1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic hugetlb support. 4 * (C) Nadia Yvette Chambers, April 2004 5 */ 6 #include <linux/list.h> 7 #include <linux/init.h> 8 #include <linux/mm.h> 9 #include <linux/seq_file.h> 10 #include <linux/sysctl.h> 11 #include <linux/highmem.h> 12 #include <linux/mmu_notifier.h> 13 #include <linux/nodemask.h> 14 #include <linux/pagemap.h> 15 #include <linux/mempolicy.h> 16 #include <linux/compiler.h> 17 #include <linux/cpuset.h> 18 #include <linux/mutex.h> 19 #include <linux/memblock.h> 20 #include <linux/sysfs.h> 21 #include <linux/slab.h> 22 #include <linux/sched/mm.h> 23 #include <linux/mmdebug.h> 24 #include <linux/sched/signal.h> 25 #include <linux/rmap.h> 26 #include <linux/string_helpers.h> 27 #include <linux/swap.h> 28 #include <linux/swapops.h> 29 #include <linux/jhash.h> 30 #include <linux/numa.h> 31 #include <linux/llist.h> 32 #include <linux/cma.h> 33 #include <linux/migrate.h> 34 #include <linux/nospec.h> 35 #include <linux/delayacct.h> 36 #include <linux/memory.h> 37 #include <linux/mm_inline.h> 38 #include <linux/padata.h> 39 40 #include <asm/page.h> 41 #include <asm/pgalloc.h> 42 #include <asm/tlb.h> 43 44 #include <linux/io.h> 45 #include <linux/hugetlb.h> 46 #include <linux/hugetlb_cgroup.h> 47 #include <linux/node.h> 48 #include <linux/page_owner.h> 49 #include "internal.h" 50 #include "hugetlb_vmemmap.h" 51 52 int hugetlb_max_hstate __read_mostly; 53 unsigned int default_hstate_idx; 54 struct hstate hstates[HUGE_MAX_HSTATE]; 55 56 #ifdef CONFIG_CMA 57 static struct cma *hugetlb_cma[MAX_NUMNODES]; 58 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata; 59 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order) 60 { 61 return cma_pages_valid(hugetlb_cma[folio_nid(folio)], &folio->page, 62 1 << order); 63 } 64 #else 65 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order) 66 { 67 return false; 68 } 69 #endif 70 static unsigned long hugetlb_cma_size __initdata; 71 72 __initdata struct list_head huge_boot_pages[MAX_NUMNODES]; 73 74 /* for command line parsing */ 75 static struct hstate * __initdata parsed_hstate; 76 static unsigned long __initdata default_hstate_max_huge_pages; 77 static bool __initdata parsed_valid_hugepagesz = true; 78 static bool __initdata parsed_default_hugepagesz; 79 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata; 80 81 /* 82 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages, 83 * free_huge_pages, and surplus_huge_pages. 84 */ 85 DEFINE_SPINLOCK(hugetlb_lock); 86 87 /* 88 * Serializes faults on the same logical page. This is used to 89 * prevent spurious OOMs when the hugepage pool is fully utilized. 90 */ 91 static int num_fault_mutexes; 92 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp; 93 94 /* Forward declaration */ 95 static int hugetlb_acct_memory(struct hstate *h, long delta); 96 static void hugetlb_vma_lock_free(struct vm_area_struct *vma); 97 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma); 98 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma); 99 static void hugetlb_unshare_pmds(struct vm_area_struct *vma, 100 unsigned long start, unsigned long end); 101 static struct resv_map *vma_resv_map(struct vm_area_struct *vma); 102 103 static inline bool subpool_is_free(struct hugepage_subpool *spool) 104 { 105 if (spool->count) 106 return false; 107 if (spool->max_hpages != -1) 108 return spool->used_hpages == 0; 109 if (spool->min_hpages != -1) 110 return spool->rsv_hpages == spool->min_hpages; 111 112 return true; 113 } 114 115 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool, 116 unsigned long irq_flags) 117 { 118 spin_unlock_irqrestore(&spool->lock, irq_flags); 119 120 /* If no pages are used, and no other handles to the subpool 121 * remain, give up any reservations based on minimum size and 122 * free the subpool */ 123 if (subpool_is_free(spool)) { 124 if (spool->min_hpages != -1) 125 hugetlb_acct_memory(spool->hstate, 126 -spool->min_hpages); 127 kfree(spool); 128 } 129 } 130 131 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages, 132 long min_hpages) 133 { 134 struct hugepage_subpool *spool; 135 136 spool = kzalloc(sizeof(*spool), GFP_KERNEL); 137 if (!spool) 138 return NULL; 139 140 spin_lock_init(&spool->lock); 141 spool->count = 1; 142 spool->max_hpages = max_hpages; 143 spool->hstate = h; 144 spool->min_hpages = min_hpages; 145 146 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) { 147 kfree(spool); 148 return NULL; 149 } 150 spool->rsv_hpages = min_hpages; 151 152 return spool; 153 } 154 155 void hugepage_put_subpool(struct hugepage_subpool *spool) 156 { 157 unsigned long flags; 158 159 spin_lock_irqsave(&spool->lock, flags); 160 BUG_ON(!spool->count); 161 spool->count--; 162 unlock_or_release_subpool(spool, flags); 163 } 164 165 /* 166 * Subpool accounting for allocating and reserving pages. 167 * Return -ENOMEM if there are not enough resources to satisfy the 168 * request. Otherwise, return the number of pages by which the 169 * global pools must be adjusted (upward). The returned value may 170 * only be different than the passed value (delta) in the case where 171 * a subpool minimum size must be maintained. 172 */ 173 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool, 174 long delta) 175 { 176 long ret = delta; 177 178 if (!spool) 179 return ret; 180 181 spin_lock_irq(&spool->lock); 182 183 if (spool->max_hpages != -1) { /* maximum size accounting */ 184 if ((spool->used_hpages + delta) <= spool->max_hpages) 185 spool->used_hpages += delta; 186 else { 187 ret = -ENOMEM; 188 goto unlock_ret; 189 } 190 } 191 192 /* minimum size accounting */ 193 if (spool->min_hpages != -1 && spool->rsv_hpages) { 194 if (delta > spool->rsv_hpages) { 195 /* 196 * Asking for more reserves than those already taken on 197 * behalf of subpool. Return difference. 198 */ 199 ret = delta - spool->rsv_hpages; 200 spool->rsv_hpages = 0; 201 } else { 202 ret = 0; /* reserves already accounted for */ 203 spool->rsv_hpages -= delta; 204 } 205 } 206 207 unlock_ret: 208 spin_unlock_irq(&spool->lock); 209 return ret; 210 } 211 212 /* 213 * Subpool accounting for freeing and unreserving pages. 214 * Return the number of global page reservations that must be dropped. 215 * The return value may only be different than the passed value (delta) 216 * in the case where a subpool minimum size must be maintained. 217 */ 218 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool, 219 long delta) 220 { 221 long ret = delta; 222 unsigned long flags; 223 224 if (!spool) 225 return delta; 226 227 spin_lock_irqsave(&spool->lock, flags); 228 229 if (spool->max_hpages != -1) /* maximum size accounting */ 230 spool->used_hpages -= delta; 231 232 /* minimum size accounting */ 233 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) { 234 if (spool->rsv_hpages + delta <= spool->min_hpages) 235 ret = 0; 236 else 237 ret = spool->rsv_hpages + delta - spool->min_hpages; 238 239 spool->rsv_hpages += delta; 240 if (spool->rsv_hpages > spool->min_hpages) 241 spool->rsv_hpages = spool->min_hpages; 242 } 243 244 /* 245 * If hugetlbfs_put_super couldn't free spool due to an outstanding 246 * quota reference, free it now. 247 */ 248 unlock_or_release_subpool(spool, flags); 249 250 return ret; 251 } 252 253 static inline struct hugepage_subpool *subpool_inode(struct inode *inode) 254 { 255 return HUGETLBFS_SB(inode->i_sb)->spool; 256 } 257 258 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma) 259 { 260 return subpool_inode(file_inode(vma->vm_file)); 261 } 262 263 /* 264 * hugetlb vma_lock helper routines 265 */ 266 void hugetlb_vma_lock_read(struct vm_area_struct *vma) 267 { 268 if (__vma_shareable_lock(vma)) { 269 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 270 271 down_read(&vma_lock->rw_sema); 272 } else if (__vma_private_lock(vma)) { 273 struct resv_map *resv_map = vma_resv_map(vma); 274 275 down_read(&resv_map->rw_sema); 276 } 277 } 278 279 void hugetlb_vma_unlock_read(struct vm_area_struct *vma) 280 { 281 if (__vma_shareable_lock(vma)) { 282 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 283 284 up_read(&vma_lock->rw_sema); 285 } else if (__vma_private_lock(vma)) { 286 struct resv_map *resv_map = vma_resv_map(vma); 287 288 up_read(&resv_map->rw_sema); 289 } 290 } 291 292 void hugetlb_vma_lock_write(struct vm_area_struct *vma) 293 { 294 if (__vma_shareable_lock(vma)) { 295 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 296 297 down_write(&vma_lock->rw_sema); 298 } else if (__vma_private_lock(vma)) { 299 struct resv_map *resv_map = vma_resv_map(vma); 300 301 down_write(&resv_map->rw_sema); 302 } 303 } 304 305 void hugetlb_vma_unlock_write(struct vm_area_struct *vma) 306 { 307 if (__vma_shareable_lock(vma)) { 308 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 309 310 up_write(&vma_lock->rw_sema); 311 } else if (__vma_private_lock(vma)) { 312 struct resv_map *resv_map = vma_resv_map(vma); 313 314 up_write(&resv_map->rw_sema); 315 } 316 } 317 318 int hugetlb_vma_trylock_write(struct vm_area_struct *vma) 319 { 320 321 if (__vma_shareable_lock(vma)) { 322 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 323 324 return down_write_trylock(&vma_lock->rw_sema); 325 } else if (__vma_private_lock(vma)) { 326 struct resv_map *resv_map = vma_resv_map(vma); 327 328 return down_write_trylock(&resv_map->rw_sema); 329 } 330 331 return 1; 332 } 333 334 void hugetlb_vma_assert_locked(struct vm_area_struct *vma) 335 { 336 if (__vma_shareable_lock(vma)) { 337 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 338 339 lockdep_assert_held(&vma_lock->rw_sema); 340 } else if (__vma_private_lock(vma)) { 341 struct resv_map *resv_map = vma_resv_map(vma); 342 343 lockdep_assert_held(&resv_map->rw_sema); 344 } 345 } 346 347 void hugetlb_vma_lock_release(struct kref *kref) 348 { 349 struct hugetlb_vma_lock *vma_lock = container_of(kref, 350 struct hugetlb_vma_lock, refs); 351 352 kfree(vma_lock); 353 } 354 355 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock) 356 { 357 struct vm_area_struct *vma = vma_lock->vma; 358 359 /* 360 * vma_lock structure may or not be released as a result of put, 361 * it certainly will no longer be attached to vma so clear pointer. 362 * Semaphore synchronizes access to vma_lock->vma field. 363 */ 364 vma_lock->vma = NULL; 365 vma->vm_private_data = NULL; 366 up_write(&vma_lock->rw_sema); 367 kref_put(&vma_lock->refs, hugetlb_vma_lock_release); 368 } 369 370 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma) 371 { 372 if (__vma_shareable_lock(vma)) { 373 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 374 375 __hugetlb_vma_unlock_write_put(vma_lock); 376 } else if (__vma_private_lock(vma)) { 377 struct resv_map *resv_map = vma_resv_map(vma); 378 379 /* no free for anon vmas, but still need to unlock */ 380 up_write(&resv_map->rw_sema); 381 } 382 } 383 384 static void hugetlb_vma_lock_free(struct vm_area_struct *vma) 385 { 386 /* 387 * Only present in sharable vmas. 388 */ 389 if (!vma || !__vma_shareable_lock(vma)) 390 return; 391 392 if (vma->vm_private_data) { 393 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 394 395 down_write(&vma_lock->rw_sema); 396 __hugetlb_vma_unlock_write_put(vma_lock); 397 } 398 } 399 400 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma) 401 { 402 struct hugetlb_vma_lock *vma_lock; 403 404 /* Only establish in (flags) sharable vmas */ 405 if (!vma || !(vma->vm_flags & VM_MAYSHARE)) 406 return; 407 408 /* Should never get here with non-NULL vm_private_data */ 409 if (vma->vm_private_data) 410 return; 411 412 vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL); 413 if (!vma_lock) { 414 /* 415 * If we can not allocate structure, then vma can not 416 * participate in pmd sharing. This is only a possible 417 * performance enhancement and memory saving issue. 418 * However, the lock is also used to synchronize page 419 * faults with truncation. If the lock is not present, 420 * unlikely races could leave pages in a file past i_size 421 * until the file is removed. Warn in the unlikely case of 422 * allocation failure. 423 */ 424 pr_warn_once("HugeTLB: unable to allocate vma specific lock\n"); 425 return; 426 } 427 428 kref_init(&vma_lock->refs); 429 init_rwsem(&vma_lock->rw_sema); 430 vma_lock->vma = vma; 431 vma->vm_private_data = vma_lock; 432 } 433 434 /* Helper that removes a struct file_region from the resv_map cache and returns 435 * it for use. 436 */ 437 static struct file_region * 438 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to) 439 { 440 struct file_region *nrg; 441 442 VM_BUG_ON(resv->region_cache_count <= 0); 443 444 resv->region_cache_count--; 445 nrg = list_first_entry(&resv->region_cache, struct file_region, link); 446 list_del(&nrg->link); 447 448 nrg->from = from; 449 nrg->to = to; 450 451 return nrg; 452 } 453 454 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg, 455 struct file_region *rg) 456 { 457 #ifdef CONFIG_CGROUP_HUGETLB 458 nrg->reservation_counter = rg->reservation_counter; 459 nrg->css = rg->css; 460 if (rg->css) 461 css_get(rg->css); 462 #endif 463 } 464 465 /* Helper that records hugetlb_cgroup uncharge info. */ 466 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg, 467 struct hstate *h, 468 struct resv_map *resv, 469 struct file_region *nrg) 470 { 471 #ifdef CONFIG_CGROUP_HUGETLB 472 if (h_cg) { 473 nrg->reservation_counter = 474 &h_cg->rsvd_hugepage[hstate_index(h)]; 475 nrg->css = &h_cg->css; 476 /* 477 * The caller will hold exactly one h_cg->css reference for the 478 * whole contiguous reservation region. But this area might be 479 * scattered when there are already some file_regions reside in 480 * it. As a result, many file_regions may share only one css 481 * reference. In order to ensure that one file_region must hold 482 * exactly one h_cg->css reference, we should do css_get for 483 * each file_region and leave the reference held by caller 484 * untouched. 485 */ 486 css_get(&h_cg->css); 487 if (!resv->pages_per_hpage) 488 resv->pages_per_hpage = pages_per_huge_page(h); 489 /* pages_per_hpage should be the same for all entries in 490 * a resv_map. 491 */ 492 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h)); 493 } else { 494 nrg->reservation_counter = NULL; 495 nrg->css = NULL; 496 } 497 #endif 498 } 499 500 static void put_uncharge_info(struct file_region *rg) 501 { 502 #ifdef CONFIG_CGROUP_HUGETLB 503 if (rg->css) 504 css_put(rg->css); 505 #endif 506 } 507 508 static bool has_same_uncharge_info(struct file_region *rg, 509 struct file_region *org) 510 { 511 #ifdef CONFIG_CGROUP_HUGETLB 512 return rg->reservation_counter == org->reservation_counter && 513 rg->css == org->css; 514 515 #else 516 return true; 517 #endif 518 } 519 520 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg) 521 { 522 struct file_region *nrg, *prg; 523 524 prg = list_prev_entry(rg, link); 525 if (&prg->link != &resv->regions && prg->to == rg->from && 526 has_same_uncharge_info(prg, rg)) { 527 prg->to = rg->to; 528 529 list_del(&rg->link); 530 put_uncharge_info(rg); 531 kfree(rg); 532 533 rg = prg; 534 } 535 536 nrg = list_next_entry(rg, link); 537 if (&nrg->link != &resv->regions && nrg->from == rg->to && 538 has_same_uncharge_info(nrg, rg)) { 539 nrg->from = rg->from; 540 541 list_del(&rg->link); 542 put_uncharge_info(rg); 543 kfree(rg); 544 } 545 } 546 547 static inline long 548 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from, 549 long to, struct hstate *h, struct hugetlb_cgroup *cg, 550 long *regions_needed) 551 { 552 struct file_region *nrg; 553 554 if (!regions_needed) { 555 nrg = get_file_region_entry_from_cache(map, from, to); 556 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg); 557 list_add(&nrg->link, rg); 558 coalesce_file_region(map, nrg); 559 } else 560 *regions_needed += 1; 561 562 return to - from; 563 } 564 565 /* 566 * Must be called with resv->lock held. 567 * 568 * Calling this with regions_needed != NULL will count the number of pages 569 * to be added but will not modify the linked list. And regions_needed will 570 * indicate the number of file_regions needed in the cache to carry out to add 571 * the regions for this range. 572 */ 573 static long add_reservation_in_range(struct resv_map *resv, long f, long t, 574 struct hugetlb_cgroup *h_cg, 575 struct hstate *h, long *regions_needed) 576 { 577 long add = 0; 578 struct list_head *head = &resv->regions; 579 long last_accounted_offset = f; 580 struct file_region *iter, *trg = NULL; 581 struct list_head *rg = NULL; 582 583 if (regions_needed) 584 *regions_needed = 0; 585 586 /* In this loop, we essentially handle an entry for the range 587 * [last_accounted_offset, iter->from), at every iteration, with some 588 * bounds checking. 589 */ 590 list_for_each_entry_safe(iter, trg, head, link) { 591 /* Skip irrelevant regions that start before our range. */ 592 if (iter->from < f) { 593 /* If this region ends after the last accounted offset, 594 * then we need to update last_accounted_offset. 595 */ 596 if (iter->to > last_accounted_offset) 597 last_accounted_offset = iter->to; 598 continue; 599 } 600 601 /* When we find a region that starts beyond our range, we've 602 * finished. 603 */ 604 if (iter->from >= t) { 605 rg = iter->link.prev; 606 break; 607 } 608 609 /* Add an entry for last_accounted_offset -> iter->from, and 610 * update last_accounted_offset. 611 */ 612 if (iter->from > last_accounted_offset) 613 add += hugetlb_resv_map_add(resv, iter->link.prev, 614 last_accounted_offset, 615 iter->from, h, h_cg, 616 regions_needed); 617 618 last_accounted_offset = iter->to; 619 } 620 621 /* Handle the case where our range extends beyond 622 * last_accounted_offset. 623 */ 624 if (!rg) 625 rg = head->prev; 626 if (last_accounted_offset < t) 627 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset, 628 t, h, h_cg, regions_needed); 629 630 return add; 631 } 632 633 /* Must be called with resv->lock acquired. Will drop lock to allocate entries. 634 */ 635 static int allocate_file_region_entries(struct resv_map *resv, 636 int regions_needed) 637 __must_hold(&resv->lock) 638 { 639 LIST_HEAD(allocated_regions); 640 int to_allocate = 0, i = 0; 641 struct file_region *trg = NULL, *rg = NULL; 642 643 VM_BUG_ON(regions_needed < 0); 644 645 /* 646 * Check for sufficient descriptors in the cache to accommodate 647 * the number of in progress add operations plus regions_needed. 648 * 649 * This is a while loop because when we drop the lock, some other call 650 * to region_add or region_del may have consumed some region_entries, 651 * so we keep looping here until we finally have enough entries for 652 * (adds_in_progress + regions_needed). 653 */ 654 while (resv->region_cache_count < 655 (resv->adds_in_progress + regions_needed)) { 656 to_allocate = resv->adds_in_progress + regions_needed - 657 resv->region_cache_count; 658 659 /* At this point, we should have enough entries in the cache 660 * for all the existing adds_in_progress. We should only be 661 * needing to allocate for regions_needed. 662 */ 663 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress); 664 665 spin_unlock(&resv->lock); 666 for (i = 0; i < to_allocate; i++) { 667 trg = kmalloc(sizeof(*trg), GFP_KERNEL); 668 if (!trg) 669 goto out_of_memory; 670 list_add(&trg->link, &allocated_regions); 671 } 672 673 spin_lock(&resv->lock); 674 675 list_splice(&allocated_regions, &resv->region_cache); 676 resv->region_cache_count += to_allocate; 677 } 678 679 return 0; 680 681 out_of_memory: 682 list_for_each_entry_safe(rg, trg, &allocated_regions, link) { 683 list_del(&rg->link); 684 kfree(rg); 685 } 686 return -ENOMEM; 687 } 688 689 /* 690 * Add the huge page range represented by [f, t) to the reserve 691 * map. Regions will be taken from the cache to fill in this range. 692 * Sufficient regions should exist in the cache due to the previous 693 * call to region_chg with the same range, but in some cases the cache will not 694 * have sufficient entries due to races with other code doing region_add or 695 * region_del. The extra needed entries will be allocated. 696 * 697 * regions_needed is the out value provided by a previous call to region_chg. 698 * 699 * Return the number of new huge pages added to the map. This number is greater 700 * than or equal to zero. If file_region entries needed to be allocated for 701 * this operation and we were not able to allocate, it returns -ENOMEM. 702 * region_add of regions of length 1 never allocate file_regions and cannot 703 * fail; region_chg will always allocate at least 1 entry and a region_add for 704 * 1 page will only require at most 1 entry. 705 */ 706 static long region_add(struct resv_map *resv, long f, long t, 707 long in_regions_needed, struct hstate *h, 708 struct hugetlb_cgroup *h_cg) 709 { 710 long add = 0, actual_regions_needed = 0; 711 712 spin_lock(&resv->lock); 713 retry: 714 715 /* Count how many regions are actually needed to execute this add. */ 716 add_reservation_in_range(resv, f, t, NULL, NULL, 717 &actual_regions_needed); 718 719 /* 720 * Check for sufficient descriptors in the cache to accommodate 721 * this add operation. Note that actual_regions_needed may be greater 722 * than in_regions_needed, as the resv_map may have been modified since 723 * the region_chg call. In this case, we need to make sure that we 724 * allocate extra entries, such that we have enough for all the 725 * existing adds_in_progress, plus the excess needed for this 726 * operation. 727 */ 728 if (actual_regions_needed > in_regions_needed && 729 resv->region_cache_count < 730 resv->adds_in_progress + 731 (actual_regions_needed - in_regions_needed)) { 732 /* region_add operation of range 1 should never need to 733 * allocate file_region entries. 734 */ 735 VM_BUG_ON(t - f <= 1); 736 737 if (allocate_file_region_entries( 738 resv, actual_regions_needed - in_regions_needed)) { 739 return -ENOMEM; 740 } 741 742 goto retry; 743 } 744 745 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL); 746 747 resv->adds_in_progress -= in_regions_needed; 748 749 spin_unlock(&resv->lock); 750 return add; 751 } 752 753 /* 754 * Examine the existing reserve map and determine how many 755 * huge pages in the specified range [f, t) are NOT currently 756 * represented. This routine is called before a subsequent 757 * call to region_add that will actually modify the reserve 758 * map to add the specified range [f, t). region_chg does 759 * not change the number of huge pages represented by the 760 * map. A number of new file_region structures is added to the cache as a 761 * placeholder, for the subsequent region_add call to use. At least 1 762 * file_region structure is added. 763 * 764 * out_regions_needed is the number of regions added to the 765 * resv->adds_in_progress. This value needs to be provided to a follow up call 766 * to region_add or region_abort for proper accounting. 767 * 768 * Returns the number of huge pages that need to be added to the existing 769 * reservation map for the range [f, t). This number is greater or equal to 770 * zero. -ENOMEM is returned if a new file_region structure or cache entry 771 * is needed and can not be allocated. 772 */ 773 static long region_chg(struct resv_map *resv, long f, long t, 774 long *out_regions_needed) 775 { 776 long chg = 0; 777 778 spin_lock(&resv->lock); 779 780 /* Count how many hugepages in this range are NOT represented. */ 781 chg = add_reservation_in_range(resv, f, t, NULL, NULL, 782 out_regions_needed); 783 784 if (*out_regions_needed == 0) 785 *out_regions_needed = 1; 786 787 if (allocate_file_region_entries(resv, *out_regions_needed)) 788 return -ENOMEM; 789 790 resv->adds_in_progress += *out_regions_needed; 791 792 spin_unlock(&resv->lock); 793 return chg; 794 } 795 796 /* 797 * Abort the in progress add operation. The adds_in_progress field 798 * of the resv_map keeps track of the operations in progress between 799 * calls to region_chg and region_add. Operations are sometimes 800 * aborted after the call to region_chg. In such cases, region_abort 801 * is called to decrement the adds_in_progress counter. regions_needed 802 * is the value returned by the region_chg call, it is used to decrement 803 * the adds_in_progress counter. 804 * 805 * NOTE: The range arguments [f, t) are not needed or used in this 806 * routine. They are kept to make reading the calling code easier as 807 * arguments will match the associated region_chg call. 808 */ 809 static void region_abort(struct resv_map *resv, long f, long t, 810 long regions_needed) 811 { 812 spin_lock(&resv->lock); 813 VM_BUG_ON(!resv->region_cache_count); 814 resv->adds_in_progress -= regions_needed; 815 spin_unlock(&resv->lock); 816 } 817 818 /* 819 * Delete the specified range [f, t) from the reserve map. If the 820 * t parameter is LONG_MAX, this indicates that ALL regions after f 821 * should be deleted. Locate the regions which intersect [f, t) 822 * and either trim, delete or split the existing regions. 823 * 824 * Returns the number of huge pages deleted from the reserve map. 825 * In the normal case, the return value is zero or more. In the 826 * case where a region must be split, a new region descriptor must 827 * be allocated. If the allocation fails, -ENOMEM will be returned. 828 * NOTE: If the parameter t == LONG_MAX, then we will never split 829 * a region and possibly return -ENOMEM. Callers specifying 830 * t == LONG_MAX do not need to check for -ENOMEM error. 831 */ 832 static long region_del(struct resv_map *resv, long f, long t) 833 { 834 struct list_head *head = &resv->regions; 835 struct file_region *rg, *trg; 836 struct file_region *nrg = NULL; 837 long del = 0; 838 839 retry: 840 spin_lock(&resv->lock); 841 list_for_each_entry_safe(rg, trg, head, link) { 842 /* 843 * Skip regions before the range to be deleted. file_region 844 * ranges are normally of the form [from, to). However, there 845 * may be a "placeholder" entry in the map which is of the form 846 * (from, to) with from == to. Check for placeholder entries 847 * at the beginning of the range to be deleted. 848 */ 849 if (rg->to <= f && (rg->to != rg->from || rg->to != f)) 850 continue; 851 852 if (rg->from >= t) 853 break; 854 855 if (f > rg->from && t < rg->to) { /* Must split region */ 856 /* 857 * Check for an entry in the cache before dropping 858 * lock and attempting allocation. 859 */ 860 if (!nrg && 861 resv->region_cache_count > resv->adds_in_progress) { 862 nrg = list_first_entry(&resv->region_cache, 863 struct file_region, 864 link); 865 list_del(&nrg->link); 866 resv->region_cache_count--; 867 } 868 869 if (!nrg) { 870 spin_unlock(&resv->lock); 871 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 872 if (!nrg) 873 return -ENOMEM; 874 goto retry; 875 } 876 877 del += t - f; 878 hugetlb_cgroup_uncharge_file_region( 879 resv, rg, t - f, false); 880 881 /* New entry for end of split region */ 882 nrg->from = t; 883 nrg->to = rg->to; 884 885 copy_hugetlb_cgroup_uncharge_info(nrg, rg); 886 887 INIT_LIST_HEAD(&nrg->link); 888 889 /* Original entry is trimmed */ 890 rg->to = f; 891 892 list_add(&nrg->link, &rg->link); 893 nrg = NULL; 894 break; 895 } 896 897 if (f <= rg->from && t >= rg->to) { /* Remove entire region */ 898 del += rg->to - rg->from; 899 hugetlb_cgroup_uncharge_file_region(resv, rg, 900 rg->to - rg->from, true); 901 list_del(&rg->link); 902 kfree(rg); 903 continue; 904 } 905 906 if (f <= rg->from) { /* Trim beginning of region */ 907 hugetlb_cgroup_uncharge_file_region(resv, rg, 908 t - rg->from, false); 909 910 del += t - rg->from; 911 rg->from = t; 912 } else { /* Trim end of region */ 913 hugetlb_cgroup_uncharge_file_region(resv, rg, 914 rg->to - f, false); 915 916 del += rg->to - f; 917 rg->to = f; 918 } 919 } 920 921 spin_unlock(&resv->lock); 922 kfree(nrg); 923 return del; 924 } 925 926 /* 927 * A rare out of memory error was encountered which prevented removal of 928 * the reserve map region for a page. The huge page itself was free'ed 929 * and removed from the page cache. This routine will adjust the subpool 930 * usage count, and the global reserve count if needed. By incrementing 931 * these counts, the reserve map entry which could not be deleted will 932 * appear as a "reserved" entry instead of simply dangling with incorrect 933 * counts. 934 */ 935 void hugetlb_fix_reserve_counts(struct inode *inode) 936 { 937 struct hugepage_subpool *spool = subpool_inode(inode); 938 long rsv_adjust; 939 bool reserved = false; 940 941 rsv_adjust = hugepage_subpool_get_pages(spool, 1); 942 if (rsv_adjust > 0) { 943 struct hstate *h = hstate_inode(inode); 944 945 if (!hugetlb_acct_memory(h, 1)) 946 reserved = true; 947 } else if (!rsv_adjust) { 948 reserved = true; 949 } 950 951 if (!reserved) 952 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n"); 953 } 954 955 /* 956 * Count and return the number of huge pages in the reserve map 957 * that intersect with the range [f, t). 958 */ 959 static long region_count(struct resv_map *resv, long f, long t) 960 { 961 struct list_head *head = &resv->regions; 962 struct file_region *rg; 963 long chg = 0; 964 965 spin_lock(&resv->lock); 966 /* Locate each segment we overlap with, and count that overlap. */ 967 list_for_each_entry(rg, head, link) { 968 long seg_from; 969 long seg_to; 970 971 if (rg->to <= f) 972 continue; 973 if (rg->from >= t) 974 break; 975 976 seg_from = max(rg->from, f); 977 seg_to = min(rg->to, t); 978 979 chg += seg_to - seg_from; 980 } 981 spin_unlock(&resv->lock); 982 983 return chg; 984 } 985 986 /* 987 * Convert the address within this vma to the page offset within 988 * the mapping, huge page units here. 989 */ 990 static pgoff_t vma_hugecache_offset(struct hstate *h, 991 struct vm_area_struct *vma, unsigned long address) 992 { 993 return ((address - vma->vm_start) >> huge_page_shift(h)) + 994 (vma->vm_pgoff >> huge_page_order(h)); 995 } 996 997 /** 998 * vma_kernel_pagesize - Page size granularity for this VMA. 999 * @vma: The user mapping. 1000 * 1001 * Folios in this VMA will be aligned to, and at least the size of the 1002 * number of bytes returned by this function. 1003 * 1004 * Return: The default size of the folios allocated when backing a VMA. 1005 */ 1006 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) 1007 { 1008 if (vma->vm_ops && vma->vm_ops->pagesize) 1009 return vma->vm_ops->pagesize(vma); 1010 return PAGE_SIZE; 1011 } 1012 EXPORT_SYMBOL_GPL(vma_kernel_pagesize); 1013 1014 /* 1015 * Return the page size being used by the MMU to back a VMA. In the majority 1016 * of cases, the page size used by the kernel matches the MMU size. On 1017 * architectures where it differs, an architecture-specific 'strong' 1018 * version of this symbol is required. 