1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic hugetlb support. 4 * (C) Nadia Yvette Chambers, April 2004 5 */ 6 #include <linux/list.h> 7 #include <linux/init.h> 8 #include <linux/mm.h> 9 #include <linux/seq_file.h> 10 #include <linux/sysctl.h> 11 #include <linux/highmem.h> 12 #include <linux/mmu_notifier.h> 13 #include <linux/nodemask.h> 14 #include <linux/pagemap.h> 15 #include <linux/mempolicy.h> 16 #include <linux/compiler.h> 17 #include <linux/cpuset.h> 18 #include <linux/mutex.h> 19 #include <linux/memblock.h> 20 #include <linux/sysfs.h> 21 #include <linux/slab.h> 22 #include <linux/sched/mm.h> 23 #include <linux/mmdebug.h> 24 #include <linux/sched/signal.h> 25 #include <linux/rmap.h> 26 #include <linux/string_helpers.h> 27 #include <linux/swap.h> 28 #include <linux/swapops.h> 29 #include <linux/jhash.h> 30 #include <linux/numa.h> 31 #include <linux/llist.h> 32 #include <linux/cma.h> 33 #include <linux/migrate.h> 34 #include <linux/nospec.h> 35 #include <linux/delayacct.h> 36 #include <linux/memory.h> 37 #include <linux/mm_inline.h> 38 #include <linux/padata.h> 39 40 #include <asm/page.h> 41 #include <asm/pgalloc.h> 42 #include <asm/tlb.h> 43 44 #include <linux/io.h> 45 #include <linux/hugetlb.h> 46 #include <linux/hugetlb_cgroup.h> 47 #include <linux/node.h> 48 #include <linux/page_owner.h> 49 #include "internal.h" 50 #include "hugetlb_vmemmap.h" 51 52 int hugetlb_max_hstate __read_mostly; 53 unsigned int default_hstate_idx; 54 struct hstate hstates[HUGE_MAX_HSTATE]; 55 56 #ifdef CONFIG_CMA 57 static struct cma *hugetlb_cma[MAX_NUMNODES]; 58 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata; 59 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order) 60 { 61 return cma_pages_valid(hugetlb_cma[folio_nid(folio)], &folio->page, 62 1 << order); 63 } 64 #else 65 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order) 66 { 67 return false; 68 } 69 #endif 70 static unsigned long hugetlb_cma_size __initdata; 71 72 __initdata struct list_head huge_boot_pages[MAX_NUMNODES]; 73 74 /* for command line parsing */ 75 static struct hstate * __initdata parsed_hstate; 76 static unsigned long __initdata default_hstate_max_huge_pages; 77 static bool __initdata parsed_valid_hugepagesz = true; 78 static bool __initdata parsed_default_hugepagesz; 79 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata; 80 81 /* 82 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages, 83 * free_huge_pages, and surplus_huge_pages. 84 */ 85 DEFINE_SPINLOCK(hugetlb_lock); 86 87 /* 88 * Serializes faults on the same logical page. This is used to 89 * prevent spurious OOMs when the hugepage pool is fully utilized. 90 */ 91 static int num_fault_mutexes; 92 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp; 93 94 /* Forward declaration */ 95 static int hugetlb_acct_memory(struct hstate *h, long delta); 96 static void hugetlb_vma_lock_free(struct vm_area_struct *vma); 97 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma); 98 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma); 99 static void hugetlb_unshare_pmds(struct vm_area_struct *vma, 100 unsigned long start, unsigned long end); 101 static struct resv_map *vma_resv_map(struct vm_area_struct *vma); 102 103 static inline bool subpool_is_free(struct hugepage_subpool *spool) 104 { 105 if (spool->count) 106 return false; 107 if (spool->max_hpages != -1) 108 return spool->used_hpages == 0; 109 if (spool->min_hpages != -1) 110 return spool->rsv_hpages == spool->min_hpages; 111 112 return true; 113 } 114 115 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool, 116 unsigned long irq_flags) 117 { 118 spin_unlock_irqrestore(&spool->lock, irq_flags); 119 120 /* If no pages are used, and no other handles to the subpool 121 * remain, give up any reservations based on minimum size and 122 * free the subpool */ 123 if (subpool_is_free(spool)) { 124 if (spool->min_hpages != -1) 125 hugetlb_acct_memory(spool->hstate, 126 -spool->min_hpages); 127 kfree(spool); 128 } 129 } 130 131 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages, 132 long min_hpages) 133 { 134 struct hugepage_subpool *spool; 135 136 spool = kzalloc(sizeof(*spool), GFP_KERNEL); 137 if (!spool) 138 return NULL; 139 140 spin_lock_init(&spool->lock); 141 spool->count = 1; 142 spool->max_hpages = max_hpages; 143 spool->hstate = h; 144 spool->min_hpages = min_hpages; 145 146 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) { 147 kfree(spool); 148 return NULL; 149 } 150 spool->rsv_hpages = min_hpages; 151 152 return spool; 153 } 154 155 void hugepage_put_subpool(struct hugepage_subpool *spool) 156 { 157 unsigned long flags; 158 159 spin_lock_irqsave(&spool->lock, flags); 160 BUG_ON(!spool->count); 161 spool->count--; 162 unlock_or_release_subpool(spool, flags); 163 } 164 165 /* 166 * Subpool accounting for allocating and reserving pages. 167 * Return -ENOMEM if there are not enough resources to satisfy the 168 * request. Otherwise, return the number of pages by which the 169 * global pools must be adjusted (upward). The returned value may 170 * only be different than the passed value (delta) in the case where 171 * a subpool minimum size must be maintained. 172 */ 173 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool, 174 long delta) 175 { 176 long ret = delta; 177 178 if (!spool) 179 return ret; 180 181 spin_lock_irq(&spool->lock); 182 183 if (spool->max_hpages != -1) { /* maximum size accounting */ 184 if ((spool->used_hpages + delta) <= spool->max_hpages) 185 spool->used_hpages += delta; 186 else { 187 ret = -ENOMEM; 188 goto unlock_ret; 189 } 190 } 191 192 /* minimum size accounting */ 193 if (spool->min_hpages != -1 && spool->rsv_hpages) { 194 if (delta > spool->rsv_hpages) { 195 /* 196 * Asking for more reserves than those already taken on 197 * behalf of subpool. Return difference. 198 */ 199 ret = delta - spool->rsv_hpages; 200 spool->rsv_hpages = 0; 201 } else { 202 ret = 0; /* reserves already accounted for */ 203 spool->rsv_hpages -= delta; 204 } 205 } 206 207 unlock_ret: 208 spin_unlock_irq(&spool->lock); 209 return ret; 210 } 211 212 /* 213 * Subpool accounting for freeing and unreserving pages. 214 * Return the number of global page reservations that must be dropped. 215 * The return value may only be different than the passed value (delta) 216 * in the case where a subpool minimum size must be maintained. 217 */ 218 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool, 219 long delta) 220 { 221 long ret = delta; 222 unsigned long flags; 223 224 if (!spool) 225 return delta; 226 227 spin_lock_irqsave(&spool->lock, flags); 228 229 if (spool->max_hpages != -1) /* maximum size accounting */ 230 spool->used_hpages -= delta; 231 232 /* minimum size accounting */ 233 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) { 234 if (spool->rsv_hpages + delta <= spool->min_hpages) 235 ret = 0; 236 else 237 ret = spool->rsv_hpages + delta - spool->min_hpages; 238 239 spool->rsv_hpages += delta; 240 if (spool->rsv_hpages > spool->min_hpages) 241 spool->rsv_hpages = spool->min_hpages; 242 } 243 244 /* 245 * If hugetlbfs_put_super couldn't free spool due to an outstanding 246 * quota reference, free it now. 247 */ 248 unlock_or_release_subpool(spool, flags); 249 250 return ret; 251 } 252 253 static inline struct hugepage_subpool *subpool_inode(struct inode *inode) 254 { 255 return HUGETLBFS_SB(inode->i_sb)->spool; 256 } 257 258 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma) 259 { 260 return subpool_inode(file_inode(vma->vm_file)); 261 } 262 263 /* 264 * hugetlb vma_lock helper routines 265 */ 266 void hugetlb_vma_lock_read(struct vm_area_struct *vma) 267 { 268 if (__vma_shareable_lock(vma)) { 269 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 270 271 down_read(&vma_lock->rw_sema); 272 } else if (__vma_private_lock(vma)) { 273 struct resv_map *resv_map = vma_resv_map(vma); 274 275 down_read(&resv_map->rw_sema); 276 } 277 } 278 279 void hugetlb_vma_unlock_read(struct vm_area_struct *vma) 280 { 281 if (__vma_shareable_lock(vma)) { 282 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 283 284 up_read(&vma_lock->rw_sema); 285 } else if (__vma_private_lock(vma)) { 286 struct resv_map *resv_map = vma_resv_map(vma); 287 288 up_read(&resv_map->rw_sema); 289 } 290 } 291 292 void hugetlb_vma_lock_write(struct vm_area_struct *vma) 293 { 294 if (__vma_shareable_lock(vma)) { 295 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 296 297 down_write(&vma_lock->rw_sema); 298 } else if (__vma_private_lock(vma)) { 299 struct resv_map *resv_map = vma_resv_map(vma); 300 301 down_write(&resv_map->rw_sema); 302 } 303 } 304 305 void hugetlb_vma_unlock_write(struct vm_area_struct *vma) 306 { 307 if (__vma_shareable_lock(vma)) { 308 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 309 310 up_write(&vma_lock->rw_sema); 311 } else if (__vma_private_lock(vma)) { 312 struct resv_map *resv_map = vma_resv_map(vma); 313 314 up_write(&resv_map->rw_sema); 315 } 316 } 317 318 int hugetlb_vma_trylock_write(struct vm_area_struct *vma) 319 { 320 321 if (__vma_shareable_lock(vma)) { 322 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 323 324 return down_write_trylock(&vma_lock->rw_sema); 325 } else if (__vma_private_lock(vma)) { 326 struct resv_map *resv_map = vma_resv_map(vma); 327 328 return down_write_trylock(&resv_map->rw_sema); 329 } 330 331 return 1; 332 } 333 334 void hugetlb_vma_assert_locked(struct vm_area_struct *vma) 335 { 336 if (__vma_shareable_lock(vma)) { 337 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 338 339 lockdep_assert_held(&vma_lock->rw_sema); 340 } else if (__vma_private_lock(vma)) { 341 struct resv_map *resv_map = vma_resv_map(vma); 342 343 lockdep_assert_held(&resv_map->rw_sema); 344 } 345 } 346 347 void hugetlb_vma_lock_release(struct kref *kref) 348 { 349 struct hugetlb_vma_lock *vma_lock = container_of(kref, 350 struct hugetlb_vma_lock, refs); 351 352 kfree(vma_lock); 353 } 354 355 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock) 356 { 357 struct vm_area_struct *vma = vma_lock->vma; 358 359 /* 360 * vma_lock structure may or not be released as a result of put, 361 * it certainly will no longer be attached to vma so clear pointer. 362 * Semaphore synchronizes access to vma_lock->vma field. 363 */ 364 vma_lock->vma = NULL; 365 vma->vm_private_data = NULL; 366 up_write(&vma_lock->rw_sema); 367 kref_put(&vma_lock->refs, hugetlb_vma_lock_release); 368 } 369 370 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma) 371 { 372 if (__vma_shareable_lock(vma)) { 373 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 374 375 __hugetlb_vma_unlock_write_put(vma_lock); 376 } else if (__vma_private_lock(vma)) { 377 struct resv_map *resv_map = vma_resv_map(vma); 378 379 /* no free for anon vmas, but still need to unlock */ 380 up_write(&resv_map->rw_sema); 381 } 382 } 383 384 static void hugetlb_vma_lock_free(struct vm_area_struct *vma) 385 { 386 /* 387 * Only present in sharable vmas. 388 */ 389 if (!vma || !__vma_shareable_lock(vma)) 390 return; 391 392 if (vma->vm_private_data) { 393 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 394 395 down_write(&vma_lock->rw_sema); 396 __hugetlb_vma_unlock_write_put(vma_lock); 397 } 398 } 399 400 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma) 401 { 402 struct hugetlb_vma_lock *vma_lock; 403 404 /* Only establish in (flags) sharable vmas */ 405 if (!vma || !(vma->vm_flags & VM_MAYSHARE)) 406 return; 407 408 /* Should never get here with non-NULL vm_private_data */ 409 if (vma->vm_private_data) 410 return; 411 412 vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL); 413 if (!vma_lock) { 414 /* 415 * If we can not allocate structure, then vma can not 416 * participate in pmd sharing. This is only a possible 417 * performance enhancement and memory saving issue. 418 * However, the lock is also used to synchronize page 419 * faults with truncation. If the lock is not present, 420 * unlikely races could leave pages in a file past i_size 421 * until the file is removed. Warn in the unlikely case of 422 * allocation failure. 423 */ 424 pr_warn_once("HugeTLB: unable to allocate vma specific lock\n"); 425 return; 426 } 427 428 kref_init(&vma_lock->refs); 429 init_rwsem(&vma_lock->rw_sema); 430 vma_lock->vma = vma; 431 vma->vm_private_data = vma_lock; 432 } 433 434 /* Helper that removes a struct file_region from the resv_map cache and returns 435 * it for use. 436 */ 437 static struct file_region * 438 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to) 439 { 440 struct file_region *nrg; 441 442 VM_BUG_ON(resv->region_cache_count <= 0); 443 444 resv->region_cache_count--; 445 nrg = list_first_entry(&resv->region_cache, struct file_region, link); 446 list_del(&nrg->link); 447 448 nrg->from = from; 449 nrg->to = to; 450 451 return nrg; 452 } 453 454 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg, 455 struct file_region *rg) 456 { 457 #ifdef CONFIG_CGROUP_HUGETLB 458 nrg->reservation_counter = rg->reservation_counter; 459 nrg->css = rg->css; 460 if (rg->css) 461 css_get(rg->css); 462 #endif 463 } 464 465 /* Helper that records hugetlb_cgroup uncharge info. */ 466 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg, 467 struct hstate *h, 468 struct resv_map *resv, 469 struct file_region *nrg) 470 { 471 #ifdef CONFIG_CGROUP_HUGETLB 472 if (h_cg) { 473 nrg->reservation_counter = 474 &h_cg->rsvd_hugepage[hstate_index(h)]; 475 nrg->css = &h_cg->css; 476 /* 477 * The caller will hold exactly one h_cg->css reference for the 478 * whole contiguous reservation region. But this area might be 479 * scattered when there are already some file_regions reside in 480 * it. As a result, many file_regions may share only one css 481 * reference. In order to ensure that one file_region must hold 482 * exactly one h_cg->css reference, we should do css_get for 483 * each file_region and leave the reference held by caller 484 * untouched. 485 */ 486 css_get(&h_cg->css); 487 if (!resv->pages_per_hpage) 488 resv->pages_per_hpage = pages_per_huge_page(h); 489 /* pages_per_hpage should be the same for all entries in 490 * a resv_map. 491 */ 492 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h)); 493 } else { 494 nrg->reservation_counter = NULL; 495 nrg->css = NULL; 496 } 497 #endif 498 } 499 500 static void put_uncharge_info(struct file_region *rg) 501 { 502 #ifdef CONFIG_CGROUP_HUGETLB 503 if (rg->css) 504 css_put(rg->css); 505 #endif 506 } 507 508 static bool has_same_uncharge_info(struct file_region *rg, 509 struct file_region *org) 510 { 511 #ifdef CONFIG_CGROUP_HUGETLB 512 return rg->reservation_counter == org->reservation_counter && 513 rg->css == org->css; 514 515 #else 516 return true; 517 #endif 518 } 519 520 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg) 521 { 522 struct file_region *nrg, *prg; 523 524 prg = list_prev_entry(rg, link); 525 if (&prg->link != &resv->regions && prg->to == rg->from && 526 has_same_uncharge_info(prg, rg)) { 527 prg->to = rg->to; 528 529 list_del(&rg->link); 530 put_uncharge_info(rg); 531 kfree(rg); 532 533 rg = prg; 534 } 535 536 nrg = list_next_entry(rg, link); 537 if (&nrg->link != &resv->regions && nrg->from == rg->to && 538 has_same_uncharge_info(nrg, rg)) { 539 nrg->from = rg->from; 540 541 list_del(&rg->link); 542 put_uncharge_info(rg); 543 kfree(rg); 544 } 545 } 546 547 static inline long 548 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from, 549 long to, struct hstate *h, struct hugetlb_cgroup *cg, 550 long *regions_needed) 551 { 552 struct file_region *nrg; 553 554 if (!regions_needed) { 555 nrg = get_file_region_entry_from_cache(map, from, to); 556 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg); 557 list_add(&nrg->link, rg); 558 coalesce_file_region(map, nrg); 559 } else 560 *regions_needed += 1; 561 562 return to - from; 563 } 564 565 /* 566 * Must be called with resv->lock held. 567 * 568 * Calling this with regions_needed != NULL will count the number of pages 569 * to be added but will not modify the linked list. And regions_needed will 570 * indicate the number of file_regions needed in the cache to carry out to add 571 * the regions for this range. 572 */ 573 static long add_reservation_in_range(struct resv_map *resv, long f, long t, 574 struct hugetlb_cgroup *h_cg, 575 struct hstate *h, long *regions_needed) 576 { 577 long add = 0; 578 struct list_head *head = &resv->regions; 579 long last_accounted_offset = f; 580 struct file_region *iter, *trg = NULL; 581 struct list_head *rg = NULL; 582 583 if (regions_needed) 584 *regions_needed = 0; 585 586 /* In this loop, we essentially handle an entry for the range 587 * [last_accounted_offset, iter->from), at every iteration, with some 588 * bounds checking. 589 */ 590 list_for_each_entry_safe(iter, trg, head, link) { 591 /* Skip irrelevant regions that start before our range. */ 592 if (iter->from < f) { 593 /* If this region ends after the last accounted offset, 594 * then we need to update last_accounted_offset. 