1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic hugetlb support. 4 * (C) Nadia Yvette Chambers, April 2004 5 */ 6 #include <linux/list.h> 7 #include <linux/init.h> 8 #include <linux/mm.h> 9 #include <linux/seq_file.h> 10 #include <linux/sysctl.h> 11 #include <linux/highmem.h> 12 #include <linux/mmu_notifier.h> 13 #include <linux/nodemask.h> 14 #include <linux/pagemap.h> 15 #include <linux/mempolicy.h> 16 #include <linux/compiler.h> 17 #include <linux/cpuset.h> 18 #include <linux/mutex.h> 19 #include <linux/memblock.h> 20 #include <linux/sysfs.h> 21 #include <linux/slab.h> 22 #include <linux/sched/mm.h> 23 #include <linux/mmdebug.h> 24 #include <linux/sched/signal.h> 25 #include <linux/rmap.h> 26 #include <linux/string_helpers.h> 27 #include <linux/swap.h> 28 #include <linux/swapops.h> 29 #include <linux/jhash.h> 30 #include <linux/numa.h> 31 #include <linux/llist.h> 32 #include <linux/cma.h> 33 34 #include <asm/page.h> 35 #include <asm/pgalloc.h> 36 #include <asm/tlb.h> 37 38 #include <linux/io.h> 39 #include <linux/hugetlb.h> 40 #include <linux/hugetlb_cgroup.h> 41 #include <linux/node.h> 42 #include <linux/userfaultfd_k.h> 43 #include <linux/page_owner.h> 44 #include "internal.h" 45 46 int hugetlb_max_hstate __read_mostly; 47 unsigned int default_hstate_idx; 48 struct hstate hstates[HUGE_MAX_HSTATE]; 49 50 #ifdef CONFIG_CMA 51 static struct cma *hugetlb_cma[MAX_NUMNODES]; 52 #endif 53 static unsigned long hugetlb_cma_size __initdata; 54 55 /* 56 * Minimum page order among possible hugepage sizes, set to a proper value 57 * at boot time. 58 */ 59 static unsigned int minimum_order __read_mostly = UINT_MAX; 60 61 __initdata LIST_HEAD(huge_boot_pages); 62 63 /* for command line parsing */ 64 static struct hstate * __initdata parsed_hstate; 65 static unsigned long __initdata default_hstate_max_huge_pages; 66 static bool __initdata parsed_valid_hugepagesz = true; 67 static bool __initdata parsed_default_hugepagesz; 68 69 /* 70 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages, 71 * free_huge_pages, and surplus_huge_pages. 72 */ 73 DEFINE_SPINLOCK(hugetlb_lock); 74 75 /* 76 * Serializes faults on the same logical page. This is used to 77 * prevent spurious OOMs when the hugepage pool is fully utilized. 78 */ 79 static int num_fault_mutexes; 80 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp; 81 82 static inline bool PageHugeFreed(struct page *head) 83 { 84 return page_private(head + 4) == -1UL; 85 } 86 87 static inline void SetPageHugeFreed(struct page *head) 88 { 89 set_page_private(head + 4, -1UL); 90 } 91 92 static inline void ClearPageHugeFreed(struct page *head) 93 { 94 set_page_private(head + 4, 0); 95 } 96 97 /* Forward declaration */ 98 static int hugetlb_acct_memory(struct hstate *h, long delta); 99 100 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool) 101 { 102 bool free = (spool->count == 0) && (spool->used_hpages == 0); 103 104 spin_unlock(&spool->lock); 105 106 /* If no pages are used, and no other handles to the subpool 107 * remain, give up any reservations based on minimum size and 108 * free the subpool */ 109 if (free) { 110 if (spool->min_hpages != -1) 111 hugetlb_acct_memory(spool->hstate, 112 -spool->min_hpages); 113 kfree(spool); 114 } 115 } 116 117 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages, 118 long min_hpages) 119 { 120 struct hugepage_subpool *spool; 121 122 spool = kzalloc(sizeof(*spool), GFP_KERNEL); 123 if (!spool) 124 return NULL; 125 126 spin_lock_init(&spool->lock); 127 spool->count = 1; 128 spool->max_hpages = max_hpages; 129 spool->hstate = h; 130 spool->min_hpages = min_hpages; 131 132 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) { 133 kfree(spool); 134 return NULL; 135 } 136 spool->rsv_hpages = min_hpages; 137 138 return spool; 139 } 140 141 void hugepage_put_subpool(struct hugepage_subpool *spool) 142 { 143 spin_lock(&spool->lock); 144 BUG_ON(!spool->count); 145 spool->count--; 146 unlock_or_release_subpool(spool); 147 } 148 149 /* 150 * Subpool accounting for allocating and reserving pages. 151 * Return -ENOMEM if there are not enough resources to satisfy the 152 * request. Otherwise, return the number of pages by which the 153 * global pools must be adjusted (upward). The returned value may 154 * only be different than the passed value (delta) in the case where 155 * a subpool minimum size must be maintained. 156 */ 157 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool, 158 long delta) 159 { 160 long ret = delta; 161 162 if (!spool) 163 return ret; 164 165 spin_lock(&spool->lock); 166 167 if (spool->max_hpages != -1) { /* maximum size accounting */ 168 if ((spool->used_hpages + delta) <= spool->max_hpages) 169 spool->used_hpages += delta; 170 else { 171 ret = -ENOMEM; 172 goto unlock_ret; 173 } 174 } 175 176 /* minimum size accounting */ 177 if (spool->min_hpages != -1 && spool->rsv_hpages) { 178 if (delta > spool->rsv_hpages) { 179 /* 180 * Asking for more reserves than those already taken on 181 * behalf of subpool. Return difference. 182 */ 183 ret = delta - spool->rsv_hpages; 184 spool->rsv_hpages = 0; 185 } else { 186 ret = 0; /* reserves already accounted for */ 187 spool->rsv_hpages -= delta; 188 } 189 } 190 191 unlock_ret: 192 spin_unlock(&spool->lock); 193 return ret; 194 } 195 196 /* 197 * Subpool accounting for freeing and unreserving pages. 198 * Return the number of global page reservations that must be dropped. 199 * The return value may only be different than the passed value (delta) 200 * in the case where a subpool minimum size must be maintained. 201 */ 202 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool, 203 long delta) 204 { 205 long ret = delta; 206 207 if (!spool) 208 return delta; 209 210 spin_lock(&spool->lock); 211 212 if (spool->max_hpages != -1) /* maximum size accounting */ 213 spool->used_hpages -= delta; 214 215 /* minimum size accounting */ 216 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) { 217 if (spool->rsv_hpages + delta <= spool->min_hpages) 218 ret = 0; 219 else 220 ret = spool->rsv_hpages + delta - spool->min_hpages; 221 222 spool->rsv_hpages += delta; 223 if (spool->rsv_hpages > spool->min_hpages) 224 spool->rsv_hpages = spool->min_hpages; 225 } 226 227 /* 228 * If hugetlbfs_put_super couldn't free spool due to an outstanding 229 * quota reference, free it now. 230 */ 231 unlock_or_release_subpool(spool); 232 233 return ret; 234 } 235 236 static inline struct hugepage_subpool *subpool_inode(struct inode *inode) 237 { 238 return HUGETLBFS_SB(inode->i_sb)->spool; 239 } 240 241 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma) 242 { 243 return subpool_inode(file_inode(vma->vm_file)); 244 } 245 246 /* Helper that removes a struct file_region from the resv_map cache and returns 247 * it for use. 248 */ 249 static struct file_region * 250 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to) 251 { 252 struct file_region *nrg = NULL; 253 254 VM_BUG_ON(resv->region_cache_count <= 0); 255 256 resv->region_cache_count--; 257 nrg = list_first_entry(&resv->region_cache, struct file_region, link); 258 list_del(&nrg->link); 259 260 nrg->from = from; 261 nrg->to = to; 262 263 return nrg; 264 } 265 266 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg, 267 struct file_region *rg) 268 { 269 #ifdef CONFIG_CGROUP_HUGETLB 270 nrg->reservation_counter = rg->reservation_counter; 271 nrg->css = rg->css; 272 if (rg->css) 273 css_get(rg->css); 274 #endif 275 } 276 277 /* Helper that records hugetlb_cgroup uncharge info. */ 278 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg, 279 struct hstate *h, 280 struct resv_map *resv, 281 struct file_region *nrg) 282 { 283 #ifdef CONFIG_CGROUP_HUGETLB 284 if (h_cg) { 285 nrg->reservation_counter = 286 &h_cg->rsvd_hugepage[hstate_index(h)]; 287 nrg->css = &h_cg->css; 288 if (!resv->pages_per_hpage) 289 resv->pages_per_hpage = pages_per_huge_page(h); 290 /* pages_per_hpage should be the same for all entries in 291 * a resv_map. 292 */ 293 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h)); 294 } else { 295 nrg->reservation_counter = NULL; 296 nrg->css = NULL; 297 } 298 #endif 299 } 300 301 static bool has_same_uncharge_info(struct file_region *rg, 302 struct file_region *org) 303 { 304 #ifdef CONFIG_CGROUP_HUGETLB 305 return rg && org && 306 rg->reservation_counter == org->reservation_counter && 307 rg->css == org->css; 308 309 #else 310 return true; 311 #endif 312 } 313 314 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg) 315 { 316 struct file_region *nrg = NULL, *prg = NULL; 317 318 prg = list_prev_entry(rg, link); 319 if (&prg->link != &resv->regions && prg->to == rg->from && 320 has_same_uncharge_info(prg, rg)) { 321 prg->to = rg->to; 322 323 list_del(&rg->link); 324 kfree(rg); 325 326 rg = prg; 327 } 328 329 nrg = list_next_entry(rg, link); 330 if (&nrg->link != &resv->regions && nrg->from == rg->to && 331 has_same_uncharge_info(nrg, rg)) { 332 nrg->from = rg->from; 333 334 list_del(&rg->link); 335 kfree(rg); 336 } 337 } 338 339 /* 340 * Must be called with resv->lock held. 341 * 342 * Calling this with regions_needed != NULL will count the number of pages 343 * to be added but will not modify the linked list. And regions_needed will 344 * indicate the number of file_regions needed in the cache to carry out to add 345 * the regions for this range. 346 */ 347 static long add_reservation_in_range(struct resv_map *resv, long f, long t, 348 struct hugetlb_cgroup *h_cg, 349 struct hstate *h, long *regions_needed) 350 { 351 long add = 0; 352 struct list_head *head = &resv->regions; 353 long last_accounted_offset = f; 354 struct file_region *rg = NULL, *trg = NULL, *nrg = NULL; 355 356 if (regions_needed) 357 *regions_needed = 0; 358 359 /* In this loop, we essentially handle an entry for the range 360 * [last_accounted_offset, rg->from), at every iteration, with some 361 * bounds checking. 362 */ 363 list_for_each_entry_safe(rg, trg, head, link) { 364 /* Skip irrelevant regions that start before our range. */ 365 if (rg->from < f) { 366 /* If this region ends after the last accounted offset, 367 * then we need to update last_accounted_offset. 368 */ 369 if (rg->to > last_accounted_offset) 370 last_accounted_offset = rg->to; 371 continue; 372 } 373 374 /* When we find a region that starts beyond our range, we've 375 * finished. 376 */ 377 if (rg->from > t) 378 break; 379 380 /* Add an entry for last_accounted_offset -> rg->from, and 381 * update last_accounted_offset. 382 */ 383 if (rg->from > last_accounted_offset) { 384 add += rg->from - last_accounted_offset; 385 if (!regions_needed) { 386 nrg = get_file_region_entry_from_cache( 387 resv, last_accounted_offset, rg->from); 388 record_hugetlb_cgroup_uncharge_info(h_cg, h, 389 resv, nrg); 390 list_add(&nrg->link, rg->link.prev); 391 coalesce_file_region(resv, nrg); 392 } else 393 *regions_needed += 1; 394 } 395 396 last_accounted_offset = rg->to; 397 } 398 399 /* Handle the case where our range extends beyond 400 * last_accounted_offset. 401 */ 402 if (last_accounted_offset < t) { 403 add += t - last_accounted_offset; 404 if (!regions_needed) { 405 nrg = get_file_region_entry_from_cache( 406 resv, last_accounted_offset, t); 407 record_hugetlb_cgroup_uncharge_info(h_cg, h, resv, nrg); 408 list_add(&nrg->link, rg->link.prev); 409 coalesce_file_region(resv, nrg); 410 } else 411 *regions_needed += 1; 412 } 413 414 VM_BUG_ON(add < 0); 415 return add; 416 } 417 418 /* Must be called with resv->lock acquired. Will drop lock to allocate entries. 419 */ 420 static int allocate_file_region_entries(struct resv_map *resv, 421 int regions_needed) 422 __must_hold(&resv->lock) 423 { 424 struct list_head allocated_regions; 425 int to_allocate = 0, i = 0; 426 struct file_region *trg = NULL, *rg = NULL; 427 428 VM_BUG_ON(regions_needed < 0); 429 430 INIT_LIST_HEAD(&allocated_regions); 431 432 /* 433 * Check for sufficient descriptors in the cache to accommodate 434 * the number of in progress add operations plus regions_needed. 435 * 436 * This is a while loop because when we drop the lock, some other call 437 * to region_add or region_del may have consumed some region_entries, 438 * so we keep looping here until we finally have enough entries for 439 * (adds_in_progress + regions_needed). 440 */ 441 while (resv->region_cache_count < 442 (resv->adds_in_progress + regions_needed)) { 443 to_allocate = resv->adds_in_progress + regions_needed - 444 resv->region_cache_count; 445 446 /* At this point, we should have enough entries in the cache 447 * for all the existings adds_in_progress. We should only be 448 * needing to allocate for regions_needed. 449 */ 450 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress); 451 452 spin_unlock(&resv->lock); 453 for (i = 0; i < to_allocate; i++) { 454 trg = kmalloc(sizeof(*trg), GFP_KERNEL); 455 if (!trg) 456 goto out_of_memory; 457 list_add(&trg->link, &allocated_regions); 458 } 459 460 spin_lock(&resv->lock); 461 462 list_splice(&allocated_regions, &resv->region_cache); 463 resv->region_cache_count += to_allocate; 464 } 465 466 return 0; 467 468 out_of_memory: 469 list_for_each_entry_safe(rg, trg, &allocated_regions, link) { 470 list_del(&rg->link); 471 kfree(rg); 472 } 473 return -ENOMEM; 474 } 475 476 /* 477 * Add the huge page range represented by [f, t) to the reserve 478 * map. Regions will be taken from the cache to fill in this range. 479 * Sufficient regions should exist in the cache due to the previous 480 * call to region_chg with the same range, but in some cases the cache will not 481 * have sufficient entries due to races with other code doing region_add or 482 * region_del. The extra needed entries will be allocated. 483 * 484 * regions_needed is the out value provided by a previous call to region_chg. 485 * 486 * Return the number of new huge pages added to the map. This number is greater 487 * than or equal to zero. If file_region entries needed to be allocated for 488 * this operation and we were not able to allocate, it returns -ENOMEM. 489 * region_add of regions of length 1 never allocate file_regions and cannot 490 * fail; region_chg will always allocate at least 1 entry and a region_add for 491 * 1 page will only require at most 1 entry. 492 */ 493 static long region_add(struct resv_map *resv, long f, long t, 494 long in_regions_needed, struct hstate *h, 495 struct hugetlb_cgroup *h_cg) 496 { 497 long add = 0, actual_regions_needed = 0; 498 499 spin_lock(&resv->lock); 500 retry: 501 502 /* Count how many regions are actually needed to execute this add. */ 503 add_reservation_in_range(resv, f, t, NULL, NULL, 504 &actual_regions_needed); 505 506 /* 507 * Check for sufficient descriptors in the cache to accommodate 508 * this add operation. Note that actual_regions_needed may be greater 509 * than in_regions_needed, as the resv_map may have been modified since 510 * the region_chg call. In this case, we need to make sure that we 511 * allocate extra entries, such that we have enough for all the 512 * existing adds_in_progress, plus the excess needed for this 513 * operation. 514 */ 515 if (actual_regions_needed > in_regions_needed && 516 resv->region_cache_count < 517 resv->adds_in_progress + 518 (actual_regions_needed - in_regions_needed)) { 519 /* region_add operation of range 1 should never need to 520 * allocate file_region entries. 521 */ 522 VM_BUG_ON(t - f <= 1); 523 524 if (allocate_file_region_entries( 525 resv, actual_regions_needed - in_regions_needed)) { 526 return -ENOMEM; 527 } 528 529 goto retry; 530 } 531 532 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL); 533 534 resv->adds_in_progress -= in_regions_needed; 535 536 spin_unlock(&resv->lock); 537 VM_BUG_ON(add < 0); 538 return add; 539 } 540 541 /* 542 * Examine the existing reserve map and determine how many 543 * huge pages in the specified range [f, t) are NOT currently 544 * represented. This routine is called before a subsequent 545 * call to region_add that will actually modify the reserve 546 * map to add the specified range [f, t). region_chg does 547 * not change the number of huge pages represented by the 548 * map. A number of new file_region structures is added to the cache as a 549 * placeholder, for the subsequent region_add call to use. At least 1 550 * file_region structure is added. 551 * 552 * out_regions_needed is the number of regions added to the 553 * resv->adds_in_progress. This value needs to be provided to a follow up call 554 * to region_add or region_abort for proper accounting. 555 * 556 * Returns the number of huge pages that need to be added to the existing 557 * reservation map for the range [f, t). This number is greater or equal to 558 * zero. -ENOMEM is returned if a new file_region structure or cache entry 559 * is needed and can not be allocated. 560 */ 561 static long region_chg(struct resv_map *resv, long f, long t, 562 long *out_regions_needed) 563 { 564 long chg = 0; 565 566 spin_lock(&resv->lock); 567 568 /* Count how many hugepages in this range are NOT represented. */ 569 chg = add_reservation_in_range(resv, f, t, NULL, NULL, 570 out_regions_needed); 571 572 if (*out_regions_needed == 0) 573 *out_regions_needed = 1; 574 575 if (allocate_file_region_entries(resv, *out_regions_needed)) 576 return -ENOMEM; 577 578 resv->adds_in_progress += *out_regions_needed; 579 580 spin_unlock(&resv->lock); 581 return chg; 582 } 583 584 /* 585 * Abort the in progress add operation. The adds_in_progress field 586 * of the resv_map keeps track of the operations in progress between 587 * calls to region_chg and region_add. Operations are sometimes 588 * aborted after the call to region_chg. In such cases, region_abort 589 * is called to decrement the adds_in_progress counter. regions_needed 590 * is the value returned by the region_chg call, it is used to decrement 591 * the adds_in_progress counter. 592 * 593 * NOTE: The range arguments [f, t) are not needed or used in this 594 * routine. They are kept to make reading the calling code easier as 595 * arguments will match the associated region_chg call. 596 */ 597 static void region_abort(struct resv_map *resv, long f, long t, 598 long regions_needed) 599 { 600 spin_lock(&resv->lock); 601 VM_BUG_ON(!resv->region_cache_count); 602 resv->adds_in_progress -= regions_needed; 603 spin_unlock(&resv->lock); 604 } 605 606 /* 607 * Delete the specified range [f, t) from the reserve map. If the 608 * t parameter is LONG_MAX, this indicates that ALL regions after f 609 * should be deleted. Locate the regions which intersect [f, t) 610 * and either trim, delete or split the existing regions. 611 * 612 * Returns the number of huge pages deleted from the reserve map. 613 * In the normal case, the return value is zero or more. In the 614 * case where a region must be split, a new region descriptor must 615 * be allocated. If the allocation fails, -ENOMEM will be returned. 616 * NOTE: If the parameter t == LONG_MAX, then we will never split 617 * a region and possibly return -ENOMEM. Callers specifying 618 * t == LONG_MAX do not need to check for -ENOMEM error. 619 */ 620 static long region_del(struct resv_map *resv, long f, long t) 621 { 622 struct list_head *head = &resv->regions; 623 struct file_region *rg, *trg; 624 struct file_region *nrg = NULL; 625 long del = 0; 626 627 retry: 628 spin_lock(&resv->lock); 629 list_for_each_entry_safe(rg, trg, head, link) { 630 /* 631 * Skip regions before the range to be deleted. file_region 632 * ranges are normally of the form [from, to). However, there 633 * may be a "placeholder" entry in the map which is of the form 634 * (from, to) with from == to. Check for placeholder entries 635 * at the beginning of the range to be deleted. 636 */ 637 if (rg->to <= f && (rg->to != rg->from || rg->to != f)) 638 continue; 639 640 if (rg->from >= t) 641 break; 642 643 if (f > rg->from && t < rg->to) { /* Must split region */ 644 /* 645 * Check for an entry in the cache before dropping 646 * lock and attempting allocation. 647 */ 648 if (!nrg && 649 resv->region_cache_count > resv->adds_in_progress) { 650 nrg = list_first_entry(&resv->region_cache, 651 struct file_region, 652 link); 653 list_del(&nrg->link); 654 resv->region_cache_count--; 655 } 656 657 if (!nrg) { 658 spin_unlock(&resv->lock); 659 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 660 if (!nrg) 661 return -ENOMEM; 662 goto retry; 663 } 664 665 del += t - f; 666 hugetlb_cgroup_uncharge_file_region( 667 resv, rg, t - f); 668 669 /* New entry for end of split region */ 670 nrg->from = t; 671 nrg->to = rg->to; 672 673 copy_hugetlb_cgroup_uncharge_info(nrg, rg); 674 675 INIT_LIST_HEAD(&nrg->link); 676 677 /* Original entry is trimmed */ 678 rg->to = f; 679 680 list_add(&nrg->link, &rg->link); 681 nrg = NULL; 682 break; 683 } 684 685 if (f <= rg->from && t >= rg->to) { /* Remove entire region */ 686 del += rg->to - rg->from; 687 hugetlb_cgroup_uncharge_file_region(resv, rg, 688 rg->to - rg->from); 689 list_del(&rg->link); 690 kfree(rg); 691 continue; 692 } 693 694 if (f <= rg->from) { /* Trim beginning of region */ 695 hugetlb_cgroup_uncharge_file_region(resv, rg, 696 t - rg->from); 697 698 del += t - rg->from; 699 rg->from = t; 700 } else { /* Trim end of region */ 701 hugetlb_cgroup_uncharge_file_region(resv, rg, 702 rg->to - f); 703 704 del += rg->to - f; 705 rg->to = f; 706 } 707 } 708 709 spin_unlock(&resv->lock); 710 kfree(nrg); 711 return del; 712 } 713 714 /* 715 * A rare out of memory error was encountered which prevented removal of 716 * the reserve map region for a page. The huge page itself was free'ed 717 * and removed from the page cache. This routine will adjust the subpool 718 * usage count, and the global reserve count if needed. By incrementing 719 * these counts, the reserve map entry which could not be deleted will 720 * appear as a "reserved" entry instead of simply dangling with incorrect 721 * counts. 