xref: /linux/mm/hugetlb.c (revision 4359a011e259a4608afc7fb3635370c9d4ba5943)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 #include <linux/migrate.h>
34 #include <linux/nospec.h>
35 #include <linux/delayacct.h>
36 
37 #include <asm/page.h>
38 #include <asm/pgalloc.h>
39 #include <asm/tlb.h>
40 
41 #include <linux/io.h>
42 #include <linux/hugetlb.h>
43 #include <linux/hugetlb_cgroup.h>
44 #include <linux/node.h>
45 #include <linux/page_owner.h>
46 #include "internal.h"
47 #include "hugetlb_vmemmap.h"
48 
49 int hugetlb_max_hstate __read_mostly;
50 unsigned int default_hstate_idx;
51 struct hstate hstates[HUGE_MAX_HSTATE];
52 
53 #ifdef CONFIG_CMA
54 static struct cma *hugetlb_cma[MAX_NUMNODES];
55 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
56 static bool hugetlb_cma_page(struct page *page, unsigned int order)
57 {
58 	return cma_pages_valid(hugetlb_cma[page_to_nid(page)], page,
59 				1 << order);
60 }
61 #else
62 static bool hugetlb_cma_page(struct page *page, unsigned int order)
63 {
64 	return false;
65 }
66 #endif
67 static unsigned long hugetlb_cma_size __initdata;
68 
69 __initdata LIST_HEAD(huge_boot_pages);
70 
71 /* for command line parsing */
72 static struct hstate * __initdata parsed_hstate;
73 static unsigned long __initdata default_hstate_max_huge_pages;
74 static bool __initdata parsed_valid_hugepagesz = true;
75 static bool __initdata parsed_default_hugepagesz;
76 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
77 
78 /*
79  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
80  * free_huge_pages, and surplus_huge_pages.
81  */
82 DEFINE_SPINLOCK(hugetlb_lock);
83 
84 /*
85  * Serializes faults on the same logical page.  This is used to
86  * prevent spurious OOMs when the hugepage pool is fully utilized.
87  */
88 static int num_fault_mutexes;
89 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
90 
91 /* Forward declaration */
92 static int hugetlb_acct_memory(struct hstate *h, long delta);
93 
94 static inline bool subpool_is_free(struct hugepage_subpool *spool)
95 {
96 	if (spool->count)
97 		return false;
98 	if (spool->max_hpages != -1)
99 		return spool->used_hpages == 0;
100 	if (spool->min_hpages != -1)
101 		return spool->rsv_hpages == spool->min_hpages;
102 
103 	return true;
104 }
105 
106 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
107 						unsigned long irq_flags)
108 {
109 	spin_unlock_irqrestore(&spool->lock, irq_flags);
110 
111 	/* If no pages are used, and no other handles to the subpool
112 	 * remain, give up any reservations based on minimum size and
113 	 * free the subpool */
114 	if (subpool_is_free(spool)) {
115 		if (spool->min_hpages != -1)
116 			hugetlb_acct_memory(spool->hstate,
117 						-spool->min_hpages);
118 		kfree(spool);
119 	}
120 }
121 
122 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
123 						long min_hpages)
124 {
125 	struct hugepage_subpool *spool;
126 
127 	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
128 	if (!spool)
129 		return NULL;
130 
131 	spin_lock_init(&spool->lock);
132 	spool->count = 1;
133 	spool->max_hpages = max_hpages;
134 	spool->hstate = h;
135 	spool->min_hpages = min_hpages;
136 
137 	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
138 		kfree(spool);
139 		return NULL;
140 	}
141 	spool->rsv_hpages = min_hpages;
142 
143 	return spool;
144 }
145 
146 void hugepage_put_subpool(struct hugepage_subpool *spool)
147 {
148 	unsigned long flags;
149 
150 	spin_lock_irqsave(&spool->lock, flags);
151 	BUG_ON(!spool->count);
152 	spool->count--;
153 	unlock_or_release_subpool(spool, flags);
154 }
155 
156 /*
157  * Subpool accounting for allocating and reserving pages.
158  * Return -ENOMEM if there are not enough resources to satisfy the
159  * request.  Otherwise, return the number of pages by which the
160  * global pools must be adjusted (upward).  The returned value may
161  * only be different than the passed value (delta) in the case where
162  * a subpool minimum size must be maintained.
163  */
164 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
165 				      long delta)
166 {
167 	long ret = delta;
168 
169 	if (!spool)
170 		return ret;
171 
172 	spin_lock_irq(&spool->lock);
173 
174 	if (spool->max_hpages != -1) {		/* maximum size accounting */
175 		if ((spool->used_hpages + delta) <= spool->max_hpages)
176 			spool->used_hpages += delta;
177 		else {
178 			ret = -ENOMEM;
179 			goto unlock_ret;
180 		}
181 	}
182 
183 	/* minimum size accounting */
184 	if (spool->min_hpages != -1 && spool->rsv_hpages) {
185 		if (delta > spool->rsv_hpages) {
186 			/*
187 			 * Asking for more reserves than those already taken on
188 			 * behalf of subpool.  Return difference.
189 			 */
190 			ret = delta - spool->rsv_hpages;
191 			spool->rsv_hpages = 0;
192 		} else {
193 			ret = 0;	/* reserves already accounted for */
194 			spool->rsv_hpages -= delta;
195 		}
196 	}
197 
198 unlock_ret:
199 	spin_unlock_irq(&spool->lock);
200 	return ret;
201 }
202 
203 /*
204  * Subpool accounting for freeing and unreserving pages.
205  * Return the number of global page reservations that must be dropped.
206  * The return value may only be different than the passed value (delta)
207  * in the case where a subpool minimum size must be maintained.
208  */
209 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
210 				       long delta)
211 {
212 	long ret = delta;
213 	unsigned long flags;
214 
215 	if (!spool)
216 		return delta;
217 
218 	spin_lock_irqsave(&spool->lock, flags);
219 
220 	if (spool->max_hpages != -1)		/* maximum size accounting */
221 		spool->used_hpages -= delta;
222 
223 	 /* minimum size accounting */
224 	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
225 		if (spool->rsv_hpages + delta <= spool->min_hpages)
226 			ret = 0;
227 		else
228 			ret = spool->rsv_hpages + delta - spool->min_hpages;
229 
230 		spool->rsv_hpages += delta;
231 		if (spool->rsv_hpages > spool->min_hpages)
232 			spool->rsv_hpages = spool->min_hpages;
233 	}
234 
235 	/*
236 	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
237 	 * quota reference, free it now.
238 	 */
239 	unlock_or_release_subpool(spool, flags);
240 
241 	return ret;
242 }
243 
244 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
245 {
246 	return HUGETLBFS_SB(inode->i_sb)->spool;
247 }
248 
249 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
250 {
251 	return subpool_inode(file_inode(vma->vm_file));
252 }
253 
254 /* Helper that removes a struct file_region from the resv_map cache and returns
255  * it for use.
256  */
257 static struct file_region *
258 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
259 {
260 	struct file_region *nrg = NULL;
261 
262 	VM_BUG_ON(resv->region_cache_count <= 0);
263 
264 	resv->region_cache_count--;
265 	nrg = list_first_entry(&resv->region_cache, struct file_region, link);
266 	list_del(&nrg->link);
267 
268 	nrg->from = from;
269 	nrg->to = to;
270 
271 	return nrg;
272 }
273 
274 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
275 					      struct file_region *rg)
276 {
277 #ifdef CONFIG_CGROUP_HUGETLB
278 	nrg->reservation_counter = rg->reservation_counter;
279 	nrg->css = rg->css;
280 	if (rg->css)
281 		css_get(rg->css);
282 #endif
283 }
284 
285 /* Helper that records hugetlb_cgroup uncharge info. */
286 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
287 						struct hstate *h,
288 						struct resv_map *resv,
289 						struct file_region *nrg)
290 {
291 #ifdef CONFIG_CGROUP_HUGETLB
292 	if (h_cg) {
293 		nrg->reservation_counter =
294 			&h_cg->rsvd_hugepage[hstate_index(h)];
295 		nrg->css = &h_cg->css;
296 		/*
297 		 * The caller will hold exactly one h_cg->css reference for the
298 		 * whole contiguous reservation region. But this area might be
299 		 * scattered when there are already some file_regions reside in
300 		 * it. As a result, many file_regions may share only one css
301 		 * reference. In order to ensure that one file_region must hold
302 		 * exactly one h_cg->css reference, we should do css_get for
303 		 * each file_region and leave the reference held by caller
304 		 * untouched.
305 		 */
306 		css_get(&h_cg->css);
307 		if (!resv->pages_per_hpage)
308 			resv->pages_per_hpage = pages_per_huge_page(h);
309 		/* pages_per_hpage should be the same for all entries in
310 		 * a resv_map.
311 		 */
312 		VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
313 	} else {
314 		nrg->reservation_counter = NULL;
315 		nrg->css = NULL;
316 	}
317 #endif
318 }
319 
320 static void put_uncharge_info(struct file_region *rg)
321 {
322 #ifdef CONFIG_CGROUP_HUGETLB
323 	if (rg->css)
324 		css_put(rg->css);
325 #endif
326 }
327 
328 static bool has_same_uncharge_info(struct file_region *rg,
329 				   struct file_region *org)
330 {
331 #ifdef CONFIG_CGROUP_HUGETLB
332 	return rg->reservation_counter == org->reservation_counter &&
333 	       rg->css == org->css;
334 
335 #else
336 	return true;
337 #endif
338 }
339 
340 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
341 {
342 	struct file_region *nrg = NULL, *prg = NULL;
343 
344 	prg = list_prev_entry(rg, link);
345 	if (&prg->link != &resv->regions && prg->to == rg->from &&
346 	    has_same_uncharge_info(prg, rg)) {
347 		prg->to = rg->to;
348 
349 		list_del(&rg->link);
350 		put_uncharge_info(rg);
351 		kfree(rg);
352 
353 		rg = prg;
354 	}
355 
356 	nrg = list_next_entry(rg, link);
357 	if (&nrg->link != &resv->regions && nrg->from == rg->to &&
358 	    has_same_uncharge_info(nrg, rg)) {
359 		nrg->from = rg->from;
360 
361 		list_del(&rg->link);
362 		put_uncharge_info(rg);
363 		kfree(rg);
364 	}
365 }
366 
367 static inline long
368 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
369 		     long to, struct hstate *h, struct hugetlb_cgroup *cg,
370 		     long *regions_needed)
371 {
372 	struct file_region *nrg;
373 
374 	if (!regions_needed) {
375 		nrg = get_file_region_entry_from_cache(map, from, to);
376 		record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
377 		list_add(&nrg->link, rg);
378 		coalesce_file_region(map, nrg);
379 	} else
380 		*regions_needed += 1;
381 
382 	return to - from;
383 }
384 
385 /*
386  * Must be called with resv->lock held.
387  *
388  * Calling this with regions_needed != NULL will count the number of pages
389  * to be added but will not modify the linked list. And regions_needed will
390  * indicate the number of file_regions needed in the cache to carry out to add
391  * the regions for this range.
392  */
393 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
394 				     struct hugetlb_cgroup *h_cg,
395 				     struct hstate *h, long *regions_needed)
396 {
397 	long add = 0;
398 	struct list_head *head = &resv->regions;
399 	long last_accounted_offset = f;
400 	struct file_region *iter, *trg = NULL;
401 	struct list_head *rg = NULL;
402 
403 	if (regions_needed)
404 		*regions_needed = 0;
405 
406 	/* In this loop, we essentially handle an entry for the range
407 	 * [last_accounted_offset, iter->from), at every iteration, with some
408 	 * bounds checking.
409 	 */
410 	list_for_each_entry_safe(iter, trg, head, link) {
411 		/* Skip irrelevant regions that start before our range. */
412 		if (iter->from < f) {
413 			/* If this region ends after the last accounted offset,
414 			 * then we need to update last_accounted_offset.
415 			 */
416 			if (iter->to > last_accounted_offset)
417 				last_accounted_offset = iter->to;
418 			continue;
419 		}
420 
421 		/* When we find a region that starts beyond our range, we've
422 		 * finished.
423 		 */
424 		if (iter->from >= t) {
425 			rg = iter->link.prev;
426 			break;
427 		}
428 
429 		/* Add an entry for last_accounted_offset -> iter->from, and
430 		 * update last_accounted_offset.
431 		 */
432 		if (iter->from > last_accounted_offset)
433 			add += hugetlb_resv_map_add(resv, iter->link.prev,
434 						    last_accounted_offset,
435 						    iter->from, h, h_cg,
436 						    regions_needed);
437 
438 		last_accounted_offset = iter->to;
439 	}
440 
441 	/* Handle the case where our range extends beyond
442 	 * last_accounted_offset.
443 	 */
444 	if (!rg)
445 		rg = head->prev;
446 	if (last_accounted_offset < t)
447 		add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
448 					    t, h, h_cg, regions_needed);
449 
450 	return add;
451 }
452 
453 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
454  */
455 static int allocate_file_region_entries(struct resv_map *resv,
456 					int regions_needed)
457 	__must_hold(&resv->lock)
458 {
459 	struct list_head allocated_regions;
460 	int to_allocate = 0, i = 0;
461 	struct file_region *trg = NULL, *rg = NULL;
462 
463 	VM_BUG_ON(regions_needed < 0);
464 
465 	INIT_LIST_HEAD(&allocated_regions);
466 
467 	/*
468 	 * Check for sufficient descriptors in the cache to accommodate
469 	 * the number of in progress add operations plus regions_needed.
470 	 *
471 	 * This is a while loop because when we drop the lock, some other call
472 	 * to region_add or region_del may have consumed some region_entries,
473 	 * so we keep looping here until we finally have enough entries for
474 	 * (adds_in_progress + regions_needed).
475 	 */
476 	while (resv->region_cache_count <
477 	       (resv->adds_in_progress + regions_needed)) {
478 		to_allocate = resv->adds_in_progress + regions_needed -
479 			      resv->region_cache_count;
480 
481 		/* At this point, we should have enough entries in the cache
482 		 * for all the existing adds_in_progress. We should only be
483 		 * needing to allocate for regions_needed.
484 		 */
485 		VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
486 
487 		spin_unlock(&resv->lock);
488 		for (i = 0; i < to_allocate; i++) {
489 			trg = kmalloc(sizeof(*trg), GFP_KERNEL);
490 			if (!trg)
491 				goto out_of_memory;
492 			list_add(&trg->link, &allocated_regions);
493 		}
494 
495 		spin_lock(&resv->lock);
496 
497 		list_splice(&allocated_regions, &resv->region_cache);
498 		resv->region_cache_count += to_allocate;
499 	}
500 
501 	return 0;
502 
503 out_of_memory:
504 	list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
505 		list_del(&rg->link);
506 		kfree(rg);
507 	}
508 	return -ENOMEM;
509 }
510 
511 /*
512  * Add the huge page range represented by [f, t) to the reserve
513  * map.  Regions will be taken from the cache to fill in this range.
514  * Sufficient regions should exist in the cache due to the previous
515  * call to region_chg with the same range, but in some cases the cache will not
516  * have sufficient entries due to races with other code doing region_add or
517  * region_del.  The extra needed entries will be allocated.
518  *
519  * regions_needed is the out value provided by a previous call to region_chg.
520  *
521  * Return the number of new huge pages added to the map.  This number is greater
522  * than or equal to zero.  If file_region entries needed to be allocated for
523  * this operation and we were not able to allocate, it returns -ENOMEM.
524  * region_add of regions of length 1 never allocate file_regions and cannot
525  * fail; region_chg will always allocate at least 1 entry and a region_add for
526  * 1 page will only require at most 1 entry.
527  */
528 static long region_add(struct resv_map *resv, long f, long t,
529 		       long in_regions_needed, struct hstate *h,
530 		       struct hugetlb_cgroup *h_cg)
531 {
532 	long add = 0, actual_regions_needed = 0;
533 
534 	spin_lock(&resv->lock);
535 retry:
536 
537 	/* Count how many regions are actually needed to execute this add. */
538 	add_reservation_in_range(resv, f, t, NULL, NULL,
539 				 &actual_regions_needed);
540 
541 	/*
542 	 * Check for sufficient descriptors in the cache to accommodate
543 	 * this add operation. Note that actual_regions_needed may be greater
544 	 * than in_regions_needed, as the resv_map may have been modified since
545 	 * the region_chg call. In this case, we need to make sure that we
546 	 * allocate extra entries, such that we have enough for all the
547 	 * existing adds_in_progress, plus the excess needed for this
548 	 * operation.
549 	 */
550 	if (actual_regions_needed > in_regions_needed &&
551 	    resv->region_cache_count <
552 		    resv->adds_in_progress +
553 			    (actual_regions_needed - in_regions_needed)) {
554 		/* region_add operation of range 1 should never need to
555 		 * allocate file_region entries.
556 		 */
557 		VM_BUG_ON(t - f <= 1);
558 
559 		if (allocate_file_region_entries(
560 			    resv, actual_regions_needed - in_regions_needed)) {
561 			return -ENOMEM;
562 		}
563 
564 		goto retry;
565 	}
566 
567 	add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
568 
569 	resv->adds_in_progress -= in_regions_needed;
570 
571 	spin_unlock(&resv->lock);
572 	return add;
573 }
574 
575 /*
576  * Examine the existing reserve map and determine how many
577  * huge pages in the specified range [f, t) are NOT currently
578  * represented.  This routine is called before a subsequent
579  * call to region_add that will actually modify the reserve
580  * map to add the specified range [f, t).  region_chg does
581  * not change the number of huge pages represented by the
582  * map.  A number of new file_region structures is added to the cache as a
583  * placeholder, for the subsequent region_add call to use. At least 1
584  * file_region structure is added.
585  *
586  * out_regions_needed is the number of regions added to the
587  * resv->adds_in_progress.  This value needs to be provided to a follow up call
588  * to region_add or region_abort for proper accounting.
589  *
590  * Returns the number of huge pages that need to be added to the existing
591  * reservation map for the range [f, t).  This number is greater or equal to
592  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
593  * is needed and can not be allocated.
594  */
595 static long region_chg(struct resv_map *resv, long f, long t,
596 		       long *out_regions_needed)
597 {
598 	long chg = 0;
599 
600 	spin_lock(&resv->lock);
601 
602 	/* Count how many hugepages in this range are NOT represented. */
603 	chg = add_reservation_in_range(resv, f, t, NULL, NULL,
604 				       out_regions_needed);
605 
606 	if (*out_regions_needed == 0)
607 		*out_regions_needed = 1;
608 
609 	if (allocate_file_region_entries(resv, *out_regions_needed))
610 		return -ENOMEM;
611 
612 	resv->adds_in_progress += *out_regions_needed;
613 
614 	spin_unlock(&resv->lock);
615 	return chg;
616 }
617 
618 /*
619  * Abort the in progress add operation.  The adds_in_progress field
620  * of the resv_map keeps track of the operations in progress between
621  * calls to region_chg and region_add.  Operations are sometimes
622  * aborted after the call to region_chg.  In such cases, region_abort
623  * is called to decrement the adds_in_progress counter. regions_needed
624  * is the value returned by the region_chg call, it is used to decrement
625  * the adds_in_progress counter.
626  *
627  * NOTE: The range arguments [f, t) are not needed or used in this
628  * routine.  They are kept to make reading the calling code easier as
629  * arguments will match the associated region_chg call.
630  */
631 static void region_abort(struct resv_map *resv, long f, long t,
632 			 long regions_needed)
633 {
634 	spin_lock(&resv->lock);
635 	VM_BUG_ON(!resv->region_cache_count);
636 	resv->adds_in_progress -= regions_needed;
637 	spin_unlock(&resv->lock);
638 }
639 
640 /*
641  * Delete the specified range [f, t) from the reserve map.  If the
642  * t parameter is LONG_MAX, this indicates that ALL regions after f
643  * should be deleted.  Locate the regions which intersect [f, t)
644  * and either trim, delete or split the existing regions.
645  *
646  * Returns the number of huge pages deleted from the reserve map.
647  * In the normal case, the return value is zero or more.  In the
648  * case where a region must be split, a new region descriptor must
649  * be allocated.  If the allocation fails, -ENOMEM will be returned.
650  * NOTE: If the parameter t == LONG_MAX, then we will never split
651  * a region and possibly return -ENOMEM.  Callers specifying
652  * t == LONG_MAX do not need to check for -ENOMEM error.
653  */
654 static long region_del(struct resv_map *resv, long f, long t)
655 {
656 	struct list_head *head = &resv->regions;
657 	struct file_region *rg, *trg;
658 	struct file_region *nrg = NULL;
659 	long del = 0;
660 
661 retry:
662 	spin_lock(&resv->lock);
663 	list_for_each_entry_safe(rg, trg, head, link) {
664 		/*
665 		 * Skip regions before the range to be deleted.  file_region
666 		 * ranges are normally of the form [from, to).  However, there
667 		 * may be a "placeholder" entry in the map which is of the form
668 		 * (from, to) with from == to.  Check for placeholder entries
669 		 * at the beginning of the range to be deleted.
670 		 */
671 		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
672 			continue;
673 
674 		if (rg->from >= t)
675 			break;
676 
677 		if (f > rg->from && t < rg->to) { /* Must split region */
678 			/*
679 			 * Check for an entry in the cache before dropping
680 			 * lock and attempting allocation.
681 			 */
682 			if (!nrg &&
683 			    resv->region_cache_count > resv->adds_in_progress) {
684 				nrg = list_first_entry(&resv->region_cache,
685 							struct file_region,
686 							link);
687 				list_del(&nrg->link);
688 				resv->region_cache_count--;
689 			}
690 
691 			if (!nrg) {
692 				spin_unlock(&resv->lock);
693 				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
694 				if (!nrg)
695 					return -ENOMEM;
696 				goto retry;
697 			}
698 
699 			del += t - f;
700 			hugetlb_cgroup_uncharge_file_region(
701 				resv, rg, t - f, false);
702 
703 			/* New entry for end of split region */
704 			nrg->from = t;
705 			nrg->to = rg->to;
706 
707 			copy_hugetlb_cgroup_uncharge_info(nrg, rg);
708 
709 			INIT_LIST_HEAD(&nrg->link);
710 
711 			/* Original entry is trimmed */
712 			rg->to = f;
713 
714 			list_add(&nrg->link, &rg->link);
715 			nrg = NULL;
716 			break;
717 		}
718 
719 		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
720 			del += rg->to - rg->from;
721 			hugetlb_cgroup_uncharge_file_region(resv, rg,
722 							    rg->to - rg->from, true);
723 			list_del(&rg->link);
724 			kfree(rg);
725 			continue;
726 		}
727 
728 		if (f <= rg->from) {	/* Trim beginning of region */
729 			hugetlb_cgroup_uncharge_file_region(resv, rg,
730 							    t - rg->from, false);
731 
732 			del += t - rg->from;
733 			rg->from = t;
734 		} else {		/* Trim end of region */
735 			hugetlb_cgroup_uncharge_file_region(resv, rg,
736 							    rg->to - f, false);
737 
738 			del += rg->to - f;
739 			rg->to = f;
740 		}
741 	}
742 
743 	spin_unlock(&resv->lock);
744 	kfree(nrg);
745 	return del;
746 }
747 
748 /*
749  * A rare out of memory error was encountered which prevented removal of
750  * the reserve map region for a page.  The huge page itself was free'ed
751  * and removed from the page cache.  This routine will adjust the subpool
752  * usage count, and the global reserve count if needed.  By incrementing
753  * these counts, the reserve map entry which could not be deleted will
754  * appear as a "reserved" entry instead of simply dangling with incorrect
755  * counts.
756  */
757 void hugetlb_fix_reserve_counts(struct inode *inode)
758 {
759 	struct hugepage_subpool *spool = subpool_inode(inode);
760 	long rsv_adjust;
761 	bool reserved = false;
762 
763 	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
764 	if (rsv_adjust > 0) {
765 		struct hstate *h = hstate_inode(inode);
766 
767 		if (!hugetlb_acct_memory(h, 1))
768 			reserved = true;
769 	} else if (!rsv_adjust) {
770 		reserved = true;
771 	}
772 
773 	if (!reserved)
774 		pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
775 }
776 
777 /*
778  * Count and return the number of huge pages in the reserve map
779  * that intersect with the range [f, t).
780  */
781 static long region_count(struct resv_map *resv, long f, long t)
782 {
783 	struct list_head *head = &resv->regions;
784 	struct file_region *rg;
785 	long chg = 0;
786 
787 	spin_lock(&resv->lock);
788 	/* Locate each segment we overlap with, and count that overlap. */
789 	list_for_each_entry(rg, head, link) {
790 		long seg_from;
791 		long seg_to;
792 
793 		if (rg->to <= f)
794 			continue;
795 		if (rg->from >= t)
796 			break;
797 
798 		seg_from = max(rg->from, f);
799 		seg_to = min(rg->to, t);
800 
801 		chg += seg_to - seg_from;
802 	}
803 	spin_unlock(&resv->lock);
804 
805 	return chg;
806 }
807 
808 /*
809  * Convert the address within this vma to the page offset within
810  * the mapping, in pagecache page units; huge pages here.
811  */
812 static pgoff_t vma_hugecache_offset(struct hstate *h,
813 			struct vm_area_struct *vma, unsigned long address)
814 {
815 	return ((address - vma->vm_start) >> huge_page_shift(h)) +
816 			(vma->vm_pgoff >> huge_page_order(h));
817 }
818 
819 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
820 				     unsigned long address)
821 {
822 	return vma_hugecache_offset(hstate_vma(vma), vma, address);
823 }
824 EXPORT_SYMBOL_GPL(linear_hugepage_index);
825 
826 /*
827  * Return the size of the pages allocated when backing a VMA. In the majority
828  * cases this will be same size as used by the page table entries.
829  */
830 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
831 {
832 	if (vma->vm_ops && vma->vm_ops->pagesize)
833 		return vma->vm_ops->pagesize(vma);
834 	return PAGE_SIZE;
835 }
836 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
837 
838 /*
839  * Return the page size being used by the MMU to back a VMA. In the majority
840  * of cases, the page size used by the kernel matches the MMU size. On
841  * architectures where it differs, an architecture-specific 'strong'
842  * version of this symbol is required.
843  */
844 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
845 {
846 	return vma_kernel_pagesize(vma);
847 }
848 
849 /*
850  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
851  * bits of the reservation map pointer, which are always clear due to
852  * alignment.
853  */
854 #define HPAGE_RESV_OWNER    (1UL << 0)
855 #define HPAGE_RESV_UNMAPPED (1UL << 1)
856 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
857 
858 /*
859  * These helpers are used to track how many pages are reserved for
860  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
861  * is guaranteed to have their future faults succeed.
862  *
863  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
864  * the reserve counters are updated with the hugetlb_lock held. It is safe
865  * to reset the VMA at fork() time as it is not in use yet and there is no
866  * chance of the global counters getting corrupted as a result of the values.
867  *
868  * The private mapping reservation is represented in a subtly different
869  * manner to a shared mapping.  A shared mapping has a region map associated
870  * with the underlying file, this region map represents the backing file
871  * pages which have ever had a reservation assigned which this persists even
872  * after the page is instantiated.  A private mapping has a region map
873  * associated with the original mmap which is attached to all VMAs which
874  * reference it, this region map represents those offsets which have consumed
875  * reservation ie. where pages have been instantiated.
876  */
877 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
878 {
879 	return (unsigned long)vma->vm_private_data;
880 }
881 
882 static void set_vma_private_data(struct vm_area_struct *vma,
883 							unsigned long value)
884 {
885 	vma->vm_private_data = (void *)value;
886 }
887 
888 static void
889 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
890 					  struct hugetlb_cgroup *h_cg,
891 					  struct hstate *h)
892 {
893 #ifdef CONFIG_CGROUP_HUGETLB
894 	if (!h_cg || !h) {
895 		resv_map->reservation_counter = NULL;
896 		resv_map->pages_per_hpage = 0;
897 		resv_map->css = NULL;
898 	} else {
899 		resv_map->reservation_counter =
900 			&h_cg->rsvd_hugepage[hstate_index(h)];
901 		resv_map->pages_per_hpage = pages_per_huge_page(h);
902 		resv_map->css = &h_cg->css;
903 	}
904 #endif
905 }
906 
907 struct resv_map *resv_map_alloc(void)
908 {
909 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
910 	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
911 
912 	if (!resv_map || !rg) {
913 		kfree(resv_map);
914 		kfree(rg);
915 		return NULL;
916 	}
917 
918 	kref_init(&resv_map->refs);
919 	spin_lock_init(&resv_map->lock);
920 	INIT_LIST_HEAD(&resv_map->regions);
921 
922 	resv_map->adds_in_progress = 0;
923 	/*
924 	 * Initialize these to 0. On shared mappings, 0's here indicate these
925 	 * fields don't do cgroup accounting. On private mappings, these will be
926 	 * re-initialized to the proper values, to indicate that hugetlb cgroup
927 	 * reservations are to be un-charged from here.
928 	 */
929 	resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
930 
931 	INIT_LIST_HEAD(&resv_map->region_cache);
932 	list_add(&rg->link, &resv_map->region_cache);
933 	resv_map->region_cache_count = 1;
934 
935 	return resv_map;
936 }
937 
938 void resv_map_release(struct kref *ref)
939 {
940 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
941 	struct list_head *head = &resv_map->region_cache;
942 	struct file_region *rg, *trg;
943 
944 	/* Clear out any active regions before we release the map. */
945 	region_del(resv_map, 0, LONG_MAX);
946 
947 	/* ... and any entries left in the cache */
948 	list_for_each_entry_safe(rg, trg, head, link) {
949 		list_del(&rg->link);
950 		kfree(rg);
951 	}
952 
953 	VM_BUG_ON(resv_map->adds_in_progress);
954 
955 	kfree(resv_map);
956 }
957 
958 static inline struct resv_map *inode_resv_map(struct inode *inode)
959 {
960 	/*
961 	 * At inode evict time, i_mapping may not point to the original
962 	 * address space within the inode.  This original address space
963 	 * contains the pointer to the resv_map.  So, always use the
964 	 * address space embedded within the inode.
965 	 * The VERY common case is inode->mapping == &inode->i_data but,
966 	 * this may not be true for device special inodes.
967 	 */
968 	return (struct resv_map *)(&inode->i_data)->private_data;
969 }
970 
971 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
972 {
973 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
974 	if (vma->vm_flags & VM_MAYSHARE) {
975 		struct address_space *mapping = vma->vm_file->f_mapping;
976 		struct inode *inode = mapping->host;
977 
978 		return inode_resv_map(inode);
979 
980 	} else {
981 		return (struct resv_map *)(get_vma_private_data(vma) &
982 							~HPAGE_RESV_MASK);
983 	}
984 }
985 
986 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
987 {
988 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
989 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
990 
991 	set_vma_private_data(vma, (get_vma_private_data(vma) &
992 				HPAGE_RESV_MASK) | (unsigned long)map);
993 }
994 
995 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
996 {
997 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
998 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
999 
1000 	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1001 }
1002 
1003 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1004 {
1005 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1006 
1007 	return (get_vma_private_data(vma) & flag) != 0;
1008 }
1009 
1010 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
1011 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
1012 {
1013 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1014 	if (!(vma->vm_flags & VM_MAYSHARE))
1015 		vma->vm_private_data = (void *)0;
1016 }
1017 
1018 /*
1019  * Reset and decrement one ref on hugepage private reservation.
