1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic hugetlb support. 4 * (C) Nadia Yvette Chambers, April 2004 5 */ 6 #include <linux/list.h> 7 #include <linux/init.h> 8 #include <linux/mm.h> 9 #include <linux/seq_file.h> 10 #include <linux/sysctl.h> 11 #include <linux/highmem.h> 12 #include <linux/mmu_notifier.h> 13 #include <linux/nodemask.h> 14 #include <linux/pagemap.h> 15 #include <linux/mempolicy.h> 16 #include <linux/compiler.h> 17 #include <linux/cpuset.h> 18 #include <linux/mutex.h> 19 #include <linux/memblock.h> 20 #include <linux/sysfs.h> 21 #include <linux/slab.h> 22 #include <linux/sched/mm.h> 23 #include <linux/mmdebug.h> 24 #include <linux/sched/signal.h> 25 #include <linux/rmap.h> 26 #include <linux/string_helpers.h> 27 #include <linux/swap.h> 28 #include <linux/swapops.h> 29 #include <linux/jhash.h> 30 #include <linux/numa.h> 31 #include <linux/llist.h> 32 #include <linux/cma.h> 33 #include <linux/migrate.h> 34 #include <linux/nospec.h> 35 #include <linux/delayacct.h> 36 #include <linux/memory.h> 37 #include <linux/mm_inline.h> 38 #include <linux/padata.h> 39 40 #include <asm/page.h> 41 #include <asm/pgalloc.h> 42 #include <asm/tlb.h> 43 44 #include <linux/io.h> 45 #include <linux/hugetlb.h> 46 #include <linux/hugetlb_cgroup.h> 47 #include <linux/node.h> 48 #include <linux/page_owner.h> 49 #include "internal.h" 50 #include "hugetlb_vmemmap.h" 51 52 int hugetlb_max_hstate __read_mostly; 53 unsigned int default_hstate_idx; 54 struct hstate hstates[HUGE_MAX_HSTATE]; 55 56 #ifdef CONFIG_CMA 57 static struct cma *hugetlb_cma[MAX_NUMNODES]; 58 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata; 59 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order) 60 { 61 return cma_pages_valid(hugetlb_cma[folio_nid(folio)], &folio->page, 62 1 << order); 63 } 64 #else 65 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order) 66 { 67 return false; 68 } 69 #endif 70 static unsigned long hugetlb_cma_size __initdata; 71 72 __initdata struct list_head huge_boot_pages[MAX_NUMNODES]; 73 74 /* for command line parsing */ 75 static struct hstate * __initdata parsed_hstate; 76 static unsigned long __initdata default_hstate_max_huge_pages; 77 static bool __initdata parsed_valid_hugepagesz = true; 78 static bool __initdata parsed_default_hugepagesz; 79 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata; 80 81 /* 82 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages, 83 * free_huge_pages, and surplus_huge_pages. 84 */ 85 DEFINE_SPINLOCK(hugetlb_lock); 86 87 /* 88 * Serializes faults on the same logical page. This is used to 89 * prevent spurious OOMs when the hugepage pool is fully utilized. 90 */ 91 static int num_fault_mutexes; 92 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp; 93 94 /* Forward declaration */ 95 static int hugetlb_acct_memory(struct hstate *h, long delta); 96 static void hugetlb_vma_lock_free(struct vm_area_struct *vma); 97 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma); 98 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma); 99 static void hugetlb_unshare_pmds(struct vm_area_struct *vma, 100 unsigned long start, unsigned long end); 101 static struct resv_map *vma_resv_map(struct vm_area_struct *vma); 102 103 static inline bool subpool_is_free(struct hugepage_subpool *spool) 104 { 105 if (spool->count) 106 return false; 107 if (spool->max_hpages != -1) 108 return spool->used_hpages == 0; 109 if (spool->min_hpages != -1) 110 return spool->rsv_hpages == spool->min_hpages; 111 112 return true; 113 } 114 115 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool, 116 unsigned long irq_flags) 117 { 118 spin_unlock_irqrestore(&spool->lock, irq_flags); 119 120 /* If no pages are used, and no other handles to the subpool 121 * remain, give up any reservations based on minimum size and 122 * free the subpool */ 123 if (subpool_is_free(spool)) { 124 if (spool->min_hpages != -1) 125 hugetlb_acct_memory(spool->hstate, 126 -spool->min_hpages); 127 kfree(spool); 128 } 129 } 130 131 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages, 132 long min_hpages) 133 { 134 struct hugepage_subpool *spool; 135 136 spool = kzalloc(sizeof(*spool), GFP_KERNEL); 137 if (!spool) 138 return NULL; 139 140 spin_lock_init(&spool->lock); 141 spool->count = 1; 142 spool->max_hpages = max_hpages; 143 spool->hstate = h; 144 spool->min_hpages = min_hpages; 145 146 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) { 147 kfree(spool); 148 return NULL; 149 } 150 spool->rsv_hpages = min_hpages; 151 152 return spool; 153 } 154 155 void hugepage_put_subpool(struct hugepage_subpool *spool) 156 { 157 unsigned long flags; 158 159 spin_lock_irqsave(&spool->lock, flags); 160 BUG_ON(!spool->count); 161 spool->count--; 162 unlock_or_release_subpool(spool, flags); 163 } 164 165 /* 166 * Subpool accounting for allocating and reserving pages. 167 * Return -ENOMEM if there are not enough resources to satisfy the 168 * request. Otherwise, return the number of pages by which the 169 * global pools must be adjusted (upward). The returned value may 170 * only be different than the passed value (delta) in the case where 171 * a subpool minimum size must be maintained. 172 */ 173 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool, 174 long delta) 175 { 176 long ret = delta; 177 178 if (!spool) 179 return ret; 180 181 spin_lock_irq(&spool->lock); 182 183 if (spool->max_hpages != -1) { /* maximum size accounting */ 184 if ((spool->used_hpages + delta) <= spool->max_hpages) 185 spool->used_hpages += delta; 186 else { 187 ret = -ENOMEM; 188 goto unlock_ret; 189 } 190 } 191 192 /* minimum size accounting */ 193 if (spool->min_hpages != -1 && spool->rsv_hpages) { 194 if (delta > spool->rsv_hpages) { 195 /* 196 * Asking for more reserves than those already taken on 197 * behalf of subpool. Return difference. 198 */ 199 ret = delta - spool->rsv_hpages; 200 spool->rsv_hpages = 0; 201 } else { 202 ret = 0; /* reserves already accounted for */ 203 spool->rsv_hpages -= delta; 204 } 205 } 206 207 unlock_ret: 208 spin_unlock_irq(&spool->lock); 209 return ret; 210 } 211 212 /* 213 * Subpool accounting for freeing and unreserving pages. 214 * Return the number of global page reservations that must be dropped. 215 * The return value may only be different than the passed value (delta) 216 * in the case where a subpool minimum size must be maintained. 217 */ 218 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool, 219 long delta) 220 { 221 long ret = delta; 222 unsigned long flags; 223 224 if (!spool) 225 return delta; 226 227 spin_lock_irqsave(&spool->lock, flags); 228 229 if (spool->max_hpages != -1) /* maximum size accounting */ 230 spool->used_hpages -= delta; 231 232 /* minimum size accounting */ 233 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) { 234 if (spool->rsv_hpages + delta <= spool->min_hpages) 235 ret = 0; 236 else 237 ret = spool->rsv_hpages + delta - spool->min_hpages; 238 239 spool->rsv_hpages += delta; 240 if (spool->rsv_hpages > spool->min_hpages) 241 spool->rsv_hpages = spool->min_hpages; 242 } 243 244 /* 245 * If hugetlbfs_put_super couldn't free spool due to an outstanding 246 * quota reference, free it now. 247 */ 248 unlock_or_release_subpool(spool, flags); 249 250 return ret; 251 } 252 253 static inline struct hugepage_subpool *subpool_inode(struct inode *inode) 254 { 255 return HUGETLBFS_SB(inode->i_sb)->spool; 256 } 257 258 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma) 259 { 260 return subpool_inode(file_inode(vma->vm_file)); 261 } 262 263 /* 264 * hugetlb vma_lock helper routines 265 */ 266 void hugetlb_vma_lock_read(struct vm_area_struct *vma) 267 { 268 if (__vma_shareable_lock(vma)) { 269 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 270 271 down_read(&vma_lock->rw_sema); 272 } else if (__vma_private_lock(vma)) { 273 struct resv_map *resv_map = vma_resv_map(vma); 274 275 down_read(&resv_map->rw_sema); 276 } 277 } 278 279 void hugetlb_vma_unlock_read(struct vm_area_struct *vma) 280 { 281 if (__vma_shareable_lock(vma)) { 282 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 283 284 up_read(&vma_lock->rw_sema); 285 } else if (__vma_private_lock(vma)) { 286 struct resv_map *resv_map = vma_resv_map(vma); 287 288 up_read(&resv_map->rw_sema); 289 } 290 } 291 292 void hugetlb_vma_lock_write(struct vm_area_struct *vma) 293 { 294 if (__vma_shareable_lock(vma)) { 295 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 296 297 down_write(&vma_lock->rw_sema); 298 } else if (__vma_private_lock(vma)) { 299 struct resv_map *resv_map = vma_resv_map(vma); 300 301 down_write(&resv_map->rw_sema); 302 } 303 } 304 305 void hugetlb_vma_unlock_write(struct vm_area_struct *vma) 306 { 307 if (__vma_shareable_lock(vma)) { 308 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 309 310 up_write(&vma_lock->rw_sema); 311 } else if (__vma_private_lock(vma)) { 312 struct resv_map *resv_map = vma_resv_map(vma); 313 314 up_write(&resv_map->rw_sema); 315 } 316 } 317 318 int hugetlb_vma_trylock_write(struct vm_area_struct *vma) 319 { 320 321 if (__vma_shareable_lock(vma)) { 322 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 323 324 return down_write_trylock(&vma_lock->rw_sema); 325 } else if (__vma_private_lock(vma)) { 326 struct resv_map *resv_map = vma_resv_map(vma); 327 328 return down_write_trylock(&resv_map->rw_sema); 329 } 330 331 return 1; 332 } 333 334 void hugetlb_vma_assert_locked(struct vm_area_struct *vma) 335 { 336 if (__vma_shareable_lock(vma)) { 337 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 338 339 lockdep_assert_held(&vma_lock->rw_sema); 340 } else if (__vma_private_lock(vma)) { 341 struct resv_map *resv_map = vma_resv_map(vma); 342 343 lockdep_assert_held(&resv_map->rw_sema); 344 } 345 } 346 347 void hugetlb_vma_lock_release(struct kref *kref) 348 { 349 struct hugetlb_vma_lock *vma_lock = container_of(kref, 350 struct hugetlb_vma_lock, refs); 351 352 kfree(vma_lock); 353 } 354 355 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock) 356 { 357 struct vm_area_struct *vma = vma_lock->vma; 358 359 /* 360 * vma_lock structure may or not be released as a result of put, 361 * it certainly will no longer be attached to vma so clear pointer. 362 * Semaphore synchronizes access to vma_lock->vma field. 363 */ 364 vma_lock->vma = NULL; 365 vma->vm_private_data = NULL; 366 up_write(&vma_lock->rw_sema); 367 kref_put(&vma_lock->refs, hugetlb_vma_lock_release); 368 } 369 370 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma) 371 { 372 if (__vma_shareable_lock(vma)) { 373 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 374 375 __hugetlb_vma_unlock_write_put(vma_lock); 376 } else if (__vma_private_lock(vma)) { 377 struct resv_map *resv_map = vma_resv_map(vma); 378 379 /* no free for anon vmas, but still need to unlock */ 380 up_write(&resv_map->rw_sema); 381 } 382 } 383 384 static void hugetlb_vma_lock_free(struct vm_area_struct *vma) 385 { 386 /* 387 * Only present in sharable vmas. 388 */ 389 if (!vma || !__vma_shareable_lock(vma)) 390 return; 391 392 if (vma->vm_private_data) { 393 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 394 395 down_write(&vma_lock->rw_sema); 396 __hugetlb_vma_unlock_write_put(vma_lock); 397 } 398 } 399 400 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma) 401 { 402 struct hugetlb_vma_lock *vma_lock; 403 404 /* Only establish in (flags) sharable vmas */ 405 if (!vma || !(vma->vm_flags & VM_MAYSHARE)) 406 return; 407 408 /* Should never get here with non-NULL vm_private_data */ 409 if (vma->vm_private_data) 410 return; 411 412 vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL); 413 if (!vma_lock) { 414 /* 415 * If we can not allocate structure, then vma can not 416 * participate in pmd sharing. This is only a possible 417 * performance enhancement and memory saving issue. 418 * However, the lock is also used to synchronize page 419 * faults with truncation. If the lock is not present, 420 * unlikely races could leave pages in a file past i_size 421 * until the file is removed. Warn in the unlikely case of 422 * allocation failure. 423 */ 424 pr_warn_once("HugeTLB: unable to allocate vma specific lock\n"); 425 return; 426 } 427 428 kref_init(&vma_lock->refs); 429 init_rwsem(&vma_lock->rw_sema); 430 vma_lock->vma = vma; 431 vma->vm_private_data = vma_lock; 432 } 433 434 /* Helper that removes a struct file_region from the resv_map cache and returns 435 * it for use. 436 */ 437 static struct file_region * 438 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to) 439 { 440 struct file_region *nrg; 441 442 VM_BUG_ON(resv->region_cache_count <= 0); 443 444 resv->region_cache_count--; 445 nrg = list_first_entry(&resv->region_cache, struct file_region, link); 446 list_del(&nrg->link); 447 448 nrg->from = from; 449 nrg->to = to; 450 451 return nrg; 452 } 453 454 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg, 455 struct file_region *rg) 456 { 457 #ifdef CONFIG_CGROUP_HUGETLB 458 nrg->reservation_counter = rg->reservation_counter; 459 nrg->css = rg->css; 460 if (rg->css) 461 css_get(rg->css); 462 #endif 463 } 464 465 /* Helper that records hugetlb_cgroup uncharge info. */ 466 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg, 467 struct hstate *h, 468 struct resv_map *resv, 469 struct file_region *nrg) 470 { 471 #ifdef CONFIG_CGROUP_HUGETLB 472 if (h_cg) { 473 nrg->reservation_counter = 474 &h_cg->rsvd_hugepage[hstate_index(h)]; 475 nrg->css = &h_cg->css; 476 /* 477 * The caller will hold exactly one h_cg->css reference for the 478 * whole contiguous reservation region. But this area might be 479 * scattered when there are already some file_regions reside in 480 * it. As a result, many file_regions may share only one css 481 * reference. In order to ensure that one file_region must hold 482 * exactly one h_cg->css reference, we should do css_get for 483 * each file_region and leave the reference held by caller 484 * untouched. 485 */ 486 css_get(&h_cg->css); 487 if (!resv->pages_per_hpage) 488 resv->pages_per_hpage = pages_per_huge_page(h); 489 /* pages_per_hpage should be the same for all entries in 490 * a resv_map. 491 */ 492 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h)); 493 } else { 494 nrg->reservation_counter = NULL; 495 nrg->css = NULL; 496 } 497 #endif 498 } 499 500 static void put_uncharge_info(struct file_region *rg) 501 { 502 #ifdef CONFIG_CGROUP_HUGETLB 503 if (rg->css) 504 css_put(rg->css); 505 #endif 506 } 507 508 static bool has_same_uncharge_info(struct file_region *rg, 509 struct file_region *org) 510 { 511 #ifdef CONFIG_CGROUP_HUGETLB 512 return rg->reservation_counter == org->reservation_counter && 513 rg->css == org->css; 514 515 #else 516 return true; 517 #endif 518 } 519 520 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg) 521 { 522 struct file_region *nrg, *prg; 523 524 prg = list_prev_entry(rg, link); 525 if (&prg->link != &resv->regions && prg->to == rg->from && 526 has_same_uncharge_info(prg, rg)) { 527 prg->to = rg->to; 528 529 list_del(&rg->link); 530 put_uncharge_info(rg); 531 kfree(rg); 532 533 rg = prg; 534 } 535 536 nrg = list_next_entry(rg, link); 537 if (&nrg->link != &resv->regions && nrg->from == rg->to && 538 has_same_uncharge_info(nrg, rg)) { 539 nrg->from = rg->from; 540 541 list_del(&rg->link); 542 put_uncharge_info(rg); 543 kfree(rg); 544 } 545 } 546 547 static inline long 548 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from, 549 long to, struct hstate *h, struct hugetlb_cgroup *cg, 550 long *regions_needed) 551 { 552 struct file_region *nrg; 553 554 if (!regions_needed) { 555 nrg = get_file_region_entry_from_cache(map, from, to); 556 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg); 557 list_add(&nrg->link, rg); 558 coalesce_file_region(map, nrg); 559 } else 560 *regions_needed += 1; 561 562 return to - from; 563 } 564 565 /* 566 * Must be called with resv->lock held. 567 * 568 * Calling this with regions_needed != NULL will count the number of pages 569 * to be added but will not modify the linked list. And regions_needed will 570 * indicate the number of file_regions needed in the cache to carry out to add 571 * the regions for this range. 572 */ 573 static long add_reservation_in_range(struct resv_map *resv, long f, long t, 574 struct hugetlb_cgroup *h_cg, 575 struct hstate *h, long *regions_needed) 576 { 577 long add = 0; 578 struct list_head *head = &resv->regions; 579 long last_accounted_offset = f; 580 struct file_region *iter, *trg = NULL; 581 struct list_head *rg = NULL; 582 583 if (regions_needed) 584 *regions_needed = 0; 585 586 /* In this loop, we essentially handle an entry for the range 587 * [last_accounted_offset, iter->from), at every iteration, with some 588 * bounds checking. 589 */ 590 list_for_each_entry_safe(iter, trg, head, link) { 591 /* Skip irrelevant regions that start before our range. */ 592 if (iter->from < f) { 593 /* If this region ends after the last accounted offset, 594 * then we need to update last_accounted_offset. 595 */ 596 if (iter->to > last_accounted_offset) 597 last_accounted_offset = iter->to; 598 continue; 599 } 600 601 /* When we find a region that starts beyond our range, we've 602 * finished. 603 */ 604 if (iter->from >= t) { 605 rg = iter->link.prev; 606 break; 607 } 608 609 /* Add an entry for last_accounted_offset -> iter->from, and 610 * update last_accounted_offset. 611 */ 612 if (iter->from > last_accounted_offset) 613 add += hugetlb_resv_map_add(resv, iter->link.prev, 614 last_accounted_offset, 615 iter->from, h, h_cg, 616 regions_needed); 617 618 last_accounted_offset = iter->to; 619 } 620 621 /* Handle the case where our range extends beyond 622 * last_accounted_offset. 623 */ 624 if (!rg) 625 rg = head->prev; 626 if (last_accounted_offset < t) 627 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset, 628 t, h, h_cg, regions_needed); 629 630 return add; 631 } 632 633 /* Must be called with resv->lock acquired. Will drop lock to allocate entries. 634 */ 635 static int allocate_file_region_entries(struct resv_map *resv, 636 int regions_needed) 637 __must_hold(&resv->lock) 638 { 639 LIST_HEAD(allocated_regions); 640 int to_allocate = 0, i = 0; 641 struct file_region *trg = NULL, *rg = NULL; 642 643 VM_BUG_ON(regions_needed < 0); 644 645 /* 646 * Check for sufficient descriptors in the cache to accommodate 647 * the number of in progress add operations plus regions_needed. 648 * 649 * This is a while loop because when we drop the lock, some other call 650 * to region_add or region_del may have consumed some region_entries, 651 * so we keep looping here until we finally have enough entries for 652 * (adds_in_progress + regions_needed). 653 */ 654 while (resv->region_cache_count < 655 (resv->adds_in_progress + regions_needed)) { 656 to_allocate = resv->adds_in_progress + regions_needed - 657 resv->region_cache_count; 658 659 /* At this point, we should have enough entries in the cache 660 * for all the existing adds_in_progress. We should only be 661 * needing to allocate for regions_needed. 662 */ 663 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress); 664 665 spin_unlock(&resv->lock); 666 for (i = 0; i < to_allocate; i++) { 667 trg = kmalloc(sizeof(*trg), GFP_KERNEL); 668 if (!trg) 669 goto out_of_memory; 670 list_add(&trg->link, &allocated_regions); 671 } 672 673 spin_lock(&resv->lock); 674 675 list_splice(&allocated_regions, &resv->region_cache); 676 resv->region_cache_count += to_allocate; 677 } 678 679 return 0; 680 681 out_of_memory: 682 list_for_each_entry_safe(rg, trg, &allocated_regions, link) { 683 list_del(&rg->link); 684 kfree(rg); 685 } 686 return -ENOMEM; 687 } 688 689 /* 690 * Add the huge page range represented by [f, t) to the reserve 691 * map. Regions will be taken from the cache to fill in this range. 692 * Sufficient regions should exist in the cache due to the previous 693 * call to region_chg with the same range, but in some cases the cache will not 694 * have sufficient entries due to races with other code doing region_add or 695 * region_del. The extra needed entries will be allocated. 696 * 697 * regions_needed is the out value provided by a previous call to region_chg. 698 * 699 * Return the number of new huge pages added to the map. This number is greater 700 * than or equal to zero. If file_region entries needed to be allocated for 701 * this operation and we were not able to allocate, it returns -ENOMEM. 702 * region_add of regions of length 1 never allocate file_regions and cannot 703 * fail; region_chg will always allocate at least 1 entry and a region_add for 704 * 1 page will only require at most 1 entry. 705 */ 706 static long region_add(struct resv_map *resv, long f, long t, 707 long in_regions_needed, struct hstate *h, 708 struct hugetlb_cgroup *h_cg) 709 { 710 long add = 0, actual_regions_needed = 0; 711 712 spin_lock(&resv->lock); 713 retry: 714 715 /* Count how many regions are actually needed to execute this add. */ 716 add_reservation_in_range(resv, f, t, NULL, NULL, 717 &actual_regions_needed); 718 719 /* 720 * Check for sufficient descriptors in the cache to accommodate 721 * this add operation. Note that actual_regions_needed may be greater 722 * than in_regions_needed, as the resv_map may have been modified since 723 * the region_chg call. In this case, we need to make sure that we 724 * allocate extra entries, such that we have enough for all the 725 * existing adds_in_progress, plus the excess needed for this 726 * operation. 727 */ 728 if (actual_regions_needed > in_regions_needed && 729 resv->region_cache_count < 730 resv->adds_in_progress + 731 (actual_regions_needed - in_regions_needed)) { 732 /* region_add operation of range 1 should never need to 733 * allocate file_region entries. 734 */ 735 VM_BUG_ON(t - f <= 1); 736 737 if (allocate_file_region_entries( 738 resv, actual_regions_needed - in_regions_needed)) { 739 return -ENOMEM; 740 } 741 742 goto retry; 743 } 744 745 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL); 746 747 resv->adds_in_progress -= in_regions_needed; 748 749 spin_unlock(&resv->lock); 750 return add; 751 } 752 753 /* 754 * Examine the existing reserve map and determine how many 755 * huge pages in the specified range [f, t) are NOT currently 756 * represented. This routine is called before a subsequent 757 * call to region_add that will actually modify the reserve 758 * map to add the specified range [f, t). region_chg does 759 * not change the number of huge pages represented by the 760 * map. A number of new file_region structures is added to the cache as a 761 * placeholder, for the subsequent region_add call to use. At least 1 762 * file_region structure is added. 763 * 764 * out_regions_needed is the number of regions added to the 765 * resv->adds_in_progress. This value needs to be provided to a follow up call 766 * to region_add or region_abort for proper accounting. 767 * 768 * Returns the number of huge pages that need to be added to the existing 769 * reservation map for the range [f, t). This number is greater or equal to 770 * zero. -ENOMEM is returned if a new file_region structure or cache entry 771 * is needed and can not be allocated. 772 */ 773 static long region_chg(struct resv_map *resv, long f, long t, 774 long *out_regions_needed) 775 { 776 long chg = 0; 777 778 spin_lock(&resv->lock); 779 780 /* Count how many hugepages in this range are NOT represented. */ 781 chg = add_reservation_in_range(resv, f, t, NULL, NULL, 782 out_regions_needed); 783 784 if (*out_regions_needed == 0) 785 *out_regions_needed = 1; 786 787 if (allocate_file_region_entries(resv, *out_regions_needed)) 788 return -ENOMEM; 789 790 resv->adds_in_progress += *out_regions_needed; 791 792 spin_unlock(&resv->lock); 793 return chg; 794 } 795 796 /* 797 * Abort the in progress add operation. The adds_in_progress field 798 * of the resv_map keeps track of the operations in progress between 799 * calls to region_chg and region_add. Operations are sometimes 800 * aborted after the call to region_chg. In such cases, region_abort 801 * is called to decrement the adds_in_progress counter. regions_needed 802 * is the value returned by the region_chg call, it is used to decrement 803 * the adds_in_progress counter. 804 * 805 * NOTE: The range arguments [f, t) are not needed or used in this 806 * routine. They are kept to make reading the calling code easier as 807 * arguments will match the associated region_chg call. 808 */ 809 static void region_abort(struct resv_map *resv, long f, long t, 810 long regions_needed) 811 { 812 spin_lock(&resv->lock); 813 VM_BUG_ON(!resv->region_cache_count); 814 resv->adds_in_progress -= regions_needed; 815 spin_unlock(&resv->lock); 816 } 817 818 /* 819 * Delete the specified range [f, t) from the reserve map. If the 820 * t parameter is LONG_MAX, this indicates that ALL regions after f 821 * should be deleted. Locate the regions which intersect [f, t) 822 * and either trim, delete or split the existing regions. 823 * 824 * Returns the number of huge pages deleted from the reserve map. 825 * In the normal case, the return value is zero or more. In the 826 * case where a region must be split, a new region descriptor must 827 * be allocated. If the allocation fails, -ENOMEM will be returned. 828 * NOTE: If the parameter t == LONG_MAX, then we will never split 829 * a region and possibly return -ENOMEM. Callers specifying 830 * t == LONG_MAX do not need to check for -ENOMEM error. 831 */ 832 static long region_del(struct resv_map *resv, long f, long t) 833 { 834 struct list_head *head = &resv->regions; 835 struct file_region *rg, *trg; 836 struct file_region *nrg = NULL; 837 long del = 0; 838 839 retry: 840 spin_lock(&resv->lock); 841 list_for_each_entry_safe(rg, trg, head, link) { 842 /* 843 * Skip regions before the range to be deleted. file_region 844 * ranges are normally of the form [from, to). However, there 845 * may be a "placeholder" entry in the map which is of the form 846 * (from, to) with from == to. Check for placeholder entries 847 * at the beginning of the range to be deleted. 848 */ 849 if (rg->to <= f && (rg->to != rg->from || rg->to != f)) 850 continue; 851 852 if (rg->from >= t) 853 break; 854 855 if (f > rg->from && t < rg->to) { /* Must split region */ 856 /* 857 * Check for an entry in the cache before dropping 858 * lock and attempting allocation. 859 */ 860 if (!nrg && 861 resv->region_cache_count > resv->adds_in_progress) { 862 nrg = list_first_entry(&resv->region_cache, 863 struct file_region, 864 link); 865 list_del(&nrg->link); 866 resv->region_cache_count--; 867 } 868 869 if (!nrg) { 870 spin_unlock(&resv->lock); 871 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 872 if (!nrg) 873 return -ENOMEM; 874 goto retry; 875 } 876 877 del += t - f; 878 hugetlb_cgroup_uncharge_file_region( 879 resv, rg, t - f, false); 880 881 /* New entry for end of split region */ 882 nrg->from = t; 883 nrg->to = rg->to; 884 885 copy_hugetlb_cgroup_uncharge_info(nrg, rg); 886 887 INIT_LIST_HEAD(&nrg->link); 888 889 /* Original entry is trimmed */ 890 rg->to = f; 891 892 list_add(&nrg->link, &rg->link); 893 nrg = NULL; 894 break; 895 } 896 897 if (f <= rg->from && t >= rg->to) { /* Remove entire region */ 898 del += rg->to - rg->from; 899 hugetlb_cgroup_uncharge_file_region(resv, rg, 900 rg->to - rg->from, true); 901 list_del(&rg->link); 902 kfree(rg); 903 continue; 904 } 905 906 if (f <= rg->from) { /* Trim beginning of region */ 907 hugetlb_cgroup_uncharge_file_region(resv, rg, 908 t - rg->from, false); 909 910 del += t - rg->from; 911 rg->from = t; 912 } else { /* Trim end of region */ 913 hugetlb_cgroup_uncharge_file_region(resv, rg, 914 rg->to - f, false); 915 916 del += rg->to - f; 917 rg->to = f; 918 } 919 } 920 921 spin_unlock(&resv->lock); 922 kfree(nrg); 923 return del; 924 } 925 926 /* 927 * A rare out of memory error was encountered which prevented removal of 928 * the reserve map region for a page. The huge page itself was free'ed 929 * and removed from the page cache. This routine will adjust the subpool 930 * usage count, and the global reserve count if needed. By incrementing 931 * these counts, the reserve map entry which could not be deleted will 932 * appear as a "reserved" entry instead of simply dangling with incorrect 933 * counts. 934 */ 935 void hugetlb_fix_reserve_counts(struct inode *inode) 936 { 937 struct hugepage_subpool *spool = subpool_inode(inode); 938 long rsv_adjust; 939 bool reserved = false; 940 941 rsv_adjust = hugepage_subpool_get_pages(spool, 1); 942 if (rsv_adjust > 0) { 943 struct hstate *h = hstate_inode(inode); 944 945 if (!hugetlb_acct_memory(h, 1)) 946 reserved = true; 947 } else if (!rsv_adjust) { 948 reserved = true; 949 } 950 951 if (!reserved) 952 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n"); 953 } 954 955 /* 956 * Count and return the number of huge pages in the reserve map 957 * that intersect with the range [f, t). 958 */ 959 static long region_count(struct resv_map *resv, long f, long t) 960 { 961 struct list_head *head = &resv->regions; 962 struct file_region *rg; 963 long chg = 0; 964 965 spin_lock(&resv->lock); 966 /* Locate each segment we overlap with, and count that overlap. */ 967 list_for_each_entry(rg, head, link) { 968 long seg_from; 969 long seg_to; 970 971 if (rg->to <= f) 972 continue; 973 if (rg->from >= t) 974 break; 975 976 seg_from = max(rg->from, f); 977 seg_to = min(rg->to, t); 978 979 chg += seg_to - seg_from; 980 } 981 spin_unlock(&resv->lock); 982 983 return chg; 984 } 985 986 /* 987 * Convert the address within this vma to the page offset within 988 * the mapping, huge page units here. 989 */ 990 static pgoff_t vma_hugecache_offset(struct hstate *h, 991 struct vm_area_struct *vma, unsigned long address) 992 { 993 return ((address - vma->vm_start) >> huge_page_shift(h)) + 994 (vma->vm_pgoff >> huge_page_order(h)); 995 } 996 997 /** 998 * vma_kernel_pagesize - Page size granularity for this VMA. 999 * @vma: The user mapping. 1000 * 1001 * Folios in this VMA will be aligned to, and at least the size of the 1002 * number of bytes returned by this function. 1003 * 1004 * Return: The default size of the folios allocated when backing a VMA. 1005 */ 1006 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) 1007 { 1008 if (vma->vm_ops && vma->vm_ops->pagesize) 1009 return vma->vm_ops->pagesize(vma); 1010 return PAGE_SIZE; 1011 } 1012 EXPORT_SYMBOL_GPL(vma_kernel_pagesize); 1013 1014 /* 1015 * Return the page size being used by the MMU to back a VMA. In the majority 1016 * of cases, the page size used by the kernel matches the MMU size. On 1017 * architectures where it differs, an architecture-specific 'strong' 1018 * version of this symbol is required. 