1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic hugetlb support. 4 * (C) Nadia Yvette Chambers, April 2004 5 */ 6 #include <linux/list.h> 7 #include <linux/init.h> 8 #include <linux/mm.h> 9 #include <linux/seq_file.h> 10 #include <linux/sysctl.h> 11 #include <linux/highmem.h> 12 #include <linux/mmu_notifier.h> 13 #include <linux/nodemask.h> 14 #include <linux/pagemap.h> 15 #include <linux/mempolicy.h> 16 #include <linux/compiler.h> 17 #include <linux/cpumask.h> 18 #include <linux/cpuset.h> 19 #include <linux/mutex.h> 20 #include <linux/memblock.h> 21 #include <linux/minmax.h> 22 #include <linux/sysfs.h> 23 #include <linux/slab.h> 24 #include <linux/sched/mm.h> 25 #include <linux/mmdebug.h> 26 #include <linux/sched/signal.h> 27 #include <linux/rmap.h> 28 #include <linux/string_helpers.h> 29 #include <linux/swap.h> 30 #include <linux/swapops.h> 31 #include <linux/jhash.h> 32 #include <linux/numa.h> 33 #include <linux/llist.h> 34 #include <linux/cma.h> 35 #include <linux/migrate.h> 36 #include <linux/nospec.h> 37 #include <linux/delayacct.h> 38 #include <linux/memory.h> 39 #include <linux/mm_inline.h> 40 #include <linux/padata.h> 41 42 #include <asm/page.h> 43 #include <asm/pgalloc.h> 44 #include <asm/tlb.h> 45 #include <asm/setup.h> 46 47 #include <linux/io.h> 48 #include <linux/hugetlb.h> 49 #include <linux/hugetlb_cgroup.h> 50 #include <linux/node.h> 51 #include <linux/page_owner.h> 52 #include "internal.h" 53 #include "hugetlb_vmemmap.h" 54 #include "hugetlb_cma.h" 55 #include <linux/page-isolation.h> 56 57 int hugetlb_max_hstate __read_mostly; 58 unsigned int default_hstate_idx; 59 struct hstate hstates[HUGE_MAX_HSTATE]; 60 61 __initdata struct list_head huge_boot_pages[MAX_NUMNODES]; 62 static unsigned long hstate_boot_nrinvalid[HUGE_MAX_HSTATE] __initdata; 63 64 /* 65 * Due to ordering constraints across the init code for various 66 * architectures, hugetlb hstate cmdline parameters can't simply 67 * be early_param. early_param might call the setup function 68 * before valid hugetlb page sizes are determined, leading to 69 * incorrect rejection of valid hugepagesz= options. 70 * 71 * So, record the parameters early and consume them whenever the 72 * init code is ready for them, by calling hugetlb_parse_params(). 73 */ 74 75 /* one (hugepagesz=,hugepages=) pair per hstate, one default_hugepagesz */ 76 #define HUGE_MAX_CMDLINE_ARGS (2 * HUGE_MAX_HSTATE + 1) 77 struct hugetlb_cmdline { 78 char *val; 79 int (*setup)(char *val); 80 }; 81 82 /* for command line parsing */ 83 static struct hstate * __initdata parsed_hstate; 84 static unsigned long __initdata default_hstate_max_huge_pages; 85 static bool __initdata parsed_valid_hugepagesz = true; 86 static bool __initdata parsed_default_hugepagesz; 87 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata; 88 static unsigned long hugepage_allocation_threads __initdata; 89 90 static char hstate_cmdline_buf[COMMAND_LINE_SIZE] __initdata; 91 static int hstate_cmdline_index __initdata; 92 static struct hugetlb_cmdline hugetlb_params[HUGE_MAX_CMDLINE_ARGS] __initdata; 93 static int hugetlb_param_index __initdata; 94 static __init int hugetlb_add_param(char *s, int (*setup)(char *val)); 95 static __init void hugetlb_parse_params(void); 96 97 #define hugetlb_early_param(str, func) \ 98 static __init int func##args(char *s) \ 99 { \ 100 return hugetlb_add_param(s, func); \ 101 } \ 102 early_param(str, func##args) 103 104 /* 105 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages, 106 * free_huge_pages, and surplus_huge_pages. 107 */ 108 __cacheline_aligned_in_smp DEFINE_SPINLOCK(hugetlb_lock); 109 110 /* 111 * Serializes faults on the same logical page. This is used to 112 * prevent spurious OOMs when the hugepage pool is fully utilized. 113 */ 114 static int num_fault_mutexes __ro_after_init; 115 struct mutex *hugetlb_fault_mutex_table __ro_after_init; 116 117 /* Forward declaration */ 118 static int hugetlb_acct_memory(struct hstate *h, long delta); 119 static void hugetlb_vma_lock_free(struct vm_area_struct *vma); 120 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma); 121 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma); 122 static void hugetlb_unshare_pmds(struct vm_area_struct *vma, 123 unsigned long start, unsigned long end); 124 static struct resv_map *vma_resv_map(struct vm_area_struct *vma); 125 126 static void hugetlb_free_folio(struct folio *folio) 127 { 128 if (folio_test_hugetlb_cma(folio)) { 129 hugetlb_cma_free_folio(folio); 130 return; 131 } 132 133 folio_put(folio); 134 } 135 136 static inline bool subpool_is_free(struct hugepage_subpool *spool) 137 { 138 if (spool->count) 139 return false; 140 if (spool->max_hpages != -1) 141 return spool->used_hpages == 0; 142 if (spool->min_hpages != -1) 143 return spool->rsv_hpages == spool->min_hpages; 144 145 return true; 146 } 147 148 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool, 149 unsigned long irq_flags) 150 { 151 spin_unlock_irqrestore(&spool->lock, irq_flags); 152 153 /* If no pages are used, and no other handles to the subpool 154 * remain, give up any reservations based on minimum size and 155 * free the subpool */ 156 if (subpool_is_free(spool)) { 157 if (spool->min_hpages != -1) 158 hugetlb_acct_memory(spool->hstate, 159 -spool->min_hpages); 160 kfree(spool); 161 } 162 } 163 164 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages, 165 long min_hpages) 166 { 167 struct hugepage_subpool *spool; 168 169 spool = kzalloc(sizeof(*spool), GFP_KERNEL); 170 if (!spool) 171 return NULL; 172 173 spin_lock_init(&spool->lock); 174 spool->count = 1; 175 spool->max_hpages = max_hpages; 176 spool->hstate = h; 177 spool->min_hpages = min_hpages; 178 179 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) { 180 kfree(spool); 181 return NULL; 182 } 183 spool->rsv_hpages = min_hpages; 184 185 return spool; 186 } 187 188 void hugepage_put_subpool(struct hugepage_subpool *spool) 189 { 190 unsigned long flags; 191 192 spin_lock_irqsave(&spool->lock, flags); 193 BUG_ON(!spool->count); 194 spool->count--; 195 unlock_or_release_subpool(spool, flags); 196 } 197 198 /* 199 * Subpool accounting for allocating and reserving pages. 200 * Return -ENOMEM if there are not enough resources to satisfy the 201 * request. Otherwise, return the number of pages by which the 202 * global pools must be adjusted (upward). The returned value may 203 * only be different than the passed value (delta) in the case where 204 * a subpool minimum size must be maintained. 205 */ 206 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool, 207 long delta) 208 { 209 long ret = delta; 210 211 if (!spool) 212 return ret; 213 214 spin_lock_irq(&spool->lock); 215 216 if (spool->max_hpages != -1) { /* maximum size accounting */ 217 if ((spool->used_hpages + delta) <= spool->max_hpages) 218 spool->used_hpages += delta; 219 else { 220 ret = -ENOMEM; 221 goto unlock_ret; 222 } 223 } 224 225 /* minimum size accounting */ 226 if (spool->min_hpages != -1 && spool->rsv_hpages) { 227 if (delta > spool->rsv_hpages) { 228 /* 229 * Asking for more reserves than those already taken on 230 * behalf of subpool. Return difference. 231 */ 232 ret = delta - spool->rsv_hpages; 233 spool->rsv_hpages = 0; 234 } else { 235 ret = 0; /* reserves already accounted for */ 236 spool->rsv_hpages -= delta; 237 } 238 } 239 240 unlock_ret: 241 spin_unlock_irq(&spool->lock); 242 return ret; 243 } 244 245 /* 246 * Subpool accounting for freeing and unreserving pages. 247 * Return the number of global page reservations that must be dropped. 248 * The return value may only be different than the passed value (delta) 249 * in the case where a subpool minimum size must be maintained. 250 */ 251 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool, 252 long delta) 253 { 254 long ret = delta; 255 unsigned long flags; 256 257 if (!spool) 258 return delta; 259 260 spin_lock_irqsave(&spool->lock, flags); 261 262 if (spool->max_hpages != -1) /* maximum size accounting */ 263 spool->used_hpages -= delta; 264 265 /* minimum size accounting */ 266 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) { 267 if (spool->rsv_hpages + delta <= spool->min_hpages) 268 ret = 0; 269 else 270 ret = spool->rsv_hpages + delta - spool->min_hpages; 271 272 spool->rsv_hpages += delta; 273 if (spool->rsv_hpages > spool->min_hpages) 274 spool->rsv_hpages = spool->min_hpages; 275 } 276 277 /* 278 * If hugetlbfs_put_super couldn't free spool due to an outstanding 279 * quota reference, free it now. 280 */ 281 unlock_or_release_subpool(spool, flags); 282 283 return ret; 284 } 285 286 static inline struct hugepage_subpool *subpool_inode(struct inode *inode) 287 { 288 return HUGETLBFS_SB(inode->i_sb)->spool; 289 } 290 291 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma) 292 { 293 return subpool_inode(file_inode(vma->vm_file)); 294 } 295 296 /* 297 * hugetlb vma_lock helper routines 298 */ 299 void hugetlb_vma_lock_read(struct vm_area_struct *vma) 300 { 301 if (__vma_shareable_lock(vma)) { 302 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 303 304 down_read(&vma_lock->rw_sema); 305 } else if (__vma_private_lock(vma)) { 306 struct resv_map *resv_map = vma_resv_map(vma); 307 308 down_read(&resv_map->rw_sema); 309 } 310 } 311 312 void hugetlb_vma_unlock_read(struct vm_area_struct *vma) 313 { 314 if (__vma_shareable_lock(vma)) { 315 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 316 317 up_read(&vma_lock->rw_sema); 318 } else if (__vma_private_lock(vma)) { 319 struct resv_map *resv_map = vma_resv_map(vma); 320 321 up_read(&resv_map->rw_sema); 322 } 323 } 324 325 void hugetlb_vma_lock_write(struct vm_area_struct *vma) 326 { 327 if (__vma_shareable_lock(vma)) { 328 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 329 330 down_write(&vma_lock->rw_sema); 331 } else if (__vma_private_lock(vma)) { 332 struct resv_map *resv_map = vma_resv_map(vma); 333 334 down_write(&resv_map->rw_sema); 335 } 336 } 337 338 void hugetlb_vma_unlock_write(struct vm_area_struct *vma) 339 { 340 if (__vma_shareable_lock(vma)) { 341 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 342 343 up_write(&vma_lock->rw_sema); 344 } else if (__vma_private_lock(vma)) { 345 struct resv_map *resv_map = vma_resv_map(vma); 346 347 up_write(&resv_map->rw_sema); 348 } 349 } 350 351 int hugetlb_vma_trylock_write(struct vm_area_struct *vma) 352 { 353 354 if (__vma_shareable_lock(vma)) { 355 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 356 357 return down_write_trylock(&vma_lock->rw_sema); 358 } else if (__vma_private_lock(vma)) { 359 struct resv_map *resv_map = vma_resv_map(vma); 360 361 return down_write_trylock(&resv_map->rw_sema); 362 } 363 364 return 1; 365 } 366 367 void hugetlb_vma_assert_locked(struct vm_area_struct *vma) 368 { 369 if (__vma_shareable_lock(vma)) { 370 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 371 372 lockdep_assert_held(&vma_lock->rw_sema); 373 } else if (__vma_private_lock(vma)) { 374 struct resv_map *resv_map = vma_resv_map(vma); 375 376 lockdep_assert_held(&resv_map->rw_sema); 377 } 378 } 379 380 void hugetlb_vma_lock_release(struct kref *kref) 381 { 382 struct hugetlb_vma_lock *vma_lock = container_of(kref, 383 struct hugetlb_vma_lock, refs); 384 385 kfree(vma_lock); 386 } 387 388 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock) 389 { 390 struct vm_area_struct *vma = vma_lock->vma; 391 392 /* 393 * vma_lock structure may or not be released as a result of put, 394 * it certainly will no longer be attached to vma so clear pointer. 395 * Semaphore synchronizes access to vma_lock->vma field. 396 */ 397 vma_lock->vma = NULL; 398 vma->vm_private_data = NULL; 399 up_write(&vma_lock->rw_sema); 400 kref_put(&vma_lock->refs, hugetlb_vma_lock_release); 401 } 402 403 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma) 404 { 405 if (__vma_shareable_lock(vma)) { 406 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 407 408 __hugetlb_vma_unlock_write_put(vma_lock); 409 } else if (__vma_private_lock(vma)) { 410 struct resv_map *resv_map = vma_resv_map(vma); 411 412 /* no free for anon vmas, but still need to unlock */ 413 up_write(&resv_map->rw_sema); 414 } 415 } 416 417 static void hugetlb_vma_lock_free(struct vm_area_struct *vma) 418 { 419 /* 420 * Only present in sharable vmas. 421 */ 422 if (!vma || !__vma_shareable_lock(vma)) 423 return; 424 425 if (vma->vm_private_data) { 426 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 427 428 down_write(&vma_lock->rw_sema); 429 __hugetlb_vma_unlock_write_put(vma_lock); 430 } 431 } 432 433 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma) 434 { 435 struct hugetlb_vma_lock *vma_lock; 436 437 /* Only establish in (flags) sharable vmas */ 438 if (!vma || !(vma->vm_flags & VM_MAYSHARE)) 439 return; 440 441 /* Should never get here with non-NULL vm_private_data */ 442 if (vma->vm_private_data) 443 return; 444 445 vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL); 446 if (!vma_lock) { 447 /* 448 * If we can not allocate structure, then vma can not 449 * participate in pmd sharing. This is only a possible 450 * performance enhancement and memory saving issue. 451 * However, the lock is also used to synchronize page 452 * faults with truncation. If the lock is not present, 453 * unlikely races could leave pages in a file past i_size 454 * until the file is removed. Warn in the unlikely case of 455 * allocation failure. 456 */ 457 pr_warn_once("HugeTLB: unable to allocate vma specific lock\n"); 458 return; 459 } 460 461 kref_init(&vma_lock->refs); 462 init_rwsem(&vma_lock->rw_sema); 463 vma_lock->vma = vma; 464 vma->vm_private_data = vma_lock; 465 } 466 467 /* Helper that removes a struct file_region from the resv_map cache and returns 468 * it for use. 469 */ 470 static struct file_region * 471 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to) 472 { 473 struct file_region *nrg; 474 475 VM_BUG_ON(resv->region_cache_count <= 0); 476 477 resv->region_cache_count--; 478 nrg = list_first_entry(&resv->region_cache, struct file_region, link); 479 list_del(&nrg->link); 480 481 nrg->from = from; 482 nrg->to = to; 483 484 return nrg; 485 } 486 487 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg, 488 struct file_region *rg) 489 { 490 #ifdef CONFIG_CGROUP_HUGETLB 491 nrg->reservation_counter = rg->reservation_counter; 492 nrg->css = rg->css; 493 if (rg->css) 494 css_get(rg->css); 495 #endif 496 } 497 498 /* Helper that records hugetlb_cgroup uncharge info. */ 499 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg, 500 struct hstate *h, 501 struct resv_map *resv, 502 struct file_region *nrg) 503 { 504 #ifdef CONFIG_CGROUP_HUGETLB 505 if (h_cg) { 506 nrg->reservation_counter = 507 &h_cg->rsvd_hugepage[hstate_index(h)]; 508 nrg->css = &h_cg->css; 509 /* 510 * The caller will hold exactly one h_cg->css reference for the 511 * whole contiguous reservation region. But this area might be 512 * scattered when there are already some file_regions reside in 513 * it. As a result, many file_regions may share only one css 514 * reference. In order to ensure that one file_region must hold 515 * exactly one h_cg->css reference, we should do css_get for 516 * each file_region and leave the reference held by caller 517 * untouched. 518 */ 519 css_get(&h_cg->css); 520 if (!resv->pages_per_hpage) 521 resv->pages_per_hpage = pages_per_huge_page(h); 522 /* pages_per_hpage should be the same for all entries in 523 * a resv_map. 524 */ 525 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h)); 526 } else { 527 nrg->reservation_counter = NULL; 528 nrg->css = NULL; 529 } 530 #endif 531 } 532 533 static void put_uncharge_info(struct file_region *rg) 534 { 535 #ifdef CONFIG_CGROUP_HUGETLB 536 if (rg->css) 537 css_put(rg->css); 538 #endif 539 } 540 541 static bool has_same_uncharge_info(struct file_region *rg, 542 struct file_region *org) 543 { 544 #ifdef CONFIG_CGROUP_HUGETLB 545 return rg->reservation_counter == org->reservation_counter && 546 rg->css == org->css; 547 548 #else 549 return true; 550 #endif 551 } 552 553 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg) 554 { 555 struct file_region *nrg, *prg; 556 557 prg = list_prev_entry(rg, link); 558 if (&prg->link != &resv->regions && prg->to == rg->from && 559 has_same_uncharge_info(prg, rg)) { 560 prg->to = rg->to; 561 562 list_del(&rg->link); 563 put_uncharge_info(rg); 564 kfree(rg); 565 566 rg = prg; 567 } 568 569 nrg = list_next_entry(rg, link); 570 if (&nrg->link != &resv->regions && nrg->from == rg->to && 571 has_same_uncharge_info(nrg, rg)) { 572 nrg->from = rg->from; 573 574 list_del(&rg->link); 575 put_uncharge_info(rg); 576 kfree(rg); 577 } 578 } 579 580 static inline long 581 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from, 582 long to, struct hstate *h, struct hugetlb_cgroup *cg, 583 long *regions_needed) 584 { 585 struct file_region *nrg; 586 587 if (!regions_needed) { 588 nrg = get_file_region_entry_from_cache(map, from, to); 589 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg); 590 list_add(&nrg->link, rg); 591 coalesce_file_region(map, nrg); 592 } else 593 *regions_needed += 1; 594 595 return to - from; 596 } 597 598 /* 599 * Must be called with resv->lock held. 600 * 601 * Calling this with regions_needed != NULL will count the number of pages 602 * to be added but will not modify the linked list. And regions_needed will 603 * indicate the number of file_regions needed in the cache to carry out to add 604 * the regions for this range. 605 */ 606 static long add_reservation_in_range(struct resv_map *resv, long f, long t, 607 struct hugetlb_cgroup *h_cg, 608 struct hstate *h, long *regions_needed) 609 { 610 long add = 0; 611 struct list_head *head = &resv->regions; 612 long last_accounted_offset = f; 613 struct file_region *iter, *trg = NULL; 614 struct list_head *rg = NULL; 615 616 if (regions_needed) 617 *regions_needed = 0; 618 619 /* In this loop, we essentially handle an entry for the range 620 * [last_accounted_offset, iter->from), at every iteration, with some 621 * bounds checking. 622 */ 623 list_for_each_entry_safe(iter, trg, head, link) { 624 /* Skip irrelevant regions that start before our range. */ 625 if (iter->from < f) { 626 /* If this region ends after the last accounted offset, 627 * then we need to update last_accounted_offset. 628 */ 629 if (iter->to > last_accounted_offset) 630 last_accounted_offset = iter->to; 631 continue; 632 } 633 634 /* When we find a region that starts beyond our range, we've 635 * finished. 636 */ 637 if (iter->from >= t) { 638 rg = iter->link.prev; 639 break; 640 } 641 642 /* Add an entry for last_accounted_offset -> iter->from, and 643 * update last_accounted_offset. 644 */ 645 if (iter->from > last_accounted_offset) 646 add += hugetlb_resv_map_add(resv, iter->link.prev, 647 last_accounted_offset, 648 iter->from, h, h_cg, 649 regions_needed); 650 651 last_accounted_offset = iter->to; 652 } 653 654 /* Handle the case where our range extends beyond 655 * last_accounted_offset. 656 */ 657 if (!rg) 658 rg = head->prev; 659 if (last_accounted_offset < t) 660 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset, 661 t, h, h_cg, regions_needed); 662 663 return add; 664 } 665 666 /* Must be called with resv->lock acquired. Will drop lock to allocate entries. 667 */ 668 static int allocate_file_region_entries(struct resv_map *resv, 669 int regions_needed) 670 __must_hold(&resv->lock) 671 { 672 LIST_HEAD(allocated_regions); 673 int to_allocate = 0, i = 0; 674 struct file_region *trg = NULL, *rg = NULL; 675 676 VM_BUG_ON(regions_needed < 0); 677 678 /* 679 * Check for sufficient descriptors in the cache to accommodate 680 * the number of in progress add operations plus regions_needed. 681 * 682 * This is a while loop because when we drop the lock, some other call 683 * to region_add or region_del may have consumed some region_entries, 684 * so we keep looping here until we finally have enough entries for 685 * (adds_in_progress + regions_needed). 686 */ 687 while (resv->region_cache_count < 688 (resv->adds_in_progress + regions_needed)) { 689 to_allocate = resv->adds_in_progress + regions_needed - 690 resv->region_cache_count; 691 692 /* At this point, we should have enough entries in the cache 693 * for all the existing adds_in_progress. We should only be 694 * needing to allocate for regions_needed. 695 */ 696 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress); 697 698 spin_unlock(&resv->lock); 699 for (i = 0; i < to_allocate; i++) { 700 trg = kmalloc(sizeof(*trg), GFP_KERNEL); 701 if (!trg) 702 goto out_of_memory; 703 list_add(&trg->link, &allocated_regions); 704 } 705 706 spin_lock(&resv->lock); 707 708 list_splice(&allocated_regions, &resv->region_cache); 709 resv->region_cache_count += to_allocate; 710 } 711 712 return 0; 713 714 out_of_memory: 715 list_for_each_entry_safe(rg, trg, &allocated_regions, link) { 716 list_del(&rg->link); 717 kfree(rg); 718 } 719 return -ENOMEM; 720 } 721 722 /* 723 * Add the huge page range represented by [f, t) to the reserve 724 * map. Regions will be taken from the cache to fill in this range. 725 * Sufficient regions should exist in the cache due to the previous 726 * call to region_chg with the same range, but in some cases the cache will not 727 * have sufficient entries due to races with other code doing region_add or 728 * region_del. The extra needed entries will be allocated. 729 * 730 * regions_needed is the out value provided by a previous call to region_chg. 731 * 732 * Return the number of new huge pages added to the map. This number is greater 733 * than or equal to zero. If file_region entries needed to be allocated for 734 * this operation and we were not able to allocate, it returns -ENOMEM. 735 * region_add of regions of length 1 never allocate file_regions and cannot 736 * fail; region_chg will always allocate at least 1 entry and a region_add for 737 * 1 page will only require at most 1 entry. 738 */ 739 static long region_add(struct resv_map *resv, long f, long t, 740 long in_regions_needed, struct hstate *h, 741 struct hugetlb_cgroup *h_cg) 742 { 743 long add = 0, actual_regions_needed = 0; 744 745 spin_lock(&resv->lock); 746 retry: 747 748 /* Count how many regions are actually needed to execute this add. */ 749 add_reservation_in_range(resv, f, t, NULL, NULL, 750 &actual_regions_needed); 751 752 /* 753 * Check for sufficient descriptors in the cache to accommodate 754 * this add operation. Note that actual_regions_needed may be greater 755 * than in_regions_needed, as the resv_map may have been modified since 756 * the region_chg call. In this case, we need to make sure that we 757 * allocate extra entries, such that we have enough for all the 758 * existing adds_in_progress, plus the excess needed for this 759 * operation. 760 */ 761 if (actual_regions_needed > in_regions_needed && 762 resv->region_cache_count < 763 resv->adds_in_progress + 764 (actual_regions_needed - in_regions_needed)) { 765 /* region_add operation of range 1 should never need to 766 * allocate file_region entries. 767 */ 768 VM_BUG_ON(t - f <= 1); 769 770 if (allocate_file_region_entries( 771 resv, actual_regions_needed - in_regions_needed)) { 772 return -ENOMEM; 773 } 774 775 goto retry; 776 } 777 778 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL); 779 780 resv->adds_in_progress -= in_regions_needed; 781 782 spin_unlock(&resv->lock); 783 return add; 784 } 785 786 /* 787 * Examine the existing reserve map and determine how many 788 * huge pages in the specified range [f, t) are NOT currently 789 * represented. This routine is called before a subsequent 790 * call to region_add that will actually modify the reserve 791 * map to add the specified range [f, t). region_chg does 792 * not change the number of huge pages represented by the 793 * map. A number of new file_region structures is added to the cache as a 794 * placeholder, for the subsequent region_add call to use. At least 1 795 * file_region structure is added. 796 * 797 * out_regions_needed is the number of regions added to the 798 * resv->adds_in_progress. This value needs to be provided to a follow up call 799 * to region_add or region_abort for proper accounting. 800 * 801 * Returns the number of huge pages that need to be added to the existing 802 * reservation map for the range [f, t). This number is greater or equal to 803 * zero. -ENOMEM is returned if a new file_region structure or cache entry 804 * is needed and can not be allocated. 805 */ 806 static long region_chg(struct resv_map *resv, long f, long t, 807 long *out_regions_needed) 808 { 809 long chg = 0; 810 811 spin_lock(&resv->lock); 812 813 /* Count how many hugepages in this range are NOT represented. */ 814 chg = add_reservation_in_range(resv, f, t, NULL, NULL, 815 out_regions_needed); 816 817 if (*out_regions_needed == 0) 818 *out_regions_needed = 1; 819 820 if (allocate_file_region_entries(resv, *out_regions_needed)) 821 return -ENOMEM; 822 823 resv->adds_in_progress += *out_regions_needed; 824 825 spin_unlock(&resv->lock); 826 return chg; 827 } 828 829 /* 830 * Abort the in progress add operation. The adds_in_progress field 831 * of the resv_map keeps track of the operations in progress between 832 * calls to region_chg and region_add. Operations are sometimes 833 * aborted after the call to region_chg. In such cases, region_abort 834 * is called to decrement the adds_in_progress counter. regions_needed 835 * is the value returned by the region_chg call, it is used to decrement 836 * the adds_in_progress counter. 837 * 838 * NOTE: The range arguments [f, t) are not needed or used in this 839 * routine. They are kept to make reading the calling code easier as 840 * arguments will match the associated region_chg call. 841 */ 842 static void region_abort(struct resv_map *resv, long f, long t, 843 long regions_needed) 844 { 845 spin_lock(&resv->lock); 846 VM_BUG_ON(!resv->region_cache_count); 847 resv->adds_in_progress -= regions_needed; 848 spin_unlock(&resv->lock); 849 } 850 851 /* 852 * Delete the specified range [f, t) from the reserve map. If the 853 * t parameter is LONG_MAX, this indicates that ALL regions after f 854 * should be deleted. Locate the regions which intersect [f, t) 855 * and either trim, delete or split the existing regions. 856 * 857 * Returns the number of huge pages deleted from the reserve map. 858 * In the normal case, the return value is zero or more. In the 859 * case where a region must be split, a new region descriptor must 860 * be allocated. If the allocation fails, -ENOMEM will be returned. 861 * NOTE: If the parameter t == LONG_MAX, then we will never split 862 * a region and possibly return -ENOMEM. Callers specifying 863 * t == LONG_MAX do not need to check for -ENOMEM error. 864 */ 865 static long region_del(struct resv_map *resv, long f, long t) 866 { 867 struct list_head *head = &resv->regions; 868 struct file_region *rg, *trg; 869 struct file_region *nrg = NULL; 870 long del = 0; 871 872 retry: 873 spin_lock(&resv->lock); 874 list_for_each_entry_safe(rg, trg, head, link) { 875 /* 876 * Skip regions before the range to be deleted. file_region 877 * ranges are normally of the form [from, to). However, there 878 * may be a "placeholder" entry in the map which is of the form 879 * (from, to) with from == to. Check for placeholder entries 880 * at the beginning of the range to be deleted. 881 */ 882 if (rg->to <= f && (rg->to != rg->from || rg->to != f)) 883 continue; 884 885 if (rg->from >= t) 886 break; 887 888 if (f > rg->from && t < rg->to) { /* Must split region */ 889 /* 890 * Check for an entry in the cache before dropping 891 * lock and attempting allocation. 892 */ 893 if (!nrg && 894 resv->region_cache_count > resv->adds_in_progress) { 895 nrg = list_first_entry(&resv->region_cache, 896 struct file_region, 897 link); 898 list_del(&nrg->link); 899 resv->region_cache_count--; 900 } 901 902 if (!nrg) { 903 spin_unlock(&resv->lock); 904 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 905 if (!nrg) 906 return -ENOMEM; 907 goto retry; 908 } 909 910 del += t - f; 911 hugetlb_cgroup_uncharge_file_region( 912 resv, rg, t - f, false); 913 914 /* New entry for end of split region */ 915 nrg->from = t; 916 nrg->to = rg->to; 917 918 copy_hugetlb_cgroup_uncharge_info(nrg, rg); 919 920 INIT_LIST_HEAD(&nrg->link); 921 922 /* Original entry is trimmed */ 923 rg->to = f; 924 925 list_add(&nrg->link, &rg->link); 926 nrg = NULL; 927 break; 928 } 929 930 if (f <= rg->from && t >= rg->to) { /* Remove entire region */ 931 del += rg->to - rg->from; 932 hugetlb_cgroup_uncharge_file_region(resv, rg, 933 rg->to - rg->from, true); 934 list_del(&rg->link); 935 kfree(rg); 936 continue; 937 } 938 939 if (f <= rg->from) { /* Trim beginning of region */ 940 hugetlb_cgroup_uncharge_file_region(resv, rg, 941 t - rg->from, false); 942 943 del += t - rg->from; 944 rg->from = t; 945 } else { /* Trim end of region */ 946 hugetlb_cgroup_uncharge_file_region(resv, rg, 947 rg->to - f, false); 948 949 del += rg->to - f; 950 rg->to = f; 951 } 952 } 953 954 spin_unlock(&resv->lock); 955 kfree(nrg); 956 return del; 957 } 958 959 /* 960 * A rare out of memory error was encountered which prevented removal of 961 * the reserve map region for a page. The huge page itself was free'ed 962 * and removed from the page cache. This routine will adjust the subpool 963 * usage count, and the global reserve count if needed. By incrementing 964 * these counts, the reserve map entry which could not be deleted will 965 * appear as a "reserved" entry instead of simply dangling with incorrect 966 * counts. 967 */ 968 void hugetlb_fix_reserve_counts(struct inode *inode) 969 { 970 struct hugepage_subpool *spool = subpool_inode(inode); 971 long rsv_adjust; 972 bool reserved = false; 973 974 rsv_adjust = hugepage_subpool_get_pages(spool, 1); 975 if (rsv_adjust > 0) { 976 struct hstate *h = hstate_inode(inode); 977 978 if (!hugetlb_acct_memory(h, 1)) 979 reserved = true; 980 } else if (!rsv_adjust) { 981 reserved = true; 982 } 983 984 if (!reserved) 985 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n"); 986 } 987 988 /* 989 * Count and return the number of huge pages in the reserve map 990 * that intersect with the range [f, t). 991 */ 992 static long region_count(struct resv_map *resv, long f, long t) 993 { 994 struct list_head *head = &resv->regions; 995 struct file_region *rg; 996 long chg = 0; 997 998 spin_lock(&resv->lock); 999 /* Locate each segment we overlap with, and count that overlap. */ 1000 list_for_each_entry(rg, head, link) { 1001 long seg_from; 1002 long seg_to; 1003 1004 if (rg->to <= f) 1005 continue; 1006 if (rg->from >= t) 1007 break; 1008 1009 seg_from = max(rg->from, f); 1010 seg_to = min(rg->to, t); 1011 1012 chg += seg_to - seg_from; 1013 } 1014 spin_unlock(&resv->lock); 1015 1016 return chg; 1017 } 1018 1019 /* 1020 * Convert the address within this vma to the page offset within 1021 * the mapping, huge page units here. 1022 */ 1023 static pgoff_t vma_hugecache_offset(struct hstate *h, 1024 struct vm_area_struct *vma, unsigned long address) 1025 { 1026 return ((address - vma->vm_start) >> huge_page_shift(h)) + 1027 (vma->vm_pgoff >> huge_page_order(h)); 1028 } 1029 1030 /** 1031 * vma_kernel_pagesize - Page size granularity for this VMA. 1032 * @vma: The user mapping. 