1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic hugetlb support. 4 * (C) Nadia Yvette Chambers, April 2004 5 */ 6 #include <linux/list.h> 7 #include <linux/init.h> 8 #include <linux/mm.h> 9 #include <linux/seq_file.h> 10 #include <linux/highmem.h> 11 #include <linux/mmu_notifier.h> 12 #include <linux/nodemask.h> 13 #include <linux/pagemap.h> 14 #include <linux/mempolicy.h> 15 #include <linux/compiler.h> 16 #include <linux/cpumask.h> 17 #include <linux/cpuset.h> 18 #include <linux/mutex.h> 19 #include <linux/memblock.h> 20 #include <linux/minmax.h> 21 #include <linux/slab.h> 22 #include <linux/sched/mm.h> 23 #include <linux/mmdebug.h> 24 #include <linux/sched/signal.h> 25 #include <linux/rmap.h> 26 #include <linux/string_choices.h> 27 #include <linux/string_helpers.h> 28 #include <linux/swap.h> 29 #include <linux/leafops.h> 30 #include <linux/jhash.h> 31 #include <linux/numa.h> 32 #include <linux/llist.h> 33 #include <linux/cma.h> 34 #include <linux/migrate.h> 35 #include <linux/nospec.h> 36 #include <linux/delayacct.h> 37 #include <linux/memory.h> 38 #include <linux/mm_inline.h> 39 #include <linux/padata.h> 40 #include <linux/pgalloc.h> 41 42 #include <asm/page.h> 43 #include <asm/tlb.h> 44 #include <asm/setup.h> 45 46 #include <linux/io.h> 47 #include <linux/node.h> 48 #include <linux/page_owner.h> 49 #include "internal.h" 50 #include "hugetlb_vmemmap.h" 51 #include "hugetlb_cma.h" 52 #include "hugetlb_internal.h" 53 #include <linux/page-isolation.h> 54 55 int hugetlb_max_hstate __read_mostly; 56 unsigned int default_hstate_idx; 57 struct hstate hstates[HUGE_MAX_HSTATE]; 58 59 __initdata nodemask_t hugetlb_bootmem_nodes; 60 __initdata struct list_head huge_boot_pages[MAX_NUMNODES]; 61 static unsigned long hstate_boot_nrinvalid[HUGE_MAX_HSTATE] __initdata; 62 63 /* 64 * Due to ordering constraints across the init code for various 65 * architectures, hugetlb hstate cmdline parameters can't simply 66 * be early_param. early_param might call the setup function 67 * before valid hugetlb page sizes are determined, leading to 68 * incorrect rejection of valid hugepagesz= options. 69 * 70 * So, record the parameters early and consume them whenever the 71 * init code is ready for them, by calling hugetlb_parse_params(). 72 */ 73 74 /* one (hugepagesz=,hugepages=) pair per hstate, one default_hugepagesz */ 75 #define HUGE_MAX_CMDLINE_ARGS (2 * HUGE_MAX_HSTATE + 1) 76 struct hugetlb_cmdline { 77 char *val; 78 int (*setup)(char *val); 79 }; 80 81 /* for command line parsing */ 82 static struct hstate * __initdata parsed_hstate; 83 static unsigned long __initdata default_hstate_max_huge_pages; 84 static bool __initdata parsed_valid_hugepagesz = true; 85 static bool __initdata parsed_default_hugepagesz; 86 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata; 87 static unsigned long hugepage_allocation_threads __initdata; 88 89 static char hstate_cmdline_buf[COMMAND_LINE_SIZE] __initdata; 90 static int hstate_cmdline_index __initdata; 91 static struct hugetlb_cmdline hugetlb_params[HUGE_MAX_CMDLINE_ARGS] __initdata; 92 static int hugetlb_param_index __initdata; 93 static __init int hugetlb_add_param(char *s, int (*setup)(char *val)); 94 static __init void hugetlb_parse_params(void); 95 96 #define hugetlb_early_param(str, func) \ 97 static __init int func##args(char *s) \ 98 { \ 99 return hugetlb_add_param(s, func); \ 100 } \ 101 early_param(str, func##args) 102 103 /* 104 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages, 105 * free_huge_pages, and surplus_huge_pages. 106 */ 107 __cacheline_aligned_in_smp DEFINE_SPINLOCK(hugetlb_lock); 108 109 /* 110 * Serializes faults on the same logical page. This is used to 111 * prevent spurious OOMs when the hugepage pool is fully utilized. 112 */ 113 static int num_fault_mutexes __ro_after_init; 114 struct mutex *hugetlb_fault_mutex_table __ro_after_init; 115 116 /* Forward declaration */ 117 static int hugetlb_acct_memory(struct hstate *h, long delta); 118 static void hugetlb_vma_lock_free(struct vm_area_struct *vma); 119 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma); 120 static void hugetlb_unshare_pmds(struct vm_area_struct *vma, 121 unsigned long start, unsigned long end, bool take_locks); 122 static struct resv_map *vma_resv_map(struct vm_area_struct *vma); 123 124 static void hugetlb_free_folio(struct folio *folio) 125 { 126 if (folio_test_hugetlb_cma(folio)) { 127 hugetlb_cma_free_folio(folio); 128 return; 129 } 130 131 folio_put(folio); 132 } 133 134 static inline bool subpool_is_free(struct hugepage_subpool *spool) 135 { 136 if (spool->count) 137 return false; 138 if (spool->max_hpages != -1) 139 return spool->used_hpages == 0; 140 if (spool->min_hpages != -1) 141 return spool->rsv_hpages == spool->min_hpages; 142 143 return true; 144 } 145 146 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool, 147 unsigned long irq_flags) 148 { 149 spin_unlock_irqrestore(&spool->lock, irq_flags); 150 151 /* If no pages are used, and no other handles to the subpool 152 * remain, give up any reservations based on minimum size and 153 * free the subpool */ 154 if (subpool_is_free(spool)) { 155 if (spool->min_hpages != -1) 156 hugetlb_acct_memory(spool->hstate, 157 -spool->min_hpages); 158 kfree(spool); 159 } 160 } 161 162 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages, 163 long min_hpages) 164 { 165 struct hugepage_subpool *spool; 166 167 spool = kzalloc(sizeof(*spool), GFP_KERNEL); 168 if (!spool) 169 return NULL; 170 171 spin_lock_init(&spool->lock); 172 spool->count = 1; 173 spool->max_hpages = max_hpages; 174 spool->hstate = h; 175 spool->min_hpages = min_hpages; 176 177 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) { 178 kfree(spool); 179 return NULL; 180 } 181 spool->rsv_hpages = min_hpages; 182 183 return spool; 184 } 185 186 void hugepage_put_subpool(struct hugepage_subpool *spool) 187 { 188 unsigned long flags; 189 190 spin_lock_irqsave(&spool->lock, flags); 191 BUG_ON(!spool->count); 192 spool->count--; 193 unlock_or_release_subpool(spool, flags); 194 } 195 196 /* 197 * Subpool accounting for allocating and reserving pages. 198 * Return -ENOMEM if there are not enough resources to satisfy the 199 * request. Otherwise, return the number of pages by which the 200 * global pools must be adjusted (upward). The returned value may 201 * only be different than the passed value (delta) in the case where 202 * a subpool minimum size must be maintained. 203 */ 204 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool, 205 long delta) 206 { 207 long ret = delta; 208 209 if (!spool) 210 return ret; 211 212 spin_lock_irq(&spool->lock); 213 214 if (spool->max_hpages != -1) { /* maximum size accounting */ 215 if ((spool->used_hpages + delta) <= spool->max_hpages) 216 spool->used_hpages += delta; 217 else { 218 ret = -ENOMEM; 219 goto unlock_ret; 220 } 221 } 222 223 /* minimum size accounting */ 224 if (spool->min_hpages != -1 && spool->rsv_hpages) { 225 if (delta > spool->rsv_hpages) { 226 /* 227 * Asking for more reserves than those already taken on 228 * behalf of subpool. Return difference. 229 */ 230 ret = delta - spool->rsv_hpages; 231 spool->rsv_hpages = 0; 232 } else { 233 ret = 0; /* reserves already accounted for */ 234 spool->rsv_hpages -= delta; 235 } 236 } 237 238 unlock_ret: 239 spin_unlock_irq(&spool->lock); 240 return ret; 241 } 242 243 /* 244 * Subpool accounting for freeing and unreserving pages. 245 * Return the number of global page reservations that must be dropped. 246 * The return value may only be different than the passed value (delta) 247 * in the case where a subpool minimum size must be maintained. 248 */ 249 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool, 250 long delta) 251 { 252 long ret = delta; 253 unsigned long flags; 254 255 if (!spool) 256 return delta; 257 258 spin_lock_irqsave(&spool->lock, flags); 259 260 if (spool->max_hpages != -1) /* maximum size accounting */ 261 spool->used_hpages -= delta; 262 263 /* minimum size accounting */ 264 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) { 265 if (spool->rsv_hpages + delta <= spool->min_hpages) 266 ret = 0; 267 else 268 ret = spool->rsv_hpages + delta - spool->min_hpages; 269 270 spool->rsv_hpages += delta; 271 if (spool->rsv_hpages > spool->min_hpages) 272 spool->rsv_hpages = spool->min_hpages; 273 } 274 275 /* 276 * If hugetlbfs_put_super couldn't free spool due to an outstanding 277 * quota reference, free it now. 278 */ 279 unlock_or_release_subpool(spool, flags); 280 281 return ret; 282 } 283 284 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma) 285 { 286 return subpool_inode(file_inode(vma->vm_file)); 287 } 288 289 /* 290 * hugetlb vma_lock helper routines 291 */ 292 void hugetlb_vma_lock_read(struct vm_area_struct *vma) 293 { 294 if (__vma_shareable_lock(vma)) { 295 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 296 297 down_read(&vma_lock->rw_sema); 298 } else if (__vma_private_lock(vma)) { 299 struct resv_map *resv_map = vma_resv_map(vma); 300 301 down_read(&resv_map->rw_sema); 302 } 303 } 304 305 void hugetlb_vma_unlock_read(struct vm_area_struct *vma) 306 { 307 if (__vma_shareable_lock(vma)) { 308 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 309 310 up_read(&vma_lock->rw_sema); 311 } else if (__vma_private_lock(vma)) { 312 struct resv_map *resv_map = vma_resv_map(vma); 313 314 up_read(&resv_map->rw_sema); 315 } 316 } 317 318 void hugetlb_vma_lock_write(struct vm_area_struct *vma) 319 { 320 if (__vma_shareable_lock(vma)) { 321 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 322 323 down_write(&vma_lock->rw_sema); 324 } else if (__vma_private_lock(vma)) { 325 struct resv_map *resv_map = vma_resv_map(vma); 326 327 down_write(&resv_map->rw_sema); 328 } 329 } 330 331 void hugetlb_vma_unlock_write(struct vm_area_struct *vma) 332 { 333 if (__vma_shareable_lock(vma)) { 334 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 335 336 up_write(&vma_lock->rw_sema); 337 } else if (__vma_private_lock(vma)) { 338 struct resv_map *resv_map = vma_resv_map(vma); 339 340 up_write(&resv_map->rw_sema); 341 } 342 } 343 344 int hugetlb_vma_trylock_write(struct vm_area_struct *vma) 345 { 346 347 if (__vma_shareable_lock(vma)) { 348 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 349 350 return down_write_trylock(&vma_lock->rw_sema); 351 } else if (__vma_private_lock(vma)) { 352 struct resv_map *resv_map = vma_resv_map(vma); 353 354 return down_write_trylock(&resv_map->rw_sema); 355 } 356 357 return 1; 358 } 359 360 void hugetlb_vma_assert_locked(struct vm_area_struct *vma) 361 { 362 if (__vma_shareable_lock(vma)) { 363 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 364 365 lockdep_assert_held(&vma_lock->rw_sema); 366 } else if (__vma_private_lock(vma)) { 367 struct resv_map *resv_map = vma_resv_map(vma); 368 369 lockdep_assert_held(&resv_map->rw_sema); 370 } 371 } 372 373 void hugetlb_vma_lock_release(struct kref *kref) 374 { 375 struct hugetlb_vma_lock *vma_lock = container_of(kref, 376 struct hugetlb_vma_lock, refs); 377 378 kfree(vma_lock); 379 } 380 381 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock) 382 { 383 struct vm_area_struct *vma = vma_lock->vma; 384 385 /* 386 * vma_lock structure may or not be released as a result of put, 387 * it certainly will no longer be attached to vma so clear pointer. 388 * Semaphore synchronizes access to vma_lock->vma field. 389 */ 390 vma_lock->vma = NULL; 391 vma->vm_private_data = NULL; 392 up_write(&vma_lock->rw_sema); 393 kref_put(&vma_lock->refs, hugetlb_vma_lock_release); 394 } 395 396 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma) 397 { 398 if (__vma_shareable_lock(vma)) { 399 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 400 401 __hugetlb_vma_unlock_write_put(vma_lock); 402 } else if (__vma_private_lock(vma)) { 403 struct resv_map *resv_map = vma_resv_map(vma); 404 405 /* no free for anon vmas, but still need to unlock */ 406 up_write(&resv_map->rw_sema); 407 } 408 } 409 410 static void hugetlb_vma_lock_free(struct vm_area_struct *vma) 411 { 412 /* 413 * Only present in sharable vmas. 414 */ 415 if (!vma || !__vma_shareable_lock(vma)) 416 return; 417 418 if (vma->vm_private_data) { 419 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 420 421 down_write(&vma_lock->rw_sema); 422 __hugetlb_vma_unlock_write_put(vma_lock); 423 } 424 } 425 426 /* 427 * vma specific semaphore used for pmd sharing and fault/truncation 428 * synchronization 429 */ 430 int hugetlb_vma_lock_alloc(struct vm_area_struct *vma) 431 { 432 struct hugetlb_vma_lock *vma_lock; 433 434 /* Only establish in (flags) sharable vmas */ 435 if (!vma || !(vma->vm_flags & VM_MAYSHARE)) 436 return 0; 437 438 /* Should never get here with non-NULL vm_private_data */ 439 if (vma->vm_private_data) 440 return -EINVAL; 441 442 vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL); 443 if (!vma_lock) { 444 /* 445 * If we can not allocate structure, then vma can not 446 * participate in pmd sharing. This is only a possible 447 * performance enhancement and memory saving issue. 448 * However, the lock is also used to synchronize page 449 * faults with truncation. If the lock is not present, 450 * unlikely races could leave pages in a file past i_size 451 * until the file is removed. Warn in the unlikely case of 452 * allocation failure. 453 */ 454 pr_warn_once("HugeTLB: unable to allocate vma specific lock\n"); 455 return -EINVAL; 456 } 457 458 kref_init(&vma_lock->refs); 459 init_rwsem(&vma_lock->rw_sema); 460 vma_lock->vma = vma; 461 vma->vm_private_data = vma_lock; 462 463 return 0; 464 } 465 466 /* Helper that removes a struct file_region from the resv_map cache and returns 467 * it for use. 468 */ 469 static struct file_region * 470 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to) 471 { 472 struct file_region *nrg; 473 474 VM_BUG_ON(resv->region_cache_count <= 0); 475 476 resv->region_cache_count--; 477 nrg = list_first_entry(&resv->region_cache, struct file_region, link); 478 list_del(&nrg->link); 479 480 nrg->from = from; 481 nrg->to = to; 482 483 return nrg; 484 } 485 486 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg, 487 struct file_region *rg) 488 { 489 #ifdef CONFIG_CGROUP_HUGETLB 490 nrg->reservation_counter = rg->reservation_counter; 491 nrg->css = rg->css; 492 if (rg->css) 493 css_get(rg->css); 494 #endif 495 } 496 497 /* Helper that records hugetlb_cgroup uncharge info. */ 498 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg, 499 struct hstate *h, 500 struct resv_map *resv, 501 struct file_region *nrg) 502 { 503 #ifdef CONFIG_CGROUP_HUGETLB 504 if (h_cg) { 505 nrg->reservation_counter = 506 &h_cg->rsvd_hugepage[hstate_index(h)]; 507 nrg->css = &h_cg->css; 508 /* 509 * The caller will hold exactly one h_cg->css reference for the 510 * whole contiguous reservation region. But this area might be 511 * scattered when there are already some file_regions reside in 512 * it. As a result, many file_regions may share only one css 513 * reference. In order to ensure that one file_region must hold 514 * exactly one h_cg->css reference, we should do css_get for 515 * each file_region and leave the reference held by caller 516 * untouched. 517 */ 518 css_get(&h_cg->css); 519 if (!resv->pages_per_hpage) 520 resv->pages_per_hpage = pages_per_huge_page(h); 521 /* pages_per_hpage should be the same for all entries in 522 * a resv_map. 523 */ 524 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h)); 525 } else { 526 nrg->reservation_counter = NULL; 527 nrg->css = NULL; 528 } 529 #endif 530 } 531 532 static void put_uncharge_info(struct file_region *rg) 533 { 534 #ifdef CONFIG_CGROUP_HUGETLB 535 if (rg->css) 536 css_put(rg->css); 537 #endif 538 } 539 540 static bool has_same_uncharge_info(struct file_region *rg, 541 struct file_region *org) 542 { 543 #ifdef CONFIG_CGROUP_HUGETLB 544 return rg->reservation_counter == org->reservation_counter && 545 rg->css == org->css; 546 547 #else 548 return true; 549 #endif 550 } 551 552 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg) 553 { 554 struct file_region *nrg, *prg; 555 556 prg = list_prev_entry(rg, link); 557 if (&prg->link != &resv->regions && prg->to == rg->from && 558 has_same_uncharge_info(prg, rg)) { 559 prg->to = rg->to; 560 561 list_del(&rg->link); 562 put_uncharge_info(rg); 563 kfree(rg); 564 565 rg = prg; 566 } 567 568 nrg = list_next_entry(rg, link); 569 if (&nrg->link != &resv->regions && nrg->from == rg->to && 570 has_same_uncharge_info(nrg, rg)) { 571 nrg->from = rg->from; 572 573 list_del(&rg->link); 574 put_uncharge_info(rg); 575 kfree(rg); 576 } 577 } 578 579 static inline long 580 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from, 581 long to, struct hstate *h, struct hugetlb_cgroup *cg, 582 long *regions_needed) 583 { 584 struct file_region *nrg; 585 586 if (!regions_needed) { 587 nrg = get_file_region_entry_from_cache(map, from, to); 588 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg); 589 list_add(&nrg->link, rg); 590 coalesce_file_region(map, nrg); 591 } else 592 *regions_needed += 1; 593 594 return to - from; 595 } 596 597 /* 598 * Must be called with resv->lock held. 599 * 600 * Calling this with regions_needed != NULL will count the number of pages 601 * to be added but will not modify the linked list. And regions_needed will 602 * indicate the number of file_regions needed in the cache to carry out to add 603 * the regions for this range. 604 */ 605 static long add_reservation_in_range(struct resv_map *resv, long f, long t, 606 struct hugetlb_cgroup *h_cg, 607 struct hstate *h, long *regions_needed) 608 { 609 long add = 0; 610 struct list_head *head = &resv->regions; 611 long last_accounted_offset = f; 612 struct file_region *iter, *trg = NULL; 613 struct list_head *rg = NULL; 614 615 if (regions_needed) 616 *regions_needed = 0; 617 618 /* In this loop, we essentially handle an entry for the range 619 * [last_accounted_offset, iter->from), at every iteration, with some 620 * bounds checking. 621 */ 622 list_for_each_entry_safe(iter, trg, head, link) { 623 /* Skip irrelevant regions that start before our range. */ 624 if (iter->from < f) { 625 /* If this region ends after the last accounted offset, 626 * then we need to update last_accounted_offset. 627 */ 628 if (iter->to > last_accounted_offset) 629 last_accounted_offset = iter->to; 630 continue; 631 } 632 633 /* When we find a region that starts beyond our range, we've 634 * finished. 635 */ 636 if (iter->from >= t) { 637 rg = iter->link.prev; 638 break; 639 } 640 641 /* Add an entry for last_accounted_offset -> iter->from, and 642 * update last_accounted_offset. 643 */ 644 if (iter->from > last_accounted_offset) 645 add += hugetlb_resv_map_add(resv, iter->link.prev, 646 last_accounted_offset, 647 iter->from, h, h_cg, 648 regions_needed); 649 650 last_accounted_offset = iter->to; 651 } 652 653 /* Handle the case where our range extends beyond 654 * last_accounted_offset. 655 */ 656 if (!rg) 657 rg = head->prev; 658 if (last_accounted_offset < t) 659 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset, 660 t, h, h_cg, regions_needed); 661 662 return add; 663 } 664 665 /* Must be called with resv->lock acquired. Will drop lock to allocate entries. 666 */ 667 static int allocate_file_region_entries(struct resv_map *resv, 668 int regions_needed) 669 __must_hold(&resv->lock) 670 { 671 LIST_HEAD(allocated_regions); 672 int to_allocate = 0, i = 0; 673 struct file_region *trg = NULL, *rg = NULL; 674 675 VM_BUG_ON(regions_needed < 0); 676 677 /* 678 * Check for sufficient descriptors in the cache to accommodate 679 * the number of in progress add operations plus regions_needed. 680 * 681 * This is a while loop because when we drop the lock, some other call 682 * to region_add or region_del may have consumed some region_entries, 683 * so we keep looping here until we finally have enough entries for 684 * (adds_in_progress + regions_needed). 685 */ 686 while (resv->region_cache_count < 687 (resv->adds_in_progress + regions_needed)) { 688 to_allocate = resv->adds_in_progress + regions_needed - 689 resv->region_cache_count; 690 691 /* At this point, we should have enough entries in the cache 692 * for all the existing adds_in_progress. We should only be 693 * needing to allocate for regions_needed. 694 */ 695 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress); 696 697 spin_unlock(&resv->lock); 698 for (i = 0; i < to_allocate; i++) { 699 trg = kmalloc(sizeof(*trg), GFP_KERNEL); 700 if (!trg) 701 goto out_of_memory; 702 list_add(&trg->link, &allocated_regions); 703 } 704 705 spin_lock(&resv->lock); 706 707 list_splice(&allocated_regions, &resv->region_cache); 708 resv->region_cache_count += to_allocate; 709 } 710 711 return 0; 712 713 out_of_memory: 714 list_for_each_entry_safe(rg, trg, &allocated_regions, link) { 715 list_del(&rg->link); 716 kfree(rg); 717 } 718 return -ENOMEM; 719 } 720 721 /* 722 * Add the huge page range represented by [f, t) to the reserve 723 * map. Regions will be taken from the cache to fill in this range. 724 * Sufficient regions should exist in the cache due to the previous 725 * call to region_chg with the same range, but in some cases the cache will not 726 * have sufficient entries due to races with other code doing region_add or 727 * region_del. The extra needed entries will be allocated. 728 * 729 * regions_needed is the out value provided by a previous call to region_chg. 730 * 731 * Return the number of new huge pages added to the map. This number is greater 732 * than or equal to zero. If file_region entries needed to be allocated for 733 * this operation and we were not able to allocate, it returns -ENOMEM. 734 * region_add of regions of length 1 never allocate file_regions and cannot 735 * fail; region_chg will always allocate at least 1 entry and a region_add for 736 * 1 page will only require at most 1 entry. 737 */ 738 static long region_add(struct resv_map *resv, long f, long t, 739 long in_regions_needed, struct hstate *h, 740 struct hugetlb_cgroup *h_cg) 741 { 742 long add = 0, actual_regions_needed = 0; 743 744 spin_lock(&resv->lock); 745 retry: 746 747 /* Count how many regions are actually needed to execute this add. */ 748 add_reservation_in_range(resv, f, t, NULL, NULL, 749 &actual_regions_needed); 750 751 /* 752 * Check for sufficient descriptors in the cache to accommodate 753 * this add operation. Note that actual_regions_needed may be greater 754 * than in_regions_needed, as the resv_map may have been modified since 755 * the region_chg call. In this case, we need to make sure that we 756 * allocate extra entries, such that we have enough for all the 757 * existing adds_in_progress, plus the excess needed for this 758 * operation. 759 */ 760 if (actual_regions_needed > in_regions_needed && 761 resv->region_cache_count < 762 resv->adds_in_progress + 763 (actual_regions_needed - in_regions_needed)) { 764 /* region_add operation of range 1 should never need to 765 * allocate file_region entries. 766 */ 767 VM_BUG_ON(t - f <= 1); 768 769 if (allocate_file_region_entries( 770 resv, actual_regions_needed - in_regions_needed)) { 771 return -ENOMEM; 772 } 773 774 goto retry; 775 } 776 777 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL); 778 779 resv->adds_in_progress -= in_regions_needed; 780 781 spin_unlock(&resv->lock); 782 return add; 783 } 784 785 /* 786 * Examine the existing reserve map and determine how many 787 * huge pages in the specified range [f, t) are NOT currently 788 * represented. This routine is called before a subsequent 789 * call to region_add that will actually modify the reserve 790 * map to add the specified range [f, t). region_chg does 791 * not change the number of huge pages represented by the 792 * map. A number of new file_region structures is added to the cache as a 793 * placeholder, for the subsequent region_add call to use. At least 1 794 * file_region structure is added. 795 * 796 * out_regions_needed is the number of regions added to the 797 * resv->adds_in_progress. This value needs to be provided to a follow up call 798 * to region_add or region_abort for proper accounting. 799 * 800 * Returns the number of huge pages that need to be added to the existing 801 * reservation map for the range [f, t). This number is greater or equal to 802 * zero. -ENOMEM is returned if a new file_region structure or cache entry 803 * is needed and can not be allocated. 804 */ 805 static long region_chg(struct resv_map *resv, long f, long t, 806 long *out_regions_needed) 807 { 808 long chg = 0; 809 810 spin_lock(&resv->lock); 811 812 /* Count how many hugepages in this range are NOT represented. */ 813 chg = add_reservation_in_range(resv, f, t, NULL, NULL, 814 out_regions_needed); 815 816 if (*out_regions_needed == 0) 817 *out_regions_needed = 1; 818 819 if (allocate_file_region_entries(resv, *out_regions_needed)) 820 return -ENOMEM; 821 822 resv->adds_in_progress += *out_regions_needed; 823 824 spin_unlock(&resv->lock); 825 return chg; 826 } 827 828 /* 829 * Abort the in progress add operation. The adds_in_progress field 830 * of the resv_map keeps track of the operations in progress between 831 * calls to region_chg and region_add. Operations are sometimes 832 * aborted after the call to region_chg. In such cases, region_abort 833 * is called to decrement the adds_in_progress counter. regions_needed 834 * is the value returned by the region_chg call, it is used to decrement 835 * the adds_in_progress counter. 836 * 837 * NOTE: The range arguments [f, t) are not needed or used in this 838 * routine. They are kept to make reading the calling code easier as 839 * arguments will match the associated region_chg call. 840 */ 841 static void region_abort(struct resv_map *resv, long f, long t, 842 long regions_needed) 843 { 844 spin_lock(&resv->lock); 845 VM_BUG_ON(!resv->region_cache_count); 846 resv->adds_in_progress -= regions_needed; 847 spin_unlock(&resv->lock); 848 } 849 850 /* 851 * Delete the specified range [f, t) from the reserve map. If the 852 * t parameter is LONG_MAX, this indicates that ALL regions after f 853 * should be deleted. Locate the regions which intersect [f, t) 854 * and either trim, delete or split the existing regions. 855 * 856 * Returns the number of huge pages deleted from the reserve map. 857 * In the normal case, the return value is zero or more. In the 858 * case where a region must be split, a new region descriptor must 859 * be allocated. If the allocation fails, -ENOMEM will be returned. 860 * NOTE: If the parameter t == LONG_MAX, then we will never split 861 * a region and possibly return -ENOMEM. Callers specifying 862 * t == LONG_MAX do not need to check for -ENOMEM error. 863 */ 864 static long region_del(struct resv_map *resv, long f, long t) 865 { 866 struct list_head *head = &resv->regions; 867 struct file_region *rg, *trg; 868 struct file_region *nrg = NULL; 869 long del = 0; 870 871 retry: 872 spin_lock(&resv->lock); 873 list_for_each_entry_safe(rg, trg, head, link) { 874 /* 875 * Skip regions before the range to be deleted. file_region 876 * ranges are normally of the form [from, to). However, there 877 * may be a "placeholder" entry in the map which is of the form 878 * (from, to) with from == to. Check for placeholder entries 879 * at the beginning of the range to be deleted. 880 */ 881 if (rg->to <= f && (rg->to != rg->from || rg->to != f)) 882 continue; 883 884 if (rg->from >= t) 885 break; 886 887 if (f > rg->from && t < rg->to) { /* Must split region */ 888 /* 889 * Check for an entry in the cache before dropping 890 * lock and attempting allocation. 891 */ 892 if (!nrg && 893 resv->region_cache_count > resv->adds_in_progress) { 894 nrg = list_first_entry(&resv->region_cache, 895 struct file_region, 896 link); 897 list_del(&nrg->link); 898 resv->region_cache_count--; 899 } 900 901 if (!nrg) { 902 spin_unlock(&resv->lock); 903 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 904 if (!nrg) 905 return -ENOMEM; 906 goto retry; 907 } 908 909 del += t - f; 910 hugetlb_cgroup_uncharge_file_region( 911 resv, rg, t - f, false); 912 913 /* New entry for end of split region */ 914 nrg->from = t; 915 nrg->to = rg->to; 916 917 copy_hugetlb_cgroup_uncharge_info(nrg, rg); 918 919 INIT_LIST_HEAD(&nrg->link); 920 921 /* Original entry is trimmed */ 922 rg->to = f; 923 924 list_add(&nrg->link, &rg->link); 925 nrg = NULL; 926 break; 927 } 928 929 if (f <= rg->from && t >= rg->to) { /* Remove entire region */ 930 del += rg->to - rg->from; 931 hugetlb_cgroup_uncharge_file_region(resv, rg, 932 rg->to - rg->from, true); 933 list_del(&rg->link); 934 kfree(rg); 935 continue; 936 } 937 938 if (f <= rg->from) { /* Trim beginning of region */ 939 hugetlb_cgroup_uncharge_file_region(resv, rg, 940 t - rg->from, false); 941 942 del += t - rg->from; 943 rg->from = t; 944 } else { /* Trim end of region */ 945 hugetlb_cgroup_uncharge_file_region(resv, rg, 946 rg->to - f, false); 947 948 del += rg->to - f; 949 rg->to = f; 950 } 951 } 952 953 spin_unlock(&resv->lock); 954 kfree(nrg); 955 return del; 956 } 957 958 /* 959 * A rare out of memory error was encountered which prevented removal of 960 * the reserve map region for a page. The huge page itself was free'ed 961 * and removed from the page cache. This routine will adjust the subpool 962 * usage count, and the global reserve count if needed. By incrementing 963 * these counts, the reserve map entry which could not be deleted will 964 * appear as a "reserved" entry instead of simply dangling with incorrect 965 * counts. 