xref: /linux/mm/hugetlb.c (revision 71dfa617ea9f18e4585fe78364217cd32b1fc382)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 #include <linux/migrate.h>
34 #include <linux/nospec.h>
35 #include <linux/delayacct.h>
36 #include <linux/memory.h>
37 #include <linux/mm_inline.h>
38 #include <linux/padata.h>
39 
40 #include <asm/page.h>
41 #include <asm/pgalloc.h>
42 #include <asm/tlb.h>
43 
44 #include <linux/io.h>
45 #include <linux/hugetlb.h>
46 #include <linux/hugetlb_cgroup.h>
47 #include <linux/node.h>
48 #include <linux/page_owner.h>
49 #include "internal.h"
50 #include "hugetlb_vmemmap.h"
51 
52 int hugetlb_max_hstate __read_mostly;
53 unsigned int default_hstate_idx;
54 struct hstate hstates[HUGE_MAX_HSTATE];
55 
56 #ifdef CONFIG_CMA
57 static struct cma *hugetlb_cma[MAX_NUMNODES];
58 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
59 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
60 {
61 	return cma_pages_valid(hugetlb_cma[folio_nid(folio)], &folio->page,
62 				1 << order);
63 }
64 #else
65 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
66 {
67 	return false;
68 }
69 #endif
70 static unsigned long hugetlb_cma_size __initdata;
71 
72 __initdata struct list_head huge_boot_pages[MAX_NUMNODES];
73 
74 /* for command line parsing */
75 static struct hstate * __initdata parsed_hstate;
76 static unsigned long __initdata default_hstate_max_huge_pages;
77 static bool __initdata parsed_valid_hugepagesz = true;
78 static bool __initdata parsed_default_hugepagesz;
79 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
80 
81 /*
82  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
83  * free_huge_pages, and surplus_huge_pages.
84  */
85 DEFINE_SPINLOCK(hugetlb_lock);
86 
87 /*
88  * Serializes faults on the same logical page.  This is used to
89  * prevent spurious OOMs when the hugepage pool is fully utilized.
90  */
91 static int num_fault_mutexes;
92 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
93 
94 /* Forward declaration */
95 static int hugetlb_acct_memory(struct hstate *h, long delta);
96 static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
97 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
98 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
99 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
100 		unsigned long start, unsigned long end);
101 static struct resv_map *vma_resv_map(struct vm_area_struct *vma);
102 
103 static inline bool subpool_is_free(struct hugepage_subpool *spool)
104 {
105 	if (spool->count)
106 		return false;
107 	if (spool->max_hpages != -1)
108 		return spool->used_hpages == 0;
109 	if (spool->min_hpages != -1)
110 		return spool->rsv_hpages == spool->min_hpages;
111 
112 	return true;
113 }
114 
115 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
116 						unsigned long irq_flags)
117 {
118 	spin_unlock_irqrestore(&spool->lock, irq_flags);
119 
120 	/* If no pages are used, and no other handles to the subpool
121 	 * remain, give up any reservations based on minimum size and
122 	 * free the subpool */
123 	if (subpool_is_free(spool)) {
124 		if (spool->min_hpages != -1)
125 			hugetlb_acct_memory(spool->hstate,
126 						-spool->min_hpages);
127 		kfree(spool);
128 	}
129 }
130 
131 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
132 						long min_hpages)
133 {
134 	struct hugepage_subpool *spool;
135 
136 	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
137 	if (!spool)
138 		return NULL;
139 
140 	spin_lock_init(&spool->lock);
141 	spool->count = 1;
142 	spool->max_hpages = max_hpages;
143 	spool->hstate = h;
144 	spool->min_hpages = min_hpages;
145 
146 	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
147 		kfree(spool);
148 		return NULL;
149 	}
150 	spool->rsv_hpages = min_hpages;
151 
152 	return spool;
153 }
154 
155 void hugepage_put_subpool(struct hugepage_subpool *spool)
156 {
157 	unsigned long flags;
158 
159 	spin_lock_irqsave(&spool->lock, flags);
160 	BUG_ON(!spool->count);
161 	spool->count--;
162 	unlock_or_release_subpool(spool, flags);
163 }
164 
165 /*
166  * Subpool accounting for allocating and reserving pages.
167  * Return -ENOMEM if there are not enough resources to satisfy the
168  * request.  Otherwise, return the number of pages by which the
169  * global pools must be adjusted (upward).  The returned value may
170  * only be different than the passed value (delta) in the case where
171  * a subpool minimum size must be maintained.
172  */
173 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
174 				      long delta)
175 {
176 	long ret = delta;
177 
178 	if (!spool)
179 		return ret;
180 
181 	spin_lock_irq(&spool->lock);
182 
183 	if (spool->max_hpages != -1) {		/* maximum size accounting */
184 		if ((spool->used_hpages + delta) <= spool->max_hpages)
185 			spool->used_hpages += delta;
186 		else {
187 			ret = -ENOMEM;
188 			goto unlock_ret;
189 		}
190 	}
191 
192 	/* minimum size accounting */
193 	if (spool->min_hpages != -1 && spool->rsv_hpages) {
194 		if (delta > spool->rsv_hpages) {
195 			/*
196 			 * Asking for more reserves than those already taken on
197 			 * behalf of subpool.  Return difference.
198 			 */
199 			ret = delta - spool->rsv_hpages;
200 			spool->rsv_hpages = 0;
201 		} else {
202 			ret = 0;	/* reserves already accounted for */
203 			spool->rsv_hpages -= delta;
204 		}
205 	}
206 
207 unlock_ret:
208 	spin_unlock_irq(&spool->lock);
209 	return ret;
210 }
211 
212 /*
213  * Subpool accounting for freeing and unreserving pages.
214  * Return the number of global page reservations that must be dropped.
215  * The return value may only be different than the passed value (delta)
216  * in the case where a subpool minimum size must be maintained.
217  */
218 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
219 				       long delta)
220 {
221 	long ret = delta;
222 	unsigned long flags;
223 
224 	if (!spool)
225 		return delta;
226 
227 	spin_lock_irqsave(&spool->lock, flags);
228 
229 	if (spool->max_hpages != -1)		/* maximum size accounting */
230 		spool->used_hpages -= delta;
231 
232 	 /* minimum size accounting */
233 	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
234 		if (spool->rsv_hpages + delta <= spool->min_hpages)
235 			ret = 0;
236 		else
237 			ret = spool->rsv_hpages + delta - spool->min_hpages;
238 
239 		spool->rsv_hpages += delta;
240 		if (spool->rsv_hpages > spool->min_hpages)
241 			spool->rsv_hpages = spool->min_hpages;
242 	}
243 
244 	/*
245 	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
246 	 * quota reference, free it now.
247 	 */
248 	unlock_or_release_subpool(spool, flags);
249 
250 	return ret;
251 }
252 
253 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
254 {
255 	return HUGETLBFS_SB(inode->i_sb)->spool;
256 }
257 
258 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
259 {
260 	return subpool_inode(file_inode(vma->vm_file));
261 }
262 
263 /*
264  * hugetlb vma_lock helper routines
265  */
266 void hugetlb_vma_lock_read(struct vm_area_struct *vma)
267 {
268 	if (__vma_shareable_lock(vma)) {
269 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
270 
271 		down_read(&vma_lock->rw_sema);
272 	} else if (__vma_private_lock(vma)) {
273 		struct resv_map *resv_map = vma_resv_map(vma);
274 
275 		down_read(&resv_map->rw_sema);
276 	}
277 }
278 
279 void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
280 {
281 	if (__vma_shareable_lock(vma)) {
282 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
283 
284 		up_read(&vma_lock->rw_sema);
285 	} else if (__vma_private_lock(vma)) {
286 		struct resv_map *resv_map = vma_resv_map(vma);
287 
288 		up_read(&resv_map->rw_sema);
289 	}
290 }
291 
292 void hugetlb_vma_lock_write(struct vm_area_struct *vma)
293 {
294 	if (__vma_shareable_lock(vma)) {
295 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
296 
297 		down_write(&vma_lock->rw_sema);
298 	} else if (__vma_private_lock(vma)) {
299 		struct resv_map *resv_map = vma_resv_map(vma);
300 
301 		down_write(&resv_map->rw_sema);
302 	}
303 }
304 
305 void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
306 {
307 	if (__vma_shareable_lock(vma)) {
308 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
309 
310 		up_write(&vma_lock->rw_sema);
311 	} else if (__vma_private_lock(vma)) {
312 		struct resv_map *resv_map = vma_resv_map(vma);
313 
314 		up_write(&resv_map->rw_sema);
315 	}
316 }
317 
318 int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
319 {
320 
321 	if (__vma_shareable_lock(vma)) {
322 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
323 
324 		return down_write_trylock(&vma_lock->rw_sema);
325 	} else if (__vma_private_lock(vma)) {
326 		struct resv_map *resv_map = vma_resv_map(vma);
327 
328 		return down_write_trylock(&resv_map->rw_sema);
329 	}
330 
331 	return 1;
332 }
333 
334 void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
335 {
336 	if (__vma_shareable_lock(vma)) {
337 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
338 
339 		lockdep_assert_held(&vma_lock->rw_sema);
340 	} else if (__vma_private_lock(vma)) {
341 		struct resv_map *resv_map = vma_resv_map(vma);
342 
343 		lockdep_assert_held(&resv_map->rw_sema);
344 	}
345 }
346 
347 void hugetlb_vma_lock_release(struct kref *kref)
348 {
349 	struct hugetlb_vma_lock *vma_lock = container_of(kref,
350 			struct hugetlb_vma_lock, refs);
351 
352 	kfree(vma_lock);
353 }
354 
355 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
356 {
357 	struct vm_area_struct *vma = vma_lock->vma;
358 
359 	/*
360 	 * vma_lock structure may or not be released as a result of put,
361 	 * it certainly will no longer be attached to vma so clear pointer.
362 	 * Semaphore synchronizes access to vma_lock->vma field.
363 	 */
364 	vma_lock->vma = NULL;
365 	vma->vm_private_data = NULL;
366 	up_write(&vma_lock->rw_sema);
367 	kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
368 }
369 
370 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
371 {
372 	if (__vma_shareable_lock(vma)) {
373 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
374 
375 		__hugetlb_vma_unlock_write_put(vma_lock);
376 	} else if (__vma_private_lock(vma)) {
377 		struct resv_map *resv_map = vma_resv_map(vma);
378 
379 		/* no free for anon vmas, but still need to unlock */
380 		up_write(&resv_map->rw_sema);
381 	}
382 }
383 
384 static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
385 {
386 	/*
387 	 * Only present in sharable vmas.
388 	 */
389 	if (!vma || !__vma_shareable_lock(vma))
390 		return;
391 
392 	if (vma->vm_private_data) {
393 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
394 
395 		down_write(&vma_lock->rw_sema);
396 		__hugetlb_vma_unlock_write_put(vma_lock);
397 	}
398 }
399 
400 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
401 {
402 	struct hugetlb_vma_lock *vma_lock;
403 
404 	/* Only establish in (flags) sharable vmas */
405 	if (!vma || !(vma->vm_flags & VM_MAYSHARE))
406 		return;
407 
408 	/* Should never get here with non-NULL vm_private_data */
409 	if (vma->vm_private_data)
410 		return;
411 
412 	vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
413 	if (!vma_lock) {
414 		/*
415 		 * If we can not allocate structure, then vma can not
416 		 * participate in pmd sharing.  This is only a possible
417 		 * performance enhancement and memory saving issue.
418 		 * However, the lock is also used to synchronize page
419 		 * faults with truncation.  If the lock is not present,
420 		 * unlikely races could leave pages in a file past i_size
421 		 * until the file is removed.  Warn in the unlikely case of
422 		 * allocation failure.
423 		 */
424 		pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
425 		return;
426 	}
427 
428 	kref_init(&vma_lock->refs);
429 	init_rwsem(&vma_lock->rw_sema);
430 	vma_lock->vma = vma;
431 	vma->vm_private_data = vma_lock;
432 }
433 
434 /* Helper that removes a struct file_region from the resv_map cache and returns
435  * it for use.
436  */
437 static struct file_region *
438 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
439 {
440 	struct file_region *nrg;
441 
442 	VM_BUG_ON(resv->region_cache_count <= 0);
443 
444 	resv->region_cache_count--;
445 	nrg = list_first_entry(&resv->region_cache, struct file_region, link);
446 	list_del(&nrg->link);
447 
448 	nrg->from = from;
449 	nrg->to = to;
450 
451 	return nrg;
452 }
453 
454 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
455 					      struct file_region *rg)
456 {
457 #ifdef CONFIG_CGROUP_HUGETLB
458 	nrg->reservation_counter = rg->reservation_counter;
459 	nrg->css = rg->css;
460 	if (rg->css)
461 		css_get(rg->css);
462 #endif
463 }
464 
465 /* Helper that records hugetlb_cgroup uncharge info. */
466 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
467 						struct hstate *h,
468 						struct resv_map *resv,
469 						struct file_region *nrg)
470 {
471 #ifdef CONFIG_CGROUP_HUGETLB
472 	if (h_cg) {
473 		nrg->reservation_counter =
474 			&h_cg->rsvd_hugepage[hstate_index(h)];
475 		nrg->css = &h_cg->css;
476 		/*
477 		 * The caller will hold exactly one h_cg->css reference for the
478 		 * whole contiguous reservation region. But this area might be
479 		 * scattered when there are already some file_regions reside in
480 		 * it. As a result, many file_regions may share only one css
481 		 * reference. In order to ensure that one file_region must hold
482 		 * exactly one h_cg->css reference, we should do css_get for
483 		 * each file_region and leave the reference held by caller
484 		 * untouched.
485 		 */
486 		css_get(&h_cg->css);
487 		if (!resv->pages_per_hpage)
488 			resv->pages_per_hpage = pages_per_huge_page(h);
489 		/* pages_per_hpage should be the same for all entries in
490 		 * a resv_map.
491 		 */
492 		VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
493 	} else {
494 		nrg->reservation_counter = NULL;
495 		nrg->css = NULL;
496 	}
497 #endif
498 }
499 
500 static void put_uncharge_info(struct file_region *rg)
501 {
502 #ifdef CONFIG_CGROUP_HUGETLB
503 	if (rg->css)
504 		css_put(rg->css);
505 #endif
506 }
507 
508 static bool has_same_uncharge_info(struct file_region *rg,
509 				   struct file_region *org)
510 {
511 #ifdef CONFIG_CGROUP_HUGETLB
512 	return rg->reservation_counter == org->reservation_counter &&
513 	       rg->css == org->css;
514 
515 #else
516 	return true;
517 #endif
518 }
519 
520 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
521 {
522 	struct file_region *nrg, *prg;
523 
524 	prg = list_prev_entry(rg, link);
525 	if (&prg->link != &resv->regions && prg->to == rg->from &&
526 	    has_same_uncharge_info(prg, rg)) {
527 		prg->to = rg->to;
528 
529 		list_del(&rg->link);
530 		put_uncharge_info(rg);
531 		kfree(rg);
532 
533 		rg = prg;
534 	}
535 
536 	nrg = list_next_entry(rg, link);
537 	if (&nrg->link != &resv->regions && nrg->from == rg->to &&
538 	    has_same_uncharge_info(nrg, rg)) {
539 		nrg->from = rg->from;
540 
541 		list_del(&rg->link);
542 		put_uncharge_info(rg);
543 		kfree(rg);
544 	}
545 }
546 
547 static inline long
548 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
549 		     long to, struct hstate *h, struct hugetlb_cgroup *cg,
550 		     long *regions_needed)
551 {
552 	struct file_region *nrg;
553 
554 	if (!regions_needed) {
555 		nrg = get_file_region_entry_from_cache(map, from, to);
556 		record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
557 		list_add(&nrg->link, rg);
558 		coalesce_file_region(map, nrg);
559 	} else
560 		*regions_needed += 1;
561 
562 	return to - from;
563 }
564 
565 /*
566  * Must be called with resv->lock held.
567  *
568  * Calling this with regions_needed != NULL will count the number of pages
569  * to be added but will not modify the linked list. And regions_needed will
570  * indicate the number of file_regions needed in the cache to carry out to add
571  * the regions for this range.
572  */
573 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
574 				     struct hugetlb_cgroup *h_cg,
575 				     struct hstate *h, long *regions_needed)
576 {
577 	long add = 0;
578 	struct list_head *head = &resv->regions;
579 	long last_accounted_offset = f;
580 	struct file_region *iter, *trg = NULL;
581 	struct list_head *rg = NULL;
582 
583 	if (regions_needed)
584 		*regions_needed = 0;
585 
586 	/* In this loop, we essentially handle an entry for the range
587 	 * [last_accounted_offset, iter->from), at every iteration, with some
588 	 * bounds checking.
589 	 */
590 	list_for_each_entry_safe(iter, trg, head, link) {
591 		/* Skip irrelevant regions that start before our range. */
592 		if (iter->from < f) {
593 			/* If this region ends after the last accounted offset,
594 			 * then we need to update last_accounted_offset.
595 			 */
596 			if (iter->to > last_accounted_offset)
597 				last_accounted_offset = iter->to;
598 			continue;
599 		}
600 
601 		/* When we find a region that starts beyond our range, we've
602 		 * finished.
603 		 */
604 		if (iter->from >= t) {
605 			rg = iter->link.prev;
606 			break;
607 		}
608 
609 		/* Add an entry for last_accounted_offset -> iter->from, and
610 		 * update last_accounted_offset.
611 		 */
612 		if (iter->from > last_accounted_offset)
613 			add += hugetlb_resv_map_add(resv, iter->link.prev,
614 						    last_accounted_offset,
615 						    iter->from, h, h_cg,
616 						    regions_needed);
617 
618 		last_accounted_offset = iter->to;
619 	}
620 
621 	/* Handle the case where our range extends beyond
622 	 * last_accounted_offset.
623 	 */
624 	if (!rg)
625 		rg = head->prev;
626 	if (last_accounted_offset < t)
627 		add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
628 					    t, h, h_cg, regions_needed);
629 
630 	return add;
631 }
632 
633 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
634  */
635 static int allocate_file_region_entries(struct resv_map *resv,
636 					int regions_needed)
637 	__must_hold(&resv->lock)
638 {
639 	LIST_HEAD(allocated_regions);
640 	int to_allocate = 0, i = 0;
641 	struct file_region *trg = NULL, *rg = NULL;
642 
643 	VM_BUG_ON(regions_needed < 0);
644 
645 	/*
646 	 * Check for sufficient descriptors in the cache to accommodate
647 	 * the number of in progress add operations plus regions_needed.
648 	 *
649 	 * This is a while loop because when we drop the lock, some other call
650 	 * to region_add or region_del may have consumed some region_entries,
651 	 * so we keep looping here until we finally have enough entries for
652 	 * (adds_in_progress + regions_needed).
653 	 */
654 	while (resv->region_cache_count <
655 	       (resv->adds_in_progress + regions_needed)) {
656 		to_allocate = resv->adds_in_progress + regions_needed -
657 			      resv->region_cache_count;
658 
659 		/* At this point, we should have enough entries in the cache
660 		 * for all the existing adds_in_progress. We should only be
661 		 * needing to allocate for regions_needed.
662 		 */
663 		VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
664 
665 		spin_unlock(&resv->lock);
666 		for (i = 0; i < to_allocate; i++) {
667 			trg = kmalloc(sizeof(*trg), GFP_KERNEL);
668 			if (!trg)
669 				goto out_of_memory;
670 			list_add(&trg->link, &allocated_regions);
671 		}
672 
673 		spin_lock(&resv->lock);
674 
675 		list_splice(&allocated_regions, &resv->region_cache);
676 		resv->region_cache_count += to_allocate;
677 	}
678 
679 	return 0;
680 
681 out_of_memory:
682 	list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
683 		list_del(&rg->link);
684 		kfree(rg);
685 	}
686 	return -ENOMEM;
687 }
688 
689 /*
690  * Add the huge page range represented by [f, t) to the reserve
691  * map.  Regions will be taken from the cache to fill in this range.
692  * Sufficient regions should exist in the cache due to the previous
693  * call to region_chg with the same range, but in some cases the cache will not
694  * have sufficient entries due to races with other code doing region_add or
695  * region_del.  The extra needed entries will be allocated.
696  *
697  * regions_needed is the out value provided by a previous call to region_chg.
698  *
699  * Return the number of new huge pages added to the map.  This number is greater
700  * than or equal to zero.  If file_region entries needed to be allocated for
701  * this operation and we were not able to allocate, it returns -ENOMEM.
702  * region_add of regions of length 1 never allocate file_regions and cannot
703  * fail; region_chg will always allocate at least 1 entry and a region_add for
704  * 1 page will only require at most 1 entry.
705  */
706 static long region_add(struct resv_map *resv, long f, long t,
707 		       long in_regions_needed, struct hstate *h,
708 		       struct hugetlb_cgroup *h_cg)
709 {
710 	long add = 0, actual_regions_needed = 0;
711 
712 	spin_lock(&resv->lock);
713 retry:
714 
715 	/* Count how many regions are actually needed to execute this add. */
716 	add_reservation_in_range(resv, f, t, NULL, NULL,
717 				 &actual_regions_needed);
718 
719 	/*
720 	 * Check for sufficient descriptors in the cache to accommodate
721 	 * this add operation. Note that actual_regions_needed may be greater
722 	 * than in_regions_needed, as the resv_map may have been modified since
723 	 * the region_chg call. In this case, we need to make sure that we
724 	 * allocate extra entries, such that we have enough for all the
725 	 * existing adds_in_progress, plus the excess needed for this
726 	 * operation.
727 	 */
728 	if (actual_regions_needed > in_regions_needed &&
729 	    resv->region_cache_count <
730 		    resv->adds_in_progress +
731 			    (actual_regions_needed - in_regions_needed)) {
732 		/* region_add operation of range 1 should never need to
733 		 * allocate file_region entries.
734 		 */
735 		VM_BUG_ON(t - f <= 1);
736 
737 		if (allocate_file_region_entries(
738 			    resv, actual_regions_needed - in_regions_needed)) {
739 			return -ENOMEM;
740 		}
741 
742 		goto retry;
743 	}
744 
745 	add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
746 
747 	resv->adds_in_progress -= in_regions_needed;
748 
749 	spin_unlock(&resv->lock);
750 	return add;
751 }
752 
753 /*
754  * Examine the existing reserve map and determine how many
755  * huge pages in the specified range [f, t) are NOT currently
756  * represented.  This routine is called before a subsequent
757  * call to region_add that will actually modify the reserve
758  * map to add the specified range [f, t).  region_chg does
759  * not change the number of huge pages represented by the
760  * map.  A number of new file_region structures is added to the cache as a
761  * placeholder, for the subsequent region_add call to use. At least 1
762  * file_region structure is added.
763  *
764  * out_regions_needed is the number of regions added to the
765  * resv->adds_in_progress.  This value needs to be provided to a follow up call
766  * to region_add or region_abort for proper accounting.
767  *
768  * Returns the number of huge pages that need to be added to the existing
769  * reservation map for the range [f, t).  This number is greater or equal to
770  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
771  * is needed and can not be allocated.
772  */
773 static long region_chg(struct resv_map *resv, long f, long t,
774 		       long *out_regions_needed)
775 {
776 	long chg = 0;
777 
778 	spin_lock(&resv->lock);
779 
780 	/* Count how many hugepages in this range are NOT represented. */
781 	chg = add_reservation_in_range(resv, f, t, NULL, NULL,
782 				       out_regions_needed);
783 
784 	if (*out_regions_needed == 0)
785 		*out_regions_needed = 1;
786 
787 	if (allocate_file_region_entries(resv, *out_regions_needed))
788 		return -ENOMEM;
789 
790 	resv->adds_in_progress += *out_regions_needed;
791 
792 	spin_unlock(&resv->lock);
793 	return chg;
794 }
795 
796 /*
797  * Abort the in progress add operation.  The adds_in_progress field
798  * of the resv_map keeps track of the operations in progress between
799  * calls to region_chg and region_add.  Operations are sometimes
800  * aborted after the call to region_chg.  In such cases, region_abort
801  * is called to decrement the adds_in_progress counter. regions_needed
802  * is the value returned by the region_chg call, it is used to decrement
803  * the adds_in_progress counter.
804  *
805  * NOTE: The range arguments [f, t) are not needed or used in this
806  * routine.  They are kept to make reading the calling code easier as
807  * arguments will match the associated region_chg call.
808  */
809 static void region_abort(struct resv_map *resv, long f, long t,
810 			 long regions_needed)
811 {
812 	spin_lock(&resv->lock);
813 	VM_BUG_ON(!resv->region_cache_count);
814 	resv->adds_in_progress -= regions_needed;
815 	spin_unlock(&resv->lock);
816 }
817 
818 /*
819  * Delete the specified range [f, t) from the reserve map.  If the
820  * t parameter is LONG_MAX, this indicates that ALL regions after f
821  * should be deleted.  Locate the regions which intersect [f, t)
822  * and either trim, delete or split the existing regions.
823  *
824  * Returns the number of huge pages deleted from the reserve map.
825  * In the normal case, the return value is zero or more.  In the
826  * case where a region must be split, a new region descriptor must
827  * be allocated.  If the allocation fails, -ENOMEM will be returned.
828  * NOTE: If the parameter t == LONG_MAX, then we will never split
829  * a region and possibly return -ENOMEM.  Callers specifying
830  * t == LONG_MAX do not need to check for -ENOMEM error.
831  */
832 static long region_del(struct resv_map *resv, long f, long t)
833 {
834 	struct list_head *head = &resv->regions;
835 	struct file_region *rg, *trg;
836 	struct file_region *nrg = NULL;
837 	long del = 0;
838 
839 retry:
840 	spin_lock(&resv->lock);
841 	list_for_each_entry_safe(rg, trg, head, link) {
842 		/*
843 		 * Skip regions before the range to be deleted.  file_region
844 		 * ranges are normally of the form [from, to).  However, there
845 		 * may be a "placeholder" entry in the map which is of the form
846 		 * (from, to) with from == to.  Check for placeholder entries
847 		 * at the beginning of the range to be deleted.
848 		 */
849 		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
850 			continue;
851 
852 		if (rg->from >= t)
853 			break;
854 
855 		if (f > rg->from && t < rg->to) { /* Must split region */
856 			/*
857 			 * Check for an entry in the cache before dropping
858 			 * lock and attempting allocation.
859 			 */
860 			if (!nrg &&
861 			    resv->region_cache_count > resv->adds_in_progress) {
862 				nrg = list_first_entry(&resv->region_cache,
863 							struct file_region,
864 							link);
865 				list_del(&nrg->link);
866 				resv->region_cache_count--;
867 			}
868 
869 			if (!nrg) {
870 				spin_unlock(&resv->lock);
871 				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
872 				if (!nrg)
873 					return -ENOMEM;
874 				goto retry;
875 			}
876 
877 			del += t - f;
878 			hugetlb_cgroup_uncharge_file_region(
879 				resv, rg, t - f, false);
880 
881 			/* New entry for end of split region */
882 			nrg->from = t;
883 			nrg->to = rg->to;
884 
885 			copy_hugetlb_cgroup_uncharge_info(nrg, rg);
886 
887 			INIT_LIST_HEAD(&nrg->link);
888 
889 			/* Original entry is trimmed */
890 			rg->to = f;
891 
892 			list_add(&nrg->link, &rg->link);
893 			nrg = NULL;
894 			break;
895 		}
896 
897 		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
898 			del += rg->to - rg->from;
899 			hugetlb_cgroup_uncharge_file_region(resv, rg,
900 							    rg->to - rg->from, true);
901 			list_del(&rg->link);
902 			kfree(rg);
903 			continue;
904 		}
905 
906 		if (f <= rg->from) {	/* Trim beginning of region */
907 			hugetlb_cgroup_uncharge_file_region(resv, rg,
908 							    t - rg->from, false);
909 
910 			del += t - rg->from;
911 			rg->from = t;
912 		} else {		/* Trim end of region */
913 			hugetlb_cgroup_uncharge_file_region(resv, rg,
914 							    rg->to - f, false);
915 
916 			del += rg->to - f;
917 			rg->to = f;
918 		}
919 	}
920 
921 	spin_unlock(&resv->lock);
922 	kfree(nrg);
923 	return del;
924 }
925 
926 /*
927  * A rare out of memory error was encountered which prevented removal of
928  * the reserve map region for a page.  The huge page itself was free'ed
929  * and removed from the page cache.  This routine will adjust the subpool
930  * usage count, and the global reserve count if needed.  By incrementing
931  * these counts, the reserve map entry which could not be deleted will
932  * appear as a "reserved" entry instead of simply dangling with incorrect
933  * counts.
934  */
935 void hugetlb_fix_reserve_counts(struct inode *inode)
936 {
937 	struct hugepage_subpool *spool = subpool_inode(inode);
938 	long rsv_adjust;
939 	bool reserved = false;
940 
941 	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
942 	if (rsv_adjust > 0) {
943 		struct hstate *h = hstate_inode(inode);
944 
945 		if (!hugetlb_acct_memory(h, 1))
946 			reserved = true;
947 	} else if (!rsv_adjust) {
948 		reserved = true;
949 	}
950 
951 	if (!reserved)
952 		pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
953 }
954 
955 /*
956  * Count and return the number of huge pages in the reserve map
957  * that intersect with the range [f, t).
958  */
959 static long region_count(struct resv_map *resv, long f, long t)
960 {
961 	struct list_head *head = &resv->regions;
962 	struct file_region *rg;
963 	long chg = 0;
964 
965 	spin_lock(&resv->lock);
966 	/* Locate each segment we overlap with, and count that overlap. */
967 	list_for_each_entry(rg, head, link) {
968 		long seg_from;
969 		long seg_to;
970 
971 		if (rg->to <= f)
972 			continue;
973 		if (rg->from >= t)
974 			break;
975 
976 		seg_from = max(rg->from, f);
977 		seg_to = min(rg->to, t);
978 
979 		chg += seg_to - seg_from;
980 	}
981 	spin_unlock(&resv->lock);
982 
983 	return chg;
984 }
985 
986 /*
987  * Convert the address within this vma to the page offset within
988  * the mapping, huge page units here.
989  */
990 static pgoff_t vma_hugecache_offset(struct hstate *h,
991 			struct vm_area_struct *vma, unsigned long address)
992 {
993 	return ((address - vma->vm_start) >> huge_page_shift(h)) +
994 			(vma->vm_pgoff >> huge_page_order(h));
995 }
996 
997 /**
998  * vma_kernel_pagesize - Page size granularity for this VMA.
999  * @vma: The user mapping.
1000  *
1001  * Folios in this VMA will be aligned to, and at least the size of the
1002  * number of bytes returned by this function.
1003  *
1004  * Return: The default size of the folios allocated when backing a VMA.
1005  */
1006 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
1007 {
1008 	if (vma->vm_ops && vma->vm_ops->pagesize)
1009 		return vma->vm_ops->pagesize(vma);
1010 	return PAGE_SIZE;
1011 }
1012 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
1013 
1014 /*
1015  * Return the page size being used by the MMU to back a VMA. In the majority
1016  * of cases, the page size used by the kernel matches the MMU size. On
1017  * architectures where it differs, an architecture-specific 'strong'
1018  * version of this symbol is required.
1019  */
1020 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
1021 {
1022 	return vma_kernel_pagesize(vma);
1023 }
1024 
1025 /*
1026  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
1027  * bits of the reservation map pointer, which are always clear due to
1028  * alignment.
1029  */
1030 #define HPAGE_RESV_OWNER    (1UL << 0)
1031 #define HPAGE_RESV_UNMAPPED (1UL << 1)
1032 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
1033 
1034 /*
1035  * These helpers are used to track how many pages are reserved for
1036  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
1037  * is guaranteed to have their future faults succeed.
1038  *
1039  * With the exception of hugetlb_dup_vma_private() which is called at fork(),
1040  * the reserve counters are updated with the hugetlb_lock held. It is safe
1041  * to reset the VMA at fork() time as it is not in use yet and there is no
1042  * chance of the global counters getting corrupted as a result of the values.
1043  *
1044  * The private mapping reservation is represented in a subtly different
1045  * manner to a shared mapping.  A shared mapping has a region map associated
1046  * with the underlying file, this region map represents the backing file
1047  * pages which have ever had a reservation assigned which this persists even
1048  * after the page is instantiated.  A private mapping has a region map
1049  * associated with the original mmap which is attached to all VMAs which
1050  * reference it, this region map represents those offsets which have consumed
1051  * reservation ie. where pages have been instantiated.
1052  */
1053 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
1054 {
1055 	return (unsigned long)vma->vm_private_data;
1056 }
1057 
1058 static void set_vma_private_data(struct vm_area_struct *vma,
1059 							unsigned long value)
1060 {
1061 	vma->vm_private_data = (void *)value;
1062 }
1063 
1064 static void
1065 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
1066 					  struct hugetlb_cgroup *h_cg,
1067 					  struct hstate *h)
1068 {
1069 #ifdef CONFIG_CGROUP_HUGETLB
1070 	if (!h_cg || !h) {
1071 		resv_map->reservation_counter = NULL;
1072 		resv_map->pages_per_hpage = 0;
1073 		resv_map->css = NULL;
1074 	} else {
1075 		resv_map->reservation_counter =
1076 			&h_cg->rsvd_hugepage[hstate_index(h)];
1077 		resv_map->pages_per_hpage = pages_per_huge_page(h);
1078 		resv_map->css = &h_cg->css;
1079 	}
1080 #endif
1081 }
1082 
1083 struct resv_map *resv_map_alloc(void)
1084 {
1085 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
1086 	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
1087 
1088 	if (!resv_map || !rg) {
1089 		kfree(resv_map);
1090 		kfree(rg);
1091 		return NULL;
1092 	}
1093 
1094 	kref_init(&resv_map->refs);
1095 	spin_lock_init(&resv_map->lock);
1096 	INIT_LIST_HEAD(&resv_map->regions);
1097 	init_rwsem(&resv_map->rw_sema);
1098 
1099 	resv_map->adds_in_progress = 0;
1100 	/*
1101 	 * Initialize these to 0. On shared mappings, 0's here indicate these
1102 	 * fields don't do cgroup accounting. On private mappings, these will be
1103 	 * re-initialized to the proper values, to indicate that hugetlb cgroup
1104 	 * reservations are to be un-charged from here.