1019 */ 1020 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 1021 { 1022 return vma_kernel_pagesize(vma); 1023 } 1024 1025 /* 1026 * Flags for MAP_PRIVATE reservations. These are stored in the bottom 1027 * bits of the reservation map pointer, which are always clear due to 1028 * alignment. 1029 */ 1030 #define HPAGE_RESV_OWNER (1UL << 0) 1031 #define HPAGE_RESV_UNMAPPED (1UL << 1) 1032 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) 1033 1034 /* 1035 * These helpers are used to track how many pages are reserved for 1036 * faults in a MAP_PRIVATE mapping. Only the process that called mmap() 1037 * is guaranteed to have their future faults succeed. 1038 * 1039 * With the exception of hugetlb_dup_vma_private() which is called at fork(), 1040 * the reserve counters are updated with the hugetlb_lock held. It is safe 1041 * to reset the VMA at fork() time as it is not in use yet and there is no 1042 * chance of the global counters getting corrupted as a result of the values. 1043 * 1044 * The private mapping reservation is represented in a subtly different 1045 * manner to a shared mapping. A shared mapping has a region map associated 1046 * with the underlying file, this region map represents the backing file 1047 * pages which have ever had a reservation assigned which this persists even 1048 * after the page is instantiated. A private mapping has a region map 1049 * associated with the original mmap which is attached to all VMAs which 1050 * reference it, this region map represents those offsets which have consumed 1051 * reservation ie. where pages have been instantiated. 1052 */ 1053 static unsigned long get_vma_private_data(struct vm_area_struct *vma) 1054 { 1055 return (unsigned long)vma->vm_private_data; 1056 } 1057 1058 static void set_vma_private_data(struct vm_area_struct *vma, 1059 unsigned long value) 1060 { 1061 vma->vm_private_data = (void *)value; 1062 } 1063 1064 static void 1065 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map, 1066 struct hugetlb_cgroup *h_cg, 1067 struct hstate *h) 1068 { 1069 #ifdef CONFIG_CGROUP_HUGETLB 1070 if (!h_cg || !h) { 1071 resv_map->reservation_counter = NULL; 1072 resv_map->pages_per_hpage = 0; 1073 resv_map->css = NULL; 1074 } else { 1075 resv_map->reservation_counter = 1076 &h_cg->rsvd_hugepage[hstate_index(h)]; 1077 resv_map->pages_per_hpage = pages_per_huge_page(h); 1078 resv_map->css = &h_cg->css; 1079 } 1080 #endif 1081 } 1082 1083 struct resv_map *resv_map_alloc(void) 1084 { 1085 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); 1086 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL); 1087 1088 if (!resv_map || !rg) { 1089 kfree(resv_map); 1090 kfree(rg); 1091 return NULL; 1092 } 1093 1094 kref_init(&resv_map->refs); 1095 spin_lock_init(&resv_map->lock); 1096 INIT_LIST_HEAD(&resv_map->regions); 1097 init_rwsem(&resv_map->rw_sema); 1098 1099 resv_map->adds_in_progress = 0; 1100 /* 1101 * Initialize these to 0. On shared mappings, 0's here indicate these 1102 * fields don't do cgroup accounting. On private mappings, these will be 1103 * re-initialized to the proper values, to indicate that hugetlb cgroup 1104 * reservations are to be un-charged from here. 1105 */ 1106 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL); 1107 1108 INIT_LIST_HEAD(&resv_map->region_cache); 1109 list_add(&rg->link, &resv_map->region_cache); 1110 resv_map->region_cache_count = 1; 1111 1112 return resv_map; 1113 } 1114 1115 void resv_map_release(struct kref *ref) 1116 { 1117 struct resv_map *resv_map = container_of(ref, struct resv_map, refs); 1118 struct list_head *head = &resv_map->region_cache; 1119 struct file_region *rg, *trg; 1120 1121 /* Clear out any active regions before we release the map. */ 1122 region_del(resv_map, 0, LONG_MAX); 1123 1124 /* ... and any entries left in the cache */ 1125 list_for_each_entry_safe(rg, trg, head, link) { 1126 list_del(&rg->link); 1127 kfree(rg); 1128 } 1129 1130 VM_BUG_ON(resv_map->adds_in_progress); 1131 1132 kfree(resv_map); 1133 } 1134 1135 static inline struct resv_map *inode_resv_map(struct inode *inode) 1136 { 1137 /* 1138 * At inode evict time, i_mapping may not point to the original 1139 * address space within the inode. This original address space 1140 * contains the pointer to the resv_map. So, always use the 1141 * address space embedded within the inode. 1142 * The VERY common case is inode->mapping == &inode->i_data but, 1143 * this may not be true for device special inodes. 1144 */ 1145 return (struct resv_map *)(&inode->i_data)->i_private_data; 1146 } 1147 1148 static struct resv_map *vma_resv_map(struct vm_area_struct *vma) 1149 { 1150 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1151 if (vma->vm_flags & VM_MAYSHARE) { 1152 struct address_space *mapping = vma->vm_file->f_mapping; 1153 struct inode *inode = mapping->host; 1154 1155 return inode_resv_map(inode); 1156 1157 } else { 1158 return (struct resv_map *)(get_vma_private_data(vma) & 1159 ~HPAGE_RESV_MASK); 1160 } 1161 } 1162 1163 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) 1164 { 1165 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1166 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 1167 1168 set_vma_private_data(vma, (unsigned long)map); 1169 } 1170 1171 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) 1172 { 1173 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1174 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 1175 1176 set_vma_private_data(vma, get_vma_private_data(vma) | flags); 1177 } 1178 1179 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) 1180 { 1181 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1182 1183 return (get_vma_private_data(vma) & flag) != 0; 1184 } 1185 1186 bool __vma_private_lock(struct vm_area_struct *vma) 1187 { 1188 return !(vma->vm_flags & VM_MAYSHARE) && 1189 get_vma_private_data(vma) & ~HPAGE_RESV_MASK && 1190 is_vma_resv_set(vma, HPAGE_RESV_OWNER); 1191 } 1192 1193 void hugetlb_dup_vma_private(struct vm_area_struct *vma) 1194 { 1195 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1196 /* 1197 * Clear vm_private_data 1198 * - For shared mappings this is a per-vma semaphore that may be 1199 * allocated in a subsequent call to hugetlb_vm_op_open. 1200 * Before clearing, make sure pointer is not associated with vma 1201 * as this will leak the structure. This is the case when called 1202 * via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already 1203 * been called to allocate a new structure. 1204 * - For MAP_PRIVATE mappings, this is the reserve map which does 1205 * not apply to children. Faults generated by the children are 1206 * not guaranteed to succeed, even if read-only. 1207 */ 1208 if (vma->vm_flags & VM_MAYSHARE) { 1209 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 1210 1211 if (vma_lock && vma_lock->vma != vma) 1212 vma->vm_private_data = NULL; 1213 } else 1214 vma->vm_private_data = NULL; 1215 } 1216 1217 /* 1218 * Reset and decrement one ref on hugepage private reservation. 1219 * Called with mm->mmap_lock writer semaphore held. 1220 * This function should be only used by move_vma() and operate on 1221 * same sized vma. It should never come here with last ref on the 1222 * reservation. 1223 */ 1224 void clear_vma_resv_huge_pages(struct vm_area_struct *vma) 1225 { 1226 /* 1227 * Clear the old hugetlb private page reservation. 1228 * It has already been transferred to new_vma. 1229 * 1230 * During a mremap() operation of a hugetlb vma we call move_vma() 1231 * which copies vma into new_vma and unmaps vma. After the copy 1232 * operation both new_vma and vma share a reference to the resv_map 1233 * struct, and at that point vma is about to be unmapped. We don't 1234 * want to return the reservation to the pool at unmap of vma because 1235 * the reservation still lives on in new_vma, so simply decrement the 1236 * ref here and remove the resv_map reference from this vma. 1237 */ 1238 struct resv_map *reservations = vma_resv_map(vma); 1239 1240 if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 1241 resv_map_put_hugetlb_cgroup_uncharge_info(reservations); 1242 kref_put(&reservations->refs, resv_map_release); 1243 } 1244 1245 hugetlb_dup_vma_private(vma); 1246 } 1247 1248 /* Returns true if the VMA has associated reserve pages */ 1249 static bool vma_has_reserves(struct vm_area_struct *vma, long chg) 1250 { 1251 if (vma->vm_flags & VM_NORESERVE) { 1252 /* 1253 * This address is already reserved by other process(chg == 0), 1254 * so, we should decrement reserved count. Without decrementing, 1255 * reserve count remains after releasing inode, because this 1256 * allocated page will go into page cache and is regarded as 1257 * coming from reserved pool in releasing step. Currently, we 1258 * don't have any other solution to deal with this situation 1259 * properly, so add work-around here. 1260 */ 1261 if (vma->vm_flags & VM_MAYSHARE && chg == 0) 1262 return true; 1263 else 1264 return false; 1265 } 1266 1267 /* Shared mappings always use reserves */ 1268 if (vma->vm_flags & VM_MAYSHARE) { 1269 /* 1270 * We know VM_NORESERVE is not set. Therefore, there SHOULD 1271 * be a region map for all pages. The only situation where 1272 * there is no region map is if a hole was punched via 1273 * fallocate. In this case, there really are no reserves to 1274 * use. This situation is indicated if chg != 0. 1275 */ 1276 if (chg) 1277 return false; 1278 else 1279 return true; 1280 } 1281 1282 /* 1283 * Only the process that called mmap() has reserves for 1284 * private mappings. 1285 */ 1286 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 1287 /* 1288 * Like the shared case above, a hole punch or truncate 1289 * could have been performed on the private mapping. 1290 * Examine the value of chg to determine if reserves 1291 * actually exist or were previously consumed. 1292 * Very Subtle - The value of chg comes from a previous 1293 * call to vma_needs_reserves(). The reserve map for 1294 * private mappings has different (opposite) semantics 1295 * than that of shared mappings. vma_needs_reserves() 1296 * has already taken this difference in semantics into 1297 * account. Therefore, the meaning of chg is the same 1298 * as in the shared case above. Code could easily be 1299 * combined, but keeping it separate draws attention to 1300 * subtle differences. 1301 */ 1302 if (chg) 1303 return false; 1304 else 1305 return true; 1306 } 1307 1308 return false; 1309 } 1310 1311 static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio) 1312 { 1313 int nid = folio_nid(folio); 1314 1315 lockdep_assert_held(&hugetlb_lock); 1316 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio); 1317 1318 list_move(&folio->lru, &h->hugepage_freelists[nid]); 1319 h->free_huge_pages++; 1320 h->free_huge_pages_node[nid]++; 1321 folio_set_hugetlb_freed(folio); 1322 } 1323 1324 static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h, 1325 int nid) 1326 { 1327 struct folio *folio; 1328 bool pin = !!(current->flags & PF_MEMALLOC_PIN); 1329 1330 lockdep_assert_held(&hugetlb_lock); 1331 list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) { 1332 if (pin && !folio_is_longterm_pinnable(folio)) 1333 continue; 1334 1335 if (folio_test_hwpoison(folio)) 1336 continue; 1337 1338 list_move(&folio->lru, &h->hugepage_activelist); 1339 folio_ref_unfreeze(folio, 1); 1340 folio_clear_hugetlb_freed(folio); 1341 h->free_huge_pages--; 1342 h->free_huge_pages_node[nid]--; 1343 return folio; 1344 } 1345 1346 return NULL; 1347 } 1348 1349 static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask, 1350 int nid, nodemask_t *nmask) 1351 { 1352 unsigned int cpuset_mems_cookie; 1353 struct zonelist *zonelist; 1354 struct zone *zone; 1355 struct zoneref *z; 1356 int node = NUMA_NO_NODE; 1357 1358 zonelist = node_zonelist(nid, gfp_mask); 1359 1360 retry_cpuset: 1361 cpuset_mems_cookie = read_mems_allowed_begin(); 1362 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) { 1363 struct folio *folio; 1364 1365 if (!cpuset_zone_allowed(zone, gfp_mask)) 1366 continue; 1367 /* 1368 * no need to ask again on the same node. Pool is node rather than 1369 * zone aware 1370 */ 1371 if (zone_to_nid(zone) == node) 1372 continue; 1373 node = zone_to_nid(zone); 1374 1375 folio = dequeue_hugetlb_folio_node_exact(h, node); 1376 if (folio) 1377 return folio; 1378 } 1379 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie))) 1380 goto retry_cpuset; 1381 1382 return NULL; 1383 } 1384 1385 static unsigned long available_huge_pages(struct hstate *h) 1386 { 1387 return h->free_huge_pages - h->resv_huge_pages; 1388 } 1389 1390 static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h, 1391 struct vm_area_struct *vma, 1392 unsigned long address, int avoid_reserve, 1393 long chg) 1394 { 1395 struct folio *folio = NULL; 1396 struct mempolicy *mpol; 1397 gfp_t gfp_mask; 1398 nodemask_t *nodemask; 1399 int nid; 1400 1401 /* 1402 * A child process with MAP_PRIVATE mappings created by their parent 1403 * have no page reserves. This check ensures that reservations are 1404 * not "stolen". The child may still get SIGKILLed 1405 */ 1406 if (!vma_has_reserves(vma, chg) && !available_huge_pages(h)) 1407 goto err; 1408 1409 /* If reserves cannot be used, ensure enough pages are in the pool */ 1410 if (avoid_reserve && !available_huge_pages(h)) 1411 goto err; 1412 1413 gfp_mask = htlb_alloc_mask(h); 1414 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 1415 1416 if (mpol_is_preferred_many(mpol)) { 1417 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, 1418 nid, nodemask); 1419 1420 /* Fallback to all nodes if page==NULL */ 1421 nodemask = NULL; 1422 } 1423 1424 if (!folio) 1425 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, 1426 nid, nodemask); 1427 1428 if (folio && !avoid_reserve && vma_has_reserves(vma, chg)) { 1429 folio_set_hugetlb_restore_reserve(folio); 1430 h->resv_huge_pages--; 1431 } 1432 1433 mpol_cond_put(mpol); 1434 return folio; 1435 1436 err: 1437 return NULL; 1438 } 1439 1440 /* 1441 * common helper functions for hstate_next_node_to_{alloc|free}. 1442 * We may have allocated or freed a huge page based on a different 1443 * nodes_allowed previously, so h->next_node_to_{alloc|free} might 1444 * be outside of *nodes_allowed. Ensure that we use an allowed 1445 * node for alloc or free. 1446 */ 1447 static int next_node_allowed(int nid, nodemask_t *nodes_allowed) 1448 { 1449 nid = next_node_in(nid, *nodes_allowed); 1450 VM_BUG_ON(nid >= MAX_NUMNODES); 1451 1452 return nid; 1453 } 1454 1455 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed) 1456 { 1457 if (!node_isset(nid, *nodes_allowed)) 1458 nid = next_node_allowed(nid, nodes_allowed); 1459 return nid; 1460 } 1461 1462 /* 1463 * returns the previously saved node ["this node"] from which to 1464 * allocate a persistent huge page for the pool and advance the 1465 * next node from which to allocate, handling wrap at end of node 1466 * mask. 1467 */ 1468 static int hstate_next_node_to_alloc(int *next_node, 1469 nodemask_t *nodes_allowed) 1470 { 1471 int nid; 1472 1473 VM_BUG_ON(!nodes_allowed); 1474 1475 nid = get_valid_node_allowed(*next_node, nodes_allowed); 1476 *next_node = next_node_allowed(nid, nodes_allowed); 1477 1478 return nid; 1479 } 1480 1481 /* 1482 * helper for remove_pool_hugetlb_folio() - return the previously saved 1483 * node ["this node"] from which to free a huge page. Advance the 1484 * next node id whether or not we find a free huge page to free so 1485 * that the next attempt to free addresses the next node. 1486 */ 1487 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed) 1488 { 1489 int nid; 1490 1491 VM_BUG_ON(!nodes_allowed); 1492 1493 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed); 1494 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed); 1495 1496 return nid; 1497 } 1498 1499 #define for_each_node_mask_to_alloc(next_node, nr_nodes, node, mask) \ 1500 for (nr_nodes = nodes_weight(*mask); \ 1501 nr_nodes > 0 && \ 1502 ((node = hstate_next_node_to_alloc(next_node, mask)) || 1); \ 1503 nr_nodes--) 1504 1505 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \ 1506 for (nr_nodes = nodes_weight(*mask); \ 1507 nr_nodes > 0 && \ 1508 ((node = hstate_next_node_to_free(hs, mask)) || 1); \ 1509 nr_nodes--) 1510 1511 /* used to demote non-gigantic_huge pages as well */ 1512 static void __destroy_compound_gigantic_folio(struct folio *folio, 1513 unsigned int order, bool demote) 1514 { 1515 int i; 1516 int nr_pages = 1 << order; 1517 struct page *p; 1518 1519 atomic_set(&folio->_entire_mapcount, 0); 1520 atomic_set(&folio->_nr_pages_mapped, 0); 1521 atomic_set(&folio->_pincount, 0); 1522 1523 for (i = 1; i < nr_pages; i++) { 1524 p = folio_page(folio, i); 1525 p->flags &= ~PAGE_FLAGS_CHECK_AT_FREE; 1526 p->mapping = NULL; 1527 clear_compound_head(p); 1528 if (!demote) 1529 set_page_refcounted(p); 1530 } 1531 1532 __folio_clear_head(folio); 1533 } 1534 1535 static void destroy_compound_hugetlb_folio_for_demote(struct folio *folio, 1536 unsigned int order) 1537 { 1538 __destroy_compound_gigantic_folio(folio, order, true); 1539 } 1540 1541 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE 1542 static void destroy_compound_gigantic_folio(struct folio *folio, 1543 unsigned int order) 1544 { 1545 __destroy_compound_gigantic_folio(folio, order, false); 1546 } 1547 1548 static void free_gigantic_folio(struct folio *folio, unsigned int order) 1549 { 1550 /* 1551 * If the page isn't allocated using the cma allocator, 1552 * cma_release() returns false. 1553 */ 1554 #ifdef CONFIG_CMA 1555 int nid = folio_nid(folio); 1556 1557 if (cma_release(hugetlb_cma[nid], &folio->page, 1 << order)) 1558 return; 1559 #endif 1560 1561 free_contig_range(folio_pfn(folio), 1 << order); 1562 } 1563 1564 #ifdef CONFIG_CONTIG_ALLOC 1565 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask, 1566 int nid, nodemask_t *nodemask) 1567 { 1568 struct page *page; 1569 unsigned long nr_pages = pages_per_huge_page(h); 1570 if (nid == NUMA_NO_NODE) 1571 nid = numa_mem_id(); 1572 1573 #ifdef CONFIG_CMA 1574 { 1575 int node; 1576 1577 if (hugetlb_cma[nid]) { 1578 page = cma_alloc(hugetlb_cma[nid], nr_pages, 1579 huge_page_order(h), true); 1580 if (page) 1581 return page_folio(page); 1582 } 1583 1584 if (!(gfp_mask & __GFP_THISNODE)) { 1585 for_each_node_mask(node, *nodemask) { 1586 if (node == nid || !hugetlb_cma[node]) 1587 continue; 1588 1589 page = cma_alloc(hugetlb_cma[node], nr_pages, 1590 huge_page_order(h), true); 1591 if (page) 1592 return page_folio(page); 1593 } 1594 } 1595 } 1596 #endif 1597 1598 page = alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask); 1599 return page ? page_folio(page) : NULL; 1600 } 1601 1602 #else /* !CONFIG_CONTIG_ALLOC */ 1603 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask, 1604 int nid, nodemask_t *nodemask) 1605 { 1606 return NULL; 1607 } 1608 #endif /* CONFIG_CONTIG_ALLOC */ 1609 1610 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */ 1611 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask, 1612 int nid, nodemask_t *nodemask) 1613 { 1614 return NULL; 1615 } 1616 static inline void free_gigantic_folio(struct folio *folio, 1617 unsigned int order) { } 1618 static inline void destroy_compound_gigantic_folio(struct folio *folio, 1619 unsigned int order) { } 1620 #endif 1621 1622 static inline void __clear_hugetlb_destructor(struct hstate *h, 1623 struct folio *folio) 1624 { 1625 lockdep_assert_held(&hugetlb_lock); 1626 1627 __folio_clear_hugetlb(folio); 1628 } 1629 1630 /* 1631 * Remove hugetlb folio from lists. 1632 * If vmemmap exists for the folio, update dtor so that the folio appears 1633 * as just a compound page. Otherwise, wait until after allocating vmemmap 1634 * to update dtor. 1635 * 1636 * A reference is held on the folio, except in the case of demote. 1637 * 1638 * Must be called with hugetlb lock held. 1639 */ 1640 static void __remove_hugetlb_folio(struct hstate *h, struct folio *folio, 1641 bool adjust_surplus, 1642 bool demote) 1643 { 1644 int nid = folio_nid(folio); 1645 1646 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio); 1647 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio); 1648 1649 lockdep_assert_held(&hugetlb_lock); 1650 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 1651 return; 1652 1653 list_del(&folio->lru); 1654 1655 if (folio_test_hugetlb_freed(folio)) { 1656 h->free_huge_pages--; 1657 h->free_huge_pages_node[nid]--; 1658 } 1659 if (adjust_surplus) { 1660 h->surplus_huge_pages--; 1661 h->surplus_huge_pages_node[nid]--; 1662 } 1663 1664 /* 1665 * We can only clear the hugetlb destructor after allocating vmemmap 1666 * pages. Otherwise, someone (memory error handling) may try to write 1667 * to tail struct pages. 1668 */ 1669 if (!folio_test_hugetlb_vmemmap_optimized(folio)) 1670 __clear_hugetlb_destructor(h, folio); 1671 1672 /* 1673 * In the case of demote we do not ref count the page as it will soon 1674 * be turned into a page of smaller size. 1675 */ 1676 if (!demote) 1677 folio_ref_unfreeze(folio, 1); 1678 1679 h->nr_huge_pages--; 1680 h->nr_huge_pages_node[nid]--; 1681 } 1682 1683 static void remove_hugetlb_folio(struct hstate *h, struct folio *folio, 1684 bool adjust_surplus) 1685 { 1686 __remove_hugetlb_folio(h, folio, adjust_surplus, false); 1687 } 1688 1689 static void remove_hugetlb_folio_for_demote(struct hstate *h, struct folio *folio, 1690 bool adjust_surplus) 1691 { 1692 __remove_hugetlb_folio(h, folio, adjust_surplus, true); 1693 } 1694 1695 static void add_hugetlb_folio(struct hstate *h, struct folio *folio, 1696 bool adjust_surplus) 1697 { 1698 int zeroed; 1699 int nid = folio_nid(folio); 1700 1701 VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio); 1702 1703 lockdep_assert_held(&hugetlb_lock); 1704 1705 INIT_LIST_HEAD(&folio->lru); 1706 h->nr_huge_pages++; 1707 h->nr_huge_pages_node[nid]++; 1708 1709 if (adjust_surplus) { 1710 h->surplus_huge_pages++; 1711 h->surplus_huge_pages_node[nid]++; 1712 } 1713 1714 __folio_set_hugetlb(folio); 1715 folio_change_private(folio, NULL); 1716 /* 1717 * We have to set hugetlb_vmemmap_optimized again as above 1718 * folio_change_private(folio, NULL) cleared it. 1719 */ 1720 folio_set_hugetlb_vmemmap_optimized(folio); 1721 1722 /* 1723 * This folio is about to be managed by the hugetlb allocator and 1724 * should have no users. Drop our reference, and check for others 1725 * just in case. 1726 */ 1727 zeroed = folio_put_testzero(folio); 1728 if (unlikely(!zeroed)) 1729 /* 1730 * It is VERY unlikely soneone else has taken a ref 1731 * on the folio. In this case, we simply return as 1732 * free_huge_folio() will be called when this other ref 1733 * is dropped. 1734 */ 1735 return; 1736 1737 arch_clear_hugepage_flags(&folio->page); 1738 enqueue_hugetlb_folio(h, folio); 1739 } 1740 1741 static void __update_and_free_hugetlb_folio(struct hstate *h, 1742 struct folio *folio) 1743 { 1744 bool clear_dtor = folio_test_hugetlb_vmemmap_optimized(folio); 1745 1746 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 1747 return; 1748 1749 /* 1750 * If we don't know which subpages are hwpoisoned, we can't free 1751 * the hugepage, so it's leaked intentionally. 1752 */ 1753 if (folio_test_hugetlb_raw_hwp_unreliable(folio)) 1754 return; 1755 1756 /* 1757 * If folio is not vmemmap optimized (!clear_dtor), then the folio 1758 * is no longer identified as a hugetlb page. hugetlb_vmemmap_restore_folio 1759 * can only be passed hugetlb pages and will BUG otherwise. 1760 */ 1761 if (clear_dtor && hugetlb_vmemmap_restore_folio(h, folio)) { 1762 spin_lock_irq(&hugetlb_lock); 1763 /* 1764 * If we cannot allocate vmemmap pages, just refuse to free the 1765 * page and put the page back on the hugetlb free list and treat 1766 * as a surplus page. 1767 */ 1768 add_hugetlb_folio(h, folio, true); 1769 spin_unlock_irq(&hugetlb_lock); 1770 return; 1771 } 1772 1773 /* 1774 * Move PageHWPoison flag from head page to the raw error pages, 1775 * which makes any healthy subpages reusable. 1776 */ 1777 if (unlikely(folio_test_hwpoison(folio))) 1778 folio_clear_hugetlb_hwpoison(folio); 1779 1780 /* 1781 * If vmemmap pages were allocated above, then we need to clear the 1782 * hugetlb destructor under the hugetlb lock. 1783 */ 1784 if (folio_test_hugetlb(folio)) { 1785 spin_lock_irq(&hugetlb_lock); 1786 __clear_hugetlb_destructor(h, folio); 1787 spin_unlock_irq(&hugetlb_lock); 1788 } 1789 1790 /* 1791 * Non-gigantic pages demoted from CMA allocated gigantic pages 1792 * need to be given back to CMA in free_gigantic_folio. 1793 */ 1794 if (hstate_is_gigantic(h) || 1795 hugetlb_cma_folio(folio, huge_page_order(h))) { 1796 destroy_compound_gigantic_folio(folio, huge_page_order(h)); 1797 free_gigantic_folio(folio, huge_page_order(h)); 1798 } else { 1799 __free_pages(&folio->page, huge_page_order(h)); 1800 } 1801 } 1802 1803 /* 1804 * As update_and_free_hugetlb_folio() can be called under any context, so we cannot 1805 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the 1806 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate 1807 * the vmemmap pages. 1808 * 1809 * free_hpage_workfn() locklessly retrieves the linked list of pages to be 1810 * freed and frees them one-by-one. As the page->mapping pointer is going 1811 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node 1812 * structure of a lockless linked list of huge pages to be freed. 1813 */ 1814 static LLIST_HEAD(hpage_freelist); 1815 1816 static void free_hpage_workfn(struct work_struct *work) 1817 { 1818 struct llist_node *node; 1819 1820 node = llist_del_all(&hpage_freelist); 1821 1822 while (node) { 1823 struct folio *folio; 1824 struct hstate *h; 1825 1826 folio = container_of((struct address_space **)node, 1827 struct folio, mapping); 1828 node = node->next; 1829 folio->mapping = NULL; 1830 /* 1831 * The VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio) in 1832 * folio_hstate() is going to trigger because a previous call to 1833 * remove_hugetlb_folio() will clear the hugetlb bit, so do 1834 * not use folio_hstate() directly. 1835 */ 1836 h = size_to_hstate(folio_size(folio)); 1837 1838 __update_and_free_hugetlb_folio(h, folio); 1839 1840 cond_resched(); 1841 } 1842 } 1843 static DECLARE_WORK(free_hpage_work, free_hpage_workfn); 1844 1845 static inline void flush_free_hpage_work(struct hstate *h) 1846 { 1847 if (hugetlb_vmemmap_optimizable(h)) 1848 flush_work(&free_hpage_work); 1849 } 1850 1851 static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio, 1852 bool atomic) 1853 { 1854 if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) { 1855 __update_and_free_hugetlb_folio(h, folio); 1856 return; 1857 } 1858 1859 /* 1860 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages. 1861 * 1862 * Only call schedule_work() if hpage_freelist is previously 1863 * empty. Otherwise, schedule_work() had been called but the workfn 1864 * hasn't retrieved the list yet. 1865 */ 1866 if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist)) 1867 schedule_work(&free_hpage_work); 1868 } 1869 1870 static void bulk_vmemmap_restore_error(struct hstate *h, 1871 struct list_head *folio_list, 1872 struct list_head *non_hvo_folios) 1873 { 1874 struct folio *folio, *t_folio; 1875 1876 if (!list_empty(non_hvo_folios)) { 1877 /* 1878 * Free any restored hugetlb pages so that restore of the 1879 * entire list can be retried. 1880 * The idea is that in the common case of ENOMEM errors freeing 1881 * hugetlb pages with vmemmap we will free up memory so that we 1882 * can allocate vmemmap for more hugetlb pages. 1883 */ 1884 list_for_each_entry_safe(folio, t_folio, non_hvo_folios, lru) { 1885 list_del(&folio->lru); 1886 spin_lock_irq(&hugetlb_lock); 1887 __clear_hugetlb_destructor(h, folio); 1888 spin_unlock_irq(&hugetlb_lock); 1889 update_and_free_hugetlb_folio(h, folio, false); 1890 cond_resched(); 1891 } 1892 } else { 1893 /* 1894 * In the case where there are no folios which can be 1895 * immediately freed, we loop through the list trying to restore 1896 * vmemmap individually in the hope that someone elsewhere may 1897 * have done something to cause success (such as freeing some 1898 * memory). If unable to restore a hugetlb page, the hugetlb 1899 * page is made a surplus page and removed from the list. 1900 * If are able to restore vmemmap and free one hugetlb page, we 1901 * quit processing the list to retry the bulk operation. 1902 */ 1903 list_for_each_entry_safe(folio, t_folio, folio_list, lru) 1904 if (hugetlb_vmemmap_restore_folio(h, folio)) { 1905 list_del(&folio->lru); 1906 spin_lock_irq(&hugetlb_lock); 1907 add_hugetlb_folio(h, folio, true); 1908 spin_unlock_irq(&hugetlb_lock); 1909 } else { 1910 list_del(&folio->lru); 1911 spin_lock_irq(&hugetlb_lock); 1912 __clear_hugetlb_destructor(h, folio); 1913 spin_unlock_irq(&hugetlb_lock); 1914 update_and_free_hugetlb_folio(h, folio, false); 1915 cond_resched(); 1916 break; 1917 } 1918 } 1919 } 1920 1921 static void update_and_free_pages_bulk(struct hstate *h, 1922 struct list_head *folio_list) 1923 { 1924 long ret; 1925 struct folio *folio, *t_folio; 1926 LIST_HEAD(non_hvo_folios); 1927 1928 /* 1929 * First allocate required vmemmmap (if necessary) for all folios. 1930 * Carefully handle errors and free up any available hugetlb pages 1931 * in an effort to make forward progress. 1932 */ 1933 retry: 1934 ret = hugetlb_vmemmap_restore_folios(h, folio_list, &non_hvo_folios); 1935 if (ret < 0) { 1936 bulk_vmemmap_restore_error(h, folio_list, &non_hvo_folios); 1937 goto retry; 1938 } 1939 1940 /* 1941 * At this point, list should be empty, ret should be >= 0 and there 1942 * should only be pages on the non_hvo_folios list. 1943 * Do note that the non_hvo_folios list could be empty. 1944 * Without HVO enabled, ret will be 0 and there is no need to call 1945 * __clear_hugetlb_destructor as this was done previously. 1946 */ 1947 VM_WARN_ON(!list_empty(folio_list)); 1948 VM_WARN_ON(ret < 0); 1949 if (!list_empty(&non_hvo_folios) && ret) { 1950 spin_lock_irq(&hugetlb_lock); 1951 list_for_each_entry(folio, &non_hvo_folios, lru) 1952 __clear_hugetlb_destructor(h, folio); 1953 spin_unlock_irq(&hugetlb_lock); 1954 } 1955 1956 list_for_each_entry_safe(folio, t_folio, &non_hvo_folios, lru) { 1957 update_and_free_hugetlb_folio(h, folio, false); 1958 cond_resched(); 1959 } 1960 } 1961 1962 struct hstate *size_to_hstate(unsigned long size) 1963 { 1964 struct hstate *h; 1965 1966 for_each_hstate(h) { 1967 if (huge_page_size(h) == size) 1968 return h; 1969 } 1970 return NULL; 1971 } 1972 1973 void free_huge_folio(struct folio *folio) 1974 { 1975 /* 1976 * Can't pass hstate in here because it is called from the 1977 * compound page destructor. 