1020  * Called with mm->mmap_sem writer semaphore held.
1021  * This function should be only used by move_vma() and operate on
1022  * same sized vma. It should never come here with last ref on the
1023  * reservation.
1024  */
1025 void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1026 {
1027 	/*
1028 	 * Clear the old hugetlb private page reservation.
1029 	 * It has already been transferred to new_vma.
1030 	 *
1031 	 * During a mremap() operation of a hugetlb vma we call move_vma()
1032 	 * which copies vma into new_vma and unmaps vma. After the copy
1033 	 * operation both new_vma and vma share a reference to the resv_map
1034 	 * struct, and at that point vma is about to be unmapped. We don't
1035 	 * want to return the reservation to the pool at unmap of vma because
1036 	 * the reservation still lives on in new_vma, so simply decrement the
1037 	 * ref here and remove the resv_map reference from this vma.
1038 	 */
1039 	struct resv_map *reservations = vma_resv_map(vma);
1040 
1041 	if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1042 		resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1043 		kref_put(&reservations->refs, resv_map_release);
1044 	}
1045 
1046 	reset_vma_resv_huge_pages(vma);
1047 }
1048 
1049 /* Returns true if the VMA has associated reserve pages */
1050 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1051 {
1052 	if (vma->vm_flags & VM_NORESERVE) {
1053 		/*
1054 		 * This address is already reserved by other process(chg == 0),
1055 		 * so, we should decrement reserved count. Without decrementing,
1056 		 * reserve count remains after releasing inode, because this
1057 		 * allocated page will go into page cache and is regarded as
1058 		 * coming from reserved pool in releasing step.  Currently, we
1059 		 * don't have any other solution to deal with this situation
1060 		 * properly, so add work-around here.
1061 		 */
1062 		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1063 			return true;
1064 		else
1065 			return false;
1066 	}
1067 
1068 	/* Shared mappings always use reserves */
1069 	if (vma->vm_flags & VM_MAYSHARE) {
1070 		/*
1071 		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1072 		 * be a region map for all pages.  The only situation where
1073 		 * there is no region map is if a hole was punched via
1074 		 * fallocate.  In this case, there really are no reserves to
1075 		 * use.  This situation is indicated if chg != 0.
1076 		 */
1077 		if (chg)
1078 			return false;
1079 		else
1080 			return true;
1081 	}
1082 
1083 	/*
1084 	 * Only the process that called mmap() has reserves for
1085 	 * private mappings.
1086 	 */
1087 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1088 		/*
1089 		 * Like the shared case above, a hole punch or truncate
1090 		 * could have been performed on the private mapping.
1091 		 * Examine the value of chg to determine if reserves
1092 		 * actually exist or were previously consumed.
1093 		 * Very Subtle - The value of chg comes from a previous
1094 		 * call to vma_needs_reserves().  The reserve map for
1095 		 * private mappings has different (opposite) semantics
1096 		 * than that of shared mappings.  vma_needs_reserves()
1097 		 * has already taken this difference in semantics into
1098 		 * account.  Therefore, the meaning of chg is the same
1099 		 * as in the shared case above.  Code could easily be
1100 		 * combined, but keeping it separate draws attention to
1101 		 * subtle differences.
1102 		 */
1103 		if (chg)
1104 			return false;
1105 		else
1106 			return true;
1107 	}
1108 
1109 	return false;
1110 }
1111 
1112 static void enqueue_huge_page(struct hstate *h, struct page *page)
1113 {
1114 	int nid = page_to_nid(page);
1115 
1116 	lockdep_assert_held(&hugetlb_lock);
1117 	VM_BUG_ON_PAGE(page_count(page), page);
1118 
1119 	list_move(&page->lru, &h->hugepage_freelists[nid]);
1120 	h->free_huge_pages++;
1121 	h->free_huge_pages_node[nid]++;
1122 	SetHPageFreed(page);
1123 }
1124 
1125 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1126 {
1127 	struct page *page;
1128 	bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1129 
1130 	lockdep_assert_held(&hugetlb_lock);
1131 	list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1132 		if (pin && !is_longterm_pinnable_page(page))
1133 			continue;
1134 
1135 		if (PageHWPoison(page))
1136 			continue;
1137 
1138 		list_move(&page->lru, &h->hugepage_activelist);
1139 		set_page_refcounted(page);
1140 		ClearHPageFreed(page);
1141 		h->free_huge_pages--;
1142 		h->free_huge_pages_node[nid]--;
1143 		return page;
1144 	}
1145 
1146 	return NULL;
1147 }
1148 
1149 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1150 		nodemask_t *nmask)
1151 {
1152 	unsigned int cpuset_mems_cookie;
1153 	struct zonelist *zonelist;
1154 	struct zone *zone;
1155 	struct zoneref *z;
1156 	int node = NUMA_NO_NODE;
1157 
1158 	zonelist = node_zonelist(nid, gfp_mask);
1159 
1160 retry_cpuset:
1161 	cpuset_mems_cookie = read_mems_allowed_begin();
1162 	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1163 		struct page *page;
1164 
1165 		if (!cpuset_zone_allowed(zone, gfp_mask))
1166 			continue;
1167 		/*
1168 		 * no need to ask again on the same node. Pool is node rather than
1169 		 * zone aware
1170 		 */
1171 		if (zone_to_nid(zone) == node)
1172 			continue;
1173 		node = zone_to_nid(zone);
1174 
1175 		page = dequeue_huge_page_node_exact(h, node);
1176 		if (page)
1177 			return page;
1178 	}
1179 	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1180 		goto retry_cpuset;
1181 
1182 	return NULL;
1183 }
1184 
1185 static struct page *dequeue_huge_page_vma(struct hstate *h,
1186 				struct vm_area_struct *vma,
1187 				unsigned long address, int avoid_reserve,
1188 				long chg)
1189 {
1190 	struct page *page = NULL;
1191 	struct mempolicy *mpol;
1192 	gfp_t gfp_mask;
1193 	nodemask_t *nodemask;
1194 	int nid;
1195 
1196 	/*
1197 	 * A child process with MAP_PRIVATE mappings created by their parent
1198 	 * have no page reserves. This check ensures that reservations are
1199 	 * not "stolen". The child may still get SIGKILLed
1200 	 */
1201 	if (!vma_has_reserves(vma, chg) &&
1202 			h->free_huge_pages - h->resv_huge_pages == 0)
1203 		goto err;
1204 
1205 	/* If reserves cannot be used, ensure enough pages are in the pool */
1206 	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
1207 		goto err;
1208 
1209 	gfp_mask = htlb_alloc_mask(h);
1210 	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1211 
1212 	if (mpol_is_preferred_many(mpol)) {
1213 		page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1214 
1215 		/* Fallback to all nodes if page==NULL */
1216 		nodemask = NULL;
1217 	}
1218 
1219 	if (!page)
1220 		page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1221 
1222 	if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1223 		SetHPageRestoreReserve(page);
1224 		h->resv_huge_pages--;
1225 	}
1226 
1227 	mpol_cond_put(mpol);
1228 	return page;
1229 
1230 err:
1231 	return NULL;
1232 }
1233 
1234 /*
1235  * common helper functions for hstate_next_node_to_{alloc|free}.
1236  * We may have allocated or freed a huge page based on a different
1237  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1238  * be outside of *nodes_allowed.  Ensure that we use an allowed
1239  * node for alloc or free.
1240  */
1241 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1242 {
1243 	nid = next_node_in(nid, *nodes_allowed);
1244 	VM_BUG_ON(nid >= MAX_NUMNODES);
1245 
1246 	return nid;
1247 }
1248 
1249 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1250 {
1251 	if (!node_isset(nid, *nodes_allowed))
1252 		nid = next_node_allowed(nid, nodes_allowed);
1253 	return nid;
1254 }
1255 
1256 /*
1257  * returns the previously saved node ["this node"] from which to
1258  * allocate a persistent huge page for the pool and advance the
1259  * next node from which to allocate, handling wrap at end of node
1260  * mask.
1261  */
1262 static int hstate_next_node_to_alloc(struct hstate *h,
1263 					nodemask_t *nodes_allowed)
1264 {
1265 	int nid;
1266 
1267 	VM_BUG_ON(!nodes_allowed);
1268 
1269 	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1270 	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1271 
1272 	return nid;
1273 }
1274 
1275 /*
1276  * helper for remove_pool_huge_page() - return the previously saved
1277  * node ["this node"] from which to free a huge page.  Advance the
1278  * next node id whether or not we find a free huge page to free so
1279  * that the next attempt to free addresses the next node.
1280  */
1281 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1282 {
1283 	int nid;
1284 
1285 	VM_BUG_ON(!nodes_allowed);
1286 
1287 	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1288 	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1289 
1290 	return nid;
1291 }
1292 
1293 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
1294 	for (nr_nodes = nodes_weight(*mask);				\
1295 		nr_nodes > 0 &&						\
1296 		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
1297 		nr_nodes--)
1298 
1299 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
1300 	for (nr_nodes = nodes_weight(*mask);				\
1301 		nr_nodes > 0 &&						\
1302 		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
1303 		nr_nodes--)
1304 
1305 /* used to demote non-gigantic_huge pages as well */
1306 static void __destroy_compound_gigantic_page(struct page *page,
1307 					unsigned int order, bool demote)
1308 {
1309 	int i;
1310 	int nr_pages = 1 << order;
1311 	struct page *p = page + 1;
1312 
1313 	atomic_set(compound_mapcount_ptr(page), 0);
1314 	atomic_set(compound_pincount_ptr(page), 0);
1315 
1316 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1317 		p->mapping = NULL;
1318 		clear_compound_head(p);
1319 		if (!demote)
1320 			set_page_refcounted(p);
1321 	}
1322 
1323 	set_compound_order(page, 0);
1324 #ifdef CONFIG_64BIT
1325 	page[1].compound_nr = 0;
1326 #endif
1327 	__ClearPageHead(page);
1328 }
1329 
1330 static void destroy_compound_hugetlb_page_for_demote(struct page *page,
1331 					unsigned int order)
1332 {
1333 	__destroy_compound_gigantic_page(page, order, true);
1334 }
1335 
1336 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1337 static void destroy_compound_gigantic_page(struct page *page,
1338 					unsigned int order)
1339 {
1340 	__destroy_compound_gigantic_page(page, order, false);
1341 }
1342 
1343 static void free_gigantic_page(struct page *page, unsigned int order)
1344 {
1345 	/*
1346 	 * If the page isn't allocated using the cma allocator,
1347 	 * cma_release() returns false.
1348 	 */
1349 #ifdef CONFIG_CMA
1350 	if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1351 		return;
1352 #endif
1353 
1354 	free_contig_range(page_to_pfn(page), 1 << order);
1355 }
1356 
1357 #ifdef CONFIG_CONTIG_ALLOC
1358 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1359 		int nid, nodemask_t *nodemask)
1360 {
1361 	unsigned long nr_pages = pages_per_huge_page(h);
1362 	if (nid == NUMA_NO_NODE)
1363 		nid = numa_mem_id();
1364 
1365 #ifdef CONFIG_CMA
1366 	{
1367 		struct page *page;
1368 		int node;
1369 
1370 		if (hugetlb_cma[nid]) {
1371 			page = cma_alloc(hugetlb_cma[nid], nr_pages,
1372 					huge_page_order(h), true);
1373 			if (page)
1374 				return page;
1375 		}
1376 
1377 		if (!(gfp_mask & __GFP_THISNODE)) {
1378 			for_each_node_mask(node, *nodemask) {
1379 				if (node == nid || !hugetlb_cma[node])
1380 					continue;
1381 
1382 				page = cma_alloc(hugetlb_cma[node], nr_pages,
1383 						huge_page_order(h), true);
1384 				if (page)
1385 					return page;
1386 			}
1387 		}
1388 	}
1389 #endif
1390 
1391 	return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1392 }
1393 
1394 #else /* !CONFIG_CONTIG_ALLOC */
1395 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1396 					int nid, nodemask_t *nodemask)
1397 {
1398 	return NULL;
1399 }
1400 #endif /* CONFIG_CONTIG_ALLOC */
1401 
1402 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1403 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1404 					int nid, nodemask_t *nodemask)
1405 {
1406 	return NULL;
1407 }
1408 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1409 static inline void destroy_compound_gigantic_page(struct page *page,
1410 						unsigned int order) { }
1411 #endif
1412 
1413 /*
1414  * Remove hugetlb page from lists, and update dtor so that page appears
1415  * as just a compound page.
1416  *
1417  * A reference is held on the page, except in the case of demote.
1418  *
1419  * Must be called with hugetlb lock held.
1420  */
1421 static void __remove_hugetlb_page(struct hstate *h, struct page *page,
1422 							bool adjust_surplus,
1423 							bool demote)
1424 {
1425 	int nid = page_to_nid(page);
1426 
1427 	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1428 	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1429 
1430 	lockdep_assert_held(&hugetlb_lock);
1431 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1432 		return;
1433 
1434 	list_del(&page->lru);
1435 
1436 	if (HPageFreed(page)) {
1437 		h->free_huge_pages--;
1438 		h->free_huge_pages_node[nid]--;
1439 	}
1440 	if (adjust_surplus) {
1441 		h->surplus_huge_pages--;
1442 		h->surplus_huge_pages_node[nid]--;
1443 	}
1444 
1445 	/*
1446 	 * Very subtle
1447 	 *
1448 	 * For non-gigantic pages set the destructor to the normal compound
1449 	 * page dtor.  This is needed in case someone takes an additional
1450 	 * temporary ref to the page, and freeing is delayed until they drop
1451 	 * their reference.
1452 	 *
1453 	 * For gigantic pages set the destructor to the null dtor.  This
1454 	 * destructor will never be called.  Before freeing the gigantic
1455 	 * page destroy_compound_gigantic_page will turn the compound page
1456 	 * into a simple group of pages.  After this the destructor does not
1457 	 * apply.
1458 	 *
1459 	 * This handles the case where more than one ref is held when and
1460 	 * after update_and_free_page is called.
1461 	 *
1462 	 * In the case of demote we do not ref count the page as it will soon
1463 	 * be turned into a page of smaller size.
1464 	 */
1465 	if (!demote)
1466 		set_page_refcounted(page);
1467 	if (hstate_is_gigantic(h))
1468 		set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1469 	else
1470 		set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
1471 
1472 	h->nr_huge_pages--;
1473 	h->nr_huge_pages_node[nid]--;
1474 }
1475 
1476 static void remove_hugetlb_page(struct hstate *h, struct page *page,
1477 							bool adjust_surplus)
1478 {
1479 	__remove_hugetlb_page(h, page, adjust_surplus, false);
1480 }
1481 
1482 static void remove_hugetlb_page_for_demote(struct hstate *h, struct page *page,
1483 							bool adjust_surplus)
1484 {
1485 	__remove_hugetlb_page(h, page, adjust_surplus, true);
1486 }
1487 
1488 static void add_hugetlb_page(struct hstate *h, struct page *page,
1489 			     bool adjust_surplus)
1490 {
1491 	int zeroed;
1492 	int nid = page_to_nid(page);
1493 
1494 	VM_BUG_ON_PAGE(!HPageVmemmapOptimized(page), page);
1495 
1496 	lockdep_assert_held(&hugetlb_lock);
1497 
1498 	INIT_LIST_HEAD(&page->lru);
1499 	h->nr_huge_pages++;
1500 	h->nr_huge_pages_node[nid]++;
1501 
1502 	if (adjust_surplus) {
1503 		h->surplus_huge_pages++;
1504 		h->surplus_huge_pages_node[nid]++;
1505 	}
1506 
1507 	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1508 	set_page_private(page, 0);
1509 	SetHPageVmemmapOptimized(page);
1510 
1511 	/*
1512 	 * This page is about to be managed by the hugetlb allocator and
1513 	 * should have no users.  Drop our reference, and check for others
1514 	 * just in case.
1515 	 */
1516 	zeroed = put_page_testzero(page);
1517 	if (!zeroed)
1518 		/*
1519 		 * It is VERY unlikely soneone else has taken a ref on
1520 		 * the page.  In this case, we simply return as the
1521 		 * hugetlb destructor (free_huge_page) will be called
1522 		 * when this other ref is dropped.
1523 		 */
1524 		return;
1525 
1526 	arch_clear_hugepage_flags(page);
1527 	enqueue_huge_page(h, page);
1528 }
1529 
1530 static void __update_and_free_page(struct hstate *h, struct page *page)
1531 {
1532 	int i;
1533 	struct page *subpage = page;
1534 
1535 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1536 		return;
1537 
1538 	/*
1539 	 * If we don't know which subpages are hwpoisoned, we can't free
1540 	 * the hugepage, so it's leaked intentionally.
1541 	 */
1542 	if (HPageRawHwpUnreliable(page))
1543 		return;
1544 
1545 	if (hugetlb_vmemmap_restore(h, page)) {
1546 		spin_lock_irq(&hugetlb_lock);
1547 		/*
1548 		 * If we cannot allocate vmemmap pages, just refuse to free the
1549 		 * page and put the page back on the hugetlb free list and treat
1550 		 * as a surplus page.
1551 		 */
1552 		add_hugetlb_page(h, page, true);
1553 		spin_unlock_irq(&hugetlb_lock);
1554 		return;
1555 	}
1556 
1557 	/*
1558 	 * Move PageHWPoison flag from head page to the raw error pages,
1559 	 * which makes any healthy subpages reusable.
1560 	 */
1561 	if (unlikely(PageHWPoison(page)))
1562 		hugetlb_clear_page_hwpoison(page);
1563 
1564 	for (i = 0; i < pages_per_huge_page(h);
1565 	     i++, subpage = mem_map_next(subpage, page, i)) {
1566 		subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1567 				1 << PG_referenced | 1 << PG_dirty |
1568 				1 << PG_active | 1 << PG_private |
1569 				1 << PG_writeback);
1570 	}
1571 
1572 	/*
1573 	 * Non-gigantic pages demoted from CMA allocated gigantic pages
1574 	 * need to be given back to CMA in free_gigantic_page.
1575 	 */
1576 	if (hstate_is_gigantic(h) ||
1577 	    hugetlb_cma_page(page, huge_page_order(h))) {
1578 		destroy_compound_gigantic_page(page, huge_page_order(h));
1579 		free_gigantic_page(page, huge_page_order(h));
1580 	} else {
1581 		__free_pages(page, huge_page_order(h));
1582 	}
1583 }
1584 
1585 /*
1586  * As update_and_free_page() can be called under any context, so we cannot
1587  * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1588  * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1589  * the vmemmap pages.
1590  *
1591  * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1592  * freed and frees them one-by-one. As the page->mapping pointer is going
1593  * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1594  * structure of a lockless linked list of huge pages to be freed.
1595  */
1596 static LLIST_HEAD(hpage_freelist);
1597 
1598 static void free_hpage_workfn(struct work_struct *work)
1599 {
1600 	struct llist_node *node;
1601 
1602 	node = llist_del_all(&hpage_freelist);
1603 
1604 	while (node) {
1605 		struct page *page;
1606 		struct hstate *h;
1607 
1608 		page = container_of((struct address_space **)node,
1609 				     struct page, mapping);
1610 		node = node->next;
1611 		page->mapping = NULL;
1612 		/*
1613 		 * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate()
1614 		 * is going to trigger because a previous call to
1615 		 * remove_hugetlb_page() will set_compound_page_dtor(page,
1616 		 * NULL_COMPOUND_DTOR), so do not use page_hstate() directly.
1617 		 */
1618 		h = size_to_hstate(page_size(page));
1619 
1620 		__update_and_free_page(h, page);
1621 
1622 		cond_resched();
1623 	}
1624 }
1625 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1626 
1627 static inline void flush_free_hpage_work(struct hstate *h)
1628 {
1629 	if (hugetlb_vmemmap_optimizable(h))
1630 		flush_work(&free_hpage_work);
1631 }
1632 
1633 static void update_and_free_page(struct hstate *h, struct page *page,
1634 				 bool atomic)
1635 {
1636 	if (!HPageVmemmapOptimized(page) || !atomic) {
1637 		__update_and_free_page(h, page);
1638 		return;
1639 	}
1640 
1641 	/*
1642 	 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1643 	 *
1644 	 * Only call schedule_work() if hpage_freelist is previously
1645 	 * empty. Otherwise, schedule_work() had been called but the workfn
1646 	 * hasn't retrieved the list yet.
1647 	 */
1648 	if (llist_add((struct llist_node *)&page->mapping, &hpage_freelist))
1649 		schedule_work(&free_hpage_work);
1650 }
1651 
1652 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1653 {
1654 	struct page *page, *t_page;
1655 
1656 	list_for_each_entry_safe(page, t_page, list, lru) {
1657 		update_and_free_page(h, page, false);
1658 		cond_resched();
1659 	}
1660 }
1661 
1662 struct hstate *size_to_hstate(unsigned long size)
1663 {
1664 	struct hstate *h;
1665 
1666 	for_each_hstate(h) {
1667 		if (huge_page_size(h) == size)
1668 			return h;
1669 	}
1670 	return NULL;
1671 }
1672 
1673 void free_huge_page(struct page *page)
1674 {
1675 	/*
1676 	 * Can't pass hstate in here because it is called from the
1677 	 * compound page destructor.
1678 	 */
1679 	struct hstate *h = page_hstate(page);
1680 	int nid = page_to_nid(page);
1681 	struct hugepage_subpool *spool = hugetlb_page_subpool(page);
1682 	bool restore_reserve;
1683 	unsigned long flags;
1684 
1685 	VM_BUG_ON_PAGE(page_count(page), page);
1686 	VM_BUG_ON_PAGE(page_mapcount(page), page);
1687 
1688 	hugetlb_set_page_subpool(page, NULL);
1689 	if (PageAnon(page))
1690 		__ClearPageAnonExclusive(page);
1691 	page->mapping = NULL;
1692 	restore_reserve = HPageRestoreReserve(page);
1693 	ClearHPageRestoreReserve(page);
1694 
1695 	/*
1696 	 * If HPageRestoreReserve was set on page, page allocation consumed a
1697 	 * reservation.  If the page was associated with a subpool, there
1698 	 * would have been a page reserved in the subpool before allocation
1699 	 * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1700 	 * reservation, do not call hugepage_subpool_put_pages() as this will
1701 	 * remove the reserved page from the subpool.
1702 	 */
1703 	if (!restore_reserve) {
1704 		/*
1705 		 * A return code of zero implies that the subpool will be
1706 		 * under its minimum size if the reservation is not restored
1707 		 * after page is free.  Therefore, force restore_reserve
1708 		 * operation.
1709 		 */
1710 		if (hugepage_subpool_put_pages(spool, 1) == 0)
1711 			restore_reserve = true;
1712 	}
1713 
1714 	spin_lock_irqsave(&hugetlb_lock, flags);
1715 	ClearHPageMigratable(page);
1716 	hugetlb_cgroup_uncharge_page(hstate_index(h),
1717 				     pages_per_huge_page(h), page);
1718 	hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1719 					  pages_per_huge_page(h), page);
1720 	if (restore_reserve)
1721 		h->resv_huge_pages++;
1722 
1723 	if (HPageTemporary(page)) {
1724 		remove_hugetlb_page(h, page, false);
1725 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1726 		update_and_free_page(h, page, true);
1727 	} else if (h->surplus_huge_pages_node[nid]) {
1728 		/* remove the page from active list */
1729 		remove_hugetlb_page(h, page, true);
1730 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1731 		update_and_free_page(h, page, true);
1732 	} else {
1733 		arch_clear_hugepage_flags(page);
1734 		enqueue_huge_page(h, page);
1735 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1736 	}
1737 }
1738 
1739 /*
1740  * Must be called with the hugetlb lock held
1741  */
1742 static void __prep_account_new_huge_page(struct hstate *h, int nid)
1743 {
1744 	lockdep_assert_held(&hugetlb_lock);
1745 	h->nr_huge_pages++;
1746 	h->nr_huge_pages_node[nid]++;
1747 }
1748 
1749 static void __prep_new_huge_page(struct hstate *h, struct page *page)
1750 {
1751 	hugetlb_vmemmap_optimize(h, page);
1752 	INIT_LIST_HEAD(&page->lru);
1753 	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1754 	hugetlb_set_page_subpool(page, NULL);
1755 	set_hugetlb_cgroup(page, NULL);
1756 	set_hugetlb_cgroup_rsvd(page, NULL);
1757 }
1758 
1759 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1760 {
1761 	__prep_new_huge_page(h, page);
1762 	spin_lock_irq(&hugetlb_lock);
1763 	__prep_account_new_huge_page(h, nid);
1764 	spin_unlock_irq(&hugetlb_lock);
1765 }
1766 
1767 static bool __prep_compound_gigantic_page(struct page *page, unsigned int order,
1768 								bool demote)
1769 {
1770 	int i, j;
1771 	int nr_pages = 1 << order;
1772 	struct page *p = page + 1;
1773 
1774 	/* we rely on prep_new_huge_page to set the destructor */
1775 	set_compound_order(page, order);
1776 	__ClearPageReserved(page);
1777 	__SetPageHead(page);
1778 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1779 		/*
1780 		 * For gigantic hugepages allocated through bootmem at
1781 		 * boot, it's safer to be consistent with the not-gigantic
1782 		 * hugepages and clear the PG_reserved bit from all tail pages
1783 		 * too.  Otherwise drivers using get_user_pages() to access tail
1784 		 * pages may get the reference counting wrong if they see
1785 		 * PG_reserved set on a tail page (despite the head page not
1786 		 * having PG_reserved set).  Enforcing this consistency between
1787 		 * head and tail pages allows drivers to optimize away a check
1788 		 * on the head page when they need know if put_page() is needed
1789 		 * after get_user_pages().
1790 		 */
1791 		__ClearPageReserved(p);
1792 		/*
1793 		 * Subtle and very unlikely
1794 		 *
1795 		 * Gigantic 'page allocators' such as memblock or cma will
1796 		 * return a set of pages with each page ref counted.  We need
1797 		 * to turn this set of pages into a compound page with tail
1798 		 * page ref counts set to zero.  Code such as speculative page
1799 		 * cache adding could take a ref on a 'to be' tail page.
1800 		 * We need to respect any increased ref count, and only set
1801 		 * the ref count to zero if count is currently 1.  If count
1802 		 * is not 1, we return an error.  An error return indicates
1803 		 * the set of pages can not be converted to a gigantic page.
1804 		 * The caller who allocated the pages should then discard the
1805 		 * pages using the appropriate free interface.
1806 		 *
1807 		 * In the case of demote, the ref count will be zero.
1808 		 */
1809 		if (!demote) {
1810 			if (!page_ref_freeze(p, 1)) {
1811 				pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
1812 				goto out_error;
1813 			}
1814 		} else {
1815 			VM_BUG_ON_PAGE(page_count(p), p);
1816 		}
1817 		set_compound_head(p, page);
1818 	}
1819 	atomic_set(compound_mapcount_ptr(page), -1);
1820 	atomic_set(compound_pincount_ptr(page), 0);
1821 	return true;
1822 
1823 out_error:
1824 	/* undo tail page modifications made above */
1825 	p = page + 1;
1826 	for (j = 1; j < i; j++, p = mem_map_next(p, page, j)) {
1827 		clear_compound_head(p);
1828 		set_page_refcounted(p);
1829 	}
1830 	/* need to clear PG_reserved on remaining tail pages  */
1831 	for (; j < nr_pages; j++, p = mem_map_next(p, page, j))
1832 		__ClearPageReserved(p);
1833 	set_compound_order(page, 0);
1834 #ifdef CONFIG_64BIT
1835 	page[1].compound_nr = 0;
1836 #endif
1837 	__ClearPageHead(page);
1838 	return false;
1839 }
1840 
1841 static bool prep_compound_gigantic_page(struct page *page, unsigned int order)
1842 {
1843 	return __prep_compound_gigantic_page(page, order, false);
1844 }
1845 
1846 static bool prep_compound_gigantic_page_for_demote(struct page *page,
1847 							unsigned int order)
1848 {
1849 	return __prep_compound_gigantic_page(page, order, true);
1850 }
1851 
1852 /*
1853  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1854  * transparent huge pages.  See the PageTransHuge() documentation for more
1855  * details.
1856  */
1857 int PageHuge(struct page *page)
1858 {
1859 	if (!PageCompound(page))
1860 		return 0;
1861 
1862 	page = compound_head(page);
1863 	return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1864 }
1865 EXPORT_SYMBOL_GPL(PageHuge);
1866 
1867 /*
1868  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1869  * normal or transparent huge pages.
1870  */
1871 int PageHeadHuge(struct page *page_head)
1872 {
1873 	if (!PageHead(page_head))
1874 		return 0;
1875 
1876 	return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1877 }
1878 EXPORT_SYMBOL_GPL(PageHeadHuge);
1879 
1880 /*
1881  * Find and lock address space (mapping) in write mode.
1882  *
1883  * Upon entry, the page is locked which means that page_mapping() is
1884  * stable.  Due to locking order, we can only trylock_write.  If we can
1885  * not get the lock, simply return NULL to caller.
1886  */
1887 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1888 {
1889 	struct address_space *mapping = page_mapping(hpage);
1890 
1891 	if (!mapping)
1892 		return mapping;
1893 
1894 	if (i_mmap_trylock_write(mapping))
1895 		return mapping;
1896 
1897 	return NULL;
1898 }
1899 
1900 pgoff_t hugetlb_basepage_index(struct page *page)
1901 {
1902 	struct page *page_head = compound_head(page);
1903 	pgoff_t index = page_index(page_head);
1904 	unsigned long compound_idx;
1905 
1906 	if (compound_order(page_head) >= MAX_ORDER)
1907 		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1908 	else
1909 		compound_idx = page - page_head;
1910 
1911 	return (index << compound_order(page_head)) + compound_idx;
1912 }
1913 
1914 static struct page *alloc_buddy_huge_page(struct hstate *h,
1915 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
1916 		nodemask_t *node_alloc_noretry)
1917 {
1918 	int order = huge_page_order(h);
1919 	struct page *page;
1920 	bool alloc_try_hard = true;
1921 
1922 	/*
1923 	 * By default we always try hard to allocate the page with
1924 	 * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
1925 	 * a loop (to adjust global huge page counts) and previous allocation
1926 	 * failed, do not continue to try hard on the same node.  Use the
1927 	 * node_alloc_noretry bitmap to manage this state information.
1928 	 */
1929 	if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1930 		alloc_try_hard = false;
1931 	gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1932 	if (alloc_try_hard)
1933 		gfp_mask |= __GFP_RETRY_MAYFAIL;
1934 	if (nid == NUMA_NO_NODE)
1935 		nid = numa_mem_id();
1936 	page = __alloc_pages(gfp_mask, order, nid, nmask);
1937 	if (page)
1938 		__count_vm_event(HTLB_BUDDY_PGALLOC);
1939 	else
1940 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1941 
1942 	/*
1943 	 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1944 	 * indicates an overall state change.  Clear bit so that we resume
1945 	 * normal 'try hard' allocations.
1946 	 */
1947 	if (node_alloc_noretry && page && !alloc_try_hard)
1948 		node_clear(nid, *node_alloc_noretry);
1949 
1950 	/*
1951 	 * If we tried hard to get a page but failed, set bit so that
1952 	 * subsequent attempts will not try as hard until there is an
1953 	 * overall state change.
