xref: /linux/mm/hugetlb.c (revision 6084a6e23c971ef703229ee1aec68d01688578d6)
1 /*
2  * Generic hugetlb support.
3  * (C) Nadia Yvette Chambers, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/bootmem.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/rmap.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/page-isolation.h>
26 #include <linux/jhash.h>
27 
28 #include <asm/page.h>
29 #include <asm/pgtable.h>
30 #include <asm/tlb.h>
31 
32 #include <linux/io.h>
33 #include <linux/hugetlb.h>
34 #include <linux/hugetlb_cgroup.h>
35 #include <linux/node.h>
36 #include "internal.h"
37 
38 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
39 unsigned long hugepages_treat_as_movable;
40 
41 int hugetlb_max_hstate __read_mostly;
42 unsigned int default_hstate_idx;
43 struct hstate hstates[HUGE_MAX_HSTATE];
44 
45 __initdata LIST_HEAD(huge_boot_pages);
46 
47 /* for command line parsing */
48 static struct hstate * __initdata parsed_hstate;
49 static unsigned long __initdata default_hstate_max_huge_pages;
50 static unsigned long __initdata default_hstate_size;
51 
52 /*
53  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
54  * free_huge_pages, and surplus_huge_pages.
55  */
56 DEFINE_SPINLOCK(hugetlb_lock);
57 
58 /*
59  * Serializes faults on the same logical page.  This is used to
60  * prevent spurious OOMs when the hugepage pool is fully utilized.
61  */
62 static int num_fault_mutexes;
63 static struct mutex *htlb_fault_mutex_table ____cacheline_aligned_in_smp;
64 
65 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
66 {
67 	bool free = (spool->count == 0) && (spool->used_hpages == 0);
68 
69 	spin_unlock(&spool->lock);
70 
71 	/* If no pages are used, and no other handles to the subpool
72 	 * remain, free the subpool the subpool remain */
73 	if (free)
74 		kfree(spool);
75 }
76 
77 struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
78 {
79 	struct hugepage_subpool *spool;
80 
81 	spool = kmalloc(sizeof(*spool), GFP_KERNEL);
82 	if (!spool)
83 		return NULL;
84 
85 	spin_lock_init(&spool->lock);
86 	spool->count = 1;
87 	spool->max_hpages = nr_blocks;
88 	spool->used_hpages = 0;
89 
90 	return spool;
91 }
92 
93 void hugepage_put_subpool(struct hugepage_subpool *spool)
94 {
95 	spin_lock(&spool->lock);
96 	BUG_ON(!spool->count);
97 	spool->count--;
98 	unlock_or_release_subpool(spool);
99 }
100 
101 static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
102 				      long delta)
103 {
104 	int ret = 0;
105 
106 	if (!spool)
107 		return 0;
108 
109 	spin_lock(&spool->lock);
110 	if ((spool->used_hpages + delta) <= spool->max_hpages) {
111 		spool->used_hpages += delta;
112 	} else {
113 		ret = -ENOMEM;
114 	}
115 	spin_unlock(&spool->lock);
116 
117 	return ret;
118 }
119 
120 static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
121 				       long delta)
122 {
123 	if (!spool)
124 		return;
125 
126 	spin_lock(&spool->lock);
127 	spool->used_hpages -= delta;
128 	/* If hugetlbfs_put_super couldn't free spool due to
129 	* an outstanding quota reference, free it now. */
130 	unlock_or_release_subpool(spool);
131 }
132 
133 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
134 {
135 	return HUGETLBFS_SB(inode->i_sb)->spool;
136 }
137 
138 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
139 {
140 	return subpool_inode(file_inode(vma->vm_file));
141 }
142 
143 /*
144  * Region tracking -- allows tracking of reservations and instantiated pages
145  *                    across the pages in a mapping.
146  *
147  * The region data structures are embedded into a resv_map and
148  * protected by a resv_map's lock
149  */
150 struct file_region {
151 	struct list_head link;
152 	long from;
153 	long to;
154 };
155 
156 static long region_add(struct resv_map *resv, long f, long t)
157 {
158 	struct list_head *head = &resv->regions;
159 	struct file_region *rg, *nrg, *trg;
160 
161 	spin_lock(&resv->lock);
162 	/* Locate the region we are either in or before. */
163 	list_for_each_entry(rg, head, link)
164 		if (f <= rg->to)
165 			break;
166 
167 	/* Round our left edge to the current segment if it encloses us. */
168 	if (f > rg->from)
169 		f = rg->from;
170 
171 	/* Check for and consume any regions we now overlap with. */
172 	nrg = rg;
173 	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
174 		if (&rg->link == head)
175 			break;
176 		if (rg->from > t)
177 			break;
178 
179 		/* If this area reaches higher then extend our area to
180 		 * include it completely.  If this is not the first area
181 		 * which we intend to reuse, free it. */
182 		if (rg->to > t)
183 			t = rg->to;
184 		if (rg != nrg) {
185 			list_del(&rg->link);
186 			kfree(rg);
187 		}
188 	}
189 	nrg->from = f;
190 	nrg->to = t;
191 	spin_unlock(&resv->lock);
192 	return 0;
193 }
194 
195 static long region_chg(struct resv_map *resv, long f, long t)
196 {
197 	struct list_head *head = &resv->regions;
198 	struct file_region *rg, *nrg = NULL;
199 	long chg = 0;
200 
201 retry:
202 	spin_lock(&resv->lock);
203 	/* Locate the region we are before or in. */
204 	list_for_each_entry(rg, head, link)
205 		if (f <= rg->to)
206 			break;
207 
208 	/* If we are below the current region then a new region is required.
209 	 * Subtle, allocate a new region at the position but make it zero
210 	 * size such that we can guarantee to record the reservation. */
211 	if (&rg->link == head || t < rg->from) {
212 		if (!nrg) {
213 			spin_unlock(&resv->lock);
214 			nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
215 			if (!nrg)
216 				return -ENOMEM;
217 
218 			nrg->from = f;
219 			nrg->to   = f;
220 			INIT_LIST_HEAD(&nrg->link);
221 			goto retry;
222 		}
223 
224 		list_add(&nrg->link, rg->link.prev);
225 		chg = t - f;
226 		goto out_nrg;
227 	}
228 
229 	/* Round our left edge to the current segment if it encloses us. */
230 	if (f > rg->from)
231 		f = rg->from;
232 	chg = t - f;
233 
234 	/* Check for and consume any regions we now overlap with. */
235 	list_for_each_entry(rg, rg->link.prev, link) {
236 		if (&rg->link == head)
237 			break;
238 		if (rg->from > t)
239 			goto out;
240 
241 		/* We overlap with this area, if it extends further than
242 		 * us then we must extend ourselves.  Account for its
243 		 * existing reservation. */
244 		if (rg->to > t) {
245 			chg += rg->to - t;
246 			t = rg->to;
247 		}
248 		chg -= rg->to - rg->from;
249 	}
250 
251 out:
252 	spin_unlock(&resv->lock);
253 	/*  We already know we raced and no longer need the new region */
254 	kfree(nrg);
255 	return chg;
256 out_nrg:
257 	spin_unlock(&resv->lock);
258 	return chg;
259 }
260 
261 static long region_truncate(struct resv_map *resv, long end)
262 {
263 	struct list_head *head = &resv->regions;
264 	struct file_region *rg, *trg;
265 	long chg = 0;
266 
267 	spin_lock(&resv->lock);
268 	/* Locate the region we are either in or before. */
269 	list_for_each_entry(rg, head, link)
270 		if (end <= rg->to)
271 			break;
272 	if (&rg->link == head)
273 		goto out;
274 
275 	/* If we are in the middle of a region then adjust it. */
276 	if (end > rg->from) {
277 		chg = rg->to - end;
278 		rg->to = end;
279 		rg = list_entry(rg->link.next, typeof(*rg), link);
280 	}
281 
282 	/* Drop any remaining regions. */
283 	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
284 		if (&rg->link == head)
285 			break;
286 		chg += rg->to - rg->from;
287 		list_del(&rg->link);
288 		kfree(rg);
289 	}
290 
291 out:
292 	spin_unlock(&resv->lock);
293 	return chg;
294 }
295 
296 static long region_count(struct resv_map *resv, long f, long t)
297 {
298 	struct list_head *head = &resv->regions;
299 	struct file_region *rg;
300 	long chg = 0;
301 
302 	spin_lock(&resv->lock);
303 	/* Locate each segment we overlap with, and count that overlap. */
304 	list_for_each_entry(rg, head, link) {
305 		long seg_from;
306 		long seg_to;
307 
308 		if (rg->to <= f)
309 			continue;
310 		if (rg->from >= t)
311 			break;
312 
313 		seg_from = max(rg->from, f);
314 		seg_to = min(rg->to, t);
315 
316 		chg += seg_to - seg_from;
317 	}
318 	spin_unlock(&resv->lock);
319 
320 	return chg;
321 }
322 
323 /*
324  * Convert the address within this vma to the page offset within
325  * the mapping, in pagecache page units; huge pages here.
326  */
327 static pgoff_t vma_hugecache_offset(struct hstate *h,
328 			struct vm_area_struct *vma, unsigned long address)
329 {
330 	return ((address - vma->vm_start) >> huge_page_shift(h)) +
331 			(vma->vm_pgoff >> huge_page_order(h));
332 }
333 
334 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
335 				     unsigned long address)
336 {
337 	return vma_hugecache_offset(hstate_vma(vma), vma, address);
338 }
339 
340 /*
341  * Return the size of the pages allocated when backing a VMA. In the majority
342  * cases this will be same size as used by the page table entries.
343  */
344 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
345 {
346 	struct hstate *hstate;
347 
348 	if (!is_vm_hugetlb_page(vma))
349 		return PAGE_SIZE;
350 
351 	hstate = hstate_vma(vma);
352 
353 	return 1UL << huge_page_shift(hstate);
354 }
355 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
356 
357 /*
358  * Return the page size being used by the MMU to back a VMA. In the majority
359  * of cases, the page size used by the kernel matches the MMU size. On
360  * architectures where it differs, an architecture-specific version of this
361  * function is required.
362  */
363 #ifndef vma_mmu_pagesize
364 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
365 {
366 	return vma_kernel_pagesize(vma);
367 }
368 #endif
369 
370 /*
371  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
372  * bits of the reservation map pointer, which are always clear due to
373  * alignment.
374  */
375 #define HPAGE_RESV_OWNER    (1UL << 0)
376 #define HPAGE_RESV_UNMAPPED (1UL << 1)
377 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
378 
379 /*
380  * These helpers are used to track how many pages are reserved for
381  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
382  * is guaranteed to have their future faults succeed.
383  *
384  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
385  * the reserve counters are updated with the hugetlb_lock held. It is safe
386  * to reset the VMA at fork() time as it is not in use yet and there is no
387  * chance of the global counters getting corrupted as a result of the values.
388  *
389  * The private mapping reservation is represented in a subtly different
390  * manner to a shared mapping.  A shared mapping has a region map associated
391  * with the underlying file, this region map represents the backing file
392  * pages which have ever had a reservation assigned which this persists even
393  * after the page is instantiated.  A private mapping has a region map
394  * associated with the original mmap which is attached to all VMAs which
395  * reference it, this region map represents those offsets which have consumed
396  * reservation ie. where pages have been instantiated.
397  */
398 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
399 {
400 	return (unsigned long)vma->vm_private_data;
401 }
402 
403 static void set_vma_private_data(struct vm_area_struct *vma,
404 							unsigned long value)
405 {
406 	vma->vm_private_data = (void *)value;
407 }
408 
409 struct resv_map *resv_map_alloc(void)
410 {
411 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
412 	if (!resv_map)
413 		return NULL;
414 
415 	kref_init(&resv_map->refs);
416 	spin_lock_init(&resv_map->lock);
417 	INIT_LIST_HEAD(&resv_map->regions);
418 
419 	return resv_map;
420 }
421 
422 void resv_map_release(struct kref *ref)
423 {
424 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
425 
426 	/* Clear out any active regions before we release the map. */
427 	region_truncate(resv_map, 0);
428 	kfree(resv_map);
429 }
430 
431 static inline struct resv_map *inode_resv_map(struct inode *inode)
432 {
433 	return inode->i_mapping->private_data;
434 }
435 
436 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
437 {
438 	VM_BUG_ON(!is_vm_hugetlb_page(vma));
439 	if (vma->vm_flags & VM_MAYSHARE) {
440 		struct address_space *mapping = vma->vm_file->f_mapping;
441 		struct inode *inode = mapping->host;
442 
443 		return inode_resv_map(inode);
444 
445 	} else {
446 		return (struct resv_map *)(get_vma_private_data(vma) &
447 							~HPAGE_RESV_MASK);
448 	}
449 }
450 
451 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
452 {
453 	VM_BUG_ON(!is_vm_hugetlb_page(vma));
454 	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
455 
456 	set_vma_private_data(vma, (get_vma_private_data(vma) &
457 				HPAGE_RESV_MASK) | (unsigned long)map);
458 }
459 
460 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
461 {
462 	VM_BUG_ON(!is_vm_hugetlb_page(vma));
463 	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
464 
465 	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
466 }
467 
468 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
469 {
470 	VM_BUG_ON(!is_vm_hugetlb_page(vma));
471 
472 	return (get_vma_private_data(vma) & flag) != 0;
473 }
474 
475 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
476 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
477 {
478 	VM_BUG_ON(!is_vm_hugetlb_page(vma));
479 	if (!(vma->vm_flags & VM_MAYSHARE))
480 		vma->vm_private_data = (void *)0;
481 }
482 
483 /* Returns true if the VMA has associated reserve pages */
484 static int vma_has_reserves(struct vm_area_struct *vma, long chg)
485 {
486 	if (vma->vm_flags & VM_NORESERVE) {
487 		/*
488 		 * This address is already reserved by other process(chg == 0),
489 		 * so, we should decrement reserved count. Without decrementing,
490 		 * reserve count remains after releasing inode, because this
491 		 * allocated page will go into page cache and is regarded as
492 		 * coming from reserved pool in releasing step.  Currently, we
493 		 * don't have any other solution to deal with this situation
494 		 * properly, so add work-around here.
495 		 */
496 		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
497 			return 1;
498 		else
499 			return 0;
500 	}
501 
502 	/* Shared mappings always use reserves */
503 	if (vma->vm_flags & VM_MAYSHARE)
504 		return 1;
505 
506 	/*
507 	 * Only the process that called mmap() has reserves for
508 	 * private mappings.
509 	 */
510 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
511 		return 1;
512 
513 	return 0;
514 }
515 
516 static void enqueue_huge_page(struct hstate *h, struct page *page)
517 {
518 	int nid = page_to_nid(page);
519 	list_move(&page->lru, &h->hugepage_freelists[nid]);
520 	h->free_huge_pages++;
521 	h->free_huge_pages_node[nid]++;
522 }
523 
524 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
525 {
526 	struct page *page;
527 
528 	list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
529 		if (!is_migrate_isolate_page(page))
530 			break;
531 	/*
532 	 * if 'non-isolated free hugepage' not found on the list,
533 	 * the allocation fails.