1978 */ 1979 struct hstate *h = folio_hstate(folio); 1980 int nid = folio_nid(folio); 1981 struct hugepage_subpool *spool = hugetlb_folio_subpool(folio); 1982 bool restore_reserve; 1983 unsigned long flags; 1984 1985 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio); 1986 VM_BUG_ON_FOLIO(folio_mapcount(folio), folio); 1987 1988 hugetlb_set_folio_subpool(folio, NULL); 1989 if (folio_test_anon(folio)) 1990 __ClearPageAnonExclusive(&folio->page); 1991 folio->mapping = NULL; 1992 restore_reserve = folio_test_hugetlb_restore_reserve(folio); 1993 folio_clear_hugetlb_restore_reserve(folio); 1994 1995 /* 1996 * If HPageRestoreReserve was set on page, page allocation consumed a 1997 * reservation. If the page was associated with a subpool, there 1998 * would have been a page reserved in the subpool before allocation 1999 * via hugepage_subpool_get_pages(). Since we are 'restoring' the 2000 * reservation, do not call hugepage_subpool_put_pages() as this will 2001 * remove the reserved page from the subpool. 2002 */ 2003 if (!restore_reserve) { 2004 /* 2005 * A return code of zero implies that the subpool will be 2006 * under its minimum size if the reservation is not restored 2007 * after page is free. Therefore, force restore_reserve 2008 * operation. 2009 */ 2010 if (hugepage_subpool_put_pages(spool, 1) == 0) 2011 restore_reserve = true; 2012 } 2013 2014 spin_lock_irqsave(&hugetlb_lock, flags); 2015 folio_clear_hugetlb_migratable(folio); 2016 hugetlb_cgroup_uncharge_folio(hstate_index(h), 2017 pages_per_huge_page(h), folio); 2018 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h), 2019 pages_per_huge_page(h), folio); 2020 mem_cgroup_uncharge(folio); 2021 if (restore_reserve) 2022 h->resv_huge_pages++; 2023 2024 if (folio_test_hugetlb_temporary(folio)) { 2025 remove_hugetlb_folio(h, folio, false); 2026 spin_unlock_irqrestore(&hugetlb_lock, flags); 2027 update_and_free_hugetlb_folio(h, folio, true); 2028 } else if (h->surplus_huge_pages_node[nid]) { 2029 /* remove the page from active list */ 2030 remove_hugetlb_folio(h, folio, true); 2031 spin_unlock_irqrestore(&hugetlb_lock, flags); 2032 update_and_free_hugetlb_folio(h, folio, true); 2033 } else { 2034 arch_clear_hugepage_flags(&folio->page); 2035 enqueue_hugetlb_folio(h, folio); 2036 spin_unlock_irqrestore(&hugetlb_lock, flags); 2037 } 2038 } 2039 2040 /* 2041 * Must be called with the hugetlb lock held 2042 */ 2043 static void __prep_account_new_huge_page(struct hstate *h, int nid) 2044 { 2045 lockdep_assert_held(&hugetlb_lock); 2046 h->nr_huge_pages++; 2047 h->nr_huge_pages_node[nid]++; 2048 } 2049 2050 static void init_new_hugetlb_folio(struct hstate *h, struct folio *folio) 2051 { 2052 __folio_set_hugetlb(folio); 2053 INIT_LIST_HEAD(&folio->lru); 2054 hugetlb_set_folio_subpool(folio, NULL); 2055 set_hugetlb_cgroup(folio, NULL); 2056 set_hugetlb_cgroup_rsvd(folio, NULL); 2057 } 2058 2059 static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio) 2060 { 2061 init_new_hugetlb_folio(h, folio); 2062 hugetlb_vmemmap_optimize_folio(h, folio); 2063 } 2064 2065 static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid) 2066 { 2067 __prep_new_hugetlb_folio(h, folio); 2068 spin_lock_irq(&hugetlb_lock); 2069 __prep_account_new_huge_page(h, nid); 2070 spin_unlock_irq(&hugetlb_lock); 2071 } 2072 2073 static bool __prep_compound_gigantic_folio(struct folio *folio, 2074 unsigned int order, bool demote) 2075 { 2076 int i, j; 2077 int nr_pages = 1 << order; 2078 struct page *p; 2079 2080 __folio_clear_reserved(folio); 2081 for (i = 0; i < nr_pages; i++) { 2082 p = folio_page(folio, i); 2083 2084 /* 2085 * For gigantic hugepages allocated through bootmem at 2086 * boot, it's safer to be consistent with the not-gigantic 2087 * hugepages and clear the PG_reserved bit from all tail pages 2088 * too. Otherwise drivers using get_user_pages() to access tail 2089 * pages may get the reference counting wrong if they see 2090 * PG_reserved set on a tail page (despite the head page not 2091 * having PG_reserved set). Enforcing this consistency between 2092 * head and tail pages allows drivers to optimize away a check 2093 * on the head page when they need know if put_page() is needed 2094 * after get_user_pages(). 2095 */ 2096 if (i != 0) /* head page cleared above */ 2097 __ClearPageReserved(p); 2098 /* 2099 * Subtle and very unlikely 2100 * 2101 * Gigantic 'page allocators' such as memblock or cma will 2102 * return a set of pages with each page ref counted. We need 2103 * to turn this set of pages into a compound page with tail 2104 * page ref counts set to zero. Code such as speculative page 2105 * cache adding could take a ref on a 'to be' tail page. 2106 * We need to respect any increased ref count, and only set 2107 * the ref count to zero if count is currently 1. If count 2108 * is not 1, we return an error. An error return indicates 2109 * the set of pages can not be converted to a gigantic page. 2110 * The caller who allocated the pages should then discard the 2111 * pages using the appropriate free interface. 2112 * 2113 * In the case of demote, the ref count will be zero. 2114 */ 2115 if (!demote) { 2116 if (!page_ref_freeze(p, 1)) { 2117 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n"); 2118 goto out_error; 2119 } 2120 } else { 2121 VM_BUG_ON_PAGE(page_count(p), p); 2122 } 2123 if (i != 0) 2124 set_compound_head(p, &folio->page); 2125 } 2126 __folio_set_head(folio); 2127 /* we rely on prep_new_hugetlb_folio to set the destructor */ 2128 folio_set_order(folio, order); 2129 atomic_set(&folio->_entire_mapcount, -1); 2130 atomic_set(&folio->_nr_pages_mapped, 0); 2131 atomic_set(&folio->_pincount, 0); 2132 return true; 2133 2134 out_error: 2135 /* undo page modifications made above */ 2136 for (j = 0; j < i; j++) { 2137 p = folio_page(folio, j); 2138 if (j != 0) 2139 clear_compound_head(p); 2140 set_page_refcounted(p); 2141 } 2142 /* need to clear PG_reserved on remaining tail pages */ 2143 for (; j < nr_pages; j++) { 2144 p = folio_page(folio, j); 2145 __ClearPageReserved(p); 2146 } 2147 return false; 2148 } 2149 2150 static bool prep_compound_gigantic_folio(struct folio *folio, 2151 unsigned int order) 2152 { 2153 return __prep_compound_gigantic_folio(folio, order, false); 2154 } 2155 2156 static bool prep_compound_gigantic_folio_for_demote(struct folio *folio, 2157 unsigned int order) 2158 { 2159 return __prep_compound_gigantic_folio(folio, order, true); 2160 } 2161 2162 /* 2163 * Find and lock address space (mapping) in write mode. 2164 * 2165 * Upon entry, the page is locked which means that page_mapping() is 2166 * stable. Due to locking order, we can only trylock_write. If we can 2167 * not get the lock, simply return NULL to caller. 2168 */ 2169 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage) 2170 { 2171 struct address_space *mapping = page_mapping(hpage); 2172 2173 if (!mapping) 2174 return mapping; 2175 2176 if (i_mmap_trylock_write(mapping)) 2177 return mapping; 2178 2179 return NULL; 2180 } 2181 2182 static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h, 2183 gfp_t gfp_mask, int nid, nodemask_t *nmask, 2184 nodemask_t *node_alloc_noretry) 2185 { 2186 int order = huge_page_order(h); 2187 struct page *page; 2188 bool alloc_try_hard = true; 2189 bool retry = true; 2190 2191 /* 2192 * By default we always try hard to allocate the page with 2193 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in 2194 * a loop (to adjust global huge page counts) and previous allocation 2195 * failed, do not continue to try hard on the same node. Use the 2196 * node_alloc_noretry bitmap to manage this state information. 2197 */ 2198 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry)) 2199 alloc_try_hard = false; 2200 gfp_mask |= __GFP_COMP|__GFP_NOWARN; 2201 if (alloc_try_hard) 2202 gfp_mask |= __GFP_RETRY_MAYFAIL; 2203 if (nid == NUMA_NO_NODE) 2204 nid = numa_mem_id(); 2205 retry: 2206 page = __alloc_pages(gfp_mask, order, nid, nmask); 2207 2208 /* Freeze head page */ 2209 if (page && !page_ref_freeze(page, 1)) { 2210 __free_pages(page, order); 2211 if (retry) { /* retry once */ 2212 retry = false; 2213 goto retry; 2214 } 2215 /* WOW! twice in a row. */ 2216 pr_warn("HugeTLB head page unexpected inflated ref count\n"); 2217 page = NULL; 2218 } 2219 2220 /* 2221 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this 2222 * indicates an overall state change. Clear bit so that we resume 2223 * normal 'try hard' allocations. 2224 */ 2225 if (node_alloc_noretry && page && !alloc_try_hard) 2226 node_clear(nid, *node_alloc_noretry); 2227 2228 /* 2229 * If we tried hard to get a page but failed, set bit so that 2230 * subsequent attempts will not try as hard until there is an 2231 * overall state change. 2232 */ 2233 if (node_alloc_noretry && !page && alloc_try_hard) 2234 node_set(nid, *node_alloc_noretry); 2235 2236 if (!page) { 2237 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 2238 return NULL; 2239 } 2240 2241 __count_vm_event(HTLB_BUDDY_PGALLOC); 2242 return page_folio(page); 2243 } 2244 2245 static struct folio *__alloc_fresh_hugetlb_folio(struct hstate *h, 2246 gfp_t gfp_mask, int nid, nodemask_t *nmask, 2247 nodemask_t *node_alloc_noretry) 2248 { 2249 struct folio *folio; 2250 bool retry = false; 2251 2252 retry: 2253 if (hstate_is_gigantic(h)) 2254 folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask); 2255 else 2256 folio = alloc_buddy_hugetlb_folio(h, gfp_mask, 2257 nid, nmask, node_alloc_noretry); 2258 if (!folio) 2259 return NULL; 2260 2261 if (hstate_is_gigantic(h)) { 2262 if (!prep_compound_gigantic_folio(folio, huge_page_order(h))) { 2263 /* 2264 * Rare failure to convert pages to compound page. 2265 * Free pages and try again - ONCE! 2266 */ 2267 free_gigantic_folio(folio, huge_page_order(h)); 2268 if (!retry) { 2269 retry = true; 2270 goto retry; 2271 } 2272 return NULL; 2273 } 2274 } 2275 2276 return folio; 2277 } 2278 2279 static struct folio *only_alloc_fresh_hugetlb_folio(struct hstate *h, 2280 gfp_t gfp_mask, int nid, nodemask_t *nmask, 2281 nodemask_t *node_alloc_noretry) 2282 { 2283 struct folio *folio; 2284 2285 folio = __alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, 2286 node_alloc_noretry); 2287 if (folio) 2288 init_new_hugetlb_folio(h, folio); 2289 return folio; 2290 } 2291 2292 /* 2293 * Common helper to allocate a fresh hugetlb page. All specific allocators 2294 * should use this function to get new hugetlb pages 2295 * 2296 * Note that returned page is 'frozen': ref count of head page and all tail 2297 * pages is zero. 2298 */ 2299 static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h, 2300 gfp_t gfp_mask, int nid, nodemask_t *nmask, 2301 nodemask_t *node_alloc_noretry) 2302 { 2303 struct folio *folio; 2304 2305 folio = __alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, 2306 node_alloc_noretry); 2307 if (!folio) 2308 return NULL; 2309 2310 prep_new_hugetlb_folio(h, folio, folio_nid(folio)); 2311 return folio; 2312 } 2313 2314 static void prep_and_add_allocated_folios(struct hstate *h, 2315 struct list_head *folio_list) 2316 { 2317 unsigned long flags; 2318 struct folio *folio, *tmp_f; 2319 2320 /* Send list for bulk vmemmap optimization processing */ 2321 hugetlb_vmemmap_optimize_folios(h, folio_list); 2322 2323 /* Add all new pool pages to free lists in one lock cycle */ 2324 spin_lock_irqsave(&hugetlb_lock, flags); 2325 list_for_each_entry_safe(folio, tmp_f, folio_list, lru) { 2326 __prep_account_new_huge_page(h, folio_nid(folio)); 2327 enqueue_hugetlb_folio(h, folio); 2328 } 2329 spin_unlock_irqrestore(&hugetlb_lock, flags); 2330 } 2331 2332 /* 2333 * Allocates a fresh hugetlb page in a node interleaved manner. The page 2334 * will later be added to the appropriate hugetlb pool. 2335 */ 2336 static struct folio *alloc_pool_huge_folio(struct hstate *h, 2337 nodemask_t *nodes_allowed, 2338 nodemask_t *node_alloc_noretry, 2339 int *next_node) 2340 { 2341 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 2342 int nr_nodes, node; 2343 2344 for_each_node_mask_to_alloc(next_node, nr_nodes, node, nodes_allowed) { 2345 struct folio *folio; 2346 2347 folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, node, 2348 nodes_allowed, node_alloc_noretry); 2349 if (folio) 2350 return folio; 2351 } 2352 2353 return NULL; 2354 } 2355 2356 /* 2357 * Remove huge page from pool from next node to free. Attempt to keep 2358 * persistent huge pages more or less balanced over allowed nodes. 2359 * This routine only 'removes' the hugetlb page. The caller must make 2360 * an additional call to free the page to low level allocators. 2361 * Called with hugetlb_lock locked. 2362 */ 2363 static struct folio *remove_pool_hugetlb_folio(struct hstate *h, 2364 nodemask_t *nodes_allowed, bool acct_surplus) 2365 { 2366 int nr_nodes, node; 2367 struct folio *folio = NULL; 2368 2369 lockdep_assert_held(&hugetlb_lock); 2370 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 2371 /* 2372 * If we're returning unused surplus pages, only examine 2373 * nodes with surplus pages. 2374 */ 2375 if ((!acct_surplus || h->surplus_huge_pages_node[node]) && 2376 !list_empty(&h->hugepage_freelists[node])) { 2377 folio = list_entry(h->hugepage_freelists[node].next, 2378 struct folio, lru); 2379 remove_hugetlb_folio(h, folio, acct_surplus); 2380 break; 2381 } 2382 } 2383 2384 return folio; 2385 } 2386 2387 /* 2388 * Dissolve a given free hugepage into free buddy pages. This function does 2389 * nothing for in-use hugepages and non-hugepages. 2390 * This function returns values like below: 2391 * 2392 * -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages 2393 * when the system is under memory pressure and the feature of 2394 * freeing unused vmemmap pages associated with each hugetlb page 2395 * is enabled. 2396 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use 2397 * (allocated or reserved.) 2398 * 0: successfully dissolved free hugepages or the page is not a 2399 * hugepage (considered as already dissolved) 2400 */ 2401 int dissolve_free_huge_page(struct page *page) 2402 { 2403 int rc = -EBUSY; 2404 struct folio *folio = page_folio(page); 2405 2406 retry: 2407 /* Not to disrupt normal path by vainly holding hugetlb_lock */ 2408 if (!folio_test_hugetlb(folio)) 2409 return 0; 2410 2411 spin_lock_irq(&hugetlb_lock); 2412 if (!folio_test_hugetlb(folio)) { 2413 rc = 0; 2414 goto out; 2415 } 2416 2417 if (!folio_ref_count(folio)) { 2418 struct hstate *h = folio_hstate(folio); 2419 if (!available_huge_pages(h)) 2420 goto out; 2421 2422 /* 2423 * We should make sure that the page is already on the free list 2424 * when it is dissolved. 2425 */ 2426 if (unlikely(!folio_test_hugetlb_freed(folio))) { 2427 spin_unlock_irq(&hugetlb_lock); 2428 cond_resched(); 2429 2430 /* 2431 * Theoretically, we should return -EBUSY when we 2432 * encounter this race. In fact, we have a chance 2433 * to successfully dissolve the page if we do a 2434 * retry. Because the race window is quite small. 2435 * If we seize this opportunity, it is an optimization 2436 * for increasing the success rate of dissolving page. 2437 */ 2438 goto retry; 2439 } 2440 2441 remove_hugetlb_folio(h, folio, false); 2442 h->max_huge_pages--; 2443 spin_unlock_irq(&hugetlb_lock); 2444 2445 /* 2446 * Normally update_and_free_hugtlb_folio will allocate required vmemmmap 2447 * before freeing the page. update_and_free_hugtlb_folio will fail to 2448 * free the page if it can not allocate required vmemmap. We 2449 * need to adjust max_huge_pages if the page is not freed. 2450 * Attempt to allocate vmemmmap here so that we can take 2451 * appropriate action on failure. 2452 * 2453 * The folio_test_hugetlb check here is because 2454 * remove_hugetlb_folio will clear hugetlb folio flag for 2455 * non-vmemmap optimized hugetlb folios. 2456 */ 2457 if (folio_test_hugetlb(folio)) { 2458 rc = hugetlb_vmemmap_restore_folio(h, folio); 2459 if (rc) { 2460 spin_lock_irq(&hugetlb_lock); 2461 add_hugetlb_folio(h, folio, false); 2462 h->max_huge_pages++; 2463 goto out; 2464 } 2465 } else 2466 rc = 0; 2467 2468 update_and_free_hugetlb_folio(h, folio, false); 2469 return rc; 2470 } 2471 out: 2472 spin_unlock_irq(&hugetlb_lock); 2473 return rc; 2474 } 2475 2476 /* 2477 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to 2478 * make specified memory blocks removable from the system. 2479 * Note that this will dissolve a free gigantic hugepage completely, if any 2480 * part of it lies within the given range. 2481 * Also note that if dissolve_free_huge_page() returns with an error, all 2482 * free hugepages that were dissolved before that error are lost. 2483 */ 2484 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn) 2485 { 2486 unsigned long pfn; 2487 struct page *page; 2488 int rc = 0; 2489 unsigned int order; 2490 struct hstate *h; 2491 2492 if (!hugepages_supported()) 2493 return rc; 2494 2495 order = huge_page_order(&default_hstate); 2496 for_each_hstate(h) 2497 order = min(order, huge_page_order(h)); 2498 2499 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) { 2500 page = pfn_to_page(pfn); 2501 rc = dissolve_free_huge_page(page); 2502 if (rc) 2503 break; 2504 } 2505 2506 return rc; 2507 } 2508 2509 /* 2510 * Allocates a fresh surplus page from the page allocator. 2511 */ 2512 static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h, 2513 gfp_t gfp_mask, int nid, nodemask_t *nmask) 2514 { 2515 struct folio *folio = NULL; 2516 2517 if (hstate_is_gigantic(h)) 2518 return NULL; 2519 2520 spin_lock_irq(&hugetlb_lock); 2521 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) 2522 goto out_unlock; 2523 spin_unlock_irq(&hugetlb_lock); 2524 2525 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL); 2526 if (!folio) 2527 return NULL; 2528 2529 spin_lock_irq(&hugetlb_lock); 2530 /* 2531 * We could have raced with the pool size change. 2532 * Double check that and simply deallocate the new page 2533 * if we would end up overcommiting the surpluses. Abuse 2534 * temporary page to workaround the nasty free_huge_folio 2535 * codeflow 2536 */ 2537 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { 2538 folio_set_hugetlb_temporary(folio); 2539 spin_unlock_irq(&hugetlb_lock); 2540 free_huge_folio(folio); 2541 return NULL; 2542 } 2543 2544 h->surplus_huge_pages++; 2545 h->surplus_huge_pages_node[folio_nid(folio)]++; 2546 2547 out_unlock: 2548 spin_unlock_irq(&hugetlb_lock); 2549 2550 return folio; 2551 } 2552 2553 static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask, 2554 int nid, nodemask_t *nmask) 2555 { 2556 struct folio *folio; 2557 2558 if (hstate_is_gigantic(h)) 2559 return NULL; 2560 2561 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL); 2562 if (!folio) 2563 return NULL; 2564 2565 /* fresh huge pages are frozen */ 2566 folio_ref_unfreeze(folio, 1); 2567 /* 2568 * We do not account these pages as surplus because they are only 2569 * temporary and will be released properly on the last reference 2570 */ 2571 folio_set_hugetlb_temporary(folio); 2572 2573 return folio; 2574 } 2575 2576 /* 2577 * Use the VMA's mpolicy to allocate a huge page from the buddy. 2578 */ 2579 static 2580 struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h, 2581 struct vm_area_struct *vma, unsigned long addr) 2582 { 2583 struct folio *folio = NULL; 2584 struct mempolicy *mpol; 2585 gfp_t gfp_mask = htlb_alloc_mask(h); 2586 int nid; 2587 nodemask_t *nodemask; 2588 2589 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask); 2590 if (mpol_is_preferred_many(mpol)) { 2591 gfp_t gfp = gfp_mask | __GFP_NOWARN; 2592 2593 gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL); 2594 folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask); 2595 2596 /* Fallback to all nodes if page==NULL */ 2597 nodemask = NULL; 2598 } 2599 2600 if (!folio) 2601 folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask); 2602 mpol_cond_put(mpol); 2603 return folio; 2604 } 2605 2606 /* folio migration callback function */ 2607 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid, 2608 nodemask_t *nmask, gfp_t gfp_mask) 2609 { 2610 spin_lock_irq(&hugetlb_lock); 2611 if (available_huge_pages(h)) { 2612 struct folio *folio; 2613 2614 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, 2615 preferred_nid, nmask); 2616 if (folio) { 2617 spin_unlock_irq(&hugetlb_lock); 2618 return folio; 2619 } 2620 } 2621 spin_unlock_irq(&hugetlb_lock); 2622 2623 return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask); 2624 } 2625 2626 /* 2627 * Increase the hugetlb pool such that it can accommodate a reservation 2628 * of size 'delta'. 2629 */ 2630 static int gather_surplus_pages(struct hstate *h, long delta) 2631 __must_hold(&hugetlb_lock) 2632 { 2633 LIST_HEAD(surplus_list); 2634 struct folio *folio, *tmp; 2635 int ret; 2636 long i; 2637 long needed, allocated; 2638 bool alloc_ok = true; 2639 2640 lockdep_assert_held(&hugetlb_lock); 2641 needed = (h->resv_huge_pages + delta) - h->free_huge_pages; 2642 if (needed <= 0) { 2643 h->resv_huge_pages += delta; 2644 return 0; 2645 } 2646 2647 allocated = 0; 2648 2649 ret = -ENOMEM; 2650 retry: 2651 spin_unlock_irq(&hugetlb_lock); 2652 for (i = 0; i < needed; i++) { 2653 folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h), 2654 NUMA_NO_NODE, NULL); 2655 if (!folio) { 2656 alloc_ok = false; 2657 break; 2658 } 2659 list_add(&folio->lru, &surplus_list); 2660 cond_resched(); 2661 } 2662 allocated += i; 2663 2664 /* 2665 * After retaking hugetlb_lock, we need to recalculate 'needed' 2666 * because either resv_huge_pages or free_huge_pages may have changed. 2667 */ 2668 spin_lock_irq(&hugetlb_lock); 2669 needed = (h->resv_huge_pages + delta) - 2670 (h->free_huge_pages + allocated); 2671 if (needed > 0) { 2672 if (alloc_ok) 2673 goto retry; 2674 /* 2675 * We were not able to allocate enough pages to 2676 * satisfy the entire reservation so we free what 2677 * we've allocated so far. 2678 */ 2679 goto free; 2680 } 2681 /* 2682 * The surplus_list now contains _at_least_ the number of extra pages 2683 * needed to accommodate the reservation. Add the appropriate number 2684 * of pages to the hugetlb pool and free the extras back to the buddy 2685 * allocator. Commit the entire reservation here to prevent another 2686 * process from stealing the pages as they are added to the pool but 2687 * before they are reserved. 2688 */ 2689 needed += allocated; 2690 h->resv_huge_pages += delta; 2691 ret = 0; 2692 2693 /* Free the needed pages to the hugetlb pool */ 2694 list_for_each_entry_safe(folio, tmp, &surplus_list, lru) { 2695 if ((--needed) < 0) 2696 break; 2697 /* Add the page to the hugetlb allocator */ 2698 enqueue_hugetlb_folio(h, folio); 2699 } 2700 free: 2701 spin_unlock_irq(&hugetlb_lock); 2702 2703 /* 2704 * Free unnecessary surplus pages to the buddy allocator. 2705 * Pages have no ref count, call free_huge_folio directly. 2706 */ 2707 list_for_each_entry_safe(folio, tmp, &surplus_list, lru) 2708 free_huge_folio(folio); 2709 spin_lock_irq(&hugetlb_lock); 2710 2711 return ret; 2712 } 2713 2714 /* 2715 * This routine has two main purposes: 2716 * 1) Decrement the reservation count (resv_huge_pages) by the value passed 2717 * in unused_resv_pages. This corresponds to the prior adjustments made 2718 * to the associated reservation map. 2719 * 2) Free any unused surplus pages that may have been allocated to satisfy 2720 * the reservation. As many as unused_resv_pages may be freed. 2721 */ 2722 static void return_unused_surplus_pages(struct hstate *h, 2723 unsigned long unused_resv_pages) 2724 { 2725 unsigned long nr_pages; 2726 LIST_HEAD(page_list); 2727 2728 lockdep_assert_held(&hugetlb_lock); 2729 /* Uncommit the reservation */ 2730 h->resv_huge_pages -= unused_resv_pages; 2731 2732 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 2733 goto out; 2734 2735 /* 2736 * Part (or even all) of the reservation could have been backed 2737 * by pre-allocated pages. Only free surplus pages. 2738 */ 2739 nr_pages = min(unused_resv_pages, h->surplus_huge_pages); 2740 2741 /* 2742 * We want to release as many surplus pages as possible, spread 2743 * evenly across all nodes with memory. Iterate across these nodes 2744 * until we can no longer free unreserved surplus pages. This occurs 2745 * when the nodes with surplus pages have no free pages. 2746 * remove_pool_hugetlb_folio() will balance the freed pages across the 2747 * on-line nodes with memory and will handle the hstate accounting. 2748 */ 2749 while (nr_pages--) { 2750 struct folio *folio; 2751 2752 folio = remove_pool_hugetlb_folio(h, &node_states[N_MEMORY], 1); 2753 if (!folio) 2754 goto out; 2755 2756 list_add(&folio->lru, &page_list); 2757 } 2758 2759 out: 2760 spin_unlock_irq(&hugetlb_lock); 2761 update_and_free_pages_bulk(h, &page_list); 2762 spin_lock_irq(&hugetlb_lock); 2763 } 2764 2765 2766 /* 2767 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation 2768 * are used by the huge page allocation routines to manage reservations. 2769 * 2770 * vma_needs_reservation is called to determine if the huge page at addr 2771 * within the vma has an associated reservation. If a reservation is 2772 * needed, the value 1 is returned. The caller is then responsible for 2773 * managing the global reservation and subpool usage counts. After 2774 * the huge page has been allocated, vma_commit_reservation is called 2775 * to add the page to the reservation map. If the page allocation fails, 2776 * the reservation must be ended instead of committed. vma_end_reservation 2777 * is called in such cases. 2778 * 2779 * In the normal case, vma_commit_reservation returns the same value 2780 * as the preceding vma_needs_reservation call. The only time this 2781 * is not the case is if a reserve map was changed between calls. It 2782 * is the responsibility of the caller to notice the difference and 2783 * take appropriate action. 2784 * 2785 * vma_add_reservation is used in error paths where a reservation must 2786 * be restored when a newly allocated huge page must be freed. It is 2787 * to be called after calling vma_needs_reservation to determine if a 2788 * reservation exists. 2789 * 2790 * vma_del_reservation is used in error paths where an entry in the reserve 2791 * map was created during huge page allocation and must be removed. It is to 2792 * be called after calling vma_needs_reservation to determine if a reservation 2793 * exists. 2794 */ 2795 enum vma_resv_mode { 2796 VMA_NEEDS_RESV, 2797 VMA_COMMIT_RESV, 2798 VMA_END_RESV, 2799 VMA_ADD_RESV, 2800 VMA_DEL_RESV, 2801 }; 2802 static long __vma_reservation_common(struct hstate *h, 2803 struct vm_area_struct *vma, unsigned long addr, 2804 enum vma_resv_mode mode) 2805 { 2806 struct resv_map *resv; 2807 pgoff_t idx; 2808 long ret; 2809 long dummy_out_regions_needed; 2810 2811 resv = vma_resv_map(vma); 2812 if (!resv) 2813 return 1; 2814 2815 idx = vma_hugecache_offset(h, vma, addr); 2816 switch (mode) { 2817 case VMA_NEEDS_RESV: 2818 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed); 2819 /* We assume that vma_reservation_* routines always operate on 2820 * 1 page, and that adding to resv map a 1 page entry can only 2821 * ever require 1 region. 2822 */ 2823 VM_BUG_ON(dummy_out_regions_needed != 1); 2824 break; 2825 case VMA_COMMIT_RESV: 2826 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2827 /* region_add calls of range 1 should never fail. */ 2828 VM_BUG_ON(ret < 0); 2829 break; 2830 case VMA_END_RESV: 2831 region_abort(resv, idx, idx + 1, 1); 2832 ret = 0; 2833 break; 2834 case VMA_ADD_RESV: 2835 if (vma->vm_flags & VM_MAYSHARE) { 2836 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2837 /* region_add calls of range 1 should never fail. */ 2838 VM_BUG_ON(ret < 0); 2839 } else { 2840 region_abort(resv, idx, idx + 1, 1); 2841 ret = region_del(resv, idx, idx + 1); 2842 } 2843 break; 2844 case VMA_DEL_RESV: 2845 if (vma->vm_flags & VM_MAYSHARE) { 2846 region_abort(resv, idx, idx + 1, 1); 2847 ret = region_del(resv, idx, idx + 1); 2848 } else { 2849 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2850 /* region_add calls of range 1 should never fail. */ 2851 VM_BUG_ON(ret < 0); 2852 } 2853 break; 2854 default: 2855 BUG(); 2856 } 2857 2858 if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV) 2859 return ret; 2860 /* 2861 * We know private mapping must have HPAGE_RESV_OWNER set. 2862 * 2863 * In most cases, reserves always exist for private mappings. 2864 * However, a file associated with mapping could have been 2865 * hole punched or truncated after reserves were consumed. 2866 * As subsequent fault on such a range will not use reserves. 2867 * Subtle - The reserve map for private mappings has the 2868 * opposite meaning than that of shared mappings. If NO 2869 * entry is in the reserve map, it means a reservation exists. 2870 * If an entry exists in the reserve map, it means the 2871 * reservation has already been consumed. As a result, the 2872 * return value of this routine is the opposite of the 2873 * value returned from reserve map manipulation routines above. 2874 */ 2875 if (ret > 0) 2876 return 0; 2877 if (ret == 0) 2878 return 1; 2879 return ret; 2880 } 2881 2882 static long vma_needs_reservation(struct hstate *h, 2883 struct vm_area_struct *vma, unsigned long addr) 2884 { 2885 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV); 2886 } 2887 2888 static long vma_commit_reservation(struct hstate *h, 2889 struct vm_area_struct *vma, unsigned long addr) 2890 { 2891 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV); 2892 } 2893 2894 static void vma_end_reservation(struct hstate *h, 2895 struct vm_area_struct *vma, unsigned long addr) 2896 { 2897 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV); 2898 } 2899 2900 static long vma_add_reservation(struct hstate *h, 2901 struct vm_area_struct *vma, unsigned long addr) 2902 { 2903 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV); 2904 } 2905 2906 static long vma_del_reservation(struct hstate *h, 2907 struct vm_area_struct *vma, unsigned long addr) 2908 { 2909 return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV); 2910 } 2911 2912 /* 2913 * This routine is called to restore reservation information on error paths. 2914 * It should ONLY be called for folios allocated via alloc_hugetlb_folio(), 2915 * and the hugetlb mutex should remain held when calling this routine. 2916 * 2917 * It handles two specific cases: 2918 * 1) A reservation was in place and the folio consumed the reservation. 2919 * hugetlb_restore_reserve is set in the folio. 2920 * 2) No reservation was in place for the page, so hugetlb_restore_reserve is 2921 * not set. However, alloc_hugetlb_folio always updates the reserve map. 2922 * 2923 * In case 1, free_huge_folio later in the error path will increment the 2924 * global reserve count. But, free_huge_folio does not have enough context 2925 * to adjust the reservation map. This case deals primarily with private 2926 * mappings. Adjust the reserve map here to be consistent with global 2927 * reserve count adjustments to be made by free_huge_folio. Make sure the 2928 * reserve map indicates there is a reservation present. 