595 */ 596 if (iter->to > last_accounted_offset) 597 last_accounted_offset = iter->to; 598 continue; 599 } 600 601 /* When we find a region that starts beyond our range, we've 602 * finished. 603 */ 604 if (iter->from >= t) { 605 rg = iter->link.prev; 606 break; 607 } 608 609 /* Add an entry for last_accounted_offset -> iter->from, and 610 * update last_accounted_offset. 611 */ 612 if (iter->from > last_accounted_offset) 613 add += hugetlb_resv_map_add(resv, iter->link.prev, 614 last_accounted_offset, 615 iter->from, h, h_cg, 616 regions_needed); 617 618 last_accounted_offset = iter->to; 619 } 620 621 /* Handle the case where our range extends beyond 622 * last_accounted_offset. 623 */ 624 if (!rg) 625 rg = head->prev; 626 if (last_accounted_offset < t) 627 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset, 628 t, h, h_cg, regions_needed); 629 630 return add; 631 } 632 633 /* Must be called with resv->lock acquired. Will drop lock to allocate entries. 634 */ 635 static int allocate_file_region_entries(struct resv_map *resv, 636 int regions_needed) 637 __must_hold(&resv->lock) 638 { 639 LIST_HEAD(allocated_regions); 640 int to_allocate = 0, i = 0; 641 struct file_region *trg = NULL, *rg = NULL; 642 643 VM_BUG_ON(regions_needed < 0); 644 645 /* 646 * Check for sufficient descriptors in the cache to accommodate 647 * the number of in progress add operations plus regions_needed. 648 * 649 * This is a while loop because when we drop the lock, some other call 650 * to region_add or region_del may have consumed some region_entries, 651 * so we keep looping here until we finally have enough entries for 652 * (adds_in_progress + regions_needed). 653 */ 654 while (resv->region_cache_count < 655 (resv->adds_in_progress + regions_needed)) { 656 to_allocate = resv->adds_in_progress + regions_needed - 657 resv->region_cache_count; 658 659 /* At this point, we should have enough entries in the cache 660 * for all the existing adds_in_progress. We should only be 661 * needing to allocate for regions_needed. 662 */ 663 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress); 664 665 spin_unlock(&resv->lock); 666 for (i = 0; i < to_allocate; i++) { 667 trg = kmalloc(sizeof(*trg), GFP_KERNEL); 668 if (!trg) 669 goto out_of_memory; 670 list_add(&trg->link, &allocated_regions); 671 } 672 673 spin_lock(&resv->lock); 674 675 list_splice(&allocated_regions, &resv->region_cache); 676 resv->region_cache_count += to_allocate; 677 } 678 679 return 0; 680 681 out_of_memory: 682 list_for_each_entry_safe(rg, trg, &allocated_regions, link) { 683 list_del(&rg->link); 684 kfree(rg); 685 } 686 return -ENOMEM; 687 } 688 689 /* 690 * Add the huge page range represented by [f, t) to the reserve 691 * map. Regions will be taken from the cache to fill in this range. 692 * Sufficient regions should exist in the cache due to the previous 693 * call to region_chg with the same range, but in some cases the cache will not 694 * have sufficient entries due to races with other code doing region_add or 695 * region_del. The extra needed entries will be allocated. 696 * 697 * regions_needed is the out value provided by a previous call to region_chg. 698 * 699 * Return the number of new huge pages added to the map. This number is greater 700 * than or equal to zero. If file_region entries needed to be allocated for 701 * this operation and we were not able to allocate, it returns -ENOMEM. 702 * region_add of regions of length 1 never allocate file_regions and cannot 703 * fail; region_chg will always allocate at least 1 entry and a region_add for 704 * 1 page will only require at most 1 entry. 705 */ 706 static long region_add(struct resv_map *resv, long f, long t, 707 long in_regions_needed, struct hstate *h, 708 struct hugetlb_cgroup *h_cg) 709 { 710 long add = 0, actual_regions_needed = 0; 711 712 spin_lock(&resv->lock); 713 retry: 714 715 /* Count how many regions are actually needed to execute this add. */ 716 add_reservation_in_range(resv, f, t, NULL, NULL, 717 &actual_regions_needed); 718 719 /* 720 * Check for sufficient descriptors in the cache to accommodate 721 * this add operation. Note that actual_regions_needed may be greater 722 * than in_regions_needed, as the resv_map may have been modified since 723 * the region_chg call. In this case, we need to make sure that we 724 * allocate extra entries, such that we have enough for all the 725 * existing adds_in_progress, plus the excess needed for this 726 * operation. 727 */ 728 if (actual_regions_needed > in_regions_needed && 729 resv->region_cache_count < 730 resv->adds_in_progress + 731 (actual_regions_needed - in_regions_needed)) { 732 /* region_add operation of range 1 should never need to 733 * allocate file_region entries. 734 */ 735 VM_BUG_ON(t - f <= 1); 736 737 if (allocate_file_region_entries( 738 resv, actual_regions_needed - in_regions_needed)) { 739 return -ENOMEM; 740 } 741 742 goto retry; 743 } 744 745 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL); 746 747 resv->adds_in_progress -= in_regions_needed; 748 749 spin_unlock(&resv->lock); 750 return add; 751 } 752 753 /* 754 * Examine the existing reserve map and determine how many 755 * huge pages in the specified range [f, t) are NOT currently 756 * represented. This routine is called before a subsequent 757 * call to region_add that will actually modify the reserve 758 * map to add the specified range [f, t). region_chg does 759 * not change the number of huge pages represented by the 760 * map. A number of new file_region structures is added to the cache as a 761 * placeholder, for the subsequent region_add call to use. At least 1 762 * file_region structure is added. 763 * 764 * out_regions_needed is the number of regions added to the 765 * resv->adds_in_progress. This value needs to be provided to a follow up call 766 * to region_add or region_abort for proper accounting. 767 * 768 * Returns the number of huge pages that need to be added to the existing 769 * reservation map for the range [f, t). This number is greater or equal to 770 * zero. -ENOMEM is returned if a new file_region structure or cache entry 771 * is needed and can not be allocated. 772 */ 773 static long region_chg(struct resv_map *resv, long f, long t, 774 long *out_regions_needed) 775 { 776 long chg = 0; 777 778 spin_lock(&resv->lock); 779 780 /* Count how many hugepages in this range are NOT represented. */ 781 chg = add_reservation_in_range(resv, f, t, NULL, NULL, 782 out_regions_needed); 783 784 if (*out_regions_needed == 0) 785 *out_regions_needed = 1; 786 787 if (allocate_file_region_entries(resv, *out_regions_needed)) 788 return -ENOMEM; 789 790 resv->adds_in_progress += *out_regions_needed; 791 792 spin_unlock(&resv->lock); 793 return chg; 794 } 795 796 /* 797 * Abort the in progress add operation. The adds_in_progress field 798 * of the resv_map keeps track of the operations in progress between 799 * calls to region_chg and region_add. Operations are sometimes 800 * aborted after the call to region_chg. In such cases, region_abort 801 * is called to decrement the adds_in_progress counter. regions_needed 802 * is the value returned by the region_chg call, it is used to decrement 803 * the adds_in_progress counter. 804 * 805 * NOTE: The range arguments [f, t) are not needed or used in this 806 * routine. They are kept to make reading the calling code easier as 807 * arguments will match the associated region_chg call. 808 */ 809 static void region_abort(struct resv_map *resv, long f, long t, 810 long regions_needed) 811 { 812 spin_lock(&resv->lock); 813 VM_BUG_ON(!resv->region_cache_count); 814 resv->adds_in_progress -= regions_needed; 815 spin_unlock(&resv->lock); 816 } 817 818 /* 819 * Delete the specified range [f, t) from the reserve map. If the 820 * t parameter is LONG_MAX, this indicates that ALL regions after f 821 * should be deleted. Locate the regions which intersect [f, t) 822 * and either trim, delete or split the existing regions. 823 * 824 * Returns the number of huge pages deleted from the reserve map. 825 * In the normal case, the return value is zero or more. In the 826 * case where a region must be split, a new region descriptor must 827 * be allocated. If the allocation fails, -ENOMEM will be returned. 828 * NOTE: If the parameter t == LONG_MAX, then we will never split 829 * a region and possibly return -ENOMEM. Callers specifying 830 * t == LONG_MAX do not need to check for -ENOMEM error. 831 */ 832 static long region_del(struct resv_map *resv, long f, long t) 833 { 834 struct list_head *head = &resv->regions; 835 struct file_region *rg, *trg; 836 struct file_region *nrg = NULL; 837 long del = 0; 838 839 retry: 840 spin_lock(&resv->lock); 841 list_for_each_entry_safe(rg, trg, head, link) { 842 /* 843 * Skip regions before the range to be deleted. file_region 844 * ranges are normally of the form [from, to). However, there 845 * may be a "placeholder" entry in the map which is of the form 846 * (from, to) with from == to. Check for placeholder entries 847 * at the beginning of the range to be deleted. 848 */ 849 if (rg->to <= f && (rg->to != rg->from || rg->to != f)) 850 continue; 851 852 if (rg->from >= t) 853 break; 854 855 if (f > rg->from && t < rg->to) { /* Must split region */ 856 /* 857 * Check for an entry in the cache before dropping 858 * lock and attempting allocation. 859 */ 860 if (!nrg && 861 resv->region_cache_count > resv->adds_in_progress) { 862 nrg = list_first_entry(&resv->region_cache, 863 struct file_region, 864 link); 865 list_del(&nrg->link); 866 resv->region_cache_count--; 867 } 868 869 if (!nrg) { 870 spin_unlock(&resv->lock); 871 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 872 if (!nrg) 873 return -ENOMEM; 874 goto retry; 875 } 876 877 del += t - f; 878 hugetlb_cgroup_uncharge_file_region( 879 resv, rg, t - f, false); 880 881 /* New entry for end of split region */ 882 nrg->from = t; 883 nrg->to = rg->to; 884 885 copy_hugetlb_cgroup_uncharge_info(nrg, rg); 886 887 INIT_LIST_HEAD(&nrg->link); 888 889 /* Original entry is trimmed */ 890 rg->to = f; 891 892 list_add(&nrg->link, &rg->link); 893 nrg = NULL; 894 break; 895 } 896 897 if (f <= rg->from && t >= rg->to) { /* Remove entire region */ 898 del += rg->to - rg->from; 899 hugetlb_cgroup_uncharge_file_region(resv, rg, 900 rg->to - rg->from, true); 901 list_del(&rg->link); 902 kfree(rg); 903 continue; 904 } 905 906 if (f <= rg->from) { /* Trim beginning of region */ 907 hugetlb_cgroup_uncharge_file_region(resv, rg, 908 t - rg->from, false); 909 910 del += t - rg->from; 911 rg->from = t; 912 } else { /* Trim end of region */ 913 hugetlb_cgroup_uncharge_file_region(resv, rg, 914 rg->to - f, false); 915 916 del += rg->to - f; 917 rg->to = f; 918 } 919 } 920 921 spin_unlock(&resv->lock); 922 kfree(nrg); 923 return del; 924 } 925 926 /* 927 * A rare out of memory error was encountered which prevented removal of 928 * the reserve map region for a page. The huge page itself was free'ed 929 * and removed from the page cache. This routine will adjust the subpool 930 * usage count, and the global reserve count if needed. By incrementing 931 * these counts, the reserve map entry which could not be deleted will 932 * appear as a "reserved" entry instead of simply dangling with incorrect 933 * counts. 934 */ 935 void hugetlb_fix_reserve_counts(struct inode *inode) 936 { 937 struct hugepage_subpool *spool = subpool_inode(inode); 938 long rsv_adjust; 939 bool reserved = false; 940 941 rsv_adjust = hugepage_subpool_get_pages(spool, 1); 942 if (rsv_adjust > 0) { 943 struct hstate *h = hstate_inode(inode); 944 945 if (!hugetlb_acct_memory(h, 1)) 946 reserved = true; 947 } else if (!rsv_adjust) { 948 reserved = true; 949 } 950 951 if (!reserved) 952 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n"); 953 } 954 955 /* 956 * Count and return the number of huge pages in the reserve map 957 * that intersect with the range [f, t). 958 */ 959 static long region_count(struct resv_map *resv, long f, long t) 960 { 961 struct list_head *head = &resv->regions; 962 struct file_region *rg; 963 long chg = 0; 964 965 spin_lock(&resv->lock); 966 /* Locate each segment we overlap with, and count that overlap. */ 967 list_for_each_entry(rg, head, link) { 968 long seg_from; 969 long seg_to; 970 971 if (rg->to <= f) 972 continue; 973 if (rg->from >= t) 974 break; 975 976 seg_from = max(rg->from, f); 977 seg_to = min(rg->to, t); 978 979 chg += seg_to - seg_from; 980 } 981 spin_unlock(&resv->lock); 982 983 return chg; 984 } 985 986 /* 987 * Convert the address within this vma to the page offset within 988 * the mapping, huge page units here. 989 */ 990 static pgoff_t vma_hugecache_offset(struct hstate *h, 991 struct vm_area_struct *vma, unsigned long address) 992 { 993 return ((address - vma->vm_start) >> huge_page_shift(h)) + 994 (vma->vm_pgoff >> huge_page_order(h)); 995 } 996 997 /** 998 * vma_kernel_pagesize - Page size granularity for this VMA. 999 * @vma: The user mapping. 1000 * 1001 * Folios in this VMA will be aligned to, and at least the size of the 1002 * number of bytes returned by this function. 1003 * 1004 * Return: The default size of the folios allocated when backing a VMA. 1005 */ 1006 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) 1007 { 1008 if (vma->vm_ops && vma->vm_ops->pagesize) 1009 return vma->vm_ops->pagesize(vma); 1010 return PAGE_SIZE; 1011 } 1012 EXPORT_SYMBOL_GPL(vma_kernel_pagesize); 1013 1014 /* 1015 * Return the page size being used by the MMU to back a VMA. In the majority 1016 * of cases, the page size used by the kernel matches the MMU size. On 1017 * architectures where it differs, an architecture-specific 'strong' 1018 * version of this symbol is required. 1019 */ 1020 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 1021 { 1022 return vma_kernel_pagesize(vma); 1023 } 1024 1025 /* 1026 * Flags for MAP_PRIVATE reservations. These are stored in the bottom 1027 * bits of the reservation map pointer, which are always clear due to 1028 * alignment. 1029 */ 1030 #define HPAGE_RESV_OWNER (1UL << 0) 1031 #define HPAGE_RESV_UNMAPPED (1UL << 1) 1032 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) 1033 1034 /* 1035 * These helpers are used to track how many pages are reserved for 1036 * faults in a MAP_PRIVATE mapping. Only the process that called mmap() 1037 * is guaranteed to have their future faults succeed. 1038 * 1039 * With the exception of hugetlb_dup_vma_private() which is called at fork(), 1040 * the reserve counters are updated with the hugetlb_lock held. It is safe 1041 * to reset the VMA at fork() time as it is not in use yet and there is no 1042 * chance of the global counters getting corrupted as a result of the values. 1043 * 1044 * The private mapping reservation is represented in a subtly different 1045 * manner to a shared mapping. A shared mapping has a region map associated 1046 * with the underlying file, this region map represents the backing file 1047 * pages which have ever had a reservation assigned which this persists even 1048 * after the page is instantiated. A private mapping has a region map 1049 * associated with the original mmap which is attached to all VMAs which 1050 * reference it, this region map represents those offsets which have consumed 1051 * reservation ie. where pages have been instantiated. 1052 */ 1053 static unsigned long get_vma_private_data(struct vm_area_struct *vma) 1054 { 1055 return (unsigned long)vma->vm_private_data; 1056 } 1057 1058 static void set_vma_private_data(struct vm_area_struct *vma, 1059 unsigned long value) 1060 { 1061 vma->vm_private_data = (void *)value; 1062 } 1063 1064 static void 1065 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map, 1066 struct hugetlb_cgroup *h_cg, 1067 struct hstate *h) 1068 { 1069 #ifdef CONFIG_CGROUP_HUGETLB 1070 if (!h_cg || !h) { 1071 resv_map->reservation_counter = NULL; 1072 resv_map->pages_per_hpage = 0; 1073 resv_map->css = NULL; 1074 } else { 1075 resv_map->reservation_counter = 1076 &h_cg->rsvd_hugepage[hstate_index(h)]; 1077 resv_map->pages_per_hpage = pages_per_huge_page(h); 1078 resv_map->css = &h_cg->css; 1079 } 1080 #endif 1081 } 1082 1083 struct resv_map *resv_map_alloc(void) 1084 { 1085 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); 1086 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL); 1087 1088 if (!resv_map || !rg) { 1089 kfree(resv_map); 1090 kfree(rg); 1091 return NULL; 1092 } 1093 1094 kref_init(&resv_map->refs); 1095 spin_lock_init(&resv_map->lock); 1096 INIT_LIST_HEAD(&resv_map->regions); 1097 init_rwsem(&resv_map->rw_sema); 1098 1099 resv_map->adds_in_progress = 0; 1100 /* 1101 * Initialize these to 0. On shared mappings, 0's here indicate these 1102 * fields don't do cgroup accounting. On private mappings, these will be 1103 * re-initialized to the proper values, to indicate that hugetlb cgroup 1104 * reservations are to be un-charged from here. 1105 */ 1106 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL); 1107 1108 INIT_LIST_HEAD(&resv_map->region_cache); 1109 list_add(&rg->link, &resv_map->region_cache); 1110 resv_map->region_cache_count = 1; 1111 1112 return resv_map; 1113 } 1114 1115 void resv_map_release(struct kref *ref) 1116 { 1117 struct resv_map *resv_map = container_of(ref, struct resv_map, refs); 1118 struct list_head *head = &resv_map->region_cache; 1119 struct file_region *rg, *trg; 1120 1121 /* Clear out any active regions before we release the map. */ 1122 region_del(resv_map, 0, LONG_MAX); 1123 1124 /* ... and any entries left in the cache */ 1125 list_for_each_entry_safe(rg, trg, head, link) { 1126 list_del(&rg->link); 1127 kfree(rg); 1128 } 1129 1130 VM_BUG_ON(resv_map->adds_in_progress); 1131 1132 kfree(resv_map); 1133 } 1134 1135 static inline struct resv_map *inode_resv_map(struct inode *inode) 1136 { 1137 /* 1138 * At inode evict time, i_mapping may not point to the original 1139 * address space within the inode. This original address space 1140 * contains the pointer to the resv_map. So, always use the 1141 * address space embedded within the inode. 