534 	 */
535 	if (&h->hugepage_freelists[nid] == &page->lru)
536 		return NULL;
537 	list_move(&page->lru, &h->hugepage_activelist);
538 	set_page_refcounted(page);
539 	h->free_huge_pages--;
540 	h->free_huge_pages_node[nid]--;
541 	return page;
542 }
543 
544 /* Movability of hugepages depends on migration support. */
545 static inline gfp_t htlb_alloc_mask(struct hstate *h)
546 {
547 	if (hugepages_treat_as_movable || hugepage_migration_supported(h))
548 		return GFP_HIGHUSER_MOVABLE;
549 	else
550 		return GFP_HIGHUSER;
551 }
552 
553 static struct page *dequeue_huge_page_vma(struct hstate *h,
554 				struct vm_area_struct *vma,
555 				unsigned long address, int avoid_reserve,
556 				long chg)
557 {
558 	struct page *page = NULL;
559 	struct mempolicy *mpol;
560 	nodemask_t *nodemask;
561 	struct zonelist *zonelist;
562 	struct zone *zone;
563 	struct zoneref *z;
564 	unsigned int cpuset_mems_cookie;
565 
566 	/*
567 	 * A child process with MAP_PRIVATE mappings created by their parent
568 	 * have no page reserves. This check ensures that reservations are
569 	 * not "stolen". The child may still get SIGKILLed
570 	 */
571 	if (!vma_has_reserves(vma, chg) &&
572 			h->free_huge_pages - h->resv_huge_pages == 0)
573 		goto err;
574 
575 	/* If reserves cannot be used, ensure enough pages are in the pool */
576 	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
577 		goto err;
578 
579 retry_cpuset:
580 	cpuset_mems_cookie = read_mems_allowed_begin();
581 	zonelist = huge_zonelist(vma, address,
582 					htlb_alloc_mask(h), &mpol, &nodemask);
583 
584 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
585 						MAX_NR_ZONES - 1, nodemask) {
586 		if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask(h))) {
587 			page = dequeue_huge_page_node(h, zone_to_nid(zone));
588 			if (page) {
589 				if (avoid_reserve)
590 					break;
591 				if (!vma_has_reserves(vma, chg))
592 					break;
593 
594 				SetPagePrivate(page);
595 				h->resv_huge_pages--;
596 				break;
597 			}
598 		}
599 	}
600 
601 	mpol_cond_put(mpol);
602 	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
603 		goto retry_cpuset;
604 	return page;
605 
606 err:
607 	return NULL;
608 }
609 
610 /*
611  * common helper functions for hstate_next_node_to_{alloc|free}.
612  * We may have allocated or freed a huge page based on a different
613  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
614  * be outside of *nodes_allowed.  Ensure that we use an allowed
615  * node for alloc or free.
616  */
617 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
618 {
619 	nid = next_node(nid, *nodes_allowed);
620 	if (nid == MAX_NUMNODES)
621 		nid = first_node(*nodes_allowed);
622 	VM_BUG_ON(nid >= MAX_NUMNODES);
623 
624 	return nid;
625 }
626 
627 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
628 {
629 	if (!node_isset(nid, *nodes_allowed))
630 		nid = next_node_allowed(nid, nodes_allowed);
631 	return nid;
632 }
633 
634 /*
635  * returns the previously saved node ["this node"] from which to
636  * allocate a persistent huge page for the pool and advance the
637  * next node from which to allocate, handling wrap at end of node
638  * mask.
639  */
640 static int hstate_next_node_to_alloc(struct hstate *h,
641 					nodemask_t *nodes_allowed)
642 {
643 	int nid;
644 
645 	VM_BUG_ON(!nodes_allowed);
646 
647 	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
648 	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
649 
650 	return nid;
651 }
652 
653 /*
654  * helper for free_pool_huge_page() - return the previously saved
655  * node ["this node"] from which to free a huge page.  Advance the
656  * next node id whether or not we find a free huge page to free so
657  * that the next attempt to free addresses the next node.
658  */
659 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
660 {
661 	int nid;
662 
663 	VM_BUG_ON(!nodes_allowed);
664 
665 	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
666 	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
667 
668 	return nid;
669 }
670 
671 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
672 	for (nr_nodes = nodes_weight(*mask);				\
673 		nr_nodes > 0 &&						\
674 		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
675 		nr_nodes--)
676 
677 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
678 	for (nr_nodes = nodes_weight(*mask);				\
679 		nr_nodes > 0 &&						\
680 		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
681 		nr_nodes--)
682 
683 #if defined(CONFIG_CMA) && defined(CONFIG_X86_64)
684 static void destroy_compound_gigantic_page(struct page *page,
685 					unsigned long order)
686 {
687 	int i;
688 	int nr_pages = 1 << order;
689 	struct page *p = page + 1;
690 
691 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
692 		__ClearPageTail(p);
693 		set_page_refcounted(p);
694 		p->first_page = NULL;
695 	}
696 
697 	set_compound_order(page, 0);
698 	__ClearPageHead(page);
699 }
700 
701 static void free_gigantic_page(struct page *page, unsigned order)
702 {
703 	free_contig_range(page_to_pfn(page), 1 << order);
704 }
705 
706 static int __alloc_gigantic_page(unsigned long start_pfn,
707 				unsigned long nr_pages)
708 {
709 	unsigned long end_pfn = start_pfn + nr_pages;
710 	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
711 }
712 
713 static bool pfn_range_valid_gigantic(unsigned long start_pfn,
714 				unsigned long nr_pages)
715 {
716 	unsigned long i, end_pfn = start_pfn + nr_pages;
717 	struct page *page;
718 
719 	for (i = start_pfn; i < end_pfn; i++) {
720 		if (!pfn_valid(i))
721 			return false;
722 
723 		page = pfn_to_page(i);
724 
725 		if (PageReserved(page))
726 			return false;
727 
728 		if (page_count(page) > 0)
729 			return false;
730 
731 		if (PageHuge(page))
732 			return false;
733 	}
734 
735 	return true;
736 }
737 
738 static bool zone_spans_last_pfn(const struct zone *zone,
739 			unsigned long start_pfn, unsigned long nr_pages)
740 {
741 	unsigned long last_pfn = start_pfn + nr_pages - 1;
742 	return zone_spans_pfn(zone, last_pfn);
743 }
744 
745 static struct page *alloc_gigantic_page(int nid, unsigned order)
746 {
747 	unsigned long nr_pages = 1 << order;
748 	unsigned long ret, pfn, flags;
749 	struct zone *z;
750 
751 	z = NODE_DATA(nid)->node_zones;
752 	for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
753 		spin_lock_irqsave(&z->lock, flags);
754 
755 		pfn = ALIGN(z->zone_start_pfn, nr_pages);
756 		while (zone_spans_last_pfn(z, pfn, nr_pages)) {
757 			if (pfn_range_valid_gigantic(pfn, nr_pages)) {
758 				/*
759 				 * We release the zone lock here because
760 				 * alloc_contig_range() will also lock the zone
761 				 * at some point. If there's an allocation
762 				 * spinning on this lock, it may win the race
763 				 * and cause alloc_contig_range() to fail...
764 				 */
765 				spin_unlock_irqrestore(&z->lock, flags);
766 				ret = __alloc_gigantic_page(pfn, nr_pages);
767 				if (!ret)
768 					return pfn_to_page(pfn);
769 				spin_lock_irqsave(&z->lock, flags);
770 			}
771 			pfn += nr_pages;
772 		}
773 
774 		spin_unlock_irqrestore(&z->lock, flags);
775 	}
776 
777 	return NULL;
778 }
779 
780 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
781 static void prep_compound_gigantic_page(struct page *page, unsigned long order);
782 
783 static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
784 {
785 	struct page *page;
786 
787 	page = alloc_gigantic_page(nid, huge_page_order(h));
788 	if (page) {
789 		prep_compound_gigantic_page(page, huge_page_order(h));
790 		prep_new_huge_page(h, page, nid);
791 	}
792 
793 	return page;
794 }
795 
796 static int alloc_fresh_gigantic_page(struct hstate *h,
797 				nodemask_t *nodes_allowed)
798 {
799 	struct page *page = NULL;
800 	int nr_nodes, node;
801 
802 	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
803 		page = alloc_fresh_gigantic_page_node(h, node);
804 		if (page)
805 			return 1;
806 	}
807 
808 	return 0;
809 }
810 
811 static inline bool gigantic_page_supported(void) { return true; }
812 #else
813 static inline bool gigantic_page_supported(void) { return false; }
814 static inline void free_gigantic_page(struct page *page, unsigned order) { }
815 static inline void destroy_compound_gigantic_page(struct page *page,
816 						unsigned long order) { }
817 static inline int alloc_fresh_gigantic_page(struct hstate *h,
818 					nodemask_t *nodes_allowed) { return 0; }
819 #endif
820 
821 static void update_and_free_page(struct hstate *h, struct page *page)
822 {
823 	int i;
824 
825 	if (hstate_is_gigantic(h) && !gigantic_page_supported())
826 		return;
827 
828 	h->nr_huge_pages--;
829 	h->nr_huge_pages_node[page_to_nid(page)]--;
830 	for (i = 0; i < pages_per_huge_page(h); i++) {
831 		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
832 				1 << PG_referenced | 1 << PG_dirty |
833 				1 << PG_active | 1 << PG_private |
834 				1 << PG_writeback);
835 	}
836 	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
837 	set_compound_page_dtor(page, NULL);
838 	set_page_refcounted(page);
839 	if (hstate_is_gigantic(h)) {
840 		destroy_compound_gigantic_page(page, huge_page_order(h));
841 		free_gigantic_page(page, huge_page_order(h));
842 	} else {
843 		arch_release_hugepage(page);
844 		__free_pages(page, huge_page_order(h));
845 	}
846 }
847 
848 struct hstate *size_to_hstate(unsigned long size)
849 {
850 	struct hstate *h;
851 
852 	for_each_hstate(h) {
853 		if (huge_page_size(h) == size)
854 			return h;
855 	}
856 	return NULL;
857 }
858 
859 static void free_huge_page(struct page *page)
860 {
861 	/*
862 	 * Can't pass hstate in here because it is called from the
863 	 * compound page destructor.
864 	 */
865 	struct hstate *h = page_hstate(page);
866 	int nid = page_to_nid(page);
867 	struct hugepage_subpool *spool =
868 		(struct hugepage_subpool *)page_private(page);
869 	bool restore_reserve;
870 
871 	set_page_private(page, 0);
872 	page->mapping = NULL;
873 	BUG_ON(page_count(page));
874 	BUG_ON(page_mapcount(page));
875 	restore_reserve = PagePrivate(page);
876 	ClearPagePrivate(page);
877 
878 	spin_lock(&hugetlb_lock);
879 	hugetlb_cgroup_uncharge_page(hstate_index(h),
880 				     pages_per_huge_page(h), page);
881 	if (restore_reserve)
882 		h->resv_huge_pages++;
883 
884 	if (h->surplus_huge_pages_node[nid]) {
885 		/* remove the page from active list */
886 		list_del(&page->lru);
887 		update_and_free_page(h, page);
888 		h->surplus_huge_pages--;
889 		h->surplus_huge_pages_node[nid]--;
890 	} else {
891 		arch_clear_hugepage_flags(page);
892 		enqueue_huge_page(h, page);
893 	}
894 	spin_unlock(&hugetlb_lock);
895 	hugepage_subpool_put_pages(spool, 1);
896 }
897 
898 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
899 {
900 	INIT_LIST_HEAD(&page->lru);
901 	set_compound_page_dtor(page, free_huge_page);
902 	spin_lock(&hugetlb_lock);
903 	set_hugetlb_cgroup(page, NULL);
904 	h->nr_huge_pages++;
905 	h->nr_huge_pages_node[nid]++;
906 	spin_unlock(&hugetlb_lock);
907 	put_page(page); /* free it into the hugepage allocator */
908 }
909 
910 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
911 {
912 	int i;
913 	int nr_pages = 1 << order;
914 	struct page *p = page + 1;
915 
916 	/* we rely on prep_new_huge_page to set the destructor */
917 	set_compound_order(page, order);
918 	__SetPageHead(page);
919 	__ClearPageReserved(page);
920 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
921 		__SetPageTail(p);
922 		/*
923 		 * For gigantic hugepages allocated through bootmem at
924 		 * boot, it's safer to be consistent with the not-gigantic
925 		 * hugepages and clear the PG_reserved bit from all tail pages
926 		 * too.  Otherwse drivers using get_user_pages() to access tail
927 		 * pages may get the reference counting wrong if they see
928 		 * PG_reserved set on a tail page (despite the head page not
929 		 * having PG_reserved set).  Enforcing this consistency between
930 		 * head and tail pages allows drivers to optimize away a check
931 		 * on the head page when they need know if put_page() is needed
932 		 * after get_user_pages().
933 		 */
934 		__ClearPageReserved(p);
935 		set_page_count(p, 0);
936 		p->first_page = page;
937 	}
938 }
939 
940 /*
941  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
942  * transparent huge pages.  See the PageTransHuge() documentation for more
943  * details.
944  */
945 int PageHuge(struct page *page)
946 {
947 	if (!PageCompound(page))
948 		return 0;
949 
950 	page = compound_head(page);
951 	return get_compound_page_dtor(page) == free_huge_page;
952 }
953 EXPORT_SYMBOL_GPL(PageHuge);
954 
955 /*
956  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
957  * normal or transparent huge pages.
958  */
959 int PageHeadHuge(struct page *page_head)
960 {
961 	if (!PageHead(page_head))
962 		return 0;
963 
964 	return get_compound_page_dtor(page_head) == free_huge_page;
965 }
966 
967 pgoff_t __basepage_index(struct page *page)
968 {
969 	struct page *page_head = compound_head(page);
970 	pgoff_t index = page_index(page_head);
971 	unsigned long compound_idx;
972 
973 	if (!PageHuge(page_head))
974 		return page_index(page);
975 
976 	if (compound_order(page_head) >= MAX_ORDER)
977 		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
978 	else
979 		compound_idx = page - page_head;
980 
981 	return (index << compound_order(page_head)) + compound_idx;
982 }
983 
984 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
985 {
986 	struct page *page;
987 
988 	page = alloc_pages_exact_node(nid,
989 		htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
990 						__GFP_REPEAT|__GFP_NOWARN,
991 		huge_page_order(h));
992 	if (page) {
993 		if (arch_prepare_hugepage(page)) {
994 			__free_pages(page, huge_page_order(h));
995 			return NULL;
996 		}
997 		prep_new_huge_page(h, page, nid);
998 	}
999 
1000 	return page;
1001 }
1002 
1003 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1004 {
1005 	struct page *page;
1006 	int nr_nodes, node;
1007 	int ret = 0;
1008 
1009 	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1010 		page = alloc_fresh_huge_page_node(h, node);
1011 		if (page) {
1012 			ret = 1;
1013 			break;
1014 		}
1015 	}
1016 
1017 	if (ret)
1018 		count_vm_event(HTLB_BUDDY_PGALLOC);
1019 	else
1020 		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1021 
1022 	return ret;
1023 }
1024 
1025 /*
1026  * Free huge page from pool from next node to free.
1027  * Attempt to keep persistent huge pages more or less
1028  * balanced over allowed nodes.
1029  * Called with hugetlb_lock locked.
1030  */
1031 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1032 							 bool acct_surplus)
1033 {
1034 	int nr_nodes, node;
1035 	int ret = 0;
1036 
1037 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1038 		/*
1039 		 * If we're returning unused surplus pages, only examine
1040 		 * nodes with surplus pages.
1041 		 */
1042 		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1043 		    !list_empty(&h->hugepage_freelists[node])) {
1044 			struct page *page =
1045 				list_entry(h->hugepage_freelists[node].next,
1046 					  struct page, lru);
1047 			list_del(&page->lru);
1048 			h->free_huge_pages--;
1049 			h->free_huge_pages_node[node]--;
1050 			if (acct_surplus) {
1051 				h->surplus_huge_pages--;
1052 				h->surplus_huge_pages_node[node]--;
1053 			}
1054 			update_and_free_page(h, page);
1055 			ret = 1;
1056 			break;
1057 		}
1058 	}
1059 
1060 	return ret;
1061 }
1062 
1063 /*
1064  * Dissolve a given free hugepage into free buddy pages. This function does
1065  * nothing for in-use (including surplus) hugepages.
