multiple huge page sizes (hstates)
3421 		 * in this list.  If so, process each size separately.
3422 		 */
3423 		if (h != prev_h && prev_h != NULL)
3424 			prep_and_add_bootmem_folios(prev_h, &folio_list);
3425 		prev_h = h;
3426 
3427 		VM_BUG_ON(!hstate_is_gigantic(h));
3428 		WARN_ON(folio_ref_count(folio) != 1);
3429 
3430 		hugetlb_folio_init_vmemmap(folio, h,
3431 					   HUGETLB_VMEMMAP_RESERVE_PAGES);
3432 		init_new_hugetlb_folio(h, folio);
3433 		list_add(&folio->lru, &folio_list);
3434 
3435 		/*
3436 		 * We need to restore the 'stolen' pages to totalram_pages
3437 		 * in order to fix confusing memory reports from free(1) and
3438 		 * other side-effects, like CommitLimit going negative.
3439 		 */
3440 		adjust_managed_page_count(page, pages_per_huge_page(h));
3441 		cond_resched();
3442 	}
3443 
3444 	prep_and_add_bootmem_folios(h, &folio_list);
3445 }
3446 
3447 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3448 {
3449 	unsigned long i;
3450 	char buf[32];
3451 
3452 	for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3453 		if (hstate_is_gigantic(h)) {
3454 			if (!alloc_bootmem_huge_page(h, nid))
3455 				break;
3456 		} else {
3457 			struct folio *folio;
3458 			gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3459 
3460 			folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid,
3461 					&node_states[N_MEMORY], NULL);
3462 			if (!folio)
3463 				break;
3464 			free_huge_folio(folio); /* free it into the hugepage allocator */
3465 		}
3466 		cond_resched();
3467 	}
3468 	if (i == h->max_huge_pages_node[nid])
3469 		return;
3470 
3471 	string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3472 	pr_warn("HugeTLB: allocating %u of page size %s failed node%d.  Only allocated %lu hugepages.\n",
3473 		h->max_huge_pages_node[nid], buf, nid, i);
3474 	h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3475 	h->max_huge_pages_node[nid] = i;
3476 }
3477 
3478 /*
3479  * NOTE: this routine is called in different contexts for gigantic and
3480  * non-gigantic pages.
3481  * - For gigantic pages, this is called early in the boot process and
3482  *   pages are allocated from memblock allocated or something similar.
3483  *   Gigantic pages are actually added to pools later with the routine
3484  *   gather_bootmem_prealloc.
3485  * - For non-gigantic pages, this is called later in the boot process after
3486  *   all of mm is up and functional.  Pages are allocated from buddy and
3487  *   then added to hugetlb pools.
3488  */
3489 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3490 {
3491 	unsigned long i;
3492 	struct folio *folio;
3493 	LIST_HEAD(folio_list);
3494 	nodemask_t *node_alloc_noretry;
3495 	bool node_specific_alloc = false;
3496 
3497 	/* skip gigantic hugepages allocation if hugetlb_cma enabled */
3498 	if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3499 		pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3500 		return;
3501 	}
3502 
3503 	/* do node specific alloc */
3504 	for_each_online_node(i) {
3505 		if (h->max_huge_pages_node[i] > 0) {
3506 			hugetlb_hstate_alloc_pages_onenode(h, i);
3507 			node_specific_alloc = true;
3508 		}
3509 	}
3510 
3511 	if (node_specific_alloc)
3512 		return;
3513 
3514 	/* below will do all node balanced alloc */
3515 	if (!hstate_is_gigantic(h)) {
3516 		/*
3517 		 * Bit mask controlling how hard we retry per-node allocations.
3518 		 * Ignore errors as lower level routines can deal with
3519 		 * node_alloc_noretry == NULL.  If this kmalloc fails at boot
3520 		 * time, we are likely in bigger trouble.
3521 		 */
3522 		node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
3523 						GFP_KERNEL);
3524 	} else {
3525 		/* allocations done at boot time */
3526 		node_alloc_noretry = NULL;
3527 	}
3528 
3529 	/* bit mask controlling how hard we retry per-node allocations */
3530 	if (node_alloc_noretry)
3531 		nodes_clear(*node_alloc_noretry);
3532 
3533 	for (i = 0; i < h->max_huge_pages; ++i) {
3534 		if (hstate_is_gigantic(h)) {
3535 			/*
3536 			 * gigantic pages not added to list as they are not
3537 			 * added to pools now.
3538 			 */
3539 			if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3540 				break;
3541 		} else {
3542 			folio = alloc_pool_huge_folio(h, &node_states[N_MEMORY],
3543 							node_alloc_noretry);
3544 			if (!folio)
3545 				break;
3546 			list_add(&folio->lru, &folio_list);
3547 		}
3548 		cond_resched();
3549 	}
3550 
3551 	/* list will be empty if hstate_is_gigantic */
3552 	prep_and_add_allocated_folios(h, &folio_list);
3553 
3554 	if (i < h->max_huge_pages) {
3555 		char buf[32];
3556 
3557 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3558 		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
3559 			h->max_huge_pages, buf, i);
3560 		h->max_huge_pages = i;
3561 	}
3562 	kfree(node_alloc_noretry);
3563 }
3564 
3565 static void __init hugetlb_init_hstates(void)
3566 {
3567 	struct hstate *h, *h2;
3568 
3569 	for_each_hstate(h) {
3570 		/* oversize hugepages were init'ed in early boot */
3571 		if (!hstate_is_gigantic(h))
3572 			hugetlb_hstate_alloc_pages(h);
3573 
3574 		/*
3575 		 * Set demote order for each hstate.  Note that
3576 		 * h->demote_order is initially 0.
3577 		 * - We can not demote gigantic pages if runtime freeing
3578 		 *   is not supported, so skip this.
3579 		 * - If CMA allocation is possible, we can not demote
3580 		 *   HUGETLB_PAGE_ORDER or smaller size pages.
3581 		 */
3582 		if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3583 			continue;
3584 		if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3585 			continue;
3586 		for_each_hstate(h2) {
3587 			if (h2 == h)
3588 				continue;
3589 			if (h2->order < h->order &&
3590 			    h2->order > h->demote_order)
3591 				h->demote_order = h2->order;
3592 		}
3593 	}
3594 }
3595 
3596 static void __init report_hugepages(void)
3597 {
3598 	struct hstate *h;
3599 
3600 	for_each_hstate(h) {
3601 		char buf[32];
3602 
3603 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3604 		pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
3605 			buf, h->free_huge_pages);
3606 		pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3607 			hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
3608 	}
3609 }
3610 
3611 #ifdef CONFIG_HIGHMEM
3612 static void try_to_free_low(struct hstate *h, unsigned long count,
3613 						nodemask_t *nodes_allowed)
3614 {
3615 	int i;
3616 	LIST_HEAD(page_list);
3617 
3618 	lockdep_assert_held(&hugetlb_lock);
3619 	if (hstate_is_gigantic(h))
3620 		return;
3621 
3622 	/*
3623 	 * Collect pages to be freed on a list, and free after dropping lock
3624 	 */
3625 	for_each_node_mask(i, *nodes_allowed) {
3626 		struct folio *folio, *next;
3627 		struct list_head *freel = &h->hugepage_freelists[i];
3628 		list_for_each_entry_safe(folio, next, freel, lru) {
3629 			if (count >= h->nr_huge_pages)
3630 				goto out;
3631 			if (folio_test_highmem(folio))
3632 				continue;
3633 			remove_hugetlb_folio(h, folio, false);
3634 			list_add(&folio->lru, &page_list);
3635 		}
3636 	}
3637 
3638 out:
3639 	spin_unlock_irq(&hugetlb_lock);
3640 	update_and_free_pages_bulk(h, &page_list);
3641 	spin_lock_irq(&hugetlb_lock);
3642 }
3643 #else
3644 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3645 						nodemask_t *nodes_allowed)
3646 {
3647 }
3648 #endif
3649 
3650 /*
3651  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
3652  * balanced by operating on them in a round-robin fashion.
3653  * Returns 1 if an adjustment was made.
3654  */
3655 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3656 				int delta)
3657 {
3658 	int nr_nodes, node;
3659 
3660 	lockdep_assert_held(&hugetlb_lock);
3661 	VM_BUG_ON(delta != -1 && delta != 1);
3662 
3663 	if (delta < 0) {
3664 		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
3665 			if (h->surplus_huge_pages_node[node])
3666 				goto found;
3667 		}
3668 	} else {
3669 		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3670 			if (h->surplus_huge_pages_node[node] <
3671 					h->nr_huge_pages_node[node])
3672 				goto found;
3673 		}
3674 	}
3675 	return 0;
3676 
3677 found:
3678 	h->surplus_huge_pages += delta;
3679 	h->surplus_huge_pages_node[node] += delta;
3680 	return 1;
3681 }
3682 
3683 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3684 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3685 			      nodemask_t *nodes_allowed)
3686 {
3687 	unsigned long min_count;
3688 	unsigned long allocated;
3689 	struct folio *folio;
3690 	LIST_HEAD(page_list);
3691 	NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3692 
3693 	/*
3694 	 * Bit mask controlling how hard we retry per-node allocations.
3695 	 * If we can not allocate the bit mask, do not attempt to allocate
3696 	 * the requested huge pages.
3697 	 */
3698 	if (node_alloc_noretry)
3699 		nodes_clear(*node_alloc_noretry);
3700 	else
3701 		return -ENOMEM;
3702 
3703 	/*
3704 	 * resize_lock mutex prevents concurrent adjustments to number of
3705 	 * pages in hstate via the proc/sysfs interfaces.
3706 	 */
3707 	mutex_lock(&h->resize_lock);
3708 	flush_free_hpage_work(h);
3709 	spin_lock_irq(&hugetlb_lock);
3710 
3711 	/*
3712 	 * Check for a node specific request.
3713 	 * Changing node specific huge page count may require a corresponding
3714 	 * change to the global count.  In any case, the passed node mask
3715 	 * (nodes_allowed) will restrict alloc/free to the specified node.
3716 	 */
3717 	if (nid != NUMA_NO_NODE) {
3718 		unsigned long old_count = count;
3719 
3720 		count += persistent_huge_pages(h) -
3721 			 (h->nr_huge_pages_node[nid] -
3722 			  h->surplus_huge_pages_node[nid]);
3723 		/*
3724 		 * User may have specified a large count value which caused the
3725 		 * above calculation to overflow.  In this case, they wanted
3726 		 * to allocate as many huge pages as possible.  Set count to
3727 		 * largest possible value to align with their intention.
3728 		 */
3729 		if (count < old_count)
3730 			count = ULONG_MAX;
3731 	}
3732 
3733 	/*
3734 	 * Gigantic pages runtime allocation depend on the capability for large
3735 	 * page range allocation.
3736 	 * If the system does not provide this feature, return an error when
3737 	 * the user tries to allocate gigantic pages but let the user free the
3738 	 * boottime allocated gigantic pages.
3739 	 */
3740 	if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3741 		if (count > persistent_huge_pages(h)) {
3742 			spin_unlock_irq(&hugetlb_lock);
3743 			mutex_unlock(&h->resize_lock);
3744 			NODEMASK_FREE(node_alloc_noretry);
3745 			return -EINVAL;
3746 		}
3747 		/* Fall through to decrease pool */
3748 	}
3749 
3750 	/*
3751 	 * Increase the pool size
3752 	 * First take pages out of surplus state.  Then make up the
3753 	 * remaining difference by allocating fresh huge pages.
3754 	 *
3755 	 * We might race with alloc_surplus_hugetlb_folio() here and be unable
3756 	 * to convert a surplus huge page to a normal huge page. That is
3757 	 * not critical, though, it just means the overall size of the
3758 	 * pool might be one hugepage larger than it needs to be, but
3759 	 * within all the constraints specified by the sysctls.
3760 	 */
3761 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3762 		if (!adjust_pool_surplus(h, nodes_allowed, -1))
3763 			break;
3764 	}
3765 
3766 	allocated = 0;
3767 	while (count > (persistent_huge_pages(h) + allocated)) {
3768 		/*
3769 		 * If this allocation races such that we no longer need the
3770 		 * page, free_huge_folio will handle it by freeing the page
3771 		 * and reducing the surplus.
3772 		 */
3773 		spin_unlock_irq(&hugetlb_lock);
3774 
3775 		/* yield cpu to avoid soft lockup */
3776 		cond_resched();
3777 
3778 		folio = alloc_pool_huge_folio(h, nodes_allowed,
3779 						node_alloc_noretry);
3780 		if (!folio) {
3781 			prep_and_add_allocated_folios(h, &page_list);
3782 			spin_lock_irq(&hugetlb_lock);
3783 			goto out;
3784 		}
3785 
3786 		list_add(&folio->lru, &page_list);
3787 		allocated++;
3788 
3789 		/* Bail for signals. Probably ctrl-c from user */
3790 		if (signal_pending(current)) {
3791 			prep_and_add_allocated_folios(h, &page_list);
3792 			spin_lock_irq(&hugetlb_lock);
3793 			goto out;
3794 		}
3795 
3796 		spin_lock_irq(&hugetlb_lock);
3797 	}
3798 
3799 	/* Add allocated pages to the pool */
3800 	if (!list_empty(&page_list)) {
3801 		spin_unlock_irq(&hugetlb_lock);
3802 		prep_and_add_allocated_folios(h, &page_list);
3803 		spin_lock_irq(&hugetlb_lock);
3804 	}
3805 
3806 	/*
3807 	 * Decrease the pool size
3808 	 * First return free pages to the buddy allocator (being careful
3809 	 * to keep enough around to satisfy reservations).  Then place
3810 	 * pages into surplus state as needed so the pool will shrink
3811 	 * to the desired size as pages become free.
3812 	 *
3813 	 * By placing pages into the surplus state independent of the
3814 	 * overcommit value, we are allowing the surplus pool size to
3815 	 * exceed overcommit. There are few sane options here. Since
3816 	 * alloc_surplus_hugetlb_folio() is checking the global counter,
3817 	 * though, we'll note that we're not allowed to exceed surplus
3818 	 * and won't grow the pool anywhere else. Not until one of the
3819 	 * sysctls are changed, or the surplus pages go out of use.
3820 	 */
3821 	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3822 	min_count = max(count, min_count);
3823 	try_to_free_low(h, min_count, nodes_allowed);
3824 
3825 	/*
3826 	 * Collect pages to be removed on list without dropping lock
3827 	 */
3828 	while (min_count < persistent_huge_pages(h)) {
3829 		folio = remove_pool_hugetlb_folio(h, nodes_allowed, 0);
3830 		if (!folio)
3831 			break;
3832 
3833 		list_add(&folio->lru, &page_list);
3834 	}
3835 	/* free the pages after dropping lock */
3836 	spin_unlock_irq(&hugetlb_lock);
3837 	update_and_free_pages_bulk(h, &page_list);
3838 	flush_free_hpage_work(h);
3839 	spin_lock_irq(&hugetlb_lock);
3840 
3841 	while (count < persistent_huge_pages(h)) {
3842 		if (!adjust_pool_surplus(h, nodes_allowed, 1))
3843 			break;
3844 	}
3845 out:
3846 	h->max_huge_pages = persistent_huge_pages(h);
3847 	spin_unlock_irq(&hugetlb_lock);
3848 	mutex_unlock(&h->resize_lock);
3849 
3850 	NODEMASK_FREE(node_alloc_noretry);
3851 
3852 	return 0;
3853 }
3854 
3855 static int demote_free_hugetlb_folio(struct hstate *h, struct folio *folio)
3856 {
3857 	int i, nid = folio_nid(folio);
3858 	struct hstate *target_hstate;
3859 	struct page *subpage;
3860 	struct folio *inner_folio;
3861 	int rc = 0;
3862 
3863 	target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3864 
3865 	remove_hugetlb_folio_for_demote(h, folio, false);
3866 	spin_unlock_irq(&hugetlb_lock);
3867 
3868 	/*
3869 	 * If vmemmap already existed for folio, the remove routine above would
3870 	 * have cleared the hugetlb folio flag.  Hence the folio is technically
3871 	 * no longer a hugetlb folio.  hugetlb_vmemmap_restore_folio can only be
3872 	 * passed hugetlb folios and will BUG otherwise.
3873 	 */
3874 	if (folio_test_hugetlb(folio)) {
3875 		rc = hugetlb_vmemmap_restore_folio(h, folio);
3876 		if (rc) {
3877 			/* Allocation of vmemmmap failed, we can not demote folio */
3878 			spin_lock_irq(&hugetlb_lock);
3879 			folio_ref_unfreeze(folio, 1);
3880 			add_hugetlb_folio(h, folio, false);
3881 			return rc;
3882 		}
3883 	}
3884 
3885 	/*
3886 	 * Use destroy_compound_hugetlb_folio_for_demote for all huge page
3887 	 * sizes as it will not ref count folios.
3888 	 */
3889 	destroy_compound_hugetlb_folio_for_demote(folio, huge_page_order(h));
3890 
3891 	/*
3892 	 * Taking target hstate mutex synchronizes with set_max_huge_pages.
3893 	 * Without the mutex, pages added to target hstate could be marked
3894 	 * as surplus.
3895 	 *
3896 	 * Note that we already hold h->resize_lock.  To prevent deadlock,
3897 	 * use the convention of always taking larger size hstate mutex first.
3898 	 */
3899 	mutex_lock(&target_hstate->resize_lock);
3900 	for (i = 0; i < pages_per_huge_page(h);
3901 				i += pages_per_huge_page(target_hstate)) {
3902 		subpage = folio_page(folio, i);
3903 		inner_folio = page_folio(subpage);
3904 		if (hstate_is_gigantic(target_hstate))
3905 			prep_compound_gigantic_folio_for_demote(inner_folio,
3906 							target_hstate->order);
3907 		else
3908 			prep_compound_page(subpage, target_hstate->order);
3909 		folio_change_private(inner_folio, NULL);
3910 		prep_new_hugetlb_folio(target_hstate, inner_folio, nid);
3911 		free_huge_folio(inner_folio);
3912 	}
3913 	mutex_unlock(&target_hstate->resize_lock);
3914 
3915 	spin_lock_irq(&hugetlb_lock);
3916 
3917 	/*
3918 	 * Not absolutely necessary, but for consistency update max_huge_pages
3919 	 * based on pool changes for the demoted page.
3920 	 */
3921 	h->max_huge_pages--;
3922 	target_hstate->max_huge_pages +=
3923 		pages_per_huge_page(h) / pages_per_huge_page(target_hstate);
3924 
3925 	return rc;
3926 }
3927 
3928 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
3929 	__must_hold(&hugetlb_lock)
3930 {
3931 	int nr_nodes, node;
3932 	struct folio *folio;
3933 
3934 	lockdep_assert_held(&hugetlb_lock);
3935 
3936 	/* We should never get here if no demote order */
3937 	if (!h->demote_order) {
3938 		pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3939 		return -EINVAL;		/* internal error */
3940 	}
3941 
3942 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3943 		list_for_each_entry(folio, &h->hugepage_freelists[node], lru) {
3944 			if (folio_test_hwpoison(folio))
3945 				continue;
3946 			return demote_free_hugetlb_folio(h, folio);
3947 		}
3948 	}
3949 
3950 	/*
3951 	 * Only way to get here is if all pages on free lists are poisoned.
3952 	 * Return -EBUSY so that caller will not retry.