722 */ 723 void hugetlb_fix_reserve_counts(struct inode *inode) 724 { 725 struct hugepage_subpool *spool = subpool_inode(inode); 726 long rsv_adjust; 727 728 rsv_adjust = hugepage_subpool_get_pages(spool, 1); 729 if (rsv_adjust) { 730 struct hstate *h = hstate_inode(inode); 731 732 hugetlb_acct_memory(h, 1); 733 } 734 } 735 736 /* 737 * Count and return the number of huge pages in the reserve map 738 * that intersect with the range [f, t). 739 */ 740 static long region_count(struct resv_map *resv, long f, long t) 741 { 742 struct list_head *head = &resv->regions; 743 struct file_region *rg; 744 long chg = 0; 745 746 spin_lock(&resv->lock); 747 /* Locate each segment we overlap with, and count that overlap. */ 748 list_for_each_entry(rg, head, link) { 749 long seg_from; 750 long seg_to; 751 752 if (rg->to <= f) 753 continue; 754 if (rg->from >= t) 755 break; 756 757 seg_from = max(rg->from, f); 758 seg_to = min(rg->to, t); 759 760 chg += seg_to - seg_from; 761 } 762 spin_unlock(&resv->lock); 763 764 return chg; 765 } 766 767 /* 768 * Convert the address within this vma to the page offset within 769 * the mapping, in pagecache page units; huge pages here. 770 */ 771 static pgoff_t vma_hugecache_offset(struct hstate *h, 772 struct vm_area_struct *vma, unsigned long address) 773 { 774 return ((address - vma->vm_start) >> huge_page_shift(h)) + 775 (vma->vm_pgoff >> huge_page_order(h)); 776 } 777 778 pgoff_t linear_hugepage_index(struct vm_area_struct *vma, 779 unsigned long address) 780 { 781 return vma_hugecache_offset(hstate_vma(vma), vma, address); 782 } 783 EXPORT_SYMBOL_GPL(linear_hugepage_index); 784 785 /* 786 * Return the size of the pages allocated when backing a VMA. In the majority 787 * cases this will be same size as used by the page table entries. 788 */ 789 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) 790 { 791 if (vma->vm_ops && vma->vm_ops->pagesize) 792 return vma->vm_ops->pagesize(vma); 793 return PAGE_SIZE; 794 } 795 EXPORT_SYMBOL_GPL(vma_kernel_pagesize); 796 797 /* 798 * Return the page size being used by the MMU to back a VMA. In the majority 799 * of cases, the page size used by the kernel matches the MMU size. On 800 * architectures where it differs, an architecture-specific 'strong' 801 * version of this symbol is required. 802 */ 803 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 804 { 805 return vma_kernel_pagesize(vma); 806 } 807 808 /* 809 * Flags for MAP_PRIVATE reservations. These are stored in the bottom 810 * bits of the reservation map pointer, which are always clear due to 811 * alignment. 812 */ 813 #define HPAGE_RESV_OWNER (1UL << 0) 814 #define HPAGE_RESV_UNMAPPED (1UL << 1) 815 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) 816 817 /* 818 * These helpers are used to track how many pages are reserved for 819 * faults in a MAP_PRIVATE mapping. Only the process that called mmap() 820 * is guaranteed to have their future faults succeed. 821 * 822 * With the exception of reset_vma_resv_huge_pages() which is called at fork(), 823 * the reserve counters are updated with the hugetlb_lock held. It is safe 824 * to reset the VMA at fork() time as it is not in use yet and there is no 825 * chance of the global counters getting corrupted as a result of the values. 826 * 827 * The private mapping reservation is represented in a subtly different 828 * manner to a shared mapping. A shared mapping has a region map associated 829 * with the underlying file, this region map represents the backing file 830 * pages which have ever had a reservation assigned which this persists even 831 * after the page is instantiated. A private mapping has a region map 832 * associated with the original mmap which is attached to all VMAs which 833 * reference it, this region map represents those offsets which have consumed 834 * reservation ie. where pages have been instantiated. 835 */ 836 static unsigned long get_vma_private_data(struct vm_area_struct *vma) 837 { 838 return (unsigned long)vma->vm_private_data; 839 } 840 841 static void set_vma_private_data(struct vm_area_struct *vma, 842 unsigned long value) 843 { 844 vma->vm_private_data = (void *)value; 845 } 846 847 static void 848 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map, 849 struct hugetlb_cgroup *h_cg, 850 struct hstate *h) 851 { 852 #ifdef CONFIG_CGROUP_HUGETLB 853 if (!h_cg || !h) { 854 resv_map->reservation_counter = NULL; 855 resv_map->pages_per_hpage = 0; 856 resv_map->css = NULL; 857 } else { 858 resv_map->reservation_counter = 859 &h_cg->rsvd_hugepage[hstate_index(h)]; 860 resv_map->pages_per_hpage = pages_per_huge_page(h); 861 resv_map->css = &h_cg->css; 862 } 863 #endif 864 } 865 866 struct resv_map *resv_map_alloc(void) 867 { 868 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); 869 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL); 870 871 if (!resv_map || !rg) { 872 kfree(resv_map); 873 kfree(rg); 874 return NULL; 875 } 876 877 kref_init(&resv_map->refs); 878 spin_lock_init(&resv_map->lock); 879 INIT_LIST_HEAD(&resv_map->regions); 880 881 resv_map->adds_in_progress = 0; 882 /* 883 * Initialize these to 0. On shared mappings, 0's here indicate these 884 * fields don't do cgroup accounting. On private mappings, these will be 885 * re-initialized to the proper values, to indicate that hugetlb cgroup 886 * reservations are to be un-charged from here. 887 */ 888 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL); 889 890 INIT_LIST_HEAD(&resv_map->region_cache); 891 list_add(&rg->link, &resv_map->region_cache); 892 resv_map->region_cache_count = 1; 893 894 return resv_map; 895 } 896 897 void resv_map_release(struct kref *ref) 898 { 899 struct resv_map *resv_map = container_of(ref, struct resv_map, refs); 900 struct list_head *head = &resv_map->region_cache; 901 struct file_region *rg, *trg; 902 903 /* Clear out any active regions before we release the map. */ 904 region_del(resv_map, 0, LONG_MAX); 905 906 /* ... and any entries left in the cache */ 907 list_for_each_entry_safe(rg, trg, head, link) { 908 list_del(&rg->link); 909 kfree(rg); 910 } 911 912 VM_BUG_ON(resv_map->adds_in_progress); 913 914 kfree(resv_map); 915 } 916 917 static inline struct resv_map *inode_resv_map(struct inode *inode) 918 { 919 /* 920 * At inode evict time, i_mapping may not point to the original 921 * address space within the inode. This original address space 922 * contains the pointer to the resv_map. So, always use the 923 * address space embedded within the inode. 924 * The VERY common case is inode->mapping == &inode->i_data but, 925 * this may not be true for device special inodes. 926 */ 927 return (struct resv_map *)(&inode->i_data)->private_data; 928 } 929 930 static struct resv_map *vma_resv_map(struct vm_area_struct *vma) 931 { 932 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 933 if (vma->vm_flags & VM_MAYSHARE) { 934 struct address_space *mapping = vma->vm_file->f_mapping; 935 struct inode *inode = mapping->host; 936 937 return inode_resv_map(inode); 938 939 } else { 940 return (struct resv_map *)(get_vma_private_data(vma) & 941 ~HPAGE_RESV_MASK); 942 } 943 } 944 945 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) 946 { 947 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 948 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 949 950 set_vma_private_data(vma, (get_vma_private_data(vma) & 951 HPAGE_RESV_MASK) | (unsigned long)map); 952 } 953 954 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) 955 { 956 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 957 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 958 959 set_vma_private_data(vma, get_vma_private_data(vma) | flags); 960 } 961 962 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) 963 { 964 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 965 966 return (get_vma_private_data(vma) & flag) != 0; 967 } 968 969 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */ 970 void reset_vma_resv_huge_pages(struct vm_area_struct *vma) 971 { 972 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 973 if (!(vma->vm_flags & VM_MAYSHARE)) 974 vma->vm_private_data = (void *)0; 975 } 976 977 /* Returns true if the VMA has associated reserve pages */ 978 static bool vma_has_reserves(struct vm_area_struct *vma, long chg) 979 { 980 if (vma->vm_flags & VM_NORESERVE) { 981 /* 982 * This address is already reserved by other process(chg == 0), 983 * so, we should decrement reserved count. Without decrementing, 984 * reserve count remains after releasing inode, because this 985 * allocated page will go into page cache and is regarded as 986 * coming from reserved pool in releasing step. Currently, we 987 * don't have any other solution to deal with this situation 988 * properly, so add work-around here. 989 */ 990 if (vma->vm_flags & VM_MAYSHARE && chg == 0) 991 return true; 992 else 993 return false; 994 } 995 996 /* Shared mappings always use reserves */ 997 if (vma->vm_flags & VM_MAYSHARE) { 998 /* 999 * We know VM_NORESERVE is not set. Therefore, there SHOULD 1000 * be a region map for all pages. The only situation where 1001 * there is no region map is if a hole was punched via 1002 * fallocate. In this case, there really are no reserves to 1003 * use. This situation is indicated if chg != 0. 1004 */ 1005 if (chg) 1006 return false; 1007 else 1008 return true; 1009 } 1010 1011 /* 1012 * Only the process that called mmap() has reserves for 1013 * private mappings. 1014 */ 1015 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 1016 /* 1017 * Like the shared case above, a hole punch or truncate 1018 * could have been performed on the private mapping. 1019 * Examine the value of chg to determine if reserves 1020 * actually exist or were previously consumed. 1021 * Very Subtle - The value of chg comes from a previous 1022 * call to vma_needs_reserves(). The reserve map for 1023 * private mappings has different (opposite) semantics 1024 * than that of shared mappings. vma_needs_reserves() 1025 * has already taken this difference in semantics into 1026 * account. Therefore, the meaning of chg is the same 1027 * as in the shared case above. Code could easily be 1028 * combined, but keeping it separate draws attention to 1029 * subtle differences. 1030 */ 1031 if (chg) 1032 return false; 1033 else 1034 return true; 1035 } 1036 1037 return false; 1038 } 1039 1040 static void enqueue_huge_page(struct hstate *h, struct page *page) 1041 { 1042 int nid = page_to_nid(page); 1043 list_move(&page->lru, &h->hugepage_freelists[nid]); 1044 h->free_huge_pages++; 1045 h->free_huge_pages_node[nid]++; 1046 SetPageHugeFreed(page); 1047 } 1048 1049 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid) 1050 { 1051 struct page *page; 1052 bool nocma = !!(current->flags & PF_MEMALLOC_NOCMA); 1053 1054 list_for_each_entry(page, &h->hugepage_freelists[nid], lru) { 1055 if (nocma && is_migrate_cma_page(page)) 1056 continue; 1057 1058 if (PageHWPoison(page)) 1059 continue; 1060 1061 list_move(&page->lru, &h->hugepage_activelist); 1062 set_page_refcounted(page); 1063 ClearPageHugeFreed(page); 1064 h->free_huge_pages--; 1065 h->free_huge_pages_node[nid]--; 1066 return page; 1067 } 1068 1069 return NULL; 1070 } 1071 1072 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid, 1073 nodemask_t *nmask) 1074 { 1075 unsigned int cpuset_mems_cookie; 1076 struct zonelist *zonelist; 1077 struct zone *zone; 1078 struct zoneref *z; 1079 int node = NUMA_NO_NODE; 1080 1081 zonelist = node_zonelist(nid, gfp_mask); 1082 1083 retry_cpuset: 1084 cpuset_mems_cookie = read_mems_allowed_begin(); 1085 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) { 1086 struct page *page; 1087 1088 if (!cpuset_zone_allowed(zone, gfp_mask)) 1089 continue; 1090 /* 1091 * no need to ask again on the same node. Pool is node rather than 1092 * zone aware 1093 */ 1094 if (zone_to_nid(zone) == node) 1095 continue; 1096 node = zone_to_nid(zone); 1097 1098 page = dequeue_huge_page_node_exact(h, node); 1099 if (page) 1100 return page; 1101 } 1102 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie))) 1103 goto retry_cpuset; 1104 1105 return NULL; 1106 } 1107 1108 static struct page *dequeue_huge_page_vma(struct hstate *h, 1109 struct vm_area_struct *vma, 1110 unsigned long address, int avoid_reserve, 1111 long chg) 1112 { 1113 struct page *page; 1114 struct mempolicy *mpol; 1115 gfp_t gfp_mask; 1116 nodemask_t *nodemask; 1117 int nid; 1118 1119 /* 1120 * A child process with MAP_PRIVATE mappings created by their parent 1121 * have no page reserves. This check ensures that reservations are 1122 * not "stolen". The child may still get SIGKILLed 1123 */ 1124 if (!vma_has_reserves(vma, chg) && 1125 h->free_huge_pages - h->resv_huge_pages == 0) 1126 goto err; 1127 1128 /* If reserves cannot be used, ensure enough pages are in the pool */ 1129 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0) 1130 goto err; 1131 1132 gfp_mask = htlb_alloc_mask(h); 1133 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 1134 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask); 1135 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) { 1136 SetPagePrivate(page); 1137 h->resv_huge_pages--; 1138 } 1139 1140 mpol_cond_put(mpol); 1141 return page; 1142 1143 err: 1144 return NULL; 1145 } 1146 1147 /* 1148 * common helper functions for hstate_next_node_to_{alloc|free}. 1149 * We may have allocated or freed a huge page based on a different 1150 * nodes_allowed previously, so h->next_node_to_{alloc|free} might 1151 * be outside of *nodes_allowed. Ensure that we use an allowed 1152 * node for alloc or free. 1153 */ 1154 static int next_node_allowed(int nid, nodemask_t *nodes_allowed) 1155 { 1156 nid = next_node_in(nid, *nodes_allowed); 1157 VM_BUG_ON(nid >= MAX_NUMNODES); 1158 1159 return nid; 1160 } 1161 1162 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed) 1163 { 1164 if (!node_isset(nid, *nodes_allowed)) 1165 nid = next_node_allowed(nid, nodes_allowed); 1166 return nid; 1167 } 1168 1169 /* 1170 * returns the previously saved node ["this node"] from which to 1171 * allocate a persistent huge page for the pool and advance the 1172 * next node from which to allocate, handling wrap at end of node 1173 * mask. 1174 */ 1175 static int hstate_next_node_to_alloc(struct hstate *h, 1176 nodemask_t *nodes_allowed) 1177 { 1178 int nid; 1179 1180 VM_BUG_ON(!nodes_allowed); 1181 1182 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed); 1183 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed); 1184 1185 return nid; 1186 } 1187 1188 /* 1189 * helper for free_pool_huge_page() - return the previously saved 1190 * node ["this node"] from which to free a huge page. Advance the 1191 * next node id whether or not we find a free huge page to free so 1192 * that the next attempt to free addresses the next node. 1193 */ 1194 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed) 1195 { 1196 int nid; 1197 1198 VM_BUG_ON(!nodes_allowed); 1199 1200 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed); 1201 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed); 1202 1203 return nid; 1204 } 1205 1206 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \ 1207 for (nr_nodes = nodes_weight(*mask); \ 1208 nr_nodes > 0 && \ 1209 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \ 1210 nr_nodes--) 1211 1212 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \ 1213 for (nr_nodes = nodes_weight(*mask); \ 1214 nr_nodes > 0 && \ 1215 ((node = hstate_next_node_to_free(hs, mask)) || 1); \ 1216 nr_nodes--) 1217 1218 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE 1219 static void destroy_compound_gigantic_page(struct page *page, 1220 unsigned int order) 1221 { 1222 int i; 1223 int nr_pages = 1 << order; 1224 struct page *p = page + 1; 1225 1226 atomic_set(compound_mapcount_ptr(page), 0); 1227 if (hpage_pincount_available(page)) 1228 atomic_set(compound_pincount_ptr(page), 0); 1229 1230 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { 1231 clear_compound_head(p); 1232 set_page_refcounted(p); 1233 } 1234 1235 set_compound_order(page, 0); 1236 page[1].compound_nr = 0; 1237 __ClearPageHead(page); 1238 } 1239 1240 static void free_gigantic_page(struct page *page, unsigned int order) 1241 { 1242 /* 1243 * If the page isn't allocated using the cma allocator, 1244 * cma_release() returns false. 1245 */ 1246 #ifdef CONFIG_CMA 1247 if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order)) 1248 return; 1249 #endif 1250 1251 free_contig_range(page_to_pfn(page), 1 << order); 1252 } 1253 1254 #ifdef CONFIG_CONTIG_ALLOC 1255 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, 1256 int nid, nodemask_t *nodemask) 1257 { 1258 unsigned long nr_pages = 1UL << huge_page_order(h); 1259 if (nid == NUMA_NO_NODE) 1260 nid = numa_mem_id(); 1261 1262 #ifdef CONFIG_CMA 1263 { 1264 struct page *page; 1265 int node; 1266 1267 if (hugetlb_cma[nid]) { 1268 page = cma_alloc(hugetlb_cma[nid], nr_pages, 1269 huge_page_order(h), true); 1270 if (page) 1271 return page; 1272 } 1273 1274 if (!(gfp_mask & __GFP_THISNODE)) { 1275 for_each_node_mask(node, *nodemask) { 1276 if (node == nid || !hugetlb_cma[node]) 1277 continue; 1278 1279 page = cma_alloc(hugetlb_cma[node], nr_pages, 1280 huge_page_order(h), true); 1281 if (page) 1282 return page; 1283 } 1284 } 1285 } 1286 #endif 1287 1288 return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask); 1289 } 1290 1291 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid); 1292 static void prep_compound_gigantic_page(struct page *page, unsigned int order); 1293 #else /* !CONFIG_CONTIG_ALLOC */ 1294 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, 1295 int nid, nodemask_t *nodemask) 1296 { 1297 return NULL; 1298 } 1299 #endif /* CONFIG_CONTIG_ALLOC */ 1300 1301 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */ 1302 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, 1303 int nid, nodemask_t *nodemask) 1304 { 1305 return NULL; 1306 } 1307 static inline void free_gigantic_page(struct page *page, unsigned int order) { } 1308 static inline void destroy_compound_gigantic_page(struct page *page, 1309 unsigned int order) { } 1310 #endif 1311 1312 static void update_and_free_page(struct hstate *h, struct page *page) 1313 { 1314 int i; 1315 1316 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 1317 return; 1318 1319 h->nr_huge_pages--; 1320 h->nr_huge_pages_node[page_to_nid(page)]--; 1321 for (i = 0; i < pages_per_huge_page(h); i++) { 1322 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1323 1 << PG_referenced | 1 << PG_dirty | 1324 1 << PG_active | 1 << PG_private | 1325 1 << PG_writeback); 1326 } 1327 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page); 1328 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page); 1329 set_compound_page_dtor(page, NULL_COMPOUND_DTOR); 1330 set_page_refcounted(page); 1331 if (hstate_is_gigantic(h)) { 1332 /* 1333 * Temporarily drop the hugetlb_lock, because 1334 * we might block in free_gigantic_page(). 1335 */ 1336 spin_unlock(&hugetlb_lock); 1337 destroy_compound_gigantic_page(page, huge_page_order(h)); 1338 free_gigantic_page(page, huge_page_order(h)); 1339 spin_lock(&hugetlb_lock); 1340 } else { 1341 __free_pages(page, huge_page_order(h)); 1342 } 1343 } 1344 1345 struct hstate *size_to_hstate(unsigned long size) 1346 { 1347 struct hstate *h; 1348 1349 for_each_hstate(h) { 1350 if (huge_page_size(h) == size) 1351 return h; 1352 } 1353 return NULL; 1354 } 1355 1356 /* 1357 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked 1358 * to hstate->hugepage_activelist.) 1359 * 1360 * This function can be called for tail pages, but never returns true for them. 1361 */ 1362 bool page_huge_active(struct page *page) 1363 { 1364 return PageHeadHuge(page) && PagePrivate(&page[1]); 1365 } 1366 1367 /* never called for tail page */ 1368 void set_page_huge_active(struct page *page) 1369 { 1370 VM_BUG_ON_PAGE(!PageHeadHuge(page), page); 1371 SetPagePrivate(&page[1]); 1372 } 1373 1374 static void clear_page_huge_active(struct page *page) 1375 { 1376 VM_BUG_ON_PAGE(!PageHeadHuge(page), page); 1377 ClearPagePrivate(&page[1]); 1378 } 1379 1380 /* 1381 * Internal hugetlb specific page flag. Do not use outside of the hugetlb 1382 * code 1383 */ 1384 static inline bool PageHugeTemporary(struct page *page) 1385 { 1386 if (!PageHuge(page)) 1387 return false; 1388 1389 return (unsigned long)page[2].mapping == -1U; 1390 } 1391 1392 static inline void SetPageHugeTemporary(struct page *page) 1393 { 1394 page[2].mapping = (void *)-1U; 1395 } 1396 1397 static inline void ClearPageHugeTemporary(struct page *page) 1398 { 1399 page[2].mapping = NULL; 1400 } 1401 1402 static void __free_huge_page(struct page *page) 1403 { 1404 /* 1405 * Can't pass hstate in here because it is called from the 1406 * compound page destructor. 1407 */ 1408 struct hstate *h = page_hstate(page); 1409 int nid = page_to_nid(page); 1410 struct hugepage_subpool *spool = 1411 (struct hugepage_subpool *)page_private(page); 1412 bool restore_reserve; 1413 1414 VM_BUG_ON_PAGE(page_count(page), page); 1415 VM_BUG_ON_PAGE(page_mapcount(page), page); 1416 1417 set_page_private(page, 0); 1418 page->mapping = NULL; 1419 restore_reserve = PagePrivate(page); 1420 ClearPagePrivate(page); 1421 1422 /* 1423 * If PagePrivate() was set on page, page allocation consumed a 1424 * reservation. If the page was associated with a subpool, there 1425 * would have been a page reserved in the subpool before allocation 1426 * via hugepage_subpool_get_pages(). Since we are 'restoring' the 1427 * reservtion, do not call hugepage_subpool_put_pages() as this will 1428 * remove the reserved page from the subpool. 1429 */ 1430 if (!restore_reserve) { 1431 /* 1432 * A return code of zero implies that the subpool will be 1433 * under its minimum size if the reservation is not restored 1434 * after page is free. Therefore, force restore_reserve 1435 * operation. 