1033 * 1034 * Folios in this VMA will be aligned to, and at least the size of the 1035 * number of bytes returned by this function. 1036 * 1037 * Return: The default size of the folios allocated when backing a VMA. 1038 */ 1039 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) 1040 { 1041 if (vma->vm_ops && vma->vm_ops->pagesize) 1042 return vma->vm_ops->pagesize(vma); 1043 return PAGE_SIZE; 1044 } 1045 EXPORT_SYMBOL_GPL(vma_kernel_pagesize); 1046 1047 /* 1048 * Return the page size being used by the MMU to back a VMA. In the majority 1049 * of cases, the page size used by the kernel matches the MMU size. On 1050 * architectures where it differs, an architecture-specific 'strong' 1051 * version of this symbol is required. 1052 */ 1053 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 1054 { 1055 return vma_kernel_pagesize(vma); 1056 } 1057 1058 /* 1059 * Flags for MAP_PRIVATE reservations. These are stored in the bottom 1060 * bits of the reservation map pointer, which are always clear due to 1061 * alignment. 1062 */ 1063 #define HPAGE_RESV_OWNER (1UL << 0) 1064 #define HPAGE_RESV_UNMAPPED (1UL << 1) 1065 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) 1066 1067 /* 1068 * These helpers are used to track how many pages are reserved for 1069 * faults in a MAP_PRIVATE mapping. Only the process that called mmap() 1070 * is guaranteed to have their future faults succeed. 1071 * 1072 * With the exception of hugetlb_dup_vma_private() which is called at fork(), 1073 * the reserve counters are updated with the hugetlb_lock held. It is safe 1074 * to reset the VMA at fork() time as it is not in use yet and there is no 1075 * chance of the global counters getting corrupted as a result of the values. 1076 * 1077 * The private mapping reservation is represented in a subtly different 1078 * manner to a shared mapping. A shared mapping has a region map associated 1079 * with the underlying file, this region map represents the backing file 1080 * pages which have ever had a reservation assigned which this persists even 1081 * after the page is instantiated. A private mapping has a region map 1082 * associated with the original mmap which is attached to all VMAs which 1083 * reference it, this region map represents those offsets which have consumed 1084 * reservation ie. where pages have been instantiated. 1085 */ 1086 static unsigned long get_vma_private_data(struct vm_area_struct *vma) 1087 { 1088 return (unsigned long)vma->vm_private_data; 1089 } 1090 1091 static void set_vma_private_data(struct vm_area_struct *vma, 1092 unsigned long value) 1093 { 1094 vma->vm_private_data = (void *)value; 1095 } 1096 1097 static void 1098 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map, 1099 struct hugetlb_cgroup *h_cg, 1100 struct hstate *h) 1101 { 1102 #ifdef CONFIG_CGROUP_HUGETLB 1103 if (!h_cg || !h) { 1104 resv_map->reservation_counter = NULL; 1105 resv_map->pages_per_hpage = 0; 1106 resv_map->css = NULL; 1107 } else { 1108 resv_map->reservation_counter = 1109 &h_cg->rsvd_hugepage[hstate_index(h)]; 1110 resv_map->pages_per_hpage = pages_per_huge_page(h); 1111 resv_map->css = &h_cg->css; 1112 } 1113 #endif 1114 } 1115 1116 struct resv_map *resv_map_alloc(void) 1117 { 1118 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); 1119 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL); 1120 1121 if (!resv_map || !rg) { 1122 kfree(resv_map); 1123 kfree(rg); 1124 return NULL; 1125 } 1126 1127 kref_init(&resv_map->refs); 1128 spin_lock_init(&resv_map->lock); 1129 INIT_LIST_HEAD(&resv_map->regions); 1130 init_rwsem(&resv_map->rw_sema); 1131 1132 resv_map->adds_in_progress = 0; 1133 /* 1134 * Initialize these to 0. On shared mappings, 0's here indicate these 1135 * fields don't do cgroup accounting. On private mappings, these will be 1136 * re-initialized to the proper values, to indicate that hugetlb cgroup 1137 * reservations are to be un-charged from here. 1138 */ 1139 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL); 1140 1141 INIT_LIST_HEAD(&resv_map->region_cache); 1142 list_add(&rg->link, &resv_map->region_cache); 1143 resv_map->region_cache_count = 1; 1144 1145 return resv_map; 1146 } 1147 1148 void resv_map_release(struct kref *ref) 1149 { 1150 struct resv_map *resv_map = container_of(ref, struct resv_map, refs); 1151 struct list_head *head = &resv_map->region_cache; 1152 struct file_region *rg, *trg; 1153 1154 /* Clear out any active regions before we release the map. */ 1155 region_del(resv_map, 0, LONG_MAX); 1156 1157 /* ... and any entries left in the cache */ 1158 list_for_each_entry_safe(rg, trg, head, link) { 1159 list_del(&rg->link); 1160 kfree(rg); 1161 } 1162 1163 VM_BUG_ON(resv_map->adds_in_progress); 1164 1165 kfree(resv_map); 1166 } 1167 1168 static inline struct resv_map *inode_resv_map(struct inode *inode) 1169 { 1170 /* 1171 * At inode evict time, i_mapping may not point to the original 1172 * address space within the inode. This original address space 1173 * contains the pointer to the resv_map. So, always use the 1174 * address space embedded within the inode. 1175 * The VERY common case is inode->mapping == &inode->i_data but, 1176 * this may not be true for device special inodes. 1177 */ 1178 return (struct resv_map *)(&inode->i_data)->i_private_data; 1179 } 1180 1181 static struct resv_map *vma_resv_map(struct vm_area_struct *vma) 1182 { 1183 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1184 if (vma->vm_flags & VM_MAYSHARE) { 1185 struct address_space *mapping = vma->vm_file->f_mapping; 1186 struct inode *inode = mapping->host; 1187 1188 return inode_resv_map(inode); 1189 1190 } else { 1191 return (struct resv_map *)(get_vma_private_data(vma) & 1192 ~HPAGE_RESV_MASK); 1193 } 1194 } 1195 1196 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) 1197 { 1198 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1199 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 1200 1201 set_vma_private_data(vma, (unsigned long)map); 1202 } 1203 1204 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) 1205 { 1206 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1207 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 1208 1209 set_vma_private_data(vma, get_vma_private_data(vma) | flags); 1210 } 1211 1212 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) 1213 { 1214 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1215 1216 return (get_vma_private_data(vma) & flag) != 0; 1217 } 1218 1219 bool __vma_private_lock(struct vm_area_struct *vma) 1220 { 1221 return !(vma->vm_flags & VM_MAYSHARE) && 1222 get_vma_private_data(vma) & ~HPAGE_RESV_MASK && 1223 is_vma_resv_set(vma, HPAGE_RESV_OWNER); 1224 } 1225 1226 void hugetlb_dup_vma_private(struct vm_area_struct *vma) 1227 { 1228 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1229 /* 1230 * Clear vm_private_data 1231 * - For shared mappings this is a per-vma semaphore that may be 1232 * allocated in a subsequent call to hugetlb_vm_op_open. 1233 * Before clearing, make sure pointer is not associated with vma 1234 * as this will leak the structure. This is the case when called 1235 * via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already 1236 * been called to allocate a new structure. 1237 * - For MAP_PRIVATE mappings, this is the reserve map which does 1238 * not apply to children. Faults generated by the children are 1239 * not guaranteed to succeed, even if read-only. 1240 */ 1241 if (vma->vm_flags & VM_MAYSHARE) { 1242 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 1243 1244 if (vma_lock && vma_lock->vma != vma) 1245 vma->vm_private_data = NULL; 1246 } else 1247 vma->vm_private_data = NULL; 1248 } 1249 1250 /* 1251 * Reset and decrement one ref on hugepage private reservation. 1252 * Called with mm->mmap_lock writer semaphore held. 1253 * This function should be only used by mremap and operate on 1254 * same sized vma. It should never come here with last ref on the 1255 * reservation. 1256 */ 1257 void clear_vma_resv_huge_pages(struct vm_area_struct *vma) 1258 { 1259 /* 1260 * Clear the old hugetlb private page reservation. 1261 * It has already been transferred to new_vma. 1262 * 1263 * During a mremap() operation of a hugetlb vma we call move_vma() 1264 * which copies vma into new_vma and unmaps vma. After the copy 1265 * operation both new_vma and vma share a reference to the resv_map 1266 * struct, and at that point vma is about to be unmapped. We don't 1267 * want to return the reservation to the pool at unmap of vma because 1268 * the reservation still lives on in new_vma, so simply decrement the 1269 * ref here and remove the resv_map reference from this vma. 1270 */ 1271 struct resv_map *reservations = vma_resv_map(vma); 1272 1273 if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 1274 resv_map_put_hugetlb_cgroup_uncharge_info(reservations); 1275 kref_put(&reservations->refs, resv_map_release); 1276 } 1277 1278 hugetlb_dup_vma_private(vma); 1279 } 1280 1281 static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio) 1282 { 1283 int nid = folio_nid(folio); 1284 1285 lockdep_assert_held(&hugetlb_lock); 1286 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio); 1287 1288 list_move(&folio->lru, &h->hugepage_freelists[nid]); 1289 h->free_huge_pages++; 1290 h->free_huge_pages_node[nid]++; 1291 folio_set_hugetlb_freed(folio); 1292 } 1293 1294 static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h, 1295 int nid) 1296 { 1297 struct folio *folio; 1298 bool pin = !!(current->flags & PF_MEMALLOC_PIN); 1299 1300 lockdep_assert_held(&hugetlb_lock); 1301 list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) { 1302 if (pin && !folio_is_longterm_pinnable(folio)) 1303 continue; 1304 1305 if (folio_test_hwpoison(folio)) 1306 continue; 1307 1308 if (is_migrate_isolate_page(&folio->page)) 1309 continue; 1310 1311 list_move(&folio->lru, &h->hugepage_activelist); 1312 folio_ref_unfreeze(folio, 1); 1313 folio_clear_hugetlb_freed(folio); 1314 h->free_huge_pages--; 1315 h->free_huge_pages_node[nid]--; 1316 return folio; 1317 } 1318 1319 return NULL; 1320 } 1321 1322 static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask, 1323 int nid, nodemask_t *nmask) 1324 { 1325 unsigned int cpuset_mems_cookie; 1326 struct zonelist *zonelist; 1327 struct zone *zone; 1328 struct zoneref *z; 1329 int node = NUMA_NO_NODE; 1330 1331 /* 'nid' should not be NUMA_NO_NODE. Try to catch any misuse of it and rectifiy. */ 1332 if (nid == NUMA_NO_NODE) 1333 nid = numa_node_id(); 1334 1335 zonelist = node_zonelist(nid, gfp_mask); 1336 1337 retry_cpuset: 1338 cpuset_mems_cookie = read_mems_allowed_begin(); 1339 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) { 1340 struct folio *folio; 1341 1342 if (!cpuset_zone_allowed(zone, gfp_mask)) 1343 continue; 1344 /* 1345 * no need to ask again on the same node. Pool is node rather than 1346 * zone aware 1347 */ 1348 if (zone_to_nid(zone) == node) 1349 continue; 1350 node = zone_to_nid(zone); 1351 1352 folio = dequeue_hugetlb_folio_node_exact(h, node); 1353 if (folio) 1354 return folio; 1355 } 1356 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie))) 1357 goto retry_cpuset; 1358 1359 return NULL; 1360 } 1361 1362 static unsigned long available_huge_pages(struct hstate *h) 1363 { 1364 return h->free_huge_pages - h->resv_huge_pages; 1365 } 1366 1367 static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h, 1368 struct vm_area_struct *vma, 1369 unsigned long address, long gbl_chg) 1370 { 1371 struct folio *folio = NULL; 1372 struct mempolicy *mpol; 1373 gfp_t gfp_mask; 1374 nodemask_t *nodemask; 1375 int nid; 1376 1377 /* 1378 * gbl_chg==1 means the allocation requires a new page that was not 1379 * reserved before. Making sure there's at least one free page. 1380 */ 1381 if (gbl_chg && !available_huge_pages(h)) 1382 goto err; 1383 1384 gfp_mask = htlb_alloc_mask(h); 1385 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 1386 1387 if (mpol_is_preferred_many(mpol)) { 1388 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, 1389 nid, nodemask); 1390 1391 /* Fallback to all nodes if page==NULL */ 1392 nodemask = NULL; 1393 } 1394 1395 if (!folio) 1396 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, 1397 nid, nodemask); 1398 1399 mpol_cond_put(mpol); 1400 return folio; 1401 1402 err: 1403 return NULL; 1404 } 1405 1406 /* 1407 * common helper functions for hstate_next_node_to_{alloc|free}. 1408 * We may have allocated or freed a huge page based on a different 1409 * nodes_allowed previously, so h->next_node_to_{alloc|free} might 1410 * be outside of *nodes_allowed. Ensure that we use an allowed 1411 * node for alloc or free. 1412 */ 1413 static int next_node_allowed(int nid, nodemask_t *nodes_allowed) 1414 { 1415 nid = next_node_in(nid, *nodes_allowed); 1416 VM_BUG_ON(nid >= MAX_NUMNODES); 1417 1418 return nid; 1419 } 1420 1421 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed) 1422 { 1423 if (!node_isset(nid, *nodes_allowed)) 1424 nid = next_node_allowed(nid, nodes_allowed); 1425 return nid; 1426 } 1427 1428 /* 1429 * returns the previously saved node ["this node"] from which to 1430 * allocate a persistent huge page for the pool and advance the 1431 * next node from which to allocate, handling wrap at end of node 1432 * mask. 1433 */ 1434 static int hstate_next_node_to_alloc(int *next_node, 1435 nodemask_t *nodes_allowed) 1436 { 1437 int nid; 1438 1439 VM_BUG_ON(!nodes_allowed); 1440 1441 nid = get_valid_node_allowed(*next_node, nodes_allowed); 1442 *next_node = next_node_allowed(nid, nodes_allowed); 1443 1444 return nid; 1445 } 1446 1447 /* 1448 * helper for remove_pool_hugetlb_folio() - return the previously saved 1449 * node ["this node"] from which to free a huge page. Advance the 1450 * next node id whether or not we find a free huge page to free so 1451 * that the next attempt to free addresses the next node. 1452 */ 1453 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed) 1454 { 1455 int nid; 1456 1457 VM_BUG_ON(!nodes_allowed); 1458 1459 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed); 1460 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed); 1461 1462 return nid; 1463 } 1464 1465 #define for_each_node_mask_to_alloc(next_node, nr_nodes, node, mask) \ 1466 for (nr_nodes = nodes_weight(*mask); \ 1467 nr_nodes > 0 && \ 1468 ((node = hstate_next_node_to_alloc(next_node, mask)) || 1); \ 1469 nr_nodes--) 1470 1471 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \ 1472 for (nr_nodes = nodes_weight(*mask); \ 1473 nr_nodes > 0 && \ 1474 ((node = hstate_next_node_to_free(hs, mask)) || 1); \ 1475 nr_nodes--) 1476 1477 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE 1478 #ifdef CONFIG_CONTIG_ALLOC 1479 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask, 1480 int nid, nodemask_t *nodemask) 1481 { 1482 struct folio *folio; 1483 int order = huge_page_order(h); 1484 bool retried = false; 1485 1486 if (nid == NUMA_NO_NODE) 1487 nid = numa_mem_id(); 1488 retry: 1489 folio = hugetlb_cma_alloc_folio(h, gfp_mask, nid, nodemask); 1490 if (!folio) { 1491 if (hugetlb_cma_exclusive_alloc()) 1492 return NULL; 1493 1494 folio = folio_alloc_gigantic(order, gfp_mask, nid, nodemask); 1495 if (!folio) 1496 return NULL; 1497 } 1498 1499 if (folio_ref_freeze(folio, 1)) 1500 return folio; 1501 1502 pr_warn("HugeTLB: unexpected refcount on PFN %lu\n", folio_pfn(folio)); 1503 hugetlb_free_folio(folio); 1504 if (!retried) { 1505 retried = true; 1506 goto retry; 1507 } 1508 return NULL; 1509 } 1510 1511 #else /* !CONFIG_CONTIG_ALLOC */ 1512 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask, 1513 int nid, nodemask_t *nodemask) 1514 { 1515 return NULL; 1516 } 1517 #endif /* CONFIG_CONTIG_ALLOC */ 1518 1519 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */ 1520 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask, 1521 int nid, nodemask_t *nodemask) 1522 { 1523 return NULL; 1524 } 1525 #endif 1526 1527 /* 1528 * Remove hugetlb folio from lists. 1529 * If vmemmap exists for the folio, clear the hugetlb flag so that the 1530 * folio appears as just a compound page. Otherwise, wait until after 1531 * allocating vmemmap to clear the flag. 1532 * 1533 * Must be called with hugetlb lock held. 1534 */ 1535 static void remove_hugetlb_folio(struct hstate *h, struct folio *folio, 1536 bool adjust_surplus) 1537 { 1538 int nid = folio_nid(folio); 1539 1540 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio); 1541 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio); 1542 1543 lockdep_assert_held(&hugetlb_lock); 1544 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 1545 return; 1546 1547 list_del(&folio->lru); 1548 1549 if (folio_test_hugetlb_freed(folio)) { 1550 folio_clear_hugetlb_freed(folio); 1551 h->free_huge_pages--; 1552 h->free_huge_pages_node[nid]--; 1553 } 1554 if (adjust_surplus) { 1555 h->surplus_huge_pages--; 1556 h->surplus_huge_pages_node[nid]--; 1557 } 1558 1559 /* 1560 * We can only clear the hugetlb flag after allocating vmemmap 1561 * pages. Otherwise, someone (memory error handling) may try to write 1562 * to tail struct pages. 1563 */ 1564 if (!folio_test_hugetlb_vmemmap_optimized(folio)) 1565 __folio_clear_hugetlb(folio); 1566 1567 h->nr_huge_pages--; 1568 h->nr_huge_pages_node[nid]--; 1569 } 1570 1571 static void add_hugetlb_folio(struct hstate *h, struct folio *folio, 1572 bool adjust_surplus) 1573 { 1574 int nid = folio_nid(folio); 1575 1576 VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio); 1577 1578 lockdep_assert_held(&hugetlb_lock); 1579 1580 INIT_LIST_HEAD(&folio->lru); 1581 h->nr_huge_pages++; 1582 h->nr_huge_pages_node[nid]++; 1583 1584 if (adjust_surplus) { 1585 h->surplus_huge_pages++; 1586 h->surplus_huge_pages_node[nid]++; 1587 } 1588 1589 __folio_set_hugetlb(folio); 1590 folio_change_private(folio, NULL); 1591 /* 1592 * We have to set hugetlb_vmemmap_optimized again as above 1593 * folio_change_private(folio, NULL) cleared it. 1594 */ 1595 folio_set_hugetlb_vmemmap_optimized(folio); 1596 1597 arch_clear_hugetlb_flags(folio); 1598 enqueue_hugetlb_folio(h, folio); 1599 } 1600 1601 static void __update_and_free_hugetlb_folio(struct hstate *h, 1602 struct folio *folio) 1603 { 1604 bool clear_flag = folio_test_hugetlb_vmemmap_optimized(folio); 1605 1606 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 1607 return; 1608 1609 /* 1610 * If we don't know which subpages are hwpoisoned, we can't free 1611 * the hugepage, so it's leaked intentionally. 1612 */ 1613 if (folio_test_hugetlb_raw_hwp_unreliable(folio)) 1614 return; 1615 1616 /* 1617 * If folio is not vmemmap optimized (!clear_flag), then the folio 1618 * is no longer identified as a hugetlb page. hugetlb_vmemmap_restore_folio 1619 * can only be passed hugetlb pages and will BUG otherwise. 1620 */ 1621 if (clear_flag && hugetlb_vmemmap_restore_folio(h, folio)) { 1622 spin_lock_irq(&hugetlb_lock); 1623 /* 1624 * If we cannot allocate vmemmap pages, just refuse to free the 1625 * page and put the page back on the hugetlb free list and treat 1626 * as a surplus page. 1627 */ 1628 add_hugetlb_folio(h, folio, true); 1629 spin_unlock_irq(&hugetlb_lock); 1630 return; 1631 } 1632 1633 /* 1634 * If vmemmap pages were allocated above, then we need to clear the 1635 * hugetlb flag under the hugetlb lock. 1636 */ 1637 if (folio_test_hugetlb(folio)) { 1638 spin_lock_irq(&hugetlb_lock); 1639 __folio_clear_hugetlb(folio); 1640 spin_unlock_irq(&hugetlb_lock); 1641 } 1642 1643 /* 1644 * Move PageHWPoison flag from head page to the raw error pages, 1645 * which makes any healthy subpages reusable. 1646 */ 1647 if (unlikely(folio_test_hwpoison(folio))) 1648 folio_clear_hugetlb_hwpoison(folio); 1649 1650 folio_ref_unfreeze(folio, 1); 1651 1652 hugetlb_free_folio(folio); 1653 } 1654 1655 /* 1656 * As update_and_free_hugetlb_folio() can be called under any context, so we cannot 1657 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the 1658 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate 1659 * the vmemmap pages. 1660 * 1661 * free_hpage_workfn() locklessly retrieves the linked list of pages to be 1662 * freed and frees them one-by-one. As the page->mapping pointer is going 1663 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node 1664 * structure of a lockless linked list of huge pages to be freed. 1665 */ 1666 static LLIST_HEAD(hpage_freelist); 1667 1668 static void free_hpage_workfn(struct work_struct *work) 1669 { 1670 struct llist_node *node; 1671 1672 node = llist_del_all(&hpage_freelist); 1673 1674 while (node) { 1675 struct folio *folio; 1676 struct hstate *h; 1677 1678 folio = container_of((struct address_space **)node, 1679 struct folio, mapping); 1680 node = node->next; 1681 folio->mapping = NULL; 1682 /* 1683 * The VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio) in 1684 * folio_hstate() is going to trigger because a previous call to 1685 * remove_hugetlb_folio() will clear the hugetlb bit, so do 1686 * not use folio_hstate() directly. 1687 */ 1688 h = size_to_hstate(folio_size(folio)); 1689 1690 __update_and_free_hugetlb_folio(h, folio); 1691 1692 cond_resched(); 1693 } 1694 } 1695 static DECLARE_WORK(free_hpage_work, free_hpage_workfn); 1696 1697 static inline void flush_free_hpage_work(struct hstate *h) 1698 { 1699 if (hugetlb_vmemmap_optimizable(h)) 1700 flush_work(&free_hpage_work); 1701 } 1702 1703 static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio, 1704 bool atomic) 1705 { 1706 if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) { 1707 __update_and_free_hugetlb_folio(h, folio); 1708 return; 1709 } 1710 1711 /* 1712 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages. 1713 * 1714 * Only call schedule_work() if hpage_freelist is previously 1715 * empty. Otherwise, schedule_work() had been called but the workfn 1716 * hasn't retrieved the list yet. 1717 */ 1718 if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist)) 1719 schedule_work(&free_hpage_work); 1720 } 1721 1722 static void bulk_vmemmap_restore_error(struct hstate *h, 1723 struct list_head *folio_list, 1724 struct list_head *non_hvo_folios) 1725 { 1726 struct folio *folio, *t_folio; 1727 1728 if (!list_empty(non_hvo_folios)) { 1729 /* 1730 * Free any restored hugetlb pages so that restore of the 1731 * entire list can be retried. 1732 * The idea is that in the common case of ENOMEM errors freeing 1733 * hugetlb pages with vmemmap we will free up memory so that we 1734 * can allocate vmemmap for more hugetlb pages. 1735 */ 1736 list_for_each_entry_safe(folio, t_folio, non_hvo_folios, lru) { 1737 list_del(&folio->lru); 1738 spin_lock_irq(&hugetlb_lock); 1739 __folio_clear_hugetlb(folio); 1740 spin_unlock_irq(&hugetlb_lock); 1741 update_and_free_hugetlb_folio(h, folio, false); 1742 cond_resched(); 1743 } 1744 } else { 1745 /* 1746 * In the case where there are no folios which can be 1747 * immediately freed, we loop through the list trying to restore 1748 * vmemmap individually in the hope that someone elsewhere may 1749 * have done something to cause success (such as freeing some 1750 * memory). If unable to restore a hugetlb page, the hugetlb 1751 * page is made a surplus page and removed from the list. 1752 * If are able to restore vmemmap and free one hugetlb page, we 1753 * quit processing the list to retry the bulk operation. 1754 */ 1755 list_for_each_entry_safe(folio, t_folio, folio_list, lru) 1756 if (hugetlb_vmemmap_restore_folio(h, folio)) { 1757 list_del(&folio->lru); 1758 spin_lock_irq(&hugetlb_lock); 1759 add_hugetlb_folio(h, folio, true); 1760 spin_unlock_irq(&hugetlb_lock); 1761 } else { 1762 list_del(&folio->lru); 1763 spin_lock_irq(&hugetlb_lock); 1764 __folio_clear_hugetlb(folio); 1765 spin_unlock_irq(&hugetlb_lock); 1766 update_and_free_hugetlb_folio(h, folio, false); 1767 cond_resched(); 1768 break; 1769 } 1770 } 1771 } 1772 1773 static void update_and_free_pages_bulk(struct hstate *h, 1774 struct list_head *folio_list) 1775 { 1776 long ret; 1777 struct folio *folio, *t_folio; 1778 LIST_HEAD(non_hvo_folios); 1779 1780 /* 1781 * First allocate required vmemmmap (if necessary) for all folios. 1782 * Carefully handle errors and free up any available hugetlb pages 1783 * in an effort to make forward progress. 1784 */ 1785 retry: 1786 ret = hugetlb_vmemmap_restore_folios(h, folio_list, &non_hvo_folios); 1787 if (ret < 0) { 1788 bulk_vmemmap_restore_error(h, folio_list, &non_hvo_folios); 1789 goto retry; 1790 } 1791 1792 /* 1793 * At this point, list should be empty, ret should be >= 0 and there 1794 * should only be pages on the non_hvo_folios list. 1795 * Do note that the non_hvo_folios list could be empty. 1796 * Without HVO enabled, ret will be 0 and there is no need to call 1797 * __folio_clear_hugetlb as this was done previously. 1798 */ 1799 VM_WARN_ON(!list_empty(folio_list)); 1800 VM_WARN_ON(ret < 0); 1801 if (!list_empty(&non_hvo_folios) && ret) { 1802 spin_lock_irq(&hugetlb_lock); 1803 list_for_each_entry(folio, &non_hvo_folios, lru) 1804 __folio_clear_hugetlb(folio); 1805 spin_unlock_irq(&hugetlb_lock); 1806 } 1807 1808 list_for_each_entry_safe(folio, t_folio, &non_hvo_folios, lru) { 1809 update_and_free_hugetlb_folio(h, folio, false); 1810 cond_resched(); 1811 } 1812 } 1813 1814 struct hstate *size_to_hstate(unsigned long size) 1815 { 1816 struct hstate *h; 1817 1818 for_each_hstate(h) { 1819 if (huge_page_size(h) == size) 1820 return h; 1821 } 1822 return NULL; 1823 } 1824 1825 void free_huge_folio(struct folio *folio) 1826 { 1827 /* 1828 * Can't pass hstate in here because it is called from the 1829 * generic mm code. 1830 */ 1831 struct hstate *h = folio_hstate(folio); 1832 int nid = folio_nid(folio); 1833 struct hugepage_subpool *spool = hugetlb_folio_subpool(folio); 1834 bool restore_reserve; 1835 unsigned long flags; 1836 1837 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio); 1838 VM_BUG_ON_FOLIO(folio_mapcount(folio), folio); 1839 1840 hugetlb_set_folio_subpool(folio, NULL); 1841 if (folio_test_anon(folio)) 1842 __ClearPageAnonExclusive(&folio->page); 1843 folio->mapping = NULL; 1844 restore_reserve = folio_test_hugetlb_restore_reserve(folio); 1845 folio_clear_hugetlb_restore_reserve(folio); 1846 1847 /* 1848 * If HPageRestoreReserve was set on page, page allocation consumed a 1849 * reservation. If the page was associated with a subpool, there 1850 * would have been a page reserved in the subpool before allocation 1851 * via hugepage_subpool_get_pages(). Since we are 'restoring' the 1852 * reservation, do not call hugepage_subpool_put_pages() as this will 1853 * remove the reserved page from the subpool. 1854 */ 1855 if (!restore_reserve) { 1856 /* 1857 * A return code of zero implies that the subpool will be 1858 * under its minimum size if the reservation is not restored 1859 * after page is free. Therefore, force restore_reserve 1860 * operation. 1861 */ 1862 if (hugepage_subpool_put_pages(spool, 1) == 0) 1863 restore_reserve = true; 1864 } 1865 1866 spin_lock_irqsave(&hugetlb_lock, flags); 1867 folio_clear_hugetlb_migratable(folio); 1868 hugetlb_cgroup_uncharge_folio(hstate_index(h), 1869 pages_per_huge_page(h), folio); 1870 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h), 1871 pages_per_huge_page(h), folio); 1872 lruvec_stat_mod_folio(folio, NR_HUGETLB, -pages_per_huge_page(h)); 1873 mem_cgroup_uncharge(folio); 1874 if (restore_reserve) 1875 h->resv_huge_pages++; 1876 1877 if (folio_test_hugetlb_temporary(folio)) { 1878 remove_hugetlb_folio(h, folio, false); 1879 spin_unlock_irqrestore(&hugetlb_lock, flags); 1880 update_and_free_hugetlb_folio(h, folio, true); 1881 } else if (h->surplus_huge_pages_node[nid]) { 1882 /* remove the page from active list */ 1883 remove_hugetlb_folio(h, folio, true); 1884 spin_unlock_irqrestore(&hugetlb_lock, flags); 1885 update_and_free_hugetlb_folio(h, folio, true); 1886 } else { 1887 arch_clear_hugetlb_flags(folio); 1888 enqueue_hugetlb_folio(h, folio); 1889 spin_unlock_irqrestore(&hugetlb_lock, flags); 1890 } 1891 } 1892 1893 /* 1894 * Must be called with the hugetlb lock held 1895 */ 1896 static void __prep_account_new_huge_page(struct hstate *h, int nid) 1897 { 1898 lockdep_assert_held(&hugetlb_lock); 1899 h->nr_huge_pages++; 1900 h->nr_huge_pages_node[nid]++; 1901 } 1902 1903 static void init_new_hugetlb_folio(struct hstate *h, struct folio *folio) 1904 { 1905 __folio_set_hugetlb(folio); 1906 INIT_LIST_HEAD(&folio->lru); 1907 hugetlb_set_folio_subpool(folio, NULL); 1908 set_hugetlb_cgroup(folio, NULL); 1909 set_hugetlb_cgroup_rsvd(folio, NULL); 1910 } 1911 1912 static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio) 1913 { 1914 init_new_hugetlb_folio(h, folio); 1915 hugetlb_vmemmap_optimize_folio(h, folio); 1916 } 1917 1918 static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid) 1919 { 1920 __prep_new_hugetlb_folio(h, folio); 1921 spin_lock_irq(&hugetlb_lock); 1922 __prep_account_new_huge_page(h, nid); 1923 spin_unlock_irq(&hugetlb_lock); 1924 } 1925 1926 /* 1927 * Find and lock address space (mapping) in write mode. 1928 * 1929 * Upon entry, the folio is locked which means that folio_mapping() is 1930 * stable. Due to locking order, we can only trylock_write. If we can 1931 * not get the lock, simply return NULL to caller. 1932 */ 1933 struct address_space *hugetlb_folio_mapping_lock_write(struct folio *folio) 1934 { 1935 struct address_space *mapping = folio_mapping(folio); 1936 1937 if (!mapping) 1938 return mapping; 1939 1940 if (i_mmap_trylock_write(mapping)) 1941 return mapping; 1942 1943 return NULL; 1944 } 1945 1946 static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h, 1947 gfp_t gfp_mask, int nid, nodemask_t *nmask, 1948 nodemask_t *node_alloc_noretry) 1949 { 1950 int order = huge_page_order(h); 1951 struct folio *folio; 1952 bool alloc_try_hard = true; 1953 bool retry = true; 1954 1955 /* 1956 * By default we always try hard to allocate the folio with 1957 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating folios in 1958 * a loop (to adjust global huge page counts) and previous allocation 1959 * failed, do not continue to try hard on the same node. Use the 1960 * node_alloc_noretry bitmap to manage this state information. 1961 */ 1962 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry)) 1963 alloc_try_hard = false; 1964 if (alloc_try_hard) 1965 gfp_mask |= __GFP_RETRY_MAYFAIL; 1966 if (nid == NUMA_NO_NODE) 1967 nid = numa_mem_id(); 1968 retry: 1969 folio = __folio_alloc(gfp_mask, order, nid, nmask); 1970 /* Ensure hugetlb folio won't have large_rmappable flag set. */ 1971 if (folio) 1972 folio_clear_large_rmappable(folio); 1973 1974 if (folio && !folio_ref_freeze(folio, 1)) { 1975 folio_put(folio); 1976 if (retry) { /* retry once */ 1977 retry = false; 1978 goto retry; 1979 } 1980 /* WOW! twice in a row. */ 1981 pr_warn("HugeTLB unexpected inflated folio ref count\n"); 1982 folio = NULL; 1983 } 1984 1985 /* 1986 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a 1987 * folio this indicates an overall state change. Clear bit so 1988 * that we resume normal 'try hard' allocations. 