1954 	 */
1955 	if (node_alloc_noretry && !page && alloc_try_hard)
1956 		node_set(nid, *node_alloc_noretry);
1957 
1958 	return page;
1959 }
1960 
1961 /*
1962  * Common helper to allocate a fresh hugetlb page. All specific allocators
1963  * should use this function to get new hugetlb pages
1964  */
1965 static struct page *alloc_fresh_huge_page(struct hstate *h,
1966 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
1967 		nodemask_t *node_alloc_noretry)
1968 {
1969 	struct page *page;
1970 	bool retry = false;
1971 
1972 retry:
1973 	if (hstate_is_gigantic(h))
1974 		page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1975 	else
1976 		page = alloc_buddy_huge_page(h, gfp_mask,
1977 				nid, nmask, node_alloc_noretry);
1978 	if (!page)
1979 		return NULL;
1980 
1981 	if (hstate_is_gigantic(h)) {
1982 		if (!prep_compound_gigantic_page(page, huge_page_order(h))) {
1983 			/*
1984 			 * Rare failure to convert pages to compound page.
1985 			 * Free pages and try again - ONCE!
1986 			 */
1987 			free_gigantic_page(page, huge_page_order(h));
1988 			if (!retry) {
1989 				retry = true;
1990 				goto retry;
1991 			}
1992 			return NULL;
1993 		}
1994 	}
1995 	prep_new_huge_page(h, page, page_to_nid(page));
1996 
1997 	return page;
1998 }
1999 
2000 /*
2001  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
2002  * manner.
2003  */
2004 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
2005 				nodemask_t *node_alloc_noretry)
2006 {
2007 	struct page *page;
2008 	int nr_nodes, node;
2009 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2010 
2011 	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2012 		page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
2013 						node_alloc_noretry);
2014 		if (page)
2015 			break;
2016 	}
2017 
2018 	if (!page)
2019 		return 0;
2020 
2021 	put_page(page); /* free it into the hugepage allocator */
2022 
2023 	return 1;
2024 }
2025 
2026 /*
2027  * Remove huge page from pool from next node to free.  Attempt to keep
2028  * persistent huge pages more or less balanced over allowed nodes.
2029  * This routine only 'removes' the hugetlb page.  The caller must make
2030  * an additional call to free the page to low level allocators.
2031  * Called with hugetlb_lock locked.
2032  */
2033 static struct page *remove_pool_huge_page(struct hstate *h,
2034 						nodemask_t *nodes_allowed,
2035 						 bool acct_surplus)
2036 {
2037 	int nr_nodes, node;
2038 	struct page *page = NULL;
2039 
2040 	lockdep_assert_held(&hugetlb_lock);
2041 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2042 		/*
2043 		 * If we're returning unused surplus pages, only examine
2044 		 * nodes with surplus pages.
2045 		 */
2046 		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2047 		    !list_empty(&h->hugepage_freelists[node])) {
2048 			page = list_entry(h->hugepage_freelists[node].next,
2049 					  struct page, lru);
2050 			remove_hugetlb_page(h, page, acct_surplus);
2051 			break;
2052 		}
2053 	}
2054 
2055 	return page;
2056 }
2057 
2058 /*
2059  * Dissolve a given free hugepage into free buddy pages. This function does
2060  * nothing for in-use hugepages and non-hugepages.
2061  * This function returns values like below:
2062  *
2063  *  -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2064  *           when the system is under memory pressure and the feature of
2065  *           freeing unused vmemmap pages associated with each hugetlb page
2066  *           is enabled.
2067  *  -EBUSY:  failed to dissolved free hugepages or the hugepage is in-use
2068  *           (allocated or reserved.)
2069  *       0:  successfully dissolved free hugepages or the page is not a
2070  *           hugepage (considered as already dissolved)
2071  */
2072 int dissolve_free_huge_page(struct page *page)
2073 {
2074 	int rc = -EBUSY;
2075 
2076 retry:
2077 	/* Not to disrupt normal path by vainly holding hugetlb_lock */
2078 	if (!PageHuge(page))
2079 		return 0;
2080 
2081 	spin_lock_irq(&hugetlb_lock);
2082 	if (!PageHuge(page)) {
2083 		rc = 0;
2084 		goto out;
2085 	}
2086 
2087 	if (!page_count(page)) {
2088 		struct page *head = compound_head(page);
2089 		struct hstate *h = page_hstate(head);
2090 		if (h->free_huge_pages - h->resv_huge_pages == 0)
2091 			goto out;
2092 
2093 		/*
2094 		 * We should make sure that the page is already on the free list
2095 		 * when it is dissolved.
2096 		 */
2097 		if (unlikely(!HPageFreed(head))) {
2098 			spin_unlock_irq(&hugetlb_lock);
2099 			cond_resched();
2100 
2101 			/*
2102 			 * Theoretically, we should return -EBUSY when we
2103 			 * encounter this race. In fact, we have a chance
2104 			 * to successfully dissolve the page if we do a
2105 			 * retry. Because the race window is quite small.
2106 			 * If we seize this opportunity, it is an optimization
2107 			 * for increasing the success rate of dissolving page.
2108 			 */
2109 			goto retry;
2110 		}
2111 
2112 		remove_hugetlb_page(h, head, false);
2113 		h->max_huge_pages--;
2114 		spin_unlock_irq(&hugetlb_lock);
2115 
2116 		/*
2117 		 * Normally update_and_free_page will allocate required vmemmmap
2118 		 * before freeing the page.  update_and_free_page will fail to
2119 		 * free the page if it can not allocate required vmemmap.  We
2120 		 * need to adjust max_huge_pages if the page is not freed.
2121 		 * Attempt to allocate vmemmmap here so that we can take
2122 		 * appropriate action on failure.
2123 		 */
2124 		rc = hugetlb_vmemmap_restore(h, head);
2125 		if (!rc) {
2126 			update_and_free_page(h, head, false);
2127 		} else {
2128 			spin_lock_irq(&hugetlb_lock);
2129 			add_hugetlb_page(h, head, false);
2130 			h->max_huge_pages++;
2131 			spin_unlock_irq(&hugetlb_lock);
2132 		}
2133 
2134 		return rc;
2135 	}
2136 out:
2137 	spin_unlock_irq(&hugetlb_lock);
2138 	return rc;
2139 }
2140 
2141 /*
2142  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2143  * make specified memory blocks removable from the system.
2144  * Note that this will dissolve a free gigantic hugepage completely, if any
2145  * part of it lies within the given range.
2146  * Also note that if dissolve_free_huge_page() returns with an error, all
2147  * free hugepages that were dissolved before that error are lost.
2148  */
2149 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
2150 {
2151 	unsigned long pfn;
2152 	struct page *page;
2153 	int rc = 0;
2154 	unsigned int order;
2155 	struct hstate *h;
2156 
2157 	if (!hugepages_supported())
2158 		return rc;
2159 
2160 	order = huge_page_order(&default_hstate);
2161 	for_each_hstate(h)
2162 		order = min(order, huge_page_order(h));
2163 
2164 	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
2165 		page = pfn_to_page(pfn);
2166 		rc = dissolve_free_huge_page(page);
2167 		if (rc)
2168 			break;
2169 	}
2170 
2171 	return rc;
2172 }
2173 
2174 /*
2175  * Allocates a fresh surplus page from the page allocator.
2176  */
2177 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
2178 		int nid, nodemask_t *nmask, bool zero_ref)
2179 {
2180 	struct page *page = NULL;
2181 	bool retry = false;
2182 
2183 	if (hstate_is_gigantic(h))
2184 		return NULL;
2185 
2186 	spin_lock_irq(&hugetlb_lock);
2187 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2188 		goto out_unlock;
2189 	spin_unlock_irq(&hugetlb_lock);
2190 
2191 retry:
2192 	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
2193 	if (!page)
2194 		return NULL;
2195 
2196 	spin_lock_irq(&hugetlb_lock);
2197 	/*
2198 	 * We could have raced with the pool size change.
2199 	 * Double check that and simply deallocate the new page
2200 	 * if we would end up overcommiting the surpluses. Abuse
2201 	 * temporary page to workaround the nasty free_huge_page
2202 	 * codeflow
2203 	 */
2204 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2205 		SetHPageTemporary(page);
2206 		spin_unlock_irq(&hugetlb_lock);
2207 		put_page(page);
2208 		return NULL;
2209 	}
2210 
2211 	if (zero_ref) {
2212 		/*
2213 		 * Caller requires a page with zero ref count.
2214 		 * We will drop ref count here.  If someone else is holding
2215 		 * a ref, the page will be freed when they drop it.  Abuse
2216 		 * temporary page flag to accomplish this.
2217 		 */
2218 		SetHPageTemporary(page);
2219 		if (!put_page_testzero(page)) {
2220 			/*
2221 			 * Unexpected inflated ref count on freshly allocated
2222 			 * huge.  Retry once.
2223 			 */
2224 			pr_info("HugeTLB unexpected inflated ref count on freshly allocated page\n");
2225 			spin_unlock_irq(&hugetlb_lock);
2226 			if (retry)
2227 				return NULL;
2228 
2229 			retry = true;
2230 			goto retry;
2231 		}
2232 		ClearHPageTemporary(page);
2233 	}
2234 
2235 	h->surplus_huge_pages++;
2236 	h->surplus_huge_pages_node[page_to_nid(page)]++;
2237 
2238 out_unlock:
2239 	spin_unlock_irq(&hugetlb_lock);
2240 
2241 	return page;
2242 }
2243 
2244 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
2245 				     int nid, nodemask_t *nmask)
2246 {
2247 	struct page *page;
2248 
2249 	if (hstate_is_gigantic(h))
2250 		return NULL;
2251 
2252 	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
2253 	if (!page)
2254 		return NULL;
2255 
2256 	/*
2257 	 * We do not account these pages as surplus because they are only
2258 	 * temporary and will be released properly on the last reference
2259 	 */
2260 	SetHPageTemporary(page);
2261 
2262 	return page;
2263 }
2264 
2265 /*
2266  * Use the VMA's mpolicy to allocate a huge page from the buddy.
2267  */
2268 static
2269 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
2270 		struct vm_area_struct *vma, unsigned long addr)
2271 {
2272 	struct page *page = NULL;
2273 	struct mempolicy *mpol;
2274 	gfp_t gfp_mask = htlb_alloc_mask(h);
2275 	int nid;
2276 	nodemask_t *nodemask;
2277 
2278 	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2279 	if (mpol_is_preferred_many(mpol)) {
2280 		gfp_t gfp = gfp_mask | __GFP_NOWARN;
2281 
2282 		gfp &=  ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2283 		page = alloc_surplus_huge_page(h, gfp, nid, nodemask, false);
2284 
2285 		/* Fallback to all nodes if page==NULL */
2286 		nodemask = NULL;
2287 	}
2288 
2289 	if (!page)
2290 		page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask, false);
2291 	mpol_cond_put(mpol);
2292 	return page;
2293 }
2294 
2295 /* page migration callback function */
2296 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
2297 		nodemask_t *nmask, gfp_t gfp_mask)
2298 {
2299 	spin_lock_irq(&hugetlb_lock);
2300 	if (h->free_huge_pages - h->resv_huge_pages > 0) {
2301 		struct page *page;
2302 
2303 		page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
2304 		if (page) {
2305 			spin_unlock_irq(&hugetlb_lock);
2306 			return page;
2307 		}
2308 	}
2309 	spin_unlock_irq(&hugetlb_lock);
2310 
2311 	return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
2312 }
2313 
2314 /* mempolicy aware migration callback */
2315 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
2316 		unsigned long address)
2317 {
2318 	struct mempolicy *mpol;
2319 	nodemask_t *nodemask;
2320 	struct page *page;
2321 	gfp_t gfp_mask;
2322 	int node;
2323 
2324 	gfp_mask = htlb_alloc_mask(h);
2325 	node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2326 	page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
2327 	mpol_cond_put(mpol);
2328 
2329 	return page;
2330 }
2331 
2332 /*
2333  * Increase the hugetlb pool such that it can accommodate a reservation
2334  * of size 'delta'.
2335  */
2336 static int gather_surplus_pages(struct hstate *h, long delta)
2337 	__must_hold(&hugetlb_lock)
2338 {
2339 	struct list_head surplus_list;
2340 	struct page *page, *tmp;
2341 	int ret;
2342 	long i;
2343 	long needed, allocated;
2344 	bool alloc_ok = true;
2345 
2346 	lockdep_assert_held(&hugetlb_lock);
2347 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2348 	if (needed <= 0) {
2349 		h->resv_huge_pages += delta;
2350 		return 0;
2351 	}
2352 
2353 	allocated = 0;
2354 	INIT_LIST_HEAD(&surplus_list);
2355 
2356 	ret = -ENOMEM;
2357 retry:
2358 	spin_unlock_irq(&hugetlb_lock);
2359 	for (i = 0; i < needed; i++) {
2360 		page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2361 				NUMA_NO_NODE, NULL, true);
2362 		if (!page) {
2363 			alloc_ok = false;
2364 			break;
2365 		}
2366 		list_add(&page->lru, &surplus_list);
2367 		cond_resched();
2368 	}
2369 	allocated += i;
2370 
2371 	/*
2372 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
2373 	 * because either resv_huge_pages or free_huge_pages may have changed.
2374 	 */
2375 	spin_lock_irq(&hugetlb_lock);
2376 	needed = (h->resv_huge_pages + delta) -
2377 			(h->free_huge_pages + allocated);
2378 	if (needed > 0) {
2379 		if (alloc_ok)
2380 			goto retry;
2381 		/*
2382 		 * We were not able to allocate enough pages to
2383 		 * satisfy the entire reservation so we free what
2384 		 * we've allocated so far.
2385 		 */
2386 		goto free;
2387 	}
2388 	/*
2389 	 * The surplus_list now contains _at_least_ the number of extra pages
2390 	 * needed to accommodate the reservation.  Add the appropriate number
2391 	 * of pages to the hugetlb pool and free the extras back to the buddy
2392 	 * allocator.  Commit the entire reservation here to prevent another
2393 	 * process from stealing the pages as they are added to the pool but
2394 	 * before they are reserved.
2395 	 */
2396 	needed += allocated;
2397 	h->resv_huge_pages += delta;
2398 	ret = 0;
2399 
2400 	/* Free the needed pages to the hugetlb pool */
2401 	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2402 		if ((--needed) < 0)
2403 			break;
2404 		/* Add the page to the hugetlb allocator */
2405 		enqueue_huge_page(h, page);
2406 	}
2407 free:
2408 	spin_unlock_irq(&hugetlb_lock);
2409 
2410 	/*
2411 	 * Free unnecessary surplus pages to the buddy allocator.
2412 	 * Pages have no ref count, call free_huge_page directly.
2413 	 */
2414 	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2415 		free_huge_page(page);
2416 	spin_lock_irq(&hugetlb_lock);
2417 
2418 	return ret;
2419 }
2420 
2421 /*
2422  * This routine has two main purposes:
2423  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2424  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2425  *    to the associated reservation map.
2426  * 2) Free any unused surplus pages that may have been allocated to satisfy
2427  *    the reservation.  As many as unused_resv_pages may be freed.
2428  */
2429 static void return_unused_surplus_pages(struct hstate *h,
2430 					unsigned long unused_resv_pages)
2431 {
2432 	unsigned long nr_pages;
2433 	struct page *page;
2434 	LIST_HEAD(page_list);
2435 
2436 	lockdep_assert_held(&hugetlb_lock);
2437 	/* Uncommit the reservation */
2438 	h->resv_huge_pages -= unused_resv_pages;
2439 
2440 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2441 		goto out;
2442 
2443 	/*
2444 	 * Part (or even all) of the reservation could have been backed
2445 	 * by pre-allocated pages. Only free surplus pages.
2446 	 */
2447 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2448 
2449 	/*
2450 	 * We want to release as many surplus pages as possible, spread
2451 	 * evenly across all nodes with memory. Iterate across these nodes
2452 	 * until we can no longer free unreserved surplus pages. This occurs
2453 	 * when the nodes with surplus pages have no free pages.
2454 	 * remove_pool_huge_page() will balance the freed pages across the
2455 	 * on-line nodes with memory and will handle the hstate accounting.
2456 	 */
2457 	while (nr_pages--) {
2458 		page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2459 		if (!page)
2460 			goto out;
2461 
2462 		list_add(&page->lru, &page_list);
2463 	}
2464 
2465 out:
2466 	spin_unlock_irq(&hugetlb_lock);
2467 	update_and_free_pages_bulk(h, &page_list);
2468 	spin_lock_irq(&hugetlb_lock);
2469 }
2470 
2471 
2472 /*
2473  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2474  * are used by the huge page allocation routines to manage reservations.
2475  *
2476  * vma_needs_reservation is called to determine if the huge page at addr
2477  * within the vma has an associated reservation.  If a reservation is
2478  * needed, the value 1 is returned.  The caller is then responsible for
2479  * managing the global reservation and subpool usage counts.  After
2480  * the huge page has been allocated, vma_commit_reservation is called
2481  * to add the page to the reservation map.  If the page allocation fails,
2482  * the reservation must be ended instead of committed.  vma_end_reservation
2483  * is called in such cases.
2484  *
2485  * In the normal case, vma_commit_reservation returns the same value
2486  * as the preceding vma_needs_reservation call.  The only time this
2487  * is not the case is if a reserve map was changed between calls.  It
2488  * is the responsibility of the caller to notice the difference and
2489  * take appropriate action.
2490  *
2491  * vma_add_reservation is used in error paths where a reservation must
2492  * be restored when a newly allocated huge page must be freed.  It is
2493  * to be called after calling vma_needs_reservation to determine if a
2494  * reservation exists.
2495  *
2496  * vma_del_reservation is used in error paths where an entry in the reserve
2497  * map was created during huge page allocation and must be removed.  It is to
2498  * be called after calling vma_needs_reservation to determine if a reservation
2499  * exists.
2500  */
2501 enum vma_resv_mode {
2502 	VMA_NEEDS_RESV,
2503 	VMA_COMMIT_RESV,
2504 	VMA_END_RESV,
2505 	VMA_ADD_RESV,
2506 	VMA_DEL_RESV,
2507 };
2508 static long __vma_reservation_common(struct hstate *h,
2509 				struct vm_area_struct *vma, unsigned long addr,
2510 				enum vma_resv_mode mode)
2511 {
2512 	struct resv_map *resv;
2513 	pgoff_t idx;
2514 	long ret;
2515 	long dummy_out_regions_needed;
2516 
2517 	resv = vma_resv_map(vma);
2518 	if (!resv)
2519 		return 1;
2520 
2521 	idx = vma_hugecache_offset(h, vma, addr);
2522 	switch (mode) {
2523 	case VMA_NEEDS_RESV:
2524 		ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2525 		/* We assume that vma_reservation_* routines always operate on
2526 		 * 1 page, and that adding to resv map a 1 page entry can only
2527 		 * ever require 1 region.
2528 		 */
2529 		VM_BUG_ON(dummy_out_regions_needed != 1);
2530 		break;
2531 	case VMA_COMMIT_RESV:
2532 		ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2533 		/* region_add calls of range 1 should never fail. */
2534 		VM_BUG_ON(ret < 0);
2535 		break;
2536 	case VMA_END_RESV:
2537 		region_abort(resv, idx, idx + 1, 1);
2538 		ret = 0;
2539 		break;
2540 	case VMA_ADD_RESV:
2541 		if (vma->vm_flags & VM_MAYSHARE) {
2542 			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2543 			/* region_add calls of range 1 should never fail. */
2544 			VM_BUG_ON(ret < 0);
2545 		} else {
2546 			region_abort(resv, idx, idx + 1, 1);
2547 			ret = region_del(resv, idx, idx + 1);
2548 		}
2549 		break;
2550 	case VMA_DEL_RESV:
2551 		if (vma->vm_flags & VM_MAYSHARE) {
2552 			region_abort(resv, idx, idx + 1, 1);
2553 			ret = region_del(resv, idx, idx + 1);
2554 		} else {
2555 			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2556 			/* region_add calls of range 1 should never fail. */
2557 			VM_BUG_ON(ret < 0);
2558 		}
2559 		break;
2560 	default:
2561 		BUG();
2562 	}
2563 
2564 	if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2565 		return ret;
2566 	/*
2567 	 * We know private mapping must have HPAGE_RESV_OWNER set.
2568 	 *
2569 	 * In most cases, reserves always exist for private mappings.
2570 	 * However, a file associated with mapping could have been
2571 	 * hole punched or truncated after reserves were consumed.
2572 	 * As subsequent fault on such a range will not use reserves.
2573 	 * Subtle - The reserve map for private mappings has the
2574 	 * opposite meaning than that of shared mappings.  If NO
2575 	 * entry is in the reserve map, it means a reservation exists.
2576 	 * If an entry exists in the reserve map, it means the
2577 	 * reservation has already been consumed.  As a result, the
2578 	 * return value of this routine is the opposite of the
2579 	 * value returned from reserve map manipulation routines above.
2580 	 */
2581 	if (ret > 0)
2582 		return 0;
2583 	if (ret == 0)
2584 		return 1;
2585 	return ret;
2586 }
2587 
2588 static long vma_needs_reservation(struct hstate *h,
2589 			struct vm_area_struct *vma, unsigned long addr)
2590 {
2591 	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2592 }
2593 
2594 static long vma_commit_reservation(struct hstate *h,
2595 			struct vm_area_struct *vma, unsigned long addr)
2596 {
2597 	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2598 }
2599 
2600 static void vma_end_reservation(struct hstate *h,
2601 			struct vm_area_struct *vma, unsigned long addr)
2602 {
2603 	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2604 }
2605 
2606 static long vma_add_reservation(struct hstate *h,
2607 			struct vm_area_struct *vma, unsigned long addr)
2608 {
2609 	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2610 }
2611 
2612 static long vma_del_reservation(struct hstate *h,
2613 			struct vm_area_struct *vma, unsigned long addr)
2614 {
2615 	return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2616 }
2617 
2618 /*
2619  * This routine is called to restore reservation information on error paths.
2620  * It should ONLY be called for pages allocated via alloc_huge_page(), and
2621  * the hugetlb mutex should remain held when calling this routine.
2622  *
2623  * It handles two specific cases:
2624  * 1) A reservation was in place and the page consumed the reservation.
2625  *    HPageRestoreReserve is set in the page.
2626  * 2) No reservation was in place for the page, so HPageRestoreReserve is
2627  *    not set.  However, alloc_huge_page always updates the reserve map.
2628  *
2629  * In case 1, free_huge_page later in the error path will increment the
2630  * global reserve count.  But, free_huge_page does not have enough context
2631  * to adjust the reservation map.  This case deals primarily with private
2632  * mappings.  Adjust the reserve map here to be consistent with global
2633  * reserve count adjustments to be made by free_huge_page.  Make sure the
2634  * reserve map indicates there is a reservation present.
2635  *
2636  * In case 2, simply undo reserve map modifications done by alloc_huge_page.
2637  */
2638 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2639 			unsigned long address, struct page *page)
2640 {
2641 	long rc = vma_needs_reservation(h, vma, address);
2642 
2643 	if (HPageRestoreReserve(page)) {
2644 		if (unlikely(rc < 0))
2645 			/*
2646 			 * Rare out of memory condition in reserve map
2647 			 * manipulation.  Clear HPageRestoreReserve so that
2648 			 * global reserve count will not be incremented
2649 			 * by free_huge_page.  This will make it appear
2650 			 * as though the reservation for this page was
2651 			 * consumed.  This may prevent the task from
2652 			 * faulting in the page at a later time.  This
2653 			 * is better than inconsistent global huge page
2654 			 * accounting of reserve counts.
2655 			 */
2656 			ClearHPageRestoreReserve(page);
2657 		else if (rc)
2658 			(void)vma_add_reservation(h, vma, address);
2659 		else
2660 			vma_end_reservation(h, vma, address);
2661 	} else {
2662 		if (!rc) {
2663 			/*
2664 			 * This indicates there is an entry in the reserve map
2665 			 * not added by alloc_huge_page.  We know it was added
2666 			 * before the alloc_huge_page call, otherwise
2667 			 * HPageRestoreReserve would be set on the page.
2668 			 * Remove the entry so that a subsequent allocation
2669 			 * does not consume a reservation.
2670 			 */
2671 			rc = vma_del_reservation(h, vma, address);
2672 			if (rc < 0)
2673 				/*
2674 				 * VERY rare out of memory condition.  Since
2675 				 * we can not delete the entry, set
2676 				 * HPageRestoreReserve so that the reserve
2677 				 * count will be incremented when the page
2678 				 * is freed.  This reserve will be consumed
2679 				 * on a subsequent allocation.
2680 				 */
2681 				SetHPageRestoreReserve(page);
2682 		} else if (rc < 0) {
2683 			/*
2684 			 * Rare out of memory condition from
2685 			 * vma_needs_reservation call.  Memory allocation is
2686 			 * only attempted if a new entry is needed.  Therefore,
2687 			 * this implies there is not an entry in the
2688 			 * reserve map.
2689 			 *
2690 			 * For shared mappings, no entry in the map indicates
2691 			 * no reservation.  We are done.
2692 			 */
2693 			if (!(vma->vm_flags & VM_MAYSHARE))
2694 				/*
2695 				 * For private mappings, no entry indicates
2696 				 * a reservation is present.  Since we can
2697 				 * not add an entry, set SetHPageRestoreReserve
2698 				 * on the page so reserve count will be
2699 				 * incremented when freed.  This reserve will
2700 				 * be consumed on a subsequent allocation.
2701 				 */
2702 				SetHPageRestoreReserve(page);
2703 		} else
2704 			/*
2705 			 * No reservation present, do nothing
2706 			 */
2707 			 vma_end_reservation(h, vma, address);
2708 	}
2709 }
2710 
2711 /*
2712  * alloc_and_dissolve_huge_page - Allocate a new page and dissolve the old one
2713  * @h: struct hstate old page belongs to
2714  * @old_page: Old page to dissolve
2715  * @list: List to isolate the page in case we need to
2716  * Returns 0 on success, otherwise negated error.
2717  */
2718 static int alloc_and_dissolve_huge_page(struct hstate *h, struct page *old_page,
2719 					struct list_head *list)
2720 {
2721 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2722 	int nid = page_to_nid(old_page);
2723 	bool alloc_retry = false;
2724 	struct page *new_page;
2725 	int ret = 0;
2726 
2727 	/*
2728 	 * Before dissolving the page, we need to allocate a new one for the
2729 	 * pool to remain stable.  Here, we allocate the page and 'prep' it
2730 	 * by doing everything but actually updating counters and adding to
2731 	 * the pool.  This simplifies and let us do most of the processing
2732 	 * under the lock.
2733 	 */
2734 alloc_retry:
2735 	new_page = alloc_buddy_huge_page(h, gfp_mask, nid, NULL, NULL);
2736 	if (!new_page)
2737 		return -ENOMEM;
2738 	/*
2739 	 * If all goes well, this page will be directly added to the free
2740 	 * list in the pool.  For this the ref count needs to be zero.
2741 	 * Attempt to drop now, and retry once if needed.  It is VERY
2742 	 * unlikely there is another ref on the page.
2743 	 *
2744 	 * If someone else has a reference to the page, it will be freed
2745 	 * when they drop their ref.  Abuse temporary page flag to accomplish
2746 	 * this.  Retry once if there is an inflated ref count.
2747 	 */
2748 	SetHPageTemporary(new_page);
2749 	if (!put_page_testzero(new_page)) {
2750 		if (alloc_retry)
2751 			return -EBUSY;
2752 
2753 		alloc_retry = true;
2754 		goto alloc_retry;
2755 	}
2756 	ClearHPageTemporary(new_page);
2757 
2758 	__prep_new_huge_page(h, new_page);
2759 
2760 retry:
2761 	spin_lock_irq(&hugetlb_lock);
2762 	if (!PageHuge(old_page)) {
2763 		/*
2764 		 * Freed from under us. Drop new_page too.
2765 		 */
2766 		goto free_new;
2767 	} else if (page_count(old_page)) {
2768 		/*
2769 		 * Someone has grabbed the page, try to isolate it here.
2770 		 * Fail with -EBUSY if not possible.
2771 		 */
2772 		spin_unlock_irq(&hugetlb_lock);
2773 		ret = isolate_hugetlb(old_page, list);
2774 		spin_lock_irq(&hugetlb_lock);
2775 		goto free_new;
2776 	} else if (!HPageFreed(old_page)) {
2777 		/*
2778 		 * Page's refcount is 0 but it has not been enqueued in the
2779 		 * freelist yet. Race window is small, so we can succeed here if
2780 		 * we retry.
2781 		 */
2782 		spin_unlock_irq(&hugetlb_lock);
2783 		cond_resched();
2784 		goto retry;
2785 	} else {
2786 		/*
2787 		 * Ok, old_page is still a genuine free hugepage. Remove it from
2788 		 * the freelist and decrease the counters. These will be
2789 		 * incremented again when calling __prep_account_new_huge_page()
2790 		 * and enqueue_huge_page() for new_page. The counters will remain
2791 		 * stable since this happens under the lock.
2792 		 */
2793 		remove_hugetlb_page(h, old_page, false);
2794 
2795 		/*
2796 		 * Ref count on new page is already zero as it was dropped
2797 		 * earlier.  It can be directly added to the pool free list.
2798 		 */
2799 		__prep_account_new_huge_page(h, nid);
2800 		enqueue_huge_page(h, new_page);
2801 
2802 		/*
2803 		 * Pages have been replaced, we can safely free the old one.
2804 		 */
2805 		spin_unlock_irq(&hugetlb_lock);
2806 		update_and_free_page(h, old_page, false);
2807 	}
2808 
2809 	return ret;
2810 
2811 free_new:
2812 	spin_unlock_irq(&hugetlb_lock);
2813 	/* Page has a zero ref count, but needs a ref to be freed */
2814 	set_page_refcounted(new_page);
2815 	update_and_free_page(h, new_page, false);
2816 
2817 	return ret;
2818 }
2819 
2820 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
2821 {
2822 	struct hstate *h;
2823 	struct page *head;
2824 	int ret = -EBUSY;
2825 
2826 	/*
2827 	 * The page might have been dissolved from under our feet, so make sure
2828 	 * to carefully check the state under the lock.
2829 	 * Return success when racing as if we dissolved the page ourselves.
2830 	 */
2831 	spin_lock_irq(&hugetlb_lock);
2832 	if (PageHuge(page)) {
2833 		head = compound_head(page);
2834 		h = page_hstate(head);
2835 	} else {
2836 		spin_unlock_irq(&hugetlb_lock);
2837 		return 0;
2838 	}
2839 	spin_unlock_irq(&hugetlb_lock);
2840 
2841 	/*
2842 	 * Fence off gigantic pages as there is a cyclic dependency between
2843 	 * alloc_contig_range and them. Return -ENOMEM as this has the effect
2844 	 * of bailing out right away without further retrying.
