1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic hugetlb support. 4 * (C) Nadia Yvette Chambers, April 2004 5 */ 6 #include <linux/list.h> 7 #include <linux/init.h> 8 #include <linux/mm.h> 9 #include <linux/seq_file.h> 10 #include <linux/sysctl.h> 11 #include <linux/highmem.h> 12 #include <linux/mmu_notifier.h> 13 #include <linux/nodemask.h> 14 #include <linux/pagemap.h> 15 #include <linux/mempolicy.h> 16 #include <linux/compiler.h> 17 #include <linux/cpumask.h> 18 #include <linux/cpuset.h> 19 #include <linux/mutex.h> 20 #include <linux/memblock.h> 21 #include <linux/minmax.h> 22 #include <linux/sysfs.h> 23 #include <linux/slab.h> 24 #include <linux/sched/mm.h> 25 #include <linux/mmdebug.h> 26 #include <linux/sched/signal.h> 27 #include <linux/rmap.h> 28 #include <linux/string_choices.h> 29 #include <linux/string_helpers.h> 30 #include <linux/swap.h> 31 #include <linux/swapops.h> 32 #include <linux/jhash.h> 33 #include <linux/numa.h> 34 #include <linux/llist.h> 35 #include <linux/cma.h> 36 #include <linux/migrate.h> 37 #include <linux/nospec.h> 38 #include <linux/delayacct.h> 39 #include <linux/memory.h> 40 #include <linux/mm_inline.h> 41 #include <linux/padata.h> 42 43 #include <asm/page.h> 44 #include <asm/pgalloc.h> 45 #include <asm/tlb.h> 46 #include <asm/setup.h> 47 48 #include <linux/io.h> 49 #include <linux/hugetlb.h> 50 #include <linux/hugetlb_cgroup.h> 51 #include <linux/node.h> 52 #include <linux/page_owner.h> 53 #include "internal.h" 54 #include "hugetlb_vmemmap.h" 55 #include "hugetlb_cma.h" 56 #include <linux/page-isolation.h> 57 58 int hugetlb_max_hstate __read_mostly; 59 unsigned int default_hstate_idx; 60 struct hstate hstates[HUGE_MAX_HSTATE]; 61 62 __initdata nodemask_t hugetlb_bootmem_nodes; 63 __initdata struct list_head huge_boot_pages[MAX_NUMNODES]; 64 static unsigned long hstate_boot_nrinvalid[HUGE_MAX_HSTATE] __initdata; 65 66 /* 67 * Due to ordering constraints across the init code for various 68 * architectures, hugetlb hstate cmdline parameters can't simply 69 * be early_param. early_param might call the setup function 70 * before valid hugetlb page sizes are determined, leading to 71 * incorrect rejection of valid hugepagesz= options. 72 * 73 * So, record the parameters early and consume them whenever the 74 * init code is ready for them, by calling hugetlb_parse_params(). 75 */ 76 77 /* one (hugepagesz=,hugepages=) pair per hstate, one default_hugepagesz */ 78 #define HUGE_MAX_CMDLINE_ARGS (2 * HUGE_MAX_HSTATE + 1) 79 struct hugetlb_cmdline { 80 char *val; 81 int (*setup)(char *val); 82 }; 83 84 /* for command line parsing */ 85 static struct hstate * __initdata parsed_hstate; 86 static unsigned long __initdata default_hstate_max_huge_pages; 87 static bool __initdata parsed_valid_hugepagesz = true; 88 static bool __initdata parsed_default_hugepagesz; 89 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata; 90 static unsigned long hugepage_allocation_threads __initdata; 91 92 static char hstate_cmdline_buf[COMMAND_LINE_SIZE] __initdata; 93 static int hstate_cmdline_index __initdata; 94 static struct hugetlb_cmdline hugetlb_params[HUGE_MAX_CMDLINE_ARGS] __initdata; 95 static int hugetlb_param_index __initdata; 96 static __init int hugetlb_add_param(char *s, int (*setup)(char *val)); 97 static __init void hugetlb_parse_params(void); 98 99 #define hugetlb_early_param(str, func) \ 100 static __init int func##args(char *s) \ 101 { \ 102 return hugetlb_add_param(s, func); \ 103 } \ 104 early_param(str, func##args) 105 106 /* 107 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages, 108 * free_huge_pages, and surplus_huge_pages. 109 */ 110 __cacheline_aligned_in_smp DEFINE_SPINLOCK(hugetlb_lock); 111 112 /* 113 * Serializes faults on the same logical page. This is used to 114 * prevent spurious OOMs when the hugepage pool is fully utilized. 115 */ 116 static int num_fault_mutexes __ro_after_init; 117 struct mutex *hugetlb_fault_mutex_table __ro_after_init; 118 119 /* Forward declaration */ 120 static int hugetlb_acct_memory(struct hstate *h, long delta); 121 static void hugetlb_vma_lock_free(struct vm_area_struct *vma); 122 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma); 123 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma); 124 static void hugetlb_unshare_pmds(struct vm_area_struct *vma, 125 unsigned long start, unsigned long end, bool take_locks); 126 static struct resv_map *vma_resv_map(struct vm_area_struct *vma); 127 128 static void hugetlb_free_folio(struct folio *folio) 129 { 130 if (folio_test_hugetlb_cma(folio)) { 131 hugetlb_cma_free_folio(folio); 132 return; 133 } 134 135 folio_put(folio); 136 } 137 138 static inline bool subpool_is_free(struct hugepage_subpool *spool) 139 { 140 if (spool->count) 141 return false; 142 if (spool->max_hpages != -1) 143 return spool->used_hpages == 0; 144 if (spool->min_hpages != -1) 145 return spool->rsv_hpages == spool->min_hpages; 146 147 return true; 148 } 149 150 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool, 151 unsigned long irq_flags) 152 { 153 spin_unlock_irqrestore(&spool->lock, irq_flags); 154 155 /* If no pages are used, and no other handles to the subpool 156 * remain, give up any reservations based on minimum size and 157 * free the subpool */ 158 if (subpool_is_free(spool)) { 159 if (spool->min_hpages != -1) 160 hugetlb_acct_memory(spool->hstate, 161 -spool->min_hpages); 162 kfree(spool); 163 } 164 } 165 166 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages, 167 long min_hpages) 168 { 169 struct hugepage_subpool *spool; 170 171 spool = kzalloc(sizeof(*spool), GFP_KERNEL); 172 if (!spool) 173 return NULL; 174 175 spin_lock_init(&spool->lock); 176 spool->count = 1; 177 spool->max_hpages = max_hpages; 178 spool->hstate = h; 179 spool->min_hpages = min_hpages; 180 181 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) { 182 kfree(spool); 183 return NULL; 184 } 185 spool->rsv_hpages = min_hpages; 186 187 return spool; 188 } 189 190 void hugepage_put_subpool(struct hugepage_subpool *spool) 191 { 192 unsigned long flags; 193 194 spin_lock_irqsave(&spool->lock, flags); 195 BUG_ON(!spool->count); 196 spool->count--; 197 unlock_or_release_subpool(spool, flags); 198 } 199 200 /* 201 * Subpool accounting for allocating and reserving pages. 202 * Return -ENOMEM if there are not enough resources to satisfy the 203 * request. Otherwise, return the number of pages by which the 204 * global pools must be adjusted (upward). The returned value may 205 * only be different than the passed value (delta) in the case where 206 * a subpool minimum size must be maintained. 207 */ 208 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool, 209 long delta) 210 { 211 long ret = delta; 212 213 if (!spool) 214 return ret; 215 216 spin_lock_irq(&spool->lock); 217 218 if (spool->max_hpages != -1) { /* maximum size accounting */ 219 if ((spool->used_hpages + delta) <= spool->max_hpages) 220 spool->used_hpages += delta; 221 else { 222 ret = -ENOMEM; 223 goto unlock_ret; 224 } 225 } 226 227 /* minimum size accounting */ 228 if (spool->min_hpages != -1 && spool->rsv_hpages) { 229 if (delta > spool->rsv_hpages) { 230 /* 231 * Asking for more reserves than those already taken on 232 * behalf of subpool. Return difference. 233 */ 234 ret = delta - spool->rsv_hpages; 235 spool->rsv_hpages = 0; 236 } else { 237 ret = 0; /* reserves already accounted for */ 238 spool->rsv_hpages -= delta; 239 } 240 } 241 242 unlock_ret: 243 spin_unlock_irq(&spool->lock); 244 return ret; 245 } 246 247 /* 248 * Subpool accounting for freeing and unreserving pages. 249 * Return the number of global page reservations that must be dropped. 250 * The return value may only be different than the passed value (delta) 251 * in the case where a subpool minimum size must be maintained. 252 */ 253 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool, 254 long delta) 255 { 256 long ret = delta; 257 unsigned long flags; 258 259 if (!spool) 260 return delta; 261 262 spin_lock_irqsave(&spool->lock, flags); 263 264 if (spool->max_hpages != -1) /* maximum size accounting */ 265 spool->used_hpages -= delta; 266 267 /* minimum size accounting */ 268 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) { 269 if (spool->rsv_hpages + delta <= spool->min_hpages) 270 ret = 0; 271 else 272 ret = spool->rsv_hpages + delta - spool->min_hpages; 273 274 spool->rsv_hpages += delta; 275 if (spool->rsv_hpages > spool->min_hpages) 276 spool->rsv_hpages = spool->min_hpages; 277 } 278 279 /* 280 * If hugetlbfs_put_super couldn't free spool due to an outstanding 281 * quota reference, free it now. 282 */ 283 unlock_or_release_subpool(spool, flags); 284 285 return ret; 286 } 287 288 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma) 289 { 290 return subpool_inode(file_inode(vma->vm_file)); 291 } 292 293 /* 294 * hugetlb vma_lock helper routines 295 */ 296 void hugetlb_vma_lock_read(struct vm_area_struct *vma) 297 { 298 if (__vma_shareable_lock(vma)) { 299 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 300 301 down_read(&vma_lock->rw_sema); 302 } else if (__vma_private_lock(vma)) { 303 struct resv_map *resv_map = vma_resv_map(vma); 304 305 down_read(&resv_map->rw_sema); 306 } 307 } 308 309 void hugetlb_vma_unlock_read(struct vm_area_struct *vma) 310 { 311 if (__vma_shareable_lock(vma)) { 312 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 313 314 up_read(&vma_lock->rw_sema); 315 } else if (__vma_private_lock(vma)) { 316 struct resv_map *resv_map = vma_resv_map(vma); 317 318 up_read(&resv_map->rw_sema); 319 } 320 } 321 322 void hugetlb_vma_lock_write(struct vm_area_struct *vma) 323 { 324 if (__vma_shareable_lock(vma)) { 325 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 326 327 down_write(&vma_lock->rw_sema); 328 } else if (__vma_private_lock(vma)) { 329 struct resv_map *resv_map = vma_resv_map(vma); 330 331 down_write(&resv_map->rw_sema); 332 } 333 } 334 335 void hugetlb_vma_unlock_write(struct vm_area_struct *vma) 336 { 337 if (__vma_shareable_lock(vma)) { 338 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 339 340 up_write(&vma_lock->rw_sema); 341 } else if (__vma_private_lock(vma)) { 342 struct resv_map *resv_map = vma_resv_map(vma); 343 344 up_write(&resv_map->rw_sema); 345 } 346 } 347 348 int hugetlb_vma_trylock_write(struct vm_area_struct *vma) 349 { 350 351 if (__vma_shareable_lock(vma)) { 352 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 353 354 return down_write_trylock(&vma_lock->rw_sema); 355 } else if (__vma_private_lock(vma)) { 356 struct resv_map *resv_map = vma_resv_map(vma); 357 358 return down_write_trylock(&resv_map->rw_sema); 359 } 360 361 return 1; 362 } 363 364 void hugetlb_vma_assert_locked(struct vm_area_struct *vma) 365 { 366 if (__vma_shareable_lock(vma)) { 367 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 368 369 lockdep_assert_held(&vma_lock->rw_sema); 370 } else if (__vma_private_lock(vma)) { 371 struct resv_map *resv_map = vma_resv_map(vma); 372 373 lockdep_assert_held(&resv_map->rw_sema); 374 } 375 } 376 377 void hugetlb_vma_lock_release(struct kref *kref) 378 { 379 struct hugetlb_vma_lock *vma_lock = container_of(kref, 380 struct hugetlb_vma_lock, refs); 381 382 kfree(vma_lock); 383 } 384 385 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock) 386 { 387 struct vm_area_struct *vma = vma_lock->vma; 388 389 /* 390 * vma_lock structure may or not be released as a result of put, 391 * it certainly will no longer be attached to vma so clear pointer. 392 * Semaphore synchronizes access to vma_lock->vma field. 393 */ 394 vma_lock->vma = NULL; 395 vma->vm_private_data = NULL; 396 up_write(&vma_lock->rw_sema); 397 kref_put(&vma_lock->refs, hugetlb_vma_lock_release); 398 } 399 400 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma) 401 { 402 if (__vma_shareable_lock(vma)) { 403 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 404 405 __hugetlb_vma_unlock_write_put(vma_lock); 406 } else if (__vma_private_lock(vma)) { 407 struct resv_map *resv_map = vma_resv_map(vma); 408 409 /* no free for anon vmas, but still need to unlock */ 410 up_write(&resv_map->rw_sema); 411 } 412 } 413 414 static void hugetlb_vma_lock_free(struct vm_area_struct *vma) 415 { 416 /* 417 * Only present in sharable vmas. 418 */ 419 if (!vma || !__vma_shareable_lock(vma)) 420 return; 421 422 if (vma->vm_private_data) { 423 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 424 425 down_write(&vma_lock->rw_sema); 426 __hugetlb_vma_unlock_write_put(vma_lock); 427 } 428 } 429 430 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma) 431 { 432 struct hugetlb_vma_lock *vma_lock; 433 434 /* Only establish in (flags) sharable vmas */ 435 if (!vma || !(vma->vm_flags & VM_MAYSHARE)) 436 return; 437 438 /* Should never get here with non-NULL vm_private_data */ 439 if (vma->vm_private_data) 440 return; 441 442 vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL); 443 if (!vma_lock) { 444 /* 445 * If we can not allocate structure, then vma can not 446 * participate in pmd sharing. This is only a possible 447 * performance enhancement and memory saving issue. 448 * However, the lock is also used to synchronize page 449 * faults with truncation. If the lock is not present, 450 * unlikely races could leave pages in a file past i_size 451 * until the file is removed. Warn in the unlikely case of 452 * allocation failure. 453 */ 454 pr_warn_once("HugeTLB: unable to allocate vma specific lock\n"); 455 return; 456 } 457 458 kref_init(&vma_lock->refs); 459 init_rwsem(&vma_lock->rw_sema); 460 vma_lock->vma = vma; 461 vma->vm_private_data = vma_lock; 462 } 463 464 /* Helper that removes a struct file_region from the resv_map cache and returns 465 * it for use. 466 */ 467 static struct file_region * 468 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to) 469 { 470 struct file_region *nrg; 471 472 VM_BUG_ON(resv->region_cache_count <= 0); 473 474 resv->region_cache_count--; 475 nrg = list_first_entry(&resv->region_cache, struct file_region, link); 476 list_del(&nrg->link); 477 478 nrg->from = from; 479 nrg->to = to; 480 481 return nrg; 482 } 483 484 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg, 485 struct file_region *rg) 486 { 487 #ifdef CONFIG_CGROUP_HUGETLB 488 nrg->reservation_counter = rg->reservation_counter; 489 nrg->css = rg->css; 490 if (rg->css) 491 css_get(rg->css); 492 #endif 493 } 494 495 /* Helper that records hugetlb_cgroup uncharge info. */ 496 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg, 497 struct hstate *h, 498 struct resv_map *resv, 499 struct file_region *nrg) 500 { 501 #ifdef CONFIG_CGROUP_HUGETLB 502 if (h_cg) { 503 nrg->reservation_counter = 504 &h_cg->rsvd_hugepage[hstate_index(h)]; 505 nrg->css = &h_cg->css; 506 /* 507 * The caller will hold exactly one h_cg->css reference for the 508 * whole contiguous reservation region. But this area might be 509 * scattered when there are already some file_regions reside in 510 * it. As a result, many file_regions may share only one css 511 * reference. In order to ensure that one file_region must hold 512 * exactly one h_cg->css reference, we should do css_get for 513 * each file_region and leave the reference held by caller 514 * untouched. 515 */ 516 css_get(&h_cg->css); 517 if (!resv->pages_per_hpage) 518 resv->pages_per_hpage = pages_per_huge_page(h); 519 /* pages_per_hpage should be the same for all entries in 520 * a resv_map. 521 */ 522 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h)); 523 } else { 524 nrg->reservation_counter = NULL; 525 nrg->css = NULL; 526 } 527 #endif 528 } 529 530 static void put_uncharge_info(struct file_region *rg) 531 { 532 #ifdef CONFIG_CGROUP_HUGETLB 533 if (rg->css) 534 css_put(rg->css); 535 #endif 536 } 537 538 static bool has_same_uncharge_info(struct file_region *rg, 539 struct file_region *org) 540 { 541 #ifdef CONFIG_CGROUP_HUGETLB 542 return rg->reservation_counter == org->reservation_counter && 543 rg->css == org->css; 544 545 #else 546 return true; 547 #endif 548 } 549 550 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg) 551 { 552 struct file_region *nrg, *prg; 553 554 prg = list_prev_entry(rg, link); 555 if (&prg->link != &resv->regions && prg->to == rg->from && 556 has_same_uncharge_info(prg, rg)) { 557 prg->to = rg->to; 558 559 list_del(&rg->link); 560 put_uncharge_info(rg); 561 kfree(rg); 562 563 rg = prg; 564 } 565 566 nrg = list_next_entry(rg, link); 567 if (&nrg->link != &resv->regions && nrg->from == rg->to && 568 has_same_uncharge_info(nrg, rg)) { 569 nrg->from = rg->from; 570 571 list_del(&rg->link); 572 put_uncharge_info(rg); 573 kfree(rg); 574 } 575 } 576 577 static inline long 578 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from, 579 long to, struct hstate *h, struct hugetlb_cgroup *cg, 580 long *regions_needed) 581 { 582 struct file_region *nrg; 583 584 if (!regions_needed) { 585 nrg = get_file_region_entry_from_cache(map, from, to); 586 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg); 587 list_add(&nrg->link, rg); 588 coalesce_file_region(map, nrg); 589 } else 590 *regions_needed += 1; 591 592 return to - from; 593 } 594 595 /* 596 * Must be called with resv->lock held. 597 * 598 * Calling this with regions_needed != NULL will count the number of pages 599 * to be added but will not modify the linked list. And regions_needed will 600 * indicate the number of file_regions needed in the cache to carry out to add 601 * the regions for this range. 602 */ 603 static long add_reservation_in_range(struct resv_map *resv, long f, long t, 604 struct hugetlb_cgroup *h_cg, 605 struct hstate *h, long *regions_needed) 606 { 607 long add = 0; 608 struct list_head *head = &resv->regions; 609 long last_accounted_offset = f; 610 struct file_region *iter, *trg = NULL; 611 struct list_head *rg = NULL; 612 613 if (regions_needed) 614 *regions_needed = 0; 615 616 /* In this loop, we essentially handle an entry for the range 617 * [last_accounted_offset, iter->from), at every iteration, with some 618 * bounds checking. 619 */ 620 list_for_each_entry_safe(iter, trg, head, link) { 621 /* Skip irrelevant regions that start before our range. */ 622 if (iter->from < f) { 623 /* If this region ends after the last accounted offset, 624 * then we need to update last_accounted_offset. 625 */ 626 if (iter->to > last_accounted_offset) 627 last_accounted_offset = iter->to; 628 continue; 629 } 630 631 /* When we find a region that starts beyond our range, we've 632 * finished. 633 */ 634 if (iter->from >= t) { 635 rg = iter->link.prev; 636 break; 637 } 638 639 /* Add an entry for last_accounted_offset -> iter->from, and 640 * update last_accounted_offset. 641 */ 642 if (iter->from > last_accounted_offset) 643 add += hugetlb_resv_map_add(resv, iter->link.prev, 644 last_accounted_offset, 645 iter->from, h, h_cg, 646 regions_needed); 647 648 last_accounted_offset = iter->to; 649 } 650 651 /* Handle the case where our range extends beyond 652 * last_accounted_offset. 653 */ 654 if (!rg) 655 rg = head->prev; 656 if (last_accounted_offset < t) 657 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset, 658 t, h, h_cg, regions_needed); 659 660 return add; 661 } 662 663 /* Must be called with resv->lock acquired. Will drop lock to allocate entries. 664 */ 665 static int allocate_file_region_entries(struct resv_map *resv, 666 int regions_needed) 667 __must_hold(&resv->lock) 668 { 669 LIST_HEAD(allocated_regions); 670 int to_allocate = 0, i = 0; 671 struct file_region *trg = NULL, *rg = NULL; 672 673 VM_BUG_ON(regions_needed < 0); 674 675 /* 676 * Check for sufficient descriptors in the cache to accommodate 677 * the number of in progress add operations plus regions_needed. 678 * 679 * This is a while loop because when we drop the lock, some other call 680 * to region_add or region_del may have consumed some region_entries, 681 * so we keep looping here until we finally have enough entries for 682 * (adds_in_progress + regions_needed). 683 */ 684 while (resv->region_cache_count < 685 (resv->adds_in_progress + regions_needed)) { 686 to_allocate = resv->adds_in_progress + regions_needed - 687 resv->region_cache_count; 688 689 /* At this point, we should have enough entries in the cache 690 * for all the existing adds_in_progress. We should only be 691 * needing to allocate for regions_needed. 692 */ 693 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress); 694 695 spin_unlock(&resv->lock); 696 for (i = 0; i < to_allocate; i++) { 697 trg = kmalloc(sizeof(*trg), GFP_KERNEL); 698 if (!trg) 699 goto out_of_memory; 700 list_add(&trg->link, &allocated_regions); 701 } 702 703 spin_lock(&resv->lock); 704 705 list_splice(&allocated_regions, &resv->region_cache); 706 resv->region_cache_count += to_allocate; 707 } 708 709 return 0; 710 711 out_of_memory: 712 list_for_each_entry_safe(rg, trg, &allocated_regions, link) { 713 list_del(&rg->link); 714 kfree(rg); 715 } 716 return -ENOMEM; 717 } 718 719 /* 720 * Add the huge page range represented by [f, t) to the reserve 721 * map. Regions will be taken from the cache to fill in this range. 722 * Sufficient regions should exist in the cache due to the previous 723 * call to region_chg with the same range, but in some cases the cache will not 724 * have sufficient entries due to races with other code doing region_add or 725 * region_del. The extra needed entries will be allocated. 726 * 727 * regions_needed is the out value provided by a previous call to region_chg. 728 * 729 * Return the number of new huge pages added to the map. This number is greater 730 * than or equal to zero. If file_region entries needed to be allocated for 731 * this operation and we were not able to allocate, it returns -ENOMEM. 732 * region_add of regions of length 1 never allocate file_regions and cannot 733 * fail; region_chg will always allocate at least 1 entry and a region_add for 734 * 1 page will only require at most 1 entry. 735 */ 736 static long region_add(struct resv_map *resv, long f, long t, 737 long in_regions_needed, struct hstate *h, 738 struct hugetlb_cgroup *h_cg) 739 { 740 long add = 0, actual_regions_needed = 0; 741 742 spin_lock(&resv->lock); 743 retry: 744 745 /* Count how many regions are actually needed to execute this add. */ 746 add_reservation_in_range(resv, f, t, NULL, NULL, 747 &actual_regions_needed); 748 749 /* 750 * Check for sufficient descriptors in the cache to accommodate 751 * this add operation. Note that actual_regions_needed may be greater 752 * than in_regions_needed, as the resv_map may have been modified since 753 * the region_chg call. In this case, we need to make sure that we 754 * allocate extra entries, such that we have enough for all the 755 * existing adds_in_progress, plus the excess needed for this 756 * operation. 757 */ 758 if (actual_regions_needed > in_regions_needed && 759 resv->region_cache_count < 760 resv->adds_in_progress + 761 (actual_regions_needed - in_regions_needed)) { 762 /* region_add operation of range 1 should never need to 763 * allocate file_region entries. 764 */ 765 VM_BUG_ON(t - f <= 1); 766 767 if (allocate_file_region_entries( 768 resv, actual_regions_needed - in_regions_needed)) { 769 return -ENOMEM; 770 } 771 772 goto retry; 773 } 774 775 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL); 776 777 resv->adds_in_progress -= in_regions_needed; 778 779 spin_unlock(&resv->lock); 780 return add; 781 } 782 783 /* 784 * Examine the existing reserve map and determine how many 785 * huge pages in the specified range [f, t) are NOT currently 786 * represented. This routine is called before a subsequent 787 * call to region_add that will actually modify the reserve 788 * map to add the specified range [f, t). region_chg does 789 * not change the number of huge pages represented by the 790 * map. A number of new file_region structures is added to the cache as a 791 * placeholder, for the subsequent region_add call to use. At least 1 792 * file_region structure is added. 793 * 794 * out_regions_needed is the number of regions added to the 795 * resv->adds_in_progress. This value needs to be provided to a follow up call 796 * to region_add or region_abort for proper accounting. 797 * 798 * Returns the number of huge pages that need to be added to the existing 799 * reservation map for the range [f, t). This number is greater or equal to 800 * zero. -ENOMEM is returned if a new file_region structure or cache entry 801 * is needed and can not be allocated. 802 */ 803 static long region_chg(struct resv_map *resv, long f, long t, 804 long *out_regions_needed) 805 { 806 long chg = 0; 807 808 spin_lock(&resv->lock); 809 810 /* Count how many hugepages in this range are NOT represented. */ 811 chg = add_reservation_in_range(resv, f, t, NULL, NULL, 812 out_regions_needed); 813 814 if (*out_regions_needed == 0) 815 *out_regions_needed = 1; 816 817 if (allocate_file_region_entries(resv, *out_regions_needed)) 818 return -ENOMEM; 819 820 resv->adds_in_progress += *out_regions_needed; 821 822 spin_unlock(&resv->lock); 823 return chg; 824 } 825 826 /* 827 * Abort the in progress add operation. The adds_in_progress field 828 * of the resv_map keeps track of the operations in progress between 829 * calls to region_chg and region_add. Operations are sometimes 830 * aborted after the call to region_chg. In such cases, region_abort 831 * is called to decrement the adds_in_progress counter. regions_needed 832 * is the value returned by the region_chg call, it is used to decrement 833 * the adds_in_progress counter. 834 * 835 * NOTE: The range arguments [f, t) are not needed or used in this 836 * routine. They are kept to make reading the calling code easier as 837 * arguments will match the associated region_chg call. 838 */ 839 static void region_abort(struct resv_map *resv, long f, long t, 840 long regions_needed) 841 { 842 spin_lock(&resv->lock); 843 VM_BUG_ON(!resv->region_cache_count); 844 resv->adds_in_progress -= regions_needed; 845 spin_unlock(&resv->lock); 846 } 847 848 /* 849 * Delete the specified range [f, t) from the reserve map. If the 850 * t parameter is LONG_MAX, this indicates that ALL regions after f 851 * should be deleted. Locate the regions which intersect [f, t) 852 * and either trim, delete or split the existing regions. 853 * 854 * Returns the number of huge pages deleted from the reserve map. 855 * In the normal case, the return value is zero or more. In the 856 * case where a region must be split, a new region descriptor must 857 * be allocated. If the allocation fails, -ENOMEM will be returned. 858 * NOTE: If the parameter t == LONG_MAX, then we will never split 859 * a region and possibly return -ENOMEM. Callers specifying 860 * t == LONG_MAX do not need to check for -ENOMEM error. 861 */ 862 static long region_del(struct resv_map *resv, long f, long t) 863 { 864 struct list_head *head = &resv->regions; 865 struct file_region *rg, *trg; 866 struct file_region *nrg = NULL; 867 long del = 0; 868 869 retry: 870 spin_lock(&resv->lock); 871 list_for_each_entry_safe(rg, trg, head, link) { 872 /* 873 * Skip regions before the range to be deleted. file_region 874 * ranges are normally of the form [from, to). However, there 875 * may be a "placeholder" entry in the map which is of the form 876 * (from, to) with from == to. Check for placeholder entries 877 * at the beginning of the range to be deleted. 878 */ 879 if (rg->to <= f && (rg->to != rg->from || rg->to != f)) 880 continue; 881 882 if (rg->from >= t) 883 break; 884 885 if (f > rg->from && t < rg->to) { /* Must split region */ 886 /* 887 * Check for an entry in the cache before dropping 888 * lock and attempting allocation. 889 */ 890 if (!nrg && 891 resv->region_cache_count > resv->adds_in_progress) { 892 nrg = list_first_entry(&resv->region_cache, 893 struct file_region, 894 link); 895 list_del(&nrg->link); 896 resv->region_cache_count--; 897 } 898 899 if (!nrg) { 900 spin_unlock(&resv->lock); 901 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 902 if (!nrg) 903 return -ENOMEM; 904 goto retry; 905 } 906 907 del += t - f; 908 hugetlb_cgroup_uncharge_file_region( 909 resv, rg, t - f, false); 910 911 /* New entry for end of split region */ 912 nrg->from = t; 913 nrg->to = rg->to; 914 915 copy_hugetlb_cgroup_uncharge_info(nrg, rg); 916 917 INIT_LIST_HEAD(&nrg->link); 918 919 /* Original entry is trimmed */ 920 rg->to = f; 921 922 list_add(&nrg->link, &rg->link); 923 nrg = NULL; 924 break; 925 } 926 927 if (f <= rg->from && t >= rg->to) { /* Remove entire region */ 928 del += rg->to - rg->from; 929 hugetlb_cgroup_uncharge_file_region(resv, rg, 930 rg->to - rg->from, true); 931 list_del(&rg->link); 932 kfree(rg); 933 continue; 934 } 935 936 if (f <= rg->from) { /* Trim beginning of region */ 937 hugetlb_cgroup_uncharge_file_region(resv, rg, 938 t - rg->from, false); 939 940 del += t - rg->from; 941 rg->from = t; 942 } else { /* Trim end of region */ 943 hugetlb_cgroup_uncharge_file_region(resv, rg, 944 rg->to - f, false); 945 946 del += rg->to - f; 947 rg->to = f; 948 } 949 } 950 951 spin_unlock(&resv->lock); 952 kfree(nrg); 953 return del; 954 } 955 956 /* 957 * A rare out of memory error was encountered which prevented removal of 958 * the reserve map region for a page. The huge page itself was free'ed 959 * and removed from the page cache. This routine will adjust the subpool 960 * usage count, and the global reserve count if needed. By incrementing 961 * these counts, the reserve map entry which could not be deleted will 962 * appear as a "reserved" entry instead of simply dangling with incorrect 963 * counts. 964 */ 965 void hugetlb_fix_reserve_counts(struct inode *inode) 966 { 967 struct hugepage_subpool *spool = subpool_inode(inode); 968 long rsv_adjust; 969 bool reserved = false; 970 971 rsv_adjust = hugepage_subpool_get_pages(spool, 1); 972 if (rsv_adjust > 0) { 973 struct hstate *h = hstate_inode(inode); 974 975 if (!hugetlb_acct_memory(h, 1)) 976 reserved = true; 977 } else if (!rsv_adjust) { 978 reserved = true; 979 } 980 981 if (!reserved) 982 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n"); 983 } 984 985 /* 986 * Count and return the number of huge pages in the reserve map 987 * that intersect with the range [f, t). 988 */ 989 static long region_count(struct resv_map *resv, long f, long t) 990 { 991 struct list_head *head = &resv->regions; 992 struct file_region *rg; 993 long chg = 0; 994 995 spin_lock(&resv->lock); 996 /* Locate each segment we overlap with, and count that overlap. */ 997 list_for_each_entry(rg, head, link) { 998 long seg_from; 999 long seg_to; 1000 1001 if (rg->to <= f) 1002 continue; 1003 if (rg->from >= t) 1004 break; 1005 1006 seg_from = max(rg->from, f); 1007 seg_to = min(rg->to, t); 1008 1009 chg += seg_to - seg_from; 1010 } 1011 spin_unlock(&resv->lock); 1012 1013 return chg; 1014 } 1015 1016 /* 1017 * Convert the address within this vma to the page offset within 1018 * the mapping, huge page units here. 1019 */ 1020 static pgoff_t vma_hugecache_offset(struct hstate *h, 1021 struct vm_area_struct *vma, unsigned long address) 1022 { 1023 return ((address - vma->vm_start) >> huge_page_shift(h)) + 1024 (vma->vm_pgoff >> huge_page_order(h)); 1025 } 1026 1027 /** 1028 * vma_kernel_pagesize - Page size granularity for this VMA. 1029 * @vma: The user mapping. 