3953 	 */
3954 	return -EBUSY;
3955 }
3956 
3957 #define HSTATE_ATTR_RO(_name) \
3958 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3959 
3960 #define HSTATE_ATTR_WO(_name) \
3961 	static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
3962 
3963 #define HSTATE_ATTR(_name) \
3964 	static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3965 
3966 static struct kobject *hugepages_kobj;
3967 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3968 
3969 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3970 
3971 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3972 {
3973 	int i;
3974 
3975 	for (i = 0; i < HUGE_MAX_HSTATE; i++)
3976 		if (hstate_kobjs[i] == kobj) {
3977 			if (nidp)
3978 				*nidp = NUMA_NO_NODE;
3979 			return &hstates[i];
3980 		}
3981 
3982 	return kobj_to_node_hstate(kobj, nidp);
3983 }
3984 
3985 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3986 					struct kobj_attribute *attr, char *buf)
3987 {
3988 	struct hstate *h;
3989 	unsigned long nr_huge_pages;
3990 	int nid;
3991 
3992 	h = kobj_to_hstate(kobj, &nid);
3993 	if (nid == NUMA_NO_NODE)
3994 		nr_huge_pages = h->nr_huge_pages;
3995 	else
3996 		nr_huge_pages = h->nr_huge_pages_node[nid];
3997 
3998 	return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3999 }
4000 
4001 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
4002 					   struct hstate *h, int nid,
4003 					   unsigned long count, size_t len)
4004 {
4005 	int err;
4006 	nodemask_t nodes_allowed, *n_mask;
4007 
4008 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
4009 		return -EINVAL;
4010 
4011 	if (nid == NUMA_NO_NODE) {
4012 		/*
4013 		 * global hstate attribute
4014 		 */
4015 		if (!(obey_mempolicy &&
4016 				init_nodemask_of_mempolicy(&nodes_allowed)))
4017 			n_mask = &node_states[N_MEMORY];
4018 		else
4019 			n_mask = &nodes_allowed;
4020 	} else {
4021 		/*
4022 		 * Node specific request.  count adjustment happens in
4023 		 * set_max_huge_pages() after acquiring hugetlb_lock.
4024 		 */
4025 		init_nodemask_of_node(&nodes_allowed, nid);
4026 		n_mask = &nodes_allowed;
4027 	}
4028 
4029 	err = set_max_huge_pages(h, count, nid, n_mask);
4030 
4031 	return err ? err : len;
4032 }
4033 
4034 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
4035 					 struct kobject *kobj, const char *buf,
4036 					 size_t len)
4037 {
4038 	struct hstate *h;
4039 	unsigned long count;
4040 	int nid;
4041 	int err;
4042 
4043 	err = kstrtoul(buf, 10, &count);
4044 	if (err)
4045 		return err;
4046 
4047 	h = kobj_to_hstate(kobj, &nid);
4048 	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
4049 }
4050 
4051 static ssize_t nr_hugepages_show(struct kobject *kobj,
4052 				       struct kobj_attribute *attr, char *buf)
4053 {
4054 	return nr_hugepages_show_common(kobj, attr, buf);
4055 }
4056 
4057 static ssize_t nr_hugepages_store(struct kobject *kobj,
4058 	       struct kobj_attribute *attr, const char *buf, size_t len)
4059 {
4060 	return nr_hugepages_store_common(false, kobj, buf, len);
4061 }
4062 HSTATE_ATTR(nr_hugepages);
4063 
4064 #ifdef CONFIG_NUMA
4065 
4066 /*
4067  * hstate attribute for optionally mempolicy-based constraint on persistent
4068  * huge page alloc/free.
4069  */
4070 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
4071 					   struct kobj_attribute *attr,
4072 					   char *buf)
4073 {
4074 	return nr_hugepages_show_common(kobj, attr, buf);
4075 }
4076 
4077 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
4078 	       struct kobj_attribute *attr, const char *buf, size_t len)
4079 {
4080 	return nr_hugepages_store_common(true, kobj, buf, len);
4081 }
4082 HSTATE_ATTR(nr_hugepages_mempolicy);
4083 #endif
4084 
4085 
4086 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
4087 					struct kobj_attribute *attr, char *buf)
4088 {
4089 	struct hstate *h = kobj_to_hstate(kobj, NULL);
4090 	return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
4091 }
4092 
4093 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
4094 		struct kobj_attribute *attr, const char *buf, size_t count)
4095 {
4096 	int err;
4097 	unsigned long input;
4098 	struct hstate *h = kobj_to_hstate(kobj, NULL);
4099 
4100 	if (hstate_is_gigantic(h))
4101 		return -EINVAL;
4102 
4103 	err = kstrtoul(buf, 10, &input);
4104 	if (err)
4105 		return err;
4106 
4107 	spin_lock_irq(&hugetlb_lock);
4108 	h->nr_overcommit_huge_pages = input;
4109 	spin_unlock_irq(&hugetlb_lock);
4110 
4111 	return count;
4112 }
4113 HSTATE_ATTR(nr_overcommit_hugepages);
4114 
4115 static ssize_t free_hugepages_show(struct kobject *kobj,
4116 					struct kobj_attribute *attr, char *buf)
4117 {
4118 	struct hstate *h;
4119 	unsigned long free_huge_pages;
4120 	int nid;
4121 
4122 	h = kobj_to_hstate(kobj, &nid);
4123 	if (nid == NUMA_NO_NODE)
4124 		free_huge_pages = h->free_huge_pages;
4125 	else
4126 		free_huge_pages = h->free_huge_pages_node[nid];
4127 
4128 	return sysfs_emit(buf, "%lu\n", free_huge_pages);
4129 }
4130 HSTATE_ATTR_RO(free_hugepages);
4131 
4132 static ssize_t resv_hugepages_show(struct kobject *kobj,
4133 					struct kobj_attribute *attr, char *buf)
4134 {
4135 	struct hstate *h = kobj_to_hstate(kobj, NULL);
4136 	return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
4137 }
4138 HSTATE_ATTR_RO(resv_hugepages);
4139 
4140 static ssize_t surplus_hugepages_show(struct kobject *kobj,
4141 					struct kobj_attribute *attr, char *buf)
4142 {
4143 	struct hstate *h;
4144 	unsigned long surplus_huge_pages;
4145 	int nid;
4146 
4147 	h = kobj_to_hstate(kobj, &nid);
4148 	if (nid == NUMA_NO_NODE)
4149 		surplus_huge_pages = h->surplus_huge_pages;
4150 	else
4151 		surplus_huge_pages = h->surplus_huge_pages_node[nid];
4152 
4153 	return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
4154 }
4155 HSTATE_ATTR_RO(surplus_hugepages);
4156 
4157 static ssize_t demote_store(struct kobject *kobj,
4158 	       struct kobj_attribute *attr, const char *buf, size_t len)
4159 {
4160 	unsigned long nr_demote;
4161 	unsigned long nr_available;
4162 	nodemask_t nodes_allowed, *n_mask;
4163 	struct hstate *h;
4164 	int err;
4165 	int nid;
4166 
4167 	err = kstrtoul(buf, 10, &nr_demote);
4168 	if (err)
4169 		return err;
4170 	h = kobj_to_hstate(kobj, &nid);
4171 
4172 	if (nid != NUMA_NO_NODE) {
4173 		init_nodemask_of_node(&nodes_allowed, nid);
4174 		n_mask = &nodes_allowed;
4175 	} else {
4176 		n_mask = &node_states[N_MEMORY];
4177 	}
4178 
4179 	/* Synchronize with other sysfs operations modifying huge pages */
4180 	mutex_lock(&h->resize_lock);
4181 	spin_lock_irq(&hugetlb_lock);
4182 
4183 	while (nr_demote) {
4184 		/*
4185 		 * Check for available pages to demote each time thorough the
4186 		 * loop as demote_pool_huge_page will drop hugetlb_lock.
4187 		 */
4188 		if (nid != NUMA_NO_NODE)
4189 			nr_available = h->free_huge_pages_node[nid];
4190 		else
4191 			nr_available = h->free_huge_pages;
4192 		nr_available -= h->resv_huge_pages;
4193 		if (!nr_available)
4194 			break;
4195 
4196 		err = demote_pool_huge_page(h, n_mask);
4197 		if (err)
4198 			break;
4199 
4200 		nr_demote--;
4201 	}
4202 
4203 	spin_unlock_irq(&hugetlb_lock);
4204 	mutex_unlock(&h->resize_lock);
4205 
4206 	if (err)
4207 		return err;
4208 	return len;
4209 }
4210 HSTATE_ATTR_WO(demote);
4211 
4212 static ssize_t demote_size_show(struct kobject *kobj,
4213 					struct kobj_attribute *attr, char *buf)
4214 {
4215 	struct hstate *h = kobj_to_hstate(kobj, NULL);
4216 	unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
4217 
4218 	return sysfs_emit(buf, "%lukB\n", demote_size);
4219 }
4220 
4221 static ssize_t demote_size_store(struct kobject *kobj,
4222 					struct kobj_attribute *attr,
4223 					const char *buf, size_t count)
4224 {
4225 	struct hstate *h, *demote_hstate;
4226 	unsigned long demote_size;
4227 	unsigned int demote_order;
4228 
4229 	demote_size = (unsigned long)memparse(buf, NULL);
4230 
4231 	demote_hstate = size_to_hstate(demote_size);
4232 	if (!demote_hstate)
4233 		return -EINVAL;
4234 	demote_order = demote_hstate->order;
4235 	if (demote_order < HUGETLB_PAGE_ORDER)
4236 		return -EINVAL;
4237 
4238 	/* demote order must be smaller than hstate order */
4239 	h = kobj_to_hstate(kobj, NULL);
4240 	if (demote_order >= h->order)
4241 		return -EINVAL;
4242 
4243 	/* resize_lock synchronizes access to demote size and writes */
4244 	mutex_lock(&h->resize_lock);
4245 	h->demote_order = demote_order;
4246 	mutex_unlock(&h->resize_lock);
4247 
4248 	return count;
4249 }
4250 HSTATE_ATTR(demote_size);
4251 
4252 static struct attribute *hstate_attrs[] = {
4253 	&nr_hugepages_attr.attr,
4254 	&nr_overcommit_hugepages_attr.attr,
4255 	&free_hugepages_attr.attr,
4256 	&resv_hugepages_attr.attr,
4257 	&surplus_hugepages_attr.attr,
4258 #ifdef CONFIG_NUMA
4259 	&nr_hugepages_mempolicy_attr.attr,
4260 #endif
4261 	NULL,
4262 };
4263 
4264 static const struct attribute_group hstate_attr_group = {
4265 	.attrs = hstate_attrs,
4266 };
4267 
4268 static struct attribute *hstate_demote_attrs[] = {
4269 	&demote_size_attr.attr,
4270 	&demote_attr.attr,
4271 	NULL,
4272 };
4273 
4274 static const struct attribute_group hstate_demote_attr_group = {
4275 	.attrs = hstate_demote_attrs,
4276 };
4277 
4278 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
4279 				    struct kobject **hstate_kobjs,
4280 				    const struct attribute_group *hstate_attr_group)
4281 {
4282 	int retval;
4283 	int hi = hstate_index(h);
4284 
4285 	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
4286 	if (!hstate_kobjs[hi])
4287 		return -ENOMEM;
4288 
4289 	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
4290 	if (retval) {
4291 		kobject_put(hstate_kobjs[hi]);
4292 		hstate_kobjs[hi] = NULL;
4293 		return retval;
4294 	}
4295 
4296 	if (h->demote_order) {
4297 		retval = sysfs_create_group(hstate_kobjs[hi],
4298 					    &hstate_demote_attr_group);
4299 		if (retval) {
4300 			pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
4301 			sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
4302 			kobject_put(hstate_kobjs[hi]);
4303 			hstate_kobjs[hi] = NULL;
4304 			return retval;
4305 		}
4306 	}
4307 
4308 	return 0;
4309 }
4310 
4311 #ifdef CONFIG_NUMA
4312 static bool hugetlb_sysfs_initialized __ro_after_init;
4313 
4314 /*
4315  * node_hstate/s - associate per node hstate attributes, via their kobjects,
4316  * with node devices in node_devices[] using a parallel array.  The array
4317  * index of a node device or _hstate == node id.
4318  * This is here to avoid any static dependency of the node device driver, in
4319  * the base kernel, on the hugetlb module.
4320  */
4321 struct node_hstate {
4322 	struct kobject		*hugepages_kobj;
4323 	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
4324 };
4325 static struct node_hstate node_hstates[MAX_NUMNODES];
4326 
4327 /*
4328  * A subset of global hstate attributes for node devices
4329  */
4330 static struct attribute *per_node_hstate_attrs[] = {
4331 	&nr_hugepages_attr.attr,
4332 	&free_hugepages_attr.attr,
4333 	&surplus_hugepages_attr.attr,
4334 	NULL,
4335 };
4336 
4337 static const struct attribute_group per_node_hstate_attr_group = {
4338 	.attrs = per_node_hstate_attrs,
4339 };
4340 
4341 /*
4342  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
4343  * Returns node id via non-NULL nidp.
4344  */
4345 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4346 {
4347 	int nid;
4348 
4349 	for (nid = 0; nid < nr_node_ids; nid++) {
4350 		struct node_hstate *nhs = &node_hstates[nid];
4351 		int i;
4352 		for (i = 0; i < HUGE_MAX_HSTATE; i++)
4353 			if (nhs->hstate_kobjs[i] == kobj) {
4354 				if (nidp)
4355 					*nidp = nid;
4356 				return &hstates[i];
4357 			}
4358 	}
4359 
4360 	BUG();
4361 	return NULL;
4362 }
4363 
4364 /*
4365  * Unregister hstate attributes from a single node device.
4366  * No-op if no hstate attributes attached.
4367  */
4368 void hugetlb_unregister_node(struct node *node)
4369 {
4370 	struct hstate *h;
4371 	struct node_hstate *nhs = &node_hstates[node->dev.id];
4372 
4373 	if (!nhs->hugepages_kobj)
4374 		return;		/* no hstate attributes */
4375 
4376 	for_each_hstate(h) {
4377 		int idx = hstate_index(h);
4378 		struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
4379 
4380 		if (!hstate_kobj)
4381 			continue;
4382 		if (h->demote_order)
4383 			sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
4384 		sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
4385 		kobject_put(hstate_kobj);
4386 		nhs->hstate_kobjs[idx] = NULL;
4387 	}
4388 
4389 	kobject_put(nhs->hugepages_kobj);
4390 	nhs->hugepages_kobj = NULL;
4391 }
4392 
4393 
4394 /*
4395  * Register hstate attributes for a single node device.
4396  * No-op if attributes already registered.
4397  */
4398 void hugetlb_register_node(struct node *node)
4399 {
4400 	struct hstate *h;
4401 	struct node_hstate *nhs = &node_hstates[node->dev.id];
4402 	int err;
4403 
4404 	if (!hugetlb_sysfs_initialized)
4405 		return;
4406 
4407 	if (nhs->hugepages_kobj)
4408 		return;		/* already allocated */
4409 
4410 	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
4411 							&node->dev.kobj);
4412 	if (!nhs->hugepages_kobj)
4413 		return;
4414 
4415 	for_each_hstate(h) {
4416 		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
4417 						nhs->hstate_kobjs,
4418 						&per_node_hstate_attr_group);
4419 		if (err) {
4420 			pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
4421 				h->name, node->dev.id);
4422 			hugetlb_unregister_node(node);
4423 			break;
4424 		}
4425 	}
4426 }
4427 
4428 /*
4429  * hugetlb init time:  register hstate attributes for all registered node
4430  * devices of nodes that have memory.  All on-line nodes should have
4431  * registered their associated device by this time.
4432  */
4433 static void __init hugetlb_register_all_nodes(void)
4434 {
4435 	int nid;
4436 
4437 	for_each_online_node(nid)
4438 		hugetlb_register_node(node_devices[nid]);
4439 }
4440 #else	/* !CONFIG_NUMA */
4441 
4442 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4443 {
4444 	BUG();
4445 	if (nidp)
4446 		*nidp = -1;
4447 	return NULL;
4448 }
4449 
4450 static void hugetlb_register_all_nodes(void) { }
4451 
4452 #endif
4453 
4454 #ifdef CONFIG_CMA
4455 static void __init hugetlb_cma_check(void);
4456 #else
4457 static inline __init void hugetlb_cma_check(void)
4458 {
4459 }
4460 #endif
4461 
4462 static void __init hugetlb_sysfs_init(void)
4463 {
4464 	struct hstate *h;
4465 	int err;
4466 
4467 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
4468 	if (!hugepages_kobj)
4469 		return;
4470 
4471 	for_each_hstate(h) {
4472 		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
4473 					 hstate_kobjs, &hstate_attr_group);
4474 		if (err)
4475 			pr_err("HugeTLB: Unable to add hstate %s", h->name);
4476 	}
4477 
4478 #ifdef CONFIG_NUMA
4479 	hugetlb_sysfs_initialized = true;
4480 #endif
4481 	hugetlb_register_all_nodes();
4482 }
4483 
4484 #ifdef CONFIG_SYSCTL
4485 static void hugetlb_sysctl_init(void);
4486 #else
4487 static inline void hugetlb_sysctl_init(void) { }
4488 #endif
4489 
4490 static int __init hugetlb_init(void)
4491 {
4492 	int i;
4493 
4494 	BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4495 			__NR_HPAGEFLAGS);
4496 
4497 	if (!hugepages_supported()) {
4498 		if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4499 			pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4500 		return 0;
4501 	}
4502 
4503 	/*
4504 	 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
4505 	 * architectures depend on setup being done here.
4506 	 */
4507 	hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4508 	if (!parsed_default_hugepagesz) {
4509 		/*
4510 		 * If we did not parse a default huge page size, set
4511 		 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4512 		 * number of huge pages for this default size was implicitly
4513 		 * specified, set that here as well.
4514 		 * Note that the implicit setting will overwrite an explicit
4515 		 * setting.  A warning will be printed in this case.