2845 	 */
2846 	if (hstate_is_gigantic(h))
2847 		return -ENOMEM;
2848 
2849 	if (page_count(head) && !isolate_hugetlb(head, list))
2850 		ret = 0;
2851 	else if (!page_count(head))
2852 		ret = alloc_and_dissolve_huge_page(h, head, list);
2853 
2854 	return ret;
2855 }
2856 
2857 struct page *alloc_huge_page(struct vm_area_struct *vma,
2858 				    unsigned long addr, int avoid_reserve)
2859 {
2860 	struct hugepage_subpool *spool = subpool_vma(vma);
2861 	struct hstate *h = hstate_vma(vma);
2862 	struct page *page;
2863 	long map_chg, map_commit;
2864 	long gbl_chg;
2865 	int ret, idx;
2866 	struct hugetlb_cgroup *h_cg;
2867 	bool deferred_reserve;
2868 
2869 	idx = hstate_index(h);
2870 	/*
2871 	 * Examine the region/reserve map to determine if the process
2872 	 * has a reservation for the page to be allocated.  A return
2873 	 * code of zero indicates a reservation exists (no change).
2874 	 */
2875 	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2876 	if (map_chg < 0)
2877 		return ERR_PTR(-ENOMEM);
2878 
2879 	/*
2880 	 * Processes that did not create the mapping will have no
2881 	 * reserves as indicated by the region/reserve map. Check
2882 	 * that the allocation will not exceed the subpool limit.
2883 	 * Allocations for MAP_NORESERVE mappings also need to be
2884 	 * checked against any subpool limit.
2885 	 */
2886 	if (map_chg || avoid_reserve) {
2887 		gbl_chg = hugepage_subpool_get_pages(spool, 1);
2888 		if (gbl_chg < 0) {
2889 			vma_end_reservation(h, vma, addr);
2890 			return ERR_PTR(-ENOSPC);
2891 		}
2892 
2893 		/*
2894 		 * Even though there was no reservation in the region/reserve
2895 		 * map, there could be reservations associated with the
2896 		 * subpool that can be used.  This would be indicated if the
2897 		 * return value of hugepage_subpool_get_pages() is zero.
2898 		 * However, if avoid_reserve is specified we still avoid even
2899 		 * the subpool reservations.
2900 		 */
2901 		if (avoid_reserve)
2902 			gbl_chg = 1;
2903 	}
2904 
2905 	/* If this allocation is not consuming a reservation, charge it now.
2906 	 */
2907 	deferred_reserve = map_chg || avoid_reserve;
2908 	if (deferred_reserve) {
2909 		ret = hugetlb_cgroup_charge_cgroup_rsvd(
2910 			idx, pages_per_huge_page(h), &h_cg);
2911 		if (ret)
2912 			goto out_subpool_put;
2913 	}
2914 
2915 	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2916 	if (ret)
2917 		goto out_uncharge_cgroup_reservation;
2918 
2919 	spin_lock_irq(&hugetlb_lock);
2920 	/*
2921 	 * glb_chg is passed to indicate whether or not a page must be taken
2922 	 * from the global free pool (global change).  gbl_chg == 0 indicates
2923 	 * a reservation exists for the allocation.
2924 	 */
2925 	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2926 	if (!page) {
2927 		spin_unlock_irq(&hugetlb_lock);
2928 		page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2929 		if (!page)
2930 			goto out_uncharge_cgroup;
2931 		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2932 			SetHPageRestoreReserve(page);
2933 			h->resv_huge_pages--;
2934 		}
2935 		spin_lock_irq(&hugetlb_lock);
2936 		list_add(&page->lru, &h->hugepage_activelist);
2937 		/* Fall through */
2938 	}
2939 	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2940 	/* If allocation is not consuming a reservation, also store the
2941 	 * hugetlb_cgroup pointer on the page.
2942 	 */
2943 	if (deferred_reserve) {
2944 		hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2945 						  h_cg, page);
2946 	}
2947 
2948 	spin_unlock_irq(&hugetlb_lock);
2949 
2950 	hugetlb_set_page_subpool(page, spool);
2951 
2952 	map_commit = vma_commit_reservation(h, vma, addr);
2953 	if (unlikely(map_chg > map_commit)) {
2954 		/*
2955 		 * The page was added to the reservation map between
2956 		 * vma_needs_reservation and vma_commit_reservation.
2957 		 * This indicates a race with hugetlb_reserve_pages.
2958 		 * Adjust for the subpool count incremented above AND
2959 		 * in hugetlb_reserve_pages for the same page.  Also,
2960 		 * the reservation count added in hugetlb_reserve_pages
2961 		 * no longer applies.
2962 		 */
2963 		long rsv_adjust;
2964 
2965 		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2966 		hugetlb_acct_memory(h, -rsv_adjust);
2967 		if (deferred_reserve)
2968 			hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
2969 					pages_per_huge_page(h), page);
2970 	}
2971 	return page;
2972 
2973 out_uncharge_cgroup:
2974 	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2975 out_uncharge_cgroup_reservation:
2976 	if (deferred_reserve)
2977 		hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2978 						    h_cg);
2979 out_subpool_put:
2980 	if (map_chg || avoid_reserve)
2981 		hugepage_subpool_put_pages(spool, 1);
2982 	vma_end_reservation(h, vma, addr);
2983 	return ERR_PTR(-ENOSPC);
2984 }
2985 
2986 int alloc_bootmem_huge_page(struct hstate *h, int nid)
2987 	__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2988 int __alloc_bootmem_huge_page(struct hstate *h, int nid)
2989 {
2990 	struct huge_bootmem_page *m = NULL; /* initialize for clang */
2991 	int nr_nodes, node;
2992 
2993 	/* do node specific alloc */
2994 	if (nid != NUMA_NO_NODE) {
2995 		m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
2996 				0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
2997 		if (!m)
2998 			return 0;
2999 		goto found;
3000 	}
3001 	/* allocate from next node when distributing huge pages */
3002 	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
3003 		m = memblock_alloc_try_nid_raw(
3004 				huge_page_size(h), huge_page_size(h),
3005 				0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
3006 		/*
3007 		 * Use the beginning of the huge page to store the
3008 		 * huge_bootmem_page struct (until gather_bootmem
3009 		 * puts them into the mem_map).
3010 		 */
3011 		if (!m)
3012 			return 0;
3013 		goto found;
3014 	}
3015 
3016 found:
3017 	/* Put them into a private list first because mem_map is not up yet */
3018 	INIT_LIST_HEAD(&m->list);
3019 	list_add(&m->list, &huge_boot_pages);
3020 	m->hstate = h;
3021 	return 1;
3022 }
3023 
3024 /*
3025  * Put bootmem huge pages into the standard lists after mem_map is up.
3026  * Note: This only applies to gigantic (order > MAX_ORDER) pages.
3027  */
3028 static void __init gather_bootmem_prealloc(void)
3029 {
3030 	struct huge_bootmem_page *m;
3031 
3032 	list_for_each_entry(m, &huge_boot_pages, list) {
3033 		struct page *page = virt_to_page(m);
3034 		struct hstate *h = m->hstate;
3035 
3036 		VM_BUG_ON(!hstate_is_gigantic(h));
3037 		WARN_ON(page_count(page) != 1);
3038 		if (prep_compound_gigantic_page(page, huge_page_order(h))) {
3039 			WARN_ON(PageReserved(page));
3040 			prep_new_huge_page(h, page, page_to_nid(page));
3041 			put_page(page); /* add to the hugepage allocator */
3042 		} else {
3043 			/* VERY unlikely inflated ref count on a tail page */
3044 			free_gigantic_page(page, huge_page_order(h));
3045 		}
3046 
3047 		/*
3048 		 * We need to restore the 'stolen' pages to totalram_pages
3049 		 * in order to fix confusing memory reports from free(1) and
3050 		 * other side-effects, like CommitLimit going negative.
3051 		 */
3052 		adjust_managed_page_count(page, pages_per_huge_page(h));
3053 		cond_resched();
3054 	}
3055 }
3056 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3057 {
3058 	unsigned long i;
3059 	char buf[32];
3060 
3061 	for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3062 		if (hstate_is_gigantic(h)) {
3063 			if (!alloc_bootmem_huge_page(h, nid))
3064 				break;
3065 		} else {
3066 			struct page *page;
3067 			gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3068 
3069 			page = alloc_fresh_huge_page(h, gfp_mask, nid,
3070 					&node_states[N_MEMORY], NULL);
3071 			if (!page)
3072 				break;
3073 			put_page(page); /* free it into the hugepage allocator */
3074 		}
3075 		cond_resched();
3076 	}
3077 	if (i == h->max_huge_pages_node[nid])
3078 		return;
3079 
3080 	string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3081 	pr_warn("HugeTLB: allocating %u of page size %s failed node%d.  Only allocated %lu hugepages.\n",
3082 		h->max_huge_pages_node[nid], buf, nid, i);
3083 	h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3084 	h->max_huge_pages_node[nid] = i;
3085 }
3086 
3087 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3088 {
3089 	unsigned long i;
3090 	nodemask_t *node_alloc_noretry;
3091 	bool node_specific_alloc = false;
3092 
3093 	/* skip gigantic hugepages allocation if hugetlb_cma enabled */
3094 	if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3095 		pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3096 		return;
3097 	}
3098 
3099 	/* do node specific alloc */
3100 	for_each_online_node(i) {
3101 		if (h->max_huge_pages_node[i] > 0) {
3102 			hugetlb_hstate_alloc_pages_onenode(h, i);
3103 			node_specific_alloc = true;
3104 		}
3105 	}
3106 
3107 	if (node_specific_alloc)
3108 		return;
3109 
3110 	/* below will do all node balanced alloc */
3111 	if (!hstate_is_gigantic(h)) {
3112 		/*
3113 		 * Bit mask controlling how hard we retry per-node allocations.
3114 		 * Ignore errors as lower level routines can deal with
3115 		 * node_alloc_noretry == NULL.  If this kmalloc fails at boot
3116 		 * time, we are likely in bigger trouble.
3117 		 */
3118 		node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
3119 						GFP_KERNEL);
3120 	} else {
3121 		/* allocations done at boot time */
3122 		node_alloc_noretry = NULL;
3123 	}
3124 
3125 	/* bit mask controlling how hard we retry per-node allocations */
3126 	if (node_alloc_noretry)
3127 		nodes_clear(*node_alloc_noretry);
3128 
3129 	for (i = 0; i < h->max_huge_pages; ++i) {
3130 		if (hstate_is_gigantic(h)) {
3131 			if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3132 				break;
3133 		} else if (!alloc_pool_huge_page(h,
3134 					 &node_states[N_MEMORY],
3135 					 node_alloc_noretry))
3136 			break;
3137 		cond_resched();
3138 	}
3139 	if (i < h->max_huge_pages) {
3140 		char buf[32];
3141 
3142 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3143 		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
3144 			h->max_huge_pages, buf, i);
3145 		h->max_huge_pages = i;
3146 	}
3147 	kfree(node_alloc_noretry);
3148 }
3149 
3150 static void __init hugetlb_init_hstates(void)
3151 {
3152 	struct hstate *h, *h2;
3153 
3154 	for_each_hstate(h) {
3155 		/* oversize hugepages were init'ed in early boot */
3156 		if (!hstate_is_gigantic(h))
3157 			hugetlb_hstate_alloc_pages(h);
3158 
3159 		/*
3160 		 * Set demote order for each hstate.  Note that
3161 		 * h->demote_order is initially 0.
3162 		 * - We can not demote gigantic pages if runtime freeing
3163 		 *   is not supported, so skip this.
3164 		 * - If CMA allocation is possible, we can not demote
3165 		 *   HUGETLB_PAGE_ORDER or smaller size pages.
3166 		 */
3167 		if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3168 			continue;
3169 		if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3170 			continue;
3171 		for_each_hstate(h2) {
3172 			if (h2 == h)
3173 				continue;
3174 			if (h2->order < h->order &&
3175 			    h2->order > h->demote_order)
3176 				h->demote_order = h2->order;
3177 		}
3178 	}
3179 }
3180 
3181 static void __init report_hugepages(void)
3182 {
3183 	struct hstate *h;
3184 
3185 	for_each_hstate(h) {
3186 		char buf[32];
3187 
3188 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3189 		pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
3190 			buf, h->free_huge_pages);
3191 		pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3192 			hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
3193 	}
3194 }
3195 
3196 #ifdef CONFIG_HIGHMEM
3197 static void try_to_free_low(struct hstate *h, unsigned long count,
3198 						nodemask_t *nodes_allowed)
3199 {
3200 	int i;
3201 	LIST_HEAD(page_list);
3202 
3203 	lockdep_assert_held(&hugetlb_lock);
3204 	if (hstate_is_gigantic(h))
3205 		return;
3206 
3207 	/*
3208 	 * Collect pages to be freed on a list, and free after dropping lock
3209 	 */
3210 	for_each_node_mask(i, *nodes_allowed) {
3211 		struct page *page, *next;
3212 		struct list_head *freel = &h->hugepage_freelists[i];
3213 		list_for_each_entry_safe(page, next, freel, lru) {
3214 			if (count >= h->nr_huge_pages)
3215 				goto out;
3216 			if (PageHighMem(page))
3217 				continue;
3218 			remove_hugetlb_page(h, page, false);
3219 			list_add(&page->lru, &page_list);
3220 		}
3221 	}
3222 
3223 out:
3224 	spin_unlock_irq(&hugetlb_lock);
3225 	update_and_free_pages_bulk(h, &page_list);
3226 	spin_lock_irq(&hugetlb_lock);
3227 }
3228 #else
3229 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3230 						nodemask_t *nodes_allowed)
3231 {
3232 }
3233 #endif
3234 
3235 /*
3236  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
3237  * balanced by operating on them in a round-robin fashion.
3238  * Returns 1 if an adjustment was made.
3239  */
3240 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3241 				int delta)
3242 {
3243 	int nr_nodes, node;
3244 
3245 	lockdep_assert_held(&hugetlb_lock);
3246 	VM_BUG_ON(delta != -1 && delta != 1);
3247 
3248 	if (delta < 0) {
3249 		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
3250 			if (h->surplus_huge_pages_node[node])
3251 				goto found;
3252 		}
3253 	} else {
3254 		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3255 			if (h->surplus_huge_pages_node[node] <
3256 					h->nr_huge_pages_node[node])
3257 				goto found;
3258 		}
3259 	}
3260 	return 0;
3261 
3262 found:
3263 	h->surplus_huge_pages += delta;
3264 	h->surplus_huge_pages_node[node] += delta;
3265 	return 1;
3266 }
3267 
3268 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3269 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3270 			      nodemask_t *nodes_allowed)
3271 {
3272 	unsigned long min_count, ret;
3273 	struct page *page;
3274 	LIST_HEAD(page_list);
3275 	NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3276 
3277 	/*
3278 	 * Bit mask controlling how hard we retry per-node allocations.
3279 	 * If we can not allocate the bit mask, do not attempt to allocate
3280 	 * the requested huge pages.
3281 	 */
3282 	if (node_alloc_noretry)
3283 		nodes_clear(*node_alloc_noretry);
3284 	else
3285 		return -ENOMEM;
3286 
3287 	/*
3288 	 * resize_lock mutex prevents concurrent adjustments to number of
3289 	 * pages in hstate via the proc/sysfs interfaces.
3290 	 */
3291 	mutex_lock(&h->resize_lock);
3292 	flush_free_hpage_work(h);
3293 	spin_lock_irq(&hugetlb_lock);
3294 
3295 	/*
3296 	 * Check for a node specific request.
3297 	 * Changing node specific huge page count may require a corresponding
3298 	 * change to the global count.  In any case, the passed node mask
3299 	 * (nodes_allowed) will restrict alloc/free to the specified node.
3300 	 */
3301 	if (nid != NUMA_NO_NODE) {
3302 		unsigned long old_count = count;
3303 
3304 		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
3305 		/*
3306 		 * User may have specified a large count value which caused the
3307 		 * above calculation to overflow.  In this case, they wanted
3308 		 * to allocate as many huge pages as possible.  Set count to
3309 		 * largest possible value to align with their intention.
3310 		 */
3311 		if (count < old_count)
3312 			count = ULONG_MAX;
3313 	}
3314 
3315 	/*
3316 	 * Gigantic pages runtime allocation depend on the capability for large
3317 	 * page range allocation.
3318 	 * If the system does not provide this feature, return an error when
3319 	 * the user tries to allocate gigantic pages but let the user free the
3320 	 * boottime allocated gigantic pages.
3321 	 */
3322 	if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3323 		if (count > persistent_huge_pages(h)) {
3324 			spin_unlock_irq(&hugetlb_lock);
3325 			mutex_unlock(&h->resize_lock);
3326 			NODEMASK_FREE(node_alloc_noretry);
3327 			return -EINVAL;
3328 		}
3329 		/* Fall through to decrease pool */
3330 	}
3331 
3332 	/*
3333 	 * Increase the pool size
3334 	 * First take pages out of surplus state.  Then make up the
3335 	 * remaining difference by allocating fresh huge pages.
3336 	 *
3337 	 * We might race with alloc_surplus_huge_page() here and be unable
3338 	 * to convert a surplus huge page to a normal huge page. That is
3339 	 * not critical, though, it just means the overall size of the
3340 	 * pool might be one hugepage larger than it needs to be, but
3341 	 * within all the constraints specified by the sysctls.
3342 	 */
3343 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3344 		if (!adjust_pool_surplus(h, nodes_allowed, -1))
3345 			break;
3346 	}
3347 
3348 	while (count > persistent_huge_pages(h)) {
3349 		/*
3350 		 * If this allocation races such that we no longer need the
3351 		 * page, free_huge_page will handle it by freeing the page
3352 		 * and reducing the surplus.
3353 		 */
3354 		spin_unlock_irq(&hugetlb_lock);
3355 
3356 		/* yield cpu to avoid soft lockup */
3357 		cond_resched();
3358 
3359 		ret = alloc_pool_huge_page(h, nodes_allowed,
3360 						node_alloc_noretry);
3361 		spin_lock_irq(&hugetlb_lock);
3362 		if (!ret)
3363 			goto out;
3364 
3365 		/* Bail for signals. Probably ctrl-c from user */
3366 		if (signal_pending(current))
3367 			goto out;
3368 	}
3369 
3370 	/*
3371 	 * Decrease the pool size
3372 	 * First return free pages to the buddy allocator (being careful
3373 	 * to keep enough around to satisfy reservations).  Then place
3374 	 * pages into surplus state as needed so the pool will shrink
3375 	 * to the desired size as pages become free.
3376 	 *
3377 	 * By placing pages into the surplus state independent of the
3378 	 * overcommit value, we are allowing the surplus pool size to
3379 	 * exceed overcommit. There are few sane options here. Since
3380 	 * alloc_surplus_huge_page() is checking the global counter,
3381 	 * though, we'll note that we're not allowed to exceed surplus
3382 	 * and won't grow the pool anywhere else. Not until one of the
3383 	 * sysctls are changed, or the surplus pages go out of use.
3384 	 */
3385 	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3386 	min_count = max(count, min_count);
3387 	try_to_free_low(h, min_count, nodes_allowed);
3388 
3389 	/*
3390 	 * Collect pages to be removed on list without dropping lock
3391 	 */
3392 	while (min_count < persistent_huge_pages(h)) {
3393 		page = remove_pool_huge_page(h, nodes_allowed, 0);
3394 		if (!page)
3395 			break;
3396 
3397 		list_add(&page->lru, &page_list);
3398 	}
3399 	/* free the pages after dropping lock */
3400 	spin_unlock_irq(&hugetlb_lock);
3401 	update_and_free_pages_bulk(h, &page_list);
3402 	flush_free_hpage_work(h);
3403 	spin_lock_irq(&hugetlb_lock);
3404 
3405 	while (count < persistent_huge_pages(h)) {
3406 		if (!adjust_pool_surplus(h, nodes_allowed, 1))
3407 			break;
3408 	}
3409 out:
3410 	h->max_huge_pages = persistent_huge_pages(h);
3411 	spin_unlock_irq(&hugetlb_lock);
3412 	mutex_unlock(&h->resize_lock);
3413 
3414 	NODEMASK_FREE(node_alloc_noretry);
3415 
3416 	return 0;
3417 }
3418 
3419 static int demote_free_huge_page(struct hstate *h, struct page *page)
3420 {
3421 	int i, nid = page_to_nid(page);
3422 	struct hstate *target_hstate;
3423 	int rc = 0;
3424 
3425 	target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3426 
3427 	remove_hugetlb_page_for_demote(h, page, false);
3428 	spin_unlock_irq(&hugetlb_lock);
3429 
3430 	rc = hugetlb_vmemmap_restore(h, page);
3431 	if (rc) {
3432 		/* Allocation of vmemmmap failed, we can not demote page */
3433 		spin_lock_irq(&hugetlb_lock);
3434 		set_page_refcounted(page);
3435 		add_hugetlb_page(h, page, false);
3436 		return rc;
3437 	}
3438 
3439 	/*
3440 	 * Use destroy_compound_hugetlb_page_for_demote for all huge page
3441 	 * sizes as it will not ref count pages.
3442 	 */
3443 	destroy_compound_hugetlb_page_for_demote(page, huge_page_order(h));
3444 
3445 	/*
3446 	 * Taking target hstate mutex synchronizes with set_max_huge_pages.
3447 	 * Without the mutex, pages added to target hstate could be marked
3448 	 * as surplus.
3449 	 *
3450 	 * Note that we already hold h->resize_lock.  To prevent deadlock,
3451 	 * use the convention of always taking larger size hstate mutex first.
3452 	 */
3453 	mutex_lock(&target_hstate->resize_lock);
3454 	for (i = 0; i < pages_per_huge_page(h);
3455 				i += pages_per_huge_page(target_hstate)) {
3456 		if (hstate_is_gigantic(target_hstate))
3457 			prep_compound_gigantic_page_for_demote(page + i,
3458 							target_hstate->order);
3459 		else
3460 			prep_compound_page(page + i, target_hstate->order);
3461 		set_page_private(page + i, 0);
3462 		set_page_refcounted(page + i);
3463 		prep_new_huge_page(target_hstate, page + i, nid);
3464 		put_page(page + i);
3465 	}
3466 	mutex_unlock(&target_hstate->resize_lock);
3467 
3468 	spin_lock_irq(&hugetlb_lock);
3469 
3470 	/*
3471 	 * Not absolutely necessary, but for consistency update max_huge_pages
3472 	 * based on pool changes for the demoted page.
3473 	 */
3474 	h->max_huge_pages--;
3475 	target_hstate->max_huge_pages += pages_per_huge_page(h);
3476 
3477 	return rc;
3478 }
3479 
3480 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
3481 	__must_hold(&hugetlb_lock)
3482 {
3483 	int nr_nodes, node;
3484 	struct page *page;
3485 
3486 	lockdep_assert_held(&hugetlb_lock);
3487 
3488 	/* We should never get here if no demote order */
3489 	if (!h->demote_order) {
3490 		pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3491 		return -EINVAL;		/* internal error */
3492 	}
3493 
3494 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3495 		list_for_each_entry(page, &h->hugepage_freelists[node], lru) {
3496 			if (PageHWPoison(page))
3497 				continue;
3498 
3499 			return demote_free_huge_page(h, page);
3500 		}
3501 	}
3502 
3503 	/*
3504 	 * Only way to get here is if all pages on free lists are poisoned.
3505 	 * Return -EBUSY so that caller will not retry.
3506 	 */
3507 	return -EBUSY;
3508 }
3509 
3510 #define HSTATE_ATTR_RO(_name) \
3511 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3512 
3513 #define HSTATE_ATTR_WO(_name) \
3514 	static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
3515 
3516 #define HSTATE_ATTR(_name) \
3517 	static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3518 
3519 static struct kobject *hugepages_kobj;
3520 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3521 
3522 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3523 
3524 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3525 {
3526 	int i;
3527 
3528 	for (i = 0; i < HUGE_MAX_HSTATE; i++)
3529 		if (hstate_kobjs[i] == kobj) {
3530 			if (nidp)
3531 				*nidp = NUMA_NO_NODE;
3532 			return &hstates[i];
3533 		}
3534 
3535 	return kobj_to_node_hstate(kobj, nidp);
3536 }
3537 
3538 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3539 					struct kobj_attribute *attr, char *buf)
3540 {
3541 	struct hstate *h;
3542 	unsigned long nr_huge_pages;
3543 	int nid;
3544 
3545 	h = kobj_to_hstate(kobj, &nid);
3546 	if (nid == NUMA_NO_NODE)
3547 		nr_huge_pages = h->nr_huge_pages;
3548 	else
3549 		nr_huge_pages = h->nr_huge_pages_node[nid];
3550 
3551 	return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3552 }
3553 
3554 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3555 					   struct hstate *h, int nid,
3556 					   unsigned long count, size_t len)
3557 {
3558 	int err;
3559 	nodemask_t nodes_allowed, *n_mask;
3560 
3561 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3562 		return -EINVAL;
3563 
3564 	if (nid == NUMA_NO_NODE) {
3565 		/*
3566 		 * global hstate attribute
3567 		 */
3568 		if (!(obey_mempolicy &&
3569 				init_nodemask_of_mempolicy(&nodes_allowed)))
3570 			n_mask = &node_states[N_MEMORY];
3571 		else
3572 			n_mask = &nodes_allowed;
3573 	} else {
3574 		/*
3575 		 * Node specific request.  count adjustment happens in
3576 		 * set_max_huge_pages() after acquiring hugetlb_lock.
3577 		 */
3578 		init_nodemask_of_node(&nodes_allowed, nid);
3579 		n_mask = &nodes_allowed;
3580 	}
3581 
3582 	err = set_max_huge_pages(h, count, nid, n_mask);
3583 
3584 	return err ? err : len;
3585 }
3586 
3587 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3588 					 struct kobject *kobj, const char *buf,
3589 					 size_t len)
3590 {
3591 	struct hstate *h;
3592 	unsigned long count;
3593 	int nid;
3594 	int err;
3595 
3596 	err = kstrtoul(buf, 10, &count);
3597 	if (err)
3598 		return err;
3599 
3600 	h = kobj_to_hstate(kobj, &nid);
3601 	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3602 }
3603 
3604 static ssize_t nr_hugepages_show(struct kobject *kobj,
3605 				       struct kobj_attribute *attr, char *buf)
3606 {
3607 	return nr_hugepages_show_common(kobj, attr, buf);
3608 }
3609 
3610 static ssize_t nr_hugepages_store(struct kobject *kobj,
3611 	       struct kobj_attribute *attr, const char *buf, size_t len)
3612 {
3613 	return nr_hugepages_store_common(false, kobj, buf, len);
3614 }
3615 HSTATE_ATTR(nr_hugepages);
3616 
3617 #ifdef CONFIG_NUMA
3618 
3619 /*
3620  * hstate attribute for optionally mempolicy-based constraint on persistent
3621  * huge page alloc/free.
3622  */
3623 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
3624 					   struct kobj_attribute *attr,
3625 					   char *buf)
3626 {
3627 	return nr_hugepages_show_common(kobj, attr, buf);
3628 }
3629 
3630 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3631 	       struct kobj_attribute *attr, const char *buf, size_t len)
3632 {
3633 	return nr_hugepages_store_common(true, kobj, buf, len);
3634 }
3635 HSTATE_ATTR(nr_hugepages_mempolicy);
3636 #endif
3637 
3638 
3639 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3640 					struct kobj_attribute *attr, char *buf)
3641 {
3642 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3643 	return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
3644 }
3645 
3646 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3647 		struct kobj_attribute *attr, const char *buf, size_t count)
3648 {
3649 	int err;
3650 	unsigned long input;
3651 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3652 
3653 	if (hstate_is_gigantic(h))
3654 		return -EINVAL;
3655 
3656 	err = kstrtoul(buf, 10, &input);
3657 	if (err)
3658 		return err;
3659 
3660 	spin_lock_irq(&hugetlb_lock);
3661 	h->nr_overcommit_huge_pages = input;
3662 	spin_unlock_irq(&hugetlb_lock);
3663 
3664 	return count;
3665 }
3666 HSTATE_ATTR(nr_overcommit_hugepages);
3667 
3668 static ssize_t free_hugepages_show(struct kobject *kobj,
3669 					struct kobj_attribute *attr, char *buf)
3670 {
3671 	struct hstate *h;
3672 	unsigned long free_huge_pages;
3673 	int nid;
3674 
3675 	h = kobj_to_hstate(kobj, &nid);
3676 	if (nid == NUMA_NO_NODE)
3677 		free_huge_pages = h->free_huge_pages;
3678 	else
3679 		free_huge_pages = h->free_huge_pages_node[nid];
3680 
3681 	return sysfs_emit(buf, "%lu\n", free_huge_pages);
3682 }
3683 HSTATE_ATTR_RO(free_hugepages);
3684 
3685 static ssize_t resv_hugepages_show(struct kobject *kobj,
3686 					struct kobj_attribute *attr, char *buf)
3687 {
3688 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3689 	return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
3690 }
3691 HSTATE_ATTR_RO(resv_hugepages);
3692 
3693 static ssize_t surplus_hugepages_show(struct kobject *kobj,
3694 					struct kobj_attribute *attr, char *buf)
3695 {
3696 	struct hstate *h;
3697 	unsigned long surplus_huge_pages;
3698 	int nid;
3699 
3700 	h = kobj_to_hstate(kobj, &nid);
3701 	if (nid == NUMA_NO_NODE)
3702 		surplus_huge_pages = h->surplus_huge_pages;
3703 	else
3704 		surplus_huge_pages = h->surplus_huge_pages_node[nid];
3705 
3706 	return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
3707 }
3708 HSTATE_ATTR_RO(surplus_hugepages);
3709 
3710 static ssize_t demote_store(struct kobject *kobj,
3711 	       struct kobj_attribute *attr, const char *buf, size_t len)
3712 {
3713 	unsigned long nr_demote;
3714 	unsigned long nr_available;
3715 	nodemask_t nodes_allowed, *n_mask;
3716 	struct hstate *h;
3717 	int err = 0;
3718 	int nid;
3719 
3720 	err = kstrtoul(buf, 10, &nr_demote);
3721 	if (err)
3722 		return err;
3723 	h = kobj_to_hstate(kobj, &nid);
3724 
3725 	if (nid != NUMA_NO_NODE) {
3726 		init_nodemask_of_node(&nodes_allowed, nid);
3727 		n_mask = &nodes_allowed;
3728 	} else {
3729 		n_mask = &node_states[N_MEMORY];
3730 	}
3731 
3732 	/* Synchronize with other sysfs operations modifying huge pages */
3733 	mutex_lock(&h->resize_lock);
3734 	spin_lock_irq(&hugetlb_lock);
3735 
3736 	while (nr_demote) {
3737 		/*
3738 		 * Check for available pages to demote each time thorough the
3739 		 * loop as demote_pool_huge_page will drop hugetlb_lock.
