1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic hugetlb support. 4 * (C) Nadia Yvette Chambers, April 2004 5 */ 6 #include <linux/list.h> 7 #include <linux/init.h> 8 #include <linux/mm.h> 9 #include <linux/seq_file.h> 10 #include <linux/sysctl.h> 11 #include <linux/highmem.h> 12 #include <linux/mmu_notifier.h> 13 #include <linux/nodemask.h> 14 #include <linux/pagemap.h> 15 #include <linux/mempolicy.h> 16 #include <linux/compiler.h> 17 #include <linux/cpuset.h> 18 #include <linux/mutex.h> 19 #include <linux/memblock.h> 20 #include <linux/sysfs.h> 21 #include <linux/slab.h> 22 #include <linux/sched/mm.h> 23 #include <linux/mmdebug.h> 24 #include <linux/sched/signal.h> 25 #include <linux/rmap.h> 26 #include <linux/string_helpers.h> 27 #include <linux/swap.h> 28 #include <linux/swapops.h> 29 #include <linux/jhash.h> 30 #include <linux/numa.h> 31 #include <linux/llist.h> 32 #include <linux/cma.h> 33 34 #include <asm/page.h> 35 #include <asm/pgalloc.h> 36 #include <asm/tlb.h> 37 38 #include <linux/io.h> 39 #include <linux/hugetlb.h> 40 #include <linux/hugetlb_cgroup.h> 41 #include <linux/node.h> 42 #include <linux/userfaultfd_k.h> 43 #include <linux/page_owner.h> 44 #include "internal.h" 45 46 int hugetlb_max_hstate __read_mostly; 47 unsigned int default_hstate_idx; 48 struct hstate hstates[HUGE_MAX_HSTATE]; 49 50 #ifdef CONFIG_CMA 51 static struct cma *hugetlb_cma[MAX_NUMNODES]; 52 #endif 53 static unsigned long hugetlb_cma_size __initdata; 54 55 /* 56 * Minimum page order among possible hugepage sizes, set to a proper value 57 * at boot time. 58 */ 59 static unsigned int minimum_order __read_mostly = UINT_MAX; 60 61 __initdata LIST_HEAD(huge_boot_pages); 62 63 /* for command line parsing */ 64 static struct hstate * __initdata parsed_hstate; 65 static unsigned long __initdata default_hstate_max_huge_pages; 66 static bool __initdata parsed_valid_hugepagesz = true; 67 static bool __initdata parsed_default_hugepagesz; 68 69 /* 70 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages, 71 * free_huge_pages, and surplus_huge_pages. 72 */ 73 DEFINE_SPINLOCK(hugetlb_lock); 74 75 /* 76 * Serializes faults on the same logical page. This is used to 77 * prevent spurious OOMs when the hugepage pool is fully utilized. 78 */ 79 static int num_fault_mutexes; 80 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp; 81 82 /* Forward declaration */ 83 static int hugetlb_acct_memory(struct hstate *h, long delta); 84 85 static inline bool subpool_is_free(struct hugepage_subpool *spool) 86 { 87 if (spool->count) 88 return false; 89 if (spool->max_hpages != -1) 90 return spool->used_hpages == 0; 91 if (spool->min_hpages != -1) 92 return spool->rsv_hpages == spool->min_hpages; 93 94 return true; 95 } 96 97 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool) 98 { 99 spin_unlock(&spool->lock); 100 101 /* If no pages are used, and no other handles to the subpool 102 * remain, give up any reservations based on minimum size and 103 * free the subpool */ 104 if (subpool_is_free(spool)) { 105 if (spool->min_hpages != -1) 106 hugetlb_acct_memory(spool->hstate, 107 -spool->min_hpages); 108 kfree(spool); 109 } 110 } 111 112 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages, 113 long min_hpages) 114 { 115 struct hugepage_subpool *spool; 116 117 spool = kzalloc(sizeof(*spool), GFP_KERNEL); 118 if (!spool) 119 return NULL; 120 121 spin_lock_init(&spool->lock); 122 spool->count = 1; 123 spool->max_hpages = max_hpages; 124 spool->hstate = h; 125 spool->min_hpages = min_hpages; 126 127 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) { 128 kfree(spool); 129 return NULL; 130 } 131 spool->rsv_hpages = min_hpages; 132 133 return spool; 134 } 135 136 void hugepage_put_subpool(struct hugepage_subpool *spool) 137 { 138 spin_lock(&spool->lock); 139 BUG_ON(!spool->count); 140 spool->count--; 141 unlock_or_release_subpool(spool); 142 } 143 144 /* 145 * Subpool accounting for allocating and reserving pages. 146 * Return -ENOMEM if there are not enough resources to satisfy the 147 * request. Otherwise, return the number of pages by which the 148 * global pools must be adjusted (upward). The returned value may 149 * only be different than the passed value (delta) in the case where 150 * a subpool minimum size must be maintained. 151 */ 152 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool, 153 long delta) 154 { 155 long ret = delta; 156 157 if (!spool) 158 return ret; 159 160 spin_lock(&spool->lock); 161 162 if (spool->max_hpages != -1) { /* maximum size accounting */ 163 if ((spool->used_hpages + delta) <= spool->max_hpages) 164 spool->used_hpages += delta; 165 else { 166 ret = -ENOMEM; 167 goto unlock_ret; 168 } 169 } 170 171 /* minimum size accounting */ 172 if (spool->min_hpages != -1 && spool->rsv_hpages) { 173 if (delta > spool->rsv_hpages) { 174 /* 175 * Asking for more reserves than those already taken on 176 * behalf of subpool. Return difference. 177 */ 178 ret = delta - spool->rsv_hpages; 179 spool->rsv_hpages = 0; 180 } else { 181 ret = 0; /* reserves already accounted for */ 182 spool->rsv_hpages -= delta; 183 } 184 } 185 186 unlock_ret: 187 spin_unlock(&spool->lock); 188 return ret; 189 } 190 191 /* 192 * Subpool accounting for freeing and unreserving pages. 193 * Return the number of global page reservations that must be dropped. 194 * The return value may only be different than the passed value (delta) 195 * in the case where a subpool minimum size must be maintained. 196 */ 197 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool, 198 long delta) 199 { 200 long ret = delta; 201 202 if (!spool) 203 return delta; 204 205 spin_lock(&spool->lock); 206 207 if (spool->max_hpages != -1) /* maximum size accounting */ 208 spool->used_hpages -= delta; 209 210 /* minimum size accounting */ 211 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) { 212 if (spool->rsv_hpages + delta <= spool->min_hpages) 213 ret = 0; 214 else 215 ret = spool->rsv_hpages + delta - spool->min_hpages; 216 217 spool->rsv_hpages += delta; 218 if (spool->rsv_hpages > spool->min_hpages) 219 spool->rsv_hpages = spool->min_hpages; 220 } 221 222 /* 223 * If hugetlbfs_put_super couldn't free spool due to an outstanding 224 * quota reference, free it now. 225 */ 226 unlock_or_release_subpool(spool); 227 228 return ret; 229 } 230 231 static inline struct hugepage_subpool *subpool_inode(struct inode *inode) 232 { 233 return HUGETLBFS_SB(inode->i_sb)->spool; 234 } 235 236 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma) 237 { 238 return subpool_inode(file_inode(vma->vm_file)); 239 } 240 241 /* Helper that removes a struct file_region from the resv_map cache and returns 242 * it for use. 243 */ 244 static struct file_region * 245 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to) 246 { 247 struct file_region *nrg = NULL; 248 249 VM_BUG_ON(resv->region_cache_count <= 0); 250 251 resv->region_cache_count--; 252 nrg = list_first_entry(&resv->region_cache, struct file_region, link); 253 list_del(&nrg->link); 254 255 nrg->from = from; 256 nrg->to = to; 257 258 return nrg; 259 } 260 261 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg, 262 struct file_region *rg) 263 { 264 #ifdef CONFIG_CGROUP_HUGETLB 265 nrg->reservation_counter = rg->reservation_counter; 266 nrg->css = rg->css; 267 if (rg->css) 268 css_get(rg->css); 269 #endif 270 } 271 272 /* Helper that records hugetlb_cgroup uncharge info. */ 273 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg, 274 struct hstate *h, 275 struct resv_map *resv, 276 struct file_region *nrg) 277 { 278 #ifdef CONFIG_CGROUP_HUGETLB 279 if (h_cg) { 280 nrg->reservation_counter = 281 &h_cg->rsvd_hugepage[hstate_index(h)]; 282 nrg->css = &h_cg->css; 283 if (!resv->pages_per_hpage) 284 resv->pages_per_hpage = pages_per_huge_page(h); 285 /* pages_per_hpage should be the same for all entries in 286 * a resv_map. 287 */ 288 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h)); 289 } else { 290 nrg->reservation_counter = NULL; 291 nrg->css = NULL; 292 } 293 #endif 294 } 295 296 static bool has_same_uncharge_info(struct file_region *rg, 297 struct file_region *org) 298 { 299 #ifdef CONFIG_CGROUP_HUGETLB 300 return rg && org && 301 rg->reservation_counter == org->reservation_counter && 302 rg->css == org->css; 303 304 #else 305 return true; 306 #endif 307 } 308 309 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg) 310 { 311 struct file_region *nrg = NULL, *prg = NULL; 312 313 prg = list_prev_entry(rg, link); 314 if (&prg->link != &resv->regions && prg->to == rg->from && 315 has_same_uncharge_info(prg, rg)) { 316 prg->to = rg->to; 317 318 list_del(&rg->link); 319 kfree(rg); 320 321 rg = prg; 322 } 323 324 nrg = list_next_entry(rg, link); 325 if (&nrg->link != &resv->regions && nrg->from == rg->to && 326 has_same_uncharge_info(nrg, rg)) { 327 nrg->from = rg->from; 328 329 list_del(&rg->link); 330 kfree(rg); 331 } 332 } 333 334 /* 335 * Must be called with resv->lock held. 336 * 337 * Calling this with regions_needed != NULL will count the number of pages 338 * to be added but will not modify the linked list. And regions_needed will 339 * indicate the number of file_regions needed in the cache to carry out to add 340 * the regions for this range. 341 */ 342 static long add_reservation_in_range(struct resv_map *resv, long f, long t, 343 struct hugetlb_cgroup *h_cg, 344 struct hstate *h, long *regions_needed) 345 { 346 long add = 0; 347 struct list_head *head = &resv->regions; 348 long last_accounted_offset = f; 349 struct file_region *rg = NULL, *trg = NULL, *nrg = NULL; 350 351 if (regions_needed) 352 *regions_needed = 0; 353 354 /* In this loop, we essentially handle an entry for the range 355 * [last_accounted_offset, rg->from), at every iteration, with some 356 * bounds checking. 357 */ 358 list_for_each_entry_safe(rg, trg, head, link) { 359 /* Skip irrelevant regions that start before our range. */ 360 if (rg->from < f) { 361 /* If this region ends after the last accounted offset, 362 * then we need to update last_accounted_offset. 363 */ 364 if (rg->to > last_accounted_offset) 365 last_accounted_offset = rg->to; 366 continue; 367 } 368 369 /* When we find a region that starts beyond our range, we've 370 * finished. 371 */ 372 if (rg->from > t) 373 break; 374 375 /* Add an entry for last_accounted_offset -> rg->from, and 376 * update last_accounted_offset. 377 */ 378 if (rg->from > last_accounted_offset) { 379 add += rg->from - last_accounted_offset; 380 if (!regions_needed) { 381 nrg = get_file_region_entry_from_cache( 382 resv, last_accounted_offset, rg->from); 383 record_hugetlb_cgroup_uncharge_info(h_cg, h, 384 resv, nrg); 385 list_add(&nrg->link, rg->link.prev); 386 coalesce_file_region(resv, nrg); 387 } else 388 *regions_needed += 1; 389 } 390 391 last_accounted_offset = rg->to; 392 } 393 394 /* Handle the case where our range extends beyond 395 * last_accounted_offset. 396 */ 397 if (last_accounted_offset < t) { 398 add += t - last_accounted_offset; 399 if (!regions_needed) { 400 nrg = get_file_region_entry_from_cache( 401 resv, last_accounted_offset, t); 402 record_hugetlb_cgroup_uncharge_info(h_cg, h, resv, nrg); 403 list_add(&nrg->link, rg->link.prev); 404 coalesce_file_region(resv, nrg); 405 } else 406 *regions_needed += 1; 407 } 408 409 VM_BUG_ON(add < 0); 410 return add; 411 } 412 413 /* Must be called with resv->lock acquired. Will drop lock to allocate entries. 414 */ 415 static int allocate_file_region_entries(struct resv_map *resv, 416 int regions_needed) 417 __must_hold(&resv->lock) 418 { 419 struct list_head allocated_regions; 420 int to_allocate = 0, i = 0; 421 struct file_region *trg = NULL, *rg = NULL; 422 423 VM_BUG_ON(regions_needed < 0); 424 425 INIT_LIST_HEAD(&allocated_regions); 426 427 /* 428 * Check for sufficient descriptors in the cache to accommodate 429 * the number of in progress add operations plus regions_needed. 430 * 431 * This is a while loop because when we drop the lock, some other call 432 * to region_add or region_del may have consumed some region_entries, 433 * so we keep looping here until we finally have enough entries for 434 * (adds_in_progress + regions_needed). 435 */ 436 while (resv->region_cache_count < 437 (resv->adds_in_progress + regions_needed)) { 438 to_allocate = resv->adds_in_progress + regions_needed - 439 resv->region_cache_count; 440 441 /* At this point, we should have enough entries in the cache 442 * for all the existings adds_in_progress. We should only be 443 * needing to allocate for regions_needed. 444 */ 445 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress); 446 447 spin_unlock(&resv->lock); 448 for (i = 0; i < to_allocate; i++) { 449 trg = kmalloc(sizeof(*trg), GFP_KERNEL); 450 if (!trg) 451 goto out_of_memory; 452 list_add(&trg->link, &allocated_regions); 453 } 454 455 spin_lock(&resv->lock); 456 457 list_splice(&allocated_regions, &resv->region_cache); 458 resv->region_cache_count += to_allocate; 459 } 460 461 return 0; 462 463 out_of_memory: 464 list_for_each_entry_safe(rg, trg, &allocated_regions, link) { 465 list_del(&rg->link); 466 kfree(rg); 467 } 468 return -ENOMEM; 469 } 470 471 /* 472 * Add the huge page range represented by [f, t) to the reserve 473 * map. Regions will be taken from the cache to fill in this range. 474 * Sufficient regions should exist in the cache due to the previous 475 * call to region_chg with the same range, but in some cases the cache will not 476 * have sufficient entries due to races with other code doing region_add or 477 * region_del. The extra needed entries will be allocated. 478 * 479 * regions_needed is the out value provided by a previous call to region_chg. 480 * 481 * Return the number of new huge pages added to the map. This number is greater 482 * than or equal to zero. If file_region entries needed to be allocated for 483 * this operation and we were not able to allocate, it returns -ENOMEM. 484 * region_add of regions of length 1 never allocate file_regions and cannot 485 * fail; region_chg will always allocate at least 1 entry and a region_add for 486 * 1 page will only require at most 1 entry. 487 */ 488 static long region_add(struct resv_map *resv, long f, long t, 489 long in_regions_needed, struct hstate *h, 490 struct hugetlb_cgroup *h_cg) 491 { 492 long add = 0, actual_regions_needed = 0; 493 494 spin_lock(&resv->lock); 495 retry: 496 497 /* Count how many regions are actually needed to execute this add. */ 498 add_reservation_in_range(resv, f, t, NULL, NULL, 499 &actual_regions_needed); 500 501 /* 502 * Check for sufficient descriptors in the cache to accommodate 503 * this add operation. Note that actual_regions_needed may be greater 504 * than in_regions_needed, as the resv_map may have been modified since 505 * the region_chg call. In this case, we need to make sure that we 506 * allocate extra entries, such that we have enough for all the 507 * existing adds_in_progress, plus the excess needed for this 508 * operation. 509 */ 510 if (actual_regions_needed > in_regions_needed && 511 resv->region_cache_count < 512 resv->adds_in_progress + 513 (actual_regions_needed - in_regions_needed)) { 514 /* region_add operation of range 1 should never need to 515 * allocate file_region entries. 516 */ 517 VM_BUG_ON(t - f <= 1); 518 519 if (allocate_file_region_entries( 520 resv, actual_regions_needed - in_regions_needed)) { 521 return -ENOMEM; 522 } 523 524 goto retry; 525 } 526 527 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL); 528 529 resv->adds_in_progress -= in_regions_needed; 530 531 spin_unlock(&resv->lock); 532 VM_BUG_ON(add < 0); 533 return add; 534 } 535 536 /* 537 * Examine the existing reserve map and determine how many 538 * huge pages in the specified range [f, t) are NOT currently 539 * represented. This routine is called before a subsequent 540 * call to region_add that will actually modify the reserve 541 * map to add the specified range [f, t). region_chg does 542 * not change the number of huge pages represented by the 543 * map. A number of new file_region structures is added to the cache as a 544 * placeholder, for the subsequent region_add call to use. At least 1 545 * file_region structure is added. 546 * 547 * out_regions_needed is the number of regions added to the 548 * resv->adds_in_progress. This value needs to be provided to a follow up call 549 * to region_add or region_abort for proper accounting. 550 * 551 * Returns the number of huge pages that need to be added to the existing 552 * reservation map for the range [f, t). This number is greater or equal to 553 * zero. -ENOMEM is returned if a new file_region structure or cache entry 554 * is needed and can not be allocated. 555 */ 556 static long region_chg(struct resv_map *resv, long f, long t, 557 long *out_regions_needed) 558 { 559 long chg = 0; 560 561 spin_lock(&resv->lock); 562 563 /* Count how many hugepages in this range are NOT represented. */ 564 chg = add_reservation_in_range(resv, f, t, NULL, NULL, 565 out_regions_needed); 566 567 if (*out_regions_needed == 0) 568 *out_regions_needed = 1; 569 570 if (allocate_file_region_entries(resv, *out_regions_needed)) 571 return -ENOMEM; 572 573 resv->adds_in_progress += *out_regions_needed; 574 575 spin_unlock(&resv->lock); 576 return chg; 577 } 578 579 /* 580 * Abort the in progress add operation. The adds_in_progress field 581 * of the resv_map keeps track of the operations in progress between 582 * calls to region_chg and region_add. Operations are sometimes 583 * aborted after the call to region_chg. In such cases, region_abort 584 * is called to decrement the adds_in_progress counter. regions_needed 585 * is the value returned by the region_chg call, it is used to decrement 586 * the adds_in_progress counter. 587 * 588 * NOTE: The range arguments [f, t) are not needed or used in this 589 * routine. They are kept to make reading the calling code easier as 590 * arguments will match the associated region_chg call. 591 */ 592 static void region_abort(struct resv_map *resv, long f, long t, 593 long regions_needed) 594 { 595 spin_lock(&resv->lock); 596 VM_BUG_ON(!resv->region_cache_count); 597 resv->adds_in_progress -= regions_needed; 598 spin_unlock(&resv->lock); 599 } 600 601 /* 602 * Delete the specified range [f, t) from the reserve map. If the 603 * t parameter is LONG_MAX, this indicates that ALL regions after f 604 * should be deleted. Locate the regions which intersect [f, t) 605 * and either trim, delete or split the existing regions. 606 * 607 * Returns the number of huge pages deleted from the reserve map. 608 * In the normal case, the return value is zero or more. In the 609 * case where a region must be split, a new region descriptor must 610 * be allocated. If the allocation fails, -ENOMEM will be returned. 611 * NOTE: If the parameter t == LONG_MAX, then we will never split 612 * a region and possibly return -ENOMEM. Callers specifying 613 * t == LONG_MAX do not need to check for -ENOMEM error. 614 */ 615 static long region_del(struct resv_map *resv, long f, long t) 616 { 617 struct list_head *head = &resv->regions; 618 struct file_region *rg, *trg; 619 struct file_region *nrg = NULL; 620 long del = 0; 621 622 retry: 623 spin_lock(&resv->lock); 624 list_for_each_entry_safe(rg, trg, head, link) { 625 /* 626 * Skip regions before the range to be deleted. file_region 627 * ranges are normally of the form [from, to). However, there 628 * may be a "placeholder" entry in the map which is of the form 629 * (from, to) with from == to. Check for placeholder entries 630 * at the beginning of the range to be deleted. 631 */ 632 if (rg->to <= f && (rg->to != rg->from || rg->to != f)) 633 continue; 634 635 if (rg->from >= t) 636 break; 637 638 if (f > rg->from && t < rg->to) { /* Must split region */ 639 /* 640 * Check for an entry in the cache before dropping 641 * lock and attempting allocation. 642 */ 643 if (!nrg && 644 resv->region_cache_count > resv->adds_in_progress) { 645 nrg = list_first_entry(&resv->region_cache, 646 struct file_region, 647 link); 648 list_del(&nrg->link); 649 resv->region_cache_count--; 650 } 651 652 if (!nrg) { 653 spin_unlock(&resv->lock); 654 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 655 if (!nrg) 656 return -ENOMEM; 657 goto retry; 658 } 659 660 del += t - f; 661 hugetlb_cgroup_uncharge_file_region( 662 resv, rg, t - f); 663 664 /* New entry for end of split region */ 665 nrg->from = t; 666 nrg->to = rg->to; 667 668 copy_hugetlb_cgroup_uncharge_info(nrg, rg); 669 670 INIT_LIST_HEAD(&nrg->link); 671 672 /* Original entry is trimmed */ 673 rg->to = f; 674 675 list_add(&nrg->link, &rg->link); 676 nrg = NULL; 677 break; 678 } 679 680 if (f <= rg->from && t >= rg->to) { /* Remove entire region */ 681 del += rg->to - rg->from; 682 hugetlb_cgroup_uncharge_file_region(resv, rg, 683 rg->to - rg->from); 684 list_del(&rg->link); 685 kfree(rg); 686 continue; 687 } 688 689 if (f <= rg->from) { /* Trim beginning of region */ 690 hugetlb_cgroup_uncharge_file_region(resv, rg, 691 t - rg->from); 692 693 del += t - rg->from; 694 rg->from = t; 695 } else { /* Trim end of region */ 696 hugetlb_cgroup_uncharge_file_region(resv, rg, 697 rg->to - f); 698 699 del += rg->to - f; 700 rg->to = f; 701 } 702 } 703 704 spin_unlock(&resv->lock); 705 kfree(nrg); 706 return del; 707 } 708 709 /* 710 * A rare out of memory error was encountered which prevented removal of 711 * the reserve map region for a page. The huge page itself was free'ed 712 * and removed from the page cache. This routine will adjust the subpool 713 * usage count, and the global reserve count if needed. By incrementing 714 * these counts, the reserve map entry which could not be deleted will 715 * appear as a "reserved" entry instead of simply dangling with incorrect 716 * counts. 