1436 */ 1437 if (hugepage_subpool_put_pages(spool, 1) == 0) 1438 restore_reserve = true; 1439 } 1440 1441 spin_lock(&hugetlb_lock); 1442 clear_page_huge_active(page); 1443 hugetlb_cgroup_uncharge_page(hstate_index(h), 1444 pages_per_huge_page(h), page); 1445 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h), 1446 pages_per_huge_page(h), page); 1447 if (restore_reserve) 1448 h->resv_huge_pages++; 1449 1450 if (PageHugeTemporary(page)) { 1451 list_del(&page->lru); 1452 ClearPageHugeTemporary(page); 1453 update_and_free_page(h, page); 1454 } else if (h->surplus_huge_pages_node[nid]) { 1455 /* remove the page from active list */ 1456 list_del(&page->lru); 1457 update_and_free_page(h, page); 1458 h->surplus_huge_pages--; 1459 h->surplus_huge_pages_node[nid]--; 1460 } else { 1461 arch_clear_hugepage_flags(page); 1462 enqueue_huge_page(h, page); 1463 } 1464 spin_unlock(&hugetlb_lock); 1465 } 1466 1467 /* 1468 * As free_huge_page() can be called from a non-task context, we have 1469 * to defer the actual freeing in a workqueue to prevent potential 1470 * hugetlb_lock deadlock. 1471 * 1472 * free_hpage_workfn() locklessly retrieves the linked list of pages to 1473 * be freed and frees them one-by-one. As the page->mapping pointer is 1474 * going to be cleared in __free_huge_page() anyway, it is reused as the 1475 * llist_node structure of a lockless linked list of huge pages to be freed. 1476 */ 1477 static LLIST_HEAD(hpage_freelist); 1478 1479 static void free_hpage_workfn(struct work_struct *work) 1480 { 1481 struct llist_node *node; 1482 struct page *page; 1483 1484 node = llist_del_all(&hpage_freelist); 1485 1486 while (node) { 1487 page = container_of((struct address_space **)node, 1488 struct page, mapping); 1489 node = node->next; 1490 __free_huge_page(page); 1491 } 1492 } 1493 static DECLARE_WORK(free_hpage_work, free_hpage_workfn); 1494 1495 void free_huge_page(struct page *page) 1496 { 1497 /* 1498 * Defer freeing if in non-task context to avoid hugetlb_lock deadlock. 1499 */ 1500 if (!in_task()) { 1501 /* 1502 * Only call schedule_work() if hpage_freelist is previously 1503 * empty. Otherwise, schedule_work() had been called but the 1504 * workfn hasn't retrieved the list yet. 1505 */ 1506 if (llist_add((struct llist_node *)&page->mapping, 1507 &hpage_freelist)) 1508 schedule_work(&free_hpage_work); 1509 return; 1510 } 1511 1512 __free_huge_page(page); 1513 } 1514 1515 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid) 1516 { 1517 INIT_LIST_HEAD(&page->lru); 1518 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR); 1519 set_hugetlb_cgroup(page, NULL); 1520 set_hugetlb_cgroup_rsvd(page, NULL); 1521 spin_lock(&hugetlb_lock); 1522 h->nr_huge_pages++; 1523 h->nr_huge_pages_node[nid]++; 1524 ClearPageHugeFreed(page); 1525 spin_unlock(&hugetlb_lock); 1526 } 1527 1528 static void prep_compound_gigantic_page(struct page *page, unsigned int order) 1529 { 1530 int i; 1531 int nr_pages = 1 << order; 1532 struct page *p = page + 1; 1533 1534 /* we rely on prep_new_huge_page to set the destructor */ 1535 set_compound_order(page, order); 1536 __ClearPageReserved(page); 1537 __SetPageHead(page); 1538 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { 1539 /* 1540 * For gigantic hugepages allocated through bootmem at 1541 * boot, it's safer to be consistent with the not-gigantic 1542 * hugepages and clear the PG_reserved bit from all tail pages 1543 * too. Otherwise drivers using get_user_pages() to access tail 1544 * pages may get the reference counting wrong if they see 1545 * PG_reserved set on a tail page (despite the head page not 1546 * having PG_reserved set). Enforcing this consistency between 1547 * head and tail pages allows drivers to optimize away a check 1548 * on the head page when they need know if put_page() is needed 1549 * after get_user_pages(). 1550 */ 1551 __ClearPageReserved(p); 1552 set_page_count(p, 0); 1553 set_compound_head(p, page); 1554 } 1555 atomic_set(compound_mapcount_ptr(page), -1); 1556 1557 if (hpage_pincount_available(page)) 1558 atomic_set(compound_pincount_ptr(page), 0); 1559 } 1560 1561 /* 1562 * PageHuge() only returns true for hugetlbfs pages, but not for normal or 1563 * transparent huge pages. See the PageTransHuge() documentation for more 1564 * details. 1565 */ 1566 int PageHuge(struct page *page) 1567 { 1568 if (!PageCompound(page)) 1569 return 0; 1570 1571 page = compound_head(page); 1572 return page[1].compound_dtor == HUGETLB_PAGE_DTOR; 1573 } 1574 EXPORT_SYMBOL_GPL(PageHuge); 1575 1576 /* 1577 * PageHeadHuge() only returns true for hugetlbfs head page, but not for 1578 * normal or transparent huge pages. 1579 */ 1580 int PageHeadHuge(struct page *page_head) 1581 { 1582 if (!PageHead(page_head)) 1583 return 0; 1584 1585 return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR; 1586 } 1587 1588 /* 1589 * Find and lock address space (mapping) in write mode. 1590 * 1591 * Upon entry, the page is locked which means that page_mapping() is 1592 * stable. Due to locking order, we can only trylock_write. If we can 1593 * not get the lock, simply return NULL to caller. 1594 */ 1595 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage) 1596 { 1597 struct address_space *mapping = page_mapping(hpage); 1598 1599 if (!mapping) 1600 return mapping; 1601 1602 if (i_mmap_trylock_write(mapping)) 1603 return mapping; 1604 1605 return NULL; 1606 } 1607 1608 pgoff_t __basepage_index(struct page *page) 1609 { 1610 struct page *page_head = compound_head(page); 1611 pgoff_t index = page_index(page_head); 1612 unsigned long compound_idx; 1613 1614 if (!PageHuge(page_head)) 1615 return page_index(page); 1616 1617 if (compound_order(page_head) >= MAX_ORDER) 1618 compound_idx = page_to_pfn(page) - page_to_pfn(page_head); 1619 else 1620 compound_idx = page - page_head; 1621 1622 return (index << compound_order(page_head)) + compound_idx; 1623 } 1624 1625 static struct page *alloc_buddy_huge_page(struct hstate *h, 1626 gfp_t gfp_mask, int nid, nodemask_t *nmask, 1627 nodemask_t *node_alloc_noretry) 1628 { 1629 int order = huge_page_order(h); 1630 struct page *page; 1631 bool alloc_try_hard = true; 1632 1633 /* 1634 * By default we always try hard to allocate the page with 1635 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in 1636 * a loop (to adjust global huge page counts) and previous allocation 1637 * failed, do not continue to try hard on the same node. Use the 1638 * node_alloc_noretry bitmap to manage this state information. 1639 */ 1640 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry)) 1641 alloc_try_hard = false; 1642 gfp_mask |= __GFP_COMP|__GFP_NOWARN; 1643 if (alloc_try_hard) 1644 gfp_mask |= __GFP_RETRY_MAYFAIL; 1645 if (nid == NUMA_NO_NODE) 1646 nid = numa_mem_id(); 1647 page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask); 1648 if (page) 1649 __count_vm_event(HTLB_BUDDY_PGALLOC); 1650 else 1651 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 1652 1653 /* 1654 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this 1655 * indicates an overall state change. Clear bit so that we resume 1656 * normal 'try hard' allocations. 1657 */ 1658 if (node_alloc_noretry && page && !alloc_try_hard) 1659 node_clear(nid, *node_alloc_noretry); 1660 1661 /* 1662 * If we tried hard to get a page but failed, set bit so that 1663 * subsequent attempts will not try as hard until there is an 1664 * overall state change. 1665 */ 1666 if (node_alloc_noretry && !page && alloc_try_hard) 1667 node_set(nid, *node_alloc_noretry); 1668 1669 return page; 1670 } 1671 1672 /* 1673 * Common helper to allocate a fresh hugetlb page. All specific allocators 1674 * should use this function to get new hugetlb pages 1675 */ 1676 static struct page *alloc_fresh_huge_page(struct hstate *h, 1677 gfp_t gfp_mask, int nid, nodemask_t *nmask, 1678 nodemask_t *node_alloc_noretry) 1679 { 1680 struct page *page; 1681 1682 if (hstate_is_gigantic(h)) 1683 page = alloc_gigantic_page(h, gfp_mask, nid, nmask); 1684 else 1685 page = alloc_buddy_huge_page(h, gfp_mask, 1686 nid, nmask, node_alloc_noretry); 1687 if (!page) 1688 return NULL; 1689 1690 if (hstate_is_gigantic(h)) 1691 prep_compound_gigantic_page(page, huge_page_order(h)); 1692 prep_new_huge_page(h, page, page_to_nid(page)); 1693 1694 return page; 1695 } 1696 1697 /* 1698 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved 1699 * manner. 1700 */ 1701 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed, 1702 nodemask_t *node_alloc_noretry) 1703 { 1704 struct page *page; 1705 int nr_nodes, node; 1706 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 1707 1708 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 1709 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed, 1710 node_alloc_noretry); 1711 if (page) 1712 break; 1713 } 1714 1715 if (!page) 1716 return 0; 1717 1718 put_page(page); /* free it into the hugepage allocator */ 1719 1720 return 1; 1721 } 1722 1723 /* 1724 * Free huge page from pool from next node to free. 1725 * Attempt to keep persistent huge pages more or less 1726 * balanced over allowed nodes. 1727 * Called with hugetlb_lock locked. 1728 */ 1729 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed, 1730 bool acct_surplus) 1731 { 1732 int nr_nodes, node; 1733 int ret = 0; 1734 1735 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 1736 /* 1737 * If we're returning unused surplus pages, only examine 1738 * nodes with surplus pages. 1739 */ 1740 if ((!acct_surplus || h->surplus_huge_pages_node[node]) && 1741 !list_empty(&h->hugepage_freelists[node])) { 1742 struct page *page = 1743 list_entry(h->hugepage_freelists[node].next, 1744 struct page, lru); 1745 list_del(&page->lru); 1746 h->free_huge_pages--; 1747 h->free_huge_pages_node[node]--; 1748 if (acct_surplus) { 1749 h->surplus_huge_pages--; 1750 h->surplus_huge_pages_node[node]--; 1751 } 1752 update_and_free_page(h, page); 1753 ret = 1; 1754 break; 1755 } 1756 } 1757 1758 return ret; 1759 } 1760 1761 /* 1762 * Dissolve a given free hugepage into free buddy pages. This function does 1763 * nothing for in-use hugepages and non-hugepages. 1764 * This function returns values like below: 1765 * 1766 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use 1767 * (allocated or reserved.) 1768 * 0: successfully dissolved free hugepages or the page is not a 1769 * hugepage (considered as already dissolved) 1770 */ 1771 int dissolve_free_huge_page(struct page *page) 1772 { 1773 int rc = -EBUSY; 1774 1775 retry: 1776 /* Not to disrupt normal path by vainly holding hugetlb_lock */ 1777 if (!PageHuge(page)) 1778 return 0; 1779 1780 spin_lock(&hugetlb_lock); 1781 if (!PageHuge(page)) { 1782 rc = 0; 1783 goto out; 1784 } 1785 1786 if (!page_count(page)) { 1787 struct page *head = compound_head(page); 1788 struct hstate *h = page_hstate(head); 1789 int nid = page_to_nid(head); 1790 if (h->free_huge_pages - h->resv_huge_pages == 0) 1791 goto out; 1792 1793 /* 1794 * We should make sure that the page is already on the free list 1795 * when it is dissolved. 1796 */ 1797 if (unlikely(!PageHugeFreed(head))) { 1798 spin_unlock(&hugetlb_lock); 1799 cond_resched(); 1800 1801 /* 1802 * Theoretically, we should return -EBUSY when we 1803 * encounter this race. In fact, we have a chance 1804 * to successfully dissolve the page if we do a 1805 * retry. Because the race window is quite small. 1806 * If we seize this opportunity, it is an optimization 1807 * for increasing the success rate of dissolving page. 1808 */ 1809 goto retry; 1810 } 1811 1812 /* 1813 * Move PageHWPoison flag from head page to the raw error page, 1814 * which makes any subpages rather than the error page reusable. 1815 */ 1816 if (PageHWPoison(head) && page != head) { 1817 SetPageHWPoison(page); 1818 ClearPageHWPoison(head); 1819 } 1820 list_del(&head->lru); 1821 h->free_huge_pages--; 1822 h->free_huge_pages_node[nid]--; 1823 h->max_huge_pages--; 1824 update_and_free_page(h, head); 1825 rc = 0; 1826 } 1827 out: 1828 spin_unlock(&hugetlb_lock); 1829 return rc; 1830 } 1831 1832 /* 1833 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to 1834 * make specified memory blocks removable from the system. 1835 * Note that this will dissolve a free gigantic hugepage completely, if any 1836 * part of it lies within the given range. 1837 * Also note that if dissolve_free_huge_page() returns with an error, all 1838 * free hugepages that were dissolved before that error are lost. 1839 */ 1840 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn) 1841 { 1842 unsigned long pfn; 1843 struct page *page; 1844 int rc = 0; 1845 1846 if (!hugepages_supported()) 1847 return rc; 1848 1849 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) { 1850 page = pfn_to_page(pfn); 1851 rc = dissolve_free_huge_page(page); 1852 if (rc) 1853 break; 1854 } 1855 1856 return rc; 1857 } 1858 1859 /* 1860 * Allocates a fresh surplus page from the page allocator. 1861 */ 1862 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask, 1863 int nid, nodemask_t *nmask) 1864 { 1865 struct page *page = NULL; 1866 1867 if (hstate_is_gigantic(h)) 1868 return NULL; 1869 1870 spin_lock(&hugetlb_lock); 1871 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) 1872 goto out_unlock; 1873 spin_unlock(&hugetlb_lock); 1874 1875 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL); 1876 if (!page) 1877 return NULL; 1878 1879 spin_lock(&hugetlb_lock); 1880 /* 1881 * We could have raced with the pool size change. 1882 * Double check that and simply deallocate the new page 1883 * if we would end up overcommiting the surpluses. Abuse 1884 * temporary page to workaround the nasty free_huge_page 1885 * codeflow 1886 */ 1887 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { 1888 SetPageHugeTemporary(page); 1889 spin_unlock(&hugetlb_lock); 1890 put_page(page); 1891 return NULL; 1892 } else { 1893 h->surplus_huge_pages++; 1894 h->surplus_huge_pages_node[page_to_nid(page)]++; 1895 } 1896 1897 out_unlock: 1898 spin_unlock(&hugetlb_lock); 1899 1900 return page; 1901 } 1902 1903 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask, 1904 int nid, nodemask_t *nmask) 1905 { 1906 struct page *page; 1907 1908 if (hstate_is_gigantic(h)) 1909 return NULL; 1910 1911 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL); 1912 if (!page) 1913 return NULL; 1914 1915 /* 1916 * We do not account these pages as surplus because they are only 1917 * temporary and will be released properly on the last reference 1918 */ 1919 SetPageHugeTemporary(page); 1920 1921 return page; 1922 } 1923 1924 /* 1925 * Use the VMA's mpolicy to allocate a huge page from the buddy. 1926 */ 1927 static 1928 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h, 1929 struct vm_area_struct *vma, unsigned long addr) 1930 { 1931 struct page *page; 1932 struct mempolicy *mpol; 1933 gfp_t gfp_mask = htlb_alloc_mask(h); 1934 int nid; 1935 nodemask_t *nodemask; 1936 1937 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask); 1938 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask); 1939 mpol_cond_put(mpol); 1940 1941 return page; 1942 } 1943 1944 /* page migration callback function */ 1945 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid, 1946 nodemask_t *nmask, gfp_t gfp_mask) 1947 { 1948 spin_lock(&hugetlb_lock); 1949 if (h->free_huge_pages - h->resv_huge_pages > 0) { 1950 struct page *page; 1951 1952 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask); 1953 if (page) { 1954 spin_unlock(&hugetlb_lock); 1955 return page; 1956 } 1957 } 1958 spin_unlock(&hugetlb_lock); 1959 1960 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask); 1961 } 1962 1963 /* mempolicy aware migration callback */ 1964 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma, 1965 unsigned long address) 1966 { 1967 struct mempolicy *mpol; 1968 nodemask_t *nodemask; 1969 struct page *page; 1970 gfp_t gfp_mask; 1971 int node; 1972 1973 gfp_mask = htlb_alloc_mask(h); 1974 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 1975 page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask); 1976 mpol_cond_put(mpol); 1977 1978 return page; 1979 } 1980 1981 /* 1982 * Increase the hugetlb pool such that it can accommodate a reservation 1983 * of size 'delta'. 1984 */ 1985 static int gather_surplus_pages(struct hstate *h, long delta) 1986 __must_hold(&hugetlb_lock) 1987 { 1988 struct list_head surplus_list; 1989 struct page *page, *tmp; 1990 int ret; 1991 long i; 1992 long needed, allocated; 1993 bool alloc_ok = true; 1994 1995 needed = (h->resv_huge_pages + delta) - h->free_huge_pages; 1996 if (needed <= 0) { 1997 h->resv_huge_pages += delta; 1998 return 0; 1999 } 2000 2001 allocated = 0; 2002 INIT_LIST_HEAD(&surplus_list); 2003 2004 ret = -ENOMEM; 2005 retry: 2006 spin_unlock(&hugetlb_lock); 2007 for (i = 0; i < needed; i++) { 2008 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h), 2009 NUMA_NO_NODE, NULL); 2010 if (!page) { 2011 alloc_ok = false; 2012 break; 2013 } 2014 list_add(&page->lru, &surplus_list); 2015 cond_resched(); 2016 } 2017 allocated += i; 2018 2019 /* 2020 * After retaking hugetlb_lock, we need to recalculate 'needed' 2021 * because either resv_huge_pages or free_huge_pages may have changed. 2022 */ 2023 spin_lock(&hugetlb_lock); 2024 needed = (h->resv_huge_pages + delta) - 2025 (h->free_huge_pages + allocated); 2026 if (needed > 0) { 2027 if (alloc_ok) 2028 goto retry; 2029 /* 2030 * We were not able to allocate enough pages to 2031 * satisfy the entire reservation so we free what 2032 * we've allocated so far. 2033 */ 2034 goto free; 2035 } 2036 /* 2037 * The surplus_list now contains _at_least_ the number of extra pages 2038 * needed to accommodate the reservation. Add the appropriate number 2039 * of pages to the hugetlb pool and free the extras back to the buddy 2040 * allocator. Commit the entire reservation here to prevent another 2041 * process from stealing the pages as they are added to the pool but 2042 * before they are reserved. 2043 */ 2044 needed += allocated; 2045 h->resv_huge_pages += delta; 2046 ret = 0; 2047 2048 /* Free the needed pages to the hugetlb pool */ 2049 list_for_each_entry_safe(page, tmp, &surplus_list, lru) { 2050 if ((--needed) < 0) 2051 break; 2052 /* 2053 * This page is now managed by the hugetlb allocator and has 2054 * no users -- drop the buddy allocator's reference. 2055 */ 2056 VM_BUG_ON_PAGE(!put_page_testzero(page), page); 2057 enqueue_huge_page(h, page); 2058 } 2059 free: 2060 spin_unlock(&hugetlb_lock); 2061 2062 /* Free unnecessary surplus pages to the buddy allocator */ 2063 list_for_each_entry_safe(page, tmp, &surplus_list, lru) 2064 put_page(page); 2065 spin_lock(&hugetlb_lock); 2066 2067 return ret; 2068 } 2069 2070 /* 2071 * This routine has two main purposes: 2072 * 1) Decrement the reservation count (resv_huge_pages) by the value passed 2073 * in unused_resv_pages. This corresponds to the prior adjustments made 2074 * to the associated reservation map. 2075 * 2) Free any unused surplus pages that may have been allocated to satisfy 2076 * the reservation. As many as unused_resv_pages may be freed. 2077 * 2078 * Called with hugetlb_lock held. However, the lock could be dropped (and 2079 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock, 2080 * we must make sure nobody else can claim pages we are in the process of 2081 * freeing. Do this by ensuring resv_huge_page always is greater than the 2082 * number of huge pages we plan to free when dropping the lock. 2083 */ 2084 static void return_unused_surplus_pages(struct hstate *h, 2085 unsigned long unused_resv_pages) 2086 { 2087 unsigned long nr_pages; 2088 2089 /* Cannot return gigantic pages currently */ 2090 if (hstate_is_gigantic(h)) 2091 goto out; 2092 2093 /* 2094 * Part (or even all) of the reservation could have been backed 2095 * by pre-allocated pages. Only free surplus pages. 2096 */ 2097 nr_pages = min(unused_resv_pages, h->surplus_huge_pages); 2098 2099 /* 2100 * We want to release as many surplus pages as possible, spread 2101 * evenly across all nodes with memory. Iterate across these nodes 2102 * until we can no longer free unreserved surplus pages. This occurs 2103 * when the nodes with surplus pages have no free pages. 2104 * free_pool_huge_page() will balance the freed pages across the 2105 * on-line nodes with memory and will handle the hstate accounting. 2106 * 2107 * Note that we decrement resv_huge_pages as we free the pages. If 2108 * we drop the lock, resv_huge_pages will still be sufficiently large 2109 * to cover subsequent pages we may free. 2110 */ 2111 while (nr_pages--) { 2112 h->resv_huge_pages--; 2113 unused_resv_pages--; 2114 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1)) 2115 goto out; 2116 cond_resched_lock(&hugetlb_lock); 2117 } 2118 2119 out: 2120 /* Fully uncommit the reservation */ 2121 h->resv_huge_pages -= unused_resv_pages; 2122 } 2123 2124 2125 /* 2126 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation 2127 * are used by the huge page allocation routines to manage reservations. 2128 * 2129 * vma_needs_reservation is called to determine if the huge page at addr 2130 * within the vma has an associated reservation. If a reservation is 2131 * needed, the value 1 is returned. The caller is then responsible for 2132 * managing the global reservation and subpool usage counts. After 2133 * the huge page has been allocated, vma_commit_reservation is called 2134 * to add the page to the reservation map. If the page allocation fails, 2135 * the reservation must be ended instead of committed. vma_end_reservation 2136 * is called in such cases. 2137 * 2138 * In the normal case, vma_commit_reservation returns the same value 2139 * as the preceding vma_needs_reservation call. The only time this 2140 * is not the case is if a reserve map was changed between calls. It 2141 * is the responsibility of the caller to notice the difference and 2142 * take appropriate action. 