3740 		 */
3741 		if (nid != NUMA_NO_NODE)
3742 			nr_available = h->free_huge_pages_node[nid];
3743 		else
3744 			nr_available = h->free_huge_pages;
3745 		nr_available -= h->resv_huge_pages;
3746 		if (!nr_available)
3747 			break;
3748 
3749 		err = demote_pool_huge_page(h, n_mask);
3750 		if (err)
3751 			break;
3752 
3753 		nr_demote--;
3754 	}
3755 
3756 	spin_unlock_irq(&hugetlb_lock);
3757 	mutex_unlock(&h->resize_lock);
3758 
3759 	if (err)
3760 		return err;
3761 	return len;
3762 }
3763 HSTATE_ATTR_WO(demote);
3764 
3765 static ssize_t demote_size_show(struct kobject *kobj,
3766 					struct kobj_attribute *attr, char *buf)
3767 {
3768 	int nid;
3769 	struct hstate *h = kobj_to_hstate(kobj, &nid);
3770 	unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
3771 
3772 	return sysfs_emit(buf, "%lukB\n", demote_size);
3773 }
3774 
3775 static ssize_t demote_size_store(struct kobject *kobj,
3776 					struct kobj_attribute *attr,
3777 					const char *buf, size_t count)
3778 {
3779 	struct hstate *h, *demote_hstate;
3780 	unsigned long demote_size;
3781 	unsigned int demote_order;
3782 	int nid;
3783 
3784 	demote_size = (unsigned long)memparse(buf, NULL);
3785 
3786 	demote_hstate = size_to_hstate(demote_size);
3787 	if (!demote_hstate)
3788 		return -EINVAL;
3789 	demote_order = demote_hstate->order;
3790 	if (demote_order < HUGETLB_PAGE_ORDER)
3791 		return -EINVAL;
3792 
3793 	/* demote order must be smaller than hstate order */
3794 	h = kobj_to_hstate(kobj, &nid);
3795 	if (demote_order >= h->order)
3796 		return -EINVAL;
3797 
3798 	/* resize_lock synchronizes access to demote size and writes */
3799 	mutex_lock(&h->resize_lock);
3800 	h->demote_order = demote_order;
3801 	mutex_unlock(&h->resize_lock);
3802 
3803 	return count;
3804 }
3805 HSTATE_ATTR(demote_size);
3806 
3807 static struct attribute *hstate_attrs[] = {
3808 	&nr_hugepages_attr.attr,
3809 	&nr_overcommit_hugepages_attr.attr,
3810 	&free_hugepages_attr.attr,
3811 	&resv_hugepages_attr.attr,
3812 	&surplus_hugepages_attr.attr,
3813 #ifdef CONFIG_NUMA
3814 	&nr_hugepages_mempolicy_attr.attr,
3815 #endif
3816 	NULL,
3817 };
3818 
3819 static const struct attribute_group hstate_attr_group = {
3820 	.attrs = hstate_attrs,
3821 };
3822 
3823 static struct attribute *hstate_demote_attrs[] = {
3824 	&demote_size_attr.attr,
3825 	&demote_attr.attr,
3826 	NULL,
3827 };
3828 
3829 static const struct attribute_group hstate_demote_attr_group = {
3830 	.attrs = hstate_demote_attrs,
3831 };
3832 
3833 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3834 				    struct kobject **hstate_kobjs,
3835 				    const struct attribute_group *hstate_attr_group)
3836 {
3837 	int retval;
3838 	int hi = hstate_index(h);
3839 
3840 	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
3841 	if (!hstate_kobjs[hi])
3842 		return -ENOMEM;
3843 
3844 	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
3845 	if (retval) {
3846 		kobject_put(hstate_kobjs[hi]);
3847 		hstate_kobjs[hi] = NULL;
3848 	}
3849 
3850 	if (h->demote_order) {
3851 		if (sysfs_create_group(hstate_kobjs[hi],
3852 					&hstate_demote_attr_group))
3853 			pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
3854 	}
3855 
3856 	return retval;
3857 }
3858 
3859 static void __init hugetlb_sysfs_init(void)
3860 {
3861 	struct hstate *h;
3862 	int err;
3863 
3864 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
3865 	if (!hugepages_kobj)
3866 		return;
3867 
3868 	for_each_hstate(h) {
3869 		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
3870 					 hstate_kobjs, &hstate_attr_group);
3871 		if (err)
3872 			pr_err("HugeTLB: Unable to add hstate %s", h->name);
3873 	}
3874 }
3875 
3876 #ifdef CONFIG_NUMA
3877 
3878 /*
3879  * node_hstate/s - associate per node hstate attributes, via their kobjects,
3880  * with node devices in node_devices[] using a parallel array.  The array
3881  * index of a node device or _hstate == node id.
3882  * This is here to avoid any static dependency of the node device driver, in
3883  * the base kernel, on the hugetlb module.
3884  */
3885 struct node_hstate {
3886 	struct kobject		*hugepages_kobj;
3887 	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
3888 };
3889 static struct node_hstate node_hstates[MAX_NUMNODES];
3890 
3891 /*
3892  * A subset of global hstate attributes for node devices
3893  */
3894 static struct attribute *per_node_hstate_attrs[] = {
3895 	&nr_hugepages_attr.attr,
3896 	&free_hugepages_attr.attr,
3897 	&surplus_hugepages_attr.attr,
3898 	NULL,
3899 };
3900 
3901 static const struct attribute_group per_node_hstate_attr_group = {
3902 	.attrs = per_node_hstate_attrs,
3903 };
3904 
3905 /*
3906  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3907  * Returns node id via non-NULL nidp.
3908  */
3909 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3910 {
3911 	int nid;
3912 
3913 	for (nid = 0; nid < nr_node_ids; nid++) {
3914 		struct node_hstate *nhs = &node_hstates[nid];
3915 		int i;
3916 		for (i = 0; i < HUGE_MAX_HSTATE; i++)
3917 			if (nhs->hstate_kobjs[i] == kobj) {
3918 				if (nidp)
3919 					*nidp = nid;
3920 				return &hstates[i];
3921 			}
3922 	}
3923 
3924 	BUG();
3925 	return NULL;
3926 }
3927 
3928 /*
3929  * Unregister hstate attributes from a single node device.
3930  * No-op if no hstate attributes attached.
3931  */
3932 static void hugetlb_unregister_node(struct node *node)
3933 {
3934 	struct hstate *h;
3935 	struct node_hstate *nhs = &node_hstates[node->dev.id];
3936 
3937 	if (!nhs->hugepages_kobj)
3938 		return;		/* no hstate attributes */
3939 
3940 	for_each_hstate(h) {
3941 		int idx = hstate_index(h);
3942 		if (nhs->hstate_kobjs[idx]) {
3943 			kobject_put(nhs->hstate_kobjs[idx]);
3944 			nhs->hstate_kobjs[idx] = NULL;
3945 		}
3946 	}
3947 
3948 	kobject_put(nhs->hugepages_kobj);
3949 	nhs->hugepages_kobj = NULL;
3950 }
3951 
3952 
3953 /*
3954  * Register hstate attributes for a single node device.
3955  * No-op if attributes already registered.
3956  */
3957 static void hugetlb_register_node(struct node *node)
3958 {
3959 	struct hstate *h;
3960 	struct node_hstate *nhs = &node_hstates[node->dev.id];
3961 	int err;
3962 
3963 	if (nhs->hugepages_kobj)
3964 		return;		/* already allocated */
3965 
3966 	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3967 							&node->dev.kobj);
3968 	if (!nhs->hugepages_kobj)
3969 		return;
3970 
3971 	for_each_hstate(h) {
3972 		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3973 						nhs->hstate_kobjs,
3974 						&per_node_hstate_attr_group);
3975 		if (err) {
3976 			pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3977 				h->name, node->dev.id);
3978 			hugetlb_unregister_node(node);
3979 			break;
3980 		}
3981 	}
3982 }
3983 
3984 /*
3985  * hugetlb init time:  register hstate attributes for all registered node
3986  * devices of nodes that have memory.  All on-line nodes should have
3987  * registered their associated device by this time.
3988  */
3989 static void __init hugetlb_register_all_nodes(void)
3990 {
3991 	int nid;
3992 
3993 	for_each_node_state(nid, N_MEMORY) {
3994 		struct node *node = node_devices[nid];
3995 		if (node->dev.id == nid)
3996 			hugetlb_register_node(node);
3997 	}
3998 
3999 	/*
4000 	 * Let the node device driver know we're here so it can
4001 	 * [un]register hstate attributes on node hotplug.
4002 	 */
4003 	register_hugetlbfs_with_node(hugetlb_register_node,
4004 				     hugetlb_unregister_node);
4005 }
4006 #else	/* !CONFIG_NUMA */
4007 
4008 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4009 {
4010 	BUG();
4011 	if (nidp)
4012 		*nidp = -1;
4013 	return NULL;
4014 }
4015 
4016 static void hugetlb_register_all_nodes(void) { }
4017 
4018 #endif
4019 
4020 static int __init hugetlb_init(void)
4021 {
4022 	int i;
4023 
4024 	BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4025 			__NR_HPAGEFLAGS);
4026 
4027 	if (!hugepages_supported()) {
4028 		if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4029 			pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4030 		return 0;
4031 	}
4032 
4033 	/*
4034 	 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
4035 	 * architectures depend on setup being done here.
4036 	 */
4037 	hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4038 	if (!parsed_default_hugepagesz) {
4039 		/*
4040 		 * If we did not parse a default huge page size, set
4041 		 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4042 		 * number of huge pages for this default size was implicitly
4043 		 * specified, set that here as well.
4044 		 * Note that the implicit setting will overwrite an explicit
4045 		 * setting.  A warning will be printed in this case.
4046 		 */
4047 		default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4048 		if (default_hstate_max_huge_pages) {
4049 			if (default_hstate.max_huge_pages) {
4050 				char buf[32];
4051 
4052 				string_get_size(huge_page_size(&default_hstate),
4053 					1, STRING_UNITS_2, buf, 32);
4054 				pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4055 					default_hstate.max_huge_pages, buf);
4056 				pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4057 					default_hstate_max_huge_pages);
4058 			}
4059 			default_hstate.max_huge_pages =
4060 				default_hstate_max_huge_pages;
4061 
4062 			for_each_online_node(i)
4063 				default_hstate.max_huge_pages_node[i] =
4064 					default_hugepages_in_node[i];
4065 		}
4066 	}
4067 
4068 	hugetlb_cma_check();
4069 	hugetlb_init_hstates();
4070 	gather_bootmem_prealloc();
4071 	report_hugepages();
4072 
4073 	hugetlb_sysfs_init();
4074 	hugetlb_register_all_nodes();
4075 	hugetlb_cgroup_file_init();
4076 
4077 #ifdef CONFIG_SMP
4078 	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4079 #else
4080 	num_fault_mutexes = 1;
4081 #endif
4082 	hugetlb_fault_mutex_table =
4083 		kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4084 			      GFP_KERNEL);
4085 	BUG_ON(!hugetlb_fault_mutex_table);
4086 
4087 	for (i = 0; i < num_fault_mutexes; i++)
4088 		mutex_init(&hugetlb_fault_mutex_table[i]);
4089 	return 0;
4090 }
4091 subsys_initcall(hugetlb_init);
4092 
4093 /* Overwritten by architectures with more huge page sizes */
4094 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4095 {
4096 	return size == HPAGE_SIZE;
4097 }
4098 
4099 void __init hugetlb_add_hstate(unsigned int order)
4100 {
4101 	struct hstate *h;
4102 	unsigned long i;
4103 
4104 	if (size_to_hstate(PAGE_SIZE << order)) {
4105 		return;
4106 	}
4107 	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4108 	BUG_ON(order == 0);
4109 	h = &hstates[hugetlb_max_hstate++];
4110 	mutex_init(&h->resize_lock);
4111 	h->order = order;
4112 	h->mask = ~(huge_page_size(h) - 1);
4113 	for (i = 0; i < MAX_NUMNODES; ++i)
4114 		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4115 	INIT_LIST_HEAD(&h->hugepage_activelist);
4116 	h->next_nid_to_alloc = first_memory_node;
4117 	h->next_nid_to_free = first_memory_node;
4118 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4119 					huge_page_size(h)/1024);
4120 
4121 	parsed_hstate = h;
4122 }
4123 
4124 bool __init __weak hugetlb_node_alloc_supported(void)
4125 {
4126 	return true;
4127 }
4128 
4129 static void __init hugepages_clear_pages_in_node(void)
4130 {
4131 	if (!hugetlb_max_hstate) {
4132 		default_hstate_max_huge_pages = 0;
4133 		memset(default_hugepages_in_node, 0,
4134 			MAX_NUMNODES * sizeof(unsigned int));
4135 	} else {
4136 		parsed_hstate->max_huge_pages = 0;
4137 		memset(parsed_hstate->max_huge_pages_node, 0,
4138 			MAX_NUMNODES * sizeof(unsigned int));
4139 	}
4140 }
4141 
4142 /*
4143  * hugepages command line processing
4144  * hugepages normally follows a valid hugepagsz or default_hugepagsz
4145  * specification.  If not, ignore the hugepages value.  hugepages can also
4146  * be the first huge page command line  option in which case it implicitly
4147  * specifies the number of huge pages for the default size.
4148  */
4149 static int __init hugepages_setup(char *s)
4150 {
4151 	unsigned long *mhp;
4152 	static unsigned long *last_mhp;
4153 	int node = NUMA_NO_NODE;
4154 	int count;
4155 	unsigned long tmp;
4156 	char *p = s;
4157 
4158 	if (!parsed_valid_hugepagesz) {
4159 		pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4160 		parsed_valid_hugepagesz = true;
4161 		return 1;
4162 	}
4163 
4164 	/*
4165 	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4166 	 * yet, so this hugepages= parameter goes to the "default hstate".
4167 	 * Otherwise, it goes with the previously parsed hugepagesz or
4168 	 * default_hugepagesz.
4169 	 */
4170 	else if (!hugetlb_max_hstate)
4171 		mhp = &default_hstate_max_huge_pages;
4172 	else
4173 		mhp = &parsed_hstate->max_huge_pages;
4174 
4175 	if (mhp == last_mhp) {
4176 		pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4177 		return 1;
4178 	}
4179 
4180 	while (*p) {
4181 		count = 0;
4182 		if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4183 			goto invalid;
4184 		/* Parameter is node format */
4185 		if (p[count] == ':') {
4186 			if (!hugetlb_node_alloc_supported()) {
4187 				pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4188 				return 1;
4189 			}
4190 			if (tmp >= MAX_NUMNODES || !node_online(tmp))
4191 				goto invalid;
4192 			node = array_index_nospec(tmp, MAX_NUMNODES);
4193 			p += count + 1;
4194 			/* Parse hugepages */
4195 			if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4196 				goto invalid;
4197 			if (!hugetlb_max_hstate)
4198 				default_hugepages_in_node[node] = tmp;
4199 			else
4200 				parsed_hstate->max_huge_pages_node[node] = tmp;
4201 			*mhp += tmp;
4202 			/* Go to parse next node*/
4203 			if (p[count] == ',')
4204 				p += count + 1;
4205 			else
4206 				break;
4207 		} else {
4208 			if (p != s)
4209 				goto invalid;
4210 			*mhp = tmp;
4211 			break;
4212 		}
4213 	}
4214 
4215 	/*
4216 	 * Global state is always initialized later in hugetlb_init.
4217 	 * But we need to allocate gigantic hstates here early to still
4218 	 * use the bootmem allocator.
4219 	 */
4220 	if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4221 		hugetlb_hstate_alloc_pages(parsed_hstate);
4222 
4223 	last_mhp = mhp;
4224 
4225 	return 1;
4226 
4227 invalid:
4228 	pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4229 	hugepages_clear_pages_in_node();
4230 	return 1;
4231 }
4232 __setup("hugepages=", hugepages_setup);
4233 
4234 /*
4235  * hugepagesz command line processing
4236  * A specific huge page size can only be specified once with hugepagesz.
4237  * hugepagesz is followed by hugepages on the command line.  The global
4238  * variable 'parsed_valid_hugepagesz' is used to determine if prior
4239  * hugepagesz argument was valid.
4240  */
4241 static int __init hugepagesz_setup(char *s)
4242 {
4243 	unsigned long size;
4244 	struct hstate *h;
4245 
4246 	parsed_valid_hugepagesz = false;
4247 	size = (unsigned long)memparse(s, NULL);
4248 
4249 	if (!arch_hugetlb_valid_size(size)) {
4250 		pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4251 		return 1;
4252 	}
4253 
4254 	h = size_to_hstate(size);
4255 	if (h) {
4256 		/*
4257 		 * hstate for this size already exists.  This is normally
4258 		 * an error, but is allowed if the existing hstate is the
4259 		 * default hstate.  More specifically, it is only allowed if
4260 		 * the number of huge pages for the default hstate was not
4261 		 * previously specified.
4262 		 */
4263 		if (!parsed_default_hugepagesz ||  h != &default_hstate ||
4264 		    default_hstate.max_huge_pages) {
4265 			pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4266 			return 1;
4267 		}
4268 
4269 		/*
4270 		 * No need to call hugetlb_add_hstate() as hstate already
4271 		 * exists.  But, do set parsed_hstate so that a following
4272 		 * hugepages= parameter will be applied to this hstate.
4273 		 */
4274 		parsed_hstate = h;
4275 		parsed_valid_hugepagesz = true;
4276 		return 1;
4277 	}
4278 
4279 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4280 	parsed_valid_hugepagesz = true;
4281 	return 1;
4282 }
4283 __setup("hugepagesz=", hugepagesz_setup);
4284 
4285 /*
4286  * default_hugepagesz command line input
4287  * Only one instance of default_hugepagesz allowed on command line.
4288  */
4289 static int __init default_hugepagesz_setup(char *s)
4290 {
4291 	unsigned long size;
4292 	int i;
4293 
4294 	parsed_valid_hugepagesz = false;
4295 	if (parsed_default_hugepagesz) {
4296 		pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4297 		return 1;
4298 	}
4299 
4300 	size = (unsigned long)memparse(s, NULL);
4301 
4302 	if (!arch_hugetlb_valid_size(size)) {
4303 		pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4304 		return 1;
4305 	}
4306 
4307 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4308 	parsed_valid_hugepagesz = true;
4309 	parsed_default_hugepagesz = true;
4310 	default_hstate_idx = hstate_index(size_to_hstate(size));
4311 
4312 	/*
4313 	 * The number of default huge pages (for this size) could have been
4314 	 * specified as the first hugetlb parameter: hugepages=X.  If so,
4315 	 * then default_hstate_max_huge_pages is set.  If the default huge
4316 	 * page size is gigantic (>= MAX_ORDER), then the pages must be
4317 	 * allocated here from bootmem allocator.
4318 	 */
4319 	if (default_hstate_max_huge_pages) {
4320 		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4321 		for_each_online_node(i)
4322 			default_hstate.max_huge_pages_node[i] =
4323 				default_hugepages_in_node[i];
4324 		if (hstate_is_gigantic(&default_hstate))
4325 			hugetlb_hstate_alloc_pages(&default_hstate);
4326 		default_hstate_max_huge_pages = 0;
4327 	}
4328 
4329 	return 1;
4330 }
4331 __setup("default_hugepagesz=", default_hugepagesz_setup);
4332 
4333 static unsigned int allowed_mems_nr(struct hstate *h)
4334 {
4335 	int node;
4336 	unsigned int nr = 0;
4337 	nodemask_t *mpol_allowed;
4338 	unsigned int *array = h->free_huge_pages_node;
4339 	gfp_t gfp_mask = htlb_alloc_mask(h);
4340 
4341 	mpol_allowed = policy_nodemask_current(gfp_mask);
4342 
4343 	for_each_node_mask(node, cpuset_current_mems_allowed) {
4344 		if (!mpol_allowed || node_isset(node, *mpol_allowed))
4345 			nr += array[node];
4346 	}
4347 
4348 	return nr;
4349 }
4350 
4351 #ifdef CONFIG_SYSCTL
4352 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
4353 					  void *buffer, size_t *length,
4354 					  loff_t *ppos, unsigned long *out)
4355 {
4356 	struct ctl_table dup_table;
4357 
4358 	/*
4359 	 * In order to avoid races with __do_proc_doulongvec_minmax(), we
4360 	 * can duplicate the @table and alter the duplicate of it.
4361 	 */
4362 	dup_table = *table;
4363 	dup_table.data = out;
4364 
4365 	return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4366 }
4367 
4368 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4369 			 struct ctl_table *table, int write,
4370 			 void *buffer, size_t *length, loff_t *ppos)
4371 {
4372 	struct hstate *h = &default_hstate;
4373 	unsigned long tmp = h->max_huge_pages;
4374 	int ret;
4375 
4376 	if (!hugepages_supported())
4377 		return -EOPNOTSUPP;
4378 
4379 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4380 					     &tmp);
4381 	if (ret)
4382 		goto out;
4383 
4384 	if (write)
4385 		ret = __nr_hugepages_store_common(obey_mempolicy, h,
4386 						  NUMA_NO_NODE, tmp, *length);
4387 out:
4388 	return ret;
4389 }
4390 
4391 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
4392 			  void *buffer, size_t *length, loff_t *ppos)
4393 {
4394 
4395 	return hugetlb_sysctl_handler_common(false, table, write,
4396 							buffer, length, ppos);
4397 }
4398 
4399 #ifdef CONFIG_NUMA
4400 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
4401 			  void *buffer, size_t *length, loff_t *ppos)
4402 {
4403 	return hugetlb_sysctl_handler_common(true, table, write,
4404 							buffer, length, ppos);
4405 }
4406 #endif /* CONFIG_NUMA */
4407 
4408 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
4409 		void *buffer, size_t *length, loff_t *ppos)
4410 {
4411 	struct hstate *h = &default_hstate;
4412 	unsigned long tmp;
4413 	int ret;
4414 
4415 	if (!hugepages_supported())
4416 		return -EOPNOTSUPP;
4417 
4418 	tmp = h->nr_overcommit_huge_pages;
4419 
4420 	if (write && hstate_is_gigantic(h))
4421 		return -EINVAL;
4422 
4423 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4424 					     &tmp);
4425 	if (ret)
4426 		goto out;
4427 
4428 	if (write) {
4429 		spin_lock_irq(&hugetlb_lock);
4430 		h->nr_overcommit_huge_pages = tmp;
4431 		spin_unlock_irq(&hugetlb_lock);
4432 	}
4433 out:
4434 	return ret;
4435 }
4436 
4437 #endif /* CONFIG_SYSCTL */
4438 
4439 void hugetlb_report_meminfo(struct seq_file *m)
4440 {
4441 	struct hstate *h;
4442 	unsigned long total = 0;
4443 
4444 	if (!hugepages_supported())
4445 		return;
4446 
4447 	for_each_hstate(h) {
4448 		unsigned long count = h->nr_huge_pages;
4449 
4450 		total += huge_page_size(h) * count;
4451 
4452 		if (h == &default_hstate)
4453 			seq_printf(m,
4454 				   "HugePages_Total:   %5lu\n"
4455 				   "HugePages_Free:    %5lu\n"
4456 				   "HugePages_Rsvd:    %5lu\n"
4457 				   "HugePages_Surp:    %5lu\n"
4458 				   "Hugepagesize:   %8lu kB\n",
4459 				   count,
4460 				   h->free_huge_pages,
4461 				   h->resv_huge_pages,
4462 				   h->surplus_huge_pages,
4463 				   huge_page_size(h) / SZ_1K);
4464 	}
4465 
4466 	seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
4467 }
4468 
4469 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
4470 {
4471 	struct hstate *h = &default_hstate;
4472 
4473 	if (!hugepages_supported())
4474 		return 0;
4475 
4476 	return sysfs_emit_at(buf, len,
4477 			     "Node %d HugePages_Total: %5u\n"
4478 			     "Node %d HugePages_Free:  %5u\n"
4479 			     "Node %d HugePages_Surp:  %5u\n",
4480 			     nid, h->nr_huge_pages_node[nid],
4481 			     nid, h->free_huge_pages_node[nid],
4482 			     nid, h->surplus_huge_pages_node[nid]);
4483 }
4484 
4485 void hugetlb_show_meminfo_node(int nid)
4486 {
4487 	struct hstate *h;
4488 
4489 	if (!hugepages_supported())
4490 		return;
4491 
4492 	for_each_hstate(h)
4493 		printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4494 			nid,
4495 			h->nr_huge_pages_node[nid],
4496 			h->free_huge_pages_node[nid],
4497 			h->surplus_huge_pages_node[nid],
4498 			huge_page_size(h) / SZ_1K);
4499 }
4500 
4501 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4502 {
4503 	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4504 		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
4505 }
4506 
4507 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
4508 unsigned long hugetlb_total_pages(void)
4509 {
4510 	struct hstate *h;
4511 	unsigned long nr_total_pages = 0;
4512 
4513 	for_each_hstate(h)
4514 		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4515 	return nr_total_pages;
4516 }
4517 
4518 static int hugetlb_acct_memory(struct hstate *h, long delta)
4519 {
4520 	int ret = -ENOMEM;
4521 
4522 	if (!delta)
4523 		return 0;
4524 
4525 	spin_lock_irq(&hugetlb_lock);
4526 	/*
4527 	 * When cpuset is configured, it breaks the strict hugetlb page
4528 	 * reservation as the accounting is done on a global variable. Such
4529 	 * reservation is completely rubbish in the presence of cpuset because
4530 	 * the reservation is not checked against page availability for the
4531 	 * current cpuset. Application can still potentially OOM'ed by kernel
4532 	 * with lack of free htlb page in cpuset that the task is in.
4533 	 * Attempt to enforce strict accounting with cpuset is almost
4534 	 * impossible (or too ugly) because cpuset is too fluid that
4535 	 * task or memory node can be dynamically moved between cpusets.
4536 	 *
4537 	 * The change of semantics for shared hugetlb mapping with cpuset is
4538 	 * undesirable. However, in order to preserve some of the semantics,
4539 	 * we fall back to check against current free page availability as
4540 	 * a best attempt and hopefully to minimize the impact of changing
4541 	 * semantics that cpuset has.
4542 	 *
4543 	 * Apart from cpuset, we also have memory policy mechanism that
4544 	 * also determines from which node the kernel will allocate memory
4545 	 * in a NUMA system. So similar to cpuset, we also should consider
4546 	 * the memory policy of the current task. Similar to the description
4547 	 * above.
4548 	 */
4549 	if (delta > 0) {
4550 		if (gather_surplus_pages(h, delta) < 0)
4551 			goto out;
4552 
4553 		if (delta > allowed_mems_nr(h)) {
4554 			return_unused_surplus_pages(h, delta);
4555 			goto out;
4556 		}
4557 	}
4558 
4559 	ret = 0;
4560 	if (delta < 0)
4561 		return_unused_surplus_pages(h, (unsigned long) -delta);
4562 
4563 out:
4564 	spin_unlock_irq(&hugetlb_lock);
4565 	return ret;
4566 }
4567 
4568 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
4569 {
4570 	struct resv_map *resv = vma_resv_map(vma);
4571 
4572 	/*
4573 	 * This new VMA should share its siblings reservation map if present.
4574 	 * The VMA will only ever have a valid reservation map pointer where
4575 	 * it is being copied for another still existing VMA.  As that VMA
4576 	 * has a reference to the reservation map it cannot disappear until
4577 	 * after this open call completes.  It is therefore safe to take a
4578 	 * new reference here without additional locking.
4579 	 */
4580 	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
4581 		resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
4582 		kref_get(&resv->refs);
4583 	}
4584 }
4585 
4586 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
4587 {
4588 	struct hstate *h = hstate_vma(vma);
4589 	struct resv_map *resv = vma_resv_map(vma);
4590 	struct hugepage_subpool *spool = subpool_vma(vma);
4591 	unsigned long reserve, start, end;
4592 	long gbl_reserve;
4593 
4594 	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4595 		return;
4596 
4597 	start = vma_hugecache_offset(h, vma, vma->vm_start);
4598 	end = vma_hugecache_offset(h, vma, vma->vm_end);
4599 
4600 	reserve = (end - start) - region_count(resv, start, end);
4601 	hugetlb_cgroup_uncharge_counter(resv, start, end);
4602 	if (reserve) {
4603 		/*
4604 		 * Decrement reserve counts.  The global reserve count may be
4605 		 * adjusted if the subpool has a minimum size.
4606 		 */
4607 		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
4608 		hugetlb_acct_memory(h, -gbl_reserve);
4609 	}
4610 
4611 	kref_put(&resv->refs, resv_map_release);
4612 }
4613 
4614 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
4615 {
4616 	if (addr & ~(huge_page_mask(hstate_vma(vma))))
4617 		return -EINVAL;
4618 	return 0;
4619 }
4620 
4621 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
4622 {
4623 	return huge_page_size(hstate_vma(vma));
4624 }
4625 
4626 /*
4627  * We cannot handle pagefaults against hugetlb pages at all.  They cause
4628  * handle_mm_fault() to try to instantiate regular-sized pages in the
4629  * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
4630  * this far.
4631  */
4632 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
4633 {
4634 	BUG();
4635 	return 0;
4636 }
4637 
4638 /*
4639  * When a new function is introduced to vm_operations_struct and added
4640  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
4641  * This is because under System V memory model, mappings created via
4642  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
4643  * their original vm_ops are overwritten with shm_vm_ops.
4644  */
4645 const struct vm_operations_struct hugetlb_vm_ops = {
4646 	.fault = hugetlb_vm_op_fault,
4647 	.open = hugetlb_vm_op_open,
4648 	.close = hugetlb_vm_op_close,
4649 	.may_split = hugetlb_vm_op_split,
4650 	.pagesize = hugetlb_vm_op_pagesize,
4651 };
4652 
4653 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
4654 				int writable)
4655 {
4656 	pte_t entry;
4657 	unsigned int shift = huge_page_shift(hstate_vma(vma));
4658 
4659 	if (writable) {
4660 		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
4661 					 vma->vm_page_prot)));
4662 	} else {
4663 		entry = huge_pte_wrprotect(mk_huge_pte(page,
4664 					   vma->vm_page_prot));
4665 	}
4666 	entry = pte_mkyoung(entry);
4667 	entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
4668 
4669 	return entry;
4670 }
4671 
4672 static void set_huge_ptep_writable(struct vm_area_struct *vma,
4673 				   unsigned long address, pte_t *ptep)
4674 {
4675 	pte_t entry;
4676 
4677 	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
4678 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4679 		update_mmu_cache(vma, address, ptep);
4680 }
4681 
4682 bool is_hugetlb_entry_migration(pte_t pte)
4683 {
4684 	swp_entry_t swp;
4685 
4686 	if (huge_pte_none(pte) || pte_present(pte))
4687 		return false;
4688 	swp = pte_to_swp_entry(pte);
4689 	if (is_migration_entry(swp))
4690 		return true;
4691 	else
4692 		return false;
4693 }
4694 
4695 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
4696 {
4697 	swp_entry_t swp;
4698 
4699 	if (huge_pte_none(pte) || pte_present(pte))
4700 		return false;
4701 	swp = pte_to_swp_entry(pte);
4702 	if (is_hwpoison_entry(swp))
4703 		return true;
4704 	else
4705 		return false;
4706 }
4707 
4708 static void
4709 hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
4710 		     struct page *new_page)
4711 {
4712 	__SetPageUptodate(new_page);
4713 	hugepage_add_new_anon_rmap(new_page, vma, addr);
4714 	set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1));
4715 	hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
4716 	ClearHPageRestoreReserve(new_page);
4717 	SetHPageMigratable(new_page);
4718 }
4719 
4720 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
4721 			    struct vm_area_struct *dst_vma,
4722 			    struct vm_area_struct *src_vma)
4723 {
4724 	pte_t *src_pte, *dst_pte, entry, dst_entry;
4725 	struct page *ptepage;
4726 	unsigned long addr;
4727 	bool cow = is_cow_mapping(src_vma->vm_flags);
4728 	struct hstate *h = hstate_vma(src_vma);
4729 	unsigned long sz = huge_page_size(h);
4730 	unsigned long npages = pages_per_huge_page(h);
4731 	struct address_space *mapping = src_vma->vm_file->f_mapping;
4732 	struct mmu_notifier_range range;
4733 	unsigned long last_addr_mask;
4734 	int ret = 0;
4735 
4736 	if (cow) {
4737 		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src_vma, src,
4738 					src_vma->vm_start,
4739 					src_vma->vm_end);
4740 		mmu_notifier_invalidate_range_start(&range);
4741 		mmap_assert_write_locked(src);
4742 		raw_write_seqcount_begin(&src->write_protect_seq);
4743 	} else {
4744 		/*
4745 		 * For shared mappings i_mmap_rwsem must be held to call
4746 		 * huge_pte_alloc, otherwise the returned ptep could go
4747 		 * away if part of a shared pmd and another thread calls
4748 		 * huge_pmd_unshare.