1019 */ 1020 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 1021 { 1022 return vma_kernel_pagesize(vma); 1023 } 1024 1025 /* 1026 * Flags for MAP_PRIVATE reservations. These are stored in the bottom 1027 * bits of the reservation map pointer, which are always clear due to 1028 * alignment. 1029 */ 1030 #define HPAGE_RESV_OWNER (1UL << 0) 1031 #define HPAGE_RESV_UNMAPPED (1UL << 1) 1032 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) 1033 1034 /* 1035 * These helpers are used to track how many pages are reserved for 1036 * faults in a MAP_PRIVATE mapping. Only the process that called mmap() 1037 * is guaranteed to have their future faults succeed. 1038 * 1039 * With the exception of hugetlb_dup_vma_private() which is called at fork(), 1040 * the reserve counters are updated with the hugetlb_lock held. It is safe 1041 * to reset the VMA at fork() time as it is not in use yet and there is no 1042 * chance of the global counters getting corrupted as a result of the values. 1043 * 1044 * The private mapping reservation is represented in a subtly different 1045 * manner to a shared mapping. A shared mapping has a region map associated 1046 * with the underlying file, this region map represents the backing file 1047 * pages which have ever had a reservation assigned which this persists even 1048 * after the page is instantiated. A private mapping has a region map 1049 * associated with the original mmap which is attached to all VMAs which 1050 * reference it, this region map represents those offsets which have consumed 1051 * reservation ie. where pages have been instantiated. 1052 */ 1053 static unsigned long get_vma_private_data(struct vm_area_struct *vma) 1054 { 1055 return (unsigned long)vma->vm_private_data; 1056 } 1057 1058 static void set_vma_private_data(struct vm_area_struct *vma, 1059 unsigned long value) 1060 { 1061 vma->vm_private_data = (void *)value; 1062 } 1063 1064 static void 1065 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map, 1066 struct hugetlb_cgroup *h_cg, 1067 struct hstate *h) 1068 { 1069 #ifdef CONFIG_CGROUP_HUGETLB 1070 if (!h_cg || !h) { 1071 resv_map->reservation_counter = NULL; 1072 resv_map->pages_per_hpage = 0; 1073 resv_map->css = NULL; 1074 } else { 1075 resv_map->reservation_counter = 1076 &h_cg->rsvd_hugepage[hstate_index(h)]; 1077 resv_map->pages_per_hpage = pages_per_huge_page(h); 1078 resv_map->css = &h_cg->css; 1079 } 1080 #endif 1081 } 1082 1083 struct resv_map *resv_map_alloc(void) 1084 { 1085 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); 1086 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL); 1087 1088 if (!resv_map || !rg) { 1089 kfree(resv_map); 1090 kfree(rg); 1091 return NULL; 1092 } 1093 1094 kref_init(&resv_map->refs); 1095 spin_lock_init(&resv_map->lock); 1096 INIT_LIST_HEAD(&resv_map->regions); 1097 init_rwsem(&resv_map->rw_sema); 1098 1099 resv_map->adds_in_progress = 0; 1100 /* 1101 * Initialize these to 0. On shared mappings, 0's here indicate these 1102 * fields don't do cgroup accounting. On private mappings, these will be 1103 * re-initialized to the proper values, to indicate that hugetlb cgroup 1104 * reservations are to be un-charged from here. 1105 */ 1106 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL); 1107 1108 INIT_LIST_HEAD(&resv_map->region_cache); 1109 list_add(&rg->link, &resv_map->region_cache); 1110 resv_map->region_cache_count = 1; 1111 1112 return resv_map; 1113 } 1114 1115 void resv_map_release(struct kref *ref) 1116 { 1117 struct resv_map *resv_map = container_of(ref, struct resv_map, refs); 1118 struct list_head *head = &resv_map->region_cache; 1119 struct file_region *rg, *trg; 1120 1121 /* Clear out any active regions before we release the map. */ 1122 region_del(resv_map, 0, LONG_MAX); 1123 1124 /* ... and any entries left in the cache */ 1125 list_for_each_entry_safe(rg, trg, head, link) { 1126 list_del(&rg->link); 1127 kfree(rg); 1128 } 1129 1130 VM_BUG_ON(resv_map->adds_in_progress); 1131 1132 kfree(resv_map); 1133 } 1134 1135 static inline struct resv_map *inode_resv_map(struct inode *inode) 1136 { 1137 /* 1138 * At inode evict time, i_mapping may not point to the original 1139 * address space within the inode. This original address space 1140 * contains the pointer to the resv_map. So, always use the 1141 * address space embedded within the inode. 1142 * The VERY common case is inode->mapping == &inode->i_data but, 1143 * this may not be true for device special inodes. 1144 */ 1145 return (struct resv_map *)(&inode->i_data)->i_private_data; 1146 } 1147 1148 static struct resv_map *vma_resv_map(struct vm_area_struct *vma) 1149 { 1150 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1151 if (vma->vm_flags & VM_MAYSHARE) { 1152 struct address_space *mapping = vma->vm_file->f_mapping; 1153 struct inode *inode = mapping->host; 1154 1155 return inode_resv_map(inode); 1156 1157 } else { 1158 return (struct resv_map *)(get_vma_private_data(vma) & 1159 ~HPAGE_RESV_MASK); 1160 } 1161 } 1162 1163 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) 1164 { 1165 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1166 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 1167 1168 set_vma_private_data(vma, (unsigned long)map); 1169 } 1170 1171 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) 1172 { 1173 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1174 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 1175 1176 set_vma_private_data(vma, get_vma_private_data(vma) | flags); 1177 } 1178 1179 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) 1180 { 1181 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1182 1183 return (get_vma_private_data(vma) & flag) != 0; 1184 } 1185 1186 bool __vma_private_lock(struct vm_area_struct *vma) 1187 { 1188 return !(vma->vm_flags & VM_MAYSHARE) && 1189 get_vma_private_data(vma) & ~HPAGE_RESV_MASK && 1190 is_vma_resv_set(vma, HPAGE_RESV_OWNER); 1191 } 1192 1193 void hugetlb_dup_vma_private(struct vm_area_struct *vma) 1194 { 1195 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1196 /* 1197 * Clear vm_private_data 1198 * - For shared mappings this is a per-vma semaphore that may be 1199 * allocated in a subsequent call to hugetlb_vm_op_open. 1200 * Before clearing, make sure pointer is not associated with vma 1201 * as this will leak the structure. This is the case when called 1202 * via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already 1203 * been called to allocate a new structure. 1204 * - For MAP_PRIVATE mappings, this is the reserve map which does 1205 * not apply to children. Faults generated by the children are 1206 * not guaranteed to succeed, even if read-only. 1207 */ 1208 if (vma->vm_flags & VM_MAYSHARE) { 1209 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 1210 1211 if (vma_lock && vma_lock->vma != vma) 1212 vma->vm_private_data = NULL; 1213 } else 1214 vma->vm_private_data = NULL; 1215 } 1216 1217 /* 1218 * Reset and decrement one ref on hugepage private reservation. 1219 * Called with mm->mmap_lock writer semaphore held. 1220 * This function should be only used by move_vma() and operate on 1221 * same sized vma. It should never come here with last ref on the 1222 * reservation. 1223 */ 1224 void clear_vma_resv_huge_pages(struct vm_area_struct *vma) 1225 { 1226 /* 1227 * Clear the old hugetlb private page reservation. 1228 * It has already been transferred to new_vma. 1229 * 1230 * During a mremap() operation of a hugetlb vma we call move_vma() 1231 * which copies vma into new_vma and unmaps vma. After the copy 1232 * operation both new_vma and vma share a reference to the resv_map 1233 * struct, and at that point vma is about to be unmapped. We don't 1234 * want to return the reservation to the pool at unmap of vma because 1235 * the reservation still lives on in new_vma, so simply decrement the 1236 * ref here and remove the resv_map reference from this vma. 1237 */ 1238 struct resv_map *reservations = vma_resv_map(vma); 1239 1240 if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 1241 resv_map_put_hugetlb_cgroup_uncharge_info(reservations); 1242 kref_put(&reservations->refs, resv_map_release); 1243 } 1244 1245 hugetlb_dup_vma_private(vma); 1246 } 1247 1248 /* Returns true if the VMA has associated reserve pages */ 1249 static bool vma_has_reserves(struct vm_area_struct *vma, long chg) 1250 { 1251 if (vma->vm_flags & VM_NORESERVE) { 1252 /* 1253 * This address is already reserved by other process(chg == 0), 1254 * so, we should decrement reserved count. Without decrementing, 1255 * reserve count remains after releasing inode, because this 1256 * allocated page will go into page cache and is regarded as 1257 * coming from reserved pool in releasing step. Currently, we 1258 * don't have any other solution to deal with this situation 1259 * properly, so add work-around here. 1260 */ 1261 if (vma->vm_flags & VM_MAYSHARE && chg == 0) 1262 return true; 1263 else 1264 return false; 1265 } 1266 1267 /* Shared mappings always use reserves */ 1268 if (vma->vm_flags & VM_MAYSHARE) { 1269 /* 1270 * We know VM_NORESERVE is not set. Therefore, there SHOULD 1271 * be a region map for all pages. The only situation where 1272 * there is no region map is if a hole was punched via 1273 * fallocate. In this case, there really are no reserves to 1274 * use. This situation is indicated if chg != 0. 1275 */ 1276 if (chg) 1277 return false; 1278 else 1279 return true; 1280 } 1281 1282 /* 1283 * Only the process that called mmap() has reserves for 1284 * private mappings. 1285 */ 1286 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 1287 /* 1288 * Like the shared case above, a hole punch or truncate 1289 * could have been performed on the private mapping. 1290 * Examine the value of chg to determine if reserves 1291 * actually exist or were previously consumed. 1292 * Very Subtle - The value of chg comes from a previous 1293 * call to vma_needs_reserves(). The reserve map for 1294 * private mappings has different (opposite) semantics 1295 * than that of shared mappings. vma_needs_reserves() 1296 * has already taken this difference in semantics into 1297 * account. Therefore, the meaning of chg is the same 1298 * as in the shared case above. Code could easily be 1299 * combined, but keeping it separate draws attention to 1300 * subtle differences. 1301 */ 1302 if (chg) 1303 return false; 1304 else 1305 return true; 1306 } 1307 1308 return false; 1309 } 1310 1311 static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio) 1312 { 1313 int nid = folio_nid(folio); 1314 1315 lockdep_assert_held(&hugetlb_lock); 1316 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio); 1317 1318 list_move(&folio->lru, &h->hugepage_freelists[nid]); 1319 h->free_huge_pages++; 1320 h->free_huge_pages_node[nid]++; 1321 folio_set_hugetlb_freed(folio); 1322 } 1323 1324 static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h, 1325 int nid) 1326 { 1327 struct folio *folio; 1328 bool pin = !!(current->flags & PF_MEMALLOC_PIN); 1329 1330 lockdep_assert_held(&hugetlb_lock); 1331 list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) { 1332 if (pin && !folio_is_longterm_pinnable(folio)) 1333 continue; 1334 1335 if (folio_test_hwpoison(folio)) 1336 continue; 1337 1338 list_move(&folio->lru, &h->hugepage_activelist); 1339 folio_ref_unfreeze(folio, 1); 1340 folio_clear_hugetlb_freed(folio); 1341 h->free_huge_pages--; 1342 h->free_huge_pages_node[nid]--; 1343 return folio; 1344 } 1345 1346 return NULL; 1347 } 1348 1349 static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask, 1350 int nid, nodemask_t *nmask) 1351 { 1352 unsigned int cpuset_mems_cookie; 1353 struct zonelist *zonelist; 1354 struct zone *zone; 1355 struct zoneref *z; 1356 int node = NUMA_NO_NODE; 1357 1358 zonelist = node_zonelist(nid, gfp_mask); 1359 1360 retry_cpuset: 1361 cpuset_mems_cookie = read_mems_allowed_begin(); 1362 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) { 1363 struct folio *folio; 1364 1365 if (!cpuset_zone_allowed(zone, gfp_mask)) 1366 continue; 1367 /* 1368 * no need to ask again on the same node. Pool is node rather than 1369 * zone aware 1370 */ 1371 if (zone_to_nid(zone) == node) 1372 continue; 1373 node = zone_to_nid(zone); 1374 1375 folio = dequeue_hugetlb_folio_node_exact(h, node); 1376 if (folio) 1377 return folio; 1378 } 1379 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie))) 1380 goto retry_cpuset; 1381 1382 return NULL; 1383 } 1384 1385 static unsigned long available_huge_pages(struct hstate *h) 1386 { 1387 return h->free_huge_pages - h->resv_huge_pages; 1388 } 1389 1390 static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h, 1391 struct vm_area_struct *vma, 1392 unsigned long address, int avoid_reserve, 1393 long chg) 1394 { 1395 struct folio *folio = NULL; 1396 struct mempolicy *mpol; 1397 gfp_t gfp_mask; 1398 nodemask_t *nodemask; 1399 int nid; 1400 1401 /* 1402 * A child process with MAP_PRIVATE mappings created by their parent 1403 * have no page reserves. This check ensures that reservations are 1404 * not "stolen". The child may still get SIGKILLed 1405 */ 1406 if (!vma_has_reserves(vma, chg) && !available_huge_pages(h)) 1407 goto err; 1408 1409 /* If reserves cannot be used, ensure enough pages are in the pool */ 1410 if (avoid_reserve && !available_huge_pages(h)) 1411 goto err; 1412 1413 gfp_mask = htlb_alloc_mask(h); 1414 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 1415 1416 if (mpol_is_preferred_many(mpol)) { 1417 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, 1418 nid, nodemask); 1419 1420 /* Fallback to all nodes if page==NULL */ 1421 nodemask = NULL; 1422 } 1423 1424 if (!folio) 1425 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, 1426 nid, nodemask); 1427 1428 if (folio && !avoid_reserve && vma_has_reserves(vma, chg)) { 1429 folio_set_hugetlb_restore_reserve(folio); 1430 h->resv_huge_pages--; 1431 } 1432 1433 mpol_cond_put(mpol); 1434 return folio; 1435 1436 err: 1437 return NULL; 1438 } 1439 1440 /* 1441 * common helper functions for hstate_next_node_to_{alloc|free}. 1442 * We may have allocated or freed a huge page based on a different 1443 * nodes_allowed previously, so h->next_node_to_{alloc|free} might 1444 * be outside of *nodes_allowed. Ensure that we use an allowed 1445 * node for alloc or free. 1446 */ 1447 static int next_node_allowed(int nid, nodemask_t *nodes_allowed) 1448 { 1449 nid = next_node_in(nid, *nodes_allowed); 1450 VM_BUG_ON(nid >= MAX_NUMNODES); 1451 1452 return nid; 1453 } 1454 1455 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed) 1456 { 1457 if (!node_isset(nid, *nodes_allowed)) 1458 nid = next_node_allowed(nid, nodes_allowed); 1459 return nid; 1460 } 1461 1462 /* 1463 * returns the previously saved node ["this node"] from which to 1464 * allocate a persistent huge page for the pool and advance the 1465 * next node from which to allocate, handling wrap at end of node 1466 * mask. 1467 */ 1468 static int hstate_next_node_to_alloc(int *next_node, 1469 nodemask_t *nodes_allowed) 1470 { 1471 int nid; 1472 1473 VM_BUG_ON(!nodes_allowed); 1474 1475 nid = get_valid_node_allowed(*next_node, nodes_allowed); 1476 *next_node = next_node_allowed(nid, nodes_allowed); 1477 1478 return nid; 1479 } 1480 1481 /* 1482 * helper for remove_pool_hugetlb_folio() - return the previously saved 1483 * node ["this node"] from which to free a huge page. Advance the 1484 * next node id whether or not we find a free huge page to free so 1485 * that the next attempt to free addresses the next node. 1486 */ 1487 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed) 1488 { 1489 int nid; 1490 1491 VM_BUG_ON(!nodes_allowed); 1492 1493 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed); 1494 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed); 1495 1496 return nid; 1497 } 1498 1499 #define for_each_node_mask_to_alloc(next_node, nr_nodes, node, mask) \ 1500 for (nr_nodes = nodes_weight(*mask); \ 1501 nr_nodes > 0 && \ 1502 ((node = hstate_next_node_to_alloc(next_node, mask)) || 1); \ 1503 nr_nodes--) 1504 1505 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \ 1506 for (nr_nodes = nodes_weight(*mask); \ 1507 nr_nodes > 0 && \ 1508 ((node = hstate_next_node_to_free(hs, mask)) || 1); \ 1509 nr_nodes--) 1510 1511 /* used to demote non-gigantic_huge pages as well */ 1512 static void __destroy_compound_gigantic_folio(struct folio *folio, 1513 unsigned int order, bool demote) 1514 { 1515 int i; 1516 int nr_pages = 1 << order; 1517 struct page *p; 1518 1519 atomic_set(&folio->_entire_mapcount, 0); 1520 atomic_set(&folio->_nr_pages_mapped, 0); 1521 atomic_set(&folio->_pincount, 0); 1522 1523 for (i = 1; i < nr_pages; i++) { 1524 p = folio_page(folio, i); 1525 p->flags &= ~PAGE_FLAGS_CHECK_AT_FREE; 1526 p->mapping = NULL; 1527 clear_compound_head(p); 1528 if (!demote) 1529 set_page_refcounted(p); 1530 } 1531 1532 __folio_clear_head(folio); 1533 } 1534 1535 static void destroy_compound_hugetlb_folio_for_demote(struct folio *folio, 1536 unsigned int order) 1537 { 1538 __destroy_compound_gigantic_folio(folio, order, true); 1539 } 1540 1541 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE 1542 static void destroy_compound_gigantic_folio(struct folio *folio, 1543 unsigned int order) 1544 { 1545 __destroy_compound_gigantic_folio(folio, order, false); 1546 } 1547 1548 static void free_gigantic_folio(struct folio *folio, unsigned int order) 1549 { 1550 /* 1551 * If the page isn't allocated using the cma allocator, 1552 * cma_release() returns false. 1553 */ 1554 #ifdef CONFIG_CMA 1555 int nid = folio_nid(folio); 1556 1557 if (cma_release(hugetlb_cma[nid], &folio->page, 1 << order)) 1558 return; 1559 #endif 1560 1561 free_contig_range(folio_pfn(folio), 1 << order); 1562 } 1563 1564 #ifdef CONFIG_CONTIG_ALLOC 1565 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask, 1566 int nid, nodemask_t *nodemask) 1567 { 1568 struct page *page; 1569 unsigned long nr_pages = pages_per_huge_page(h); 1570 if (nid == NUMA_NO_NODE) 1571 nid = numa_mem_id(); 1572 1573 #ifdef CONFIG_CMA 1574 { 1575 int node; 1576 1577 if (hugetlb_cma[nid]) { 1578 page = cma_alloc(hugetlb_cma[nid], nr_pages, 1579 huge_page_order(h), true); 1580 if (page) 1581 return page_folio(page); 1582 } 1583 1584 if (!(gfp_mask & __GFP_THISNODE)) { 1585 for_each_node_mask(node, *nodemask) { 1586 if (node == nid || !hugetlb_cma[node]) 1587 continue; 1588 1589 page = cma_alloc(hugetlb_cma[node], nr_pages, 1590 huge_page_order(h), true); 1591 if (page) 1592 return page_folio(page); 1593 } 1594 } 1595 } 1596 #endif 1597 1598 page = alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask); 1599 return page ? page_folio(page) : NULL; 1600 } 1601 1602 #else /* !CONFIG_CONTIG_ALLOC */ 1603 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask, 1604 int nid, nodemask_t *nodemask) 1605 { 1606 return NULL; 1607 } 1608 #endif /* CONFIG_CONTIG_ALLOC */ 1609 1610 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */ 1611 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask, 1612 int nid, nodemask_t *nodemask) 1613 { 1614 return NULL; 1615 } 1616 static inline void free_gigantic_folio(struct folio *folio, 1617 unsigned int order) { } 1618 static inline void destroy_compound_gigantic_folio(struct folio *folio, 1619 unsigned int order) { } 1620 #endif 1621 1622 static inline void __clear_hugetlb_destructor(struct hstate *h, 1623 struct folio *folio) 1624 { 1625 lockdep_assert_held(&hugetlb_lock); 1626 1627 folio_clear_hugetlb(folio); 1628 } 1629 1630 /* 1631 * Remove hugetlb folio from lists. 1632 * If vmemmap exists for the folio, update dtor so that the folio appears 1633 * as just a compound page. Otherwise, wait until after allocating vmemmap 1634 * to update dtor. 1635 * 1636 * A reference is held on the folio, except in the case of demote. 1637 * 1638 * Must be called with hugetlb lock held. 1639 */ 1640 static void __remove_hugetlb_folio(struct hstate *h, struct folio *folio, 1641 bool adjust_surplus, 1642 bool demote) 1643 { 1644 int nid = folio_nid(folio); 1645 1646 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio); 1647 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio); 1648 1649 lockdep_assert_held(&hugetlb_lock); 1650 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 1651 return; 1652 1653 list_del(&folio->lru); 1654 1655 if (folio_test_hugetlb_freed(folio)) { 1656 h->free_huge_pages--; 1657 h->free_huge_pages_node[nid]--; 1658 } 1659 if (adjust_surplus) { 1660 h->surplus_huge_pages--; 1661 h->surplus_huge_pages_node[nid]--; 1662 } 1663 1664 /* 1665 * We can only clear the hugetlb destructor after allocating vmemmap 1666 * pages. Otherwise, someone (memory error handling) may try to write 1667 * to tail struct pages. 1668 */ 1669 if (!folio_test_hugetlb_vmemmap_optimized(folio)) 1670 __clear_hugetlb_destructor(h, folio); 1671 1672 /* 1673 * In the case of demote we do not ref count the page as it will soon 1674 * be turned into a page of smaller size. 1675 */ 1676 if (!demote) 1677 folio_ref_unfreeze(folio, 1); 1678 1679 h->nr_huge_pages--; 1680 h->nr_huge_pages_node[nid]--; 1681 } 1682 1683 static void remove_hugetlb_folio(struct hstate *h, struct folio *folio, 1684 bool adjust_surplus) 1685 { 1686 __remove_hugetlb_folio(h, folio, adjust_surplus, false); 1687 } 1688 1689 static void remove_hugetlb_folio_for_demote(struct hstate *h, struct folio *folio, 1690 bool adjust_surplus) 1691 { 1692 __remove_hugetlb_folio(h, folio, adjust_surplus, true); 1693 } 1694 1695 static void add_hugetlb_folio(struct hstate *h, struct folio *folio, 1696 bool adjust_surplus) 1697 { 1698 int zeroed; 1699 int nid = folio_nid(folio); 1700 1701 VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio); 1702 1703 lockdep_assert_held(&hugetlb_lock); 1704 1705 INIT_LIST_HEAD(&folio->lru); 1706 h->nr_huge_pages++; 1707 h->nr_huge_pages_node[nid]++; 1708 1709 if (adjust_surplus) { 1710 h->surplus_huge_pages++; 1711 h->surplus_huge_pages_node[nid]++; 1712 } 1713 1714 folio_set_hugetlb(folio); 1715 folio_change_private(folio, NULL); 1716 /* 1717 * We have to set hugetlb_vmemmap_optimized again as above 1718 * folio_change_private(folio, NULL) cleared it. 1719 */ 1720 folio_set_hugetlb_vmemmap_optimized(folio); 1721 1722 /* 1723 * This folio is about to be managed by the hugetlb allocator and 1724 * should have no users. Drop our reference, and check for others 1725 * just in case. 1726 */ 1727 zeroed = folio_put_testzero(folio); 1728 if (unlikely(!zeroed)) 1729 /* 1730 * It is VERY unlikely soneone else has taken a ref 1731 * on the folio. In this case, we simply return as 1732 * free_huge_folio() will be called when this other ref 1733 * is dropped. 1734 */ 1735 return; 1736 1737 arch_clear_hugepage_flags(&folio->page); 1738 enqueue_hugetlb_folio(h, folio); 1739 } 1740 1741 static void __update_and_free_hugetlb_folio(struct hstate *h, 1742 struct folio *folio) 1743 { 1744 bool clear_dtor = folio_test_hugetlb_vmemmap_optimized(folio); 1745 1746 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 1747 return; 1748 1749 /* 1750 * If we don't know which subpages are hwpoisoned, we can't free 1751 * the hugepage, so it's leaked intentionally. 1752 */ 1753 if (folio_test_hugetlb_raw_hwp_unreliable(folio)) 1754 return; 1755 1756 /* 1757 * If folio is not vmemmap optimized (!clear_dtor), then the folio 1758 * is no longer identified as a hugetlb page. hugetlb_vmemmap_restore_folio 1759 * can only be passed hugetlb pages and will BUG otherwise. 1760 */ 1761 if (clear_dtor && hugetlb_vmemmap_restore_folio(h, folio)) { 1762 spin_lock_irq(&hugetlb_lock); 1763 /* 1764 * If we cannot allocate vmemmap pages, just refuse to free the 1765 * page and put the page back on the hugetlb free list and treat 1766 * as a surplus page. 1767 */ 1768 add_hugetlb_folio(h, folio, true); 1769 spin_unlock_irq(&hugetlb_lock); 1770 return; 1771 } 1772 1773 /* 1774 * Move PageHWPoison flag from head page to the raw error pages, 1775 * which makes any healthy subpages reusable. 1776 */ 1777 if (unlikely(folio_test_hwpoison(folio))) 1778 folio_clear_hugetlb_hwpoison(folio); 1779 1780 /* 1781 * If vmemmap pages were allocated above, then we need to clear the 1782 * hugetlb destructor under the hugetlb lock. 1783 */ 1784 if (clear_dtor) { 1785 spin_lock_irq(&hugetlb_lock); 1786 __clear_hugetlb_destructor(h, folio); 1787 spin_unlock_irq(&hugetlb_lock); 1788 } 1789 1790 /* 1791 * Non-gigantic pages demoted from CMA allocated gigantic pages 1792 * need to be given back to CMA in free_gigantic_folio. 1793 */ 1794 if (hstate_is_gigantic(h) || 1795 hugetlb_cma_folio(folio, huge_page_order(h))) { 1796 destroy_compound_gigantic_folio(folio, huge_page_order(h)); 1797 free_gigantic_folio(folio, huge_page_order(h)); 1798 } else { 1799 __free_pages(&folio->page, huge_page_order(h)); 1800 } 1801 } 1802 1803 /* 1804 * As update_and_free_hugetlb_folio() can be called under any context, so we cannot 1805 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the 1806 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate 1807 * the vmemmap pages. 1808 * 1809 * free_hpage_workfn() locklessly retrieves the linked list of pages to be 1810 * freed and frees them one-by-one. As the page->mapping pointer is going 1811 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node 1812 * structure of a lockless linked list of huge pages to be freed. 1813 */ 1814 static LLIST_HEAD(hpage_freelist); 1815 1816 static void free_hpage_workfn(struct work_struct *work) 1817 { 1818 struct llist_node *node; 1819 1820 node = llist_del_all(&hpage_freelist); 1821 1822 while (node) { 1823 struct folio *folio; 1824 struct hstate *h; 1825 1826 folio = container_of((struct address_space **)node, 1827 struct folio, mapping); 1828 node = node->next; 1829 folio->mapping = NULL; 1830 /* 1831 * The VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio) in 1832 * folio_hstate() is going to trigger because a previous call to 1833 * remove_hugetlb_folio() will clear the hugetlb bit, so do 1834 * not use folio_hstate() directly. 1835 */ 1836 h = size_to_hstate(folio_size(folio)); 1837 1838 __update_and_free_hugetlb_folio(h, folio); 1839 1840 cond_resched(); 1841 } 1842 } 1843 static DECLARE_WORK(free_hpage_work, free_hpage_workfn); 1844 1845 static inline void flush_free_hpage_work(struct hstate *h) 1846 { 1847 if (hugetlb_vmemmap_optimizable(h)) 1848 flush_work(&free_hpage_work); 1849 } 1850 1851 static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio, 1852 bool atomic) 1853 { 1854 if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) { 1855 __update_and_free_hugetlb_folio(h, folio); 1856 return; 1857 } 1858 1859 /* 1860 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages. 1861 * 1862 * Only call schedule_work() if hpage_freelist is previously 1863 * empty. Otherwise, schedule_work() had been called but the workfn 1864 * hasn't retrieved the list yet. 1865 */ 1866 if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist)) 1867 schedule_work(&free_hpage_work); 1868 } 1869 1870 static void bulk_vmemmap_restore_error(struct hstate *h, 1871 struct list_head *folio_list, 1872 struct list_head *non_hvo_folios) 1873 { 1874 struct folio *folio, *t_folio; 1875 1876 if (!list_empty(non_hvo_folios)) { 1877 /* 1878 * Free any restored hugetlb pages so that restore of the 1879 * entire list can be retried. 1880 * The idea is that in the common case of ENOMEM errors freeing 1881 * hugetlb pages with vmemmap we will free up memory so that we 1882 * can allocate vmemmap for more hugetlb pages. 1883 */ 1884 list_for_each_entry_safe(folio, t_folio, non_hvo_folios, lru) { 1885 list_del(&folio->lru); 1886 spin_lock_irq(&hugetlb_lock); 1887 __clear_hugetlb_destructor(h, folio); 1888 spin_unlock_irq(&hugetlb_lock); 1889 update_and_free_hugetlb_folio(h, folio, false); 1890 cond_resched(); 1891 } 1892 } else { 1893 /* 1894 * In the case where there are no folios which can be 1895 * immediately freed, we loop through the list trying to restore 1896 * vmemmap individually in the hope that someone elsewhere may 1897 * have done something to cause success (such as freeing some 1898 * memory). If unable to restore a hugetlb page, the hugetlb 1899 * page is made a surplus page and removed from the list. 1900 * If are able to restore vmemmap and free one hugetlb page, we 1901 * quit processing the list to retry the bulk operation. 1902 */ 1903 list_for_each_entry_safe(folio, t_folio, folio_list, lru) 1904 if (hugetlb_vmemmap_restore_folio(h, folio)) { 1905 list_del(&folio->lru); 1906 spin_lock_irq(&hugetlb_lock); 1907 add_hugetlb_folio(h, folio, true); 1908 spin_unlock_irq(&hugetlb_lock); 1909 } else { 1910 list_del(&folio->lru); 1911 spin_lock_irq(&hugetlb_lock); 1912 __clear_hugetlb_destructor(h, folio); 1913 spin_unlock_irq(&hugetlb_lock); 1914 update_and_free_hugetlb_folio(h, folio, false); 1915 cond_resched(); 1916 break; 1917 } 1918 } 1919 } 1920 1921 static void update_and_free_pages_bulk(struct hstate *h, 1922 struct list_head *folio_list) 1923 { 1924 long ret; 1925 struct folio *folio, *t_folio; 1926 LIST_HEAD(non_hvo_folios); 1927 1928 /* 1929 * First allocate required vmemmmap (if necessary) for all folios. 1930 * Carefully handle errors and free up any available hugetlb pages 1931 * in an effort to make forward progress. 1932 */ 1933 retry: 1934 ret = hugetlb_vmemmap_restore_folios(h, folio_list, &non_hvo_folios); 1935 if (ret < 0) { 1936 bulk_vmemmap_restore_error(h, folio_list, &non_hvo_folios); 1937 goto retry; 1938 } 1939 1940 /* 1941 * At this point, list should be empty, ret should be >= 0 and there 1942 * should only be pages on the non_hvo_folios list. 1943 * Do note that the non_hvo_folios list could be empty. 1944 * Without HVO enabled, ret will be 0 and there is no need to call 1945 * __clear_hugetlb_destructor as this was done previously. 1946 */ 1947 VM_WARN_ON(!list_empty(folio_list)); 1948 VM_WARN_ON(ret < 0); 1949 if (!list_empty(&non_hvo_folios) && ret) { 1950 spin_lock_irq(&hugetlb_lock); 1951 list_for_each_entry(folio, &non_hvo_folios, lru) 1952 __clear_hugetlb_destructor(h, folio); 1953 spin_unlock_irq(&hugetlb_lock); 1954 } 1955 1956 list_for_each_entry_safe(folio, t_folio, &non_hvo_folios, lru) { 1957 update_and_free_hugetlb_folio(h, folio, false); 1958 cond_resched(); 1959 } 1960 } 1961 1962 struct hstate *size_to_hstate(unsigned long size) 1963 { 1964 struct hstate *h; 1965 1966 for_each_hstate(h) { 1967 if (huge_page_size(h) == size) 1968 return h; 1969 } 1970 return NULL; 1971 } 1972 1973 void free_huge_folio(struct folio *folio) 1974 { 1975 /* 1976 * Can't pass hstate in here because it is called from the 1977 * compound page destructor. 