1142 * The VERY common case is inode->mapping == &inode->i_data but, 1143 * this may not be true for device special inodes. 1144 */ 1145 return (struct resv_map *)(&inode->i_data)->i_private_data; 1146 } 1147 1148 static struct resv_map *vma_resv_map(struct vm_area_struct *vma) 1149 { 1150 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1151 if (vma->vm_flags & VM_MAYSHARE) { 1152 struct address_space *mapping = vma->vm_file->f_mapping; 1153 struct inode *inode = mapping->host; 1154 1155 return inode_resv_map(inode); 1156 1157 } else { 1158 return (struct resv_map *)(get_vma_private_data(vma) & 1159 ~HPAGE_RESV_MASK); 1160 } 1161 } 1162 1163 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) 1164 { 1165 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1166 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 1167 1168 set_vma_private_data(vma, (unsigned long)map); 1169 } 1170 1171 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) 1172 { 1173 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1174 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 1175 1176 set_vma_private_data(vma, get_vma_private_data(vma) | flags); 1177 } 1178 1179 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) 1180 { 1181 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1182 1183 return (get_vma_private_data(vma) & flag) != 0; 1184 } 1185 1186 bool __vma_private_lock(struct vm_area_struct *vma) 1187 { 1188 return !(vma->vm_flags & VM_MAYSHARE) && 1189 get_vma_private_data(vma) & ~HPAGE_RESV_MASK && 1190 is_vma_resv_set(vma, HPAGE_RESV_OWNER); 1191 } 1192 1193 void hugetlb_dup_vma_private(struct vm_area_struct *vma) 1194 { 1195 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1196 /* 1197 * Clear vm_private_data 1198 * - For shared mappings this is a per-vma semaphore that may be 1199 * allocated in a subsequent call to hugetlb_vm_op_open. 1200 * Before clearing, make sure pointer is not associated with vma 1201 * as this will leak the structure. This is the case when called 1202 * via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already 1203 * been called to allocate a new structure. 1204 * - For MAP_PRIVATE mappings, this is the reserve map which does 1205 * not apply to children. Faults generated by the children are 1206 * not guaranteed to succeed, even if read-only. 1207 */ 1208 if (vma->vm_flags & VM_MAYSHARE) { 1209 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 1210 1211 if (vma_lock && vma_lock->vma != vma) 1212 vma->vm_private_data = NULL; 1213 } else 1214 vma->vm_private_data = NULL; 1215 } 1216 1217 /* 1218 * Reset and decrement one ref on hugepage private reservation. 1219 * Called with mm->mmap_lock writer semaphore held. 1220 * This function should be only used by move_vma() and operate on 1221 * same sized vma. It should never come here with last ref on the 1222 * reservation. 1223 */ 1224 void clear_vma_resv_huge_pages(struct vm_area_struct *vma) 1225 { 1226 /* 1227 * Clear the old hugetlb private page reservation. 1228 * It has already been transferred to new_vma. 1229 * 1230 * During a mremap() operation of a hugetlb vma we call move_vma() 1231 * which copies vma into new_vma and unmaps vma. After the copy 1232 * operation both new_vma and vma share a reference to the resv_map 1233 * struct, and at that point vma is about to be unmapped. We don't 1234 * want to return the reservation to the pool at unmap of vma because 1235 * the reservation still lives on in new_vma, so simply decrement the 1236 * ref here and remove the resv_map reference from this vma. 1237 */ 1238 struct resv_map *reservations = vma_resv_map(vma); 1239 1240 if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 1241 resv_map_put_hugetlb_cgroup_uncharge_info(reservations); 1242 kref_put(&reservations->refs, resv_map_release); 1243 } 1244 1245 hugetlb_dup_vma_private(vma); 1246 } 1247 1248 /* Returns true if the VMA has associated reserve pages */ 1249 static bool vma_has_reserves(struct vm_area_struct *vma, long chg) 1250 { 1251 if (vma->vm_flags & VM_NORESERVE) { 1252 /* 1253 * This address is already reserved by other process(chg == 0), 1254 * so, we should decrement reserved count. Without decrementing, 1255 * reserve count remains after releasing inode, because this 1256 * allocated page will go into page cache and is regarded as 1257 * coming from reserved pool in releasing step. Currently, we 1258 * don't have any other solution to deal with this situation 1259 * properly, so add work-around here. 1260 */ 1261 if (vma->vm_flags & VM_MAYSHARE && chg == 0) 1262 return true; 1263 else 1264 return false; 1265 } 1266 1267 /* Shared mappings always use reserves */ 1268 if (vma->vm_flags & VM_MAYSHARE) { 1269 /* 1270 * We know VM_NORESERVE is not set. Therefore, there SHOULD 1271 * be a region map for all pages. The only situation where 1272 * there is no region map is if a hole was punched via 1273 * fallocate. In this case, there really are no reserves to 1274 * use. This situation is indicated if chg != 0. 1275 */ 1276 if (chg) 1277 return false; 1278 else 1279 return true; 1280 } 1281 1282 /* 1283 * Only the process that called mmap() has reserves for 1284 * private mappings. 1285 */ 1286 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 1287 /* 1288 * Like the shared case above, a hole punch or truncate 1289 * could have been performed on the private mapping. 1290 * Examine the value of chg to determine if reserves 1291 * actually exist or were previously consumed. 1292 * Very Subtle - The value of chg comes from a previous 1293 * call to vma_needs_reserves(). The reserve map for 1294 * private mappings has different (opposite) semantics 1295 * than that of shared mappings. vma_needs_reserves() 1296 * has already taken this difference in semantics into 1297 * account. Therefore, the meaning of chg is the same 1298 * as in the shared case above. Code could easily be 1299 * combined, but keeping it separate draws attention to 1300 * subtle differences. 1301 */ 1302 if (chg) 1303 return false; 1304 else 1305 return true; 1306 } 1307 1308 return false; 1309 } 1310 1311 static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio) 1312 { 1313 int nid = folio_nid(folio); 1314 1315 lockdep_assert_held(&hugetlb_lock); 1316 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio); 1317 1318 list_move(&folio->lru, &h->hugepage_freelists[nid]); 1319 h->free_huge_pages++; 1320 h->free_huge_pages_node[nid]++; 1321 folio_set_hugetlb_freed(folio); 1322 } 1323 1324 static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h, 1325 int nid) 1326 { 1327 struct folio *folio; 1328 bool pin = !!(current->flags & PF_MEMALLOC_PIN); 1329 1330 lockdep_assert_held(&hugetlb_lock); 1331 list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) { 1332 if (pin && !folio_is_longterm_pinnable(folio)) 1333 continue; 1334 1335 if (folio_test_hwpoison(folio)) 1336 continue; 1337 1338 list_move(&folio->lru, &h->hugepage_activelist); 1339 folio_ref_unfreeze(folio, 1); 1340 folio_clear_hugetlb_freed(folio); 1341 h->free_huge_pages--; 1342 h->free_huge_pages_node[nid]--; 1343 return folio; 1344 } 1345 1346 return NULL; 1347 } 1348 1349 static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask, 1350 int nid, nodemask_t *nmask) 1351 { 1352 unsigned int cpuset_mems_cookie; 1353 struct zonelist *zonelist; 1354 struct zone *zone; 1355 struct zoneref *z; 1356 int node = NUMA_NO_NODE; 1357 1358 zonelist = node_zonelist(nid, gfp_mask); 1359 1360 retry_cpuset: 1361 cpuset_mems_cookie = read_mems_allowed_begin(); 1362 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) { 1363 struct folio *folio; 1364 1365 if (!cpuset_zone_allowed(zone, gfp_mask)) 1366 continue; 1367 /* 1368 * no need to ask again on the same node. Pool is node rather than 1369 * zone aware 1370 */ 1371 if (zone_to_nid(zone) == node) 1372 continue; 1373 node = zone_to_nid(zone); 1374 1375 folio = dequeue_hugetlb_folio_node_exact(h, node); 1376 if (folio) 1377 return folio; 1378 } 1379 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie))) 1380 goto retry_cpuset; 1381 1382 return NULL; 1383 } 1384 1385 static unsigned long available_huge_pages(struct hstate *h) 1386 { 1387 return h->free_huge_pages - h->resv_huge_pages; 1388 } 1389 1390 static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h, 1391 struct vm_area_struct *vma, 1392 unsigned long address, int avoid_reserve, 1393 long chg) 1394 { 1395 struct folio *folio = NULL; 1396 struct mempolicy *mpol; 1397 gfp_t gfp_mask; 1398 nodemask_t *nodemask; 1399 int nid; 1400 1401 /* 1402 * A child process with MAP_PRIVATE mappings created by their parent 1403 * have no page reserves. This check ensures that reservations are 1404 * not "stolen". The child may still get SIGKILLed 1405 */ 1406 if (!vma_has_reserves(vma, chg) && !available_huge_pages(h)) 1407 goto err; 1408 1409 /* If reserves cannot be used, ensure enough pages are in the pool */ 1410 if (avoid_reserve && !available_huge_pages(h)) 1411 goto err; 1412 1413 gfp_mask = htlb_alloc_mask(h); 1414 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 1415 1416 if (mpol_is_preferred_many(mpol)) { 1417 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, 1418 nid, nodemask); 1419 1420 /* Fallback to all nodes if page==NULL */ 1421 nodemask = NULL; 1422 } 1423 1424 if (!folio) 1425 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, 1426 nid, nodemask); 1427 1428 if (folio && !avoid_reserve && vma_has_reserves(vma, chg)) { 1429 folio_set_hugetlb_restore_reserve(folio); 1430 h->resv_huge_pages--; 1431 } 1432 1433 mpol_cond_put(mpol); 1434 return folio; 1435 1436 err: 1437 return NULL; 1438 } 1439 1440 /* 1441 * common helper functions for hstate_next_node_to_{alloc|free}. 1442 * We may have allocated or freed a huge page based on a different 1443 * nodes_allowed previously, so h->next_node_to_{alloc|free} might 1444 * be outside of *nodes_allowed. Ensure that we use an allowed 1445 * node for alloc or free. 1446 */ 1447 static int next_node_allowed(int nid, nodemask_t *nodes_allowed) 1448 { 1449 nid = next_node_in(nid, *nodes_allowed); 1450 VM_BUG_ON(nid >= MAX_NUMNODES); 1451 1452 return nid; 1453 } 1454 1455 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed) 1456 { 1457 if (!node_isset(nid, *nodes_allowed)) 1458 nid = next_node_allowed(nid, nodes_allowed); 1459 return nid; 1460 } 1461 1462 /* 1463 * returns the previously saved node ["this node"] from which to 1464 * allocate a persistent huge page for the pool and advance the 1465 * next node from which to allocate, handling wrap at end of node 1466 * mask. 1467 */ 1468 static int hstate_next_node_to_alloc(int *next_node, 1469 nodemask_t *nodes_allowed) 1470 { 1471 int nid; 1472 1473 VM_BUG_ON(!nodes_allowed); 1474 1475 nid = get_valid_node_allowed(*next_node, nodes_allowed); 1476 *next_node = next_node_allowed(nid, nodes_allowed); 1477 1478 return nid; 1479 } 1480 1481 /* 1482 * helper for remove_pool_hugetlb_folio() - return the previously saved 1483 * node ["this node"] from which to free a huge page. Advance the 1484 * next node id whether or not we find a free huge page to free so 1485 * that the next attempt to free addresses the next node. 1486 */ 1487 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed) 1488 { 1489 int nid; 1490 1491 VM_BUG_ON(!nodes_allowed); 1492 1493 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed); 1494 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed); 1495 1496 return nid; 1497 } 1498 1499 #define for_each_node_mask_to_alloc(next_node, nr_nodes, node, mask) \ 1500 for (nr_nodes = nodes_weight(*mask); \ 1501 nr_nodes > 0 && \ 1502 ((node = hstate_next_node_to_alloc(next_node, mask)) || 1); \ 1503 nr_nodes--) 1504 1505 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \ 1506 for (nr_nodes = nodes_weight(*mask); \ 1507 nr_nodes > 0 && \ 1508 ((node = hstate_next_node_to_free(hs, mask)) || 1); \ 1509 nr_nodes--) 1510 1511 /* used to demote non-gigantic_huge pages as well */ 1512 static void __destroy_compound_gigantic_folio(struct folio *folio, 1513 unsigned int order, bool demote) 1514 { 1515 int i; 1516 int nr_pages = 1 << order; 1517 struct page *p; 1518 1519 atomic_set(&folio->_entire_mapcount, 0); 1520 atomic_set(&folio->_large_mapcount, 0); 1521 atomic_set(&folio->_pincount, 0); 1522 1523 for (i = 1; i < nr_pages; i++) { 1524 p = folio_page(folio, i); 1525 p->flags &= ~PAGE_FLAGS_CHECK_AT_FREE; 1526 p->mapping = NULL; 1527 clear_compound_head(p); 1528 if (!demote) 1529 set_page_refcounted(p); 1530 } 1531 1532 __folio_clear_head(folio); 1533 } 1534 1535 static void destroy_compound_hugetlb_folio_for_demote(struct folio *folio, 1536 unsigned int order) 1537 { 1538 __destroy_compound_gigantic_folio(folio, order, true); 1539 } 1540 1541 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE 1542 static void destroy_compound_gigantic_folio(struct folio *folio, 1543 unsigned int order) 1544 { 1545 __destroy_compound_gigantic_folio(folio, order, false); 1546 } 1547 1548 static void free_gigantic_folio(struct folio *folio, unsigned int order) 1549 { 1550 /* 1551 * If the page isn't allocated using the cma allocator, 1552 * cma_release() returns false. 1553 */ 1554 #ifdef CONFIG_CMA 1555 int nid = folio_nid(folio); 1556 1557 if (cma_release(hugetlb_cma[nid], &folio->page, 1 << order)) 1558 return; 1559 #endif 1560 1561 free_contig_range(folio_pfn(folio), 1 << order); 1562 } 1563 1564 #ifdef CONFIG_CONTIG_ALLOC 1565 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask, 1566 int nid, nodemask_t *nodemask) 1567 { 1568 struct page *page; 1569 unsigned long nr_pages = pages_per_huge_page(h); 1570 if (nid == NUMA_NO_NODE) 1571 nid = numa_mem_id(); 1572 1573 #ifdef CONFIG_CMA 1574 { 1575 int node; 1576 1577 if (hugetlb_cma[nid]) { 1578 page = cma_alloc(hugetlb_cma[nid], nr_pages, 1579 huge_page_order(h), true); 1580 if (page) 1581 return page_folio(page); 1582 } 1583 1584 if (!(gfp_mask & __GFP_THISNODE)) { 1585 for_each_node_mask(node, *nodemask) { 1586 if (node == nid || !hugetlb_cma[node]) 1587 continue; 1588 1589 page = cma_alloc(hugetlb_cma[node], nr_pages, 1590 huge_page_order(h), true); 1591 if (page) 1592 return page_folio(page); 1593 } 1594 } 1595 } 1596 #endif 1597 1598 page = alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask); 1599 return page ? page_folio(page) : NULL; 1600 } 1601 1602 #else /* !CONFIG_CONTIG_ALLOC */ 1603 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask, 1604 int nid, nodemask_t *nodemask) 1605 { 1606 return NULL; 1607 } 1608 #endif /* CONFIG_CONTIG_ALLOC */ 1609 1610 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */ 1611 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask, 1612 int nid, nodemask_t *nodemask) 1613 { 1614 return NULL; 1615 } 1616 static inline void free_gigantic_folio(struct folio *folio, 1617 unsigned int order) { } 1618 static inline void destroy_compound_gigantic_folio(struct folio *folio, 1619 unsigned int order) { } 1620 #endif 1621 1622 /* 1623 * Remove hugetlb folio from lists. 1624 * If vmemmap exists for the folio, clear the hugetlb flag so that the 1625 * folio appears as just a compound page. Otherwise, wait until after 1626 * allocating vmemmap to clear the flag. 1627 * 1628 * A reference is held on the folio, except in the case of demote. 