1 /* 2 * Generic hugetlb support. 3 * (C) Nadia Yvette Chambers, April 2004 4 */ 5 #include <linux/list.h> 6 #include <linux/init.h> 7 #include <linux/mm.h> 8 #include <linux/seq_file.h> 9 #include <linux/sysctl.h> 10 #include <linux/highmem.h> 11 #include <linux/mmu_notifier.h> 12 #include <linux/nodemask.h> 13 #include <linux/pagemap.h> 14 #include <linux/mempolicy.h> 15 #include <linux/compiler.h> 16 #include <linux/cpuset.h> 17 #include <linux/mutex.h> 18 #include <linux/memblock.h> 19 #include <linux/sysfs.h> 20 #include <linux/slab.h> 21 #include <linux/mmdebug.h> 22 #include <linux/sched/signal.h> 23 #include <linux/rmap.h> 24 #include <linux/string_helpers.h> 25 #include <linux/swap.h> 26 #include <linux/swapops.h> 27 #include <linux/jhash.h> 28 #include <linux/numa.h> 29 30 #include <asm/page.h> 31 #include <asm/pgtable.h> 32 #include <asm/tlb.h> 33 34 #include <linux/io.h> 35 #include <linux/hugetlb.h> 36 #include <linux/hugetlb_cgroup.h> 37 #include <linux/node.h> 38 #include <linux/userfaultfd_k.h> 39 #include <linux/page_owner.h> 40 #include "internal.h" 41 42 int hugetlb_max_hstate __read_mostly; 43 unsigned int default_hstate_idx; 44 struct hstate hstates[HUGE_MAX_HSTATE]; 45 /* 46 * Minimum page order among possible hugepage sizes, set to a proper value 47 * at boot time. 48 */ 49 static unsigned int minimum_order __read_mostly = UINT_MAX; 50 51 __initdata LIST_HEAD(huge_boot_pages); 52 53 /* for command line parsing */ 54 static struct hstate * __initdata parsed_hstate; 55 static unsigned long __initdata default_hstate_max_huge_pages; 56 static unsigned long __initdata default_hstate_size; 57 static bool __initdata parsed_valid_hugepagesz = true; 58 59 /* 60 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages, 61 * free_huge_pages, and surplus_huge_pages. 62 */ 63 DEFINE_SPINLOCK(hugetlb_lock); 64 65 /* 66 * Serializes faults on the same logical page. This is used to 67 * prevent spurious OOMs when the hugepage pool is fully utilized. 68 */ 69 static int num_fault_mutexes; 70 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp; 71 72 /* Forward declaration */ 73 static int hugetlb_acct_memory(struct hstate *h, long delta); 74 75 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool) 76 { 77 bool free = (spool->count == 0) && (spool->used_hpages == 0); 78 79 spin_unlock(&spool->lock); 80 81 /* If no pages are used, and no other handles to the subpool 82 * remain, give up any reservations mased on minimum size and 83 * free the subpool */ 84 if (free) { 85 if (spool->min_hpages != -1) 86 hugetlb_acct_memory(spool->hstate, 87 -spool->min_hpages); 88 kfree(spool); 89 } 90 } 91 92 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages, 93 long min_hpages) 94 { 95 struct hugepage_subpool *spool; 96 97 spool = kzalloc(sizeof(*spool), GFP_KERNEL); 98 if (!spool) 99 return NULL; 100 101 spin_lock_init(&spool->lock); 102 spool->count = 1; 103 spool->max_hpages = max_hpages; 104 spool->hstate = h; 105 spool->min_hpages = min_hpages; 106 107 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) { 108 kfree(spool); 109 return NULL; 110 } 111 spool->rsv_hpages = min_hpages; 112 113 return spool; 114 } 115 116 void hugepage_put_subpool(struct hugepage_subpool *spool) 117 { 118 spin_lock(&spool->lock); 119 BUG_ON(!spool->count); 120 spool->count--; 121 unlock_or_release_subpool(spool); 122 } 123 124 /* 125 * Subpool accounting for allocating and reserving pages. 126 * Return -ENOMEM if there are not enough resources to satisfy the 127 * the request. Otherwise, return the number of pages by which the 128 * global pools must be adjusted (upward). The returned value may 129 * only be different than the passed value (delta) in the case where 130 * a subpool minimum size must be manitained. 131 */ 132 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool, 133 long delta) 134 { 135 long ret = delta; 136 137 if (!spool) 138 return ret; 139 140 spin_lock(&spool->lock); 141 142 if (spool->max_hpages != -1) { /* maximum size accounting */ 143 if ((spool->used_hpages + delta) <= spool->max_hpages) 144 spool->used_hpages += delta; 145 else { 146 ret = -ENOMEM; 147 goto unlock_ret; 148 } 149 } 150 151 /* minimum size accounting */ 152 if (spool->min_hpages != -1 && spool->rsv_hpages) { 153 if (delta > spool->rsv_hpages) { 154 /* 155 * Asking for more reserves than those already taken on 156 * behalf of subpool. Return difference. 157 */ 158 ret = delta - spool->rsv_hpages; 159 spool->rsv_hpages = 0; 160 } else { 161 ret = 0; /* reserves already accounted for */ 162 spool->rsv_hpages -= delta; 163 } 164 } 165 166 unlock_ret: 167 spin_unlock(&spool->lock); 168 return ret; 169 } 170 171 /* 172 * Subpool accounting for freeing and unreserving pages. 173 * Return the number of global page reservations that must be dropped. 174 * The return value may only be different than the passed value (delta) 175 * in the case where a subpool minimum size must be maintained. 176 */ 177 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool, 178 long delta) 179 { 180 long ret = delta; 181 182 if (!spool) 183 return delta; 184 185 spin_lock(&spool->lock); 186 187 if (spool->max_hpages != -1) /* maximum size accounting */ 188 spool->used_hpages -= delta; 189 190 /* minimum size accounting */ 191 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) { 192 if (spool->rsv_hpages + delta <= spool->min_hpages) 193 ret = 0; 194 else 195 ret = spool->rsv_hpages + delta - spool->min_hpages; 196 197 spool->rsv_hpages += delta; 198 if (spool->rsv_hpages > spool->min_hpages) 199 spool->rsv_hpages = spool->min_hpages; 200 } 201 202 /* 203 * If hugetlbfs_put_super couldn't free spool due to an outstanding 204 * quota reference, free it now. 205 */ 206 unlock_or_release_subpool(spool); 207 208 return ret; 209 } 210 211 static inline struct hugepage_subpool *subpool_inode(struct inode *inode) 212 { 213 return HUGETLBFS_SB(inode->i_sb)->spool; 214 } 215 216 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma) 217 { 218 return subpool_inode(file_inode(vma->vm_file)); 219 } 220 221 /* 222 * Region tracking -- allows tracking of reservations and instantiated pages 223 * across the pages in a mapping. 224 * 225 * The region data structures are embedded into a resv_map and protected 226 * by a resv_map's lock. The set of regions within the resv_map represent 227 * reservations for huge pages, or huge pages that have already been 228 * instantiated within the map. The from and to elements are huge page 229 * indicies into the associated mapping. from indicates the starting index 230 * of the region. to represents the first index past the end of the region. 231 * 232 * For example, a file region structure with from == 0 and to == 4 represents 233 * four huge pages in a mapping. It is important to note that the to element 234 * represents the first element past the end of the region. This is used in 235 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region. 236 * 237 * Interval notation of the form [from, to) will be used to indicate that 238 * the endpoint from is inclusive and to is exclusive. 239 */ 240 struct file_region { 241 struct list_head link; 242 long from; 243 long to; 244 }; 245 246 /* 247 * Add the huge page range represented by [f, t) to the reserve 248 * map. In the normal case, existing regions will be expanded 249 * to accommodate the specified range. Sufficient regions should 250 * exist for expansion due to the previous call to region_chg 251 * with the same range. However, it is possible that region_del 252 * could have been called after region_chg and modifed the map 253 * in such a way that no region exists to be expanded. In this 254 * case, pull a region descriptor from the cache associated with 255 * the map and use that for the new range. 256 * 257 * Return the number of new huge pages added to the map. This 258 * number is greater than or equal to zero. 259 */ 260 static long region_add(struct resv_map *resv, long f, long t) 261 { 262 struct list_head *head = &resv->regions; 263 struct file_region *rg, *nrg, *trg; 264 long add = 0; 265 266 spin_lock(&resv->lock); 267 /* Locate the region we are either in or before. */ 268 list_for_each_entry(rg, head, link) 269 if (f <= rg->to) 270 break; 271 272 /* 273 * If no region exists which can be expanded to include the 274 * specified range, the list must have been modified by an 275 * interleving call to region_del(). Pull a region descriptor 276 * from the cache and use it for this range. 277 */ 278 if (&rg->link == head || t < rg->from) { 279 VM_BUG_ON(resv->region_cache_count <= 0); 280 281 resv->region_cache_count--; 282 nrg = list_first_entry(&resv->region_cache, struct file_region, 283 link); 284 list_del(&nrg->link); 285 286 nrg->from = f; 287 nrg->to = t; 288 list_add(&nrg->link, rg->link.prev); 289 290 add += t - f; 291 goto out_locked; 292 } 293 294 /* Round our left edge to the current segment if it encloses us. */ 295 if (f > rg->from) 296 f = rg->from; 297 298 /* Check for and consume any regions we now overlap with. */ 299 nrg = rg; 300 list_for_each_entry_safe(rg, trg, rg->link.prev, link) { 301 if (&rg->link == head) 302 break; 303 if (rg->from > t) 304 break; 305 306 /* If this area reaches higher then extend our area to 307 * include it completely. If this is not the first area 308 * which we intend to reuse, free it. */ 309 if (rg->to > t) 310 t = rg->to; 311 if (rg != nrg) { 312 /* Decrement return value by the deleted range. 313 * Another range will span this area so that by 314 * end of routine add will be >= zero 315 */ 316 add -= (rg->to - rg->from); 317 list_del(&rg->link); 318 kfree(rg); 319 } 320 } 321 322 add += (nrg->from - f); /* Added to beginning of region */ 323 nrg->from = f; 324 add += t - nrg->to; /* Added to end of region */ 325 nrg->to = t; 326 327 out_locked: 328 resv->adds_in_progress--; 329 spin_unlock(&resv->lock); 330 VM_BUG_ON(add < 0); 331 return add; 332 } 333 334 /* 335 * Examine the existing reserve map and determine how many 336 * huge pages in the specified range [f, t) are NOT currently 337 * represented. This routine is called before a subsequent 338 * call to region_add that will actually modify the reserve 339 * map to add the specified range [f, t). region_chg does 340 * not change the number of huge pages represented by the 341 * map. However, if the existing regions in the map can not 342 * be expanded to represent the new range, a new file_region 343 * structure is added to the map as a placeholder. This is 344 * so that the subsequent region_add call will have all the 345 * regions it needs and will not fail. 346 * 347 * Upon entry, region_chg will also examine the cache of region descriptors 348 * associated with the map. If there are not enough descriptors cached, one 349 * will be allocated for the in progress add operation. 350 * 351 * Returns the number of huge pages that need to be added to the existing 352 * reservation map for the range [f, t). This number is greater or equal to 353 * zero. -ENOMEM is returned if a new file_region structure or cache entry 354 * is needed and can not be allocated. 355 */ 356 static long region_chg(struct resv_map *resv, long f, long t) 357 { 358 struct list_head *head = &resv->regions; 359 struct file_region *rg, *nrg = NULL; 360 long chg = 0; 361 362 retry: 363 spin_lock(&resv->lock); 364 retry_locked: 365 resv->adds_in_progress++; 366 367 /* 368 * Check for sufficient descriptors in the cache to accommodate 369 * the number of in progress add operations. 370 */ 371 if (resv->adds_in_progress > resv->region_cache_count) { 372 struct file_region *trg; 373 374 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1); 375 /* Must drop lock to allocate a new descriptor. */ 376 resv->adds_in_progress--; 377 spin_unlock(&resv->lock); 378 379 trg = kmalloc(sizeof(*trg), GFP_KERNEL); 380 if (!trg) { 381 kfree(nrg); 382 return -ENOMEM; 383 } 384 385 spin_lock(&resv->lock); 386 list_add(&trg->link, &resv->region_cache); 387 resv->region_cache_count++; 388 goto retry_locked; 389 } 390 391 /* Locate the region we are before or in. */ 392 list_for_each_entry(rg, head, link) 393 if (f <= rg->to) 394 break; 395 396 /* If we are below the current region then a new region is required. 397 * Subtle, allocate a new region at the position but make it zero 398 * size such that we can guarantee to record the reservation. */ 399 if (&rg->link == head || t < rg->from) { 400 if (!nrg) { 401 resv->adds_in_progress--; 402 spin_unlock(&resv->lock); 403 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 404 if (!nrg) 405 return -ENOMEM; 406 407 nrg->from = f; 408 nrg->to = f; 409 INIT_LIST_HEAD(&nrg->link); 410 goto retry; 411 } 412 413 list_add(&nrg->link, rg->link.prev); 414 chg = t - f; 415 goto out_nrg; 416 } 417 418 /* Round our left edge to the current segment if it encloses us. */ 419 if (f > rg->from) 420 f = rg->from; 421 chg = t - f; 422 423 /* Check for and consume any regions we now overlap with. */ 424 list_for_each_entry(rg, rg->link.prev, link) { 425 if (&rg->link == head) 426 break; 427 if (rg->from > t) 428 goto out; 429 430 /* We overlap with this area, if it extends further than 431 * us then we must extend ourselves. Account for its 432 * existing reservation. */ 433 if (rg->to > t) { 434 chg += rg->to - t; 435 t = rg->to; 436 } 437 chg -= rg->to - rg->from; 438 } 439 440 out: 441 spin_unlock(&resv->lock); 442 /* We already know we raced and no longer need the new region */ 443 kfree(nrg); 444 return chg; 445 out_nrg: 446 spin_unlock(&resv->lock); 447 return chg; 448 } 449 450 /* 451 * Abort the in progress add operation. The adds_in_progress field 452 * of the resv_map keeps track of the operations in progress between 453 * calls to region_chg and region_add. Operations are sometimes 454 * aborted after the call to region_chg. In such cases, region_abort 455 * is called to decrement the adds_in_progress counter. 456 * 457 * NOTE: The range arguments [f, t) are not needed or used in this 458 * routine. They are kept to make reading the calling code easier as 459 * arguments will match the associated region_chg call. 460 */ 461 static void region_abort(struct resv_map *resv, long f, long t) 462 { 463 spin_lock(&resv->lock); 464 VM_BUG_ON(!resv->region_cache_count); 465 resv->adds_in_progress--; 466 spin_unlock(&resv->lock); 467 } 468 469 /* 470 * Delete the specified range [f, t) from the reserve map. If the 471 * t parameter is LONG_MAX, this indicates that ALL regions after f 472 * should be deleted. Locate the regions which intersect [f, t) 473 * and either trim, delete or split the existing regions. 474 * 475 * Returns the number of huge pages deleted from the reserve map. 476 * In the normal case, the return value is zero or more. In the 477 * case where a region must be split, a new region descriptor must 478 * be allocated. If the allocation fails, -ENOMEM will be returned. 479 * NOTE: If the parameter t == LONG_MAX, then we will never split 480 * a region and possibly return -ENOMEM. Callers specifying 481 * t == LONG_MAX do not need to check for -ENOMEM error. 482 */ 483 static long region_del(struct resv_map *resv, long f, long t) 484 { 485 struct list_head *head = &resv->regions; 486 struct file_region *rg, *trg; 487 struct file_region *nrg = NULL; 488 long del = 0; 489 490 retry: 491 spin_lock(&resv->lock); 492 list_for_each_entry_safe(rg, trg, head, link) { 493 /* 494 * Skip regions before the range to be deleted. file_region 495 * ranges are normally of the form [from, to). However, there 496 * may be a "placeholder" entry in the map which is of the form 497 * (from, to) with from == to. Check for placeholder entries 498 * at the beginning of the range to be deleted. 499 */ 500 if (rg->to <= f && (rg->to != rg->from || rg->to != f)) 501 continue; 502 503 if (rg->from >= t) 504 break; 505 506 if (f > rg->from && t < rg->to) { /* Must split region */ 507 /* 508 * Check for an entry in the cache before dropping 509 * lock and attempting allocation. 510 */ 511 if (!nrg && 512 resv->region_cache_count > resv->adds_in_progress) { 513 nrg = list_first_entry(&resv->region_cache, 514 struct file_region, 515 link); 516 list_del(&nrg->link); 517 resv->region_cache_count--; 518 } 519 520 if (!nrg) { 521 spin_unlock(&resv->lock); 522 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 523 if (!nrg) 524 return -ENOMEM; 525 goto retry; 526 } 527 528 del += t - f; 529 530 /* New entry for end of split region */ 531 nrg->from = t; 532 nrg->to = rg->to; 533 INIT_LIST_HEAD(&nrg->link); 534 535 /* Original entry is trimmed */ 536 rg->to = f; 537 538 list_add(&nrg->link, &rg->link); 539 nrg = NULL; 540 break; 541 } 542 543 if (f <= rg->from && t >= rg->to) { /* Remove entire region */ 544 del += rg->to - rg->from; 545 list_del(&rg->link); 546 kfree(rg); 547 continue; 548 } 549 550 if (f <= rg->from) { /* Trim beginning of region */ 551 del += t - rg->from; 552 rg->from = t; 553 } else { /* Trim end of region */ 554 del += rg->to - f; 555 rg->to = f; 556 } 557 } 558 559 spin_unlock(&resv->lock); 560 kfree(nrg); 561 return del; 562 } 563 564 /* 565 * A rare out of memory error was encountered which prevented removal of 566 * the reserve map region for a page. The huge page itself was free'ed 567 * and removed from the page cache. This routine will adjust the subpool 568 * usage count, and the global reserve count if needed. By incrementing 569 * these counts, the reserve map entry which could not be deleted will 570 * appear as a "reserved" entry instead of simply dangling with incorrect 571 * counts. 572 */ 573 void hugetlb_fix_reserve_counts(struct inode *inode) 574 { 575 struct hugepage_subpool *spool = subpool_inode(inode); 576 long rsv_adjust; 577 578 rsv_adjust = hugepage_subpool_get_pages(spool, 1); 579 if (rsv_adjust) { 580 struct hstate *h = hstate_inode(inode); 581 582 hugetlb_acct_memory(h, 1); 583 } 584 } 585 586 /* 587 * Count and return the number of huge pages in the reserve map 588 * that intersect with the range [f, t). 589 */ 590 static long region_count(struct resv_map *resv, long f, long t) 591 { 592 struct list_head *head = &resv->regions; 593 struct file_region *rg; 594 long chg = 0; 595 596 spin_lock(&resv->lock); 597 /* Locate each segment we overlap with, and count that overlap. */ 598 list_for_each_entry(rg, head, link) { 599 long seg_from; 600 long seg_to; 601 602 if (rg->to <= f) 603 continue; 604 if (rg->from >= t) 605 break; 606 607 seg_from = max(rg->from, f); 608 seg_to = min(rg->to, t); 609 610 chg += seg_to - seg_from; 611 } 612 spin_unlock(&resv->lock); 613 614 return chg; 615 } 616 617 /* 618 * Convert the address within this vma to the page offset within 619 * the mapping, in pagecache page units; huge pages here. 620 */ 621 static pgoff_t vma_hugecache_offset(struct hstate *h, 622 struct vm_area_struct *vma, unsigned long address) 623 { 624 return ((address - vma->vm_start) >> huge_page_shift(h)) + 625 (vma->vm_pgoff >> huge_page_order(h)); 626 } 627 628 pgoff_t linear_hugepage_index(struct vm_area_struct *vma, 629 unsigned long address) 630 { 631 return vma_hugecache_offset(hstate_vma(vma), vma, address); 632 } 633 EXPORT_SYMBOL_GPL(linear_hugepage_index); 634 635 /* 636 * Return the size of the pages allocated when backing a VMA. In the majority 637 * cases this will be same size as used by the page table entries. 