4749 		 */
4750 		i_mmap_lock_read(mapping);
4751 	}
4752 
4753 	last_addr_mask = hugetlb_mask_last_page(h);
4754 	for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
4755 		spinlock_t *src_ptl, *dst_ptl;
4756 		src_pte = huge_pte_offset(src, addr, sz);
4757 		if (!src_pte) {
4758 			addr |= last_addr_mask;
4759 			continue;
4760 		}
4761 		dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
4762 		if (!dst_pte) {
4763 			ret = -ENOMEM;
4764 			break;
4765 		}
4766 
4767 		/*
4768 		 * If the pagetables are shared don't copy or take references.
4769 		 * dst_pte == src_pte is the common case of src/dest sharing.
4770 		 *
4771 		 * However, src could have 'unshared' and dst shares with
4772 		 * another vma.  If dst_pte !none, this implies sharing.
4773 		 * Check here before taking page table lock, and once again
4774 		 * after taking the lock below.
4775 		 */
4776 		dst_entry = huge_ptep_get(dst_pte);
4777 		if ((dst_pte == src_pte) || !huge_pte_none(dst_entry)) {
4778 			addr |= last_addr_mask;
4779 			continue;
4780 		}
4781 
4782 		dst_ptl = huge_pte_lock(h, dst, dst_pte);
4783 		src_ptl = huge_pte_lockptr(h, src, src_pte);
4784 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4785 		entry = huge_ptep_get(src_pte);
4786 		dst_entry = huge_ptep_get(dst_pte);
4787 again:
4788 		if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
4789 			/*
4790 			 * Skip if src entry none.  Also, skip in the
4791 			 * unlikely case dst entry !none as this implies
4792 			 * sharing with another vma.
4793 			 */
4794 			;
4795 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
4796 			bool uffd_wp = huge_pte_uffd_wp(entry);
4797 
4798 			if (!userfaultfd_wp(dst_vma) && uffd_wp)
4799 				entry = huge_pte_clear_uffd_wp(entry);
4800 			set_huge_pte_at(dst, addr, dst_pte, entry);
4801 		} else if (unlikely(is_hugetlb_entry_migration(entry))) {
4802 			swp_entry_t swp_entry = pte_to_swp_entry(entry);
4803 			bool uffd_wp = huge_pte_uffd_wp(entry);
4804 
4805 			if (!is_readable_migration_entry(swp_entry) && cow) {
4806 				/*
4807 				 * COW mappings require pages in both
4808 				 * parent and child to be set to read.
4809 				 */
4810 				swp_entry = make_readable_migration_entry(
4811 							swp_offset(swp_entry));
4812 				entry = swp_entry_to_pte(swp_entry);
4813 				if (userfaultfd_wp(src_vma) && uffd_wp)
4814 					entry = huge_pte_mkuffd_wp(entry);
4815 				set_huge_pte_at(src, addr, src_pte, entry);
4816 			}
4817 			if (!userfaultfd_wp(dst_vma) && uffd_wp)
4818 				entry = huge_pte_clear_uffd_wp(entry);
4819 			set_huge_pte_at(dst, addr, dst_pte, entry);
4820 		} else if (unlikely(is_pte_marker(entry))) {
4821 			/*
4822 			 * We copy the pte marker only if the dst vma has
4823 			 * uffd-wp enabled.
4824 			 */
4825 			if (userfaultfd_wp(dst_vma))
4826 				set_huge_pte_at(dst, addr, dst_pte, entry);
4827 		} else {
4828 			entry = huge_ptep_get(src_pte);
4829 			ptepage = pte_page(entry);
4830 			get_page(ptepage);
4831 
4832 			/*
4833 			 * Failing to duplicate the anon rmap is a rare case
4834 			 * where we see pinned hugetlb pages while they're
4835 			 * prone to COW. We need to do the COW earlier during
4836 			 * fork.
4837 			 *
4838 			 * When pre-allocating the page or copying data, we
4839 			 * need to be without the pgtable locks since we could
4840 			 * sleep during the process.
4841 			 */
4842 			if (!PageAnon(ptepage)) {
4843 				page_dup_file_rmap(ptepage, true);
4844 			} else if (page_try_dup_anon_rmap(ptepage, true,
4845 							  src_vma)) {
4846 				pte_t src_pte_old = entry;
4847 				struct page *new;
4848 
4849 				spin_unlock(src_ptl);
4850 				spin_unlock(dst_ptl);
4851 				/* Do not use reserve as it's private owned */
4852 				new = alloc_huge_page(dst_vma, addr, 1);
4853 				if (IS_ERR(new)) {
4854 					put_page(ptepage);
4855 					ret = PTR_ERR(new);
4856 					break;
4857 				}
4858 				copy_user_huge_page(new, ptepage, addr, dst_vma,
4859 						    npages);
4860 				put_page(ptepage);
4861 
4862 				/* Install the new huge page if src pte stable */
4863 				dst_ptl = huge_pte_lock(h, dst, dst_pte);
4864 				src_ptl = huge_pte_lockptr(h, src, src_pte);
4865 				spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4866 				entry = huge_ptep_get(src_pte);
4867 				if (!pte_same(src_pte_old, entry)) {
4868 					restore_reserve_on_error(h, dst_vma, addr,
4869 								new);
4870 					put_page(new);
4871 					/* dst_entry won't change as in child */
4872 					goto again;
4873 				}
4874 				hugetlb_install_page(dst_vma, dst_pte, addr, new);
4875 				spin_unlock(src_ptl);
4876 				spin_unlock(dst_ptl);
4877 				continue;
4878 			}
4879 
4880 			if (cow) {
4881 				/*
4882 				 * No need to notify as we are downgrading page
4883 				 * table protection not changing it to point
4884 				 * to a new page.
4885 				 *
4886 				 * See Documentation/mm/mmu_notifier.rst
4887 				 */
4888 				huge_ptep_set_wrprotect(src, addr, src_pte);
4889 				entry = huge_pte_wrprotect(entry);
4890 			}
4891 
4892 			set_huge_pte_at(dst, addr, dst_pte, entry);
4893 			hugetlb_count_add(npages, dst);
4894 		}
4895 		spin_unlock(src_ptl);
4896 		spin_unlock(dst_ptl);
4897 	}
4898 
4899 	if (cow) {
4900 		raw_write_seqcount_end(&src->write_protect_seq);
4901 		mmu_notifier_invalidate_range_end(&range);
4902 	} else {
4903 		i_mmap_unlock_read(mapping);
4904 	}
4905 
4906 	return ret;
4907 }
4908 
4909 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
4910 			  unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte)
4911 {
4912 	struct hstate *h = hstate_vma(vma);
4913 	struct mm_struct *mm = vma->vm_mm;
4914 	spinlock_t *src_ptl, *dst_ptl;
4915 	pte_t pte;
4916 
4917 	dst_ptl = huge_pte_lock(h, mm, dst_pte);
4918 	src_ptl = huge_pte_lockptr(h, mm, src_pte);
4919 
4920 	/*
4921 	 * We don't have to worry about the ordering of src and dst ptlocks
4922 	 * because exclusive mmap_sem (or the i_mmap_lock) prevents deadlock.
4923 	 */
4924 	if (src_ptl != dst_ptl)
4925 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4926 
4927 	pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
4928 	set_huge_pte_at(mm, new_addr, dst_pte, pte);
4929 
4930 	if (src_ptl != dst_ptl)
4931 		spin_unlock(src_ptl);
4932 	spin_unlock(dst_ptl);
4933 }
4934 
4935 int move_hugetlb_page_tables(struct vm_area_struct *vma,
4936 			     struct vm_area_struct *new_vma,
4937 			     unsigned long old_addr, unsigned long new_addr,
4938 			     unsigned long len)
4939 {
4940 	struct hstate *h = hstate_vma(vma);
4941 	struct address_space *mapping = vma->vm_file->f_mapping;
4942 	unsigned long sz = huge_page_size(h);
4943 	struct mm_struct *mm = vma->vm_mm;
4944 	unsigned long old_end = old_addr + len;
4945 	unsigned long last_addr_mask;
4946 	pte_t *src_pte, *dst_pte;
4947 	struct mmu_notifier_range range;
4948 	bool shared_pmd = false;
4949 
4950 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, old_addr,
4951 				old_end);
4952 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4953 	/*
4954 	 * In case of shared PMDs, we should cover the maximum possible
4955 	 * range.
4956 	 */
4957 	flush_cache_range(vma, range.start, range.end);
4958 
4959 	mmu_notifier_invalidate_range_start(&range);
4960 	last_addr_mask = hugetlb_mask_last_page(h);
4961 	/* Prevent race with file truncation */
4962 	i_mmap_lock_write(mapping);
4963 	for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
4964 		src_pte = huge_pte_offset(mm, old_addr, sz);
4965 		if (!src_pte) {
4966 			old_addr |= last_addr_mask;
4967 			new_addr |= last_addr_mask;
4968 			continue;
4969 		}
4970 		if (huge_pte_none(huge_ptep_get(src_pte)))
4971 			continue;
4972 
4973 		if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
4974 			shared_pmd = true;
4975 			old_addr |= last_addr_mask;
4976 			new_addr |= last_addr_mask;
4977 			continue;
4978 		}
4979 
4980 		dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
4981 		if (!dst_pte)
4982 			break;
4983 
4984 		move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte);
4985 	}
4986 
4987 	if (shared_pmd)
4988 		flush_tlb_range(vma, range.start, range.end);
4989 	else
4990 		flush_tlb_range(vma, old_end - len, old_end);
4991 	mmu_notifier_invalidate_range_end(&range);
4992 	i_mmap_unlock_write(mapping);
4993 
4994 	return len + old_addr - old_end;
4995 }
4996 
4997 static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
4998 				   unsigned long start, unsigned long end,
4999 				   struct page *ref_page, zap_flags_t zap_flags)
5000 {
5001 	struct mm_struct *mm = vma->vm_mm;
5002 	unsigned long address;
5003 	pte_t *ptep;
5004 	pte_t pte;
5005 	spinlock_t *ptl;
5006 	struct page *page;
5007 	struct hstate *h = hstate_vma(vma);
5008 	unsigned long sz = huge_page_size(h);
5009 	struct mmu_notifier_range range;
5010 	unsigned long last_addr_mask;
5011 	bool force_flush = false;
5012 
5013 	WARN_ON(!is_vm_hugetlb_page(vma));
5014 	BUG_ON(start & ~huge_page_mask(h));
5015 	BUG_ON(end & ~huge_page_mask(h));
5016 
5017 	/*
5018 	 * This is a hugetlb vma, all the pte entries should point
5019 	 * to huge page.
5020 	 */
5021 	tlb_change_page_size(tlb, sz);
5022 	tlb_start_vma(tlb, vma);
5023 
5024 	/*
5025 	 * If sharing possible, alert mmu notifiers of worst case.
5026 	 */
5027 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
5028 				end);
5029 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5030 	mmu_notifier_invalidate_range_start(&range);
5031 	last_addr_mask = hugetlb_mask_last_page(h);
5032 	address = start;
5033 	for (; address < end; address += sz) {
5034 		ptep = huge_pte_offset(mm, address, sz);
5035 		if (!ptep) {
5036 			address |= last_addr_mask;
5037 			continue;
5038 		}
5039 
5040 		ptl = huge_pte_lock(h, mm, ptep);
5041 		if (huge_pmd_unshare(mm, vma, address, ptep)) {
5042 			spin_unlock(ptl);
5043 			tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5044 			force_flush = true;
5045 			address |= last_addr_mask;
5046 			continue;
5047 		}
5048 
5049 		pte = huge_ptep_get(ptep);
5050 		if (huge_pte_none(pte)) {
5051 			spin_unlock(ptl);
5052 			continue;
5053 		}
5054 
5055 		/*
5056 		 * Migrating hugepage or HWPoisoned hugepage is already
5057 		 * unmapped and its refcount is dropped, so just clear pte here.
5058 		 */
5059 		if (unlikely(!pte_present(pte))) {
5060 			/*
5061 			 * If the pte was wr-protected by uffd-wp in any of the
5062 			 * swap forms, meanwhile the caller does not want to
5063 			 * drop the uffd-wp bit in this zap, then replace the
5064 			 * pte with a marker.
5065 			 */
5066 			if (pte_swp_uffd_wp_any(pte) &&
5067 			    !(zap_flags & ZAP_FLAG_DROP_MARKER))
5068 				set_huge_pte_at(mm, address, ptep,
5069 						make_pte_marker(PTE_MARKER_UFFD_WP));
5070 			else
5071 				huge_pte_clear(mm, address, ptep, sz);
5072 			spin_unlock(ptl);
5073 			continue;
5074 		}
5075 
5076 		page = pte_page(pte);
5077 		/*
5078 		 * If a reference page is supplied, it is because a specific
5079 		 * page is being unmapped, not a range. Ensure the page we
5080 		 * are about to unmap is the actual page of interest.
5081 		 */
5082 		if (ref_page) {
5083 			if (page != ref_page) {
5084 				spin_unlock(ptl);
5085 				continue;
5086 			}
5087 			/*
5088 			 * Mark the VMA as having unmapped its page so that
5089 			 * future faults in this VMA will fail rather than
5090 			 * looking like data was lost
5091 			 */
5092 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5093 		}
5094 
5095 		pte = huge_ptep_get_and_clear(mm, address, ptep);
5096 		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5097 		if (huge_pte_dirty(pte))
5098 			set_page_dirty(page);
5099 		/* Leave a uffd-wp pte marker if needed */
5100 		if (huge_pte_uffd_wp(pte) &&
5101 		    !(zap_flags & ZAP_FLAG_DROP_MARKER))
5102 			set_huge_pte_at(mm, address, ptep,
5103 					make_pte_marker(PTE_MARKER_UFFD_WP));
5104 		hugetlb_count_sub(pages_per_huge_page(h), mm);
5105 		page_remove_rmap(page, vma, true);
5106 
5107 		spin_unlock(ptl);
5108 		tlb_remove_page_size(tlb, page, huge_page_size(h));
5109 		/*
5110 		 * Bail out after unmapping reference page if supplied
5111 		 */
5112 		if (ref_page)
5113 			break;
5114 	}
5115 	mmu_notifier_invalidate_range_end(&range);
5116 	tlb_end_vma(tlb, vma);
5117 
5118 	/*
5119 	 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5120 	 * could defer the flush until now, since by holding i_mmap_rwsem we
5121 	 * guaranteed that the last refernece would not be dropped. But we must
5122 	 * do the flushing before we return, as otherwise i_mmap_rwsem will be
5123 	 * dropped and the last reference to the shared PMDs page might be
5124 	 * dropped as well.
5125 	 *
5126 	 * In theory we could defer the freeing of the PMD pages as well, but
5127 	 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5128 	 * detect sharing, so we cannot defer the release of the page either.
5129 	 * Instead, do flush now.
5130 	 */
5131 	if (force_flush)
5132 		tlb_flush_mmu_tlbonly(tlb);
5133 }
5134 
5135 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
5136 			  struct vm_area_struct *vma, unsigned long start,
5137 			  unsigned long end, struct page *ref_page,
5138 			  zap_flags_t zap_flags)
5139 {
5140 	__unmap_hugepage_range(tlb, vma, start, end, ref_page, zap_flags);
5141 
5142 	/*
5143 	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
5144 	 * test will fail on a vma being torn down, and not grab a page table
5145 	 * on its way out.  We're lucky that the flag has such an appropriate
5146 	 * name, and can in fact be safely cleared here. We could clear it
5147 	 * before the __unmap_hugepage_range above, but all that's necessary
5148 	 * is to clear it before releasing the i_mmap_rwsem. This works
5149 	 * because in the context this is called, the VMA is about to be
5150 	 * destroyed and the i_mmap_rwsem is held.
5151 	 */
5152 	vma->vm_flags &= ~VM_MAYSHARE;
5153 }
5154 
5155 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5156 			  unsigned long end, struct page *ref_page,
5157 			  zap_flags_t zap_flags)
5158 {
5159 	struct mmu_gather tlb;
5160 
5161 	tlb_gather_mmu(&tlb, vma->vm_mm);
5162 	__unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
5163 	tlb_finish_mmu(&tlb);
5164 }
5165 
5166 /*
5167  * This is called when the original mapper is failing to COW a MAP_PRIVATE
5168  * mapping it owns the reserve page for. The intention is to unmap the page
5169  * from other VMAs and let the children be SIGKILLed if they are faulting the
5170  * same region.
5171  */
5172 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5173 			      struct page *page, unsigned long address)
5174 {
5175 	struct hstate *h = hstate_vma(vma);
5176 	struct vm_area_struct *iter_vma;
5177 	struct address_space *mapping;
5178 	pgoff_t pgoff;
5179 
5180 	/*
5181 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5182 	 * from page cache lookup which is in HPAGE_SIZE units.
5183 	 */
5184 	address = address & huge_page_mask(h);
5185 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5186 			vma->vm_pgoff;
5187 	mapping = vma->vm_file->f_mapping;
5188 
5189 	/*
5190 	 * Take the mapping lock for the duration of the table walk. As
5191 	 * this mapping should be shared between all the VMAs,
5192 	 * __unmap_hugepage_range() is called as the lock is already held
5193 	 */
5194 	i_mmap_lock_write(mapping);
5195 	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5196 		/* Do not unmap the current VMA */
5197 		if (iter_vma == vma)
5198 			continue;
5199 
5200 		/*
5201 		 * Shared VMAs have their own reserves and do not affect
5202 		 * MAP_PRIVATE accounting but it is possible that a shared
5203 		 * VMA is using the same page so check and skip such VMAs.
5204 		 */
5205 		if (iter_vma->vm_flags & VM_MAYSHARE)
5206 			continue;
5207 
5208 		/*
5209 		 * Unmap the page from other VMAs without their own reserves.
5210 		 * They get marked to be SIGKILLed if they fault in these
5211 		 * areas. This is because a future no-page fault on this VMA
5212 		 * could insert a zeroed page instead of the data existing
5213 		 * from the time of fork. This would look like data corruption
5214 		 */
5215 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5216 			unmap_hugepage_range(iter_vma, address,
5217 					     address + huge_page_size(h), page, 0);
5218 	}
5219 	i_mmap_unlock_write(mapping);
5220 }
5221 
5222 /*
5223  * hugetlb_wp() should be called with page lock of the original hugepage held.
5224  * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5225  * cannot race with other handlers or page migration.
5226  * Keep the pte_same checks anyway to make transition from the mutex easier.
5227  */
5228 static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma,
5229 		       unsigned long address, pte_t *ptep, unsigned int flags,
5230 		       struct page *pagecache_page, spinlock_t *ptl)
5231 {
5232 	const bool unshare = flags & FAULT_FLAG_UNSHARE;
5233 	pte_t pte;
5234 	struct hstate *h = hstate_vma(vma);
5235 	struct page *old_page, *new_page;
5236 	int outside_reserve = 0;
5237 	vm_fault_t ret = 0;
5238 	unsigned long haddr = address & huge_page_mask(h);
5239 	struct mmu_notifier_range range;
5240 
5241 	VM_BUG_ON(unshare && (flags & FOLL_WRITE));
5242 	VM_BUG_ON(!unshare && !(flags & FOLL_WRITE));
5243 
5244 	/*
5245 	 * hugetlb does not support FOLL_FORCE-style write faults that keep the
5246 	 * PTE mapped R/O such as maybe_mkwrite() would do.
5247 	 */
5248 	if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE)))
5249 		return VM_FAULT_SIGSEGV;
5250 
5251 	/* Let's take out MAP_SHARED mappings first. */
5252 	if (vma->vm_flags & VM_MAYSHARE) {
5253 		if (unlikely(unshare))
5254 			return 0;
5255 		set_huge_ptep_writable(vma, haddr, ptep);
5256 		return 0;
5257 	}
5258 
5259 	pte = huge_ptep_get(ptep);
5260 	old_page = pte_page(pte);
5261 
5262 	delayacct_wpcopy_start();
5263 
5264 retry_avoidcopy:
5265 	/*
5266 	 * If no-one else is actually using this page, we're the exclusive
5267 	 * owner and can reuse this page.
5268 	 */
5269 	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
5270 		if (!PageAnonExclusive(old_page))
5271 			page_move_anon_rmap(old_page, vma);
5272 		if (likely(!unshare))
5273 			set_huge_ptep_writable(vma, haddr, ptep);
5274 
5275 		delayacct_wpcopy_end();
5276 		return 0;
5277 	}
5278 	VM_BUG_ON_PAGE(PageAnon(old_page) && PageAnonExclusive(old_page),
5279 		       old_page);
5280 
5281 	/*
5282 	 * If the process that created a MAP_PRIVATE mapping is about to
5283 	 * perform a COW due to a shared page count, attempt to satisfy
5284 	 * the allocation without using the existing reserves. The pagecache
5285 	 * page is used to determine if the reserve at this address was
5286 	 * consumed or not. If reserves were used, a partial faulted mapping
5287 	 * at the time of fork() could consume its reserves on COW instead
5288 	 * of the full address range.
5289 	 */
5290 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5291 			old_page != pagecache_page)
5292 		outside_reserve = 1;
5293 
5294 	get_page(old_page);
5295 
5296 	/*
5297 	 * Drop page table lock as buddy allocator may be called. It will
5298 	 * be acquired again before returning to the caller, as expected.
5299 	 */
5300 	spin_unlock(ptl);
5301 	new_page = alloc_huge_page(vma, haddr, outside_reserve);
5302 
5303 	if (IS_ERR(new_page)) {
5304 		/*
5305 		 * If a process owning a MAP_PRIVATE mapping fails to COW,
5306 		 * it is due to references held by a child and an insufficient
5307 		 * huge page pool. To guarantee the original mappers
5308 		 * reliability, unmap the page from child processes. The child
5309 		 * may get SIGKILLed if it later faults.
5310 		 */
5311 		if (outside_reserve) {
5312 			struct address_space *mapping = vma->vm_file->f_mapping;
5313 			pgoff_t idx;
5314 			u32 hash;
5315 
5316 			put_page(old_page);
5317 			BUG_ON(huge_pte_none(pte));
5318 			/*
5319 			 * Drop hugetlb_fault_mutex and i_mmap_rwsem before
5320 			 * unmapping.  unmapping needs to hold i_mmap_rwsem
5321 			 * in write mode.  Dropping i_mmap_rwsem in read mode
5322 			 * here is OK as COW mappings do not interact with
5323 			 * PMD sharing.
5324 			 *
5325 			 * Reacquire both after unmap operation.
5326 			 */
5327 			idx = vma_hugecache_offset(h, vma, haddr);
5328 			hash = hugetlb_fault_mutex_hash(mapping, idx);
5329 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5330 			i_mmap_unlock_read(mapping);
5331 
5332 			unmap_ref_private(mm, vma, old_page, haddr);
5333 
5334 			i_mmap_lock_read(mapping);
5335 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
5336 			spin_lock(ptl);
5337 			ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5338 			if (likely(ptep &&
5339 				   pte_same(huge_ptep_get(ptep), pte)))
5340 				goto retry_avoidcopy;
5341 			/*
5342 			 * race occurs while re-acquiring page table
5343 			 * lock, and our job is done.
5344 			 */
5345 			delayacct_wpcopy_end();
5346 			return 0;
5347 		}
5348 
5349 		ret = vmf_error(PTR_ERR(new_page));
5350 		goto out_release_old;
5351 	}
5352 
5353 	/*
5354 	 * When the original hugepage is shared one, it does not have
5355 	 * anon_vma prepared.
5356 	 */
5357 	if (unlikely(anon_vma_prepare(vma))) {
5358 		ret = VM_FAULT_OOM;
5359 		goto out_release_all;
5360 	}
5361 
5362 	copy_user_huge_page(new_page, old_page, address, vma,
5363 			    pages_per_huge_page(h));
5364 	__SetPageUptodate(new_page);
5365 
5366 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
5367 				haddr + huge_page_size(h));
5368 	mmu_notifier_invalidate_range_start(&range);
5369 
5370 	/*
5371 	 * Retake the page table lock to check for racing updates
5372 	 * before the page tables are altered
5373 	 */
5374 	spin_lock(ptl);
5375 	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5376 	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
5377 		ClearHPageRestoreReserve(new_page);
5378 
5379 		/* Break COW or unshare */
5380 		huge_ptep_clear_flush(vma, haddr, ptep);
5381 		mmu_notifier_invalidate_range(mm, range.start, range.end);
5382 		page_remove_rmap(old_page, vma, true);
5383 		hugepage_add_new_anon_rmap(new_page, vma, haddr);
5384 		set_huge_pte_at(mm, haddr, ptep,
5385 				make_huge_pte(vma, new_page, !unshare));
5386 		SetHPageMigratable(new_page);
5387 		/* Make the old page be freed below */
5388 		new_page = old_page;
5389 	}
5390 	spin_unlock(ptl);
5391 	mmu_notifier_invalidate_range_end(&range);
5392 out_release_all:
5393 	/*
5394 	 * No restore in case of successful pagetable update (Break COW or
5395 	 * unshare)
5396 	 */
5397 	if (new_page != old_page)
5398 		restore_reserve_on_error(h, vma, haddr, new_page);
5399 	put_page(new_page);
5400 out_release_old:
5401 	put_page(old_page);
5402 
5403 	spin_lock(ptl); /* Caller expects lock to be held */
5404 
5405 	delayacct_wpcopy_end();
5406 	return ret;
5407 }
5408 
5409 /* Return the pagecache page at a given address within a VMA */
5410 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
5411 			struct vm_area_struct *vma, unsigned long address)
5412 {
5413 	struct address_space *mapping;
5414 	pgoff_t idx;
5415 
5416 	mapping = vma->vm_file->f_mapping;
5417 	idx = vma_hugecache_offset(h, vma, address);
5418 
5419 	return find_lock_page(mapping, idx);
5420 }
5421 
5422 /*
5423  * Return whether there is a pagecache page to back given address within VMA.
5424  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
5425  */
5426 static bool hugetlbfs_pagecache_present(struct hstate *h,
5427 			struct vm_area_struct *vma, unsigned long address)
5428 {
5429 	struct address_space *mapping;
5430 	pgoff_t idx;
5431 	struct page *page;
5432 
5433 	mapping = vma->vm_file->f_mapping;
5434 	idx = vma_hugecache_offset(h, vma, address);
5435 
5436 	page = find_get_page(mapping, idx);
5437 	if (page)
5438 		put_page(page);
5439 	return page != NULL;
5440 }
5441 
5442 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
5443 			   pgoff_t idx)
5444 {
5445 	struct folio *folio = page_folio(page);
5446 	struct inode *inode = mapping->host;
5447 	struct hstate *h = hstate_inode(inode);
5448 	int err;
5449 
5450 	__folio_set_locked(folio);
5451 	err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
5452 
5453 	if (unlikely(err)) {
5454 		__folio_clear_locked(folio);
5455 		return err;
5456 	}
5457 	ClearHPageRestoreReserve(page);
5458 
5459 	/*
5460 	 * mark folio dirty so that it will not be removed from cache/file
5461 	 * by non-hugetlbfs specific code paths.
5462 	 */
5463 	folio_mark_dirty(folio);
5464 
5465 	spin_lock(&inode->i_lock);
5466 	inode->i_blocks += blocks_per_huge_page(h);
5467 	spin_unlock(&inode->i_lock);
5468 	return 0;
5469 }
5470 
5471 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
5472 						  struct address_space *mapping,
5473 						  pgoff_t idx,
5474 						  unsigned int flags,
5475 						  unsigned long haddr,
5476 						  unsigned long addr,
5477 						  unsigned long reason)
5478 {
5479 	vm_fault_t ret;
5480 	u32 hash;
5481 	struct vm_fault vmf = {
5482 		.vma = vma,
5483 		.address = haddr,
5484 		.real_address = addr,
5485 		.flags = flags,
5486 
5487 		/*
5488 		 * Hard to debug if it ends up being
5489 		 * used by a callee that assumes
5490 		 * something about the other
5491 		 * uninitialized fields... same as in
5492 		 * memory.c
5493 		 */
5494 	};
5495 
5496 	/*
5497 	 * hugetlb_fault_mutex and i_mmap_rwsem must be
5498 	 * dropped before handling userfault.  Reacquire
5499 	 * after handling fault to make calling code simpler.
5500 	 */
5501 	hash = hugetlb_fault_mutex_hash(mapping, idx);
5502 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5503 	i_mmap_unlock_read(mapping);
5504 	ret = handle_userfault(&vmf, reason);
5505 	i_mmap_lock_read(mapping);
5506 	mutex_lock(&hugetlb_fault_mutex_table[hash]);
5507 
5508 	return ret;
5509 }
5510 
5511 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
5512 			struct vm_area_struct *vma,
5513 			struct address_space *mapping, pgoff_t idx,
5514 			unsigned long address, pte_t *ptep,
5515 			pte_t old_pte, unsigned int flags)
5516 {
5517 	struct hstate *h = hstate_vma(vma);
5518 	vm_fault_t ret = VM_FAULT_SIGBUS;
5519 	int anon_rmap = 0;
5520 	unsigned long size;
5521 	struct page *page;
5522 	pte_t new_pte;
5523 	spinlock_t *ptl;
5524 	unsigned long haddr = address & huge_page_mask(h);
5525 	bool new_page, new_pagecache_page = false;
5526 
5527 	/*
5528 	 * Currently, we are forced to kill the process in the event the
5529 	 * original mapper has unmapped pages from the child due to a failed
5530 	 * COW/unsharing. Warn that such a situation has occurred as it may not
5531 	 * be obvious.
5532 	 */
5533 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
5534 		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
5535 			   current->pid);
5536 		return ret;
5537 	}
5538 
5539 	/*
5540 	 * We can not race with truncation due to holding i_mmap_rwsem.
5541 	 * i_size is modified when holding i_mmap_rwsem, so check here
5542 	 * once for faults beyond end of file.
5543 	 */
5544 	size = i_size_read(mapping->host) >> huge_page_shift(h);
5545 	if (idx >= size)
5546 		goto out;
5547 
5548 retry:
5549 	new_page = false;
5550 	page = find_lock_page(mapping, idx);
5551 	if (!page) {
5552 		/* Check for page in userfault range */
5553 		if (userfaultfd_missing(vma)) {
5554 			ret = hugetlb_handle_userfault(vma, mapping, idx,
5555 						       flags, haddr, address,
5556 						       VM_UFFD_MISSING);
5557 			goto out;
5558 		}
5559 
5560 		page = alloc_huge_page(vma, haddr, 0);
5561 		if (IS_ERR(page)) {
5562 			/*
5563 			 * Returning error will result in faulting task being
5564 			 * sent SIGBUS.  The hugetlb fault mutex prevents two
5565 			 * tasks from racing to fault in the same page which
5566 			 * could result in false unable to allocate errors.