966 */ 967 void hugetlb_fix_reserve_counts(struct inode *inode) 968 { 969 struct hugepage_subpool *spool = subpool_inode(inode); 970 long rsv_adjust; 971 bool reserved = false; 972 973 rsv_adjust = hugepage_subpool_get_pages(spool, 1); 974 if (rsv_adjust > 0) { 975 struct hstate *h = hstate_inode(inode); 976 977 if (!hugetlb_acct_memory(h, 1)) 978 reserved = true; 979 } else if (!rsv_adjust) { 980 reserved = true; 981 } 982 983 if (!reserved) 984 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n"); 985 } 986 987 /* 988 * Count and return the number of huge pages in the reserve map 989 * that intersect with the range [f, t). 990 */ 991 static long region_count(struct resv_map *resv, long f, long t) 992 { 993 struct list_head *head = &resv->regions; 994 struct file_region *rg; 995 long chg = 0; 996 997 spin_lock(&resv->lock); 998 /* Locate each segment we overlap with, and count that overlap. */ 999 list_for_each_entry(rg, head, link) { 1000 long seg_from; 1001 long seg_to; 1002 1003 if (rg->to <= f) 1004 continue; 1005 if (rg->from >= t) 1006 break; 1007 1008 seg_from = max(rg->from, f); 1009 seg_to = min(rg->to, t); 1010 1011 chg += seg_to - seg_from; 1012 } 1013 spin_unlock(&resv->lock); 1014 1015 return chg; 1016 } 1017 1018 /* 1019 * Convert the address within this vma to the page offset within 1020 * the mapping, huge page units here. 1021 */ 1022 static pgoff_t vma_hugecache_offset(struct hstate *h, 1023 struct vm_area_struct *vma, unsigned long address) 1024 { 1025 return ((address - vma->vm_start) >> huge_page_shift(h)) + 1026 (vma->vm_pgoff >> huge_page_order(h)); 1027 } 1028 1029 /** 1030 * vma_kernel_pagesize - Page size granularity for this VMA. 1031 * @vma: The user mapping. 1032 * 1033 * Folios in this VMA will be aligned to, and at least the size of the 1034 * number of bytes returned by this function. 1035 * 1036 * Return: The default size of the folios allocated when backing a VMA. 1037 */ 1038 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) 1039 { 1040 if (vma->vm_ops && vma->vm_ops->pagesize) 1041 return vma->vm_ops->pagesize(vma); 1042 return PAGE_SIZE; 1043 } 1044 EXPORT_SYMBOL_GPL(vma_kernel_pagesize); 1045 1046 /* 1047 * Return the page size being used by the MMU to back a VMA. In the majority 1048 * of cases, the page size used by the kernel matches the MMU size. On 1049 * architectures where it differs, an architecture-specific 'strong' 1050 * version of this symbol is required. 1051 */ 1052 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 1053 { 1054 return vma_kernel_pagesize(vma); 1055 } 1056 1057 /* 1058 * Flags for MAP_PRIVATE reservations. These are stored in the bottom 1059 * bits of the reservation map pointer, which are always clear due to 1060 * alignment. 1061 */ 1062 #define HPAGE_RESV_OWNER (1UL << 0) 1063 #define HPAGE_RESV_UNMAPPED (1UL << 1) 1064 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) 1065 1066 /* 1067 * These helpers are used to track how many pages are reserved for 1068 * faults in a MAP_PRIVATE mapping. Only the process that called mmap() 1069 * is guaranteed to have their future faults succeed. 1070 * 1071 * With the exception of hugetlb_dup_vma_private() which is called at fork(), 1072 * the reserve counters are updated with the hugetlb_lock held. It is safe 1073 * to reset the VMA at fork() time as it is not in use yet and there is no 1074 * chance of the global counters getting corrupted as a result of the values. 1075 * 1076 * The private mapping reservation is represented in a subtly different 1077 * manner to a shared mapping. A shared mapping has a region map associated 1078 * with the underlying file, this region map represents the backing file 1079 * pages which have ever had a reservation assigned which this persists even 1080 * after the page is instantiated. A private mapping has a region map 1081 * associated with the original mmap which is attached to all VMAs which 1082 * reference it, this region map represents those offsets which have consumed 1083 * reservation ie. where pages have been instantiated. 1084 */ 1085 static unsigned long get_vma_private_data(struct vm_area_struct *vma) 1086 { 1087 return (unsigned long)vma->vm_private_data; 1088 } 1089 1090 static void set_vma_private_data(struct vm_area_struct *vma, 1091 unsigned long value) 1092 { 1093 vma->vm_private_data = (void *)value; 1094 } 1095 1096 static void 1097 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map, 1098 struct hugetlb_cgroup *h_cg, 1099 struct hstate *h) 1100 { 1101 #ifdef CONFIG_CGROUP_HUGETLB 1102 if (!h_cg || !h) { 1103 resv_map->reservation_counter = NULL; 1104 resv_map->pages_per_hpage = 0; 1105 resv_map->css = NULL; 1106 } else { 1107 resv_map->reservation_counter = 1108 &h_cg->rsvd_hugepage[hstate_index(h)]; 1109 resv_map->pages_per_hpage = pages_per_huge_page(h); 1110 resv_map->css = &h_cg->css; 1111 } 1112 #endif 1113 } 1114 1115 struct resv_map *resv_map_alloc(void) 1116 { 1117 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); 1118 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL); 1119 1120 if (!resv_map || !rg) { 1121 kfree(resv_map); 1122 kfree(rg); 1123 return NULL; 1124 } 1125 1126 kref_init(&resv_map->refs); 1127 spin_lock_init(&resv_map->lock); 1128 INIT_LIST_HEAD(&resv_map->regions); 1129 init_rwsem(&resv_map->rw_sema); 1130 1131 resv_map->adds_in_progress = 0; 1132 /* 1133 * Initialize these to 0. On shared mappings, 0's here indicate these 1134 * fields don't do cgroup accounting. On private mappings, these will be 1135 * re-initialized to the proper values, to indicate that hugetlb cgroup 1136 * reservations are to be un-charged from here. 1137 */ 1138 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL); 1139 1140 INIT_LIST_HEAD(&resv_map->region_cache); 1141 list_add(&rg->link, &resv_map->region_cache); 1142 resv_map->region_cache_count = 1; 1143 1144 return resv_map; 1145 } 1146 1147 void resv_map_release(struct kref *ref) 1148 { 1149 struct resv_map *resv_map = container_of(ref, struct resv_map, refs); 1150 struct list_head *head = &resv_map->region_cache; 1151 struct file_region *rg, *trg; 1152 1153 /* Clear out any active regions before we release the map. */ 1154 region_del(resv_map, 0, LONG_MAX); 1155 1156 /* ... and any entries left in the cache */ 1157 list_for_each_entry_safe(rg, trg, head, link) { 1158 list_del(&rg->link); 1159 kfree(rg); 1160 } 1161 1162 VM_BUG_ON(resv_map->adds_in_progress); 1163 1164 kfree(resv_map); 1165 } 1166 1167 static inline struct resv_map *inode_resv_map(struct inode *inode) 1168 { 1169 /* 1170 * At inode evict time, i_mapping may not point to the original 1171 * address space within the inode. This original address space 1172 * contains the pointer to the resv_map. So, always use the 1173 * address space embedded within the inode. 1174 * The VERY common case is inode->mapping == &inode->i_data but, 1175 * this may not be true for device special inodes. 1176 */ 1177 return (struct resv_map *)(&inode->i_data)->i_private_data; 1178 } 1179 1180 static struct resv_map *vma_resv_map(struct vm_area_struct *vma) 1181 { 1182 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1183 if (vma->vm_flags & VM_MAYSHARE) { 1184 struct address_space *mapping = vma->vm_file->f_mapping; 1185 struct inode *inode = mapping->host; 1186 1187 return inode_resv_map(inode); 1188 1189 } else { 1190 return (struct resv_map *)(get_vma_private_data(vma) & 1191 ~HPAGE_RESV_MASK); 1192 } 1193 } 1194 1195 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) 1196 { 1197 VM_WARN_ON_ONCE_VMA(!is_vm_hugetlb_page(vma), vma); 1198 VM_WARN_ON_ONCE_VMA(vma->vm_flags & VM_MAYSHARE, vma); 1199 1200 set_vma_private_data(vma, get_vma_private_data(vma) | flags); 1201 } 1202 1203 static void set_vma_desc_resv_map(struct vm_area_desc *desc, struct resv_map *map) 1204 { 1205 VM_WARN_ON_ONCE(!is_vm_hugetlb_flags(desc->vm_flags)); 1206 VM_WARN_ON_ONCE(desc->vm_flags & VM_MAYSHARE); 1207 1208 desc->private_data = map; 1209 } 1210 1211 static void set_vma_desc_resv_flags(struct vm_area_desc *desc, unsigned long flags) 1212 { 1213 VM_WARN_ON_ONCE(!is_vm_hugetlb_flags(desc->vm_flags)); 1214 VM_WARN_ON_ONCE(desc->vm_flags & VM_MAYSHARE); 1215 1216 desc->private_data = (void *)((unsigned long)desc->private_data | flags); 1217 } 1218 1219 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) 1220 { 1221 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1222 1223 return (get_vma_private_data(vma) & flag) != 0; 1224 } 1225 1226 static bool is_vma_desc_resv_set(struct vm_area_desc *desc, unsigned long flag) 1227 { 1228 VM_WARN_ON_ONCE(!is_vm_hugetlb_flags(desc->vm_flags)); 1229 1230 return ((unsigned long)desc->private_data) & flag; 1231 } 1232 1233 bool __vma_private_lock(struct vm_area_struct *vma) 1234 { 1235 return !(vma->vm_flags & VM_MAYSHARE) && 1236 get_vma_private_data(vma) & ~HPAGE_RESV_MASK && 1237 is_vma_resv_set(vma, HPAGE_RESV_OWNER); 1238 } 1239 1240 void hugetlb_dup_vma_private(struct vm_area_struct *vma) 1241 { 1242 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1243 /* 1244 * Clear vm_private_data 1245 * - For shared mappings this is a per-vma semaphore that may be 1246 * allocated in a subsequent call to hugetlb_vm_op_open. 1247 * Before clearing, make sure pointer is not associated with vma 1248 * as this will leak the structure. This is the case when called 1249 * via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already 1250 * been called to allocate a new structure. 1251 * - For MAP_PRIVATE mappings, this is the reserve map which does 1252 * not apply to children. Faults generated by the children are 1253 * not guaranteed to succeed, even if read-only. 1254 */ 1255 if (vma->vm_flags & VM_MAYSHARE) { 1256 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 1257 1258 if (vma_lock && vma_lock->vma != vma) 1259 vma->vm_private_data = NULL; 1260 } else 1261 vma->vm_private_data = NULL; 1262 } 1263 1264 /* 1265 * Reset and decrement one ref on hugepage private reservation. 1266 * Called with mm->mmap_lock writer semaphore held. 1267 * This function should be only used by mremap and operate on 1268 * same sized vma. It should never come here with last ref on the 1269 * reservation. 1270 */ 1271 void clear_vma_resv_huge_pages(struct vm_area_struct *vma) 1272 { 1273 /* 1274 * Clear the old hugetlb private page reservation. 1275 * It has already been transferred to new_vma. 1276 * 1277 * During a mremap() operation of a hugetlb vma we call move_vma() 1278 * which copies vma into new_vma and unmaps vma. After the copy 1279 * operation both new_vma and vma share a reference to the resv_map 1280 * struct, and at that point vma is about to be unmapped. We don't 1281 * want to return the reservation to the pool at unmap of vma because 1282 * the reservation still lives on in new_vma, so simply decrement the 1283 * ref here and remove the resv_map reference from this vma. 1284 */ 1285 struct resv_map *reservations = vma_resv_map(vma); 1286 1287 if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 1288 resv_map_put_hugetlb_cgroup_uncharge_info(reservations); 1289 kref_put(&reservations->refs, resv_map_release); 1290 } 1291 1292 hugetlb_dup_vma_private(vma); 1293 } 1294 1295 static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio) 1296 { 1297 int nid = folio_nid(folio); 1298 1299 lockdep_assert_held(&hugetlb_lock); 1300 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio); 1301 1302 list_move(&folio->lru, &h->hugepage_freelists[nid]); 1303 h->free_huge_pages++; 1304 h->free_huge_pages_node[nid]++; 1305 folio_set_hugetlb_freed(folio); 1306 } 1307 1308 static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h, 1309 int nid) 1310 { 1311 struct folio *folio; 1312 bool pin = !!(current->flags & PF_MEMALLOC_PIN); 1313 1314 lockdep_assert_held(&hugetlb_lock); 1315 list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) { 1316 if (pin && !folio_is_longterm_pinnable(folio)) 1317 continue; 1318 1319 if (folio_test_hwpoison(folio)) 1320 continue; 1321 1322 if (is_migrate_isolate_page(&folio->page)) 1323 continue; 1324 1325 list_move(&folio->lru, &h->hugepage_activelist); 1326 folio_ref_unfreeze(folio, 1); 1327 folio_clear_hugetlb_freed(folio); 1328 h->free_huge_pages--; 1329 h->free_huge_pages_node[nid]--; 1330 return folio; 1331 } 1332 1333 return NULL; 1334 } 1335 1336 static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask, 1337 int nid, nodemask_t *nmask) 1338 { 1339 unsigned int cpuset_mems_cookie; 1340 struct zonelist *zonelist; 1341 struct zone *zone; 1342 struct zoneref *z; 1343 int node = NUMA_NO_NODE; 1344 1345 /* 'nid' should not be NUMA_NO_NODE. Try to catch any misuse of it and rectifiy. */ 1346 if (nid == NUMA_NO_NODE) 1347 nid = numa_node_id(); 1348 1349 zonelist = node_zonelist(nid, gfp_mask); 1350 1351 retry_cpuset: 1352 cpuset_mems_cookie = read_mems_allowed_begin(); 1353 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) { 1354 struct folio *folio; 1355 1356 if (!cpuset_zone_allowed(zone, gfp_mask)) 1357 continue; 1358 /* 1359 * no need to ask again on the same node. Pool is node rather than 1360 * zone aware 1361 */ 1362 if (zone_to_nid(zone) == node) 1363 continue; 1364 node = zone_to_nid(zone); 1365 1366 folio = dequeue_hugetlb_folio_node_exact(h, node); 1367 if (folio) 1368 return folio; 1369 } 1370 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie))) 1371 goto retry_cpuset; 1372 1373 return NULL; 1374 } 1375 1376 static unsigned long available_huge_pages(struct hstate *h) 1377 { 1378 return h->free_huge_pages - h->resv_huge_pages; 1379 } 1380 1381 static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h, 1382 struct vm_area_struct *vma, 1383 unsigned long address, long gbl_chg) 1384 { 1385 struct folio *folio = NULL; 1386 struct mempolicy *mpol; 1387 gfp_t gfp_mask; 1388 nodemask_t *nodemask; 1389 int nid; 1390 1391 /* 1392 * gbl_chg==1 means the allocation requires a new page that was not 1393 * reserved before. Making sure there's at least one free page. 1394 */ 1395 if (gbl_chg && !available_huge_pages(h)) 1396 goto err; 1397 1398 gfp_mask = htlb_alloc_mask(h); 1399 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 1400 1401 if (mpol_is_preferred_many(mpol)) { 1402 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, 1403 nid, nodemask); 1404 1405 /* Fallback to all nodes if page==NULL */ 1406 nodemask = NULL; 1407 } 1408 1409 if (!folio) 1410 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, 1411 nid, nodemask); 1412 1413 mpol_cond_put(mpol); 1414 return folio; 1415 1416 err: 1417 return NULL; 1418 } 1419 1420 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE 1421 #ifdef CONFIG_CONTIG_ALLOC 1422 static struct folio *alloc_gigantic_folio(int order, gfp_t gfp_mask, 1423 int nid, nodemask_t *nodemask) 1424 { 1425 struct folio *folio; 1426 bool retried = false; 1427 1428 retry: 1429 folio = hugetlb_cma_alloc_folio(order, gfp_mask, nid, nodemask); 1430 if (!folio) { 1431 if (hugetlb_cma_exclusive_alloc()) 1432 return NULL; 1433 1434 folio = folio_alloc_gigantic(order, gfp_mask, nid, nodemask); 1435 if (!folio) 1436 return NULL; 1437 } 1438 1439 if (folio_ref_freeze(folio, 1)) 1440 return folio; 1441 1442 pr_warn("HugeTLB: unexpected refcount on PFN %lu\n", folio_pfn(folio)); 1443 hugetlb_free_folio(folio); 1444 if (!retried) { 1445 retried = true; 1446 goto retry; 1447 } 1448 return NULL; 1449 } 1450 1451 #else /* !CONFIG_CONTIG_ALLOC */ 1452 static struct folio *alloc_gigantic_folio(int order, gfp_t gfp_mask, int nid, 1453 nodemask_t *nodemask) 1454 { 1455 return NULL; 1456 } 1457 #endif /* CONFIG_CONTIG_ALLOC */ 1458 1459 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */ 1460 static struct folio *alloc_gigantic_folio(int order, gfp_t gfp_mask, int nid, 1461 nodemask_t *nodemask) 1462 { 1463 return NULL; 1464 } 1465 #endif 1466 1467 /* 1468 * Remove hugetlb folio from lists. 1469 * If vmemmap exists for the folio, clear the hugetlb flag so that the 1470 * folio appears as just a compound page. Otherwise, wait until after 1471 * allocating vmemmap to clear the flag. 1472 * 1473 * Must be called with hugetlb lock held. 1474 */ 1475 void remove_hugetlb_folio(struct hstate *h, struct folio *folio, 1476 bool adjust_surplus) 1477 { 1478 int nid = folio_nid(folio); 1479 1480 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio); 1481 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio); 1482 1483 lockdep_assert_held(&hugetlb_lock); 1484 if (hstate_is_gigantic_no_runtime(h)) 1485 return; 1486 1487 list_del(&folio->lru); 1488 1489 if (folio_test_hugetlb_freed(folio)) { 1490 folio_clear_hugetlb_freed(folio); 1491 h->free_huge_pages--; 1492 h->free_huge_pages_node[nid]--; 1493 } 1494 if (adjust_surplus) { 1495 h->surplus_huge_pages--; 1496 h->surplus_huge_pages_node[nid]--; 1497 } 1498 1499 /* 1500 * We can only clear the hugetlb flag after allocating vmemmap 1501 * pages. Otherwise, someone (memory error handling) may try to write 1502 * to tail struct pages. 1503 */ 1504 if (!folio_test_hugetlb_vmemmap_optimized(folio)) 1505 __folio_clear_hugetlb(folio); 1506 1507 h->nr_huge_pages--; 1508 h->nr_huge_pages_node[nid]--; 1509 } 1510 1511 void add_hugetlb_folio(struct hstate *h, struct folio *folio, 1512 bool adjust_surplus) 1513 { 1514 int nid = folio_nid(folio); 1515 1516 VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio); 1517 1518 lockdep_assert_held(&hugetlb_lock); 1519 1520 INIT_LIST_HEAD(&folio->lru); 1521 h->nr_huge_pages++; 1522 h->nr_huge_pages_node[nid]++; 1523 1524 if (adjust_surplus) { 1525 h->surplus_huge_pages++; 1526 h->surplus_huge_pages_node[nid]++; 1527 } 1528 1529 __folio_set_hugetlb(folio); 1530 folio_change_private(folio, NULL); 1531 /* 1532 * We have to set hugetlb_vmemmap_optimized again as above 1533 * folio_change_private(folio, NULL) cleared it. 1534 */ 1535 folio_set_hugetlb_vmemmap_optimized(folio); 1536 1537 arch_clear_hugetlb_flags(folio); 1538 enqueue_hugetlb_folio(h, folio); 1539 } 1540 1541 static void __update_and_free_hugetlb_folio(struct hstate *h, 1542 struct folio *folio) 1543 { 1544 bool clear_flag = folio_test_hugetlb_vmemmap_optimized(folio); 1545 1546 if (hstate_is_gigantic_no_runtime(h)) 1547 return; 1548 1549 /* 1550 * If we don't know which subpages are hwpoisoned, we can't free 1551 * the hugepage, so it's leaked intentionally. 1552 */ 1553 if (folio_test_hugetlb_raw_hwp_unreliable(folio)) 1554 return; 1555 1556 /* 1557 * If folio is not vmemmap optimized (!clear_flag), then the folio 1558 * is no longer identified as a hugetlb page. hugetlb_vmemmap_restore_folio 1559 * can only be passed hugetlb pages and will BUG otherwise. 1560 */ 1561 if (clear_flag && hugetlb_vmemmap_restore_folio(h, folio)) { 1562 spin_lock_irq(&hugetlb_lock); 1563 /* 1564 * If we cannot allocate vmemmap pages, just refuse to free the 1565 * page and put the page back on the hugetlb free list and treat 1566 * as a surplus page. 1567 */ 1568 add_hugetlb_folio(h, folio, true); 1569 spin_unlock_irq(&hugetlb_lock); 1570 return; 1571 } 1572 1573 /* 1574 * If vmemmap pages were allocated above, then we need to clear the 1575 * hugetlb flag under the hugetlb lock. 1576 */ 1577 if (folio_test_hugetlb(folio)) { 1578 spin_lock_irq(&hugetlb_lock); 1579 __folio_clear_hugetlb(folio); 1580 spin_unlock_irq(&hugetlb_lock); 1581 } 1582 1583 /* 1584 * Move PageHWPoison flag from head page to the raw error pages, 1585 * which makes any healthy subpages reusable. 1586 */ 1587 if (unlikely(folio_test_hwpoison(folio))) 1588 folio_clear_hugetlb_hwpoison(folio); 1589 1590 folio_ref_unfreeze(folio, 1); 1591 1592 hugetlb_free_folio(folio); 1593 } 1594 1595 /* 1596 * As update_and_free_hugetlb_folio() can be called under any context, so we cannot 1597 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the 1598 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate 1599 * the vmemmap pages. 1600 * 1601 * free_hpage_workfn() locklessly retrieves the linked list of pages to be 1602 * freed and frees them one-by-one. As the page->mapping pointer is going 1603 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node 1604 * structure of a lockless linked list of huge pages to be freed. 1605 */ 1606 static LLIST_HEAD(hpage_freelist); 1607 1608 static void free_hpage_workfn(struct work_struct *work) 1609 { 1610 struct llist_node *node; 1611 1612 node = llist_del_all(&hpage_freelist); 1613 1614 while (node) { 1615 struct folio *folio; 1616 struct hstate *h; 1617 1618 folio = container_of((struct address_space **)node, 1619 struct folio, mapping); 1620 node = node->next; 1621 folio->mapping = NULL; 1622 /* 1623 * The VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio) in 1624 * folio_hstate() is going to trigger because a previous call to 1625 * remove_hugetlb_folio() will clear the hugetlb bit, so do 1626 * not use folio_hstate() directly. 1627 */ 1628 h = size_to_hstate(folio_size(folio)); 1629 1630 __update_and_free_hugetlb_folio(h, folio); 1631 1632 cond_resched(); 1633 } 1634 } 1635 static DECLARE_WORK(free_hpage_work, free_hpage_workfn); 1636 1637 static inline void flush_free_hpage_work(struct hstate *h) 1638 { 1639 if (hugetlb_vmemmap_optimizable(h)) 1640 flush_work(&free_hpage_work); 1641 } 1642 1643 static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio, 1644 bool atomic) 1645 { 1646 if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) { 1647 __update_and_free_hugetlb_folio(h, folio); 1648 return; 1649 } 1650 1651 /* 1652 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages. 1653 * 1654 * Only call schedule_work() if hpage_freelist is previously 1655 * empty. Otherwise, schedule_work() had been called but the workfn 1656 * hasn't retrieved the list yet. 1657 */ 1658 if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist)) 1659 schedule_work(&free_hpage_work); 1660 } 1661 1662 static void bulk_vmemmap_restore_error(struct hstate *h, 1663 struct list_head *folio_list, 1664 struct list_head *non_hvo_folios) 1665 { 1666 struct folio *folio, *t_folio; 1667 1668 if (!list_empty(non_hvo_folios)) { 1669 /* 1670 * Free any restored hugetlb pages so that restore of the 1671 * entire list can be retried. 1672 * The idea is that in the common case of ENOMEM errors freeing 1673 * hugetlb pages with vmemmap we will free up memory so that we 1674 * can allocate vmemmap for more hugetlb pages. 1675 */ 1676 list_for_each_entry_safe(folio, t_folio, non_hvo_folios, lru) { 1677 list_del(&folio->lru); 1678 spin_lock_irq(&hugetlb_lock); 1679 __folio_clear_hugetlb(folio); 1680 spin_unlock_irq(&hugetlb_lock); 1681 update_and_free_hugetlb_folio(h, folio, false); 1682 cond_resched(); 1683 } 1684 } else { 1685 /* 1686 * In the case where there are no folios which can be 1687 * immediately freed, we loop through the list trying to restore 1688 * vmemmap individually in the hope that someone elsewhere may 1689 * have done something to cause success (such as freeing some 1690 * memory). If unable to restore a hugetlb page, the hugetlb 1691 * page is made a surplus page and removed from the list. 1692 * If are able to restore vmemmap and free one hugetlb page, we 1693 * quit processing the list to retry the bulk operation. 1694 */ 1695 list_for_each_entry_safe(folio, t_folio, folio_list, lru) 1696 if (hugetlb_vmemmap_restore_folio(h, folio)) { 1697 list_del(&folio->lru); 1698 spin_lock_irq(&hugetlb_lock); 1699 add_hugetlb_folio(h, folio, true); 1700 spin_unlock_irq(&hugetlb_lock); 1701 } else { 1702 list_del(&folio->lru); 1703 spin_lock_irq(&hugetlb_lock); 1704 __folio_clear_hugetlb(folio); 1705 spin_unlock_irq(&hugetlb_lock); 1706 update_and_free_hugetlb_folio(h, folio, false); 1707 cond_resched(); 1708 break; 1709 } 1710 } 1711 } 1712 1713 static void update_and_free_pages_bulk(struct hstate *h, 1714 struct list_head *folio_list) 1715 { 1716 long ret; 1717 struct folio *folio, *t_folio; 1718 LIST_HEAD(non_hvo_folios); 1719 1720 /* 1721 * First allocate required vmemmmap (if necessary) for all folios. 1722 * Carefully handle errors and free up any available hugetlb pages 1723 * in an effort to make forward progress. 1724 */ 1725 retry: 1726 ret = hugetlb_vmemmap_restore_folios(h, folio_list, &non_hvo_folios); 1727 if (ret < 0) { 1728 bulk_vmemmap_restore_error(h, folio_list, &non_hvo_folios); 1729 goto retry; 1730 } 1731 1732 /* 1733 * At this point, list should be empty, ret should be >= 0 and there 1734 * should only be pages on the non_hvo_folios list. 1735 * Do note that the non_hvo_folios list could be empty. 1736 * Without HVO enabled, ret will be 0 and there is no need to call 1737 * __folio_clear_hugetlb as this was done previously. 1738 */ 1739 VM_WARN_ON(!list_empty(folio_list)); 1740 VM_WARN_ON(ret < 0); 1741 if (!list_empty(&non_hvo_folios) && ret) { 1742 spin_lock_irq(&hugetlb_lock); 1743 list_for_each_entry(folio, &non_hvo_folios, lru) 1744 __folio_clear_hugetlb(folio); 1745 spin_unlock_irq(&hugetlb_lock); 1746 } 1747 1748 list_for_each_entry_safe(folio, t_folio, &non_hvo_folios, lru) { 1749 update_and_free_hugetlb_folio(h, folio, false); 1750 cond_resched(); 1751 } 1752 } 1753 1754 struct hstate *size_to_hstate(unsigned long size) 1755 { 1756 struct hstate *h; 1757 1758 for_each_hstate(h) { 1759 if (huge_page_size(h) == size) 1760 return h; 1761 } 1762 return NULL; 1763 } 1764 1765 void free_huge_folio(struct folio *folio) 1766 { 1767 /* 1768 * Can't pass hstate in here because it is called from the 1769 * generic mm code. 1770 */ 1771 struct hstate *h = folio_hstate(folio); 1772 int nid = folio_nid(folio); 1773 struct hugepage_subpool *spool = hugetlb_folio_subpool(folio); 1774 bool restore_reserve; 1775 unsigned long flags; 1776 1777 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio); 1778 VM_BUG_ON_FOLIO(folio_mapcount(folio), folio); 1779 1780 hugetlb_set_folio_subpool(folio, NULL); 1781 if (folio_test_anon(folio)) 1782 __ClearPageAnonExclusive(&folio->page); 1783 folio->mapping = NULL; 1784 restore_reserve = folio_test_hugetlb_restore_reserve(folio); 1785 folio_clear_hugetlb_restore_reserve(folio); 1786 1787 /* 1788 * If HPageRestoreReserve was set on page, page allocation consumed a 1789 * reservation. If the page was associated with a subpool, there 1790 * would have been a page reserved in the subpool before allocation 1791 * via hugepage_subpool_get_pages(). Since we are 'restoring' the 1792 * reservation, do not call hugepage_subpool_put_pages() as this will 1793 * remove the reserved page from the subpool. 1794 */ 1795 if (!restore_reserve) { 1796 /* 1797 * A return code of zero implies that the subpool will be 1798 * under its minimum size if the reservation is not restored 1799 * after page is free. Therefore, force restore_reserve 1800 * operation. 1801 */ 1802 if (hugepage_subpool_put_pages(spool, 1) == 0) 1803 restore_reserve = true; 1804 } 1805 1806 spin_lock_irqsave(&hugetlb_lock, flags); 1807 folio_clear_hugetlb_migratable(folio); 1808 hugetlb_cgroup_uncharge_folio(hstate_index(h), 1809 pages_per_huge_page(h), folio); 1810 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h), 1811 pages_per_huge_page(h), folio); 1812 lruvec_stat_mod_folio(folio, NR_HUGETLB, -pages_per_huge_page(h)); 1813 mem_cgroup_uncharge(folio); 1814 if (restore_reserve) 1815 h->resv_huge_pages++; 1816 1817 if (folio_test_hugetlb_temporary(folio)) { 1818 remove_hugetlb_folio(h, folio, false); 1819 spin_unlock_irqrestore(&hugetlb_lock, flags); 1820 update_and_free_hugetlb_folio(h, folio, true); 1821 } else if (h->surplus_huge_pages_node[nid]) { 1822 /* remove the page from active list */ 1823 remove_hugetlb_folio(h, folio, true); 1824 spin_unlock_irqrestore(&hugetlb_lock, flags); 1825 update_and_free_hugetlb_folio(h, folio, true); 1826 } else { 1827 arch_clear_hugetlb_flags(folio); 1828 enqueue_hugetlb_folio(h, folio); 1829 spin_unlock_irqrestore(&hugetlb_lock, flags); 1830 } 1831 } 1832 1833 /* 1834 * Must be called with the hugetlb lock held 1835 */ 1836 static void account_new_hugetlb_folio(struct hstate *h, struct folio *folio) 1837 { 1838 lockdep_assert_held(&hugetlb_lock); 1839 h->nr_huge_pages++; 1840 h->nr_huge_pages_node[folio_nid(folio)]++; 1841 } 1842 1843 void init_new_hugetlb_folio(struct folio *folio) 1844 { 1845 __folio_set_hugetlb(folio); 1846 INIT_LIST_HEAD(&folio->lru); 1847 hugetlb_set_folio_subpool(folio, NULL); 1848 set_hugetlb_cgroup(folio, NULL); 1849 set_hugetlb_cgroup_rsvd(folio, NULL); 1850 } 1851 1852 /* 1853 * Find and lock address space (mapping) in write mode. 1854 * 1855 * Upon entry, the folio is locked which means that folio_mapping() is 1856 * stable. Due to locking order, we can only trylock_write. If we can 1857 * not get the lock, simply return NULL to caller. 