638 */ 639 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) 640 { 641 if (vma->vm_ops && vma->vm_ops->pagesize) 642 return vma->vm_ops->pagesize(vma); 643 return PAGE_SIZE; 644 } 645 EXPORT_SYMBOL_GPL(vma_kernel_pagesize); 646 647 /* 648 * Return the page size being used by the MMU to back a VMA. In the majority 649 * of cases, the page size used by the kernel matches the MMU size. On 650 * architectures where it differs, an architecture-specific 'strong' 651 * version of this symbol is required. 652 */ 653 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 654 { 655 return vma_kernel_pagesize(vma); 656 } 657 658 /* 659 * Flags for MAP_PRIVATE reservations. These are stored in the bottom 660 * bits of the reservation map pointer, which are always clear due to 661 * alignment. 662 */ 663 #define HPAGE_RESV_OWNER (1UL << 0) 664 #define HPAGE_RESV_UNMAPPED (1UL << 1) 665 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) 666 667 /* 668 * These helpers are used to track how many pages are reserved for 669 * faults in a MAP_PRIVATE mapping. Only the process that called mmap() 670 * is guaranteed to have their future faults succeed. 671 * 672 * With the exception of reset_vma_resv_huge_pages() which is called at fork(), 673 * the reserve counters are updated with the hugetlb_lock held. It is safe 674 * to reset the VMA at fork() time as it is not in use yet and there is no 675 * chance of the global counters getting corrupted as a result of the values. 676 * 677 * The private mapping reservation is represented in a subtly different 678 * manner to a shared mapping. A shared mapping has a region map associated 679 * with the underlying file, this region map represents the backing file 680 * pages which have ever had a reservation assigned which this persists even 681 * after the page is instantiated. A private mapping has a region map 682 * associated with the original mmap which is attached to all VMAs which 683 * reference it, this region map represents those offsets which have consumed 684 * reservation ie. where pages have been instantiated. 685 */ 686 static unsigned long get_vma_private_data(struct vm_area_struct *vma) 687 { 688 return (unsigned long)vma->vm_private_data; 689 } 690 691 static void set_vma_private_data(struct vm_area_struct *vma, 692 unsigned long value) 693 { 694 vma->vm_private_data = (void *)value; 695 } 696 697 struct resv_map *resv_map_alloc(void) 698 { 699 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); 700 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL); 701 702 if (!resv_map || !rg) { 703 kfree(resv_map); 704 kfree(rg); 705 return NULL; 706 } 707 708 kref_init(&resv_map->refs); 709 spin_lock_init(&resv_map->lock); 710 INIT_LIST_HEAD(&resv_map->regions); 711 712 resv_map->adds_in_progress = 0; 713 714 INIT_LIST_HEAD(&resv_map->region_cache); 715 list_add(&rg->link, &resv_map->region_cache); 716 resv_map->region_cache_count = 1; 717 718 return resv_map; 719 } 720 721 void resv_map_release(struct kref *ref) 722 { 723 struct resv_map *resv_map = container_of(ref, struct resv_map, refs); 724 struct list_head *head = &resv_map->region_cache; 725 struct file_region *rg, *trg; 726 727 /* Clear out any active regions before we release the map. */ 728 region_del(resv_map, 0, LONG_MAX); 729 730 /* ... and any entries left in the cache */ 731 list_for_each_entry_safe(rg, trg, head, link) { 732 list_del(&rg->link); 733 kfree(rg); 734 } 735 736 VM_BUG_ON(resv_map->adds_in_progress); 737 738 kfree(resv_map); 739 } 740 741 static inline struct resv_map *inode_resv_map(struct inode *inode) 742 { 743 return inode->i_mapping->private_data; 744 } 745 746 static struct resv_map *vma_resv_map(struct vm_area_struct *vma) 747 { 748 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 749 if (vma->vm_flags & VM_MAYSHARE) { 750 struct address_space *mapping = vma->vm_file->f_mapping; 751 struct inode *inode = mapping->host; 752 753 return inode_resv_map(inode); 754 755 } else { 756 return (struct resv_map *)(get_vma_private_data(vma) & 757 ~HPAGE_RESV_MASK); 758 } 759 } 760 761 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) 762 { 763 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 764 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 765 766 set_vma_private_data(vma, (get_vma_private_data(vma) & 767 HPAGE_RESV_MASK) | (unsigned long)map); 768 } 769 770 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) 771 { 772 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 773 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 774 775 set_vma_private_data(vma, get_vma_private_data(vma) | flags); 776 } 777 778 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) 779 { 780 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 781 782 return (get_vma_private_data(vma) & flag) != 0; 783 } 784 785 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */ 786 void reset_vma_resv_huge_pages(struct vm_area_struct *vma) 787 { 788 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 789 if (!(vma->vm_flags & VM_MAYSHARE)) 790 vma->vm_private_data = (void *)0; 791 } 792 793 /* Returns true if the VMA has associated reserve pages */ 794 static bool vma_has_reserves(struct vm_area_struct *vma, long chg) 795 { 796 if (vma->vm_flags & VM_NORESERVE) { 797 /* 798 * This address is already reserved by other process(chg == 0), 799 * so, we should decrement reserved count. Without decrementing, 800 * reserve count remains after releasing inode, because this 801 * allocated page will go into page cache and is regarded as 802 * coming from reserved pool in releasing step. Currently, we 803 * don't have any other solution to deal with this situation 804 * properly, so add work-around here. 805 */ 806 if (vma->vm_flags & VM_MAYSHARE && chg == 0) 807 return true; 808 else 809 return false; 810 } 811 812 /* Shared mappings always use reserves */ 813 if (vma->vm_flags & VM_MAYSHARE) { 814 /* 815 * We know VM_NORESERVE is not set. Therefore, there SHOULD 816 * be a region map for all pages. The only situation where 817 * there is no region map is if a hole was punched via 818 * fallocate. In this case, there really are no reverves to 819 * use. This situation is indicated if chg != 0. 820 */ 821 if (chg) 822 return false; 823 else 824 return true; 825 } 826 827 /* 828 * Only the process that called mmap() has reserves for 829 * private mappings. 830 */ 831 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 832 /* 833 * Like the shared case above, a hole punch or truncate 834 * could have been performed on the private mapping. 835 * Examine the value of chg to determine if reserves 836 * actually exist or were previously consumed. 837 * Very Subtle - The value of chg comes from a previous 838 * call to vma_needs_reserves(). The reserve map for 839 * private mappings has different (opposite) semantics 840 * than that of shared mappings. vma_needs_reserves() 841 * has already taken this difference in semantics into 842 * account. Therefore, the meaning of chg is the same 843 * as in the shared case above. Code could easily be 844 * combined, but keeping it separate draws attention to 845 * subtle differences. 846 */ 847 if (chg) 848 return false; 849 else 850 return true; 851 } 852 853 return false; 854 } 855 856 static void enqueue_huge_page(struct hstate *h, struct page *page) 857 { 858 int nid = page_to_nid(page); 859 list_move(&page->lru, &h->hugepage_freelists[nid]); 860 h->free_huge_pages++; 861 h->free_huge_pages_node[nid]++; 862 } 863 864 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid) 865 { 866 struct page *page; 867 868 list_for_each_entry(page, &h->hugepage_freelists[nid], lru) 869 if (!PageHWPoison(page)) 870 break; 871 /* 872 * if 'non-isolated free hugepage' not found on the list, 873 * the allocation fails. 874 */ 875 if (&h->hugepage_freelists[nid] == &page->lru) 876 return NULL; 877 list_move(&page->lru, &h->hugepage_activelist); 878 set_page_refcounted(page); 879 h->free_huge_pages--; 880 h->free_huge_pages_node[nid]--; 881 return page; 882 } 883 884 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid, 885 nodemask_t *nmask) 886 { 887 unsigned int cpuset_mems_cookie; 888 struct zonelist *zonelist; 889 struct zone *zone; 890 struct zoneref *z; 891 int node = NUMA_NO_NODE; 892 893 zonelist = node_zonelist(nid, gfp_mask); 894 895 retry_cpuset: 896 cpuset_mems_cookie = read_mems_allowed_begin(); 897 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) { 898 struct page *page; 899 900 if (!cpuset_zone_allowed(zone, gfp_mask)) 901 continue; 902 /* 903 * no need to ask again on the same node. Pool is node rather than 904 * zone aware 905 */ 906 if (zone_to_nid(zone) == node) 907 continue; 908 node = zone_to_nid(zone); 909 910 page = dequeue_huge_page_node_exact(h, node); 911 if (page) 912 return page; 913 } 914 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie))) 915 goto retry_cpuset; 916 917 return NULL; 918 } 919 920 /* Movability of hugepages depends on migration support. */ 921 static inline gfp_t htlb_alloc_mask(struct hstate *h) 922 { 923 if (hugepage_movable_supported(h)) 924 return GFP_HIGHUSER_MOVABLE; 925 else 926 return GFP_HIGHUSER; 927 } 928 929 static struct page *dequeue_huge_page_vma(struct hstate *h, 930 struct vm_area_struct *vma, 931 unsigned long address, int avoid_reserve, 932 long chg) 933 { 934 struct page *page; 935 struct mempolicy *mpol; 936 gfp_t gfp_mask; 937 nodemask_t *nodemask; 938 int nid; 939 940 /* 941 * A child process with MAP_PRIVATE mappings created by their parent 942 * have no page reserves. This check ensures that reservations are 943 * not "stolen". The child may still get SIGKILLed 944 */ 945 if (!vma_has_reserves(vma, chg) && 946 h->free_huge_pages - h->resv_huge_pages == 0) 947 goto err; 948 949 /* If reserves cannot be used, ensure enough pages are in the pool */ 950 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0) 951 goto err; 952 953 gfp_mask = htlb_alloc_mask(h); 954 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 955 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask); 956 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) { 957 SetPagePrivate(page); 958 h->resv_huge_pages--; 959 } 960 961 mpol_cond_put(mpol); 962 return page; 963 964 err: 965 return NULL; 966 } 967 968 /* 969 * common helper functions for hstate_next_node_to_{alloc|free}. 970 * We may have allocated or freed a huge page based on a different 971 * nodes_allowed previously, so h->next_node_to_{alloc|free} might 972 * be outside of *nodes_allowed. Ensure that we use an allowed 973 * node for alloc or free. 974 */ 975 static int next_node_allowed(int nid, nodemask_t *nodes_allowed) 976 { 977 nid = next_node_in(nid, *nodes_allowed); 978 VM_BUG_ON(nid >= MAX_NUMNODES); 979 980 return nid; 981 } 982 983 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed) 984 { 985 if (!node_isset(nid, *nodes_allowed)) 986 nid = next_node_allowed(nid, nodes_allowed); 987 return nid; 988 } 989 990 /* 991 * returns the previously saved node ["this node"] from which to 992 * allocate a persistent huge page for the pool and advance the 993 * next node from which to allocate, handling wrap at end of node 994 * mask. 995 */ 996 static int hstate_next_node_to_alloc(struct hstate *h, 997 nodemask_t *nodes_allowed) 998 { 999 int nid; 1000 1001 VM_BUG_ON(!nodes_allowed); 1002 1003 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed); 1004 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed); 1005 1006 return nid; 1007 } 1008 1009 /* 1010 * helper for free_pool_huge_page() - return the previously saved 1011 * node ["this node"] from which to free a huge page. Advance the 1012 * next node id whether or not we find a free huge page to free so 1013 * that the next attempt to free addresses the next node. 1014 */ 1015 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed) 1016 { 1017 int nid; 1018 1019 VM_BUG_ON(!nodes_allowed); 1020 1021 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed); 1022 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed); 1023 1024 return nid; 1025 } 1026 1027 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \ 1028 for (nr_nodes = nodes_weight(*mask); \ 1029 nr_nodes > 0 && \ 1030 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \ 1031 nr_nodes--) 1032 1033 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \ 1034 for (nr_nodes = nodes_weight(*mask); \ 1035 nr_nodes > 0 && \ 1036 ((node = hstate_next_node_to_free(hs, mask)) || 1); \ 1037 nr_nodes--) 1038 1039 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE 1040 static void destroy_compound_gigantic_page(struct page *page, 1041 unsigned int order) 1042 { 1043 int i; 1044 int nr_pages = 1 << order; 1045 struct page *p = page + 1; 1046 1047 atomic_set(compound_mapcount_ptr(page), 0); 1048 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { 1049 clear_compound_head(p); 1050 set_page_refcounted(p); 1051 } 1052 1053 set_compound_order(page, 0); 1054 __ClearPageHead(page); 1055 } 1056 1057 static void free_gigantic_page(struct page *page, unsigned int order) 1058 { 1059 free_contig_range(page_to_pfn(page), 1 << order); 1060 } 1061 1062 static int __alloc_gigantic_page(unsigned long start_pfn, 1063 unsigned long nr_pages, gfp_t gfp_mask) 1064 { 1065 unsigned long end_pfn = start_pfn + nr_pages; 1066 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE, 1067 gfp_mask); 1068 } 1069 1070 static bool pfn_range_valid_gigantic(struct zone *z, 1071 unsigned long start_pfn, unsigned long nr_pages) 1072 { 1073 unsigned long i, end_pfn = start_pfn + nr_pages; 1074 struct page *page; 1075 1076 for (i = start_pfn; i < end_pfn; i++) { 1077 if (!pfn_valid(i)) 1078 return false; 1079 1080 page = pfn_to_page(i); 1081 1082 if (page_zone(page) != z) 1083 return false; 1084 1085 if (PageReserved(page)) 1086 return false; 1087 1088 if (page_count(page) > 0) 1089 return false; 1090 1091 if (PageHuge(page)) 1092 return false; 1093 } 1094 1095 return true; 1096 } 1097 1098 static bool zone_spans_last_pfn(const struct zone *zone, 1099 unsigned long start_pfn, unsigned long nr_pages) 1100 { 1101 unsigned long last_pfn = start_pfn + nr_pages - 1; 1102 return zone_spans_pfn(zone, last_pfn); 1103 } 1104 1105 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, 1106 int nid, nodemask_t *nodemask) 1107 { 1108 unsigned int order = huge_page_order(h); 1109 unsigned long nr_pages = 1 << order; 1110 unsigned long ret, pfn, flags; 1111 struct zonelist *zonelist; 1112 struct zone *zone; 1113 struct zoneref *z; 1114 1115 zonelist = node_zonelist(nid, gfp_mask); 1116 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nodemask) { 1117 spin_lock_irqsave(&zone->lock, flags); 1118 1119 pfn = ALIGN(zone->zone_start_pfn, nr_pages); 1120 while (zone_spans_last_pfn(zone, pfn, nr_pages)) { 1121 if (pfn_range_valid_gigantic(zone, pfn, nr_pages)) { 1122 /* 1123 * We release the zone lock here because 1124 * alloc_contig_range() will also lock the zone 1125 * at some point. If there's an allocation 1126 * spinning on this lock, it may win the race 1127 * and cause alloc_contig_range() to fail... 1128 */ 1129 spin_unlock_irqrestore(&zone->lock, flags); 1130 ret = __alloc_gigantic_page(pfn, nr_pages, gfp_mask); 1131 if (!ret) 1132 return pfn_to_page(pfn); 1133 spin_lock_irqsave(&zone->lock, flags); 1134 } 1135 pfn += nr_pages; 1136 } 1137 1138 spin_unlock_irqrestore(&zone->lock, flags); 1139 } 1140 1141 return NULL; 1142 } 1143 1144 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid); 1145 static void prep_compound_gigantic_page(struct page *page, unsigned int order); 1146 1147 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */ 1148 static inline bool gigantic_page_supported(void) { return false; } 1149 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, 1150 int nid, nodemask_t *nodemask) { return NULL; } 1151 static inline void free_gigantic_page(struct page *page, unsigned int order) { } 1152 static inline void destroy_compound_gigantic_page(struct page *page, 1153 unsigned int order) { } 1154 #endif 1155 1156 static void update_and_free_page(struct hstate *h, struct page *page) 1157 { 1158 int i; 1159 1160 if (hstate_is_gigantic(h) && !gigantic_page_supported()) 1161 return; 1162 1163 h->nr_huge_pages--; 1164 h->nr_huge_pages_node[page_to_nid(page)]--; 1165 for (i = 0; i < pages_per_huge_page(h); i++) { 1166 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1167 1 << PG_referenced | 1 << PG_dirty | 1168 1 << PG_active | 1 << PG_private | 1169 1 << PG_writeback); 1170 } 1171 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page); 1172 set_compound_page_dtor(page, NULL_COMPOUND_DTOR); 1173 set_page_refcounted(page); 1174 if (hstate_is_gigantic(h)) { 1175 destroy_compound_gigantic_page(page, huge_page_order(h)); 1176 free_gigantic_page(page, huge_page_order(h)); 1177 } else { 1178 __free_pages(page, huge_page_order(h)); 1179 } 1180 } 1181 1182 struct hstate *size_to_hstate(unsigned long size) 1183 { 1184 struct hstate *h; 1185 1186 for_each_hstate(h) { 1187 if (huge_page_size(h) == size) 1188 return h; 1189 } 1190 return NULL; 1191 } 1192 1193 /* 1194 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked 1195 * to hstate->hugepage_activelist.) 1196 * 1197 * This function can be called for tail pages, but never returns true for them. 1198 */ 1199 bool page_huge_active(struct page *page) 1200 { 1201 VM_BUG_ON_PAGE(!PageHuge(page), page); 1202 return PageHead(page) && PagePrivate(&page[1]); 1203 } 1204 1205 /* never called for tail page */ 1206 static void set_page_huge_active(struct page *page) 1207 { 1208 VM_BUG_ON_PAGE(!PageHeadHuge(page), page); 1209 SetPagePrivate(&page[1]); 1210 } 1211 1212 static void clear_page_huge_active(struct page *page) 1213 { 1214 VM_BUG_ON_PAGE(!PageHeadHuge(page), page); 1215 ClearPagePrivate(&page[1]); 1216 } 1217 1218 /* 1219 * Internal hugetlb specific page flag. Do not use outside of the hugetlb 1220 * code 1221 */ 1222 static inline bool PageHugeTemporary(struct page *page) 1223 { 1224 if (!PageHuge(page)) 1225 return false; 1226 1227 return (unsigned long)page[2].mapping == -1U; 1228 } 1229 1230 static inline void SetPageHugeTemporary(struct page *page) 1231 { 1232 page[2].mapping = (void *)-1U; 1233 } 1234 1235 static inline void ClearPageHugeTemporary(struct page *page) 1236 { 1237 page[2].mapping = NULL; 1238 } 1239 1240 void free_huge_page(struct page *page) 1241 { 1242 /* 1243 * Can't pass hstate in here because it is called from the 1244 * compound page destructor. 