1105 	 */
1106 	resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
1107 
1108 	INIT_LIST_HEAD(&resv_map->region_cache);
1109 	list_add(&rg->link, &resv_map->region_cache);
1110 	resv_map->region_cache_count = 1;
1111 
1112 	return resv_map;
1113 }
1114 
1115 void resv_map_release(struct kref *ref)
1116 {
1117 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
1118 	struct list_head *head = &resv_map->region_cache;
1119 	struct file_region *rg, *trg;
1120 
1121 	/* Clear out any active regions before we release the map. */
1122 	region_del(resv_map, 0, LONG_MAX);
1123 
1124 	/* ... and any entries left in the cache */
1125 	list_for_each_entry_safe(rg, trg, head, link) {
1126 		list_del(&rg->link);
1127 		kfree(rg);
1128 	}
1129 
1130 	VM_BUG_ON(resv_map->adds_in_progress);
1131 
1132 	kfree(resv_map);
1133 }
1134 
1135 static inline struct resv_map *inode_resv_map(struct inode *inode)
1136 {
1137 	/*
1138 	 * At inode evict time, i_mapping may not point to the original
1139 	 * address space within the inode.  This original address space
1140 	 * contains the pointer to the resv_map.  So, always use the
1141 	 * address space embedded within the inode.
1142 	 * The VERY common case is inode->mapping == &inode->i_data but,
1143 	 * this may not be true for device special inodes.
1144 	 */
1145 	return (struct resv_map *)(&inode->i_data)->i_private_data;
1146 }
1147 
1148 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
1149 {
1150 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1151 	if (vma->vm_flags & VM_MAYSHARE) {
1152 		struct address_space *mapping = vma->vm_file->f_mapping;
1153 		struct inode *inode = mapping->host;
1154 
1155 		return inode_resv_map(inode);
1156 
1157 	} else {
1158 		return (struct resv_map *)(get_vma_private_data(vma) &
1159 							~HPAGE_RESV_MASK);
1160 	}
1161 }
1162 
1163 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
1164 {
1165 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1166 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1167 
1168 	set_vma_private_data(vma, (unsigned long)map);
1169 }
1170 
1171 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
1172 {
1173 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1174 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1175 
1176 	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1177 }
1178 
1179 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1180 {
1181 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1182 
1183 	return (get_vma_private_data(vma) & flag) != 0;
1184 }
1185 
1186 bool __vma_private_lock(struct vm_area_struct *vma)
1187 {
1188 	return !(vma->vm_flags & VM_MAYSHARE) &&
1189 		get_vma_private_data(vma) & ~HPAGE_RESV_MASK &&
1190 		is_vma_resv_set(vma, HPAGE_RESV_OWNER);
1191 }
1192 
1193 void hugetlb_dup_vma_private(struct vm_area_struct *vma)
1194 {
1195 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1196 	/*
1197 	 * Clear vm_private_data
1198 	 * - For shared mappings this is a per-vma semaphore that may be
1199 	 *   allocated in a subsequent call to hugetlb_vm_op_open.
1200 	 *   Before clearing, make sure pointer is not associated with vma
1201 	 *   as this will leak the structure.  This is the case when called
1202 	 *   via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already
1203 	 *   been called to allocate a new structure.
1204 	 * - For MAP_PRIVATE mappings, this is the reserve map which does
1205 	 *   not apply to children.  Faults generated by the children are
1206 	 *   not guaranteed to succeed, even if read-only.
1207 	 */
1208 	if (vma->vm_flags & VM_MAYSHARE) {
1209 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1210 
1211 		if (vma_lock && vma_lock->vma != vma)
1212 			vma->vm_private_data = NULL;
1213 	} else
1214 		vma->vm_private_data = NULL;
1215 }
1216 
1217 /*
1218  * Reset and decrement one ref on hugepage private reservation.
1219  * Called with mm->mmap_lock writer semaphore held.
1220  * This function should be only used by move_vma() and operate on
1221  * same sized vma. It should never come here with last ref on the
1222  * reservation.
1223  */
1224 void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1225 {
1226 	/*
1227 	 * Clear the old hugetlb private page reservation.
1228 	 * It has already been transferred to new_vma.
1229 	 *
1230 	 * During a mremap() operation of a hugetlb vma we call move_vma()
1231 	 * which copies vma into new_vma and unmaps vma. After the copy
1232 	 * operation both new_vma and vma share a reference to the resv_map
1233 	 * struct, and at that point vma is about to be unmapped. We don't
1234 	 * want to return the reservation to the pool at unmap of vma because
1235 	 * the reservation still lives on in new_vma, so simply decrement the
1236 	 * ref here and remove the resv_map reference from this vma.
1237 	 */
1238 	struct resv_map *reservations = vma_resv_map(vma);
1239 
1240 	if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1241 		resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1242 		kref_put(&reservations->refs, resv_map_release);
1243 	}
1244 
1245 	hugetlb_dup_vma_private(vma);
1246 }
1247 
1248 /* Returns true if the VMA has associated reserve pages */
1249 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1250 {
1251 	if (vma->vm_flags & VM_NORESERVE) {
1252 		/*
1253 		 * This address is already reserved by other process(chg == 0),
1254 		 * so, we should decrement reserved count. Without decrementing,
1255 		 * reserve count remains after releasing inode, because this
1256 		 * allocated page will go into page cache and is regarded as
1257 		 * coming from reserved pool in releasing step.  Currently, we
1258 		 * don't have any other solution to deal with this situation
1259 		 * properly, so add work-around here.
1260 		 */
1261 		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1262 			return true;
1263 		else
1264 			return false;
1265 	}
1266 
1267 	/* Shared mappings always use reserves */
1268 	if (vma->vm_flags & VM_MAYSHARE) {
1269 		/*
1270 		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1271 		 * be a region map for all pages.  The only situation where
1272 		 * there is no region map is if a hole was punched via
1273 		 * fallocate.  In this case, there really are no reserves to
1274 		 * use.  This situation is indicated if chg != 0.
1275 		 */
1276 		if (chg)
1277 			return false;
1278 		else
1279 			return true;
1280 	}
1281 
1282 	/*
1283 	 * Only the process that called mmap() has reserves for
1284 	 * private mappings.
1285 	 */
1286 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1287 		/*
1288 		 * Like the shared case above, a hole punch or truncate
1289 		 * could have been performed on the private mapping.
1290 		 * Examine the value of chg to determine if reserves
1291 		 * actually exist or were previously consumed.
1292 		 * Very Subtle - The value of chg comes from a previous
1293 		 * call to vma_needs_reserves().  The reserve map for
1294 		 * private mappings has different (opposite) semantics
1295 		 * than that of shared mappings.  vma_needs_reserves()
1296 		 * has already taken this difference in semantics into
1297 		 * account.  Therefore, the meaning of chg is the same
1298 		 * as in the shared case above.  Code could easily be
1299 		 * combined, but keeping it separate draws attention to
1300 		 * subtle differences.
1301 		 */
1302 		if (chg)
1303 			return false;
1304 		else
1305 			return true;
1306 	}
1307 
1308 	return false;
1309 }
1310 
1311 static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio)
1312 {
1313 	int nid = folio_nid(folio);
1314 
1315 	lockdep_assert_held(&hugetlb_lock);
1316 	VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1317 
1318 	list_move(&folio->lru, &h->hugepage_freelists[nid]);
1319 	h->free_huge_pages++;
1320 	h->free_huge_pages_node[nid]++;
1321 	folio_set_hugetlb_freed(folio);
1322 }
1323 
1324 static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h,
1325 								int nid)
1326 {
1327 	struct folio *folio;
1328 	bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1329 
1330 	lockdep_assert_held(&hugetlb_lock);
1331 	list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) {
1332 		if (pin && !folio_is_longterm_pinnable(folio))
1333 			continue;
1334 
1335 		if (folio_test_hwpoison(folio))
1336 			continue;
1337 
1338 		list_move(&folio->lru, &h->hugepage_activelist);
1339 		folio_ref_unfreeze(folio, 1);
1340 		folio_clear_hugetlb_freed(folio);
1341 		h->free_huge_pages--;
1342 		h->free_huge_pages_node[nid]--;
1343 		return folio;
1344 	}
1345 
1346 	return NULL;
1347 }
1348 
1349 static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask,
1350 							int nid, nodemask_t *nmask)
1351 {
1352 	unsigned int cpuset_mems_cookie;
1353 	struct zonelist *zonelist;
1354 	struct zone *zone;
1355 	struct zoneref *z;
1356 	int node = NUMA_NO_NODE;
1357 
1358 	zonelist = node_zonelist(nid, gfp_mask);
1359 
1360 retry_cpuset:
1361 	cpuset_mems_cookie = read_mems_allowed_begin();
1362 	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1363 		struct folio *folio;
1364 
1365 		if (!cpuset_zone_allowed(zone, gfp_mask))
1366 			continue;
1367 		/*
1368 		 * no need to ask again on the same node. Pool is node rather than
1369 		 * zone aware
1370 		 */
1371 		if (zone_to_nid(zone) == node)
1372 			continue;
1373 		node = zone_to_nid(zone);
1374 
1375 		folio = dequeue_hugetlb_folio_node_exact(h, node);
1376 		if (folio)
1377 			return folio;
1378 	}
1379 	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1380 		goto retry_cpuset;
1381 
1382 	return NULL;
1383 }
1384 
1385 static unsigned long available_huge_pages(struct hstate *h)
1386 {
1387 	return h->free_huge_pages - h->resv_huge_pages;
1388 }
1389 
1390 static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h,
1391 				struct vm_area_struct *vma,
1392 				unsigned long address, int avoid_reserve,
1393 				long chg)
1394 {
1395 	struct folio *folio = NULL;
1396 	struct mempolicy *mpol;
1397 	gfp_t gfp_mask;
1398 	nodemask_t *nodemask;
1399 	int nid;
1400 
1401 	/*
1402 	 * A child process with MAP_PRIVATE mappings created by their parent
1403 	 * have no page reserves. This check ensures that reservations are
1404 	 * not "stolen". The child may still get SIGKILLed
1405 	 */
1406 	if (!vma_has_reserves(vma, chg) && !available_huge_pages(h))
1407 		goto err;
1408 
1409 	/* If reserves cannot be used, ensure enough pages are in the pool */
1410 	if (avoid_reserve && !available_huge_pages(h))
1411 		goto err;
1412 
1413 	gfp_mask = htlb_alloc_mask(h);
1414 	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1415 
1416 	if (mpol_is_preferred_many(mpol)) {
1417 		folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1418 							nid, nodemask);
1419 
1420 		/* Fallback to all nodes if page==NULL */
1421 		nodemask = NULL;
1422 	}
1423 
1424 	if (!folio)
1425 		folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1426 							nid, nodemask);
1427 
1428 	if (folio && !avoid_reserve && vma_has_reserves(vma, chg)) {
1429 		folio_set_hugetlb_restore_reserve(folio);
1430 		h->resv_huge_pages--;
1431 	}
1432 
1433 	mpol_cond_put(mpol);
1434 	return folio;
1435 
1436 err:
1437 	return NULL;
1438 }
1439 
1440 /*
1441  * common helper functions for hstate_next_node_to_{alloc|free}.
1442  * We may have allocated or freed a huge page based on a different
1443  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1444  * be outside of *nodes_allowed.  Ensure that we use an allowed
1445  * node for alloc or free.
1446  */
1447 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1448 {
1449 	nid = next_node_in(nid, *nodes_allowed);
1450 	VM_BUG_ON(nid >= MAX_NUMNODES);
1451 
1452 	return nid;
1453 }
1454 
1455 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1456 {
1457 	if (!node_isset(nid, *nodes_allowed))
1458 		nid = next_node_allowed(nid, nodes_allowed);
1459 	return nid;
1460 }
1461 
1462 /*
1463  * returns the previously saved node ["this node"] from which to
1464  * allocate a persistent huge page for the pool and advance the
1465  * next node from which to allocate, handling wrap at end of node
1466  * mask.
1467  */
1468 static int hstate_next_node_to_alloc(int *next_node,
1469 					nodemask_t *nodes_allowed)
1470 {
1471 	int nid;
1472 
1473 	VM_BUG_ON(!nodes_allowed);
1474 
1475 	nid = get_valid_node_allowed(*next_node, nodes_allowed);
1476 	*next_node = next_node_allowed(nid, nodes_allowed);
1477 
1478 	return nid;
1479 }
1480 
1481 /*
1482  * helper for remove_pool_hugetlb_folio() - return the previously saved
1483  * node ["this node"] from which to free a huge page.  Advance the
1484  * next node id whether or not we find a free huge page to free so
1485  * that the next attempt to free addresses the next node.
1486  */
1487 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1488 {
1489 	int nid;
1490 
1491 	VM_BUG_ON(!nodes_allowed);
1492 
1493 	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1494 	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1495 
1496 	return nid;
1497 }
1498 
1499 #define for_each_node_mask_to_alloc(next_node, nr_nodes, node, mask)		\
1500 	for (nr_nodes = nodes_weight(*mask);				\
1501 		nr_nodes > 0 &&						\
1502 		((node = hstate_next_node_to_alloc(next_node, mask)) || 1);	\
1503 		nr_nodes--)
1504 
1505 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
1506 	for (nr_nodes = nodes_weight(*mask);				\
1507 		nr_nodes > 0 &&						\
1508 		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
1509 		nr_nodes--)
1510 
1511 /* used to demote non-gigantic_huge pages as well */
1512 static void __destroy_compound_gigantic_folio(struct folio *folio,
1513 					unsigned int order, bool demote)
1514 {
1515 	int i;
1516 	int nr_pages = 1 << order;
1517 	struct page *p;
1518 
1519 	atomic_set(&folio->_entire_mapcount, 0);
1520 	atomic_set(&folio->_nr_pages_mapped, 0);
1521 	atomic_set(&folio->_pincount, 0);
1522 
1523 	for (i = 1; i < nr_pages; i++) {
1524 		p = folio_page(folio, i);
1525 		p->flags &= ~PAGE_FLAGS_CHECK_AT_FREE;
1526 		p->mapping = NULL;
1527 		clear_compound_head(p);
1528 		if (!demote)
1529 			set_page_refcounted(p);
1530 	}
1531 
1532 	__folio_clear_head(folio);
1533 }
1534 
1535 static void destroy_compound_hugetlb_folio_for_demote(struct folio *folio,
1536 					unsigned int order)
1537 {
1538 	__destroy_compound_gigantic_folio(folio, order, true);
1539 }
1540 
1541 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1542 static void destroy_compound_gigantic_folio(struct folio *folio,
1543 					unsigned int order)
1544 {
1545 	__destroy_compound_gigantic_folio(folio, order, false);
1546 }
1547 
1548 static void free_gigantic_folio(struct folio *folio, unsigned int order)
1549 {
1550 	/*
1551 	 * If the page isn't allocated using the cma allocator,
1552 	 * cma_release() returns false.
1553 	 */
1554 #ifdef CONFIG_CMA
1555 	int nid = folio_nid(folio);
1556 
1557 	if (cma_release(hugetlb_cma[nid], &folio->page, 1 << order))
1558 		return;
1559 #endif
1560 
1561 	free_contig_range(folio_pfn(folio), 1 << order);
1562 }
1563 
1564 #ifdef CONFIG_CONTIG_ALLOC
1565 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1566 		int nid, nodemask_t *nodemask)
1567 {
1568 	struct page *page;
1569 	unsigned long nr_pages = pages_per_huge_page(h);
1570 	if (nid == NUMA_NO_NODE)
1571 		nid = numa_mem_id();
1572 
1573 #ifdef CONFIG_CMA
1574 	{
1575 		int node;
1576 
1577 		if (hugetlb_cma[nid]) {
1578 			page = cma_alloc(hugetlb_cma[nid], nr_pages,
1579 					huge_page_order(h), true);
1580 			if (page)
1581 				return page_folio(page);
1582 		}
1583 
1584 		if (!(gfp_mask & __GFP_THISNODE)) {
1585 			for_each_node_mask(node, *nodemask) {
1586 				if (node == nid || !hugetlb_cma[node])
1587 					continue;
1588 
1589 				page = cma_alloc(hugetlb_cma[node], nr_pages,
1590 						huge_page_order(h), true);
1591 				if (page)
1592 					return page_folio(page);
1593 			}
1594 		}
1595 	}
1596 #endif
1597 
1598 	page = alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1599 	return page ? page_folio(page) : NULL;
1600 }
1601 
1602 #else /* !CONFIG_CONTIG_ALLOC */
1603 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1604 					int nid, nodemask_t *nodemask)
1605 {
1606 	return NULL;
1607 }
1608 #endif /* CONFIG_CONTIG_ALLOC */
1609 
1610 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1611 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1612 					int nid, nodemask_t *nodemask)
1613 {
1614 	return NULL;
1615 }
1616 static inline void free_gigantic_folio(struct folio *folio,
1617 						unsigned int order) { }
1618 static inline void destroy_compound_gigantic_folio(struct folio *folio,
1619 						unsigned int order) { }
1620 #endif
1621 
1622 static inline void __clear_hugetlb_destructor(struct hstate *h,
1623 						struct folio *folio)
1624 {
1625 	lockdep_assert_held(&hugetlb_lock);
1626 
1627 	folio_clear_hugetlb(folio);
1628 }
1629 
1630 /*
1631  * Remove hugetlb folio from lists.
1632  * If vmemmap exists for the folio, update dtor so that the folio appears
1633  * as just a compound page.  Otherwise, wait until after allocating vmemmap
1634  * to update dtor.
1635  *
1636  * A reference is held on the folio, except in the case of demote.
1637  *
1638  * Must be called with hugetlb lock held.
1639  */
1640 static void __remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1641 							bool adjust_surplus,
1642 							bool demote)
1643 {
1644 	int nid = folio_nid(folio);
1645 
1646 	VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio);
1647 	VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio);
1648 
1649 	lockdep_assert_held(&hugetlb_lock);
1650 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1651 		return;
1652 
1653 	list_del(&folio->lru);
1654 
1655 	if (folio_test_hugetlb_freed(folio)) {
1656 		h->free_huge_pages--;
1657 		h->free_huge_pages_node[nid]--;
1658 	}
1659 	if (adjust_surplus) {
1660 		h->surplus_huge_pages--;
1661 		h->surplus_huge_pages_node[nid]--;
1662 	}
1663 
1664 	/*
1665 	 * We can only clear the hugetlb destructor after allocating vmemmap
1666 	 * pages.  Otherwise, someone (memory error handling) may try to write
1667 	 * to tail struct pages.
1668 	 */
1669 	if (!folio_test_hugetlb_vmemmap_optimized(folio))
1670 		__clear_hugetlb_destructor(h, folio);
1671 
1672 	 /*
1673 	  * In the case of demote we do not ref count the page as it will soon
1674 	  * be turned into a page of smaller size.
1675 	 */
1676 	if (!demote)
1677 		folio_ref_unfreeze(folio, 1);
1678 
1679 	h->nr_huge_pages--;
1680 	h->nr_huge_pages_node[nid]--;
1681 }
1682 
1683 static void remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1684 							bool adjust_surplus)
1685 {
1686 	__remove_hugetlb_folio(h, folio, adjust_surplus, false);
1687 }
1688 
1689 static void remove_hugetlb_folio_for_demote(struct hstate *h, struct folio *folio,
1690 							bool adjust_surplus)
1691 {
1692 	__remove_hugetlb_folio(h, folio, adjust_surplus, true);
1693 }
1694 
1695 static void add_hugetlb_folio(struct hstate *h, struct folio *folio,
1696 			     bool adjust_surplus)
1697 {
1698 	int zeroed;
1699 	int nid = folio_nid(folio);
1700 
1701 	VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio);
1702 
1703 	lockdep_assert_held(&hugetlb_lock);
1704 
1705 	INIT_LIST_HEAD(&folio->lru);
1706 	h->nr_huge_pages++;
1707 	h->nr_huge_pages_node[nid]++;
1708 
1709 	if (adjust_surplus) {
1710 		h->surplus_huge_pages++;
1711 		h->surplus_huge_pages_node[nid]++;
1712 	}
1713 
1714 	folio_set_hugetlb(folio);
1715 	folio_change_private(folio, NULL);
1716 	/*
1717 	 * We have to set hugetlb_vmemmap_optimized again as above
1718 	 * folio_change_private(folio, NULL) cleared it.
1719 	 */
1720 	folio_set_hugetlb_vmemmap_optimized(folio);
1721 
1722 	/*
1723 	 * This folio is about to be managed by the hugetlb allocator and
1724 	 * should have no users.  Drop our reference, and check for others
1725 	 * just in case.
1726 	 */
1727 	zeroed = folio_put_testzero(folio);
1728 	if (unlikely(!zeroed))
1729 		/*
1730 		 * It is VERY unlikely soneone else has taken a ref
1731 		 * on the folio.  In this case, we simply return as
1732 		 * free_huge_folio() will be called when this other ref
1733 		 * is dropped.
1734 		 */
1735 		return;
1736 
1737 	arch_clear_hugepage_flags(&folio->page);
1738 	enqueue_hugetlb_folio(h, folio);
1739 }
1740 
1741 static void __update_and_free_hugetlb_folio(struct hstate *h,
1742 						struct folio *folio)
1743 {
1744 	bool clear_dtor = folio_test_hugetlb_vmemmap_optimized(folio);
1745 
1746 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1747 		return;
1748 
1749 	/*
1750 	 * If we don't know which subpages are hwpoisoned, we can't free
1751 	 * the hugepage, so it's leaked intentionally.
1752 	 */
1753 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1754 		return;
1755 
1756 	/*
1757 	 * If folio is not vmemmap optimized (!clear_dtor), then the folio
1758 	 * is no longer identified as a hugetlb page.  hugetlb_vmemmap_restore_folio
1759 	 * can only be passed hugetlb pages and will BUG otherwise.
1760 	 */
1761 	if (clear_dtor && hugetlb_vmemmap_restore_folio(h, folio)) {
1762 		spin_lock_irq(&hugetlb_lock);
1763 		/*
1764 		 * If we cannot allocate vmemmap pages, just refuse to free the
1765 		 * page and put the page back on the hugetlb free list and treat
1766 		 * as a surplus page.
1767 		 */
1768 		add_hugetlb_folio(h, folio, true);
1769 		spin_unlock_irq(&hugetlb_lock);
1770 		return;
1771 	}
1772 
1773 	/*
1774 	 * Move PageHWPoison flag from head page to the raw error pages,
1775 	 * which makes any healthy subpages reusable.
1776 	 */
1777 	if (unlikely(folio_test_hwpoison(folio)))
1778 		folio_clear_hugetlb_hwpoison(folio);
1779 
1780 	/*
1781 	 * If vmemmap pages were allocated above, then we need to clear the
1782 	 * hugetlb destructor under the hugetlb lock.
1783 	 */
1784 	if (clear_dtor) {
1785 		spin_lock_irq(&hugetlb_lock);
1786 		__clear_hugetlb_destructor(h, folio);
1787 		spin_unlock_irq(&hugetlb_lock);
1788 	}
1789 
1790 	/*
1791 	 * Non-gigantic pages demoted from CMA allocated gigantic pages
1792 	 * need to be given back to CMA in free_gigantic_folio.
1793 	 */
1794 	if (hstate_is_gigantic(h) ||
1795 	    hugetlb_cma_folio(folio, huge_page_order(h))) {
1796 		destroy_compound_gigantic_folio(folio, huge_page_order(h));
1797 		free_gigantic_folio(folio, huge_page_order(h));
1798 	} else {
1799 		__free_pages(&folio->page, huge_page_order(h));
1800 	}
1801 }
1802 
1803 /*
1804  * As update_and_free_hugetlb_folio() can be called under any context, so we cannot
1805  * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1806  * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1807  * the vmemmap pages.
1808  *
1809  * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1810  * freed and frees them one-by-one. As the page->mapping pointer is going
1811  * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1812  * structure of a lockless linked list of huge pages to be freed.
1813  */
1814 static LLIST_HEAD(hpage_freelist);
1815 
1816 static void free_hpage_workfn(struct work_struct *work)
1817 {
1818 	struct llist_node *node;
1819 
1820 	node = llist_del_all(&hpage_freelist);
1821 
1822 	while (node) {
1823 		struct folio *folio;
1824 		struct hstate *h;
1825 
1826 		folio = container_of((struct address_space **)node,
1827 				     struct folio, mapping);
1828 		node = node->next;
1829 		folio->mapping = NULL;
1830 		/*
1831 		 * The VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio) in
1832 		 * folio_hstate() is going to trigger because a previous call to
1833 		 * remove_hugetlb_folio() will clear the hugetlb bit, so do
1834 		 * not use folio_hstate() directly.
1835 		 */
1836 		h = size_to_hstate(folio_size(folio));
1837 
1838 		__update_and_free_hugetlb_folio(h, folio);
1839 
1840 		cond_resched();
1841 	}
1842 }
1843 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1844 
1845 static inline void flush_free_hpage_work(struct hstate *h)
1846 {
1847 	if (hugetlb_vmemmap_optimizable(h))
1848 		flush_work(&free_hpage_work);
1849 }
1850 
1851 static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio,
1852 				 bool atomic)
1853 {
1854 	if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) {
1855 		__update_and_free_hugetlb_folio(h, folio);
1856 		return;
1857 	}
1858 
1859 	/*
1860 	 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1861 	 *
1862 	 * Only call schedule_work() if hpage_freelist is previously
1863 	 * empty. Otherwise, schedule_work() had been called but the workfn
1864 	 * hasn't retrieved the list yet.
1865 	 */
1866 	if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist))
1867 		schedule_work(&free_hpage_work);
1868 }
1869 
1870 static void bulk_vmemmap_restore_error(struct hstate *h,
1871 					struct list_head *folio_list,
1872 					struct list_head *non_hvo_folios)
1873 {
1874 	struct folio *folio, *t_folio;
1875 
1876 	if (!list_empty(non_hvo_folios)) {
1877 		/*
1878 		 * Free any restored hugetlb pages so that restore of the
1879 		 * entire list can be retried.
1880 		 * The idea is that in the common case of ENOMEM errors freeing
1881 		 * hugetlb pages with vmemmap we will free up memory so that we
1882 		 * can allocate vmemmap for more hugetlb pages.
1883 		 */
1884 		list_for_each_entry_safe(folio, t_folio, non_hvo_folios, lru) {
1885 			list_del(&folio->lru);
1886 			spin_lock_irq(&hugetlb_lock);
1887 			__clear_hugetlb_destructor(h, folio);
1888 			spin_unlock_irq(&hugetlb_lock);
1889 			update_and_free_hugetlb_folio(h, folio, false);
1890 			cond_resched();
1891 		}
1892 	} else {
1893 		/*
1894 		 * In the case where there are no folios which can be
1895 		 * immediately freed, we loop through the list trying to restore
1896 		 * vmemmap individually in the hope that someone elsewhere may
1897 		 * have done something to cause success (such as freeing some
1898 		 * memory).  If unable to restore a hugetlb page, the hugetlb
1899 		 * page is made a surplus page and removed from the list.
1900 		 * If are able to restore vmemmap and free one hugetlb page, we
1901 		 * quit processing the list to retry the bulk operation.
1902 		 */
1903 		list_for_each_entry_safe(folio, t_folio, folio_list, lru)
1904 			if (hugetlb_vmemmap_restore_folio(h, folio)) {
1905 				list_del(&folio->lru);
1906 				spin_lock_irq(&hugetlb_lock);
1907 				add_hugetlb_folio(h, folio, true);
1908 				spin_unlock_irq(&hugetlb_lock);
1909 			} else {
1910 				list_del(&folio->lru);
1911 				spin_lock_irq(&hugetlb_lock);
1912 				__clear_hugetlb_destructor(h, folio);
1913 				spin_unlock_irq(&hugetlb_lock);
1914 				update_and_free_hugetlb_folio(h, folio, false);
1915 				cond_resched();
1916 				break;
1917 			}
1918 	}
1919 }
1920 
1921 static void update_and_free_pages_bulk(struct hstate *h,
1922 						struct list_head *folio_list)
1923 {
1924 	long ret;
1925 	struct folio *folio, *t_folio;
1926 	LIST_HEAD(non_hvo_folios);
1927 
1928 	/*
1929 	 * First allocate required vmemmmap (if necessary) for all folios.
1930 	 * Carefully handle errors and free up any available hugetlb pages
1931 	 * in an effort to make forward progress.
1932 	 */
1933 retry:
1934 	ret = hugetlb_vmemmap_restore_folios(h, folio_list, &non_hvo_folios);
1935 	if (ret < 0) {
1936 		bulk_vmemmap_restore_error(h, folio_list, &non_hvo_folios);
1937 		goto retry;
1938 	}
1939 
1940 	/*
1941 	 * At this point, list should be empty, ret should be >= 0 and there
1942 	 * should only be pages on the non_hvo_folios list.
1943 	 * Do note that the non_hvo_folios list could be empty.
1944 	 * Without HVO enabled, ret will be 0 and there is no need to call
1945 	 * __clear_hugetlb_destructor as this was done previously.
1946 	 */
1947 	VM_WARN_ON(!list_empty(folio_list));
1948 	VM_WARN_ON(ret < 0);
1949 	if (!list_empty(&non_hvo_folios) && ret) {
1950 		spin_lock_irq(&hugetlb_lock);
1951 		list_for_each_entry(folio, &non_hvo_folios, lru)
1952 			__clear_hugetlb_destructor(h, folio);
1953 		spin_unlock_irq(&hugetlb_lock);
1954 	}
1955 
1956 	list_for_each_entry_safe(folio, t_folio, &non_hvo_folios, lru) {
1957 		update_and_free_hugetlb_folio(h, folio, false);
1958 		cond_resched();
1959 	}
1960 }
1961 
1962 struct hstate *size_to_hstate(unsigned long size)
1963 {
1964 	struct hstate *h;
1965 
1966 	for_each_hstate(h) {
1967 		if (huge_page_size(h) == size)
1968 			return h;
1969 	}
1970 	return NULL;
1971 }
1972 
1973 void free_huge_folio(struct folio *folio)
1974 {
1975 	/*
1976 	 * Can't pass hstate in here because it is called from the
1977 	 * compound page destructor.
1978 	 */
1979 	struct hstate *h = folio_hstate(folio);
1980 	int nid = folio_nid(folio);
1981 	struct hugepage_subpool *spool = hugetlb_folio_subpool(folio);
1982 	bool restore_reserve;
1983 	unsigned long flags;
1984 
1985 	VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1986 	VM_BUG_ON_FOLIO(folio_mapcount(folio), folio);
1987 
1988 	hugetlb_set_folio_subpool(folio, NULL);
1989 	if (folio_test_anon(folio))
1990 		__ClearPageAnonExclusive(&folio->page);
1991 	folio->mapping = NULL;
1992 	restore_reserve = folio_test_hugetlb_restore_reserve(folio);
1993 	folio_clear_hugetlb_restore_reserve(folio);
1994 
1995 	/*
1996 	 * If HPageRestoreReserve was set on page, page allocation consumed a
1997 	 * reservation.  If the page was associated with a subpool, there
1998 	 * would have been a page reserved in the subpool before allocation
1999 	 * via hugepage_subpool_get_pages().  Since we are 'restoring' the
2000 	 * reservation, do not call hugepage_subpool_put_pages() as this will
2001 	 * remove the reserved page from the subpool.
2002 	 */
2003 	if (!restore_reserve) {
2004 		/*
2005 		 * A return code of zero implies that the subpool will be
2006 		 * under its minimum size if the reservation is not restored
2007 		 * after page is free.  Therefore, force restore_reserve
2008 		 * operation.
2009 		 */
2010 		if (hugepage_subpool_put_pages(spool, 1) == 0)
2011 			restore_reserve = true;
2012 	}
2013 
2014 	spin_lock_irqsave(&hugetlb_lock, flags);
2015 	folio_clear_hugetlb_migratable(folio);
2016 	hugetlb_cgroup_uncharge_folio(hstate_index(h),
2017 				     pages_per_huge_page(h), folio);
2018 	hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
2019 					  pages_per_huge_page(h), folio);
2020 	mem_cgroup_uncharge(folio);
2021 	if (restore_reserve)
2022 		h->resv_huge_pages++;
2023 
2024 	if (folio_test_hugetlb_temporary(folio)) {
2025 		remove_hugetlb_folio(h, folio, false);
2026 		spin_unlock_irqrestore(&hugetlb_lock, flags);
2027 		update_and_free_hugetlb_folio(h, folio, true);
2028 	} else if (h->surplus_huge_pages_node[nid]) {
2029 		/* remove the page from active list */
2030 		remove_hugetlb_folio(h, folio, true);
2031 		spin_unlock_irqrestore(&hugetlb_lock, flags);
2032 		update_and_free_hugetlb_folio(h, folio, true);
2033 	} else {
2034 		arch_clear_hugepage_flags(&folio->page);
2035 		enqueue_hugetlb_folio(h, folio);
2036 		spin_unlock_irqrestore(&hugetlb_lock, flags);
2037 	}
2038 }
2039 
2040 /*
2041  * Must be called with the hugetlb lock held
2042  */
2043 static void __prep_account_new_huge_page(struct hstate *h, int nid)
2044 {
2045 	lockdep_assert_held(&hugetlb_lock);
2046 	h->nr_huge_pages++;
2047 	h->nr_huge_pages_node[nid]++;
2048 }
2049 
2050 static void init_new_hugetlb_folio(struct hstate *h, struct folio *folio)
2051 {
2052 	folio_set_hugetlb(folio);
2053 	INIT_LIST_HEAD(&folio->lru);
2054 	hugetlb_set_folio_subpool(folio, NULL);
2055 	set_hugetlb_cgroup(folio, NULL);
2056 	set_hugetlb_cgroup_rsvd(folio, NULL);
2057 }
2058 
2059 static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio)
2060 {
2061 	init_new_hugetlb_folio(h, folio);
2062 	hugetlb_vmemmap_optimize_folio(h, folio);
2063 }
2064 
2065 static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid)
2066 {
2067 	__prep_new_hugetlb_folio(h, folio);
2068 	spin_lock_irq(&hugetlb_lock);
2069 	__prep_account_new_huge_page(h, nid);
2070 	spin_unlock_irq(&hugetlb_lock);
2071 }
2072 
2073 static bool __prep_compound_gigantic_folio(struct folio *folio,
2074 					unsigned int order, bool demote)
2075 {
2076 	int i, j;
2077 	int nr_pages = 1 << order;
2078 	struct page *p;
2079 
2080 	__folio_clear_reserved(folio);
2081 	for (i = 0; i < nr_pages; i++) {
2082 		p = folio_page(folio, i);
2083 
2084 		/*
2085 		 * For gigantic hugepages allocated through bootmem at
2086 		 * boot, it's safer to be consistent with the not-gigantic
2087 		 * hugepages and clear the PG_reserved bit from all tail pages
2088 		 * too.  Otherwise drivers using get_user_pages() to access tail
2089 		 * pages may get the reference counting wrong if they see
2090 		 * PG_reserved set on a tail page (despite the head page not
2091 		 * having PG_reserved set).  Enforcing this consistency between
2092 		 * head and tail pages allows drivers to optimize away a check
2093 		 * on the head page when they need know if put_page() is needed
2094 		 * after get_user_pages().