1066  */
1067 static void dissolve_free_huge_page(struct page *page)
1068 {
1069 	spin_lock(&hugetlb_lock);
1070 	if (PageHuge(page) && !page_count(page)) {
1071 		struct hstate *h = page_hstate(page);
1072 		int nid = page_to_nid(page);
1073 		list_del(&page->lru);
1074 		h->free_huge_pages--;
1075 		h->free_huge_pages_node[nid]--;
1076 		update_and_free_page(h, page);
1077 	}
1078 	spin_unlock(&hugetlb_lock);
1079 }
1080 
1081 /*
1082  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1083  * make specified memory blocks removable from the system.
1084  * Note that start_pfn should aligned with (minimum) hugepage size.
1085  */
1086 void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1087 {
1088 	unsigned int order = 8 * sizeof(void *);
1089 	unsigned long pfn;
1090 	struct hstate *h;
1091 
1092 	/* Set scan step to minimum hugepage size */
1093 	for_each_hstate(h)
1094 		if (order > huge_page_order(h))
1095 			order = huge_page_order(h);
1096 	VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << order));
1097 	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order)
1098 		dissolve_free_huge_page(pfn_to_page(pfn));
1099 }
1100 
1101 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
1102 {
1103 	struct page *page;
1104 	unsigned int r_nid;
1105 
1106 	if (hstate_is_gigantic(h))
1107 		return NULL;
1108 
1109 	/*
1110 	 * Assume we will successfully allocate the surplus page to
1111 	 * prevent racing processes from causing the surplus to exceed
1112 	 * overcommit
1113 	 *
1114 	 * This however introduces a different race, where a process B
1115 	 * tries to grow the static hugepage pool while alloc_pages() is
1116 	 * called by process A. B will only examine the per-node
1117 	 * counters in determining if surplus huge pages can be
1118 	 * converted to normal huge pages in adjust_pool_surplus(). A
1119 	 * won't be able to increment the per-node counter, until the
1120 	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
1121 	 * no more huge pages can be converted from surplus to normal
1122 	 * state (and doesn't try to convert again). Thus, we have a
1123 	 * case where a surplus huge page exists, the pool is grown, and
1124 	 * the surplus huge page still exists after, even though it
1125 	 * should just have been converted to a normal huge page. This
1126 	 * does not leak memory, though, as the hugepage will be freed
1127 	 * once it is out of use. It also does not allow the counters to
1128 	 * go out of whack in adjust_pool_surplus() as we don't modify
1129 	 * the node values until we've gotten the hugepage and only the
1130 	 * per-node value is checked there.
1131 	 */
1132 	spin_lock(&hugetlb_lock);
1133 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1134 		spin_unlock(&hugetlb_lock);
1135 		return NULL;
1136 	} else {
1137 		h->nr_huge_pages++;
1138 		h->surplus_huge_pages++;
1139 	}
1140 	spin_unlock(&hugetlb_lock);
1141 
1142 	if (nid == NUMA_NO_NODE)
1143 		page = alloc_pages(htlb_alloc_mask(h)|__GFP_COMP|
1144 				   __GFP_REPEAT|__GFP_NOWARN,
1145 				   huge_page_order(h));
1146 	else
1147 		page = alloc_pages_exact_node(nid,
1148 			htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1149 			__GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
1150 
1151 	if (page && arch_prepare_hugepage(page)) {
1152 		__free_pages(page, huge_page_order(h));
1153 		page = NULL;
1154 	}
1155 
1156 	spin_lock(&hugetlb_lock);
1157 	if (page) {
1158 		INIT_LIST_HEAD(&page->lru);
1159 		r_nid = page_to_nid(page);
1160 		set_compound_page_dtor(page, free_huge_page);
1161 		set_hugetlb_cgroup(page, NULL);
1162 		/*
1163 		 * We incremented the global counters already
1164 		 */
1165 		h->nr_huge_pages_node[r_nid]++;
1166 		h->surplus_huge_pages_node[r_nid]++;
1167 		__count_vm_event(HTLB_BUDDY_PGALLOC);
1168 	} else {
1169 		h->nr_huge_pages--;
1170 		h->surplus_huge_pages--;
1171 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1172 	}
1173 	spin_unlock(&hugetlb_lock);
1174 
1175 	return page;
1176 }
1177 
1178 /*
1179  * This allocation function is useful in the context where vma is irrelevant.
1180  * E.g. soft-offlining uses this function because it only cares physical
1181  * address of error page.
1182  */
1183 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1184 {
1185 	struct page *page = NULL;
1186 
1187 	spin_lock(&hugetlb_lock);
1188 	if (h->free_huge_pages - h->resv_huge_pages > 0)
1189 		page = dequeue_huge_page_node(h, nid);
1190 	spin_unlock(&hugetlb_lock);
1191 
1192 	if (!page)
1193 		page = alloc_buddy_huge_page(h, nid);
1194 
1195 	return page;
1196 }
1197 
1198 /*
1199  * Increase the hugetlb pool such that it can accommodate a reservation
1200  * of size 'delta'.
1201  */
1202 static int gather_surplus_pages(struct hstate *h, int delta)
1203 {
1204 	struct list_head surplus_list;
1205 	struct page *page, *tmp;
1206 	int ret, i;
1207 	int needed, allocated;
1208 	bool alloc_ok = true;
1209 
1210 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1211 	if (needed <= 0) {
1212 		h->resv_huge_pages += delta;
1213 		return 0;
1214 	}
1215 
1216 	allocated = 0;
1217 	INIT_LIST_HEAD(&surplus_list);
1218 
1219 	ret = -ENOMEM;
1220 retry:
1221 	spin_unlock(&hugetlb_lock);
1222 	for (i = 0; i < needed; i++) {
1223 		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1224 		if (!page) {
1225 			alloc_ok = false;
1226 			break;
1227 		}
1228 		list_add(&page->lru, &surplus_list);
1229 	}
1230 	allocated += i;
1231 
1232 	/*
1233 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
1234 	 * because either resv_huge_pages or free_huge_pages may have changed.
1235 	 */
1236 	spin_lock(&hugetlb_lock);
1237 	needed = (h->resv_huge_pages + delta) -
1238 			(h->free_huge_pages + allocated);
1239 	if (needed > 0) {
1240 		if (alloc_ok)
1241 			goto retry;
1242 		/*
1243 		 * We were not able to allocate enough pages to
1244 		 * satisfy the entire reservation so we free what
1245 		 * we've allocated so far.
1246 		 */
1247 		goto free;
1248 	}
1249 	/*
1250 	 * The surplus_list now contains _at_least_ the number of extra pages
1251 	 * needed to accommodate the reservation.  Add the appropriate number
1252 	 * of pages to the hugetlb pool and free the extras back to the buddy
1253 	 * allocator.  Commit the entire reservation here to prevent another
1254 	 * process from stealing the pages as they are added to the pool but
1255 	 * before they are reserved.
1256 	 */
1257 	needed += allocated;
1258 	h->resv_huge_pages += delta;
1259 	ret = 0;
1260 
1261 	/* Free the needed pages to the hugetlb pool */
1262 	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1263 		if ((--needed) < 0)
1264 			break;
1265 		/*
1266 		 * This page is now managed by the hugetlb allocator and has
1267 		 * no users -- drop the buddy allocator's reference.
1268 		 */
1269 		put_page_testzero(page);
1270 		VM_BUG_ON_PAGE(page_count(page), page);
1271 		enqueue_huge_page(h, page);
1272 	}
1273 free:
1274 	spin_unlock(&hugetlb_lock);
1275 
1276 	/* Free unnecessary surplus pages to the buddy allocator */
1277 	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1278 		put_page(page);
1279 	spin_lock(&hugetlb_lock);
1280 
1281 	return ret;
1282 }
1283 
1284 /*
1285  * When releasing a hugetlb pool reservation, any surplus pages that were
1286  * allocated to satisfy the reservation must be explicitly freed if they were
1287  * never used.
1288  * Called with hugetlb_lock held.
1289  */
1290 static void return_unused_surplus_pages(struct hstate *h,
1291 					unsigned long unused_resv_pages)
1292 {
1293 	unsigned long nr_pages;
1294 
1295 	/* Uncommit the reservation */
1296 	h->resv_huge_pages -= unused_resv_pages;
1297 
1298 	/* Cannot return gigantic pages currently */
1299 	if (hstate_is_gigantic(h))
1300 		return;
1301 
1302 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1303 
1304 	/*
1305 	 * We want to release as many surplus pages as possible, spread
1306 	 * evenly across all nodes with memory. Iterate across these nodes
1307 	 * until we can no longer free unreserved surplus pages. This occurs
1308 	 * when the nodes with surplus pages have no free pages.
1309 	 * free_pool_huge_page() will balance the the freed pages across the
1310 	 * on-line nodes with memory and will handle the hstate accounting.
1311 	 */
1312 	while (nr_pages--) {
1313 		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1314 			break;
1315 		cond_resched_lock(&hugetlb_lock);
1316 	}
1317 }
1318 
1319 /*
1320  * Determine if the huge page at addr within the vma has an associated
1321  * reservation.  Where it does not we will need to logically increase
1322  * reservation and actually increase subpool usage before an allocation
1323  * can occur.  Where any new reservation would be required the
1324  * reservation change is prepared, but not committed.  Once the page
1325  * has been allocated from the subpool and instantiated the change should
1326  * be committed via vma_commit_reservation.  No action is required on
1327  * failure.
1328  */
1329 static long vma_needs_reservation(struct hstate *h,
1330 			struct vm_area_struct *vma, unsigned long addr)
1331 {
1332 	struct resv_map *resv;
1333 	pgoff_t idx;
1334 	long chg;
1335 
1336 	resv = vma_resv_map(vma);
1337 	if (!resv)
1338 		return 1;
1339 
1340 	idx = vma_hugecache_offset(h, vma, addr);
1341 	chg = region_chg(resv, idx, idx + 1);
1342 
1343 	if (vma->vm_flags & VM_MAYSHARE)
1344 		return chg;
1345 	else
1346 		return chg < 0 ? chg : 0;
1347 }
1348 static void vma_commit_reservation(struct hstate *h,
1349 			struct vm_area_struct *vma, unsigned long addr)
1350 {
1351 	struct resv_map *resv;
1352 	pgoff_t idx;
1353 
1354 	resv = vma_resv_map(vma);
1355 	if (!resv)
1356 		return;
1357 
1358 	idx = vma_hugecache_offset(h, vma, addr);
1359 	region_add(resv, idx, idx + 1);
1360 }
1361 
1362 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1363 				    unsigned long addr, int avoid_reserve)
1364 {
1365 	struct hugepage_subpool *spool = subpool_vma(vma);
1366 	struct hstate *h = hstate_vma(vma);
1367 	struct page *page;
1368 	long chg;
1369 	int ret, idx;
1370 	struct hugetlb_cgroup *h_cg;
1371 
1372 	idx = hstate_index(h);
1373 	/*
1374 	 * Processes that did not create the mapping will have no
1375 	 * reserves and will not have accounted against subpool
1376 	 * limit. Check that the subpool limit can be made before
1377 	 * satisfying the allocation MAP_NORESERVE mappings may also
1378 	 * need pages and subpool limit allocated allocated if no reserve
1379 	 * mapping overlaps.
1380 	 */
1381 	chg = vma_needs_reservation(h, vma, addr);
1382 	if (chg < 0)
1383 		return ERR_PTR(-ENOMEM);
1384 	if (chg || avoid_reserve)
1385 		if (hugepage_subpool_get_pages(spool, 1))
1386 			return ERR_PTR(-ENOSPC);
1387 
1388 	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1389 	if (ret)
1390 		goto out_subpool_put;
1391 
1392 	spin_lock(&hugetlb_lock);
1393 	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg);
1394 	if (!page) {
1395 		spin_unlock(&hugetlb_lock);
1396 		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1397 		if (!page)
1398 			goto out_uncharge_cgroup;
1399 
1400 		spin_lock(&hugetlb_lock);
1401 		list_move(&page->lru, &h->hugepage_activelist);
1402 		/* Fall through */
1403 	}
1404 	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1405 	spin_unlock(&hugetlb_lock);
1406 
1407 	set_page_private(page, (unsigned long)spool);
1408 
1409 	vma_commit_reservation(h, vma, addr);
1410 	return page;
1411 
1412 out_uncharge_cgroup:
1413 	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
1414 out_subpool_put:
1415 	if (chg || avoid_reserve)
1416 		hugepage_subpool_put_pages(spool, 1);
1417 	return ERR_PTR(-ENOSPC);
1418 }
1419 
1420 /*
1421  * alloc_huge_page()'s wrapper which simply returns the page if allocation
1422  * succeeds, otherwise NULL. This function is called from new_vma_page(),
1423  * where no ERR_VALUE is expected to be returned.
1424  */
1425 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1426 				unsigned long addr, int avoid_reserve)
1427 {
1428 	struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1429 	if (IS_ERR(page))
1430 		page = NULL;
1431 	return page;
1432 }
1433 
1434 int __weak alloc_bootmem_huge_page(struct hstate *h)
1435 {
1436 	struct huge_bootmem_page *m;
1437 	int nr_nodes, node;
1438 
1439 	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1440 		void *addr;
1441 
1442 		addr = memblock_virt_alloc_try_nid_nopanic(
1443 				huge_page_size(h), huge_page_size(h),
1444 				0, BOOTMEM_ALLOC_ACCESSIBLE, node);
1445 		if (addr) {
1446 			/*
1447 			 * Use the beginning of the huge page to store the
1448 			 * huge_bootmem_page struct (until gather_bootmem
1449 			 * puts them into the mem_map).
1450 			 */
1451 			m = addr;
1452 			goto found;
1453 		}
1454 	}
1455 	return 0;
1456 
1457 found:
1458 	BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1459 	/* Put them into a private list first because mem_map is not up yet */
1460 	list_add(&m->list, &huge_boot_pages);
1461 	m->hstate = h;
1462 	return 1;
1463 }
1464 
1465 static void __init prep_compound_huge_page(struct page *page, int order)
1466 {
1467 	if (unlikely(order > (MAX_ORDER - 1)))
1468 		prep_compound_gigantic_page(page, order);
1469 	else
1470 		prep_compound_page(page, order);
1471 }
1472 
1473 /* Put bootmem huge pages into the standard lists after mem_map is up */
1474 static void __init gather_bootmem_prealloc(void)
1475 {
1476 	struct huge_bootmem_page *m;
1477 
1478 	list_for_each_entry(m, &huge_boot_pages, list) {
1479 		struct hstate *h = m->hstate;
1480 		struct page *page;
1481 
1482 #ifdef CONFIG_HIGHMEM
1483 		page = pfn_to_page(m->phys >> PAGE_SHIFT);
1484 		memblock_free_late(__pa(m),
1485 				   sizeof(struct huge_bootmem_page));
1486 #else
1487 		page = virt_to_page(m);
1488 #endif
1489 		WARN_ON(page_count(page) != 1);
1490 		prep_compound_huge_page(page, h->order);
1491 		WARN_ON(PageReserved(page));
1492 		prep_new_huge_page(h, page, page_to_nid(page));
1493 		/*
1494 		 * If we had gigantic hugepages allocated at boot time, we need
1495 		 * to restore the 'stolen' pages to totalram_pages in order to
1496 		 * fix confusing memory reports from free(1) and another
1497 		 * side-effects, like CommitLimit going negative.