1030 * 1031 * Folios in this VMA will be aligned to, and at least the size of the 1032 * number of bytes returned by this function. 1033 * 1034 * Return: The default size of the folios allocated when backing a VMA. 1035 */ 1036 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) 1037 { 1038 if (vma->vm_ops && vma->vm_ops->pagesize) 1039 return vma->vm_ops->pagesize(vma); 1040 return PAGE_SIZE; 1041 } 1042 EXPORT_SYMBOL_GPL(vma_kernel_pagesize); 1043 1044 /* 1045 * Return the page size being used by the MMU to back a VMA. In the majority 1046 * of cases, the page size used by the kernel matches the MMU size. On 1047 * architectures where it differs, an architecture-specific 'strong' 1048 * version of this symbol is required. 1049 */ 1050 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 1051 { 1052 return vma_kernel_pagesize(vma); 1053 } 1054 1055 /* 1056 * Flags for MAP_PRIVATE reservations. These are stored in the bottom 1057 * bits of the reservation map pointer, which are always clear due to 1058 * alignment. 1059 */ 1060 #define HPAGE_RESV_OWNER (1UL << 0) 1061 #define HPAGE_RESV_UNMAPPED (1UL << 1) 1062 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) 1063 1064 /* 1065 * These helpers are used to track how many pages are reserved for 1066 * faults in a MAP_PRIVATE mapping. Only the process that called mmap() 1067 * is guaranteed to have their future faults succeed. 1068 * 1069 * With the exception of hugetlb_dup_vma_private() which is called at fork(), 1070 * the reserve counters are updated with the hugetlb_lock held. It is safe 1071 * to reset the VMA at fork() time as it is not in use yet and there is no 1072 * chance of the global counters getting corrupted as a result of the values. 1073 * 1074 * The private mapping reservation is represented in a subtly different 1075 * manner to a shared mapping. A shared mapping has a region map associated 1076 * with the underlying file, this region map represents the backing file 1077 * pages which have ever had a reservation assigned which this persists even 1078 * after the page is instantiated. A private mapping has a region map 1079 * associated with the original mmap which is attached to all VMAs which 1080 * reference it, this region map represents those offsets which have consumed 1081 * reservation ie. where pages have been instantiated. 1082 */ 1083 static unsigned long get_vma_private_data(struct vm_area_struct *vma) 1084 { 1085 return (unsigned long)vma->vm_private_data; 1086 } 1087 1088 static void set_vma_private_data(struct vm_area_struct *vma, 1089 unsigned long value) 1090 { 1091 vma->vm_private_data = (void *)value; 1092 } 1093 1094 static void 1095 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map, 1096 struct hugetlb_cgroup *h_cg, 1097 struct hstate *h) 1098 { 1099 #ifdef CONFIG_CGROUP_HUGETLB 1100 if (!h_cg || !h) { 1101 resv_map->reservation_counter = NULL; 1102 resv_map->pages_per_hpage = 0; 1103 resv_map->css = NULL; 1104 } else { 1105 resv_map->reservation_counter = 1106 &h_cg->rsvd_hugepage[hstate_index(h)]; 1107 resv_map->pages_per_hpage = pages_per_huge_page(h); 1108 resv_map->css = &h_cg->css; 1109 } 1110 #endif 1111 } 1112 1113 struct resv_map *resv_map_alloc(void) 1114 { 1115 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); 1116 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL); 1117 1118 if (!resv_map || !rg) { 1119 kfree(resv_map); 1120 kfree(rg); 1121 return NULL; 1122 } 1123 1124 kref_init(&resv_map->refs); 1125 spin_lock_init(&resv_map->lock); 1126 INIT_LIST_HEAD(&resv_map->regions); 1127 init_rwsem(&resv_map->rw_sema); 1128 1129 resv_map->adds_in_progress = 0; 1130 /* 1131 * Initialize these to 0. On shared mappings, 0's here indicate these 1132 * fields don't do cgroup accounting. On private mappings, these will be 1133 * re-initialized to the proper values, to indicate that hugetlb cgroup 1134 * reservations are to be un-charged from here. 1135 */ 1136 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL); 1137 1138 INIT_LIST_HEAD(&resv_map->region_cache); 1139 list_add(&rg->link, &resv_map->region_cache); 1140 resv_map->region_cache_count = 1; 1141 1142 return resv_map; 1143 } 1144 1145 void resv_map_release(struct kref *ref) 1146 { 1147 struct resv_map *resv_map = container_of(ref, struct resv_map, refs); 1148 struct list_head *head = &resv_map->region_cache; 1149 struct file_region *rg, *trg; 1150 1151 /* Clear out any active regions before we release the map. */ 1152 region_del(resv_map, 0, LONG_MAX); 1153 1154 /* ... and any entries left in the cache */ 1155 list_for_each_entry_safe(rg, trg, head, link) { 1156 list_del(&rg->link); 1157 kfree(rg); 1158 } 1159 1160 VM_BUG_ON(resv_map->adds_in_progress); 1161 1162 kfree(resv_map); 1163 } 1164 1165 static inline struct resv_map *inode_resv_map(struct inode *inode) 1166 { 1167 /* 1168 * At inode evict time, i_mapping may not point to the original 1169 * address space within the inode. This original address space 1170 * contains the pointer to the resv_map. So, always use the 1171 * address space embedded within the inode. 1172 * The VERY common case is inode->mapping == &inode->i_data but, 1173 * this may not be true for device special inodes. 1174 */ 1175 return (struct resv_map *)(&inode->i_data)->i_private_data; 1176 } 1177 1178 static struct resv_map *vma_resv_map(struct vm_area_struct *vma) 1179 { 1180 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1181 if (vma->vm_flags & VM_MAYSHARE) { 1182 struct address_space *mapping = vma->vm_file->f_mapping; 1183 struct inode *inode = mapping->host; 1184 1185 return inode_resv_map(inode); 1186 1187 } else { 1188 return (struct resv_map *)(get_vma_private_data(vma) & 1189 ~HPAGE_RESV_MASK); 1190 } 1191 } 1192 1193 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) 1194 { 1195 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1196 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 1197 1198 set_vma_private_data(vma, (unsigned long)map); 1199 } 1200 1201 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) 1202 { 1203 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1204 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 1205 1206 set_vma_private_data(vma, get_vma_private_data(vma) | flags); 1207 } 1208 1209 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) 1210 { 1211 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1212 1213 return (get_vma_private_data(vma) & flag) != 0; 1214 } 1215 1216 bool __vma_private_lock(struct vm_area_struct *vma) 1217 { 1218 return !(vma->vm_flags & VM_MAYSHARE) && 1219 get_vma_private_data(vma) & ~HPAGE_RESV_MASK && 1220 is_vma_resv_set(vma, HPAGE_RESV_OWNER); 1221 } 1222 1223 void hugetlb_dup_vma_private(struct vm_area_struct *vma) 1224 { 1225 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1226 /* 1227 * Clear vm_private_data 1228 * - For shared mappings this is a per-vma semaphore that may be 1229 * allocated in a subsequent call to hugetlb_vm_op_open. 1230 * Before clearing, make sure pointer is not associated with vma 1231 * as this will leak the structure. This is the case when called 1232 * via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already 1233 * been called to allocate a new structure. 1234 * - For MAP_PRIVATE mappings, this is the reserve map which does 1235 * not apply to children. Faults generated by the children are 1236 * not guaranteed to succeed, even if read-only. 1237 */ 1238 if (vma->vm_flags & VM_MAYSHARE) { 1239 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 1240 1241 if (vma_lock && vma_lock->vma != vma) 1242 vma->vm_private_data = NULL; 1243 } else 1244 vma->vm_private_data = NULL; 1245 } 1246 1247 /* 1248 * Reset and decrement one ref on hugepage private reservation. 1249 * Called with mm->mmap_lock writer semaphore held. 1250 * This function should be only used by mremap and operate on 1251 * same sized vma. It should never come here with last ref on the 1252 * reservation. 1253 */ 1254 void clear_vma_resv_huge_pages(struct vm_area_struct *vma) 1255 { 1256 /* 1257 * Clear the old hugetlb private page reservation. 1258 * It has already been transferred to new_vma. 1259 * 1260 * During a mremap() operation of a hugetlb vma we call move_vma() 1261 * which copies vma into new_vma and unmaps vma. After the copy 1262 * operation both new_vma and vma share a reference to the resv_map 1263 * struct, and at that point vma is about to be unmapped. We don't 1264 * want to return the reservation to the pool at unmap of vma because 1265 * the reservation still lives on in new_vma, so simply decrement the 1266 * ref here and remove the resv_map reference from this vma. 1267 */ 1268 struct resv_map *reservations = vma_resv_map(vma); 1269 1270 if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 1271 resv_map_put_hugetlb_cgroup_uncharge_info(reservations); 1272 kref_put(&reservations->refs, resv_map_release); 1273 } 1274 1275 hugetlb_dup_vma_private(vma); 1276 } 1277 1278 static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio) 1279 { 1280 int nid = folio_nid(folio); 1281 1282 lockdep_assert_held(&hugetlb_lock); 1283 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio); 1284 1285 list_move(&folio->lru, &h->hugepage_freelists[nid]); 1286 h->free_huge_pages++; 1287 h->free_huge_pages_node[nid]++; 1288 folio_set_hugetlb_freed(folio); 1289 } 1290 1291 static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h, 1292 int nid) 1293 { 1294 struct folio *folio; 1295 bool pin = !!(current->flags & PF_MEMALLOC_PIN); 1296 1297 lockdep_assert_held(&hugetlb_lock); 1298 list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) { 1299 if (pin && !folio_is_longterm_pinnable(folio)) 1300 continue; 1301 1302 if (folio_test_hwpoison(folio)) 1303 continue; 1304 1305 if (is_migrate_isolate_page(&folio->page)) 1306 continue; 1307 1308 list_move(&folio->lru, &h->hugepage_activelist); 1309 folio_ref_unfreeze(folio, 1); 1310 folio_clear_hugetlb_freed(folio); 1311 h->free_huge_pages--; 1312 h->free_huge_pages_node[nid]--; 1313 return folio; 1314 } 1315 1316 return NULL; 1317 } 1318 1319 static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask, 1320 int nid, nodemask_t *nmask) 1321 { 1322 unsigned int cpuset_mems_cookie; 1323 struct zonelist *zonelist; 1324 struct zone *zone; 1325 struct zoneref *z; 1326 int node = NUMA_NO_NODE; 1327 1328 /* 'nid' should not be NUMA_NO_NODE. Try to catch any misuse of it and rectifiy. */ 1329 if (nid == NUMA_NO_NODE) 1330 nid = numa_node_id(); 1331 1332 zonelist = node_zonelist(nid, gfp_mask); 1333 1334 retry_cpuset: 1335 cpuset_mems_cookie = read_mems_allowed_begin(); 1336 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) { 1337 struct folio *folio; 1338 1339 if (!cpuset_zone_allowed(zone, gfp_mask)) 1340 continue; 1341 /* 1342 * no need to ask again on the same node. Pool is node rather than 1343 * zone aware 1344 */ 1345 if (zone_to_nid(zone) == node) 1346 continue; 1347 node = zone_to_nid(zone); 1348 1349 folio = dequeue_hugetlb_folio_node_exact(h, node); 1350 if (folio) 1351 return folio; 1352 } 1353 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie))) 1354 goto retry_cpuset; 1355 1356 return NULL; 1357 } 1358 1359 static unsigned long available_huge_pages(struct hstate *h) 1360 { 1361 return h->free_huge_pages - h->resv_huge_pages; 1362 } 1363 1364 static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h, 1365 struct vm_area_struct *vma, 1366 unsigned long address, long gbl_chg) 1367 { 1368 struct folio *folio = NULL; 1369 struct mempolicy *mpol; 1370 gfp_t gfp_mask; 1371 nodemask_t *nodemask; 1372 int nid; 1373 1374 /* 1375 * gbl_chg==1 means the allocation requires a new page that was not 1376 * reserved before. Making sure there's at least one free page. 1377 */ 1378 if (gbl_chg && !available_huge_pages(h)) 1379 goto err; 1380 1381 gfp_mask = htlb_alloc_mask(h); 1382 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 1383 1384 if (mpol_is_preferred_many(mpol)) { 1385 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, 1386 nid, nodemask); 1387 1388 /* Fallback to all nodes if page==NULL */ 1389 nodemask = NULL; 1390 } 1391 1392 if (!folio) 1393 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, 1394 nid, nodemask); 1395 1396 mpol_cond_put(mpol); 1397 return folio; 1398 1399 err: 1400 return NULL; 1401 } 1402 1403 /* 1404 * common helper functions for hstate_next_node_to_{alloc|free}. 1405 * We may have allocated or freed a huge page based on a different 1406 * nodes_allowed previously, so h->next_node_to_{alloc|free} might 1407 * be outside of *nodes_allowed. Ensure that we use an allowed 1408 * node for alloc or free. 1409 */ 1410 static int next_node_allowed(int nid, nodemask_t *nodes_allowed) 1411 { 1412 nid = next_node_in(nid, *nodes_allowed); 1413 VM_BUG_ON(nid >= MAX_NUMNODES); 1414 1415 return nid; 1416 } 1417 1418 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed) 1419 { 1420 if (!node_isset(nid, *nodes_allowed)) 1421 nid = next_node_allowed(nid, nodes_allowed); 1422 return nid; 1423 } 1424 1425 /* 1426 * returns the previously saved node ["this node"] from which to 1427 * allocate a persistent huge page for the pool and advance the 1428 * next node from which to allocate, handling wrap at end of node 1429 * mask. 1430 */ 1431 static int hstate_next_node_to_alloc(int *next_node, 1432 nodemask_t *nodes_allowed) 1433 { 1434 int nid; 1435 1436 VM_BUG_ON(!nodes_allowed); 1437 1438 nid = get_valid_node_allowed(*next_node, nodes_allowed); 1439 *next_node = next_node_allowed(nid, nodes_allowed); 1440 1441 return nid; 1442 } 1443 1444 /* 1445 * helper for remove_pool_hugetlb_folio() - return the previously saved 1446 * node ["this node"] from which to free a huge page. Advance the 1447 * next node id whether or not we find a free huge page to free so 1448 * that the next attempt to free addresses the next node. 1449 */ 1450 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed) 1451 { 1452 int nid; 1453 1454 VM_BUG_ON(!nodes_allowed); 1455 1456 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed); 1457 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed); 1458 1459 return nid; 1460 } 1461 1462 #define for_each_node_mask_to_alloc(next_node, nr_nodes, node, mask) \ 1463 for (nr_nodes = nodes_weight(*mask); \ 1464 nr_nodes > 0 && \ 1465 ((node = hstate_next_node_to_alloc(next_node, mask)) || 1); \ 1466 nr_nodes--) 1467 1468 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \ 1469 for (nr_nodes = nodes_weight(*mask); \ 1470 nr_nodes > 0 && \ 1471 ((node = hstate_next_node_to_free(hs, mask)) || 1); \ 1472 nr_nodes--) 1473 1474 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE 1475 #ifdef CONFIG_CONTIG_ALLOC 1476 static struct folio *alloc_gigantic_folio(int order, gfp_t gfp_mask, 1477 int nid, nodemask_t *nodemask) 1478 { 1479 struct folio *folio; 1480 bool retried = false; 1481 1482 retry: 1483 folio = hugetlb_cma_alloc_folio(order, gfp_mask, nid, nodemask); 1484 if (!folio) { 1485 if (hugetlb_cma_exclusive_alloc()) 1486 return NULL; 1487 1488 folio = folio_alloc_gigantic(order, gfp_mask, nid, nodemask); 1489 if (!folio) 1490 return NULL; 1491 } 1492 1493 if (folio_ref_freeze(folio, 1)) 1494 return folio; 1495 1496 pr_warn("HugeTLB: unexpected refcount on PFN %lu\n", folio_pfn(folio)); 1497 hugetlb_free_folio(folio); 1498 if (!retried) { 1499 retried = true; 1500 goto retry; 1501 } 1502 return NULL; 1503 } 1504 1505 #else /* !CONFIG_CONTIG_ALLOC */ 1506 static struct folio *alloc_gigantic_folio(int order, gfp_t gfp_mask, int nid, 1507 nodemask_t *nodemask) 1508 { 1509 return NULL; 1510 } 1511 #endif /* CONFIG_CONTIG_ALLOC */ 1512 1513 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */ 1514 static struct folio *alloc_gigantic_folio(int order, gfp_t gfp_mask, int nid, 1515 nodemask_t *nodemask) 1516 { 1517 return NULL; 1518 } 1519 #endif 1520 1521 /* 1522 * Remove hugetlb folio from lists. 1523 * If vmemmap exists for the folio, clear the hugetlb flag so that the 1524 * folio appears as just a compound page. Otherwise, wait until after 1525 * allocating vmemmap to clear the flag. 1526 * 1527 * Must be called with hugetlb lock held. 1528 */ 1529 static void remove_hugetlb_folio(struct hstate *h, struct folio *folio, 1530 bool adjust_surplus) 1531 { 1532 int nid = folio_nid(folio); 1533 1534 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio); 1535 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio); 1536 1537 lockdep_assert_held(&hugetlb_lock); 1538 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 1539 return; 1540 1541 list_del(&folio->lru); 1542 1543 if (folio_test_hugetlb_freed(folio)) { 1544 folio_clear_hugetlb_freed(folio); 1545 h->free_huge_pages--; 1546 h->free_huge_pages_node[nid]--; 1547 } 1548 if (adjust_surplus) { 1549 h->surplus_huge_pages--; 1550 h->surplus_huge_pages_node[nid]--; 1551 } 1552 1553 /* 1554 * We can only clear the hugetlb flag after allocating vmemmap 1555 * pages. Otherwise, someone (memory error handling) may try to write 1556 * to tail struct pages. 1557 */ 1558 if (!folio_test_hugetlb_vmemmap_optimized(folio)) 1559 __folio_clear_hugetlb(folio); 1560 1561 h->nr_huge_pages--; 1562 h->nr_huge_pages_node[nid]--; 1563 } 1564 1565 static void add_hugetlb_folio(struct hstate *h, struct folio *folio, 1566 bool adjust_surplus) 1567 { 1568 int nid = folio_nid(folio); 1569 1570 VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio); 1571 1572 lockdep_assert_held(&hugetlb_lock); 1573 1574 INIT_LIST_HEAD(&folio->lru); 1575 h->nr_huge_pages++; 1576 h->nr_huge_pages_node[nid]++; 1577 1578 if (adjust_surplus) { 1579 h->surplus_huge_pages++; 1580 h->surplus_huge_pages_node[nid]++; 1581 } 1582 1583 __folio_set_hugetlb(folio); 1584 folio_change_private(folio, NULL); 1585 /* 1586 * We have to set hugetlb_vmemmap_optimized again as above 1587 * folio_change_private(folio, NULL) cleared it. 1588 */ 1589 folio_set_hugetlb_vmemmap_optimized(folio); 1590 1591 arch_clear_hugetlb_flags(folio); 1592 enqueue_hugetlb_folio(h, folio); 1593 } 1594 1595 static void __update_and_free_hugetlb_folio(struct hstate *h, 1596 struct folio *folio) 1597 { 1598 bool clear_flag = folio_test_hugetlb_vmemmap_optimized(folio); 1599 1600 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 1601 return; 1602 1603 /* 1604 * If we don't know which subpages are hwpoisoned, we can't free 1605 * the hugepage, so it's leaked intentionally. 1606 */ 1607 if (folio_test_hugetlb_raw_hwp_unreliable(folio)) 1608 return; 1609 1610 /* 1611 * If folio is not vmemmap optimized (!clear_flag), then the folio 1612 * is no longer identified as a hugetlb page. hugetlb_vmemmap_restore_folio 1613 * can only be passed hugetlb pages and will BUG otherwise. 1614 */ 1615 if (clear_flag && hugetlb_vmemmap_restore_folio(h, folio)) { 1616 spin_lock_irq(&hugetlb_lock); 1617 /* 1618 * If we cannot allocate vmemmap pages, just refuse to free the 1619 * page and put the page back on the hugetlb free list and treat 1620 * as a surplus page. 1621 */ 1622 add_hugetlb_folio(h, folio, true); 1623 spin_unlock_irq(&hugetlb_lock); 1624 return; 1625 } 1626 1627 /* 1628 * If vmemmap pages were allocated above, then we need to clear the 1629 * hugetlb flag under the hugetlb lock. 1630 */ 1631 if (folio_test_hugetlb(folio)) { 1632 spin_lock_irq(&hugetlb_lock); 1633 __folio_clear_hugetlb(folio); 1634 spin_unlock_irq(&hugetlb_lock); 1635 } 1636 1637 /* 1638 * Move PageHWPoison flag from head page to the raw error pages, 1639 * which makes any healthy subpages reusable. 1640 */ 1641 if (unlikely(folio_test_hwpoison(folio))) 1642 folio_clear_hugetlb_hwpoison(folio); 1643 1644 folio_ref_unfreeze(folio, 1); 1645 1646 hugetlb_free_folio(folio); 1647 } 1648 1649 /* 1650 * As update_and_free_hugetlb_folio() can be called under any context, so we cannot 1651 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the 1652 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate 1653 * the vmemmap pages. 1654 * 1655 * free_hpage_workfn() locklessly retrieves the linked list of pages to be 1656 * freed and frees them one-by-one. As the page->mapping pointer is going 1657 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node 1658 * structure of a lockless linked list of huge pages to be freed. 1659 */ 1660 static LLIST_HEAD(hpage_freelist); 1661 1662 static void free_hpage_workfn(struct work_struct *work) 1663 { 1664 struct llist_node *node; 1665 1666 node = llist_del_all(&hpage_freelist); 1667 1668 while (node) { 1669 struct folio *folio; 1670 struct hstate *h; 1671 1672 folio = container_of((struct address_space **)node, 1673 struct folio, mapping); 1674 node = node->next; 1675 folio->mapping = NULL; 1676 /* 1677 * The VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio) in 1678 * folio_hstate() is going to trigger because a previous call to 1679 * remove_hugetlb_folio() will clear the hugetlb bit, so do 1680 * not use folio_hstate() directly. 1681 */ 1682 h = size_to_hstate(folio_size(folio)); 1683 1684 __update_and_free_hugetlb_folio(h, folio); 1685 1686 cond_resched(); 1687 } 1688 } 1689 static DECLARE_WORK(free_hpage_work, free_hpage_workfn); 1690 1691 static inline void flush_free_hpage_work(struct hstate *h) 1692 { 1693 if (hugetlb_vmemmap_optimizable(h)) 1694 flush_work(&free_hpage_work); 1695 } 1696 1697 static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio, 1698 bool atomic) 1699 { 1700 if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) { 1701 __update_and_free_hugetlb_folio(h, folio); 1702 return; 1703 } 1704 1705 /* 1706 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages. 1707 * 1708 * Only call schedule_work() if hpage_freelist is previously 1709 * empty. Otherwise, schedule_work() had been called but the workfn 1710 * hasn't retrieved the list yet. 1711 */ 1712 if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist)) 1713 schedule_work(&free_hpage_work); 1714 } 1715 1716 static void bulk_vmemmap_restore_error(struct hstate *h, 1717 struct list_head *folio_list, 1718 struct list_head *non_hvo_folios) 1719 { 1720 struct folio *folio, *t_folio; 1721 1722 if (!list_empty(non_hvo_folios)) { 1723 /* 1724 * Free any restored hugetlb pages so that restore of the 1725 * entire list can be retried. 1726 * The idea is that in the common case of ENOMEM errors freeing 1727 * hugetlb pages with vmemmap we will free up memory so that we 1728 * can allocate vmemmap for more hugetlb pages. 1729 */ 1730 list_for_each_entry_safe(folio, t_folio, non_hvo_folios, lru) { 1731 list_del(&folio->lru); 1732 spin_lock_irq(&hugetlb_lock); 1733 __folio_clear_hugetlb(folio); 1734 spin_unlock_irq(&hugetlb_lock); 1735 update_and_free_hugetlb_folio(h, folio, false); 1736 cond_resched(); 1737 } 1738 } else { 1739 /* 1740 * In the case where there are no folios which can be 1741 * immediately freed, we loop through the list trying to restore 1742 * vmemmap individually in the hope that someone elsewhere may 1743 * have done something to cause success (such as freeing some 1744 * memory). If unable to restore a hugetlb page, the hugetlb 1745 * page is made a surplus page and removed from the list. 1746 * If are able to restore vmemmap and free one hugetlb page, we 1747 * quit processing the list to retry the bulk operation. 1748 */ 1749 list_for_each_entry_safe(folio, t_folio, folio_list, lru) 1750 if (hugetlb_vmemmap_restore_folio(h, folio)) { 1751 list_del(&folio->lru); 1752 spin_lock_irq(&hugetlb_lock); 1753 add_hugetlb_folio(h, folio, true); 1754 spin_unlock_irq(&hugetlb_lock); 1755 } else { 1756 list_del(&folio->lru); 1757 spin_lock_irq(&hugetlb_lock); 1758 __folio_clear_hugetlb(folio); 1759 spin_unlock_irq(&hugetlb_lock); 1760 update_and_free_hugetlb_folio(h, folio, false); 1761 cond_resched(); 1762 break; 1763 } 1764 } 1765 } 1766 1767 static void update_and_free_pages_bulk(struct hstate *h, 1768 struct list_head *folio_list) 1769 { 1770 long ret; 1771 struct folio *folio, *t_folio; 1772 LIST_HEAD(non_hvo_folios); 1773 1774 /* 1775 * First allocate required vmemmmap (if necessary) for all folios. 1776 * Carefully handle errors and free up any available hugetlb pages 1777 * in an effort to make forward progress. 1778 */ 1779 retry: 1780 ret = hugetlb_vmemmap_restore_folios(h, folio_list, &non_hvo_folios); 1781 if (ret < 0) { 1782 bulk_vmemmap_restore_error(h, folio_list, &non_hvo_folios); 1783 goto retry; 1784 } 1785 1786 /* 1787 * At this point, list should be empty, ret should be >= 0 and there 1788 * should only be pages on the non_hvo_folios list. 1789 * Do note that the non_hvo_folios list could be empty. 1790 * Without HVO enabled, ret will be 0 and there is no need to call 1791 * __folio_clear_hugetlb as this was done previously. 1792 */ 1793 VM_WARN_ON(!list_empty(folio_list)); 1794 VM_WARN_ON(ret < 0); 1795 if (!list_empty(&non_hvo_folios) && ret) { 1796 spin_lock_irq(&hugetlb_lock); 1797 list_for_each_entry(folio, &non_hvo_folios, lru) 1798 __folio_clear_hugetlb(folio); 1799 spin_unlock_irq(&hugetlb_lock); 1800 } 1801 1802 list_for_each_entry_safe(folio, t_folio, &non_hvo_folios, lru) { 1803 update_and_free_hugetlb_folio(h, folio, false); 1804 cond_resched(); 1805 } 1806 } 1807 1808 struct hstate *size_to_hstate(unsigned long size) 1809 { 1810 struct hstate *h; 1811 1812 for_each_hstate(h) { 1813 if (huge_page_size(h) == size) 1814 return h; 1815 } 1816 return NULL; 1817 } 1818 1819 void free_huge_folio(struct folio *folio) 1820 { 1821 /* 1822 * Can't pass hstate in here because it is called from the 1823 * generic mm code. 1824 */ 1825 struct hstate *h = folio_hstate(folio); 1826 int nid = folio_nid(folio); 1827 struct hugepage_subpool *spool = hugetlb_folio_subpool(folio); 1828 bool restore_reserve; 1829 unsigned long flags; 1830 1831 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio); 1832 VM_BUG_ON_FOLIO(folio_mapcount(folio), folio); 1833 1834 hugetlb_set_folio_subpool(folio, NULL); 1835 if (folio_test_anon(folio)) 1836 __ClearPageAnonExclusive(&folio->page); 1837 folio->mapping = NULL; 1838 restore_reserve = folio_test_hugetlb_restore_reserve(folio); 1839 folio_clear_hugetlb_restore_reserve(folio); 1840 1841 /* 1842 * If HPageRestoreReserve was set on page, page allocation consumed a 1843 * reservation. If the page was associated with a subpool, there 1844 * would have been a page reserved in the subpool before allocation 1845 * via hugepage_subpool_get_pages(). Since we are 'restoring' the 1846 * reservation, do not call hugepage_subpool_put_pages() as this will 1847 * remove the reserved page from the subpool. 1848 */ 1849 if (!restore_reserve) { 1850 /* 1851 * A return code of zero implies that the subpool will be 1852 * under its minimum size if the reservation is not restored 1853 * after page is free. Therefore, force restore_reserve 1854 * operation. 1855 */ 1856 if (hugepage_subpool_put_pages(spool, 1) == 0) 1857 restore_reserve = true; 1858 } 1859 1860 spin_lock_irqsave(&hugetlb_lock, flags); 1861 folio_clear_hugetlb_migratable(folio); 1862 hugetlb_cgroup_uncharge_folio(hstate_index(h), 1863 pages_per_huge_page(h), folio); 1864 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h), 1865 pages_per_huge_page(h), folio); 1866 lruvec_stat_mod_folio(folio, NR_HUGETLB, -pages_per_huge_page(h)); 1867 mem_cgroup_uncharge(folio); 1868 if (restore_reserve) 1869 h->resv_huge_pages++; 1870 1871 if (folio_test_hugetlb_temporary(folio)) { 1872 remove_hugetlb_folio(h, folio, false); 1873 spin_unlock_irqrestore(&hugetlb_lock, flags); 1874 update_and_free_hugetlb_folio(h, folio, true); 1875 } else if (h->surplus_huge_pages_node[nid]) { 1876 /* remove the page from active list */ 1877 remove_hugetlb_folio(h, folio, true); 1878 spin_unlock_irqrestore(&hugetlb_lock, flags); 1879 update_and_free_hugetlb_folio(h, folio, true); 1880 } else { 1881 arch_clear_hugetlb_flags(folio); 1882 enqueue_hugetlb_folio(h, folio); 1883 spin_unlock_irqrestore(&hugetlb_lock, flags); 1884 } 1885 } 1886 1887 /* 1888 * Must be called with the hugetlb lock held 1889 */ 1890 static void account_new_hugetlb_folio(struct hstate *h, struct folio *folio) 1891 { 1892 lockdep_assert_held(&hugetlb_lock); 1893 h->nr_huge_pages++; 1894 h->nr_huge_pages_node[folio_nid(folio)]++; 1895 } 1896 1897 static void init_new_hugetlb_folio(struct folio *folio) 1898 { 1899 __folio_set_hugetlb(folio); 1900 INIT_LIST_HEAD(&folio->lru); 1901 hugetlb_set_folio_subpool(folio, NULL); 1902 set_hugetlb_cgroup(folio, NULL); 1903 set_hugetlb_cgroup_rsvd(folio, NULL); 1904 } 1905 1906 /* 1907 * Find and lock address space (mapping) in write mode. 1908 * 1909 * Upon entry, the folio is locked which means that folio_mapping() is 1910 * stable. Due to locking order, we can only trylock_write. If we can 1911 * not get the lock, simply return NULL to caller. 1912 */ 1913 struct address_space *hugetlb_folio_mapping_lock_write(struct folio *folio) 1914 { 1915 struct address_space *mapping = folio_mapping(folio); 1916 1917 if (!mapping) 1918 return mapping; 1919 1920 if (i_mmap_trylock_write(mapping)) 1921 return mapping; 1922 1923 return NULL; 1924 } 1925 1926 static struct folio *alloc_buddy_hugetlb_folio(int order, gfp_t gfp_mask, 1927 int nid, nodemask_t *nmask, nodemask_t *node_alloc_noretry) 1928 { 1929 struct folio *folio; 1930 bool alloc_try_hard = true; 1931 1932 /* 1933 * By default we always try hard to allocate the folio with 1934 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating folios in 1935 * a loop (to adjust global huge page counts) and previous allocation 1936 * failed, do not continue to try hard on the same node. Use the 1937 * node_alloc_noretry bitmap to manage this state information. 1938 */ 1939 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry)) 1940 alloc_try_hard = false; 1941 if (alloc_try_hard) 1942 gfp_mask |= __GFP_RETRY_MAYFAIL; 1943 1944 folio = (struct folio *)__alloc_frozen_pages(gfp_mask, order, nid, nmask); 1945 1946 /* 1947 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a 1948 * folio this indicates an overall state change. Clear bit so 1949 * that we resume normal 'try hard' allocations. 1950 */ 1951 if (node_alloc_noretry && folio && !alloc_try_hard) 1952 node_clear(nid, *node_alloc_noretry); 1953 1954 /* 1955 * If we tried hard to get a folio but failed, set bit so that 1956 * subsequent attempts will not try as hard until there is an 1957 * overall state change. 1958 */ 1959 if (node_alloc_noretry && !folio && alloc_try_hard) 1960 node_set(nid, *node_alloc_noretry); 1961 1962 if (!folio) { 1963 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 1964 return NULL; 1965 } 1966 1967 __count_vm_event(HTLB_BUDDY_PGALLOC); 1968 return folio; 1969 } 1970 1971 static struct folio *only_alloc_fresh_hugetlb_folio(struct hstate *h, 1972 gfp_t gfp_mask, int nid, nodemask_t *nmask, 1973 nodemask_t *node_alloc_noretry) 1974 { 1975 struct folio *folio; 1976 int order = huge_page_order(h); 1977 1978 if (nid == NUMA_NO_NODE) 1979 nid = numa_mem_id(); 1980 1981 if (order_is_gigantic(order)) 1982 folio = alloc_gigantic_folio(order, gfp_mask, nid, nmask); 1983 else 1984 folio = alloc_buddy_hugetlb_folio(order, gfp_mask, nid, nmask, 1985 node_alloc_noretry); 1986 if (folio) 1987 init_new_hugetlb_folio(folio); 1988 return folio; 1989 } 1990 1991 /* 1992 * Common helper to allocate a fresh hugetlb folio. All specific allocators 1993 * should use this function to get new hugetlb folio 1994 * 1995 * Note that returned folio is 'frozen': ref count of head page and all tail 1996 * pages is zero, and the accounting must be done in the caller. 