2929 * 2930 * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio. 2931 */ 2932 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma, 2933 unsigned long address, struct folio *folio) 2934 { 2935 long rc = vma_needs_reservation(h, vma, address); 2936 2937 if (folio_test_hugetlb_restore_reserve(folio)) { 2938 if (unlikely(rc < 0)) 2939 /* 2940 * Rare out of memory condition in reserve map 2941 * manipulation. Clear hugetlb_restore_reserve so 2942 * that global reserve count will not be incremented 2943 * by free_huge_folio. This will make it appear 2944 * as though the reservation for this folio was 2945 * consumed. This may prevent the task from 2946 * faulting in the folio at a later time. This 2947 * is better than inconsistent global huge page 2948 * accounting of reserve counts. 2949 */ 2950 folio_clear_hugetlb_restore_reserve(folio); 2951 else if (rc) 2952 (void)vma_add_reservation(h, vma, address); 2953 else 2954 vma_end_reservation(h, vma, address); 2955 } else { 2956 if (!rc) { 2957 /* 2958 * This indicates there is an entry in the reserve map 2959 * not added by alloc_hugetlb_folio. We know it was added 2960 * before the alloc_hugetlb_folio call, otherwise 2961 * hugetlb_restore_reserve would be set on the folio. 2962 * Remove the entry so that a subsequent allocation 2963 * does not consume a reservation. 2964 */ 2965 rc = vma_del_reservation(h, vma, address); 2966 if (rc < 0) 2967 /* 2968 * VERY rare out of memory condition. Since 2969 * we can not delete the entry, set 2970 * hugetlb_restore_reserve so that the reserve 2971 * count will be incremented when the folio 2972 * is freed. This reserve will be consumed 2973 * on a subsequent allocation. 2974 */ 2975 folio_set_hugetlb_restore_reserve(folio); 2976 } else if (rc < 0) { 2977 /* 2978 * Rare out of memory condition from 2979 * vma_needs_reservation call. Memory allocation is 2980 * only attempted if a new entry is needed. Therefore, 2981 * this implies there is not an entry in the 2982 * reserve map. 2983 * 2984 * For shared mappings, no entry in the map indicates 2985 * no reservation. We are done. 2986 */ 2987 if (!(vma->vm_flags & VM_MAYSHARE)) 2988 /* 2989 * For private mappings, no entry indicates 2990 * a reservation is present. Since we can 2991 * not add an entry, set hugetlb_restore_reserve 2992 * on the folio so reserve count will be 2993 * incremented when freed. This reserve will 2994 * be consumed on a subsequent allocation. 2995 */ 2996 folio_set_hugetlb_restore_reserve(folio); 2997 } else 2998 /* 2999 * No reservation present, do nothing 3000 */ 3001 vma_end_reservation(h, vma, address); 3002 } 3003 } 3004 3005 /* 3006 * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve 3007 * the old one 3008 * @h: struct hstate old page belongs to 3009 * @old_folio: Old folio to dissolve 3010 * @list: List to isolate the page in case we need to 3011 * Returns 0 on success, otherwise negated error. 3012 */ 3013 static int alloc_and_dissolve_hugetlb_folio(struct hstate *h, 3014 struct folio *old_folio, struct list_head *list) 3015 { 3016 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 3017 int nid = folio_nid(old_folio); 3018 struct folio *new_folio = NULL; 3019 int ret = 0; 3020 3021 retry: 3022 spin_lock_irq(&hugetlb_lock); 3023 if (!folio_test_hugetlb(old_folio)) { 3024 /* 3025 * Freed from under us. Drop new_folio too. 3026 */ 3027 goto free_new; 3028 } else if (folio_ref_count(old_folio)) { 3029 bool isolated; 3030 3031 /* 3032 * Someone has grabbed the folio, try to isolate it here. 3033 * Fail with -EBUSY if not possible. 3034 */ 3035 spin_unlock_irq(&hugetlb_lock); 3036 isolated = isolate_hugetlb(old_folio, list); 3037 ret = isolated ? 0 : -EBUSY; 3038 spin_lock_irq(&hugetlb_lock); 3039 goto free_new; 3040 } else if (!folio_test_hugetlb_freed(old_folio)) { 3041 /* 3042 * Folio's refcount is 0 but it has not been enqueued in the 3043 * freelist yet. Race window is small, so we can succeed here if 3044 * we retry. 3045 */ 3046 spin_unlock_irq(&hugetlb_lock); 3047 cond_resched(); 3048 goto retry; 3049 } else { 3050 if (!new_folio) { 3051 spin_unlock_irq(&hugetlb_lock); 3052 new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, 3053 NULL, NULL); 3054 if (!new_folio) 3055 return -ENOMEM; 3056 __prep_new_hugetlb_folio(h, new_folio); 3057 goto retry; 3058 } 3059 3060 /* 3061 * Ok, old_folio is still a genuine free hugepage. Remove it from 3062 * the freelist and decrease the counters. These will be 3063 * incremented again when calling __prep_account_new_huge_page() 3064 * and enqueue_hugetlb_folio() for new_folio. The counters will 3065 * remain stable since this happens under the lock. 3066 */ 3067 remove_hugetlb_folio(h, old_folio, false); 3068 3069 /* 3070 * Ref count on new_folio is already zero as it was dropped 3071 * earlier. It can be directly added to the pool free list. 3072 */ 3073 __prep_account_new_huge_page(h, nid); 3074 enqueue_hugetlb_folio(h, new_folio); 3075 3076 /* 3077 * Folio has been replaced, we can safely free the old one. 3078 */ 3079 spin_unlock_irq(&hugetlb_lock); 3080 update_and_free_hugetlb_folio(h, old_folio, false); 3081 } 3082 3083 return ret; 3084 3085 free_new: 3086 spin_unlock_irq(&hugetlb_lock); 3087 if (new_folio) { 3088 /* Folio has a zero ref count, but needs a ref to be freed */ 3089 folio_ref_unfreeze(new_folio, 1); 3090 update_and_free_hugetlb_folio(h, new_folio, false); 3091 } 3092 3093 return ret; 3094 } 3095 3096 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list) 3097 { 3098 struct hstate *h; 3099 struct folio *folio = page_folio(page); 3100 int ret = -EBUSY; 3101 3102 /* 3103 * The page might have been dissolved from under our feet, so make sure 3104 * to carefully check the state under the lock. 3105 * Return success when racing as if we dissolved the page ourselves. 3106 */ 3107 spin_lock_irq(&hugetlb_lock); 3108 if (folio_test_hugetlb(folio)) { 3109 h = folio_hstate(folio); 3110 } else { 3111 spin_unlock_irq(&hugetlb_lock); 3112 return 0; 3113 } 3114 spin_unlock_irq(&hugetlb_lock); 3115 3116 /* 3117 * Fence off gigantic pages as there is a cyclic dependency between 3118 * alloc_contig_range and them. Return -ENOMEM as this has the effect 3119 * of bailing out right away without further retrying. 3120 */ 3121 if (hstate_is_gigantic(h)) 3122 return -ENOMEM; 3123 3124 if (folio_ref_count(folio) && isolate_hugetlb(folio, list)) 3125 ret = 0; 3126 else if (!folio_ref_count(folio)) 3127 ret = alloc_and_dissolve_hugetlb_folio(h, folio, list); 3128 3129 return ret; 3130 } 3131 3132 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma, 3133 unsigned long addr, int avoid_reserve) 3134 { 3135 struct hugepage_subpool *spool = subpool_vma(vma); 3136 struct hstate *h = hstate_vma(vma); 3137 struct folio *folio; 3138 long map_chg, map_commit, nr_pages = pages_per_huge_page(h); 3139 long gbl_chg; 3140 int memcg_charge_ret, ret, idx; 3141 struct hugetlb_cgroup *h_cg = NULL; 3142 struct mem_cgroup *memcg; 3143 bool deferred_reserve; 3144 gfp_t gfp = htlb_alloc_mask(h) | __GFP_RETRY_MAYFAIL; 3145 3146 memcg = get_mem_cgroup_from_current(); 3147 memcg_charge_ret = mem_cgroup_hugetlb_try_charge(memcg, gfp, nr_pages); 3148 if (memcg_charge_ret == -ENOMEM) { 3149 mem_cgroup_put(memcg); 3150 return ERR_PTR(-ENOMEM); 3151 } 3152 3153 idx = hstate_index(h); 3154 /* 3155 * Examine the region/reserve map to determine if the process 3156 * has a reservation for the page to be allocated. A return 3157 * code of zero indicates a reservation exists (no change). 3158 */ 3159 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr); 3160 if (map_chg < 0) { 3161 if (!memcg_charge_ret) 3162 mem_cgroup_cancel_charge(memcg, nr_pages); 3163 mem_cgroup_put(memcg); 3164 return ERR_PTR(-ENOMEM); 3165 } 3166 3167 /* 3168 * Processes that did not create the mapping will have no 3169 * reserves as indicated by the region/reserve map. Check 3170 * that the allocation will not exceed the subpool limit. 3171 * Allocations for MAP_NORESERVE mappings also need to be 3172 * checked against any subpool limit. 3173 */ 3174 if (map_chg || avoid_reserve) { 3175 gbl_chg = hugepage_subpool_get_pages(spool, 1); 3176 if (gbl_chg < 0) 3177 goto out_end_reservation; 3178 3179 /* 3180 * Even though there was no reservation in the region/reserve 3181 * map, there could be reservations associated with the 3182 * subpool that can be used. This would be indicated if the 3183 * return value of hugepage_subpool_get_pages() is zero. 3184 * However, if avoid_reserve is specified we still avoid even 3185 * the subpool reservations. 3186 */ 3187 if (avoid_reserve) 3188 gbl_chg = 1; 3189 } 3190 3191 /* If this allocation is not consuming a reservation, charge it now. 3192 */ 3193 deferred_reserve = map_chg || avoid_reserve; 3194 if (deferred_reserve) { 3195 ret = hugetlb_cgroup_charge_cgroup_rsvd( 3196 idx, pages_per_huge_page(h), &h_cg); 3197 if (ret) 3198 goto out_subpool_put; 3199 } 3200 3201 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg); 3202 if (ret) 3203 goto out_uncharge_cgroup_reservation; 3204 3205 spin_lock_irq(&hugetlb_lock); 3206 /* 3207 * glb_chg is passed to indicate whether or not a page must be taken 3208 * from the global free pool (global change). gbl_chg == 0 indicates 3209 * a reservation exists for the allocation. 3210 */ 3211 folio = dequeue_hugetlb_folio_vma(h, vma, addr, avoid_reserve, gbl_chg); 3212 if (!folio) { 3213 spin_unlock_irq(&hugetlb_lock); 3214 folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr); 3215 if (!folio) 3216 goto out_uncharge_cgroup; 3217 spin_lock_irq(&hugetlb_lock); 3218 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) { 3219 folio_set_hugetlb_restore_reserve(folio); 3220 h->resv_huge_pages--; 3221 } 3222 list_add(&folio->lru, &h->hugepage_activelist); 3223 folio_ref_unfreeze(folio, 1); 3224 /* Fall through */ 3225 } 3226 3227 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio); 3228 /* If allocation is not consuming a reservation, also store the 3229 * hugetlb_cgroup pointer on the page. 3230 */ 3231 if (deferred_reserve) { 3232 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h), 3233 h_cg, folio); 3234 } 3235 3236 spin_unlock_irq(&hugetlb_lock); 3237 3238 hugetlb_set_folio_subpool(folio, spool); 3239 3240 map_commit = vma_commit_reservation(h, vma, addr); 3241 if (unlikely(map_chg > map_commit)) { 3242 /* 3243 * The page was added to the reservation map between 3244 * vma_needs_reservation and vma_commit_reservation. 3245 * This indicates a race with hugetlb_reserve_pages. 3246 * Adjust for the subpool count incremented above AND 3247 * in hugetlb_reserve_pages for the same page. Also, 3248 * the reservation count added in hugetlb_reserve_pages 3249 * no longer applies. 3250 */ 3251 long rsv_adjust; 3252 3253 rsv_adjust = hugepage_subpool_put_pages(spool, 1); 3254 hugetlb_acct_memory(h, -rsv_adjust); 3255 if (deferred_reserve) { 3256 spin_lock_irq(&hugetlb_lock); 3257 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h), 3258 pages_per_huge_page(h), folio); 3259 spin_unlock_irq(&hugetlb_lock); 3260 } 3261 } 3262 3263 if (!memcg_charge_ret) 3264 mem_cgroup_commit_charge(folio, memcg); 3265 mem_cgroup_put(memcg); 3266 3267 return folio; 3268 3269 out_uncharge_cgroup: 3270 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg); 3271 out_uncharge_cgroup_reservation: 3272 if (deferred_reserve) 3273 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h), 3274 h_cg); 3275 out_subpool_put: 3276 if (map_chg || avoid_reserve) 3277 hugepage_subpool_put_pages(spool, 1); 3278 out_end_reservation: 3279 vma_end_reservation(h, vma, addr); 3280 if (!memcg_charge_ret) 3281 mem_cgroup_cancel_charge(memcg, nr_pages); 3282 mem_cgroup_put(memcg); 3283 return ERR_PTR(-ENOSPC); 3284 } 3285 3286 int alloc_bootmem_huge_page(struct hstate *h, int nid) 3287 __attribute__ ((weak, alias("__alloc_bootmem_huge_page"))); 3288 int __alloc_bootmem_huge_page(struct hstate *h, int nid) 3289 { 3290 struct huge_bootmem_page *m = NULL; /* initialize for clang */ 3291 int nr_nodes, node = nid; 3292 3293 /* do node specific alloc */ 3294 if (nid != NUMA_NO_NODE) { 3295 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h), 3296 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid); 3297 if (!m) 3298 return 0; 3299 goto found; 3300 } 3301 /* allocate from next node when distributing huge pages */ 3302 for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, &node_states[N_MEMORY]) { 3303 m = memblock_alloc_try_nid_raw( 3304 huge_page_size(h), huge_page_size(h), 3305 0, MEMBLOCK_ALLOC_ACCESSIBLE, node); 3306 /* 3307 * Use the beginning of the huge page to store the 3308 * huge_bootmem_page struct (until gather_bootmem 3309 * puts them into the mem_map). 3310 */ 3311 if (!m) 3312 return 0; 3313 goto found; 3314 } 3315 3316 found: 3317 3318 /* 3319 * Only initialize the head struct page in memmap_init_reserved_pages, 3320 * rest of the struct pages will be initialized by the HugeTLB 3321 * subsystem itself. 3322 * The head struct page is used to get folio information by the HugeTLB 3323 * subsystem like zone id and node id. 3324 */ 3325 memblock_reserved_mark_noinit(virt_to_phys((void *)m + PAGE_SIZE), 3326 huge_page_size(h) - PAGE_SIZE); 3327 /* Put them into a private list first because mem_map is not up yet */ 3328 INIT_LIST_HEAD(&m->list); 3329 list_add(&m->list, &huge_boot_pages[node]); 3330 m->hstate = h; 3331 return 1; 3332 } 3333 3334 /* Initialize [start_page:end_page_number] tail struct pages of a hugepage */ 3335 static void __init hugetlb_folio_init_tail_vmemmap(struct folio *folio, 3336 unsigned long start_page_number, 3337 unsigned long end_page_number) 3338 { 3339 enum zone_type zone = zone_idx(folio_zone(folio)); 3340 int nid = folio_nid(folio); 3341 unsigned long head_pfn = folio_pfn(folio); 3342 unsigned long pfn, end_pfn = head_pfn + end_page_number; 3343 int ret; 3344 3345 for (pfn = head_pfn + start_page_number; pfn < end_pfn; pfn++) { 3346 struct page *page = pfn_to_page(pfn); 3347 3348 __init_single_page(page, pfn, zone, nid); 3349 prep_compound_tail((struct page *)folio, pfn - head_pfn); 3350 ret = page_ref_freeze(page, 1); 3351 VM_BUG_ON(!ret); 3352 } 3353 } 3354 3355 static void __init hugetlb_folio_init_vmemmap(struct folio *folio, 3356 struct hstate *h, 3357 unsigned long nr_pages) 3358 { 3359 int ret; 3360 3361 /* Prepare folio head */ 3362 __folio_clear_reserved(folio); 3363 __folio_set_head(folio); 3364 ret = folio_ref_freeze(folio, 1); 3365 VM_BUG_ON(!ret); 3366 /* Initialize the necessary tail struct pages */ 3367 hugetlb_folio_init_tail_vmemmap(folio, 1, nr_pages); 3368 prep_compound_head((struct page *)folio, huge_page_order(h)); 3369 } 3370 3371 static void __init prep_and_add_bootmem_folios(struct hstate *h, 3372 struct list_head *folio_list) 3373 { 3374 unsigned long flags; 3375 struct folio *folio, *tmp_f; 3376 3377 /* Send list for bulk vmemmap optimization processing */ 3378 hugetlb_vmemmap_optimize_folios(h, folio_list); 3379 3380 list_for_each_entry_safe(folio, tmp_f, folio_list, lru) { 3381 if (!folio_test_hugetlb_vmemmap_optimized(folio)) { 3382 /* 3383 * If HVO fails, initialize all tail struct pages 3384 * We do not worry about potential long lock hold 3385 * time as this is early in boot and there should 3386 * be no contention. 3387 */ 3388 hugetlb_folio_init_tail_vmemmap(folio, 3389 HUGETLB_VMEMMAP_RESERVE_PAGES, 3390 pages_per_huge_page(h)); 3391 } 3392 /* Subdivide locks to achieve better parallel performance */ 3393 spin_lock_irqsave(&hugetlb_lock, flags); 3394 __prep_account_new_huge_page(h, folio_nid(folio)); 3395 enqueue_hugetlb_folio(h, folio); 3396 spin_unlock_irqrestore(&hugetlb_lock, flags); 3397 } 3398 } 3399 3400 /* 3401 * Put bootmem huge pages into the standard lists after mem_map is up. 3402 * Note: This only applies to gigantic (order > MAX_PAGE_ORDER) pages. 3403 */ 3404 static void __init gather_bootmem_prealloc_node(unsigned long nid) 3405 { 3406 LIST_HEAD(folio_list); 3407 struct huge_bootmem_page *m; 3408 struct hstate *h = NULL, *prev_h = NULL; 3409 3410 list_for_each_entry(m, &huge_boot_pages[nid], list) { 3411 struct page *page = virt_to_page(m); 3412 struct folio *folio = (void *)page; 3413 3414 h = m->hstate; 3415 /* 3416 * It is possible to have multiple huge page sizes (hstates) 3417 * in this list. If so, process each size separately. 3418 */ 3419 if (h != prev_h && prev_h != NULL) 3420 prep_and_add_bootmem_folios(prev_h, &folio_list); 3421 prev_h = h; 3422 3423 VM_BUG_ON(!hstate_is_gigantic(h)); 3424 WARN_ON(folio_ref_count(folio) != 1); 3425 3426 hugetlb_folio_init_vmemmap(folio, h, 3427 HUGETLB_VMEMMAP_RESERVE_PAGES); 3428 init_new_hugetlb_folio(h, folio); 3429 list_add(&folio->lru, &folio_list); 3430 3431 /* 3432 * We need to restore the 'stolen' pages to totalram_pages 3433 * in order to fix confusing memory reports from free(1) and 3434 * other side-effects, like CommitLimit going negative. 3435 */ 3436 adjust_managed_page_count(page, pages_per_huge_page(h)); 3437 cond_resched(); 3438 } 3439 3440 prep_and_add_bootmem_folios(h, &folio_list); 3441 } 3442 3443 static void __init gather_bootmem_prealloc_parallel(unsigned long start, 3444 unsigned long end, void *arg) 3445 { 3446 int nid; 3447 3448 for (nid = start; nid < end; nid++) 3449 gather_bootmem_prealloc_node(nid); 3450 } 3451 3452 static void __init gather_bootmem_prealloc(void) 3453 { 3454 struct padata_mt_job job = { 3455 .thread_fn = gather_bootmem_prealloc_parallel, 3456 .fn_arg = NULL, 3457 .start = 0, 3458 .size = num_node_state(N_MEMORY), 3459 .align = 1, 3460 .min_chunk = 1, 3461 .max_threads = num_node_state(N_MEMORY), 3462 .numa_aware = true, 3463 }; 3464 3465 padata_do_multithreaded(&job); 3466 } 3467 3468 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid) 3469 { 3470 unsigned long i; 3471 char buf[32]; 3472 3473 for (i = 0; i < h->max_huge_pages_node[nid]; ++i) { 3474 if (hstate_is_gigantic(h)) { 3475 if (!alloc_bootmem_huge_page(h, nid)) 3476 break; 3477 } else { 3478 struct folio *folio; 3479 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 3480 3481 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, 3482 &node_states[N_MEMORY], NULL); 3483 if (!folio) 3484 break; 3485 free_huge_folio(folio); /* free it into the hugepage allocator */ 3486 } 3487 cond_resched(); 3488 } 3489 if (i == h->max_huge_pages_node[nid]) 3490 return; 3491 3492 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3493 pr_warn("HugeTLB: allocating %u of page size %s failed node%d. Only allocated %lu hugepages.\n", 3494 h->max_huge_pages_node[nid], buf, nid, i); 3495 h->max_huge_pages -= (h->max_huge_pages_node[nid] - i); 3496 h->max_huge_pages_node[nid] = i; 3497 } 3498 3499 static bool __init hugetlb_hstate_alloc_pages_specific_nodes(struct hstate *h) 3500 { 3501 int i; 3502 bool node_specific_alloc = false; 3503 3504 for_each_online_node(i) { 3505 if (h->max_huge_pages_node[i] > 0) { 3506 hugetlb_hstate_alloc_pages_onenode(h, i); 3507 node_specific_alloc = true; 3508 } 3509 } 3510 3511 return node_specific_alloc; 3512 } 3513 3514 static void __init hugetlb_hstate_alloc_pages_errcheck(unsigned long allocated, struct hstate *h) 3515 { 3516 if (allocated < h->max_huge_pages) { 3517 char buf[32]; 3518 3519 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3520 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n", 3521 h->max_huge_pages, buf, allocated); 3522 h->max_huge_pages = allocated; 3523 } 3524 } 3525 3526 static void __init hugetlb_pages_alloc_boot_node(unsigned long start, unsigned long end, void *arg) 3527 { 3528 struct hstate *h = (struct hstate *)arg; 3529 int i, num = end - start; 3530 nodemask_t node_alloc_noretry; 3531 LIST_HEAD(folio_list); 3532 int next_node = first_online_node; 3533 3534 /* Bit mask controlling how hard we retry per-node allocations.*/ 3535 nodes_clear(node_alloc_noretry); 3536 3537 for (i = 0; i < num; ++i) { 3538 struct folio *folio = alloc_pool_huge_folio(h, &node_states[N_MEMORY], 3539 &node_alloc_noretry, &next_node); 3540 if (!folio) 3541 break; 3542 3543 list_move(&folio->lru, &folio_list); 3544 cond_resched(); 3545 } 3546 3547 prep_and_add_allocated_folios(h, &folio_list); 3548 } 3549 3550 static unsigned long __init hugetlb_gigantic_pages_alloc_boot(struct hstate *h) 3551 { 3552 unsigned long i; 3553 3554 for (i = 0; i < h->max_huge_pages; ++i) { 3555 if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE)) 3556 break; 3557 cond_resched(); 3558 } 3559 3560 return i; 3561 } 3562 3563 static unsigned long __init hugetlb_pages_alloc_boot(struct hstate *h) 3564 { 3565 struct padata_mt_job job = { 3566 .fn_arg = h, 3567 .align = 1, 3568 .numa_aware = true 3569 }; 3570 3571 job.thread_fn = hugetlb_pages_alloc_boot_node; 3572 job.start = 0; 3573 job.size = h->max_huge_pages; 3574 3575 /* 3576 * job.max_threads is twice the num_node_state(N_MEMORY), 3577 * 3578 * Tests below indicate that a multiplier of 2 significantly improves 3579 * performance, and although larger values also provide improvements, 3580 * the gains are marginal. 3581 * 3582 * Therefore, choosing 2 as the multiplier strikes a good balance between 3583 * enhancing parallel processing capabilities and maintaining efficient 3584 * resource management. 3585 * 3586 * +------------+-------+-------+-------+-------+-------+ 3587 * | multiplier | 1 | 2 | 3 | 4 | 5 | 3588 * +------------+-------+-------+-------+-------+-------+ 3589 * | 256G 2node | 358ms | 215ms | 157ms | 134ms | 126ms | 3590 * | 2T 4node | 979ms | 679ms | 543ms | 489ms | 481ms | 3591 * | 50G 2node | 71ms | 44ms | 37ms | 30ms | 31ms | 3592 * +------------+-------+-------+-------+-------+-------+ 3593 */ 3594 job.max_threads = num_node_state(N_MEMORY) * 2; 3595 job.min_chunk = h->max_huge_pages / num_node_state(N_MEMORY) / 2; 3596 padata_do_multithreaded(&job); 3597 3598 return h->nr_huge_pages; 3599 } 3600 3601 /* 3602 * NOTE: this routine is called in different contexts for gigantic and 3603 * non-gigantic pages. 3604 * - For gigantic pages, this is called early in the boot process and 3605 * pages are allocated from memblock allocated or something similar. 3606 * Gigantic pages are actually added to pools later with the routine 3607 * gather_bootmem_prealloc. 3608 * - For non-gigantic pages, this is called later in the boot process after 3609 * all of mm is up and functional. Pages are allocated from buddy and 3610 * then added to hugetlb pools. 3611 */ 3612 static void __init hugetlb_hstate_alloc_pages(struct hstate *h) 3613 { 3614 unsigned long allocated; 3615 static bool initialized __initdata; 3616 3617 /* skip gigantic hugepages allocation if hugetlb_cma enabled */ 3618 if (hstate_is_gigantic(h) && hugetlb_cma_size) { 3619 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n"); 3620 return; 3621 } 3622 3623 /* hugetlb_hstate_alloc_pages will be called many times, initialize huge_boot_pages once */ 3624 if (!initialized) { 3625 int i = 0; 3626 3627 for (i = 0; i < MAX_NUMNODES; i++) 3628 INIT_LIST_HEAD(&huge_boot_pages[i]); 3629 initialized = true; 3630 } 3631 3632 /* do node specific alloc */ 3633 if (hugetlb_hstate_alloc_pages_specific_nodes(h)) 3634 return; 3635 3636 /* below will do all node balanced alloc */ 3637 if (hstate_is_gigantic(h)) 3638 allocated = hugetlb_gigantic_pages_alloc_boot(h); 3639 else 3640 allocated = hugetlb_pages_alloc_boot(h); 3641 3642 hugetlb_hstate_alloc_pages_errcheck(allocated, h); 3643 } 3644 3645 static void __init hugetlb_init_hstates(void) 3646 { 3647 struct hstate *h, *h2; 3648 3649 for_each_hstate(h) { 3650 /* oversize hugepages were init'ed in early boot */ 3651 if (!hstate_is_gigantic(h)) 3652 hugetlb_hstate_alloc_pages(h); 3653 3654 /* 3655 * Set demote order for each hstate. Note that 3656 * h->demote_order is initially 0. 3657 * - We can not demote gigantic pages if runtime freeing 3658 * is not supported, so skip this. 3659 * - If CMA allocation is possible, we can not demote 3660 * HUGETLB_PAGE_ORDER or smaller size pages. 3661 */ 3662 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 3663 continue; 3664 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER) 3665 continue; 3666 for_each_hstate(h2) { 3667 if (h2 == h) 3668 continue; 3669 if (h2->order < h->order && 3670 h2->order > h->demote_order) 3671 h->demote_order = h2->order; 3672 } 3673 } 3674 } 3675 3676 static void __init report_hugepages(void) 3677 { 3678 struct hstate *h; 3679 3680 for_each_hstate(h) { 3681 char buf[32]; 3682 3683 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3684 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n", 3685 buf, h->free_huge_pages); 3686 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n", 3687 hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf); 3688 } 3689 } 3690 3691 #ifdef CONFIG_HIGHMEM 3692 static void try_to_free_low(struct hstate *h, unsigned long count, 3693 nodemask_t *nodes_allowed) 3694 { 3695 int i; 3696 LIST_HEAD(page_list); 3697 3698 lockdep_assert_held(&hugetlb_lock); 3699 if (hstate_is_gigantic(h)) 3700 return; 3701 3702 /* 3703 * Collect pages to be freed on a list, and free after dropping lock 3704 */ 3705 for_each_node_mask(i, *nodes_allowed) { 3706 struct folio *folio, *next; 3707 struct list_head *freel = &h->hugepage_freelists[i]; 3708 list_for_each_entry_safe(folio, next, freel, lru) { 3709 if (count >= h->nr_huge_pages) 3710 goto out; 3711 if (folio_test_highmem(folio)) 3712 continue; 3713 remove_hugetlb_folio(h, folio, false); 3714 list_add(&folio->lru, &page_list); 3715 } 3716 } 3717 3718 out: 3719 spin_unlock_irq(&hugetlb_lock); 3720 update_and_free_pages_bulk(h, &page_list); 3721 spin_lock_irq(&hugetlb_lock); 3722 } 3723 #else 3724 static inline void try_to_free_low(struct hstate *h, unsigned long count, 3725 nodemask_t *nodes_allowed) 3726 { 3727 } 3728 #endif 3729 3730 /* 3731 * Increment or decrement surplus_huge_pages. Keep node-specific counters 3732 * balanced by operating on them in a round-robin fashion. 3733 * Returns 1 if an adjustment was made. 3734 */ 3735 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed, 3736 int delta) 3737 { 3738 int nr_nodes, node; 3739 3740 lockdep_assert_held(&hugetlb_lock); 3741 VM_BUG_ON(delta != -1 && delta != 1); 3742 3743 if (delta < 0) { 3744 for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, nodes_allowed) { 3745 if (h->surplus_huge_pages_node[node]) 3746 goto found; 3747 } 3748 } else { 3749 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 3750 if (h->surplus_huge_pages_node[node] < 3751 h->nr_huge_pages_node[node]) 3752 goto found; 3753 } 3754 } 3755 return 0; 3756 3757 found: 3758 h->surplus_huge_pages += delta; 3759 h->surplus_huge_pages_node[node] += delta; 3760 return 1; 3761 } 3762 3763 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) 3764 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid, 3765 nodemask_t *nodes_allowed) 3766 { 3767 unsigned long min_count; 3768 unsigned long allocated; 3769 struct folio *folio; 3770 LIST_HEAD(page_list); 3771 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL); 3772 3773 /* 3774 * Bit mask controlling how hard we retry per-node allocations. 3775 * If we can not allocate the bit mask, do not attempt to allocate 3776 * the requested huge pages. 3777 */ 3778 if (node_alloc_noretry) 3779 nodes_clear(*node_alloc_noretry); 3780 else 3781 return -ENOMEM; 3782 3783 /* 3784 * resize_lock mutex prevents concurrent adjustments to number of 3785 * pages in hstate via the proc/sysfs interfaces. 3786 */ 3787 mutex_lock(&h->resize_lock); 3788 flush_free_hpage_work(h); 3789 spin_lock_irq(&hugetlb_lock); 3790 3791 /* 3792 * Check for a node specific request. 3793 * Changing node specific huge page count may require a corresponding 3794 * change to the global count. In any case, the passed node mask 3795 * (nodes_allowed) will restrict alloc/free to the specified node. 3796 */ 3797 if (nid != NUMA_NO_NODE) { 3798 unsigned long old_count = count; 3799 3800 count += persistent_huge_pages(h) - 3801 (h->nr_huge_pages_node[nid] - 3802 h->surplus_huge_pages_node[nid]); 3803 /* 3804 * User may have specified a large count value which caused the 3805 * above calculation to overflow. In this case, they wanted 3806 * to allocate as many huge pages as possible. Set count to 3807 * largest possible value to align with their intention. 3808 */ 3809 if (count < old_count) 3810 count = ULONG_MAX; 3811 } 3812 3813 /* 3814 * Gigantic pages runtime allocation depend on the capability for large 3815 * page range allocation. 3816 * If the system does not provide this feature, return an error when 3817 * the user tries to allocate gigantic pages but let the user free the 3818 * boottime allocated gigantic pages. 3819 */ 3820 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) { 3821 if (count > persistent_huge_pages(h)) { 3822 spin_unlock_irq(&hugetlb_lock); 3823 mutex_unlock(&h->resize_lock); 3824 NODEMASK_FREE(node_alloc_noretry); 3825 return -EINVAL; 3826 } 3827 /* Fall through to decrease pool */ 3828 } 3829 3830 /* 3831 * Increase the pool size 3832 * First take pages out of surplus state. Then make up the 3833 * remaining difference by allocating fresh huge pages. 3834 * 3835 * We might race with alloc_surplus_hugetlb_folio() here and be unable 3836 * to convert a surplus huge page to a normal huge page. That is 3837 * not critical, though, it just means the overall size of the 3838 * pool might be one hugepage larger than it needs to be, but 3839 * within all the constraints specified by the sysctls. 3840 */ 3841 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { 3842 if (!adjust_pool_surplus(h, nodes_allowed, -1)) 3843 break; 3844 } 3845 3846 allocated = 0; 3847 while (count > (persistent_huge_pages(h) + allocated)) { 3848 /* 3849 * If this allocation races such that we no longer need the 3850 * page, free_huge_folio will handle it by freeing the page 3851 * and reducing the surplus. 