1498 		 */
1499 		if (hstate_is_gigantic(h))
1500 			adjust_managed_page_count(page, 1 << h->order);
1501 	}
1502 }
1503 
1504 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1505 {
1506 	unsigned long i;
1507 
1508 	for (i = 0; i < h->max_huge_pages; ++i) {
1509 		if (hstate_is_gigantic(h)) {
1510 			if (!alloc_bootmem_huge_page(h))
1511 				break;
1512 		} else if (!alloc_fresh_huge_page(h,
1513 					 &node_states[N_MEMORY]))
1514 			break;
1515 	}
1516 	h->max_huge_pages = i;
1517 }
1518 
1519 static void __init hugetlb_init_hstates(void)
1520 {
1521 	struct hstate *h;
1522 
1523 	for_each_hstate(h) {
1524 		/* oversize hugepages were init'ed in early boot */
1525 		if (!hstate_is_gigantic(h))
1526 			hugetlb_hstate_alloc_pages(h);
1527 	}
1528 }
1529 
1530 static char * __init memfmt(char *buf, unsigned long n)
1531 {
1532 	if (n >= (1UL << 30))
1533 		sprintf(buf, "%lu GB", n >> 30);
1534 	else if (n >= (1UL << 20))
1535 		sprintf(buf, "%lu MB", n >> 20);
1536 	else
1537 		sprintf(buf, "%lu KB", n >> 10);
1538 	return buf;
1539 }
1540 
1541 static void __init report_hugepages(void)
1542 {
1543 	struct hstate *h;
1544 
1545 	for_each_hstate(h) {
1546 		char buf[32];
1547 		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
1548 			memfmt(buf, huge_page_size(h)),
1549 			h->free_huge_pages);
1550 	}
1551 }
1552 
1553 #ifdef CONFIG_HIGHMEM
1554 static void try_to_free_low(struct hstate *h, unsigned long count,
1555 						nodemask_t *nodes_allowed)
1556 {
1557 	int i;
1558 
1559 	if (hstate_is_gigantic(h))
1560 		return;
1561 
1562 	for_each_node_mask(i, *nodes_allowed) {
1563 		struct page *page, *next;
1564 		struct list_head *freel = &h->hugepage_freelists[i];
1565 		list_for_each_entry_safe(page, next, freel, lru) {
1566 			if (count >= h->nr_huge_pages)
1567 				return;
1568 			if (PageHighMem(page))
1569 				continue;
1570 			list_del(&page->lru);
1571 			update_and_free_page(h, page);
1572 			h->free_huge_pages--;
1573 			h->free_huge_pages_node[page_to_nid(page)]--;
1574 		}
1575 	}
1576 }
1577 #else
1578 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1579 						nodemask_t *nodes_allowed)
1580 {
1581 }
1582 #endif
1583 
1584 /*
1585  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
1586  * balanced by operating on them in a round-robin fashion.
1587  * Returns 1 if an adjustment was made.
1588  */
1589 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1590 				int delta)
1591 {
1592 	int nr_nodes, node;
1593 
1594 	VM_BUG_ON(delta != -1 && delta != 1);
1595 
1596 	if (delta < 0) {
1597 		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1598 			if (h->surplus_huge_pages_node[node])
1599 				goto found;
1600 		}
1601 	} else {
1602 		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1603 			if (h->surplus_huge_pages_node[node] <
1604 					h->nr_huge_pages_node[node])
1605 				goto found;
1606 		}
1607 	}
1608 	return 0;
1609 
1610 found:
1611 	h->surplus_huge_pages += delta;
1612 	h->surplus_huge_pages_node[node] += delta;
1613 	return 1;
1614 }
1615 
1616 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1617 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1618 						nodemask_t *nodes_allowed)
1619 {
1620 	unsigned long min_count, ret;
1621 
1622 	if (hstate_is_gigantic(h) && !gigantic_page_supported())
1623 		return h->max_huge_pages;
1624 
1625 	/*
1626 	 * Increase the pool size
1627 	 * First take pages out of surplus state.  Then make up the
1628 	 * remaining difference by allocating fresh huge pages.
1629 	 *
1630 	 * We might race with alloc_buddy_huge_page() here and be unable
1631 	 * to convert a surplus huge page to a normal huge page. That is
1632 	 * not critical, though, it just means the overall size of the
1633 	 * pool might be one hugepage larger than it needs to be, but
1634 	 * within all the constraints specified by the sysctls.
1635 	 */
1636 	spin_lock(&hugetlb_lock);
1637 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1638 		if (!adjust_pool_surplus(h, nodes_allowed, -1))
1639 			break;
1640 	}
1641 
1642 	while (count > persistent_huge_pages(h)) {
1643 		/*
1644 		 * If this allocation races such that we no longer need the
1645 		 * page, free_huge_page will handle it by freeing the page
1646 		 * and reducing the surplus.
1647 		 */
1648 		spin_unlock(&hugetlb_lock);
1649 		if (hstate_is_gigantic(h))
1650 			ret = alloc_fresh_gigantic_page(h, nodes_allowed);
1651 		else
1652 			ret = alloc_fresh_huge_page(h, nodes_allowed);
1653 		spin_lock(&hugetlb_lock);
1654 		if (!ret)
1655 			goto out;
1656 
1657 		/* Bail for signals. Probably ctrl-c from user */
1658 		if (signal_pending(current))
1659 			goto out;
1660 	}
1661 
1662 	/*
1663 	 * Decrease the pool size
1664 	 * First return free pages to the buddy allocator (being careful
1665 	 * to keep enough around to satisfy reservations).  Then place
1666 	 * pages into surplus state as needed so the pool will shrink
1667 	 * to the desired size as pages become free.
1668 	 *
1669 	 * By placing pages into the surplus state independent of the
1670 	 * overcommit value, we are allowing the surplus pool size to
1671 	 * exceed overcommit. There are few sane options here. Since
1672 	 * alloc_buddy_huge_page() is checking the global counter,
1673 	 * though, we'll note that we're not allowed to exceed surplus
1674 	 * and won't grow the pool anywhere else. Not until one of the
1675 	 * sysctls are changed, or the surplus pages go out of use.
1676 	 */
1677 	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1678 	min_count = max(count, min_count);
1679 	try_to_free_low(h, min_count, nodes_allowed);
1680 	while (min_count < persistent_huge_pages(h)) {
1681 		if (!free_pool_huge_page(h, nodes_allowed, 0))
1682 			break;
1683 		cond_resched_lock(&hugetlb_lock);
1684 	}
1685 	while (count < persistent_huge_pages(h)) {
1686 		if (!adjust_pool_surplus(h, nodes_allowed, 1))
1687 			break;
1688 	}
1689 out:
1690 	ret = persistent_huge_pages(h);
1691 	spin_unlock(&hugetlb_lock);
1692 	return ret;
1693 }
1694 
1695 #define HSTATE_ATTR_RO(_name) \
1696 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1697 
1698 #define HSTATE_ATTR(_name) \
1699 	static struct kobj_attribute _name##_attr = \
1700 		__ATTR(_name, 0644, _name##_show, _name##_store)
1701 
1702 static struct kobject *hugepages_kobj;
1703 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1704 
1705 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1706 
1707 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1708 {
1709 	int i;
1710 
1711 	for (i = 0; i < HUGE_MAX_HSTATE; i++)
1712 		if (hstate_kobjs[i] == kobj) {
1713 			if (nidp)
1714 				*nidp = NUMA_NO_NODE;
1715 			return &hstates[i];
1716 		}
1717 
1718 	return kobj_to_node_hstate(kobj, nidp);
1719 }
1720 
1721 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1722 					struct kobj_attribute *attr, char *buf)
1723 {
1724 	struct hstate *h;
1725 	unsigned long nr_huge_pages;
1726 	int nid;
1727 
1728 	h = kobj_to_hstate(kobj, &nid);
1729 	if (nid == NUMA_NO_NODE)
1730 		nr_huge_pages = h->nr_huge_pages;
1731 	else
1732 		nr_huge_pages = h->nr_huge_pages_node[nid];
1733 
1734 	return sprintf(buf, "%lu\n", nr_huge_pages);
1735 }
1736 
1737 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1738 			struct kobject *kobj, struct kobj_attribute *attr,
1739 			const char *buf, size_t len)
1740 {
1741 	int err;
1742 	int nid;
1743 	unsigned long count;
1744 	struct hstate *h;
1745 	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1746 
1747 	err = kstrtoul(buf, 10, &count);
1748 	if (err)
1749 		goto out;
1750 
1751 	h = kobj_to_hstate(kobj, &nid);
1752 	if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
1753 		err = -EINVAL;
1754 		goto out;
1755 	}
1756 
1757 	if (nid == NUMA_NO_NODE) {
1758 		/*
1759 		 * global hstate attribute
1760 		 */
1761 		if (!(obey_mempolicy &&
1762 				init_nodemask_of_mempolicy(nodes_allowed))) {
1763 			NODEMASK_FREE(nodes_allowed);
1764 			nodes_allowed = &node_states[N_MEMORY];
1765 		}
1766 	} else if (nodes_allowed) {
1767 		/*
1768 		 * per node hstate attribute: adjust count to global,
1769 		 * but restrict alloc/free to the specified node.
1770 		 */
1771 		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1772 		init_nodemask_of_node(nodes_allowed, nid);
1773 	} else
1774 		nodes_allowed = &node_states[N_MEMORY];
1775 
1776 	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1777 
1778 	if (nodes_allowed != &node_states[N_MEMORY])
1779 		NODEMASK_FREE(nodes_allowed);
1780 
1781 	return len;
1782 out:
1783 	NODEMASK_FREE(nodes_allowed);
1784 	return err;
1785 }
1786 
1787 static ssize_t nr_hugepages_show(struct kobject *kobj,
1788 				       struct kobj_attribute *attr, char *buf)
1789 {
1790 	return nr_hugepages_show_common(kobj, attr, buf);
1791 }
1792 
1793 static ssize_t nr_hugepages_store(struct kobject *kobj,
1794 	       struct kobj_attribute *attr, const char *buf, size_t len)
1795 {
1796 	return nr_hugepages_store_common(false, kobj, attr, buf, len);
1797 }
1798 HSTATE_ATTR(nr_hugepages);
1799 
1800 #ifdef CONFIG_NUMA
1801 
1802 /*
1803  * hstate attribute for optionally mempolicy-based constraint on persistent
1804  * huge page alloc/free.
1805  */
1806 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1807 				       struct kobj_attribute *attr, char *buf)
1808 {
1809 	return nr_hugepages_show_common(kobj, attr, buf);
1810 }
1811 
1812 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1813 	       struct kobj_attribute *attr, const char *buf, size_t len)
1814 {
1815 	return nr_hugepages_store_common(true, kobj, attr, buf, len);
1816 }
1817 HSTATE_ATTR(nr_hugepages_mempolicy);
1818 #endif
1819 
1820 
1821 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1822 					struct kobj_attribute *attr, char *buf)
1823 {
1824 	struct hstate *h = kobj_to_hstate(kobj, NULL);
1825 	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1826 }
1827 
1828 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1829 		struct kobj_attribute *attr, const char *buf, size_t count)
1830 {
1831 	int err;
1832 	unsigned long input;
1833 	struct hstate *h = kobj_to_hstate(kobj, NULL);
1834 
1835 	if (hstate_is_gigantic(h))
1836 		return -EINVAL;
1837 
1838 	err = kstrtoul(buf, 10, &input);
1839 	if (err)
1840 		return err;
1841 
1842 	spin_lock(&hugetlb_lock);
1843 	h->nr_overcommit_huge_pages = input;
1844 	spin_unlock(&hugetlb_lock);
1845 
1846 	return count;
1847 }
1848 HSTATE_ATTR(nr_overcommit_hugepages);
1849 
1850 static ssize_t free_hugepages_show(struct kobject *kobj,
1851 					struct kobj_attribute *attr, char *buf)
1852 {
1853 	struct hstate *h;
1854 	unsigned long free_huge_pages;
1855 	int nid;
1856 
1857 	h = kobj_to_hstate(kobj, &nid);
1858 	if (nid == NUMA_NO_NODE)
1859 		free_huge_pages = h->free_huge_pages;
1860 	else
1861 		free_huge_pages = h->free_huge_pages_node[nid];
1862 
1863 	return sprintf(buf, "%lu\n", free_huge_pages);
1864 }
1865 HSTATE_ATTR_RO(free_hugepages);
1866 
1867 static ssize_t resv_hugepages_show(struct kobject *kobj,
1868 					struct kobj_attribute *attr, char *buf)
1869 {
1870 	struct hstate *h = kobj_to_hstate(kobj, NULL);
1871 	return sprintf(buf, "%lu\n", h->resv_huge_pages);
1872 }
1873 HSTATE_ATTR_RO(resv_hugepages);
1874 
1875 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1876 					struct kobj_attribute *attr, char *buf)
1877 {
1878 	struct hstate *h;
1879 	unsigned long surplus_huge_pages;
1880 	int nid;
1881 
1882 	h = kobj_to_hstate(kobj, &nid);
1883 	if (nid == NUMA_NO_NODE)
1884 		surplus_huge_pages = h->surplus_huge_pages;
1885 	else
1886 		surplus_huge_pages = h->surplus_huge_pages_node[nid];
1887 
1888 	return sprintf(buf, "%lu\n", surplus_huge_pages);
1889 }
1890 HSTATE_ATTR_RO(surplus_hugepages);
1891 
1892 static struct attribute *hstate_attrs[] = {
1893 	&nr_hugepages_attr.attr,
1894 	&nr_overcommit_hugepages_attr.attr,
1895 	&free_hugepages_attr.attr,
1896 	&resv_hugepages_attr.attr,
1897 	&surplus_hugepages_attr.attr,
1898 #ifdef CONFIG_NUMA
1899 	&nr_hugepages_mempolicy_attr.attr,
1900 #endif
1901 	NULL,
1902 };
1903 
1904 static struct attribute_group hstate_attr_group = {
1905 	.attrs = hstate_attrs,
1906 };
1907 
1908 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1909 				    struct kobject **hstate_kobjs,
1910 				    struct attribute_group *hstate_attr_group)
1911 {
1912 	int retval;
1913 	int hi = hstate_index(h);
1914 
1915 	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1916 	if (!hstate_kobjs[hi])
1917 		return -ENOMEM;
1918 
1919 	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1920 	if (retval)
1921 		kobject_put(hstate_kobjs[hi]);
1922 
1923 	return retval;
1924 }
1925 
1926 static void __init hugetlb_sysfs_init(void)
1927 {
1928 	struct hstate *h;
1929 	int err;
1930 
1931 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1932 	if (!hugepages_kobj)
1933 		return;
1934 
1935 	for_each_hstate(h) {
1936 		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1937 					 hstate_kobjs, &hstate_attr_group);
1938 		if (err)
1939 			pr_err("Hugetlb: Unable to add hstate %s", h->name);
1940 	}
1941 }
1942 
1943 #ifdef CONFIG_NUMA
1944 
1945 /*
1946  * node_hstate/s - associate per node hstate attributes, via their kobjects,
1947  * with node devices in node_devices[] using a parallel array.  The array
1948  * index of a node device or _hstate == node id.
1949  * This is here to avoid any static dependency of the node device driver, in
1950  * the base kernel, on the hugetlb module.