1997 */ 1998 static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h, 1999 gfp_t gfp_mask, int nid, nodemask_t *nmask) 2000 { 2001 struct folio *folio; 2002 2003 folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL); 2004 if (folio) 2005 hugetlb_vmemmap_optimize_folio(h, folio); 2006 return folio; 2007 } 2008 2009 static void prep_and_add_allocated_folios(struct hstate *h, 2010 struct list_head *folio_list) 2011 { 2012 unsigned long flags; 2013 struct folio *folio, *tmp_f; 2014 2015 /* Send list for bulk vmemmap optimization processing */ 2016 hugetlb_vmemmap_optimize_folios(h, folio_list); 2017 2018 /* Add all new pool pages to free lists in one lock cycle */ 2019 spin_lock_irqsave(&hugetlb_lock, flags); 2020 list_for_each_entry_safe(folio, tmp_f, folio_list, lru) { 2021 account_new_hugetlb_folio(h, folio); 2022 enqueue_hugetlb_folio(h, folio); 2023 } 2024 spin_unlock_irqrestore(&hugetlb_lock, flags); 2025 } 2026 2027 /* 2028 * Allocates a fresh hugetlb page in a node interleaved manner. The page 2029 * will later be added to the appropriate hugetlb pool. 2030 */ 2031 static struct folio *alloc_pool_huge_folio(struct hstate *h, 2032 nodemask_t *nodes_allowed, 2033 nodemask_t *node_alloc_noretry, 2034 int *next_node) 2035 { 2036 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 2037 int nr_nodes, node; 2038 2039 for_each_node_mask_to_alloc(next_node, nr_nodes, node, nodes_allowed) { 2040 struct folio *folio; 2041 2042 folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, node, 2043 nodes_allowed, node_alloc_noretry); 2044 if (folio) 2045 return folio; 2046 } 2047 2048 return NULL; 2049 } 2050 2051 /* 2052 * Remove huge page from pool from next node to free. Attempt to keep 2053 * persistent huge pages more or less balanced over allowed nodes. 2054 * This routine only 'removes' the hugetlb page. The caller must make 2055 * an additional call to free the page to low level allocators. 2056 * Called with hugetlb_lock locked. 2057 */ 2058 static struct folio *remove_pool_hugetlb_folio(struct hstate *h, 2059 nodemask_t *nodes_allowed, bool acct_surplus) 2060 { 2061 int nr_nodes, node; 2062 struct folio *folio = NULL; 2063 2064 lockdep_assert_held(&hugetlb_lock); 2065 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 2066 /* 2067 * If we're returning unused surplus pages, only examine 2068 * nodes with surplus pages. 2069 */ 2070 if ((!acct_surplus || h->surplus_huge_pages_node[node]) && 2071 !list_empty(&h->hugepage_freelists[node])) { 2072 folio = list_entry(h->hugepage_freelists[node].next, 2073 struct folio, lru); 2074 remove_hugetlb_folio(h, folio, acct_surplus); 2075 break; 2076 } 2077 } 2078 2079 return folio; 2080 } 2081 2082 /* 2083 * Dissolve a given free hugetlb folio into free buddy pages. This function 2084 * does nothing for in-use hugetlb folios and non-hugetlb folios. 2085 * This function returns values like below: 2086 * 2087 * -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages 2088 * when the system is under memory pressure and the feature of 2089 * freeing unused vmemmap pages associated with each hugetlb page 2090 * is enabled. 2091 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use 2092 * (allocated or reserved.) 2093 * 0: successfully dissolved free hugepages or the page is not a 2094 * hugepage (considered as already dissolved) 2095 */ 2096 int dissolve_free_hugetlb_folio(struct folio *folio) 2097 { 2098 int rc = -EBUSY; 2099 2100 retry: 2101 /* Not to disrupt normal path by vainly holding hugetlb_lock */ 2102 if (!folio_test_hugetlb(folio)) 2103 return 0; 2104 2105 spin_lock_irq(&hugetlb_lock); 2106 if (!folio_test_hugetlb(folio)) { 2107 rc = 0; 2108 goto out; 2109 } 2110 2111 if (!folio_ref_count(folio)) { 2112 struct hstate *h = folio_hstate(folio); 2113 bool adjust_surplus = false; 2114 2115 if (!available_huge_pages(h)) 2116 goto out; 2117 2118 /* 2119 * We should make sure that the page is already on the free list 2120 * when it is dissolved. 2121 */ 2122 if (unlikely(!folio_test_hugetlb_freed(folio))) { 2123 spin_unlock_irq(&hugetlb_lock); 2124 cond_resched(); 2125 2126 /* 2127 * Theoretically, we should return -EBUSY when we 2128 * encounter this race. In fact, we have a chance 2129 * to successfully dissolve the page if we do a 2130 * retry. Because the race window is quite small. 2131 * If we seize this opportunity, it is an optimization 2132 * for increasing the success rate of dissolving page. 2133 */ 2134 goto retry; 2135 } 2136 2137 if (h->surplus_huge_pages_node[folio_nid(folio)]) 2138 adjust_surplus = true; 2139 remove_hugetlb_folio(h, folio, adjust_surplus); 2140 h->max_huge_pages--; 2141 spin_unlock_irq(&hugetlb_lock); 2142 2143 /* 2144 * Normally update_and_free_hugtlb_folio will allocate required vmemmmap 2145 * before freeing the page. update_and_free_hugtlb_folio will fail to 2146 * free the page if it can not allocate required vmemmap. We 2147 * need to adjust max_huge_pages if the page is not freed. 2148 * Attempt to allocate vmemmmap here so that we can take 2149 * appropriate action on failure. 2150 * 2151 * The folio_test_hugetlb check here is because 2152 * remove_hugetlb_folio will clear hugetlb folio flag for 2153 * non-vmemmap optimized hugetlb folios. 2154 */ 2155 if (folio_test_hugetlb(folio)) { 2156 rc = hugetlb_vmemmap_restore_folio(h, folio); 2157 if (rc) { 2158 spin_lock_irq(&hugetlb_lock); 2159 add_hugetlb_folio(h, folio, adjust_surplus); 2160 h->max_huge_pages++; 2161 goto out; 2162 } 2163 } else 2164 rc = 0; 2165 2166 update_and_free_hugetlb_folio(h, folio, false); 2167 return rc; 2168 } 2169 out: 2170 spin_unlock_irq(&hugetlb_lock); 2171 return rc; 2172 } 2173 2174 /* 2175 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to 2176 * make specified memory blocks removable from the system. 2177 * Note that this will dissolve a free gigantic hugepage completely, if any 2178 * part of it lies within the given range. 2179 * Also note that if dissolve_free_hugetlb_folio() returns with an error, all 2180 * free hugetlb folios that were dissolved before that error are lost. 2181 */ 2182 int dissolve_free_hugetlb_folios(unsigned long start_pfn, unsigned long end_pfn) 2183 { 2184 unsigned long pfn; 2185 struct folio *folio; 2186 int rc = 0; 2187 unsigned int order; 2188 struct hstate *h; 2189 2190 if (!hugepages_supported()) 2191 return rc; 2192 2193 order = huge_page_order(&default_hstate); 2194 for_each_hstate(h) 2195 order = min(order, huge_page_order(h)); 2196 2197 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) { 2198 folio = pfn_folio(pfn); 2199 rc = dissolve_free_hugetlb_folio(folio); 2200 if (rc) 2201 break; 2202 } 2203 2204 return rc; 2205 } 2206 2207 /* 2208 * Allocates a fresh surplus page from the page allocator. 2209 */ 2210 static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h, 2211 gfp_t gfp_mask, int nid, nodemask_t *nmask) 2212 { 2213 struct folio *folio = NULL; 2214 2215 if (hstate_is_gigantic(h)) 2216 return NULL; 2217 2218 spin_lock_irq(&hugetlb_lock); 2219 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) 2220 goto out_unlock; 2221 spin_unlock_irq(&hugetlb_lock); 2222 2223 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask); 2224 if (!folio) 2225 return NULL; 2226 2227 spin_lock_irq(&hugetlb_lock); 2228 /* 2229 * nr_huge_pages needs to be adjusted within the same lock cycle 2230 * as surplus_pages, otherwise it might confuse 2231 * persistent_huge_pages() momentarily. 2232 */ 2233 account_new_hugetlb_folio(h, folio); 2234 2235 /* 2236 * We could have raced with the pool size change. 2237 * Double check that and simply deallocate the new page 2238 * if we would end up overcommiting the surpluses. Abuse 2239 * temporary page to workaround the nasty free_huge_folio 2240 * codeflow 2241 */ 2242 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { 2243 folio_set_hugetlb_temporary(folio); 2244 spin_unlock_irq(&hugetlb_lock); 2245 free_huge_folio(folio); 2246 return NULL; 2247 } 2248 2249 h->surplus_huge_pages++; 2250 h->surplus_huge_pages_node[folio_nid(folio)]++; 2251 2252 out_unlock: 2253 spin_unlock_irq(&hugetlb_lock); 2254 2255 return folio; 2256 } 2257 2258 static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask, 2259 int nid, nodemask_t *nmask) 2260 { 2261 struct folio *folio; 2262 2263 if (hstate_is_gigantic(h)) 2264 return NULL; 2265 2266 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask); 2267 if (!folio) 2268 return NULL; 2269 2270 spin_lock_irq(&hugetlb_lock); 2271 account_new_hugetlb_folio(h, folio); 2272 spin_unlock_irq(&hugetlb_lock); 2273 2274 /* fresh huge pages are frozen */ 2275 folio_ref_unfreeze(folio, 1); 2276 /* 2277 * We do not account these pages as surplus because they are only 2278 * temporary and will be released properly on the last reference 2279 */ 2280 folio_set_hugetlb_temporary(folio); 2281 2282 return folio; 2283 } 2284 2285 /* 2286 * Use the VMA's mpolicy to allocate a huge page from the buddy. 2287 */ 2288 static 2289 struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h, 2290 struct vm_area_struct *vma, unsigned long addr) 2291 { 2292 struct folio *folio = NULL; 2293 struct mempolicy *mpol; 2294 gfp_t gfp_mask = htlb_alloc_mask(h); 2295 int nid; 2296 nodemask_t *nodemask; 2297 2298 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask); 2299 if (mpol_is_preferred_many(mpol)) { 2300 gfp_t gfp = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL); 2301 2302 folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask); 2303 2304 /* Fallback to all nodes if page==NULL */ 2305 nodemask = NULL; 2306 } 2307 2308 if (!folio) 2309 folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask); 2310 mpol_cond_put(mpol); 2311 return folio; 2312 } 2313 2314 struct folio *alloc_hugetlb_folio_reserve(struct hstate *h, int preferred_nid, 2315 nodemask_t *nmask, gfp_t gfp_mask) 2316 { 2317 struct folio *folio; 2318 2319 spin_lock_irq(&hugetlb_lock); 2320 if (!h->resv_huge_pages) { 2321 spin_unlock_irq(&hugetlb_lock); 2322 return NULL; 2323 } 2324 2325 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, preferred_nid, 2326 nmask); 2327 if (folio) 2328 h->resv_huge_pages--; 2329 2330 spin_unlock_irq(&hugetlb_lock); 2331 return folio; 2332 } 2333 2334 /* folio migration callback function */ 2335 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid, 2336 nodemask_t *nmask, gfp_t gfp_mask, bool allow_alloc_fallback) 2337 { 2338 spin_lock_irq(&hugetlb_lock); 2339 if (available_huge_pages(h)) { 2340 struct folio *folio; 2341 2342 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, 2343 preferred_nid, nmask); 2344 if (folio) { 2345 spin_unlock_irq(&hugetlb_lock); 2346 return folio; 2347 } 2348 } 2349 spin_unlock_irq(&hugetlb_lock); 2350 2351 /* We cannot fallback to other nodes, as we could break the per-node pool. */ 2352 if (!allow_alloc_fallback) 2353 gfp_mask |= __GFP_THISNODE; 2354 2355 return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask); 2356 } 2357 2358 static nodemask_t *policy_mbind_nodemask(gfp_t gfp) 2359 { 2360 #ifdef CONFIG_NUMA 2361 struct mempolicy *mpol = get_task_policy(current); 2362 2363 /* 2364 * Only enforce MPOL_BIND policy which overlaps with cpuset policy 2365 * (from policy_nodemask) specifically for hugetlb case 2366 */ 2367 if (mpol->mode == MPOL_BIND && 2368 (apply_policy_zone(mpol, gfp_zone(gfp)) && 2369 cpuset_nodemask_valid_mems_allowed(&mpol->nodes))) 2370 return &mpol->nodes; 2371 #endif 2372 return NULL; 2373 } 2374 2375 /* 2376 * Increase the hugetlb pool such that it can accommodate a reservation 2377 * of size 'delta'. 2378 */ 2379 static int gather_surplus_pages(struct hstate *h, long delta) 2380 __must_hold(&hugetlb_lock) 2381 { 2382 LIST_HEAD(surplus_list); 2383 struct folio *folio, *tmp; 2384 int ret; 2385 long i; 2386 long needed, allocated; 2387 bool alloc_ok = true; 2388 nodemask_t *mbind_nodemask, alloc_nodemask; 2389 2390 mbind_nodemask = policy_mbind_nodemask(htlb_alloc_mask(h)); 2391 if (mbind_nodemask) 2392 nodes_and(alloc_nodemask, *mbind_nodemask, cpuset_current_mems_allowed); 2393 else 2394 alloc_nodemask = cpuset_current_mems_allowed; 2395 2396 lockdep_assert_held(&hugetlb_lock); 2397 needed = (h->resv_huge_pages + delta) - h->free_huge_pages; 2398 if (needed <= 0) { 2399 h->resv_huge_pages += delta; 2400 return 0; 2401 } 2402 2403 allocated = 0; 2404 2405 ret = -ENOMEM; 2406 retry: 2407 spin_unlock_irq(&hugetlb_lock); 2408 for (i = 0; i < needed; i++) { 2409 folio = NULL; 2410 2411 /* 2412 * It is okay to use NUMA_NO_NODE because we use numa_mem_id() 2413 * down the road to pick the current node if that is the case. 2414 */ 2415 folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h), 2416 NUMA_NO_NODE, &alloc_nodemask); 2417 if (!folio) { 2418 alloc_ok = false; 2419 break; 2420 } 2421 list_add(&folio->lru, &surplus_list); 2422 cond_resched(); 2423 } 2424 allocated += i; 2425 2426 /* 2427 * After retaking hugetlb_lock, we need to recalculate 'needed' 2428 * because either resv_huge_pages or free_huge_pages may have changed. 2429 */ 2430 spin_lock_irq(&hugetlb_lock); 2431 needed = (h->resv_huge_pages + delta) - 2432 (h->free_huge_pages + allocated); 2433 if (needed > 0) { 2434 if (alloc_ok) 2435 goto retry; 2436 /* 2437 * We were not able to allocate enough pages to 2438 * satisfy the entire reservation so we free what 2439 * we've allocated so far. 2440 */ 2441 goto free; 2442 } 2443 /* 2444 * The surplus_list now contains _at_least_ the number of extra pages 2445 * needed to accommodate the reservation. Add the appropriate number 2446 * of pages to the hugetlb pool and free the extras back to the buddy 2447 * allocator. Commit the entire reservation here to prevent another 2448 * process from stealing the pages as they are added to the pool but 2449 * before they are reserved. 2450 */ 2451 needed += allocated; 2452 h->resv_huge_pages += delta; 2453 ret = 0; 2454 2455 /* Free the needed pages to the hugetlb pool */ 2456 list_for_each_entry_safe(folio, tmp, &surplus_list, lru) { 2457 if ((--needed) < 0) 2458 break; 2459 /* Add the page to the hugetlb allocator */ 2460 enqueue_hugetlb_folio(h, folio); 2461 } 2462 free: 2463 spin_unlock_irq(&hugetlb_lock); 2464 2465 /* 2466 * Free unnecessary surplus pages to the buddy allocator. 2467 * Pages have no ref count, call free_huge_folio directly. 2468 */ 2469 list_for_each_entry_safe(folio, tmp, &surplus_list, lru) 2470 free_huge_folio(folio); 2471 spin_lock_irq(&hugetlb_lock); 2472 2473 return ret; 2474 } 2475 2476 /* 2477 * This routine has two main purposes: 2478 * 1) Decrement the reservation count (resv_huge_pages) by the value passed 2479 * in unused_resv_pages. This corresponds to the prior adjustments made 2480 * to the associated reservation map. 2481 * 2) Free any unused surplus pages that may have been allocated to satisfy 2482 * the reservation. As many as unused_resv_pages may be freed. 2483 */ 2484 static void return_unused_surplus_pages(struct hstate *h, 2485 unsigned long unused_resv_pages) 2486 { 2487 unsigned long nr_pages; 2488 LIST_HEAD(page_list); 2489 2490 lockdep_assert_held(&hugetlb_lock); 2491 /* Uncommit the reservation */ 2492 h->resv_huge_pages -= unused_resv_pages; 2493 2494 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 2495 goto out; 2496 2497 /* 2498 * Part (or even all) of the reservation could have been backed 2499 * by pre-allocated pages. Only free surplus pages. 2500 */ 2501 nr_pages = min(unused_resv_pages, h->surplus_huge_pages); 2502 2503 /* 2504 * We want to release as many surplus pages as possible, spread 2505 * evenly across all nodes with memory. Iterate across these nodes 2506 * until we can no longer free unreserved surplus pages. This occurs 2507 * when the nodes with surplus pages have no free pages. 2508 * remove_pool_hugetlb_folio() will balance the freed pages across the 2509 * on-line nodes with memory and will handle the hstate accounting. 2510 */ 2511 while (nr_pages--) { 2512 struct folio *folio; 2513 2514 folio = remove_pool_hugetlb_folio(h, &node_states[N_MEMORY], 1); 2515 if (!folio) 2516 goto out; 2517 2518 list_add(&folio->lru, &page_list); 2519 } 2520 2521 out: 2522 spin_unlock_irq(&hugetlb_lock); 2523 update_and_free_pages_bulk(h, &page_list); 2524 spin_lock_irq(&hugetlb_lock); 2525 } 2526 2527 2528 /* 2529 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation 2530 * are used by the huge page allocation routines to manage reservations. 2531 * 2532 * vma_needs_reservation is called to determine if the huge page at addr 2533 * within the vma has an associated reservation. If a reservation is 2534 * needed, the value 1 is returned. The caller is then responsible for 2535 * managing the global reservation and subpool usage counts. After 2536 * the huge page has been allocated, vma_commit_reservation is called 2537 * to add the page to the reservation map. If the page allocation fails, 2538 * the reservation must be ended instead of committed. vma_end_reservation 2539 * is called in such cases. 2540 * 2541 * In the normal case, vma_commit_reservation returns the same value 2542 * as the preceding vma_needs_reservation call. The only time this 2543 * is not the case is if a reserve map was changed between calls. It 2544 * is the responsibility of the caller to notice the difference and 2545 * take appropriate action. 2546 * 2547 * vma_add_reservation is used in error paths where a reservation must 2548 * be restored when a newly allocated huge page must be freed. It is 2549 * to be called after calling vma_needs_reservation to determine if a 2550 * reservation exists. 2551 * 2552 * vma_del_reservation is used in error paths where an entry in the reserve 2553 * map was created during huge page allocation and must be removed. It is to 2554 * be called after calling vma_needs_reservation to determine if a reservation 2555 * exists. 2556 */ 2557 enum vma_resv_mode { 2558 VMA_NEEDS_RESV, 2559 VMA_COMMIT_RESV, 2560 VMA_END_RESV, 2561 VMA_ADD_RESV, 2562 VMA_DEL_RESV, 2563 }; 2564 static long __vma_reservation_common(struct hstate *h, 2565 struct vm_area_struct *vma, unsigned long addr, 2566 enum vma_resv_mode mode) 2567 { 2568 struct resv_map *resv; 2569 pgoff_t idx; 2570 long ret; 2571 long dummy_out_regions_needed; 2572 2573 resv = vma_resv_map(vma); 2574 if (!resv) 2575 return 1; 2576 2577 idx = vma_hugecache_offset(h, vma, addr); 2578 switch (mode) { 2579 case VMA_NEEDS_RESV: 2580 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed); 2581 /* We assume that vma_reservation_* routines always operate on 2582 * 1 page, and that adding to resv map a 1 page entry can only 2583 * ever require 1 region. 2584 */ 2585 VM_BUG_ON(dummy_out_regions_needed != 1); 2586 break; 2587 case VMA_COMMIT_RESV: 2588 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2589 /* region_add calls of range 1 should never fail. */ 2590 VM_BUG_ON(ret < 0); 2591 break; 2592 case VMA_END_RESV: 2593 region_abort(resv, idx, idx + 1, 1); 2594 ret = 0; 2595 break; 2596 case VMA_ADD_RESV: 2597 if (vma->vm_flags & VM_MAYSHARE) { 2598 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2599 /* region_add calls of range 1 should never fail. */ 2600 VM_BUG_ON(ret < 0); 2601 } else { 2602 region_abort(resv, idx, idx + 1, 1); 2603 ret = region_del(resv, idx, idx + 1); 2604 } 2605 break; 2606 case VMA_DEL_RESV: 2607 if (vma->vm_flags & VM_MAYSHARE) { 2608 region_abort(resv, idx, idx + 1, 1); 2609 ret = region_del(resv, idx, idx + 1); 2610 } else { 2611 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2612 /* region_add calls of range 1 should never fail. */ 2613 VM_BUG_ON(ret < 0); 2614 } 2615 break; 2616 default: 2617 BUG(); 2618 } 2619 2620 if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV) 2621 return ret; 2622 /* 2623 * We know private mapping must have HPAGE_RESV_OWNER set. 2624 * 2625 * In most cases, reserves always exist for private mappings. 2626 * However, a file associated with mapping could have been 2627 * hole punched or truncated after reserves were consumed. 2628 * As subsequent fault on such a range will not use reserves. 2629 * Subtle - The reserve map for private mappings has the 2630 * opposite meaning than that of shared mappings. If NO 2631 * entry is in the reserve map, it means a reservation exists. 2632 * If an entry exists in the reserve map, it means the 2633 * reservation has already been consumed. As a result, the 2634 * return value of this routine is the opposite of the 2635 * value returned from reserve map manipulation routines above. 2636 */ 2637 if (ret > 0) 2638 return 0; 2639 if (ret == 0) 2640 return 1; 2641 return ret; 2642 } 2643 2644 static long vma_needs_reservation(struct hstate *h, 2645 struct vm_area_struct *vma, unsigned long addr) 2646 { 2647 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV); 2648 } 2649 2650 static long vma_commit_reservation(struct hstate *h, 2651 struct vm_area_struct *vma, unsigned long addr) 2652 { 2653 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV); 2654 } 2655 2656 static void vma_end_reservation(struct hstate *h, 2657 struct vm_area_struct *vma, unsigned long addr) 2658 { 2659 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV); 2660 } 2661 2662 static long vma_add_reservation(struct hstate *h, 2663 struct vm_area_struct *vma, unsigned long addr) 2664 { 2665 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV); 2666 } 2667 2668 static long vma_del_reservation(struct hstate *h, 2669 struct vm_area_struct *vma, unsigned long addr) 2670 { 2671 return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV); 2672 } 2673 2674 /* 2675 * This routine is called to restore reservation information on error paths. 2676 * It should ONLY be called for folios allocated via alloc_hugetlb_folio(), 2677 * and the hugetlb mutex should remain held when calling this routine. 2678 * 2679 * It handles two specific cases: 2680 * 1) A reservation was in place and the folio consumed the reservation. 2681 * hugetlb_restore_reserve is set in the folio. 2682 * 2) No reservation was in place for the page, so hugetlb_restore_reserve is 2683 * not set. However, alloc_hugetlb_folio always updates the reserve map. 2684 * 2685 * In case 1, free_huge_folio later in the error path will increment the 2686 * global reserve count. But, free_huge_folio does not have enough context 2687 * to adjust the reservation map. This case deals primarily with private 2688 * mappings. Adjust the reserve map here to be consistent with global 2689 * reserve count adjustments to be made by free_huge_folio. Make sure the 2690 * reserve map indicates there is a reservation present. 2691 * 2692 * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio. 2693 */ 2694 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma, 2695 unsigned long address, struct folio *folio) 2696 { 2697 long rc = vma_needs_reservation(h, vma, address); 2698 2699 if (folio_test_hugetlb_restore_reserve(folio)) { 2700 if (unlikely(rc < 0)) 2701 /* 2702 * Rare out of memory condition in reserve map 2703 * manipulation. Clear hugetlb_restore_reserve so 2704 * that global reserve count will not be incremented 2705 * by free_huge_folio. This will make it appear 2706 * as though the reservation for this folio was 2707 * consumed. This may prevent the task from 2708 * faulting in the folio at a later time. This 2709 * is better than inconsistent global huge page 2710 * accounting of reserve counts. 2711 */ 2712 folio_clear_hugetlb_restore_reserve(folio); 2713 else if (rc) 2714 (void)vma_add_reservation(h, vma, address); 2715 else 2716 vma_end_reservation(h, vma, address); 2717 } else { 2718 if (!rc) { 2719 /* 2720 * This indicates there is an entry in the reserve map 2721 * not added by alloc_hugetlb_folio. We know it was added 2722 * before the alloc_hugetlb_folio call, otherwise 2723 * hugetlb_restore_reserve would be set on the folio. 2724 * Remove the entry so that a subsequent allocation 2725 * does not consume a reservation. 2726 */ 2727 rc = vma_del_reservation(h, vma, address); 2728 if (rc < 0) 2729 /* 2730 * VERY rare out of memory condition. Since 2731 * we can not delete the entry, set 2732 * hugetlb_restore_reserve so that the reserve 2733 * count will be incremented when the folio 2734 * is freed. This reserve will be consumed 2735 * on a subsequent allocation. 2736 */ 2737 folio_set_hugetlb_restore_reserve(folio); 2738 } else if (rc < 0) { 2739 /* 2740 * Rare out of memory condition from 2741 * vma_needs_reservation call. Memory allocation is 2742 * only attempted if a new entry is needed. Therefore, 2743 * this implies there is not an entry in the 2744 * reserve map. 2745 * 2746 * For shared mappings, no entry in the map indicates 2747 * no reservation. We are done. 2748 */ 2749 if (!(vma->vm_flags & VM_MAYSHARE)) 2750 /* 2751 * For private mappings, no entry indicates 2752 * a reservation is present. Since we can 2753 * not add an entry, set hugetlb_restore_reserve 2754 * on the folio so reserve count will be 2755 * incremented when freed. This reserve will 2756 * be consumed on a subsequent allocation. 2757 */ 2758 folio_set_hugetlb_restore_reserve(folio); 2759 } else 2760 /* 2761 * No reservation present, do nothing 2762 */ 2763 vma_end_reservation(h, vma, address); 2764 } 2765 } 2766 2767 /* 2768 * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve 2769 * the old one 2770 * @old_folio: Old folio to dissolve 2771 * @list: List to isolate the page in case we need to 2772 * Returns 0 on success, otherwise negated error. 2773 */ 2774 static int alloc_and_dissolve_hugetlb_folio(struct folio *old_folio, 2775 struct list_head *list) 2776 { 2777 gfp_t gfp_mask; 2778 struct hstate *h; 2779 int nid = folio_nid(old_folio); 2780 struct folio *new_folio = NULL; 2781 int ret = 0; 2782 2783 retry: 2784 /* 2785 * The old_folio might have been dissolved from under our feet, so make sure 2786 * to carefully check the state under the lock. 2787 */ 2788 spin_lock_irq(&hugetlb_lock); 2789 if (!folio_test_hugetlb(old_folio)) { 2790 /* 2791 * Freed from under us. Drop new_folio too. 2792 */ 2793 goto free_new; 2794 } else if (folio_ref_count(old_folio)) { 2795 bool isolated; 2796 2797 /* 2798 * Someone has grabbed the folio, try to isolate it here. 2799 * Fail with -EBUSY if not possible. 2800 */ 2801 spin_unlock_irq(&hugetlb_lock); 2802 isolated = folio_isolate_hugetlb(old_folio, list); 2803 ret = isolated ? 0 : -EBUSY; 2804 spin_lock_irq(&hugetlb_lock); 2805 goto free_new; 2806 } else if (!folio_test_hugetlb_freed(old_folio)) { 2807 /* 2808 * Folio's refcount is 0 but it has not been enqueued in the 2809 * freelist yet. Race window is small, so we can succeed here if 2810 * we retry. 2811 */ 2812 spin_unlock_irq(&hugetlb_lock); 2813 cond_resched(); 2814 goto retry; 2815 } else { 2816 h = folio_hstate(old_folio); 2817 if (!new_folio) { 2818 spin_unlock_irq(&hugetlb_lock); 2819 gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 2820 new_folio = alloc_fresh_hugetlb_folio(h, gfp_mask, 2821 nid, NULL); 2822 if (!new_folio) 2823 return -ENOMEM; 2824 goto retry; 2825 } 2826 2827 /* 2828 * Ok, old_folio is still a genuine free hugepage. Remove it from 2829 * the freelist and decrease the counters. These will be 2830 * incremented again when calling account_new_hugetlb_folio() 2831 * and enqueue_hugetlb_folio() for new_folio. The counters will 2832 * remain stable since this happens under the lock. 2833 */ 2834 remove_hugetlb_folio(h, old_folio, false); 2835 2836 /* 2837 * Ref count on new_folio is already zero as it was dropped 2838 * earlier. It can be directly added to the pool free list. 2839 */ 2840 account_new_hugetlb_folio(h, new_folio); 2841 enqueue_hugetlb_folio(h, new_folio); 2842 2843 /* 2844 * Folio has been replaced, we can safely free the old one. 2845 */ 2846 spin_unlock_irq(&hugetlb_lock); 2847 update_and_free_hugetlb_folio(h, old_folio, false); 2848 } 2849 2850 return ret; 2851 2852 free_new: 2853 spin_unlock_irq(&hugetlb_lock); 2854 if (new_folio) 2855 update_and_free_hugetlb_folio(h, new_folio, false); 2856 2857 return ret; 2858 } 2859 2860 int isolate_or_dissolve_huge_folio(struct folio *folio, struct list_head *list) 2861 { 2862 int ret = -EBUSY; 2863 2864 /* Not to disrupt normal path by vainly holding hugetlb_lock */ 2865 if (!folio_test_hugetlb(folio)) 2866 return 0; 2867 2868 /* 2869 * Fence off gigantic pages as there is a cyclic dependency between 2870 * alloc_contig_range and them. Return -ENOMEM as this has the effect 2871 * of bailing out right away without further retrying. 2872 */ 2873 if (order_is_gigantic(folio_order(folio))) 2874 return -ENOMEM; 2875 2876 if (folio_ref_count(folio) && folio_isolate_hugetlb(folio, list)) 2877 ret = 0; 2878 else if (!folio_ref_count(folio)) 2879 ret = alloc_and_dissolve_hugetlb_folio(folio, list); 2880 2881 return ret; 2882 } 2883 2884 /* 2885 * replace_free_hugepage_folios - Replace free hugepage folios in a given pfn 2886 * range with new folios. 2887 * @start_pfn: start pfn of the given pfn range 2888 * @end_pfn: end pfn of the given pfn range 2889 * Returns 0 on success, otherwise negated error. 2890 */ 2891 int replace_free_hugepage_folios(unsigned long start_pfn, unsigned long end_pfn) 2892 { 2893 struct folio *folio; 2894 int ret = 0; 2895 2896 LIST_HEAD(isolate_list); 2897 2898 while (start_pfn < end_pfn) { 2899 folio = pfn_folio(start_pfn); 2900 2901 /* Not to disrupt normal path by vainly holding hugetlb_lock */ 2902 if (folio_test_hugetlb(folio) && !folio_ref_count(folio)) { 2903 ret = alloc_and_dissolve_hugetlb_folio(folio, &isolate_list); 2904 if (ret) 2905 break; 2906 2907 putback_movable_pages(&isolate_list); 2908 } 2909 start_pfn++; 2910 } 2911 2912 return ret; 2913 } 2914 2915 void wait_for_freed_hugetlb_folios(void) 2916 { 2917 if (llist_empty(&hpage_freelist)) 2918 return; 2919 2920 flush_work(&free_hpage_work); 2921 } 2922 2923 typedef enum { 2924 /* 2925 * For either 0/1: we checked the per-vma resv map, and one resv 2926 * count either can be reused (0), or an extra needed (1). 2927 */ 2928 MAP_CHG_REUSE = 0, 2929 MAP_CHG_NEEDED = 1, 2930 /* 2931 * Cannot use per-vma resv count can be used, hence a new resv 2932 * count is enforced. 2933 * 2934 * NOTE: This is mostly identical to MAP_CHG_NEEDED, except 2935 * that currently vma_needs_reservation() has an unwanted side 2936 * effect to either use end() or commit() to complete the 2937 * transaction. Hence it needs to differenciate from NEEDED. 2938 */ 2939 MAP_CHG_ENFORCED = 2, 2940 } map_chg_state; 2941 2942 /* 2943 * NOTE! "cow_from_owner" represents a very hacky usage only used in CoW 2944 * faults of hugetlb private mappings on top of a non-page-cache folio (in 2945 * which case even if there's a private vma resv map it won't cover such 2946 * allocation). New call sites should (probably) never set it to true!! 2947 * When it's set, the allocation will bypass all vma level reservations. 