1245 */ 1246 struct hstate *h = page_hstate(page); 1247 int nid = page_to_nid(page); 1248 struct hugepage_subpool *spool = 1249 (struct hugepage_subpool *)page_private(page); 1250 bool restore_reserve; 1251 1252 VM_BUG_ON_PAGE(page_count(page), page); 1253 VM_BUG_ON_PAGE(page_mapcount(page), page); 1254 1255 set_page_private(page, 0); 1256 page->mapping = NULL; 1257 restore_reserve = PagePrivate(page); 1258 ClearPagePrivate(page); 1259 1260 /* 1261 * A return code of zero implies that the subpool will be under its 1262 * minimum size if the reservation is not restored after page is free. 1263 * Therefore, force restore_reserve operation. 1264 */ 1265 if (hugepage_subpool_put_pages(spool, 1) == 0) 1266 restore_reserve = true; 1267 1268 spin_lock(&hugetlb_lock); 1269 clear_page_huge_active(page); 1270 hugetlb_cgroup_uncharge_page(hstate_index(h), 1271 pages_per_huge_page(h), page); 1272 if (restore_reserve) 1273 h->resv_huge_pages++; 1274 1275 if (PageHugeTemporary(page)) { 1276 list_del(&page->lru); 1277 ClearPageHugeTemporary(page); 1278 update_and_free_page(h, page); 1279 } else if (h->surplus_huge_pages_node[nid]) { 1280 /* remove the page from active list */ 1281 list_del(&page->lru); 1282 update_and_free_page(h, page); 1283 h->surplus_huge_pages--; 1284 h->surplus_huge_pages_node[nid]--; 1285 } else { 1286 arch_clear_hugepage_flags(page); 1287 enqueue_huge_page(h, page); 1288 } 1289 spin_unlock(&hugetlb_lock); 1290 } 1291 1292 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid) 1293 { 1294 INIT_LIST_HEAD(&page->lru); 1295 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR); 1296 spin_lock(&hugetlb_lock); 1297 set_hugetlb_cgroup(page, NULL); 1298 h->nr_huge_pages++; 1299 h->nr_huge_pages_node[nid]++; 1300 spin_unlock(&hugetlb_lock); 1301 } 1302 1303 static void prep_compound_gigantic_page(struct page *page, unsigned int order) 1304 { 1305 int i; 1306 int nr_pages = 1 << order; 1307 struct page *p = page + 1; 1308 1309 /* we rely on prep_new_huge_page to set the destructor */ 1310 set_compound_order(page, order); 1311 __ClearPageReserved(page); 1312 __SetPageHead(page); 1313 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { 1314 /* 1315 * For gigantic hugepages allocated through bootmem at 1316 * boot, it's safer to be consistent with the not-gigantic 1317 * hugepages and clear the PG_reserved bit from all tail pages 1318 * too. Otherwse drivers using get_user_pages() to access tail 1319 * pages may get the reference counting wrong if they see 1320 * PG_reserved set on a tail page (despite the head page not 1321 * having PG_reserved set). Enforcing this consistency between 1322 * head and tail pages allows drivers to optimize away a check 1323 * on the head page when they need know if put_page() is needed 1324 * after get_user_pages(). 1325 */ 1326 __ClearPageReserved(p); 1327 set_page_count(p, 0); 1328 set_compound_head(p, page); 1329 } 1330 atomic_set(compound_mapcount_ptr(page), -1); 1331 } 1332 1333 /* 1334 * PageHuge() only returns true for hugetlbfs pages, but not for normal or 1335 * transparent huge pages. See the PageTransHuge() documentation for more 1336 * details. 1337 */ 1338 int PageHuge(struct page *page) 1339 { 1340 if (!PageCompound(page)) 1341 return 0; 1342 1343 page = compound_head(page); 1344 return page[1].compound_dtor == HUGETLB_PAGE_DTOR; 1345 } 1346 EXPORT_SYMBOL_GPL(PageHuge); 1347 1348 /* 1349 * PageHeadHuge() only returns true for hugetlbfs head page, but not for 1350 * normal or transparent huge pages. 1351 */ 1352 int PageHeadHuge(struct page *page_head) 1353 { 1354 if (!PageHead(page_head)) 1355 return 0; 1356 1357 return get_compound_page_dtor(page_head) == free_huge_page; 1358 } 1359 1360 pgoff_t __basepage_index(struct page *page) 1361 { 1362 struct page *page_head = compound_head(page); 1363 pgoff_t index = page_index(page_head); 1364 unsigned long compound_idx; 1365 1366 if (!PageHuge(page_head)) 1367 return page_index(page); 1368 1369 if (compound_order(page_head) >= MAX_ORDER) 1370 compound_idx = page_to_pfn(page) - page_to_pfn(page_head); 1371 else 1372 compound_idx = page - page_head; 1373 1374 return (index << compound_order(page_head)) + compound_idx; 1375 } 1376 1377 static struct page *alloc_buddy_huge_page(struct hstate *h, 1378 gfp_t gfp_mask, int nid, nodemask_t *nmask) 1379 { 1380 int order = huge_page_order(h); 1381 struct page *page; 1382 1383 gfp_mask |= __GFP_COMP|__GFP_RETRY_MAYFAIL|__GFP_NOWARN; 1384 if (nid == NUMA_NO_NODE) 1385 nid = numa_mem_id(); 1386 page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask); 1387 if (page) 1388 __count_vm_event(HTLB_BUDDY_PGALLOC); 1389 else 1390 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 1391 1392 return page; 1393 } 1394 1395 /* 1396 * Common helper to allocate a fresh hugetlb page. All specific allocators 1397 * should use this function to get new hugetlb pages 1398 */ 1399 static struct page *alloc_fresh_huge_page(struct hstate *h, 1400 gfp_t gfp_mask, int nid, nodemask_t *nmask) 1401 { 1402 struct page *page; 1403 1404 if (hstate_is_gigantic(h)) 1405 page = alloc_gigantic_page(h, gfp_mask, nid, nmask); 1406 else 1407 page = alloc_buddy_huge_page(h, gfp_mask, 1408 nid, nmask); 1409 if (!page) 1410 return NULL; 1411 1412 if (hstate_is_gigantic(h)) 1413 prep_compound_gigantic_page(page, huge_page_order(h)); 1414 prep_new_huge_page(h, page, page_to_nid(page)); 1415 1416 return page; 1417 } 1418 1419 /* 1420 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved 1421 * manner. 1422 */ 1423 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed) 1424 { 1425 struct page *page; 1426 int nr_nodes, node; 1427 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 1428 1429 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 1430 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed); 1431 if (page) 1432 break; 1433 } 1434 1435 if (!page) 1436 return 0; 1437 1438 put_page(page); /* free it into the hugepage allocator */ 1439 1440 return 1; 1441 } 1442 1443 /* 1444 * Free huge page from pool from next node to free. 1445 * Attempt to keep persistent huge pages more or less 1446 * balanced over allowed nodes. 1447 * Called with hugetlb_lock locked. 1448 */ 1449 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed, 1450 bool acct_surplus) 1451 { 1452 int nr_nodes, node; 1453 int ret = 0; 1454 1455 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 1456 /* 1457 * If we're returning unused surplus pages, only examine 1458 * nodes with surplus pages. 1459 */ 1460 if ((!acct_surplus || h->surplus_huge_pages_node[node]) && 1461 !list_empty(&h->hugepage_freelists[node])) { 1462 struct page *page = 1463 list_entry(h->hugepage_freelists[node].next, 1464 struct page, lru); 1465 list_del(&page->lru); 1466 h->free_huge_pages--; 1467 h->free_huge_pages_node[node]--; 1468 if (acct_surplus) { 1469 h->surplus_huge_pages--; 1470 h->surplus_huge_pages_node[node]--; 1471 } 1472 update_and_free_page(h, page); 1473 ret = 1; 1474 break; 1475 } 1476 } 1477 1478 return ret; 1479 } 1480 1481 /* 1482 * Dissolve a given free hugepage into free buddy pages. This function does 1483 * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the 1484 * dissolution fails because a give page is not a free hugepage, or because 1485 * free hugepages are fully reserved. 1486 */ 1487 int dissolve_free_huge_page(struct page *page) 1488 { 1489 int rc = -EBUSY; 1490 1491 spin_lock(&hugetlb_lock); 1492 if (PageHuge(page) && !page_count(page)) { 1493 struct page *head = compound_head(page); 1494 struct hstate *h = page_hstate(head); 1495 int nid = page_to_nid(head); 1496 if (h->free_huge_pages - h->resv_huge_pages == 0) 1497 goto out; 1498 /* 1499 * Move PageHWPoison flag from head page to the raw error page, 1500 * which makes any subpages rather than the error page reusable. 1501 */ 1502 if (PageHWPoison(head) && page != head) { 1503 SetPageHWPoison(page); 1504 ClearPageHWPoison(head); 1505 } 1506 list_del(&head->lru); 1507 h->free_huge_pages--; 1508 h->free_huge_pages_node[nid]--; 1509 h->max_huge_pages--; 1510 update_and_free_page(h, head); 1511 rc = 0; 1512 } 1513 out: 1514 spin_unlock(&hugetlb_lock); 1515 return rc; 1516 } 1517 1518 /* 1519 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to 1520 * make specified memory blocks removable from the system. 1521 * Note that this will dissolve a free gigantic hugepage completely, if any 1522 * part of it lies within the given range. 1523 * Also note that if dissolve_free_huge_page() returns with an error, all 1524 * free hugepages that were dissolved before that error are lost. 1525 */ 1526 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn) 1527 { 1528 unsigned long pfn; 1529 struct page *page; 1530 int rc = 0; 1531 1532 if (!hugepages_supported()) 1533 return rc; 1534 1535 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) { 1536 page = pfn_to_page(pfn); 1537 if (PageHuge(page) && !page_count(page)) { 1538 rc = dissolve_free_huge_page(page); 1539 if (rc) 1540 break; 1541 } 1542 } 1543 1544 return rc; 1545 } 1546 1547 /* 1548 * Allocates a fresh surplus page from the page allocator. 1549 */ 1550 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask, 1551 int nid, nodemask_t *nmask) 1552 { 1553 struct page *page = NULL; 1554 1555 if (hstate_is_gigantic(h)) 1556 return NULL; 1557 1558 spin_lock(&hugetlb_lock); 1559 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) 1560 goto out_unlock; 1561 spin_unlock(&hugetlb_lock); 1562 1563 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask); 1564 if (!page) 1565 return NULL; 1566 1567 spin_lock(&hugetlb_lock); 1568 /* 1569 * We could have raced with the pool size change. 1570 * Double check that and simply deallocate the new page 1571 * if we would end up overcommiting the surpluses. Abuse 1572 * temporary page to workaround the nasty free_huge_page 1573 * codeflow 1574 */ 1575 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { 1576 SetPageHugeTemporary(page); 1577 put_page(page); 1578 page = NULL; 1579 } else { 1580 h->surplus_huge_pages++; 1581 h->surplus_huge_pages_node[page_to_nid(page)]++; 1582 } 1583 1584 out_unlock: 1585 spin_unlock(&hugetlb_lock); 1586 1587 return page; 1588 } 1589 1590 struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask, 1591 int nid, nodemask_t *nmask) 1592 { 1593 struct page *page; 1594 1595 if (hstate_is_gigantic(h)) 1596 return NULL; 1597 1598 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask); 1599 if (!page) 1600 return NULL; 1601 1602 /* 1603 * We do not account these pages as surplus because they are only 1604 * temporary and will be released properly on the last reference 1605 */ 1606 SetPageHugeTemporary(page); 1607 1608 return page; 1609 } 1610 1611 /* 1612 * Use the VMA's mpolicy to allocate a huge page from the buddy. 1613 */ 1614 static 1615 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h, 1616 struct vm_area_struct *vma, unsigned long addr) 1617 { 1618 struct page *page; 1619 struct mempolicy *mpol; 1620 gfp_t gfp_mask = htlb_alloc_mask(h); 1621 int nid; 1622 nodemask_t *nodemask; 1623 1624 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask); 1625 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask); 1626 mpol_cond_put(mpol); 1627 1628 return page; 1629 } 1630 1631 /* page migration callback function */ 1632 struct page *alloc_huge_page_node(struct hstate *h, int nid) 1633 { 1634 gfp_t gfp_mask = htlb_alloc_mask(h); 1635 struct page *page = NULL; 1636 1637 if (nid != NUMA_NO_NODE) 1638 gfp_mask |= __GFP_THISNODE; 1639 1640 spin_lock(&hugetlb_lock); 1641 if (h->free_huge_pages - h->resv_huge_pages > 0) 1642 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL); 1643 spin_unlock(&hugetlb_lock); 1644 1645 if (!page) 1646 page = alloc_migrate_huge_page(h, gfp_mask, nid, NULL); 1647 1648 return page; 1649 } 1650 1651 /* page migration callback function */ 1652 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid, 1653 nodemask_t *nmask) 1654 { 1655 gfp_t gfp_mask = htlb_alloc_mask(h); 1656 1657 spin_lock(&hugetlb_lock); 1658 if (h->free_huge_pages - h->resv_huge_pages > 0) { 1659 struct page *page; 1660 1661 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask); 1662 if (page) { 1663 spin_unlock(&hugetlb_lock); 1664 return page; 1665 } 1666 } 1667 spin_unlock(&hugetlb_lock); 1668 1669 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask); 1670 } 1671 1672 /* mempolicy aware migration callback */ 1673 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma, 1674 unsigned long address) 1675 { 1676 struct mempolicy *mpol; 1677 nodemask_t *nodemask; 1678 struct page *page; 1679 gfp_t gfp_mask; 1680 int node; 1681 1682 gfp_mask = htlb_alloc_mask(h); 1683 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 1684 page = alloc_huge_page_nodemask(h, node, nodemask); 1685 mpol_cond_put(mpol); 1686 1687 return page; 1688 } 1689 1690 /* 1691 * Increase the hugetlb pool such that it can accommodate a reservation 1692 * of size 'delta'. 1693 */ 1694 static int gather_surplus_pages(struct hstate *h, int delta) 1695 { 1696 struct list_head surplus_list; 1697 struct page *page, *tmp; 1698 int ret, i; 1699 int needed, allocated; 1700 bool alloc_ok = true; 1701 1702 needed = (h->resv_huge_pages + delta) - h->free_huge_pages; 1703 if (needed <= 0) { 1704 h->resv_huge_pages += delta; 1705 return 0; 1706 } 1707 1708 allocated = 0; 1709 INIT_LIST_HEAD(&surplus_list); 1710 1711 ret = -ENOMEM; 1712 retry: 1713 spin_unlock(&hugetlb_lock); 1714 for (i = 0; i < needed; i++) { 1715 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h), 1716 NUMA_NO_NODE, NULL); 1717 if (!page) { 1718 alloc_ok = false; 1719 break; 1720 } 1721 list_add(&page->lru, &surplus_list); 1722 cond_resched(); 1723 } 1724 allocated += i; 1725 1726 /* 1727 * After retaking hugetlb_lock, we need to recalculate 'needed' 1728 * because either resv_huge_pages or free_huge_pages may have changed. 1729 */ 1730 spin_lock(&hugetlb_lock); 1731 needed = (h->resv_huge_pages + delta) - 1732 (h->free_huge_pages + allocated); 1733 if (needed > 0) { 1734 if (alloc_ok) 1735 goto retry; 1736 /* 1737 * We were not able to allocate enough pages to 1738 * satisfy the entire reservation so we free what 1739 * we've allocated so far. 1740 */ 1741 goto free; 1742 } 1743 /* 1744 * The surplus_list now contains _at_least_ the number of extra pages 1745 * needed to accommodate the reservation. Add the appropriate number 1746 * of pages to the hugetlb pool and free the extras back to the buddy 1747 * allocator. Commit the entire reservation here to prevent another 1748 * process from stealing the pages as they are added to the pool but 1749 * before they are reserved. 1750 */ 1751 needed += allocated; 1752 h->resv_huge_pages += delta; 1753 ret = 0; 1754 1755 /* Free the needed pages to the hugetlb pool */ 1756 list_for_each_entry_safe(page, tmp, &surplus_list, lru) { 1757 if ((--needed) < 0) 1758 break; 1759 /* 1760 * This page is now managed by the hugetlb allocator and has 1761 * no users -- drop the buddy allocator's reference. 1762 */ 1763 put_page_testzero(page); 1764 VM_BUG_ON_PAGE(page_count(page), page); 1765 enqueue_huge_page(h, page); 1766 } 1767 free: 1768 spin_unlock(&hugetlb_lock); 1769 1770 /* Free unnecessary surplus pages to the buddy allocator */ 1771 list_for_each_entry_safe(page, tmp, &surplus_list, lru) 1772 put_page(page); 1773 spin_lock(&hugetlb_lock); 1774 1775 return ret; 1776 } 1777 1778 /* 1779 * This routine has two main purposes: 1780 * 1) Decrement the reservation count (resv_huge_pages) by the value passed 1781 * in unused_resv_pages. This corresponds to the prior adjustments made 1782 * to the associated reservation map. 1783 * 2) Free any unused surplus pages that may have been allocated to satisfy 1784 * the reservation. As many as unused_resv_pages may be freed. 1785 * 1786 * Called with hugetlb_lock held. However, the lock could be dropped (and 1787 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock, 1788 * we must make sure nobody else can claim pages we are in the process of 1789 * freeing. Do this by ensuring resv_huge_page always is greater than the 1790 * number of huge pages we plan to free when dropping the lock. 1791 */ 1792 static void return_unused_surplus_pages(struct hstate *h, 1793 unsigned long unused_resv_pages) 1794 { 1795 unsigned long nr_pages; 1796 1797 /* Cannot return gigantic pages currently */ 1798 if (hstate_is_gigantic(h)) 1799 goto out; 1800 1801 /* 1802 * Part (or even all) of the reservation could have been backed 1803 * by pre-allocated pages. Only free surplus pages. 1804 */ 1805 nr_pages = min(unused_resv_pages, h->surplus_huge_pages); 1806 1807 /* 1808 * We want to release as many surplus pages as possible, spread 1809 * evenly across all nodes with memory. Iterate across these nodes 1810 * until we can no longer free unreserved surplus pages. This occurs 1811 * when the nodes with surplus pages have no free pages. 1812 * free_pool_huge_page() will balance the the freed pages across the 1813 * on-line nodes with memory and will handle the hstate accounting. 1814 * 1815 * Note that we decrement resv_huge_pages as we free the pages. If 1816 * we drop the lock, resv_huge_pages will still be sufficiently large 1817 * to cover subsequent pages we may free. 1818 */ 1819 while (nr_pages--) { 1820 h->resv_huge_pages--; 1821 unused_resv_pages--; 1822 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1)) 1823 goto out; 1824 cond_resched_lock(&hugetlb_lock); 1825 } 1826 1827 out: 1828 /* Fully uncommit the reservation */ 1829 h->resv_huge_pages -= unused_resv_pages; 1830 } 1831 1832 1833 /* 1834 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation 1835 * are used by the huge page allocation routines to manage reservations. 1836 * 1837 * vma_needs_reservation is called to determine if the huge page at addr 1838 * within the vma has an associated reservation. If a reservation is 1839 * needed, the value 1 is returned. The caller is then responsible for 1840 * managing the global reservation and subpool usage counts. After 1841 * the huge page has been allocated, vma_commit_reservation is called 1842 * to add the page to the reservation map. If the page allocation fails, 1843 * the reservation must be ended instead of committed. vma_end_reservation 1844 * is called in such cases. 1845 * 1846 * In the normal case, vma_commit_reservation returns the same value 1847 * as the preceding vma_needs_reservation call. The only time this 1848 * is not the case is if a reserve map was changed between calls. It 1849 * is the responsibility of the caller to notice the difference and 1850 * take appropriate action. 