4516 		 */
4517 		default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4518 		if (default_hstate_max_huge_pages) {
4519 			if (default_hstate.max_huge_pages) {
4520 				char buf[32];
4521 
4522 				string_get_size(huge_page_size(&default_hstate),
4523 					1, STRING_UNITS_2, buf, 32);
4524 				pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4525 					default_hstate.max_huge_pages, buf);
4526 				pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4527 					default_hstate_max_huge_pages);
4528 			}
4529 			default_hstate.max_huge_pages =
4530 				default_hstate_max_huge_pages;
4531 
4532 			for_each_online_node(i)
4533 				default_hstate.max_huge_pages_node[i] =
4534 					default_hugepages_in_node[i];
4535 		}
4536 	}
4537 
4538 	hugetlb_cma_check();
4539 	hugetlb_init_hstates();
4540 	gather_bootmem_prealloc();
4541 	report_hugepages();
4542 
4543 	hugetlb_sysfs_init();
4544 	hugetlb_cgroup_file_init();
4545 	hugetlb_sysctl_init();
4546 
4547 #ifdef CONFIG_SMP
4548 	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4549 #else
4550 	num_fault_mutexes = 1;
4551 #endif
4552 	hugetlb_fault_mutex_table =
4553 		kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4554 			      GFP_KERNEL);
4555 	BUG_ON(!hugetlb_fault_mutex_table);
4556 
4557 	for (i = 0; i < num_fault_mutexes; i++)
4558 		mutex_init(&hugetlb_fault_mutex_table[i]);
4559 	return 0;
4560 }
4561 subsys_initcall(hugetlb_init);
4562 
4563 /* Overwritten by architectures with more huge page sizes */
4564 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4565 {
4566 	return size == HPAGE_SIZE;
4567 }
4568 
4569 void __init hugetlb_add_hstate(unsigned int order)
4570 {
4571 	struct hstate *h;
4572 	unsigned long i;
4573 
4574 	if (size_to_hstate(PAGE_SIZE << order)) {
4575 		return;
4576 	}
4577 	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4578 	BUG_ON(order < order_base_2(__NR_USED_SUBPAGE));
4579 	h = &hstates[hugetlb_max_hstate++];
4580 	mutex_init(&h->resize_lock);
4581 	h->order = order;
4582 	h->mask = ~(huge_page_size(h) - 1);
4583 	for (i = 0; i < MAX_NUMNODES; ++i)
4584 		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4585 	INIT_LIST_HEAD(&h->hugepage_activelist);
4586 	h->next_nid_to_alloc = first_memory_node;
4587 	h->next_nid_to_free = first_memory_node;
4588 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4589 					huge_page_size(h)/SZ_1K);
4590 
4591 	parsed_hstate = h;
4592 }
4593 
4594 bool __init __weak hugetlb_node_alloc_supported(void)
4595 {
4596 	return true;
4597 }
4598 
4599 static void __init hugepages_clear_pages_in_node(void)
4600 {
4601 	if (!hugetlb_max_hstate) {
4602 		default_hstate_max_huge_pages = 0;
4603 		memset(default_hugepages_in_node, 0,
4604 			sizeof(default_hugepages_in_node));
4605 	} else {
4606 		parsed_hstate->max_huge_pages = 0;
4607 		memset(parsed_hstate->max_huge_pages_node, 0,
4608 			sizeof(parsed_hstate->max_huge_pages_node));
4609 	}
4610 }
4611 
4612 /*
4613  * hugepages command line processing
4614  * hugepages normally follows a valid hugepagsz or default_hugepagsz
4615  * specification.  If not, ignore the hugepages value.  hugepages can also
4616  * be the first huge page command line  option in which case it implicitly
4617  * specifies the number of huge pages for the default size.
4618  */
4619 static int __init hugepages_setup(char *s)
4620 {
4621 	unsigned long *mhp;
4622 	static unsigned long *last_mhp;
4623 	int node = NUMA_NO_NODE;
4624 	int count;
4625 	unsigned long tmp;
4626 	char *p = s;
4627 
4628 	if (!parsed_valid_hugepagesz) {
4629 		pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4630 		parsed_valid_hugepagesz = true;
4631 		return 1;
4632 	}
4633 
4634 	/*
4635 	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4636 	 * yet, so this hugepages= parameter goes to the "default hstate".
4637 	 * Otherwise, it goes with the previously parsed hugepagesz or
4638 	 * default_hugepagesz.
4639 	 */
4640 	else if (!hugetlb_max_hstate)
4641 		mhp = &default_hstate_max_huge_pages;
4642 	else
4643 		mhp = &parsed_hstate->max_huge_pages;
4644 
4645 	if (mhp == last_mhp) {
4646 		pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4647 		return 1;
4648 	}
4649 
4650 	while (*p) {
4651 		count = 0;
4652 		if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4653 			goto invalid;
4654 		/* Parameter is node format */
4655 		if (p[count] == ':') {
4656 			if (!hugetlb_node_alloc_supported()) {
4657 				pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4658 				return 1;
4659 			}
4660 			if (tmp >= MAX_NUMNODES || !node_online(tmp))
4661 				goto invalid;
4662 			node = array_index_nospec(tmp, MAX_NUMNODES);
4663 			p += count + 1;
4664 			/* Parse hugepages */
4665 			if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4666 				goto invalid;
4667 			if (!hugetlb_max_hstate)
4668 				default_hugepages_in_node[node] = tmp;
4669 			else
4670 				parsed_hstate->max_huge_pages_node[node] = tmp;
4671 			*mhp += tmp;
4672 			/* Go to parse next node*/
4673 			if (p[count] == ',')
4674 				p += count + 1;
4675 			else
4676 				break;
4677 		} else {
4678 			if (p != s)
4679 				goto invalid;
4680 			*mhp = tmp;
4681 			break;
4682 		}
4683 	}
4684 
4685 	/*
4686 	 * Global state is always initialized later in hugetlb_init.
4687 	 * But we need to allocate gigantic hstates here early to still
4688 	 * use the bootmem allocator.
4689 	 */
4690 	if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4691 		hugetlb_hstate_alloc_pages(parsed_hstate);
4692 
4693 	last_mhp = mhp;
4694 
4695 	return 1;
4696 
4697 invalid:
4698 	pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4699 	hugepages_clear_pages_in_node();
4700 	return 1;
4701 }
4702 __setup("hugepages=", hugepages_setup);
4703 
4704 /*
4705  * hugepagesz command line processing
4706  * A specific huge page size can only be specified once with hugepagesz.
4707  * hugepagesz is followed by hugepages on the command line.  The global
4708  * variable 'parsed_valid_hugepagesz' is used to determine if prior
4709  * hugepagesz argument was valid.
4710  */
4711 static int __init hugepagesz_setup(char *s)
4712 {
4713 	unsigned long size;
4714 	struct hstate *h;
4715 
4716 	parsed_valid_hugepagesz = false;
4717 	size = (unsigned long)memparse(s, NULL);
4718 
4719 	if (!arch_hugetlb_valid_size(size)) {
4720 		pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4721 		return 1;
4722 	}
4723 
4724 	h = size_to_hstate(size);
4725 	if (h) {
4726 		/*
4727 		 * hstate for this size already exists.  This is normally
4728 		 * an error, but is allowed if the existing hstate is the
4729 		 * default hstate.  More specifically, it is only allowed if
4730 		 * the number of huge pages for the default hstate was not
4731 		 * previously specified.
4732 		 */
4733 		if (!parsed_default_hugepagesz ||  h != &default_hstate ||
4734 		    default_hstate.max_huge_pages) {
4735 			pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4736 			return 1;
4737 		}
4738 
4739 		/*
4740 		 * No need to call hugetlb_add_hstate() as hstate already
4741 		 * exists.  But, do set parsed_hstate so that a following
4742 		 * hugepages= parameter will be applied to this hstate.
4743 		 */
4744 		parsed_hstate = h;
4745 		parsed_valid_hugepagesz = true;
4746 		return 1;
4747 	}
4748 
4749 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4750 	parsed_valid_hugepagesz = true;
4751 	return 1;
4752 }
4753 __setup("hugepagesz=", hugepagesz_setup);
4754 
4755 /*
4756  * default_hugepagesz command line input
4757  * Only one instance of default_hugepagesz allowed on command line.
4758  */
4759 static int __init default_hugepagesz_setup(char *s)
4760 {
4761 	unsigned long size;
4762 	int i;
4763 
4764 	parsed_valid_hugepagesz = false;
4765 	if (parsed_default_hugepagesz) {
4766 		pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4767 		return 1;
4768 	}
4769 
4770 	size = (unsigned long)memparse(s, NULL);
4771 
4772 	if (!arch_hugetlb_valid_size(size)) {
4773 		pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4774 		return 1;
4775 	}
4776 
4777 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4778 	parsed_valid_hugepagesz = true;
4779 	parsed_default_hugepagesz = true;
4780 	default_hstate_idx = hstate_index(size_to_hstate(size));
4781 
4782 	/*
4783 	 * The number of default huge pages (for this size) could have been
4784 	 * specified as the first hugetlb parameter: hugepages=X.  If so,
4785 	 * then default_hstate_max_huge_pages is set.  If the default huge
4786 	 * page size is gigantic (> MAX_ORDER), then the pages must be
4787 	 * allocated here from bootmem allocator.
4788 	 */
4789 	if (default_hstate_max_huge_pages) {
4790 		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4791 		for_each_online_node(i)
4792 			default_hstate.max_huge_pages_node[i] =
4793 				default_hugepages_in_node[i];
4794 		if (hstate_is_gigantic(&default_hstate))
4795 			hugetlb_hstate_alloc_pages(&default_hstate);
4796 		default_hstate_max_huge_pages = 0;
4797 	}
4798 
4799 	return 1;
4800 }
4801 __setup("default_hugepagesz=", default_hugepagesz_setup);
4802 
4803 static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
4804 {
4805 #ifdef CONFIG_NUMA
4806 	struct mempolicy *mpol = get_task_policy(current);
4807 
4808 	/*
4809 	 * Only enforce MPOL_BIND policy which overlaps with cpuset policy
4810 	 * (from policy_nodemask) specifically for hugetlb case
4811 	 */
4812 	if (mpol->mode == MPOL_BIND &&
4813 		(apply_policy_zone(mpol, gfp_zone(gfp)) &&
4814 		 cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
4815 		return &mpol->nodes;
4816 #endif
4817 	return NULL;
4818 }
4819 
4820 static unsigned int allowed_mems_nr(struct hstate *h)
4821 {
4822 	int node;
4823 	unsigned int nr = 0;
4824 	nodemask_t *mbind_nodemask;
4825 	unsigned int *array = h->free_huge_pages_node;
4826 	gfp_t gfp_mask = htlb_alloc_mask(h);
4827 
4828 	mbind_nodemask = policy_mbind_nodemask(gfp_mask);
4829 	for_each_node_mask(node, cpuset_current_mems_allowed) {
4830 		if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
4831 			nr += array[node];
4832 	}
4833 
4834 	return nr;
4835 }
4836 
4837 #ifdef CONFIG_SYSCTL
4838 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
4839 					  void *buffer, size_t *length,
4840 					  loff_t *ppos, unsigned long *out)
4841 {
4842 	struct ctl_table dup_table;
4843 
4844 	/*
4845 	 * In order to avoid races with __do_proc_doulongvec_minmax(), we
4846 	 * can duplicate the @table and alter the duplicate of it.
4847 	 */
4848 	dup_table = *table;
4849 	dup_table.data = out;
4850 
4851 	return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4852 }
4853 
4854 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4855 			 struct ctl_table *table, int write,
4856 			 void *buffer, size_t *length, loff_t *ppos)
4857 {
4858 	struct hstate *h = &default_hstate;
4859 	unsigned long tmp = h->max_huge_pages;
4860 	int ret;
4861 
4862 	if (!hugepages_supported())
4863 		return -EOPNOTSUPP;
4864 
4865 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4866 					     &tmp);
4867 	if (ret)
4868 		goto out;
4869 
4870 	if (write)
4871 		ret = __nr_hugepages_store_common(obey_mempolicy, h,
4872 						  NUMA_NO_NODE, tmp, *length);
4873 out:
4874 	return ret;
4875 }
4876 
4877 static int hugetlb_sysctl_handler(struct ctl_table *table, int write,
4878 			  void *buffer, size_t *length, loff_t *ppos)
4879 {
4880 
4881 	return hugetlb_sysctl_handler_common(false, table, write,
4882 							buffer, length, ppos);
4883 }
4884 
4885 #ifdef CONFIG_NUMA
4886 static int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
4887 			  void *buffer, size_t *length, loff_t *ppos)
4888 {
4889 	return hugetlb_sysctl_handler_common(true, table, write,
4890 							buffer, length, ppos);
4891 }
4892 #endif /* CONFIG_NUMA */
4893 
4894 static int hugetlb_overcommit_handler(struct ctl_table *table, int write,
4895 		void *buffer, size_t *length, loff_t *ppos)
4896 {
4897 	struct hstate *h = &default_hstate;
4898 	unsigned long tmp;
4899 	int ret;
4900 
4901 	if (!hugepages_supported())
4902 		return -EOPNOTSUPP;
4903 
4904 	tmp = h->nr_overcommit_huge_pages;
4905 
4906 	if (write && hstate_is_gigantic(h))
4907 		return -EINVAL;
4908 
4909 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4910 					     &tmp);
4911 	if (ret)
4912 		goto out;
4913 
4914 	if (write) {
4915 		spin_lock_irq(&hugetlb_lock);
4916 		h->nr_overcommit_huge_pages = tmp;
4917 		spin_unlock_irq(&hugetlb_lock);
4918 	}
4919 out:
4920 	return ret;
4921 }
4922 
4923 static struct ctl_table hugetlb_table[] = {
4924 	{
4925 		.procname	= "nr_hugepages",
4926 		.data		= NULL,
4927 		.maxlen		= sizeof(unsigned long),
4928 		.mode		= 0644,
4929 		.proc_handler	= hugetlb_sysctl_handler,
4930 	},
4931 #ifdef CONFIG_NUMA
4932 	{
4933 		.procname       = "nr_hugepages_mempolicy",
4934 		.data           = NULL,
4935 		.maxlen         = sizeof(unsigned long),
4936 		.mode           = 0644,
4937 		.proc_handler   = &hugetlb_mempolicy_sysctl_handler,
4938 	},
4939 #endif
4940 	{
4941 		.procname	= "hugetlb_shm_group",
4942 		.data		= &sysctl_hugetlb_shm_group,
4943 		.maxlen		= sizeof(gid_t),
4944 		.mode		= 0644,
4945 		.proc_handler	= proc_dointvec,
4946 	},
4947 	{
4948 		.procname	= "nr_overcommit_hugepages",
4949 		.data		= NULL,
4950 		.maxlen		= sizeof(unsigned long),
4951 		.mode		= 0644,
4952 		.proc_handler	= hugetlb_overcommit_handler,
4953 	},
4954 	{ }
4955 };
4956 
4957 static void hugetlb_sysctl_init(void)
4958 {
4959 	register_sysctl_init("vm", hugetlb_table);
4960 }
4961 #endif /* CONFIG_SYSCTL */
4962 
4963 void hugetlb_report_meminfo(struct seq_file *m)
4964 {
4965 	struct hstate *h;
4966 	unsigned long total = 0;
4967 
4968 	if (!hugepages_supported())
4969 		return;
4970 
4971 	for_each_hstate(h) {
4972 		unsigned long count = h->nr_huge_pages;
4973 
4974 		total += huge_page_size(h) * count;
4975 
4976 		if (h == &default_hstate)
4977 			seq_printf(m,
4978 				   "HugePages_Total:   %5lu\n"
4979 				   "HugePages_Free:    %5lu\n"
4980 				   "HugePages_Rsvd:    %5lu\n"
4981 				   "HugePages_Surp:    %5lu\n"
4982 				   "Hugepagesize:   %8lu kB\n",
4983 				   count,
4984 				   h->free_huge_pages,
4985 				   h->resv_huge_pages,
4986 				   h->surplus_huge_pages,
4987 				   huge_page_size(h) / SZ_1K);
4988 	}
4989 
4990 	seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
4991 }
4992 
4993 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
4994 {
4995 	struct hstate *h = &default_hstate;
4996 
4997 	if (!hugepages_supported())
4998 		return 0;
4999 
5000 	return sysfs_emit_at(buf, len,
5001 			     "Node %d HugePages_Total: %5u\n"
5002 			     "Node %d HugePages_Free:  %5u\n"
5003 			     "Node %d HugePages_Surp:  %5u\n",
5004 			     nid, h->nr_huge_pages_node[nid],
5005 			     nid, h->free_huge_pages_node[nid],
5006 			     nid, h->surplus_huge_pages_node[nid]);
5007 }
5008 
5009 void hugetlb_show_meminfo_node(int nid)
5010 {
5011 	struct hstate *h;
5012 
5013 	if (!hugepages_supported())
5014 		return;
5015 
5016 	for_each_hstate(h)
5017 		printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
5018 			nid,
5019 			h->nr_huge_pages_node[nid],
5020 			h->free_huge_pages_node[nid],
5021 			h->surplus_huge_pages_node[nid],
5022 			huge_page_size(h) / SZ_1K);
5023 }
5024 
5025 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
5026 {
5027 	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
5028 		   K(atomic_long_read(&mm->hugetlb_usage)));
5029 }
5030 
5031 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
5032 unsigned long hugetlb_total_pages(void)
5033 {
5034 	struct hstate *h;
5035 	unsigned long nr_total_pages = 0;
5036 
5037 	for_each_hstate(h)
5038 		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
5039 	return nr_total_pages;
5040 }
5041 
5042 static int hugetlb_acct_memory(struct hstate *h, long delta)
5043 {
5044 	int ret = -ENOMEM;
5045 
5046 	if (!delta)
5047 		return 0;
5048 
5049 	spin_lock_irq(&hugetlb_lock);
5050 	/*
5051 	 * When cpuset is configured, it breaks the strict hugetlb page
5052 	 * reservation as the accounting is done on a global variable. Such
5053 	 * reservation is completely rubbish in the presence of cpuset because
5054 	 * the reservation is not checked against page availability for the
5055 	 * current cpuset. Application can still potentially OOM'ed by kernel
5056 	 * with lack of free htlb page in cpuset that the task is in.
5057 	 * Attempt to enforce strict accounting with cpuset is almost
5058 	 * impossible (or too ugly) because cpuset is too fluid that
5059 	 * task or memory node can be dynamically moved between cpusets.
5060 	 *
5061 	 * The change of semantics for shared hugetlb mapping with cpuset is
5062 	 * undesirable. However, in order to preserve some of the semantics,
5063 	 * we fall back to check against current free page availability as
5064 	 * a best attempt and hopefully to minimize the impact of changing
5065 	 * semantics that cpuset has.
5066 	 *
5067 	 * Apart from cpuset, we also have memory policy mechanism that
5068 	 * also determines from which node the kernel will allocate memory
5069 	 * in a NUMA system. So similar to cpuset, we also should consider
5070 	 * the memory policy of the current task. Similar to the description
5071 	 * above.
5072 	 */
5073 	if (delta > 0) {
5074 		if (gather_surplus_pages(h, delta) < 0)
5075 			goto out;
5076 
5077 		if (delta > allowed_mems_nr(h)) {
5078 			return_unused_surplus_pages(h, delta);
5079 			goto out;
5080 		}
5081 	}
5082 
5083 	ret = 0;
5084 	if (delta < 0)
5085 		return_unused_surplus_pages(h, (unsigned long) -delta);
5086 
5087 out:
5088 	spin_unlock_irq(&hugetlb_lock);
5089 	return ret;
5090 }
5091 
5092 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
5093 {
5094 	struct resv_map *resv = vma_resv_map(vma);
5095 
5096 	/*
5097 	 * HPAGE_RESV_OWNER indicates a private mapping.
5098 	 * This new VMA should share its siblings reservation map if present.
5099 	 * The VMA will only ever have a valid reservation map pointer where
5100 	 * it is being copied for another still existing VMA.  As that VMA
5101 	 * has a reference to the reservation map it cannot disappear until
5102 	 * after this open call completes.  It is therefore safe to take a
5103 	 * new reference here without additional locking.
5104 	 */
5105 	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
5106 		resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
5107 		kref_get(&resv->refs);
5108 	}
5109 
5110 	/*
5111 	 * vma_lock structure for sharable mappings is vma specific.
5112 	 * Clear old pointer (if copied via vm_area_dup) and allocate
5113 	 * new structure.  Before clearing, make sure vma_lock is not
5114 	 * for this vma.