1629 * 1630 * Must be called with hugetlb lock held. 1631 */ 1632 static void __remove_hugetlb_folio(struct hstate *h, struct folio *folio, 1633 bool adjust_surplus, 1634 bool demote) 1635 { 1636 int nid = folio_nid(folio); 1637 1638 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio); 1639 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio); 1640 1641 lockdep_assert_held(&hugetlb_lock); 1642 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 1643 return; 1644 1645 list_del(&folio->lru); 1646 1647 if (folio_test_hugetlb_freed(folio)) { 1648 h->free_huge_pages--; 1649 h->free_huge_pages_node[nid]--; 1650 } 1651 if (adjust_surplus) { 1652 h->surplus_huge_pages--; 1653 h->surplus_huge_pages_node[nid]--; 1654 } 1655 1656 /* 1657 * We can only clear the hugetlb flag after allocating vmemmap 1658 * pages. Otherwise, someone (memory error handling) may try to write 1659 * to tail struct pages. 1660 */ 1661 if (!folio_test_hugetlb_vmemmap_optimized(folio)) 1662 __folio_clear_hugetlb(folio); 1663 1664 /* 1665 * In the case of demote we do not ref count the page as it will soon 1666 * be turned into a page of smaller size. 1667 */ 1668 if (!demote) 1669 folio_ref_unfreeze(folio, 1); 1670 1671 h->nr_huge_pages--; 1672 h->nr_huge_pages_node[nid]--; 1673 } 1674 1675 static void remove_hugetlb_folio(struct hstate *h, struct folio *folio, 1676 bool adjust_surplus) 1677 { 1678 __remove_hugetlb_folio(h, folio, adjust_surplus, false); 1679 } 1680 1681 static void remove_hugetlb_folio_for_demote(struct hstate *h, struct folio *folio, 1682 bool adjust_surplus) 1683 { 1684 __remove_hugetlb_folio(h, folio, adjust_surplus, true); 1685 } 1686 1687 static void add_hugetlb_folio(struct hstate *h, struct folio *folio, 1688 bool adjust_surplus) 1689 { 1690 int zeroed; 1691 int nid = folio_nid(folio); 1692 1693 VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio); 1694 1695 lockdep_assert_held(&hugetlb_lock); 1696 1697 INIT_LIST_HEAD(&folio->lru); 1698 h->nr_huge_pages++; 1699 h->nr_huge_pages_node[nid]++; 1700 1701 if (adjust_surplus) { 1702 h->surplus_huge_pages++; 1703 h->surplus_huge_pages_node[nid]++; 1704 } 1705 1706 __folio_set_hugetlb(folio); 1707 folio_change_private(folio, NULL); 1708 /* 1709 * We have to set hugetlb_vmemmap_optimized again as above 1710 * folio_change_private(folio, NULL) cleared it. 1711 */ 1712 folio_set_hugetlb_vmemmap_optimized(folio); 1713 1714 /* 1715 * This folio is about to be managed by the hugetlb allocator and 1716 * should have no users. Drop our reference, and check for others 1717 * just in case. 1718 */ 1719 zeroed = folio_put_testzero(folio); 1720 if (unlikely(!zeroed)) 1721 /* 1722 * It is VERY unlikely soneone else has taken a ref 1723 * on the folio. In this case, we simply return as 1724 * free_huge_folio() will be called when this other ref 1725 * is dropped. 1726 */ 1727 return; 1728 1729 arch_clear_hugetlb_flags(folio); 1730 enqueue_hugetlb_folio(h, folio); 1731 } 1732 1733 static void __update_and_free_hugetlb_folio(struct hstate *h, 1734 struct folio *folio) 1735 { 1736 bool clear_flag = folio_test_hugetlb_vmemmap_optimized(folio); 1737 1738 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 1739 return; 1740 1741 /* 1742 * If we don't know which subpages are hwpoisoned, we can't free 1743 * the hugepage, so it's leaked intentionally. 1744 */ 1745 if (folio_test_hugetlb_raw_hwp_unreliable(folio)) 1746 return; 1747 1748 /* 1749 * If folio is not vmemmap optimized (!clear_flag), then the folio 1750 * is no longer identified as a hugetlb page. hugetlb_vmemmap_restore_folio 1751 * can only be passed hugetlb pages and will BUG otherwise. 1752 */ 1753 if (clear_flag && hugetlb_vmemmap_restore_folio(h, folio)) { 1754 spin_lock_irq(&hugetlb_lock); 1755 /* 1756 * If we cannot allocate vmemmap pages, just refuse to free the 1757 * page and put the page back on the hugetlb free list and treat 1758 * as a surplus page. 1759 */ 1760 add_hugetlb_folio(h, folio, true); 1761 spin_unlock_irq(&hugetlb_lock); 1762 return; 1763 } 1764 1765 /* 1766 * Move PageHWPoison flag from head page to the raw error pages, 1767 * which makes any healthy subpages reusable. 1768 */ 1769 if (unlikely(folio_test_hwpoison(folio))) 1770 folio_clear_hugetlb_hwpoison(folio); 1771 1772 /* 1773 * If vmemmap pages were allocated above, then we need to clear the 1774 * hugetlb flag under the hugetlb lock. 1775 */ 1776 if (folio_test_hugetlb(folio)) { 1777 spin_lock_irq(&hugetlb_lock); 1778 __folio_clear_hugetlb(folio); 1779 spin_unlock_irq(&hugetlb_lock); 1780 } 1781 1782 /* 1783 * Non-gigantic pages demoted from CMA allocated gigantic pages 1784 * need to be given back to CMA in free_gigantic_folio. 1785 */ 1786 if (hstate_is_gigantic(h) || 1787 hugetlb_cma_folio(folio, huge_page_order(h))) { 1788 destroy_compound_gigantic_folio(folio, huge_page_order(h)); 1789 free_gigantic_folio(folio, huge_page_order(h)); 1790 } else { 1791 INIT_LIST_HEAD(&folio->_deferred_list); 1792 folio_put(folio); 1793 } 1794 } 1795 1796 /* 1797 * As update_and_free_hugetlb_folio() can be called under any context, so we cannot 1798 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the 1799 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate 1800 * the vmemmap pages. 1801 * 1802 * free_hpage_workfn() locklessly retrieves the linked list of pages to be 1803 * freed and frees them one-by-one. As the page->mapping pointer is going 1804 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node 1805 * structure of a lockless linked list of huge pages to be freed. 1806 */ 1807 static LLIST_HEAD(hpage_freelist); 1808 1809 static void free_hpage_workfn(struct work_struct *work) 1810 { 1811 struct llist_node *node; 1812 1813 node = llist_del_all(&hpage_freelist); 1814 1815 while (node) { 1816 struct folio *folio; 1817 struct hstate *h; 1818 1819 folio = container_of((struct address_space **)node, 1820 struct folio, mapping); 1821 node = node->next; 1822 folio->mapping = NULL; 1823 /* 1824 * The VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio) in 1825 * folio_hstate() is going to trigger because a previous call to 1826 * remove_hugetlb_folio() will clear the hugetlb bit, so do 1827 * not use folio_hstate() directly. 1828 */ 1829 h = size_to_hstate(folio_size(folio)); 1830 1831 __update_and_free_hugetlb_folio(h, folio); 1832 1833 cond_resched(); 1834 } 1835 } 1836 static DECLARE_WORK(free_hpage_work, free_hpage_workfn); 1837 1838 static inline void flush_free_hpage_work(struct hstate *h) 1839 { 1840 if (hugetlb_vmemmap_optimizable(h)) 1841 flush_work(&free_hpage_work); 1842 } 1843 1844 static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio, 1845 bool atomic) 1846 { 1847 if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) { 1848 __update_and_free_hugetlb_folio(h, folio); 1849 return; 1850 } 1851 1852 /* 1853 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages. 1854 * 1855 * Only call schedule_work() if hpage_freelist is previously 1856 * empty. Otherwise, schedule_work() had been called but the workfn 1857 * hasn't retrieved the list yet. 1858 */ 1859 if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist)) 1860 schedule_work(&free_hpage_work); 1861 } 1862 1863 static void bulk_vmemmap_restore_error(struct hstate *h, 1864 struct list_head *folio_list, 1865 struct list_head *non_hvo_folios) 1866 { 1867 struct folio *folio, *t_folio; 1868 1869 if (!list_empty(non_hvo_folios)) { 1870 /* 1871 * Free any restored hugetlb pages so that restore of the 1872 * entire list can be retried. 1873 * The idea is that in the common case of ENOMEM errors freeing 1874 * hugetlb pages with vmemmap we will free up memory so that we 1875 * can allocate vmemmap for more hugetlb pages. 1876 */ 1877 list_for_each_entry_safe(folio, t_folio, non_hvo_folios, lru) { 1878 list_del(&folio->lru); 1879 spin_lock_irq(&hugetlb_lock); 1880 __folio_clear_hugetlb(folio); 1881 spin_unlock_irq(&hugetlb_lock); 1882 update_and_free_hugetlb_folio(h, folio, false); 1883 cond_resched(); 1884 } 1885 } else { 1886 /* 1887 * In the case where there are no folios which can be 1888 * immediately freed, we loop through the list trying to restore 1889 * vmemmap individually in the hope that someone elsewhere may 1890 * have done something to cause success (such as freeing some 1891 * memory). If unable to restore a hugetlb page, the hugetlb 1892 * page is made a surplus page and removed from the list. 1893 * If are able to restore vmemmap and free one hugetlb page, we 1894 * quit processing the list to retry the bulk operation. 1895 */ 1896 list_for_each_entry_safe(folio, t_folio, folio_list, lru) 1897 if (hugetlb_vmemmap_restore_folio(h, folio)) { 1898 list_del(&folio->lru); 1899 spin_lock_irq(&hugetlb_lock); 1900 add_hugetlb_folio(h, folio, true); 1901 spin_unlock_irq(&hugetlb_lock); 1902 } else { 1903 list_del(&folio->lru); 1904 spin_lock_irq(&hugetlb_lock); 1905 __folio_clear_hugetlb(folio); 1906 spin_unlock_irq(&hugetlb_lock); 1907 update_and_free_hugetlb_folio(h, folio, false); 1908 cond_resched(); 1909 break; 1910 } 1911 } 1912 } 1913 1914 static void update_and_free_pages_bulk(struct hstate *h, 1915 struct list_head *folio_list) 1916 { 1917 long ret; 1918 struct folio *folio, *t_folio; 1919 LIST_HEAD(non_hvo_folios); 1920 1921 /* 1922 * First allocate required vmemmmap (if necessary) for all folios. 1923 * Carefully handle errors and free up any available hugetlb pages 1924 * in an effort to make forward progress. 1925 */ 1926 retry: 1927 ret = hugetlb_vmemmap_restore_folios(h, folio_list, &non_hvo_folios); 1928 if (ret < 0) { 1929 bulk_vmemmap_restore_error(h, folio_list, &non_hvo_folios); 1930 goto retry; 1931 } 1932 1933 /* 1934 * At this point, list should be empty, ret should be >= 0 and there 1935 * should only be pages on the non_hvo_folios list. 1936 * Do note that the non_hvo_folios list could be empty. 1937 * Without HVO enabled, ret will be 0 and there is no need to call 1938 * __folio_clear_hugetlb as this was done previously. 1939 */ 1940 VM_WARN_ON(!list_empty(folio_list)); 1941 VM_WARN_ON(ret < 0); 1942 if (!list_empty(&non_hvo_folios) && ret) { 1943 spin_lock_irq(&hugetlb_lock); 1944 list_for_each_entry(folio, &non_hvo_folios, lru) 1945 __folio_clear_hugetlb(folio); 1946 spin_unlock_irq(&hugetlb_lock); 1947 } 1948 1949 list_for_each_entry_safe(folio, t_folio, &non_hvo_folios, lru) { 1950 update_and_free_hugetlb_folio(h, folio, false); 1951 cond_resched(); 1952 } 1953 } 1954 1955 struct hstate *size_to_hstate(unsigned long size) 1956 { 1957 struct hstate *h; 1958 1959 for_each_hstate(h) { 1960 if (huge_page_size(h) == size) 1961 return h; 1962 } 1963 return NULL; 1964 } 1965 1966 void free_huge_folio(struct folio *folio) 1967 { 1968 /* 1969 * Can't pass hstate in here because it is called from the 1970 * generic mm code. 1971 */ 1972 struct hstate *h = folio_hstate(folio); 1973 int nid = folio_nid(folio); 1974 struct hugepage_subpool *spool = hugetlb_folio_subpool(folio); 1975 bool restore_reserve; 1976 unsigned long flags; 1977 1978 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio); 1979 VM_BUG_ON_FOLIO(folio_mapcount(folio), folio); 1980 1981 hugetlb_set_folio_subpool(folio, NULL); 1982 if (folio_test_anon(folio)) 1983 __ClearPageAnonExclusive(&folio->page); 1984 folio->mapping = NULL; 1985 restore_reserve = folio_test_hugetlb_restore_reserve(folio); 1986 folio_clear_hugetlb_restore_reserve(folio); 1987 1988 /* 1989 * If HPageRestoreReserve was set on page, page allocation consumed a 1990 * reservation. If the page was associated with a subpool, there 1991 * would have been a page reserved in the subpool before allocation 1992 * via hugepage_subpool_get_pages(). Since we are 'restoring' the 1993 * reservation, do not call hugepage_subpool_put_pages() as this will 1994 * remove the reserved page from the subpool. 1995 */ 1996 if (!restore_reserve) { 1997 /* 1998 * A return code of zero implies that the subpool will be 1999 * under its minimum size if the reservation is not restored 2000 * after page is free. Therefore, force restore_reserve 2001 * operation. 2002 */ 2003 if (hugepage_subpool_put_pages(spool, 1) == 0) 2004 restore_reserve = true; 2005 } 2006 2007 spin_lock_irqsave(&hugetlb_lock, flags); 2008 folio_clear_hugetlb_migratable(folio); 2009 hugetlb_cgroup_uncharge_folio(hstate_index(h), 2010 pages_per_huge_page(h), folio); 2011 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h), 2012 pages_per_huge_page(h), folio); 2013 mem_cgroup_uncharge(folio); 2014 if (restore_reserve) 2015 h->resv_huge_pages++; 2016 2017 if (folio_test_hugetlb_temporary(folio)) { 2018 remove_hugetlb_folio(h, folio, false); 2019 spin_unlock_irqrestore(&hugetlb_lock, flags); 2020 update_and_free_hugetlb_folio(h, folio, true); 2021 } else if (h->surplus_huge_pages_node[nid]) { 2022 /* remove the page from active list */ 2023 remove_hugetlb_folio(h, folio, true); 2024 spin_unlock_irqrestore(&hugetlb_lock, flags); 2025 update_and_free_hugetlb_folio(h, folio, true); 2026 } else { 2027 arch_clear_hugetlb_flags(folio); 2028 enqueue_hugetlb_folio(h, folio); 2029 spin_unlock_irqrestore(&hugetlb_lock, flags); 2030 } 2031 } 2032 2033 /* 2034 * Must be called with the hugetlb lock held 2035 */ 2036 static void __prep_account_new_huge_page(struct hstate *h, int nid) 2037 { 2038 lockdep_assert_held(&hugetlb_lock); 2039 h->nr_huge_pages++; 2040 h->nr_huge_pages_node[nid]++; 2041 } 2042 2043 static void init_new_hugetlb_folio(struct hstate *h, struct folio *folio) 2044 { 2045 __folio_set_hugetlb(folio); 2046 INIT_LIST_HEAD(&folio->lru); 2047 hugetlb_set_folio_subpool(folio, NULL); 2048 set_hugetlb_cgroup(folio, NULL); 2049 set_hugetlb_cgroup_rsvd(folio, NULL); 2050 } 2051 2052 static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio) 2053 { 2054 init_new_hugetlb_folio(h, folio); 2055 hugetlb_vmemmap_optimize_folio(h, folio); 2056 } 2057 2058 static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid) 2059 { 2060 __prep_new_hugetlb_folio(h, folio); 2061 spin_lock_irq(&hugetlb_lock); 2062 __prep_account_new_huge_page(h, nid); 2063 spin_unlock_irq(&hugetlb_lock); 2064 } 2065 2066 static bool __prep_compound_gigantic_folio(struct folio *folio, 2067 unsigned int order, bool demote) 2068 { 2069 int i, j; 2070 int nr_pages = 1 << order; 2071 struct page *p; 2072 2073 __folio_clear_reserved(folio); 2074 for (i = 0; i < nr_pages; i++) { 2075 p = folio_page(folio, i); 2076 2077 /* 2078 * For gigantic hugepages allocated through bootmem at 2079 * boot, it's safer to be consistent with the not-gigantic 2080 * hugepages and clear the PG_reserved bit from all tail pages 2081 * too. Otherwise drivers using get_user_pages() to access tail 2082 * pages may get the reference counting wrong if they see 2083 * PG_reserved set on a tail page (despite the head page not 2084 * having PG_reserved set). Enforcing this consistency between 2085 * head and tail pages allows drivers to optimize away a check 2086 * on the head page when they need know if put_page() is needed 2087 * after get_user_pages(). 2088 */ 2089 if (i != 0) /* head page cleared above */ 2090 __ClearPageReserved(p); 2091 /* 2092 * Subtle and very unlikely 2093 * 2094 * Gigantic 'page allocators' such as memblock or cma will 2095 * return a set of pages with each page ref counted. We need 2096 * to turn this set of pages into a compound page with tail 2097 * page ref counts set to zero. Code such as speculative page 2098 * cache adding could take a ref on a 'to be' tail page. 2099 * We need to respect any increased ref count, and only set 2100 * the ref count to zero if count is currently 1. If count 2101 * is not 1, we return an error. An error return indicates 2102 * the set of pages can not be converted to a gigantic page. 2103 * The caller who allocated the pages should then discard the 2104 * pages using the appropriate free interface. 2105 * 2106 * In the case of demote, the ref count will be zero. 2107 */ 2108 if (!demote) { 2109 if (!page_ref_freeze(p, 1)) { 2110 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n"); 2111 goto out_error; 2112 } 2113 } else { 2114 VM_BUG_ON_PAGE(page_count(p), p); 2115 } 2116 if (i != 0) 2117 set_compound_head(p, &folio->page); 2118 } 2119 __folio_set_head(folio); 2120 /* we rely on prep_new_hugetlb_folio to set the hugetlb flag */ 2121 folio_set_order(folio, order); 2122 atomic_set(&folio->_entire_mapcount, -1); 2123 atomic_set(&folio->_large_mapcount, -1); 2124 atomic_set(&folio->_pincount, 0); 2125 return true; 2126 2127 out_error: 2128 /* undo page modifications made above */ 2129 for (j = 0; j < i; j++) { 2130 p = folio_page(folio, j); 2131 if (j != 0) 2132 clear_compound_head(p); 2133 set_page_refcounted(p); 2134 } 2135 /* need to clear PG_reserved on remaining tail pages */ 2136 for (; j < nr_pages; j++) { 2137 p = folio_page(folio, j); 2138 __ClearPageReserved(p); 2139 } 2140 return false; 2141 } 2142 2143 static bool prep_compound_gigantic_folio(struct folio *folio, 2144 unsigned int order) 2145 { 2146 return __prep_compound_gigantic_folio(folio, order, false); 2147 } 2148 2149 static bool prep_compound_gigantic_folio_for_demote(struct folio *folio, 2150 unsigned int order) 2151 { 2152 return __prep_compound_gigantic_folio(folio, order, true); 2153 } 2154 2155 /* 2156 * Find and lock address space (mapping) in write mode. 2157 * 2158 * Upon entry, the folio is locked which means that folio_mapping() is 2159 * stable. Due to locking order, we can only trylock_write. If we can 2160 * not get the lock, simply return NULL to caller. 