1858 */ 1859 struct address_space *hugetlb_folio_mapping_lock_write(struct folio *folio) 1860 { 1861 struct address_space *mapping = folio_mapping(folio); 1862 1863 if (!mapping) 1864 return mapping; 1865 1866 if (i_mmap_trylock_write(mapping)) 1867 return mapping; 1868 1869 return NULL; 1870 } 1871 1872 static struct folio *alloc_buddy_hugetlb_folio(int order, gfp_t gfp_mask, 1873 int nid, nodemask_t *nmask, nodemask_t *node_alloc_noretry) 1874 { 1875 struct folio *folio; 1876 bool alloc_try_hard = true; 1877 1878 /* 1879 * By default we always try hard to allocate the folio with 1880 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating folios in 1881 * a loop (to adjust global huge page counts) and previous allocation 1882 * failed, do not continue to try hard on the same node. Use the 1883 * node_alloc_noretry bitmap to manage this state information. 1884 */ 1885 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry)) 1886 alloc_try_hard = false; 1887 if (alloc_try_hard) 1888 gfp_mask |= __GFP_RETRY_MAYFAIL; 1889 1890 folio = (struct folio *)__alloc_frozen_pages(gfp_mask, order, nid, nmask); 1891 1892 /* 1893 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a 1894 * folio this indicates an overall state change. Clear bit so 1895 * that we resume normal 'try hard' allocations. 1896 */ 1897 if (node_alloc_noretry && folio && !alloc_try_hard) 1898 node_clear(nid, *node_alloc_noretry); 1899 1900 /* 1901 * If we tried hard to get a folio but failed, set bit so that 1902 * subsequent attempts will not try as hard until there is an 1903 * overall state change. 1904 */ 1905 if (node_alloc_noretry && !folio && alloc_try_hard) 1906 node_set(nid, *node_alloc_noretry); 1907 1908 if (!folio) { 1909 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 1910 return NULL; 1911 } 1912 1913 __count_vm_event(HTLB_BUDDY_PGALLOC); 1914 return folio; 1915 } 1916 1917 static struct folio *only_alloc_fresh_hugetlb_folio(struct hstate *h, 1918 gfp_t gfp_mask, int nid, nodemask_t *nmask, 1919 nodemask_t *node_alloc_noretry) 1920 { 1921 struct folio *folio; 1922 int order = huge_page_order(h); 1923 1924 if (nid == NUMA_NO_NODE) 1925 nid = numa_mem_id(); 1926 1927 if (order_is_gigantic(order)) 1928 folio = alloc_gigantic_folio(order, gfp_mask, nid, nmask); 1929 else 1930 folio = alloc_buddy_hugetlb_folio(order, gfp_mask, nid, nmask, 1931 node_alloc_noretry); 1932 if (folio) 1933 init_new_hugetlb_folio(folio); 1934 return folio; 1935 } 1936 1937 /* 1938 * Common helper to allocate a fresh hugetlb folio. All specific allocators 1939 * should use this function to get new hugetlb folio 1940 * 1941 * Note that returned folio is 'frozen': ref count of head page and all tail 1942 * pages is zero, and the accounting must be done in the caller. 1943 */ 1944 static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h, 1945 gfp_t gfp_mask, int nid, nodemask_t *nmask) 1946 { 1947 struct folio *folio; 1948 1949 folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL); 1950 if (folio) 1951 hugetlb_vmemmap_optimize_folio(h, folio); 1952 return folio; 1953 } 1954 1955 void prep_and_add_allocated_folios(struct hstate *h, 1956 struct list_head *folio_list) 1957 { 1958 unsigned long flags; 1959 struct folio *folio, *tmp_f; 1960 1961 /* Send list for bulk vmemmap optimization processing */ 1962 hugetlb_vmemmap_optimize_folios(h, folio_list); 1963 1964 /* Add all new pool pages to free lists in one lock cycle */ 1965 spin_lock_irqsave(&hugetlb_lock, flags); 1966 list_for_each_entry_safe(folio, tmp_f, folio_list, lru) { 1967 account_new_hugetlb_folio(h, folio); 1968 enqueue_hugetlb_folio(h, folio); 1969 } 1970 spin_unlock_irqrestore(&hugetlb_lock, flags); 1971 } 1972 1973 /* 1974 * Allocates a fresh hugetlb page in a node interleaved manner. The page 1975 * will later be added to the appropriate hugetlb pool. 1976 */ 1977 static struct folio *alloc_pool_huge_folio(struct hstate *h, 1978 nodemask_t *nodes_allowed, 1979 nodemask_t *node_alloc_noretry, 1980 int *next_node) 1981 { 1982 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 1983 int nr_nodes, node; 1984 1985 for_each_node_mask_to_alloc(next_node, nr_nodes, node, nodes_allowed) { 1986 struct folio *folio; 1987 1988 folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, node, 1989 nodes_allowed, node_alloc_noretry); 1990 if (folio) 1991 return folio; 1992 } 1993 1994 return NULL; 1995 } 1996 1997 /* 1998 * Remove huge page from pool from next node to free. Attempt to keep 1999 * persistent huge pages more or less balanced over allowed nodes. 2000 * This routine only 'removes' the hugetlb page. The caller must make 2001 * an additional call to free the page to low level allocators. 2002 * Called with hugetlb_lock locked. 2003 */ 2004 static struct folio *remove_pool_hugetlb_folio(struct hstate *h, 2005 nodemask_t *nodes_allowed, bool acct_surplus) 2006 { 2007 int nr_nodes, node; 2008 struct folio *folio = NULL; 2009 2010 lockdep_assert_held(&hugetlb_lock); 2011 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 2012 /* 2013 * If we're returning unused surplus pages, only examine 2014 * nodes with surplus pages. 2015 */ 2016 if ((!acct_surplus || h->surplus_huge_pages_node[node]) && 2017 !list_empty(&h->hugepage_freelists[node])) { 2018 folio = list_entry(h->hugepage_freelists[node].next, 2019 struct folio, lru); 2020 remove_hugetlb_folio(h, folio, acct_surplus); 2021 break; 2022 } 2023 } 2024 2025 return folio; 2026 } 2027 2028 /* 2029 * Dissolve a given free hugetlb folio into free buddy pages. This function 2030 * does nothing for in-use hugetlb folios and non-hugetlb folios. 2031 * This function returns values like below: 2032 * 2033 * -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages 2034 * when the system is under memory pressure and the feature of 2035 * freeing unused vmemmap pages associated with each hugetlb page 2036 * is enabled. 2037 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use 2038 * (allocated or reserved.) 2039 * 0: successfully dissolved free hugepages or the page is not a 2040 * hugepage (considered as already dissolved) 2041 */ 2042 int dissolve_free_hugetlb_folio(struct folio *folio) 2043 { 2044 int rc = -EBUSY; 2045 2046 retry: 2047 /* Not to disrupt normal path by vainly holding hugetlb_lock */ 2048 if (!folio_test_hugetlb(folio)) 2049 return 0; 2050 2051 spin_lock_irq(&hugetlb_lock); 2052 if (!folio_test_hugetlb(folio)) { 2053 rc = 0; 2054 goto out; 2055 } 2056 2057 if (!folio_ref_count(folio)) { 2058 struct hstate *h = folio_hstate(folio); 2059 bool adjust_surplus = false; 2060 2061 if (!available_huge_pages(h)) 2062 goto out; 2063 2064 /* 2065 * We should make sure that the page is already on the free list 2066 * when it is dissolved. 2067 */ 2068 if (unlikely(!folio_test_hugetlb_freed(folio))) { 2069 spin_unlock_irq(&hugetlb_lock); 2070 cond_resched(); 2071 2072 /* 2073 * Theoretically, we should return -EBUSY when we 2074 * encounter this race. In fact, we have a chance 2075 * to successfully dissolve the page if we do a 2076 * retry. Because the race window is quite small. 2077 * If we seize this opportunity, it is an optimization 2078 * for increasing the success rate of dissolving page. 2079 */ 2080 goto retry; 2081 } 2082 2083 if (h->surplus_huge_pages_node[folio_nid(folio)]) 2084 adjust_surplus = true; 2085 remove_hugetlb_folio(h, folio, adjust_surplus); 2086 h->max_huge_pages--; 2087 spin_unlock_irq(&hugetlb_lock); 2088 2089 /* 2090 * Normally update_and_free_hugtlb_folio will allocate required vmemmmap 2091 * before freeing the page. update_and_free_hugtlb_folio will fail to 2092 * free the page if it can not allocate required vmemmap. We 2093 * need to adjust max_huge_pages if the page is not freed. 2094 * Attempt to allocate vmemmmap here so that we can take 2095 * appropriate action on failure. 2096 * 2097 * The folio_test_hugetlb check here is because 2098 * remove_hugetlb_folio will clear hugetlb folio flag for 2099 * non-vmemmap optimized hugetlb folios. 2100 */ 2101 if (folio_test_hugetlb(folio)) { 2102 rc = hugetlb_vmemmap_restore_folio(h, folio); 2103 if (rc) { 2104 spin_lock_irq(&hugetlb_lock); 2105 add_hugetlb_folio(h, folio, adjust_surplus); 2106 h->max_huge_pages++; 2107 goto out; 2108 } 2109 } else 2110 rc = 0; 2111 2112 update_and_free_hugetlb_folio(h, folio, false); 2113 return rc; 2114 } 2115 out: 2116 spin_unlock_irq(&hugetlb_lock); 2117 return rc; 2118 } 2119 2120 /* 2121 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to 2122 * make specified memory blocks removable from the system. 2123 * Note that this will dissolve a free gigantic hugepage completely, if any 2124 * part of it lies within the given range. 2125 * Also note that if dissolve_free_hugetlb_folio() returns with an error, all 2126 * free hugetlb folios that were dissolved before that error are lost. 2127 */ 2128 int dissolve_free_hugetlb_folios(unsigned long start_pfn, unsigned long end_pfn) 2129 { 2130 unsigned long pfn; 2131 struct folio *folio; 2132 int rc = 0; 2133 unsigned int order; 2134 struct hstate *h; 2135 2136 if (!hugepages_supported()) 2137 return rc; 2138 2139 order = huge_page_order(&default_hstate); 2140 for_each_hstate(h) 2141 order = min(order, huge_page_order(h)); 2142 2143 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) { 2144 folio = pfn_folio(pfn); 2145 rc = dissolve_free_hugetlb_folio(folio); 2146 if (rc) 2147 break; 2148 } 2149 2150 return rc; 2151 } 2152 2153 /* 2154 * Allocates a fresh surplus page from the page allocator. 2155 */ 2156 static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h, 2157 gfp_t gfp_mask, int nid, nodemask_t *nmask) 2158 { 2159 struct folio *folio = NULL; 2160 2161 if (hstate_is_gigantic_no_runtime(h)) 2162 return NULL; 2163 2164 spin_lock_irq(&hugetlb_lock); 2165 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) 2166 goto out_unlock; 2167 spin_unlock_irq(&hugetlb_lock); 2168 2169 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask); 2170 if (!folio) 2171 return NULL; 2172 2173 spin_lock_irq(&hugetlb_lock); 2174 /* 2175 * nr_huge_pages needs to be adjusted within the same lock cycle 2176 * as surplus_pages, otherwise it might confuse 2177 * persistent_huge_pages() momentarily. 2178 */ 2179 account_new_hugetlb_folio(h, folio); 2180 2181 /* 2182 * We could have raced with the pool size change. 2183 * Double check that and simply deallocate the new page 2184 * if we would end up overcommiting the surpluses. Abuse 2185 * temporary page to workaround the nasty free_huge_folio 2186 * codeflow 2187 */ 2188 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { 2189 folio_set_hugetlb_temporary(folio); 2190 spin_unlock_irq(&hugetlb_lock); 2191 free_huge_folio(folio); 2192 return NULL; 2193 } 2194 2195 h->surplus_huge_pages++; 2196 h->surplus_huge_pages_node[folio_nid(folio)]++; 2197 2198 out_unlock: 2199 spin_unlock_irq(&hugetlb_lock); 2200 2201 return folio; 2202 } 2203 2204 static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask, 2205 int nid, nodemask_t *nmask) 2206 { 2207 struct folio *folio; 2208 2209 if (hstate_is_gigantic(h)) 2210 return NULL; 2211 2212 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask); 2213 if (!folio) 2214 return NULL; 2215 2216 spin_lock_irq(&hugetlb_lock); 2217 account_new_hugetlb_folio(h, folio); 2218 spin_unlock_irq(&hugetlb_lock); 2219 2220 /* fresh huge pages are frozen */ 2221 folio_ref_unfreeze(folio, 1); 2222 /* 2223 * We do not account these pages as surplus because they are only 2224 * temporary and will be released properly on the last reference 2225 */ 2226 folio_set_hugetlb_temporary(folio); 2227 2228 return folio; 2229 } 2230 2231 /* 2232 * Use the VMA's mpolicy to allocate a huge page from the buddy. 2233 */ 2234 static 2235 struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h, 2236 struct vm_area_struct *vma, unsigned long addr) 2237 { 2238 struct folio *folio = NULL; 2239 struct mempolicy *mpol; 2240 gfp_t gfp_mask = htlb_alloc_mask(h); 2241 int nid; 2242 nodemask_t *nodemask; 2243 2244 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask); 2245 if (mpol_is_preferred_many(mpol)) { 2246 gfp_t gfp = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL); 2247 2248 folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask); 2249 2250 /* Fallback to all nodes if page==NULL */ 2251 nodemask = NULL; 2252 } 2253 2254 if (!folio) 2255 folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask); 2256 mpol_cond_put(mpol); 2257 return folio; 2258 } 2259 2260 struct folio *alloc_hugetlb_folio_reserve(struct hstate *h, int preferred_nid, 2261 nodemask_t *nmask, gfp_t gfp_mask) 2262 { 2263 struct folio *folio; 2264 2265 spin_lock_irq(&hugetlb_lock); 2266 if (!h->resv_huge_pages) { 2267 spin_unlock_irq(&hugetlb_lock); 2268 return NULL; 2269 } 2270 2271 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, preferred_nid, 2272 nmask); 2273 if (folio) 2274 h->resv_huge_pages--; 2275 2276 spin_unlock_irq(&hugetlb_lock); 2277 return folio; 2278 } 2279 2280 /* folio migration callback function */ 2281 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid, 2282 nodemask_t *nmask, gfp_t gfp_mask, bool allow_alloc_fallback) 2283 { 2284 spin_lock_irq(&hugetlb_lock); 2285 if (available_huge_pages(h)) { 2286 struct folio *folio; 2287 2288 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, 2289 preferred_nid, nmask); 2290 if (folio) { 2291 spin_unlock_irq(&hugetlb_lock); 2292 return folio; 2293 } 2294 } 2295 spin_unlock_irq(&hugetlb_lock); 2296 2297 /* We cannot fallback to other nodes, as we could break the per-node pool. */ 2298 if (!allow_alloc_fallback) 2299 gfp_mask |= __GFP_THISNODE; 2300 2301 return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask); 2302 } 2303 2304 static nodemask_t *policy_mbind_nodemask(gfp_t gfp) 2305 { 2306 #ifdef CONFIG_NUMA 2307 struct mempolicy *mpol = get_task_policy(current); 2308 2309 /* 2310 * Only enforce MPOL_BIND policy which overlaps with cpuset policy 2311 * (from policy_nodemask) specifically for hugetlb case 2312 */ 2313 if (mpol->mode == MPOL_BIND && 2314 (apply_policy_zone(mpol, gfp_zone(gfp)) && 2315 cpuset_nodemask_valid_mems_allowed(&mpol->nodes))) 2316 return &mpol->nodes; 2317 #endif 2318 return NULL; 2319 } 2320 2321 /* 2322 * Increase the hugetlb pool such that it can accommodate a reservation 2323 * of size 'delta'. 2324 */ 2325 static int gather_surplus_pages(struct hstate *h, long delta) 2326 __must_hold(&hugetlb_lock) 2327 { 2328 LIST_HEAD(surplus_list); 2329 struct folio *folio, *tmp; 2330 int ret; 2331 long i; 2332 long needed, allocated; 2333 bool alloc_ok = true; 2334 nodemask_t *mbind_nodemask, alloc_nodemask; 2335 2336 mbind_nodemask = policy_mbind_nodemask(htlb_alloc_mask(h)); 2337 if (mbind_nodemask) 2338 nodes_and(alloc_nodemask, *mbind_nodemask, cpuset_current_mems_allowed); 2339 else 2340 alloc_nodemask = cpuset_current_mems_allowed; 2341 2342 lockdep_assert_held(&hugetlb_lock); 2343 needed = (h->resv_huge_pages + delta) - h->free_huge_pages; 2344 if (needed <= 0) { 2345 h->resv_huge_pages += delta; 2346 return 0; 2347 } 2348 2349 allocated = 0; 2350 2351 ret = -ENOMEM; 2352 retry: 2353 spin_unlock_irq(&hugetlb_lock); 2354 for (i = 0; i < needed; i++) { 2355 folio = NULL; 2356 2357 /* 2358 * It is okay to use NUMA_NO_NODE because we use numa_mem_id() 2359 * down the road to pick the current node if that is the case. 2360 */ 2361 folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h), 2362 NUMA_NO_NODE, &alloc_nodemask); 2363 if (!folio) { 2364 alloc_ok = false; 2365 break; 2366 } 2367 list_add(&folio->lru, &surplus_list); 2368 cond_resched(); 2369 } 2370 allocated += i; 2371 2372 /* 2373 * After retaking hugetlb_lock, we need to recalculate 'needed' 2374 * because either resv_huge_pages or free_huge_pages may have changed. 2375 */ 2376 spin_lock_irq(&hugetlb_lock); 2377 needed = (h->resv_huge_pages + delta) - 2378 (h->free_huge_pages + allocated); 2379 if (needed > 0) { 2380 if (alloc_ok) 2381 goto retry; 2382 /* 2383 * We were not able to allocate enough pages to 2384 * satisfy the entire reservation so we free what 2385 * we've allocated so far. 2386 */ 2387 goto free; 2388 } 2389 /* 2390 * The surplus_list now contains _at_least_ the number of extra pages 2391 * needed to accommodate the reservation. Add the appropriate number 2392 * of pages to the hugetlb pool and free the extras back to the buddy 2393 * allocator. Commit the entire reservation here to prevent another 2394 * process from stealing the pages as they are added to the pool but 2395 * before they are reserved. 2396 */ 2397 needed += allocated; 2398 h->resv_huge_pages += delta; 2399 ret = 0; 2400 2401 /* Free the needed pages to the hugetlb pool */ 2402 list_for_each_entry_safe(folio, tmp, &surplus_list, lru) { 2403 if ((--needed) < 0) 2404 break; 2405 /* Add the page to the hugetlb allocator */ 2406 enqueue_hugetlb_folio(h, folio); 2407 } 2408 free: 2409 spin_unlock_irq(&hugetlb_lock); 2410 2411 /* 2412 * Free unnecessary surplus pages to the buddy allocator. 2413 * Pages have no ref count, call free_huge_folio directly. 2414 */ 2415 list_for_each_entry_safe(folio, tmp, &surplus_list, lru) 2416 free_huge_folio(folio); 2417 spin_lock_irq(&hugetlb_lock); 2418 2419 return ret; 2420 } 2421 2422 /* 2423 * This routine has two main purposes: 2424 * 1) Decrement the reservation count (resv_huge_pages) by the value passed 2425 * in unused_resv_pages. This corresponds to the prior adjustments made 2426 * to the associated reservation map. 2427 * 2) Free any unused surplus pages that may have been allocated to satisfy 2428 * the reservation. As many as unused_resv_pages may be freed. 2429 */ 2430 static void return_unused_surplus_pages(struct hstate *h, 2431 unsigned long unused_resv_pages) 2432 { 2433 unsigned long nr_pages; 2434 LIST_HEAD(page_list); 2435 2436 lockdep_assert_held(&hugetlb_lock); 2437 /* Uncommit the reservation */ 2438 h->resv_huge_pages -= unused_resv_pages; 2439 2440 if (hstate_is_gigantic_no_runtime(h)) 2441 goto out; 2442 2443 /* 2444 * Part (or even all) of the reservation could have been backed 2445 * by pre-allocated pages. Only free surplus pages. 2446 */ 2447 nr_pages = min(unused_resv_pages, h->surplus_huge_pages); 2448 2449 /* 2450 * We want to release as many surplus pages as possible, spread 2451 * evenly across all nodes with memory. Iterate across these nodes 2452 * until we can no longer free unreserved surplus pages. This occurs 2453 * when the nodes with surplus pages have no free pages. 2454 * remove_pool_hugetlb_folio() will balance the freed pages across the 2455 * on-line nodes with memory and will handle the hstate accounting. 2456 */ 2457 while (nr_pages--) { 2458 struct folio *folio; 2459 2460 folio = remove_pool_hugetlb_folio(h, &node_states[N_MEMORY], 1); 2461 if (!folio) 2462 goto out; 2463 2464 list_add(&folio->lru, &page_list); 2465 } 2466 2467 out: 2468 spin_unlock_irq(&hugetlb_lock); 2469 update_and_free_pages_bulk(h, &page_list); 2470 spin_lock_irq(&hugetlb_lock); 2471 } 2472 2473 2474 /* 2475 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation 2476 * are used by the huge page allocation routines to manage reservations. 2477 * 2478 * vma_needs_reservation is called to determine if the huge page at addr 2479 * within the vma has an associated reservation. If a reservation is 2480 * needed, the value 1 is returned. The caller is then responsible for 2481 * managing the global reservation and subpool usage counts. After 2482 * the huge page has been allocated, vma_commit_reservation is called 2483 * to add the page to the reservation map. If the page allocation fails, 2484 * the reservation must be ended instead of committed. vma_end_reservation 2485 * is called in such cases. 2486 * 2487 * In the normal case, vma_commit_reservation returns the same value 2488 * as the preceding vma_needs_reservation call. The only time this 2489 * is not the case is if a reserve map was changed between calls. It 2490 * is the responsibility of the caller to notice the difference and 2491 * take appropriate action. 2492 * 2493 * vma_add_reservation is used in error paths where a reservation must 2494 * be restored when a newly allocated huge page must be freed. It is 2495 * to be called after calling vma_needs_reservation to determine if a 2496 * reservation exists. 2497 * 2498 * vma_del_reservation is used in error paths where an entry in the reserve 2499 * map was created during huge page allocation and must be removed. It is to 2500 * be called after calling vma_needs_reservation to determine if a reservation 2501 * exists. 2502 */ 2503 enum vma_resv_mode { 2504 VMA_NEEDS_RESV, 2505 VMA_COMMIT_RESV, 2506 VMA_END_RESV, 2507 VMA_ADD_RESV, 2508 VMA_DEL_RESV, 2509 }; 2510 static long __vma_reservation_common(struct hstate *h, 2511 struct vm_area_struct *vma, unsigned long addr, 2512 enum vma_resv_mode mode) 2513 { 2514 struct resv_map *resv; 2515 pgoff_t idx; 2516 long ret; 2517 long dummy_out_regions_needed; 2518 2519 resv = vma_resv_map(vma); 2520 if (!resv) 2521 return 1; 2522 2523 idx = vma_hugecache_offset(h, vma, addr); 2524 switch (mode) { 2525 case VMA_NEEDS_RESV: 2526 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed); 2527 /* We assume that vma_reservation_* routines always operate on 2528 * 1 page, and that adding to resv map a 1 page entry can only 2529 * ever require 1 region. 2530 */ 2531 VM_BUG_ON(dummy_out_regions_needed != 1); 2532 break; 2533 case VMA_COMMIT_RESV: 2534 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2535 /* region_add calls of range 1 should never fail. */ 2536 VM_BUG_ON(ret < 0); 2537 break; 2538 case VMA_END_RESV: 2539 region_abort(resv, idx, idx + 1, 1); 2540 ret = 0; 2541 break; 2542 case VMA_ADD_RESV: 2543 if (vma->vm_flags & VM_MAYSHARE) { 2544 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2545 /* region_add calls of range 1 should never fail. */ 2546 VM_BUG_ON(ret < 0); 2547 } else { 2548 region_abort(resv, idx, idx + 1, 1); 2549 ret = region_del(resv, idx, idx + 1); 2550 } 2551 break; 2552 case VMA_DEL_RESV: 2553 if (vma->vm_flags & VM_MAYSHARE) { 2554 region_abort(resv, idx, idx + 1, 1); 2555 ret = region_del(resv, idx, idx + 1); 2556 } else { 2557 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2558 /* region_add calls of range 1 should never fail. */ 2559 VM_BUG_ON(ret < 0); 2560 } 2561 break; 2562 default: 2563 BUG(); 2564 } 2565 2566 if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV) 2567 return ret; 2568 /* 2569 * We know private mapping must have HPAGE_RESV_OWNER set. 2570 * 2571 * In most cases, reserves always exist for private mappings. 2572 * However, a file associated with mapping could have been 2573 * hole punched or truncated after reserves were consumed. 2574 * As subsequent fault on such a range will not use reserves. 2575 * Subtle - The reserve map for private mappings has the 2576 * opposite meaning than that of shared mappings. If NO 2577 * entry is in the reserve map, it means a reservation exists. 2578 * If an entry exists in the reserve map, it means the 2579 * reservation has already been consumed. As a result, the 2580 * return value of this routine is the opposite of the 2581 * value returned from reserve map manipulation routines above. 2582 */ 2583 if (ret > 0) 2584 return 0; 2585 if (ret == 0) 2586 return 1; 2587 return ret; 2588 } 2589 2590 static long vma_needs_reservation(struct hstate *h, 2591 struct vm_area_struct *vma, unsigned long addr) 2592 { 2593 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV); 2594 } 2595 2596 static long vma_commit_reservation(struct hstate *h, 2597 struct vm_area_struct *vma, unsigned long addr) 2598 { 2599 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV); 2600 } 2601 2602 static void vma_end_reservation(struct hstate *h, 2603 struct vm_area_struct *vma, unsigned long addr) 2604 { 2605 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV); 2606 } 2607 2608 static long vma_add_reservation(struct hstate *h, 2609 struct vm_area_struct *vma, unsigned long addr) 2610 { 2611 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV); 2612 } 2613 2614 static long vma_del_reservation(struct hstate *h, 2615 struct vm_area_struct *vma, unsigned long addr) 2616 { 2617 return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV); 2618 } 2619 2620 /* 2621 * This routine is called to restore reservation information on error paths. 2622 * It should ONLY be called for folios allocated via alloc_hugetlb_folio(), 2623 * and the hugetlb mutex should remain held when calling this routine. 2624 * 2625 * It handles two specific cases: 2626 * 1) A reservation was in place and the folio consumed the reservation. 2627 * hugetlb_restore_reserve is set in the folio. 2628 * 2) No reservation was in place for the page, so hugetlb_restore_reserve is 2629 * not set. However, alloc_hugetlb_folio always updates the reserve map. 2630 * 2631 * In case 1, free_huge_folio later in the error path will increment the 2632 * global reserve count. But, free_huge_folio does not have enough context 2633 * to adjust the reservation map. This case deals primarily with private 2634 * mappings. Adjust the reserve map here to be consistent with global 2635 * reserve count adjustments to be made by free_huge_folio. Make sure the 2636 * reserve map indicates there is a reservation present. 2637 * 2638 * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio. 2639 */ 2640 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma, 2641 unsigned long address, struct folio *folio) 2642 { 2643 long rc = vma_needs_reservation(h, vma, address); 2644 2645 if (folio_test_hugetlb_restore_reserve(folio)) { 2646 if (unlikely(rc < 0)) 2647 /* 2648 * Rare out of memory condition in reserve map 2649 * manipulation. Clear hugetlb_restore_reserve so 2650 * that global reserve count will not be incremented 2651 * by free_huge_folio. This will make it appear 2652 * as though the reservation for this folio was 2653 * consumed. This may prevent the task from 2654 * faulting in the folio at a later time. This 2655 * is better than inconsistent global huge page 2656 * accounting of reserve counts. 2657 */ 2658 folio_clear_hugetlb_restore_reserve(folio); 2659 else if (rc) 2660 (void)vma_add_reservation(h, vma, address); 2661 else 2662 vma_end_reservation(h, vma, address); 2663 } else { 2664 if (!rc) { 2665 /* 2666 * This indicates there is an entry in the reserve map 2667 * not added by alloc_hugetlb_folio. We know it was added 2668 * before the alloc_hugetlb_folio call, otherwise 2669 * hugetlb_restore_reserve would be set on the folio. 2670 * Remove the entry so that a subsequent allocation 2671 * does not consume a reservation. 2672 */ 2673 rc = vma_del_reservation(h, vma, address); 2674 if (rc < 0) 2675 /* 2676 * VERY rare out of memory condition. Since 2677 * we can not delete the entry, set 2678 * hugetlb_restore_reserve so that the reserve 2679 * count will be incremented when the folio 2680 * is freed. This reserve will be consumed 2681 * on a subsequent allocation. 2682 */ 2683 folio_set_hugetlb_restore_reserve(folio); 2684 } else if (rc < 0) { 2685 /* 2686 * Rare out of memory condition from 2687 * vma_needs_reservation call. Memory allocation is 2688 * only attempted if a new entry is needed. Therefore, 2689 * this implies there is not an entry in the 2690 * reserve map. 2691 * 2692 * For shared mappings, no entry in the map indicates 2693 * no reservation. We are done. 2694 */ 2695 if (!(vma->vm_flags & VM_MAYSHARE)) 2696 /* 2697 * For private mappings, no entry indicates 2698 * a reservation is present. Since we can 2699 * not add an entry, set hugetlb_restore_reserve 2700 * on the folio so reserve count will be 2701 * incremented when freed. This reserve will 2702 * be consumed on a subsequent allocation. 2703 */ 2704 folio_set_hugetlb_restore_reserve(folio); 2705 } else 2706 /* 2707 * No reservation present, do nothing 2708 */ 2709 vma_end_reservation(h, vma, address); 2710 } 2711 } 2712 2713 /* 2714 * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve 2715 * the old one 2716 * @old_folio: Old folio to dissolve 2717 * @list: List to isolate the page in case we need to 2718 * Returns 0 on success, otherwise negated error. 