717 */ 718 void hugetlb_fix_reserve_counts(struct inode *inode) 719 { 720 struct hugepage_subpool *spool = subpool_inode(inode); 721 long rsv_adjust; 722 723 rsv_adjust = hugepage_subpool_get_pages(spool, 1); 724 if (rsv_adjust) { 725 struct hstate *h = hstate_inode(inode); 726 727 hugetlb_acct_memory(h, 1); 728 } 729 } 730 731 /* 732 * Count and return the number of huge pages in the reserve map 733 * that intersect with the range [f, t). 734 */ 735 static long region_count(struct resv_map *resv, long f, long t) 736 { 737 struct list_head *head = &resv->regions; 738 struct file_region *rg; 739 long chg = 0; 740 741 spin_lock(&resv->lock); 742 /* Locate each segment we overlap with, and count that overlap. */ 743 list_for_each_entry(rg, head, link) { 744 long seg_from; 745 long seg_to; 746 747 if (rg->to <= f) 748 continue; 749 if (rg->from >= t) 750 break; 751 752 seg_from = max(rg->from, f); 753 seg_to = min(rg->to, t); 754 755 chg += seg_to - seg_from; 756 } 757 spin_unlock(&resv->lock); 758 759 return chg; 760 } 761 762 /* 763 * Convert the address within this vma to the page offset within 764 * the mapping, in pagecache page units; huge pages here. 765 */ 766 static pgoff_t vma_hugecache_offset(struct hstate *h, 767 struct vm_area_struct *vma, unsigned long address) 768 { 769 return ((address - vma->vm_start) >> huge_page_shift(h)) + 770 (vma->vm_pgoff >> huge_page_order(h)); 771 } 772 773 pgoff_t linear_hugepage_index(struct vm_area_struct *vma, 774 unsigned long address) 775 { 776 return vma_hugecache_offset(hstate_vma(vma), vma, address); 777 } 778 EXPORT_SYMBOL_GPL(linear_hugepage_index); 779 780 /* 781 * Return the size of the pages allocated when backing a VMA. In the majority 782 * cases this will be same size as used by the page table entries. 783 */ 784 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) 785 { 786 if (vma->vm_ops && vma->vm_ops->pagesize) 787 return vma->vm_ops->pagesize(vma); 788 return PAGE_SIZE; 789 } 790 EXPORT_SYMBOL_GPL(vma_kernel_pagesize); 791 792 /* 793 * Return the page size being used by the MMU to back a VMA. In the majority 794 * of cases, the page size used by the kernel matches the MMU size. On 795 * architectures where it differs, an architecture-specific 'strong' 796 * version of this symbol is required. 797 */ 798 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 799 { 800 return vma_kernel_pagesize(vma); 801 } 802 803 /* 804 * Flags for MAP_PRIVATE reservations. These are stored in the bottom 805 * bits of the reservation map pointer, which are always clear due to 806 * alignment. 807 */ 808 #define HPAGE_RESV_OWNER (1UL << 0) 809 #define HPAGE_RESV_UNMAPPED (1UL << 1) 810 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) 811 812 /* 813 * These helpers are used to track how many pages are reserved for 814 * faults in a MAP_PRIVATE mapping. Only the process that called mmap() 815 * is guaranteed to have their future faults succeed. 816 * 817 * With the exception of reset_vma_resv_huge_pages() which is called at fork(), 818 * the reserve counters are updated with the hugetlb_lock held. It is safe 819 * to reset the VMA at fork() time as it is not in use yet and there is no 820 * chance of the global counters getting corrupted as a result of the values. 821 * 822 * The private mapping reservation is represented in a subtly different 823 * manner to a shared mapping. A shared mapping has a region map associated 824 * with the underlying file, this region map represents the backing file 825 * pages which have ever had a reservation assigned which this persists even 826 * after the page is instantiated. A private mapping has a region map 827 * associated with the original mmap which is attached to all VMAs which 828 * reference it, this region map represents those offsets which have consumed 829 * reservation ie. where pages have been instantiated. 830 */ 831 static unsigned long get_vma_private_data(struct vm_area_struct *vma) 832 { 833 return (unsigned long)vma->vm_private_data; 834 } 835 836 static void set_vma_private_data(struct vm_area_struct *vma, 837 unsigned long value) 838 { 839 vma->vm_private_data = (void *)value; 840 } 841 842 static void 843 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map, 844 struct hugetlb_cgroup *h_cg, 845 struct hstate *h) 846 { 847 #ifdef CONFIG_CGROUP_HUGETLB 848 if (!h_cg || !h) { 849 resv_map->reservation_counter = NULL; 850 resv_map->pages_per_hpage = 0; 851 resv_map->css = NULL; 852 } else { 853 resv_map->reservation_counter = 854 &h_cg->rsvd_hugepage[hstate_index(h)]; 855 resv_map->pages_per_hpage = pages_per_huge_page(h); 856 resv_map->css = &h_cg->css; 857 } 858 #endif 859 } 860 861 struct resv_map *resv_map_alloc(void) 862 { 863 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); 864 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL); 865 866 if (!resv_map || !rg) { 867 kfree(resv_map); 868 kfree(rg); 869 return NULL; 870 } 871 872 kref_init(&resv_map->refs); 873 spin_lock_init(&resv_map->lock); 874 INIT_LIST_HEAD(&resv_map->regions); 875 876 resv_map->adds_in_progress = 0; 877 /* 878 * Initialize these to 0. On shared mappings, 0's here indicate these 879 * fields don't do cgroup accounting. On private mappings, these will be 880 * re-initialized to the proper values, to indicate that hugetlb cgroup 881 * reservations are to be un-charged from here. 882 */ 883 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL); 884 885 INIT_LIST_HEAD(&resv_map->region_cache); 886 list_add(&rg->link, &resv_map->region_cache); 887 resv_map->region_cache_count = 1; 888 889 return resv_map; 890 } 891 892 void resv_map_release(struct kref *ref) 893 { 894 struct resv_map *resv_map = container_of(ref, struct resv_map, refs); 895 struct list_head *head = &resv_map->region_cache; 896 struct file_region *rg, *trg; 897 898 /* Clear out any active regions before we release the map. */ 899 region_del(resv_map, 0, LONG_MAX); 900 901 /* ... and any entries left in the cache */ 902 list_for_each_entry_safe(rg, trg, head, link) { 903 list_del(&rg->link); 904 kfree(rg); 905 } 906 907 VM_BUG_ON(resv_map->adds_in_progress); 908 909 kfree(resv_map); 910 } 911 912 static inline struct resv_map *inode_resv_map(struct inode *inode) 913 { 914 /* 915 * At inode evict time, i_mapping may not point to the original 916 * address space within the inode. This original address space 917 * contains the pointer to the resv_map. So, always use the 918 * address space embedded within the inode. 919 * The VERY common case is inode->mapping == &inode->i_data but, 920 * this may not be true for device special inodes. 921 */ 922 return (struct resv_map *)(&inode->i_data)->private_data; 923 } 924 925 static struct resv_map *vma_resv_map(struct vm_area_struct *vma) 926 { 927 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 928 if (vma->vm_flags & VM_MAYSHARE) { 929 struct address_space *mapping = vma->vm_file->f_mapping; 930 struct inode *inode = mapping->host; 931 932 return inode_resv_map(inode); 933 934 } else { 935 return (struct resv_map *)(get_vma_private_data(vma) & 936 ~HPAGE_RESV_MASK); 937 } 938 } 939 940 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) 941 { 942 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 943 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 944 945 set_vma_private_data(vma, (get_vma_private_data(vma) & 946 HPAGE_RESV_MASK) | (unsigned long)map); 947 } 948 949 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) 950 { 951 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 952 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 953 954 set_vma_private_data(vma, get_vma_private_data(vma) | flags); 955 } 956 957 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) 958 { 959 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 960 961 return (get_vma_private_data(vma) & flag) != 0; 962 } 963 964 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */ 965 void reset_vma_resv_huge_pages(struct vm_area_struct *vma) 966 { 967 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 968 if (!(vma->vm_flags & VM_MAYSHARE)) 969 vma->vm_private_data = (void *)0; 970 } 971 972 /* Returns true if the VMA has associated reserve pages */ 973 static bool vma_has_reserves(struct vm_area_struct *vma, long chg) 974 { 975 if (vma->vm_flags & VM_NORESERVE) { 976 /* 977 * This address is already reserved by other process(chg == 0), 978 * so, we should decrement reserved count. Without decrementing, 979 * reserve count remains after releasing inode, because this 980 * allocated page will go into page cache and is regarded as 981 * coming from reserved pool in releasing step. Currently, we 982 * don't have any other solution to deal with this situation 983 * properly, so add work-around here. 984 */ 985 if (vma->vm_flags & VM_MAYSHARE && chg == 0) 986 return true; 987 else 988 return false; 989 } 990 991 /* Shared mappings always use reserves */ 992 if (vma->vm_flags & VM_MAYSHARE) { 993 /* 994 * We know VM_NORESERVE is not set. Therefore, there SHOULD 995 * be a region map for all pages. The only situation where 996 * there is no region map is if a hole was punched via 997 * fallocate. In this case, there really are no reserves to 998 * use. This situation is indicated if chg != 0. 999 */ 1000 if (chg) 1001 return false; 1002 else 1003 return true; 1004 } 1005 1006 /* 1007 * Only the process that called mmap() has reserves for 1008 * private mappings. 1009 */ 1010 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 1011 /* 1012 * Like the shared case above, a hole punch or truncate 1013 * could have been performed on the private mapping. 1014 * Examine the value of chg to determine if reserves 1015 * actually exist or were previously consumed. 1016 * Very Subtle - The value of chg comes from a previous 1017 * call to vma_needs_reserves(). The reserve map for 1018 * private mappings has different (opposite) semantics 1019 * than that of shared mappings. vma_needs_reserves() 1020 * has already taken this difference in semantics into 1021 * account. Therefore, the meaning of chg is the same 1022 * as in the shared case above. Code could easily be 1023 * combined, but keeping it separate draws attention to 1024 * subtle differences. 1025 */ 1026 if (chg) 1027 return false; 1028 else 1029 return true; 1030 } 1031 1032 return false; 1033 } 1034 1035 static void enqueue_huge_page(struct hstate *h, struct page *page) 1036 { 1037 int nid = page_to_nid(page); 1038 list_move(&page->lru, &h->hugepage_freelists[nid]); 1039 h->free_huge_pages++; 1040 h->free_huge_pages_node[nid]++; 1041 SetHPageFreed(page); 1042 } 1043 1044 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid) 1045 { 1046 struct page *page; 1047 bool nocma = !!(current->flags & PF_MEMALLOC_NOCMA); 1048 1049 list_for_each_entry(page, &h->hugepage_freelists[nid], lru) { 1050 if (nocma && is_migrate_cma_page(page)) 1051 continue; 1052 1053 if (PageHWPoison(page)) 1054 continue; 1055 1056 list_move(&page->lru, &h->hugepage_activelist); 1057 set_page_refcounted(page); 1058 ClearHPageFreed(page); 1059 h->free_huge_pages--; 1060 h->free_huge_pages_node[nid]--; 1061 return page; 1062 } 1063 1064 return NULL; 1065 } 1066 1067 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid, 1068 nodemask_t *nmask) 1069 { 1070 unsigned int cpuset_mems_cookie; 1071 struct zonelist *zonelist; 1072 struct zone *zone; 1073 struct zoneref *z; 1074 int node = NUMA_NO_NODE; 1075 1076 zonelist = node_zonelist(nid, gfp_mask); 1077 1078 retry_cpuset: 1079 cpuset_mems_cookie = read_mems_allowed_begin(); 1080 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) { 1081 struct page *page; 1082 1083 if (!cpuset_zone_allowed(zone, gfp_mask)) 1084 continue; 1085 /* 1086 * no need to ask again on the same node. Pool is node rather than 1087 * zone aware 1088 */ 1089 if (zone_to_nid(zone) == node) 1090 continue; 1091 node = zone_to_nid(zone); 1092 1093 page = dequeue_huge_page_node_exact(h, node); 1094 if (page) 1095 return page; 1096 } 1097 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie))) 1098 goto retry_cpuset; 1099 1100 return NULL; 1101 } 1102 1103 static struct page *dequeue_huge_page_vma(struct hstate *h, 1104 struct vm_area_struct *vma, 1105 unsigned long address, int avoid_reserve, 1106 long chg) 1107 { 1108 struct page *page; 1109 struct mempolicy *mpol; 1110 gfp_t gfp_mask; 1111 nodemask_t *nodemask; 1112 int nid; 1113 1114 /* 1115 * A child process with MAP_PRIVATE mappings created by their parent 1116 * have no page reserves. This check ensures that reservations are 1117 * not "stolen". The child may still get SIGKILLed 1118 */ 1119 if (!vma_has_reserves(vma, chg) && 1120 h->free_huge_pages - h->resv_huge_pages == 0) 1121 goto err; 1122 1123 /* If reserves cannot be used, ensure enough pages are in the pool */ 1124 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0) 1125 goto err; 1126 1127 gfp_mask = htlb_alloc_mask(h); 1128 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 1129 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask); 1130 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) { 1131 SetHPageRestoreReserve(page); 1132 h->resv_huge_pages--; 1133 } 1134 1135 mpol_cond_put(mpol); 1136 return page; 1137 1138 err: 1139 return NULL; 1140 } 1141 1142 /* 1143 * common helper functions for hstate_next_node_to_{alloc|free}. 1144 * We may have allocated or freed a huge page based on a different 1145 * nodes_allowed previously, so h->next_node_to_{alloc|free} might 1146 * be outside of *nodes_allowed. Ensure that we use an allowed 1147 * node for alloc or free. 1148 */ 1149 static int next_node_allowed(int nid, nodemask_t *nodes_allowed) 1150 { 1151 nid = next_node_in(nid, *nodes_allowed); 1152 VM_BUG_ON(nid >= MAX_NUMNODES); 1153 1154 return nid; 1155 } 1156 1157 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed) 1158 { 1159 if (!node_isset(nid, *nodes_allowed)) 1160 nid = next_node_allowed(nid, nodes_allowed); 1161 return nid; 1162 } 1163 1164 /* 1165 * returns the previously saved node ["this node"] from which to 1166 * allocate a persistent huge page for the pool and advance the 1167 * next node from which to allocate, handling wrap at end of node 1168 * mask. 1169 */ 1170 static int hstate_next_node_to_alloc(struct hstate *h, 1171 nodemask_t *nodes_allowed) 1172 { 1173 int nid; 1174 1175 VM_BUG_ON(!nodes_allowed); 1176 1177 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed); 1178 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed); 1179 1180 return nid; 1181 } 1182 1183 /* 1184 * helper for free_pool_huge_page() - return the previously saved 1185 * node ["this node"] from which to free a huge page. Advance the 1186 * next node id whether or not we find a free huge page to free so 1187 * that the next attempt to free addresses the next node. 1188 */ 1189 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed) 1190 { 1191 int nid; 1192 1193 VM_BUG_ON(!nodes_allowed); 1194 1195 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed); 1196 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed); 1197 1198 return nid; 1199 } 1200 1201 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \ 1202 for (nr_nodes = nodes_weight(*mask); \ 1203 nr_nodes > 0 && \ 1204 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \ 1205 nr_nodes--) 1206 1207 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \ 1208 for (nr_nodes = nodes_weight(*mask); \ 1209 nr_nodes > 0 && \ 1210 ((node = hstate_next_node_to_free(hs, mask)) || 1); \ 1211 nr_nodes--) 1212 1213 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE 1214 static void destroy_compound_gigantic_page(struct page *page, 1215 unsigned int order) 1216 { 1217 int i; 1218 int nr_pages = 1 << order; 1219 struct page *p = page + 1; 1220 1221 atomic_set(compound_mapcount_ptr(page), 0); 1222 atomic_set(compound_pincount_ptr(page), 0); 1223 1224 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { 1225 clear_compound_head(p); 1226 set_page_refcounted(p); 1227 } 1228 1229 set_compound_order(page, 0); 1230 page[1].compound_nr = 0; 1231 __ClearPageHead(page); 1232 } 1233 1234 static void free_gigantic_page(struct page *page, unsigned int order) 1235 { 1236 /* 1237 * If the page isn't allocated using the cma allocator, 1238 * cma_release() returns false. 1239 */ 1240 #ifdef CONFIG_CMA 1241 if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order)) 1242 return; 1243 #endif 1244 1245 free_contig_range(page_to_pfn(page), 1 << order); 1246 } 1247 1248 #ifdef CONFIG_CONTIG_ALLOC 1249 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, 1250 int nid, nodemask_t *nodemask) 1251 { 1252 unsigned long nr_pages = 1UL << huge_page_order(h); 1253 if (nid == NUMA_NO_NODE) 1254 nid = numa_mem_id(); 1255 1256 #ifdef CONFIG_CMA 1257 { 1258 struct page *page; 1259 int node; 1260 1261 if (hugetlb_cma[nid]) { 1262 page = cma_alloc(hugetlb_cma[nid], nr_pages, 1263 huge_page_order(h), true); 1264 if (page) 1265 return page; 1266 } 1267 1268 if (!(gfp_mask & __GFP_THISNODE)) { 1269 for_each_node_mask(node, *nodemask) { 1270 if (node == nid || !hugetlb_cma[node]) 1271 continue; 1272 1273 page = cma_alloc(hugetlb_cma[node], nr_pages, 1274 huge_page_order(h), true); 1275 if (page) 1276 return page; 1277 } 1278 } 1279 } 1280 #endif 1281 1282 return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask); 1283 } 1284 1285 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid); 1286 static void prep_compound_gigantic_page(struct page *page, unsigned int order); 1287 #else /* !CONFIG_CONTIG_ALLOC */ 1288 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, 1289 int nid, nodemask_t *nodemask) 1290 { 1291 return NULL; 1292 } 1293 #endif /* CONFIG_CONTIG_ALLOC */ 1294 1295 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */ 1296 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, 1297 int nid, nodemask_t *nodemask) 1298 { 1299 return NULL; 1300 } 1301 static inline void free_gigantic_page(struct page *page, unsigned int order) { } 1302 static inline void destroy_compound_gigantic_page(struct page *page, 1303 unsigned int order) { } 1304 #endif 1305 1306 static void update_and_free_page(struct hstate *h, struct page *page) 1307 { 1308 int i; 1309 struct page *subpage = page; 1310 1311 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 1312 return; 1313 1314 h->nr_huge_pages--; 1315 h->nr_huge_pages_node[page_to_nid(page)]--; 1316 for (i = 0; i < pages_per_huge_page(h); 1317 i++, subpage = mem_map_next(subpage, page, i)) { 1318 subpage->flags &= ~(1 << PG_locked | 1 << PG_error | 1319 1 << PG_referenced | 1 << PG_dirty | 1320 1 << PG_active | 1 << PG_private | 1321 1 << PG_writeback); 1322 } 1323 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page); 1324 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page); 1325 set_compound_page_dtor(page, NULL_COMPOUND_DTOR); 1326 set_page_refcounted(page); 1327 if (hstate_is_gigantic(h)) { 1328 /* 1329 * Temporarily drop the hugetlb_lock, because 1330 * we might block in free_gigantic_page(). 1331 */ 1332 spin_unlock(&hugetlb_lock); 1333 destroy_compound_gigantic_page(page, huge_page_order(h)); 1334 free_gigantic_page(page, huge_page_order(h)); 1335 spin_lock(&hugetlb_lock); 1336 } else { 1337 __free_pages(page, huge_page_order(h)); 1338 } 1339 } 1340 1341 struct hstate *size_to_hstate(unsigned long size) 1342 { 1343 struct hstate *h; 1344 1345 for_each_hstate(h) { 1346 if (huge_page_size(h) == size) 1347 return h; 1348 } 1349 return NULL; 1350 } 1351 1352 static void __free_huge_page(struct page *page) 1353 { 1354 /* 1355 * Can't pass hstate in here because it is called from the 1356 * compound page destructor. 1357 */ 1358 struct hstate *h = page_hstate(page); 1359 int nid = page_to_nid(page); 1360 struct hugepage_subpool *spool = hugetlb_page_subpool(page); 1361 bool restore_reserve; 1362 1363 VM_BUG_ON_PAGE(page_count(page), page); 1364 VM_BUG_ON_PAGE(page_mapcount(page), page); 1365 1366 hugetlb_set_page_subpool(page, NULL); 1367 page->mapping = NULL; 1368 restore_reserve = HPageRestoreReserve(page); 1369 ClearHPageRestoreReserve(page); 1370 1371 /* 1372 * If HPageRestoreReserve was set on page, page allocation consumed a 1373 * reservation. If the page was associated with a subpool, there 1374 * would have been a page reserved in the subpool before allocation 1375 * via hugepage_subpool_get_pages(). Since we are 'restoring' the 1376 * reservation, do not call hugepage_subpool_put_pages() as this will 1377 * remove the reserved page from the subpool. 1378 */ 1379 if (!restore_reserve) { 1380 /* 1381 * A return code of zero implies that the subpool will be 1382 * under its minimum size if the reservation is not restored 1383 * after page is free. Therefore, force restore_reserve 1384 * operation. 1385 */ 1386 if (hugepage_subpool_put_pages(spool, 1) == 0) 1387 restore_reserve = true; 1388 } 1389 1390 spin_lock(&hugetlb_lock); 1391 ClearHPageMigratable(page); 1392 hugetlb_cgroup_uncharge_page(hstate_index(h), 1393 pages_per_huge_page(h), page); 1394 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h), 1395 pages_per_huge_page(h), page); 1396 if (restore_reserve) 1397 h->resv_huge_pages++; 1398 1399 if (HPageTemporary(page)) { 1400 list_del(&page->lru); 1401 ClearHPageTemporary(page); 1402 update_and_free_page(h, page); 1403 } else if (h->surplus_huge_pages_node[nid]) { 1404 /* remove the page from active list */ 1405 list_del(&page->lru); 1406 update_and_free_page(h, page); 1407 h->surplus_huge_pages--; 1408 h->surplus_huge_pages_node[nid]--; 1409 } else { 1410 arch_clear_hugepage_flags(page); 1411 enqueue_huge_page(h, page); 1412 } 1413 spin_unlock(&hugetlb_lock); 1414 } 1415 1416 /* 1417 * As free_huge_page() can be called from a non-task context, we have 1418 * to defer the actual freeing in a workqueue to prevent potential 1419 * hugetlb_lock deadlock. 