2161 */ 2162 struct address_space *hugetlb_folio_mapping_lock_write(struct folio *folio) 2163 { 2164 struct address_space *mapping = folio_mapping(folio); 2165 2166 if (!mapping) 2167 return mapping; 2168 2169 if (i_mmap_trylock_write(mapping)) 2170 return mapping; 2171 2172 return NULL; 2173 } 2174 2175 static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h, 2176 gfp_t gfp_mask, int nid, nodemask_t *nmask, 2177 nodemask_t *node_alloc_noretry) 2178 { 2179 int order = huge_page_order(h); 2180 struct folio *folio; 2181 bool alloc_try_hard = true; 2182 bool retry = true; 2183 2184 /* 2185 * By default we always try hard to allocate the folio with 2186 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating folios in 2187 * a loop (to adjust global huge page counts) and previous allocation 2188 * failed, do not continue to try hard on the same node. Use the 2189 * node_alloc_noretry bitmap to manage this state information. 2190 */ 2191 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry)) 2192 alloc_try_hard = false; 2193 gfp_mask |= __GFP_COMP|__GFP_NOWARN; 2194 if (alloc_try_hard) 2195 gfp_mask |= __GFP_RETRY_MAYFAIL; 2196 if (nid == NUMA_NO_NODE) 2197 nid = numa_mem_id(); 2198 retry: 2199 folio = __folio_alloc(gfp_mask, order, nid, nmask); 2200 2201 if (folio && !folio_ref_freeze(folio, 1)) { 2202 folio_put(folio); 2203 if (retry) { /* retry once */ 2204 retry = false; 2205 goto retry; 2206 } 2207 /* WOW! twice in a row. */ 2208 pr_warn("HugeTLB unexpected inflated folio ref count\n"); 2209 folio = NULL; 2210 } 2211 2212 /* 2213 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a 2214 * folio this indicates an overall state change. Clear bit so 2215 * that we resume normal 'try hard' allocations. 2216 */ 2217 if (node_alloc_noretry && folio && !alloc_try_hard) 2218 node_clear(nid, *node_alloc_noretry); 2219 2220 /* 2221 * If we tried hard to get a folio but failed, set bit so that 2222 * subsequent attempts will not try as hard until there is an 2223 * overall state change. 2224 */ 2225 if (node_alloc_noretry && !folio && alloc_try_hard) 2226 node_set(nid, *node_alloc_noretry); 2227 2228 if (!folio) { 2229 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 2230 return NULL; 2231 } 2232 2233 __count_vm_event(HTLB_BUDDY_PGALLOC); 2234 return folio; 2235 } 2236 2237 static struct folio *__alloc_fresh_hugetlb_folio(struct hstate *h, 2238 gfp_t gfp_mask, int nid, nodemask_t *nmask, 2239 nodemask_t *node_alloc_noretry) 2240 { 2241 struct folio *folio; 2242 bool retry = false; 2243 2244 retry: 2245 if (hstate_is_gigantic(h)) 2246 folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask); 2247 else 2248 folio = alloc_buddy_hugetlb_folio(h, gfp_mask, 2249 nid, nmask, node_alloc_noretry); 2250 if (!folio) 2251 return NULL; 2252 2253 if (hstate_is_gigantic(h)) { 2254 if (!prep_compound_gigantic_folio(folio, huge_page_order(h))) { 2255 /* 2256 * Rare failure to convert pages to compound page. 2257 * Free pages and try again - ONCE! 2258 */ 2259 free_gigantic_folio(folio, huge_page_order(h)); 2260 if (!retry) { 2261 retry = true; 2262 goto retry; 2263 } 2264 return NULL; 2265 } 2266 } 2267 2268 return folio; 2269 } 2270 2271 static struct folio *only_alloc_fresh_hugetlb_folio(struct hstate *h, 2272 gfp_t gfp_mask, int nid, nodemask_t *nmask, 2273 nodemask_t *node_alloc_noretry) 2274 { 2275 struct folio *folio; 2276 2277 folio = __alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, 2278 node_alloc_noretry); 2279 if (folio) 2280 init_new_hugetlb_folio(h, folio); 2281 return folio; 2282 } 2283 2284 /* 2285 * Common helper to allocate a fresh hugetlb page. All specific allocators 2286 * should use this function to get new hugetlb pages 2287 * 2288 * Note that returned page is 'frozen': ref count of head page and all tail 2289 * pages is zero. 2290 */ 2291 static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h, 2292 gfp_t gfp_mask, int nid, nodemask_t *nmask) 2293 { 2294 struct folio *folio; 2295 2296 folio = __alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL); 2297 if (!folio) 2298 return NULL; 2299 2300 prep_new_hugetlb_folio(h, folio, folio_nid(folio)); 2301 return folio; 2302 } 2303 2304 static void prep_and_add_allocated_folios(struct hstate *h, 2305 struct list_head *folio_list) 2306 { 2307 unsigned long flags; 2308 struct folio *folio, *tmp_f; 2309 2310 /* Send list for bulk vmemmap optimization processing */ 2311 hugetlb_vmemmap_optimize_folios(h, folio_list); 2312 2313 /* Add all new pool pages to free lists in one lock cycle */ 2314 spin_lock_irqsave(&hugetlb_lock, flags); 2315 list_for_each_entry_safe(folio, tmp_f, folio_list, lru) { 2316 __prep_account_new_huge_page(h, folio_nid(folio)); 2317 enqueue_hugetlb_folio(h, folio); 2318 } 2319 spin_unlock_irqrestore(&hugetlb_lock, flags); 2320 } 2321 2322 /* 2323 * Allocates a fresh hugetlb page in a node interleaved manner. The page 2324 * will later be added to the appropriate hugetlb pool. 2325 */ 2326 static struct folio *alloc_pool_huge_folio(struct hstate *h, 2327 nodemask_t *nodes_allowed, 2328 nodemask_t *node_alloc_noretry, 2329 int *next_node) 2330 { 2331 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 2332 int nr_nodes, node; 2333 2334 for_each_node_mask_to_alloc(next_node, nr_nodes, node, nodes_allowed) { 2335 struct folio *folio; 2336 2337 folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, node, 2338 nodes_allowed, node_alloc_noretry); 2339 if (folio) 2340 return folio; 2341 } 2342 2343 return NULL; 2344 } 2345 2346 /* 2347 * Remove huge page from pool from next node to free. Attempt to keep 2348 * persistent huge pages more or less balanced over allowed nodes. 2349 * This routine only 'removes' the hugetlb page. The caller must make 2350 * an additional call to free the page to low level allocators. 2351 * Called with hugetlb_lock locked. 2352 */ 2353 static struct folio *remove_pool_hugetlb_folio(struct hstate *h, 2354 nodemask_t *nodes_allowed, bool acct_surplus) 2355 { 2356 int nr_nodes, node; 2357 struct folio *folio = NULL; 2358 2359 lockdep_assert_held(&hugetlb_lock); 2360 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 2361 /* 2362 * If we're returning unused surplus pages, only examine 2363 * nodes with surplus pages. 2364 */ 2365 if ((!acct_surplus || h->surplus_huge_pages_node[node]) && 2366 !list_empty(&h->hugepage_freelists[node])) { 2367 folio = list_entry(h->hugepage_freelists[node].next, 2368 struct folio, lru); 2369 remove_hugetlb_folio(h, folio, acct_surplus); 2370 break; 2371 } 2372 } 2373 2374 return folio; 2375 } 2376 2377 /* 2378 * Dissolve a given free hugetlb folio into free buddy pages. This function 2379 * does nothing for in-use hugetlb folios and non-hugetlb folios. 2380 * This function returns values like below: 2381 * 2382 * -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages 2383 * when the system is under memory pressure and the feature of 2384 * freeing unused vmemmap pages associated with each hugetlb page 2385 * is enabled. 2386 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use 2387 * (allocated or reserved.) 2388 * 0: successfully dissolved free hugepages or the page is not a 2389 * hugepage (considered as already dissolved) 2390 */ 2391 int dissolve_free_hugetlb_folio(struct folio *folio) 2392 { 2393 int rc = -EBUSY; 2394 2395 retry: 2396 /* Not to disrupt normal path by vainly holding hugetlb_lock */ 2397 if (!folio_test_hugetlb(folio)) 2398 return 0; 2399 2400 spin_lock_irq(&hugetlb_lock); 2401 if (!folio_test_hugetlb(folio)) { 2402 rc = 0; 2403 goto out; 2404 } 2405 2406 if (!folio_ref_count(folio)) { 2407 struct hstate *h = folio_hstate(folio); 2408 if (!available_huge_pages(h)) 2409 goto out; 2410 2411 /* 2412 * We should make sure that the page is already on the free list 2413 * when it is dissolved. 2414 */ 2415 if (unlikely(!folio_test_hugetlb_freed(folio))) { 2416 spin_unlock_irq(&hugetlb_lock); 2417 cond_resched(); 2418 2419 /* 2420 * Theoretically, we should return -EBUSY when we 2421 * encounter this race. In fact, we have a chance 2422 * to successfully dissolve the page if we do a 2423 * retry. Because the race window is quite small. 2424 * If we seize this opportunity, it is an optimization 2425 * for increasing the success rate of dissolving page. 2426 */ 2427 goto retry; 2428 } 2429 2430 remove_hugetlb_folio(h, folio, false); 2431 h->max_huge_pages--; 2432 spin_unlock_irq(&hugetlb_lock); 2433 2434 /* 2435 * Normally update_and_free_hugtlb_folio will allocate required vmemmmap 2436 * before freeing the page. update_and_free_hugtlb_folio will fail to 2437 * free the page if it can not allocate required vmemmap. We 2438 * need to adjust max_huge_pages if the page is not freed. 2439 * Attempt to allocate vmemmmap here so that we can take 2440 * appropriate action on failure. 2441 * 2442 * The folio_test_hugetlb check here is because 2443 * remove_hugetlb_folio will clear hugetlb folio flag for 2444 * non-vmemmap optimized hugetlb folios. 2445 */ 2446 if (folio_test_hugetlb(folio)) { 2447 rc = hugetlb_vmemmap_restore_folio(h, folio); 2448 if (rc) { 2449 spin_lock_irq(&hugetlb_lock); 2450 add_hugetlb_folio(h, folio, false); 2451 h->max_huge_pages++; 2452 goto out; 2453 } 2454 } else 2455 rc = 0; 2456 2457 update_and_free_hugetlb_folio(h, folio, false); 2458 return rc; 2459 } 2460 out: 2461 spin_unlock_irq(&hugetlb_lock); 2462 return rc; 2463 } 2464 2465 /* 2466 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to 2467 * make specified memory blocks removable from the system. 2468 * Note that this will dissolve a free gigantic hugepage completely, if any 2469 * part of it lies within the given range. 2470 * Also note that if dissolve_free_hugetlb_folio() returns with an error, all 2471 * free hugetlb folios that were dissolved before that error are lost. 2472 */ 2473 int dissolve_free_hugetlb_folios(unsigned long start_pfn, unsigned long end_pfn) 2474 { 2475 unsigned long pfn; 2476 struct folio *folio; 2477 int rc = 0; 2478 unsigned int order; 2479 struct hstate *h; 2480 2481 if (!hugepages_supported()) 2482 return rc; 2483 2484 order = huge_page_order(&default_hstate); 2485 for_each_hstate(h) 2486 order = min(order, huge_page_order(h)); 2487 2488 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) { 2489 folio = pfn_folio(pfn); 2490 rc = dissolve_free_hugetlb_folio(folio); 2491 if (rc) 2492 break; 2493 } 2494 2495 return rc; 2496 } 2497 2498 /* 2499 * Allocates a fresh surplus page from the page allocator. 2500 */ 2501 static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h, 2502 gfp_t gfp_mask, int nid, nodemask_t *nmask) 2503 { 2504 struct folio *folio = NULL; 2505 2506 if (hstate_is_gigantic(h)) 2507 return NULL; 2508 2509 spin_lock_irq(&hugetlb_lock); 2510 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) 2511 goto out_unlock; 2512 spin_unlock_irq(&hugetlb_lock); 2513 2514 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask); 2515 if (!folio) 2516 return NULL; 2517 2518 spin_lock_irq(&hugetlb_lock); 2519 /* 2520 * We could have raced with the pool size change. 2521 * Double check that and simply deallocate the new page 2522 * if we would end up overcommiting the surpluses. Abuse 2523 * temporary page to workaround the nasty free_huge_folio 2524 * codeflow 2525 */ 2526 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { 2527 folio_set_hugetlb_temporary(folio); 2528 spin_unlock_irq(&hugetlb_lock); 2529 free_huge_folio(folio); 2530 return NULL; 2531 } 2532 2533 h->surplus_huge_pages++; 2534 h->surplus_huge_pages_node[folio_nid(folio)]++; 2535 2536 out_unlock: 2537 spin_unlock_irq(&hugetlb_lock); 2538 2539 return folio; 2540 } 2541 2542 static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask, 2543 int nid, nodemask_t *nmask) 2544 { 2545 struct folio *folio; 2546 2547 if (hstate_is_gigantic(h)) 2548 return NULL; 2549 2550 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask); 2551 if (!folio) 2552 return NULL; 2553 2554 /* fresh huge pages are frozen */ 2555 folio_ref_unfreeze(folio, 1); 2556 /* 2557 * We do not account these pages as surplus because they are only 2558 * temporary and will be released properly on the last reference 2559 */ 2560 folio_set_hugetlb_temporary(folio); 2561 2562 return folio; 2563 } 2564 2565 /* 2566 * Use the VMA's mpolicy to allocate a huge page from the buddy. 2567 */ 2568 static 2569 struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h, 2570 struct vm_area_struct *vma, unsigned long addr) 2571 { 2572 struct folio *folio = NULL; 2573 struct mempolicy *mpol; 2574 gfp_t gfp_mask = htlb_alloc_mask(h); 2575 int nid; 2576 nodemask_t *nodemask; 2577 2578 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask); 2579 if (mpol_is_preferred_many(mpol)) { 2580 gfp_t gfp = gfp_mask | __GFP_NOWARN; 2581 2582 gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL); 2583 folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask); 2584 2585 /* Fallback to all nodes if page==NULL */ 2586 nodemask = NULL; 2587 } 2588 2589 if (!folio) 2590 folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask); 2591 mpol_cond_put(mpol); 2592 return folio; 2593 } 2594 2595 /* folio migration callback function */ 2596 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid, 2597 nodemask_t *nmask, gfp_t gfp_mask, bool allow_alloc_fallback) 2598 { 2599 spin_lock_irq(&hugetlb_lock); 2600 if (available_huge_pages(h)) { 2601 struct folio *folio; 2602 2603 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, 2604 preferred_nid, nmask); 2605 if (folio) { 2606 spin_unlock_irq(&hugetlb_lock); 2607 return folio; 2608 } 2609 } 2610 spin_unlock_irq(&hugetlb_lock); 2611 2612 /* We cannot fallback to other nodes, as we could break the per-node pool. */ 2613 if (!allow_alloc_fallback) 2614 gfp_mask |= __GFP_THISNODE; 2615 2616 return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask); 2617 } 2618 2619 /* 2620 * Increase the hugetlb pool such that it can accommodate a reservation 2621 * of size 'delta'. 2622 */ 2623 static int gather_surplus_pages(struct hstate *h, long delta) 2624 __must_hold(&hugetlb_lock) 2625 { 2626 LIST_HEAD(surplus_list); 2627 struct folio *folio, *tmp; 2628 int ret; 2629 long i; 2630 long needed, allocated; 2631 bool alloc_ok = true; 2632 2633 lockdep_assert_held(&hugetlb_lock); 2634 needed = (h->resv_huge_pages + delta) - h->free_huge_pages; 2635 if (needed <= 0) { 2636 h->resv_huge_pages += delta; 2637 return 0; 2638 } 2639 2640 allocated = 0; 2641 2642 ret = -ENOMEM; 2643 retry: 2644 spin_unlock_irq(&hugetlb_lock); 2645 for (i = 0; i < needed; i++) { 2646 folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h), 2647 NUMA_NO_NODE, NULL); 2648 if (!folio) { 2649 alloc_ok = false; 2650 break; 2651 } 2652 list_add(&folio->lru, &surplus_list); 2653 cond_resched(); 2654 } 2655 allocated += i; 2656 2657 /* 2658 * After retaking hugetlb_lock, we need to recalculate 'needed' 2659 * because either resv_huge_pages or free_huge_pages may have changed. 2660 */ 2661 spin_lock_irq(&hugetlb_lock); 2662 needed = (h->resv_huge_pages + delta) - 2663 (h->free_huge_pages + allocated); 2664 if (needed > 0) { 2665 if (alloc_ok) 2666 goto retry; 2667 /* 2668 * We were not able to allocate enough pages to 2669 * satisfy the entire reservation so we free what 2670 * we've allocated so far. 2671 */ 2672 goto free; 2673 } 2674 /* 2675 * The surplus_list now contains _at_least_ the number of extra pages 2676 * needed to accommodate the reservation. Add the appropriate number 2677 * of pages to the hugetlb pool and free the extras back to the buddy 2678 * allocator. Commit the entire reservation here to prevent another 2679 * process from stealing the pages as they are added to the pool but 2680 * before they are reserved. 2681 */ 2682 needed += allocated; 2683 h->resv_huge_pages += delta; 2684 ret = 0; 2685 2686 /* Free the needed pages to the hugetlb pool */ 2687 list_for_each_entry_safe(folio, tmp, &surplus_list, lru) { 2688 if ((--needed) < 0) 2689 break; 2690 /* Add the page to the hugetlb allocator */ 2691 enqueue_hugetlb_folio(h, folio); 2692 } 2693 free: 2694 spin_unlock_irq(&hugetlb_lock); 2695 2696 /* 2697 * Free unnecessary surplus pages to the buddy allocator. 2698 * Pages have no ref count, call free_huge_folio directly. 2699 */ 2700 list_for_each_entry_safe(folio, tmp, &surplus_list, lru) 2701 free_huge_folio(folio); 2702 spin_lock_irq(&hugetlb_lock); 2703 2704 return ret; 2705 } 2706 2707 /* 2708 * This routine has two main purposes: 2709 * 1) Decrement the reservation count (resv_huge_pages) by the value passed 2710 * in unused_resv_pages. This corresponds to the prior adjustments made 2711 * to the associated reservation map. 2712 * 2) Free any unused surplus pages that may have been allocated to satisfy 2713 * the reservation. As many as unused_resv_pages may be freed. 