2719 */ 2720 static int alloc_and_dissolve_hugetlb_folio(struct folio *old_folio, 2721 struct list_head *list) 2722 { 2723 gfp_t gfp_mask; 2724 struct hstate *h; 2725 int nid = folio_nid(old_folio); 2726 struct folio *new_folio = NULL; 2727 int ret = 0; 2728 2729 retry: 2730 /* 2731 * The old_folio might have been dissolved from under our feet, so make sure 2732 * to carefully check the state under the lock. 2733 */ 2734 spin_lock_irq(&hugetlb_lock); 2735 if (!folio_test_hugetlb(old_folio)) { 2736 /* 2737 * Freed from under us. Drop new_folio too. 2738 */ 2739 goto free_new; 2740 } else if (folio_ref_count(old_folio)) { 2741 bool isolated; 2742 2743 /* 2744 * Someone has grabbed the folio, try to isolate it here. 2745 * Fail with -EBUSY if not possible. 2746 */ 2747 spin_unlock_irq(&hugetlb_lock); 2748 isolated = folio_isolate_hugetlb(old_folio, list); 2749 ret = isolated ? 0 : -EBUSY; 2750 spin_lock_irq(&hugetlb_lock); 2751 goto free_new; 2752 } else if (!folio_test_hugetlb_freed(old_folio)) { 2753 /* 2754 * Folio's refcount is 0 but it has not been enqueued in the 2755 * freelist yet. Race window is small, so we can succeed here if 2756 * we retry. 2757 */ 2758 spin_unlock_irq(&hugetlb_lock); 2759 cond_resched(); 2760 goto retry; 2761 } else { 2762 h = folio_hstate(old_folio); 2763 if (!new_folio) { 2764 spin_unlock_irq(&hugetlb_lock); 2765 gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 2766 new_folio = alloc_fresh_hugetlb_folio(h, gfp_mask, 2767 nid, NULL); 2768 if (!new_folio) 2769 return -ENOMEM; 2770 goto retry; 2771 } 2772 2773 /* 2774 * Ok, old_folio is still a genuine free hugepage. Remove it from 2775 * the freelist and decrease the counters. These will be 2776 * incremented again when calling account_new_hugetlb_folio() 2777 * and enqueue_hugetlb_folio() for new_folio. The counters will 2778 * remain stable since this happens under the lock. 2779 */ 2780 remove_hugetlb_folio(h, old_folio, false); 2781 2782 /* 2783 * Ref count on new_folio is already zero as it was dropped 2784 * earlier. It can be directly added to the pool free list. 2785 */ 2786 account_new_hugetlb_folio(h, new_folio); 2787 enqueue_hugetlb_folio(h, new_folio); 2788 2789 /* 2790 * Folio has been replaced, we can safely free the old one. 2791 */ 2792 spin_unlock_irq(&hugetlb_lock); 2793 update_and_free_hugetlb_folio(h, old_folio, false); 2794 } 2795 2796 return ret; 2797 2798 free_new: 2799 spin_unlock_irq(&hugetlb_lock); 2800 if (new_folio) 2801 update_and_free_hugetlb_folio(h, new_folio, false); 2802 2803 return ret; 2804 } 2805 2806 int isolate_or_dissolve_huge_folio(struct folio *folio, struct list_head *list) 2807 { 2808 int ret = -EBUSY; 2809 2810 /* Not to disrupt normal path by vainly holding hugetlb_lock */ 2811 if (!folio_test_hugetlb(folio)) 2812 return 0; 2813 2814 /* 2815 * Fence off gigantic pages as there is a cyclic dependency between 2816 * alloc_contig_range and them. Return -ENOMEM as this has the effect 2817 * of bailing out right away without further retrying. 2818 */ 2819 if (order_is_gigantic(folio_order(folio))) 2820 return -ENOMEM; 2821 2822 if (folio_ref_count(folio) && folio_isolate_hugetlb(folio, list)) 2823 ret = 0; 2824 else if (!folio_ref_count(folio)) 2825 ret = alloc_and_dissolve_hugetlb_folio(folio, list); 2826 2827 return ret; 2828 } 2829 2830 /* 2831 * replace_free_hugepage_folios - Replace free hugepage folios in a given pfn 2832 * range with new folios. 2833 * @start_pfn: start pfn of the given pfn range 2834 * @end_pfn: end pfn of the given pfn range 2835 * Returns 0 on success, otherwise negated error. 2836 */ 2837 int replace_free_hugepage_folios(unsigned long start_pfn, unsigned long end_pfn) 2838 { 2839 struct folio *folio; 2840 int ret = 0; 2841 2842 LIST_HEAD(isolate_list); 2843 2844 while (start_pfn < end_pfn) { 2845 folio = pfn_folio(start_pfn); 2846 2847 /* Not to disrupt normal path by vainly holding hugetlb_lock */ 2848 if (folio_test_hugetlb(folio) && !folio_ref_count(folio)) { 2849 ret = alloc_and_dissolve_hugetlb_folio(folio, &isolate_list); 2850 if (ret) 2851 break; 2852 2853 putback_movable_pages(&isolate_list); 2854 } 2855 start_pfn++; 2856 } 2857 2858 return ret; 2859 } 2860 2861 void wait_for_freed_hugetlb_folios(void) 2862 { 2863 if (llist_empty(&hpage_freelist)) 2864 return; 2865 2866 flush_work(&free_hpage_work); 2867 } 2868 2869 typedef enum { 2870 /* 2871 * For either 0/1: we checked the per-vma resv map, and one resv 2872 * count either can be reused (0), or an extra needed (1). 2873 */ 2874 MAP_CHG_REUSE = 0, 2875 MAP_CHG_NEEDED = 1, 2876 /* 2877 * Cannot use per-vma resv count can be used, hence a new resv 2878 * count is enforced. 2879 * 2880 * NOTE: This is mostly identical to MAP_CHG_NEEDED, except 2881 * that currently vma_needs_reservation() has an unwanted side 2882 * effect to either use end() or commit() to complete the 2883 * transaction. Hence it needs to differentiate from NEEDED. 2884 */ 2885 MAP_CHG_ENFORCED = 2, 2886 } map_chg_state; 2887 2888 /* 2889 * NOTE! "cow_from_owner" represents a very hacky usage only used in CoW 2890 * faults of hugetlb private mappings on top of a non-page-cache folio (in 2891 * which case even if there's a private vma resv map it won't cover such 2892 * allocation). New call sites should (probably) never set it to true!! 2893 * When it's set, the allocation will bypass all vma level reservations. 2894 */ 2895 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma, 2896 unsigned long addr, bool cow_from_owner) 2897 { 2898 struct hugepage_subpool *spool = subpool_vma(vma); 2899 struct hstate *h = hstate_vma(vma); 2900 struct folio *folio; 2901 long retval, gbl_chg, gbl_reserve; 2902 map_chg_state map_chg; 2903 int ret, idx; 2904 struct hugetlb_cgroup *h_cg = NULL; 2905 gfp_t gfp = htlb_alloc_mask(h) | __GFP_RETRY_MAYFAIL; 2906 2907 idx = hstate_index(h); 2908 2909 /* Whether we need a separate per-vma reservation? */ 2910 if (cow_from_owner) { 2911 /* 2912 * Special case! Since it's a CoW on top of a reserved 2913 * page, the private resv map doesn't count. So it cannot 2914 * consume the per-vma resv map even if it's reserved. 2915 */ 2916 map_chg = MAP_CHG_ENFORCED; 2917 } else { 2918 /* 2919 * Examine the region/reserve map to determine if the process 2920 * has a reservation for the page to be allocated. A return 2921 * code of zero indicates a reservation exists (no change). 2922 */ 2923 retval = vma_needs_reservation(h, vma, addr); 2924 if (retval < 0) 2925 return ERR_PTR(-ENOMEM); 2926 map_chg = retval ? MAP_CHG_NEEDED : MAP_CHG_REUSE; 2927 } 2928 2929 /* 2930 * Whether we need a separate global reservation? 2931 * 2932 * Processes that did not create the mapping will have no 2933 * reserves as indicated by the region/reserve map. Check 2934 * that the allocation will not exceed the subpool limit. 2935 * Or if it can get one from the pool reservation directly. 2936 */ 2937 if (map_chg) { 2938 gbl_chg = hugepage_subpool_get_pages(spool, 1); 2939 if (gbl_chg < 0) 2940 goto out_end_reservation; 2941 } else { 2942 /* 2943 * If we have the vma reservation ready, no need for extra 2944 * global reservation. 2945 */ 2946 gbl_chg = 0; 2947 } 2948 2949 /* 2950 * If this allocation is not consuming a per-vma reservation, 2951 * charge the hugetlb cgroup now. 2952 */ 2953 if (map_chg) { 2954 ret = hugetlb_cgroup_charge_cgroup_rsvd( 2955 idx, pages_per_huge_page(h), &h_cg); 2956 if (ret) 2957 goto out_subpool_put; 2958 } 2959 2960 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg); 2961 if (ret) 2962 goto out_uncharge_cgroup_reservation; 2963 2964 spin_lock_irq(&hugetlb_lock); 2965 /* 2966 * glb_chg is passed to indicate whether or not a page must be taken 2967 * from the global free pool (global change). gbl_chg == 0 indicates 2968 * a reservation exists for the allocation. 2969 */ 2970 folio = dequeue_hugetlb_folio_vma(h, vma, addr, gbl_chg); 2971 if (!folio) { 2972 spin_unlock_irq(&hugetlb_lock); 2973 folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr); 2974 if (!folio) 2975 goto out_uncharge_cgroup; 2976 spin_lock_irq(&hugetlb_lock); 2977 list_add(&folio->lru, &h->hugepage_activelist); 2978 folio_ref_unfreeze(folio, 1); 2979 /* Fall through */ 2980 } 2981 2982 /* 2983 * Either dequeued or buddy-allocated folio needs to add special 2984 * mark to the folio when it consumes a global reservation. 2985 */ 2986 if (!gbl_chg) { 2987 folio_set_hugetlb_restore_reserve(folio); 2988 h->resv_huge_pages--; 2989 } 2990 2991 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio); 2992 /* If allocation is not consuming a reservation, also store the 2993 * hugetlb_cgroup pointer on the page. 2994 */ 2995 if (map_chg) { 2996 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h), 2997 h_cg, folio); 2998 } 2999 3000 spin_unlock_irq(&hugetlb_lock); 3001 3002 hugetlb_set_folio_subpool(folio, spool); 3003 3004 if (map_chg != MAP_CHG_ENFORCED) { 3005 /* commit() is only needed if the map_chg is not enforced */ 3006 retval = vma_commit_reservation(h, vma, addr); 3007 /* 3008 * Check for possible race conditions. When it happens.. 3009 * The page was added to the reservation map between 3010 * vma_needs_reservation and vma_commit_reservation. 3011 * This indicates a race with hugetlb_reserve_pages. 3012 * Adjust for the subpool count incremented above AND 3013 * in hugetlb_reserve_pages for the same page. Also, 3014 * the reservation count added in hugetlb_reserve_pages 3015 * no longer applies. 3016 */ 3017 if (unlikely(map_chg == MAP_CHG_NEEDED && retval == 0)) { 3018 long rsv_adjust; 3019 3020 rsv_adjust = hugepage_subpool_put_pages(spool, 1); 3021 hugetlb_acct_memory(h, -rsv_adjust); 3022 if (map_chg) { 3023 spin_lock_irq(&hugetlb_lock); 3024 hugetlb_cgroup_uncharge_folio_rsvd( 3025 hstate_index(h), pages_per_huge_page(h), 3026 folio); 3027 spin_unlock_irq(&hugetlb_lock); 3028 } 3029 } 3030 } 3031 3032 ret = mem_cgroup_charge_hugetlb(folio, gfp); 3033 /* 3034 * Unconditionally increment NR_HUGETLB here. If it turns out that 3035 * mem_cgroup_charge_hugetlb failed, then immediately free the page and 3036 * decrement NR_HUGETLB. 3037 */ 3038 lruvec_stat_mod_folio(folio, NR_HUGETLB, pages_per_huge_page(h)); 3039 3040 if (ret == -ENOMEM) { 3041 free_huge_folio(folio); 3042 return ERR_PTR(-ENOMEM); 3043 } 3044 3045 return folio; 3046 3047 out_uncharge_cgroup: 3048 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg); 3049 out_uncharge_cgroup_reservation: 3050 if (map_chg) 3051 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h), 3052 h_cg); 3053 out_subpool_put: 3054 /* 3055 * put page to subpool iff the quota of subpool's rsv_hpages is used 3056 * during hugepage_subpool_get_pages. 3057 */ 3058 if (map_chg && !gbl_chg) { 3059 gbl_reserve = hugepage_subpool_put_pages(spool, 1); 3060 hugetlb_acct_memory(h, -gbl_reserve); 3061 } 3062 3063 3064 out_end_reservation: 3065 if (map_chg != MAP_CHG_ENFORCED) 3066 vma_end_reservation(h, vma, addr); 3067 return ERR_PTR(-ENOSPC); 3068 } 3069 3070 static __init void *alloc_bootmem(struct hstate *h, int nid, bool node_exact) 3071 { 3072 struct huge_bootmem_page *m; 3073 int listnode = nid; 3074 3075 if (hugetlb_early_cma(h)) 3076 m = hugetlb_cma_alloc_bootmem(h, &listnode, node_exact); 3077 else { 3078 if (node_exact) 3079 m = memblock_alloc_exact_nid_raw(huge_page_size(h), 3080 huge_page_size(h), 0, 3081 MEMBLOCK_ALLOC_ACCESSIBLE, nid); 3082 else { 3083 m = memblock_alloc_try_nid_raw(huge_page_size(h), 3084 huge_page_size(h), 0, 3085 MEMBLOCK_ALLOC_ACCESSIBLE, nid); 3086 /* 3087 * For pre-HVO to work correctly, pages need to be on 3088 * the list for the node they were actually allocated 3089 * from. That node may be different in the case of 3090 * fallback by memblock_alloc_try_nid_raw. So, 3091 * extract the actual node first. 3092 */ 3093 if (m) 3094 listnode = early_pfn_to_nid(PHYS_PFN(virt_to_phys(m))); 3095 } 3096 3097 if (m) { 3098 m->flags = 0; 3099 m->cma = NULL; 3100 } 3101 } 3102 3103 if (m) { 3104 /* 3105 * Use the beginning of the huge page to store the 3106 * huge_bootmem_page struct (until gather_bootmem 3107 * puts them into the mem_map). 3108 * 3109 * Put them into a private list first because mem_map 3110 * is not up yet. 3111 */ 3112 INIT_LIST_HEAD(&m->list); 3113 list_add(&m->list, &huge_boot_pages[listnode]); 3114 m->hstate = h; 3115 } 3116 3117 return m; 3118 } 3119 3120 int alloc_bootmem_huge_page(struct hstate *h, int nid) 3121 __attribute__ ((weak, alias("__alloc_bootmem_huge_page"))); 3122 int __alloc_bootmem_huge_page(struct hstate *h, int nid) 3123 { 3124 struct huge_bootmem_page *m = NULL; /* initialize for clang */ 3125 int nr_nodes, node = nid; 3126 3127 /* do node specific alloc */ 3128 if (nid != NUMA_NO_NODE) { 3129 m = alloc_bootmem(h, node, true); 3130 if (!m) 3131 return 0; 3132 goto found; 3133 } 3134 3135 /* allocate from next node when distributing huge pages */ 3136 for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, 3137 &hugetlb_bootmem_nodes) { 3138 m = alloc_bootmem(h, node, false); 3139 if (!m) 3140 return 0; 3141 goto found; 3142 } 3143 3144 found: 3145 3146 /* 3147 * Only initialize the head struct page in memmap_init_reserved_pages, 3148 * rest of the struct pages will be initialized by the HugeTLB 3149 * subsystem itself. 3150 * The head struct page is used to get folio information by the HugeTLB 3151 * subsystem like zone id and node id. 3152 */ 3153 memblock_reserved_mark_noinit(virt_to_phys((void *)m + PAGE_SIZE), 3154 huge_page_size(h) - PAGE_SIZE); 3155 3156 return 1; 3157 } 3158 3159 /* Initialize [start_page:end_page_number] tail struct pages of a hugepage */ 3160 static void __init hugetlb_folio_init_tail_vmemmap(struct folio *folio, 3161 unsigned long start_page_number, 3162 unsigned long end_page_number) 3163 { 3164 enum zone_type zone = folio_zonenum(folio); 3165 int nid = folio_nid(folio); 3166 struct page *page = folio_page(folio, start_page_number); 3167 unsigned long head_pfn = folio_pfn(folio); 3168 unsigned long pfn, end_pfn = head_pfn + end_page_number; 3169 3170 /* 3171 * As we marked all tail pages with memblock_reserved_mark_noinit(), 3172 * we must initialize them ourselves here. 3173 */ 3174 for (pfn = head_pfn + start_page_number; pfn < end_pfn; page++, pfn++) { 3175 __init_single_page(page, pfn, zone, nid); 3176 prep_compound_tail((struct page *)folio, pfn - head_pfn); 3177 set_page_count(page, 0); 3178 } 3179 } 3180 3181 static void __init hugetlb_folio_init_vmemmap(struct folio *folio, 3182 struct hstate *h, 3183 unsigned long nr_pages) 3184 { 3185 int ret; 3186 3187 /* 3188 * This is an open-coded prep_compound_page() whereby we avoid 3189 * walking pages twice by initializing/preparing+freezing them in the 3190 * same go. 3191 */ 3192 __folio_clear_reserved(folio); 3193 __folio_set_head(folio); 3194 ret = folio_ref_freeze(folio, 1); 3195 VM_BUG_ON(!ret); 3196 hugetlb_folio_init_tail_vmemmap(folio, 1, nr_pages); 3197 prep_compound_head(&folio->page, huge_page_order(h)); 3198 } 3199 3200 static bool __init hugetlb_bootmem_page_prehvo(struct huge_bootmem_page *m) 3201 { 3202 return m->flags & HUGE_BOOTMEM_HVO; 3203 } 3204 3205 static bool __init hugetlb_bootmem_page_earlycma(struct huge_bootmem_page *m) 3206 { 3207 return m->flags & HUGE_BOOTMEM_CMA; 3208 } 3209 3210 /* 3211 * memblock-allocated pageblocks might not have the migrate type set 3212 * if marked with the 'noinit' flag. Set it to the default (MIGRATE_MOVABLE) 3213 * here, or MIGRATE_CMA if this was a page allocated through an early CMA 3214 * reservation. 3215 * 3216 * In case of vmemmap optimized folios, the tail vmemmap pages are mapped 3217 * read-only, but that's ok - for sparse vmemmap this does not write to 3218 * the page structure. 3219 */ 3220 static void __init hugetlb_bootmem_init_migratetype(struct folio *folio, 3221 struct hstate *h) 3222 { 3223 unsigned long nr_pages = pages_per_huge_page(h), i; 3224 3225 WARN_ON_ONCE(!pageblock_aligned(folio_pfn(folio))); 3226 3227 for (i = 0; i < nr_pages; i += pageblock_nr_pages) { 3228 if (folio_test_hugetlb_cma(folio)) 3229 init_cma_pageblock(folio_page(folio, i)); 3230 else 3231 init_pageblock_migratetype(folio_page(folio, i), 3232 MIGRATE_MOVABLE, false); 3233 } 3234 } 3235 3236 static void __init prep_and_add_bootmem_folios(struct hstate *h, 3237 struct list_head *folio_list) 3238 { 3239 unsigned long flags; 3240 struct folio *folio, *tmp_f; 3241 3242 /* Send list for bulk vmemmap optimization processing */ 3243 hugetlb_vmemmap_optimize_bootmem_folios(h, folio_list); 3244 3245 list_for_each_entry_safe(folio, tmp_f, folio_list, lru) { 3246 if (!folio_test_hugetlb_vmemmap_optimized(folio)) { 3247 /* 3248 * If HVO fails, initialize all tail struct pages 3249 * We do not worry about potential long lock hold 3250 * time as this is early in boot and there should 3251 * be no contention. 3252 */ 3253 hugetlb_folio_init_tail_vmemmap(folio, 3254 HUGETLB_VMEMMAP_RESERVE_PAGES, 3255 pages_per_huge_page(h)); 3256 } 3257 hugetlb_bootmem_init_migratetype(folio, h); 3258 /* Subdivide locks to achieve better parallel performance */ 3259 spin_lock_irqsave(&hugetlb_lock, flags); 3260 account_new_hugetlb_folio(h, folio); 3261 enqueue_hugetlb_folio(h, folio); 3262 spin_unlock_irqrestore(&hugetlb_lock, flags); 3263 } 3264 } 3265 3266 bool __init hugetlb_bootmem_page_zones_valid(int nid, 3267 struct huge_bootmem_page *m) 3268 { 3269 unsigned long start_pfn; 3270 bool valid; 3271 3272 if (m->flags & HUGE_BOOTMEM_ZONES_VALID) { 3273 /* 3274 * Already validated, skip check. 3275 */ 3276 return true; 3277 } 3278 3279 if (hugetlb_bootmem_page_earlycma(m)) { 3280 valid = cma_validate_zones(m->cma); 3281 goto out; 3282 } 3283 3284 start_pfn = virt_to_phys(m) >> PAGE_SHIFT; 3285 3286 valid = !pfn_range_intersects_zones(nid, start_pfn, 3287 pages_per_huge_page(m->hstate)); 3288 out: 3289 if (!valid) 3290 hstate_boot_nrinvalid[hstate_index(m->hstate)]++; 3291 3292 return valid; 3293 } 3294 3295 /* 3296 * Free a bootmem page that was found to be invalid (intersecting with 3297 * multiple zones). 3298 * 3299 * Since it intersects with multiple zones, we can't just do a free 3300 * operation on all pages at once, but instead have to walk all 3301 * pages, freeing them one by one. 3302 */ 3303 static void __init hugetlb_bootmem_free_invalid_page(int nid, struct page *page, 3304 struct hstate *h) 3305 { 3306 unsigned long npages = pages_per_huge_page(h); 3307 unsigned long pfn; 3308 3309 while (npages--) { 3310 pfn = page_to_pfn(page); 3311 __init_page_from_nid(pfn, nid); 3312 free_reserved_page(page); 3313 page++; 3314 } 3315 } 3316 3317 /* 3318 * Put bootmem huge pages into the standard lists after mem_map is up. 3319 * Note: This only applies to gigantic (order > MAX_PAGE_ORDER) pages. 3320 */ 3321 static void __init gather_bootmem_prealloc_node(unsigned long nid) 3322 { 3323 LIST_HEAD(folio_list); 3324 struct huge_bootmem_page *m, *tm; 3325 struct hstate *h = NULL, *prev_h = NULL; 3326 3327 list_for_each_entry_safe(m, tm, &huge_boot_pages[nid], list) { 3328 struct page *page = virt_to_page(m); 3329 struct folio *folio = (void *)page; 3330 3331 h = m->hstate; 3332 if (!hugetlb_bootmem_page_zones_valid(nid, m)) { 3333 /* 3334 * Can't use this page. Initialize the 3335 * page structures if that hasn't already 3336 * been done, and give them to the page 3337 * allocator. 3338 */ 3339 hugetlb_bootmem_free_invalid_page(nid, page, h); 3340 continue; 3341 } 3342 3343 /* 3344 * It is possible to have multiple huge page sizes (hstates) 3345 * in this list. If so, process each size separately. 3346 */ 3347 if (h != prev_h && prev_h != NULL) 3348 prep_and_add_bootmem_folios(prev_h, &folio_list); 3349 prev_h = h; 3350 3351 VM_BUG_ON(!hstate_is_gigantic(h)); 3352 WARN_ON(folio_ref_count(folio) != 1); 3353 3354 hugetlb_folio_init_vmemmap(folio, h, 3355 HUGETLB_VMEMMAP_RESERVE_PAGES); 3356 init_new_hugetlb_folio(folio); 3357 3358 if (hugetlb_bootmem_page_prehvo(m)) 3359 /* 3360 * If pre-HVO was done, just set the 3361 * flag, the HVO code will then skip 3362 * this folio. 3363 */ 3364 folio_set_hugetlb_vmemmap_optimized(folio); 3365 3366 if (hugetlb_bootmem_page_earlycma(m)) 3367 folio_set_hugetlb_cma(folio); 3368 3369 list_add(&folio->lru, &folio_list); 3370 3371 /* 3372 * We need to restore the 'stolen' pages to totalram_pages 3373 * in order to fix confusing memory reports from free(1) and 3374 * other side-effects, like CommitLimit going negative. 3375 * 3376 * For CMA pages, this is done in init_cma_pageblock 3377 * (via hugetlb_bootmem_init_migratetype), so skip it here. 3378 */ 3379 if (!folio_test_hugetlb_cma(folio)) 3380 adjust_managed_page_count(page, pages_per_huge_page(h)); 3381 cond_resched(); 3382 } 3383 3384 prep_and_add_bootmem_folios(h, &folio_list); 3385 } 3386 3387 static void __init gather_bootmem_prealloc_parallel(unsigned long start, 3388 unsigned long end, void *arg) 3389 { 3390 int nid; 3391 3392 for (nid = start; nid < end; nid++) 3393 gather_bootmem_prealloc_node(nid); 3394 } 3395 3396 static void __init gather_bootmem_prealloc(void) 3397 { 3398 struct padata_mt_job job = { 3399 .thread_fn = gather_bootmem_prealloc_parallel, 3400 .fn_arg = NULL, 3401 .start = 0, 3402 .size = nr_node_ids, 3403 .align = 1, 3404 .min_chunk = 1, 3405 .max_threads = num_node_state(N_MEMORY), 3406 .numa_aware = true, 3407 }; 3408 3409 padata_do_multithreaded(&job); 3410 } 3411 3412 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid) 3413 { 3414 unsigned long i; 3415 char buf[32]; 3416 LIST_HEAD(folio_list); 3417 3418 for (i = 0; i < h->max_huge_pages_node[nid]; ++i) { 3419 if (hstate_is_gigantic(h)) { 3420 if (!alloc_bootmem_huge_page(h, nid)) 3421 break; 3422 } else { 3423 struct folio *folio; 3424 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 3425 3426 folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, nid, 3427 &node_states[N_MEMORY], NULL); 3428 if (!folio) 3429 break; 3430 list_add(&folio->lru, &folio_list); 3431 } 3432 cond_resched(); 3433 } 3434 3435 if (!list_empty(&folio_list)) 3436 prep_and_add_allocated_folios(h, &folio_list); 3437 3438 if (i == h->max_huge_pages_node[nid]) 3439 return; 3440 3441 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3442 pr_warn("HugeTLB: allocating %u of page size %s failed node%d. Only allocated %lu hugepages.\n", 3443 h->max_huge_pages_node[nid], buf, nid, i); 3444 h->max_huge_pages -= (h->max_huge_pages_node[nid] - i); 3445 h->max_huge_pages_node[nid] = i; 3446 } 3447 3448 static bool __init hugetlb_hstate_alloc_pages_specific_nodes(struct hstate *h) 3449 { 3450 int i; 3451 bool node_specific_alloc = false; 3452 3453 for_each_online_node(i) { 3454 if (h->max_huge_pages_node[i] > 0) { 3455 hugetlb_hstate_alloc_pages_onenode(h, i); 3456 node_specific_alloc = true; 3457 } 3458 } 3459 3460 return node_specific_alloc; 3461 } 3462 3463 static void __init hugetlb_hstate_alloc_pages_errcheck(unsigned long allocated, struct hstate *h) 3464 { 3465 if (allocated < h->max_huge_pages) { 3466 char buf[32]; 3467 3468 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3469 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n", 3470 h->max_huge_pages, buf, allocated); 3471 h->max_huge_pages = allocated; 3472 } 3473 } 3474 3475 static void __init hugetlb_pages_alloc_boot_node(unsigned long start, unsigned long end, void *arg) 3476 { 3477 struct hstate *h = (struct hstate *)arg; 3478 int i, num = end - start; 3479 nodemask_t node_alloc_noretry; 3480 LIST_HEAD(folio_list); 3481 int next_node = first_online_node; 3482 3483 /* Bit mask controlling how hard we retry per-node allocations.*/ 3484 nodes_clear(node_alloc_noretry); 3485 3486 for (i = 0; i < num; ++i) { 3487 struct folio *folio; 3488 3489 if (hugetlb_vmemmap_optimizable_size(h) && 3490 (si_mem_available() == 0) && !list_empty(&folio_list)) { 3491 prep_and_add_allocated_folios(h, &folio_list); 3492 INIT_LIST_HEAD(&folio_list); 3493 } 3494 folio = alloc_pool_huge_folio(h, &node_states[N_MEMORY], 3495 &node_alloc_noretry, &next_node); 3496 if (!folio) 3497 break; 3498 3499 list_move(&folio->lru, &folio_list); 3500 cond_resched(); 3501 } 3502 3503 prep_and_add_allocated_folios(h, &folio_list); 3504 } 3505 3506 static unsigned long __init hugetlb_gigantic_pages_alloc_boot(struct hstate *h) 3507 { 3508 unsigned long i; 3509 3510 for (i = 0; i < h->max_huge_pages; ++i) { 3511 if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE)) 3512 break; 3513 cond_resched(); 3514 } 3515 3516 return i; 3517 } 3518 3519 static unsigned long __init hugetlb_pages_alloc_boot(struct hstate *h) 3520 { 3521 struct padata_mt_job job = { 3522 .fn_arg = h, 3523 .align = 1, 3524 .numa_aware = true 3525 }; 3526 3527 unsigned long jiffies_start; 3528 unsigned long jiffies_end; 3529 unsigned long remaining; 3530 3531 job.thread_fn = hugetlb_pages_alloc_boot_node; 3532 3533 /* 3534 * job.max_threads is 25% of the available cpu threads by default. 3535 * 3536 * On large servers with terabytes of memory, huge page allocation 3537 * can consume a considerably amount of time. 3538 * 3539 * Tests below show how long it takes to allocate 1 TiB of memory with 2MiB huge pages. 3540 * 2MiB huge pages. Using more threads can significantly improve allocation time. 3541 * 3542 * +-----------------------+-------+-------+-------+-------+-------+ 3543 * | threads | 8 | 16 | 32 | 64 | 128 | 3544 * +-----------------------+-------+-------+-------+-------+-------+ 3545 * | skylake 144 cpus | 44s | 22s | 16s | 19s | 20s | 3546 * | cascade lake 192 cpus | 39s | 20s | 11s | 10s | 9s | 3547 * +-----------------------+-------+-------+-------+-------+-------+ 3548 */ 3549 if (hugepage_allocation_threads == 0) { 3550 hugepage_allocation_threads = num_online_cpus() / 4; 3551 hugepage_allocation_threads = max(hugepage_allocation_threads, 1); 3552 } 3553 3554 job.max_threads = hugepage_allocation_threads; 3555 3556 jiffies_start = jiffies; 3557 do { 3558 remaining = h->max_huge_pages - h->nr_huge_pages; 3559 3560 job.start = h->nr_huge_pages; 3561 job.size = remaining; 3562 job.min_chunk = remaining / hugepage_allocation_threads; 3563 padata_do_multithreaded(&job); 3564 3565 if (h->nr_huge_pages == h->max_huge_pages) 3566 break; 3567 3568 /* 3569 * Retry only if the vmemmap optimization might have been able to free 3570 * some memory back to the system. 3571 */ 3572 if (!hugetlb_vmemmap_optimizable(h)) 3573 break; 3574 3575 /* Continue if progress was made in last iteration */ 3576 } while (remaining != (h->max_huge_pages - h->nr_huge_pages)); 3577 3578 jiffies_end = jiffies; 3579 3580 pr_info("HugeTLB: allocation took %dms with hugepage_allocation_threads=%ld\n", 3581 jiffies_to_msecs(jiffies_end - jiffies_start), 3582 hugepage_allocation_threads); 3583 3584 return h->nr_huge_pages; 3585 } 3586 3587 /* 3588 * NOTE: this routine is called in different contexts for gigantic and 3589 * non-gigantic pages. 3590 * - For gigantic pages, this is called early in the boot process and 3591 * pages are allocated from memblock allocated or something similar. 3592 * Gigantic pages are actually added to pools later with the routine 3593 * gather_bootmem_prealloc. 3594 * - For non-gigantic pages, this is called later in the boot process after 3595 * all of mm is up and functional. Pages are allocated from buddy and 3596 * then added to hugetlb pools. 3597 */ 3598 static void __init hugetlb_hstate_alloc_pages(struct hstate *h) 3599 { 3600 unsigned long allocated; 3601 3602 /* 3603 * Skip gigantic hugepages allocation if early CMA 3604 * reservations are not available. 3605 */ 3606 if (hstate_is_gigantic(h) && hugetlb_cma_total_size() && 3607 !hugetlb_early_cma(h)) { 3608 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n"); 3609 return; 3610 } 3611 3612 if (!h->max_huge_pages) 3613 return; 3614 3615 /* do node specific alloc */ 3616 if (hugetlb_hstate_alloc_pages_specific_nodes(h)) 3617 return; 3618 3619 /* below will do all node balanced alloc */ 3620 if (hstate_is_gigantic(h)) 3621 allocated = hugetlb_gigantic_pages_alloc_boot(h); 3622 else 3623 allocated = hugetlb_pages_alloc_boot(h); 3624 3625 hugetlb_hstate_alloc_pages_errcheck(allocated, h); 3626 } 3627 3628 static void __init hugetlb_init_hstates(void) 3629 { 3630 struct hstate *h, *h2; 3631 3632 for_each_hstate(h) { 3633 /* 3634 * Always reset to first_memory_node here, even if 3635 * next_nid_to_alloc was set before - we can't 3636 * reference hugetlb_bootmem_nodes after init, and 3637 * first_memory_node is right for all further allocations. 3638 */ 3639 h->next_nid_to_alloc = first_memory_node; 3640 h->next_nid_to_free = first_memory_node; 3641 3642 /* oversize hugepages were init'ed in early boot */ 3643 if (!hstate_is_gigantic(h)) 3644 hugetlb_hstate_alloc_pages(h); 3645 3646 /* 3647 * Set demote order for each hstate. Note that 3648 * h->demote_order is initially 0. 