xref: /linux/mm/hugetlb.c (revision 4bb1eb3cd4bd6241d5e5f99bbfd801ea5a007b6c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 
34 #include <asm/page.h>
35 #include <asm/pgalloc.h>
36 #include <asm/tlb.h>
37 
38 #include <linux/io.h>
39 #include <linux/hugetlb.h>
40 #include <linux/hugetlb_cgroup.h>
41 #include <linux/node.h>
42 #include <linux/userfaultfd_k.h>
43 #include <linux/page_owner.h>
44 #include "internal.h"
45 
46 int hugetlb_max_hstate __read_mostly;
47 unsigned int default_hstate_idx;
48 struct hstate hstates[HUGE_MAX_HSTATE];
49 
50 #ifdef CONFIG_CMA
51 static struct cma *hugetlb_cma[MAX_NUMNODES];
52 #endif
53 static unsigned long hugetlb_cma_size __initdata;
54 
55 /*
56  * Minimum page order among possible hugepage sizes, set to a proper value
57  * at boot time.
58  */
59 static unsigned int minimum_order __read_mostly = UINT_MAX;
60 
61 __initdata LIST_HEAD(huge_boot_pages);
62 
63 /* for command line parsing */
64 static struct hstate * __initdata parsed_hstate;
65 static unsigned long __initdata default_hstate_max_huge_pages;
66 static bool __initdata parsed_valid_hugepagesz = true;
67 static bool __initdata parsed_default_hugepagesz;
68 
69 /*
70  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
71  * free_huge_pages, and surplus_huge_pages.
72  */
73 DEFINE_SPINLOCK(hugetlb_lock);
74 
75 /*
76  * Serializes faults on the same logical page.  This is used to
77  * prevent spurious OOMs when the hugepage pool is fully utilized.
78  */
79 static int num_fault_mutexes;
80 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
81 
82 /* Forward declaration */
83 static int hugetlb_acct_memory(struct hstate *h, long delta);
84 
85 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
86 {
87 	bool free = (spool->count == 0) && (spool->used_hpages == 0);
88 
89 	spin_unlock(&spool->lock);
90 
91 	/* If no pages are used, and no other handles to the subpool
92 	 * remain, give up any reservations based on minimum size and
93 	 * free the subpool */
94 	if (free) {
95 		if (spool->min_hpages != -1)
96 			hugetlb_acct_memory(spool->hstate,
97 						-spool->min_hpages);
98 		kfree(spool);
99 	}
100 }
101 
102 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
103 						long min_hpages)
104 {
105 	struct hugepage_subpool *spool;
106 
107 	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
108 	if (!spool)
109 		return NULL;
110 
111 	spin_lock_init(&spool->lock);
112 	spool->count = 1;
113 	spool->max_hpages = max_hpages;
114 	spool->hstate = h;
115 	spool->min_hpages = min_hpages;
116 
117 	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
118 		kfree(spool);
119 		return NULL;
120 	}
121 	spool->rsv_hpages = min_hpages;
122 
123 	return spool;
124 }
125 
126 void hugepage_put_subpool(struct hugepage_subpool *spool)
127 {
128 	spin_lock(&spool->lock);
129 	BUG_ON(!spool->count);
130 	spool->count--;
131 	unlock_or_release_subpool(spool);
132 }
133 
134 /*
135  * Subpool accounting for allocating and reserving pages.
136  * Return -ENOMEM if there are not enough resources to satisfy the
137  * request.  Otherwise, return the number of pages by which the
138  * global pools must be adjusted (upward).  The returned value may
139  * only be different than the passed value (delta) in the case where
140  * a subpool minimum size must be maintained.
141  */
142 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
143 				      long delta)
144 {
145 	long ret = delta;
146 
147 	if (!spool)
148 		return ret;
149 
150 	spin_lock(&spool->lock);
151 
152 	if (spool->max_hpages != -1) {		/* maximum size accounting */
153 		if ((spool->used_hpages + delta) <= spool->max_hpages)
154 			spool->used_hpages += delta;
155 		else {
156 			ret = -ENOMEM;
157 			goto unlock_ret;
158 		}
159 	}
160 
161 	/* minimum size accounting */
162 	if (spool->min_hpages != -1 && spool->rsv_hpages) {
163 		if (delta > spool->rsv_hpages) {
164 			/*
165 			 * Asking for more reserves than those already taken on
166 			 * behalf of subpool.  Return difference.
167 			 */
168 			ret = delta - spool->rsv_hpages;
169 			spool->rsv_hpages = 0;
170 		} else {
171 			ret = 0;	/* reserves already accounted for */
172 			spool->rsv_hpages -= delta;
173 		}
174 	}
175 
176 unlock_ret:
177 	spin_unlock(&spool->lock);
178 	return ret;
179 }
180 
181 /*
182  * Subpool accounting for freeing and unreserving pages.
183  * Return the number of global page reservations that must be dropped.
184  * The return value may only be different than the passed value (delta)
185  * in the case where a subpool minimum size must be maintained.
186  */
187 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
188 				       long delta)
189 {
190 	long ret = delta;
191 
192 	if (!spool)
193 		return delta;
194 
195 	spin_lock(&spool->lock);
196 
197 	if (spool->max_hpages != -1)		/* maximum size accounting */
198 		spool->used_hpages -= delta;
199 
200 	 /* minimum size accounting */
201 	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
202 		if (spool->rsv_hpages + delta <= spool->min_hpages)
203 			ret = 0;
204 		else
205 			ret = spool->rsv_hpages + delta - spool->min_hpages;
206 
207 		spool->rsv_hpages += delta;
208 		if (spool->rsv_hpages > spool->min_hpages)
209 			spool->rsv_hpages = spool->min_hpages;
210 	}
211 
212 	/*
213 	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
214 	 * quota reference, free it now.
215 	 */
216 	unlock_or_release_subpool(spool);
217 
218 	return ret;
219 }
220 
221 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
222 {
223 	return HUGETLBFS_SB(inode->i_sb)->spool;
224 }
225 
226 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
227 {
228 	return subpool_inode(file_inode(vma->vm_file));
229 }
230 
231 /* Helper that removes a struct file_region from the resv_map cache and returns
232  * it for use.
233  */
234 static struct file_region *
235 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
236 {
237 	struct file_region *nrg = NULL;
238 
239 	VM_BUG_ON(resv->region_cache_count <= 0);
240 
241 	resv->region_cache_count--;
242 	nrg = list_first_entry(&resv->region_cache, struct file_region, link);
243 	VM_BUG_ON(!nrg);
244 	list_del(&nrg->link);
245 
246 	nrg->from = from;
247 	nrg->to = to;
248 
249 	return nrg;
250 }
251 
252 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
253 					      struct file_region *rg)
254 {
255 #ifdef CONFIG_CGROUP_HUGETLB
256 	nrg->reservation_counter = rg->reservation_counter;
257 	nrg->css = rg->css;
258 	if (rg->css)
259 		css_get(rg->css);
260 #endif
261 }
262 
263 /* Helper that records hugetlb_cgroup uncharge info. */
264 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
265 						struct hstate *h,
266 						struct resv_map *resv,
267 						struct file_region *nrg)
268 {
269 #ifdef CONFIG_CGROUP_HUGETLB
270 	if (h_cg) {
271 		nrg->reservation_counter =
272 			&h_cg->rsvd_hugepage[hstate_index(h)];
273 		nrg->css = &h_cg->css;
274 		if (!resv->pages_per_hpage)
275 			resv->pages_per_hpage = pages_per_huge_page(h);
276 		/* pages_per_hpage should be the same for all entries in
277 		 * a resv_map.
278 		 */
279 		VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
280 	} else {
281 		nrg->reservation_counter = NULL;
282 		nrg->css = NULL;
283 	}
284 #endif
285 }
286 
287 static bool has_same_uncharge_info(struct file_region *rg,
288 				   struct file_region *org)
289 {
290 #ifdef CONFIG_CGROUP_HUGETLB
291 	return rg && org &&
292 	       rg->reservation_counter == org->reservation_counter &&
293 	       rg->css == org->css;
294 
295 #else
296 	return true;
297 #endif
298 }
299 
300 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
301 {
302 	struct file_region *nrg = NULL, *prg = NULL;
303 
304 	prg = list_prev_entry(rg, link);
305 	if (&prg->link != &resv->regions && prg->to == rg->from &&
306 	    has_same_uncharge_info(prg, rg)) {
307 		prg->to = rg->to;
308 
309 		list_del(&rg->link);
310 		kfree(rg);
311 
312 		coalesce_file_region(resv, prg);
313 		return;
314 	}
315 
316 	nrg = list_next_entry(rg, link);
317 	if (&nrg->link != &resv->regions && nrg->from == rg->to &&
318 	    has_same_uncharge_info(nrg, rg)) {
319 		nrg->from = rg->from;
320 
321 		list_del(&rg->link);
322 		kfree(rg);
323 
324 		coalesce_file_region(resv, nrg);
325 		return;
326 	}
327 }
328 
329 /* Must be called with resv->lock held. Calling this with count_only == true
330  * will count the number of pages to be added but will not modify the linked
331  * list. If regions_needed != NULL and count_only == true, then regions_needed
332  * will indicate the number of file_regions needed in the cache to carry out to
333  * add the regions for this range.
334  */
335 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
336 				     struct hugetlb_cgroup *h_cg,
337 				     struct hstate *h, long *regions_needed,
338 				     bool count_only)
339 {
340 	long add = 0;
341 	struct list_head *head = &resv->regions;
342 	long last_accounted_offset = f;
343 	struct file_region *rg = NULL, *trg = NULL, *nrg = NULL;
344 
345 	if (regions_needed)
346 		*regions_needed = 0;
347 
348 	/* In this loop, we essentially handle an entry for the range
349 	 * [last_accounted_offset, rg->from), at every iteration, with some
350 	 * bounds checking.
351 	 */
352 	list_for_each_entry_safe(rg, trg, head, link) {
353 		/* Skip irrelevant regions that start before our range. */
354 		if (rg->from < f) {
355 			/* If this region ends after the last accounted offset,
356 			 * then we need to update last_accounted_offset.
357 			 */
358 			if (rg->to > last_accounted_offset)
359 				last_accounted_offset = rg->to;
360 			continue;
361 		}
362 
363 		/* When we find a region that starts beyond our range, we've
364 		 * finished.
365 		 */
366 		if (rg->from > t)
367 			break;
368 
369 		/* Add an entry for last_accounted_offset -> rg->from, and
370 		 * update last_accounted_offset.
371 		 */
372 		if (rg->from > last_accounted_offset) {
373 			add += rg->from - last_accounted_offset;
374 			if (!count_only) {
375 				nrg = get_file_region_entry_from_cache(
376 					resv, last_accounted_offset, rg->from);
377 				record_hugetlb_cgroup_uncharge_info(h_cg, h,
378 								    resv, nrg);
379 				list_add(&nrg->link, rg->link.prev);
380 				coalesce_file_region(resv, nrg);
381 			} else if (regions_needed)
382 				*regions_needed += 1;
383 		}
384 
385 		last_accounted_offset = rg->to;
386 	}
387 
388 	/* Handle the case where our range extends beyond
389 	 * last_accounted_offset.
390 	 */
391 	if (last_accounted_offset < t) {
392 		add += t - last_accounted_offset;
393 		if (!count_only) {
394 			nrg = get_file_region_entry_from_cache(
395 				resv, last_accounted_offset, t);
396 			record_hugetlb_cgroup_uncharge_info(h_cg, h, resv, nrg);
397 			list_add(&nrg->link, rg->link.prev);
398 			coalesce_file_region(resv, nrg);
399 		} else if (regions_needed)
400 			*regions_needed += 1;
401 	}
402 
403 	VM_BUG_ON(add < 0);
404 	return add;
405 }
406 
407 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
408  */
409 static int allocate_file_region_entries(struct resv_map *resv,
410 					int regions_needed)
411 	__must_hold(&resv->lock)
412 {
413 	struct list_head allocated_regions;
414 	int to_allocate = 0, i = 0;
415 	struct file_region *trg = NULL, *rg = NULL;
416 
417 	VM_BUG_ON(regions_needed < 0);
418 
419 	INIT_LIST_HEAD(&allocated_regions);
420 
421 	/*
422 	 * Check for sufficient descriptors in the cache to accommodate
423 	 * the number of in progress add operations plus regions_needed.
424 	 *
425 	 * This is a while loop because when we drop the lock, some other call
426 	 * to region_add or region_del may have consumed some region_entries,
427 	 * so we keep looping here until we finally have enough entries for
428 	 * (adds_in_progress + regions_needed).
429 	 */
430 	while (resv->region_cache_count <
431 	       (resv->adds_in_progress + regions_needed)) {
432 		to_allocate = resv->adds_in_progress + regions_needed -
433 			      resv->region_cache_count;
434 
435 		/* At this point, we should have enough entries in the cache
436 		 * for all the existings adds_in_progress. We should only be
437 		 * needing to allocate for regions_needed.
438 		 */
439 		VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
440 
441 		spin_unlock(&resv->lock);
442 		for (i = 0; i < to_allocate; i++) {
443 			trg = kmalloc(sizeof(*trg), GFP_KERNEL);
444 			if (!trg)
445 				goto out_of_memory;
446 			list_add(&trg->link, &allocated_regions);
447 		}
448 
449 		spin_lock(&resv->lock);
450 
451 		list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
452 			list_del(&rg->link);
453 			list_add(&rg->link, &resv->region_cache);
454 			resv->region_cache_count++;
455 		}
456 	}
457 
458 	return 0;
459 
460 out_of_memory:
461 	list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
462 		list_del(&rg->link);
463 		kfree(rg);
464 	}
465 	return -ENOMEM;
466 }
467 
468 /*
469  * Add the huge page range represented by [f, t) to the reserve
470  * map.  Regions will be taken from the cache to fill in this range.
471  * Sufficient regions should exist in the cache due to the previous
472  * call to region_chg with the same range, but in some cases the cache will not
473  * have sufficient entries due to races with other code doing region_add or
474  * region_del.  The extra needed entries will be allocated.
475  *
476  * regions_needed is the out value provided by a previous call to region_chg.
477  *
478  * Return the number of new huge pages added to the map.  This number is greater
479  * than or equal to zero.  If file_region entries needed to be allocated for
480  * this operation and we were not able to allocate, it returns -ENOMEM.
481  * region_add of regions of length 1 never allocate file_regions and cannot
482  * fail; region_chg will always allocate at least 1 entry and a region_add for
483  * 1 page will only require at most 1 entry.
484  */
485 static long region_add(struct resv_map *resv, long f, long t,
486 		       long in_regions_needed, struct hstate *h,
487 		       struct hugetlb_cgroup *h_cg)
488 {
489 	long add = 0, actual_regions_needed = 0;
490 
491 	spin_lock(&resv->lock);
492 retry:
493 
494 	/* Count how many regions are actually needed to execute this add. */
495 	add_reservation_in_range(resv, f, t, NULL, NULL, &actual_regions_needed,
496 				 true);
497 
498 	/*
499 	 * Check for sufficient descriptors in the cache to accommodate
500 	 * this add operation. Note that actual_regions_needed may be greater
501 	 * than in_regions_needed, as the resv_map may have been modified since
502 	 * the region_chg call. In this case, we need to make sure that we
503 	 * allocate extra entries, such that we have enough for all the
504 	 * existing adds_in_progress, plus the excess needed for this
505 	 * operation.
506 	 */
507 	if (actual_regions_needed > in_regions_needed &&
508 	    resv->region_cache_count <
509 		    resv->adds_in_progress +
510 			    (actual_regions_needed - in_regions_needed)) {
511 		/* region_add operation of range 1 should never need to
512 		 * allocate file_region entries.
513 		 */
514 		VM_BUG_ON(t - f <= 1);
515 
516 		if (allocate_file_region_entries(
517 			    resv, actual_regions_needed - in_regions_needed)) {
518 			return -ENOMEM;
519 		}
520 
521 		goto retry;
522 	}
523 
524 	add = add_reservation_in_range(resv, f, t, h_cg, h, NULL, false);
525 
526 	resv->adds_in_progress -= in_regions_needed;
527 
528 	spin_unlock(&resv->lock);
529 	VM_BUG_ON(add < 0);
530 	return add;
531 }
532 
533 /*
534  * Examine the existing reserve map and determine how many
535  * huge pages in the specified range [f, t) are NOT currently
536  * represented.  This routine is called before a subsequent
537  * call to region_add that will actually modify the reserve
538  * map to add the specified range [f, t).  region_chg does
539  * not change the number of huge pages represented by the
540  * map.  A number of new file_region structures is added to the cache as a
541  * placeholder, for the subsequent region_add call to use. At least 1
542  * file_region structure is added.
543  *
544  * out_regions_needed is the number of regions added to the
545  * resv->adds_in_progress.  This value needs to be provided to a follow up call
546  * to region_add or region_abort for proper accounting.
547  *
548  * Returns the number of huge pages that need to be added to the existing
549  * reservation map for the range [f, t).  This number is greater or equal to
550  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
551  * is needed and can not be allocated.
552  */
553 static long region_chg(struct resv_map *resv, long f, long t,
554 		       long *out_regions_needed)
555 {
556 	long chg = 0;
557 
558 	spin_lock(&resv->lock);
559 
560 	/* Count how many hugepages in this range are NOT respresented. */
561 	chg = add_reservation_in_range(resv, f, t, NULL, NULL,
562 				       out_regions_needed, true);
563 
564 	if (*out_regions_needed == 0)
565 		*out_regions_needed = 1;
566 
567 	if (allocate_file_region_entries(resv, *out_regions_needed))
568 		return -ENOMEM;
569 
570 	resv->adds_in_progress += *out_regions_needed;
571 
572 	spin_unlock(&resv->lock);
573 	return chg;
574 }
575 
576 /*
577  * Abort the in progress add operation.  The adds_in_progress field
578  * of the resv_map keeps track of the operations in progress between
579  * calls to region_chg and region_add.  Operations are sometimes
580  * aborted after the call to region_chg.  In such cases, region_abort
581  * is called to decrement the adds_in_progress counter. regions_needed
582  * is the value returned by the region_chg call, it is used to decrement
583  * the adds_in_progress counter.
584  *
585  * NOTE: The range arguments [f, t) are not needed or used in this
586  * routine.  They are kept to make reading the calling code easier as
587  * arguments will match the associated region_chg call.
588  */
589 static void region_abort(struct resv_map *resv, long f, long t,
590 			 long regions_needed)
591 {
592 	spin_lock(&resv->lock);
593 	VM_BUG_ON(!resv->region_cache_count);
594 	resv->adds_in_progress -= regions_needed;
595 	spin_unlock(&resv->lock);
596 }
597 
598 /*
599  * Delete the specified range [f, t) from the reserve map.  If the
600  * t parameter is LONG_MAX, this indicates that ALL regions after f
601  * should be deleted.  Locate the regions which intersect [f, t)
602  * and either trim, delete or split the existing regions.
603  *
604  * Returns the number of huge pages deleted from the reserve map.
605  * In the normal case, the return value is zero or more.  In the
606  * case where a region must be split, a new region descriptor must
607  * be allocated.  If the allocation fails, -ENOMEM will be returned.
608  * NOTE: If the parameter t == LONG_MAX, then we will never split
609  * a region and possibly return -ENOMEM.  Callers specifying
610  * t == LONG_MAX do not need to check for -ENOMEM error.
611  */
612 static long region_del(struct resv_map *resv, long f, long t)
613 {
614 	struct list_head *head = &resv->regions;
615 	struct file_region *rg, *trg;
616 	struct file_region *nrg = NULL;
617 	long del = 0;
618 
619 retry:
620 	spin_lock(&resv->lock);
621 	list_for_each_entry_safe(rg, trg, head, link) {
622 		/*
623 		 * Skip regions before the range to be deleted.  file_region
624 		 * ranges are normally of the form [from, to).  However, there
625 		 * may be a "placeholder" entry in the map which is of the form
626 		 * (from, to) with from == to.  Check for placeholder entries
627 		 * at the beginning of the range to be deleted.
628 		 */
629 		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
630 			continue;
631 
632 		if (rg->from >= t)
633 			break;
634 
635 		if (f > rg->from && t < rg->to) { /* Must split region */
636 			/*
637 			 * Check for an entry in the cache before dropping
638 			 * lock and attempting allocation.
639 			 */
640 			if (!nrg &&
641 			    resv->region_cache_count > resv->adds_in_progress) {
642 				nrg = list_first_entry(&resv->region_cache,
643 							struct file_region,
644 							link);
645 				list_del(&nrg->link);
646 				resv->region_cache_count--;
647 			}
648 
649 			if (!nrg) {
650 				spin_unlock(&resv->lock);
651 				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
652 				if (!nrg)
653 					return -ENOMEM;
654 				goto retry;
655 			}
656 
657 			del += t - f;
658 
659 			/* New entry for end of split region */
660 			nrg->from = t;
661 			nrg->to = rg->to;
662 
663 			copy_hugetlb_cgroup_uncharge_info(nrg, rg);
664 
665 			INIT_LIST_HEAD(&nrg->link);
666 
667 			/* Original entry is trimmed */
668 			rg->to = f;
669 
670 			hugetlb_cgroup_uncharge_file_region(
671 				resv, rg, nrg->to - nrg->from);
672 
673 			list_add(&nrg->link, &rg->link);
674 			nrg = NULL;
675 			break;
676 		}
677 
678 		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
679 			del += rg->to - rg->from;
680 			hugetlb_cgroup_uncharge_file_region(resv, rg,
681 							    rg->to - rg->from);
682 			list_del(&rg->link);
683 			kfree(rg);
684 			continue;
685 		}
686 
687 		if (f <= rg->from) {	/* Trim beginning of region */
688 			del += t - rg->from;
689 			rg->from = t;
690 
691 			hugetlb_cgroup_uncharge_file_region(resv, rg,
692 							    t - rg->from);
693 		} else {		/* Trim end of region */
694 			del += rg->to - f;
695 			rg->to = f;
696 
697 			hugetlb_cgroup_uncharge_file_region(resv, rg,
698 							    rg->to - f);
699 		}
700 	}
701 
702 	spin_unlock(&resv->lock);
703 	kfree(nrg);
704 	return del;
705 }
706 
707 /*
708  * A rare out of memory error was encountered which prevented removal of
709  * the reserve map region for a page.  The huge page itself was free'ed
710  * and removed from the page cache.  This routine will adjust the subpool
711  * usage count, and the global reserve count if needed.  By incrementing
712  * these counts, the reserve map entry which could not be deleted will
713  * appear as a "reserved" entry instead of simply dangling with incorrect
714  * counts.
715  */
716 void hugetlb_fix_reserve_counts(struct inode *inode)
717 {
718 	struct hugepage_subpool *spool = subpool_inode(inode);
719 	long rsv_adjust;
720 
721 	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
722 	if (rsv_adjust) {
723 		struct hstate *h = hstate_inode(inode);
724 
725 		hugetlb_acct_memory(h, 1);
726 	}
727 }
728 
729 /*
730  * Count and return the number of huge pages in the reserve map
731  * that intersect with the range [f, t).
732  */
733 static long region_count(struct resv_map *resv, long f, long t)
734 {
735 	struct list_head *head = &resv->regions;
736 	struct file_region *rg;
737 	long chg = 0;
738 
739 	spin_lock(&resv->lock);
740 	/* Locate each segment we overlap with, and count that overlap. */
741 	list_for_each_entry(rg, head, link) {
742 		long seg_from;
743 		long seg_to;
744 
745 		if (rg->to <= f)
746 			continue;
747 		if (rg->from >= t)
748 			break;
749 
750 		seg_from = max(rg->from, f);
751 		seg_to = min(rg->to, t);
752 
753 		chg += seg_to - seg_from;
754 	}
755 	spin_unlock(&resv->lock);
756 
757 	return chg;
758 }
759 
760 /*
761  * Convert the address within this vma to the page offset within
762  * the mapping, in pagecache page units; huge pages here.