2143 * 2144 * vma_add_reservation is used in error paths where a reservation must 2145 * be restored when a newly allocated huge page must be freed. It is 2146 * to be called after calling vma_needs_reservation to determine if a 2147 * reservation exists. 2148 */ 2149 enum vma_resv_mode { 2150 VMA_NEEDS_RESV, 2151 VMA_COMMIT_RESV, 2152 VMA_END_RESV, 2153 VMA_ADD_RESV, 2154 }; 2155 static long __vma_reservation_common(struct hstate *h, 2156 struct vm_area_struct *vma, unsigned long addr, 2157 enum vma_resv_mode mode) 2158 { 2159 struct resv_map *resv; 2160 pgoff_t idx; 2161 long ret; 2162 long dummy_out_regions_needed; 2163 2164 resv = vma_resv_map(vma); 2165 if (!resv) 2166 return 1; 2167 2168 idx = vma_hugecache_offset(h, vma, addr); 2169 switch (mode) { 2170 case VMA_NEEDS_RESV: 2171 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed); 2172 /* We assume that vma_reservation_* routines always operate on 2173 * 1 page, and that adding to resv map a 1 page entry can only 2174 * ever require 1 region. 2175 */ 2176 VM_BUG_ON(dummy_out_regions_needed != 1); 2177 break; 2178 case VMA_COMMIT_RESV: 2179 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2180 /* region_add calls of range 1 should never fail. */ 2181 VM_BUG_ON(ret < 0); 2182 break; 2183 case VMA_END_RESV: 2184 region_abort(resv, idx, idx + 1, 1); 2185 ret = 0; 2186 break; 2187 case VMA_ADD_RESV: 2188 if (vma->vm_flags & VM_MAYSHARE) { 2189 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2190 /* region_add calls of range 1 should never fail. */ 2191 VM_BUG_ON(ret < 0); 2192 } else { 2193 region_abort(resv, idx, idx + 1, 1); 2194 ret = region_del(resv, idx, idx + 1); 2195 } 2196 break; 2197 default: 2198 BUG(); 2199 } 2200 2201 if (vma->vm_flags & VM_MAYSHARE) 2202 return ret; 2203 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) { 2204 /* 2205 * In most cases, reserves always exist for private mappings. 2206 * However, a file associated with mapping could have been 2207 * hole punched or truncated after reserves were consumed. 2208 * As subsequent fault on such a range will not use reserves. 2209 * Subtle - The reserve map for private mappings has the 2210 * opposite meaning than that of shared mappings. If NO 2211 * entry is in the reserve map, it means a reservation exists. 2212 * If an entry exists in the reserve map, it means the 2213 * reservation has already been consumed. As a result, the 2214 * return value of this routine is the opposite of the 2215 * value returned from reserve map manipulation routines above. 2216 */ 2217 if (ret) 2218 return 0; 2219 else 2220 return 1; 2221 } 2222 else 2223 return ret < 0 ? ret : 0; 2224 } 2225 2226 static long vma_needs_reservation(struct hstate *h, 2227 struct vm_area_struct *vma, unsigned long addr) 2228 { 2229 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV); 2230 } 2231 2232 static long vma_commit_reservation(struct hstate *h, 2233 struct vm_area_struct *vma, unsigned long addr) 2234 { 2235 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV); 2236 } 2237 2238 static void vma_end_reservation(struct hstate *h, 2239 struct vm_area_struct *vma, unsigned long addr) 2240 { 2241 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV); 2242 } 2243 2244 static long vma_add_reservation(struct hstate *h, 2245 struct vm_area_struct *vma, unsigned long addr) 2246 { 2247 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV); 2248 } 2249 2250 /* 2251 * This routine is called to restore a reservation on error paths. In the 2252 * specific error paths, a huge page was allocated (via alloc_huge_page) 2253 * and is about to be freed. If a reservation for the page existed, 2254 * alloc_huge_page would have consumed the reservation and set PagePrivate 2255 * in the newly allocated page. When the page is freed via free_huge_page, 2256 * the global reservation count will be incremented if PagePrivate is set. 2257 * However, free_huge_page can not adjust the reserve map. Adjust the 2258 * reserve map here to be consistent with global reserve count adjustments 2259 * to be made by free_huge_page. 2260 */ 2261 static void restore_reserve_on_error(struct hstate *h, 2262 struct vm_area_struct *vma, unsigned long address, 2263 struct page *page) 2264 { 2265 if (unlikely(PagePrivate(page))) { 2266 long rc = vma_needs_reservation(h, vma, address); 2267 2268 if (unlikely(rc < 0)) { 2269 /* 2270 * Rare out of memory condition in reserve map 2271 * manipulation. Clear PagePrivate so that 2272 * global reserve count will not be incremented 2273 * by free_huge_page. This will make it appear 2274 * as though the reservation for this page was 2275 * consumed. This may prevent the task from 2276 * faulting in the page at a later time. This 2277 * is better than inconsistent global huge page 2278 * accounting of reserve counts. 2279 */ 2280 ClearPagePrivate(page); 2281 } else if (rc) { 2282 rc = vma_add_reservation(h, vma, address); 2283 if (unlikely(rc < 0)) 2284 /* 2285 * See above comment about rare out of 2286 * memory condition. 2287 */ 2288 ClearPagePrivate(page); 2289 } else 2290 vma_end_reservation(h, vma, address); 2291 } 2292 } 2293 2294 struct page *alloc_huge_page(struct vm_area_struct *vma, 2295 unsigned long addr, int avoid_reserve) 2296 { 2297 struct hugepage_subpool *spool = subpool_vma(vma); 2298 struct hstate *h = hstate_vma(vma); 2299 struct page *page; 2300 long map_chg, map_commit; 2301 long gbl_chg; 2302 int ret, idx; 2303 struct hugetlb_cgroup *h_cg; 2304 bool deferred_reserve; 2305 2306 idx = hstate_index(h); 2307 /* 2308 * Examine the region/reserve map to determine if the process 2309 * has a reservation for the page to be allocated. A return 2310 * code of zero indicates a reservation exists (no change). 2311 */ 2312 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr); 2313 if (map_chg < 0) 2314 return ERR_PTR(-ENOMEM); 2315 2316 /* 2317 * Processes that did not create the mapping will have no 2318 * reserves as indicated by the region/reserve map. Check 2319 * that the allocation will not exceed the subpool limit. 2320 * Allocations for MAP_NORESERVE mappings also need to be 2321 * checked against any subpool limit. 2322 */ 2323 if (map_chg || avoid_reserve) { 2324 gbl_chg = hugepage_subpool_get_pages(spool, 1); 2325 if (gbl_chg < 0) { 2326 vma_end_reservation(h, vma, addr); 2327 return ERR_PTR(-ENOSPC); 2328 } 2329 2330 /* 2331 * Even though there was no reservation in the region/reserve 2332 * map, there could be reservations associated with the 2333 * subpool that can be used. This would be indicated if the 2334 * return value of hugepage_subpool_get_pages() is zero. 2335 * However, if avoid_reserve is specified we still avoid even 2336 * the subpool reservations. 2337 */ 2338 if (avoid_reserve) 2339 gbl_chg = 1; 2340 } 2341 2342 /* If this allocation is not consuming a reservation, charge it now. 2343 */ 2344 deferred_reserve = map_chg || avoid_reserve || !vma_resv_map(vma); 2345 if (deferred_reserve) { 2346 ret = hugetlb_cgroup_charge_cgroup_rsvd( 2347 idx, pages_per_huge_page(h), &h_cg); 2348 if (ret) 2349 goto out_subpool_put; 2350 } 2351 2352 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg); 2353 if (ret) 2354 goto out_uncharge_cgroup_reservation; 2355 2356 spin_lock(&hugetlb_lock); 2357 /* 2358 * glb_chg is passed to indicate whether or not a page must be taken 2359 * from the global free pool (global change). gbl_chg == 0 indicates 2360 * a reservation exists for the allocation. 2361 */ 2362 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg); 2363 if (!page) { 2364 spin_unlock(&hugetlb_lock); 2365 page = alloc_buddy_huge_page_with_mpol(h, vma, addr); 2366 if (!page) 2367 goto out_uncharge_cgroup; 2368 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) { 2369 SetPagePrivate(page); 2370 h->resv_huge_pages--; 2371 } 2372 spin_lock(&hugetlb_lock); 2373 list_add(&page->lru, &h->hugepage_activelist); 2374 /* Fall through */ 2375 } 2376 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page); 2377 /* If allocation is not consuming a reservation, also store the 2378 * hugetlb_cgroup pointer on the page. 2379 */ 2380 if (deferred_reserve) { 2381 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h), 2382 h_cg, page); 2383 } 2384 2385 spin_unlock(&hugetlb_lock); 2386 2387 set_page_private(page, (unsigned long)spool); 2388 2389 map_commit = vma_commit_reservation(h, vma, addr); 2390 if (unlikely(map_chg > map_commit)) { 2391 /* 2392 * The page was added to the reservation map between 2393 * vma_needs_reservation and vma_commit_reservation. 2394 * This indicates a race with hugetlb_reserve_pages. 2395 * Adjust for the subpool count incremented above AND 2396 * in hugetlb_reserve_pages for the same page. Also, 2397 * the reservation count added in hugetlb_reserve_pages 2398 * no longer applies. 2399 */ 2400 long rsv_adjust; 2401 2402 rsv_adjust = hugepage_subpool_put_pages(spool, 1); 2403 hugetlb_acct_memory(h, -rsv_adjust); 2404 if (deferred_reserve) 2405 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h), 2406 pages_per_huge_page(h), page); 2407 } 2408 return page; 2409 2410 out_uncharge_cgroup: 2411 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg); 2412 out_uncharge_cgroup_reservation: 2413 if (deferred_reserve) 2414 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h), 2415 h_cg); 2416 out_subpool_put: 2417 if (map_chg || avoid_reserve) 2418 hugepage_subpool_put_pages(spool, 1); 2419 vma_end_reservation(h, vma, addr); 2420 return ERR_PTR(-ENOSPC); 2421 } 2422 2423 int alloc_bootmem_huge_page(struct hstate *h) 2424 __attribute__ ((weak, alias("__alloc_bootmem_huge_page"))); 2425 int __alloc_bootmem_huge_page(struct hstate *h) 2426 { 2427 struct huge_bootmem_page *m; 2428 int nr_nodes, node; 2429 2430 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) { 2431 void *addr; 2432 2433 addr = memblock_alloc_try_nid_raw( 2434 huge_page_size(h), huge_page_size(h), 2435 0, MEMBLOCK_ALLOC_ACCESSIBLE, node); 2436 if (addr) { 2437 /* 2438 * Use the beginning of the huge page to store the 2439 * huge_bootmem_page struct (until gather_bootmem 2440 * puts them into the mem_map). 2441 */ 2442 m = addr; 2443 goto found; 2444 } 2445 } 2446 return 0; 2447 2448 found: 2449 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h))); 2450 /* Put them into a private list first because mem_map is not up yet */ 2451 INIT_LIST_HEAD(&m->list); 2452 list_add(&m->list, &huge_boot_pages); 2453 m->hstate = h; 2454 return 1; 2455 } 2456 2457 static void __init prep_compound_huge_page(struct page *page, 2458 unsigned int order) 2459 { 2460 if (unlikely(order > (MAX_ORDER - 1))) 2461 prep_compound_gigantic_page(page, order); 2462 else 2463 prep_compound_page(page, order); 2464 } 2465 2466 /* Put bootmem huge pages into the standard lists after mem_map is up */ 2467 static void __init gather_bootmem_prealloc(void) 2468 { 2469 struct huge_bootmem_page *m; 2470 2471 list_for_each_entry(m, &huge_boot_pages, list) { 2472 struct page *page = virt_to_page(m); 2473 struct hstate *h = m->hstate; 2474 2475 WARN_ON(page_count(page) != 1); 2476 prep_compound_huge_page(page, h->order); 2477 WARN_ON(PageReserved(page)); 2478 prep_new_huge_page(h, page, page_to_nid(page)); 2479 put_page(page); /* free it into the hugepage allocator */ 2480 2481 /* 2482 * If we had gigantic hugepages allocated at boot time, we need 2483 * to restore the 'stolen' pages to totalram_pages in order to 2484 * fix confusing memory reports from free(1) and another 2485 * side-effects, like CommitLimit going negative. 2486 */ 2487 if (hstate_is_gigantic(h)) 2488 adjust_managed_page_count(page, 1 << h->order); 2489 cond_resched(); 2490 } 2491 } 2492 2493 static void __init hugetlb_hstate_alloc_pages(struct hstate *h) 2494 { 2495 unsigned long i; 2496 nodemask_t *node_alloc_noretry; 2497 2498 if (!hstate_is_gigantic(h)) { 2499 /* 2500 * Bit mask controlling how hard we retry per-node allocations. 2501 * Ignore errors as lower level routines can deal with 2502 * node_alloc_noretry == NULL. If this kmalloc fails at boot 2503 * time, we are likely in bigger trouble. 2504 */ 2505 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry), 2506 GFP_KERNEL); 2507 } else { 2508 /* allocations done at boot time */ 2509 node_alloc_noretry = NULL; 2510 } 2511 2512 /* bit mask controlling how hard we retry per-node allocations */ 2513 if (node_alloc_noretry) 2514 nodes_clear(*node_alloc_noretry); 2515 2516 for (i = 0; i < h->max_huge_pages; ++i) { 2517 if (hstate_is_gigantic(h)) { 2518 if (hugetlb_cma_size) { 2519 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n"); 2520 break; 2521 } 2522 if (!alloc_bootmem_huge_page(h)) 2523 break; 2524 } else if (!alloc_pool_huge_page(h, 2525 &node_states[N_MEMORY], 2526 node_alloc_noretry)) 2527 break; 2528 cond_resched(); 2529 } 2530 if (i < h->max_huge_pages) { 2531 char buf[32]; 2532 2533 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 2534 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n", 2535 h->max_huge_pages, buf, i); 2536 h->max_huge_pages = i; 2537 } 2538 2539 kfree(node_alloc_noretry); 2540 } 2541 2542 static void __init hugetlb_init_hstates(void) 2543 { 2544 struct hstate *h; 2545 2546 for_each_hstate(h) { 2547 if (minimum_order > huge_page_order(h)) 2548 minimum_order = huge_page_order(h); 2549 2550 /* oversize hugepages were init'ed in early boot */ 2551 if (!hstate_is_gigantic(h)) 2552 hugetlb_hstate_alloc_pages(h); 2553 } 2554 VM_BUG_ON(minimum_order == UINT_MAX); 2555 } 2556 2557 static void __init report_hugepages(void) 2558 { 2559 struct hstate *h; 2560 2561 for_each_hstate(h) { 2562 char buf[32]; 2563 2564 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 2565 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n", 2566 buf, h->free_huge_pages); 2567 } 2568 } 2569 2570 #ifdef CONFIG_HIGHMEM 2571 static void try_to_free_low(struct hstate *h, unsigned long count, 2572 nodemask_t *nodes_allowed) 2573 { 2574 int i; 2575 2576 if (hstate_is_gigantic(h)) 2577 return; 2578 2579 for_each_node_mask(i, *nodes_allowed) { 2580 struct page *page, *next; 2581 struct list_head *freel = &h->hugepage_freelists[i]; 2582 list_for_each_entry_safe(page, next, freel, lru) { 2583 if (count >= h->nr_huge_pages) 2584 return; 2585 if (PageHighMem(page)) 2586 continue; 2587 list_del(&page->lru); 2588 update_and_free_page(h, page); 2589 h->free_huge_pages--; 2590 h->free_huge_pages_node[page_to_nid(page)]--; 2591 } 2592 } 2593 } 2594 #else 2595 static inline void try_to_free_low(struct hstate *h, unsigned long count, 2596 nodemask_t *nodes_allowed) 2597 { 2598 } 2599 #endif 2600 2601 /* 2602 * Increment or decrement surplus_huge_pages. Keep node-specific counters 2603 * balanced by operating on them in a round-robin fashion. 2604 * Returns 1 if an adjustment was made. 2605 */ 2606 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed, 2607 int delta) 2608 { 2609 int nr_nodes, node; 2610 2611 VM_BUG_ON(delta != -1 && delta != 1); 2612 2613 if (delta < 0) { 2614 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 2615 if (h->surplus_huge_pages_node[node]) 2616 goto found; 2617 } 2618 } else { 2619 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 2620 if (h->surplus_huge_pages_node[node] < 2621 h->nr_huge_pages_node[node]) 2622 goto found; 2623 } 2624 } 2625 return 0; 2626 2627 found: 2628 h->surplus_huge_pages += delta; 2629 h->surplus_huge_pages_node[node] += delta; 2630 return 1; 2631 } 2632 2633 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) 2634 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid, 2635 nodemask_t *nodes_allowed) 2636 { 2637 unsigned long min_count, ret; 2638 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL); 2639 2640 /* 2641 * Bit mask controlling how hard we retry per-node allocations. 2642 * If we can not allocate the bit mask, do not attempt to allocate 2643 * the requested huge pages. 2644 */ 2645 if (node_alloc_noretry) 2646 nodes_clear(*node_alloc_noretry); 2647 else 2648 return -ENOMEM; 2649 2650 spin_lock(&hugetlb_lock); 2651 2652 /* 2653 * Check for a node specific request. 2654 * Changing node specific huge page count may require a corresponding 2655 * change to the global count. In any case, the passed node mask 2656 * (nodes_allowed) will restrict alloc/free to the specified node. 2657 */ 2658 if (nid != NUMA_NO_NODE) { 2659 unsigned long old_count = count; 2660 2661 count += h->nr_huge_pages - h->nr_huge_pages_node[nid]; 2662 /* 2663 * User may have specified a large count value which caused the 2664 * above calculation to overflow. In this case, they wanted 2665 * to allocate as many huge pages as possible. Set count to 2666 * largest possible value to align with their intention. 2667 */ 2668 if (count < old_count) 2669 count = ULONG_MAX; 2670 } 2671 2672 /* 2673 * Gigantic pages runtime allocation depend on the capability for large 2674 * page range allocation. 2675 * If the system does not provide this feature, return an error when 2676 * the user tries to allocate gigantic pages but let the user free the 2677 * boottime allocated gigantic pages. 2678 */ 2679 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) { 2680 if (count > persistent_huge_pages(h)) { 2681 spin_unlock(&hugetlb_lock); 2682 NODEMASK_FREE(node_alloc_noretry); 2683 return -EINVAL; 2684 } 2685 /* Fall through to decrease pool */ 2686 } 2687 2688 /* 2689 * Increase the pool size 2690 * First take pages out of surplus state. Then make up the 2691 * remaining difference by allocating fresh huge pages. 2692 * 2693 * We might race with alloc_surplus_huge_page() here and be unable 2694 * to convert a surplus huge page to a normal huge page. That is 2695 * not critical, though, it just means the overall size of the 2696 * pool might be one hugepage larger than it needs to be, but 2697 * within all the constraints specified by the sysctls. 2698 */ 2699 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { 2700 if (!adjust_pool_surplus(h, nodes_allowed, -1)) 2701 break; 2702 } 2703 2704 while (count > persistent_huge_pages(h)) { 2705 /* 2706 * If this allocation races such that we no longer need the 2707 * page, free_huge_page will handle it by freeing the page 2708 * and reducing the surplus. 2709 */ 2710 spin_unlock(&hugetlb_lock); 2711 2712 /* yield cpu to avoid soft lockup */ 2713 cond_resched(); 2714 2715 ret = alloc_pool_huge_page(h, nodes_allowed, 2716 node_alloc_noretry); 2717 spin_lock(&hugetlb_lock); 2718 if (!ret) 2719 goto out; 2720 2721 /* Bail for signals. Probably ctrl-c from user */ 2722 if (signal_pending(current)) 2723 goto out; 2724 } 2725 2726 /* 2727 * Decrease the pool size 2728 * First return free pages to the buddy allocator (being careful 2729 * to keep enough around to satisfy reservations). Then place 2730 * pages into surplus state as needed so the pool will shrink 2731 * to the desired size as pages become free. 2732 * 2733 * By placing pages into the surplus state independent of the 2734 * overcommit value, we are allowing the surplus pool size to 2735 * exceed overcommit. There are few sane options here. Since 2736 * alloc_surplus_huge_page() is checking the global counter, 2737 * though, we'll note that we're not allowed to exceed surplus 2738 * and won't grow the pool anywhere else. Not until one of the 2739 * sysctls are changed, or the surplus pages go out of use. 2740 */ 2741 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages; 2742 min_count = max(count, min_count); 2743 try_to_free_low(h, min_count, nodes_allowed); 2744 while (min_count < persistent_huge_pages(h)) { 2745 if (!free_pool_huge_page(h, nodes_allowed, 0)) 2746 break; 2747 cond_resched_lock(&hugetlb_lock); 2748 } 2749 while (count < persistent_huge_pages(h)) { 2750 if (!adjust_pool_surplus(h, nodes_allowed, 1)) 2751 break; 2752 } 2753 out: 2754 h->max_huge_pages = persistent_huge_pages(h); 2755 spin_unlock(&hugetlb_lock); 2756 2757 NODEMASK_FREE(node_alloc_noretry); 2758 2759 return 0; 2760 } 2761 2762 #define HSTATE_ATTR_RO(_name) \ 2763 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 2764 2765 #define HSTATE_ATTR(_name) \ 2766 static struct kobj_attribute _name##_attr = \ 2767 __ATTR(_name, 0644, _name##_show, _name##_store) 2768 2769 static struct kobject *hugepages_kobj; 2770 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 2771 2772 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp); 2773 2774 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp) 2775 { 2776 int i; 2777 2778 for (i = 0; i < HUGE_MAX_HSTATE; i++) 2779 if (hstate_kobjs[i] == kobj) { 2780 if (nidp) 2781 *nidp = NUMA_NO_NODE; 2782 return &hstates[i]; 2783 } 2784 2785 return kobj_to_node_hstate(kobj, nidp); 2786 } 2787 2788 static ssize_t nr_hugepages_show_common(struct kobject *kobj, 2789 struct kobj_attribute *attr, char *buf) 2790 { 2791 struct hstate *h; 2792 unsigned long nr_huge_pages; 2793 int nid; 2794 2795 h = kobj_to_hstate(kobj, &nid); 2796 if (nid == NUMA_NO_NODE) 2797 nr_huge_pages = h->nr_huge_pages; 2798 else 2799 nr_huge_pages = h->nr_huge_pages_node[nid]; 2800 2801 return sysfs_emit(buf, "%lu\n", nr_huge_pages); 2802 } 2803 2804 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy, 2805 struct hstate *h, int nid, 2806 unsigned long count, size_t len) 2807 { 2808 int err; 2809 nodemask_t nodes_allowed, *n_mask; 2810 2811 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 2812 return -EINVAL; 2813 2814 if (nid == NUMA_NO_NODE) { 2815 /* 2816 * global hstate attribute 2817 */ 2818 if (!