2095 		 */
2096 		if (i != 0)	/* head page cleared above */
2097 			__ClearPageReserved(p);
2098 		/*
2099 		 * Subtle and very unlikely
2100 		 *
2101 		 * Gigantic 'page allocators' such as memblock or cma will
2102 		 * return a set of pages with each page ref counted.  We need
2103 		 * to turn this set of pages into a compound page with tail
2104 		 * page ref counts set to zero.  Code such as speculative page
2105 		 * cache adding could take a ref on a 'to be' tail page.
2106 		 * We need to respect any increased ref count, and only set
2107 		 * the ref count to zero if count is currently 1.  If count
2108 		 * is not 1, we return an error.  An error return indicates
2109 		 * the set of pages can not be converted to a gigantic page.
2110 		 * The caller who allocated the pages should then discard the
2111 		 * pages using the appropriate free interface.
2112 		 *
2113 		 * In the case of demote, the ref count will be zero.
2114 		 */
2115 		if (!demote) {
2116 			if (!page_ref_freeze(p, 1)) {
2117 				pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
2118 				goto out_error;
2119 			}
2120 		} else {
2121 			VM_BUG_ON_PAGE(page_count(p), p);
2122 		}
2123 		if (i != 0)
2124 			set_compound_head(p, &folio->page);
2125 	}
2126 	__folio_set_head(folio);
2127 	/* we rely on prep_new_hugetlb_folio to set the destructor */
2128 	folio_set_order(folio, order);
2129 	atomic_set(&folio->_entire_mapcount, -1);
2130 	atomic_set(&folio->_nr_pages_mapped, 0);
2131 	atomic_set(&folio->_pincount, 0);
2132 	return true;
2133 
2134 out_error:
2135 	/* undo page modifications made above */
2136 	for (j = 0; j < i; j++) {
2137 		p = folio_page(folio, j);
2138 		if (j != 0)
2139 			clear_compound_head(p);
2140 		set_page_refcounted(p);
2141 	}
2142 	/* need to clear PG_reserved on remaining tail pages  */
2143 	for (; j < nr_pages; j++) {
2144 		p = folio_page(folio, j);
2145 		__ClearPageReserved(p);
2146 	}
2147 	return false;
2148 }
2149 
2150 static bool prep_compound_gigantic_folio(struct folio *folio,
2151 							unsigned int order)
2152 {
2153 	return __prep_compound_gigantic_folio(folio, order, false);
2154 }
2155 
2156 static bool prep_compound_gigantic_folio_for_demote(struct folio *folio,
2157 							unsigned int order)
2158 {
2159 	return __prep_compound_gigantic_folio(folio, order, true);
2160 }
2161 
2162 /*
2163  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
2164  * transparent huge pages.  See the PageTransHuge() documentation for more
2165  * details.
2166  */
2167 int PageHuge(const struct page *page)
2168 {
2169 	const struct folio *folio;
2170 
2171 	if (!PageCompound(page))
2172 		return 0;
2173 	folio = page_folio(page);
2174 	return folio_test_hugetlb(folio);
2175 }
2176 EXPORT_SYMBOL_GPL(PageHuge);
2177 
2178 /*
2179  * Find and lock address space (mapping) in write mode.
2180  *
2181  * Upon entry, the page is locked which means that page_mapping() is
2182  * stable.  Due to locking order, we can only trylock_write.  If we can
2183  * not get the lock, simply return NULL to caller.
2184  */
2185 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
2186 {
2187 	struct address_space *mapping = page_mapping(hpage);
2188 
2189 	if (!mapping)
2190 		return mapping;
2191 
2192 	if (i_mmap_trylock_write(mapping))
2193 		return mapping;
2194 
2195 	return NULL;
2196 }
2197 
2198 static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h,
2199 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
2200 		nodemask_t *node_alloc_noretry)
2201 {
2202 	int order = huge_page_order(h);
2203 	struct page *page;
2204 	bool alloc_try_hard = true;
2205 	bool retry = true;
2206 
2207 	/*
2208 	 * By default we always try hard to allocate the page with
2209 	 * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
2210 	 * a loop (to adjust global huge page counts) and previous allocation
2211 	 * failed, do not continue to try hard on the same node.  Use the
2212 	 * node_alloc_noretry bitmap to manage this state information.
2213 	 */
2214 	if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
2215 		alloc_try_hard = false;
2216 	gfp_mask |= __GFP_COMP|__GFP_NOWARN;
2217 	if (alloc_try_hard)
2218 		gfp_mask |= __GFP_RETRY_MAYFAIL;
2219 	if (nid == NUMA_NO_NODE)
2220 		nid = numa_mem_id();
2221 retry:
2222 	page = __alloc_pages(gfp_mask, order, nid, nmask);
2223 
2224 	/* Freeze head page */
2225 	if (page && !page_ref_freeze(page, 1)) {
2226 		__free_pages(page, order);
2227 		if (retry) {	/* retry once */
2228 			retry = false;
2229 			goto retry;
2230 		}
2231 		/* WOW!  twice in a row. */
2232 		pr_warn("HugeTLB head page unexpected inflated ref count\n");
2233 		page = NULL;
2234 	}
2235 
2236 	/*
2237 	 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
2238 	 * indicates an overall state change.  Clear bit so that we resume
2239 	 * normal 'try hard' allocations.
2240 	 */
2241 	if (node_alloc_noretry && page && !alloc_try_hard)
2242 		node_clear(nid, *node_alloc_noretry);
2243 
2244 	/*
2245 	 * If we tried hard to get a page but failed, set bit so that
2246 	 * subsequent attempts will not try as hard until there is an
2247 	 * overall state change.
2248 	 */
2249 	if (node_alloc_noretry && !page && alloc_try_hard)
2250 		node_set(nid, *node_alloc_noretry);
2251 
2252 	if (!page) {
2253 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
2254 		return NULL;
2255 	}
2256 
2257 	__count_vm_event(HTLB_BUDDY_PGALLOC);
2258 	return page_folio(page);
2259 }
2260 
2261 static struct folio *__alloc_fresh_hugetlb_folio(struct hstate *h,
2262 				gfp_t gfp_mask, int nid, nodemask_t *nmask,
2263 				nodemask_t *node_alloc_noretry)
2264 {
2265 	struct folio *folio;
2266 	bool retry = false;
2267 
2268 retry:
2269 	if (hstate_is_gigantic(h))
2270 		folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
2271 	else
2272 		folio = alloc_buddy_hugetlb_folio(h, gfp_mask,
2273 				nid, nmask, node_alloc_noretry);
2274 	if (!folio)
2275 		return NULL;
2276 
2277 	if (hstate_is_gigantic(h)) {
2278 		if (!prep_compound_gigantic_folio(folio, huge_page_order(h))) {
2279 			/*
2280 			 * Rare failure to convert pages to compound page.
2281 			 * Free pages and try again - ONCE!
2282 			 */
2283 			free_gigantic_folio(folio, huge_page_order(h));
2284 			if (!retry) {
2285 				retry = true;
2286 				goto retry;
2287 			}
2288 			return NULL;
2289 		}
2290 	}
2291 
2292 	return folio;
2293 }
2294 
2295 static struct folio *only_alloc_fresh_hugetlb_folio(struct hstate *h,
2296 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
2297 		nodemask_t *node_alloc_noretry)
2298 {
2299 	struct folio *folio;
2300 
2301 	folio = __alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask,
2302 						node_alloc_noretry);
2303 	if (folio)
2304 		init_new_hugetlb_folio(h, folio);
2305 	return folio;
2306 }
2307 
2308 /*
2309  * Common helper to allocate a fresh hugetlb page. All specific allocators
2310  * should use this function to get new hugetlb pages
2311  *
2312  * Note that returned page is 'frozen':  ref count of head page and all tail
2313  * pages is zero.
2314  */
2315 static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h,
2316 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
2317 		nodemask_t *node_alloc_noretry)
2318 {
2319 	struct folio *folio;
2320 
2321 	folio = __alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask,
2322 						node_alloc_noretry);
2323 	if (!folio)
2324 		return NULL;
2325 
2326 	prep_new_hugetlb_folio(h, folio, folio_nid(folio));
2327 	return folio;
2328 }
2329 
2330 static void prep_and_add_allocated_folios(struct hstate *h,
2331 					struct list_head *folio_list)
2332 {
2333 	unsigned long flags;
2334 	struct folio *folio, *tmp_f;
2335 
2336 	/* Send list for bulk vmemmap optimization processing */
2337 	hugetlb_vmemmap_optimize_folios(h, folio_list);
2338 
2339 	/* Add all new pool pages to free lists in one lock cycle */
2340 	spin_lock_irqsave(&hugetlb_lock, flags);
2341 	list_for_each_entry_safe(folio, tmp_f, folio_list, lru) {
2342 		__prep_account_new_huge_page(h, folio_nid(folio));
2343 		enqueue_hugetlb_folio(h, folio);
2344 	}
2345 	spin_unlock_irqrestore(&hugetlb_lock, flags);
2346 }
2347 
2348 /*
2349  * Allocates a fresh hugetlb page in a node interleaved manner.  The page
2350  * will later be added to the appropriate hugetlb pool.
2351  */
2352 static struct folio *alloc_pool_huge_folio(struct hstate *h,
2353 					nodemask_t *nodes_allowed,
2354 					nodemask_t *node_alloc_noretry,
2355 					int *next_node)
2356 {
2357 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2358 	int nr_nodes, node;
2359 
2360 	for_each_node_mask_to_alloc(next_node, nr_nodes, node, nodes_allowed) {
2361 		struct folio *folio;
2362 
2363 		folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, node,
2364 					nodes_allowed, node_alloc_noretry);
2365 		if (folio)
2366 			return folio;
2367 	}
2368 
2369 	return NULL;
2370 }
2371 
2372 /*
2373  * Remove huge page from pool from next node to free.  Attempt to keep
2374  * persistent huge pages more or less balanced over allowed nodes.
2375  * This routine only 'removes' the hugetlb page.  The caller must make
2376  * an additional call to free the page to low level allocators.
2377  * Called with hugetlb_lock locked.
2378  */
2379 static struct folio *remove_pool_hugetlb_folio(struct hstate *h,
2380 		nodemask_t *nodes_allowed, bool acct_surplus)
2381 {
2382 	int nr_nodes, node;
2383 	struct folio *folio = NULL;
2384 
2385 	lockdep_assert_held(&hugetlb_lock);
2386 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2387 		/*
2388 		 * If we're returning unused surplus pages, only examine
2389 		 * nodes with surplus pages.
2390 		 */
2391 		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2392 		    !list_empty(&h->hugepage_freelists[node])) {
2393 			folio = list_entry(h->hugepage_freelists[node].next,
2394 					  struct folio, lru);
2395 			remove_hugetlb_folio(h, folio, acct_surplus);
2396 			break;
2397 		}
2398 	}
2399 
2400 	return folio;
2401 }
2402 
2403 /*
2404  * Dissolve a given free hugepage into free buddy pages. This function does
2405  * nothing for in-use hugepages and non-hugepages.
2406  * This function returns values like below:
2407  *
2408  *  -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2409  *           when the system is under memory pressure and the feature of
2410  *           freeing unused vmemmap pages associated with each hugetlb page
2411  *           is enabled.
2412  *  -EBUSY:  failed to dissolved free hugepages or the hugepage is in-use
2413  *           (allocated or reserved.)
2414  *       0:  successfully dissolved free hugepages or the page is not a
2415  *           hugepage (considered as already dissolved)
2416  */
2417 int dissolve_free_huge_page(struct page *page)
2418 {
2419 	int rc = -EBUSY;
2420 	struct folio *folio = page_folio(page);
2421 
2422 retry:
2423 	/* Not to disrupt normal path by vainly holding hugetlb_lock */
2424 	if (!folio_test_hugetlb(folio))
2425 		return 0;
2426 
2427 	spin_lock_irq(&hugetlb_lock);
2428 	if (!folio_test_hugetlb(folio)) {
2429 		rc = 0;
2430 		goto out;
2431 	}
2432 
2433 	if (!folio_ref_count(folio)) {
2434 		struct hstate *h = folio_hstate(folio);
2435 		if (!available_huge_pages(h))
2436 			goto out;
2437 
2438 		/*
2439 		 * We should make sure that the page is already on the free list
2440 		 * when it is dissolved.
2441 		 */
2442 		if (unlikely(!folio_test_hugetlb_freed(folio))) {
2443 			spin_unlock_irq(&hugetlb_lock);
2444 			cond_resched();
2445 
2446 			/*
2447 			 * Theoretically, we should return -EBUSY when we
2448 			 * encounter this race. In fact, we have a chance
2449 			 * to successfully dissolve the page if we do a
2450 			 * retry. Because the race window is quite small.
2451 			 * If we seize this opportunity, it is an optimization
2452 			 * for increasing the success rate of dissolving page.
2453 			 */
2454 			goto retry;
2455 		}
2456 
2457 		remove_hugetlb_folio(h, folio, false);
2458 		h->max_huge_pages--;
2459 		spin_unlock_irq(&hugetlb_lock);
2460 
2461 		/*
2462 		 * Normally update_and_free_hugtlb_folio will allocate required vmemmmap
2463 		 * before freeing the page.  update_and_free_hugtlb_folio will fail to
2464 		 * free the page if it can not allocate required vmemmap.  We
2465 		 * need to adjust max_huge_pages if the page is not freed.
2466 		 * Attempt to allocate vmemmmap here so that we can take
2467 		 * appropriate action on failure.
2468 		 *
2469 		 * The folio_test_hugetlb check here is because
2470 		 * remove_hugetlb_folio will clear hugetlb folio flag for
2471 		 * non-vmemmap optimized hugetlb folios.
2472 		 */
2473 		if (folio_test_hugetlb(folio)) {
2474 			rc = hugetlb_vmemmap_restore_folio(h, folio);
2475 			if (rc) {
2476 				spin_lock_irq(&hugetlb_lock);
2477 				add_hugetlb_folio(h, folio, false);
2478 				h->max_huge_pages++;
2479 				goto out;
2480 			}
2481 		} else
2482 			rc = 0;
2483 
2484 		update_and_free_hugetlb_folio(h, folio, false);
2485 		return rc;
2486 	}
2487 out:
2488 	spin_unlock_irq(&hugetlb_lock);
2489 	return rc;
2490 }
2491 
2492 /*
2493  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2494  * make specified memory blocks removable from the system.
2495  * Note that this will dissolve a free gigantic hugepage completely, if any
2496  * part of it lies within the given range.
2497  * Also note that if dissolve_free_huge_page() returns with an error, all
2498  * free hugepages that were dissolved before that error are lost.
2499  */
2500 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
2501 {
2502 	unsigned long pfn;
2503 	struct page *page;
2504 	int rc = 0;
2505 	unsigned int order;
2506 	struct hstate *h;
2507 
2508 	if (!hugepages_supported())
2509 		return rc;
2510 
2511 	order = huge_page_order(&default_hstate);
2512 	for_each_hstate(h)
2513 		order = min(order, huge_page_order(h));
2514 
2515 	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
2516 		page = pfn_to_page(pfn);
2517 		rc = dissolve_free_huge_page(page);
2518 		if (rc)
2519 			break;
2520 	}
2521 
2522 	return rc;
2523 }
2524 
2525 /*
2526  * Allocates a fresh surplus page from the page allocator.
2527  */
2528 static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h,
2529 				gfp_t gfp_mask,	int nid, nodemask_t *nmask)
2530 {
2531 	struct folio *folio = NULL;
2532 
2533 	if (hstate_is_gigantic(h))
2534 		return NULL;
2535 
2536 	spin_lock_irq(&hugetlb_lock);
2537 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2538 		goto out_unlock;
2539 	spin_unlock_irq(&hugetlb_lock);
2540 
2541 	folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2542 	if (!folio)
2543 		return NULL;
2544 
2545 	spin_lock_irq(&hugetlb_lock);
2546 	/*
2547 	 * We could have raced with the pool size change.
2548 	 * Double check that and simply deallocate the new page
2549 	 * if we would end up overcommiting the surpluses. Abuse
2550 	 * temporary page to workaround the nasty free_huge_folio
2551 	 * codeflow
2552 	 */
2553 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2554 		folio_set_hugetlb_temporary(folio);
2555 		spin_unlock_irq(&hugetlb_lock);
2556 		free_huge_folio(folio);
2557 		return NULL;
2558 	}
2559 
2560 	h->surplus_huge_pages++;
2561 	h->surplus_huge_pages_node[folio_nid(folio)]++;
2562 
2563 out_unlock:
2564 	spin_unlock_irq(&hugetlb_lock);
2565 
2566 	return folio;
2567 }
2568 
2569 static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask,
2570 				     int nid, nodemask_t *nmask)
2571 {
2572 	struct folio *folio;
2573 
2574 	if (hstate_is_gigantic(h))
2575 		return NULL;
2576 
2577 	folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2578 	if (!folio)
2579 		return NULL;
2580 
2581 	/* fresh huge pages are frozen */
2582 	folio_ref_unfreeze(folio, 1);
2583 	/*
2584 	 * We do not account these pages as surplus because they are only
2585 	 * temporary and will be released properly on the last reference
2586 	 */
2587 	folio_set_hugetlb_temporary(folio);
2588 
2589 	return folio;
2590 }
2591 
2592 /*
2593  * Use the VMA's mpolicy to allocate a huge page from the buddy.
2594  */
2595 static
2596 struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h,
2597 		struct vm_area_struct *vma, unsigned long addr)
2598 {
2599 	struct folio *folio = NULL;
2600 	struct mempolicy *mpol;
2601 	gfp_t gfp_mask = htlb_alloc_mask(h);
2602 	int nid;
2603 	nodemask_t *nodemask;
2604 
2605 	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2606 	if (mpol_is_preferred_many(mpol)) {
2607 		gfp_t gfp = gfp_mask | __GFP_NOWARN;
2608 
2609 		gfp &=  ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2610 		folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask);
2611 
2612 		/* Fallback to all nodes if page==NULL */
2613 		nodemask = NULL;
2614 	}
2615 
2616 	if (!folio)
2617 		folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask);
2618 	mpol_cond_put(mpol);
2619 	return folio;
2620 }
2621 
2622 /* folio migration callback function */
2623 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
2624 		nodemask_t *nmask, gfp_t gfp_mask)
2625 {
2626 	spin_lock_irq(&hugetlb_lock);
2627 	if (available_huge_pages(h)) {
2628 		struct folio *folio;
2629 
2630 		folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
2631 						preferred_nid, nmask);
2632 		if (folio) {
2633 			spin_unlock_irq(&hugetlb_lock);
2634 			return folio;
2635 		}
2636 	}
2637 	spin_unlock_irq(&hugetlb_lock);
2638 
2639 	return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask);
2640 }
2641 
2642 /*
2643  * Increase the hugetlb pool such that it can accommodate a reservation
2644  * of size 'delta'.
2645  */
2646 static int gather_surplus_pages(struct hstate *h, long delta)
2647 	__must_hold(&hugetlb_lock)
2648 {
2649 	LIST_HEAD(surplus_list);
2650 	struct folio *folio, *tmp;
2651 	int ret;
2652 	long i;
2653 	long needed, allocated;
2654 	bool alloc_ok = true;
2655 
2656 	lockdep_assert_held(&hugetlb_lock);
2657 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2658 	if (needed <= 0) {
2659 		h->resv_huge_pages += delta;
2660 		return 0;
2661 	}
2662 
2663 	allocated = 0;
2664 
2665 	ret = -ENOMEM;
2666 retry:
2667 	spin_unlock_irq(&hugetlb_lock);
2668 	for (i = 0; i < needed; i++) {
2669 		folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h),
2670 				NUMA_NO_NODE, NULL);
2671 		if (!folio) {
2672 			alloc_ok = false;
2673 			break;
2674 		}
2675 		list_add(&folio->lru, &surplus_list);
2676 		cond_resched();
2677 	}
2678 	allocated += i;
2679 
2680 	/*
2681 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
2682 	 * because either resv_huge_pages or free_huge_pages may have changed.
2683 	 */
2684 	spin_lock_irq(&hugetlb_lock);
2685 	needed = (h->resv_huge_pages + delta) -
2686 			(h->free_huge_pages + allocated);
2687 	if (needed > 0) {
2688 		if (alloc_ok)
2689 			goto retry;
2690 		/*
2691 		 * We were not able to allocate enough pages to
2692 		 * satisfy the entire reservation so we free what
2693 		 * we've allocated so far.
2694 		 */
2695 		goto free;
2696 	}
2697 	/*
2698 	 * The surplus_list now contains _at_least_ the number of extra pages
2699 	 * needed to accommodate the reservation.  Add the appropriate number
2700 	 * of pages to the hugetlb pool and free the extras back to the buddy
2701 	 * allocator.  Commit the entire reservation here to prevent another
2702 	 * process from stealing the pages as they are added to the pool but
2703 	 * before they are reserved.
2704 	 */
2705 	needed += allocated;
2706 	h->resv_huge_pages += delta;
2707 	ret = 0;
2708 
2709 	/* Free the needed pages to the hugetlb pool */
2710 	list_for_each_entry_safe(folio, tmp, &surplus_list, lru) {
2711 		if ((--needed) < 0)
2712 			break;
2713 		/* Add the page to the hugetlb allocator */
2714 		enqueue_hugetlb_folio(h, folio);
2715 	}
2716 free:
2717 	spin_unlock_irq(&hugetlb_lock);
2718 
2719 	/*
2720 	 * Free unnecessary surplus pages to the buddy allocator.
2721 	 * Pages have no ref count, call free_huge_folio directly.
2722 	 */
2723 	list_for_each_entry_safe(folio, tmp, &surplus_list, lru)
2724 		free_huge_folio(folio);
2725 	spin_lock_irq(&hugetlb_lock);
2726 
2727 	return ret;
2728 }
2729 
2730 /*
2731  * This routine has two main purposes:
2732  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2733  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2734  *    to the associated reservation map.
2735  * 2) Free any unused surplus pages that may have been allocated to satisfy
2736  *    the reservation.  As many as unused_resv_pages may be freed.
2737  */
2738 static void return_unused_surplus_pages(struct hstate *h,
2739 					unsigned long unused_resv_pages)
2740 {
2741 	unsigned long nr_pages;
2742 	LIST_HEAD(page_list);
2743 
2744 	lockdep_assert_held(&hugetlb_lock);
2745 	/* Uncommit the reservation */
2746 	h->resv_huge_pages -= unused_resv_pages;
2747 
2748 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2749 		goto out;
2750 
2751 	/*
2752 	 * Part (or even all) of the reservation could have been backed
2753 	 * by pre-allocated pages. Only free surplus pages.
2754 	 */
2755 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2756 
2757 	/*
2758 	 * We want to release as many surplus pages as possible, spread
2759 	 * evenly across all nodes with memory. Iterate across these nodes
2760 	 * until we can no longer free unreserved surplus pages. This occurs
2761 	 * when the nodes with surplus pages have no free pages.
2762 	 * remove_pool_hugetlb_folio() will balance the freed pages across the
2763 	 * on-line nodes with memory and will handle the hstate accounting.
2764 	 */
2765 	while (nr_pages--) {
2766 		struct folio *folio;
2767 
2768 		folio = remove_pool_hugetlb_folio(h, &node_states[N_MEMORY], 1);
2769 		if (!folio)
2770 			goto out;
2771 
2772 		list_add(&folio->lru, &page_list);
2773 	}
2774 
2775 out:
2776 	spin_unlock_irq(&hugetlb_lock);
2777 	update_and_free_pages_bulk(h, &page_list);
2778 	spin_lock_irq(&hugetlb_lock);
2779 }
2780 
2781 
2782 /*
2783  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2784  * are used by the huge page allocation routines to manage reservations.
2785  *
2786  * vma_needs_reservation is called to determine if the huge page at addr
2787  * within the vma has an associated reservation.  If a reservation is
2788  * needed, the value 1 is returned.  The caller is then responsible for
2789  * managing the global reservation and subpool usage counts.  After
2790  * the huge page has been allocated, vma_commit_reservation is called
2791  * to add the page to the reservation map.  If the page allocation fails,
2792  * the reservation must be ended instead of committed.  vma_end_reservation
2793  * is called in such cases.
2794  *
2795  * In the normal case, vma_commit_reservation returns the same value
2796  * as the preceding vma_needs_reservation call.  The only time this
2797  * is not the case is if a reserve map was changed between calls.  It
2798  * is the responsibility of the caller to notice the difference and
2799  * take appropriate action.
2800  *
2801  * vma_add_reservation is used in error paths where a reservation must
2802  * be restored when a newly allocated huge page must be freed.  It is
2803  * to be called after calling vma_needs_reservation to determine if a
2804  * reservation exists.
2805  *
2806  * vma_del_reservation is used in error paths where an entry in the reserve
2807  * map was created during huge page allocation and must be removed.  It is to
2808  * be called after calling vma_needs_reservation to determine if a reservation
2809  * exists.
2810  */
2811 enum vma_resv_mode {
2812 	VMA_NEEDS_RESV,
2813 	VMA_COMMIT_RESV,
2814 	VMA_END_RESV,
2815 	VMA_ADD_RESV,
2816 	VMA_DEL_RESV,
2817 };
2818 static long __vma_reservation_common(struct hstate *h,
2819 				struct vm_area_struct *vma, unsigned long addr,
2820 				enum vma_resv_mode mode)
2821 {
2822 	struct resv_map *resv;
2823 	pgoff_t idx;
2824 	long ret;
2825 	long dummy_out_regions_needed;
2826 
2827 	resv = vma_resv_map(vma);
2828 	if (!resv)
2829 		return 1;
2830 
2831 	idx = vma_hugecache_offset(h, vma, addr);
2832 	switch (mode) {
2833 	case VMA_NEEDS_RESV:
2834 		ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2835 		/* We assume that vma_reservation_* routines always operate on
2836 		 * 1 page, and that adding to resv map a 1 page entry can only
2837 		 * ever require 1 region.
2838 		 */
2839 		VM_BUG_ON(dummy_out_regions_needed != 1);
2840 		break;
2841 	case VMA_COMMIT_RESV:
2842 		ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2843 		/* region_add calls of range 1 should never fail. */
2844 		VM_BUG_ON(ret < 0);
2845 		break;
2846 	case VMA_END_RESV:
2847 		region_abort(resv, idx, idx + 1, 1);
2848 		ret = 0;
2849 		break;
2850 	case VMA_ADD_RESV:
2851 		if (vma->vm_flags & VM_MAYSHARE) {
2852 			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2853 			/* region_add calls of range 1 should never fail. */
2854 			VM_BUG_ON(ret < 0);
2855 		} else {
2856 			region_abort(resv, idx, idx + 1, 1);
2857 			ret = region_del(resv, idx, idx + 1);
2858 		}
2859 		break;
2860 	case VMA_DEL_RESV:
2861 		if (vma->vm_flags & VM_MAYSHARE) {
2862 			region_abort(resv, idx, idx + 1, 1);
2863 			ret = region_del(resv, idx, idx + 1);
2864 		} else {
2865 			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2866 			/* region_add calls of range 1 should never fail. */
2867 			VM_BUG_ON(ret < 0);
2868 		}
2869 		break;
2870 	default:
2871 		BUG();
2872 	}
2873 
2874 	if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2875 		return ret;
2876 	/*
2877 	 * We know private mapping must have HPAGE_RESV_OWNER set.
2878 	 *
2879 	 * In most cases, reserves always exist for private mappings.
2880 	 * However, a file associated with mapping could have been
2881 	 * hole punched or truncated after reserves were consumed.
2882 	 * As subsequent fault on such a range will not use reserves.
2883 	 * Subtle - The reserve map for private mappings has the
2884 	 * opposite meaning than that of shared mappings.  If NO
2885 	 * entry is in the reserve map, it means a reservation exists.
2886 	 * If an entry exists in the reserve map, it means the
2887 	 * reservation has already been consumed.  As a result, the
2888 	 * return value of this routine is the opposite of the
2889 	 * value returned from reserve map manipulation routines above.
2890 	 */
2891 	if (ret > 0)
2892 		return 0;
2893 	if (ret == 0)
2894 		return 1;
2895 	return ret;
2896 }
2897 
2898 static long vma_needs_reservation(struct hstate *h,
2899 			struct vm_area_struct *vma, unsigned long addr)
2900 {
2901 	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2902 }
2903 
2904 static long vma_commit_reservation(struct hstate *h,
2905 			struct vm_area_struct *vma, unsigned long addr)
2906 {
2907 	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2908 }
2909 
2910 static void vma_end_reservation(struct hstate *h,
2911 			struct vm_area_struct *vma, unsigned long addr)
2912 {
2913 	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2914 }
2915 
2916 static long vma_add_reservation(struct hstate *h,
2917 			struct vm_area_struct *vma, unsigned long addr)
2918 {
2919 	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2920 }
2921 
2922 static long vma_del_reservation(struct hstate *h,
2923 			struct vm_area_struct *vma, unsigned long addr)
2924 {
2925 	return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2926 }
2927 
2928 /*
2929  * This routine is called to restore reservation information on error paths.
2930  * It should ONLY be called for folios allocated via alloc_hugetlb_folio(),
2931  * and the hugetlb mutex should remain held when calling this routine.
2932  *
2933  * It handles two specific cases:
2934  * 1) A reservation was in place and the folio consumed the reservation.
2935  *    hugetlb_restore_reserve is set in the folio.
2936  * 2) No reservation was in place for the page, so hugetlb_restore_reserve is
2937  *    not set.  However, alloc_hugetlb_folio always updates the reserve map.
2938  *
2939  * In case 1, free_huge_folio later in the error path will increment the
2940  * global reserve count.  But, free_huge_folio does not have enough context
2941  * to adjust the reservation map.  This case deals primarily with private
2942  * mappings.  Adjust the reserve map here to be consistent with global
2943  * reserve count adjustments to be made by free_huge_folio.  Make sure the
2944  * reserve map indicates there is a reservation present.
2945  *
2946  * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio.
2947  */
2948 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2949 			unsigned long address, struct folio *folio)
2950 {
2951 	long rc = vma_needs_reservation(h, vma, address);
2952 
2953 	if (folio_test_hugetlb_restore_reserve(folio)) {
2954 		if (unlikely(rc < 0))
2955 			/*
2956 			 * Rare out of memory condition in reserve map
2957 			 * manipulation.  Clear hugetlb_restore_reserve so
2958 			 * that global reserve count will not be incremented
2959 			 * by free_huge_folio.  This will make it appear
2960 			 * as though the reservation for this folio was
2961 			 * consumed.  This may prevent the task from
2962 			 * faulting in the folio at a later time.  This
2963 			 * is better than inconsistent global huge page
2964 			 * accounting of reserve counts.
2965 			 */
2966 			folio_clear_hugetlb_restore_reserve(folio);
2967 		else if (rc)
2968 			(void)vma_add_reservation(h, vma, address);
2969 		else
2970 			vma_end_reservation(h, vma, address);
2971 	} else {
2972 		if (!rc) {
2973 			/*
2974 			 * This indicates there is an entry in the reserve map
2975 			 * not added by alloc_hugetlb_folio.  We know it was added
2976 			 * before the alloc_hugetlb_folio call, otherwise
2977 			 * hugetlb_restore_reserve would be set on the folio.
2978 			 * Remove the entry so that a subsequent allocation
2979 			 * does not consume a reservation.
2980 			 */
2981 			rc = vma_del_reservation(h, vma, address);
2982 			if (rc < 0)
2983 				/*
2984 				 * VERY rare out of memory condition.  Since
2985 				 * we can not delete the entry, set
2986 				 * hugetlb_restore_reserve so that the reserve
2987 				 * count will be incremented when the folio
2988 				 * is freed.  This reserve will be consumed
2989 				 * on a subsequent allocation.
2990 				 */
2991 				folio_set_hugetlb_restore_reserve(folio);
2992 		} else if (rc < 0) {
2993 			/*
2994 			 * Rare out of memory condition from
2995 			 * vma_needs_reservation call.  Memory allocation is
2996 			 * only attempted if a new entry is needed.  Therefore,
2997 			 * this implies there is not an entry in the
2998 			 * reserve map.
2999 			 *
3000 			 * For shared mappings, no entry in the map indicates
3001 			 * no reservation.  We are done.
3002 			 */
3003 			if (!(vma->vm_flags & VM_MAYSHARE))
3004 				/*
3005 				 * For private mappings, no entry indicates
3006 				 * a reservation is present.  Since we can
3007 				 * not add an entry, set hugetlb_restore_reserve
3008 				 * on the folio so reserve count will be
3009 				 * incremented when freed.  This reserve will
3010 				 * be consumed on a subsequent allocation.
3011 				 */
3012 				folio_set_hugetlb_restore_reserve(folio);
3013 		} else
3014 			/*
3015 			 * No reservation present, do nothing
3016 			 */
3017 			 vma_end_reservation(h, vma, address);
3018 	}
3019 }
3020 
3021 /*
3022  * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve
3023  * the old one
3024  * @h: struct hstate old page belongs to
3025  * @old_folio: Old folio to dissolve
3026  * @list: List to isolate the page in case we need to
3027  * Returns 0 on success, otherwise negated error.
3028  */
3029 static int alloc_and_dissolve_hugetlb_folio(struct hstate *h,
3030 			struct folio *old_folio, struct list_head *list)
3031 {
3032 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3033 	int nid = folio_nid(old_folio);
3034 	struct folio *new_folio = NULL;
3035 	int ret = 0;
3036 
3037 retry:
3038 	spin_lock_irq(&hugetlb_lock);
3039 	if (!folio_test_hugetlb(old_folio)) {
3040 		/*
3041 		 * Freed from under us. Drop new_folio too.
3042 		 */
3043 		goto free_new;
3044 	} else if (folio_ref_count(old_folio)) {
3045 		bool isolated;
3046 
3047 		/*
3048 		 * Someone has grabbed the folio, try to isolate it here.
3049 		 * Fail with -EBUSY if not possible.
3050 		 */
3051 		spin_unlock_irq(&hugetlb_lock);
3052 		isolated = isolate_hugetlb(old_folio, list);
3053 		ret = isolated ? 0 : -EBUSY;
3054 		spin_lock_irq(&hugetlb_lock);
3055 		goto free_new;
3056 	} else if (!folio_test_hugetlb_freed(old_folio)) {
3057 		/*
3058 		 * Folio's refcount is 0 but it has not been enqueued in the
3059 		 * freelist yet. Race window is small, so we can succeed here if
3060 		 * we retry.
3061 		 */
3062 		spin_unlock_irq(&hugetlb_lock);
3063 		cond_resched();
3064 		goto retry;
3065 	} else {
3066 		if (!new_folio) {
3067 			spin_unlock_irq(&hugetlb_lock);
3068 			new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid,
3069 							      NULL, NULL);
3070 			if (!new_folio)
3071 				return -ENOMEM;
3072 			__prep_new_hugetlb_folio(h, new_folio);
3073 			goto retry;
3074 		}
3075 
3076 		/*
3077 		 * Ok, old_folio is still a genuine free hugepage. Remove it from
3078 		 * the freelist and decrease the counters. These will be
3079 		 * incremented again when calling __prep_account_new_huge_page()
3080 		 * and enqueue_hugetlb_folio() for new_folio. The counters will
3081 		 * remain stable since this happens under the lock.