763  */
764 static pgoff_t vma_hugecache_offset(struct hstate *h,
765 			struct vm_area_struct *vma, unsigned long address)
766 {
767 	return ((address - vma->vm_start) >> huge_page_shift(h)) +
768 			(vma->vm_pgoff >> huge_page_order(h));
769 }
770 
771 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
772 				     unsigned long address)
773 {
774 	return vma_hugecache_offset(hstate_vma(vma), vma, address);
775 }
776 EXPORT_SYMBOL_GPL(linear_hugepage_index);
777 
778 /*
779  * Return the size of the pages allocated when backing a VMA. In the majority
780  * cases this will be same size as used by the page table entries.
781  */
782 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
783 {
784 	if (vma->vm_ops && vma->vm_ops->pagesize)
785 		return vma->vm_ops->pagesize(vma);
786 	return PAGE_SIZE;
787 }
788 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
789 
790 /*
791  * Return the page size being used by the MMU to back a VMA. In the majority
792  * of cases, the page size used by the kernel matches the MMU size. On
793  * architectures where it differs, an architecture-specific 'strong'
794  * version of this symbol is required.
795  */
796 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
797 {
798 	return vma_kernel_pagesize(vma);
799 }
800 
801 /*
802  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
803  * bits of the reservation map pointer, which are always clear due to
804  * alignment.
805  */
806 #define HPAGE_RESV_OWNER    (1UL << 0)
807 #define HPAGE_RESV_UNMAPPED (1UL << 1)
808 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
809 
810 /*
811  * These helpers are used to track how many pages are reserved for
812  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
813  * is guaranteed to have their future faults succeed.
814  *
815  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
816  * the reserve counters are updated with the hugetlb_lock held. It is safe
817  * to reset the VMA at fork() time as it is not in use yet and there is no
818  * chance of the global counters getting corrupted as a result of the values.
819  *
820  * The private mapping reservation is represented in a subtly different
821  * manner to a shared mapping.  A shared mapping has a region map associated
822  * with the underlying file, this region map represents the backing file
823  * pages which have ever had a reservation assigned which this persists even
824  * after the page is instantiated.  A private mapping has a region map
825  * associated with the original mmap which is attached to all VMAs which
826  * reference it, this region map represents those offsets which have consumed
827  * reservation ie. where pages have been instantiated.
828  */
829 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
830 {
831 	return (unsigned long)vma->vm_private_data;
832 }
833 
834 static void set_vma_private_data(struct vm_area_struct *vma,
835 							unsigned long value)
836 {
837 	vma->vm_private_data = (void *)value;
838 }
839 
840 static void
841 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
842 					  struct hugetlb_cgroup *h_cg,
843 					  struct hstate *h)
844 {
845 #ifdef CONFIG_CGROUP_HUGETLB
846 	if (!h_cg || !h) {
847 		resv_map->reservation_counter = NULL;
848 		resv_map->pages_per_hpage = 0;
849 		resv_map->css = NULL;
850 	} else {
851 		resv_map->reservation_counter =
852 			&h_cg->rsvd_hugepage[hstate_index(h)];
853 		resv_map->pages_per_hpage = pages_per_huge_page(h);
854 		resv_map->css = &h_cg->css;
855 	}
856 #endif
857 }
858 
859 struct resv_map *resv_map_alloc(void)
860 {
861 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
862 	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
863 
864 	if (!resv_map || !rg) {
865 		kfree(resv_map);
866 		kfree(rg);
867 		return NULL;
868 	}
869 
870 	kref_init(&resv_map->refs);
871 	spin_lock_init(&resv_map->lock);
872 	INIT_LIST_HEAD(&resv_map->regions);
873 
874 	resv_map->adds_in_progress = 0;
875 	/*
876 	 * Initialize these to 0. On shared mappings, 0's here indicate these
877 	 * fields don't do cgroup accounting. On private mappings, these will be
878 	 * re-initialized to the proper values, to indicate that hugetlb cgroup
879 	 * reservations are to be un-charged from here.
880 	 */
881 	resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
882 
883 	INIT_LIST_HEAD(&resv_map->region_cache);
884 	list_add(&rg->link, &resv_map->region_cache);
885 	resv_map->region_cache_count = 1;
886 
887 	return resv_map;
888 }
889 
890 void resv_map_release(struct kref *ref)
891 {
892 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
893 	struct list_head *head = &resv_map->region_cache;
894 	struct file_region *rg, *trg;
895 
896 	/* Clear out any active regions before we release the map. */
897 	region_del(resv_map, 0, LONG_MAX);
898 
899 	/* ... and any entries left in the cache */
900 	list_for_each_entry_safe(rg, trg, head, link) {
901 		list_del(&rg->link);
902 		kfree(rg);
903 	}
904 
905 	VM_BUG_ON(resv_map->adds_in_progress);
906 
907 	kfree(resv_map);
908 }
909 
910 static inline struct resv_map *inode_resv_map(struct inode *inode)
911 {
912 	/*
913 	 * At inode evict time, i_mapping may not point to the original
914 	 * address space within the inode.  This original address space
915 	 * contains the pointer to the resv_map.  So, always use the
916 	 * address space embedded within the inode.
917 	 * The VERY common case is inode->mapping == &inode->i_data but,
918 	 * this may not be true for device special inodes.
919 	 */
920 	return (struct resv_map *)(&inode->i_data)->private_data;
921 }
922 
923 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
924 {
925 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
926 	if (vma->vm_flags & VM_MAYSHARE) {
927 		struct address_space *mapping = vma->vm_file->f_mapping;
928 		struct inode *inode = mapping->host;
929 
930 		return inode_resv_map(inode);
931 
932 	} else {
933 		return (struct resv_map *)(get_vma_private_data(vma) &
934 							~HPAGE_RESV_MASK);
935 	}
936 }
937 
938 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
939 {
940 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
941 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
942 
943 	set_vma_private_data(vma, (get_vma_private_data(vma) &
944 				HPAGE_RESV_MASK) | (unsigned long)map);
945 }
946 
947 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
948 {
949 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
950 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
951 
952 	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
953 }
954 
955 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
956 {
957 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
958 
959 	return (get_vma_private_data(vma) & flag) != 0;
960 }
961 
962 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
963 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
964 {
965 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
966 	if (!(vma->vm_flags & VM_MAYSHARE))
967 		vma->vm_private_data = (void *)0;
968 }
969 
970 /* Returns true if the VMA has associated reserve pages */
971 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
972 {
973 	if (vma->vm_flags & VM_NORESERVE) {
974 		/*
975 		 * This address is already reserved by other process(chg == 0),
976 		 * so, we should decrement reserved count. Without decrementing,
977 		 * reserve count remains after releasing inode, because this
978 		 * allocated page will go into page cache and is regarded as
979 		 * coming from reserved pool in releasing step.  Currently, we
980 		 * don't have any other solution to deal with this situation
981 		 * properly, so add work-around here.
982 		 */
983 		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
984 			return true;
985 		else
986 			return false;
987 	}
988 
989 	/* Shared mappings always use reserves */
990 	if (vma->vm_flags & VM_MAYSHARE) {
991 		/*
992 		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
993 		 * be a region map for all pages.  The only situation where
994 		 * there is no region map is if a hole was punched via
995 		 * fallocate.  In this case, there really are no reserves to
996 		 * use.  This situation is indicated if chg != 0.
997 		 */
998 		if (chg)
999 			return false;
1000 		else
1001 			return true;
1002 	}
1003 
1004 	/*
1005 	 * Only the process that called mmap() has reserves for
1006 	 * private mappings.
1007 	 */
1008 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1009 		/*
1010 		 * Like the shared case above, a hole punch or truncate
1011 		 * could have been performed on the private mapping.
1012 		 * Examine the value of chg to determine if reserves
1013 		 * actually exist or were previously consumed.
1014 		 * Very Subtle - The value of chg comes from a previous
1015 		 * call to vma_needs_reserves().  The reserve map for
1016 		 * private mappings has different (opposite) semantics
1017 		 * than that of shared mappings.  vma_needs_reserves()
1018 		 * has already taken this difference in semantics into
1019 		 * account.  Therefore, the meaning of chg is the same
1020 		 * as in the shared case above.  Code could easily be
1021 		 * combined, but keeping it separate draws attention to
1022 		 * subtle differences.
1023 		 */
1024 		if (chg)
1025 			return false;
1026 		else
1027 			return true;
1028 	}
1029 
1030 	return false;
1031 }
1032 
1033 static void enqueue_huge_page(struct hstate *h, struct page *page)
1034 {
1035 	int nid = page_to_nid(page);
1036 	list_move(&page->lru, &h->hugepage_freelists[nid]);
1037 	h->free_huge_pages++;
1038 	h->free_huge_pages_node[nid]++;
1039 }
1040 
1041 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1042 {
1043 	struct page *page;
1044 	bool nocma = !!(current->flags & PF_MEMALLOC_NOCMA);
1045 
1046 	list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1047 		if (nocma && is_migrate_cma_page(page))
1048 			continue;
1049 
1050 		if (!PageHWPoison(page))
1051 			break;
1052 	}
1053 
1054 	/*
1055 	 * if 'non-isolated free hugepage' not found on the list,
1056 	 * the allocation fails.
1057 	 */
1058 	if (&h->hugepage_freelists[nid] == &page->lru)
1059 		return NULL;
1060 	list_move(&page->lru, &h->hugepage_activelist);
1061 	set_page_refcounted(page);
1062 	h->free_huge_pages--;
1063 	h->free_huge_pages_node[nid]--;
1064 	return page;
1065 }
1066 
1067 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1068 		nodemask_t *nmask)
1069 {
1070 	unsigned int cpuset_mems_cookie;
1071 	struct zonelist *zonelist;
1072 	struct zone *zone;
1073 	struct zoneref *z;
1074 	int node = NUMA_NO_NODE;
1075 
1076 	zonelist = node_zonelist(nid, gfp_mask);
1077 
1078 retry_cpuset:
1079 	cpuset_mems_cookie = read_mems_allowed_begin();
1080 	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1081 		struct page *page;
1082 
1083 		if (!cpuset_zone_allowed(zone, gfp_mask))
1084 			continue;
1085 		/*
1086 		 * no need to ask again on the same node. Pool is node rather than
1087 		 * zone aware
1088 		 */
1089 		if (zone_to_nid(zone) == node)
1090 			continue;
1091 		node = zone_to_nid(zone);
1092 
1093 		page = dequeue_huge_page_node_exact(h, node);
1094 		if (page)
1095 			return page;
1096 	}
1097 	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1098 		goto retry_cpuset;
1099 
1100 	return NULL;
1101 }
1102 
1103 static struct page *dequeue_huge_page_vma(struct hstate *h,
1104 				struct vm_area_struct *vma,
1105 				unsigned long address, int avoid_reserve,
1106 				long chg)
1107 {
1108 	struct page *page;
1109 	struct mempolicy *mpol;
1110 	gfp_t gfp_mask;
1111 	nodemask_t *nodemask;
1112 	int nid;
1113 
1114 	/*
1115 	 * A child process with MAP_PRIVATE mappings created by their parent
1116 	 * have no page reserves. This check ensures that reservations are
1117 	 * not "stolen". The child may still get SIGKILLed
1118 	 */
1119 	if (!vma_has_reserves(vma, chg) &&
1120 			h->free_huge_pages - h->resv_huge_pages == 0)
1121 		goto err;
1122 
1123 	/* If reserves cannot be used, ensure enough pages are in the pool */
1124 	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
1125 		goto err;
1126 
1127 	gfp_mask = htlb_alloc_mask(h);
1128 	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1129 	page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1130 	if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1131 		SetPagePrivate(page);
1132 		h->resv_huge_pages--;
1133 	}
1134 
1135 	mpol_cond_put(mpol);
1136 	return page;
1137 
1138 err:
1139 	return NULL;
1140 }
1141 
1142 /*
1143  * common helper functions for hstate_next_node_to_{alloc|free}.
1144  * We may have allocated or freed a huge page based on a different
1145  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1146  * be outside of *nodes_allowed.  Ensure that we use an allowed
1147  * node for alloc or free.
1148  */
1149 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1150 {
1151 	nid = next_node_in(nid, *nodes_allowed);
1152 	VM_BUG_ON(nid >= MAX_NUMNODES);
1153 
1154 	return nid;
1155 }
1156 
1157 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1158 {
1159 	if (!node_isset(nid, *nodes_allowed))
1160 		nid = next_node_allowed(nid, nodes_allowed);
1161 	return nid;
1162 }
1163 
1164 /*
1165  * returns the previously saved node ["this node"] from which to
1166  * allocate a persistent huge page for the pool and advance the
1167  * next node from which to allocate, handling wrap at end of node
1168  * mask.
1169  */
1170 static int hstate_next_node_to_alloc(struct hstate *h,
1171 					nodemask_t *nodes_allowed)
1172 {
1173 	int nid;
1174 
1175 	VM_BUG_ON(!nodes_allowed);
1176 
1177 	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1178 	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1179 
1180 	return nid;
1181 }
1182 
1183 /*
1184  * helper for free_pool_huge_page() - return the previously saved
1185  * node ["this node"] from which to free a huge page.  Advance the
1186  * next node id whether or not we find a free huge page to free so
1187  * that the next attempt to free addresses the next node.
1188  */
1189 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1190 {
1191 	int nid;
1192 
1193 	VM_BUG_ON(!nodes_allowed);
1194 
1195 	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1196 	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1197 
1198 	return nid;
1199 }
1200 
1201 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
1202 	for (nr_nodes = nodes_weight(*mask);				\
1203 		nr_nodes > 0 &&						\
1204 		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
1205 		nr_nodes--)
1206 
1207 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
1208 	for (nr_nodes = nodes_weight(*mask);				\
1209 		nr_nodes > 0 &&						\
1210 		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
1211 		nr_nodes--)
1212 
1213 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1214 static void destroy_compound_gigantic_page(struct page *page,
1215 					unsigned int order)
1216 {
1217 	int i;
1218 	int nr_pages = 1 << order;
1219 	struct page *p = page + 1;
1220 
1221 	atomic_set(compound_mapcount_ptr(page), 0);
1222 	if (hpage_pincount_available(page))
1223 		atomic_set(compound_pincount_ptr(page), 0);
1224 
1225 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1226 		clear_compound_head(p);
1227 		set_page_refcounted(p);
1228 	}
1229 
1230 	set_compound_order(page, 0);
1231 	__ClearPageHead(page);
1232 }
1233 
1234 static void free_gigantic_page(struct page *page, unsigned int order)
1235 {
1236 	/*
1237 	 * If the page isn't allocated using the cma allocator,
1238 	 * cma_release() returns false.
1239 	 */
1240 #ifdef CONFIG_CMA
1241 	if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1242 		return;
1243 #endif
1244 
1245 	free_contig_range(page_to_pfn(page), 1 << order);
1246 }
1247 
1248 #ifdef CONFIG_CONTIG_ALLOC
1249 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1250 		int nid, nodemask_t *nodemask)
1251 {
1252 	unsigned long nr_pages = 1UL << huge_page_order(h);
1253 
1254 #ifdef CONFIG_CMA
1255 	{
1256 		struct page *page;
1257 		int node;
1258 
1259 		for_each_node_mask(node, *nodemask) {
1260 			if (!hugetlb_cma[node])
1261 				continue;
1262 
1263 			page = cma_alloc(hugetlb_cma[node], nr_pages,
1264 					 huge_page_order(h), true);
1265 			if (page)
1266 				return page;
1267 		}
1268 	}
1269 #endif
1270 
1271 	return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1272 }
1273 
1274 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1275 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1276 #else /* !CONFIG_CONTIG_ALLOC */
1277 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1278 					int nid, nodemask_t *nodemask)
1279 {
1280 	return NULL;
1281 }
1282 #endif /* CONFIG_CONTIG_ALLOC */
1283 
1284 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1285 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1286 					int nid, nodemask_t *nodemask)
1287 {
1288 	return NULL;
1289 }
1290 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1291 static inline void destroy_compound_gigantic_page(struct page *page,
1292 						unsigned int order) { }
1293 #endif
1294 
1295 static void update_and_free_page(struct hstate *h, struct page *page)
1296 {
1297 	int i;
1298 
1299 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1300 		return;
1301 
1302 	h->nr_huge_pages--;
1303 	h->nr_huge_pages_node[page_to_nid(page)]--;
1304 	for (i = 0; i < pages_per_huge_page(h); i++) {
1305 		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1306 				1 << PG_referenced | 1 << PG_dirty |
1307 				1 << PG_active | 1 << PG_private |
1308 				1 << PG_writeback);
1309 	}
1310 	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1311 	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1312 	set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1313 	set_page_refcounted(page);
1314 	if (hstate_is_gigantic(h)) {
1315 		/*
1316 		 * Temporarily drop the hugetlb_lock, because
1317 		 * we might block in free_gigantic_page().
1318 		 */
1319 		spin_unlock(&hugetlb_lock);
1320 		destroy_compound_gigantic_page(page, huge_page_order(h));
1321 		free_gigantic_page(page, huge_page_order(h));
1322 		spin_lock(&hugetlb_lock);
1323 	} else {
1324 		__free_pages(page, huge_page_order(h));
1325 	}
1326 }
1327 
1328 struct hstate *size_to_hstate(unsigned long size)
1329 {
1330 	struct hstate *h;
1331 
1332 	for_each_hstate(h) {
1333 		if (huge_page_size(h) == size)
1334 			return h;
1335 	}
1336 	return NULL;
1337 }
1338 
1339 /*
1340  * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1341  * to hstate->hugepage_activelist.)
1342  *
1343  * This function can be called for tail pages, but never returns true for them.
1344  */
1345 bool page_huge_active(struct page *page)
1346 {
1347 	VM_BUG_ON_PAGE(!PageHuge(page), page);
1348 	return PageHead(page) && PagePrivate(&page[1]);
1349 }
1350 
1351 /* never called for tail page */
1352 static void set_page_huge_active(struct page *page)
1353 {
1354 	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1355 	SetPagePrivate(&page[1]);
1356 }
1357 
1358 static void clear_page_huge_active(struct page *page)
1359 {
1360 	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1361 	ClearPagePrivate(&page[1]);
1362 }
1363 
1364 /*
1365  * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1366  * code
1367  */
1368 static inline bool PageHugeTemporary(struct page *page)
1369 {
1370 	if (!PageHuge(page))
1371 		return false;
1372 
1373 	return (unsigned long)page[2].mapping == -1U;
1374 }
1375 
1376 static inline void SetPageHugeTemporary(struct page *page)
1377 {
1378 	page[2].mapping = (void *)-1U;
1379 }
1380 
1381 static inline void ClearPageHugeTemporary(struct page *page)
1382 {
1383 	page[2].mapping = NULL;
1384 }
1385 
1386 static void __free_huge_page(struct page *page)
1387 {
1388 	/*
1389 	 * Can't pass hstate in here because it is called from the
1390 	 * compound page destructor.
1391 	 */
1392 	struct hstate *h = page_hstate(page);
1393 	int nid = page_to_nid(page);
1394 	struct hugepage_subpool *spool =
1395 		(struct hugepage_subpool *)page_private(page);
1396 	bool restore_reserve;
1397 
1398 	VM_BUG_ON_PAGE(page_count(page), page);
1399 	VM_BUG_ON_PAGE(page_mapcount(page), page);
1400 
1401 	set_page_private(page, 0);
1402 	page->mapping = NULL;
1403 	restore_reserve = PagePrivate(page);
1404 	ClearPagePrivate(page);
1405 
1406 	/*
1407 	 * If PagePrivate() was set on page, page allocation consumed a
1408 	 * reservation.  If the page was associated with a subpool, there
1409 	 * would have been a page reserved in the subpool before allocation
1410 	 * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1411 	 * reservtion, do not call hugepage_subpool_put_pages() as this will
1412 	 * remove the reserved page from the subpool.
1413 	 */
1414 	if (!restore_reserve) {
1415 		/*
1416 		 * A return code of zero implies that the subpool will be
1417 		 * under its minimum size if the reservation is not restored
1418 		 * after page is free.  Therefore, force restore_reserve
1419 		 * operation.
1420 		 */
1421 		if (hugepage_subpool_put_pages(spool, 1) == 0)
1422 			restore_reserve = true;
1423 	}
1424 
1425 	spin_lock(&hugetlb_lock);
1426 	clear_page_huge_active(page);
1427 	hugetlb_cgroup_uncharge_page(hstate_index(h),
1428 				     pages_per_huge_page(h), page);
1429 	hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1430 					  pages_per_huge_page(h), page);
1431 	if (restore_reserve)
1432 		h->resv_huge_pages++;
1433 
1434 	if (PageHugeTemporary(page)) {
1435 		list_del(&page->lru);
1436 		ClearPageHugeTemporary(page);
1437 		update_and_free_page(h, page);
1438 	} else if (h->surplus_huge_pages_node[nid]) {
1439 		/* remove the page from active list */
1440 		list_del(&page->lru);
1441 		update_and_free_page(h, page);
1442 		h->surplus_huge_pages--;
1443 		h->surplus_huge_pages_node[nid]--;
1444 	} else {
1445 		arch_clear_hugepage_flags(page);
1446 		enqueue_huge_page(h, page);
1447 	}
1448 	spin_unlock(&hugetlb_lock);
1449 }
1450 
1451 /*
1452  * As free_huge_page() can be called from a non-task context, we have
1453  * to defer the actual freeing in a workqueue to prevent potential
1454  * hugetlb_lock deadlock.
1455  *
1456  * free_hpage_workfn() locklessly retrieves the linked list of pages to
1457  * be freed and frees them one-by-one. As the page->mapping pointer is
1458  * going to be cleared in __free_huge_page() anyway, it is reused as the
1459  * llist_node structure of a lockless linked list of huge pages to be freed.
1460  */
1461 static LLIST_HEAD(hpage_freelist);
1462 
1463 static void free_hpage_workfn(struct work_struct *work)
1464 {
1465 	struct llist_node *node;
1466 	struct page *page;
1467 
1468 	node = llist_del_all(&hpage_freelist);
1469 
1470 	while (node) {
1471 		page = container_of((struct address_space **)node,
1472 				     struct page, mapping);
1473 		node = node->next;
1474 		__free_huge_page(page);
1475 	}
1476 }
1477 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1478 
1479 void free_huge_page(struct page *page)
1480 {
1481 	/*
1482 	 * Defer freeing if in non-task context to avoid hugetlb_lock deadlock.
1483 	 */
1484 	if (!in_task()) {
1485 		/*
1486 		 * Only call schedule_work() if hpage_freelist is previously
1487 		 * empty. Otherwise, schedule_work() had been called but the
1488 		 * workfn hasn't retrieved the list yet.
1489 		 */
1490 		if (llist_add((struct llist_node *)&page->mapping,
1491 			      &hpage_freelist))
1492 			schedule_work(&free_hpage_work);
1493 		return;
1494 	}
1495 
1496 	__free_huge_page(page);
1497 }
1498 
1499 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1500 {
1501 	INIT_LIST_HEAD(&page->lru);
1502 	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1503 	spin_lock(&hugetlb_lock);
1504 	set_hugetlb_cgroup(page, NULL);
1505 	set_hugetlb_cgroup_rsvd(page, NULL);
1506 	h->nr_huge_pages++;
1507 	h->nr_huge_pages_node[nid]++;
1508 	spin_unlock(&hugetlb_lock);
1509 }
1510 
1511 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1512 {
1513 	int i;
1514 	int nr_pages = 1 << order;
1515 	struct page *p = page + 1;
1516 
1517 	/* we rely on prep_new_huge_page to set the destructor */
1518 	set_compound_order(page, order);
1519 	__ClearPageReserved(page);
1520 	__SetPageHead(page);
1521 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1522 		/*
1523 		 * For gigantic hugepages allocated through bootmem at
1524 		 * boot, it's safer to be consistent with the not-gigantic
1525 		 * hugepages and clear the PG_reserved bit from all tail pages
1526 		 * too.  Otherwise drivers using get_user_pages() to access tail
1527 		 * pages may get the reference counting wrong if they see
1528 		 * PG_reserved set on a tail page (despite the head page not
1529 		 * having PG_reserved set).  Enforcing this consistency between
1530 		 * head and tail pages allows drivers to optimize away a check
1531 		 * on the head page when they need know if put_page() is needed
1532 		 * after get_user_pages().