(obey_mempolicy && 2819 init_nodemask_of_mempolicy(&nodes_allowed))) 2820 n_mask = &node_states[N_MEMORY]; 2821 else 2822 n_mask = &nodes_allowed; 2823 } else { 2824 /* 2825 * Node specific request. count adjustment happens in 2826 * set_max_huge_pages() after acquiring hugetlb_lock. 2827 */ 2828 init_nodemask_of_node(&nodes_allowed, nid); 2829 n_mask = &nodes_allowed; 2830 } 2831 2832 err = set_max_huge_pages(h, count, nid, n_mask); 2833 2834 return err ? err : len; 2835 } 2836 2837 static ssize_t nr_hugepages_store_common(bool obey_mempolicy, 2838 struct kobject *kobj, const char *buf, 2839 size_t len) 2840 { 2841 struct hstate *h; 2842 unsigned long count; 2843 int nid; 2844 int err; 2845 2846 err = kstrtoul(buf, 10, &count); 2847 if (err) 2848 return err; 2849 2850 h = kobj_to_hstate(kobj, &nid); 2851 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len); 2852 } 2853 2854 static ssize_t nr_hugepages_show(struct kobject *kobj, 2855 struct kobj_attribute *attr, char *buf) 2856 { 2857 return nr_hugepages_show_common(kobj, attr, buf); 2858 } 2859 2860 static ssize_t nr_hugepages_store(struct kobject *kobj, 2861 struct kobj_attribute *attr, const char *buf, size_t len) 2862 { 2863 return nr_hugepages_store_common(false, kobj, buf, len); 2864 } 2865 HSTATE_ATTR(nr_hugepages); 2866 2867 #ifdef CONFIG_NUMA 2868 2869 /* 2870 * hstate attribute for optionally mempolicy-based constraint on persistent 2871 * huge page alloc/free. 2872 */ 2873 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj, 2874 struct kobj_attribute *attr, 2875 char *buf) 2876 { 2877 return nr_hugepages_show_common(kobj, attr, buf); 2878 } 2879 2880 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj, 2881 struct kobj_attribute *attr, const char *buf, size_t len) 2882 { 2883 return nr_hugepages_store_common(true, kobj, buf, len); 2884 } 2885 HSTATE_ATTR(nr_hugepages_mempolicy); 2886 #endif 2887 2888 2889 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, 2890 struct kobj_attribute *attr, char *buf) 2891 { 2892 struct hstate *h = kobj_to_hstate(kobj, NULL); 2893 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages); 2894 } 2895 2896 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, 2897 struct kobj_attribute *attr, const char *buf, size_t count) 2898 { 2899 int err; 2900 unsigned long input; 2901 struct hstate *h = kobj_to_hstate(kobj, NULL); 2902 2903 if (hstate_is_gigantic(h)) 2904 return -EINVAL; 2905 2906 err = kstrtoul(buf, 10, &input); 2907 if (err) 2908 return err; 2909 2910 spin_lock(&hugetlb_lock); 2911 h->nr_overcommit_huge_pages = input; 2912 spin_unlock(&hugetlb_lock); 2913 2914 return count; 2915 } 2916 HSTATE_ATTR(nr_overcommit_hugepages); 2917 2918 static ssize_t free_hugepages_show(struct kobject *kobj, 2919 struct kobj_attribute *attr, char *buf) 2920 { 2921 struct hstate *h; 2922 unsigned long free_huge_pages; 2923 int nid; 2924 2925 h = kobj_to_hstate(kobj, &nid); 2926 if (nid == NUMA_NO_NODE) 2927 free_huge_pages = h->free_huge_pages; 2928 else 2929 free_huge_pages = h->free_huge_pages_node[nid]; 2930 2931 return sysfs_emit(buf, "%lu\n", free_huge_pages); 2932 } 2933 HSTATE_ATTR_RO(free_hugepages); 2934 2935 static ssize_t resv_hugepages_show(struct kobject *kobj, 2936 struct kobj_attribute *attr, char *buf) 2937 { 2938 struct hstate *h = kobj_to_hstate(kobj, NULL); 2939 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages); 2940 } 2941 HSTATE_ATTR_RO(resv_hugepages); 2942 2943 static ssize_t surplus_hugepages_show(struct kobject *kobj, 2944 struct kobj_attribute *attr, char *buf) 2945 { 2946 struct hstate *h; 2947 unsigned long surplus_huge_pages; 2948 int nid; 2949 2950 h = kobj_to_hstate(kobj, &nid); 2951 if (nid == NUMA_NO_NODE) 2952 surplus_huge_pages = h->surplus_huge_pages; 2953 else 2954 surplus_huge_pages = h->surplus_huge_pages_node[nid]; 2955 2956 return sysfs_emit(buf, "%lu\n", surplus_huge_pages); 2957 } 2958 HSTATE_ATTR_RO(surplus_hugepages); 2959 2960 static struct attribute *hstate_attrs[] = { 2961 &nr_hugepages_attr.attr, 2962 &nr_overcommit_hugepages_attr.attr, 2963 &free_hugepages_attr.attr, 2964 &resv_hugepages_attr.attr, 2965 &surplus_hugepages_attr.attr, 2966 #ifdef CONFIG_NUMA 2967 &nr_hugepages_mempolicy_attr.attr, 2968 #endif 2969 NULL, 2970 }; 2971 2972 static const struct attribute_group hstate_attr_group = { 2973 .attrs = hstate_attrs, 2974 }; 2975 2976 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent, 2977 struct kobject **hstate_kobjs, 2978 const struct attribute_group *hstate_attr_group) 2979 { 2980 int retval; 2981 int hi = hstate_index(h); 2982 2983 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent); 2984 if (!hstate_kobjs[hi]) 2985 return -ENOMEM; 2986 2987 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group); 2988 if (retval) 2989 kobject_put(hstate_kobjs[hi]); 2990 2991 return retval; 2992 } 2993 2994 static void __init hugetlb_sysfs_init(void) 2995 { 2996 struct hstate *h; 2997 int err; 2998 2999 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); 3000 if (!hugepages_kobj) 3001 return; 3002 3003 for_each_hstate(h) { 3004 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj, 3005 hstate_kobjs, &hstate_attr_group); 3006 if (err) 3007 pr_err("HugeTLB: Unable to add hstate %s", h->name); 3008 } 3009 } 3010 3011 #ifdef CONFIG_NUMA 3012 3013 /* 3014 * node_hstate/s - associate per node hstate attributes, via their kobjects, 3015 * with node devices in node_devices[] using a parallel array. The array 3016 * index of a node device or _hstate == node id. 3017 * This is here to avoid any static dependency of the node device driver, in 3018 * the base kernel, on the hugetlb module. 3019 */ 3020 struct node_hstate { 3021 struct kobject *hugepages_kobj; 3022 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 3023 }; 3024 static struct node_hstate node_hstates[MAX_NUMNODES]; 3025 3026 /* 3027 * A subset of global hstate attributes for node devices 3028 */ 3029 static struct attribute *per_node_hstate_attrs[] = { 3030 &nr_hugepages_attr.attr, 3031 &free_hugepages_attr.attr, 3032 &surplus_hugepages_attr.attr, 3033 NULL, 3034 }; 3035 3036 static const struct attribute_group per_node_hstate_attr_group = { 3037 .attrs = per_node_hstate_attrs, 3038 }; 3039 3040 /* 3041 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj. 3042 * Returns node id via non-NULL nidp. 3043 */ 3044 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 3045 { 3046 int nid; 3047 3048 for (nid = 0; nid < nr_node_ids; nid++) { 3049 struct node_hstate *nhs = &node_hstates[nid]; 3050 int i; 3051 for (i = 0; i < HUGE_MAX_HSTATE; i++) 3052 if (nhs->hstate_kobjs[i] == kobj) { 3053 if (nidp) 3054 *nidp = nid; 3055 return &hstates[i]; 3056 } 3057 } 3058 3059 BUG(); 3060 return NULL; 3061 } 3062 3063 /* 3064 * Unregister hstate attributes from a single node device. 3065 * No-op if no hstate attributes attached. 3066 */ 3067 static void hugetlb_unregister_node(struct node *node) 3068 { 3069 struct hstate *h; 3070 struct node_hstate *nhs = &node_hstates[node->dev.id]; 3071 3072 if (!nhs->hugepages_kobj) 3073 return; /* no hstate attributes */ 3074 3075 for_each_hstate(h) { 3076 int idx = hstate_index(h); 3077 if (nhs->hstate_kobjs[idx]) { 3078 kobject_put(nhs->hstate_kobjs[idx]); 3079 nhs->hstate_kobjs[idx] = NULL; 3080 } 3081 } 3082 3083 kobject_put(nhs->hugepages_kobj); 3084 nhs->hugepages_kobj = NULL; 3085 } 3086 3087 3088 /* 3089 * Register hstate attributes for a single node device. 3090 * No-op if attributes already registered. 3091 */ 3092 static void hugetlb_register_node(struct node *node) 3093 { 3094 struct hstate *h; 3095 struct node_hstate *nhs = &node_hstates[node->dev.id]; 3096 int err; 3097 3098 if (nhs->hugepages_kobj) 3099 return; /* already allocated */ 3100 3101 nhs->hugepages_kobj = kobject_create_and_add("hugepages", 3102 &node->dev.kobj); 3103 if (!nhs->hugepages_kobj) 3104 return; 3105 3106 for_each_hstate(h) { 3107 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj, 3108 nhs->hstate_kobjs, 3109 &per_node_hstate_attr_group); 3110 if (err) { 3111 pr_err("HugeTLB: Unable to add hstate %s for node %d\n", 3112 h->name, node->dev.id); 3113 hugetlb_unregister_node(node); 3114 break; 3115 } 3116 } 3117 } 3118 3119 /* 3120 * hugetlb init time: register hstate attributes for all registered node 3121 * devices of nodes that have memory. All on-line nodes should have 3122 * registered their associated device by this time. 3123 */ 3124 static void __init hugetlb_register_all_nodes(void) 3125 { 3126 int nid; 3127 3128 for_each_node_state(nid, N_MEMORY) { 3129 struct node *node = node_devices[nid]; 3130 if (node->dev.id == nid) 3131 hugetlb_register_node(node); 3132 } 3133 3134 /* 3135 * Let the node device driver know we're here so it can 3136 * [un]register hstate attributes on node hotplug. 3137 */ 3138 register_hugetlbfs_with_node(hugetlb_register_node, 3139 hugetlb_unregister_node); 3140 } 3141 #else /* !CONFIG_NUMA */ 3142 3143 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 3144 { 3145 BUG(); 3146 if (nidp) 3147 *nidp = -1; 3148 return NULL; 3149 } 3150 3151 static void hugetlb_register_all_nodes(void) { } 3152 3153 #endif 3154 3155 static int __init hugetlb_init(void) 3156 { 3157 int i; 3158 3159 if (!hugepages_supported()) { 3160 if (hugetlb_max_hstate || default_hstate_max_huge_pages) 3161 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n"); 3162 return 0; 3163 } 3164 3165 /* 3166 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some 3167 * architectures depend on setup being done here. 3168 */ 3169 hugetlb_add_hstate(HUGETLB_PAGE_ORDER); 3170 if (!parsed_default_hugepagesz) { 3171 /* 3172 * If we did not parse a default huge page size, set 3173 * default_hstate_idx to HPAGE_SIZE hstate. And, if the 3174 * number of huge pages for this default size was implicitly 3175 * specified, set that here as well. 3176 * Note that the implicit setting will overwrite an explicit 3177 * setting. A warning will be printed in this case. 3178 */ 3179 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE)); 3180 if (default_hstate_max_huge_pages) { 3181 if (default_hstate.max_huge_pages) { 3182 char buf[32]; 3183 3184 string_get_size(huge_page_size(&default_hstate), 3185 1, STRING_UNITS_2, buf, 32); 3186 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n", 3187 default_hstate.max_huge_pages, buf); 3188 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n", 3189 default_hstate_max_huge_pages); 3190 } 3191 default_hstate.max_huge_pages = 3192 default_hstate_max_huge_pages; 3193 } 3194 } 3195 3196 hugetlb_cma_check(); 3197 hugetlb_init_hstates(); 3198 gather_bootmem_prealloc(); 3199 report_hugepages(); 3200 3201 hugetlb_sysfs_init(); 3202 hugetlb_register_all_nodes(); 3203 hugetlb_cgroup_file_init(); 3204 3205 #ifdef CONFIG_SMP 3206 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus()); 3207 #else 3208 num_fault_mutexes = 1; 3209 #endif 3210 hugetlb_fault_mutex_table = 3211 kmalloc_array(num_fault_mutexes, sizeof(struct mutex), 3212 GFP_KERNEL); 3213 BUG_ON(!hugetlb_fault_mutex_table); 3214 3215 for (i = 0; i < num_fault_mutexes; i++) 3216 mutex_init(&hugetlb_fault_mutex_table[i]); 3217 return 0; 3218 } 3219 subsys_initcall(hugetlb_init); 3220 3221 /* Overwritten by architectures with more huge page sizes */ 3222 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size) 3223 { 3224 return size == HPAGE_SIZE; 3225 } 3226 3227 void __init hugetlb_add_hstate(unsigned int order) 3228 { 3229 struct hstate *h; 3230 unsigned long i; 3231 3232 if (size_to_hstate(PAGE_SIZE << order)) { 3233 return; 3234 } 3235 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE); 3236 BUG_ON(order == 0); 3237 h = &hstates[hugetlb_max_hstate++]; 3238 h->order = order; 3239 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1); 3240 for (i = 0; i < MAX_NUMNODES; ++i) 3241 INIT_LIST_HEAD(&h->hugepage_freelists[i]); 3242 INIT_LIST_HEAD(&h->hugepage_activelist); 3243 h->next_nid_to_alloc = first_memory_node; 3244 h->next_nid_to_free = first_memory_node; 3245 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", 3246 huge_page_size(h)/1024); 3247 3248 parsed_hstate = h; 3249 } 3250 3251 /* 3252 * hugepages command line processing 3253 * hugepages normally follows a valid hugepagsz or default_hugepagsz 3254 * specification. If not, ignore the hugepages value. hugepages can also 3255 * be the first huge page command line option in which case it implicitly 3256 * specifies the number of huge pages for the default size. 3257 */ 3258 static int __init hugepages_setup(char *s) 3259 { 3260 unsigned long *mhp; 3261 static unsigned long *last_mhp; 3262 3263 if (!parsed_valid_hugepagesz) { 3264 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s); 3265 parsed_valid_hugepagesz = true; 3266 return 0; 3267 } 3268 3269 /* 3270 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter 3271 * yet, so this hugepages= parameter goes to the "default hstate". 3272 * Otherwise, it goes with the previously parsed hugepagesz or 3273 * default_hugepagesz. 3274 */ 3275 else if (!hugetlb_max_hstate) 3276 mhp = &default_hstate_max_huge_pages; 3277 else 3278 mhp = &parsed_hstate->max_huge_pages; 3279 3280 if (mhp == last_mhp) { 3281 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s); 3282 return 0; 3283 } 3284 3285 if (sscanf(s, "%lu", mhp) <= 0) 3286 *mhp = 0; 3287 3288 /* 3289 * Global state is always initialized later in hugetlb_init. 3290 * But we need to allocate >= MAX_ORDER hstates here early to still 3291 * use the bootmem allocator. 3292 */ 3293 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER) 3294 hugetlb_hstate_alloc_pages(parsed_hstate); 3295 3296 last_mhp = mhp; 3297 3298 return 1; 3299 } 3300 __setup("hugepages=", hugepages_setup); 3301 3302 /* 3303 * hugepagesz command line processing 3304 * A specific huge page size can only be specified once with hugepagesz. 3305 * hugepagesz is followed by hugepages on the command line. The global 3306 * variable 'parsed_valid_hugepagesz' is used to determine if prior 3307 * hugepagesz argument was valid. 3308 */ 3309 static int __init hugepagesz_setup(char *s) 3310 { 3311 unsigned long size; 3312 struct hstate *h; 3313 3314 parsed_valid_hugepagesz = false; 3315 size = (unsigned long)memparse(s, NULL); 3316 3317 if (!arch_hugetlb_valid_size(size)) { 3318 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s); 3319 return 0; 3320 } 3321 3322 h = size_to_hstate(size); 3323 if (h) { 3324 /* 3325 * hstate for this size already exists. This is normally 3326 * an error, but is allowed if the existing hstate is the 3327 * default hstate. More specifically, it is only allowed if 3328 * the number of huge pages for the default hstate was not 3329 * previously specified. 3330 */ 3331 if (!parsed_default_hugepagesz || h != &default_hstate || 3332 default_hstate.max_huge_pages) { 3333 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s); 3334 return 0; 3335 } 3336 3337 /* 3338 * No need to call hugetlb_add_hstate() as hstate already 3339 * exists. But, do set parsed_hstate so that a following 3340 * hugepages= parameter will be applied to this hstate. 3341 */ 3342 parsed_hstate = h; 3343 parsed_valid_hugepagesz = true; 3344 return 1; 3345 } 3346 3347 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); 3348 parsed_valid_hugepagesz = true; 3349 return 1; 3350 } 3351 __setup("hugepagesz=", hugepagesz_setup); 3352 3353 /* 3354 * default_hugepagesz command line input 3355 * Only one instance of default_hugepagesz allowed on command line. 3356 */ 3357 static int __init default_hugepagesz_setup(char *s) 3358 { 3359 unsigned long size; 3360 3361 parsed_valid_hugepagesz = false; 3362 if (parsed_default_hugepagesz) { 3363 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s); 3364 return 0; 3365 } 3366 3367 size = (unsigned long)memparse(s, NULL); 3368 3369 if (!arch_hugetlb_valid_size(size)) { 3370 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s); 3371 return 0; 3372 } 3373 3374 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); 3375 parsed_valid_hugepagesz = true; 3376 parsed_default_hugepagesz = true; 3377 default_hstate_idx = hstate_index(size_to_hstate(size)); 3378 3379 /* 3380 * The number of default huge pages (for this size) could have been 3381 * specified as the first hugetlb parameter: hugepages=X. If so, 3382 * then default_hstate_max_huge_pages is set. If the default huge 3383 * page size is gigantic (>= MAX_ORDER), then the pages must be 3384 * allocated here from bootmem allocator. 3385 */ 3386 if (default_hstate_max_huge_pages) { 3387 default_hstate.max_huge_pages = default_hstate_max_huge_pages; 3388 if (hstate_is_gigantic(&default_hstate)) 3389 hugetlb_hstate_alloc_pages(&default_hstate); 3390 default_hstate_max_huge_pages = 0; 3391 } 3392 3393 return 1; 3394 } 3395 __setup("default_hugepagesz=", default_hugepagesz_setup); 3396 3397 static unsigned int allowed_mems_nr(struct hstate *h) 3398 { 3399 int node; 3400 unsigned int nr = 0; 3401 nodemask_t *mpol_allowed; 3402 unsigned int *array = h->free_huge_pages_node; 3403 gfp_t gfp_mask = htlb_alloc_mask(h); 3404 3405 mpol_allowed = policy_nodemask_current(gfp_mask); 3406 3407 for_each_node_mask(node, cpuset_current_mems_allowed) { 3408 if (!mpol_allowed || 3409 (mpol_allowed && node_isset(node, *mpol_allowed))) 3410 nr += array[node]; 3411 } 3412 3413 return nr; 3414 } 3415 3416 #ifdef CONFIG_SYSCTL 3417 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write, 3418 void *buffer, size_t *length, 3419 loff_t *ppos, unsigned long *out) 3420 { 3421 struct ctl_table dup_table; 3422 3423 /* 3424 * In order to avoid races with __do_proc_doulongvec_minmax(), we 3425 * can duplicate the @table and alter the duplicate of it. 3426 */ 3427 dup_table = *table; 3428 dup_table.data = out; 3429 3430 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos); 3431 } 3432 3433 static int hugetlb_sysctl_handler_common(bool obey_mempolicy, 3434 struct ctl_table *table, int write, 3435 void *buffer, size_t *length, loff_t *ppos) 3436 { 3437 struct hstate *h = &default_hstate; 3438 unsigned long tmp = h->max_huge_pages; 3439 int ret; 3440 3441 if (!hugepages_supported()) 3442 return -EOPNOTSUPP; 3443 3444 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, 3445 &tmp); 3446 if (ret) 3447 goto out; 3448 3449 if (write) 3450 ret = __nr_hugepages_store_common(obey_mempolicy, h, 3451 NUMA_NO_NODE, tmp, *length); 3452 out: 3453 return ret; 3454 } 3455 3456 int hugetlb_sysctl_handler(struct ctl_table *table, int write, 3457 void *buffer, size_t *length, loff_t *ppos) 3458 { 3459 3460 return hugetlb_sysctl_handler_common(false, table, write, 3461 buffer, length, ppos); 3462 } 3463 3464 #ifdef CONFIG_NUMA 3465 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write, 3466 void *buffer, size_t *length, loff_t *ppos) 3467 { 3468 return hugetlb_sysctl_handler_common(true, table, write, 3469 buffer, length, ppos); 3470 } 3471 #endif /* CONFIG_NUMA */ 3472 3473 int hugetlb_overcommit_handler(struct ctl_table *table, int write, 3474 void *buffer, size_t *length, loff_t *ppos) 3475 { 3476 struct hstate *h = &default_hstate; 3477 unsigned long tmp; 3478 int ret; 3479 3480 if (!hugepages_supported()) 3481 return -EOPNOTSUPP; 3482 3483 tmp = h->nr_overcommit_huge_pages; 3484 3485 if (write && hstate_is_gigantic(h)) 3486 return -EINVAL; 3487 3488 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, 3489 &tmp); 3490 if (ret) 3491 goto out; 3492 3493 if (write) { 3494 spin_lock(&hugetlb_lock); 3495 h->nr_overcommit_huge_pages = tmp; 3496 spin_unlock(&hugetlb_lock); 3497 } 3498 out: 3499 return ret; 3500 } 3501 3502 #endif /* CONFIG_SYSCTL */ 3503 3504 void hugetlb_report_meminfo(struct seq_file *m) 3505 { 3506 struct hstate *h; 3507 unsigned long total = 0; 3508 3509 if (!hugepages_supported()) 3510 return; 3511 3512 for_each_hstate(h) { 3513 unsigned long count = h->nr_huge_pages; 3514 3515 total += (PAGE_SIZE << huge_page_order(h)) * count; 3516 3517 if (h == &default_hstate) 3518 seq_printf(m, 3519 "HugePages_Total: %5lu\n" 3520 "HugePages_Free: %5lu\n" 3521 "HugePages_Rsvd: %5lu\n" 3522 "HugePages_Surp: %5lu\n" 3523 "Hugepagesize: %8lu kB\n", 3524 count, 3525 h->free_huge_pages, 3526 h->resv_huge_pages, 3527 h->surplus_huge_pages, 3528 (PAGE_SIZE << huge_page_order(h)) / 1024); 3529 } 3530 3531 seq_printf(m, "Hugetlb: %8lu kB\n", total / 1024); 3532 } 3533 3534 int hugetlb_report_node_meminfo(char *buf, int len, int nid) 3535 { 3536 struct hstate *h = &default_hstate; 3537 3538 if (!hugepages_supported()) 3539 return 0; 3540 3541 return sysfs_emit_at(buf, len, 3542 "Node %d HugePages_Total: %5u\n" 3543 "Node %d HugePages_Free: %5u\n" 3544 "Node %d HugePages_Surp: %5u\n", 3545 nid, h->nr_huge_pages_node[nid], 3546 nid, h->free_huge_pages_node[nid], 3547 nid, h->surplus_huge_pages_node[nid]); 3548 } 3549 3550 void hugetlb_show_meminfo(void) 3551 { 3552 struct hstate *h; 3553 int nid; 3554 3555 if (!hugepages_supported()) 3556 return; 3557 3558 for_each_node_state(nid, N_MEMORY) 3559 for_each_hstate(h) 3560 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n", 3561 nid, 3562 h->nr_huge_pages_node[nid], 3563 h->free_huge_pages_node[nid], 3564 h->surplus_huge_pages_node[nid], 3565 1UL << (huge_page_order(h) + PAGE_SHIFT - 10)); 3566 } 3567 3568 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm) 3569 { 3570 seq_printf(m, "HugetlbPages:\t%8lu kB\n", 3571 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10)); 3572 } 3573 3574 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ 3575 unsigned long hugetlb_total_pages(void) 3576 { 3577 struct hstate *h; 3578 unsigned long nr_total_pages = 0; 3579 3580 for_each_hstate(h) 3581 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h); 3582 return nr_total_pages; 3583 } 3584 3585 static int hugetlb_acct_memory(struct hstate *h, long delta) 3586 { 3587 int ret = -ENOMEM; 3588 3589 spin_lock(&hugetlb_lock); 3590 /* 3591 * When cpuset is configured, it breaks the strict hugetlb page 3592 * reservation as the accounting is done on a global variable. Such 3593 * reservation is completely rubbish in the presence of cpuset because 3594 * the reservation is not checked against page availability for the 3595 * current cpuset. Application can still potentially OOM'ed by kernel 3596 * with lack of free htlb page in cpuset that the task is in. 3597 * Attempt to enforce strict accounting with cpuset is almost 3598 * impossible (or too ugly) because cpuset is too fluid that 3599 * task or memory node can be dynamically moved between cpusets. 