3082 		 */
3083 		remove_hugetlb_folio(h, old_folio, false);
3084 
3085 		/*
3086 		 * Ref count on new_folio is already zero as it was dropped
3087 		 * earlier.  It can be directly added to the pool free list.
3088 		 */
3089 		__prep_account_new_huge_page(h, nid);
3090 		enqueue_hugetlb_folio(h, new_folio);
3091 
3092 		/*
3093 		 * Folio has been replaced, we can safely free the old one.
3094 		 */
3095 		spin_unlock_irq(&hugetlb_lock);
3096 		update_and_free_hugetlb_folio(h, old_folio, false);
3097 	}
3098 
3099 	return ret;
3100 
3101 free_new:
3102 	spin_unlock_irq(&hugetlb_lock);
3103 	if (new_folio) {
3104 		/* Folio has a zero ref count, but needs a ref to be freed */
3105 		folio_ref_unfreeze(new_folio, 1);
3106 		update_and_free_hugetlb_folio(h, new_folio, false);
3107 	}
3108 
3109 	return ret;
3110 }
3111 
3112 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
3113 {
3114 	struct hstate *h;
3115 	struct folio *folio = page_folio(page);
3116 	int ret = -EBUSY;
3117 
3118 	/*
3119 	 * The page might have been dissolved from under our feet, so make sure
3120 	 * to carefully check the state under the lock.
3121 	 * Return success when racing as if we dissolved the page ourselves.
3122 	 */
3123 	spin_lock_irq(&hugetlb_lock);
3124 	if (folio_test_hugetlb(folio)) {
3125 		h = folio_hstate(folio);
3126 	} else {
3127 		spin_unlock_irq(&hugetlb_lock);
3128 		return 0;
3129 	}
3130 	spin_unlock_irq(&hugetlb_lock);
3131 
3132 	/*
3133 	 * Fence off gigantic pages as there is a cyclic dependency between
3134 	 * alloc_contig_range and them. Return -ENOMEM as this has the effect
3135 	 * of bailing out right away without further retrying.
3136 	 */
3137 	if (hstate_is_gigantic(h))
3138 		return -ENOMEM;
3139 
3140 	if (folio_ref_count(folio) && isolate_hugetlb(folio, list))
3141 		ret = 0;
3142 	else if (!folio_ref_count(folio))
3143 		ret = alloc_and_dissolve_hugetlb_folio(h, folio, list);
3144 
3145 	return ret;
3146 }
3147 
3148 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
3149 				    unsigned long addr, int avoid_reserve)
3150 {
3151 	struct hugepage_subpool *spool = subpool_vma(vma);
3152 	struct hstate *h = hstate_vma(vma);
3153 	struct folio *folio;
3154 	long map_chg, map_commit, nr_pages = pages_per_huge_page(h);
3155 	long gbl_chg;
3156 	int memcg_charge_ret, ret, idx;
3157 	struct hugetlb_cgroup *h_cg = NULL;
3158 	struct mem_cgroup *memcg;
3159 	bool deferred_reserve;
3160 	gfp_t gfp = htlb_alloc_mask(h) | __GFP_RETRY_MAYFAIL;
3161 
3162 	memcg = get_mem_cgroup_from_current();
3163 	memcg_charge_ret = mem_cgroup_hugetlb_try_charge(memcg, gfp, nr_pages);
3164 	if (memcg_charge_ret == -ENOMEM) {
3165 		mem_cgroup_put(memcg);
3166 		return ERR_PTR(-ENOMEM);
3167 	}
3168 
3169 	idx = hstate_index(h);
3170 	/*
3171 	 * Examine the region/reserve map to determine if the process
3172 	 * has a reservation for the page to be allocated.  A return
3173 	 * code of zero indicates a reservation exists (no change).
3174 	 */
3175 	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
3176 	if (map_chg < 0) {
3177 		if (!memcg_charge_ret)
3178 			mem_cgroup_cancel_charge(memcg, nr_pages);
3179 		mem_cgroup_put(memcg);
3180 		return ERR_PTR(-ENOMEM);
3181 	}
3182 
3183 	/*
3184 	 * Processes that did not create the mapping will have no
3185 	 * reserves as indicated by the region/reserve map. Check
3186 	 * that the allocation will not exceed the subpool limit.
3187 	 * Allocations for MAP_NORESERVE mappings also need to be
3188 	 * checked against any subpool limit.
3189 	 */
3190 	if (map_chg || avoid_reserve) {
3191 		gbl_chg = hugepage_subpool_get_pages(spool, 1);
3192 		if (gbl_chg < 0)
3193 			goto out_end_reservation;
3194 
3195 		/*
3196 		 * Even though there was no reservation in the region/reserve
3197 		 * map, there could be reservations associated with the
3198 		 * subpool that can be used.  This would be indicated if the
3199 		 * return value of hugepage_subpool_get_pages() is zero.
3200 		 * However, if avoid_reserve is specified we still avoid even
3201 		 * the subpool reservations.
3202 		 */
3203 		if (avoid_reserve)
3204 			gbl_chg = 1;
3205 	}
3206 
3207 	/* If this allocation is not consuming a reservation, charge it now.
3208 	 */
3209 	deferred_reserve = map_chg || avoid_reserve;
3210 	if (deferred_reserve) {
3211 		ret = hugetlb_cgroup_charge_cgroup_rsvd(
3212 			idx, pages_per_huge_page(h), &h_cg);
3213 		if (ret)
3214 			goto out_subpool_put;
3215 	}
3216 
3217 	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
3218 	if (ret)
3219 		goto out_uncharge_cgroup_reservation;
3220 
3221 	spin_lock_irq(&hugetlb_lock);
3222 	/*
3223 	 * glb_chg is passed to indicate whether or not a page must be taken
3224 	 * from the global free pool (global change).  gbl_chg == 0 indicates
3225 	 * a reservation exists for the allocation.
3226 	 */
3227 	folio = dequeue_hugetlb_folio_vma(h, vma, addr, avoid_reserve, gbl_chg);
3228 	if (!folio) {
3229 		spin_unlock_irq(&hugetlb_lock);
3230 		folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr);
3231 		if (!folio)
3232 			goto out_uncharge_cgroup;
3233 		spin_lock_irq(&hugetlb_lock);
3234 		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
3235 			folio_set_hugetlb_restore_reserve(folio);
3236 			h->resv_huge_pages--;
3237 		}
3238 		list_add(&folio->lru, &h->hugepage_activelist);
3239 		folio_ref_unfreeze(folio, 1);
3240 		/* Fall through */
3241 	}
3242 
3243 	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio);
3244 	/* If allocation is not consuming a reservation, also store the
3245 	 * hugetlb_cgroup pointer on the page.
3246 	 */
3247 	if (deferred_reserve) {
3248 		hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
3249 						  h_cg, folio);
3250 	}
3251 
3252 	spin_unlock_irq(&hugetlb_lock);
3253 
3254 	hugetlb_set_folio_subpool(folio, spool);
3255 
3256 	map_commit = vma_commit_reservation(h, vma, addr);
3257 	if (unlikely(map_chg > map_commit)) {
3258 		/*
3259 		 * The page was added to the reservation map between
3260 		 * vma_needs_reservation and vma_commit_reservation.
3261 		 * This indicates a race with hugetlb_reserve_pages.
3262 		 * Adjust for the subpool count incremented above AND
3263 		 * in hugetlb_reserve_pages for the same page.  Also,
3264 		 * the reservation count added in hugetlb_reserve_pages
3265 		 * no longer applies.
3266 		 */
3267 		long rsv_adjust;
3268 
3269 		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
3270 		hugetlb_acct_memory(h, -rsv_adjust);
3271 		if (deferred_reserve)
3272 			hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
3273 					pages_per_huge_page(h), folio);
3274 	}
3275 
3276 	if (!memcg_charge_ret)
3277 		mem_cgroup_commit_charge(folio, memcg);
3278 	mem_cgroup_put(memcg);
3279 
3280 	return folio;
3281 
3282 out_uncharge_cgroup:
3283 	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
3284 out_uncharge_cgroup_reservation:
3285 	if (deferred_reserve)
3286 		hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
3287 						    h_cg);
3288 out_subpool_put:
3289 	if (map_chg || avoid_reserve)
3290 		hugepage_subpool_put_pages(spool, 1);
3291 out_end_reservation:
3292 	vma_end_reservation(h, vma, addr);
3293 	if (!memcg_charge_ret)
3294 		mem_cgroup_cancel_charge(memcg, nr_pages);
3295 	mem_cgroup_put(memcg);
3296 	return ERR_PTR(-ENOSPC);
3297 }
3298 
3299 int alloc_bootmem_huge_page(struct hstate *h, int nid)
3300 	__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
3301 int __alloc_bootmem_huge_page(struct hstate *h, int nid)
3302 {
3303 	struct huge_bootmem_page *m = NULL; /* initialize for clang */
3304 	int nr_nodes, node = nid;
3305 
3306 	/* do node specific alloc */
3307 	if (nid != NUMA_NO_NODE) {
3308 		m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
3309 				0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3310 		if (!m)
3311 			return 0;
3312 		goto found;
3313 	}
3314 	/* allocate from next node when distributing huge pages */
3315 	for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, &node_states[N_MEMORY]) {
3316 		m = memblock_alloc_try_nid_raw(
3317 				huge_page_size(h), huge_page_size(h),
3318 				0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
3319 		/*
3320 		 * Use the beginning of the huge page to store the
3321 		 * huge_bootmem_page struct (until gather_bootmem
3322 		 * puts them into the mem_map).
3323 		 */
3324 		if (!m)
3325 			return 0;
3326 		goto found;
3327 	}
3328 
3329 found:
3330 
3331 	/*
3332 	 * Only initialize the head struct page in memmap_init_reserved_pages,
3333 	 * rest of the struct pages will be initialized by the HugeTLB
3334 	 * subsystem itself.
3335 	 * The head struct page is used to get folio information by the HugeTLB
3336 	 * subsystem like zone id and node id.
3337 	 */
3338 	memblock_reserved_mark_noinit(virt_to_phys((void *)m + PAGE_SIZE),
3339 		huge_page_size(h) - PAGE_SIZE);
3340 	/* Put them into a private list first because mem_map is not up yet */
3341 	INIT_LIST_HEAD(&m->list);
3342 	list_add(&m->list, &huge_boot_pages[node]);
3343 	m->hstate = h;
3344 	return 1;
3345 }
3346 
3347 /* Initialize [start_page:end_page_number] tail struct pages of a hugepage */
3348 static void __init hugetlb_folio_init_tail_vmemmap(struct folio *folio,
3349 					unsigned long start_page_number,
3350 					unsigned long end_page_number)
3351 {
3352 	enum zone_type zone = zone_idx(folio_zone(folio));
3353 	int nid = folio_nid(folio);
3354 	unsigned long head_pfn = folio_pfn(folio);
3355 	unsigned long pfn, end_pfn = head_pfn + end_page_number;
3356 	int ret;
3357 
3358 	for (pfn = head_pfn + start_page_number; pfn < end_pfn; pfn++) {
3359 		struct page *page = pfn_to_page(pfn);
3360 
3361 		__init_single_page(page, pfn, zone, nid);
3362 		prep_compound_tail((struct page *)folio, pfn - head_pfn);
3363 		ret = page_ref_freeze(page, 1);
3364 		VM_BUG_ON(!ret);
3365 	}
3366 }
3367 
3368 static void __init hugetlb_folio_init_vmemmap(struct folio *folio,
3369 					      struct hstate *h,
3370 					      unsigned long nr_pages)
3371 {
3372 	int ret;
3373 
3374 	/* Prepare folio head */
3375 	__folio_clear_reserved(folio);
3376 	__folio_set_head(folio);
3377 	ret = folio_ref_freeze(folio, 1);
3378 	VM_BUG_ON(!ret);
3379 	/* Initialize the necessary tail struct pages */
3380 	hugetlb_folio_init_tail_vmemmap(folio, 1, nr_pages);
3381 	prep_compound_head((struct page *)folio, huge_page_order(h));
3382 }
3383 
3384 static void __init prep_and_add_bootmem_folios(struct hstate *h,
3385 					struct list_head *folio_list)
3386 {
3387 	unsigned long flags;
3388 	struct folio *folio, *tmp_f;
3389 
3390 	/* Send list for bulk vmemmap optimization processing */
3391 	hugetlb_vmemmap_optimize_folios(h, folio_list);
3392 
3393 	list_for_each_entry_safe(folio, tmp_f, folio_list, lru) {
3394 		if (!folio_test_hugetlb_vmemmap_optimized(folio)) {
3395 			/*
3396 			 * If HVO fails, initialize all tail struct pages
3397 			 * We do not worry about potential long lock hold
3398 			 * time as this is early in boot and there should
3399 			 * be no contention.
3400 			 */
3401 			hugetlb_folio_init_tail_vmemmap(folio,
3402 					HUGETLB_VMEMMAP_RESERVE_PAGES,
3403 					pages_per_huge_page(h));
3404 		}
3405 		/* Subdivide locks to achieve better parallel performance */
3406 		spin_lock_irqsave(&hugetlb_lock, flags);
3407 		__prep_account_new_huge_page(h, folio_nid(folio));
3408 		enqueue_hugetlb_folio(h, folio);
3409 		spin_unlock_irqrestore(&hugetlb_lock, flags);
3410 	}
3411 }
3412 
3413 /*
3414  * Put bootmem huge pages into the standard lists after mem_map is up.
3415  * Note: This only applies to gigantic (order > MAX_PAGE_ORDER) pages.
3416  */
3417 static void __init gather_bootmem_prealloc_node(unsigned long nid)
3418 {
3419 	LIST_HEAD(folio_list);
3420 	struct huge_bootmem_page *m;
3421 	struct hstate *h = NULL, *prev_h = NULL;
3422 
3423 	list_for_each_entry(m, &huge_boot_pages[nid], list) {
3424 		struct page *page = virt_to_page(m);
3425 		struct folio *folio = (void *)page;
3426 
3427 		h = m->hstate;
3428 		/*
3429 		 * It is possible to have multiple huge page sizes (hstates)
3430 		 * in this list.  If so, process each size separately.
3431 		 */
3432 		if (h != prev_h && prev_h != NULL)
3433 			prep_and_add_bootmem_folios(prev_h, &folio_list);
3434 		prev_h = h;
3435 
3436 		VM_BUG_ON(!hstate_is_gigantic(h));
3437 		WARN_ON(folio_ref_count(folio) != 1);
3438 
3439 		hugetlb_folio_init_vmemmap(folio, h,
3440 					   HUGETLB_VMEMMAP_RESERVE_PAGES);
3441 		init_new_hugetlb_folio(h, folio);
3442 		list_add(&folio->lru, &folio_list);
3443 
3444 		/*
3445 		 * We need to restore the 'stolen' pages to totalram_pages
3446 		 * in order to fix confusing memory reports from free(1) and
3447 		 * other side-effects, like CommitLimit going negative.
3448 		 */
3449 		adjust_managed_page_count(page, pages_per_huge_page(h));
3450 		cond_resched();
3451 	}
3452 
3453 	prep_and_add_bootmem_folios(h, &folio_list);
3454 }
3455 
3456 static void __init gather_bootmem_prealloc_parallel(unsigned long start,
3457 						    unsigned long end, void *arg)
3458 {
3459 	int nid;
3460 
3461 	for (nid = start; nid < end; nid++)
3462 		gather_bootmem_prealloc_node(nid);
3463 }
3464 
3465 static void __init gather_bootmem_prealloc(void)
3466 {
3467 	struct padata_mt_job job = {
3468 		.thread_fn	= gather_bootmem_prealloc_parallel,
3469 		.fn_arg		= NULL,
3470 		.start		= 0,
3471 		.size		= num_node_state(N_MEMORY),
3472 		.align		= 1,
3473 		.min_chunk	= 1,
3474 		.max_threads	= num_node_state(N_MEMORY),
3475 		.numa_aware	= true,
3476 	};
3477 
3478 	padata_do_multithreaded(&job);
3479 }
3480 
3481 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3482 {
3483 	unsigned long i;
3484 	char buf[32];
3485 
3486 	for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3487 		if (hstate_is_gigantic(h)) {
3488 			if (!alloc_bootmem_huge_page(h, nid))
3489 				break;
3490 		} else {
3491 			struct folio *folio;
3492 			gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3493 
3494 			folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid,
3495 					&node_states[N_MEMORY], NULL);
3496 			if (!folio)
3497 				break;
3498 			free_huge_folio(folio); /* free it into the hugepage allocator */
3499 		}
3500 		cond_resched();
3501 	}
3502 	if (i == h->max_huge_pages_node[nid])
3503 		return;
3504 
3505 	string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3506 	pr_warn("HugeTLB: allocating %u of page size %s failed node%d.  Only allocated %lu hugepages.\n",
3507 		h->max_huge_pages_node[nid], buf, nid, i);
3508 	h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3509 	h->max_huge_pages_node[nid] = i;
3510 }
3511 
3512 static bool __init hugetlb_hstate_alloc_pages_specific_nodes(struct hstate *h)
3513 {
3514 	int i;
3515 	bool node_specific_alloc = false;
3516 
3517 	for_each_online_node(i) {
3518 		if (h->max_huge_pages_node[i] > 0) {
3519 			hugetlb_hstate_alloc_pages_onenode(h, i);
3520 			node_specific_alloc = true;
3521 		}
3522 	}
3523 
3524 	return node_specific_alloc;
3525 }
3526 
3527 static void __init hugetlb_hstate_alloc_pages_errcheck(unsigned long allocated, struct hstate *h)
3528 {
3529 	if (allocated < h->max_huge_pages) {
3530 		char buf[32];
3531 
3532 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3533 		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
3534 			h->max_huge_pages, buf, allocated);
3535 		h->max_huge_pages = allocated;
3536 	}
3537 }
3538 
3539 static void __init hugetlb_pages_alloc_boot_node(unsigned long start, unsigned long end, void *arg)
3540 {
3541 	struct hstate *h = (struct hstate *)arg;
3542 	int i, num = end - start;
3543 	nodemask_t node_alloc_noretry;
3544 	LIST_HEAD(folio_list);
3545 	int next_node = first_online_node;
3546 
3547 	/* Bit mask controlling how hard we retry per-node allocations.*/
3548 	nodes_clear(node_alloc_noretry);
3549 
3550 	for (i = 0; i < num; ++i) {
3551 		struct folio *folio = alloc_pool_huge_folio(h, &node_states[N_MEMORY],
3552 						&node_alloc_noretry, &next_node);
3553 		if (!folio)
3554 			break;
3555 
3556 		list_move(&folio->lru, &folio_list);
3557 		cond_resched();
3558 	}
3559 
3560 	prep_and_add_allocated_folios(h, &folio_list);
3561 }
3562 
3563 static unsigned long __init hugetlb_gigantic_pages_alloc_boot(struct hstate *h)
3564 {
3565 	unsigned long i;
3566 
3567 	for (i = 0; i < h->max_huge_pages; ++i) {
3568 		if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3569 			break;
3570 		cond_resched();
3571 	}
3572 
3573 	return i;
3574 }
3575 
3576 static unsigned long __init hugetlb_pages_alloc_boot(struct hstate *h)
3577 {
3578 	struct padata_mt_job job = {
3579 		.fn_arg		= h,
3580 		.align		= 1,
3581 		.numa_aware	= true
3582 	};
3583 
3584 	job.thread_fn	= hugetlb_pages_alloc_boot_node;
3585 	job.start	= 0;
3586 	job.size	= h->max_huge_pages;
3587 
3588 	/*
3589 	 * job.max_threads is twice the num_node_state(N_MEMORY),
3590 	 *
3591 	 * Tests below indicate that a multiplier of 2 significantly improves
3592 	 * performance, and although larger values also provide improvements,
3593 	 * the gains are marginal.
3594 	 *
3595 	 * Therefore, choosing 2 as the multiplier strikes a good balance between
3596 	 * enhancing parallel processing capabilities and maintaining efficient
3597 	 * resource management.
3598 	 *
3599 	 * +------------+-------+-------+-------+-------+-------+
3600 	 * | multiplier |   1   |   2   |   3   |   4   |   5   |
3601 	 * +------------+-------+-------+-------+-------+-------+
3602 	 * | 256G 2node | 358ms | 215ms | 157ms | 134ms | 126ms |
3603 	 * | 2T   4node | 979ms | 679ms | 543ms | 489ms | 481ms |
3604 	 * | 50G  2node | 71ms  | 44ms  | 37ms  | 30ms  | 31ms  |
3605 	 * +------------+-------+-------+-------+-------+-------+
3606 	 */
3607 	job.max_threads	= num_node_state(N_MEMORY) * 2;
3608 	job.min_chunk	= h->max_huge_pages / num_node_state(N_MEMORY) / 2;
3609 	padata_do_multithreaded(&job);
3610 
3611 	return h->nr_huge_pages;
3612 }
3613 
3614 /*
3615  * NOTE: this routine is called in different contexts for gigantic and
3616  * non-gigantic pages.
3617  * - For gigantic pages, this is called early in the boot process and
3618  *   pages are allocated from memblock allocated or something similar.
3619  *   Gigantic pages are actually added to pools later with the routine
3620  *   gather_bootmem_prealloc.
3621  * - For non-gigantic pages, this is called later in the boot process after
3622  *   all of mm is up and functional.  Pages are allocated from buddy and
3623  *   then added to hugetlb pools.
3624  */
3625 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3626 {
3627 	unsigned long allocated;
3628 	static bool initialized __initdata;
3629 
3630 	/* skip gigantic hugepages allocation if hugetlb_cma enabled */
3631 	if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3632 		pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3633 		return;
3634 	}
3635 
3636 	/* hugetlb_hstate_alloc_pages will be called many times, initialize huge_boot_pages once */
3637 	if (!initialized) {
3638 		int i = 0;
3639 
3640 		for (i = 0; i < MAX_NUMNODES; i++)
3641 			INIT_LIST_HEAD(&huge_boot_pages[i]);
3642 		initialized = true;
3643 	}
3644 
3645 	/* do node specific alloc */
3646 	if (hugetlb_hstate_alloc_pages_specific_nodes(h))
3647 		return;
3648 
3649 	/* below will do all node balanced alloc */
3650 	if (hstate_is_gigantic(h))
3651 		allocated = hugetlb_gigantic_pages_alloc_boot(h);
3652 	else
3653 		allocated = hugetlb_pages_alloc_boot(h);
3654 
3655 	hugetlb_hstate_alloc_pages_errcheck(allocated, h);
3656 }
3657 
3658 static void __init hugetlb_init_hstates(void)
3659 {
3660 	struct hstate *h, *h2;
3661 
3662 	for_each_hstate(h) {
3663 		/* oversize hugepages were init'ed in early boot */
3664 		if (!hstate_is_gigantic(h))
3665 			hugetlb_hstate_alloc_pages(h);
3666 
3667 		/*
3668 		 * Set demote order for each hstate.  Note that
3669 		 * h->demote_order is initially 0.
3670 		 * - We can not demote gigantic pages if runtime freeing
3671 		 *   is not supported, so skip this.
3672 		 * - If CMA allocation is possible, we can not demote
3673 		 *   HUGETLB_PAGE_ORDER or smaller size pages.
3674 		 */
3675 		if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3676 			continue;
3677 		if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3678 			continue;
3679 		for_each_hstate(h2) {
3680 			if (h2 == h)
3681 				continue;
3682 			if (h2->order < h->order &&
3683 			    h2->order > h->demote_order)
3684 				h->demote_order = h2->order;
3685 		}
3686 	}
3687 }
3688 
3689 static void __init report_hugepages(void)
3690 {
3691 	struct hstate *h;
3692 
3693 	for_each_hstate(h) {
3694 		char buf[32];
3695 
3696 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3697 		pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
3698 			buf, h->free_huge_pages);
3699 		pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3700 			hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
3701 	}
3702 }
3703 
3704 #ifdef CONFIG_HIGHMEM
3705 static void try_to_free_low(struct hstate *h, unsigned long count,
3706 						nodemask_t *nodes_allowed)
3707 {
3708 	int i;
3709 	LIST_HEAD(page_list);
3710 
3711 	lockdep_assert_held(&hugetlb_lock);
3712 	if (hstate_is_gigantic(h))
3713 		return;
3714 
3715 	/*
3716 	 * Collect pages to be freed on a list, and free after dropping lock
3717 	 */
3718 	for_each_node_mask(i, *nodes_allowed) {
3719 		struct folio *folio, *next;
3720 		struct list_head *freel = &h->hugepage_freelists[i];
3721 		list_for_each_entry_safe(folio, next, freel, lru) {
3722 			if (count >= h->nr_huge_pages)
3723 				goto out;
3724 			if (folio_test_highmem(folio))
3725 				continue;
3726 			remove_hugetlb_folio(h, folio, false);
3727 			list_add(&folio->lru, &page_list);
3728 		}
3729 	}
3730 
3731 out:
3732 	spin_unlock_irq(&hugetlb_lock);
3733 	update_and_free_pages_bulk(h, &page_list);
3734 	spin_lock_irq(&hugetlb_lock);
3735 }
3736 #else
3737 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3738 						nodemask_t *nodes_allowed)
3739 {
3740 }
3741 #endif
3742 
3743 /*
3744  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
3745  * balanced by operating on them in a round-robin fashion.
3746  * Returns 1 if an adjustment was made.
3747  */
3748 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3749 				int delta)
3750 {
3751 	int nr_nodes, node;
3752 
3753 	lockdep_assert_held(&hugetlb_lock);
3754 	VM_BUG_ON(delta != -1 && delta != 1);
3755 
3756 	if (delta < 0) {
3757 		for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, nodes_allowed) {
3758 			if (h->surplus_huge_pages_node[node])
3759 				goto found;
3760 		}
3761 	} else {
3762 		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3763 			if (h->surplus_huge_pages_node[node] <
3764 					h->nr_huge_pages_node[node])
3765 				goto found;
3766 		}
3767 	}
3768 	return 0;
3769 
3770 found:
3771 	h->surplus_huge_pages += delta;
3772 	h->surplus_huge_pages_node[node] += delta;
3773 	return 1;
3774 }
3775 
3776 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3777 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3778 			      nodemask_t *nodes_allowed)
3779 {
3780 	unsigned long min_count;
3781 	unsigned long allocated;
3782 	struct folio *folio;
3783 	LIST_HEAD(page_list);
3784 	NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3785 
3786 	/*
3787 	 * Bit mask controlling how hard we retry per-node allocations.
3788 	 * If we can not allocate the bit mask, do not attempt to allocate
3789 	 * the requested huge pages.
3790 	 */
3791 	if (node_alloc_noretry)
3792 		nodes_clear(*node_alloc_noretry);
3793 	else
3794 		return -ENOMEM;
3795 
3796 	/*
3797 	 * resize_lock mutex prevents concurrent adjustments to number of
3798 	 * pages in hstate via the proc/sysfs interfaces.
3799 	 */
3800 	mutex_lock(&h->resize_lock);
3801 	flush_free_hpage_work(h);
3802 	spin_lock_irq(&hugetlb_lock);
3803 
3804 	/*
3805 	 * Check for a node specific request.
3806 	 * Changing node specific huge page count may require a corresponding
3807 	 * change to the global count.  In any case, the passed node mask
3808 	 * (nodes_allowed) will restrict alloc/free to the specified node.
3809 	 */
3810 	if (nid != NUMA_NO_NODE) {
3811 		unsigned long old_count = count;
3812 
3813 		count += persistent_huge_pages(h) -
3814 			 (h->nr_huge_pages_node[nid] -
3815 			  h->surplus_huge_pages_node[nid]);
3816 		/*
3817 		 * User may have specified a large count value which caused the
3818 		 * above calculation to overflow.  In this case, they wanted
3819 		 * to allocate as many huge pages as possible.  Set count to
3820 		 * largest possible value to align with their intention.
3821 		 */
3822 		if (count < old_count)
3823 			count = ULONG_MAX;
3824 	}
3825 
3826 	/*
3827 	 * Gigantic pages runtime allocation depend on the capability for large
3828 	 * page range allocation.
3829 	 * If the system does not provide this feature, return an error when
3830 	 * the user tries to allocate gigantic pages but let the user free the
3831 	 * boottime allocated gigantic pages.
3832 	 */
3833 	if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3834 		if (count > persistent_huge_pages(h)) {
3835 			spin_unlock_irq(&hugetlb_lock);
3836 			mutex_unlock(&h->resize_lock);
3837 			NODEMASK_FREE(node_alloc_noretry);
3838 			return -EINVAL;
3839 		}
3840 		/* Fall through to decrease pool */
3841 	}
3842 
3843 	/*
3844 	 * Increase the pool size
3845 	 * First take pages out of surplus state.  Then make up the
3846 	 * remaining difference by allocating fresh huge pages.
3847 	 *
3848 	 * We might race with alloc_surplus_hugetlb_folio() here and be unable
3849 	 * to convert a surplus huge page to a normal huge page. That is
3850 	 * not critical, though, it just means the overall size of the
3851 	 * pool might be one hugepage larger than it needs to be, but
3852 	 * within all the constraints specified by the sysctls.
3853 	 */
3854 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3855 		if (!adjust_pool_surplus(h, nodes_allowed, -1))
3856 			break;
3857 	}
3858 
3859 	allocated = 0;
3860 	while (count > (persistent_huge_pages(h) + allocated)) {
3861 		/*
3862 		 * If this allocation races such that we no longer need the
3863 		 * page, free_huge_folio will handle it by freeing the page
3864 		 * and reducing the surplus.
3865 		 */
3866 		spin_unlock_irq(&hugetlb_lock);
3867 
3868 		/* yield cpu to avoid soft lockup */
3869 		cond_resched();
3870 
3871 		folio = alloc_pool_huge_folio(h, nodes_allowed,
3872 						node_alloc_noretry,
3873 						&h->next_nid_to_alloc);
3874 		if (!folio) {
3875 			prep_and_add_allocated_folios(h, &page_list);
3876 			spin_lock_irq(&hugetlb_lock);
3877 			goto out;
3878 		}
3879 
3880 		list_add(&folio->lru, &page_list);
3881 		allocated++;
3882 
3883 		/* Bail for signals. Probably ctrl-c from user */
3884 		if (signal_pending(current)) {
3885 			prep_and_add_allocated_folios(h, &page_list);
3886 			spin_lock_irq(&hugetlb_lock);
3887 			goto out;
3888 		}
3889 
3890 		spin_lock_irq(&hugetlb_lock);
3891 	}
3892 
3893 	/* Add allocated pages to the pool */
3894 	if (!list_empty(&page_list)) {
3895 		spin_unlock_irq(&hugetlb_lock);
3896 		prep_and_add_allocated_folios(h, &page_list);
3897 		spin_lock_irq(&hugetlb_lock);
3898 	}
3899 
3900 	/*
3901 	 * Decrease the pool size
3902 	 * First return free pages to the buddy allocator (being careful
3903 	 * to keep enough around to satisfy reservations).  Then place
3904 	 * pages into surplus state as needed so the pool will shrink
3905 	 * to the desired size as pages become free.
3906 	 *
3907 	 * By placing pages into the surplus state independent of the
3908 	 * overcommit value, we are allowing the surplus pool size to
3909 	 * exceed overcommit. There are few sane options here. Since
3910 	 * alloc_surplus_hugetlb_folio() is checking the global counter,
3911 	 * though, we'll note that we're not allowed to exceed surplus
3912 	 * and won't grow the pool anywhere else. Not until one of the
3913 	 * sysctls are changed, or the surplus pages go out of use.
3914 	 */
3915 	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3916 	min_count = max(count, min_count);
3917 	try_to_free_low(h, min_count, nodes_allowed);
3918 
3919 	/*
3920 	 * Collect pages to be removed on list without dropping lock
3921 	 */
3922 	while (min_count < persistent_huge_pages(h)) {
3923 		folio = remove_pool_hugetlb_folio(h, nodes_allowed, 0);
3924 		if (!folio)
3925 			break;
3926 
3927 		list_add(&folio->lru, &page_list);
3928 	}
3929 	/* free the pages after dropping lock */
3930 	spin_unlock_irq(&hugetlb_lock);
3931 	update_and_free_pages_bulk(h, &page_list);
3932 	flush_free_hpage_work(h);
3933 	spin_lock_irq(&hugetlb_lock);
3934 
3935 	while (count < persistent_huge_pages(h)) {
3936 		if (!adjust_pool_surplus(h, nodes_allowed, 1))
3937 			break;
3938 	}
3939 out:
3940 	h->max_huge_pages = persistent_huge_pages(h);
3941 	spin_unlock_irq(&hugetlb_lock);
3942 	mutex_unlock(&h->resize_lock);
3943 
3944 	NODEMASK_FREE(node_alloc_noretry);
3945 
3946 	return 0;
3947 }
3948 
3949 static int demote_free_hugetlb_folio(struct hstate *h, struct folio *folio)
3950 {
3951 	int i, nid = folio_nid(folio);
3952 	struct hstate *target_hstate;
3953 	struct page *subpage;
3954 	struct folio *inner_folio;
3955 	int rc = 0;
3956 
3957 	target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3958 
3959 	remove_hugetlb_folio_for_demote(h, folio, false);
3960 	spin_unlock_irq(&hugetlb_lock);
3961 
3962 	/*
3963 	 * If vmemmap already existed for folio, the remove routine above would
3964 	 * have cleared the hugetlb folio flag.  Hence the folio is technically
3965 	 * no longer a hugetlb folio.  hugetlb_vmemmap_restore_folio can only be
3966 	 * passed hugetlb folios and will BUG otherwise.
3967 	 */
3968 	if (folio_test_hugetlb(folio)) {
3969 		rc = hugetlb_vmemmap_restore_folio(h, folio);
3970 		if (rc) {
3971 			/* Allocation of vmemmmap failed, we can not demote folio */
3972 			spin_lock_irq(&hugetlb_lock);
3973 			folio_ref_unfreeze(folio, 1);
3974 			add_hugetlb_folio(h, folio, false);
3975 			return rc;
3976 		}
3977 	}
3978 
3979 	/*
3980 	 * Use destroy_compound_hugetlb_folio_for_demote for all huge page
3981 	 * sizes as it will not ref count folios.
3982 	 */
3983 	destroy_compound_hugetlb_folio_for_demote(folio, huge_page_order(h));
3984 
3985 	/*
3986 	 * Taking target hstate mutex synchronizes with set_max_huge_pages.
3987 	 * Without the mutex, pages added to target hstate could be marked
3988 	 * as surplus.
3989 	 *
3990 	 * Note that we already hold h->resize_lock.  To prevent deadlock,
3991 	 * use the convention of always taking larger size hstate mutex first.