1533 		 */
1534 		__ClearPageReserved(p);
1535 		set_page_count(p, 0);
1536 		set_compound_head(p, page);
1537 	}
1538 	atomic_set(compound_mapcount_ptr(page), -1);
1539 
1540 	if (hpage_pincount_available(page))
1541 		atomic_set(compound_pincount_ptr(page), 0);
1542 }
1543 
1544 /*
1545  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1546  * transparent huge pages.  See the PageTransHuge() documentation for more
1547  * details.
1548  */
1549 int PageHuge(struct page *page)
1550 {
1551 	if (!PageCompound(page))
1552 		return 0;
1553 
1554 	page = compound_head(page);
1555 	return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1556 }
1557 EXPORT_SYMBOL_GPL(PageHuge);
1558 
1559 /*
1560  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1561  * normal or transparent huge pages.
1562  */
1563 int PageHeadHuge(struct page *page_head)
1564 {
1565 	if (!PageHead(page_head))
1566 		return 0;
1567 
1568 	return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1569 }
1570 
1571 /*
1572  * Find address_space associated with hugetlbfs page.
1573  * Upon entry page is locked and page 'was' mapped although mapped state
1574  * could change.  If necessary, use anon_vma to find vma and associated
1575  * address space.  The returned mapping may be stale, but it can not be
1576  * invalid as page lock (which is held) is required to destroy mapping.
1577  */
1578 static struct address_space *_get_hugetlb_page_mapping(struct page *hpage)
1579 {
1580 	struct anon_vma *anon_vma;
1581 	pgoff_t pgoff_start, pgoff_end;
1582 	struct anon_vma_chain *avc;
1583 	struct address_space *mapping = page_mapping(hpage);
1584 
1585 	/* Simple file based mapping */
1586 	if (mapping)
1587 		return mapping;
1588 
1589 	/*
1590 	 * Even anonymous hugetlbfs mappings are associated with an
1591 	 * underlying hugetlbfs file (see hugetlb_file_setup in mmap
1592 	 * code).  Find a vma associated with the anonymous vma, and
1593 	 * use the file pointer to get address_space.
1594 	 */
1595 	anon_vma = page_lock_anon_vma_read(hpage);
1596 	if (!anon_vma)
1597 		return mapping;  /* NULL */
1598 
1599 	/* Use first found vma */
1600 	pgoff_start = page_to_pgoff(hpage);
1601 	pgoff_end = pgoff_start + pages_per_huge_page(page_hstate(hpage)) - 1;
1602 	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
1603 					pgoff_start, pgoff_end) {
1604 		struct vm_area_struct *vma = avc->vma;
1605 
1606 		mapping = vma->vm_file->f_mapping;
1607 		break;
1608 	}
1609 
1610 	anon_vma_unlock_read(anon_vma);
1611 	return mapping;
1612 }
1613 
1614 /*
1615  * Find and lock address space (mapping) in write mode.
1616  *
1617  * Upon entry, the page is locked which allows us to find the mapping
1618  * even in the case of an anon page.  However, locking order dictates
1619  * the i_mmap_rwsem be acquired BEFORE the page lock.  This is hugetlbfs
1620  * specific.  So, we first try to lock the sema while still holding the
1621  * page lock.  If this works, great!  If not, then we need to drop the
1622  * page lock and then acquire i_mmap_rwsem and reacquire page lock.  Of
1623  * course, need to revalidate state along the way.
1624  */
1625 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1626 {
1627 	struct address_space *mapping, *mapping2;
1628 
1629 	mapping = _get_hugetlb_page_mapping(hpage);
1630 retry:
1631 	if (!mapping)
1632 		return mapping;
1633 
1634 	/*
1635 	 * If no contention, take lock and return
1636 	 */
1637 	if (i_mmap_trylock_write(mapping))
1638 		return mapping;
1639 
1640 	/*
1641 	 * Must drop page lock and wait on mapping sema.
1642 	 * Note:  Once page lock is dropped, mapping could become invalid.
1643 	 * As a hack, increase map count until we lock page again.
1644 	 */
1645 	atomic_inc(&hpage->_mapcount);
1646 	unlock_page(hpage);
1647 	i_mmap_lock_write(mapping);
1648 	lock_page(hpage);
1649 	atomic_add_negative(-1, &hpage->_mapcount);
1650 
1651 	/* verify page is still mapped */
1652 	if (!page_mapped(hpage)) {
1653 		i_mmap_unlock_write(mapping);
1654 		return NULL;
1655 	}
1656 
1657 	/*
1658 	 * Get address space again and verify it is the same one
1659 	 * we locked.  If not, drop lock and retry.
1660 	 */
1661 	mapping2 = _get_hugetlb_page_mapping(hpage);
1662 	if (mapping2 != mapping) {
1663 		i_mmap_unlock_write(mapping);
1664 		mapping = mapping2;
1665 		goto retry;
1666 	}
1667 
1668 	return mapping;
1669 }
1670 
1671 pgoff_t __basepage_index(struct page *page)
1672 {
1673 	struct page *page_head = compound_head(page);
1674 	pgoff_t index = page_index(page_head);
1675 	unsigned long compound_idx;
1676 
1677 	if (!PageHuge(page_head))
1678 		return page_index(page);
1679 
1680 	if (compound_order(page_head) >= MAX_ORDER)
1681 		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1682 	else
1683 		compound_idx = page - page_head;
1684 
1685 	return (index << compound_order(page_head)) + compound_idx;
1686 }
1687 
1688 static struct page *alloc_buddy_huge_page(struct hstate *h,
1689 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
1690 		nodemask_t *node_alloc_noretry)
1691 {
1692 	int order = huge_page_order(h);
1693 	struct page *page;
1694 	bool alloc_try_hard = true;
1695 
1696 	/*
1697 	 * By default we always try hard to allocate the page with
1698 	 * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
1699 	 * a loop (to adjust global huge page counts) and previous allocation
1700 	 * failed, do not continue to try hard on the same node.  Use the
1701 	 * node_alloc_noretry bitmap to manage this state information.
1702 	 */
1703 	if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1704 		alloc_try_hard = false;
1705 	gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1706 	if (alloc_try_hard)
1707 		gfp_mask |= __GFP_RETRY_MAYFAIL;
1708 	if (nid == NUMA_NO_NODE)
1709 		nid = numa_mem_id();
1710 	page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1711 	if (page)
1712 		__count_vm_event(HTLB_BUDDY_PGALLOC);
1713 	else
1714 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1715 
1716 	/*
1717 	 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1718 	 * indicates an overall state change.  Clear bit so that we resume
1719 	 * normal 'try hard' allocations.
1720 	 */
1721 	if (node_alloc_noretry && page && !alloc_try_hard)
1722 		node_clear(nid, *node_alloc_noretry);
1723 
1724 	/*
1725 	 * If we tried hard to get a page but failed, set bit so that
1726 	 * subsequent attempts will not try as hard until there is an
1727 	 * overall state change.
1728 	 */
1729 	if (node_alloc_noretry && !page && alloc_try_hard)
1730 		node_set(nid, *node_alloc_noretry);
1731 
1732 	return page;
1733 }
1734 
1735 /*
1736  * Common helper to allocate a fresh hugetlb page. All specific allocators
1737  * should use this function to get new hugetlb pages
1738  */
1739 static struct page *alloc_fresh_huge_page(struct hstate *h,
1740 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
1741 		nodemask_t *node_alloc_noretry)
1742 {
1743 	struct page *page;
1744 
1745 	if (hstate_is_gigantic(h))
1746 		page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1747 	else
1748 		page = alloc_buddy_huge_page(h, gfp_mask,
1749 				nid, nmask, node_alloc_noretry);
1750 	if (!page)
1751 		return NULL;
1752 
1753 	if (hstate_is_gigantic(h))
1754 		prep_compound_gigantic_page(page, huge_page_order(h));
1755 	prep_new_huge_page(h, page, page_to_nid(page));
1756 
1757 	return page;
1758 }
1759 
1760 /*
1761  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1762  * manner.
1763  */
1764 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1765 				nodemask_t *node_alloc_noretry)
1766 {
1767 	struct page *page;
1768 	int nr_nodes, node;
1769 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1770 
1771 	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1772 		page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1773 						node_alloc_noretry);
1774 		if (page)
1775 			break;
1776 	}
1777 
1778 	if (!page)
1779 		return 0;
1780 
1781 	put_page(page); /* free it into the hugepage allocator */
1782 
1783 	return 1;
1784 }
1785 
1786 /*
1787  * Free huge page from pool from next node to free.
1788  * Attempt to keep persistent huge pages more or less
1789  * balanced over allowed nodes.
1790  * Called with hugetlb_lock locked.
1791  */
1792 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1793 							 bool acct_surplus)
1794 {
1795 	int nr_nodes, node;
1796 	int ret = 0;
1797 
1798 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1799 		/*
1800 		 * If we're returning unused surplus pages, only examine
1801 		 * nodes with surplus pages.
1802 		 */
1803 		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1804 		    !list_empty(&h->hugepage_freelists[node])) {
1805 			struct page *page =
1806 				list_entry(h->hugepage_freelists[node].next,
1807 					  struct page, lru);
1808 			list_del(&page->lru);
1809 			h->free_huge_pages--;
1810 			h->free_huge_pages_node[node]--;
1811 			if (acct_surplus) {
1812 				h->surplus_huge_pages--;
1813 				h->surplus_huge_pages_node[node]--;
1814 			}
1815 			update_and_free_page(h, page);
1816 			ret = 1;
1817 			break;
1818 		}
1819 	}
1820 
1821 	return ret;
1822 }
1823 
1824 /*
1825  * Dissolve a given free hugepage into free buddy pages. This function does
1826  * nothing for in-use hugepages and non-hugepages.
1827  * This function returns values like below:
1828  *
1829  *  -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1830  *          (allocated or reserved.)
1831  *       0: successfully dissolved free hugepages or the page is not a
1832  *          hugepage (considered as already dissolved)
1833  */
1834 int dissolve_free_huge_page(struct page *page)
1835 {
1836 	int rc = -EBUSY;
1837 
1838 	/* Not to disrupt normal path by vainly holding hugetlb_lock */
1839 	if (!PageHuge(page))
1840 		return 0;
1841 
1842 	spin_lock(&hugetlb_lock);
1843 	if (!PageHuge(page)) {
1844 		rc = 0;
1845 		goto out;
1846 	}
1847 
1848 	if (!page_count(page)) {
1849 		struct page *head = compound_head(page);
1850 		struct hstate *h = page_hstate(head);
1851 		int nid = page_to_nid(head);
1852 		if (h->free_huge_pages - h->resv_huge_pages == 0)
1853 			goto out;
1854 		/*
1855 		 * Move PageHWPoison flag from head page to the raw error page,
1856 		 * which makes any subpages rather than the error page reusable.
1857 		 */
1858 		if (PageHWPoison(head) && page != head) {
1859 			SetPageHWPoison(page);
1860 			ClearPageHWPoison(head);
1861 		}
1862 		list_del(&head->lru);
1863 		h->free_huge_pages--;
1864 		h->free_huge_pages_node[nid]--;
1865 		h->max_huge_pages--;
1866 		update_and_free_page(h, head);
1867 		rc = 0;
1868 	}
1869 out:
1870 	spin_unlock(&hugetlb_lock);
1871 	return rc;
1872 }
1873 
1874 /*
1875  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1876  * make specified memory blocks removable from the system.
1877  * Note that this will dissolve a free gigantic hugepage completely, if any
1878  * part of it lies within the given range.
1879  * Also note that if dissolve_free_huge_page() returns with an error, all
1880  * free hugepages that were dissolved before that error are lost.
1881  */
1882 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1883 {
1884 	unsigned long pfn;
1885 	struct page *page;
1886 	int rc = 0;
1887 
1888 	if (!hugepages_supported())
1889 		return rc;
1890 
1891 	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1892 		page = pfn_to_page(pfn);
1893 		rc = dissolve_free_huge_page(page);
1894 		if (rc)
1895 			break;
1896 	}
1897 
1898 	return rc;
1899 }
1900 
1901 /*
1902  * Allocates a fresh surplus page from the page allocator.
1903  */
1904 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1905 		int nid, nodemask_t *nmask)
1906 {
1907 	struct page *page = NULL;
1908 
1909 	if (hstate_is_gigantic(h))
1910 		return NULL;
1911 
1912 	spin_lock(&hugetlb_lock);
1913 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1914 		goto out_unlock;
1915 	spin_unlock(&hugetlb_lock);
1916 
1917 	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1918 	if (!page)
1919 		return NULL;
1920 
1921 	spin_lock(&hugetlb_lock);
1922 	/*
1923 	 * We could have raced with the pool size change.
1924 	 * Double check that and simply deallocate the new page
1925 	 * if we would end up overcommiting the surpluses. Abuse
1926 	 * temporary page to workaround the nasty free_huge_page
1927 	 * codeflow
1928 	 */
1929 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1930 		SetPageHugeTemporary(page);
1931 		spin_unlock(&hugetlb_lock);
1932 		put_page(page);
1933 		return NULL;
1934 	} else {
1935 		h->surplus_huge_pages++;
1936 		h->surplus_huge_pages_node[page_to_nid(page)]++;
1937 	}
1938 
1939 out_unlock:
1940 	spin_unlock(&hugetlb_lock);
1941 
1942 	return page;
1943 }
1944 
1945 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1946 				     int nid, nodemask_t *nmask)
1947 {
1948 	struct page *page;
1949 
1950 	if (hstate_is_gigantic(h))
1951 		return NULL;
1952 
1953 	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1954 	if (!page)
1955 		return NULL;
1956 
1957 	/*
1958 	 * We do not account these pages as surplus because they are only
1959 	 * temporary and will be released properly on the last reference
1960 	 */
1961 	SetPageHugeTemporary(page);
1962 
1963 	return page;
1964 }
1965 
1966 /*
1967  * Use the VMA's mpolicy to allocate a huge page from the buddy.
1968  */
1969 static
1970 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1971 		struct vm_area_struct *vma, unsigned long addr)
1972 {
1973 	struct page *page;
1974 	struct mempolicy *mpol;
1975 	gfp_t gfp_mask = htlb_alloc_mask(h);
1976 	int nid;
1977 	nodemask_t *nodemask;
1978 
1979 	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1980 	page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1981 	mpol_cond_put(mpol);
1982 
1983 	return page;
1984 }
1985 
1986 /* page migration callback function */
1987 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1988 		nodemask_t *nmask, gfp_t gfp_mask)
1989 {
1990 	spin_lock(&hugetlb_lock);
1991 	if (h->free_huge_pages - h->resv_huge_pages > 0) {
1992 		struct page *page;
1993 
1994 		page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1995 		if (page) {
1996 			spin_unlock(&hugetlb_lock);
1997 			return page;
1998 		}
1999 	}
2000 	spin_unlock(&hugetlb_lock);
2001 
2002 	return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
2003 }
2004 
2005 /* mempolicy aware migration callback */
2006 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
2007 		unsigned long address)
2008 {
2009 	struct mempolicy *mpol;
2010 	nodemask_t *nodemask;
2011 	struct page *page;
2012 	gfp_t gfp_mask;
2013 	int node;
2014 
2015 	gfp_mask = htlb_alloc_mask(h);
2016 	node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2017 	page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
2018 	mpol_cond_put(mpol);
2019 
2020 	return page;
2021 }
2022 
2023 /*
2024  * Increase the hugetlb pool such that it can accommodate a reservation
2025  * of size 'delta'.
2026  */
2027 static int gather_surplus_pages(struct hstate *h, int delta)
2028 	__must_hold(&hugetlb_lock)
2029 {
2030 	struct list_head surplus_list;
2031 	struct page *page, *tmp;
2032 	int ret, i;
2033 	int needed, allocated;
2034 	bool alloc_ok = true;
2035 
2036 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2037 	if (needed <= 0) {
2038 		h->resv_huge_pages += delta;
2039 		return 0;
2040 	}
2041 
2042 	allocated = 0;
2043 	INIT_LIST_HEAD(&surplus_list);
2044 
2045 	ret = -ENOMEM;
2046 retry:
2047 	spin_unlock(&hugetlb_lock);
2048 	for (i = 0; i < needed; i++) {
2049 		page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2050 				NUMA_NO_NODE, NULL);
2051 		if (!page) {
2052 			alloc_ok = false;
2053 			break;
2054 		}
2055 		list_add(&page->lru, &surplus_list);
2056 		cond_resched();
2057 	}
2058 	allocated += i;
2059 
2060 	/*
2061 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
2062 	 * because either resv_huge_pages or free_huge_pages may have changed.
2063 	 */
2064 	spin_lock(&hugetlb_lock);
2065 	needed = (h->resv_huge_pages + delta) -
2066 			(h->free_huge_pages + allocated);
2067 	if (needed > 0) {
2068 		if (alloc_ok)
2069 			goto retry;
2070 		/*
2071 		 * We were not able to allocate enough pages to
2072 		 * satisfy the entire reservation so we free what
2073 		 * we've allocated so far.
2074 		 */
2075 		goto free;
2076 	}
2077 	/*
2078 	 * The surplus_list now contains _at_least_ the number of extra pages
2079 	 * needed to accommodate the reservation.  Add the appropriate number
2080 	 * of pages to the hugetlb pool and free the extras back to the buddy
2081 	 * allocator.  Commit the entire reservation here to prevent another
2082 	 * process from stealing the pages as they are added to the pool but
2083 	 * before they are reserved.
2084 	 */
2085 	needed += allocated;
2086 	h->resv_huge_pages += delta;
2087 	ret = 0;
2088 
2089 	/* Free the needed pages to the hugetlb pool */
2090 	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2091 		if ((--needed) < 0)
2092 			break;
2093 		/*
2094 		 * This page is now managed by the hugetlb allocator and has
2095 		 * no users -- drop the buddy allocator's reference.
2096 		 */
2097 		put_page_testzero(page);
2098 		VM_BUG_ON_PAGE(page_count(page), page);
2099 		enqueue_huge_page(h, page);
2100 	}
2101 free:
2102 	spin_unlock(&hugetlb_lock);
2103 
2104 	/* Free unnecessary surplus pages to the buddy allocator */
2105 	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2106 		put_page(page);
2107 	spin_lock(&hugetlb_lock);
2108 
2109 	return ret;
2110 }
2111 
2112 /*
2113  * This routine has two main purposes:
2114  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2115  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2116  *    to the associated reservation map.
2117  * 2) Free any unused surplus pages that may have been allocated to satisfy
2118  *    the reservation.  As many as unused_resv_pages may be freed.
2119  *
2120  * Called with hugetlb_lock held.  However, the lock could be dropped (and
2121  * reacquired) during calls to cond_resched_lock.  Whenever dropping the lock,
2122  * we must make sure nobody else can claim pages we are in the process of
2123  * freeing.  Do this by ensuring resv_huge_page always is greater than the
2124  * number of huge pages we plan to free when dropping the lock.
2125  */
2126 static void return_unused_surplus_pages(struct hstate *h,
2127 					unsigned long unused_resv_pages)
2128 {
2129 	unsigned long nr_pages;
2130 
2131 	/* Cannot return gigantic pages currently */
2132 	if (hstate_is_gigantic(h))
2133 		goto out;
2134 
2135 	/*
2136 	 * Part (or even all) of the reservation could have been backed
2137 	 * by pre-allocated pages. Only free surplus pages.
2138 	 */
2139 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2140 
2141 	/*
2142 	 * We want to release as many surplus pages as possible, spread
2143 	 * evenly across all nodes with memory. Iterate across these nodes
2144 	 * until we can no longer free unreserved surplus pages. This occurs
2145 	 * when the nodes with surplus pages have no free pages.
2146 	 * free_pool_huge_page() will balance the freed pages across the
2147 	 * on-line nodes with memory and will handle the hstate accounting.
2148 	 *
2149 	 * Note that we decrement resv_huge_pages as we free the pages.  If
2150 	 * we drop the lock, resv_huge_pages will still be sufficiently large
2151 	 * to cover subsequent pages we may free.
2152 	 */
2153 	while (nr_pages--) {
2154 		h->resv_huge_pages--;
2155 		unused_resv_pages--;
2156 		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
2157 			goto out;
2158 		cond_resched_lock(&hugetlb_lock);
2159 	}
2160 
2161 out:
2162 	/* Fully uncommit the reservation */
2163 	h->resv_huge_pages -= unused_resv_pages;
2164 }
2165 
2166 
2167 /*
2168  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2169  * are used by the huge page allocation routines to manage reservations.
2170  *
2171  * vma_needs_reservation is called to determine if the huge page at addr
2172  * within the vma has an associated reservation.  If a reservation is
2173  * needed, the value 1 is returned.  The caller is then responsible for
2174  * managing the global reservation and subpool usage counts.  After
2175  * the huge page has been allocated, vma_commit_reservation is called
2176  * to add the page to the reservation map.  If the page allocation fails,
2177  * the reservation must be ended instead of committed.  vma_end_reservation
2178  * is called in such cases.
2179  *
2180  * In the normal case, vma_commit_reservation returns the same value
2181  * as the preceding vma_needs_reservation call.  The only time this
2182  * is not the case is if a reserve map was changed between calls.  It
2183  * is the responsibility of the caller to notice the difference and
2184  * take appropriate action.
2185  *
2186  * vma_add_reservation is used in error paths where a reservation must
2187  * be restored when a newly allocated huge page must be freed.  It is
2188  * to be called after calling vma_needs_reservation to determine if a
2189  * reservation exists.
2190  */
2191 enum vma_resv_mode {
2192 	VMA_NEEDS_RESV,
2193 	VMA_COMMIT_RESV,
2194 	VMA_END_RESV,
2195 	VMA_ADD_RESV,
2196 };
2197 static long __vma_reservation_common(struct hstate *h,
2198 				struct vm_area_struct *vma, unsigned long addr,
2199 				enum vma_resv_mode mode)
2200 {
2201 	struct resv_map *resv;
2202 	pgoff_t idx;
2203 	long ret;
2204 	long dummy_out_regions_needed;
2205 
2206 	resv = vma_resv_map(vma);
2207 	if (!resv)
2208 		return 1;
2209 
2210 	idx = vma_hugecache_offset(h, vma, addr);
2211 	switch (mode) {
2212 	case VMA_NEEDS_RESV:
2213 		ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2214 		/* We assume that vma_reservation_* routines always operate on
2215 		 * 1 page, and that adding to resv map a 1 page entry can only
2216 		 * ever require 1 region.
2217 		 */
2218 		VM_BUG_ON(dummy_out_regions_needed != 1);
2219 		break;
2220 	case VMA_COMMIT_RESV:
2221 		ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2222 		/* region_add calls of range 1 should never fail. */
2223 		VM_BUG_ON(ret < 0);
2224 		break;
2225 	case VMA_END_RESV:
2226 		region_abort(resv, idx, idx + 1, 1);
2227 		ret = 0;
2228 		break;
2229 	case VMA_ADD_RESV:
2230 		if (vma->vm_flags & VM_MAYSHARE) {
2231 			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2232 			/* region_add calls of range 1 should never fail. */
2233 			VM_BUG_ON(ret < 0);
2234 		} else {
2235 			region_abort(resv, idx, idx + 1, 1);
2236 			ret = region_del(resv, idx, idx + 1);
2237 		}
2238 		break;
2239 	default:
2240 		BUG();
2241 	}
2242 
2243 	if (vma->vm_flags & VM_MAYSHARE)
2244 		return ret;
2245 	else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
2246 		/*
2247 		 * In most cases, reserves always exist for private mappings.