1420 * 1421 * free_hpage_workfn() locklessly retrieves the linked list of pages to 1422 * be freed and frees them one-by-one. As the page->mapping pointer is 1423 * going to be cleared in __free_huge_page() anyway, it is reused as the 1424 * llist_node structure of a lockless linked list of huge pages to be freed. 1425 */ 1426 static LLIST_HEAD(hpage_freelist); 1427 1428 static void free_hpage_workfn(struct work_struct *work) 1429 { 1430 struct llist_node *node; 1431 struct page *page; 1432 1433 node = llist_del_all(&hpage_freelist); 1434 1435 while (node) { 1436 page = container_of((struct address_space **)node, 1437 struct page, mapping); 1438 node = node->next; 1439 __free_huge_page(page); 1440 } 1441 } 1442 static DECLARE_WORK(free_hpage_work, free_hpage_workfn); 1443 1444 void free_huge_page(struct page *page) 1445 { 1446 /* 1447 * Defer freeing if in non-task context to avoid hugetlb_lock deadlock. 1448 */ 1449 if (!in_task()) { 1450 /* 1451 * Only call schedule_work() if hpage_freelist is previously 1452 * empty. Otherwise, schedule_work() had been called but the 1453 * workfn hasn't retrieved the list yet. 1454 */ 1455 if (llist_add((struct llist_node *)&page->mapping, 1456 &hpage_freelist)) 1457 schedule_work(&free_hpage_work); 1458 return; 1459 } 1460 1461 __free_huge_page(page); 1462 } 1463 1464 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid) 1465 { 1466 INIT_LIST_HEAD(&page->lru); 1467 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR); 1468 hugetlb_set_page_subpool(page, NULL); 1469 set_hugetlb_cgroup(page, NULL); 1470 set_hugetlb_cgroup_rsvd(page, NULL); 1471 spin_lock(&hugetlb_lock); 1472 h->nr_huge_pages++; 1473 h->nr_huge_pages_node[nid]++; 1474 ClearHPageFreed(page); 1475 spin_unlock(&hugetlb_lock); 1476 } 1477 1478 static void prep_compound_gigantic_page(struct page *page, unsigned int order) 1479 { 1480 int i; 1481 int nr_pages = 1 << order; 1482 struct page *p = page + 1; 1483 1484 /* we rely on prep_new_huge_page to set the destructor */ 1485 set_compound_order(page, order); 1486 __ClearPageReserved(page); 1487 __SetPageHead(page); 1488 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { 1489 /* 1490 * For gigantic hugepages allocated through bootmem at 1491 * boot, it's safer to be consistent with the not-gigantic 1492 * hugepages and clear the PG_reserved bit from all tail pages 1493 * too. Otherwise drivers using get_user_pages() to access tail 1494 * pages may get the reference counting wrong if they see 1495 * PG_reserved set on a tail page (despite the head page not 1496 * having PG_reserved set). Enforcing this consistency between 1497 * head and tail pages allows drivers to optimize away a check 1498 * on the head page when they need know if put_page() is needed 1499 * after get_user_pages(). 1500 */ 1501 __ClearPageReserved(p); 1502 set_page_count(p, 0); 1503 set_compound_head(p, page); 1504 } 1505 atomic_set(compound_mapcount_ptr(page), -1); 1506 atomic_set(compound_pincount_ptr(page), 0); 1507 } 1508 1509 /* 1510 * PageHuge() only returns true for hugetlbfs pages, but not for normal or 1511 * transparent huge pages. See the PageTransHuge() documentation for more 1512 * details. 1513 */ 1514 int PageHuge(struct page *page) 1515 { 1516 if (!PageCompound(page)) 1517 return 0; 1518 1519 page = compound_head(page); 1520 return page[1].compound_dtor == HUGETLB_PAGE_DTOR; 1521 } 1522 EXPORT_SYMBOL_GPL(PageHuge); 1523 1524 /* 1525 * PageHeadHuge() only returns true for hugetlbfs head page, but not for 1526 * normal or transparent huge pages. 1527 */ 1528 int PageHeadHuge(struct page *page_head) 1529 { 1530 if (!PageHead(page_head)) 1531 return 0; 1532 1533 return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR; 1534 } 1535 1536 /* 1537 * Find and lock address space (mapping) in write mode. 1538 * 1539 * Upon entry, the page is locked which means that page_mapping() is 1540 * stable. Due to locking order, we can only trylock_write. If we can 1541 * not get the lock, simply return NULL to caller. 1542 */ 1543 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage) 1544 { 1545 struct address_space *mapping = page_mapping(hpage); 1546 1547 if (!mapping) 1548 return mapping; 1549 1550 if (i_mmap_trylock_write(mapping)) 1551 return mapping; 1552 1553 return NULL; 1554 } 1555 1556 pgoff_t __basepage_index(struct page *page) 1557 { 1558 struct page *page_head = compound_head(page); 1559 pgoff_t index = page_index(page_head); 1560 unsigned long compound_idx; 1561 1562 if (!PageHuge(page_head)) 1563 return page_index(page); 1564 1565 if (compound_order(page_head) >= MAX_ORDER) 1566 compound_idx = page_to_pfn(page) - page_to_pfn(page_head); 1567 else 1568 compound_idx = page - page_head; 1569 1570 return (index << compound_order(page_head)) + compound_idx; 1571 } 1572 1573 static struct page *alloc_buddy_huge_page(struct hstate *h, 1574 gfp_t gfp_mask, int nid, nodemask_t *nmask, 1575 nodemask_t *node_alloc_noretry) 1576 { 1577 int order = huge_page_order(h); 1578 struct page *page; 1579 bool alloc_try_hard = true; 1580 1581 /* 1582 * By default we always try hard to allocate the page with 1583 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in 1584 * a loop (to adjust global huge page counts) and previous allocation 1585 * failed, do not continue to try hard on the same node. Use the 1586 * node_alloc_noretry bitmap to manage this state information. 1587 */ 1588 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry)) 1589 alloc_try_hard = false; 1590 gfp_mask |= __GFP_COMP|__GFP_NOWARN; 1591 if (alloc_try_hard) 1592 gfp_mask |= __GFP_RETRY_MAYFAIL; 1593 if (nid == NUMA_NO_NODE) 1594 nid = numa_mem_id(); 1595 page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask); 1596 if (page) 1597 __count_vm_event(HTLB_BUDDY_PGALLOC); 1598 else 1599 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 1600 1601 /* 1602 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this 1603 * indicates an overall state change. Clear bit so that we resume 1604 * normal 'try hard' allocations. 1605 */ 1606 if (node_alloc_noretry && page && !alloc_try_hard) 1607 node_clear(nid, *node_alloc_noretry); 1608 1609 /* 1610 * If we tried hard to get a page but failed, set bit so that 1611 * subsequent attempts will not try as hard until there is an 1612 * overall state change. 1613 */ 1614 if (node_alloc_noretry && !page && alloc_try_hard) 1615 node_set(nid, *node_alloc_noretry); 1616 1617 return page; 1618 } 1619 1620 /* 1621 * Common helper to allocate a fresh hugetlb page. All specific allocators 1622 * should use this function to get new hugetlb pages 1623 */ 1624 static struct page *alloc_fresh_huge_page(struct hstate *h, 1625 gfp_t gfp_mask, int nid, nodemask_t *nmask, 1626 nodemask_t *node_alloc_noretry) 1627 { 1628 struct page *page; 1629 1630 if (hstate_is_gigantic(h)) 1631 page = alloc_gigantic_page(h, gfp_mask, nid, nmask); 1632 else 1633 page = alloc_buddy_huge_page(h, gfp_mask, 1634 nid, nmask, node_alloc_noretry); 1635 if (!page) 1636 return NULL; 1637 1638 if (hstate_is_gigantic(h)) 1639 prep_compound_gigantic_page(page, huge_page_order(h)); 1640 prep_new_huge_page(h, page, page_to_nid(page)); 1641 1642 return page; 1643 } 1644 1645 /* 1646 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved 1647 * manner. 1648 */ 1649 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed, 1650 nodemask_t *node_alloc_noretry) 1651 { 1652 struct page *page; 1653 int nr_nodes, node; 1654 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 1655 1656 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 1657 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed, 1658 node_alloc_noretry); 1659 if (page) 1660 break; 1661 } 1662 1663 if (!page) 1664 return 0; 1665 1666 put_page(page); /* free it into the hugepage allocator */ 1667 1668 return 1; 1669 } 1670 1671 /* 1672 * Free huge page from pool from next node to free. 1673 * Attempt to keep persistent huge pages more or less 1674 * balanced over allowed nodes. 1675 * Called with hugetlb_lock locked. 1676 */ 1677 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed, 1678 bool acct_surplus) 1679 { 1680 int nr_nodes, node; 1681 int ret = 0; 1682 1683 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 1684 /* 1685 * If we're returning unused surplus pages, only examine 1686 * nodes with surplus pages. 1687 */ 1688 if ((!acct_surplus || h->surplus_huge_pages_node[node]) && 1689 !list_empty(&h->hugepage_freelists[node])) { 1690 struct page *page = 1691 list_entry(h->hugepage_freelists[node].next, 1692 struct page, lru); 1693 list_del(&page->lru); 1694 h->free_huge_pages--; 1695 h->free_huge_pages_node[node]--; 1696 if (acct_surplus) { 1697 h->surplus_huge_pages--; 1698 h->surplus_huge_pages_node[node]--; 1699 } 1700 update_and_free_page(h, page); 1701 ret = 1; 1702 break; 1703 } 1704 } 1705 1706 return ret; 1707 } 1708 1709 /* 1710 * Dissolve a given free hugepage into free buddy pages. This function does 1711 * nothing for in-use hugepages and non-hugepages. 1712 * This function returns values like below: 1713 * 1714 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use 1715 * (allocated or reserved.) 1716 * 0: successfully dissolved free hugepages or the page is not a 1717 * hugepage (considered as already dissolved) 1718 */ 1719 int dissolve_free_huge_page(struct page *page) 1720 { 1721 int rc = -EBUSY; 1722 1723 retry: 1724 /* Not to disrupt normal path by vainly holding hugetlb_lock */ 1725 if (!PageHuge(page)) 1726 return 0; 1727 1728 spin_lock(&hugetlb_lock); 1729 if (!PageHuge(page)) { 1730 rc = 0; 1731 goto out; 1732 } 1733 1734 if (!page_count(page)) { 1735 struct page *head = compound_head(page); 1736 struct hstate *h = page_hstate(head); 1737 int nid = page_to_nid(head); 1738 if (h->free_huge_pages - h->resv_huge_pages == 0) 1739 goto out; 1740 1741 /* 1742 * We should make sure that the page is already on the free list 1743 * when it is dissolved. 1744 */ 1745 if (unlikely(!HPageFreed(head))) { 1746 spin_unlock(&hugetlb_lock); 1747 cond_resched(); 1748 1749 /* 1750 * Theoretically, we should return -EBUSY when we 1751 * encounter this race. In fact, we have a chance 1752 * to successfully dissolve the page if we do a 1753 * retry. Because the race window is quite small. 1754 * If we seize this opportunity, it is an optimization 1755 * for increasing the success rate of dissolving page. 1756 */ 1757 goto retry; 1758 } 1759 1760 /* 1761 * Move PageHWPoison flag from head page to the raw error page, 1762 * which makes any subpages rather than the error page reusable. 1763 */ 1764 if (PageHWPoison(head) && page != head) { 1765 SetPageHWPoison(page); 1766 ClearPageHWPoison(head); 1767 } 1768 list_del(&head->lru); 1769 h->free_huge_pages--; 1770 h->free_huge_pages_node[nid]--; 1771 h->max_huge_pages--; 1772 update_and_free_page(h, head); 1773 rc = 0; 1774 } 1775 out: 1776 spin_unlock(&hugetlb_lock); 1777 return rc; 1778 } 1779 1780 /* 1781 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to 1782 * make specified memory blocks removable from the system. 1783 * Note that this will dissolve a free gigantic hugepage completely, if any 1784 * part of it lies within the given range. 1785 * Also note that if dissolve_free_huge_page() returns with an error, all 1786 * free hugepages that were dissolved before that error are lost. 1787 */ 1788 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn) 1789 { 1790 unsigned long pfn; 1791 struct page *page; 1792 int rc = 0; 1793 1794 if (!hugepages_supported()) 1795 return rc; 1796 1797 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) { 1798 page = pfn_to_page(pfn); 1799 rc = dissolve_free_huge_page(page); 1800 if (rc) 1801 break; 1802 } 1803 1804 return rc; 1805 } 1806 1807 /* 1808 * Allocates a fresh surplus page from the page allocator. 1809 */ 1810 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask, 1811 int nid, nodemask_t *nmask) 1812 { 1813 struct page *page = NULL; 1814 1815 if (hstate_is_gigantic(h)) 1816 return NULL; 1817 1818 spin_lock(&hugetlb_lock); 1819 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) 1820 goto out_unlock; 1821 spin_unlock(&hugetlb_lock); 1822 1823 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL); 1824 if (!page) 1825 return NULL; 1826 1827 spin_lock(&hugetlb_lock); 1828 /* 1829 * We could have raced with the pool size change. 1830 * Double check that and simply deallocate the new page 1831 * if we would end up overcommiting the surpluses. Abuse 1832 * temporary page to workaround the nasty free_huge_page 1833 * codeflow 1834 */ 1835 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { 1836 SetHPageTemporary(page); 1837 spin_unlock(&hugetlb_lock); 1838 put_page(page); 1839 return NULL; 1840 } else { 1841 h->surplus_huge_pages++; 1842 h->surplus_huge_pages_node[page_to_nid(page)]++; 1843 } 1844 1845 out_unlock: 1846 spin_unlock(&hugetlb_lock); 1847 1848 return page; 1849 } 1850 1851 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask, 1852 int nid, nodemask_t *nmask) 1853 { 1854 struct page *page; 1855 1856 if (hstate_is_gigantic(h)) 1857 return NULL; 1858 1859 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL); 1860 if (!page) 1861 return NULL; 1862 1863 /* 1864 * We do not account these pages as surplus because they are only 1865 * temporary and will be released properly on the last reference 1866 */ 1867 SetHPageTemporary(page); 1868 1869 return page; 1870 } 1871 1872 /* 1873 * Use the VMA's mpolicy to allocate a huge page from the buddy. 1874 */ 1875 static 1876 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h, 1877 struct vm_area_struct *vma, unsigned long addr) 1878 { 1879 struct page *page; 1880 struct mempolicy *mpol; 1881 gfp_t gfp_mask = htlb_alloc_mask(h); 1882 int nid; 1883 nodemask_t *nodemask; 1884 1885 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask); 1886 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask); 1887 mpol_cond_put(mpol); 1888 1889 return page; 1890 } 1891 1892 /* page migration callback function */ 1893 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid, 1894 nodemask_t *nmask, gfp_t gfp_mask) 1895 { 1896 spin_lock(&hugetlb_lock); 1897 if (h->free_huge_pages - h->resv_huge_pages > 0) { 1898 struct page *page; 1899 1900 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask); 1901 if (page) { 1902 spin_unlock(&hugetlb_lock); 1903 return page; 1904 } 1905 } 1906 spin_unlock(&hugetlb_lock); 1907 1908 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask); 1909 } 1910 1911 /* mempolicy aware migration callback */ 1912 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma, 1913 unsigned long address) 1914 { 1915 struct mempolicy *mpol; 1916 nodemask_t *nodemask; 1917 struct page *page; 1918 gfp_t gfp_mask; 1919 int node; 1920 1921 gfp_mask = htlb_alloc_mask(h); 1922 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 1923 page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask); 1924 mpol_cond_put(mpol); 1925 1926 return page; 1927 } 1928 1929 /* 1930 * Increase the hugetlb pool such that it can accommodate a reservation 1931 * of size 'delta'. 1932 */ 1933 static int gather_surplus_pages(struct hstate *h, long delta) 1934 __must_hold(&hugetlb_lock) 1935 { 1936 struct list_head surplus_list; 1937 struct page *page, *tmp; 1938 int ret; 1939 long i; 1940 long needed, allocated; 1941 bool alloc_ok = true; 1942 1943 needed = (h->resv_huge_pages + delta) - h->free_huge_pages; 1944 if (needed <= 0) { 1945 h->resv_huge_pages += delta; 1946 return 0; 1947 } 1948 1949 allocated = 0; 1950 INIT_LIST_HEAD(&surplus_list); 1951 1952 ret = -ENOMEM; 1953 retry: 1954 spin_unlock(&hugetlb_lock); 1955 for (i = 0; i < needed; i++) { 1956 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h), 1957 NUMA_NO_NODE, NULL); 1958 if (!page) { 1959 alloc_ok = false; 1960 break; 1961 } 1962 list_add(&page->lru, &surplus_list); 1963 cond_resched(); 1964 } 1965 allocated += i; 1966 1967 /* 1968 * After retaking hugetlb_lock, we need to recalculate 'needed' 1969 * because either resv_huge_pages or free_huge_pages may have changed. 1970 */ 1971 spin_lock(&hugetlb_lock); 1972 needed = (h->resv_huge_pages + delta) - 1973 (h->free_huge_pages + allocated); 1974 if (needed > 0) { 1975 if (alloc_ok) 1976 goto retry; 1977 /* 1978 * We were not able to allocate enough pages to 1979 * satisfy the entire reservation so we free what 1980 * we've allocated so far. 1981 */ 1982 goto free; 1983 } 1984 /* 1985 * The surplus_list now contains _at_least_ the number of extra pages 1986 * needed to accommodate the reservation. Add the appropriate number 1987 * of pages to the hugetlb pool and free the extras back to the buddy 1988 * allocator. Commit the entire reservation here to prevent another 1989 * process from stealing the pages as they are added to the pool but 1990 * before they are reserved. 1991 */ 1992 needed += allocated; 1993 h->resv_huge_pages += delta; 1994 ret = 0; 1995 1996 /* Free the needed pages to the hugetlb pool */ 1997 list_for_each_entry_safe(page, tmp, &surplus_list, lru) { 1998 int zeroed; 1999 2000 if ((--needed) < 0) 2001 break; 2002 /* 2003 * This page is now managed by the hugetlb allocator and has 2004 * no users -- drop the buddy allocator's reference. 2005 */ 2006 zeroed = put_page_testzero(page); 2007 VM_BUG_ON_PAGE(!zeroed, page); 2008 enqueue_huge_page(h, page); 2009 } 2010 free: 2011 spin_unlock(&hugetlb_lock); 2012 2013 /* Free unnecessary surplus pages to the buddy allocator */ 2014 list_for_each_entry_safe(page, tmp, &surplus_list, lru) 2015 put_page(page); 2016 spin_lock(&hugetlb_lock); 2017 2018 return ret; 2019 } 2020 2021 /* 2022 * This routine has two main purposes: 2023 * 1) Decrement the reservation count (resv_huge_pages) by the value passed 2024 * in unused_resv_pages. This corresponds to the prior adjustments made 2025 * to the associated reservation map. 2026 * 2) Free any unused surplus pages that may have been allocated to satisfy 2027 * the reservation. As many as unused_resv_pages may be freed. 2028 * 2029 * Called with hugetlb_lock held. However, the lock could be dropped (and 2030 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock, 2031 * we must make sure nobody else can claim pages we are in the process of 2032 * freeing. Do this by ensuring resv_huge_page always is greater than the 2033 * number of huge pages we plan to free when dropping the lock. 2034 */ 2035 static void return_unused_surplus_pages(struct hstate *h, 2036 unsigned long unused_resv_pages) 2037 { 2038 unsigned long nr_pages; 2039 2040 /* Cannot return gigantic pages currently */ 2041 if (hstate_is_gigantic(h)) 2042 goto out; 2043 2044 /* 2045 * Part (or even all) of the reservation could have been backed 2046 * by pre-allocated pages. Only free surplus pages. 2047 */ 2048 nr_pages = min(unused_resv_pages, h->surplus_huge_pages); 2049 2050 /* 2051 * We want to release as many surplus pages as possible, spread 2052 * evenly across all nodes with memory. Iterate across these nodes 2053 * until we can no longer free unreserved surplus pages. This occurs 2054 * when the nodes with surplus pages have no free pages. 2055 * free_pool_huge_page() will balance the freed pages across the 2056 * on-line nodes with memory and will handle the hstate accounting. 2057 * 2058 * Note that we decrement resv_huge_pages as we free the pages. If 2059 * we drop the lock, resv_huge_pages will still be sufficiently large 2060 * to cover subsequent pages we may free. 2061 */ 2062 while (nr_pages--) { 2063 h->resv_huge_pages--; 2064 unused_resv_pages--; 2065 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1)) 2066 goto out; 2067 cond_resched_lock(&hugetlb_lock); 2068 } 2069 2070 out: 2071 /* Fully uncommit the reservation */ 2072 h->resv_huge_pages -= unused_resv_pages; 2073 } 2074 2075 2076 /* 2077 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation 2078 * are used by the huge page allocation routines to manage reservations. 2079 * 2080 * vma_needs_reservation is called to determine if the huge page at addr 2081 * within the vma has an associated reservation. If a reservation is 2082 * needed, the value 1 is returned. The caller is then responsible for 2083 * managing the global reservation and subpool usage counts. After 2084 * the huge page has been allocated, vma_commit_reservation is called 2085 * to add the page to the reservation map. If the page allocation fails, 2086 * the reservation must be ended instead of committed. vma_end_reservation 2087 * is called in such cases. 2088 * 2089 * In the normal case, vma_commit_reservation returns the same value 2090 * as the preceding vma_needs_reservation call. The only time this 2091 * is not the case is if a reserve map was changed between calls. It 2092 * is the responsibility of the caller to notice the difference and 2093 * take appropriate action. 2094 * 2095 * vma_add_reservation is used in error paths where a reservation must 2096 * be restored when a newly allocated huge page must be freed. It is 2097 * to be called after calling vma_needs_reservation to determine if a 2098 * reservation exists. 2099 */ 2100 enum vma_resv_mode { 2101 VMA_NEEDS_RESV, 2102 VMA_COMMIT_RESV, 2103 VMA_END_RESV, 2104 VMA_ADD_RESV, 2105 }; 2106 static long __vma_reservation_common(struct hstate *h, 2107 struct vm_area_struct *vma, unsigned long addr, 2108 enum vma_resv_mode mode) 2109 { 2110 struct resv_map *resv; 2111 pgoff_t idx; 2112 long ret; 2113 long dummy_out_regions_needed; 2114 2115 resv = vma_resv_map(vma); 2116 if (!resv) 2117 return 1; 2118 2119 idx = vma_hugecache_offset(h, vma, addr); 2120 switch (mode) { 2121 case VMA_NEEDS_RESV: 2122 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed); 2123 /* We assume that vma_reservation_* routines always operate on 2124 * 1 page, and that adding to resv map a 1 page entry can only 2125 * ever require 1 region. 