5567 			 * Page migration does not take the fault mutex, but
5568 			 * does a clear then write of pte's under page table
5569 			 * lock.  Page fault code could race with migration,
5570 			 * notice the clear pte and try to allocate a page
5571 			 * here.  Before returning error, get ptl and make
5572 			 * sure there really is no pte entry.
5573 			 */
5574 			ptl = huge_pte_lock(h, mm, ptep);
5575 			ret = 0;
5576 			if (huge_pte_none(huge_ptep_get(ptep)))
5577 				ret = vmf_error(PTR_ERR(page));
5578 			spin_unlock(ptl);
5579 			goto out;
5580 		}
5581 		clear_huge_page(page, address, pages_per_huge_page(h));
5582 		__SetPageUptodate(page);
5583 		new_page = true;
5584 
5585 		if (vma->vm_flags & VM_MAYSHARE) {
5586 			int err = huge_add_to_page_cache(page, mapping, idx);
5587 			if (err) {
5588 				put_page(page);
5589 				if (err == -EEXIST)
5590 					goto retry;
5591 				goto out;
5592 			}
5593 			new_pagecache_page = true;
5594 		} else {
5595 			lock_page(page);
5596 			if (unlikely(anon_vma_prepare(vma))) {
5597 				ret = VM_FAULT_OOM;
5598 				goto backout_unlocked;
5599 			}
5600 			anon_rmap = 1;
5601 		}
5602 	} else {
5603 		/*
5604 		 * If memory error occurs between mmap() and fault, some process
5605 		 * don't have hwpoisoned swap entry for errored virtual address.
5606 		 * So we need to block hugepage fault by PG_hwpoison bit check.
5607 		 */
5608 		if (unlikely(PageHWPoison(page))) {
5609 			ret = VM_FAULT_HWPOISON_LARGE |
5610 				VM_FAULT_SET_HINDEX(hstate_index(h));
5611 			goto backout_unlocked;
5612 		}
5613 
5614 		/* Check for page in userfault range. */
5615 		if (userfaultfd_minor(vma)) {
5616 			unlock_page(page);
5617 			put_page(page);
5618 			ret = hugetlb_handle_userfault(vma, mapping, idx,
5619 						       flags, haddr, address,
5620 						       VM_UFFD_MINOR);
5621 			goto out;
5622 		}
5623 	}
5624 
5625 	/*
5626 	 * If we are going to COW a private mapping later, we examine the
5627 	 * pending reservations for this page now. This will ensure that
5628 	 * any allocations necessary to record that reservation occur outside
5629 	 * the spinlock.
5630 	 */
5631 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5632 		if (vma_needs_reservation(h, vma, haddr) < 0) {
5633 			ret = VM_FAULT_OOM;
5634 			goto backout_unlocked;
5635 		}
5636 		/* Just decrements count, does not deallocate */
5637 		vma_end_reservation(h, vma, haddr);
5638 	}
5639 
5640 	ptl = huge_pte_lock(h, mm, ptep);
5641 	ret = 0;
5642 	/* If pte changed from under us, retry */
5643 	if (!pte_same(huge_ptep_get(ptep), old_pte))
5644 		goto backout;
5645 
5646 	if (anon_rmap) {
5647 		ClearHPageRestoreReserve(page);
5648 		hugepage_add_new_anon_rmap(page, vma, haddr);
5649 	} else
5650 		page_dup_file_rmap(page, true);
5651 	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
5652 				&& (vma->vm_flags & VM_SHARED)));
5653 	/*
5654 	 * If this pte was previously wr-protected, keep it wr-protected even
5655 	 * if populated.
5656 	 */
5657 	if (unlikely(pte_marker_uffd_wp(old_pte)))
5658 		new_pte = huge_pte_wrprotect(huge_pte_mkuffd_wp(new_pte));
5659 	set_huge_pte_at(mm, haddr, ptep, new_pte);
5660 
5661 	hugetlb_count_add(pages_per_huge_page(h), mm);
5662 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5663 		/* Optimization, do the COW without a second fault */
5664 		ret = hugetlb_wp(mm, vma, address, ptep, flags, page, ptl);
5665 	}
5666 
5667 	spin_unlock(ptl);
5668 
5669 	/*
5670 	 * Only set HPageMigratable in newly allocated pages.  Existing pages
5671 	 * found in the pagecache may not have HPageMigratableset if they have
5672 	 * been isolated for migration.
5673 	 */
5674 	if (new_page)
5675 		SetHPageMigratable(page);
5676 
5677 	unlock_page(page);
5678 out:
5679 	return ret;
5680 
5681 backout:
5682 	spin_unlock(ptl);
5683 backout_unlocked:
5684 	unlock_page(page);
5685 	/* restore reserve for newly allocated pages not in page cache */
5686 	if (new_page && !new_pagecache_page)
5687 		restore_reserve_on_error(h, vma, haddr, page);
5688 	put_page(page);
5689 	goto out;
5690 }
5691 
5692 #ifdef CONFIG_SMP
5693 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5694 {
5695 	unsigned long key[2];
5696 	u32 hash;
5697 
5698 	key[0] = (unsigned long) mapping;
5699 	key[1] = idx;
5700 
5701 	hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
5702 
5703 	return hash & (num_fault_mutexes - 1);
5704 }
5705 #else
5706 /*
5707  * For uniprocessor systems we always use a single mutex, so just
5708  * return 0 and avoid the hashing overhead.
5709  */
5710 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5711 {
5712 	return 0;
5713 }
5714 #endif
5715 
5716 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
5717 			unsigned long address, unsigned int flags)
5718 {
5719 	pte_t *ptep, entry;
5720 	spinlock_t *ptl;
5721 	vm_fault_t ret;
5722 	u32 hash;
5723 	pgoff_t idx;
5724 	struct page *page = NULL;
5725 	struct page *pagecache_page = NULL;
5726 	struct hstate *h = hstate_vma(vma);
5727 	struct address_space *mapping;
5728 	int need_wait_lock = 0;
5729 	unsigned long haddr = address & huge_page_mask(h);
5730 
5731 	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5732 	if (ptep) {
5733 		/*
5734 		 * Since we hold no locks, ptep could be stale.  That is
5735 		 * OK as we are only making decisions based on content and
5736 		 * not actually modifying content here.
5737 		 */
5738 		entry = huge_ptep_get(ptep);
5739 		if (unlikely(is_hugetlb_entry_migration(entry))) {
5740 			migration_entry_wait_huge(vma, ptep);
5741 			return 0;
5742 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
5743 			return VM_FAULT_HWPOISON_LARGE |
5744 				VM_FAULT_SET_HINDEX(hstate_index(h));
5745 	}
5746 
5747 	/*
5748 	 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
5749 	 * until finished with ptep.  This serves two purposes:
5750 	 * 1) It prevents huge_pmd_unshare from being called elsewhere
5751 	 *    and making the ptep no longer valid.
5752 	 * 2) It synchronizes us with i_size modifications during truncation.
5753 	 *
5754 	 * ptep could have already be assigned via huge_pte_offset.  That
5755 	 * is OK, as huge_pte_alloc will return the same value unless
5756 	 * something has changed.
5757 	 */
5758 	mapping = vma->vm_file->f_mapping;
5759 	i_mmap_lock_read(mapping);
5760 	ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
5761 	if (!ptep) {
5762 		i_mmap_unlock_read(mapping);
5763 		return VM_FAULT_OOM;
5764 	}
5765 
5766 	/*
5767 	 * Serialize hugepage allocation and instantiation, so that we don't
5768 	 * get spurious allocation failures if two CPUs race to instantiate
5769 	 * the same page in the page cache.
5770 	 */
5771 	idx = vma_hugecache_offset(h, vma, haddr);
5772 	hash = hugetlb_fault_mutex_hash(mapping, idx);
5773 	mutex_lock(&hugetlb_fault_mutex_table[hash]);
5774 
5775 	entry = huge_ptep_get(ptep);
5776 	/* PTE markers should be handled the same way as none pte */
5777 	if (huge_pte_none_mostly(entry)) {
5778 		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep,
5779 				      entry, flags);
5780 		goto out_mutex;
5781 	}
5782 
5783 	ret = 0;
5784 
5785 	/*
5786 	 * entry could be a migration/hwpoison entry at this point, so this
5787 	 * check prevents the kernel from going below assuming that we have
5788 	 * an active hugepage in pagecache. This goto expects the 2nd page
5789 	 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
5790 	 * properly handle it.
5791 	 */
5792 	if (!pte_present(entry))
5793 		goto out_mutex;
5794 
5795 	/*
5796 	 * If we are going to COW/unshare the mapping later, we examine the
5797 	 * pending reservations for this page now. This will ensure that any
5798 	 * allocations necessary to record that reservation occur outside the
5799 	 * spinlock. Also lookup the pagecache page now as it is used to
5800 	 * determine if a reservation has been consumed.
5801 	 */
5802 	if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5803 	    !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) {
5804 		if (vma_needs_reservation(h, vma, haddr) < 0) {
5805 			ret = VM_FAULT_OOM;
5806 			goto out_mutex;
5807 		}
5808 		/* Just decrements count, does not deallocate */
5809 		vma_end_reservation(h, vma, haddr);
5810 
5811 		pagecache_page = hugetlbfs_pagecache_page(h, vma, haddr);
5812 	}
5813 
5814 	ptl = huge_pte_lock(h, mm, ptep);
5815 
5816 	/* Check for a racing update before calling hugetlb_wp() */
5817 	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
5818 		goto out_ptl;
5819 
5820 	/* Handle userfault-wp first, before trying to lock more pages */
5821 	if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) &&
5822 	    (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
5823 		struct vm_fault vmf = {
5824 			.vma = vma,
5825 			.address = haddr,
5826 			.real_address = address,
5827 			.flags = flags,
5828 		};
5829 
5830 		spin_unlock(ptl);
5831 		if (pagecache_page) {
5832 			unlock_page(pagecache_page);
5833 			put_page(pagecache_page);
5834 		}
5835 		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5836 		i_mmap_unlock_read(mapping);
5837 		return handle_userfault(&vmf, VM_UFFD_WP);
5838 	}
5839 
5840 	/*
5841 	 * hugetlb_wp() requires page locks of pte_page(entry) and
5842 	 * pagecache_page, so here we need take the former one
5843 	 * when page != pagecache_page or !pagecache_page.
5844 	 */
5845 	page = pte_page(entry);
5846 	if (page != pagecache_page)
5847 		if (!trylock_page(page)) {
5848 			need_wait_lock = 1;
5849 			goto out_ptl;
5850 		}
5851 
5852 	get_page(page);
5853 
5854 	if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
5855 		if (!huge_pte_write(entry)) {
5856 			ret = hugetlb_wp(mm, vma, address, ptep, flags,
5857 					 pagecache_page, ptl);
5858 			goto out_put_page;
5859 		} else if (likely(flags & FAULT_FLAG_WRITE)) {
5860 			entry = huge_pte_mkdirty(entry);
5861 		}
5862 	}
5863 	entry = pte_mkyoung(entry);
5864 	if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
5865 						flags & FAULT_FLAG_WRITE))
5866 		update_mmu_cache(vma, haddr, ptep);
5867 out_put_page:
5868 	if (page != pagecache_page)
5869 		unlock_page(page);
5870 	put_page(page);
5871 out_ptl:
5872 	spin_unlock(ptl);
5873 
5874 	if (pagecache_page) {
5875 		unlock_page(pagecache_page);
5876 		put_page(pagecache_page);
5877 	}
5878 out_mutex:
5879 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5880 	i_mmap_unlock_read(mapping);
5881 	/*
5882 	 * Generally it's safe to hold refcount during waiting page lock. But
5883 	 * here we just wait to defer the next page fault to avoid busy loop and
5884 	 * the page is not used after unlocked before returning from the current
5885 	 * page fault. So we are safe from accessing freed page, even if we wait
5886 	 * here without taking refcount.
5887 	 */
5888 	if (need_wait_lock)
5889 		wait_on_page_locked(page);
5890 	return ret;
5891 }
5892 
5893 #ifdef CONFIG_USERFAULTFD
5894 /*
5895  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
5896  * modifications for huge pages.
5897  */
5898 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
5899 			    pte_t *dst_pte,
5900 			    struct vm_area_struct *dst_vma,
5901 			    unsigned long dst_addr,
5902 			    unsigned long src_addr,
5903 			    enum mcopy_atomic_mode mode,
5904 			    struct page **pagep,
5905 			    bool wp_copy)
5906 {
5907 	bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE);
5908 	struct hstate *h = hstate_vma(dst_vma);
5909 	struct address_space *mapping = dst_vma->vm_file->f_mapping;
5910 	pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
5911 	unsigned long size;
5912 	int vm_shared = dst_vma->vm_flags & VM_SHARED;
5913 	pte_t _dst_pte;
5914 	spinlock_t *ptl;
5915 	int ret = -ENOMEM;
5916 	struct page *page;
5917 	int writable;
5918 	bool page_in_pagecache = false;
5919 
5920 	if (is_continue) {
5921 		ret = -EFAULT;
5922 		page = find_lock_page(mapping, idx);
5923 		if (!page)
5924 			goto out;
5925 		page_in_pagecache = true;
5926 	} else if (!*pagep) {
5927 		/* If a page already exists, then it's UFFDIO_COPY for
5928 		 * a non-missing case. Return -EEXIST.
5929 		 */
5930 		if (vm_shared &&
5931 		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
5932 			ret = -EEXIST;
5933 			goto out;
5934 		}
5935 
5936 		page = alloc_huge_page(dst_vma, dst_addr, 0);
5937 		if (IS_ERR(page)) {
5938 			ret = -ENOMEM;
5939 			goto out;
5940 		}
5941 
5942 		ret = copy_huge_page_from_user(page,
5943 						(const void __user *) src_addr,
5944 						pages_per_huge_page(h), false);
5945 
5946 		/* fallback to copy_from_user outside mmap_lock */
5947 		if (unlikely(ret)) {
5948 			ret = -ENOENT;
5949 			/* Free the allocated page which may have
5950 			 * consumed a reservation.
5951 			 */
5952 			restore_reserve_on_error(h, dst_vma, dst_addr, page);
5953 			put_page(page);
5954 
5955 			/* Allocate a temporary page to hold the copied
5956 			 * contents.
5957 			 */
5958 			page = alloc_huge_page_vma(h, dst_vma, dst_addr);
5959 			if (!page) {
5960 				ret = -ENOMEM;
5961 				goto out;
5962 			}
5963 			*pagep = page;
5964 			/* Set the outparam pagep and return to the caller to
5965 			 * copy the contents outside the lock. Don't free the
5966 			 * page.
5967 			 */
5968 			goto out;
5969 		}
5970 	} else {
5971 		if (vm_shared &&
5972 		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
5973 			put_page(*pagep);
5974 			ret = -EEXIST;
5975 			*pagep = NULL;
5976 			goto out;
5977 		}
5978 
5979 		page = alloc_huge_page(dst_vma, dst_addr, 0);
5980 		if (IS_ERR(page)) {
5981 			put_page(*pagep);
5982 			ret = -ENOMEM;
5983 			*pagep = NULL;
5984 			goto out;
5985 		}
5986 		copy_user_huge_page(page, *pagep, dst_addr, dst_vma,
5987 				    pages_per_huge_page(h));
5988 		put_page(*pagep);
5989 		*pagep = NULL;
5990 	}
5991 
5992 	/*
5993 	 * The memory barrier inside __SetPageUptodate makes sure that
5994 	 * preceding stores to the page contents become visible before
5995 	 * the set_pte_at() write.
5996 	 */
5997 	__SetPageUptodate(page);
5998 
5999 	/* Add shared, newly allocated pages to the page cache. */
6000 	if (vm_shared && !is_continue) {
6001 		size = i_size_read(mapping->host) >> huge_page_shift(h);
6002 		ret = -EFAULT;
6003 		if (idx >= size)
6004 			goto out_release_nounlock;
6005 
6006 		/*
6007 		 * Serialization between remove_inode_hugepages() and
6008 		 * huge_add_to_page_cache() below happens through the
6009 		 * hugetlb_fault_mutex_table that here must be hold by
6010 		 * the caller.
6011 		 */
6012 		ret = huge_add_to_page_cache(page, mapping, idx);
6013 		if (ret)
6014 			goto out_release_nounlock;
6015 		page_in_pagecache = true;
6016 	}
6017 
6018 	ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
6019 	spin_lock(ptl);
6020 
6021 	/*
6022 	 * Recheck the i_size after holding PT lock to make sure not
6023 	 * to leave any page mapped (as page_mapped()) beyond the end
6024 	 * of the i_size (remove_inode_hugepages() is strict about
6025 	 * enforcing that). If we bail out here, we'll also leave a
6026 	 * page in the radix tree in the vm_shared case beyond the end
6027 	 * of the i_size, but remove_inode_hugepages() will take care
6028 	 * of it as soon as we drop the hugetlb_fault_mutex_table.
6029 	 */
6030 	size = i_size_read(mapping->host) >> huge_page_shift(h);
6031 	ret = -EFAULT;
6032 	if (idx >= size)
6033 		goto out_release_unlock;
6034 
6035 	ret = -EEXIST;
6036 	/*
6037 	 * We allow to overwrite a pte marker: consider when both MISSING|WP
6038 	 * registered, we firstly wr-protect a none pte which has no page cache
6039 	 * page backing it, then access the page.
6040 	 */
6041 	if (!huge_pte_none_mostly(huge_ptep_get(dst_pte)))
6042 		goto out_release_unlock;
6043 
6044 	if (page_in_pagecache) {
6045 		page_dup_file_rmap(page, true);
6046 	} else {
6047 		ClearHPageRestoreReserve(page);
6048 		hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
6049 	}
6050 
6051 	/*
6052 	 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6053 	 * with wp flag set, don't set pte write bit.
6054 	 */
6055 	if (wp_copy || (is_continue && !vm_shared))
6056 		writable = 0;
6057 	else
6058 		writable = dst_vma->vm_flags & VM_WRITE;
6059 
6060 	_dst_pte = make_huge_pte(dst_vma, page, writable);
6061 	/*
6062 	 * Always mark UFFDIO_COPY page dirty; note that this may not be
6063 	 * extremely important for hugetlbfs for now since swapping is not
6064 	 * supported, but we should still be clear in that this page cannot be
6065 	 * thrown away at will, even if write bit not set.
6066 	 */
6067 	_dst_pte = huge_pte_mkdirty(_dst_pte);
6068 	_dst_pte = pte_mkyoung(_dst_pte);
6069 
6070 	if (wp_copy)
6071 		_dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6072 
6073 	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
6074 
6075 	hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6076 
6077 	/* No need to invalidate - it was non-present before */
6078 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
6079 
6080 	spin_unlock(ptl);
6081 	if (!is_continue)
6082 		SetHPageMigratable(page);
6083 	if (vm_shared || is_continue)
6084 		unlock_page(page);
6085 	ret = 0;
6086 out:
6087 	return ret;
6088 out_release_unlock:
6089 	spin_unlock(ptl);
6090 	if (vm_shared || is_continue)
6091 		unlock_page(page);
6092 out_release_nounlock:
6093 	if (!page_in_pagecache)
6094 		restore_reserve_on_error(h, dst_vma, dst_addr, page);
6095 	put_page(page);
6096 	goto out;
6097 }
6098 #endif /* CONFIG_USERFAULTFD */
6099 
6100 static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
6101 				 int refs, struct page **pages,
6102 				 struct vm_area_struct **vmas)
6103 {
6104 	int nr;
6105 
6106 	for (nr = 0; nr < refs; nr++) {
6107 		if (likely(pages))
6108 			pages[nr] = mem_map_offset(page, nr);
6109 		if (vmas)
6110 			vmas[nr] = vma;
6111 	}
6112 }
6113 
6114 static inline bool __follow_hugetlb_must_fault(unsigned int flags, pte_t *pte,
6115 					       bool *unshare)
6116 {
6117 	pte_t pteval = huge_ptep_get(pte);
6118 
6119 	*unshare = false;
6120 	if (is_swap_pte(pteval))
6121 		return true;
6122 	if (huge_pte_write(pteval))
6123 		return false;
6124 	if (flags & FOLL_WRITE)
6125 		return true;
6126 	if (gup_must_unshare(flags, pte_page(pteval))) {
6127 		*unshare = true;
6128 		return true;
6129 	}
6130 	return false;
6131 }
6132 
6133 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
6134 			 struct page **pages, struct vm_area_struct **vmas,
6135 			 unsigned long *position, unsigned long *nr_pages,
6136 			 long i, unsigned int flags, int *locked)
6137 {
6138 	unsigned long pfn_offset;
6139 	unsigned long vaddr = *position;
6140 	unsigned long remainder = *nr_pages;
6141 	struct hstate *h = hstate_vma(vma);
6142 	int err = -EFAULT, refs;
6143 
6144 	while (vaddr < vma->vm_end && remainder) {
6145 		pte_t *pte;
6146 		spinlock_t *ptl = NULL;
6147 		bool unshare = false;
6148 		int absent;
6149 		struct page *page;
6150 
6151 		/*
6152 		 * If we have a pending SIGKILL, don't keep faulting pages and
6153 		 * potentially allocating memory.
6154 		 */
6155 		if (fatal_signal_pending(current)) {
6156 			remainder = 0;
6157 			break;
6158 		}
6159 
6160 		/*
6161 		 * Some archs (sparc64, sh*) have multiple pte_ts to
6162 		 * each hugepage.  We have to make sure we get the
6163 		 * first, for the page indexing below to work.
6164 		 *
6165 		 * Note that page table lock is not held when pte is null.
6166 		 */
6167 		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
6168 				      huge_page_size(h));
6169 		if (pte)
6170 			ptl = huge_pte_lock(h, mm, pte);
6171 		absent = !pte || huge_pte_none(huge_ptep_get(pte));
6172 
6173 		/*
6174 		 * When coredumping, it suits get_dump_page if we just return
6175 		 * an error where there's an empty slot with no huge pagecache
6176 		 * to back it.  This way, we avoid allocating a hugepage, and
6177 		 * the sparse dumpfile avoids allocating disk blocks, but its
6178 		 * huge holes still show up with zeroes where they need to be.
6179 		 */
6180 		if (absent && (flags & FOLL_DUMP) &&
6181 		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
6182 			if (pte)
6183 				spin_unlock(ptl);
6184 			remainder = 0;
6185 			break;
6186 		}
6187 
6188 		/*
6189 		 * We need call hugetlb_fault for both hugepages under migration
6190 		 * (in which case hugetlb_fault waits for the migration,) and
6191 		 * hwpoisoned hugepages (in which case we need to prevent the
6192 		 * caller from accessing to them.) In order to do this, we use
6193 		 * here is_swap_pte instead of is_hugetlb_entry_migration and
6194 		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
6195 		 * both cases, and because we can't follow correct pages
6196 		 * directly from any kind of swap entries.
6197 		 */
6198 		if (absent ||
6199 		    __follow_hugetlb_must_fault(flags, pte, &unshare)) {
6200 			vm_fault_t ret;
6201 			unsigned int fault_flags = 0;
6202 
6203 			if (pte)
6204 				spin_unlock(ptl);
6205 			if (flags & FOLL_WRITE)
6206 				fault_flags |= FAULT_FLAG_WRITE;
6207 			else if (unshare)
6208 				fault_flags |= FAULT_FLAG_UNSHARE;
6209 			if (locked)
6210 				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6211 					FAULT_FLAG_KILLABLE;
6212 			if (flags & FOLL_NOWAIT)
6213 				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6214 					FAULT_FLAG_RETRY_NOWAIT;
6215 			if (flags & FOLL_TRIED) {
6216 				/*
6217 				 * Note: FAULT_FLAG_ALLOW_RETRY and
6218 				 * FAULT_FLAG_TRIED can co-exist
6219 				 */
6220 				fault_flags |= FAULT_FLAG_TRIED;
6221 			}
6222 			ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
6223 			if (ret & VM_FAULT_ERROR) {
6224 				err = vm_fault_to_errno(ret, flags);
6225 				remainder = 0;
6226 				break;
6227 			}
6228 			if (ret & VM_FAULT_RETRY) {
6229 				if (locked &&
6230 				    !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
6231 					*locked = 0;
6232 				*nr_pages = 0;
6233 				/*
6234 				 * VM_FAULT_RETRY must not return an
6235 				 * error, it will return zero
6236 				 * instead.
6237 				 *
6238 				 * No need to update "position" as the
6239 				 * caller will not check it after
6240 				 * *nr_pages is set to 0.
6241 				 */
6242 				return i;
6243 			}
6244 			continue;
6245 		}
6246 
6247 		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
6248 		page = pte_page(huge_ptep_get(pte));
6249 
6250 		VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
6251 			       !PageAnonExclusive(page), page);
6252 
6253 		/*
6254 		 * If subpage information not requested, update counters
6255 		 * and skip the same_page loop below.
6256 		 */
6257 		if (!pages && !vmas && !pfn_offset &&
6258 		    (vaddr + huge_page_size(h) < vma->vm_end) &&
6259 		    (remainder >= pages_per_huge_page(h))) {
6260 			vaddr += huge_page_size(h);
6261 			remainder -= pages_per_huge_page(h);
6262 			i += pages_per_huge_page(h);
6263 			spin_unlock(ptl);
6264 			continue;
6265 		}
6266 
6267 		/* vaddr may not be aligned to PAGE_SIZE */
6268 		refs = min3(pages_per_huge_page(h) - pfn_offset, remainder,
6269 		    (vma->vm_end - ALIGN_DOWN(vaddr, PAGE_SIZE)) >> PAGE_SHIFT);
6270 
6271 		if (pages || vmas)
6272 			record_subpages_vmas(mem_map_offset(page, pfn_offset),
6273 					     vma, refs,
6274 					     likely(pages) ? pages + i : NULL,
6275 					     vmas ? vmas + i : NULL);
6276 
6277 		if (pages) {
6278 			/*
6279 			 * try_grab_folio() should always succeed here,
6280 			 * because: a) we hold the ptl lock, and b) we've just
6281 			 * checked that the huge page is present in the page
6282 			 * tables. If the huge page is present, then the tail
6283 			 * pages must also be present. The ptl prevents the
6284 			 * head page and tail pages from being rearranged in
6285 			 * any way. So this page must be available at this
6286 			 * point, unless the page refcount overflowed:
6287 			 */
6288 			if (WARN_ON_ONCE(!try_grab_folio(pages[i], refs,
6289 							 flags))) {
6290 				spin_unlock(ptl);
6291 				remainder = 0;
6292 				err = -ENOMEM;
6293 				break;
6294 			}
6295 		}
6296 
6297 		vaddr += (refs << PAGE_SHIFT);
6298 		remainder -= refs;
6299 		i += refs;
6300 
6301 		spin_unlock(ptl);
6302 	}
6303 	*nr_pages = remainder;
6304 	/*
6305 	 * setting position is actually required only if remainder is
6306 	 * not zero but it's faster not to add a "if (remainder)"
6307 	 * branch.
6308 	 */
6309 	*position = vaddr;
6310 
6311 	return i ? i : err;
6312 }
6313 
6314 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
6315 		unsigned long address, unsigned long end,
6316 		pgprot_t newprot, unsigned long cp_flags)
6317 {
6318 	struct mm_struct *mm = vma->vm_mm;
6319 	unsigned long start = address;
6320 	pte_t *ptep;
6321 	pte_t pte;
6322 	struct hstate *h = hstate_vma(vma);
6323 	unsigned long pages = 0, psize = huge_page_size(h);
6324 	bool shared_pmd = false;
6325 	struct mmu_notifier_range range;
6326 	unsigned long last_addr_mask;
6327 	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6328 	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
6329 
6330 	/*
6331 	 * In the case of shared PMDs, the area to flush could be beyond
6332 	 * start/end.  Set range.start/range.end to cover the maximum possible
6333 	 * range if PMD sharing is possible.
6334 	 */
6335 	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6336 				0, vma, mm, start, end);
6337 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6338 
6339 	BUG_ON(address >= end);
6340 	flush_cache_range(vma, range.start, range.end);
6341 
6342 	mmu_notifier_invalidate_range_start(&range);
6343 	last_addr_mask = hugetlb_mask_last_page(h);
6344 	i_mmap_lock_write(vma->vm_file->f_mapping);
6345 	for (; address < end; address += psize) {
6346 		spinlock_t *ptl;
6347 		ptep = huge_pte_offset(mm, address, psize);
6348 		if (!ptep) {
6349 			address |= last_addr_mask;
6350 			continue;
6351 		}
6352 		ptl = huge_pte_lock(h, mm, ptep);
6353 		if (huge_pmd_unshare(mm, vma, address, ptep)) {
6354 			/*
6355 			 * When uffd-wp is enabled on the vma, unshare
6356 			 * shouldn't happen at all.  Warn about it if it
6357 			 * happened due to some reason.
6358 			 */
6359 			WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
6360 			pages++;
6361 			spin_unlock(ptl);
6362 			shared_pmd = true;
6363 			address |= last_addr_mask;
6364 			continue;
6365 		}
6366 		pte = huge_ptep_get(ptep);
6367 		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6368 			spin_unlock(ptl);
6369 			continue;
6370 		}
6371 		if (unlikely(is_hugetlb_entry_migration(pte))) {
6372 			swp_entry_t entry = pte_to_swp_entry(pte);
6373 			struct page *page = pfn_swap_entry_to_page(entry);
6374 
6375 			if (!is_readable_migration_entry(entry)) {
6376 				pte_t newpte;
6377 
6378 				if (PageAnon(page))
6379 					entry = make_readable_exclusive_migration_entry(
6380 								swp_offset(entry));
6381 				else
6382 					entry = make_readable_migration_entry(
6383 								swp_offset(entry));
6384 				newpte = swp_entry_to_pte(entry);
6385 				if (uffd_wp)
6386 					newpte = pte_swp_mkuffd_wp(newpte);
6387 				else if (uffd_wp_resolve)
6388 					newpte = pte_swp_clear_uffd_wp(newpte);
6389 				set_huge_pte_at(mm, address, ptep, newpte);
6390 				pages++;
6391 			}
6392 			spin_unlock(ptl);
6393 			continue;
6394 		}
6395 		if (unlikely(pte_marker_uffd_wp(pte))) {
6396 			/*
6397 			 * This is changing a non-present pte into a none pte,
6398 			 * no need for huge_ptep_modify_prot_start/commit().
6399 			 */
6400 			if (uffd_wp_resolve)
6401 				huge_pte_clear(mm, address, ptep, psize);
6402 		}
6403 		if (!huge_pte_none(pte)) {
6404 			pte_t old_pte;
6405 			unsigned int shift = huge_page_shift(hstate_vma(vma));
6406 
6407 			old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6408 			pte = huge_pte_modify(old_pte, newprot);
6409 			pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6410 			if (uffd_wp)
6411 				pte = huge_pte_mkuffd_wp(huge_pte_wrprotect(pte));
6412 			else if (uffd_wp_resolve)
6413 				pte = huge_pte_clear_uffd_wp(pte);
6414 			huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6415 			pages++;
6416 		} else {
6417 			/* None pte */
6418 			if (unlikely(uffd_wp))
6419 				/* Safe to modify directly (none->non-present). */
6420 				set_huge_pte_at(mm, address, ptep,
6421 						make_pte_marker(PTE_MARKER_UFFD_WP));
6422 		}
6423 		spin_unlock(ptl);
6424 	}
6425 	/*
6426 	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
6427 	 * may have cleared our pud entry and done put_page on the page table:
6428 	 * once we release i_mmap_rwsem, another task can do the final put_page
6429 	 * and that page table be reused and filled with junk.  If we actually
6430 	 * did unshare a page of pmds, flush the range corresponding to the pud.