3852 */ 3853 spin_unlock_irq(&hugetlb_lock); 3854 3855 /* yield cpu to avoid soft lockup */ 3856 cond_resched(); 3857 3858 folio = alloc_pool_huge_folio(h, nodes_allowed, 3859 node_alloc_noretry, 3860 &h->next_nid_to_alloc); 3861 if (!folio) { 3862 prep_and_add_allocated_folios(h, &page_list); 3863 spin_lock_irq(&hugetlb_lock); 3864 goto out; 3865 } 3866 3867 list_add(&folio->lru, &page_list); 3868 allocated++; 3869 3870 /* Bail for signals. Probably ctrl-c from user */ 3871 if (signal_pending(current)) { 3872 prep_and_add_allocated_folios(h, &page_list); 3873 spin_lock_irq(&hugetlb_lock); 3874 goto out; 3875 } 3876 3877 spin_lock_irq(&hugetlb_lock); 3878 } 3879 3880 /* Add allocated pages to the pool */ 3881 if (!list_empty(&page_list)) { 3882 spin_unlock_irq(&hugetlb_lock); 3883 prep_and_add_allocated_folios(h, &page_list); 3884 spin_lock_irq(&hugetlb_lock); 3885 } 3886 3887 /* 3888 * Decrease the pool size 3889 * First return free pages to the buddy allocator (being careful 3890 * to keep enough around to satisfy reservations). Then place 3891 * pages into surplus state as needed so the pool will shrink 3892 * to the desired size as pages become free. 3893 * 3894 * By placing pages into the surplus state independent of the 3895 * overcommit value, we are allowing the surplus pool size to 3896 * exceed overcommit. There are few sane options here. Since 3897 * alloc_surplus_hugetlb_folio() is checking the global counter, 3898 * though, we'll note that we're not allowed to exceed surplus 3899 * and won't grow the pool anywhere else. Not until one of the 3900 * sysctls are changed, or the surplus pages go out of use. 3901 */ 3902 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages; 3903 min_count = max(count, min_count); 3904 try_to_free_low(h, min_count, nodes_allowed); 3905 3906 /* 3907 * Collect pages to be removed on list without dropping lock 3908 */ 3909 while (min_count < persistent_huge_pages(h)) { 3910 folio = remove_pool_hugetlb_folio(h, nodes_allowed, 0); 3911 if (!folio) 3912 break; 3913 3914 list_add(&folio->lru, &page_list); 3915 } 3916 /* free the pages after dropping lock */ 3917 spin_unlock_irq(&hugetlb_lock); 3918 update_and_free_pages_bulk(h, &page_list); 3919 flush_free_hpage_work(h); 3920 spin_lock_irq(&hugetlb_lock); 3921 3922 while (count < persistent_huge_pages(h)) { 3923 if (!adjust_pool_surplus(h, nodes_allowed, 1)) 3924 break; 3925 } 3926 out: 3927 h->max_huge_pages = persistent_huge_pages(h); 3928 spin_unlock_irq(&hugetlb_lock); 3929 mutex_unlock(&h->resize_lock); 3930 3931 NODEMASK_FREE(node_alloc_noretry); 3932 3933 return 0; 3934 } 3935 3936 static int demote_free_hugetlb_folio(struct hstate *h, struct folio *folio) 3937 { 3938 int i, nid = folio_nid(folio); 3939 struct hstate *target_hstate; 3940 struct page *subpage; 3941 struct folio *inner_folio; 3942 int rc = 0; 3943 3944 target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order); 3945 3946 remove_hugetlb_folio_for_demote(h, folio, false); 3947 spin_unlock_irq(&hugetlb_lock); 3948 3949 /* 3950 * If vmemmap already existed for folio, the remove routine above would 3951 * have cleared the hugetlb folio flag. Hence the folio is technically 3952 * no longer a hugetlb folio. hugetlb_vmemmap_restore_folio can only be 3953 * passed hugetlb folios and will BUG otherwise. 3954 */ 3955 if (folio_test_hugetlb(folio)) { 3956 rc = hugetlb_vmemmap_restore_folio(h, folio); 3957 if (rc) { 3958 /* Allocation of vmemmmap failed, we can not demote folio */ 3959 spin_lock_irq(&hugetlb_lock); 3960 folio_ref_unfreeze(folio, 1); 3961 add_hugetlb_folio(h, folio, false); 3962 return rc; 3963 } 3964 } 3965 3966 /* 3967 * Use destroy_compound_hugetlb_folio_for_demote for all huge page 3968 * sizes as it will not ref count folios. 3969 */ 3970 destroy_compound_hugetlb_folio_for_demote(folio, huge_page_order(h)); 3971 3972 /* 3973 * Taking target hstate mutex synchronizes with set_max_huge_pages. 3974 * Without the mutex, pages added to target hstate could be marked 3975 * as surplus. 3976 * 3977 * Note that we already hold h->resize_lock. To prevent deadlock, 3978 * use the convention of always taking larger size hstate mutex first. 3979 */ 3980 mutex_lock(&target_hstate->resize_lock); 3981 for (i = 0; i < pages_per_huge_page(h); 3982 i += pages_per_huge_page(target_hstate)) { 3983 subpage = folio_page(folio, i); 3984 inner_folio = page_folio(subpage); 3985 if (hstate_is_gigantic(target_hstate)) 3986 prep_compound_gigantic_folio_for_demote(inner_folio, 3987 target_hstate->order); 3988 else 3989 prep_compound_page(subpage, target_hstate->order); 3990 folio_change_private(inner_folio, NULL); 3991 prep_new_hugetlb_folio(target_hstate, inner_folio, nid); 3992 free_huge_folio(inner_folio); 3993 } 3994 mutex_unlock(&target_hstate->resize_lock); 3995 3996 spin_lock_irq(&hugetlb_lock); 3997 3998 /* 3999 * Not absolutely necessary, but for consistency update max_huge_pages 4000 * based on pool changes for the demoted page. 4001 */ 4002 h->max_huge_pages--; 4003 target_hstate->max_huge_pages += 4004 pages_per_huge_page(h) / pages_per_huge_page(target_hstate); 4005 4006 return rc; 4007 } 4008 4009 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed) 4010 __must_hold(&hugetlb_lock) 4011 { 4012 int nr_nodes, node; 4013 struct folio *folio; 4014 4015 lockdep_assert_held(&hugetlb_lock); 4016 4017 /* We should never get here if no demote order */ 4018 if (!h->demote_order) { 4019 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n"); 4020 return -EINVAL; /* internal error */ 4021 } 4022 4023 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 4024 list_for_each_entry(folio, &h->hugepage_freelists[node], lru) { 4025 if (folio_test_hwpoison(folio)) 4026 continue; 4027 return demote_free_hugetlb_folio(h, folio); 4028 } 4029 } 4030 4031 /* 4032 * Only way to get here is if all pages on free lists are poisoned. 4033 * Return -EBUSY so that caller will not retry. 4034 */ 4035 return -EBUSY; 4036 } 4037 4038 #define HSTATE_ATTR_RO(_name) \ 4039 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 4040 4041 #define HSTATE_ATTR_WO(_name) \ 4042 static struct kobj_attribute _name##_attr = __ATTR_WO(_name) 4043 4044 #define HSTATE_ATTR(_name) \ 4045 static struct kobj_attribute _name##_attr = __ATTR_RW(_name) 4046 4047 static struct kobject *hugepages_kobj; 4048 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 4049 4050 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp); 4051 4052 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp) 4053 { 4054 int i; 4055 4056 for (i = 0; i < HUGE_MAX_HSTATE; i++) 4057 if (hstate_kobjs[i] == kobj) { 4058 if (nidp) 4059 *nidp = NUMA_NO_NODE; 4060 return &hstates[i]; 4061 } 4062 4063 return kobj_to_node_hstate(kobj, nidp); 4064 } 4065 4066 static ssize_t nr_hugepages_show_common(struct kobject *kobj, 4067 struct kobj_attribute *attr, char *buf) 4068 { 4069 struct hstate *h; 4070 unsigned long nr_huge_pages; 4071 int nid; 4072 4073 h = kobj_to_hstate(kobj, &nid); 4074 if (nid == NUMA_NO_NODE) 4075 nr_huge_pages = h->nr_huge_pages; 4076 else 4077 nr_huge_pages = h->nr_huge_pages_node[nid]; 4078 4079 return sysfs_emit(buf, "%lu\n", nr_huge_pages); 4080 } 4081 4082 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy, 4083 struct hstate *h, int nid, 4084 unsigned long count, size_t len) 4085 { 4086 int err; 4087 nodemask_t nodes_allowed, *n_mask; 4088 4089 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 4090 return -EINVAL; 4091 4092 if (nid == NUMA_NO_NODE) { 4093 /* 4094 * global hstate attribute 4095 */ 4096 if (!(obey_mempolicy && 4097 init_nodemask_of_mempolicy(&nodes_allowed))) 4098 n_mask = &node_states[N_MEMORY]; 4099 else 4100 n_mask = &nodes_allowed; 4101 } else { 4102 /* 4103 * Node specific request. count adjustment happens in 4104 * set_max_huge_pages() after acquiring hugetlb_lock. 4105 */ 4106 init_nodemask_of_node(&nodes_allowed, nid); 4107 n_mask = &nodes_allowed; 4108 } 4109 4110 err = set_max_huge_pages(h, count, nid, n_mask); 4111 4112 return err ? err : len; 4113 } 4114 4115 static ssize_t nr_hugepages_store_common(bool obey_mempolicy, 4116 struct kobject *kobj, const char *buf, 4117 size_t len) 4118 { 4119 struct hstate *h; 4120 unsigned long count; 4121 int nid; 4122 int err; 4123 4124 err = kstrtoul(buf, 10, &count); 4125 if (err) 4126 return err; 4127 4128 h = kobj_to_hstate(kobj, &nid); 4129 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len); 4130 } 4131 4132 static ssize_t nr_hugepages_show(struct kobject *kobj, 4133 struct kobj_attribute *attr, char *buf) 4134 { 4135 return nr_hugepages_show_common(kobj, attr, buf); 4136 } 4137 4138 static ssize_t nr_hugepages_store(struct kobject *kobj, 4139 struct kobj_attribute *attr, const char *buf, size_t len) 4140 { 4141 return nr_hugepages_store_common(false, kobj, buf, len); 4142 } 4143 HSTATE_ATTR(nr_hugepages); 4144 4145 #ifdef CONFIG_NUMA 4146 4147 /* 4148 * hstate attribute for optionally mempolicy-based constraint on persistent 4149 * huge page alloc/free. 4150 */ 4151 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj, 4152 struct kobj_attribute *attr, 4153 char *buf) 4154 { 4155 return nr_hugepages_show_common(kobj, attr, buf); 4156 } 4157 4158 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj, 4159 struct kobj_attribute *attr, const char *buf, size_t len) 4160 { 4161 return nr_hugepages_store_common(true, kobj, buf, len); 4162 } 4163 HSTATE_ATTR(nr_hugepages_mempolicy); 4164 #endif 4165 4166 4167 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, 4168 struct kobj_attribute *attr, char *buf) 4169 { 4170 struct hstate *h = kobj_to_hstate(kobj, NULL); 4171 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages); 4172 } 4173 4174 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, 4175 struct kobj_attribute *attr, const char *buf, size_t count) 4176 { 4177 int err; 4178 unsigned long input; 4179 struct hstate *h = kobj_to_hstate(kobj, NULL); 4180 4181 if (hstate_is_gigantic(h)) 4182 return -EINVAL; 4183 4184 err = kstrtoul(buf, 10, &input); 4185 if (err) 4186 return err; 4187 4188 spin_lock_irq(&hugetlb_lock); 4189 h->nr_overcommit_huge_pages = input; 4190 spin_unlock_irq(&hugetlb_lock); 4191 4192 return count; 4193 } 4194 HSTATE_ATTR(nr_overcommit_hugepages); 4195 4196 static ssize_t free_hugepages_show(struct kobject *kobj, 4197 struct kobj_attribute *attr, char *buf) 4198 { 4199 struct hstate *h; 4200 unsigned long free_huge_pages; 4201 int nid; 4202 4203 h = kobj_to_hstate(kobj, &nid); 4204 if (nid == NUMA_NO_NODE) 4205 free_huge_pages = h->free_huge_pages; 4206 else 4207 free_huge_pages = h->free_huge_pages_node[nid]; 4208 4209 return sysfs_emit(buf, "%lu\n", free_huge_pages); 4210 } 4211 HSTATE_ATTR_RO(free_hugepages); 4212 4213 static ssize_t resv_hugepages_show(struct kobject *kobj, 4214 struct kobj_attribute *attr, char *buf) 4215 { 4216 struct hstate *h = kobj_to_hstate(kobj, NULL); 4217 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages); 4218 } 4219 HSTATE_ATTR_RO(resv_hugepages); 4220 4221 static ssize_t surplus_hugepages_show(struct kobject *kobj, 4222 struct kobj_attribute *attr, char *buf) 4223 { 4224 struct hstate *h; 4225 unsigned long surplus_huge_pages; 4226 int nid; 4227 4228 h = kobj_to_hstate(kobj, &nid); 4229 if (nid == NUMA_NO_NODE) 4230 surplus_huge_pages = h->surplus_huge_pages; 4231 else 4232 surplus_huge_pages = h->surplus_huge_pages_node[nid]; 4233 4234 return sysfs_emit(buf, "%lu\n", surplus_huge_pages); 4235 } 4236 HSTATE_ATTR_RO(surplus_hugepages); 4237 4238 static ssize_t demote_store(struct kobject *kobj, 4239 struct kobj_attribute *attr, const char *buf, size_t len) 4240 { 4241 unsigned long nr_demote; 4242 unsigned long nr_available; 4243 nodemask_t nodes_allowed, *n_mask; 4244 struct hstate *h; 4245 int err; 4246 int nid; 4247 4248 err = kstrtoul(buf, 10, &nr_demote); 4249 if (err) 4250 return err; 4251 h = kobj_to_hstate(kobj, &nid); 4252 4253 if (nid != NUMA_NO_NODE) { 4254 init_nodemask_of_node(&nodes_allowed, nid); 4255 n_mask = &nodes_allowed; 4256 } else { 4257 n_mask = &node_states[N_MEMORY]; 4258 } 4259 4260 /* Synchronize with other sysfs operations modifying huge pages */ 4261 mutex_lock(&h->resize_lock); 4262 spin_lock_irq(&hugetlb_lock); 4263 4264 while (nr_demote) { 4265 /* 4266 * Check for available pages to demote each time thorough the 4267 * loop as demote_pool_huge_page will drop hugetlb_lock. 4268 */ 4269 if (nid != NUMA_NO_NODE) 4270 nr_available = h->free_huge_pages_node[nid]; 4271 else 4272 nr_available = h->free_huge_pages; 4273 nr_available -= h->resv_huge_pages; 4274 if (!nr_available) 4275 break; 4276 4277 err = demote_pool_huge_page(h, n_mask); 4278 if (err) 4279 break; 4280 4281 nr_demote--; 4282 } 4283 4284 spin_unlock_irq(&hugetlb_lock); 4285 mutex_unlock(&h->resize_lock); 4286 4287 if (err) 4288 return err; 4289 return len; 4290 } 4291 HSTATE_ATTR_WO(demote); 4292 4293 static ssize_t demote_size_show(struct kobject *kobj, 4294 struct kobj_attribute *attr, char *buf) 4295 { 4296 struct hstate *h = kobj_to_hstate(kobj, NULL); 4297 unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K; 4298 4299 return sysfs_emit(buf, "%lukB\n", demote_size); 4300 } 4301 4302 static ssize_t demote_size_store(struct kobject *kobj, 4303 struct kobj_attribute *attr, 4304 const char *buf, size_t count) 4305 { 4306 struct hstate *h, *demote_hstate; 4307 unsigned long demote_size; 4308 unsigned int demote_order; 4309 4310 demote_size = (unsigned long)memparse(buf, NULL); 4311 4312 demote_hstate = size_to_hstate(demote_size); 4313 if (!demote_hstate) 4314 return -EINVAL; 4315 demote_order = demote_hstate->order; 4316 if (demote_order < HUGETLB_PAGE_ORDER) 4317 return -EINVAL; 4318 4319 /* demote order must be smaller than hstate order */ 4320 h = kobj_to_hstate(kobj, NULL); 4321 if (demote_order >= h->order) 4322 return -EINVAL; 4323 4324 /* resize_lock synchronizes access to demote size and writes */ 4325 mutex_lock(&h->resize_lock); 4326 h->demote_order = demote_order; 4327 mutex_unlock(&h->resize_lock); 4328 4329 return count; 4330 } 4331 HSTATE_ATTR(demote_size); 4332 4333 static struct attribute *hstate_attrs[] = { 4334 &nr_hugepages_attr.attr, 4335 &nr_overcommit_hugepages_attr.attr, 4336 &free_hugepages_attr.attr, 4337 &resv_hugepages_attr.attr, 4338 &surplus_hugepages_attr.attr, 4339 #ifdef CONFIG_NUMA 4340 &nr_hugepages_mempolicy_attr.attr, 4341 #endif 4342 NULL, 4343 }; 4344 4345 static const struct attribute_group hstate_attr_group = { 4346 .attrs = hstate_attrs, 4347 }; 4348 4349 static struct attribute *hstate_demote_attrs[] = { 4350 &demote_size_attr.attr, 4351 &demote_attr.attr, 4352 NULL, 4353 }; 4354 4355 static const struct attribute_group hstate_demote_attr_group = { 4356 .attrs = hstate_demote_attrs, 4357 }; 4358 4359 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent, 4360 struct kobject **hstate_kobjs, 4361 const struct attribute_group *hstate_attr_group) 4362 { 4363 int retval; 4364 int hi = hstate_index(h); 4365 4366 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent); 4367 if (!hstate_kobjs[hi]) 4368 return -ENOMEM; 4369 4370 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group); 4371 if (retval) { 4372 kobject_put(hstate_kobjs[hi]); 4373 hstate_kobjs[hi] = NULL; 4374 return retval; 4375 } 4376 4377 if (h->demote_order) { 4378 retval = sysfs_create_group(hstate_kobjs[hi], 4379 &hstate_demote_attr_group); 4380 if (retval) { 4381 pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name); 4382 sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group); 4383 kobject_put(hstate_kobjs[hi]); 4384 hstate_kobjs[hi] = NULL; 4385 return retval; 4386 } 4387 } 4388 4389 return 0; 4390 } 4391 4392 #ifdef CONFIG_NUMA 4393 static bool hugetlb_sysfs_initialized __ro_after_init; 4394 4395 /* 4396 * node_hstate/s - associate per node hstate attributes, via their kobjects, 4397 * with node devices in node_devices[] using a parallel array. The array 4398 * index of a node device or _hstate == node id. 4399 * This is here to avoid any static dependency of the node device driver, in 4400 * the base kernel, on the hugetlb module. 4401 */ 4402 struct node_hstate { 4403 struct kobject *hugepages_kobj; 4404 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 4405 }; 4406 static struct node_hstate node_hstates[MAX_NUMNODES]; 4407 4408 /* 4409 * A subset of global hstate attributes for node devices 4410 */ 4411 static struct attribute *per_node_hstate_attrs[] = { 4412 &nr_hugepages_attr.attr, 4413 &free_hugepages_attr.attr, 4414 &surplus_hugepages_attr.attr, 4415 NULL, 4416 }; 4417 4418 static const struct attribute_group per_node_hstate_attr_group = { 4419 .attrs = per_node_hstate_attrs, 4420 }; 4421 4422 /* 4423 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj. 4424 * Returns node id via non-NULL nidp. 4425 */ 4426 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 4427 { 4428 int nid; 4429 4430 for (nid = 0; nid < nr_node_ids; nid++) { 4431 struct node_hstate *nhs = &node_hstates[nid]; 4432 int i; 4433 for (i = 0; i < HUGE_MAX_HSTATE; i++) 4434 if (nhs->hstate_kobjs[i] == kobj) { 4435 if (nidp) 4436 *nidp = nid; 4437 return &hstates[i]; 4438 } 4439 } 4440 4441 BUG(); 4442 return NULL; 4443 } 4444 4445 /* 4446 * Unregister hstate attributes from a single node device. 4447 * No-op if no hstate attributes attached. 4448 */ 4449 void hugetlb_unregister_node(struct node *node) 4450 { 4451 struct hstate *h; 4452 struct node_hstate *nhs = &node_hstates[node->dev.id]; 4453 4454 if (!nhs->hugepages_kobj) 4455 return; /* no hstate attributes */ 4456 4457 for_each_hstate(h) { 4458 int idx = hstate_index(h); 4459 struct kobject *hstate_kobj = nhs->hstate_kobjs[idx]; 4460 4461 if (!hstate_kobj) 4462 continue; 4463 if (h->demote_order) 4464 sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group); 4465 sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group); 4466 kobject_put(hstate_kobj); 4467 nhs->hstate_kobjs[idx] = NULL; 4468 } 4469 4470 kobject_put(nhs->hugepages_kobj); 4471 nhs->hugepages_kobj = NULL; 4472 } 4473 4474 4475 /* 4476 * Register hstate attributes for a single node device. 4477 * No-op if attributes already registered. 4478 */ 4479 void hugetlb_register_node(struct node *node) 4480 { 4481 struct hstate *h; 4482 struct node_hstate *nhs = &node_hstates[node->dev.id]; 4483 int err; 4484 4485 if (!hugetlb_sysfs_initialized) 4486 return; 4487 4488 if (nhs->hugepages_kobj) 4489 return; /* already allocated */ 4490 4491 nhs->hugepages_kobj = kobject_create_and_add("hugepages", 4492 &node->dev.kobj); 4493 if (!nhs->hugepages_kobj) 4494 return; 4495 4496 for_each_hstate(h) { 4497 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj, 4498 nhs->hstate_kobjs, 4499 &per_node_hstate_attr_group); 4500 if (err) { 4501 pr_err("HugeTLB: Unable to add hstate %s for node %d\n", 4502 h->name, node->dev.id); 4503 hugetlb_unregister_node(node); 4504 break; 4505 } 4506 } 4507 } 4508 4509 /* 4510 * hugetlb init time: register hstate attributes for all registered node 4511 * devices of nodes that have memory. All on-line nodes should have 4512 * registered their associated device by this time. 4513 */ 4514 static void __init hugetlb_register_all_nodes(void) 4515 { 4516 int nid; 4517 4518 for_each_online_node(nid) 4519 hugetlb_register_node(node_devices[nid]); 4520 } 4521 #else /* !CONFIG_NUMA */ 4522 4523 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 4524 { 4525 BUG(); 4526 if (nidp) 4527 *nidp = -1; 4528 return NULL; 4529 } 4530 4531 static void hugetlb_register_all_nodes(void) { } 4532 4533 #endif 4534 4535 #ifdef CONFIG_CMA 4536 static void __init hugetlb_cma_check(void); 4537 #else 4538 static inline __init void hugetlb_cma_check(void) 4539 { 4540 } 4541 #endif 4542 4543 static void __init hugetlb_sysfs_init(void) 4544 { 4545 struct hstate *h; 4546 int err; 4547 4548 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); 4549 if (!hugepages_kobj) 4550 return; 4551 4552 for_each_hstate(h) { 4553 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj, 4554 hstate_kobjs, &hstate_attr_group); 4555 if (err) 4556 pr_err("HugeTLB: Unable to add hstate %s", h->name); 4557 } 4558 4559 #ifdef CONFIG_NUMA 4560 hugetlb_sysfs_initialized = true; 4561 #endif 4562 hugetlb_register_all_nodes(); 4563 } 4564 4565 #ifdef CONFIG_SYSCTL 4566 static void hugetlb_sysctl_init(void); 4567 #else 4568 static inline void hugetlb_sysctl_init(void) { } 4569 #endif 4570 4571 static int __init hugetlb_init(void) 4572 { 4573 int i; 4574 4575 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE < 4576 __NR_HPAGEFLAGS); 4577 4578 if (!hugepages_supported()) { 4579 if (hugetlb_max_hstate || default_hstate_max_huge_pages) 4580 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n"); 4581 return 0; 4582 } 4583 4584 /* 4585 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some 4586 * architectures depend on setup being done here. 4587 */ 4588 hugetlb_add_hstate(HUGETLB_PAGE_ORDER); 4589 if (!parsed_default_hugepagesz) { 4590 /* 4591 * If we did not parse a default huge page size, set 4592 * default_hstate_idx to HPAGE_SIZE hstate. And, if the 4593 * number of huge pages for this default size was implicitly 4594 * specified, set that here as well. 4595 * Note that the implicit setting will overwrite an explicit 4596 * setting. A warning will be printed in this case. 4597 */ 4598 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE)); 4599 if (default_hstate_max_huge_pages) { 4600 if (default_hstate.max_huge_pages) { 4601 char buf[32]; 4602 4603 string_get_size(huge_page_size(&default_hstate), 4604 1, STRING_UNITS_2, buf, 32); 4605 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n", 4606 default_hstate.max_huge_pages, buf); 4607 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n", 4608 default_hstate_max_huge_pages); 4609 } 4610 default_hstate.max_huge_pages = 4611 default_hstate_max_huge_pages; 4612 4613 for_each_online_node(i) 4614 default_hstate.max_huge_pages_node[i] = 4615 default_hugepages_in_node[i]; 4616 } 4617 } 4618 4619 hugetlb_cma_check(); 4620 hugetlb_init_hstates(); 4621 gather_bootmem_prealloc(); 4622 report_hugepages(); 4623 4624 hugetlb_sysfs_init(); 4625 hugetlb_cgroup_file_init(); 4626 hugetlb_sysctl_init(); 4627 4628 #ifdef CONFIG_SMP 4629 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus()); 4630 #else 4631 num_fault_mutexes = 1; 4632 #endif 4633 hugetlb_fault_mutex_table = 4634 kmalloc_array(num_fault_mutexes, sizeof(struct mutex), 4635 GFP_KERNEL); 4636 BUG_ON(!hugetlb_fault_mutex_table); 4637 4638 for (i = 0; i < num_fault_mutexes; i++) 4639 mutex_init(&hugetlb_fault_mutex_table[i]); 4640 return 0; 4641 } 4642 subsys_initcall(hugetlb_init); 4643 4644 /* Overwritten by architectures with more huge page sizes */ 4645 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size) 4646 { 4647 return size == HPAGE_SIZE; 4648 } 4649 4650 void __init hugetlb_add_hstate(unsigned int order) 4651 { 4652 struct hstate *h; 4653 unsigned long i; 4654 4655 if (size_to_hstate(PAGE_SIZE << order)) { 4656 return; 4657 } 4658 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE); 4659 BUG_ON(order < order_base_2(__NR_USED_SUBPAGE)); 4660 h = &hstates[hugetlb_max_hstate++]; 4661 mutex_init(&h->resize_lock); 4662 h->order = order; 4663 h->mask = ~(huge_page_size(h) - 1); 4664 for (i = 0; i < MAX_NUMNODES; ++i) 4665 INIT_LIST_HEAD(&h->hugepage_freelists[i]); 4666 INIT_LIST_HEAD(&h->hugepage_activelist); 4667 h->next_nid_to_alloc = first_memory_node; 4668 h->next_nid_to_free = first_memory_node; 4669 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", 4670 huge_page_size(h)/SZ_1K); 4671 4672 parsed_hstate = h; 4673 } 4674 4675 bool __init __weak hugetlb_node_alloc_supported(void) 4676 { 4677 return true; 4678 } 4679 4680 static void __init hugepages_clear_pages_in_node(void) 4681 { 4682 if (!hugetlb_max_hstate) { 4683 default_hstate_max_huge_pages = 0; 4684 memset(default_hugepages_in_node, 0, 4685 sizeof(default_hugepages_in_node)); 4686 } else { 4687 parsed_hstate->max_huge_pages = 0; 4688 memset(parsed_hstate->max_huge_pages_node, 0, 4689 sizeof(parsed_hstate->max_huge_pages_node)); 4690 } 4691 } 4692 4693 /* 4694 * hugepages command line processing 4695 * hugepages normally follows a valid hugepagsz or default_hugepagsz 4696 * specification. If not, ignore the hugepages value. hugepages can also 4697 * be the first huge page command line option in which case it implicitly 4698 * specifies the number of huge pages for the default size. 4699 */ 4700 static int __init hugepages_setup(char *s) 4701 { 4702 unsigned long *mhp; 4703 static unsigned long *last_mhp; 4704 int node = NUMA_NO_NODE; 4705 int count; 4706 unsigned long tmp; 4707 char *p = s; 4708 4709 if (!parsed_valid_hugepagesz) { 4710 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s); 4711 parsed_valid_hugepagesz = true; 4712 return 1; 4713 } 4714 4715 /* 4716 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter 4717 * yet, so this hugepages= parameter goes to the "default hstate". 4718 * Otherwise, it goes with the previously parsed hugepagesz or 4719 * default_hugepagesz. 4720 */ 4721 else if (!hugetlb_max_hstate) 4722 mhp = &default_hstate_max_huge_pages; 4723 else 4724 mhp = &parsed_hstate->max_huge_pages; 4725 4726 if (mhp == last_mhp) { 4727 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s); 4728 return 1; 4729 } 4730 4731 while (*p) { 4732 count = 0; 4733 if (sscanf(p, "%lu%n", &tmp, &count) != 1) 4734 goto invalid; 4735 /* Parameter is node format */ 4736 if (p[count] == ':') { 4737 if (!hugetlb_node_alloc_supported()) { 4738 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n"); 4739 return 1; 4740 } 4741 if (tmp >= MAX_NUMNODES || !node_online(tmp)) 4742 goto invalid; 4743 node = array_index_nospec(tmp, MAX_NUMNODES); 4744 p += count + 1; 4745 /* Parse hugepages */ 4746 if (sscanf(p, "%lu%n", &tmp, &count) != 1) 4747 goto invalid; 4748 if (!hugetlb_max_hstate) 4749 default_hugepages_in_node[node] = tmp; 4750 else 4751 parsed_hstate->max_huge_pages_node[node] = tmp; 4752 *mhp += tmp; 4753 /* Go to parse next node*/ 4754 if (p[count] == ',') 4755 p += count + 1; 4756 else 4757 break; 4758 } else { 4759 if (p != s) 4760 goto invalid; 4761 *mhp = tmp; 4762 break; 4763 } 4764 } 4765 4766 /* 4767 * Global state is always initialized later in hugetlb_init. 4768 * But we need to allocate gigantic hstates here early to still 4769 * use the bootmem allocator. 4770 */ 4771 if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate)) 4772 hugetlb_hstate_alloc_pages(parsed_hstate); 4773 4774 last_mhp = mhp; 4775 4776 return 1; 4777 4778 invalid: 4779 pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p); 4780 hugepages_clear_pages_in_node(); 4781 return 1; 4782 } 4783 __setup("hugepages=", hugepages_setup); 4784 4785 /* 4786 * hugepagesz command line processing 4787 * A specific huge page size can only be specified once with hugepagesz. 4788 * hugepagesz is followed by hugepages on the command line. The global 4789 * variable 'parsed_valid_hugepagesz' is used to determine if prior 4790 * hugepagesz argument was valid. 4791 */ 4792 static int __init hugepagesz_setup(char *s) 4793 { 4794 unsigned long size; 4795 struct hstate *h; 4796 4797 parsed_valid_hugepagesz = false; 4798 size = (unsigned long)memparse(s, NULL); 4799 4800 if (!arch_hugetlb_valid_size(size)) { 4801 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s); 4802 return 1; 4803 } 4804 4805 h = size_to_hstate(size); 4806 if (h) { 4807 /* 4808 * hstate for this size already exists. This is normally 4809 * an error, but is allowed if the existing hstate is the 4810 * default hstate. More specifically, it is only allowed if 4811 * the number of huge pages for the default hstate was not 4812 * previously specified. 4813 */ 4814 if (!parsed_default_hugepagesz || h != &default_hstate || 4815 default_hstate.max_huge_pages) { 4816 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s); 4817 return 1; 4818 } 4819 4820 /* 4821 * No need to call hugetlb_add_hstate() as hstate already 4822 * exists. But, do set parsed_hstate so that a following 4823 * hugepages= parameter will be applied to this hstate. 4824 */ 4825 parsed_hstate = h; 4826 parsed_valid_hugepagesz = true; 4827 return 1; 4828 } 4829 4830 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); 4831 parsed_valid_hugepagesz = true; 4832 return 1; 4833 } 4834 __setup("hugepagesz=", hugepagesz_setup); 4835 4836 /* 4837 * default_hugepagesz command line input 4838 * Only one instance of default_hugepagesz allowed on command line. 4839 */ 4840 static int __init default_hugepagesz_setup(char *s) 4841 { 4842 unsigned long size; 4843 int i; 4844 4845 parsed_valid_hugepagesz = false; 4846 if (parsed_default_hugepagesz) { 4847 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s); 4848 return 1; 4849 } 4850 4851 size = (unsigned long)memparse(s, NULL); 4852 4853 if (!arch_hugetlb_valid_size(size)) { 4854 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s); 4855 return 1; 4856 } 4857 4858 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); 4859 parsed_valid_hugepagesz = true; 4860 parsed_default_hugepagesz = true; 4861 default_hstate_idx = hstate_index(size_to_hstate(size)); 4862 4863 /* 4864 * The number of default huge pages (for this size) could have been 4865 * specified as the first hugetlb parameter: hugepages=X. If so, 4866 * then default_hstate_max_huge_pages is set. If the default huge 4867 * page size is gigantic (> MAX_PAGE_ORDER), then the pages must be 4868 * allocated here from bootmem allocator. 