3992 	 */
3993 	mutex_lock(&target_hstate->resize_lock);
3994 	for (i = 0; i < pages_per_huge_page(h);
3995 				i += pages_per_huge_page(target_hstate)) {
3996 		subpage = folio_page(folio, i);
3997 		inner_folio = page_folio(subpage);
3998 		if (hstate_is_gigantic(target_hstate))
3999 			prep_compound_gigantic_folio_for_demote(inner_folio,
4000 							target_hstate->order);
4001 		else
4002 			prep_compound_page(subpage, target_hstate->order);
4003 		folio_change_private(inner_folio, NULL);
4004 		prep_new_hugetlb_folio(target_hstate, inner_folio, nid);
4005 		free_huge_folio(inner_folio);
4006 	}
4007 	mutex_unlock(&target_hstate->resize_lock);
4008 
4009 	spin_lock_irq(&hugetlb_lock);
4010 
4011 	/*
4012 	 * Not absolutely necessary, but for consistency update max_huge_pages
4013 	 * based on pool changes for the demoted page.
4014 	 */
4015 	h->max_huge_pages--;
4016 	target_hstate->max_huge_pages +=
4017 		pages_per_huge_page(h) / pages_per_huge_page(target_hstate);
4018 
4019 	return rc;
4020 }
4021 
4022 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
4023 	__must_hold(&hugetlb_lock)
4024 {
4025 	int nr_nodes, node;
4026 	struct folio *folio;
4027 
4028 	lockdep_assert_held(&hugetlb_lock);
4029 
4030 	/* We should never get here if no demote order */
4031 	if (!h->demote_order) {
4032 		pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
4033 		return -EINVAL;		/* internal error */
4034 	}
4035 
4036 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
4037 		list_for_each_entry(folio, &h->hugepage_freelists[node], lru) {
4038 			if (folio_test_hwpoison(folio))
4039 				continue;
4040 			return demote_free_hugetlb_folio(h, folio);
4041 		}
4042 	}
4043 
4044 	/*
4045 	 * Only way to get here is if all pages on free lists are poisoned.
4046 	 * Return -EBUSY so that caller will not retry.
4047 	 */
4048 	return -EBUSY;
4049 }
4050 
4051 #define HSTATE_ATTR_RO(_name) \
4052 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
4053 
4054 #define HSTATE_ATTR_WO(_name) \
4055 	static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
4056 
4057 #define HSTATE_ATTR(_name) \
4058 	static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
4059 
4060 static struct kobject *hugepages_kobj;
4061 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
4062 
4063 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
4064 
4065 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
4066 {
4067 	int i;
4068 
4069 	for (i = 0; i < HUGE_MAX_HSTATE; i++)
4070 		if (hstate_kobjs[i] == kobj) {
4071 			if (nidp)
4072 				*nidp = NUMA_NO_NODE;
4073 			return &hstates[i];
4074 		}
4075 
4076 	return kobj_to_node_hstate(kobj, nidp);
4077 }
4078 
4079 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
4080 					struct kobj_attribute *attr, char *buf)
4081 {
4082 	struct hstate *h;
4083 	unsigned long nr_huge_pages;
4084 	int nid;
4085 
4086 	h = kobj_to_hstate(kobj, &nid);
4087 	if (nid == NUMA_NO_NODE)
4088 		nr_huge_pages = h->nr_huge_pages;
4089 	else
4090 		nr_huge_pages = h->nr_huge_pages_node[nid];
4091 
4092 	return sysfs_emit(buf, "%lu\n", nr_huge_pages);
4093 }
4094 
4095 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
4096 					   struct hstate *h, int nid,
4097 					   unsigned long count, size_t len)
4098 {
4099 	int err;
4100 	nodemask_t nodes_allowed, *n_mask;
4101 
4102 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
4103 		return -EINVAL;
4104 
4105 	if (nid == NUMA_NO_NODE) {
4106 		/*
4107 		 * global hstate attribute
4108 		 */
4109 		if (!(obey_mempolicy &&
4110 				init_nodemask_of_mempolicy(&nodes_allowed)))
4111 			n_mask = &node_states[N_MEMORY];
4112 		else
4113 			n_mask = &nodes_allowed;
4114 	} else {
4115 		/*
4116 		 * Node specific request.  count adjustment happens in
4117 		 * set_max_huge_pages() after acquiring hugetlb_lock.
4118 		 */
4119 		init_nodemask_of_node(&nodes_allowed, nid);
4120 		n_mask = &nodes_allowed;
4121 	}
4122 
4123 	err = set_max_huge_pages(h, count, nid, n_mask);
4124 
4125 	return err ? err : len;
4126 }
4127 
4128 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
4129 					 struct kobject *kobj, const char *buf,
4130 					 size_t len)
4131 {
4132 	struct hstate *h;
4133 	unsigned long count;
4134 	int nid;
4135 	int err;
4136 
4137 	err = kstrtoul(buf, 10, &count);
4138 	if (err)
4139 		return err;
4140 
4141 	h = kobj_to_hstate(kobj, &nid);
4142 	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
4143 }
4144 
4145 static ssize_t nr_hugepages_show(struct kobject *kobj,
4146 				       struct kobj_attribute *attr, char *buf)
4147 {
4148 	return nr_hugepages_show_common(kobj, attr, buf);
4149 }
4150 
4151 static ssize_t nr_hugepages_store(struct kobject *kobj,
4152 	       struct kobj_attribute *attr, const char *buf, size_t len)
4153 {
4154 	return nr_hugepages_store_common(false, kobj, buf, len);
4155 }
4156 HSTATE_ATTR(nr_hugepages);
4157 
4158 #ifdef CONFIG_NUMA
4159 
4160 /*
4161  * hstate attribute for optionally mempolicy-based constraint on persistent
4162  * huge page alloc/free.
4163  */
4164 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
4165 					   struct kobj_attribute *attr,
4166 					   char *buf)
4167 {
4168 	return nr_hugepages_show_common(kobj, attr, buf);
4169 }
4170 
4171 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
4172 	       struct kobj_attribute *attr, const char *buf, size_t len)
4173 {
4174 	return nr_hugepages_store_common(true, kobj, buf, len);
4175 }
4176 HSTATE_ATTR(nr_hugepages_mempolicy);
4177 #endif
4178 
4179 
4180 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
4181 					struct kobj_attribute *attr, char *buf)
4182 {
4183 	struct hstate *h = kobj_to_hstate(kobj, NULL);
4184 	return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
4185 }
4186 
4187 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
4188 		struct kobj_attribute *attr, const char *buf, size_t count)
4189 {
4190 	int err;
4191 	unsigned long input;
4192 	struct hstate *h = kobj_to_hstate(kobj, NULL);
4193 
4194 	if (hstate_is_gigantic(h))
4195 		return -EINVAL;
4196 
4197 	err = kstrtoul(buf, 10, &input);
4198 	if (err)
4199 		return err;
4200 
4201 	spin_lock_irq(&hugetlb_lock);
4202 	h->nr_overcommit_huge_pages = input;
4203 	spin_unlock_irq(&hugetlb_lock);
4204 
4205 	return count;
4206 }
4207 HSTATE_ATTR(nr_overcommit_hugepages);
4208 
4209 static ssize_t free_hugepages_show(struct kobject *kobj,
4210 					struct kobj_attribute *attr, char *buf)
4211 {
4212 	struct hstate *h;
4213 	unsigned long free_huge_pages;
4214 	int nid;
4215 
4216 	h = kobj_to_hstate(kobj, &nid);
4217 	if (nid == NUMA_NO_NODE)
4218 		free_huge_pages = h->free_huge_pages;
4219 	else
4220 		free_huge_pages = h->free_huge_pages_node[nid];
4221 
4222 	return sysfs_emit(buf, "%lu\n", free_huge_pages);
4223 }
4224 HSTATE_ATTR_RO(free_hugepages);
4225 
4226 static ssize_t resv_hugepages_show(struct kobject *kobj,
4227 					struct kobj_attribute *attr, char *buf)
4228 {
4229 	struct hstate *h = kobj_to_hstate(kobj, NULL);
4230 	return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
4231 }
4232 HSTATE_ATTR_RO(resv_hugepages);
4233 
4234 static ssize_t surplus_hugepages_show(struct kobject *kobj,
4235 					struct kobj_attribute *attr, char *buf)
4236 {
4237 	struct hstate *h;
4238 	unsigned long surplus_huge_pages;
4239 	int nid;
4240 
4241 	h = kobj_to_hstate(kobj, &nid);
4242 	if (nid == NUMA_NO_NODE)
4243 		surplus_huge_pages = h->surplus_huge_pages;
4244 	else
4245 		surplus_huge_pages = h->surplus_huge_pages_node[nid];
4246 
4247 	return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
4248 }
4249 HSTATE_ATTR_RO(surplus_hugepages);
4250 
4251 static ssize_t demote_store(struct kobject *kobj,
4252 	       struct kobj_attribute *attr, const char *buf, size_t len)
4253 {
4254 	unsigned long nr_demote;
4255 	unsigned long nr_available;
4256 	nodemask_t nodes_allowed, *n_mask;
4257 	struct hstate *h;
4258 	int err;
4259 	int nid;
4260 
4261 	err = kstrtoul(buf, 10, &nr_demote);
4262 	if (err)
4263 		return err;
4264 	h = kobj_to_hstate(kobj, &nid);
4265 
4266 	if (nid != NUMA_NO_NODE) {
4267 		init_nodemask_of_node(&nodes_allowed, nid);
4268 		n_mask = &nodes_allowed;
4269 	} else {
4270 		n_mask = &node_states[N_MEMORY];
4271 	}
4272 
4273 	/* Synchronize with other sysfs operations modifying huge pages */
4274 	mutex_lock(&h->resize_lock);
4275 	spin_lock_irq(&hugetlb_lock);
4276 
4277 	while (nr_demote) {
4278 		/*
4279 		 * Check for available pages to demote each time thorough the
4280 		 * loop as demote_pool_huge_page will drop hugetlb_lock.
4281 		 */
4282 		if (nid != NUMA_NO_NODE)
4283 			nr_available = h->free_huge_pages_node[nid];
4284 		else
4285 			nr_available = h->free_huge_pages;
4286 		nr_available -= h->resv_huge_pages;
4287 		if (!nr_available)
4288 			break;
4289 
4290 		err = demote_pool_huge_page(h, n_mask);
4291 		if (err)
4292 			break;
4293 
4294 		nr_demote--;
4295 	}
4296 
4297 	spin_unlock_irq(&hugetlb_lock);
4298 	mutex_unlock(&h->resize_lock);
4299 
4300 	if (err)
4301 		return err;
4302 	return len;
4303 }
4304 HSTATE_ATTR_WO(demote);
4305 
4306 static ssize_t demote_size_show(struct kobject *kobj,
4307 					struct kobj_attribute *attr, char *buf)
4308 {
4309 	struct hstate *h = kobj_to_hstate(kobj, NULL);
4310 	unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
4311 
4312 	return sysfs_emit(buf, "%lukB\n", demote_size);
4313 }
4314 
4315 static ssize_t demote_size_store(struct kobject *kobj,
4316 					struct kobj_attribute *attr,
4317 					const char *buf, size_t count)
4318 {
4319 	struct hstate *h, *demote_hstate;
4320 	unsigned long demote_size;
4321 	unsigned int demote_order;
4322 
4323 	demote_size = (unsigned long)memparse(buf, NULL);
4324 
4325 	demote_hstate = size_to_hstate(demote_size);
4326 	if (!demote_hstate)
4327 		return -EINVAL;
4328 	demote_order = demote_hstate->order;
4329 	if (demote_order < HUGETLB_PAGE_ORDER)
4330 		return -EINVAL;
4331 
4332 	/* demote order must be smaller than hstate order */
4333 	h = kobj_to_hstate(kobj, NULL);
4334 	if (demote_order >= h->order)
4335 		return -EINVAL;
4336 
4337 	/* resize_lock synchronizes access to demote size and writes */
4338 	mutex_lock(&h->resize_lock);
4339 	h->demote_order = demote_order;
4340 	mutex_unlock(&h->resize_lock);
4341 
4342 	return count;
4343 }
4344 HSTATE_ATTR(demote_size);
4345 
4346 static struct attribute *hstate_attrs[] = {
4347 	&nr_hugepages_attr.attr,
4348 	&nr_overcommit_hugepages_attr.attr,
4349 	&free_hugepages_attr.attr,
4350 	&resv_hugepages_attr.attr,
4351 	&surplus_hugepages_attr.attr,
4352 #ifdef CONFIG_NUMA
4353 	&nr_hugepages_mempolicy_attr.attr,
4354 #endif
4355 	NULL,
4356 };
4357 
4358 static const struct attribute_group hstate_attr_group = {
4359 	.attrs = hstate_attrs,
4360 };
4361 
4362 static struct attribute *hstate_demote_attrs[] = {
4363 	&demote_size_attr.attr,
4364 	&demote_attr.attr,
4365 	NULL,
4366 };
4367 
4368 static const struct attribute_group hstate_demote_attr_group = {
4369 	.attrs = hstate_demote_attrs,
4370 };
4371 
4372 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
4373 				    struct kobject **hstate_kobjs,
4374 				    const struct attribute_group *hstate_attr_group)
4375 {
4376 	int retval;
4377 	int hi = hstate_index(h);
4378 
4379 	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
4380 	if (!hstate_kobjs[hi])
4381 		return -ENOMEM;
4382 
4383 	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
4384 	if (retval) {
4385 		kobject_put(hstate_kobjs[hi]);
4386 		hstate_kobjs[hi] = NULL;
4387 		return retval;
4388 	}
4389 
4390 	if (h->demote_order) {
4391 		retval = sysfs_create_group(hstate_kobjs[hi],
4392 					    &hstate_demote_attr_group);
4393 		if (retval) {
4394 			pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
4395 			sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
4396 			kobject_put(hstate_kobjs[hi]);
4397 			hstate_kobjs[hi] = NULL;
4398 			return retval;
4399 		}
4400 	}
4401 
4402 	return 0;
4403 }
4404 
4405 #ifdef CONFIG_NUMA
4406 static bool hugetlb_sysfs_initialized __ro_after_init;
4407 
4408 /*
4409  * node_hstate/s - associate per node hstate attributes, via their kobjects,
4410  * with node devices in node_devices[] using a parallel array.  The array
4411  * index of a node device or _hstate == node id.
4412  * This is here to avoid any static dependency of the node device driver, in
4413  * the base kernel, on the hugetlb module.
4414  */
4415 struct node_hstate {
4416 	struct kobject		*hugepages_kobj;
4417 	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
4418 };
4419 static struct node_hstate node_hstates[MAX_NUMNODES];
4420 
4421 /*
4422  * A subset of global hstate attributes for node devices
4423  */
4424 static struct attribute *per_node_hstate_attrs[] = {
4425 	&nr_hugepages_attr.attr,
4426 	&free_hugepages_attr.attr,
4427 	&surplus_hugepages_attr.attr,
4428 	NULL,
4429 };
4430 
4431 static const struct attribute_group per_node_hstate_attr_group = {
4432 	.attrs = per_node_hstate_attrs,
4433 };
4434 
4435 /*
4436  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
4437  * Returns node id via non-NULL nidp.
4438  */
4439 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4440 {
4441 	int nid;
4442 
4443 	for (nid = 0; nid < nr_node_ids; nid++) {
4444 		struct node_hstate *nhs = &node_hstates[nid];
4445 		int i;
4446 		for (i = 0; i < HUGE_MAX_HSTATE; i++)
4447 			if (nhs->hstate_kobjs[i] == kobj) {
4448 				if (nidp)
4449 					*nidp = nid;
4450 				return &hstates[i];
4451 			}
4452 	}
4453 
4454 	BUG();
4455 	return NULL;
4456 }
4457 
4458 /*
4459  * Unregister hstate attributes from a single node device.
4460  * No-op if no hstate attributes attached.
4461  */
4462 void hugetlb_unregister_node(struct node *node)
4463 {
4464 	struct hstate *h;
4465 	struct node_hstate *nhs = &node_hstates[node->dev.id];
4466 
4467 	if (!nhs->hugepages_kobj)
4468 		return;		/* no hstate attributes */
4469 
4470 	for_each_hstate(h) {
4471 		int idx = hstate_index(h);
4472 		struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
4473 
4474 		if (!hstate_kobj)
4475 			continue;
4476 		if (h->demote_order)
4477 			sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
4478 		sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
4479 		kobject_put(hstate_kobj);
4480 		nhs->hstate_kobjs[idx] = NULL;
4481 	}
4482 
4483 	kobject_put(nhs->hugepages_kobj);
4484 	nhs->hugepages_kobj = NULL;
4485 }
4486 
4487 
4488 /*
4489  * Register hstate attributes for a single node device.
4490  * No-op if attributes already registered.
4491  */
4492 void hugetlb_register_node(struct node *node)
4493 {
4494 	struct hstate *h;
4495 	struct node_hstate *nhs = &node_hstates[node->dev.id];
4496 	int err;
4497 
4498 	if (!hugetlb_sysfs_initialized)
4499 		return;
4500 
4501 	if (nhs->hugepages_kobj)
4502 		return;		/* already allocated */
4503 
4504 	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
4505 							&node->dev.kobj);
4506 	if (!nhs->hugepages_kobj)
4507 		return;
4508 
4509 	for_each_hstate(h) {
4510 		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
4511 						nhs->hstate_kobjs,
4512 						&per_node_hstate_attr_group);
4513 		if (err) {
4514 			pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
4515 				h->name, node->dev.id);
4516 			hugetlb_unregister_node(node);
4517 			break;
4518 		}
4519 	}
4520 }
4521 
4522 /*
4523  * hugetlb init time:  register hstate attributes for all registered node
4524  * devices of nodes that have memory.  All on-line nodes should have
4525  * registered their associated device by this time.
4526  */
4527 static void __init hugetlb_register_all_nodes(void)
4528 {
4529 	int nid;
4530 
4531 	for_each_online_node(nid)
4532 		hugetlb_register_node(node_devices[nid]);
4533 }
4534 #else	/* !CONFIG_NUMA */
4535 
4536 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4537 {
4538 	BUG();
4539 	if (nidp)
4540 		*nidp = -1;
4541 	return NULL;
4542 }
4543 
4544 static void hugetlb_register_all_nodes(void) { }
4545 
4546 #endif
4547 
4548 #ifdef CONFIG_CMA
4549 static void __init hugetlb_cma_check(void);
4550 #else
4551 static inline __init void hugetlb_cma_check(void)
4552 {
4553 }
4554 #endif
4555 
4556 static void __init hugetlb_sysfs_init(void)
4557 {
4558 	struct hstate *h;
4559 	int err;
4560 
4561 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
4562 	if (!hugepages_kobj)
4563 		return;
4564 
4565 	for_each_hstate(h) {
4566 		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
4567 					 hstate_kobjs, &hstate_attr_group);
4568 		if (err)
4569 			pr_err("HugeTLB: Unable to add hstate %s", h->name);
4570 	}
4571 
4572 #ifdef CONFIG_NUMA
4573 	hugetlb_sysfs_initialized = true;
4574 #endif
4575 	hugetlb_register_all_nodes();
4576 }
4577 
4578 #ifdef CONFIG_SYSCTL
4579 static void hugetlb_sysctl_init(void);
4580 #else
4581 static inline void hugetlb_sysctl_init(void) { }
4582 #endif
4583 
4584 static int __init hugetlb_init(void)
4585 {
4586 	int i;
4587 
4588 	BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4589 			__NR_HPAGEFLAGS);
4590 
4591 	if (!hugepages_supported()) {
4592 		if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4593 			pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4594 		return 0;
4595 	}
4596 
4597 	/*
4598 	 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
4599 	 * architectures depend on setup being done here.
4600 	 */
4601 	hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4602 	if (!parsed_default_hugepagesz) {
4603 		/*
4604 		 * If we did not parse a default huge page size, set
4605 		 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4606 		 * number of huge pages for this default size was implicitly
4607 		 * specified, set that here as well.
4608 		 * Note that the implicit setting will overwrite an explicit
4609 		 * setting.  A warning will be printed in this case.
4610 		 */
4611 		default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4612 		if (default_hstate_max_huge_pages) {
4613 			if (default_hstate.max_huge_pages) {
4614 				char buf[32];
4615 
4616 				string_get_size(huge_page_size(&default_hstate),
4617 					1, STRING_UNITS_2, buf, 32);
4618 				pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4619 					default_hstate.max_huge_pages, buf);
4620 				pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4621 					default_hstate_max_huge_pages);
4622 			}
4623 			default_hstate.max_huge_pages =
4624 				default_hstate_max_huge_pages;
4625 
4626 			for_each_online_node(i)
4627 				default_hstate.max_huge_pages_node[i] =
4628 					default_hugepages_in_node[i];
4629 		}
4630 	}
4631 
4632 	hugetlb_cma_check();
4633 	hugetlb_init_hstates();
4634 	gather_bootmem_prealloc();
4635 	report_hugepages();
4636 
4637 	hugetlb_sysfs_init();
4638 	hugetlb_cgroup_file_init();
4639 	hugetlb_sysctl_init();
4640 
4641 #ifdef CONFIG_SMP
4642 	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4643 #else
4644 	num_fault_mutexes = 1;
4645 #endif
4646 	hugetlb_fault_mutex_table =
4647 		kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4648 			      GFP_KERNEL);
4649 	BUG_ON(!hugetlb_fault_mutex_table);
4650 
4651 	for (i = 0; i < num_fault_mutexes; i++)
4652 		mutex_init(&hugetlb_fault_mutex_table[i]);
4653 	return 0;
4654 }
4655 subsys_initcall(hugetlb_init);
4656 
4657 /* Overwritten by architectures with more huge page sizes */
4658 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4659 {
4660 	return size == HPAGE_SIZE;
4661 }
4662 
4663 void __init hugetlb_add_hstate(unsigned int order)
4664 {
4665 	struct hstate *h;
4666 	unsigned long i;
4667 
4668 	if (size_to_hstate(PAGE_SIZE << order)) {
4669 		return;
4670 	}
4671 	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4672 	BUG_ON(order < order_base_2(__NR_USED_SUBPAGE));
4673 	h = &hstates[hugetlb_max_hstate++];
4674 	mutex_init(&h->resize_lock);
4675 	h->order = order;
4676 	h->mask = ~(huge_page_size(h) - 1);
4677 	for (i = 0; i < MAX_NUMNODES; ++i)
4678 		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4679 	INIT_LIST_HEAD(&h->hugepage_activelist);
4680 	h->next_nid_to_alloc = first_memory_node;
4681 	h->next_nid_to_free = first_memory_node;
4682 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4683 					huge_page_size(h)/SZ_1K);
4684 
4685 	parsed_hstate = h;
4686 }
4687 
4688 bool __init __weak hugetlb_node_alloc_supported(void)
4689 {
4690 	return true;
4691 }
4692 
4693 static void __init hugepages_clear_pages_in_node(void)
4694 {
4695 	if (!hugetlb_max_hstate) {
4696 		default_hstate_max_huge_pages = 0;
4697 		memset(default_hugepages_in_node, 0,
4698 			sizeof(default_hugepages_in_node));
4699 	} else {
4700 		parsed_hstate->max_huge_pages = 0;
4701 		memset(parsed_hstate->max_huge_pages_node, 0,
4702 			sizeof(parsed_hstate->max_huge_pages_node));
4703 	}
4704 }
4705 
4706 /*
4707  * hugepages command line processing
4708  * hugepages normally follows a valid hugepagsz or default_hugepagsz
4709  * specification.  If not, ignore the hugepages value.  hugepages can also
4710  * be the first huge page command line  option in which case it implicitly
4711  * specifies the number of huge pages for the default size.
4712  */
4713 static int __init hugepages_setup(char *s)
4714 {
4715 	unsigned long *mhp;
4716 	static unsigned long *last_mhp;
4717 	int node = NUMA_NO_NODE;
4718 	int count;
4719 	unsigned long tmp;
4720 	char *p = s;
4721 
4722 	if (!parsed_valid_hugepagesz) {
4723 		pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4724 		parsed_valid_hugepagesz = true;
4725 		return 1;
4726 	}
4727 
4728 	/*
4729 	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4730 	 * yet, so this hugepages= parameter goes to the "default hstate".
4731 	 * Otherwise, it goes with the previously parsed hugepagesz or
4732 	 * default_hugepagesz.
4733 	 */
4734 	else if (!hugetlb_max_hstate)
4735 		mhp = &default_hstate_max_huge_pages;
4736 	else
4737 		mhp = &parsed_hstate->max_huge_pages;
4738 
4739 	if (mhp == last_mhp) {
4740 		pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4741 		return 1;
4742 	}
4743 
4744 	while (*p) {
4745 		count = 0;
4746 		if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4747 			goto invalid;
4748 		/* Parameter is node format */
4749 		if (p[count] == ':') {
4750 			if (!hugetlb_node_alloc_supported()) {
4751 				pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4752 				return 1;
4753 			}
4754 			if (tmp >= MAX_NUMNODES || !node_online(tmp))
4755 				goto invalid;
4756 			node = array_index_nospec(tmp, MAX_NUMNODES);
4757 			p += count + 1;
4758 			/* Parse hugepages */
4759 			if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4760 				goto invalid;
4761 			if (!hugetlb_max_hstate)
4762 				default_hugepages_in_node[node] = tmp;
4763 			else
4764 				parsed_hstate->max_huge_pages_node[node] = tmp;
4765 			*mhp += tmp;
4766 			/* Go to parse next node*/
4767 			if (p[count] == ',')
4768 				p += count + 1;
4769 			else
4770 				break;
4771 		} else {
4772 			if (p != s)
4773 				goto invalid;
4774 			*mhp = tmp;
4775 			break;
4776 		}
4777 	}
4778 
4779 	/*
4780 	 * Global state is always initialized later in hugetlb_init.
4781 	 * But we need to allocate gigantic hstates here early to still
4782 	 * use the bootmem allocator.
4783 	 */
4784 	if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4785 		hugetlb_hstate_alloc_pages(parsed_hstate);
4786 
4787 	last_mhp = mhp;
4788 
4789 	return 1;
4790 
4791 invalid:
4792 	pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4793 	hugepages_clear_pages_in_node();
4794 	return 1;
4795 }
4796 __setup("hugepages=", hugepages_setup);
4797 
4798 /*
4799  * hugepagesz command line processing
4800  * A specific huge page size can only be specified once with hugepagesz.
4801  * hugepagesz is followed by hugepages on the command line.  The global
4802  * variable 'parsed_valid_hugepagesz' is used to determine if prior
4803  * hugepagesz argument was valid.
4804  */
4805 static int __init hugepagesz_setup(char *s)
4806 {
4807 	unsigned long size;
4808 	struct hstate *h;
4809 
4810 	parsed_valid_hugepagesz = false;
4811 	size = (unsigned long)memparse(s, NULL);
4812 
4813 	if (!arch_hugetlb_valid_size(size)) {
4814 		pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4815 		return 1;
4816 	}
4817 
4818 	h = size_to_hstate(size);
4819 	if (h) {
4820 		/*
4821 		 * hstate for this size already exists.  This is normally
4822 		 * an error, but is allowed if the existing hstate is the
4823 		 * default hstate.  More specifically, it is only allowed if
4824 		 * the number of huge pages for the default hstate was not
4825 		 * previously specified.
4826 		 */
4827 		if (!parsed_default_hugepagesz ||  h != &default_hstate ||
4828 		    default_hstate.max_huge_pages) {
4829 			pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4830 			return 1;
4831 		}
4832 
4833 		/*
4834 		 * No need to call hugetlb_add_hstate() as hstate already
4835 		 * exists.  But, do set parsed_hstate so that a following
4836 		 * hugepages= parameter will be applied to this hstate.
4837 		 */
4838 		parsed_hstate = h;
4839 		parsed_valid_hugepagesz = true;
4840 		return 1;
4841 	}
4842 
4843 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4844 	parsed_valid_hugepagesz = true;
4845 	return 1;
4846 }
4847 __setup("hugepagesz=", hugepagesz_setup);
4848 
4849 /*
4850  * default_hugepagesz command line input
4851  * Only one instance of default_hugepagesz allowed on command line.
4852  */
4853 static int __init default_hugepagesz_setup(char *s)
4854 {
4855 	unsigned long size;
4856 	int i;
4857 
4858 	parsed_valid_hugepagesz = false;
4859 	if (parsed_default_hugepagesz) {
4860 		pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4861 		return 1;
4862 	}
4863 
4864 	size = (unsigned long)memparse(s, NULL);
4865 
4866 	if (!arch_hugetlb_valid_size(size)) {
4867 		pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4868 		return 1;
4869 	}
4870 
4871 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4872 	parsed_valid_hugepagesz = true;
4873 	parsed_default_hugepagesz = true;
4874 	default_hstate_idx = hstate_index(size_to_hstate(size));
4875 
4876 	/*
4877 	 * The number of default huge pages (for this size) could have been
4878 	 * specified as the first hugetlb parameter: hugepages=X.  If so,
4879 	 * then default_hstate_max_huge_pages is set.  If the default huge
4880 	 * page size is gigantic (> MAX_PAGE_ORDER), then the pages must be
4881 	 * allocated here from bootmem allocator.
4882 	 */
4883 	if (default_hstate_max_huge_pages) {
4884 		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4885 		for_each_online_node(i)
4886 			default_hstate.max_huge_pages_node[i] =
4887 				default_hugepages_in_node[i];
4888 		if (hstate_is_gigantic(&default_hstate))
4889 			hugetlb_hstate_alloc_pages(&default_hstate);
4890 		default_hstate_max_huge_pages = 0;
4891 	}
4892 
4893 	return 1;
4894 }
4895 __setup("default_hugepagesz=", default_hugepagesz_setup);
4896 
4897 static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
4898 {
4899 #ifdef CONFIG_NUMA
4900 	struct mempolicy *mpol = get_task_policy(current);
4901 
4902 	/*
4903 	 * Only enforce MPOL_BIND policy which overlaps with cpuset policy
4904 	 * (from policy_nodemask) specifically for hugetlb case
4905 	 */
4906 	if (mpol->mode == MPOL_BIND &&
4907 		(apply_policy_zone(mpol, gfp_zone(gfp)) &&
4908 		 cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
4909 		return &mpol->nodes;
4910 #endif
4911 	return NULL;
4912 }
4913 
4914 static unsigned int allowed_mems_nr(struct hstate *h)
4915 {
4916 	int node;
4917 	unsigned int nr = 0;
4918 	nodemask_t *mbind_nodemask;
4919 	unsigned int *array = h->free_huge_pages_node;
4920 	gfp_t gfp_mask = htlb_alloc_mask(h);
4921 
4922 	mbind_nodemask = policy_mbind_nodemask(gfp_mask);
4923 	for_each_node_mask(node, cpuset_current_mems_allowed) {
4924 		if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
4925 			nr += array[node];
4926 	}
4927 
4928 	return nr;
4929 }
4930 
4931 #ifdef CONFIG_SYSCTL
4932 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
4933 					  void *buffer, size_t *length,
4934 					  loff_t *ppos, unsigned long *out)
4935 {
4936 	struct ctl_table dup_table;
4937 
4938 	/*
4939 	 * In order to avoid races with __do_proc_doulongvec_minmax(), we
4940 	 * can duplicate the @table and alter the duplicate of it.
4941 	 */
4942 	dup_table = *table;
4943 	dup_table.data = out;
4944 
4945 	return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4946 }
4947 
4948 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4949 			 struct ctl_table *table, int write,
4950 			 void *buffer, size_t *length, loff_t *ppos)
4951 {
4952 	struct hstate *h = &default_hstate;
4953 	unsigned long tmp = h->max_huge_pages;
4954 	int ret;
4955 
4956 	if (!hugepages_supported())
4957 		return -EOPNOTSUPP;
4958 
4959 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4960 					     &tmp);
4961 	if (ret)
4962 		goto out;
4963 
4964 	if (write)
4965 		ret = __nr_hugepages_store_common(obey_mempolicy, h,
4966 						  NUMA_NO_NODE, tmp, *length);
4967 out:
4968 	return ret;
4969 }
4970 
4971 static int hugetlb_sysctl_handler(struct ctl_table *table, int write,
4972 			  void *buffer, size_t *length, loff_t *ppos)
4973 {
4974 
4975 	return hugetlb_sysctl_handler_common(false, table, write,
4976 							buffer, length, ppos);
4977 }
4978 
4979 #ifdef CONFIG_NUMA
4980 static int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
4981 			  void *buffer, size_t *length, loff_t *ppos)
4982 {
4983 	return hugetlb_sysctl_handler_common(true, table, write,
4984 							buffer, length, ppos);
4985 }
4986 #endif /* CONFIG_NUMA */
4987 
4988 static int hugetlb_overcommit_handler(struct ctl_table *table, int write,
4989 		void *buffer, size_t *length, loff_t *ppos)
4990 {
4991 	struct hstate *h = &default_hstate;
4992 	unsigned long tmp;
4993 	int ret;
4994 
4995 	if (!hugepages_supported())
4996 		return -EOPNOTSUPP;
4997 
4998 	tmp = h->nr_overcommit_huge_pages;
4999 
5000 	if (write && hstate_is_gigantic(h))
5001 		return -EINVAL;
5002 
5003 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
5004 					     &tmp);
5005 	if (ret)
5006 		goto out;
5007 
5008 	if (write) {
5009 		spin_lock_irq(&hugetlb_lock);
5010 		h->nr_overcommit_huge_pages = tmp;
5011 		spin_unlock_irq(&hugetlb_lock);
5012 	}
5013 out:
5014 	return ret;
5015 }
5016 
5017 static struct ctl_table hugetlb_table[] = {
5018 	{
5019 		.procname	= "nr_hugepages",
5020 		.data		= NULL,
5021 		.maxlen		= sizeof(unsigned long),
5022 		.mode		= 0644,
5023 		.proc_handler	= hugetlb_sysctl_handler,
5024 	},
5025 #ifdef CONFIG_NUMA
5026 	{
5027 		.procname       = "nr_hugepages_mempolicy",
5028 		.data           = NULL,
5029 		.maxlen         = sizeof(unsigned long),
5030 		.mode           = 0644,
5031 		.proc_handler   = &hugetlb_mempolicy_sysctl_handler,
5032 	},
5033 #endif
5034 	{
5035 		.procname	= "hugetlb_shm_group",
5036 		.data		= &sysctl_hugetlb_shm_group,
5037 		.maxlen		= sizeof(gid_t),
5038 		.mode		= 0644,
5039 		.proc_handler	= proc_dointvec,
5040 	},
5041 	{
5042 		.procname	= "nr_overcommit_hugepages",
5043 		.data		= NULL,
5044 		.maxlen		= sizeof(unsigned long),
5045 		.mode		= 0644,
5046 		.proc_handler	= hugetlb_overcommit_handler,
5047 	},
5048 	{ }
5049 };
5050 
5051 static void hugetlb_sysctl_init(void)
5052 {
5053 	register_sysctl_init("vm", hugetlb_table);
5054 }
5055 #endif /* CONFIG_SYSCTL */
5056 
5057 void hugetlb_report_meminfo(struct seq_file *m)
5058 {
5059 	struct hstate *h;
5060 	unsigned long total = 0;
5061 
5062 	if (!hugepages_supported())
5063 		return;
5064 
5065 	for_each_hstate(h) {
5066 		unsigned long count = h->nr_huge_pages;
5067 
5068 		total += huge_page_size(h) * count;
5069 
5070 		if (h == &default_hstate)
5071 			seq_printf(m,
5072 				   "HugePages_Total:   %5lu\n"
5073 				   "HugePages_Free:    %5lu\n"
5074 				   "HugePages_Rsvd:    %5lu\n"
5075 				   "HugePages_Surp:    %5lu\n"
5076 				   "Hugepagesize:   %8lu kB\n",
5077 				   count,
5078 				   h->free_huge_pages,
5079 				   h->resv_huge_pages,
5080 				   h->surplus_huge_pages,
5081 				   huge_page_size(h) / SZ_1K);
5082 	}
5083 
5084 	seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
5085 }
5086 
5087 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
5088 {
5089 	struct hstate *h = &default_hstate;
5090 
5091 	if (!hugepages_supported())
5092 		return 0;
5093 
5094 	return sysfs_emit_at(buf, len,
5095 			     "Node %d HugePages_Total: %5u\n"
5096 			     "Node %d HugePages_Free:  %5u\n"
5097 			     "Node %d HugePages_Surp:  %5u\n",
5098 			     nid, h->nr_huge_pages_node[nid],
5099 			     nid, h->free_huge_pages_node[nid],
5100 			     nid, h->surplus_huge_pages_node[nid]);
5101 }
5102 
5103 void hugetlb_show_meminfo_node(int nid)
5104 {
5105 	struct hstate *h;
5106 
5107 	if (!hugepages_supported())
5108 		return;
5109 
5110 	for_each_hstate(h)
5111 		printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
5112 			nid,
5113 			h->nr_huge_pages_node[nid],
5114 			h->free_huge_pages_node[nid],
5115 			h->surplus_huge_pages_node[nid],
5116 			huge_page_size(h) / SZ_1K);
5117 }
5118 
5119 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
5120 {
5121 	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
5122 		   K(atomic_long_read(&mm->hugetlb_usage)));
5123 }
5124 
5125 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
5126 unsigned long hugetlb_total_pages(void)
5127 {
5128 	struct hstate *h;
5129 	unsigned long nr_total_pages = 0;
5130 
5131 	for_each_hstate(h)
5132 		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
5133 	return nr_total_pages;
5134 }
5135 
5136 static int hugetlb_acct_memory(struct hstate *h, long delta)
5137 {
5138 	int ret = -ENOMEM;
5139 
5140 	if (!delta)
5141 		return 0;
5142 
5143 	spin_lock_irq(&hugetlb_lock);
5144 	/*
5145 	 * When cpuset is configured, it breaks the strict hugetlb page
5146 	 * reservation as the accounting is done on a global variable. Such
5147 	 * reservation is completely rubbish in the presence of cpuset because
5148 	 * the reservation is not checked against page availability for the
5149 	 * current cpuset. Application can still potentially OOM'ed by kernel
5150 	 * with lack of free htlb page in cpuset that the task is in.