3649 * - We can not demote gigantic pages if runtime freeing 3650 * is not supported, so skip this. 3651 * - If CMA allocation is possible, we can not demote 3652 * HUGETLB_PAGE_ORDER or smaller size pages. 3653 */ 3654 if (hstate_is_gigantic_no_runtime(h)) 3655 continue; 3656 if (hugetlb_cma_total_size() && h->order <= HUGETLB_PAGE_ORDER) 3657 continue; 3658 for_each_hstate(h2) { 3659 if (h2 == h) 3660 continue; 3661 if (h2->order < h->order && 3662 h2->order > h->demote_order) 3663 h->demote_order = h2->order; 3664 } 3665 } 3666 } 3667 3668 static void __init report_hugepages(void) 3669 { 3670 struct hstate *h; 3671 unsigned long nrinvalid; 3672 3673 for_each_hstate(h) { 3674 char buf[32]; 3675 3676 nrinvalid = hstate_boot_nrinvalid[hstate_index(h)]; 3677 h->max_huge_pages -= nrinvalid; 3678 3679 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3680 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n", 3681 buf, h->nr_huge_pages); 3682 if (nrinvalid) 3683 pr_info("HugeTLB: %s page size: %lu invalid page%s discarded\n", 3684 buf, nrinvalid, str_plural(nrinvalid)); 3685 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n", 3686 hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf); 3687 } 3688 } 3689 3690 #ifdef CONFIG_HIGHMEM 3691 static void try_to_free_low(struct hstate *h, unsigned long count, 3692 nodemask_t *nodes_allowed) 3693 { 3694 int i; 3695 LIST_HEAD(page_list); 3696 3697 lockdep_assert_held(&hugetlb_lock); 3698 if (hstate_is_gigantic(h)) 3699 return; 3700 3701 /* 3702 * Collect pages to be freed on a list, and free after dropping lock 3703 */ 3704 for_each_node_mask(i, *nodes_allowed) { 3705 struct folio *folio, *next; 3706 struct list_head *freel = &h->hugepage_freelists[i]; 3707 list_for_each_entry_safe(folio, next, freel, lru) { 3708 if (count >= h->nr_huge_pages) 3709 goto out; 3710 if (folio_test_highmem(folio)) 3711 continue; 3712 remove_hugetlb_folio(h, folio, false); 3713 list_add(&folio->lru, &page_list); 3714 } 3715 } 3716 3717 out: 3718 spin_unlock_irq(&hugetlb_lock); 3719 update_and_free_pages_bulk(h, &page_list); 3720 spin_lock_irq(&hugetlb_lock); 3721 } 3722 #else 3723 static inline void try_to_free_low(struct hstate *h, unsigned long count, 3724 nodemask_t *nodes_allowed) 3725 { 3726 } 3727 #endif 3728 3729 /* 3730 * Increment or decrement surplus_huge_pages. Keep node-specific counters 3731 * balanced by operating on them in a round-robin fashion. 3732 * Returns 1 if an adjustment was made. 3733 */ 3734 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed, 3735 int delta) 3736 { 3737 int nr_nodes, node; 3738 3739 lockdep_assert_held(&hugetlb_lock); 3740 VM_BUG_ON(delta != -1 && delta != 1); 3741 3742 if (delta < 0) { 3743 for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, nodes_allowed) { 3744 if (h->surplus_huge_pages_node[node]) 3745 goto found; 3746 } 3747 } else { 3748 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 3749 if (h->surplus_huge_pages_node[node] < 3750 h->nr_huge_pages_node[node]) 3751 goto found; 3752 } 3753 } 3754 return 0; 3755 3756 found: 3757 h->surplus_huge_pages += delta; 3758 h->surplus_huge_pages_node[node] += delta; 3759 return 1; 3760 } 3761 3762 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) 3763 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid, 3764 nodemask_t *nodes_allowed) 3765 { 3766 unsigned long persistent_free_count; 3767 unsigned long min_count; 3768 unsigned long allocated; 3769 struct folio *folio; 3770 LIST_HEAD(page_list); 3771 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL); 3772 3773 /* 3774 * Bit mask controlling how hard we retry per-node allocations. 3775 * If we can not allocate the bit mask, do not attempt to allocate 3776 * the requested huge pages. 3777 */ 3778 if (node_alloc_noretry) 3779 nodes_clear(*node_alloc_noretry); 3780 else 3781 return -ENOMEM; 3782 3783 /* 3784 * resize_lock mutex prevents concurrent adjustments to number of 3785 * pages in hstate via the proc/sysfs interfaces. 3786 */ 3787 mutex_lock(&h->resize_lock); 3788 flush_free_hpage_work(h); 3789 spin_lock_irq(&hugetlb_lock); 3790 3791 /* 3792 * Check for a node specific request. 3793 * Changing node specific huge page count may require a corresponding 3794 * change to the global count. In any case, the passed node mask 3795 * (nodes_allowed) will restrict alloc/free to the specified node. 3796 */ 3797 if (nid != NUMA_NO_NODE) { 3798 unsigned long old_count = count; 3799 3800 count += persistent_huge_pages(h) - 3801 (h->nr_huge_pages_node[nid] - 3802 h->surplus_huge_pages_node[nid]); 3803 /* 3804 * User may have specified a large count value which caused the 3805 * above calculation to overflow. In this case, they wanted 3806 * to allocate as many huge pages as possible. Set count to 3807 * largest possible value to align with their intention. 3808 */ 3809 if (count < old_count) 3810 count = ULONG_MAX; 3811 } 3812 3813 /* 3814 * Gigantic pages runtime allocation depend on the capability for large 3815 * page range allocation. 3816 * If the system does not provide this feature, return an error when 3817 * the user tries to allocate gigantic pages but let the user free the 3818 * boottime allocated gigantic pages. 3819 */ 3820 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) { 3821 if (count > persistent_huge_pages(h)) { 3822 spin_unlock_irq(&hugetlb_lock); 3823 mutex_unlock(&h->resize_lock); 3824 NODEMASK_FREE(node_alloc_noretry); 3825 return -EINVAL; 3826 } 3827 /* Fall through to decrease pool */ 3828 } 3829 3830 /* 3831 * Increase the pool size 3832 * First take pages out of surplus state. Then make up the 3833 * remaining difference by allocating fresh huge pages. 3834 * 3835 * We might race with alloc_surplus_hugetlb_folio() here and be unable 3836 * to convert a surplus huge page to a normal huge page. That is 3837 * not critical, though, it just means the overall size of the 3838 * pool might be one hugepage larger than it needs to be, but 3839 * within all the constraints specified by the sysctls. 3840 */ 3841 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { 3842 if (!adjust_pool_surplus(h, nodes_allowed, -1)) 3843 break; 3844 } 3845 3846 allocated = 0; 3847 while (count > (persistent_huge_pages(h) + allocated)) { 3848 /* 3849 * If this allocation races such that we no longer need the 3850 * page, free_huge_folio will handle it by freeing the page 3851 * and reducing the surplus. 3852 */ 3853 spin_unlock_irq(&hugetlb_lock); 3854 3855 /* yield cpu to avoid soft lockup */ 3856 cond_resched(); 3857 3858 folio = alloc_pool_huge_folio(h, nodes_allowed, 3859 node_alloc_noretry, 3860 &h->next_nid_to_alloc); 3861 if (!folio) { 3862 prep_and_add_allocated_folios(h, &page_list); 3863 spin_lock_irq(&hugetlb_lock); 3864 goto out; 3865 } 3866 3867 list_add(&folio->lru, &page_list); 3868 allocated++; 3869 3870 /* Bail for signals. Probably ctrl-c from user */ 3871 if (signal_pending(current)) { 3872 prep_and_add_allocated_folios(h, &page_list); 3873 spin_lock_irq(&hugetlb_lock); 3874 goto out; 3875 } 3876 3877 spin_lock_irq(&hugetlb_lock); 3878 } 3879 3880 /* Add allocated pages to the pool */ 3881 if (!list_empty(&page_list)) { 3882 spin_unlock_irq(&hugetlb_lock); 3883 prep_and_add_allocated_folios(h, &page_list); 3884 spin_lock_irq(&hugetlb_lock); 3885 } 3886 3887 /* 3888 * Decrease the pool size 3889 * First return free pages to the buddy allocator (being careful 3890 * to keep enough around to satisfy reservations). Then place 3891 * pages into surplus state as needed so the pool will shrink 3892 * to the desired size as pages become free. 3893 * 3894 * By placing pages into the surplus state independent of the 3895 * overcommit value, we are allowing the surplus pool size to 3896 * exceed overcommit. There are few sane options here. Since 3897 * alloc_surplus_hugetlb_folio() is checking the global counter, 3898 * though, we'll note that we're not allowed to exceed surplus 3899 * and won't grow the pool anywhere else. Not until one of the 3900 * sysctls are changed, or the surplus pages go out of use. 3901 * 3902 * min_count is the expected number of persistent pages, we 3903 * shouldn't calculate min_count by using 3904 * resv_huge_pages + persistent_huge_pages() - free_huge_pages, 3905 * because there may exist free surplus huge pages, and this will 3906 * lead to subtracting twice. Free surplus huge pages come from HVO 3907 * failing to restore vmemmap, see comments in the callers of 3908 * hugetlb_vmemmap_restore_folio(). Thus, we should calculate 3909 * persistent free count first. 3910 */ 3911 persistent_free_count = h->free_huge_pages; 3912 if (h->free_huge_pages > persistent_huge_pages(h)) { 3913 if (h->free_huge_pages > h->surplus_huge_pages) 3914 persistent_free_count -= h->surplus_huge_pages; 3915 else 3916 persistent_free_count = 0; 3917 } 3918 min_count = h->resv_huge_pages + persistent_huge_pages(h) - persistent_free_count; 3919 min_count = max(count, min_count); 3920 try_to_free_low(h, min_count, nodes_allowed); 3921 3922 /* 3923 * Collect pages to be removed on list without dropping lock 3924 */ 3925 while (min_count < persistent_huge_pages(h)) { 3926 folio = remove_pool_hugetlb_folio(h, nodes_allowed, 0); 3927 if (!folio) 3928 break; 3929 3930 list_add(&folio->lru, &page_list); 3931 } 3932 /* free the pages after dropping lock */ 3933 spin_unlock_irq(&hugetlb_lock); 3934 update_and_free_pages_bulk(h, &page_list); 3935 flush_free_hpage_work(h); 3936 spin_lock_irq(&hugetlb_lock); 3937 3938 while (count < persistent_huge_pages(h)) { 3939 if (!adjust_pool_surplus(h, nodes_allowed, 1)) 3940 break; 3941 } 3942 out: 3943 h->max_huge_pages = persistent_huge_pages(h); 3944 spin_unlock_irq(&hugetlb_lock); 3945 mutex_unlock(&h->resize_lock); 3946 3947 NODEMASK_FREE(node_alloc_noretry); 3948 3949 return 0; 3950 } 3951 3952 static long demote_free_hugetlb_folios(struct hstate *src, struct hstate *dst, 3953 struct list_head *src_list) 3954 { 3955 long rc; 3956 struct folio *folio, *next; 3957 LIST_HEAD(dst_list); 3958 LIST_HEAD(ret_list); 3959 3960 rc = hugetlb_vmemmap_restore_folios(src, src_list, &ret_list); 3961 list_splice_init(&ret_list, src_list); 3962 3963 /* 3964 * Taking target hstate mutex synchronizes with set_max_huge_pages. 3965 * Without the mutex, pages added to target hstate could be marked 3966 * as surplus. 3967 * 3968 * Note that we already hold src->resize_lock. To prevent deadlock, 3969 * use the convention of always taking larger size hstate mutex first. 3970 */ 3971 mutex_lock(&dst->resize_lock); 3972 3973 list_for_each_entry_safe(folio, next, src_list, lru) { 3974 int i; 3975 bool cma; 3976 3977 if (folio_test_hugetlb_vmemmap_optimized(folio)) 3978 continue; 3979 3980 cma = folio_test_hugetlb_cma(folio); 3981 3982 list_del(&folio->lru); 3983 3984 split_page_owner(&folio->page, huge_page_order(src), huge_page_order(dst)); 3985 pgalloc_tag_split(folio, huge_page_order(src), huge_page_order(dst)); 3986 3987 for (i = 0; i < pages_per_huge_page(src); i += pages_per_huge_page(dst)) { 3988 struct page *page = folio_page(folio, i); 3989 /* Careful: see __split_huge_page_tail() */ 3990 struct folio *new_folio = (struct folio *)page; 3991 3992 clear_compound_head(page); 3993 prep_compound_page(page, dst->order); 3994 3995 new_folio->mapping = NULL; 3996 init_new_hugetlb_folio(new_folio); 3997 /* Copy the CMA flag so that it is freed correctly */ 3998 if (cma) 3999 folio_set_hugetlb_cma(new_folio); 4000 list_add(&new_folio->lru, &dst_list); 4001 } 4002 } 4003 4004 prep_and_add_allocated_folios(dst, &dst_list); 4005 4006 mutex_unlock(&dst->resize_lock); 4007 4008 return rc; 4009 } 4010 4011 long demote_pool_huge_page(struct hstate *src, nodemask_t *nodes_allowed, 4012 unsigned long nr_to_demote) 4013 __must_hold(&hugetlb_lock) 4014 { 4015 int nr_nodes, node; 4016 struct hstate *dst; 4017 long rc = 0; 4018 long nr_demoted = 0; 4019 4020 lockdep_assert_held(&hugetlb_lock); 4021 4022 /* We should never get here if no demote order */ 4023 if (!src->demote_order) { 4024 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n"); 4025 return -EINVAL; /* internal error */ 4026 } 4027 dst = size_to_hstate(PAGE_SIZE << src->demote_order); 4028 4029 for_each_node_mask_to_free(src, nr_nodes, node, nodes_allowed) { 4030 LIST_HEAD(list); 4031 struct folio *folio, *next; 4032 4033 list_for_each_entry_safe(folio, next, &src->hugepage_freelists[node], lru) { 4034 if (folio_test_hwpoison(folio)) 4035 continue; 4036 4037 remove_hugetlb_folio(src, folio, false); 4038 list_add(&folio->lru, &list); 4039 4040 if (++nr_demoted == nr_to_demote) 4041 break; 4042 } 4043 4044 spin_unlock_irq(&hugetlb_lock); 4045 4046 rc = demote_free_hugetlb_folios(src, dst, &list); 4047 4048 spin_lock_irq(&hugetlb_lock); 4049 4050 list_for_each_entry_safe(folio, next, &list, lru) { 4051 list_del(&folio->lru); 4052 add_hugetlb_folio(src, folio, false); 4053 4054 nr_demoted--; 4055 } 4056 4057 if (rc < 0 || nr_demoted == nr_to_demote) 4058 break; 4059 } 4060 4061 /* 4062 * Not absolutely necessary, but for consistency update max_huge_pages 4063 * based on pool changes for the demoted page. 4064 */ 4065 src->max_huge_pages -= nr_demoted; 4066 dst->max_huge_pages += nr_demoted << (huge_page_order(src) - huge_page_order(dst)); 4067 4068 if (rc < 0) 4069 return rc; 4070 4071 if (nr_demoted) 4072 return nr_demoted; 4073 /* 4074 * Only way to get here is if all pages on free lists are poisoned. 4075 * Return -EBUSY so that caller will not retry. 4076 */ 4077 return -EBUSY; 4078 } 4079 4080 ssize_t __nr_hugepages_store_common(bool obey_mempolicy, 4081 struct hstate *h, int nid, 4082 unsigned long count, size_t len) 4083 { 4084 int err; 4085 nodemask_t nodes_allowed, *n_mask; 4086 4087 if (hstate_is_gigantic_no_runtime(h)) 4088 return -EINVAL; 4089 4090 if (nid == NUMA_NO_NODE) { 4091 /* 4092 * global hstate attribute 4093 */ 4094 if (!(obey_mempolicy && 4095 init_nodemask_of_mempolicy(&nodes_allowed))) 4096 n_mask = &node_states[N_MEMORY]; 4097 else 4098 n_mask = &nodes_allowed; 4099 } else { 4100 /* 4101 * Node specific request. count adjustment happens in 4102 * set_max_huge_pages() after acquiring hugetlb_lock. 4103 */ 4104 init_nodemask_of_node(&nodes_allowed, nid); 4105 n_mask = &nodes_allowed; 4106 } 4107 4108 err = set_max_huge_pages(h, count, nid, n_mask); 4109 4110 return err ? err : len; 4111 } 4112 4113 static int __init hugetlb_init(void) 4114 { 4115 int i; 4116 4117 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE < 4118 __NR_HPAGEFLAGS); 4119 BUILD_BUG_ON_INVALID(HUGETLB_PAGE_ORDER > MAX_FOLIO_ORDER); 4120 4121 if (!hugepages_supported()) { 4122 if (hugetlb_max_hstate || default_hstate_max_huge_pages) 4123 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n"); 4124 return 0; 4125 } 4126 4127 /* 4128 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some 4129 * architectures depend on setup being done here. 4130 */ 4131 hugetlb_add_hstate(HUGETLB_PAGE_ORDER); 4132 if (!parsed_default_hugepagesz) { 4133 /* 4134 * If we did not parse a default huge page size, set 4135 * default_hstate_idx to HPAGE_SIZE hstate. And, if the 4136 * number of huge pages for this default size was implicitly 4137 * specified, set that here as well. 4138 * Note that the implicit setting will overwrite an explicit 4139 * setting. A warning will be printed in this case. 4140 */ 4141 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE)); 4142 if (default_hstate_max_huge_pages) { 4143 if (default_hstate.max_huge_pages) { 4144 char buf[32]; 4145 4146 string_get_size(huge_page_size(&default_hstate), 4147 1, STRING_UNITS_2, buf, 32); 4148 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n", 4149 default_hstate.max_huge_pages, buf); 4150 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n", 4151 default_hstate_max_huge_pages); 4152 } 4153 default_hstate.max_huge_pages = 4154 default_hstate_max_huge_pages; 4155 4156 for_each_online_node(i) 4157 default_hstate.max_huge_pages_node[i] = 4158 default_hugepages_in_node[i]; 4159 } 4160 } 4161 4162 hugetlb_cma_check(); 4163 hugetlb_init_hstates(); 4164 gather_bootmem_prealloc(); 4165 report_hugepages(); 4166 4167 hugetlb_sysfs_init(); 4168 hugetlb_cgroup_file_init(); 4169 hugetlb_sysctl_init(); 4170 4171 #ifdef CONFIG_SMP 4172 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus()); 4173 #else 4174 num_fault_mutexes = 1; 4175 #endif 4176 hugetlb_fault_mutex_table = 4177 kmalloc_array(num_fault_mutexes, sizeof(struct mutex), 4178 GFP_KERNEL); 4179 BUG_ON(!hugetlb_fault_mutex_table); 4180 4181 for (i = 0; i < num_fault_mutexes; i++) 4182 mutex_init(&hugetlb_fault_mutex_table[i]); 4183 return 0; 4184 } 4185 subsys_initcall(hugetlb_init); 4186 4187 /* Overwritten by architectures with more huge page sizes */ 4188 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size) 4189 { 4190 return size == HPAGE_SIZE; 4191 } 4192 4193 void __init hugetlb_add_hstate(unsigned int order) 4194 { 4195 struct hstate *h; 4196 unsigned long i; 4197 4198 if (size_to_hstate(PAGE_SIZE << order)) { 4199 return; 4200 } 4201 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE); 4202 BUG_ON(order < order_base_2(__NR_USED_SUBPAGE)); 4203 WARN_ON(order > MAX_FOLIO_ORDER); 4204 h = &hstates[hugetlb_max_hstate++]; 4205 __mutex_init(&h->resize_lock, "resize mutex", &h->resize_key); 4206 h->order = order; 4207 h->mask = ~(huge_page_size(h) - 1); 4208 for (i = 0; i < MAX_NUMNODES; ++i) 4209 INIT_LIST_HEAD(&h->hugepage_freelists[i]); 4210 INIT_LIST_HEAD(&h->hugepage_activelist); 4211 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", 4212 huge_page_size(h)/SZ_1K); 4213 4214 parsed_hstate = h; 4215 } 4216 4217 bool __init __weak hugetlb_node_alloc_supported(void) 4218 { 4219 return true; 4220 } 4221 4222 static void __init hugepages_clear_pages_in_node(void) 4223 { 4224 if (!hugetlb_max_hstate) { 4225 default_hstate_max_huge_pages = 0; 4226 memset(default_hugepages_in_node, 0, 4227 sizeof(default_hugepages_in_node)); 4228 } else { 4229 parsed_hstate->max_huge_pages = 0; 4230 memset(parsed_hstate->max_huge_pages_node, 0, 4231 sizeof(parsed_hstate->max_huge_pages_node)); 4232 } 4233 } 4234 4235 static __init int hugetlb_add_param(char *s, int (*setup)(char *)) 4236 { 4237 size_t len; 4238 char *p; 4239 4240 if (hugetlb_param_index >= HUGE_MAX_CMDLINE_ARGS) 4241 return -EINVAL; 4242 4243 len = strlen(s) + 1; 4244 if (len + hstate_cmdline_index > sizeof(hstate_cmdline_buf)) 4245 return -EINVAL; 4246 4247 p = &hstate_cmdline_buf[hstate_cmdline_index]; 4248 memcpy(p, s, len); 4249 hstate_cmdline_index += len; 4250 4251 hugetlb_params[hugetlb_param_index].val = p; 4252 hugetlb_params[hugetlb_param_index].setup = setup; 4253 4254 hugetlb_param_index++; 4255 4256 return 0; 4257 } 4258 4259 static __init void hugetlb_parse_params(void) 4260 { 4261 int i; 4262 struct hugetlb_cmdline *hcp; 4263 4264 for (i = 0; i < hugetlb_param_index; i++) { 4265 hcp = &hugetlb_params[i]; 4266 4267 hcp->setup(hcp->val); 4268 } 4269 4270 hugetlb_cma_validate_params(); 4271 } 4272 4273 /* 4274 * hugepages command line processing 4275 * hugepages normally follows a valid hugepagsz or default_hugepagsz 4276 * specification. If not, ignore the hugepages value. hugepages can also 4277 * be the first huge page command line option in which case it implicitly 4278 * specifies the number of huge pages for the default size. 4279 */ 4280 static int __init hugepages_setup(char *s) 4281 { 4282 unsigned long *mhp; 4283 static unsigned long *last_mhp; 4284 int node = NUMA_NO_NODE; 4285 int count; 4286 unsigned long tmp; 4287 char *p = s; 4288 4289 if (!parsed_valid_hugepagesz) { 4290 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s); 4291 parsed_valid_hugepagesz = true; 4292 return -EINVAL; 4293 } 4294 4295 /* 4296 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter 4297 * yet, so this hugepages= parameter goes to the "default hstate". 4298 * Otherwise, it goes with the previously parsed hugepagesz or 4299 * default_hugepagesz. 4300 */ 4301 else if (!hugetlb_max_hstate) 4302 mhp = &default_hstate_max_huge_pages; 4303 else 4304 mhp = &parsed_hstate->max_huge_pages; 4305 4306 if (mhp == last_mhp) { 4307 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s); 4308 return 1; 4309 } 4310 4311 while (*p) { 4312 count = 0; 4313 if (sscanf(p, "%lu%n", &tmp, &count) != 1) 4314 goto invalid; 4315 /* Parameter is node format */ 4316 if (p[count] == ':') { 4317 if (!hugetlb_node_alloc_supported()) { 4318 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n"); 4319 return 1; 4320 } 4321 if (tmp >= MAX_NUMNODES || !node_online(tmp)) 4322 goto invalid; 4323 node = array_index_nospec(tmp, MAX_NUMNODES); 4324 p += count + 1; 4325 /* Parse hugepages */ 4326 if (sscanf(p, "%lu%n", &tmp, &count) != 1) 4327 goto invalid; 4328 if (!hugetlb_max_hstate) 4329 default_hugepages_in_node[node] = tmp; 4330 else 4331 parsed_hstate->max_huge_pages_node[node] = tmp; 4332 *mhp += tmp; 4333 /* Go to parse next node*/ 4334 if (p[count] == ',') 4335 p += count + 1; 4336 else 4337 break; 4338 } else { 4339 if (p != s) 4340 goto invalid; 4341 *mhp = tmp; 4342 break; 4343 } 4344 } 4345 4346 last_mhp = mhp; 4347 4348 return 0; 4349 4350 invalid: 4351 pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p); 4352 hugepages_clear_pages_in_node(); 4353 return -EINVAL; 4354 } 4355 hugetlb_early_param("hugepages", hugepages_setup); 4356 4357 /* 4358 * hugepagesz command line processing 4359 * A specific huge page size can only be specified once with hugepagesz. 4360 * hugepagesz is followed by hugepages on the command line. The global 4361 * variable 'parsed_valid_hugepagesz' is used to determine if prior 4362 * hugepagesz argument was valid. 4363 */ 4364 static int __init hugepagesz_setup(char *s) 4365 { 4366 unsigned long size; 4367 struct hstate *h; 4368 4369 parsed_valid_hugepagesz = false; 4370 size = (unsigned long)memparse(s, NULL); 4371 4372 if (!arch_hugetlb_valid_size(size)) { 4373 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s); 4374 return -EINVAL; 4375 } 4376 4377 h = size_to_hstate(size); 4378 if (h) { 4379 /* 4380 * hstate for this size already exists. This is normally 4381 * an error, but is allowed if the existing hstate is the 4382 * default hstate. More specifically, it is only allowed if 4383 * the number of huge pages for the default hstate was not 4384 * previously specified. 4385 */ 4386 if (!parsed_default_hugepagesz || h != &default_hstate || 4387 default_hstate.max_huge_pages) { 4388 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s); 4389 return -EINVAL; 4390 } 4391 4392 /* 4393 * No need to call hugetlb_add_hstate() as hstate already 4394 * exists. But, do set parsed_hstate so that a following 4395 * hugepages= parameter will be applied to this hstate. 4396 */ 4397 parsed_hstate = h; 4398 parsed_valid_hugepagesz = true; 4399 return 0; 4400 } 4401 4402 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); 4403 parsed_valid_hugepagesz = true; 4404 return 0; 4405 } 4406 hugetlb_early_param("hugepagesz", hugepagesz_setup); 4407 4408 /* 4409 * default_hugepagesz command line input 4410 * Only one instance of default_hugepagesz allowed on command line. 4411 */ 4412 static int __init default_hugepagesz_setup(char *s) 4413 { 4414 unsigned long size; 4415 int i; 4416 4417 parsed_valid_hugepagesz = false; 4418 if (parsed_default_hugepagesz) { 4419 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s); 4420 return -EINVAL; 4421 } 4422 4423 size = (unsigned long)memparse(s, NULL); 4424 4425 if (!arch_hugetlb_valid_size(size)) { 4426 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s); 4427 return -EINVAL; 4428 } 4429 4430 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); 4431 parsed_valid_hugepagesz = true; 4432 parsed_default_hugepagesz = true; 4433 default_hstate_idx = hstate_index(size_to_hstate(size)); 4434 4435 /* 4436 * The number of default huge pages (for this size) could have been 4437 * specified as the first hugetlb parameter: hugepages=X. If so, 4438 * then default_hstate_max_huge_pages is set. If the default huge 4439 * page size is gigantic (> MAX_PAGE_ORDER), then the pages must be 4440 * allocated here from bootmem allocator. 4441 */ 4442 if (default_hstate_max_huge_pages) { 4443 default_hstate.max_huge_pages = default_hstate_max_huge_pages; 4444 /* 4445 * Since this is an early parameter, we can't check 4446 * NUMA node state yet, so loop through MAX_NUMNODES. 4447 */ 4448 for (i = 0; i < MAX_NUMNODES; i++) { 4449 if (default_hugepages_in_node[i] != 0) 4450 default_hstate.max_huge_pages_node[i] = 4451 default_hugepages_in_node[i]; 4452 } 4453 default_hstate_max_huge_pages = 0; 4454 } 4455 4456 return 0; 4457 } 4458 hugetlb_early_param("default_hugepagesz", default_hugepagesz_setup); 4459 4460 void __init hugetlb_bootmem_set_nodes(void) 4461 { 4462 int i, nid; 4463 unsigned long start_pfn, end_pfn; 4464 4465 if (!nodes_empty(hugetlb_bootmem_nodes)) 4466 return; 4467 4468 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 4469 if (end_pfn > start_pfn) 4470 node_set(nid, hugetlb_bootmem_nodes); 4471 } 4472 } 4473 4474 static bool __hugetlb_bootmem_allocated __initdata; 4475 4476 bool __init hugetlb_bootmem_allocated(void) 4477 { 4478 return __hugetlb_bootmem_allocated; 4479 } 4480 4481 void __init hugetlb_bootmem_alloc(void) 4482 { 4483 struct hstate *h; 4484 int i; 4485 4486 if (__hugetlb_bootmem_allocated) 4487 return; 4488 4489 hugetlb_bootmem_set_nodes(); 4490 4491 for (i = 0; i < MAX_NUMNODES; i++) 4492 INIT_LIST_HEAD(&huge_boot_pages[i]); 4493 4494 hugetlb_parse_params(); 4495 4496 for_each_hstate(h) { 4497 h->next_nid_to_alloc = first_online_node; 4498 4499 if (hstate_is_gigantic(h)) 4500 hugetlb_hstate_alloc_pages(h); 4501 } 4502 4503 __hugetlb_bootmem_allocated = true; 4504 } 4505 4506 /* 4507 * hugepage_alloc_threads command line parsing. 4508 * 4509 * When set, use this specific number of threads for the boot 4510 * allocation of hugepages. 4511 */ 4512 static int __init hugepage_alloc_threads_setup(char *s) 4513 { 4514 unsigned long allocation_threads; 4515 4516 if (kstrtoul(s, 0, &allocation_threads) != 0) 4517 return 1; 4518 4519 if (allocation_threads == 0) 4520 return 1; 4521 4522 hugepage_allocation_threads = allocation_threads; 4523 4524 return 1; 4525 } 4526 __setup("hugepage_alloc_threads=", hugepage_alloc_threads_setup); 4527 4528 static unsigned int allowed_mems_nr(struct hstate *h) 4529 { 4530 int node; 4531 unsigned int nr = 0; 4532 nodemask_t *mbind_nodemask; 4533 unsigned int *array = h->free_huge_pages_node; 4534 gfp_t gfp_mask = htlb_alloc_mask(h); 4535 4536 mbind_nodemask = policy_mbind_nodemask(gfp_mask); 4537 for_each_node_mask(node, cpuset_current_mems_allowed) { 4538 if (!mbind_nodemask || node_isset(node, *mbind_nodemask)) 4539 nr += array[node]; 4540 } 4541 4542 return nr; 4543 } 4544 4545 void hugetlb_report_meminfo(struct seq_file *m) 4546 { 4547 struct hstate *h; 4548 unsigned long total = 0; 4549 4550 if (!hugepages_supported()) 4551 return; 4552 4553 for_each_hstate(h) { 4554 unsigned long count = h->nr_huge_pages; 4555 4556 total += huge_page_size(h) * count; 4557 4558 if (h == &default_hstate) 4559 seq_printf(m, 4560 "HugePages_Total: %5lu\n" 4561 "HugePages_Free: %5lu\n" 4562 "HugePages_Rsvd: %5lu\n" 4563 "HugePages_Surp: %5lu\n" 4564 "Hugepagesize: %8lu kB\n", 4565 count, 4566 h->free_huge_pages, 4567 h->resv_huge_pages, 4568 h->surplus_huge_pages, 4569 huge_page_size(h) / SZ_1K); 4570 } 4571 4572 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K); 4573 } 4574 4575 int hugetlb_report_node_meminfo(char *buf, int len, int nid) 4576 { 4577 struct hstate *h = &default_hstate; 4578 4579 if (!hugepages_supported()) 4580 return 0; 4581 4582 return sysfs_emit_at(buf, len, 4583 "Node %d HugePages_Total: %5u\n" 4584 "Node %d HugePages_Free: %5u\n" 4585 "Node %d HugePages_Surp: %5u\n", 4586 nid, h->nr_huge_pages_node[nid], 4587 nid, h->free_huge_pages_node[nid], 4588 nid, h->surplus_huge_pages_node[nid]); 4589 } 4590 4591 void hugetlb_show_meminfo_node(int nid) 4592 { 4593 struct hstate *h; 4594 4595 if (!hugepages_supported()) 4596 return; 4597 4598 for_each_hstate(h) 4599 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n", 4600 nid, 4601 h->nr_huge_pages_node[nid], 4602 h->free_huge_pages_node[nid], 4603 h->surplus_huge_pages_node[nid], 4604 huge_page_size(h) / SZ_1K); 4605 } 4606 4607 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm) 4608 { 4609 seq_printf(m, "HugetlbPages:\t%8lu kB\n", 4610 K(atomic_long_read(&mm->hugetlb_usage))); 4611 } 4612 4613 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ 4614 unsigned long hugetlb_total_pages(void) 4615 { 4616 struct hstate *h; 4617 unsigned long nr_total_pages = 0; 4618 4619 for_each_hstate(h) 4620 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h); 4621 return nr_total_pages; 4622 } 4623 4624 static int hugetlb_acct_memory(struct hstate *h, long delta) 4625 { 4626 int ret = -ENOMEM; 4627 4628 if (!delta) 4629 return 0; 4630 4631 spin_lock_irq(&hugetlb_lock); 4632 /* 4633 * When cpuset is configured, it breaks the strict hugetlb page 4634 * reservation as the accounting is done on a global variable. Such 4635 * reservation is completely rubbish in the presence of cpuset because 4636 * the reservation is not checked against page availability for the 4637 * current cpuset. Application can still potentially OOM'ed by kernel 4638 * with lack of free htlb page in cpuset that the task is in. 4639 * Attempt to enforce strict accounting with cpuset is almost 4640 * impossible (or too ugly) because cpuset is too fluid that 4641 * task or memory node can be dynamically moved between cpusets. 