3600 * 3601 * The change of semantics for shared hugetlb mapping with cpuset is 3602 * undesirable. However, in order to preserve some of the semantics, 3603 * we fall back to check against current free page availability as 3604 * a best attempt and hopefully to minimize the impact of changing 3605 * semantics that cpuset has. 3606 * 3607 * Apart from cpuset, we also have memory policy mechanism that 3608 * also determines from which node the kernel will allocate memory 3609 * in a NUMA system. So similar to cpuset, we also should consider 3610 * the memory policy of the current task. Similar to the description 3611 * above. 3612 */ 3613 if (delta > 0) { 3614 if (gather_surplus_pages(h, delta) < 0) 3615 goto out; 3616 3617 if (delta > allowed_mems_nr(h)) { 3618 return_unused_surplus_pages(h, delta); 3619 goto out; 3620 } 3621 } 3622 3623 ret = 0; 3624 if (delta < 0) 3625 return_unused_surplus_pages(h, (unsigned long) -delta); 3626 3627 out: 3628 spin_unlock(&hugetlb_lock); 3629 return ret; 3630 } 3631 3632 static void hugetlb_vm_op_open(struct vm_area_struct *vma) 3633 { 3634 struct resv_map *resv = vma_resv_map(vma); 3635 3636 /* 3637 * This new VMA should share its siblings reservation map if present. 3638 * The VMA will only ever have a valid reservation map pointer where 3639 * it is being copied for another still existing VMA. As that VMA 3640 * has a reference to the reservation map it cannot disappear until 3641 * after this open call completes. It is therefore safe to take a 3642 * new reference here without additional locking. 3643 */ 3644 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 3645 kref_get(&resv->refs); 3646 } 3647 3648 static void hugetlb_vm_op_close(struct vm_area_struct *vma) 3649 { 3650 struct hstate *h = hstate_vma(vma); 3651 struct resv_map *resv = vma_resv_map(vma); 3652 struct hugepage_subpool *spool = subpool_vma(vma); 3653 unsigned long reserve, start, end; 3654 long gbl_reserve; 3655 3656 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 3657 return; 3658 3659 start = vma_hugecache_offset(h, vma, vma->vm_start); 3660 end = vma_hugecache_offset(h, vma, vma->vm_end); 3661 3662 reserve = (end - start) - region_count(resv, start, end); 3663 hugetlb_cgroup_uncharge_counter(resv, start, end); 3664 if (reserve) { 3665 /* 3666 * Decrement reserve counts. The global reserve count may be 3667 * adjusted if the subpool has a minimum size. 3668 */ 3669 gbl_reserve = hugepage_subpool_put_pages(spool, reserve); 3670 hugetlb_acct_memory(h, -gbl_reserve); 3671 } 3672 3673 kref_put(&resv->refs, resv_map_release); 3674 } 3675 3676 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr) 3677 { 3678 if (addr & ~(huge_page_mask(hstate_vma(vma)))) 3679 return -EINVAL; 3680 return 0; 3681 } 3682 3683 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma) 3684 { 3685 struct hstate *hstate = hstate_vma(vma); 3686 3687 return 1UL << huge_page_shift(hstate); 3688 } 3689 3690 /* 3691 * We cannot handle pagefaults against hugetlb pages at all. They cause 3692 * handle_mm_fault() to try to instantiate regular-sized pages in the 3693 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get 3694 * this far. 3695 */ 3696 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf) 3697 { 3698 BUG(); 3699 return 0; 3700 } 3701 3702 /* 3703 * When a new function is introduced to vm_operations_struct and added 3704 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops. 3705 * This is because under System V memory model, mappings created via 3706 * shmget/shmat with "huge page" specified are backed by hugetlbfs files, 3707 * their original vm_ops are overwritten with shm_vm_ops. 3708 */ 3709 const struct vm_operations_struct hugetlb_vm_ops = { 3710 .fault = hugetlb_vm_op_fault, 3711 .open = hugetlb_vm_op_open, 3712 .close = hugetlb_vm_op_close, 3713 .may_split = hugetlb_vm_op_split, 3714 .pagesize = hugetlb_vm_op_pagesize, 3715 }; 3716 3717 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, 3718 int writable) 3719 { 3720 pte_t entry; 3721 3722 if (writable) { 3723 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page, 3724 vma->vm_page_prot))); 3725 } else { 3726 entry = huge_pte_wrprotect(mk_huge_pte(page, 3727 vma->vm_page_prot)); 3728 } 3729 entry = pte_mkyoung(entry); 3730 entry = pte_mkhuge(entry); 3731 entry = arch_make_huge_pte(entry, vma, page, writable); 3732 3733 return entry; 3734 } 3735 3736 static void set_huge_ptep_writable(struct vm_area_struct *vma, 3737 unsigned long address, pte_t *ptep) 3738 { 3739 pte_t entry; 3740 3741 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep))); 3742 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) 3743 update_mmu_cache(vma, address, ptep); 3744 } 3745 3746 bool is_hugetlb_entry_migration(pte_t pte) 3747 { 3748 swp_entry_t swp; 3749 3750 if (huge_pte_none(pte) || pte_present(pte)) 3751 return false; 3752 swp = pte_to_swp_entry(pte); 3753 if (is_migration_entry(swp)) 3754 return true; 3755 else 3756 return false; 3757 } 3758 3759 static bool is_hugetlb_entry_hwpoisoned(pte_t pte) 3760 { 3761 swp_entry_t swp; 3762 3763 if (huge_pte_none(pte) || pte_present(pte)) 3764 return false; 3765 swp = pte_to_swp_entry(pte); 3766 if (is_hwpoison_entry(swp)) 3767 return true; 3768 else 3769 return false; 3770 } 3771 3772 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, 3773 struct vm_area_struct *vma) 3774 { 3775 pte_t *src_pte, *dst_pte, entry, dst_entry; 3776 struct page *ptepage; 3777 unsigned long addr; 3778 int cow; 3779 struct hstate *h = hstate_vma(vma); 3780 unsigned long sz = huge_page_size(h); 3781 struct address_space *mapping = vma->vm_file->f_mapping; 3782 struct mmu_notifier_range range; 3783 int ret = 0; 3784 3785 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 3786 3787 if (cow) { 3788 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src, 3789 vma->vm_start, 3790 vma->vm_end); 3791 mmu_notifier_invalidate_range_start(&range); 3792 } else { 3793 /* 3794 * For shared mappings i_mmap_rwsem must be held to call 3795 * huge_pte_alloc, otherwise the returned ptep could go 3796 * away if part of a shared pmd and another thread calls 3797 * huge_pmd_unshare. 3798 */ 3799 i_mmap_lock_read(mapping); 3800 } 3801 3802 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) { 3803 spinlock_t *src_ptl, *dst_ptl; 3804 src_pte = huge_pte_offset(src, addr, sz); 3805 if (!src_pte) 3806 continue; 3807 dst_pte = huge_pte_alloc(dst, addr, sz); 3808 if (!dst_pte) { 3809 ret = -ENOMEM; 3810 break; 3811 } 3812 3813 /* 3814 * If the pagetables are shared don't copy or take references. 3815 * dst_pte == src_pte is the common case of src/dest sharing. 3816 * 3817 * However, src could have 'unshared' and dst shares with 3818 * another vma. If dst_pte !none, this implies sharing. 3819 * Check here before taking page table lock, and once again 3820 * after taking the lock below. 3821 */ 3822 dst_entry = huge_ptep_get(dst_pte); 3823 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry)) 3824 continue; 3825 3826 dst_ptl = huge_pte_lock(h, dst, dst_pte); 3827 src_ptl = huge_pte_lockptr(h, src, src_pte); 3828 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 3829 entry = huge_ptep_get(src_pte); 3830 dst_entry = huge_ptep_get(dst_pte); 3831 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) { 3832 /* 3833 * Skip if src entry none. Also, skip in the 3834 * unlikely case dst entry !none as this implies 3835 * sharing with another vma. 3836 */ 3837 ; 3838 } else if (unlikely(is_hugetlb_entry_migration(entry) || 3839 is_hugetlb_entry_hwpoisoned(entry))) { 3840 swp_entry_t swp_entry = pte_to_swp_entry(entry); 3841 3842 if (is_write_migration_entry(swp_entry) && cow) { 3843 /* 3844 * COW mappings require pages in both 3845 * parent and child to be set to read. 3846 */ 3847 make_migration_entry_read(&swp_entry); 3848 entry = swp_entry_to_pte(swp_entry); 3849 set_huge_swap_pte_at(src, addr, src_pte, 3850 entry, sz); 3851 } 3852 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz); 3853 } else { 3854 if (cow) { 3855 /* 3856 * No need to notify as we are downgrading page 3857 * table protection not changing it to point 3858 * to a new page. 3859 * 3860 * See Documentation/vm/mmu_notifier.rst 3861 */ 3862 huge_ptep_set_wrprotect(src, addr, src_pte); 3863 } 3864 entry = huge_ptep_get(src_pte); 3865 ptepage = pte_page(entry); 3866 get_page(ptepage); 3867 page_dup_rmap(ptepage, true); 3868 set_huge_pte_at(dst, addr, dst_pte, entry); 3869 hugetlb_count_add(pages_per_huge_page(h), dst); 3870 } 3871 spin_unlock(src_ptl); 3872 spin_unlock(dst_ptl); 3873 } 3874 3875 if (cow) 3876 mmu_notifier_invalidate_range_end(&range); 3877 else 3878 i_mmap_unlock_read(mapping); 3879 3880 return ret; 3881 } 3882 3883 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma, 3884 unsigned long start, unsigned long end, 3885 struct page *ref_page) 3886 { 3887 struct mm_struct *mm = vma->vm_mm; 3888 unsigned long address; 3889 pte_t *ptep; 3890 pte_t pte; 3891 spinlock_t *ptl; 3892 struct page *page; 3893 struct hstate *h = hstate_vma(vma); 3894 unsigned long sz = huge_page_size(h); 3895 struct mmu_notifier_range range; 3896 3897 WARN_ON(!is_vm_hugetlb_page(vma)); 3898 BUG_ON(start & ~huge_page_mask(h)); 3899 BUG_ON(end & ~huge_page_mask(h)); 3900 3901 /* 3902 * This is a hugetlb vma, all the pte entries should point 3903 * to huge page. 3904 */ 3905 tlb_change_page_size(tlb, sz); 3906 tlb_start_vma(tlb, vma); 3907 3908 /* 3909 * If sharing possible, alert mmu notifiers of worst case. 3910 */ 3911 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start, 3912 end); 3913 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 3914 mmu_notifier_invalidate_range_start(&range); 3915 address = start; 3916 for (; address < end; address += sz) { 3917 ptep = huge_pte_offset(mm, address, sz); 3918 if (!ptep) 3919 continue; 3920 3921 ptl = huge_pte_lock(h, mm, ptep); 3922 if (huge_pmd_unshare(mm, vma, &address, ptep)) { 3923 spin_unlock(ptl); 3924 /* 3925 * We just unmapped a page of PMDs by clearing a PUD. 3926 * The caller's TLB flush range should cover this area. 3927 */ 3928 continue; 3929 } 3930 3931 pte = huge_ptep_get(ptep); 3932 if (huge_pte_none(pte)) { 3933 spin_unlock(ptl); 3934 continue; 3935 } 3936 3937 /* 3938 * Migrating hugepage or HWPoisoned hugepage is already 3939 * unmapped and its refcount is dropped, so just clear pte here. 3940 */ 3941 if (unlikely(!pte_present(pte))) { 3942 huge_pte_clear(mm, address, ptep, sz); 3943 spin_unlock(ptl); 3944 continue; 3945 } 3946 3947 page = pte_page(pte); 3948 /* 3949 * If a reference page is supplied, it is because a specific 3950 * page is being unmapped, not a range. Ensure the page we 3951 * are about to unmap is the actual page of interest. 3952 */ 3953 if (ref_page) { 3954 if (page != ref_page) { 3955 spin_unlock(ptl); 3956 continue; 3957 } 3958 /* 3959 * Mark the VMA as having unmapped its page so that 3960 * future faults in this VMA will fail rather than 3961 * looking like data was lost 3962 */ 3963 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); 3964 } 3965 3966 pte = huge_ptep_get_and_clear(mm, address, ptep); 3967 tlb_remove_huge_tlb_entry(h, tlb, ptep, address); 3968 if (huge_pte_dirty(pte)) 3969 set_page_dirty(page); 3970 3971 hugetlb_count_sub(pages_per_huge_page(h), mm); 3972 page_remove_rmap(page, true); 3973 3974 spin_unlock(ptl); 3975 tlb_remove_page_size(tlb, page, huge_page_size(h)); 3976 /* 3977 * Bail out after unmapping reference page if supplied 3978 */ 3979 if (ref_page) 3980 break; 3981 } 3982 mmu_notifier_invalidate_range_end(&range); 3983 tlb_end_vma(tlb, vma); 3984 } 3985 3986 void __unmap_hugepage_range_final(struct mmu_gather *tlb, 3987 struct vm_area_struct *vma, unsigned long start, 3988 unsigned long end, struct page *ref_page) 3989 { 3990 __unmap_hugepage_range(tlb, vma, start, end, ref_page); 3991 3992 /* 3993 * Clear this flag so that x86's huge_pmd_share page_table_shareable 3994 * test will fail on a vma being torn down, and not grab a page table 3995 * on its way out. We're lucky that the flag has such an appropriate 3996 * name, and can in fact be safely cleared here. We could clear it 3997 * before the __unmap_hugepage_range above, but all that's necessary 3998 * is to clear it before releasing the i_mmap_rwsem. This works 3999 * because in the context this is called, the VMA is about to be 4000 * destroyed and the i_mmap_rwsem is held. 4001 */ 4002 vma->vm_flags &= ~VM_MAYSHARE; 4003 } 4004 4005 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, 4006 unsigned long end, struct page *ref_page) 4007 { 4008 struct mm_struct *mm; 4009 struct mmu_gather tlb; 4010 unsigned long tlb_start = start; 4011 unsigned long tlb_end = end; 4012 4013 /* 4014 * If shared PMDs were possibly used within this vma range, adjust 4015 * start/end for worst case tlb flushing. 4016 * Note that we can not be sure if PMDs are shared until we try to 4017 * unmap pages. However, we want to make sure TLB flushing covers 4018 * the largest possible range. 4019 */ 4020 adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end); 4021 4022 mm = vma->vm_mm; 4023 4024 tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end); 4025 __unmap_hugepage_range(&tlb, vma, start, end, ref_page); 4026 tlb_finish_mmu(&tlb, tlb_start, tlb_end); 4027 } 4028 4029 /* 4030 * This is called when the original mapper is failing to COW a MAP_PRIVATE 4031 * mappping it owns the reserve page for. The intention is to unmap the page 4032 * from other VMAs and let the children be SIGKILLed if they are faulting the 4033 * same region. 4034 */ 4035 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, 4036 struct page *page, unsigned long address) 4037 { 4038 struct hstate *h = hstate_vma(vma); 4039 struct vm_area_struct *iter_vma; 4040 struct address_space *mapping; 4041 pgoff_t pgoff; 4042 4043 /* 4044 * vm_pgoff is in PAGE_SIZE units, hence the different calculation 4045 * from page cache lookup which is in HPAGE_SIZE units. 4046 */ 4047 address = address & huge_page_mask(h); 4048 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + 4049 vma->vm_pgoff; 4050 mapping = vma->vm_file->f_mapping; 4051 4052 /* 4053 * Take the mapping lock for the duration of the table walk. As 4054 * this mapping should be shared between all the VMAs, 4055 * __unmap_hugepage_range() is called as the lock is already held 4056 */ 4057 i_mmap_lock_write(mapping); 4058 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) { 4059 /* Do not unmap the current VMA */ 4060 if (iter_vma == vma) 4061 continue; 4062 4063 /* 4064 * Shared VMAs have their own reserves and do not affect 4065 * MAP_PRIVATE accounting but it is possible that a shared 4066 * VMA is using the same page so check and skip such VMAs. 4067 */ 4068 if (iter_vma->vm_flags & VM_MAYSHARE) 4069 continue; 4070 4071 /* 4072 * Unmap the page from other VMAs without their own reserves. 4073 * They get marked to be SIGKILLed if they fault in these 4074 * areas. This is because a future no-page fault on this VMA 4075 * could insert a zeroed page instead of the data existing 4076 * from the time of fork. This would look like data corruption 4077 */ 4078 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) 4079 unmap_hugepage_range(iter_vma, address, 4080 address + huge_page_size(h), page); 4081 } 4082 i_mmap_unlock_write(mapping); 4083 } 4084 4085 /* 4086 * Hugetlb_cow() should be called with page lock of the original hugepage held. 4087 * Called with hugetlb_instantiation_mutex held and pte_page locked so we 4088 * cannot race with other handlers or page migration. 4089 * Keep the pte_same checks anyway to make transition from the mutex easier. 4090 */ 4091 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma, 4092 unsigned long address, pte_t *ptep, 4093 struct page *pagecache_page, spinlock_t *ptl) 4094 { 4095 pte_t pte; 4096 struct hstate *h = hstate_vma(vma); 4097 struct page *old_page, *new_page; 4098 int outside_reserve = 0; 4099 vm_fault_t ret = 0; 4100 unsigned long haddr = address & huge_page_mask(h); 4101 struct mmu_notifier_range range; 4102 4103 pte = huge_ptep_get(ptep); 4104 old_page = pte_page(pte); 4105 4106 retry_avoidcopy: 4107 /* If no-one else is actually using this page, avoid the copy 4108 * and just make the page writable */ 4109 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) { 4110 page_move_anon_rmap(old_page, vma); 4111 set_huge_ptep_writable(vma, haddr, ptep); 4112 return 0; 4113 } 4114 4115 /* 4116 * If the process that created a MAP_PRIVATE mapping is about to 4117 * perform a COW due to a shared page count, attempt to satisfy 4118 * the allocation without using the existing reserves. The pagecache 4119 * page is used to determine if the reserve at this address was 4120 * consumed or not. If reserves were used, a partial faulted mapping 4121 * at the time of fork() could consume its reserves on COW instead 4122 * of the full address range. 4123 */ 4124 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && 4125 old_page != pagecache_page) 4126 outside_reserve = 1; 4127 4128 get_page(old_page); 4129 4130 /* 4131 * Drop page table lock as buddy allocator may be called. It will 4132 * be acquired again before returning to the caller, as expected. 4133 */ 4134 spin_unlock(ptl); 4135 new_page = alloc_huge_page(vma, haddr, outside_reserve); 4136 4137 if (IS_ERR(new_page)) { 4138 /* 4139 * If a process owning a MAP_PRIVATE mapping fails to COW, 4140 * it is due to references held by a child and an insufficient 4141 * huge page pool. To guarantee the original mappers 4142 * reliability, unmap the page from child processes. The child 4143 * may get SIGKILLed if it later faults. 4144 */ 4145 if (outside_reserve) { 4146 struct address_space *mapping = vma->vm_file->f_mapping; 4147 pgoff_t idx; 4148 u32 hash; 4149 4150 put_page(old_page); 4151 BUG_ON(huge_pte_none(pte)); 4152 /* 4153 * Drop hugetlb_fault_mutex and i_mmap_rwsem before 4154 * unmapping. unmapping needs to hold i_mmap_rwsem 4155 * in write mode. Dropping i_mmap_rwsem in read mode 4156 * here is OK as COW mappings do not interact with 4157 * PMD sharing. 4158 * 4159 * Reacquire both after unmap operation. 4160 */ 4161 idx = vma_hugecache_offset(h, vma, haddr); 4162 hash = hugetlb_fault_mutex_hash(mapping, idx); 4163 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 4164 i_mmap_unlock_read(mapping); 4165 4166 unmap_ref_private(mm, vma, old_page, haddr); 4167 4168 i_mmap_lock_read(mapping); 4169 mutex_lock(&hugetlb_fault_mutex_table[hash]); 4170 spin_lock(ptl); 4171 ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); 4172 if (likely(ptep && 4173 pte_same(huge_ptep_get(ptep), pte))) 4174 goto retry_avoidcopy; 4175 /* 4176 * race occurs while re-acquiring page table 4177 * lock, and our job is done. 4178 */ 4179 return 0; 4180 } 4181 4182 ret = vmf_error(PTR_ERR(new_page)); 4183 goto out_release_old; 4184 } 4185 4186 /* 4187 * When the original hugepage is shared one, it does not have 4188 * anon_vma prepared. 4189 */ 4190 if (unlikely(anon_vma_prepare(vma))) { 4191 ret = VM_FAULT_OOM; 4192 goto out_release_all; 4193 } 4194 4195 copy_user_huge_page(new_page, old_page, address, vma, 4196 pages_per_huge_page(h)); 4197 __SetPageUptodate(new_page); 4198 4199 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr, 4200 haddr + huge_page_size(h)); 4201 mmu_notifier_invalidate_range_start(&range); 4202 4203 /* 4204 * Retake the page table lock to check for racing updates 4205 * before the page tables are altered 4206 */ 4207 spin_lock(ptl); 4208 ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); 4209 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) { 4210 ClearPagePrivate(new_page); 4211 4212 /* Break COW */ 4213 huge_ptep_clear_flush(vma, haddr, ptep); 4214 mmu_notifier_invalidate_range(mm, range.start, range.end); 4215 set_huge_pte_at(mm, haddr, ptep, 4216 make_huge_pte(vma, new_page, 1)); 4217 page_remove_rmap(old_page, true); 4218 hugepage_add_new_anon_rmap(new_page, vma, haddr); 4219 set_page_huge_active(new_page); 4220 /* Make the old page be freed below */ 4221 new_page = old_page; 4222 } 4223 spin_unlock(ptl); 4224 mmu_notifier_invalidate_range_end(&range); 4225 out_release_all: 4226 restore_reserve_on_error(h, vma, haddr, new_page); 4227 put_page(new_page); 4228 out_release_old: 4229 put_page(old_page); 4230 4231 spin_lock(ptl); /* Caller expects lock to be held */ 4232 return ret; 4233 } 4234 4235 /* Return the pagecache page at a given address within a VMA */ 4236 static struct page *hugetlbfs_pagecache_page(struct hstate *h, 4237 struct vm_area_struct *vma, unsigned long address) 4238 { 4239 struct address_space *mapping; 4240 pgoff_t idx; 4241 4242 mapping = vma->vm_file->f_mapping; 4243 idx = vma_hugecache_offset(h, vma, address); 4244 4245 return find_lock_page(mapping, idx); 4246 } 4247 4248 /* 4249 * Return whether there is a pagecache page to back given address within VMA. 4250 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page. 4251 */ 4252 static bool hugetlbfs_pagecache_present(struct hstate *h, 4253 struct vm_area_struct *vma, unsigned long address) 4254 { 4255 struct address_space *mapping; 4256 pgoff_t idx; 4257 struct page *page; 4258 4259 mapping = vma->vm_file->f_mapping; 4260 idx = vma_hugecache_offset(h, vma, address); 4261 4262 page = find_get_page(mapping, idx); 4263 if (page) 4264 put_page(page); 4265 return page != NULL; 4266 } 4267 4268 int huge_add_to_page_cache(struct page *page, struct address_space *mapping, 4269 pgoff_t idx) 4270 { 4271 struct inode *inode = mapping->host; 4272 struct hstate *h = hstate_inode(inode); 4273 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL); 4274 4275 if (err) 4276 return err; 4277 ClearPagePrivate(page); 4278 4279 /* 4280 * set page dirty so that it will not be removed from cache/file 4281 * by non-hugetlbfs specific code paths. 