2248 		 * However, a file associated with mapping could have been
2249 		 * hole punched or truncated after reserves were consumed.
2250 		 * As subsequent fault on such a range will not use reserves.
2251 		 * Subtle - The reserve map for private mappings has the
2252 		 * opposite meaning than that of shared mappings.  If NO
2253 		 * entry is in the reserve map, it means a reservation exists.
2254 		 * If an entry exists in the reserve map, it means the
2255 		 * reservation has already been consumed.  As a result, the
2256 		 * return value of this routine is the opposite of the
2257 		 * value returned from reserve map manipulation routines above.
2258 		 */
2259 		if (ret)
2260 			return 0;
2261 		else
2262 			return 1;
2263 	}
2264 	else
2265 		return ret < 0 ? ret : 0;
2266 }
2267 
2268 static long vma_needs_reservation(struct hstate *h,
2269 			struct vm_area_struct *vma, unsigned long addr)
2270 {
2271 	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2272 }
2273 
2274 static long vma_commit_reservation(struct hstate *h,
2275 			struct vm_area_struct *vma, unsigned long addr)
2276 {
2277 	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2278 }
2279 
2280 static void vma_end_reservation(struct hstate *h,
2281 			struct vm_area_struct *vma, unsigned long addr)
2282 {
2283 	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2284 }
2285 
2286 static long vma_add_reservation(struct hstate *h,
2287 			struct vm_area_struct *vma, unsigned long addr)
2288 {
2289 	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2290 }
2291 
2292 /*
2293  * This routine is called to restore a reservation on error paths.  In the
2294  * specific error paths, a huge page was allocated (via alloc_huge_page)
2295  * and is about to be freed.  If a reservation for the page existed,
2296  * alloc_huge_page would have consumed the reservation and set PagePrivate
2297  * in the newly allocated page.  When the page is freed via free_huge_page,
2298  * the global reservation count will be incremented if PagePrivate is set.
2299  * However, free_huge_page can not adjust the reserve map.  Adjust the
2300  * reserve map here to be consistent with global reserve count adjustments
2301  * to be made by free_huge_page.
2302  */
2303 static void restore_reserve_on_error(struct hstate *h,
2304 			struct vm_area_struct *vma, unsigned long address,
2305 			struct page *page)
2306 {
2307 	if (unlikely(PagePrivate(page))) {
2308 		long rc = vma_needs_reservation(h, vma, address);
2309 
2310 		if (unlikely(rc < 0)) {
2311 			/*
2312 			 * Rare out of memory condition in reserve map
2313 			 * manipulation.  Clear PagePrivate so that
2314 			 * global reserve count will not be incremented
2315 			 * by free_huge_page.  This will make it appear
2316 			 * as though the reservation for this page was
2317 			 * consumed.  This may prevent the task from
2318 			 * faulting in the page at a later time.  This
2319 			 * is better than inconsistent global huge page
2320 			 * accounting of reserve counts.
2321 			 */
2322 			ClearPagePrivate(page);
2323 		} else if (rc) {
2324 			rc = vma_add_reservation(h, vma, address);
2325 			if (unlikely(rc < 0))
2326 				/*
2327 				 * See above comment about rare out of
2328 				 * memory condition.
2329 				 */
2330 				ClearPagePrivate(page);
2331 		} else
2332 			vma_end_reservation(h, vma, address);
2333 	}
2334 }
2335 
2336 struct page *alloc_huge_page(struct vm_area_struct *vma,
2337 				    unsigned long addr, int avoid_reserve)
2338 {
2339 	struct hugepage_subpool *spool = subpool_vma(vma);
2340 	struct hstate *h = hstate_vma(vma);
2341 	struct page *page;
2342 	long map_chg, map_commit;
2343 	long gbl_chg;
2344 	int ret, idx;
2345 	struct hugetlb_cgroup *h_cg;
2346 	bool deferred_reserve;
2347 
2348 	idx = hstate_index(h);
2349 	/*
2350 	 * Examine the region/reserve map to determine if the process
2351 	 * has a reservation for the page to be allocated.  A return
2352 	 * code of zero indicates a reservation exists (no change).
2353 	 */
2354 	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2355 	if (map_chg < 0)
2356 		return ERR_PTR(-ENOMEM);
2357 
2358 	/*
2359 	 * Processes that did not create the mapping will have no
2360 	 * reserves as indicated by the region/reserve map. Check
2361 	 * that the allocation will not exceed the subpool limit.
2362 	 * Allocations for MAP_NORESERVE mappings also need to be
2363 	 * checked against any subpool limit.
2364 	 */
2365 	if (map_chg || avoid_reserve) {
2366 		gbl_chg = hugepage_subpool_get_pages(spool, 1);
2367 		if (gbl_chg < 0) {
2368 			vma_end_reservation(h, vma, addr);
2369 			return ERR_PTR(-ENOSPC);
2370 		}
2371 
2372 		/*
2373 		 * Even though there was no reservation in the region/reserve
2374 		 * map, there could be reservations associated with the
2375 		 * subpool that can be used.  This would be indicated if the
2376 		 * return value of hugepage_subpool_get_pages() is zero.
2377 		 * However, if avoid_reserve is specified we still avoid even
2378 		 * the subpool reservations.
2379 		 */
2380 		if (avoid_reserve)
2381 			gbl_chg = 1;
2382 	}
2383 
2384 	/* If this allocation is not consuming a reservation, charge it now.
2385 	 */
2386 	deferred_reserve = map_chg || avoid_reserve || !vma_resv_map(vma);
2387 	if (deferred_reserve) {
2388 		ret = hugetlb_cgroup_charge_cgroup_rsvd(
2389 			idx, pages_per_huge_page(h), &h_cg);
2390 		if (ret)
2391 			goto out_subpool_put;
2392 	}
2393 
2394 	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2395 	if (ret)
2396 		goto out_uncharge_cgroup_reservation;
2397 
2398 	spin_lock(&hugetlb_lock);
2399 	/*
2400 	 * glb_chg is passed to indicate whether or not a page must be taken
2401 	 * from the global free pool (global change).  gbl_chg == 0 indicates
2402 	 * a reservation exists for the allocation.
2403 	 */
2404 	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2405 	if (!page) {
2406 		spin_unlock(&hugetlb_lock);
2407 		page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2408 		if (!page)
2409 			goto out_uncharge_cgroup;
2410 		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2411 			SetPagePrivate(page);
2412 			h->resv_huge_pages--;
2413 		}
2414 		spin_lock(&hugetlb_lock);
2415 		list_move(&page->lru, &h->hugepage_activelist);
2416 		/* Fall through */
2417 	}
2418 	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2419 	/* If allocation is not consuming a reservation, also store the
2420 	 * hugetlb_cgroup pointer on the page.
2421 	 */
2422 	if (deferred_reserve) {
2423 		hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2424 						  h_cg, page);
2425 	}
2426 
2427 	spin_unlock(&hugetlb_lock);
2428 
2429 	set_page_private(page, (unsigned long)spool);
2430 
2431 	map_commit = vma_commit_reservation(h, vma, addr);
2432 	if (unlikely(map_chg > map_commit)) {
2433 		/*
2434 		 * The page was added to the reservation map between
2435 		 * vma_needs_reservation and vma_commit_reservation.
2436 		 * This indicates a race with hugetlb_reserve_pages.
2437 		 * Adjust for the subpool count incremented above AND
2438 		 * in hugetlb_reserve_pages for the same page.  Also,
2439 		 * the reservation count added in hugetlb_reserve_pages
2440 		 * no longer applies.
2441 		 */
2442 		long rsv_adjust;
2443 
2444 		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2445 		hugetlb_acct_memory(h, -rsv_adjust);
2446 	}
2447 	return page;
2448 
2449 out_uncharge_cgroup:
2450 	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2451 out_uncharge_cgroup_reservation:
2452 	if (deferred_reserve)
2453 		hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2454 						    h_cg);
2455 out_subpool_put:
2456 	if (map_chg || avoid_reserve)
2457 		hugepage_subpool_put_pages(spool, 1);
2458 	vma_end_reservation(h, vma, addr);
2459 	return ERR_PTR(-ENOSPC);
2460 }
2461 
2462 int alloc_bootmem_huge_page(struct hstate *h)
2463 	__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2464 int __alloc_bootmem_huge_page(struct hstate *h)
2465 {
2466 	struct huge_bootmem_page *m;
2467 	int nr_nodes, node;
2468 
2469 	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2470 		void *addr;
2471 
2472 		addr = memblock_alloc_try_nid_raw(
2473 				huge_page_size(h), huge_page_size(h),
2474 				0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2475 		if (addr) {
2476 			/*
2477 			 * Use the beginning of the huge page to store the
2478 			 * huge_bootmem_page struct (until gather_bootmem
2479 			 * puts them into the mem_map).
2480 			 */
2481 			m = addr;
2482 			goto found;
2483 		}
2484 	}
2485 	return 0;
2486 
2487 found:
2488 	BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2489 	/* Put them into a private list first because mem_map is not up yet */
2490 	INIT_LIST_HEAD(&m->list);
2491 	list_add(&m->list, &huge_boot_pages);
2492 	m->hstate = h;
2493 	return 1;
2494 }
2495 
2496 static void __init prep_compound_huge_page(struct page *page,
2497 		unsigned int order)
2498 {
2499 	if (unlikely(order > (MAX_ORDER - 1)))
2500 		prep_compound_gigantic_page(page, order);
2501 	else
2502 		prep_compound_page(page, order);
2503 }
2504 
2505 /* Put bootmem huge pages into the standard lists after mem_map is up */
2506 static void __init gather_bootmem_prealloc(void)
2507 {
2508 	struct huge_bootmem_page *m;
2509 
2510 	list_for_each_entry(m, &huge_boot_pages, list) {
2511 		struct page *page = virt_to_page(m);
2512 		struct hstate *h = m->hstate;
2513 
2514 		WARN_ON(page_count(page) != 1);
2515 		prep_compound_huge_page(page, h->order);
2516 		WARN_ON(PageReserved(page));
2517 		prep_new_huge_page(h, page, page_to_nid(page));
2518 		put_page(page); /* free it into the hugepage allocator */
2519 
2520 		/*
2521 		 * If we had gigantic hugepages allocated at boot time, we need
2522 		 * to restore the 'stolen' pages to totalram_pages in order to
2523 		 * fix confusing memory reports from free(1) and another
2524 		 * side-effects, like CommitLimit going negative.
2525 		 */
2526 		if (hstate_is_gigantic(h))
2527 			adjust_managed_page_count(page, 1 << h->order);
2528 		cond_resched();
2529 	}
2530 }
2531 
2532 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2533 {
2534 	unsigned long i;
2535 	nodemask_t *node_alloc_noretry;
2536 
2537 	if (!hstate_is_gigantic(h)) {
2538 		/*
2539 		 * Bit mask controlling how hard we retry per-node allocations.
2540 		 * Ignore errors as lower level routines can deal with
2541 		 * node_alloc_noretry == NULL.  If this kmalloc fails at boot
2542 		 * time, we are likely in bigger trouble.
2543 		 */
2544 		node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2545 						GFP_KERNEL);
2546 	} else {
2547 		/* allocations done at boot time */
2548 		node_alloc_noretry = NULL;
2549 	}
2550 
2551 	/* bit mask controlling how hard we retry per-node allocations */
2552 	if (node_alloc_noretry)
2553 		nodes_clear(*node_alloc_noretry);
2554 
2555 	for (i = 0; i < h->max_huge_pages; ++i) {
2556 		if (hstate_is_gigantic(h)) {
2557 			if (hugetlb_cma_size) {
2558 				pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
2559 				break;
2560 			}
2561 			if (!alloc_bootmem_huge_page(h))
2562 				break;
2563 		} else if (!alloc_pool_huge_page(h,
2564 					 &node_states[N_MEMORY],
2565 					 node_alloc_noretry))
2566 			break;
2567 		cond_resched();
2568 	}
2569 	if (i < h->max_huge_pages) {
2570 		char buf[32];
2571 
2572 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2573 		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
2574 			h->max_huge_pages, buf, i);
2575 		h->max_huge_pages = i;
2576 	}
2577 
2578 	kfree(node_alloc_noretry);
2579 }
2580 
2581 static void __init hugetlb_init_hstates(void)
2582 {
2583 	struct hstate *h;
2584 
2585 	for_each_hstate(h) {
2586 		if (minimum_order > huge_page_order(h))
2587 			minimum_order = huge_page_order(h);
2588 
2589 		/* oversize hugepages were init'ed in early boot */
2590 		if (!hstate_is_gigantic(h))
2591 			hugetlb_hstate_alloc_pages(h);
2592 	}
2593 	VM_BUG_ON(minimum_order == UINT_MAX);
2594 }
2595 
2596 static void __init report_hugepages(void)
2597 {
2598 	struct hstate *h;
2599 
2600 	for_each_hstate(h) {
2601 		char buf[32];
2602 
2603 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2604 		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2605 			buf, h->free_huge_pages);
2606 	}
2607 }
2608 
2609 #ifdef CONFIG_HIGHMEM
2610 static void try_to_free_low(struct hstate *h, unsigned long count,
2611 						nodemask_t *nodes_allowed)
2612 {
2613 	int i;
2614 
2615 	if (hstate_is_gigantic(h))
2616 		return;
2617 
2618 	for_each_node_mask(i, *nodes_allowed) {
2619 		struct page *page, *next;
2620 		struct list_head *freel = &h->hugepage_freelists[i];
2621 		list_for_each_entry_safe(page, next, freel, lru) {
2622 			if (count >= h->nr_huge_pages)
2623 				return;
2624 			if (PageHighMem(page))
2625 				continue;
2626 			list_del(&page->lru);
2627 			update_and_free_page(h, page);
2628 			h->free_huge_pages--;
2629 			h->free_huge_pages_node[page_to_nid(page)]--;
2630 		}
2631 	}
2632 }
2633 #else
2634 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2635 						nodemask_t *nodes_allowed)
2636 {
2637 }
2638 #endif
2639 
2640 /*
2641  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2642  * balanced by operating on them in a round-robin fashion.
2643  * Returns 1 if an adjustment was made.
2644  */
2645 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2646 				int delta)
2647 {
2648 	int nr_nodes, node;
2649 
2650 	VM_BUG_ON(delta != -1 && delta != 1);
2651 
2652 	if (delta < 0) {
2653 		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2654 			if (h->surplus_huge_pages_node[node])
2655 				goto found;
2656 		}
2657 	} else {
2658 		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2659 			if (h->surplus_huge_pages_node[node] <
2660 					h->nr_huge_pages_node[node])
2661 				goto found;
2662 		}
2663 	}
2664 	return 0;
2665 
2666 found:
2667 	h->surplus_huge_pages += delta;
2668 	h->surplus_huge_pages_node[node] += delta;
2669 	return 1;
2670 }
2671 
2672 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2673 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
2674 			      nodemask_t *nodes_allowed)
2675 {
2676 	unsigned long min_count, ret;
2677 	NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
2678 
2679 	/*
2680 	 * Bit mask controlling how hard we retry per-node allocations.
2681 	 * If we can not allocate the bit mask, do not attempt to allocate
2682 	 * the requested huge pages.
2683 	 */
2684 	if (node_alloc_noretry)
2685 		nodes_clear(*node_alloc_noretry);
2686 	else
2687 		return -ENOMEM;
2688 
2689 	spin_lock(&hugetlb_lock);
2690 
2691 	/*
2692 	 * Check for a node specific request.
2693 	 * Changing node specific huge page count may require a corresponding
2694 	 * change to the global count.  In any case, the passed node mask
2695 	 * (nodes_allowed) will restrict alloc/free to the specified node.
2696 	 */
2697 	if (nid != NUMA_NO_NODE) {
2698 		unsigned long old_count = count;
2699 
2700 		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2701 		/*
2702 		 * User may have specified a large count value which caused the
2703 		 * above calculation to overflow.  In this case, they wanted
2704 		 * to allocate as many huge pages as possible.  Set count to
2705 		 * largest possible value to align with their intention.
2706 		 */
2707 		if (count < old_count)
2708 			count = ULONG_MAX;
2709 	}
2710 
2711 	/*
2712 	 * Gigantic pages runtime allocation depend on the capability for large
2713 	 * page range allocation.
2714 	 * If the system does not provide this feature, return an error when
2715 	 * the user tries to allocate gigantic pages but let the user free the
2716 	 * boottime allocated gigantic pages.
2717 	 */
2718 	if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2719 		if (count > persistent_huge_pages(h)) {
2720 			spin_unlock(&hugetlb_lock);
2721 			NODEMASK_FREE(node_alloc_noretry);
2722 			return -EINVAL;
2723 		}
2724 		/* Fall through to decrease pool */
2725 	}
2726 
2727 	/*
2728 	 * Increase the pool size
2729 	 * First take pages out of surplus state.  Then make up the
2730 	 * remaining difference by allocating fresh huge pages.
2731 	 *
2732 	 * We might race with alloc_surplus_huge_page() here and be unable
2733 	 * to convert a surplus huge page to a normal huge page. That is
2734 	 * not critical, though, it just means the overall size of the
2735 	 * pool might be one hugepage larger than it needs to be, but
2736 	 * within all the constraints specified by the sysctls.
2737 	 */
2738 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2739 		if (!adjust_pool_surplus(h, nodes_allowed, -1))
2740 			break;
2741 	}
2742 
2743 	while (count > persistent_huge_pages(h)) {
2744 		/*
2745 		 * If this allocation races such that we no longer need the
2746 		 * page, free_huge_page will handle it by freeing the page
2747 		 * and reducing the surplus.
2748 		 */
2749 		spin_unlock(&hugetlb_lock);
2750 
2751 		/* yield cpu to avoid soft lockup */
2752 		cond_resched();
2753 
2754 		ret = alloc_pool_huge_page(h, nodes_allowed,
2755 						node_alloc_noretry);
2756 		spin_lock(&hugetlb_lock);
2757 		if (!ret)
2758 			goto out;
2759 
2760 		/* Bail for signals. Probably ctrl-c from user */
2761 		if (signal_pending(current))
2762 			goto out;
2763 	}
2764 
2765 	/*
2766 	 * Decrease the pool size
2767 	 * First return free pages to the buddy allocator (being careful
2768 	 * to keep enough around to satisfy reservations).  Then place
2769 	 * pages into surplus state as needed so the pool will shrink
2770 	 * to the desired size as pages become free.
2771 	 *
2772 	 * By placing pages into the surplus state independent of the
2773 	 * overcommit value, we are allowing the surplus pool size to
2774 	 * exceed overcommit. There are few sane options here. Since
2775 	 * alloc_surplus_huge_page() is checking the global counter,
2776 	 * though, we'll note that we're not allowed to exceed surplus
2777 	 * and won't grow the pool anywhere else. Not until one of the
2778 	 * sysctls are changed, or the surplus pages go out of use.
2779 	 */
2780 	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2781 	min_count = max(count, min_count);
2782 	try_to_free_low(h, min_count, nodes_allowed);
2783 	while (min_count < persistent_huge_pages(h)) {
2784 		if (!free_pool_huge_page(h, nodes_allowed, 0))
2785 			break;
2786 		cond_resched_lock(&hugetlb_lock);
2787 	}
2788 	while (count < persistent_huge_pages(h)) {
2789 		if (!adjust_pool_surplus(h, nodes_allowed, 1))
2790 			break;
2791 	}
2792 out:
2793 	h->max_huge_pages = persistent_huge_pages(h);
2794 	spin_unlock(&hugetlb_lock);
2795 
2796 	NODEMASK_FREE(node_alloc_noretry);
2797 
2798 	return 0;
2799 }
2800 
2801 #define HSTATE_ATTR_RO(_name) \
2802 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2803 
2804 #define HSTATE_ATTR(_name) \
2805 	static struct kobj_attribute _name##_attr = \
2806 		__ATTR(_name, 0644, _name##_show, _name##_store)
2807 
2808 static struct kobject *hugepages_kobj;
2809 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2810 
2811 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2812 
2813 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2814 {
2815 	int i;
2816 
2817 	for (i = 0; i < HUGE_MAX_HSTATE; i++)
2818 		if (hstate_kobjs[i] == kobj) {
2819 			if (nidp)
2820 				*nidp = NUMA_NO_NODE;
2821 			return &hstates[i];
2822 		}
2823 
2824 	return kobj_to_node_hstate(kobj, nidp);
2825 }
2826 
2827 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2828 					struct kobj_attribute *attr, char *buf)
2829 {
2830 	struct hstate *h;
2831 	unsigned long nr_huge_pages;
2832 	int nid;
2833 
2834 	h = kobj_to_hstate(kobj, &nid);
2835 	if (nid == NUMA_NO_NODE)
2836 		nr_huge_pages = h->nr_huge_pages;
2837 	else
2838 		nr_huge_pages = h->nr_huge_pages_node[nid];
2839 
2840 	return sprintf(buf, "%lu\n", nr_huge_pages);
2841 }
2842 
2843 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2844 					   struct hstate *h, int nid,
2845 					   unsigned long count, size_t len)
2846 {
2847 	int err;
2848 	nodemask_t nodes_allowed, *n_mask;
2849 
2850 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2851 		return -EINVAL;
2852 
2853 	if (nid == NUMA_NO_NODE) {
2854 		/*
2855 		 * global hstate attribute
2856 		 */
2857 		if (!(obey_mempolicy &&
2858 				init_nodemask_of_mempolicy(&nodes_allowed)))
2859 			n_mask = &node_states[N_MEMORY];
2860 		else
2861 			n_mask = &nodes_allowed;
2862 	} else {
2863 		/*
2864 		 * Node specific request.  count adjustment happens in
2865 		 * set_max_huge_pages() after acquiring hugetlb_lock.
2866 		 */
2867 		init_nodemask_of_node(&nodes_allowed, nid);
2868 		n_mask = &nodes_allowed;
2869 	}
2870 
2871 	err = set_max_huge_pages(h, count, nid, n_mask);
2872 
2873 	return err ? err : len;
2874 }
2875 
2876 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2877 					 struct kobject *kobj, const char *buf,
2878 					 size_t len)
2879 {
2880 	struct hstate *h;
2881 	unsigned long count;
2882 	int nid;
2883 	int err;
2884 
2885 	err = kstrtoul(buf, 10, &count);
2886 	if (err)
2887 		return err;
2888 
2889 	h = kobj_to_hstate(kobj, &nid);
2890 	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2891 }
2892 
2893 static ssize_t nr_hugepages_show(struct kobject *kobj,
2894 				       struct kobj_attribute *attr, char *buf)
2895 {
2896 	return nr_hugepages_show_common(kobj, attr, buf);
2897 }
2898 
2899 static ssize_t nr_hugepages_store(struct kobject *kobj,
2900 	       struct kobj_attribute *attr, const char *buf, size_t len)
2901 {
2902 	return nr_hugepages_store_common(false, kobj, buf, len);
2903 }
2904 HSTATE_ATTR(nr_hugepages);
2905 
2906 #ifdef CONFIG_NUMA
2907 
2908 /*
2909  * hstate attribute for optionally mempolicy-based constraint on persistent
2910  * huge page alloc/free.