1978 */ 1979 struct hstate *h = folio_hstate(folio); 1980 int nid = folio_nid(folio); 1981 struct hugepage_subpool *spool = hugetlb_folio_subpool(folio); 1982 bool restore_reserve; 1983 unsigned long flags; 1984 1985 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio); 1986 VM_BUG_ON_FOLIO(folio_mapcount(folio), folio); 1987 1988 hugetlb_set_folio_subpool(folio, NULL); 1989 if (folio_test_anon(folio)) 1990 __ClearPageAnonExclusive(&folio->page); 1991 folio->mapping = NULL; 1992 restore_reserve = folio_test_hugetlb_restore_reserve(folio); 1993 folio_clear_hugetlb_restore_reserve(folio); 1994 1995 /* 1996 * If HPageRestoreReserve was set on page, page allocation consumed a 1997 * reservation. If the page was associated with a subpool, there 1998 * would have been a page reserved in the subpool before allocation 1999 * via hugepage_subpool_get_pages(). Since we are 'restoring' the 2000 * reservation, do not call hugepage_subpool_put_pages() as this will 2001 * remove the reserved page from the subpool. 2002 */ 2003 if (!restore_reserve) { 2004 /* 2005 * A return code of zero implies that the subpool will be 2006 * under its minimum size if the reservation is not restored 2007 * after page is free. Therefore, force restore_reserve 2008 * operation. 2009 */ 2010 if (hugepage_subpool_put_pages(spool, 1) == 0) 2011 restore_reserve = true; 2012 } 2013 2014 spin_lock_irqsave(&hugetlb_lock, flags); 2015 folio_clear_hugetlb_migratable(folio); 2016 hugetlb_cgroup_uncharge_folio(hstate_index(h), 2017 pages_per_huge_page(h), folio); 2018 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h), 2019 pages_per_huge_page(h), folio); 2020 mem_cgroup_uncharge(folio); 2021 if (restore_reserve) 2022 h->resv_huge_pages++; 2023 2024 if (folio_test_hugetlb_temporary(folio)) { 2025 remove_hugetlb_folio(h, folio, false); 2026 spin_unlock_irqrestore(&hugetlb_lock, flags); 2027 update_and_free_hugetlb_folio(h, folio, true); 2028 } else if (h->surplus_huge_pages_node[nid]) { 2029 /* remove the page from active list */ 2030 remove_hugetlb_folio(h, folio, true); 2031 spin_unlock_irqrestore(&hugetlb_lock, flags); 2032 update_and_free_hugetlb_folio(h, folio, true); 2033 } else { 2034 arch_clear_hugepage_flags(&folio->page); 2035 enqueue_hugetlb_folio(h, folio); 2036 spin_unlock_irqrestore(&hugetlb_lock, flags); 2037 } 2038 } 2039 2040 /* 2041 * Must be called with the hugetlb lock held 2042 */ 2043 static void __prep_account_new_huge_page(struct hstate *h, int nid) 2044 { 2045 lockdep_assert_held(&hugetlb_lock); 2046 h->nr_huge_pages++; 2047 h->nr_huge_pages_node[nid]++; 2048 } 2049 2050 static void init_new_hugetlb_folio(struct hstate *h, struct folio *folio) 2051 { 2052 folio_set_hugetlb(folio); 2053 INIT_LIST_HEAD(&folio->lru); 2054 hugetlb_set_folio_subpool(folio, NULL); 2055 set_hugetlb_cgroup(folio, NULL); 2056 set_hugetlb_cgroup_rsvd(folio, NULL); 2057 } 2058 2059 static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio) 2060 { 2061 init_new_hugetlb_folio(h, folio); 2062 hugetlb_vmemmap_optimize_folio(h, folio); 2063 } 2064 2065 static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid) 2066 { 2067 __prep_new_hugetlb_folio(h, folio); 2068 spin_lock_irq(&hugetlb_lock); 2069 __prep_account_new_huge_page(h, nid); 2070 spin_unlock_irq(&hugetlb_lock); 2071 } 2072 2073 static bool __prep_compound_gigantic_folio(struct folio *folio, 2074 unsigned int order, bool demote) 2075 { 2076 int i, j; 2077 int nr_pages = 1 << order; 2078 struct page *p; 2079 2080 __folio_clear_reserved(folio); 2081 for (i = 0; i < nr_pages; i++) { 2082 p = folio_page(folio, i); 2083 2084 /* 2085 * For gigantic hugepages allocated through bootmem at 2086 * boot, it's safer to be consistent with the not-gigantic 2087 * hugepages and clear the PG_reserved bit from all tail pages 2088 * too. Otherwise drivers using get_user_pages() to access tail 2089 * pages may get the reference counting wrong if they see 2090 * PG_reserved set on a tail page (despite the head page not 2091 * having PG_reserved set). Enforcing this consistency between 2092 * head and tail pages allows drivers to optimize away a check 2093 * on the head page when they need know if put_page() is needed 2094 * after get_user_pages(). 2095 */ 2096 if (i != 0) /* head page cleared above */ 2097 __ClearPageReserved(p); 2098 /* 2099 * Subtle and very unlikely 2100 * 2101 * Gigantic 'page allocators' such as memblock or cma will 2102 * return a set of pages with each page ref counted. We need 2103 * to turn this set of pages into a compound page with tail 2104 * page ref counts set to zero. Code such as speculative page 2105 * cache adding could take a ref on a 'to be' tail page. 2106 * We need to respect any increased ref count, and only set 2107 * the ref count to zero if count is currently 1. If count 2108 * is not 1, we return an error. An error return indicates 2109 * the set of pages can not be converted to a gigantic page. 2110 * The caller who allocated the pages should then discard the 2111 * pages using the appropriate free interface. 2112 * 2113 * In the case of demote, the ref count will be zero. 2114 */ 2115 if (!demote) { 2116 if (!page_ref_freeze(p, 1)) { 2117 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n"); 2118 goto out_error; 2119 } 2120 } else { 2121 VM_BUG_ON_PAGE(page_count(p), p); 2122 } 2123 if (i != 0) 2124 set_compound_head(p, &folio->page); 2125 } 2126 __folio_set_head(folio); 2127 /* we rely on prep_new_hugetlb_folio to set the destructor */ 2128 folio_set_order(folio, order); 2129 atomic_set(&folio->_entire_mapcount, -1); 2130 atomic_set(&folio->_nr_pages_mapped, 0); 2131 atomic_set(&folio->_pincount, 0); 2132 return true; 2133 2134 out_error: 2135 /* undo page modifications made above */ 2136 for (j = 0; j < i; j++) { 2137 p = folio_page(folio, j); 2138 if (j != 0) 2139 clear_compound_head(p); 2140 set_page_refcounted(p); 2141 } 2142 /* need to clear PG_reserved on remaining tail pages */ 2143 for (; j < nr_pages; j++) { 2144 p = folio_page(folio, j); 2145 __ClearPageReserved(p); 2146 } 2147 return false; 2148 } 2149 2150 static bool prep_compound_gigantic_folio(struct folio *folio, 2151 unsigned int order) 2152 { 2153 return __prep_compound_gigantic_folio(folio, order, false); 2154 } 2155 2156 static bool prep_compound_gigantic_folio_for_demote(struct folio *folio, 2157 unsigned int order) 2158 { 2159 return __prep_compound_gigantic_folio(folio, order, true); 2160 } 2161 2162 /* 2163 * PageHuge() only returns true for hugetlbfs pages, but not for normal or 2164 * transparent huge pages. See the PageTransHuge() documentation for more 2165 * details. 2166 */ 2167 int PageHuge(const struct page *page) 2168 { 2169 const struct folio *folio; 2170 2171 if (!PageCompound(page)) 2172 return 0; 2173 folio = page_folio(page); 2174 return folio_test_hugetlb(folio); 2175 } 2176 EXPORT_SYMBOL_GPL(PageHuge); 2177 2178 /* 2179 * Find and lock address space (mapping) in write mode. 2180 * 2181 * Upon entry, the page is locked which means that page_mapping() is 2182 * stable. Due to locking order, we can only trylock_write. If we can 2183 * not get the lock, simply return NULL to caller. 2184 */ 2185 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage) 2186 { 2187 struct address_space *mapping = page_mapping(hpage); 2188 2189 if (!mapping) 2190 return mapping; 2191 2192 if (i_mmap_trylock_write(mapping)) 2193 return mapping; 2194 2195 return NULL; 2196 } 2197 2198 static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h, 2199 gfp_t gfp_mask, int nid, nodemask_t *nmask, 2200 nodemask_t *node_alloc_noretry) 2201 { 2202 int order = huge_page_order(h); 2203 struct page *page; 2204 bool alloc_try_hard = true; 2205 bool retry = true; 2206 2207 /* 2208 * By default we always try hard to allocate the page with 2209 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in 2210 * a loop (to adjust global huge page counts) and previous allocation 2211 * failed, do not continue to try hard on the same node. Use the 2212 * node_alloc_noretry bitmap to manage this state information. 2213 */ 2214 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry)) 2215 alloc_try_hard = false; 2216 gfp_mask |= __GFP_COMP|__GFP_NOWARN; 2217 if (alloc_try_hard) 2218 gfp_mask |= __GFP_RETRY_MAYFAIL; 2219 if (nid == NUMA_NO_NODE) 2220 nid = numa_mem_id(); 2221 retry: 2222 page = __alloc_pages(gfp_mask, order, nid, nmask); 2223 2224 /* Freeze head page */ 2225 if (page && !page_ref_freeze(page, 1)) { 2226 __free_pages(page, order); 2227 if (retry) { /* retry once */ 2228 retry = false; 2229 goto retry; 2230 } 2231 /* WOW! twice in a row. */ 2232 pr_warn("HugeTLB head page unexpected inflated ref count\n"); 2233 page = NULL; 2234 } 2235 2236 /* 2237 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this 2238 * indicates an overall state change. Clear bit so that we resume 2239 * normal 'try hard' allocations. 2240 */ 2241 if (node_alloc_noretry && page && !alloc_try_hard) 2242 node_clear(nid, *node_alloc_noretry); 2243 2244 /* 2245 * If we tried hard to get a page but failed, set bit so that 2246 * subsequent attempts will not try as hard until there is an 2247 * overall state change. 2248 */ 2249 if (node_alloc_noretry && !page && alloc_try_hard) 2250 node_set(nid, *node_alloc_noretry); 2251 2252 if (!page) { 2253 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 2254 return NULL; 2255 } 2256 2257 __count_vm_event(HTLB_BUDDY_PGALLOC); 2258 return page_folio(page); 2259 } 2260 2261 static struct folio *__alloc_fresh_hugetlb_folio(struct hstate *h, 2262 gfp_t gfp_mask, int nid, nodemask_t *nmask, 2263 nodemask_t *node_alloc_noretry) 2264 { 2265 struct folio *folio; 2266 bool retry = false; 2267 2268 retry: 2269 if (hstate_is_gigantic(h)) 2270 folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask); 2271 else 2272 folio = alloc_buddy_hugetlb_folio(h, gfp_mask, 2273 nid, nmask, node_alloc_noretry); 2274 if (!folio) 2275 return NULL; 2276 2277 if (hstate_is_gigantic(h)) { 2278 if (!prep_compound_gigantic_folio(folio, huge_page_order(h))) { 2279 /* 2280 * Rare failure to convert pages to compound page. 2281 * Free pages and try again - ONCE! 2282 */ 2283 free_gigantic_folio(folio, huge_page_order(h)); 2284 if (!retry) { 2285 retry = true; 2286 goto retry; 2287 } 2288 return NULL; 2289 } 2290 } 2291 2292 return folio; 2293 } 2294 2295 static struct folio *only_alloc_fresh_hugetlb_folio(struct hstate *h, 2296 gfp_t gfp_mask, int nid, nodemask_t *nmask, 2297 nodemask_t *node_alloc_noretry) 2298 { 2299 struct folio *folio; 2300 2301 folio = __alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, 2302 node_alloc_noretry); 2303 if (folio) 2304 init_new_hugetlb_folio(h, folio); 2305 return folio; 2306 } 2307 2308 /* 2309 * Common helper to allocate a fresh hugetlb page. All specific allocators 2310 * should use this function to get new hugetlb pages 2311 * 2312 * Note that returned page is 'frozen': ref count of head page and all tail 2313 * pages is zero. 2314 */ 2315 static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h, 2316 gfp_t gfp_mask, int nid, nodemask_t *nmask, 2317 nodemask_t *node_alloc_noretry) 2318 { 2319 struct folio *folio; 2320 2321 folio = __alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, 2322 node_alloc_noretry); 2323 if (!folio) 2324 return NULL; 2325 2326 prep_new_hugetlb_folio(h, folio, folio_nid(folio)); 2327 return folio; 2328 } 2329 2330 static void prep_and_add_allocated_folios(struct hstate *h, 2331 struct list_head *folio_list) 2332 { 2333 unsigned long flags; 2334 struct folio *folio, *tmp_f; 2335 2336 /* Send list for bulk vmemmap optimization processing */ 2337 hugetlb_vmemmap_optimize_folios(h, folio_list); 2338 2339 /* Add all new pool pages to free lists in one lock cycle */ 2340 spin_lock_irqsave(&hugetlb_lock, flags); 2341 list_for_each_entry_safe(folio, tmp_f, folio_list, lru) { 2342 __prep_account_new_huge_page(h, folio_nid(folio)); 2343 enqueue_hugetlb_folio(h, folio); 2344 } 2345 spin_unlock_irqrestore(&hugetlb_lock, flags); 2346 } 2347 2348 /* 2349 * Allocates a fresh hugetlb page in a node interleaved manner. The page 2350 * will later be added to the appropriate hugetlb pool. 2351 */ 2352 static struct folio *alloc_pool_huge_folio(struct hstate *h, 2353 nodemask_t *nodes_allowed, 2354 nodemask_t *node_alloc_noretry, 2355 int *next_node) 2356 { 2357 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 2358 int nr_nodes, node; 2359 2360 for_each_node_mask_to_alloc(next_node, nr_nodes, node, nodes_allowed) { 2361 struct folio *folio; 2362 2363 folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, node, 2364 nodes_allowed, node_alloc_noretry); 2365 if (folio) 2366 return folio; 2367 } 2368 2369 return NULL; 2370 } 2371 2372 /* 2373 * Remove huge page from pool from next node to free. Attempt to keep 2374 * persistent huge pages more or less balanced over allowed nodes. 2375 * This routine only 'removes' the hugetlb page. The caller must make 2376 * an additional call to free the page to low level allocators. 2377 * Called with hugetlb_lock locked. 2378 */ 2379 static struct folio *remove_pool_hugetlb_folio(struct hstate *h, 2380 nodemask_t *nodes_allowed, bool acct_surplus) 2381 { 2382 int nr_nodes, node; 2383 struct folio *folio = NULL; 2384 2385 lockdep_assert_held(&hugetlb_lock); 2386 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 2387 /* 2388 * If we're returning unused surplus pages, only examine 2389 * nodes with surplus pages. 2390 */ 2391 if ((!acct_surplus || h->surplus_huge_pages_node[node]) && 2392 !list_empty(&h->hugepage_freelists[node])) { 2393 folio = list_entry(h->hugepage_freelists[node].next, 2394 struct folio, lru); 2395 remove_hugetlb_folio(h, folio, acct_surplus); 2396 break; 2397 } 2398 } 2399 2400 return folio; 2401 } 2402 2403 /* 2404 * Dissolve a given free hugepage into free buddy pages. This function does 2405 * nothing for in-use hugepages and non-hugepages. 2406 * This function returns values like below: 2407 * 2408 * -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages 2409 * when the system is under memory pressure and the feature of 2410 * freeing unused vmemmap pages associated with each hugetlb page 2411 * is enabled. 2412 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use 2413 * (allocated or reserved.) 2414 * 0: successfully dissolved free hugepages or the page is not a 2415 * hugepage (considered as already dissolved) 2416 */ 2417 int dissolve_free_huge_page(struct page *page) 2418 { 2419 int rc = -EBUSY; 2420 struct folio *folio = page_folio(page); 2421 2422 retry: 2423 /* Not to disrupt normal path by vainly holding hugetlb_lock */ 2424 if (!folio_test_hugetlb(folio)) 2425 return 0; 2426 2427 spin_lock_irq(&hugetlb_lock); 2428 if (!folio_test_hugetlb(folio)) { 2429 rc = 0; 2430 goto out; 2431 } 2432 2433 if (!folio_ref_count(folio)) { 2434 struct hstate *h = folio_hstate(folio); 2435 if (!available_huge_pages(h)) 2436 goto out; 2437 2438 /* 2439 * We should make sure that the page is already on the free list 2440 * when it is dissolved. 2441 */ 2442 if (unlikely(!folio_test_hugetlb_freed(folio))) { 2443 spin_unlock_irq(&hugetlb_lock); 2444 cond_resched(); 2445 2446 /* 2447 * Theoretically, we should return -EBUSY when we 2448 * encounter this race. In fact, we have a chance 2449 * to successfully dissolve the page if we do a 2450 * retry. Because the race window is quite small. 2451 * If we seize this opportunity, it is an optimization 2452 * for increasing the success rate of dissolving page. 2453 */ 2454 goto retry; 2455 } 2456 2457 remove_hugetlb_folio(h, folio, false); 2458 h->max_huge_pages--; 2459 spin_unlock_irq(&hugetlb_lock); 2460 2461 /* 2462 * Normally update_and_free_hugtlb_folio will allocate required vmemmmap 2463 * before freeing the page. update_and_free_hugtlb_folio will fail to 2464 * free the page if it can not allocate required vmemmap. We 2465 * need to adjust max_huge_pages if the page is not freed. 2466 * Attempt to allocate vmemmmap here so that we can take 2467 * appropriate action on failure. 2468 * 2469 * The folio_test_hugetlb check here is because 2470 * remove_hugetlb_folio will clear hugetlb folio flag for 2471 * non-vmemmap optimized hugetlb folios. 2472 */ 2473 if (folio_test_hugetlb(folio)) { 2474 rc = hugetlb_vmemmap_restore_folio(h, folio); 2475 if (rc) { 2476 spin_lock_irq(&hugetlb_lock); 2477 add_hugetlb_folio(h, folio, false); 2478 h->max_huge_pages++; 2479 goto out; 2480 } 2481 } else 2482 rc = 0; 2483 2484 update_and_free_hugetlb_folio(h, folio, false); 2485 return rc; 2486 } 2487 out: 2488 spin_unlock_irq(&hugetlb_lock); 2489 return rc; 2490 } 2491 2492 /* 2493 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to 2494 * make specified memory blocks removable from the system. 2495 * Note that this will dissolve a free gigantic hugepage completely, if any 2496 * part of it lies within the given range. 2497 * Also note that if dissolve_free_huge_page() returns with an error, all 2498 * free hugepages that were dissolved before that error are lost. 2499 */ 2500 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn) 2501 { 2502 unsigned long pfn; 2503 struct page *page; 2504 int rc = 0; 2505 unsigned int order; 2506 struct hstate *h; 2507 2508 if (!hugepages_supported()) 2509 return rc; 2510 2511 order = huge_page_order(&default_hstate); 2512 for_each_hstate(h) 2513 order = min(order, huge_page_order(h)); 2514 2515 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) { 2516 page = pfn_to_page(pfn); 2517 rc = dissolve_free_huge_page(page); 2518 if (rc) 2519 break; 2520 } 2521 2522 return rc; 2523 } 2524 2525 /* 2526 * Allocates a fresh surplus page from the page allocator. 2527 */ 2528 static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h, 2529 gfp_t gfp_mask, int nid, nodemask_t *nmask) 2530 { 2531 struct folio *folio = NULL; 2532 2533 if (hstate_is_gigantic(h)) 2534 return NULL; 2535 2536 spin_lock_irq(&hugetlb_lock); 2537 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) 2538 goto out_unlock; 2539 spin_unlock_irq(&hugetlb_lock); 2540 2541 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL); 2542 if (!folio) 2543 return NULL; 2544 2545 spin_lock_irq(&hugetlb_lock); 2546 /* 2547 * We could have raced with the pool size change. 2548 * Double check that and simply deallocate the new page 2549 * if we would end up overcommiting the surpluses. Abuse 2550 * temporary page to workaround the nasty free_huge_folio 2551 * codeflow 2552 */ 2553 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { 2554 folio_set_hugetlb_temporary(folio); 2555 spin_unlock_irq(&hugetlb_lock); 2556 free_huge_folio(folio); 2557 return NULL; 2558 } 2559 2560 h->surplus_huge_pages++; 2561 h->surplus_huge_pages_node[folio_nid(folio)]++; 2562 2563 out_unlock: 2564 spin_unlock_irq(&hugetlb_lock); 2565 2566 return folio; 2567 } 2568 2569 static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask, 2570 int nid, nodemask_t *nmask) 2571 { 2572 struct folio *folio; 2573 2574 if (hstate_is_gigantic(h)) 2575 return NULL; 2576 2577 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL); 2578 if (!folio) 2579 return NULL; 2580 2581 /* fresh huge pages are frozen */ 2582 folio_ref_unfreeze(folio, 1); 2583 /* 2584 * We do not account these pages as surplus because they are only 2585 * temporary and will be released properly on the last reference 2586 */ 2587 folio_set_hugetlb_temporary(folio); 2588 2589 return folio; 2590 } 2591 2592 /* 2593 * Use the VMA's mpolicy to allocate a huge page from the buddy. 2594 */ 2595 static 2596 struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h, 2597 struct vm_area_struct *vma, unsigned long addr) 2598 { 2599 struct folio *folio = NULL; 2600 struct mempolicy *mpol; 2601 gfp_t gfp_mask = htlb_alloc_mask(h); 2602 int nid; 2603 nodemask_t *nodemask; 2604 2605 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask); 2606 if (mpol_is_preferred_many(mpol)) { 2607 gfp_t gfp = gfp_mask | __GFP_NOWARN; 2608 2609 gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL); 2610 folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask); 2611 2612 /* Fallback to all nodes if page==NULL */ 2613 nodemask = NULL; 2614 } 2615 2616 if (!folio) 2617 folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask); 2618 mpol_cond_put(mpol); 2619 return folio; 2620 } 2621 2622 /* folio migration callback function */ 2623 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid, 2624 nodemask_t *nmask, gfp_t gfp_mask) 2625 { 2626 spin_lock_irq(&hugetlb_lock); 2627 if (available_huge_pages(h)) { 2628 struct folio *folio; 2629 2630 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, 2631 preferred_nid, nmask); 2632 if (folio) { 2633 spin_unlock_irq(&hugetlb_lock); 2634 return folio; 2635 } 2636 } 2637 spin_unlock_irq(&hugetlb_lock); 2638 2639 return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask); 2640 } 2641 2642 /* 2643 * Increase the hugetlb pool such that it can accommodate a reservation 2644 * of size 'delta'. 2645 */ 2646 static int gather_surplus_pages(struct hstate *h, long delta) 2647 __must_hold(&hugetlb_lock) 2648 { 2649 LIST_HEAD(surplus_list); 2650 struct folio *folio, *tmp; 2651 int ret; 2652 long i; 2653 long needed, allocated; 2654 bool alloc_ok = true; 2655 2656 lockdep_assert_held(&hugetlb_lock); 2657 needed = (h->resv_huge_pages + delta) - h->free_huge_pages; 2658 if (needed <= 0) { 2659 h->resv_huge_pages += delta; 2660 return 0; 2661 } 2662 2663 allocated = 0; 2664 2665 ret = -ENOMEM; 2666 retry: 2667 spin_unlock_irq(&hugetlb_lock); 2668 for (i = 0; i < needed; i++) { 2669 folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h), 2670 NUMA_NO_NODE, NULL); 2671 if (!folio) { 2672 alloc_ok = false; 2673 break; 2674 } 2675 list_add(&folio->lru, &surplus_list); 2676 cond_resched(); 2677 } 2678 allocated += i; 2679 2680 /* 2681 * After retaking hugetlb_lock, we need to recalculate 'needed' 2682 * because either resv_huge_pages or free_huge_pages may have changed. 2683 */ 2684 spin_lock_irq(&hugetlb_lock); 2685 needed = (h->resv_huge_pages + delta) - 2686 (h->free_huge_pages + allocated); 2687 if (needed > 0) { 2688 if (alloc_ok) 2689 goto retry; 2690 /* 2691 * We were not able to allocate enough pages to 2692 * satisfy the entire reservation so we free what 2693 * we've allocated so far. 2694 */ 2695 goto free; 2696 } 2697 /* 2698 * The surplus_list now contains _at_least_ the number of extra pages 2699 * needed to accommodate the reservation. Add the appropriate number 2700 * of pages to the hugetlb pool and free the extras back to the buddy 2701 * allocator. Commit the entire reservation here to prevent another 2702 * process from stealing the pages as they are added to the pool but 2703 * before they are reserved. 2704 */ 2705 needed += allocated; 2706 h->resv_huge_pages += delta; 2707 ret = 0; 2708 2709 /* Free the needed pages to the hugetlb pool */ 2710 list_for_each_entry_safe(folio, tmp, &surplus_list, lru) { 2711 if ((--needed) < 0) 2712 break; 2713 /* Add the page to the hugetlb allocator */ 2714 enqueue_hugetlb_folio(h, folio); 2715 } 2716 free: 2717 spin_unlock_irq(&hugetlb_lock); 2718 2719 /* 2720 * Free unnecessary surplus pages to the buddy allocator. 2721 * Pages have no ref count, call free_huge_folio directly. 2722 */ 2723 list_for_each_entry_safe(folio, tmp, &surplus_list, lru) 2724 free_huge_folio(folio); 2725 spin_lock_irq(&hugetlb_lock); 2726 2727 return ret; 2728 } 2729 2730 /* 2731 * This routine has two main purposes: 2732 * 1) Decrement the reservation count (resv_huge_pages) by the value passed 2733 * in unused_resv_pages. This corresponds to the prior adjustments made 2734 * to the associated reservation map. 2735 * 2) Free any unused surplus pages that may have been allocated to satisfy 2736 * the reservation. As many as unused_resv_pages may be freed. 2737 */ 2738 static void return_unused_surplus_pages(struct hstate *h, 2739 unsigned long unused_resv_pages) 2740 { 2741 unsigned long nr_pages; 2742 LIST_HEAD(page_list); 2743 2744 lockdep_assert_held(&hugetlb_lock); 2745 /* Uncommit the reservation */ 2746 h->resv_huge_pages -= unused_resv_pages; 2747 2748 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 2749 goto out; 2750 2751 /* 2752 * Part (or even all) of the reservation could have been backed 2753 * by pre-allocated pages. Only free surplus pages. 2754 */ 2755 nr_pages = min(unused_resv_pages, h->surplus_huge_pages); 2756 2757 /* 2758 * We want to release as many surplus pages as possible, spread 2759 * evenly across all nodes with memory. Iterate across these nodes 2760 * until we can no longer free unreserved surplus pages. This occurs 2761 * when the nodes with surplus pages have no free pages. 2762 * remove_pool_hugetlb_folio() will balance the freed pages across the 2763 * on-line nodes with memory and will handle the hstate accounting. 2764 */ 2765 while (nr_pages--) { 2766 struct folio *folio; 2767 2768 folio = remove_pool_hugetlb_folio(h, &node_states[N_MEMORY], 1); 2769 if (!folio) 2770 goto out; 2771 2772 list_add(&folio->lru, &page_list); 2773 } 2774 2775 out: 2776 spin_unlock_irq(&hugetlb_lock); 2777 update_and_free_pages_bulk(h, &page_list); 2778 spin_lock_irq(&hugetlb_lock); 2779 } 2780 2781 2782 /* 2783 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation 2784 * are used by the huge page allocation routines to manage reservations. 2785 * 2786 * vma_needs_reservation is called to determine if the huge page at addr 2787 * within the vma has an associated reservation. If a reservation is 2788 * needed, the value 1 is returned. The caller is then responsible for 2789 * managing the global reservation and subpool usage counts. After 2790 * the huge page has been allocated, vma_commit_reservation is called 2791 * to add the page to the reservation map. If the page allocation fails, 2792 * the reservation must be ended instead of committed. vma_end_reservation 2793 * is called in such cases. 2794 * 2795 * In the normal case, vma_commit_reservation returns the same value 2796 * as the preceding vma_needs_reservation call. The only time this 2797 * is not the case is if a reserve map was changed between calls. It 2798 * is the responsibility of the caller to notice the difference and 2799 * take appropriate action. 2800 * 2801 * vma_add_reservation is used in error paths where a reservation must 2802 * be restored when a newly allocated huge page must be freed. It is 2803 * to be called after calling vma_needs_reservation to determine if a 2804 * reservation exists. 2805 * 2806 * vma_del_reservation is used in error paths where an entry in the reserve 2807 * map was created during huge page allocation and must be removed. It is to 2808 * be called after calling vma_needs_reservation to determine if a reservation 2809 * exists. 2810 */ 2811 enum vma_resv_mode { 2812 VMA_NEEDS_RESV, 2813 VMA_COMMIT_RESV, 2814 VMA_END_RESV, 2815 VMA_ADD_RESV, 2816 VMA_DEL_RESV, 2817 }; 2818 static long __vma_reservation_common(struct hstate *h, 2819 struct vm_area_struct *vma, unsigned long addr, 2820 enum vma_resv_mode mode) 2821 { 2822 struct resv_map *resv; 2823 pgoff_t idx; 2824 long ret; 2825 long dummy_out_regions_needed; 2826 2827 resv = vma_resv_map(vma); 2828 if (!resv) 2829 return 1; 2830 2831 idx = vma_hugecache_offset(h, vma, addr); 2832 switch (mode) { 2833 case VMA_NEEDS_RESV: 2834 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed); 2835 /* We assume that vma_reservation_* routines always operate on 2836 * 1 page, and that adding to resv map a 1 page entry can only 2837 * ever require 1 region. 2838 */ 2839 VM_BUG_ON(dummy_out_regions_needed != 1); 2840 break; 2841 case VMA_COMMIT_RESV: 2842 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2843 /* region_add calls of range 1 should never fail. */ 2844 VM_BUG_ON(ret < 0); 2845 break; 2846 case VMA_END_RESV: 2847 region_abort(resv, idx, idx + 1, 1); 2848 ret = 0; 2849 break; 2850 case VMA_ADD_RESV: 2851 if (vma->vm_flags & VM_MAYSHARE) { 2852 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2853 /* region_add calls of range 1 should never fail. */ 2854 VM_BUG_ON(ret < 0); 2855 } else { 2856 region_abort(resv, idx, idx + 1, 1); 2857 ret = region_del(resv, idx, idx + 1); 2858 } 2859 break; 2860 case VMA_DEL_RESV: 2861 if (vma->vm_flags & VM_MAYSHARE) { 2862 region_abort(resv, idx, idx + 1, 1); 2863 ret = region_del(resv, idx, idx + 1); 2864 } else { 2865 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2866 /* region_add calls of range 1 should never fail. */ 2867 VM_BUG_ON(ret < 0); 2868 } 2869 break; 2870 default: 2871 BUG(); 2872 } 2873 2874 if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV) 2875 return ret; 2876 /* 2877 * We know private mapping must have HPAGE_RESV_OWNER set. 2878 * 2879 * In most cases, reserves always exist for private mappings. 2880 * However, a file associated with mapping could have been 2881 * hole punched or truncated after reserves were consumed. 2882 * As subsequent fault on such a range will not use reserves. 2883 * Subtle - The reserve map for private mappings has the 2884 * opposite meaning than that of shared mappings. If NO 2885 * entry is in the reserve map, it means a reservation exists. 2886 * If an entry exists in the reserve map, it means the 2887 * reservation has already been consumed. As a result, the 2888 * return value of this routine is the opposite of the 2889 * value returned from reserve map manipulation routines above. 2890 */ 2891 if (ret > 0) 2892 return 0; 2893 if (ret == 0) 2894 return 1; 2895 return ret; 2896 } 2897 2898 static long vma_needs_reservation(struct hstate *h, 2899 struct vm_area_struct *vma, unsigned long addr) 2900 { 2901 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV); 2902 } 2903 2904 static long vma_commit_reservation(struct hstate *h, 2905 struct vm_area_struct *vma, unsigned long addr) 2906 { 2907 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV); 2908 } 2909 2910 static void vma_end_reservation(struct hstate *h, 2911 struct vm_area_struct *vma, unsigned long addr) 2912 { 2913 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV); 2914 } 2915 2916 static long vma_add_reservation(struct hstate *h, 2917 struct vm_area_struct *vma, unsigned long addr) 2918 { 2919 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV); 2920 } 2921 2922 static long vma_del_reservation(struct hstate *h, 2923 struct vm_area_struct *vma, unsigned long addr) 2924 { 2925 return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV); 2926 } 2927 2928 /* 2929 * This routine is called to restore reservation information on error paths. 2930 * It should ONLY be called for folios allocated via alloc_hugetlb_folio(), 2931 * and the hugetlb mutex should remain held when calling this routine. 2932 * 2933 * It handles two specific cases: 2934 * 1) A reservation was in place and the folio consumed the reservation. 2935 * hugetlb_restore_reserve is set in the folio. 