2126 */ 2127 VM_BUG_ON(dummy_out_regions_needed != 1); 2128 break; 2129 case VMA_COMMIT_RESV: 2130 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2131 /* region_add calls of range 1 should never fail. */ 2132 VM_BUG_ON(ret < 0); 2133 break; 2134 case VMA_END_RESV: 2135 region_abort(resv, idx, idx + 1, 1); 2136 ret = 0; 2137 break; 2138 case VMA_ADD_RESV: 2139 if (vma->vm_flags & VM_MAYSHARE) { 2140 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2141 /* region_add calls of range 1 should never fail. */ 2142 VM_BUG_ON(ret < 0); 2143 } else { 2144 region_abort(resv, idx, idx + 1, 1); 2145 ret = region_del(resv, idx, idx + 1); 2146 } 2147 break; 2148 default: 2149 BUG(); 2150 } 2151 2152 if (vma->vm_flags & VM_MAYSHARE) 2153 return ret; 2154 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) { 2155 /* 2156 * In most cases, reserves always exist for private mappings. 2157 * However, a file associated with mapping could have been 2158 * hole punched or truncated after reserves were consumed. 2159 * As subsequent fault on such a range will not use reserves. 2160 * Subtle - The reserve map for private mappings has the 2161 * opposite meaning than that of shared mappings. If NO 2162 * entry is in the reserve map, it means a reservation exists. 2163 * If an entry exists in the reserve map, it means the 2164 * reservation has already been consumed. As a result, the 2165 * return value of this routine is the opposite of the 2166 * value returned from reserve map manipulation routines above. 2167 */ 2168 if (ret) 2169 return 0; 2170 else 2171 return 1; 2172 } 2173 else 2174 return ret < 0 ? ret : 0; 2175 } 2176 2177 static long vma_needs_reservation(struct hstate *h, 2178 struct vm_area_struct *vma, unsigned long addr) 2179 { 2180 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV); 2181 } 2182 2183 static long vma_commit_reservation(struct hstate *h, 2184 struct vm_area_struct *vma, unsigned long addr) 2185 { 2186 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV); 2187 } 2188 2189 static void vma_end_reservation(struct hstate *h, 2190 struct vm_area_struct *vma, unsigned long addr) 2191 { 2192 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV); 2193 } 2194 2195 static long vma_add_reservation(struct hstate *h, 2196 struct vm_area_struct *vma, unsigned long addr) 2197 { 2198 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV); 2199 } 2200 2201 /* 2202 * This routine is called to restore a reservation on error paths. In the 2203 * specific error paths, a huge page was allocated (via alloc_huge_page) 2204 * and is about to be freed. If a reservation for the page existed, 2205 * alloc_huge_page would have consumed the reservation and set 2206 * HPageRestoreReserve in the newly allocated page. When the page is freed 2207 * via free_huge_page, the global reservation count will be incremented if 2208 * HPageRestoreReserve is set. However, free_huge_page can not adjust the 2209 * reserve map. Adjust the reserve map here to be consistent with global 2210 * reserve count adjustments to be made by free_huge_page. 2211 */ 2212 static void restore_reserve_on_error(struct hstate *h, 2213 struct vm_area_struct *vma, unsigned long address, 2214 struct page *page) 2215 { 2216 if (unlikely(HPageRestoreReserve(page))) { 2217 long rc = vma_needs_reservation(h, vma, address); 2218 2219 if (unlikely(rc < 0)) { 2220 /* 2221 * Rare out of memory condition in reserve map 2222 * manipulation. Clear HPageRestoreReserve so that 2223 * global reserve count will not be incremented 2224 * by free_huge_page. This will make it appear 2225 * as though the reservation for this page was 2226 * consumed. This may prevent the task from 2227 * faulting in the page at a later time. This 2228 * is better than inconsistent global huge page 2229 * accounting of reserve counts. 2230 */ 2231 ClearHPageRestoreReserve(page); 2232 } else if (rc) { 2233 rc = vma_add_reservation(h, vma, address); 2234 if (unlikely(rc < 0)) 2235 /* 2236 * See above comment about rare out of 2237 * memory condition. 2238 */ 2239 ClearHPageRestoreReserve(page); 2240 } else 2241 vma_end_reservation(h, vma, address); 2242 } 2243 } 2244 2245 struct page *alloc_huge_page(struct vm_area_struct *vma, 2246 unsigned long addr, int avoid_reserve) 2247 { 2248 struct hugepage_subpool *spool = subpool_vma(vma); 2249 struct hstate *h = hstate_vma(vma); 2250 struct page *page; 2251 long map_chg, map_commit; 2252 long gbl_chg; 2253 int ret, idx; 2254 struct hugetlb_cgroup *h_cg; 2255 bool deferred_reserve; 2256 2257 idx = hstate_index(h); 2258 /* 2259 * Examine the region/reserve map to determine if the process 2260 * has a reservation for the page to be allocated. A return 2261 * code of zero indicates a reservation exists (no change). 2262 */ 2263 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr); 2264 if (map_chg < 0) 2265 return ERR_PTR(-ENOMEM); 2266 2267 /* 2268 * Processes that did not create the mapping will have no 2269 * reserves as indicated by the region/reserve map. Check 2270 * that the allocation will not exceed the subpool limit. 2271 * Allocations for MAP_NORESERVE mappings also need to be 2272 * checked against any subpool limit. 2273 */ 2274 if (map_chg || avoid_reserve) { 2275 gbl_chg = hugepage_subpool_get_pages(spool, 1); 2276 if (gbl_chg < 0) { 2277 vma_end_reservation(h, vma, addr); 2278 return ERR_PTR(-ENOSPC); 2279 } 2280 2281 /* 2282 * Even though there was no reservation in the region/reserve 2283 * map, there could be reservations associated with the 2284 * subpool that can be used. This would be indicated if the 2285 * return value of hugepage_subpool_get_pages() is zero. 2286 * However, if avoid_reserve is specified we still avoid even 2287 * the subpool reservations. 2288 */ 2289 if (avoid_reserve) 2290 gbl_chg = 1; 2291 } 2292 2293 /* If this allocation is not consuming a reservation, charge it now. 2294 */ 2295 deferred_reserve = map_chg || avoid_reserve || !vma_resv_map(vma); 2296 if (deferred_reserve) { 2297 ret = hugetlb_cgroup_charge_cgroup_rsvd( 2298 idx, pages_per_huge_page(h), &h_cg); 2299 if (ret) 2300 goto out_subpool_put; 2301 } 2302 2303 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg); 2304 if (ret) 2305 goto out_uncharge_cgroup_reservation; 2306 2307 spin_lock(&hugetlb_lock); 2308 /* 2309 * glb_chg is passed to indicate whether or not a page must be taken 2310 * from the global free pool (global change). gbl_chg == 0 indicates 2311 * a reservation exists for the allocation. 2312 */ 2313 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg); 2314 if (!page) { 2315 spin_unlock(&hugetlb_lock); 2316 page = alloc_buddy_huge_page_with_mpol(h, vma, addr); 2317 if (!page) 2318 goto out_uncharge_cgroup; 2319 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) { 2320 SetHPageRestoreReserve(page); 2321 h->resv_huge_pages--; 2322 } 2323 spin_lock(&hugetlb_lock); 2324 list_add(&page->lru, &h->hugepage_activelist); 2325 /* Fall through */ 2326 } 2327 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page); 2328 /* If allocation is not consuming a reservation, also store the 2329 * hugetlb_cgroup pointer on the page. 2330 */ 2331 if (deferred_reserve) { 2332 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h), 2333 h_cg, page); 2334 } 2335 2336 spin_unlock(&hugetlb_lock); 2337 2338 hugetlb_set_page_subpool(page, spool); 2339 2340 map_commit = vma_commit_reservation(h, vma, addr); 2341 if (unlikely(map_chg > map_commit)) { 2342 /* 2343 * The page was added to the reservation map between 2344 * vma_needs_reservation and vma_commit_reservation. 2345 * This indicates a race with hugetlb_reserve_pages. 2346 * Adjust for the subpool count incremented above AND 2347 * in hugetlb_reserve_pages for the same page. Also, 2348 * the reservation count added in hugetlb_reserve_pages 2349 * no longer applies. 2350 */ 2351 long rsv_adjust; 2352 2353 rsv_adjust = hugepage_subpool_put_pages(spool, 1); 2354 hugetlb_acct_memory(h, -rsv_adjust); 2355 if (deferred_reserve) 2356 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h), 2357 pages_per_huge_page(h), page); 2358 } 2359 return page; 2360 2361 out_uncharge_cgroup: 2362 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg); 2363 out_uncharge_cgroup_reservation: 2364 if (deferred_reserve) 2365 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h), 2366 h_cg); 2367 out_subpool_put: 2368 if (map_chg || avoid_reserve) 2369 hugepage_subpool_put_pages(spool, 1); 2370 vma_end_reservation(h, vma, addr); 2371 return ERR_PTR(-ENOSPC); 2372 } 2373 2374 int alloc_bootmem_huge_page(struct hstate *h) 2375 __attribute__ ((weak, alias("__alloc_bootmem_huge_page"))); 2376 int __alloc_bootmem_huge_page(struct hstate *h) 2377 { 2378 struct huge_bootmem_page *m; 2379 int nr_nodes, node; 2380 2381 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) { 2382 void *addr; 2383 2384 addr = memblock_alloc_try_nid_raw( 2385 huge_page_size(h), huge_page_size(h), 2386 0, MEMBLOCK_ALLOC_ACCESSIBLE, node); 2387 if (addr) { 2388 /* 2389 * Use the beginning of the huge page to store the 2390 * huge_bootmem_page struct (until gather_bootmem 2391 * puts them into the mem_map). 2392 */ 2393 m = addr; 2394 goto found; 2395 } 2396 } 2397 return 0; 2398 2399 found: 2400 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h))); 2401 /* Put them into a private list first because mem_map is not up yet */ 2402 INIT_LIST_HEAD(&m->list); 2403 list_add(&m->list, &huge_boot_pages); 2404 m->hstate = h; 2405 return 1; 2406 } 2407 2408 static void __init prep_compound_huge_page(struct page *page, 2409 unsigned int order) 2410 { 2411 if (unlikely(order > (MAX_ORDER - 1))) 2412 prep_compound_gigantic_page(page, order); 2413 else 2414 prep_compound_page(page, order); 2415 } 2416 2417 /* Put bootmem huge pages into the standard lists after mem_map is up */ 2418 static void __init gather_bootmem_prealloc(void) 2419 { 2420 struct huge_bootmem_page *m; 2421 2422 list_for_each_entry(m, &huge_boot_pages, list) { 2423 struct page *page = virt_to_page(m); 2424 struct hstate *h = m->hstate; 2425 2426 WARN_ON(page_count(page) != 1); 2427 prep_compound_huge_page(page, huge_page_order(h)); 2428 WARN_ON(PageReserved(page)); 2429 prep_new_huge_page(h, page, page_to_nid(page)); 2430 put_page(page); /* free it into the hugepage allocator */ 2431 2432 /* 2433 * If we had gigantic hugepages allocated at boot time, we need 2434 * to restore the 'stolen' pages to totalram_pages in order to 2435 * fix confusing memory reports from free(1) and another 2436 * side-effects, like CommitLimit going negative. 2437 */ 2438 if (hstate_is_gigantic(h)) 2439 adjust_managed_page_count(page, pages_per_huge_page(h)); 2440 cond_resched(); 2441 } 2442 } 2443 2444 static void __init hugetlb_hstate_alloc_pages(struct hstate *h) 2445 { 2446 unsigned long i; 2447 nodemask_t *node_alloc_noretry; 2448 2449 if (!hstate_is_gigantic(h)) { 2450 /* 2451 * Bit mask controlling how hard we retry per-node allocations. 2452 * Ignore errors as lower level routines can deal with 2453 * node_alloc_noretry == NULL. If this kmalloc fails at boot 2454 * time, we are likely in bigger trouble. 2455 */ 2456 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry), 2457 GFP_KERNEL); 2458 } else { 2459 /* allocations done at boot time */ 2460 node_alloc_noretry = NULL; 2461 } 2462 2463 /* bit mask controlling how hard we retry per-node allocations */ 2464 if (node_alloc_noretry) 2465 nodes_clear(*node_alloc_noretry); 2466 2467 for (i = 0; i < h->max_huge_pages; ++i) { 2468 if (hstate_is_gigantic(h)) { 2469 if (hugetlb_cma_size) { 2470 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n"); 2471 goto free; 2472 } 2473 if (!alloc_bootmem_huge_page(h)) 2474 break; 2475 } else if (!alloc_pool_huge_page(h, 2476 &node_states[N_MEMORY], 2477 node_alloc_noretry)) 2478 break; 2479 cond_resched(); 2480 } 2481 if (i < h->max_huge_pages) { 2482 char buf[32]; 2483 2484 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 2485 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n", 2486 h->max_huge_pages, buf, i); 2487 h->max_huge_pages = i; 2488 } 2489 free: 2490 kfree(node_alloc_noretry); 2491 } 2492 2493 static void __init hugetlb_init_hstates(void) 2494 { 2495 struct hstate *h; 2496 2497 for_each_hstate(h) { 2498 if (minimum_order > huge_page_order(h)) 2499 minimum_order = huge_page_order(h); 2500 2501 /* oversize hugepages were init'ed in early boot */ 2502 if (!hstate_is_gigantic(h)) 2503 hugetlb_hstate_alloc_pages(h); 2504 } 2505 VM_BUG_ON(minimum_order == UINT_MAX); 2506 } 2507 2508 static void __init report_hugepages(void) 2509 { 2510 struct hstate *h; 2511 2512 for_each_hstate(h) { 2513 char buf[32]; 2514 2515 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 2516 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n", 2517 buf, h->free_huge_pages); 2518 } 2519 } 2520 2521 #ifdef CONFIG_HIGHMEM 2522 static void try_to_free_low(struct hstate *h, unsigned long count, 2523 nodemask_t *nodes_allowed) 2524 { 2525 int i; 2526 2527 if (hstate_is_gigantic(h)) 2528 return; 2529 2530 for_each_node_mask(i, *nodes_allowed) { 2531 struct page *page, *next; 2532 struct list_head *freel = &h->hugepage_freelists[i]; 2533 list_for_each_entry_safe(page, next, freel, lru) { 2534 if (count >= h->nr_huge_pages) 2535 return; 2536 if (PageHighMem(page)) 2537 continue; 2538 list_del(&page->lru); 2539 update_and_free_page(h, page); 2540 h->free_huge_pages--; 2541 h->free_huge_pages_node[page_to_nid(page)]--; 2542 } 2543 } 2544 } 2545 #else 2546 static inline void try_to_free_low(struct hstate *h, unsigned long count, 2547 nodemask_t *nodes_allowed) 2548 { 2549 } 2550 #endif 2551 2552 /* 2553 * Increment or decrement surplus_huge_pages. Keep node-specific counters 2554 * balanced by operating on them in a round-robin fashion. 2555 * Returns 1 if an adjustment was made. 2556 */ 2557 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed, 2558 int delta) 2559 { 2560 int nr_nodes, node; 2561 2562 VM_BUG_ON(delta != -1 && delta != 1); 2563 2564 if (delta < 0) { 2565 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 2566 if (h->surplus_huge_pages_node[node]) 2567 goto found; 2568 } 2569 } else { 2570 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 2571 if (h->surplus_huge_pages_node[node] < 2572 h->nr_huge_pages_node[node]) 2573 goto found; 2574 } 2575 } 2576 return 0; 2577 2578 found: 2579 h->surplus_huge_pages += delta; 2580 h->surplus_huge_pages_node[node] += delta; 2581 return 1; 2582 } 2583 2584 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) 2585 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid, 2586 nodemask_t *nodes_allowed) 2587 { 2588 unsigned long min_count, ret; 2589 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL); 2590 2591 /* 2592 * Bit mask controlling how hard we retry per-node allocations. 2593 * If we can not allocate the bit mask, do not attempt to allocate 2594 * the requested huge pages. 2595 */ 2596 if (node_alloc_noretry) 2597 nodes_clear(*node_alloc_noretry); 2598 else 2599 return -ENOMEM; 2600 2601 spin_lock(&hugetlb_lock); 2602 2603 /* 2604 * Check for a node specific request. 2605 * Changing node specific huge page count may require a corresponding 2606 * change to the global count. In any case, the passed node mask 2607 * (nodes_allowed) will restrict alloc/free to the specified node. 2608 */ 2609 if (nid != NUMA_NO_NODE) { 2610 unsigned long old_count = count; 2611 2612 count += h->nr_huge_pages - h->nr_huge_pages_node[nid]; 2613 /* 2614 * User may have specified a large count value which caused the 2615 * above calculation to overflow. In this case, they wanted 2616 * to allocate as many huge pages as possible. Set count to 2617 * largest possible value to align with their intention. 2618 */ 2619 if (count < old_count) 2620 count = ULONG_MAX; 2621 } 2622 2623 /* 2624 * Gigantic pages runtime allocation depend on the capability for large 2625 * page range allocation. 2626 * If the system does not provide this feature, return an error when 2627 * the user tries to allocate gigantic pages but let the user free the 2628 * boottime allocated gigantic pages. 2629 */ 2630 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) { 2631 if (count > persistent_huge_pages(h)) { 2632 spin_unlock(&hugetlb_lock); 2633 NODEMASK_FREE(node_alloc_noretry); 2634 return -EINVAL; 2635 } 2636 /* Fall through to decrease pool */ 2637 } 2638 2639 /* 2640 * Increase the pool size 2641 * First take pages out of surplus state. Then make up the 2642 * remaining difference by allocating fresh huge pages. 2643 * 2644 * We might race with alloc_surplus_huge_page() here and be unable 2645 * to convert a surplus huge page to a normal huge page. That is 2646 * not critical, though, it just means the overall size of the 2647 * pool might be one hugepage larger than it needs to be, but 2648 * within all the constraints specified by the sysctls. 2649 */ 2650 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { 2651 if (!adjust_pool_surplus(h, nodes_allowed, -1)) 2652 break; 2653 } 2654 2655 while (count > persistent_huge_pages(h)) { 2656 /* 2657 * If this allocation races such that we no longer need the 2658 * page, free_huge_page will handle it by freeing the page 2659 * and reducing the surplus. 2660 */ 2661 spin_unlock(&hugetlb_lock); 2662 2663 /* yield cpu to avoid soft lockup */ 2664 cond_resched(); 2665 2666 ret = alloc_pool_huge_page(h, nodes_allowed, 2667 node_alloc_noretry); 2668 spin_lock(&hugetlb_lock); 2669 if (!ret) 2670 goto out; 2671 2672 /* Bail for signals. Probably ctrl-c from user */ 2673 if (signal_pending(current)) 2674 goto out; 2675 } 2676 2677 /* 2678 * Decrease the pool size 2679 * First return free pages to the buddy allocator (being careful 2680 * to keep enough around to satisfy reservations). Then place 2681 * pages into surplus state as needed so the pool will shrink 2682 * to the desired size as pages become free. 2683 * 2684 * By placing pages into the surplus state independent of the 2685 * overcommit value, we are allowing the surplus pool size to 2686 * exceed overcommit. There are few sane options here. Since 2687 * alloc_surplus_huge_page() is checking the global counter, 2688 * though, we'll note that we're not allowed to exceed surplus 2689 * and won't grow the pool anywhere else. Not until one of the 2690 * sysctls are changed, or the surplus pages go out of use. 2691 */ 2692 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages; 2693 min_count = max(count, min_count); 2694 try_to_free_low(h, min_count, nodes_allowed); 2695 while (min_count < persistent_huge_pages(h)) { 2696 if (!free_pool_huge_page(h, nodes_allowed, 0)) 2697 break; 2698 cond_resched_lock(&hugetlb_lock); 2699 } 2700 while (count < persistent_huge_pages(h)) { 2701 if (!adjust_pool_surplus(h, nodes_allowed, 1)) 2702 break; 2703 } 2704 out: 2705 h->max_huge_pages = persistent_huge_pages(h); 2706 spin_unlock(&hugetlb_lock); 2707 2708 NODEMASK_FREE(node_alloc_noretry); 2709 2710 return 0; 2711 } 2712 2713 #define HSTATE_ATTR_RO(_name) \ 2714 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 2715 2716 #define HSTATE_ATTR(_name) \ 2717 static struct kobj_attribute _name##_attr = \ 2718 __ATTR(_name, 0644, _name##_show, _name##_store) 2719 2720 static struct kobject *hugepages_kobj; 2721 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 2722 2723 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp); 2724 2725 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp) 2726 { 2727 int i; 2728 2729 for (i = 0; i < HUGE_MAX_HSTATE; i++) 2730 if (hstate_kobjs[i] == kobj) { 2731 if (nidp) 2732 *nidp = NUMA_NO_NODE; 2733 return &hstates[i]; 2734 } 2735 2736 return kobj_to_node_hstate(kobj, nidp); 2737 } 2738 2739 static ssize_t nr_hugepages_show_common(struct kobject *kobj, 2740 struct kobj_attribute *attr, char *buf) 2741 { 2742 struct hstate *h; 2743 unsigned long nr_huge_pages; 2744 int nid; 2745 2746 h = kobj_to_hstate(kobj, &nid); 2747 if (nid == NUMA_NO_NODE) 2748 nr_huge_pages = h->nr_huge_pages; 2749 else 2750 nr_huge_pages = h->nr_huge_pages_node[nid]; 2751 2752 return sysfs_emit(buf, "%lu\n", nr_huge_pages); 2753 } 2754 2755 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy, 2756 struct hstate *h, int nid, 2757 unsigned long count, size_t len) 2758 { 2759 int err; 2760 nodemask_t nodes_allowed, *n_mask; 2761 2762 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 2763 return -EINVAL; 2764 2765 if (nid == NUMA_NO_NODE) { 2766 /* 2767 * global hstate attribute 2768 */ 2769 if (!