2911  */
2912 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2913 				       struct kobj_attribute *attr, char *buf)
2914 {
2915 	return nr_hugepages_show_common(kobj, attr, buf);
2916 }
2917 
2918 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2919 	       struct kobj_attribute *attr, const char *buf, size_t len)
2920 {
2921 	return nr_hugepages_store_common(true, kobj, buf, len);
2922 }
2923 HSTATE_ATTR(nr_hugepages_mempolicy);
2924 #endif
2925 
2926 
2927 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2928 					struct kobj_attribute *attr, char *buf)
2929 {
2930 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2931 	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2932 }
2933 
2934 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2935 		struct kobj_attribute *attr, const char *buf, size_t count)
2936 {
2937 	int err;
2938 	unsigned long input;
2939 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2940 
2941 	if (hstate_is_gigantic(h))
2942 		return -EINVAL;
2943 
2944 	err = kstrtoul(buf, 10, &input);
2945 	if (err)
2946 		return err;
2947 
2948 	spin_lock(&hugetlb_lock);
2949 	h->nr_overcommit_huge_pages = input;
2950 	spin_unlock(&hugetlb_lock);
2951 
2952 	return count;
2953 }
2954 HSTATE_ATTR(nr_overcommit_hugepages);
2955 
2956 static ssize_t free_hugepages_show(struct kobject *kobj,
2957 					struct kobj_attribute *attr, char *buf)
2958 {
2959 	struct hstate *h;
2960 	unsigned long free_huge_pages;
2961 	int nid;
2962 
2963 	h = kobj_to_hstate(kobj, &nid);
2964 	if (nid == NUMA_NO_NODE)
2965 		free_huge_pages = h->free_huge_pages;
2966 	else
2967 		free_huge_pages = h->free_huge_pages_node[nid];
2968 
2969 	return sprintf(buf, "%lu\n", free_huge_pages);
2970 }
2971 HSTATE_ATTR_RO(free_hugepages);
2972 
2973 static ssize_t resv_hugepages_show(struct kobject *kobj,
2974 					struct kobj_attribute *attr, char *buf)
2975 {
2976 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2977 	return sprintf(buf, "%lu\n", h->resv_huge_pages);
2978 }
2979 HSTATE_ATTR_RO(resv_hugepages);
2980 
2981 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2982 					struct kobj_attribute *attr, char *buf)
2983 {
2984 	struct hstate *h;
2985 	unsigned long surplus_huge_pages;
2986 	int nid;
2987 
2988 	h = kobj_to_hstate(kobj, &nid);
2989 	if (nid == NUMA_NO_NODE)
2990 		surplus_huge_pages = h->surplus_huge_pages;
2991 	else
2992 		surplus_huge_pages = h->surplus_huge_pages_node[nid];
2993 
2994 	return sprintf(buf, "%lu\n", surplus_huge_pages);
2995 }
2996 HSTATE_ATTR_RO(surplus_hugepages);
2997 
2998 static struct attribute *hstate_attrs[] = {
2999 	&nr_hugepages_attr.attr,
3000 	&nr_overcommit_hugepages_attr.attr,
3001 	&free_hugepages_attr.attr,
3002 	&resv_hugepages_attr.attr,
3003 	&surplus_hugepages_attr.attr,
3004 #ifdef CONFIG_NUMA
3005 	&nr_hugepages_mempolicy_attr.attr,
3006 #endif
3007 	NULL,
3008 };
3009 
3010 static const struct attribute_group hstate_attr_group = {
3011 	.attrs = hstate_attrs,
3012 };
3013 
3014 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3015 				    struct kobject **hstate_kobjs,
3016 				    const struct attribute_group *hstate_attr_group)
3017 {
3018 	int retval;
3019 	int hi = hstate_index(h);
3020 
3021 	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
3022 	if (!hstate_kobjs[hi])
3023 		return -ENOMEM;
3024 
3025 	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
3026 	if (retval)
3027 		kobject_put(hstate_kobjs[hi]);
3028 
3029 	return retval;
3030 }
3031 
3032 static void __init hugetlb_sysfs_init(void)
3033 {
3034 	struct hstate *h;
3035 	int err;
3036 
3037 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
3038 	if (!hugepages_kobj)
3039 		return;
3040 
3041 	for_each_hstate(h) {
3042 		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
3043 					 hstate_kobjs, &hstate_attr_group);
3044 		if (err)
3045 			pr_err("HugeTLB: Unable to add hstate %s", h->name);
3046 	}
3047 }
3048 
3049 #ifdef CONFIG_NUMA
3050 
3051 /*
3052  * node_hstate/s - associate per node hstate attributes, via their kobjects,
3053  * with node devices in node_devices[] using a parallel array.  The array
3054  * index of a node device or _hstate == node id.
3055  * This is here to avoid any static dependency of the node device driver, in
3056  * the base kernel, on the hugetlb module.
3057  */
3058 struct node_hstate {
3059 	struct kobject		*hugepages_kobj;
3060 	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
3061 };
3062 static struct node_hstate node_hstates[MAX_NUMNODES];
3063 
3064 /*
3065  * A subset of global hstate attributes for node devices
3066  */
3067 static struct attribute *per_node_hstate_attrs[] = {
3068 	&nr_hugepages_attr.attr,
3069 	&free_hugepages_attr.attr,
3070 	&surplus_hugepages_attr.attr,
3071 	NULL,
3072 };
3073 
3074 static const struct attribute_group per_node_hstate_attr_group = {
3075 	.attrs = per_node_hstate_attrs,
3076 };
3077 
3078 /*
3079  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3080  * Returns node id via non-NULL nidp.
3081  */
3082 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3083 {
3084 	int nid;
3085 
3086 	for (nid = 0; nid < nr_node_ids; nid++) {
3087 		struct node_hstate *nhs = &node_hstates[nid];
3088 		int i;
3089 		for (i = 0; i < HUGE_MAX_HSTATE; i++)
3090 			if (nhs->hstate_kobjs[i] == kobj) {
3091 				if (nidp)
3092 					*nidp = nid;
3093 				return &hstates[i];
3094 			}
3095 	}
3096 
3097 	BUG();
3098 	return NULL;
3099 }
3100 
3101 /*
3102  * Unregister hstate attributes from a single node device.
3103  * No-op if no hstate attributes attached.
3104  */
3105 static void hugetlb_unregister_node(struct node *node)
3106 {
3107 	struct hstate *h;
3108 	struct node_hstate *nhs = &node_hstates[node->dev.id];
3109 
3110 	if (!nhs->hugepages_kobj)
3111 		return;		/* no hstate attributes */
3112 
3113 	for_each_hstate(h) {
3114 		int idx = hstate_index(h);
3115 		if (nhs->hstate_kobjs[idx]) {
3116 			kobject_put(nhs->hstate_kobjs[idx]);
3117 			nhs->hstate_kobjs[idx] = NULL;
3118 		}
3119 	}
3120 
3121 	kobject_put(nhs->hugepages_kobj);
3122 	nhs->hugepages_kobj = NULL;
3123 }
3124 
3125 
3126 /*
3127  * Register hstate attributes for a single node device.
3128  * No-op if attributes already registered.
3129  */
3130 static void hugetlb_register_node(struct node *node)
3131 {
3132 	struct hstate *h;
3133 	struct node_hstate *nhs = &node_hstates[node->dev.id];
3134 	int err;
3135 
3136 	if (nhs->hugepages_kobj)
3137 		return;		/* already allocated */
3138 
3139 	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3140 							&node->dev.kobj);
3141 	if (!nhs->hugepages_kobj)
3142 		return;
3143 
3144 	for_each_hstate(h) {
3145 		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3146 						nhs->hstate_kobjs,
3147 						&per_node_hstate_attr_group);
3148 		if (err) {
3149 			pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3150 				h->name, node->dev.id);
3151 			hugetlb_unregister_node(node);
3152 			break;
3153 		}
3154 	}
3155 }
3156 
3157 /*
3158  * hugetlb init time:  register hstate attributes for all registered node
3159  * devices of nodes that have memory.  All on-line nodes should have
3160  * registered their associated device by this time.
3161  */
3162 static void __init hugetlb_register_all_nodes(void)
3163 {
3164 	int nid;
3165 
3166 	for_each_node_state(nid, N_MEMORY) {
3167 		struct node *node = node_devices[nid];
3168 		if (node->dev.id == nid)
3169 			hugetlb_register_node(node);
3170 	}
3171 
3172 	/*
3173 	 * Let the node device driver know we're here so it can
3174 	 * [un]register hstate attributes on node hotplug.
3175 	 */
3176 	register_hugetlbfs_with_node(hugetlb_register_node,
3177 				     hugetlb_unregister_node);
3178 }
3179 #else	/* !CONFIG_NUMA */
3180 
3181 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3182 {
3183 	BUG();
3184 	if (nidp)
3185 		*nidp = -1;
3186 	return NULL;
3187 }
3188 
3189 static void hugetlb_register_all_nodes(void) { }
3190 
3191 #endif
3192 
3193 static int __init hugetlb_init(void)
3194 {
3195 	int i;
3196 
3197 	if (!hugepages_supported()) {
3198 		if (hugetlb_max_hstate || default_hstate_max_huge_pages)
3199 			pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
3200 		return 0;
3201 	}
3202 
3203 	/*
3204 	 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
3205 	 * architectures depend on setup being done here.
3206 	 */
3207 	hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
3208 	if (!parsed_default_hugepagesz) {
3209 		/*
3210 		 * If we did not parse a default huge page size, set
3211 		 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
3212 		 * number of huge pages for this default size was implicitly
3213 		 * specified, set that here as well.
3214 		 * Note that the implicit setting will overwrite an explicit
3215 		 * setting.  A warning will be printed in this case.
3216 		 */
3217 		default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
3218 		if (default_hstate_max_huge_pages) {
3219 			if (default_hstate.max_huge_pages) {
3220 				char buf[32];
3221 
3222 				string_get_size(huge_page_size(&default_hstate),
3223 					1, STRING_UNITS_2, buf, 32);
3224 				pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
3225 					default_hstate.max_huge_pages, buf);
3226 				pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
3227 					default_hstate_max_huge_pages);
3228 			}
3229 			default_hstate.max_huge_pages =
3230 				default_hstate_max_huge_pages;
3231 		}
3232 	}
3233 
3234 	hugetlb_cma_check();
3235 	hugetlb_init_hstates();
3236 	gather_bootmem_prealloc();
3237 	report_hugepages();
3238 
3239 	hugetlb_sysfs_init();
3240 	hugetlb_register_all_nodes();
3241 	hugetlb_cgroup_file_init();
3242 
3243 #ifdef CONFIG_SMP
3244 	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
3245 #else
3246 	num_fault_mutexes = 1;
3247 #endif
3248 	hugetlb_fault_mutex_table =
3249 		kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
3250 			      GFP_KERNEL);
3251 	BUG_ON(!hugetlb_fault_mutex_table);
3252 
3253 	for (i = 0; i < num_fault_mutexes; i++)
3254 		mutex_init(&hugetlb_fault_mutex_table[i]);
3255 	return 0;
3256 }
3257 subsys_initcall(hugetlb_init);
3258 
3259 /* Overwritten by architectures with more huge page sizes */
3260 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
3261 {
3262 	return size == HPAGE_SIZE;
3263 }
3264 
3265 void __init hugetlb_add_hstate(unsigned int order)
3266 {
3267 	struct hstate *h;
3268 	unsigned long i;
3269 
3270 	if (size_to_hstate(PAGE_SIZE << order)) {
3271 		return;
3272 	}
3273 	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
3274 	BUG_ON(order == 0);
3275 	h = &hstates[hugetlb_max_hstate++];
3276 	h->order = order;
3277 	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
3278 	h->nr_huge_pages = 0;
3279 	h->free_huge_pages = 0;
3280 	for (i = 0; i < MAX_NUMNODES; ++i)
3281 		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
3282 	INIT_LIST_HEAD(&h->hugepage_activelist);
3283 	h->next_nid_to_alloc = first_memory_node;
3284 	h->next_nid_to_free = first_memory_node;
3285 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
3286 					huge_page_size(h)/1024);
3287 
3288 	parsed_hstate = h;
3289 }
3290 
3291 /*
3292  * hugepages command line processing
3293  * hugepages normally follows a valid hugepagsz or default_hugepagsz
3294  * specification.  If not, ignore the hugepages value.  hugepages can also
3295  * be the first huge page command line  option in which case it implicitly
3296  * specifies the number of huge pages for the default size.
3297  */
3298 static int __init hugepages_setup(char *s)
3299 {
3300 	unsigned long *mhp;
3301 	static unsigned long *last_mhp;
3302 
3303 	if (!parsed_valid_hugepagesz) {
3304 		pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
3305 		parsed_valid_hugepagesz = true;
3306 		return 0;
3307 	}
3308 
3309 	/*
3310 	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
3311 	 * yet, so this hugepages= parameter goes to the "default hstate".
3312 	 * Otherwise, it goes with the previously parsed hugepagesz or
3313 	 * default_hugepagesz.
3314 	 */
3315 	else if (!hugetlb_max_hstate)
3316 		mhp = &default_hstate_max_huge_pages;
3317 	else
3318 		mhp = &parsed_hstate->max_huge_pages;
3319 
3320 	if (mhp == last_mhp) {
3321 		pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
3322 		return 0;
3323 	}
3324 
3325 	if (sscanf(s, "%lu", mhp) <= 0)
3326 		*mhp = 0;
3327 
3328 	/*
3329 	 * Global state is always initialized later in hugetlb_init.
3330 	 * But we need to allocate >= MAX_ORDER hstates here early to still
3331 	 * use the bootmem allocator.
3332 	 */
3333 	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
3334 		hugetlb_hstate_alloc_pages(parsed_hstate);
3335 
3336 	last_mhp = mhp;
3337 
3338 	return 1;
3339 }
3340 __setup("hugepages=", hugepages_setup);
3341 
3342 /*
3343  * hugepagesz command line processing
3344  * A specific huge page size can only be specified once with hugepagesz.
3345  * hugepagesz is followed by hugepages on the command line.  The global
3346  * variable 'parsed_valid_hugepagesz' is used to determine if prior
3347  * hugepagesz argument was valid.
3348  */
3349 static int __init hugepagesz_setup(char *s)
3350 {
3351 	unsigned long size;
3352 	struct hstate *h;
3353 
3354 	parsed_valid_hugepagesz = false;
3355 	size = (unsigned long)memparse(s, NULL);
3356 
3357 	if (!arch_hugetlb_valid_size(size)) {
3358 		pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
3359 		return 0;
3360 	}
3361 
3362 	h = size_to_hstate(size);
3363 	if (h) {
3364 		/*
3365 		 * hstate for this size already exists.  This is normally
3366 		 * an error, but is allowed if the existing hstate is the
3367 		 * default hstate.  More specifically, it is only allowed if
3368 		 * the number of huge pages for the default hstate was not
3369 		 * previously specified.
3370 		 */
3371 		if (!parsed_default_hugepagesz ||  h != &default_hstate ||
3372 		    default_hstate.max_huge_pages) {
3373 			pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
3374 			return 0;
3375 		}
3376 
3377 		/*
3378 		 * No need to call hugetlb_add_hstate() as hstate already
3379 		 * exists.  But, do set parsed_hstate so that a following
3380 		 * hugepages= parameter will be applied to this hstate.
3381 		 */
3382 		parsed_hstate = h;
3383 		parsed_valid_hugepagesz = true;
3384 		return 1;
3385 	}
3386 
3387 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3388 	parsed_valid_hugepagesz = true;
3389 	return 1;
3390 }
3391 __setup("hugepagesz=", hugepagesz_setup);
3392 
3393 /*
3394  * default_hugepagesz command line input
3395  * Only one instance of default_hugepagesz allowed on command line.
3396  */
3397 static int __init default_hugepagesz_setup(char *s)
3398 {
3399 	unsigned long size;
3400 
3401 	parsed_valid_hugepagesz = false;
3402 	if (parsed_default_hugepagesz) {
3403 		pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
3404 		return 0;
3405 	}
3406 
3407 	size = (unsigned long)memparse(s, NULL);
3408 
3409 	if (!arch_hugetlb_valid_size(size)) {
3410 		pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
3411 		return 0;
3412 	}
3413 
3414 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3415 	parsed_valid_hugepagesz = true;
3416 	parsed_default_hugepagesz = true;
3417 	default_hstate_idx = hstate_index(size_to_hstate(size));
3418 
3419 	/*
3420 	 * The number of default huge pages (for this size) could have been
3421 	 * specified as the first hugetlb parameter: hugepages=X.  If so,
3422 	 * then default_hstate_max_huge_pages is set.  If the default huge
3423 	 * page size is gigantic (>= MAX_ORDER), then the pages must be
3424 	 * allocated here from bootmem allocator.
3425 	 */
3426 	if (default_hstate_max_huge_pages) {
3427 		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
3428 		if (hstate_is_gigantic(&default_hstate))
3429 			hugetlb_hstate_alloc_pages(&default_hstate);
3430 		default_hstate_max_huge_pages = 0;
3431 	}
3432 
3433 	return 1;
3434 }
3435 __setup("default_hugepagesz=", default_hugepagesz_setup);
3436 
3437 static unsigned int allowed_mems_nr(struct hstate *h)
3438 {
3439 	int node;
3440 	unsigned int nr = 0;
3441 	nodemask_t *mpol_allowed;
3442 	unsigned int *array = h->free_huge_pages_node;
3443 	gfp_t gfp_mask = htlb_alloc_mask(h);
3444 
3445 	mpol_allowed = policy_nodemask_current(gfp_mask);
3446 
3447 	for_each_node_mask(node, cpuset_current_mems_allowed) {
3448 		if (!mpol_allowed ||
3449 		    (mpol_allowed && node_isset(node, *mpol_allowed)))
3450 			nr += array[node];
3451 	}
3452 
3453 	return nr;
3454 }
3455 
3456 #ifdef CONFIG_SYSCTL
3457 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3458 			 struct ctl_table *table, int write,
3459 			 void *buffer, size_t *length, loff_t *ppos)
3460 {
3461 	struct hstate *h = &default_hstate;
3462 	unsigned long tmp = h->max_huge_pages;
3463 	int ret;
3464 
3465 	if (!hugepages_supported())
3466 		return -EOPNOTSUPP;
3467 
3468 	table->data = &tmp;
3469 	table->maxlen = sizeof(unsigned long);
3470 	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
3471 	if (ret)
3472 		goto out;
3473 
3474 	if (write)
3475 		ret = __nr_hugepages_store_common(obey_mempolicy, h,
3476 						  NUMA_NO_NODE, tmp, *length);
3477 out:
3478 	return ret;
3479 }
3480 
3481 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
3482 			  void *buffer, size_t *length, loff_t *ppos)
3483 {
3484 
3485 	return hugetlb_sysctl_handler_common(false, table, write,
3486 							buffer, length, ppos);
3487 }
3488 
3489 #ifdef CONFIG_NUMA
3490 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3491 			  void *buffer, size_t *length, loff_t *ppos)
3492 {
3493 	return hugetlb_sysctl_handler_common(true, table, write,
3494 							buffer, length, ppos);
3495 }
3496 #endif /* CONFIG_NUMA */
3497 
3498 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
3499 		void *buffer, size_t *length, loff_t *ppos)
3500 {
3501 	struct hstate *h = &default_hstate;
3502 	unsigned long tmp;
3503 	int ret;
3504 
3505 	if (!hugepages_supported())
3506 		return -EOPNOTSUPP;
3507 
3508 	tmp = h->nr_overcommit_huge_pages;
3509 
3510 	if (write && hstate_is_gigantic(h))
3511 		return -EINVAL;
3512 
3513 	table->data = &tmp;
3514 	table->maxlen = sizeof(unsigned long);
3515 	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
3516 	if (ret)
3517 		goto out;
3518 
3519 	if (write) {
3520 		spin_lock(&hugetlb_lock);
3521 		h->nr_overcommit_huge_pages = tmp;
3522 		spin_unlock(&hugetlb_lock);
3523 	}
3524 out:
3525 	return ret;
3526 }
3527 
3528 #endif /* CONFIG_SYSCTL */
3529 
3530 void hugetlb_report_meminfo(struct seq_file *m)
3531 {
3532 	struct hstate *h;
3533 	unsigned long total = 0;
3534 
3535 	if (!hugepages_supported())
3536 		return;
3537 
3538 	for_each_hstate(h) {
3539 		unsigned long count = h->nr_huge_pages;
3540 
3541 		total += (PAGE_SIZE << huge_page_order(h)) * count;
3542 
3543 		if (h == &default_hstate)
3544 			seq_printf(m,
3545 				   "HugePages_Total:   %5lu\n"
3546 				   "HugePages_Free:    %5lu\n"
3547 				   "HugePages_Rsvd:    %5lu\n"
3548 				   "HugePages_Surp:    %5lu\n"
3549 				   "Hugepagesize:   %8lu kB\n",
3550 				   count,
3551 				   h->free_huge_pages,
3552 				   h->resv_huge_pages,
3553 				   h->surplus_huge_pages,
3554 				   (PAGE_SIZE << huge_page_order(h)) / 1024);
3555 	}
3556 
3557 	seq_printf(m, "Hugetlb:        %8lu kB\n", total / 1024);
3558 }
3559 
3560 int hugetlb_report_node_meminfo(int nid, char *buf)
3561 {
3562 	struct hstate *h = &default_hstate;
3563 	if (!hugepages_supported())
3564 		return 0;
3565 	return sprintf(buf,
3566 		"Node %d HugePages_Total: %5u\n"
3567 		"Node %d HugePages_Free:  %5u\n"
3568 		"Node %d HugePages_Surp:  %5u\n",
3569 		nid, h->nr_huge_pages_node[nid],
3570 		nid, h->free_huge_pages_node[nid],
3571 		nid, h->surplus_huge_pages_node[nid]);
3572 }
3573 
3574 void hugetlb_show_meminfo(void)
3575 {
3576 	struct hstate *h;
3577 	int nid;
3578 
3579 	if (!hugepages_supported())
3580 		return;
3581 
3582 	for_each_node_state(nid, N_MEMORY)
3583 		for_each_hstate(h)
3584 			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3585 				nid,
3586 				h->nr_huge_pages_node[nid],
3587 				h->free_huge_pages_node[nid],
3588 				h->surplus_huge_pages_node[nid],
3589 				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3590 }
3591 
3592 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3593 {
3594 	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3595 		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3596 }
3597 
3598 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3599 unsigned long hugetlb_total_pages(void)
3600 {
3601 	struct hstate *h;
3602 	unsigned long nr_total_pages = 0;
3603 
3604 	for_each_hstate(h)
3605 		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3606 	return nr_total_pages;
3607 }
3608 
3609 static int hugetlb_acct_memory(struct hstate *h, long delta)
3610 {
3611 	int ret = -ENOMEM;
3612 
3613 	spin_lock(&hugetlb_lock);
3614 	/*
3615 	 * When cpuset is configured, it breaks the strict hugetlb page
3616 	 * reservation as the accounting is done on a global variable. Such
3617 	 * reservation is completely rubbish in the presence of cpuset because
3618 	 * the reservation is not checked against page availability for the
3619 	 * current cpuset. Application can still potentially OOM'ed by kernel
3620 	 * with lack of free htlb page in cpuset that the task is in.
3621 	 * Attempt to enforce strict accounting with cpuset is almost
3622 	 * impossible (or too ugly) because cpuset is too fluid that
3623 	 * task or memory node can be dynamically moved between cpusets.
3624 	 *
3625 	 * The change of semantics for shared hugetlb mapping with cpuset is
3626 	 * undesirable. However, in order to preserve some of the semantics,
3627 	 * we fall back to check against current free page availability as
3628 	 * a best attempt and hopefully to minimize the impact of changing
3629 	 * semantics that cpuset has.
3630 	 *
3631 	 * Apart from cpuset, we also have memory policy mechanism that
3632 	 * also determines from which node the kernel will allocate memory
3633 	 * in a NUMA system. So similar to cpuset, we also should consider
3634 	 * the memory policy of the current task. Similar to the description
3635 	 * above.
3636 	 */
3637 	if (delta > 0) {
3638 		if (gather_surplus_pages(h, delta) < 0)
3639 			goto out;
3640 
3641 		if (delta > allowed_mems_nr(h)) {
3642 			return_unused_surplus_pages(h, delta);
3643 			goto out;
3644 		}
3645 	}
3646 
3647 	ret = 0;
3648 	if (delta < 0)
3649 		return_unused_surplus_pages(h, (unsigned long) -delta);
3650 
3651 out:
3652 	spin_unlock(&hugetlb_lock);
3653 	return ret;
3654 }
3655 
3656 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3657 {
3658 	struct resv_map *resv = vma_resv_map(vma);
3659 
3660 	/*
3661 	 * This new VMA should share its siblings reservation map if present.