2936 * 2) No reservation was in place for the page, so hugetlb_restore_reserve is 2937 * not set. However, alloc_hugetlb_folio always updates the reserve map. 2938 * 2939 * In case 1, free_huge_folio later in the error path will increment the 2940 * global reserve count. But, free_huge_folio does not have enough context 2941 * to adjust the reservation map. This case deals primarily with private 2942 * mappings. Adjust the reserve map here to be consistent with global 2943 * reserve count adjustments to be made by free_huge_folio. Make sure the 2944 * reserve map indicates there is a reservation present. 2945 * 2946 * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio. 2947 */ 2948 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma, 2949 unsigned long address, struct folio *folio) 2950 { 2951 long rc = vma_needs_reservation(h, vma, address); 2952 2953 if (folio_test_hugetlb_restore_reserve(folio)) { 2954 if (unlikely(rc < 0)) 2955 /* 2956 * Rare out of memory condition in reserve map 2957 * manipulation. Clear hugetlb_restore_reserve so 2958 * that global reserve count will not be incremented 2959 * by free_huge_folio. This will make it appear 2960 * as though the reservation for this folio was 2961 * consumed. This may prevent the task from 2962 * faulting in the folio at a later time. This 2963 * is better than inconsistent global huge page 2964 * accounting of reserve counts. 2965 */ 2966 folio_clear_hugetlb_restore_reserve(folio); 2967 else if (rc) 2968 (void)vma_add_reservation(h, vma, address); 2969 else 2970 vma_end_reservation(h, vma, address); 2971 } else { 2972 if (!rc) { 2973 /* 2974 * This indicates there is an entry in the reserve map 2975 * not added by alloc_hugetlb_folio. We know it was added 2976 * before the alloc_hugetlb_folio call, otherwise 2977 * hugetlb_restore_reserve would be set on the folio. 2978 * Remove the entry so that a subsequent allocation 2979 * does not consume a reservation. 2980 */ 2981 rc = vma_del_reservation(h, vma, address); 2982 if (rc < 0) 2983 /* 2984 * VERY rare out of memory condition. Since 2985 * we can not delete the entry, set 2986 * hugetlb_restore_reserve so that the reserve 2987 * count will be incremented when the folio 2988 * is freed. This reserve will be consumed 2989 * on a subsequent allocation. 2990 */ 2991 folio_set_hugetlb_restore_reserve(folio); 2992 } else if (rc < 0) { 2993 /* 2994 * Rare out of memory condition from 2995 * vma_needs_reservation call. Memory allocation is 2996 * only attempted if a new entry is needed. Therefore, 2997 * this implies there is not an entry in the 2998 * reserve map. 2999 * 3000 * For shared mappings, no entry in the map indicates 3001 * no reservation. We are done. 3002 */ 3003 if (!(vma->vm_flags & VM_MAYSHARE)) 3004 /* 3005 * For private mappings, no entry indicates 3006 * a reservation is present. Since we can 3007 * not add an entry, set hugetlb_restore_reserve 3008 * on the folio so reserve count will be 3009 * incremented when freed. This reserve will 3010 * be consumed on a subsequent allocation. 3011 */ 3012 folio_set_hugetlb_restore_reserve(folio); 3013 } else 3014 /* 3015 * No reservation present, do nothing 3016 */ 3017 vma_end_reservation(h, vma, address); 3018 } 3019 } 3020 3021 /* 3022 * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve 3023 * the old one 3024 * @h: struct hstate old page belongs to 3025 * @old_folio: Old folio to dissolve 3026 * @list: List to isolate the page in case we need to 3027 * Returns 0 on success, otherwise negated error. 3028 */ 3029 static int alloc_and_dissolve_hugetlb_folio(struct hstate *h, 3030 struct folio *old_folio, struct list_head *list) 3031 { 3032 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 3033 int nid = folio_nid(old_folio); 3034 struct folio *new_folio = NULL; 3035 int ret = 0; 3036 3037 retry: 3038 spin_lock_irq(&hugetlb_lock); 3039 if (!folio_test_hugetlb(old_folio)) { 3040 /* 3041 * Freed from under us. Drop new_folio too. 3042 */ 3043 goto free_new; 3044 } else if (folio_ref_count(old_folio)) { 3045 bool isolated; 3046 3047 /* 3048 * Someone has grabbed the folio, try to isolate it here. 3049 * Fail with -EBUSY if not possible. 3050 */ 3051 spin_unlock_irq(&hugetlb_lock); 3052 isolated = isolate_hugetlb(old_folio, list); 3053 ret = isolated ? 0 : -EBUSY; 3054 spin_lock_irq(&hugetlb_lock); 3055 goto free_new; 3056 } else if (!folio_test_hugetlb_freed(old_folio)) { 3057 /* 3058 * Folio's refcount is 0 but it has not been enqueued in the 3059 * freelist yet. Race window is small, so we can succeed here if 3060 * we retry. 3061 */ 3062 spin_unlock_irq(&hugetlb_lock); 3063 cond_resched(); 3064 goto retry; 3065 } else { 3066 if (!new_folio) { 3067 spin_unlock_irq(&hugetlb_lock); 3068 new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, 3069 NULL, NULL); 3070 if (!new_folio) 3071 return -ENOMEM; 3072 __prep_new_hugetlb_folio(h, new_folio); 3073 goto retry; 3074 } 3075 3076 /* 3077 * Ok, old_folio is still a genuine free hugepage. Remove it from 3078 * the freelist and decrease the counters. These will be 3079 * incremented again when calling __prep_account_new_huge_page() 3080 * and enqueue_hugetlb_folio() for new_folio. The counters will 3081 * remain stable since this happens under the lock. 3082 */ 3083 remove_hugetlb_folio(h, old_folio, false); 3084 3085 /* 3086 * Ref count on new_folio is already zero as it was dropped 3087 * earlier. It can be directly added to the pool free list. 3088 */ 3089 __prep_account_new_huge_page(h, nid); 3090 enqueue_hugetlb_folio(h, new_folio); 3091 3092 /* 3093 * Folio has been replaced, we can safely free the old one. 3094 */ 3095 spin_unlock_irq(&hugetlb_lock); 3096 update_and_free_hugetlb_folio(h, old_folio, false); 3097 } 3098 3099 return ret; 3100 3101 free_new: 3102 spin_unlock_irq(&hugetlb_lock); 3103 if (new_folio) { 3104 /* Folio has a zero ref count, but needs a ref to be freed */ 3105 folio_ref_unfreeze(new_folio, 1); 3106 update_and_free_hugetlb_folio(h, new_folio, false); 3107 } 3108 3109 return ret; 3110 } 3111 3112 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list) 3113 { 3114 struct hstate *h; 3115 struct folio *folio = page_folio(page); 3116 int ret = -EBUSY; 3117 3118 /* 3119 * The page might have been dissolved from under our feet, so make sure 3120 * to carefully check the state under the lock. 3121 * Return success when racing as if we dissolved the page ourselves. 3122 */ 3123 spin_lock_irq(&hugetlb_lock); 3124 if (folio_test_hugetlb(folio)) { 3125 h = folio_hstate(folio); 3126 } else { 3127 spin_unlock_irq(&hugetlb_lock); 3128 return 0; 3129 } 3130 spin_unlock_irq(&hugetlb_lock); 3131 3132 /* 3133 * Fence off gigantic pages as there is a cyclic dependency between 3134 * alloc_contig_range and them. Return -ENOMEM as this has the effect 3135 * of bailing out right away without further retrying. 3136 */ 3137 if (hstate_is_gigantic(h)) 3138 return -ENOMEM; 3139 3140 if (folio_ref_count(folio) && isolate_hugetlb(folio, list)) 3141 ret = 0; 3142 else if (!folio_ref_count(folio)) 3143 ret = alloc_and_dissolve_hugetlb_folio(h, folio, list); 3144 3145 return ret; 3146 } 3147 3148 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma, 3149 unsigned long addr, int avoid_reserve) 3150 { 3151 struct hugepage_subpool *spool = subpool_vma(vma); 3152 struct hstate *h = hstate_vma(vma); 3153 struct folio *folio; 3154 long map_chg, map_commit, nr_pages = pages_per_huge_page(h); 3155 long gbl_chg; 3156 int memcg_charge_ret, ret, idx; 3157 struct hugetlb_cgroup *h_cg = NULL; 3158 struct mem_cgroup *memcg; 3159 bool deferred_reserve; 3160 gfp_t gfp = htlb_alloc_mask(h) | __GFP_RETRY_MAYFAIL; 3161 3162 memcg = get_mem_cgroup_from_current(); 3163 memcg_charge_ret = mem_cgroup_hugetlb_try_charge(memcg, gfp, nr_pages); 3164 if (memcg_charge_ret == -ENOMEM) { 3165 mem_cgroup_put(memcg); 3166 return ERR_PTR(-ENOMEM); 3167 } 3168 3169 idx = hstate_index(h); 3170 /* 3171 * Examine the region/reserve map to determine if the process 3172 * has a reservation for the page to be allocated. A return 3173 * code of zero indicates a reservation exists (no change). 3174 */ 3175 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr); 3176 if (map_chg < 0) { 3177 if (!memcg_charge_ret) 3178 mem_cgroup_cancel_charge(memcg, nr_pages); 3179 mem_cgroup_put(memcg); 3180 return ERR_PTR(-ENOMEM); 3181 } 3182 3183 /* 3184 * Processes that did not create the mapping will have no 3185 * reserves as indicated by the region/reserve map. Check 3186 * that the allocation will not exceed the subpool limit. 3187 * Allocations for MAP_NORESERVE mappings also need to be 3188 * checked against any subpool limit. 3189 */ 3190 if (map_chg || avoid_reserve) { 3191 gbl_chg = hugepage_subpool_get_pages(spool, 1); 3192 if (gbl_chg < 0) 3193 goto out_end_reservation; 3194 3195 /* 3196 * Even though there was no reservation in the region/reserve 3197 * map, there could be reservations associated with the 3198 * subpool that can be used. This would be indicated if the 3199 * return value of hugepage_subpool_get_pages() is zero. 3200 * However, if avoid_reserve is specified we still avoid even 3201 * the subpool reservations. 3202 */ 3203 if (avoid_reserve) 3204 gbl_chg = 1; 3205 } 3206 3207 /* If this allocation is not consuming a reservation, charge it now. 3208 */ 3209 deferred_reserve = map_chg || avoid_reserve; 3210 if (deferred_reserve) { 3211 ret = hugetlb_cgroup_charge_cgroup_rsvd( 3212 idx, pages_per_huge_page(h), &h_cg); 3213 if (ret) 3214 goto out_subpool_put; 3215 } 3216 3217 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg); 3218 if (ret) 3219 goto out_uncharge_cgroup_reservation; 3220 3221 spin_lock_irq(&hugetlb_lock); 3222 /* 3223 * glb_chg is passed to indicate whether or not a page must be taken 3224 * from the global free pool (global change). gbl_chg == 0 indicates 3225 * a reservation exists for the allocation. 3226 */ 3227 folio = dequeue_hugetlb_folio_vma(h, vma, addr, avoid_reserve, gbl_chg); 3228 if (!folio) { 3229 spin_unlock_irq(&hugetlb_lock); 3230 folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr); 3231 if (!folio) 3232 goto out_uncharge_cgroup; 3233 spin_lock_irq(&hugetlb_lock); 3234 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) { 3235 folio_set_hugetlb_restore_reserve(folio); 3236 h->resv_huge_pages--; 3237 } 3238 list_add(&folio->lru, &h->hugepage_activelist); 3239 folio_ref_unfreeze(folio, 1); 3240 /* Fall through */ 3241 } 3242 3243 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio); 3244 /* If allocation is not consuming a reservation, also store the 3245 * hugetlb_cgroup pointer on the page. 3246 */ 3247 if (deferred_reserve) { 3248 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h), 3249 h_cg, folio); 3250 } 3251 3252 spin_unlock_irq(&hugetlb_lock); 3253 3254 hugetlb_set_folio_subpool(folio, spool); 3255 3256 map_commit = vma_commit_reservation(h, vma, addr); 3257 if (unlikely(map_chg > map_commit)) { 3258 /* 3259 * The page was added to the reservation map between 3260 * vma_needs_reservation and vma_commit_reservation. 3261 * This indicates a race with hugetlb_reserve_pages. 3262 * Adjust for the subpool count incremented above AND 3263 * in hugetlb_reserve_pages for the same page. Also, 3264 * the reservation count added in hugetlb_reserve_pages 3265 * no longer applies. 3266 */ 3267 long rsv_adjust; 3268 3269 rsv_adjust = hugepage_subpool_put_pages(spool, 1); 3270 hugetlb_acct_memory(h, -rsv_adjust); 3271 if (deferred_reserve) 3272 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h), 3273 pages_per_huge_page(h), folio); 3274 } 3275 3276 if (!memcg_charge_ret) 3277 mem_cgroup_commit_charge(folio, memcg); 3278 mem_cgroup_put(memcg); 3279 3280 return folio; 3281 3282 out_uncharge_cgroup: 3283 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg); 3284 out_uncharge_cgroup_reservation: 3285 if (deferred_reserve) 3286 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h), 3287 h_cg); 3288 out_subpool_put: 3289 if (map_chg || avoid_reserve) 3290 hugepage_subpool_put_pages(spool, 1); 3291 out_end_reservation: 3292 vma_end_reservation(h, vma, addr); 3293 if (!memcg_charge_ret) 3294 mem_cgroup_cancel_charge(memcg, nr_pages); 3295 mem_cgroup_put(memcg); 3296 return ERR_PTR(-ENOSPC); 3297 } 3298 3299 int alloc_bootmem_huge_page(struct hstate *h, int nid) 3300 __attribute__ ((weak, alias("__alloc_bootmem_huge_page"))); 3301 int __alloc_bootmem_huge_page(struct hstate *h, int nid) 3302 { 3303 struct huge_bootmem_page *m = NULL; /* initialize for clang */ 3304 int nr_nodes, node = nid; 3305 3306 /* do node specific alloc */ 3307 if (nid != NUMA_NO_NODE) { 3308 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h), 3309 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid); 3310 if (!m) 3311 return 0; 3312 goto found; 3313 } 3314 /* allocate from next node when distributing huge pages */ 3315 for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, &node_states[N_MEMORY]) { 3316 m = memblock_alloc_try_nid_raw( 3317 huge_page_size(h), huge_page_size(h), 3318 0, MEMBLOCK_ALLOC_ACCESSIBLE, node); 3319 /* 3320 * Use the beginning of the huge page to store the 3321 * huge_bootmem_page struct (until gather_bootmem 3322 * puts them into the mem_map). 3323 */ 3324 if (!m) 3325 return 0; 3326 goto found; 3327 } 3328 3329 found: 3330 3331 /* 3332 * Only initialize the head struct page in memmap_init_reserved_pages, 3333 * rest of the struct pages will be initialized by the HugeTLB 3334 * subsystem itself. 3335 * The head struct page is used to get folio information by the HugeTLB 3336 * subsystem like zone id and node id. 3337 */ 3338 memblock_reserved_mark_noinit(virt_to_phys((void *)m + PAGE_SIZE), 3339 huge_page_size(h) - PAGE_SIZE); 3340 /* Put them into a private list first because mem_map is not up yet */ 3341 INIT_LIST_HEAD(&m->list); 3342 list_add(&m->list, &huge_boot_pages[node]); 3343 m->hstate = h; 3344 return 1; 3345 } 3346 3347 /* Initialize [start_page:end_page_number] tail struct pages of a hugepage */ 3348 static void __init hugetlb_folio_init_tail_vmemmap(struct folio *folio, 3349 unsigned long start_page_number, 3350 unsigned long end_page_number) 3351 { 3352 enum zone_type zone = zone_idx(folio_zone(folio)); 3353 int nid = folio_nid(folio); 3354 unsigned long head_pfn = folio_pfn(folio); 3355 unsigned long pfn, end_pfn = head_pfn + end_page_number; 3356 int ret; 3357 3358 for (pfn = head_pfn + start_page_number; pfn < end_pfn; pfn++) { 3359 struct page *page = pfn_to_page(pfn); 3360 3361 __init_single_page(page, pfn, zone, nid); 3362 prep_compound_tail((struct page *)folio, pfn - head_pfn); 3363 ret = page_ref_freeze(page, 1); 3364 VM_BUG_ON(!ret); 3365 } 3366 } 3367 3368 static void __init hugetlb_folio_init_vmemmap(struct folio *folio, 3369 struct hstate *h, 3370 unsigned long nr_pages) 3371 { 3372 int ret; 3373 3374 /* Prepare folio head */ 3375 __folio_clear_reserved(folio); 3376 __folio_set_head(folio); 3377 ret = folio_ref_freeze(folio, 1); 3378 VM_BUG_ON(!ret); 3379 /* Initialize the necessary tail struct pages */ 3380 hugetlb_folio_init_tail_vmemmap(folio, 1, nr_pages); 3381 prep_compound_head((struct page *)folio, huge_page_order(h)); 3382 } 3383 3384 static void __init prep_and_add_bootmem_folios(struct hstate *h, 3385 struct list_head *folio_list) 3386 { 3387 unsigned long flags; 3388 struct folio *folio, *tmp_f; 3389 3390 /* Send list for bulk vmemmap optimization processing */ 3391 hugetlb_vmemmap_optimize_folios(h, folio_list); 3392 3393 list_for_each_entry_safe(folio, tmp_f, folio_list, lru) { 3394 if (!folio_test_hugetlb_vmemmap_optimized(folio)) { 3395 /* 3396 * If HVO fails, initialize all tail struct pages 3397 * We do not worry about potential long lock hold 3398 * time as this is early in boot and there should 3399 * be no contention. 3400 */ 3401 hugetlb_folio_init_tail_vmemmap(folio, 3402 HUGETLB_VMEMMAP_RESERVE_PAGES, 3403 pages_per_huge_page(h)); 3404 } 3405 /* Subdivide locks to achieve better parallel performance */ 3406 spin_lock_irqsave(&hugetlb_lock, flags); 3407 __prep_account_new_huge_page(h, folio_nid(folio)); 3408 enqueue_hugetlb_folio(h, folio); 3409 spin_unlock_irqrestore(&hugetlb_lock, flags); 3410 } 3411 } 3412 3413 /* 3414 * Put bootmem huge pages into the standard lists after mem_map is up. 3415 * Note: This only applies to gigantic (order > MAX_PAGE_ORDER) pages. 3416 */ 3417 static void __init gather_bootmem_prealloc_node(unsigned long nid) 3418 { 3419 LIST_HEAD(folio_list); 3420 struct huge_bootmem_page *m; 3421 struct hstate *h = NULL, *prev_h = NULL; 3422 3423 list_for_each_entry(m, &huge_boot_pages[nid], list) { 3424 struct page *page = virt_to_page(m); 3425 struct folio *folio = (void *)page; 3426 3427 h = m->hstate; 3428 /* 3429 * It is possible to have multiple huge page sizes (hstates) 3430 * in this list. If so, process each size separately. 3431 */ 3432 if (h != prev_h && prev_h != NULL) 3433 prep_and_add_bootmem_folios(prev_h, &folio_list); 3434 prev_h = h; 3435 3436 VM_BUG_ON(!hstate_is_gigantic(h)); 3437 WARN_ON(folio_ref_count(folio) != 1); 3438 3439 hugetlb_folio_init_vmemmap(folio, h, 3440 HUGETLB_VMEMMAP_RESERVE_PAGES); 3441 init_new_hugetlb_folio(h, folio); 3442 list_add(&folio->lru, &folio_list); 3443 3444 /* 3445 * We need to restore the 'stolen' pages to totalram_pages 3446 * in order to fix confusing memory reports from free(1) and 3447 * other side-effects, like CommitLimit going negative. 3448 */ 3449 adjust_managed_page_count(page, pages_per_huge_page(h)); 3450 cond_resched(); 3451 } 3452 3453 prep_and_add_bootmem_folios(h, &folio_list); 3454 } 3455 3456 static void __init gather_bootmem_prealloc_parallel(unsigned long start, 3457 unsigned long end, void *arg) 3458 { 3459 int nid; 3460 3461 for (nid = start; nid < end; nid++) 3462 gather_bootmem_prealloc_node(nid); 3463 } 3464 3465 static void __init gather_bootmem_prealloc(void) 3466 { 3467 struct padata_mt_job job = { 3468 .thread_fn = gather_bootmem_prealloc_parallel, 3469 .fn_arg = NULL, 3470 .start = 0, 3471 .size = num_node_state(N_MEMORY), 3472 .align = 1, 3473 .min_chunk = 1, 3474 .max_threads = num_node_state(N_MEMORY), 3475 .numa_aware = true, 3476 }; 3477 3478 padata_do_multithreaded(&job); 3479 } 3480 3481 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid) 3482 { 3483 unsigned long i; 3484 char buf[32]; 3485 3486 for (i = 0; i < h->max_huge_pages_node[nid]; ++i) { 3487 if (hstate_is_gigantic(h)) { 3488 if (!alloc_bootmem_huge_page(h, nid)) 3489 break; 3490 } else { 3491 struct folio *folio; 3492 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 3493 3494 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, 3495 &node_states[N_MEMORY], NULL); 3496 if (!folio) 3497 break; 3498 free_huge_folio(folio); /* free it into the hugepage allocator */ 3499 } 3500 cond_resched(); 3501 } 3502 if (i == h->max_huge_pages_node[nid]) 3503 return; 3504 3505 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3506 pr_warn("HugeTLB: allocating %u of page size %s failed node%d. Only allocated %lu hugepages.\n", 3507 h->max_huge_pages_node[nid], buf, nid, i); 3508 h->max_huge_pages -= (h->max_huge_pages_node[nid] - i); 3509 h->max_huge_pages_node[nid] = i; 3510 } 3511 3512 static bool __init hugetlb_hstate_alloc_pages_specific_nodes(struct hstate *h) 3513 { 3514 int i; 3515 bool node_specific_alloc = false; 3516 3517 for_each_online_node(i) { 3518 if (h->max_huge_pages_node[i] > 0) { 3519 hugetlb_hstate_alloc_pages_onenode(h, i); 3520 node_specific_alloc = true; 3521 } 3522 } 3523 3524 return node_specific_alloc; 3525 } 3526 3527 static void __init hugetlb_hstate_alloc_pages_errcheck(unsigned long allocated, struct hstate *h) 3528 { 3529 if (allocated < h->max_huge_pages) { 3530 char buf[32]; 3531 3532 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3533 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n", 3534 h->max_huge_pages, buf, allocated); 3535 h->max_huge_pages = allocated; 3536 } 3537 } 3538 3539 static void __init hugetlb_pages_alloc_boot_node(unsigned long start, unsigned long end, void *arg) 3540 { 3541 struct hstate *h = (struct hstate *)arg; 3542 int i, num = end - start; 3543 nodemask_t node_alloc_noretry; 3544 LIST_HEAD(folio_list); 3545 int next_node = first_online_node; 3546 3547 /* Bit mask controlling how hard we retry per-node allocations.*/ 3548 nodes_clear(node_alloc_noretry); 3549 3550 for (i = 0; i < num; ++i) { 3551 struct folio *folio = alloc_pool_huge_folio(h, &node_states[N_MEMORY], 3552 &node_alloc_noretry, &next_node); 3553 if (!folio) 3554 break; 3555 3556 list_move(&folio->lru, &folio_list); 3557 cond_resched(); 3558 } 3559 3560 prep_and_add_allocated_folios(h, &folio_list); 3561 } 3562 3563 static unsigned long __init hugetlb_gigantic_pages_alloc_boot(struct hstate *h) 3564 { 3565 unsigned long i; 3566 3567 for (i = 0; i < h->max_huge_pages; ++i) { 3568 if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE)) 3569 break; 3570 cond_resched(); 3571 } 3572 3573 return i; 3574 } 3575 3576 static unsigned long __init hugetlb_pages_alloc_boot(struct hstate *h) 3577 { 3578 struct padata_mt_job job = { 3579 .fn_arg = h, 3580 .align = 1, 3581 .numa_aware = true 3582 }; 3583 3584 job.thread_fn = hugetlb_pages_alloc_boot_node; 3585 job.start = 0; 3586 job.size = h->max_huge_pages; 3587 3588 /* 3589 * job.max_threads is twice the num_node_state(N_MEMORY), 3590 * 3591 * Tests below indicate that a multiplier of 2 significantly improves 3592 * performance, and although larger values also provide improvements, 3593 * the gains are marginal. 3594 * 3595 * Therefore, choosing 2 as the multiplier strikes a good balance between 3596 * enhancing parallel processing capabilities and maintaining efficient 3597 * resource management. 3598 * 3599 * +------------+-------+-------+-------+-------+-------+ 3600 * | multiplier | 1 | 2 | 3 | 4 | 5 | 3601 * +------------+-------+-------+-------+-------+-------+ 3602 * | 256G 2node | 358ms | 215ms | 157ms | 134ms | 126ms | 3603 * | 2T 4node | 979ms | 679ms | 543ms | 489ms | 481ms | 3604 * | 50G 2node | 71ms | 44ms | 37ms | 30ms | 31ms | 3605 * +------------+-------+-------+-------+-------+-------+ 3606 */ 3607 job.max_threads = num_node_state(N_MEMORY) * 2; 3608 job.min_chunk = h->max_huge_pages / num_node_state(N_MEMORY) / 2; 3609 padata_do_multithreaded(&job); 3610 3611 return h->nr_huge_pages; 3612 } 3613 3614 /* 3615 * NOTE: this routine is called in different contexts for gigantic and 3616 * non-gigantic pages. 3617 * - For gigantic pages, this is called early in the boot process and 3618 * pages are allocated from memblock allocated or something similar. 3619 * Gigantic pages are actually added to pools later with the routine 3620 * gather_bootmem_prealloc. 3621 * - For non-gigantic pages, this is called later in the boot process after 3622 * all of mm is up and functional. Pages are allocated from buddy and 3623 * then added to hugetlb pools. 3624 */ 3625 static void __init hugetlb_hstate_alloc_pages(struct hstate *h) 3626 { 3627 unsigned long allocated; 3628 static bool initialized __initdata; 3629 3630 /* skip gigantic hugepages allocation if hugetlb_cma enabled */ 3631 if (hstate_is_gigantic(h) && hugetlb_cma_size) { 3632 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n"); 3633 return; 3634 } 3635 3636 /* hugetlb_hstate_alloc_pages will be called many times, initialize huge_boot_pages once */ 3637 if (!initialized) { 3638 int i = 0; 3639 3640 for (i = 0; i < MAX_NUMNODES; i++) 3641 INIT_LIST_HEAD(&huge_boot_pages[i]); 3642 initialized = true; 3643 } 3644 3645 /* do node specific alloc */ 3646 if (hugetlb_hstate_alloc_pages_specific_nodes(h)) 3647 return; 3648 3649 /* below will do all node balanced alloc */ 3650 if (hstate_is_gigantic(h)) 3651 allocated = hugetlb_gigantic_pages_alloc_boot(h); 3652 else 3653 allocated = hugetlb_pages_alloc_boot(h); 3654 3655 hugetlb_hstate_alloc_pages_errcheck(allocated, h); 3656 } 3657 3658 static void __init hugetlb_init_hstates(void) 3659 { 3660 struct hstate *h, *h2; 3661 3662 for_each_hstate(h) { 3663 /* oversize hugepages were init'ed in early boot */ 3664 if (!hstate_is_gigantic(h)) 3665 hugetlb_hstate_alloc_pages(h); 3666 3667 /* 3668 * Set demote order for each hstate. Note that 3669 * h->demote_order is initially 0. 3670 * - We can not demote gigantic pages if runtime freeing 3671 * is not supported, so skip this. 3672 * - If CMA allocation is possible, we can not demote 3673 * HUGETLB_PAGE_ORDER or smaller size pages. 3674 */ 3675 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 3676 continue; 3677 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER) 3678 continue; 3679 for_each_hstate(h2) { 3680 if (h2 == h) 3681 continue; 3682 if (h2->order < h->order && 3683 h2->order > h->demote_order) 3684 h->demote_order = h2->order; 3685 } 3686 } 3687 } 3688 3689 static void __init report_hugepages(void) 3690 { 3691 struct hstate *h; 3692 3693 for_each_hstate(h) { 3694 char buf[32]; 3695 3696 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3697 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n", 3698 buf, h->free_huge_pages); 3699 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n", 3700 hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf); 3701 } 3702 } 3703 3704 #ifdef CONFIG_HIGHMEM 3705 static void try_to_free_low(struct hstate *h, unsigned long count, 3706 nodemask_t *nodes_allowed) 3707 { 3708 int i; 3709 LIST_HEAD(page_list); 3710 3711 lockdep_assert_held(&hugetlb_lock); 3712 if (hstate_is_gigantic(h)) 3713 return; 3714 3715 /* 3716 * Collect pages to be freed on a list, and free after dropping lock 3717 */ 3718 for_each_node_mask(i, *nodes_allowed) { 3719 struct folio *folio, *next; 3720 struct list_head *freel = &h->hugepage_freelists[i]; 3721 list_for_each_entry_safe(folio, next, freel, lru) { 3722 if (count >= h->nr_huge_pages) 3723 goto out; 3724 if (folio_test_highmem(folio)) 3725 continue; 3726 remove_hugetlb_folio(h, folio, false); 3727 list_add(&folio->lru, &page_list); 3728 } 3729 } 3730 3731 out: 3732 spin_unlock_irq(&hugetlb_lock); 3733 update_and_free_pages_bulk(h, &page_list); 3734 spin_lock_irq(&hugetlb_lock); 3735 } 3736 #else 3737 static inline void try_to_free_low(struct hstate *h, unsigned long count, 3738 nodemask_t *nodes_allowed) 3739 { 3740 } 3741 #endif 3742 3743 /* 3744 * Increment or decrement surplus_huge_pages. Keep node-specific counters 3745 * balanced by operating on them in a round-robin fashion. 3746 * Returns 1 if an adjustment was made. 3747 */ 3748 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed, 3749 int delta) 3750 { 3751 int nr_nodes, node; 3752 3753 lockdep_assert_held(&hugetlb_lock); 3754 VM_BUG_ON(delta != -1 && delta != 1); 3755 3756 if (delta < 0) { 3757 for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, nodes_allowed) { 3758 if (h->surplus_huge_pages_node[node]) 3759 goto found; 3760 } 3761 } else { 3762 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 3763 if (h->surplus_huge_pages_node[node] < 3764 h->nr_huge_pages_node[node]) 3765 goto found; 3766 } 3767 } 3768 return 0; 3769 3770 found: 3771 h->surplus_huge_pages += delta; 3772 h->surplus_huge_pages_node[node] += delta; 3773 return 1; 3774 } 3775 3776 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) 3777 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid, 3778 nodemask_t *nodes_allowed) 3779 { 3780 unsigned long min_count; 3781 unsigned long allocated; 3782 struct folio *folio; 3783 LIST_HEAD(page_list); 3784 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL); 3785 3786 /* 3787 * Bit mask controlling how hard we retry per-node allocations. 3788 * If we can not allocate the bit mask, do not attempt to allocate 3789 * the requested huge pages. 3790 */ 3791 if (node_alloc_noretry) 3792 nodes_clear(*node_alloc_noretry); 3793 else 3794 return -ENOMEM; 3795 3796 /* 3797 * resize_lock mutex prevents concurrent adjustments to number of 3798 * pages in hstate via the proc/sysfs interfaces. 3799 */ 3800 mutex_lock(&h->resize_lock); 3801 flush_free_hpage_work(h); 3802 spin_lock_irq(&hugetlb_lock); 3803 3804 /* 3805 * Check for a node specific request. 3806 * Changing node specific huge page count may require a corresponding 3807 * change to the global count. In any case, the passed node mask 3808 * (nodes_allowed) will restrict alloc/free to the specified node. 3809 */ 3810 if (nid != NUMA_NO_NODE) { 3811 unsigned long old_count = count; 3812 3813 count += persistent_huge_pages(h) - 3814 (h->nr_huge_pages_node[nid] - 3815 h->surplus_huge_pages_node[nid]); 3816 /* 3817 * User may have specified a large count value which caused the 3818 * above calculation to overflow. In this case, they wanted 3819 * to allocate as many huge pages as possible. Set count to 3820 * largest possible value to align with their intention. 3821 */ 3822 if (count < old_count) 3823 count = ULONG_MAX; 3824 } 3825 3826 /* 3827 * Gigantic pages runtime allocation depend on the capability for large 3828 * page range allocation. 3829 * If the system does not provide this feature, return an error when 3830 * the user tries to allocate gigantic pages but let the user free the 3831 * boottime allocated gigantic pages. 3832 */ 3833 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) { 3834 if (count > persistent_huge_pages(h)) { 3835 spin_unlock_irq(&hugetlb_lock); 3836 mutex_unlock(&h->resize_lock); 3837 NODEMASK_FREE(node_alloc_noretry); 3838 return -EINVAL; 3839 } 3840 /* Fall through to decrease pool */ 3841 } 3842 3843 /* 3844 * Increase the pool size 3845 * First take pages out of surplus state. Then make up the 3846 * remaining difference by allocating fresh huge pages. 3847 * 3848 * We might race with alloc_surplus_hugetlb_folio() here and be unable 3849 * to convert a surplus huge page to a normal huge page. That is 3850 * not critical, though, it just means the overall size of the 3851 * pool might be one hugepage larger than it needs to be, but 3852 * within all the constraints specified by the sysctls. 3853 */ 3854 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { 3855 if (!adjust_pool_surplus(h, nodes_allowed, -1)) 3856 break; 3857 } 3858 3859 allocated = 0; 3860 while (count > (persistent_huge_pages(h) + allocated)) { 3861 /* 3862 * If this allocation races such that we no longer need the 3863 * page, free_huge_folio will handle it by freeing the page 3864 * and reducing the surplus. 