1989 */ 1990 if (node_alloc_noretry && folio && !alloc_try_hard) 1991 node_clear(nid, *node_alloc_noretry); 1992 1993 /* 1994 * If we tried hard to get a folio but failed, set bit so that 1995 * subsequent attempts will not try as hard until there is an 1996 * overall state change. 1997 */ 1998 if (node_alloc_noretry && !folio && alloc_try_hard) 1999 node_set(nid, *node_alloc_noretry); 2000 2001 if (!folio) { 2002 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 2003 return NULL; 2004 } 2005 2006 __count_vm_event(HTLB_BUDDY_PGALLOC); 2007 return folio; 2008 } 2009 2010 static struct folio *only_alloc_fresh_hugetlb_folio(struct hstate *h, 2011 gfp_t gfp_mask, int nid, nodemask_t *nmask, 2012 nodemask_t *node_alloc_noretry) 2013 { 2014 struct folio *folio; 2015 2016 if (hstate_is_gigantic(h)) 2017 folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask); 2018 else 2019 folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, nmask, node_alloc_noretry); 2020 if (folio) 2021 init_new_hugetlb_folio(h, folio); 2022 return folio; 2023 } 2024 2025 /* 2026 * Common helper to allocate a fresh hugetlb page. All specific allocators 2027 * should use this function to get new hugetlb pages 2028 * 2029 * Note that returned page is 'frozen': ref count of head page and all tail 2030 * pages is zero. 2031 */ 2032 static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h, 2033 gfp_t gfp_mask, int nid, nodemask_t *nmask) 2034 { 2035 struct folio *folio; 2036 2037 if (hstate_is_gigantic(h)) 2038 folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask); 2039 else 2040 folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, nmask, NULL); 2041 if (!folio) 2042 return NULL; 2043 2044 prep_new_hugetlb_folio(h, folio, folio_nid(folio)); 2045 return folio; 2046 } 2047 2048 static void prep_and_add_allocated_folios(struct hstate *h, 2049 struct list_head *folio_list) 2050 { 2051 unsigned long flags; 2052 struct folio *folio, *tmp_f; 2053 2054 /* Send list for bulk vmemmap optimization processing */ 2055 hugetlb_vmemmap_optimize_folios(h, folio_list); 2056 2057 /* Add all new pool pages to free lists in one lock cycle */ 2058 spin_lock_irqsave(&hugetlb_lock, flags); 2059 list_for_each_entry_safe(folio, tmp_f, folio_list, lru) { 2060 __prep_account_new_huge_page(h, folio_nid(folio)); 2061 enqueue_hugetlb_folio(h, folio); 2062 } 2063 spin_unlock_irqrestore(&hugetlb_lock, flags); 2064 } 2065 2066 /* 2067 * Allocates a fresh hugetlb page in a node interleaved manner. The page 2068 * will later be added to the appropriate hugetlb pool. 2069 */ 2070 static struct folio *alloc_pool_huge_folio(struct hstate *h, 2071 nodemask_t *nodes_allowed, 2072 nodemask_t *node_alloc_noretry, 2073 int *next_node) 2074 { 2075 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 2076 int nr_nodes, node; 2077 2078 for_each_node_mask_to_alloc(next_node, nr_nodes, node, nodes_allowed) { 2079 struct folio *folio; 2080 2081 folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, node, 2082 nodes_allowed, node_alloc_noretry); 2083 if (folio) 2084 return folio; 2085 } 2086 2087 return NULL; 2088 } 2089 2090 /* 2091 * Remove huge page from pool from next node to free. Attempt to keep 2092 * persistent huge pages more or less balanced over allowed nodes. 2093 * This routine only 'removes' the hugetlb page. The caller must make 2094 * an additional call to free the page to low level allocators. 2095 * Called with hugetlb_lock locked. 2096 */ 2097 static struct folio *remove_pool_hugetlb_folio(struct hstate *h, 2098 nodemask_t *nodes_allowed, bool acct_surplus) 2099 { 2100 int nr_nodes, node; 2101 struct folio *folio = NULL; 2102 2103 lockdep_assert_held(&hugetlb_lock); 2104 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 2105 /* 2106 * If we're returning unused surplus pages, only examine 2107 * nodes with surplus pages. 2108 */ 2109 if ((!acct_surplus || h->surplus_huge_pages_node[node]) && 2110 !list_empty(&h->hugepage_freelists[node])) { 2111 folio = list_entry(h->hugepage_freelists[node].next, 2112 struct folio, lru); 2113 remove_hugetlb_folio(h, folio, acct_surplus); 2114 break; 2115 } 2116 } 2117 2118 return folio; 2119 } 2120 2121 /* 2122 * Dissolve a given free hugetlb folio into free buddy pages. This function 2123 * does nothing for in-use hugetlb folios and non-hugetlb folios. 2124 * This function returns values like below: 2125 * 2126 * -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages 2127 * when the system is under memory pressure and the feature of 2128 * freeing unused vmemmap pages associated with each hugetlb page 2129 * is enabled. 2130 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use 2131 * (allocated or reserved.) 2132 * 0: successfully dissolved free hugepages or the page is not a 2133 * hugepage (considered as already dissolved) 2134 */ 2135 int dissolve_free_hugetlb_folio(struct folio *folio) 2136 { 2137 int rc = -EBUSY; 2138 2139 retry: 2140 /* Not to disrupt normal path by vainly holding hugetlb_lock */ 2141 if (!folio_test_hugetlb(folio)) 2142 return 0; 2143 2144 spin_lock_irq(&hugetlb_lock); 2145 if (!folio_test_hugetlb(folio)) { 2146 rc = 0; 2147 goto out; 2148 } 2149 2150 if (!folio_ref_count(folio)) { 2151 struct hstate *h = folio_hstate(folio); 2152 bool adjust_surplus = false; 2153 2154 if (!available_huge_pages(h)) 2155 goto out; 2156 2157 /* 2158 * We should make sure that the page is already on the free list 2159 * when it is dissolved. 2160 */ 2161 if (unlikely(!folio_test_hugetlb_freed(folio))) { 2162 spin_unlock_irq(&hugetlb_lock); 2163 cond_resched(); 2164 2165 /* 2166 * Theoretically, we should return -EBUSY when we 2167 * encounter this race. In fact, we have a chance 2168 * to successfully dissolve the page if we do a 2169 * retry. Because the race window is quite small. 2170 * If we seize this opportunity, it is an optimization 2171 * for increasing the success rate of dissolving page. 2172 */ 2173 goto retry; 2174 } 2175 2176 if (h->surplus_huge_pages_node[folio_nid(folio)]) 2177 adjust_surplus = true; 2178 remove_hugetlb_folio(h, folio, adjust_surplus); 2179 h->max_huge_pages--; 2180 spin_unlock_irq(&hugetlb_lock); 2181 2182 /* 2183 * Normally update_and_free_hugtlb_folio will allocate required vmemmmap 2184 * before freeing the page. update_and_free_hugtlb_folio will fail to 2185 * free the page if it can not allocate required vmemmap. We 2186 * need to adjust max_huge_pages if the page is not freed. 2187 * Attempt to allocate vmemmmap here so that we can take 2188 * appropriate action on failure. 2189 * 2190 * The folio_test_hugetlb check here is because 2191 * remove_hugetlb_folio will clear hugetlb folio flag for 2192 * non-vmemmap optimized hugetlb folios. 2193 */ 2194 if (folio_test_hugetlb(folio)) { 2195 rc = hugetlb_vmemmap_restore_folio(h, folio); 2196 if (rc) { 2197 spin_lock_irq(&hugetlb_lock); 2198 add_hugetlb_folio(h, folio, adjust_surplus); 2199 h->max_huge_pages++; 2200 goto out; 2201 } 2202 } else 2203 rc = 0; 2204 2205 update_and_free_hugetlb_folio(h, folio, false); 2206 return rc; 2207 } 2208 out: 2209 spin_unlock_irq(&hugetlb_lock); 2210 return rc; 2211 } 2212 2213 /* 2214 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to 2215 * make specified memory blocks removable from the system. 2216 * Note that this will dissolve a free gigantic hugepage completely, if any 2217 * part of it lies within the given range. 2218 * Also note that if dissolve_free_hugetlb_folio() returns with an error, all 2219 * free hugetlb folios that were dissolved before that error are lost. 2220 */ 2221 int dissolve_free_hugetlb_folios(unsigned long start_pfn, unsigned long end_pfn) 2222 { 2223 unsigned long pfn; 2224 struct folio *folio; 2225 int rc = 0; 2226 unsigned int order; 2227 struct hstate *h; 2228 2229 if (!hugepages_supported()) 2230 return rc; 2231 2232 order = huge_page_order(&default_hstate); 2233 for_each_hstate(h) 2234 order = min(order, huge_page_order(h)); 2235 2236 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) { 2237 folio = pfn_folio(pfn); 2238 rc = dissolve_free_hugetlb_folio(folio); 2239 if (rc) 2240 break; 2241 } 2242 2243 return rc; 2244 } 2245 2246 /* 2247 * Allocates a fresh surplus page from the page allocator. 2248 */ 2249 static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h, 2250 gfp_t gfp_mask, int nid, nodemask_t *nmask) 2251 { 2252 struct folio *folio = NULL; 2253 2254 if (hstate_is_gigantic(h)) 2255 return NULL; 2256 2257 spin_lock_irq(&hugetlb_lock); 2258 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) 2259 goto out_unlock; 2260 spin_unlock_irq(&hugetlb_lock); 2261 2262 folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL); 2263 if (!folio) 2264 return NULL; 2265 2266 hugetlb_vmemmap_optimize_folio(h, folio); 2267 2268 spin_lock_irq(&hugetlb_lock); 2269 /* 2270 * nr_huge_pages needs to be adjusted within the same lock cycle 2271 * as surplus_pages, otherwise it might confuse 2272 * persistent_huge_pages() momentarily. 2273 */ 2274 __prep_account_new_huge_page(h, folio_nid(folio)); 2275 2276 /* 2277 * We could have raced with the pool size change. 2278 * Double check that and simply deallocate the new page 2279 * if we would end up overcommiting the surpluses. Abuse 2280 * temporary page to workaround the nasty free_huge_folio 2281 * codeflow 2282 */ 2283 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { 2284 folio_set_hugetlb_temporary(folio); 2285 spin_unlock_irq(&hugetlb_lock); 2286 free_huge_folio(folio); 2287 return NULL; 2288 } 2289 2290 h->surplus_huge_pages++; 2291 h->surplus_huge_pages_node[folio_nid(folio)]++; 2292 2293 out_unlock: 2294 spin_unlock_irq(&hugetlb_lock); 2295 2296 return folio; 2297 } 2298 2299 static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask, 2300 int nid, nodemask_t *nmask) 2301 { 2302 struct folio *folio; 2303 2304 if (hstate_is_gigantic(h)) 2305 return NULL; 2306 2307 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask); 2308 if (!folio) 2309 return NULL; 2310 2311 /* fresh huge pages are frozen */ 2312 folio_ref_unfreeze(folio, 1); 2313 /* 2314 * We do not account these pages as surplus because they are only 2315 * temporary and will be released properly on the last reference 2316 */ 2317 folio_set_hugetlb_temporary(folio); 2318 2319 return folio; 2320 } 2321 2322 /* 2323 * Use the VMA's mpolicy to allocate a huge page from the buddy. 2324 */ 2325 static 2326 struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h, 2327 struct vm_area_struct *vma, unsigned long addr) 2328 { 2329 struct folio *folio = NULL; 2330 struct mempolicy *mpol; 2331 gfp_t gfp_mask = htlb_alloc_mask(h); 2332 int nid; 2333 nodemask_t *nodemask; 2334 2335 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask); 2336 if (mpol_is_preferred_many(mpol)) { 2337 gfp_t gfp = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL); 2338 2339 folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask); 2340 2341 /* Fallback to all nodes if page==NULL */ 2342 nodemask = NULL; 2343 } 2344 2345 if (!folio) 2346 folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask); 2347 mpol_cond_put(mpol); 2348 return folio; 2349 } 2350 2351 struct folio *alloc_hugetlb_folio_reserve(struct hstate *h, int preferred_nid, 2352 nodemask_t *nmask, gfp_t gfp_mask) 2353 { 2354 struct folio *folio; 2355 2356 spin_lock_irq(&hugetlb_lock); 2357 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, preferred_nid, 2358 nmask); 2359 if (folio) { 2360 VM_BUG_ON(!h->resv_huge_pages); 2361 h->resv_huge_pages--; 2362 } 2363 2364 spin_unlock_irq(&hugetlb_lock); 2365 return folio; 2366 } 2367 2368 /* folio migration callback function */ 2369 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid, 2370 nodemask_t *nmask, gfp_t gfp_mask, bool allow_alloc_fallback) 2371 { 2372 spin_lock_irq(&hugetlb_lock); 2373 if (available_huge_pages(h)) { 2374 struct folio *folio; 2375 2376 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, 2377 preferred_nid, nmask); 2378 if (folio) { 2379 spin_unlock_irq(&hugetlb_lock); 2380 return folio; 2381 } 2382 } 2383 spin_unlock_irq(&hugetlb_lock); 2384 2385 /* We cannot fallback to other nodes, as we could break the per-node pool. */ 2386 if (!allow_alloc_fallback) 2387 gfp_mask |= __GFP_THISNODE; 2388 2389 return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask); 2390 } 2391 2392 static nodemask_t *policy_mbind_nodemask(gfp_t gfp) 2393 { 2394 #ifdef CONFIG_NUMA 2395 struct mempolicy *mpol = get_task_policy(current); 2396 2397 /* 2398 * Only enforce MPOL_BIND policy which overlaps with cpuset policy 2399 * (from policy_nodemask) specifically for hugetlb case 2400 */ 2401 if (mpol->mode == MPOL_BIND && 2402 (apply_policy_zone(mpol, gfp_zone(gfp)) && 2403 cpuset_nodemask_valid_mems_allowed(&mpol->nodes))) 2404 return &mpol->nodes; 2405 #endif 2406 return NULL; 2407 } 2408 2409 /* 2410 * Increase the hugetlb pool such that it can accommodate a reservation 2411 * of size 'delta'. 2412 */ 2413 static int gather_surplus_pages(struct hstate *h, long delta) 2414 __must_hold(&hugetlb_lock) 2415 { 2416 LIST_HEAD(surplus_list); 2417 struct folio *folio, *tmp; 2418 int ret; 2419 long i; 2420 long needed, allocated; 2421 bool alloc_ok = true; 2422 int node; 2423 nodemask_t *mbind_nodemask, alloc_nodemask; 2424 2425 mbind_nodemask = policy_mbind_nodemask(htlb_alloc_mask(h)); 2426 if (mbind_nodemask) 2427 nodes_and(alloc_nodemask, *mbind_nodemask, cpuset_current_mems_allowed); 2428 else 2429 alloc_nodemask = cpuset_current_mems_allowed; 2430 2431 lockdep_assert_held(&hugetlb_lock); 2432 needed = (h->resv_huge_pages + delta) - h->free_huge_pages; 2433 if (needed <= 0) { 2434 h->resv_huge_pages += delta; 2435 return 0; 2436 } 2437 2438 allocated = 0; 2439 2440 ret = -ENOMEM; 2441 retry: 2442 spin_unlock_irq(&hugetlb_lock); 2443 for (i = 0; i < needed; i++) { 2444 folio = NULL; 2445 2446 /* Prioritize current node */ 2447 if (node_isset(numa_mem_id(), alloc_nodemask)) 2448 folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h), 2449 numa_mem_id(), NULL); 2450 2451 if (!folio) { 2452 for_each_node_mask(node, alloc_nodemask) { 2453 if (node == numa_mem_id()) 2454 continue; 2455 folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h), 2456 node, NULL); 2457 if (folio) 2458 break; 2459 } 2460 } 2461 if (!folio) { 2462 alloc_ok = false; 2463 break; 2464 } 2465 list_add(&folio->lru, &surplus_list); 2466 cond_resched(); 2467 } 2468 allocated += i; 2469 2470 /* 2471 * After retaking hugetlb_lock, we need to recalculate 'needed' 2472 * because either resv_huge_pages or free_huge_pages may have changed. 2473 */ 2474 spin_lock_irq(&hugetlb_lock); 2475 needed = (h->resv_huge_pages + delta) - 2476 (h->free_huge_pages + allocated); 2477 if (needed > 0) { 2478 if (alloc_ok) 2479 goto retry; 2480 /* 2481 * We were not able to allocate enough pages to 2482 * satisfy the entire reservation so we free what 2483 * we've allocated so far. 2484 */ 2485 goto free; 2486 } 2487 /* 2488 * The surplus_list now contains _at_least_ the number of extra pages 2489 * needed to accommodate the reservation. Add the appropriate number 2490 * of pages to the hugetlb pool and free the extras back to the buddy 2491 * allocator. Commit the entire reservation here to prevent another 2492 * process from stealing the pages as they are added to the pool but 2493 * before they are reserved. 2494 */ 2495 needed += allocated; 2496 h->resv_huge_pages += delta; 2497 ret = 0; 2498 2499 /* Free the needed pages to the hugetlb pool */ 2500 list_for_each_entry_safe(folio, tmp, &surplus_list, lru) { 2501 if ((--needed) < 0) 2502 break; 2503 /* Add the page to the hugetlb allocator */ 2504 enqueue_hugetlb_folio(h, folio); 2505 } 2506 free: 2507 spin_unlock_irq(&hugetlb_lock); 2508 2509 /* 2510 * Free unnecessary surplus pages to the buddy allocator. 2511 * Pages have no ref count, call free_huge_folio directly. 2512 */ 2513 list_for_each_entry_safe(folio, tmp, &surplus_list, lru) 2514 free_huge_folio(folio); 2515 spin_lock_irq(&hugetlb_lock); 2516 2517 return ret; 2518 } 2519 2520 /* 2521 * This routine has two main purposes: 2522 * 1) Decrement the reservation count (resv_huge_pages) by the value passed 2523 * in unused_resv_pages. This corresponds to the prior adjustments made 2524 * to the associated reservation map. 2525 * 2) Free any unused surplus pages that may have been allocated to satisfy 2526 * the reservation. As many as unused_resv_pages may be freed. 2527 */ 2528 static void return_unused_surplus_pages(struct hstate *h, 2529 unsigned long unused_resv_pages) 2530 { 2531 unsigned long nr_pages; 2532 LIST_HEAD(page_list); 2533 2534 lockdep_assert_held(&hugetlb_lock); 2535 /* Uncommit the reservation */ 2536 h->resv_huge_pages -= unused_resv_pages; 2537 2538 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 2539 goto out; 2540 2541 /* 2542 * Part (or even all) of the reservation could have been backed 2543 * by pre-allocated pages. Only free surplus pages. 2544 */ 2545 nr_pages = min(unused_resv_pages, h->surplus_huge_pages); 2546 2547 /* 2548 * We want to release as many surplus pages as possible, spread 2549 * evenly across all nodes with memory. Iterate across these nodes 2550 * until we can no longer free unreserved surplus pages. This occurs 2551 * when the nodes with surplus pages have no free pages. 2552 * remove_pool_hugetlb_folio() will balance the freed pages across the 2553 * on-line nodes with memory and will handle the hstate accounting. 2554 */ 2555 while (nr_pages--) { 2556 struct folio *folio; 2557 2558 folio = remove_pool_hugetlb_folio(h, &node_states[N_MEMORY], 1); 2559 if (!folio) 2560 goto out; 2561 2562 list_add(&folio->lru, &page_list); 2563 } 2564 2565 out: 2566 spin_unlock_irq(&hugetlb_lock); 2567 update_and_free_pages_bulk(h, &page_list); 2568 spin_lock_irq(&hugetlb_lock); 2569 } 2570 2571 2572 /* 2573 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation 2574 * are used by the huge page allocation routines to manage reservations. 2575 * 2576 * vma_needs_reservation is called to determine if the huge page at addr 2577 * within the vma has an associated reservation. If a reservation is 2578 * needed, the value 1 is returned. The caller is then responsible for 2579 * managing the global reservation and subpool usage counts. After 2580 * the huge page has been allocated, vma_commit_reservation is called 2581 * to add the page to the reservation map. If the page allocation fails, 2582 * the reservation must be ended instead of committed. vma_end_reservation 2583 * is called in such cases. 2584 * 2585 * In the normal case, vma_commit_reservation returns the same value 2586 * as the preceding vma_needs_reservation call. The only time this 2587 * is not the case is if a reserve map was changed between calls. It 2588 * is the responsibility of the caller to notice the difference and 2589 * take appropriate action. 2590 * 2591 * vma_add_reservation is used in error paths where a reservation must 2592 * be restored when a newly allocated huge page must be freed. It is 2593 * to be called after calling vma_needs_reservation to determine if a 2594 * reservation exists. 2595 * 2596 * vma_del_reservation is used in error paths where an entry in the reserve 2597 * map was created during huge page allocation and must be removed. It is to 2598 * be called after calling vma_needs_reservation to determine if a reservation 2599 * exists. 2600 */ 2601 enum vma_resv_mode { 2602 VMA_NEEDS_RESV, 2603 VMA_COMMIT_RESV, 2604 VMA_END_RESV, 2605 VMA_ADD_RESV, 2606 VMA_DEL_RESV, 2607 }; 2608 static long __vma_reservation_common(struct hstate *h, 2609 struct vm_area_struct *vma, unsigned long addr, 2610 enum vma_resv_mode mode) 2611 { 2612 struct resv_map *resv; 2613 pgoff_t idx; 2614 long ret; 2615 long dummy_out_regions_needed; 2616 2617 resv = vma_resv_map(vma); 2618 if (!resv) 2619 return 1; 2620 2621 idx = vma_hugecache_offset(h, vma, addr); 2622 switch (mode) { 2623 case VMA_NEEDS_RESV: 2624 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed); 2625 /* We assume that vma_reservation_* routines always operate on 2626 * 1 page, and that adding to resv map a 1 page entry can only 2627 * ever require 1 region. 2628 */ 2629 VM_BUG_ON(dummy_out_regions_needed != 1); 2630 break; 2631 case VMA_COMMIT_RESV: 2632 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2633 /* region_add calls of range 1 should never fail. */ 2634 VM_BUG_ON(ret < 0); 2635 break; 2636 case VMA_END_RESV: 2637 region_abort(resv, idx, idx + 1, 1); 2638 ret = 0; 2639 break; 2640 case VMA_ADD_RESV: 2641 if (vma->vm_flags & VM_MAYSHARE) { 2642 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2643 /* region_add calls of range 1 should never fail. */ 2644 VM_BUG_ON(ret < 0); 2645 } else { 2646 region_abort(resv, idx, idx + 1, 1); 2647 ret = region_del(resv, idx, idx + 1); 2648 } 2649 break; 2650 case VMA_DEL_RESV: 2651 if (vma->vm_flags & VM_MAYSHARE) { 2652 region_abort(resv, idx, idx + 1, 1); 2653 ret = region_del(resv, idx, idx + 1); 2654 } else { 2655 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2656 /* region_add calls of range 1 should never fail. */ 2657 VM_BUG_ON(ret < 0); 2658 } 2659 break; 2660 default: 2661 BUG(); 2662 } 2663 2664 if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV) 2665 return ret; 2666 /* 2667 * We know private mapping must have HPAGE_RESV_OWNER set. 2668 * 2669 * In most cases, reserves always exist for private mappings. 2670 * However, a file associated with mapping could have been 2671 * hole punched or truncated after reserves were consumed. 2672 * As subsequent fault on such a range will not use reserves. 2673 * Subtle - The reserve map for private mappings has the 2674 * opposite meaning than that of shared mappings. If NO 2675 * entry is in the reserve map, it means a reservation exists. 2676 * If an entry exists in the reserve map, it means the 2677 * reservation has already been consumed. As a result, the 2678 * return value of this routine is the opposite of the 2679 * value returned from reserve map manipulation routines above. 2680 */ 2681 if (ret > 0) 2682 return 0; 2683 if (ret == 0) 2684 return 1; 2685 return ret; 2686 } 2687 2688 static long vma_needs_reservation(struct hstate *h, 2689 struct vm_area_struct *vma, unsigned long addr) 2690 { 2691 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV); 2692 } 2693 2694 static long vma_commit_reservation(struct hstate *h, 2695 struct vm_area_struct *vma, unsigned long addr) 2696 { 2697 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV); 2698 } 2699 2700 static void vma_end_reservation(struct hstate *h, 2701 struct vm_area_struct *vma, unsigned long addr) 2702 { 2703 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV); 2704 } 2705 2706 static long vma_add_reservation(struct hstate *h, 2707 struct vm_area_struct *vma, unsigned long addr) 2708 { 2709 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV); 2710 } 2711 2712 static long vma_del_reservation(struct hstate *h, 2713 struct vm_area_struct *vma, unsigned long addr) 2714 { 2715 return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV); 2716 } 2717 2718 /* 2719 * This routine is called to restore reservation information on error paths. 2720 * It should ONLY be called for folios allocated via alloc_hugetlb_folio(), 2721 * and the hugetlb mutex should remain held when calling this routine. 2722 * 2723 * It handles two specific cases: 2724 * 1) A reservation was in place and the folio consumed the reservation. 2725 * hugetlb_restore_reserve is set in the folio. 2726 * 2) No reservation was in place for the page, so hugetlb_restore_reserve is 2727 * not set. However, alloc_hugetlb_folio always updates the reserve map. 2728 * 2729 * In case 1, free_huge_folio later in the error path will increment the 2730 * global reserve count. But, free_huge_folio does not have enough context 2731 * to adjust the reservation map. This case deals primarily with private 2732 * mappings. Adjust the reserve map here to be consistent with global 2733 * reserve count adjustments to be made by free_huge_folio. Make sure the 2734 * reserve map indicates there is a reservation present. 2735 * 2736 * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio. 2737 */ 2738 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma, 2739 unsigned long address, struct folio *folio) 2740 { 2741 long rc = vma_needs_reservation(h, vma, address); 2742 2743 if (folio_test_hugetlb_restore_reserve(folio)) { 2744 if (unlikely(rc < 0)) 2745 /* 2746 * Rare out of memory condition in reserve map 2747 * manipulation. Clear hugetlb_restore_reserve so 2748 * that global reserve count will not be incremented 2749 * by free_huge_folio. This will make it appear 2750 * as though the reservation for this folio was 2751 * consumed. This may prevent the task from 2752 * faulting in the folio at a later time. This 2753 * is better than inconsistent global huge page 2754 * accounting of reserve counts. 2755 */ 2756 folio_clear_hugetlb_restore_reserve(folio); 2757 else if (rc) 2758 (void)vma_add_reservation(h, vma, address); 2759 else 2760 vma_end_reservation(h, vma, address); 2761 } else { 2762 if (!rc) { 2763 /* 2764 * This indicates there is an entry in the reserve map 2765 * not added by alloc_hugetlb_folio. We know it was added 2766 * before the alloc_hugetlb_folio call, otherwise 2767 * hugetlb_restore_reserve would be set on the folio. 2768 * Remove the entry so that a subsequent allocation 2769 * does not consume a reservation. 2770 */ 2771 rc = vma_del_reservation(h, vma, address); 2772 if (rc < 0) 2773 /* 2774 * VERY rare out of memory condition. Since 2775 * we can not delete the entry, set 2776 * hugetlb_restore_reserve so that the reserve 2777 * count will be incremented when the folio 2778 * is freed. This reserve will be consumed 2779 * on a subsequent allocation. 2780 */ 2781 folio_set_hugetlb_restore_reserve(folio); 2782 } else if (rc < 0) { 2783 /* 2784 * Rare out of memory condition from 2785 * vma_needs_reservation call. Memory allocation is 2786 * only attempted if a new entry is needed. Therefore, 2787 * this implies there is not an entry in the 2788 * reserve map. 2789 * 2790 * For shared mappings, no entry in the map indicates 2791 * no reservation. We are done. 2792 */ 2793 if (!(vma->vm_flags & VM_MAYSHARE)) 2794 /* 2795 * For private mappings, no entry indicates 2796 * a reservation is present. Since we can 2797 * not add an entry, set hugetlb_restore_reserve 2798 * on the folio so reserve count will be 2799 * incremented when freed. This reserve will 2800 * be consumed on a subsequent allocation. 2801 */ 2802 folio_set_hugetlb_restore_reserve(folio); 2803 } else 2804 /* 2805 * No reservation present, do nothing 2806 */ 2807 vma_end_reservation(h, vma, address); 2808 } 2809 } 2810 2811 /* 2812 * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve 2813 * the old one 2814 * @h: struct hstate old page belongs to 2815 * @old_folio: Old folio to dissolve 2816 * @list: List to isolate the page in case we need to 2817 * Returns 0 on success, otherwise negated error. 2818 */ 2819 static int alloc_and_dissolve_hugetlb_folio(struct hstate *h, 2820 struct folio *old_folio, struct list_head *list) 2821 { 2822 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 2823 int nid = folio_nid(old_folio); 2824 struct folio *new_folio = NULL; 2825 int ret = 0; 2826 2827 retry: 2828 spin_lock_irq(&hugetlb_lock); 2829 if (!folio_test_hugetlb(old_folio)) { 2830 /* 2831 * Freed from under us. Drop new_folio too. 2832 */ 2833 goto free_new; 2834 } else if (folio_ref_count(old_folio)) { 2835 bool isolated; 2836 2837 /* 2838 * Someone has grabbed the folio, try to isolate it here. 2839 * Fail with -EBUSY if not possible. 2840 */ 2841 spin_unlock_irq(&hugetlb_lock); 2842 isolated = folio_isolate_hugetlb(old_folio, list); 2843 ret = isolated ? 0 : -EBUSY; 2844 spin_lock_irq(&hugetlb_lock); 2845 goto free_new; 2846 } else if (!folio_test_hugetlb_freed(old_folio)) { 2847 /* 2848 * Folio's refcount is 0 but it has not been enqueued in the 2849 * freelist yet. Race window is small, so we can succeed here if 2850 * we retry. 2851 */ 2852 spin_unlock_irq(&hugetlb_lock); 2853 cond_resched(); 2854 goto retry; 2855 } else { 2856 if (!new_folio) { 2857 spin_unlock_irq(&hugetlb_lock); 2858 new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, 2859 NULL, NULL); 2860 if (!new_folio) 2861 return -ENOMEM; 2862 __prep_new_hugetlb_folio(h, new_folio); 2863 goto retry; 2864 } 2865 2866 /* 2867 * Ok, old_folio is still a genuine free hugepage. Remove it from 2868 * the freelist and decrease the counters. These will be 2869 * incremented again when calling __prep_account_new_huge_page() 2870 * and enqueue_hugetlb_folio() for new_folio. The counters will 2871 * remain stable since this happens under the lock. 2872 */ 2873 remove_hugetlb_folio(h, old_folio, false); 2874 2875 /* 2876 * Ref count on new_folio is already zero as it was dropped 2877 * earlier. It can be directly added to the pool free list. 2878 */ 2879 __prep_account_new_huge_page(h, nid); 2880 enqueue_hugetlb_folio(h, new_folio); 2881 2882 /* 2883 * Folio has been replaced, we can safely free the old one. 2884 */ 2885 spin_unlock_irq(&hugetlb_lock); 2886 update_and_free_hugetlb_folio(h, old_folio, false); 2887 } 2888 2889 return ret; 2890 2891 free_new: 2892 spin_unlock_irq(&hugetlb_lock); 2893 if (new_folio) 2894 update_and_free_hugetlb_folio(h, new_folio, false); 2895 2896 return ret; 2897 } 2898 2899 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list) 2900 { 2901 struct hstate *h; 2902 struct folio *folio = page_folio(page); 2903 int ret = -EBUSY; 2904 2905 /* 2906 * The page might have been dissolved from under our feet, so make sure 2907 * to carefully check the state under the lock. 2908 * Return success when racing as if we dissolved the page ourselves. 2909 */ 2910 spin_lock_irq(&hugetlb_lock); 2911 if (folio_test_hugetlb(folio)) { 2912 h = folio_hstate(folio); 2913 } else { 2914 spin_unlock_irq(&hugetlb_lock); 2915 return 0; 2916 } 2917 spin_unlock_irq(&hugetlb_lock); 2918 2919 /* 2920 * Fence off gigantic pages as there is a cyclic dependency between 2921 * alloc_contig_range and them. Return -ENOMEM as this has the effect 2922 * of bailing out right away without further retrying. 2923 */ 2924 if (hstate_is_gigantic(h)) 2925 return -ENOMEM; 2926 2927 if (folio_ref_count(folio) && folio_isolate_hugetlb(folio, list)) 2928 ret = 0; 2929 else if (!folio_ref_count(folio)) 2930 ret = alloc_and_dissolve_hugetlb_folio(h, folio, list); 2931 2932 return ret; 2933 } 2934 2935 /* 2936 * replace_free_hugepage_folios - Replace free hugepage folios in a given pfn 2937 * range with new folios. 2938 * @start_pfn: start pfn of the given pfn range 2939 * @end_pfn: end pfn of the given pfn range 2940 * Returns 0 on success, otherwise negated error. 