3662 	 * The VMA will only ever have a valid reservation map pointer where
3663 	 * it is being copied for another still existing VMA.  As that VMA
3664 	 * has a reference to the reservation map it cannot disappear until
3665 	 * after this open call completes.  It is therefore safe to take a
3666 	 * new reference here without additional locking.
3667 	 */
3668 	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3669 		kref_get(&resv->refs);
3670 }
3671 
3672 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3673 {
3674 	struct hstate *h = hstate_vma(vma);
3675 	struct resv_map *resv = vma_resv_map(vma);
3676 	struct hugepage_subpool *spool = subpool_vma(vma);
3677 	unsigned long reserve, start, end;
3678 	long gbl_reserve;
3679 
3680 	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3681 		return;
3682 
3683 	start = vma_hugecache_offset(h, vma, vma->vm_start);
3684 	end = vma_hugecache_offset(h, vma, vma->vm_end);
3685 
3686 	reserve = (end - start) - region_count(resv, start, end);
3687 	hugetlb_cgroup_uncharge_counter(resv, start, end);
3688 	if (reserve) {
3689 		/*
3690 		 * Decrement reserve counts.  The global reserve count may be
3691 		 * adjusted if the subpool has a minimum size.
3692 		 */
3693 		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3694 		hugetlb_acct_memory(h, -gbl_reserve);
3695 	}
3696 
3697 	kref_put(&resv->refs, resv_map_release);
3698 }
3699 
3700 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3701 {
3702 	if (addr & ~(huge_page_mask(hstate_vma(vma))))
3703 		return -EINVAL;
3704 	return 0;
3705 }
3706 
3707 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3708 {
3709 	struct hstate *hstate = hstate_vma(vma);
3710 
3711 	return 1UL << huge_page_shift(hstate);
3712 }
3713 
3714 /*
3715  * We cannot handle pagefaults against hugetlb pages at all.  They cause
3716  * handle_mm_fault() to try to instantiate regular-sized pages in the
3717  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
3718  * this far.
3719  */
3720 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
3721 {
3722 	BUG();
3723 	return 0;
3724 }
3725 
3726 /*
3727  * When a new function is introduced to vm_operations_struct and added
3728  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3729  * This is because under System V memory model, mappings created via
3730  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3731  * their original vm_ops are overwritten with shm_vm_ops.
3732  */
3733 const struct vm_operations_struct hugetlb_vm_ops = {
3734 	.fault = hugetlb_vm_op_fault,
3735 	.open = hugetlb_vm_op_open,
3736 	.close = hugetlb_vm_op_close,
3737 	.split = hugetlb_vm_op_split,
3738 	.pagesize = hugetlb_vm_op_pagesize,
3739 };
3740 
3741 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3742 				int writable)
3743 {
3744 	pte_t entry;
3745 
3746 	if (writable) {
3747 		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3748 					 vma->vm_page_prot)));
3749 	} else {
3750 		entry = huge_pte_wrprotect(mk_huge_pte(page,
3751 					   vma->vm_page_prot));
3752 	}
3753 	entry = pte_mkyoung(entry);
3754 	entry = pte_mkhuge(entry);
3755 	entry = arch_make_huge_pte(entry, vma, page, writable);
3756 
3757 	return entry;
3758 }
3759 
3760 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3761 				   unsigned long address, pte_t *ptep)
3762 {
3763 	pte_t entry;
3764 
3765 	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3766 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3767 		update_mmu_cache(vma, address, ptep);
3768 }
3769 
3770 bool is_hugetlb_entry_migration(pte_t pte)
3771 {
3772 	swp_entry_t swp;
3773 
3774 	if (huge_pte_none(pte) || pte_present(pte))
3775 		return false;
3776 	swp = pte_to_swp_entry(pte);
3777 	if (non_swap_entry(swp) && is_migration_entry(swp))
3778 		return true;
3779 	else
3780 		return false;
3781 }
3782 
3783 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3784 {
3785 	swp_entry_t swp;
3786 
3787 	if (huge_pte_none(pte) || pte_present(pte))
3788 		return 0;
3789 	swp = pte_to_swp_entry(pte);
3790 	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3791 		return 1;
3792 	else
3793 		return 0;
3794 }
3795 
3796 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3797 			    struct vm_area_struct *vma)
3798 {
3799 	pte_t *src_pte, *dst_pte, entry, dst_entry;
3800 	struct page *ptepage;
3801 	unsigned long addr;
3802 	int cow;
3803 	struct hstate *h = hstate_vma(vma);
3804 	unsigned long sz = huge_page_size(h);
3805 	struct address_space *mapping = vma->vm_file->f_mapping;
3806 	struct mmu_notifier_range range;
3807 	int ret = 0;
3808 
3809 	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3810 
3811 	if (cow) {
3812 		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
3813 					vma->vm_start,
3814 					vma->vm_end);
3815 		mmu_notifier_invalidate_range_start(&range);
3816 	} else {
3817 		/*
3818 		 * For shared mappings i_mmap_rwsem must be held to call
3819 		 * huge_pte_alloc, otherwise the returned ptep could go
3820 		 * away if part of a shared pmd and another thread calls
3821 		 * huge_pmd_unshare.
3822 		 */
3823 		i_mmap_lock_read(mapping);
3824 	}
3825 
3826 	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3827 		spinlock_t *src_ptl, *dst_ptl;
3828 		src_pte = huge_pte_offset(src, addr, sz);
3829 		if (!src_pte)
3830 			continue;
3831 		dst_pte = huge_pte_alloc(dst, addr, sz);
3832 		if (!dst_pte) {
3833 			ret = -ENOMEM;
3834 			break;
3835 		}
3836 
3837 		/*
3838 		 * If the pagetables are shared don't copy or take references.
3839 		 * dst_pte == src_pte is the common case of src/dest sharing.
3840 		 *
3841 		 * However, src could have 'unshared' and dst shares with
3842 		 * another vma.  If dst_pte !none, this implies sharing.
3843 		 * Check here before taking page table lock, and once again
3844 		 * after taking the lock below.
3845 		 */
3846 		dst_entry = huge_ptep_get(dst_pte);
3847 		if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3848 			continue;
3849 
3850 		dst_ptl = huge_pte_lock(h, dst, dst_pte);
3851 		src_ptl = huge_pte_lockptr(h, src, src_pte);
3852 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3853 		entry = huge_ptep_get(src_pte);
3854 		dst_entry = huge_ptep_get(dst_pte);
3855 		if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3856 			/*
3857 			 * Skip if src entry none.  Also, skip in the
3858 			 * unlikely case dst entry !none as this implies
3859 			 * sharing with another vma.
3860 			 */
3861 			;
3862 		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
3863 				    is_hugetlb_entry_hwpoisoned(entry))) {
3864 			swp_entry_t swp_entry = pte_to_swp_entry(entry);
3865 
3866 			if (is_write_migration_entry(swp_entry) && cow) {
3867 				/*
3868 				 * COW mappings require pages in both
3869 				 * parent and child to be set to read.
3870 				 */
3871 				make_migration_entry_read(&swp_entry);
3872 				entry = swp_entry_to_pte(swp_entry);
3873 				set_huge_swap_pte_at(src, addr, src_pte,
3874 						     entry, sz);
3875 			}
3876 			set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3877 		} else {
3878 			if (cow) {
3879 				/*
3880 				 * No need to notify as we are downgrading page
3881 				 * table protection not changing it to point
3882 				 * to a new page.
3883 				 *
3884 				 * See Documentation/vm/mmu_notifier.rst
3885 				 */
3886 				huge_ptep_set_wrprotect(src, addr, src_pte);
3887 			}
3888 			entry = huge_ptep_get(src_pte);
3889 			ptepage = pte_page(entry);
3890 			get_page(ptepage);
3891 			page_dup_rmap(ptepage, true);
3892 			set_huge_pte_at(dst, addr, dst_pte, entry);
3893 			hugetlb_count_add(pages_per_huge_page(h), dst);
3894 		}
3895 		spin_unlock(src_ptl);
3896 		spin_unlock(dst_ptl);
3897 	}
3898 
3899 	if (cow)
3900 		mmu_notifier_invalidate_range_end(&range);
3901 	else
3902 		i_mmap_unlock_read(mapping);
3903 
3904 	return ret;
3905 }
3906 
3907 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3908 			    unsigned long start, unsigned long end,
3909 			    struct page *ref_page)
3910 {
3911 	struct mm_struct *mm = vma->vm_mm;
3912 	unsigned long address;
3913 	pte_t *ptep;
3914 	pte_t pte;
3915 	spinlock_t *ptl;
3916 	struct page *page;
3917 	struct hstate *h = hstate_vma(vma);
3918 	unsigned long sz = huge_page_size(h);
3919 	struct mmu_notifier_range range;
3920 
3921 	WARN_ON(!is_vm_hugetlb_page(vma));
3922 	BUG_ON(start & ~huge_page_mask(h));
3923 	BUG_ON(end & ~huge_page_mask(h));
3924 
3925 	/*
3926 	 * This is a hugetlb vma, all the pte entries should point
3927 	 * to huge page.
3928 	 */
3929 	tlb_change_page_size(tlb, sz);
3930 	tlb_start_vma(tlb, vma);
3931 
3932 	/*
3933 	 * If sharing possible, alert mmu notifiers of worst case.
3934 	 */
3935 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
3936 				end);
3937 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3938 	mmu_notifier_invalidate_range_start(&range);
3939 	address = start;
3940 	for (; address < end; address += sz) {
3941 		ptep = huge_pte_offset(mm, address, sz);
3942 		if (!ptep)
3943 			continue;
3944 
3945 		ptl = huge_pte_lock(h, mm, ptep);
3946 		if (huge_pmd_unshare(mm, vma, &address, ptep)) {
3947 			spin_unlock(ptl);
3948 			/*
3949 			 * We just unmapped a page of PMDs by clearing a PUD.
3950 			 * The caller's TLB flush range should cover this area.
3951 			 */
3952 			continue;
3953 		}
3954 
3955 		pte = huge_ptep_get(ptep);
3956 		if (huge_pte_none(pte)) {
3957 			spin_unlock(ptl);
3958 			continue;
3959 		}
3960 
3961 		/*
3962 		 * Migrating hugepage or HWPoisoned hugepage is already
3963 		 * unmapped and its refcount is dropped, so just clear pte here.
3964 		 */
3965 		if (unlikely(!pte_present(pte))) {
3966 			huge_pte_clear(mm, address, ptep, sz);
3967 			spin_unlock(ptl);
3968 			continue;
3969 		}
3970 
3971 		page = pte_page(pte);
3972 		/*
3973 		 * If a reference page is supplied, it is because a specific
3974 		 * page is being unmapped, not a range. Ensure the page we
3975 		 * are about to unmap is the actual page of interest.
3976 		 */
3977 		if (ref_page) {
3978 			if (page != ref_page) {
3979 				spin_unlock(ptl);
3980 				continue;
3981 			}
3982 			/*
3983 			 * Mark the VMA as having unmapped its page so that
3984 			 * future faults in this VMA will fail rather than
3985 			 * looking like data was lost
3986 			 */
3987 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3988 		}
3989 
3990 		pte = huge_ptep_get_and_clear(mm, address, ptep);
3991 		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3992 		if (huge_pte_dirty(pte))
3993 			set_page_dirty(page);
3994 
3995 		hugetlb_count_sub(pages_per_huge_page(h), mm);
3996 		page_remove_rmap(page, true);
3997 
3998 		spin_unlock(ptl);
3999 		tlb_remove_page_size(tlb, page, huge_page_size(h));
4000 		/*
4001 		 * Bail out after unmapping reference page if supplied
4002 		 */
4003 		if (ref_page)
4004 			break;
4005 	}
4006 	mmu_notifier_invalidate_range_end(&range);
4007 	tlb_end_vma(tlb, vma);
4008 }
4009 
4010 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
4011 			  struct vm_area_struct *vma, unsigned long start,
4012 			  unsigned long end, struct page *ref_page)
4013 {
4014 	__unmap_hugepage_range(tlb, vma, start, end, ref_page);
4015 
4016 	/*
4017 	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
4018 	 * test will fail on a vma being torn down, and not grab a page table
4019 	 * on its way out.  We're lucky that the flag has such an appropriate
4020 	 * name, and can in fact be safely cleared here. We could clear it
4021 	 * before the __unmap_hugepage_range above, but all that's necessary
4022 	 * is to clear it before releasing the i_mmap_rwsem. This works
4023 	 * because in the context this is called, the VMA is about to be
4024 	 * destroyed and the i_mmap_rwsem is held.
4025 	 */
4026 	vma->vm_flags &= ~VM_MAYSHARE;
4027 }
4028 
4029 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
4030 			  unsigned long end, struct page *ref_page)
4031 {
4032 	struct mm_struct *mm;
4033 	struct mmu_gather tlb;
4034 	unsigned long tlb_start = start;
4035 	unsigned long tlb_end = end;
4036 
4037 	/*
4038 	 * If shared PMDs were possibly used within this vma range, adjust
4039 	 * start/end for worst case tlb flushing.
4040 	 * Note that we can not be sure if PMDs are shared until we try to
4041 	 * unmap pages.  However, we want to make sure TLB flushing covers
4042 	 * the largest possible range.
4043 	 */
4044 	adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end);
4045 
4046 	mm = vma->vm_mm;
4047 
4048 	tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end);
4049 	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
4050 	tlb_finish_mmu(&tlb, tlb_start, tlb_end);
4051 }
4052 
4053 /*
4054  * This is called when the original mapper is failing to COW a MAP_PRIVATE
4055  * mappping it owns the reserve page for. The intention is to unmap the page
4056  * from other VMAs and let the children be SIGKILLed if they are faulting the
4057  * same region.
4058  */
4059 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
4060 			      struct page *page, unsigned long address)
4061 {
4062 	struct hstate *h = hstate_vma(vma);
4063 	struct vm_area_struct *iter_vma;
4064 	struct address_space *mapping;
4065 	pgoff_t pgoff;
4066 
4067 	/*
4068 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
4069 	 * from page cache lookup which is in HPAGE_SIZE units.
4070 	 */
4071 	address = address & huge_page_mask(h);
4072 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
4073 			vma->vm_pgoff;
4074 	mapping = vma->vm_file->f_mapping;
4075 
4076 	/*
4077 	 * Take the mapping lock for the duration of the table walk. As
4078 	 * this mapping should be shared between all the VMAs,
4079 	 * __unmap_hugepage_range() is called as the lock is already held
4080 	 */
4081 	i_mmap_lock_write(mapping);
4082 	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
4083 		/* Do not unmap the current VMA */
4084 		if (iter_vma == vma)
4085 			continue;
4086 
4087 		/*
4088 		 * Shared VMAs have their own reserves and do not affect
4089 		 * MAP_PRIVATE accounting but it is possible that a shared
4090 		 * VMA is using the same page so check and skip such VMAs.
4091 		 */
4092 		if (iter_vma->vm_flags & VM_MAYSHARE)
4093 			continue;
4094 
4095 		/*
4096 		 * Unmap the page from other VMAs without their own reserves.
4097 		 * They get marked to be SIGKILLed if they fault in these
4098 		 * areas. This is because a future no-page fault on this VMA
4099 		 * could insert a zeroed page instead of the data existing
4100 		 * from the time of fork. This would look like data corruption
4101 		 */
4102 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
4103 			unmap_hugepage_range(iter_vma, address,
4104 					     address + huge_page_size(h), page);
4105 	}
4106 	i_mmap_unlock_write(mapping);
4107 }
4108 
4109 /*
4110  * Hugetlb_cow() should be called with page lock of the original hugepage held.
4111  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
4112  * cannot race with other handlers or page migration.
4113  * Keep the pte_same checks anyway to make transition from the mutex easier.
4114  */
4115 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
4116 		       unsigned long address, pte_t *ptep,
4117 		       struct page *pagecache_page, spinlock_t *ptl)
4118 {
4119 	pte_t pte;
4120 	struct hstate *h = hstate_vma(vma);
4121 	struct page *old_page, *new_page;
4122 	int outside_reserve = 0;
4123 	vm_fault_t ret = 0;
4124 	unsigned long haddr = address & huge_page_mask(h);
4125 	struct mmu_notifier_range range;
4126 
4127 	pte = huge_ptep_get(ptep);
4128 	old_page = pte_page(pte);
4129 
4130 retry_avoidcopy:
4131 	/* If no-one else is actually using this page, avoid the copy
4132 	 * and just make the page writable */
4133 	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
4134 		page_move_anon_rmap(old_page, vma);
4135 		set_huge_ptep_writable(vma, haddr, ptep);
4136 		return 0;
4137 	}
4138 
4139 	/*
4140 	 * If the process that created a MAP_PRIVATE mapping is about to
4141 	 * perform a COW due to a shared page count, attempt to satisfy
4142 	 * the allocation without using the existing reserves. The pagecache
4143 	 * page is used to determine if the reserve at this address was
4144 	 * consumed or not. If reserves were used, a partial faulted mapping
4145 	 * at the time of fork() could consume its reserves on COW instead
4146 	 * of the full address range.
4147 	 */
4148 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
4149 			old_page != pagecache_page)
4150 		outside_reserve = 1;
4151 
4152 	get_page(old_page);
4153 
4154 	/*
4155 	 * Drop page table lock as buddy allocator may be called. It will
4156 	 * be acquired again before returning to the caller, as expected.
4157 	 */
4158 	spin_unlock(ptl);
4159 	new_page = alloc_huge_page(vma, haddr, outside_reserve);
4160 
4161 	if (IS_ERR(new_page)) {
4162 		/*
4163 		 * If a process owning a MAP_PRIVATE mapping fails to COW,
4164 		 * it is due to references held by a child and an insufficient
4165 		 * huge page pool. To guarantee the original mappers
4166 		 * reliability, unmap the page from child processes. The child
4167 		 * may get SIGKILLed if it later faults.
4168 		 */
4169 		if (outside_reserve) {
4170 			put_page(old_page);
4171 			BUG_ON(huge_pte_none(pte));
4172 			unmap_ref_private(mm, vma, old_page, haddr);
4173 			BUG_ON(huge_pte_none(pte));
4174 			spin_lock(ptl);
4175 			ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4176 			if (likely(ptep &&
4177 				   pte_same(huge_ptep_get(ptep), pte)))
4178 				goto retry_avoidcopy;
4179 			/*
4180 			 * race occurs while re-acquiring page table
4181 			 * lock, and our job is done.
4182 			 */
4183 			return 0;
4184 		}
4185 
4186 		ret = vmf_error(PTR_ERR(new_page));
4187 		goto out_release_old;
4188 	}
4189 
4190 	/*
4191 	 * When the original hugepage is shared one, it does not have
4192 	 * anon_vma prepared.
4193 	 */
4194 	if (unlikely(anon_vma_prepare(vma))) {
4195 		ret = VM_FAULT_OOM;
4196 		goto out_release_all;
4197 	}
4198 
4199 	copy_user_huge_page(new_page, old_page, address, vma,
4200 			    pages_per_huge_page(h));
4201 	__SetPageUptodate(new_page);
4202 
4203 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
4204 				haddr + huge_page_size(h));
4205 	mmu_notifier_invalidate_range_start(&range);
4206 
4207 	/*
4208 	 * Retake the page table lock to check for racing updates
4209 	 * before the page tables are altered
4210 	 */
4211 	spin_lock(ptl);
4212 	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4213 	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
4214 		ClearPagePrivate(new_page);
4215 
4216 		/* Break COW */
4217 		huge_ptep_clear_flush(vma, haddr, ptep);
4218 		mmu_notifier_invalidate_range(mm, range.start, range.end);
4219 		set_huge_pte_at(mm, haddr, ptep,
4220 				make_huge_pte(vma, new_page, 1));
4221 		page_remove_rmap(old_page, true);
4222 		hugepage_add_new_anon_rmap(new_page, vma, haddr);
4223 		set_page_huge_active(new_page);
4224 		/* Make the old page be freed below */
4225 		new_page = old_page;
4226 	}
4227 	spin_unlock(ptl);
4228 	mmu_notifier_invalidate_range_end(&range);
4229 out_release_all:
4230 	restore_reserve_on_error(h, vma, haddr, new_page);
4231 	put_page(new_page);
4232 out_release_old:
4233 	put_page(old_page);
4234 
4235 	spin_lock(ptl); /* Caller expects lock to be held */
4236 	return ret;
4237 }
4238 
4239 /* Return the pagecache page at a given address within a VMA */
4240 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
4241 			struct vm_area_struct *vma, unsigned long address)
4242 {
4243 	struct address_space *mapping;
4244 	pgoff_t idx;
4245 
4246 	mapping = vma->vm_file->f_mapping;
4247 	idx = vma_hugecache_offset(h, vma, address);
4248 
4249 	return find_lock_page(mapping, idx);
4250 }
4251 
4252 /*
4253  * Return whether there is a pagecache page to back given address within VMA.
4254  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
4255  */
4256 static bool hugetlbfs_pagecache_present(struct hstate *h,
4257 			struct vm_area_struct *vma, unsigned long address)
4258 {
4259 	struct address_space *mapping;
4260 	pgoff_t idx;
4261 	struct page *page;
4262 
4263 	mapping = vma->vm_file->f_mapping;
4264 	idx = vma_hugecache_offset(h, vma, address);
4265 
4266 	page = find_get_page(mapping, idx);
4267 	if (page)
4268 		put_page(page);
4269 	return page != NULL;
4270 }
4271 
4272 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
4273 			   pgoff_t idx)
4274 {
4275 	struct inode *inode = mapping->host;
4276 	struct hstate *h = hstate_inode(inode);
4277 	int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
4278 
4279 	if (err)
4280 		return err;
4281 	ClearPagePrivate(page);
4282 
4283 	/*
4284 	 * set page dirty so that it will not be removed from cache/file
4285 	 * by non-hugetlbfs specific code paths.
4286 	 */
4287 	set_page_dirty(page);
4288 
4289 	spin_lock(&inode->i_lock);
4290 	inode->i_blocks += blocks_per_huge_page(h);
4291 	spin_unlock(&inode->i_lock);
4292 	return 0;
4293 }
4294 
4295 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
4296 			struct vm_area_struct *vma,
4297 			struct address_space *mapping, pgoff_t idx,
4298 			unsigned long address, pte_t *ptep, unsigned int flags)
4299 {
4300 	struct hstate *h = hstate_vma(vma);
4301 	vm_fault_t ret = VM_FAULT_SIGBUS;
4302 	int anon_rmap = 0;
4303 	unsigned long size;
4304 	struct page *page;
4305 	pte_t new_pte;
4306 	spinlock_t *ptl;
4307 	unsigned long haddr = address & huge_page_mask(h);
4308 	bool new_page = false;
4309 
4310 	/*
4311 	 * Currently, we are forced to kill the process in the event the
4312 	 * original mapper has unmapped pages from the child due to a failed
4313 	 * COW. Warn that such a situation has occurred as it may not be obvious
4314 	 */
4315 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
4316 		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
4317 			   current->pid);
4318 		return ret;
4319 	}
4320 
4321 	/*
4322 	 * We can not race with truncation due to holding i_mmap_rwsem.
4323 	 * i_size is modified when holding i_mmap_rwsem, so check here
4324 	 * once for faults beyond end of file.
4325 	 */
4326 	size = i_size_read(mapping->host) >> huge_page_shift(h);
4327 	if (idx >= size)
4328 		goto out;
4329 
4330 retry:
4331 	page = find_lock_page(mapping, idx);
4332 	if (!page) {
4333 		/*
4334 		 * Check for page in userfault range
4335 		 */
4336 		if (userfaultfd_missing(vma)) {
4337 			u32 hash;
4338 			struct vm_fault vmf = {
4339 				.vma = vma,
4340 				.address = haddr,
4341 				.flags = flags,
4342 				/*
4343 				 * Hard to debug if it ends up being
4344 				 * used by a callee that assumes
4345 				 * something about the other
4346 				 * uninitialized fields... same as in
4347 				 * memory.c
4348 				 */
4349 			};
4350 
4351 			/*
4352 			 * hugetlb_fault_mutex and i_mmap_rwsem must be
4353 			 * dropped before handling userfault.  Reacquire
4354 			 * after handling fault to make calling code simpler.