4642 * 4643 * The change of semantics for shared hugetlb mapping with cpuset is 4644 * undesirable. However, in order to preserve some of the semantics, 4645 * we fall back to check against current free page availability as 4646 * a best attempt and hopefully to minimize the impact of changing 4647 * semantics that cpuset has. 4648 * 4649 * Apart from cpuset, we also have memory policy mechanism that 4650 * also determines from which node the kernel will allocate memory 4651 * in a NUMA system. So similar to cpuset, we also should consider 4652 * the memory policy of the current task. Similar to the description 4653 * above. 4654 */ 4655 if (delta > 0) { 4656 if (gather_surplus_pages(h, delta) < 0) 4657 goto out; 4658 4659 if (delta > allowed_mems_nr(h)) { 4660 return_unused_surplus_pages(h, delta); 4661 goto out; 4662 } 4663 } 4664 4665 ret = 0; 4666 if (delta < 0) 4667 return_unused_surplus_pages(h, (unsigned long) -delta); 4668 4669 out: 4670 spin_unlock_irq(&hugetlb_lock); 4671 return ret; 4672 } 4673 4674 static void hugetlb_vm_op_open(struct vm_area_struct *vma) 4675 { 4676 struct resv_map *resv = vma_resv_map(vma); 4677 4678 /* 4679 * HPAGE_RESV_OWNER indicates a private mapping. 4680 * This new VMA should share its siblings reservation map if present. 4681 * The VMA will only ever have a valid reservation map pointer where 4682 * it is being copied for another still existing VMA. As that VMA 4683 * has a reference to the reservation map it cannot disappear until 4684 * after this open call completes. It is therefore safe to take a 4685 * new reference here without additional locking. 4686 */ 4687 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 4688 resv_map_dup_hugetlb_cgroup_uncharge_info(resv); 4689 kref_get(&resv->refs); 4690 } 4691 4692 /* 4693 * vma_lock structure for sharable mappings is vma specific. 4694 * Clear old pointer (if copied via vm_area_dup) and allocate 4695 * new structure. Before clearing, make sure vma_lock is not 4696 * for this vma. 4697 */ 4698 if (vma->vm_flags & VM_MAYSHARE) { 4699 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 4700 4701 if (vma_lock) { 4702 if (vma_lock->vma != vma) { 4703 vma->vm_private_data = NULL; 4704 hugetlb_vma_lock_alloc(vma); 4705 } else 4706 pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__); 4707 } else 4708 hugetlb_vma_lock_alloc(vma); 4709 } 4710 } 4711 4712 static void hugetlb_vm_op_close(struct vm_area_struct *vma) 4713 { 4714 struct hstate *h = hstate_vma(vma); 4715 struct resv_map *resv; 4716 struct hugepage_subpool *spool = subpool_vma(vma); 4717 unsigned long reserve, start, end; 4718 long gbl_reserve; 4719 4720 hugetlb_vma_lock_free(vma); 4721 4722 resv = vma_resv_map(vma); 4723 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 4724 return; 4725 4726 start = vma_hugecache_offset(h, vma, vma->vm_start); 4727 end = vma_hugecache_offset(h, vma, vma->vm_end); 4728 4729 reserve = (end - start) - region_count(resv, start, end); 4730 hugetlb_cgroup_uncharge_counter(resv, start, end); 4731 if (reserve) { 4732 /* 4733 * Decrement reserve counts. The global reserve count may be 4734 * adjusted if the subpool has a minimum size. 4735 */ 4736 gbl_reserve = hugepage_subpool_put_pages(spool, reserve); 4737 hugetlb_acct_memory(h, -gbl_reserve); 4738 } 4739 4740 kref_put(&resv->refs, resv_map_release); 4741 } 4742 4743 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr) 4744 { 4745 if (addr & ~(huge_page_mask(hstate_vma(vma)))) 4746 return -EINVAL; 4747 return 0; 4748 } 4749 4750 void hugetlb_split(struct vm_area_struct *vma, unsigned long addr) 4751 { 4752 /* 4753 * PMD sharing is only possible for PUD_SIZE-aligned address ranges 4754 * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this 4755 * split, unshare PMDs in the PUD_SIZE interval surrounding addr now. 4756 * This function is called in the middle of a VMA split operation, with 4757 * MM, VMA and rmap all write-locked to prevent concurrent page table 4758 * walks (except hardware and gup_fast()). 4759 */ 4760 vma_assert_write_locked(vma); 4761 i_mmap_assert_write_locked(vma->vm_file->f_mapping); 4762 4763 if (addr & ~PUD_MASK) { 4764 unsigned long floor = addr & PUD_MASK; 4765 unsigned long ceil = floor + PUD_SIZE; 4766 4767 if (floor >= vma->vm_start && ceil <= vma->vm_end) { 4768 /* 4769 * Locking: 4770 * Use take_locks=false here. 4771 * The file rmap lock is already held. 4772 * The hugetlb VMA lock can't be taken when we already 4773 * hold the file rmap lock, and we don't need it because 4774 * its purpose is to synchronize against concurrent page 4775 * table walks, which are not possible thanks to the 4776 * locks held by our caller. 4777 */ 4778 hugetlb_unshare_pmds(vma, floor, ceil, /* take_locks = */ false); 4779 } 4780 } 4781 } 4782 4783 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma) 4784 { 4785 return huge_page_size(hstate_vma(vma)); 4786 } 4787 4788 /* 4789 * We cannot handle pagefaults against hugetlb pages at all. They cause 4790 * handle_mm_fault() to try to instantiate regular-sized pages in the 4791 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get 4792 * this far. 4793 */ 4794 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf) 4795 { 4796 BUG(); 4797 return 0; 4798 } 4799 4800 /* 4801 * When a new function is introduced to vm_operations_struct and added 4802 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops. 4803 * This is because under System V memory model, mappings created via 4804 * shmget/shmat with "huge page" specified are backed by hugetlbfs files, 4805 * their original vm_ops are overwritten with shm_vm_ops. 4806 */ 4807 const struct vm_operations_struct hugetlb_vm_ops = { 4808 .fault = hugetlb_vm_op_fault, 4809 .open = hugetlb_vm_op_open, 4810 .close = hugetlb_vm_op_close, 4811 .may_split = hugetlb_vm_op_split, 4812 .pagesize = hugetlb_vm_op_pagesize, 4813 }; 4814 4815 static pte_t make_huge_pte(struct vm_area_struct *vma, struct folio *folio, 4816 bool try_mkwrite) 4817 { 4818 pte_t entry = folio_mk_pte(folio, vma->vm_page_prot); 4819 unsigned int shift = huge_page_shift(hstate_vma(vma)); 4820 4821 if (try_mkwrite && (vma->vm_flags & VM_WRITE)) { 4822 entry = pte_mkwrite_novma(pte_mkdirty(entry)); 4823 } else { 4824 entry = pte_wrprotect(entry); 4825 } 4826 entry = pte_mkyoung(entry); 4827 entry = arch_make_huge_pte(entry, shift, vma->vm_flags); 4828 4829 return entry; 4830 } 4831 4832 static void set_huge_ptep_writable(struct vm_area_struct *vma, 4833 unsigned long address, pte_t *ptep) 4834 { 4835 pte_t entry; 4836 4837 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(vma->vm_mm, address, ptep))); 4838 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) 4839 update_mmu_cache(vma, address, ptep); 4840 } 4841 4842 static void set_huge_ptep_maybe_writable(struct vm_area_struct *vma, 4843 unsigned long address, pte_t *ptep) 4844 { 4845 if (vma->vm_flags & VM_WRITE) 4846 set_huge_ptep_writable(vma, address, ptep); 4847 } 4848 4849 static void 4850 hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr, 4851 struct folio *new_folio, pte_t old, unsigned long sz) 4852 { 4853 pte_t newpte = make_huge_pte(vma, new_folio, true); 4854 4855 __folio_mark_uptodate(new_folio); 4856 hugetlb_add_new_anon_rmap(new_folio, vma, addr); 4857 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(old)) 4858 newpte = huge_pte_mkuffd_wp(newpte); 4859 set_huge_pte_at(vma->vm_mm, addr, ptep, newpte, sz); 4860 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm); 4861 folio_set_hugetlb_migratable(new_folio); 4862 } 4863 4864 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, 4865 struct vm_area_struct *dst_vma, 4866 struct vm_area_struct *src_vma) 4867 { 4868 pte_t *src_pte, *dst_pte, entry; 4869 struct folio *pte_folio; 4870 unsigned long addr; 4871 bool cow = is_cow_mapping(src_vma->vm_flags); 4872 struct hstate *h = hstate_vma(src_vma); 4873 unsigned long sz = huge_page_size(h); 4874 unsigned long npages = pages_per_huge_page(h); 4875 struct mmu_notifier_range range; 4876 unsigned long last_addr_mask; 4877 softleaf_t softleaf; 4878 int ret = 0; 4879 4880 if (cow) { 4881 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src, 4882 src_vma->vm_start, 4883 src_vma->vm_end); 4884 mmu_notifier_invalidate_range_start(&range); 4885 vma_assert_write_locked(src_vma); 4886 raw_write_seqcount_begin(&src->write_protect_seq); 4887 } else { 4888 /* 4889 * For shared mappings the vma lock must be held before 4890 * calling hugetlb_walk() in the src vma. Otherwise, the 4891 * returned ptep could go away if part of a shared pmd and 4892 * another thread calls huge_pmd_unshare. 4893 */ 4894 hugetlb_vma_lock_read(src_vma); 4895 } 4896 4897 last_addr_mask = hugetlb_mask_last_page(h); 4898 for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) { 4899 spinlock_t *src_ptl, *dst_ptl; 4900 src_pte = hugetlb_walk(src_vma, addr, sz); 4901 if (!src_pte) { 4902 addr |= last_addr_mask; 4903 continue; 4904 } 4905 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz); 4906 if (!dst_pte) { 4907 ret = -ENOMEM; 4908 break; 4909 } 4910 4911 #ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING 4912 /* If the pagetables are shared, there is nothing to do */ 4913 if (ptdesc_pmd_is_shared(virt_to_ptdesc(dst_pte))) { 4914 addr |= last_addr_mask; 4915 continue; 4916 } 4917 #endif 4918 4919 dst_ptl = huge_pte_lock(h, dst, dst_pte); 4920 src_ptl = huge_pte_lockptr(h, src, src_pte); 4921 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 4922 entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte); 4923 again: 4924 if (huge_pte_none(entry)) { 4925 /* Skip if src entry none. */ 4926 goto next; 4927 } 4928 4929 softleaf = softleaf_from_pte(entry); 4930 if (unlikely(softleaf_is_hwpoison(softleaf))) { 4931 if (!userfaultfd_wp(dst_vma)) 4932 entry = huge_pte_clear_uffd_wp(entry); 4933 set_huge_pte_at(dst, addr, dst_pte, entry, sz); 4934 } else if (unlikely(softleaf_is_migration(softleaf))) { 4935 bool uffd_wp = pte_swp_uffd_wp(entry); 4936 4937 if (!softleaf_is_migration_read(softleaf) && cow) { 4938 /* 4939 * COW mappings require pages in both 4940 * parent and child to be set to read. 4941 */ 4942 softleaf = make_readable_migration_entry( 4943 swp_offset(softleaf)); 4944 entry = swp_entry_to_pte(softleaf); 4945 if (userfaultfd_wp(src_vma) && uffd_wp) 4946 entry = pte_swp_mkuffd_wp(entry); 4947 set_huge_pte_at(src, addr, src_pte, entry, sz); 4948 } 4949 if (!userfaultfd_wp(dst_vma)) 4950 entry = huge_pte_clear_uffd_wp(entry); 4951 set_huge_pte_at(dst, addr, dst_pte, entry, sz); 4952 } else if (unlikely(pte_is_marker(entry))) { 4953 const pte_marker marker = copy_pte_marker(softleaf, dst_vma); 4954 4955 if (marker) 4956 set_huge_pte_at(dst, addr, dst_pte, 4957 make_pte_marker(marker), sz); 4958 } else { 4959 entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte); 4960 pte_folio = page_folio(pte_page(entry)); 4961 folio_get(pte_folio); 4962 4963 /* 4964 * Failing to duplicate the anon rmap is a rare case 4965 * where we see pinned hugetlb pages while they're 4966 * prone to COW. We need to do the COW earlier during 4967 * fork. 4968 * 4969 * When pre-allocating the page or copying data, we 4970 * need to be without the pgtable locks since we could 4971 * sleep during the process. 4972 */ 4973 if (!folio_test_anon(pte_folio)) { 4974 hugetlb_add_file_rmap(pte_folio); 4975 } else if (hugetlb_try_dup_anon_rmap(pte_folio, src_vma)) { 4976 pte_t src_pte_old = entry; 4977 struct folio *new_folio; 4978 4979 spin_unlock(src_ptl); 4980 spin_unlock(dst_ptl); 4981 /* Do not use reserve as it's private owned */ 4982 new_folio = alloc_hugetlb_folio(dst_vma, addr, false); 4983 if (IS_ERR(new_folio)) { 4984 folio_put(pte_folio); 4985 ret = PTR_ERR(new_folio); 4986 break; 4987 } 4988 ret = copy_user_large_folio(new_folio, pte_folio, 4989 addr, dst_vma); 4990 folio_put(pte_folio); 4991 if (ret) { 4992 folio_put(new_folio); 4993 break; 4994 } 4995 4996 /* Install the new hugetlb folio if src pte stable */ 4997 dst_ptl = huge_pte_lock(h, dst, dst_pte); 4998 src_ptl = huge_pte_lockptr(h, src, src_pte); 4999 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 5000 entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte); 5001 if (!pte_same(src_pte_old, entry)) { 5002 restore_reserve_on_error(h, dst_vma, addr, 5003 new_folio); 5004 folio_put(new_folio); 5005 /* huge_ptep of dst_pte won't change as in child */ 5006 goto again; 5007 } 5008 hugetlb_install_folio(dst_vma, dst_pte, addr, 5009 new_folio, src_pte_old, sz); 5010 goto next; 5011 } 5012 5013 if (cow) { 5014 /* 5015 * No need to notify as we are downgrading page 5016 * table protection not changing it to point 5017 * to a new page. 5018 * 5019 * See Documentation/mm/mmu_notifier.rst 5020 */ 5021 huge_ptep_set_wrprotect(src, addr, src_pte); 5022 entry = huge_pte_wrprotect(entry); 5023 } 5024 5025 if (!userfaultfd_wp(dst_vma)) 5026 entry = huge_pte_clear_uffd_wp(entry); 5027 5028 set_huge_pte_at(dst, addr, dst_pte, entry, sz); 5029 hugetlb_count_add(npages, dst); 5030 } 5031 5032 next: 5033 spin_unlock(src_ptl); 5034 spin_unlock(dst_ptl); 5035 } 5036 5037 if (cow) { 5038 raw_write_seqcount_end(&src->write_protect_seq); 5039 mmu_notifier_invalidate_range_end(&range); 5040 } else { 5041 hugetlb_vma_unlock_read(src_vma); 5042 } 5043 5044 return ret; 5045 } 5046 5047 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr, 5048 unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte, 5049 unsigned long sz) 5050 { 5051 bool need_clear_uffd_wp = vma_has_uffd_without_event_remap(vma); 5052 struct hstate *h = hstate_vma(vma); 5053 struct mm_struct *mm = vma->vm_mm; 5054 spinlock_t *src_ptl, *dst_ptl; 5055 pte_t pte; 5056 5057 dst_ptl = huge_pte_lock(h, mm, dst_pte); 5058 src_ptl = huge_pte_lockptr(h, mm, src_pte); 5059 5060 /* 5061 * We don't have to worry about the ordering of src and dst ptlocks 5062 * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock. 5063 */ 5064 if (src_ptl != dst_ptl) 5065 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 5066 5067 pte = huge_ptep_get_and_clear(mm, old_addr, src_pte, sz); 5068 5069 if (need_clear_uffd_wp && pte_is_uffd_wp_marker(pte)) { 5070 huge_pte_clear(mm, new_addr, dst_pte, sz); 5071 } else { 5072 if (need_clear_uffd_wp) { 5073 if (pte_present(pte)) 5074 pte = huge_pte_clear_uffd_wp(pte); 5075 else 5076 pte = pte_swp_clear_uffd_wp(pte); 5077 } 5078 set_huge_pte_at(mm, new_addr, dst_pte, pte, sz); 5079 } 5080 5081 if (src_ptl != dst_ptl) 5082 spin_unlock(src_ptl); 5083 spin_unlock(dst_ptl); 5084 } 5085 5086 int move_hugetlb_page_tables(struct vm_area_struct *vma, 5087 struct vm_area_struct *new_vma, 5088 unsigned long old_addr, unsigned long new_addr, 5089 unsigned long len) 5090 { 5091 struct hstate *h = hstate_vma(vma); 5092 struct address_space *mapping = vma->vm_file->f_mapping; 5093 unsigned long sz = huge_page_size(h); 5094 struct mm_struct *mm = vma->vm_mm; 5095 unsigned long old_end = old_addr + len; 5096 unsigned long last_addr_mask; 5097 pte_t *src_pte, *dst_pte; 5098 struct mmu_notifier_range range; 5099 bool shared_pmd = false; 5100 5101 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr, 5102 old_end); 5103 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 5104 /* 5105 * In case of shared PMDs, we should cover the maximum possible 5106 * range. 5107 */ 5108 flush_cache_range(vma, range.start, range.end); 5109 5110 mmu_notifier_invalidate_range_start(&range); 5111 last_addr_mask = hugetlb_mask_last_page(h); 5112 /* Prevent race with file truncation */ 5113 hugetlb_vma_lock_write(vma); 5114 i_mmap_lock_write(mapping); 5115 for (; old_addr < old_end; old_addr += sz, new_addr += sz) { 5116 src_pte = hugetlb_walk(vma, old_addr, sz); 5117 if (!src_pte) { 5118 old_addr |= last_addr_mask; 5119 new_addr |= last_addr_mask; 5120 continue; 5121 } 5122 if (huge_pte_none(huge_ptep_get(mm, old_addr, src_pte))) 5123 continue; 5124 5125 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) { 5126 shared_pmd = true; 5127 old_addr |= last_addr_mask; 5128 new_addr |= last_addr_mask; 5129 continue; 5130 } 5131 5132 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz); 5133 if (!dst_pte) 5134 break; 5135 5136 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte, sz); 5137 } 5138 5139 if (shared_pmd) 5140 flush_hugetlb_tlb_range(vma, range.start, range.end); 5141 else 5142 flush_hugetlb_tlb_range(vma, old_end - len, old_end); 5143 mmu_notifier_invalidate_range_end(&range); 5144 i_mmap_unlock_write(mapping); 5145 hugetlb_vma_unlock_write(vma); 5146 5147 return len + old_addr - old_end; 5148 } 5149 5150 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma, 5151 unsigned long start, unsigned long end, 5152 struct folio *folio, zap_flags_t zap_flags) 5153 { 5154 struct mm_struct *mm = vma->vm_mm; 5155 const bool folio_provided = !!folio; 5156 unsigned long address; 5157 pte_t *ptep; 5158 pte_t pte; 5159 spinlock_t *ptl; 5160 struct hstate *h = hstate_vma(vma); 5161 unsigned long sz = huge_page_size(h); 5162 bool adjust_reservation; 5163 unsigned long last_addr_mask; 5164 bool force_flush = false; 5165 5166 WARN_ON(!is_vm_hugetlb_page(vma)); 5167 BUG_ON(start & ~huge_page_mask(h)); 5168 BUG_ON(end & ~huge_page_mask(h)); 5169 5170 /* 5171 * This is a hugetlb vma, all the pte entries should point 5172 * to huge page. 5173 */ 5174 tlb_change_page_size(tlb, sz); 5175 tlb_start_vma(tlb, vma); 5176 5177 last_addr_mask = hugetlb_mask_last_page(h); 5178 address = start; 5179 for (; address < end; address += sz) { 5180 ptep = hugetlb_walk(vma, address, sz); 5181 if (!ptep) { 5182 address |= last_addr_mask; 5183 continue; 5184 } 5185 5186 ptl = huge_pte_lock(h, mm, ptep); 5187 if (huge_pmd_unshare(mm, vma, address, ptep)) { 5188 spin_unlock(ptl); 5189 tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE); 5190 force_flush = true; 5191 address |= last_addr_mask; 5192 continue; 5193 } 5194 5195 pte = huge_ptep_get(mm, address, ptep); 5196 if (huge_pte_none(pte)) { 5197 spin_unlock(ptl); 5198 continue; 5199 } 5200 5201 /* 5202 * Migrating hugepage or HWPoisoned hugepage is already 5203 * unmapped and its refcount is dropped, so just clear pte here. 5204 */ 5205 if (unlikely(!pte_present(pte))) { 5206 /* 5207 * If the pte was wr-protected by uffd-wp in any of the 5208 * swap forms, meanwhile the caller does not want to 5209 * drop the uffd-wp bit in this zap, then replace the 5210 * pte with a marker. 5211 */ 5212 if (pte_swp_uffd_wp_any(pte) && 5213 !(zap_flags & ZAP_FLAG_DROP_MARKER)) 5214 set_huge_pte_at(mm, address, ptep, 5215 make_pte_marker(PTE_MARKER_UFFD_WP), 5216 sz); 5217 else 5218 huge_pte_clear(mm, address, ptep, sz); 5219 spin_unlock(ptl); 5220 continue; 5221 } 5222 5223 /* 5224 * If a folio is supplied, it is because a specific 5225 * folio is being unmapped, not a range. Ensure the folio we 5226 * are about to unmap is the actual folio of interest. 5227 */ 5228 if (folio_provided) { 5229 if (folio != page_folio(pte_page(pte))) { 5230 spin_unlock(ptl); 5231 continue; 5232 } 5233 /* 5234 * Mark the VMA as having unmapped its page so that 5235 * future faults in this VMA will fail rather than 5236 * looking like data was lost 5237 */ 5238 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); 5239 } else { 5240 folio = page_folio(pte_page(pte)); 5241 } 5242 5243 pte = huge_ptep_get_and_clear(mm, address, ptep, sz); 5244 tlb_remove_huge_tlb_entry(h, tlb, ptep, address); 5245 if (huge_pte_dirty(pte)) 5246 folio_mark_dirty(folio); 5247 /* Leave a uffd-wp pte marker if needed */ 5248 if (huge_pte_uffd_wp(pte) && 5249 !(zap_flags & ZAP_FLAG_DROP_MARKER)) 5250 set_huge_pte_at(mm, address, ptep, 5251 make_pte_marker(PTE_MARKER_UFFD_WP), 5252 sz); 5253 hugetlb_count_sub(pages_per_huge_page(h), mm); 5254 hugetlb_remove_rmap(folio); 5255 spin_unlock(ptl); 5256 5257 /* 5258 * Restore the reservation for anonymous page, otherwise the 5259 * backing page could be stolen by someone. 5260 * If there we are freeing a surplus, do not set the restore 5261 * reservation bit. 5262 */ 5263 adjust_reservation = false; 5264 5265 spin_lock_irq(&hugetlb_lock); 5266 if (!h->surplus_huge_pages && __vma_private_lock(vma) && 5267 folio_test_anon(folio)) { 5268 folio_set_hugetlb_restore_reserve(folio); 5269 /* Reservation to be adjusted after the spin lock */ 5270 adjust_reservation = true; 5271 } 5272 spin_unlock_irq(&hugetlb_lock); 5273 5274 /* 5275 * Adjust the reservation for the region that will have the 5276 * reserve restored. Keep in mind that vma_needs_reservation() changes 5277 * resv->adds_in_progress if it succeeds. If this is not done, 5278 * do_exit() will not see it, and will keep the reservation 5279 * forever. 5280 */ 5281 if (adjust_reservation) { 5282 int rc = vma_needs_reservation(h, vma, address); 5283 5284 if (rc < 0) 5285 /* Pressumably allocate_file_region_entries failed 5286 * to allocate a file_region struct. Clear 5287 * hugetlb_restore_reserve so that global reserve 5288 * count will not be incremented by free_huge_folio. 5289 * Act as if we consumed the reservation. 5290 */ 5291 folio_clear_hugetlb_restore_reserve(folio); 5292 else if (rc) 5293 vma_add_reservation(h, vma, address); 5294 } 5295 5296 tlb_remove_page_size(tlb, folio_page(folio, 0), 5297 folio_size(folio)); 5298 /* 5299 * If we were instructed to unmap a specific folio, we're done. 5300 */ 5301 if (folio_provided) 5302 break; 5303 } 5304 tlb_end_vma(tlb, vma); 5305 5306 /* 5307 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We 5308 * could defer the flush until now, since by holding i_mmap_rwsem we 5309 * guaranteed that the last reference would not be dropped. But we must 5310 * do the flushing before we return, as otherwise i_mmap_rwsem will be 5311 * dropped and the last reference to the shared PMDs page might be 5312 * dropped as well. 5313 * 5314 * In theory we could defer the freeing of the PMD pages as well, but 5315 * huge_pmd_unshare() relies on the exact page_count for the PMD page to 5316 * detect sharing, so we cannot defer the release of the page either. 5317 * Instead, do flush now. 5318 */ 5319 if (force_flush) 5320 tlb_flush_mmu_tlbonly(tlb); 5321 } 5322 5323 void __hugetlb_zap_begin(struct vm_area_struct *vma, 5324 unsigned long *start, unsigned long *end) 5325 { 5326 if (!vma->vm_file) /* hugetlbfs_file_mmap error */ 5327 return; 5328 5329 adjust_range_if_pmd_sharing_possible(vma, start, end); 5330 hugetlb_vma_lock_write(vma); 5331 if (vma->vm_file) 5332 i_mmap_lock_write(vma->vm_file->f_mapping); 5333 } 5334 5335 void __hugetlb_zap_end(struct vm_area_struct *vma, 5336 struct zap_details *details) 5337 { 5338 zap_flags_t zap_flags = details ? details->zap_flags : 0; 5339 5340 if (!vma->vm_file) /* hugetlbfs_file_mmap error */ 5341 return; 5342 5343 if (zap_flags & ZAP_FLAG_UNMAP) { /* final unmap */ 5344 /* 5345 * Unlock and free the vma lock before releasing i_mmap_rwsem. 5346 * When the vma_lock is freed, this makes the vma ineligible 5347 * for pmd sharing. And, i_mmap_rwsem is required to set up 5348 * pmd sharing. This is important as page tables for this 5349 * unmapped range will be asynchrously deleted. If the page 5350 * tables are shared, there will be issues when accessed by 5351 * someone else. 5352 */ 5353 __hugetlb_vma_unlock_write_free(vma); 5354 } else { 5355 hugetlb_vma_unlock_write(vma); 5356 } 5357 5358 if (vma->vm_file) 5359 i_mmap_unlock_write(vma->vm_file->f_mapping); 5360 } 5361 5362 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, 5363 unsigned long end, struct folio *folio, 5364 zap_flags_t zap_flags) 5365 { 5366 struct mmu_notifier_range range; 5367 struct mmu_gather tlb; 5368 5369 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 5370 start, end); 5371 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 5372 mmu_notifier_invalidate_range_start(&range); 5373 tlb_gather_mmu(&tlb, vma->vm_mm); 5374 5375 __unmap_hugepage_range(&tlb, vma, start, end, 5376 folio, zap_flags); 5377 5378 mmu_notifier_invalidate_range_end(&range); 5379 tlb_finish_mmu(&tlb); 5380 } 5381 5382 /* 5383 * This is called when the original mapper is failing to COW a MAP_PRIVATE 5384 * mapping it owns the reserve page for. The intention is to unmap the page 5385 * from other VMAs and let the children be SIGKILLed if they are faulting the 5386 * same region. 5387 */ 5388 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, 5389 struct folio *folio, unsigned long address) 5390 { 5391 struct hstate *h = hstate_vma(vma); 5392 struct vm_area_struct *iter_vma; 5393 struct address_space *mapping; 5394 pgoff_t pgoff; 5395 5396 /* 5397 * vm_pgoff is in PAGE_SIZE units, hence the different calculation 5398 * from page cache lookup which is in HPAGE_SIZE units. 5399 */ 5400 address = address & huge_page_mask(h); 5401 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + 5402 vma->vm_pgoff; 5403 mapping = vma->vm_file->f_mapping; 5404 5405 /* 5406 * Take the mapping lock for the duration of the table walk. As 5407 * this mapping should be shared between all the VMAs, 5408 * __unmap_hugepage_range() is called as the lock is already held 5409 */ 5410 i_mmap_lock_write(mapping); 5411 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) { 5412 /* Do not unmap the current VMA */ 5413 if (iter_vma == vma) 5414 continue; 5415 5416 /* 5417 * Shared VMAs have their own reserves and do not affect 5418 * MAP_PRIVATE accounting but it is possible that a shared 5419 * VMA is using the same page so check and skip such VMAs. 5420 */ 5421 if (iter_vma->vm_flags & VM_MAYSHARE) 5422 continue; 5423 5424 /* 5425 * Unmap the page from other VMAs without their own reserves. 5426 * They get marked to be SIGKILLed if they fault in these 5427 * areas. This is because a future no-page fault on this VMA 5428 * could insert a zeroed page instead of the data existing 5429 * from the time of fork. This would look like data corruption 5430 */ 5431 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) 5432 unmap_hugepage_range(iter_vma, address, 5433 address + huge_page_size(h), 5434 folio, 0); 5435 } 5436 i_mmap_unlock_write(mapping); 5437 } 5438 5439 /* 5440 * hugetlb_wp() should be called with page lock of the original hugepage held. 5441 * Called with hugetlb_fault_mutex_table held and pte_page locked so we 5442 * cannot race with other handlers or page migration. 5443 * Keep the pte_same checks anyway to make transition from the mutex easier. 5444 */ 5445 static vm_fault_t hugetlb_wp(struct vm_fault *vmf) 5446 { 5447 struct vm_area_struct *vma = vmf->vma; 5448 struct mm_struct *mm = vma->vm_mm; 5449 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 5450 pte_t pte = huge_ptep_get(mm, vmf->address, vmf->pte); 5451 struct hstate *h = hstate_vma(vma); 5452 struct folio *old_folio; 5453 struct folio *new_folio; 5454 bool cow_from_owner = 0; 5455 vm_fault_t ret = 0; 5456 struct mmu_notifier_range range; 5457 5458 /* 5459 * Never handle CoW for uffd-wp protected pages. It should be only 5460 * handled when the uffd-wp protection is removed. 5461 * 5462 * Note that only the CoW optimization path (in hugetlb_no_page()) 5463 * can trigger this, because hugetlb_fault() will always resolve 5464 * uffd-wp bit first. 5465 */ 5466 if (!unshare && huge_pte_uffd_wp(pte)) 5467 return 0; 5468 5469 /* Let's take out MAP_SHARED mappings first. */ 5470 if (vma->vm_flags & VM_MAYSHARE) { 5471 set_huge_ptep_writable(vma, vmf->address, vmf->pte); 5472 return 0; 5473 } 5474 5475 old_folio = page_folio(pte_page(pte)); 5476 5477 delayacct_wpcopy_start(); 5478 5479 retry_avoidcopy: 5480 /* 5481 * If no-one else is actually using this page, we're the exclusive 5482 * owner and can reuse this page. 5483 * 5484 * Note that we don't rely on the (safer) folio refcount here, because 5485 * copying the hugetlb folio when there are unexpected (temporary) 5486 * folio references could harm simple fork()+exit() users when 5487 * we run out of free hugetlb folios: we would have to kill processes 5488 * in scenarios that used to work. As a side effect, there can still 5489 * be leaks between processes, for example, with FOLL_GET users. 