2941 */ 2942 int replace_free_hugepage_folios(unsigned long start_pfn, unsigned long end_pfn) 2943 { 2944 struct hstate *h; 2945 struct folio *folio; 2946 int ret = 0; 2947 2948 LIST_HEAD(isolate_list); 2949 2950 while (start_pfn < end_pfn) { 2951 folio = pfn_folio(start_pfn); 2952 2953 /* 2954 * The folio might have been dissolved from under our feet, so make sure 2955 * to carefully check the state under the lock. 2956 */ 2957 spin_lock_irq(&hugetlb_lock); 2958 if (folio_test_hugetlb(folio)) { 2959 h = folio_hstate(folio); 2960 } else { 2961 spin_unlock_irq(&hugetlb_lock); 2962 start_pfn++; 2963 continue; 2964 } 2965 spin_unlock_irq(&hugetlb_lock); 2966 2967 if (!folio_ref_count(folio)) { 2968 ret = alloc_and_dissolve_hugetlb_folio(h, folio, 2969 &isolate_list); 2970 if (ret) 2971 break; 2972 2973 putback_movable_pages(&isolate_list); 2974 } 2975 start_pfn++; 2976 } 2977 2978 return ret; 2979 } 2980 2981 void wait_for_freed_hugetlb_folios(void) 2982 { 2983 if (llist_empty(&hpage_freelist)) 2984 return; 2985 2986 flush_work(&free_hpage_work); 2987 } 2988 2989 typedef enum { 2990 /* 2991 * For either 0/1: we checked the per-vma resv map, and one resv 2992 * count either can be reused (0), or an extra needed (1). 2993 */ 2994 MAP_CHG_REUSE = 0, 2995 MAP_CHG_NEEDED = 1, 2996 /* 2997 * Cannot use per-vma resv count can be used, hence a new resv 2998 * count is enforced. 2999 * 3000 * NOTE: This is mostly identical to MAP_CHG_NEEDED, except 3001 * that currently vma_needs_reservation() has an unwanted side 3002 * effect to either use end() or commit() to complete the 3003 * transaction. Hence it needs to differenciate from NEEDED. 3004 */ 3005 MAP_CHG_ENFORCED = 2, 3006 } map_chg_state; 3007 3008 /* 3009 * NOTE! "cow_from_owner" represents a very hacky usage only used in CoW 3010 * faults of hugetlb private mappings on top of a non-page-cache folio (in 3011 * which case even if there's a private vma resv map it won't cover such 3012 * allocation). New call sites should (probably) never set it to true!! 3013 * When it's set, the allocation will bypass all vma level reservations. 3014 */ 3015 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma, 3016 unsigned long addr, bool cow_from_owner) 3017 { 3018 struct hugepage_subpool *spool = subpool_vma(vma); 3019 struct hstate *h = hstate_vma(vma); 3020 struct folio *folio; 3021 long retval, gbl_chg, gbl_reserve; 3022 map_chg_state map_chg; 3023 int ret, idx; 3024 struct hugetlb_cgroup *h_cg = NULL; 3025 gfp_t gfp = htlb_alloc_mask(h) | __GFP_RETRY_MAYFAIL; 3026 3027 idx = hstate_index(h); 3028 3029 /* Whether we need a separate per-vma reservation? */ 3030 if (cow_from_owner) { 3031 /* 3032 * Special case! Since it's a CoW on top of a reserved 3033 * page, the private resv map doesn't count. So it cannot 3034 * consume the per-vma resv map even if it's reserved. 3035 */ 3036 map_chg = MAP_CHG_ENFORCED; 3037 } else { 3038 /* 3039 * Examine the region/reserve map to determine if the process 3040 * has a reservation for the page to be allocated. A return 3041 * code of zero indicates a reservation exists (no change). 3042 */ 3043 retval = vma_needs_reservation(h, vma, addr); 3044 if (retval < 0) 3045 return ERR_PTR(-ENOMEM); 3046 map_chg = retval ? MAP_CHG_NEEDED : MAP_CHG_REUSE; 3047 } 3048 3049 /* 3050 * Whether we need a separate global reservation? 3051 * 3052 * Processes that did not create the mapping will have no 3053 * reserves as indicated by the region/reserve map. Check 3054 * that the allocation will not exceed the subpool limit. 3055 * Or if it can get one from the pool reservation directly. 3056 */ 3057 if (map_chg) { 3058 gbl_chg = hugepage_subpool_get_pages(spool, 1); 3059 if (gbl_chg < 0) 3060 goto out_end_reservation; 3061 } else { 3062 /* 3063 * If we have the vma reservation ready, no need for extra 3064 * global reservation. 3065 */ 3066 gbl_chg = 0; 3067 } 3068 3069 /* 3070 * If this allocation is not consuming a per-vma reservation, 3071 * charge the hugetlb cgroup now. 3072 */ 3073 if (map_chg) { 3074 ret = hugetlb_cgroup_charge_cgroup_rsvd( 3075 idx, pages_per_huge_page(h), &h_cg); 3076 if (ret) 3077 goto out_subpool_put; 3078 } 3079 3080 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg); 3081 if (ret) 3082 goto out_uncharge_cgroup_reservation; 3083 3084 spin_lock_irq(&hugetlb_lock); 3085 /* 3086 * glb_chg is passed to indicate whether or not a page must be taken 3087 * from the global free pool (global change). gbl_chg == 0 indicates 3088 * a reservation exists for the allocation. 3089 */ 3090 folio = dequeue_hugetlb_folio_vma(h, vma, addr, gbl_chg); 3091 if (!folio) { 3092 spin_unlock_irq(&hugetlb_lock); 3093 folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr); 3094 if (!folio) 3095 goto out_uncharge_cgroup; 3096 spin_lock_irq(&hugetlb_lock); 3097 list_add(&folio->lru, &h->hugepage_activelist); 3098 folio_ref_unfreeze(folio, 1); 3099 /* Fall through */ 3100 } 3101 3102 /* 3103 * Either dequeued or buddy-allocated folio needs to add special 3104 * mark to the folio when it consumes a global reservation. 3105 */ 3106 if (!gbl_chg) { 3107 folio_set_hugetlb_restore_reserve(folio); 3108 h->resv_huge_pages--; 3109 } 3110 3111 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio); 3112 /* If allocation is not consuming a reservation, also store the 3113 * hugetlb_cgroup pointer on the page. 3114 */ 3115 if (map_chg) { 3116 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h), 3117 h_cg, folio); 3118 } 3119 3120 spin_unlock_irq(&hugetlb_lock); 3121 3122 hugetlb_set_folio_subpool(folio, spool); 3123 3124 if (map_chg != MAP_CHG_ENFORCED) { 3125 /* commit() is only needed if the map_chg is not enforced */ 3126 retval = vma_commit_reservation(h, vma, addr); 3127 /* 3128 * Check for possible race conditions. When it happens.. 3129 * The page was added to the reservation map between 3130 * vma_needs_reservation and vma_commit_reservation. 3131 * This indicates a race with hugetlb_reserve_pages. 3132 * Adjust for the subpool count incremented above AND 3133 * in hugetlb_reserve_pages for the same page. Also, 3134 * the reservation count added in hugetlb_reserve_pages 3135 * no longer applies. 3136 */ 3137 if (unlikely(map_chg == MAP_CHG_NEEDED && retval == 0)) { 3138 long rsv_adjust; 3139 3140 rsv_adjust = hugepage_subpool_put_pages(spool, 1); 3141 hugetlb_acct_memory(h, -rsv_adjust); 3142 if (map_chg) { 3143 spin_lock_irq(&hugetlb_lock); 3144 hugetlb_cgroup_uncharge_folio_rsvd( 3145 hstate_index(h), pages_per_huge_page(h), 3146 folio); 3147 spin_unlock_irq(&hugetlb_lock); 3148 } 3149 } 3150 } 3151 3152 ret = mem_cgroup_charge_hugetlb(folio, gfp); 3153 /* 3154 * Unconditionally increment NR_HUGETLB here. If it turns out that 3155 * mem_cgroup_charge_hugetlb failed, then immediately free the page and 3156 * decrement NR_HUGETLB. 3157 */ 3158 lruvec_stat_mod_folio(folio, NR_HUGETLB, pages_per_huge_page(h)); 3159 3160 if (ret == -ENOMEM) { 3161 free_huge_folio(folio); 3162 return ERR_PTR(-ENOMEM); 3163 } 3164 3165 return folio; 3166 3167 out_uncharge_cgroup: 3168 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg); 3169 out_uncharge_cgroup_reservation: 3170 if (map_chg) 3171 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h), 3172 h_cg); 3173 out_subpool_put: 3174 /* 3175 * put page to subpool iff the quota of subpool's rsv_hpages is used 3176 * during hugepage_subpool_get_pages. 3177 */ 3178 if (map_chg && !gbl_chg) { 3179 gbl_reserve = hugepage_subpool_put_pages(spool, 1); 3180 hugetlb_acct_memory(h, -gbl_reserve); 3181 } 3182 3183 3184 out_end_reservation: 3185 if (map_chg != MAP_CHG_ENFORCED) 3186 vma_end_reservation(h, vma, addr); 3187 return ERR_PTR(-ENOSPC); 3188 } 3189 3190 static __init void *alloc_bootmem(struct hstate *h, int nid, bool node_exact) 3191 { 3192 struct huge_bootmem_page *m; 3193 int listnode = nid; 3194 3195 if (hugetlb_early_cma(h)) 3196 m = hugetlb_cma_alloc_bootmem(h, &listnode, node_exact); 3197 else { 3198 if (node_exact) 3199 m = memblock_alloc_exact_nid_raw(huge_page_size(h), 3200 huge_page_size(h), 0, 3201 MEMBLOCK_ALLOC_ACCESSIBLE, nid); 3202 else { 3203 m = memblock_alloc_try_nid_raw(huge_page_size(h), 3204 huge_page_size(h), 0, 3205 MEMBLOCK_ALLOC_ACCESSIBLE, nid); 3206 /* 3207 * For pre-HVO to work correctly, pages need to be on 3208 * the list for the node they were actually allocated 3209 * from. That node may be different in the case of 3210 * fallback by memblock_alloc_try_nid_raw. So, 3211 * extract the actual node first. 3212 */ 3213 if (m) 3214 listnode = early_pfn_to_nid(PHYS_PFN(virt_to_phys(m))); 3215 } 3216 3217 if (m) { 3218 m->flags = 0; 3219 m->cma = NULL; 3220 } 3221 } 3222 3223 if (m) { 3224 /* 3225 * Use the beginning of the huge page to store the 3226 * huge_bootmem_page struct (until gather_bootmem 3227 * puts them into the mem_map). 3228 * 3229 * Put them into a private list first because mem_map 3230 * is not up yet. 3231 */ 3232 INIT_LIST_HEAD(&m->list); 3233 list_add(&m->list, &huge_boot_pages[listnode]); 3234 m->hstate = h; 3235 } 3236 3237 return m; 3238 } 3239 3240 int alloc_bootmem_huge_page(struct hstate *h, int nid) 3241 __attribute__ ((weak, alias("__alloc_bootmem_huge_page"))); 3242 int __alloc_bootmem_huge_page(struct hstate *h, int nid) 3243 { 3244 struct huge_bootmem_page *m = NULL; /* initialize for clang */ 3245 int nr_nodes, node = nid; 3246 3247 /* do node specific alloc */ 3248 if (nid != NUMA_NO_NODE) { 3249 m = alloc_bootmem(h, node, true); 3250 if (!m) 3251 return 0; 3252 goto found; 3253 } 3254 3255 /* allocate from next node when distributing huge pages */ 3256 for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, &node_states[N_ONLINE]) { 3257 m = alloc_bootmem(h, node, false); 3258 if (!m) 3259 return 0; 3260 goto found; 3261 } 3262 3263 found: 3264 3265 /* 3266 * Only initialize the head struct page in memmap_init_reserved_pages, 3267 * rest of the struct pages will be initialized by the HugeTLB 3268 * subsystem itself. 3269 * The head struct page is used to get folio information by the HugeTLB 3270 * subsystem like zone id and node id. 3271 */ 3272 memblock_reserved_mark_noinit(virt_to_phys((void *)m + PAGE_SIZE), 3273 huge_page_size(h) - PAGE_SIZE); 3274 3275 return 1; 3276 } 3277 3278 /* Initialize [start_page:end_page_number] tail struct pages of a hugepage */ 3279 static void __init hugetlb_folio_init_tail_vmemmap(struct folio *folio, 3280 unsigned long start_page_number, 3281 unsigned long end_page_number) 3282 { 3283 enum zone_type zone = zone_idx(folio_zone(folio)); 3284 int nid = folio_nid(folio); 3285 unsigned long head_pfn = folio_pfn(folio); 3286 unsigned long pfn, end_pfn = head_pfn + end_page_number; 3287 int ret; 3288 3289 for (pfn = head_pfn + start_page_number; pfn < end_pfn; pfn++) { 3290 struct page *page = pfn_to_page(pfn); 3291 3292 __init_single_page(page, pfn, zone, nid); 3293 prep_compound_tail((struct page *)folio, pfn - head_pfn); 3294 ret = page_ref_freeze(page, 1); 3295 VM_BUG_ON(!ret); 3296 } 3297 } 3298 3299 static void __init hugetlb_folio_init_vmemmap(struct folio *folio, 3300 struct hstate *h, 3301 unsigned long nr_pages) 3302 { 3303 int ret; 3304 3305 /* Prepare folio head */ 3306 __folio_clear_reserved(folio); 3307 __folio_set_head(folio); 3308 ret = folio_ref_freeze(folio, 1); 3309 VM_BUG_ON(!ret); 3310 /* Initialize the necessary tail struct pages */ 3311 hugetlb_folio_init_tail_vmemmap(folio, 1, nr_pages); 3312 prep_compound_head((struct page *)folio, huge_page_order(h)); 3313 } 3314 3315 static bool __init hugetlb_bootmem_page_prehvo(struct huge_bootmem_page *m) 3316 { 3317 return m->flags & HUGE_BOOTMEM_HVO; 3318 } 3319 3320 static bool __init hugetlb_bootmem_page_earlycma(struct huge_bootmem_page *m) 3321 { 3322 return m->flags & HUGE_BOOTMEM_CMA; 3323 } 3324 3325 /* 3326 * memblock-allocated pageblocks might not have the migrate type set 3327 * if marked with the 'noinit' flag. Set it to the default (MIGRATE_MOVABLE) 3328 * here, or MIGRATE_CMA if this was a page allocated through an early CMA 3329 * reservation. 3330 * 3331 * In case of vmemmap optimized folios, the tail vmemmap pages are mapped 3332 * read-only, but that's ok - for sparse vmemmap this does not write to 3333 * the page structure. 3334 */ 3335 static void __init hugetlb_bootmem_init_migratetype(struct folio *folio, 3336 struct hstate *h) 3337 { 3338 unsigned long nr_pages = pages_per_huge_page(h), i; 3339 3340 WARN_ON_ONCE(!pageblock_aligned(folio_pfn(folio))); 3341 3342 for (i = 0; i < nr_pages; i += pageblock_nr_pages) { 3343 if (folio_test_hugetlb_cma(folio)) 3344 init_cma_pageblock(folio_page(folio, i)); 3345 else 3346 set_pageblock_migratetype(folio_page(folio, i), 3347 MIGRATE_MOVABLE); 3348 } 3349 } 3350 3351 static void __init prep_and_add_bootmem_folios(struct hstate *h, 3352 struct list_head *folio_list) 3353 { 3354 unsigned long flags; 3355 struct folio *folio, *tmp_f; 3356 3357 /* Send list for bulk vmemmap optimization processing */ 3358 hugetlb_vmemmap_optimize_bootmem_folios(h, folio_list); 3359 3360 list_for_each_entry_safe(folio, tmp_f, folio_list, lru) { 3361 if (!folio_test_hugetlb_vmemmap_optimized(folio)) { 3362 /* 3363 * If HVO fails, initialize all tail struct pages 3364 * We do not worry about potential long lock hold 3365 * time as this is early in boot and there should 3366 * be no contention. 3367 */ 3368 hugetlb_folio_init_tail_vmemmap(folio, 3369 HUGETLB_VMEMMAP_RESERVE_PAGES, 3370 pages_per_huge_page(h)); 3371 } 3372 hugetlb_bootmem_init_migratetype(folio, h); 3373 /* Subdivide locks to achieve better parallel performance */ 3374 spin_lock_irqsave(&hugetlb_lock, flags); 3375 __prep_account_new_huge_page(h, folio_nid(folio)); 3376 enqueue_hugetlb_folio(h, folio); 3377 spin_unlock_irqrestore(&hugetlb_lock, flags); 3378 } 3379 } 3380 3381 bool __init hugetlb_bootmem_page_zones_valid(int nid, 3382 struct huge_bootmem_page *m) 3383 { 3384 unsigned long start_pfn; 3385 bool valid; 3386 3387 if (m->flags & HUGE_BOOTMEM_ZONES_VALID) { 3388 /* 3389 * Already validated, skip check. 3390 */ 3391 return true; 3392 } 3393 3394 if (hugetlb_bootmem_page_earlycma(m)) { 3395 valid = cma_validate_zones(m->cma); 3396 goto out; 3397 } 3398 3399 start_pfn = virt_to_phys(m) >> PAGE_SHIFT; 3400 3401 valid = !pfn_range_intersects_zones(nid, start_pfn, 3402 pages_per_huge_page(m->hstate)); 3403 out: 3404 if (!valid) 3405 hstate_boot_nrinvalid[hstate_index(m->hstate)]++; 3406 3407 return valid; 3408 } 3409 3410 /* 3411 * Free a bootmem page that was found to be invalid (intersecting with 3412 * multiple zones). 3413 * 3414 * Since it intersects with multiple zones, we can't just do a free 3415 * operation on all pages at once, but instead have to walk all 3416 * pages, freeing them one by one. 3417 */ 3418 static void __init hugetlb_bootmem_free_invalid_page(int nid, struct page *page, 3419 struct hstate *h) 3420 { 3421 unsigned long npages = pages_per_huge_page(h); 3422 unsigned long pfn; 3423 3424 while (npages--) { 3425 pfn = page_to_pfn(page); 3426 __init_page_from_nid(pfn, nid); 3427 free_reserved_page(page); 3428 page++; 3429 } 3430 } 3431 3432 /* 3433 * Put bootmem huge pages into the standard lists after mem_map is up. 3434 * Note: This only applies to gigantic (order > MAX_PAGE_ORDER) pages. 3435 */ 3436 static void __init gather_bootmem_prealloc_node(unsigned long nid) 3437 { 3438 LIST_HEAD(folio_list); 3439 struct huge_bootmem_page *m, *tm; 3440 struct hstate *h = NULL, *prev_h = NULL; 3441 3442 list_for_each_entry_safe(m, tm, &huge_boot_pages[nid], list) { 3443 struct page *page = virt_to_page(m); 3444 struct folio *folio = (void *)page; 3445 3446 h = m->hstate; 3447 if (!hugetlb_bootmem_page_zones_valid(nid, m)) { 3448 /* 3449 * Can't use this page. Initialize the 3450 * page structures if that hasn't already 3451 * been done, and give them to the page 3452 * allocator. 3453 */ 3454 hugetlb_bootmem_free_invalid_page(nid, page, h); 3455 continue; 3456 } 3457 3458 /* 3459 * It is possible to have multiple huge page sizes (hstates) 3460 * in this list. If so, process each size separately. 3461 */ 3462 if (h != prev_h && prev_h != NULL) 3463 prep_and_add_bootmem_folios(prev_h, &folio_list); 3464 prev_h = h; 3465 3466 VM_BUG_ON(!hstate_is_gigantic(h)); 3467 WARN_ON(folio_ref_count(folio) != 1); 3468 3469 hugetlb_folio_init_vmemmap(folio, h, 3470 HUGETLB_VMEMMAP_RESERVE_PAGES); 3471 init_new_hugetlb_folio(h, folio); 3472 3473 if (hugetlb_bootmem_page_prehvo(m)) 3474 /* 3475 * If pre-HVO was done, just set the 3476 * flag, the HVO code will then skip 3477 * this folio. 3478 */ 3479 folio_set_hugetlb_vmemmap_optimized(folio); 3480 3481 if (hugetlb_bootmem_page_earlycma(m)) 3482 folio_set_hugetlb_cma(folio); 3483 3484 list_add(&folio->lru, &folio_list); 3485 3486 /* 3487 * We need to restore the 'stolen' pages to totalram_pages 3488 * in order to fix confusing memory reports from free(1) and 3489 * other side-effects, like CommitLimit going negative. 3490 * 3491 * For CMA pages, this is done in init_cma_pageblock 3492 * (via hugetlb_bootmem_init_migratetype), so skip it here. 3493 */ 3494 if (!folio_test_hugetlb_cma(folio)) 3495 adjust_managed_page_count(page, pages_per_huge_page(h)); 3496 cond_resched(); 3497 } 3498 3499 prep_and_add_bootmem_folios(h, &folio_list); 3500 } 3501 3502 static void __init gather_bootmem_prealloc_parallel(unsigned long start, 3503 unsigned long end, void *arg) 3504 { 3505 int nid; 3506 3507 for (nid = start; nid < end; nid++) 3508 gather_bootmem_prealloc_node(nid); 3509 } 3510 3511 static void __init gather_bootmem_prealloc(void) 3512 { 3513 struct padata_mt_job job = { 3514 .thread_fn = gather_bootmem_prealloc_parallel, 3515 .fn_arg = NULL, 3516 .start = 0, 3517 .size = nr_node_ids, 3518 .align = 1, 3519 .min_chunk = 1, 3520 .max_threads = num_node_state(N_MEMORY), 3521 .numa_aware = true, 3522 }; 3523 3524 padata_do_multithreaded(&job); 3525 } 3526 3527 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid) 3528 { 3529 unsigned long i; 3530 char buf[32]; 3531 LIST_HEAD(folio_list); 3532 3533 for (i = 0; i < h->max_huge_pages_node[nid]; ++i) { 3534 if (hstate_is_gigantic(h)) { 3535 if (!alloc_bootmem_huge_page(h, nid)) 3536 break; 3537 } else { 3538 struct folio *folio; 3539 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 3540 3541 folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, nid, 3542 &node_states[N_MEMORY], NULL); 3543 if (!folio) 3544 break; 3545 list_add(&folio->lru, &folio_list); 3546 } 3547 cond_resched(); 3548 } 3549 3550 if (!list_empty(&folio_list)) 3551 prep_and_add_allocated_folios(h, &folio_list); 3552 3553 if (i == h->max_huge_pages_node[nid]) 3554 return; 3555 3556 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3557 pr_warn("HugeTLB: allocating %u of page size %s failed node%d. Only allocated %lu hugepages.\n", 3558 h->max_huge_pages_node[nid], buf, nid, i); 3559 h->max_huge_pages -= (h->max_huge_pages_node[nid] - i); 3560 h->max_huge_pages_node[nid] = i; 3561 } 3562 3563 static bool __init hugetlb_hstate_alloc_pages_specific_nodes(struct hstate *h) 3564 { 3565 int i; 3566 bool node_specific_alloc = false; 3567 3568 for_each_online_node(i) { 3569 if (h->max_huge_pages_node[i] > 0) { 3570 hugetlb_hstate_alloc_pages_onenode(h, i); 3571 node_specific_alloc = true; 3572 } 3573 } 3574 3575 return node_specific_alloc; 3576 } 3577 3578 static void __init hugetlb_hstate_alloc_pages_errcheck(unsigned long allocated, struct hstate *h) 3579 { 3580 if (allocated < h->max_huge_pages) { 3581 char buf[32]; 3582 3583 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3584 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n", 3585 h->max_huge_pages, buf, allocated); 3586 h->max_huge_pages = allocated; 3587 } 3588 } 3589 3590 static void __init hugetlb_pages_alloc_boot_node(unsigned long start, unsigned long end, void *arg) 3591 { 3592 struct hstate *h = (struct hstate *)arg; 3593 int i, num = end - start; 3594 nodemask_t node_alloc_noretry; 3595 LIST_HEAD(folio_list); 3596 int next_node = first_online_node; 3597 3598 /* Bit mask controlling how hard we retry per-node allocations.*/ 3599 nodes_clear(node_alloc_noretry); 3600 3601 for (i = 0; i < num; ++i) { 3602 struct folio *folio = alloc_pool_huge_folio(h, &node_states[N_MEMORY], 3603 &node_alloc_noretry, &next_node); 3604 if (!folio) 3605 break; 3606 3607 list_move(&folio->lru, &folio_list); 3608 cond_resched(); 3609 } 3610 3611 prep_and_add_allocated_folios(h, &folio_list); 3612 } 3613 3614 static unsigned long __init hugetlb_gigantic_pages_alloc_boot(struct hstate *h) 3615 { 3616 unsigned long i; 3617 3618 for (i = 0; i < h->max_huge_pages; ++i) { 3619 if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE)) 3620 break; 3621 cond_resched(); 3622 } 3623 3624 return i; 3625 } 3626 3627 static unsigned long __init hugetlb_pages_alloc_boot(struct hstate *h) 3628 { 3629 struct padata_mt_job job = { 3630 .fn_arg = h, 3631 .align = 1, 3632 .numa_aware = true 3633 }; 3634 3635 unsigned long jiffies_start; 3636 unsigned long jiffies_end; 3637 3638 job.thread_fn = hugetlb_pages_alloc_boot_node; 3639 job.start = 0; 3640 job.size = h->max_huge_pages; 3641 3642 /* 3643 * job.max_threads is 25% of the available cpu threads by default. 3644 * 3645 * On large servers with terabytes of memory, huge page allocation 3646 * can consume a considerably amount of time. 3647 * 3648 * Tests below show how long it takes to allocate 1 TiB of memory with 2MiB huge pages. 3649 * 2MiB huge pages. Using more threads can significantly improve allocation time. 3650 * 3651 * +-----------------------+-------+-------+-------+-------+-------+ 3652 * | threads | 8 | 16 | 32 | 64 | 128 | 3653 * +-----------------------+-------+-------+-------+-------+-------+ 3654 * | skylake 144 cpus | 44s | 22s | 16s | 19s | 20s | 3655 * | cascade lake 192 cpus | 39s | 20s | 11s | 10s | 9s | 3656 * +-----------------------+-------+-------+-------+-------+-------+ 3657 */ 3658 if (hugepage_allocation_threads == 0) { 3659 hugepage_allocation_threads = num_online_cpus() / 4; 3660 hugepage_allocation_threads = max(hugepage_allocation_threads, 1); 3661 } 3662 3663 job.max_threads = hugepage_allocation_threads; 3664 job.min_chunk = h->max_huge_pages / hugepage_allocation_threads; 3665 3666 jiffies_start = jiffies; 3667 padata_do_multithreaded(&job); 3668 jiffies_end = jiffies; 3669 3670 pr_info("HugeTLB: allocation took %dms with hugepage_allocation_threads=%ld\n", 3671 jiffies_to_msecs(jiffies_end - jiffies_start), 3672 hugepage_allocation_threads); 3673 3674 return h->nr_huge_pages; 3675 } 3676 3677 /* 3678 * NOTE: this routine is called in different contexts for gigantic and 3679 * non-gigantic pages. 3680 * - For gigantic pages, this is called early in the boot process and 3681 * pages are allocated from memblock allocated or something similar. 3682 * Gigantic pages are actually added to pools later with the routine 3683 * gather_bootmem_prealloc. 3684 * - For non-gigantic pages, this is called later in the boot process after 3685 * all of mm is up and functional. Pages are allocated from buddy and 3686 * then added to hugetlb pools. 3687 */ 3688 static void __init hugetlb_hstate_alloc_pages(struct hstate *h) 3689 { 3690 unsigned long allocated; 3691 3692 /* 3693 * Skip gigantic hugepages allocation if early CMA 3694 * reservations are not available. 3695 */ 3696 if (hstate_is_gigantic(h) && hugetlb_cma_total_size() && 3697 !hugetlb_early_cma(h)) { 3698 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n"); 3699 return; 3700 } 3701 3702 /* do node specific alloc */ 3703 if (hugetlb_hstate_alloc_pages_specific_nodes(h)) 3704 return; 3705 3706 /* below will do all node balanced alloc */ 3707 if (hstate_is_gigantic(h)) 3708 allocated = hugetlb_gigantic_pages_alloc_boot(h); 3709 else 3710 allocated = hugetlb_pages_alloc_boot(h); 3711 3712 hugetlb_hstate_alloc_pages_errcheck(allocated, h); 3713 } 3714 3715 static void __init hugetlb_init_hstates(void) 3716 { 3717 struct hstate *h, *h2; 3718 3719 for_each_hstate(h) { 3720 /* oversize hugepages were init'ed in early boot */ 3721 if (!hstate_is_gigantic(h)) 3722 hugetlb_hstate_alloc_pages(h); 3723 3724 /* 3725 * Set demote order for each hstate. Note that 3726 * h->demote_order is initially 0. 3727 * - We can not demote gigantic pages if runtime freeing 3728 * is not supported, so skip this. 3729 * - If CMA allocation is possible, we can not demote 3730 * HUGETLB_PAGE_ORDER or smaller size pages. 3731 */ 3732 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 3733 continue; 3734 if (hugetlb_cma_total_size() && h->order <= HUGETLB_PAGE_ORDER) 3735 continue; 3736 for_each_hstate(h2) { 3737 if (h2 == h) 3738 continue; 3739 if (h2->order < h->order && 3740 h2->order > h->demote_order) 3741 h->demote_order = h2->order; 3742 } 3743 } 3744 } 3745 3746 static void __init report_hugepages(void) 3747 { 3748 struct hstate *h; 3749 unsigned long nrinvalid; 3750 3751 for_each_hstate(h) { 3752 char buf[32]; 3753 3754 nrinvalid = hstate_boot_nrinvalid[hstate_index(h)]; 3755 h->max_huge_pages -= nrinvalid; 3756 3757 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3758 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n", 3759 buf, h->free_huge_pages); 3760 if (nrinvalid) 3761 pr_info("HugeTLB: %s page size: %lu invalid page%s discarded\n", 3762 buf, nrinvalid, nrinvalid > 1 ? "s" : ""); 3763 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n", 3764 hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf); 3765 } 3766 } 3767 3768 #ifdef CONFIG_HIGHMEM 3769 static void try_to_free_low(struct hstate *h, unsigned long count, 3770 nodemask_t *nodes_allowed) 3771 { 3772 int i; 3773 LIST_HEAD(page_list); 3774 3775 lockdep_assert_held(&hugetlb_lock); 3776 if (hstate_is_gigantic(h)) 3777 return; 3778 3779 /* 3780 * Collect pages to be freed on a list, and free after dropping lock 3781 */ 3782 for_each_node_mask(i, *nodes_allowed) { 3783 struct folio *folio, *next; 3784 struct list_head *freel = &h->hugepage_freelists[i]; 3785 list_for_each_entry_safe(folio, next, freel, lru) { 3786 if (count >= h->nr_huge_pages) 3787 goto out; 3788 if (folio_test_highmem(folio)) 3789 continue; 3790 remove_hugetlb_folio(h, folio, false); 3791 list_add(&folio->lru, &page_list); 3792 } 3793 } 3794 3795 out: 3796 spin_unlock_irq(&hugetlb_lock); 3797 update_and_free_pages_bulk(h, &page_list); 3798 spin_lock_irq(&hugetlb_lock); 3799 } 3800 #else 3801 static inline void try_to_free_low(struct hstate *h, unsigned long count, 3802 nodemask_t *nodes_allowed) 3803 { 3804 } 3805 #endif 3806 3807 /* 3808 * Increment or decrement surplus_huge_pages. Keep node-specific counters 3809 * balanced by operating on them in a round-robin fashion. 3810 * Returns 1 if an adjustment was made. 3811 */ 3812 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed, 3813 int delta) 3814 { 3815 int nr_nodes, node; 3816 3817 lockdep_assert_held(&hugetlb_lock); 3818 VM_BUG_ON(delta != -1 && delta != 1); 3819 3820 if (delta < 0) { 3821 for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, nodes_allowed) { 3822 if (h->surplus_huge_pages_node[node]) 3823 goto found; 3824 } 3825 } else { 3826 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 3827 if (h->surplus_huge_pages_node[node] < 3828 h->nr_huge_pages_node[node]) 3829 goto found; 3830 } 3831 } 3832 return 0; 3833 3834 found: 3835 h->surplus_huge_pages += delta; 3836 h->surplus_huge_pages_node[node] += delta; 3837 return 1; 3838 } 3839 3840 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) 3841 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid, 3842 nodemask_t *nodes_allowed) 3843 { 3844 unsigned long persistent_free_count; 3845 unsigned long min_count; 3846 unsigned long allocated; 3847 struct folio *folio; 3848 LIST_HEAD(page_list); 3849 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL); 3850 3851 /* 3852 * Bit mask controlling how hard we retry per-node allocations. 3853 * If we can not allocate the bit mask, do not attempt to allocate 3854 * the requested huge pages. 3855 */ 3856 if (node_alloc_noretry) 3857 nodes_clear(*node_alloc_noretry); 3858 else 3859 return -ENOMEM; 3860 3861 /* 3862 * resize_lock mutex prevents concurrent adjustments to number of 3863 * pages in hstate via the proc/sysfs interfaces. 3864 */ 3865 mutex_lock(&h->resize_lock); 3866 flush_free_hpage_work(h); 3867 spin_lock_irq(&hugetlb_lock); 3868 3869 /* 3870 * Check for a node specific request. 3871 * Changing node specific huge page count may require a corresponding 3872 * change to the global count. In any case, the passed node mask 3873 * (nodes_allowed) will restrict alloc/free to the specified node. 3874 */ 3875 if (nid != NUMA_NO_NODE) { 3876 unsigned long old_count = count; 3877 3878 count += persistent_huge_pages(h) - 3879 (h->nr_huge_pages_node[nid] - 3880 h->surplus_huge_pages_node[nid]); 3881 /* 3882 * User may have specified a large count value which caused the 3883 * above calculation to overflow. In this case, they wanted 3884 * to allocate as many huge pages as possible. Set count to 3885 * largest possible value to align with their intention. 3886 */ 3887 if (count < old_count) 3888 count = ULONG_MAX; 3889 } 3890 3891 /* 3892 * Gigantic pages runtime allocation depend on the capability for large 3893 * page range allocation. 3894 * If the system does not provide this feature, return an error when 3895 * the user tries to allocate gigantic pages but let the user free the 3896 * boottime allocated gigantic pages. 3897 */ 3898 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) { 3899 if (count > persistent_huge_pages(h)) { 3900 spin_unlock_irq(&hugetlb_lock); 3901 mutex_unlock(&h->resize_lock); 3902 NODEMASK_FREE(node_alloc_noretry); 3903 return -EINVAL; 3904 } 3905 /* Fall through to decrease pool */ 3906 } 3907 3908 /* 3909 * Increase the pool size 3910 * First take pages out of surplus state. Then make up the 3911 * remaining difference by allocating fresh huge pages. 3912 * 3913 * We might race with alloc_surplus_hugetlb_folio() here and be unable 3914 * to convert a surplus huge page to a normal huge page. That is 3915 * not critical, though, it just means the overall size of the 3916 * pool might be one hugepage larger than it needs to be, but 3917 * within all the constraints specified by the sysctls. 3918 */ 3919 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { 3920 if (!adjust_pool_surplus(h, nodes_allowed, -1)) 3921 break; 3922 } 3923 3924 allocated = 0; 3925 while (count > (persistent_huge_pages(h) + allocated)) { 3926 /* 3927 * If this allocation races such that we no longer need the 3928 * page, free_huge_folio will handle it by freeing the page 3929 * and reducing the surplus. 