2714 */ 2715 static void return_unused_surplus_pages(struct hstate *h, 2716 unsigned long unused_resv_pages) 2717 { 2718 unsigned long nr_pages; 2719 LIST_HEAD(page_list); 2720 2721 lockdep_assert_held(&hugetlb_lock); 2722 /* Uncommit the reservation */ 2723 h->resv_huge_pages -= unused_resv_pages; 2724 2725 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 2726 goto out; 2727 2728 /* 2729 * Part (or even all) of the reservation could have been backed 2730 * by pre-allocated pages. Only free surplus pages. 2731 */ 2732 nr_pages = min(unused_resv_pages, h->surplus_huge_pages); 2733 2734 /* 2735 * We want to release as many surplus pages as possible, spread 2736 * evenly across all nodes with memory. Iterate across these nodes 2737 * until we can no longer free unreserved surplus pages. This occurs 2738 * when the nodes with surplus pages have no free pages. 2739 * remove_pool_hugetlb_folio() will balance the freed pages across the 2740 * on-line nodes with memory and will handle the hstate accounting. 2741 */ 2742 while (nr_pages--) { 2743 struct folio *folio; 2744 2745 folio = remove_pool_hugetlb_folio(h, &node_states[N_MEMORY], 1); 2746 if (!folio) 2747 goto out; 2748 2749 list_add(&folio->lru, &page_list); 2750 } 2751 2752 out: 2753 spin_unlock_irq(&hugetlb_lock); 2754 update_and_free_pages_bulk(h, &page_list); 2755 spin_lock_irq(&hugetlb_lock); 2756 } 2757 2758 2759 /* 2760 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation 2761 * are used by the huge page allocation routines to manage reservations. 2762 * 2763 * vma_needs_reservation is called to determine if the huge page at addr 2764 * within the vma has an associated reservation. If a reservation is 2765 * needed, the value 1 is returned. The caller is then responsible for 2766 * managing the global reservation and subpool usage counts. After 2767 * the huge page has been allocated, vma_commit_reservation is called 2768 * to add the page to the reservation map. If the page allocation fails, 2769 * the reservation must be ended instead of committed. vma_end_reservation 2770 * is called in such cases. 2771 * 2772 * In the normal case, vma_commit_reservation returns the same value 2773 * as the preceding vma_needs_reservation call. The only time this 2774 * is not the case is if a reserve map was changed between calls. It 2775 * is the responsibility of the caller to notice the difference and 2776 * take appropriate action. 2777 * 2778 * vma_add_reservation is used in error paths where a reservation must 2779 * be restored when a newly allocated huge page must be freed. It is 2780 * to be called after calling vma_needs_reservation to determine if a 2781 * reservation exists. 2782 * 2783 * vma_del_reservation is used in error paths where an entry in the reserve 2784 * map was created during huge page allocation and must be removed. It is to 2785 * be called after calling vma_needs_reservation to determine if a reservation 2786 * exists. 2787 */ 2788 enum vma_resv_mode { 2789 VMA_NEEDS_RESV, 2790 VMA_COMMIT_RESV, 2791 VMA_END_RESV, 2792 VMA_ADD_RESV, 2793 VMA_DEL_RESV, 2794 }; 2795 static long __vma_reservation_common(struct hstate *h, 2796 struct vm_area_struct *vma, unsigned long addr, 2797 enum vma_resv_mode mode) 2798 { 2799 struct resv_map *resv; 2800 pgoff_t idx; 2801 long ret; 2802 long dummy_out_regions_needed; 2803 2804 resv = vma_resv_map(vma); 2805 if (!resv) 2806 return 1; 2807 2808 idx = vma_hugecache_offset(h, vma, addr); 2809 switch (mode) { 2810 case VMA_NEEDS_RESV: 2811 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed); 2812 /* We assume that vma_reservation_* routines always operate on 2813 * 1 page, and that adding to resv map a 1 page entry can only 2814 * ever require 1 region. 2815 */ 2816 VM_BUG_ON(dummy_out_regions_needed != 1); 2817 break; 2818 case VMA_COMMIT_RESV: 2819 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2820 /* region_add calls of range 1 should never fail. */ 2821 VM_BUG_ON(ret < 0); 2822 break; 2823 case VMA_END_RESV: 2824 region_abort(resv, idx, idx + 1, 1); 2825 ret = 0; 2826 break; 2827 case VMA_ADD_RESV: 2828 if (vma->vm_flags & VM_MAYSHARE) { 2829 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2830 /* region_add calls of range 1 should never fail. */ 2831 VM_BUG_ON(ret < 0); 2832 } else { 2833 region_abort(resv, idx, idx + 1, 1); 2834 ret = region_del(resv, idx, idx + 1); 2835 } 2836 break; 2837 case VMA_DEL_RESV: 2838 if (vma->vm_flags & VM_MAYSHARE) { 2839 region_abort(resv, idx, idx + 1, 1); 2840 ret = region_del(resv, idx, idx + 1); 2841 } else { 2842 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2843 /* region_add calls of range 1 should never fail. */ 2844 VM_BUG_ON(ret < 0); 2845 } 2846 break; 2847 default: 2848 BUG(); 2849 } 2850 2851 if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV) 2852 return ret; 2853 /* 2854 * We know private mapping must have HPAGE_RESV_OWNER set. 2855 * 2856 * In most cases, reserves always exist for private mappings. 2857 * However, a file associated with mapping could have been 2858 * hole punched or truncated after reserves were consumed. 2859 * As subsequent fault on such a range will not use reserves. 2860 * Subtle - The reserve map for private mappings has the 2861 * opposite meaning than that of shared mappings. If NO 2862 * entry is in the reserve map, it means a reservation exists. 2863 * If an entry exists in the reserve map, it means the 2864 * reservation has already been consumed. As a result, the 2865 * return value of this routine is the opposite of the 2866 * value returned from reserve map manipulation routines above. 2867 */ 2868 if (ret > 0) 2869 return 0; 2870 if (ret == 0) 2871 return 1; 2872 return ret; 2873 } 2874 2875 static long vma_needs_reservation(struct hstate *h, 2876 struct vm_area_struct *vma, unsigned long addr) 2877 { 2878 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV); 2879 } 2880 2881 static long vma_commit_reservation(struct hstate *h, 2882 struct vm_area_struct *vma, unsigned long addr) 2883 { 2884 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV); 2885 } 2886 2887 static void vma_end_reservation(struct hstate *h, 2888 struct vm_area_struct *vma, unsigned long addr) 2889 { 2890 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV); 2891 } 2892 2893 static long vma_add_reservation(struct hstate *h, 2894 struct vm_area_struct *vma, unsigned long addr) 2895 { 2896 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV); 2897 } 2898 2899 static long vma_del_reservation(struct hstate *h, 2900 struct vm_area_struct *vma, unsigned long addr) 2901 { 2902 return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV); 2903 } 2904 2905 /* 2906 * This routine is called to restore reservation information on error paths. 2907 * It should ONLY be called for folios allocated via alloc_hugetlb_folio(), 2908 * and the hugetlb mutex should remain held when calling this routine. 2909 * 2910 * It handles two specific cases: 2911 * 1) A reservation was in place and the folio consumed the reservation. 2912 * hugetlb_restore_reserve is set in the folio. 2913 * 2) No reservation was in place for the page, so hugetlb_restore_reserve is 2914 * not set. However, alloc_hugetlb_folio always updates the reserve map. 2915 * 2916 * In case 1, free_huge_folio later in the error path will increment the 2917 * global reserve count. But, free_huge_folio does not have enough context 2918 * to adjust the reservation map. This case deals primarily with private 2919 * mappings. Adjust the reserve map here to be consistent with global 2920 * reserve count adjustments to be made by free_huge_folio. Make sure the 2921 * reserve map indicates there is a reservation present. 2922 * 2923 * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio. 2924 */ 2925 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma, 2926 unsigned long address, struct folio *folio) 2927 { 2928 long rc = vma_needs_reservation(h, vma, address); 2929 2930 if (folio_test_hugetlb_restore_reserve(folio)) { 2931 if (unlikely(rc < 0)) 2932 /* 2933 * Rare out of memory condition in reserve map 2934 * manipulation. Clear hugetlb_restore_reserve so 2935 * that global reserve count will not be incremented 2936 * by free_huge_folio. This will make it appear 2937 * as though the reservation for this folio was 2938 * consumed. This may prevent the task from 2939 * faulting in the folio at a later time. This 2940 * is better than inconsistent global huge page 2941 * accounting of reserve counts. 2942 */ 2943 folio_clear_hugetlb_restore_reserve(folio); 2944 else if (rc) 2945 (void)vma_add_reservation(h, vma, address); 2946 else 2947 vma_end_reservation(h, vma, address); 2948 } else { 2949 if (!rc) { 2950 /* 2951 * This indicates there is an entry in the reserve map 2952 * not added by alloc_hugetlb_folio. We know it was added 2953 * before the alloc_hugetlb_folio call, otherwise 2954 * hugetlb_restore_reserve would be set on the folio. 2955 * Remove the entry so that a subsequent allocation 2956 * does not consume a reservation. 2957 */ 2958 rc = vma_del_reservation(h, vma, address); 2959 if (rc < 0) 2960 /* 2961 * VERY rare out of memory condition. Since 2962 * we can not delete the entry, set 2963 * hugetlb_restore_reserve so that the reserve 2964 * count will be incremented when the folio 2965 * is freed. This reserve will be consumed 2966 * on a subsequent allocation. 2967 */ 2968 folio_set_hugetlb_restore_reserve(folio); 2969 } else if (rc < 0) { 2970 /* 2971 * Rare out of memory condition from 2972 * vma_needs_reservation call. Memory allocation is 2973 * only attempted if a new entry is needed. Therefore, 2974 * this implies there is not an entry in the 2975 * reserve map. 2976 * 2977 * For shared mappings, no entry in the map indicates 2978 * no reservation. We are done. 2979 */ 2980 if (!(vma->vm_flags & VM_MAYSHARE)) 2981 /* 2982 * For private mappings, no entry indicates 2983 * a reservation is present. Since we can 2984 * not add an entry, set hugetlb_restore_reserve 2985 * on the folio so reserve count will be 2986 * incremented when freed. This reserve will 2987 * be consumed on a subsequent allocation. 2988 */ 2989 folio_set_hugetlb_restore_reserve(folio); 2990 } else 2991 /* 2992 * No reservation present, do nothing 2993 */ 2994 vma_end_reservation(h, vma, address); 2995 } 2996 } 2997 2998 /* 2999 * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve 3000 * the old one 3001 * @h: struct hstate old page belongs to 3002 * @old_folio: Old folio to dissolve 3003 * @list: List to isolate the page in case we need to 3004 * Returns 0 on success, otherwise negated error. 3005 */ 3006 static int alloc_and_dissolve_hugetlb_folio(struct hstate *h, 3007 struct folio *old_folio, struct list_head *list) 3008 { 3009 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 3010 int nid = folio_nid(old_folio); 3011 struct folio *new_folio = NULL; 3012 int ret = 0; 3013 3014 retry: 3015 spin_lock_irq(&hugetlb_lock); 3016 if (!folio_test_hugetlb(old_folio)) { 3017 /* 3018 * Freed from under us. Drop new_folio too. 3019 */ 3020 goto free_new; 3021 } else if (folio_ref_count(old_folio)) { 3022 bool isolated; 3023 3024 /* 3025 * Someone has grabbed the folio, try to isolate it here. 3026 * Fail with -EBUSY if not possible. 3027 */ 3028 spin_unlock_irq(&hugetlb_lock); 3029 isolated = isolate_hugetlb(old_folio, list); 3030 ret = isolated ? 0 : -EBUSY; 3031 spin_lock_irq(&hugetlb_lock); 3032 goto free_new; 3033 } else if (!folio_test_hugetlb_freed(old_folio)) { 3034 /* 3035 * Folio's refcount is 0 but it has not been enqueued in the 3036 * freelist yet. Race window is small, so we can succeed here if 3037 * we retry. 3038 */ 3039 spin_unlock_irq(&hugetlb_lock); 3040 cond_resched(); 3041 goto retry; 3042 } else { 3043 if (!new_folio) { 3044 spin_unlock_irq(&hugetlb_lock); 3045 new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, 3046 NULL, NULL); 3047 if (!new_folio) 3048 return -ENOMEM; 3049 __prep_new_hugetlb_folio(h, new_folio); 3050 goto retry; 3051 } 3052 3053 /* 3054 * Ok, old_folio is still a genuine free hugepage. Remove it from 3055 * the freelist and decrease the counters. These will be 3056 * incremented again when calling __prep_account_new_huge_page() 3057 * and enqueue_hugetlb_folio() for new_folio. The counters will 3058 * remain stable since this happens under the lock. 3059 */ 3060 remove_hugetlb_folio(h, old_folio, false); 3061 3062 /* 3063 * Ref count on new_folio is already zero as it was dropped 3064 * earlier. It can be directly added to the pool free list. 3065 */ 3066 __prep_account_new_huge_page(h, nid); 3067 enqueue_hugetlb_folio(h, new_folio); 3068 3069 /* 3070 * Folio has been replaced, we can safely free the old one. 3071 */ 3072 spin_unlock_irq(&hugetlb_lock); 3073 update_and_free_hugetlb_folio(h, old_folio, false); 3074 } 3075 3076 return ret; 3077 3078 free_new: 3079 spin_unlock_irq(&hugetlb_lock); 3080 if (new_folio) { 3081 /* Folio has a zero ref count, but needs a ref to be freed */ 3082 folio_ref_unfreeze(new_folio, 1); 3083 update_and_free_hugetlb_folio(h, new_folio, false); 3084 } 3085 3086 return ret; 3087 } 3088 3089 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list) 3090 { 3091 struct hstate *h; 3092 struct folio *folio = page_folio(page); 3093 int ret = -EBUSY; 3094 3095 /* 3096 * The page might have been dissolved from under our feet, so make sure 3097 * to carefully check the state under the lock. 3098 * Return success when racing as if we dissolved the page ourselves. 3099 */ 3100 spin_lock_irq(&hugetlb_lock); 3101 if (folio_test_hugetlb(folio)) { 3102 h = folio_hstate(folio); 3103 } else { 3104 spin_unlock_irq(&hugetlb_lock); 3105 return 0; 3106 } 3107 spin_unlock_irq(&hugetlb_lock); 3108 3109 /* 3110 * Fence off gigantic pages as there is a cyclic dependency between 3111 * alloc_contig_range and them. Return -ENOMEM as this has the effect 3112 * of bailing out right away without further retrying. 3113 */ 3114 if (hstate_is_gigantic(h)) 3115 return -ENOMEM; 3116 3117 if (folio_ref_count(folio) && isolate_hugetlb(folio, list)) 3118 ret = 0; 3119 else if (!folio_ref_count(folio)) 3120 ret = alloc_and_dissolve_hugetlb_folio(h, folio, list); 3121 3122 return ret; 3123 } 3124 3125 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma, 3126 unsigned long addr, int avoid_reserve) 3127 { 3128 struct hugepage_subpool *spool = subpool_vma(vma); 3129 struct hstate *h = hstate_vma(vma); 3130 struct folio *folio; 3131 long map_chg, map_commit, nr_pages = pages_per_huge_page(h); 3132 long gbl_chg; 3133 int memcg_charge_ret, ret, idx; 3134 struct hugetlb_cgroup *h_cg = NULL; 3135 struct mem_cgroup *memcg; 3136 bool deferred_reserve; 3137 gfp_t gfp = htlb_alloc_mask(h) | __GFP_RETRY_MAYFAIL; 3138 3139 memcg = get_mem_cgroup_from_current(); 3140 memcg_charge_ret = mem_cgroup_hugetlb_try_charge(memcg, gfp, nr_pages); 3141 if (memcg_charge_ret == -ENOMEM) { 3142 mem_cgroup_put(memcg); 3143 return ERR_PTR(-ENOMEM); 3144 } 3145 3146 idx = hstate_index(h); 3147 /* 3148 * Examine the region/reserve map to determine if the process 3149 * has a reservation for the page to be allocated. A return 3150 * code of zero indicates a reservation exists (no change). 3151 */ 3152 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr); 3153 if (map_chg < 0) { 3154 if (!memcg_charge_ret) 3155 mem_cgroup_cancel_charge(memcg, nr_pages); 3156 mem_cgroup_put(memcg); 3157 return ERR_PTR(-ENOMEM); 3158 } 3159 3160 /* 3161 * Processes that did not create the mapping will have no 3162 * reserves as indicated by the region/reserve map. Check 3163 * that the allocation will not exceed the subpool limit. 3164 * Allocations for MAP_NORESERVE mappings also need to be 3165 * checked against any subpool limit. 3166 */ 3167 if (map_chg || avoid_reserve) { 3168 gbl_chg = hugepage_subpool_get_pages(spool, 1); 3169 if (gbl_chg < 0) 3170 goto out_end_reservation; 3171 3172 /* 3173 * Even though there was no reservation in the region/reserve 3174 * map, there could be reservations associated with the 3175 * subpool that can be used. This would be indicated if the 3176 * return value of hugepage_subpool_get_pages() is zero. 3177 * However, if avoid_reserve is specified we still avoid even 3178 * the subpool reservations. 3179 */ 3180 if (avoid_reserve) 3181 gbl_chg = 1; 3182 } 3183 3184 /* If this allocation is not consuming a reservation, charge it now. 3185 */ 3186 deferred_reserve = map_chg || avoid_reserve; 3187 if (deferred_reserve) { 3188 ret = hugetlb_cgroup_charge_cgroup_rsvd( 3189 idx, pages_per_huge_page(h), &h_cg); 3190 if (ret) 3191 goto out_subpool_put; 3192 } 3193 3194 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg); 3195 if (ret) 3196 goto out_uncharge_cgroup_reservation; 3197 3198 spin_lock_irq(&hugetlb_lock); 3199 /* 3200 * glb_chg is passed to indicate whether or not a page must be taken 3201 * from the global free pool (global change). gbl_chg == 0 indicates 3202 * a reservation exists for the allocation. 