4869 */ 4870 if (default_hstate_max_huge_pages) { 4871 default_hstate.max_huge_pages = default_hstate_max_huge_pages; 4872 for_each_online_node(i) 4873 default_hstate.max_huge_pages_node[i] = 4874 default_hugepages_in_node[i]; 4875 if (hstate_is_gigantic(&default_hstate)) 4876 hugetlb_hstate_alloc_pages(&default_hstate); 4877 default_hstate_max_huge_pages = 0; 4878 } 4879 4880 return 1; 4881 } 4882 __setup("default_hugepagesz=", default_hugepagesz_setup); 4883 4884 static nodemask_t *policy_mbind_nodemask(gfp_t gfp) 4885 { 4886 #ifdef CONFIG_NUMA 4887 struct mempolicy *mpol = get_task_policy(current); 4888 4889 /* 4890 * Only enforce MPOL_BIND policy which overlaps with cpuset policy 4891 * (from policy_nodemask) specifically for hugetlb case 4892 */ 4893 if (mpol->mode == MPOL_BIND && 4894 (apply_policy_zone(mpol, gfp_zone(gfp)) && 4895 cpuset_nodemask_valid_mems_allowed(&mpol->nodes))) 4896 return &mpol->nodes; 4897 #endif 4898 return NULL; 4899 } 4900 4901 static unsigned int allowed_mems_nr(struct hstate *h) 4902 { 4903 int node; 4904 unsigned int nr = 0; 4905 nodemask_t *mbind_nodemask; 4906 unsigned int *array = h->free_huge_pages_node; 4907 gfp_t gfp_mask = htlb_alloc_mask(h); 4908 4909 mbind_nodemask = policy_mbind_nodemask(gfp_mask); 4910 for_each_node_mask(node, cpuset_current_mems_allowed) { 4911 if (!mbind_nodemask || node_isset(node, *mbind_nodemask)) 4912 nr += array[node]; 4913 } 4914 4915 return nr; 4916 } 4917 4918 #ifdef CONFIG_SYSCTL 4919 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write, 4920 void *buffer, size_t *length, 4921 loff_t *ppos, unsigned long *out) 4922 { 4923 struct ctl_table dup_table; 4924 4925 /* 4926 * In order to avoid races with __do_proc_doulongvec_minmax(), we 4927 * can duplicate the @table and alter the duplicate of it. 4928 */ 4929 dup_table = *table; 4930 dup_table.data = out; 4931 4932 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos); 4933 } 4934 4935 static int hugetlb_sysctl_handler_common(bool obey_mempolicy, 4936 struct ctl_table *table, int write, 4937 void *buffer, size_t *length, loff_t *ppos) 4938 { 4939 struct hstate *h = &default_hstate; 4940 unsigned long tmp = h->max_huge_pages; 4941 int ret; 4942 4943 if (!hugepages_supported()) 4944 return -EOPNOTSUPP; 4945 4946 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, 4947 &tmp); 4948 if (ret) 4949 goto out; 4950 4951 if (write) 4952 ret = __nr_hugepages_store_common(obey_mempolicy, h, 4953 NUMA_NO_NODE, tmp, *length); 4954 out: 4955 return ret; 4956 } 4957 4958 static int hugetlb_sysctl_handler(struct ctl_table *table, int write, 4959 void *buffer, size_t *length, loff_t *ppos) 4960 { 4961 4962 return hugetlb_sysctl_handler_common(false, table, write, 4963 buffer, length, ppos); 4964 } 4965 4966 #ifdef CONFIG_NUMA 4967 static int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write, 4968 void *buffer, size_t *length, loff_t *ppos) 4969 { 4970 return hugetlb_sysctl_handler_common(true, table, write, 4971 buffer, length, ppos); 4972 } 4973 #endif /* CONFIG_NUMA */ 4974 4975 static int hugetlb_overcommit_handler(struct ctl_table *table, int write, 4976 void *buffer, size_t *length, loff_t *ppos) 4977 { 4978 struct hstate *h = &default_hstate; 4979 unsigned long tmp; 4980 int ret; 4981 4982 if (!hugepages_supported()) 4983 return -EOPNOTSUPP; 4984 4985 tmp = h->nr_overcommit_huge_pages; 4986 4987 if (write && hstate_is_gigantic(h)) 4988 return -EINVAL; 4989 4990 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, 4991 &tmp); 4992 if (ret) 4993 goto out; 4994 4995 if (write) { 4996 spin_lock_irq(&hugetlb_lock); 4997 h->nr_overcommit_huge_pages = tmp; 4998 spin_unlock_irq(&hugetlb_lock); 4999 } 5000 out: 5001 return ret; 5002 } 5003 5004 static struct ctl_table hugetlb_table[] = { 5005 { 5006 .procname = "nr_hugepages", 5007 .data = NULL, 5008 .maxlen = sizeof(unsigned long), 5009 .mode = 0644, 5010 .proc_handler = hugetlb_sysctl_handler, 5011 }, 5012 #ifdef CONFIG_NUMA 5013 { 5014 .procname = "nr_hugepages_mempolicy", 5015 .data = NULL, 5016 .maxlen = sizeof(unsigned long), 5017 .mode = 0644, 5018 .proc_handler = &hugetlb_mempolicy_sysctl_handler, 5019 }, 5020 #endif 5021 { 5022 .procname = "hugetlb_shm_group", 5023 .data = &sysctl_hugetlb_shm_group, 5024 .maxlen = sizeof(gid_t), 5025 .mode = 0644, 5026 .proc_handler = proc_dointvec, 5027 }, 5028 { 5029 .procname = "nr_overcommit_hugepages", 5030 .data = NULL, 5031 .maxlen = sizeof(unsigned long), 5032 .mode = 0644, 5033 .proc_handler = hugetlb_overcommit_handler, 5034 }, 5035 { } 5036 }; 5037 5038 static void hugetlb_sysctl_init(void) 5039 { 5040 register_sysctl_init("vm", hugetlb_table); 5041 } 5042 #endif /* CONFIG_SYSCTL */ 5043 5044 void hugetlb_report_meminfo(struct seq_file *m) 5045 { 5046 struct hstate *h; 5047 unsigned long total = 0; 5048 5049 if (!hugepages_supported()) 5050 return; 5051 5052 for_each_hstate(h) { 5053 unsigned long count = h->nr_huge_pages; 5054 5055 total += huge_page_size(h) * count; 5056 5057 if (h == &default_hstate) 5058 seq_printf(m, 5059 "HugePages_Total: %5lu\n" 5060 "HugePages_Free: %5lu\n" 5061 "HugePages_Rsvd: %5lu\n" 5062 "HugePages_Surp: %5lu\n" 5063 "Hugepagesize: %8lu kB\n", 5064 count, 5065 h->free_huge_pages, 5066 h->resv_huge_pages, 5067 h->surplus_huge_pages, 5068 huge_page_size(h) / SZ_1K); 5069 } 5070 5071 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K); 5072 } 5073 5074 int hugetlb_report_node_meminfo(char *buf, int len, int nid) 5075 { 5076 struct hstate *h = &default_hstate; 5077 5078 if (!hugepages_supported()) 5079 return 0; 5080 5081 return sysfs_emit_at(buf, len, 5082 "Node %d HugePages_Total: %5u\n" 5083 "Node %d HugePages_Free: %5u\n" 5084 "Node %d HugePages_Surp: %5u\n", 5085 nid, h->nr_huge_pages_node[nid], 5086 nid, h->free_huge_pages_node[nid], 5087 nid, h->surplus_huge_pages_node[nid]); 5088 } 5089 5090 void hugetlb_show_meminfo_node(int nid) 5091 { 5092 struct hstate *h; 5093 5094 if (!hugepages_supported()) 5095 return; 5096 5097 for_each_hstate(h) 5098 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n", 5099 nid, 5100 h->nr_huge_pages_node[nid], 5101 h->free_huge_pages_node[nid], 5102 h->surplus_huge_pages_node[nid], 5103 huge_page_size(h) / SZ_1K); 5104 } 5105 5106 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm) 5107 { 5108 seq_printf(m, "HugetlbPages:\t%8lu kB\n", 5109 K(atomic_long_read(&mm->hugetlb_usage))); 5110 } 5111 5112 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ 5113 unsigned long hugetlb_total_pages(void) 5114 { 5115 struct hstate *h; 5116 unsigned long nr_total_pages = 0; 5117 5118 for_each_hstate(h) 5119 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h); 5120 return nr_total_pages; 5121 } 5122 5123 static int hugetlb_acct_memory(struct hstate *h, long delta) 5124 { 5125 int ret = -ENOMEM; 5126 5127 if (!delta) 5128 return 0; 5129 5130 spin_lock_irq(&hugetlb_lock); 5131 /* 5132 * When cpuset is configured, it breaks the strict hugetlb page 5133 * reservation as the accounting is done on a global variable. Such 5134 * reservation is completely rubbish in the presence of cpuset because 5135 * the reservation is not checked against page availability for the 5136 * current cpuset. Application can still potentially OOM'ed by kernel 5137 * with lack of free htlb page in cpuset that the task is in. 5138 * Attempt to enforce strict accounting with cpuset is almost 5139 * impossible (or too ugly) because cpuset is too fluid that 5140 * task or memory node can be dynamically moved between cpusets. 5141 * 5142 * The change of semantics for shared hugetlb mapping with cpuset is 5143 * undesirable. However, in order to preserve some of the semantics, 5144 * we fall back to check against current free page availability as 5145 * a best attempt and hopefully to minimize the impact of changing 5146 * semantics that cpuset has. 5147 * 5148 * Apart from cpuset, we also have memory policy mechanism that 5149 * also determines from which node the kernel will allocate memory 5150 * in a NUMA system. So similar to cpuset, we also should consider 5151 * the memory policy of the current task. Similar to the description 5152 * above. 5153 */ 5154 if (delta > 0) { 5155 if (gather_surplus_pages(h, delta) < 0) 5156 goto out; 5157 5158 if (delta > allowed_mems_nr(h)) { 5159 return_unused_surplus_pages(h, delta); 5160 goto out; 5161 } 5162 } 5163 5164 ret = 0; 5165 if (delta < 0) 5166 return_unused_surplus_pages(h, (unsigned long) -delta); 5167 5168 out: 5169 spin_unlock_irq(&hugetlb_lock); 5170 return ret; 5171 } 5172 5173 static void hugetlb_vm_op_open(struct vm_area_struct *vma) 5174 { 5175 struct resv_map *resv = vma_resv_map(vma); 5176 5177 /* 5178 * HPAGE_RESV_OWNER indicates a private mapping. 5179 * This new VMA should share its siblings reservation map if present. 5180 * The VMA will only ever have a valid reservation map pointer where 5181 * it is being copied for another still existing VMA. As that VMA 5182 * has a reference to the reservation map it cannot disappear until 5183 * after this open call completes. It is therefore safe to take a 5184 * new reference here without additional locking. 5185 */ 5186 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 5187 resv_map_dup_hugetlb_cgroup_uncharge_info(resv); 5188 kref_get(&resv->refs); 5189 } 5190 5191 /* 5192 * vma_lock structure for sharable mappings is vma specific. 5193 * Clear old pointer (if copied via vm_area_dup) and allocate 5194 * new structure. Before clearing, make sure vma_lock is not 5195 * for this vma. 5196 */ 5197 if (vma->vm_flags & VM_MAYSHARE) { 5198 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 5199 5200 if (vma_lock) { 5201 if (vma_lock->vma != vma) { 5202 vma->vm_private_data = NULL; 5203 hugetlb_vma_lock_alloc(vma); 5204 } else 5205 pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__); 5206 } else 5207 hugetlb_vma_lock_alloc(vma); 5208 } 5209 } 5210 5211 static void hugetlb_vm_op_close(struct vm_area_struct *vma) 5212 { 5213 struct hstate *h = hstate_vma(vma); 5214 struct resv_map *resv; 5215 struct hugepage_subpool *spool = subpool_vma(vma); 5216 unsigned long reserve, start, end; 5217 long gbl_reserve; 5218 5219 hugetlb_vma_lock_free(vma); 5220 5221 resv = vma_resv_map(vma); 5222 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 5223 return; 5224 5225 start = vma_hugecache_offset(h, vma, vma->vm_start); 5226 end = vma_hugecache_offset(h, vma, vma->vm_end); 5227 5228 reserve = (end - start) - region_count(resv, start, end); 5229 hugetlb_cgroup_uncharge_counter(resv, start, end); 5230 if (reserve) { 5231 /* 5232 * Decrement reserve counts. The global reserve count may be 5233 * adjusted if the subpool has a minimum size. 5234 */ 5235 gbl_reserve = hugepage_subpool_put_pages(spool, reserve); 5236 hugetlb_acct_memory(h, -gbl_reserve); 5237 } 5238 5239 kref_put(&resv->refs, resv_map_release); 5240 } 5241 5242 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr) 5243 { 5244 if (addr & ~(huge_page_mask(hstate_vma(vma)))) 5245 return -EINVAL; 5246 5247 /* 5248 * PMD sharing is only possible for PUD_SIZE-aligned address ranges 5249 * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this 5250 * split, unshare PMDs in the PUD_SIZE interval surrounding addr now. 5251 */ 5252 if (addr & ~PUD_MASK) { 5253 /* 5254 * hugetlb_vm_op_split is called right before we attempt to 5255 * split the VMA. We will need to unshare PMDs in the old and 5256 * new VMAs, so let's unshare before we split. 5257 */ 5258 unsigned long floor = addr & PUD_MASK; 5259 unsigned long ceil = floor + PUD_SIZE; 5260 5261 if (floor >= vma->vm_start && ceil <= vma->vm_end) 5262 hugetlb_unshare_pmds(vma, floor, ceil); 5263 } 5264 5265 return 0; 5266 } 5267 5268 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma) 5269 { 5270 return huge_page_size(hstate_vma(vma)); 5271 } 5272 5273 /* 5274 * We cannot handle pagefaults against hugetlb pages at all. They cause 5275 * handle_mm_fault() to try to instantiate regular-sized pages in the 5276 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get 5277 * this far. 5278 */ 5279 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf) 5280 { 5281 BUG(); 5282 return 0; 5283 } 5284 5285 /* 5286 * When a new function is introduced to vm_operations_struct and added 5287 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops. 5288 * This is because under System V memory model, mappings created via 5289 * shmget/shmat with "huge page" specified are backed by hugetlbfs files, 5290 * their original vm_ops are overwritten with shm_vm_ops. 5291 */ 5292 const struct vm_operations_struct hugetlb_vm_ops = { 5293 .fault = hugetlb_vm_op_fault, 5294 .open = hugetlb_vm_op_open, 5295 .close = hugetlb_vm_op_close, 5296 .may_split = hugetlb_vm_op_split, 5297 .pagesize = hugetlb_vm_op_pagesize, 5298 }; 5299 5300 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, 5301 int writable) 5302 { 5303 pte_t entry; 5304 unsigned int shift = huge_page_shift(hstate_vma(vma)); 5305 5306 if (writable) { 5307 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page, 5308 vma->vm_page_prot))); 5309 } else { 5310 entry = huge_pte_wrprotect(mk_huge_pte(page, 5311 vma->vm_page_prot)); 5312 } 5313 entry = pte_mkyoung(entry); 5314 entry = arch_make_huge_pte(entry, shift, vma->vm_flags); 5315 5316 return entry; 5317 } 5318 5319 static void set_huge_ptep_writable(struct vm_area_struct *vma, 5320 unsigned long address, pte_t *ptep) 5321 { 5322 pte_t entry; 5323 5324 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep))); 5325 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) 5326 update_mmu_cache(vma, address, ptep); 5327 } 5328 5329 bool is_hugetlb_entry_migration(pte_t pte) 5330 { 5331 swp_entry_t swp; 5332 5333 if (huge_pte_none(pte) || pte_present(pte)) 5334 return false; 5335 swp = pte_to_swp_entry(pte); 5336 if (is_migration_entry(swp)) 5337 return true; 5338 else 5339 return false; 5340 } 5341 5342 bool is_hugetlb_entry_hwpoisoned(pte_t pte) 5343 { 5344 swp_entry_t swp; 5345 5346 if (huge_pte_none(pte) || pte_present(pte)) 5347 return false; 5348 swp = pte_to_swp_entry(pte); 5349 if (is_hwpoison_entry(swp)) 5350 return true; 5351 else 5352 return false; 5353 } 5354 5355 static void 5356 hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr, 5357 struct folio *new_folio, pte_t old, unsigned long sz) 5358 { 5359 pte_t newpte = make_huge_pte(vma, &new_folio->page, 1); 5360 5361 __folio_mark_uptodate(new_folio); 5362 hugetlb_add_new_anon_rmap(new_folio, vma, addr); 5363 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(old)) 5364 newpte = huge_pte_mkuffd_wp(newpte); 5365 set_huge_pte_at(vma->vm_mm, addr, ptep, newpte, sz); 5366 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm); 5367 folio_set_hugetlb_migratable(new_folio); 5368 } 5369 5370 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, 5371 struct vm_area_struct *dst_vma, 5372 struct vm_area_struct *src_vma) 5373 { 5374 pte_t *src_pte, *dst_pte, entry; 5375 struct folio *pte_folio; 5376 unsigned long addr; 5377 bool cow = is_cow_mapping(src_vma->vm_flags); 5378 struct hstate *h = hstate_vma(src_vma); 5379 unsigned long sz = huge_page_size(h); 5380 unsigned long npages = pages_per_huge_page(h); 5381 struct mmu_notifier_range range; 5382 unsigned long last_addr_mask; 5383 int ret = 0; 5384 5385 if (cow) { 5386 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src, 5387 src_vma->vm_start, 5388 src_vma->vm_end); 5389 mmu_notifier_invalidate_range_start(&range); 5390 vma_assert_write_locked(src_vma); 5391 raw_write_seqcount_begin(&src->write_protect_seq); 5392 } else { 5393 /* 5394 * For shared mappings the vma lock must be held before 5395 * calling hugetlb_walk() in the src vma. Otherwise, the 5396 * returned ptep could go away if part of a shared pmd and 5397 * another thread calls huge_pmd_unshare. 5398 */ 5399 hugetlb_vma_lock_read(src_vma); 5400 } 5401 5402 last_addr_mask = hugetlb_mask_last_page(h); 5403 for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) { 5404 spinlock_t *src_ptl, *dst_ptl; 5405 src_pte = hugetlb_walk(src_vma, addr, sz); 5406 if (!src_pte) { 5407 addr |= last_addr_mask; 5408 continue; 5409 } 5410 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz); 5411 if (!dst_pte) { 5412 ret = -ENOMEM; 5413 break; 5414 } 5415 5416 /* 5417 * If the pagetables are shared don't copy or take references. 5418 * 5419 * dst_pte == src_pte is the common case of src/dest sharing. 5420 * However, src could have 'unshared' and dst shares with 5421 * another vma. So page_count of ptep page is checked instead 5422 * to reliably determine whether pte is shared. 5423 */ 5424 if (page_count(virt_to_page(dst_pte)) > 1) { 5425 addr |= last_addr_mask; 5426 continue; 5427 } 5428 5429 dst_ptl = huge_pte_lock(h, dst, dst_pte); 5430 src_ptl = huge_pte_lockptr(h, src, src_pte); 5431 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 5432 entry = huge_ptep_get(src_pte); 5433 again: 5434 if (huge_pte_none(entry)) { 5435 /* 5436 * Skip if src entry none. 5437 */ 5438 ; 5439 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) { 5440 if (!userfaultfd_wp(dst_vma)) 5441 entry = huge_pte_clear_uffd_wp(entry); 5442 set_huge_pte_at(dst, addr, dst_pte, entry, sz); 5443 } else if (unlikely(is_hugetlb_entry_migration(entry))) { 5444 swp_entry_t swp_entry = pte_to_swp_entry(entry); 5445 bool uffd_wp = pte_swp_uffd_wp(entry); 5446 5447 if (!is_readable_migration_entry(swp_entry) && cow) { 5448 /* 5449 * COW mappings require pages in both 5450 * parent and child to be set to read. 5451 */ 5452 swp_entry = make_readable_migration_entry( 5453 swp_offset(swp_entry)); 5454 entry = swp_entry_to_pte(swp_entry); 5455 if (userfaultfd_wp(src_vma) && uffd_wp) 5456 entry = pte_swp_mkuffd_wp(entry); 5457 set_huge_pte_at(src, addr, src_pte, entry, sz); 5458 } 5459 if (!userfaultfd_wp(dst_vma)) 5460 entry = huge_pte_clear_uffd_wp(entry); 5461 set_huge_pte_at(dst, addr, dst_pte, entry, sz); 5462 } else if (unlikely(is_pte_marker(entry))) { 5463 pte_marker marker = copy_pte_marker( 5464 pte_to_swp_entry(entry), dst_vma); 5465 5466 if (marker) 5467 set_huge_pte_at(dst, addr, dst_pte, 5468 make_pte_marker(marker), sz); 5469 } else { 5470 entry = huge_ptep_get(src_pte); 5471 pte_folio = page_folio(pte_page(entry)); 5472 folio_get(pte_folio); 5473 5474 /* 5475 * Failing to duplicate the anon rmap is a rare case 5476 * where we see pinned hugetlb pages while they're 5477 * prone to COW. We need to do the COW earlier during 5478 * fork. 5479 * 5480 * When pre-allocating the page or copying data, we 5481 * need to be without the pgtable locks since we could 5482 * sleep during the process. 5483 */ 5484 if (!folio_test_anon(pte_folio)) { 5485 hugetlb_add_file_rmap(pte_folio); 5486 } else if (hugetlb_try_dup_anon_rmap(pte_folio, src_vma)) { 5487 pte_t src_pte_old = entry; 5488 struct folio *new_folio; 5489 5490 spin_unlock(src_ptl); 5491 spin_unlock(dst_ptl); 5492 /* Do not use reserve as it's private owned */ 5493 new_folio = alloc_hugetlb_folio(dst_vma, addr, 1); 5494 if (IS_ERR(new_folio)) { 5495 folio_put(pte_folio); 5496 ret = PTR_ERR(new_folio); 5497 break; 5498 } 5499 ret = copy_user_large_folio(new_folio, 5500 pte_folio, 5501 addr, dst_vma); 5502 folio_put(pte_folio); 5503 if (ret) { 5504 folio_put(new_folio); 5505 break; 5506 } 5507 5508 /* Install the new hugetlb folio if src pte stable */ 5509 dst_ptl = huge_pte_lock(h, dst, dst_pte); 5510 src_ptl = huge_pte_lockptr(h, src, src_pte); 5511 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 5512 entry = huge_ptep_get(src_pte); 5513 if (!pte_same(src_pte_old, entry)) { 5514 restore_reserve_on_error(h, dst_vma, addr, 5515 new_folio); 5516 folio_put(new_folio); 5517 /* huge_ptep of dst_pte won't change as in child */ 5518 goto again; 5519 } 5520 hugetlb_install_folio(dst_vma, dst_pte, addr, 5521 new_folio, src_pte_old, sz); 5522 spin_unlock(src_ptl); 5523 spin_unlock(dst_ptl); 5524 continue; 5525 } 5526 5527 if (cow) { 5528 /* 5529 * No need to notify as we are downgrading page 5530 * table protection not changing it to point 5531 * to a new page. 5532 * 5533 * See Documentation/mm/mmu_notifier.rst 5534 */ 5535 huge_ptep_set_wrprotect(src, addr, src_pte); 5536 entry = huge_pte_wrprotect(entry); 5537 } 5538 5539 if (!userfaultfd_wp(dst_vma)) 5540 entry = huge_pte_clear_uffd_wp(entry); 5541 5542 set_huge_pte_at(dst, addr, dst_pte, entry, sz); 5543 hugetlb_count_add(npages, dst); 5544 } 5545 spin_unlock(src_ptl); 5546 spin_unlock(dst_ptl); 5547 } 5548 5549 if (cow) { 5550 raw_write_seqcount_end(&src->write_protect_seq); 5551 mmu_notifier_invalidate_range_end(&range); 5552 } else { 5553 hugetlb_vma_unlock_read(src_vma); 5554 } 5555 5556 return ret; 5557 } 5558 5559 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr, 5560 unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte, 5561 unsigned long sz) 5562 { 5563 struct hstate *h = hstate_vma(vma); 5564 struct mm_struct *mm = vma->vm_mm; 5565 spinlock_t *src_ptl, *dst_ptl; 5566 pte_t pte; 5567 5568 dst_ptl = huge_pte_lock(h, mm, dst_pte); 5569 src_ptl = huge_pte_lockptr(h, mm, src_pte); 5570 5571 /* 5572 * We don't have to worry about the ordering of src and dst ptlocks 5573 * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock. 5574 */ 5575 if (src_ptl != dst_ptl) 5576 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 5577 5578 pte = huge_ptep_get_and_clear(mm, old_addr, src_pte); 5579 set_huge_pte_at(mm, new_addr, dst_pte, pte, sz); 5580 5581 if (src_ptl != dst_ptl) 5582 spin_unlock(src_ptl); 5583 spin_unlock(dst_ptl); 5584 } 5585 5586 int move_hugetlb_page_tables(struct vm_area_struct *vma, 5587 struct vm_area_struct *new_vma, 5588 unsigned long old_addr, unsigned long new_addr, 5589 unsigned long len) 5590 { 5591 struct hstate *h = hstate_vma(vma); 5592 struct address_space *mapping = vma->vm_file->f_mapping; 5593 unsigned long sz = huge_page_size(h); 5594 struct mm_struct *mm = vma->vm_mm; 5595 unsigned long old_end = old_addr + len; 5596 unsigned long last_addr_mask; 5597 pte_t *src_pte, *dst_pte; 5598 struct mmu_notifier_range range; 5599 bool shared_pmd = false; 5600 5601 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr, 5602 old_end); 5603 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 5604 /* 5605 * In case of shared PMDs, we should cover the maximum possible 5606 * range. 5607 */ 5608 flush_cache_range(vma, range.start, range.end); 5609 5610 mmu_notifier_invalidate_range_start(&range); 5611 last_addr_mask = hugetlb_mask_last_page(h); 5612 /* Prevent race with file truncation */ 5613 hugetlb_vma_lock_write(vma); 5614 i_mmap_lock_write(mapping); 5615 for (; old_addr < old_end; old_addr += sz, new_addr += sz) { 5616 src_pte = hugetlb_walk(vma, old_addr, sz); 5617 if (!src_pte) { 5618 old_addr |= last_addr_mask; 5619 new_addr |= last_addr_mask; 5620 continue; 5621 } 5622 if (huge_pte_none(huge_ptep_get(src_pte))) 5623 continue; 5624 5625 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) { 5626 shared_pmd = true; 5627 old_addr |= last_addr_mask; 5628 new_addr |= last_addr_mask; 5629 continue; 5630 } 5631 5632 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz); 5633 if (!dst_pte) 5634 break; 5635 5636 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte, sz); 5637 } 5638 5639 if (shared_pmd) 5640 flush_hugetlb_tlb_range(vma, range.start, range.end); 5641 else 5642 flush_hugetlb_tlb_range(vma, old_end - len, old_end); 5643 mmu_notifier_invalidate_range_end(&range); 5644 i_mmap_unlock_write(mapping); 5645 hugetlb_vma_unlock_write(vma); 5646 5647 return len + old_addr - old_end; 5648 } 5649 5650 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma, 5651 unsigned long start, unsigned long end, 5652 struct page *ref_page, zap_flags_t zap_flags) 5653 { 5654 struct mm_struct *mm = vma->vm_mm; 5655 unsigned long address; 5656 pte_t *ptep; 5657 pte_t pte; 5658 spinlock_t *ptl; 5659 struct page *page; 5660 struct hstate *h = hstate_vma(vma); 5661 unsigned long sz = huge_page_size(h); 5662 bool adjust_reservation = false; 5663 unsigned long last_addr_mask; 5664 bool force_flush = false; 5665 5666 WARN_ON(!is_vm_hugetlb_page(vma)); 5667 BUG_ON(start & ~huge_page_mask(h)); 5668 BUG_ON(end & ~huge_page_mask(h)); 5669 5670 /* 5671 * This is a hugetlb vma, all the pte entries should point 5672 * to huge page. 5673 */ 5674 tlb_change_page_size(tlb, sz); 5675 tlb_start_vma(tlb, vma); 5676 5677 last_addr_mask = hugetlb_mask_last_page(h); 5678 address = start; 5679 for (; address < end; address += sz) { 5680 ptep = hugetlb_walk(vma, address, sz); 5681 if (!ptep) { 5682 address |= last_addr_mask; 5683 continue; 5684 } 5685 5686 ptl = huge_pte_lock(h, mm, ptep); 5687 if (huge_pmd_unshare(mm, vma, address, ptep)) { 5688 spin_unlock(ptl); 5689 tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE); 5690 force_flush = true; 5691 address |= last_addr_mask; 5692 continue; 5693 } 5694 5695 pte = huge_ptep_get(ptep); 5696 if (huge_pte_none(pte)) { 5697 spin_unlock(ptl); 5698 continue; 5699 } 5700 5701 /* 5702 * Migrating hugepage or HWPoisoned hugepage is already 5703 * unmapped and its refcount is dropped, so just clear pte here. 5704 */ 5705 if (unlikely(!pte_present(pte))) { 5706 /* 5707 * If the pte was wr-protected by uffd-wp in any of the 5708 * swap forms, meanwhile the caller does not want to 5709 * drop the uffd-wp bit in this zap, then replace the 5710 * pte with a marker. 5711 */ 5712 if (pte_swp_uffd_wp_any(pte) && 5713 !(zap_flags & ZAP_FLAG_DROP_MARKER)) 5714 set_huge_pte_at(mm, address, ptep, 5715 make_pte_marker(PTE_MARKER_UFFD_WP), 5716 sz); 5717 else 5718 huge_pte_clear(mm, address, ptep, sz); 5719 spin_unlock(ptl); 5720 continue; 5721 } 5722 5723 page = pte_page(pte); 5724 /* 5725 * If a reference page is supplied, it is because a specific 5726 * page is being unmapped, not a range. Ensure the page we 5727 * are about to unmap is the actual page of interest. 5728 */ 5729 if (ref_page) { 5730 if (page != ref_page) { 5731 spin_unlock(ptl); 5732 continue; 5733 } 5734 /* 5735 * Mark the VMA as having unmapped its page so that 5736 * future faults in this VMA will fail rather than 5737 * looking like data was lost 5738 */ 5739 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); 5740 } 5741 5742 pte = huge_ptep_get_and_clear(mm, address, ptep); 5743 tlb_remove_huge_tlb_entry(h, tlb, ptep, address); 5744 if (huge_pte_dirty(pte)) 5745 set_page_dirty(page); 5746 /* Leave a uffd-wp pte marker if needed */ 5747 if (huge_pte_uffd_wp(pte) && 5748 !(zap_flags & ZAP_FLAG_DROP_MARKER)) 5749 set_huge_pte_at(mm, address, ptep, 5750 make_pte_marker(PTE_MARKER_UFFD_WP), 5751 sz); 5752 hugetlb_count_sub(pages_per_huge_page(h), mm); 5753 hugetlb_remove_rmap(page_folio(page)); 5754 5755 /* 5756 * Restore the reservation for anonymous page, otherwise the 5757 * backing page could be stolen by someone. 5758 * If there we are freeing a surplus, do not set the restore 5759 * reservation bit. 5760 */ 5761 if (!h->surplus_huge_pages && __vma_private_lock(vma) && 5762 folio_test_anon(page_folio(page))) { 5763 folio_set_hugetlb_restore_reserve(page_folio(page)); 5764 /* Reservation to be adjusted after the spin lock */ 5765 adjust_reservation = true; 5766 } 5767 5768 spin_unlock(ptl); 5769 5770 /* 5771 * Adjust the reservation for the region that will have the 5772 * reserve restored. Keep in mind that vma_needs_reservation() changes 5773 * resv->adds_in_progress if it succeeds. If this is not done, 5774 * do_exit() will not see it, and will keep the reservation 5775 * forever. 5776 */ 5777 if (adjust_reservation && vma_needs_reservation(h, vma, address)) 5778 vma_add_reservation(h, vma, address); 5779 5780 tlb_remove_page_size(tlb, page, huge_page_size(h)); 5781 /* 5782 * Bail out after unmapping reference page if supplied 5783 */ 5784 if (ref_page) 5785 break; 5786 } 5787 tlb_end_vma(tlb, vma); 5788 5789 /* 5790 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We 5791 * could defer the flush until now, since by holding i_mmap_rwsem we 5792 * guaranteed that the last refernece would not be dropped. But we must 5793 * do the flushing before we return, as otherwise i_mmap_rwsem will be 5794 * dropped and the last reference to the shared PMDs page might be 5795 * dropped as well. 5796 * 5797 * In theory we could defer the freeing of the PMD pages as well, but 5798 * huge_pmd_unshare() relies on the exact page_count for the PMD page to 5799 * detect sharing, so we cannot defer the release of the page either. 5800 * Instead, do flush now. 5801 */ 5802 if (force_flush) 5803 tlb_flush_mmu_tlbonly(tlb); 5804 } 5805 5806 void __hugetlb_zap_begin(struct vm_area_struct *vma, 5807 unsigned long *start, unsigned long *end) 5808 { 5809 if (!vma->vm_file) /* hugetlbfs_file_mmap error */ 5810 return; 5811 5812 adjust_range_if_pmd_sharing_possible(vma, start, end); 5813 hugetlb_vma_lock_write(vma); 5814 if (vma->vm_file) 5815 i_mmap_lock_write(vma->vm_file->f_mapping); 5816 } 5817 5818 void __hugetlb_zap_end(struct vm_area_struct *vma, 5819 struct zap_details *details) 5820 { 5821 zap_flags_t zap_flags = details ? details->zap_flags : 0; 5822 5823 if (!vma->vm_file) /* hugetlbfs_file_mmap error */ 5824 return; 5825 5826 if (zap_flags & ZAP_FLAG_UNMAP) { /* final unmap */ 5827 /* 5828 * Unlock and free the vma lock before releasing i_mmap_rwsem. 5829 * When the vma_lock is freed, this makes the vma ineligible 5830 * for pmd sharing. And, i_mmap_rwsem is required to set up 5831 * pmd sharing. This is important as page tables for this 5832 * unmapped range will be asynchrously deleted. If the page 5833 * tables are shared, there will be issues when accessed by 5834 * someone else. 5835 */ 5836 __hugetlb_vma_unlock_write_free(vma); 5837 } else { 5838 hugetlb_vma_unlock_write(vma); 5839 } 5840 5841 if (vma->vm_file) 5842 i_mmap_unlock_write(vma->vm_file->f_mapping); 5843 } 5844 5845 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, 5846 unsigned long end, struct page *ref_page, 5847 zap_flags_t zap_flags) 5848 { 5849 struct mmu_notifier_range range; 5850 struct mmu_gather tlb; 5851 5852 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 5853 start, end); 5854 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 5855 mmu_notifier_invalidate_range_start(&range); 5856 tlb_gather_mmu(&tlb, vma->vm_mm); 5857 5858 __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags); 5859 5860 mmu_notifier_invalidate_range_end(&range); 5861 tlb_finish_mmu(&tlb); 5862 } 5863 5864 /* 5865 * This is called when the original mapper is failing to COW a MAP_PRIVATE 5866 * mapping it owns the reserve page for. The intention is to unmap the page 5867 * from other VMAs and let the children be SIGKILLed if they are faulting the 5868 * same region. 5869 */ 5870 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, 5871 struct page *page, unsigned long address) 5872 { 5873 struct hstate *h = hstate_vma(vma); 5874 struct vm_area_struct *iter_vma; 5875 struct address_space *mapping; 5876 pgoff_t pgoff; 5877 5878 /* 5879 * vm_pgoff is in PAGE_SIZE units, hence the different calculation 5880 * from page cache lookup which is in HPAGE_SIZE units. 5881 */ 5882 address = address & huge_page_mask(h); 5883 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + 5884 vma->vm_pgoff; 5885 mapping = vma->vm_file->f_mapping; 5886 5887 /* 5888 * Take the mapping lock for the duration of the table walk. As 5889 * this mapping should be shared between all the VMAs, 5890 * __unmap_hugepage_range() is called as the lock is already held 5891 */ 5892 i_mmap_lock_write(mapping); 5893 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) { 5894 /* Do not unmap the current VMA */ 5895 if (iter_vma == vma) 5896 continue; 5897 5898 /* 5899 * Shared VMAs have their own reserves and do not affect 5900 * MAP_PRIVATE accounting but it is possible that a shared 5901 * VMA is using the same page so check and skip such VMAs. 5902 */ 5903 if (iter_vma->vm_flags & VM_MAYSHARE) 5904 continue; 5905 5906 /* 5907 * Unmap the page from other VMAs without their own reserves. 5908 * They get marked to be SIGKILLed if they fault in these 5909 * areas. This is because a future no-page fault on this VMA 5910 * could insert a zeroed page instead of the data existing 5911 * from the time of fork. This would look like data corruption 5912 */ 5913 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) 5914 unmap_hugepage_range(iter_vma, address, 5915 address + huge_page_size(h), page, 0); 5916 } 5917 i_mmap_unlock_write(mapping); 5918 } 5919 5920 /* 5921 * hugetlb_wp() should be called with page lock of the original hugepage held. 5922 * Called with hugetlb_fault_mutex_table held and pte_page locked so we 5923 * cannot race with other handlers or page migration. 