1951  */
1952 struct node_hstate {
1953 	struct kobject		*hugepages_kobj;
1954 	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
1955 };
1956 struct node_hstate node_hstates[MAX_NUMNODES];
1957 
1958 /*
1959  * A subset of global hstate attributes for node devices
1960  */
1961 static struct attribute *per_node_hstate_attrs[] = {
1962 	&nr_hugepages_attr.attr,
1963 	&free_hugepages_attr.attr,
1964 	&surplus_hugepages_attr.attr,
1965 	NULL,
1966 };
1967 
1968 static struct attribute_group per_node_hstate_attr_group = {
1969 	.attrs = per_node_hstate_attrs,
1970 };
1971 
1972 /*
1973  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1974  * Returns node id via non-NULL nidp.
1975  */
1976 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1977 {
1978 	int nid;
1979 
1980 	for (nid = 0; nid < nr_node_ids; nid++) {
1981 		struct node_hstate *nhs = &node_hstates[nid];
1982 		int i;
1983 		for (i = 0; i < HUGE_MAX_HSTATE; i++)
1984 			if (nhs->hstate_kobjs[i] == kobj) {
1985 				if (nidp)
1986 					*nidp = nid;
1987 				return &hstates[i];
1988 			}
1989 	}
1990 
1991 	BUG();
1992 	return NULL;
1993 }
1994 
1995 /*
1996  * Unregister hstate attributes from a single node device.
1997  * No-op if no hstate attributes attached.
1998  */
1999 static void hugetlb_unregister_node(struct node *node)
2000 {
2001 	struct hstate *h;
2002 	struct node_hstate *nhs = &node_hstates[node->dev.id];
2003 
2004 	if (!nhs->hugepages_kobj)
2005 		return;		/* no hstate attributes */
2006 
2007 	for_each_hstate(h) {
2008 		int idx = hstate_index(h);
2009 		if (nhs->hstate_kobjs[idx]) {
2010 			kobject_put(nhs->hstate_kobjs[idx]);
2011 			nhs->hstate_kobjs[idx] = NULL;
2012 		}
2013 	}
2014 
2015 	kobject_put(nhs->hugepages_kobj);
2016 	nhs->hugepages_kobj = NULL;
2017 }
2018 
2019 /*
2020  * hugetlb module exit:  unregister hstate attributes from node devices
2021  * that have them.
2022  */
2023 static void hugetlb_unregister_all_nodes(void)
2024 {
2025 	int nid;
2026 
2027 	/*
2028 	 * disable node device registrations.
2029 	 */
2030 	register_hugetlbfs_with_node(NULL, NULL);
2031 
2032 	/*
2033 	 * remove hstate attributes from any nodes that have them.
2034 	 */
2035 	for (nid = 0; nid < nr_node_ids; nid++)
2036 		hugetlb_unregister_node(node_devices[nid]);
2037 }
2038 
2039 /*
2040  * Register hstate attributes for a single node device.
2041  * No-op if attributes already registered.
2042  */
2043 static void hugetlb_register_node(struct node *node)
2044 {
2045 	struct hstate *h;
2046 	struct node_hstate *nhs = &node_hstates[node->dev.id];
2047 	int err;
2048 
2049 	if (nhs->hugepages_kobj)
2050 		return;		/* already allocated */
2051 
2052 	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2053 							&node->dev.kobj);
2054 	if (!nhs->hugepages_kobj)
2055 		return;
2056 
2057 	for_each_hstate(h) {
2058 		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2059 						nhs->hstate_kobjs,
2060 						&per_node_hstate_attr_group);
2061 		if (err) {
2062 			pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2063 				h->name, node->dev.id);
2064 			hugetlb_unregister_node(node);
2065 			break;
2066 		}
2067 	}
2068 }
2069 
2070 /*
2071  * hugetlb init time:  register hstate attributes for all registered node
2072  * devices of nodes that have memory.  All on-line nodes should have
2073  * registered their associated device by this time.
2074  */
2075 static void hugetlb_register_all_nodes(void)
2076 {
2077 	int nid;
2078 
2079 	for_each_node_state(nid, N_MEMORY) {
2080 		struct node *node = node_devices[nid];
2081 		if (node->dev.id == nid)
2082 			hugetlb_register_node(node);
2083 	}
2084 
2085 	/*
2086 	 * Let the node device driver know we're here so it can
2087 	 * [un]register hstate attributes on node hotplug.
2088 	 */
2089 	register_hugetlbfs_with_node(hugetlb_register_node,
2090 				     hugetlb_unregister_node);
2091 }
2092 #else	/* !CONFIG_NUMA */
2093 
2094 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2095 {
2096 	BUG();
2097 	if (nidp)
2098 		*nidp = -1;
2099 	return NULL;
2100 }
2101 
2102 static void hugetlb_unregister_all_nodes(void) { }
2103 
2104 static void hugetlb_register_all_nodes(void) { }
2105 
2106 #endif
2107 
2108 static void __exit hugetlb_exit(void)
2109 {
2110 	struct hstate *h;
2111 
2112 	hugetlb_unregister_all_nodes();
2113 
2114 	for_each_hstate(h) {
2115 		kobject_put(hstate_kobjs[hstate_index(h)]);
2116 	}
2117 
2118 	kobject_put(hugepages_kobj);
2119 	kfree(htlb_fault_mutex_table);
2120 }
2121 module_exit(hugetlb_exit);
2122 
2123 static int __init hugetlb_init(void)
2124 {
2125 	int i;
2126 
2127 	if (!hugepages_supported())
2128 		return 0;
2129 
2130 	if (!size_to_hstate(default_hstate_size)) {
2131 		default_hstate_size = HPAGE_SIZE;
2132 		if (!size_to_hstate(default_hstate_size))
2133 			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2134 	}
2135 	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2136 	if (default_hstate_max_huge_pages)
2137 		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2138 
2139 	hugetlb_init_hstates();
2140 	gather_bootmem_prealloc();
2141 	report_hugepages();
2142 
2143 	hugetlb_sysfs_init();
2144 	hugetlb_register_all_nodes();
2145 	hugetlb_cgroup_file_init();
2146 
2147 #ifdef CONFIG_SMP
2148 	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2149 #else
2150 	num_fault_mutexes = 1;
2151 #endif
2152 	htlb_fault_mutex_table =
2153 		kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2154 	BUG_ON(!htlb_fault_mutex_table);
2155 
2156 	for (i = 0; i < num_fault_mutexes; i++)
2157 		mutex_init(&htlb_fault_mutex_table[i]);
2158 	return 0;
2159 }
2160 module_init(hugetlb_init);
2161 
2162 /* Should be called on processing a hugepagesz=... option */
2163 void __init hugetlb_add_hstate(unsigned order)
2164 {
2165 	struct hstate *h;
2166 	unsigned long i;
2167 
2168 	if (size_to_hstate(PAGE_SIZE << order)) {
2169 		pr_warning("hugepagesz= specified twice, ignoring\n");
2170 		return;
2171 	}
2172 	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2173 	BUG_ON(order == 0);
2174 	h = &hstates[hugetlb_max_hstate++];
2175 	h->order = order;
2176 	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2177 	h->nr_huge_pages = 0;
2178 	h->free_huge_pages = 0;
2179 	for (i = 0; i < MAX_NUMNODES; ++i)
2180 		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2181 	INIT_LIST_HEAD(&h->hugepage_activelist);
2182 	h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
2183 	h->next_nid_to_free = first_node(node_states[N_MEMORY]);
2184 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2185 					huge_page_size(h)/1024);
2186 
2187 	parsed_hstate = h;
2188 }
2189 
2190 static int __init hugetlb_nrpages_setup(char *s)
2191 {
2192 	unsigned long *mhp;
2193 	static unsigned long *last_mhp;
2194 
2195 	/*
2196 	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2197 	 * so this hugepages= parameter goes to the "default hstate".
2198 	 */
2199 	if (!hugetlb_max_hstate)
2200 		mhp = &default_hstate_max_huge_pages;
2201 	else
2202 		mhp = &parsed_hstate->max_huge_pages;
2203 
2204 	if (mhp == last_mhp) {
2205 		pr_warning("hugepages= specified twice without "
2206 			   "interleaving hugepagesz=, ignoring\n");
2207 		return 1;
2208 	}
2209 
2210 	if (sscanf(s, "%lu", mhp) <= 0)
2211 		*mhp = 0;
2212 
2213 	/*
2214 	 * Global state is always initialized later in hugetlb_init.
2215 	 * But we need to allocate >= MAX_ORDER hstates here early to still
2216 	 * use the bootmem allocator.
2217 	 */
2218 	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2219 		hugetlb_hstate_alloc_pages(parsed_hstate);
2220 
2221 	last_mhp = mhp;
2222 
2223 	return 1;
2224 }
2225 __setup("hugepages=", hugetlb_nrpages_setup);
2226 
2227 static int __init hugetlb_default_setup(char *s)
2228 {
2229 	default_hstate_size = memparse(s, &s);
2230 	return 1;
2231 }
2232 __setup("default_hugepagesz=", hugetlb_default_setup);
2233 
2234 static unsigned int cpuset_mems_nr(unsigned int *array)
2235 {
2236 	int node;
2237 	unsigned int nr = 0;
2238 
2239 	for_each_node_mask(node, cpuset_current_mems_allowed)
2240 		nr += array[node];
2241 
2242 	return nr;
2243 }
2244 
2245 #ifdef CONFIG_SYSCTL
2246 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2247 			 struct ctl_table *table, int write,
2248 			 void __user *buffer, size_t *length, loff_t *ppos)
2249 {
2250 	struct hstate *h = &default_hstate;
2251 	unsigned long tmp;
2252 	int ret;
2253 
2254 	if (!hugepages_supported())
2255 		return -ENOTSUPP;
2256 
2257 	tmp = h->max_huge_pages;
2258 
2259 	if (write && hstate_is_gigantic(h) && !gigantic_page_supported())
2260 		return -EINVAL;
2261 
2262 	table->data = &tmp;
2263 	table->maxlen = sizeof(unsigned long);
2264 	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2265 	if (ret)
2266 		goto out;
2267 
2268 	if (write) {
2269 		NODEMASK_ALLOC(nodemask_t, nodes_allowed,
2270 						GFP_KERNEL | __GFP_NORETRY);
2271 		if (!(obey_mempolicy &&
2272 			       init_nodemask_of_mempolicy(nodes_allowed))) {
2273 			NODEMASK_FREE(nodes_allowed);
2274 			nodes_allowed = &node_states[N_MEMORY];
2275 		}
2276 		h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2277 
2278 		if (nodes_allowed != &node_states[N_MEMORY])
2279 			NODEMASK_FREE(nodes_allowed);
2280 	}
2281 out:
2282 	return ret;
2283 }
2284 
2285 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2286 			  void __user *buffer, size_t *length, loff_t *ppos)
2287 {
2288 
2289 	return hugetlb_sysctl_handler_common(false, table, write,
2290 							buffer, length, ppos);
2291 }
2292 
2293 #ifdef CONFIG_NUMA
2294 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2295 			  void __user *buffer, size_t *length, loff_t *ppos)
2296 {
2297 	return hugetlb_sysctl_handler_common(true, table, write,
2298 							buffer, length, ppos);
2299 }
2300 #endif /* CONFIG_NUMA */
2301 
2302 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2303 			void __user *buffer,
2304 			size_t *length, loff_t *ppos)
2305 {
2306 	struct hstate *h = &default_hstate;
2307 	unsigned long tmp;
2308 	int ret;
2309 
2310 	if (!hugepages_supported())
2311 		return -ENOTSUPP;
2312 
2313 	tmp = h->nr_overcommit_huge_pages;
2314 
2315 	if (write && hstate_is_gigantic(h))
2316 		return -EINVAL;
2317 
2318 	table->data = &tmp;
2319 	table->maxlen = sizeof(unsigned long);
2320 	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2321 	if (ret)
2322 		goto out;
2323 
2324 	if (write) {
2325 		spin_lock(&hugetlb_lock);
2326 		h->nr_overcommit_huge_pages = tmp;
2327 		spin_unlock(&hugetlb_lock);
2328 	}
2329 out:
2330 	return ret;
2331 }
2332 
2333 #endif /* CONFIG_SYSCTL */
2334 
2335 void hugetlb_report_meminfo(struct seq_file *m)
2336 {
2337 	struct hstate *h = &default_hstate;
2338 	if (!hugepages_supported())
2339 		return;
2340 	seq_printf(m,
2341 			"HugePages_Total:   %5lu\n"
2342 			"HugePages_Free:    %5lu\n"
2343 			"HugePages_Rsvd:    %5lu\n"
2344 			"HugePages_Surp:    %5lu\n"
2345 			"Hugepagesize:   %8lu kB\n",
2346 			h->nr_huge_pages,
2347 			h->free_huge_pages,
2348 			h->resv_huge_pages,
2349 			h->surplus_huge_pages,
2350 			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2351 }
2352 
2353 int hugetlb_report_node_meminfo(int nid, char *buf)
2354 {
2355 	struct hstate *h = &default_hstate;
2356 	if (!hugepages_supported())
2357 		return 0;
2358 	return sprintf(buf,
2359 		"Node %d HugePages_Total: %5u\n"
2360 		"Node %d HugePages_Free:  %5u\n"
2361 		"Node %d HugePages_Surp:  %5u\n",
2362 		nid, h->nr_huge_pages_node[nid],
2363 		nid, h->free_huge_pages_node[nid],
2364 		nid, h->surplus_huge_pages_node[nid]);
2365 }
2366 
2367 void hugetlb_show_meminfo(void)
2368 {
2369 	struct hstate *h;
2370 	int nid;
2371 
2372 	if (!hugepages_supported())
2373 		return;
2374 
2375 	for_each_node_state(nid, N_MEMORY)
2376 		for_each_hstate(h)
2377 			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2378 				nid,
2379 				h->nr_huge_pages_node[nid],
2380 				h->free_huge_pages_node[nid],
2381 				h->surplus_huge_pages_node[nid],
2382 				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2383 }
2384 
2385 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2386 unsigned long hugetlb_total_pages(void)
2387 {
2388 	struct hstate *h;
2389 	unsigned long nr_total_pages = 0;
2390 
2391 	for_each_hstate(h)
2392 		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2393 	return nr_total_pages;
2394 }
2395 
2396 static int hugetlb_acct_memory(struct hstate *h, long delta)
2397 {
2398 	int ret = -ENOMEM;
2399 
2400 	spin_lock(&hugetlb_lock);
2401 	/*
2402 	 * When cpuset is configured, it breaks the strict hugetlb page
2403 	 * reservation as the accounting is done on a global variable. Such
2404 	 * reservation is completely rubbish in the presence of cpuset because
2405 	 * the reservation is not checked against page availability for the
2406 	 * current cpuset. Application can still potentially OOM'ed by kernel
2407 	 * with lack of free htlb page in cpuset that the task is in.
2408 	 * Attempt to enforce strict accounting with cpuset is almost
2409 	 * impossible (or too ugly) because cpuset is too fluid that
2410 	 * task or memory node can be dynamically moved between cpusets.
2411 	 *
2412 	 * The change of semantics for shared hugetlb mapping with cpuset is
2413 	 * undesirable. However, in order to preserve some of the semantics,
2414 	 * we fall back to check against current free page availability as
2415 	 * a best attempt and hopefully to minimize the impact of changing
2416 	 * semantics that cpuset has.
2417 	 */
2418 	if (delta > 0) {
2419 		if (gather_surplus_pages(h, delta) < 0)
2420 			goto out;
2421 
2422 		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2423 			return_unused_surplus_pages(h, delta);
2424 			goto out;
2425 		}
2426 	}
2427 
2428 	ret = 0;
2429 	if (delta < 0)
2430 		return_unused_surplus_pages(h, (unsigned long) -delta);
2431 
2432 out:
2433 	spin_unlock(&hugetlb_lock);
2434 	return ret;
2435 }
2436 
2437 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2438 {
2439 	struct resv_map *resv = vma_resv_map(vma);
2440 
2441 	/*
2442 	 * This new VMA should share its siblings reservation map if present.