3865 */ 3866 spin_unlock_irq(&hugetlb_lock); 3867 3868 /* yield cpu to avoid soft lockup */ 3869 cond_resched(); 3870 3871 folio = alloc_pool_huge_folio(h, nodes_allowed, 3872 node_alloc_noretry, 3873 &h->next_nid_to_alloc); 3874 if (!folio) { 3875 prep_and_add_allocated_folios(h, &page_list); 3876 spin_lock_irq(&hugetlb_lock); 3877 goto out; 3878 } 3879 3880 list_add(&folio->lru, &page_list); 3881 allocated++; 3882 3883 /* Bail for signals. Probably ctrl-c from user */ 3884 if (signal_pending(current)) { 3885 prep_and_add_allocated_folios(h, &page_list); 3886 spin_lock_irq(&hugetlb_lock); 3887 goto out; 3888 } 3889 3890 spin_lock_irq(&hugetlb_lock); 3891 } 3892 3893 /* Add allocated pages to the pool */ 3894 if (!list_empty(&page_list)) { 3895 spin_unlock_irq(&hugetlb_lock); 3896 prep_and_add_allocated_folios(h, &page_list); 3897 spin_lock_irq(&hugetlb_lock); 3898 } 3899 3900 /* 3901 * Decrease the pool size 3902 * First return free pages to the buddy allocator (being careful 3903 * to keep enough around to satisfy reservations). Then place 3904 * pages into surplus state as needed so the pool will shrink 3905 * to the desired size as pages become free. 3906 * 3907 * By placing pages into the surplus state independent of the 3908 * overcommit value, we are allowing the surplus pool size to 3909 * exceed overcommit. There are few sane options here. Since 3910 * alloc_surplus_hugetlb_folio() is checking the global counter, 3911 * though, we'll note that we're not allowed to exceed surplus 3912 * and won't grow the pool anywhere else. Not until one of the 3913 * sysctls are changed, or the surplus pages go out of use. 3914 */ 3915 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages; 3916 min_count = max(count, min_count); 3917 try_to_free_low(h, min_count, nodes_allowed); 3918 3919 /* 3920 * Collect pages to be removed on list without dropping lock 3921 */ 3922 while (min_count < persistent_huge_pages(h)) { 3923 folio = remove_pool_hugetlb_folio(h, nodes_allowed, 0); 3924 if (!folio) 3925 break; 3926 3927 list_add(&folio->lru, &page_list); 3928 } 3929 /* free the pages after dropping lock */ 3930 spin_unlock_irq(&hugetlb_lock); 3931 update_and_free_pages_bulk(h, &page_list); 3932 flush_free_hpage_work(h); 3933 spin_lock_irq(&hugetlb_lock); 3934 3935 while (count < persistent_huge_pages(h)) { 3936 if (!adjust_pool_surplus(h, nodes_allowed, 1)) 3937 break; 3938 } 3939 out: 3940 h->max_huge_pages = persistent_huge_pages(h); 3941 spin_unlock_irq(&hugetlb_lock); 3942 mutex_unlock(&h->resize_lock); 3943 3944 NODEMASK_FREE(node_alloc_noretry); 3945 3946 return 0; 3947 } 3948 3949 static int demote_free_hugetlb_folio(struct hstate *h, struct folio *folio) 3950 { 3951 int i, nid = folio_nid(folio); 3952 struct hstate *target_hstate; 3953 struct page *subpage; 3954 struct folio *inner_folio; 3955 int rc = 0; 3956 3957 target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order); 3958 3959 remove_hugetlb_folio_for_demote(h, folio, false); 3960 spin_unlock_irq(&hugetlb_lock); 3961 3962 /* 3963 * If vmemmap already existed for folio, the remove routine above would 3964 * have cleared the hugetlb folio flag. Hence the folio is technically 3965 * no longer a hugetlb folio. hugetlb_vmemmap_restore_folio can only be 3966 * passed hugetlb folios and will BUG otherwise. 3967 */ 3968 if (folio_test_hugetlb(folio)) { 3969 rc = hugetlb_vmemmap_restore_folio(h, folio); 3970 if (rc) { 3971 /* Allocation of vmemmmap failed, we can not demote folio */ 3972 spin_lock_irq(&hugetlb_lock); 3973 folio_ref_unfreeze(folio, 1); 3974 add_hugetlb_folio(h, folio, false); 3975 return rc; 3976 } 3977 } 3978 3979 /* 3980 * Use destroy_compound_hugetlb_folio_for_demote for all huge page 3981 * sizes as it will not ref count folios. 3982 */ 3983 destroy_compound_hugetlb_folio_for_demote(folio, huge_page_order(h)); 3984 3985 /* 3986 * Taking target hstate mutex synchronizes with set_max_huge_pages. 3987 * Without the mutex, pages added to target hstate could be marked 3988 * as surplus. 3989 * 3990 * Note that we already hold h->resize_lock. To prevent deadlock, 3991 * use the convention of always taking larger size hstate mutex first. 3992 */ 3993 mutex_lock(&target_hstate->resize_lock); 3994 for (i = 0; i < pages_per_huge_page(h); 3995 i += pages_per_huge_page(target_hstate)) { 3996 subpage = folio_page(folio, i); 3997 inner_folio = page_folio(subpage); 3998 if (hstate_is_gigantic(target_hstate)) 3999 prep_compound_gigantic_folio_for_demote(inner_folio, 4000 target_hstate->order); 4001 else 4002 prep_compound_page(subpage, target_hstate->order); 4003 folio_change_private(inner_folio, NULL); 4004 prep_new_hugetlb_folio(target_hstate, inner_folio, nid); 4005 free_huge_folio(inner_folio); 4006 } 4007 mutex_unlock(&target_hstate->resize_lock); 4008 4009 spin_lock_irq(&hugetlb_lock); 4010 4011 /* 4012 * Not absolutely necessary, but for consistency update max_huge_pages 4013 * based on pool changes for the demoted page. 4014 */ 4015 h->max_huge_pages--; 4016 target_hstate->max_huge_pages += 4017 pages_per_huge_page(h) / pages_per_huge_page(target_hstate); 4018 4019 return rc; 4020 } 4021 4022 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed) 4023 __must_hold(&hugetlb_lock) 4024 { 4025 int nr_nodes, node; 4026 struct folio *folio; 4027 4028 lockdep_assert_held(&hugetlb_lock); 4029 4030 /* We should never get here if no demote order */ 4031 if (!h->demote_order) { 4032 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n"); 4033 return -EINVAL; /* internal error */ 4034 } 4035 4036 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 4037 list_for_each_entry(folio, &h->hugepage_freelists[node], lru) { 4038 if (folio_test_hwpoison(folio)) 4039 continue; 4040 return demote_free_hugetlb_folio(h, folio); 4041 } 4042 } 4043 4044 /* 4045 * Only way to get here is if all pages on free lists are poisoned. 4046 * Return -EBUSY so that caller will not retry. 4047 */ 4048 return -EBUSY; 4049 } 4050 4051 #define HSTATE_ATTR_RO(_name) \ 4052 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 4053 4054 #define HSTATE_ATTR_WO(_name) \ 4055 static struct kobj_attribute _name##_attr = __ATTR_WO(_name) 4056 4057 #define HSTATE_ATTR(_name) \ 4058 static struct kobj_attribute _name##_attr = __ATTR_RW(_name) 4059 4060 static struct kobject *hugepages_kobj; 4061 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 4062 4063 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp); 4064 4065 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp) 4066 { 4067 int i; 4068 4069 for (i = 0; i < HUGE_MAX_HSTATE; i++) 4070 if (hstate_kobjs[i] == kobj) { 4071 if (nidp) 4072 *nidp = NUMA_NO_NODE; 4073 return &hstates[i]; 4074 } 4075 4076 return kobj_to_node_hstate(kobj, nidp); 4077 } 4078 4079 static ssize_t nr_hugepages_show_common(struct kobject *kobj, 4080 struct kobj_attribute *attr, char *buf) 4081 { 4082 struct hstate *h; 4083 unsigned long nr_huge_pages; 4084 int nid; 4085 4086 h = kobj_to_hstate(kobj, &nid); 4087 if (nid == NUMA_NO_NODE) 4088 nr_huge_pages = h->nr_huge_pages; 4089 else 4090 nr_huge_pages = h->nr_huge_pages_node[nid]; 4091 4092 return sysfs_emit(buf, "%lu\n", nr_huge_pages); 4093 } 4094 4095 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy, 4096 struct hstate *h, int nid, 4097 unsigned long count, size_t len) 4098 { 4099 int err; 4100 nodemask_t nodes_allowed, *n_mask; 4101 4102 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 4103 return -EINVAL; 4104 4105 if (nid == NUMA_NO_NODE) { 4106 /* 4107 * global hstate attribute 4108 */ 4109 if (!(obey_mempolicy && 4110 init_nodemask_of_mempolicy(&nodes_allowed))) 4111 n_mask = &node_states[N_MEMORY]; 4112 else 4113 n_mask = &nodes_allowed; 4114 } else { 4115 /* 4116 * Node specific request. count adjustment happens in 4117 * set_max_huge_pages() after acquiring hugetlb_lock. 4118 */ 4119 init_nodemask_of_node(&nodes_allowed, nid); 4120 n_mask = &nodes_allowed; 4121 } 4122 4123 err = set_max_huge_pages(h, count, nid, n_mask); 4124 4125 return err ? err : len; 4126 } 4127 4128 static ssize_t nr_hugepages_store_common(bool obey_mempolicy, 4129 struct kobject *kobj, const char *buf, 4130 size_t len) 4131 { 4132 struct hstate *h; 4133 unsigned long count; 4134 int nid; 4135 int err; 4136 4137 err = kstrtoul(buf, 10, &count); 4138 if (err) 4139 return err; 4140 4141 h = kobj_to_hstate(kobj, &nid); 4142 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len); 4143 } 4144 4145 static ssize_t nr_hugepages_show(struct kobject *kobj, 4146 struct kobj_attribute *attr, char *buf) 4147 { 4148 return nr_hugepages_show_common(kobj, attr, buf); 4149 } 4150 4151 static ssize_t nr_hugepages_store(struct kobject *kobj, 4152 struct kobj_attribute *attr, const char *buf, size_t len) 4153 { 4154 return nr_hugepages_store_common(false, kobj, buf, len); 4155 } 4156 HSTATE_ATTR(nr_hugepages); 4157 4158 #ifdef CONFIG_NUMA 4159 4160 /* 4161 * hstate attribute for optionally mempolicy-based constraint on persistent 4162 * huge page alloc/free. 4163 */ 4164 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj, 4165 struct kobj_attribute *attr, 4166 char *buf) 4167 { 4168 return nr_hugepages_show_common(kobj, attr, buf); 4169 } 4170 4171 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj, 4172 struct kobj_attribute *attr, const char *buf, size_t len) 4173 { 4174 return nr_hugepages_store_common(true, kobj, buf, len); 4175 } 4176 HSTATE_ATTR(nr_hugepages_mempolicy); 4177 #endif 4178 4179 4180 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, 4181 struct kobj_attribute *attr, char *buf) 4182 { 4183 struct hstate *h = kobj_to_hstate(kobj, NULL); 4184 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages); 4185 } 4186 4187 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, 4188 struct kobj_attribute *attr, const char *buf, size_t count) 4189 { 4190 int err; 4191 unsigned long input; 4192 struct hstate *h = kobj_to_hstate(kobj, NULL); 4193 4194 if (hstate_is_gigantic(h)) 4195 return -EINVAL; 4196 4197 err = kstrtoul(buf, 10, &input); 4198 if (err) 4199 return err; 4200 4201 spin_lock_irq(&hugetlb_lock); 4202 h->nr_overcommit_huge_pages = input; 4203 spin_unlock_irq(&hugetlb_lock); 4204 4205 return count; 4206 } 4207 HSTATE_ATTR(nr_overcommit_hugepages); 4208 4209 static ssize_t free_hugepages_show(struct kobject *kobj, 4210 struct kobj_attribute *attr, char *buf) 4211 { 4212 struct hstate *h; 4213 unsigned long free_huge_pages; 4214 int nid; 4215 4216 h = kobj_to_hstate(kobj, &nid); 4217 if (nid == NUMA_NO_NODE) 4218 free_huge_pages = h->free_huge_pages; 4219 else 4220 free_huge_pages = h->free_huge_pages_node[nid]; 4221 4222 return sysfs_emit(buf, "%lu\n", free_huge_pages); 4223 } 4224 HSTATE_ATTR_RO(free_hugepages); 4225 4226 static ssize_t resv_hugepages_show(struct kobject *kobj, 4227 struct kobj_attribute *attr, char *buf) 4228 { 4229 struct hstate *h = kobj_to_hstate(kobj, NULL); 4230 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages); 4231 } 4232 HSTATE_ATTR_RO(resv_hugepages); 4233 4234 static ssize_t surplus_hugepages_show(struct kobject *kobj, 4235 struct kobj_attribute *attr, char *buf) 4236 { 4237 struct hstate *h; 4238 unsigned long surplus_huge_pages; 4239 int nid; 4240 4241 h = kobj_to_hstate(kobj, &nid); 4242 if (nid == NUMA_NO_NODE) 4243 surplus_huge_pages = h->surplus_huge_pages; 4244 else 4245 surplus_huge_pages = h->surplus_huge_pages_node[nid]; 4246 4247 return sysfs_emit(buf, "%lu\n", surplus_huge_pages); 4248 } 4249 HSTATE_ATTR_RO(surplus_hugepages); 4250 4251 static ssize_t demote_store(struct kobject *kobj, 4252 struct kobj_attribute *attr, const char *buf, size_t len) 4253 { 4254 unsigned long nr_demote; 4255 unsigned long nr_available; 4256 nodemask_t nodes_allowed, *n_mask; 4257 struct hstate *h; 4258 int err; 4259 int nid; 4260 4261 err = kstrtoul(buf, 10, &nr_demote); 4262 if (err) 4263 return err; 4264 h = kobj_to_hstate(kobj, &nid); 4265 4266 if (nid != NUMA_NO_NODE) { 4267 init_nodemask_of_node(&nodes_allowed, nid); 4268 n_mask = &nodes_allowed; 4269 } else { 4270 n_mask = &node_states[N_MEMORY]; 4271 } 4272 4273 /* Synchronize with other sysfs operations modifying huge pages */ 4274 mutex_lock(&h->resize_lock); 4275 spin_lock_irq(&hugetlb_lock); 4276 4277 while (nr_demote) { 4278 /* 4279 * Check for available pages to demote each time thorough the 4280 * loop as demote_pool_huge_page will drop hugetlb_lock. 4281 */ 4282 if (nid != NUMA_NO_NODE) 4283 nr_available = h->free_huge_pages_node[nid]; 4284 else 4285 nr_available = h->free_huge_pages; 4286 nr_available -= h->resv_huge_pages; 4287 if (!nr_available) 4288 break; 4289 4290 err = demote_pool_huge_page(h, n_mask); 4291 if (err) 4292 break; 4293 4294 nr_demote--; 4295 } 4296 4297 spin_unlock_irq(&hugetlb_lock); 4298 mutex_unlock(&h->resize_lock); 4299 4300 if (err) 4301 return err; 4302 return len; 4303 } 4304 HSTATE_ATTR_WO(demote); 4305 4306 static ssize_t demote_size_show(struct kobject *kobj, 4307 struct kobj_attribute *attr, char *buf) 4308 { 4309 struct hstate *h = kobj_to_hstate(kobj, NULL); 4310 unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K; 4311 4312 return sysfs_emit(buf, "%lukB\n", demote_size); 4313 } 4314 4315 static ssize_t demote_size_store(struct kobject *kobj, 4316 struct kobj_attribute *attr, 4317 const char *buf, size_t count) 4318 { 4319 struct hstate *h, *demote_hstate; 4320 unsigned long demote_size; 4321 unsigned int demote_order; 4322 4323 demote_size = (unsigned long)memparse(buf, NULL); 4324 4325 demote_hstate = size_to_hstate(demote_size); 4326 if (!demote_hstate) 4327 return -EINVAL; 4328 demote_order = demote_hstate->order; 4329 if (demote_order < HUGETLB_PAGE_ORDER) 4330 return -EINVAL; 4331 4332 /* demote order must be smaller than hstate order */ 4333 h = kobj_to_hstate(kobj, NULL); 4334 if (demote_order >= h->order) 4335 return -EINVAL; 4336 4337 /* resize_lock synchronizes access to demote size and writes */ 4338 mutex_lock(&h->resize_lock); 4339 h->demote_order = demote_order; 4340 mutex_unlock(&h->resize_lock); 4341 4342 return count; 4343 } 4344 HSTATE_ATTR(demote_size); 4345 4346 static struct attribute *hstate_attrs[] = { 4347 &nr_hugepages_attr.attr, 4348 &nr_overcommit_hugepages_attr.attr, 4349 &free_hugepages_attr.attr, 4350 &resv_hugepages_attr.attr, 4351 &surplus_hugepages_attr.attr, 4352 #ifdef CONFIG_NUMA 4353 &nr_hugepages_mempolicy_attr.attr, 4354 #endif 4355 NULL, 4356 }; 4357 4358 static const struct attribute_group hstate_attr_group = { 4359 .attrs = hstate_attrs, 4360 }; 4361 4362 static struct attribute *hstate_demote_attrs[] = { 4363 &demote_size_attr.attr, 4364 &demote_attr.attr, 4365 NULL, 4366 }; 4367 4368 static const struct attribute_group hstate_demote_attr_group = { 4369 .attrs = hstate_demote_attrs, 4370 }; 4371 4372 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent, 4373 struct kobject **hstate_kobjs, 4374 const struct attribute_group *hstate_attr_group) 4375 { 4376 int retval; 4377 int hi = hstate_index(h); 4378 4379 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent); 4380 if (!hstate_kobjs[hi]) 4381 return -ENOMEM; 4382 4383 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group); 4384 if (retval) { 4385 kobject_put(hstate_kobjs[hi]); 4386 hstate_kobjs[hi] = NULL; 4387 return retval; 4388 } 4389 4390 if (h->demote_order) { 4391 retval = sysfs_create_group(hstate_kobjs[hi], 4392 &hstate_demote_attr_group); 4393 if (retval) { 4394 pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name); 4395 sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group); 4396 kobject_put(hstate_kobjs[hi]); 4397 hstate_kobjs[hi] = NULL; 4398 return retval; 4399 } 4400 } 4401 4402 return 0; 4403 } 4404 4405 #ifdef CONFIG_NUMA 4406 static bool hugetlb_sysfs_initialized __ro_after_init; 4407 4408 /* 4409 * node_hstate/s - associate per node hstate attributes, via their kobjects, 4410 * with node devices in node_devices[] using a parallel array. The array 4411 * index of a node device or _hstate == node id. 4412 * This is here to avoid any static dependency of the node device driver, in 4413 * the base kernel, on the hugetlb module. 4414 */ 4415 struct node_hstate { 4416 struct kobject *hugepages_kobj; 4417 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 4418 }; 4419 static struct node_hstate node_hstates[MAX_NUMNODES]; 4420 4421 /* 4422 * A subset of global hstate attributes for node devices 4423 */ 4424 static struct attribute *per_node_hstate_attrs[] = { 4425 &nr_hugepages_attr.attr, 4426 &free_hugepages_attr.attr, 4427 &surplus_hugepages_attr.attr, 4428 NULL, 4429 }; 4430 4431 static const struct attribute_group per_node_hstate_attr_group = { 4432 .attrs = per_node_hstate_attrs, 4433 }; 4434 4435 /* 4436 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj. 4437 * Returns node id via non-NULL nidp. 4438 */ 4439 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 4440 { 4441 int nid; 4442 4443 for (nid = 0; nid < nr_node_ids; nid++) { 4444 struct node_hstate *nhs = &node_hstates[nid]; 4445 int i; 4446 for (i = 0; i < HUGE_MAX_HSTATE; i++) 4447 if (nhs->hstate_kobjs[i] == kobj) { 4448 if (nidp) 4449 *nidp = nid; 4450 return &hstates[i]; 4451 } 4452 } 4453 4454 BUG(); 4455 return NULL; 4456 } 4457 4458 /* 4459 * Unregister hstate attributes from a single node device. 4460 * No-op if no hstate attributes attached. 4461 */ 4462 void hugetlb_unregister_node(struct node *node) 4463 { 4464 struct hstate *h; 4465 struct node_hstate *nhs = &node_hstates[node->dev.id]; 4466 4467 if (!nhs->hugepages_kobj) 4468 return; /* no hstate attributes */ 4469 4470 for_each_hstate(h) { 4471 int idx = hstate_index(h); 4472 struct kobject *hstate_kobj = nhs->hstate_kobjs[idx]; 4473 4474 if (!hstate_kobj) 4475 continue; 4476 if (h->demote_order) 4477 sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group); 4478 sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group); 4479 kobject_put(hstate_kobj); 4480 nhs->hstate_kobjs[idx] = NULL; 4481 } 4482 4483 kobject_put(nhs->hugepages_kobj); 4484 nhs->hugepages_kobj = NULL; 4485 } 4486 4487 4488 /* 4489 * Register hstate attributes for a single node device. 4490 * No-op if attributes already registered. 4491 */ 4492 void hugetlb_register_node(struct node *node) 4493 { 4494 struct hstate *h; 4495 struct node_hstate *nhs = &node_hstates[node->dev.id]; 4496 int err; 4497 4498 if (!hugetlb_sysfs_initialized) 4499 return; 4500 4501 if (nhs->hugepages_kobj) 4502 return; /* already allocated */ 4503 4504 nhs->hugepages_kobj = kobject_create_and_add("hugepages", 4505 &node->dev.kobj); 4506 if (!nhs->hugepages_kobj) 4507 return; 4508 4509 for_each_hstate(h) { 4510 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj, 4511 nhs->hstate_kobjs, 4512 &per_node_hstate_attr_group); 4513 if (err) { 4514 pr_err("HugeTLB: Unable to add hstate %s for node %d\n", 4515 h->name, node->dev.id); 4516 hugetlb_unregister_node(node); 4517 break; 4518 } 4519 } 4520 } 4521 4522 /* 4523 * hugetlb init time: register hstate attributes for all registered node 4524 * devices of nodes that have memory. All on-line nodes should have 4525 * registered their associated device by this time. 4526 */ 4527 static void __init hugetlb_register_all_nodes(void) 4528 { 4529 int nid; 4530 4531 for_each_online_node(nid) 4532 hugetlb_register_node(node_devices[nid]); 4533 } 4534 #else /* !CONFIG_NUMA */ 4535 4536 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 4537 { 4538 BUG(); 4539 if (nidp) 4540 *nidp = -1; 4541 return NULL; 4542 } 4543 4544 static void hugetlb_register_all_nodes(void) { } 4545 4546 #endif 4547 4548 #ifdef CONFIG_CMA 4549 static void __init hugetlb_cma_check(void); 4550 #else 4551 static inline __init void hugetlb_cma_check(void) 4552 { 4553 } 4554 #endif 4555 4556 static void __init hugetlb_sysfs_init(void) 4557 { 4558 struct hstate *h; 4559 int err; 4560 4561 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); 4562 if (!hugepages_kobj) 4563 return; 4564 4565 for_each_hstate(h) { 4566 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj, 4567 hstate_kobjs, &hstate_attr_group); 4568 if (err) 4569 pr_err("HugeTLB: Unable to add hstate %s", h->name); 4570 } 4571 4572 #ifdef CONFIG_NUMA 4573 hugetlb_sysfs_initialized = true; 4574 #endif 4575 hugetlb_register_all_nodes(); 4576 } 4577 4578 #ifdef CONFIG_SYSCTL 4579 static void hugetlb_sysctl_init(void); 4580 #else 4581 static inline void hugetlb_sysctl_init(void) { } 4582 #endif 4583 4584 static int __init hugetlb_init(void) 4585 { 4586 int i; 4587 4588 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE < 4589 __NR_HPAGEFLAGS); 4590 4591 if (!hugepages_supported()) { 4592 if (hugetlb_max_hstate || default_hstate_max_huge_pages) 4593 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n"); 4594 return 0; 4595 } 4596 4597 /* 4598 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some 4599 * architectures depend on setup being done here. 4600 */ 4601 hugetlb_add_hstate(HUGETLB_PAGE_ORDER); 4602 if (!parsed_default_hugepagesz) { 4603 /* 4604 * If we did not parse a default huge page size, set 4605 * default_hstate_idx to HPAGE_SIZE hstate. And, if the 4606 * number of huge pages for this default size was implicitly 4607 * specified, set that here as well. 4608 * Note that the implicit setting will overwrite an explicit 4609 * setting. A warning will be printed in this case. 4610 */ 4611 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE)); 4612 if (default_hstate_max_huge_pages) { 4613 if (default_hstate.max_huge_pages) { 4614 char buf[32]; 4615 4616 string_get_size(huge_page_size(&default_hstate), 4617 1, STRING_UNITS_2, buf, 32); 4618 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n", 4619 default_hstate.max_huge_pages, buf); 4620 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n", 4621 default_hstate_max_huge_pages); 4622 } 4623 default_hstate.max_huge_pages = 4624 default_hstate_max_huge_pages; 4625 4626 for_each_online_node(i) 4627 default_hstate.max_huge_pages_node[i] = 4628 default_hugepages_in_node[i]; 4629 } 4630 } 4631 4632 hugetlb_cma_check(); 4633 hugetlb_init_hstates(); 4634 gather_bootmem_prealloc(); 4635 report_hugepages(); 4636 4637 hugetlb_sysfs_init(); 4638 hugetlb_cgroup_file_init(); 4639 hugetlb_sysctl_init(); 4640 4641 #ifdef CONFIG_SMP 4642 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus()); 4643 #else 4644 num_fault_mutexes = 1; 4645 #endif 4646 hugetlb_fault_mutex_table = 4647 kmalloc_array(num_fault_mutexes, sizeof(struct mutex), 4648 GFP_KERNEL); 4649 BUG_ON(!hugetlb_fault_mutex_table); 4650 4651 for (i = 0; i < num_fault_mutexes; i++) 4652 mutex_init(&hugetlb_fault_mutex_table[i]); 4653 return 0; 4654 } 4655 subsys_initcall(hugetlb_init); 4656 4657 /* Overwritten by architectures with more huge page sizes */ 4658 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size) 4659 { 4660 return size == HPAGE_SIZE; 4661 } 4662 4663 void __init hugetlb_add_hstate(unsigned int order) 4664 { 4665 struct hstate *h; 4666 unsigned long i; 4667 4668 if (size_to_hstate(PAGE_SIZE << order)) { 4669 return; 4670 } 4671 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE); 4672 BUG_ON(order < order_base_2(__NR_USED_SUBPAGE)); 4673 h = &hstates[hugetlb_max_hstate++]; 4674 mutex_init(&h->resize_lock); 4675 h->order = order; 4676 h->mask = ~(huge_page_size(h) - 1); 4677 for (i = 0; i < MAX_NUMNODES; ++i) 4678 INIT_LIST_HEAD(&h->hugepage_freelists[i]); 4679 INIT_LIST_HEAD(&h->hugepage_activelist); 4680 h->next_nid_to_alloc = first_memory_node; 4681 h->next_nid_to_free = first_memory_node; 4682 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", 4683 huge_page_size(h)/SZ_1K); 4684 4685 parsed_hstate = h; 4686 } 4687 4688 bool __init __weak hugetlb_node_alloc_supported(void) 4689 { 4690 return true; 4691 } 4692 4693 static void __init hugepages_clear_pages_in_node(void) 4694 { 4695 if (!hugetlb_max_hstate) { 4696 default_hstate_max_huge_pages = 0; 4697 memset(default_hugepages_in_node, 0, 4698 sizeof(default_hugepages_in_node)); 4699 } else { 4700 parsed_hstate->max_huge_pages = 0; 4701 memset(parsed_hstate->max_huge_pages_node, 0, 4702 sizeof(parsed_hstate->max_huge_pages_node)); 4703 } 4704 } 4705 4706 /* 4707 * hugepages command line processing 4708 * hugepages normally follows a valid hugepagsz or default_hugepagsz 4709 * specification. If not, ignore the hugepages value. hugepages can also 4710 * be the first huge page command line option in which case it implicitly 4711 * specifies the number of huge pages for the default size. 4712 */ 4713 static int __init hugepages_setup(char *s) 4714 { 4715 unsigned long *mhp; 4716 static unsigned long *last_mhp; 4717 int node = NUMA_NO_NODE; 4718 int count; 4719 unsigned long tmp; 4720 char *p = s; 4721 4722 if (!parsed_valid_hugepagesz) { 4723 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s); 4724 parsed_valid_hugepagesz = true; 4725 return 1; 4726 } 4727 4728 /* 4729 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter 4730 * yet, so this hugepages= parameter goes to the "default hstate". 4731 * Otherwise, it goes with the previously parsed hugepagesz or 4732 * default_hugepagesz. 4733 */ 4734 else if (!hugetlb_max_hstate) 4735 mhp = &default_hstate_max_huge_pages; 4736 else 4737 mhp = &parsed_hstate->max_huge_pages; 4738 4739 if (mhp == last_mhp) { 4740 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s); 4741 return 1; 4742 } 4743 4744 while (*p) { 4745 count = 0; 4746 if (sscanf(p, "%lu%n", &tmp, &count) != 1) 4747 goto invalid; 4748 /* Parameter is node format */ 4749 if (p[count] == ':') { 4750 if (!hugetlb_node_alloc_supported()) { 4751 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n"); 4752 return 1; 4753 } 4754 if (tmp >= MAX_NUMNODES || !node_online(tmp)) 4755 goto invalid; 4756 node = array_index_nospec(tmp, MAX_NUMNODES); 4757 p += count + 1; 4758 /* Parse hugepages */ 4759 if (sscanf(p, "%lu%n", &tmp, &count) != 1) 4760 goto invalid; 4761 if (!hugetlb_max_hstate) 4762 default_hugepages_in_node[node] = tmp; 4763 else 4764 parsed_hstate->max_huge_pages_node[node] = tmp; 4765 *mhp += tmp; 4766 /* Go to parse next node*/ 4767 if (p[count] == ',') 4768 p += count + 1; 4769 else 4770 break; 4771 } else { 4772 if (p != s) 4773 goto invalid; 4774 *mhp = tmp; 4775 break; 4776 } 4777 } 4778 4779 /* 4780 * Global state is always initialized later in hugetlb_init. 4781 * But we need to allocate gigantic hstates here early to still 4782 * use the bootmem allocator. 4783 */ 4784 if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate)) 4785 hugetlb_hstate_alloc_pages(parsed_hstate); 4786 4787 last_mhp = mhp; 4788 4789 return 1; 4790 4791 invalid: 4792 pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p); 4793 hugepages_clear_pages_in_node(); 4794 return 1; 4795 } 4796 __setup("hugepages=", hugepages_setup); 4797 4798 /* 4799 * hugepagesz command line processing 4800 * A specific huge page size can only be specified once with hugepagesz. 4801 * hugepagesz is followed by hugepages on the command line. The global 4802 * variable 'parsed_valid_hugepagesz' is used to determine if prior 4803 * hugepagesz argument was valid. 4804 */ 4805 static int __init hugepagesz_setup(char *s) 4806 { 4807 unsigned long size; 4808 struct hstate *h; 4809 4810 parsed_valid_hugepagesz = false; 4811 size = (unsigned long)memparse(s, NULL); 4812 4813 if (!arch_hugetlb_valid_size(size)) { 4814 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s); 4815 return 1; 4816 } 4817 4818 h = size_to_hstate(size); 4819 if (h) { 4820 /* 4821 * hstate for this size already exists. This is normally 4822 * an error, but is allowed if the existing hstate is the 4823 * default hstate. More specifically, it is only allowed if 4824 * the number of huge pages for the default hstate was not 4825 * previously specified. 4826 */ 4827 if (!parsed_default_hugepagesz || h != &default_hstate || 4828 default_hstate.max_huge_pages) { 4829 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s); 4830 return 1; 4831 } 4832 4833 /* 4834 * No need to call hugetlb_add_hstate() as hstate already 4835 * exists. But, do set parsed_hstate so that a following 4836 * hugepages= parameter will be applied to this hstate. 4837 */ 4838 parsed_hstate = h; 4839 parsed_valid_hugepagesz = true; 4840 return 1; 4841 } 4842 4843 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); 4844 parsed_valid_hugepagesz = true; 4845 return 1; 4846 } 4847 __setup("hugepagesz=", hugepagesz_setup); 4848 4849 /* 4850 * default_hugepagesz command line input 4851 * Only one instance of default_hugepagesz allowed on command line. 4852 */ 4853 static int __init default_hugepagesz_setup(char *s) 4854 { 4855 unsigned long size; 4856 int i; 4857 4858 parsed_valid_hugepagesz = false; 4859 if (parsed_default_hugepagesz) { 4860 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s); 4861 return 1; 4862 } 4863 4864 size = (unsigned long)memparse(s, NULL); 4865 4866 if (!arch_hugetlb_valid_size(size)) { 4867 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s); 4868 return 1; 4869 } 4870 4871 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); 4872 parsed_valid_hugepagesz = true; 4873 parsed_default_hugepagesz = true; 4874 default_hstate_idx = hstate_index(size_to_hstate(size)); 4875 4876 /* 4877 * The number of default huge pages (for this size) could have been 4878 * specified as the first hugetlb parameter: hugepages=X. If so, 4879 * then default_hstate_max_huge_pages is set. If the default huge 4880 * page size is gigantic (> MAX_PAGE_ORDER), then the pages must be 4881 * allocated here from bootmem allocator. 