5151 	 * Attempt to enforce strict accounting with cpuset is almost
5152 	 * impossible (or too ugly) because cpuset is too fluid that
5153 	 * task or memory node can be dynamically moved between cpusets.
5154 	 *
5155 	 * The change of semantics for shared hugetlb mapping with cpuset is
5156 	 * undesirable. However, in order to preserve some of the semantics,
5157 	 * we fall back to check against current free page availability as
5158 	 * a best attempt and hopefully to minimize the impact of changing
5159 	 * semantics that cpuset has.
5160 	 *
5161 	 * Apart from cpuset, we also have memory policy mechanism that
5162 	 * also determines from which node the kernel will allocate memory
5163 	 * in a NUMA system. So similar to cpuset, we also should consider
5164 	 * the memory policy of the current task. Similar to the description
5165 	 * above.
5166 	 */
5167 	if (delta > 0) {
5168 		if (gather_surplus_pages(h, delta) < 0)
5169 			goto out;
5170 
5171 		if (delta > allowed_mems_nr(h)) {
5172 			return_unused_surplus_pages(h, delta);
5173 			goto out;
5174 		}
5175 	}
5176 
5177 	ret = 0;
5178 	if (delta < 0)
5179 		return_unused_surplus_pages(h, (unsigned long) -delta);
5180 
5181 out:
5182 	spin_unlock_irq(&hugetlb_lock);
5183 	return ret;
5184 }
5185 
5186 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
5187 {
5188 	struct resv_map *resv = vma_resv_map(vma);
5189 
5190 	/*
5191 	 * HPAGE_RESV_OWNER indicates a private mapping.
5192 	 * This new VMA should share its siblings reservation map if present.
5193 	 * The VMA will only ever have a valid reservation map pointer where
5194 	 * it is being copied for another still existing VMA.  As that VMA
5195 	 * has a reference to the reservation map it cannot disappear until
5196 	 * after this open call completes.  It is therefore safe to take a
5197 	 * new reference here without additional locking.
5198 	 */
5199 	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
5200 		resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
5201 		kref_get(&resv->refs);
5202 	}
5203 
5204 	/*
5205 	 * vma_lock structure for sharable mappings is vma specific.
5206 	 * Clear old pointer (if copied via vm_area_dup) and allocate
5207 	 * new structure.  Before clearing, make sure vma_lock is not
5208 	 * for this vma.
5209 	 */
5210 	if (vma->vm_flags & VM_MAYSHARE) {
5211 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
5212 
5213 		if (vma_lock) {
5214 			if (vma_lock->vma != vma) {
5215 				vma->vm_private_data = NULL;
5216 				hugetlb_vma_lock_alloc(vma);
5217 			} else
5218 				pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__);
5219 		} else
5220 			hugetlb_vma_lock_alloc(vma);
5221 	}
5222 }
5223 
5224 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
5225 {
5226 	struct hstate *h = hstate_vma(vma);
5227 	struct resv_map *resv;
5228 	struct hugepage_subpool *spool = subpool_vma(vma);
5229 	unsigned long reserve, start, end;
5230 	long gbl_reserve;
5231 
5232 	hugetlb_vma_lock_free(vma);
5233 
5234 	resv = vma_resv_map(vma);
5235 	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5236 		return;
5237 
5238 	start = vma_hugecache_offset(h, vma, vma->vm_start);
5239 	end = vma_hugecache_offset(h, vma, vma->vm_end);
5240 
5241 	reserve = (end - start) - region_count(resv, start, end);
5242 	hugetlb_cgroup_uncharge_counter(resv, start, end);
5243 	if (reserve) {
5244 		/*
5245 		 * Decrement reserve counts.  The global reserve count may be
5246 		 * adjusted if the subpool has a minimum size.
5247 		 */
5248 		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
5249 		hugetlb_acct_memory(h, -gbl_reserve);
5250 	}
5251 
5252 	kref_put(&resv->refs, resv_map_release);
5253 }
5254 
5255 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
5256 {
5257 	if (addr & ~(huge_page_mask(hstate_vma(vma))))
5258 		return -EINVAL;
5259 
5260 	/*
5261 	 * PMD sharing is only possible for PUD_SIZE-aligned address ranges
5262 	 * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this
5263 	 * split, unshare PMDs in the PUD_SIZE interval surrounding addr now.
5264 	 */
5265 	if (addr & ~PUD_MASK) {
5266 		/*
5267 		 * hugetlb_vm_op_split is called right before we attempt to
5268 		 * split the VMA. We will need to unshare PMDs in the old and
5269 		 * new VMAs, so let's unshare before we split.
5270 		 */
5271 		unsigned long floor = addr & PUD_MASK;
5272 		unsigned long ceil = floor + PUD_SIZE;
5273 
5274 		if (floor >= vma->vm_start && ceil <= vma->vm_end)
5275 			hugetlb_unshare_pmds(vma, floor, ceil);
5276 	}
5277 
5278 	return 0;
5279 }
5280 
5281 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
5282 {
5283 	return huge_page_size(hstate_vma(vma));
5284 }
5285 
5286 /*
5287  * We cannot handle pagefaults against hugetlb pages at all.  They cause
5288  * handle_mm_fault() to try to instantiate regular-sized pages in the
5289  * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
5290  * this far.
5291  */
5292 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
5293 {
5294 	BUG();
5295 	return 0;
5296 }
5297 
5298 /*
5299  * When a new function is introduced to vm_operations_struct and added
5300  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
5301  * This is because under System V memory model, mappings created via
5302  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
5303  * their original vm_ops are overwritten with shm_vm_ops.
5304  */
5305 const struct vm_operations_struct hugetlb_vm_ops = {
5306 	.fault = hugetlb_vm_op_fault,
5307 	.open = hugetlb_vm_op_open,
5308 	.close = hugetlb_vm_op_close,
5309 	.may_split = hugetlb_vm_op_split,
5310 	.pagesize = hugetlb_vm_op_pagesize,
5311 };
5312 
5313 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
5314 				int writable)
5315 {
5316 	pte_t entry;
5317 	unsigned int shift = huge_page_shift(hstate_vma(vma));
5318 
5319 	if (writable) {
5320 		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
5321 					 vma->vm_page_prot)));
5322 	} else {
5323 		entry = huge_pte_wrprotect(mk_huge_pte(page,
5324 					   vma->vm_page_prot));
5325 	}
5326 	entry = pte_mkyoung(entry);
5327 	entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
5328 
5329 	return entry;
5330 }
5331 
5332 static void set_huge_ptep_writable(struct vm_area_struct *vma,
5333 				   unsigned long address, pte_t *ptep)
5334 {
5335 	pte_t entry;
5336 
5337 	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
5338 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
5339 		update_mmu_cache(vma, address, ptep);
5340 }
5341 
5342 bool is_hugetlb_entry_migration(pte_t pte)
5343 {
5344 	swp_entry_t swp;
5345 
5346 	if (huge_pte_none(pte) || pte_present(pte))
5347 		return false;
5348 	swp = pte_to_swp_entry(pte);
5349 	if (is_migration_entry(swp))
5350 		return true;
5351 	else
5352 		return false;
5353 }
5354 
5355 bool is_hugetlb_entry_hwpoisoned(pte_t pte)
5356 {
5357 	swp_entry_t swp;
5358 
5359 	if (huge_pte_none(pte) || pte_present(pte))
5360 		return false;
5361 	swp = pte_to_swp_entry(pte);
5362 	if (is_hwpoison_entry(swp))
5363 		return true;
5364 	else
5365 		return false;
5366 }
5367 
5368 static void
5369 hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
5370 		      struct folio *new_folio, pte_t old, unsigned long sz)
5371 {
5372 	pte_t newpte = make_huge_pte(vma, &new_folio->page, 1);
5373 
5374 	__folio_mark_uptodate(new_folio);
5375 	hugetlb_add_new_anon_rmap(new_folio, vma, addr);
5376 	if (userfaultfd_wp(vma) && huge_pte_uffd_wp(old))
5377 		newpte = huge_pte_mkuffd_wp(newpte);
5378 	set_huge_pte_at(vma->vm_mm, addr, ptep, newpte, sz);
5379 	hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
5380 	folio_set_hugetlb_migratable(new_folio);
5381 }
5382 
5383 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
5384 			    struct vm_area_struct *dst_vma,
5385 			    struct vm_area_struct *src_vma)
5386 {
5387 	pte_t *src_pte, *dst_pte, entry;
5388 	struct folio *pte_folio;
5389 	unsigned long addr;
5390 	bool cow = is_cow_mapping(src_vma->vm_flags);
5391 	struct hstate *h = hstate_vma(src_vma);
5392 	unsigned long sz = huge_page_size(h);
5393 	unsigned long npages = pages_per_huge_page(h);
5394 	struct mmu_notifier_range range;
5395 	unsigned long last_addr_mask;
5396 	int ret = 0;
5397 
5398 	if (cow) {
5399 		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src,
5400 					src_vma->vm_start,
5401 					src_vma->vm_end);
5402 		mmu_notifier_invalidate_range_start(&range);
5403 		vma_assert_write_locked(src_vma);
5404 		raw_write_seqcount_begin(&src->write_protect_seq);
5405 	} else {
5406 		/*
5407 		 * For shared mappings the vma lock must be held before
5408 		 * calling hugetlb_walk() in the src vma. Otherwise, the
5409 		 * returned ptep could go away if part of a shared pmd and
5410 		 * another thread calls huge_pmd_unshare.
5411 		 */
5412 		hugetlb_vma_lock_read(src_vma);
5413 	}
5414 
5415 	last_addr_mask = hugetlb_mask_last_page(h);
5416 	for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
5417 		spinlock_t *src_ptl, *dst_ptl;
5418 		src_pte = hugetlb_walk(src_vma, addr, sz);
5419 		if (!src_pte) {
5420 			addr |= last_addr_mask;
5421 			continue;
5422 		}
5423 		dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
5424 		if (!dst_pte) {
5425 			ret = -ENOMEM;
5426 			break;
5427 		}
5428 
5429 		/*
5430 		 * If the pagetables are shared don't copy or take references.
5431 		 *
5432 		 * dst_pte == src_pte is the common case of src/dest sharing.
5433 		 * However, src could have 'unshared' and dst shares with
5434 		 * another vma. So page_count of ptep page is checked instead
5435 		 * to reliably determine whether pte is shared.
5436 		 */
5437 		if (page_count(virt_to_page(dst_pte)) > 1) {
5438 			addr |= last_addr_mask;
5439 			continue;
5440 		}
5441 
5442 		dst_ptl = huge_pte_lock(h, dst, dst_pte);
5443 		src_ptl = huge_pte_lockptr(h, src, src_pte);
5444 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5445 		entry = huge_ptep_get(src_pte);
5446 again:
5447 		if (huge_pte_none(entry)) {
5448 			/*
5449 			 * Skip if src entry none.
5450 			 */
5451 			;
5452 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
5453 			if (!userfaultfd_wp(dst_vma))
5454 				entry = huge_pte_clear_uffd_wp(entry);
5455 			set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5456 		} else if (unlikely(is_hugetlb_entry_migration(entry))) {
5457 			swp_entry_t swp_entry = pte_to_swp_entry(entry);
5458 			bool uffd_wp = pte_swp_uffd_wp(entry);
5459 
5460 			if (!is_readable_migration_entry(swp_entry) && cow) {
5461 				/*
5462 				 * COW mappings require pages in both
5463 				 * parent and child to be set to read.
5464 				 */
5465 				swp_entry = make_readable_migration_entry(
5466 							swp_offset(swp_entry));
5467 				entry = swp_entry_to_pte(swp_entry);
5468 				if (userfaultfd_wp(src_vma) && uffd_wp)
5469 					entry = pte_swp_mkuffd_wp(entry);
5470 				set_huge_pte_at(src, addr, src_pte, entry, sz);
5471 			}
5472 			if (!userfaultfd_wp(dst_vma))
5473 				entry = huge_pte_clear_uffd_wp(entry);
5474 			set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5475 		} else if (unlikely(is_pte_marker(entry))) {
5476 			pte_marker marker = copy_pte_marker(
5477 				pte_to_swp_entry(entry), dst_vma);
5478 
5479 			if (marker)
5480 				set_huge_pte_at(dst, addr, dst_pte,
5481 						make_pte_marker(marker), sz);
5482 		} else {
5483 			entry = huge_ptep_get(src_pte);
5484 			pte_folio = page_folio(pte_page(entry));
5485 			folio_get(pte_folio);
5486 
5487 			/*
5488 			 * Failing to duplicate the anon rmap is a rare case
5489 			 * where we see pinned hugetlb pages while they're
5490 			 * prone to COW. We need to do the COW earlier during
5491 			 * fork.
5492 			 *
5493 			 * When pre-allocating the page or copying data, we
5494 			 * need to be without the pgtable locks since we could
5495 			 * sleep during the process.
5496 			 */
5497 			if (!folio_test_anon(pte_folio)) {
5498 				hugetlb_add_file_rmap(pte_folio);
5499 			} else if (hugetlb_try_dup_anon_rmap(pte_folio, src_vma)) {
5500 				pte_t src_pte_old = entry;
5501 				struct folio *new_folio;
5502 
5503 				spin_unlock(src_ptl);
5504 				spin_unlock(dst_ptl);
5505 				/* Do not use reserve as it's private owned */
5506 				new_folio = alloc_hugetlb_folio(dst_vma, addr, 1);
5507 				if (IS_ERR(new_folio)) {
5508 					folio_put(pte_folio);
5509 					ret = PTR_ERR(new_folio);
5510 					break;
5511 				}
5512 				ret = copy_user_large_folio(new_folio,
5513 							    pte_folio,
5514 							    addr, dst_vma);
5515 				folio_put(pte_folio);
5516 				if (ret) {
5517 					folio_put(new_folio);
5518 					break;
5519 				}
5520 
5521 				/* Install the new hugetlb folio if src pte stable */
5522 				dst_ptl = huge_pte_lock(h, dst, dst_pte);
5523 				src_ptl = huge_pte_lockptr(h, src, src_pte);
5524 				spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5525 				entry = huge_ptep_get(src_pte);
5526 				if (!pte_same(src_pte_old, entry)) {
5527 					restore_reserve_on_error(h, dst_vma, addr,
5528 								new_folio);
5529 					folio_put(new_folio);
5530 					/* huge_ptep of dst_pte won't change as in child */
5531 					goto again;
5532 				}
5533 				hugetlb_install_folio(dst_vma, dst_pte, addr,
5534 						      new_folio, src_pte_old, sz);
5535 				spin_unlock(src_ptl);
5536 				spin_unlock(dst_ptl);
5537 				continue;
5538 			}
5539 
5540 			if (cow) {
5541 				/*
5542 				 * No need to notify as we are downgrading page
5543 				 * table protection not changing it to point
5544 				 * to a new page.
5545 				 *
5546 				 * See Documentation/mm/mmu_notifier.rst
5547 				 */
5548 				huge_ptep_set_wrprotect(src, addr, src_pte);
5549 				entry = huge_pte_wrprotect(entry);
5550 			}
5551 
5552 			if (!userfaultfd_wp(dst_vma))
5553 				entry = huge_pte_clear_uffd_wp(entry);
5554 
5555 			set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5556 			hugetlb_count_add(npages, dst);
5557 		}
5558 		spin_unlock(src_ptl);
5559 		spin_unlock(dst_ptl);
5560 	}
5561 
5562 	if (cow) {
5563 		raw_write_seqcount_end(&src->write_protect_seq);
5564 		mmu_notifier_invalidate_range_end(&range);
5565 	} else {
5566 		hugetlb_vma_unlock_read(src_vma);
5567 	}
5568 
5569 	return ret;
5570 }
5571 
5572 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
5573 			  unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte,
5574 			  unsigned long sz)
5575 {
5576 	struct hstate *h = hstate_vma(vma);
5577 	struct mm_struct *mm = vma->vm_mm;
5578 	spinlock_t *src_ptl, *dst_ptl;
5579 	pte_t pte;
5580 
5581 	dst_ptl = huge_pte_lock(h, mm, dst_pte);
5582 	src_ptl = huge_pte_lockptr(h, mm, src_pte);
5583 
5584 	/*
5585 	 * We don't have to worry about the ordering of src and dst ptlocks
5586 	 * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock.
5587 	 */
5588 	if (src_ptl != dst_ptl)
5589 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5590 
5591 	pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
5592 	set_huge_pte_at(mm, new_addr, dst_pte, pte, sz);
5593 
5594 	if (src_ptl != dst_ptl)
5595 		spin_unlock(src_ptl);
5596 	spin_unlock(dst_ptl);
5597 }
5598 
5599 int move_hugetlb_page_tables(struct vm_area_struct *vma,
5600 			     struct vm_area_struct *new_vma,
5601 			     unsigned long old_addr, unsigned long new_addr,
5602 			     unsigned long len)
5603 {
5604 	struct hstate *h = hstate_vma(vma);
5605 	struct address_space *mapping = vma->vm_file->f_mapping;
5606 	unsigned long sz = huge_page_size(h);
5607 	struct mm_struct *mm = vma->vm_mm;
5608 	unsigned long old_end = old_addr + len;
5609 	unsigned long last_addr_mask;
5610 	pte_t *src_pte, *dst_pte;
5611 	struct mmu_notifier_range range;
5612 	bool shared_pmd = false;
5613 
5614 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr,
5615 				old_end);
5616 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5617 	/*
5618 	 * In case of shared PMDs, we should cover the maximum possible
5619 	 * range.
5620 	 */
5621 	flush_cache_range(vma, range.start, range.end);
5622 
5623 	mmu_notifier_invalidate_range_start(&range);
5624 	last_addr_mask = hugetlb_mask_last_page(h);
5625 	/* Prevent race with file truncation */
5626 	hugetlb_vma_lock_write(vma);
5627 	i_mmap_lock_write(mapping);
5628 	for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
5629 		src_pte = hugetlb_walk(vma, old_addr, sz);
5630 		if (!src_pte) {
5631 			old_addr |= last_addr_mask;
5632 			new_addr |= last_addr_mask;
5633 			continue;
5634 		}
5635 		if (huge_pte_none(huge_ptep_get(src_pte)))
5636 			continue;
5637 
5638 		if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
5639 			shared_pmd = true;
5640 			old_addr |= last_addr_mask;
5641 			new_addr |= last_addr_mask;
5642 			continue;
5643 		}
5644 
5645 		dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5646 		if (!dst_pte)
5647 			break;
5648 
5649 		move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte, sz);
5650 	}
5651 
5652 	if (shared_pmd)
5653 		flush_hugetlb_tlb_range(vma, range.start, range.end);
5654 	else
5655 		flush_hugetlb_tlb_range(vma, old_end - len, old_end);
5656 	mmu_notifier_invalidate_range_end(&range);
5657 	i_mmap_unlock_write(mapping);
5658 	hugetlb_vma_unlock_write(vma);
5659 
5660 	return len + old_addr - old_end;
5661 }
5662 
5663 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5664 			    unsigned long start, unsigned long end,
5665 			    struct page *ref_page, zap_flags_t zap_flags)
5666 {
5667 	struct mm_struct *mm = vma->vm_mm;
5668 	unsigned long address;
5669 	pte_t *ptep;
5670 	pte_t pte;
5671 	spinlock_t *ptl;
5672 	struct page *page;
5673 	struct hstate *h = hstate_vma(vma);
5674 	unsigned long sz = huge_page_size(h);
5675 	bool adjust_reservation = false;
5676 	unsigned long last_addr_mask;
5677 	bool force_flush = false;
5678 
5679 	WARN_ON(!is_vm_hugetlb_page(vma));
5680 	BUG_ON(start & ~huge_page_mask(h));
5681 	BUG_ON(end & ~huge_page_mask(h));
5682 
5683 	/*
5684 	 * This is a hugetlb vma, all the pte entries should point
5685 	 * to huge page.
5686 	 */
5687 	tlb_change_page_size(tlb, sz);
5688 	tlb_start_vma(tlb, vma);
5689 
5690 	last_addr_mask = hugetlb_mask_last_page(h);
5691 	address = start;
5692 	for (; address < end; address += sz) {
5693 		ptep = hugetlb_walk(vma, address, sz);
5694 		if (!ptep) {
5695 			address |= last_addr_mask;
5696 			continue;
5697 		}
5698 
5699 		ptl = huge_pte_lock(h, mm, ptep);
5700 		if (huge_pmd_unshare(mm, vma, address, ptep)) {
5701 			spin_unlock(ptl);
5702 			tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5703 			force_flush = true;
5704 			address |= last_addr_mask;
5705 			continue;
5706 		}
5707 
5708 		pte = huge_ptep_get(ptep);
5709 		if (huge_pte_none(pte)) {
5710 			spin_unlock(ptl);
5711 			continue;
5712 		}
5713 
5714 		/*
5715 		 * Migrating hugepage or HWPoisoned hugepage is already
5716 		 * unmapped and its refcount is dropped, so just clear pte here.
5717 		 */
5718 		if (unlikely(!pte_present(pte))) {
5719 			/*
5720 			 * If the pte was wr-protected by uffd-wp in any of the
5721 			 * swap forms, meanwhile the caller does not want to
5722 			 * drop the uffd-wp bit in this zap, then replace the
5723 			 * pte with a marker.
5724 			 */
5725 			if (pte_swp_uffd_wp_any(pte) &&
5726 			    !(zap_flags & ZAP_FLAG_DROP_MARKER))
5727 				set_huge_pte_at(mm, address, ptep,
5728 						make_pte_marker(PTE_MARKER_UFFD_WP),
5729 						sz);
5730 			else
5731 				huge_pte_clear(mm, address, ptep, sz);
5732 			spin_unlock(ptl);
5733 			continue;
5734 		}
5735 
5736 		page = pte_page(pte);
5737 		/*
5738 		 * If a reference page is supplied, it is because a specific
5739 		 * page is being unmapped, not a range. Ensure the page we
5740 		 * are about to unmap is the actual page of interest.
5741 		 */
5742 		if (ref_page) {
5743 			if (page != ref_page) {
5744 				spin_unlock(ptl);
5745 				continue;
5746 			}
5747 			/*
5748 			 * Mark the VMA as having unmapped its page so that
5749 			 * future faults in this VMA will fail rather than
5750 			 * looking like data was lost
5751 			 */
5752 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5753 		}
5754 
5755 		pte = huge_ptep_get_and_clear(mm, address, ptep);
5756 		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5757 		if (huge_pte_dirty(pte))
5758 			set_page_dirty(page);
5759 		/* Leave a uffd-wp pte marker if needed */
5760 		if (huge_pte_uffd_wp(pte) &&
5761 		    !(zap_flags & ZAP_FLAG_DROP_MARKER))
5762 			set_huge_pte_at(mm, address, ptep,
5763 					make_pte_marker(PTE_MARKER_UFFD_WP),
5764 					sz);
5765 		hugetlb_count_sub(pages_per_huge_page(h), mm);
5766 		hugetlb_remove_rmap(page_folio(page));
5767 
5768 		/*
5769 		 * Restore the reservation for anonymous page, otherwise the
5770 		 * backing page could be stolen by someone.
5771 		 * If there we are freeing a surplus, do not set the restore
5772 		 * reservation bit.
5773 		 */
5774 		if (!h->surplus_huge_pages && __vma_private_lock(vma) &&
5775 		    folio_test_anon(page_folio(page))) {
5776 			folio_set_hugetlb_restore_reserve(page_folio(page));
5777 			/* Reservation to be adjusted after the spin lock */
5778 			adjust_reservation = true;
5779 		}
5780 
5781 		spin_unlock(ptl);
5782 
5783 		/*
5784 		 * Adjust the reservation for the region that will have the
5785 		 * reserve restored. Keep in mind that vma_needs_reservation() changes
5786 		 * resv->adds_in_progress if it succeeds. If this is not done,
5787 		 * do_exit() will not see it, and will keep the reservation
5788 		 * forever.
5789 		 */
5790 		if (adjust_reservation && vma_needs_reservation(h, vma, address))
5791 			vma_add_reservation(h, vma, address);
5792 
5793 		tlb_remove_page_size(tlb, page, huge_page_size(h));
5794 		/*
5795 		 * Bail out after unmapping reference page if supplied
5796 		 */
5797 		if (ref_page)
5798 			break;
5799 	}
5800 	tlb_end_vma(tlb, vma);
5801 
5802 	/*
5803 	 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5804 	 * could defer the flush until now, since by holding i_mmap_rwsem we
5805 	 * guaranteed that the last refernece would not be dropped. But we must
5806 	 * do the flushing before we return, as otherwise i_mmap_rwsem will be
5807 	 * dropped and the last reference to the shared PMDs page might be
5808 	 * dropped as well.
5809 	 *
5810 	 * In theory we could defer the freeing of the PMD pages as well, but
5811 	 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5812 	 * detect sharing, so we cannot defer the release of the page either.
5813 	 * Instead, do flush now.
5814 	 */
5815 	if (force_flush)
5816 		tlb_flush_mmu_tlbonly(tlb);
5817 }
5818 
5819 void __hugetlb_zap_begin(struct vm_area_struct *vma,
5820 			 unsigned long *start, unsigned long *end)
5821 {
5822 	if (!vma->vm_file)	/* hugetlbfs_file_mmap error */
5823 		return;
5824 
5825 	adjust_range_if_pmd_sharing_possible(vma, start, end);
5826 	hugetlb_vma_lock_write(vma);
5827 	if (vma->vm_file)
5828 		i_mmap_lock_write(vma->vm_file->f_mapping);
5829 }
5830 
5831 void __hugetlb_zap_end(struct vm_area_struct *vma,
5832 		       struct zap_details *details)
5833 {
5834 	zap_flags_t zap_flags = details ? details->zap_flags : 0;
5835 
5836 	if (!vma->vm_file)	/* hugetlbfs_file_mmap error */
5837 		return;
5838 
5839 	if (zap_flags & ZAP_FLAG_UNMAP) {	/* final unmap */
5840 		/*
5841 		 * Unlock and free the vma lock before releasing i_mmap_rwsem.
5842 		 * When the vma_lock is freed, this makes the vma ineligible
5843 		 * for pmd sharing.  And, i_mmap_rwsem is required to set up
5844 		 * pmd sharing.  This is important as page tables for this
5845 		 * unmapped range will be asynchrously deleted.  If the page
5846 		 * tables are shared, there will be issues when accessed by
5847 		 * someone else.
5848 		 */
5849 		__hugetlb_vma_unlock_write_free(vma);
5850 	} else {
5851 		hugetlb_vma_unlock_write(vma);
5852 	}
5853 
5854 	if (vma->vm_file)
5855 		i_mmap_unlock_write(vma->vm_file->f_mapping);
5856 }
5857 
5858 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5859 			  unsigned long end, struct page *ref_page,
5860 			  zap_flags_t zap_flags)
5861 {
5862 	struct mmu_notifier_range range;
5863 	struct mmu_gather tlb;
5864 
5865 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
5866 				start, end);
5867 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5868 	mmu_notifier_invalidate_range_start(&range);
5869 	tlb_gather_mmu(&tlb, vma->vm_mm);
5870 
5871 	__unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
5872 
5873 	mmu_notifier_invalidate_range_end(&range);
5874 	tlb_finish_mmu(&tlb);
5875 }
5876 
5877 /*
5878  * This is called when the original mapper is failing to COW a MAP_PRIVATE
5879  * mapping it owns the reserve page for. The intention is to unmap the page
5880  * from other VMAs and let the children be SIGKILLed if they are faulting the
5881  * same region.
5882  */
5883 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5884 			      struct page *page, unsigned long address)
5885 {
5886 	struct hstate *h = hstate_vma(vma);
5887 	struct vm_area_struct *iter_vma;
5888 	struct address_space *mapping;
5889 	pgoff_t pgoff;
5890 
5891 	/*
5892 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5893 	 * from page cache lookup which is in HPAGE_SIZE units.
5894 	 */
5895 	address = address & huge_page_mask(h);
5896 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5897 			vma->vm_pgoff;
5898 	mapping = vma->vm_file->f_mapping;
5899 
5900 	/*
5901 	 * Take the mapping lock for the duration of the table walk. As
5902 	 * this mapping should be shared between all the VMAs,
5903 	 * __unmap_hugepage_range() is called as the lock is already held
5904 	 */
5905 	i_mmap_lock_write(mapping);
5906 	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5907 		/* Do not unmap the current VMA */
5908 		if (iter_vma == vma)
5909 			continue;
5910 
5911 		/*
5912 		 * Shared VMAs have their own reserves and do not affect
5913 		 * MAP_PRIVATE accounting but it is possible that a shared
5914 		 * VMA is using the same page so check and skip such VMAs.
5915 		 */
5916 		if (iter_vma->vm_flags & VM_MAYSHARE)
5917 			continue;
5918 
5919 		/*
5920 		 * Unmap the page from other VMAs without their own reserves.
5921 		 * They get marked to be SIGKILLed if they fault in these
5922 		 * areas. This is because a future no-page fault on this VMA
5923 		 * could insert a zeroed page instead of the data existing
5924 		 * from the time of fork. This would look like data corruption
5925 		 */
5926 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5927 			unmap_hugepage_range(iter_vma, address,
5928 					     address + huge_page_size(h), page, 0);
5929 	}
5930 	i_mmap_unlock_write(mapping);
5931 }
5932 
5933 /*
5934  * hugetlb_wp() should be called with page lock of the original hugepage held.
5935  * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5936  * cannot race with other handlers or page migration.
5937  * Keep the pte_same checks anyway to make transition from the mutex easier.
5938  */
5939 static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma,
5940 		       unsigned long address, pte_t *ptep, unsigned int flags,
5941 		       struct folio *pagecache_folio, spinlock_t *ptl,
5942 		       struct vm_fault *vmf)
5943 {
5944 	const bool unshare = flags & FAULT_FLAG_UNSHARE;
5945 	pte_t pte = huge_ptep_get(ptep);
5946 	struct hstate *h = hstate_vma(vma);
5947 	struct folio *old_folio;
5948 	struct folio *new_folio;
5949 	int outside_reserve = 0;
5950 	vm_fault_t ret = 0;
5951 	unsigned long haddr = address & huge_page_mask(h);
5952 	struct mmu_notifier_range range;
5953 
5954 	/*
5955 	 * Never handle CoW for uffd-wp protected pages.  It should be only
5956 	 * handled when the uffd-wp protection is removed.
5957 	 *
5958 	 * Note that only the CoW optimization path (in hugetlb_no_page())
5959 	 * can trigger this, because hugetlb_fault() will always resolve
5960 	 * uffd-wp bit first.
5961 	 */
5962 	if (!unshare && huge_pte_uffd_wp(pte))
5963 		return 0;
5964 
5965 	/*
5966 	 * hugetlb does not support FOLL_FORCE-style write faults that keep the
5967 	 * PTE mapped R/O such as maybe_mkwrite() would do.
5968 	 */
5969 	if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE)))
5970 		return VM_FAULT_SIGSEGV;
5971 
5972 	/* Let's take out MAP_SHARED mappings first. */
5973 	if (vma->vm_flags & VM_MAYSHARE) {
5974 		set_huge_ptep_writable(vma, haddr, ptep);
5975 		return 0;
5976 	}
5977 
5978 	old_folio = page_folio(pte_page(pte));
5979 
5980 	delayacct_wpcopy_start();
5981 
5982 retry_avoidcopy:
5983 	/*
5984 	 * If no-one else is actually using this page, we're the exclusive
5985 	 * owner and can reuse this page.