4355 			 */
4356 			hash = hugetlb_fault_mutex_hash(mapping, idx);
4357 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4358 			i_mmap_unlock_read(mapping);
4359 			ret = handle_userfault(&vmf, VM_UFFD_MISSING);
4360 			i_mmap_lock_read(mapping);
4361 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
4362 			goto out;
4363 		}
4364 
4365 		page = alloc_huge_page(vma, haddr, 0);
4366 		if (IS_ERR(page)) {
4367 			/*
4368 			 * Returning error will result in faulting task being
4369 			 * sent SIGBUS.  The hugetlb fault mutex prevents two
4370 			 * tasks from racing to fault in the same page which
4371 			 * could result in false unable to allocate errors.
4372 			 * Page migration does not take the fault mutex, but
4373 			 * does a clear then write of pte's under page table
4374 			 * lock.  Page fault code could race with migration,
4375 			 * notice the clear pte and try to allocate a page
4376 			 * here.  Before returning error, get ptl and make
4377 			 * sure there really is no pte entry.
4378 			 */
4379 			ptl = huge_pte_lock(h, mm, ptep);
4380 			if (!huge_pte_none(huge_ptep_get(ptep))) {
4381 				ret = 0;
4382 				spin_unlock(ptl);
4383 				goto out;
4384 			}
4385 			spin_unlock(ptl);
4386 			ret = vmf_error(PTR_ERR(page));
4387 			goto out;
4388 		}
4389 		clear_huge_page(page, address, pages_per_huge_page(h));
4390 		__SetPageUptodate(page);
4391 		new_page = true;
4392 
4393 		if (vma->vm_flags & VM_MAYSHARE) {
4394 			int err = huge_add_to_page_cache(page, mapping, idx);
4395 			if (err) {
4396 				put_page(page);
4397 				if (err == -EEXIST)
4398 					goto retry;
4399 				goto out;
4400 			}
4401 		} else {
4402 			lock_page(page);
4403 			if (unlikely(anon_vma_prepare(vma))) {
4404 				ret = VM_FAULT_OOM;
4405 				goto backout_unlocked;
4406 			}
4407 			anon_rmap = 1;
4408 		}
4409 	} else {
4410 		/*
4411 		 * If memory error occurs between mmap() and fault, some process
4412 		 * don't have hwpoisoned swap entry for errored virtual address.
4413 		 * So we need to block hugepage fault by PG_hwpoison bit check.
4414 		 */
4415 		if (unlikely(PageHWPoison(page))) {
4416 			ret = VM_FAULT_HWPOISON |
4417 				VM_FAULT_SET_HINDEX(hstate_index(h));
4418 			goto backout_unlocked;
4419 		}
4420 	}
4421 
4422 	/*
4423 	 * If we are going to COW a private mapping later, we examine the
4424 	 * pending reservations for this page now. This will ensure that
4425 	 * any allocations necessary to record that reservation occur outside
4426 	 * the spinlock.
4427 	 */
4428 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4429 		if (vma_needs_reservation(h, vma, haddr) < 0) {
4430 			ret = VM_FAULT_OOM;
4431 			goto backout_unlocked;
4432 		}
4433 		/* Just decrements count, does not deallocate */
4434 		vma_end_reservation(h, vma, haddr);
4435 	}
4436 
4437 	ptl = huge_pte_lock(h, mm, ptep);
4438 	ret = 0;
4439 	if (!huge_pte_none(huge_ptep_get(ptep)))
4440 		goto backout;
4441 
4442 	if (anon_rmap) {
4443 		ClearPagePrivate(page);
4444 		hugepage_add_new_anon_rmap(page, vma, haddr);
4445 	} else
4446 		page_dup_rmap(page, true);
4447 	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
4448 				&& (vma->vm_flags & VM_SHARED)));
4449 	set_huge_pte_at(mm, haddr, ptep, new_pte);
4450 
4451 	hugetlb_count_add(pages_per_huge_page(h), mm);
4452 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4453 		/* Optimization, do the COW without a second fault */
4454 		ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
4455 	}
4456 
4457 	spin_unlock(ptl);
4458 
4459 	/*
4460 	 * Only make newly allocated pages active.  Existing pages found
4461 	 * in the pagecache could be !page_huge_active() if they have been
4462 	 * isolated for migration.
4463 	 */
4464 	if (new_page)
4465 		set_page_huge_active(page);
4466 
4467 	unlock_page(page);
4468 out:
4469 	return ret;
4470 
4471 backout:
4472 	spin_unlock(ptl);
4473 backout_unlocked:
4474 	unlock_page(page);
4475 	restore_reserve_on_error(h, vma, haddr, page);
4476 	put_page(page);
4477 	goto out;
4478 }
4479 
4480 #ifdef CONFIG_SMP
4481 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4482 {
4483 	unsigned long key[2];
4484 	u32 hash;
4485 
4486 	key[0] = (unsigned long) mapping;
4487 	key[1] = idx;
4488 
4489 	hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
4490 
4491 	return hash & (num_fault_mutexes - 1);
4492 }
4493 #else
4494 /*
4495  * For uniprocesor systems we always use a single mutex, so just
4496  * return 0 and avoid the hashing overhead.
4497  */
4498 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4499 {
4500 	return 0;
4501 }
4502 #endif
4503 
4504 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
4505 			unsigned long address, unsigned int flags)
4506 {
4507 	pte_t *ptep, entry;
4508 	spinlock_t *ptl;
4509 	vm_fault_t ret;
4510 	u32 hash;
4511 	pgoff_t idx;
4512 	struct page *page = NULL;
4513 	struct page *pagecache_page = NULL;
4514 	struct hstate *h = hstate_vma(vma);
4515 	struct address_space *mapping;
4516 	int need_wait_lock = 0;
4517 	unsigned long haddr = address & huge_page_mask(h);
4518 
4519 	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4520 	if (ptep) {
4521 		/*
4522 		 * Since we hold no locks, ptep could be stale.  That is
4523 		 * OK as we are only making decisions based on content and
4524 		 * not actually modifying content here.
4525 		 */
4526 		entry = huge_ptep_get(ptep);
4527 		if (unlikely(is_hugetlb_entry_migration(entry))) {
4528 			migration_entry_wait_huge(vma, mm, ptep);
4529 			return 0;
4530 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
4531 			return VM_FAULT_HWPOISON_LARGE |
4532 				VM_FAULT_SET_HINDEX(hstate_index(h));
4533 	}
4534 
4535 	/*
4536 	 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
4537 	 * until finished with ptep.  This serves two purposes:
4538 	 * 1) It prevents huge_pmd_unshare from being called elsewhere
4539 	 *    and making the ptep no longer valid.
4540 	 * 2) It synchronizes us with i_size modifications during truncation.
4541 	 *
4542 	 * ptep could have already be assigned via huge_pte_offset.  That
4543 	 * is OK, as huge_pte_alloc will return the same value unless
4544 	 * something has changed.
4545 	 */
4546 	mapping = vma->vm_file->f_mapping;
4547 	i_mmap_lock_read(mapping);
4548 	ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
4549 	if (!ptep) {
4550 		i_mmap_unlock_read(mapping);
4551 		return VM_FAULT_OOM;
4552 	}
4553 
4554 	/*
4555 	 * Serialize hugepage allocation and instantiation, so that we don't
4556 	 * get spurious allocation failures if two CPUs race to instantiate
4557 	 * the same page in the page cache.
4558 	 */
4559 	idx = vma_hugecache_offset(h, vma, haddr);
4560 	hash = hugetlb_fault_mutex_hash(mapping, idx);
4561 	mutex_lock(&hugetlb_fault_mutex_table[hash]);
4562 
4563 	entry = huge_ptep_get(ptep);
4564 	if (huge_pte_none(entry)) {
4565 		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
4566 		goto out_mutex;
4567 	}
4568 
4569 	ret = 0;
4570 
4571 	/*
4572 	 * entry could be a migration/hwpoison entry at this point, so this
4573 	 * check prevents the kernel from going below assuming that we have
4574 	 * an active hugepage in pagecache. This goto expects the 2nd page
4575 	 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
4576 	 * properly handle it.
4577 	 */
4578 	if (!pte_present(entry))
4579 		goto out_mutex;
4580 
4581 	/*
4582 	 * If we are going to COW the mapping later, we examine the pending
4583 	 * reservations for this page now. This will ensure that any
4584 	 * allocations necessary to record that reservation occur outside the
4585 	 * spinlock. For private mappings, we also lookup the pagecache
4586 	 * page now as it is used to determine if a reservation has been
4587 	 * consumed.
4588 	 */
4589 	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
4590 		if (vma_needs_reservation(h, vma, haddr) < 0) {
4591 			ret = VM_FAULT_OOM;
4592 			goto out_mutex;
4593 		}
4594 		/* Just decrements count, does not deallocate */
4595 		vma_end_reservation(h, vma, haddr);
4596 
4597 		if (!(vma->vm_flags & VM_MAYSHARE))
4598 			pagecache_page = hugetlbfs_pagecache_page(h,
4599 								vma, haddr);
4600 	}
4601 
4602 	ptl = huge_pte_lock(h, mm, ptep);
4603 
4604 	/* Check for a racing update before calling hugetlb_cow */
4605 	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4606 		goto out_ptl;
4607 
4608 	/*
4609 	 * hugetlb_cow() requires page locks of pte_page(entry) and
4610 	 * pagecache_page, so here we need take the former one
4611 	 * when page != pagecache_page or !pagecache_page.
4612 	 */
4613 	page = pte_page(entry);
4614 	if (page != pagecache_page)
4615 		if (!trylock_page(page)) {
4616 			need_wait_lock = 1;
4617 			goto out_ptl;
4618 		}
4619 
4620 	get_page(page);
4621 
4622 	if (flags & FAULT_FLAG_WRITE) {
4623 		if (!huge_pte_write(entry)) {
4624 			ret = hugetlb_cow(mm, vma, address, ptep,
4625 					  pagecache_page, ptl);
4626 			goto out_put_page;
4627 		}
4628 		entry = huge_pte_mkdirty(entry);
4629 	}
4630 	entry = pte_mkyoung(entry);
4631 	if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
4632 						flags & FAULT_FLAG_WRITE))
4633 		update_mmu_cache(vma, haddr, ptep);
4634 out_put_page:
4635 	if (page != pagecache_page)
4636 		unlock_page(page);
4637 	put_page(page);
4638 out_ptl:
4639 	spin_unlock(ptl);
4640 
4641 	if (pagecache_page) {
4642 		unlock_page(pagecache_page);
4643 		put_page(pagecache_page);
4644 	}
4645 out_mutex:
4646 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4647 	i_mmap_unlock_read(mapping);
4648 	/*
4649 	 * Generally it's safe to hold refcount during waiting page lock. But
4650 	 * here we just wait to defer the next page fault to avoid busy loop and
4651 	 * the page is not used after unlocked before returning from the current
4652 	 * page fault. So we are safe from accessing freed page, even if we wait
4653 	 * here without taking refcount.
4654 	 */
4655 	if (need_wait_lock)
4656 		wait_on_page_locked(page);
4657 	return ret;
4658 }
4659 
4660 /*
4661  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
4662  * modifications for huge pages.
4663  */
4664 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4665 			    pte_t *dst_pte,
4666 			    struct vm_area_struct *dst_vma,
4667 			    unsigned long dst_addr,
4668 			    unsigned long src_addr,
4669 			    struct page **pagep)
4670 {
4671 	struct address_space *mapping;
4672 	pgoff_t idx;
4673 	unsigned long size;
4674 	int vm_shared = dst_vma->vm_flags & VM_SHARED;
4675 	struct hstate *h = hstate_vma(dst_vma);
4676 	pte_t _dst_pte;
4677 	spinlock_t *ptl;
4678 	int ret;
4679 	struct page *page;
4680 
4681 	if (!*pagep) {
4682 		ret = -ENOMEM;
4683 		page = alloc_huge_page(dst_vma, dst_addr, 0);
4684 		if (IS_ERR(page))
4685 			goto out;
4686 
4687 		ret = copy_huge_page_from_user(page,
4688 						(const void __user *) src_addr,
4689 						pages_per_huge_page(h), false);
4690 
4691 		/* fallback to copy_from_user outside mmap_lock */
4692 		if (unlikely(ret)) {
4693 			ret = -ENOENT;
4694 			*pagep = page;
4695 			/* don't free the page */
4696 			goto out;
4697 		}
4698 	} else {
4699 		page = *pagep;
4700 		*pagep = NULL;
4701 	}
4702 
4703 	/*
4704 	 * The memory barrier inside __SetPageUptodate makes sure that
4705 	 * preceding stores to the page contents become visible before
4706 	 * the set_pte_at() write.
4707 	 */
4708 	__SetPageUptodate(page);
4709 
4710 	mapping = dst_vma->vm_file->f_mapping;
4711 	idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4712 
4713 	/*
4714 	 * If shared, add to page cache
4715 	 */
4716 	if (vm_shared) {
4717 		size = i_size_read(mapping->host) >> huge_page_shift(h);
4718 		ret = -EFAULT;
4719 		if (idx >= size)
4720 			goto out_release_nounlock;
4721 
4722 		/*
4723 		 * Serialization between remove_inode_hugepages() and
4724 		 * huge_add_to_page_cache() below happens through the
4725 		 * hugetlb_fault_mutex_table that here must be hold by
4726 		 * the caller.
4727 		 */
4728 		ret = huge_add_to_page_cache(page, mapping, idx);
4729 		if (ret)
4730 			goto out_release_nounlock;
4731 	}
4732 
4733 	ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4734 	spin_lock(ptl);
4735 
4736 	/*
4737 	 * Recheck the i_size after holding PT lock to make sure not
4738 	 * to leave any page mapped (as page_mapped()) beyond the end
4739 	 * of the i_size (remove_inode_hugepages() is strict about
4740 	 * enforcing that). If we bail out here, we'll also leave a
4741 	 * page in the radix tree in the vm_shared case beyond the end
4742 	 * of the i_size, but remove_inode_hugepages() will take care
4743 	 * of it as soon as we drop the hugetlb_fault_mutex_table.
4744 	 */
4745 	size = i_size_read(mapping->host) >> huge_page_shift(h);
4746 	ret = -EFAULT;
4747 	if (idx >= size)
4748 		goto out_release_unlock;
4749 
4750 	ret = -EEXIST;
4751 	if (!huge_pte_none(huge_ptep_get(dst_pte)))
4752 		goto out_release_unlock;
4753 
4754 	if (vm_shared) {
4755 		page_dup_rmap(page, true);
4756 	} else {
4757 		ClearPagePrivate(page);
4758 		hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4759 	}
4760 
4761 	_dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4762 	if (dst_vma->vm_flags & VM_WRITE)
4763 		_dst_pte = huge_pte_mkdirty(_dst_pte);
4764 	_dst_pte = pte_mkyoung(_dst_pte);
4765 
4766 	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4767 
4768 	(void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4769 					dst_vma->vm_flags & VM_WRITE);
4770 	hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4771 
4772 	/* No need to invalidate - it was non-present before */
4773 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
4774 
4775 	spin_unlock(ptl);
4776 	set_page_huge_active(page);
4777 	if (vm_shared)
4778 		unlock_page(page);
4779 	ret = 0;
4780 out:
4781 	return ret;
4782 out_release_unlock:
4783 	spin_unlock(ptl);
4784 	if (vm_shared)
4785 		unlock_page(page);
4786 out_release_nounlock:
4787 	put_page(page);
4788 	goto out;
4789 }
4790 
4791 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4792 			 struct page **pages, struct vm_area_struct **vmas,
4793 			 unsigned long *position, unsigned long *nr_pages,
4794 			 long i, unsigned int flags, int *locked)
4795 {
4796 	unsigned long pfn_offset;
4797 	unsigned long vaddr = *position;
4798 	unsigned long remainder = *nr_pages;
4799 	struct hstate *h = hstate_vma(vma);
4800 	int err = -EFAULT;
4801 
4802 	while (vaddr < vma->vm_end && remainder) {
4803 		pte_t *pte;
4804 		spinlock_t *ptl = NULL;
4805 		int absent;
4806 		struct page *page;
4807 
4808 		/*
4809 		 * If we have a pending SIGKILL, don't keep faulting pages and
4810 		 * potentially allocating memory.
4811 		 */
4812 		if (fatal_signal_pending(current)) {
4813 			remainder = 0;
4814 			break;
4815 		}
4816 
4817 		/*
4818 		 * Some archs (sparc64, sh*) have multiple pte_ts to
4819 		 * each hugepage.  We have to make sure we get the
4820 		 * first, for the page indexing below to work.
4821 		 *
4822 		 * Note that page table lock is not held when pte is null.
4823 		 */
4824 		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4825 				      huge_page_size(h));
4826 		if (pte)
4827 			ptl = huge_pte_lock(h, mm, pte);
4828 		absent = !pte || huge_pte_none(huge_ptep_get(pte));
4829 
4830 		/*
4831 		 * When coredumping, it suits get_dump_page if we just return
4832 		 * an error where there's an empty slot with no huge pagecache
4833 		 * to back it.  This way, we avoid allocating a hugepage, and
4834 		 * the sparse dumpfile avoids allocating disk blocks, but its
4835 		 * huge holes still show up with zeroes where they need to be.
4836 		 */
4837 		if (absent && (flags & FOLL_DUMP) &&
4838 		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4839 			if (pte)
4840 				spin_unlock(ptl);
4841 			remainder = 0;
4842 			break;
4843 		}
4844 
4845 		/*
4846 		 * We need call hugetlb_fault for both hugepages under migration
4847 		 * (in which case hugetlb_fault waits for the migration,) and
4848 		 * hwpoisoned hugepages (in which case we need to prevent the
4849 		 * caller from accessing to them.) In order to do this, we use
4850 		 * here is_swap_pte instead of is_hugetlb_entry_migration and
4851 		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4852 		 * both cases, and because we can't follow correct pages
4853 		 * directly from any kind of swap entries.
4854 		 */
4855 		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4856 		    ((flags & FOLL_WRITE) &&
4857 		      !huge_pte_write(huge_ptep_get(pte)))) {
4858 			vm_fault_t ret;
4859 			unsigned int fault_flags = 0;
4860 
4861 			if (pte)
4862 				spin_unlock(ptl);
4863 			if (flags & FOLL_WRITE)
4864 				fault_flags |= FAULT_FLAG_WRITE;
4865 			if (locked)
4866 				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4867 					FAULT_FLAG_KILLABLE;
4868 			if (flags & FOLL_NOWAIT)
4869 				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4870 					FAULT_FLAG_RETRY_NOWAIT;
4871 			if (flags & FOLL_TRIED) {
4872 				/*
4873 				 * Note: FAULT_FLAG_ALLOW_RETRY and
4874 				 * FAULT_FLAG_TRIED can co-exist
4875 				 */
4876 				fault_flags |= FAULT_FLAG_TRIED;
4877 			}
4878 			ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4879 			if (ret & VM_FAULT_ERROR) {
4880 				err = vm_fault_to_errno(ret, flags);
4881 				remainder = 0;
4882 				break;
4883 			}
4884 			if (ret & VM_FAULT_RETRY) {
4885 				if (locked &&
4886 				    !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4887 					*locked = 0;
4888 				*nr_pages = 0;
4889 				/*
4890 				 * VM_FAULT_RETRY must not return an
4891 				 * error, it will return zero
4892 				 * instead.
4893 				 *
4894 				 * No need to update "position" as the
4895 				 * caller will not check it after
4896 				 * *nr_pages is set to 0.
4897 				 */
4898 				return i;
4899 			}
4900 			continue;
4901 		}
4902 
4903 		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4904 		page = pte_page(huge_ptep_get(pte));
4905 
4906 		/*
4907 		 * If subpage information not requested, update counters
4908 		 * and skip the same_page loop below.
4909 		 */
4910 		if (!pages && !vmas && !pfn_offset &&
4911 		    (vaddr + huge_page_size(h) < vma->vm_end) &&
4912 		    (remainder >= pages_per_huge_page(h))) {
4913 			vaddr += huge_page_size(h);
4914 			remainder -= pages_per_huge_page(h);
4915 			i += pages_per_huge_page(h);
4916 			spin_unlock(ptl);
4917 			continue;
4918 		}
4919 
4920 same_page:
4921 		if (pages) {
4922 			pages[i] = mem_map_offset(page, pfn_offset);
4923 			/*
4924 			 * try_grab_page() should always succeed here, because:
4925 			 * a) we hold the ptl lock, and b) we've just checked
4926 			 * that the huge page is present in the page tables. If
4927 			 * the huge page is present, then the tail pages must
4928 			 * also be present. The ptl prevents the head page and
4929 			 * tail pages from being rearranged in any way. So this
4930 			 * page must be available at this point, unless the page
4931 			 * refcount overflowed:
4932 			 */
4933 			if (WARN_ON_ONCE(!try_grab_page(pages[i], flags))) {
4934 				spin_unlock(ptl);
4935 				remainder = 0;
4936 				err = -ENOMEM;
4937 				break;
4938 			}
4939 		}
4940 
4941 		if (vmas)
4942 			vmas[i] = vma;
4943 
4944 		vaddr += PAGE_SIZE;
4945 		++pfn_offset;
4946 		--remainder;
4947 		++i;
4948 		if (vaddr < vma->vm_end && remainder &&
4949 				pfn_offset < pages_per_huge_page(h)) {
4950 			/*
4951 			 * We use pfn_offset to avoid touching the pageframes
4952 			 * of this compound page.
4953 			 */
4954 			goto same_page;
4955 		}
4956 		spin_unlock(ptl);
4957 	}
4958 	*nr_pages = remainder;
4959 	/*
4960 	 * setting position is actually required only if remainder is
4961 	 * not zero but it's faster not to add a "if (remainder)"
4962 	 * branch.
4963 	 */
4964 	*position = vaddr;
4965 
4966 	return i ? i : err;
4967 }
4968 
4969 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4970 /*
4971  * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4972  * implement this.
4973  */
4974 #define flush_hugetlb_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
4975 #endif
4976 
4977 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4978 		unsigned long address, unsigned long end, pgprot_t newprot)
4979 {
4980 	struct mm_struct *mm = vma->vm_mm;
4981 	unsigned long start = address;
4982 	pte_t *ptep;
4983 	pte_t pte;
4984 	struct hstate *h = hstate_vma(vma);
4985 	unsigned long pages = 0;
4986 	bool shared_pmd = false;
4987 	struct mmu_notifier_range range;
4988 
4989 	/*
4990 	 * In the case of shared PMDs, the area to flush could be beyond
4991 	 * start/end.  Set range.start/range.end to cover the maximum possible
4992 	 * range if PMD sharing is possible.