4282 */ 4283 set_page_dirty(page); 4284 4285 spin_lock(&inode->i_lock); 4286 inode->i_blocks += blocks_per_huge_page(h); 4287 spin_unlock(&inode->i_lock); 4288 return 0; 4289 } 4290 4291 static vm_fault_t hugetlb_no_page(struct mm_struct *mm, 4292 struct vm_area_struct *vma, 4293 struct address_space *mapping, pgoff_t idx, 4294 unsigned long address, pte_t *ptep, unsigned int flags) 4295 { 4296 struct hstate *h = hstate_vma(vma); 4297 vm_fault_t ret = VM_FAULT_SIGBUS; 4298 int anon_rmap = 0; 4299 unsigned long size; 4300 struct page *page; 4301 pte_t new_pte; 4302 spinlock_t *ptl; 4303 unsigned long haddr = address & huge_page_mask(h); 4304 bool new_page = false; 4305 4306 /* 4307 * Currently, we are forced to kill the process in the event the 4308 * original mapper has unmapped pages from the child due to a failed 4309 * COW. Warn that such a situation has occurred as it may not be obvious 4310 */ 4311 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { 4312 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n", 4313 current->pid); 4314 return ret; 4315 } 4316 4317 /* 4318 * We can not race with truncation due to holding i_mmap_rwsem. 4319 * i_size is modified when holding i_mmap_rwsem, so check here 4320 * once for faults beyond end of file. 4321 */ 4322 size = i_size_read(mapping->host) >> huge_page_shift(h); 4323 if (idx >= size) 4324 goto out; 4325 4326 retry: 4327 page = find_lock_page(mapping, idx); 4328 if (!page) { 4329 /* 4330 * Check for page in userfault range 4331 */ 4332 if (userfaultfd_missing(vma)) { 4333 u32 hash; 4334 struct vm_fault vmf = { 4335 .vma = vma, 4336 .address = haddr, 4337 .flags = flags, 4338 /* 4339 * Hard to debug if it ends up being 4340 * used by a callee that assumes 4341 * something about the other 4342 * uninitialized fields... same as in 4343 * memory.c 4344 */ 4345 }; 4346 4347 /* 4348 * hugetlb_fault_mutex and i_mmap_rwsem must be 4349 * dropped before handling userfault. Reacquire 4350 * after handling fault to make calling code simpler. 4351 */ 4352 hash = hugetlb_fault_mutex_hash(mapping, idx); 4353 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 4354 i_mmap_unlock_read(mapping); 4355 ret = handle_userfault(&vmf, VM_UFFD_MISSING); 4356 i_mmap_lock_read(mapping); 4357 mutex_lock(&hugetlb_fault_mutex_table[hash]); 4358 goto out; 4359 } 4360 4361 page = alloc_huge_page(vma, haddr, 0); 4362 if (IS_ERR(page)) { 4363 /* 4364 * Returning error will result in faulting task being 4365 * sent SIGBUS. The hugetlb fault mutex prevents two 4366 * tasks from racing to fault in the same page which 4367 * could result in false unable to allocate errors. 4368 * Page migration does not take the fault mutex, but 4369 * does a clear then write of pte's under page table 4370 * lock. Page fault code could race with migration, 4371 * notice the clear pte and try to allocate a page 4372 * here. Before returning error, get ptl and make 4373 * sure there really is no pte entry. 4374 */ 4375 ptl = huge_pte_lock(h, mm, ptep); 4376 if (!huge_pte_none(huge_ptep_get(ptep))) { 4377 ret = 0; 4378 spin_unlock(ptl); 4379 goto out; 4380 } 4381 spin_unlock(ptl); 4382 ret = vmf_error(PTR_ERR(page)); 4383 goto out; 4384 } 4385 clear_huge_page(page, address, pages_per_huge_page(h)); 4386 __SetPageUptodate(page); 4387 new_page = true; 4388 4389 if (vma->vm_flags & VM_MAYSHARE) { 4390 int err = huge_add_to_page_cache(page, mapping, idx); 4391 if (err) { 4392 put_page(page); 4393 if (err == -EEXIST) 4394 goto retry; 4395 goto out; 4396 } 4397 } else { 4398 lock_page(page); 4399 if (unlikely(anon_vma_prepare(vma))) { 4400 ret = VM_FAULT_OOM; 4401 goto backout_unlocked; 4402 } 4403 anon_rmap = 1; 4404 } 4405 } else { 4406 /* 4407 * If memory error occurs between mmap() and fault, some process 4408 * don't have hwpoisoned swap entry for errored virtual address. 4409 * So we need to block hugepage fault by PG_hwpoison bit check. 4410 */ 4411 if (unlikely(PageHWPoison(page))) { 4412 ret = VM_FAULT_HWPOISON_LARGE | 4413 VM_FAULT_SET_HINDEX(hstate_index(h)); 4414 goto backout_unlocked; 4415 } 4416 } 4417 4418 /* 4419 * If we are going to COW a private mapping later, we examine the 4420 * pending reservations for this page now. This will ensure that 4421 * any allocations necessary to record that reservation occur outside 4422 * the spinlock. 4423 */ 4424 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 4425 if (vma_needs_reservation(h, vma, haddr) < 0) { 4426 ret = VM_FAULT_OOM; 4427 goto backout_unlocked; 4428 } 4429 /* Just decrements count, does not deallocate */ 4430 vma_end_reservation(h, vma, haddr); 4431 } 4432 4433 ptl = huge_pte_lock(h, mm, ptep); 4434 ret = 0; 4435 if (!huge_pte_none(huge_ptep_get(ptep))) 4436 goto backout; 4437 4438 if (anon_rmap) { 4439 ClearPagePrivate(page); 4440 hugepage_add_new_anon_rmap(page, vma, haddr); 4441 } else 4442 page_dup_rmap(page, true); 4443 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE) 4444 && (vma->vm_flags & VM_SHARED))); 4445 set_huge_pte_at(mm, haddr, ptep, new_pte); 4446 4447 hugetlb_count_add(pages_per_huge_page(h), mm); 4448 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 4449 /* Optimization, do the COW without a second fault */ 4450 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl); 4451 } 4452 4453 spin_unlock(ptl); 4454 4455 /* 4456 * Only make newly allocated pages active. Existing pages found 4457 * in the pagecache could be !page_huge_active() if they have been 4458 * isolated for migration. 4459 */ 4460 if (new_page) 4461 set_page_huge_active(page); 4462 4463 unlock_page(page); 4464 out: 4465 return ret; 4466 4467 backout: 4468 spin_unlock(ptl); 4469 backout_unlocked: 4470 unlock_page(page); 4471 restore_reserve_on_error(h, vma, haddr, page); 4472 put_page(page); 4473 goto out; 4474 } 4475 4476 #ifdef CONFIG_SMP 4477 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 4478 { 4479 unsigned long key[2]; 4480 u32 hash; 4481 4482 key[0] = (unsigned long) mapping; 4483 key[1] = idx; 4484 4485 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0); 4486 4487 return hash & (num_fault_mutexes - 1); 4488 } 4489 #else 4490 /* 4491 * For uniprocesor systems we always use a single mutex, so just 4492 * return 0 and avoid the hashing overhead. 4493 */ 4494 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 4495 { 4496 return 0; 4497 } 4498 #endif 4499 4500 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, 4501 unsigned long address, unsigned int flags) 4502 { 4503 pte_t *ptep, entry; 4504 spinlock_t *ptl; 4505 vm_fault_t ret; 4506 u32 hash; 4507 pgoff_t idx; 4508 struct page *page = NULL; 4509 struct page *pagecache_page = NULL; 4510 struct hstate *h = hstate_vma(vma); 4511 struct address_space *mapping; 4512 int need_wait_lock = 0; 4513 unsigned long haddr = address & huge_page_mask(h); 4514 4515 ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); 4516 if (ptep) { 4517 /* 4518 * Since we hold no locks, ptep could be stale. That is 4519 * OK as we are only making decisions based on content and 4520 * not actually modifying content here. 4521 */ 4522 entry = huge_ptep_get(ptep); 4523 if (unlikely(is_hugetlb_entry_migration(entry))) { 4524 migration_entry_wait_huge(vma, mm, ptep); 4525 return 0; 4526 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) 4527 return VM_FAULT_HWPOISON_LARGE | 4528 VM_FAULT_SET_HINDEX(hstate_index(h)); 4529 } 4530 4531 /* 4532 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold 4533 * until finished with ptep. This serves two purposes: 4534 * 1) It prevents huge_pmd_unshare from being called elsewhere 4535 * and making the ptep no longer valid. 4536 * 2) It synchronizes us with i_size modifications during truncation. 4537 * 4538 * ptep could have already be assigned via huge_pte_offset. That 4539 * is OK, as huge_pte_alloc will return the same value unless 4540 * something has changed. 4541 */ 4542 mapping = vma->vm_file->f_mapping; 4543 i_mmap_lock_read(mapping); 4544 ptep = huge_pte_alloc(mm, haddr, huge_page_size(h)); 4545 if (!ptep) { 4546 i_mmap_unlock_read(mapping); 4547 return VM_FAULT_OOM; 4548 } 4549 4550 /* 4551 * Serialize hugepage allocation and instantiation, so that we don't 4552 * get spurious allocation failures if two CPUs race to instantiate 4553 * the same page in the page cache. 4554 */ 4555 idx = vma_hugecache_offset(h, vma, haddr); 4556 hash = hugetlb_fault_mutex_hash(mapping, idx); 4557 mutex_lock(&hugetlb_fault_mutex_table[hash]); 4558 4559 entry = huge_ptep_get(ptep); 4560 if (huge_pte_none(entry)) { 4561 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags); 4562 goto out_mutex; 4563 } 4564 4565 ret = 0; 4566 4567 /* 4568 * entry could be a migration/hwpoison entry at this point, so this 4569 * check prevents the kernel from going below assuming that we have 4570 * an active hugepage in pagecache. This goto expects the 2nd page 4571 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will 4572 * properly handle it. 4573 */ 4574 if (!pte_present(entry)) 4575 goto out_mutex; 4576 4577 /* 4578 * If we are going to COW the mapping later, we examine the pending 4579 * reservations for this page now. This will ensure that any 4580 * allocations necessary to record that reservation occur outside the 4581 * spinlock. For private mappings, we also lookup the pagecache 4582 * page now as it is used to determine if a reservation has been 4583 * consumed. 4584 */ 4585 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) { 4586 if (vma_needs_reservation(h, vma, haddr) < 0) { 4587 ret = VM_FAULT_OOM; 4588 goto out_mutex; 4589 } 4590 /* Just decrements count, does not deallocate */ 4591 vma_end_reservation(h, vma, haddr); 4592 4593 if (!(vma->vm_flags & VM_MAYSHARE)) 4594 pagecache_page = hugetlbfs_pagecache_page(h, 4595 vma, haddr); 4596 } 4597 4598 ptl = huge_pte_lock(h, mm, ptep); 4599 4600 /* Check for a racing update before calling hugetlb_cow */ 4601 if (unlikely(!pte_same(entry, huge_ptep_get(ptep)))) 4602 goto out_ptl; 4603 4604 /* 4605 * hugetlb_cow() requires page locks of pte_page(entry) and 4606 * pagecache_page, so here we need take the former one 4607 * when page != pagecache_page or !pagecache_page. 4608 */ 4609 page = pte_page(entry); 4610 if (page != pagecache_page) 4611 if (!trylock_page(page)) { 4612 need_wait_lock = 1; 4613 goto out_ptl; 4614 } 4615 4616 get_page(page); 4617 4618 if (flags & FAULT_FLAG_WRITE) { 4619 if (!huge_pte_write(entry)) { 4620 ret = hugetlb_cow(mm, vma, address, ptep, 4621 pagecache_page, ptl); 4622 goto out_put_page; 4623 } 4624 entry = huge_pte_mkdirty(entry); 4625 } 4626 entry = pte_mkyoung(entry); 4627 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry, 4628 flags & FAULT_FLAG_WRITE)) 4629 update_mmu_cache(vma, haddr, ptep); 4630 out_put_page: 4631 if (page != pagecache_page) 4632 unlock_page(page); 4633 put_page(page); 4634 out_ptl: 4635 spin_unlock(ptl); 4636 4637 if (pagecache_page) { 4638 unlock_page(pagecache_page); 4639 put_page(pagecache_page); 4640 } 4641 out_mutex: 4642 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 4643 i_mmap_unlock_read(mapping); 4644 /* 4645 * Generally it's safe to hold refcount during waiting page lock. But 4646 * here we just wait to defer the next page fault to avoid busy loop and 4647 * the page is not used after unlocked before returning from the current 4648 * page fault. So we are safe from accessing freed page, even if we wait 4649 * here without taking refcount. 4650 */ 4651 if (need_wait_lock) 4652 wait_on_page_locked(page); 4653 return ret; 4654 } 4655 4656 /* 4657 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with 4658 * modifications for huge pages. 4659 */ 4660 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm, 4661 pte_t *dst_pte, 4662 struct vm_area_struct *dst_vma, 4663 unsigned long dst_addr, 4664 unsigned long src_addr, 4665 struct page **pagep) 4666 { 4667 struct address_space *mapping; 4668 pgoff_t idx; 4669 unsigned long size; 4670 int vm_shared = dst_vma->vm_flags & VM_SHARED; 4671 struct hstate *h = hstate_vma(dst_vma); 4672 pte_t _dst_pte; 4673 spinlock_t *ptl; 4674 int ret; 4675 struct page *page; 4676 4677 if (!*pagep) { 4678 ret = -ENOMEM; 4679 page = alloc_huge_page(dst_vma, dst_addr, 0); 4680 if (IS_ERR(page)) 4681 goto out; 4682 4683 ret = copy_huge_page_from_user(page, 4684 (const void __user *) src_addr, 4685 pages_per_huge_page(h), false); 4686 4687 /* fallback to copy_from_user outside mmap_lock */ 4688 if (unlikely(ret)) { 4689 ret = -ENOENT; 4690 *pagep = page; 4691 /* don't free the page */ 4692 goto out; 4693 } 4694 } else { 4695 page = *pagep; 4696 *pagep = NULL; 4697 } 4698 4699 /* 4700 * The memory barrier inside __SetPageUptodate makes sure that 4701 * preceding stores to the page contents become visible before 4702 * the set_pte_at() write. 4703 */ 4704 __SetPageUptodate(page); 4705 4706 mapping = dst_vma->vm_file->f_mapping; 4707 idx = vma_hugecache_offset(h, dst_vma, dst_addr); 4708 4709 /* 4710 * If shared, add to page cache 4711 */ 4712 if (vm_shared) { 4713 size = i_size_read(mapping->host) >> huge_page_shift(h); 4714 ret = -EFAULT; 4715 if (idx >= size) 4716 goto out_release_nounlock; 4717 4718 /* 4719 * Serialization between remove_inode_hugepages() and 4720 * huge_add_to_page_cache() below happens through the 4721 * hugetlb_fault_mutex_table that here must be hold by 4722 * the caller. 4723 */ 4724 ret = huge_add_to_page_cache(page, mapping, idx); 4725 if (ret) 4726 goto out_release_nounlock; 4727 } 4728 4729 ptl = huge_pte_lockptr(h, dst_mm, dst_pte); 4730 spin_lock(ptl); 4731 4732 /* 4733 * Recheck the i_size after holding PT lock to make sure not 4734 * to leave any page mapped (as page_mapped()) beyond the end 4735 * of the i_size (remove_inode_hugepages() is strict about 4736 * enforcing that). If we bail out here, we'll also leave a 4737 * page in the radix tree in the vm_shared case beyond the end 4738 * of the i_size, but remove_inode_hugepages() will take care 4739 * of it as soon as we drop the hugetlb_fault_mutex_table. 4740 */ 4741 size = i_size_read(mapping->host) >> huge_page_shift(h); 4742 ret = -EFAULT; 4743 if (idx >= size) 4744 goto out_release_unlock; 4745 4746 ret = -EEXIST; 4747 if (!huge_pte_none(huge_ptep_get(dst_pte))) 4748 goto out_release_unlock; 4749 4750 if (vm_shared) { 4751 page_dup_rmap(page, true); 4752 } else { 4753 ClearPagePrivate(page); 4754 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr); 4755 } 4756 4757 _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE); 4758 if (dst_vma->vm_flags & VM_WRITE) 4759 _dst_pte = huge_pte_mkdirty(_dst_pte); 4760 _dst_pte = pte_mkyoung(_dst_pte); 4761 4762 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte); 4763 4764 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte, 4765 dst_vma->vm_flags & VM_WRITE); 4766 hugetlb_count_add(pages_per_huge_page(h), dst_mm); 4767 4768 /* No need to invalidate - it was non-present before */ 4769 update_mmu_cache(dst_vma, dst_addr, dst_pte); 4770 4771 spin_unlock(ptl); 4772 set_page_huge_active(page); 4773 if (vm_shared) 4774 unlock_page(page); 4775 ret = 0; 4776 out: 4777 return ret; 4778 out_release_unlock: 4779 spin_unlock(ptl); 4780 if (vm_shared) 4781 unlock_page(page); 4782 out_release_nounlock: 4783 put_page(page); 4784 goto out; 4785 } 4786 4787 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, 4788 struct page **pages, struct vm_area_struct **vmas, 4789 unsigned long *position, unsigned long *nr_pages, 4790 long i, unsigned int flags, int *locked) 4791 { 4792 unsigned long pfn_offset; 4793 unsigned long vaddr = *position; 4794 unsigned long remainder = *nr_pages; 4795 struct hstate *h = hstate_vma(vma); 4796 int err = -EFAULT; 4797 4798 while (vaddr < vma->vm_end && remainder) { 4799 pte_t *pte; 4800 spinlock_t *ptl = NULL; 4801 int absent; 4802 struct page *page; 4803 4804 /* 4805 * If we have a pending SIGKILL, don't keep faulting pages and 4806 * potentially allocating memory. 4807 */ 4808 if (fatal_signal_pending(current)) { 4809 remainder = 0; 4810 break; 4811 } 4812 4813 /* 4814 * Some archs (sparc64, sh*) have multiple pte_ts to 4815 * each hugepage. We have to make sure we get the 4816 * first, for the page indexing below to work. 4817 * 4818 * Note that page table lock is not held when pte is null. 4819 */ 4820 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h), 4821 huge_page_size(h)); 4822 if (pte) 4823 ptl = huge_pte_lock(h, mm, pte); 4824 absent = !pte || huge_pte_none(huge_ptep_get(pte)); 4825 4826 /* 4827 * When coredumping, it suits get_dump_page if we just return 4828 * an error where there's an empty slot with no huge pagecache 4829 * to back it. This way, we avoid allocating a hugepage, and 4830 * the sparse dumpfile avoids allocating disk blocks, but its 4831 * huge holes still show up with zeroes where they need to be. 4832 */ 4833 if (absent && (flags & FOLL_DUMP) && 4834 !hugetlbfs_pagecache_present(h, vma, vaddr)) { 4835 if (pte) 4836 spin_unlock(ptl); 4837 remainder = 0; 4838 break; 4839 } 4840 4841 /* 4842 * We need call hugetlb_fault for both hugepages under migration 4843 * (in which case hugetlb_fault waits for the migration,) and 4844 * hwpoisoned hugepages (in which case we need to prevent the 4845 * caller from accessing to them.) In order to do this, we use 4846 * here is_swap_pte instead of is_hugetlb_entry_migration and 4847 * is_hugetlb_entry_hwpoisoned. This is because it simply covers 4848 * both cases, and because we can't follow correct pages 4849 * directly from any kind of swap entries. 4850 */ 4851 if (absent || is_swap_pte(huge_ptep_get(pte)) || 4852 ((flags & FOLL_WRITE) && 4853 !huge_pte_write(huge_ptep_get(pte)))) { 4854 vm_fault_t ret; 4855 unsigned int fault_flags = 0; 4856 4857 if (pte) 4858 spin_unlock(ptl); 4859 if (flags & FOLL_WRITE) 4860 fault_flags |= FAULT_FLAG_WRITE; 4861 if (locked) 4862 fault_flags |= FAULT_FLAG_ALLOW_RETRY | 4863 FAULT_FLAG_KILLABLE; 4864 if (flags & FOLL_NOWAIT) 4865 fault_flags |= FAULT_FLAG_ALLOW_RETRY | 4866 FAULT_FLAG_RETRY_NOWAIT; 4867 if (flags & FOLL_TRIED) { 4868 /* 4869 * Note: FAULT_FLAG_ALLOW_RETRY and 4870 * FAULT_FLAG_TRIED can co-exist 4871 */ 4872 fault_flags |= FAULT_FLAG_TRIED; 4873 } 4874 ret = hugetlb_fault(mm, vma, vaddr, fault_flags); 4875 if (ret & VM_FAULT_ERROR) { 4876 err = vm_fault_to_errno(ret, flags); 4877 remainder = 0; 4878 break; 4879 } 4880 if (ret & VM_FAULT_RETRY) { 4881 if (locked && 4882 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) 4883 *locked = 0; 4884 *nr_pages = 0; 4885 /* 4886 * VM_FAULT_RETRY must not return an 4887 * error, it will return zero 4888 * instead. 4889 * 4890 * No need to update "position" as the 4891 * caller will not check it after 4892 * *nr_pages is set to 0. 4893 */ 4894 return i; 4895 } 4896 continue; 4897 } 4898 4899 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT; 4900 page = pte_page(huge_ptep_get(pte)); 4901 4902 /* 4903 * If subpage information not requested, update counters 4904 * and skip the same_page loop below. 4905 */ 4906 if (!pages && !vmas && !pfn_offset && 4907 (vaddr + huge_page_size(h) < vma->vm_end) && 4908 (remainder >= pages_per_huge_page(h))) { 4909 vaddr += huge_page_size(h); 4910 remainder -= pages_per_huge_page(h); 4911 i += pages_per_huge_page(h); 4912 spin_unlock(ptl); 4913 continue; 4914 } 4915 4916 same_page: 4917 if (pages) { 4918 pages[i] = mem_map_offset(page, pfn_offset); 4919 /* 4920 * try_grab_page() should always succeed here, because: 4921 * a) we hold the ptl lock, and b) we've just checked 4922 * that the huge page is present in the page tables. If 4923 * the huge page is present, then the tail pages must 4924 * also be present. The ptl prevents the head page and 4925 * tail pages from being rearranged in any way. So this 4926 * page must be available at this point, unless the page 4927 * refcount overflowed: 4928 */ 4929 if (WARN_ON_ONCE(!try_grab_page(pages[i], flags))) { 4930 spin_unlock(ptl); 4931 remainder = 0; 4932 err = -ENOMEM; 4933 break; 4934 } 4935 } 4936 4937 if (vmas) 4938 vmas[i] = vma; 4939 4940 vaddr += PAGE_SIZE; 4941 ++pfn_offset; 4942 --remainder; 4943 ++i; 4944 if (vaddr < vma->vm_end && remainder && 4945 pfn_offset < pages_per_huge_page(h)) { 4946 /* 4947 * We use pfn_offset to avoid touching the pageframes 4948 * of this compound page. 4949 */ 4950 goto same_page; 4951 } 4952 spin_unlock(ptl); 4953 } 4954 *nr_pages = remainder; 4955 /* 4956 * setting position is actually required only if remainder is 4957 * not zero but it's faster not to add a "if (remainder)" 4958 * branch. 4959 */ 4960 *position = vaddr; 4961 4962 return i ? i : err; 4963 } 4964 4965 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE 4966 /* 4967 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can 4968 * implement this. 4969 */ 4970 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end) 4971 #endif 4972 4973 unsigned long hugetlb_change_protection(struct vm_area_struct *vma, 4974 unsigned long address, unsigned long end, pgprot_t newprot) 4975 { 4976 struct mm_struct *mm = vma->vm_mm; 4977 unsigned long start = address; 4978 pte_t *ptep; 4979 pte_t pte; 4980 struct hstate *h = hstate_vma(vma); 4981 unsigned long pages = 0; 4982 bool shared_pmd = false; 4983 struct mmu_notifier_range range; 4984 4985 /* 4986 * In the case of shared PMDs, the area to flush could be beyond 4987 * start/end. Set range.start/range.end to cover the maximum possible 4988 * range if PMD sharing is possible. 