(obey_mempolicy && 2770 init_nodemask_of_mempolicy(&nodes_allowed))) 2771 n_mask = &node_states[N_MEMORY]; 2772 else 2773 n_mask = &nodes_allowed; 2774 } else { 2775 /* 2776 * Node specific request. count adjustment happens in 2777 * set_max_huge_pages() after acquiring hugetlb_lock. 2778 */ 2779 init_nodemask_of_node(&nodes_allowed, nid); 2780 n_mask = &nodes_allowed; 2781 } 2782 2783 err = set_max_huge_pages(h, count, nid, n_mask); 2784 2785 return err ? err : len; 2786 } 2787 2788 static ssize_t nr_hugepages_store_common(bool obey_mempolicy, 2789 struct kobject *kobj, const char *buf, 2790 size_t len) 2791 { 2792 struct hstate *h; 2793 unsigned long count; 2794 int nid; 2795 int err; 2796 2797 err = kstrtoul(buf, 10, &count); 2798 if (err) 2799 return err; 2800 2801 h = kobj_to_hstate(kobj, &nid); 2802 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len); 2803 } 2804 2805 static ssize_t nr_hugepages_show(struct kobject *kobj, 2806 struct kobj_attribute *attr, char *buf) 2807 { 2808 return nr_hugepages_show_common(kobj, attr, buf); 2809 } 2810 2811 static ssize_t nr_hugepages_store(struct kobject *kobj, 2812 struct kobj_attribute *attr, const char *buf, size_t len) 2813 { 2814 return nr_hugepages_store_common(false, kobj, buf, len); 2815 } 2816 HSTATE_ATTR(nr_hugepages); 2817 2818 #ifdef CONFIG_NUMA 2819 2820 /* 2821 * hstate attribute for optionally mempolicy-based constraint on persistent 2822 * huge page alloc/free. 2823 */ 2824 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj, 2825 struct kobj_attribute *attr, 2826 char *buf) 2827 { 2828 return nr_hugepages_show_common(kobj, attr, buf); 2829 } 2830 2831 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj, 2832 struct kobj_attribute *attr, const char *buf, size_t len) 2833 { 2834 return nr_hugepages_store_common(true, kobj, buf, len); 2835 } 2836 HSTATE_ATTR(nr_hugepages_mempolicy); 2837 #endif 2838 2839 2840 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, 2841 struct kobj_attribute *attr, char *buf) 2842 { 2843 struct hstate *h = kobj_to_hstate(kobj, NULL); 2844 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages); 2845 } 2846 2847 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, 2848 struct kobj_attribute *attr, const char *buf, size_t count) 2849 { 2850 int err; 2851 unsigned long input; 2852 struct hstate *h = kobj_to_hstate(kobj, NULL); 2853 2854 if (hstate_is_gigantic(h)) 2855 return -EINVAL; 2856 2857 err = kstrtoul(buf, 10, &input); 2858 if (err) 2859 return err; 2860 2861 spin_lock(&hugetlb_lock); 2862 h->nr_overcommit_huge_pages = input; 2863 spin_unlock(&hugetlb_lock); 2864 2865 return count; 2866 } 2867 HSTATE_ATTR(nr_overcommit_hugepages); 2868 2869 static ssize_t free_hugepages_show(struct kobject *kobj, 2870 struct kobj_attribute *attr, char *buf) 2871 { 2872 struct hstate *h; 2873 unsigned long free_huge_pages; 2874 int nid; 2875 2876 h = kobj_to_hstate(kobj, &nid); 2877 if (nid == NUMA_NO_NODE) 2878 free_huge_pages = h->free_huge_pages; 2879 else 2880 free_huge_pages = h->free_huge_pages_node[nid]; 2881 2882 return sysfs_emit(buf, "%lu\n", free_huge_pages); 2883 } 2884 HSTATE_ATTR_RO(free_hugepages); 2885 2886 static ssize_t resv_hugepages_show(struct kobject *kobj, 2887 struct kobj_attribute *attr, char *buf) 2888 { 2889 struct hstate *h = kobj_to_hstate(kobj, NULL); 2890 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages); 2891 } 2892 HSTATE_ATTR_RO(resv_hugepages); 2893 2894 static ssize_t surplus_hugepages_show(struct kobject *kobj, 2895 struct kobj_attribute *attr, char *buf) 2896 { 2897 struct hstate *h; 2898 unsigned long surplus_huge_pages; 2899 int nid; 2900 2901 h = kobj_to_hstate(kobj, &nid); 2902 if (nid == NUMA_NO_NODE) 2903 surplus_huge_pages = h->surplus_huge_pages; 2904 else 2905 surplus_huge_pages = h->surplus_huge_pages_node[nid]; 2906 2907 return sysfs_emit(buf, "%lu\n", surplus_huge_pages); 2908 } 2909 HSTATE_ATTR_RO(surplus_hugepages); 2910 2911 static struct attribute *hstate_attrs[] = { 2912 &nr_hugepages_attr.attr, 2913 &nr_overcommit_hugepages_attr.attr, 2914 &free_hugepages_attr.attr, 2915 &resv_hugepages_attr.attr, 2916 &surplus_hugepages_attr.attr, 2917 #ifdef CONFIG_NUMA 2918 &nr_hugepages_mempolicy_attr.attr, 2919 #endif 2920 NULL, 2921 }; 2922 2923 static const struct attribute_group hstate_attr_group = { 2924 .attrs = hstate_attrs, 2925 }; 2926 2927 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent, 2928 struct kobject **hstate_kobjs, 2929 const struct attribute_group *hstate_attr_group) 2930 { 2931 int retval; 2932 int hi = hstate_index(h); 2933 2934 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent); 2935 if (!hstate_kobjs[hi]) 2936 return -ENOMEM; 2937 2938 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group); 2939 if (retval) { 2940 kobject_put(hstate_kobjs[hi]); 2941 hstate_kobjs[hi] = NULL; 2942 } 2943 2944 return retval; 2945 } 2946 2947 static void __init hugetlb_sysfs_init(void) 2948 { 2949 struct hstate *h; 2950 int err; 2951 2952 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); 2953 if (!hugepages_kobj) 2954 return; 2955 2956 for_each_hstate(h) { 2957 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj, 2958 hstate_kobjs, &hstate_attr_group); 2959 if (err) 2960 pr_err("HugeTLB: Unable to add hstate %s", h->name); 2961 } 2962 } 2963 2964 #ifdef CONFIG_NUMA 2965 2966 /* 2967 * node_hstate/s - associate per node hstate attributes, via their kobjects, 2968 * with node devices in node_devices[] using a parallel array. The array 2969 * index of a node device or _hstate == node id. 2970 * This is here to avoid any static dependency of the node device driver, in 2971 * the base kernel, on the hugetlb module. 2972 */ 2973 struct node_hstate { 2974 struct kobject *hugepages_kobj; 2975 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 2976 }; 2977 static struct node_hstate node_hstates[MAX_NUMNODES]; 2978 2979 /* 2980 * A subset of global hstate attributes for node devices 2981 */ 2982 static struct attribute *per_node_hstate_attrs[] = { 2983 &nr_hugepages_attr.attr, 2984 &free_hugepages_attr.attr, 2985 &surplus_hugepages_attr.attr, 2986 NULL, 2987 }; 2988 2989 static const struct attribute_group per_node_hstate_attr_group = { 2990 .attrs = per_node_hstate_attrs, 2991 }; 2992 2993 /* 2994 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj. 2995 * Returns node id via non-NULL nidp. 2996 */ 2997 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 2998 { 2999 int nid; 3000 3001 for (nid = 0; nid < nr_node_ids; nid++) { 3002 struct node_hstate *nhs = &node_hstates[nid]; 3003 int i; 3004 for (i = 0; i < HUGE_MAX_HSTATE; i++) 3005 if (nhs->hstate_kobjs[i] == kobj) { 3006 if (nidp) 3007 *nidp = nid; 3008 return &hstates[i]; 3009 } 3010 } 3011 3012 BUG(); 3013 return NULL; 3014 } 3015 3016 /* 3017 * Unregister hstate attributes from a single node device. 3018 * No-op if no hstate attributes attached. 3019 */ 3020 static void hugetlb_unregister_node(struct node *node) 3021 { 3022 struct hstate *h; 3023 struct node_hstate *nhs = &node_hstates[node->dev.id]; 3024 3025 if (!nhs->hugepages_kobj) 3026 return; /* no hstate attributes */ 3027 3028 for_each_hstate(h) { 3029 int idx = hstate_index(h); 3030 if (nhs->hstate_kobjs[idx]) { 3031 kobject_put(nhs->hstate_kobjs[idx]); 3032 nhs->hstate_kobjs[idx] = NULL; 3033 } 3034 } 3035 3036 kobject_put(nhs->hugepages_kobj); 3037 nhs->hugepages_kobj = NULL; 3038 } 3039 3040 3041 /* 3042 * Register hstate attributes for a single node device. 3043 * No-op if attributes already registered. 3044 */ 3045 static void hugetlb_register_node(struct node *node) 3046 { 3047 struct hstate *h; 3048 struct node_hstate *nhs = &node_hstates[node->dev.id]; 3049 int err; 3050 3051 if (nhs->hugepages_kobj) 3052 return; /* already allocated */ 3053 3054 nhs->hugepages_kobj = kobject_create_and_add("hugepages", 3055 &node->dev.kobj); 3056 if (!nhs->hugepages_kobj) 3057 return; 3058 3059 for_each_hstate(h) { 3060 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj, 3061 nhs->hstate_kobjs, 3062 &per_node_hstate_attr_group); 3063 if (err) { 3064 pr_err("HugeTLB: Unable to add hstate %s for node %d\n", 3065 h->name, node->dev.id); 3066 hugetlb_unregister_node(node); 3067 break; 3068 } 3069 } 3070 } 3071 3072 /* 3073 * hugetlb init time: register hstate attributes for all registered node 3074 * devices of nodes that have memory. All on-line nodes should have 3075 * registered their associated device by this time. 3076 */ 3077 static void __init hugetlb_register_all_nodes(void) 3078 { 3079 int nid; 3080 3081 for_each_node_state(nid, N_MEMORY) { 3082 struct node *node = node_devices[nid]; 3083 if (node->dev.id == nid) 3084 hugetlb_register_node(node); 3085 } 3086 3087 /* 3088 * Let the node device driver know we're here so it can 3089 * [un]register hstate attributes on node hotplug. 3090 */ 3091 register_hugetlbfs_with_node(hugetlb_register_node, 3092 hugetlb_unregister_node); 3093 } 3094 #else /* !CONFIG_NUMA */ 3095 3096 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 3097 { 3098 BUG(); 3099 if (nidp) 3100 *nidp = -1; 3101 return NULL; 3102 } 3103 3104 static void hugetlb_register_all_nodes(void) { } 3105 3106 #endif 3107 3108 static int __init hugetlb_init(void) 3109 { 3110 int i; 3111 3112 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE < 3113 __NR_HPAGEFLAGS); 3114 3115 if (!hugepages_supported()) { 3116 if (hugetlb_max_hstate || default_hstate_max_huge_pages) 3117 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n"); 3118 return 0; 3119 } 3120 3121 /* 3122 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some 3123 * architectures depend on setup being done here. 3124 */ 3125 hugetlb_add_hstate(HUGETLB_PAGE_ORDER); 3126 if (!parsed_default_hugepagesz) { 3127 /* 3128 * If we did not parse a default huge page size, set 3129 * default_hstate_idx to HPAGE_SIZE hstate. And, if the 3130 * number of huge pages for this default size was implicitly 3131 * specified, set that here as well. 3132 * Note that the implicit setting will overwrite an explicit 3133 * setting. A warning will be printed in this case. 3134 */ 3135 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE)); 3136 if (default_hstate_max_huge_pages) { 3137 if (default_hstate.max_huge_pages) { 3138 char buf[32]; 3139 3140 string_get_size(huge_page_size(&default_hstate), 3141 1, STRING_UNITS_2, buf, 32); 3142 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n", 3143 default_hstate.max_huge_pages, buf); 3144 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n", 3145 default_hstate_max_huge_pages); 3146 } 3147 default_hstate.max_huge_pages = 3148 default_hstate_max_huge_pages; 3149 } 3150 } 3151 3152 hugetlb_cma_check(); 3153 hugetlb_init_hstates(); 3154 gather_bootmem_prealloc(); 3155 report_hugepages(); 3156 3157 hugetlb_sysfs_init(); 3158 hugetlb_register_all_nodes(); 3159 hugetlb_cgroup_file_init(); 3160 3161 #ifdef CONFIG_SMP 3162 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus()); 3163 #else 3164 num_fault_mutexes = 1; 3165 #endif 3166 hugetlb_fault_mutex_table = 3167 kmalloc_array(num_fault_mutexes, sizeof(struct mutex), 3168 GFP_KERNEL); 3169 BUG_ON(!hugetlb_fault_mutex_table); 3170 3171 for (i = 0; i < num_fault_mutexes; i++) 3172 mutex_init(&hugetlb_fault_mutex_table[i]); 3173 return 0; 3174 } 3175 subsys_initcall(hugetlb_init); 3176 3177 /* Overwritten by architectures with more huge page sizes */ 3178 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size) 3179 { 3180 return size == HPAGE_SIZE; 3181 } 3182 3183 void __init hugetlb_add_hstate(unsigned int order) 3184 { 3185 struct hstate *h; 3186 unsigned long i; 3187 3188 if (size_to_hstate(PAGE_SIZE << order)) { 3189 return; 3190 } 3191 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE); 3192 BUG_ON(order == 0); 3193 h = &hstates[hugetlb_max_hstate++]; 3194 h->order = order; 3195 h->mask = ~(huge_page_size(h) - 1); 3196 for (i = 0; i < MAX_NUMNODES; ++i) 3197 INIT_LIST_HEAD(&h->hugepage_freelists[i]); 3198 INIT_LIST_HEAD(&h->hugepage_activelist); 3199 h->next_nid_to_alloc = first_memory_node; 3200 h->next_nid_to_free = first_memory_node; 3201 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", 3202 huge_page_size(h)/1024); 3203 3204 parsed_hstate = h; 3205 } 3206 3207 /* 3208 * hugepages command line processing 3209 * hugepages normally follows a valid hugepagsz or default_hugepagsz 3210 * specification. If not, ignore the hugepages value. hugepages can also 3211 * be the first huge page command line option in which case it implicitly 3212 * specifies the number of huge pages for the default size. 3213 */ 3214 static int __init hugepages_setup(char *s) 3215 { 3216 unsigned long *mhp; 3217 static unsigned long *last_mhp; 3218 3219 if (!parsed_valid_hugepagesz) { 3220 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s); 3221 parsed_valid_hugepagesz = true; 3222 return 0; 3223 } 3224 3225 /* 3226 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter 3227 * yet, so this hugepages= parameter goes to the "default hstate". 3228 * Otherwise, it goes with the previously parsed hugepagesz or 3229 * default_hugepagesz. 3230 */ 3231 else if (!hugetlb_max_hstate) 3232 mhp = &default_hstate_max_huge_pages; 3233 else 3234 mhp = &parsed_hstate->max_huge_pages; 3235 3236 if (mhp == last_mhp) { 3237 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s); 3238 return 0; 3239 } 3240 3241 if (sscanf(s, "%lu", mhp) <= 0) 3242 *mhp = 0; 3243 3244 /* 3245 * Global state is always initialized later in hugetlb_init. 3246 * But we need to allocate >= MAX_ORDER hstates here early to still 3247 * use the bootmem allocator. 3248 */ 3249 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER) 3250 hugetlb_hstate_alloc_pages(parsed_hstate); 3251 3252 last_mhp = mhp; 3253 3254 return 1; 3255 } 3256 __setup("hugepages=", hugepages_setup); 3257 3258 /* 3259 * hugepagesz command line processing 3260 * A specific huge page size can only be specified once with hugepagesz. 3261 * hugepagesz is followed by hugepages on the command line. The global 3262 * variable 'parsed_valid_hugepagesz' is used to determine if prior 3263 * hugepagesz argument was valid. 3264 */ 3265 static int __init hugepagesz_setup(char *s) 3266 { 3267 unsigned long size; 3268 struct hstate *h; 3269 3270 parsed_valid_hugepagesz = false; 3271 size = (unsigned long)memparse(s, NULL); 3272 3273 if (!arch_hugetlb_valid_size(size)) { 3274 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s); 3275 return 0; 3276 } 3277 3278 h = size_to_hstate(size); 3279 if (h) { 3280 /* 3281 * hstate for this size already exists. This is normally 3282 * an error, but is allowed if the existing hstate is the 3283 * default hstate. More specifically, it is only allowed if 3284 * the number of huge pages for the default hstate was not 3285 * previously specified. 3286 */ 3287 if (!parsed_default_hugepagesz || h != &default_hstate || 3288 default_hstate.max_huge_pages) { 3289 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s); 3290 return 0; 3291 } 3292 3293 /* 3294 * No need to call hugetlb_add_hstate() as hstate already 3295 * exists. But, do set parsed_hstate so that a following 3296 * hugepages= parameter will be applied to this hstate. 3297 */ 3298 parsed_hstate = h; 3299 parsed_valid_hugepagesz = true; 3300 return 1; 3301 } 3302 3303 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); 3304 parsed_valid_hugepagesz = true; 3305 return 1; 3306 } 3307 __setup("hugepagesz=", hugepagesz_setup); 3308 3309 /* 3310 * default_hugepagesz command line input 3311 * Only one instance of default_hugepagesz allowed on command line. 3312 */ 3313 static int __init default_hugepagesz_setup(char *s) 3314 { 3315 unsigned long size; 3316 3317 parsed_valid_hugepagesz = false; 3318 if (parsed_default_hugepagesz) { 3319 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s); 3320 return 0; 3321 } 3322 3323 size = (unsigned long)memparse(s, NULL); 3324 3325 if (!arch_hugetlb_valid_size(size)) { 3326 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s); 3327 return 0; 3328 } 3329 3330 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); 3331 parsed_valid_hugepagesz = true; 3332 parsed_default_hugepagesz = true; 3333 default_hstate_idx = hstate_index(size_to_hstate(size)); 3334 3335 /* 3336 * The number of default huge pages (for this size) could have been 3337 * specified as the first hugetlb parameter: hugepages=X. If so, 3338 * then default_hstate_max_huge_pages is set. If the default huge 3339 * page size is gigantic (>= MAX_ORDER), then the pages must be 3340 * allocated here from bootmem allocator. 3341 */ 3342 if (default_hstate_max_huge_pages) { 3343 default_hstate.max_huge_pages = default_hstate_max_huge_pages; 3344 if (hstate_is_gigantic(&default_hstate)) 3345 hugetlb_hstate_alloc_pages(&default_hstate); 3346 default_hstate_max_huge_pages = 0; 3347 } 3348 3349 return 1; 3350 } 3351 __setup("default_hugepagesz=", default_hugepagesz_setup); 3352 3353 static unsigned int allowed_mems_nr(struct hstate *h) 3354 { 3355 int node; 3356 unsigned int nr = 0; 3357 nodemask_t *mpol_allowed; 3358 unsigned int *array = h->free_huge_pages_node; 3359 gfp_t gfp_mask = htlb_alloc_mask(h); 3360 3361 mpol_allowed = policy_nodemask_current(gfp_mask); 3362 3363 for_each_node_mask(node, cpuset_current_mems_allowed) { 3364 if (!mpol_allowed || node_isset(node, *mpol_allowed)) 3365 nr += array[node]; 3366 } 3367 3368 return nr; 3369 } 3370 3371 #ifdef CONFIG_SYSCTL 3372 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write, 3373 void *buffer, size_t *length, 3374 loff_t *ppos, unsigned long *out) 3375 { 3376 struct ctl_table dup_table; 3377 3378 /* 3379 * In order to avoid races with __do_proc_doulongvec_minmax(), we 3380 * can duplicate the @table and alter the duplicate of it. 3381 */ 3382 dup_table = *table; 3383 dup_table.data = out; 3384 3385 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos); 3386 } 3387 3388 static int hugetlb_sysctl_handler_common(bool obey_mempolicy, 3389 struct ctl_table *table, int write, 3390 void *buffer, size_t *length, loff_t *ppos) 3391 { 3392 struct hstate *h = &default_hstate; 3393 unsigned long tmp = h->max_huge_pages; 3394 int ret; 3395 3396 if (!hugepages_supported()) 3397 return -EOPNOTSUPP; 3398 3399 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, 3400 &tmp); 3401 if (ret) 3402 goto out; 3403 3404 if (write) 3405 ret = __nr_hugepages_store_common(obey_mempolicy, h, 3406 NUMA_NO_NODE, tmp, *length); 3407 out: 3408 return ret; 3409 } 3410 3411 int hugetlb_sysctl_handler(struct ctl_table *table, int write, 3412 void *buffer, size_t *length, loff_t *ppos) 3413 { 3414 3415 return hugetlb_sysctl_handler_common(false, table, write, 3416 buffer, length, ppos); 3417 } 3418 3419 #ifdef CONFIG_NUMA 3420 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write, 3421 void *buffer, size_t *length, loff_t *ppos) 3422 { 3423 return hugetlb_sysctl_handler_common(true, table, write, 3424 buffer, length, ppos); 3425 } 3426 #endif /* CONFIG_NUMA */ 3427 3428 int hugetlb_overcommit_handler(struct ctl_table *table, int write, 3429 void *buffer, size_t *length, loff_t *ppos) 3430 { 3431 struct hstate *h = &default_hstate; 3432 unsigned long tmp; 3433 int ret; 3434 3435 if (!hugepages_supported()) 3436 return -EOPNOTSUPP; 3437 3438 tmp = h->nr_overcommit_huge_pages; 3439 3440 if (write && hstate_is_gigantic(h)) 3441 return -EINVAL; 3442 3443 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, 3444 &tmp); 3445 if (ret) 3446 goto out; 3447 3448 if (write) { 3449 spin_lock(&hugetlb_lock); 3450 h->nr_overcommit_huge_pages = tmp; 3451 spin_unlock(&hugetlb_lock); 3452 } 3453 out: 3454 return ret; 3455 } 3456 3457 #endif /* CONFIG_SYSCTL */ 3458 3459 void hugetlb_report_meminfo(struct seq_file *m) 3460 { 3461 struct hstate *h; 3462 unsigned long total = 0; 3463 3464 if (!hugepages_supported()) 3465 return; 3466 3467 for_each_hstate(h) { 3468 unsigned long count = h->nr_huge_pages; 3469 3470 total += huge_page_size(h) * count; 3471 3472 if (h == &default_hstate) 3473 seq_printf(m, 3474 "HugePages_Total: %5lu\n" 3475 "HugePages_Free: %5lu\n" 3476 "HugePages_Rsvd: %5lu\n" 3477 "HugePages_Surp: %5lu\n" 3478 "Hugepagesize: %8lu kB\n", 3479 count, 3480 h->free_huge_pages, 3481 h->resv_huge_pages, 3482 h->surplus_huge_pages, 3483 huge_page_size(h) / SZ_1K); 3484 } 3485 3486 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K); 3487 } 3488 3489 int hugetlb_report_node_meminfo(char *buf, int len, int nid) 3490 { 3491 struct hstate *h = &default_hstate; 3492 3493 if (!hugepages_supported()) 3494 return 0; 3495 3496 return sysfs_emit_at(buf, len, 3497 "Node %d HugePages_Total: %5u\n" 3498 "Node %d HugePages_Free: %5u\n" 3499 "Node %d HugePages_Surp: %5u\n", 3500 nid, h->nr_huge_pages_node[nid], 3501 nid, h->free_huge_pages_node[nid], 3502 nid, h->surplus_huge_pages_node[nid]); 3503 } 3504 3505 void hugetlb_show_meminfo(void) 3506 { 3507 struct hstate *h; 3508 int nid; 3509 3510 if (!hugepages_supported()) 3511 return; 3512 3513 for_each_node_state(nid, N_MEMORY) 3514 for_each_hstate(h) 3515 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n", 3516 nid, 3517 h->nr_huge_pages_node[nid], 3518 h->free_huge_pages_node[nid], 3519 h->surplus_huge_pages_node[nid], 3520 huge_page_size(h) / SZ_1K); 3521 } 3522 3523 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm) 3524 { 3525 seq_printf(m, "HugetlbPages:\t%8lu kB\n", 3526 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10)); 3527 } 3528 3529 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ 3530 unsigned long hugetlb_total_pages(void) 3531 { 3532 struct hstate *h; 3533 unsigned long nr_total_pages = 0; 3534 3535 for_each_hstate(h) 3536 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h); 3537 return nr_total_pages; 3538 } 3539 3540 static int hugetlb_acct_memory(struct hstate *h, long delta) 3541 { 3542 int ret = -ENOMEM; 3543 3544 if (!delta) 3545 return 0; 3546 3547 spin_lock(&hugetlb_lock); 3548 /* 3549 * When cpuset is configured, it breaks the strict hugetlb page 3550 * reservation as the accounting is done on a global variable. Such 3551 * reservation is completely rubbish in the presence of cpuset because 3552 * the reservation is not checked against page availability for the 3553 * current cpuset. Application can still potentially OOM'ed by kernel 3554 * with lack of free htlb page in cpuset that the task is in. 3555 * Attempt to enforce strict accounting with cpuset is almost 3556 * impossible (or too ugly) because cpuset is too fluid that 3557 * task or memory node can be dynamically moved between cpusets. 