2948 */ 2949 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma, 2950 unsigned long addr, bool cow_from_owner) 2951 { 2952 struct hugepage_subpool *spool = subpool_vma(vma); 2953 struct hstate *h = hstate_vma(vma); 2954 struct folio *folio; 2955 long retval, gbl_chg, gbl_reserve; 2956 map_chg_state map_chg; 2957 int ret, idx; 2958 struct hugetlb_cgroup *h_cg = NULL; 2959 gfp_t gfp = htlb_alloc_mask(h) | __GFP_RETRY_MAYFAIL; 2960 2961 idx = hstate_index(h); 2962 2963 /* Whether we need a separate per-vma reservation? */ 2964 if (cow_from_owner) { 2965 /* 2966 * Special case! Since it's a CoW on top of a reserved 2967 * page, the private resv map doesn't count. So it cannot 2968 * consume the per-vma resv map even if it's reserved. 2969 */ 2970 map_chg = MAP_CHG_ENFORCED; 2971 } else { 2972 /* 2973 * Examine the region/reserve map to determine if the process 2974 * has a reservation for the page to be allocated. A return 2975 * code of zero indicates a reservation exists (no change). 2976 */ 2977 retval = vma_needs_reservation(h, vma, addr); 2978 if (retval < 0) 2979 return ERR_PTR(-ENOMEM); 2980 map_chg = retval ? MAP_CHG_NEEDED : MAP_CHG_REUSE; 2981 } 2982 2983 /* 2984 * Whether we need a separate global reservation? 2985 * 2986 * Processes that did not create the mapping will have no 2987 * reserves as indicated by the region/reserve map. Check 2988 * that the allocation will not exceed the subpool limit. 2989 * Or if it can get one from the pool reservation directly. 2990 */ 2991 if (map_chg) { 2992 gbl_chg = hugepage_subpool_get_pages(spool, 1); 2993 if (gbl_chg < 0) 2994 goto out_end_reservation; 2995 } else { 2996 /* 2997 * If we have the vma reservation ready, no need for extra 2998 * global reservation. 2999 */ 3000 gbl_chg = 0; 3001 } 3002 3003 /* 3004 * If this allocation is not consuming a per-vma reservation, 3005 * charge the hugetlb cgroup now. 3006 */ 3007 if (map_chg) { 3008 ret = hugetlb_cgroup_charge_cgroup_rsvd( 3009 idx, pages_per_huge_page(h), &h_cg); 3010 if (ret) 3011 goto out_subpool_put; 3012 } 3013 3014 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg); 3015 if (ret) 3016 goto out_uncharge_cgroup_reservation; 3017 3018 spin_lock_irq(&hugetlb_lock); 3019 /* 3020 * glb_chg is passed to indicate whether or not a page must be taken 3021 * from the global free pool (global change). gbl_chg == 0 indicates 3022 * a reservation exists for the allocation. 3023 */ 3024 folio = dequeue_hugetlb_folio_vma(h, vma, addr, gbl_chg); 3025 if (!folio) { 3026 spin_unlock_irq(&hugetlb_lock); 3027 folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr); 3028 if (!folio) 3029 goto out_uncharge_cgroup; 3030 spin_lock_irq(&hugetlb_lock); 3031 list_add(&folio->lru, &h->hugepage_activelist); 3032 folio_ref_unfreeze(folio, 1); 3033 /* Fall through */ 3034 } 3035 3036 /* 3037 * Either dequeued or buddy-allocated folio needs to add special 3038 * mark to the folio when it consumes a global reservation. 3039 */ 3040 if (!gbl_chg) { 3041 folio_set_hugetlb_restore_reserve(folio); 3042 h->resv_huge_pages--; 3043 } 3044 3045 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio); 3046 /* If allocation is not consuming a reservation, also store the 3047 * hugetlb_cgroup pointer on the page. 3048 */ 3049 if (map_chg) { 3050 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h), 3051 h_cg, folio); 3052 } 3053 3054 spin_unlock_irq(&hugetlb_lock); 3055 3056 hugetlb_set_folio_subpool(folio, spool); 3057 3058 if (map_chg != MAP_CHG_ENFORCED) { 3059 /* commit() is only needed if the map_chg is not enforced */ 3060 retval = vma_commit_reservation(h, vma, addr); 3061 /* 3062 * Check for possible race conditions. When it happens.. 3063 * The page was added to the reservation map between 3064 * vma_needs_reservation and vma_commit_reservation. 3065 * This indicates a race with hugetlb_reserve_pages. 3066 * Adjust for the subpool count incremented above AND 3067 * in hugetlb_reserve_pages for the same page. Also, 3068 * the reservation count added in hugetlb_reserve_pages 3069 * no longer applies. 3070 */ 3071 if (unlikely(map_chg == MAP_CHG_NEEDED && retval == 0)) { 3072 long rsv_adjust; 3073 3074 rsv_adjust = hugepage_subpool_put_pages(spool, 1); 3075 hugetlb_acct_memory(h, -rsv_adjust); 3076 if (map_chg) { 3077 spin_lock_irq(&hugetlb_lock); 3078 hugetlb_cgroup_uncharge_folio_rsvd( 3079 hstate_index(h), pages_per_huge_page(h), 3080 folio); 3081 spin_unlock_irq(&hugetlb_lock); 3082 } 3083 } 3084 } 3085 3086 ret = mem_cgroup_charge_hugetlb(folio, gfp); 3087 /* 3088 * Unconditionally increment NR_HUGETLB here. If it turns out that 3089 * mem_cgroup_charge_hugetlb failed, then immediately free the page and 3090 * decrement NR_HUGETLB. 3091 */ 3092 lruvec_stat_mod_folio(folio, NR_HUGETLB, pages_per_huge_page(h)); 3093 3094 if (ret == -ENOMEM) { 3095 free_huge_folio(folio); 3096 return ERR_PTR(-ENOMEM); 3097 } 3098 3099 return folio; 3100 3101 out_uncharge_cgroup: 3102 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg); 3103 out_uncharge_cgroup_reservation: 3104 if (map_chg) 3105 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h), 3106 h_cg); 3107 out_subpool_put: 3108 /* 3109 * put page to subpool iff the quota of subpool's rsv_hpages is used 3110 * during hugepage_subpool_get_pages. 3111 */ 3112 if (map_chg && !gbl_chg) { 3113 gbl_reserve = hugepage_subpool_put_pages(spool, 1); 3114 hugetlb_acct_memory(h, -gbl_reserve); 3115 } 3116 3117 3118 out_end_reservation: 3119 if (map_chg != MAP_CHG_ENFORCED) 3120 vma_end_reservation(h, vma, addr); 3121 return ERR_PTR(-ENOSPC); 3122 } 3123 3124 static __init void *alloc_bootmem(struct hstate *h, int nid, bool node_exact) 3125 { 3126 struct huge_bootmem_page *m; 3127 int listnode = nid; 3128 3129 if (hugetlb_early_cma(h)) 3130 m = hugetlb_cma_alloc_bootmem(h, &listnode, node_exact); 3131 else { 3132 if (node_exact) 3133 m = memblock_alloc_exact_nid_raw(huge_page_size(h), 3134 huge_page_size(h), 0, 3135 MEMBLOCK_ALLOC_ACCESSIBLE, nid); 3136 else { 3137 m = memblock_alloc_try_nid_raw(huge_page_size(h), 3138 huge_page_size(h), 0, 3139 MEMBLOCK_ALLOC_ACCESSIBLE, nid); 3140 /* 3141 * For pre-HVO to work correctly, pages need to be on 3142 * the list for the node they were actually allocated 3143 * from. That node may be different in the case of 3144 * fallback by memblock_alloc_try_nid_raw. So, 3145 * extract the actual node first. 3146 */ 3147 if (m) 3148 listnode = early_pfn_to_nid(PHYS_PFN(virt_to_phys(m))); 3149 } 3150 3151 if (m) { 3152 m->flags = 0; 3153 m->cma = NULL; 3154 } 3155 } 3156 3157 if (m) { 3158 /* 3159 * Use the beginning of the huge page to store the 3160 * huge_bootmem_page struct (until gather_bootmem 3161 * puts them into the mem_map). 3162 * 3163 * Put them into a private list first because mem_map 3164 * is not up yet. 3165 */ 3166 INIT_LIST_HEAD(&m->list); 3167 list_add(&m->list, &huge_boot_pages[listnode]); 3168 m->hstate = h; 3169 } 3170 3171 return m; 3172 } 3173 3174 int alloc_bootmem_huge_page(struct hstate *h, int nid) 3175 __attribute__ ((weak, alias("__alloc_bootmem_huge_page"))); 3176 int __alloc_bootmem_huge_page(struct hstate *h, int nid) 3177 { 3178 struct huge_bootmem_page *m = NULL; /* initialize for clang */ 3179 int nr_nodes, node = nid; 3180 3181 /* do node specific alloc */ 3182 if (nid != NUMA_NO_NODE) { 3183 m = alloc_bootmem(h, node, true); 3184 if (!m) 3185 return 0; 3186 goto found; 3187 } 3188 3189 /* allocate from next node when distributing huge pages */ 3190 for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, 3191 &hugetlb_bootmem_nodes) { 3192 m = alloc_bootmem(h, node, false); 3193 if (!m) 3194 return 0; 3195 goto found; 3196 } 3197 3198 found: 3199 3200 /* 3201 * Only initialize the head struct page in memmap_init_reserved_pages, 3202 * rest of the struct pages will be initialized by the HugeTLB 3203 * subsystem itself. 3204 * The head struct page is used to get folio information by the HugeTLB 3205 * subsystem like zone id and node id. 3206 */ 3207 memblock_reserved_mark_noinit(virt_to_phys((void *)m + PAGE_SIZE), 3208 huge_page_size(h) - PAGE_SIZE); 3209 3210 return 1; 3211 } 3212 3213 /* Initialize [start_page:end_page_number] tail struct pages of a hugepage */ 3214 static void __init hugetlb_folio_init_tail_vmemmap(struct folio *folio, 3215 unsigned long start_page_number, 3216 unsigned long end_page_number) 3217 { 3218 enum zone_type zone = zone_idx(folio_zone(folio)); 3219 int nid = folio_nid(folio); 3220 struct page *page = folio_page(folio, start_page_number); 3221 unsigned long head_pfn = folio_pfn(folio); 3222 unsigned long pfn, end_pfn = head_pfn + end_page_number; 3223 3224 /* 3225 * As we marked all tail pages with memblock_reserved_mark_noinit(), 3226 * we must initialize them ourselves here. 3227 */ 3228 for (pfn = head_pfn + start_page_number; pfn < end_pfn; page++, pfn++) { 3229 __init_single_page(page, pfn, zone, nid); 3230 prep_compound_tail((struct page *)folio, pfn - head_pfn); 3231 set_page_count(page, 0); 3232 } 3233 } 3234 3235 static void __init hugetlb_folio_init_vmemmap(struct folio *folio, 3236 struct hstate *h, 3237 unsigned long nr_pages) 3238 { 3239 int ret; 3240 3241 /* 3242 * This is an open-coded prep_compound_page() whereby we avoid 3243 * walking pages twice by initializing/preparing+freezing them in the 3244 * same go. 3245 */ 3246 __folio_clear_reserved(folio); 3247 __folio_set_head(folio); 3248 ret = folio_ref_freeze(folio, 1); 3249 VM_BUG_ON(!ret); 3250 hugetlb_folio_init_tail_vmemmap(folio, 1, nr_pages); 3251 prep_compound_head((struct page *)folio, huge_page_order(h)); 3252 } 3253 3254 static bool __init hugetlb_bootmem_page_prehvo(struct huge_bootmem_page *m) 3255 { 3256 return m->flags & HUGE_BOOTMEM_HVO; 3257 } 3258 3259 static bool __init hugetlb_bootmem_page_earlycma(struct huge_bootmem_page *m) 3260 { 3261 return m->flags & HUGE_BOOTMEM_CMA; 3262 } 3263 3264 /* 3265 * memblock-allocated pageblocks might not have the migrate type set 3266 * if marked with the 'noinit' flag. Set it to the default (MIGRATE_MOVABLE) 3267 * here, or MIGRATE_CMA if this was a page allocated through an early CMA 3268 * reservation. 3269 * 3270 * In case of vmemmap optimized folios, the tail vmemmap pages are mapped 3271 * read-only, but that's ok - for sparse vmemmap this does not write to 3272 * the page structure. 3273 */ 3274 static void __init hugetlb_bootmem_init_migratetype(struct folio *folio, 3275 struct hstate *h) 3276 { 3277 unsigned long nr_pages = pages_per_huge_page(h), i; 3278 3279 WARN_ON_ONCE(!pageblock_aligned(folio_pfn(folio))); 3280 3281 for (i = 0; i < nr_pages; i += pageblock_nr_pages) { 3282 if (folio_test_hugetlb_cma(folio)) 3283 init_cma_pageblock(folio_page(folio, i)); 3284 else 3285 init_pageblock_migratetype(folio_page(folio, i), 3286 MIGRATE_MOVABLE, false); 3287 } 3288 } 3289 3290 static void __init prep_and_add_bootmem_folios(struct hstate *h, 3291 struct list_head *folio_list) 3292 { 3293 unsigned long flags; 3294 struct folio *folio, *tmp_f; 3295 3296 /* Send list for bulk vmemmap optimization processing */ 3297 hugetlb_vmemmap_optimize_bootmem_folios(h, folio_list); 3298 3299 list_for_each_entry_safe(folio, tmp_f, folio_list, lru) { 3300 if (!folio_test_hugetlb_vmemmap_optimized(folio)) { 3301 /* 3302 * If HVO fails, initialize all tail struct pages 3303 * We do not worry about potential long lock hold 3304 * time as this is early in boot and there should 3305 * be no contention. 3306 */ 3307 hugetlb_folio_init_tail_vmemmap(folio, 3308 HUGETLB_VMEMMAP_RESERVE_PAGES, 3309 pages_per_huge_page(h)); 3310 } 3311 hugetlb_bootmem_init_migratetype(folio, h); 3312 /* Subdivide locks to achieve better parallel performance */ 3313 spin_lock_irqsave(&hugetlb_lock, flags); 3314 account_new_hugetlb_folio(h, folio); 3315 enqueue_hugetlb_folio(h, folio); 3316 spin_unlock_irqrestore(&hugetlb_lock, flags); 3317 } 3318 } 3319 3320 bool __init hugetlb_bootmem_page_zones_valid(int nid, 3321 struct huge_bootmem_page *m) 3322 { 3323 unsigned long start_pfn; 3324 bool valid; 3325 3326 if (m->flags & HUGE_BOOTMEM_ZONES_VALID) { 3327 /* 3328 * Already validated, skip check. 3329 */ 3330 return true; 3331 } 3332 3333 if (hugetlb_bootmem_page_earlycma(m)) { 3334 valid = cma_validate_zones(m->cma); 3335 goto out; 3336 } 3337 3338 start_pfn = virt_to_phys(m) >> PAGE_SHIFT; 3339 3340 valid = !pfn_range_intersects_zones(nid, start_pfn, 3341 pages_per_huge_page(m->hstate)); 3342 out: 3343 if (!valid) 3344 hstate_boot_nrinvalid[hstate_index(m->hstate)]++; 3345 3346 return valid; 3347 } 3348 3349 /* 3350 * Free a bootmem page that was found to be invalid (intersecting with 3351 * multiple zones). 3352 * 3353 * Since it intersects with multiple zones, we can't just do a free 3354 * operation on all pages at once, but instead have to walk all 3355 * pages, freeing them one by one. 3356 */ 3357 static void __init hugetlb_bootmem_free_invalid_page(int nid, struct page *page, 3358 struct hstate *h) 3359 { 3360 unsigned long npages = pages_per_huge_page(h); 3361 unsigned long pfn; 3362 3363 while (npages--) { 3364 pfn = page_to_pfn(page); 3365 __init_page_from_nid(pfn, nid); 3366 free_reserved_page(page); 3367 page++; 3368 } 3369 } 3370 3371 /* 3372 * Put bootmem huge pages into the standard lists after mem_map is up. 3373 * Note: This only applies to gigantic (order > MAX_PAGE_ORDER) pages. 3374 */ 3375 static void __init gather_bootmem_prealloc_node(unsigned long nid) 3376 { 3377 LIST_HEAD(folio_list); 3378 struct huge_bootmem_page *m, *tm; 3379 struct hstate *h = NULL, *prev_h = NULL; 3380 3381 list_for_each_entry_safe(m, tm, &huge_boot_pages[nid], list) { 3382 struct page *page = virt_to_page(m); 3383 struct folio *folio = (void *)page; 3384 3385 h = m->hstate; 3386 if (!hugetlb_bootmem_page_zones_valid(nid, m)) { 3387 /* 3388 * Can't use this page. Initialize the 3389 * page structures if that hasn't already 3390 * been done, and give them to the page 3391 * allocator. 3392 */ 3393 hugetlb_bootmem_free_invalid_page(nid, page, h); 3394 continue; 3395 } 3396 3397 /* 3398 * It is possible to have multiple huge page sizes (hstates) 3399 * in this list. If so, process each size separately. 3400 */ 3401 if (h != prev_h && prev_h != NULL) 3402 prep_and_add_bootmem_folios(prev_h, &folio_list); 3403 prev_h = h; 3404 3405 VM_BUG_ON(!hstate_is_gigantic(h)); 3406 WARN_ON(folio_ref_count(folio) != 1); 3407 3408 hugetlb_folio_init_vmemmap(folio, h, 3409 HUGETLB_VMEMMAP_RESERVE_PAGES); 3410 init_new_hugetlb_folio(folio); 3411 3412 if (hugetlb_bootmem_page_prehvo(m)) 3413 /* 3414 * If pre-HVO was done, just set the 3415 * flag, the HVO code will then skip 3416 * this folio. 3417 */ 3418 folio_set_hugetlb_vmemmap_optimized(folio); 3419 3420 if (hugetlb_bootmem_page_earlycma(m)) 3421 folio_set_hugetlb_cma(folio); 3422 3423 list_add(&folio->lru, &folio_list); 3424 3425 /* 3426 * We need to restore the 'stolen' pages to totalram_pages 3427 * in order to fix confusing memory reports from free(1) and 3428 * other side-effects, like CommitLimit going negative. 3429 * 3430 * For CMA pages, this is done in init_cma_pageblock 3431 * (via hugetlb_bootmem_init_migratetype), so skip it here. 3432 */ 3433 if (!folio_test_hugetlb_cma(folio)) 3434 adjust_managed_page_count(page, pages_per_huge_page(h)); 3435 cond_resched(); 3436 } 3437 3438 prep_and_add_bootmem_folios(h, &folio_list); 3439 } 3440 3441 static void __init gather_bootmem_prealloc_parallel(unsigned long start, 3442 unsigned long end, void *arg) 3443 { 3444 int nid; 3445 3446 for (nid = start; nid < end; nid++) 3447 gather_bootmem_prealloc_node(nid); 3448 } 3449 3450 static void __init gather_bootmem_prealloc(void) 3451 { 3452 struct padata_mt_job job = { 3453 .thread_fn = gather_bootmem_prealloc_parallel, 3454 .fn_arg = NULL, 3455 .start = 0, 3456 .size = nr_node_ids, 3457 .align = 1, 3458 .min_chunk = 1, 3459 .max_threads = num_node_state(N_MEMORY), 3460 .numa_aware = true, 3461 }; 3462 3463 padata_do_multithreaded(&job); 3464 } 3465 3466 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid) 3467 { 3468 unsigned long i; 3469 char buf[32]; 3470 LIST_HEAD(folio_list); 3471 3472 for (i = 0; i < h->max_huge_pages_node[nid]; ++i) { 3473 if (hstate_is_gigantic(h)) { 3474 if (!alloc_bootmem_huge_page(h, nid)) 3475 break; 3476 } else { 3477 struct folio *folio; 3478 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 3479 3480 folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, nid, 3481 &node_states[N_MEMORY], NULL); 3482 if (!folio) 3483 break; 3484 list_add(&folio->lru, &folio_list); 3485 } 3486 cond_resched(); 3487 } 3488 3489 if (!list_empty(&folio_list)) 3490 prep_and_add_allocated_folios(h, &folio_list); 3491 3492 if (i == h->max_huge_pages_node[nid]) 3493 return; 3494 3495 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3496 pr_warn("HugeTLB: allocating %u of page size %s failed node%d. Only allocated %lu hugepages.\n", 3497 h->max_huge_pages_node[nid], buf, nid, i); 3498 h->max_huge_pages -= (h->max_huge_pages_node[nid] - i); 3499 h->max_huge_pages_node[nid] = i; 3500 } 3501 3502 static bool __init hugetlb_hstate_alloc_pages_specific_nodes(struct hstate *h) 3503 { 3504 int i; 3505 bool node_specific_alloc = false; 3506 3507 for_each_online_node(i) { 3508 if (h->max_huge_pages_node[i] > 0) { 3509 hugetlb_hstate_alloc_pages_onenode(h, i); 3510 node_specific_alloc = true; 3511 } 3512 } 3513 3514 return node_specific_alloc; 3515 } 3516 3517 static void __init hugetlb_hstate_alloc_pages_errcheck(unsigned long allocated, struct hstate *h) 3518 { 3519 if (allocated < h->max_huge_pages) { 3520 char buf[32]; 3521 3522 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3523 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n", 3524 h->max_huge_pages, buf, allocated); 3525 h->max_huge_pages = allocated; 3526 } 3527 } 3528 3529 static void __init hugetlb_pages_alloc_boot_node(unsigned long start, unsigned long end, void *arg) 3530 { 3531 struct hstate *h = (struct hstate *)arg; 3532 int i, num = end - start; 3533 nodemask_t node_alloc_noretry; 3534 LIST_HEAD(folio_list); 3535 int next_node = first_online_node; 3536 3537 /* Bit mask controlling how hard we retry per-node allocations.*/ 3538 nodes_clear(node_alloc_noretry); 3539 3540 for (i = 0; i < num; ++i) { 3541 struct folio *folio; 3542 3543 if (hugetlb_vmemmap_optimizable_size(h) && 3544 (si_mem_available() == 0) && !list_empty(&folio_list)) { 3545 prep_and_add_allocated_folios(h, &folio_list); 3546 INIT_LIST_HEAD(&folio_list); 3547 } 3548 folio = alloc_pool_huge_folio(h, &node_states[N_MEMORY], 3549 &node_alloc_noretry, &next_node); 3550 if (!folio) 3551 break; 3552 3553 list_move(&folio->lru, &folio_list); 3554 cond_resched(); 3555 } 3556 3557 prep_and_add_allocated_folios(h, &folio_list); 3558 } 3559 3560 static unsigned long __init hugetlb_gigantic_pages_alloc_boot(struct hstate *h) 3561 { 3562 unsigned long i; 3563 3564 for (i = 0; i < h->max_huge_pages; ++i) { 3565 if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE)) 3566 break; 3567 cond_resched(); 3568 } 3569 3570 return i; 3571 } 3572 3573 static unsigned long __init hugetlb_pages_alloc_boot(struct hstate *h) 3574 { 3575 struct padata_mt_job job = { 3576 .fn_arg = h, 3577 .align = 1, 3578 .numa_aware = true 3579 }; 3580 3581 unsigned long jiffies_start; 3582 unsigned long jiffies_end; 3583 unsigned long remaining; 3584 3585 job.thread_fn = hugetlb_pages_alloc_boot_node; 3586 3587 /* 3588 * job.max_threads is 25% of the available cpu threads by default. 3589 * 3590 * On large servers with terabytes of memory, huge page allocation 3591 * can consume a considerably amount of time. 3592 * 3593 * Tests below show how long it takes to allocate 1 TiB of memory with 2MiB huge pages. 3594 * 2MiB huge pages. Using more threads can significantly improve allocation time. 3595 * 3596 * +-----------------------+-------+-------+-------+-------+-------+ 3597 * | threads | 8 | 16 | 32 | 64 | 128 | 3598 * +-----------------------+-------+-------+-------+-------+-------+ 3599 * | skylake 144 cpus | 44s | 22s | 16s | 19s | 20s | 3600 * | cascade lake 192 cpus | 39s | 20s | 11s | 10s | 9s | 3601 * +-----------------------+-------+-------+-------+-------+-------+ 3602 */ 3603 if (hugepage_allocation_threads == 0) { 3604 hugepage_allocation_threads = num_online_cpus() / 4; 3605 hugepage_allocation_threads = max(hugepage_allocation_threads, 1); 3606 } 3607 3608 job.max_threads = hugepage_allocation_threads; 3609 3610 jiffies_start = jiffies; 3611 do { 3612 remaining = h->max_huge_pages - h->nr_huge_pages; 3613 3614 job.start = h->nr_huge_pages; 3615 job.size = remaining; 3616 job.min_chunk = remaining / hugepage_allocation_threads; 3617 padata_do_multithreaded(&job); 3618 3619 if (h->nr_huge_pages == h->max_huge_pages) 3620 break; 3621 3622 /* 3623 * Retry only if the vmemmap optimization might have been able to free 3624 * some memory back to the system. 3625 */ 3626 if (!hugetlb_vmemmap_optimizable(h)) 3627 break; 3628 3629 /* Continue if progress was made in last iteration */ 3630 } while (remaining != (h->max_huge_pages - h->nr_huge_pages)); 3631 3632 jiffies_end = jiffies; 3633 3634 pr_info("HugeTLB: allocation took %dms with hugepage_allocation_threads=%ld\n", 3635 jiffies_to_msecs(jiffies_end - jiffies_start), 3636 hugepage_allocation_threads); 3637 3638 return h->nr_huge_pages; 3639 } 3640 3641 /* 3642 * NOTE: this routine is called in different contexts for gigantic and 3643 * non-gigantic pages. 3644 * - For gigantic pages, this is called early in the boot process and 3645 * pages are allocated from memblock allocated or something similar. 3646 * Gigantic pages are actually added to pools later with the routine 3647 * gather_bootmem_prealloc. 3648 * - For non-gigantic pages, this is called later in the boot process after 3649 * all of mm is up and functional. Pages are allocated from buddy and 3650 * then added to hugetlb pools. 3651 */ 3652 static void __init hugetlb_hstate_alloc_pages(struct hstate *h) 3653 { 3654 unsigned long allocated; 3655 3656 /* 3657 * Skip gigantic hugepages allocation if early CMA 3658 * reservations are not available. 3659 */ 3660 if (hstate_is_gigantic(h) && hugetlb_cma_total_size() && 3661 !hugetlb_early_cma(h)) { 3662 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n"); 3663 return; 3664 } 3665 3666 if (!h->max_huge_pages) 3667 return; 3668 3669 /* do node specific alloc */ 3670 if (hugetlb_hstate_alloc_pages_specific_nodes(h)) 3671 return; 3672 3673 /* below will do all node balanced alloc */ 3674 if (hstate_is_gigantic(h)) 3675 allocated = hugetlb_gigantic_pages_alloc_boot(h); 3676 else 3677 allocated = hugetlb_pages_alloc_boot(h); 3678 3679 hugetlb_hstate_alloc_pages_errcheck(allocated, h); 3680 } 3681 3682 static void __init hugetlb_init_hstates(void) 3683 { 3684 struct hstate *h, *h2; 3685 3686 for_each_hstate(h) { 3687 /* 3688 * Always reset to first_memory_node here, even if 3689 * next_nid_to_alloc was set before - we can't 3690 * reference hugetlb_bootmem_nodes after init, and 3691 * first_memory_node is right for all further allocations. 3692 */ 3693 h->next_nid_to_alloc = first_memory_node; 3694 h->next_nid_to_free = first_memory_node; 3695 3696 /* oversize hugepages were init'ed in early boot */ 3697 if (!hstate_is_gigantic(h)) 3698 hugetlb_hstate_alloc_pages(h); 3699 3700 /* 3701 * Set demote order for each hstate. Note that 3702 * h->demote_order is initially 0. 3703 * - We can not demote gigantic pages if runtime freeing 3704 * is not supported, so skip this. 3705 * - If CMA allocation is possible, we can not demote 3706 * HUGETLB_PAGE_ORDER or smaller size pages. 3707 */ 3708 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 3709 continue; 3710 if (hugetlb_cma_total_size() && h->order <= HUGETLB_PAGE_ORDER) 3711 continue; 3712 for_each_hstate(h2) { 3713 if (h2 == h) 3714 continue; 3715 if (h2->order < h->order && 3716 h2->order > h->demote_order) 3717 h->demote_order = h2->order; 3718 } 3719 } 3720 } 3721 3722 static void __init report_hugepages(void) 3723 { 3724 struct hstate *h; 3725 unsigned long nrinvalid; 3726 3727 for_each_hstate(h) { 3728 char buf[32]; 3729 3730 nrinvalid = hstate_boot_nrinvalid[hstate_index(h)]; 3731 h->max_huge_pages -= nrinvalid; 3732 3733 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3734 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n", 3735 buf, h->nr_huge_pages); 3736 if (nrinvalid) 3737 pr_info("HugeTLB: %s page size: %lu invalid page%s discarded\n", 3738 buf, nrinvalid, str_plural(nrinvalid)); 3739 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n", 3740 hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf); 3741 } 3742 } 3743 3744 #ifdef CONFIG_HIGHMEM 3745 static void try_to_free_low(struct hstate *h, unsigned long count, 3746 nodemask_t *nodes_allowed) 3747 { 3748 int i; 3749 LIST_HEAD(page_list); 3750 3751 lockdep_assert_held(&hugetlb_lock); 3752 if (hstate_is_gigantic(h)) 3753 return; 3754 3755 /* 3756 * Collect pages to be freed on a list, and free after dropping lock 3757 */ 3758 for_each_node_mask(i, *nodes_allowed) { 3759 struct folio *folio, *next; 3760 struct list_head *freel = &h->hugepage_freelists[i]; 3761 list_for_each_entry_safe(folio, next, freel, lru) { 3762 if (count >= h->nr_huge_pages) 3763 goto out; 3764 if (folio_test_highmem(folio)) 3765 continue; 3766 remove_hugetlb_folio(h, folio, false); 3767 list_add(&folio->lru, &page_list); 3768 } 3769 } 3770 3771 out: 3772 spin_unlock_irq(&hugetlb_lock); 3773 update_and_free_pages_bulk(h, &page_list); 3774 spin_lock_irq(&hugetlb_lock); 3775 } 3776 #else 3777 static inline void try_to_free_low(struct hstate *h, unsigned long count, 3778 nodemask_t *nodes_allowed) 3779 { 3780 } 3781 #endif 3782 3783 /* 3784 * Increment or decrement surplus_huge_pages. Keep node-specific counters 3785 * balanced by operating on them in a round-robin fashion. 3786 * Returns 1 if an adjustment was made. 3787 */ 3788 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed, 3789 int delta) 3790 { 3791 int nr_nodes, node; 3792 3793 lockdep_assert_held(&hugetlb_lock); 3794 VM_BUG_ON(delta != -1 && delta != 1); 3795 3796 if (delta < 0) { 3797 for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, nodes_allowed) { 3798 if (h->surplus_huge_pages_node[node]) 3799 goto found; 3800 } 3801 } else { 3802 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 3803 if (h->surplus_huge_pages_node[node] < 3804 h->nr_huge_pages_node[node]) 3805 goto found; 3806 } 3807 } 3808 return 0; 3809 3810 found: 3811 h->surplus_huge_pages += delta; 3812 h->surplus_huge_pages_node[node] += delta; 3813 return 1; 3814 } 3815 3816 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) 3817 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid, 3818 nodemask_t *nodes_allowed) 3819 { 3820 unsigned long persistent_free_count; 3821 unsigned long min_count; 3822 unsigned long allocated; 3823 struct folio *folio; 3824 LIST_HEAD(page_list); 3825 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL); 3826 3827 /* 3828 * Bit mask controlling how hard we retry per-node allocations. 3829 * If we can not allocate the bit mask, do not attempt to allocate 3830 * the requested huge pages. 3831 */ 3832 if (node_alloc_noretry) 3833 nodes_clear(*node_alloc_noretry); 3834 else 3835 return -ENOMEM; 3836 3837 /* 3838 * resize_lock mutex prevents concurrent adjustments to number of 3839 * pages in hstate via the proc/sysfs interfaces. 3840 */ 3841 mutex_lock(&h->resize_lock); 3842 flush_free_hpage_work(h); 3843 spin_lock_irq(&hugetlb_lock); 3844 3845 /* 3846 * Check for a node specific request. 3847 * Changing node specific huge page count may require a corresponding 3848 * change to the global count. In any case, the passed node mask 3849 * (nodes_allowed) will restrict alloc/free to the specified node. 3850 */ 3851 if (nid != NUMA_NO_NODE) { 3852 unsigned long old_count = count; 3853 3854 count += persistent_huge_pages(h) - 3855 (h->nr_huge_pages_node[nid] - 3856 h->surplus_huge_pages_node[nid]); 3857 /* 3858 * User may have specified a large count value which caused the 3859 * above calculation to overflow. In this case, they wanted 3860 * to allocate as many huge pages as possible. Set count to 3861 * largest possible value to align with their intention. 3862 */ 3863 if (count < old_count) 3864 count = ULONG_MAX; 3865 } 3866 3867 /* 3868 * Gigantic pages runtime allocation depend on the capability for large 3869 * page range allocation. 3870 * If the system does not provide this feature, return an error when 3871 * the user tries to allocate gigantic pages but let the user free the 3872 * boottime allocated gigantic pages. 3873 */ 3874 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) { 3875 if (count > persistent_huge_pages(h)) { 3876 spin_unlock_irq(&hugetlb_lock); 3877 mutex_unlock(&h->resize_lock); 3878 NODEMASK_FREE(node_alloc_noretry); 3879 return -EINVAL; 3880 } 3881 /* Fall through to decrease pool */ 3882 } 3883 3884 /* 3885 * Increase the pool size 3886 * First take pages out of surplus state. Then make up the 3887 * remaining difference by allocating fresh huge pages. 3888 * 3889 * We might race with alloc_surplus_hugetlb_folio() here and be unable 3890 * to convert a surplus huge page to a normal huge page. That is 3891 * not critical, though, it just means the overall size of the 3892 * pool might be one hugepage larger than it needs to be, but 3893 * within all the constraints specified by the sysctls. 3894 */ 3895 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { 3896 if (!adjust_pool_surplus(h, nodes_allowed, -1)) 3897 break; 3898 } 3899 3900 allocated = 0; 3901 while (count > (persistent_huge_pages(h) + allocated)) { 3902 /* 3903 * If this allocation races such that we no longer need the 3904 * page, free_huge_folio will handle it by freeing the page 3905 * and reducing the surplus. 3906 */ 3907 spin_unlock_irq(&hugetlb_lock); 3908 3909 /* yield cpu to avoid soft lockup */ 3910 cond_resched(); 3911 3912 folio = alloc_pool_huge_folio(h, nodes_allowed, 3913 node_alloc_noretry, 3914 &h->next_nid_to_alloc); 3915 if (!folio) { 3916 prep_and_add_allocated_folios(h, &page_list); 3917 spin_lock_irq(&hugetlb_lock); 3918 goto out; 3919 } 3920 3921 list_add(&folio->lru, &page_list); 3922 allocated++; 3923 3924 /* Bail for signals. Probably ctrl-c from user */ 3925 if (signal_pending(current)) { 3926 prep_and_add_allocated_folios(h, &page_list); 3927 spin_lock_irq(&hugetlb_lock); 3928 goto out; 3929 } 3930 3931 spin_lock_irq(&hugetlb_lock); 3932 } 3933 3934 /* Add allocated pages to the pool */ 3935 if (!list_empty(&page_list)) { 3936 spin_unlock_irq(&hugetlb_lock); 3937 prep_and_add_allocated_folios(h, &page_list); 3938 spin_lock_irq(&hugetlb_lock); 3939 } 3940 3941 /* 3942 * Decrease the pool size 3943 * First return free pages to the buddy allocator (being careful 3944 * to keep enough around to satisfy reservations). Then place 3945 * pages into surplus state as needed so the pool will shrink 3946 * to the desired size as pages become free. 3947 * 3948 * By placing pages into the surplus state independent of the 3949 * overcommit value, we are allowing the surplus pool size to 3950 * exceed overcommit. There are few sane options here. Since 3951 * alloc_surplus_hugetlb_folio() is checking the global counter, 3952 * though, we'll note that we're not allowed to exceed surplus 3953 * and won't grow the pool anywhere else. Not until one of the 3954 * sysctls are changed, or the surplus pages go out of use. 3955 * 3956 * min_count is the expected number of persistent pages, we 3957 * shouldn't calculate min_count by using 3958 * resv_huge_pages + persistent_huge_pages() - free_huge_pages, 3959 * because there may exist free surplus huge pages, and this will 3960 * lead to subtracting twice. Free surplus huge pages come from HVO 3961 * failing to restore vmemmap, see comments in the callers of 3962 * hugetlb_vmemmap_restore_folio(). Thus, we should calculate 3963 * persistent free count first. 