5115 	 */
5116 	if (vma->vm_flags & VM_MAYSHARE) {
5117 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
5118 
5119 		if (vma_lock) {
5120 			if (vma_lock->vma != vma) {
5121 				vma->vm_private_data = NULL;
5122 				hugetlb_vma_lock_alloc(vma);
5123 			} else
5124 				pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__);
5125 		} else
5126 			hugetlb_vma_lock_alloc(vma);
5127 	}
5128 }
5129 
5130 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
5131 {
5132 	struct hstate *h = hstate_vma(vma);
5133 	struct resv_map *resv;
5134 	struct hugepage_subpool *spool = subpool_vma(vma);
5135 	unsigned long reserve, start, end;
5136 	long gbl_reserve;
5137 
5138 	hugetlb_vma_lock_free(vma);
5139 
5140 	resv = vma_resv_map(vma);
5141 	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5142 		return;
5143 
5144 	start = vma_hugecache_offset(h, vma, vma->vm_start);
5145 	end = vma_hugecache_offset(h, vma, vma->vm_end);
5146 
5147 	reserve = (end - start) - region_count(resv, start, end);
5148 	hugetlb_cgroup_uncharge_counter(resv, start, end);
5149 	if (reserve) {
5150 		/*
5151 		 * Decrement reserve counts.  The global reserve count may be
5152 		 * adjusted if the subpool has a minimum size.
5153 		 */
5154 		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
5155 		hugetlb_acct_memory(h, -gbl_reserve);
5156 	}
5157 
5158 	kref_put(&resv->refs, resv_map_release);
5159 }
5160 
5161 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
5162 {
5163 	if (addr & ~(huge_page_mask(hstate_vma(vma))))
5164 		return -EINVAL;
5165 
5166 	/*
5167 	 * PMD sharing is only possible for PUD_SIZE-aligned address ranges
5168 	 * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this
5169 	 * split, unshare PMDs in the PUD_SIZE interval surrounding addr now.
5170 	 */
5171 	if (addr & ~PUD_MASK) {
5172 		/*
5173 		 * hugetlb_vm_op_split is called right before we attempt to
5174 		 * split the VMA. We will need to unshare PMDs in the old and
5175 		 * new VMAs, so let's unshare before we split.
5176 		 */
5177 		unsigned long floor = addr & PUD_MASK;
5178 		unsigned long ceil = floor + PUD_SIZE;
5179 
5180 		if (floor >= vma->vm_start && ceil <= vma->vm_end)
5181 			hugetlb_unshare_pmds(vma, floor, ceil);
5182 	}
5183 
5184 	return 0;
5185 }
5186 
5187 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
5188 {
5189 	return huge_page_size(hstate_vma(vma));
5190 }
5191 
5192 /*
5193  * We cannot handle pagefaults against hugetlb pages at all.  They cause
5194  * handle_mm_fault() to try to instantiate regular-sized pages in the
5195  * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
5196  * this far.
5197  */
5198 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
5199 {
5200 	BUG();
5201 	return 0;
5202 }
5203 
5204 /*
5205  * When a new function is introduced to vm_operations_struct and added
5206  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
5207  * This is because under System V memory model, mappings created via
5208  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
5209  * their original vm_ops are overwritten with shm_vm_ops.
5210  */
5211 const struct vm_operations_struct hugetlb_vm_ops = {
5212 	.fault = hugetlb_vm_op_fault,
5213 	.open = hugetlb_vm_op_open,
5214 	.close = hugetlb_vm_op_close,
5215 	.may_split = hugetlb_vm_op_split,
5216 	.pagesize = hugetlb_vm_op_pagesize,
5217 };
5218 
5219 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
5220 				int writable)
5221 {
5222 	pte_t entry;
5223 	unsigned int shift = huge_page_shift(hstate_vma(vma));
5224 
5225 	if (writable) {
5226 		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
5227 					 vma->vm_page_prot)));
5228 	} else {
5229 		entry = huge_pte_wrprotect(mk_huge_pte(page,
5230 					   vma->vm_page_prot));
5231 	}
5232 	entry = pte_mkyoung(entry);
5233 	entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
5234 
5235 	return entry;
5236 }
5237 
5238 static void set_huge_ptep_writable(struct vm_area_struct *vma,
5239 				   unsigned long address, pte_t *ptep)
5240 {
5241 	pte_t entry;
5242 
5243 	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
5244 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
5245 		update_mmu_cache(vma, address, ptep);
5246 }
5247 
5248 bool is_hugetlb_entry_migration(pte_t pte)
5249 {
5250 	swp_entry_t swp;
5251 
5252 	if (huge_pte_none(pte) || pte_present(pte))
5253 		return false;
5254 	swp = pte_to_swp_entry(pte);
5255 	if (is_migration_entry(swp))
5256 		return true;
5257 	else
5258 		return false;
5259 }
5260 
5261 bool is_hugetlb_entry_hwpoisoned(pte_t pte)
5262 {
5263 	swp_entry_t swp;
5264 
5265 	if (huge_pte_none(pte) || pte_present(pte))
5266 		return false;
5267 	swp = pte_to_swp_entry(pte);
5268 	if (is_hwpoison_entry(swp))
5269 		return true;
5270 	else
5271 		return false;
5272 }
5273 
5274 static void
5275 hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
5276 		      struct folio *new_folio, pte_t old, unsigned long sz)
5277 {
5278 	pte_t newpte = make_huge_pte(vma, &new_folio->page, 1);
5279 
5280 	__folio_mark_uptodate(new_folio);
5281 	hugepage_add_new_anon_rmap(new_folio, vma, addr);
5282 	if (userfaultfd_wp(vma) && huge_pte_uffd_wp(old))
5283 		newpte = huge_pte_mkuffd_wp(newpte);
5284 	set_huge_pte_at(vma->vm_mm, addr, ptep, newpte, sz);
5285 	hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
5286 	folio_set_hugetlb_migratable(new_folio);
5287 }
5288 
5289 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
5290 			    struct vm_area_struct *dst_vma,
5291 			    struct vm_area_struct *src_vma)
5292 {
5293 	pte_t *src_pte, *dst_pte, entry;
5294 	struct folio *pte_folio;
5295 	unsigned long addr;
5296 	bool cow = is_cow_mapping(src_vma->vm_flags);
5297 	struct hstate *h = hstate_vma(src_vma);
5298 	unsigned long sz = huge_page_size(h);
5299 	unsigned long npages = pages_per_huge_page(h);
5300 	struct mmu_notifier_range range;
5301 	unsigned long last_addr_mask;
5302 	int ret = 0;
5303 
5304 	if (cow) {
5305 		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src,
5306 					src_vma->vm_start,
5307 					src_vma->vm_end);
5308 		mmu_notifier_invalidate_range_start(&range);
5309 		vma_assert_write_locked(src_vma);
5310 		raw_write_seqcount_begin(&src->write_protect_seq);
5311 	} else {
5312 		/*
5313 		 * For shared mappings the vma lock must be held before
5314 		 * calling hugetlb_walk() in the src vma. Otherwise, the
5315 		 * returned ptep could go away if part of a shared pmd and
5316 		 * another thread calls huge_pmd_unshare.
5317 		 */
5318 		hugetlb_vma_lock_read(src_vma);
5319 	}
5320 
5321 	last_addr_mask = hugetlb_mask_last_page(h);
5322 	for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
5323 		spinlock_t *src_ptl, *dst_ptl;
5324 		src_pte = hugetlb_walk(src_vma, addr, sz);
5325 		if (!src_pte) {
5326 			addr |= last_addr_mask;
5327 			continue;
5328 		}
5329 		dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
5330 		if (!dst_pte) {
5331 			ret = -ENOMEM;
5332 			break;
5333 		}
5334 
5335 		/*
5336 		 * If the pagetables are shared don't copy or take references.
5337 		 *
5338 		 * dst_pte == src_pte is the common case of src/dest sharing.
5339 		 * However, src could have 'unshared' and dst shares with
5340 		 * another vma. So page_count of ptep page is checked instead
5341 		 * to reliably determine whether pte is shared.
5342 		 */
5343 		if (page_count(virt_to_page(dst_pte)) > 1) {
5344 			addr |= last_addr_mask;
5345 			continue;
5346 		}
5347 
5348 		dst_ptl = huge_pte_lock(h, dst, dst_pte);
5349 		src_ptl = huge_pte_lockptr(h, src, src_pte);
5350 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5351 		entry = huge_ptep_get(src_pte);
5352 again:
5353 		if (huge_pte_none(entry)) {
5354 			/*
5355 			 * Skip if src entry none.
5356 			 */
5357 			;
5358 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
5359 			if (!userfaultfd_wp(dst_vma))
5360 				entry = huge_pte_clear_uffd_wp(entry);
5361 			set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5362 		} else if (unlikely(is_hugetlb_entry_migration(entry))) {
5363 			swp_entry_t swp_entry = pte_to_swp_entry(entry);
5364 			bool uffd_wp = pte_swp_uffd_wp(entry);
5365 
5366 			if (!is_readable_migration_entry(swp_entry) && cow) {
5367 				/*
5368 				 * COW mappings require pages in both
5369 				 * parent and child to be set to read.
5370 				 */
5371 				swp_entry = make_readable_migration_entry(
5372 							swp_offset(swp_entry));
5373 				entry = swp_entry_to_pte(swp_entry);
5374 				if (userfaultfd_wp(src_vma) && uffd_wp)
5375 					entry = pte_swp_mkuffd_wp(entry);
5376 				set_huge_pte_at(src, addr, src_pte, entry, sz);
5377 			}
5378 			if (!userfaultfd_wp(dst_vma))
5379 				entry = huge_pte_clear_uffd_wp(entry);
5380 			set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5381 		} else if (unlikely(is_pte_marker(entry))) {
5382 			pte_marker marker = copy_pte_marker(
5383 				pte_to_swp_entry(entry), dst_vma);
5384 
5385 			if (marker)
5386 				set_huge_pte_at(dst, addr, dst_pte,
5387 						make_pte_marker(marker), sz);
5388 		} else {
5389 			entry = huge_ptep_get(src_pte);
5390 			pte_folio = page_folio(pte_page(entry));
5391 			folio_get(pte_folio);
5392 
5393 			/*
5394 			 * Failing to duplicate the anon rmap is a rare case
5395 			 * where we see pinned hugetlb pages while they're
5396 			 * prone to COW. We need to do the COW earlier during
5397 			 * fork.
5398 			 *
5399 			 * When pre-allocating the page or copying data, we
5400 			 * need to be without the pgtable locks since we could
5401 			 * sleep during the process.
5402 			 */
5403 			if (!folio_test_anon(pte_folio)) {
5404 				page_dup_file_rmap(&pte_folio->page, true);
5405 			} else if (page_try_dup_anon_rmap(&pte_folio->page,
5406 							  true, src_vma)) {
5407 				pte_t src_pte_old = entry;
5408 				struct folio *new_folio;
5409 
5410 				spin_unlock(src_ptl);
5411 				spin_unlock(dst_ptl);
5412 				/* Do not use reserve as it's private owned */
5413 				new_folio = alloc_hugetlb_folio(dst_vma, addr, 1);
5414 				if (IS_ERR(new_folio)) {
5415 					folio_put(pte_folio);
5416 					ret = PTR_ERR(new_folio);
5417 					break;
5418 				}
5419 				ret = copy_user_large_folio(new_folio,
5420 							    pte_folio,
5421 							    addr, dst_vma);
5422 				folio_put(pte_folio);
5423 				if (ret) {
5424 					folio_put(new_folio);
5425 					break;
5426 				}
5427 
5428 				/* Install the new hugetlb folio if src pte stable */
5429 				dst_ptl = huge_pte_lock(h, dst, dst_pte);
5430 				src_ptl = huge_pte_lockptr(h, src, src_pte);
5431 				spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5432 				entry = huge_ptep_get(src_pte);
5433 				if (!pte_same(src_pte_old, entry)) {
5434 					restore_reserve_on_error(h, dst_vma, addr,
5435 								new_folio);
5436 					folio_put(new_folio);
5437 					/* huge_ptep of dst_pte won't change as in child */
5438 					goto again;
5439 				}
5440 				hugetlb_install_folio(dst_vma, dst_pte, addr,
5441 						      new_folio, src_pte_old, sz);
5442 				spin_unlock(src_ptl);
5443 				spin_unlock(dst_ptl);
5444 				continue;
5445 			}
5446 
5447 			if (cow) {
5448 				/*
5449 				 * No need to notify as we are downgrading page
5450 				 * table protection not changing it to point
5451 				 * to a new page.
5452 				 *
5453 				 * See Documentation/mm/mmu_notifier.rst
5454 				 */
5455 				huge_ptep_set_wrprotect(src, addr, src_pte);
5456 				entry = huge_pte_wrprotect(entry);
5457 			}
5458 
5459 			if (!userfaultfd_wp(dst_vma))
5460 				entry = huge_pte_clear_uffd_wp(entry);
5461 
5462 			set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5463 			hugetlb_count_add(npages, dst);
5464 		}
5465 		spin_unlock(src_ptl);
5466 		spin_unlock(dst_ptl);
5467 	}
5468 
5469 	if (cow) {
5470 		raw_write_seqcount_end(&src->write_protect_seq);
5471 		mmu_notifier_invalidate_range_end(&range);
5472 	} else {
5473 		hugetlb_vma_unlock_read(src_vma);
5474 	}
5475 
5476 	return ret;
5477 }
5478 
5479 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
5480 			  unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte,
5481 			  unsigned long sz)
5482 {
5483 	struct hstate *h = hstate_vma(vma);
5484 	struct mm_struct *mm = vma->vm_mm;
5485 	spinlock_t *src_ptl, *dst_ptl;
5486 	pte_t pte;
5487 
5488 	dst_ptl = huge_pte_lock(h, mm, dst_pte);
5489 	src_ptl = huge_pte_lockptr(h, mm, src_pte);
5490 
5491 	/*
5492 	 * We don't have to worry about the ordering of src and dst ptlocks
5493 	 * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock.
5494 	 */
5495 	if (src_ptl != dst_ptl)
5496 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5497 
5498 	pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
5499 	set_huge_pte_at(mm, new_addr, dst_pte, pte, sz);
5500 
5501 	if (src_ptl != dst_ptl)
5502 		spin_unlock(src_ptl);
5503 	spin_unlock(dst_ptl);
5504 }
5505 
5506 int move_hugetlb_page_tables(struct vm_area_struct *vma,
5507 			     struct vm_area_struct *new_vma,
5508 			     unsigned long old_addr, unsigned long new_addr,
5509 			     unsigned long len)
5510 {
5511 	struct hstate *h = hstate_vma(vma);
5512 	struct address_space *mapping = vma->vm_file->f_mapping;
5513 	unsigned long sz = huge_page_size(h);
5514 	struct mm_struct *mm = vma->vm_mm;
5515 	unsigned long old_end = old_addr + len;
5516 	unsigned long last_addr_mask;
5517 	pte_t *src_pte, *dst_pte;
5518 	struct mmu_notifier_range range;
5519 	bool shared_pmd = false;
5520 
5521 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr,
5522 				old_end);
5523 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5524 	/*
5525 	 * In case of shared PMDs, we should cover the maximum possible
5526 	 * range.
5527 	 */
5528 	flush_cache_range(vma, range.start, range.end);
5529 
5530 	mmu_notifier_invalidate_range_start(&range);
5531 	last_addr_mask = hugetlb_mask_last_page(h);
5532 	/* Prevent race with file truncation */
5533 	hugetlb_vma_lock_write(vma);
5534 	i_mmap_lock_write(mapping);
5535 	for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
5536 		src_pte = hugetlb_walk(vma, old_addr, sz);
5537 		if (!src_pte) {
5538 			old_addr |= last_addr_mask;
5539 			new_addr |= last_addr_mask;
5540 			continue;
5541 		}
5542 		if (huge_pte_none(huge_ptep_get(src_pte)))
5543 			continue;
5544 
5545 		if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
5546 			shared_pmd = true;
5547 			old_addr |= last_addr_mask;
5548 			new_addr |= last_addr_mask;
5549 			continue;
5550 		}
5551 
5552 		dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5553 		if (!dst_pte)
5554 			break;
5555 
5556 		move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte, sz);
5557 	}
5558 
5559 	if (shared_pmd)
5560 		flush_hugetlb_tlb_range(vma, range.start, range.end);
5561 	else
5562 		flush_hugetlb_tlb_range(vma, old_end - len, old_end);
5563 	mmu_notifier_invalidate_range_end(&range);
5564 	i_mmap_unlock_write(mapping);
5565 	hugetlb_vma_unlock_write(vma);
5566 
5567 	return len + old_addr - old_end;
5568 }
5569 
5570 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5571 			    unsigned long start, unsigned long end,
5572 			    struct page *ref_page, zap_flags_t zap_flags)
5573 {
5574 	struct mm_struct *mm = vma->vm_mm;
5575 	unsigned long address;
5576 	pte_t *ptep;
5577 	pte_t pte;
5578 	spinlock_t *ptl;
5579 	struct page *page;
5580 	struct hstate *h = hstate_vma(vma);
5581 	unsigned long sz = huge_page_size(h);
5582 	unsigned long last_addr_mask;
5583 	bool force_flush = false;
5584 
5585 	WARN_ON(!is_vm_hugetlb_page(vma));
5586 	BUG_ON(start & ~huge_page_mask(h));
5587 	BUG_ON(end & ~huge_page_mask(h));
5588 
5589 	/*
5590 	 * This is a hugetlb vma, all the pte entries should point
5591 	 * to huge page.
5592 	 */
5593 	tlb_change_page_size(tlb, sz);
5594 	tlb_start_vma(tlb, vma);
5595 
5596 	last_addr_mask = hugetlb_mask_last_page(h);
5597 	address = start;
5598 	for (; address < end; address += sz) {
5599 		ptep = hugetlb_walk(vma, address, sz);
5600 		if (!ptep) {
5601 			address |= last_addr_mask;
5602 			continue;
5603 		}
5604 
5605 		ptl = huge_pte_lock(h, mm, ptep);
5606 		if (huge_pmd_unshare(mm, vma, address, ptep)) {
5607 			spin_unlock(ptl);
5608 			tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5609 			force_flush = true;
5610 			address |= last_addr_mask;
5611 			continue;
5612 		}
5613 
5614 		pte = huge_ptep_get(ptep);
5615 		if (huge_pte_none(pte)) {
5616 			spin_unlock(ptl);
5617 			continue;
5618 		}
5619 
5620 		/*
5621 		 * Migrating hugepage or HWPoisoned hugepage is already
5622 		 * unmapped and its refcount is dropped, so just clear pte here.
5623 		 */
5624 		if (unlikely(!pte_present(pte))) {
5625 			/*
5626 			 * If the pte was wr-protected by uffd-wp in any of the
5627 			 * swap forms, meanwhile the caller does not want to
5628 			 * drop the uffd-wp bit in this zap, then replace the
5629 			 * pte with a marker.
5630 			 */
5631 			if (pte_swp_uffd_wp_any(pte) &&
5632 			    !(zap_flags & ZAP_FLAG_DROP_MARKER))
5633 				set_huge_pte_at(mm, address, ptep,
5634 						make_pte_marker(PTE_MARKER_UFFD_WP),
5635 						sz);
5636 			else
5637 				huge_pte_clear(mm, address, ptep, sz);
5638 			spin_unlock(ptl);
5639 			continue;
5640 		}
5641 
5642 		page = pte_page(pte);
5643 		/*
5644 		 * If a reference page is supplied, it is because a specific
5645 		 * page is being unmapped, not a range. Ensure the page we
5646 		 * are about to unmap is the actual page of interest.