3558 * 3559 * The change of semantics for shared hugetlb mapping with cpuset is 3560 * undesirable. However, in order to preserve some of the semantics, 3561 * we fall back to check against current free page availability as 3562 * a best attempt and hopefully to minimize the impact of changing 3563 * semantics that cpuset has. 3564 * 3565 * Apart from cpuset, we also have memory policy mechanism that 3566 * also determines from which node the kernel will allocate memory 3567 * in a NUMA system. So similar to cpuset, we also should consider 3568 * the memory policy of the current task. Similar to the description 3569 * above. 3570 */ 3571 if (delta > 0) { 3572 if (gather_surplus_pages(h, delta) < 0) 3573 goto out; 3574 3575 if (delta > allowed_mems_nr(h)) { 3576 return_unused_surplus_pages(h, delta); 3577 goto out; 3578 } 3579 } 3580 3581 ret = 0; 3582 if (delta < 0) 3583 return_unused_surplus_pages(h, (unsigned long) -delta); 3584 3585 out: 3586 spin_unlock(&hugetlb_lock); 3587 return ret; 3588 } 3589 3590 static void hugetlb_vm_op_open(struct vm_area_struct *vma) 3591 { 3592 struct resv_map *resv = vma_resv_map(vma); 3593 3594 /* 3595 * This new VMA should share its siblings reservation map if present. 3596 * The VMA will only ever have a valid reservation map pointer where 3597 * it is being copied for another still existing VMA. As that VMA 3598 * has a reference to the reservation map it cannot disappear until 3599 * after this open call completes. It is therefore safe to take a 3600 * new reference here without additional locking. 3601 */ 3602 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 3603 kref_get(&resv->refs); 3604 } 3605 3606 static void hugetlb_vm_op_close(struct vm_area_struct *vma) 3607 { 3608 struct hstate *h = hstate_vma(vma); 3609 struct resv_map *resv = vma_resv_map(vma); 3610 struct hugepage_subpool *spool = subpool_vma(vma); 3611 unsigned long reserve, start, end; 3612 long gbl_reserve; 3613 3614 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 3615 return; 3616 3617 start = vma_hugecache_offset(h, vma, vma->vm_start); 3618 end = vma_hugecache_offset(h, vma, vma->vm_end); 3619 3620 reserve = (end - start) - region_count(resv, start, end); 3621 hugetlb_cgroup_uncharge_counter(resv, start, end); 3622 if (reserve) { 3623 /* 3624 * Decrement reserve counts. The global reserve count may be 3625 * adjusted if the subpool has a minimum size. 3626 */ 3627 gbl_reserve = hugepage_subpool_put_pages(spool, reserve); 3628 hugetlb_acct_memory(h, -gbl_reserve); 3629 } 3630 3631 kref_put(&resv->refs, resv_map_release); 3632 } 3633 3634 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr) 3635 { 3636 if (addr & ~(huge_page_mask(hstate_vma(vma)))) 3637 return -EINVAL; 3638 return 0; 3639 } 3640 3641 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma) 3642 { 3643 return huge_page_size(hstate_vma(vma)); 3644 } 3645 3646 /* 3647 * We cannot handle pagefaults against hugetlb pages at all. They cause 3648 * handle_mm_fault() to try to instantiate regular-sized pages in the 3649 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get 3650 * this far. 3651 */ 3652 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf) 3653 { 3654 BUG(); 3655 return 0; 3656 } 3657 3658 /* 3659 * When a new function is introduced to vm_operations_struct and added 3660 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops. 3661 * This is because under System V memory model, mappings created via 3662 * shmget/shmat with "huge page" specified are backed by hugetlbfs files, 3663 * their original vm_ops are overwritten with shm_vm_ops. 3664 */ 3665 const struct vm_operations_struct hugetlb_vm_ops = { 3666 .fault = hugetlb_vm_op_fault, 3667 .open = hugetlb_vm_op_open, 3668 .close = hugetlb_vm_op_close, 3669 .may_split = hugetlb_vm_op_split, 3670 .pagesize = hugetlb_vm_op_pagesize, 3671 }; 3672 3673 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, 3674 int writable) 3675 { 3676 pte_t entry; 3677 3678 if (writable) { 3679 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page, 3680 vma->vm_page_prot))); 3681 } else { 3682 entry = huge_pte_wrprotect(mk_huge_pte(page, 3683 vma->vm_page_prot)); 3684 } 3685 entry = pte_mkyoung(entry); 3686 entry = pte_mkhuge(entry); 3687 entry = arch_make_huge_pte(entry, vma, page, writable); 3688 3689 return entry; 3690 } 3691 3692 static void set_huge_ptep_writable(struct vm_area_struct *vma, 3693 unsigned long address, pte_t *ptep) 3694 { 3695 pte_t entry; 3696 3697 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep))); 3698 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) 3699 update_mmu_cache(vma, address, ptep); 3700 } 3701 3702 bool is_hugetlb_entry_migration(pte_t pte) 3703 { 3704 swp_entry_t swp; 3705 3706 if (huge_pte_none(pte) || pte_present(pte)) 3707 return false; 3708 swp = pte_to_swp_entry(pte); 3709 if (is_migration_entry(swp)) 3710 return true; 3711 else 3712 return false; 3713 } 3714 3715 static bool is_hugetlb_entry_hwpoisoned(pte_t pte) 3716 { 3717 swp_entry_t swp; 3718 3719 if (huge_pte_none(pte) || pte_present(pte)) 3720 return false; 3721 swp = pte_to_swp_entry(pte); 3722 if (is_hwpoison_entry(swp)) 3723 return true; 3724 else 3725 return false; 3726 } 3727 3728 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, 3729 struct vm_area_struct *vma) 3730 { 3731 pte_t *src_pte, *dst_pte, entry, dst_entry; 3732 struct page *ptepage; 3733 unsigned long addr; 3734 int cow; 3735 struct hstate *h = hstate_vma(vma); 3736 unsigned long sz = huge_page_size(h); 3737 struct address_space *mapping = vma->vm_file->f_mapping; 3738 struct mmu_notifier_range range; 3739 int ret = 0; 3740 3741 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 3742 3743 if (cow) { 3744 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src, 3745 vma->vm_start, 3746 vma->vm_end); 3747 mmu_notifier_invalidate_range_start(&range); 3748 } else { 3749 /* 3750 * For shared mappings i_mmap_rwsem must be held to call 3751 * huge_pte_alloc, otherwise the returned ptep could go 3752 * away if part of a shared pmd and another thread calls 3753 * huge_pmd_unshare. 3754 */ 3755 i_mmap_lock_read(mapping); 3756 } 3757 3758 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) { 3759 spinlock_t *src_ptl, *dst_ptl; 3760 src_pte = huge_pte_offset(src, addr, sz); 3761 if (!src_pte) 3762 continue; 3763 dst_pte = huge_pte_alloc(dst, addr, sz); 3764 if (!dst_pte) { 3765 ret = -ENOMEM; 3766 break; 3767 } 3768 3769 /* 3770 * If the pagetables are shared don't copy or take references. 3771 * dst_pte == src_pte is the common case of src/dest sharing. 3772 * 3773 * However, src could have 'unshared' and dst shares with 3774 * another vma. If dst_pte !none, this implies sharing. 3775 * Check here before taking page table lock, and once again 3776 * after taking the lock below. 3777 */ 3778 dst_entry = huge_ptep_get(dst_pte); 3779 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry)) 3780 continue; 3781 3782 dst_ptl = huge_pte_lock(h, dst, dst_pte); 3783 src_ptl = huge_pte_lockptr(h, src, src_pte); 3784 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 3785 entry = huge_ptep_get(src_pte); 3786 dst_entry = huge_ptep_get(dst_pte); 3787 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) { 3788 /* 3789 * Skip if src entry none. Also, skip in the 3790 * unlikely case dst entry !none as this implies 3791 * sharing with another vma. 3792 */ 3793 ; 3794 } else if (unlikely(is_hugetlb_entry_migration(entry) || 3795 is_hugetlb_entry_hwpoisoned(entry))) { 3796 swp_entry_t swp_entry = pte_to_swp_entry(entry); 3797 3798 if (is_write_migration_entry(swp_entry) && cow) { 3799 /* 3800 * COW mappings require pages in both 3801 * parent and child to be set to read. 3802 */ 3803 make_migration_entry_read(&swp_entry); 3804 entry = swp_entry_to_pte(swp_entry); 3805 set_huge_swap_pte_at(src, addr, src_pte, 3806 entry, sz); 3807 } 3808 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz); 3809 } else { 3810 if (cow) { 3811 /* 3812 * No need to notify as we are downgrading page 3813 * table protection not changing it to point 3814 * to a new page. 3815 * 3816 * See Documentation/vm/mmu_notifier.rst 3817 */ 3818 huge_ptep_set_wrprotect(src, addr, src_pte); 3819 } 3820 entry = huge_ptep_get(src_pte); 3821 ptepage = pte_page(entry); 3822 get_page(ptepage); 3823 page_dup_rmap(ptepage, true); 3824 set_huge_pte_at(dst, addr, dst_pte, entry); 3825 hugetlb_count_add(pages_per_huge_page(h), dst); 3826 } 3827 spin_unlock(src_ptl); 3828 spin_unlock(dst_ptl); 3829 } 3830 3831 if (cow) 3832 mmu_notifier_invalidate_range_end(&range); 3833 else 3834 i_mmap_unlock_read(mapping); 3835 3836 return ret; 3837 } 3838 3839 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma, 3840 unsigned long start, unsigned long end, 3841 struct page *ref_page) 3842 { 3843 struct mm_struct *mm = vma->vm_mm; 3844 unsigned long address; 3845 pte_t *ptep; 3846 pte_t pte; 3847 spinlock_t *ptl; 3848 struct page *page; 3849 struct hstate *h = hstate_vma(vma); 3850 unsigned long sz = huge_page_size(h); 3851 struct mmu_notifier_range range; 3852 3853 WARN_ON(!is_vm_hugetlb_page(vma)); 3854 BUG_ON(start & ~huge_page_mask(h)); 3855 BUG_ON(end & ~huge_page_mask(h)); 3856 3857 /* 3858 * This is a hugetlb vma, all the pte entries should point 3859 * to huge page. 3860 */ 3861 tlb_change_page_size(tlb, sz); 3862 tlb_start_vma(tlb, vma); 3863 3864 /* 3865 * If sharing possible, alert mmu notifiers of worst case. 3866 */ 3867 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start, 3868 end); 3869 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 3870 mmu_notifier_invalidate_range_start(&range); 3871 address = start; 3872 for (; address < end; address += sz) { 3873 ptep = huge_pte_offset(mm, address, sz); 3874 if (!ptep) 3875 continue; 3876 3877 ptl = huge_pte_lock(h, mm, ptep); 3878 if (huge_pmd_unshare(mm, vma, &address, ptep)) { 3879 spin_unlock(ptl); 3880 /* 3881 * We just unmapped a page of PMDs by clearing a PUD. 3882 * The caller's TLB flush range should cover this area. 3883 */ 3884 continue; 3885 } 3886 3887 pte = huge_ptep_get(ptep); 3888 if (huge_pte_none(pte)) { 3889 spin_unlock(ptl); 3890 continue; 3891 } 3892 3893 /* 3894 * Migrating hugepage or HWPoisoned hugepage is already 3895 * unmapped and its refcount is dropped, so just clear pte here. 3896 */ 3897 if (unlikely(!pte_present(pte))) { 3898 huge_pte_clear(mm, address, ptep, sz); 3899 spin_unlock(ptl); 3900 continue; 3901 } 3902 3903 page = pte_page(pte); 3904 /* 3905 * If a reference page is supplied, it is because a specific 3906 * page is being unmapped, not a range. Ensure the page we 3907 * are about to unmap is the actual page of interest. 3908 */ 3909 if (ref_page) { 3910 if (page != ref_page) { 3911 spin_unlock(ptl); 3912 continue; 3913 } 3914 /* 3915 * Mark the VMA as having unmapped its page so that 3916 * future faults in this VMA will fail rather than 3917 * looking like data was lost 3918 */ 3919 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); 3920 } 3921 3922 pte = huge_ptep_get_and_clear(mm, address, ptep); 3923 tlb_remove_huge_tlb_entry(h, tlb, ptep, address); 3924 if (huge_pte_dirty(pte)) 3925 set_page_dirty(page); 3926 3927 hugetlb_count_sub(pages_per_huge_page(h), mm); 3928 page_remove_rmap(page, true); 3929 3930 spin_unlock(ptl); 3931 tlb_remove_page_size(tlb, page, huge_page_size(h)); 3932 /* 3933 * Bail out after unmapping reference page if supplied 3934 */ 3935 if (ref_page) 3936 break; 3937 } 3938 mmu_notifier_invalidate_range_end(&range); 3939 tlb_end_vma(tlb, vma); 3940 } 3941 3942 void __unmap_hugepage_range_final(struct mmu_gather *tlb, 3943 struct vm_area_struct *vma, unsigned long start, 3944 unsigned long end, struct page *ref_page) 3945 { 3946 __unmap_hugepage_range(tlb, vma, start, end, ref_page); 3947 3948 /* 3949 * Clear this flag so that x86's huge_pmd_share page_table_shareable 3950 * test will fail on a vma being torn down, and not grab a page table 3951 * on its way out. We're lucky that the flag has such an appropriate 3952 * name, and can in fact be safely cleared here. We could clear it 3953 * before the __unmap_hugepage_range above, but all that's necessary 3954 * is to clear it before releasing the i_mmap_rwsem. This works 3955 * because in the context this is called, the VMA is about to be 3956 * destroyed and the i_mmap_rwsem is held. 3957 */ 3958 vma->vm_flags &= ~VM_MAYSHARE; 3959 } 3960 3961 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, 3962 unsigned long end, struct page *ref_page) 3963 { 3964 struct mmu_gather tlb; 3965 3966 tlb_gather_mmu(&tlb, vma->vm_mm); 3967 __unmap_hugepage_range(&tlb, vma, start, end, ref_page); 3968 tlb_finish_mmu(&tlb); 3969 } 3970 3971 /* 3972 * This is called when the original mapper is failing to COW a MAP_PRIVATE 3973 * mapping it owns the reserve page for. The intention is to unmap the page 3974 * from other VMAs and let the children be SIGKILLed if they are faulting the 3975 * same region. 3976 */ 3977 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, 3978 struct page *page, unsigned long address) 3979 { 3980 struct hstate *h = hstate_vma(vma); 3981 struct vm_area_struct *iter_vma; 3982 struct address_space *mapping; 3983 pgoff_t pgoff; 3984 3985 /* 3986 * vm_pgoff is in PAGE_SIZE units, hence the different calculation 3987 * from page cache lookup which is in HPAGE_SIZE units. 3988 */ 3989 address = address & huge_page_mask(h); 3990 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + 3991 vma->vm_pgoff; 3992 mapping = vma->vm_file->f_mapping; 3993 3994 /* 3995 * Take the mapping lock for the duration of the table walk. As 3996 * this mapping should be shared between all the VMAs, 3997 * __unmap_hugepage_range() is called as the lock is already held 3998 */ 3999 i_mmap_lock_write(mapping); 4000 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) { 4001 /* Do not unmap the current VMA */ 4002 if (iter_vma == vma) 4003 continue; 4004 4005 /* 4006 * Shared VMAs have their own reserves and do not affect 4007 * MAP_PRIVATE accounting but it is possible that a shared 4008 * VMA is using the same page so check and skip such VMAs. 4009 */ 4010 if (iter_vma->vm_flags & VM_MAYSHARE) 4011 continue; 4012 4013 /* 4014 * Unmap the page from other VMAs without their own reserves. 4015 * They get marked to be SIGKILLed if they fault in these 4016 * areas. This is because a future no-page fault on this VMA 4017 * could insert a zeroed page instead of the data existing 4018 * from the time of fork. This would look like data corruption 4019 */ 4020 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) 4021 unmap_hugepage_range(iter_vma, address, 4022 address + huge_page_size(h), page); 4023 } 4024 i_mmap_unlock_write(mapping); 4025 } 4026 4027 /* 4028 * Hugetlb_cow() should be called with page lock of the original hugepage held. 4029 * Called with hugetlb_instantiation_mutex held and pte_page locked so we 4030 * cannot race with other handlers or page migration. 4031 * Keep the pte_same checks anyway to make transition from the mutex easier. 4032 */ 4033 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma, 4034 unsigned long address, pte_t *ptep, 4035 struct page *pagecache_page, spinlock_t *ptl) 4036 { 4037 pte_t pte; 4038 struct hstate *h = hstate_vma(vma); 4039 struct page *old_page, *new_page; 4040 int outside_reserve = 0; 4041 vm_fault_t ret = 0; 4042 unsigned long haddr = address & huge_page_mask(h); 4043 struct mmu_notifier_range range; 4044 4045 pte = huge_ptep_get(ptep); 4046 old_page = pte_page(pte); 4047 4048 retry_avoidcopy: 4049 /* If no-one else is actually using this page, avoid the copy 4050 * and just make the page writable */ 4051 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) { 4052 page_move_anon_rmap(old_page, vma); 4053 set_huge_ptep_writable(vma, haddr, ptep); 4054 return 0; 4055 } 4056 4057 /* 4058 * If the process that created a MAP_PRIVATE mapping is about to 4059 * perform a COW due to a shared page count, attempt to satisfy 4060 * the allocation without using the existing reserves. The pagecache 4061 * page is used to determine if the reserve at this address was 4062 * consumed or not. If reserves were used, a partial faulted mapping 4063 * at the time of fork() could consume its reserves on COW instead 4064 * of the full address range. 4065 */ 4066 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && 4067 old_page != pagecache_page) 4068 outside_reserve = 1; 4069 4070 get_page(old_page); 4071 4072 /* 4073 * Drop page table lock as buddy allocator may be called. It will 4074 * be acquired again before returning to the caller, as expected. 4075 */ 4076 spin_unlock(ptl); 4077 new_page = alloc_huge_page(vma, haddr, outside_reserve); 4078 4079 if (IS_ERR(new_page)) { 4080 /* 4081 * If a process owning a MAP_PRIVATE mapping fails to COW, 4082 * it is due to references held by a child and an insufficient 4083 * huge page pool. To guarantee the original mappers 4084 * reliability, unmap the page from child processes. The child 4085 * may get SIGKILLed if it later faults. 4086 */ 4087 if (outside_reserve) { 4088 struct address_space *mapping = vma->vm_file->f_mapping; 4089 pgoff_t idx; 4090 u32 hash; 4091 4092 put_page(old_page); 4093 BUG_ON(huge_pte_none(pte)); 4094 /* 4095 * Drop hugetlb_fault_mutex and i_mmap_rwsem before 4096 * unmapping. unmapping needs to hold i_mmap_rwsem 4097 * in write mode. Dropping i_mmap_rwsem in read mode 4098 * here is OK as COW mappings do not interact with 4099 * PMD sharing. 4100 * 4101 * Reacquire both after unmap operation. 4102 */ 4103 idx = vma_hugecache_offset(h, vma, haddr); 4104 hash = hugetlb_fault_mutex_hash(mapping, idx); 4105 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 4106 i_mmap_unlock_read(mapping); 4107 4108 unmap_ref_private(mm, vma, old_page, haddr); 4109 4110 i_mmap_lock_read(mapping); 4111 mutex_lock(&hugetlb_fault_mutex_table[hash]); 4112 spin_lock(ptl); 4113 ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); 4114 if (likely(ptep && 4115 pte_same(huge_ptep_get(ptep), pte))) 4116 goto retry_avoidcopy; 4117 /* 4118 * race occurs while re-acquiring page table 4119 * lock, and our job is done. 4120 */ 4121 return 0; 4122 } 4123 4124 ret = vmf_error(PTR_ERR(new_page)); 4125 goto out_release_old; 4126 } 4127 4128 /* 4129 * When the original hugepage is shared one, it does not have 4130 * anon_vma prepared. 4131 */ 4132 if (unlikely(anon_vma_prepare(vma))) { 4133 ret = VM_FAULT_OOM; 4134 goto out_release_all; 4135 } 4136 4137 copy_user_huge_page(new_page, old_page, address, vma, 4138 pages_per_huge_page(h)); 4139 __SetPageUptodate(new_page); 4140 4141 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr, 4142 haddr + huge_page_size(h)); 4143 mmu_notifier_invalidate_range_start(&range); 4144 4145 /* 4146 * Retake the page table lock to check for racing updates 4147 * before the page tables are altered 4148 */ 4149 spin_lock(ptl); 4150 ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); 4151 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) { 4152 ClearHPageRestoreReserve(new_page); 4153 4154 /* Break COW */ 4155 huge_ptep_clear_flush(vma, haddr, ptep); 4156 mmu_notifier_invalidate_range(mm, range.start, range.end); 4157 set_huge_pte_at(mm, haddr, ptep, 4158 make_huge_pte(vma, new_page, 1)); 4159 page_remove_rmap(old_page, true); 4160 hugepage_add_new_anon_rmap(new_page, vma, haddr); 4161 SetHPageMigratable(new_page); 4162 /* Make the old page be freed below */ 4163 new_page = old_page; 4164 } 4165 spin_unlock(ptl); 4166 mmu_notifier_invalidate_range_end(&range); 4167 out_release_all: 4168 restore_reserve_on_error(h, vma, haddr, new_page); 4169 put_page(new_page); 4170 out_release_old: 4171 put_page(old_page); 4172 4173 spin_lock(ptl); /* Caller expects lock to be held */ 4174 return ret; 4175 } 4176 4177 /* Return the pagecache page at a given address within a VMA */ 4178 static struct page *hugetlbfs_pagecache_page(struct hstate *h, 4179 struct vm_area_struct *vma, unsigned long address) 4180 { 4181 struct address_space *mapping; 4182 pgoff_t idx; 4183 4184 mapping = vma->vm_file->f_mapping; 4185 idx = vma_hugecache_offset(h, vma, address); 4186 4187 return find_lock_page(mapping, idx); 4188 } 4189 4190 /* 4191 * Return whether there is a pagecache page to back given address within VMA. 4192 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page. 4193 */ 4194 static bool hugetlbfs_pagecache_present(struct hstate *h, 4195 struct vm_area_struct *vma, unsigned long address) 4196 { 4197 struct address_space *mapping; 4198 pgoff_t idx; 4199 struct page *page; 4200 4201 mapping = vma->vm_file->f_mapping; 4202 idx = vma_hugecache_offset(h, vma, address); 4203 4204 page = find_get_page(mapping, idx); 4205 if (page) 4206 put_page(page); 4207 return page != NULL; 4208 } 4209 4210 int huge_add_to_page_cache(struct page *page, struct address_space *mapping, 4211 pgoff_t idx) 4212 { 4213 struct inode *inode = mapping->host; 4214 struct hstate *h = hstate_inode(inode); 4215 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL); 4216 4217 if (err) 4218 return err; 4219 ClearHPageRestoreReserve(page); 4220 4221 /* 4222 * set page dirty so that it will not be removed from cache/file 4223 * by non-hugetlbfs specific code paths. 4224 */ 4225 set_page_dirty(page); 4226 4227 spin_lock(&inode->i_lock); 4228 inode->i_blocks += blocks_per_huge_page(h); 4229 spin_unlock(&inode->i_lock); 4230 return 0; 4231 } 4232 4233 static vm_fault_t hugetlb_no_page(struct mm_struct *mm, 4234 struct vm_area_struct *vma, 4235 struct address_space *mapping, pgoff_t idx, 4236 unsigned long address, pte_t *ptep, unsigned int flags) 4237 { 4238 struct hstate *h = hstate_vma(vma); 4239 vm_fault_t ret = VM_FAULT_SIGBUS; 4240 int anon_rmap = 0; 4241 unsigned long size; 4242 struct page *page; 4243 pte_t new_pte; 4244 spinlock_t *ptl; 4245 unsigned long haddr = address & huge_page_mask(h); 4246 bool new_page = false; 4247 4248 /* 4249 * Currently, we are forced to kill the process in the event the 4250 * original mapper has unmapped pages from the child due to a failed 4251 * COW. Warn that such a situation has occurred as it may not be obvious 4252 */ 4253 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { 4254 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n", 4255 current->pid); 4256 return ret; 4257 } 4258 4259 /* 4260 * We can not race with truncation due to holding i_mmap_rwsem. 