4882 */ 4883 if (default_hstate_max_huge_pages) { 4884 default_hstate.max_huge_pages = default_hstate_max_huge_pages; 4885 for_each_online_node(i) 4886 default_hstate.max_huge_pages_node[i] = 4887 default_hugepages_in_node[i]; 4888 if (hstate_is_gigantic(&default_hstate)) 4889 hugetlb_hstate_alloc_pages(&default_hstate); 4890 default_hstate_max_huge_pages = 0; 4891 } 4892 4893 return 1; 4894 } 4895 __setup("default_hugepagesz=", default_hugepagesz_setup); 4896 4897 static nodemask_t *policy_mbind_nodemask(gfp_t gfp) 4898 { 4899 #ifdef CONFIG_NUMA 4900 struct mempolicy *mpol = get_task_policy(current); 4901 4902 /* 4903 * Only enforce MPOL_BIND policy which overlaps with cpuset policy 4904 * (from policy_nodemask) specifically for hugetlb case 4905 */ 4906 if (mpol->mode == MPOL_BIND && 4907 (apply_policy_zone(mpol, gfp_zone(gfp)) && 4908 cpuset_nodemask_valid_mems_allowed(&mpol->nodes))) 4909 return &mpol->nodes; 4910 #endif 4911 return NULL; 4912 } 4913 4914 static unsigned int allowed_mems_nr(struct hstate *h) 4915 { 4916 int node; 4917 unsigned int nr = 0; 4918 nodemask_t *mbind_nodemask; 4919 unsigned int *array = h->free_huge_pages_node; 4920 gfp_t gfp_mask = htlb_alloc_mask(h); 4921 4922 mbind_nodemask = policy_mbind_nodemask(gfp_mask); 4923 for_each_node_mask(node, cpuset_current_mems_allowed) { 4924 if (!mbind_nodemask || node_isset(node, *mbind_nodemask)) 4925 nr += array[node]; 4926 } 4927 4928 return nr; 4929 } 4930 4931 #ifdef CONFIG_SYSCTL 4932 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write, 4933 void *buffer, size_t *length, 4934 loff_t *ppos, unsigned long *out) 4935 { 4936 struct ctl_table dup_table; 4937 4938 /* 4939 * In order to avoid races with __do_proc_doulongvec_minmax(), we 4940 * can duplicate the @table and alter the duplicate of it. 4941 */ 4942 dup_table = *table; 4943 dup_table.data = out; 4944 4945 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos); 4946 } 4947 4948 static int hugetlb_sysctl_handler_common(bool obey_mempolicy, 4949 struct ctl_table *table, int write, 4950 void *buffer, size_t *length, loff_t *ppos) 4951 { 4952 struct hstate *h = &default_hstate; 4953 unsigned long tmp = h->max_huge_pages; 4954 int ret; 4955 4956 if (!hugepages_supported()) 4957 return -EOPNOTSUPP; 4958 4959 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, 4960 &tmp); 4961 if (ret) 4962 goto out; 4963 4964 if (write) 4965 ret = __nr_hugepages_store_common(obey_mempolicy, h, 4966 NUMA_NO_NODE, tmp, *length); 4967 out: 4968 return ret; 4969 } 4970 4971 static int hugetlb_sysctl_handler(struct ctl_table *table, int write, 4972 void *buffer, size_t *length, loff_t *ppos) 4973 { 4974 4975 return hugetlb_sysctl_handler_common(false, table, write, 4976 buffer, length, ppos); 4977 } 4978 4979 #ifdef CONFIG_NUMA 4980 static int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write, 4981 void *buffer, size_t *length, loff_t *ppos) 4982 { 4983 return hugetlb_sysctl_handler_common(true, table, write, 4984 buffer, length, ppos); 4985 } 4986 #endif /* CONFIG_NUMA */ 4987 4988 static int hugetlb_overcommit_handler(struct ctl_table *table, int write, 4989 void *buffer, size_t *length, loff_t *ppos) 4990 { 4991 struct hstate *h = &default_hstate; 4992 unsigned long tmp; 4993 int ret; 4994 4995 if (!hugepages_supported()) 4996 return -EOPNOTSUPP; 4997 4998 tmp = h->nr_overcommit_huge_pages; 4999 5000 if (write && hstate_is_gigantic(h)) 5001 return -EINVAL; 5002 5003 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, 5004 &tmp); 5005 if (ret) 5006 goto out; 5007 5008 if (write) { 5009 spin_lock_irq(&hugetlb_lock); 5010 h->nr_overcommit_huge_pages = tmp; 5011 spin_unlock_irq(&hugetlb_lock); 5012 } 5013 out: 5014 return ret; 5015 } 5016 5017 static struct ctl_table hugetlb_table[] = { 5018 { 5019 .procname = "nr_hugepages", 5020 .data = NULL, 5021 .maxlen = sizeof(unsigned long), 5022 .mode = 0644, 5023 .proc_handler = hugetlb_sysctl_handler, 5024 }, 5025 #ifdef CONFIG_NUMA 5026 { 5027 .procname = "nr_hugepages_mempolicy", 5028 .data = NULL, 5029 .maxlen = sizeof(unsigned long), 5030 .mode = 0644, 5031 .proc_handler = &hugetlb_mempolicy_sysctl_handler, 5032 }, 5033 #endif 5034 { 5035 .procname = "hugetlb_shm_group", 5036 .data = &sysctl_hugetlb_shm_group, 5037 .maxlen = sizeof(gid_t), 5038 .mode = 0644, 5039 .proc_handler = proc_dointvec, 5040 }, 5041 { 5042 .procname = "nr_overcommit_hugepages", 5043 .data = NULL, 5044 .maxlen = sizeof(unsigned long), 5045 .mode = 0644, 5046 .proc_handler = hugetlb_overcommit_handler, 5047 }, 5048 { } 5049 }; 5050 5051 static void hugetlb_sysctl_init(void) 5052 { 5053 register_sysctl_init("vm", hugetlb_table); 5054 } 5055 #endif /* CONFIG_SYSCTL */ 5056 5057 void hugetlb_report_meminfo(struct seq_file *m) 5058 { 5059 struct hstate *h; 5060 unsigned long total = 0; 5061 5062 if (!hugepages_supported()) 5063 return; 5064 5065 for_each_hstate(h) { 5066 unsigned long count = h->nr_huge_pages; 5067 5068 total += huge_page_size(h) * count; 5069 5070 if (h == &default_hstate) 5071 seq_printf(m, 5072 "HugePages_Total: %5lu\n" 5073 "HugePages_Free: %5lu\n" 5074 "HugePages_Rsvd: %5lu\n" 5075 "HugePages_Surp: %5lu\n" 5076 "Hugepagesize: %8lu kB\n", 5077 count, 5078 h->free_huge_pages, 5079 h->resv_huge_pages, 5080 h->surplus_huge_pages, 5081 huge_page_size(h) / SZ_1K); 5082 } 5083 5084 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K); 5085 } 5086 5087 int hugetlb_report_node_meminfo(char *buf, int len, int nid) 5088 { 5089 struct hstate *h = &default_hstate; 5090 5091 if (!hugepages_supported()) 5092 return 0; 5093 5094 return sysfs_emit_at(buf, len, 5095 "Node %d HugePages_Total: %5u\n" 5096 "Node %d HugePages_Free: %5u\n" 5097 "Node %d HugePages_Surp: %5u\n", 5098 nid, h->nr_huge_pages_node[nid], 5099 nid, h->free_huge_pages_node[nid], 5100 nid, h->surplus_huge_pages_node[nid]); 5101 } 5102 5103 void hugetlb_show_meminfo_node(int nid) 5104 { 5105 struct hstate *h; 5106 5107 if (!hugepages_supported()) 5108 return; 5109 5110 for_each_hstate(h) 5111 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n", 5112 nid, 5113 h->nr_huge_pages_node[nid], 5114 h->free_huge_pages_node[nid], 5115 h->surplus_huge_pages_node[nid], 5116 huge_page_size(h) / SZ_1K); 5117 } 5118 5119 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm) 5120 { 5121 seq_printf(m, "HugetlbPages:\t%8lu kB\n", 5122 K(atomic_long_read(&mm->hugetlb_usage))); 5123 } 5124 5125 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ 5126 unsigned long hugetlb_total_pages(void) 5127 { 5128 struct hstate *h; 5129 unsigned long nr_total_pages = 0; 5130 5131 for_each_hstate(h) 5132 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h); 5133 return nr_total_pages; 5134 } 5135 5136 static int hugetlb_acct_memory(struct hstate *h, long delta) 5137 { 5138 int ret = -ENOMEM; 5139 5140 if (!delta) 5141 return 0; 5142 5143 spin_lock_irq(&hugetlb_lock); 5144 /* 5145 * When cpuset is configured, it breaks the strict hugetlb page 5146 * reservation as the accounting is done on a global variable. Such 5147 * reservation is completely rubbish in the presence of cpuset because 5148 * the reservation is not checked against page availability for the 5149 * current cpuset. Application can still potentially OOM'ed by kernel 5150 * with lack of free htlb page in cpuset that the task is in. 5151 * Attempt to enforce strict accounting with cpuset is almost 5152 * impossible (or too ugly) because cpuset is too fluid that 5153 * task or memory node can be dynamically moved between cpusets. 5154 * 5155 * The change of semantics for shared hugetlb mapping with cpuset is 5156 * undesirable. However, in order to preserve some of the semantics, 5157 * we fall back to check against current free page availability as 5158 * a best attempt and hopefully to minimize the impact of changing 5159 * semantics that cpuset has. 5160 * 5161 * Apart from cpuset, we also have memory policy mechanism that 5162 * also determines from which node the kernel will allocate memory 5163 * in a NUMA system. So similar to cpuset, we also should consider 5164 * the memory policy of the current task. Similar to the description 5165 * above. 5166 */ 5167 if (delta > 0) { 5168 if (gather_surplus_pages(h, delta) < 0) 5169 goto out; 5170 5171 if (delta > allowed_mems_nr(h)) { 5172 return_unused_surplus_pages(h, delta); 5173 goto out; 5174 } 5175 } 5176 5177 ret = 0; 5178 if (delta < 0) 5179 return_unused_surplus_pages(h, (unsigned long) -delta); 5180 5181 out: 5182 spin_unlock_irq(&hugetlb_lock); 5183 return ret; 5184 } 5185 5186 static void hugetlb_vm_op_open(struct vm_area_struct *vma) 5187 { 5188 struct resv_map *resv = vma_resv_map(vma); 5189 5190 /* 5191 * HPAGE_RESV_OWNER indicates a private mapping. 5192 * This new VMA should share its siblings reservation map if present. 5193 * The VMA will only ever have a valid reservation map pointer where 5194 * it is being copied for another still existing VMA. As that VMA 5195 * has a reference to the reservation map it cannot disappear until 5196 * after this open call completes. It is therefore safe to take a 5197 * new reference here without additional locking. 5198 */ 5199 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 5200 resv_map_dup_hugetlb_cgroup_uncharge_info(resv); 5201 kref_get(&resv->refs); 5202 } 5203 5204 /* 5205 * vma_lock structure for sharable mappings is vma specific. 5206 * Clear old pointer (if copied via vm_area_dup) and allocate 5207 * new structure. Before clearing, make sure vma_lock is not 5208 * for this vma. 5209 */ 5210 if (vma->vm_flags & VM_MAYSHARE) { 5211 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 5212 5213 if (vma_lock) { 5214 if (vma_lock->vma != vma) { 5215 vma->vm_private_data = NULL; 5216 hugetlb_vma_lock_alloc(vma); 5217 } else 5218 pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__); 5219 } else 5220 hugetlb_vma_lock_alloc(vma); 5221 } 5222 } 5223 5224 static void hugetlb_vm_op_close(struct vm_area_struct *vma) 5225 { 5226 struct hstate *h = hstate_vma(vma); 5227 struct resv_map *resv; 5228 struct hugepage_subpool *spool = subpool_vma(vma); 5229 unsigned long reserve, start, end; 5230 long gbl_reserve; 5231 5232 hugetlb_vma_lock_free(vma); 5233 5234 resv = vma_resv_map(vma); 5235 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 5236 return; 5237 5238 start = vma_hugecache_offset(h, vma, vma->vm_start); 5239 end = vma_hugecache_offset(h, vma, vma->vm_end); 5240 5241 reserve = (end - start) - region_count(resv, start, end); 5242 hugetlb_cgroup_uncharge_counter(resv, start, end); 5243 if (reserve) { 5244 /* 5245 * Decrement reserve counts. The global reserve count may be 5246 * adjusted if the subpool has a minimum size. 5247 */ 5248 gbl_reserve = hugepage_subpool_put_pages(spool, reserve); 5249 hugetlb_acct_memory(h, -gbl_reserve); 5250 } 5251 5252 kref_put(&resv->refs, resv_map_release); 5253 } 5254 5255 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr) 5256 { 5257 if (addr & ~(huge_page_mask(hstate_vma(vma)))) 5258 return -EINVAL; 5259 5260 /* 5261 * PMD sharing is only possible for PUD_SIZE-aligned address ranges 5262 * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this 5263 * split, unshare PMDs in the PUD_SIZE interval surrounding addr now. 5264 */ 5265 if (addr & ~PUD_MASK) { 5266 /* 5267 * hugetlb_vm_op_split is called right before we attempt to 5268 * split the VMA. We will need to unshare PMDs in the old and 5269 * new VMAs, so let's unshare before we split. 5270 */ 5271 unsigned long floor = addr & PUD_MASK; 5272 unsigned long ceil = floor + PUD_SIZE; 5273 5274 if (floor >= vma->vm_start && ceil <= vma->vm_end) 5275 hugetlb_unshare_pmds(vma, floor, ceil); 5276 } 5277 5278 return 0; 5279 } 5280 5281 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma) 5282 { 5283 return huge_page_size(hstate_vma(vma)); 5284 } 5285 5286 /* 5287 * We cannot handle pagefaults against hugetlb pages at all. They cause 5288 * handle_mm_fault() to try to instantiate regular-sized pages in the 5289 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get 5290 * this far. 5291 */ 5292 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf) 5293 { 5294 BUG(); 5295 return 0; 5296 } 5297 5298 /* 5299 * When a new function is introduced to vm_operations_struct and added 5300 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops. 5301 * This is because under System V memory model, mappings created via 5302 * shmget/shmat with "huge page" specified are backed by hugetlbfs files, 5303 * their original vm_ops are overwritten with shm_vm_ops. 5304 */ 5305 const struct vm_operations_struct hugetlb_vm_ops = { 5306 .fault = hugetlb_vm_op_fault, 5307 .open = hugetlb_vm_op_open, 5308 .close = hugetlb_vm_op_close, 5309 .may_split = hugetlb_vm_op_split, 5310 .pagesize = hugetlb_vm_op_pagesize, 5311 }; 5312 5313 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, 5314 int writable) 5315 { 5316 pte_t entry; 5317 unsigned int shift = huge_page_shift(hstate_vma(vma)); 5318 5319 if (writable) { 5320 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page, 5321 vma->vm_page_prot))); 5322 } else { 5323 entry = huge_pte_wrprotect(mk_huge_pte(page, 5324 vma->vm_page_prot)); 5325 } 5326 entry = pte_mkyoung(entry); 5327 entry = arch_make_huge_pte(entry, shift, vma->vm_flags); 5328 5329 return entry; 5330 } 5331 5332 static void set_huge_ptep_writable(struct vm_area_struct *vma, 5333 unsigned long address, pte_t *ptep) 5334 { 5335 pte_t entry; 5336 5337 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep))); 5338 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) 5339 update_mmu_cache(vma, address, ptep); 5340 } 5341 5342 bool is_hugetlb_entry_migration(pte_t pte) 5343 { 5344 swp_entry_t swp; 5345 5346 if (huge_pte_none(pte) || pte_present(pte)) 5347 return false; 5348 swp = pte_to_swp_entry(pte); 5349 if (is_migration_entry(swp)) 5350 return true; 5351 else 5352 return false; 5353 } 5354 5355 bool is_hugetlb_entry_hwpoisoned(pte_t pte) 5356 { 5357 swp_entry_t swp; 5358 5359 if (huge_pte_none(pte) || pte_present(pte)) 5360 return false; 5361 swp = pte_to_swp_entry(pte); 5362 if (is_hwpoison_entry(swp)) 5363 return true; 5364 else 5365 return false; 5366 } 5367 5368 static void 5369 hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr, 5370 struct folio *new_folio, pte_t old, unsigned long sz) 5371 { 5372 pte_t newpte = make_huge_pte(vma, &new_folio->page, 1); 5373 5374 __folio_mark_uptodate(new_folio); 5375 hugetlb_add_new_anon_rmap(new_folio, vma, addr); 5376 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(old)) 5377 newpte = huge_pte_mkuffd_wp(newpte); 5378 set_huge_pte_at(vma->vm_mm, addr, ptep, newpte, sz); 5379 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm); 5380 folio_set_hugetlb_migratable(new_folio); 5381 } 5382 5383 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, 5384 struct vm_area_struct *dst_vma, 5385 struct vm_area_struct *src_vma) 5386 { 5387 pte_t *src_pte, *dst_pte, entry; 5388 struct folio *pte_folio; 5389 unsigned long addr; 5390 bool cow = is_cow_mapping(src_vma->vm_flags); 5391 struct hstate *h = hstate_vma(src_vma); 5392 unsigned long sz = huge_page_size(h); 5393 unsigned long npages = pages_per_huge_page(h); 5394 struct mmu_notifier_range range; 5395 unsigned long last_addr_mask; 5396 int ret = 0; 5397 5398 if (cow) { 5399 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src, 5400 src_vma->vm_start, 5401 src_vma->vm_end); 5402 mmu_notifier_invalidate_range_start(&range); 5403 vma_assert_write_locked(src_vma); 5404 raw_write_seqcount_begin(&src->write_protect_seq); 5405 } else { 5406 /* 5407 * For shared mappings the vma lock must be held before 5408 * calling hugetlb_walk() in the src vma. Otherwise, the 5409 * returned ptep could go away if part of a shared pmd and 5410 * another thread calls huge_pmd_unshare. 5411 */ 5412 hugetlb_vma_lock_read(src_vma); 5413 } 5414 5415 last_addr_mask = hugetlb_mask_last_page(h); 5416 for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) { 5417 spinlock_t *src_ptl, *dst_ptl; 5418 src_pte = hugetlb_walk(src_vma, addr, sz); 5419 if (!src_pte) { 5420 addr |= last_addr_mask; 5421 continue; 5422 } 5423 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz); 5424 if (!dst_pte) { 5425 ret = -ENOMEM; 5426 break; 5427 } 5428 5429 /* 5430 * If the pagetables are shared don't copy or take references. 5431 * 5432 * dst_pte == src_pte is the common case of src/dest sharing. 5433 * However, src could have 'unshared' and dst shares with 5434 * another vma. So page_count of ptep page is checked instead 5435 * to reliably determine whether pte is shared. 5436 */ 5437 if (page_count(virt_to_page(dst_pte)) > 1) { 5438 addr |= last_addr_mask; 5439 continue; 5440 } 5441 5442 dst_ptl = huge_pte_lock(h, dst, dst_pte); 5443 src_ptl = huge_pte_lockptr(h, src, src_pte); 5444 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 5445 entry = huge_ptep_get(src_pte); 5446 again: 5447 if (huge_pte_none(entry)) { 5448 /* 5449 * Skip if src entry none. 5450 */ 5451 ; 5452 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) { 5453 if (!userfaultfd_wp(dst_vma)) 5454 entry = huge_pte_clear_uffd_wp(entry); 5455 set_huge_pte_at(dst, addr, dst_pte, entry, sz); 5456 } else if (unlikely(is_hugetlb_entry_migration(entry))) { 5457 swp_entry_t swp_entry = pte_to_swp_entry(entry); 5458 bool uffd_wp = pte_swp_uffd_wp(entry); 5459 5460 if (!is_readable_migration_entry(swp_entry) && cow) { 5461 /* 5462 * COW mappings require pages in both 5463 * parent and child to be set to read. 5464 */ 5465 swp_entry = make_readable_migration_entry( 5466 swp_offset(swp_entry)); 5467 entry = swp_entry_to_pte(swp_entry); 5468 if (userfaultfd_wp(src_vma) && uffd_wp) 5469 entry = pte_swp_mkuffd_wp(entry); 5470 set_huge_pte_at(src, addr, src_pte, entry, sz); 5471 } 5472 if (!userfaultfd_wp(dst_vma)) 5473 entry = huge_pte_clear_uffd_wp(entry); 5474 set_huge_pte_at(dst, addr, dst_pte, entry, sz); 5475 } else if (unlikely(is_pte_marker(entry))) { 5476 pte_marker marker = copy_pte_marker( 5477 pte_to_swp_entry(entry), dst_vma); 5478 5479 if (marker) 5480 set_huge_pte_at(dst, addr, dst_pte, 5481 make_pte_marker(marker), sz); 5482 } else { 5483 entry = huge_ptep_get(src_pte); 5484 pte_folio = page_folio(pte_page(entry)); 5485 folio_get(pte_folio); 5486 5487 /* 5488 * Failing to duplicate the anon rmap is a rare case 5489 * where we see pinned hugetlb pages while they're 5490 * prone to COW. We need to do the COW earlier during 5491 * fork. 5492 * 5493 * When pre-allocating the page or copying data, we 5494 * need to be without the pgtable locks since we could 5495 * sleep during the process. 5496 */ 5497 if (!folio_test_anon(pte_folio)) { 5498 hugetlb_add_file_rmap(pte_folio); 5499 } else if (hugetlb_try_dup_anon_rmap(pte_folio, src_vma)) { 5500 pte_t src_pte_old = entry; 5501 struct folio *new_folio; 5502 5503 spin_unlock(src_ptl); 5504 spin_unlock(dst_ptl); 5505 /* Do not use reserve as it's private owned */ 5506 new_folio = alloc_hugetlb_folio(dst_vma, addr, 1); 5507 if (IS_ERR(new_folio)) { 5508 folio_put(pte_folio); 5509 ret = PTR_ERR(new_folio); 5510 break; 5511 } 5512 ret = copy_user_large_folio(new_folio, 5513 pte_folio, 5514 addr, dst_vma); 5515 folio_put(pte_folio); 5516 if (ret) { 5517 folio_put(new_folio); 5518 break; 5519 } 5520 5521 /* Install the new hugetlb folio if src pte stable */ 5522 dst_ptl = huge_pte_lock(h, dst, dst_pte); 5523 src_ptl = huge_pte_lockptr(h, src, src_pte); 5524 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 5525 entry = huge_ptep_get(src_pte); 5526 if (!pte_same(src_pte_old, entry)) { 5527 restore_reserve_on_error(h, dst_vma, addr, 5528 new_folio); 5529 folio_put(new_folio); 5530 /* huge_ptep of dst_pte won't change as in child */ 5531 goto again; 5532 } 5533 hugetlb_install_folio(dst_vma, dst_pte, addr, 5534 new_folio, src_pte_old, sz); 5535 spin_unlock(src_ptl); 5536 spin_unlock(dst_ptl); 5537 continue; 5538 } 5539 5540 if (cow) { 5541 /* 5542 * No need to notify as we are downgrading page 5543 * table protection not changing it to point 5544 * to a new page. 5545 * 5546 * See Documentation/mm/mmu_notifier.rst 5547 */ 5548 huge_ptep_set_wrprotect(src, addr, src_pte); 5549 entry = huge_pte_wrprotect(entry); 5550 } 5551 5552 if (!userfaultfd_wp(dst_vma)) 5553 entry = huge_pte_clear_uffd_wp(entry); 5554 5555 set_huge_pte_at(dst, addr, dst_pte, entry, sz); 5556 hugetlb_count_add(npages, dst); 5557 } 5558 spin_unlock(src_ptl); 5559 spin_unlock(dst_ptl); 5560 } 5561 5562 if (cow) { 5563 raw_write_seqcount_end(&src->write_protect_seq); 5564 mmu_notifier_invalidate_range_end(&range); 5565 } else { 5566 hugetlb_vma_unlock_read(src_vma); 5567 } 5568 5569 return ret; 5570 } 5571 5572 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr, 5573 unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte, 5574 unsigned long sz) 5575 { 5576 struct hstate *h = hstate_vma(vma); 5577 struct mm_struct *mm = vma->vm_mm; 5578 spinlock_t *src_ptl, *dst_ptl; 5579 pte_t pte; 5580 5581 dst_ptl = huge_pte_lock(h, mm, dst_pte); 5582 src_ptl = huge_pte_lockptr(h, mm, src_pte); 5583 5584 /* 5585 * We don't have to worry about the ordering of src and dst ptlocks 5586 * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock. 5587 */ 5588 if (src_ptl != dst_ptl) 5589 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 5590 5591 pte = huge_ptep_get_and_clear(mm, old_addr, src_pte); 5592 set_huge_pte_at(mm, new_addr, dst_pte, pte, sz); 5593 5594 if (src_ptl != dst_ptl) 5595 spin_unlock(src_ptl); 5596 spin_unlock(dst_ptl); 5597 } 5598 5599 int move_hugetlb_page_tables(struct vm_area_struct *vma, 5600 struct vm_area_struct *new_vma, 5601 unsigned long old_addr, unsigned long new_addr, 5602 unsigned long len) 5603 { 5604 struct hstate *h = hstate_vma(vma); 5605 struct address_space *mapping = vma->vm_file->f_mapping; 5606 unsigned long sz = huge_page_size(h); 5607 struct mm_struct *mm = vma->vm_mm; 5608 unsigned long old_end = old_addr + len; 5609 unsigned long last_addr_mask; 5610 pte_t *src_pte, *dst_pte; 5611 struct mmu_notifier_range range; 5612 bool shared_pmd = false; 5613 5614 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr, 5615 old_end); 5616 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 5617 /* 5618 * In case of shared PMDs, we should cover the maximum possible 5619 * range. 5620 */ 5621 flush_cache_range(vma, range.start, range.end); 5622 5623 mmu_notifier_invalidate_range_start(&range); 5624 last_addr_mask = hugetlb_mask_last_page(h); 5625 /* Prevent race with file truncation */ 5626 hugetlb_vma_lock_write(vma); 5627 i_mmap_lock_write(mapping); 5628 for (; old_addr < old_end; old_addr += sz, new_addr += sz) { 5629 src_pte = hugetlb_walk(vma, old_addr, sz); 5630 if (!src_pte) { 5631 old_addr |= last_addr_mask; 5632 new_addr |= last_addr_mask; 5633 continue; 5634 } 5635 if (huge_pte_none(huge_ptep_get(src_pte))) 5636 continue; 5637 5638 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) { 5639 shared_pmd = true; 5640 old_addr |= last_addr_mask; 5641 new_addr |= last_addr_mask; 5642 continue; 5643 } 5644 5645 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz); 5646 if (!dst_pte) 5647 break; 5648 5649 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte, sz); 5650 } 5651 5652 if (shared_pmd) 5653 flush_hugetlb_tlb_range(vma, range.start, range.end); 5654 else 5655 flush_hugetlb_tlb_range(vma, old_end - len, old_end); 5656 mmu_notifier_invalidate_range_end(&range); 5657 i_mmap_unlock_write(mapping); 5658 hugetlb_vma_unlock_write(vma); 5659 5660 return len + old_addr - old_end; 5661 } 5662 5663 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma, 5664 unsigned long start, unsigned long end, 5665 struct page *ref_page, zap_flags_t zap_flags) 5666 { 5667 struct mm_struct *mm = vma->vm_mm; 5668 unsigned long address; 5669 pte_t *ptep; 5670 pte_t pte; 5671 spinlock_t *ptl; 5672 struct page *page; 5673 struct hstate *h = hstate_vma(vma); 5674 unsigned long sz = huge_page_size(h); 5675 bool adjust_reservation = false; 5676 unsigned long last_addr_mask; 5677 bool force_flush = false; 5678 5679 WARN_ON(!is_vm_hugetlb_page(vma)); 5680 BUG_ON(start & ~huge_page_mask(h)); 5681 BUG_ON(end & ~huge_page_mask(h)); 5682 5683 /* 5684 * This is a hugetlb vma, all the pte entries should point 5685 * to huge page. 5686 */ 5687 tlb_change_page_size(tlb, sz); 5688 tlb_start_vma(tlb, vma); 5689 5690 last_addr_mask = hugetlb_mask_last_page(h); 5691 address = start; 5692 for (; address < end; address += sz) { 5693 ptep = hugetlb_walk(vma, address, sz); 5694 if (!ptep) { 5695 address |= last_addr_mask; 5696 continue; 5697 } 5698 5699 ptl = huge_pte_lock(h, mm, ptep); 5700 if (huge_pmd_unshare(mm, vma, address, ptep)) { 5701 spin_unlock(ptl); 5702 tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE); 5703 force_flush = true; 5704 address |= last_addr_mask; 5705 continue; 5706 } 5707 5708 pte = huge_ptep_get(ptep); 5709 if (huge_pte_none(pte)) { 5710 spin_unlock(ptl); 5711 continue; 5712 } 5713 5714 /* 5715 * Migrating hugepage or HWPoisoned hugepage is already 5716 * unmapped and its refcount is dropped, so just clear pte here. 5717 */ 5718 if (unlikely(!pte_present(pte))) { 5719 /* 5720 * If the pte was wr-protected by uffd-wp in any of the 5721 * swap forms, meanwhile the caller does not want to 5722 * drop the uffd-wp bit in this zap, then replace the 5723 * pte with a marker. 5724 */ 5725 if (pte_swp_uffd_wp_any(pte) && 5726 !(zap_flags & ZAP_FLAG_DROP_MARKER)) 5727 set_huge_pte_at(mm, address, ptep, 5728 make_pte_marker(PTE_MARKER_UFFD_WP), 5729 sz); 5730 else 5731 huge_pte_clear(mm, address, ptep, sz); 5732 spin_unlock(ptl); 5733 continue; 5734 } 5735 5736 page = pte_page(pte); 5737 /* 5738 * If a reference page is supplied, it is because a specific 5739 * page is being unmapped, not a range. Ensure the page we 5740 * are about to unmap is the actual page of interest. 5741 */ 5742 if (ref_page) { 5743 if (page != ref_page) { 5744 spin_unlock(ptl); 5745 continue; 5746 } 5747 /* 5748 * Mark the VMA as having unmapped its page so that 5749 * future faults in this VMA will fail rather than 5750 * looking like data was lost 5751 */ 5752 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); 5753 } 5754 5755 pte = huge_ptep_get_and_clear(mm, address, ptep); 5756 tlb_remove_huge_tlb_entry(h, tlb, ptep, address); 5757 if (huge_pte_dirty(pte)) 5758 set_page_dirty(page); 5759 /* Leave a uffd-wp pte marker if needed */ 5760 if (huge_pte_uffd_wp(pte) && 5761 !(zap_flags & ZAP_FLAG_DROP_MARKER)) 5762 set_huge_pte_at(mm, address, ptep, 5763 make_pte_marker(PTE_MARKER_UFFD_WP), 5764 sz); 5765 hugetlb_count_sub(pages_per_huge_page(h), mm); 5766 hugetlb_remove_rmap(page_folio(page)); 5767 5768 /* 5769 * Restore the reservation for anonymous page, otherwise the 5770 * backing page could be stolen by someone. 5771 * If there we are freeing a surplus, do not set the restore 5772 * reservation bit. 5773 */ 5774 if (!h->surplus_huge_pages && __vma_private_lock(vma) && 5775 folio_test_anon(page_folio(page))) { 5776 folio_set_hugetlb_restore_reserve(page_folio(page)); 5777 /* Reservation to be adjusted after the spin lock */ 5778 adjust_reservation = true; 5779 } 5780 5781 spin_unlock(ptl); 5782 5783 /* 5784 * Adjust the reservation for the region that will have the 5785 * reserve restored. Keep in mind that vma_needs_reservation() changes 5786 * resv->adds_in_progress if it succeeds. If this is not done, 5787 * do_exit() will not see it, and will keep the reservation 5788 * forever. 5789 */ 5790 if (adjust_reservation && vma_needs_reservation(h, vma, address)) 5791 vma_add_reservation(h, vma, address); 5792 5793 tlb_remove_page_size(tlb, page, huge_page_size(h)); 5794 /* 5795 * Bail out after unmapping reference page if supplied 5796 */ 5797 if (ref_page) 5798 break; 5799 } 5800 tlb_end_vma(tlb, vma); 5801 5802 /* 5803 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We 5804 * could defer the flush until now, since by holding i_mmap_rwsem we 5805 * guaranteed that the last refernece would not be dropped. But we must 5806 * do the flushing before we return, as otherwise i_mmap_rwsem will be 5807 * dropped and the last reference to the shared PMDs page might be 5808 * dropped as well. 5809 * 5810 * In theory we could defer the freeing of the PMD pages as well, but 5811 * huge_pmd_unshare() relies on the exact page_count for the PMD page to 5812 * detect sharing, so we cannot defer the release of the page either. 5813 * Instead, do flush now. 5814 */ 5815 if (force_flush) 5816 tlb_flush_mmu_tlbonly(tlb); 5817 } 5818 5819 void __hugetlb_zap_begin(struct vm_area_struct *vma, 5820 unsigned long *start, unsigned long *end) 5821 { 5822 if (!vma->vm_file) /* hugetlbfs_file_mmap error */ 5823 return; 5824 5825 adjust_range_if_pmd_sharing_possible(vma, start, end); 5826 hugetlb_vma_lock_write(vma); 5827 if (vma->vm_file) 5828 i_mmap_lock_write(vma->vm_file->f_mapping); 5829 } 5830 5831 void __hugetlb_zap_end(struct vm_area_struct *vma, 5832 struct zap_details *details) 5833 { 5834 zap_flags_t zap_flags = details ? details->zap_flags : 0; 5835 5836 if (!vma->vm_file) /* hugetlbfs_file_mmap error */ 5837 return; 5838 5839 if (zap_flags & ZAP_FLAG_UNMAP) { /* final unmap */ 5840 /* 5841 * Unlock and free the vma lock before releasing i_mmap_rwsem. 5842 * When the vma_lock is freed, this makes the vma ineligible 5843 * for pmd sharing. And, i_mmap_rwsem is required to set up 5844 * pmd sharing. This is important as page tables for this 5845 * unmapped range will be asynchrously deleted. If the page 5846 * tables are shared, there will be issues when accessed by 5847 * someone else. 5848 */ 5849 __hugetlb_vma_unlock_write_free(vma); 5850 } else { 5851 hugetlb_vma_unlock_write(vma); 5852 } 5853 5854 if (vma->vm_file) 5855 i_mmap_unlock_write(vma->vm_file->f_mapping); 5856 } 5857 5858 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, 5859 unsigned long end, struct page *ref_page, 5860 zap_flags_t zap_flags) 5861 { 5862 struct mmu_notifier_range range; 5863 struct mmu_gather tlb; 5864 5865 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 5866 start, end); 5867 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 5868 mmu_notifier_invalidate_range_start(&range); 5869 tlb_gather_mmu(&tlb, vma->vm_mm); 5870 5871 __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags); 5872 5873 mmu_notifier_invalidate_range_end(&range); 5874 tlb_finish_mmu(&tlb); 5875 } 5876 5877 /* 5878 * This is called when the original mapper is failing to COW a MAP_PRIVATE 5879 * mapping it owns the reserve page for. The intention is to unmap the page 5880 * from other VMAs and let the children be SIGKILLed if they are faulting the 5881 * same region. 5882 */ 5883 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, 5884 struct page *page, unsigned long address) 5885 { 5886 struct hstate *h = hstate_vma(vma); 5887 struct vm_area_struct *iter_vma; 5888 struct address_space *mapping; 5889 pgoff_t pgoff; 5890 5891 /* 5892 * vm_pgoff is in PAGE_SIZE units, hence the different calculation 5893 * from page cache lookup which is in HPAGE_SIZE units. 5894 */ 5895 address = address & huge_page_mask(h); 5896 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + 5897 vma->vm_pgoff; 5898 mapping = vma->vm_file->f_mapping; 5899 5900 /* 5901 * Take the mapping lock for the duration of the table walk. As 5902 * this mapping should be shared between all the VMAs, 5903 * __unmap_hugepage_range() is called as the lock is already held 5904 */ 5905 i_mmap_lock_write(mapping); 5906 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) { 5907 /* Do not unmap the current VMA */ 5908 if (iter_vma == vma) 5909 continue; 5910 5911 /* 5912 * Shared VMAs have their own reserves and do not affect 5913 * MAP_PRIVATE accounting but it is possible that a shared 5914 * VMA is using the same page so check and skip such VMAs. 5915 */ 5916 if (iter_vma->vm_flags & VM_MAYSHARE) 5917 continue; 5918 5919 /* 5920 * Unmap the page from other VMAs without their own reserves. 5921 * They get marked to be SIGKILLed if they fault in these 5922 * areas. This is because a future no-page fault on this VMA 5923 * could insert a zeroed page instead of the data existing 5924 * from the time of fork. This would look like data corruption 5925 */ 5926 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) 5927 unmap_hugepage_range(iter_vma, address, 5928 address + huge_page_size(h), page, 0); 5929 } 5930 i_mmap_unlock_write(mapping); 5931 } 5932 5933 /* 5934 * hugetlb_wp() should be called with page lock of the original hugepage held. 5935 * Called with hugetlb_fault_mutex_table held and pte_page locked so we 5936 * cannot race with other handlers or page migration. 