5647 		 */
5648 		if (ref_page) {
5649 			if (page != ref_page) {
5650 				spin_unlock(ptl);
5651 				continue;
5652 			}
5653 			/*
5654 			 * Mark the VMA as having unmapped its page so that
5655 			 * future faults in this VMA will fail rather than
5656 			 * looking like data was lost
5657 			 */
5658 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5659 		}
5660 
5661 		pte = huge_ptep_get_and_clear(mm, address, ptep);
5662 		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5663 		if (huge_pte_dirty(pte))
5664 			set_page_dirty(page);
5665 		/* Leave a uffd-wp pte marker if needed */
5666 		if (huge_pte_uffd_wp(pte) &&
5667 		    !(zap_flags & ZAP_FLAG_DROP_MARKER))
5668 			set_huge_pte_at(mm, address, ptep,
5669 					make_pte_marker(PTE_MARKER_UFFD_WP),
5670 					sz);
5671 		hugetlb_count_sub(pages_per_huge_page(h), mm);
5672 		page_remove_rmap(page, vma, true);
5673 
5674 		spin_unlock(ptl);
5675 		tlb_remove_page_size(tlb, page, huge_page_size(h));
5676 		/*
5677 		 * Bail out after unmapping reference page if supplied
5678 		 */
5679 		if (ref_page)
5680 			break;
5681 	}
5682 	tlb_end_vma(tlb, vma);
5683 
5684 	/*
5685 	 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5686 	 * could defer the flush until now, since by holding i_mmap_rwsem we
5687 	 * guaranteed that the last refernece would not be dropped. But we must
5688 	 * do the flushing before we return, as otherwise i_mmap_rwsem will be
5689 	 * dropped and the last reference to the shared PMDs page might be
5690 	 * dropped as well.
5691 	 *
5692 	 * In theory we could defer the freeing of the PMD pages as well, but
5693 	 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5694 	 * detect sharing, so we cannot defer the release of the page either.
5695 	 * Instead, do flush now.
5696 	 */
5697 	if (force_flush)
5698 		tlb_flush_mmu_tlbonly(tlb);
5699 }
5700 
5701 void __hugetlb_zap_begin(struct vm_area_struct *vma,
5702 			 unsigned long *start, unsigned long *end)
5703 {
5704 	if (!vma->vm_file)	/* hugetlbfs_file_mmap error */
5705 		return;
5706 
5707 	adjust_range_if_pmd_sharing_possible(vma, start, end);
5708 	hugetlb_vma_lock_write(vma);
5709 	if (vma->vm_file)
5710 		i_mmap_lock_write(vma->vm_file->f_mapping);
5711 }
5712 
5713 void __hugetlb_zap_end(struct vm_area_struct *vma,
5714 		       struct zap_details *details)
5715 {
5716 	zap_flags_t zap_flags = details ? details->zap_flags : 0;
5717 
5718 	if (!vma->vm_file)	/* hugetlbfs_file_mmap error */
5719 		return;
5720 
5721 	if (zap_flags & ZAP_FLAG_UNMAP) {	/* final unmap */
5722 		/*
5723 		 * Unlock and free the vma lock before releasing i_mmap_rwsem.
5724 		 * When the vma_lock is freed, this makes the vma ineligible
5725 		 * for pmd sharing.  And, i_mmap_rwsem is required to set up
5726 		 * pmd sharing.  This is important as page tables for this
5727 		 * unmapped range will be asynchrously deleted.  If the page
5728 		 * tables are shared, there will be issues when accessed by
5729 		 * someone else.
5730 		 */
5731 		__hugetlb_vma_unlock_write_free(vma);
5732 	} else {
5733 		hugetlb_vma_unlock_write(vma);
5734 	}
5735 
5736 	if (vma->vm_file)
5737 		i_mmap_unlock_write(vma->vm_file->f_mapping);
5738 }
5739 
5740 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5741 			  unsigned long end, struct page *ref_page,
5742 			  zap_flags_t zap_flags)
5743 {
5744 	struct mmu_notifier_range range;
5745 	struct mmu_gather tlb;
5746 
5747 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
5748 				start, end);
5749 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5750 	mmu_notifier_invalidate_range_start(&range);
5751 	tlb_gather_mmu(&tlb, vma->vm_mm);
5752 
5753 	__unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
5754 
5755 	mmu_notifier_invalidate_range_end(&range);
5756 	tlb_finish_mmu(&tlb);
5757 }
5758 
5759 /*
5760  * This is called when the original mapper is failing to COW a MAP_PRIVATE
5761  * mapping it owns the reserve page for. The intention is to unmap the page
5762  * from other VMAs and let the children be SIGKILLed if they are faulting the
5763  * same region.
5764  */
5765 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5766 			      struct page *page, unsigned long address)
5767 {
5768 	struct hstate *h = hstate_vma(vma);
5769 	struct vm_area_struct *iter_vma;
5770 	struct address_space *mapping;
5771 	pgoff_t pgoff;
5772 
5773 	/*
5774 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5775 	 * from page cache lookup which is in HPAGE_SIZE units.
5776 	 */
5777 	address = address & huge_page_mask(h);
5778 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5779 			vma->vm_pgoff;
5780 	mapping = vma->vm_file->f_mapping;
5781 
5782 	/*
5783 	 * Take the mapping lock for the duration of the table walk. As
5784 	 * this mapping should be shared between all the VMAs,
5785 	 * __unmap_hugepage_range() is called as the lock is already held
5786 	 */
5787 	i_mmap_lock_write(mapping);
5788 	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5789 		/* Do not unmap the current VMA */
5790 		if (iter_vma == vma)
5791 			continue;
5792 
5793 		/*
5794 		 * Shared VMAs have their own reserves and do not affect
5795 		 * MAP_PRIVATE accounting but it is possible that a shared
5796 		 * VMA is using the same page so check and skip such VMAs.
5797 		 */
5798 		if (iter_vma->vm_flags & VM_MAYSHARE)
5799 			continue;
5800 
5801 		/*
5802 		 * Unmap the page from other VMAs without their own reserves.
5803 		 * They get marked to be SIGKILLed if they fault in these
5804 		 * areas. This is because a future no-page fault on this VMA
5805 		 * could insert a zeroed page instead of the data existing
5806 		 * from the time of fork. This would look like data corruption
5807 		 */
5808 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5809 			unmap_hugepage_range(iter_vma, address,
5810 					     address + huge_page_size(h), page, 0);
5811 	}
5812 	i_mmap_unlock_write(mapping);
5813 }
5814 
5815 /*
5816  * hugetlb_wp() should be called with page lock of the original hugepage held.
5817  * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5818  * cannot race with other handlers or page migration.
5819  * Keep the pte_same checks anyway to make transition from the mutex easier.
5820  */
5821 static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma,
5822 		       unsigned long address, pte_t *ptep, unsigned int flags,
5823 		       struct folio *pagecache_folio, spinlock_t *ptl)
5824 {
5825 	const bool unshare = flags & FAULT_FLAG_UNSHARE;
5826 	pte_t pte = huge_ptep_get(ptep);
5827 	struct hstate *h = hstate_vma(vma);
5828 	struct folio *old_folio;
5829 	struct folio *new_folio;
5830 	int outside_reserve = 0;
5831 	vm_fault_t ret = 0;
5832 	unsigned long haddr = address & huge_page_mask(h);
5833 	struct mmu_notifier_range range;
5834 
5835 	/*
5836 	 * Never handle CoW for uffd-wp protected pages.  It should be only
5837 	 * handled when the uffd-wp protection is removed.
5838 	 *
5839 	 * Note that only the CoW optimization path (in hugetlb_no_page())
5840 	 * can trigger this, because hugetlb_fault() will always resolve
5841 	 * uffd-wp bit first.
5842 	 */
5843 	if (!unshare && huge_pte_uffd_wp(pte))
5844 		return 0;
5845 
5846 	/*
5847 	 * hugetlb does not support FOLL_FORCE-style write faults that keep the
5848 	 * PTE mapped R/O such as maybe_mkwrite() would do.
5849 	 */
5850 	if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE)))
5851 		return VM_FAULT_SIGSEGV;
5852 
5853 	/* Let's take out MAP_SHARED mappings first. */
5854 	if (vma->vm_flags & VM_MAYSHARE) {
5855 		set_huge_ptep_writable(vma, haddr, ptep);
5856 		return 0;
5857 	}
5858 
5859 	old_folio = page_folio(pte_page(pte));
5860 
5861 	delayacct_wpcopy_start();
5862 
5863 retry_avoidcopy:
5864 	/*
5865 	 * If no-one else is actually using this page, we're the exclusive
5866 	 * owner and can reuse this page.
5867 	 */
5868 	if (folio_mapcount(old_folio) == 1 && folio_test_anon(old_folio)) {
5869 		if (!PageAnonExclusive(&old_folio->page)) {
5870 			folio_move_anon_rmap(old_folio, vma);
5871 			SetPageAnonExclusive(&old_folio->page);
5872 		}
5873 		if (likely(!unshare))
5874 			set_huge_ptep_writable(vma, haddr, ptep);
5875 
5876 		delayacct_wpcopy_end();
5877 		return 0;
5878 	}
5879 	VM_BUG_ON_PAGE(folio_test_anon(old_folio) &&
5880 		       PageAnonExclusive(&old_folio->page), &old_folio->page);
5881 
5882 	/*
5883 	 * If the process that created a MAP_PRIVATE mapping is about to
5884 	 * perform a COW due to a shared page count, attempt to satisfy
5885 	 * the allocation without using the existing reserves. The pagecache
5886 	 * page is used to determine if the reserve at this address was
5887 	 * consumed or not. If reserves were used, a partial faulted mapping
5888 	 * at the time of fork() could consume its reserves on COW instead
5889 	 * of the full address range.
5890 	 */
5891 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5892 			old_folio != pagecache_folio)
5893 		outside_reserve = 1;
5894 
5895 	folio_get(old_folio);
5896 
5897 	/*
5898 	 * Drop page table lock as buddy allocator may be called. It will
5899 	 * be acquired again before returning to the caller, as expected.
5900 	 */
5901 	spin_unlock(ptl);
5902 	new_folio = alloc_hugetlb_folio(vma, haddr, outside_reserve);
5903 
5904 	if (IS_ERR(new_folio)) {
5905 		/*
5906 		 * If a process owning a MAP_PRIVATE mapping fails to COW,
5907 		 * it is due to references held by a child and an insufficient
5908 		 * huge page pool. To guarantee the original mappers
5909 		 * reliability, unmap the page from child processes. The child
5910 		 * may get SIGKILLed if it later faults.
5911 		 */
5912 		if (outside_reserve) {
5913 			struct address_space *mapping = vma->vm_file->f_mapping;
5914 			pgoff_t idx;
5915 			u32 hash;
5916 
5917 			folio_put(old_folio);
5918 			/*
5919 			 * Drop hugetlb_fault_mutex and vma_lock before
5920 			 * unmapping.  unmapping needs to hold vma_lock
5921 			 * in write mode.  Dropping vma_lock in read mode
5922 			 * here is OK as COW mappings do not interact with
5923 			 * PMD sharing.
5924 			 *
5925 			 * Reacquire both after unmap operation.
5926 			 */
5927 			idx = vma_hugecache_offset(h, vma, haddr);
5928 			hash = hugetlb_fault_mutex_hash(mapping, idx);
5929 			hugetlb_vma_unlock_read(vma);
5930 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5931 
5932 			unmap_ref_private(mm, vma, &old_folio->page, haddr);
5933 
5934 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
5935 			hugetlb_vma_lock_read(vma);
5936 			spin_lock(ptl);
5937 			ptep = hugetlb_walk(vma, haddr, huge_page_size(h));
5938 			if (likely(ptep &&
5939 				   pte_same(huge_ptep_get(ptep), pte)))
5940 				goto retry_avoidcopy;
5941 			/*
5942 			 * race occurs while re-acquiring page table
5943 			 * lock, and our job is done.
5944 			 */
5945 			delayacct_wpcopy_end();
5946 			return 0;
5947 		}
5948 
5949 		ret = vmf_error(PTR_ERR(new_folio));
5950 		goto out_release_old;
5951 	}
5952 
5953 	/*
5954 	 * When the original hugepage is shared one, it does not have
5955 	 * anon_vma prepared.
5956 	 */
5957 	if (unlikely(anon_vma_prepare(vma))) {
5958 		ret = VM_FAULT_OOM;
5959 		goto out_release_all;
5960 	}
5961 
5962 	if (copy_user_large_folio(new_folio, old_folio, address, vma)) {
5963 		ret = VM_FAULT_HWPOISON_LARGE;
5964 		goto out_release_all;
5965 	}
5966 	__folio_mark_uptodate(new_folio);
5967 
5968 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, haddr,
5969 				haddr + huge_page_size(h));
5970 	mmu_notifier_invalidate_range_start(&range);
5971 
5972 	/*
5973 	 * Retake the page table lock to check for racing updates
5974 	 * before the page tables are altered
5975 	 */
5976 	spin_lock(ptl);
5977 	ptep = hugetlb_walk(vma, haddr, huge_page_size(h));
5978 	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
5979 		pte_t newpte = make_huge_pte(vma, &new_folio->page, !unshare);
5980 
5981 		/* Break COW or unshare */
5982 		huge_ptep_clear_flush(vma, haddr, ptep);
5983 		page_remove_rmap(&old_folio->page, vma, true);
5984 		hugepage_add_new_anon_rmap(new_folio, vma, haddr);
5985 		if (huge_pte_uffd_wp(pte))
5986 			newpte = huge_pte_mkuffd_wp(newpte);
5987 		set_huge_pte_at(mm, haddr, ptep, newpte, huge_page_size(h));
5988 		folio_set_hugetlb_migratable(new_folio);
5989 		/* Make the old page be freed below */
5990 		new_folio = old_folio;
5991 	}
5992 	spin_unlock(ptl);
5993 	mmu_notifier_invalidate_range_end(&range);
5994 out_release_all:
5995 	/*
5996 	 * No restore in case of successful pagetable update (Break COW or
5997 	 * unshare)
5998 	 */
5999 	if (new_folio != old_folio)
6000 		restore_reserve_on_error(h, vma, haddr, new_folio);
6001 	folio_put(new_folio);
6002 out_release_old:
6003 	folio_put(old_folio);
6004 
6005 	spin_lock(ptl); /* Caller expects lock to be held */
6006 
6007 	delayacct_wpcopy_end();
6008 	return ret;
6009 }
6010 
6011 /*
6012  * Return whether there is a pagecache page to back given address within VMA.
6013  */
6014 static bool hugetlbfs_pagecache_present(struct hstate *h,
6015 			struct vm_area_struct *vma, unsigned long address)
6016 {
6017 	struct address_space *mapping = vma->vm_file->f_mapping;
6018 	pgoff_t idx = linear_page_index(vma, address);
6019 	struct folio *folio;
6020 
6021 	folio = filemap_get_folio(mapping, idx);
6022 	if (IS_ERR(folio))
6023 		return false;
6024 	folio_put(folio);
6025 	return true;
6026 }
6027 
6028 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping,
6029 			   pgoff_t idx)
6030 {
6031 	struct inode *inode = mapping->host;
6032 	struct hstate *h = hstate_inode(inode);
6033 	int err;
6034 
6035 	idx <<= huge_page_order(h);
6036 	__folio_set_locked(folio);
6037 	err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
6038 
6039 	if (unlikely(err)) {
6040 		__folio_clear_locked(folio);
6041 		return err;
6042 	}
6043 	folio_clear_hugetlb_restore_reserve(folio);
6044 
6045 	/*
6046 	 * mark folio dirty so that it will not be removed from cache/file
6047 	 * by non-hugetlbfs specific code paths.
6048 	 */
6049 	folio_mark_dirty(folio);
6050 
6051 	spin_lock(&inode->i_lock);
6052 	inode->i_blocks += blocks_per_huge_page(h);
6053 	spin_unlock(&inode->i_lock);
6054 	return 0;
6055 }
6056 
6057 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
6058 						  struct address_space *mapping,
6059 						  pgoff_t idx,
6060 						  unsigned int flags,
6061 						  unsigned long haddr,
6062 						  unsigned long addr,
6063 						  unsigned long reason)
6064 {
6065 	u32 hash;
6066 	struct vm_fault vmf = {
6067 		.vma = vma,
6068 		.address = haddr,
6069 		.real_address = addr,
6070 		.flags = flags,
6071 
6072 		/*
6073 		 * Hard to debug if it ends up being
6074 		 * used by a callee that assumes
6075 		 * something about the other
6076 		 * uninitialized fields... same as in
6077 		 * memory.c
6078 		 */
6079 	};
6080 
6081 	/*
6082 	 * vma_lock and hugetlb_fault_mutex must be dropped before handling
6083 	 * userfault. Also mmap_lock could be dropped due to handling
6084 	 * userfault, any vma operation should be careful from here.
6085 	 */
6086 	hugetlb_vma_unlock_read(vma);
6087 	hash = hugetlb_fault_mutex_hash(mapping, idx);
6088 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6089 	return handle_userfault(&vmf, reason);
6090 }
6091 
6092 /*
6093  * Recheck pte with pgtable lock.  Returns true if pte didn't change, or
6094  * false if pte changed or is changing.
6095  */
6096 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm,
6097 			       pte_t *ptep, pte_t old_pte)
6098 {
6099 	spinlock_t *ptl;
6100 	bool same;
6101 
6102 	ptl = huge_pte_lock(h, mm, ptep);
6103 	same = pte_same(huge_ptep_get(ptep), old_pte);
6104 	spin_unlock(ptl);
6105 
6106 	return same;
6107 }
6108 
6109 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
6110 			struct vm_area_struct *vma,
6111 			struct address_space *mapping, pgoff_t idx,
6112 			unsigned long address, pte_t *ptep,
6113 			pte_t old_pte, unsigned int flags)
6114 {
6115 	struct hstate *h = hstate_vma(vma);
6116 	vm_fault_t ret = VM_FAULT_SIGBUS;
6117 	int anon_rmap = 0;
6118 	unsigned long size;
6119 	struct folio *folio;
6120 	pte_t new_pte;
6121 	spinlock_t *ptl;
6122 	unsigned long haddr = address & huge_page_mask(h);
6123 	bool new_folio, new_pagecache_folio = false;
6124 	u32 hash = hugetlb_fault_mutex_hash(mapping, idx);
6125 
6126 	/*
6127 	 * Currently, we are forced to kill the process in the event the
6128 	 * original mapper has unmapped pages from the child due to a failed
6129 	 * COW/unsharing. Warn that such a situation has occurred as it may not
6130 	 * be obvious.
6131 	 */
6132 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
6133 		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
6134 			   current->pid);
6135 		goto out;
6136 	}
6137 
6138 	/*
6139 	 * Use page lock to guard against racing truncation
6140 	 * before we get page_table_lock.
6141 	 */
6142 	new_folio = false;
6143 	folio = filemap_lock_hugetlb_folio(h, mapping, idx);
6144 	if (IS_ERR(folio)) {
6145 		size = i_size_read(mapping->host) >> huge_page_shift(h);
6146 		if (idx >= size)
6147 			goto out;
6148 		/* Check for page in userfault range */
6149 		if (userfaultfd_missing(vma)) {
6150 			/*
6151 			 * Since hugetlb_no_page() was examining pte
6152 			 * without pgtable lock, we need to re-test under
6153 			 * lock because the pte may not be stable and could
6154 			 * have changed from under us.  Try to detect
6155 			 * either changed or during-changing ptes and retry
6156 			 * properly when needed.
6157 			 *
6158 			 * Note that userfaultfd is actually fine with
6159 			 * false positives (e.g. caused by pte changed),
6160 			 * but not wrong logical events (e.g. caused by
6161 			 * reading a pte during changing).  The latter can
6162 			 * confuse the userspace, so the strictness is very
6163 			 * much preferred.  E.g., MISSING event should
6164 			 * never happen on the page after UFFDIO_COPY has
6165 			 * correctly installed the page and returned.