2443 	 * The VMA will only ever have a valid reservation map pointer where
2444 	 * it is being copied for another still existing VMA.  As that VMA
2445 	 * has a reference to the reservation map it cannot disappear until
2446 	 * after this open call completes.  It is therefore safe to take a
2447 	 * new reference here without additional locking.
2448 	 */
2449 	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2450 		kref_get(&resv->refs);
2451 }
2452 
2453 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2454 {
2455 	struct hstate *h = hstate_vma(vma);
2456 	struct resv_map *resv = vma_resv_map(vma);
2457 	struct hugepage_subpool *spool = subpool_vma(vma);
2458 	unsigned long reserve, start, end;
2459 
2460 	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2461 		return;
2462 
2463 	start = vma_hugecache_offset(h, vma, vma->vm_start);
2464 	end = vma_hugecache_offset(h, vma, vma->vm_end);
2465 
2466 	reserve = (end - start) - region_count(resv, start, end);
2467 
2468 	kref_put(&resv->refs, resv_map_release);
2469 
2470 	if (reserve) {
2471 		hugetlb_acct_memory(h, -reserve);
2472 		hugepage_subpool_put_pages(spool, reserve);
2473 	}
2474 }
2475 
2476 /*
2477  * We cannot handle pagefaults against hugetlb pages at all.  They cause
2478  * handle_mm_fault() to try to instantiate regular-sized pages in the
2479  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
2480  * this far.
2481  */
2482 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2483 {
2484 	BUG();
2485 	return 0;
2486 }
2487 
2488 const struct vm_operations_struct hugetlb_vm_ops = {
2489 	.fault = hugetlb_vm_op_fault,
2490 	.open = hugetlb_vm_op_open,
2491 	.close = hugetlb_vm_op_close,
2492 };
2493 
2494 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2495 				int writable)
2496 {
2497 	pte_t entry;
2498 
2499 	if (writable) {
2500 		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2501 					 vma->vm_page_prot)));
2502 	} else {
2503 		entry = huge_pte_wrprotect(mk_huge_pte(page,
2504 					   vma->vm_page_prot));
2505 	}
2506 	entry = pte_mkyoung(entry);
2507 	entry = pte_mkhuge(entry);
2508 	entry = arch_make_huge_pte(entry, vma, page, writable);
2509 
2510 	return entry;
2511 }
2512 
2513 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2514 				   unsigned long address, pte_t *ptep)
2515 {
2516 	pte_t entry;
2517 
2518 	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
2519 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2520 		update_mmu_cache(vma, address, ptep);
2521 }
2522 
2523 
2524 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2525 			    struct vm_area_struct *vma)
2526 {
2527 	pte_t *src_pte, *dst_pte, entry;
2528 	struct page *ptepage;
2529 	unsigned long addr;
2530 	int cow;
2531 	struct hstate *h = hstate_vma(vma);
2532 	unsigned long sz = huge_page_size(h);
2533 	unsigned long mmun_start;	/* For mmu_notifiers */
2534 	unsigned long mmun_end;		/* For mmu_notifiers */
2535 	int ret = 0;
2536 
2537 	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2538 
2539 	mmun_start = vma->vm_start;
2540 	mmun_end = vma->vm_end;
2541 	if (cow)
2542 		mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
2543 
2544 	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2545 		spinlock_t *src_ptl, *dst_ptl;
2546 		src_pte = huge_pte_offset(src, addr);
2547 		if (!src_pte)
2548 			continue;
2549 		dst_pte = huge_pte_alloc(dst, addr, sz);
2550 		if (!dst_pte) {
2551 			ret = -ENOMEM;
2552 			break;
2553 		}
2554 
2555 		/* If the pagetables are shared don't copy or take references */
2556 		if (dst_pte == src_pte)
2557 			continue;
2558 
2559 		dst_ptl = huge_pte_lock(h, dst, dst_pte);
2560 		src_ptl = huge_pte_lockptr(h, src, src_pte);
2561 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
2562 		if (!huge_pte_none(huge_ptep_get(src_pte))) {
2563 			if (cow)
2564 				huge_ptep_set_wrprotect(src, addr, src_pte);
2565 			entry = huge_ptep_get(src_pte);
2566 			ptepage = pte_page(entry);
2567 			get_page(ptepage);
2568 			page_dup_rmap(ptepage);
2569 			set_huge_pte_at(dst, addr, dst_pte, entry);
2570 		}
2571 		spin_unlock(src_ptl);
2572 		spin_unlock(dst_ptl);
2573 	}
2574 
2575 	if (cow)
2576 		mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
2577 
2578 	return ret;
2579 }
2580 
2581 static int is_hugetlb_entry_migration(pte_t pte)
2582 {
2583 	swp_entry_t swp;
2584 
2585 	if (huge_pte_none(pte) || pte_present(pte))
2586 		return 0;
2587 	swp = pte_to_swp_entry(pte);
2588 	if (non_swap_entry(swp) && is_migration_entry(swp))
2589 		return 1;
2590 	else
2591 		return 0;
2592 }
2593 
2594 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2595 {
2596 	swp_entry_t swp;
2597 
2598 	if (huge_pte_none(pte) || pte_present(pte))
2599 		return 0;
2600 	swp = pte_to_swp_entry(pte);
2601 	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2602 		return 1;
2603 	else
2604 		return 0;
2605 }
2606 
2607 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2608 			    unsigned long start, unsigned long end,
2609 			    struct page *ref_page)
2610 {
2611 	int force_flush = 0;
2612 	struct mm_struct *mm = vma->vm_mm;
2613 	unsigned long address;
2614 	pte_t *ptep;
2615 	pte_t pte;
2616 	spinlock_t *ptl;
2617 	struct page *page;
2618 	struct hstate *h = hstate_vma(vma);
2619 	unsigned long sz = huge_page_size(h);
2620 	const unsigned long mmun_start = start;	/* For mmu_notifiers */
2621 	const unsigned long mmun_end   = end;	/* For mmu_notifiers */
2622 
2623 	WARN_ON(!is_vm_hugetlb_page(vma));
2624 	BUG_ON(start & ~huge_page_mask(h));
2625 	BUG_ON(end & ~huge_page_mask(h));
2626 
2627 	tlb_start_vma(tlb, vma);
2628 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2629 again:
2630 	for (address = start; address < end; address += sz) {
2631 		ptep = huge_pte_offset(mm, address);
2632 		if (!ptep)
2633 			continue;
2634 
2635 		ptl = huge_pte_lock(h, mm, ptep);
2636 		if (huge_pmd_unshare(mm, &address, ptep))
2637 			goto unlock;
2638 
2639 		pte = huge_ptep_get(ptep);
2640 		if (huge_pte_none(pte))
2641 			goto unlock;
2642 
2643 		/*
2644 		 * HWPoisoned hugepage is already unmapped and dropped reference
2645 		 */
2646 		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
2647 			huge_pte_clear(mm, address, ptep);
2648 			goto unlock;
2649 		}
2650 
2651 		page = pte_page(pte);
2652 		/*
2653 		 * If a reference page is supplied, it is because a specific
2654 		 * page is being unmapped, not a range. Ensure the page we
2655 		 * are about to unmap is the actual page of interest.
2656 		 */
2657 		if (ref_page) {
2658 			if (page != ref_page)
2659 				goto unlock;
2660 
2661 			/*
2662 			 * Mark the VMA as having unmapped its page so that
2663 			 * future faults in this VMA will fail rather than
2664 			 * looking like data was lost
2665 			 */
2666 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2667 		}
2668 
2669 		pte = huge_ptep_get_and_clear(mm, address, ptep);
2670 		tlb_remove_tlb_entry(tlb, ptep, address);
2671 		if (huge_pte_dirty(pte))
2672 			set_page_dirty(page);
2673 
2674 		page_remove_rmap(page);
2675 		force_flush = !__tlb_remove_page(tlb, page);
2676 		if (force_flush) {
2677 			spin_unlock(ptl);
2678 			break;
2679 		}
2680 		/* Bail out after unmapping reference page if supplied */
2681 		if (ref_page) {
2682 			spin_unlock(ptl);
2683 			break;
2684 		}
2685 unlock:
2686 		spin_unlock(ptl);
2687 	}
2688 	/*
2689 	 * mmu_gather ran out of room to batch pages, we break out of
2690 	 * the PTE lock to avoid doing the potential expensive TLB invalidate
2691 	 * and page-free while holding it.
2692 	 */
2693 	if (force_flush) {
2694 		force_flush = 0;
2695 		tlb_flush_mmu(tlb);
2696 		if (address < end && !ref_page)
2697 			goto again;
2698 	}
2699 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2700 	tlb_end_vma(tlb, vma);
2701 }
2702 
2703 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
2704 			  struct vm_area_struct *vma, unsigned long start,
2705 			  unsigned long end, struct page *ref_page)
2706 {
2707 	__unmap_hugepage_range(tlb, vma, start, end, ref_page);
2708 
2709 	/*
2710 	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
2711 	 * test will fail on a vma being torn down, and not grab a page table
2712 	 * on its way out.  We're lucky that the flag has such an appropriate
2713 	 * name, and can in fact be safely cleared here. We could clear it
2714 	 * before the __unmap_hugepage_range above, but all that's necessary
2715 	 * is to clear it before releasing the i_mmap_mutex. This works
2716 	 * because in the context this is called, the VMA is about to be
2717 	 * destroyed and the i_mmap_mutex is held.
2718 	 */
2719 	vma->vm_flags &= ~VM_MAYSHARE;
2720 }
2721 
2722 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2723 			  unsigned long end, struct page *ref_page)
2724 {
2725 	struct mm_struct *mm;
2726 	struct mmu_gather tlb;
2727 
2728 	mm = vma->vm_mm;
2729 
2730 	tlb_gather_mmu(&tlb, mm, start, end);
2731 	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2732 	tlb_finish_mmu(&tlb, start, end);
2733 }
2734 
2735 /*
2736  * This is called when the original mapper is failing to COW a MAP_PRIVATE
2737  * mappping it owns the reserve page for. The intention is to unmap the page
2738  * from other VMAs and let the children be SIGKILLed if they are faulting the
2739  * same region.
2740  */
2741 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2742 				struct page *page, unsigned long address)
2743 {
2744 	struct hstate *h = hstate_vma(vma);
2745 	struct vm_area_struct *iter_vma;
2746 	struct address_space *mapping;
2747 	pgoff_t pgoff;
2748 
2749 	/*
2750 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2751 	 * from page cache lookup which is in HPAGE_SIZE units.
2752 	 */
2753 	address = address & huge_page_mask(h);
2754 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2755 			vma->vm_pgoff;
2756 	mapping = file_inode(vma->vm_file)->i_mapping;
2757 
2758 	/*
2759 	 * Take the mapping lock for the duration of the table walk. As
2760 	 * this mapping should be shared between all the VMAs,
2761 	 * __unmap_hugepage_range() is called as the lock is already held
2762 	 */
2763 	mutex_lock(&mapping->i_mmap_mutex);
2764 	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
2765 		/* Do not unmap the current VMA */
2766 		if (iter_vma == vma)
2767 			continue;
2768 
2769 		/*
2770 		 * Unmap the page from other VMAs without their own reserves.
2771 		 * They get marked to be SIGKILLed if they fault in these
2772 		 * areas. This is because a future no-page fault on this VMA
2773 		 * could insert a zeroed page instead of the data existing
2774 		 * from the time of fork. This would look like data corruption
2775 		 */
2776 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2777 			unmap_hugepage_range(iter_vma, address,
2778 					     address + huge_page_size(h), page);
2779 	}
2780 	mutex_unlock(&mapping->i_mmap_mutex);
2781 
2782 	return 1;
2783 }
2784 
2785 /*
2786  * Hugetlb_cow() should be called with page lock of the original hugepage held.
2787  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2788  * cannot race with other handlers or page migration.
2789  * Keep the pte_same checks anyway to make transition from the mutex easier.
2790  */
2791 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2792 			unsigned long address, pte_t *ptep, pte_t pte,
2793 			struct page *pagecache_page, spinlock_t *ptl)
2794 {
2795 	struct hstate *h = hstate_vma(vma);
2796 	struct page *old_page, *new_page;
2797 	int outside_reserve = 0;
2798 	unsigned long mmun_start;	/* For mmu_notifiers */
2799 	unsigned long mmun_end;		/* For mmu_notifiers */
2800 
2801 	old_page = pte_page(pte);
2802 
2803 retry_avoidcopy:
2804 	/* If no-one else is actually using this page, avoid the copy
2805 	 * and just make the page writable */
2806 	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
2807 		page_move_anon_rmap(old_page, vma, address);
2808 		set_huge_ptep_writable(vma, address, ptep);
2809 		return 0;
2810 	}
2811 
2812 	/*
2813 	 * If the process that created a MAP_PRIVATE mapping is about to
2814 	 * perform a COW due to a shared page count, attempt to satisfy
2815 	 * the allocation without using the existing reserves. The pagecache
2816 	 * page is used to determine if the reserve at this address was
2817 	 * consumed or not. If reserves were used, a partial faulted mapping
2818 	 * at the time of fork() could consume its reserves on COW instead
2819 	 * of the full address range.
2820 	 */
2821 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2822 			old_page != pagecache_page)
2823 		outside_reserve = 1;
2824 
2825 	page_cache_get(old_page);
2826 
2827 	/* Drop page table lock as buddy allocator may be called */
2828 	spin_unlock(ptl);
2829 	new_page = alloc_huge_page(vma, address, outside_reserve);
2830 
2831 	if (IS_ERR(new_page)) {
2832 		long err = PTR_ERR(new_page);
2833 		page_cache_release(old_page);
2834 
2835 		/*
2836 		 * If a process owning a MAP_PRIVATE mapping fails to COW,
2837 		 * it is due to references held by a child and an insufficient
2838 		 * huge page pool. To guarantee the original mappers
2839 		 * reliability, unmap the page from child processes. The child
2840 		 * may get SIGKILLed if it later faults.
2841 		 */
2842 		if (outside_reserve) {
2843 			BUG_ON(huge_pte_none(pte));
2844 			if (unmap_ref_private(mm, vma, old_page, address)) {
2845 				BUG_ON(huge_pte_none(pte));
2846 				spin_lock(ptl);
2847 				ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2848 				if (likely(ptep &&
2849 					   pte_same(huge_ptep_get(ptep), pte)))
2850 					goto retry_avoidcopy;
2851 				/*
2852 				 * race occurs while re-acquiring page table
2853 				 * lock, and our job is done.
2854 				 */
2855 				return 0;
2856 			}
2857 			WARN_ON_ONCE(1);
2858 		}
2859 
2860 		/* Caller expects lock to be held */
2861 		spin_lock(ptl);
2862 		if (err == -ENOMEM)
2863 			return VM_FAULT_OOM;
2864 		else
2865 			return VM_FAULT_SIGBUS;
2866 	}
2867 
2868 	/*
2869 	 * When the original hugepage is shared one, it does not have
2870 	 * anon_vma prepared.