1851 * 1852 * vma_add_reservation is used in error paths where a reservation must 1853 * be restored when a newly allocated huge page must be freed. It is 1854 * to be called after calling vma_needs_reservation to determine if a 1855 * reservation exists. 1856 */ 1857 enum vma_resv_mode { 1858 VMA_NEEDS_RESV, 1859 VMA_COMMIT_RESV, 1860 VMA_END_RESV, 1861 VMA_ADD_RESV, 1862 }; 1863 static long __vma_reservation_common(struct hstate *h, 1864 struct vm_area_struct *vma, unsigned long addr, 1865 enum vma_resv_mode mode) 1866 { 1867 struct resv_map *resv; 1868 pgoff_t idx; 1869 long ret; 1870 1871 resv = vma_resv_map(vma); 1872 if (!resv) 1873 return 1; 1874 1875 idx = vma_hugecache_offset(h, vma, addr); 1876 switch (mode) { 1877 case VMA_NEEDS_RESV: 1878 ret = region_chg(resv, idx, idx + 1); 1879 break; 1880 case VMA_COMMIT_RESV: 1881 ret = region_add(resv, idx, idx + 1); 1882 break; 1883 case VMA_END_RESV: 1884 region_abort(resv, idx, idx + 1); 1885 ret = 0; 1886 break; 1887 case VMA_ADD_RESV: 1888 if (vma->vm_flags & VM_MAYSHARE) 1889 ret = region_add(resv, idx, idx + 1); 1890 else { 1891 region_abort(resv, idx, idx + 1); 1892 ret = region_del(resv, idx, idx + 1); 1893 } 1894 break; 1895 default: 1896 BUG(); 1897 } 1898 1899 if (vma->vm_flags & VM_MAYSHARE) 1900 return ret; 1901 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) { 1902 /* 1903 * In most cases, reserves always exist for private mappings. 1904 * However, a file associated with mapping could have been 1905 * hole punched or truncated after reserves were consumed. 1906 * As subsequent fault on such a range will not use reserves. 1907 * Subtle - The reserve map for private mappings has the 1908 * opposite meaning than that of shared mappings. If NO 1909 * entry is in the reserve map, it means a reservation exists. 1910 * If an entry exists in the reserve map, it means the 1911 * reservation has already been consumed. As a result, the 1912 * return value of this routine is the opposite of the 1913 * value returned from reserve map manipulation routines above. 1914 */ 1915 if (ret) 1916 return 0; 1917 else 1918 return 1; 1919 } 1920 else 1921 return ret < 0 ? ret : 0; 1922 } 1923 1924 static long vma_needs_reservation(struct hstate *h, 1925 struct vm_area_struct *vma, unsigned long addr) 1926 { 1927 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV); 1928 } 1929 1930 static long vma_commit_reservation(struct hstate *h, 1931 struct vm_area_struct *vma, unsigned long addr) 1932 { 1933 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV); 1934 } 1935 1936 static void vma_end_reservation(struct hstate *h, 1937 struct vm_area_struct *vma, unsigned long addr) 1938 { 1939 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV); 1940 } 1941 1942 static long vma_add_reservation(struct hstate *h, 1943 struct vm_area_struct *vma, unsigned long addr) 1944 { 1945 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV); 1946 } 1947 1948 /* 1949 * This routine is called to restore a reservation on error paths. In the 1950 * specific error paths, a huge page was allocated (via alloc_huge_page) 1951 * and is about to be freed. If a reservation for the page existed, 1952 * alloc_huge_page would have consumed the reservation and set PagePrivate 1953 * in the newly allocated page. When the page is freed via free_huge_page, 1954 * the global reservation count will be incremented if PagePrivate is set. 1955 * However, free_huge_page can not adjust the reserve map. Adjust the 1956 * reserve map here to be consistent with global reserve count adjustments 1957 * to be made by free_huge_page. 1958 */ 1959 static void restore_reserve_on_error(struct hstate *h, 1960 struct vm_area_struct *vma, unsigned long address, 1961 struct page *page) 1962 { 1963 if (unlikely(PagePrivate(page))) { 1964 long rc = vma_needs_reservation(h, vma, address); 1965 1966 if (unlikely(rc < 0)) { 1967 /* 1968 * Rare out of memory condition in reserve map 1969 * manipulation. Clear PagePrivate so that 1970 * global reserve count will not be incremented 1971 * by free_huge_page. This will make it appear 1972 * as though the reservation for this page was 1973 * consumed. This may prevent the task from 1974 * faulting in the page at a later time. This 1975 * is better than inconsistent global huge page 1976 * accounting of reserve counts. 1977 */ 1978 ClearPagePrivate(page); 1979 } else if (rc) { 1980 rc = vma_add_reservation(h, vma, address); 1981 if (unlikely(rc < 0)) 1982 /* 1983 * See above comment about rare out of 1984 * memory condition. 1985 */ 1986 ClearPagePrivate(page); 1987 } else 1988 vma_end_reservation(h, vma, address); 1989 } 1990 } 1991 1992 struct page *alloc_huge_page(struct vm_area_struct *vma, 1993 unsigned long addr, int avoid_reserve) 1994 { 1995 struct hugepage_subpool *spool = subpool_vma(vma); 1996 struct hstate *h = hstate_vma(vma); 1997 struct page *page; 1998 long map_chg, map_commit; 1999 long gbl_chg; 2000 int ret, idx; 2001 struct hugetlb_cgroup *h_cg; 2002 2003 idx = hstate_index(h); 2004 /* 2005 * Examine the region/reserve map to determine if the process 2006 * has a reservation for the page to be allocated. A return 2007 * code of zero indicates a reservation exists (no change). 2008 */ 2009 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr); 2010 if (map_chg < 0) 2011 return ERR_PTR(-ENOMEM); 2012 2013 /* 2014 * Processes that did not create the mapping will have no 2015 * reserves as indicated by the region/reserve map. Check 2016 * that the allocation will not exceed the subpool limit. 2017 * Allocations for MAP_NORESERVE mappings also need to be 2018 * checked against any subpool limit. 2019 */ 2020 if (map_chg || avoid_reserve) { 2021 gbl_chg = hugepage_subpool_get_pages(spool, 1); 2022 if (gbl_chg < 0) { 2023 vma_end_reservation(h, vma, addr); 2024 return ERR_PTR(-ENOSPC); 2025 } 2026 2027 /* 2028 * Even though there was no reservation in the region/reserve 2029 * map, there could be reservations associated with the 2030 * subpool that can be used. This would be indicated if the 2031 * return value of hugepage_subpool_get_pages() is zero. 2032 * However, if avoid_reserve is specified we still avoid even 2033 * the subpool reservations. 2034 */ 2035 if (avoid_reserve) 2036 gbl_chg = 1; 2037 } 2038 2039 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg); 2040 if (ret) 2041 goto out_subpool_put; 2042 2043 spin_lock(&hugetlb_lock); 2044 /* 2045 * glb_chg is passed to indicate whether or not a page must be taken 2046 * from the global free pool (global change). gbl_chg == 0 indicates 2047 * a reservation exists for the allocation. 2048 */ 2049 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg); 2050 if (!page) { 2051 spin_unlock(&hugetlb_lock); 2052 page = alloc_buddy_huge_page_with_mpol(h, vma, addr); 2053 if (!page) 2054 goto out_uncharge_cgroup; 2055 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) { 2056 SetPagePrivate(page); 2057 h->resv_huge_pages--; 2058 } 2059 spin_lock(&hugetlb_lock); 2060 list_move(&page->lru, &h->hugepage_activelist); 2061 /* Fall through */ 2062 } 2063 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page); 2064 spin_unlock(&hugetlb_lock); 2065 2066 set_page_private(page, (unsigned long)spool); 2067 2068 map_commit = vma_commit_reservation(h, vma, addr); 2069 if (unlikely(map_chg > map_commit)) { 2070 /* 2071 * The page was added to the reservation map between 2072 * vma_needs_reservation and vma_commit_reservation. 2073 * This indicates a race with hugetlb_reserve_pages. 2074 * Adjust for the subpool count incremented above AND 2075 * in hugetlb_reserve_pages for the same page. Also, 2076 * the reservation count added in hugetlb_reserve_pages 2077 * no longer applies. 2078 */ 2079 long rsv_adjust; 2080 2081 rsv_adjust = hugepage_subpool_put_pages(spool, 1); 2082 hugetlb_acct_memory(h, -rsv_adjust); 2083 } 2084 return page; 2085 2086 out_uncharge_cgroup: 2087 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg); 2088 out_subpool_put: 2089 if (map_chg || avoid_reserve) 2090 hugepage_subpool_put_pages(spool, 1); 2091 vma_end_reservation(h, vma, addr); 2092 return ERR_PTR(-ENOSPC); 2093 } 2094 2095 int alloc_bootmem_huge_page(struct hstate *h) 2096 __attribute__ ((weak, alias("__alloc_bootmem_huge_page"))); 2097 int __alloc_bootmem_huge_page(struct hstate *h) 2098 { 2099 struct huge_bootmem_page *m; 2100 int nr_nodes, node; 2101 2102 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) { 2103 void *addr; 2104 2105 addr = memblock_alloc_try_nid_raw( 2106 huge_page_size(h), huge_page_size(h), 2107 0, MEMBLOCK_ALLOC_ACCESSIBLE, node); 2108 if (addr) { 2109 /* 2110 * Use the beginning of the huge page to store the 2111 * huge_bootmem_page struct (until gather_bootmem 2112 * puts them into the mem_map). 2113 */ 2114 m = addr; 2115 goto found; 2116 } 2117 } 2118 return 0; 2119 2120 found: 2121 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h))); 2122 /* Put them into a private list first because mem_map is not up yet */ 2123 INIT_LIST_HEAD(&m->list); 2124 list_add(&m->list, &huge_boot_pages); 2125 m->hstate = h; 2126 return 1; 2127 } 2128 2129 static void __init prep_compound_huge_page(struct page *page, 2130 unsigned int order) 2131 { 2132 if (unlikely(order > (MAX_ORDER - 1))) 2133 prep_compound_gigantic_page(page, order); 2134 else 2135 prep_compound_page(page, order); 2136 } 2137 2138 /* Put bootmem huge pages into the standard lists after mem_map is up */ 2139 static void __init gather_bootmem_prealloc(void) 2140 { 2141 struct huge_bootmem_page *m; 2142 2143 list_for_each_entry(m, &huge_boot_pages, list) { 2144 struct page *page = virt_to_page(m); 2145 struct hstate *h = m->hstate; 2146 2147 WARN_ON(page_count(page) != 1); 2148 prep_compound_huge_page(page, h->order); 2149 WARN_ON(PageReserved(page)); 2150 prep_new_huge_page(h, page, page_to_nid(page)); 2151 put_page(page); /* free it into the hugepage allocator */ 2152 2153 /* 2154 * If we had gigantic hugepages allocated at boot time, we need 2155 * to restore the 'stolen' pages to totalram_pages in order to 2156 * fix confusing memory reports from free(1) and another 2157 * side-effects, like CommitLimit going negative. 2158 */ 2159 if (hstate_is_gigantic(h)) 2160 adjust_managed_page_count(page, 1 << h->order); 2161 cond_resched(); 2162 } 2163 } 2164 2165 static void __init hugetlb_hstate_alloc_pages(struct hstate *h) 2166 { 2167 unsigned long i; 2168 2169 for (i = 0; i < h->max_huge_pages; ++i) { 2170 if (hstate_is_gigantic(h)) { 2171 if (!alloc_bootmem_huge_page(h)) 2172 break; 2173 } else if (!alloc_pool_huge_page(h, 2174 &node_states[N_MEMORY])) 2175 break; 2176 cond_resched(); 2177 } 2178 if (i < h->max_huge_pages) { 2179 char buf[32]; 2180 2181 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 2182 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n", 2183 h->max_huge_pages, buf, i); 2184 h->max_huge_pages = i; 2185 } 2186 } 2187 2188 static void __init hugetlb_init_hstates(void) 2189 { 2190 struct hstate *h; 2191 2192 for_each_hstate(h) { 2193 if (minimum_order > huge_page_order(h)) 2194 minimum_order = huge_page_order(h); 2195 2196 /* oversize hugepages were init'ed in early boot */ 2197 if (!hstate_is_gigantic(h)) 2198 hugetlb_hstate_alloc_pages(h); 2199 } 2200 VM_BUG_ON(minimum_order == UINT_MAX); 2201 } 2202 2203 static void __init report_hugepages(void) 2204 { 2205 struct hstate *h; 2206 2207 for_each_hstate(h) { 2208 char buf[32]; 2209 2210 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 2211 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n", 2212 buf, h->free_huge_pages); 2213 } 2214 } 2215 2216 #ifdef CONFIG_HIGHMEM 2217 static void try_to_free_low(struct hstate *h, unsigned long count, 2218 nodemask_t *nodes_allowed) 2219 { 2220 int i; 2221 2222 if (hstate_is_gigantic(h)) 2223 return; 2224 2225 for_each_node_mask(i, *nodes_allowed) { 2226 struct page *page, *next; 2227 struct list_head *freel = &h->hugepage_freelists[i]; 2228 list_for_each_entry_safe(page, next, freel, lru) { 2229 if (count >= h->nr_huge_pages) 2230 return; 2231 if (PageHighMem(page)) 2232 continue; 2233 list_del(&page->lru); 2234 update_and_free_page(h, page); 2235 h->free_huge_pages--; 2236 h->free_huge_pages_node[page_to_nid(page)]--; 2237 } 2238 } 2239 } 2240 #else 2241 static inline void try_to_free_low(struct hstate *h, unsigned long count, 2242 nodemask_t *nodes_allowed) 2243 { 2244 } 2245 #endif 2246 2247 /* 2248 * Increment or decrement surplus_huge_pages. Keep node-specific counters 2249 * balanced by operating on them in a round-robin fashion. 2250 * Returns 1 if an adjustment was made. 2251 */ 2252 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed, 2253 int delta) 2254 { 2255 int nr_nodes, node; 2256 2257 VM_BUG_ON(delta != -1 && delta != 1); 2258 2259 if (delta < 0) { 2260 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 2261 if (h->surplus_huge_pages_node[node]) 2262 goto found; 2263 } 2264 } else { 2265 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 2266 if (h->surplus_huge_pages_node[node] < 2267 h->nr_huge_pages_node[node]) 2268 goto found; 2269 } 2270 } 2271 return 0; 2272 2273 found: 2274 h->surplus_huge_pages += delta; 2275 h->surplus_huge_pages_node[node] += delta; 2276 return 1; 2277 } 2278 2279 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) 2280 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count, 2281 nodemask_t *nodes_allowed) 2282 { 2283 unsigned long min_count, ret; 2284 2285 if (hstate_is_gigantic(h) && !gigantic_page_supported()) 2286 return h->max_huge_pages; 2287 2288 /* 2289 * Increase the pool size 2290 * First take pages out of surplus state. Then make up the 2291 * remaining difference by allocating fresh huge pages. 2292 * 2293 * We might race with alloc_surplus_huge_page() here and be unable 2294 * to convert a surplus huge page to a normal huge page. That is 2295 * not critical, though, it just means the overall size of the 2296 * pool might be one hugepage larger than it needs to be, but 2297 * within all the constraints specified by the sysctls. 2298 */ 2299 spin_lock(&hugetlb_lock); 2300 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { 2301 if (!adjust_pool_surplus(h, nodes_allowed, -1)) 2302 break; 2303 } 2304 2305 while (count > persistent_huge_pages(h)) { 2306 /* 2307 * If this allocation races such that we no longer need the 2308 * page, free_huge_page will handle it by freeing the page 2309 * and reducing the surplus. 2310 */ 2311 spin_unlock(&hugetlb_lock); 2312 2313 /* yield cpu to avoid soft lockup */ 2314 cond_resched(); 2315 2316 ret = alloc_pool_huge_page(h, nodes_allowed); 2317 spin_lock(&hugetlb_lock); 2318 if (!ret) 2319 goto out; 2320 2321 /* Bail for signals. Probably ctrl-c from user */ 2322 if (signal_pending(current)) 2323 goto out; 2324 } 2325 2326 /* 2327 * Decrease the pool size 2328 * First return free pages to the buddy allocator (being careful 2329 * to keep enough around to satisfy reservations). Then place 2330 * pages into surplus state as needed so the pool will shrink 2331 * to the desired size as pages become free. 2332 * 2333 * By placing pages into the surplus state independent of the 2334 * overcommit value, we are allowing the surplus pool size to 2335 * exceed overcommit. There are few sane options here. Since 2336 * alloc_surplus_huge_page() is checking the global counter, 2337 * though, we'll note that we're not allowed to exceed surplus 2338 * and won't grow the pool anywhere else. Not until one of the 2339 * sysctls are changed, or the surplus pages go out of use. 2340 */ 2341 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages; 2342 min_count = max(count, min_count); 2343 try_to_free_low(h, min_count, nodes_allowed); 2344 while (min_count < persistent_huge_pages(h)) { 2345 if (!free_pool_huge_page(h, nodes_allowed, 0)) 2346 break; 2347 cond_resched_lock(&hugetlb_lock); 2348 } 2349 while (count < persistent_huge_pages(h)) { 2350 if (!adjust_pool_surplus(h, nodes_allowed, 1)) 2351 break; 2352 } 2353 out: 2354 ret = persistent_huge_pages(h); 2355 spin_unlock(&hugetlb_lock); 2356 return ret; 2357 } 2358 2359 #define HSTATE_ATTR_RO(_name) \ 2360 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 2361 2362 #define HSTATE_ATTR(_name) \ 2363 static struct kobj_attribute _name##_attr = \ 2364 __ATTR(_name, 0644, _name##_show, _name##_store) 2365 2366 static struct kobject *hugepages_kobj; 2367 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 2368 2369 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp); 2370 2371 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp) 2372 { 2373 int i; 2374 2375 for (i = 0; i < HUGE_MAX_HSTATE; i++) 2376 if (hstate_kobjs[i] == kobj) { 2377 if (nidp) 2378 *nidp = NUMA_NO_NODE; 2379 return &hstates[i]; 2380 } 2381 2382 return kobj_to_node_hstate(kobj, nidp); 2383 } 2384 2385 static ssize_t nr_hugepages_show_common(struct kobject *kobj, 2386 struct kobj_attribute *attr, char *buf) 2387 { 2388 struct hstate *h; 2389 unsigned long nr_huge_pages; 2390 int nid; 2391 2392 h = kobj_to_hstate(kobj, &nid); 2393 if (nid == NUMA_NO_NODE) 2394 nr_huge_pages = h->nr_huge_pages; 2395 else 2396 nr_huge_pages = h->nr_huge_pages_node[nid]; 2397 2398 return sprintf(buf, "%lu\n", nr_huge_pages); 2399 } 2400 2401 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy, 2402 struct hstate *h, int nid, 2403 unsigned long count, size_t len) 2404 { 2405 int err; 2406 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY); 2407 2408 if (hstate_is_gigantic(h) && !gigantic_page_supported()) { 2409 err = -EINVAL; 2410 goto out; 2411 } 2412 2413 if (nid == NUMA_NO_NODE) { 2414 /* 2415 * global hstate attribute 2416 */ 2417 if (!