3964 */ 3965 persistent_free_count = h->free_huge_pages; 3966 if (h->free_huge_pages > persistent_huge_pages(h)) { 3967 if (h->free_huge_pages > h->surplus_huge_pages) 3968 persistent_free_count -= h->surplus_huge_pages; 3969 else 3970 persistent_free_count = 0; 3971 } 3972 min_count = h->resv_huge_pages + persistent_huge_pages(h) - persistent_free_count; 3973 min_count = max(count, min_count); 3974 try_to_free_low(h, min_count, nodes_allowed); 3975 3976 /* 3977 * Collect pages to be removed on list without dropping lock 3978 */ 3979 while (min_count < persistent_huge_pages(h)) { 3980 folio = remove_pool_hugetlb_folio(h, nodes_allowed, 0); 3981 if (!folio) 3982 break; 3983 3984 list_add(&folio->lru, &page_list); 3985 } 3986 /* free the pages after dropping lock */ 3987 spin_unlock_irq(&hugetlb_lock); 3988 update_and_free_pages_bulk(h, &page_list); 3989 flush_free_hpage_work(h); 3990 spin_lock_irq(&hugetlb_lock); 3991 3992 while (count < persistent_huge_pages(h)) { 3993 if (!adjust_pool_surplus(h, nodes_allowed, 1)) 3994 break; 3995 } 3996 out: 3997 h->max_huge_pages = persistent_huge_pages(h); 3998 spin_unlock_irq(&hugetlb_lock); 3999 mutex_unlock(&h->resize_lock); 4000 4001 NODEMASK_FREE(node_alloc_noretry); 4002 4003 return 0; 4004 } 4005 4006 static long demote_free_hugetlb_folios(struct hstate *src, struct hstate *dst, 4007 struct list_head *src_list) 4008 { 4009 long rc; 4010 struct folio *folio, *next; 4011 LIST_HEAD(dst_list); 4012 LIST_HEAD(ret_list); 4013 4014 rc = hugetlb_vmemmap_restore_folios(src, src_list, &ret_list); 4015 list_splice_init(&ret_list, src_list); 4016 4017 /* 4018 * Taking target hstate mutex synchronizes with set_max_huge_pages. 4019 * Without the mutex, pages added to target hstate could be marked 4020 * as surplus. 4021 * 4022 * Note that we already hold src->resize_lock. To prevent deadlock, 4023 * use the convention of always taking larger size hstate mutex first. 4024 */ 4025 mutex_lock(&dst->resize_lock); 4026 4027 list_for_each_entry_safe(folio, next, src_list, lru) { 4028 int i; 4029 bool cma; 4030 4031 if (folio_test_hugetlb_vmemmap_optimized(folio)) 4032 continue; 4033 4034 cma = folio_test_hugetlb_cma(folio); 4035 4036 list_del(&folio->lru); 4037 4038 split_page_owner(&folio->page, huge_page_order(src), huge_page_order(dst)); 4039 pgalloc_tag_split(folio, huge_page_order(src), huge_page_order(dst)); 4040 4041 for (i = 0; i < pages_per_huge_page(src); i += pages_per_huge_page(dst)) { 4042 struct page *page = folio_page(folio, i); 4043 /* Careful: see __split_huge_page_tail() */ 4044 struct folio *new_folio = (struct folio *)page; 4045 4046 clear_compound_head(page); 4047 prep_compound_page(page, dst->order); 4048 4049 new_folio->mapping = NULL; 4050 init_new_hugetlb_folio(new_folio); 4051 /* Copy the CMA flag so that it is freed correctly */ 4052 if (cma) 4053 folio_set_hugetlb_cma(new_folio); 4054 list_add(&new_folio->lru, &dst_list); 4055 } 4056 } 4057 4058 prep_and_add_allocated_folios(dst, &dst_list); 4059 4060 mutex_unlock(&dst->resize_lock); 4061 4062 return rc; 4063 } 4064 4065 static long demote_pool_huge_page(struct hstate *src, nodemask_t *nodes_allowed, 4066 unsigned long nr_to_demote) 4067 __must_hold(&hugetlb_lock) 4068 { 4069 int nr_nodes, node; 4070 struct hstate *dst; 4071 long rc = 0; 4072 long nr_demoted = 0; 4073 4074 lockdep_assert_held(&hugetlb_lock); 4075 4076 /* We should never get here if no demote order */ 4077 if (!src->demote_order) { 4078 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n"); 4079 return -EINVAL; /* internal error */ 4080 } 4081 dst = size_to_hstate(PAGE_SIZE << src->demote_order); 4082 4083 for_each_node_mask_to_free(src, nr_nodes, node, nodes_allowed) { 4084 LIST_HEAD(list); 4085 struct folio *folio, *next; 4086 4087 list_for_each_entry_safe(folio, next, &src->hugepage_freelists[node], lru) { 4088 if (folio_test_hwpoison(folio)) 4089 continue; 4090 4091 remove_hugetlb_folio(src, folio, false); 4092 list_add(&folio->lru, &list); 4093 4094 if (++nr_demoted == nr_to_demote) 4095 break; 4096 } 4097 4098 spin_unlock_irq(&hugetlb_lock); 4099 4100 rc = demote_free_hugetlb_folios(src, dst, &list); 4101 4102 spin_lock_irq(&hugetlb_lock); 4103 4104 list_for_each_entry_safe(folio, next, &list, lru) { 4105 list_del(&folio->lru); 4106 add_hugetlb_folio(src, folio, false); 4107 4108 nr_demoted--; 4109 } 4110 4111 if (rc < 0 || nr_demoted == nr_to_demote) 4112 break; 4113 } 4114 4115 /* 4116 * Not absolutely necessary, but for consistency update max_huge_pages 4117 * based on pool changes for the demoted page. 4118 */ 4119 src->max_huge_pages -= nr_demoted; 4120 dst->max_huge_pages += nr_demoted << (huge_page_order(src) - huge_page_order(dst)); 4121 4122 if (rc < 0) 4123 return rc; 4124 4125 if (nr_demoted) 4126 return nr_demoted; 4127 /* 4128 * Only way to get here is if all pages on free lists are poisoned. 4129 * Return -EBUSY so that caller will not retry. 4130 */ 4131 return -EBUSY; 4132 } 4133 4134 #define HSTATE_ATTR_RO(_name) \ 4135 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 4136 4137 #define HSTATE_ATTR_WO(_name) \ 4138 static struct kobj_attribute _name##_attr = __ATTR_WO(_name) 4139 4140 #define HSTATE_ATTR(_name) \ 4141 static struct kobj_attribute _name##_attr = __ATTR_RW(_name) 4142 4143 static struct kobject *hugepages_kobj; 4144 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 4145 4146 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp); 4147 4148 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp) 4149 { 4150 int i; 4151 4152 for (i = 0; i < HUGE_MAX_HSTATE; i++) 4153 if (hstate_kobjs[i] == kobj) { 4154 if (nidp) 4155 *nidp = NUMA_NO_NODE; 4156 return &hstates[i]; 4157 } 4158 4159 return kobj_to_node_hstate(kobj, nidp); 4160 } 4161 4162 static ssize_t nr_hugepages_show_common(struct kobject *kobj, 4163 struct kobj_attribute *attr, char *buf) 4164 { 4165 struct hstate *h; 4166 unsigned long nr_huge_pages; 4167 int nid; 4168 4169 h = kobj_to_hstate(kobj, &nid); 4170 if (nid == NUMA_NO_NODE) 4171 nr_huge_pages = h->nr_huge_pages; 4172 else 4173 nr_huge_pages = h->nr_huge_pages_node[nid]; 4174 4175 return sysfs_emit(buf, "%lu\n", nr_huge_pages); 4176 } 4177 4178 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy, 4179 struct hstate *h, int nid, 4180 unsigned long count, size_t len) 4181 { 4182 int err; 4183 nodemask_t nodes_allowed, *n_mask; 4184 4185 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 4186 return -EINVAL; 4187 4188 if (nid == NUMA_NO_NODE) { 4189 /* 4190 * global hstate attribute 4191 */ 4192 if (!(obey_mempolicy && 4193 init_nodemask_of_mempolicy(&nodes_allowed))) 4194 n_mask = &node_states[N_MEMORY]; 4195 else 4196 n_mask = &nodes_allowed; 4197 } else { 4198 /* 4199 * Node specific request. count adjustment happens in 4200 * set_max_huge_pages() after acquiring hugetlb_lock. 4201 */ 4202 init_nodemask_of_node(&nodes_allowed, nid); 4203 n_mask = &nodes_allowed; 4204 } 4205 4206 err = set_max_huge_pages(h, count, nid, n_mask); 4207 4208 return err ? err : len; 4209 } 4210 4211 static ssize_t nr_hugepages_store_common(bool obey_mempolicy, 4212 struct kobject *kobj, const char *buf, 4213 size_t len) 4214 { 4215 struct hstate *h; 4216 unsigned long count; 4217 int nid; 4218 int err; 4219 4220 err = kstrtoul(buf, 10, &count); 4221 if (err) 4222 return err; 4223 4224 h = kobj_to_hstate(kobj, &nid); 4225 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len); 4226 } 4227 4228 static ssize_t nr_hugepages_show(struct kobject *kobj, 4229 struct kobj_attribute *attr, char *buf) 4230 { 4231 return nr_hugepages_show_common(kobj, attr, buf); 4232 } 4233 4234 static ssize_t nr_hugepages_store(struct kobject *kobj, 4235 struct kobj_attribute *attr, const char *buf, size_t len) 4236 { 4237 return nr_hugepages_store_common(false, kobj, buf, len); 4238 } 4239 HSTATE_ATTR(nr_hugepages); 4240 4241 #ifdef CONFIG_NUMA 4242 4243 /* 4244 * hstate attribute for optionally mempolicy-based constraint on persistent 4245 * huge page alloc/free. 4246 */ 4247 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj, 4248 struct kobj_attribute *attr, 4249 char *buf) 4250 { 4251 return nr_hugepages_show_common(kobj, attr, buf); 4252 } 4253 4254 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj, 4255 struct kobj_attribute *attr, const char *buf, size_t len) 4256 { 4257 return nr_hugepages_store_common(true, kobj, buf, len); 4258 } 4259 HSTATE_ATTR(nr_hugepages_mempolicy); 4260 #endif 4261 4262 4263 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, 4264 struct kobj_attribute *attr, char *buf) 4265 { 4266 struct hstate *h = kobj_to_hstate(kobj, NULL); 4267 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages); 4268 } 4269 4270 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, 4271 struct kobj_attribute *attr, const char *buf, size_t count) 4272 { 4273 int err; 4274 unsigned long input; 4275 struct hstate *h = kobj_to_hstate(kobj, NULL); 4276 4277 if (hstate_is_gigantic(h)) 4278 return -EINVAL; 4279 4280 err = kstrtoul(buf, 10, &input); 4281 if (err) 4282 return err; 4283 4284 spin_lock_irq(&hugetlb_lock); 4285 h->nr_overcommit_huge_pages = input; 4286 spin_unlock_irq(&hugetlb_lock); 4287 4288 return count; 4289 } 4290 HSTATE_ATTR(nr_overcommit_hugepages); 4291 4292 static ssize_t free_hugepages_show(struct kobject *kobj, 4293 struct kobj_attribute *attr, char *buf) 4294 { 4295 struct hstate *h; 4296 unsigned long free_huge_pages; 4297 int nid; 4298 4299 h = kobj_to_hstate(kobj, &nid); 4300 if (nid == NUMA_NO_NODE) 4301 free_huge_pages = h->free_huge_pages; 4302 else 4303 free_huge_pages = h->free_huge_pages_node[nid]; 4304 4305 return sysfs_emit(buf, "%lu\n", free_huge_pages); 4306 } 4307 HSTATE_ATTR_RO(free_hugepages); 4308 4309 static ssize_t resv_hugepages_show(struct kobject *kobj, 4310 struct kobj_attribute *attr, char *buf) 4311 { 4312 struct hstate *h = kobj_to_hstate(kobj, NULL); 4313 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages); 4314 } 4315 HSTATE_ATTR_RO(resv_hugepages); 4316 4317 static ssize_t surplus_hugepages_show(struct kobject *kobj, 4318 struct kobj_attribute *attr, char *buf) 4319 { 4320 struct hstate *h; 4321 unsigned long surplus_huge_pages; 4322 int nid; 4323 4324 h = kobj_to_hstate(kobj, &nid); 4325 if (nid == NUMA_NO_NODE) 4326 surplus_huge_pages = h->surplus_huge_pages; 4327 else 4328 surplus_huge_pages = h->surplus_huge_pages_node[nid]; 4329 4330 return sysfs_emit(buf, "%lu\n", surplus_huge_pages); 4331 } 4332 HSTATE_ATTR_RO(surplus_hugepages); 4333 4334 static ssize_t demote_store(struct kobject *kobj, 4335 struct kobj_attribute *attr, const char *buf, size_t len) 4336 { 4337 unsigned long nr_demote; 4338 unsigned long nr_available; 4339 nodemask_t nodes_allowed, *n_mask; 4340 struct hstate *h; 4341 int err; 4342 int nid; 4343 4344 err = kstrtoul(buf, 10, &nr_demote); 4345 if (err) 4346 return err; 4347 h = kobj_to_hstate(kobj, &nid); 4348 4349 if (nid != NUMA_NO_NODE) { 4350 init_nodemask_of_node(&nodes_allowed, nid); 4351 n_mask = &nodes_allowed; 4352 } else { 4353 n_mask = &node_states[N_MEMORY]; 4354 } 4355 4356 /* Synchronize with other sysfs operations modifying huge pages */ 4357 mutex_lock(&h->resize_lock); 4358 spin_lock_irq(&hugetlb_lock); 4359 4360 while (nr_demote) { 4361 long rc; 4362 4363 /* 4364 * Check for available pages to demote each time thorough the 4365 * loop as demote_pool_huge_page will drop hugetlb_lock. 4366 */ 4367 if (nid != NUMA_NO_NODE) 4368 nr_available = h->free_huge_pages_node[nid]; 4369 else 4370 nr_available = h->free_huge_pages; 4371 nr_available -= h->resv_huge_pages; 4372 if (!nr_available) 4373 break; 4374 4375 rc = demote_pool_huge_page(h, n_mask, nr_demote); 4376 if (rc < 0) { 4377 err = rc; 4378 break; 4379 } 4380 4381 nr_demote -= rc; 4382 } 4383 4384 spin_unlock_irq(&hugetlb_lock); 4385 mutex_unlock(&h->resize_lock); 4386 4387 if (err) 4388 return err; 4389 return len; 4390 } 4391 HSTATE_ATTR_WO(demote); 4392 4393 static ssize_t demote_size_show(struct kobject *kobj, 4394 struct kobj_attribute *attr, char *buf) 4395 { 4396 struct hstate *h = kobj_to_hstate(kobj, NULL); 4397 unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K; 4398 4399 return sysfs_emit(buf, "%lukB\n", demote_size); 4400 } 4401 4402 static ssize_t demote_size_store(struct kobject *kobj, 4403 struct kobj_attribute *attr, 4404 const char *buf, size_t count) 4405 { 4406 struct hstate *h, *demote_hstate; 4407 unsigned long demote_size; 4408 unsigned int demote_order; 4409 4410 demote_size = (unsigned long)memparse(buf, NULL); 4411 4412 demote_hstate = size_to_hstate(demote_size); 4413 if (!demote_hstate) 4414 return -EINVAL; 4415 demote_order = demote_hstate->order; 4416 if (demote_order < HUGETLB_PAGE_ORDER) 4417 return -EINVAL; 4418 4419 /* demote order must be smaller than hstate order */ 4420 h = kobj_to_hstate(kobj, NULL); 4421 if (demote_order >= h->order) 4422 return -EINVAL; 4423 4424 /* resize_lock synchronizes access to demote size and writes */ 4425 mutex_lock(&h->resize_lock); 4426 h->demote_order = demote_order; 4427 mutex_unlock(&h->resize_lock); 4428 4429 return count; 4430 } 4431 HSTATE_ATTR(demote_size); 4432 4433 static struct attribute *hstate_attrs[] = { 4434 &nr_hugepages_attr.attr, 4435 &nr_overcommit_hugepages_attr.attr, 4436 &free_hugepages_attr.attr, 4437 &resv_hugepages_attr.attr, 4438 &surplus_hugepages_attr.attr, 4439 #ifdef CONFIG_NUMA 4440 &nr_hugepages_mempolicy_attr.attr, 4441 #endif 4442 NULL, 4443 }; 4444 4445 static const struct attribute_group hstate_attr_group = { 4446 .attrs = hstate_attrs, 4447 }; 4448 4449 static struct attribute *hstate_demote_attrs[] = { 4450 &demote_size_attr.attr, 4451 &demote_attr.attr, 4452 NULL, 4453 }; 4454 4455 static const struct attribute_group hstate_demote_attr_group = { 4456 .attrs = hstate_demote_attrs, 4457 }; 4458 4459 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent, 4460 struct kobject **hstate_kobjs, 4461 const struct attribute_group *hstate_attr_group) 4462 { 4463 int retval; 4464 int hi = hstate_index(h); 4465 4466 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent); 4467 if (!hstate_kobjs[hi]) 4468 return -ENOMEM; 4469 4470 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group); 4471 if (retval) { 4472 kobject_put(hstate_kobjs[hi]); 4473 hstate_kobjs[hi] = NULL; 4474 return retval; 4475 } 4476 4477 if (h->demote_order) { 4478 retval = sysfs_create_group(hstate_kobjs[hi], 4479 &hstate_demote_attr_group); 4480 if (retval) { 4481 pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name); 4482 sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group); 4483 kobject_put(hstate_kobjs[hi]); 4484 hstate_kobjs[hi] = NULL; 4485 return retval; 4486 } 4487 } 4488 4489 return 0; 4490 } 4491 4492 #ifdef CONFIG_NUMA 4493 static bool hugetlb_sysfs_initialized __ro_after_init; 4494 4495 /* 4496 * node_hstate/s - associate per node hstate attributes, via their kobjects, 4497 * with node devices in node_devices[] using a parallel array. The array 4498 * index of a node device or _hstate == node id. 4499 * This is here to avoid any static dependency of the node device driver, in 4500 * the base kernel, on the hugetlb module. 4501 */ 4502 struct node_hstate { 4503 struct kobject *hugepages_kobj; 4504 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 4505 }; 4506 static struct node_hstate node_hstates[MAX_NUMNODES]; 4507 4508 /* 4509 * A subset of global hstate attributes for node devices 4510 */ 4511 static struct attribute *per_node_hstate_attrs[] = { 4512 &nr_hugepages_attr.attr, 4513 &free_hugepages_attr.attr, 4514 &surplus_hugepages_attr.attr, 4515 NULL, 4516 }; 4517 4518 static const struct attribute_group per_node_hstate_attr_group = { 4519 .attrs = per_node_hstate_attrs, 4520 }; 4521 4522 /* 4523 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj. 4524 * Returns node id via non-NULL nidp. 4525 */ 4526 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 4527 { 4528 int nid; 4529 4530 for (nid = 0; nid < nr_node_ids; nid++) { 4531 struct node_hstate *nhs = &node_hstates[nid]; 4532 int i; 4533 for (i = 0; i < HUGE_MAX_HSTATE; i++) 4534 if (nhs->hstate_kobjs[i] == kobj) { 4535 if (nidp) 4536 *nidp = nid; 4537 return &hstates[i]; 4538 } 4539 } 4540 4541 BUG(); 4542 return NULL; 4543 } 4544 4545 /* 4546 * Unregister hstate attributes from a single node device. 4547 * No-op if no hstate attributes attached. 4548 */ 4549 void hugetlb_unregister_node(struct node *node) 4550 { 4551 struct hstate *h; 4552 struct node_hstate *nhs = &node_hstates[node->dev.id]; 4553 4554 if (!nhs->hugepages_kobj) 4555 return; /* no hstate attributes */ 4556 4557 for_each_hstate(h) { 4558 int idx = hstate_index(h); 4559 struct kobject *hstate_kobj = nhs->hstate_kobjs[idx]; 4560 4561 if (!hstate_kobj) 4562 continue; 4563 if (h->demote_order) 4564 sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group); 4565 sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group); 4566 kobject_put(hstate_kobj); 4567 nhs->hstate_kobjs[idx] = NULL; 4568 } 4569 4570 kobject_put(nhs->hugepages_kobj); 4571 nhs->hugepages_kobj = NULL; 4572 } 4573 4574 4575 /* 4576 * Register hstate attributes for a single node device. 4577 * No-op if attributes already registered. 4578 */ 4579 void hugetlb_register_node(struct node *node) 4580 { 4581 struct hstate *h; 4582 struct node_hstate *nhs = &node_hstates[node->dev.id]; 4583 int err; 4584 4585 if (!hugetlb_sysfs_initialized) 4586 return; 4587 4588 if (nhs->hugepages_kobj) 4589 return; /* already allocated */ 4590 4591 nhs->hugepages_kobj = kobject_create_and_add("hugepages", 4592 &node->dev.kobj); 4593 if (!nhs->hugepages_kobj) 4594 return; 4595 4596 for_each_hstate(h) { 4597 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj, 4598 nhs->hstate_kobjs, 4599 &per_node_hstate_attr_group); 4600 if (err) { 4601 pr_err("HugeTLB: Unable to add hstate %s for node %d\n", 4602 h->name, node->dev.id); 4603 hugetlb_unregister_node(node); 4604 break; 4605 } 4606 } 4607 } 4608 4609 /* 4610 * hugetlb init time: register hstate attributes for all registered node 4611 * devices of nodes that have memory. All on-line nodes should have 4612 * registered their associated device by this time. 4613 */ 4614 static void __init hugetlb_register_all_nodes(void) 4615 { 4616 int nid; 4617 4618 for_each_online_node(nid) 4619 hugetlb_register_node(node_devices[nid]); 4620 } 4621 #else /* !CONFIG_NUMA */ 4622 4623 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 4624 { 4625 BUG(); 4626 if (nidp) 4627 *nidp = -1; 4628 return NULL; 4629 } 4630 4631 static void hugetlb_register_all_nodes(void) { } 4632 4633 #endif 4634 4635 static void __init hugetlb_sysfs_init(void) 4636 { 4637 struct hstate *h; 4638 int err; 4639 4640 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); 4641 if (!hugepages_kobj) 4642 return; 4643 4644 for_each_hstate(h) { 4645 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj, 4646 hstate_kobjs, &hstate_attr_group); 4647 if (err) 4648 pr_err("HugeTLB: Unable to add hstate %s\n", h->name); 4649 } 4650 4651 #ifdef CONFIG_NUMA 4652 hugetlb_sysfs_initialized = true; 4653 #endif 4654 hugetlb_register_all_nodes(); 4655 } 4656 4657 #ifdef CONFIG_SYSCTL 4658 static void hugetlb_sysctl_init(void); 4659 #else 4660 static inline void hugetlb_sysctl_init(void) { } 4661 #endif 4662 4663 static int __init hugetlb_init(void) 4664 { 4665 int i; 4666 4667 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE < 4668 __NR_HPAGEFLAGS); 4669 BUILD_BUG_ON_INVALID(HUGETLB_PAGE_ORDER > MAX_FOLIO_ORDER); 4670 4671 if (!hugepages_supported()) { 4672 if (hugetlb_max_hstate || default_hstate_max_huge_pages) 4673 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n"); 4674 return 0; 4675 } 4676 4677 /* 4678 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some 4679 * architectures depend on setup being done here. 4680 */ 4681 hugetlb_add_hstate(HUGETLB_PAGE_ORDER); 4682 if (!parsed_default_hugepagesz) { 4683 /* 4684 * If we did not parse a default huge page size, set 4685 * default_hstate_idx to HPAGE_SIZE hstate. And, if the 4686 * number of huge pages for this default size was implicitly 4687 * specified, set that here as well. 4688 * Note that the implicit setting will overwrite an explicit 4689 * setting. A warning will be printed in this case. 4690 */ 4691 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE)); 4692 if (default_hstate_max_huge_pages) { 4693 if (default_hstate.max_huge_pages) { 4694 char buf[32]; 4695 4696 string_get_size(huge_page_size(&default_hstate), 4697 1, STRING_UNITS_2, buf, 32); 4698 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n", 4699 default_hstate.max_huge_pages, buf); 4700 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n", 4701 default_hstate_max_huge_pages); 4702 } 4703 default_hstate.max_huge_pages = 4704 default_hstate_max_huge_pages; 4705 4706 for_each_online_node(i) 4707 default_hstate.max_huge_pages_node[i] = 4708 default_hugepages_in_node[i]; 4709 } 4710 } 4711 4712 hugetlb_cma_check(); 4713 hugetlb_init_hstates(); 4714 gather_bootmem_prealloc(); 4715 report_hugepages(); 4716 4717 hugetlb_sysfs_init(); 4718 hugetlb_cgroup_file_init(); 4719 hugetlb_sysctl_init(); 4720 4721 #ifdef CONFIG_SMP 4722 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus()); 4723 #else 4724 num_fault_mutexes = 1; 4725 #endif 4726 hugetlb_fault_mutex_table = 4727 kmalloc_array(num_fault_mutexes, sizeof(struct mutex), 4728 GFP_KERNEL); 4729 BUG_ON(!hugetlb_fault_mutex_table); 4730 4731 for (i = 0; i < num_fault_mutexes; i++) 4732 mutex_init(&hugetlb_fault_mutex_table[i]); 4733 return 0; 4734 } 4735 subsys_initcall(hugetlb_init); 4736 4737 /* Overwritten by architectures with more huge page sizes */ 4738 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size) 4739 { 4740 return size == HPAGE_SIZE; 4741 } 4742 4743 void __init hugetlb_add_hstate(unsigned int order) 4744 { 4745 struct hstate *h; 4746 unsigned long i; 4747 4748 if (size_to_hstate(PAGE_SIZE << order)) { 4749 return; 4750 } 4751 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE); 4752 BUG_ON(order < order_base_2(__NR_USED_SUBPAGE)); 4753 WARN_ON(order > MAX_FOLIO_ORDER); 4754 h = &hstates[hugetlb_max_hstate++]; 4755 __mutex_init(&h->resize_lock, "resize mutex", &h->resize_key); 4756 h->order = order; 4757 h->mask = ~(huge_page_size(h) - 1); 4758 for (i = 0; i < MAX_NUMNODES; ++i) 4759 INIT_LIST_HEAD(&h->hugepage_freelists[i]); 4760 INIT_LIST_HEAD(&h->hugepage_activelist); 4761 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", 4762 huge_page_size(h)/SZ_1K); 4763 4764 parsed_hstate = h; 4765 } 4766 4767 bool __init __weak hugetlb_node_alloc_supported(void) 4768 { 4769 return true; 4770 } 4771 4772 static void __init hugepages_clear_pages_in_node(void) 4773 { 4774 if (!hugetlb_max_hstate) { 4775 default_hstate_max_huge_pages = 0; 4776 memset(default_hugepages_in_node, 0, 4777 sizeof(default_hugepages_in_node)); 4778 } else { 4779 parsed_hstate->max_huge_pages = 0; 4780 memset(parsed_hstate->max_huge_pages_node, 0, 4781 sizeof(parsed_hstate->max_huge_pages_node)); 4782 } 4783 } 4784 4785 static __init int hugetlb_add_param(char *s, int (*setup)(char *)) 4786 { 4787 size_t len; 4788 char *p; 4789 4790 if (hugetlb_param_index >= HUGE_MAX_CMDLINE_ARGS) 4791 return -EINVAL; 4792 4793 len = strlen(s) + 1; 4794 if (len + hstate_cmdline_index > sizeof(hstate_cmdline_buf)) 4795 return -EINVAL; 4796 4797 p = &hstate_cmdline_buf[hstate_cmdline_index]; 4798 memcpy(p, s, len); 4799 hstate_cmdline_index += len; 4800 4801 hugetlb_params[hugetlb_param_index].val = p; 4802 hugetlb_params[hugetlb_param_index].setup = setup; 4803 4804 hugetlb_param_index++; 4805 4806 return 0; 4807 } 4808 4809 static __init void hugetlb_parse_params(void) 4810 { 4811 int i; 4812 struct hugetlb_cmdline *hcp; 4813 4814 for (i = 0; i < hugetlb_param_index; i++) { 4815 hcp = &hugetlb_params[i]; 4816 4817 hcp->setup(hcp->val); 4818 } 4819 4820 hugetlb_cma_validate_params(); 4821 } 4822 4823 /* 4824 * hugepages command line processing 4825 * hugepages normally follows a valid hugepagsz or default_hugepagsz 4826 * specification. If not, ignore the hugepages value. hugepages can also 4827 * be the first huge page command line option in which case it implicitly 4828 * specifies the number of huge pages for the default size. 4829 */ 4830 static int __init hugepages_setup(char *s) 4831 { 4832 unsigned long *mhp; 4833 static unsigned long *last_mhp; 4834 int node = NUMA_NO_NODE; 4835 int count; 4836 unsigned long tmp; 4837 char *p = s; 4838 4839 if (!parsed_valid_hugepagesz) { 4840 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s); 4841 parsed_valid_hugepagesz = true; 4842 return -EINVAL; 4843 } 4844 4845 /* 4846 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter 4847 * yet, so this hugepages= parameter goes to the "default hstate". 4848 * Otherwise, it goes with the previously parsed hugepagesz or 4849 * default_hugepagesz. 4850 */ 4851 else if (!hugetlb_max_hstate) 4852 mhp = &default_hstate_max_huge_pages; 4853 else 4854 mhp = &parsed_hstate->max_huge_pages; 4855 4856 if (mhp == last_mhp) { 4857 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s); 4858 return 1; 4859 } 4860 4861 while (*p) { 4862 count = 0; 4863 if (sscanf(p, "%lu%n", &tmp, &count) != 1) 4864 goto invalid; 4865 /* Parameter is node format */ 4866 if (p[count] == ':') { 4867 if (!hugetlb_node_alloc_supported()) { 4868 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n"); 4869 return 1; 4870 } 4871 if (tmp >= MAX_NUMNODES || !node_online(tmp)) 4872 goto invalid; 4873 node = array_index_nospec(tmp, MAX_NUMNODES); 4874 p += count + 1; 4875 /* Parse hugepages */ 4876 if (sscanf(p, "%lu%n", &tmp, &count) != 1) 4877 goto invalid; 4878 if (!hugetlb_max_hstate) 4879 default_hugepages_in_node[node] = tmp; 4880 else 4881 parsed_hstate->max_huge_pages_node[node] = tmp; 4882 *mhp += tmp; 4883 /* Go to parse next node*/ 4884 if (p[count] == ',') 4885 p += count + 1; 4886 else 4887 break; 4888 } else { 4889 if (p != s) 4890 goto invalid; 4891 *mhp = tmp; 4892 break; 4893 } 4894 } 4895 4896 last_mhp = mhp; 4897 4898 return 0; 4899 4900 invalid: 4901 pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p); 4902 hugepages_clear_pages_in_node(); 4903 return -EINVAL; 4904 } 4905 hugetlb_early_param("hugepages", hugepages_setup); 4906 4907 /* 4908 * hugepagesz command line processing 4909 * A specific huge page size can only be specified once with hugepagesz. 4910 * hugepagesz is followed by hugepages on the command line. The global 4911 * variable 'parsed_valid_hugepagesz' is used to determine if prior 4912 * hugepagesz argument was valid. 4913 */ 4914 static int __init hugepagesz_setup(char *s) 4915 { 4916 unsigned long size; 4917 struct hstate *h; 4918 4919 parsed_valid_hugepagesz = false; 4920 size = (unsigned long)memparse(s, NULL); 4921 4922 if (!arch_hugetlb_valid_size(size)) { 4923 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s); 4924 return -EINVAL; 4925 } 4926 4927 h = size_to_hstate(size); 4928 if (h) { 4929 /* 4930 * hstate for this size already exists. This is normally 4931 * an error, but is allowed if the existing hstate is the 4932 * default hstate. More specifically, it is only allowed if 4933 * the number of huge pages for the default hstate was not 4934 * previously specified. 4935 */ 4936 if (!parsed_default_hugepagesz || h != &default_hstate || 4937 default_hstate.max_huge_pages) { 4938 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s); 4939 return -EINVAL; 4940 } 4941 4942 /* 4943 * No need to call hugetlb_add_hstate() as hstate already 4944 * exists. But, do set parsed_hstate so that a following 4945 * hugepages= parameter will be applied to this hstate. 4946 */ 4947 parsed_hstate = h; 4948 parsed_valid_hugepagesz = true; 4949 return 0; 4950 } 4951 4952 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); 4953 parsed_valid_hugepagesz = true; 4954 return 0; 4955 } 4956 hugetlb_early_param("hugepagesz", hugepagesz_setup); 4957 4958 /* 4959 * default_hugepagesz command line input 4960 * Only one instance of default_hugepagesz allowed on command line. 4961 */ 4962 static int __init default_hugepagesz_setup(char *s) 4963 { 4964 unsigned long size; 4965 int i; 4966 4967 parsed_valid_hugepagesz = false; 4968 if (parsed_default_hugepagesz) { 4969 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s); 4970 return -EINVAL; 4971 } 4972 4973 size = (unsigned long)memparse(s, NULL); 4974 4975 if (!arch_hugetlb_valid_size(size)) { 4976 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s); 4977 return -EINVAL; 4978 } 4979 4980 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); 4981 parsed_valid_hugepagesz = true; 4982 parsed_default_hugepagesz = true; 4983 default_hstate_idx = hstate_index(size_to_hstate(size)); 4984 4985 /* 4986 * The number of default huge pages (for this size) could have been 4987 * specified as the first hugetlb parameter: hugepages=X. If so, 4988 * then default_hstate_max_huge_pages is set. If the default huge 4989 * page size is gigantic (> MAX_PAGE_ORDER), then the pages must be 4990 * allocated here from bootmem allocator. 4991 */ 4992 if (default_hstate_max_huge_pages) { 4993 default_hstate.max_huge_pages = default_hstate_max_huge_pages; 4994 /* 4995 * Since this is an early parameter, we can't check 4996 * NUMA node state yet, so loop through MAX_NUMNODES. 4997 */ 4998 for (i = 0; i < MAX_NUMNODES; i++) { 4999 if (default_hugepages_in_node[i] != 0) 5000 default_hstate.max_huge_pages_node[i] = 5001 default_hugepages_in_node[i]; 5002 } 5003 default_hstate_max_huge_pages = 0; 5004 } 5005 5006 return 0; 5007 } 5008 hugetlb_early_param("default_hugepagesz", default_hugepagesz_setup); 5009 5010 void __init hugetlb_bootmem_set_nodes(void) 5011 { 5012 int i, nid; 5013 unsigned long start_pfn, end_pfn; 5014 5015 if (!nodes_empty(hugetlb_bootmem_nodes)) 5016 return; 5017 5018 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 5019 if (end_pfn > start_pfn) 5020 node_set(nid, hugetlb_bootmem_nodes); 5021 } 5022 } 5023 5024 static bool __hugetlb_bootmem_allocated __initdata; 5025 5026 bool __init hugetlb_bootmem_allocated(void) 5027 { 5028 return __hugetlb_bootmem_allocated; 5029 } 5030 5031 void __init hugetlb_bootmem_alloc(void) 5032 { 5033 struct hstate *h; 5034 int i; 5035 5036 if (__hugetlb_bootmem_allocated) 5037 return; 5038 5039 hugetlb_bootmem_set_nodes(); 5040 5041 for (i = 0; i < MAX_NUMNODES; i++) 5042 INIT_LIST_HEAD(&huge_boot_pages[i]); 5043 5044 hugetlb_parse_params(); 5045 5046 for_each_hstate(h) { 5047 h->next_nid_to_alloc = first_online_node; 5048 5049 if (hstate_is_gigantic(h)) 5050 hugetlb_hstate_alloc_pages(h); 5051 } 5052 5053 __hugetlb_bootmem_allocated = true; 5054 } 5055 5056 /* 5057 * hugepage_alloc_threads command line parsing. 