3930 */ 3931 spin_unlock_irq(&hugetlb_lock); 3932 3933 /* yield cpu to avoid soft lockup */ 3934 cond_resched(); 3935 3936 folio = alloc_pool_huge_folio(h, nodes_allowed, 3937 node_alloc_noretry, 3938 &h->next_nid_to_alloc); 3939 if (!folio) { 3940 prep_and_add_allocated_folios(h, &page_list); 3941 spin_lock_irq(&hugetlb_lock); 3942 goto out; 3943 } 3944 3945 list_add(&folio->lru, &page_list); 3946 allocated++; 3947 3948 /* Bail for signals. Probably ctrl-c from user */ 3949 if (signal_pending(current)) { 3950 prep_and_add_allocated_folios(h, &page_list); 3951 spin_lock_irq(&hugetlb_lock); 3952 goto out; 3953 } 3954 3955 spin_lock_irq(&hugetlb_lock); 3956 } 3957 3958 /* Add allocated pages to the pool */ 3959 if (!list_empty(&page_list)) { 3960 spin_unlock_irq(&hugetlb_lock); 3961 prep_and_add_allocated_folios(h, &page_list); 3962 spin_lock_irq(&hugetlb_lock); 3963 } 3964 3965 /* 3966 * Decrease the pool size 3967 * First return free pages to the buddy allocator (being careful 3968 * to keep enough around to satisfy reservations). Then place 3969 * pages into surplus state as needed so the pool will shrink 3970 * to the desired size as pages become free. 3971 * 3972 * By placing pages into the surplus state independent of the 3973 * overcommit value, we are allowing the surplus pool size to 3974 * exceed overcommit. There are few sane options here. Since 3975 * alloc_surplus_hugetlb_folio() is checking the global counter, 3976 * though, we'll note that we're not allowed to exceed surplus 3977 * and won't grow the pool anywhere else. Not until one of the 3978 * sysctls are changed, or the surplus pages go out of use. 3979 * 3980 * min_count is the expected number of persistent pages, we 3981 * shouldn't calculate min_count by using 3982 * resv_huge_pages + persistent_huge_pages() - free_huge_pages, 3983 * because there may exist free surplus huge pages, and this will 3984 * lead to subtracting twice. Free surplus huge pages come from HVO 3985 * failing to restore vmemmap, see comments in the callers of 3986 * hugetlb_vmemmap_restore_folio(). Thus, we should calculate 3987 * persistent free count first. 3988 */ 3989 persistent_free_count = h->free_huge_pages; 3990 if (h->free_huge_pages > persistent_huge_pages(h)) { 3991 if (h->free_huge_pages > h->surplus_huge_pages) 3992 persistent_free_count -= h->surplus_huge_pages; 3993 else 3994 persistent_free_count = 0; 3995 } 3996 min_count = h->resv_huge_pages + persistent_huge_pages(h) - persistent_free_count; 3997 min_count = max(count, min_count); 3998 try_to_free_low(h, min_count, nodes_allowed); 3999 4000 /* 4001 * Collect pages to be removed on list without dropping lock 4002 */ 4003 while (min_count < persistent_huge_pages(h)) { 4004 folio = remove_pool_hugetlb_folio(h, nodes_allowed, 0); 4005 if (!folio) 4006 break; 4007 4008 list_add(&folio->lru, &page_list); 4009 } 4010 /* free the pages after dropping lock */ 4011 spin_unlock_irq(&hugetlb_lock); 4012 update_and_free_pages_bulk(h, &page_list); 4013 flush_free_hpage_work(h); 4014 spin_lock_irq(&hugetlb_lock); 4015 4016 while (count < persistent_huge_pages(h)) { 4017 if (!adjust_pool_surplus(h, nodes_allowed, 1)) 4018 break; 4019 } 4020 out: 4021 h->max_huge_pages = persistent_huge_pages(h); 4022 spin_unlock_irq(&hugetlb_lock); 4023 mutex_unlock(&h->resize_lock); 4024 4025 NODEMASK_FREE(node_alloc_noretry); 4026 4027 return 0; 4028 } 4029 4030 static long demote_free_hugetlb_folios(struct hstate *src, struct hstate *dst, 4031 struct list_head *src_list) 4032 { 4033 long rc; 4034 struct folio *folio, *next; 4035 LIST_HEAD(dst_list); 4036 LIST_HEAD(ret_list); 4037 4038 rc = hugetlb_vmemmap_restore_folios(src, src_list, &ret_list); 4039 list_splice_init(&ret_list, src_list); 4040 4041 /* 4042 * Taking target hstate mutex synchronizes with set_max_huge_pages. 4043 * Without the mutex, pages added to target hstate could be marked 4044 * as surplus. 4045 * 4046 * Note that we already hold src->resize_lock. To prevent deadlock, 4047 * use the convention of always taking larger size hstate mutex first. 4048 */ 4049 mutex_lock(&dst->resize_lock); 4050 4051 list_for_each_entry_safe(folio, next, src_list, lru) { 4052 int i; 4053 bool cma; 4054 4055 if (folio_test_hugetlb_vmemmap_optimized(folio)) 4056 continue; 4057 4058 cma = folio_test_hugetlb_cma(folio); 4059 4060 list_del(&folio->lru); 4061 4062 split_page_owner(&folio->page, huge_page_order(src), huge_page_order(dst)); 4063 pgalloc_tag_split(folio, huge_page_order(src), huge_page_order(dst)); 4064 4065 for (i = 0; i < pages_per_huge_page(src); i += pages_per_huge_page(dst)) { 4066 struct page *page = folio_page(folio, i); 4067 /* Careful: see __split_huge_page_tail() */ 4068 struct folio *new_folio = (struct folio *)page; 4069 4070 clear_compound_head(page); 4071 prep_compound_page(page, dst->order); 4072 4073 new_folio->mapping = NULL; 4074 init_new_hugetlb_folio(dst, new_folio); 4075 /* Copy the CMA flag so that it is freed correctly */ 4076 if (cma) 4077 folio_set_hugetlb_cma(new_folio); 4078 list_add(&new_folio->lru, &dst_list); 4079 } 4080 } 4081 4082 prep_and_add_allocated_folios(dst, &dst_list); 4083 4084 mutex_unlock(&dst->resize_lock); 4085 4086 return rc; 4087 } 4088 4089 static long demote_pool_huge_page(struct hstate *src, nodemask_t *nodes_allowed, 4090 unsigned long nr_to_demote) 4091 __must_hold(&hugetlb_lock) 4092 { 4093 int nr_nodes, node; 4094 struct hstate *dst; 4095 long rc = 0; 4096 long nr_demoted = 0; 4097 4098 lockdep_assert_held(&hugetlb_lock); 4099 4100 /* We should never get here if no demote order */ 4101 if (!src->demote_order) { 4102 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n"); 4103 return -EINVAL; /* internal error */ 4104 } 4105 dst = size_to_hstate(PAGE_SIZE << src->demote_order); 4106 4107 for_each_node_mask_to_free(src, nr_nodes, node, nodes_allowed) { 4108 LIST_HEAD(list); 4109 struct folio *folio, *next; 4110 4111 list_for_each_entry_safe(folio, next, &src->hugepage_freelists[node], lru) { 4112 if (folio_test_hwpoison(folio)) 4113 continue; 4114 4115 remove_hugetlb_folio(src, folio, false); 4116 list_add(&folio->lru, &list); 4117 4118 if (++nr_demoted == nr_to_demote) 4119 break; 4120 } 4121 4122 spin_unlock_irq(&hugetlb_lock); 4123 4124 rc = demote_free_hugetlb_folios(src, dst, &list); 4125 4126 spin_lock_irq(&hugetlb_lock); 4127 4128 list_for_each_entry_safe(folio, next, &list, lru) { 4129 list_del(&folio->lru); 4130 add_hugetlb_folio(src, folio, false); 4131 4132 nr_demoted--; 4133 } 4134 4135 if (rc < 0 || nr_demoted == nr_to_demote) 4136 break; 4137 } 4138 4139 /* 4140 * Not absolutely necessary, but for consistency update max_huge_pages 4141 * based on pool changes for the demoted page. 4142 */ 4143 src->max_huge_pages -= nr_demoted; 4144 dst->max_huge_pages += nr_demoted << (huge_page_order(src) - huge_page_order(dst)); 4145 4146 if (rc < 0) 4147 return rc; 4148 4149 if (nr_demoted) 4150 return nr_demoted; 4151 /* 4152 * Only way to get here is if all pages on free lists are poisoned. 4153 * Return -EBUSY so that caller will not retry. 4154 */ 4155 return -EBUSY; 4156 } 4157 4158 #define HSTATE_ATTR_RO(_name) \ 4159 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 4160 4161 #define HSTATE_ATTR_WO(_name) \ 4162 static struct kobj_attribute _name##_attr = __ATTR_WO(_name) 4163 4164 #define HSTATE_ATTR(_name) \ 4165 static struct kobj_attribute _name##_attr = __ATTR_RW(_name) 4166 4167 static struct kobject *hugepages_kobj; 4168 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 4169 4170 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp); 4171 4172 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp) 4173 { 4174 int i; 4175 4176 for (i = 0; i < HUGE_MAX_HSTATE; i++) 4177 if (hstate_kobjs[i] == kobj) { 4178 if (nidp) 4179 *nidp = NUMA_NO_NODE; 4180 return &hstates[i]; 4181 } 4182 4183 return kobj_to_node_hstate(kobj, nidp); 4184 } 4185 4186 static ssize_t nr_hugepages_show_common(struct kobject *kobj, 4187 struct kobj_attribute *attr, char *buf) 4188 { 4189 struct hstate *h; 4190 unsigned long nr_huge_pages; 4191 int nid; 4192 4193 h = kobj_to_hstate(kobj, &nid); 4194 if (nid == NUMA_NO_NODE) 4195 nr_huge_pages = h->nr_huge_pages; 4196 else 4197 nr_huge_pages = h->nr_huge_pages_node[nid]; 4198 4199 return sysfs_emit(buf, "%lu\n", nr_huge_pages); 4200 } 4201 4202 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy, 4203 struct hstate *h, int nid, 4204 unsigned long count, size_t len) 4205 { 4206 int err; 4207 nodemask_t nodes_allowed, *n_mask; 4208 4209 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 4210 return -EINVAL; 4211 4212 if (nid == NUMA_NO_NODE) { 4213 /* 4214 * global hstate attribute 4215 */ 4216 if (!(obey_mempolicy && 4217 init_nodemask_of_mempolicy(&nodes_allowed))) 4218 n_mask = &node_states[N_MEMORY]; 4219 else 4220 n_mask = &nodes_allowed; 4221 } else { 4222 /* 4223 * Node specific request. count adjustment happens in 4224 * set_max_huge_pages() after acquiring hugetlb_lock. 4225 */ 4226 init_nodemask_of_node(&nodes_allowed, nid); 4227 n_mask = &nodes_allowed; 4228 } 4229 4230 err = set_max_huge_pages(h, count, nid, n_mask); 4231 4232 return err ? err : len; 4233 } 4234 4235 static ssize_t nr_hugepages_store_common(bool obey_mempolicy, 4236 struct kobject *kobj, const char *buf, 4237 size_t len) 4238 { 4239 struct hstate *h; 4240 unsigned long count; 4241 int nid; 4242 int err; 4243 4244 err = kstrtoul(buf, 10, &count); 4245 if (err) 4246 return err; 4247 4248 h = kobj_to_hstate(kobj, &nid); 4249 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len); 4250 } 4251 4252 static ssize_t nr_hugepages_show(struct kobject *kobj, 4253 struct kobj_attribute *attr, char *buf) 4254 { 4255 return nr_hugepages_show_common(kobj, attr, buf); 4256 } 4257 4258 static ssize_t nr_hugepages_store(struct kobject *kobj, 4259 struct kobj_attribute *attr, const char *buf, size_t len) 4260 { 4261 return nr_hugepages_store_common(false, kobj, buf, len); 4262 } 4263 HSTATE_ATTR(nr_hugepages); 4264 4265 #ifdef CONFIG_NUMA 4266 4267 /* 4268 * hstate attribute for optionally mempolicy-based constraint on persistent 4269 * huge page alloc/free. 4270 */ 4271 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj, 4272 struct kobj_attribute *attr, 4273 char *buf) 4274 { 4275 return nr_hugepages_show_common(kobj, attr, buf); 4276 } 4277 4278 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj, 4279 struct kobj_attribute *attr, const char *buf, size_t len) 4280 { 4281 return nr_hugepages_store_common(true, kobj, buf, len); 4282 } 4283 HSTATE_ATTR(nr_hugepages_mempolicy); 4284 #endif 4285 4286 4287 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, 4288 struct kobj_attribute *attr, char *buf) 4289 { 4290 struct hstate *h = kobj_to_hstate(kobj, NULL); 4291 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages); 4292 } 4293 4294 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, 4295 struct kobj_attribute *attr, const char *buf, size_t count) 4296 { 4297 int err; 4298 unsigned long input; 4299 struct hstate *h = kobj_to_hstate(kobj, NULL); 4300 4301 if (hstate_is_gigantic(h)) 4302 return -EINVAL; 4303 4304 err = kstrtoul(buf, 10, &input); 4305 if (err) 4306 return err; 4307 4308 spin_lock_irq(&hugetlb_lock); 4309 h->nr_overcommit_huge_pages = input; 4310 spin_unlock_irq(&hugetlb_lock); 4311 4312 return count; 4313 } 4314 HSTATE_ATTR(nr_overcommit_hugepages); 4315 4316 static ssize_t free_hugepages_show(struct kobject *kobj, 4317 struct kobj_attribute *attr, char *buf) 4318 { 4319 struct hstate *h; 4320 unsigned long free_huge_pages; 4321 int nid; 4322 4323 h = kobj_to_hstate(kobj, &nid); 4324 if (nid == NUMA_NO_NODE) 4325 free_huge_pages = h->free_huge_pages; 4326 else 4327 free_huge_pages = h->free_huge_pages_node[nid]; 4328 4329 return sysfs_emit(buf, "%lu\n", free_huge_pages); 4330 } 4331 HSTATE_ATTR_RO(free_hugepages); 4332 4333 static ssize_t resv_hugepages_show(struct kobject *kobj, 4334 struct kobj_attribute *attr, char *buf) 4335 { 4336 struct hstate *h = kobj_to_hstate(kobj, NULL); 4337 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages); 4338 } 4339 HSTATE_ATTR_RO(resv_hugepages); 4340 4341 static ssize_t surplus_hugepages_show(struct kobject *kobj, 4342 struct kobj_attribute *attr, char *buf) 4343 { 4344 struct hstate *h; 4345 unsigned long surplus_huge_pages; 4346 int nid; 4347 4348 h = kobj_to_hstate(kobj, &nid); 4349 if (nid == NUMA_NO_NODE) 4350 surplus_huge_pages = h->surplus_huge_pages; 4351 else 4352 surplus_huge_pages = h->surplus_huge_pages_node[nid]; 4353 4354 return sysfs_emit(buf, "%lu\n", surplus_huge_pages); 4355 } 4356 HSTATE_ATTR_RO(surplus_hugepages); 4357 4358 static ssize_t demote_store(struct kobject *kobj, 4359 struct kobj_attribute *attr, const char *buf, size_t len) 4360 { 4361 unsigned long nr_demote; 4362 unsigned long nr_available; 4363 nodemask_t nodes_allowed, *n_mask; 4364 struct hstate *h; 4365 int err; 4366 int nid; 4367 4368 err = kstrtoul(buf, 10, &nr_demote); 4369 if (err) 4370 return err; 4371 h = kobj_to_hstate(kobj, &nid); 4372 4373 if (nid != NUMA_NO_NODE) { 4374 init_nodemask_of_node(&nodes_allowed, nid); 4375 n_mask = &nodes_allowed; 4376 } else { 4377 n_mask = &node_states[N_MEMORY]; 4378 } 4379 4380 /* Synchronize with other sysfs operations modifying huge pages */ 4381 mutex_lock(&h->resize_lock); 4382 spin_lock_irq(&hugetlb_lock); 4383 4384 while (nr_demote) { 4385 long rc; 4386 4387 /* 4388 * Check for available pages to demote each time thorough the 4389 * loop as demote_pool_huge_page will drop hugetlb_lock. 4390 */ 4391 if (nid != NUMA_NO_NODE) 4392 nr_available = h->free_huge_pages_node[nid]; 4393 else 4394 nr_available = h->free_huge_pages; 4395 nr_available -= h->resv_huge_pages; 4396 if (!nr_available) 4397 break; 4398 4399 rc = demote_pool_huge_page(h, n_mask, nr_demote); 4400 if (rc < 0) { 4401 err = rc; 4402 break; 4403 } 4404 4405 nr_demote -= rc; 4406 } 4407 4408 spin_unlock_irq(&hugetlb_lock); 4409 mutex_unlock(&h->resize_lock); 4410 4411 if (err) 4412 return err; 4413 return len; 4414 } 4415 HSTATE_ATTR_WO(demote); 4416 4417 static ssize_t demote_size_show(struct kobject *kobj, 4418 struct kobj_attribute *attr, char *buf) 4419 { 4420 struct hstate *h = kobj_to_hstate(kobj, NULL); 4421 unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K; 4422 4423 return sysfs_emit(buf, "%lukB\n", demote_size); 4424 } 4425 4426 static ssize_t demote_size_store(struct kobject *kobj, 4427 struct kobj_attribute *attr, 4428 const char *buf, size_t count) 4429 { 4430 struct hstate *h, *demote_hstate; 4431 unsigned long demote_size; 4432 unsigned int demote_order; 4433 4434 demote_size = (unsigned long)memparse(buf, NULL); 4435 4436 demote_hstate = size_to_hstate(demote_size); 4437 if (!demote_hstate) 4438 return -EINVAL; 4439 demote_order = demote_hstate->order; 4440 if (demote_order < HUGETLB_PAGE_ORDER) 4441 return -EINVAL; 4442 4443 /* demote order must be smaller than hstate order */ 4444 h = kobj_to_hstate(kobj, NULL); 4445 if (demote_order >= h->order) 4446 return -EINVAL; 4447 4448 /* resize_lock synchronizes access to demote size and writes */ 4449 mutex_lock(&h->resize_lock); 4450 h->demote_order = demote_order; 4451 mutex_unlock(&h->resize_lock); 4452 4453 return count; 4454 } 4455 HSTATE_ATTR(demote_size); 4456 4457 static struct attribute *hstate_attrs[] = { 4458 &nr_hugepages_attr.attr, 4459 &nr_overcommit_hugepages_attr.attr, 4460 &free_hugepages_attr.attr, 4461 &resv_hugepages_attr.attr, 4462 &surplus_hugepages_attr.attr, 4463 #ifdef CONFIG_NUMA 4464 &nr_hugepages_mempolicy_attr.attr, 4465 #endif 4466 NULL, 4467 }; 4468 4469 static const struct attribute_group hstate_attr_group = { 4470 .attrs = hstate_attrs, 4471 }; 4472 4473 static struct attribute *hstate_demote_attrs[] = { 4474 &demote_size_attr.attr, 4475 &demote_attr.attr, 4476 NULL, 4477 }; 4478 4479 static const struct attribute_group hstate_demote_attr_group = { 4480 .attrs = hstate_demote_attrs, 4481 }; 4482 4483 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent, 4484 struct kobject **hstate_kobjs, 4485 const struct attribute_group *hstate_attr_group) 4486 { 4487 int retval; 4488 int hi = hstate_index(h); 4489 4490 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent); 4491 if (!hstate_kobjs[hi]) 4492 return -ENOMEM; 4493 4494 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group); 4495 if (retval) { 4496 kobject_put(hstate_kobjs[hi]); 4497 hstate_kobjs[hi] = NULL; 4498 return retval; 4499 } 4500 4501 if (h->demote_order) { 4502 retval = sysfs_create_group(hstate_kobjs[hi], 4503 &hstate_demote_attr_group); 4504 if (retval) { 4505 pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name); 4506 sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group); 4507 kobject_put(hstate_kobjs[hi]); 4508 hstate_kobjs[hi] = NULL; 4509 return retval; 4510 } 4511 } 4512 4513 return 0; 4514 } 4515 4516 #ifdef CONFIG_NUMA 4517 static bool hugetlb_sysfs_initialized __ro_after_init; 4518 4519 /* 4520 * node_hstate/s - associate per node hstate attributes, via their kobjects, 4521 * with node devices in node_devices[] using a parallel array. The array 4522 * index of a node device or _hstate == node id. 4523 * This is here to avoid any static dependency of the node device driver, in 4524 * the base kernel, on the hugetlb module. 4525 */ 4526 struct node_hstate { 4527 struct kobject *hugepages_kobj; 4528 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 4529 }; 4530 static struct node_hstate node_hstates[MAX_NUMNODES]; 4531 4532 /* 4533 * A subset of global hstate attributes for node devices 4534 */ 4535 static struct attribute *per_node_hstate_attrs[] = { 4536 &nr_hugepages_attr.attr, 4537 &free_hugepages_attr.attr, 4538 &surplus_hugepages_attr.attr, 4539 NULL, 4540 }; 4541 4542 static const struct attribute_group per_node_hstate_attr_group = { 4543 .attrs = per_node_hstate_attrs, 4544 }; 4545 4546 /* 4547 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj. 4548 * Returns node id via non-NULL nidp. 4549 */ 4550 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 4551 { 4552 int nid; 4553 4554 for (nid = 0; nid < nr_node_ids; nid++) { 4555 struct node_hstate *nhs = &node_hstates[nid]; 4556 int i; 4557 for (i = 0; i < HUGE_MAX_HSTATE; i++) 4558 if (nhs->hstate_kobjs[i] == kobj) { 4559 if (nidp) 4560 *nidp = nid; 4561 return &hstates[i]; 4562 } 4563 } 4564 4565 BUG(); 4566 return NULL; 4567 } 4568 4569 /* 4570 * Unregister hstate attributes from a single node device. 4571 * No-op if no hstate attributes attached. 4572 */ 4573 void hugetlb_unregister_node(struct node *node) 4574 { 4575 struct hstate *h; 4576 struct node_hstate *nhs = &node_hstates[node->dev.id]; 4577 4578 if (!nhs->hugepages_kobj) 4579 return; /* no hstate attributes */ 4580 4581 for_each_hstate(h) { 4582 int idx = hstate_index(h); 4583 struct kobject *hstate_kobj = nhs->hstate_kobjs[idx]; 4584 4585 if (!hstate_kobj) 4586 continue; 4587 if (h->demote_order) 4588 sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group); 4589 sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group); 4590 kobject_put(hstate_kobj); 4591 nhs->hstate_kobjs[idx] = NULL; 4592 } 4593 4594 kobject_put(nhs->hugepages_kobj); 4595 nhs->hugepages_kobj = NULL; 4596 } 4597 4598 4599 /* 4600 * Register hstate attributes for a single node device. 4601 * No-op if attributes already registered. 4602 */ 4603 void hugetlb_register_node(struct node *node) 4604 { 4605 struct hstate *h; 4606 struct node_hstate *nhs = &node_hstates[node->dev.id]; 4607 int err; 4608 4609 if (!hugetlb_sysfs_initialized) 4610 return; 4611 4612 if (nhs->hugepages_kobj) 4613 return; /* already allocated */ 4614 4615 nhs->hugepages_kobj = kobject_create_and_add("hugepages", 4616 &node->dev.kobj); 4617 if (!nhs->hugepages_kobj) 4618 return; 4619 4620 for_each_hstate(h) { 4621 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj, 4622 nhs->hstate_kobjs, 4623 &per_node_hstate_attr_group); 4624 if (err) { 4625 pr_err("HugeTLB: Unable to add hstate %s for node %d\n", 4626 h->name, node->dev.id); 4627 hugetlb_unregister_node(node); 4628 break; 4629 } 4630 } 4631 } 4632 4633 /* 4634 * hugetlb init time: register hstate attributes for all registered node 4635 * devices of nodes that have memory. All on-line nodes should have 4636 * registered their associated device by this time. 4637 */ 4638 static void __init hugetlb_register_all_nodes(void) 4639 { 4640 int nid; 4641 4642 for_each_online_node(nid) 4643 hugetlb_register_node(node_devices[nid]); 4644 } 4645 #else /* !CONFIG_NUMA */ 4646 4647 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 4648 { 4649 BUG(); 4650 if (nidp) 4651 *nidp = -1; 4652 return NULL; 4653 } 4654 4655 static void hugetlb_register_all_nodes(void) { } 4656 4657 #endif 4658 4659 static void __init hugetlb_sysfs_init(void) 4660 { 4661 struct hstate *h; 4662 int err; 4663 4664 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); 4665 if (!hugepages_kobj) 4666 return; 4667 4668 for_each_hstate(h) { 4669 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj, 4670 hstate_kobjs, &hstate_attr_group); 4671 if (err) 4672 pr_err("HugeTLB: Unable to add hstate %s\n", h->name); 4673 } 4674 4675 #ifdef CONFIG_NUMA 4676 hugetlb_sysfs_initialized = true; 4677 #endif 4678 hugetlb_register_all_nodes(); 4679 } 4680 4681 #ifdef CONFIG_SYSCTL 4682 static void hugetlb_sysctl_init(void); 4683 #else 4684 static inline void hugetlb_sysctl_init(void) { } 4685 #endif 4686 4687 static int __init hugetlb_init(void) 4688 { 4689 int i; 4690 4691 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE < 4692 __NR_HPAGEFLAGS); 4693 4694 if (!hugepages_supported()) { 4695 if (hugetlb_max_hstate || default_hstate_max_huge_pages) 4696 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n"); 4697 return 0; 4698 } 4699 4700 /* 4701 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some 4702 * architectures depend on setup being done here. 4703 */ 4704 hugetlb_add_hstate(HUGETLB_PAGE_ORDER); 4705 if (!parsed_default_hugepagesz) { 4706 /* 4707 * If we did not parse a default huge page size, set 4708 * default_hstate_idx to HPAGE_SIZE hstate. And, if the 4709 * number of huge pages for this default size was implicitly 4710 * specified, set that here as well. 4711 * Note that the implicit setting will overwrite an explicit 4712 * setting. A warning will be printed in this case. 4713 */ 4714 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE)); 4715 if (default_hstate_max_huge_pages) { 4716 if (default_hstate.max_huge_pages) { 4717 char buf[32]; 4718 4719 string_get_size(huge_page_size(&default_hstate), 4720 1, STRING_UNITS_2, buf, 32); 4721 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n", 4722 default_hstate.max_huge_pages, buf); 4723 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n", 4724 default_hstate_max_huge_pages); 4725 } 4726 default_hstate.max_huge_pages = 4727 default_hstate_max_huge_pages; 4728 4729 for_each_online_node(i) 4730 default_hstate.max_huge_pages_node[i] = 4731 default_hugepages_in_node[i]; 4732 } 4733 } 4734 4735 hugetlb_cma_check(); 4736 hugetlb_init_hstates(); 4737 gather_bootmem_prealloc(); 4738 report_hugepages(); 4739 4740 hugetlb_sysfs_init(); 4741 hugetlb_cgroup_file_init(); 4742 hugetlb_sysctl_init(); 4743 4744 #ifdef CONFIG_SMP 4745 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus()); 4746 #else 4747 num_fault_mutexes = 1; 4748 #endif 4749 hugetlb_fault_mutex_table = 4750 kmalloc_array(num_fault_mutexes, sizeof(struct mutex), 4751 GFP_KERNEL); 4752 BUG_ON(!hugetlb_fault_mutex_table); 4753 4754 for (i = 0; i < num_fault_mutexes; i++) 4755 mutex_init(&hugetlb_fault_mutex_table[i]); 4756 return 0; 4757 } 4758 subsys_initcall(hugetlb_init); 4759 4760 /* Overwritten by architectures with more huge page sizes */ 4761 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size) 4762 { 4763 return size == HPAGE_SIZE; 4764 } 4765 4766 void __init hugetlb_add_hstate(unsigned int order) 4767 { 4768 struct hstate *h; 4769 unsigned long i; 4770 4771 if (size_to_hstate(PAGE_SIZE << order)) { 4772 return; 4773 } 4774 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE); 4775 BUG_ON(order < order_base_2(__NR_USED_SUBPAGE)); 4776 h = &hstates[hugetlb_max_hstate++]; 4777 __mutex_init(&h->resize_lock, "resize mutex", &h->resize_key); 4778 h->order = order; 4779 h->mask = ~(huge_page_size(h) - 1); 4780 for (i = 0; i < MAX_NUMNODES; ++i) 4781 INIT_LIST_HEAD(&h->hugepage_freelists[i]); 4782 INIT_LIST_HEAD(&h->hugepage_activelist); 4783 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", 4784 huge_page_size(h)/SZ_1K); 4785 4786 parsed_hstate = h; 4787 } 4788 4789 bool __init __weak hugetlb_node_alloc_supported(void) 4790 { 4791 return true; 4792 } 4793 4794 static void __init hugepages_clear_pages_in_node(void) 4795 { 4796 if (!hugetlb_max_hstate) { 4797 default_hstate_max_huge_pages = 0; 4798 memset(default_hugepages_in_node, 0, 4799 sizeof(default_hugepages_in_node)); 4800 } else { 4801 parsed_hstate->max_huge_pages = 0; 4802 memset(parsed_hstate->max_huge_pages_node, 0, 4803 sizeof(parsed_hstate->max_huge_pages_node)); 4804 } 4805 } 4806 4807 static __init int hugetlb_add_param(char *s, int (*setup)(char *)) 4808 { 4809 size_t len; 4810 char *p; 4811 4812 if (hugetlb_param_index >= HUGE_MAX_CMDLINE_ARGS) 4813 return -EINVAL; 4814 4815 len = strlen(s) + 1; 4816 if (len + hstate_cmdline_index > sizeof(hstate_cmdline_buf)) 4817 return -EINVAL; 4818 4819 p = &hstate_cmdline_buf[hstate_cmdline_index]; 4820 memcpy(p, s, len); 4821 hstate_cmdline_index += len; 4822 4823 hugetlb_params[hugetlb_param_index].val = p; 4824 hugetlb_params[hugetlb_param_index].setup = setup; 4825 4826 hugetlb_param_index++; 4827 4828 return 0; 4829 } 4830 4831 static __init void hugetlb_parse_params(void) 4832 { 4833 int i; 4834 struct hugetlb_cmdline *hcp; 4835 4836 for (i = 0; i < hugetlb_param_index; i++) { 4837 hcp = &hugetlb_params[i]; 4838 4839 hcp->setup(hcp->val); 4840 } 4841 4842 hugetlb_cma_validate_params(); 4843 } 4844 4845 /* 4846 * hugepages command line processing 4847 * hugepages normally follows a valid hugepagsz or default_hugepagsz 4848 * specification. If not, ignore the hugepages value. hugepages can also 4849 * be the first huge page command line option in which case it implicitly 4850 * specifies the number of huge pages for the default size. 4851 */ 4852 static int __init hugepages_setup(char *s) 4853 { 4854 unsigned long *mhp; 4855 static unsigned long *last_mhp; 4856 int node = NUMA_NO_NODE; 4857 int count; 4858 unsigned long tmp; 4859 char *p = s; 4860 4861 if (!parsed_valid_hugepagesz) { 4862 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s); 4863 parsed_valid_hugepagesz = true; 4864 return -EINVAL; 4865 } 4866 4867 /* 4868 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter 4869 * yet, so this hugepages= parameter goes to the "default hstate". 4870 * Otherwise, it goes with the previously parsed hugepagesz or 4871 * default_hugepagesz. 4872 */ 4873 else if (!hugetlb_max_hstate) 4874 mhp = &default_hstate_max_huge_pages; 4875 else 4876 mhp = &parsed_hstate->max_huge_pages; 4877 4878 if (mhp == last_mhp) { 4879 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s); 4880 return 1; 4881 } 4882 4883 while (*p) { 4884 count = 0; 4885 if (sscanf(p, "%lu%n", &tmp, &count) != 1) 4886 goto invalid; 4887 /* Parameter is node format */ 4888 if (p[count] == ':') { 4889 if (!hugetlb_node_alloc_supported()) { 4890 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n"); 4891 return 1; 4892 } 4893 if (tmp >= MAX_NUMNODES || !node_online(tmp)) 4894 goto invalid; 4895 node = array_index_nospec(tmp, MAX_NUMNODES); 4896 p += count + 1; 4897 /* Parse hugepages */ 4898 if (sscanf(p, "%lu%n", &tmp, &count) != 1) 4899 goto invalid; 4900 if (!hugetlb_max_hstate) 4901 default_hugepages_in_node[node] = tmp; 4902 else 4903 parsed_hstate->max_huge_pages_node[node] = tmp; 4904 *mhp += tmp; 4905 /* Go to parse next node*/ 4906 if (p[count] == ',') 4907 p += count + 1; 4908 else 4909 break; 4910 } else { 4911 if (p != s) 4912 goto invalid; 4913 *mhp = tmp; 4914 break; 4915 } 4916 } 4917 4918 last_mhp = mhp; 4919 4920 return 0; 4921 4922 invalid: 4923 pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p); 4924 hugepages_clear_pages_in_node(); 4925 return -EINVAL; 4926 } 4927 hugetlb_early_param("hugepages", hugepages_setup); 4928 4929 /* 4930 * hugepagesz command line processing 4931 * A specific huge page size can only be specified once with hugepagesz. 4932 * hugepagesz is followed by hugepages on the command line. The global 4933 * variable 'parsed_valid_hugepagesz' is used to determine if prior 4934 * hugepagesz argument was valid. 4935 */ 4936 static int __init hugepagesz_setup(char *s) 4937 { 4938 unsigned long size; 4939 struct hstate *h; 4940 4941 parsed_valid_hugepagesz = false; 4942 size = (unsigned long)memparse(s, NULL); 4943 4944 if (!arch_hugetlb_valid_size(size)) { 4945 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s); 4946 return -EINVAL; 4947 } 4948 4949 h = size_to_hstate(size); 4950 if (h) { 4951 /* 4952 * hstate for this size already exists. This is normally 4953 * an error, but is allowed if the existing hstate is the 4954 * default hstate. More specifically, it is only allowed if 4955 * the number of huge pages for the default hstate was not 4956 * previously specified. 4957 */ 4958 if (!parsed_default_hugepagesz || h != &default_hstate || 4959 default_hstate.max_huge_pages) { 4960 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s); 4961 return -EINVAL; 4962 } 4963 4964 /* 4965 * No need to call hugetlb_add_hstate() as hstate already 4966 * exists. But, do set parsed_hstate so that a following 4967 * hugepages= parameter will be applied to this hstate. 4968 */ 4969 parsed_hstate = h; 4970 parsed_valid_hugepagesz = true; 4971 return 0; 4972 } 4973 4974 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); 4975 parsed_valid_hugepagesz = true; 4976 return 0; 4977 } 4978 hugetlb_early_param("hugepagesz", hugepagesz_setup); 4979 4980 /* 4981 * default_hugepagesz command line input 4982 * Only one instance of default_hugepagesz allowed on command line. 4983 */ 4984 static int __init default_hugepagesz_setup(char *s) 4985 { 4986 unsigned long size; 4987 int i; 4988 4989 parsed_valid_hugepagesz = false; 4990 if (parsed_default_hugepagesz) { 4991 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s); 4992 return -EINVAL; 4993 } 4994 4995 size = (unsigned long)memparse(s, NULL); 4996 4997 if (!arch_hugetlb_valid_size(size)) { 4998 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s); 4999 return -EINVAL; 5000 } 5001 5002 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); 5003 parsed_valid_hugepagesz = true; 5004 parsed_default_hugepagesz = true; 5005 default_hstate_idx = hstate_index(size_to_hstate(size)); 5006 5007 /* 5008 * The number of default huge pages (for this size) could have been 5009 * specified as the first hugetlb parameter: hugepages=X. If so, 5010 * then default_hstate_max_huge_pages is set. If the default huge 5011 * page size is gigantic (> MAX_PAGE_ORDER), then the pages must be 5012 * allocated here from bootmem allocator. 5013 */ 5014 if (default_hstate_max_huge_pages) { 5015 default_hstate.max_huge_pages = default_hstate_max_huge_pages; 5016 /* 5017 * Since this is an early parameter, we can't check 5018 * NUMA node state yet, so loop through MAX_NUMNODES. 