5937 * Keep the pte_same checks anyway to make transition from the mutex easier. 5938 */ 5939 static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma, 5940 unsigned long address, pte_t *ptep, unsigned int flags, 5941 struct folio *pagecache_folio, spinlock_t *ptl, 5942 struct vm_fault *vmf) 5943 { 5944 const bool unshare = flags & FAULT_FLAG_UNSHARE; 5945 pte_t pte = huge_ptep_get(ptep); 5946 struct hstate *h = hstate_vma(vma); 5947 struct folio *old_folio; 5948 struct folio *new_folio; 5949 int outside_reserve = 0; 5950 vm_fault_t ret = 0; 5951 unsigned long haddr = address & huge_page_mask(h); 5952 struct mmu_notifier_range range; 5953 5954 /* 5955 * Never handle CoW for uffd-wp protected pages. It should be only 5956 * handled when the uffd-wp protection is removed. 5957 * 5958 * Note that only the CoW optimization path (in hugetlb_no_page()) 5959 * can trigger this, because hugetlb_fault() will always resolve 5960 * uffd-wp bit first. 5961 */ 5962 if (!unshare && huge_pte_uffd_wp(pte)) 5963 return 0; 5964 5965 /* 5966 * hugetlb does not support FOLL_FORCE-style write faults that keep the 5967 * PTE mapped R/O such as maybe_mkwrite() would do. 5968 */ 5969 if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE))) 5970 return VM_FAULT_SIGSEGV; 5971 5972 /* Let's take out MAP_SHARED mappings first. */ 5973 if (vma->vm_flags & VM_MAYSHARE) { 5974 set_huge_ptep_writable(vma, haddr, ptep); 5975 return 0; 5976 } 5977 5978 old_folio = page_folio(pte_page(pte)); 5979 5980 delayacct_wpcopy_start(); 5981 5982 retry_avoidcopy: 5983 /* 5984 * If no-one else is actually using this page, we're the exclusive 5985 * owner and can reuse this page. 5986 */ 5987 if (folio_mapcount(old_folio) == 1 && folio_test_anon(old_folio)) { 5988 if (!PageAnonExclusive(&old_folio->page)) { 5989 folio_move_anon_rmap(old_folio, vma); 5990 SetPageAnonExclusive(&old_folio->page); 5991 } 5992 if (likely(!unshare)) 5993 set_huge_ptep_writable(vma, haddr, ptep); 5994 5995 delayacct_wpcopy_end(); 5996 return 0; 5997 } 5998 VM_BUG_ON_PAGE(folio_test_anon(old_folio) && 5999 PageAnonExclusive(&old_folio->page), &old_folio->page); 6000 6001 /* 6002 * If the process that created a MAP_PRIVATE mapping is about to 6003 * perform a COW due to a shared page count, attempt to satisfy 6004 * the allocation without using the existing reserves. The pagecache 6005 * page is used to determine if the reserve at this address was 6006 * consumed or not. If reserves were used, a partial faulted mapping 6007 * at the time of fork() could consume its reserves on COW instead 6008 * of the full address range. 6009 */ 6010 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && 6011 old_folio != pagecache_folio) 6012 outside_reserve = 1; 6013 6014 folio_get(old_folio); 6015 6016 /* 6017 * Drop page table lock as buddy allocator may be called. It will 6018 * be acquired again before returning to the caller, as expected. 6019 */ 6020 spin_unlock(ptl); 6021 new_folio = alloc_hugetlb_folio(vma, haddr, outside_reserve); 6022 6023 if (IS_ERR(new_folio)) { 6024 /* 6025 * If a process owning a MAP_PRIVATE mapping fails to COW, 6026 * it is due to references held by a child and an insufficient 6027 * huge page pool. To guarantee the original mappers 6028 * reliability, unmap the page from child processes. The child 6029 * may get SIGKILLed if it later faults. 6030 */ 6031 if (outside_reserve) { 6032 struct address_space *mapping = vma->vm_file->f_mapping; 6033 pgoff_t idx; 6034 u32 hash; 6035 6036 folio_put(old_folio); 6037 /* 6038 * Drop hugetlb_fault_mutex and vma_lock before 6039 * unmapping. unmapping needs to hold vma_lock 6040 * in write mode. Dropping vma_lock in read mode 6041 * here is OK as COW mappings do not interact with 6042 * PMD sharing. 6043 * 6044 * Reacquire both after unmap operation. 6045 */ 6046 idx = vma_hugecache_offset(h, vma, haddr); 6047 hash = hugetlb_fault_mutex_hash(mapping, idx); 6048 hugetlb_vma_unlock_read(vma); 6049 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6050 6051 unmap_ref_private(mm, vma, &old_folio->page, haddr); 6052 6053 mutex_lock(&hugetlb_fault_mutex_table[hash]); 6054 hugetlb_vma_lock_read(vma); 6055 spin_lock(ptl); 6056 ptep = hugetlb_walk(vma, haddr, huge_page_size(h)); 6057 if (likely(ptep && 6058 pte_same(huge_ptep_get(ptep), pte))) 6059 goto retry_avoidcopy; 6060 /* 6061 * race occurs while re-acquiring page table 6062 * lock, and our job is done. 6063 */ 6064 delayacct_wpcopy_end(); 6065 return 0; 6066 } 6067 6068 ret = vmf_error(PTR_ERR(new_folio)); 6069 goto out_release_old; 6070 } 6071 6072 /* 6073 * When the original hugepage is shared one, it does not have 6074 * anon_vma prepared. 6075 */ 6076 ret = vmf_anon_prepare(vmf); 6077 if (unlikely(ret)) 6078 goto out_release_all; 6079 6080 if (copy_user_large_folio(new_folio, old_folio, address, vma)) { 6081 ret = VM_FAULT_HWPOISON_LARGE; 6082 goto out_release_all; 6083 } 6084 __folio_mark_uptodate(new_folio); 6085 6086 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, haddr, 6087 haddr + huge_page_size(h)); 6088 mmu_notifier_invalidate_range_start(&range); 6089 6090 /* 6091 * Retake the page table lock to check for racing updates 6092 * before the page tables are altered 6093 */ 6094 spin_lock(ptl); 6095 ptep = hugetlb_walk(vma, haddr, huge_page_size(h)); 6096 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) { 6097 pte_t newpte = make_huge_pte(vma, &new_folio->page, !unshare); 6098 6099 /* Break COW or unshare */ 6100 huge_ptep_clear_flush(vma, haddr, ptep); 6101 hugetlb_remove_rmap(old_folio); 6102 hugetlb_add_new_anon_rmap(new_folio, vma, haddr); 6103 if (huge_pte_uffd_wp(pte)) 6104 newpte = huge_pte_mkuffd_wp(newpte); 6105 set_huge_pte_at(mm, haddr, ptep, newpte, huge_page_size(h)); 6106 folio_set_hugetlb_migratable(new_folio); 6107 /* Make the old page be freed below */ 6108 new_folio = old_folio; 6109 } 6110 spin_unlock(ptl); 6111 mmu_notifier_invalidate_range_end(&range); 6112 out_release_all: 6113 /* 6114 * No restore in case of successful pagetable update (Break COW or 6115 * unshare) 6116 */ 6117 if (new_folio != old_folio) 6118 restore_reserve_on_error(h, vma, haddr, new_folio); 6119 folio_put(new_folio); 6120 out_release_old: 6121 folio_put(old_folio); 6122 6123 spin_lock(ptl); /* Caller expects lock to be held */ 6124 6125 delayacct_wpcopy_end(); 6126 return ret; 6127 } 6128 6129 /* 6130 * Return whether there is a pagecache page to back given address within VMA. 6131 */ 6132 static bool hugetlbfs_pagecache_present(struct hstate *h, 6133 struct vm_area_struct *vma, unsigned long address) 6134 { 6135 struct address_space *mapping = vma->vm_file->f_mapping; 6136 pgoff_t idx = linear_page_index(vma, address); 6137 struct folio *folio; 6138 6139 folio = filemap_get_folio(mapping, idx); 6140 if (IS_ERR(folio)) 6141 return false; 6142 folio_put(folio); 6143 return true; 6144 } 6145 6146 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping, 6147 pgoff_t idx) 6148 { 6149 struct inode *inode = mapping->host; 6150 struct hstate *h = hstate_inode(inode); 6151 int err; 6152 6153 idx <<= huge_page_order(h); 6154 __folio_set_locked(folio); 6155 err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL); 6156 6157 if (unlikely(err)) { 6158 __folio_clear_locked(folio); 6159 return err; 6160 } 6161 folio_clear_hugetlb_restore_reserve(folio); 6162 6163 /* 6164 * mark folio dirty so that it will not be removed from cache/file 6165 * by non-hugetlbfs specific code paths. 6166 */ 6167 folio_mark_dirty(folio); 6168 6169 spin_lock(&inode->i_lock); 6170 inode->i_blocks += blocks_per_huge_page(h); 6171 spin_unlock(&inode->i_lock); 6172 return 0; 6173 } 6174 6175 static inline vm_fault_t hugetlb_handle_userfault(struct vm_fault *vmf, 6176 struct address_space *mapping, 6177 unsigned long reason) 6178 { 6179 u32 hash; 6180 6181 /* 6182 * vma_lock and hugetlb_fault_mutex must be dropped before handling 6183 * userfault. Also mmap_lock could be dropped due to handling 6184 * userfault, any vma operation should be careful from here. 6185 */ 6186 hugetlb_vma_unlock_read(vmf->vma); 6187 hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff); 6188 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6189 return handle_userfault(vmf, reason); 6190 } 6191 6192 /* 6193 * Recheck pte with pgtable lock. Returns true if pte didn't change, or 6194 * false if pte changed or is changing. 6195 */ 6196 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm, 6197 pte_t *ptep, pte_t old_pte) 6198 { 6199 spinlock_t *ptl; 6200 bool same; 6201 6202 ptl = huge_pte_lock(h, mm, ptep); 6203 same = pte_same(huge_ptep_get(ptep), old_pte); 6204 spin_unlock(ptl); 6205 6206 return same; 6207 } 6208 6209 static vm_fault_t hugetlb_no_page(struct mm_struct *mm, 6210 struct vm_area_struct *vma, 6211 struct address_space *mapping, pgoff_t idx, 6212 unsigned long address, pte_t *ptep, 6213 pte_t old_pte, unsigned int flags, 6214 struct vm_fault *vmf) 6215 { 6216 struct hstate *h = hstate_vma(vma); 6217 vm_fault_t ret = VM_FAULT_SIGBUS; 6218 int anon_rmap = 0; 6219 unsigned long size; 6220 struct folio *folio; 6221 pte_t new_pte; 6222 spinlock_t *ptl; 6223 unsigned long haddr = address & huge_page_mask(h); 6224 bool new_folio, new_pagecache_folio = false; 6225 u32 hash = hugetlb_fault_mutex_hash(mapping, idx); 6226 6227 /* 6228 * Currently, we are forced to kill the process in the event the 6229 * original mapper has unmapped pages from the child due to a failed 6230 * COW/unsharing. Warn that such a situation has occurred as it may not 6231 * be obvious. 6232 */ 6233 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { 6234 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n", 6235 current->pid); 6236 goto out; 6237 } 6238 6239 /* 6240 * Use page lock to guard against racing truncation 6241 * before we get page_table_lock. 6242 */ 6243 new_folio = false; 6244 folio = filemap_lock_hugetlb_folio(h, mapping, idx); 6245 if (IS_ERR(folio)) { 6246 size = i_size_read(mapping->host) >> huge_page_shift(h); 6247 if (idx >= size) 6248 goto out; 6249 /* Check for page in userfault range */ 6250 if (userfaultfd_missing(vma)) { 6251 /* 6252 * Since hugetlb_no_page() was examining pte 6253 * without pgtable lock, we need to re-test under 6254 * lock because the pte may not be stable and could 6255 * have changed from under us. Try to detect 6256 * either changed or during-changing ptes and retry 6257 * properly when needed. 6258 * 6259 * Note that userfaultfd is actually fine with 6260 * false positives (e.g. caused by pte changed), 6261 * but not wrong logical events (e.g. caused by 6262 * reading a pte during changing). The latter can 6263 * confuse the userspace, so the strictness is very 6264 * much preferred. E.g., MISSING event should 6265 * never happen on the page after UFFDIO_COPY has 6266 * correctly installed the page and returned. 6267 */ 6268 if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) { 6269 ret = 0; 6270 goto out; 6271 } 6272 6273 return hugetlb_handle_userfault(vmf, mapping, 6274 VM_UFFD_MISSING); 6275 } 6276 6277 folio = alloc_hugetlb_folio(vma, haddr, 0); 6278 if (IS_ERR(folio)) { 6279 /* 6280 * Returning error will result in faulting task being 6281 * sent SIGBUS. The hugetlb fault mutex prevents two 6282 * tasks from racing to fault in the same page which 6283 * could result in false unable to allocate errors. 6284 * Page migration does not take the fault mutex, but 6285 * does a clear then write of pte's under page table 6286 * lock. Page fault code could race with migration, 6287 * notice the clear pte and try to allocate a page 6288 * here. Before returning error, get ptl and make 6289 * sure there really is no pte entry. 6290 */ 6291 if (hugetlb_pte_stable(h, mm, ptep, old_pte)) 6292 ret = vmf_error(PTR_ERR(folio)); 6293 else 6294 ret = 0; 6295 goto out; 6296 } 6297 clear_huge_page(&folio->page, address, pages_per_huge_page(h)); 6298 __folio_mark_uptodate(folio); 6299 new_folio = true; 6300 6301 if (vma->vm_flags & VM_MAYSHARE) { 6302 int err = hugetlb_add_to_page_cache(folio, mapping, idx); 6303 if (err) { 6304 /* 6305 * err can't be -EEXIST which implies someone 6306 * else consumed the reservation since hugetlb 6307 * fault mutex is held when add a hugetlb page 6308 * to the page cache. So it's safe to call 6309 * restore_reserve_on_error() here. 6310 */ 6311 restore_reserve_on_error(h, vma, haddr, folio); 6312 folio_put(folio); 6313 goto out; 6314 } 6315 new_pagecache_folio = true; 6316 } else { 6317 folio_lock(folio); 6318 6319 ret = vmf_anon_prepare(vmf); 6320 if (unlikely(ret)) 6321 goto backout_unlocked; 6322 anon_rmap = 1; 6323 } 6324 } else { 6325 /* 6326 * If memory error occurs between mmap() and fault, some process 6327 * don't have hwpoisoned swap entry for errored virtual address. 6328 * So we need to block hugepage fault by PG_hwpoison bit check. 6329 */ 6330 if (unlikely(folio_test_hwpoison(folio))) { 6331 ret = VM_FAULT_HWPOISON_LARGE | 6332 VM_FAULT_SET_HINDEX(hstate_index(h)); 6333 goto backout_unlocked; 6334 } 6335 6336 /* Check for page in userfault range. */ 6337 if (userfaultfd_minor(vma)) { 6338 folio_unlock(folio); 6339 folio_put(folio); 6340 /* See comment in userfaultfd_missing() block above */ 6341 if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) { 6342 ret = 0; 6343 goto out; 6344 } 6345 return hugetlb_handle_userfault(vmf, mapping, 6346 VM_UFFD_MINOR); 6347 } 6348 } 6349 6350 /* 6351 * If we are going to COW a private mapping later, we examine the 6352 * pending reservations for this page now. This will ensure that 6353 * any allocations necessary to record that reservation occur outside 6354 * the spinlock. 6355 */ 6356 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 6357 if (vma_needs_reservation(h, vma, haddr) < 0) { 6358 ret = VM_FAULT_OOM; 6359 goto backout_unlocked; 6360 } 6361 /* Just decrements count, does not deallocate */ 6362 vma_end_reservation(h, vma, haddr); 6363 } 6364 6365 ptl = huge_pte_lock(h, mm, ptep); 6366 ret = 0; 6367 /* If pte changed from under us, retry */ 6368 if (!pte_same(huge_ptep_get(ptep), old_pte)) 6369 goto backout; 6370 6371 if (anon_rmap) 6372 hugetlb_add_new_anon_rmap(folio, vma, haddr); 6373 else 6374 hugetlb_add_file_rmap(folio); 6375 new_pte = make_huge_pte(vma, &folio->page, ((vma->vm_flags & VM_WRITE) 6376 && (vma->vm_flags & VM_SHARED))); 6377 /* 6378 * If this pte was previously wr-protected, keep it wr-protected even 6379 * if populated. 6380 */ 6381 if (unlikely(pte_marker_uffd_wp(old_pte))) 6382 new_pte = huge_pte_mkuffd_wp(new_pte); 6383 set_huge_pte_at(mm, haddr, ptep, new_pte, huge_page_size(h)); 6384 6385 hugetlb_count_add(pages_per_huge_page(h), mm); 6386 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 6387 /* Optimization, do the COW without a second fault */ 6388 ret = hugetlb_wp(mm, vma, address, ptep, flags, folio, ptl, vmf); 6389 } 6390 6391 spin_unlock(ptl); 6392 6393 /* 6394 * Only set hugetlb_migratable in newly allocated pages. Existing pages 6395 * found in the pagecache may not have hugetlb_migratable if they have 6396 * been isolated for migration. 6397 */ 6398 if (new_folio) 6399 folio_set_hugetlb_migratable(folio); 6400 6401 folio_unlock(folio); 6402 out: 6403 hugetlb_vma_unlock_read(vma); 6404 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6405 return ret; 6406 6407 backout: 6408 spin_unlock(ptl); 6409 backout_unlocked: 6410 if (new_folio && !new_pagecache_folio) 6411 restore_reserve_on_error(h, vma, haddr, folio); 6412 6413 folio_unlock(folio); 6414 folio_put(folio); 6415 goto out; 6416 } 6417 6418 #ifdef CONFIG_SMP 6419 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 6420 { 6421 unsigned long key[2]; 6422 u32 hash; 6423 6424 key[0] = (unsigned long) mapping; 6425 key[1] = idx; 6426 6427 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0); 6428 6429 return hash & (num_fault_mutexes - 1); 6430 } 6431 #else 6432 /* 6433 * For uniprocessor systems we always use a single mutex, so just 6434 * return 0 and avoid the hashing overhead. 6435 */ 6436 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 6437 { 6438 return 0; 6439 } 6440 #endif 6441 6442 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, 6443 unsigned long address, unsigned int flags) 6444 { 6445 pte_t *ptep, entry; 6446 spinlock_t *ptl; 6447 vm_fault_t ret; 6448 u32 hash; 6449 struct folio *folio = NULL; 6450 struct folio *pagecache_folio = NULL; 6451 struct hstate *h = hstate_vma(vma); 6452 struct address_space *mapping; 6453 int need_wait_lock = 0; 6454 unsigned long haddr = address & huge_page_mask(h); 6455 struct vm_fault vmf = { 6456 .vma = vma, 6457 .address = haddr, 6458 .real_address = address, 6459 .flags = flags, 6460 .pgoff = vma_hugecache_offset(h, vma, haddr), 6461 /* TODO: Track hugetlb faults using vm_fault */ 6462 6463 /* 6464 * Some fields may not be initialized, be careful as it may 6465 * be hard to debug if called functions make assumptions 6466 */ 6467 }; 6468 6469 /* 6470 * Serialize hugepage allocation and instantiation, so that we don't 6471 * get spurious allocation failures if two CPUs race to instantiate 6472 * the same page in the page cache. 6473 */ 6474 mapping = vma->vm_file->f_mapping; 6475 hash = hugetlb_fault_mutex_hash(mapping, vmf.pgoff); 6476 mutex_lock(&hugetlb_fault_mutex_table[hash]); 6477 6478 /* 6479 * Acquire vma lock before calling huge_pte_alloc and hold 6480 * until finished with ptep. This prevents huge_pmd_unshare from 6481 * being called elsewhere and making the ptep no longer valid. 6482 */ 6483 hugetlb_vma_lock_read(vma); 6484 ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h)); 6485 if (!ptep) { 6486 hugetlb_vma_unlock_read(vma); 6487 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6488 return VM_FAULT_OOM; 6489 } 6490 6491 entry = huge_ptep_get(ptep); 6492 if (huge_pte_none_mostly(entry)) { 6493 if (is_pte_marker(entry)) { 6494 pte_marker marker = 6495 pte_marker_get(pte_to_swp_entry(entry)); 6496 6497 if (marker & PTE_MARKER_POISONED) { 6498 ret = VM_FAULT_HWPOISON_LARGE; 6499 goto out_mutex; 6500 } 6501 } 6502 6503 /* 6504 * Other PTE markers should be handled the same way as none PTE. 6505 * 6506 * hugetlb_no_page will drop vma lock and hugetlb fault 6507 * mutex internally, which make us return immediately. 6508 */ 6509 return hugetlb_no_page(mm, vma, mapping, vmf.pgoff, address, 6510 ptep, entry, flags, &vmf); 6511 } 6512 6513 ret = 0; 6514 6515 /* 6516 * entry could be a migration/hwpoison entry at this point, so this 6517 * check prevents the kernel from going below assuming that we have 6518 * an active hugepage in pagecache. This goto expects the 2nd page 6519 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will 6520 * properly handle it. 6521 */ 6522 if (!pte_present(entry)) { 6523 if (unlikely(is_hugetlb_entry_migration(entry))) { 6524 /* 6525 * Release the hugetlb fault lock now, but retain 6526 * the vma lock, because it is needed to guard the 6527 * huge_pte_lockptr() later in 6528 * migration_entry_wait_huge(). The vma lock will 6529 * be released there. 6530 */ 6531 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6532 migration_entry_wait_huge(vma, ptep); 6533 return 0; 6534 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) 6535 ret = VM_FAULT_HWPOISON_LARGE | 6536 VM_FAULT_SET_HINDEX(hstate_index(h)); 6537 goto out_mutex; 6538 } 6539 6540 /* 6541 * If we are going to COW/unshare the mapping later, we examine the 6542 * pending reservations for this page now. This will ensure that any 6543 * allocations necessary to record that reservation occur outside the 6544 * spinlock. Also lookup the pagecache page now as it is used to 6545 * determine if a reservation has been consumed. 6546 */ 6547 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) && 6548 !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) { 6549 if (vma_needs_reservation(h, vma, haddr) < 0) { 6550 ret = VM_FAULT_OOM; 6551 goto out_mutex; 6552 } 6553 /* Just decrements count, does not deallocate */ 6554 vma_end_reservation(h, vma, haddr); 6555 6556 pagecache_folio = filemap_lock_hugetlb_folio(h, mapping, 6557 vmf.pgoff); 6558 if (IS_ERR(pagecache_folio)) 6559 pagecache_folio = NULL; 6560 } 6561 6562 ptl = huge_pte_lock(h, mm, ptep); 6563 6564 /* Check for a racing update before calling hugetlb_wp() */ 6565 if (unlikely(!pte_same(entry, huge_ptep_get(ptep)))) 6566 goto out_ptl; 6567 6568 /* Handle userfault-wp first, before trying to lock more pages */ 6569 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) && 6570 (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) { 6571 if (!userfaultfd_wp_async(vma)) { 6572 spin_unlock(ptl); 6573 if (pagecache_folio) { 6574 folio_unlock(pagecache_folio); 6575 folio_put(pagecache_folio); 6576 } 6577 hugetlb_vma_unlock_read(vma); 6578 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6579 return handle_userfault(&vmf, VM_UFFD_WP); 6580 } 6581 6582 entry = huge_pte_clear_uffd_wp(entry); 6583 set_huge_pte_at(mm, haddr, ptep, entry, 6584 huge_page_size(hstate_vma(vma))); 6585 /* Fallthrough to CoW */ 6586 } 6587 6588 /* 6589 * hugetlb_wp() requires page locks of pte_page(entry) and 6590 * pagecache_folio, so here we need take the former one 6591 * when folio != pagecache_folio or !pagecache_folio. 6592 */ 6593 folio = page_folio(pte_page(entry)); 6594 if (folio != pagecache_folio) 6595 if (!folio_trylock(folio)) { 6596 need_wait_lock = 1; 6597 goto out_ptl; 6598 } 6599 6600 folio_get(folio); 6601 6602 if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) { 6603 if (!huge_pte_write(entry)) { 6604 ret = hugetlb_wp(mm, vma, address, ptep, flags, 6605 pagecache_folio, ptl, &vmf); 6606 goto out_put_page; 6607 } else if (likely(flags & FAULT_FLAG_WRITE)) { 6608 entry = huge_pte_mkdirty(entry); 6609 } 6610 } 6611 entry = pte_mkyoung(entry); 6612 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry, 6613 flags & FAULT_FLAG_WRITE)) 6614 update_mmu_cache(vma, haddr, ptep); 6615 out_put_page: 6616 if (folio != pagecache_folio) 6617 folio_unlock(folio); 6618 folio_put(folio); 6619 out_ptl: 6620 spin_unlock(ptl); 6621 6622 if (pagecache_folio) { 6623 folio_unlock(pagecache_folio); 6624 folio_put(pagecache_folio); 6625 } 6626 out_mutex: 6627 hugetlb_vma_unlock_read(vma); 6628 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6629 /* 6630 * Generally it's safe to hold refcount during waiting page lock. But 6631 * here we just wait to defer the next page fault to avoid busy loop and 6632 * the page is not used after unlocked before returning from the current 6633 * page fault. So we are safe from accessing freed page, even if we wait 6634 * here without taking refcount. 6635 */ 6636 if (need_wait_lock) 6637 folio_wait_locked(folio); 6638 return ret; 6639 } 6640 6641 #ifdef CONFIG_USERFAULTFD 6642 /* 6643 * Can probably be eliminated, but still used by hugetlb_mfill_atomic_pte(). 6644 */ 6645 static struct folio *alloc_hugetlb_folio_vma(struct hstate *h, 6646 struct vm_area_struct *vma, unsigned long address) 6647 { 6648 struct mempolicy *mpol; 6649 nodemask_t *nodemask; 6650 struct folio *folio; 6651 gfp_t gfp_mask; 6652 int node; 6653 6654 gfp_mask = htlb_alloc_mask(h); 6655 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 6656 folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask); 6657 mpol_cond_put(mpol); 6658 6659 return folio; 6660 } 6661 6662 /* 6663 * Used by userfaultfd UFFDIO_* ioctls. Based on userfaultfd's mfill_atomic_pte 6664 * with modifications for hugetlb pages. 6665 */ 6666 int hugetlb_mfill_atomic_pte(pte_t *dst_pte, 6667 struct vm_area_struct *dst_vma, 6668 unsigned long dst_addr, 6669 unsigned long src_addr, 6670 uffd_flags_t flags, 6671 struct folio **foliop) 6672 { 6673 struct mm_struct *dst_mm = dst_vma->vm_mm; 6674 bool is_continue = uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE); 6675 bool wp_enabled = (flags & MFILL_ATOMIC_WP); 6676 struct hstate *h = hstate_vma(dst_vma); 6677 struct address_space *mapping = dst_vma->vm_file->f_mapping; 6678 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr); 6679 unsigned long size; 6680 int vm_shared = dst_vma->vm_flags & VM_SHARED; 6681 pte_t _dst_pte; 6682 spinlock_t *ptl; 6683 int ret = -ENOMEM; 6684 struct folio *folio; 6685 int writable; 6686 bool folio_in_pagecache = false; 6687 6688 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_POISON)) { 6689 ptl = huge_pte_lock(h, dst_mm, dst_pte); 6690 6691 /* Don't overwrite any existing PTEs (even markers) */ 6692 if (!huge_pte_none(huge_ptep_get(dst_pte))) { 6693 spin_unlock(ptl); 6694 return -EEXIST; 6695 } 6696 6697 _dst_pte = make_pte_marker(PTE_MARKER_POISONED); 6698 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, 6699 huge_page_size(h)); 6700 6701 /* No need to invalidate - it was non-present before */ 6702 update_mmu_cache(dst_vma, dst_addr, dst_pte); 6703 6704 spin_unlock(ptl); 6705 return 0; 6706 } 6707 6708 if (is_continue) { 6709 ret = -EFAULT; 6710 folio = filemap_lock_hugetlb_folio(h, mapping, idx); 6711 if (IS_ERR(folio)) 6712 goto out; 6713 folio_in_pagecache = true; 6714 } else if (!*foliop) { 6715 /* If a folio already exists, then it's UFFDIO_COPY for 6716 * a non-missing case. Return -EEXIST. 6717 */ 6718 if (vm_shared && 6719 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) { 6720 ret = -EEXIST; 6721 goto out; 6722 } 6723 6724 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0); 6725 if (IS_ERR(folio)) { 6726 ret = -ENOMEM; 6727 goto out; 6728 } 6729 6730 ret = copy_folio_from_user(folio, (const void __user *) src_addr, 6731 false); 6732 6733 /* fallback to copy_from_user outside mmap_lock */ 6734 if (unlikely(ret)) { 6735 ret = -ENOENT; 6736 /* Free the allocated folio which may have 6737 * consumed a reservation. 6738 */ 6739 restore_reserve_on_error(h, dst_vma, dst_addr, folio); 6740 folio_put(folio); 6741 6742 /* Allocate a temporary folio to hold the copied 6743 * contents. 6744 */ 6745 folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr); 6746 if (!folio) { 6747 ret = -ENOMEM; 6748 goto out; 6749 } 6750 *foliop = folio; 6751 /* Set the outparam foliop and return to the caller to 6752 * copy the contents outside the lock. Don't free the 6753 * folio. 6754 */ 6755 goto out; 6756 } 6757 } else { 6758 if (vm_shared && 6759 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) { 6760 folio_put(*foliop); 6761 ret = -EEXIST; 6762 *foliop = NULL; 6763 goto out; 6764 } 6765 6766 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0); 6767 if (IS_ERR(folio)) { 6768 folio_put(*foliop); 6769 ret = -ENOMEM; 6770 *foliop = NULL; 6771 goto out; 6772 } 6773 ret = copy_user_large_folio(folio, *foliop, dst_addr, dst_vma); 6774 folio_put(*foliop); 6775 *foliop = NULL; 6776 if (ret) { 6777 folio_put(folio); 6778 goto out; 6779 } 6780 } 6781 6782 /* 6783 * If we just allocated a new page, we need a memory barrier to ensure 6784 * that preceding stores to the page become visible before the 6785 * set_pte_at() write. The memory barrier inside __folio_mark_uptodate 6786 * is what we need. 6787 * 6788 * In the case where we have not allocated a new page (is_continue), 6789 * the page must already be uptodate. UFFDIO_CONTINUE already includes 6790 * an earlier smp_wmb() to ensure that prior stores will be visible 6791 * before the set_pte_at() write. 6792 */ 6793 if (!is_continue) 6794 __folio_mark_uptodate(folio); 6795 else 6796 WARN_ON_ONCE(!folio_test_uptodate(folio)); 6797 6798 /* Add shared, newly allocated pages to the page cache. */ 6799 if (vm_shared && !is_continue) { 6800 size = i_size_read(mapping->host) >> huge_page_shift(h); 6801 ret = -EFAULT; 6802 if (idx >= size) 6803 goto out_release_nounlock; 6804 6805 /* 6806 * Serialization between remove_inode_hugepages() and 6807 * hugetlb_add_to_page_cache() below happens through the 6808 * hugetlb_fault_mutex_table that here must be hold by 6809 * the caller. 6810 */ 6811 ret = hugetlb_add_to_page_cache(folio, mapping, idx); 6812 if (ret) 6813 goto out_release_nounlock; 6814 folio_in_pagecache = true; 6815 } 6816 6817 ptl = huge_pte_lock(h, dst_mm, dst_pte); 6818 6819 ret = -EIO; 6820 if (folio_test_hwpoison(folio)) 6821 goto out_release_unlock; 6822 6823 /* 6824 * We allow to overwrite a pte marker: consider when both MISSING|WP 6825 * registered, we firstly wr-protect a none pte which has no page cache 6826 * page backing it, then access the page. 6827 */ 6828 ret = -EEXIST; 6829 if (!huge_pte_none_mostly(huge_ptep_get(dst_pte))) 6830 goto out_release_unlock; 6831 6832 if (folio_in_pagecache) 6833 hugetlb_add_file_rmap(folio); 6834 else 6835 hugetlb_add_new_anon_rmap(folio, dst_vma, dst_addr); 6836 6837 /* 6838 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY 6839 * with wp flag set, don't set pte write bit. 6840 */ 6841 if (wp_enabled || (is_continue && !vm_shared)) 6842 writable = 0; 6843 else 6844 writable = dst_vma->vm_flags & VM_WRITE; 6845 6846 _dst_pte = make_huge_pte(dst_vma, &folio->page, writable); 6847 /* 6848 * Always mark UFFDIO_COPY page dirty; note that this may not be 6849 * extremely important for hugetlbfs for now since swapping is not 6850 * supported, but we should still be clear in that this page cannot be 6851 * thrown away at will, even if write bit not set. 6852 */ 6853 _dst_pte = huge_pte_mkdirty(_dst_pte); 6854 _dst_pte = pte_mkyoung(_dst_pte); 6855 6856 if (wp_enabled) 6857 _dst_pte = huge_pte_mkuffd_wp(_dst_pte); 6858 6859 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, huge_page_size(h)); 6860 6861 hugetlb_count_add(pages_per_huge_page(h), dst_mm); 6862 6863 /* No need to invalidate - it was non-present before */ 6864 update_mmu_cache(dst_vma, dst_addr, dst_pte); 6865 6866 spin_unlock(ptl); 6867 if (!is_continue) 6868 folio_set_hugetlb_migratable(folio); 6869 if (vm_shared || is_continue) 6870 folio_unlock(folio); 6871 ret = 0; 6872 out: 6873 return ret; 6874 out_release_unlock: 6875 spin_unlock(ptl); 6876 if (vm_shared || is_continue) 6877 folio_unlock(folio); 6878 out_release_nounlock: 6879 if (!folio_in_pagecache) 6880 restore_reserve_on_error(h, dst_vma, dst_addr, folio); 6881 folio_put(folio); 6882 goto out; 6883 } 6884 #endif /* CONFIG_USERFAULTFD */ 6885 6886 struct page *hugetlb_follow_page_mask(struct vm_area_struct *vma, 6887 unsigned long address, unsigned int flags, 6888 unsigned int *page_mask) 6889 { 6890 struct hstate *h = hstate_vma(vma); 6891 struct mm_struct *mm = vma->vm_mm; 6892 unsigned long haddr = address & huge_page_mask(h); 6893 struct page *page = NULL; 6894 spinlock_t *ptl; 6895 pte_t *pte, entry; 6896 int ret; 6897 6898 hugetlb_vma_lock_read(vma); 6899 pte = hugetlb_walk(vma, haddr, huge_page_size(h)); 6900 if (!pte) 6901 goto out_unlock; 6902 6903 ptl = huge_pte_lock(h, mm, pte); 6904 entry = huge_ptep_get(pte); 6905 if (pte_present(entry)) { 6906 page = pte_page(entry); 6907 6908 if (!huge_pte_write(entry)) { 6909 if (flags & FOLL_WRITE) { 6910 page = NULL; 6911 goto out; 6912 } 6913 6914 if (gup_must_unshare(vma, flags, page)) { 6915 /* Tell the caller to do unsharing */ 6916 page = ERR_PTR(-EMLINK); 6917 goto out; 6918 } 6919 } 6920 6921 page = nth_page(page, ((address & ~huge_page_mask(h)) >> PAGE_SHIFT)); 6922 6923 /* 6924 * Note that page may be a sub-page, and with vmemmap 6925 * optimizations the page struct may be read only. 6926 * try_grab_page() will increase the ref count on the 6927 * head page, so this will be OK. 6928 * 6929 * try_grab_page() should always be able to get the page here, 6930 * because we hold the ptl lock and have verified pte_present(). 