3203 */ 3204 folio = dequeue_hugetlb_folio_vma(h, vma, addr, avoid_reserve, gbl_chg); 3205 if (!folio) { 3206 spin_unlock_irq(&hugetlb_lock); 3207 folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr); 3208 if (!folio) 3209 goto out_uncharge_cgroup; 3210 spin_lock_irq(&hugetlb_lock); 3211 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) { 3212 folio_set_hugetlb_restore_reserve(folio); 3213 h->resv_huge_pages--; 3214 } 3215 list_add(&folio->lru, &h->hugepage_activelist); 3216 folio_ref_unfreeze(folio, 1); 3217 /* Fall through */ 3218 } 3219 3220 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio); 3221 /* If allocation is not consuming a reservation, also store the 3222 * hugetlb_cgroup pointer on the page. 3223 */ 3224 if (deferred_reserve) { 3225 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h), 3226 h_cg, folio); 3227 } 3228 3229 spin_unlock_irq(&hugetlb_lock); 3230 3231 hugetlb_set_folio_subpool(folio, spool); 3232 3233 map_commit = vma_commit_reservation(h, vma, addr); 3234 if (unlikely(map_chg > map_commit)) { 3235 /* 3236 * The page was added to the reservation map between 3237 * vma_needs_reservation and vma_commit_reservation. 3238 * This indicates a race with hugetlb_reserve_pages. 3239 * Adjust for the subpool count incremented above AND 3240 * in hugetlb_reserve_pages for the same page. Also, 3241 * the reservation count added in hugetlb_reserve_pages 3242 * no longer applies. 3243 */ 3244 long rsv_adjust; 3245 3246 rsv_adjust = hugepage_subpool_put_pages(spool, 1); 3247 hugetlb_acct_memory(h, -rsv_adjust); 3248 if (deferred_reserve) { 3249 spin_lock_irq(&hugetlb_lock); 3250 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h), 3251 pages_per_huge_page(h), folio); 3252 spin_unlock_irq(&hugetlb_lock); 3253 } 3254 } 3255 3256 if (!memcg_charge_ret) 3257 mem_cgroup_commit_charge(folio, memcg); 3258 mem_cgroup_put(memcg); 3259 3260 return folio; 3261 3262 out_uncharge_cgroup: 3263 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg); 3264 out_uncharge_cgroup_reservation: 3265 if (deferred_reserve) 3266 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h), 3267 h_cg); 3268 out_subpool_put: 3269 if (map_chg || avoid_reserve) 3270 hugepage_subpool_put_pages(spool, 1); 3271 out_end_reservation: 3272 vma_end_reservation(h, vma, addr); 3273 if (!memcg_charge_ret) 3274 mem_cgroup_cancel_charge(memcg, nr_pages); 3275 mem_cgroup_put(memcg); 3276 return ERR_PTR(-ENOSPC); 3277 } 3278 3279 int alloc_bootmem_huge_page(struct hstate *h, int nid) 3280 __attribute__ ((weak, alias("__alloc_bootmem_huge_page"))); 3281 int __alloc_bootmem_huge_page(struct hstate *h, int nid) 3282 { 3283 struct huge_bootmem_page *m = NULL; /* initialize for clang */ 3284 int nr_nodes, node = nid; 3285 3286 /* do node specific alloc */ 3287 if (nid != NUMA_NO_NODE) { 3288 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h), 3289 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid); 3290 if (!m) 3291 return 0; 3292 goto found; 3293 } 3294 /* allocate from next node when distributing huge pages */ 3295 for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, &node_states[N_MEMORY]) { 3296 m = memblock_alloc_try_nid_raw( 3297 huge_page_size(h), huge_page_size(h), 3298 0, MEMBLOCK_ALLOC_ACCESSIBLE, node); 3299 /* 3300 * Use the beginning of the huge page to store the 3301 * huge_bootmem_page struct (until gather_bootmem 3302 * puts them into the mem_map). 3303 */ 3304 if (!m) 3305 return 0; 3306 goto found; 3307 } 3308 3309 found: 3310 3311 /* 3312 * Only initialize the head struct page in memmap_init_reserved_pages, 3313 * rest of the struct pages will be initialized by the HugeTLB 3314 * subsystem itself. 3315 * The head struct page is used to get folio information by the HugeTLB 3316 * subsystem like zone id and node id. 3317 */ 3318 memblock_reserved_mark_noinit(virt_to_phys((void *)m + PAGE_SIZE), 3319 huge_page_size(h) - PAGE_SIZE); 3320 /* Put them into a private list first because mem_map is not up yet */ 3321 INIT_LIST_HEAD(&m->list); 3322 list_add(&m->list, &huge_boot_pages[node]); 3323 m->hstate = h; 3324 return 1; 3325 } 3326 3327 /* Initialize [start_page:end_page_number] tail struct pages of a hugepage */ 3328 static void __init hugetlb_folio_init_tail_vmemmap(struct folio *folio, 3329 unsigned long start_page_number, 3330 unsigned long end_page_number) 3331 { 3332 enum zone_type zone = zone_idx(folio_zone(folio)); 3333 int nid = folio_nid(folio); 3334 unsigned long head_pfn = folio_pfn(folio); 3335 unsigned long pfn, end_pfn = head_pfn + end_page_number; 3336 int ret; 3337 3338 for (pfn = head_pfn + start_page_number; pfn < end_pfn; pfn++) { 3339 struct page *page = pfn_to_page(pfn); 3340 3341 __init_single_page(page, pfn, zone, nid); 3342 prep_compound_tail((struct page *)folio, pfn - head_pfn); 3343 ret = page_ref_freeze(page, 1); 3344 VM_BUG_ON(!ret); 3345 } 3346 } 3347 3348 static void __init hugetlb_folio_init_vmemmap(struct folio *folio, 3349 struct hstate *h, 3350 unsigned long nr_pages) 3351 { 3352 int ret; 3353 3354 /* Prepare folio head */ 3355 __folio_clear_reserved(folio); 3356 __folio_set_head(folio); 3357 ret = folio_ref_freeze(folio, 1); 3358 VM_BUG_ON(!ret); 3359 /* Initialize the necessary tail struct pages */ 3360 hugetlb_folio_init_tail_vmemmap(folio, 1, nr_pages); 3361 prep_compound_head((struct page *)folio, huge_page_order(h)); 3362 } 3363 3364 static void __init prep_and_add_bootmem_folios(struct hstate *h, 3365 struct list_head *folio_list) 3366 { 3367 unsigned long flags; 3368 struct folio *folio, *tmp_f; 3369 3370 /* Send list for bulk vmemmap optimization processing */ 3371 hugetlb_vmemmap_optimize_folios(h, folio_list); 3372 3373 list_for_each_entry_safe(folio, tmp_f, folio_list, lru) { 3374 if (!folio_test_hugetlb_vmemmap_optimized(folio)) { 3375 /* 3376 * If HVO fails, initialize all tail struct pages 3377 * We do not worry about potential long lock hold 3378 * time as this is early in boot and there should 3379 * be no contention. 3380 */ 3381 hugetlb_folio_init_tail_vmemmap(folio, 3382 HUGETLB_VMEMMAP_RESERVE_PAGES, 3383 pages_per_huge_page(h)); 3384 } 3385 /* Subdivide locks to achieve better parallel performance */ 3386 spin_lock_irqsave(&hugetlb_lock, flags); 3387 __prep_account_new_huge_page(h, folio_nid(folio)); 3388 enqueue_hugetlb_folio(h, folio); 3389 spin_unlock_irqrestore(&hugetlb_lock, flags); 3390 } 3391 } 3392 3393 /* 3394 * Put bootmem huge pages into the standard lists after mem_map is up. 3395 * Note: This only applies to gigantic (order > MAX_PAGE_ORDER) pages. 3396 */ 3397 static void __init gather_bootmem_prealloc_node(unsigned long nid) 3398 { 3399 LIST_HEAD(folio_list); 3400 struct huge_bootmem_page *m; 3401 struct hstate *h = NULL, *prev_h = NULL; 3402 3403 list_for_each_entry(m, &huge_boot_pages[nid], list) { 3404 struct page *page = virt_to_page(m); 3405 struct folio *folio = (void *)page; 3406 3407 h = m->hstate; 3408 /* 3409 * It is possible to have multiple huge page sizes (hstates) 3410 * in this list. If so, process each size separately. 3411 */ 3412 if (h != prev_h && prev_h != NULL) 3413 prep_and_add_bootmem_folios(prev_h, &folio_list); 3414 prev_h = h; 3415 3416 VM_BUG_ON(!hstate_is_gigantic(h)); 3417 WARN_ON(folio_ref_count(folio) != 1); 3418 3419 hugetlb_folio_init_vmemmap(folio, h, 3420 HUGETLB_VMEMMAP_RESERVE_PAGES); 3421 init_new_hugetlb_folio(h, folio); 3422 list_add(&folio->lru, &folio_list); 3423 3424 /* 3425 * We need to restore the 'stolen' pages to totalram_pages 3426 * in order to fix confusing memory reports from free(1) and 3427 * other side-effects, like CommitLimit going negative. 3428 */ 3429 adjust_managed_page_count(page, pages_per_huge_page(h)); 3430 cond_resched(); 3431 } 3432 3433 prep_and_add_bootmem_folios(h, &folio_list); 3434 } 3435 3436 static void __init gather_bootmem_prealloc_parallel(unsigned long start, 3437 unsigned long end, void *arg) 3438 { 3439 int nid; 3440 3441 for (nid = start; nid < end; nid++) 3442 gather_bootmem_prealloc_node(nid); 3443 } 3444 3445 static void __init gather_bootmem_prealloc(void) 3446 { 3447 struct padata_mt_job job = { 3448 .thread_fn = gather_bootmem_prealloc_parallel, 3449 .fn_arg = NULL, 3450 .start = 0, 3451 .size = num_node_state(N_MEMORY), 3452 .align = 1, 3453 .min_chunk = 1, 3454 .max_threads = num_node_state(N_MEMORY), 3455 .numa_aware = true, 3456 }; 3457 3458 padata_do_multithreaded(&job); 3459 } 3460 3461 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid) 3462 { 3463 unsigned long i; 3464 char buf[32]; 3465 3466 for (i = 0; i < h->max_huge_pages_node[nid]; ++i) { 3467 if (hstate_is_gigantic(h)) { 3468 if (!alloc_bootmem_huge_page(h, nid)) 3469 break; 3470 } else { 3471 struct folio *folio; 3472 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 3473 3474 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, 3475 &node_states[N_MEMORY]); 3476 if (!folio) 3477 break; 3478 free_huge_folio(folio); /* free it into the hugepage allocator */ 3479 } 3480 cond_resched(); 3481 } 3482 if (i == h->max_huge_pages_node[nid]) 3483 return; 3484 3485 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3486 pr_warn("HugeTLB: allocating %u of page size %s failed node%d. Only allocated %lu hugepages.\n", 3487 h->max_huge_pages_node[nid], buf, nid, i); 3488 h->max_huge_pages -= (h->max_huge_pages_node[nid] - i); 3489 h->max_huge_pages_node[nid] = i; 3490 } 3491 3492 static bool __init hugetlb_hstate_alloc_pages_specific_nodes(struct hstate *h) 3493 { 3494 int i; 3495 bool node_specific_alloc = false; 3496 3497 for_each_online_node(i) { 3498 if (h->max_huge_pages_node[i] > 0) { 3499 hugetlb_hstate_alloc_pages_onenode(h, i); 3500 node_specific_alloc = true; 3501 } 3502 } 3503 3504 return node_specific_alloc; 3505 } 3506 3507 static void __init hugetlb_hstate_alloc_pages_errcheck(unsigned long allocated, struct hstate *h) 3508 { 3509 if (allocated < h->max_huge_pages) { 3510 char buf[32]; 3511 3512 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3513 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n", 3514 h->max_huge_pages, buf, allocated); 3515 h->max_huge_pages = allocated; 3516 } 3517 } 3518 3519 static void __init hugetlb_pages_alloc_boot_node(unsigned long start, unsigned long end, void *arg) 3520 { 3521 struct hstate *h = (struct hstate *)arg; 3522 int i, num = end - start; 3523 nodemask_t node_alloc_noretry; 3524 LIST_HEAD(folio_list); 3525 int next_node = first_online_node; 3526 3527 /* Bit mask controlling how hard we retry per-node allocations.*/ 3528 nodes_clear(node_alloc_noretry); 3529 3530 for (i = 0; i < num; ++i) { 3531 struct folio *folio = alloc_pool_huge_folio(h, &node_states[N_MEMORY], 3532 &node_alloc_noretry, &next_node); 3533 if (!folio) 3534 break; 3535 3536 list_move(&folio->lru, &folio_list); 3537 cond_resched(); 3538 } 3539 3540 prep_and_add_allocated_folios(h, &folio_list); 3541 } 3542 3543 static unsigned long __init hugetlb_gigantic_pages_alloc_boot(struct hstate *h) 3544 { 3545 unsigned long i; 3546 3547 for (i = 0; i < h->max_huge_pages; ++i) { 3548 if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE)) 3549 break; 3550 cond_resched(); 3551 } 3552 3553 return i; 3554 } 3555 3556 static unsigned long __init hugetlb_pages_alloc_boot(struct hstate *h) 3557 { 3558 struct padata_mt_job job = { 3559 .fn_arg = h, 3560 .align = 1, 3561 .numa_aware = true 3562 }; 3563 3564 job.thread_fn = hugetlb_pages_alloc_boot_node; 3565 job.start = 0; 3566 job.size = h->max_huge_pages; 3567 3568 /* 3569 * job.max_threads is twice the num_node_state(N_MEMORY), 3570 * 3571 * Tests below indicate that a multiplier of 2 significantly improves 3572 * performance, and although larger values also provide improvements, 3573 * the gains are marginal. 3574 * 3575 * Therefore, choosing 2 as the multiplier strikes a good balance between 3576 * enhancing parallel processing capabilities and maintaining efficient 3577 * resource management. 3578 * 3579 * +------------+-------+-------+-------+-------+-------+ 3580 * | multiplier | 1 | 2 | 3 | 4 | 5 | 3581 * +------------+-------+-------+-------+-------+-------+ 3582 * | 256G 2node | 358ms | 215ms | 157ms | 134ms | 126ms | 3583 * | 2T 4node | 979ms | 679ms | 543ms | 489ms | 481ms | 3584 * | 50G 2node | 71ms | 44ms | 37ms | 30ms | 31ms | 3585 * +------------+-------+-------+-------+-------+-------+ 3586 */ 3587 job.max_threads = num_node_state(N_MEMORY) * 2; 3588 job.min_chunk = h->max_huge_pages / num_node_state(N_MEMORY) / 2; 3589 padata_do_multithreaded(&job); 3590 3591 return h->nr_huge_pages; 3592 } 3593 3594 /* 3595 * NOTE: this routine is called in different contexts for gigantic and 3596 * non-gigantic pages. 3597 * - For gigantic pages, this is called early in the boot process and 3598 * pages are allocated from memblock allocated or something similar. 3599 * Gigantic pages are actually added to pools later with the routine 3600 * gather_bootmem_prealloc. 3601 * - For non-gigantic pages, this is called later in the boot process after 3602 * all of mm is up and functional. Pages are allocated from buddy and 3603 * then added to hugetlb pools. 3604 */ 3605 static void __init hugetlb_hstate_alloc_pages(struct hstate *h) 3606 { 3607 unsigned long allocated; 3608 static bool initialized __initdata; 3609 3610 /* skip gigantic hugepages allocation if hugetlb_cma enabled */ 3611 if (hstate_is_gigantic(h) && hugetlb_cma_size) { 3612 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n"); 3613 return; 3614 } 3615 3616 /* hugetlb_hstate_alloc_pages will be called many times, initialize huge_boot_pages once */ 3617 if (!initialized) { 3618 int i = 0; 3619 3620 for (i = 0; i < MAX_NUMNODES; i++) 3621 INIT_LIST_HEAD(&huge_boot_pages[i]); 3622 initialized = true; 3623 } 3624 3625 /* do node specific alloc */ 3626 if (hugetlb_hstate_alloc_pages_specific_nodes(h)) 3627 return; 3628 3629 /* below will do all node balanced alloc */ 3630 if (hstate_is_gigantic(h)) 3631 allocated = hugetlb_gigantic_pages_alloc_boot(h); 3632 else 3633 allocated = hugetlb_pages_alloc_boot(h); 3634 3635 hugetlb_hstate_alloc_pages_errcheck(allocated, h); 3636 } 3637 3638 static void __init hugetlb_init_hstates(void) 3639 { 3640 struct hstate *h, *h2; 3641 3642 for_each_hstate(h) { 3643 /* oversize hugepages were init'ed in early boot */ 3644 if (!hstate_is_gigantic(h)) 3645 hugetlb_hstate_alloc_pages(h); 3646 3647 /* 3648 * Set demote order for each hstate. Note that 3649 * h->demote_order is initially 0. 3650 * - We can not demote gigantic pages if runtime freeing 3651 * is not supported, so skip this. 3652 * - If CMA allocation is possible, we can not demote 3653 * HUGETLB_PAGE_ORDER or smaller size pages. 3654 */ 3655 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 3656 continue; 3657 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER) 3658 continue; 3659 for_each_hstate(h2) { 3660 if (h2 == h) 3661 continue; 3662 if (h2->order < h->order && 3663 h2->order > h->demote_order) 3664 h->demote_order = h2->order; 3665 } 3666 } 3667 } 3668 3669 static void __init report_hugepages(void) 3670 { 3671 struct hstate *h; 3672 3673 for_each_hstate(h) { 3674 char buf[32]; 3675 3676 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3677 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n", 3678 buf, h->free_huge_pages); 3679 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n", 3680 hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf); 3681 } 3682 } 3683 3684 #ifdef CONFIG_HIGHMEM 3685 static void try_to_free_low(struct hstate *h, unsigned long count, 3686 nodemask_t *nodes_allowed) 3687 { 3688 int i; 3689 LIST_HEAD(page_list); 3690 3691 lockdep_assert_held(&hugetlb_lock); 3692 if (hstate_is_gigantic(h)) 3693 return; 3694 3695 /* 3696 * Collect pages to be freed on a list, and free after dropping lock 3697 */ 3698 for_each_node_mask(i, *nodes_allowed) { 3699 struct folio *folio, *next; 3700 struct list_head *freel = &h->hugepage_freelists[i]; 3701 list_for_each_entry_safe(folio, next, freel, lru) { 3702 if (count >= h->nr_huge_pages) 3703 goto out; 3704 if (folio_test_highmem(folio)) 3705 continue; 3706 remove_hugetlb_folio(h, folio, false); 3707 list_add(&folio->lru, &page_list); 3708 } 3709 } 3710 3711 out: 3712 spin_unlock_irq(&hugetlb_lock); 3713 update_and_free_pages_bulk(h, &page_list); 3714 spin_lock_irq(&hugetlb_lock); 3715 } 3716 #else 3717 static inline void try_to_free_low(struct hstate *h, unsigned long count, 3718 nodemask_t *nodes_allowed) 3719 { 3720 } 3721 #endif 3722 3723 /* 3724 * Increment or decrement surplus_huge_pages. Keep node-specific counters 3725 * balanced by operating on them in a round-robin fashion. 