5019 */ 5020 for (i = 0; i < MAX_NUMNODES; i++) { 5021 if (default_hugepages_in_node[i] != 0) 5022 default_hstate.max_huge_pages_node[i] = 5023 default_hugepages_in_node[i]; 5024 } 5025 default_hstate_max_huge_pages = 0; 5026 } 5027 5028 return 0; 5029 } 5030 hugetlb_early_param("default_hugepagesz", default_hugepagesz_setup); 5031 5032 static bool __hugetlb_bootmem_allocated __initdata; 5033 5034 bool __init hugetlb_bootmem_allocated(void) 5035 { 5036 return __hugetlb_bootmem_allocated; 5037 } 5038 5039 void __init hugetlb_bootmem_alloc(void) 5040 { 5041 struct hstate *h; 5042 int i; 5043 5044 if (__hugetlb_bootmem_allocated) 5045 return; 5046 5047 for (i = 0; i < MAX_NUMNODES; i++) 5048 INIT_LIST_HEAD(&huge_boot_pages[i]); 5049 5050 hugetlb_parse_params(); 5051 5052 for_each_hstate(h) { 5053 h->next_nid_to_alloc = first_online_node; 5054 h->next_nid_to_free = first_online_node; 5055 5056 if (hstate_is_gigantic(h)) 5057 hugetlb_hstate_alloc_pages(h); 5058 } 5059 5060 __hugetlb_bootmem_allocated = true; 5061 } 5062 5063 /* 5064 * hugepage_alloc_threads command line parsing. 5065 * 5066 * When set, use this specific number of threads for the boot 5067 * allocation of hugepages. 5068 */ 5069 static int __init hugepage_alloc_threads_setup(char *s) 5070 { 5071 unsigned long allocation_threads; 5072 5073 if (kstrtoul(s, 0, &allocation_threads) != 0) 5074 return 1; 5075 5076 if (allocation_threads == 0) 5077 return 1; 5078 5079 hugepage_allocation_threads = allocation_threads; 5080 5081 return 1; 5082 } 5083 __setup("hugepage_alloc_threads=", hugepage_alloc_threads_setup); 5084 5085 static unsigned int allowed_mems_nr(struct hstate *h) 5086 { 5087 int node; 5088 unsigned int nr = 0; 5089 nodemask_t *mbind_nodemask; 5090 unsigned int *array = h->free_huge_pages_node; 5091 gfp_t gfp_mask = htlb_alloc_mask(h); 5092 5093 mbind_nodemask = policy_mbind_nodemask(gfp_mask); 5094 for_each_node_mask(node, cpuset_current_mems_allowed) { 5095 if (!mbind_nodemask || node_isset(node, *mbind_nodemask)) 5096 nr += array[node]; 5097 } 5098 5099 return nr; 5100 } 5101 5102 #ifdef CONFIG_SYSCTL 5103 static int proc_hugetlb_doulongvec_minmax(const struct ctl_table *table, int write, 5104 void *buffer, size_t *length, 5105 loff_t *ppos, unsigned long *out) 5106 { 5107 struct ctl_table dup_table; 5108 5109 /* 5110 * In order to avoid races with __do_proc_doulongvec_minmax(), we 5111 * can duplicate the @table and alter the duplicate of it. 5112 */ 5113 dup_table = *table; 5114 dup_table.data = out; 5115 5116 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos); 5117 } 5118 5119 static int hugetlb_sysctl_handler_common(bool obey_mempolicy, 5120 const struct ctl_table *table, int write, 5121 void *buffer, size_t *length, loff_t *ppos) 5122 { 5123 struct hstate *h = &default_hstate; 5124 unsigned long tmp = h->max_huge_pages; 5125 int ret; 5126 5127 if (!hugepages_supported()) 5128 return -EOPNOTSUPP; 5129 5130 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, 5131 &tmp); 5132 if (ret) 5133 goto out; 5134 5135 if (write) 5136 ret = __nr_hugepages_store_common(obey_mempolicy, h, 5137 NUMA_NO_NODE, tmp, *length); 5138 out: 5139 return ret; 5140 } 5141 5142 static int hugetlb_sysctl_handler(const struct ctl_table *table, int write, 5143 void *buffer, size_t *length, loff_t *ppos) 5144 { 5145 5146 return hugetlb_sysctl_handler_common(false, table, write, 5147 buffer, length, ppos); 5148 } 5149 5150 #ifdef CONFIG_NUMA 5151 static int hugetlb_mempolicy_sysctl_handler(const struct ctl_table *table, int write, 5152 void *buffer, size_t *length, loff_t *ppos) 5153 { 5154 return hugetlb_sysctl_handler_common(true, table, write, 5155 buffer, length, ppos); 5156 } 5157 #endif /* CONFIG_NUMA */ 5158 5159 static int hugetlb_overcommit_handler(const struct ctl_table *table, int write, 5160 void *buffer, size_t *length, loff_t *ppos) 5161 { 5162 struct hstate *h = &default_hstate; 5163 unsigned long tmp; 5164 int ret; 5165 5166 if (!hugepages_supported()) 5167 return -EOPNOTSUPP; 5168 5169 tmp = h->nr_overcommit_huge_pages; 5170 5171 if (write && hstate_is_gigantic(h)) 5172 return -EINVAL; 5173 5174 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, 5175 &tmp); 5176 if (ret) 5177 goto out; 5178 5179 if (write) { 5180 spin_lock_irq(&hugetlb_lock); 5181 h->nr_overcommit_huge_pages = tmp; 5182 spin_unlock_irq(&hugetlb_lock); 5183 } 5184 out: 5185 return ret; 5186 } 5187 5188 static const struct ctl_table hugetlb_table[] = { 5189 { 5190 .procname = "nr_hugepages", 5191 .data = NULL, 5192 .maxlen = sizeof(unsigned long), 5193 .mode = 0644, 5194 .proc_handler = hugetlb_sysctl_handler, 5195 }, 5196 #ifdef CONFIG_NUMA 5197 { 5198 .procname = "nr_hugepages_mempolicy", 5199 .data = NULL, 5200 .maxlen = sizeof(unsigned long), 5201 .mode = 0644, 5202 .proc_handler = &hugetlb_mempolicy_sysctl_handler, 5203 }, 5204 #endif 5205 { 5206 .procname = "hugetlb_shm_group", 5207 .data = &sysctl_hugetlb_shm_group, 5208 .maxlen = sizeof(gid_t), 5209 .mode = 0644, 5210 .proc_handler = proc_dointvec, 5211 }, 5212 { 5213 .procname = "nr_overcommit_hugepages", 5214 .data = NULL, 5215 .maxlen = sizeof(unsigned long), 5216 .mode = 0644, 5217 .proc_handler = hugetlb_overcommit_handler, 5218 }, 5219 }; 5220 5221 static void __init hugetlb_sysctl_init(void) 5222 { 5223 register_sysctl_init("vm", hugetlb_table); 5224 } 5225 #endif /* CONFIG_SYSCTL */ 5226 5227 void hugetlb_report_meminfo(struct seq_file *m) 5228 { 5229 struct hstate *h; 5230 unsigned long total = 0; 5231 5232 if (!hugepages_supported()) 5233 return; 5234 5235 for_each_hstate(h) { 5236 unsigned long count = h->nr_huge_pages; 5237 5238 total += huge_page_size(h) * count; 5239 5240 if (h == &default_hstate) 5241 seq_printf(m, 5242 "HugePages_Total: %5lu\n" 5243 "HugePages_Free: %5lu\n" 5244 "HugePages_Rsvd: %5lu\n" 5245 "HugePages_Surp: %5lu\n" 5246 "Hugepagesize: %8lu kB\n", 5247 count, 5248 h->free_huge_pages, 5249 h->resv_huge_pages, 5250 h->surplus_huge_pages, 5251 huge_page_size(h) / SZ_1K); 5252 } 5253 5254 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K); 5255 } 5256 5257 int hugetlb_report_node_meminfo(char *buf, int len, int nid) 5258 { 5259 struct hstate *h = &default_hstate; 5260 5261 if (!hugepages_supported()) 5262 return 0; 5263 5264 return sysfs_emit_at(buf, len, 5265 "Node %d HugePages_Total: %5u\n" 5266 "Node %d HugePages_Free: %5u\n" 5267 "Node %d HugePages_Surp: %5u\n", 5268 nid, h->nr_huge_pages_node[nid], 5269 nid, h->free_huge_pages_node[nid], 5270 nid, h->surplus_huge_pages_node[nid]); 5271 } 5272 5273 void hugetlb_show_meminfo_node(int nid) 5274 { 5275 struct hstate *h; 5276 5277 if (!hugepages_supported()) 5278 return; 5279 5280 for_each_hstate(h) 5281 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n", 5282 nid, 5283 h->nr_huge_pages_node[nid], 5284 h->free_huge_pages_node[nid], 5285 h->surplus_huge_pages_node[nid], 5286 huge_page_size(h) / SZ_1K); 5287 } 5288 5289 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm) 5290 { 5291 seq_printf(m, "HugetlbPages:\t%8lu kB\n", 5292 K(atomic_long_read(&mm->hugetlb_usage))); 5293 } 5294 5295 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ 5296 unsigned long hugetlb_total_pages(void) 5297 { 5298 struct hstate *h; 5299 unsigned long nr_total_pages = 0; 5300 5301 for_each_hstate(h) 5302 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h); 5303 return nr_total_pages; 5304 } 5305 5306 static int hugetlb_acct_memory(struct hstate *h, long delta) 5307 { 5308 int ret = -ENOMEM; 5309 5310 if (!delta) 5311 return 0; 5312 5313 spin_lock_irq(&hugetlb_lock); 5314 /* 5315 * When cpuset is configured, it breaks the strict hugetlb page 5316 * reservation as the accounting is done on a global variable. Such 5317 * reservation is completely rubbish in the presence of cpuset because 5318 * the reservation is not checked against page availability for the 5319 * current cpuset. Application can still potentially OOM'ed by kernel 5320 * with lack of free htlb page in cpuset that the task is in. 5321 * Attempt to enforce strict accounting with cpuset is almost 5322 * impossible (or too ugly) because cpuset is too fluid that 5323 * task or memory node can be dynamically moved between cpusets. 5324 * 5325 * The change of semantics for shared hugetlb mapping with cpuset is 5326 * undesirable. However, in order to preserve some of the semantics, 5327 * we fall back to check against current free page availability as 5328 * a best attempt and hopefully to minimize the impact of changing 5329 * semantics that cpuset has. 5330 * 5331 * Apart from cpuset, we also have memory policy mechanism that 5332 * also determines from which node the kernel will allocate memory 5333 * in a NUMA system. So similar to cpuset, we also should consider 5334 * the memory policy of the current task. Similar to the description 5335 * above. 5336 */ 5337 if (delta > 0) { 5338 if (gather_surplus_pages(h, delta) < 0) 5339 goto out; 5340 5341 if (delta > allowed_mems_nr(h)) { 5342 return_unused_surplus_pages(h, delta); 5343 goto out; 5344 } 5345 } 5346 5347 ret = 0; 5348 if (delta < 0) 5349 return_unused_surplus_pages(h, (unsigned long) -delta); 5350 5351 out: 5352 spin_unlock_irq(&hugetlb_lock); 5353 return ret; 5354 } 5355 5356 static void hugetlb_vm_op_open(struct vm_area_struct *vma) 5357 { 5358 struct resv_map *resv = vma_resv_map(vma); 5359 5360 /* 5361 * HPAGE_RESV_OWNER indicates a private mapping. 5362 * This new VMA should share its siblings reservation map if present. 5363 * The VMA will only ever have a valid reservation map pointer where 5364 * it is being copied for another still existing VMA. As that VMA 5365 * has a reference to the reservation map it cannot disappear until 5366 * after this open call completes. It is therefore safe to take a 5367 * new reference here without additional locking. 5368 */ 5369 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 5370 resv_map_dup_hugetlb_cgroup_uncharge_info(resv); 5371 kref_get(&resv->refs); 5372 } 5373 5374 /* 5375 * vma_lock structure for sharable mappings is vma specific. 5376 * Clear old pointer (if copied via vm_area_dup) and allocate 5377 * new structure. Before clearing, make sure vma_lock is not 5378 * for this vma. 5379 */ 5380 if (vma->vm_flags & VM_MAYSHARE) { 5381 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 5382 5383 if (vma_lock) { 5384 if (vma_lock->vma != vma) { 5385 vma->vm_private_data = NULL; 5386 hugetlb_vma_lock_alloc(vma); 5387 } else 5388 pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__); 5389 } else 5390 hugetlb_vma_lock_alloc(vma); 5391 } 5392 } 5393 5394 static void hugetlb_vm_op_close(struct vm_area_struct *vma) 5395 { 5396 struct hstate *h = hstate_vma(vma); 5397 struct resv_map *resv; 5398 struct hugepage_subpool *spool = subpool_vma(vma); 5399 unsigned long reserve, start, end; 5400 long gbl_reserve; 5401 5402 hugetlb_vma_lock_free(vma); 5403 5404 resv = vma_resv_map(vma); 5405 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 5406 return; 5407 5408 start = vma_hugecache_offset(h, vma, vma->vm_start); 5409 end = vma_hugecache_offset(h, vma, vma->vm_end); 5410 5411 reserve = (end - start) - region_count(resv, start, end); 5412 hugetlb_cgroup_uncharge_counter(resv, start, end); 5413 if (reserve) { 5414 /* 5415 * Decrement reserve counts. The global reserve count may be 5416 * adjusted if the subpool has a minimum size. 5417 */ 5418 gbl_reserve = hugepage_subpool_put_pages(spool, reserve); 5419 hugetlb_acct_memory(h, -gbl_reserve); 5420 } 5421 5422 kref_put(&resv->refs, resv_map_release); 5423 } 5424 5425 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr) 5426 { 5427 if (addr & ~(huge_page_mask(hstate_vma(vma)))) 5428 return -EINVAL; 5429 5430 /* 5431 * PMD sharing is only possible for PUD_SIZE-aligned address ranges 5432 * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this 5433 * split, unshare PMDs in the PUD_SIZE interval surrounding addr now. 5434 */ 5435 if (addr & ~PUD_MASK) { 5436 /* 5437 * hugetlb_vm_op_split is called right before we attempt to 5438 * split the VMA. We will need to unshare PMDs in the old and 5439 * new VMAs, so let's unshare before we split. 5440 */ 5441 unsigned long floor = addr & PUD_MASK; 5442 unsigned long ceil = floor + PUD_SIZE; 5443 5444 if (floor >= vma->vm_start && ceil <= vma->vm_end) 5445 hugetlb_unshare_pmds(vma, floor, ceil); 5446 } 5447 5448 return 0; 5449 } 5450 5451 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma) 5452 { 5453 return huge_page_size(hstate_vma(vma)); 5454 } 5455 5456 /* 5457 * We cannot handle pagefaults against hugetlb pages at all. They cause 5458 * handle_mm_fault() to try to instantiate regular-sized pages in the 5459 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get 5460 * this far. 5461 */ 5462 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf) 5463 { 5464 BUG(); 5465 return 0; 5466 } 5467 5468 /* 5469 * When a new function is introduced to vm_operations_struct and added 5470 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops. 5471 * This is because under System V memory model, mappings created via 5472 * shmget/shmat with "huge page" specified are backed by hugetlbfs files, 5473 * their original vm_ops are overwritten with shm_vm_ops. 5474 */ 5475 const struct vm_operations_struct hugetlb_vm_ops = { 5476 .fault = hugetlb_vm_op_fault, 5477 .open = hugetlb_vm_op_open, 5478 .close = hugetlb_vm_op_close, 5479 .may_split = hugetlb_vm_op_split, 5480 .pagesize = hugetlb_vm_op_pagesize, 5481 }; 5482 5483 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, 5484 bool try_mkwrite) 5485 { 5486 pte_t entry; 5487 unsigned int shift = huge_page_shift(hstate_vma(vma)); 5488 5489 if (try_mkwrite && (vma->vm_flags & VM_WRITE)) { 5490 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page, 5491 vma->vm_page_prot))); 5492 } else { 5493 entry = huge_pte_wrprotect(mk_huge_pte(page, 5494 vma->vm_page_prot)); 5495 } 5496 entry = pte_mkyoung(entry); 5497 entry = arch_make_huge_pte(entry, shift, vma->vm_flags); 5498 5499 return entry; 5500 } 5501 5502 static void set_huge_ptep_writable(struct vm_area_struct *vma, 5503 unsigned long address, pte_t *ptep) 5504 { 5505 pte_t entry; 5506 5507 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(vma->vm_mm, address, ptep))); 5508 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) 5509 update_mmu_cache(vma, address, ptep); 5510 } 5511 5512 static void set_huge_ptep_maybe_writable(struct vm_area_struct *vma, 5513 unsigned long address, pte_t *ptep) 5514 { 5515 if (vma->vm_flags & VM_WRITE) 5516 set_huge_ptep_writable(vma, address, ptep); 5517 } 5518 5519 bool is_hugetlb_entry_migration(pte_t pte) 5520 { 5521 swp_entry_t swp; 5522 5523 if (huge_pte_none(pte) || pte_present(pte)) 5524 return false; 5525 swp = pte_to_swp_entry(pte); 5526 if (is_migration_entry(swp)) 5527 return true; 5528 else 5529 return false; 5530 } 5531 5532 bool is_hugetlb_entry_hwpoisoned(pte_t pte) 5533 { 5534 swp_entry_t swp; 5535 5536 if (huge_pte_none(pte) || pte_present(pte)) 5537 return false; 5538 swp = pte_to_swp_entry(pte); 5539 if (is_hwpoison_entry(swp)) 5540 return true; 5541 else 5542 return false; 5543 } 5544 5545 static void 5546 hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr, 5547 struct folio *new_folio, pte_t old, unsigned long sz) 5548 { 5549 pte_t newpte = make_huge_pte(vma, &new_folio->page, true); 5550 5551 __folio_mark_uptodate(new_folio); 5552 hugetlb_add_new_anon_rmap(new_folio, vma, addr); 5553 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(old)) 5554 newpte = huge_pte_mkuffd_wp(newpte); 5555 set_huge_pte_at(vma->vm_mm, addr, ptep, newpte, sz); 5556 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm); 5557 folio_set_hugetlb_migratable(new_folio); 5558 } 5559 5560 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, 5561 struct vm_area_struct *dst_vma, 5562 struct vm_area_struct *src_vma) 5563 { 5564 pte_t *src_pte, *dst_pte, entry; 5565 struct folio *pte_folio; 5566 unsigned long addr; 5567 bool cow = is_cow_mapping(src_vma->vm_flags); 5568 struct hstate *h = hstate_vma(src_vma); 5569 unsigned long sz = huge_page_size(h); 5570 unsigned long npages = pages_per_huge_page(h); 5571 struct mmu_notifier_range range; 5572 unsigned long last_addr_mask; 5573 int ret = 0; 5574 5575 if (cow) { 5576 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src, 5577 src_vma->vm_start, 5578 src_vma->vm_end); 5579 mmu_notifier_invalidate_range_start(&range); 5580 vma_assert_write_locked(src_vma); 5581 raw_write_seqcount_begin(&src->write_protect_seq); 5582 } else { 5583 /* 5584 * For shared mappings the vma lock must be held before 5585 * calling hugetlb_walk() in the src vma. Otherwise, the 5586 * returned ptep could go away if part of a shared pmd and 5587 * another thread calls huge_pmd_unshare. 5588 */ 5589 hugetlb_vma_lock_read(src_vma); 5590 } 5591 5592 last_addr_mask = hugetlb_mask_last_page(h); 5593 for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) { 5594 spinlock_t *src_ptl, *dst_ptl; 5595 src_pte = hugetlb_walk(src_vma, addr, sz); 5596 if (!src_pte) { 5597 addr |= last_addr_mask; 5598 continue; 5599 } 5600 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz); 5601 if (!dst_pte) { 5602 ret = -ENOMEM; 5603 break; 5604 } 5605 5606 /* 5607 * If the pagetables are shared don't copy or take references. 5608 * 5609 * dst_pte == src_pte is the common case of src/dest sharing. 5610 * However, src could have 'unshared' and dst shares with 5611 * another vma. So page_count of ptep page is checked instead 5612 * to reliably determine whether pte is shared. 5613 */ 5614 if (page_count(virt_to_page(dst_pte)) > 1) { 5615 addr |= last_addr_mask; 5616 continue; 5617 } 5618 5619 dst_ptl = huge_pte_lock(h, dst, dst_pte); 5620 src_ptl = huge_pte_lockptr(h, src, src_pte); 5621 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 5622 entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte); 5623 again: 5624 if (huge_pte_none(entry)) { 5625 /* 5626 * Skip if src entry none. 5627 */ 5628 ; 5629 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) { 5630 if (!userfaultfd_wp(dst_vma)) 5631 entry = huge_pte_clear_uffd_wp(entry); 5632 set_huge_pte_at(dst, addr, dst_pte, entry, sz); 5633 } else if (unlikely(is_hugetlb_entry_migration(entry))) { 5634 swp_entry_t swp_entry = pte_to_swp_entry(entry); 5635 bool uffd_wp = pte_swp_uffd_wp(entry); 5636 5637 if (!is_readable_migration_entry(swp_entry) && cow) { 5638 /* 5639 * COW mappings require pages in both 5640 * parent and child to be set to read. 5641 */ 5642 swp_entry = make_readable_migration_entry( 5643 swp_offset(swp_entry)); 5644 entry = swp_entry_to_pte(swp_entry); 5645 if (userfaultfd_wp(src_vma) && uffd_wp) 5646 entry = pte_swp_mkuffd_wp(entry); 5647 set_huge_pte_at(src, addr, src_pte, entry, sz); 5648 } 5649 if (!userfaultfd_wp(dst_vma)) 5650 entry = huge_pte_clear_uffd_wp(entry); 5651 set_huge_pte_at(dst, addr, dst_pte, entry, sz); 5652 } else if (unlikely(is_pte_marker(entry))) { 5653 pte_marker marker = copy_pte_marker( 5654 pte_to_swp_entry(entry), dst_vma); 5655 5656 if (marker) 5657 set_huge_pte_at(dst, addr, dst_pte, 5658 make_pte_marker(marker), sz); 5659 } else { 5660 entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte); 5661 pte_folio = page_folio(pte_page(entry)); 5662 folio_get(pte_folio); 5663 5664 /* 5665 * Failing to duplicate the anon rmap is a rare case 5666 * where we see pinned hugetlb pages while they're 5667 * prone to COW. We need to do the COW earlier during 5668 * fork. 5669 * 5670 * When pre-allocating the page or copying data, we 5671 * need to be without the pgtable locks since we could 5672 * sleep during the process. 5673 */ 5674 if (!folio_test_anon(pte_folio)) { 5675 hugetlb_add_file_rmap(pte_folio); 5676 } else if (hugetlb_try_dup_anon_rmap(pte_folio, src_vma)) { 5677 pte_t src_pte_old = entry; 5678 struct folio *new_folio; 5679 5680 spin_unlock(src_ptl); 5681 spin_unlock(dst_ptl); 5682 /* Do not use reserve as it's private owned */ 5683 new_folio = alloc_hugetlb_folio(dst_vma, addr, false); 5684 if (IS_ERR(new_folio)) { 5685 folio_put(pte_folio); 5686 ret = PTR_ERR(new_folio); 5687 break; 5688 } 5689 ret = copy_user_large_folio(new_folio, pte_folio, 5690 addr, dst_vma); 5691 folio_put(pte_folio); 5692 if (ret) { 5693 folio_put(new_folio); 5694 break; 5695 } 5696 5697 /* Install the new hugetlb folio if src pte stable */ 5698 dst_ptl = huge_pte_lock(h, dst, dst_pte); 5699 src_ptl = huge_pte_lockptr(h, src, src_pte); 5700 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 5701 entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte); 5702 if (!pte_same(src_pte_old, entry)) { 5703 restore_reserve_on_error(h, dst_vma, addr, 5704 new_folio); 5705 folio_put(new_folio); 5706 /* huge_ptep of dst_pte won't change as in child */ 5707 goto again; 5708 } 5709 hugetlb_install_folio(dst_vma, dst_pte, addr, 5710 new_folio, src_pte_old, sz); 5711 spin_unlock(src_ptl); 5712 spin_unlock(dst_ptl); 5713 continue; 5714 } 5715 5716 if (cow) { 5717 /* 5718 * No need to notify as we are downgrading page 5719 * table protection not changing it to point 5720 * to a new page. 5721 * 5722 * See Documentation/mm/mmu_notifier.rst 5723 */ 5724 huge_ptep_set_wrprotect(src, addr, src_pte); 5725 entry = huge_pte_wrprotect(entry); 5726 } 5727 5728 if (!userfaultfd_wp(dst_vma)) 5729 entry = huge_pte_clear_uffd_wp(entry); 5730 5731 set_huge_pte_at(dst, addr, dst_pte, entry, sz); 5732 hugetlb_count_add(npages, dst); 5733 } 5734 spin_unlock(src_ptl); 5735 spin_unlock(dst_ptl); 5736 } 5737 5738 if (cow) { 5739 raw_write_seqcount_end(&src->write_protect_seq); 5740 mmu_notifier_invalidate_range_end(&range); 5741 } else { 5742 hugetlb_vma_unlock_read(src_vma); 5743 } 5744 5745 return ret; 5746 } 5747 5748 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr, 5749 unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte, 5750 unsigned long sz) 5751 { 5752 bool need_clear_uffd_wp = vma_has_uffd_without_event_remap(vma); 5753 struct hstate *h = hstate_vma(vma); 5754 struct mm_struct *mm = vma->vm_mm; 5755 spinlock_t *src_ptl, *dst_ptl; 5756 pte_t pte; 5757 5758 dst_ptl = huge_pte_lock(h, mm, dst_pte); 5759 src_ptl = huge_pte_lockptr(h, mm, src_pte); 5760 5761 /* 5762 * We don't have to worry about the ordering of src and dst ptlocks 5763 * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock. 5764 */ 5765 if (src_ptl != dst_ptl) 5766 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 5767 5768 pte = huge_ptep_get_and_clear(mm, old_addr, src_pte, sz); 5769 5770 if (need_clear_uffd_wp && pte_marker_uffd_wp(pte)) 5771 huge_pte_clear(mm, new_addr, dst_pte, sz); 5772 else { 5773 if (need_clear_uffd_wp) { 5774 if (pte_present(pte)) 5775 pte = huge_pte_clear_uffd_wp(pte); 5776 else if (is_swap_pte(pte)) 5777 pte = pte_swp_clear_uffd_wp(pte); 5778 } 5779 set_huge_pte_at(mm, new_addr, dst_pte, pte, sz); 5780 } 5781 5782 if (src_ptl != dst_ptl) 5783 spin_unlock(src_ptl); 5784 spin_unlock(dst_ptl); 5785 } 5786 5787 int move_hugetlb_page_tables(struct vm_area_struct *vma, 5788 struct vm_area_struct *new_vma, 5789 unsigned long old_addr, unsigned long new_addr, 5790 unsigned long len) 5791 { 5792 struct hstate *h = hstate_vma(vma); 5793 struct address_space *mapping = vma->vm_file->f_mapping; 5794 unsigned long sz = huge_page_size(h); 5795 struct mm_struct *mm = vma->vm_mm; 5796 unsigned long old_end = old_addr + len; 5797 unsigned long last_addr_mask; 5798 pte_t *src_pte, *dst_pte; 5799 struct mmu_notifier_range range; 5800 bool shared_pmd = false; 5801 5802 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr, 5803 old_end); 5804 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 5805 /* 5806 * In case of shared PMDs, we should cover the maximum possible 5807 * range. 5808 */ 5809 flush_cache_range(vma, range.start, range.end); 5810 5811 mmu_notifier_invalidate_range_start(&range); 5812 last_addr_mask = hugetlb_mask_last_page(h); 5813 /* Prevent race with file truncation */ 5814 hugetlb_vma_lock_write(vma); 5815 i_mmap_lock_write(mapping); 5816 for (; old_addr < old_end; old_addr += sz, new_addr += sz) { 5817 src_pte = hugetlb_walk(vma, old_addr, sz); 5818 if (!src_pte) { 5819 old_addr |= last_addr_mask; 5820 new_addr |= last_addr_mask; 5821 continue; 5822 } 5823 if (huge_pte_none(huge_ptep_get(mm, old_addr, src_pte))) 5824 continue; 5825 5826 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) { 5827 shared_pmd = true; 5828 old_addr |= last_addr_mask; 5829 new_addr |= last_addr_mask; 5830 continue; 5831 } 5832 5833 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz); 5834 if (!dst_pte) 5835 break; 5836 5837 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte, sz); 5838 } 5839 5840 if (shared_pmd) 5841 flush_hugetlb_tlb_range(vma, range.start, range.end); 5842 else 5843 flush_hugetlb_tlb_range(vma, old_end - len, old_end); 5844 mmu_notifier_invalidate_range_end(&range); 5845 i_mmap_unlock_write(mapping); 5846 hugetlb_vma_unlock_write(vma); 5847 5848 return len + old_addr - old_end; 5849 } 5850 5851 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma, 5852 unsigned long start, unsigned long end, 5853 struct page *ref_page, zap_flags_t zap_flags) 5854 { 5855 struct mm_struct *mm = vma->vm_mm; 5856 unsigned long address; 5857 pte_t *ptep; 5858 pte_t pte; 5859 spinlock_t *ptl; 5860 struct page *page; 5861 struct hstate *h = hstate_vma(vma); 5862 unsigned long sz = huge_page_size(h); 5863 bool adjust_reservation = false; 5864 unsigned long last_addr_mask; 5865 bool force_flush = false; 5866 5867 WARN_ON(!is_vm_hugetlb_page(vma)); 5868 BUG_ON(start & ~huge_page_mask(h)); 5869 BUG_ON(end & ~huge_page_mask(h)); 5870 5871 /* 5872 * This is a hugetlb vma, all the pte entries should point 5873 * to huge page. 5874 */ 5875 tlb_change_page_size(tlb, sz); 5876 tlb_start_vma(tlb, vma); 5877 5878 last_addr_mask = hugetlb_mask_last_page(h); 5879 address = start; 5880 for (; address < end; address += sz) { 5881 ptep = hugetlb_walk(vma, address, sz); 5882 if (!ptep) { 5883 address |= last_addr_mask; 5884 continue; 5885 } 5886 5887 ptl = huge_pte_lock(h, mm, ptep); 5888 if (huge_pmd_unshare(mm, vma, address, ptep)) { 5889 spin_unlock(ptl); 5890 tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE); 5891 force_flush = true; 5892 address |= last_addr_mask; 5893 continue; 5894 } 5895 5896 pte = huge_ptep_get(mm, address, ptep); 5897 if (huge_pte_none(pte)) { 5898 spin_unlock(ptl); 5899 continue; 5900 } 5901 5902 /* 5903 * Migrating hugepage or HWPoisoned hugepage is already 5904 * unmapped and its refcount is dropped, so just clear pte here. 5905 */ 5906 if (unlikely(!pte_present(pte))) { 5907 /* 5908 * If the pte was wr-protected by uffd-wp in any of the 5909 * swap forms, meanwhile the caller does not want to 5910 * drop the uffd-wp bit in this zap, then replace the 5911 * pte with a marker. 5912 */ 5913 if (pte_swp_uffd_wp_any(pte) && 5914 !(zap_flags & ZAP_FLAG_DROP_MARKER)) 5915 set_huge_pte_at(mm, address, ptep, 5916 make_pte_marker(PTE_MARKER_UFFD_WP), 5917 sz); 5918 else 5919 huge_pte_clear(mm, address, ptep, sz); 5920 spin_unlock(ptl); 5921 continue; 5922 } 5923 5924 page = pte_page(pte); 5925 /* 5926 * If a reference page is supplied, it is because a specific 5927 * page is being unmapped, not a range. Ensure the page we 5928 * are about to unmap is the actual page of interest. 5929 */ 5930 if (ref_page) { 5931 if (page != ref_page) { 5932 spin_unlock(ptl); 5933 continue; 5934 } 5935 /* 5936 * Mark the VMA as having unmapped its page so that 5937 * future faults in this VMA will fail rather than 5938 * looking like data was lost 5939 */ 5940 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); 5941 } 5942 5943 pte = huge_ptep_get_and_clear(mm, address, ptep, sz); 5944 tlb_remove_huge_tlb_entry(h, tlb, ptep, address); 5945 if (huge_pte_dirty(pte)) 5946 set_page_dirty(page); 5947 /* Leave a uffd-wp pte marker if needed */ 5948 if (huge_pte_uffd_wp(pte) && 5949 !(zap_flags & ZAP_FLAG_DROP_MARKER)) 5950 set_huge_pte_at(mm, address, ptep, 5951 make_pte_marker(PTE_MARKER_UFFD_WP), 5952 sz); 5953 hugetlb_count_sub(pages_per_huge_page(h), mm); 5954 hugetlb_remove_rmap(page_folio(page)); 5955 5956 /* 5957 * Restore the reservation for anonymous page, otherwise the 5958 * backing page could be stolen by someone. 5959 * If there we are freeing a surplus, do not set the restore 5960 * reservation bit. 5961 */ 5962 if (!h->surplus_huge_pages && __vma_private_lock(vma) && 5963 folio_test_anon(page_folio(page))) { 5964 folio_set_hugetlb_restore_reserve(page_folio(page)); 5965 /* Reservation to be adjusted after the spin lock */ 5966 adjust_reservation = true; 5967 } 5968 5969 spin_unlock(ptl); 5970 5971 /* 5972 * Adjust the reservation for the region that will have the 5973 * reserve restored. Keep in mind that vma_needs_reservation() changes 5974 * resv->adds_in_progress if it succeeds. If this is not done, 5975 * do_exit() will not see it, and will keep the reservation 5976 * forever. 5977 */ 5978 if (adjust_reservation) { 5979 int rc = vma_needs_reservation(h, vma, address); 5980 5981 if (rc < 0) 5982 /* Pressumably allocate_file_region_entries failed 5983 * to allocate a file_region struct. Clear 5984 * hugetlb_restore_reserve so that global reserve 5985 * count will not be incremented by free_huge_folio. 5986 * Act as if we consumed the reservation. 5987 */ 5988 folio_clear_hugetlb_restore_reserve(page_folio(page)); 5989 else if (rc) 5990 vma_add_reservation(h, vma, address); 5991 } 5992 5993 tlb_remove_page_size(tlb, page, huge_page_size(h)); 5994 /* 5995 * Bail out after unmapping reference page if supplied 5996 */ 5997 if (ref_page) 5998 break; 5999 } 6000 tlb_end_vma(tlb, vma); 6001 6002 /* 6003 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We 6004 * could defer the flush until now, since by holding i_mmap_rwsem we 6005 * guaranteed that the last refernece would not be dropped. But we must 6006 * do the flushing before we return, as otherwise i_mmap_rwsem will be 6007 * dropped and the last reference to the shared PMDs page might be 6008 * dropped as well. 6009 * 6010 * In theory we could defer the freeing of the PMD pages as well, but 6011 * huge_pmd_unshare() relies on the exact page_count for the PMD page to 6012 * detect sharing, so we cannot defer the release of the page either. 6013 * Instead, do flush now. 6014 */ 6015 if (force_flush) 6016 tlb_flush_mmu_tlbonly(tlb); 6017 } 6018 6019 void __hugetlb_zap_begin(struct vm_area_struct *vma, 6020 unsigned long *start, unsigned long *end) 6021 { 6022 if (!vma->vm_file) /* hugetlbfs_file_mmap error */ 6023 return; 6024 6025 adjust_range_if_pmd_sharing_possible(vma, start, end); 6026 hugetlb_vma_lock_write(vma); 6027 if (vma->vm_file) 6028 i_mmap_lock_write(vma->vm_file->f_mapping); 6029 } 6030 6031 void __hugetlb_zap_end(struct vm_area_struct *vma, 6032 struct zap_details *details) 6033 { 6034 zap_flags_t zap_flags = details ? details->zap_flags : 0; 6035 6036 if (!vma->vm_file) /* hugetlbfs_file_mmap error */ 6037 return; 6038 6039 if (zap_flags & ZAP_FLAG_UNMAP) { /* final unmap */ 6040 /* 6041 * Unlock and free the vma lock before releasing i_mmap_rwsem. 