6931 */ 6932 ret = try_grab_page(page, flags); 6933 6934 if (WARN_ON_ONCE(ret)) { 6935 page = ERR_PTR(ret); 6936 goto out; 6937 } 6938 6939 *page_mask = (1U << huge_page_order(h)) - 1; 6940 } 6941 out: 6942 spin_unlock(ptl); 6943 out_unlock: 6944 hugetlb_vma_unlock_read(vma); 6945 6946 /* 6947 * Fixup retval for dump requests: if pagecache doesn't exist, 6948 * don't try to allocate a new page but just skip it. 6949 */ 6950 if (!page && (flags & FOLL_DUMP) && 6951 !hugetlbfs_pagecache_present(h, vma, address)) 6952 page = ERR_PTR(-EFAULT); 6953 6954 return page; 6955 } 6956 6957 long hugetlb_change_protection(struct vm_area_struct *vma, 6958 unsigned long address, unsigned long end, 6959 pgprot_t newprot, unsigned long cp_flags) 6960 { 6961 struct mm_struct *mm = vma->vm_mm; 6962 unsigned long start = address; 6963 pte_t *ptep; 6964 pte_t pte; 6965 struct hstate *h = hstate_vma(vma); 6966 long pages = 0, psize = huge_page_size(h); 6967 bool shared_pmd = false; 6968 struct mmu_notifier_range range; 6969 unsigned long last_addr_mask; 6970 bool uffd_wp = cp_flags & MM_CP_UFFD_WP; 6971 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE; 6972 6973 /* 6974 * In the case of shared PMDs, the area to flush could be beyond 6975 * start/end. Set range.start/range.end to cover the maximum possible 6976 * range if PMD sharing is possible. 6977 */ 6978 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA, 6979 0, mm, start, end); 6980 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 6981 6982 BUG_ON(address >= end); 6983 flush_cache_range(vma, range.start, range.end); 6984 6985 mmu_notifier_invalidate_range_start(&range); 6986 hugetlb_vma_lock_write(vma); 6987 i_mmap_lock_write(vma->vm_file->f_mapping); 6988 last_addr_mask = hugetlb_mask_last_page(h); 6989 for (; address < end; address += psize) { 6990 spinlock_t *ptl; 6991 ptep = hugetlb_walk(vma, address, psize); 6992 if (!ptep) { 6993 if (!uffd_wp) { 6994 address |= last_addr_mask; 6995 continue; 6996 } 6997 /* 6998 * Userfaultfd wr-protect requires pgtable 6999 * pre-allocations to install pte markers. 7000 */ 7001 ptep = huge_pte_alloc(mm, vma, address, psize); 7002 if (!ptep) { 7003 pages = -ENOMEM; 7004 break; 7005 } 7006 } 7007 ptl = huge_pte_lock(h, mm, ptep); 7008 if (huge_pmd_unshare(mm, vma, address, ptep)) { 7009 /* 7010 * When uffd-wp is enabled on the vma, unshare 7011 * shouldn't happen at all. Warn about it if it 7012 * happened due to some reason. 7013 */ 7014 WARN_ON_ONCE(uffd_wp || uffd_wp_resolve); 7015 pages++; 7016 spin_unlock(ptl); 7017 shared_pmd = true; 7018 address |= last_addr_mask; 7019 continue; 7020 } 7021 pte = huge_ptep_get(ptep); 7022 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) { 7023 /* Nothing to do. */ 7024 } else if (unlikely(is_hugetlb_entry_migration(pte))) { 7025 swp_entry_t entry = pte_to_swp_entry(pte); 7026 struct page *page = pfn_swap_entry_to_page(entry); 7027 pte_t newpte = pte; 7028 7029 if (is_writable_migration_entry(entry)) { 7030 if (PageAnon(page)) 7031 entry = make_readable_exclusive_migration_entry( 7032 swp_offset(entry)); 7033 else 7034 entry = make_readable_migration_entry( 7035 swp_offset(entry)); 7036 newpte = swp_entry_to_pte(entry); 7037 pages++; 7038 } 7039 7040 if (uffd_wp) 7041 newpte = pte_swp_mkuffd_wp(newpte); 7042 else if (uffd_wp_resolve) 7043 newpte = pte_swp_clear_uffd_wp(newpte); 7044 if (!pte_same(pte, newpte)) 7045 set_huge_pte_at(mm, address, ptep, newpte, psize); 7046 } else if (unlikely(is_pte_marker(pte))) { 7047 /* 7048 * Do nothing on a poison marker; page is 7049 * corrupted, permissons do not apply. Here 7050 * pte_marker_uffd_wp()==true implies !poison 7051 * because they're mutual exclusive. 7052 */ 7053 if (pte_marker_uffd_wp(pte) && uffd_wp_resolve) 7054 /* Safe to modify directly (non-present->none). */ 7055 huge_pte_clear(mm, address, ptep, psize); 7056 } else if (!huge_pte_none(pte)) { 7057 pte_t old_pte; 7058 unsigned int shift = huge_page_shift(hstate_vma(vma)); 7059 7060 old_pte = huge_ptep_modify_prot_start(vma, address, ptep); 7061 pte = huge_pte_modify(old_pte, newprot); 7062 pte = arch_make_huge_pte(pte, shift, vma->vm_flags); 7063 if (uffd_wp) 7064 pte = huge_pte_mkuffd_wp(pte); 7065 else if (uffd_wp_resolve) 7066 pte = huge_pte_clear_uffd_wp(pte); 7067 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte); 7068 pages++; 7069 } else { 7070 /* None pte */ 7071 if (unlikely(uffd_wp)) 7072 /* Safe to modify directly (none->non-present). */ 7073 set_huge_pte_at(mm, address, ptep, 7074 make_pte_marker(PTE_MARKER_UFFD_WP), 7075 psize); 7076 } 7077 spin_unlock(ptl); 7078 } 7079 /* 7080 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare 7081 * may have cleared our pud entry and done put_page on the page table: 7082 * once we release i_mmap_rwsem, another task can do the final put_page 7083 * and that page table be reused and filled with junk. If we actually 7084 * did unshare a page of pmds, flush the range corresponding to the pud. 7085 */ 7086 if (shared_pmd) 7087 flush_hugetlb_tlb_range(vma, range.start, range.end); 7088 else 7089 flush_hugetlb_tlb_range(vma, start, end); 7090 /* 7091 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs() we are 7092 * downgrading page table protection not changing it to point to a new 7093 * page. 7094 * 7095 * See Documentation/mm/mmu_notifier.rst 7096 */ 7097 i_mmap_unlock_write(vma->vm_file->f_mapping); 7098 hugetlb_vma_unlock_write(vma); 7099 mmu_notifier_invalidate_range_end(&range); 7100 7101 return pages > 0 ? (pages << h->order) : pages; 7102 } 7103 7104 /* Return true if reservation was successful, false otherwise. */ 7105 bool hugetlb_reserve_pages(struct inode *inode, 7106 long from, long to, 7107 struct vm_area_struct *vma, 7108 vm_flags_t vm_flags) 7109 { 7110 long chg = -1, add = -1; 7111 struct hstate *h = hstate_inode(inode); 7112 struct hugepage_subpool *spool = subpool_inode(inode); 7113 struct resv_map *resv_map; 7114 struct hugetlb_cgroup *h_cg = NULL; 7115 long gbl_reserve, regions_needed = 0; 7116 7117 /* This should never happen */ 7118 if (from > to) { 7119 VM_WARN(1, "%s called with a negative range\n", __func__); 7120 return false; 7121 } 7122 7123 /* 7124 * vma specific semaphore used for pmd sharing and fault/truncation 7125 * synchronization 7126 */ 7127 hugetlb_vma_lock_alloc(vma); 7128 7129 /* 7130 * Only apply hugepage reservation if asked. At fault time, an 7131 * attempt will be made for VM_NORESERVE to allocate a page 7132 * without using reserves 7133 */ 7134 if (vm_flags & VM_NORESERVE) 7135 return true; 7136 7137 /* 7138 * Shared mappings base their reservation on the number of pages that 7139 * are already allocated on behalf of the file. Private mappings need 7140 * to reserve the full area even if read-only as mprotect() may be 7141 * called to make the mapping read-write. Assume !vma is a shm mapping 7142 */ 7143 if (!vma || vma->vm_flags & VM_MAYSHARE) { 7144 /* 7145 * resv_map can not be NULL as hugetlb_reserve_pages is only 7146 * called for inodes for which resv_maps were created (see 7147 * hugetlbfs_get_inode). 7148 */ 7149 resv_map = inode_resv_map(inode); 7150 7151 chg = region_chg(resv_map, from, to, ®ions_needed); 7152 } else { 7153 /* Private mapping. */ 7154 resv_map = resv_map_alloc(); 7155 if (!resv_map) 7156 goto out_err; 7157 7158 chg = to - from; 7159 7160 set_vma_resv_map(vma, resv_map); 7161 set_vma_resv_flags(vma, HPAGE_RESV_OWNER); 7162 } 7163 7164 if (chg < 0) 7165 goto out_err; 7166 7167 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h), 7168 chg * pages_per_huge_page(h), &h_cg) < 0) 7169 goto out_err; 7170 7171 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) { 7172 /* For private mappings, the hugetlb_cgroup uncharge info hangs 7173 * of the resv_map. 7174 */ 7175 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h); 7176 } 7177 7178 /* 7179 * There must be enough pages in the subpool for the mapping. If 7180 * the subpool has a minimum size, there may be some global 7181 * reservations already in place (gbl_reserve). 7182 */ 7183 gbl_reserve = hugepage_subpool_get_pages(spool, chg); 7184 if (gbl_reserve < 0) 7185 goto out_uncharge_cgroup; 7186 7187 /* 7188 * Check enough hugepages are available for the reservation. 7189 * Hand the pages back to the subpool if there are not 7190 */ 7191 if (hugetlb_acct_memory(h, gbl_reserve) < 0) 7192 goto out_put_pages; 7193 7194 /* 7195 * Account for the reservations made. Shared mappings record regions 7196 * that have reservations as they are shared by multiple VMAs. 7197 * When the last VMA disappears, the region map says how much 7198 * the reservation was and the page cache tells how much of 7199 * the reservation was consumed. Private mappings are per-VMA and 7200 * only the consumed reservations are tracked. When the VMA 7201 * disappears, the original reservation is the VMA size and the 7202 * consumed reservations are stored in the map. Hence, nothing 7203 * else has to be done for private mappings here 7204 */ 7205 if (!vma || vma->vm_flags & VM_MAYSHARE) { 7206 add = region_add(resv_map, from, to, regions_needed, h, h_cg); 7207 7208 if (unlikely(add < 0)) { 7209 hugetlb_acct_memory(h, -gbl_reserve); 7210 goto out_put_pages; 7211 } else if (unlikely(chg > add)) { 7212 /* 7213 * pages in this range were added to the reserve 7214 * map between region_chg and region_add. This 7215 * indicates a race with alloc_hugetlb_folio. Adjust 7216 * the subpool and reserve counts modified above 7217 * based on the difference. 7218 */ 7219 long rsv_adjust; 7220 7221 /* 7222 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the 7223 * reference to h_cg->css. See comment below for detail. 7224 */ 7225 hugetlb_cgroup_uncharge_cgroup_rsvd( 7226 hstate_index(h), 7227 (chg - add) * pages_per_huge_page(h), h_cg); 7228 7229 rsv_adjust = hugepage_subpool_put_pages(spool, 7230 chg - add); 7231 hugetlb_acct_memory(h, -rsv_adjust); 7232 } else if (h_cg) { 7233 /* 7234 * The file_regions will hold their own reference to 7235 * h_cg->css. So we should release the reference held 7236 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are 7237 * done. 7238 */ 7239 hugetlb_cgroup_put_rsvd_cgroup(h_cg); 7240 } 7241 } 7242 return true; 7243 7244 out_put_pages: 7245 /* put back original number of pages, chg */ 7246 (void)hugepage_subpool_put_pages(spool, chg); 7247 out_uncharge_cgroup: 7248 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h), 7249 chg * pages_per_huge_page(h), h_cg); 7250 out_err: 7251 hugetlb_vma_lock_free(vma); 7252 if (!vma || vma->vm_flags & VM_MAYSHARE) 7253 /* Only call region_abort if the region_chg succeeded but the 7254 * region_add failed or didn't run. 7255 */ 7256 if (chg >= 0 && add < 0) 7257 region_abort(resv_map, from, to, regions_needed); 7258 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 7259 kref_put(&resv_map->refs, resv_map_release); 7260 set_vma_resv_map(vma, NULL); 7261 } 7262 return false; 7263 } 7264 7265 long hugetlb_unreserve_pages(struct inode *inode, long start, long end, 7266 long freed) 7267 { 7268 struct hstate *h = hstate_inode(inode); 7269 struct resv_map *resv_map = inode_resv_map(inode); 7270 long chg = 0; 7271 struct hugepage_subpool *spool = subpool_inode(inode); 7272 long gbl_reserve; 7273 7274 /* 7275 * Since this routine can be called in the evict inode path for all 7276 * hugetlbfs inodes, resv_map could be NULL. 7277 */ 7278 if (resv_map) { 7279 chg = region_del(resv_map, start, end); 7280 /* 7281 * region_del() can fail in the rare case where a region 7282 * must be split and another region descriptor can not be 7283 * allocated. If end == LONG_MAX, it will not fail. 7284 */ 7285 if (chg < 0) 7286 return chg; 7287 } 7288 7289 spin_lock(&inode->i_lock); 7290 inode->i_blocks -= (blocks_per_huge_page(h) * freed); 7291 spin_unlock(&inode->i_lock); 7292 7293 /* 7294 * If the subpool has a minimum size, the number of global 7295 * reservations to be released may be adjusted. 7296 * 7297 * Note that !resv_map implies freed == 0. So (chg - freed) 7298 * won't go negative. 7299 */ 7300 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed)); 7301 hugetlb_acct_memory(h, -gbl_reserve); 7302 7303 return 0; 7304 } 7305 7306 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE 7307 static unsigned long page_table_shareable(struct vm_area_struct *svma, 7308 struct vm_area_struct *vma, 7309 unsigned long addr, pgoff_t idx) 7310 { 7311 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) + 7312 svma->vm_start; 7313 unsigned long sbase = saddr & PUD_MASK; 7314 unsigned long s_end = sbase + PUD_SIZE; 7315 7316 /* Allow segments to share if only one is marked locked */ 7317 unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED_MASK; 7318 unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED_MASK; 7319 7320 /* 7321 * match the virtual addresses, permission and the alignment of the 7322 * page table page. 7323 * 7324 * Also, vma_lock (vm_private_data) is required for sharing. 7325 */ 7326 if (pmd_index(addr) != pmd_index(saddr) || 7327 vm_flags != svm_flags || 7328 !range_in_vma(svma, sbase, s_end) || 7329 !svma->vm_private_data) 7330 return 0; 7331 7332 return saddr; 7333 } 7334 7335 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr) 7336 { 7337 unsigned long start = addr & PUD_MASK; 7338 unsigned long end = start + PUD_SIZE; 7339 7340 #ifdef CONFIG_USERFAULTFD 7341 if (uffd_disable_huge_pmd_share(vma)) 7342 return false; 7343 #endif 7344 /* 7345 * check on proper vm_flags and page table alignment 7346 */ 7347 if (!(vma->vm_flags & VM_MAYSHARE)) 7348 return false; 7349 if (!vma->vm_private_data) /* vma lock required for sharing */ 7350 return false; 7351 if (!range_in_vma(vma, start, end)) 7352 return false; 7353 return true; 7354 } 7355 7356 /* 7357 * Determine if start,end range within vma could be mapped by shared pmd. 7358 * If yes, adjust start and end to cover range associated with possible 7359 * shared pmd mappings. 7360 */ 7361 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 7362 unsigned long *start, unsigned long *end) 7363 { 7364 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE), 7365 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE); 7366 7367 /* 7368 * vma needs to span at least one aligned PUD size, and the range 7369 * must be at least partially within in. 7370 */ 7371 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) || 7372 (*end <= v_start) || (*start >= v_end)) 7373 return; 7374 7375 /* Extend the range to be PUD aligned for a worst case scenario */ 7376 if (*start > v_start) 7377 *start = ALIGN_DOWN(*start, PUD_SIZE); 7378 7379 if (*end < v_end) 7380 *end = ALIGN(*end, PUD_SIZE); 7381 } 7382 7383 /* 7384 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc() 7385 * and returns the corresponding pte. While this is not necessary for the 7386 * !shared pmd case because we can allocate the pmd later as well, it makes the 7387 * code much cleaner. pmd allocation is essential for the shared case because 7388 * pud has to be populated inside the same i_mmap_rwsem section - otherwise 7389 * racing tasks could either miss the sharing (see huge_pte_offset) or select a 7390 * bad pmd for sharing. 7391 */ 7392 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, 7393 unsigned long addr, pud_t *pud) 7394 { 7395 struct address_space *mapping = vma->vm_file->f_mapping; 7396 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + 7397 vma->vm_pgoff; 7398 struct vm_area_struct *svma; 7399 unsigned long saddr; 7400 pte_t *spte = NULL; 7401 pte_t *pte; 7402 7403 i_mmap_lock_read(mapping); 7404 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) { 7405 if (svma == vma) 7406 continue; 7407 7408 saddr = page_table_shareable(svma, vma, addr, idx); 7409 if (saddr) { 7410 spte = hugetlb_walk(svma, saddr, 7411 vma_mmu_pagesize(svma)); 7412 if (spte) { 7413 get_page(virt_to_page(spte)); 7414 break; 7415 } 7416 } 7417 } 7418 7419 if (!spte) 7420 goto out; 7421 7422 spin_lock(&mm->page_table_lock); 7423 if (pud_none(*pud)) { 7424 pud_populate(mm, pud, 7425 (pmd_t *)((unsigned long)spte & PAGE_MASK)); 7426 mm_inc_nr_pmds(mm); 7427 } else { 7428 put_page(virt_to_page(spte)); 7429 } 7430 spin_unlock(&mm->page_table_lock); 7431 out: 7432 pte = (pte_t *)pmd_alloc(mm, pud, addr); 7433 i_mmap_unlock_read(mapping); 7434 return pte; 7435 } 7436 7437 /* 7438 * unmap huge page backed by shared pte. 7439 * 7440 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared 7441 * indicated by page_count > 1, unmap is achieved by clearing pud and 7442 * decrementing the ref count. If count == 1, the pte page is not shared. 7443 * 7444 * Called with page table lock held. 7445 * 7446 * returns: 1 successfully unmapped a shared pte page 7447 * 0 the underlying pte page is not shared, or it is the last user 7448 */ 7449 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, 7450 unsigned long addr, pte_t *ptep) 7451 { 7452 pgd_t *pgd = pgd_offset(mm, addr); 7453 p4d_t *p4d = p4d_offset(pgd, addr); 7454 pud_t *pud = pud_offset(p4d, addr); 7455 7456 i_mmap_assert_write_locked(vma->vm_file->f_mapping); 7457 hugetlb_vma_assert_locked(vma); 7458 BUG_ON(page_count(virt_to_page(ptep)) == 0); 7459 if (page_count(virt_to_page(ptep)) == 1) 7460 return 0; 7461 7462 pud_clear(pud); 7463 put_page(virt_to_page(ptep)); 7464 mm_dec_nr_pmds(mm); 7465 return 1; 7466 } 7467 7468 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 7469 7470 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, 7471 unsigned long addr, pud_t *pud) 7472 { 7473 return NULL; 7474 } 7475 7476 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, 7477 unsigned long addr, pte_t *ptep) 7478 { 7479 return 0; 7480 } 7481 7482 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 7483 unsigned long *start, unsigned long *end) 7484 { 7485 } 7486 7487 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr) 7488 { 7489 return false; 7490 } 7491 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 7492 7493 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB 7494 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 7495 unsigned long addr, unsigned long sz) 7496 { 7497 pgd_t *pgd; 7498 p4d_t *p4d; 7499 pud_t *pud; 7500 pte_t *pte = NULL; 7501 7502 pgd = pgd_offset(mm, addr); 7503 p4d = p4d_alloc(mm, pgd, addr); 7504 if (!p4d) 7505 return NULL; 7506 pud = pud_alloc(mm, p4d, addr); 7507 if (pud) { 7508 if (sz == PUD_SIZE) { 7509 pte = (pte_t *)pud; 7510 } else { 7511 BUG_ON(sz != PMD_SIZE); 7512 if (want_pmd_share(vma, addr) && pud_none(*pud)) 7513 pte = huge_pmd_share(mm, vma, addr, pud); 7514 else 7515 pte = (pte_t *)pmd_alloc(mm, pud, addr); 7516 } 7517 } 7518 7519 if (pte) { 7520 pte_t pteval = ptep_get_lockless(pte); 7521 7522 BUG_ON(pte_present(pteval) && !pte_huge(pteval)); 7523 } 7524 7525 return pte; 7526 } 7527 7528 /* 7529 * huge_pte_offset() - Walk the page table to resolve the hugepage 7530 * entry at address @addr 7531 * 7532 * Return: Pointer to page table entry (PUD or PMD) for 7533 * address @addr, or NULL if a !p*d_present() entry is encountered and the 7534 * size @sz doesn't match the hugepage size at this level of the page 7535 * table. 7536 */ 7537 pte_t *huge_pte_offset(struct mm_struct *mm, 7538 unsigned long addr, unsigned long sz) 7539 { 7540 pgd_t *pgd; 7541 p4d_t *p4d; 7542 pud_t *pud; 7543 pmd_t *pmd; 7544 7545 pgd = pgd_offset(mm, addr); 7546 if (!pgd_present(*pgd)) 7547 return NULL; 7548 p4d = p4d_offset(pgd, addr); 7549 if (!p4d_present(*p4d)) 7550 return NULL; 7551 7552 pud = pud_offset(p4d, addr); 7553 if (sz == PUD_SIZE) 7554 /* must be pud huge, non-present or none */ 7555 return (pte_t *)pud; 7556 if (!pud_present(*pud)) 7557 return NULL; 7558 /* must have a valid entry and size to go further */ 7559 7560 pmd = pmd_offset(pud, addr); 7561 /* must be pmd huge, non-present or none */ 7562 return (pte_t *)pmd; 7563 } 7564 7565 /* 7566 * Return a mask that can be used to update an address to the last huge 7567 * page in a page table page mapping size. Used to skip non-present 7568 * page table entries when linearly scanning address ranges. Architectures 7569 * with unique huge page to page table relationships can define their own 7570 * version of this routine. 7571 */ 7572 unsigned long hugetlb_mask_last_page(struct hstate *h) 7573 { 7574 unsigned long hp_size = huge_page_size(h); 7575 7576 if (hp_size == PUD_SIZE) 7577 return P4D_SIZE - PUD_SIZE; 7578 else if (hp_size == PMD_SIZE) 7579 return PUD_SIZE - PMD_SIZE; 7580 else 7581 return 0UL; 7582 } 7583 7584 #else 7585 7586 /* See description above. Architectures can provide their own version. */ 7587 __weak unsigned long hugetlb_mask_last_page(struct hstate *h) 7588 { 7589 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE 7590 if (huge_page_size(h) == PMD_SIZE) 7591 return PUD_SIZE - PMD_SIZE; 7592 #endif 7593 return 0UL; 7594 } 7595 7596 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */ 7597 7598 /* 7599 * These functions are overwritable if your architecture needs its own 7600 * behavior. 7601 */ 7602 bool isolate_hugetlb(struct folio *folio, struct list_head *list) 7603 { 7604 bool ret = true; 7605 7606 spin_lock_irq(&hugetlb_lock); 7607 if (!folio_test_hugetlb(folio) || 7608 !folio_test_hugetlb_migratable(folio) || 7609 !folio_try_get(folio)) { 7610 ret = false; 7611 goto unlock; 7612 } 7613 folio_clear_hugetlb_migratable(folio); 7614 list_move_tail(&folio->lru, list); 7615 unlock: 7616 spin_unlock_irq(&hugetlb_lock); 7617 return ret; 7618 } 7619 7620 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison) 7621 { 7622 int ret = 0; 7623 7624 *hugetlb = false; 7625 spin_lock_irq(&hugetlb_lock); 7626 if (folio_test_hugetlb(folio)) { 7627 *hugetlb = true; 7628 if (folio_test_hugetlb_freed(folio)) 7629 ret = 0; 7630 else if (folio_test_hugetlb_migratable(folio) || unpoison) 7631 ret = folio_try_get(folio); 7632 else 7633 ret = -EBUSY; 7634 } 7635 spin_unlock_irq(&hugetlb_lock); 7636 return ret; 7637 } 7638 7639 int get_huge_page_for_hwpoison(unsigned long pfn, int flags, 7640 bool *migratable_cleared) 7641 { 7642 int ret; 7643 7644 spin_lock_irq(&hugetlb_lock); 7645 ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared); 7646 spin_unlock_irq(&hugetlb_lock); 7647 return ret; 7648 } 7649 7650 void folio_putback_active_hugetlb(struct folio *folio) 7651 { 7652 spin_lock_irq(&hugetlb_lock); 7653 folio_set_hugetlb_migratable(folio); 7654 list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist); 7655 spin_unlock_irq(&hugetlb_lock); 7656 folio_put(folio); 7657 } 7658 7659 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason) 7660 { 7661 struct hstate *h = folio_hstate(old_folio); 7662 7663 hugetlb_cgroup_migrate(old_folio, new_folio); 7664 set_page_owner_migrate_reason(&new_folio->page, reason); 7665 7666 /* 7667 * transfer temporary state of the new hugetlb folio. This is 7668 * reverse to other transitions because the newpage is going to 7669 * be final while the old one will be freed so it takes over 7670 * the temporary status. 7671 * 7672 * Also note that we have to transfer the per-node surplus state 7673 * here as well otherwise the global surplus count will not match 7674 * the per-node's. 7675 */ 7676 if (folio_test_hugetlb_temporary(new_folio)) { 7677 int old_nid = folio_nid(old_folio); 7678 int new_nid = folio_nid(new_folio); 7679 7680 folio_set_hugetlb_temporary(old_folio); 7681 folio_clear_hugetlb_temporary(new_folio); 7682 7683 7684 /* 7685 * There is no need to transfer the per-node surplus state 7686 * when we do not cross the node. 7687 */ 7688 if (new_nid == old_nid) 7689 return; 7690 spin_lock_irq(&hugetlb_lock); 7691 if (h->surplus_huge_pages_node[old_nid]) { 7692 h->surplus_huge_pages_node[old_nid]--; 7693 h->surplus_huge_pages_node[new_nid]++; 7694 } 7695 spin_unlock_irq(&hugetlb_lock); 7696 } 7697 } 7698 7699 static void hugetlb_unshare_pmds(struct vm_area_struct *vma, 7700 unsigned long start, 7701 unsigned long end) 7702 { 7703 struct hstate *h = hstate_vma(vma); 7704 unsigned long sz = huge_page_size(h); 7705 struct mm_struct *mm = vma->vm_mm; 7706 struct mmu_notifier_range range; 7707 unsigned long address; 7708 spinlock_t *ptl; 7709 pte_t *ptep; 7710 7711 if (!(vma->vm_flags & VM_MAYSHARE)) 7712 return; 7713 7714 if (start >= end) 7715 return; 7716 7717 flush_cache_range(vma, start, end); 7718 /* 7719 * No need to call adjust_range_if_pmd_sharing_possible(), because 7720 * we have already done the PUD_SIZE alignment. 7721 */ 7722 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 7723 start, end); 7724 mmu_notifier_invalidate_range_start(&range); 7725 hugetlb_vma_lock_write(vma); 7726 i_mmap_lock_write(vma->vm_file->f_mapping); 7727 for (address = start; address < end; address += PUD_SIZE) { 7728 ptep = hugetlb_walk(vma, address, sz); 7729 if (!ptep) 7730 continue; 7731 ptl = huge_pte_lock(h, mm, ptep); 7732 huge_pmd_unshare(mm, vma, address, ptep); 7733 spin_unlock(ptl); 7734 } 7735 flush_hugetlb_tlb_range(vma, start, end); 7736 i_mmap_unlock_write(vma->vm_file->f_mapping); 7737 hugetlb_vma_unlock_write(vma); 7738 /* 7739 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs(), see 7740 * Documentation/mm/mmu_notifier.rst. 7741 */ 7742 mmu_notifier_invalidate_range_end(&range); 7743 } 7744 7745 /* 7746 * This function will unconditionally remove all the shared pmd pgtable entries 7747 * within the specific vma for a hugetlbfs memory range. 7748 */ 7749 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma) 7750 { 7751 hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE), 7752 ALIGN_DOWN(vma->vm_end, PUD_SIZE)); 7753 } 7754 7755 #ifdef CONFIG_CMA 7756 static bool cma_reserve_called __initdata; 7757 7758 static int __init cmdline_parse_hugetlb_cma(char *p) 7759 { 7760 int nid, count = 0; 7761 unsigned long tmp; 7762 char *s = p; 7763 7764 while (*s) { 7765 if (sscanf(s, "%lu%n", &tmp, &count) != 1) 7766 break; 7767 7768 if (s[count] == ':') { 7769 if (tmp >= MAX_NUMNODES) 7770 break; 7771 nid = array_index_nospec(tmp, MAX_NUMNODES); 7772 7773 s += count + 1; 7774 tmp = memparse(s, &s); 7775 hugetlb_cma_size_in_node[nid] = tmp; 7776 hugetlb_cma_size += tmp; 7777 7778 /* 7779 * Skip the separator if have one, otherwise 7780 * break the parsing. 7781 */ 7782 if (*s == ',') 7783 s++; 7784 else 7785 break; 7786 } else { 7787 hugetlb_cma_size = memparse(p, &p); 7788 break; 7789 } 7790 } 7791 7792 return 0; 7793 } 7794 7795 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma); 7796 7797 void __init hugetlb_cma_reserve(int order) 7798 { 7799 unsigned long size, reserved, per_node; 7800 bool node_specific_cma_alloc = false; 7801 int nid; 7802 7803 /* 7804 * HugeTLB CMA reservation is required for gigantic 7805 * huge pages which could not be allocated via the 7806 * page allocator. Just warn if there is any change 7807 * breaking this assumption. 7808 */ 7809 VM_WARN_ON(order <= MAX_PAGE_ORDER); 7810 cma_reserve_called = true; 7811 7812 if (!hugetlb_cma_size) 7813 return; 7814 7815 for (nid = 0; nid < MAX_NUMNODES; nid++) { 7816 if (hugetlb_cma_size_in_node[nid] == 0) 7817 continue; 7818 7819 if (!node_online(nid)) { 7820 pr_warn("hugetlb_cma: invalid node %d specified\n", nid); 7821 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid]; 7822 hugetlb_cma_size_in_node[nid] = 0; 7823 continue; 7824 } 7825 7826 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) { 7827 pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n", 7828 nid, (PAGE_SIZE << order) / SZ_1M); 7829 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid]; 7830 hugetlb_cma_size_in_node[nid] = 0; 7831 } else { 7832 node_specific_cma_alloc = true; 7833 } 7834 } 7835 7836 /* Validate the CMA size again in case some invalid nodes specified. */ 7837 if (!hugetlb_cma_size) 7838 return; 7839 7840 if (hugetlb_cma_size < (PAGE_SIZE << order)) { 7841 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n", 7842 (PAGE_SIZE << order) / SZ_1M); 7843 hugetlb_cma_size = 0; 7844 return; 7845 } 7846 7847 if (!node_specific_cma_alloc) { 7848 /* 7849 * If 3 GB area is requested on a machine with 4 numa nodes, 7850 * let's allocate 1 GB on first three nodes and ignore the last one. 7851 */ 7852 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes); 7853 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n", 7854 hugetlb_cma_size / SZ_1M, per_node / SZ_1M); 7855 } 7856 7857 reserved = 0; 7858 for_each_online_node(nid) { 7859 int res; 7860 char name[CMA_MAX_NAME]; 7861 7862 if (node_specific_cma_alloc) { 7863 if (hugetlb_cma_size_in_node[nid] == 0) 7864 continue; 7865 7866 size = hugetlb_cma_size_in_node[nid]; 7867 } else { 7868 size = min(per_node, hugetlb_cma_size - reserved); 7869 } 7870 7871 size = round_up(size, PAGE_SIZE << order); 7872 7873 snprintf(name, sizeof(name), "hugetlb%d", nid); 7874 /* 7875 * Note that 'order per bit' is based on smallest size that 7876 * may be returned to CMA allocator in the case of 7877 * huge page demotion. 7878 */ 7879 res = cma_declare_contiguous_nid(0, size, 0, 7880 PAGE_SIZE << HUGETLB_PAGE_ORDER, 7881 0, false, name, 7882 &hugetlb_cma[nid], nid); 7883 if (res) { 7884 pr_warn("hugetlb_cma: reservation failed: err %d, node %d", 7885 res, nid); 7886 continue; 7887 } 7888 7889 reserved += size; 7890 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n", 7891 size / SZ_1M, nid); 7892 7893 if (reserved >= hugetlb_cma_size) 7894 break; 7895 } 7896 7897 if (!reserved) 7898 /* 7899 * hugetlb_cma_size is used to determine if allocations from 7900 * cma are possible. Set to zero if no cma regions are set up. 7901 */ 7902 hugetlb_cma_size = 0; 7903 } 7904 7905 static void __init hugetlb_cma_check(void) 7906 { 7907 if (!hugetlb_cma_size || cma_reserve_called) 7908 return; 7909 7910 pr_warn("hugetlb_cma: the option isn't supported by current arch\n"); 7911 } 7912 7913 #endif /* CONFIG_CMA */ 7914