5058 * 5059 * When set, use this specific number of threads for the boot 5060 * allocation of hugepages. 5061 */ 5062 static int __init hugepage_alloc_threads_setup(char *s) 5063 { 5064 unsigned long allocation_threads; 5065 5066 if (kstrtoul(s, 0, &allocation_threads) != 0) 5067 return 1; 5068 5069 if (allocation_threads == 0) 5070 return 1; 5071 5072 hugepage_allocation_threads = allocation_threads; 5073 5074 return 1; 5075 } 5076 __setup("hugepage_alloc_threads=", hugepage_alloc_threads_setup); 5077 5078 static unsigned int allowed_mems_nr(struct hstate *h) 5079 { 5080 int node; 5081 unsigned int nr = 0; 5082 nodemask_t *mbind_nodemask; 5083 unsigned int *array = h->free_huge_pages_node; 5084 gfp_t gfp_mask = htlb_alloc_mask(h); 5085 5086 mbind_nodemask = policy_mbind_nodemask(gfp_mask); 5087 for_each_node_mask(node, cpuset_current_mems_allowed) { 5088 if (!mbind_nodemask || node_isset(node, *mbind_nodemask)) 5089 nr += array[node]; 5090 } 5091 5092 return nr; 5093 } 5094 5095 #ifdef CONFIG_SYSCTL 5096 static int proc_hugetlb_doulongvec_minmax(const struct ctl_table *table, int write, 5097 void *buffer, size_t *length, 5098 loff_t *ppos, unsigned long *out) 5099 { 5100 struct ctl_table dup_table; 5101 5102 /* 5103 * In order to avoid races with __do_proc_doulongvec_minmax(), we 5104 * can duplicate the @table and alter the duplicate of it. 5105 */ 5106 dup_table = *table; 5107 dup_table.data = out; 5108 5109 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos); 5110 } 5111 5112 static int hugetlb_sysctl_handler_common(bool obey_mempolicy, 5113 const struct ctl_table *table, int write, 5114 void *buffer, size_t *length, loff_t *ppos) 5115 { 5116 struct hstate *h = &default_hstate; 5117 unsigned long tmp = h->max_huge_pages; 5118 int ret; 5119 5120 if (!hugepages_supported()) 5121 return -EOPNOTSUPP; 5122 5123 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, 5124 &tmp); 5125 if (ret) 5126 goto out; 5127 5128 if (write) 5129 ret = __nr_hugepages_store_common(obey_mempolicy, h, 5130 NUMA_NO_NODE, tmp, *length); 5131 out: 5132 return ret; 5133 } 5134 5135 static int hugetlb_sysctl_handler(const struct ctl_table *table, int write, 5136 void *buffer, size_t *length, loff_t *ppos) 5137 { 5138 5139 return hugetlb_sysctl_handler_common(false, table, write, 5140 buffer, length, ppos); 5141 } 5142 5143 #ifdef CONFIG_NUMA 5144 static int hugetlb_mempolicy_sysctl_handler(const struct ctl_table *table, int write, 5145 void *buffer, size_t *length, loff_t *ppos) 5146 { 5147 return hugetlb_sysctl_handler_common(true, table, write, 5148 buffer, length, ppos); 5149 } 5150 #endif /* CONFIG_NUMA */ 5151 5152 static int hugetlb_overcommit_handler(const struct ctl_table *table, int write, 5153 void *buffer, size_t *length, loff_t *ppos) 5154 { 5155 struct hstate *h = &default_hstate; 5156 unsigned long tmp; 5157 int ret; 5158 5159 if (!hugepages_supported()) 5160 return -EOPNOTSUPP; 5161 5162 tmp = h->nr_overcommit_huge_pages; 5163 5164 if (write && hstate_is_gigantic(h)) 5165 return -EINVAL; 5166 5167 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, 5168 &tmp); 5169 if (ret) 5170 goto out; 5171 5172 if (write) { 5173 spin_lock_irq(&hugetlb_lock); 5174 h->nr_overcommit_huge_pages = tmp; 5175 spin_unlock_irq(&hugetlb_lock); 5176 } 5177 out: 5178 return ret; 5179 } 5180 5181 static const struct ctl_table hugetlb_table[] = { 5182 { 5183 .procname = "nr_hugepages", 5184 .data = NULL, 5185 .maxlen = sizeof(unsigned long), 5186 .mode = 0644, 5187 .proc_handler = hugetlb_sysctl_handler, 5188 }, 5189 #ifdef CONFIG_NUMA 5190 { 5191 .procname = "nr_hugepages_mempolicy", 5192 .data = NULL, 5193 .maxlen = sizeof(unsigned long), 5194 .mode = 0644, 5195 .proc_handler = &hugetlb_mempolicy_sysctl_handler, 5196 }, 5197 #endif 5198 { 5199 .procname = "hugetlb_shm_group", 5200 .data = &sysctl_hugetlb_shm_group, 5201 .maxlen = sizeof(gid_t), 5202 .mode = 0644, 5203 .proc_handler = proc_dointvec, 5204 }, 5205 { 5206 .procname = "nr_overcommit_hugepages", 5207 .data = NULL, 5208 .maxlen = sizeof(unsigned long), 5209 .mode = 0644, 5210 .proc_handler = hugetlb_overcommit_handler, 5211 }, 5212 }; 5213 5214 static void __init hugetlb_sysctl_init(void) 5215 { 5216 register_sysctl_init("vm", hugetlb_table); 5217 } 5218 #endif /* CONFIG_SYSCTL */ 5219 5220 void hugetlb_report_meminfo(struct seq_file *m) 5221 { 5222 struct hstate *h; 5223 unsigned long total = 0; 5224 5225 if (!hugepages_supported()) 5226 return; 5227 5228 for_each_hstate(h) { 5229 unsigned long count = h->nr_huge_pages; 5230 5231 total += huge_page_size(h) * count; 5232 5233 if (h == &default_hstate) 5234 seq_printf(m, 5235 "HugePages_Total: %5lu\n" 5236 "HugePages_Free: %5lu\n" 5237 "HugePages_Rsvd: %5lu\n" 5238 "HugePages_Surp: %5lu\n" 5239 "Hugepagesize: %8lu kB\n", 5240 count, 5241 h->free_huge_pages, 5242 h->resv_huge_pages, 5243 h->surplus_huge_pages, 5244 huge_page_size(h) / SZ_1K); 5245 } 5246 5247 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K); 5248 } 5249 5250 int hugetlb_report_node_meminfo(char *buf, int len, int nid) 5251 { 5252 struct hstate *h = &default_hstate; 5253 5254 if (!hugepages_supported()) 5255 return 0; 5256 5257 return sysfs_emit_at(buf, len, 5258 "Node %d HugePages_Total: %5u\n" 5259 "Node %d HugePages_Free: %5u\n" 5260 "Node %d HugePages_Surp: %5u\n", 5261 nid, h->nr_huge_pages_node[nid], 5262 nid, h->free_huge_pages_node[nid], 5263 nid, h->surplus_huge_pages_node[nid]); 5264 } 5265 5266 void hugetlb_show_meminfo_node(int nid) 5267 { 5268 struct hstate *h; 5269 5270 if (!hugepages_supported()) 5271 return; 5272 5273 for_each_hstate(h) 5274 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n", 5275 nid, 5276 h->nr_huge_pages_node[nid], 5277 h->free_huge_pages_node[nid], 5278 h->surplus_huge_pages_node[nid], 5279 huge_page_size(h) / SZ_1K); 5280 } 5281 5282 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm) 5283 { 5284 seq_printf(m, "HugetlbPages:\t%8lu kB\n", 5285 K(atomic_long_read(&mm->hugetlb_usage))); 5286 } 5287 5288 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ 5289 unsigned long hugetlb_total_pages(void) 5290 { 5291 struct hstate *h; 5292 unsigned long nr_total_pages = 0; 5293 5294 for_each_hstate(h) 5295 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h); 5296 return nr_total_pages; 5297 } 5298 5299 static int hugetlb_acct_memory(struct hstate *h, long delta) 5300 { 5301 int ret = -ENOMEM; 5302 5303 if (!delta) 5304 return 0; 5305 5306 spin_lock_irq(&hugetlb_lock); 5307 /* 5308 * When cpuset is configured, it breaks the strict hugetlb page 5309 * reservation as the accounting is done on a global variable. Such 5310 * reservation is completely rubbish in the presence of cpuset because 5311 * the reservation is not checked against page availability for the 5312 * current cpuset. Application can still potentially OOM'ed by kernel 5313 * with lack of free htlb page in cpuset that the task is in. 5314 * Attempt to enforce strict accounting with cpuset is almost 5315 * impossible (or too ugly) because cpuset is too fluid that 5316 * task or memory node can be dynamically moved between cpusets. 5317 * 5318 * The change of semantics for shared hugetlb mapping with cpuset is 5319 * undesirable. However, in order to preserve some of the semantics, 5320 * we fall back to check against current free page availability as 5321 * a best attempt and hopefully to minimize the impact of changing 5322 * semantics that cpuset has. 5323 * 5324 * Apart from cpuset, we also have memory policy mechanism that 5325 * also determines from which node the kernel will allocate memory 5326 * in a NUMA system. So similar to cpuset, we also should consider 5327 * the memory policy of the current task. Similar to the description 5328 * above. 5329 */ 5330 if (delta > 0) { 5331 if (gather_surplus_pages(h, delta) < 0) 5332 goto out; 5333 5334 if (delta > allowed_mems_nr(h)) { 5335 return_unused_surplus_pages(h, delta); 5336 goto out; 5337 } 5338 } 5339 5340 ret = 0; 5341 if (delta < 0) 5342 return_unused_surplus_pages(h, (unsigned long) -delta); 5343 5344 out: 5345 spin_unlock_irq(&hugetlb_lock); 5346 return ret; 5347 } 5348 5349 static void hugetlb_vm_op_open(struct vm_area_struct *vma) 5350 { 5351 struct resv_map *resv = vma_resv_map(vma); 5352 5353 /* 5354 * HPAGE_RESV_OWNER indicates a private mapping. 5355 * This new VMA should share its siblings reservation map if present. 5356 * The VMA will only ever have a valid reservation map pointer where 5357 * it is being copied for another still existing VMA. As that VMA 5358 * has a reference to the reservation map it cannot disappear until 5359 * after this open call completes. It is therefore safe to take a 5360 * new reference here without additional locking. 5361 */ 5362 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 5363 resv_map_dup_hugetlb_cgroup_uncharge_info(resv); 5364 kref_get(&resv->refs); 5365 } 5366 5367 /* 5368 * vma_lock structure for sharable mappings is vma specific. 5369 * Clear old pointer (if copied via vm_area_dup) and allocate 5370 * new structure. Before clearing, make sure vma_lock is not 5371 * for this vma. 5372 */ 5373 if (vma->vm_flags & VM_MAYSHARE) { 5374 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 5375 5376 if (vma_lock) { 5377 if (vma_lock->vma != vma) { 5378 vma->vm_private_data = NULL; 5379 hugetlb_vma_lock_alloc(vma); 5380 } else 5381 pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__); 5382 } else 5383 hugetlb_vma_lock_alloc(vma); 5384 } 5385 } 5386 5387 static void hugetlb_vm_op_close(struct vm_area_struct *vma) 5388 { 5389 struct hstate *h = hstate_vma(vma); 5390 struct resv_map *resv; 5391 struct hugepage_subpool *spool = subpool_vma(vma); 5392 unsigned long reserve, start, end; 5393 long gbl_reserve; 5394 5395 hugetlb_vma_lock_free(vma); 5396 5397 resv = vma_resv_map(vma); 5398 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 5399 return; 5400 5401 start = vma_hugecache_offset(h, vma, vma->vm_start); 5402 end = vma_hugecache_offset(h, vma, vma->vm_end); 5403 5404 reserve = (end - start) - region_count(resv, start, end); 5405 hugetlb_cgroup_uncharge_counter(resv, start, end); 5406 if (reserve) { 5407 /* 5408 * Decrement reserve counts. The global reserve count may be 5409 * adjusted if the subpool has a minimum size. 5410 */ 5411 gbl_reserve = hugepage_subpool_put_pages(spool, reserve); 5412 hugetlb_acct_memory(h, -gbl_reserve); 5413 } 5414 5415 kref_put(&resv->refs, resv_map_release); 5416 } 5417 5418 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr) 5419 { 5420 if (addr & ~(huge_page_mask(hstate_vma(vma)))) 5421 return -EINVAL; 5422 return 0; 5423 } 5424 5425 void hugetlb_split(struct vm_area_struct *vma, unsigned long addr) 5426 { 5427 /* 5428 * PMD sharing is only possible for PUD_SIZE-aligned address ranges 5429 * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this 5430 * split, unshare PMDs in the PUD_SIZE interval surrounding addr now. 5431 * This function is called in the middle of a VMA split operation, with 5432 * MM, VMA and rmap all write-locked to prevent concurrent page table 5433 * walks (except hardware and gup_fast()). 5434 */ 5435 vma_assert_write_locked(vma); 5436 i_mmap_assert_write_locked(vma->vm_file->f_mapping); 5437 5438 if (addr & ~PUD_MASK) { 5439 unsigned long floor = addr & PUD_MASK; 5440 unsigned long ceil = floor + PUD_SIZE; 5441 5442 if (floor >= vma->vm_start && ceil <= vma->vm_end) { 5443 /* 5444 * Locking: 5445 * Use take_locks=false here. 5446 * The file rmap lock is already held. 5447 * The hugetlb VMA lock can't be taken when we already 5448 * hold the file rmap lock, and we don't need it because 5449 * its purpose is to synchronize against concurrent page 5450 * table walks, which are not possible thanks to the 5451 * locks held by our caller. 5452 */ 5453 hugetlb_unshare_pmds(vma, floor, ceil, /* take_locks = */ false); 5454 } 5455 } 5456 } 5457 5458 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma) 5459 { 5460 return huge_page_size(hstate_vma(vma)); 5461 } 5462 5463 /* 5464 * We cannot handle pagefaults against hugetlb pages at all. They cause 5465 * handle_mm_fault() to try to instantiate regular-sized pages in the 5466 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get 5467 * this far. 5468 */ 5469 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf) 5470 { 5471 BUG(); 5472 return 0; 5473 } 5474 5475 /* 5476 * When a new function is introduced to vm_operations_struct and added 5477 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops. 5478 * This is because under System V memory model, mappings created via 5479 * shmget/shmat with "huge page" specified are backed by hugetlbfs files, 5480 * their original vm_ops are overwritten with shm_vm_ops. 5481 */ 5482 const struct vm_operations_struct hugetlb_vm_ops = { 5483 .fault = hugetlb_vm_op_fault, 5484 .open = hugetlb_vm_op_open, 5485 .close = hugetlb_vm_op_close, 5486 .may_split = hugetlb_vm_op_split, 5487 .pagesize = hugetlb_vm_op_pagesize, 5488 }; 5489 5490 static pte_t make_huge_pte(struct vm_area_struct *vma, struct folio *folio, 5491 bool try_mkwrite) 5492 { 5493 pte_t entry = folio_mk_pte(folio, vma->vm_page_prot); 5494 unsigned int shift = huge_page_shift(hstate_vma(vma)); 5495 5496 if (try_mkwrite && (vma->vm_flags & VM_WRITE)) { 5497 entry = pte_mkwrite_novma(pte_mkdirty(entry)); 5498 } else { 5499 entry = pte_wrprotect(entry); 5500 } 5501 entry = pte_mkyoung(entry); 5502 entry = arch_make_huge_pte(entry, shift, vma->vm_flags); 5503 5504 return entry; 5505 } 5506 5507 static void set_huge_ptep_writable(struct vm_area_struct *vma, 5508 unsigned long address, pte_t *ptep) 5509 { 5510 pte_t entry; 5511 5512 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(vma->vm_mm, address, ptep))); 5513 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) 5514 update_mmu_cache(vma, address, ptep); 5515 } 5516 5517 static void set_huge_ptep_maybe_writable(struct vm_area_struct *vma, 5518 unsigned long address, pte_t *ptep) 5519 { 5520 if (vma->vm_flags & VM_WRITE) 5521 set_huge_ptep_writable(vma, address, ptep); 5522 } 5523 5524 bool is_hugetlb_entry_migration(pte_t pte) 5525 { 5526 swp_entry_t swp; 5527 5528 if (huge_pte_none(pte) || pte_present(pte)) 5529 return false; 5530 swp = pte_to_swp_entry(pte); 5531 if (is_migration_entry(swp)) 5532 return true; 5533 else 5534 return false; 5535 } 5536 5537 bool is_hugetlb_entry_hwpoisoned(pte_t pte) 5538 { 5539 swp_entry_t swp; 5540 5541 if (huge_pte_none(pte) || pte_present(pte)) 5542 return false; 5543 swp = pte_to_swp_entry(pte); 5544 if (is_hwpoison_entry(swp)) 5545 return true; 5546 else 5547 return false; 5548 } 5549 5550 static void 5551 hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr, 5552 struct folio *new_folio, pte_t old, unsigned long sz) 5553 { 5554 pte_t newpte = make_huge_pte(vma, new_folio, true); 5555 5556 __folio_mark_uptodate(new_folio); 5557 hugetlb_add_new_anon_rmap(new_folio, vma, addr); 5558 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(old)) 5559 newpte = huge_pte_mkuffd_wp(newpte); 5560 set_huge_pte_at(vma->vm_mm, addr, ptep, newpte, sz); 5561 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm); 5562 folio_set_hugetlb_migratable(new_folio); 5563 } 5564 5565 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, 5566 struct vm_area_struct *dst_vma, 5567 struct vm_area_struct *src_vma) 5568 { 5569 pte_t *src_pte, *dst_pte, entry; 5570 struct folio *pte_folio; 5571 unsigned long addr; 5572 bool cow = is_cow_mapping(src_vma->vm_flags); 5573 struct hstate *h = hstate_vma(src_vma); 5574 unsigned long sz = huge_page_size(h); 5575 unsigned long npages = pages_per_huge_page(h); 5576 struct mmu_notifier_range range; 5577 unsigned long last_addr_mask; 5578 int ret = 0; 5579 5580 if (cow) { 5581 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src, 5582 src_vma->vm_start, 5583 src_vma->vm_end); 5584 mmu_notifier_invalidate_range_start(&range); 5585 vma_assert_write_locked(src_vma); 5586 raw_write_seqcount_begin(&src->write_protect_seq); 5587 } else { 5588 /* 5589 * For shared mappings the vma lock must be held before 5590 * calling hugetlb_walk() in the src vma. Otherwise, the 5591 * returned ptep could go away if part of a shared pmd and 5592 * another thread calls huge_pmd_unshare. 5593 */ 5594 hugetlb_vma_lock_read(src_vma); 5595 } 5596 5597 last_addr_mask = hugetlb_mask_last_page(h); 5598 for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) { 5599 spinlock_t *src_ptl, *dst_ptl; 5600 src_pte = hugetlb_walk(src_vma, addr, sz); 5601 if (!src_pte) { 5602 addr |= last_addr_mask; 5603 continue; 5604 } 5605 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz); 5606 if (!dst_pte) { 5607 ret = -ENOMEM; 5608 break; 5609 } 5610 5611 #ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING 5612 /* If the pagetables are shared, there is nothing to do */ 5613 if (ptdesc_pmd_is_shared(virt_to_ptdesc(dst_pte))) { 5614 addr |= last_addr_mask; 5615 continue; 5616 } 5617 #endif 5618 5619 dst_ptl = huge_pte_lock(h, dst, dst_pte); 5620 src_ptl = huge_pte_lockptr(h, src, src_pte); 5621 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 5622 entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte); 5623 again: 5624 if (huge_pte_none(entry)) { 5625 /* 5626 * Skip if src entry none. 5627 */ 5628 ; 5629 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) { 5630 if (!userfaultfd_wp(dst_vma)) 5631 entry = huge_pte_clear_uffd_wp(entry); 5632 set_huge_pte_at(dst, addr, dst_pte, entry, sz); 5633 } else if (unlikely(is_hugetlb_entry_migration(entry))) { 5634 swp_entry_t swp_entry = pte_to_swp_entry(entry); 5635 bool uffd_wp = pte_swp_uffd_wp(entry); 5636 5637 if (!is_readable_migration_entry(swp_entry) && cow) { 5638 /* 5639 * COW mappings require pages in both 5640 * parent and child to be set to read. 5641 */ 5642 swp_entry = make_readable_migration_entry( 5643 swp_offset(swp_entry)); 5644 entry = swp_entry_to_pte(swp_entry); 5645 if (userfaultfd_wp(src_vma) && uffd_wp) 5646 entry = pte_swp_mkuffd_wp(entry); 5647 set_huge_pte_at(src, addr, src_pte, entry, sz); 5648 } 5649 if (!userfaultfd_wp(dst_vma)) 5650 entry = huge_pte_clear_uffd_wp(entry); 5651 set_huge_pte_at(dst, addr, dst_pte, entry, sz); 5652 } else if (unlikely(is_pte_marker(entry))) { 5653 pte_marker marker = copy_pte_marker( 5654 pte_to_swp_entry(entry), dst_vma); 5655 5656 if (marker) 5657 set_huge_pte_at(dst, addr, dst_pte, 5658 make_pte_marker(marker), sz); 5659 } else { 5660 entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte); 5661 pte_folio = page_folio(pte_page(entry)); 5662 folio_get(pte_folio); 5663 5664 /* 5665 * Failing to duplicate the anon rmap is a rare case 5666 * where we see pinned hugetlb pages while they're 5667 * prone to COW. We need to do the COW earlier during 5668 * fork. 5669 * 5670 * When pre-allocating the page or copying data, we 5671 * need to be without the pgtable locks since we could 5672 * sleep during the process. 5673 */ 5674 if (!folio_test_anon(pte_folio)) { 5675 hugetlb_add_file_rmap(pte_folio); 5676 } else if (hugetlb_try_dup_anon_rmap(pte_folio, src_vma)) { 5677 pte_t src_pte_old = entry; 5678 struct folio *new_folio; 5679 5680 spin_unlock(src_ptl); 5681 spin_unlock(dst_ptl); 5682 /* Do not use reserve as it's private owned */ 5683 new_folio = alloc_hugetlb_folio(dst_vma, addr, false); 5684 if (IS_ERR(new_folio)) { 5685 folio_put(pte_folio); 5686 ret = PTR_ERR(new_folio); 5687 break; 5688 } 5689 ret = copy_user_large_folio(new_folio, pte_folio, 5690 addr, dst_vma); 5691 folio_put(pte_folio); 5692 if (ret) { 5693 folio_put(new_folio); 5694 break; 5695 } 5696 5697 /* Install the new hugetlb folio if src pte stable */ 5698 dst_ptl = huge_pte_lock(h, dst, dst_pte); 5699 src_ptl = huge_pte_lockptr(h, src, src_pte); 5700 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 5701 entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte); 5702 if (!pte_same(src_pte_old, entry)) { 5703 restore_reserve_on_error(h, dst_vma, addr, 5704 new_folio); 5705 folio_put(new_folio); 5706 /* huge_ptep of dst_pte won't change as in child */ 5707 goto again; 5708 } 5709 hugetlb_install_folio(dst_vma, dst_pte, addr, 5710 new_folio, src_pte_old, sz); 5711 spin_unlock(src_ptl); 5712 spin_unlock(dst_ptl); 5713 continue; 5714 } 5715 5716 if (cow) { 5717 /* 5718 * No need to notify as we are downgrading page 5719 * table protection not changing it to point 5720 * to a new page. 5721 * 5722 * See Documentation/mm/mmu_notifier.rst 5723 */ 5724 huge_ptep_set_wrprotect(src, addr, src_pte); 5725 entry = huge_pte_wrprotect(entry); 5726 } 5727 5728 if (!userfaultfd_wp(dst_vma)) 5729 entry = huge_pte_clear_uffd_wp(entry); 5730 5731 set_huge_pte_at(dst, addr, dst_pte, entry, sz); 5732 hugetlb_count_add(npages, dst); 5733 } 5734 spin_unlock(src_ptl); 5735 spin_unlock(dst_ptl); 5736 } 5737 5738 if (cow) { 5739 raw_write_seqcount_end(&src->write_protect_seq); 5740 mmu_notifier_invalidate_range_end(&range); 5741 } else { 5742 hugetlb_vma_unlock_read(src_vma); 5743 } 5744 5745 return ret; 5746 } 5747 5748 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr, 5749 unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte, 5750 unsigned long sz) 5751 { 5752 bool need_clear_uffd_wp = vma_has_uffd_without_event_remap(vma); 5753 struct hstate *h = hstate_vma(vma); 5754 struct mm_struct *mm = vma->vm_mm; 5755 spinlock_t *src_ptl, *dst_ptl; 5756 pte_t pte; 5757 5758 dst_ptl = huge_pte_lock(h, mm, dst_pte); 5759 src_ptl = huge_pte_lockptr(h, mm, src_pte); 5760 5761 /* 5762 * We don't have to worry about the ordering of src and dst ptlocks 5763 * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock. 5764 */ 5765 if (src_ptl != dst_ptl) 5766 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 5767 5768 pte = huge_ptep_get_and_clear(mm, old_addr, src_pte, sz); 5769 5770 if (need_clear_uffd_wp && pte_marker_uffd_wp(pte)) 5771 huge_pte_clear(mm, new_addr, dst_pte, sz); 5772 else { 5773 if (need_clear_uffd_wp) { 5774 if (pte_present(pte)) 5775 pte = huge_pte_clear_uffd_wp(pte); 5776 else if (is_swap_pte(pte)) 5777 pte = pte_swp_clear_uffd_wp(pte); 5778 } 5779 set_huge_pte_at(mm, new_addr, dst_pte, pte, sz); 5780 } 5781 5782 if (src_ptl != dst_ptl) 5783 spin_unlock(src_ptl); 5784 spin_unlock(dst_ptl); 5785 } 5786 5787 int move_hugetlb_page_tables(struct vm_area_struct *vma, 5788 struct vm_area_struct *new_vma, 5789 unsigned long old_addr, unsigned long new_addr, 5790 unsigned long len) 5791 { 5792 struct hstate *h = hstate_vma(vma); 5793 struct address_space *mapping = vma->vm_file->f_mapping; 5794 unsigned long sz = huge_page_size(h); 5795 struct mm_struct *mm = vma->vm_mm; 5796 unsigned long old_end = old_addr + len; 5797 unsigned long last_addr_mask; 5798 pte_t *src_pte, *dst_pte; 5799 struct mmu_notifier_range range; 5800 bool shared_pmd = false; 5801 5802 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr, 5803 old_end); 5804 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 5805 /* 5806 * In case of shared PMDs, we should cover the maximum possible 5807 * range. 5808 */ 5809 flush_cache_range(vma, range.start, range.end); 5810 5811 mmu_notifier_invalidate_range_start(&range); 5812 last_addr_mask = hugetlb_mask_last_page(h); 5813 /* Prevent race with file truncation */ 5814 hugetlb_vma_lock_write(vma); 5815 i_mmap_lock_write(mapping); 5816 for (; old_addr < old_end; old_addr += sz, new_addr += sz) { 5817 src_pte = hugetlb_walk(vma, old_addr, sz); 5818 if (!src_pte) { 5819 old_addr |= last_addr_mask; 5820 new_addr |= last_addr_mask; 5821 continue; 5822 } 5823 if (huge_pte_none(huge_ptep_get(mm, old_addr, src_pte))) 5824 continue; 5825 5826 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) { 5827 shared_pmd = true; 5828 old_addr |= last_addr_mask; 5829 new_addr |= last_addr_mask; 5830 continue; 5831 } 5832 5833 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz); 5834 if (!dst_pte) 5835 break; 5836 5837 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte, sz); 5838 } 5839 5840 if (shared_pmd) 5841 flush_hugetlb_tlb_range(vma, range.start, range.end); 5842 else 5843 flush_hugetlb_tlb_range(vma, old_end - len, old_end); 5844 mmu_notifier_invalidate_range_end(&range); 5845 i_mmap_unlock_write(mapping); 5846 hugetlb_vma_unlock_write(vma); 5847 5848 return len + old_addr - old_end; 5849 } 5850 5851 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma, 5852 unsigned long start, unsigned long end, 5853 struct folio *folio, zap_flags_t zap_flags) 5854 { 5855 struct mm_struct *mm = vma->vm_mm; 5856 const bool folio_provided = !!folio; 5857 unsigned long address; 5858 pte_t *ptep; 5859 pte_t pte; 5860 spinlock_t *ptl; 5861 struct hstate *h = hstate_vma(vma); 5862 unsigned long sz = huge_page_size(h); 5863 bool adjust_reservation; 5864 unsigned long last_addr_mask; 5865 bool force_flush = false; 5866 5867 WARN_ON(!is_vm_hugetlb_page(vma)); 5868 BUG_ON(start & ~huge_page_mask(h)); 5869 BUG_ON(end & ~huge_page_mask(h)); 5870 5871 /* 5872 * This is a hugetlb vma, all the pte entries should point 5873 * to huge page. 5874 */ 5875 tlb_change_page_size(tlb, sz); 5876 tlb_start_vma(tlb, vma); 5877 5878 last_addr_mask = hugetlb_mask_last_page(h); 5879 address = start; 5880 for (; address < end; address += sz) { 5881 ptep = hugetlb_walk(vma, address, sz); 5882 if (!ptep) { 5883 address |= last_addr_mask; 5884 continue; 5885 } 5886 5887 ptl = huge_pte_lock(h, mm, ptep); 5888 if (huge_pmd_unshare(mm, vma, address, ptep)) { 5889 spin_unlock(ptl); 5890 tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE); 5891 force_flush = true; 5892 address |= last_addr_mask; 5893 continue; 5894 } 5895 5896 pte = huge_ptep_get(mm, address, ptep); 5897 if (huge_pte_none(pte)) { 5898 spin_unlock(ptl); 5899 continue; 5900 } 5901 5902 /* 5903 * Migrating hugepage or HWPoisoned hugepage is already 5904 * unmapped and its refcount is dropped, so just clear pte here. 5905 */ 5906 if (unlikely(!pte_present(pte))) { 5907 /* 5908 * If the pte was wr-protected by uffd-wp in any of the 5909 * swap forms, meanwhile the caller does not want to 5910 * drop the uffd-wp bit in this zap, then replace the 5911 * pte with a marker. 5912 */ 5913 if (pte_swp_uffd_wp_any(pte) && 5914 !(zap_flags & ZAP_FLAG_DROP_MARKER)) 5915 set_huge_pte_at(mm, address, ptep, 5916 make_pte_marker(PTE_MARKER_UFFD_WP), 5917 sz); 5918 else 5919 huge_pte_clear(mm, address, ptep, sz); 5920 spin_unlock(ptl); 5921 continue; 5922 } 5923 5924 /* 5925 * If a folio is supplied, it is because a specific 5926 * folio is being unmapped, not a range. Ensure the folio we 5927 * are about to unmap is the actual folio of interest. 5928 */ 5929 if (folio_provided) { 5930 if (folio != page_folio(pte_page(pte))) { 5931 spin_unlock(ptl); 5932 continue; 5933 } 5934 /* 5935 * Mark the VMA as having unmapped its page so that 5936 * future faults in this VMA will fail rather than 5937 * looking like data was lost 5938 */ 5939 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); 5940 } else { 5941 folio = page_folio(pte_page(pte)); 5942 } 5943 5944 pte = huge_ptep_get_and_clear(mm, address, ptep, sz); 5945 tlb_remove_huge_tlb_entry(h, tlb, ptep, address); 5946 if (huge_pte_dirty(pte)) 5947 folio_mark_dirty(folio); 5948 /* Leave a uffd-wp pte marker if needed */ 5949 if (huge_pte_uffd_wp(pte) && 5950 !(zap_flags & ZAP_FLAG_DROP_MARKER)) 5951 set_huge_pte_at(mm, address, ptep, 5952 make_pte_marker(PTE_MARKER_UFFD_WP), 5953 sz); 5954 hugetlb_count_sub(pages_per_huge_page(h), mm); 5955 hugetlb_remove_rmap(folio); 5956 spin_unlock(ptl); 5957 5958 /* 5959 * Restore the reservation for anonymous page, otherwise the 5960 * backing page could be stolen by someone. 5961 * If there we are freeing a surplus, do not set the restore 5962 * reservation bit. 5963 */ 5964 adjust_reservation = false; 5965 5966 spin_lock_irq(&hugetlb_lock); 5967 if (!h->surplus_huge_pages && __vma_private_lock(vma) && 5968 folio_test_anon(folio)) { 5969 folio_set_hugetlb_restore_reserve(folio); 5970 /* Reservation to be adjusted after the spin lock */ 5971 adjust_reservation = true; 5972 } 5973 spin_unlock_irq(&hugetlb_lock); 5974 5975 /* 5976 * Adjust the reservation for the region that will have the 5977 * reserve restored. Keep in mind that vma_needs_reservation() changes 5978 * resv->adds_in_progress if it succeeds. If this is not done, 5979 * do_exit() will not see it, and will keep the reservation 5980 * forever. 5981 */ 5982 if (adjust_reservation) { 5983 int rc = vma_needs_reservation(h, vma, address); 5984 5985 if (rc < 0) 5986 /* Pressumably allocate_file_region_entries failed 5987 * to allocate a file_region struct. Clear 5988 * hugetlb_restore_reserve so that global reserve 5989 * count will not be incremented by free_huge_folio. 5990 * Act as if we consumed the reservation. 5991 */ 5992 folio_clear_hugetlb_restore_reserve(folio); 5993 else if (rc) 5994 vma_add_reservation(h, vma, address); 5995 } 5996 5997 tlb_remove_page_size(tlb, folio_page(folio, 0), 5998 folio_size(folio)); 5999 /* 6000 * If we were instructed to unmap a specific folio, we're done. 6001 */ 6002 if (folio_provided) 6003 break; 6004 } 6005 tlb_end_vma(tlb, vma); 6006 6007 /* 6008 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We 6009 * could defer the flush until now, since by holding i_mmap_rwsem we 6010 * guaranteed that the last refernece would not be dropped. But we must 6011 * do the flushing before we return, as otherwise i_mmap_rwsem will be 6012 * dropped and the last reference to the shared PMDs page might be 6013 * dropped as well. 6014 * 6015 * In theory we could defer the freeing of the PMD pages as well, but 6016 * huge_pmd_unshare() relies on the exact page_count for the PMD page to 6017 * detect sharing, so we cannot defer the release of the page either. 6018 * Instead, do flush now. 6019 */ 6020 if (force_flush) 6021 tlb_flush_mmu_tlbonly(tlb); 6022 } 6023 6024 void __hugetlb_zap_begin(struct vm_area_struct *vma, 6025 unsigned long *start, unsigned long *end) 6026 { 6027 if (!vma->vm_file) /* hugetlbfs_file_mmap error */ 6028 return; 6029 6030 adjust_range_if_pmd_sharing_possible(vma, start, end); 6031 hugetlb_vma_lock_write(vma); 6032 if (vma->vm_file) 6033 i_mmap_lock_write(vma->vm_file->f_mapping); 6034 } 6035 6036 void __hugetlb_zap_end(struct vm_area_struct *vma, 6037 struct zap_details *details) 6038 { 6039 zap_flags_t zap_flags = details ? details->zap_flags : 0; 6040 6041 if (!vma->vm_file) /* hugetlbfs_file_mmap error */ 6042 return; 6043 6044 if (zap_flags & ZAP_FLAG_UNMAP) { /* final unmap */ 6045 /* 6046 * Unlock and free the vma lock before releasing i_mmap_rwsem. 