6166 			 */
6167 			if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
6168 				ret = 0;
6169 				goto out;
6170 			}
6171 
6172 			return hugetlb_handle_userfault(vma, mapping, idx, flags,
6173 							haddr, address,
6174 							VM_UFFD_MISSING);
6175 		}
6176 
6177 		folio = alloc_hugetlb_folio(vma, haddr, 0);
6178 		if (IS_ERR(folio)) {
6179 			/*
6180 			 * Returning error will result in faulting task being
6181 			 * sent SIGBUS.  The hugetlb fault mutex prevents two
6182 			 * tasks from racing to fault in the same page which
6183 			 * could result in false unable to allocate errors.
6184 			 * Page migration does not take the fault mutex, but
6185 			 * does a clear then write of pte's under page table
6186 			 * lock.  Page fault code could race with migration,
6187 			 * notice the clear pte and try to allocate a page
6188 			 * here.  Before returning error, get ptl and make
6189 			 * sure there really is no pte entry.
6190 			 */
6191 			if (hugetlb_pte_stable(h, mm, ptep, old_pte))
6192 				ret = vmf_error(PTR_ERR(folio));
6193 			else
6194 				ret = 0;
6195 			goto out;
6196 		}
6197 		clear_huge_page(&folio->page, address, pages_per_huge_page(h));
6198 		__folio_mark_uptodate(folio);
6199 		new_folio = true;
6200 
6201 		if (vma->vm_flags & VM_MAYSHARE) {
6202 			int err = hugetlb_add_to_page_cache(folio, mapping, idx);
6203 			if (err) {
6204 				/*
6205 				 * err can't be -EEXIST which implies someone
6206 				 * else consumed the reservation since hugetlb
6207 				 * fault mutex is held when add a hugetlb page
6208 				 * to the page cache. So it's safe to call
6209 				 * restore_reserve_on_error() here.
6210 				 */
6211 				restore_reserve_on_error(h, vma, haddr, folio);
6212 				folio_put(folio);
6213 				goto out;
6214 			}
6215 			new_pagecache_folio = true;
6216 		} else {
6217 			folio_lock(folio);
6218 			if (unlikely(anon_vma_prepare(vma))) {
6219 				ret = VM_FAULT_OOM;
6220 				goto backout_unlocked;
6221 			}
6222 			anon_rmap = 1;
6223 		}
6224 	} else {
6225 		/*
6226 		 * If memory error occurs between mmap() and fault, some process
6227 		 * don't have hwpoisoned swap entry for errored virtual address.
6228 		 * So we need to block hugepage fault by PG_hwpoison bit check.
6229 		 */
6230 		if (unlikely(folio_test_hwpoison(folio))) {
6231 			ret = VM_FAULT_HWPOISON_LARGE |
6232 				VM_FAULT_SET_HINDEX(hstate_index(h));
6233 			goto backout_unlocked;
6234 		}
6235 
6236 		/* Check for page in userfault range. */
6237 		if (userfaultfd_minor(vma)) {
6238 			folio_unlock(folio);
6239 			folio_put(folio);
6240 			/* See comment in userfaultfd_missing() block above */
6241 			if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
6242 				ret = 0;
6243 				goto out;
6244 			}
6245 			return hugetlb_handle_userfault(vma, mapping, idx, flags,
6246 							haddr, address,
6247 							VM_UFFD_MINOR);
6248 		}
6249 	}
6250 
6251 	/*
6252 	 * If we are going to COW a private mapping later, we examine the
6253 	 * pending reservations for this page now. This will ensure that
6254 	 * any allocations necessary to record that reservation occur outside
6255 	 * the spinlock.
6256 	 */
6257 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
6258 		if (vma_needs_reservation(h, vma, haddr) < 0) {
6259 			ret = VM_FAULT_OOM;
6260 			goto backout_unlocked;
6261 		}
6262 		/* Just decrements count, does not deallocate */
6263 		vma_end_reservation(h, vma, haddr);
6264 	}
6265 
6266 	ptl = huge_pte_lock(h, mm, ptep);
6267 	ret = 0;
6268 	/* If pte changed from under us, retry */
6269 	if (!pte_same(huge_ptep_get(ptep), old_pte))
6270 		goto backout;
6271 
6272 	if (anon_rmap)
6273 		hugepage_add_new_anon_rmap(folio, vma, haddr);
6274 	else
6275 		page_dup_file_rmap(&folio->page, true);
6276 	new_pte = make_huge_pte(vma, &folio->page, ((vma->vm_flags & VM_WRITE)
6277 				&& (vma->vm_flags & VM_SHARED)));
6278 	/*
6279 	 * If this pte was previously wr-protected, keep it wr-protected even
6280 	 * if populated.
6281 	 */
6282 	if (unlikely(pte_marker_uffd_wp(old_pte)))
6283 		new_pte = huge_pte_mkuffd_wp(new_pte);
6284 	set_huge_pte_at(mm, haddr, ptep, new_pte, huge_page_size(h));
6285 
6286 	hugetlb_count_add(pages_per_huge_page(h), mm);
6287 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
6288 		/* Optimization, do the COW without a second fault */
6289 		ret = hugetlb_wp(mm, vma, address, ptep, flags, folio, ptl);
6290 	}
6291 
6292 	spin_unlock(ptl);
6293 
6294 	/*
6295 	 * Only set hugetlb_migratable in newly allocated pages.  Existing pages
6296 	 * found in the pagecache may not have hugetlb_migratable if they have
6297 	 * been isolated for migration.
6298 	 */
6299 	if (new_folio)
6300 		folio_set_hugetlb_migratable(folio);
6301 
6302 	folio_unlock(folio);
6303 out:
6304 	hugetlb_vma_unlock_read(vma);
6305 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6306 	return ret;
6307 
6308 backout:
6309 	spin_unlock(ptl);
6310 backout_unlocked:
6311 	if (new_folio && !new_pagecache_folio)
6312 		restore_reserve_on_error(h, vma, haddr, folio);
6313 
6314 	folio_unlock(folio);
6315 	folio_put(folio);
6316 	goto out;
6317 }
6318 
6319 #ifdef CONFIG_SMP
6320 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6321 {
6322 	unsigned long key[2];
6323 	u32 hash;
6324 
6325 	key[0] = (unsigned long) mapping;
6326 	key[1] = idx;
6327 
6328 	hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
6329 
6330 	return hash & (num_fault_mutexes - 1);
6331 }
6332 #else
6333 /*
6334  * For uniprocessor systems we always use a single mutex, so just
6335  * return 0 and avoid the hashing overhead.
6336  */
6337 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6338 {
6339 	return 0;
6340 }
6341 #endif
6342 
6343 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
6344 			unsigned long address, unsigned int flags)
6345 {
6346 	pte_t *ptep, entry;
6347 	spinlock_t *ptl;
6348 	vm_fault_t ret;
6349 	u32 hash;
6350 	pgoff_t idx;
6351 	struct folio *folio = NULL;
6352 	struct folio *pagecache_folio = NULL;
6353 	struct hstate *h = hstate_vma(vma);
6354 	struct address_space *mapping;
6355 	int need_wait_lock = 0;
6356 	unsigned long haddr = address & huge_page_mask(h);
6357 
6358 	/* TODO: Handle faults under the VMA lock */
6359 	if (flags & FAULT_FLAG_VMA_LOCK) {
6360 		vma_end_read(vma);
6361 		return VM_FAULT_RETRY;
6362 	}
6363 
6364 	/*
6365 	 * Serialize hugepage allocation and instantiation, so that we don't
6366 	 * get spurious allocation failures if two CPUs race to instantiate
6367 	 * the same page in the page cache.
6368 	 */
6369 	mapping = vma->vm_file->f_mapping;
6370 	idx = vma_hugecache_offset(h, vma, haddr);
6371 	hash = hugetlb_fault_mutex_hash(mapping, idx);
6372 	mutex_lock(&hugetlb_fault_mutex_table[hash]);
6373 
6374 	/*
6375 	 * Acquire vma lock before calling huge_pte_alloc and hold
6376 	 * until finished with ptep.  This prevents huge_pmd_unshare from
6377 	 * being called elsewhere and making the ptep no longer valid.
6378 	 */
6379 	hugetlb_vma_lock_read(vma);
6380 	ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
6381 	if (!ptep) {
6382 		hugetlb_vma_unlock_read(vma);
6383 		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6384 		return VM_FAULT_OOM;
6385 	}
6386 
6387 	entry = huge_ptep_get(ptep);
6388 	if (huge_pte_none_mostly(entry)) {
6389 		if (is_pte_marker(entry)) {
6390 			pte_marker marker =
6391 				pte_marker_get(pte_to_swp_entry(entry));
6392 
6393 			if (marker & PTE_MARKER_POISONED) {
6394 				ret = VM_FAULT_HWPOISON_LARGE;
6395 				goto out_mutex;
6396 			}
6397 		}
6398 
6399 		/*
6400 		 * Other PTE markers should be handled the same way as none PTE.
6401 		 *
6402 		 * hugetlb_no_page will drop vma lock and hugetlb fault
6403 		 * mutex internally, which make us return immediately.
6404 		 */
6405 		return hugetlb_no_page(mm, vma, mapping, idx, address, ptep,
6406 				      entry, flags);
6407 	}
6408 
6409 	ret = 0;
6410 
6411 	/*
6412 	 * entry could be a migration/hwpoison entry at this point, so this
6413 	 * check prevents the kernel from going below assuming that we have
6414 	 * an active hugepage in pagecache. This goto expects the 2nd page
6415 	 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
6416 	 * properly handle it.
6417 	 */
6418 	if (!pte_present(entry)) {
6419 		if (unlikely(is_hugetlb_entry_migration(entry))) {
6420 			/*
6421 			 * Release the hugetlb fault lock now, but retain
6422 			 * the vma lock, because it is needed to guard the
6423 			 * huge_pte_lockptr() later in
6424 			 * migration_entry_wait_huge(). The vma lock will
6425 			 * be released there.
6426 			 */
6427 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6428 			migration_entry_wait_huge(vma, ptep);
6429 			return 0;
6430 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
6431 			ret = VM_FAULT_HWPOISON_LARGE |
6432 			    VM_FAULT_SET_HINDEX(hstate_index(h));
6433 		goto out_mutex;
6434 	}
6435 
6436 	/*
6437 	 * If we are going to COW/unshare the mapping later, we examine the
6438 	 * pending reservations for this page now. This will ensure that any
6439 	 * allocations necessary to record that reservation occur outside the
6440 	 * spinlock. Also lookup the pagecache page now as it is used to
6441 	 * determine if a reservation has been consumed.
6442 	 */
6443 	if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
6444 	    !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) {
6445 		if (vma_needs_reservation(h, vma, haddr) < 0) {
6446 			ret = VM_FAULT_OOM;
6447 			goto out_mutex;
6448 		}
6449 		/* Just decrements count, does not deallocate */
6450 		vma_end_reservation(h, vma, haddr);
6451 
6452 		pagecache_folio = filemap_lock_hugetlb_folio(h, mapping, idx);
6453 		if (IS_ERR(pagecache_folio))
6454 			pagecache_folio = NULL;
6455 	}
6456 
6457 	ptl = huge_pte_lock(h, mm, ptep);
6458 
6459 	/* Check for a racing update before calling hugetlb_wp() */
6460 	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
6461 		goto out_ptl;
6462 
6463 	/* Handle userfault-wp first, before trying to lock more pages */
6464 	if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) &&
6465 	    (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
6466 		if (!userfaultfd_wp_async(vma)) {
6467 			struct vm_fault vmf = {
6468 				.vma = vma,
6469 				.address = haddr,
6470 				.real_address = address,
6471 				.flags = flags,
6472 			};
6473 
6474 			spin_unlock(ptl);
6475 			if (pagecache_folio) {
6476 				folio_unlock(pagecache_folio);
6477 				folio_put(pagecache_folio);
6478 			}
6479 			hugetlb_vma_unlock_read(vma);
6480 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6481 			return handle_userfault(&vmf, VM_UFFD_WP);
6482 		}
6483 
6484 		entry = huge_pte_clear_uffd_wp(entry);
6485 		set_huge_pte_at(mm, haddr, ptep, entry,
6486 				huge_page_size(hstate_vma(vma)));
6487 		/* Fallthrough to CoW */
6488 	}
6489 
6490 	/*
6491 	 * hugetlb_wp() requires page locks of pte_page(entry) and
6492 	 * pagecache_folio, so here we need take the former one
6493 	 * when folio != pagecache_folio or !pagecache_folio.
6494 	 */
6495 	folio = page_folio(pte_page(entry));
6496 	if (folio != pagecache_folio)
6497 		if (!folio_trylock(folio)) {
6498 			need_wait_lock = 1;
6499 			goto out_ptl;
6500 		}
6501 
6502 	folio_get(folio);
6503 
6504 	if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
6505 		if (!huge_pte_write(entry)) {
6506 			ret = hugetlb_wp(mm, vma, address, ptep, flags,
6507 					 pagecache_folio, ptl);
6508 			goto out_put_page;
6509 		} else if (likely(flags & FAULT_FLAG_WRITE)) {
6510 			entry = huge_pte_mkdirty(entry);
6511 		}
6512 	}
6513 	entry = pte_mkyoung(entry);
6514 	if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
6515 						flags & FAULT_FLAG_WRITE))
6516 		update_mmu_cache(vma, haddr, ptep);
6517 out_put_page:
6518 	if (folio != pagecache_folio)
6519 		folio_unlock(folio);
6520 	folio_put(folio);
6521 out_ptl:
6522 	spin_unlock(ptl);
6523 
6524 	if (pagecache_folio) {
6525 		folio_unlock(pagecache_folio);
6526 		folio_put(pagecache_folio);
6527 	}
6528 out_mutex:
6529 	hugetlb_vma_unlock_read(vma);
6530 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6531 	/*
6532 	 * Generally it's safe to hold refcount during waiting page lock. But
6533 	 * here we just wait to defer the next page fault to avoid busy loop and
6534 	 * the page is not used after unlocked before returning from the current
6535 	 * page fault. So we are safe from accessing freed page, even if we wait
6536 	 * here without taking refcount.
6537 	 */
6538 	if (need_wait_lock)
6539 		folio_wait_locked(folio);
6540 	return ret;
6541 }
6542 
6543 #ifdef CONFIG_USERFAULTFD
6544 /*
6545  * Can probably be eliminated, but still used by hugetlb_mfill_atomic_pte().
6546  */
6547 static struct folio *alloc_hugetlb_folio_vma(struct hstate *h,
6548 		struct vm_area_struct *vma, unsigned long address)
6549 {
6550 	struct mempolicy *mpol;
6551 	nodemask_t *nodemask;
6552 	struct folio *folio;
6553 	gfp_t gfp_mask;
6554 	int node;
6555 
6556 	gfp_mask = htlb_alloc_mask(h);
6557 	node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
6558 	folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask);
6559 	mpol_cond_put(mpol);
6560 
6561 	return folio;
6562 }
6563 
6564 /*
6565  * Used by userfaultfd UFFDIO_* ioctls. Based on userfaultfd's mfill_atomic_pte
6566  * with modifications for hugetlb pages.
6567  */
6568 int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
6569 			     struct vm_area_struct *dst_vma,
6570 			     unsigned long dst_addr,
6571 			     unsigned long src_addr,
6572 			     uffd_flags_t flags,
6573 			     struct folio **foliop)
6574 {
6575 	struct mm_struct *dst_mm = dst_vma->vm_mm;
6576 	bool is_continue = uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE);
6577 	bool wp_enabled = (flags & MFILL_ATOMIC_WP);
6578 	struct hstate *h = hstate_vma(dst_vma);
6579 	struct address_space *mapping = dst_vma->vm_file->f_mapping;
6580 	pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
6581 	unsigned long size;
6582 	int vm_shared = dst_vma->vm_flags & VM_SHARED;
6583 	pte_t _dst_pte;
6584 	spinlock_t *ptl;
6585 	int ret = -ENOMEM;
6586 	struct folio *folio;
6587 	int writable;
6588 	bool folio_in_pagecache = false;
6589 
6590 	if (uffd_flags_mode_is(flags, MFILL_ATOMIC_POISON)) {
6591 		ptl = huge_pte_lock(h, dst_mm, dst_pte);
6592 
6593 		/* Don't overwrite any existing PTEs (even markers) */
6594 		if (!huge_pte_none(huge_ptep_get(dst_pte))) {
6595 			spin_unlock(ptl);
6596 			return -EEXIST;
6597 		}
6598 
6599 		_dst_pte = make_pte_marker(PTE_MARKER_POISONED);
6600 		set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte,
6601 				huge_page_size(h));
6602 
6603 		/* No need to invalidate - it was non-present before */
6604 		update_mmu_cache(dst_vma, dst_addr, dst_pte);
6605 
6606 		spin_unlock(ptl);
6607 		return 0;
6608 	}
6609 
6610 	if (is_continue) {
6611 		ret = -EFAULT;
6612 		folio = filemap_lock_hugetlb_folio(h, mapping, idx);
6613 		if (IS_ERR(folio))
6614 			goto out;
6615 		folio_in_pagecache = true;
6616 	} else if (!*foliop) {
6617 		/* If a folio already exists, then it's UFFDIO_COPY for
6618 		 * a non-missing case. Return -EEXIST.
6619 		 */
6620 		if (vm_shared &&
6621 		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6622 			ret = -EEXIST;
6623 			goto out;
6624 		}
6625 
6626 		folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6627 		if (IS_ERR(folio)) {
6628 			ret = -ENOMEM;
6629 			goto out;
6630 		}
6631 
6632 		ret = copy_folio_from_user(folio, (const void __user *) src_addr,
6633 					   false);
6634 
6635 		/* fallback to copy_from_user outside mmap_lock */
6636 		if (unlikely(ret)) {
6637 			ret = -ENOENT;
6638 			/* Free the allocated folio which may have
6639 			 * consumed a reservation.
6640 			 */
6641 			restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6642 			folio_put(folio);
6643 
6644 			/* Allocate a temporary folio to hold the copied
6645 			 * contents.
6646 			 */
6647 			folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr);
6648 			if (!folio) {
6649 				ret = -ENOMEM;
6650 				goto out;
6651 			}
6652 			*foliop = folio;
6653 			/* Set the outparam foliop and return to the caller to
6654 			 * copy the contents outside the lock. Don't free the
6655 			 * folio.
6656 			 */
6657 			goto out;
6658 		}
6659 	} else {
6660 		if (vm_shared &&
6661 		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6662 			folio_put(*foliop);
6663 			ret = -EEXIST;
6664 			*foliop = NULL;
6665 			goto out;
6666 		}
6667 
6668 		folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6669 		if (IS_ERR(folio)) {
6670 			folio_put(*foliop);
6671 			ret = -ENOMEM;
6672 			*foliop = NULL;
6673 			goto out;
6674 		}
6675 		ret = copy_user_large_folio(folio, *foliop, dst_addr, dst_vma);
6676 		folio_put(*foliop);
6677 		*foliop = NULL;
6678 		if (ret) {
6679 			folio_put(folio);
6680 			goto out;
6681 		}
6682 	}
6683 
6684 	/*
6685 	 * The memory barrier inside __folio_mark_uptodate makes sure that
6686 	 * preceding stores to the page contents become visible before
6687 	 * the set_pte_at() write.