5924 * Keep the pte_same checks anyway to make transition from the mutex easier. 5925 */ 5926 static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma, 5927 unsigned long address, pte_t *ptep, unsigned int flags, 5928 struct folio *pagecache_folio, spinlock_t *ptl, 5929 struct vm_fault *vmf) 5930 { 5931 const bool unshare = flags & FAULT_FLAG_UNSHARE; 5932 pte_t pte = huge_ptep_get(ptep); 5933 struct hstate *h = hstate_vma(vma); 5934 struct folio *old_folio; 5935 struct folio *new_folio; 5936 int outside_reserve = 0; 5937 vm_fault_t ret = 0; 5938 unsigned long haddr = address & huge_page_mask(h); 5939 struct mmu_notifier_range range; 5940 5941 /* 5942 * Never handle CoW for uffd-wp protected pages. It should be only 5943 * handled when the uffd-wp protection is removed. 5944 * 5945 * Note that only the CoW optimization path (in hugetlb_no_page()) 5946 * can trigger this, because hugetlb_fault() will always resolve 5947 * uffd-wp bit first. 5948 */ 5949 if (!unshare && huge_pte_uffd_wp(pte)) 5950 return 0; 5951 5952 /* 5953 * hugetlb does not support FOLL_FORCE-style write faults that keep the 5954 * PTE mapped R/O such as maybe_mkwrite() would do. 5955 */ 5956 if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE))) 5957 return VM_FAULT_SIGSEGV; 5958 5959 /* Let's take out MAP_SHARED mappings first. */ 5960 if (vma->vm_flags & VM_MAYSHARE) { 5961 set_huge_ptep_writable(vma, haddr, ptep); 5962 return 0; 5963 } 5964 5965 old_folio = page_folio(pte_page(pte)); 5966 5967 delayacct_wpcopy_start(); 5968 5969 retry_avoidcopy: 5970 /* 5971 * If no-one else is actually using this page, we're the exclusive 5972 * owner and can reuse this page. 5973 */ 5974 if (folio_mapcount(old_folio) == 1 && folio_test_anon(old_folio)) { 5975 if (!PageAnonExclusive(&old_folio->page)) { 5976 folio_move_anon_rmap(old_folio, vma); 5977 SetPageAnonExclusive(&old_folio->page); 5978 } 5979 if (likely(!unshare)) 5980 set_huge_ptep_writable(vma, haddr, ptep); 5981 5982 delayacct_wpcopy_end(); 5983 return 0; 5984 } 5985 VM_BUG_ON_PAGE(folio_test_anon(old_folio) && 5986 PageAnonExclusive(&old_folio->page), &old_folio->page); 5987 5988 /* 5989 * If the process that created a MAP_PRIVATE mapping is about to 5990 * perform a COW due to a shared page count, attempt to satisfy 5991 * the allocation without using the existing reserves. The pagecache 5992 * page is used to determine if the reserve at this address was 5993 * consumed or not. If reserves were used, a partial faulted mapping 5994 * at the time of fork() could consume its reserves on COW instead 5995 * of the full address range. 5996 */ 5997 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && 5998 old_folio != pagecache_folio) 5999 outside_reserve = 1; 6000 6001 folio_get(old_folio); 6002 6003 /* 6004 * Drop page table lock as buddy allocator may be called. It will 6005 * be acquired again before returning to the caller, as expected. 6006 */ 6007 spin_unlock(ptl); 6008 new_folio = alloc_hugetlb_folio(vma, haddr, outside_reserve); 6009 6010 if (IS_ERR(new_folio)) { 6011 /* 6012 * If a process owning a MAP_PRIVATE mapping fails to COW, 6013 * it is due to references held by a child and an insufficient 6014 * huge page pool. To guarantee the original mappers 6015 * reliability, unmap the page from child processes. The child 6016 * may get SIGKILLed if it later faults. 6017 */ 6018 if (outside_reserve) { 6019 struct address_space *mapping = vma->vm_file->f_mapping; 6020 pgoff_t idx; 6021 u32 hash; 6022 6023 folio_put(old_folio); 6024 /* 6025 * Drop hugetlb_fault_mutex and vma_lock before 6026 * unmapping. unmapping needs to hold vma_lock 6027 * in write mode. Dropping vma_lock in read mode 6028 * here is OK as COW mappings do not interact with 6029 * PMD sharing. 6030 * 6031 * Reacquire both after unmap operation. 6032 */ 6033 idx = vma_hugecache_offset(h, vma, haddr); 6034 hash = hugetlb_fault_mutex_hash(mapping, idx); 6035 hugetlb_vma_unlock_read(vma); 6036 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6037 6038 unmap_ref_private(mm, vma, &old_folio->page, haddr); 6039 6040 mutex_lock(&hugetlb_fault_mutex_table[hash]); 6041 hugetlb_vma_lock_read(vma); 6042 spin_lock(ptl); 6043 ptep = hugetlb_walk(vma, haddr, huge_page_size(h)); 6044 if (likely(ptep && 6045 pte_same(huge_ptep_get(ptep), pte))) 6046 goto retry_avoidcopy; 6047 /* 6048 * race occurs while re-acquiring page table 6049 * lock, and our job is done. 6050 */ 6051 delayacct_wpcopy_end(); 6052 return 0; 6053 } 6054 6055 ret = vmf_error(PTR_ERR(new_folio)); 6056 goto out_release_old; 6057 } 6058 6059 /* 6060 * When the original hugepage is shared one, it does not have 6061 * anon_vma prepared. 6062 */ 6063 ret = vmf_anon_prepare(vmf); 6064 if (unlikely(ret)) 6065 goto out_release_all; 6066 6067 if (copy_user_large_folio(new_folio, old_folio, address, vma)) { 6068 ret = VM_FAULT_HWPOISON_LARGE; 6069 goto out_release_all; 6070 } 6071 __folio_mark_uptodate(new_folio); 6072 6073 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, haddr, 6074 haddr + huge_page_size(h)); 6075 mmu_notifier_invalidate_range_start(&range); 6076 6077 /* 6078 * Retake the page table lock to check for racing updates 6079 * before the page tables are altered 6080 */ 6081 spin_lock(ptl); 6082 ptep = hugetlb_walk(vma, haddr, huge_page_size(h)); 6083 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) { 6084 pte_t newpte = make_huge_pte(vma, &new_folio->page, !unshare); 6085 6086 /* Break COW or unshare */ 6087 huge_ptep_clear_flush(vma, haddr, ptep); 6088 hugetlb_remove_rmap(old_folio); 6089 hugetlb_add_new_anon_rmap(new_folio, vma, haddr); 6090 if (huge_pte_uffd_wp(pte)) 6091 newpte = huge_pte_mkuffd_wp(newpte); 6092 set_huge_pte_at(mm, haddr, ptep, newpte, huge_page_size(h)); 6093 folio_set_hugetlb_migratable(new_folio); 6094 /* Make the old page be freed below */ 6095 new_folio = old_folio; 6096 } 6097 spin_unlock(ptl); 6098 mmu_notifier_invalidate_range_end(&range); 6099 out_release_all: 6100 /* 6101 * No restore in case of successful pagetable update (Break COW or 6102 * unshare) 6103 */ 6104 if (new_folio != old_folio) 6105 restore_reserve_on_error(h, vma, haddr, new_folio); 6106 folio_put(new_folio); 6107 out_release_old: 6108 folio_put(old_folio); 6109 6110 spin_lock(ptl); /* Caller expects lock to be held */ 6111 6112 delayacct_wpcopy_end(); 6113 return ret; 6114 } 6115 6116 /* 6117 * Return whether there is a pagecache page to back given address within VMA. 6118 */ 6119 static bool hugetlbfs_pagecache_present(struct hstate *h, 6120 struct vm_area_struct *vma, unsigned long address) 6121 { 6122 struct address_space *mapping = vma->vm_file->f_mapping; 6123 pgoff_t idx = linear_page_index(vma, address); 6124 struct folio *folio; 6125 6126 folio = filemap_get_folio(mapping, idx); 6127 if (IS_ERR(folio)) 6128 return false; 6129 folio_put(folio); 6130 return true; 6131 } 6132 6133 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping, 6134 pgoff_t idx) 6135 { 6136 struct inode *inode = mapping->host; 6137 struct hstate *h = hstate_inode(inode); 6138 int err; 6139 6140 idx <<= huge_page_order(h); 6141 __folio_set_locked(folio); 6142 err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL); 6143 6144 if (unlikely(err)) { 6145 __folio_clear_locked(folio); 6146 return err; 6147 } 6148 folio_clear_hugetlb_restore_reserve(folio); 6149 6150 /* 6151 * mark folio dirty so that it will not be removed from cache/file 6152 * by non-hugetlbfs specific code paths. 6153 */ 6154 folio_mark_dirty(folio); 6155 6156 spin_lock(&inode->i_lock); 6157 inode->i_blocks += blocks_per_huge_page(h); 6158 spin_unlock(&inode->i_lock); 6159 return 0; 6160 } 6161 6162 static inline vm_fault_t hugetlb_handle_userfault(struct vm_fault *vmf, 6163 struct address_space *mapping, 6164 unsigned long reason) 6165 { 6166 u32 hash; 6167 6168 /* 6169 * vma_lock and hugetlb_fault_mutex must be dropped before handling 6170 * userfault. Also mmap_lock could be dropped due to handling 6171 * userfault, any vma operation should be careful from here. 6172 */ 6173 hugetlb_vma_unlock_read(vmf->vma); 6174 hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff); 6175 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6176 return handle_userfault(vmf, reason); 6177 } 6178 6179 /* 6180 * Recheck pte with pgtable lock. Returns true if pte didn't change, or 6181 * false if pte changed or is changing. 6182 */ 6183 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm, 6184 pte_t *ptep, pte_t old_pte) 6185 { 6186 spinlock_t *ptl; 6187 bool same; 6188 6189 ptl = huge_pte_lock(h, mm, ptep); 6190 same = pte_same(huge_ptep_get(ptep), old_pte); 6191 spin_unlock(ptl); 6192 6193 return same; 6194 } 6195 6196 static vm_fault_t hugetlb_no_page(struct mm_struct *mm, 6197 struct vm_area_struct *vma, 6198 struct address_space *mapping, pgoff_t idx, 6199 unsigned long address, pte_t *ptep, 6200 pte_t old_pte, unsigned int flags, 6201 struct vm_fault *vmf) 6202 { 6203 struct hstate *h = hstate_vma(vma); 6204 vm_fault_t ret = VM_FAULT_SIGBUS; 6205 int anon_rmap = 0; 6206 unsigned long size; 6207 struct folio *folio; 6208 pte_t new_pte; 6209 spinlock_t *ptl; 6210 unsigned long haddr = address & huge_page_mask(h); 6211 bool new_folio, new_pagecache_folio = false; 6212 u32 hash = hugetlb_fault_mutex_hash(mapping, idx); 6213 6214 /* 6215 * Currently, we are forced to kill the process in the event the 6216 * original mapper has unmapped pages from the child due to a failed 6217 * COW/unsharing. Warn that such a situation has occurred as it may not 6218 * be obvious. 6219 */ 6220 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { 6221 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n", 6222 current->pid); 6223 goto out; 6224 } 6225 6226 /* 6227 * Use page lock to guard against racing truncation 6228 * before we get page_table_lock. 6229 */ 6230 new_folio = false; 6231 folio = filemap_lock_hugetlb_folio(h, mapping, idx); 6232 if (IS_ERR(folio)) { 6233 size = i_size_read(mapping->host) >> huge_page_shift(h); 6234 if (idx >= size) 6235 goto out; 6236 /* Check for page in userfault range */ 6237 if (userfaultfd_missing(vma)) { 6238 /* 6239 * Since hugetlb_no_page() was examining pte 6240 * without pgtable lock, we need to re-test under 6241 * lock because the pte may not be stable and could 6242 * have changed from under us. Try to detect 6243 * either changed or during-changing ptes and retry 6244 * properly when needed. 6245 * 6246 * Note that userfaultfd is actually fine with 6247 * false positives (e.g. caused by pte changed), 6248 * but not wrong logical events (e.g. caused by 6249 * reading a pte during changing). The latter can 6250 * confuse the userspace, so the strictness is very 6251 * much preferred. E.g., MISSING event should 6252 * never happen on the page after UFFDIO_COPY has 6253 * correctly installed the page and returned. 6254 */ 6255 if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) { 6256 ret = 0; 6257 goto out; 6258 } 6259 6260 return hugetlb_handle_userfault(vmf, mapping, 6261 VM_UFFD_MISSING); 6262 } 6263 6264 if (!(vma->vm_flags & VM_MAYSHARE)) { 6265 ret = vmf_anon_prepare(vmf); 6266 if (unlikely(ret)) 6267 goto out; 6268 } 6269 6270 folio = alloc_hugetlb_folio(vma, haddr, 0); 6271 if (IS_ERR(folio)) { 6272 /* 6273 * Returning error will result in faulting task being 6274 * sent SIGBUS. The hugetlb fault mutex prevents two 6275 * tasks from racing to fault in the same page which 6276 * could result in false unable to allocate errors. 6277 * Page migration does not take the fault mutex, but 6278 * does a clear then write of pte's under page table 6279 * lock. Page fault code could race with migration, 6280 * notice the clear pte and try to allocate a page 6281 * here. Before returning error, get ptl and make 6282 * sure there really is no pte entry. 6283 */ 6284 if (hugetlb_pte_stable(h, mm, ptep, old_pte)) 6285 ret = vmf_error(PTR_ERR(folio)); 6286 else 6287 ret = 0; 6288 goto out; 6289 } 6290 clear_huge_page(&folio->page, address, pages_per_huge_page(h)); 6291 __folio_mark_uptodate(folio); 6292 new_folio = true; 6293 6294 if (vma->vm_flags & VM_MAYSHARE) { 6295 int err = hugetlb_add_to_page_cache(folio, mapping, idx); 6296 if (err) { 6297 /* 6298 * err can't be -EEXIST which implies someone 6299 * else consumed the reservation since hugetlb 6300 * fault mutex is held when add a hugetlb page 6301 * to the page cache. So it's safe to call 6302 * restore_reserve_on_error() here. 6303 */ 6304 restore_reserve_on_error(h, vma, haddr, folio); 6305 folio_put(folio); 6306 ret = VM_FAULT_SIGBUS; 6307 goto out; 6308 } 6309 new_pagecache_folio = true; 6310 } else { 6311 folio_lock(folio); 6312 anon_rmap = 1; 6313 } 6314 } else { 6315 /* 6316 * If memory error occurs between mmap() and fault, some process 6317 * don't have hwpoisoned swap entry for errored virtual address. 6318 * So we need to block hugepage fault by PG_hwpoison bit check. 6319 */ 6320 if (unlikely(folio_test_hwpoison(folio))) { 6321 ret = VM_FAULT_HWPOISON_LARGE | 6322 VM_FAULT_SET_HINDEX(hstate_index(h)); 6323 goto backout_unlocked; 6324 } 6325 6326 /* Check for page in userfault range. */ 6327 if (userfaultfd_minor(vma)) { 6328 folio_unlock(folio); 6329 folio_put(folio); 6330 /* See comment in userfaultfd_missing() block above */ 6331 if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) { 6332 ret = 0; 6333 goto out; 6334 } 6335 return hugetlb_handle_userfault(vmf, mapping, 6336 VM_UFFD_MINOR); 6337 } 6338 } 6339 6340 /* 6341 * If we are going to COW a private mapping later, we examine the 6342 * pending reservations for this page now. This will ensure that 6343 * any allocations necessary to record that reservation occur outside 6344 * the spinlock. 6345 */ 6346 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 6347 if (vma_needs_reservation(h, vma, haddr) < 0) { 6348 ret = VM_FAULT_OOM; 6349 goto backout_unlocked; 6350 } 6351 /* Just decrements count, does not deallocate */ 6352 vma_end_reservation(h, vma, haddr); 6353 } 6354 6355 ptl = huge_pte_lock(h, mm, ptep); 6356 ret = 0; 6357 /* If pte changed from under us, retry */ 6358 if (!pte_same(huge_ptep_get(ptep), old_pte)) 6359 goto backout; 6360 6361 if (anon_rmap) 6362 hugetlb_add_new_anon_rmap(folio, vma, haddr); 6363 else 6364 hugetlb_add_file_rmap(folio); 6365 new_pte = make_huge_pte(vma, &folio->page, ((vma->vm_flags & VM_WRITE) 6366 && (vma->vm_flags & VM_SHARED))); 6367 /* 6368 * If this pte was previously wr-protected, keep it wr-protected even 6369 * if populated. 6370 */ 6371 if (unlikely(pte_marker_uffd_wp(old_pte))) 6372 new_pte = huge_pte_mkuffd_wp(new_pte); 6373 set_huge_pte_at(mm, haddr, ptep, new_pte, huge_page_size(h)); 6374 6375 hugetlb_count_add(pages_per_huge_page(h), mm); 6376 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 6377 /* Optimization, do the COW without a second fault */ 6378 ret = hugetlb_wp(mm, vma, address, ptep, flags, folio, ptl, vmf); 6379 } 6380 6381 spin_unlock(ptl); 6382 6383 /* 6384 * Only set hugetlb_migratable in newly allocated pages. Existing pages 6385 * found in the pagecache may not have hugetlb_migratable if they have 6386 * been isolated for migration. 6387 */ 6388 if (new_folio) 6389 folio_set_hugetlb_migratable(folio); 6390 6391 folio_unlock(folio); 6392 out: 6393 hugetlb_vma_unlock_read(vma); 6394 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6395 return ret; 6396 6397 backout: 6398 spin_unlock(ptl); 6399 backout_unlocked: 6400 if (new_folio && !new_pagecache_folio) 6401 restore_reserve_on_error(h, vma, haddr, folio); 6402 6403 folio_unlock(folio); 6404 folio_put(folio); 6405 goto out; 6406 } 6407 6408 #ifdef CONFIG_SMP 6409 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 6410 { 6411 unsigned long key[2]; 6412 u32 hash; 6413 6414 key[0] = (unsigned long) mapping; 6415 key[1] = idx; 6416 6417 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0); 6418 6419 return hash & (num_fault_mutexes - 1); 6420 } 6421 #else 6422 /* 6423 * For uniprocessor systems we always use a single mutex, so just 6424 * return 0 and avoid the hashing overhead. 6425 */ 6426 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 6427 { 6428 return 0; 6429 } 6430 #endif 6431 6432 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, 6433 unsigned long address, unsigned int flags) 6434 { 6435 pte_t *ptep, entry; 6436 spinlock_t *ptl; 6437 vm_fault_t ret; 6438 u32 hash; 6439 struct folio *folio = NULL; 6440 struct folio *pagecache_folio = NULL; 6441 struct hstate *h = hstate_vma(vma); 6442 struct address_space *mapping; 6443 int need_wait_lock = 0; 6444 unsigned long haddr = address & huge_page_mask(h); 6445 struct vm_fault vmf = { 6446 .vma = vma, 6447 .address = haddr, 6448 .real_address = address, 6449 .flags = flags, 6450 .pgoff = vma_hugecache_offset(h, vma, haddr), 6451 /* TODO: Track hugetlb faults using vm_fault */ 6452 6453 /* 6454 * Some fields may not be initialized, be careful as it may 6455 * be hard to debug if called functions make assumptions 6456 */ 6457 }; 6458 6459 /* 6460 * Serialize hugepage allocation and instantiation, so that we don't 6461 * get spurious allocation failures if two CPUs race to instantiate 6462 * the same page in the page cache. 6463 */ 6464 mapping = vma->vm_file->f_mapping; 6465 hash = hugetlb_fault_mutex_hash(mapping, vmf.pgoff); 6466 mutex_lock(&hugetlb_fault_mutex_table[hash]); 6467 6468 /* 6469 * Acquire vma lock before calling huge_pte_alloc and hold 6470 * until finished with ptep. This prevents huge_pmd_unshare from 6471 * being called elsewhere and making the ptep no longer valid. 6472 */ 6473 hugetlb_vma_lock_read(vma); 6474 ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h)); 6475 if (!ptep) { 6476 hugetlb_vma_unlock_read(vma); 6477 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6478 return VM_FAULT_OOM; 6479 } 6480 6481 entry = huge_ptep_get(ptep); 6482 if (huge_pte_none_mostly(entry)) { 6483 if (is_pte_marker(entry)) { 6484 pte_marker marker = 6485 pte_marker_get(pte_to_swp_entry(entry)); 6486 6487 if (marker & PTE_MARKER_POISONED) { 6488 ret = VM_FAULT_HWPOISON_LARGE; 6489 goto out_mutex; 6490 } 6491 } 6492 6493 /* 6494 * Other PTE markers should be handled the same way as none PTE. 6495 * 6496 * hugetlb_no_page will drop vma lock and hugetlb fault 6497 * mutex internally, which make us return immediately. 6498 */ 6499 return hugetlb_no_page(mm, vma, mapping, vmf.pgoff, address, 6500 ptep, entry, flags, &vmf); 6501 } 6502 6503 ret = 0; 6504 6505 /* 6506 * entry could be a migration/hwpoison entry at this point, so this 6507 * check prevents the kernel from going below assuming that we have 6508 * an active hugepage in pagecache. This goto expects the 2nd page 6509 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will 6510 * properly handle it. 6511 */ 6512 if (!pte_present(entry)) { 6513 if (unlikely(is_hugetlb_entry_migration(entry))) { 6514 /* 6515 * Release the hugetlb fault lock now, but retain 6516 * the vma lock, because it is needed to guard the 6517 * huge_pte_lockptr() later in 6518 * migration_entry_wait_huge(). The vma lock will 6519 * be released there. 6520 */ 6521 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6522 migration_entry_wait_huge(vma, ptep); 6523 return 0; 6524 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) 6525 ret = VM_FAULT_HWPOISON_LARGE | 6526 VM_FAULT_SET_HINDEX(hstate_index(h)); 6527 goto out_mutex; 6528 } 6529 6530 /* 6531 * If we are going to COW/unshare the mapping later, we examine the 6532 * pending reservations for this page now. This will ensure that any 6533 * allocations necessary to record that reservation occur outside the 6534 * spinlock. Also lookup the pagecache page now as it is used to 6535 * determine if a reservation has been consumed. 6536 */ 6537 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) && 6538 !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) { 6539 if (vma_needs_reservation(h, vma, haddr) < 0) { 6540 ret = VM_FAULT_OOM; 6541 goto out_mutex; 6542 } 6543 /* Just decrements count, does not deallocate */ 6544 vma_end_reservation(h, vma, haddr); 6545 6546 pagecache_folio = filemap_lock_hugetlb_folio(h, mapping, 6547 vmf.pgoff); 6548 if (IS_ERR(pagecache_folio)) 6549 pagecache_folio = NULL; 6550 } 6551 6552 ptl = huge_pte_lock(h, mm, ptep); 6553 6554 /* Check for a racing update before calling hugetlb_wp() */ 6555 if (unlikely(!pte_same(entry, huge_ptep_get(ptep)))) 6556 goto out_ptl; 6557 6558 /* Handle userfault-wp first, before trying to lock more pages */ 6559 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) && 6560 (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) { 6561 if (!userfaultfd_wp_async(vma)) { 6562 spin_unlock(ptl); 6563 if (pagecache_folio) { 6564 folio_unlock(pagecache_folio); 6565 folio_put(pagecache_folio); 6566 } 6567 hugetlb_vma_unlock_read(vma); 6568 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6569 return handle_userfault(&vmf, VM_UFFD_WP); 6570 } 6571 6572 entry = huge_pte_clear_uffd_wp(entry); 6573 set_huge_pte_at(mm, haddr, ptep, entry, 6574 huge_page_size(hstate_vma(vma))); 6575 /* Fallthrough to CoW */ 6576 } 6577 6578 /* 6579 * hugetlb_wp() requires page locks of pte_page(entry) and 6580 * pagecache_folio, so here we need take the former one 6581 * when folio != pagecache_folio or !pagecache_folio. 6582 */ 6583 folio = page_folio(pte_page(entry)); 6584 if (folio != pagecache_folio) 6585 if (!folio_trylock(folio)) { 6586 need_wait_lock = 1; 6587 goto out_ptl; 6588 } 6589 6590 folio_get(folio); 6591 6592 if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) { 6593 if (!huge_pte_write(entry)) { 6594 ret = hugetlb_wp(mm, vma, address, ptep, flags, 6595 pagecache_folio, ptl, &vmf); 6596 goto out_put_page; 6597 } else if (likely(flags & FAULT_FLAG_WRITE)) { 6598 entry = huge_pte_mkdirty(entry); 6599 } 6600 } 6601 entry = pte_mkyoung(entry); 6602 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry, 6603 flags & FAULT_FLAG_WRITE)) 6604 update_mmu_cache(vma, haddr, ptep); 6605 out_put_page: 6606 if (folio != pagecache_folio) 6607 folio_unlock(folio); 6608 folio_put(folio); 6609 out_ptl: 6610 spin_unlock(ptl); 6611 6612 if (pagecache_folio) { 6613 folio_unlock(pagecache_folio); 6614 folio_put(pagecache_folio); 6615 } 6616 out_mutex: 6617 hugetlb_vma_unlock_read(vma); 6618 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6619 /* 6620 * Generally it's safe to hold refcount during waiting page lock. But 6621 * here we just wait to defer the next page fault to avoid busy loop and 6622 * the page is not used after unlocked before returning from the current 6623 * page fault. So we are safe from accessing freed page, even if we wait 6624 * here without taking refcount. 6625 */ 6626 if (need_wait_lock) 6627 folio_wait_locked(folio); 6628 return ret; 6629 } 6630 6631 #ifdef CONFIG_USERFAULTFD 6632 /* 6633 * Can probably be eliminated, but still used by hugetlb_mfill_atomic_pte(). 6634 */ 6635 static struct folio *alloc_hugetlb_folio_vma(struct hstate *h, 6636 struct vm_area_struct *vma, unsigned long address) 6637 { 6638 struct mempolicy *mpol; 6639 nodemask_t *nodemask; 6640 struct folio *folio; 6641 gfp_t gfp_mask; 6642 int node; 6643 6644 gfp_mask = htlb_alloc_mask(h); 6645 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 6646 folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask); 6647 mpol_cond_put(mpol); 6648 6649 return folio; 6650 } 6651 6652 /* 6653 * Used by userfaultfd UFFDIO_* ioctls. Based on userfaultfd's mfill_atomic_pte 6654 * with modifications for hugetlb pages. 6655 */ 6656 int hugetlb_mfill_atomic_pte(pte_t *dst_pte, 6657 struct vm_area_struct *dst_vma, 6658 unsigned long dst_addr, 6659 unsigned long src_addr, 6660 uffd_flags_t flags, 6661 struct folio **foliop) 6662 { 6663 struct mm_struct *dst_mm = dst_vma->vm_mm; 6664 bool is_continue = uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE); 6665 bool wp_enabled = (flags & MFILL_ATOMIC_WP); 6666 struct hstate *h = hstate_vma(dst_vma); 6667 struct address_space *mapping = dst_vma->vm_file->f_mapping; 6668 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr); 6669 unsigned long size; 6670 int vm_shared = dst_vma->vm_flags & VM_SHARED; 6671 pte_t _dst_pte; 6672 spinlock_t *ptl; 6673 int ret = -ENOMEM; 6674 struct folio *folio; 6675 int writable; 6676 bool folio_in_pagecache = false; 6677 6678 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_POISON)) { 6679 ptl = huge_pte_lock(h, dst_mm, dst_pte); 6680 6681 /* Don't overwrite any existing PTEs (even markers) */ 6682 if (!huge_pte_none(huge_ptep_get(dst_pte))) { 6683 spin_unlock(ptl); 6684 return -EEXIST; 6685 } 6686 6687 _dst_pte = make_pte_marker(PTE_MARKER_POISONED); 6688 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, 6689 huge_page_size(h)); 6690 6691 /* No need to invalidate - it was non-present before */ 6692 update_mmu_cache(dst_vma, dst_addr, dst_pte); 6693 6694 spin_unlock(ptl); 6695 return 0; 6696 } 6697 6698 if (is_continue) { 6699 ret = -EFAULT; 6700 folio = filemap_lock_hugetlb_folio(h, mapping, idx); 6701 if (IS_ERR(folio)) 6702 goto out; 6703 folio_in_pagecache = true; 6704 } else if (!*foliop) { 6705 /* If a folio already exists, then it's UFFDIO_COPY for 6706 * a non-missing case. Return -EEXIST. 6707 */ 6708 if (vm_shared && 6709 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) { 6710 ret = -EEXIST; 6711 goto out; 6712 } 6713 6714 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0); 6715 if (IS_ERR(folio)) { 6716 ret = -ENOMEM; 6717 goto out; 6718 } 6719 6720 ret = copy_folio_from_user(folio, (const void __user *) src_addr, 6721 false); 6722 6723 /* fallback to copy_from_user outside mmap_lock */ 6724 if (unlikely(ret)) { 6725 ret = -ENOENT; 6726 /* Free the allocated folio which may have 6727 * consumed a reservation. 6728 */ 6729 restore_reserve_on_error(h, dst_vma, dst_addr, folio); 6730 folio_put(folio); 6731 6732 /* Allocate a temporary folio to hold the copied 6733 * contents. 6734 */ 6735 folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr); 6736 if (!folio) { 6737 ret = -ENOMEM; 6738 goto out; 6739 } 6740 *foliop = folio; 6741 /* Set the outparam foliop and return to the caller to 6742 * copy the contents outside the lock. Don't free the 6743 * folio. 6744 */ 6745 goto out; 6746 } 6747 } else { 6748 if (vm_shared && 6749 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) { 6750 folio_put(*foliop); 6751 ret = -EEXIST; 6752 *foliop = NULL; 6753 goto out; 6754 } 6755 6756 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0); 6757 if (IS_ERR(folio)) { 6758 folio_put(*foliop); 6759 ret = -ENOMEM; 6760 *foliop = NULL; 6761 goto out; 6762 } 6763 ret = copy_user_large_folio(folio, *foliop, dst_addr, dst_vma); 6764 folio_put(*foliop); 6765 *foliop = NULL; 6766 if (ret) { 6767 folio_put(folio); 6768 goto out; 6769 } 6770 } 6771 6772 /* 6773 * If we just allocated a new page, we need a memory barrier to ensure 6774 * that preceding stores to the page become visible before the 6775 * set_pte_at() write. The memory barrier inside __folio_mark_uptodate 6776 * is what we need. 6777 * 6778 * In the case where we have not allocated a new page (is_continue), 6779 * the page must already be uptodate. UFFDIO_CONTINUE already includes 6780 * an earlier smp_wmb() to ensure that prior stores will be visible 6781 * before the set_pte_at() write. 6782 */ 6783 if (!is_continue) 6784 __folio_mark_uptodate(folio); 6785 else 6786 WARN_ON_ONCE(!folio_test_uptodate(folio)); 6787 6788 /* Add shared, newly allocated pages to the page cache. */ 6789 if (vm_shared && !is_continue) { 6790 size = i_size_read(mapping->host) >> huge_page_shift(h); 6791 ret = -EFAULT; 6792 if (idx >= size) 6793 goto out_release_nounlock; 6794 6795 /* 6796 * Serialization between remove_inode_hugepages() and 6797 * hugetlb_add_to_page_cache() below happens through the 6798 * hugetlb_fault_mutex_table that here must be hold by 6799 * the caller. 6800 */ 6801 ret = hugetlb_add_to_page_cache(folio, mapping, idx); 6802 if (ret) 6803 goto out_release_nounlock; 6804 folio_in_pagecache = true; 6805 } 6806 6807 ptl = huge_pte_lock(h, dst_mm, dst_pte); 6808 6809 ret = -EIO; 6810 if (folio_test_hwpoison(folio)) 6811 goto out_release_unlock; 6812 6813 /* 6814 * We allow to overwrite a pte marker: consider when both MISSING|WP 6815 * registered, we firstly wr-protect a none pte which has no page cache 6816 * page backing it, then access the page. 6817 */ 6818 ret = -EEXIST; 6819 if (!huge_pte_none_mostly(huge_ptep_get(dst_pte))) 6820 goto out_release_unlock; 6821 6822 if (folio_in_pagecache) 6823 hugetlb_add_file_rmap(folio); 6824 else 6825 hugetlb_add_new_anon_rmap(folio, dst_vma, dst_addr); 6826 6827 /* 6828 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY 6829 * with wp flag set, don't set pte write bit. 6830 */ 6831 if (wp_enabled || (is_continue && !vm_shared)) 6832 writable = 0; 6833 else 6834 writable = dst_vma->vm_flags & VM_WRITE; 6835 6836 _dst_pte = make_huge_pte(dst_vma, &folio->page, writable); 6837 /* 6838 * Always mark UFFDIO_COPY page dirty; note that this may not be 6839 * extremely important for hugetlbfs for now since swapping is not 6840 * supported, but we should still be clear in that this page cannot be 6841 * thrown away at will, even if write bit not set. 6842 */ 6843 _dst_pte = huge_pte_mkdirty(_dst_pte); 6844 _dst_pte = pte_mkyoung(_dst_pte); 6845 6846 if (wp_enabled) 6847 _dst_pte = huge_pte_mkuffd_wp(_dst_pte); 6848 6849 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, huge_page_size(h)); 6850 6851 hugetlb_count_add(pages_per_huge_page(h), dst_mm); 6852 6853 /* No need to invalidate - it was non-present before */ 6854 update_mmu_cache(dst_vma, dst_addr, dst_pte); 6855 6856 spin_unlock(ptl); 6857 if (!is_continue) 6858 folio_set_hugetlb_migratable(folio); 6859 if (vm_shared || is_continue) 6860 folio_unlock(folio); 6861 ret = 0; 6862 out: 6863 return ret; 6864 out_release_unlock: 6865 spin_unlock(ptl); 6866 if (vm_shared || is_continue) 6867 folio_unlock(folio); 6868 out_release_nounlock: 6869 if (!folio_in_pagecache) 6870 restore_reserve_on_error(h, dst_vma, dst_addr, folio); 6871 folio_put(folio); 6872 goto out; 6873 } 6874 #endif /* CONFIG_USERFAULTFD */ 6875 6876 struct page *hugetlb_follow_page_mask(struct vm_area_struct *vma, 6877 unsigned long address, unsigned int flags, 6878 unsigned int *page_mask) 6879 { 6880 struct hstate *h = hstate_vma(vma); 6881 struct mm_struct *mm = vma->vm_mm; 6882 unsigned long haddr = address & huge_page_mask(h); 6883 struct page *page = NULL; 6884 spinlock_t *ptl; 6885 pte_t *pte, entry; 6886 int ret; 6887 6888 hugetlb_vma_lock_read(vma); 6889 pte = hugetlb_walk(vma, haddr, huge_page_size(h)); 6890 if (!pte) 6891 goto out_unlock; 6892 6893 ptl = huge_pte_lock(h, mm, pte); 6894 entry = huge_ptep_get(pte); 6895 if (pte_present(entry)) { 6896 page = pte_page(entry); 6897 6898 if (!huge_pte_write(entry)) { 6899 if (flags & FOLL_WRITE) { 6900 page = NULL; 6901 goto out; 6902 } 6903 6904 if (gup_must_unshare(vma, flags, page)) { 6905 /* Tell the caller to do unsharing */ 6906 page = ERR_PTR(-EMLINK); 6907 goto out; 6908 } 6909 } 6910 6911 page = nth_page(page, ((address & ~huge_page_mask(h)) >> PAGE_SHIFT)); 6912 6913 /* 6914 * Note that page may be a sub-page, and with vmemmap 6915 * optimizations the page struct may be read only. 6916 * try_grab_page() will increase the ref count on the 6917 * head page, so this will be OK. 6918 * 6919 * try_grab_page() should always be able to get the page here, 6920 * because we hold the ptl lock and have verified pte_present(). 