6047 * When the vma_lock is freed, this makes the vma ineligible 6048 * for pmd sharing. And, i_mmap_rwsem is required to set up 6049 * pmd sharing. This is important as page tables for this 6050 * unmapped range will be asynchrously deleted. If the page 6051 * tables are shared, there will be issues when accessed by 6052 * someone else. 6053 */ 6054 __hugetlb_vma_unlock_write_free(vma); 6055 } else { 6056 hugetlb_vma_unlock_write(vma); 6057 } 6058 6059 if (vma->vm_file) 6060 i_mmap_unlock_write(vma->vm_file->f_mapping); 6061 } 6062 6063 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, 6064 unsigned long end, struct folio *folio, 6065 zap_flags_t zap_flags) 6066 { 6067 struct mmu_notifier_range range; 6068 struct mmu_gather tlb; 6069 6070 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 6071 start, end); 6072 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 6073 mmu_notifier_invalidate_range_start(&range); 6074 tlb_gather_mmu(&tlb, vma->vm_mm); 6075 6076 __unmap_hugepage_range(&tlb, vma, start, end, 6077 folio, zap_flags); 6078 6079 mmu_notifier_invalidate_range_end(&range); 6080 tlb_finish_mmu(&tlb); 6081 } 6082 6083 /* 6084 * This is called when the original mapper is failing to COW a MAP_PRIVATE 6085 * mapping it owns the reserve page for. The intention is to unmap the page 6086 * from other VMAs and let the children be SIGKILLed if they are faulting the 6087 * same region. 6088 */ 6089 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, 6090 struct folio *folio, unsigned long address) 6091 { 6092 struct hstate *h = hstate_vma(vma); 6093 struct vm_area_struct *iter_vma; 6094 struct address_space *mapping; 6095 pgoff_t pgoff; 6096 6097 /* 6098 * vm_pgoff is in PAGE_SIZE units, hence the different calculation 6099 * from page cache lookup which is in HPAGE_SIZE units. 6100 */ 6101 address = address & huge_page_mask(h); 6102 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + 6103 vma->vm_pgoff; 6104 mapping = vma->vm_file->f_mapping; 6105 6106 /* 6107 * Take the mapping lock for the duration of the table walk. As 6108 * this mapping should be shared between all the VMAs, 6109 * __unmap_hugepage_range() is called as the lock is already held 6110 */ 6111 i_mmap_lock_write(mapping); 6112 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) { 6113 /* Do not unmap the current VMA */ 6114 if (iter_vma == vma) 6115 continue; 6116 6117 /* 6118 * Shared VMAs have their own reserves and do not affect 6119 * MAP_PRIVATE accounting but it is possible that a shared 6120 * VMA is using the same page so check and skip such VMAs. 6121 */ 6122 if (iter_vma->vm_flags & VM_MAYSHARE) 6123 continue; 6124 6125 /* 6126 * Unmap the page from other VMAs without their own reserves. 6127 * They get marked to be SIGKILLed if they fault in these 6128 * areas. This is because a future no-page fault on this VMA 6129 * could insert a zeroed page instead of the data existing 6130 * from the time of fork. This would look like data corruption 6131 */ 6132 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) 6133 unmap_hugepage_range(iter_vma, address, 6134 address + huge_page_size(h), 6135 folio, 0); 6136 } 6137 i_mmap_unlock_write(mapping); 6138 } 6139 6140 /* 6141 * hugetlb_wp() should be called with page lock of the original hugepage held. 6142 * Called with hugetlb_fault_mutex_table held and pte_page locked so we 6143 * cannot race with other handlers or page migration. 6144 * Keep the pte_same checks anyway to make transition from the mutex easier. 6145 */ 6146 static vm_fault_t hugetlb_wp(struct vm_fault *vmf) 6147 { 6148 struct vm_area_struct *vma = vmf->vma; 6149 struct mm_struct *mm = vma->vm_mm; 6150 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 6151 pte_t pte = huge_ptep_get(mm, vmf->address, vmf->pte); 6152 struct hstate *h = hstate_vma(vma); 6153 struct folio *old_folio; 6154 struct folio *new_folio; 6155 bool cow_from_owner = 0; 6156 vm_fault_t ret = 0; 6157 struct mmu_notifier_range range; 6158 6159 /* 6160 * Never handle CoW for uffd-wp protected pages. It should be only 6161 * handled when the uffd-wp protection is removed. 6162 * 6163 * Note that only the CoW optimization path (in hugetlb_no_page()) 6164 * can trigger this, because hugetlb_fault() will always resolve 6165 * uffd-wp bit first. 6166 */ 6167 if (!unshare && huge_pte_uffd_wp(pte)) 6168 return 0; 6169 6170 /* Let's take out MAP_SHARED mappings first. */ 6171 if (vma->vm_flags & VM_MAYSHARE) { 6172 set_huge_ptep_writable(vma, vmf->address, vmf->pte); 6173 return 0; 6174 } 6175 6176 old_folio = page_folio(pte_page(pte)); 6177 6178 delayacct_wpcopy_start(); 6179 6180 retry_avoidcopy: 6181 /* 6182 * If no-one else is actually using this page, we're the exclusive 6183 * owner and can reuse this page. 6184 * 6185 * Note that we don't rely on the (safer) folio refcount here, because 6186 * copying the hugetlb folio when there are unexpected (temporary) 6187 * folio references could harm simple fork()+exit() users when 6188 * we run out of free hugetlb folios: we would have to kill processes 6189 * in scenarios that used to work. As a side effect, there can still 6190 * be leaks between processes, for example, with FOLL_GET users. 6191 */ 6192 if (folio_mapcount(old_folio) == 1 && folio_test_anon(old_folio)) { 6193 if (!PageAnonExclusive(&old_folio->page)) { 6194 folio_move_anon_rmap(old_folio, vma); 6195 SetPageAnonExclusive(&old_folio->page); 6196 } 6197 if (likely(!unshare)) 6198 set_huge_ptep_maybe_writable(vma, vmf->address, 6199 vmf->pte); 6200 6201 delayacct_wpcopy_end(); 6202 return 0; 6203 } 6204 VM_BUG_ON_PAGE(folio_test_anon(old_folio) && 6205 PageAnonExclusive(&old_folio->page), &old_folio->page); 6206 6207 /* 6208 * If the process that created a MAP_PRIVATE mapping is about to perform 6209 * a COW due to a shared page count, attempt to satisfy the allocation 6210 * without using the existing reserves. 6211 * In order to determine where this is a COW on a MAP_PRIVATE mapping it 6212 * is enough to check whether the old_folio is anonymous. This means that 6213 * the reserve for this address was consumed. If reserves were used, a 6214 * partial faulted mapping at the fime of fork() could consume its reserves 6215 * on COW instead of the full address range. 6216 */ 6217 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && 6218 folio_test_anon(old_folio)) 6219 cow_from_owner = true; 6220 6221 folio_get(old_folio); 6222 6223 /* 6224 * Drop page table lock as buddy allocator may be called. It will 6225 * be acquired again before returning to the caller, as expected. 6226 */ 6227 spin_unlock(vmf->ptl); 6228 new_folio = alloc_hugetlb_folio(vma, vmf->address, cow_from_owner); 6229 6230 if (IS_ERR(new_folio)) { 6231 /* 6232 * If a process owning a MAP_PRIVATE mapping fails to COW, 6233 * it is due to references held by a child and an insufficient 6234 * huge page pool. To guarantee the original mappers 6235 * reliability, unmap the page from child processes. The child 6236 * may get SIGKILLed if it later faults. 6237 */ 6238 if (cow_from_owner) { 6239 struct address_space *mapping = vma->vm_file->f_mapping; 6240 pgoff_t idx; 6241 u32 hash; 6242 6243 folio_put(old_folio); 6244 /* 6245 * Drop hugetlb_fault_mutex and vma_lock before 6246 * unmapping. unmapping needs to hold vma_lock 6247 * in write mode. Dropping vma_lock in read mode 6248 * here is OK as COW mappings do not interact with 6249 * PMD sharing. 6250 * 6251 * Reacquire both after unmap operation. 6252 */ 6253 idx = vma_hugecache_offset(h, vma, vmf->address); 6254 hash = hugetlb_fault_mutex_hash(mapping, idx); 6255 hugetlb_vma_unlock_read(vma); 6256 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6257 6258 unmap_ref_private(mm, vma, old_folio, vmf->address); 6259 6260 mutex_lock(&hugetlb_fault_mutex_table[hash]); 6261 hugetlb_vma_lock_read(vma); 6262 spin_lock(vmf->ptl); 6263 vmf->pte = hugetlb_walk(vma, vmf->address, 6264 huge_page_size(h)); 6265 if (likely(vmf->pte && 6266 pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), pte))) 6267 goto retry_avoidcopy; 6268 /* 6269 * race occurs while re-acquiring page table 6270 * lock, and our job is done. 6271 */ 6272 delayacct_wpcopy_end(); 6273 return 0; 6274 } 6275 6276 ret = vmf_error(PTR_ERR(new_folio)); 6277 goto out_release_old; 6278 } 6279 6280 /* 6281 * When the original hugepage is shared one, it does not have 6282 * anon_vma prepared. 6283 */ 6284 ret = __vmf_anon_prepare(vmf); 6285 if (unlikely(ret)) 6286 goto out_release_all; 6287 6288 if (copy_user_large_folio(new_folio, old_folio, vmf->real_address, vma)) { 6289 ret = VM_FAULT_HWPOISON_LARGE | VM_FAULT_SET_HINDEX(hstate_index(h)); 6290 goto out_release_all; 6291 } 6292 __folio_mark_uptodate(new_folio); 6293 6294 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, vmf->address, 6295 vmf->address + huge_page_size(h)); 6296 mmu_notifier_invalidate_range_start(&range); 6297 6298 /* 6299 * Retake the page table lock to check for racing updates 6300 * before the page tables are altered 6301 */ 6302 spin_lock(vmf->ptl); 6303 vmf->pte = hugetlb_walk(vma, vmf->address, huge_page_size(h)); 6304 if (likely(vmf->pte && pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), pte))) { 6305 pte_t newpte = make_huge_pte(vma, new_folio, !unshare); 6306 6307 /* Break COW or unshare */ 6308 huge_ptep_clear_flush(vma, vmf->address, vmf->pte); 6309 hugetlb_remove_rmap(old_folio); 6310 hugetlb_add_new_anon_rmap(new_folio, vma, vmf->address); 6311 if (huge_pte_uffd_wp(pte)) 6312 newpte = huge_pte_mkuffd_wp(newpte); 6313 set_huge_pte_at(mm, vmf->address, vmf->pte, newpte, 6314 huge_page_size(h)); 6315 folio_set_hugetlb_migratable(new_folio); 6316 /* Make the old page be freed below */ 6317 new_folio = old_folio; 6318 } 6319 spin_unlock(vmf->ptl); 6320 mmu_notifier_invalidate_range_end(&range); 6321 out_release_all: 6322 /* 6323 * No restore in case of successful pagetable update (Break COW or 6324 * unshare) 6325 */ 6326 if (new_folio != old_folio) 6327 restore_reserve_on_error(h, vma, vmf->address, new_folio); 6328 folio_put(new_folio); 6329 out_release_old: 6330 folio_put(old_folio); 6331 6332 spin_lock(vmf->ptl); /* Caller expects lock to be held */ 6333 6334 delayacct_wpcopy_end(); 6335 return ret; 6336 } 6337 6338 /* 6339 * Return whether there is a pagecache page to back given address within VMA. 6340 */ 6341 bool hugetlbfs_pagecache_present(struct hstate *h, 6342 struct vm_area_struct *vma, unsigned long address) 6343 { 6344 struct address_space *mapping = vma->vm_file->f_mapping; 6345 pgoff_t idx = linear_page_index(vma, address); 6346 struct folio *folio; 6347 6348 folio = filemap_get_folio(mapping, idx); 6349 if (IS_ERR(folio)) 6350 return false; 6351 folio_put(folio); 6352 return true; 6353 } 6354 6355 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping, 6356 pgoff_t idx) 6357 { 6358 struct inode *inode = mapping->host; 6359 struct hstate *h = hstate_inode(inode); 6360 int err; 6361 6362 idx <<= huge_page_order(h); 6363 __folio_set_locked(folio); 6364 err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL); 6365 6366 if (unlikely(err)) { 6367 __folio_clear_locked(folio); 6368 return err; 6369 } 6370 folio_clear_hugetlb_restore_reserve(folio); 6371 6372 /* 6373 * mark folio dirty so that it will not be removed from cache/file 6374 * by non-hugetlbfs specific code paths. 6375 */ 6376 folio_mark_dirty(folio); 6377 6378 spin_lock(&inode->i_lock); 6379 inode->i_blocks += blocks_per_huge_page(h); 6380 spin_unlock(&inode->i_lock); 6381 return 0; 6382 } 6383 6384 static inline vm_fault_t hugetlb_handle_userfault(struct vm_fault *vmf, 6385 struct address_space *mapping, 6386 unsigned long reason) 6387 { 6388 u32 hash; 6389 6390 /* 6391 * vma_lock and hugetlb_fault_mutex must be dropped before handling 6392 * userfault. Also mmap_lock could be dropped due to handling 6393 * userfault, any vma operation should be careful from here. 6394 */ 6395 hugetlb_vma_unlock_read(vmf->vma); 6396 hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff); 6397 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6398 return handle_userfault(vmf, reason); 6399 } 6400 6401 /* 6402 * Recheck pte with pgtable lock. Returns true if pte didn't change, or 6403 * false if pte changed or is changing. 6404 */ 6405 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm, unsigned long addr, 6406 pte_t *ptep, pte_t old_pte) 6407 { 6408 spinlock_t *ptl; 6409 bool same; 6410 6411 ptl = huge_pte_lock(h, mm, ptep); 6412 same = pte_same(huge_ptep_get(mm, addr, ptep), old_pte); 6413 spin_unlock(ptl); 6414 6415 return same; 6416 } 6417 6418 static vm_fault_t hugetlb_no_page(struct address_space *mapping, 6419 struct vm_fault *vmf) 6420 { 6421 u32 hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff); 6422 bool new_folio, new_anon_folio = false; 6423 struct vm_area_struct *vma = vmf->vma; 6424 struct mm_struct *mm = vma->vm_mm; 6425 struct hstate *h = hstate_vma(vma); 6426 vm_fault_t ret = VM_FAULT_SIGBUS; 6427 bool folio_locked = true; 6428 struct folio *folio; 6429 unsigned long size; 6430 pte_t new_pte; 6431 6432 /* 6433 * Currently, we are forced to kill the process in the event the 6434 * original mapper has unmapped pages from the child due to a failed 6435 * COW/unsharing. Warn that such a situation has occurred as it may not 6436 * be obvious. 6437 */ 6438 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { 6439 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n", 6440 current->pid); 6441 goto out; 6442 } 6443 6444 /* 6445 * Use page lock to guard against racing truncation 6446 * before we get page_table_lock. 6447 */ 6448 new_folio = false; 6449 folio = filemap_lock_hugetlb_folio(h, mapping, vmf->pgoff); 6450 if (IS_ERR(folio)) { 6451 size = i_size_read(mapping->host) >> huge_page_shift(h); 6452 if (vmf->pgoff >= size) 6453 goto out; 6454 /* Check for page in userfault range */ 6455 if (userfaultfd_missing(vma)) { 6456 /* 6457 * Since hugetlb_no_page() was examining pte 6458 * without pgtable lock, we need to re-test under 6459 * lock because the pte may not be stable and could 6460 * have changed from under us. Try to detect 6461 * either changed or during-changing ptes and retry 6462 * properly when needed. 6463 * 6464 * Note that userfaultfd is actually fine with 6465 * false positives (e.g. caused by pte changed), 6466 * but not wrong logical events (e.g. caused by 6467 * reading a pte during changing). The latter can 6468 * confuse the userspace, so the strictness is very 6469 * much preferred. E.g., MISSING event should 6470 * never happen on the page after UFFDIO_COPY has 6471 * correctly installed the page and returned. 6472 */ 6473 if (!hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte)) { 6474 ret = 0; 6475 goto out; 6476 } 6477 6478 return hugetlb_handle_userfault(vmf, mapping, 6479 VM_UFFD_MISSING); 6480 } 6481 6482 if (!(vma->vm_flags & VM_MAYSHARE)) { 6483 ret = __vmf_anon_prepare(vmf); 6484 if (unlikely(ret)) 6485 goto out; 6486 } 6487 6488 folio = alloc_hugetlb_folio(vma, vmf->address, false); 6489 if (IS_ERR(folio)) { 6490 /* 6491 * Returning error will result in faulting task being 6492 * sent SIGBUS. The hugetlb fault mutex prevents two 6493 * tasks from racing to fault in the same page which 6494 * could result in false unable to allocate errors. 6495 * Page migration does not take the fault mutex, but 6496 * does a clear then write of pte's under page table 6497 * lock. Page fault code could race with migration, 6498 * notice the clear pte and try to allocate a page 6499 * here. Before returning error, get ptl and make 6500 * sure there really is no pte entry. 6501 */ 6502 if (hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte)) 6503 ret = vmf_error(PTR_ERR(folio)); 6504 else 6505 ret = 0; 6506 goto out; 6507 } 6508 folio_zero_user(folio, vmf->real_address); 6509 __folio_mark_uptodate(folio); 6510 new_folio = true; 6511 6512 if (vma->vm_flags & VM_MAYSHARE) { 6513 int err = hugetlb_add_to_page_cache(folio, mapping, 6514 vmf->pgoff); 6515 if (err) { 6516 /* 6517 * err can't be -EEXIST which implies someone 6518 * else consumed the reservation since hugetlb 6519 * fault mutex is held when add a hugetlb page 6520 * to the page cache. So it's safe to call 6521 * restore_reserve_on_error() here. 6522 */ 6523 restore_reserve_on_error(h, vma, vmf->address, 6524 folio); 6525 folio_put(folio); 6526 ret = VM_FAULT_SIGBUS; 6527 goto out; 6528 } 6529 } else { 6530 new_anon_folio = true; 6531 folio_lock(folio); 6532 } 6533 } else { 6534 /* 6535 * If memory error occurs between mmap() and fault, some process 6536 * don't have hwpoisoned swap entry for errored virtual address. 6537 * So we need to block hugepage fault by PG_hwpoison bit check. 6538 */ 6539 if (unlikely(folio_test_hwpoison(folio))) { 6540 ret = VM_FAULT_HWPOISON_LARGE | 6541 VM_FAULT_SET_HINDEX(hstate_index(h)); 6542 goto backout_unlocked; 6543 } 6544 6545 /* Check for page in userfault range. */ 6546 if (userfaultfd_minor(vma)) { 6547 folio_unlock(folio); 6548 folio_put(folio); 6549 /* See comment in userfaultfd_missing() block above */ 6550 if (!hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte)) { 6551 ret = 0; 6552 goto out; 6553 } 6554 return hugetlb_handle_userfault(vmf, mapping, 6555 VM_UFFD_MINOR); 6556 } 6557 } 6558 6559 /* 6560 * If we are going to COW a private mapping later, we examine the 6561 * pending reservations for this page now. This will ensure that 6562 * any allocations necessary to record that reservation occur outside 6563 * the spinlock. 6564 */ 6565 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 6566 if (vma_needs_reservation(h, vma, vmf->address) < 0) { 6567 ret = VM_FAULT_OOM; 6568 goto backout_unlocked; 6569 } 6570 /* Just decrements count, does not deallocate */ 6571 vma_end_reservation(h, vma, vmf->address); 6572 } 6573 6574 vmf->ptl = huge_pte_lock(h, mm, vmf->pte); 6575 ret = 0; 6576 /* If pte changed from under us, retry */ 6577 if (!pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), vmf->orig_pte)) 6578 goto backout; 6579 6580 if (new_anon_folio) 6581 hugetlb_add_new_anon_rmap(folio, vma, vmf->address); 6582 else 6583 hugetlb_add_file_rmap(folio); 6584 new_pte = make_huge_pte(vma, folio, vma->vm_flags & VM_SHARED); 6585 /* 6586 * If this pte was previously wr-protected, keep it wr-protected even 6587 * if populated. 6588 */ 6589 if (unlikely(pte_marker_uffd_wp(vmf->orig_pte))) 6590 new_pte = huge_pte_mkuffd_wp(new_pte); 6591 set_huge_pte_at(mm, vmf->address, vmf->pte, new_pte, huge_page_size(h)); 6592 6593 hugetlb_count_add(pages_per_huge_page(h), mm); 6594 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 6595 /* 6596 * No need to keep file folios locked. See comment in 6597 * hugetlb_fault(). 6598 */ 6599 if (!new_anon_folio) { 6600 folio_locked = false; 6601 folio_unlock(folio); 6602 } 6603 /* Optimization, do the COW without a second fault */ 6604 ret = hugetlb_wp(vmf); 6605 } 6606 6607 spin_unlock(vmf->ptl); 6608 6609 /* 6610 * Only set hugetlb_migratable in newly allocated pages. Existing pages 6611 * found in the pagecache may not have hugetlb_migratable if they have 6612 * been isolated for migration. 6613 */ 6614 if (new_folio) 6615 folio_set_hugetlb_migratable(folio); 6616 6617 if (folio_locked) 6618 folio_unlock(folio); 6619 out: 6620 hugetlb_vma_unlock_read(vma); 6621 6622 /* 6623 * We must check to release the per-VMA lock. __vmf_anon_prepare() is 6624 * the only way ret can be set to VM_FAULT_RETRY. 6625 */ 6626 if (unlikely(ret & VM_FAULT_RETRY)) 6627 vma_end_read(vma); 6628 6629 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6630 return ret; 6631 6632 backout: 6633 spin_unlock(vmf->ptl); 6634 backout_unlocked: 6635 /* We only need to restore reservations for private mappings */ 6636 if (new_anon_folio) 6637 restore_reserve_on_error(h, vma, vmf->address, folio); 6638 6639 folio_unlock(folio); 6640 folio_put(folio); 6641 goto out; 6642 } 6643 6644 #ifdef CONFIG_SMP 6645 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 6646 { 6647 unsigned long key[2]; 6648 u32 hash; 6649 6650 key[0] = (unsigned long) mapping; 6651 key[1] = idx; 6652 6653 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0); 6654 6655 return hash & (num_fault_mutexes - 1); 6656 } 6657 #else 6658 /* 6659 * For uniprocessor systems we always use a single mutex, so just 6660 * return 0 and avoid the hashing overhead. 6661 */ 6662 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 6663 { 6664 return 0; 6665 } 6666 #endif 6667 6668 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, 6669 unsigned long address, unsigned int flags) 6670 { 6671 vm_fault_t ret; 6672 u32 hash; 6673 struct folio *folio = NULL; 6674 struct hstate *h = hstate_vma(vma); 6675 struct address_space *mapping; 6676 bool need_wait_lock = false; 6677 struct vm_fault vmf = { 6678 .vma = vma, 6679 .address = address & huge_page_mask(h), 6680 .real_address = address, 6681 .flags = flags, 6682 .pgoff = vma_hugecache_offset(h, vma, 6683 address & huge_page_mask(h)), 6684 /* TODO: Track hugetlb faults using vm_fault */ 6685 6686 /* 6687 * Some fields may not be initialized, be careful as it may 6688 * be hard to debug if called functions make assumptions 6689 */ 6690 }; 6691 6692 /* 6693 * Serialize hugepage allocation and instantiation, so that we don't 6694 * get spurious allocation failures if two CPUs race to instantiate 6695 * the same page in the page cache. 6696 */ 6697 mapping = vma->vm_file->f_mapping; 6698 hash = hugetlb_fault_mutex_hash(mapping, vmf.pgoff); 6699 mutex_lock(&hugetlb_fault_mutex_table[hash]); 6700 6701 /* 6702 * Acquire vma lock before calling huge_pte_alloc and hold 6703 * until finished with vmf.pte. This prevents huge_pmd_unshare from 6704 * being called elsewhere and making the vmf.pte no longer valid. 6705 */ 6706 hugetlb_vma_lock_read(vma); 6707 vmf.pte = huge_pte_alloc(mm, vma, vmf.address, huge_page_size(h)); 6708 if (!vmf.pte) { 6709 hugetlb_vma_unlock_read(vma); 6710 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6711 return VM_FAULT_OOM; 6712 } 6713 6714 vmf.orig_pte = huge_ptep_get(mm, vmf.address, vmf.pte); 6715 if (huge_pte_none_mostly(vmf.orig_pte)) { 6716 if (is_pte_marker(vmf.orig_pte)) { 6717 pte_marker marker = 6718 pte_marker_get(pte_to_swp_entry(vmf.orig_pte)); 6719 6720 if (marker & PTE_MARKER_POISONED) { 6721 ret = VM_FAULT_HWPOISON_LARGE | 6722 VM_FAULT_SET_HINDEX(hstate_index(h)); 6723 goto out_mutex; 6724 } else if (WARN_ON_ONCE(marker & PTE_MARKER_GUARD)) { 6725 /* This isn't supported in hugetlb. */ 6726 ret = VM_FAULT_SIGSEGV; 6727 goto out_mutex; 6728 } 6729 } 6730 6731 /* 6732 * Other PTE markers should be handled the same way as none PTE. 6733 * 6734 * hugetlb_no_page will drop vma lock and hugetlb fault 6735 * mutex internally, which make us return immediately. 6736 */ 6737 return hugetlb_no_page(mapping, &vmf); 6738 } 6739 6740 ret = 0; 6741 6742 /* Not present, either a migration or a hwpoisoned entry */ 6743 if (!pte_present(vmf.orig_pte)) { 6744 if (is_hugetlb_entry_migration(vmf.orig_pte)) { 6745 /* 6746 * Release the hugetlb fault lock now, but retain 6747 * the vma lock, because it is needed to guard the 6748 * huge_pte_lockptr() later in 6749 * migration_entry_wait_huge(). The vma lock will 6750 * be released there. 6751 */ 6752 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6753 migration_entry_wait_huge(vma, vmf.address, vmf.pte); 6754 return 0; 6755 } else if (is_hugetlb_entry_hwpoisoned(vmf.orig_pte)) 6756 ret = VM_FAULT_HWPOISON_LARGE | 6757 VM_FAULT_SET_HINDEX(hstate_index(h)); 6758 goto out_mutex; 6759 } 6760 6761 /* 6762 * If we are going to COW/unshare the mapping later, we examine the 6763 * pending reservations for this page now. This will ensure that any 6764 * allocations necessary to record that reservation occur outside the 6765 * spinlock. 6766 */ 6767 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) && 6768 !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(vmf.orig_pte)) { 6769 if (vma_needs_reservation(h, vma, vmf.address) < 0) { 6770 ret = VM_FAULT_OOM; 6771 goto out_mutex; 6772 } 6773 /* Just decrements count, does not deallocate */ 6774 vma_end_reservation(h, vma, vmf.address); 6775 } 6776 6777 vmf.ptl = huge_pte_lock(h, mm, vmf.pte); 6778 6779 /* Check for a racing update before calling hugetlb_wp() */ 6780 if (unlikely(!pte_same(vmf.orig_pte, huge_ptep_get(mm, vmf.address, vmf.pte)))) 6781 goto out_ptl; 6782 6783 /* Handle userfault-wp first, before trying to lock more pages */ 6784 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(mm, vmf.address, vmf.pte)) && 6785 (flags & FAULT_FLAG_WRITE) && !huge_pte_write(vmf.orig_pte)) { 6786 if (!userfaultfd_wp_async(vma)) { 6787 spin_unlock(vmf.ptl); 6788 hugetlb_vma_unlock_read(vma); 6789 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6790 return handle_userfault(&vmf, VM_UFFD_WP); 6791 } 6792 6793 vmf.orig_pte = huge_pte_clear_uffd_wp(vmf.orig_pte); 6794 set_huge_pte_at(mm, vmf.address, vmf.pte, vmf.orig_pte, 6795 huge_page_size(hstate_vma(vma))); 6796 /* Fallthrough to CoW */ 6797 } 6798 6799 if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) { 6800 if (!huge_pte_write(vmf.orig_pte)) { 6801 /* 6802 * Anonymous folios need to be lock since hugetlb_wp() 6803 * checks whether we can re-use the folio exclusively 6804 * for us in case we are the only user of it. 6805 */ 6806 folio = page_folio(pte_page(vmf.orig_pte)); 6807 if (folio_test_anon(folio) && !folio_trylock(folio)) { 6808 need_wait_lock = true; 6809 goto out_ptl; 6810 } 6811 folio_get(folio); 6812 ret = hugetlb_wp(&vmf); 6813 if (folio_test_anon(folio)) 6814 folio_unlock(folio); 6815 folio_put(folio); 6816 goto out_ptl; 6817 } else if (likely(flags & FAULT_FLAG_WRITE)) { 6818 vmf.orig_pte = huge_pte_mkdirty(vmf.orig_pte); 6819 } 6820 } 6821 vmf.orig_pte = pte_mkyoung(vmf.orig_pte); 6822 if (huge_ptep_set_access_flags(vma, vmf.address, vmf.pte, vmf.orig_pte, 6823 flags & FAULT_FLAG_WRITE)) 6824 update_mmu_cache(vma, vmf.address, vmf.pte); 6825 out_ptl: 6826 spin_unlock(vmf.ptl); 6827 out_mutex: 6828 hugetlb_vma_unlock_read(vma); 6829 6830 /* 6831 * We must check to release the per-VMA lock. __vmf_anon_prepare() in 6832 * hugetlb_wp() is the only way ret can be set to VM_FAULT_RETRY. 6833 */ 6834 if (unlikely(ret & VM_FAULT_RETRY)) 6835 vma_end_read(vma); 6836 6837 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6838 /* 6839 * hugetlb_wp drops all the locks, but the folio lock, before trying to 6840 * unmap the folio from other processes. During that window, if another 6841 * process mapping that folio faults in, it will take the mutex and then 6842 * it will wait on folio_lock, causing an ABBA deadlock. 6843 * Use trylock instead and bail out if we fail. 6844 * 6845 * Ideally, we should hold a refcount on the folio we wait for, but we do 6846 * not want to use the folio after it becomes unlocked, but rather just 6847 * wait for it to become unlocked, so hopefully next fault successes on 6848 * the trylock. 6849 */ 6850 if (need_wait_lock) 6851 folio_wait_locked(folio); 6852 return ret; 6853 } 6854 6855 #ifdef CONFIG_USERFAULTFD 6856 /* 6857 * Can probably be eliminated, but still used by hugetlb_mfill_atomic_pte(). 6858 */ 6859 static struct folio *alloc_hugetlb_folio_vma(struct hstate *h, 6860 struct vm_area_struct *vma, unsigned long address) 6861 { 6862 struct mempolicy *mpol; 6863 nodemask_t *nodemask; 6864 struct folio *folio; 6865 gfp_t gfp_mask; 6866 int node; 6867 6868 gfp_mask = htlb_alloc_mask(h); 6869 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 6870 /* 6871 * This is used to allocate a temporary hugetlb to hold the copied 6872 * content, which will then be copied again to the final hugetlb 6873 * consuming a reservation. Set the alloc_fallback to false to indicate 6874 * that breaking the per-node hugetlb pool is not allowed in this case. 6875 */ 6876 folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask, false); 6877 mpol_cond_put(mpol); 6878 6879 return folio; 6880 } 6881 6882 /* 6883 * Used by userfaultfd UFFDIO_* ioctls. Based on userfaultfd's mfill_atomic_pte 6884 * with modifications for hugetlb pages. 6885 */ 6886 int hugetlb_mfill_atomic_pte(pte_t *dst_pte, 6887 struct vm_area_struct *dst_vma, 6888 unsigned long dst_addr, 6889 unsigned long src_addr, 6890 uffd_flags_t flags, 6891 struct folio **foliop) 6892 { 6893 struct mm_struct *dst_mm = dst_vma->vm_mm; 6894 bool is_continue = uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE); 6895 bool wp_enabled = (flags & MFILL_ATOMIC_WP); 6896 struct hstate *h = hstate_vma(dst_vma); 6897 struct address_space *mapping = dst_vma->vm_file->f_mapping; 6898 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr); 6899 unsigned long size = huge_page_size(h); 6900 int vm_shared = dst_vma->vm_flags & VM_SHARED; 6901 pte_t _dst_pte; 6902 spinlock_t *ptl; 6903 int ret = -ENOMEM; 6904 struct folio *folio; 6905 bool folio_in_pagecache = false; 6906 6907 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_POISON)) { 6908 ptl = huge_pte_lock(h, dst_mm, dst_pte); 6909 6910 /* Don't overwrite any existing PTEs (even markers) */ 6911 if (!huge_pte_none(huge_ptep_get(dst_mm, dst_addr, dst_pte))) { 6912 spin_unlock(ptl); 6913 return -EEXIST; 6914 } 6915 6916 _dst_pte = make_pte_marker(PTE_MARKER_POISONED); 6917 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, size); 6918 6919 /* No need to invalidate - it was non-present before */ 6920 update_mmu_cache(dst_vma, dst_addr, dst_pte); 6921 6922 spin_unlock(ptl); 6923 return 0; 6924 } 6925 6926 if (is_continue) { 6927 ret = -EFAULT; 6928 folio = filemap_lock_hugetlb_folio(h, mapping, idx); 6929 if (IS_ERR(folio)) 6930 goto out; 6931 folio_in_pagecache = true; 6932 } else if (!*foliop) { 6933 /* If a folio already exists, then it's UFFDIO_COPY for 6934 * a non-missing case. Return -EEXIST. 6935 */ 6936 if (vm_shared && 6937 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) { 6938 ret = -EEXIST; 6939 goto out; 6940 } 6941 6942 folio = alloc_hugetlb_folio(dst_vma, dst_addr, false); 6943 if (IS_ERR(folio)) { 6944 pte_t *actual_pte = hugetlb_walk(dst_vma, dst_addr, PMD_SIZE); 6945 if (actual_pte) { 6946 ret = -EEXIST; 6947 goto out; 6948 } 6949 ret = -ENOMEM; 6950 goto out; 6951 } 6952 6953 ret = copy_folio_from_user(folio, (const void __user *) src_addr, 6954 false); 6955 6956 /* fallback to copy_from_user outside mmap_lock */ 6957 if (unlikely(ret)) { 6958 ret = -ENOENT; 6959 /* Free the allocated folio which may have 6960 * consumed a reservation. 6961 */ 6962 restore_reserve_on_error(h, dst_vma, dst_addr, folio); 6963 folio_put(folio); 6964 6965 /* Allocate a temporary folio to hold the copied 6966 * contents. 6967 */ 6968 folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr); 6969 if (!folio) { 6970 ret = -ENOMEM; 6971 goto out; 6972 } 6973 *foliop = folio; 6974 /* Set the outparam foliop and return to the caller to 6975 * copy the contents outside the lock. Don't free the 6976 * folio. 6977 */ 6978 goto out; 6979 } 6980 } else { 6981 if (vm_shared && 6982 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) { 6983 folio_put(*foliop); 6984 ret = -EEXIST; 6985 *foliop = NULL; 6986 goto out; 6987 } 6988 6989 folio = alloc_hugetlb_folio(dst_vma, dst_addr, false); 6990 if (IS_ERR(folio)) { 6991 folio_put(*foliop); 6992 ret = -ENOMEM; 6993 *foliop = NULL; 6994 goto out; 6995 } 6996 ret = copy_user_large_folio(folio, *foliop, dst_addr, dst_vma); 6997 folio_put(*foliop); 6998 *foliop = NULL; 6999 if (ret) { 7000 folio_put(folio); 7001 goto out; 7002 } 7003 } 7004 7005 /* 7006 * If we just allocated a new page, we need a memory barrier to ensure 7007 * that preceding stores to the page become visible before the 7008 * set_pte_at() write. The memory barrier inside __folio_mark_uptodate 7009 * is what we need. 7010 * 7011 * In the case where we have not allocated a new page (is_continue), 7012 * the page must already be uptodate. UFFDIO_CONTINUE already includes 7013 * an earlier smp_wmb() to ensure that prior stores will be visible 7014 * before the set_pte_at() write. 