6431 	 */
6432 	if (shared_pmd)
6433 		flush_hugetlb_tlb_range(vma, range.start, range.end);
6434 	else
6435 		flush_hugetlb_tlb_range(vma, start, end);
6436 	/*
6437 	 * No need to call mmu_notifier_invalidate_range() we are downgrading
6438 	 * page table protection not changing it to point to a new page.
6439 	 *
6440 	 * See Documentation/mm/mmu_notifier.rst
6441 	 */
6442 	i_mmap_unlock_write(vma->vm_file->f_mapping);
6443 	mmu_notifier_invalidate_range_end(&range);
6444 
6445 	return pages << h->order;
6446 }
6447 
6448 /* Return true if reservation was successful, false otherwise.  */
6449 bool hugetlb_reserve_pages(struct inode *inode,
6450 					long from, long to,
6451 					struct vm_area_struct *vma,
6452 					vm_flags_t vm_flags)
6453 {
6454 	long chg, add = -1;
6455 	struct hstate *h = hstate_inode(inode);
6456 	struct hugepage_subpool *spool = subpool_inode(inode);
6457 	struct resv_map *resv_map;
6458 	struct hugetlb_cgroup *h_cg = NULL;
6459 	long gbl_reserve, regions_needed = 0;
6460 
6461 	/* This should never happen */
6462 	if (from > to) {
6463 		VM_WARN(1, "%s called with a negative range\n", __func__);
6464 		return false;
6465 	}
6466 
6467 	/*
6468 	 * Only apply hugepage reservation if asked. At fault time, an
6469 	 * attempt will be made for VM_NORESERVE to allocate a page
6470 	 * without using reserves
6471 	 */
6472 	if (vm_flags & VM_NORESERVE)
6473 		return true;
6474 
6475 	/*
6476 	 * Shared mappings base their reservation on the number of pages that
6477 	 * are already allocated on behalf of the file. Private mappings need
6478 	 * to reserve the full area even if read-only as mprotect() may be
6479 	 * called to make the mapping read-write. Assume !vma is a shm mapping
6480 	 */
6481 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
6482 		/*
6483 		 * resv_map can not be NULL as hugetlb_reserve_pages is only
6484 		 * called for inodes for which resv_maps were created (see
6485 		 * hugetlbfs_get_inode).
6486 		 */
6487 		resv_map = inode_resv_map(inode);
6488 
6489 		chg = region_chg(resv_map, from, to, &regions_needed);
6490 
6491 	} else {
6492 		/* Private mapping. */
6493 		resv_map = resv_map_alloc();
6494 		if (!resv_map)
6495 			return false;
6496 
6497 		chg = to - from;
6498 
6499 		set_vma_resv_map(vma, resv_map);
6500 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
6501 	}
6502 
6503 	if (chg < 0)
6504 		goto out_err;
6505 
6506 	if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
6507 				chg * pages_per_huge_page(h), &h_cg) < 0)
6508 		goto out_err;
6509 
6510 	if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
6511 		/* For private mappings, the hugetlb_cgroup uncharge info hangs
6512 		 * of the resv_map.
6513 		 */
6514 		resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
6515 	}
6516 
6517 	/*
6518 	 * There must be enough pages in the subpool for the mapping. If
6519 	 * the subpool has a minimum size, there may be some global
6520 	 * reservations already in place (gbl_reserve).
6521 	 */
6522 	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
6523 	if (gbl_reserve < 0)
6524 		goto out_uncharge_cgroup;
6525 
6526 	/*
6527 	 * Check enough hugepages are available for the reservation.
6528 	 * Hand the pages back to the subpool if there are not
6529 	 */
6530 	if (hugetlb_acct_memory(h, gbl_reserve) < 0)
6531 		goto out_put_pages;
6532 
6533 	/*
6534 	 * Account for the reservations made. Shared mappings record regions
6535 	 * that have reservations as they are shared by multiple VMAs.
6536 	 * When the last VMA disappears, the region map says how much
6537 	 * the reservation was and the page cache tells how much of
6538 	 * the reservation was consumed. Private mappings are per-VMA and
6539 	 * only the consumed reservations are tracked. When the VMA
6540 	 * disappears, the original reservation is the VMA size and the
6541 	 * consumed reservations are stored in the map. Hence, nothing
6542 	 * else has to be done for private mappings here
6543 	 */
6544 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
6545 		add = region_add(resv_map, from, to, regions_needed, h, h_cg);
6546 
6547 		if (unlikely(add < 0)) {
6548 			hugetlb_acct_memory(h, -gbl_reserve);
6549 			goto out_put_pages;
6550 		} else if (unlikely(chg > add)) {
6551 			/*
6552 			 * pages in this range were added to the reserve
6553 			 * map between region_chg and region_add.  This
6554 			 * indicates a race with alloc_huge_page.  Adjust
6555 			 * the subpool and reserve counts modified above
6556 			 * based on the difference.
6557 			 */
6558 			long rsv_adjust;
6559 
6560 			/*
6561 			 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
6562 			 * reference to h_cg->css. See comment below for detail.
6563 			 */
6564 			hugetlb_cgroup_uncharge_cgroup_rsvd(
6565 				hstate_index(h),
6566 				(chg - add) * pages_per_huge_page(h), h_cg);
6567 
6568 			rsv_adjust = hugepage_subpool_put_pages(spool,
6569 								chg - add);
6570 			hugetlb_acct_memory(h, -rsv_adjust);
6571 		} else if (h_cg) {
6572 			/*
6573 			 * The file_regions will hold their own reference to
6574 			 * h_cg->css. So we should release the reference held
6575 			 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
6576 			 * done.
6577 			 */
6578 			hugetlb_cgroup_put_rsvd_cgroup(h_cg);
6579 		}
6580 	}
6581 	return true;
6582 
6583 out_put_pages:
6584 	/* put back original number of pages, chg */
6585 	(void)hugepage_subpool_put_pages(spool, chg);
6586 out_uncharge_cgroup:
6587 	hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
6588 					    chg * pages_per_huge_page(h), h_cg);
6589 out_err:
6590 	if (!vma || vma->vm_flags & VM_MAYSHARE)
6591 		/* Only call region_abort if the region_chg succeeded but the
6592 		 * region_add failed or didn't run.
6593 		 */
6594 		if (chg >= 0 && add < 0)
6595 			region_abort(resv_map, from, to, regions_needed);
6596 	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
6597 		kref_put(&resv_map->refs, resv_map_release);
6598 	return false;
6599 }
6600 
6601 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
6602 								long freed)
6603 {
6604 	struct hstate *h = hstate_inode(inode);
6605 	struct resv_map *resv_map = inode_resv_map(inode);
6606 	long chg = 0;
6607 	struct hugepage_subpool *spool = subpool_inode(inode);
6608 	long gbl_reserve;
6609 
6610 	/*
6611 	 * Since this routine can be called in the evict inode path for all
6612 	 * hugetlbfs inodes, resv_map could be NULL.
6613 	 */
6614 	if (resv_map) {
6615 		chg = region_del(resv_map, start, end);
6616 		/*
6617 		 * region_del() can fail in the rare case where a region
6618 		 * must be split and another region descriptor can not be
6619 		 * allocated.  If end == LONG_MAX, it will not fail.
6620 		 */
6621 		if (chg < 0)
6622 			return chg;
6623 	}
6624 
6625 	spin_lock(&inode->i_lock);
6626 	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
6627 	spin_unlock(&inode->i_lock);
6628 
6629 	/*
6630 	 * If the subpool has a minimum size, the number of global
6631 	 * reservations to be released may be adjusted.
6632 	 *
6633 	 * Note that !resv_map implies freed == 0. So (chg - freed)
6634 	 * won't go negative.
6635 	 */
6636 	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
6637 	hugetlb_acct_memory(h, -gbl_reserve);
6638 
6639 	return 0;
6640 }
6641 
6642 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
6643 static unsigned long page_table_shareable(struct vm_area_struct *svma,
6644 				struct vm_area_struct *vma,
6645 				unsigned long addr, pgoff_t idx)
6646 {
6647 	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
6648 				svma->vm_start;
6649 	unsigned long sbase = saddr & PUD_MASK;
6650 	unsigned long s_end = sbase + PUD_SIZE;
6651 
6652 	/* Allow segments to share if only one is marked locked */
6653 	unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
6654 	unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
6655 
6656 	/*
6657 	 * match the virtual addresses, permission and the alignment of the
6658 	 * page table page.
6659 	 */
6660 	if (pmd_index(addr) != pmd_index(saddr) ||
6661 	    vm_flags != svm_flags ||
6662 	    !range_in_vma(svma, sbase, s_end))
6663 		return 0;
6664 
6665 	return saddr;
6666 }
6667 
6668 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
6669 {
6670 	unsigned long base = addr & PUD_MASK;
6671 	unsigned long end = base + PUD_SIZE;
6672 
6673 	/*
6674 	 * check on proper vm_flags and page table alignment
6675 	 */
6676 	if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
6677 		return true;
6678 	return false;
6679 }
6680 
6681 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6682 {
6683 #ifdef CONFIG_USERFAULTFD
6684 	if (uffd_disable_huge_pmd_share(vma))
6685 		return false;
6686 #endif
6687 	return vma_shareable(vma, addr);
6688 }
6689 
6690 /*
6691  * Determine if start,end range within vma could be mapped by shared pmd.
6692  * If yes, adjust start and end to cover range associated with possible
6693  * shared pmd mappings.
6694  */
6695 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
6696 				unsigned long *start, unsigned long *end)
6697 {
6698 	unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
6699 		v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
6700 
6701 	/*
6702 	 * vma needs to span at least one aligned PUD size, and the range
6703 	 * must be at least partially within in.
6704 	 */
6705 	if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
6706 		(*end <= v_start) || (*start >= v_end))
6707 		return;
6708 
6709 	/* Extend the range to be PUD aligned for a worst case scenario */
6710 	if (*start > v_start)
6711 		*start = ALIGN_DOWN(*start, PUD_SIZE);
6712 
6713 	if (*end < v_end)
6714 		*end = ALIGN(*end, PUD_SIZE);
6715 }
6716 
6717 /*
6718  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
6719  * and returns the corresponding pte. While this is not necessary for the
6720  * !shared pmd case because we can allocate the pmd later as well, it makes the
6721  * code much cleaner.
6722  *
6723  * This routine must be called with i_mmap_rwsem held in at least read mode if
6724  * sharing is possible.  For hugetlbfs, this prevents removal of any page
6725  * table entries associated with the address space.  This is important as we
6726  * are setting up sharing based on existing page table entries (mappings).
6727  */
6728 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
6729 		      unsigned long addr, pud_t *pud)
6730 {
6731 	struct address_space *mapping = vma->vm_file->f_mapping;
6732 	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
6733 			vma->vm_pgoff;
6734 	struct vm_area_struct *svma;
6735 	unsigned long saddr;
6736 	pte_t *spte = NULL;
6737 	pte_t *pte;
6738 	spinlock_t *ptl;
6739 
6740 	i_mmap_assert_locked(mapping);
6741 	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
6742 		if (svma == vma)
6743 			continue;
6744 
6745 		saddr = page_table_shareable(svma, vma, addr, idx);
6746 		if (saddr) {
6747 			spte = huge_pte_offset(svma->vm_mm, saddr,
6748 					       vma_mmu_pagesize(svma));
6749 			if (spte) {
6750 				get_page(virt_to_page(spte));
6751 				break;
6752 			}
6753 		}
6754 	}
6755 
6756 	if (!spte)
6757 		goto out;
6758 
6759 	ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
6760 	if (pud_none(*pud)) {
6761 		pud_populate(mm, pud,
6762 				(pmd_t *)((unsigned long)spte & PAGE_MASK));
6763 		mm_inc_nr_pmds(mm);
6764 	} else {
6765 		put_page(virt_to_page(spte));
6766 	}
6767 	spin_unlock(ptl);
6768 out:
6769 	pte = (pte_t *)pmd_alloc(mm, pud, addr);
6770 	return pte;
6771 }
6772 
6773 /*
6774  * unmap huge page backed by shared pte.
6775  *
6776  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
6777  * indicated by page_count > 1, unmap is achieved by clearing pud and
6778  * decrementing the ref count. If count == 1, the pte page is not shared.
6779  *
6780  * Called with page table lock held and i_mmap_rwsem held in write mode.
6781  *
6782  * returns: 1 successfully unmapped a shared pte page
6783  *	    0 the underlying pte page is not shared, or it is the last user
6784  */
6785 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
6786 					unsigned long addr, pte_t *ptep)
6787 {
6788 	pgd_t *pgd = pgd_offset(mm, addr);
6789 	p4d_t *p4d = p4d_offset(pgd, addr);
6790 	pud_t *pud = pud_offset(p4d, addr);
6791 
6792 	i_mmap_assert_write_locked(vma->vm_file->f_mapping);
6793 	BUG_ON(page_count(virt_to_page(ptep)) == 0);
6794 	if (page_count(virt_to_page(ptep)) == 1)
6795 		return 0;
6796 
6797 	pud_clear(pud);
6798 	put_page(virt_to_page(ptep));
6799 	mm_dec_nr_pmds(mm);
6800 	return 1;
6801 }
6802 
6803 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
6804 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
6805 		      unsigned long addr, pud_t *pud)
6806 {
6807 	return NULL;
6808 }
6809 
6810 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
6811 				unsigned long addr, pte_t *ptep)
6812 {
6813 	return 0;
6814 }
6815 
6816 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
6817 				unsigned long *start, unsigned long *end)
6818 {
6819 }
6820 
6821 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6822 {
6823 	return false;
6824 }
6825 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
6826 
6827 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
6828 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
6829 			unsigned long addr, unsigned long sz)
6830 {
6831 	pgd_t *pgd;
6832 	p4d_t *p4d;
6833 	pud_t *pud;
6834 	pte_t *pte = NULL;
6835 
6836 	pgd = pgd_offset(mm, addr);
6837 	p4d = p4d_alloc(mm, pgd, addr);
6838 	if (!p4d)
6839 		return NULL;
6840 	pud = pud_alloc(mm, p4d, addr);
6841 	if (pud) {
6842 		if (sz == PUD_SIZE) {
6843 			pte = (pte_t *)pud;
6844 		} else {
6845 			BUG_ON(sz != PMD_SIZE);
6846 			if (want_pmd_share(vma, addr) && pud_none(*pud))
6847 				pte = huge_pmd_share(mm, vma, addr, pud);
6848 			else
6849 				pte = (pte_t *)pmd_alloc(mm, pud, addr);
6850 		}
6851 	}
6852 	BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
6853 
6854 	return pte;
6855 }
6856 
6857 /*
6858  * huge_pte_offset() - Walk the page table to resolve the hugepage
6859  * entry at address @addr
6860  *
6861  * Return: Pointer to page table entry (PUD or PMD) for
6862  * address @addr, or NULL if a !p*d_present() entry is encountered and the
6863  * size @sz doesn't match the hugepage size at this level of the page
6864  * table.
6865  */
6866 pte_t *huge_pte_offset(struct mm_struct *mm,
6867 		       unsigned long addr, unsigned long sz)
6868 {
6869 	pgd_t *pgd;
6870 	p4d_t *p4d;
6871 	pud_t *pud;
6872 	pmd_t *pmd;
6873 
6874 	pgd = pgd_offset(mm, addr);
6875 	if (!pgd_present(*pgd))
6876 		return NULL;
6877 	p4d = p4d_offset(pgd, addr);
6878 	if (!p4d_present(*p4d))
6879 		return NULL;
6880 
6881 	pud = pud_offset(p4d, addr);
6882 	if (sz == PUD_SIZE)
6883 		/* must be pud huge, non-present or none */
6884 		return (pte_t *)pud;
6885 	if (!pud_present(*pud))
6886 		return NULL;
6887 	/* must have a valid entry and size to go further */
6888 
6889 	pmd = pmd_offset(pud, addr);
6890 	/* must be pmd huge, non-present or none */
6891 	return (pte_t *)pmd;
6892 }
6893 
6894 /*
6895  * Return a mask that can be used to update an address to the last huge
6896  * page in a page table page mapping size.  Used to skip non-present
6897  * page table entries when linearly scanning address ranges.  Architectures
6898  * with unique huge page to page table relationships can define their own
6899  * version of this routine.
6900  */
6901 unsigned long hugetlb_mask_last_page(struct hstate *h)
6902 {
6903 	unsigned long hp_size = huge_page_size(h);
6904 
6905 	if (hp_size == PUD_SIZE)
6906 		return P4D_SIZE - PUD_SIZE;
6907 	else if (hp_size == PMD_SIZE)
6908 		return PUD_SIZE - PMD_SIZE;
6909 	else
6910 		return 0UL;
6911 }
6912 
6913 #else
6914 
6915 /* See description above.  Architectures can provide their own version. */
6916 __weak unsigned long hugetlb_mask_last_page(struct hstate *h)
6917 {
6918 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
6919 	if (huge_page_size(h) == PMD_SIZE)
6920 		return PUD_SIZE - PMD_SIZE;
6921 #endif
6922 	return 0UL;
6923 }
6924 
6925 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
6926 
6927 /*
6928  * These functions are overwritable if your architecture needs its own
6929  * behavior.
6930  */
6931 struct page * __weak
6932 follow_huge_addr(struct mm_struct *mm, unsigned long address,
6933 			      int write)
6934 {
6935 	return ERR_PTR(-EINVAL);
6936 }
6937 
6938 struct page * __weak
6939 follow_huge_pd(struct vm_area_struct *vma,
6940 	       unsigned long address, hugepd_t hpd, int flags, int pdshift)
6941 {
6942 	WARN(1, "hugepd follow called with no support for hugepage directory format\n");
6943 	return NULL;
6944 }
6945 
6946 struct page * __weak
6947 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
6948 		pmd_t *pmd, int flags)
6949 {
6950 	struct page *page = NULL;
6951 	spinlock_t *ptl;
6952 	pte_t pte;
6953 
6954 	/*
6955 	 * FOLL_PIN is not supported for follow_page(). Ordinary GUP goes via
6956 	 * follow_hugetlb_page().
6957 	 */
6958 	if (WARN_ON_ONCE(flags & FOLL_PIN))
6959 		return NULL;
6960 
6961 retry:
6962 	ptl = pmd_lockptr(mm, pmd);
6963 	spin_lock(ptl);
6964 	/*
6965 	 * make sure that the address range covered by this pmd is not
6966 	 * unmapped from other threads.
6967 	 */
6968 	if (!pmd_huge(*pmd))
6969 		goto out;
6970 	pte = huge_ptep_get((pte_t *)pmd);
6971 	if (pte_present(pte)) {
6972 		page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
6973 		/*
6974 		 * try_grab_page() should always succeed here, because: a) we
6975 		 * hold the pmd (ptl) lock, and b) we've just checked that the
6976 		 * huge pmd (head) page is present in the page tables. The ptl
6977 		 * prevents the head page and tail pages from being rearranged
6978 		 * in any way. So this page must be available at this point,
6979 		 * unless the page refcount overflowed:
6980 		 */
6981 		if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
6982 			page = NULL;
6983 			goto out;
6984 		}
6985 	} else {
6986 		if (is_hugetlb_entry_migration(pte)) {
6987 			spin_unlock(ptl);
6988 			__migration_entry_wait_huge((pte_t *)pmd, ptl);
6989 			goto retry;
6990 		}
6991 		/*
6992 		 * hwpoisoned entry is treated as no_page_table in
6993 		 * follow_page_mask().
6994 		 */
6995 	}
6996 out:
6997 	spin_unlock(ptl);
6998 	return page;
6999 }
7000 
7001 struct page * __weak
7002 follow_huge_pud(struct mm_struct *mm, unsigned long address,
7003 		pud_t *pud, int flags)
7004 {
7005 	struct page *page = NULL;
7006 	spinlock_t *ptl;
7007 	pte_t pte;
7008 
7009 	if (WARN_ON_ONCE(flags & FOLL_PIN))
7010 		return NULL;
7011 
7012 retry:
7013 	ptl = huge_pte_lock(hstate_sizelog(PUD_SHIFT), mm, (pte_t *)pud);
7014 	if (!pud_huge(*pud))
7015 		goto out;
7016 	pte = huge_ptep_get((pte_t *)pud);
7017 	if (pte_present(pte)) {
7018 		page = pud_page(*pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
7019 		if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
7020 			page = NULL;
7021 			goto out;
7022 		}
7023 	} else {
7024 		if (is_hugetlb_entry_migration(pte)) {
7025 			spin_unlock(ptl);
7026 			__migration_entry_wait(mm, (pte_t *)pud, ptl);
7027 			goto retry;
7028 		}
7029 		/*
7030 		 * hwpoisoned entry is treated as no_page_table in
7031 		 * follow_page_mask().
7032 		 */
7033 	}
7034 out:
7035 	spin_unlock(ptl);
7036 	return page;
7037 }
7038 
7039 struct page * __weak
7040 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
7041 {
7042 	if (flags & (FOLL_GET | FOLL_PIN))
7043 		return NULL;
7044 
7045 	return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
7046 }
7047 
7048 int isolate_hugetlb(struct page *page, struct list_head *list)
7049 {
7050 	int ret = 0;
7051 
7052 	spin_lock_irq(&hugetlb_lock);
7053 	if (!PageHeadHuge(page) ||
7054 	    !HPageMigratable(page) ||
7055 	    !get_page_unless_zero(page)) {
7056 		ret = -EBUSY;
7057 		goto unlock;
7058 	}
7059 	ClearHPageMigratable(page);
7060 	list_move_tail(&page->lru, list);
7061 unlock:
7062 	spin_unlock_irq(&hugetlb_lock);
7063 	return ret;
7064 }
7065 
7066 int get_hwpoison_huge_page(struct page *page, bool *hugetlb)
7067 {
7068 	int ret = 0;
7069 
7070 	*hugetlb = false;
7071 	spin_lock_irq(&hugetlb_lock);
7072 	if (PageHeadHuge(page)) {
7073 		*hugetlb = true;
7074 		if (HPageFreed(page))
7075 			ret = 0;
7076 		else if (HPageMigratable(page))
7077 			ret = get_page_unless_zero(page);
7078 		else
7079 			ret = -EBUSY;
7080 	}
7081 	spin_unlock_irq(&hugetlb_lock);
7082 	return ret;
7083 }
7084 
7085 int get_huge_page_for_hwpoison(unsigned long pfn, int flags)
7086 {
7087 	int ret;
7088 
7089 	spin_lock_irq(&hugetlb_lock);
7090 	ret = __get_huge_page_for_hwpoison(pfn, flags);
7091 	spin_unlock_irq(&hugetlb_lock);
7092 	return ret;
7093 }
7094 
7095 void putback_active_hugepage(struct page *page)
7096 {
7097 	spin_lock_irq(&hugetlb_lock);
7098 	SetHPageMigratable(page);
7099 	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
7100 	spin_unlock_irq(&hugetlb_lock);
7101 	put_page(page);
7102 }
7103 
7104 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
7105 {
7106 	struct hstate *h = page_hstate(oldpage);
7107 
7108 	hugetlb_cgroup_migrate(oldpage, newpage);
7109 	set_page_owner_migrate_reason(newpage, reason);
7110 
7111 	/*
7112 	 * transfer temporary state of the new huge page. This is
7113 	 * reverse to other transitions because the newpage is going to
7114 	 * be final while the old one will be freed so it takes over
7115 	 * the temporary status.
7116 	 *
7117 	 * Also note that we have to transfer the per-node surplus state
7118 	 * here as well otherwise the global surplus count will not match
7119 	 * the per-node's.
7120 	 */
7121 	if (HPageTemporary(newpage)) {
7122 		int old_nid = page_to_nid(oldpage);
7123 		int new_nid = page_to_nid(newpage);
7124 
7125 		SetHPageTemporary(oldpage);
7126 		ClearHPageTemporary(newpage);
7127 
7128 		/*
7129 		 * There is no need to transfer the per-node surplus state
7130 		 * when we do not cross the node.
7131 		 */
7132 		if (new_nid == old_nid)
7133 			return;
7134 		spin_lock_irq(&hugetlb_lock);
7135 		if (h->surplus_huge_pages_node[old_nid]) {
7136 			h->surplus_huge_pages_node[old_nid]--;
7137 			h->surplus_huge_pages_node[new_nid]++;
7138 		}
7139 		spin_unlock_irq(&hugetlb_lock);
7140 	}
7141 }
7142 
7143 /*
7144  * This function will unconditionally remove all the shared pmd pgtable entries
7145  * within the specific vma for a hugetlbfs memory range.
7146  */
7147 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7148 {
7149 	struct hstate *h = hstate_vma(vma);
7150 	unsigned long sz = huge_page_size(h);
7151 	struct mm_struct *mm = vma->vm_mm;
7152 	struct mmu_notifier_range range;
7153 	unsigned long address, start, end;
7154 	spinlock_t *ptl;
7155 	pte_t *ptep;
7156 
7157 	if (!(vma->vm_flags & VM_MAYSHARE))
7158 		return;
7159 
7160 	start = ALIGN(vma->vm_start, PUD_SIZE);
7161 	end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
7162 
7163 	if (start >= end)
7164 		return;
7165 
7166 	flush_cache_range(vma, start, end);
7167 	/*
7168 	 * No need to call adjust_range_if_pmd_sharing_possible(), because
7169 	 * we have already done the PUD_SIZE alignment.
7170 	 */
7171 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
7172 				start, end);
7173 	mmu_notifier_invalidate_range_start(&range);
7174 	i_mmap_lock_write(vma->vm_file->f_mapping);
7175 	for (address = start; address < end; address += PUD_SIZE) {
7176 		ptep = huge_pte_offset(mm, address, sz);
7177 		if (!ptep)
7178 			continue;
7179 		ptl = huge_pte_lock(h, mm, ptep);
7180 		huge_pmd_unshare(mm, vma, address, ptep);
7181 		spin_unlock(ptl);
7182 	}
7183 	flush_hugetlb_tlb_range(vma, start, end);
7184 	i_mmap_unlock_write(vma->vm_file->f_mapping);
7185 	/*
7186 	 * No need to call mmu_notifier_invalidate_range(), see
7187 	 * Documentation/mm/mmu_notifier.rst.
7188 	 */
7189 	mmu_notifier_invalidate_range_end(&range);
7190 }
7191 
7192 #ifdef CONFIG_CMA
7193 static bool cma_reserve_called __initdata;
7194 
7195 static int __init cmdline_parse_hugetlb_cma(char *p)
7196 {
7197 	int nid, count = 0;
7198 	unsigned long tmp;
7199 	char *s = p;
7200 
7201 	while (*s) {
7202 		if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7203 			break;
7204 
7205 		if (s[count] == ':') {
7206 			if (tmp >= MAX_NUMNODES)
7207 				break;
7208 			nid = array_index_nospec(tmp, MAX_NUMNODES);
7209 
7210 			s += count + 1;
7211 			tmp = memparse(s, &s);
7212 			hugetlb_cma_size_in_node[nid] = tmp;
7213 			hugetlb_cma_size += tmp;
7214 
7215 			/*
7216 			 * Skip the separator if have one, otherwise
7217 			 * break the parsing.
7218 			 */
7219 			if (*s == ',')
7220 				s++;
7221 			else
7222 				break;
7223 		} else {
7224 			hugetlb_cma_size = memparse(p, &p);
7225 			break;
7226 		}
7227 	}
7228 
7229 	return 0;
7230 }
7231 
7232 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7233 
7234 void __init hugetlb_cma_reserve(int order)
7235 {
7236 	unsigned long size, reserved, per_node;
7237 	bool node_specific_cma_alloc = false;
7238 	int nid;
7239 
7240 	cma_reserve_called = true;
7241 
7242 	if (!hugetlb_cma_size)
7243 		return;
7244 
7245 	for (nid = 0; nid < MAX_NUMNODES; nid++) {
7246 		if (hugetlb_cma_size_in_node[nid] == 0)
7247 			continue;
7248 
7249 		if (!node_online(nid)) {
7250 			pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7251 			hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7252 			hugetlb_cma_size_in_node[nid] = 0;
7253 			continue;
7254 		}
7255 
7256 		if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7257 			pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7258 				nid, (PAGE_SIZE << order) / SZ_1M);
7259 			hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7260 			hugetlb_cma_size_in_node[nid] = 0;
7261 		} else {
7262 			node_specific_cma_alloc = true;
7263 		}
7264 	}
7265 
7266 	/* Validate the CMA size again in case some invalid nodes specified. */
7267 	if (!hugetlb_cma_size)
7268 		return;
7269 
7270 	if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7271 		pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7272 			(PAGE_SIZE << order) / SZ_1M);
7273 		hugetlb_cma_size = 0;
7274 		return;
7275 	}
7276 
7277 	if (!node_specific_cma_alloc) {
7278 		/*
7279 		 * If 3 GB area is requested on a machine with 4 numa nodes,
7280 		 * let's allocate 1 GB on first three nodes and ignore the last one.
7281 		 */
7282 		per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7283 		pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7284 			hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7285 	}
7286 
7287 	reserved = 0;
7288 	for_each_online_node(nid) {
7289 		int res;
7290 		char name[CMA_MAX_NAME];
7291 
7292 		if (node_specific_cma_alloc) {
7293 			if (hugetlb_cma_size_in_node[nid] == 0)
7294 				continue;
7295 
7296 			size = hugetlb_cma_size_in_node[nid];
7297 		} else {
7298 			size = min(per_node, hugetlb_cma_size - reserved);
7299 		}
7300 
7301 		size = round_up(size, PAGE_SIZE << order);
7302 
7303 		snprintf(name, sizeof(name), "hugetlb%d", nid);
7304 		/*
7305 		 * Note that 'order per bit' is based on smallest size that
7306 		 * may be returned to CMA allocator in the case of
7307 		 * huge page demotion.
7308 		 */
7309 		res = cma_declare_contiguous_nid(0, size, 0,
7310 						PAGE_SIZE << HUGETLB_PAGE_ORDER,
7311 						 0, false, name,
7312 						 &hugetlb_cma[nid], nid);
7313 		if (res) {
7314 			pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7315 				res, nid);
7316 			continue;
7317 		}
7318 
7319 		reserved += size;
7320 		pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7321 			size / SZ_1M, nid);
7322 
7323 		if (reserved >= hugetlb_cma_size)
7324 			break;
7325 	}
7326 
7327 	if (!reserved)
7328 		/*
7329 		 * hugetlb_cma_size is used to determine if allocations from
7330 		 * cma are possible.  Set to zero if no cma regions are set up.
7331 		 */
7332 		hugetlb_cma_size = 0;
7333 }
7334 
7335 void __init hugetlb_cma_check(void)
7336 {
7337 	if (!hugetlb_cma_size || cma_reserve_called)
7338 		return;
7339 
7340 	pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7341 }
7342 
7343 #endif /* CONFIG_CMA */
7344