4989 */ 4990 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA, 4991 0, vma, mm, start, end); 4992 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 4993 4994 BUG_ON(address >= end); 4995 flush_cache_range(vma, range.start, range.end); 4996 4997 mmu_notifier_invalidate_range_start(&range); 4998 i_mmap_lock_write(vma->vm_file->f_mapping); 4999 for (; address < end; address += huge_page_size(h)) { 5000 spinlock_t *ptl; 5001 ptep = huge_pte_offset(mm, address, huge_page_size(h)); 5002 if (!ptep) 5003 continue; 5004 ptl = huge_pte_lock(h, mm, ptep); 5005 if (huge_pmd_unshare(mm, vma, &address, ptep)) { 5006 pages++; 5007 spin_unlock(ptl); 5008 shared_pmd = true; 5009 continue; 5010 } 5011 pte = huge_ptep_get(ptep); 5012 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) { 5013 spin_unlock(ptl); 5014 continue; 5015 } 5016 if (unlikely(is_hugetlb_entry_migration(pte))) { 5017 swp_entry_t entry = pte_to_swp_entry(pte); 5018 5019 if (is_write_migration_entry(entry)) { 5020 pte_t newpte; 5021 5022 make_migration_entry_read(&entry); 5023 newpte = swp_entry_to_pte(entry); 5024 set_huge_swap_pte_at(mm, address, ptep, 5025 newpte, huge_page_size(h)); 5026 pages++; 5027 } 5028 spin_unlock(ptl); 5029 continue; 5030 } 5031 if (!huge_pte_none(pte)) { 5032 pte_t old_pte; 5033 5034 old_pte = huge_ptep_modify_prot_start(vma, address, ptep); 5035 pte = pte_mkhuge(huge_pte_modify(old_pte, newprot)); 5036 pte = arch_make_huge_pte(pte, vma, NULL, 0); 5037 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte); 5038 pages++; 5039 } 5040 spin_unlock(ptl); 5041 } 5042 /* 5043 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare 5044 * may have cleared our pud entry and done put_page on the page table: 5045 * once we release i_mmap_rwsem, another task can do the final put_page 5046 * and that page table be reused and filled with junk. If we actually 5047 * did unshare a page of pmds, flush the range corresponding to the pud. 5048 */ 5049 if (shared_pmd) 5050 flush_hugetlb_tlb_range(vma, range.start, range.end); 5051 else 5052 flush_hugetlb_tlb_range(vma, start, end); 5053 /* 5054 * No need to call mmu_notifier_invalidate_range() we are downgrading 5055 * page table protection not changing it to point to a new page. 5056 * 5057 * See Documentation/vm/mmu_notifier.rst 5058 */ 5059 i_mmap_unlock_write(vma->vm_file->f_mapping); 5060 mmu_notifier_invalidate_range_end(&range); 5061 5062 return pages << h->order; 5063 } 5064 5065 int hugetlb_reserve_pages(struct inode *inode, 5066 long from, long to, 5067 struct vm_area_struct *vma, 5068 vm_flags_t vm_flags) 5069 { 5070 long ret, chg, add = -1; 5071 struct hstate *h = hstate_inode(inode); 5072 struct hugepage_subpool *spool = subpool_inode(inode); 5073 struct resv_map *resv_map; 5074 struct hugetlb_cgroup *h_cg = NULL; 5075 long gbl_reserve, regions_needed = 0; 5076 5077 /* This should never happen */ 5078 if (from > to) { 5079 VM_WARN(1, "%s called with a negative range\n", __func__); 5080 return -EINVAL; 5081 } 5082 5083 /* 5084 * Only apply hugepage reservation if asked. At fault time, an 5085 * attempt will be made for VM_NORESERVE to allocate a page 5086 * without using reserves 5087 */ 5088 if (vm_flags & VM_NORESERVE) 5089 return 0; 5090 5091 /* 5092 * Shared mappings base their reservation on the number of pages that 5093 * are already allocated on behalf of the file. Private mappings need 5094 * to reserve the full area even if read-only as mprotect() may be 5095 * called to make the mapping read-write. Assume !vma is a shm mapping 5096 */ 5097 if (!vma || vma->vm_flags & VM_MAYSHARE) { 5098 /* 5099 * resv_map can not be NULL as hugetlb_reserve_pages is only 5100 * called for inodes for which resv_maps were created (see 5101 * hugetlbfs_get_inode). 5102 */ 5103 resv_map = inode_resv_map(inode); 5104 5105 chg = region_chg(resv_map, from, to, ®ions_needed); 5106 5107 } else { 5108 /* Private mapping. */ 5109 resv_map = resv_map_alloc(); 5110 if (!resv_map) 5111 return -ENOMEM; 5112 5113 chg = to - from; 5114 5115 set_vma_resv_map(vma, resv_map); 5116 set_vma_resv_flags(vma, HPAGE_RESV_OWNER); 5117 } 5118 5119 if (chg < 0) { 5120 ret = chg; 5121 goto out_err; 5122 } 5123 5124 ret = hugetlb_cgroup_charge_cgroup_rsvd( 5125 hstate_index(h), chg * pages_per_huge_page(h), &h_cg); 5126 5127 if (ret < 0) { 5128 ret = -ENOMEM; 5129 goto out_err; 5130 } 5131 5132 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) { 5133 /* For private mappings, the hugetlb_cgroup uncharge info hangs 5134 * of the resv_map. 5135 */ 5136 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h); 5137 } 5138 5139 /* 5140 * There must be enough pages in the subpool for the mapping. If 5141 * the subpool has a minimum size, there may be some global 5142 * reservations already in place (gbl_reserve). 5143 */ 5144 gbl_reserve = hugepage_subpool_get_pages(spool, chg); 5145 if (gbl_reserve < 0) { 5146 ret = -ENOSPC; 5147 goto out_uncharge_cgroup; 5148 } 5149 5150 /* 5151 * Check enough hugepages are available for the reservation. 5152 * Hand the pages back to the subpool if there are not 5153 */ 5154 ret = hugetlb_acct_memory(h, gbl_reserve); 5155 if (ret < 0) { 5156 goto out_put_pages; 5157 } 5158 5159 /* 5160 * Account for the reservations made. Shared mappings record regions 5161 * that have reservations as they are shared by multiple VMAs. 5162 * When the last VMA disappears, the region map says how much 5163 * the reservation was and the page cache tells how much of 5164 * the reservation was consumed. Private mappings are per-VMA and 5165 * only the consumed reservations are tracked. When the VMA 5166 * disappears, the original reservation is the VMA size and the 5167 * consumed reservations are stored in the map. Hence, nothing 5168 * else has to be done for private mappings here 5169 */ 5170 if (!vma || vma->vm_flags & VM_MAYSHARE) { 5171 add = region_add(resv_map, from, to, regions_needed, h, h_cg); 5172 5173 if (unlikely(add < 0)) { 5174 hugetlb_acct_memory(h, -gbl_reserve); 5175 ret = add; 5176 goto out_put_pages; 5177 } else if (unlikely(chg > add)) { 5178 /* 5179 * pages in this range were added to the reserve 5180 * map between region_chg and region_add. This 5181 * indicates a race with alloc_huge_page. Adjust 5182 * the subpool and reserve counts modified above 5183 * based on the difference. 5184 */ 5185 long rsv_adjust; 5186 5187 hugetlb_cgroup_uncharge_cgroup_rsvd( 5188 hstate_index(h), 5189 (chg - add) * pages_per_huge_page(h), h_cg); 5190 5191 rsv_adjust = hugepage_subpool_put_pages(spool, 5192 chg - add); 5193 hugetlb_acct_memory(h, -rsv_adjust); 5194 } 5195 } 5196 return 0; 5197 out_put_pages: 5198 /* put back original number of pages, chg */ 5199 (void)hugepage_subpool_put_pages(spool, chg); 5200 out_uncharge_cgroup: 5201 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h), 5202 chg * pages_per_huge_page(h), h_cg); 5203 out_err: 5204 if (!vma || vma->vm_flags & VM_MAYSHARE) 5205 /* Only call region_abort if the region_chg succeeded but the 5206 * region_add failed or didn't run. 5207 */ 5208 if (chg >= 0 && add < 0) 5209 region_abort(resv_map, from, to, regions_needed); 5210 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 5211 kref_put(&resv_map->refs, resv_map_release); 5212 return ret; 5213 } 5214 5215 long hugetlb_unreserve_pages(struct inode *inode, long start, long end, 5216 long freed) 5217 { 5218 struct hstate *h = hstate_inode(inode); 5219 struct resv_map *resv_map = inode_resv_map(inode); 5220 long chg = 0; 5221 struct hugepage_subpool *spool = subpool_inode(inode); 5222 long gbl_reserve; 5223 5224 /* 5225 * Since this routine can be called in the evict inode path for all 5226 * hugetlbfs inodes, resv_map could be NULL. 5227 */ 5228 if (resv_map) { 5229 chg = region_del(resv_map, start, end); 5230 /* 5231 * region_del() can fail in the rare case where a region 5232 * must be split and another region descriptor can not be 5233 * allocated. If end == LONG_MAX, it will not fail. 5234 */ 5235 if (chg < 0) 5236 return chg; 5237 } 5238 5239 spin_lock(&inode->i_lock); 5240 inode->i_blocks -= (blocks_per_huge_page(h) * freed); 5241 spin_unlock(&inode->i_lock); 5242 5243 /* 5244 * If the subpool has a minimum size, the number of global 5245 * reservations to be released may be adjusted. 5246 */ 5247 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed)); 5248 hugetlb_acct_memory(h, -gbl_reserve); 5249 5250 return 0; 5251 } 5252 5253 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE 5254 static unsigned long page_table_shareable(struct vm_area_struct *svma, 5255 struct vm_area_struct *vma, 5256 unsigned long addr, pgoff_t idx) 5257 { 5258 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) + 5259 svma->vm_start; 5260 unsigned long sbase = saddr & PUD_MASK; 5261 unsigned long s_end = sbase + PUD_SIZE; 5262 5263 /* Allow segments to share if only one is marked locked */ 5264 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK; 5265 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK; 5266 5267 /* 5268 * match the virtual addresses, permission and the alignment of the 5269 * page table page. 5270 */ 5271 if (pmd_index(addr) != pmd_index(saddr) || 5272 vm_flags != svm_flags || 5273 sbase < svma->vm_start || svma->vm_end < s_end) 5274 return 0; 5275 5276 return saddr; 5277 } 5278 5279 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr) 5280 { 5281 unsigned long base = addr & PUD_MASK; 5282 unsigned long end = base + PUD_SIZE; 5283 5284 /* 5285 * check on proper vm_flags and page table alignment 5286 */ 5287 if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end)) 5288 return true; 5289 return false; 5290 } 5291 5292 /* 5293 * Determine if start,end range within vma could be mapped by shared pmd. 5294 * If yes, adjust start and end to cover range associated with possible 5295 * shared pmd mappings. 5296 */ 5297 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 5298 unsigned long *start, unsigned long *end) 5299 { 5300 unsigned long a_start, a_end; 5301 5302 if (!(vma->vm_flags & VM_MAYSHARE)) 5303 return; 5304 5305 /* Extend the range to be PUD aligned for a worst case scenario */ 5306 a_start = ALIGN_DOWN(*start, PUD_SIZE); 5307 a_end = ALIGN(*end, PUD_SIZE); 5308 5309 /* 5310 * Intersect the range with the vma range, since pmd sharing won't be 5311 * across vma after all 5312 */ 5313 *start = max(vma->vm_start, a_start); 5314 *end = min(vma->vm_end, a_end); 5315 } 5316 5317 /* 5318 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc() 5319 * and returns the corresponding pte. While this is not necessary for the 5320 * !shared pmd case because we can allocate the pmd later as well, it makes the 5321 * code much cleaner. 5322 * 5323 * This routine must be called with i_mmap_rwsem held in at least read mode if 5324 * sharing is possible. For hugetlbfs, this prevents removal of any page 5325 * table entries associated with the address space. This is important as we 5326 * are setting up sharing based on existing page table entries (mappings). 5327 * 5328 * NOTE: This routine is only called from huge_pte_alloc. Some callers of 5329 * huge_pte_alloc know that sharing is not possible and do not take 5330 * i_mmap_rwsem as a performance optimization. This is handled by the 5331 * if !vma_shareable check at the beginning of the routine. i_mmap_rwsem is 5332 * only required for subsequent processing. 5333 */ 5334 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud) 5335 { 5336 struct vm_area_struct *vma = find_vma(mm, addr); 5337 struct address_space *mapping = vma->vm_file->f_mapping; 5338 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + 5339 vma->vm_pgoff; 5340 struct vm_area_struct *svma; 5341 unsigned long saddr; 5342 pte_t *spte = NULL; 5343 pte_t *pte; 5344 spinlock_t *ptl; 5345 5346 if (!vma_shareable(vma, addr)) 5347 return (pte_t *)pmd_alloc(mm, pud, addr); 5348 5349 i_mmap_assert_locked(mapping); 5350 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) { 5351 if (svma == vma) 5352 continue; 5353 5354 saddr = page_table_shareable(svma, vma, addr, idx); 5355 if (saddr) { 5356 spte = huge_pte_offset(svma->vm_mm, saddr, 5357 vma_mmu_pagesize(svma)); 5358 if (spte) { 5359 get_page(virt_to_page(spte)); 5360 break; 5361 } 5362 } 5363 } 5364 5365 if (!spte) 5366 goto out; 5367 5368 ptl = huge_pte_lock(hstate_vma(vma), mm, spte); 5369 if (pud_none(*pud)) { 5370 pud_populate(mm, pud, 5371 (pmd_t *)((unsigned long)spte & PAGE_MASK)); 5372 mm_inc_nr_pmds(mm); 5373 } else { 5374 put_page(virt_to_page(spte)); 5375 } 5376 spin_unlock(ptl); 5377 out: 5378 pte = (pte_t *)pmd_alloc(mm, pud, addr); 5379 return pte; 5380 } 5381 5382 /* 5383 * unmap huge page backed by shared pte. 5384 * 5385 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared 5386 * indicated by page_count > 1, unmap is achieved by clearing pud and 5387 * decrementing the ref count. If count == 1, the pte page is not shared. 5388 * 5389 * Called with page table lock held and i_mmap_rwsem held in write mode. 5390 * 5391 * returns: 1 successfully unmapped a shared pte page 5392 * 0 the underlying pte page is not shared, or it is the last user 5393 */ 5394 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, 5395 unsigned long *addr, pte_t *ptep) 5396 { 5397 pgd_t *pgd = pgd_offset(mm, *addr); 5398 p4d_t *p4d = p4d_offset(pgd, *addr); 5399 pud_t *pud = pud_offset(p4d, *addr); 5400 5401 i_mmap_assert_write_locked(vma->vm_file->f_mapping); 5402 BUG_ON(page_count(virt_to_page(ptep)) == 0); 5403 if (page_count(virt_to_page(ptep)) == 1) 5404 return 0; 5405 5406 pud_clear(pud); 5407 put_page(virt_to_page(ptep)); 5408 mm_dec_nr_pmds(mm); 5409 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE; 5410 return 1; 5411 } 5412 #define want_pmd_share() (1) 5413 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 5414 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud) 5415 { 5416 return NULL; 5417 } 5418 5419 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, 5420 unsigned long *addr, pte_t *ptep) 5421 { 5422 return 0; 5423 } 5424 5425 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 5426 unsigned long *start, unsigned long *end) 5427 { 5428 } 5429 #define want_pmd_share() (0) 5430 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 5431 5432 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB 5433 pte_t *huge_pte_alloc(struct mm_struct *mm, 5434 unsigned long addr, unsigned long sz) 5435 { 5436 pgd_t *pgd; 5437 p4d_t *p4d; 5438 pud_t *pud; 5439 pte_t *pte = NULL; 5440 5441 pgd = pgd_offset(mm, addr); 5442 p4d = p4d_alloc(mm, pgd, addr); 5443 if (!p4d) 5444 return NULL; 5445 pud = pud_alloc(mm, p4d, addr); 5446 if (pud) { 5447 if (sz == PUD_SIZE) { 5448 pte = (pte_t *)pud; 5449 } else { 5450 BUG_ON(sz != PMD_SIZE); 5451 if (want_pmd_share() && pud_none(*pud)) 5452 pte = huge_pmd_share(mm, addr, pud); 5453 else 5454 pte = (pte_t *)pmd_alloc(mm, pud, addr); 5455 } 5456 } 5457 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte)); 5458 5459 return pte; 5460 } 5461 5462 /* 5463 * huge_pte_offset() - Walk the page table to resolve the hugepage 5464 * entry at address @addr 5465 * 5466 * Return: Pointer to page table entry (PUD or PMD) for 5467 * address @addr, or NULL if a !p*d_present() entry is encountered and the 5468 * size @sz doesn't match the hugepage size at this level of the page 5469 * table. 5470 */ 5471 pte_t *huge_pte_offset(struct mm_struct *mm, 5472 unsigned long addr, unsigned long sz) 5473 { 5474 pgd_t *pgd; 5475 p4d_t *p4d; 5476 pud_t *pud; 5477 pmd_t *pmd; 5478 5479 pgd = pgd_offset(mm, addr); 5480 if (!pgd_present(*pgd)) 5481 return NULL; 5482 p4d = p4d_offset(pgd, addr); 5483 if (!p4d_present(*p4d)) 5484 return NULL; 5485 5486 pud = pud_offset(p4d, addr); 5487 if (sz == PUD_SIZE) 5488 /* must be pud huge, non-present or none */ 5489 return (pte_t *)pud; 5490 if (!pud_present(*pud)) 5491 return NULL; 5492 /* must have a valid entry and size to go further */ 5493 5494 pmd = pmd_offset(pud, addr); 5495 /* must be pmd huge, non-present or none */ 5496 return (pte_t *)pmd; 5497 } 5498 5499 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */ 5500 5501 /* 5502 * These functions are overwritable if your architecture needs its own 5503 * behavior. 5504 */ 5505 struct page * __weak 5506 follow_huge_addr(struct mm_struct *mm, unsigned long address, 5507 int write) 5508 { 5509 return ERR_PTR(-EINVAL); 5510 } 5511 5512 struct page * __weak 5513 follow_huge_pd(struct vm_area_struct *vma, 5514 unsigned long address, hugepd_t hpd, int flags, int pdshift) 5515 { 5516 WARN(1, "hugepd follow called with no support for hugepage directory format\n"); 5517 return NULL; 5518 } 5519 5520 struct page * __weak 5521 follow_huge_pmd(struct mm_struct *mm, unsigned long address, 5522 pmd_t *pmd, int flags) 5523 { 5524 struct page *page = NULL; 5525 spinlock_t *ptl; 5526 pte_t pte; 5527 5528 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 5529 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) == 5530 (FOLL_PIN | FOLL_GET))) 5531 return NULL; 5532 5533 retry: 5534 ptl = pmd_lockptr(mm, pmd); 5535 spin_lock(ptl); 5536 /* 5537 * make sure that the address range covered by this pmd is not 5538 * unmapped from other threads. 5539 */ 5540 if (!pmd_huge(*pmd)) 5541 goto out; 5542 pte = huge_ptep_get((pte_t *)pmd); 5543 if (pte_present(pte)) { 5544 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT); 5545 /* 5546 * try_grab_page() should always succeed here, because: a) we 5547 * hold the pmd (ptl) lock, and b) we've just checked that the 5548 * huge pmd (head) page is present in the page tables. The ptl 5549 * prevents the head page and tail pages from being rearranged 5550 * in any way. So this page must be available at this point, 5551 * unless the page refcount overflowed: 5552 */ 5553 if (WARN_ON_ONCE(!try_grab_page(page, flags))) { 5554 page = NULL; 5555 goto out; 5556 } 5557 } else { 5558 if (is_hugetlb_entry_migration(pte)) { 5559 spin_unlock(ptl); 5560 __migration_entry_wait(mm, (pte_t *)pmd, ptl); 5561 goto retry; 5562 } 5563 /* 5564 * hwpoisoned entry is treated as no_page_table in 5565 * follow_page_mask(). 5566 */ 5567 } 5568 out: 5569 spin_unlock(ptl); 5570 return page; 5571 } 5572 5573 struct page * __weak 5574 follow_huge_pud(struct mm_struct *mm, unsigned long address, 5575 pud_t *pud, int flags) 5576 { 5577 if (flags & (FOLL_GET | FOLL_PIN)) 5578 return NULL; 5579 5580 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT); 5581 } 5582 5583 struct page * __weak 5584 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags) 5585 { 5586 if (flags & (FOLL_GET | FOLL_PIN)) 5587 return NULL; 5588 5589 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT); 5590 } 5591 5592 bool isolate_huge_page(struct page *page, struct list_head *list) 5593 { 5594 bool ret = true; 5595 5596 spin_lock(&hugetlb_lock); 5597 if (!PageHeadHuge(page) || !page_huge_active(page) || 5598 !get_page_unless_zero(page)) { 5599 ret = false; 5600 goto unlock; 5601 } 5602 clear_page_huge_active(page); 5603 list_move_tail(&page->lru, list); 5604 unlock: 5605 spin_unlock(&hugetlb_lock); 5606 return ret; 5607 } 5608 5609 void putback_active_hugepage(struct page *page) 5610 { 5611 VM_BUG_ON_PAGE(!PageHead(page), page); 5612 spin_lock(&hugetlb_lock); 5613 set_page_huge_active(page); 5614 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist); 5615 spin_unlock(&hugetlb_lock); 5616 put_page(page); 5617 } 5618 5619 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason) 5620 { 5621 struct hstate *h = page_hstate(oldpage); 5622 5623 hugetlb_cgroup_migrate(oldpage, newpage); 5624 set_page_owner_migrate_reason(newpage, reason); 5625 5626 /* 5627 * transfer temporary state of the new huge page. This is 5628 * reverse to other transitions because the newpage is going to 5629 * be final while the old one will be freed so it takes over 5630 * the temporary status. 5631 * 5632 * Also note that we have to transfer the per-node surplus state 5633 * here as well otherwise the global surplus count will not match 5634 * the per-node's. 5635 */ 5636 if (PageHugeTemporary(newpage)) { 5637 int old_nid = page_to_nid(oldpage); 5638 int new_nid = page_to_nid(newpage); 5639 5640 SetPageHugeTemporary(oldpage); 5641 ClearPageHugeTemporary(newpage); 5642 5643 spin_lock(&hugetlb_lock); 5644 if (h->surplus_huge_pages_node[old_nid]) { 5645 h->surplus_huge_pages_node[old_nid]--; 5646 h->surplus_huge_pages_node[new_nid]++; 5647 } 5648 spin_unlock(&hugetlb_lock); 5649 } 5650 } 5651 5652 #ifdef CONFIG_CMA 5653 static bool cma_reserve_called __initdata; 5654 5655 static int __init cmdline_parse_hugetlb_cma(char *p) 5656 { 5657 hugetlb_cma_size = memparse(p, &p); 5658 return 0; 5659 } 5660 5661 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma); 5662 5663 void __init hugetlb_cma_reserve(int order) 5664 { 5665 unsigned long size, reserved, per_node; 5666 int nid; 5667 5668 cma_reserve_called = true; 5669 5670 if (!hugetlb_cma_size) 5671 return; 5672 5673 if (hugetlb_cma_size < (PAGE_SIZE << order)) { 5674 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n", 5675 (PAGE_SIZE << order) / SZ_1M); 5676 return; 5677 } 5678 5679 /* 5680 * If 3 GB area is requested on a machine with 4 numa nodes, 5681 * let's allocate 1 GB on first three nodes and ignore the last one. 5682 */ 5683 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes); 5684 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n", 5685 hugetlb_cma_size / SZ_1M, per_node / SZ_1M); 5686 5687 reserved = 0; 5688 for_each_node_state(nid, N_ONLINE) { 5689 int res; 5690 char name[CMA_MAX_NAME]; 5691 5692 size = min(per_node, hugetlb_cma_size - reserved); 5693 size = round_up(size, PAGE_SIZE << order); 5694 5695 snprintf(name, sizeof(name), "hugetlb%d", nid); 5696 res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order, 5697 0, false, name, 5698 &hugetlb_cma[nid], nid); 5699 if (res) { 5700 pr_warn("hugetlb_cma: reservation failed: err %d, node %d", 5701 res, nid); 5702 continue; 5703 } 5704 5705 reserved += size; 5706 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n", 5707 size / SZ_1M, nid); 5708 5709 if (reserved >= hugetlb_cma_size) 5710 break; 5711 } 5712 } 5713 5714 void __init hugetlb_cma_check(void) 5715 { 5716 if (!hugetlb_cma_size || cma_reserve_called) 5717 return; 5718 5719 pr_warn("hugetlb_cma: the option isn't supported by current arch\n"); 5720 } 5721 5722 #endif /* CONFIG_CMA */ 5723