7015 */ 7016 if (!is_continue) 7017 __folio_mark_uptodate(folio); 7018 else 7019 WARN_ON_ONCE(!folio_test_uptodate(folio)); 7020 7021 /* Add shared, newly allocated pages to the page cache. */ 7022 if (vm_shared && !is_continue) { 7023 ret = -EFAULT; 7024 if (idx >= (i_size_read(mapping->host) >> huge_page_shift(h))) 7025 goto out_release_nounlock; 7026 7027 /* 7028 * Serialization between remove_inode_hugepages() and 7029 * hugetlb_add_to_page_cache() below happens through the 7030 * hugetlb_fault_mutex_table that here must be hold by 7031 * the caller. 7032 */ 7033 ret = hugetlb_add_to_page_cache(folio, mapping, idx); 7034 if (ret) 7035 goto out_release_nounlock; 7036 folio_in_pagecache = true; 7037 } 7038 7039 ptl = huge_pte_lock(h, dst_mm, dst_pte); 7040 7041 ret = -EIO; 7042 if (folio_test_hwpoison(folio)) 7043 goto out_release_unlock; 7044 7045 /* 7046 * We allow to overwrite a pte marker: consider when both MISSING|WP 7047 * registered, we firstly wr-protect a none pte which has no page cache 7048 * page backing it, then access the page. 7049 */ 7050 ret = -EEXIST; 7051 if (!huge_pte_none_mostly(huge_ptep_get(dst_mm, dst_addr, dst_pte))) 7052 goto out_release_unlock; 7053 7054 if (folio_in_pagecache) 7055 hugetlb_add_file_rmap(folio); 7056 else 7057 hugetlb_add_new_anon_rmap(folio, dst_vma, dst_addr); 7058 7059 /* 7060 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY 7061 * with wp flag set, don't set pte write bit. 7062 */ 7063 _dst_pte = make_huge_pte(dst_vma, folio, 7064 !wp_enabled && !(is_continue && !vm_shared)); 7065 /* 7066 * Always mark UFFDIO_COPY page dirty; note that this may not be 7067 * extremely important for hugetlbfs for now since swapping is not 7068 * supported, but we should still be clear in that this page cannot be 7069 * thrown away at will, even if write bit not set. 7070 */ 7071 _dst_pte = huge_pte_mkdirty(_dst_pte); 7072 _dst_pte = pte_mkyoung(_dst_pte); 7073 7074 if (wp_enabled) 7075 _dst_pte = huge_pte_mkuffd_wp(_dst_pte); 7076 7077 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, size); 7078 7079 hugetlb_count_add(pages_per_huge_page(h), dst_mm); 7080 7081 /* No need to invalidate - it was non-present before */ 7082 update_mmu_cache(dst_vma, dst_addr, dst_pte); 7083 7084 spin_unlock(ptl); 7085 if (!is_continue) 7086 folio_set_hugetlb_migratable(folio); 7087 if (vm_shared || is_continue) 7088 folio_unlock(folio); 7089 ret = 0; 7090 out: 7091 return ret; 7092 out_release_unlock: 7093 spin_unlock(ptl); 7094 if (vm_shared || is_continue) 7095 folio_unlock(folio); 7096 out_release_nounlock: 7097 if (!folio_in_pagecache) 7098 restore_reserve_on_error(h, dst_vma, dst_addr, folio); 7099 folio_put(folio); 7100 goto out; 7101 } 7102 #endif /* CONFIG_USERFAULTFD */ 7103 7104 long hugetlb_change_protection(struct vm_area_struct *vma, 7105 unsigned long address, unsigned long end, 7106 pgprot_t newprot, unsigned long cp_flags) 7107 { 7108 struct mm_struct *mm = vma->vm_mm; 7109 unsigned long start = address; 7110 pte_t *ptep; 7111 pte_t pte; 7112 struct hstate *h = hstate_vma(vma); 7113 long pages = 0, psize = huge_page_size(h); 7114 bool shared_pmd = false; 7115 struct mmu_notifier_range range; 7116 unsigned long last_addr_mask; 7117 bool uffd_wp = cp_flags & MM_CP_UFFD_WP; 7118 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE; 7119 7120 /* 7121 * In the case of shared PMDs, the area to flush could be beyond 7122 * start/end. Set range.start/range.end to cover the maximum possible 7123 * range if PMD sharing is possible. 7124 */ 7125 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA, 7126 0, mm, start, end); 7127 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 7128 7129 BUG_ON(address >= end); 7130 flush_cache_range(vma, range.start, range.end); 7131 7132 mmu_notifier_invalidate_range_start(&range); 7133 hugetlb_vma_lock_write(vma); 7134 i_mmap_lock_write(vma->vm_file->f_mapping); 7135 last_addr_mask = hugetlb_mask_last_page(h); 7136 for (; address < end; address += psize) { 7137 spinlock_t *ptl; 7138 ptep = hugetlb_walk(vma, address, psize); 7139 if (!ptep) { 7140 if (!uffd_wp) { 7141 address |= last_addr_mask; 7142 continue; 7143 } 7144 /* 7145 * Userfaultfd wr-protect requires pgtable 7146 * pre-allocations to install pte markers. 7147 */ 7148 ptep = huge_pte_alloc(mm, vma, address, psize); 7149 if (!ptep) { 7150 pages = -ENOMEM; 7151 break; 7152 } 7153 } 7154 ptl = huge_pte_lock(h, mm, ptep); 7155 if (huge_pmd_unshare(mm, vma, address, ptep)) { 7156 /* 7157 * When uffd-wp is enabled on the vma, unshare 7158 * shouldn't happen at all. Warn about it if it 7159 * happened due to some reason. 7160 */ 7161 WARN_ON_ONCE(uffd_wp || uffd_wp_resolve); 7162 pages++; 7163 spin_unlock(ptl); 7164 shared_pmd = true; 7165 address |= last_addr_mask; 7166 continue; 7167 } 7168 pte = huge_ptep_get(mm, address, ptep); 7169 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) { 7170 /* Nothing to do. */ 7171 } else if (unlikely(is_hugetlb_entry_migration(pte))) { 7172 swp_entry_t entry = pte_to_swp_entry(pte); 7173 struct folio *folio = pfn_swap_entry_folio(entry); 7174 pte_t newpte = pte; 7175 7176 if (is_writable_migration_entry(entry)) { 7177 if (folio_test_anon(folio)) 7178 entry = make_readable_exclusive_migration_entry( 7179 swp_offset(entry)); 7180 else 7181 entry = make_readable_migration_entry( 7182 swp_offset(entry)); 7183 newpte = swp_entry_to_pte(entry); 7184 pages++; 7185 } 7186 7187 if (uffd_wp) 7188 newpte = pte_swp_mkuffd_wp(newpte); 7189 else if (uffd_wp_resolve) 7190 newpte = pte_swp_clear_uffd_wp(newpte); 7191 if (!pte_same(pte, newpte)) 7192 set_huge_pte_at(mm, address, ptep, newpte, psize); 7193 } else if (unlikely(is_pte_marker(pte))) { 7194 /* 7195 * Do nothing on a poison marker; page is 7196 * corrupted, permissons do not apply. Here 7197 * pte_marker_uffd_wp()==true implies !poison 7198 * because they're mutual exclusive. 7199 */ 7200 if (pte_marker_uffd_wp(pte) && uffd_wp_resolve) 7201 /* Safe to modify directly (non-present->none). */ 7202 huge_pte_clear(mm, address, ptep, psize); 7203 } else if (!huge_pte_none(pte)) { 7204 pte_t old_pte; 7205 unsigned int shift = huge_page_shift(hstate_vma(vma)); 7206 7207 old_pte = huge_ptep_modify_prot_start(vma, address, ptep); 7208 pte = huge_pte_modify(old_pte, newprot); 7209 pte = arch_make_huge_pte(pte, shift, vma->vm_flags); 7210 if (uffd_wp) 7211 pte = huge_pte_mkuffd_wp(pte); 7212 else if (uffd_wp_resolve) 7213 pte = huge_pte_clear_uffd_wp(pte); 7214 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte); 7215 pages++; 7216 } else { 7217 /* None pte */ 7218 if (unlikely(uffd_wp)) 7219 /* Safe to modify directly (none->non-present). */ 7220 set_huge_pte_at(mm, address, ptep, 7221 make_pte_marker(PTE_MARKER_UFFD_WP), 7222 psize); 7223 } 7224 spin_unlock(ptl); 7225 } 7226 /* 7227 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare 7228 * may have cleared our pud entry and done put_page on the page table: 7229 * once we release i_mmap_rwsem, another task can do the final put_page 7230 * and that page table be reused and filled with junk. If we actually 7231 * did unshare a page of pmds, flush the range corresponding to the pud. 7232 */ 7233 if (shared_pmd) 7234 flush_hugetlb_tlb_range(vma, range.start, range.end); 7235 else 7236 flush_hugetlb_tlb_range(vma, start, end); 7237 /* 7238 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs() we are 7239 * downgrading page table protection not changing it to point to a new 7240 * page. 7241 * 7242 * See Documentation/mm/mmu_notifier.rst 7243 */ 7244 i_mmap_unlock_write(vma->vm_file->f_mapping); 7245 hugetlb_vma_unlock_write(vma); 7246 mmu_notifier_invalidate_range_end(&range); 7247 7248 return pages > 0 ? (pages << h->order) : pages; 7249 } 7250 7251 /* 7252 * Update the reservation map for the range [from, to]. 7253 * 7254 * Returns the number of entries that would be added to the reservation map 7255 * associated with the range [from, to]. This number is greater or equal to 7256 * zero. -EINVAL or -ENOMEM is returned in case of any errors. 7257 */ 7258 7259 long hugetlb_reserve_pages(struct inode *inode, 7260 long from, long to, 7261 struct vm_area_struct *vma, 7262 vm_flags_t vm_flags) 7263 { 7264 long chg = -1, add = -1, spool_resv, gbl_resv; 7265 struct hstate *h = hstate_inode(inode); 7266 struct hugepage_subpool *spool = subpool_inode(inode); 7267 struct resv_map *resv_map; 7268 struct hugetlb_cgroup *h_cg = NULL; 7269 long gbl_reserve, regions_needed = 0; 7270 7271 /* This should never happen */ 7272 if (from > to) { 7273 VM_WARN(1, "%s called with a negative range\n", __func__); 7274 return -EINVAL; 7275 } 7276 7277 /* 7278 * vma specific semaphore used for pmd sharing and fault/truncation 7279 * synchronization 7280 */ 7281 hugetlb_vma_lock_alloc(vma); 7282 7283 /* 7284 * Only apply hugepage reservation if asked. At fault time, an 7285 * attempt will be made for VM_NORESERVE to allocate a page 7286 * without using reserves 7287 */ 7288 if (vm_flags & VM_NORESERVE) 7289 return 0; 7290 7291 /* 7292 * Shared mappings base their reservation on the number of pages that 7293 * are already allocated on behalf of the file. Private mappings need 7294 * to reserve the full area even if read-only as mprotect() may be 7295 * called to make the mapping read-write. Assume !vma is a shm mapping 7296 */ 7297 if (!vma || vma->vm_flags & VM_MAYSHARE) { 7298 /* 7299 * resv_map can not be NULL as hugetlb_reserve_pages is only 7300 * called for inodes for which resv_maps were created (see 7301 * hugetlbfs_get_inode). 7302 */ 7303 resv_map = inode_resv_map(inode); 7304 7305 chg = region_chg(resv_map, from, to, ®ions_needed); 7306 } else { 7307 /* Private mapping. */ 7308 resv_map = resv_map_alloc(); 7309 if (!resv_map) 7310 goto out_err; 7311 7312 chg = to - from; 7313 7314 set_vma_resv_map(vma, resv_map); 7315 set_vma_resv_flags(vma, HPAGE_RESV_OWNER); 7316 } 7317 7318 if (chg < 0) 7319 goto out_err; 7320 7321 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h), 7322 chg * pages_per_huge_page(h), &h_cg) < 0) 7323 goto out_err; 7324 7325 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) { 7326 /* For private mappings, the hugetlb_cgroup uncharge info hangs 7327 * of the resv_map. 7328 */ 7329 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h); 7330 } 7331 7332 /* 7333 * There must be enough pages in the subpool for the mapping. If 7334 * the subpool has a minimum size, there may be some global 7335 * reservations already in place (gbl_reserve). 7336 */ 7337 gbl_reserve = hugepage_subpool_get_pages(spool, chg); 7338 if (gbl_reserve < 0) 7339 goto out_uncharge_cgroup; 7340 7341 /* 7342 * Check enough hugepages are available for the reservation. 7343 * Hand the pages back to the subpool if there are not 7344 */ 7345 if (hugetlb_acct_memory(h, gbl_reserve) < 0) 7346 goto out_put_pages; 7347 7348 /* 7349 * Account for the reservations made. Shared mappings record regions 7350 * that have reservations as they are shared by multiple VMAs. 7351 * When the last VMA disappears, the region map says how much 7352 * the reservation was and the page cache tells how much of 7353 * the reservation was consumed. Private mappings are per-VMA and 7354 * only the consumed reservations are tracked. When the VMA 7355 * disappears, the original reservation is the VMA size and the 7356 * consumed reservations are stored in the map. Hence, nothing 7357 * else has to be done for private mappings here 7358 */ 7359 if (!vma || vma->vm_flags & VM_MAYSHARE) { 7360 add = region_add(resv_map, from, to, regions_needed, h, h_cg); 7361 7362 if (unlikely(add < 0)) { 7363 hugetlb_acct_memory(h, -gbl_reserve); 7364 goto out_put_pages; 7365 } else if (unlikely(chg > add)) { 7366 /* 7367 * pages in this range were added to the reserve 7368 * map between region_chg and region_add. This 7369 * indicates a race with alloc_hugetlb_folio. Adjust 7370 * the subpool and reserve counts modified above 7371 * based on the difference. 7372 */ 7373 long rsv_adjust; 7374 7375 /* 7376 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the 7377 * reference to h_cg->css. See comment below for detail. 7378 */ 7379 hugetlb_cgroup_uncharge_cgroup_rsvd( 7380 hstate_index(h), 7381 (chg - add) * pages_per_huge_page(h), h_cg); 7382 7383 rsv_adjust = hugepage_subpool_put_pages(spool, 7384 chg - add); 7385 hugetlb_acct_memory(h, -rsv_adjust); 7386 } else if (h_cg) { 7387 /* 7388 * The file_regions will hold their own reference to 7389 * h_cg->css. So we should release the reference held 7390 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are 7391 * done. 7392 */ 7393 hugetlb_cgroup_put_rsvd_cgroup(h_cg); 7394 } 7395 } 7396 return chg; 7397 7398 out_put_pages: 7399 spool_resv = chg - gbl_reserve; 7400 if (spool_resv) { 7401 /* put sub pool's reservation back, chg - gbl_reserve */ 7402 gbl_resv = hugepage_subpool_put_pages(spool, spool_resv); 7403 /* 7404 * subpool's reserved pages can not be put back due to race, 7405 * return to hstate. 7406 */ 7407 hugetlb_acct_memory(h, -gbl_resv); 7408 } 7409 out_uncharge_cgroup: 7410 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h), 7411 chg * pages_per_huge_page(h), h_cg); 7412 out_err: 7413 hugetlb_vma_lock_free(vma); 7414 if (!vma || vma->vm_flags & VM_MAYSHARE) 7415 /* Only call region_abort if the region_chg succeeded but the 7416 * region_add failed or didn't run. 7417 */ 7418 if (chg >= 0 && add < 0) 7419 region_abort(resv_map, from, to, regions_needed); 7420 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 7421 kref_put(&resv_map->refs, resv_map_release); 7422 set_vma_resv_map(vma, NULL); 7423 } 7424 return chg < 0 ? chg : add < 0 ? add : -EINVAL; 7425 } 7426 7427 long hugetlb_unreserve_pages(struct inode *inode, long start, long end, 7428 long freed) 7429 { 7430 struct hstate *h = hstate_inode(inode); 7431 struct resv_map *resv_map = inode_resv_map(inode); 7432 long chg = 0; 7433 struct hugepage_subpool *spool = subpool_inode(inode); 7434 long gbl_reserve; 7435 7436 /* 7437 * Since this routine can be called in the evict inode path for all 7438 * hugetlbfs inodes, resv_map could be NULL. 7439 */ 7440 if (resv_map) { 7441 chg = region_del(resv_map, start, end); 7442 /* 7443 * region_del() can fail in the rare case where a region 7444 * must be split and another region descriptor can not be 7445 * allocated. If end == LONG_MAX, it will not fail. 7446 */ 7447 if (chg < 0) 7448 return chg; 7449 } 7450 7451 spin_lock(&inode->i_lock); 7452 inode->i_blocks -= (blocks_per_huge_page(h) * freed); 7453 spin_unlock(&inode->i_lock); 7454 7455 /* 7456 * If the subpool has a minimum size, the number of global 7457 * reservations to be released may be adjusted. 7458 * 7459 * Note that !resv_map implies freed == 0. So (chg - freed) 7460 * won't go negative. 7461 */ 7462 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed)); 7463 hugetlb_acct_memory(h, -gbl_reserve); 7464 7465 return 0; 7466 } 7467 7468 #ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING 7469 static unsigned long page_table_shareable(struct vm_area_struct *svma, 7470 struct vm_area_struct *vma, 7471 unsigned long addr, pgoff_t idx) 7472 { 7473 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) + 7474 svma->vm_start; 7475 unsigned long sbase = saddr & PUD_MASK; 7476 unsigned long s_end = sbase + PUD_SIZE; 7477 7478 /* Allow segments to share if only one is marked locked */ 7479 vm_flags_t vm_flags = vma->vm_flags & ~VM_LOCKED_MASK; 7480 vm_flags_t svm_flags = svma->vm_flags & ~VM_LOCKED_MASK; 7481 7482 /* 7483 * match the virtual addresses, permission and the alignment of the 7484 * page table page. 7485 * 7486 * Also, vma_lock (vm_private_data) is required for sharing. 7487 */ 7488 if (pmd_index(addr) != pmd_index(saddr) || 7489 vm_flags != svm_flags || 7490 !range_in_vma(svma, sbase, s_end) || 7491 !svma->vm_private_data) 7492 return 0; 7493 7494 return saddr; 7495 } 7496 7497 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr) 7498 { 7499 unsigned long start = addr & PUD_MASK; 7500 unsigned long end = start + PUD_SIZE; 7501 7502 #ifdef CONFIG_USERFAULTFD 7503 if (uffd_disable_huge_pmd_share(vma)) 7504 return false; 7505 #endif 7506 /* 7507 * check on proper vm_flags and page table alignment 7508 */ 7509 if (!(vma->vm_flags & VM_MAYSHARE)) 7510 return false; 7511 if (!vma->vm_private_data) /* vma lock required for sharing */ 7512 return false; 7513 if (!range_in_vma(vma, start, end)) 7514 return false; 7515 return true; 7516 } 7517 7518 /* 7519 * Determine if start,end range within vma could be mapped by shared pmd. 7520 * If yes, adjust start and end to cover range associated with possible 7521 * shared pmd mappings. 7522 */ 7523 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 7524 unsigned long *start, unsigned long *end) 7525 { 7526 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE), 7527 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE); 7528 7529 /* 7530 * vma needs to span at least one aligned PUD size, and the range 7531 * must be at least partially within in. 7532 */ 7533 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) || 7534 (*end <= v_start) || (*start >= v_end)) 7535 return; 7536 7537 /* Extend the range to be PUD aligned for a worst case scenario */ 7538 if (*start > v_start) 7539 *start = ALIGN_DOWN(*start, PUD_SIZE); 7540 7541 if (*end < v_end) 7542 *end = ALIGN(*end, PUD_SIZE); 7543 } 7544 7545 /* 7546 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc() 7547 * and returns the corresponding pte. While this is not necessary for the 7548 * !shared pmd case because we can allocate the pmd later as well, it makes the 7549 * code much cleaner. pmd allocation is essential for the shared case because 7550 * pud has to be populated inside the same i_mmap_rwsem section - otherwise 7551 * racing tasks could either miss the sharing (see huge_pte_offset) or select a 7552 * bad pmd for sharing. 7553 */ 7554 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, 7555 unsigned long addr, pud_t *pud) 7556 { 7557 struct address_space *mapping = vma->vm_file->f_mapping; 7558 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + 7559 vma->vm_pgoff; 7560 struct vm_area_struct *svma; 7561 unsigned long saddr; 7562 pte_t *spte = NULL; 7563 pte_t *pte; 7564 7565 i_mmap_lock_read(mapping); 7566 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) { 7567 if (svma == vma) 7568 continue; 7569 7570 saddr = page_table_shareable(svma, vma, addr, idx); 7571 if (saddr) { 7572 spte = hugetlb_walk(svma, saddr, 7573 vma_mmu_pagesize(svma)); 7574 if (spte) { 7575 ptdesc_pmd_pts_inc(virt_to_ptdesc(spte)); 7576 break; 7577 } 7578 } 7579 } 7580 7581 if (!spte) 7582 goto out; 7583 7584 spin_lock(&mm->page_table_lock); 7585 if (pud_none(*pud)) { 7586 pud_populate(mm, pud, 7587 (pmd_t *)((unsigned long)spte & PAGE_MASK)); 7588 mm_inc_nr_pmds(mm); 7589 } else { 7590 ptdesc_pmd_pts_dec(virt_to_ptdesc(spte)); 7591 } 7592 spin_unlock(&mm->page_table_lock); 7593 out: 7594 pte = (pte_t *)pmd_alloc(mm, pud, addr); 7595 i_mmap_unlock_read(mapping); 7596 return pte; 7597 } 7598 7599 /* 7600 * unmap huge page backed by shared pte. 7601 * 7602 * Called with page table lock held. 7603 * 7604 * returns: 1 successfully unmapped a shared pte page 7605 * 0 the underlying pte page is not shared, or it is the last user 7606 */ 7607 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, 7608 unsigned long addr, pte_t *ptep) 7609 { 7610 unsigned long sz = huge_page_size(hstate_vma(vma)); 7611 pgd_t *pgd = pgd_offset(mm, addr); 7612 p4d_t *p4d = p4d_offset(pgd, addr); 7613 pud_t *pud = pud_offset(p4d, addr); 7614 7615 i_mmap_assert_write_locked(vma->vm_file->f_mapping); 7616 hugetlb_vma_assert_locked(vma); 7617 if (sz != PMD_SIZE) 7618 return 0; 7619 if (!ptdesc_pmd_is_shared(virt_to_ptdesc(ptep))) 7620 return 0; 7621 7622 pud_clear(pud); 7623 /* 7624 * Once our caller drops the rmap lock, some other process might be 7625 * using this page table as a normal, non-hugetlb page table. 7626 * Wait for pending gup_fast() in other threads to finish before letting 7627 * that happen. 7628 */ 7629 tlb_remove_table_sync_one(); 7630 ptdesc_pmd_pts_dec(virt_to_ptdesc(ptep)); 7631 mm_dec_nr_pmds(mm); 7632 return 1; 7633 } 7634 7635 #else /* !CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING */ 7636 7637 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, 7638 unsigned long addr, pud_t *pud) 7639 { 7640 return NULL; 7641 } 7642 7643 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, 7644 unsigned long addr, pte_t *ptep) 7645 { 7646 return 0; 7647 } 7648 7649 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 7650 unsigned long *start, unsigned long *end) 7651 { 7652 } 7653 7654 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr) 7655 { 7656 return false; 7657 } 7658 #endif /* CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING */ 7659 7660 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB 7661 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 7662 unsigned long addr, unsigned long sz) 7663 { 7664 pgd_t *pgd; 7665 p4d_t *p4d; 7666 pud_t *pud; 7667 pte_t *pte = NULL; 7668 7669 pgd = pgd_offset(mm, addr); 7670 p4d = p4d_alloc(mm, pgd, addr); 7671 if (!p4d) 7672 return NULL; 7673 pud = pud_alloc(mm, p4d, addr); 7674 if (pud) { 7675 if (sz == PUD_SIZE) { 7676 pte = (pte_t *)pud; 7677 } else { 7678 BUG_ON(sz != PMD_SIZE); 7679 if (want_pmd_share(vma, addr) && pud_none(*pud)) 7680 pte = huge_pmd_share(mm, vma, addr, pud); 7681 else 7682 pte = (pte_t *)pmd_alloc(mm, pud, addr); 7683 } 7684 } 7685 7686 if (pte) { 7687 pte_t pteval = ptep_get_lockless(pte); 7688 7689 BUG_ON(pte_present(pteval) && !pte_huge(pteval)); 7690 } 7691 7692 return pte; 7693 } 7694 7695 /* 7696 * huge_pte_offset() - Walk the page table to resolve the hugepage 7697 * entry at address @addr 7698 * 7699 * Return: Pointer to page table entry (PUD or PMD) for 7700 * address @addr, or NULL if a !p*d_present() entry is encountered and the 7701 * size @sz doesn't match the hugepage size at this level of the page 7702 * table. 7703 */ 7704 pte_t *huge_pte_offset(struct mm_struct *mm, 7705 unsigned long addr, unsigned long sz) 7706 { 7707 pgd_t *pgd; 7708 p4d_t *p4d; 7709 pud_t *pud; 7710 pmd_t *pmd; 7711 7712 pgd = pgd_offset(mm, addr); 7713 if (!pgd_present(*pgd)) 7714 return NULL; 7715 p4d = p4d_offset(pgd, addr); 7716 if (!p4d_present(*p4d)) 7717 return NULL; 7718 7719 pud = pud_offset(p4d, addr); 7720 if (sz == PUD_SIZE) 7721 /* must be pud huge, non-present or none */ 7722 return (pte_t *)pud; 7723 if (!pud_present(*pud)) 7724 return NULL; 7725 /* must have a valid entry and size to go further */ 7726 7727 pmd = pmd_offset(pud, addr); 7728 /* must be pmd huge, non-present or none */ 7729 return (pte_t *)pmd; 7730 } 7731 7732 /* 7733 * Return a mask that can be used to update an address to the last huge 7734 * page in a page table page mapping size. Used to skip non-present 7735 * page table entries when linearly scanning address ranges. Architectures 7736 * with unique huge page to page table relationships can define their own 7737 * version of this routine. 7738 */ 7739 unsigned long hugetlb_mask_last_page(struct hstate *h) 7740 { 7741 unsigned long hp_size = huge_page_size(h); 7742 7743 if (hp_size == PUD_SIZE) 7744 return P4D_SIZE - PUD_SIZE; 7745 else if (hp_size == PMD_SIZE) 7746 return PUD_SIZE - PMD_SIZE; 7747 else 7748 return 0UL; 7749 } 7750 7751 #else 7752 7753 /* See description above. Architectures can provide their own version. */ 7754 __weak unsigned long hugetlb_mask_last_page(struct hstate *h) 7755 { 7756 #ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING 7757 if (huge_page_size(h) == PMD_SIZE) 7758 return PUD_SIZE - PMD_SIZE; 7759 #endif 7760 return 0UL; 7761 } 7762 7763 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */ 7764 7765 /** 7766 * folio_isolate_hugetlb - try to isolate an allocated hugetlb folio 7767 * @folio: the folio to isolate 7768 * @list: the list to add the folio to on success 7769 * 7770 * Isolate an allocated (refcount > 0) hugetlb folio, marking it as 7771 * isolated/non-migratable, and moving it from the active list to the 7772 * given list. 7773 * 7774 * Isolation will fail if @folio is not an allocated hugetlb folio, or if 7775 * it is already isolated/non-migratable. 7776 * 7777 * On success, an additional folio reference is taken that must be dropped 7778 * using folio_putback_hugetlb() to undo the isolation. 7779 * 7780 * Return: True if isolation worked, otherwise False. 7781 */ 7782 bool folio_isolate_hugetlb(struct folio *folio, struct list_head *list) 7783 { 7784 bool ret = true; 7785 7786 spin_lock_irq(&hugetlb_lock); 7787 if (!folio_test_hugetlb(folio) || 7788 !folio_test_hugetlb_migratable(folio) || 7789 !folio_try_get(folio)) { 7790 ret = false; 7791 goto unlock; 7792 } 7793 folio_clear_hugetlb_migratable(folio); 7794 list_move_tail(&folio->lru, list); 7795 unlock: 7796 spin_unlock_irq(&hugetlb_lock); 7797 return ret; 7798 } 7799 7800 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison) 7801 { 7802 int ret = 0; 7803 7804 *hugetlb = false; 7805 spin_lock_irq(&hugetlb_lock); 7806 if (folio_test_hugetlb(folio)) { 7807 *hugetlb = true; 7808 if (folio_test_hugetlb_freed(folio)) 7809 ret = 0; 7810 else if (folio_test_hugetlb_migratable(folio) || unpoison) 7811 ret = folio_try_get(folio); 7812 else 7813 ret = -EBUSY; 7814 } 7815 spin_unlock_irq(&hugetlb_lock); 7816 return ret; 7817 } 7818 7819 int get_huge_page_for_hwpoison(unsigned long pfn, int flags, 7820 bool *migratable_cleared) 7821 { 7822 int ret; 7823 7824 spin_lock_irq(&hugetlb_lock); 7825 ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared); 7826 spin_unlock_irq(&hugetlb_lock); 7827 return ret; 7828 } 7829 7830 /** 7831 * folio_putback_hugetlb - unisolate a hugetlb folio 7832 * @folio: the isolated hugetlb folio 7833 * 7834 * Putback/un-isolate the hugetlb folio that was previous isolated using 7835 * folio_isolate_hugetlb(): marking it non-isolated/migratable and putting it 7836 * back onto the active list. 7837 * 7838 * Will drop the additional folio reference obtained through 7839 * folio_isolate_hugetlb(). 7840 */ 7841 void folio_putback_hugetlb(struct folio *folio) 7842 { 7843 spin_lock_irq(&hugetlb_lock); 7844 folio_set_hugetlb_migratable(folio); 7845 list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist); 7846 spin_unlock_irq(&hugetlb_lock); 7847 folio_put(folio); 7848 } 7849 7850 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason) 7851 { 7852 struct hstate *h = folio_hstate(old_folio); 7853 7854 hugetlb_cgroup_migrate(old_folio, new_folio); 7855 folio_set_owner_migrate_reason(new_folio, reason); 7856 7857 /* 7858 * transfer temporary state of the new hugetlb folio. This is 7859 * reverse to other transitions because the newpage is going to 7860 * be final while the old one will be freed so it takes over 7861 * the temporary status. 7862 * 7863 * Also note that we have to transfer the per-node surplus state 7864 * here as well otherwise the global surplus count will not match 7865 * the per-node's. 7866 */ 7867 if (folio_test_hugetlb_temporary(new_folio)) { 7868 int old_nid = folio_nid(old_folio); 7869 int new_nid = folio_nid(new_folio); 7870 7871 folio_set_hugetlb_temporary(old_folio); 7872 folio_clear_hugetlb_temporary(new_folio); 7873 7874 7875 /* 7876 * There is no need to transfer the per-node surplus state 7877 * when we do not cross the node. 7878 */ 7879 if (new_nid == old_nid) 7880 return; 7881 spin_lock_irq(&hugetlb_lock); 7882 if (h->surplus_huge_pages_node[old_nid]) { 7883 h->surplus_huge_pages_node[old_nid]--; 7884 h->surplus_huge_pages_node[new_nid]++; 7885 } 7886 spin_unlock_irq(&hugetlb_lock); 7887 } 7888 7889 /* 7890 * Our old folio is isolated and has "migratable" cleared until it 7891 * is putback. As migration succeeded, set the new folio "migratable" 7892 * and add it to the active list. 7893 */ 7894 spin_lock_irq(&hugetlb_lock); 7895 folio_set_hugetlb_migratable(new_folio); 7896 list_move_tail(&new_folio->lru, &(folio_hstate(new_folio))->hugepage_activelist); 7897 spin_unlock_irq(&hugetlb_lock); 7898 } 7899 7900 /* 7901 * If @take_locks is false, the caller must ensure that no concurrent page table 7902 * access can happen (except for gup_fast() and hardware page walks). 7903 * If @take_locks is true, we take the hugetlb VMA lock (to lock out things like 7904 * concurrent page fault handling) and the file rmap lock. 7905 */ 7906 static void hugetlb_unshare_pmds(struct vm_area_struct *vma, 7907 unsigned long start, 7908 unsigned long end, 7909 bool take_locks) 7910 { 7911 struct hstate *h = hstate_vma(vma); 7912 unsigned long sz = huge_page_size(h); 7913 struct mm_struct *mm = vma->vm_mm; 7914 struct mmu_notifier_range range; 7915 unsigned long address; 7916 spinlock_t *ptl; 7917 pte_t *ptep; 7918 7919 if (!(vma->vm_flags & VM_MAYSHARE)) 7920 return; 7921 7922 if (start >= end) 7923 return; 7924 7925 flush_cache_range(vma, start, end); 7926 /* 7927 * No need to call adjust_range_if_pmd_sharing_possible(), because 7928 * we have already done the PUD_SIZE alignment. 7929 */ 7930 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 7931 start, end); 7932 mmu_notifier_invalidate_range_start(&range); 7933 if (take_locks) { 7934 hugetlb_vma_lock_write(vma); 7935 i_mmap_lock_write(vma->vm_file->f_mapping); 7936 } else { 7937 i_mmap_assert_write_locked(vma->vm_file->f_mapping); 7938 } 7939 for (address = start; address < end; address += PUD_SIZE) { 7940 ptep = hugetlb_walk(vma, address, sz); 7941 if (!ptep) 7942 continue; 7943 ptl = huge_pte_lock(h, mm, ptep); 7944 huge_pmd_unshare(mm, vma, address, ptep); 7945 spin_unlock(ptl); 7946 } 7947 flush_hugetlb_tlb_range(vma, start, end); 7948 if (take_locks) { 7949 i_mmap_unlock_write(vma->vm_file->f_mapping); 7950 hugetlb_vma_unlock_write(vma); 7951 } 7952 /* 7953 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs(), see 7954 * Documentation/mm/mmu_notifier.rst. 7955 */ 7956 mmu_notifier_invalidate_range_end(&range); 7957 } 7958 7959 /* 7960 * This function will unconditionally remove all the shared pmd pgtable entries 7961 * within the specific vma for a hugetlbfs memory range. 7962 */ 7963 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma) 7964 { 7965 hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE), 7966 ALIGN_DOWN(vma->vm_end, PUD_SIZE), 7967 /* take_locks = */ true); 7968 } 7969 7970 /* 7971 * For hugetlb, mremap() is an odd edge case - while the VMA copying is 7972 * performed, we permit both the old and new VMAs to reference the same 7973 * reservation. 7974 * 7975 * We fix this up after the operation succeeds, or if a newly allocated VMA 7976 * is closed as a result of a failure to allocate memory. 7977 */ 7978 void fixup_hugetlb_reservations(struct vm_area_struct *vma) 7979 { 7980 if (is_vm_hugetlb_page(vma)) 7981 clear_vma_resv_huge_pages(vma); 7982 } 7983