6921 */ 6922 ret = try_grab_page(page, flags); 6923 6924 if (WARN_ON_ONCE(ret)) { 6925 page = ERR_PTR(ret); 6926 goto out; 6927 } 6928 6929 *page_mask = (1U << huge_page_order(h)) - 1; 6930 } 6931 out: 6932 spin_unlock(ptl); 6933 out_unlock: 6934 hugetlb_vma_unlock_read(vma); 6935 6936 /* 6937 * Fixup retval for dump requests: if pagecache doesn't exist, 6938 * don't try to allocate a new page but just skip it. 6939 */ 6940 if (!page && (flags & FOLL_DUMP) && 6941 !hugetlbfs_pagecache_present(h, vma, address)) 6942 page = ERR_PTR(-EFAULT); 6943 6944 return page; 6945 } 6946 6947 long hugetlb_change_protection(struct vm_area_struct *vma, 6948 unsigned long address, unsigned long end, 6949 pgprot_t newprot, unsigned long cp_flags) 6950 { 6951 struct mm_struct *mm = vma->vm_mm; 6952 unsigned long start = address; 6953 pte_t *ptep; 6954 pte_t pte; 6955 struct hstate *h = hstate_vma(vma); 6956 long pages = 0, psize = huge_page_size(h); 6957 bool shared_pmd = false; 6958 struct mmu_notifier_range range; 6959 unsigned long last_addr_mask; 6960 bool uffd_wp = cp_flags & MM_CP_UFFD_WP; 6961 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE; 6962 6963 /* 6964 * In the case of shared PMDs, the area to flush could be beyond 6965 * start/end. Set range.start/range.end to cover the maximum possible 6966 * range if PMD sharing is possible. 6967 */ 6968 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA, 6969 0, mm, start, end); 6970 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 6971 6972 BUG_ON(address >= end); 6973 flush_cache_range(vma, range.start, range.end); 6974 6975 mmu_notifier_invalidate_range_start(&range); 6976 hugetlb_vma_lock_write(vma); 6977 i_mmap_lock_write(vma->vm_file->f_mapping); 6978 last_addr_mask = hugetlb_mask_last_page(h); 6979 for (; address < end; address += psize) { 6980 spinlock_t *ptl; 6981 ptep = hugetlb_walk(vma, address, psize); 6982 if (!ptep) { 6983 if (!uffd_wp) { 6984 address |= last_addr_mask; 6985 continue; 6986 } 6987 /* 6988 * Userfaultfd wr-protect requires pgtable 6989 * pre-allocations to install pte markers. 6990 */ 6991 ptep = huge_pte_alloc(mm, vma, address, psize); 6992 if (!ptep) { 6993 pages = -ENOMEM; 6994 break; 6995 } 6996 } 6997 ptl = huge_pte_lock(h, mm, ptep); 6998 if (huge_pmd_unshare(mm, vma, address, ptep)) { 6999 /* 7000 * When uffd-wp is enabled on the vma, unshare 7001 * shouldn't happen at all. Warn about it if it 7002 * happened due to some reason. 7003 */ 7004 WARN_ON_ONCE(uffd_wp || uffd_wp_resolve); 7005 pages++; 7006 spin_unlock(ptl); 7007 shared_pmd = true; 7008 address |= last_addr_mask; 7009 continue; 7010 } 7011 pte = huge_ptep_get(ptep); 7012 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) { 7013 /* Nothing to do. */ 7014 } else if (unlikely(is_hugetlb_entry_migration(pte))) { 7015 swp_entry_t entry = pte_to_swp_entry(pte); 7016 struct page *page = pfn_swap_entry_to_page(entry); 7017 pte_t newpte = pte; 7018 7019 if (is_writable_migration_entry(entry)) { 7020 if (PageAnon(page)) 7021 entry = make_readable_exclusive_migration_entry( 7022 swp_offset(entry)); 7023 else 7024 entry = make_readable_migration_entry( 7025 swp_offset(entry)); 7026 newpte = swp_entry_to_pte(entry); 7027 pages++; 7028 } 7029 7030 if (uffd_wp) 7031 newpte = pte_swp_mkuffd_wp(newpte); 7032 else if (uffd_wp_resolve) 7033 newpte = pte_swp_clear_uffd_wp(newpte); 7034 if (!pte_same(pte, newpte)) 7035 set_huge_pte_at(mm, address, ptep, newpte, psize); 7036 } else if (unlikely(is_pte_marker(pte))) { 7037 /* 7038 * Do nothing on a poison marker; page is 7039 * corrupted, permissons do not apply. Here 7040 * pte_marker_uffd_wp()==true implies !poison 7041 * because they're mutual exclusive. 7042 */ 7043 if (pte_marker_uffd_wp(pte) && uffd_wp_resolve) 7044 /* Safe to modify directly (non-present->none). */ 7045 huge_pte_clear(mm, address, ptep, psize); 7046 } else if (!huge_pte_none(pte)) { 7047 pte_t old_pte; 7048 unsigned int shift = huge_page_shift(hstate_vma(vma)); 7049 7050 old_pte = huge_ptep_modify_prot_start(vma, address, ptep); 7051 pte = huge_pte_modify(old_pte, newprot); 7052 pte = arch_make_huge_pte(pte, shift, vma->vm_flags); 7053 if (uffd_wp) 7054 pte = huge_pte_mkuffd_wp(pte); 7055 else if (uffd_wp_resolve) 7056 pte = huge_pte_clear_uffd_wp(pte); 7057 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte); 7058 pages++; 7059 } else { 7060 /* None pte */ 7061 if (unlikely(uffd_wp)) 7062 /* Safe to modify directly (none->non-present). */ 7063 set_huge_pte_at(mm, address, ptep, 7064 make_pte_marker(PTE_MARKER_UFFD_WP), 7065 psize); 7066 } 7067 spin_unlock(ptl); 7068 } 7069 /* 7070 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare 7071 * may have cleared our pud entry and done put_page on the page table: 7072 * once we release i_mmap_rwsem, another task can do the final put_page 7073 * and that page table be reused and filled with junk. If we actually 7074 * did unshare a page of pmds, flush the range corresponding to the pud. 7075 */ 7076 if (shared_pmd) 7077 flush_hugetlb_tlb_range(vma, range.start, range.end); 7078 else 7079 flush_hugetlb_tlb_range(vma, start, end); 7080 /* 7081 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs() we are 7082 * downgrading page table protection not changing it to point to a new 7083 * page. 7084 * 7085 * See Documentation/mm/mmu_notifier.rst 7086 */ 7087 i_mmap_unlock_write(vma->vm_file->f_mapping); 7088 hugetlb_vma_unlock_write(vma); 7089 mmu_notifier_invalidate_range_end(&range); 7090 7091 return pages > 0 ? (pages << h->order) : pages; 7092 } 7093 7094 /* Return true if reservation was successful, false otherwise. */ 7095 bool hugetlb_reserve_pages(struct inode *inode, 7096 long from, long to, 7097 struct vm_area_struct *vma, 7098 vm_flags_t vm_flags) 7099 { 7100 long chg = -1, add = -1; 7101 struct hstate *h = hstate_inode(inode); 7102 struct hugepage_subpool *spool = subpool_inode(inode); 7103 struct resv_map *resv_map; 7104 struct hugetlb_cgroup *h_cg = NULL; 7105 long gbl_reserve, regions_needed = 0; 7106 7107 /* This should never happen */ 7108 if (from > to) { 7109 VM_WARN(1, "%s called with a negative range\n", __func__); 7110 return false; 7111 } 7112 7113 /* 7114 * vma specific semaphore used for pmd sharing and fault/truncation 7115 * synchronization 7116 */ 7117 hugetlb_vma_lock_alloc(vma); 7118 7119 /* 7120 * Only apply hugepage reservation if asked. At fault time, an 7121 * attempt will be made for VM_NORESERVE to allocate a page 7122 * without using reserves 7123 */ 7124 if (vm_flags & VM_NORESERVE) 7125 return true; 7126 7127 /* 7128 * Shared mappings base their reservation on the number of pages that 7129 * are already allocated on behalf of the file. Private mappings need 7130 * to reserve the full area even if read-only as mprotect() may be 7131 * called to make the mapping read-write. Assume !vma is a shm mapping 7132 */ 7133 if (!vma || vma->vm_flags & VM_MAYSHARE) { 7134 /* 7135 * resv_map can not be NULL as hugetlb_reserve_pages is only 7136 * called for inodes for which resv_maps were created (see 7137 * hugetlbfs_get_inode). 7138 */ 7139 resv_map = inode_resv_map(inode); 7140 7141 chg = region_chg(resv_map, from, to, ®ions_needed); 7142 } else { 7143 /* Private mapping. */ 7144 resv_map = resv_map_alloc(); 7145 if (!resv_map) 7146 goto out_err; 7147 7148 chg = to - from; 7149 7150 set_vma_resv_map(vma, resv_map); 7151 set_vma_resv_flags(vma, HPAGE_RESV_OWNER); 7152 } 7153 7154 if (chg < 0) 7155 goto out_err; 7156 7157 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h), 7158 chg * pages_per_huge_page(h), &h_cg) < 0) 7159 goto out_err; 7160 7161 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) { 7162 /* For private mappings, the hugetlb_cgroup uncharge info hangs 7163 * of the resv_map. 7164 */ 7165 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h); 7166 } 7167 7168 /* 7169 * There must be enough pages in the subpool for the mapping. If 7170 * the subpool has a minimum size, there may be some global 7171 * reservations already in place (gbl_reserve). 7172 */ 7173 gbl_reserve = hugepage_subpool_get_pages(spool, chg); 7174 if (gbl_reserve < 0) 7175 goto out_uncharge_cgroup; 7176 7177 /* 7178 * Check enough hugepages are available for the reservation. 7179 * Hand the pages back to the subpool if there are not 7180 */ 7181 if (hugetlb_acct_memory(h, gbl_reserve) < 0) 7182 goto out_put_pages; 7183 7184 /* 7185 * Account for the reservations made. Shared mappings record regions 7186 * that have reservations as they are shared by multiple VMAs. 7187 * When the last VMA disappears, the region map says how much 7188 * the reservation was and the page cache tells how much of 7189 * the reservation was consumed. Private mappings are per-VMA and 7190 * only the consumed reservations are tracked. When the VMA 7191 * disappears, the original reservation is the VMA size and the 7192 * consumed reservations are stored in the map. Hence, nothing 7193 * else has to be done for private mappings here 7194 */ 7195 if (!vma || vma->vm_flags & VM_MAYSHARE) { 7196 add = region_add(resv_map, from, to, regions_needed, h, h_cg); 7197 7198 if (unlikely(add < 0)) { 7199 hugetlb_acct_memory(h, -gbl_reserve); 7200 goto out_put_pages; 7201 } else if (unlikely(chg > add)) { 7202 /* 7203 * pages in this range were added to the reserve 7204 * map between region_chg and region_add. This 7205 * indicates a race with alloc_hugetlb_folio. Adjust 7206 * the subpool and reserve counts modified above 7207 * based on the difference. 7208 */ 7209 long rsv_adjust; 7210 7211 /* 7212 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the 7213 * reference to h_cg->css. See comment below for detail. 7214 */ 7215 hugetlb_cgroup_uncharge_cgroup_rsvd( 7216 hstate_index(h), 7217 (chg - add) * pages_per_huge_page(h), h_cg); 7218 7219 rsv_adjust = hugepage_subpool_put_pages(spool, 7220 chg - add); 7221 hugetlb_acct_memory(h, -rsv_adjust); 7222 } else if (h_cg) { 7223 /* 7224 * The file_regions will hold their own reference to 7225 * h_cg->css. So we should release the reference held 7226 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are 7227 * done. 7228 */ 7229 hugetlb_cgroup_put_rsvd_cgroup(h_cg); 7230 } 7231 } 7232 return true; 7233 7234 out_put_pages: 7235 /* put back original number of pages, chg */ 7236 (void)hugepage_subpool_put_pages(spool, chg); 7237 out_uncharge_cgroup: 7238 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h), 7239 chg * pages_per_huge_page(h), h_cg); 7240 out_err: 7241 hugetlb_vma_lock_free(vma); 7242 if (!vma || vma->vm_flags & VM_MAYSHARE) 7243 /* Only call region_abort if the region_chg succeeded but the 7244 * region_add failed or didn't run. 7245 */ 7246 if (chg >= 0 && add < 0) 7247 region_abort(resv_map, from, to, regions_needed); 7248 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 7249 kref_put(&resv_map->refs, resv_map_release); 7250 set_vma_resv_map(vma, NULL); 7251 } 7252 return false; 7253 } 7254 7255 long hugetlb_unreserve_pages(struct inode *inode, long start, long end, 7256 long freed) 7257 { 7258 struct hstate *h = hstate_inode(inode); 7259 struct resv_map *resv_map = inode_resv_map(inode); 7260 long chg = 0; 7261 struct hugepage_subpool *spool = subpool_inode(inode); 7262 long gbl_reserve; 7263 7264 /* 7265 * Since this routine can be called in the evict inode path for all 7266 * hugetlbfs inodes, resv_map could be NULL. 7267 */ 7268 if (resv_map) { 7269 chg = region_del(resv_map, start, end); 7270 /* 7271 * region_del() can fail in the rare case where a region 7272 * must be split and another region descriptor can not be 7273 * allocated. If end == LONG_MAX, it will not fail. 7274 */ 7275 if (chg < 0) 7276 return chg; 7277 } 7278 7279 spin_lock(&inode->i_lock); 7280 inode->i_blocks -= (blocks_per_huge_page(h) * freed); 7281 spin_unlock(&inode->i_lock); 7282 7283 /* 7284 * If the subpool has a minimum size, the number of global 7285 * reservations to be released may be adjusted. 7286 * 7287 * Note that !resv_map implies freed == 0. So (chg - freed) 7288 * won't go negative. 7289 */ 7290 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed)); 7291 hugetlb_acct_memory(h, -gbl_reserve); 7292 7293 return 0; 7294 } 7295 7296 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE 7297 static unsigned long page_table_shareable(struct vm_area_struct *svma, 7298 struct vm_area_struct *vma, 7299 unsigned long addr, pgoff_t idx) 7300 { 7301 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) + 7302 svma->vm_start; 7303 unsigned long sbase = saddr & PUD_MASK; 7304 unsigned long s_end = sbase + PUD_SIZE; 7305 7306 /* Allow segments to share if only one is marked locked */ 7307 unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED_MASK; 7308 unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED_MASK; 7309 7310 /* 7311 * match the virtual addresses, permission and the alignment of the 7312 * page table page. 7313 * 7314 * Also, vma_lock (vm_private_data) is required for sharing. 7315 */ 7316 if (pmd_index(addr) != pmd_index(saddr) || 7317 vm_flags != svm_flags || 7318 !range_in_vma(svma, sbase, s_end) || 7319 !svma->vm_private_data) 7320 return 0; 7321 7322 return saddr; 7323 } 7324 7325 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr) 7326 { 7327 unsigned long start = addr & PUD_MASK; 7328 unsigned long end = start + PUD_SIZE; 7329 7330 #ifdef CONFIG_USERFAULTFD 7331 if (uffd_disable_huge_pmd_share(vma)) 7332 return false; 7333 #endif 7334 /* 7335 * check on proper vm_flags and page table alignment 7336 */ 7337 if (!(vma->vm_flags & VM_MAYSHARE)) 7338 return false; 7339 if (!vma->vm_private_data) /* vma lock required for sharing */ 7340 return false; 7341 if (!range_in_vma(vma, start, end)) 7342 return false; 7343 return true; 7344 } 7345 7346 /* 7347 * Determine if start,end range within vma could be mapped by shared pmd. 7348 * If yes, adjust start and end to cover range associated with possible 7349 * shared pmd mappings. 7350 */ 7351 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 7352 unsigned long *start, unsigned long *end) 7353 { 7354 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE), 7355 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE); 7356 7357 /* 7358 * vma needs to span at least one aligned PUD size, and the range 7359 * must be at least partially within in. 7360 */ 7361 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) || 7362 (*end <= v_start) || (*start >= v_end)) 7363 return; 7364 7365 /* Extend the range to be PUD aligned for a worst case scenario */ 7366 if (*start > v_start) 7367 *start = ALIGN_DOWN(*start, PUD_SIZE); 7368 7369 if (*end < v_end) 7370 *end = ALIGN(*end, PUD_SIZE); 7371 } 7372 7373 /* 7374 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc() 7375 * and returns the corresponding pte. While this is not necessary for the 7376 * !shared pmd case because we can allocate the pmd later as well, it makes the 7377 * code much cleaner. pmd allocation is essential for the shared case because 7378 * pud has to be populated inside the same i_mmap_rwsem section - otherwise 7379 * racing tasks could either miss the sharing (see huge_pte_offset) or select a 7380 * bad pmd for sharing. 7381 */ 7382 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, 7383 unsigned long addr, pud_t *pud) 7384 { 7385 struct address_space *mapping = vma->vm_file->f_mapping; 7386 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + 7387 vma->vm_pgoff; 7388 struct vm_area_struct *svma; 7389 unsigned long saddr; 7390 pte_t *spte = NULL; 7391 pte_t *pte; 7392 7393 i_mmap_lock_read(mapping); 7394 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) { 7395 if (svma == vma) 7396 continue; 7397 7398 saddr = page_table_shareable(svma, vma, addr, idx); 7399 if (saddr) { 7400 spte = hugetlb_walk(svma, saddr, 7401 vma_mmu_pagesize(svma)); 7402 if (spte) { 7403 get_page(virt_to_page(spte)); 7404 break; 7405 } 7406 } 7407 } 7408 7409 if (!spte) 7410 goto out; 7411 7412 spin_lock(&mm->page_table_lock); 7413 if (pud_none(*pud)) { 7414 pud_populate(mm, pud, 7415 (pmd_t *)((unsigned long)spte & PAGE_MASK)); 7416 mm_inc_nr_pmds(mm); 7417 } else { 7418 put_page(virt_to_page(spte)); 7419 } 7420 spin_unlock(&mm->page_table_lock); 7421 out: 7422 pte = (pte_t *)pmd_alloc(mm, pud, addr); 7423 i_mmap_unlock_read(mapping); 7424 return pte; 7425 } 7426 7427 /* 7428 * unmap huge page backed by shared pte. 7429 * 7430 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared 7431 * indicated by page_count > 1, unmap is achieved by clearing pud and 7432 * decrementing the ref count. If count == 1, the pte page is not shared. 7433 * 7434 * Called with page table lock held. 7435 * 7436 * returns: 1 successfully unmapped a shared pte page 7437 * 0 the underlying pte page is not shared, or it is the last user 7438 */ 7439 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, 7440 unsigned long addr, pte_t *ptep) 7441 { 7442 pgd_t *pgd = pgd_offset(mm, addr); 7443 p4d_t *p4d = p4d_offset(pgd, addr); 7444 pud_t *pud = pud_offset(p4d, addr); 7445 7446 i_mmap_assert_write_locked(vma->vm_file->f_mapping); 7447 hugetlb_vma_assert_locked(vma); 7448 BUG_ON(page_count(virt_to_page(ptep)) == 0); 7449 if (page_count(virt_to_page(ptep)) == 1) 7450 return 0; 7451 7452 pud_clear(pud); 7453 put_page(virt_to_page(ptep)); 7454 mm_dec_nr_pmds(mm); 7455 return 1; 7456 } 7457 7458 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 7459 7460 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, 7461 unsigned long addr, pud_t *pud) 7462 { 7463 return NULL; 7464 } 7465 7466 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, 7467 unsigned long addr, pte_t *ptep) 7468 { 7469 return 0; 7470 } 7471 7472 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 7473 unsigned long *start, unsigned long *end) 7474 { 7475 } 7476 7477 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr) 7478 { 7479 return false; 7480 } 7481 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 7482 7483 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB 7484 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 7485 unsigned long addr, unsigned long sz) 7486 { 7487 pgd_t *pgd; 7488 p4d_t *p4d; 7489 pud_t *pud; 7490 pte_t *pte = NULL; 7491 7492 pgd = pgd_offset(mm, addr); 7493 p4d = p4d_alloc(mm, pgd, addr); 7494 if (!p4d) 7495 return NULL; 7496 pud = pud_alloc(mm, p4d, addr); 7497 if (pud) { 7498 if (sz == PUD_SIZE) { 7499 pte = (pte_t *)pud; 7500 } else { 7501 BUG_ON(sz != PMD_SIZE); 7502 if (want_pmd_share(vma, addr) && pud_none(*pud)) 7503 pte = huge_pmd_share(mm, vma, addr, pud); 7504 else 7505 pte = (pte_t *)pmd_alloc(mm, pud, addr); 7506 } 7507 } 7508 7509 if (pte) { 7510 pte_t pteval = ptep_get_lockless(pte); 7511 7512 BUG_ON(pte_present(pteval) && !pte_huge(pteval)); 7513 } 7514 7515 return pte; 7516 } 7517 7518 /* 7519 * huge_pte_offset() - Walk the page table to resolve the hugepage 7520 * entry at address @addr 7521 * 7522 * Return: Pointer to page table entry (PUD or PMD) for 7523 * address @addr, or NULL if a !p*d_present() entry is encountered and the 7524 * size @sz doesn't match the hugepage size at this level of the page 7525 * table. 7526 */ 7527 pte_t *huge_pte_offset(struct mm_struct *mm, 7528 unsigned long addr, unsigned long sz) 7529 { 7530 pgd_t *pgd; 7531 p4d_t *p4d; 7532 pud_t *pud; 7533 pmd_t *pmd; 7534 7535 pgd = pgd_offset(mm, addr); 7536 if (!pgd_present(*pgd)) 7537 return NULL; 7538 p4d = p4d_offset(pgd, addr); 7539 if (!p4d_present(*p4d)) 7540 return NULL; 7541 7542 pud = pud_offset(p4d, addr); 7543 if (sz == PUD_SIZE) 7544 /* must be pud huge, non-present or none */ 7545 return (pte_t *)pud; 7546 if (!pud_present(*pud)) 7547 return NULL; 7548 /* must have a valid entry and size to go further */ 7549 7550 pmd = pmd_offset(pud, addr); 7551 /* must be pmd huge, non-present or none */ 7552 return (pte_t *)pmd; 7553 } 7554 7555 /* 7556 * Return a mask that can be used to update an address to the last huge 7557 * page in a page table page mapping size. Used to skip non-present 7558 * page table entries when linearly scanning address ranges. Architectures 7559 * with unique huge page to page table relationships can define their own 7560 * version of this routine. 7561 */ 7562 unsigned long hugetlb_mask_last_page(struct hstate *h) 7563 { 7564 unsigned long hp_size = huge_page_size(h); 7565 7566 if (hp_size == PUD_SIZE) 7567 return P4D_SIZE - PUD_SIZE; 7568 else if (hp_size == PMD_SIZE) 7569 return PUD_SIZE - PMD_SIZE; 7570 else 7571 return 0UL; 7572 } 7573 7574 #else 7575 7576 /* See description above. Architectures can provide their own version. */ 7577 __weak unsigned long hugetlb_mask_last_page(struct hstate *h) 7578 { 7579 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE 7580 if (huge_page_size(h) == PMD_SIZE) 7581 return PUD_SIZE - PMD_SIZE; 7582 #endif 7583 return 0UL; 7584 } 7585 7586 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */ 7587 7588 /* 7589 * These functions are overwritable if your architecture needs its own 7590 * behavior. 7591 */ 7592 bool isolate_hugetlb(struct folio *folio, struct list_head *list) 7593 { 7594 bool ret = true; 7595 7596 spin_lock_irq(&hugetlb_lock); 7597 if (!folio_test_hugetlb(folio) || 7598 !folio_test_hugetlb_migratable(folio) || 7599 !folio_try_get(folio)) { 7600 ret = false; 7601 goto unlock; 7602 } 7603 folio_clear_hugetlb_migratable(folio); 7604 list_move_tail(&folio->lru, list); 7605 unlock: 7606 spin_unlock_irq(&hugetlb_lock); 7607 return ret; 7608 } 7609 7610 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison) 7611 { 7612 int ret = 0; 7613 7614 *hugetlb = false; 7615 spin_lock_irq(&hugetlb_lock); 7616 if (folio_test_hugetlb(folio)) { 7617 *hugetlb = true; 7618 if (folio_test_hugetlb_freed(folio)) 7619 ret = 0; 7620 else if (folio_test_hugetlb_migratable(folio) || unpoison) 7621 ret = folio_try_get(folio); 7622 else 7623 ret = -EBUSY; 7624 } 7625 spin_unlock_irq(&hugetlb_lock); 7626 return ret; 7627 } 7628 7629 int get_huge_page_for_hwpoison(unsigned long pfn, int flags, 7630 bool *migratable_cleared) 7631 { 7632 int ret; 7633 7634 spin_lock_irq(&hugetlb_lock); 7635 ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared); 7636 spin_unlock_irq(&hugetlb_lock); 7637 return ret; 7638 } 7639 7640 void folio_putback_active_hugetlb(struct folio *folio) 7641 { 7642 spin_lock_irq(&hugetlb_lock); 7643 folio_set_hugetlb_migratable(folio); 7644 list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist); 7645 spin_unlock_irq(&hugetlb_lock); 7646 folio_put(folio); 7647 } 7648 7649 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason) 7650 { 7651 struct hstate *h = folio_hstate(old_folio); 7652 7653 hugetlb_cgroup_migrate(old_folio, new_folio); 7654 set_page_owner_migrate_reason(&new_folio->page, reason); 7655 7656 /* 7657 * transfer temporary state of the new hugetlb folio. This is 7658 * reverse to other transitions because the newpage is going to 7659 * be final while the old one will be freed so it takes over 7660 * the temporary status. 7661 * 7662 * Also note that we have to transfer the per-node surplus state 7663 * here as well otherwise the global surplus count will not match 7664 * the per-node's. 7665 */ 7666 if (folio_test_hugetlb_temporary(new_folio)) { 7667 int old_nid = folio_nid(old_folio); 7668 int new_nid = folio_nid(new_folio); 7669 7670 folio_set_hugetlb_temporary(old_folio); 7671 folio_clear_hugetlb_temporary(new_folio); 7672 7673 7674 /* 7675 * There is no need to transfer the per-node surplus state 7676 * when we do not cross the node. 7677 */ 7678 if (new_nid == old_nid) 7679 return; 7680 spin_lock_irq(&hugetlb_lock); 7681 if (h->surplus_huge_pages_node[old_nid]) { 7682 h->surplus_huge_pages_node[old_nid]--; 7683 h->surplus_huge_pages_node[new_nid]++; 7684 } 7685 spin_unlock_irq(&hugetlb_lock); 7686 } 7687 } 7688 7689 static void hugetlb_unshare_pmds(struct vm_area_struct *vma, 7690 unsigned long start, 7691 unsigned long end) 7692 { 7693 struct hstate *h = hstate_vma(vma); 7694 unsigned long sz = huge_page_size(h); 7695 struct mm_struct *mm = vma->vm_mm; 7696 struct mmu_notifier_range range; 7697 unsigned long address; 7698 spinlock_t *ptl; 7699 pte_t *ptep; 7700 7701 if (!(vma->vm_flags & VM_MAYSHARE)) 7702 return; 7703 7704 if (start >= end) 7705 return; 7706 7707 flush_cache_range(vma, start, end); 7708 /* 7709 * No need to call adjust_range_if_pmd_sharing_possible(), because 7710 * we have already done the PUD_SIZE alignment. 7711 */ 7712 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 7713 start, end); 7714 mmu_notifier_invalidate_range_start(&range); 7715 hugetlb_vma_lock_write(vma); 7716 i_mmap_lock_write(vma->vm_file->f_mapping); 7717 for (address = start; address < end; address += PUD_SIZE) { 7718 ptep = hugetlb_walk(vma, address, sz); 7719 if (!ptep) 7720 continue; 7721 ptl = huge_pte_lock(h, mm, ptep); 7722 huge_pmd_unshare(mm, vma, address, ptep); 7723 spin_unlock(ptl); 7724 } 7725 flush_hugetlb_tlb_range(vma, start, end); 7726 i_mmap_unlock_write(vma->vm_file->f_mapping); 7727 hugetlb_vma_unlock_write(vma); 7728 /* 7729 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs(), see 7730 * Documentation/mm/mmu_notifier.rst. 7731 */ 7732 mmu_notifier_invalidate_range_end(&range); 7733 } 7734 7735 /* 7736 * This function will unconditionally remove all the shared pmd pgtable entries 7737 * within the specific vma for a hugetlbfs memory range. 7738 */ 7739 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma) 7740 { 7741 hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE), 7742 ALIGN_DOWN(vma->vm_end, PUD_SIZE)); 7743 } 7744 7745 #ifdef CONFIG_CMA 7746 static bool cma_reserve_called __initdata; 7747 7748 static int __init cmdline_parse_hugetlb_cma(char *p) 7749 { 7750 int nid, count = 0; 7751 unsigned long tmp; 7752 char *s = p; 7753 7754 while (*s) { 7755 if (sscanf(s, "%lu%n", &tmp, &count) != 1) 7756 break; 7757 7758 if (s[count] == ':') { 7759 if (tmp >= MAX_NUMNODES) 7760 break; 7761 nid = array_index_nospec(tmp, MAX_NUMNODES); 7762 7763 s += count + 1; 7764 tmp = memparse(s, &s); 7765 hugetlb_cma_size_in_node[nid] = tmp; 7766 hugetlb_cma_size += tmp; 7767 7768 /* 7769 * Skip the separator if have one, otherwise 7770 * break the parsing. 7771 */ 7772 if (*s == ',') 7773 s++; 7774 else 7775 break; 7776 } else { 7777 hugetlb_cma_size = memparse(p, &p); 7778 break; 7779 } 7780 } 7781 7782 return 0; 7783 } 7784 7785 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma); 7786 7787 void __init hugetlb_cma_reserve(int order) 7788 { 7789 unsigned long size, reserved, per_node; 7790 bool node_specific_cma_alloc = false; 7791 int nid; 7792 7793 /* 7794 * HugeTLB CMA reservation is required for gigantic 7795 * huge pages which could not be allocated via the 7796 * page allocator. Just warn if there is any change 7797 * breaking this assumption. 7798 */ 7799 VM_WARN_ON(order <= MAX_PAGE_ORDER); 7800 cma_reserve_called = true; 7801 7802 if (!hugetlb_cma_size) 7803 return; 7804 7805 for (nid = 0; nid < MAX_NUMNODES; nid++) { 7806 if (hugetlb_cma_size_in_node[nid] == 0) 7807 continue; 7808 7809 if (!node_online(nid)) { 7810 pr_warn("hugetlb_cma: invalid node %d specified\n", nid); 7811 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid]; 7812 hugetlb_cma_size_in_node[nid] = 0; 7813 continue; 7814 } 7815 7816 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) { 7817 pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n", 7818 nid, (PAGE_SIZE << order) / SZ_1M); 7819 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid]; 7820 hugetlb_cma_size_in_node[nid] = 0; 7821 } else { 7822 node_specific_cma_alloc = true; 7823 } 7824 } 7825 7826 /* Validate the CMA size again in case some invalid nodes specified. */ 7827 if (!hugetlb_cma_size) 7828 return; 7829 7830 if (hugetlb_cma_size < (PAGE_SIZE << order)) { 7831 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n", 7832 (PAGE_SIZE << order) / SZ_1M); 7833 hugetlb_cma_size = 0; 7834 return; 7835 } 7836 7837 if (!node_specific_cma_alloc) { 7838 /* 7839 * If 3 GB area is requested on a machine with 4 numa nodes, 7840 * let's allocate 1 GB on first three nodes and ignore the last one. 7841 */ 7842 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes); 7843 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n", 7844 hugetlb_cma_size / SZ_1M, per_node / SZ_1M); 7845 } 7846 7847 reserved = 0; 7848 for_each_online_node(nid) { 7849 int res; 7850 char name[CMA_MAX_NAME]; 7851 7852 if (node_specific_cma_alloc) { 7853 if (hugetlb_cma_size_in_node[nid] == 0) 7854 continue; 7855 7856 size = hugetlb_cma_size_in_node[nid]; 7857 } else { 7858 size = min(per_node, hugetlb_cma_size - reserved); 7859 } 7860 7861 size = round_up(size, PAGE_SIZE << order); 7862 7863 snprintf(name, sizeof(name), "hugetlb%d", nid); 7864 /* 7865 * Note that 'order per bit' is based on smallest size that 7866 * may be returned to CMA allocator in the case of 7867 * huge page demotion. 7868 */ 7869 res = cma_declare_contiguous_nid(0, size, 0, 7870 PAGE_SIZE << HUGETLB_PAGE_ORDER, 7871 0, false, name, 7872 &hugetlb_cma[nid], nid); 7873 if (res) { 7874 pr_warn("hugetlb_cma: reservation failed: err %d, node %d", 7875 res, nid); 7876 continue; 7877 } 7878 7879 reserved += size; 7880 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n", 7881 size / SZ_1M, nid); 7882 7883 if (reserved >= hugetlb_cma_size) 7884 break; 7885 } 7886 7887 if (!reserved) 7888 /* 7889 * hugetlb_cma_size is used to determine if allocations from 7890 * cma are possible. Set to zero if no cma regions are set up. 7891 */ 7892 hugetlb_cma_size = 0; 7893 } 7894 7895 static void __init hugetlb_cma_check(void) 7896 { 7897 if (!hugetlb_cma_size || cma_reserve_called) 7898 return; 7899 7900 pr_warn("hugetlb_cma: the option isn't supported by current arch\n"); 7901 } 7902 7903 #endif /* CONFIG_CMA */ 7904