6042 * When the vma_lock is freed, this makes the vma ineligible 6043 * for pmd sharing. And, i_mmap_rwsem is required to set up 6044 * pmd sharing. This is important as page tables for this 6045 * unmapped range will be asynchrously deleted. If the page 6046 * tables are shared, there will be issues when accessed by 6047 * someone else. 6048 */ 6049 __hugetlb_vma_unlock_write_free(vma); 6050 } else { 6051 hugetlb_vma_unlock_write(vma); 6052 } 6053 6054 if (vma->vm_file) 6055 i_mmap_unlock_write(vma->vm_file->f_mapping); 6056 } 6057 6058 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, 6059 unsigned long end, struct page *ref_page, 6060 zap_flags_t zap_flags) 6061 { 6062 struct mmu_notifier_range range; 6063 struct mmu_gather tlb; 6064 6065 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 6066 start, end); 6067 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 6068 mmu_notifier_invalidate_range_start(&range); 6069 tlb_gather_mmu(&tlb, vma->vm_mm); 6070 6071 __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags); 6072 6073 mmu_notifier_invalidate_range_end(&range); 6074 tlb_finish_mmu(&tlb); 6075 } 6076 6077 /* 6078 * This is called when the original mapper is failing to COW a MAP_PRIVATE 6079 * mapping it owns the reserve page for. The intention is to unmap the page 6080 * from other VMAs and let the children be SIGKILLed if they are faulting the 6081 * same region. 6082 */ 6083 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, 6084 struct page *page, unsigned long address) 6085 { 6086 struct hstate *h = hstate_vma(vma); 6087 struct vm_area_struct *iter_vma; 6088 struct address_space *mapping; 6089 pgoff_t pgoff; 6090 6091 /* 6092 * vm_pgoff is in PAGE_SIZE units, hence the different calculation 6093 * from page cache lookup which is in HPAGE_SIZE units. 6094 */ 6095 address = address & huge_page_mask(h); 6096 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + 6097 vma->vm_pgoff; 6098 mapping = vma->vm_file->f_mapping; 6099 6100 /* 6101 * Take the mapping lock for the duration of the table walk. As 6102 * this mapping should be shared between all the VMAs, 6103 * __unmap_hugepage_range() is called as the lock is already held 6104 */ 6105 i_mmap_lock_write(mapping); 6106 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) { 6107 /* Do not unmap the current VMA */ 6108 if (iter_vma == vma) 6109 continue; 6110 6111 /* 6112 * Shared VMAs have their own reserves and do not affect 6113 * MAP_PRIVATE accounting but it is possible that a shared 6114 * VMA is using the same page so check and skip such VMAs. 6115 */ 6116 if (iter_vma->vm_flags & VM_MAYSHARE) 6117 continue; 6118 6119 /* 6120 * Unmap the page from other VMAs without their own reserves. 6121 * They get marked to be SIGKILLed if they fault in these 6122 * areas. This is because a future no-page fault on this VMA 6123 * could insert a zeroed page instead of the data existing 6124 * from the time of fork. This would look like data corruption 6125 */ 6126 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) 6127 unmap_hugepage_range(iter_vma, address, 6128 address + huge_page_size(h), page, 0); 6129 } 6130 i_mmap_unlock_write(mapping); 6131 } 6132 6133 /* 6134 * hugetlb_wp() should be called with page lock of the original hugepage held. 6135 * Called with hugetlb_fault_mutex_table held and pte_page locked so we 6136 * cannot race with other handlers or page migration. 6137 * Keep the pte_same checks anyway to make transition from the mutex easier. 6138 */ 6139 static vm_fault_t hugetlb_wp(struct folio *pagecache_folio, 6140 struct vm_fault *vmf) 6141 { 6142 struct vm_area_struct *vma = vmf->vma; 6143 struct mm_struct *mm = vma->vm_mm; 6144 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 6145 pte_t pte = huge_ptep_get(mm, vmf->address, vmf->pte); 6146 struct hstate *h = hstate_vma(vma); 6147 struct folio *old_folio; 6148 struct folio *new_folio; 6149 bool cow_from_owner = 0; 6150 vm_fault_t ret = 0; 6151 struct mmu_notifier_range range; 6152 6153 /* 6154 * Never handle CoW for uffd-wp protected pages. It should be only 6155 * handled when the uffd-wp protection is removed. 6156 * 6157 * Note that only the CoW optimization path (in hugetlb_no_page()) 6158 * can trigger this, because hugetlb_fault() will always resolve 6159 * uffd-wp bit first. 6160 */ 6161 if (!unshare && huge_pte_uffd_wp(pte)) 6162 return 0; 6163 6164 /* Let's take out MAP_SHARED mappings first. */ 6165 if (vma->vm_flags & VM_MAYSHARE) { 6166 set_huge_ptep_writable(vma, vmf->address, vmf->pte); 6167 return 0; 6168 } 6169 6170 old_folio = page_folio(pte_page(pte)); 6171 6172 delayacct_wpcopy_start(); 6173 6174 retry_avoidcopy: 6175 /* 6176 * If no-one else is actually using this page, we're the exclusive 6177 * owner and can reuse this page. 6178 * 6179 * Note that we don't rely on the (safer) folio refcount here, because 6180 * copying the hugetlb folio when there are unexpected (temporary) 6181 * folio references could harm simple fork()+exit() users when 6182 * we run out of free hugetlb folios: we would have to kill processes 6183 * in scenarios that used to work. As a side effect, there can still 6184 * be leaks between processes, for example, with FOLL_GET users. 6185 */ 6186 if (folio_mapcount(old_folio) == 1 && folio_test_anon(old_folio)) { 6187 if (!PageAnonExclusive(&old_folio->page)) { 6188 folio_move_anon_rmap(old_folio, vma); 6189 SetPageAnonExclusive(&old_folio->page); 6190 } 6191 if (likely(!unshare)) 6192 set_huge_ptep_maybe_writable(vma, vmf->address, 6193 vmf->pte); 6194 6195 delayacct_wpcopy_end(); 6196 return 0; 6197 } 6198 VM_BUG_ON_PAGE(folio_test_anon(old_folio) && 6199 PageAnonExclusive(&old_folio->page), &old_folio->page); 6200 6201 /* 6202 * If the process that created a MAP_PRIVATE mapping is about to 6203 * perform a COW due to a shared page count, attempt to satisfy 6204 * the allocation without using the existing reserves. The pagecache 6205 * page is used to determine if the reserve at this address was 6206 * consumed or not. If reserves were used, a partial faulted mapping 6207 * at the time of fork() could consume its reserves on COW instead 6208 * of the full address range. 6209 */ 6210 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && 6211 old_folio != pagecache_folio) 6212 cow_from_owner = true; 6213 6214 folio_get(old_folio); 6215 6216 /* 6217 * Drop page table lock as buddy allocator may be called. It will 6218 * be acquired again before returning to the caller, as expected. 6219 */ 6220 spin_unlock(vmf->ptl); 6221 new_folio = alloc_hugetlb_folio(vma, vmf->address, cow_from_owner); 6222 6223 if (IS_ERR(new_folio)) { 6224 /* 6225 * If a process owning a MAP_PRIVATE mapping fails to COW, 6226 * it is due to references held by a child and an insufficient 6227 * huge page pool. To guarantee the original mappers 6228 * reliability, unmap the page from child processes. The child 6229 * may get SIGKILLed if it later faults. 6230 */ 6231 if (cow_from_owner) { 6232 struct address_space *mapping = vma->vm_file->f_mapping; 6233 pgoff_t idx; 6234 u32 hash; 6235 6236 folio_put(old_folio); 6237 /* 6238 * Drop hugetlb_fault_mutex and vma_lock before 6239 * unmapping. unmapping needs to hold vma_lock 6240 * in write mode. Dropping vma_lock in read mode 6241 * here is OK as COW mappings do not interact with 6242 * PMD sharing. 6243 * 6244 * Reacquire both after unmap operation. 6245 */ 6246 idx = vma_hugecache_offset(h, vma, vmf->address); 6247 hash = hugetlb_fault_mutex_hash(mapping, idx); 6248 hugetlb_vma_unlock_read(vma); 6249 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6250 6251 unmap_ref_private(mm, vma, &old_folio->page, 6252 vmf->address); 6253 6254 mutex_lock(&hugetlb_fault_mutex_table[hash]); 6255 hugetlb_vma_lock_read(vma); 6256 spin_lock(vmf->ptl); 6257 vmf->pte = hugetlb_walk(vma, vmf->address, 6258 huge_page_size(h)); 6259 if (likely(vmf->pte && 6260 pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), pte))) 6261 goto retry_avoidcopy; 6262 /* 6263 * race occurs while re-acquiring page table 6264 * lock, and our job is done. 6265 */ 6266 delayacct_wpcopy_end(); 6267 return 0; 6268 } 6269 6270 ret = vmf_error(PTR_ERR(new_folio)); 6271 goto out_release_old; 6272 } 6273 6274 /* 6275 * When the original hugepage is shared one, it does not have 6276 * anon_vma prepared. 6277 */ 6278 ret = __vmf_anon_prepare(vmf); 6279 if (unlikely(ret)) 6280 goto out_release_all; 6281 6282 if (copy_user_large_folio(new_folio, old_folio, vmf->real_address, vma)) { 6283 ret = VM_FAULT_HWPOISON_LARGE | VM_FAULT_SET_HINDEX(hstate_index(h)); 6284 goto out_release_all; 6285 } 6286 __folio_mark_uptodate(new_folio); 6287 6288 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, vmf->address, 6289 vmf->address + huge_page_size(h)); 6290 mmu_notifier_invalidate_range_start(&range); 6291 6292 /* 6293 * Retake the page table lock to check for racing updates 6294 * before the page tables are altered 6295 */ 6296 spin_lock(vmf->ptl); 6297 vmf->pte = hugetlb_walk(vma, vmf->address, huge_page_size(h)); 6298 if (likely(vmf->pte && pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), pte))) { 6299 pte_t newpte = make_huge_pte(vma, &new_folio->page, !unshare); 6300 6301 /* Break COW or unshare */ 6302 huge_ptep_clear_flush(vma, vmf->address, vmf->pte); 6303 hugetlb_remove_rmap(old_folio); 6304 hugetlb_add_new_anon_rmap(new_folio, vma, vmf->address); 6305 if (huge_pte_uffd_wp(pte)) 6306 newpte = huge_pte_mkuffd_wp(newpte); 6307 set_huge_pte_at(mm, vmf->address, vmf->pte, newpte, 6308 huge_page_size(h)); 6309 folio_set_hugetlb_migratable(new_folio); 6310 /* Make the old page be freed below */ 6311 new_folio = old_folio; 6312 } 6313 spin_unlock(vmf->ptl); 6314 mmu_notifier_invalidate_range_end(&range); 6315 out_release_all: 6316 /* 6317 * No restore in case of successful pagetable update (Break COW or 6318 * unshare) 6319 */ 6320 if (new_folio != old_folio) 6321 restore_reserve_on_error(h, vma, vmf->address, new_folio); 6322 folio_put(new_folio); 6323 out_release_old: 6324 folio_put(old_folio); 6325 6326 spin_lock(vmf->ptl); /* Caller expects lock to be held */ 6327 6328 delayacct_wpcopy_end(); 6329 return ret; 6330 } 6331 6332 /* 6333 * Return whether there is a pagecache page to back given address within VMA. 6334 */ 6335 bool hugetlbfs_pagecache_present(struct hstate *h, 6336 struct vm_area_struct *vma, unsigned long address) 6337 { 6338 struct address_space *mapping = vma->vm_file->f_mapping; 6339 pgoff_t idx = linear_page_index(vma, address); 6340 struct folio *folio; 6341 6342 folio = filemap_get_folio(mapping, idx); 6343 if (IS_ERR(folio)) 6344 return false; 6345 folio_put(folio); 6346 return true; 6347 } 6348 6349 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping, 6350 pgoff_t idx) 6351 { 6352 struct inode *inode = mapping->host; 6353 struct hstate *h = hstate_inode(inode); 6354 int err; 6355 6356 idx <<= huge_page_order(h); 6357 __folio_set_locked(folio); 6358 err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL); 6359 6360 if (unlikely(err)) { 6361 __folio_clear_locked(folio); 6362 return err; 6363 } 6364 folio_clear_hugetlb_restore_reserve(folio); 6365 6366 /* 6367 * mark folio dirty so that it will not be removed from cache/file 6368 * by non-hugetlbfs specific code paths. 6369 */ 6370 folio_mark_dirty(folio); 6371 6372 spin_lock(&inode->i_lock); 6373 inode->i_blocks += blocks_per_huge_page(h); 6374 spin_unlock(&inode->i_lock); 6375 return 0; 6376 } 6377 6378 static inline vm_fault_t hugetlb_handle_userfault(struct vm_fault *vmf, 6379 struct address_space *mapping, 6380 unsigned long reason) 6381 { 6382 u32 hash; 6383 6384 /* 6385 * vma_lock and hugetlb_fault_mutex must be dropped before handling 6386 * userfault. Also mmap_lock could be dropped due to handling 6387 * userfault, any vma operation should be careful from here. 6388 */ 6389 hugetlb_vma_unlock_read(vmf->vma); 6390 hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff); 6391 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6392 return handle_userfault(vmf, reason); 6393 } 6394 6395 /* 6396 * Recheck pte with pgtable lock. Returns true if pte didn't change, or 6397 * false if pte changed or is changing. 6398 */ 6399 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm, unsigned long addr, 6400 pte_t *ptep, pte_t old_pte) 6401 { 6402 spinlock_t *ptl; 6403 bool same; 6404 6405 ptl = huge_pte_lock(h, mm, ptep); 6406 same = pte_same(huge_ptep_get(mm, addr, ptep), old_pte); 6407 spin_unlock(ptl); 6408 6409 return same; 6410 } 6411 6412 static vm_fault_t hugetlb_no_page(struct address_space *mapping, 6413 struct vm_fault *vmf) 6414 { 6415 struct vm_area_struct *vma = vmf->vma; 6416 struct mm_struct *mm = vma->vm_mm; 6417 struct hstate *h = hstate_vma(vma); 6418 vm_fault_t ret = VM_FAULT_SIGBUS; 6419 int anon_rmap = 0; 6420 unsigned long size; 6421 struct folio *folio; 6422 pte_t new_pte; 6423 bool new_folio, new_pagecache_folio = false; 6424 u32 hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff); 6425 6426 /* 6427 * Currently, we are forced to kill the process in the event the 6428 * original mapper has unmapped pages from the child due to a failed 6429 * COW/unsharing. Warn that such a situation has occurred as it may not 6430 * be obvious. 6431 */ 6432 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { 6433 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n", 6434 current->pid); 6435 goto out; 6436 } 6437 6438 /* 6439 * Use page lock to guard against racing truncation 6440 * before we get page_table_lock. 6441 */ 6442 new_folio = false; 6443 folio = filemap_lock_hugetlb_folio(h, mapping, vmf->pgoff); 6444 if (IS_ERR(folio)) { 6445 size = i_size_read(mapping->host) >> huge_page_shift(h); 6446 if (vmf->pgoff >= size) 6447 goto out; 6448 /* Check for page in userfault range */ 6449 if (userfaultfd_missing(vma)) { 6450 /* 6451 * Since hugetlb_no_page() was examining pte 6452 * without pgtable lock, we need to re-test under 6453 * lock because the pte may not be stable and could 6454 * have changed from under us. Try to detect 6455 * either changed or during-changing ptes and retry 6456 * properly when needed. 6457 * 6458 * Note that userfaultfd is actually fine with 6459 * false positives (e.g. caused by pte changed), 6460 * but not wrong logical events (e.g. caused by 6461 * reading a pte during changing). The latter can 6462 * confuse the userspace, so the strictness is very 6463 * much preferred. E.g., MISSING event should 6464 * never happen on the page after UFFDIO_COPY has 6465 * correctly installed the page and returned. 6466 */ 6467 if (!hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte)) { 6468 ret = 0; 6469 goto out; 6470 } 6471 6472 return hugetlb_handle_userfault(vmf, mapping, 6473 VM_UFFD_MISSING); 6474 } 6475 6476 if (!(vma->vm_flags & VM_MAYSHARE)) { 6477 ret = __vmf_anon_prepare(vmf); 6478 if (unlikely(ret)) 6479 goto out; 6480 } 6481 6482 folio = alloc_hugetlb_folio(vma, vmf->address, false); 6483 if (IS_ERR(folio)) { 6484 /* 6485 * Returning error will result in faulting task being 6486 * sent SIGBUS. The hugetlb fault mutex prevents two 6487 * tasks from racing to fault in the same page which 6488 * could result in false unable to allocate errors. 6489 * Page migration does not take the fault mutex, but 6490 * does a clear then write of pte's under page table 6491 * lock. Page fault code could race with migration, 6492 * notice the clear pte and try to allocate a page 6493 * here. Before returning error, get ptl and make 6494 * sure there really is no pte entry. 6495 */ 6496 if (hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte)) 6497 ret = vmf_error(PTR_ERR(folio)); 6498 else 6499 ret = 0; 6500 goto out; 6501 } 6502 folio_zero_user(folio, vmf->real_address); 6503 __folio_mark_uptodate(folio); 6504 new_folio = true; 6505 6506 if (vma->vm_flags & VM_MAYSHARE) { 6507 int err = hugetlb_add_to_page_cache(folio, mapping, 6508 vmf->pgoff); 6509 if (err) { 6510 /* 6511 * err can't be -EEXIST which implies someone 6512 * else consumed the reservation since hugetlb 6513 * fault mutex is held when add a hugetlb page 6514 * to the page cache. So it's safe to call 6515 * restore_reserve_on_error() here. 6516 */ 6517 restore_reserve_on_error(h, vma, vmf->address, 6518 folio); 6519 folio_put(folio); 6520 ret = VM_FAULT_SIGBUS; 6521 goto out; 6522 } 6523 new_pagecache_folio = true; 6524 } else { 6525 folio_lock(folio); 6526 anon_rmap = 1; 6527 } 6528 } else { 6529 /* 6530 * If memory error occurs between mmap() and fault, some process 6531 * don't have hwpoisoned swap entry for errored virtual address. 6532 * So we need to block hugepage fault by PG_hwpoison bit check. 6533 */ 6534 if (unlikely(folio_test_hwpoison(folio))) { 6535 ret = VM_FAULT_HWPOISON_LARGE | 6536 VM_FAULT_SET_HINDEX(hstate_index(h)); 6537 goto backout_unlocked; 6538 } 6539 6540 /* Check for page in userfault range. */ 6541 if (userfaultfd_minor(vma)) { 6542 folio_unlock(folio); 6543 folio_put(folio); 6544 /* See comment in userfaultfd_missing() block above */ 6545 if (!hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte)) { 6546 ret = 0; 6547 goto out; 6548 } 6549 return hugetlb_handle_userfault(vmf, mapping, 6550 VM_UFFD_MINOR); 6551 } 6552 } 6553 6554 /* 6555 * If we are going to COW a private mapping later, we examine the 6556 * pending reservations for this page now. This will ensure that 6557 * any allocations necessary to record that reservation occur outside 6558 * the spinlock. 6559 */ 6560 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 6561 if (vma_needs_reservation(h, vma, vmf->address) < 0) { 6562 ret = VM_FAULT_OOM; 6563 goto backout_unlocked; 6564 } 6565 /* Just decrements count, does not deallocate */ 6566 vma_end_reservation(h, vma, vmf->address); 6567 } 6568 6569 vmf->ptl = huge_pte_lock(h, mm, vmf->pte); 6570 ret = 0; 6571 /* If pte changed from under us, retry */ 6572 if (!pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), vmf->orig_pte)) 6573 goto backout; 6574 6575 if (anon_rmap) 6576 hugetlb_add_new_anon_rmap(folio, vma, vmf->address); 6577 else 6578 hugetlb_add_file_rmap(folio); 6579 new_pte = make_huge_pte(vma, &folio->page, vma->vm_flags & VM_SHARED); 6580 /* 6581 * If this pte was previously wr-protected, keep it wr-protected even 6582 * if populated. 6583 */ 6584 if (unlikely(pte_marker_uffd_wp(vmf->orig_pte))) 6585 new_pte = huge_pte_mkuffd_wp(new_pte); 6586 set_huge_pte_at(mm, vmf->address, vmf->pte, new_pte, huge_page_size(h)); 6587 6588 hugetlb_count_add(pages_per_huge_page(h), mm); 6589 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 6590 /* Optimization, do the COW without a second fault */ 6591 ret = hugetlb_wp(folio, vmf); 6592 } 6593 6594 spin_unlock(vmf->ptl); 6595 6596 /* 6597 * Only set hugetlb_migratable in newly allocated pages. Existing pages 6598 * found in the pagecache may not have hugetlb_migratable if they have 6599 * been isolated for migration. 6600 */ 6601 if (new_folio) 6602 folio_set_hugetlb_migratable(folio); 6603 6604 folio_unlock(folio); 6605 out: 6606 hugetlb_vma_unlock_read(vma); 6607 6608 /* 6609 * We must check to release the per-VMA lock. __vmf_anon_prepare() is 6610 * the only way ret can be set to VM_FAULT_RETRY. 6611 */ 6612 if (unlikely(ret & VM_FAULT_RETRY)) 6613 vma_end_read(vma); 6614 6615 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6616 return ret; 6617 6618 backout: 6619 spin_unlock(vmf->ptl); 6620 backout_unlocked: 6621 if (new_folio && !new_pagecache_folio) 6622 restore_reserve_on_error(h, vma, vmf->address, folio); 6623 6624 folio_unlock(folio); 6625 folio_put(folio); 6626 goto out; 6627 } 6628 6629 #ifdef CONFIG_SMP 6630 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 6631 { 6632 unsigned long key[2]; 6633 u32 hash; 6634 6635 key[0] = (unsigned long) mapping; 6636 key[1] = idx; 6637 6638 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0); 6639 6640 return hash & (num_fault_mutexes - 1); 6641 } 6642 #else 6643 /* 6644 * For uniprocessor systems we always use a single mutex, so just 6645 * return 0 and avoid the hashing overhead. 6646 */ 6647 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 6648 { 6649 return 0; 6650 } 6651 #endif 6652 6653 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, 6654 unsigned long address, unsigned int flags) 6655 { 6656 vm_fault_t ret; 6657 u32 hash; 6658 struct folio *folio = NULL; 6659 struct folio *pagecache_folio = NULL; 6660 struct hstate *h = hstate_vma(vma); 6661 struct address_space *mapping; 6662 int need_wait_lock = 0; 6663 struct vm_fault vmf = { 6664 .vma = vma, 6665 .address = address & huge_page_mask(h), 6666 .real_address = address, 6667 .flags = flags, 6668 .pgoff = vma_hugecache_offset(h, vma, 6669 address & huge_page_mask(h)), 6670 /* TODO: Track hugetlb faults using vm_fault */ 6671 6672 /* 6673 * Some fields may not be initialized, be careful as it may 6674 * be hard to debug if called functions make assumptions 6675 */ 6676 }; 6677 6678 /* 6679 * Serialize hugepage allocation and instantiation, so that we don't 6680 * get spurious allocation failures if two CPUs race to instantiate 6681 * the same page in the page cache. 6682 */ 6683 mapping = vma->vm_file->f_mapping; 6684 hash = hugetlb_fault_mutex_hash(mapping, vmf.pgoff); 6685 mutex_lock(&hugetlb_fault_mutex_table[hash]); 6686 6687 /* 6688 * Acquire vma lock before calling huge_pte_alloc and hold 6689 * until finished with vmf.pte. This prevents huge_pmd_unshare from 6690 * being called elsewhere and making the vmf.pte no longer valid. 6691 */ 6692 hugetlb_vma_lock_read(vma); 6693 vmf.pte = huge_pte_alloc(mm, vma, vmf.address, huge_page_size(h)); 6694 if (!vmf.pte) { 6695 hugetlb_vma_unlock_read(vma); 6696 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6697 return VM_FAULT_OOM; 6698 } 6699 6700 vmf.orig_pte = huge_ptep_get(mm, vmf.address, vmf.pte); 6701 if (huge_pte_none_mostly(vmf.orig_pte)) { 6702 if (is_pte_marker(vmf.orig_pte)) { 6703 pte_marker marker = 6704 pte_marker_get(pte_to_swp_entry(vmf.orig_pte)); 6705 6706 if (marker & PTE_MARKER_POISONED) { 6707 ret = VM_FAULT_HWPOISON_LARGE | 6708 VM_FAULT_SET_HINDEX(hstate_index(h)); 6709 goto out_mutex; 6710 } else if (WARN_ON_ONCE(marker & PTE_MARKER_GUARD)) { 6711 /* This isn't supported in hugetlb. */ 6712 ret = VM_FAULT_SIGSEGV; 6713 goto out_mutex; 6714 } 6715 } 6716 6717 /* 6718 * Other PTE markers should be handled the same way as none PTE. 6719 * 6720 * hugetlb_no_page will drop vma lock and hugetlb fault 6721 * mutex internally, which make us return immediately. 6722 */ 6723 return hugetlb_no_page(mapping, &vmf); 6724 } 6725 6726 ret = 0; 6727 6728 /* 6729 * vmf.orig_pte could be a migration/hwpoison vmf.orig_pte at this 6730 * point, so this check prevents the kernel from going below assuming 6731 * that we have an active hugepage in pagecache. This goto expects 6732 * the 2nd page fault, and is_hugetlb_entry_(migration|hwpoisoned) 6733 * check will properly handle it. 6734 */ 6735 if (!pte_present(vmf.orig_pte)) { 6736 if (unlikely(is_hugetlb_entry_migration(vmf.orig_pte))) { 6737 /* 6738 * Release the hugetlb fault lock now, but retain 6739 * the vma lock, because it is needed to guard the 6740 * huge_pte_lockptr() later in 6741 * migration_entry_wait_huge(). The vma lock will 6742 * be released there. 6743 */ 6744 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6745 migration_entry_wait_huge(vma, vmf.address, vmf.pte); 6746 return 0; 6747 } else if (unlikely(is_hugetlb_entry_hwpoisoned(vmf.orig_pte))) 6748 ret = VM_FAULT_HWPOISON_LARGE | 6749 VM_FAULT_SET_HINDEX(hstate_index(h)); 6750 goto out_mutex; 6751 } 6752 6753 /* 6754 * If we are going to COW/unshare the mapping later, we examine the 6755 * pending reservations for this page now. This will ensure that any 6756 * allocations necessary to record that reservation occur outside the 6757 * spinlock. Also lookup the pagecache page now as it is used to 6758 * determine if a reservation has been consumed. 6759 */ 6760 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) && 6761 !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(vmf.orig_pte)) { 6762 if (vma_needs_reservation(h, vma, vmf.address) < 0) { 6763 ret = VM_FAULT_OOM; 6764 goto out_mutex; 6765 } 6766 /* Just decrements count, does not deallocate */ 6767 vma_end_reservation(h, vma, vmf.address); 6768 6769 pagecache_folio = filemap_lock_hugetlb_folio(h, mapping, 6770 vmf.pgoff); 6771 if (IS_ERR(pagecache_folio)) 6772 pagecache_folio = NULL; 6773 } 6774 6775 vmf.ptl = huge_pte_lock(h, mm, vmf.pte); 6776 6777 /* Check for a racing update before calling hugetlb_wp() */ 6778 if (unlikely(!pte_same(vmf.orig_pte, huge_ptep_get(mm, vmf.address, vmf.pte)))) 6779 goto out_ptl; 6780 6781 /* Handle userfault-wp first, before trying to lock more pages */ 6782 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(mm, vmf.address, vmf.pte)) && 6783 (flags & FAULT_FLAG_WRITE) && !huge_pte_write(vmf.orig_pte)) { 6784 if (!userfaultfd_wp_async(vma)) { 6785 spin_unlock(vmf.ptl); 6786 if (pagecache_folio) { 6787 folio_unlock(pagecache_folio); 6788 folio_put(pagecache_folio); 6789 } 6790 hugetlb_vma_unlock_read(vma); 6791 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6792 return handle_userfault(&vmf, VM_UFFD_WP); 6793 } 6794 6795 vmf.orig_pte = huge_pte_clear_uffd_wp(vmf.orig_pte); 6796 set_huge_pte_at(mm, vmf.address, vmf.pte, vmf.orig_pte, 6797 huge_page_size(hstate_vma(vma))); 6798 /* Fallthrough to CoW */ 6799 } 6800 6801 /* 6802 * hugetlb_wp() requires page locks of pte_page(vmf.orig_pte) and 6803 * pagecache_folio, so here we need take the former one 6804 * when folio != pagecache_folio or !pagecache_folio. 6805 */ 6806 folio = page_folio(pte_page(vmf.orig_pte)); 6807 if (folio != pagecache_folio) 6808 if (!folio_trylock(folio)) { 6809 need_wait_lock = 1; 6810 goto out_ptl; 6811 } 6812 6813 folio_get(folio); 6814 6815 if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) { 6816 if (!huge_pte_write(vmf.orig_pte)) { 6817 ret = hugetlb_wp(pagecache_folio, &vmf); 6818 goto out_put_page; 6819 } else if (likely(flags & FAULT_FLAG_WRITE)) { 6820 vmf.orig_pte = huge_pte_mkdirty(vmf.orig_pte); 6821 } 6822 } 6823 vmf.orig_pte = pte_mkyoung(vmf.orig_pte); 6824 if (huge_ptep_set_access_flags(vma, vmf.address, vmf.pte, vmf.orig_pte, 6825 flags & FAULT_FLAG_WRITE)) 6826 update_mmu_cache(vma, vmf.address, vmf.pte); 6827 out_put_page: 6828 if (folio != pagecache_folio) 6829 folio_unlock(folio); 6830 folio_put(folio); 6831 out_ptl: 6832 spin_unlock(vmf.ptl); 6833 6834 if (pagecache_folio) { 6835 folio_unlock(pagecache_folio); 6836 folio_put(pagecache_folio); 6837 } 6838 out_mutex: 6839 hugetlb_vma_unlock_read(vma); 6840 6841 /* 6842 * We must check to release the per-VMA lock. __vmf_anon_prepare() in 6843 * hugetlb_wp() is the only way ret can be set to VM_FAULT_RETRY. 6844 */ 6845 if (unlikely(ret & VM_FAULT_RETRY)) 6846 vma_end_read(vma); 6847 6848 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6849 /* 6850 * Generally it's safe to hold refcount during waiting page lock. But 6851 * here we just wait to defer the next page fault to avoid busy loop and 6852 * the page is not used after unlocked before returning from the current 6853 * page fault. So we are safe from accessing freed page, even if we wait 6854 * here without taking refcount. 6855 */ 6856 if (need_wait_lock) 6857 folio_wait_locked(folio); 6858 return ret; 6859 } 6860 6861 #ifdef CONFIG_USERFAULTFD 6862 /* 6863 * Can probably be eliminated, but still used by hugetlb_mfill_atomic_pte(). 6864 */ 6865 static struct folio *alloc_hugetlb_folio_vma(struct hstate *h, 6866 struct vm_area_struct *vma, unsigned long address) 6867 { 6868 struct mempolicy *mpol; 6869 nodemask_t *nodemask; 6870 struct folio *folio; 6871 gfp_t gfp_mask; 6872 int node; 6873 6874 gfp_mask = htlb_alloc_mask(h); 6875 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 6876 /* 6877 * This is used to allocate a temporary hugetlb to hold the copied 6878 * content, which will then be copied again to the final hugetlb 6879 * consuming a reservation. Set the alloc_fallback to false to indicate 6880 * that breaking the per-node hugetlb pool is not allowed in this case. 6881 */ 6882 folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask, false); 6883 mpol_cond_put(mpol); 6884 6885 return folio; 6886 } 6887 6888 /* 6889 * Used by userfaultfd UFFDIO_* ioctls. Based on userfaultfd's mfill_atomic_pte 6890 * with modifications for hugetlb pages. 6891 */ 6892 int hugetlb_mfill_atomic_pte(pte_t *dst_pte, 6893 struct vm_area_struct *dst_vma, 6894 unsigned long dst_addr, 6895 unsigned long src_addr, 6896 uffd_flags_t flags, 6897 struct folio **foliop) 6898 { 6899 struct mm_struct *dst_mm = dst_vma->vm_mm; 6900 bool is_continue = uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE); 6901 bool wp_enabled = (flags & MFILL_ATOMIC_WP); 6902 struct hstate *h = hstate_vma(dst_vma); 6903 struct address_space *mapping = dst_vma->vm_file->f_mapping; 6904 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr); 6905 unsigned long size = huge_page_size(h); 6906 int vm_shared = dst_vma->vm_flags & VM_SHARED; 6907 pte_t _dst_pte; 6908 spinlock_t *ptl; 6909 int ret = -ENOMEM; 6910 struct folio *folio; 6911 bool folio_in_pagecache = false; 6912 6913 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_POISON)) { 6914 ptl = huge_pte_lock(h, dst_mm, dst_pte); 6915 6916 /* Don't overwrite any existing PTEs (even markers) */ 6917 if (!huge_pte_none(huge_ptep_get(dst_mm, dst_addr, dst_pte))) { 6918 spin_unlock(ptl); 6919 return -EEXIST; 6920 } 6921 6922 _dst_pte = make_pte_marker(PTE_MARKER_POISONED); 6923 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, size); 6924 6925 /* No need to invalidate - it was non-present before */ 6926 update_mmu_cache(dst_vma, dst_addr, dst_pte); 6927 6928 spin_unlock(ptl); 6929 return 0; 6930 } 6931 6932 if (is_continue) { 6933 ret = -EFAULT; 6934 folio = filemap_lock_hugetlb_folio(h, mapping, idx); 6935 if (IS_ERR(folio)) 6936 goto out; 6937 folio_in_pagecache = true; 6938 } else if (!*foliop) { 6939 /* If a folio already exists, then it's UFFDIO_COPY for 6940 * a non-missing case. Return -EEXIST. 6941 */ 6942 if (vm_shared && 6943 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) { 6944 ret = -EEXIST; 6945 goto out; 6946 } 6947 6948 folio = alloc_hugetlb_folio(dst_vma, dst_addr, false); 6949 if (IS_ERR(folio)) { 6950 ret = -ENOMEM; 6951 goto out; 6952 } 6953 6954 ret = copy_folio_from_user(folio, (const void __user *) src_addr, 6955 false); 6956 6957 /* fallback to copy_from_user outside mmap_lock */ 6958 if (unlikely(ret)) { 6959 ret = -ENOENT; 6960 /* Free the allocated folio which may have 6961 * consumed a reservation. 6962 */ 6963 restore_reserve_on_error(h, dst_vma, dst_addr, folio); 6964 folio_put(folio); 6965 6966 /* Allocate a temporary folio to hold the copied 6967 * contents. 6968 */ 6969 folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr); 6970 if (!folio) { 6971 ret = -ENOMEM; 6972 goto out; 6973 } 6974 *foliop = folio; 6975 /* Set the outparam foliop and return to the caller to 6976 * copy the contents outside the lock. Don't free the 6977 * folio. 