4261 * i_size is modified when holding i_mmap_rwsem, so check here 4262 * once for faults beyond end of file. 4263 */ 4264 size = i_size_read(mapping->host) >> huge_page_shift(h); 4265 if (idx >= size) 4266 goto out; 4267 4268 retry: 4269 page = find_lock_page(mapping, idx); 4270 if (!page) { 4271 /* 4272 * Check for page in userfault range 4273 */ 4274 if (userfaultfd_missing(vma)) { 4275 u32 hash; 4276 struct vm_fault vmf = { 4277 .vma = vma, 4278 .address = haddr, 4279 .flags = flags, 4280 /* 4281 * Hard to debug if it ends up being 4282 * used by a callee that assumes 4283 * something about the other 4284 * uninitialized fields... same as in 4285 * memory.c 4286 */ 4287 }; 4288 4289 /* 4290 * hugetlb_fault_mutex and i_mmap_rwsem must be 4291 * dropped before handling userfault. Reacquire 4292 * after handling fault to make calling code simpler. 4293 */ 4294 hash = hugetlb_fault_mutex_hash(mapping, idx); 4295 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 4296 i_mmap_unlock_read(mapping); 4297 ret = handle_userfault(&vmf, VM_UFFD_MISSING); 4298 i_mmap_lock_read(mapping); 4299 mutex_lock(&hugetlb_fault_mutex_table[hash]); 4300 goto out; 4301 } 4302 4303 page = alloc_huge_page(vma, haddr, 0); 4304 if (IS_ERR(page)) { 4305 /* 4306 * Returning error will result in faulting task being 4307 * sent SIGBUS. The hugetlb fault mutex prevents two 4308 * tasks from racing to fault in the same page which 4309 * could result in false unable to allocate errors. 4310 * Page migration does not take the fault mutex, but 4311 * does a clear then write of pte's under page table 4312 * lock. Page fault code could race with migration, 4313 * notice the clear pte and try to allocate a page 4314 * here. Before returning error, get ptl and make 4315 * sure there really is no pte entry. 4316 */ 4317 ptl = huge_pte_lock(h, mm, ptep); 4318 if (!huge_pte_none(huge_ptep_get(ptep))) { 4319 ret = 0; 4320 spin_unlock(ptl); 4321 goto out; 4322 } 4323 spin_unlock(ptl); 4324 ret = vmf_error(PTR_ERR(page)); 4325 goto out; 4326 } 4327 clear_huge_page(page, address, pages_per_huge_page(h)); 4328 __SetPageUptodate(page); 4329 new_page = true; 4330 4331 if (vma->vm_flags & VM_MAYSHARE) { 4332 int err = huge_add_to_page_cache(page, mapping, idx); 4333 if (err) { 4334 put_page(page); 4335 if (err == -EEXIST) 4336 goto retry; 4337 goto out; 4338 } 4339 } else { 4340 lock_page(page); 4341 if (unlikely(anon_vma_prepare(vma))) { 4342 ret = VM_FAULT_OOM; 4343 goto backout_unlocked; 4344 } 4345 anon_rmap = 1; 4346 } 4347 } else { 4348 /* 4349 * If memory error occurs between mmap() and fault, some process 4350 * don't have hwpoisoned swap entry for errored virtual address. 4351 * So we need to block hugepage fault by PG_hwpoison bit check. 4352 */ 4353 if (unlikely(PageHWPoison(page))) { 4354 ret = VM_FAULT_HWPOISON_LARGE | 4355 VM_FAULT_SET_HINDEX(hstate_index(h)); 4356 goto backout_unlocked; 4357 } 4358 } 4359 4360 /* 4361 * If we are going to COW a private mapping later, we examine the 4362 * pending reservations for this page now. This will ensure that 4363 * any allocations necessary to record that reservation occur outside 4364 * the spinlock. 4365 */ 4366 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 4367 if (vma_needs_reservation(h, vma, haddr) < 0) { 4368 ret = VM_FAULT_OOM; 4369 goto backout_unlocked; 4370 } 4371 /* Just decrements count, does not deallocate */ 4372 vma_end_reservation(h, vma, haddr); 4373 } 4374 4375 ptl = huge_pte_lock(h, mm, ptep); 4376 ret = 0; 4377 if (!huge_pte_none(huge_ptep_get(ptep))) 4378 goto backout; 4379 4380 if (anon_rmap) { 4381 ClearHPageRestoreReserve(page); 4382 hugepage_add_new_anon_rmap(page, vma, haddr); 4383 } else 4384 page_dup_rmap(page, true); 4385 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE) 4386 && (vma->vm_flags & VM_SHARED))); 4387 set_huge_pte_at(mm, haddr, ptep, new_pte); 4388 4389 hugetlb_count_add(pages_per_huge_page(h), mm); 4390 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 4391 /* Optimization, do the COW without a second fault */ 4392 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl); 4393 } 4394 4395 spin_unlock(ptl); 4396 4397 /* 4398 * Only set HPageMigratable in newly allocated pages. Existing pages 4399 * found in the pagecache may not have HPageMigratableset if they have 4400 * been isolated for migration. 4401 */ 4402 if (new_page) 4403 SetHPageMigratable(page); 4404 4405 unlock_page(page); 4406 out: 4407 return ret; 4408 4409 backout: 4410 spin_unlock(ptl); 4411 backout_unlocked: 4412 unlock_page(page); 4413 restore_reserve_on_error(h, vma, haddr, page); 4414 put_page(page); 4415 goto out; 4416 } 4417 4418 #ifdef CONFIG_SMP 4419 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 4420 { 4421 unsigned long key[2]; 4422 u32 hash; 4423 4424 key[0] = (unsigned long) mapping; 4425 key[1] = idx; 4426 4427 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0); 4428 4429 return hash & (num_fault_mutexes - 1); 4430 } 4431 #else 4432 /* 4433 * For uniprocessor systems we always use a single mutex, so just 4434 * return 0 and avoid the hashing overhead. 4435 */ 4436 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 4437 { 4438 return 0; 4439 } 4440 #endif 4441 4442 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, 4443 unsigned long address, unsigned int flags) 4444 { 4445 pte_t *ptep, entry; 4446 spinlock_t *ptl; 4447 vm_fault_t ret; 4448 u32 hash; 4449 pgoff_t idx; 4450 struct page *page = NULL; 4451 struct page *pagecache_page = NULL; 4452 struct hstate *h = hstate_vma(vma); 4453 struct address_space *mapping; 4454 int need_wait_lock = 0; 4455 unsigned long haddr = address & huge_page_mask(h); 4456 4457 ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); 4458 if (ptep) { 4459 /* 4460 * Since we hold no locks, ptep could be stale. That is 4461 * OK as we are only making decisions based on content and 4462 * not actually modifying content here. 4463 */ 4464 entry = huge_ptep_get(ptep); 4465 if (unlikely(is_hugetlb_entry_migration(entry))) { 4466 migration_entry_wait_huge(vma, mm, ptep); 4467 return 0; 4468 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) 4469 return VM_FAULT_HWPOISON_LARGE | 4470 VM_FAULT_SET_HINDEX(hstate_index(h)); 4471 } 4472 4473 /* 4474 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold 4475 * until finished with ptep. This serves two purposes: 4476 * 1) It prevents huge_pmd_unshare from being called elsewhere 4477 * and making the ptep no longer valid. 4478 * 2) It synchronizes us with i_size modifications during truncation. 4479 * 4480 * ptep could have already be assigned via huge_pte_offset. That 4481 * is OK, as huge_pte_alloc will return the same value unless 4482 * something has changed. 4483 */ 4484 mapping = vma->vm_file->f_mapping; 4485 i_mmap_lock_read(mapping); 4486 ptep = huge_pte_alloc(mm, haddr, huge_page_size(h)); 4487 if (!ptep) { 4488 i_mmap_unlock_read(mapping); 4489 return VM_FAULT_OOM; 4490 } 4491 4492 /* 4493 * Serialize hugepage allocation and instantiation, so that we don't 4494 * get spurious allocation failures if two CPUs race to instantiate 4495 * the same page in the page cache. 4496 */ 4497 idx = vma_hugecache_offset(h, vma, haddr); 4498 hash = hugetlb_fault_mutex_hash(mapping, idx); 4499 mutex_lock(&hugetlb_fault_mutex_table[hash]); 4500 4501 entry = huge_ptep_get(ptep); 4502 if (huge_pte_none(entry)) { 4503 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags); 4504 goto out_mutex; 4505 } 4506 4507 ret = 0; 4508 4509 /* 4510 * entry could be a migration/hwpoison entry at this point, so this 4511 * check prevents the kernel from going below assuming that we have 4512 * an active hugepage in pagecache. This goto expects the 2nd page 4513 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will 4514 * properly handle it. 4515 */ 4516 if (!pte_present(entry)) 4517 goto out_mutex; 4518 4519 /* 4520 * If we are going to COW the mapping later, we examine the pending 4521 * reservations for this page now. This will ensure that any 4522 * allocations necessary to record that reservation occur outside the 4523 * spinlock. For private mappings, we also lookup the pagecache 4524 * page now as it is used to determine if a reservation has been 4525 * consumed. 4526 */ 4527 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) { 4528 if (vma_needs_reservation(h, vma, haddr) < 0) { 4529 ret = VM_FAULT_OOM; 4530 goto out_mutex; 4531 } 4532 /* Just decrements count, does not deallocate */ 4533 vma_end_reservation(h, vma, haddr); 4534 4535 if (!(vma->vm_flags & VM_MAYSHARE)) 4536 pagecache_page = hugetlbfs_pagecache_page(h, 4537 vma, haddr); 4538 } 4539 4540 ptl = huge_pte_lock(h, mm, ptep); 4541 4542 /* Check for a racing update before calling hugetlb_cow */ 4543 if (unlikely(!pte_same(entry, huge_ptep_get(ptep)))) 4544 goto out_ptl; 4545 4546 /* 4547 * hugetlb_cow() requires page locks of pte_page(entry) and 4548 * pagecache_page, so here we need take the former one 4549 * when page != pagecache_page or !pagecache_page. 4550 */ 4551 page = pte_page(entry); 4552 if (page != pagecache_page) 4553 if (!trylock_page(page)) { 4554 need_wait_lock = 1; 4555 goto out_ptl; 4556 } 4557 4558 get_page(page); 4559 4560 if (flags & FAULT_FLAG_WRITE) { 4561 if (!huge_pte_write(entry)) { 4562 ret = hugetlb_cow(mm, vma, address, ptep, 4563 pagecache_page, ptl); 4564 goto out_put_page; 4565 } 4566 entry = huge_pte_mkdirty(entry); 4567 } 4568 entry = pte_mkyoung(entry); 4569 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry, 4570 flags & FAULT_FLAG_WRITE)) 4571 update_mmu_cache(vma, haddr, ptep); 4572 out_put_page: 4573 if (page != pagecache_page) 4574 unlock_page(page); 4575 put_page(page); 4576 out_ptl: 4577 spin_unlock(ptl); 4578 4579 if (pagecache_page) { 4580 unlock_page(pagecache_page); 4581 put_page(pagecache_page); 4582 } 4583 out_mutex: 4584 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 4585 i_mmap_unlock_read(mapping); 4586 /* 4587 * Generally it's safe to hold refcount during waiting page lock. But 4588 * here we just wait to defer the next page fault to avoid busy loop and 4589 * the page is not used after unlocked before returning from the current 4590 * page fault. So we are safe from accessing freed page, even if we wait 4591 * here without taking refcount. 4592 */ 4593 if (need_wait_lock) 4594 wait_on_page_locked(page); 4595 return ret; 4596 } 4597 4598 /* 4599 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with 4600 * modifications for huge pages. 4601 */ 4602 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm, 4603 pte_t *dst_pte, 4604 struct vm_area_struct *dst_vma, 4605 unsigned long dst_addr, 4606 unsigned long src_addr, 4607 struct page **pagep) 4608 { 4609 struct address_space *mapping; 4610 pgoff_t idx; 4611 unsigned long size; 4612 int vm_shared = dst_vma->vm_flags & VM_SHARED; 4613 struct hstate *h = hstate_vma(dst_vma); 4614 pte_t _dst_pte; 4615 spinlock_t *ptl; 4616 int ret; 4617 struct page *page; 4618 4619 if (!*pagep) { 4620 ret = -ENOMEM; 4621 page = alloc_huge_page(dst_vma, dst_addr, 0); 4622 if (IS_ERR(page)) 4623 goto out; 4624 4625 ret = copy_huge_page_from_user(page, 4626 (const void __user *) src_addr, 4627 pages_per_huge_page(h), false); 4628 4629 /* fallback to copy_from_user outside mmap_lock */ 4630 if (unlikely(ret)) { 4631 ret = -ENOENT; 4632 *pagep = page; 4633 /* don't free the page */ 4634 goto out; 4635 } 4636 } else { 4637 page = *pagep; 4638 *pagep = NULL; 4639 } 4640 4641 /* 4642 * The memory barrier inside __SetPageUptodate makes sure that 4643 * preceding stores to the page contents become visible before 4644 * the set_pte_at() write. 4645 */ 4646 __SetPageUptodate(page); 4647 4648 mapping = dst_vma->vm_file->f_mapping; 4649 idx = vma_hugecache_offset(h, dst_vma, dst_addr); 4650 4651 /* 4652 * If shared, add to page cache 4653 */ 4654 if (vm_shared) { 4655 size = i_size_read(mapping->host) >> huge_page_shift(h); 4656 ret = -EFAULT; 4657 if (idx >= size) 4658 goto out_release_nounlock; 4659 4660 /* 4661 * Serialization between remove_inode_hugepages() and 4662 * huge_add_to_page_cache() below happens through the 4663 * hugetlb_fault_mutex_table that here must be hold by 4664 * the caller. 4665 */ 4666 ret = huge_add_to_page_cache(page, mapping, idx); 4667 if (ret) 4668 goto out_release_nounlock; 4669 } 4670 4671 ptl = huge_pte_lockptr(h, dst_mm, dst_pte); 4672 spin_lock(ptl); 4673 4674 /* 4675 * Recheck the i_size after holding PT lock to make sure not 4676 * to leave any page mapped (as page_mapped()) beyond the end 4677 * of the i_size (remove_inode_hugepages() is strict about 4678 * enforcing that). If we bail out here, we'll also leave a 4679 * page in the radix tree in the vm_shared case beyond the end 4680 * of the i_size, but remove_inode_hugepages() will take care 4681 * of it as soon as we drop the hugetlb_fault_mutex_table. 4682 */ 4683 size = i_size_read(mapping->host) >> huge_page_shift(h); 4684 ret = -EFAULT; 4685 if (idx >= size) 4686 goto out_release_unlock; 4687 4688 ret = -EEXIST; 4689 if (!huge_pte_none(huge_ptep_get(dst_pte))) 4690 goto out_release_unlock; 4691 4692 if (vm_shared) { 4693 page_dup_rmap(page, true); 4694 } else { 4695 ClearHPageRestoreReserve(page); 4696 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr); 4697 } 4698 4699 _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE); 4700 if (dst_vma->vm_flags & VM_WRITE) 4701 _dst_pte = huge_pte_mkdirty(_dst_pte); 4702 _dst_pte = pte_mkyoung(_dst_pte); 4703 4704 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte); 4705 4706 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte, 4707 dst_vma->vm_flags & VM_WRITE); 4708 hugetlb_count_add(pages_per_huge_page(h), dst_mm); 4709 4710 /* No need to invalidate - it was non-present before */ 4711 update_mmu_cache(dst_vma, dst_addr, dst_pte); 4712 4713 spin_unlock(ptl); 4714 SetHPageMigratable(page); 4715 if (vm_shared) 4716 unlock_page(page); 4717 ret = 0; 4718 out: 4719 return ret; 4720 out_release_unlock: 4721 spin_unlock(ptl); 4722 if (vm_shared) 4723 unlock_page(page); 4724 out_release_nounlock: 4725 put_page(page); 4726 goto out; 4727 } 4728 4729 static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma, 4730 int refs, struct page **pages, 4731 struct vm_area_struct **vmas) 4732 { 4733 int nr; 4734 4735 for (nr = 0; nr < refs; nr++) { 4736 if (likely(pages)) 4737 pages[nr] = mem_map_offset(page, nr); 4738 if (vmas) 4739 vmas[nr] = vma; 4740 } 4741 } 4742 4743 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, 4744 struct page **pages, struct vm_area_struct **vmas, 4745 unsigned long *position, unsigned long *nr_pages, 4746 long i, unsigned int flags, int *locked) 4747 { 4748 unsigned long pfn_offset; 4749 unsigned long vaddr = *position; 4750 unsigned long remainder = *nr_pages; 4751 struct hstate *h = hstate_vma(vma); 4752 int err = -EFAULT, refs; 4753 4754 while (vaddr < vma->vm_end && remainder) { 4755 pte_t *pte; 4756 spinlock_t *ptl = NULL; 4757 int absent; 4758 struct page *page; 4759 4760 /* 4761 * If we have a pending SIGKILL, don't keep faulting pages and 4762 * potentially allocating memory. 4763 */ 4764 if (fatal_signal_pending(current)) { 4765 remainder = 0; 4766 break; 4767 } 4768 4769 /* 4770 * Some archs (sparc64, sh*) have multiple pte_ts to 4771 * each hugepage. We have to make sure we get the 4772 * first, for the page indexing below to work. 4773 * 4774 * Note that page table lock is not held when pte is null. 4775 */ 4776 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h), 4777 huge_page_size(h)); 4778 if (pte) 4779 ptl = huge_pte_lock(h, mm, pte); 4780 absent = !pte || huge_pte_none(huge_ptep_get(pte)); 4781 4782 /* 4783 * When coredumping, it suits get_dump_page if we just return 4784 * an error where there's an empty slot with no huge pagecache 4785 * to back it. This way, we avoid allocating a hugepage, and 4786 * the sparse dumpfile avoids allocating disk blocks, but its 4787 * huge holes still show up with zeroes where they need to be. 4788 */ 4789 if (absent && (flags & FOLL_DUMP) && 4790 !hugetlbfs_pagecache_present(h, vma, vaddr)) { 4791 if (pte) 4792 spin_unlock(ptl); 4793 remainder = 0; 4794 break; 4795 } 4796 4797 /* 4798 * We need call hugetlb_fault for both hugepages under migration 4799 * (in which case hugetlb_fault waits for the migration,) and 4800 * hwpoisoned hugepages (in which case we need to prevent the 4801 * caller from accessing to them.) In order to do this, we use 4802 * here is_swap_pte instead of is_hugetlb_entry_migration and 4803 * is_hugetlb_entry_hwpoisoned. This is because it simply covers 4804 * both cases, and because we can't follow correct pages 4805 * directly from any kind of swap entries. 4806 */ 4807 if (absent || is_swap_pte(huge_ptep_get(pte)) || 4808 ((flags & FOLL_WRITE) && 4809 !huge_pte_write(huge_ptep_get(pte)))) { 4810 vm_fault_t ret; 4811 unsigned int fault_flags = 0; 4812 4813 if (pte) 4814 spin_unlock(ptl); 4815 if (flags & FOLL_WRITE) 4816 fault_flags |= FAULT_FLAG_WRITE; 4817 if (locked) 4818 fault_flags |= FAULT_FLAG_ALLOW_RETRY | 4819 FAULT_FLAG_KILLABLE; 4820 if (flags & FOLL_NOWAIT) 4821 fault_flags |= FAULT_FLAG_ALLOW_RETRY | 4822 FAULT_FLAG_RETRY_NOWAIT; 4823 if (flags & FOLL_TRIED) { 4824 /* 4825 * Note: FAULT_FLAG_ALLOW_RETRY and 4826 * FAULT_FLAG_TRIED can co-exist 4827 */ 4828 fault_flags |= FAULT_FLAG_TRIED; 4829 } 4830 ret = hugetlb_fault(mm, vma, vaddr, fault_flags); 4831 if (ret & VM_FAULT_ERROR) { 4832 err = vm_fault_to_errno(ret, flags); 4833 remainder = 0; 4834 break; 4835 } 4836 if (ret & VM_FAULT_RETRY) { 4837 if (locked && 4838 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) 4839 *locked = 0; 4840 *nr_pages = 0; 4841 /* 4842 * VM_FAULT_RETRY must not return an 4843 * error, it will return zero 4844 * instead. 4845 * 4846 * No need to update "position" as the 4847 * caller will not check it after 4848 * *nr_pages is set to 0. 4849 */ 4850 return i; 4851 } 4852 continue; 4853 } 4854 4855 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT; 4856 page = pte_page(huge_ptep_get(pte)); 4857 4858 /* 4859 * If subpage information not requested, update counters 4860 * and skip the same_page loop below. 4861 */ 4862 if (!pages && !vmas && !pfn_offset && 4863 (vaddr + huge_page_size(h) < vma->vm_end) && 4864 (remainder >= pages_per_huge_page(h))) { 4865 vaddr += huge_page_size(h); 4866 remainder -= pages_per_huge_page(h); 4867 i += pages_per_huge_page(h); 4868 spin_unlock(ptl); 4869 continue; 4870 } 4871 4872 refs = min3(pages_per_huge_page(h) - pfn_offset, 4873 (vma->vm_end - vaddr) >> PAGE_SHIFT, remainder); 4874 4875 if (pages || vmas) 4876 record_subpages_vmas(mem_map_offset(page, pfn_offset), 4877 vma, refs, 4878 likely(pages) ? pages + i : NULL, 4879 vmas ? vmas + i : NULL); 4880 4881 if (pages) { 4882 /* 4883 * try_grab_compound_head() should always succeed here, 4884 * because: a) we hold the ptl lock, and b) we've just 4885 * checked that the huge page is present in the page 4886 * tables. If the huge page is present, then the tail 4887 * pages must also be present. The ptl prevents the 4888 * head page and tail pages from being rearranged in 4889 * any way. So this page must be available at this 4890 * point, unless the page refcount overflowed: 4891 */ 4892 if (WARN_ON_ONCE(!try_grab_compound_head(pages[i], 4893 refs, 4894 flags))) { 4895 spin_unlock(ptl); 4896 remainder = 0; 4897 err = -ENOMEM; 4898 break; 4899 } 4900 } 4901 4902 vaddr += (refs << PAGE_SHIFT); 4903 remainder -= refs; 4904 i += refs; 4905 4906 spin_unlock(ptl); 4907 } 4908 *nr_pages = remainder; 4909 /* 4910 * setting position is actually required only if remainder is 4911 * not zero but it's faster not to add a "if (remainder)" 4912 * branch. 4913 */ 4914 *position = vaddr; 4915 4916 return i ? i : err; 4917 } 4918 4919 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE 4920 /* 4921 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can 4922 * implement this. 4923 */ 4924 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end) 4925 #endif 4926 4927 unsigned long hugetlb_change_protection(struct vm_area_struct *vma, 4928 unsigned long address, unsigned long end, pgprot_t newprot) 4929 { 4930 struct mm_struct *mm = vma->vm_mm; 4931 unsigned long start = address; 4932 pte_t *ptep; 4933 pte_t pte; 4934 struct hstate *h = hstate_vma(vma); 4935 unsigned long pages = 0; 4936 bool shared_pmd = false; 4937 struct mmu_notifier_range range; 4938 4939 /* 4940 * In the case of shared PMDs, the area to flush could be beyond 4941 * start/end. Set range.start/range.end to cover the maximum possible 4942 * range if PMD sharing is possible. 