5986 	 */
5987 	if (folio_mapcount(old_folio) == 1 && folio_test_anon(old_folio)) {
5988 		if (!PageAnonExclusive(&old_folio->page)) {
5989 			folio_move_anon_rmap(old_folio, vma);
5990 			SetPageAnonExclusive(&old_folio->page);
5991 		}
5992 		if (likely(!unshare))
5993 			set_huge_ptep_writable(vma, haddr, ptep);
5994 
5995 		delayacct_wpcopy_end();
5996 		return 0;
5997 	}
5998 	VM_BUG_ON_PAGE(folio_test_anon(old_folio) &&
5999 		       PageAnonExclusive(&old_folio->page), &old_folio->page);
6000 
6001 	/*
6002 	 * If the process that created a MAP_PRIVATE mapping is about to
6003 	 * perform a COW due to a shared page count, attempt to satisfy
6004 	 * the allocation without using the existing reserves. The pagecache
6005 	 * page is used to determine if the reserve at this address was
6006 	 * consumed or not. If reserves were used, a partial faulted mapping
6007 	 * at the time of fork() could consume its reserves on COW instead
6008 	 * of the full address range.
6009 	 */
6010 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
6011 			old_folio != pagecache_folio)
6012 		outside_reserve = 1;
6013 
6014 	folio_get(old_folio);
6015 
6016 	/*
6017 	 * Drop page table lock as buddy allocator may be called. It will
6018 	 * be acquired again before returning to the caller, as expected.
6019 	 */
6020 	spin_unlock(ptl);
6021 	new_folio = alloc_hugetlb_folio(vma, haddr, outside_reserve);
6022 
6023 	if (IS_ERR(new_folio)) {
6024 		/*
6025 		 * If a process owning a MAP_PRIVATE mapping fails to COW,
6026 		 * it is due to references held by a child and an insufficient
6027 		 * huge page pool. To guarantee the original mappers
6028 		 * reliability, unmap the page from child processes. The child
6029 		 * may get SIGKILLed if it later faults.
6030 		 */
6031 		if (outside_reserve) {
6032 			struct address_space *mapping = vma->vm_file->f_mapping;
6033 			pgoff_t idx;
6034 			u32 hash;
6035 
6036 			folio_put(old_folio);
6037 			/*
6038 			 * Drop hugetlb_fault_mutex and vma_lock before
6039 			 * unmapping.  unmapping needs to hold vma_lock
6040 			 * in write mode.  Dropping vma_lock in read mode
6041 			 * here is OK as COW mappings do not interact with
6042 			 * PMD sharing.
6043 			 *
6044 			 * Reacquire both after unmap operation.
6045 			 */
6046 			idx = vma_hugecache_offset(h, vma, haddr);
6047 			hash = hugetlb_fault_mutex_hash(mapping, idx);
6048 			hugetlb_vma_unlock_read(vma);
6049 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6050 
6051 			unmap_ref_private(mm, vma, &old_folio->page, haddr);
6052 
6053 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
6054 			hugetlb_vma_lock_read(vma);
6055 			spin_lock(ptl);
6056 			ptep = hugetlb_walk(vma, haddr, huge_page_size(h));
6057 			if (likely(ptep &&
6058 				   pte_same(huge_ptep_get(ptep), pte)))
6059 				goto retry_avoidcopy;
6060 			/*
6061 			 * race occurs while re-acquiring page table
6062 			 * lock, and our job is done.
6063 			 */
6064 			delayacct_wpcopy_end();
6065 			return 0;
6066 		}
6067 
6068 		ret = vmf_error(PTR_ERR(new_folio));
6069 		goto out_release_old;
6070 	}
6071 
6072 	/*
6073 	 * When the original hugepage is shared one, it does not have
6074 	 * anon_vma prepared.
6075 	 */
6076 	ret = vmf_anon_prepare(vmf);
6077 	if (unlikely(ret))
6078 		goto out_release_all;
6079 
6080 	if (copy_user_large_folio(new_folio, old_folio, address, vma)) {
6081 		ret = VM_FAULT_HWPOISON_LARGE;
6082 		goto out_release_all;
6083 	}
6084 	__folio_mark_uptodate(new_folio);
6085 
6086 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, haddr,
6087 				haddr + huge_page_size(h));
6088 	mmu_notifier_invalidate_range_start(&range);
6089 
6090 	/*
6091 	 * Retake the page table lock to check for racing updates
6092 	 * before the page tables are altered
6093 	 */
6094 	spin_lock(ptl);
6095 	ptep = hugetlb_walk(vma, haddr, huge_page_size(h));
6096 	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
6097 		pte_t newpte = make_huge_pte(vma, &new_folio->page, !unshare);
6098 
6099 		/* Break COW or unshare */
6100 		huge_ptep_clear_flush(vma, haddr, ptep);
6101 		hugetlb_remove_rmap(old_folio);
6102 		hugetlb_add_new_anon_rmap(new_folio, vma, haddr);
6103 		if (huge_pte_uffd_wp(pte))
6104 			newpte = huge_pte_mkuffd_wp(newpte);
6105 		set_huge_pte_at(mm, haddr, ptep, newpte, huge_page_size(h));
6106 		folio_set_hugetlb_migratable(new_folio);
6107 		/* Make the old page be freed below */
6108 		new_folio = old_folio;
6109 	}
6110 	spin_unlock(ptl);
6111 	mmu_notifier_invalidate_range_end(&range);
6112 out_release_all:
6113 	/*
6114 	 * No restore in case of successful pagetable update (Break COW or
6115 	 * unshare)
6116 	 */
6117 	if (new_folio != old_folio)
6118 		restore_reserve_on_error(h, vma, haddr, new_folio);
6119 	folio_put(new_folio);
6120 out_release_old:
6121 	folio_put(old_folio);
6122 
6123 	spin_lock(ptl); /* Caller expects lock to be held */
6124 
6125 	delayacct_wpcopy_end();
6126 	return ret;
6127 }
6128 
6129 /*
6130  * Return whether there is a pagecache page to back given address within VMA.
6131  */
6132 static bool hugetlbfs_pagecache_present(struct hstate *h,
6133 			struct vm_area_struct *vma, unsigned long address)
6134 {
6135 	struct address_space *mapping = vma->vm_file->f_mapping;
6136 	pgoff_t idx = linear_page_index(vma, address);
6137 	struct folio *folio;
6138 
6139 	folio = filemap_get_folio(mapping, idx);
6140 	if (IS_ERR(folio))
6141 		return false;
6142 	folio_put(folio);
6143 	return true;
6144 }
6145 
6146 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping,
6147 			   pgoff_t idx)
6148 {
6149 	struct inode *inode = mapping->host;
6150 	struct hstate *h = hstate_inode(inode);
6151 	int err;
6152 
6153 	idx <<= huge_page_order(h);
6154 	__folio_set_locked(folio);
6155 	err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
6156 
6157 	if (unlikely(err)) {
6158 		__folio_clear_locked(folio);
6159 		return err;
6160 	}
6161 	folio_clear_hugetlb_restore_reserve(folio);
6162 
6163 	/*
6164 	 * mark folio dirty so that it will not be removed from cache/file
6165 	 * by non-hugetlbfs specific code paths.
6166 	 */
6167 	folio_mark_dirty(folio);
6168 
6169 	spin_lock(&inode->i_lock);
6170 	inode->i_blocks += blocks_per_huge_page(h);
6171 	spin_unlock(&inode->i_lock);
6172 	return 0;
6173 }
6174 
6175 static inline vm_fault_t hugetlb_handle_userfault(struct vm_fault *vmf,
6176 						  struct address_space *mapping,
6177 						  unsigned long reason)
6178 {
6179 	u32 hash;
6180 
6181 	/*
6182 	 * vma_lock and hugetlb_fault_mutex must be dropped before handling
6183 	 * userfault. Also mmap_lock could be dropped due to handling
6184 	 * userfault, any vma operation should be careful from here.
6185 	 */
6186 	hugetlb_vma_unlock_read(vmf->vma);
6187 	hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff);
6188 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6189 	return handle_userfault(vmf, reason);
6190 }
6191 
6192 /*
6193  * Recheck pte with pgtable lock.  Returns true if pte didn't change, or
6194  * false if pte changed or is changing.
6195  */
6196 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm,
6197 			       pte_t *ptep, pte_t old_pte)
6198 {
6199 	spinlock_t *ptl;
6200 	bool same;
6201 
6202 	ptl = huge_pte_lock(h, mm, ptep);
6203 	same = pte_same(huge_ptep_get(ptep), old_pte);
6204 	spin_unlock(ptl);
6205 
6206 	return same;
6207 }
6208 
6209 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
6210 			struct vm_area_struct *vma,
6211 			struct address_space *mapping, pgoff_t idx,
6212 			unsigned long address, pte_t *ptep,
6213 			pte_t old_pte, unsigned int flags,
6214 			struct vm_fault *vmf)
6215 {
6216 	struct hstate *h = hstate_vma(vma);
6217 	vm_fault_t ret = VM_FAULT_SIGBUS;
6218 	int anon_rmap = 0;
6219 	unsigned long size;
6220 	struct folio *folio;
6221 	pte_t new_pte;
6222 	spinlock_t *ptl;
6223 	unsigned long haddr = address & huge_page_mask(h);
6224 	bool new_folio, new_pagecache_folio = false;
6225 	u32 hash = hugetlb_fault_mutex_hash(mapping, idx);
6226 
6227 	/*
6228 	 * Currently, we are forced to kill the process in the event the
6229 	 * original mapper has unmapped pages from the child due to a failed
6230 	 * COW/unsharing. Warn that such a situation has occurred as it may not
6231 	 * be obvious.
6232 	 */
6233 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
6234 		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
6235 			   current->pid);
6236 		goto out;
6237 	}
6238 
6239 	/*
6240 	 * Use page lock to guard against racing truncation
6241 	 * before we get page_table_lock.
6242 	 */
6243 	new_folio = false;
6244 	folio = filemap_lock_hugetlb_folio(h, mapping, idx);
6245 	if (IS_ERR(folio)) {
6246 		size = i_size_read(mapping->host) >> huge_page_shift(h);
6247 		if (idx >= size)
6248 			goto out;
6249 		/* Check for page in userfault range */
6250 		if (userfaultfd_missing(vma)) {
6251 			/*
6252 			 * Since hugetlb_no_page() was examining pte
6253 			 * without pgtable lock, we need to re-test under
6254 			 * lock because the pte may not be stable and could
6255 			 * have changed from under us.  Try to detect
6256 			 * either changed or during-changing ptes and retry
6257 			 * properly when needed.
6258 			 *
6259 			 * Note that userfaultfd is actually fine with
6260 			 * false positives (e.g. caused by pte changed),
6261 			 * but not wrong logical events (e.g. caused by
6262 			 * reading a pte during changing).  The latter can
6263 			 * confuse the userspace, so the strictness is very
6264 			 * much preferred.  E.g., MISSING event should
6265 			 * never happen on the page after UFFDIO_COPY has
6266 			 * correctly installed the page and returned.
6267 			 */
6268 			if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
6269 				ret = 0;
6270 				goto out;
6271 			}
6272 
6273 			return hugetlb_handle_userfault(vmf, mapping,
6274 							VM_UFFD_MISSING);
6275 		}
6276 
6277 		folio = alloc_hugetlb_folio(vma, haddr, 0);
6278 		if (IS_ERR(folio)) {
6279 			/*
6280 			 * Returning error will result in faulting task being
6281 			 * sent SIGBUS.  The hugetlb fault mutex prevents two
6282 			 * tasks from racing to fault in the same page which
6283 			 * could result in false unable to allocate errors.
6284 			 * Page migration does not take the fault mutex, but
6285 			 * does a clear then write of pte's under page table
6286 			 * lock.  Page fault code could race with migration,
6287 			 * notice the clear pte and try to allocate a page
6288 			 * here.  Before returning error, get ptl and make
6289 			 * sure there really is no pte entry.
6290 			 */
6291 			if (hugetlb_pte_stable(h, mm, ptep, old_pte))
6292 				ret = vmf_error(PTR_ERR(folio));
6293 			else
6294 				ret = 0;
6295 			goto out;
6296 		}
6297 		clear_huge_page(&folio->page, address, pages_per_huge_page(h));
6298 		__folio_mark_uptodate(folio);
6299 		new_folio = true;
6300 
6301 		if (vma->vm_flags & VM_MAYSHARE) {
6302 			int err = hugetlb_add_to_page_cache(folio, mapping, idx);
6303 			if (err) {
6304 				/*
6305 				 * err can't be -EEXIST which implies someone
6306 				 * else consumed the reservation since hugetlb
6307 				 * fault mutex is held when add a hugetlb page
6308 				 * to the page cache. So it's safe to call
6309 				 * restore_reserve_on_error() here.
6310 				 */
6311 				restore_reserve_on_error(h, vma, haddr, folio);
6312 				folio_put(folio);
6313 				goto out;
6314 			}
6315 			new_pagecache_folio = true;
6316 		} else {
6317 			folio_lock(folio);
6318 
6319 			ret = vmf_anon_prepare(vmf);
6320 			if (unlikely(ret))
6321 				goto backout_unlocked;
6322 			anon_rmap = 1;
6323 		}
6324 	} else {
6325 		/*
6326 		 * If memory error occurs between mmap() and fault, some process
6327 		 * don't have hwpoisoned swap entry for errored virtual address.
6328 		 * So we need to block hugepage fault by PG_hwpoison bit check.
6329 		 */
6330 		if (unlikely(folio_test_hwpoison(folio))) {
6331 			ret = VM_FAULT_HWPOISON_LARGE |
6332 				VM_FAULT_SET_HINDEX(hstate_index(h));
6333 			goto backout_unlocked;
6334 		}
6335 
6336 		/* Check for page in userfault range. */
6337 		if (userfaultfd_minor(vma)) {
6338 			folio_unlock(folio);
6339 			folio_put(folio);
6340 			/* See comment in userfaultfd_missing() block above */
6341 			if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
6342 				ret = 0;
6343 				goto out;
6344 			}
6345 			return hugetlb_handle_userfault(vmf, mapping,
6346 							VM_UFFD_MINOR);
6347 		}
6348 	}
6349 
6350 	/*
6351 	 * If we are going to COW a private mapping later, we examine the
6352 	 * pending reservations for this page now. This will ensure that
6353 	 * any allocations necessary to record that reservation occur outside
6354 	 * the spinlock.
6355 	 */
6356 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
6357 		if (vma_needs_reservation(h, vma, haddr) < 0) {
6358 			ret = VM_FAULT_OOM;
6359 			goto backout_unlocked;
6360 		}
6361 		/* Just decrements count, does not deallocate */
6362 		vma_end_reservation(h, vma, haddr);
6363 	}
6364 
6365 	ptl = huge_pte_lock(h, mm, ptep);
6366 	ret = 0;
6367 	/* If pte changed from under us, retry */
6368 	if (!pte_same(huge_ptep_get(ptep), old_pte))
6369 		goto backout;
6370 
6371 	if (anon_rmap)
6372 		hugetlb_add_new_anon_rmap(folio, vma, haddr);
6373 	else
6374 		hugetlb_add_file_rmap(folio);
6375 	new_pte = make_huge_pte(vma, &folio->page, ((vma->vm_flags & VM_WRITE)
6376 				&& (vma->vm_flags & VM_SHARED)));
6377 	/*
6378 	 * If this pte was previously wr-protected, keep it wr-protected even
6379 	 * if populated.
6380 	 */
6381 	if (unlikely(pte_marker_uffd_wp(old_pte)))
6382 		new_pte = huge_pte_mkuffd_wp(new_pte);
6383 	set_huge_pte_at(mm, haddr, ptep, new_pte, huge_page_size(h));
6384 
6385 	hugetlb_count_add(pages_per_huge_page(h), mm);
6386 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
6387 		/* Optimization, do the COW without a second fault */
6388 		ret = hugetlb_wp(mm, vma, address, ptep, flags, folio, ptl, vmf);
6389 	}
6390 
6391 	spin_unlock(ptl);
6392 
6393 	/*
6394 	 * Only set hugetlb_migratable in newly allocated pages.  Existing pages
6395 	 * found in the pagecache may not have hugetlb_migratable if they have
6396 	 * been isolated for migration.
6397 	 */
6398 	if (new_folio)
6399 		folio_set_hugetlb_migratable(folio);
6400 
6401 	folio_unlock(folio);
6402 out:
6403 	hugetlb_vma_unlock_read(vma);
6404 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6405 	return ret;
6406 
6407 backout:
6408 	spin_unlock(ptl);
6409 backout_unlocked:
6410 	if (new_folio && !new_pagecache_folio)
6411 		restore_reserve_on_error(h, vma, haddr, folio);
6412 
6413 	folio_unlock(folio);
6414 	folio_put(folio);
6415 	goto out;
6416 }
6417 
6418 #ifdef CONFIG_SMP
6419 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6420 {
6421 	unsigned long key[2];
6422 	u32 hash;
6423 
6424 	key[0] = (unsigned long) mapping;
6425 	key[1] = idx;
6426 
6427 	hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
6428 
6429 	return hash & (num_fault_mutexes - 1);
6430 }
6431 #else
6432 /*
6433  * For uniprocessor systems we always use a single mutex, so just
6434  * return 0 and avoid the hashing overhead.
6435  */
6436 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6437 {
6438 	return 0;
6439 }
6440 #endif
6441 
6442 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
6443 			unsigned long address, unsigned int flags)
6444 {
6445 	pte_t *ptep, entry;
6446 	spinlock_t *ptl;
6447 	vm_fault_t ret;
6448 	u32 hash;
6449 	struct folio *folio = NULL;
6450 	struct folio *pagecache_folio = NULL;
6451 	struct hstate *h = hstate_vma(vma);
6452 	struct address_space *mapping;
6453 	int need_wait_lock = 0;
6454 	unsigned long haddr = address & huge_page_mask(h);
6455 	struct vm_fault vmf = {
6456 		.vma = vma,
6457 		.address = haddr,
6458 		.real_address = address,
6459 		.flags = flags,
6460 		.pgoff = vma_hugecache_offset(h, vma, haddr),
6461 		/* TODO: Track hugetlb faults using vm_fault */
6462 
6463 		/*
6464 		 * Some fields may not be initialized, be careful as it may
6465 		 * be hard to debug if called functions make assumptions
6466 		 */
6467 	};
6468 
6469 	/*
6470 	 * Serialize hugepage allocation and instantiation, so that we don't
6471 	 * get spurious allocation failures if two CPUs race to instantiate
6472 	 * the same page in the page cache.
6473 	 */
6474 	mapping = vma->vm_file->f_mapping;
6475 	hash = hugetlb_fault_mutex_hash(mapping, vmf.pgoff);
6476 	mutex_lock(&hugetlb_fault_mutex_table[hash]);
6477 
6478 	/*
6479 	 * Acquire vma lock before calling huge_pte_alloc and hold
6480 	 * until finished with ptep.  This prevents huge_pmd_unshare from
6481 	 * being called elsewhere and making the ptep no longer valid.
6482 	 */
6483 	hugetlb_vma_lock_read(vma);
6484 	ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
6485 	if (!ptep) {
6486 		hugetlb_vma_unlock_read(vma);
6487 		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6488 		return VM_FAULT_OOM;
6489 	}
6490 
6491 	entry = huge_ptep_get(ptep);
6492 	if (huge_pte_none_mostly(entry)) {
6493 		if (is_pte_marker(entry)) {
6494 			pte_marker marker =
6495 				pte_marker_get(pte_to_swp_entry(entry));
6496 
6497 			if (marker & PTE_MARKER_POISONED) {
6498 				ret = VM_FAULT_HWPOISON_LARGE;
6499 				goto out_mutex;
6500 			}
6501 		}
6502 
6503 		/*
6504 		 * Other PTE markers should be handled the same way as none PTE.
6505 		 *
6506 		 * hugetlb_no_page will drop vma lock and hugetlb fault
6507 		 * mutex internally, which make us return immediately.
6508 		 */
6509 		return hugetlb_no_page(mm, vma, mapping, vmf.pgoff, address,
6510 					ptep, entry, flags, &vmf);
6511 	}
6512 
6513 	ret = 0;
6514 
6515 	/*
6516 	 * entry could be a migration/hwpoison entry at this point, so this
6517 	 * check prevents the kernel from going below assuming that we have
6518 	 * an active hugepage in pagecache. This goto expects the 2nd page
6519 	 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
6520 	 * properly handle it.
6521 	 */
6522 	if (!pte_present(entry)) {
6523 		if (unlikely(is_hugetlb_entry_migration(entry))) {
6524 			/*
6525 			 * Release the hugetlb fault lock now, but retain
6526 			 * the vma lock, because it is needed to guard the
6527 			 * huge_pte_lockptr() later in
6528 			 * migration_entry_wait_huge(). The vma lock will
6529 			 * be released there.
6530 			 */
6531 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6532 			migration_entry_wait_huge(vma, ptep);
6533 			return 0;
6534 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
6535 			ret = VM_FAULT_HWPOISON_LARGE |
6536 			    VM_FAULT_SET_HINDEX(hstate_index(h));
6537 		goto out_mutex;
6538 	}
6539 
6540 	/*
6541 	 * If we are going to COW/unshare the mapping later, we examine the
6542 	 * pending reservations for this page now. This will ensure that any
6543 	 * allocations necessary to record that reservation occur outside the
6544 	 * spinlock. Also lookup the pagecache page now as it is used to
6545 	 * determine if a reservation has been consumed.
6546 	 */
6547 	if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
6548 	    !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) {
6549 		if (vma_needs_reservation(h, vma, haddr) < 0) {
6550 			ret = VM_FAULT_OOM;
6551 			goto out_mutex;
6552 		}
6553 		/* Just decrements count, does not deallocate */
6554 		vma_end_reservation(h, vma, haddr);
6555 
6556 		pagecache_folio = filemap_lock_hugetlb_folio(h, mapping,
6557 							     vmf.pgoff);
6558 		if (IS_ERR(pagecache_folio))
6559 			pagecache_folio = NULL;
6560 	}
6561 
6562 	ptl = huge_pte_lock(h, mm, ptep);
6563 
6564 	/* Check for a racing update before calling hugetlb_wp() */
6565 	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
6566 		goto out_ptl;
6567 
6568 	/* Handle userfault-wp first, before trying to lock more pages */
6569 	if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) &&
6570 	    (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
6571 		if (!userfaultfd_wp_async(vma)) {
6572 			spin_unlock(ptl);
6573 			if (pagecache_folio) {
6574 				folio_unlock(pagecache_folio);
6575 				folio_put(pagecache_folio);
6576 			}
6577 			hugetlb_vma_unlock_read(vma);
6578 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6579 			return handle_userfault(&vmf, VM_UFFD_WP);
6580 		}
6581 
6582 		entry = huge_pte_clear_uffd_wp(entry);
6583 		set_huge_pte_at(mm, haddr, ptep, entry,
6584 				huge_page_size(hstate_vma(vma)));
6585 		/* Fallthrough to CoW */
6586 	}
6587 
6588 	/*
6589 	 * hugetlb_wp() requires page locks of pte_page(entry) and
6590 	 * pagecache_folio, so here we need take the former one
6591 	 * when folio != pagecache_folio or !pagecache_folio.
6592 	 */
6593 	folio = page_folio(pte_page(entry));
6594 	if (folio != pagecache_folio)
6595 		if (!folio_trylock(folio)) {
6596 			need_wait_lock = 1;
6597 			goto out_ptl;
6598 		}
6599 
6600 	folio_get(folio);
6601 
6602 	if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
6603 		if (!huge_pte_write(entry)) {
6604 			ret = hugetlb_wp(mm, vma, address, ptep, flags,
6605 					 pagecache_folio, ptl, &vmf);
6606 			goto out_put_page;
6607 		} else if (likely(flags & FAULT_FLAG_WRITE)) {
6608 			entry = huge_pte_mkdirty(entry);
6609 		}
6610 	}
6611 	entry = pte_mkyoung(entry);
6612 	if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
6613 						flags & FAULT_FLAG_WRITE))
6614 		update_mmu_cache(vma, haddr, ptep);
6615 out_put_page:
6616 	if (folio != pagecache_folio)
6617 		folio_unlock(folio);
6618 	folio_put(folio);
6619 out_ptl:
6620 	spin_unlock(ptl);
6621 
6622 	if (pagecache_folio) {
6623 		folio_unlock(pagecache_folio);
6624 		folio_put(pagecache_folio);
6625 	}
6626 out_mutex:
6627 	hugetlb_vma_unlock_read(vma);
6628 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6629 	/*
6630 	 * Generally it's safe to hold refcount during waiting page lock. But
6631 	 * here we just wait to defer the next page fault to avoid busy loop and
6632 	 * the page is not used after unlocked before returning from the current
6633 	 * page fault. So we are safe from accessing freed page, even if we wait
6634 	 * here without taking refcount.
6635 	 */
6636 	if (need_wait_lock)
6637 		folio_wait_locked(folio);
6638 	return ret;
6639 }
6640 
6641 #ifdef CONFIG_USERFAULTFD
6642 /*
6643  * Can probably be eliminated, but still used by hugetlb_mfill_atomic_pte().
6644  */
6645 static struct folio *alloc_hugetlb_folio_vma(struct hstate *h,
6646 		struct vm_area_struct *vma, unsigned long address)
6647 {
6648 	struct mempolicy *mpol;
6649 	nodemask_t *nodemask;
6650 	struct folio *folio;
6651 	gfp_t gfp_mask;
6652 	int node;
6653 
6654 	gfp_mask = htlb_alloc_mask(h);
6655 	node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
6656 	folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask);
6657 	mpol_cond_put(mpol);
6658 
6659 	return folio;
6660 }
6661 
6662 /*
6663  * Used by userfaultfd UFFDIO_* ioctls. Based on userfaultfd's mfill_atomic_pte
6664  * with modifications for hugetlb pages.
6665  */
6666 int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
6667 			     struct vm_area_struct *dst_vma,
6668 			     unsigned long dst_addr,
6669 			     unsigned long src_addr,
6670 			     uffd_flags_t flags,
6671 			     struct folio **foliop)
6672 {
6673 	struct mm_struct *dst_mm = dst_vma->vm_mm;
6674 	bool is_continue = uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE);
6675 	bool wp_enabled = (flags & MFILL_ATOMIC_WP);
6676 	struct hstate *h = hstate_vma(dst_vma);
6677 	struct address_space *mapping = dst_vma->vm_file->f_mapping;
6678 	pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
6679 	unsigned long size;
6680 	int vm_shared = dst_vma->vm_flags & VM_SHARED;
6681 	pte_t _dst_pte;
6682 	spinlock_t *ptl;
6683 	int ret = -ENOMEM;
6684 	struct folio *folio;
6685 	int writable;
6686 	bool folio_in_pagecache = false;
6687 
6688 	if (uffd_flags_mode_is(flags, MFILL_ATOMIC_POISON)) {
6689 		ptl = huge_pte_lock(h, dst_mm, dst_pte);
6690 
6691 		/* Don't overwrite any existing PTEs (even markers) */
6692 		if (!huge_pte_none(huge_ptep_get(dst_pte))) {
6693 			spin_unlock(ptl);
6694 			return -EEXIST;
6695 		}
6696 
6697 		_dst_pte = make_pte_marker(PTE_MARKER_POISONED);
6698 		set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte,
6699 				huge_page_size(h));
6700 
6701 		/* No need to invalidate - it was non-present before */
6702 		update_mmu_cache(dst_vma, dst_addr, dst_pte);
6703 
6704 		spin_unlock(ptl);
6705 		return 0;
6706 	}
6707 
6708 	if (is_continue) {
6709 		ret = -EFAULT;
6710 		folio = filemap_lock_hugetlb_folio(h, mapping, idx);
6711 		if (IS_ERR(folio))
6712 			goto out;
6713 		folio_in_pagecache = true;
6714 	} else if (!*foliop) {
6715 		/* If a folio already exists, then it's UFFDIO_COPY for
6716 		 * a non-missing case. Return -EEXIST.
6717 		 */
6718 		if (vm_shared &&
6719 		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6720 			ret = -EEXIST;
6721 			goto out;
6722 		}
6723 
6724 		folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6725 		if (IS_ERR(folio)) {
6726 			ret = -ENOMEM;
6727 			goto out;
6728 		}
6729 
6730 		ret = copy_folio_from_user(folio, (const void __user *) src_addr,
6731 					   false);
6732 
6733 		/* fallback to copy_from_user outside mmap_lock */
6734 		if (unlikely(ret)) {
6735 			ret = -ENOENT;
6736 			/* Free the allocated folio which may have
6737 			 * consumed a reservation.
6738 			 */
6739 			restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6740 			folio_put(folio);
6741 
6742 			/* Allocate a temporary folio to hold the copied
6743 			 * contents.
6744 			 */
6745 			folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr);
6746 			if (!folio) {
6747 				ret = -ENOMEM;
6748 				goto out;
6749 			}
6750 			*foliop = folio;
6751 			/* Set the outparam foliop and return to the caller to
6752 			 * copy the contents outside the lock. Don't free the
6753 			 * folio.
6754 			 */
6755 			goto out;
6756 		}
6757 	} else {
6758 		if (vm_shared &&
6759 		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6760 			folio_put(*foliop);
6761 			ret = -EEXIST;
6762 			*foliop = NULL;
6763 			goto out;
6764 		}
6765 
6766 		folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6767 		if (IS_ERR(folio)) {
6768 			folio_put(*foliop);
6769 			ret = -ENOMEM;
6770 			*foliop = NULL;
6771 			goto out;
6772 		}
6773 		ret = copy_user_large_folio(folio, *foliop, dst_addr, dst_vma);
6774 		folio_put(*foliop);
6775 		*foliop = NULL;
6776 		if (ret) {
6777 			folio_put(folio);
6778 			goto out;
6779 		}
6780 	}
6781 
6782 	/*
6783 	 * If we just allocated a new page, we need a memory barrier to ensure
6784 	 * that preceding stores to the page become visible before the
6785 	 * set_pte_at() write. The memory barrier inside __folio_mark_uptodate
6786 	 * is what we need.
6787 	 *
6788 	 * In the case where we have not allocated a new page (is_continue),
6789 	 * the page must already be uptodate. UFFDIO_CONTINUE already includes
6790 	 * an earlier smp_wmb() to ensure that prior stores will be visible
6791 	 * before the set_pte_at() write.
6792 	 */
6793 	if (!is_continue)
6794 		__folio_mark_uptodate(folio);
6795 	else
6796 		WARN_ON_ONCE(!folio_test_uptodate(folio));
6797 
6798 	/* Add shared, newly allocated pages to the page cache. */
6799 	if (vm_shared && !is_continue) {
6800 		size = i_size_read(mapping->host) >> huge_page_shift(h);
6801 		ret = -EFAULT;
6802 		if (idx >= size)
6803 			goto out_release_nounlock;
6804 
6805 		/*
6806 		 * Serialization between remove_inode_hugepages() and
6807 		 * hugetlb_add_to_page_cache() below happens through the
6808 		 * hugetlb_fault_mutex_table that here must be hold by
6809 		 * the caller.
6810 		 */
6811 		ret = hugetlb_add_to_page_cache(folio, mapping, idx);
6812 		if (ret)
6813 			goto out_release_nounlock;
6814 		folio_in_pagecache = true;
6815 	}
6816 
6817 	ptl = huge_pte_lock(h, dst_mm, dst_pte);
6818 
6819 	ret = -EIO;
6820 	if (folio_test_hwpoison(folio))
6821 		goto out_release_unlock;
6822 
6823 	/*
6824 	 * We allow to overwrite a pte marker: consider when both MISSING|WP
6825 	 * registered, we firstly wr-protect a none pte which has no page cache
6826 	 * page backing it, then access the page.
6827 	 */
6828 	ret = -EEXIST;
6829 	if (!huge_pte_none_mostly(huge_ptep_get(dst_pte)))
6830 		goto out_release_unlock;
6831 
6832 	if (folio_in_pagecache)
6833 		hugetlb_add_file_rmap(folio);
6834 	else
6835 		hugetlb_add_new_anon_rmap(folio, dst_vma, dst_addr);
6836 
6837 	/*
6838 	 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6839 	 * with wp flag set, don't set pte write bit.
6840 	 */
6841 	if (wp_enabled || (is_continue && !vm_shared))
6842 		writable = 0;
6843 	else
6844 		writable = dst_vma->vm_flags & VM_WRITE;
6845 
6846 	_dst_pte = make_huge_pte(dst_vma, &folio->page, writable);
6847 	/*
6848 	 * Always mark UFFDIO_COPY page dirty; note that this may not be
6849 	 * extremely important for hugetlbfs for now since swapping is not
6850 	 * supported, but we should still be clear in that this page cannot be
6851 	 * thrown away at will, even if write bit not set.
6852 	 */
6853 	_dst_pte = huge_pte_mkdirty(_dst_pte);
6854 	_dst_pte = pte_mkyoung(_dst_pte);
6855 
6856 	if (wp_enabled)
6857 		_dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6858 
6859 	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, huge_page_size(h));
6860 
6861 	hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6862 
6863 	/* No need to invalidate - it was non-present before */
6864 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
6865 
6866 	spin_unlock(ptl);
6867 	if (!is_continue)
6868 		folio_set_hugetlb_migratable(folio);
6869 	if (vm_shared || is_continue)
6870 		folio_unlock(folio);
6871 	ret = 0;
6872 out:
6873 	return ret;
6874 out_release_unlock:
6875 	spin_unlock(ptl);
6876 	if (vm_shared || is_continue)
6877 		folio_unlock(folio);
6878 out_release_nounlock:
6879 	if (!folio_in_pagecache)
6880 		restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6881 	folio_put(folio);
6882 	goto out;
6883 }
6884 #endif /* CONFIG_USERFAULTFD */
6885 
6886 struct page *hugetlb_follow_page_mask(struct vm_area_struct *vma,
6887 				      unsigned long address, unsigned int flags,
6888 				      unsigned int *page_mask)
6889 {
6890 	struct hstate *h = hstate_vma(vma);
6891 	struct mm_struct *mm = vma->vm_mm;
6892 	unsigned long haddr = address & huge_page_mask(h);
6893 	struct page *page = NULL;
6894 	spinlock_t *ptl;
6895 	pte_t *pte, entry;
6896 	int ret;
6897 
6898 	hugetlb_vma_lock_read(vma);
6899 	pte = hugetlb_walk(vma, haddr, huge_page_size(h));
6900 	if (!pte)
6901 		goto out_unlock;
6902 
6903 	ptl = huge_pte_lock(h, mm, pte);
6904 	entry = huge_ptep_get(pte);
6905 	if (pte_present(entry)) {
6906 		page = pte_page(entry);
6907 
6908 		if (!huge_pte_write(entry)) {
6909 			if (flags & FOLL_WRITE) {
6910 				page = NULL;
6911 				goto out;
6912 			}
6913 
6914 			if (gup_must_unshare(vma, flags, page)) {
6915 				/* Tell the caller to do unsharing */
6916 				page = ERR_PTR(-EMLINK);
6917 				goto out;
6918 			}
6919 		}
6920 
6921 		page = nth_page(page, ((address & ~huge_page_mask(h)) >> PAGE_SHIFT));
6922 
6923 		/*
6924 		 * Note that page may be a sub-page, and with vmemmap
6925 		 * optimizations the page struct may be read only.