6688 	 */
6689 	__folio_mark_uptodate(folio);
6690 
6691 	/* Add shared, newly allocated pages to the page cache. */
6692 	if (vm_shared && !is_continue) {
6693 		size = i_size_read(mapping->host) >> huge_page_shift(h);
6694 		ret = -EFAULT;
6695 		if (idx >= size)
6696 			goto out_release_nounlock;
6697 
6698 		/*
6699 		 * Serialization between remove_inode_hugepages() and
6700 		 * hugetlb_add_to_page_cache() below happens through the
6701 		 * hugetlb_fault_mutex_table that here must be hold by
6702 		 * the caller.
6703 		 */
6704 		ret = hugetlb_add_to_page_cache(folio, mapping, idx);
6705 		if (ret)
6706 			goto out_release_nounlock;
6707 		folio_in_pagecache = true;
6708 	}
6709 
6710 	ptl = huge_pte_lock(h, dst_mm, dst_pte);
6711 
6712 	ret = -EIO;
6713 	if (folio_test_hwpoison(folio))
6714 		goto out_release_unlock;
6715 
6716 	/*
6717 	 * We allow to overwrite a pte marker: consider when both MISSING|WP
6718 	 * registered, we firstly wr-protect a none pte which has no page cache
6719 	 * page backing it, then access the page.
6720 	 */
6721 	ret = -EEXIST;
6722 	if (!huge_pte_none_mostly(huge_ptep_get(dst_pte)))
6723 		goto out_release_unlock;
6724 
6725 	if (folio_in_pagecache)
6726 		page_dup_file_rmap(&folio->page, true);
6727 	else
6728 		hugepage_add_new_anon_rmap(folio, dst_vma, dst_addr);
6729 
6730 	/*
6731 	 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6732 	 * with wp flag set, don't set pte write bit.
6733 	 */
6734 	if (wp_enabled || (is_continue && !vm_shared))
6735 		writable = 0;
6736 	else
6737 		writable = dst_vma->vm_flags & VM_WRITE;
6738 
6739 	_dst_pte = make_huge_pte(dst_vma, &folio->page, writable);
6740 	/*
6741 	 * Always mark UFFDIO_COPY page dirty; note that this may not be
6742 	 * extremely important for hugetlbfs for now since swapping is not
6743 	 * supported, but we should still be clear in that this page cannot be
6744 	 * thrown away at will, even if write bit not set.
6745 	 */
6746 	_dst_pte = huge_pte_mkdirty(_dst_pte);
6747 	_dst_pte = pte_mkyoung(_dst_pte);
6748 
6749 	if (wp_enabled)
6750 		_dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6751 
6752 	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, huge_page_size(h));
6753 
6754 	hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6755 
6756 	/* No need to invalidate - it was non-present before */
6757 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
6758 
6759 	spin_unlock(ptl);
6760 	if (!is_continue)
6761 		folio_set_hugetlb_migratable(folio);
6762 	if (vm_shared || is_continue)
6763 		folio_unlock(folio);
6764 	ret = 0;
6765 out:
6766 	return ret;
6767 out_release_unlock:
6768 	spin_unlock(ptl);
6769 	if (vm_shared || is_continue)
6770 		folio_unlock(folio);
6771 out_release_nounlock:
6772 	if (!folio_in_pagecache)
6773 		restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6774 	folio_put(folio);
6775 	goto out;
6776 }
6777 #endif /* CONFIG_USERFAULTFD */
6778 
6779 struct page *hugetlb_follow_page_mask(struct vm_area_struct *vma,
6780 				      unsigned long address, unsigned int flags,
6781 				      unsigned int *page_mask)
6782 {
6783 	struct hstate *h = hstate_vma(vma);
6784 	struct mm_struct *mm = vma->vm_mm;
6785 	unsigned long haddr = address & huge_page_mask(h);
6786 	struct page *page = NULL;
6787 	spinlock_t *ptl;
6788 	pte_t *pte, entry;
6789 	int ret;
6790 
6791 	hugetlb_vma_lock_read(vma);
6792 	pte = hugetlb_walk(vma, haddr, huge_page_size(h));
6793 	if (!pte)
6794 		goto out_unlock;
6795 
6796 	ptl = huge_pte_lock(h, mm, pte);
6797 	entry = huge_ptep_get(pte);
6798 	if (pte_present(entry)) {
6799 		page = pte_page(entry);
6800 
6801 		if (!huge_pte_write(entry)) {
6802 			if (flags & FOLL_WRITE) {
6803 				page = NULL;
6804 				goto out;
6805 			}
6806 
6807 			if (gup_must_unshare(vma, flags, page)) {
6808 				/* Tell the caller to do unsharing */
6809 				page = ERR_PTR(-EMLINK);
6810 				goto out;
6811 			}
6812 		}
6813 
6814 		page = nth_page(page, ((address & ~huge_page_mask(h)) >> PAGE_SHIFT));
6815 
6816 		/*
6817 		 * Note that page may be a sub-page, and with vmemmap
6818 		 * optimizations the page struct may be read only.
6819 		 * try_grab_page() will increase the ref count on the
6820 		 * head page, so this will be OK.
6821 		 *
6822 		 * try_grab_page() should always be able to get the page here,
6823 		 * because we hold the ptl lock and have verified pte_present().
6824 		 */
6825 		ret = try_grab_page(page, flags);
6826 
6827 		if (WARN_ON_ONCE(ret)) {
6828 			page = ERR_PTR(ret);
6829 			goto out;
6830 		}
6831 
6832 		*page_mask = (1U << huge_page_order(h)) - 1;
6833 	}
6834 out:
6835 	spin_unlock(ptl);
6836 out_unlock:
6837 	hugetlb_vma_unlock_read(vma);
6838 
6839 	/*
6840 	 * Fixup retval for dump requests: if pagecache doesn't exist,
6841 	 * don't try to allocate a new page but just skip it.
6842 	 */
6843 	if (!page && (flags & FOLL_DUMP) &&
6844 	    !hugetlbfs_pagecache_present(h, vma, address))
6845 		page = ERR_PTR(-EFAULT);
6846 
6847 	return page;
6848 }
6849 
6850 long hugetlb_change_protection(struct vm_area_struct *vma,
6851 		unsigned long address, unsigned long end,
6852 		pgprot_t newprot, unsigned long cp_flags)
6853 {
6854 	struct mm_struct *mm = vma->vm_mm;
6855 	unsigned long start = address;
6856 	pte_t *ptep;
6857 	pte_t pte;
6858 	struct hstate *h = hstate_vma(vma);
6859 	long pages = 0, psize = huge_page_size(h);
6860 	bool shared_pmd = false;
6861 	struct mmu_notifier_range range;
6862 	unsigned long last_addr_mask;
6863 	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6864 	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
6865 
6866 	/*
6867 	 * In the case of shared PMDs, the area to flush could be beyond
6868 	 * start/end.  Set range.start/range.end to cover the maximum possible
6869 	 * range if PMD sharing is possible.
6870 	 */
6871 	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6872 				0, mm, start, end);
6873 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6874 
6875 	BUG_ON(address >= end);
6876 	flush_cache_range(vma, range.start, range.end);
6877 
6878 	mmu_notifier_invalidate_range_start(&range);
6879 	hugetlb_vma_lock_write(vma);
6880 	i_mmap_lock_write(vma->vm_file->f_mapping);
6881 	last_addr_mask = hugetlb_mask_last_page(h);
6882 	for (; address < end; address += psize) {
6883 		spinlock_t *ptl;
6884 		ptep = hugetlb_walk(vma, address, psize);
6885 		if (!ptep) {
6886 			if (!uffd_wp) {
6887 				address |= last_addr_mask;
6888 				continue;
6889 			}
6890 			/*
6891 			 * Userfaultfd wr-protect requires pgtable
6892 			 * pre-allocations to install pte markers.
6893 			 */
6894 			ptep = huge_pte_alloc(mm, vma, address, psize);
6895 			if (!ptep) {
6896 				pages = -ENOMEM;
6897 				break;
6898 			}
6899 		}
6900 		ptl = huge_pte_lock(h, mm, ptep);
6901 		if (huge_pmd_unshare(mm, vma, address, ptep)) {
6902 			/*
6903 			 * When uffd-wp is enabled on the vma, unshare
6904 			 * shouldn't happen at all.  Warn about it if it
6905 			 * happened due to some reason.
6906 			 */
6907 			WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
6908 			pages++;
6909 			spin_unlock(ptl);
6910 			shared_pmd = true;
6911 			address |= last_addr_mask;
6912 			continue;
6913 		}
6914 		pte = huge_ptep_get(ptep);
6915 		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6916 			/* Nothing to do. */
6917 		} else if (unlikely(is_hugetlb_entry_migration(pte))) {
6918 			swp_entry_t entry = pte_to_swp_entry(pte);
6919 			struct page *page = pfn_swap_entry_to_page(entry);
6920 			pte_t newpte = pte;
6921 
6922 			if (is_writable_migration_entry(entry)) {
6923 				if (PageAnon(page))
6924 					entry = make_readable_exclusive_migration_entry(
6925 								swp_offset(entry));
6926 				else
6927 					entry = make_readable_migration_entry(
6928 								swp_offset(entry));
6929 				newpte = swp_entry_to_pte(entry);
6930 				pages++;
6931 			}
6932 
6933 			if (uffd_wp)
6934 				newpte = pte_swp_mkuffd_wp(newpte);
6935 			else if (uffd_wp_resolve)
6936 				newpte = pte_swp_clear_uffd_wp(newpte);
6937 			if (!pte_same(pte, newpte))
6938 				set_huge_pte_at(mm, address, ptep, newpte, psize);
6939 		} else if (unlikely(is_pte_marker(pte))) {
6940 			/* No other markers apply for now. */
6941 			WARN_ON_ONCE(!pte_marker_uffd_wp(pte));
6942 			if (uffd_wp_resolve)
6943 				/* Safe to modify directly (non-present->none). */
6944 				huge_pte_clear(mm, address, ptep, psize);
6945 		} else if (!huge_pte_none(pte)) {
6946 			pte_t old_pte;
6947 			unsigned int shift = huge_page_shift(hstate_vma(vma));
6948 
6949 			old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6950 			pte = huge_pte_modify(old_pte, newprot);
6951 			pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6952 			if (uffd_wp)
6953 				pte = huge_pte_mkuffd_wp(pte);
6954 			else if (uffd_wp_resolve)
6955 				pte = huge_pte_clear_uffd_wp(pte);
6956 			huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6957 			pages++;
6958 		} else {
6959 			/* None pte */
6960 			if (unlikely(uffd_wp))
6961 				/* Safe to modify directly (none->non-present). */
6962 				set_huge_pte_at(mm, address, ptep,
6963 						make_pte_marker(PTE_MARKER_UFFD_WP),
6964 						psize);
6965 		}
6966 		spin_unlock(ptl);
6967 	}
6968 	/*
6969 	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
6970 	 * may have cleared our pud entry and done put_page on the page table:
6971 	 * once we release i_mmap_rwsem, another task can do the final put_page
6972 	 * and that page table be reused and filled with junk.  If we actually
6973 	 * did unshare a page of pmds, flush the range corresponding to the pud.
6974 	 */
6975 	if (shared_pmd)
6976 		flush_hugetlb_tlb_range(vma, range.start, range.end);
6977 	else
6978 		flush_hugetlb_tlb_range(vma, start, end);
6979 	/*
6980 	 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs() we are
6981 	 * downgrading page table protection not changing it to point to a new
6982 	 * page.
6983 	 *
6984 	 * See Documentation/mm/mmu_notifier.rst
6985 	 */
6986 	i_mmap_unlock_write(vma->vm_file->f_mapping);
6987 	hugetlb_vma_unlock_write(vma);
6988 	mmu_notifier_invalidate_range_end(&range);
6989 
6990 	return pages > 0 ? (pages << h->order) : pages;
6991 }
6992 
6993 /* Return true if reservation was successful, false otherwise.  */
6994 bool hugetlb_reserve_pages(struct inode *inode,
6995 					long from, long to,
6996 					struct vm_area_struct *vma,
6997 					vm_flags_t vm_flags)
6998 {
6999 	long chg = -1, add = -1;
7000 	struct hstate *h = hstate_inode(inode);
7001 	struct hugepage_subpool *spool = subpool_inode(inode);
7002 	struct resv_map *resv_map;
7003 	struct hugetlb_cgroup *h_cg = NULL;
7004 	long gbl_reserve, regions_needed = 0;
7005 
7006 	/* This should never happen */
7007 	if (from > to) {
7008 		VM_WARN(1, "%s called with a negative range\n", __func__);
7009 		return false;
7010 	}
7011 
7012 	/*
7013 	 * vma specific semaphore used for pmd sharing and fault/truncation
7014 	 * synchronization
7015 	 */
7016 	hugetlb_vma_lock_alloc(vma);
7017 
7018 	/*
7019 	 * Only apply hugepage reservation if asked. At fault time, an
7020 	 * attempt will be made for VM_NORESERVE to allocate a page
7021 	 * without using reserves
7022 	 */
7023 	if (vm_flags & VM_NORESERVE)
7024 		return true;
7025 
7026 	/*
7027 	 * Shared mappings base their reservation on the number of pages that
7028 	 * are already allocated on behalf of the file. Private mappings need
7029 	 * to reserve the full area even if read-only as mprotect() may be
7030 	 * called to make the mapping read-write. Assume !vma is a shm mapping
7031 	 */
7032 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
7033 		/*
7034 		 * resv_map can not be NULL as hugetlb_reserve_pages is only
7035 		 * called for inodes for which resv_maps were created (see
7036 		 * hugetlbfs_get_inode).
7037 		 */
7038 		resv_map = inode_resv_map(inode);
7039 
7040 		chg = region_chg(resv_map, from, to, &regions_needed);
7041 	} else {
7042 		/* Private mapping. */
7043 		resv_map = resv_map_alloc();
7044 		if (!resv_map)
7045 			goto out_err;
7046 
7047 		chg = to - from;
7048 
7049 		set_vma_resv_map(vma, resv_map);
7050 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
7051 	}
7052 
7053 	if (chg < 0)
7054 		goto out_err;
7055 
7056 	if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
7057 				chg * pages_per_huge_page(h), &h_cg) < 0)
7058 		goto out_err;
7059 
7060 	if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
7061 		/* For private mappings, the hugetlb_cgroup uncharge info hangs
7062 		 * of the resv_map.
7063 		 */
7064 		resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
7065 	}
7066 
7067 	/*
7068 	 * There must be enough pages in the subpool for the mapping. If
7069 	 * the subpool has a minimum size, there may be some global
7070 	 * reservations already in place (gbl_reserve).
7071 	 */
7072 	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
7073 	if (gbl_reserve < 0)
7074 		goto out_uncharge_cgroup;
7075 
7076 	/*
7077 	 * Check enough hugepages are available for the reservation.
7078 	 * Hand the pages back to the subpool if there are not
7079 	 */
7080 	if (hugetlb_acct_memory(h, gbl_reserve) < 0)
7081 		goto out_put_pages;
7082 
7083 	/*
7084 	 * Account for the reservations made. Shared mappings record regions
7085 	 * that have reservations as they are shared by multiple VMAs.
7086 	 * When the last VMA disappears, the region map says how much
7087 	 * the reservation was and the page cache tells how much of
7088 	 * the reservation was consumed. Private mappings are per-VMA and
7089 	 * only the consumed reservations are tracked. When the VMA
7090 	 * disappears, the original reservation is the VMA size and the
7091 	 * consumed reservations are stored in the map. Hence, nothing
7092 	 * else has to be done for private mappings here
7093 	 */
7094 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
7095 		add = region_add(resv_map, from, to, regions_needed, h, h_cg);
7096 
7097 		if (unlikely(add < 0)) {
7098 			hugetlb_acct_memory(h, -gbl_reserve);
7099 			goto out_put_pages;
7100 		} else if (unlikely(chg > add)) {
7101 			/*
7102 			 * pages in this range were added to the reserve
7103 			 * map between region_chg and region_add.  This
7104 			 * indicates a race with alloc_hugetlb_folio.  Adjust
7105 			 * the subpool and reserve counts modified above
7106 			 * based on the difference.
7107 			 */
7108 			long rsv_adjust;
7109 
7110 			/*
7111 			 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
7112 			 * reference to h_cg->css. See comment below for detail.
7113 			 */
7114 			hugetlb_cgroup_uncharge_cgroup_rsvd(
7115 				hstate_index(h),
7116 				(chg - add) * pages_per_huge_page(h), h_cg);
7117 
7118 			rsv_adjust = hugepage_subpool_put_pages(spool,
7119 								chg - add);
7120 			hugetlb_acct_memory(h, -rsv_adjust);
7121 		} else if (h_cg) {
7122 			/*
7123 			 * The file_regions will hold their own reference to
7124 			 * h_cg->css. So we should release the reference held
7125 			 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
7126 			 * done.
7127 			 */
7128 			hugetlb_cgroup_put_rsvd_cgroup(h_cg);
7129 		}
7130 	}
7131 	return true;
7132 
7133 out_put_pages:
7134 	/* put back original number of pages, chg */
7135 	(void)hugepage_subpool_put_pages(spool, chg);
7136 out_uncharge_cgroup:
7137 	hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
7138 					    chg * pages_per_huge_page(h), h_cg);
7139 out_err:
7140 	hugetlb_vma_lock_free(vma);
7141 	if (!vma || vma->vm_flags & VM_MAYSHARE)
7142 		/* Only call region_abort if the region_chg succeeded but the
7143 		 * region_add failed or didn't run.
7144 		 */
7145 		if (chg >= 0 && add < 0)
7146 			region_abort(resv_map, from, to, regions_needed);
7147 	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
7148 		kref_put(&resv_map->refs, resv_map_release);
7149 		set_vma_resv_map(vma, NULL);
7150 	}
7151 	return false;
7152 }
7153 
7154 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
7155 								long freed)
7156 {
7157 	struct hstate *h = hstate_inode(inode);
7158 	struct resv_map *resv_map = inode_resv_map(inode);
7159 	long chg = 0;
7160 	struct hugepage_subpool *spool = subpool_inode(inode);
7161 	long gbl_reserve;
7162 
7163 	/*
7164 	 * Since this routine can be called in the evict inode path for all
7165 	 * hugetlbfs inodes, resv_map could be NULL.
7166 	 */
7167 	if (resv_map) {
7168 		chg = region_del(resv_map, start, end);
7169 		/*
7170 		 * region_del() can fail in the rare case where a region
7171 		 * must be split and another region descriptor can not be
7172 		 * allocated.  If end == LONG_MAX, it will not fail.
7173 		 */
7174 		if (chg < 0)
7175 			return chg;
7176 	}
7177 
7178 	spin_lock(&inode->i_lock);
7179 	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
7180 	spin_unlock(&inode->i_lock);
7181 
7182 	/*
7183 	 * If the subpool has a minimum size, the number of global
7184 	 * reservations to be released may be adjusted.
7185 	 *
7186 	 * Note that !resv_map implies freed == 0. So (chg - freed)
7187 	 * won't go negative.
7188 	 */
7189 	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
7190 	hugetlb_acct_memory(h, -gbl_reserve);
7191 
7192 	return 0;
7193 }
7194 
7195 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7196 static unsigned long page_table_shareable(struct vm_area_struct *svma,
7197 				struct vm_area_struct *vma,
7198 				unsigned long addr, pgoff_t idx)
7199 {
7200 	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
7201 				svma->vm_start;
7202 	unsigned long sbase = saddr & PUD_MASK;
7203 	unsigned long s_end = sbase + PUD_SIZE;
7204 
7205 	/* Allow segments to share if only one is marked locked */
7206 	unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED_MASK;
7207 	unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED_MASK;
7208 
7209 	/*
7210 	 * match the virtual addresses, permission and the alignment of the
7211 	 * page table page.