(obey_mempolicy && 2418 init_nodemask_of_mempolicy(nodes_allowed))) { 2419 NODEMASK_FREE(nodes_allowed); 2420 nodes_allowed = &node_states[N_MEMORY]; 2421 } 2422 } else if (nodes_allowed) { 2423 /* 2424 * per node hstate attribute: adjust count to global, 2425 * but restrict alloc/free to the specified node. 2426 */ 2427 count += h->nr_huge_pages - h->nr_huge_pages_node[nid]; 2428 init_nodemask_of_node(nodes_allowed, nid); 2429 } else 2430 nodes_allowed = &node_states[N_MEMORY]; 2431 2432 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed); 2433 2434 if (nodes_allowed != &node_states[N_MEMORY]) 2435 NODEMASK_FREE(nodes_allowed); 2436 2437 return len; 2438 out: 2439 NODEMASK_FREE(nodes_allowed); 2440 return err; 2441 } 2442 2443 static ssize_t nr_hugepages_store_common(bool obey_mempolicy, 2444 struct kobject *kobj, const char *buf, 2445 size_t len) 2446 { 2447 struct hstate *h; 2448 unsigned long count; 2449 int nid; 2450 int err; 2451 2452 err = kstrtoul(buf, 10, &count); 2453 if (err) 2454 return err; 2455 2456 h = kobj_to_hstate(kobj, &nid); 2457 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len); 2458 } 2459 2460 static ssize_t nr_hugepages_show(struct kobject *kobj, 2461 struct kobj_attribute *attr, char *buf) 2462 { 2463 return nr_hugepages_show_common(kobj, attr, buf); 2464 } 2465 2466 static ssize_t nr_hugepages_store(struct kobject *kobj, 2467 struct kobj_attribute *attr, const char *buf, size_t len) 2468 { 2469 return nr_hugepages_store_common(false, kobj, buf, len); 2470 } 2471 HSTATE_ATTR(nr_hugepages); 2472 2473 #ifdef CONFIG_NUMA 2474 2475 /* 2476 * hstate attribute for optionally mempolicy-based constraint on persistent 2477 * huge page alloc/free. 2478 */ 2479 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj, 2480 struct kobj_attribute *attr, char *buf) 2481 { 2482 return nr_hugepages_show_common(kobj, attr, buf); 2483 } 2484 2485 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj, 2486 struct kobj_attribute *attr, const char *buf, size_t len) 2487 { 2488 return nr_hugepages_store_common(true, kobj, buf, len); 2489 } 2490 HSTATE_ATTR(nr_hugepages_mempolicy); 2491 #endif 2492 2493 2494 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, 2495 struct kobj_attribute *attr, char *buf) 2496 { 2497 struct hstate *h = kobj_to_hstate(kobj, NULL); 2498 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages); 2499 } 2500 2501 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, 2502 struct kobj_attribute *attr, const char *buf, size_t count) 2503 { 2504 int err; 2505 unsigned long input; 2506 struct hstate *h = kobj_to_hstate(kobj, NULL); 2507 2508 if (hstate_is_gigantic(h)) 2509 return -EINVAL; 2510 2511 err = kstrtoul(buf, 10, &input); 2512 if (err) 2513 return err; 2514 2515 spin_lock(&hugetlb_lock); 2516 h->nr_overcommit_huge_pages = input; 2517 spin_unlock(&hugetlb_lock); 2518 2519 return count; 2520 } 2521 HSTATE_ATTR(nr_overcommit_hugepages); 2522 2523 static ssize_t free_hugepages_show(struct kobject *kobj, 2524 struct kobj_attribute *attr, char *buf) 2525 { 2526 struct hstate *h; 2527 unsigned long free_huge_pages; 2528 int nid; 2529 2530 h = kobj_to_hstate(kobj, &nid); 2531 if (nid == NUMA_NO_NODE) 2532 free_huge_pages = h->free_huge_pages; 2533 else 2534 free_huge_pages = h->free_huge_pages_node[nid]; 2535 2536 return sprintf(buf, "%lu\n", free_huge_pages); 2537 } 2538 HSTATE_ATTR_RO(free_hugepages); 2539 2540 static ssize_t resv_hugepages_show(struct kobject *kobj, 2541 struct kobj_attribute *attr, char *buf) 2542 { 2543 struct hstate *h = kobj_to_hstate(kobj, NULL); 2544 return sprintf(buf, "%lu\n", h->resv_huge_pages); 2545 } 2546 HSTATE_ATTR_RO(resv_hugepages); 2547 2548 static ssize_t surplus_hugepages_show(struct kobject *kobj, 2549 struct kobj_attribute *attr, char *buf) 2550 { 2551 struct hstate *h; 2552 unsigned long surplus_huge_pages; 2553 int nid; 2554 2555 h = kobj_to_hstate(kobj, &nid); 2556 if (nid == NUMA_NO_NODE) 2557 surplus_huge_pages = h->surplus_huge_pages; 2558 else 2559 surplus_huge_pages = h->surplus_huge_pages_node[nid]; 2560 2561 return sprintf(buf, "%lu\n", surplus_huge_pages); 2562 } 2563 HSTATE_ATTR_RO(surplus_hugepages); 2564 2565 static struct attribute *hstate_attrs[] = { 2566 &nr_hugepages_attr.attr, 2567 &nr_overcommit_hugepages_attr.attr, 2568 &free_hugepages_attr.attr, 2569 &resv_hugepages_attr.attr, 2570 &surplus_hugepages_attr.attr, 2571 #ifdef CONFIG_NUMA 2572 &nr_hugepages_mempolicy_attr.attr, 2573 #endif 2574 NULL, 2575 }; 2576 2577 static const struct attribute_group hstate_attr_group = { 2578 .attrs = hstate_attrs, 2579 }; 2580 2581 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent, 2582 struct kobject **hstate_kobjs, 2583 const struct attribute_group *hstate_attr_group) 2584 { 2585 int retval; 2586 int hi = hstate_index(h); 2587 2588 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent); 2589 if (!hstate_kobjs[hi]) 2590 return -ENOMEM; 2591 2592 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group); 2593 if (retval) 2594 kobject_put(hstate_kobjs[hi]); 2595 2596 return retval; 2597 } 2598 2599 static void __init hugetlb_sysfs_init(void) 2600 { 2601 struct hstate *h; 2602 int err; 2603 2604 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); 2605 if (!hugepages_kobj) 2606 return; 2607 2608 for_each_hstate(h) { 2609 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj, 2610 hstate_kobjs, &hstate_attr_group); 2611 if (err) 2612 pr_err("Hugetlb: Unable to add hstate %s", h->name); 2613 } 2614 } 2615 2616 #ifdef CONFIG_NUMA 2617 2618 /* 2619 * node_hstate/s - associate per node hstate attributes, via their kobjects, 2620 * with node devices in node_devices[] using a parallel array. The array 2621 * index of a node device or _hstate == node id. 2622 * This is here to avoid any static dependency of the node device driver, in 2623 * the base kernel, on the hugetlb module. 2624 */ 2625 struct node_hstate { 2626 struct kobject *hugepages_kobj; 2627 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 2628 }; 2629 static struct node_hstate node_hstates[MAX_NUMNODES]; 2630 2631 /* 2632 * A subset of global hstate attributes for node devices 2633 */ 2634 static struct attribute *per_node_hstate_attrs[] = { 2635 &nr_hugepages_attr.attr, 2636 &free_hugepages_attr.attr, 2637 &surplus_hugepages_attr.attr, 2638 NULL, 2639 }; 2640 2641 static const struct attribute_group per_node_hstate_attr_group = { 2642 .attrs = per_node_hstate_attrs, 2643 }; 2644 2645 /* 2646 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj. 2647 * Returns node id via non-NULL nidp. 2648 */ 2649 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 2650 { 2651 int nid; 2652 2653 for (nid = 0; nid < nr_node_ids; nid++) { 2654 struct node_hstate *nhs = &node_hstates[nid]; 2655 int i; 2656 for (i = 0; i < HUGE_MAX_HSTATE; i++) 2657 if (nhs->hstate_kobjs[i] == kobj) { 2658 if (nidp) 2659 *nidp = nid; 2660 return &hstates[i]; 2661 } 2662 } 2663 2664 BUG(); 2665 return NULL; 2666 } 2667 2668 /* 2669 * Unregister hstate attributes from a single node device. 2670 * No-op if no hstate attributes attached. 2671 */ 2672 static void hugetlb_unregister_node(struct node *node) 2673 { 2674 struct hstate *h; 2675 struct node_hstate *nhs = &node_hstates[node->dev.id]; 2676 2677 if (!nhs->hugepages_kobj) 2678 return; /* no hstate attributes */ 2679 2680 for_each_hstate(h) { 2681 int idx = hstate_index(h); 2682 if (nhs->hstate_kobjs[idx]) { 2683 kobject_put(nhs->hstate_kobjs[idx]); 2684 nhs->hstate_kobjs[idx] = NULL; 2685 } 2686 } 2687 2688 kobject_put(nhs->hugepages_kobj); 2689 nhs->hugepages_kobj = NULL; 2690 } 2691 2692 2693 /* 2694 * Register hstate attributes for a single node device. 2695 * No-op if attributes already registered. 2696 */ 2697 static void hugetlb_register_node(struct node *node) 2698 { 2699 struct hstate *h; 2700 struct node_hstate *nhs = &node_hstates[node->dev.id]; 2701 int err; 2702 2703 if (nhs->hugepages_kobj) 2704 return; /* already allocated */ 2705 2706 nhs->hugepages_kobj = kobject_create_and_add("hugepages", 2707 &node->dev.kobj); 2708 if (!nhs->hugepages_kobj) 2709 return; 2710 2711 for_each_hstate(h) { 2712 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj, 2713 nhs->hstate_kobjs, 2714 &per_node_hstate_attr_group); 2715 if (err) { 2716 pr_err("Hugetlb: Unable to add hstate %s for node %d\n", 2717 h->name, node->dev.id); 2718 hugetlb_unregister_node(node); 2719 break; 2720 } 2721 } 2722 } 2723 2724 /* 2725 * hugetlb init time: register hstate attributes for all registered node 2726 * devices of nodes that have memory. All on-line nodes should have 2727 * registered their associated device by this time. 2728 */ 2729 static void __init hugetlb_register_all_nodes(void) 2730 { 2731 int nid; 2732 2733 for_each_node_state(nid, N_MEMORY) { 2734 struct node *node = node_devices[nid]; 2735 if (node->dev.id == nid) 2736 hugetlb_register_node(node); 2737 } 2738 2739 /* 2740 * Let the node device driver know we're here so it can 2741 * [un]register hstate attributes on node hotplug. 2742 */ 2743 register_hugetlbfs_with_node(hugetlb_register_node, 2744 hugetlb_unregister_node); 2745 } 2746 #else /* !CONFIG_NUMA */ 2747 2748 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 2749 { 2750 BUG(); 2751 if (nidp) 2752 *nidp = -1; 2753 return NULL; 2754 } 2755 2756 static void hugetlb_register_all_nodes(void) { } 2757 2758 #endif 2759 2760 static int __init hugetlb_init(void) 2761 { 2762 int i; 2763 2764 if (!hugepages_supported()) 2765 return 0; 2766 2767 if (!size_to_hstate(default_hstate_size)) { 2768 if (default_hstate_size != 0) { 2769 pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n", 2770 default_hstate_size, HPAGE_SIZE); 2771 } 2772 2773 default_hstate_size = HPAGE_SIZE; 2774 if (!size_to_hstate(default_hstate_size)) 2775 hugetlb_add_hstate(HUGETLB_PAGE_ORDER); 2776 } 2777 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size)); 2778 if (default_hstate_max_huge_pages) { 2779 if (!default_hstate.max_huge_pages) 2780 default_hstate.max_huge_pages = default_hstate_max_huge_pages; 2781 } 2782 2783 hugetlb_init_hstates(); 2784 gather_bootmem_prealloc(); 2785 report_hugepages(); 2786 2787 hugetlb_sysfs_init(); 2788 hugetlb_register_all_nodes(); 2789 hugetlb_cgroup_file_init(); 2790 2791 #ifdef CONFIG_SMP 2792 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus()); 2793 #else 2794 num_fault_mutexes = 1; 2795 #endif 2796 hugetlb_fault_mutex_table = 2797 kmalloc_array(num_fault_mutexes, sizeof(struct mutex), 2798 GFP_KERNEL); 2799 BUG_ON(!hugetlb_fault_mutex_table); 2800 2801 for (i = 0; i < num_fault_mutexes; i++) 2802 mutex_init(&hugetlb_fault_mutex_table[i]); 2803 return 0; 2804 } 2805 subsys_initcall(hugetlb_init); 2806 2807 /* Should be called on processing a hugepagesz=... option */ 2808 void __init hugetlb_bad_size(void) 2809 { 2810 parsed_valid_hugepagesz = false; 2811 } 2812 2813 void __init hugetlb_add_hstate(unsigned int order) 2814 { 2815 struct hstate *h; 2816 unsigned long i; 2817 2818 if (size_to_hstate(PAGE_SIZE << order)) { 2819 pr_warn("hugepagesz= specified twice, ignoring\n"); 2820 return; 2821 } 2822 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE); 2823 BUG_ON(order == 0); 2824 h = &hstates[hugetlb_max_hstate++]; 2825 h->order = order; 2826 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1); 2827 h->nr_huge_pages = 0; 2828 h->free_huge_pages = 0; 2829 for (i = 0; i < MAX_NUMNODES; ++i) 2830 INIT_LIST_HEAD(&h->hugepage_freelists[i]); 2831 INIT_LIST_HEAD(&h->hugepage_activelist); 2832 h->next_nid_to_alloc = first_memory_node; 2833 h->next_nid_to_free = first_memory_node; 2834 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", 2835 huge_page_size(h)/1024); 2836 2837 parsed_hstate = h; 2838 } 2839 2840 static int __init hugetlb_nrpages_setup(char *s) 2841 { 2842 unsigned long *mhp; 2843 static unsigned long *last_mhp; 2844 2845 if (!parsed_valid_hugepagesz) { 2846 pr_warn("hugepages = %s preceded by " 2847 "an unsupported hugepagesz, ignoring\n", s); 2848 parsed_valid_hugepagesz = true; 2849 return 1; 2850 } 2851 /* 2852 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet, 2853 * so this hugepages= parameter goes to the "default hstate". 2854 */ 2855 else if (!hugetlb_max_hstate) 2856 mhp = &default_hstate_max_huge_pages; 2857 else 2858 mhp = &parsed_hstate->max_huge_pages; 2859 2860 if (mhp == last_mhp) { 2861 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n"); 2862 return 1; 2863 } 2864 2865 if (sscanf(s, "%lu", mhp) <= 0) 2866 *mhp = 0; 2867 2868 /* 2869 * Global state is always initialized later in hugetlb_init. 2870 * But we need to allocate >= MAX_ORDER hstates here early to still 2871 * use the bootmem allocator. 2872 */ 2873 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER) 2874 hugetlb_hstate_alloc_pages(parsed_hstate); 2875 2876 last_mhp = mhp; 2877 2878 return 1; 2879 } 2880 __setup("hugepages=", hugetlb_nrpages_setup); 2881 2882 static int __init hugetlb_default_setup(char *s) 2883 { 2884 default_hstate_size = memparse(s, &s); 2885 return 1; 2886 } 2887 __setup("default_hugepagesz=", hugetlb_default_setup); 2888 2889 static unsigned int cpuset_mems_nr(unsigned int *array) 2890 { 2891 int node; 2892 unsigned int nr = 0; 2893 2894 for_each_node_mask(node, cpuset_current_mems_allowed) 2895 nr += array[node]; 2896 2897 return nr; 2898 } 2899 2900 #ifdef CONFIG_SYSCTL 2901 static int hugetlb_sysctl_handler_common(bool obey_mempolicy, 2902 struct ctl_table *table, int write, 2903 void __user *buffer, size_t *length, loff_t *ppos) 2904 { 2905 struct hstate *h = &default_hstate; 2906 unsigned long tmp = h->max_huge_pages; 2907 int ret; 2908 2909 if (!hugepages_supported()) 2910 return -EOPNOTSUPP; 2911 2912 table->data = &tmp; 2913 table->maxlen = sizeof(unsigned long); 2914 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos); 2915 if (ret) 2916 goto out; 2917 2918 if (write) 2919 ret = __nr_hugepages_store_common(obey_mempolicy, h, 2920 NUMA_NO_NODE, tmp, *length); 2921 out: 2922 return ret; 2923 } 2924 2925 int hugetlb_sysctl_handler(struct ctl_table *table, int write, 2926 void __user *buffer, size_t *length, loff_t *ppos) 2927 { 2928 2929 return hugetlb_sysctl_handler_common(false, table, write, 2930 buffer, length, ppos); 2931 } 2932 2933 #ifdef CONFIG_NUMA 2934 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write, 2935 void __user *buffer, size_t *length, loff_t *ppos) 2936 { 2937 return hugetlb_sysctl_handler_common(true, table, write, 2938 buffer, length, ppos); 2939 } 2940 #endif /* CONFIG_NUMA */ 2941 2942 int hugetlb_overcommit_handler(struct ctl_table *table, int write, 2943 void __user *buffer, 2944 size_t *length, loff_t *ppos) 2945 { 2946 struct hstate *h = &default_hstate; 2947 unsigned long tmp; 2948 int ret; 2949 2950 if (!hugepages_supported()) 2951 return -EOPNOTSUPP; 2952 2953 tmp = h->nr_overcommit_huge_pages; 2954 2955 if (write && hstate_is_gigantic(h)) 2956 return -EINVAL; 2957 2958 table->data = &tmp; 2959 table->maxlen = sizeof(unsigned long); 2960 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos); 2961 if (ret) 2962 goto out; 2963 2964 if (write) { 2965 spin_lock(&hugetlb_lock); 2966 h->nr_overcommit_huge_pages = tmp; 2967 spin_unlock(&hugetlb_lock); 2968 } 2969 out: 2970 return ret; 2971 } 2972 2973 #endif /* CONFIG_SYSCTL */ 2974 2975 void hugetlb_report_meminfo(struct seq_file *m) 2976 { 2977 struct hstate *h; 2978 unsigned long total = 0; 2979 2980 if (!hugepages_supported()) 2981 return; 2982 2983 for_each_hstate(h) { 2984 unsigned long count = h->nr_huge_pages; 2985 2986 total += (PAGE_SIZE << huge_page_order(h)) * count; 2987 2988 if (h == &default_hstate) 2989 seq_printf(m, 2990 "HugePages_Total: %5lu\n" 2991 "HugePages_Free: %5lu\n" 2992 "HugePages_Rsvd: %5lu\n" 2993 "HugePages_Surp: %5lu\n" 2994 "Hugepagesize: %8lu kB\n", 2995 count, 2996 h->free_huge_pages, 2997 h->resv_huge_pages, 2998 h->surplus_huge_pages, 2999 (PAGE_SIZE << huge_page_order(h)) / 1024); 3000 } 3001 3002 seq_printf(m, "Hugetlb: %8lu kB\n", total / 1024); 3003 } 3004 3005 int hugetlb_report_node_meminfo(int nid, char *buf) 3006 { 3007 struct hstate *h = &default_hstate; 3008 if (!hugepages_supported()) 3009 return 0; 3010 return sprintf(buf, 3011 "Node %d HugePages_Total: %5u\n" 3012 "Node %d HugePages_Free: %5u\n" 3013 "Node %d HugePages_Surp: %5u\n", 3014 nid, h->nr_huge_pages_node[nid], 3015 nid, h->free_huge_pages_node[nid], 3016 nid, h->surplus_huge_pages_node[nid]); 3017 } 3018 3019 void hugetlb_show_meminfo(void) 3020 { 3021 struct hstate *h; 3022 int nid; 3023 3024 if (!hugepages_supported()) 3025 return; 3026 3027 for_each_node_state(nid, N_MEMORY) 3028 for_each_hstate(h) 3029 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n", 3030 nid, 3031 h->nr_huge_pages_node[nid], 3032 h->free_huge_pages_node[nid], 3033 h->surplus_huge_pages_node[nid], 3034 1UL << (huge_page_order(h) + PAGE_SHIFT - 10)); 3035 } 3036 3037 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm) 3038 { 3039 seq_printf(m, "HugetlbPages:\t%8lu kB\n", 3040 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10)); 3041 } 3042 3043 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ 3044 unsigned long hugetlb_total_pages(void) 3045 { 3046 struct hstate *h; 3047 unsigned long nr_total_pages = 0; 3048 3049 for_each_hstate(h) 3050 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h); 3051 return nr_total_pages; 3052 } 3053 3054 static int hugetlb_acct_memory(struct hstate *h, long delta) 3055 { 3056 int ret = -ENOMEM; 3057 3058 spin_lock(&hugetlb_lock); 3059 /* 3060 * When cpuset is configured, it breaks the strict hugetlb page 3061 * reservation as the accounting is done on a global variable. Such 3062 * reservation is completely rubbish in the presence of cpuset because 3063 * the reservation is not checked against page availability for the 3064 * current cpuset. Application can still potentially OOM'ed by kernel 3065 * with lack of free htlb page in cpuset that the task is in. 3066 * Attempt to enforce strict accounting with cpuset is almost 3067 * impossible (or too ugly) because cpuset is too fluid that 3068 * task or memory node can be dynamically moved between cpusets. 3069 * 3070 * The change of semantics for shared hugetlb mapping with cpuset is 3071 * undesirable. However, in order to preserve some of the semantics, 3072 * we fall back to check against current free page availability as 3073 * a best attempt and hopefully to minimize the impact of changing 3074 * semantics that cpuset has. 3075 */ 3076 if (delta > 0) { 3077 if (gather_surplus_pages(h, delta) < 0) 3078 goto out; 3079 3080 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) { 3081 return_unused_surplus_pages(h, delta); 3082 goto out; 3083 } 3084 } 3085 3086 ret = 0; 3087 if (delta < 0) 3088 return_unused_surplus_pages(h, (unsigned long) -delta); 3089 3090 out: 3091 spin_unlock(&hugetlb_lock); 3092 return ret; 3093 } 3094 3095 static void hugetlb_vm_op_open(struct vm_area_struct *vma) 3096 { 3097 struct resv_map *resv = vma_resv_map(vma); 3098 3099 /* 3100 * This new VMA should share its siblings reservation map if present. 3101 * The VMA will only ever have a valid reservation map pointer where 3102 * it is being copied for another still existing VMA. As that VMA 3103 * has a reference to the reservation map it cannot disappear until 3104 * after this open call completes. It is therefore safe to take a 3105 * new reference here without additional locking. 