2871 	 */
2872 	if (unlikely(anon_vma_prepare(vma))) {
2873 		page_cache_release(new_page);
2874 		page_cache_release(old_page);
2875 		/* Caller expects lock to be held */
2876 		spin_lock(ptl);
2877 		return VM_FAULT_OOM;
2878 	}
2879 
2880 	copy_user_huge_page(new_page, old_page, address, vma,
2881 			    pages_per_huge_page(h));
2882 	__SetPageUptodate(new_page);
2883 
2884 	mmun_start = address & huge_page_mask(h);
2885 	mmun_end = mmun_start + huge_page_size(h);
2886 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2887 	/*
2888 	 * Retake the page table lock to check for racing updates
2889 	 * before the page tables are altered
2890 	 */
2891 	spin_lock(ptl);
2892 	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2893 	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
2894 		ClearPagePrivate(new_page);
2895 
2896 		/* Break COW */
2897 		huge_ptep_clear_flush(vma, address, ptep);
2898 		set_huge_pte_at(mm, address, ptep,
2899 				make_huge_pte(vma, new_page, 1));
2900 		page_remove_rmap(old_page);
2901 		hugepage_add_new_anon_rmap(new_page, vma, address);
2902 		/* Make the old page be freed below */
2903 		new_page = old_page;
2904 	}
2905 	spin_unlock(ptl);
2906 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2907 	page_cache_release(new_page);
2908 	page_cache_release(old_page);
2909 
2910 	/* Caller expects lock to be held */
2911 	spin_lock(ptl);
2912 	return 0;
2913 }
2914 
2915 /* Return the pagecache page at a given address within a VMA */
2916 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2917 			struct vm_area_struct *vma, unsigned long address)
2918 {
2919 	struct address_space *mapping;
2920 	pgoff_t idx;
2921 
2922 	mapping = vma->vm_file->f_mapping;
2923 	idx = vma_hugecache_offset(h, vma, address);
2924 
2925 	return find_lock_page(mapping, idx);
2926 }
2927 
2928 /*
2929  * Return whether there is a pagecache page to back given address within VMA.
2930  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2931  */
2932 static bool hugetlbfs_pagecache_present(struct hstate *h,
2933 			struct vm_area_struct *vma, unsigned long address)
2934 {
2935 	struct address_space *mapping;
2936 	pgoff_t idx;
2937 	struct page *page;
2938 
2939 	mapping = vma->vm_file->f_mapping;
2940 	idx = vma_hugecache_offset(h, vma, address);
2941 
2942 	page = find_get_page(mapping, idx);
2943 	if (page)
2944 		put_page(page);
2945 	return page != NULL;
2946 }
2947 
2948 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2949 			   struct address_space *mapping, pgoff_t idx,
2950 			   unsigned long address, pte_t *ptep, unsigned int flags)
2951 {
2952 	struct hstate *h = hstate_vma(vma);
2953 	int ret = VM_FAULT_SIGBUS;
2954 	int anon_rmap = 0;
2955 	unsigned long size;
2956 	struct page *page;
2957 	pte_t new_pte;
2958 	spinlock_t *ptl;
2959 
2960 	/*
2961 	 * Currently, we are forced to kill the process in the event the
2962 	 * original mapper has unmapped pages from the child due to a failed
2963 	 * COW. Warn that such a situation has occurred as it may not be obvious
2964 	 */
2965 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2966 		pr_warning("PID %d killed due to inadequate hugepage pool\n",
2967 			   current->pid);
2968 		return ret;
2969 	}
2970 
2971 	/*
2972 	 * Use page lock to guard against racing truncation
2973 	 * before we get page_table_lock.
2974 	 */
2975 retry:
2976 	page = find_lock_page(mapping, idx);
2977 	if (!page) {
2978 		size = i_size_read(mapping->host) >> huge_page_shift(h);
2979 		if (idx >= size)
2980 			goto out;
2981 		page = alloc_huge_page(vma, address, 0);
2982 		if (IS_ERR(page)) {
2983 			ret = PTR_ERR(page);
2984 			if (ret == -ENOMEM)
2985 				ret = VM_FAULT_OOM;
2986 			else
2987 				ret = VM_FAULT_SIGBUS;
2988 			goto out;
2989 		}
2990 		clear_huge_page(page, address, pages_per_huge_page(h));
2991 		__SetPageUptodate(page);
2992 
2993 		if (vma->vm_flags & VM_MAYSHARE) {
2994 			int err;
2995 			struct inode *inode = mapping->host;
2996 
2997 			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2998 			if (err) {
2999 				put_page(page);
3000 				if (err == -EEXIST)
3001 					goto retry;
3002 				goto out;
3003 			}
3004 			ClearPagePrivate(page);
3005 
3006 			spin_lock(&inode->i_lock);
3007 			inode->i_blocks += blocks_per_huge_page(h);
3008 			spin_unlock(&inode->i_lock);
3009 		} else {
3010 			lock_page(page);
3011 			if (unlikely(anon_vma_prepare(vma))) {
3012 				ret = VM_FAULT_OOM;
3013 				goto backout_unlocked;
3014 			}
3015 			anon_rmap = 1;
3016 		}
3017 	} else {
3018 		/*
3019 		 * If memory error occurs between mmap() and fault, some process
3020 		 * don't have hwpoisoned swap entry for errored virtual address.
3021 		 * So we need to block hugepage fault by PG_hwpoison bit check.
3022 		 */
3023 		if (unlikely(PageHWPoison(page))) {
3024 			ret = VM_FAULT_HWPOISON |
3025 				VM_FAULT_SET_HINDEX(hstate_index(h));
3026 			goto backout_unlocked;
3027 		}
3028 	}
3029 
3030 	/*
3031 	 * If we are going to COW a private mapping later, we examine the
3032 	 * pending reservations for this page now. This will ensure that
3033 	 * any allocations necessary to record that reservation occur outside
3034 	 * the spinlock.
3035 	 */
3036 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
3037 		if (vma_needs_reservation(h, vma, address) < 0) {
3038 			ret = VM_FAULT_OOM;
3039 			goto backout_unlocked;
3040 		}
3041 
3042 	ptl = huge_pte_lockptr(h, mm, ptep);
3043 	spin_lock(ptl);
3044 	size = i_size_read(mapping->host) >> huge_page_shift(h);
3045 	if (idx >= size)
3046 		goto backout;
3047 
3048 	ret = 0;
3049 	if (!huge_pte_none(huge_ptep_get(ptep)))
3050 		goto backout;
3051 
3052 	if (anon_rmap) {
3053 		ClearPagePrivate(page);
3054 		hugepage_add_new_anon_rmap(page, vma, address);
3055 	} else
3056 		page_dup_rmap(page);
3057 	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3058 				&& (vma->vm_flags & VM_SHARED)));
3059 	set_huge_pte_at(mm, address, ptep, new_pte);
3060 
3061 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3062 		/* Optimization, do the COW without a second fault */
3063 		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
3064 	}
3065 
3066 	spin_unlock(ptl);
3067 	unlock_page(page);
3068 out:
3069 	return ret;
3070 
3071 backout:
3072 	spin_unlock(ptl);
3073 backout_unlocked:
3074 	unlock_page(page);
3075 	put_page(page);
3076 	goto out;
3077 }
3078 
3079 #ifdef CONFIG_SMP
3080 static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3081 			    struct vm_area_struct *vma,
3082 			    struct address_space *mapping,
3083 			    pgoff_t idx, unsigned long address)
3084 {
3085 	unsigned long key[2];
3086 	u32 hash;
3087 
3088 	if (vma->vm_flags & VM_SHARED) {
3089 		key[0] = (unsigned long) mapping;
3090 		key[1] = idx;
3091 	} else {
3092 		key[0] = (unsigned long) mm;
3093 		key[1] = address >> huge_page_shift(h);
3094 	}
3095 
3096 	hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3097 
3098 	return hash & (num_fault_mutexes - 1);
3099 }
3100 #else
3101 /*
3102  * For uniprocesor systems we always use a single mutex, so just
3103  * return 0 and avoid the hashing overhead.
3104  */
3105 static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3106 			    struct vm_area_struct *vma,
3107 			    struct address_space *mapping,
3108 			    pgoff_t idx, unsigned long address)
3109 {
3110 	return 0;
3111 }
3112 #endif
3113 
3114 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3115 			unsigned long address, unsigned int flags)
3116 {
3117 	pte_t *ptep, entry;
3118 	spinlock_t *ptl;
3119 	int ret;
3120 	u32 hash;
3121 	pgoff_t idx;
3122 	struct page *page = NULL;
3123 	struct page *pagecache_page = NULL;
3124 	struct hstate *h = hstate_vma(vma);
3125 	struct address_space *mapping;
3126 
3127 	address &= huge_page_mask(h);
3128 
3129 	ptep = huge_pte_offset(mm, address);
3130 	if (ptep) {
3131 		entry = huge_ptep_get(ptep);
3132 		if (unlikely(is_hugetlb_entry_migration(entry))) {
3133 			migration_entry_wait_huge(vma, mm, ptep);
3134 			return 0;
3135 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3136 			return VM_FAULT_HWPOISON_LARGE |
3137 				VM_FAULT_SET_HINDEX(hstate_index(h));
3138 	}
3139 
3140 	ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3141 	if (!ptep)
3142 		return VM_FAULT_OOM;
3143 
3144 	mapping = vma->vm_file->f_mapping;
3145 	idx = vma_hugecache_offset(h, vma, address);
3146 
3147 	/*
3148 	 * Serialize hugepage allocation and instantiation, so that we don't
3149 	 * get spurious allocation failures if two CPUs race to instantiate
3150 	 * the same page in the page cache.
3151 	 */
3152 	hash = fault_mutex_hash(h, mm, vma, mapping, idx, address);
3153 	mutex_lock(&htlb_fault_mutex_table[hash]);
3154 
3155 	entry = huge_ptep_get(ptep);
3156 	if (huge_pte_none(entry)) {
3157 		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3158 		goto out_mutex;
3159 	}
3160 
3161 	ret = 0;
3162 
3163 	/*
3164 	 * If we are going to COW the mapping later, we examine the pending
3165 	 * reservations for this page now. This will ensure that any
3166 	 * allocations necessary to record that reservation occur outside the
3167 	 * spinlock. For private mappings, we also lookup the pagecache
3168 	 * page now as it is used to determine if a reservation has been
3169 	 * consumed.
3170 	 */
3171 	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3172 		if (vma_needs_reservation(h, vma, address) < 0) {
3173 			ret = VM_FAULT_OOM;
3174 			goto out_mutex;
3175 		}
3176 
3177 		if (!(vma->vm_flags & VM_MAYSHARE))
3178 			pagecache_page = hugetlbfs_pagecache_page(h,
3179 								vma, address);
3180 	}
3181 
3182 	/*
3183 	 * hugetlb_cow() requires page locks of pte_page(entry) and
3184 	 * pagecache_page, so here we need take the former one
3185 	 * when page != pagecache_page or !pagecache_page.
3186 	 * Note that locking order is always pagecache_page -> page,
3187 	 * so no worry about deadlock.
3188 	 */
3189 	page = pte_page(entry);
3190 	get_page(page);
3191 	if (page != pagecache_page)
3192 		lock_page(page);
3193 
3194 	ptl = huge_pte_lockptr(h, mm, ptep);
3195 	spin_lock(ptl);
3196 	/* Check for a racing update before calling hugetlb_cow */
3197 	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3198 		goto out_ptl;
3199 
3200 
3201 	if (flags & FAULT_FLAG_WRITE) {
3202 		if (!huge_pte_write(entry)) {
3203 			ret = hugetlb_cow(mm, vma, address, ptep, entry,
3204 					pagecache_page, ptl);
3205 			goto out_ptl;
3206 		}
3207 		entry = huge_pte_mkdirty(entry);
3208 	}
3209 	entry = pte_mkyoung(entry);
3210 	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3211 						flags & FAULT_FLAG_WRITE))
3212 		update_mmu_cache(vma, address, ptep);
3213 
3214 out_ptl:
3215 	spin_unlock(ptl);
3216 
3217 	if (pagecache_page) {
3218 		unlock_page(pagecache_page);
3219 		put_page(pagecache_page);
3220 	}
3221 	if (page != pagecache_page)
3222 		unlock_page(page);
3223 	put_page(page);
3224 
3225 out_mutex:
3226 	mutex_unlock(&htlb_fault_mutex_table[hash]);
3227 	return ret;
3228 }
3229 
3230 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3231 			 struct page **pages, struct vm_area_struct **vmas,
3232 			 unsigned long *position, unsigned long *nr_pages,
3233 			 long i, unsigned int flags)
3234 {
3235 	unsigned long pfn_offset;
3236 	unsigned long vaddr = *position;
3237 	unsigned long remainder = *nr_pages;
3238 	struct hstate *h = hstate_vma(vma);
3239 
3240 	while (vaddr < vma->vm_end && remainder) {
3241 		pte_t *pte;
3242 		spinlock_t *ptl = NULL;
3243 		int absent;
3244 		struct page *page;
3245 
3246 		/*
3247 		 * Some archs (sparc64, sh*) have multiple pte_ts to
3248 		 * each hugepage.  We have to make sure we get the
3249 		 * first, for the page indexing below to work.
3250 		 *
3251 		 * Note that page table lock is not held when pte is null.
3252 		 */
3253 		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3254 		if (pte)
3255 			ptl = huge_pte_lock(h, mm, pte);
3256 		absent = !pte || huge_pte_none(huge_ptep_get(pte));
3257 
3258 		/*
3259 		 * When coredumping, it suits get_dump_page if we just return
3260 		 * an error where there's an empty slot with no huge pagecache
3261 		 * to back it.  This way, we avoid allocating a hugepage, and
3262 		 * the sparse dumpfile avoids allocating disk blocks, but its
3263 		 * huge holes still show up with zeroes where they need to be.
3264 		 */
3265 		if (absent && (flags & FOLL_DUMP) &&
3266 		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3267 			if (pte)
3268 				spin_unlock(ptl);
3269 			remainder = 0;
3270 			break;
3271 		}
3272 
3273 		/*
3274 		 * We need call hugetlb_fault for both hugepages under migration
3275 		 * (in which case hugetlb_fault waits for the migration,) and
3276 		 * hwpoisoned hugepages (in which case we need to prevent the
3277 		 * caller from accessing to them.) In order to do this, we use
3278 		 * here is_swap_pte instead of is_hugetlb_entry_migration and
3279 		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3280 		 * both cases, and because we can't follow correct pages
3281 		 * directly from any kind of swap entries.
3282 		 */
3283 		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3284 		    ((flags & FOLL_WRITE) &&
3285 		      !huge_pte_write(huge_ptep_get(pte)))) {
3286 			int ret;
3287 
3288 			if (pte)
3289 				spin_unlock(ptl);
3290 			ret = hugetlb_fault(mm, vma, vaddr,
3291 				(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3292 			if (!(ret & VM_FAULT_ERROR))
3293 				continue;
3294 
3295 			remainder = 0;
3296 			break;
3297 		}
3298 
3299 		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3300 		page = pte_page(huge_ptep_get(pte));
3301 same_page:
3302 		if (pages) {
3303 			pages[i] = mem_map_offset(page, pfn_offset);
3304 			get_page_foll(pages[i]);
3305 		}
3306 
3307 		if (vmas)
3308 			vmas[i] = vma;
3309 
3310 		vaddr += PAGE_SIZE;
3311 		++pfn_offset;
3312 		--remainder;
3313 		++i;
3314 		if (vaddr < vma->vm_end && remainder &&
3315 				pfn_offset < pages_per_huge_page(h)) {
3316 			/*
3317 			 * We use pfn_offset to avoid touching the pageframes
3318 			 * of this compound page.