7212 	 *
7213 	 * Also, vma_lock (vm_private_data) is required for sharing.
7214 	 */
7215 	if (pmd_index(addr) != pmd_index(saddr) ||
7216 	    vm_flags != svm_flags ||
7217 	    !range_in_vma(svma, sbase, s_end) ||
7218 	    !svma->vm_private_data)
7219 		return 0;
7220 
7221 	return saddr;
7222 }
7223 
7224 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7225 {
7226 	unsigned long start = addr & PUD_MASK;
7227 	unsigned long end = start + PUD_SIZE;
7228 
7229 #ifdef CONFIG_USERFAULTFD
7230 	if (uffd_disable_huge_pmd_share(vma))
7231 		return false;
7232 #endif
7233 	/*
7234 	 * check on proper vm_flags and page table alignment
7235 	 */
7236 	if (!(vma->vm_flags & VM_MAYSHARE))
7237 		return false;
7238 	if (!vma->vm_private_data)	/* vma lock required for sharing */
7239 		return false;
7240 	if (!range_in_vma(vma, start, end))
7241 		return false;
7242 	return true;
7243 }
7244 
7245 /*
7246  * Determine if start,end range within vma could be mapped by shared pmd.
7247  * If yes, adjust start and end to cover range associated with possible
7248  * shared pmd mappings.
7249  */
7250 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7251 				unsigned long *start, unsigned long *end)
7252 {
7253 	unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
7254 		v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
7255 
7256 	/*
7257 	 * vma needs to span at least one aligned PUD size, and the range
7258 	 * must be at least partially within in.
7259 	 */
7260 	if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
7261 		(*end <= v_start) || (*start >= v_end))
7262 		return;
7263 
7264 	/* Extend the range to be PUD aligned for a worst case scenario */
7265 	if (*start > v_start)
7266 		*start = ALIGN_DOWN(*start, PUD_SIZE);
7267 
7268 	if (*end < v_end)
7269 		*end = ALIGN(*end, PUD_SIZE);
7270 }
7271 
7272 /*
7273  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
7274  * and returns the corresponding pte. While this is not necessary for the
7275  * !shared pmd case because we can allocate the pmd later as well, it makes the
7276  * code much cleaner. pmd allocation is essential for the shared case because
7277  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
7278  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
7279  * bad pmd for sharing.
7280  */
7281 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7282 		      unsigned long addr, pud_t *pud)
7283 {
7284 	struct address_space *mapping = vma->vm_file->f_mapping;
7285 	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
7286 			vma->vm_pgoff;
7287 	struct vm_area_struct *svma;
7288 	unsigned long saddr;
7289 	pte_t *spte = NULL;
7290 	pte_t *pte;
7291 
7292 	i_mmap_lock_read(mapping);
7293 	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
7294 		if (svma == vma)
7295 			continue;
7296 
7297 		saddr = page_table_shareable(svma, vma, addr, idx);
7298 		if (saddr) {
7299 			spte = hugetlb_walk(svma, saddr,
7300 					    vma_mmu_pagesize(svma));
7301 			if (spte) {
7302 				get_page(virt_to_page(spte));
7303 				break;
7304 			}
7305 		}
7306 	}
7307 
7308 	if (!spte)
7309 		goto out;
7310 
7311 	spin_lock(&mm->page_table_lock);
7312 	if (pud_none(*pud)) {
7313 		pud_populate(mm, pud,
7314 				(pmd_t *)((unsigned long)spte & PAGE_MASK));
7315 		mm_inc_nr_pmds(mm);
7316 	} else {
7317 		put_page(virt_to_page(spte));
7318 	}
7319 	spin_unlock(&mm->page_table_lock);
7320 out:
7321 	pte = (pte_t *)pmd_alloc(mm, pud, addr);
7322 	i_mmap_unlock_read(mapping);
7323 	return pte;
7324 }
7325 
7326 /*
7327  * unmap huge page backed by shared pte.
7328  *
7329  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
7330  * indicated by page_count > 1, unmap is achieved by clearing pud and
7331  * decrementing the ref count. If count == 1, the pte page is not shared.
7332  *
7333  * Called with page table lock held.
7334  *
7335  * returns: 1 successfully unmapped a shared pte page
7336  *	    0 the underlying pte page is not shared, or it is the last user
7337  */
7338 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7339 					unsigned long addr, pte_t *ptep)
7340 {
7341 	pgd_t *pgd = pgd_offset(mm, addr);
7342 	p4d_t *p4d = p4d_offset(pgd, addr);
7343 	pud_t *pud = pud_offset(p4d, addr);
7344 
7345 	i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7346 	hugetlb_vma_assert_locked(vma);
7347 	BUG_ON(page_count(virt_to_page(ptep)) == 0);
7348 	if (page_count(virt_to_page(ptep)) == 1)
7349 		return 0;
7350 
7351 	pud_clear(pud);
7352 	put_page(virt_to_page(ptep));
7353 	mm_dec_nr_pmds(mm);
7354 	return 1;
7355 }
7356 
7357 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7358 
7359 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7360 		      unsigned long addr, pud_t *pud)
7361 {
7362 	return NULL;
7363 }
7364 
7365 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7366 				unsigned long addr, pte_t *ptep)
7367 {
7368 	return 0;
7369 }
7370 
7371 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7372 				unsigned long *start, unsigned long *end)
7373 {
7374 }
7375 
7376 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7377 {
7378 	return false;
7379 }
7380 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7381 
7382 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
7383 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
7384 			unsigned long addr, unsigned long sz)
7385 {
7386 	pgd_t *pgd;
7387 	p4d_t *p4d;
7388 	pud_t *pud;
7389 	pte_t *pte = NULL;
7390 
7391 	pgd = pgd_offset(mm, addr);
7392 	p4d = p4d_alloc(mm, pgd, addr);
7393 	if (!p4d)
7394 		return NULL;
7395 	pud = pud_alloc(mm, p4d, addr);
7396 	if (pud) {
7397 		if (sz == PUD_SIZE) {
7398 			pte = (pte_t *)pud;
7399 		} else {
7400 			BUG_ON(sz != PMD_SIZE);
7401 			if (want_pmd_share(vma, addr) && pud_none(*pud))
7402 				pte = huge_pmd_share(mm, vma, addr, pud);
7403 			else
7404 				pte = (pte_t *)pmd_alloc(mm, pud, addr);
7405 		}
7406 	}
7407 
7408 	if (pte) {
7409 		pte_t pteval = ptep_get_lockless(pte);
7410 
7411 		BUG_ON(pte_present(pteval) && !pte_huge(pteval));
7412 	}
7413 
7414 	return pte;
7415 }
7416 
7417 /*
7418  * huge_pte_offset() - Walk the page table to resolve the hugepage
7419  * entry at address @addr
7420  *
7421  * Return: Pointer to page table entry (PUD or PMD) for
7422  * address @addr, or NULL if a !p*d_present() entry is encountered and the
7423  * size @sz doesn't match the hugepage size at this level of the page
7424  * table.
7425  */
7426 pte_t *huge_pte_offset(struct mm_struct *mm,
7427 		       unsigned long addr, unsigned long sz)
7428 {
7429 	pgd_t *pgd;
7430 	p4d_t *p4d;
7431 	pud_t *pud;
7432 	pmd_t *pmd;
7433 
7434 	pgd = pgd_offset(mm, addr);
7435 	if (!pgd_present(*pgd))
7436 		return NULL;
7437 	p4d = p4d_offset(pgd, addr);
7438 	if (!p4d_present(*p4d))
7439 		return NULL;
7440 
7441 	pud = pud_offset(p4d, addr);
7442 	if (sz == PUD_SIZE)
7443 		/* must be pud huge, non-present or none */
7444 		return (pte_t *)pud;
7445 	if (!pud_present(*pud))
7446 		return NULL;
7447 	/* must have a valid entry and size to go further */
7448 
7449 	pmd = pmd_offset(pud, addr);
7450 	/* must be pmd huge, non-present or none */
7451 	return (pte_t *)pmd;
7452 }
7453 
7454 /*
7455  * Return a mask that can be used to update an address to the last huge
7456  * page in a page table page mapping size.  Used to skip non-present
7457  * page table entries when linearly scanning address ranges.  Architectures
7458  * with unique huge page to page table relationships can define their own
7459  * version of this routine.
7460  */
7461 unsigned long hugetlb_mask_last_page(struct hstate *h)
7462 {
7463 	unsigned long hp_size = huge_page_size(h);
7464 
7465 	if (hp_size == PUD_SIZE)
7466 		return P4D_SIZE - PUD_SIZE;
7467 	else if (hp_size == PMD_SIZE)
7468 		return PUD_SIZE - PMD_SIZE;
7469 	else
7470 		return 0UL;
7471 }
7472 
7473 #else
7474 
7475 /* See description above.  Architectures can provide their own version. */
7476 __weak unsigned long hugetlb_mask_last_page(struct hstate *h)
7477 {
7478 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7479 	if (huge_page_size(h) == PMD_SIZE)
7480 		return PUD_SIZE - PMD_SIZE;
7481 #endif
7482 	return 0UL;
7483 }
7484 
7485 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
7486 
7487 /*
7488  * These functions are overwritable if your architecture needs its own
7489  * behavior.
7490  */
7491 bool isolate_hugetlb(struct folio *folio, struct list_head *list)
7492 {
7493 	bool ret = true;
7494 
7495 	spin_lock_irq(&hugetlb_lock);
7496 	if (!folio_test_hugetlb(folio) ||
7497 	    !folio_test_hugetlb_migratable(folio) ||
7498 	    !folio_try_get(folio)) {
7499 		ret = false;
7500 		goto unlock;
7501 	}
7502 	folio_clear_hugetlb_migratable(folio);
7503 	list_move_tail(&folio->lru, list);
7504 unlock:
7505 	spin_unlock_irq(&hugetlb_lock);
7506 	return ret;
7507 }
7508 
7509 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison)
7510 {
7511 	int ret = 0;
7512 
7513 	*hugetlb = false;
7514 	spin_lock_irq(&hugetlb_lock);
7515 	if (folio_test_hugetlb(folio)) {
7516 		*hugetlb = true;
7517 		if (folio_test_hugetlb_freed(folio))
7518 			ret = 0;
7519 		else if (folio_test_hugetlb_migratable(folio) || unpoison)
7520 			ret = folio_try_get(folio);
7521 		else
7522 			ret = -EBUSY;
7523 	}
7524 	spin_unlock_irq(&hugetlb_lock);
7525 	return ret;
7526 }
7527 
7528 int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
7529 				bool *migratable_cleared)
7530 {
7531 	int ret;
7532 
7533 	spin_lock_irq(&hugetlb_lock);
7534 	ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared);
7535 	spin_unlock_irq(&hugetlb_lock);
7536 	return ret;
7537 }
7538 
7539 void folio_putback_active_hugetlb(struct folio *folio)
7540 {
7541 	spin_lock_irq(&hugetlb_lock);
7542 	folio_set_hugetlb_migratable(folio);
7543 	list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist);
7544 	spin_unlock_irq(&hugetlb_lock);
7545 	folio_put(folio);
7546 }
7547 
7548 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason)
7549 {
7550 	struct hstate *h = folio_hstate(old_folio);
7551 
7552 	hugetlb_cgroup_migrate(old_folio, new_folio);
7553 	set_page_owner_migrate_reason(&new_folio->page, reason);
7554 
7555 	/*
7556 	 * transfer temporary state of the new hugetlb folio. This is
7557 	 * reverse to other transitions because the newpage is going to
7558 	 * be final while the old one will be freed so it takes over
7559 	 * the temporary status.
7560 	 *
7561 	 * Also note that we have to transfer the per-node surplus state
7562 	 * here as well otherwise the global surplus count will not match
7563 	 * the per-node's.
7564 	 */
7565 	if (folio_test_hugetlb_temporary(new_folio)) {
7566 		int old_nid = folio_nid(old_folio);
7567 		int new_nid = folio_nid(new_folio);
7568 
7569 		folio_set_hugetlb_temporary(old_folio);
7570 		folio_clear_hugetlb_temporary(new_folio);
7571 
7572 
7573 		/*
7574 		 * There is no need to transfer the per-node surplus state
7575 		 * when we do not cross the node.
7576 		 */
7577 		if (new_nid == old_nid)
7578 			return;
7579 		spin_lock_irq(&hugetlb_lock);
7580 		if (h->surplus_huge_pages_node[old_nid]) {
7581 			h->surplus_huge_pages_node[old_nid]--;
7582 			h->surplus_huge_pages_node[new_nid]++;
7583 		}
7584 		spin_unlock_irq(&hugetlb_lock);
7585 	}
7586 }
7587 
7588 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
7589 				   unsigned long start,
7590 				   unsigned long end)
7591 {
7592 	struct hstate *h = hstate_vma(vma);
7593 	unsigned long sz = huge_page_size(h);
7594 	struct mm_struct *mm = vma->vm_mm;
7595 	struct mmu_notifier_range range;
7596 	unsigned long address;
7597 	spinlock_t *ptl;
7598 	pte_t *ptep;
7599 
7600 	if (!(vma->vm_flags & VM_MAYSHARE))
7601 		return;
7602 
7603 	if (start >= end)
7604 		return;
7605 
7606 	flush_cache_range(vma, start, end);
7607 	/*
7608 	 * No need to call adjust_range_if_pmd_sharing_possible(), because
7609 	 * we have already done the PUD_SIZE alignment.
7610 	 */
7611 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
7612 				start, end);
7613 	mmu_notifier_invalidate_range_start(&range);
7614 	hugetlb_vma_lock_write(vma);
7615 	i_mmap_lock_write(vma->vm_file->f_mapping);
7616 	for (address = start; address < end; address += PUD_SIZE) {
7617 		ptep = hugetlb_walk(vma, address, sz);
7618 		if (!ptep)
7619 			continue;
7620 		ptl = huge_pte_lock(h, mm, ptep);
7621 		huge_pmd_unshare(mm, vma, address, ptep);
7622 		spin_unlock(ptl);
7623 	}
7624 	flush_hugetlb_tlb_range(vma, start, end);
7625 	i_mmap_unlock_write(vma->vm_file->f_mapping);
7626 	hugetlb_vma_unlock_write(vma);
7627 	/*
7628 	 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs(), see
7629 	 * Documentation/mm/mmu_notifier.rst.
7630 	 */
7631 	mmu_notifier_invalidate_range_end(&range);
7632 }
7633 
7634 /*
7635  * This function will unconditionally remove all the shared pmd pgtable entries
7636  * within the specific vma for a hugetlbfs memory range.
7637  */
7638 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7639 {
7640 	hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE),
7641 			ALIGN_DOWN(vma->vm_end, PUD_SIZE));
7642 }
7643 
7644 #ifdef CONFIG_CMA
7645 static bool cma_reserve_called __initdata;
7646 
7647 static int __init cmdline_parse_hugetlb_cma(char *p)
7648 {
7649 	int nid, count = 0;
7650 	unsigned long tmp;
7651 	char *s = p;
7652 
7653 	while (*s) {
7654 		if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7655 			break;
7656 
7657 		if (s[count] == ':') {
7658 			if (tmp >= MAX_NUMNODES)
7659 				break;
7660 			nid = array_index_nospec(tmp, MAX_NUMNODES);
7661 
7662 			s += count + 1;
7663 			tmp = memparse(s, &s);
7664 			hugetlb_cma_size_in_node[nid] = tmp;
7665 			hugetlb_cma_size += tmp;
7666 
7667 			/*
7668 			 * Skip the separator if have one, otherwise
7669 			 * break the parsing.
7670 			 */
7671 			if (*s == ',')
7672 				s++;
7673 			else
7674 				break;
7675 		} else {
7676 			hugetlb_cma_size = memparse(p, &p);
7677 			break;
7678 		}
7679 	}
7680 
7681 	return 0;
7682 }
7683 
7684 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7685 
7686 void __init hugetlb_cma_reserve(int order)
7687 {
7688 	unsigned long size, reserved, per_node;
7689 	bool node_specific_cma_alloc = false;
7690 	int nid;
7691 
7692 	cma_reserve_called = true;
7693 
7694 	if (!hugetlb_cma_size)
7695 		return;
7696 
7697 	for (nid = 0; nid < MAX_NUMNODES; nid++) {
7698 		if (hugetlb_cma_size_in_node[nid] == 0)
7699 			continue;
7700 
7701 		if (!node_online(nid)) {
7702 			pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7703 			hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7704 			hugetlb_cma_size_in_node[nid] = 0;
7705 			continue;
7706 		}
7707 
7708 		if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7709 			pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7710 				nid, (PAGE_SIZE << order) / SZ_1M);
7711 			hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7712 			hugetlb_cma_size_in_node[nid] = 0;
7713 		} else {
7714 			node_specific_cma_alloc = true;
7715 		}
7716 	}
7717 
7718 	/* Validate the CMA size again in case some invalid nodes specified. */
7719 	if (!hugetlb_cma_size)
7720 		return;
7721 
7722 	if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7723 		pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7724 			(PAGE_SIZE << order) / SZ_1M);
7725 		hugetlb_cma_size = 0;
7726 		return;
7727 	}
7728 
7729 	if (!node_specific_cma_alloc) {
7730 		/*
7731 		 * If 3 GB area is requested on a machine with 4 numa nodes,
7732 		 * let's allocate 1 GB on first three nodes and ignore the last one.
7733 		 */
7734 		per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7735 		pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7736 			hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7737 	}
7738 
7739 	reserved = 0;
7740 	for_each_online_node(nid) {
7741 		int res;
7742 		char name[CMA_MAX_NAME];
7743 
7744 		if (node_specific_cma_alloc) {
7745 			if (hugetlb_cma_size_in_node[nid] == 0)
7746 				continue;
7747 
7748 			size = hugetlb_cma_size_in_node[nid];
7749 		} else {
7750 			size = min(per_node, hugetlb_cma_size - reserved);
7751 		}
7752 
7753 		size = round_up(size, PAGE_SIZE << order);
7754 
7755 		snprintf(name, sizeof(name), "hugetlb%d", nid);
7756 		/*
7757 		 * Note that 'order per bit' is based on smallest size that
7758 		 * may be returned to CMA allocator in the case of
7759 		 * huge page demotion.
7760 		 */
7761 		res = cma_declare_contiguous_nid(0, size, 0,
7762 						PAGE_SIZE << HUGETLB_PAGE_ORDER,
7763 						 0, false, name,
7764 						 &hugetlb_cma[nid], nid);
7765 		if (res) {
7766 			pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7767 				res, nid);
7768 			continue;
7769 		}
7770 
7771 		reserved += size;
7772 		pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7773 			size / SZ_1M, nid);
7774 
7775 		if (reserved >= hugetlb_cma_size)
7776 			break;
7777 	}
7778 
7779 	if (!reserved)
7780 		/*
7781 		 * hugetlb_cma_size is used to determine if allocations from
7782 		 * cma are possible.  Set to zero if no cma regions are set up.
7783 		 */
7784 		hugetlb_cma_size = 0;
7785 }
7786 
7787 static void __init hugetlb_cma_check(void)
7788 {
7789 	if (!hugetlb_cma_size || cma_reserve_called)
7790 		return;
7791 
7792 	pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7793 }
7794 
7795 #endif /* CONFIG_CMA */
7796