3106 */ 3107 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 3108 kref_get(&resv->refs); 3109 } 3110 3111 static void hugetlb_vm_op_close(struct vm_area_struct *vma) 3112 { 3113 struct hstate *h = hstate_vma(vma); 3114 struct resv_map *resv = vma_resv_map(vma); 3115 struct hugepage_subpool *spool = subpool_vma(vma); 3116 unsigned long reserve, start, end; 3117 long gbl_reserve; 3118 3119 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 3120 return; 3121 3122 start = vma_hugecache_offset(h, vma, vma->vm_start); 3123 end = vma_hugecache_offset(h, vma, vma->vm_end); 3124 3125 reserve = (end - start) - region_count(resv, start, end); 3126 3127 kref_put(&resv->refs, resv_map_release); 3128 3129 if (reserve) { 3130 /* 3131 * Decrement reserve counts. The global reserve count may be 3132 * adjusted if the subpool has a minimum size. 3133 */ 3134 gbl_reserve = hugepage_subpool_put_pages(spool, reserve); 3135 hugetlb_acct_memory(h, -gbl_reserve); 3136 } 3137 } 3138 3139 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr) 3140 { 3141 if (addr & ~(huge_page_mask(hstate_vma(vma)))) 3142 return -EINVAL; 3143 return 0; 3144 } 3145 3146 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma) 3147 { 3148 struct hstate *hstate = hstate_vma(vma); 3149 3150 return 1UL << huge_page_shift(hstate); 3151 } 3152 3153 /* 3154 * We cannot handle pagefaults against hugetlb pages at all. They cause 3155 * handle_mm_fault() to try to instantiate regular-sized pages in the 3156 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get 3157 * this far. 3158 */ 3159 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf) 3160 { 3161 BUG(); 3162 return 0; 3163 } 3164 3165 /* 3166 * When a new function is introduced to vm_operations_struct and added 3167 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops. 3168 * This is because under System V memory model, mappings created via 3169 * shmget/shmat with "huge page" specified are backed by hugetlbfs files, 3170 * their original vm_ops are overwritten with shm_vm_ops. 3171 */ 3172 const struct vm_operations_struct hugetlb_vm_ops = { 3173 .fault = hugetlb_vm_op_fault, 3174 .open = hugetlb_vm_op_open, 3175 .close = hugetlb_vm_op_close, 3176 .split = hugetlb_vm_op_split, 3177 .pagesize = hugetlb_vm_op_pagesize, 3178 }; 3179 3180 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, 3181 int writable) 3182 { 3183 pte_t entry; 3184 3185 if (writable) { 3186 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page, 3187 vma->vm_page_prot))); 3188 } else { 3189 entry = huge_pte_wrprotect(mk_huge_pte(page, 3190 vma->vm_page_prot)); 3191 } 3192 entry = pte_mkyoung(entry); 3193 entry = pte_mkhuge(entry); 3194 entry = arch_make_huge_pte(entry, vma, page, writable); 3195 3196 return entry; 3197 } 3198 3199 static void set_huge_ptep_writable(struct vm_area_struct *vma, 3200 unsigned long address, pte_t *ptep) 3201 { 3202 pte_t entry; 3203 3204 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep))); 3205 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) 3206 update_mmu_cache(vma, address, ptep); 3207 } 3208 3209 bool is_hugetlb_entry_migration(pte_t pte) 3210 { 3211 swp_entry_t swp; 3212 3213 if (huge_pte_none(pte) || pte_present(pte)) 3214 return false; 3215 swp = pte_to_swp_entry(pte); 3216 if (non_swap_entry(swp) && is_migration_entry(swp)) 3217 return true; 3218 else 3219 return false; 3220 } 3221 3222 static int is_hugetlb_entry_hwpoisoned(pte_t pte) 3223 { 3224 swp_entry_t swp; 3225 3226 if (huge_pte_none(pte) || pte_present(pte)) 3227 return 0; 3228 swp = pte_to_swp_entry(pte); 3229 if (non_swap_entry(swp) && is_hwpoison_entry(swp)) 3230 return 1; 3231 else 3232 return 0; 3233 } 3234 3235 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, 3236 struct vm_area_struct *vma) 3237 { 3238 pte_t *src_pte, *dst_pte, entry, dst_entry; 3239 struct page *ptepage; 3240 unsigned long addr; 3241 int cow; 3242 struct hstate *h = hstate_vma(vma); 3243 unsigned long sz = huge_page_size(h); 3244 struct mmu_notifier_range range; 3245 int ret = 0; 3246 3247 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 3248 3249 if (cow) { 3250 mmu_notifier_range_init(&range, src, vma->vm_start, 3251 vma->vm_end); 3252 mmu_notifier_invalidate_range_start(&range); 3253 } 3254 3255 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) { 3256 spinlock_t *src_ptl, *dst_ptl; 3257 src_pte = huge_pte_offset(src, addr, sz); 3258 if (!src_pte) 3259 continue; 3260 dst_pte = huge_pte_alloc(dst, addr, sz); 3261 if (!dst_pte) { 3262 ret = -ENOMEM; 3263 break; 3264 } 3265 3266 /* 3267 * If the pagetables are shared don't copy or take references. 3268 * dst_pte == src_pte is the common case of src/dest sharing. 3269 * 3270 * However, src could have 'unshared' and dst shares with 3271 * another vma. If dst_pte !none, this implies sharing. 3272 * Check here before taking page table lock, and once again 3273 * after taking the lock below. 3274 */ 3275 dst_entry = huge_ptep_get(dst_pte); 3276 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry)) 3277 continue; 3278 3279 dst_ptl = huge_pte_lock(h, dst, dst_pte); 3280 src_ptl = huge_pte_lockptr(h, src, src_pte); 3281 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 3282 entry = huge_ptep_get(src_pte); 3283 dst_entry = huge_ptep_get(dst_pte); 3284 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) { 3285 /* 3286 * Skip if src entry none. Also, skip in the 3287 * unlikely case dst entry !none as this implies 3288 * sharing with another vma. 3289 */ 3290 ; 3291 } else if (unlikely(is_hugetlb_entry_migration(entry) || 3292 is_hugetlb_entry_hwpoisoned(entry))) { 3293 swp_entry_t swp_entry = pte_to_swp_entry(entry); 3294 3295 if (is_write_migration_entry(swp_entry) && cow) { 3296 /* 3297 * COW mappings require pages in both 3298 * parent and child to be set to read. 3299 */ 3300 make_migration_entry_read(&swp_entry); 3301 entry = swp_entry_to_pte(swp_entry); 3302 set_huge_swap_pte_at(src, addr, src_pte, 3303 entry, sz); 3304 } 3305 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz); 3306 } else { 3307 if (cow) { 3308 /* 3309 * No need to notify as we are downgrading page 3310 * table protection not changing it to point 3311 * to a new page. 3312 * 3313 * See Documentation/vm/mmu_notifier.rst 3314 */ 3315 huge_ptep_set_wrprotect(src, addr, src_pte); 3316 } 3317 entry = huge_ptep_get(src_pte); 3318 ptepage = pte_page(entry); 3319 get_page(ptepage); 3320 page_dup_rmap(ptepage, true); 3321 set_huge_pte_at(dst, addr, dst_pte, entry); 3322 hugetlb_count_add(pages_per_huge_page(h), dst); 3323 } 3324 spin_unlock(src_ptl); 3325 spin_unlock(dst_ptl); 3326 } 3327 3328 if (cow) 3329 mmu_notifier_invalidate_range_end(&range); 3330 3331 return ret; 3332 } 3333 3334 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma, 3335 unsigned long start, unsigned long end, 3336 struct page *ref_page) 3337 { 3338 struct mm_struct *mm = vma->vm_mm; 3339 unsigned long address; 3340 pte_t *ptep; 3341 pte_t pte; 3342 spinlock_t *ptl; 3343 struct page *page; 3344 struct hstate *h = hstate_vma(vma); 3345 unsigned long sz = huge_page_size(h); 3346 struct mmu_notifier_range range; 3347 3348 WARN_ON(!is_vm_hugetlb_page(vma)); 3349 BUG_ON(start & ~huge_page_mask(h)); 3350 BUG_ON(end & ~huge_page_mask(h)); 3351 3352 /* 3353 * This is a hugetlb vma, all the pte entries should point 3354 * to huge page. 3355 */ 3356 tlb_remove_check_page_size_change(tlb, sz); 3357 tlb_start_vma(tlb, vma); 3358 3359 /* 3360 * If sharing possible, alert mmu notifiers of worst case. 3361 */ 3362 mmu_notifier_range_init(&range, mm, start, end); 3363 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 3364 mmu_notifier_invalidate_range_start(&range); 3365 address = start; 3366 for (; address < end; address += sz) { 3367 ptep = huge_pte_offset(mm, address, sz); 3368 if (!ptep) 3369 continue; 3370 3371 ptl = huge_pte_lock(h, mm, ptep); 3372 if (huge_pmd_unshare(mm, &address, ptep)) { 3373 spin_unlock(ptl); 3374 /* 3375 * We just unmapped a page of PMDs by clearing a PUD. 3376 * The caller's TLB flush range should cover this area. 3377 */ 3378 continue; 3379 } 3380 3381 pte = huge_ptep_get(ptep); 3382 if (huge_pte_none(pte)) { 3383 spin_unlock(ptl); 3384 continue; 3385 } 3386 3387 /* 3388 * Migrating hugepage or HWPoisoned hugepage is already 3389 * unmapped and its refcount is dropped, so just clear pte here. 3390 */ 3391 if (unlikely(!pte_present(pte))) { 3392 huge_pte_clear(mm, address, ptep, sz); 3393 spin_unlock(ptl); 3394 continue; 3395 } 3396 3397 page = pte_page(pte); 3398 /* 3399 * If a reference page is supplied, it is because a specific 3400 * page is being unmapped, not a range. Ensure the page we 3401 * are about to unmap is the actual page of interest. 3402 */ 3403 if (ref_page) { 3404 if (page != ref_page) { 3405 spin_unlock(ptl); 3406 continue; 3407 } 3408 /* 3409 * Mark the VMA as having unmapped its page so that 3410 * future faults in this VMA will fail rather than 3411 * looking like data was lost 3412 */ 3413 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); 3414 } 3415 3416 pte = huge_ptep_get_and_clear(mm, address, ptep); 3417 tlb_remove_huge_tlb_entry(h, tlb, ptep, address); 3418 if (huge_pte_dirty(pte)) 3419 set_page_dirty(page); 3420 3421 hugetlb_count_sub(pages_per_huge_page(h), mm); 3422 page_remove_rmap(page, true); 3423 3424 spin_unlock(ptl); 3425 tlb_remove_page_size(tlb, page, huge_page_size(h)); 3426 /* 3427 * Bail out after unmapping reference page if supplied 3428 */ 3429 if (ref_page) 3430 break; 3431 } 3432 mmu_notifier_invalidate_range_end(&range); 3433 tlb_end_vma(tlb, vma); 3434 } 3435 3436 void __unmap_hugepage_range_final(struct mmu_gather *tlb, 3437 struct vm_area_struct *vma, unsigned long start, 3438 unsigned long end, struct page *ref_page) 3439 { 3440 __unmap_hugepage_range(tlb, vma, start, end, ref_page); 3441 3442 /* 3443 * Clear this flag so that x86's huge_pmd_share page_table_shareable 3444 * test will fail on a vma being torn down, and not grab a page table 3445 * on its way out. We're lucky that the flag has such an appropriate 3446 * name, and can in fact be safely cleared here. We could clear it 3447 * before the __unmap_hugepage_range above, but all that's necessary 3448 * is to clear it before releasing the i_mmap_rwsem. This works 3449 * because in the context this is called, the VMA is about to be 3450 * destroyed and the i_mmap_rwsem is held. 3451 */ 3452 vma->vm_flags &= ~VM_MAYSHARE; 3453 } 3454 3455 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, 3456 unsigned long end, struct page *ref_page) 3457 { 3458 struct mm_struct *mm; 3459 struct mmu_gather tlb; 3460 unsigned long tlb_start = start; 3461 unsigned long tlb_end = end; 3462 3463 /* 3464 * If shared PMDs were possibly used within this vma range, adjust 3465 * start/end for worst case tlb flushing. 3466 * Note that we can not be sure if PMDs are shared until we try to 3467 * unmap pages. However, we want to make sure TLB flushing covers 3468 * the largest possible range. 3469 */ 3470 adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end); 3471 3472 mm = vma->vm_mm; 3473 3474 tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end); 3475 __unmap_hugepage_range(&tlb, vma, start, end, ref_page); 3476 tlb_finish_mmu(&tlb, tlb_start, tlb_end); 3477 } 3478 3479 /* 3480 * This is called when the original mapper is failing to COW a MAP_PRIVATE 3481 * mappping it owns the reserve page for. The intention is to unmap the page 3482 * from other VMAs and let the children be SIGKILLed if they are faulting the 3483 * same region. 3484 */ 3485 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, 3486 struct page *page, unsigned long address) 3487 { 3488 struct hstate *h = hstate_vma(vma); 3489 struct vm_area_struct *iter_vma; 3490 struct address_space *mapping; 3491 pgoff_t pgoff; 3492 3493 /* 3494 * vm_pgoff is in PAGE_SIZE units, hence the different calculation 3495 * from page cache lookup which is in HPAGE_SIZE units. 3496 */ 3497 address = address & huge_page_mask(h); 3498 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + 3499 vma->vm_pgoff; 3500 mapping = vma->vm_file->f_mapping; 3501 3502 /* 3503 * Take the mapping lock for the duration of the table walk. As 3504 * this mapping should be shared between all the VMAs, 3505 * __unmap_hugepage_range() is called as the lock is already held 3506 */ 3507 i_mmap_lock_write(mapping); 3508 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) { 3509 /* Do not unmap the current VMA */ 3510 if (iter_vma == vma) 3511 continue; 3512 3513 /* 3514 * Shared VMAs have their own reserves and do not affect 3515 * MAP_PRIVATE accounting but it is possible that a shared 3516 * VMA is using the same page so check and skip such VMAs. 3517 */ 3518 if (iter_vma->vm_flags & VM_MAYSHARE) 3519 continue; 3520 3521 /* 3522 * Unmap the page from other VMAs without their own reserves. 3523 * They get marked to be SIGKILLed if they fault in these 3524 * areas. This is because a future no-page fault on this VMA 3525 * could insert a zeroed page instead of the data existing 3526 * from the time of fork. This would look like data corruption 3527 */ 3528 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) 3529 unmap_hugepage_range(iter_vma, address, 3530 address + huge_page_size(h), page); 3531 } 3532 i_mmap_unlock_write(mapping); 3533 } 3534 3535 /* 3536 * Hugetlb_cow() should be called with page lock of the original hugepage held. 3537 * Called with hugetlb_instantiation_mutex held and pte_page locked so we 3538 * cannot race with other handlers or page migration. 3539 * Keep the pte_same checks anyway to make transition from the mutex easier. 3540 */ 3541 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma, 3542 unsigned long address, pte_t *ptep, 3543 struct page *pagecache_page, spinlock_t *ptl) 3544 { 3545 pte_t pte; 3546 struct hstate *h = hstate_vma(vma); 3547 struct page *old_page, *new_page; 3548 int outside_reserve = 0; 3549 vm_fault_t ret = 0; 3550 unsigned long haddr = address & huge_page_mask(h); 3551 struct mmu_notifier_range range; 3552 3553 pte = huge_ptep_get(ptep); 3554 old_page = pte_page(pte); 3555 3556 retry_avoidcopy: 3557 /* If no-one else is actually using this page, avoid the copy 3558 * and just make the page writable */ 3559 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) { 3560 page_move_anon_rmap(old_page, vma); 3561 set_huge_ptep_writable(vma, haddr, ptep); 3562 return 0; 3563 } 3564 3565 /* 3566 * If the process that created a MAP_PRIVATE mapping is about to 3567 * perform a COW due to a shared page count, attempt to satisfy 3568 * the allocation without using the existing reserves. The pagecache 3569 * page is used to determine if the reserve at this address was 3570 * consumed or not. If reserves were used, a partial faulted mapping 3571 * at the time of fork() could consume its reserves on COW instead 3572 * of the full address range. 3573 */ 3574 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && 3575 old_page != pagecache_page) 3576 outside_reserve = 1; 3577 3578 get_page(old_page); 3579 3580 /* 3581 * Drop page table lock as buddy allocator may be called. It will 3582 * be acquired again before returning to the caller, as expected. 3583 */ 3584 spin_unlock(ptl); 3585 new_page = alloc_huge_page(vma, haddr, outside_reserve); 3586 3587 if (IS_ERR(new_page)) { 3588 /* 3589 * If a process owning a MAP_PRIVATE mapping fails to COW, 3590 * it is due to references held by a child and an insufficient 3591 * huge page pool. To guarantee the original mappers 3592 * reliability, unmap the page from child processes. The child 3593 * may get SIGKILLed if it later faults. 3594 */ 3595 if (outside_reserve) { 3596 put_page(old_page); 3597 BUG_ON(huge_pte_none(pte)); 3598 unmap_ref_private(mm, vma, old_page, haddr); 3599 BUG_ON(huge_pte_none(pte)); 3600 spin_lock(ptl); 3601 ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); 3602 if (likely(ptep && 3603 pte_same(huge_ptep_get(ptep), pte))) 3604 goto retry_avoidcopy; 3605 /* 3606 * race occurs while re-acquiring page table 3607 * lock, and our job is done. 3608 */ 3609 return 0; 3610 } 3611 3612 ret = vmf_error(PTR_ERR(new_page)); 3613 goto out_release_old; 3614 } 3615 3616 /* 3617 * When the original hugepage is shared one, it does not have 3618 * anon_vma prepared. 3619 */ 3620 if (unlikely(anon_vma_prepare(vma))) { 3621 ret = VM_FAULT_OOM; 3622 goto out_release_all; 3623 } 3624 3625 copy_user_huge_page(new_page, old_page, address, vma, 3626 pages_per_huge_page(h)); 3627 __SetPageUptodate(new_page); 3628 3629 mmu_notifier_range_init(&range, mm, haddr, haddr + huge_page_size(h)); 3630 mmu_notifier_invalidate_range_start(&range); 3631 3632 /* 3633 * Retake the page table lock to check for racing updates 3634 * before the page tables are altered 3635 */ 3636 spin_lock(ptl); 3637 ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); 3638 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) { 3639 ClearPagePrivate(new_page); 3640 3641 /* Break COW */ 3642 huge_ptep_clear_flush(vma, haddr, ptep); 3643 mmu_notifier_invalidate_range(mm, range.start, range.end); 3644 set_huge_pte_at(mm, haddr, ptep, 3645 make_huge_pte(vma, new_page, 1)); 3646 page_remove_rmap(old_page, true); 3647 hugepage_add_new_anon_rmap(new_page, vma, haddr); 3648 set_page_huge_active(new_page); 3649 /* Make the old page be freed below */ 3650 new_page = old_page; 3651 } 3652 spin_unlock(ptl); 3653 mmu_notifier_invalidate_range_end(&range); 3654 out_release_all: 3655 restore_reserve_on_error(h, vma, haddr, new_page); 3656 put_page(new_page); 3657 out_release_old: 3658 put_page(old_page); 3659 3660 spin_lock(ptl); /* Caller expects lock to be held */ 3661 return ret; 3662 } 3663 3664 /* Return the pagecache page at a given address within a VMA */ 3665 static struct page *hugetlbfs_pagecache_page(struct hstate *h, 3666 struct vm_area_struct *vma, unsigned long address) 3667 { 3668 struct address_space *mapping; 3669 pgoff_t idx; 3670 3671 mapping = vma->vm_file->f_mapping; 3672 idx = vma_hugecache_offset(h, vma, address); 3673 3674 return find_lock_page(mapping, idx); 3675 } 3676 3677 /* 3678 * Return whether there is a pagecache page to back given address within VMA. 3679 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page. 3680 */ 3681 static bool hugetlbfs_pagecache_present(struct hstate *h, 3682 struct vm_area_struct *vma, unsigned long address) 3683 { 3684 struct address_space *mapping; 3685 pgoff_t idx; 3686 struct page *page; 3687 3688 mapping = vma->vm_file->f_mapping; 3689 idx = vma_hugecache_offset(h, vma, address); 3690 3691 page = find_get_page(mapping, idx); 3692 if (page) 3693 put_page(page); 3694 return page != NULL; 3695 } 3696 3697 int huge_add_to_page_cache(struct page *page, struct address_space *mapping, 3698 pgoff_t idx) 3699 { 3700 struct inode *inode = mapping->host; 3701 struct hstate *h = hstate_inode(inode); 3702 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL); 3703 3704 if (err) 3705 return err; 3706 ClearPagePrivate(page); 3707 3708 /* 3709 * set page dirty so that it will not be removed from cache/file 3710 * by non-hugetlbfs specific code paths. 