3319 			 */
3320 			goto same_page;
3321 		}
3322 		spin_unlock(ptl);
3323 	}
3324 	*nr_pages = remainder;
3325 	*position = vaddr;
3326 
3327 	return i ? i : -EFAULT;
3328 }
3329 
3330 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3331 		unsigned long address, unsigned long end, pgprot_t newprot)
3332 {
3333 	struct mm_struct *mm = vma->vm_mm;
3334 	unsigned long start = address;
3335 	pte_t *ptep;
3336 	pte_t pte;
3337 	struct hstate *h = hstate_vma(vma);
3338 	unsigned long pages = 0;
3339 
3340 	BUG_ON(address >= end);
3341 	flush_cache_range(vma, address, end);
3342 
3343 	mmu_notifier_invalidate_range_start(mm, start, end);
3344 	mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
3345 	for (; address < end; address += huge_page_size(h)) {
3346 		spinlock_t *ptl;
3347 		ptep = huge_pte_offset(mm, address);
3348 		if (!ptep)
3349 			continue;
3350 		ptl = huge_pte_lock(h, mm, ptep);
3351 		if (huge_pmd_unshare(mm, &address, ptep)) {
3352 			pages++;
3353 			spin_unlock(ptl);
3354 			continue;
3355 		}
3356 		if (!huge_pte_none(huge_ptep_get(ptep))) {
3357 			pte = huge_ptep_get_and_clear(mm, address, ptep);
3358 			pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3359 			pte = arch_make_huge_pte(pte, vma, NULL, 0);
3360 			set_huge_pte_at(mm, address, ptep, pte);
3361 			pages++;
3362 		}
3363 		spin_unlock(ptl);
3364 	}
3365 	/*
3366 	 * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
3367 	 * may have cleared our pud entry and done put_page on the page table:
3368 	 * once we release i_mmap_mutex, another task can do the final put_page
3369 	 * and that page table be reused and filled with junk.
3370 	 */
3371 	flush_tlb_range(vma, start, end);
3372 	mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
3373 	mmu_notifier_invalidate_range_end(mm, start, end);
3374 
3375 	return pages << h->order;
3376 }
3377 
3378 int hugetlb_reserve_pages(struct inode *inode,
3379 					long from, long to,
3380 					struct vm_area_struct *vma,
3381 					vm_flags_t vm_flags)
3382 {
3383 	long ret, chg;
3384 	struct hstate *h = hstate_inode(inode);
3385 	struct hugepage_subpool *spool = subpool_inode(inode);
3386 	struct resv_map *resv_map;
3387 
3388 	/*
3389 	 * Only apply hugepage reservation if asked. At fault time, an
3390 	 * attempt will be made for VM_NORESERVE to allocate a page
3391 	 * without using reserves
3392 	 */
3393 	if (vm_flags & VM_NORESERVE)
3394 		return 0;
3395 
3396 	/*
3397 	 * Shared mappings base their reservation on the number of pages that
3398 	 * are already allocated on behalf of the file. Private mappings need
3399 	 * to reserve the full area even if read-only as mprotect() may be
3400 	 * called to make the mapping read-write. Assume !vma is a shm mapping
3401 	 */
3402 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
3403 		resv_map = inode_resv_map(inode);
3404 
3405 		chg = region_chg(resv_map, from, to);
3406 
3407 	} else {
3408 		resv_map = resv_map_alloc();
3409 		if (!resv_map)
3410 			return -ENOMEM;
3411 
3412 		chg = to - from;
3413 
3414 		set_vma_resv_map(vma, resv_map);
3415 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3416 	}
3417 
3418 	if (chg < 0) {
3419 		ret = chg;
3420 		goto out_err;
3421 	}
3422 
3423 	/* There must be enough pages in the subpool for the mapping */
3424 	if (hugepage_subpool_get_pages(spool, chg)) {
3425 		ret = -ENOSPC;
3426 		goto out_err;
3427 	}
3428 
3429 	/*
3430 	 * Check enough hugepages are available for the reservation.
3431 	 * Hand the pages back to the subpool if there are not
3432 	 */
3433 	ret = hugetlb_acct_memory(h, chg);
3434 	if (ret < 0) {
3435 		hugepage_subpool_put_pages(spool, chg);
3436 		goto out_err;
3437 	}
3438 
3439 	/*
3440 	 * Account for the reservations made. Shared mappings record regions
3441 	 * that have reservations as they are shared by multiple VMAs.
3442 	 * When the last VMA disappears, the region map says how much
3443 	 * the reservation was and the page cache tells how much of
3444 	 * the reservation was consumed. Private mappings are per-VMA and
3445 	 * only the consumed reservations are tracked. When the VMA
3446 	 * disappears, the original reservation is the VMA size and the
3447 	 * consumed reservations are stored in the map. Hence, nothing
3448 	 * else has to be done for private mappings here
3449 	 */
3450 	if (!vma || vma->vm_flags & VM_MAYSHARE)
3451 		region_add(resv_map, from, to);
3452 	return 0;
3453 out_err:
3454 	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3455 		kref_put(&resv_map->refs, resv_map_release);
3456 	return ret;
3457 }
3458 
3459 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3460 {
3461 	struct hstate *h = hstate_inode(inode);
3462 	struct resv_map *resv_map = inode_resv_map(inode);
3463 	long chg = 0;
3464 	struct hugepage_subpool *spool = subpool_inode(inode);
3465 
3466 	if (resv_map)
3467 		chg = region_truncate(resv_map, offset);
3468 	spin_lock(&inode->i_lock);
3469 	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
3470 	spin_unlock(&inode->i_lock);
3471 
3472 	hugepage_subpool_put_pages(spool, (chg - freed));
3473 	hugetlb_acct_memory(h, -(chg - freed));
3474 }
3475 
3476 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
3477 static unsigned long page_table_shareable(struct vm_area_struct *svma,
3478 				struct vm_area_struct *vma,
3479 				unsigned long addr, pgoff_t idx)
3480 {
3481 	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
3482 				svma->vm_start;
3483 	unsigned long sbase = saddr & PUD_MASK;
3484 	unsigned long s_end = sbase + PUD_SIZE;
3485 
3486 	/* Allow segments to share if only one is marked locked */
3487 	unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
3488 	unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
3489 
3490 	/*
3491 	 * match the virtual addresses, permission and the alignment of the
3492 	 * page table page.
3493 	 */
3494 	if (pmd_index(addr) != pmd_index(saddr) ||
3495 	    vm_flags != svm_flags ||
3496 	    sbase < svma->vm_start || svma->vm_end < s_end)
3497 		return 0;
3498 
3499 	return saddr;
3500 }
3501 
3502 static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3503 {
3504 	unsigned long base = addr & PUD_MASK;
3505 	unsigned long end = base + PUD_SIZE;
3506 
3507 	/*
3508 	 * check on proper vm_flags and page table alignment
3509 	 */
3510 	if (vma->vm_flags & VM_MAYSHARE &&
3511 	    vma->vm_start <= base && end <= vma->vm_end)
3512 		return 1;
3513 	return 0;
3514 }
3515 
3516 /*
3517  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
3518  * and returns the corresponding pte. While this is not necessary for the
3519  * !shared pmd case because we can allocate the pmd later as well, it makes the
3520  * code much cleaner. pmd allocation is essential for the shared case because
3521  * pud has to be populated inside the same i_mmap_mutex section - otherwise
3522  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
3523  * bad pmd for sharing.
3524  */
3525 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3526 {
3527 	struct vm_area_struct *vma = find_vma(mm, addr);
3528 	struct address_space *mapping = vma->vm_file->f_mapping;
3529 	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
3530 			vma->vm_pgoff;
3531 	struct vm_area_struct *svma;
3532 	unsigned long saddr;
3533 	pte_t *spte = NULL;
3534 	pte_t *pte;
3535 	spinlock_t *ptl;
3536 
3537 	if (!vma_shareable(vma, addr))
3538 		return (pte_t *)pmd_alloc(mm, pud, addr);
3539 
3540 	mutex_lock(&mapping->i_mmap_mutex);
3541 	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
3542 		if (svma == vma)
3543 			continue;
3544 
3545 		saddr = page_table_shareable(svma, vma, addr, idx);
3546 		if (saddr) {
3547 			spte = huge_pte_offset(svma->vm_mm, saddr);
3548 			if (spte) {
3549 				get_page(virt_to_page(spte));
3550 				break;
3551 			}
3552 		}
3553 	}
3554 
3555 	if (!spte)
3556 		goto out;
3557 
3558 	ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
3559 	spin_lock(ptl);
3560 	if (pud_none(*pud))
3561 		pud_populate(mm, pud,
3562 				(pmd_t *)((unsigned long)spte & PAGE_MASK));
3563 	else
3564 		put_page(virt_to_page(spte));
3565 	spin_unlock(ptl);
3566 out:
3567 	pte = (pte_t *)pmd_alloc(mm, pud, addr);
3568 	mutex_unlock(&mapping->i_mmap_mutex);
3569 	return pte;
3570 }
3571 
3572 /*
3573  * unmap huge page backed by shared pte.
3574  *
3575  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
3576  * indicated by page_count > 1, unmap is achieved by clearing pud and
3577  * decrementing the ref count. If count == 1, the pte page is not shared.
3578  *
3579  * called with page table lock held.
3580  *
3581  * returns: 1 successfully unmapped a shared pte page
3582  *	    0 the underlying pte page is not shared, or it is the last user
3583  */
3584 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
3585 {
3586 	pgd_t *pgd = pgd_offset(mm, *addr);
3587 	pud_t *pud = pud_offset(pgd, *addr);
3588 
3589 	BUG_ON(page_count(virt_to_page(ptep)) == 0);
3590 	if (page_count(virt_to_page(ptep)) == 1)
3591 		return 0;
3592 
3593 	pud_clear(pud);
3594 	put_page(virt_to_page(ptep));
3595 	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
3596 	return 1;
3597 }
3598 #define want_pmd_share()	(1)
3599 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3600 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3601 {
3602 	return NULL;
3603 }
3604 #define want_pmd_share()	(0)
3605 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3606 
3607 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
3608 pte_t *huge_pte_alloc(struct mm_struct *mm,
3609 			unsigned long addr, unsigned long sz)
3610 {
3611 	pgd_t *pgd;
3612 	pud_t *pud;
3613 	pte_t *pte = NULL;
3614 
3615 	pgd = pgd_offset(mm, addr);
3616 	pud = pud_alloc(mm, pgd, addr);
3617 	if (pud) {
3618 		if (sz == PUD_SIZE) {
3619 			pte = (pte_t *)pud;
3620 		} else {
3621 			BUG_ON(sz != PMD_SIZE);
3622 			if (want_pmd_share() && pud_none(*pud))
3623 				pte = huge_pmd_share(mm, addr, pud);
3624 			else
3625 				pte = (pte_t *)pmd_alloc(mm, pud, addr);
3626 		}
3627 	}
3628 	BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
3629 
3630 	return pte;
3631 }
3632 
3633 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
3634 {
3635 	pgd_t *pgd;
3636 	pud_t *pud;
3637 	pmd_t *pmd = NULL;
3638 
3639 	pgd = pgd_offset(mm, addr);
3640 	if (pgd_present(*pgd)) {
3641 		pud = pud_offset(pgd, addr);
3642 		if (pud_present(*pud)) {
3643 			if (pud_huge(*pud))
3644 				return (pte_t *)pud;
3645 			pmd = pmd_offset(pud, addr);
3646 		}
3647 	}
3648 	return (pte_t *) pmd;
3649 }
3650 
3651 struct page *
3652 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
3653 		pmd_t *pmd, int write)
3654 {
3655 	struct page *page;
3656 
3657 	page = pte_page(*(pte_t *)pmd);
3658 	if (page)
3659 		page += ((address & ~PMD_MASK) >> PAGE_SHIFT);
3660 	return page;
3661 }
3662 
3663 struct page *
3664 follow_huge_pud(struct mm_struct *mm, unsigned long address,
3665 		pud_t *pud, int write)
3666 {
3667 	struct page *page;
3668 
3669 	page = pte_page(*(pte_t *)pud);
3670 	if (page)
3671 		page += ((address & ~PUD_MASK) >> PAGE_SHIFT);
3672 	return page;
3673 }
3674 
3675 #else /* !CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3676 
3677 /* Can be overriden by architectures */
3678 struct page * __weak
3679 follow_huge_pud(struct mm_struct *mm, unsigned long address,
3680 	       pud_t *pud, int write)
3681 {
3682 	BUG();
3683 	return NULL;
3684 }
3685 
3686 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3687 
3688 #ifdef CONFIG_MEMORY_FAILURE
3689 
3690 /* Should be called in hugetlb_lock */
3691 static int is_hugepage_on_freelist(struct page *hpage)
3692 {
3693 	struct page *page;
3694 	struct page *tmp;
3695 	struct hstate *h = page_hstate(hpage);
3696 	int nid = page_to_nid(hpage);
3697 
3698 	list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3699 		if (page == hpage)
3700 			return 1;
3701 	return 0;
3702 }
3703 
3704 /*
3705  * This function is called from memory failure code.
3706  * Assume the caller holds page lock of the head page.
3707  */
3708 int dequeue_hwpoisoned_huge_page(struct page *hpage)
3709 {
3710 	struct hstate *h = page_hstate(hpage);
3711 	int nid = page_to_nid(hpage);
3712 	int ret = -EBUSY;
3713 
3714 	spin_lock(&hugetlb_lock);
3715 	if (is_hugepage_on_freelist(hpage)) {
3716 		/*
3717 		 * Hwpoisoned hugepage isn't linked to activelist or freelist,
3718 		 * but dangling hpage->lru can trigger list-debug warnings
3719 		 * (this happens when we call unpoison_memory() on it),
3720 		 * so let it point to itself with list_del_init().
3721 		 */
3722 		list_del_init(&hpage->lru);
3723 		set_page_refcounted(hpage);
3724 		h->free_huge_pages--;
3725 		h->free_huge_pages_node[nid]--;
3726 		ret = 0;
3727 	}
3728 	spin_unlock(&hugetlb_lock);
3729 	return ret;
3730 }
3731 #endif
3732 
3733 bool isolate_huge_page(struct page *page, struct list_head *list)
3734 {
3735 	VM_BUG_ON_PAGE(!PageHead(page), page);
3736 	if (!get_page_unless_zero(page))
3737 		return false;
3738 	spin_lock(&hugetlb_lock);
3739 	list_move_tail(&page->lru, list);
3740 	spin_unlock(&hugetlb_lock);
3741 	return true;
3742 }
3743 
3744 void putback_active_hugepage(struct page *page)
3745 {
3746 	VM_BUG_ON_PAGE(!PageHead(page), page);
3747 	spin_lock(&hugetlb_lock);
3748 	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
3749 	spin_unlock(&hugetlb_lock);
3750 	put_page(page);
3751 }
3752 
3753 bool is_hugepage_active(struct page *page)
3754 {
3755 	VM_BUG_ON_PAGE(!PageHuge(page), page);
3756 	/*
3757 	 * This function can be called for a tail page because the caller,
3758 	 * scan_movable_pages, scans through a given pfn-range which typically
3759 	 * covers one memory block. In systems using gigantic hugepage (1GB
3760 	 * for x86_64,) a hugepage is larger than a memory block, and we don't
3761 	 * support migrating such large hugepages for now, so return false
3762 	 * when called for tail pages.
3763 	 */
3764 	if (PageTail(page))
3765 		return false;
3766 	/*
3767 	 * Refcount of a hwpoisoned hugepages is 1, but they are not active,
3768 	 * so we should return false for them.
3769 	 */
3770 	if (unlikely(PageHWPoison(page)))
3771 		return false;
3772 	return page_count(page) > 0;
3773 }
3774