5490 */ 5491 if (folio_mapcount(old_folio) == 1 && folio_test_anon(old_folio)) { 5492 if (!PageAnonExclusive(&old_folio->page)) { 5493 folio_move_anon_rmap(old_folio, vma); 5494 SetPageAnonExclusive(&old_folio->page); 5495 } 5496 if (likely(!unshare)) 5497 set_huge_ptep_maybe_writable(vma, vmf->address, 5498 vmf->pte); 5499 5500 delayacct_wpcopy_end(); 5501 return 0; 5502 } 5503 VM_BUG_ON_PAGE(folio_test_anon(old_folio) && 5504 PageAnonExclusive(&old_folio->page), &old_folio->page); 5505 5506 /* 5507 * If the process that created a MAP_PRIVATE mapping is about to perform 5508 * a COW due to a shared page count, attempt to satisfy the allocation 5509 * without using the existing reserves. 5510 * In order to determine where this is a COW on a MAP_PRIVATE mapping it 5511 * is enough to check whether the old_folio is anonymous. This means that 5512 * the reserve for this address was consumed. If reserves were used, a 5513 * partial faulted mapping at the fime of fork() could consume its reserves 5514 * on COW instead of the full address range. 5515 */ 5516 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && 5517 folio_test_anon(old_folio)) 5518 cow_from_owner = true; 5519 5520 folio_get(old_folio); 5521 5522 /* 5523 * Drop page table lock as buddy allocator may be called. It will 5524 * be acquired again before returning to the caller, as expected. 5525 */ 5526 spin_unlock(vmf->ptl); 5527 new_folio = alloc_hugetlb_folio(vma, vmf->address, cow_from_owner); 5528 5529 if (IS_ERR(new_folio)) { 5530 /* 5531 * If a process owning a MAP_PRIVATE mapping fails to COW, 5532 * it is due to references held by a child and an insufficient 5533 * huge page pool. To guarantee the original mappers 5534 * reliability, unmap the page from child processes. The child 5535 * may get SIGKILLed if it later faults. 5536 */ 5537 if (cow_from_owner) { 5538 struct address_space *mapping = vma->vm_file->f_mapping; 5539 pgoff_t idx; 5540 u32 hash; 5541 5542 folio_put(old_folio); 5543 /* 5544 * Drop hugetlb_fault_mutex and vma_lock before 5545 * unmapping. unmapping needs to hold vma_lock 5546 * in write mode. Dropping vma_lock in read mode 5547 * here is OK as COW mappings do not interact with 5548 * PMD sharing. 5549 * 5550 * Reacquire both after unmap operation. 5551 */ 5552 idx = vma_hugecache_offset(h, vma, vmf->address); 5553 hash = hugetlb_fault_mutex_hash(mapping, idx); 5554 hugetlb_vma_unlock_read(vma); 5555 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 5556 5557 unmap_ref_private(mm, vma, old_folio, vmf->address); 5558 5559 mutex_lock(&hugetlb_fault_mutex_table[hash]); 5560 hugetlb_vma_lock_read(vma); 5561 spin_lock(vmf->ptl); 5562 vmf->pte = hugetlb_walk(vma, vmf->address, 5563 huge_page_size(h)); 5564 if (likely(vmf->pte && 5565 pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), pte))) 5566 goto retry_avoidcopy; 5567 /* 5568 * race occurs while re-acquiring page table 5569 * lock, and our job is done. 5570 */ 5571 delayacct_wpcopy_end(); 5572 return 0; 5573 } 5574 5575 ret = vmf_error(PTR_ERR(new_folio)); 5576 goto out_release_old; 5577 } 5578 5579 /* 5580 * When the original hugepage is shared one, it does not have 5581 * anon_vma prepared. 5582 */ 5583 ret = __vmf_anon_prepare(vmf); 5584 if (unlikely(ret)) 5585 goto out_release_all; 5586 5587 if (copy_user_large_folio(new_folio, old_folio, vmf->real_address, vma)) { 5588 ret = VM_FAULT_HWPOISON_LARGE | VM_FAULT_SET_HINDEX(hstate_index(h)); 5589 goto out_release_all; 5590 } 5591 __folio_mark_uptodate(new_folio); 5592 5593 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, vmf->address, 5594 vmf->address + huge_page_size(h)); 5595 mmu_notifier_invalidate_range_start(&range); 5596 5597 /* 5598 * Retake the page table lock to check for racing updates 5599 * before the page tables are altered 5600 */ 5601 spin_lock(vmf->ptl); 5602 vmf->pte = hugetlb_walk(vma, vmf->address, huge_page_size(h)); 5603 if (likely(vmf->pte && pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), pte))) { 5604 pte_t newpte = make_huge_pte(vma, new_folio, !unshare); 5605 5606 /* Break COW or unshare */ 5607 huge_ptep_clear_flush(vma, vmf->address, vmf->pte); 5608 hugetlb_remove_rmap(old_folio); 5609 hugetlb_add_new_anon_rmap(new_folio, vma, vmf->address); 5610 if (huge_pte_uffd_wp(pte)) 5611 newpte = huge_pte_mkuffd_wp(newpte); 5612 set_huge_pte_at(mm, vmf->address, vmf->pte, newpte, 5613 huge_page_size(h)); 5614 folio_set_hugetlb_migratable(new_folio); 5615 /* Make the old page be freed below */ 5616 new_folio = old_folio; 5617 } 5618 spin_unlock(vmf->ptl); 5619 mmu_notifier_invalidate_range_end(&range); 5620 out_release_all: 5621 /* 5622 * No restore in case of successful pagetable update (Break COW or 5623 * unshare) 5624 */ 5625 if (new_folio != old_folio) 5626 restore_reserve_on_error(h, vma, vmf->address, new_folio); 5627 folio_put(new_folio); 5628 out_release_old: 5629 folio_put(old_folio); 5630 5631 spin_lock(vmf->ptl); /* Caller expects lock to be held */ 5632 5633 delayacct_wpcopy_end(); 5634 return ret; 5635 } 5636 5637 /* 5638 * Return whether there is a pagecache page to back given address within VMA. 5639 */ 5640 bool hugetlbfs_pagecache_present(struct hstate *h, 5641 struct vm_area_struct *vma, unsigned long address) 5642 { 5643 struct address_space *mapping = vma->vm_file->f_mapping; 5644 pgoff_t idx = linear_page_index(vma, address); 5645 struct folio *folio; 5646 5647 folio = filemap_get_folio(mapping, idx); 5648 if (IS_ERR(folio)) 5649 return false; 5650 folio_put(folio); 5651 return true; 5652 } 5653 5654 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping, 5655 pgoff_t idx) 5656 { 5657 struct inode *inode = mapping->host; 5658 struct hstate *h = hstate_inode(inode); 5659 int err; 5660 5661 idx <<= huge_page_order(h); 5662 __folio_set_locked(folio); 5663 err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL); 5664 5665 if (unlikely(err)) { 5666 __folio_clear_locked(folio); 5667 return err; 5668 } 5669 folio_clear_hugetlb_restore_reserve(folio); 5670 5671 /* 5672 * mark folio dirty so that it will not be removed from cache/file 5673 * by non-hugetlbfs specific code paths. 5674 */ 5675 folio_mark_dirty(folio); 5676 5677 spin_lock(&inode->i_lock); 5678 inode->i_blocks += blocks_per_huge_page(h); 5679 spin_unlock(&inode->i_lock); 5680 return 0; 5681 } 5682 5683 static inline vm_fault_t hugetlb_handle_userfault(struct vm_fault *vmf, 5684 struct address_space *mapping, 5685 unsigned long reason) 5686 { 5687 u32 hash; 5688 5689 /* 5690 * vma_lock and hugetlb_fault_mutex must be dropped before handling 5691 * userfault. Also mmap_lock could be dropped due to handling 5692 * userfault, any vma operation should be careful from here. 5693 */ 5694 hugetlb_vma_unlock_read(vmf->vma); 5695 hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff); 5696 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 5697 return handle_userfault(vmf, reason); 5698 } 5699 5700 /* 5701 * Recheck pte with pgtable lock. Returns true if pte didn't change, or 5702 * false if pte changed or is changing. 5703 */ 5704 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm, unsigned long addr, 5705 pte_t *ptep, pte_t old_pte) 5706 { 5707 spinlock_t *ptl; 5708 bool same; 5709 5710 ptl = huge_pte_lock(h, mm, ptep); 5711 same = pte_same(huge_ptep_get(mm, addr, ptep), old_pte); 5712 spin_unlock(ptl); 5713 5714 return same; 5715 } 5716 5717 static vm_fault_t hugetlb_no_page(struct address_space *mapping, 5718 struct vm_fault *vmf) 5719 { 5720 u32 hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff); 5721 bool new_folio, new_anon_folio = false; 5722 struct vm_area_struct *vma = vmf->vma; 5723 struct mm_struct *mm = vma->vm_mm; 5724 struct hstate *h = hstate_vma(vma); 5725 vm_fault_t ret = VM_FAULT_SIGBUS; 5726 bool folio_locked = true; 5727 struct folio *folio; 5728 unsigned long size; 5729 pte_t new_pte; 5730 5731 /* 5732 * Currently, we are forced to kill the process in the event the 5733 * original mapper has unmapped pages from the child due to a failed 5734 * COW/unsharing. Warn that such a situation has occurred as it may not 5735 * be obvious. 5736 */ 5737 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { 5738 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n", 5739 current->pid); 5740 goto out; 5741 } 5742 5743 /* 5744 * Use page lock to guard against racing truncation 5745 * before we get page_table_lock. 5746 */ 5747 new_folio = false; 5748 folio = filemap_lock_hugetlb_folio(h, mapping, vmf->pgoff); 5749 if (IS_ERR(folio)) { 5750 size = i_size_read(mapping->host) >> huge_page_shift(h); 5751 if (vmf->pgoff >= size) 5752 goto out; 5753 /* Check for page in userfault range */ 5754 if (userfaultfd_missing(vma)) { 5755 /* 5756 * Since hugetlb_no_page() was examining pte 5757 * without pgtable lock, we need to re-test under 5758 * lock because the pte may not be stable and could 5759 * have changed from under us. Try to detect 5760 * either changed or during-changing ptes and retry 5761 * properly when needed. 5762 * 5763 * Note that userfaultfd is actually fine with 5764 * false positives (e.g. caused by pte changed), 5765 * but not wrong logical events (e.g. caused by 5766 * reading a pte during changing). The latter can 5767 * confuse the userspace, so the strictness is very 5768 * much preferred. E.g., MISSING event should 5769 * never happen on the page after UFFDIO_COPY has 5770 * correctly installed the page and returned. 5771 */ 5772 if (!hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte)) { 5773 ret = 0; 5774 goto out; 5775 } 5776 5777 return hugetlb_handle_userfault(vmf, mapping, 5778 VM_UFFD_MISSING); 5779 } 5780 5781 if (!(vma->vm_flags & VM_MAYSHARE)) { 5782 ret = __vmf_anon_prepare(vmf); 5783 if (unlikely(ret)) 5784 goto out; 5785 } 5786 5787 folio = alloc_hugetlb_folio(vma, vmf->address, false); 5788 if (IS_ERR(folio)) { 5789 /* 5790 * Returning error will result in faulting task being 5791 * sent SIGBUS. The hugetlb fault mutex prevents two 5792 * tasks from racing to fault in the same page which 5793 * could result in false unable to allocate errors. 5794 * Page migration does not take the fault mutex, but 5795 * does a clear then write of pte's under page table 5796 * lock. Page fault code could race with migration, 5797 * notice the clear pte and try to allocate a page 5798 * here. Before returning error, get ptl and make 5799 * sure there really is no pte entry. 5800 */ 5801 if (hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte)) 5802 ret = vmf_error(PTR_ERR(folio)); 5803 else 5804 ret = 0; 5805 goto out; 5806 } 5807 folio_zero_user(folio, vmf->real_address); 5808 __folio_mark_uptodate(folio); 5809 new_folio = true; 5810 5811 if (vma->vm_flags & VM_MAYSHARE) { 5812 int err = hugetlb_add_to_page_cache(folio, mapping, 5813 vmf->pgoff); 5814 if (err) { 5815 /* 5816 * err can't be -EEXIST which implies someone 5817 * else consumed the reservation since hugetlb 5818 * fault mutex is held when add a hugetlb page 5819 * to the page cache. So it's safe to call 5820 * restore_reserve_on_error() here. 5821 */ 5822 restore_reserve_on_error(h, vma, vmf->address, 5823 folio); 5824 folio_put(folio); 5825 ret = VM_FAULT_SIGBUS; 5826 goto out; 5827 } 5828 } else { 5829 new_anon_folio = true; 5830 folio_lock(folio); 5831 } 5832 } else { 5833 /* 5834 * If memory error occurs between mmap() and fault, some process 5835 * don't have hwpoisoned swap entry for errored virtual address. 5836 * So we need to block hugepage fault by PG_hwpoison bit check. 5837 */ 5838 if (unlikely(folio_test_hwpoison(folio))) { 5839 ret = VM_FAULT_HWPOISON_LARGE | 5840 VM_FAULT_SET_HINDEX(hstate_index(h)); 5841 goto backout_unlocked; 5842 } 5843 5844 /* Check for page in userfault range. */ 5845 if (userfaultfd_minor(vma)) { 5846 folio_unlock(folio); 5847 folio_put(folio); 5848 /* See comment in userfaultfd_missing() block above */ 5849 if (!hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte)) { 5850 ret = 0; 5851 goto out; 5852 } 5853 return hugetlb_handle_userfault(vmf, mapping, 5854 VM_UFFD_MINOR); 5855 } 5856 } 5857 5858 /* 5859 * If we are going to COW a private mapping later, we examine the 5860 * pending reservations for this page now. This will ensure that 5861 * any allocations necessary to record that reservation occur outside 5862 * the spinlock. 5863 */ 5864 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 5865 if (vma_needs_reservation(h, vma, vmf->address) < 0) { 5866 ret = VM_FAULT_OOM; 5867 goto backout_unlocked; 5868 } 5869 /* Just decrements count, does not deallocate */ 5870 vma_end_reservation(h, vma, vmf->address); 5871 } 5872 5873 vmf->ptl = huge_pte_lock(h, mm, vmf->pte); 5874 ret = 0; 5875 /* If pte changed from under us, retry */ 5876 if (!pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), vmf->orig_pte)) 5877 goto backout; 5878 5879 if (new_anon_folio) 5880 hugetlb_add_new_anon_rmap(folio, vma, vmf->address); 5881 else 5882 hugetlb_add_file_rmap(folio); 5883 new_pte = make_huge_pte(vma, folio, vma->vm_flags & VM_SHARED); 5884 /* 5885 * If this pte was previously wr-protected, keep it wr-protected even 5886 * if populated. 5887 */ 5888 if (unlikely(pte_is_uffd_wp_marker(vmf->orig_pte))) 5889 new_pte = huge_pte_mkuffd_wp(new_pte); 5890 set_huge_pte_at(mm, vmf->address, vmf->pte, new_pte, huge_page_size(h)); 5891 5892 hugetlb_count_add(pages_per_huge_page(h), mm); 5893 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 5894 /* 5895 * No need to keep file folios locked. See comment in 5896 * hugetlb_fault(). 5897 */ 5898 if (!new_anon_folio) { 5899 folio_locked = false; 5900 folio_unlock(folio); 5901 } 5902 /* Optimization, do the COW without a second fault */ 5903 ret = hugetlb_wp(vmf); 5904 } 5905 5906 spin_unlock(vmf->ptl); 5907 5908 /* 5909 * Only set hugetlb_migratable in newly allocated pages. Existing pages 5910 * found in the pagecache may not have hugetlb_migratable if they have 5911 * been isolated for migration. 5912 */ 5913 if (new_folio) 5914 folio_set_hugetlb_migratable(folio); 5915 5916 if (folio_locked) 5917 folio_unlock(folio); 5918 out: 5919 hugetlb_vma_unlock_read(vma); 5920 5921 /* 5922 * We must check to release the per-VMA lock. __vmf_anon_prepare() is 5923 * the only way ret can be set to VM_FAULT_RETRY. 5924 */ 5925 if (unlikely(ret & VM_FAULT_RETRY)) 5926 vma_end_read(vma); 5927 5928 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 5929 return ret; 5930 5931 backout: 5932 spin_unlock(vmf->ptl); 5933 backout_unlocked: 5934 /* We only need to restore reservations for private mappings */ 5935 if (new_anon_folio) 5936 restore_reserve_on_error(h, vma, vmf->address, folio); 5937 5938 folio_unlock(folio); 5939 folio_put(folio); 5940 goto out; 5941 } 5942 5943 #ifdef CONFIG_SMP 5944 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 5945 { 5946 unsigned long key[2]; 5947 u32 hash; 5948 5949 key[0] = (unsigned long) mapping; 5950 key[1] = idx; 5951 5952 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0); 5953 5954 return hash & (num_fault_mutexes - 1); 5955 } 5956 #else 5957 /* 5958 * For uniprocessor systems we always use a single mutex, so just 5959 * return 0 and avoid the hashing overhead. 5960 */ 5961 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 5962 { 5963 return 0; 5964 } 5965 #endif 5966 5967 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, 5968 unsigned long address, unsigned int flags) 5969 { 5970 vm_fault_t ret; 5971 u32 hash; 5972 struct folio *folio = NULL; 5973 struct hstate *h = hstate_vma(vma); 5974 struct address_space *mapping; 5975 bool need_wait_lock = false; 5976 struct vm_fault vmf = { 5977 .vma = vma, 5978 .address = address & huge_page_mask(h), 5979 .real_address = address, 5980 .flags = flags, 5981 .pgoff = vma_hugecache_offset(h, vma, 5982 address & huge_page_mask(h)), 5983 /* TODO: Track hugetlb faults using vm_fault */ 5984 5985 /* 5986 * Some fields may not be initialized, be careful as it may 5987 * be hard to debug if called functions make assumptions 5988 */ 5989 }; 5990 5991 /* 5992 * Serialize hugepage allocation and instantiation, so that we don't 5993 * get spurious allocation failures if two CPUs race to instantiate 5994 * the same page in the page cache. 5995 */ 5996 mapping = vma->vm_file->f_mapping; 5997 hash = hugetlb_fault_mutex_hash(mapping, vmf.pgoff); 5998 mutex_lock(&hugetlb_fault_mutex_table[hash]); 5999 6000 /* 6001 * Acquire vma lock before calling huge_pte_alloc and hold 6002 * until finished with vmf.pte. This prevents huge_pmd_unshare from 6003 * being called elsewhere and making the vmf.pte no longer valid. 6004 */ 6005 hugetlb_vma_lock_read(vma); 6006 vmf.pte = huge_pte_alloc(mm, vma, vmf.address, huge_page_size(h)); 6007 if (!vmf.pte) { 6008 hugetlb_vma_unlock_read(vma); 6009 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6010 return VM_FAULT_OOM; 6011 } 6012 6013 vmf.orig_pte = huge_ptep_get(mm, vmf.address, vmf.pte); 6014 if (huge_pte_none(vmf.orig_pte)) 6015 /* 6016 * hugetlb_no_page will drop vma lock and hugetlb fault 6017 * mutex internally, which make us return immediately. 6018 */ 6019 return hugetlb_no_page(mapping, &vmf); 6020 6021 if (pte_is_marker(vmf.orig_pte)) { 6022 const pte_marker marker = 6023 softleaf_to_marker(softleaf_from_pte(vmf.orig_pte)); 6024 6025 if (marker & PTE_MARKER_POISONED) { 6026 ret = VM_FAULT_HWPOISON_LARGE | 6027 VM_FAULT_SET_HINDEX(hstate_index(h)); 6028 goto out_mutex; 6029 } else if (WARN_ON_ONCE(marker & PTE_MARKER_GUARD)) { 6030 /* This isn't supported in hugetlb. */ 6031 ret = VM_FAULT_SIGSEGV; 6032 goto out_mutex; 6033 } 6034 6035 return hugetlb_no_page(mapping, &vmf); 6036 } 6037 6038 ret = 0; 6039 6040 /* Not present, either a migration or a hwpoisoned entry */ 6041 if (!pte_present(vmf.orig_pte) && !huge_pte_none(vmf.orig_pte)) { 6042 const softleaf_t softleaf = softleaf_from_pte(vmf.orig_pte); 6043 6044 if (softleaf_is_migration(softleaf)) { 6045 /* 6046 * Release the hugetlb fault lock now, but retain 6047 * the vma lock, because it is needed to guard the 6048 * huge_pte_lockptr() later in 6049 * migration_entry_wait_huge(). The vma lock will 6050 * be released there. 6051 */ 6052 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6053 migration_entry_wait_huge(vma, vmf.address, vmf.pte); 6054 return 0; 6055 } 6056 if (softleaf_is_hwpoison(softleaf)) { 6057 ret = VM_FAULT_HWPOISON_LARGE | 6058 VM_FAULT_SET_HINDEX(hstate_index(h)); 6059 } 6060 6061 goto out_mutex; 6062 } 6063 6064 /* 6065 * If we are going to COW/unshare the mapping later, we examine the 6066 * pending reservations for this page now. This will ensure that any 6067 * allocations necessary to record that reservation occur outside the 6068 * spinlock. 6069 */ 6070 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) && 6071 !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(vmf.orig_pte)) { 6072 if (vma_needs_reservation(h, vma, vmf.address) < 0) { 6073 ret = VM_FAULT_OOM; 6074 goto out_mutex; 6075 } 6076 /* Just decrements count, does not deallocate */ 6077 vma_end_reservation(h, vma, vmf.address); 6078 } 6079 6080 vmf.ptl = huge_pte_lock(h, mm, vmf.pte); 6081 6082 /* Check for a racing update before calling hugetlb_wp() */ 6083 if (unlikely(!pte_same(vmf.orig_pte, huge_ptep_get(mm, vmf.address, vmf.pte)))) 6084 goto out_ptl; 6085 6086 /* Handle userfault-wp first, before trying to lock more pages */ 6087 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(mm, vmf.address, vmf.pte)) && 6088 (flags & FAULT_FLAG_WRITE) && !huge_pte_write(vmf.orig_pte)) { 6089 if (!userfaultfd_wp_async(vma)) { 6090 spin_unlock(vmf.ptl); 6091 hugetlb_vma_unlock_read(vma); 6092 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6093 return handle_userfault(&vmf, VM_UFFD_WP); 6094 } 6095 6096 vmf.orig_pte = huge_pte_clear_uffd_wp(vmf.orig_pte); 6097 set_huge_pte_at(mm, vmf.address, vmf.pte, vmf.orig_pte, 6098 huge_page_size(hstate_vma(vma))); 6099 /* Fallthrough to CoW */ 6100 } 6101 6102 if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) { 6103 if (!huge_pte_write(vmf.orig_pte)) { 6104 /* 6105 * Anonymous folios need to be lock since hugetlb_wp() 6106 * checks whether we can re-use the folio exclusively 6107 * for us in case we are the only user of it. 6108 */ 6109 folio = page_folio(pte_page(vmf.orig_pte)); 6110 if (folio_test_anon(folio) && !folio_trylock(folio)) { 6111 need_wait_lock = true; 6112 goto out_ptl; 6113 } 6114 folio_get(folio); 6115 ret = hugetlb_wp(&vmf); 6116 if (folio_test_anon(folio)) 6117 folio_unlock(folio); 6118 folio_put(folio); 6119 goto out_ptl; 6120 } else if (likely(flags & FAULT_FLAG_WRITE)) { 6121 vmf.orig_pte = huge_pte_mkdirty(vmf.orig_pte); 6122 } 6123 } 6124 vmf.orig_pte = pte_mkyoung(vmf.orig_pte); 6125 if (huge_ptep_set_access_flags(vma, vmf.address, vmf.pte, vmf.orig_pte, 6126 flags & FAULT_FLAG_WRITE)) 6127 update_mmu_cache(vma, vmf.address, vmf.pte); 6128 out_ptl: 6129 spin_unlock(vmf.ptl); 6130 out_mutex: 6131 hugetlb_vma_unlock_read(vma); 6132 6133 /* 6134 * We must check to release the per-VMA lock. __vmf_anon_prepare() in 6135 * hugetlb_wp() is the only way ret can be set to VM_FAULT_RETRY. 6136 */ 6137 if (unlikely(ret & VM_FAULT_RETRY)) 6138 vma_end_read(vma); 6139 6140 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6141 /* 6142 * hugetlb_wp drops all the locks, but the folio lock, before trying to 6143 * unmap the folio from other processes. During that window, if another 6144 * process mapping that folio faults in, it will take the mutex and then 6145 * it will wait on folio_lock, causing an ABBA deadlock. 6146 * Use trylock instead and bail out if we fail. 6147 * 6148 * Ideally, we should hold a refcount on the folio we wait for, but we do 6149 * not want to use the folio after it becomes unlocked, but rather just 6150 * wait for it to become unlocked, so hopefully next fault successes on 6151 * the trylock. 6152 */ 6153 if (need_wait_lock) 6154 folio_wait_locked(folio); 6155 return ret; 6156 } 6157 6158 #ifdef CONFIG_USERFAULTFD 6159 /* 6160 * Can probably be eliminated, but still used by hugetlb_mfill_atomic_pte(). 6161 */ 6162 static struct folio *alloc_hugetlb_folio_vma(struct hstate *h, 6163 struct vm_area_struct *vma, unsigned long address) 6164 { 6165 struct mempolicy *mpol; 6166 nodemask_t *nodemask; 6167 struct folio *folio; 6168 gfp_t gfp_mask; 6169 int node; 6170 6171 gfp_mask = htlb_alloc_mask(h); 6172 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 6173 /* 6174 * This is used to allocate a temporary hugetlb to hold the copied 6175 * content, which will then be copied again to the final hugetlb 6176 * consuming a reservation. Set the alloc_fallback to false to indicate 6177 * that breaking the per-node hugetlb pool is not allowed in this case. 6178 */ 6179 folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask, false); 6180 mpol_cond_put(mpol); 6181 6182 return folio; 6183 } 6184 6185 /* 6186 * Used by userfaultfd UFFDIO_* ioctls. Based on userfaultfd's mfill_atomic_pte 6187 * with modifications for hugetlb pages. 6188 */ 6189 int hugetlb_mfill_atomic_pte(pte_t *dst_pte, 6190 struct vm_area_struct *dst_vma, 6191 unsigned long dst_addr, 6192 unsigned long src_addr, 6193 uffd_flags_t flags, 6194 struct folio **foliop) 6195 { 6196 struct mm_struct *dst_mm = dst_vma->vm_mm; 6197 bool is_continue = uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE); 6198 bool wp_enabled = (flags & MFILL_ATOMIC_WP); 6199 struct hstate *h = hstate_vma(dst_vma); 6200 struct address_space *mapping = dst_vma->vm_file->f_mapping; 6201 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr); 6202 unsigned long size = huge_page_size(h); 6203 int vm_shared = dst_vma->vm_flags & VM_SHARED; 6204 pte_t _dst_pte; 6205 spinlock_t *ptl; 6206 int ret = -ENOMEM; 6207 struct folio *folio; 6208 bool folio_in_pagecache = false; 6209 pte_t dst_ptep; 6210 6211 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_POISON)) { 6212 ptl = huge_pte_lock(h, dst_mm, dst_pte); 6213 6214 /* Don't overwrite any existing PTEs (even markers) */ 6215 if (!huge_pte_none(huge_ptep_get(dst_mm, dst_addr, dst_pte))) { 6216 spin_unlock(ptl); 6217 return -EEXIST; 6218 } 6219 6220 _dst_pte = make_pte_marker(PTE_MARKER_POISONED); 6221 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, size); 6222 6223 /* No need to invalidate - it was non-present before */ 6224 update_mmu_cache(dst_vma, dst_addr, dst_pte); 6225 6226 spin_unlock(ptl); 6227 return 0; 6228 } 6229 6230 if (is_continue) { 6231 ret = -EFAULT; 6232 folio = filemap_lock_hugetlb_folio(h, mapping, idx); 6233 if (IS_ERR(folio)) 6234 goto out; 6235 folio_in_pagecache = true; 6236 } else if (!*foliop) { 6237 /* If a folio already exists, then it's UFFDIO_COPY for 6238 * a non-missing case. Return -EEXIST. 6239 */ 6240 if (vm_shared && 6241 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) { 6242 ret = -EEXIST; 6243 goto out; 6244 } 6245 6246 folio = alloc_hugetlb_folio(dst_vma, dst_addr, false); 6247 if (IS_ERR(folio)) { 6248 pte_t *actual_pte = hugetlb_walk(dst_vma, dst_addr, PMD_SIZE); 6249 if (actual_pte) { 6250 ret = -EEXIST; 6251 goto out; 6252 } 6253 ret = -ENOMEM; 6254 goto out; 6255 } 6256 6257 ret = copy_folio_from_user(folio, (const void __user *) src_addr, 6258 false); 6259 6260 /* fallback to copy_from_user outside mmap_lock */ 6261 if (unlikely(ret)) { 6262 ret = -ENOENT; 6263 /* Free the allocated folio which may have 6264 * consumed a reservation. 6265 */ 6266 restore_reserve_on_error(h, dst_vma, dst_addr, folio); 6267 folio_put(folio); 6268 6269 /* Allocate a temporary folio to hold the copied 6270 * contents. 6271 */ 6272 folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr); 6273 if (!folio) { 6274 ret = -ENOMEM; 6275 goto out; 6276 } 6277 *foliop = folio; 6278 /* Set the outparam foliop and return to the caller to 6279 * copy the contents outside the lock. Don't free the 6280 * folio. 6281 */ 6282 goto out; 6283 } 6284 } else { 6285 if (vm_shared && 6286 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) { 6287 folio_put(*foliop); 6288 ret = -EEXIST; 6289 *foliop = NULL; 6290 goto out; 6291 } 6292 6293 folio = alloc_hugetlb_folio(dst_vma, dst_addr, false); 6294 if (IS_ERR(folio)) { 6295 folio_put(*foliop); 6296 ret = -ENOMEM; 6297 *foliop = NULL; 6298 goto out; 6299 } 6300 ret = copy_user_large_folio(folio, *foliop, dst_addr, dst_vma); 6301 folio_put(*foliop); 6302 *foliop = NULL; 6303 if (ret) { 6304 folio_put(folio); 6305 goto out; 6306 } 6307 } 6308 6309 /* 6310 * If we just allocated a new page, we need a memory barrier to ensure 6311 * that preceding stores to the page become visible before the 6312 * set_pte_at() write. The memory barrier inside __folio_mark_uptodate 6313 * is what we need. 6314 * 6315 * In the case where we have not allocated a new page (is_continue), 6316 * the page must already be uptodate. UFFDIO_CONTINUE already includes 6317 * an earlier smp_wmb() to ensure that prior stores will be visible 6318 * before the set_pte_at() write. 6319 */ 6320 if (!is_continue) 6321 __folio_mark_uptodate(folio); 6322 else 6323 WARN_ON_ONCE(!folio_test_uptodate(folio)); 6324 6325 /* Add shared, newly allocated pages to the page cache. */ 6326 if (vm_shared && !is_continue) { 6327 ret = -EFAULT; 6328 if (idx >= (i_size_read(mapping->host) >> huge_page_shift(h))) 6329 goto out_release_nounlock; 6330 6331 /* 6332 * Serialization between remove_inode_hugepages() and 6333 * hugetlb_add_to_page_cache() below happens through the 6334 * hugetlb_fault_mutex_table that here must be hold by 6335 * the caller. 6336 */ 6337 ret = hugetlb_add_to_page_cache(folio, mapping, idx); 6338 if (ret) 6339 goto out_release_nounlock; 6340 folio_in_pagecache = true; 6341 } 6342 6343 ptl = huge_pte_lock(h, dst_mm, dst_pte); 6344 6345 ret = -EIO; 6346 if (folio_test_hwpoison(folio)) 6347 goto out_release_unlock; 6348 6349 ret = -EEXIST; 6350 6351 dst_ptep = huge_ptep_get(dst_mm, dst_addr, dst_pte); 6352 /* 6353 * See comment about UFFD marker overwriting in 6354 * mfill_atomic_install_pte(). 6355 */ 6356 if (!huge_pte_none(dst_ptep) && !pte_is_uffd_marker(dst_ptep)) 6357 goto out_release_unlock; 6358 6359 if (folio_in_pagecache) 6360 hugetlb_add_file_rmap(folio); 6361 else 6362 hugetlb_add_new_anon_rmap(folio, dst_vma, dst_addr); 6363 6364 /* 6365 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY 6366 * with wp flag set, don't set pte write bit. 6367 */ 6368 _dst_pte = make_huge_pte(dst_vma, folio, 6369 !wp_enabled && !