6978 */ 6979 goto out; 6980 } 6981 } else { 6982 if (vm_shared && 6983 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) { 6984 folio_put(*foliop); 6985 ret = -EEXIST; 6986 *foliop = NULL; 6987 goto out; 6988 } 6989 6990 folio = alloc_hugetlb_folio(dst_vma, dst_addr, false); 6991 if (IS_ERR(folio)) { 6992 folio_put(*foliop); 6993 ret = -ENOMEM; 6994 *foliop = NULL; 6995 goto out; 6996 } 6997 ret = copy_user_large_folio(folio, *foliop, dst_addr, dst_vma); 6998 folio_put(*foliop); 6999 *foliop = NULL; 7000 if (ret) { 7001 folio_put(folio); 7002 goto out; 7003 } 7004 } 7005 7006 /* 7007 * If we just allocated a new page, we need a memory barrier to ensure 7008 * that preceding stores to the page become visible before the 7009 * set_pte_at() write. The memory barrier inside __folio_mark_uptodate 7010 * is what we need. 7011 * 7012 * In the case where we have not allocated a new page (is_continue), 7013 * the page must already be uptodate. UFFDIO_CONTINUE already includes 7014 * an earlier smp_wmb() to ensure that prior stores will be visible 7015 * before the set_pte_at() write. 7016 */ 7017 if (!is_continue) 7018 __folio_mark_uptodate(folio); 7019 else 7020 WARN_ON_ONCE(!folio_test_uptodate(folio)); 7021 7022 /* Add shared, newly allocated pages to the page cache. */ 7023 if (vm_shared && !is_continue) { 7024 ret = -EFAULT; 7025 if (idx >= (i_size_read(mapping->host) >> huge_page_shift(h))) 7026 goto out_release_nounlock; 7027 7028 /* 7029 * Serialization between remove_inode_hugepages() and 7030 * hugetlb_add_to_page_cache() below happens through the 7031 * hugetlb_fault_mutex_table that here must be hold by 7032 * the caller. 7033 */ 7034 ret = hugetlb_add_to_page_cache(folio, mapping, idx); 7035 if (ret) 7036 goto out_release_nounlock; 7037 folio_in_pagecache = true; 7038 } 7039 7040 ptl = huge_pte_lock(h, dst_mm, dst_pte); 7041 7042 ret = -EIO; 7043 if (folio_test_hwpoison(folio)) 7044 goto out_release_unlock; 7045 7046 /* 7047 * We allow to overwrite a pte marker: consider when both MISSING|WP 7048 * registered, we firstly wr-protect a none pte which has no page cache 7049 * page backing it, then access the page. 7050 */ 7051 ret = -EEXIST; 7052 if (!huge_pte_none_mostly(huge_ptep_get(dst_mm, dst_addr, dst_pte))) 7053 goto out_release_unlock; 7054 7055 if (folio_in_pagecache) 7056 hugetlb_add_file_rmap(folio); 7057 else 7058 hugetlb_add_new_anon_rmap(folio, dst_vma, dst_addr); 7059 7060 /* 7061 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY 7062 * with wp flag set, don't set pte write bit. 7063 */ 7064 _dst_pte = make_huge_pte(dst_vma, &folio->page, 7065 !wp_enabled && !(is_continue && !vm_shared)); 7066 /* 7067 * Always mark UFFDIO_COPY page dirty; note that this may not be 7068 * extremely important for hugetlbfs for now since swapping is not 7069 * supported, but we should still be clear in that this page cannot be 7070 * thrown away at will, even if write bit not set. 7071 */ 7072 _dst_pte = huge_pte_mkdirty(_dst_pte); 7073 _dst_pte = pte_mkyoung(_dst_pte); 7074 7075 if (wp_enabled) 7076 _dst_pte = huge_pte_mkuffd_wp(_dst_pte); 7077 7078 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, size); 7079 7080 hugetlb_count_add(pages_per_huge_page(h), dst_mm); 7081 7082 /* No need to invalidate - it was non-present before */ 7083 update_mmu_cache(dst_vma, dst_addr, dst_pte); 7084 7085 spin_unlock(ptl); 7086 if (!is_continue) 7087 folio_set_hugetlb_migratable(folio); 7088 if (vm_shared || is_continue) 7089 folio_unlock(folio); 7090 ret = 0; 7091 out: 7092 return ret; 7093 out_release_unlock: 7094 spin_unlock(ptl); 7095 if (vm_shared || is_continue) 7096 folio_unlock(folio); 7097 out_release_nounlock: 7098 if (!folio_in_pagecache) 7099 restore_reserve_on_error(h, dst_vma, dst_addr, folio); 7100 folio_put(folio); 7101 goto out; 7102 } 7103 #endif /* CONFIG_USERFAULTFD */ 7104 7105 long hugetlb_change_protection(struct vm_area_struct *vma, 7106 unsigned long address, unsigned long end, 7107 pgprot_t newprot, unsigned long cp_flags) 7108 { 7109 struct mm_struct *mm = vma->vm_mm; 7110 unsigned long start = address; 7111 pte_t *ptep; 7112 pte_t pte; 7113 struct hstate *h = hstate_vma(vma); 7114 long pages = 0, psize = huge_page_size(h); 7115 bool shared_pmd = false; 7116 struct mmu_notifier_range range; 7117 unsigned long last_addr_mask; 7118 bool uffd_wp = cp_flags & MM_CP_UFFD_WP; 7119 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE; 7120 7121 /* 7122 * In the case of shared PMDs, the area to flush could be beyond 7123 * start/end. Set range.start/range.end to cover the maximum possible 7124 * range if PMD sharing is possible. 7125 */ 7126 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA, 7127 0, mm, start, end); 7128 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 7129 7130 BUG_ON(address >= end); 7131 flush_cache_range(vma, range.start, range.end); 7132 7133 mmu_notifier_invalidate_range_start(&range); 7134 hugetlb_vma_lock_write(vma); 7135 i_mmap_lock_write(vma->vm_file->f_mapping); 7136 last_addr_mask = hugetlb_mask_last_page(h); 7137 for (; address < end; address += psize) { 7138 spinlock_t *ptl; 7139 ptep = hugetlb_walk(vma, address, psize); 7140 if (!ptep) { 7141 if (!uffd_wp) { 7142 address |= last_addr_mask; 7143 continue; 7144 } 7145 /* 7146 * Userfaultfd wr-protect requires pgtable 7147 * pre-allocations to install pte markers. 7148 */ 7149 ptep = huge_pte_alloc(mm, vma, address, psize); 7150 if (!ptep) { 7151 pages = -ENOMEM; 7152 break; 7153 } 7154 } 7155 ptl = huge_pte_lock(h, mm, ptep); 7156 if (huge_pmd_unshare(mm, vma, address, ptep)) { 7157 /* 7158 * When uffd-wp is enabled on the vma, unshare 7159 * shouldn't happen at all. Warn about it if it 7160 * happened due to some reason. 7161 */ 7162 WARN_ON_ONCE(uffd_wp || uffd_wp_resolve); 7163 pages++; 7164 spin_unlock(ptl); 7165 shared_pmd = true; 7166 address |= last_addr_mask; 7167 continue; 7168 } 7169 pte = huge_ptep_get(mm, address, ptep); 7170 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) { 7171 /* Nothing to do. */ 7172 } else if (unlikely(is_hugetlb_entry_migration(pte))) { 7173 swp_entry_t entry = pte_to_swp_entry(pte); 7174 struct page *page = pfn_swap_entry_to_page(entry); 7175 pte_t newpte = pte; 7176 7177 if (is_writable_migration_entry(entry)) { 7178 if (PageAnon(page)) 7179 entry = make_readable_exclusive_migration_entry( 7180 swp_offset(entry)); 7181 else 7182 entry = make_readable_migration_entry( 7183 swp_offset(entry)); 7184 newpte = swp_entry_to_pte(entry); 7185 pages++; 7186 } 7187 7188 if (uffd_wp) 7189 newpte = pte_swp_mkuffd_wp(newpte); 7190 else if (uffd_wp_resolve) 7191 newpte = pte_swp_clear_uffd_wp(newpte); 7192 if (!pte_same(pte, newpte)) 7193 set_huge_pte_at(mm, address, ptep, newpte, psize); 7194 } else if (unlikely(is_pte_marker(pte))) { 7195 /* 7196 * Do nothing on a poison marker; page is 7197 * corrupted, permissons do not apply. Here 7198 * pte_marker_uffd_wp()==true implies !poison 7199 * because they're mutual exclusive. 7200 */ 7201 if (pte_marker_uffd_wp(pte) && uffd_wp_resolve) 7202 /* Safe to modify directly (non-present->none). */ 7203 huge_pte_clear(mm, address, ptep, psize); 7204 } else if (!huge_pte_none(pte)) { 7205 pte_t old_pte; 7206 unsigned int shift = huge_page_shift(hstate_vma(vma)); 7207 7208 old_pte = huge_ptep_modify_prot_start(vma, address, ptep); 7209 pte = huge_pte_modify(old_pte, newprot); 7210 pte = arch_make_huge_pte(pte, shift, vma->vm_flags); 7211 if (uffd_wp) 7212 pte = huge_pte_mkuffd_wp(pte); 7213 else if (uffd_wp_resolve) 7214 pte = huge_pte_clear_uffd_wp(pte); 7215 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte); 7216 pages++; 7217 } else { 7218 /* None pte */ 7219 if (unlikely(uffd_wp)) 7220 /* Safe to modify directly (none->non-present). */ 7221 set_huge_pte_at(mm, address, ptep, 7222 make_pte_marker(PTE_MARKER_UFFD_WP), 7223 psize); 7224 } 7225 spin_unlock(ptl); 7226 } 7227 /* 7228 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare 7229 * may have cleared our pud entry and done put_page on the page table: 7230 * once we release i_mmap_rwsem, another task can do the final put_page 7231 * and that page table be reused and filled with junk. If we actually 7232 * did unshare a page of pmds, flush the range corresponding to the pud. 7233 */ 7234 if (shared_pmd) 7235 flush_hugetlb_tlb_range(vma, range.start, range.end); 7236 else 7237 flush_hugetlb_tlb_range(vma, start, end); 7238 /* 7239 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs() we are 7240 * downgrading page table protection not changing it to point to a new 7241 * page. 7242 * 7243 * See Documentation/mm/mmu_notifier.rst 7244 */ 7245 i_mmap_unlock_write(vma->vm_file->f_mapping); 7246 hugetlb_vma_unlock_write(vma); 7247 mmu_notifier_invalidate_range_end(&range); 7248 7249 return pages > 0 ? (pages << h->order) : pages; 7250 } 7251 7252 /* Return true if reservation was successful, false otherwise. */ 7253 bool hugetlb_reserve_pages(struct inode *inode, 7254 long from, long to, 7255 struct vm_area_struct *vma, 7256 vm_flags_t vm_flags) 7257 { 7258 long chg = -1, add = -1, spool_resv, gbl_resv; 7259 struct hstate *h = hstate_inode(inode); 7260 struct hugepage_subpool *spool = subpool_inode(inode); 7261 struct resv_map *resv_map; 7262 struct hugetlb_cgroup *h_cg = NULL; 7263 long gbl_reserve, regions_needed = 0; 7264 7265 /* This should never happen */ 7266 if (from > to) { 7267 VM_WARN(1, "%s called with a negative range\n", __func__); 7268 return false; 7269 } 7270 7271 /* 7272 * vma specific semaphore used for pmd sharing and fault/truncation 7273 * synchronization 7274 */ 7275 hugetlb_vma_lock_alloc(vma); 7276 7277 /* 7278 * Only apply hugepage reservation if asked. At fault time, an 7279 * attempt will be made for VM_NORESERVE to allocate a page 7280 * without using reserves 7281 */ 7282 if (vm_flags & VM_NORESERVE) 7283 return true; 7284 7285 /* 7286 * Shared mappings base their reservation on the number of pages that 7287 * are already allocated on behalf of the file. Private mappings need 7288 * to reserve the full area even if read-only as mprotect() may be 7289 * called to make the mapping read-write. Assume !vma is a shm mapping 7290 */ 7291 if (!vma || vma->vm_flags & VM_MAYSHARE) { 7292 /* 7293 * resv_map can not be NULL as hugetlb_reserve_pages is only 7294 * called for inodes for which resv_maps were created (see 7295 * hugetlbfs_get_inode). 7296 */ 7297 resv_map = inode_resv_map(inode); 7298 7299 chg = region_chg(resv_map, from, to, ®ions_needed); 7300 } else { 7301 /* Private mapping. */ 7302 resv_map = resv_map_alloc(); 7303 if (!resv_map) 7304 goto out_err; 7305 7306 chg = to - from; 7307 7308 set_vma_resv_map(vma, resv_map); 7309 set_vma_resv_flags(vma, HPAGE_RESV_OWNER); 7310 } 7311 7312 if (chg < 0) 7313 goto out_err; 7314 7315 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h), 7316 chg * pages_per_huge_page(h), &h_cg) < 0) 7317 goto out_err; 7318 7319 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) { 7320 /* For private mappings, the hugetlb_cgroup uncharge info hangs 7321 * of the resv_map. 7322 */ 7323 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h); 7324 } 7325 7326 /* 7327 * There must be enough pages in the subpool for the mapping. If 7328 * the subpool has a minimum size, there may be some global 7329 * reservations already in place (gbl_reserve). 7330 */ 7331 gbl_reserve = hugepage_subpool_get_pages(spool, chg); 7332 if (gbl_reserve < 0) 7333 goto out_uncharge_cgroup; 7334 7335 /* 7336 * Check enough hugepages are available for the reservation. 7337 * Hand the pages back to the subpool if there are not 7338 */ 7339 if (hugetlb_acct_memory(h, gbl_reserve) < 0) 7340 goto out_put_pages; 7341 7342 /* 7343 * Account for the reservations made. Shared mappings record regions 7344 * that have reservations as they are shared by multiple VMAs. 7345 * When the last VMA disappears, the region map says how much 7346 * the reservation was and the page cache tells how much of 7347 * the reservation was consumed. Private mappings are per-VMA and 7348 * only the consumed reservations are tracked. When the VMA 7349 * disappears, the original reservation is the VMA size and the 7350 * consumed reservations are stored in the map. Hence, nothing 7351 * else has to be done for private mappings here 7352 */ 7353 if (!vma || vma->vm_flags & VM_MAYSHARE) { 7354 add = region_add(resv_map, from, to, regions_needed, h, h_cg); 7355 7356 if (unlikely(add < 0)) { 7357 hugetlb_acct_memory(h, -gbl_reserve); 7358 goto out_put_pages; 7359 } else if (unlikely(chg > add)) { 7360 /* 7361 * pages in this range were added to the reserve 7362 * map between region_chg and region_add. This 7363 * indicates a race with alloc_hugetlb_folio. Adjust 7364 * the subpool and reserve counts modified above 7365 * based on the difference. 7366 */ 7367 long rsv_adjust; 7368 7369 /* 7370 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the 7371 * reference to h_cg->css. See comment below for detail. 7372 */ 7373 hugetlb_cgroup_uncharge_cgroup_rsvd( 7374 hstate_index(h), 7375 (chg - add) * pages_per_huge_page(h), h_cg); 7376 7377 rsv_adjust = hugepage_subpool_put_pages(spool, 7378 chg - add); 7379 hugetlb_acct_memory(h, -rsv_adjust); 7380 } else if (h_cg) { 7381 /* 7382 * The file_regions will hold their own reference to 7383 * h_cg->css. So we should release the reference held 7384 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are 7385 * done. 7386 */ 7387 hugetlb_cgroup_put_rsvd_cgroup(h_cg); 7388 } 7389 } 7390 return true; 7391 7392 out_put_pages: 7393 spool_resv = chg - gbl_reserve; 7394 if (spool_resv) { 7395 /* put sub pool's reservation back, chg - gbl_reserve */ 7396 gbl_resv = hugepage_subpool_put_pages(spool, spool_resv); 7397 /* 7398 * subpool's reserved pages can not be put back due to race, 7399 * return to hstate. 7400 */ 7401 hugetlb_acct_memory(h, -gbl_resv); 7402 } 7403 out_uncharge_cgroup: 7404 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h), 7405 chg * pages_per_huge_page(h), h_cg); 7406 out_err: 7407 hugetlb_vma_lock_free(vma); 7408 if (!vma || vma->vm_flags & VM_MAYSHARE) 7409 /* Only call region_abort if the region_chg succeeded but the 7410 * region_add failed or didn't run. 7411 */ 7412 if (chg >= 0 && add < 0) 7413 region_abort(resv_map, from, to, regions_needed); 7414 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 7415 kref_put(&resv_map->refs, resv_map_release); 7416 set_vma_resv_map(vma, NULL); 7417 } 7418 return false; 7419 } 7420 7421 long hugetlb_unreserve_pages(struct inode *inode, long start, long end, 7422 long freed) 7423 { 7424 struct hstate *h = hstate_inode(inode); 7425 struct resv_map *resv_map = inode_resv_map(inode); 7426 long chg = 0; 7427 struct hugepage_subpool *spool = subpool_inode(inode); 7428 long gbl_reserve; 7429 7430 /* 7431 * Since this routine can be called in the evict inode path for all 7432 * hugetlbfs inodes, resv_map could be NULL. 7433 */ 7434 if (resv_map) { 7435 chg = region_del(resv_map, start, end); 7436 /* 7437 * region_del() can fail in the rare case where a region 7438 * must be split and another region descriptor can not be 7439 * allocated. If end == LONG_MAX, it will not fail. 7440 */ 7441 if (chg < 0) 7442 return chg; 7443 } 7444 7445 spin_lock(&inode->i_lock); 7446 inode->i_blocks -= (blocks_per_huge_page(h) * freed); 7447 spin_unlock(&inode->i_lock); 7448 7449 /* 7450 * If the subpool has a minimum size, the number of global 7451 * reservations to be released may be adjusted. 7452 * 7453 * Note that !resv_map implies freed == 0. So (chg - freed) 7454 * won't go negative. 7455 */ 7456 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed)); 7457 hugetlb_acct_memory(h, -gbl_reserve); 7458 7459 return 0; 7460 } 7461 7462 #ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING 7463 static unsigned long page_table_shareable(struct vm_area_struct *svma, 7464 struct vm_area_struct *vma, 7465 unsigned long addr, pgoff_t idx) 7466 { 7467 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) + 7468 svma->vm_start; 7469 unsigned long sbase = saddr & PUD_MASK; 7470 unsigned long s_end = sbase + PUD_SIZE; 7471 7472 /* Allow segments to share if only one is marked locked */ 7473 unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED_MASK; 7474 unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED_MASK; 7475 7476 /* 7477 * match the virtual addresses, permission and the alignment of the 7478 * page table page. 7479 * 7480 * Also, vma_lock (vm_private_data) is required for sharing. 7481 */ 7482 if (pmd_index(addr) != pmd_index(saddr) || 7483 vm_flags != svm_flags || 7484 !range_in_vma(svma, sbase, s_end) || 7485 !svma->vm_private_data) 7486 return 0; 7487 7488 return saddr; 7489 } 7490 7491 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr) 7492 { 7493 unsigned long start = addr & PUD_MASK; 7494 unsigned long end = start + PUD_SIZE; 7495 7496 #ifdef CONFIG_USERFAULTFD 7497 if (uffd_disable_huge_pmd_share(vma)) 7498 return false; 7499 #endif 7500 /* 7501 * check on proper vm_flags and page table alignment 7502 */ 7503 if (!(vma->vm_flags & VM_MAYSHARE)) 7504 return false; 7505 if (!vma->vm_private_data) /* vma lock required for sharing */ 7506 return false; 7507 if (!range_in_vma(vma, start, end)) 7508 return false; 7509 return true; 7510 } 7511 7512 /* 7513 * Determine if start,end range within vma could be mapped by shared pmd. 7514 * If yes, adjust start and end to cover range associated with possible 7515 * shared pmd mappings. 7516 */ 7517 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 7518 unsigned long *start, unsigned long *end) 7519 { 7520 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE), 7521 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE); 7522 7523 /* 7524 * vma needs to span at least one aligned PUD size, and the range 7525 * must be at least partially within in. 7526 */ 7527 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) || 7528 (*end <= v_start) || (*start >= v_end)) 7529 return; 7530 7531 /* Extend the range to be PUD aligned for a worst case scenario */ 7532 if (*start > v_start) 7533 *start = ALIGN_DOWN(*start, PUD_SIZE); 7534 7535 if (*end < v_end) 7536 *end = ALIGN(*end, PUD_SIZE); 7537 } 7538 7539 /* 7540 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc() 7541 * and returns the corresponding pte. While this is not necessary for the 7542 * !shared pmd case because we can allocate the pmd later as well, it makes the 7543 * code much cleaner. pmd allocation is essential for the shared case because 7544 * pud has to be populated inside the same i_mmap_rwsem section - otherwise 7545 * racing tasks could either miss the sharing (see huge_pte_offset) or select a 7546 * bad pmd for sharing. 7547 */ 7548 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, 7549 unsigned long addr, pud_t *pud) 7550 { 7551 struct address_space *mapping = vma->vm_file->f_mapping; 7552 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + 7553 vma->vm_pgoff; 7554 struct vm_area_struct *svma; 7555 unsigned long saddr; 7556 pte_t *spte = NULL; 7557 pte_t *pte; 7558 7559 i_mmap_lock_read(mapping); 7560 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) { 7561 if (svma == vma) 7562 continue; 7563 7564 saddr = page_table_shareable(svma, vma, addr, idx); 7565 if (saddr) { 7566 spte = hugetlb_walk(svma, saddr, 7567 vma_mmu_pagesize(svma)); 7568 if (spte) { 7569 ptdesc_pmd_pts_inc(virt_to_ptdesc(spte)); 7570 break; 7571 } 7572 } 7573 } 7574 7575 if (!spte) 7576 goto out; 7577 7578 spin_lock(&mm->page_table_lock); 7579 if (pud_none(*pud)) { 7580 pud_populate(mm, pud, 7581 (pmd_t *)((unsigned long)spte & PAGE_MASK)); 7582 mm_inc_nr_pmds(mm); 7583 } else { 7584 ptdesc_pmd_pts_dec(virt_to_ptdesc(spte)); 7585 } 7586 spin_unlock(&mm->page_table_lock); 7587 out: 7588 pte = (pte_t *)pmd_alloc(mm, pud, addr); 7589 i_mmap_unlock_read(mapping); 7590 return pte; 7591 } 7592 7593 /* 7594 * unmap huge page backed by shared pte. 7595 * 7596 * Called with page table lock held. 7597 * 7598 * returns: 1 successfully unmapped a shared pte page 7599 * 0 the underlying pte page is not shared, or it is the last user 7600 */ 7601 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, 7602 unsigned long addr, pte_t *ptep) 7603 { 7604 unsigned long sz = huge_page_size(hstate_vma(vma)); 7605 pgd_t *pgd = pgd_offset(mm, addr); 7606 p4d_t *p4d = p4d_offset(pgd, addr); 7607 pud_t *pud = pud_offset(p4d, addr); 7608 7609 i_mmap_assert_write_locked(vma->vm_file->f_mapping); 7610 hugetlb_vma_assert_locked(vma); 7611 if (sz != PMD_SIZE) 7612 return 0; 7613 if (!ptdesc_pmd_pts_count(virt_to_ptdesc(ptep))) 7614 return 0; 7615 7616 pud_clear(pud); 7617 ptdesc_pmd_pts_dec(virt_to_ptdesc(ptep)); 7618 mm_dec_nr_pmds(mm); 7619 return 1; 7620 } 7621 7622 #else /* !CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING */ 7623 7624 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, 7625 unsigned long addr, pud_t *pud) 7626 { 7627 return NULL; 7628 } 7629 7630 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, 7631 unsigned long addr, pte_t *ptep) 7632 { 7633 return 0; 7634 } 7635 7636 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 7637 unsigned long *start, unsigned long *end) 7638 { 7639 } 7640 7641 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr) 7642 { 7643 return false; 7644 } 7645 #endif /* CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING */ 7646 7647 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB 7648 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 7649 unsigned long addr, unsigned long sz) 7650 { 7651 pgd_t *pgd; 7652 p4d_t *p4d; 7653 pud_t *pud; 7654 pte_t *pte = NULL; 7655 7656 pgd = pgd_offset(mm, addr); 7657 p4d = p4d_alloc(mm, pgd, addr); 7658 if (!p4d) 7659 return NULL; 7660 pud = pud_alloc(mm, p4d, addr); 7661 if (pud) { 7662 if (sz == PUD_SIZE) { 7663 pte = (pte_t *)pud; 7664 } else { 7665 BUG_ON(sz != PMD_SIZE); 7666 if (want_pmd_share(vma, addr) && pud_none(*pud)) 7667 pte = huge_pmd_share(mm, vma, addr, pud); 7668 else 7669 pte = (pte_t *)pmd_alloc(mm, pud, addr); 7670 } 7671 } 7672 7673 if (pte) { 7674 pte_t pteval = ptep_get_lockless(pte); 7675 7676 BUG_ON(pte_present(pteval) && !pte_huge(pteval)); 7677 } 7678 7679 return pte; 7680 } 7681 7682 /* 7683 * huge_pte_offset() - Walk the page table to resolve the hugepage 7684 * entry at address @addr 7685 * 7686 * Return: Pointer to page table entry (PUD or PMD) for 7687 * address @addr, or NULL if a !p*d_present() entry is encountered and the 7688 * size @sz doesn't match the hugepage size at this level of the page 7689 * table. 7690 */ 7691 pte_t *huge_pte_offset(struct mm_struct *mm, 7692 unsigned long addr, unsigned long sz) 7693 { 7694 pgd_t *pgd; 7695 p4d_t *p4d; 7696 pud_t *pud; 7697 pmd_t *pmd; 7698 7699 pgd = pgd_offset(mm, addr); 7700 if (!pgd_present(*pgd)) 7701 return NULL; 7702 p4d = p4d_offset(pgd, addr); 7703 if (!p4d_present(*p4d)) 7704 return NULL; 7705 7706 pud = pud_offset(p4d, addr); 7707 if (sz == PUD_SIZE) 7708 /* must be pud huge, non-present or none */ 7709 return (pte_t *)pud; 7710 if (!pud_present(*pud)) 7711 return NULL; 7712 /* must have a valid entry and size to go further */ 7713 7714 pmd = pmd_offset(pud, addr); 7715 /* must be pmd huge, non-present or none */ 7716 return (pte_t *)pmd; 7717 } 7718 7719 /* 7720 * Return a mask that can be used to update an address to the last huge 7721 * page in a page table page mapping size. Used to skip non-present 7722 * page table entries when linearly scanning address ranges. Architectures 7723 * with unique huge page to page table relationships can define their own 7724 * version of this routine. 7725 */ 7726 unsigned long hugetlb_mask_last_page(struct hstate *h) 7727 { 7728 unsigned long hp_size = huge_page_size(h); 7729 7730 if (hp_size == PUD_SIZE) 7731 return P4D_SIZE - PUD_SIZE; 7732 else if (hp_size == PMD_SIZE) 7733 return PUD_SIZE - PMD_SIZE; 7734 else 7735 return 0UL; 7736 } 7737 7738 #else 7739 7740 /* See description above. Architectures can provide their own version. */ 7741 __weak unsigned long hugetlb_mask_last_page(struct hstate *h) 7742 { 7743 #ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING 7744 if (huge_page_size(h) == PMD_SIZE) 7745 return PUD_SIZE - PMD_SIZE; 7746 #endif 7747 return 0UL; 7748 } 7749 7750 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */ 7751 7752 /** 7753 * folio_isolate_hugetlb - try to isolate an allocated hugetlb folio 7754 * @folio: the folio to isolate 7755 * @list: the list to add the folio to on success 7756 * 7757 * Isolate an allocated (refcount > 0) hugetlb folio, marking it as 7758 * isolated/non-migratable, and moving it from the active list to the 7759 * given list. 7760 * 7761 * Isolation will fail if @folio is not an allocated hugetlb folio, or if 7762 * it is already isolated/non-migratable. 7763 * 7764 * On success, an additional folio reference is taken that must be dropped 7765 * using folio_putback_hugetlb() to undo the isolation. 7766 * 7767 * Return: True if isolation worked, otherwise False. 7768 */ 7769 bool folio_isolate_hugetlb(struct folio *folio, struct list_head *list) 7770 { 7771 bool ret = true; 7772 7773 spin_lock_irq(&hugetlb_lock); 7774 if (!folio_test_hugetlb(folio) || 7775 !folio_test_hugetlb_migratable(folio) || 7776 !folio_try_get(folio)) { 7777 ret = false; 7778 goto unlock; 7779 } 7780 folio_clear_hugetlb_migratable(folio); 7781 list_move_tail(&folio->lru, list); 7782 unlock: 7783 spin_unlock_irq(&hugetlb_lock); 7784 return ret; 7785 } 7786 7787 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison) 7788 { 7789 int ret = 0; 7790 7791 *hugetlb = false; 7792 spin_lock_irq(&hugetlb_lock); 7793 if (folio_test_hugetlb(folio)) { 7794 *hugetlb = true; 7795 if (folio_test_hugetlb_freed(folio)) 7796 ret = 0; 7797 else if (folio_test_hugetlb_migratable(folio) || unpoison) 7798 ret = folio_try_get(folio); 7799 else 7800 ret = -EBUSY; 7801 } 7802 spin_unlock_irq(&hugetlb_lock); 7803 return ret; 7804 } 7805 7806 int get_huge_page_for_hwpoison(unsigned long pfn, int flags, 7807 bool *migratable_cleared) 7808 { 7809 int ret; 7810 7811 spin_lock_irq(&hugetlb_lock); 7812 ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared); 7813 spin_unlock_irq(&hugetlb_lock); 7814 return ret; 7815 } 7816 7817 /** 7818 * folio_putback_hugetlb - unisolate a hugetlb folio 7819 * @folio: the isolated hugetlb folio 7820 * 7821 * Putback/un-isolate the hugetlb folio that was previous isolated using 7822 * folio_isolate_hugetlb(): marking it non-isolated/migratable and putting it 7823 * back onto the active list. 7824 * 7825 * Will drop the additional folio reference obtained through 7826 * folio_isolate_hugetlb(). 7827 */ 7828 void folio_putback_hugetlb(struct folio *folio) 7829 { 7830 spin_lock_irq(&hugetlb_lock); 7831 folio_set_hugetlb_migratable(folio); 7832 list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist); 7833 spin_unlock_irq(&hugetlb_lock); 7834 folio_put(folio); 7835 } 7836 7837 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason) 7838 { 7839 struct hstate *h = folio_hstate(old_folio); 7840 7841 hugetlb_cgroup_migrate(old_folio, new_folio); 7842 set_page_owner_migrate_reason(&new_folio->page, reason); 7843 7844 /* 7845 * transfer temporary state of the new hugetlb folio. This is 7846 * reverse to other transitions because the newpage is going to 7847 * be final while the old one will be freed so it takes over 7848 * the temporary status. 7849 * 7850 * Also note that we have to transfer the per-node surplus state 7851 * here as well otherwise the global surplus count will not match 7852 * the per-node's. 7853 */ 7854 if (folio_test_hugetlb_temporary(new_folio)) { 7855 int old_nid = folio_nid(old_folio); 7856 int new_nid = folio_nid(new_folio); 7857 7858 folio_set_hugetlb_temporary(old_folio); 7859 folio_clear_hugetlb_temporary(new_folio); 7860 7861 7862 /* 7863 * There is no need to transfer the per-node surplus state 7864 * when we do not cross the node. 7865 */ 7866 if (new_nid == old_nid) 7867 return; 7868 spin_lock_irq(&hugetlb_lock); 7869 if (h->surplus_huge_pages_node[old_nid]) { 7870 h->surplus_huge_pages_node[old_nid]--; 7871 h->surplus_huge_pages_node[new_nid]++; 7872 } 7873 spin_unlock_irq(&hugetlb_lock); 7874 } 7875 7876 /* 7877 * Our old folio is isolated and has "migratable" cleared until it 7878 * is putback. As migration succeeded, set the new folio "migratable" 7879 * and add it to the active list. 7880 */ 7881 spin_lock_irq(&hugetlb_lock); 7882 folio_set_hugetlb_migratable(new_folio); 7883 list_move_tail(&new_folio->lru, &(folio_hstate(new_folio))->hugepage_activelist); 7884 spin_unlock_irq(&hugetlb_lock); 7885 } 7886 7887 static void hugetlb_unshare_pmds(struct vm_area_struct *vma, 7888 unsigned long start, 7889 unsigned long end) 7890 { 7891 struct hstate *h = hstate_vma(vma); 7892 unsigned long sz = huge_page_size(h); 7893 struct mm_struct *mm = vma->vm_mm; 7894 struct mmu_notifier_range range; 7895 unsigned long address; 7896 spinlock_t *ptl; 7897 pte_t *ptep; 7898 7899 if (!(vma->vm_flags & VM_MAYSHARE)) 7900 return; 7901 7902 if (start >= end) 7903 return; 7904 7905 flush_cache_range(vma, start, end); 7906 /* 7907 * No need to call adjust_range_if_pmd_sharing_possible(), because 7908 * we have already done the PUD_SIZE alignment. 7909 */ 7910 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 7911 start, end); 7912 mmu_notifier_invalidate_range_start(&range); 7913 hugetlb_vma_lock_write(vma); 7914 i_mmap_lock_write(vma->vm_file->f_mapping); 7915 for (address = start; address < end; address += PUD_SIZE) { 7916 ptep = hugetlb_walk(vma, address, sz); 7917 if (!ptep) 7918 continue; 7919 ptl = huge_pte_lock(h, mm, ptep); 7920 huge_pmd_unshare(mm, vma, address, ptep); 7921 spin_unlock(ptl); 7922 } 7923 flush_hugetlb_tlb_range(vma, start, end); 7924 i_mmap_unlock_write(vma->vm_file->f_mapping); 7925 hugetlb_vma_unlock_write(vma); 7926 /* 7927 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs(), see 7928 * Documentation/mm/mmu_notifier.rst. 7929 */ 7930 mmu_notifier_invalidate_range_end(&range); 7931 } 7932 7933 /* 7934 * This function will unconditionally remove all the shared pmd pgtable entries 7935 * within the specific vma for a hugetlbfs memory range. 7936 */ 7937 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma) 7938 { 7939 hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE), 7940 ALIGN_DOWN(vma->vm_end, PUD_SIZE)); 7941 } 7942 7943 /* 7944 * For hugetlb, mremap() is an odd edge case - while the VMA copying is 7945 * performed, we permit both the old and new VMAs to reference the same 7946 * reservation. 7947 * 7948 * We fix this up after the operation succeeds, or if a newly allocated VMA 7949 * is closed as a result of a failure to allocate memory. 7950 */ 7951 void fixup_hugetlb_reservations(struct vm_area_struct *vma) 7952 { 7953 if (is_vm_hugetlb_page(vma)) 7954 clear_vma_resv_huge_pages(vma); 7955 } 7956