6926 		 * try_grab_page() will increase the ref count on the
6927 		 * head page, so this will be OK.
6928 		 *
6929 		 * try_grab_page() should always be able to get the page here,
6930 		 * because we hold the ptl lock and have verified pte_present().
6931 		 */
6932 		ret = try_grab_page(page, flags);
6933 
6934 		if (WARN_ON_ONCE(ret)) {
6935 			page = ERR_PTR(ret);
6936 			goto out;
6937 		}
6938 
6939 		*page_mask = (1U << huge_page_order(h)) - 1;
6940 	}
6941 out:
6942 	spin_unlock(ptl);
6943 out_unlock:
6944 	hugetlb_vma_unlock_read(vma);
6945 
6946 	/*
6947 	 * Fixup retval for dump requests: if pagecache doesn't exist,
6948 	 * don't try to allocate a new page but just skip it.
6949 	 */
6950 	if (!page && (flags & FOLL_DUMP) &&
6951 	    !hugetlbfs_pagecache_present(h, vma, address))
6952 		page = ERR_PTR(-EFAULT);
6953 
6954 	return page;
6955 }
6956 
6957 long hugetlb_change_protection(struct vm_area_struct *vma,
6958 		unsigned long address, unsigned long end,
6959 		pgprot_t newprot, unsigned long cp_flags)
6960 {
6961 	struct mm_struct *mm = vma->vm_mm;
6962 	unsigned long start = address;
6963 	pte_t *ptep;
6964 	pte_t pte;
6965 	struct hstate *h = hstate_vma(vma);
6966 	long pages = 0, psize = huge_page_size(h);
6967 	bool shared_pmd = false;
6968 	struct mmu_notifier_range range;
6969 	unsigned long last_addr_mask;
6970 	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6971 	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
6972 
6973 	/*
6974 	 * In the case of shared PMDs, the area to flush could be beyond
6975 	 * start/end.  Set range.start/range.end to cover the maximum possible
6976 	 * range if PMD sharing is possible.
6977 	 */
6978 	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6979 				0, mm, start, end);
6980 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6981 
6982 	BUG_ON(address >= end);
6983 	flush_cache_range(vma, range.start, range.end);
6984 
6985 	mmu_notifier_invalidate_range_start(&range);
6986 	hugetlb_vma_lock_write(vma);
6987 	i_mmap_lock_write(vma->vm_file->f_mapping);
6988 	last_addr_mask = hugetlb_mask_last_page(h);
6989 	for (; address < end; address += psize) {
6990 		spinlock_t *ptl;
6991 		ptep = hugetlb_walk(vma, address, psize);
6992 		if (!ptep) {
6993 			if (!uffd_wp) {
6994 				address |= last_addr_mask;
6995 				continue;
6996 			}
6997 			/*
6998 			 * Userfaultfd wr-protect requires pgtable
6999 			 * pre-allocations to install pte markers.
7000 			 */
7001 			ptep = huge_pte_alloc(mm, vma, address, psize);
7002 			if (!ptep) {
7003 				pages = -ENOMEM;
7004 				break;
7005 			}
7006 		}
7007 		ptl = huge_pte_lock(h, mm, ptep);
7008 		if (huge_pmd_unshare(mm, vma, address, ptep)) {
7009 			/*
7010 			 * When uffd-wp is enabled on the vma, unshare
7011 			 * shouldn't happen at all.  Warn about it if it
7012 			 * happened due to some reason.
7013 			 */
7014 			WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
7015 			pages++;
7016 			spin_unlock(ptl);
7017 			shared_pmd = true;
7018 			address |= last_addr_mask;
7019 			continue;
7020 		}
7021 		pte = huge_ptep_get(ptep);
7022 		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
7023 			/* Nothing to do. */
7024 		} else if (unlikely(is_hugetlb_entry_migration(pte))) {
7025 			swp_entry_t entry = pte_to_swp_entry(pte);
7026 			struct page *page = pfn_swap_entry_to_page(entry);
7027 			pte_t newpte = pte;
7028 
7029 			if (is_writable_migration_entry(entry)) {
7030 				if (PageAnon(page))
7031 					entry = make_readable_exclusive_migration_entry(
7032 								swp_offset(entry));
7033 				else
7034 					entry = make_readable_migration_entry(
7035 								swp_offset(entry));
7036 				newpte = swp_entry_to_pte(entry);
7037 				pages++;
7038 			}
7039 
7040 			if (uffd_wp)
7041 				newpte = pte_swp_mkuffd_wp(newpte);
7042 			else if (uffd_wp_resolve)
7043 				newpte = pte_swp_clear_uffd_wp(newpte);
7044 			if (!pte_same(pte, newpte))
7045 				set_huge_pte_at(mm, address, ptep, newpte, psize);
7046 		} else if (unlikely(is_pte_marker(pte))) {
7047 			/*
7048 			 * Do nothing on a poison marker; page is
7049 			 * corrupted, permissons do not apply.  Here
7050 			 * pte_marker_uffd_wp()==true implies !poison
7051 			 * because they're mutual exclusive.
7052 			 */
7053 			if (pte_marker_uffd_wp(pte) && uffd_wp_resolve)
7054 				/* Safe to modify directly (non-present->none). */
7055 				huge_pte_clear(mm, address, ptep, psize);
7056 		} else if (!huge_pte_none(pte)) {
7057 			pte_t old_pte;
7058 			unsigned int shift = huge_page_shift(hstate_vma(vma));
7059 
7060 			old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
7061 			pte = huge_pte_modify(old_pte, newprot);
7062 			pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
7063 			if (uffd_wp)
7064 				pte = huge_pte_mkuffd_wp(pte);
7065 			else if (uffd_wp_resolve)
7066 				pte = huge_pte_clear_uffd_wp(pte);
7067 			huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
7068 			pages++;
7069 		} else {
7070 			/* None pte */
7071 			if (unlikely(uffd_wp))
7072 				/* Safe to modify directly (none->non-present). */
7073 				set_huge_pte_at(mm, address, ptep,
7074 						make_pte_marker(PTE_MARKER_UFFD_WP),
7075 						psize);
7076 		}
7077 		spin_unlock(ptl);
7078 	}
7079 	/*
7080 	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
7081 	 * may have cleared our pud entry and done put_page on the page table:
7082 	 * once we release i_mmap_rwsem, another task can do the final put_page
7083 	 * and that page table be reused and filled with junk.  If we actually
7084 	 * did unshare a page of pmds, flush the range corresponding to the pud.
7085 	 */
7086 	if (shared_pmd)
7087 		flush_hugetlb_tlb_range(vma, range.start, range.end);
7088 	else
7089 		flush_hugetlb_tlb_range(vma, start, end);
7090 	/*
7091 	 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs() we are
7092 	 * downgrading page table protection not changing it to point to a new
7093 	 * page.
7094 	 *
7095 	 * See Documentation/mm/mmu_notifier.rst
7096 	 */
7097 	i_mmap_unlock_write(vma->vm_file->f_mapping);
7098 	hugetlb_vma_unlock_write(vma);
7099 	mmu_notifier_invalidate_range_end(&range);
7100 
7101 	return pages > 0 ? (pages << h->order) : pages;
7102 }
7103 
7104 /* Return true if reservation was successful, false otherwise.  */
7105 bool hugetlb_reserve_pages(struct inode *inode,
7106 					long from, long to,
7107 					struct vm_area_struct *vma,
7108 					vm_flags_t vm_flags)
7109 {
7110 	long chg = -1, add = -1;
7111 	struct hstate *h = hstate_inode(inode);
7112 	struct hugepage_subpool *spool = subpool_inode(inode);
7113 	struct resv_map *resv_map;
7114 	struct hugetlb_cgroup *h_cg = NULL;
7115 	long gbl_reserve, regions_needed = 0;
7116 
7117 	/* This should never happen */
7118 	if (from > to) {
7119 		VM_WARN(1, "%s called with a negative range\n", __func__);
7120 		return false;
7121 	}
7122 
7123 	/*
7124 	 * vma specific semaphore used for pmd sharing and fault/truncation
7125 	 * synchronization
7126 	 */
7127 	hugetlb_vma_lock_alloc(vma);
7128 
7129 	/*
7130 	 * Only apply hugepage reservation if asked. At fault time, an
7131 	 * attempt will be made for VM_NORESERVE to allocate a page
7132 	 * without using reserves
7133 	 */
7134 	if (vm_flags & VM_NORESERVE)
7135 		return true;
7136 
7137 	/*
7138 	 * Shared mappings base their reservation on the number of pages that
7139 	 * are already allocated on behalf of the file. Private mappings need
7140 	 * to reserve the full area even if read-only as mprotect() may be
7141 	 * called to make the mapping read-write. Assume !vma is a shm mapping
7142 	 */
7143 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
7144 		/*
7145 		 * resv_map can not be NULL as hugetlb_reserve_pages is only
7146 		 * called for inodes for which resv_maps were created (see
7147 		 * hugetlbfs_get_inode).
7148 		 */
7149 		resv_map = inode_resv_map(inode);
7150 
7151 		chg = region_chg(resv_map, from, to, &regions_needed);
7152 	} else {
7153 		/* Private mapping. */
7154 		resv_map = resv_map_alloc();
7155 		if (!resv_map)
7156 			goto out_err;
7157 
7158 		chg = to - from;
7159 
7160 		set_vma_resv_map(vma, resv_map);
7161 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
7162 	}
7163 
7164 	if (chg < 0)
7165 		goto out_err;
7166 
7167 	if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
7168 				chg * pages_per_huge_page(h), &h_cg) < 0)
7169 		goto out_err;
7170 
7171 	if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
7172 		/* For private mappings, the hugetlb_cgroup uncharge info hangs
7173 		 * of the resv_map.
7174 		 */
7175 		resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
7176 	}
7177 
7178 	/*
7179 	 * There must be enough pages in the subpool for the mapping. If
7180 	 * the subpool has a minimum size, there may be some global
7181 	 * reservations already in place (gbl_reserve).
7182 	 */
7183 	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
7184 	if (gbl_reserve < 0)
7185 		goto out_uncharge_cgroup;
7186 
7187 	/*
7188 	 * Check enough hugepages are available for the reservation.
7189 	 * Hand the pages back to the subpool if there are not
7190 	 */
7191 	if (hugetlb_acct_memory(h, gbl_reserve) < 0)
7192 		goto out_put_pages;
7193 
7194 	/*
7195 	 * Account for the reservations made. Shared mappings record regions
7196 	 * that have reservations as they are shared by multiple VMAs.
7197 	 * When the last VMA disappears, the region map says how much
7198 	 * the reservation was and the page cache tells how much of
7199 	 * the reservation was consumed. Private mappings are per-VMA and
7200 	 * only the consumed reservations are tracked. When the VMA
7201 	 * disappears, the original reservation is the VMA size and the
7202 	 * consumed reservations are stored in the map. Hence, nothing
7203 	 * else has to be done for private mappings here
7204 	 */
7205 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
7206 		add = region_add(resv_map, from, to, regions_needed, h, h_cg);
7207 
7208 		if (unlikely(add < 0)) {
7209 			hugetlb_acct_memory(h, -gbl_reserve);
7210 			goto out_put_pages;
7211 		} else if (unlikely(chg > add)) {
7212 			/*
7213 			 * pages in this range were added to the reserve
7214 			 * map between region_chg and region_add.  This
7215 			 * indicates a race with alloc_hugetlb_folio.  Adjust
7216 			 * the subpool and reserve counts modified above
7217 			 * based on the difference.
7218 			 */
7219 			long rsv_adjust;
7220 
7221 			/*
7222 			 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
7223 			 * reference to h_cg->css. See comment below for detail.
7224 			 */
7225 			hugetlb_cgroup_uncharge_cgroup_rsvd(
7226 				hstate_index(h),
7227 				(chg - add) * pages_per_huge_page(h), h_cg);
7228 
7229 			rsv_adjust = hugepage_subpool_put_pages(spool,
7230 								chg - add);
7231 			hugetlb_acct_memory(h, -rsv_adjust);
7232 		} else if (h_cg) {
7233 			/*
7234 			 * The file_regions will hold their own reference to
7235 			 * h_cg->css. So we should release the reference held
7236 			 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
7237 			 * done.
7238 			 */
7239 			hugetlb_cgroup_put_rsvd_cgroup(h_cg);
7240 		}
7241 	}
7242 	return true;
7243 
7244 out_put_pages:
7245 	/* put back original number of pages, chg */
7246 	(void)hugepage_subpool_put_pages(spool, chg);
7247 out_uncharge_cgroup:
7248 	hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
7249 					    chg * pages_per_huge_page(h), h_cg);
7250 out_err:
7251 	hugetlb_vma_lock_free(vma);
7252 	if (!vma || vma->vm_flags & VM_MAYSHARE)
7253 		/* Only call region_abort if the region_chg succeeded but the
7254 		 * region_add failed or didn't run.
7255 		 */
7256 		if (chg >= 0 && add < 0)
7257 			region_abort(resv_map, from, to, regions_needed);
7258 	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
7259 		kref_put(&resv_map->refs, resv_map_release);
7260 		set_vma_resv_map(vma, NULL);
7261 	}
7262 	return false;
7263 }
7264 
7265 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
7266 								long freed)
7267 {
7268 	struct hstate *h = hstate_inode(inode);
7269 	struct resv_map *resv_map = inode_resv_map(inode);
7270 	long chg = 0;
7271 	struct hugepage_subpool *spool = subpool_inode(inode);
7272 	long gbl_reserve;
7273 
7274 	/*
7275 	 * Since this routine can be called in the evict inode path for all
7276 	 * hugetlbfs inodes, resv_map could be NULL.
7277 	 */
7278 	if (resv_map) {
7279 		chg = region_del(resv_map, start, end);
7280 		/*
7281 		 * region_del() can fail in the rare case where a region
7282 		 * must be split and another region descriptor can not be
7283 		 * allocated.  If end == LONG_MAX, it will not fail.
7284 		 */
7285 		if (chg < 0)
7286 			return chg;
7287 	}
7288 
7289 	spin_lock(&inode->i_lock);
7290 	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
7291 	spin_unlock(&inode->i_lock);
7292 
7293 	/*
7294 	 * If the subpool has a minimum size, the number of global
7295 	 * reservations to be released may be adjusted.
7296 	 *
7297 	 * Note that !resv_map implies freed == 0. So (chg - freed)
7298 	 * won't go negative.
7299 	 */
7300 	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
7301 	hugetlb_acct_memory(h, -gbl_reserve);
7302 
7303 	return 0;
7304 }
7305 
7306 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7307 static unsigned long page_table_shareable(struct vm_area_struct *svma,
7308 				struct vm_area_struct *vma,
7309 				unsigned long addr, pgoff_t idx)
7310 {
7311 	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
7312 				svma->vm_start;
7313 	unsigned long sbase = saddr & PUD_MASK;
7314 	unsigned long s_end = sbase + PUD_SIZE;
7315 
7316 	/* Allow segments to share if only one is marked locked */
7317 	unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED_MASK;
7318 	unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED_MASK;
7319 
7320 	/*
7321 	 * match the virtual addresses, permission and the alignment of the
7322 	 * page table page.
7323 	 *
7324 	 * Also, vma_lock (vm_private_data) is required for sharing.
7325 	 */
7326 	if (pmd_index(addr) != pmd_index(saddr) ||
7327 	    vm_flags != svm_flags ||
7328 	    !range_in_vma(svma, sbase, s_end) ||
7329 	    !svma->vm_private_data)
7330 		return 0;
7331 
7332 	return saddr;
7333 }
7334 
7335 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7336 {
7337 	unsigned long start = addr & PUD_MASK;
7338 	unsigned long end = start + PUD_SIZE;
7339 
7340 #ifdef CONFIG_USERFAULTFD
7341 	if (uffd_disable_huge_pmd_share(vma))
7342 		return false;
7343 #endif
7344 	/*
7345 	 * check on proper vm_flags and page table alignment
7346 	 */
7347 	if (!(vma->vm_flags & VM_MAYSHARE))
7348 		return false;
7349 	if (!vma->vm_private_data)	/* vma lock required for sharing */
7350 		return false;
7351 	if (!range_in_vma(vma, start, end))
7352 		return false;
7353 	return true;
7354 }
7355 
7356 /*
7357  * Determine if start,end range within vma could be mapped by shared pmd.
7358  * If yes, adjust start and end to cover range associated with possible
7359  * shared pmd mappings.
7360  */
7361 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7362 				unsigned long *start, unsigned long *end)
7363 {
7364 	unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
7365 		v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
7366 
7367 	/*
7368 	 * vma needs to span at least one aligned PUD size, and the range
7369 	 * must be at least partially within in.
7370 	 */
7371 	if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
7372 		(*end <= v_start) || (*start >= v_end))
7373 		return;
7374 
7375 	/* Extend the range to be PUD aligned for a worst case scenario */
7376 	if (*start > v_start)
7377 		*start = ALIGN_DOWN(*start, PUD_SIZE);
7378 
7379 	if (*end < v_end)
7380 		*end = ALIGN(*end, PUD_SIZE);
7381 }
7382 
7383 /*
7384  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
7385  * and returns the corresponding pte. While this is not necessary for the
7386  * !shared pmd case because we can allocate the pmd later as well, it makes the
7387  * code much cleaner. pmd allocation is essential for the shared case because
7388  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
7389  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
7390  * bad pmd for sharing.
7391  */
7392 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7393 		      unsigned long addr, pud_t *pud)
7394 {
7395 	struct address_space *mapping = vma->vm_file->f_mapping;
7396 	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
7397 			vma->vm_pgoff;
7398 	struct vm_area_struct *svma;
7399 	unsigned long saddr;
7400 	pte_t *spte = NULL;
7401 	pte_t *pte;
7402 
7403 	i_mmap_lock_read(mapping);
7404 	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
7405 		if (svma == vma)
7406 			continue;
7407 
7408 		saddr = page_table_shareable(svma, vma, addr, idx);
7409 		if (saddr) {
7410 			spte = hugetlb_walk(svma, saddr,
7411 					    vma_mmu_pagesize(svma));
7412 			if (spte) {
7413 				get_page(virt_to_page(spte));
7414 				break;
7415 			}
7416 		}
7417 	}
7418 
7419 	if (!spte)
7420 		goto out;
7421 
7422 	spin_lock(&mm->page_table_lock);
7423 	if (pud_none(*pud)) {
7424 		pud_populate(mm, pud,
7425 				(pmd_t *)((unsigned long)spte & PAGE_MASK));
7426 		mm_inc_nr_pmds(mm);
7427 	} else {
7428 		put_page(virt_to_page(spte));
7429 	}
7430 	spin_unlock(&mm->page_table_lock);
7431 out:
7432 	pte = (pte_t *)pmd_alloc(mm, pud, addr);
7433 	i_mmap_unlock_read(mapping);
7434 	return pte;
7435 }
7436 
7437 /*
7438  * unmap huge page backed by shared pte.
7439  *
7440  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
7441  * indicated by page_count > 1, unmap is achieved by clearing pud and
7442  * decrementing the ref count. If count == 1, the pte page is not shared.
7443  *
7444  * Called with page table lock held.
7445  *
7446  * returns: 1 successfully unmapped a shared pte page
7447  *	    0 the underlying pte page is not shared, or it is the last user
7448  */
7449 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7450 					unsigned long addr, pte_t *ptep)
7451 {
7452 	pgd_t *pgd = pgd_offset(mm, addr);
7453 	p4d_t *p4d = p4d_offset(pgd, addr);
7454 	pud_t *pud = pud_offset(p4d, addr);
7455 
7456 	i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7457 	hugetlb_vma_assert_locked(vma);
7458 	BUG_ON(page_count(virt_to_page(ptep)) == 0);
7459 	if (page_count(virt_to_page(ptep)) == 1)
7460 		return 0;
7461 
7462 	pud_clear(pud);
7463 	put_page(virt_to_page(ptep));
7464 	mm_dec_nr_pmds(mm);
7465 	return 1;
7466 }
7467 
7468 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7469 
7470 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7471 		      unsigned long addr, pud_t *pud)
7472 {
7473 	return NULL;
7474 }
7475 
7476 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7477 				unsigned long addr, pte_t *ptep)
7478 {
7479 	return 0;
7480 }
7481 
7482 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7483 				unsigned long *start, unsigned long *end)
7484 {
7485 }
7486 
7487 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7488 {
7489 	return false;
7490 }
7491 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7492 
7493 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
7494 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
7495 			unsigned long addr, unsigned long sz)
7496 {
7497 	pgd_t *pgd;
7498 	p4d_t *p4d;
7499 	pud_t *pud;
7500 	pte_t *pte = NULL;
7501 
7502 	pgd = pgd_offset(mm, addr);
7503 	p4d = p4d_alloc(mm, pgd, addr);
7504 	if (!p4d)
7505 		return NULL;
7506 	pud = pud_alloc(mm, p4d, addr);
7507 	if (pud) {
7508 		if (sz == PUD_SIZE) {
7509 			pte = (pte_t *)pud;
7510 		} else {
7511 			BUG_ON(sz != PMD_SIZE);
7512 			if (want_pmd_share(vma, addr) && pud_none(*pud))
7513 				pte = huge_pmd_share(mm, vma, addr, pud);
7514 			else
7515 				pte = (pte_t *)pmd_alloc(mm, pud, addr);
7516 		}
7517 	}
7518 
7519 	if (pte) {
7520 		pte_t pteval = ptep_get_lockless(pte);
7521 
7522 		BUG_ON(pte_present(pteval) && !pte_huge(pteval));
7523 	}
7524 
7525 	return pte;
7526 }
7527 
7528 /*
7529  * huge_pte_offset() - Walk the page table to resolve the hugepage
7530  * entry at address @addr
7531  *
7532  * Return: Pointer to page table entry (PUD or PMD) for
7533  * address @addr, or NULL if a !p*d_present() entry is encountered and the
7534  * size @sz doesn't match the hugepage size at this level of the page
7535  * table.
7536  */
7537 pte_t *huge_pte_offset(struct mm_struct *mm,
7538 		       unsigned long addr, unsigned long sz)
7539 {
7540 	pgd_t *pgd;
7541 	p4d_t *p4d;
7542 	pud_t *pud;
7543 	pmd_t *pmd;
7544 
7545 	pgd = pgd_offset(mm, addr);
7546 	if (!pgd_present(*pgd))
7547 		return NULL;
7548 	p4d = p4d_offset(pgd, addr);
7549 	if (!p4d_present(*p4d))
7550 		return NULL;
7551 
7552 	pud = pud_offset(p4d, addr);
7553 	if (sz == PUD_SIZE)
7554 		/* must be pud huge, non-present or none */
7555 		return (pte_t *)pud;
7556 	if (!pud_present(*pud))
7557 		return NULL;
7558 	/* must have a valid entry and size to go further */
7559 
7560 	pmd = pmd_offset(pud, addr);
7561 	/* must be pmd huge, non-present or none */
7562 	return (pte_t *)pmd;
7563 }
7564 
7565 /*
7566  * Return a mask that can be used to update an address to the last huge
7567  * page in a page table page mapping size.  Used to skip non-present
7568  * page table entries when linearly scanning address ranges.  Architectures
7569  * with unique huge page to page table relationships can define their own
7570  * version of this routine.
7571  */
7572 unsigned long hugetlb_mask_last_page(struct hstate *h)
7573 {
7574 	unsigned long hp_size = huge_page_size(h);
7575 
7576 	if (hp_size == PUD_SIZE)
7577 		return P4D_SIZE - PUD_SIZE;
7578 	else if (hp_size == PMD_SIZE)
7579 		return PUD_SIZE - PMD_SIZE;
7580 	else
7581 		return 0UL;
7582 }
7583 
7584 #else
7585 
7586 /* See description above.  Architectures can provide their own version. */
7587 __weak unsigned long hugetlb_mask_last_page(struct hstate *h)
7588 {
7589 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7590 	if (huge_page_size(h) == PMD_SIZE)
7591 		return PUD_SIZE - PMD_SIZE;
7592 #endif
7593 	return 0UL;
7594 }
7595 
7596 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
7597 
7598 /*
7599  * These functions are overwritable if your architecture needs its own
7600  * behavior.
7601  */
7602 bool isolate_hugetlb(struct folio *folio, struct list_head *list)
7603 {
7604 	bool ret = true;
7605 
7606 	spin_lock_irq(&hugetlb_lock);
7607 	if (!folio_test_hugetlb(folio) ||
7608 	    !folio_test_hugetlb_migratable(folio) ||
7609 	    !folio_try_get(folio)) {
7610 		ret = false;
7611 		goto unlock;
7612 	}
7613 	folio_clear_hugetlb_migratable(folio);
7614 	list_move_tail(&folio->lru, list);
7615 unlock:
7616 	spin_unlock_irq(&hugetlb_lock);
7617 	return ret;
7618 }
7619 
7620 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison)
7621 {
7622 	int ret = 0;
7623 
7624 	*hugetlb = false;
7625 	spin_lock_irq(&hugetlb_lock);
7626 	if (folio_test_hugetlb(folio)) {
7627 		*hugetlb = true;
7628 		if (folio_test_hugetlb_freed(folio))
7629 			ret = 0;
7630 		else if (folio_test_hugetlb_migratable(folio) || unpoison)
7631 			ret = folio_try_get(folio);
7632 		else
7633 			ret = -EBUSY;
7634 	}
7635 	spin_unlock_irq(&hugetlb_lock);
7636 	return ret;
7637 }
7638 
7639 int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
7640 				bool *migratable_cleared)
7641 {
7642 	int ret;
7643 
7644 	spin_lock_irq(&hugetlb_lock);
7645 	ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared);
7646 	spin_unlock_irq(&hugetlb_lock);
7647 	return ret;
7648 }
7649 
7650 void folio_putback_active_hugetlb(struct folio *folio)
7651 {
7652 	spin_lock_irq(&hugetlb_lock);
7653 	folio_set_hugetlb_migratable(folio);
7654 	list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist);
7655 	spin_unlock_irq(&hugetlb_lock);
7656 	folio_put(folio);
7657 }
7658 
7659 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason)
7660 {
7661 	struct hstate *h = folio_hstate(old_folio);
7662 
7663 	hugetlb_cgroup_migrate(old_folio, new_folio);
7664 	set_page_owner_migrate_reason(&new_folio->page, reason);
7665 
7666 	/*
7667 	 * transfer temporary state of the new hugetlb folio. This is
7668 	 * reverse to other transitions because the newpage is going to
7669 	 * be final while the old one will be freed so it takes over
7670 	 * the temporary status.
7671 	 *
7672 	 * Also note that we have to transfer the per-node surplus state
7673 	 * here as well otherwise the global surplus count will not match
7674 	 * the per-node's.
7675 	 */
7676 	if (folio_test_hugetlb_temporary(new_folio)) {
7677 		int old_nid = folio_nid(old_folio);
7678 		int new_nid = folio_nid(new_folio);
7679 
7680 		folio_set_hugetlb_temporary(old_folio);
7681 		folio_clear_hugetlb_temporary(new_folio);
7682 
7683 
7684 		/*
7685 		 * There is no need to transfer the per-node surplus state
7686 		 * when we do not cross the node.
7687 		 */
7688 		if (new_nid == old_nid)
7689 			return;
7690 		spin_lock_irq(&hugetlb_lock);
7691 		if (h->surplus_huge_pages_node[old_nid]) {
7692 			h->surplus_huge_pages_node[old_nid]--;
7693 			h->surplus_huge_pages_node[new_nid]++;
7694 		}
7695 		spin_unlock_irq(&hugetlb_lock);
7696 	}
7697 }
7698 
7699 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
7700 				   unsigned long start,
7701 				   unsigned long end)
7702 {
7703 	struct hstate *h = hstate_vma(vma);
7704 	unsigned long sz = huge_page_size(h);
7705 	struct mm_struct *mm = vma->vm_mm;
7706 	struct mmu_notifier_range range;
7707 	unsigned long address;
7708 	spinlock_t *ptl;
7709 	pte_t *ptep;
7710 
7711 	if (!(vma->vm_flags & VM_MAYSHARE))
7712 		return;
7713 
7714 	if (start >= end)
7715 		return;
7716 
7717 	flush_cache_range(vma, start, end);
7718 	/*
7719 	 * No need to call adjust_range_if_pmd_sharing_possible(), because
7720 	 * we have already done the PUD_SIZE alignment.
7721 	 */
7722 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
7723 				start, end);
7724 	mmu_notifier_invalidate_range_start(&range);
7725 	hugetlb_vma_lock_write(vma);
7726 	i_mmap_lock_write(vma->vm_file->f_mapping);
7727 	for (address = start; address < end; address += PUD_SIZE) {
7728 		ptep = hugetlb_walk(vma, address, sz);
7729 		if (!ptep)
7730 			continue;
7731 		ptl = huge_pte_lock(h, mm, ptep);
7732 		huge_pmd_unshare(mm, vma, address, ptep);
7733 		spin_unlock(ptl);
7734 	}
7735 	flush_hugetlb_tlb_range(vma, start, end);
7736 	i_mmap_unlock_write(vma->vm_file->f_mapping);
7737 	hugetlb_vma_unlock_write(vma);
7738 	/*
7739 	 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs(), see
7740 	 * Documentation/mm/mmu_notifier.rst.
7741 	 */
7742 	mmu_notifier_invalidate_range_end(&range);
7743 }
7744 
7745 /*
7746  * This function will unconditionally remove all the shared pmd pgtable entries
7747  * within the specific vma for a hugetlbfs memory range.
7748  */
7749 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7750 {
7751 	hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE),
7752 			ALIGN_DOWN(vma->vm_end, PUD_SIZE));
7753 }
7754 
7755 #ifdef CONFIG_CMA
7756 static bool cma_reserve_called __initdata;
7757 
7758 static int __init cmdline_parse_hugetlb_cma(char *p)
7759 {
7760 	int nid, count = 0;
7761 	unsigned long tmp;
7762 	char *s = p;
7763 
7764 	while (*s) {
7765 		if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7766 			break;
7767 
7768 		if (s[count] == ':') {
7769 			if (tmp >= MAX_NUMNODES)
7770 				break;
7771 			nid = array_index_nospec(tmp, MAX_NUMNODES);
7772 
7773 			s += count + 1;
7774 			tmp = memparse(s, &s);
7775 			hugetlb_cma_size_in_node[nid] = tmp;
7776 			hugetlb_cma_size += tmp;
7777 
7778 			/*
7779 			 * Skip the separator if have one, otherwise
7780 			 * break the parsing.
7781 			 */
7782 			if (*s == ',')
7783 				s++;
7784 			else
7785 				break;
7786 		} else {
7787 			hugetlb_cma_size = memparse(p, &p);
7788 			break;
7789 		}
7790 	}
7791 
7792 	return 0;
7793 }
7794 
7795 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7796 
7797 void __init hugetlb_cma_reserve(int order)
7798 {
7799 	unsigned long size, reserved, per_node;
7800 	bool node_specific_cma_alloc = false;
7801 	int nid;
7802 
7803 	/*
7804 	 * HugeTLB CMA reservation is required for gigantic
7805 	 * huge pages which could not be allocated via the
7806 	 * page allocator. Just warn if there is any change
7807 	 * breaking this assumption.
7808 	 */
7809 	VM_WARN_ON(order <= MAX_PAGE_ORDER);
7810 	cma_reserve_called = true;
7811 
7812 	if (!hugetlb_cma_size)
7813 		return;
7814 
7815 	for (nid = 0; nid < MAX_NUMNODES; nid++) {
7816 		if (hugetlb_cma_size_in_node[nid] == 0)
7817 			continue;
7818 
7819 		if (!node_online(nid)) {
7820 			pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7821 			hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7822 			hugetlb_cma_size_in_node[nid] = 0;
7823 			continue;
7824 		}
7825 
7826 		if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7827 			pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7828 				nid, (PAGE_SIZE << order) / SZ_1M);
7829 			hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7830 			hugetlb_cma_size_in_node[nid] = 0;
7831 		} else {
7832 			node_specific_cma_alloc = true;
7833 		}
7834 	}
7835 
7836 	/* Validate the CMA size again in case some invalid nodes specified. */
7837 	if (!hugetlb_cma_size)
7838 		return;
7839 
7840 	if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7841 		pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7842 			(PAGE_SIZE << order) / SZ_1M);
7843 		hugetlb_cma_size = 0;
7844 		return;
7845 	}
7846 
7847 	if (!node_specific_cma_alloc) {
7848 		/*
7849 		 * If 3 GB area is requested on a machine with 4 numa nodes,
7850 		 * let's allocate 1 GB on first three nodes and ignore the last one.
7851 		 */
7852 		per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7853 		pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7854 			hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7855 	}
7856 
7857 	reserved = 0;
7858 	for_each_online_node(nid) {
7859 		int res;
7860 		char name[CMA_MAX_NAME];
7861 
7862 		if (node_specific_cma_alloc) {
7863 			if (hugetlb_cma_size_in_node[nid] == 0)
7864 				continue;
7865 
7866 			size = hugetlb_cma_size_in_node[nid];
7867 		} else {
7868 			size = min(per_node, hugetlb_cma_size - reserved);
7869 		}
7870 
7871 		size = round_up(size, PAGE_SIZE << order);
7872 
7873 		snprintf(name, sizeof(name), "hugetlb%d", nid);
7874 		/*
7875 		 * Note that 'order per bit' is based on smallest size that
7876 		 * may be returned to CMA allocator in the case of
7877 		 * huge page demotion.
7878 		 */
7879 		res = cma_declare_contiguous_nid(0, size, 0,
7880 						PAGE_SIZE << HUGETLB_PAGE_ORDER,
7881 						 0, false, name,
7882 						 &hugetlb_cma[nid], nid);
7883 		if (res) {
7884 			pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7885 				res, nid);
7886 			continue;
7887 		}
7888 
7889 		reserved += size;
7890 		pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7891 			size / SZ_1M, nid);
7892 
7893 		if (reserved >= hugetlb_cma_size)
7894 			break;
7895 	}
7896 
7897 	if (!reserved)
7898 		/*
7899 		 * hugetlb_cma_size is used to determine if allocations from
7900 		 * cma are possible.  Set to zero if no cma regions are set up.
7901 		 */
7902 		hugetlb_cma_size = 0;
7903 }
7904 
7905 static void __init hugetlb_cma_check(void)
7906 {
7907 	if (!hugetlb_cma_size || cma_reserve_called)
7908 		return;
7909 
7910 	pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7911 }
7912 
7913 #endif /* CONFIG_CMA */
7914