3711 */ 3712 set_page_dirty(page); 3713 3714 spin_lock(&inode->i_lock); 3715 inode->i_blocks += blocks_per_huge_page(h); 3716 spin_unlock(&inode->i_lock); 3717 return 0; 3718 } 3719 3720 static vm_fault_t hugetlb_no_page(struct mm_struct *mm, 3721 struct vm_area_struct *vma, 3722 struct address_space *mapping, pgoff_t idx, 3723 unsigned long address, pte_t *ptep, unsigned int flags) 3724 { 3725 struct hstate *h = hstate_vma(vma); 3726 vm_fault_t ret = VM_FAULT_SIGBUS; 3727 int anon_rmap = 0; 3728 unsigned long size; 3729 struct page *page; 3730 pte_t new_pte; 3731 spinlock_t *ptl; 3732 unsigned long haddr = address & huge_page_mask(h); 3733 bool new_page = false; 3734 3735 /* 3736 * Currently, we are forced to kill the process in the event the 3737 * original mapper has unmapped pages from the child due to a failed 3738 * COW. Warn that such a situation has occurred as it may not be obvious 3739 */ 3740 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { 3741 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n", 3742 current->pid); 3743 return ret; 3744 } 3745 3746 /* 3747 * Use page lock to guard against racing truncation 3748 * before we get page_table_lock. 3749 */ 3750 retry: 3751 page = find_lock_page(mapping, idx); 3752 if (!page) { 3753 size = i_size_read(mapping->host) >> huge_page_shift(h); 3754 if (idx >= size) 3755 goto out; 3756 3757 /* 3758 * Check for page in userfault range 3759 */ 3760 if (userfaultfd_missing(vma)) { 3761 u32 hash; 3762 struct vm_fault vmf = { 3763 .vma = vma, 3764 .address = haddr, 3765 .flags = flags, 3766 /* 3767 * Hard to debug if it ends up being 3768 * used by a callee that assumes 3769 * something about the other 3770 * uninitialized fields... same as in 3771 * memory.c 3772 */ 3773 }; 3774 3775 /* 3776 * hugetlb_fault_mutex must be dropped before 3777 * handling userfault. Reacquire after handling 3778 * fault to make calling code simpler. 3779 */ 3780 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, 3781 idx, haddr); 3782 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 3783 ret = handle_userfault(&vmf, VM_UFFD_MISSING); 3784 mutex_lock(&hugetlb_fault_mutex_table[hash]); 3785 goto out; 3786 } 3787 3788 page = alloc_huge_page(vma, haddr, 0); 3789 if (IS_ERR(page)) { 3790 ret = vmf_error(PTR_ERR(page)); 3791 goto out; 3792 } 3793 clear_huge_page(page, address, pages_per_huge_page(h)); 3794 __SetPageUptodate(page); 3795 new_page = true; 3796 3797 if (vma->vm_flags & VM_MAYSHARE) { 3798 int err = huge_add_to_page_cache(page, mapping, idx); 3799 if (err) { 3800 put_page(page); 3801 if (err == -EEXIST) 3802 goto retry; 3803 goto out; 3804 } 3805 } else { 3806 lock_page(page); 3807 if (unlikely(anon_vma_prepare(vma))) { 3808 ret = VM_FAULT_OOM; 3809 goto backout_unlocked; 3810 } 3811 anon_rmap = 1; 3812 } 3813 } else { 3814 /* 3815 * If memory error occurs between mmap() and fault, some process 3816 * don't have hwpoisoned swap entry for errored virtual address. 3817 * So we need to block hugepage fault by PG_hwpoison bit check. 3818 */ 3819 if (unlikely(PageHWPoison(page))) { 3820 ret = VM_FAULT_HWPOISON | 3821 VM_FAULT_SET_HINDEX(hstate_index(h)); 3822 goto backout_unlocked; 3823 } 3824 } 3825 3826 /* 3827 * If we are going to COW a private mapping later, we examine the 3828 * pending reservations for this page now. This will ensure that 3829 * any allocations necessary to record that reservation occur outside 3830 * the spinlock. 3831 */ 3832 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 3833 if (vma_needs_reservation(h, vma, haddr) < 0) { 3834 ret = VM_FAULT_OOM; 3835 goto backout_unlocked; 3836 } 3837 /* Just decrements count, does not deallocate */ 3838 vma_end_reservation(h, vma, haddr); 3839 } 3840 3841 ptl = huge_pte_lock(h, mm, ptep); 3842 size = i_size_read(mapping->host) >> huge_page_shift(h); 3843 if (idx >= size) 3844 goto backout; 3845 3846 ret = 0; 3847 if (!huge_pte_none(huge_ptep_get(ptep))) 3848 goto backout; 3849 3850 if (anon_rmap) { 3851 ClearPagePrivate(page); 3852 hugepage_add_new_anon_rmap(page, vma, haddr); 3853 } else 3854 page_dup_rmap(page, true); 3855 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE) 3856 && (vma->vm_flags & VM_SHARED))); 3857 set_huge_pte_at(mm, haddr, ptep, new_pte); 3858 3859 hugetlb_count_add(pages_per_huge_page(h), mm); 3860 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 3861 /* Optimization, do the COW without a second fault */ 3862 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl); 3863 } 3864 3865 spin_unlock(ptl); 3866 3867 /* 3868 * Only make newly allocated pages active. Existing pages found 3869 * in the pagecache could be !page_huge_active() if they have been 3870 * isolated for migration. 3871 */ 3872 if (new_page) 3873 set_page_huge_active(page); 3874 3875 unlock_page(page); 3876 out: 3877 return ret; 3878 3879 backout: 3880 spin_unlock(ptl); 3881 backout_unlocked: 3882 unlock_page(page); 3883 restore_reserve_on_error(h, vma, haddr, page); 3884 put_page(page); 3885 goto out; 3886 } 3887 3888 #ifdef CONFIG_SMP 3889 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm, 3890 struct vm_area_struct *vma, 3891 struct address_space *mapping, 3892 pgoff_t idx, unsigned long address) 3893 { 3894 unsigned long key[2]; 3895 u32 hash; 3896 3897 if (vma->vm_flags & VM_SHARED) { 3898 key[0] = (unsigned long) mapping; 3899 key[1] = idx; 3900 } else { 3901 key[0] = (unsigned long) mm; 3902 key[1] = address >> huge_page_shift(h); 3903 } 3904 3905 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0); 3906 3907 return hash & (num_fault_mutexes - 1); 3908 } 3909 #else 3910 /* 3911 * For uniprocesor systems we always use a single mutex, so just 3912 * return 0 and avoid the hashing overhead. 3913 */ 3914 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm, 3915 struct vm_area_struct *vma, 3916 struct address_space *mapping, 3917 pgoff_t idx, unsigned long address) 3918 { 3919 return 0; 3920 } 3921 #endif 3922 3923 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3924 unsigned long address, unsigned int flags) 3925 { 3926 pte_t *ptep, entry; 3927 spinlock_t *ptl; 3928 vm_fault_t ret; 3929 u32 hash; 3930 pgoff_t idx; 3931 struct page *page = NULL; 3932 struct page *pagecache_page = NULL; 3933 struct hstate *h = hstate_vma(vma); 3934 struct address_space *mapping; 3935 int need_wait_lock = 0; 3936 unsigned long haddr = address & huge_page_mask(h); 3937 3938 ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); 3939 if (ptep) { 3940 entry = huge_ptep_get(ptep); 3941 if (unlikely(is_hugetlb_entry_migration(entry))) { 3942 migration_entry_wait_huge(vma, mm, ptep); 3943 return 0; 3944 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) 3945 return VM_FAULT_HWPOISON_LARGE | 3946 VM_FAULT_SET_HINDEX(hstate_index(h)); 3947 } else { 3948 ptep = huge_pte_alloc(mm, haddr, huge_page_size(h)); 3949 if (!ptep) 3950 return VM_FAULT_OOM; 3951 } 3952 3953 mapping = vma->vm_file->f_mapping; 3954 idx = vma_hugecache_offset(h, vma, haddr); 3955 3956 /* 3957 * Serialize hugepage allocation and instantiation, so that we don't 3958 * get spurious allocation failures if two CPUs race to instantiate 3959 * the same page in the page cache. 3960 */ 3961 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, haddr); 3962 mutex_lock(&hugetlb_fault_mutex_table[hash]); 3963 3964 entry = huge_ptep_get(ptep); 3965 if (huge_pte_none(entry)) { 3966 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags); 3967 goto out_mutex; 3968 } 3969 3970 ret = 0; 3971 3972 /* 3973 * entry could be a migration/hwpoison entry at this point, so this 3974 * check prevents the kernel from going below assuming that we have 3975 * a active hugepage in pagecache. This goto expects the 2nd page fault, 3976 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly 3977 * handle it. 3978 */ 3979 if (!pte_present(entry)) 3980 goto out_mutex; 3981 3982 /* 3983 * If we are going to COW the mapping later, we examine the pending 3984 * reservations for this page now. This will ensure that any 3985 * allocations necessary to record that reservation occur outside the 3986 * spinlock. For private mappings, we also lookup the pagecache 3987 * page now as it is used to determine if a reservation has been 3988 * consumed. 3989 */ 3990 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) { 3991 if (vma_needs_reservation(h, vma, haddr) < 0) { 3992 ret = VM_FAULT_OOM; 3993 goto out_mutex; 3994 } 3995 /* Just decrements count, does not deallocate */ 3996 vma_end_reservation(h, vma, haddr); 3997 3998 if (!(vma->vm_flags & VM_MAYSHARE)) 3999 pagecache_page = hugetlbfs_pagecache_page(h, 4000 vma, haddr); 4001 } 4002 4003 ptl = huge_pte_lock(h, mm, ptep); 4004 4005 /* Check for a racing update before calling hugetlb_cow */ 4006 if (unlikely(!pte_same(entry, huge_ptep_get(ptep)))) 4007 goto out_ptl; 4008 4009 /* 4010 * hugetlb_cow() requires page locks of pte_page(entry) and 4011 * pagecache_page, so here we need take the former one 4012 * when page != pagecache_page or !pagecache_page. 4013 */ 4014 page = pte_page(entry); 4015 if (page != pagecache_page) 4016 if (!trylock_page(page)) { 4017 need_wait_lock = 1; 4018 goto out_ptl; 4019 } 4020 4021 get_page(page); 4022 4023 if (flags & FAULT_FLAG_WRITE) { 4024 if (!huge_pte_write(entry)) { 4025 ret = hugetlb_cow(mm, vma, address, ptep, 4026 pagecache_page, ptl); 4027 goto out_put_page; 4028 } 4029 entry = huge_pte_mkdirty(entry); 4030 } 4031 entry = pte_mkyoung(entry); 4032 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry, 4033 flags & FAULT_FLAG_WRITE)) 4034 update_mmu_cache(vma, haddr, ptep); 4035 out_put_page: 4036 if (page != pagecache_page) 4037 unlock_page(page); 4038 put_page(page); 4039 out_ptl: 4040 spin_unlock(ptl); 4041 4042 if (pagecache_page) { 4043 unlock_page(pagecache_page); 4044 put_page(pagecache_page); 4045 } 4046 out_mutex: 4047 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 4048 /* 4049 * Generally it's safe to hold refcount during waiting page lock. But 4050 * here we just wait to defer the next page fault to avoid busy loop and 4051 * the page is not used after unlocked before returning from the current 4052 * page fault. So we are safe from accessing freed page, even if we wait 4053 * here without taking refcount. 4054 */ 4055 if (need_wait_lock) 4056 wait_on_page_locked(page); 4057 return ret; 4058 } 4059 4060 /* 4061 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with 4062 * modifications for huge pages. 4063 */ 4064 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm, 4065 pte_t *dst_pte, 4066 struct vm_area_struct *dst_vma, 4067 unsigned long dst_addr, 4068 unsigned long src_addr, 4069 struct page **pagep) 4070 { 4071 struct address_space *mapping; 4072 pgoff_t idx; 4073 unsigned long size; 4074 int vm_shared = dst_vma->vm_flags & VM_SHARED; 4075 struct hstate *h = hstate_vma(dst_vma); 4076 pte_t _dst_pte; 4077 spinlock_t *ptl; 4078 int ret; 4079 struct page *page; 4080 4081 if (!*pagep) { 4082 ret = -ENOMEM; 4083 page = alloc_huge_page(dst_vma, dst_addr, 0); 4084 if (IS_ERR(page)) 4085 goto out; 4086 4087 ret = copy_huge_page_from_user(page, 4088 (const void __user *) src_addr, 4089 pages_per_huge_page(h), false); 4090 4091 /* fallback to copy_from_user outside mmap_sem */ 4092 if (unlikely(ret)) { 4093 ret = -ENOENT; 4094 *pagep = page; 4095 /* don't free the page */ 4096 goto out; 4097 } 4098 } else { 4099 page = *pagep; 4100 *pagep = NULL; 4101 } 4102 4103 /* 4104 * The memory barrier inside __SetPageUptodate makes sure that 4105 * preceding stores to the page contents become visible before 4106 * the set_pte_at() write. 4107 */ 4108 __SetPageUptodate(page); 4109 4110 mapping = dst_vma->vm_file->f_mapping; 4111 idx = vma_hugecache_offset(h, dst_vma, dst_addr); 4112 4113 /* 4114 * If shared, add to page cache 4115 */ 4116 if (vm_shared) { 4117 size = i_size_read(mapping->host) >> huge_page_shift(h); 4118 ret = -EFAULT; 4119 if (idx >= size) 4120 goto out_release_nounlock; 4121 4122 /* 4123 * Serialization between remove_inode_hugepages() and 4124 * huge_add_to_page_cache() below happens through the 4125 * hugetlb_fault_mutex_table that here must be hold by 4126 * the caller. 4127 */ 4128 ret = huge_add_to_page_cache(page, mapping, idx); 4129 if (ret) 4130 goto out_release_nounlock; 4131 } 4132 4133 ptl = huge_pte_lockptr(h, dst_mm, dst_pte); 4134 spin_lock(ptl); 4135 4136 /* 4137 * Recheck the i_size after holding PT lock to make sure not 4138 * to leave any page mapped (as page_mapped()) beyond the end 4139 * of the i_size (remove_inode_hugepages() is strict about 4140 * enforcing that). If we bail out here, we'll also leave a 4141 * page in the radix tree in the vm_shared case beyond the end 4142 * of the i_size, but remove_inode_hugepages() will take care 4143 * of it as soon as we drop the hugetlb_fault_mutex_table. 4144 */ 4145 size = i_size_read(mapping->host) >> huge_page_shift(h); 4146 ret = -EFAULT; 4147 if (idx >= size) 4148 goto out_release_unlock; 4149 4150 ret = -EEXIST; 4151 if (!huge_pte_none(huge_ptep_get(dst_pte))) 4152 goto out_release_unlock; 4153 4154 if (vm_shared) { 4155 page_dup_rmap(page, true); 4156 } else { 4157 ClearPagePrivate(page); 4158 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr); 4159 } 4160 4161 _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE); 4162 if (dst_vma->vm_flags & VM_WRITE) 4163 _dst_pte = huge_pte_mkdirty(_dst_pte); 4164 _dst_pte = pte_mkyoung(_dst_pte); 4165 4166 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte); 4167 4168 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte, 4169 dst_vma->vm_flags & VM_WRITE); 4170 hugetlb_count_add(pages_per_huge_page(h), dst_mm); 4171 4172 /* No need to invalidate - it was non-present before */ 4173 update_mmu_cache(dst_vma, dst_addr, dst_pte); 4174 4175 spin_unlock(ptl); 4176 set_page_huge_active(page); 4177 if (vm_shared) 4178 unlock_page(page); 4179 ret = 0; 4180 out: 4181 return ret; 4182 out_release_unlock: 4183 spin_unlock(ptl); 4184 if (vm_shared) 4185 unlock_page(page); 4186 out_release_nounlock: 4187 put_page(page); 4188 goto out; 4189 } 4190 4191 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, 4192 struct page **pages, struct vm_area_struct **vmas, 4193 unsigned long *position, unsigned long *nr_pages, 4194 long i, unsigned int flags, int *nonblocking) 4195 { 4196 unsigned long pfn_offset; 4197 unsigned long vaddr = *position; 4198 unsigned long remainder = *nr_pages; 4199 struct hstate *h = hstate_vma(vma); 4200 int err = -EFAULT; 4201 4202 while (vaddr < vma->vm_end && remainder) { 4203 pte_t *pte; 4204 spinlock_t *ptl = NULL; 4205 int absent; 4206 struct page *page; 4207 4208 /* 4209 * If we have a pending SIGKILL, don't keep faulting pages and 4210 * potentially allocating memory. 4211 */ 4212 if (fatal_signal_pending(current)) { 4213 remainder = 0; 4214 break; 4215 } 4216 4217 /* 4218 * Some archs (sparc64, sh*) have multiple pte_ts to 4219 * each hugepage. We have to make sure we get the 4220 * first, for the page indexing below to work. 4221 * 4222 * Note that page table lock is not held when pte is null. 4223 */ 4224 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h), 4225 huge_page_size(h)); 4226 if (pte) 4227 ptl = huge_pte_lock(h, mm, pte); 4228 absent = !pte || huge_pte_none(huge_ptep_get(pte)); 4229 4230 /* 4231 * When coredumping, it suits get_dump_page if we just return 4232 * an error where there's an empty slot with no huge pagecache 4233 * to back it. This way, we avoid allocating a hugepage, and 4234 * the sparse dumpfile avoids allocating disk blocks, but its 4235 * huge holes still show up with zeroes where they need to be. 4236 */ 4237 if (absent && (flags & FOLL_DUMP) && 4238 !hugetlbfs_pagecache_present(h, vma, vaddr)) { 4239 if (pte) 4240 spin_unlock(ptl); 4241 remainder = 0; 4242 break; 4243 } 4244 4245 /* 4246 * We need call hugetlb_fault for both hugepages under migration 4247 * (in which case hugetlb_fault waits for the migration,) and 4248 * hwpoisoned hugepages (in which case we need to prevent the 4249 * caller from accessing to them.) In order to do this, we use 4250 * here is_swap_pte instead of is_hugetlb_entry_migration and 4251 * is_hugetlb_entry_hwpoisoned. This is because it simply covers 4252 * both cases, and because we can't follow correct pages 4253 * directly from any kind of swap entries. 4254 */ 4255 if (absent || is_swap_pte(huge_ptep_get(pte)) || 4256 ((flags & FOLL_WRITE) && 4257 !huge_pte_write(huge_ptep_get(pte)))) { 4258 vm_fault_t ret; 4259 unsigned int fault_flags = 0; 4260 4261 if (pte) 4262 spin_unlock(ptl); 4263 if (flags & FOLL_WRITE) 4264 fault_flags |= FAULT_FLAG_WRITE; 4265 if (nonblocking) 4266 fault_flags |= FAULT_FLAG_ALLOW_RETRY; 4267 if (flags & FOLL_NOWAIT) 4268 fault_flags |= FAULT_FLAG_ALLOW_RETRY | 4269 FAULT_FLAG_RETRY_NOWAIT; 4270 if (flags & FOLL_TRIED) { 4271 VM_WARN_ON_ONCE(fault_flags & 4272 FAULT_FLAG_ALLOW_RETRY); 4273 fault_flags |= FAULT_FLAG_TRIED; 4274 } 4275 ret = hugetlb_fault(mm, vma, vaddr, fault_flags); 4276 if (ret & VM_FAULT_ERROR) { 4277 err = vm_fault_to_errno(ret, flags); 4278 remainder = 0; 4279 break; 4280 } 4281 if (ret & VM_FAULT_RETRY) { 4282 if (nonblocking && 4283 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) 4284 *nonblocking = 0; 4285 *nr_pages = 0; 4286 /* 4287 * VM_FAULT_RETRY must not return an 4288 * error, it will return zero 4289 * instead. 4290 * 4291 * No need to update "position" as the 4292 * caller will not check it after 4293 * *nr_pages is set to 0. 4294 */ 4295 return i; 4296 } 4297 continue; 4298 } 4299 4300 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT; 4301 page = pte_page(huge_ptep_get(pte)); 4302 4303 /* 4304 * Instead of doing 'try_get_page()' below in the same_page 4305 * loop, just check the count once here. 4306 */ 4307 if (unlikely(page_count(page) <= 0)) { 4308 if (pages) { 4309 spin_unlock(ptl); 4310 remainder = 0; 4311 err = -ENOMEM; 4312 break; 4313 } 4314 } 4315 same_page: 4316 if (pages) { 4317 pages[i] = mem_map_offset(page, pfn_offset); 4318 get_page(pages[i]); 4319 } 4320 4321 if (vmas) 4322 vmas[i] = vma; 4323 4324 vaddr += PAGE_SIZE; 4325 ++pfn_offset; 4326 --remainder; 4327 ++i; 4328 if (vaddr < vma->vm_end && remainder && 4329 pfn_offset < pages_per_huge_page(h)) { 4330 /* 4331 * We use pfn_offset to avoid touching the pageframes 4332 * of this compound page. 4333 */ 4334 goto same_page; 4335 } 4336 spin_unlock(ptl); 4337 } 4338 *nr_pages = remainder; 4339 /* 4340 * setting position is actually required only if remainder is 4341 * not zero but it's faster not to add a "if (remainder)" 4342 * branch. 