(is_continue && !vm_shared)); 6370 /* 6371 * Always mark UFFDIO_COPY page dirty; note that this may not be 6372 * extremely important for hugetlbfs for now since swapping is not 6373 * supported, but we should still be clear in that this page cannot be 6374 * thrown away at will, even if write bit not set. 6375 */ 6376 _dst_pte = huge_pte_mkdirty(_dst_pte); 6377 _dst_pte = pte_mkyoung(_dst_pte); 6378 6379 if (wp_enabled) 6380 _dst_pte = huge_pte_mkuffd_wp(_dst_pte); 6381 6382 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, size); 6383 6384 hugetlb_count_add(pages_per_huge_page(h), dst_mm); 6385 6386 /* No need to invalidate - it was non-present before */ 6387 update_mmu_cache(dst_vma, dst_addr, dst_pte); 6388 6389 spin_unlock(ptl); 6390 if (!is_continue) 6391 folio_set_hugetlb_migratable(folio); 6392 if (vm_shared || is_continue) 6393 folio_unlock(folio); 6394 ret = 0; 6395 out: 6396 return ret; 6397 out_release_unlock: 6398 spin_unlock(ptl); 6399 if (vm_shared || is_continue) 6400 folio_unlock(folio); 6401 out_release_nounlock: 6402 if (!folio_in_pagecache) 6403 restore_reserve_on_error(h, dst_vma, dst_addr, folio); 6404 folio_put(folio); 6405 goto out; 6406 } 6407 #endif /* CONFIG_USERFAULTFD */ 6408 6409 long hugetlb_change_protection(struct vm_area_struct *vma, 6410 unsigned long address, unsigned long end, 6411 pgprot_t newprot, unsigned long cp_flags) 6412 { 6413 struct mm_struct *mm = vma->vm_mm; 6414 unsigned long start = address; 6415 pte_t *ptep; 6416 pte_t pte; 6417 struct hstate *h = hstate_vma(vma); 6418 long pages = 0, psize = huge_page_size(h); 6419 bool shared_pmd = false; 6420 struct mmu_notifier_range range; 6421 unsigned long last_addr_mask; 6422 bool uffd_wp = cp_flags & MM_CP_UFFD_WP; 6423 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE; 6424 6425 /* 6426 * In the case of shared PMDs, the area to flush could be beyond 6427 * start/end. Set range.start/range.end to cover the maximum possible 6428 * range if PMD sharing is possible. 6429 */ 6430 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA, 6431 0, mm, start, end); 6432 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 6433 6434 BUG_ON(address >= end); 6435 flush_cache_range(vma, range.start, range.end); 6436 6437 mmu_notifier_invalidate_range_start(&range); 6438 hugetlb_vma_lock_write(vma); 6439 i_mmap_lock_write(vma->vm_file->f_mapping); 6440 last_addr_mask = hugetlb_mask_last_page(h); 6441 for (; address < end; address += psize) { 6442 softleaf_t entry; 6443 spinlock_t *ptl; 6444 6445 ptep = hugetlb_walk(vma, address, psize); 6446 if (!ptep) { 6447 if (!uffd_wp) { 6448 address |= last_addr_mask; 6449 continue; 6450 } 6451 /* 6452 * Userfaultfd wr-protect requires pgtable 6453 * pre-allocations to install pte markers. 6454 */ 6455 ptep = huge_pte_alloc(mm, vma, address, psize); 6456 if (!ptep) { 6457 pages = -ENOMEM; 6458 break; 6459 } 6460 } 6461 ptl = huge_pte_lock(h, mm, ptep); 6462 if (huge_pmd_unshare(mm, vma, address, ptep)) { 6463 /* 6464 * When uffd-wp is enabled on the vma, unshare 6465 * shouldn't happen at all. Warn about it if it 6466 * happened due to some reason. 6467 */ 6468 WARN_ON_ONCE(uffd_wp || uffd_wp_resolve); 6469 pages++; 6470 spin_unlock(ptl); 6471 shared_pmd = true; 6472 address |= last_addr_mask; 6473 continue; 6474 } 6475 pte = huge_ptep_get(mm, address, ptep); 6476 if (huge_pte_none(pte)) { 6477 if (unlikely(uffd_wp)) 6478 /* Safe to modify directly (none->non-present). */ 6479 set_huge_pte_at(mm, address, ptep, 6480 make_pte_marker(PTE_MARKER_UFFD_WP), 6481 psize); 6482 goto next; 6483 } 6484 6485 entry = softleaf_from_pte(pte); 6486 if (unlikely(softleaf_is_hwpoison(entry))) { 6487 /* Nothing to do. */ 6488 } else if (unlikely(softleaf_is_migration(entry))) { 6489 struct folio *folio = softleaf_to_folio(entry); 6490 pte_t newpte = pte; 6491 6492 if (softleaf_is_migration_write(entry)) { 6493 if (folio_test_anon(folio)) 6494 entry = make_readable_exclusive_migration_entry( 6495 swp_offset(entry)); 6496 else 6497 entry = make_readable_migration_entry( 6498 swp_offset(entry)); 6499 newpte = swp_entry_to_pte(entry); 6500 pages++; 6501 } 6502 6503 if (uffd_wp) 6504 newpte = pte_swp_mkuffd_wp(newpte); 6505 else if (uffd_wp_resolve) 6506 newpte = pte_swp_clear_uffd_wp(newpte); 6507 if (!pte_same(pte, newpte)) 6508 set_huge_pte_at(mm, address, ptep, newpte, psize); 6509 } else if (unlikely(pte_is_marker(pte))) { 6510 /* 6511 * Do nothing on a poison marker; page is 6512 * corrupted, permissions do not apply. Here 6513 * pte_marker_uffd_wp()==true implies !poison 6514 * because they're mutual exclusive. 6515 */ 6516 if (pte_is_uffd_wp_marker(pte) && uffd_wp_resolve) 6517 /* Safe to modify directly (non-present->none). */ 6518 huge_pte_clear(mm, address, ptep, psize); 6519 } else { 6520 pte_t old_pte; 6521 unsigned int shift = huge_page_shift(hstate_vma(vma)); 6522 6523 old_pte = huge_ptep_modify_prot_start(vma, address, ptep); 6524 pte = huge_pte_modify(old_pte, newprot); 6525 pte = arch_make_huge_pte(pte, shift, vma->vm_flags); 6526 if (uffd_wp) 6527 pte = huge_pte_mkuffd_wp(pte); 6528 else if (uffd_wp_resolve) 6529 pte = huge_pte_clear_uffd_wp(pte); 6530 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte); 6531 pages++; 6532 } 6533 6534 next: 6535 spin_unlock(ptl); 6536 cond_resched(); 6537 } 6538 /* 6539 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare 6540 * may have cleared our pud entry and done put_page on the page table: 6541 * once we release i_mmap_rwsem, another task can do the final put_page 6542 * and that page table be reused and filled with junk. If we actually 6543 * did unshare a page of pmds, flush the range corresponding to the pud. 6544 */ 6545 if (shared_pmd) 6546 flush_hugetlb_tlb_range(vma, range.start, range.end); 6547 else 6548 flush_hugetlb_tlb_range(vma, start, end); 6549 /* 6550 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs() we are 6551 * downgrading page table protection not changing it to point to a new 6552 * page. 6553 * 6554 * See Documentation/mm/mmu_notifier.rst 6555 */ 6556 i_mmap_unlock_write(vma->vm_file->f_mapping); 6557 hugetlb_vma_unlock_write(vma); 6558 mmu_notifier_invalidate_range_end(&range); 6559 6560 return pages > 0 ? (pages << h->order) : pages; 6561 } 6562 6563 /* 6564 * Update the reservation map for the range [from, to]. 6565 * 6566 * Returns the number of entries that would be added to the reservation map 6567 * associated with the range [from, to]. This number is greater or equal to 6568 * zero. -EINVAL or -ENOMEM is returned in case of any errors. 6569 */ 6570 6571 long hugetlb_reserve_pages(struct inode *inode, 6572 long from, long to, 6573 struct vm_area_desc *desc, 6574 vm_flags_t vm_flags) 6575 { 6576 long chg = -1, add = -1, spool_resv, gbl_resv; 6577 struct hstate *h = hstate_inode(inode); 6578 struct hugepage_subpool *spool = subpool_inode(inode); 6579 struct resv_map *resv_map; 6580 struct hugetlb_cgroup *h_cg = NULL; 6581 long gbl_reserve, regions_needed = 0; 6582 6583 /* This should never happen */ 6584 if (from > to) { 6585 VM_WARN(1, "%s called with a negative range\n", __func__); 6586 return -EINVAL; 6587 } 6588 6589 /* 6590 * Only apply hugepage reservation if asked. At fault time, an 6591 * attempt will be made for VM_NORESERVE to allocate a page 6592 * without using reserves 6593 */ 6594 if (vm_flags & VM_NORESERVE) 6595 return 0; 6596 6597 /* 6598 * Shared mappings base their reservation on the number of pages that 6599 * are already allocated on behalf of the file. Private mappings need 6600 * to reserve the full area even if read-only as mprotect() may be 6601 * called to make the mapping read-write. Assume !desc is a shm mapping 6602 */ 6603 if (!desc || desc->vm_flags & VM_MAYSHARE) { 6604 /* 6605 * resv_map can not be NULL as hugetlb_reserve_pages is only 6606 * called for inodes for which resv_maps were created (see 6607 * hugetlbfs_get_inode). 6608 */ 6609 resv_map = inode_resv_map(inode); 6610 6611 chg = region_chg(resv_map, from, to, ®ions_needed); 6612 } else { 6613 /* Private mapping. */ 6614 resv_map = resv_map_alloc(); 6615 if (!resv_map) 6616 goto out_err; 6617 6618 chg = to - from; 6619 6620 set_vma_desc_resv_map(desc, resv_map); 6621 set_vma_desc_resv_flags(desc, HPAGE_RESV_OWNER); 6622 } 6623 6624 if (chg < 0) 6625 goto out_err; 6626 6627 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h), 6628 chg * pages_per_huge_page(h), &h_cg) < 0) 6629 goto out_err; 6630 6631 if (desc && !(desc->vm_flags & VM_MAYSHARE) && h_cg) { 6632 /* For private mappings, the hugetlb_cgroup uncharge info hangs 6633 * of the resv_map. 6634 */ 6635 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h); 6636 } 6637 6638 /* 6639 * There must be enough pages in the subpool for the mapping. If 6640 * the subpool has a minimum size, there may be some global 6641 * reservations already in place (gbl_reserve). 6642 */ 6643 gbl_reserve = hugepage_subpool_get_pages(spool, chg); 6644 if (gbl_reserve < 0) 6645 goto out_uncharge_cgroup; 6646 6647 /* 6648 * Check enough hugepages are available for the reservation. 6649 * Hand the pages back to the subpool if there are not 6650 */ 6651 if (hugetlb_acct_memory(h, gbl_reserve) < 0) 6652 goto out_put_pages; 6653 6654 /* 6655 * Account for the reservations made. Shared mappings record regions 6656 * that have reservations as they are shared by multiple VMAs. 6657 * When the last VMA disappears, the region map says how much 6658 * the reservation was and the page cache tells how much of 6659 * the reservation was consumed. Private mappings are per-VMA and 6660 * only the consumed reservations are tracked. When the VMA 6661 * disappears, the original reservation is the VMA size and the 6662 * consumed reservations are stored in the map. Hence, nothing 6663 * else has to be done for private mappings here 6664 */ 6665 if (!desc || desc->vm_flags & VM_MAYSHARE) { 6666 add = region_add(resv_map, from, to, regions_needed, h, h_cg); 6667 6668 if (unlikely(add < 0)) { 6669 hugetlb_acct_memory(h, -gbl_reserve); 6670 goto out_put_pages; 6671 } else if (unlikely(chg > add)) { 6672 /* 6673 * pages in this range were added to the reserve 6674 * map between region_chg and region_add. This 6675 * indicates a race with alloc_hugetlb_folio. Adjust 6676 * the subpool and reserve counts modified above 6677 * based on the difference. 6678 */ 6679 long rsv_adjust; 6680 6681 /* 6682 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the 6683 * reference to h_cg->css. See comment below for detail. 6684 */ 6685 hugetlb_cgroup_uncharge_cgroup_rsvd( 6686 hstate_index(h), 6687 (chg - add) * pages_per_huge_page(h), h_cg); 6688 6689 rsv_adjust = hugepage_subpool_put_pages(spool, 6690 chg - add); 6691 hugetlb_acct_memory(h, -rsv_adjust); 6692 } else if (h_cg) { 6693 /* 6694 * The file_regions will hold their own reference to 6695 * h_cg->css. So we should release the reference held 6696 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are 6697 * done. 6698 */ 6699 hugetlb_cgroup_put_rsvd_cgroup(h_cg); 6700 } 6701 } 6702 return chg; 6703 6704 out_put_pages: 6705 spool_resv = chg - gbl_reserve; 6706 if (spool_resv) { 6707 /* put sub pool's reservation back, chg - gbl_reserve */ 6708 gbl_resv = hugepage_subpool_put_pages(spool, spool_resv); 6709 /* 6710 * subpool's reserved pages can not be put back due to race, 6711 * return to hstate. 6712 */ 6713 hugetlb_acct_memory(h, -gbl_resv); 6714 } 6715 out_uncharge_cgroup: 6716 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h), 6717 chg * pages_per_huge_page(h), h_cg); 6718 out_err: 6719 if (!desc || desc->vm_flags & VM_MAYSHARE) 6720 /* Only call region_abort if the region_chg succeeded but the 6721 * region_add failed or didn't run. 6722 */ 6723 if (chg >= 0 && add < 0) 6724 region_abort(resv_map, from, to, regions_needed); 6725 if (desc && is_vma_desc_resv_set(desc, HPAGE_RESV_OWNER)) { 6726 kref_put(&resv_map->refs, resv_map_release); 6727 set_vma_desc_resv_map(desc, NULL); 6728 } 6729 return chg < 0 ? chg : add < 0 ? add : -EINVAL; 6730 } 6731 6732 long hugetlb_unreserve_pages(struct inode *inode, long start, long end, 6733 long freed) 6734 { 6735 struct hstate *h = hstate_inode(inode); 6736 struct resv_map *resv_map = inode_resv_map(inode); 6737 long chg = 0; 6738 struct hugepage_subpool *spool = subpool_inode(inode); 6739 long gbl_reserve; 6740 6741 /* 6742 * Since this routine can be called in the evict inode path for all 6743 * hugetlbfs inodes, resv_map could be NULL. 6744 */ 6745 if (resv_map) { 6746 chg = region_del(resv_map, start, end); 6747 /* 6748 * region_del() can fail in the rare case where a region 6749 * must be split and another region descriptor can not be 6750 * allocated. If end == LONG_MAX, it will not fail. 6751 */ 6752 if (chg < 0) 6753 return chg; 6754 } 6755 6756 spin_lock(&inode->i_lock); 6757 inode->i_blocks -= (blocks_per_huge_page(h) * freed); 6758 spin_unlock(&inode->i_lock); 6759 6760 /* 6761 * If the subpool has a minimum size, the number of global 6762 * reservations to be released may be adjusted. 6763 * 6764 * Note that !resv_map implies freed == 0. So (chg - freed) 6765 * won't go negative. 6766 */ 6767 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed)); 6768 hugetlb_acct_memory(h, -gbl_reserve); 6769 6770 return 0; 6771 } 6772 6773 #ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING 6774 static unsigned long page_table_shareable(struct vm_area_struct *svma, 6775 struct vm_area_struct *vma, 6776 unsigned long addr, pgoff_t idx) 6777 { 6778 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) + 6779 svma->vm_start; 6780 unsigned long sbase = saddr & PUD_MASK; 6781 unsigned long s_end = sbase + PUD_SIZE; 6782 6783 /* Allow segments to share if only one is marked locked */ 6784 vm_flags_t vm_flags = vma->vm_flags & ~VM_LOCKED_MASK; 6785 vm_flags_t svm_flags = svma->vm_flags & ~VM_LOCKED_MASK; 6786 6787 /* 6788 * match the virtual addresses, permission and the alignment of the 6789 * page table page. 6790 * 6791 * Also, vma_lock (vm_private_data) is required for sharing. 6792 */ 6793 if (pmd_index(addr) != pmd_index(saddr) || 6794 vm_flags != svm_flags || 6795 !range_in_vma(svma, sbase, s_end) || 6796 !svma->vm_private_data) 6797 return 0; 6798 6799 return saddr; 6800 } 6801 6802 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr) 6803 { 6804 unsigned long start = addr & PUD_MASK; 6805 unsigned long end = start + PUD_SIZE; 6806 6807 #ifdef CONFIG_USERFAULTFD 6808 if (uffd_disable_huge_pmd_share(vma)) 6809 return false; 6810 #endif 6811 /* 6812 * check on proper vm_flags and page table alignment 6813 */ 6814 if (!(vma->vm_flags & VM_MAYSHARE)) 6815 return false; 6816 if (!vma->vm_private_data) /* vma lock required for sharing */ 6817 return false; 6818 if (!range_in_vma(vma, start, end)) 6819 return false; 6820 return true; 6821 } 6822 6823 /* 6824 * Determine if start,end range within vma could be mapped by shared pmd. 6825 * If yes, adjust start and end to cover range associated with possible 6826 * shared pmd mappings. 6827 */ 6828 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 6829 unsigned long *start, unsigned long *end) 6830 { 6831 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE), 6832 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE); 6833 6834 /* 6835 * vma needs to span at least one aligned PUD size, and the range 6836 * must be at least partially within in. 6837 */ 6838 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) || 6839 (*end <= v_start) || (*start >= v_end)) 6840 return; 6841 6842 /* Extend the range to be PUD aligned for a worst case scenario */ 6843 if (*start > v_start) 6844 *start = ALIGN_DOWN(*start, PUD_SIZE); 6845 6846 if (*end < v_end) 6847 *end = ALIGN(*end, PUD_SIZE); 6848 } 6849 6850 /* 6851 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc() 6852 * and returns the corresponding pte. While this is not necessary for the 6853 * !shared pmd case because we can allocate the pmd later as well, it makes the 6854 * code much cleaner. pmd allocation is essential for the shared case because 6855 * pud has to be populated inside the same i_mmap_rwsem section - otherwise 6856 * racing tasks could either miss the sharing (see huge_pte_offset) or select a 6857 * bad pmd for sharing. 6858 */ 6859 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, 6860 unsigned long addr, pud_t *pud) 6861 { 6862 struct address_space *mapping = vma->vm_file->f_mapping; 6863 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + 6864 vma->vm_pgoff; 6865 struct vm_area_struct *svma; 6866 unsigned long saddr; 6867 pte_t *spte = NULL; 6868 pte_t *pte; 6869 6870 i_mmap_lock_read(mapping); 6871 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) { 6872 if (svma == vma) 6873 continue; 6874 6875 saddr = page_table_shareable(svma, vma, addr, idx); 6876 if (saddr) { 6877 spte = hugetlb_walk(svma, saddr, 6878 vma_mmu_pagesize(svma)); 6879 if (spte) { 6880 ptdesc_pmd_pts_inc(virt_to_ptdesc(spte)); 6881 break; 6882 } 6883 } 6884 } 6885 6886 if (!spte) 6887 goto out; 6888 6889 spin_lock(&mm->page_table_lock); 6890 if (pud_none(*pud)) { 6891 pud_populate(mm, pud, 6892 (pmd_t *)((unsigned long)spte & PAGE_MASK)); 6893 mm_inc_nr_pmds(mm); 6894 } else { 6895 ptdesc_pmd_pts_dec(virt_to_ptdesc(spte)); 6896 } 6897 spin_unlock(&mm->page_table_lock); 6898 out: 6899 pte = (pte_t *)pmd_alloc(mm, pud, addr); 6900 i_mmap_unlock_read(mapping); 6901 return pte; 6902 } 6903 6904 /* 6905 * unmap huge page backed by shared pte. 6906 * 6907 * Called with page table lock held. 6908 * 6909 * returns: 1 successfully unmapped a shared pte page 6910 * 0 the underlying pte page is not shared, or it is the last user 6911 */ 6912 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, 6913 unsigned long addr, pte_t *ptep) 6914 { 6915 unsigned long sz = huge_page_size(hstate_vma(vma)); 6916 pgd_t *pgd = pgd_offset(mm, addr); 6917 p4d_t *p4d = p4d_offset(pgd, addr); 6918 pud_t *pud = pud_offset(p4d, addr); 6919 6920 if (sz != PMD_SIZE) 6921 return 0; 6922 if (!ptdesc_pmd_is_shared(virt_to_ptdesc(ptep))) 6923 return 0; 6924 i_mmap_assert_write_locked(vma->vm_file->f_mapping); 6925 hugetlb_vma_assert_locked(vma); 6926 pud_clear(pud); 6927 /* 6928 * Once our caller drops the rmap lock, some other process might be 6929 * using this page table as a normal, non-hugetlb page table. 6930 * Wait for pending gup_fast() in other threads to finish before letting 6931 * that happen. 6932 */ 6933 tlb_remove_table_sync_one(); 6934 ptdesc_pmd_pts_dec(virt_to_ptdesc(ptep)); 6935 mm_dec_nr_pmds(mm); 6936 return 1; 6937 } 6938 6939 #else /* !CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING */ 6940 6941 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, 6942 unsigned long addr, pud_t *pud) 6943 { 6944 return NULL; 6945 } 6946 6947 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, 6948 unsigned long addr, pte_t *ptep) 6949 { 6950 return 0; 6951 } 6952 6953 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 6954 unsigned long *start, unsigned long *end) 6955 { 6956 } 6957 6958 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr) 6959 { 6960 return false; 6961 } 6962 #endif /* CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING */ 6963 6964 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB 6965 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 6966 unsigned long addr, unsigned long sz) 6967 { 6968 pgd_t *pgd; 6969 p4d_t *p4d; 6970 pud_t *pud; 6971 pte_t *pte = NULL; 6972 6973 pgd = pgd_offset(mm, addr); 6974 p4d = p4d_alloc(mm, pgd, addr); 6975 if (!p4d) 6976 return NULL; 6977 pud = pud_alloc(mm, p4d, addr); 6978 if (pud) { 6979 if (sz == PUD_SIZE) { 6980 pte = (pte_t *)pud; 6981 } else { 6982 BUG_ON(sz != PMD_SIZE); 6983 if (want_pmd_share(vma, addr) && pud_none(*pud)) 6984 pte = huge_pmd_share(mm, vma, addr, pud); 6985 else 6986 pte = (pte_t *)pmd_alloc(mm, pud, addr); 6987 } 6988 } 6989 6990 if (pte) { 6991 pte_t pteval = ptep_get_lockless(pte); 6992 6993 BUG_ON(pte_present(pteval) && !pte_huge(pteval)); 6994 } 6995 6996 return pte; 6997 } 6998 6999 /* 7000 * huge_pte_offset() - Walk the page table to resolve the hugepage 7001 * entry at address @addr 7002 * 7003 * Return: Pointer to page table entry (PUD or PMD) for 7004 * address @addr, or NULL if a !p*d_present() entry is encountered and the 7005 * size @sz doesn't match the hugepage size at this level of the page 7006 * table. 7007 */ 7008 pte_t *huge_pte_offset(struct mm_struct *mm, 7009 unsigned long addr, unsigned long sz) 7010 { 7011 pgd_t *pgd; 7012 p4d_t *p4d; 7013 pud_t *pud; 7014 pmd_t *pmd; 7015 7016 pgd = pgd_offset(mm, addr); 7017 if (!pgd_present(*pgd)) 7018 return NULL; 7019 p4d = p4d_offset(pgd, addr); 7020 if (!p4d_present(*p4d)) 7021 return NULL; 7022 7023 pud = pud_offset(p4d, addr); 7024 if (sz == PUD_SIZE) 7025 /* must be pud huge, non-present or none */ 7026 return (pte_t *)pud; 7027 if (!pud_present(*pud)) 7028 return NULL; 7029 /* must have a valid entry and size to go further */ 7030 7031 pmd = pmd_offset(pud, addr); 7032 /* must be pmd huge, non-present or none */ 7033 return (pte_t *)pmd; 7034 } 7035 7036 /* 7037 * Return a mask that can be used to update an address to the last huge 7038 * page in a page table page mapping size. Used to skip non-present 7039 * page table entries when linearly scanning address ranges. Architectures 7040 * with unique huge page to page table relationships can define their own 7041 * version of this routine. 7042 */ 7043 unsigned long hugetlb_mask_last_page(struct hstate *h) 7044 { 7045 unsigned long hp_size = huge_page_size(h); 7046 7047 if (hp_size == PUD_SIZE) 7048 return P4D_SIZE - PUD_SIZE; 7049 else if (hp_size == PMD_SIZE) 7050 return PUD_SIZE - PMD_SIZE; 7051 else 7052 return 0UL; 7053 } 7054 7055 #else 7056 7057 /* See description above. Architectures can provide their own version. */ 7058 __weak unsigned long hugetlb_mask_last_page(struct hstate *h) 7059 { 7060 #ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING 7061 if (huge_page_size(h) == PMD_SIZE) 7062 return PUD_SIZE - PMD_SIZE; 7063 #endif 7064 return 0UL; 7065 } 7066 7067 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */ 7068 7069 /** 7070 * folio_isolate_hugetlb - try to isolate an allocated hugetlb folio 7071 * @folio: the folio to isolate 7072 * @list: the list to add the folio to on success 7073 * 7074 * Isolate an allocated (refcount > 0) hugetlb folio, marking it as 7075 * isolated/non-migratable, and moving it from the active list to the 7076 * given list. 7077 * 7078 * Isolation will fail if @folio is not an allocated hugetlb folio, or if 7079 * it is already isolated/non-migratable. 7080 * 7081 * On success, an additional folio reference is taken that must be dropped 7082 * using folio_putback_hugetlb() to undo the isolation. 7083 * 7084 * Return: True if isolation worked, otherwise False. 7085 */ 7086 bool folio_isolate_hugetlb(struct folio *folio, struct list_head *list) 7087 { 7088 bool ret = true; 7089 7090 spin_lock_irq(&hugetlb_lock); 7091 if (!folio_test_hugetlb(folio) || 7092 !folio_test_hugetlb_migratable(folio) || 7093 !folio_try_get(folio)) { 7094 ret = false; 7095 goto unlock; 7096 } 7097 folio_clear_hugetlb_migratable(folio); 7098 list_move_tail(&folio->lru, list); 7099 unlock: 7100 spin_unlock_irq(&hugetlb_lock); 7101 return ret; 7102 } 7103 7104 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison) 7105 { 7106 int ret = 0; 7107 7108 *hugetlb = false; 7109 spin_lock_irq(&hugetlb_lock); 7110 if (folio_test_hugetlb(folio)) { 7111 *hugetlb = true; 7112 if (folio_test_hugetlb_freed(folio)) 7113 ret = 0; 7114 else if (folio_test_hugetlb_migratable(folio) || unpoison) 7115 ret = folio_try_get(folio); 7116 else 7117 ret = -EBUSY; 7118 } 7119 spin_unlock_irq(&hugetlb_lock); 7120 return ret; 7121 } 7122 7123 int get_huge_page_for_hwpoison(unsigned long pfn, int flags, 7124 bool *migratable_cleared) 7125 { 7126 int ret; 7127 7128 spin_lock_irq(&hugetlb_lock); 7129 ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared); 7130 spin_unlock_irq(&hugetlb_lock); 7131 return ret; 7132 } 7133 7134 /** 7135 * folio_putback_hugetlb - unisolate a hugetlb folio 7136 * @folio: the isolated hugetlb folio 7137 * 7138 * Putback/un-isolate the hugetlb folio that was previous isolated using 7139 * folio_isolate_hugetlb(): marking it non-isolated/migratable and putting it 7140 * back onto the active list. 7141 * 7142 * Will drop the additional folio reference obtained through 7143 * folio_isolate_hugetlb(). 7144 */ 7145 void folio_putback_hugetlb(struct folio *folio) 7146 { 7147 spin_lock_irq(&hugetlb_lock); 7148 folio_set_hugetlb_migratable(folio); 7149 list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist); 7150 spin_unlock_irq(&hugetlb_lock); 7151 folio_put(folio); 7152 } 7153 7154 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason) 7155 { 7156 struct hstate *h = folio_hstate(old_folio); 7157 7158 hugetlb_cgroup_migrate(old_folio, new_folio); 7159 folio_set_owner_migrate_reason(new_folio, reason); 7160 7161 /* 7162 * transfer temporary state of the new hugetlb folio. This is 7163 * reverse to other transitions because the newpage is going to 7164 * be final while the old one will be freed so it takes over 7165 * the temporary status. 7166 * 7167 * Also note that we have to transfer the per-node surplus state 7168 * here as well otherwise the global surplus count will not match 7169 * the per-node's. 7170 */ 7171 if (folio_test_hugetlb_temporary(new_folio)) { 7172 int old_nid = folio_nid(old_folio); 7173 int new_nid = folio_nid(new_folio); 7174 7175 folio_set_hugetlb_temporary(old_folio); 7176 folio_clear_hugetlb_temporary(new_folio); 7177 7178 7179 /* 7180 * There is no need to transfer the per-node surplus state 7181 * when we do not cross the node. 7182 */ 7183 if (new_nid == old_nid) 7184 return; 7185 spin_lock_irq(&hugetlb_lock); 7186 if (h->surplus_huge_pages_node[old_nid]) { 7187 h->surplus_huge_pages_node[old_nid]--; 7188 h->surplus_huge_pages_node[new_nid]++; 7189 } 7190 spin_unlock_irq(&hugetlb_lock); 7191 } 7192 7193 /* 7194 * Our old folio is isolated and has "migratable" cleared until it 7195 * is putback. As migration succeeded, set the new folio "migratable" 7196 * and add it to the active list. 7197 */ 7198 spin_lock_irq(&hugetlb_lock); 7199 folio_set_hugetlb_migratable(new_folio); 7200 list_move_tail(&new_folio->lru, &(folio_hstate(new_folio))->hugepage_activelist); 7201 spin_unlock_irq(&hugetlb_lock); 7202 } 7203 7204 /* 7205 * If @take_locks is false, the caller must ensure that no concurrent page table 7206 * access can happen (except for gup_fast() and hardware page walks). 7207 * If @take_locks is true, we take the hugetlb VMA lock (to lock out things like 7208 * concurrent page fault handling) and the file rmap lock. 7209 */ 7210 static void hugetlb_unshare_pmds(struct vm_area_struct *vma, 7211 unsigned long start, 7212 unsigned long end, 7213 bool take_locks) 7214 { 7215 struct hstate *h = hstate_vma(vma); 7216 unsigned long sz = huge_page_size(h); 7217 struct mm_struct *mm = vma->vm_mm; 7218 struct mmu_notifier_range range; 7219 unsigned long address; 7220 spinlock_t *ptl; 7221 pte_t *ptep; 7222 7223 if (!(vma->vm_flags & VM_MAYSHARE)) 7224 return; 7225 7226 if (start >= end) 7227 return; 7228 7229 flush_cache_range(vma, start, end); 7230 /* 7231 * No need to call adjust_range_if_pmd_sharing_possible(), because 7232 * we have already done the PUD_SIZE alignment. 7233 */ 7234 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 7235 start, end); 7236 mmu_notifier_invalidate_range_start(&range); 7237 if (take_locks) { 7238 hugetlb_vma_lock_write(vma); 7239 i_mmap_lock_write(vma->vm_file->f_mapping); 7240 } else { 7241 i_mmap_assert_write_locked(vma->vm_file->f_mapping); 7242 } 7243 for (address = start; address < end; address += PUD_SIZE) { 7244 ptep = hugetlb_walk(vma, address, sz); 7245 if (!ptep) 7246 continue; 7247 ptl = huge_pte_lock(h, mm, ptep); 7248 huge_pmd_unshare(mm, vma, address, ptep); 7249 spin_unlock(ptl); 7250 } 7251 flush_hugetlb_tlb_range(vma, start, end); 7252 if (take_locks) { 7253 i_mmap_unlock_write(vma->vm_file->f_mapping); 7254 hugetlb_vma_unlock_write(vma); 7255 } 7256 /* 7257 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs(), see 7258 * Documentation/mm/mmu_notifier.rst. 7259 */ 7260 mmu_notifier_invalidate_range_end(&range); 7261 } 7262 7263 /* 7264 * This function will unconditionally remove all the shared pmd pgtable entries 7265 * within the specific vma for a hugetlbfs memory range. 7266 */ 7267 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma) 7268 { 7269 hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE), 7270 ALIGN_DOWN(vma->vm_end, PUD_SIZE), 7271 /* take_locks = */ true); 7272 } 7273 7274 /* 7275 * For hugetlb, mremap() is an odd edge case - while the VMA copying is 7276 * performed, we permit both the old and new VMAs to reference the same 7277 * reservation. 7278 * 7279 * We fix this up after the operation succeeds, or if a newly allocated VMA 7280 * is closed as a result of a failure to allocate memory. 7281 */ 7282 void fixup_hugetlb_reservations(struct vm_area_struct *vma) 7283 { 7284 if (is_vm_hugetlb_page(vma)) 7285 clear_vma_resv_huge_pages(vma); 7286 } 7287