4993 	 */
4994 	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
4995 				0, vma, mm, start, end);
4996 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4997 
4998 	BUG_ON(address >= end);
4999 	flush_cache_range(vma, range.start, range.end);
5000 
5001 	mmu_notifier_invalidate_range_start(&range);
5002 	i_mmap_lock_write(vma->vm_file->f_mapping);
5003 	for (; address < end; address += huge_page_size(h)) {
5004 		spinlock_t *ptl;
5005 		ptep = huge_pte_offset(mm, address, huge_page_size(h));
5006 		if (!ptep)
5007 			continue;
5008 		ptl = huge_pte_lock(h, mm, ptep);
5009 		if (huge_pmd_unshare(mm, vma, &address, ptep)) {
5010 			pages++;
5011 			spin_unlock(ptl);
5012 			shared_pmd = true;
5013 			continue;
5014 		}
5015 		pte = huge_ptep_get(ptep);
5016 		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
5017 			spin_unlock(ptl);
5018 			continue;
5019 		}
5020 		if (unlikely(is_hugetlb_entry_migration(pte))) {
5021 			swp_entry_t entry = pte_to_swp_entry(pte);
5022 
5023 			if (is_write_migration_entry(entry)) {
5024 				pte_t newpte;
5025 
5026 				make_migration_entry_read(&entry);
5027 				newpte = swp_entry_to_pte(entry);
5028 				set_huge_swap_pte_at(mm, address, ptep,
5029 						     newpte, huge_page_size(h));
5030 				pages++;
5031 			}
5032 			spin_unlock(ptl);
5033 			continue;
5034 		}
5035 		if (!huge_pte_none(pte)) {
5036 			pte_t old_pte;
5037 
5038 			old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
5039 			pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
5040 			pte = arch_make_huge_pte(pte, vma, NULL, 0);
5041 			huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
5042 			pages++;
5043 		}
5044 		spin_unlock(ptl);
5045 	}
5046 	/*
5047 	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
5048 	 * may have cleared our pud entry and done put_page on the page table:
5049 	 * once we release i_mmap_rwsem, another task can do the final put_page
5050 	 * and that page table be reused and filled with junk.  If we actually
5051 	 * did unshare a page of pmds, flush the range corresponding to the pud.
5052 	 */
5053 	if (shared_pmd)
5054 		flush_hugetlb_tlb_range(vma, range.start, range.end);
5055 	else
5056 		flush_hugetlb_tlb_range(vma, start, end);
5057 	/*
5058 	 * No need to call mmu_notifier_invalidate_range() we are downgrading
5059 	 * page table protection not changing it to point to a new page.
5060 	 *
5061 	 * See Documentation/vm/mmu_notifier.rst
5062 	 */
5063 	i_mmap_unlock_write(vma->vm_file->f_mapping);
5064 	mmu_notifier_invalidate_range_end(&range);
5065 
5066 	return pages << h->order;
5067 }
5068 
5069 int hugetlb_reserve_pages(struct inode *inode,
5070 					long from, long to,
5071 					struct vm_area_struct *vma,
5072 					vm_flags_t vm_flags)
5073 {
5074 	long ret, chg, add = -1;
5075 	struct hstate *h = hstate_inode(inode);
5076 	struct hugepage_subpool *spool = subpool_inode(inode);
5077 	struct resv_map *resv_map;
5078 	struct hugetlb_cgroup *h_cg = NULL;
5079 	long gbl_reserve, regions_needed = 0;
5080 
5081 	/* This should never happen */
5082 	if (from > to) {
5083 		VM_WARN(1, "%s called with a negative range\n", __func__);
5084 		return -EINVAL;
5085 	}
5086 
5087 	/*
5088 	 * Only apply hugepage reservation if asked. At fault time, an
5089 	 * attempt will be made for VM_NORESERVE to allocate a page
5090 	 * without using reserves
5091 	 */
5092 	if (vm_flags & VM_NORESERVE)
5093 		return 0;
5094 
5095 	/*
5096 	 * Shared mappings base their reservation on the number of pages that
5097 	 * are already allocated on behalf of the file. Private mappings need
5098 	 * to reserve the full area even if read-only as mprotect() may be
5099 	 * called to make the mapping read-write. Assume !vma is a shm mapping
5100 	 */
5101 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
5102 		/*
5103 		 * resv_map can not be NULL as hugetlb_reserve_pages is only
5104 		 * called for inodes for which resv_maps were created (see
5105 		 * hugetlbfs_get_inode).
5106 		 */
5107 		resv_map = inode_resv_map(inode);
5108 
5109 		chg = region_chg(resv_map, from, to, &regions_needed);
5110 
5111 	} else {
5112 		/* Private mapping. */
5113 		resv_map = resv_map_alloc();
5114 		if (!resv_map)
5115 			return -ENOMEM;
5116 
5117 		chg = to - from;
5118 
5119 		set_vma_resv_map(vma, resv_map);
5120 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
5121 	}
5122 
5123 	if (chg < 0) {
5124 		ret = chg;
5125 		goto out_err;
5126 	}
5127 
5128 	ret = hugetlb_cgroup_charge_cgroup_rsvd(
5129 		hstate_index(h), chg * pages_per_huge_page(h), &h_cg);
5130 
5131 	if (ret < 0) {
5132 		ret = -ENOMEM;
5133 		goto out_err;
5134 	}
5135 
5136 	if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
5137 		/* For private mappings, the hugetlb_cgroup uncharge info hangs
5138 		 * of the resv_map.
5139 		 */
5140 		resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
5141 	}
5142 
5143 	/*
5144 	 * There must be enough pages in the subpool for the mapping. If
5145 	 * the subpool has a minimum size, there may be some global
5146 	 * reservations already in place (gbl_reserve).
5147 	 */
5148 	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
5149 	if (gbl_reserve < 0) {
5150 		ret = -ENOSPC;
5151 		goto out_uncharge_cgroup;
5152 	}
5153 
5154 	/*
5155 	 * Check enough hugepages are available for the reservation.
5156 	 * Hand the pages back to the subpool if there are not
5157 	 */
5158 	ret = hugetlb_acct_memory(h, gbl_reserve);
5159 	if (ret < 0) {
5160 		goto out_put_pages;
5161 	}
5162 
5163 	/*
5164 	 * Account for the reservations made. Shared mappings record regions
5165 	 * that have reservations as they are shared by multiple VMAs.
5166 	 * When the last VMA disappears, the region map says how much
5167 	 * the reservation was and the page cache tells how much of
5168 	 * the reservation was consumed. Private mappings are per-VMA and
5169 	 * only the consumed reservations are tracked. When the VMA
5170 	 * disappears, the original reservation is the VMA size and the
5171 	 * consumed reservations are stored in the map. Hence, nothing
5172 	 * else has to be done for private mappings here
5173 	 */
5174 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
5175 		add = region_add(resv_map, from, to, regions_needed, h, h_cg);
5176 
5177 		if (unlikely(add < 0)) {
5178 			hugetlb_acct_memory(h, -gbl_reserve);
5179 			goto out_put_pages;
5180 		} else if (unlikely(chg > add)) {
5181 			/*
5182 			 * pages in this range were added to the reserve
5183 			 * map between region_chg and region_add.  This
5184 			 * indicates a race with alloc_huge_page.  Adjust
5185 			 * the subpool and reserve counts modified above
5186 			 * based on the difference.
5187 			 */
5188 			long rsv_adjust;
5189 
5190 			hugetlb_cgroup_uncharge_cgroup_rsvd(
5191 				hstate_index(h),
5192 				(chg - add) * pages_per_huge_page(h), h_cg);
5193 
5194 			rsv_adjust = hugepage_subpool_put_pages(spool,
5195 								chg - add);
5196 			hugetlb_acct_memory(h, -rsv_adjust);
5197 		}
5198 	}
5199 	return 0;
5200 out_put_pages:
5201 	/* put back original number of pages, chg */
5202 	(void)hugepage_subpool_put_pages(spool, chg);
5203 out_uncharge_cgroup:
5204 	hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
5205 					    chg * pages_per_huge_page(h), h_cg);
5206 out_err:
5207 	if (!vma || vma->vm_flags & VM_MAYSHARE)
5208 		/* Only call region_abort if the region_chg succeeded but the
5209 		 * region_add failed or didn't run.
5210 		 */
5211 		if (chg >= 0 && add < 0)
5212 			region_abort(resv_map, from, to, regions_needed);
5213 	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5214 		kref_put(&resv_map->refs, resv_map_release);
5215 	return ret;
5216 }
5217 
5218 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
5219 								long freed)
5220 {
5221 	struct hstate *h = hstate_inode(inode);
5222 	struct resv_map *resv_map = inode_resv_map(inode);
5223 	long chg = 0;
5224 	struct hugepage_subpool *spool = subpool_inode(inode);
5225 	long gbl_reserve;
5226 
5227 	/*
5228 	 * Since this routine can be called in the evict inode path for all
5229 	 * hugetlbfs inodes, resv_map could be NULL.
5230 	 */
5231 	if (resv_map) {
5232 		chg = region_del(resv_map, start, end);
5233 		/*
5234 		 * region_del() can fail in the rare case where a region
5235 		 * must be split and another region descriptor can not be
5236 		 * allocated.  If end == LONG_MAX, it will not fail.
5237 		 */
5238 		if (chg < 0)
5239 			return chg;
5240 	}
5241 
5242 	spin_lock(&inode->i_lock);
5243 	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
5244 	spin_unlock(&inode->i_lock);
5245 
5246 	/*
5247 	 * If the subpool has a minimum size, the number of global
5248 	 * reservations to be released may be adjusted.
5249 	 */
5250 	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
5251 	hugetlb_acct_memory(h, -gbl_reserve);
5252 
5253 	return 0;
5254 }
5255 
5256 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
5257 static unsigned long page_table_shareable(struct vm_area_struct *svma,
5258 				struct vm_area_struct *vma,
5259 				unsigned long addr, pgoff_t idx)
5260 {
5261 	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
5262 				svma->vm_start;
5263 	unsigned long sbase = saddr & PUD_MASK;
5264 	unsigned long s_end = sbase + PUD_SIZE;
5265 
5266 	/* Allow segments to share if only one is marked locked */
5267 	unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
5268 	unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
5269 
5270 	/*
5271 	 * match the virtual addresses, permission and the alignment of the
5272 	 * page table page.
5273 	 */
5274 	if (pmd_index(addr) != pmd_index(saddr) ||
5275 	    vm_flags != svm_flags ||
5276 	    sbase < svma->vm_start || svma->vm_end < s_end)
5277 		return 0;
5278 
5279 	return saddr;
5280 }
5281 
5282 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
5283 {
5284 	unsigned long base = addr & PUD_MASK;
5285 	unsigned long end = base + PUD_SIZE;
5286 
5287 	/*
5288 	 * check on proper vm_flags and page table alignment
5289 	 */
5290 	if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
5291 		return true;
5292 	return false;
5293 }
5294 
5295 /*
5296  * Determine if start,end range within vma could be mapped by shared pmd.
5297  * If yes, adjust start and end to cover range associated with possible
5298  * shared pmd mappings.
5299  */
5300 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5301 				unsigned long *start, unsigned long *end)
5302 {
5303 	unsigned long a_start, a_end;
5304 
5305 	if (!(vma->vm_flags & VM_MAYSHARE))
5306 		return;
5307 
5308 	/* Extend the range to be PUD aligned for a worst case scenario */
5309 	a_start = ALIGN_DOWN(*start, PUD_SIZE);
5310 	a_end = ALIGN(*end, PUD_SIZE);
5311 
5312 	/*
5313 	 * Intersect the range with the vma range, since pmd sharing won't be
5314 	 * across vma after all
5315 	 */
5316 	*start = max(vma->vm_start, a_start);
5317 	*end = min(vma->vm_end, a_end);
5318 }
5319 
5320 /*
5321  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
5322  * and returns the corresponding pte. While this is not necessary for the
5323  * !shared pmd case because we can allocate the pmd later as well, it makes the
5324  * code much cleaner.
5325  *
5326  * This routine must be called with i_mmap_rwsem held in at least read mode.
5327  * For hugetlbfs, this prevents removal of any page table entries associated
5328  * with the address space.  This is important as we are setting up sharing
5329  * based on existing page table entries (mappings).
5330  */
5331 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
5332 {
5333 	struct vm_area_struct *vma = find_vma(mm, addr);
5334 	struct address_space *mapping = vma->vm_file->f_mapping;
5335 	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
5336 			vma->vm_pgoff;
5337 	struct vm_area_struct *svma;
5338 	unsigned long saddr;
5339 	pte_t *spte = NULL;
5340 	pte_t *pte;
5341 	spinlock_t *ptl;
5342 
5343 	if (!vma_shareable(vma, addr))
5344 		return (pte_t *)pmd_alloc(mm, pud, addr);
5345 
5346 	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
5347 		if (svma == vma)
5348 			continue;
5349 
5350 		saddr = page_table_shareable(svma, vma, addr, idx);
5351 		if (saddr) {
5352 			spte = huge_pte_offset(svma->vm_mm, saddr,
5353 					       vma_mmu_pagesize(svma));
5354 			if (spte) {
5355 				get_page(virt_to_page(spte));
5356 				break;
5357 			}
5358 		}
5359 	}
5360 
5361 	if (!spte)
5362 		goto out;
5363 
5364 	ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
5365 	if (pud_none(*pud)) {
5366 		pud_populate(mm, pud,
5367 				(pmd_t *)((unsigned long)spte & PAGE_MASK));
5368 		mm_inc_nr_pmds(mm);
5369 	} else {
5370 		put_page(virt_to_page(spte));
5371 	}
5372 	spin_unlock(ptl);
5373 out:
5374 	pte = (pte_t *)pmd_alloc(mm, pud, addr);
5375 	return pte;
5376 }
5377 
5378 /*
5379  * unmap huge page backed by shared pte.
5380  *
5381  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
5382  * indicated by page_count > 1, unmap is achieved by clearing pud and
5383  * decrementing the ref count. If count == 1, the pte page is not shared.
5384  *
5385  * Called with page table lock held and i_mmap_rwsem held in write mode.
5386  *
5387  * returns: 1 successfully unmapped a shared pte page
5388  *	    0 the underlying pte page is not shared, or it is the last user
5389  */
5390 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5391 					unsigned long *addr, pte_t *ptep)
5392 {
5393 	pgd_t *pgd = pgd_offset(mm, *addr);
5394 	p4d_t *p4d = p4d_offset(pgd, *addr);
5395 	pud_t *pud = pud_offset(p4d, *addr);
5396 
5397 	i_mmap_assert_write_locked(vma->vm_file->f_mapping);
5398 	BUG_ON(page_count(virt_to_page(ptep)) == 0);
5399 	if (page_count(virt_to_page(ptep)) == 1)
5400 		return 0;
5401 
5402 	pud_clear(pud);
5403 	put_page(virt_to_page(ptep));
5404 	mm_dec_nr_pmds(mm);
5405 	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
5406 	return 1;
5407 }
5408 #define want_pmd_share()	(1)
5409 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5410 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
5411 {
5412 	return NULL;
5413 }
5414 
5415 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5416 				unsigned long *addr, pte_t *ptep)
5417 {
5418 	return 0;
5419 }
5420 
5421 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5422 				unsigned long *start, unsigned long *end)
5423 {
5424 }
5425 #define want_pmd_share()	(0)
5426 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5427 
5428 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
5429 pte_t *huge_pte_alloc(struct mm_struct *mm,
5430 			unsigned long addr, unsigned long sz)
5431 {
5432 	pgd_t *pgd;
5433 	p4d_t *p4d;
5434 	pud_t *pud;
5435 	pte_t *pte = NULL;
5436 
5437 	pgd = pgd_offset(mm, addr);
5438 	p4d = p4d_alloc(mm, pgd, addr);
5439 	if (!p4d)
5440 		return NULL;
5441 	pud = pud_alloc(mm, p4d, addr);
5442 	if (pud) {
5443 		if (sz == PUD_SIZE) {
5444 			pte = (pte_t *)pud;
5445 		} else {
5446 			BUG_ON(sz != PMD_SIZE);
5447 			if (want_pmd_share() && pud_none(*pud))
5448 				pte = huge_pmd_share(mm, addr, pud);
5449 			else
5450 				pte = (pte_t *)pmd_alloc(mm, pud, addr);
5451 		}
5452 	}
5453 	BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
5454 
5455 	return pte;
5456 }
5457 
5458 /*
5459  * huge_pte_offset() - Walk the page table to resolve the hugepage
5460  * entry at address @addr
5461  *
5462  * Return: Pointer to page table entry (PUD or PMD) for
5463  * address @addr, or NULL if a !p*d_present() entry is encountered and the
5464  * size @sz doesn't match the hugepage size at this level of the page
5465  * table.
5466  */
5467 pte_t *huge_pte_offset(struct mm_struct *mm,
5468 		       unsigned long addr, unsigned long sz)
5469 {
5470 	pgd_t *pgd;
5471 	p4d_t *p4d;
5472 	pud_t *pud;
5473 	pmd_t *pmd;
5474 
5475 	pgd = pgd_offset(mm, addr);
5476 	if (!pgd_present(*pgd))
5477 		return NULL;
5478 	p4d = p4d_offset(pgd, addr);
5479 	if (!p4d_present(*p4d))
5480 		return NULL;
5481 
5482 	pud = pud_offset(p4d, addr);
5483 	if (sz == PUD_SIZE)
5484 		/* must be pud huge, non-present or none */
5485 		return (pte_t *)pud;
5486 	if (!pud_present(*pud))
5487 		return NULL;
5488 	/* must have a valid entry and size to go further */
5489 
5490 	pmd = pmd_offset(pud, addr);
5491 	/* must be pmd huge, non-present or none */
5492 	return (pte_t *)pmd;
5493 }
5494 
5495 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
5496 
5497 /*
5498  * These functions are overwritable if your architecture needs its own
5499  * behavior.
5500  */
5501 struct page * __weak
5502 follow_huge_addr(struct mm_struct *mm, unsigned long address,
5503 			      int write)
5504 {
5505 	return ERR_PTR(-EINVAL);
5506 }
5507 
5508 struct page * __weak
5509 follow_huge_pd(struct vm_area_struct *vma,
5510 	       unsigned long address, hugepd_t hpd, int flags, int pdshift)
5511 {
5512 	WARN(1, "hugepd follow called with no support for hugepage directory format\n");
5513 	return NULL;
5514 }
5515 
5516 struct page * __weak
5517 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
5518 		pmd_t *pmd, int flags)
5519 {
5520 	struct page *page = NULL;
5521 	spinlock_t *ptl;
5522 	pte_t pte;
5523 
5524 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
5525 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
5526 			 (FOLL_PIN | FOLL_GET)))
5527 		return NULL;
5528 
5529 retry:
5530 	ptl = pmd_lockptr(mm, pmd);
5531 	spin_lock(ptl);
5532 	/*
5533 	 * make sure that the address range covered by this pmd is not
5534 	 * unmapped from other threads.
5535 	 */
5536 	if (!pmd_huge(*pmd))
5537 		goto out;
5538 	pte = huge_ptep_get((pte_t *)pmd);
5539 	if (pte_present(pte)) {
5540 		page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
5541 		/*
5542 		 * try_grab_page() should always succeed here, because: a) we
5543 		 * hold the pmd (ptl) lock, and b) we've just checked that the
5544 		 * huge pmd (head) page is present in the page tables. The ptl
5545 		 * prevents the head page and tail pages from being rearranged
5546 		 * in any way. So this page must be available at this point,
5547 		 * unless the page refcount overflowed:
5548 		 */
5549 		if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
5550 			page = NULL;
5551 			goto out;
5552 		}
5553 	} else {
5554 		if (is_hugetlb_entry_migration(pte)) {
5555 			spin_unlock(ptl);
5556 			__migration_entry_wait(mm, (pte_t *)pmd, ptl);
5557 			goto retry;
5558 		}
5559 		/*
5560 		 * hwpoisoned entry is treated as no_page_table in
5561 		 * follow_page_mask().
5562 		 */
5563 	}
5564 out:
5565 	spin_unlock(ptl);
5566 	return page;
5567 }
5568 
5569 struct page * __weak
5570 follow_huge_pud(struct mm_struct *mm, unsigned long address,
5571 		pud_t *pud, int flags)
5572 {
5573 	if (flags & (FOLL_GET | FOLL_PIN))
5574 		return NULL;
5575 
5576 	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
5577 }
5578 
5579 struct page * __weak
5580 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
5581 {
5582 	if (flags & (FOLL_GET | FOLL_PIN))
5583 		return NULL;
5584 
5585 	return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
5586 }
5587 
5588 bool isolate_huge_page(struct page *page, struct list_head *list)
5589 {
5590 	bool ret = true;
5591 
5592 	VM_BUG_ON_PAGE(!PageHead(page), page);
5593 	spin_lock(&hugetlb_lock);
5594 	if (!page_huge_active(page) || !get_page_unless_zero(page)) {
5595 		ret = false;
5596 		goto unlock;
5597 	}
5598 	clear_page_huge_active(page);
5599 	list_move_tail(&page->lru, list);
5600 unlock:
5601 	spin_unlock(&hugetlb_lock);
5602 	return ret;
5603 }
5604 
5605 void putback_active_hugepage(struct page *page)
5606 {
5607 	VM_BUG_ON_PAGE(!PageHead(page), page);
5608 	spin_lock(&hugetlb_lock);
5609 	set_page_huge_active(page);
5610 	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
5611 	spin_unlock(&hugetlb_lock);
5612 	put_page(page);
5613 }
5614 
5615 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
5616 {
5617 	struct hstate *h = page_hstate(oldpage);
5618 
5619 	hugetlb_cgroup_migrate(oldpage, newpage);
5620 	set_page_owner_migrate_reason(newpage, reason);
5621 
5622 	/*
5623 	 * transfer temporary state of the new huge page. This is
5624 	 * reverse to other transitions because the newpage is going to
5625 	 * be final while the old one will be freed so it takes over
5626 	 * the temporary status.
5627 	 *
5628 	 * Also note that we have to transfer the per-node surplus state
5629 	 * here as well otherwise the global surplus count will not match
5630 	 * the per-node's.
5631 	 */
5632 	if (PageHugeTemporary(newpage)) {
5633 		int old_nid = page_to_nid(oldpage);
5634 		int new_nid = page_to_nid(newpage);
5635 
5636 		SetPageHugeTemporary(oldpage);
5637 		ClearPageHugeTemporary(newpage);
5638 
5639 		spin_lock(&hugetlb_lock);
5640 		if (h->surplus_huge_pages_node[old_nid]) {
5641 			h->surplus_huge_pages_node[old_nid]--;
5642 			h->surplus_huge_pages_node[new_nid]++;
5643 		}
5644 		spin_unlock(&hugetlb_lock);
5645 	}
5646 }
5647 
5648 #ifdef CONFIG_CMA
5649 static bool cma_reserve_called __initdata;
5650 
5651 static int __init cmdline_parse_hugetlb_cma(char *p)
5652 {
5653 	hugetlb_cma_size = memparse(p, &p);
5654 	return 0;
5655 }
5656 
5657 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
5658 
5659 void __init hugetlb_cma_reserve(int order)
5660 {
5661 	unsigned long size, reserved, per_node;
5662 	int nid;
5663 
5664 	cma_reserve_called = true;
5665 
5666 	if (!hugetlb_cma_size)
5667 		return;
5668 
5669 	if (hugetlb_cma_size < (PAGE_SIZE << order)) {
5670 		pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
5671 			(PAGE_SIZE << order) / SZ_1M);
5672 		return;
5673 	}
5674 
5675 	/*
5676 	 * If 3 GB area is requested on a machine with 4 numa nodes,
5677 	 * let's allocate 1 GB on first three nodes and ignore the last one.
5678 	 */
5679 	per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
5680 	pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
5681 		hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
5682 
5683 	reserved = 0;
5684 	for_each_node_state(nid, N_ONLINE) {
5685 		int res;
5686 		char name[20];
5687 
5688 		size = min(per_node, hugetlb_cma_size - reserved);
5689 		size = round_up(size, PAGE_SIZE << order);
5690 
5691 		snprintf(name, 20, "hugetlb%d", nid);
5692 		res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order,
5693 						 0, false, name,
5694 						 &hugetlb_cma[nid], nid);
5695 		if (res) {
5696 			pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
5697 				res, nid);
5698 			continue;
5699 		}
5700 
5701 		reserved += size;
5702 		pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
5703 			size / SZ_1M, nid);
5704 
5705 		if (reserved >= hugetlb_cma_size)
5706 			break;
5707 	}
5708 }
5709 
5710 void __init hugetlb_cma_check(void)
5711 {
5712 	if (!hugetlb_cma_size || cma_reserve_called)
5713 		return;
5714 
5715 	pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
5716 }
5717 
5718 #endif /* CONFIG_CMA */
5719