4343 */ 4344 *position = vaddr; 4345 4346 return i ? i : err; 4347 } 4348 4349 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE 4350 /* 4351 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can 4352 * implement this. 4353 */ 4354 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end) 4355 #endif 4356 4357 unsigned long hugetlb_change_protection(struct vm_area_struct *vma, 4358 unsigned long address, unsigned long end, pgprot_t newprot) 4359 { 4360 struct mm_struct *mm = vma->vm_mm; 4361 unsigned long start = address; 4362 pte_t *ptep; 4363 pte_t pte; 4364 struct hstate *h = hstate_vma(vma); 4365 unsigned long pages = 0; 4366 bool shared_pmd = false; 4367 struct mmu_notifier_range range; 4368 4369 /* 4370 * In the case of shared PMDs, the area to flush could be beyond 4371 * start/end. Set range.start/range.end to cover the maximum possible 4372 * range if PMD sharing is possible. 4373 */ 4374 mmu_notifier_range_init(&range, mm, start, end); 4375 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 4376 4377 BUG_ON(address >= end); 4378 flush_cache_range(vma, range.start, range.end); 4379 4380 mmu_notifier_invalidate_range_start(&range); 4381 i_mmap_lock_write(vma->vm_file->f_mapping); 4382 for (; address < end; address += huge_page_size(h)) { 4383 spinlock_t *ptl; 4384 ptep = huge_pte_offset(mm, address, huge_page_size(h)); 4385 if (!ptep) 4386 continue; 4387 ptl = huge_pte_lock(h, mm, ptep); 4388 if (huge_pmd_unshare(mm, &address, ptep)) { 4389 pages++; 4390 spin_unlock(ptl); 4391 shared_pmd = true; 4392 continue; 4393 } 4394 pte = huge_ptep_get(ptep); 4395 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) { 4396 spin_unlock(ptl); 4397 continue; 4398 } 4399 if (unlikely(is_hugetlb_entry_migration(pte))) { 4400 swp_entry_t entry = pte_to_swp_entry(pte); 4401 4402 if (is_write_migration_entry(entry)) { 4403 pte_t newpte; 4404 4405 make_migration_entry_read(&entry); 4406 newpte = swp_entry_to_pte(entry); 4407 set_huge_swap_pte_at(mm, address, ptep, 4408 newpte, huge_page_size(h)); 4409 pages++; 4410 } 4411 spin_unlock(ptl); 4412 continue; 4413 } 4414 if (!huge_pte_none(pte)) { 4415 pte_t old_pte; 4416 4417 old_pte = huge_ptep_modify_prot_start(vma, address, ptep); 4418 pte = pte_mkhuge(huge_pte_modify(old_pte, newprot)); 4419 pte = arch_make_huge_pte(pte, vma, NULL, 0); 4420 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte); 4421 pages++; 4422 } 4423 spin_unlock(ptl); 4424 } 4425 /* 4426 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare 4427 * may have cleared our pud entry and done put_page on the page table: 4428 * once we release i_mmap_rwsem, another task can do the final put_page 4429 * and that page table be reused and filled with junk. If we actually 4430 * did unshare a page of pmds, flush the range corresponding to the pud. 4431 */ 4432 if (shared_pmd) 4433 flush_hugetlb_tlb_range(vma, range.start, range.end); 4434 else 4435 flush_hugetlb_tlb_range(vma, start, end); 4436 /* 4437 * No need to call mmu_notifier_invalidate_range() we are downgrading 4438 * page table protection not changing it to point to a new page. 4439 * 4440 * See Documentation/vm/mmu_notifier.rst 4441 */ 4442 i_mmap_unlock_write(vma->vm_file->f_mapping); 4443 mmu_notifier_invalidate_range_end(&range); 4444 4445 return pages << h->order; 4446 } 4447 4448 int hugetlb_reserve_pages(struct inode *inode, 4449 long from, long to, 4450 struct vm_area_struct *vma, 4451 vm_flags_t vm_flags) 4452 { 4453 long ret, chg; 4454 struct hstate *h = hstate_inode(inode); 4455 struct hugepage_subpool *spool = subpool_inode(inode); 4456 struct resv_map *resv_map; 4457 long gbl_reserve; 4458 4459 /* This should never happen */ 4460 if (from > to) { 4461 VM_WARN(1, "%s called with a negative range\n", __func__); 4462 return -EINVAL; 4463 } 4464 4465 /* 4466 * Only apply hugepage reservation if asked. At fault time, an 4467 * attempt will be made for VM_NORESERVE to allocate a page 4468 * without using reserves 4469 */ 4470 if (vm_flags & VM_NORESERVE) 4471 return 0; 4472 4473 /* 4474 * Shared mappings base their reservation on the number of pages that 4475 * are already allocated on behalf of the file. Private mappings need 4476 * to reserve the full area even if read-only as mprotect() may be 4477 * called to make the mapping read-write. Assume !vma is a shm mapping 4478 */ 4479 if (!vma || vma->vm_flags & VM_MAYSHARE) { 4480 resv_map = inode_resv_map(inode); 4481 4482 chg = region_chg(resv_map, from, to); 4483 4484 } else { 4485 resv_map = resv_map_alloc(); 4486 if (!resv_map) 4487 return -ENOMEM; 4488 4489 chg = to - from; 4490 4491 set_vma_resv_map(vma, resv_map); 4492 set_vma_resv_flags(vma, HPAGE_RESV_OWNER); 4493 } 4494 4495 if (chg < 0) { 4496 ret = chg; 4497 goto out_err; 4498 } 4499 4500 /* 4501 * There must be enough pages in the subpool for the mapping. If 4502 * the subpool has a minimum size, there may be some global 4503 * reservations already in place (gbl_reserve). 4504 */ 4505 gbl_reserve = hugepage_subpool_get_pages(spool, chg); 4506 if (gbl_reserve < 0) { 4507 ret = -ENOSPC; 4508 goto out_err; 4509 } 4510 4511 /* 4512 * Check enough hugepages are available for the reservation. 4513 * Hand the pages back to the subpool if there are not 4514 */ 4515 ret = hugetlb_acct_memory(h, gbl_reserve); 4516 if (ret < 0) { 4517 /* put back original number of pages, chg */ 4518 (void)hugepage_subpool_put_pages(spool, chg); 4519 goto out_err; 4520 } 4521 4522 /* 4523 * Account for the reservations made. Shared mappings record regions 4524 * that have reservations as they are shared by multiple VMAs. 4525 * When the last VMA disappears, the region map says how much 4526 * the reservation was and the page cache tells how much of 4527 * the reservation was consumed. Private mappings are per-VMA and 4528 * only the consumed reservations are tracked. When the VMA 4529 * disappears, the original reservation is the VMA size and the 4530 * consumed reservations are stored in the map. Hence, nothing 4531 * else has to be done for private mappings here 4532 */ 4533 if (!vma || vma->vm_flags & VM_MAYSHARE) { 4534 long add = region_add(resv_map, from, to); 4535 4536 if (unlikely(chg > add)) { 4537 /* 4538 * pages in this range were added to the reserve 4539 * map between region_chg and region_add. This 4540 * indicates a race with alloc_huge_page. Adjust 4541 * the subpool and reserve counts modified above 4542 * based on the difference. 4543 */ 4544 long rsv_adjust; 4545 4546 rsv_adjust = hugepage_subpool_put_pages(spool, 4547 chg - add); 4548 hugetlb_acct_memory(h, -rsv_adjust); 4549 } 4550 } 4551 return 0; 4552 out_err: 4553 if (!vma || vma->vm_flags & VM_MAYSHARE) 4554 /* Don't call region_abort if region_chg failed */ 4555 if (chg >= 0) 4556 region_abort(resv_map, from, to); 4557 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 4558 kref_put(&resv_map->refs, resv_map_release); 4559 return ret; 4560 } 4561 4562 long hugetlb_unreserve_pages(struct inode *inode, long start, long end, 4563 long freed) 4564 { 4565 struct hstate *h = hstate_inode(inode); 4566 struct resv_map *resv_map = inode_resv_map(inode); 4567 long chg = 0; 4568 struct hugepage_subpool *spool = subpool_inode(inode); 4569 long gbl_reserve; 4570 4571 if (resv_map) { 4572 chg = region_del(resv_map, start, end); 4573 /* 4574 * region_del() can fail in the rare case where a region 4575 * must be split and another region descriptor can not be 4576 * allocated. If end == LONG_MAX, it will not fail. 4577 */ 4578 if (chg < 0) 4579 return chg; 4580 } 4581 4582 spin_lock(&inode->i_lock); 4583 inode->i_blocks -= (blocks_per_huge_page(h) * freed); 4584 spin_unlock(&inode->i_lock); 4585 4586 /* 4587 * If the subpool has a minimum size, the number of global 4588 * reservations to be released may be adjusted. 4589 */ 4590 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed)); 4591 hugetlb_acct_memory(h, -gbl_reserve); 4592 4593 return 0; 4594 } 4595 4596 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE 4597 static unsigned long page_table_shareable(struct vm_area_struct *svma, 4598 struct vm_area_struct *vma, 4599 unsigned long addr, pgoff_t idx) 4600 { 4601 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) + 4602 svma->vm_start; 4603 unsigned long sbase = saddr & PUD_MASK; 4604 unsigned long s_end = sbase + PUD_SIZE; 4605 4606 /* Allow segments to share if only one is marked locked */ 4607 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK; 4608 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK; 4609 4610 /* 4611 * match the virtual addresses, permission and the alignment of the 4612 * page table page. 4613 */ 4614 if (pmd_index(addr) != pmd_index(saddr) || 4615 vm_flags != svm_flags || 4616 sbase < svma->vm_start || svma->vm_end < s_end) 4617 return 0; 4618 4619 return saddr; 4620 } 4621 4622 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr) 4623 { 4624 unsigned long base = addr & PUD_MASK; 4625 unsigned long end = base + PUD_SIZE; 4626 4627 /* 4628 * check on proper vm_flags and page table alignment 4629 */ 4630 if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end)) 4631 return true; 4632 return false; 4633 } 4634 4635 /* 4636 * Determine if start,end range within vma could be mapped by shared pmd. 4637 * If yes, adjust start and end to cover range associated with possible 4638 * shared pmd mappings. 4639 */ 4640 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 4641 unsigned long *start, unsigned long *end) 4642 { 4643 unsigned long check_addr = *start; 4644 4645 if (!(vma->vm_flags & VM_MAYSHARE)) 4646 return; 4647 4648 for (check_addr = *start; check_addr < *end; check_addr += PUD_SIZE) { 4649 unsigned long a_start = check_addr & PUD_MASK; 4650 unsigned long a_end = a_start + PUD_SIZE; 4651 4652 /* 4653 * If sharing is possible, adjust start/end if necessary. 4654 */ 4655 if (range_in_vma(vma, a_start, a_end)) { 4656 if (a_start < *start) 4657 *start = a_start; 4658 if (a_end > *end) 4659 *end = a_end; 4660 } 4661 } 4662 } 4663 4664 /* 4665 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc() 4666 * and returns the corresponding pte. While this is not necessary for the 4667 * !shared pmd case because we can allocate the pmd later as well, it makes the 4668 * code much cleaner. pmd allocation is essential for the shared case because 4669 * pud has to be populated inside the same i_mmap_rwsem section - otherwise 4670 * racing tasks could either miss the sharing (see huge_pte_offset) or select a 4671 * bad pmd for sharing. 4672 */ 4673 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud) 4674 { 4675 struct vm_area_struct *vma = find_vma(mm, addr); 4676 struct address_space *mapping = vma->vm_file->f_mapping; 4677 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + 4678 vma->vm_pgoff; 4679 struct vm_area_struct *svma; 4680 unsigned long saddr; 4681 pte_t *spte = NULL; 4682 pte_t *pte; 4683 spinlock_t *ptl; 4684 4685 if (!vma_shareable(vma, addr)) 4686 return (pte_t *)pmd_alloc(mm, pud, addr); 4687 4688 i_mmap_lock_write(mapping); 4689 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) { 4690 if (svma == vma) 4691 continue; 4692 4693 saddr = page_table_shareable(svma, vma, addr, idx); 4694 if (saddr) { 4695 spte = huge_pte_offset(svma->vm_mm, saddr, 4696 vma_mmu_pagesize(svma)); 4697 if (spte) { 4698 get_page(virt_to_page(spte)); 4699 break; 4700 } 4701 } 4702 } 4703 4704 if (!spte) 4705 goto out; 4706 4707 ptl = huge_pte_lock(hstate_vma(vma), mm, spte); 4708 if (pud_none(*pud)) { 4709 pud_populate(mm, pud, 4710 (pmd_t *)((unsigned long)spte & PAGE_MASK)); 4711 mm_inc_nr_pmds(mm); 4712 } else { 4713 put_page(virt_to_page(spte)); 4714 } 4715 spin_unlock(ptl); 4716 out: 4717 pte = (pte_t *)pmd_alloc(mm, pud, addr); 4718 i_mmap_unlock_write(mapping); 4719 return pte; 4720 } 4721 4722 /* 4723 * unmap huge page backed by shared pte. 4724 * 4725 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared 4726 * indicated by page_count > 1, unmap is achieved by clearing pud and 4727 * decrementing the ref count. If count == 1, the pte page is not shared. 4728 * 4729 * called with page table lock held. 4730 * 4731 * returns: 1 successfully unmapped a shared pte page 4732 * 0 the underlying pte page is not shared, or it is the last user 4733 */ 4734 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep) 4735 { 4736 pgd_t *pgd = pgd_offset(mm, *addr); 4737 p4d_t *p4d = p4d_offset(pgd, *addr); 4738 pud_t *pud = pud_offset(p4d, *addr); 4739 4740 BUG_ON(page_count(virt_to_page(ptep)) == 0); 4741 if (page_count(virt_to_page(ptep)) == 1) 4742 return 0; 4743 4744 pud_clear(pud); 4745 put_page(virt_to_page(ptep)); 4746 mm_dec_nr_pmds(mm); 4747 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE; 4748 return 1; 4749 } 4750 #define want_pmd_share() (1) 4751 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 4752 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud) 4753 { 4754 return NULL; 4755 } 4756 4757 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep) 4758 { 4759 return 0; 4760 } 4761 4762 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 4763 unsigned long *start, unsigned long *end) 4764 { 4765 } 4766 #define want_pmd_share() (0) 4767 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 4768 4769 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB 4770 pte_t *huge_pte_alloc(struct mm_struct *mm, 4771 unsigned long addr, unsigned long sz) 4772 { 4773 pgd_t *pgd; 4774 p4d_t *p4d; 4775 pud_t *pud; 4776 pte_t *pte = NULL; 4777 4778 pgd = pgd_offset(mm, addr); 4779 p4d = p4d_alloc(mm, pgd, addr); 4780 if (!p4d) 4781 return NULL; 4782 pud = pud_alloc(mm, p4d, addr); 4783 if (pud) { 4784 if (sz == PUD_SIZE) { 4785 pte = (pte_t *)pud; 4786 } else { 4787 BUG_ON(sz != PMD_SIZE); 4788 if (want_pmd_share() && pud_none(*pud)) 4789 pte = huge_pmd_share(mm, addr, pud); 4790 else 4791 pte = (pte_t *)pmd_alloc(mm, pud, addr); 4792 } 4793 } 4794 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte)); 4795 4796 return pte; 4797 } 4798 4799 /* 4800 * huge_pte_offset() - Walk the page table to resolve the hugepage 4801 * entry at address @addr 4802 * 4803 * Return: Pointer to page table or swap entry (PUD or PMD) for 4804 * address @addr, or NULL if a p*d_none() entry is encountered and the 4805 * size @sz doesn't match the hugepage size at this level of the page 4806 * table. 4807 */ 4808 pte_t *huge_pte_offset(struct mm_struct *mm, 4809 unsigned long addr, unsigned long sz) 4810 { 4811 pgd_t *pgd; 4812 p4d_t *p4d; 4813 pud_t *pud; 4814 pmd_t *pmd; 4815 4816 pgd = pgd_offset(mm, addr); 4817 if (!pgd_present(*pgd)) 4818 return NULL; 4819 p4d = p4d_offset(pgd, addr); 4820 if (!p4d_present(*p4d)) 4821 return NULL; 4822 4823 pud = pud_offset(p4d, addr); 4824 if (sz != PUD_SIZE && pud_none(*pud)) 4825 return NULL; 4826 /* hugepage or swap? */ 4827 if (pud_huge(*pud) || !pud_present(*pud)) 4828 return (pte_t *)pud; 4829 4830 pmd = pmd_offset(pud, addr); 4831 if (sz != PMD_SIZE && pmd_none(*pmd)) 4832 return NULL; 4833 /* hugepage or swap? */ 4834 if (pmd_huge(*pmd) || !pmd_present(*pmd)) 4835 return (pte_t *)pmd; 4836 4837 return NULL; 4838 } 4839 4840 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */ 4841 4842 /* 4843 * These functions are overwritable if your architecture needs its own 4844 * behavior. 4845 */ 4846 struct page * __weak 4847 follow_huge_addr(struct mm_struct *mm, unsigned long address, 4848 int write) 4849 { 4850 return ERR_PTR(-EINVAL); 4851 } 4852 4853 struct page * __weak 4854 follow_huge_pd(struct vm_area_struct *vma, 4855 unsigned long address, hugepd_t hpd, int flags, int pdshift) 4856 { 4857 WARN(1, "hugepd follow called with no support for hugepage directory format\n"); 4858 return NULL; 4859 } 4860 4861 struct page * __weak 4862 follow_huge_pmd(struct mm_struct *mm, unsigned long address, 4863 pmd_t *pmd, int flags) 4864 { 4865 struct page *page = NULL; 4866 spinlock_t *ptl; 4867 pte_t pte; 4868 retry: 4869 ptl = pmd_lockptr(mm, pmd); 4870 spin_lock(ptl); 4871 /* 4872 * make sure that the address range covered by this pmd is not 4873 * unmapped from other threads. 4874 */ 4875 if (!pmd_huge(*pmd)) 4876 goto out; 4877 pte = huge_ptep_get((pte_t *)pmd); 4878 if (pte_present(pte)) { 4879 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT); 4880 if (flags & FOLL_GET) 4881 get_page(page); 4882 } else { 4883 if (is_hugetlb_entry_migration(pte)) { 4884 spin_unlock(ptl); 4885 __migration_entry_wait(mm, (pte_t *)pmd, ptl); 4886 goto retry; 4887 } 4888 /* 4889 * hwpoisoned entry is treated as no_page_table in 4890 * follow_page_mask(). 4891 */ 4892 } 4893 out: 4894 spin_unlock(ptl); 4895 return page; 4896 } 4897 4898 struct page * __weak 4899 follow_huge_pud(struct mm_struct *mm, unsigned long address, 4900 pud_t *pud, int flags) 4901 { 4902 if (flags & FOLL_GET) 4903 return NULL; 4904 4905 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT); 4906 } 4907 4908 struct page * __weak 4909 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags) 4910 { 4911 if (flags & FOLL_GET) 4912 return NULL; 4913 4914 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT); 4915 } 4916 4917 bool isolate_huge_page(struct page *page, struct list_head *list) 4918 { 4919 bool ret = true; 4920 4921 VM_BUG_ON_PAGE(!PageHead(page), page); 4922 spin_lock(&hugetlb_lock); 4923 if (!page_huge_active(page) || !get_page_unless_zero(page)) { 4924 ret = false; 4925 goto unlock; 4926 } 4927 clear_page_huge_active(page); 4928 list_move_tail(&page->lru, list); 4929 unlock: 4930 spin_unlock(&hugetlb_lock); 4931 return ret; 4932 } 4933 4934 void putback_active_hugepage(struct page *page) 4935 { 4936 VM_BUG_ON_PAGE(!PageHead(page), page); 4937 spin_lock(&hugetlb_lock); 4938 set_page_huge_active(page); 4939 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist); 4940 spin_unlock(&hugetlb_lock); 4941 put_page(page); 4942 } 4943 4944 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason) 4945 { 4946 struct hstate *h = page_hstate(oldpage); 4947 4948 hugetlb_cgroup_migrate(oldpage, newpage); 4949 set_page_owner_migrate_reason(newpage, reason); 4950 4951 /* 4952 * transfer temporary state of the new huge page. This is 4953 * reverse to other transitions because the newpage is going to 4954 * be final while the old one will be freed so it takes over 4955 * the temporary status. 4956 * 4957 * Also note that we have to transfer the per-node surplus state 4958 * here as well otherwise the global surplus count will not match 4959 * the per-node's. 4960 */ 4961 if (PageHugeTemporary(newpage)) { 4962 int old_nid = page_to_nid(oldpage); 4963 int new_nid = page_to_nid(newpage); 4964 4965 SetPageHugeTemporary(oldpage); 4966 ClearPageHugeTemporary(newpage); 4967 4968 spin_lock(&hugetlb_lock); 4969 if (h->surplus_huge_pages_node[old_nid]) { 4970 h->surplus_huge_pages_node[old_nid]--; 4971 h->surplus_huge_pages_node[new_nid]++; 4972 } 4973 spin_unlock(&hugetlb_lock); 4974 } 4975 } 4976