4943 */ 4944 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA, 4945 0, vma, mm, start, end); 4946 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 4947 4948 BUG_ON(address >= end); 4949 flush_cache_range(vma, range.start, range.end); 4950 4951 mmu_notifier_invalidate_range_start(&range); 4952 i_mmap_lock_write(vma->vm_file->f_mapping); 4953 for (; address < end; address += huge_page_size(h)) { 4954 spinlock_t *ptl; 4955 ptep = huge_pte_offset(mm, address, huge_page_size(h)); 4956 if (!ptep) 4957 continue; 4958 ptl = huge_pte_lock(h, mm, ptep); 4959 if (huge_pmd_unshare(mm, vma, &address, ptep)) { 4960 pages++; 4961 spin_unlock(ptl); 4962 shared_pmd = true; 4963 continue; 4964 } 4965 pte = huge_ptep_get(ptep); 4966 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) { 4967 spin_unlock(ptl); 4968 continue; 4969 } 4970 if (unlikely(is_hugetlb_entry_migration(pte))) { 4971 swp_entry_t entry = pte_to_swp_entry(pte); 4972 4973 if (is_write_migration_entry(entry)) { 4974 pte_t newpte; 4975 4976 make_migration_entry_read(&entry); 4977 newpte = swp_entry_to_pte(entry); 4978 set_huge_swap_pte_at(mm, address, ptep, 4979 newpte, huge_page_size(h)); 4980 pages++; 4981 } 4982 spin_unlock(ptl); 4983 continue; 4984 } 4985 if (!huge_pte_none(pte)) { 4986 pte_t old_pte; 4987 4988 old_pte = huge_ptep_modify_prot_start(vma, address, ptep); 4989 pte = pte_mkhuge(huge_pte_modify(old_pte, newprot)); 4990 pte = arch_make_huge_pte(pte, vma, NULL, 0); 4991 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte); 4992 pages++; 4993 } 4994 spin_unlock(ptl); 4995 } 4996 /* 4997 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare 4998 * may have cleared our pud entry and done put_page on the page table: 4999 * once we release i_mmap_rwsem, another task can do the final put_page 5000 * and that page table be reused and filled with junk. If we actually 5001 * did unshare a page of pmds, flush the range corresponding to the pud. 5002 */ 5003 if (shared_pmd) 5004 flush_hugetlb_tlb_range(vma, range.start, range.end); 5005 else 5006 flush_hugetlb_tlb_range(vma, start, end); 5007 /* 5008 * No need to call mmu_notifier_invalidate_range() we are downgrading 5009 * page table protection not changing it to point to a new page. 5010 * 5011 * See Documentation/vm/mmu_notifier.rst 5012 */ 5013 i_mmap_unlock_write(vma->vm_file->f_mapping); 5014 mmu_notifier_invalidate_range_end(&range); 5015 5016 return pages << h->order; 5017 } 5018 5019 /* Return true if reservation was successful, false otherwise. */ 5020 bool hugetlb_reserve_pages(struct inode *inode, 5021 long from, long to, 5022 struct vm_area_struct *vma, 5023 vm_flags_t vm_flags) 5024 { 5025 long chg, add = -1; 5026 struct hstate *h = hstate_inode(inode); 5027 struct hugepage_subpool *spool = subpool_inode(inode); 5028 struct resv_map *resv_map; 5029 struct hugetlb_cgroup *h_cg = NULL; 5030 long gbl_reserve, regions_needed = 0; 5031 5032 /* This should never happen */ 5033 if (from > to) { 5034 VM_WARN(1, "%s called with a negative range\n", __func__); 5035 return false; 5036 } 5037 5038 /* 5039 * Only apply hugepage reservation if asked. At fault time, an 5040 * attempt will be made for VM_NORESERVE to allocate a page 5041 * without using reserves 5042 */ 5043 if (vm_flags & VM_NORESERVE) 5044 return true; 5045 5046 /* 5047 * Shared mappings base their reservation on the number of pages that 5048 * are already allocated on behalf of the file. Private mappings need 5049 * to reserve the full area even if read-only as mprotect() may be 5050 * called to make the mapping read-write. Assume !vma is a shm mapping 5051 */ 5052 if (!vma || vma->vm_flags & VM_MAYSHARE) { 5053 /* 5054 * resv_map can not be NULL as hugetlb_reserve_pages is only 5055 * called for inodes for which resv_maps were created (see 5056 * hugetlbfs_get_inode). 5057 */ 5058 resv_map = inode_resv_map(inode); 5059 5060 chg = region_chg(resv_map, from, to, ®ions_needed); 5061 5062 } else { 5063 /* Private mapping. */ 5064 resv_map = resv_map_alloc(); 5065 if (!resv_map) 5066 return false; 5067 5068 chg = to - from; 5069 5070 set_vma_resv_map(vma, resv_map); 5071 set_vma_resv_flags(vma, HPAGE_RESV_OWNER); 5072 } 5073 5074 if (chg < 0) 5075 goto out_err; 5076 5077 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h), 5078 chg * pages_per_huge_page(h), &h_cg) < 0) 5079 goto out_err; 5080 5081 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) { 5082 /* For private mappings, the hugetlb_cgroup uncharge info hangs 5083 * of the resv_map. 5084 */ 5085 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h); 5086 } 5087 5088 /* 5089 * There must be enough pages in the subpool for the mapping. If 5090 * the subpool has a minimum size, there may be some global 5091 * reservations already in place (gbl_reserve). 5092 */ 5093 gbl_reserve = hugepage_subpool_get_pages(spool, chg); 5094 if (gbl_reserve < 0) 5095 goto out_uncharge_cgroup; 5096 5097 /* 5098 * Check enough hugepages are available for the reservation. 5099 * Hand the pages back to the subpool if there are not 5100 */ 5101 if (hugetlb_acct_memory(h, gbl_reserve) < 0) 5102 goto out_put_pages; 5103 5104 /* 5105 * Account for the reservations made. Shared mappings record regions 5106 * that have reservations as they are shared by multiple VMAs. 5107 * When the last VMA disappears, the region map says how much 5108 * the reservation was and the page cache tells how much of 5109 * the reservation was consumed. Private mappings are per-VMA and 5110 * only the consumed reservations are tracked. When the VMA 5111 * disappears, the original reservation is the VMA size and the 5112 * consumed reservations are stored in the map. Hence, nothing 5113 * else has to be done for private mappings here 5114 */ 5115 if (!vma || vma->vm_flags & VM_MAYSHARE) { 5116 add = region_add(resv_map, from, to, regions_needed, h, h_cg); 5117 5118 if (unlikely(add < 0)) { 5119 hugetlb_acct_memory(h, -gbl_reserve); 5120 goto out_put_pages; 5121 } else if (unlikely(chg > add)) { 5122 /* 5123 * pages in this range were added to the reserve 5124 * map between region_chg and region_add. This 5125 * indicates a race with alloc_huge_page. Adjust 5126 * the subpool and reserve counts modified above 5127 * based on the difference. 5128 */ 5129 long rsv_adjust; 5130 5131 hugetlb_cgroup_uncharge_cgroup_rsvd( 5132 hstate_index(h), 5133 (chg - add) * pages_per_huge_page(h), h_cg); 5134 5135 rsv_adjust = hugepage_subpool_put_pages(spool, 5136 chg - add); 5137 hugetlb_acct_memory(h, -rsv_adjust); 5138 } 5139 } 5140 return true; 5141 5142 out_put_pages: 5143 /* put back original number of pages, chg */ 5144 (void)hugepage_subpool_put_pages(spool, chg); 5145 out_uncharge_cgroup: 5146 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h), 5147 chg * pages_per_huge_page(h), h_cg); 5148 out_err: 5149 if (!vma || vma->vm_flags & VM_MAYSHARE) 5150 /* Only call region_abort if the region_chg succeeded but the 5151 * region_add failed or didn't run. 5152 */ 5153 if (chg >= 0 && add < 0) 5154 region_abort(resv_map, from, to, regions_needed); 5155 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 5156 kref_put(&resv_map->refs, resv_map_release); 5157 return false; 5158 } 5159 5160 long hugetlb_unreserve_pages(struct inode *inode, long start, long end, 5161 long freed) 5162 { 5163 struct hstate *h = hstate_inode(inode); 5164 struct resv_map *resv_map = inode_resv_map(inode); 5165 long chg = 0; 5166 struct hugepage_subpool *spool = subpool_inode(inode); 5167 long gbl_reserve; 5168 5169 /* 5170 * Since this routine can be called in the evict inode path for all 5171 * hugetlbfs inodes, resv_map could be NULL. 5172 */ 5173 if (resv_map) { 5174 chg = region_del(resv_map, start, end); 5175 /* 5176 * region_del() can fail in the rare case where a region 5177 * must be split and another region descriptor can not be 5178 * allocated. If end == LONG_MAX, it will not fail. 5179 */ 5180 if (chg < 0) 5181 return chg; 5182 } 5183 5184 spin_lock(&inode->i_lock); 5185 inode->i_blocks -= (blocks_per_huge_page(h) * freed); 5186 spin_unlock(&inode->i_lock); 5187 5188 /* 5189 * If the subpool has a minimum size, the number of global 5190 * reservations to be released may be adjusted. 5191 */ 5192 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed)); 5193 hugetlb_acct_memory(h, -gbl_reserve); 5194 5195 return 0; 5196 } 5197 5198 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE 5199 static unsigned long page_table_shareable(struct vm_area_struct *svma, 5200 struct vm_area_struct *vma, 5201 unsigned long addr, pgoff_t idx) 5202 { 5203 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) + 5204 svma->vm_start; 5205 unsigned long sbase = saddr & PUD_MASK; 5206 unsigned long s_end = sbase + PUD_SIZE; 5207 5208 /* Allow segments to share if only one is marked locked */ 5209 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK; 5210 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK; 5211 5212 /* 5213 * match the virtual addresses, permission and the alignment of the 5214 * page table page. 5215 */ 5216 if (pmd_index(addr) != pmd_index(saddr) || 5217 vm_flags != svm_flags || 5218 !range_in_vma(svma, sbase, s_end)) 5219 return 0; 5220 5221 return saddr; 5222 } 5223 5224 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr) 5225 { 5226 unsigned long base = addr & PUD_MASK; 5227 unsigned long end = base + PUD_SIZE; 5228 5229 /* 5230 * check on proper vm_flags and page table alignment 5231 */ 5232 if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end)) 5233 return true; 5234 return false; 5235 } 5236 5237 /* 5238 * Determine if start,end range within vma could be mapped by shared pmd. 5239 * If yes, adjust start and end to cover range associated with possible 5240 * shared pmd mappings. 5241 */ 5242 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 5243 unsigned long *start, unsigned long *end) 5244 { 5245 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE), 5246 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE); 5247 5248 /* 5249 * vma need span at least one aligned PUD size and the start,end range 5250 * must at least partialy within it. 5251 */ 5252 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) || 5253 (*end <= v_start) || (*start >= v_end)) 5254 return; 5255 5256 /* Extend the range to be PUD aligned for a worst case scenario */ 5257 if (*start > v_start) 5258 *start = ALIGN_DOWN(*start, PUD_SIZE); 5259 5260 if (*end < v_end) 5261 *end = ALIGN(*end, PUD_SIZE); 5262 } 5263 5264 /* 5265 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc() 5266 * and returns the corresponding pte. While this is not necessary for the 5267 * !shared pmd case because we can allocate the pmd later as well, it makes the 5268 * code much cleaner. 5269 * 5270 * This routine must be called with i_mmap_rwsem held in at least read mode if 5271 * sharing is possible. For hugetlbfs, this prevents removal of any page 5272 * table entries associated with the address space. This is important as we 5273 * are setting up sharing based on existing page table entries (mappings). 5274 * 5275 * NOTE: This routine is only called from huge_pte_alloc. Some callers of 5276 * huge_pte_alloc know that sharing is not possible and do not take 5277 * i_mmap_rwsem as a performance optimization. This is handled by the 5278 * if !vma_shareable check at the beginning of the routine. i_mmap_rwsem is 5279 * only required for subsequent processing. 5280 */ 5281 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud) 5282 { 5283 struct vm_area_struct *vma = find_vma(mm, addr); 5284 struct address_space *mapping = vma->vm_file->f_mapping; 5285 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + 5286 vma->vm_pgoff; 5287 struct vm_area_struct *svma; 5288 unsigned long saddr; 5289 pte_t *spte = NULL; 5290 pte_t *pte; 5291 spinlock_t *ptl; 5292 5293 if (!vma_shareable(vma, addr)) 5294 return (pte_t *)pmd_alloc(mm, pud, addr); 5295 5296 i_mmap_assert_locked(mapping); 5297 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) { 5298 if (svma == vma) 5299 continue; 5300 5301 saddr = page_table_shareable(svma, vma, addr, idx); 5302 if (saddr) { 5303 spte = huge_pte_offset(svma->vm_mm, saddr, 5304 vma_mmu_pagesize(svma)); 5305 if (spte) { 5306 get_page(virt_to_page(spte)); 5307 break; 5308 } 5309 } 5310 } 5311 5312 if (!spte) 5313 goto out; 5314 5315 ptl = huge_pte_lock(hstate_vma(vma), mm, spte); 5316 if (pud_none(*pud)) { 5317 pud_populate(mm, pud, 5318 (pmd_t *)((unsigned long)spte & PAGE_MASK)); 5319 mm_inc_nr_pmds(mm); 5320 } else { 5321 put_page(virt_to_page(spte)); 5322 } 5323 spin_unlock(ptl); 5324 out: 5325 pte = (pte_t *)pmd_alloc(mm, pud, addr); 5326 return pte; 5327 } 5328 5329 /* 5330 * unmap huge page backed by shared pte. 5331 * 5332 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared 5333 * indicated by page_count > 1, unmap is achieved by clearing pud and 5334 * decrementing the ref count. If count == 1, the pte page is not shared. 5335 * 5336 * Called with page table lock held and i_mmap_rwsem held in write mode. 5337 * 5338 * returns: 1 successfully unmapped a shared pte page 5339 * 0 the underlying pte page is not shared, or it is the last user 5340 */ 5341 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, 5342 unsigned long *addr, pte_t *ptep) 5343 { 5344 pgd_t *pgd = pgd_offset(mm, *addr); 5345 p4d_t *p4d = p4d_offset(pgd, *addr); 5346 pud_t *pud = pud_offset(p4d, *addr); 5347 5348 i_mmap_assert_write_locked(vma->vm_file->f_mapping); 5349 BUG_ON(page_count(virt_to_page(ptep)) == 0); 5350 if (page_count(virt_to_page(ptep)) == 1) 5351 return 0; 5352 5353 pud_clear(pud); 5354 put_page(virt_to_page(ptep)); 5355 mm_dec_nr_pmds(mm); 5356 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE; 5357 return 1; 5358 } 5359 #define want_pmd_share() (1) 5360 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 5361 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud) 5362 { 5363 return NULL; 5364 } 5365 5366 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, 5367 unsigned long *addr, pte_t *ptep) 5368 { 5369 return 0; 5370 } 5371 5372 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 5373 unsigned long *start, unsigned long *end) 5374 { 5375 } 5376 #define want_pmd_share() (0) 5377 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 5378 5379 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB 5380 pte_t *huge_pte_alloc(struct mm_struct *mm, 5381 unsigned long addr, unsigned long sz) 5382 { 5383 pgd_t *pgd; 5384 p4d_t *p4d; 5385 pud_t *pud; 5386 pte_t *pte = NULL; 5387 5388 pgd = pgd_offset(mm, addr); 5389 p4d = p4d_alloc(mm, pgd, addr); 5390 if (!p4d) 5391 return NULL; 5392 pud = pud_alloc(mm, p4d, addr); 5393 if (pud) { 5394 if (sz == PUD_SIZE) { 5395 pte = (pte_t *)pud; 5396 } else { 5397 BUG_ON(sz != PMD_SIZE); 5398 if (want_pmd_share() && pud_none(*pud)) 5399 pte = huge_pmd_share(mm, addr, pud); 5400 else 5401 pte = (pte_t *)pmd_alloc(mm, pud, addr); 5402 } 5403 } 5404 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte)); 5405 5406 return pte; 5407 } 5408 5409 /* 5410 * huge_pte_offset() - Walk the page table to resolve the hugepage 5411 * entry at address @addr 5412 * 5413 * Return: Pointer to page table entry (PUD or PMD) for 5414 * address @addr, or NULL if a !p*d_present() entry is encountered and the 5415 * size @sz doesn't match the hugepage size at this level of the page 5416 * table. 5417 */ 5418 pte_t *huge_pte_offset(struct mm_struct *mm, 5419 unsigned long addr, unsigned long sz) 5420 { 5421 pgd_t *pgd; 5422 p4d_t *p4d; 5423 pud_t *pud; 5424 pmd_t *pmd; 5425 5426 pgd = pgd_offset(mm, addr); 5427 if (!pgd_present(*pgd)) 5428 return NULL; 5429 p4d = p4d_offset(pgd, addr); 5430 if (!p4d_present(*p4d)) 5431 return NULL; 5432 5433 pud = pud_offset(p4d, addr); 5434 if (sz == PUD_SIZE) 5435 /* must be pud huge, non-present or none */ 5436 return (pte_t *)pud; 5437 if (!pud_present(*pud)) 5438 return NULL; 5439 /* must have a valid entry and size to go further */ 5440 5441 pmd = pmd_offset(pud, addr); 5442 /* must be pmd huge, non-present or none */ 5443 return (pte_t *)pmd; 5444 } 5445 5446 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */ 5447 5448 /* 5449 * These functions are overwritable if your architecture needs its own 5450 * behavior. 5451 */ 5452 struct page * __weak 5453 follow_huge_addr(struct mm_struct *mm, unsigned long address, 5454 int write) 5455 { 5456 return ERR_PTR(-EINVAL); 5457 } 5458 5459 struct page * __weak 5460 follow_huge_pd(struct vm_area_struct *vma, 5461 unsigned long address, hugepd_t hpd, int flags, int pdshift) 5462 { 5463 WARN(1, "hugepd follow called with no support for hugepage directory format\n"); 5464 return NULL; 5465 } 5466 5467 struct page * __weak 5468 follow_huge_pmd(struct mm_struct *mm, unsigned long address, 5469 pmd_t *pmd, int flags) 5470 { 5471 struct page *page = NULL; 5472 spinlock_t *ptl; 5473 pte_t pte; 5474 5475 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 5476 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) == 5477 (FOLL_PIN | FOLL_GET))) 5478 return NULL; 5479 5480 retry: 5481 ptl = pmd_lockptr(mm, pmd); 5482 spin_lock(ptl); 5483 /* 5484 * make sure that the address range covered by this pmd is not 5485 * unmapped from other threads. 5486 */ 5487 if (!pmd_huge(*pmd)) 5488 goto out; 5489 pte = huge_ptep_get((pte_t *)pmd); 5490 if (pte_present(pte)) { 5491 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT); 5492 /* 5493 * try_grab_page() should always succeed here, because: a) we 5494 * hold the pmd (ptl) lock, and b) we've just checked that the 5495 * huge pmd (head) page is present in the page tables. The ptl 5496 * prevents the head page and tail pages from being rearranged 5497 * in any way. So this page must be available at this point, 5498 * unless the page refcount overflowed: 5499 */ 5500 if (WARN_ON_ONCE(!try_grab_page(page, flags))) { 5501 page = NULL; 5502 goto out; 5503 } 5504 } else { 5505 if (is_hugetlb_entry_migration(pte)) { 5506 spin_unlock(ptl); 5507 __migration_entry_wait(mm, (pte_t *)pmd, ptl); 5508 goto retry; 5509 } 5510 /* 5511 * hwpoisoned entry is treated as no_page_table in 5512 * follow_page_mask(). 5513 */ 5514 } 5515 out: 5516 spin_unlock(ptl); 5517 return page; 5518 } 5519 5520 struct page * __weak 5521 follow_huge_pud(struct mm_struct *mm, unsigned long address, 5522 pud_t *pud, int flags) 5523 { 5524 if (flags & (FOLL_GET | FOLL_PIN)) 5525 return NULL; 5526 5527 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT); 5528 } 5529 5530 struct page * __weak 5531 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags) 5532 { 5533 if (flags & (FOLL_GET | FOLL_PIN)) 5534 return NULL; 5535 5536 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT); 5537 } 5538 5539 bool isolate_huge_page(struct page *page, struct list_head *list) 5540 { 5541 bool ret = true; 5542 5543 spin_lock(&hugetlb_lock); 5544 if (!PageHeadHuge(page) || 5545 !HPageMigratable(page) || 5546 !get_page_unless_zero(page)) { 5547 ret = false; 5548 goto unlock; 5549 } 5550 ClearHPageMigratable(page); 5551 list_move_tail(&page->lru, list); 5552 unlock: 5553 spin_unlock(&hugetlb_lock); 5554 return ret; 5555 } 5556 5557 void putback_active_hugepage(struct page *page) 5558 { 5559 spin_lock(&hugetlb_lock); 5560 SetHPageMigratable(page); 5561 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist); 5562 spin_unlock(&hugetlb_lock); 5563 put_page(page); 5564 } 5565 5566 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason) 5567 { 5568 struct hstate *h = page_hstate(oldpage); 5569 5570 hugetlb_cgroup_migrate(oldpage, newpage); 5571 set_page_owner_migrate_reason(newpage, reason); 5572 5573 /* 5574 * transfer temporary state of the new huge page. This is 5575 * reverse to other transitions because the newpage is going to 5576 * be final while the old one will be freed so it takes over 5577 * the temporary status. 5578 * 5579 * Also note that we have to transfer the per-node surplus state 5580 * here as well otherwise the global surplus count will not match 5581 * the per-node's. 5582 */ 5583 if (HPageTemporary(newpage)) { 5584 int old_nid = page_to_nid(oldpage); 5585 int new_nid = page_to_nid(newpage); 5586 5587 SetHPageTemporary(oldpage); 5588 ClearHPageTemporary(newpage); 5589 5590 spin_lock(&hugetlb_lock); 5591 if (h->surplus_huge_pages_node[old_nid]) { 5592 h->surplus_huge_pages_node[old_nid]--; 5593 h->surplus_huge_pages_node[new_nid]++; 5594 } 5595 spin_unlock(&hugetlb_lock); 5596 } 5597 } 5598 5599 #ifdef CONFIG_CMA 5600 static bool cma_reserve_called __initdata; 5601 5602 static int __init cmdline_parse_hugetlb_cma(char *p) 5603 { 5604 hugetlb_cma_size = memparse(p, &p); 5605 return 0; 5606 } 5607 5608 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma); 5609 5610 void __init hugetlb_cma_reserve(int order) 5611 { 5612 unsigned long size, reserved, per_node; 5613 int nid; 5614 5615 cma_reserve_called = true; 5616 5617 if (!hugetlb_cma_size) 5618 return; 5619 5620 if (hugetlb_cma_size < (PAGE_SIZE << order)) { 5621 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n", 5622 (PAGE_SIZE << order) / SZ_1M); 5623 return; 5624 } 5625 5626 /* 5627 * If 3 GB area is requested on a machine with 4 numa nodes, 5628 * let's allocate 1 GB on first three nodes and ignore the last one. 5629 */ 5630 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes); 5631 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n", 5632 hugetlb_cma_size / SZ_1M, per_node / SZ_1M); 5633 5634 reserved = 0; 5635 for_each_node_state(nid, N_ONLINE) { 5636 int res; 5637 char name[CMA_MAX_NAME]; 5638 5639 size = min(per_node, hugetlb_cma_size - reserved); 5640 size = round_up(size, PAGE_SIZE << order); 5641 5642 snprintf(name, sizeof(name), "hugetlb%d", nid); 5643 res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order, 5644 0, false, name, 5645 &hugetlb_cma[nid], nid); 5646 if (res) { 5647 pr_warn("hugetlb_cma: reservation failed: err %d, node %d", 5648 res, nid); 5649 continue; 5650 } 5651 5652 reserved += size; 5653 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n", 5654 size / SZ_1M, nid); 5655 5656 if (reserved >= hugetlb_cma_size) 5657 break; 5658 } 5659 } 5660 5661 void __init hugetlb_cma_check(void) 5662 { 5663 if (!hugetlb_cma_size || cma_reserve_called) 5664 return; 5665 5666 pr_warn("hugetlb_cma: the option isn't supported by current arch\n"); 5667 } 5668 5669 #endif /* CONFIG_CMA */ 5670