3726 * Returns 1 if an adjustment was made. 3727 */ 3728 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed, 3729 int delta) 3730 { 3731 int nr_nodes, node; 3732 3733 lockdep_assert_held(&hugetlb_lock); 3734 VM_BUG_ON(delta != -1 && delta != 1); 3735 3736 if (delta < 0) { 3737 for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, nodes_allowed) { 3738 if (h->surplus_huge_pages_node[node]) 3739 goto found; 3740 } 3741 } else { 3742 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 3743 if (h->surplus_huge_pages_node[node] < 3744 h->nr_huge_pages_node[node]) 3745 goto found; 3746 } 3747 } 3748 return 0; 3749 3750 found: 3751 h->surplus_huge_pages += delta; 3752 h->surplus_huge_pages_node[node] += delta; 3753 return 1; 3754 } 3755 3756 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) 3757 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid, 3758 nodemask_t *nodes_allowed) 3759 { 3760 unsigned long min_count; 3761 unsigned long allocated; 3762 struct folio *folio; 3763 LIST_HEAD(page_list); 3764 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL); 3765 3766 /* 3767 * Bit mask controlling how hard we retry per-node allocations. 3768 * If we can not allocate the bit mask, do not attempt to allocate 3769 * the requested huge pages. 3770 */ 3771 if (node_alloc_noretry) 3772 nodes_clear(*node_alloc_noretry); 3773 else 3774 return -ENOMEM; 3775 3776 /* 3777 * resize_lock mutex prevents concurrent adjustments to number of 3778 * pages in hstate via the proc/sysfs interfaces. 3779 */ 3780 mutex_lock(&h->resize_lock); 3781 flush_free_hpage_work(h); 3782 spin_lock_irq(&hugetlb_lock); 3783 3784 /* 3785 * Check for a node specific request. 3786 * Changing node specific huge page count may require a corresponding 3787 * change to the global count. In any case, the passed node mask 3788 * (nodes_allowed) will restrict alloc/free to the specified node. 3789 */ 3790 if (nid != NUMA_NO_NODE) { 3791 unsigned long old_count = count; 3792 3793 count += persistent_huge_pages(h) - 3794 (h->nr_huge_pages_node[nid] - 3795 h->surplus_huge_pages_node[nid]); 3796 /* 3797 * User may have specified a large count value which caused the 3798 * above calculation to overflow. In this case, they wanted 3799 * to allocate as many huge pages as possible. Set count to 3800 * largest possible value to align with their intention. 3801 */ 3802 if (count < old_count) 3803 count = ULONG_MAX; 3804 } 3805 3806 /* 3807 * Gigantic pages runtime allocation depend on the capability for large 3808 * page range allocation. 3809 * If the system does not provide this feature, return an error when 3810 * the user tries to allocate gigantic pages but let the user free the 3811 * boottime allocated gigantic pages. 3812 */ 3813 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) { 3814 if (count > persistent_huge_pages(h)) { 3815 spin_unlock_irq(&hugetlb_lock); 3816 mutex_unlock(&h->resize_lock); 3817 NODEMASK_FREE(node_alloc_noretry); 3818 return -EINVAL; 3819 } 3820 /* Fall through to decrease pool */ 3821 } 3822 3823 /* 3824 * Increase the pool size 3825 * First take pages out of surplus state. Then make up the 3826 * remaining difference by allocating fresh huge pages. 3827 * 3828 * We might race with alloc_surplus_hugetlb_folio() here and be unable 3829 * to convert a surplus huge page to a normal huge page. That is 3830 * not critical, though, it just means the overall size of the 3831 * pool might be one hugepage larger than it needs to be, but 3832 * within all the constraints specified by the sysctls. 3833 */ 3834 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { 3835 if (!adjust_pool_surplus(h, nodes_allowed, -1)) 3836 break; 3837 } 3838 3839 allocated = 0; 3840 while (count > (persistent_huge_pages(h) + allocated)) { 3841 /* 3842 * If this allocation races such that we no longer need the 3843 * page, free_huge_folio will handle it by freeing the page 3844 * and reducing the surplus. 3845 */ 3846 spin_unlock_irq(&hugetlb_lock); 3847 3848 /* yield cpu to avoid soft lockup */ 3849 cond_resched(); 3850 3851 folio = alloc_pool_huge_folio(h, nodes_allowed, 3852 node_alloc_noretry, 3853 &h->next_nid_to_alloc); 3854 if (!folio) { 3855 prep_and_add_allocated_folios(h, &page_list); 3856 spin_lock_irq(&hugetlb_lock); 3857 goto out; 3858 } 3859 3860 list_add(&folio->lru, &page_list); 3861 allocated++; 3862 3863 /* Bail for signals. Probably ctrl-c from user */ 3864 if (signal_pending(current)) { 3865 prep_and_add_allocated_folios(h, &page_list); 3866 spin_lock_irq(&hugetlb_lock); 3867 goto out; 3868 } 3869 3870 spin_lock_irq(&hugetlb_lock); 3871 } 3872 3873 /* Add allocated pages to the pool */ 3874 if (!list_empty(&page_list)) { 3875 spin_unlock_irq(&hugetlb_lock); 3876 prep_and_add_allocated_folios(h, &page_list); 3877 spin_lock_irq(&hugetlb_lock); 3878 } 3879 3880 /* 3881 * Decrease the pool size 3882 * First return free pages to the buddy allocator (being careful 3883 * to keep enough around to satisfy reservations). Then place 3884 * pages into surplus state as needed so the pool will shrink 3885 * to the desired size as pages become free. 3886 * 3887 * By placing pages into the surplus state independent of the 3888 * overcommit value, we are allowing the surplus pool size to 3889 * exceed overcommit. There are few sane options here. Since 3890 * alloc_surplus_hugetlb_folio() is checking the global counter, 3891 * though, we'll note that we're not allowed to exceed surplus 3892 * and won't grow the pool anywhere else. Not until one of the 3893 * sysctls are changed, or the surplus pages go out of use. 3894 */ 3895 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages; 3896 min_count = max(count, min_count); 3897 try_to_free_low(h, min_count, nodes_allowed); 3898 3899 /* 3900 * Collect pages to be removed on list without dropping lock 3901 */ 3902 while (min_count < persistent_huge_pages(h)) { 3903 folio = remove_pool_hugetlb_folio(h, nodes_allowed, 0); 3904 if (!folio) 3905 break; 3906 3907 list_add(&folio->lru, &page_list); 3908 } 3909 /* free the pages after dropping lock */ 3910 spin_unlock_irq(&hugetlb_lock); 3911 update_and_free_pages_bulk(h, &page_list); 3912 flush_free_hpage_work(h); 3913 spin_lock_irq(&hugetlb_lock); 3914 3915 while (count < persistent_huge_pages(h)) { 3916 if (!adjust_pool_surplus(h, nodes_allowed, 1)) 3917 break; 3918 } 3919 out: 3920 h->max_huge_pages = persistent_huge_pages(h); 3921 spin_unlock_irq(&hugetlb_lock); 3922 mutex_unlock(&h->resize_lock); 3923 3924 NODEMASK_FREE(node_alloc_noretry); 3925 3926 return 0; 3927 } 3928 3929 static int demote_free_hugetlb_folio(struct hstate *h, struct folio *folio) 3930 { 3931 int i, nid = folio_nid(folio); 3932 struct hstate *target_hstate; 3933 struct page *subpage; 3934 struct folio *inner_folio; 3935 int rc = 0; 3936 3937 target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order); 3938 3939 remove_hugetlb_folio_for_demote(h, folio, false); 3940 spin_unlock_irq(&hugetlb_lock); 3941 3942 /* 3943 * If vmemmap already existed for folio, the remove routine above would 3944 * have cleared the hugetlb folio flag. Hence the folio is technically 3945 * no longer a hugetlb folio. hugetlb_vmemmap_restore_folio can only be 3946 * passed hugetlb folios and will BUG otherwise. 3947 */ 3948 if (folio_test_hugetlb(folio)) { 3949 rc = hugetlb_vmemmap_restore_folio(h, folio); 3950 if (rc) { 3951 /* Allocation of vmemmmap failed, we can not demote folio */ 3952 spin_lock_irq(&hugetlb_lock); 3953 folio_ref_unfreeze(folio, 1); 3954 add_hugetlb_folio(h, folio, false); 3955 return rc; 3956 } 3957 } 3958 3959 /* 3960 * Use destroy_compound_hugetlb_folio_for_demote for all huge page 3961 * sizes as it will not ref count folios. 3962 */ 3963 destroy_compound_hugetlb_folio_for_demote(folio, huge_page_order(h)); 3964 3965 /* 3966 * Taking target hstate mutex synchronizes with set_max_huge_pages. 3967 * Without the mutex, pages added to target hstate could be marked 3968 * as surplus. 3969 * 3970 * Note that we already hold h->resize_lock. To prevent deadlock, 3971 * use the convention of always taking larger size hstate mutex first. 3972 */ 3973 mutex_lock(&target_hstate->resize_lock); 3974 for (i = 0; i < pages_per_huge_page(h); 3975 i += pages_per_huge_page(target_hstate)) { 3976 subpage = folio_page(folio, i); 3977 inner_folio = page_folio(subpage); 3978 if (hstate_is_gigantic(target_hstate)) 3979 prep_compound_gigantic_folio_for_demote(inner_folio, 3980 target_hstate->order); 3981 else 3982 prep_compound_page(subpage, target_hstate->order); 3983 folio_change_private(inner_folio, NULL); 3984 prep_new_hugetlb_folio(target_hstate, inner_folio, nid); 3985 free_huge_folio(inner_folio); 3986 } 3987 mutex_unlock(&target_hstate->resize_lock); 3988 3989 spin_lock_irq(&hugetlb_lock); 3990 3991 /* 3992 * Not absolutely necessary, but for consistency update max_huge_pages 3993 * based on pool changes for the demoted page. 3994 */ 3995 h->max_huge_pages--; 3996 target_hstate->max_huge_pages += 3997 pages_per_huge_page(h) / pages_per_huge_page(target_hstate); 3998 3999 return rc; 4000 } 4001 4002 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed) 4003 __must_hold(&hugetlb_lock) 4004 { 4005 int nr_nodes, node; 4006 struct folio *folio; 4007 4008 lockdep_assert_held(&hugetlb_lock); 4009 4010 /* We should never get here if no demote order */ 4011 if (!h->demote_order) { 4012 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n"); 4013 return -EINVAL; /* internal error */ 4014 } 4015 4016 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 4017 list_for_each_entry(folio, &h->hugepage_freelists[node], lru) { 4018 if (folio_test_hwpoison(folio)) 4019 continue; 4020 return demote_free_hugetlb_folio(h, folio); 4021 } 4022 } 4023 4024 /* 4025 * Only way to get here is if all pages on free lists are poisoned. 4026 * Return -EBUSY so that caller will not retry. 4027 */ 4028 return -EBUSY; 4029 } 4030 4031 #define HSTATE_ATTR_RO(_name) \ 4032 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 4033 4034 #define HSTATE_ATTR_WO(_name) \ 4035 static struct kobj_attribute _name##_attr = __ATTR_WO(_name) 4036 4037 #define HSTATE_ATTR(_name) \ 4038 static struct kobj_attribute _name##_attr = __ATTR_RW(_name) 4039 4040 static struct kobject *hugepages_kobj; 4041 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 4042 4043 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp); 4044 4045 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp) 4046 { 4047 int i; 4048 4049 for (i = 0; i < HUGE_MAX_HSTATE; i++) 4050 if (hstate_kobjs[i] == kobj) { 4051 if (nidp) 4052 *nidp = NUMA_NO_NODE; 4053 return &hstates[i]; 4054 } 4055 4056 return kobj_to_node_hstate(kobj, nidp); 4057 } 4058 4059 static ssize_t nr_hugepages_show_common(struct kobject *kobj, 4060 struct kobj_attribute *attr, char *buf) 4061 { 4062 struct hstate *h; 4063 unsigned long nr_huge_pages; 4064 int nid; 4065 4066 h = kobj_to_hstate(kobj, &nid); 4067 if (nid == NUMA_NO_NODE) 4068 nr_huge_pages = h->nr_huge_pages; 4069 else 4070 nr_huge_pages = h->nr_huge_pages_node[nid]; 4071 4072 return sysfs_emit(buf, "%lu\n", nr_huge_pages); 4073 } 4074 4075 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy, 4076 struct hstate *h, int nid, 4077 unsigned long count, size_t len) 4078 { 4079 int err; 4080 nodemask_t nodes_allowed, *n_mask; 4081 4082 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 4083 return -EINVAL; 4084 4085 if (nid == NUMA_NO_NODE) { 4086 /* 4087 * global hstate attribute 4088 */ 4089 if (!(obey_mempolicy && 4090 init_nodemask_of_mempolicy(&nodes_allowed))) 4091 n_mask = &node_states[N_MEMORY]; 4092 else 4093 n_mask = &nodes_allowed; 4094 } else { 4095 /* 4096 * Node specific request. count adjustment happens in 4097 * set_max_huge_pages() after acquiring hugetlb_lock. 4098 */ 4099 init_nodemask_of_node(&nodes_allowed, nid); 4100 n_mask = &nodes_allowed; 4101 } 4102 4103 err = set_max_huge_pages(h, count, nid, n_mask); 4104 4105 return err ? err : len; 4106 } 4107 4108 static ssize_t nr_hugepages_store_common(bool obey_mempolicy, 4109 struct kobject *kobj, const char *buf, 4110 size_t len) 4111 { 4112 struct hstate *h; 4113 unsigned long count; 4114 int nid; 4115 int err; 4116 4117 err = kstrtoul(buf, 10, &count); 4118 if (err) 4119 return err; 4120 4121 h = kobj_to_hstate(kobj, &nid); 4122 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len); 4123 } 4124 4125 static ssize_t nr_hugepages_show(struct kobject *kobj, 4126 struct kobj_attribute *attr, char *buf) 4127 { 4128 return nr_hugepages_show_common(kobj, attr, buf); 4129 } 4130 4131 static ssize_t nr_hugepages_store(struct kobject *kobj, 4132 struct kobj_attribute *attr, const char *buf, size_t len) 4133 { 4134 return nr_hugepages_store_common(false, kobj, buf, len); 4135 } 4136 HSTATE_ATTR(nr_hugepages); 4137 4138 #ifdef CONFIG_NUMA 4139 4140 /* 4141 * hstate attribute for optionally mempolicy-based constraint on persistent 4142 * huge page alloc/free. 4143 */ 4144 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj, 4145 struct kobj_attribute *attr, 4146 char *buf) 4147 { 4148 return nr_hugepages_show_common(kobj, attr, buf); 4149 } 4150 4151 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj, 4152 struct kobj_attribute *attr, const char *buf, size_t len) 4153 { 4154 return nr_hugepages_store_common(true, kobj, buf, len); 4155 } 4156 HSTATE_ATTR(nr_hugepages_mempolicy); 4157 #endif 4158 4159 4160 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, 4161 struct kobj_attribute *attr, char *buf) 4162 { 4163 struct hstate *h = kobj_to_hstate(kobj, NULL); 4164 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages); 4165 } 4166 4167 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, 4168 struct kobj_attribute *attr, const char *buf, size_t count) 4169 { 4170 int err; 4171 unsigned long input; 4172 struct hstate *h = kobj_to_hstate(kobj, NULL); 4173 4174 if (hstate_is_gigantic(h)) 4175 return -EINVAL; 4176 4177 err = kstrtoul(buf, 10, &input); 4178 if (err) 4179 return err; 4180 4181 spin_lock_irq(&hugetlb_lock); 4182 h->nr_overcommit_huge_pages = input; 4183 spin_unlock_irq(&hugetlb_lock); 4184 4185 return count; 4186 } 4187 HSTATE_ATTR(nr_overcommit_hugepages); 4188 4189 static ssize_t free_hugepages_show(struct kobject *kobj, 4190 struct kobj_attribute *attr, char *buf) 4191 { 4192 struct hstate *h; 4193 unsigned long free_huge_pages; 4194 int nid; 4195 4196 h = kobj_to_hstate(kobj, &nid); 4197 if (nid == NUMA_NO_NODE) 4198 free_huge_pages = h->free_huge_pages; 4199 else 4200 free_huge_pages = h->free_huge_pages_node[nid]; 4201 4202 return sysfs_emit(buf, "%lu\n", free_huge_pages); 4203 } 4204 HSTATE_ATTR_RO(free_hugepages); 4205 4206 static ssize_t resv_hugepages_show(struct kobject *kobj, 4207 struct kobj_attribute *attr, char *buf) 4208 { 4209 struct hstate *h = kobj_to_hstate(kobj, NULL); 4210 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages); 4211 } 4212 HSTATE_ATTR_RO(resv_hugepages); 4213 4214 static ssize_t surplus_hugepages_show(struct kobject *kobj, 4215 struct kobj_attribute *attr, char *buf) 4216 { 4217 struct hstate *h; 4218 unsigned long surplus_huge_pages; 4219 int nid; 4220 4221 h = kobj_to_hstate(kobj, &nid); 4222 if (nid == NUMA_NO_NODE) 4223 surplus_huge_pages = h->surplus_huge_pages; 4224 else 4225 surplus_huge_pages = h->surplus_huge_pages_node[nid]; 4226 4227 return sysfs_emit(buf, "%lu\n", surplus_huge_pages); 4228 } 4229 HSTATE_ATTR_RO(surplus_hugepages); 4230 4231 static ssize_t demote_store(struct kobject *kobj, 4232 struct kobj_attribute *attr, const char *buf, size_t len) 4233 { 4234 unsigned long nr_demote; 4235 unsigned long nr_available; 4236 nodemask_t nodes_allowed, *n_mask; 4237 struct hstate *h; 4238 int err; 4239 int nid; 4240 4241 err = kstrtoul(buf, 10, &nr_demote); 4242 if (err) 4243 return err; 4244 h = kobj_to_hstate(kobj, &nid); 4245 4246 if (nid != NUMA_NO_NODE) { 4247 init_nodemask_of_node(&nodes_allowed, nid); 4248 n_mask = &nodes_allowed; 4249 } else { 4250 n_mask = &node_states[N_MEMORY]; 4251 } 4252 4253 /* Synchronize with other sysfs operations modifying huge pages */ 4254 mutex_lock(&h->resize_lock); 4255 spin_lock_irq(&hugetlb_lock); 4256 4257 while (nr_demote) { 4258 /* 4259 * Check for available pages to demote each time thorough the 4260 * loop as demote_pool_huge_page will drop hugetlb_lock. 4261 */ 4262 if (nid != NUMA_NO_NODE) 4263 nr_available = h->free_huge_pages_node[nid]; 4264 else 4265 nr_available = h->free_huge_pages; 4266 nr_available -= h->resv_huge_pages; 4267 if (!nr_available) 4268 break; 4269 4270 err = demote_pool_huge_page(h, n_mask); 4271 if (err) 4272 break; 4273 4274 nr_demote--; 4275 } 4276 4277 spin_unlock_irq(&hugetlb_lock); 4278 mutex_unlock(&h->resize_lock); 4279 4280 if (err) 4281 return err; 4282 return len; 4283 } 4284 HSTATE_ATTR_WO(demote); 4285 4286 static ssize_t demote_size_show(struct kobject *kobj, 4287 struct kobj_attribute *attr, char *buf) 4288 { 4289 struct hstate *h = kobj_to_hstate(kobj, NULL); 4290 unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K; 4291 4292 return sysfs_emit(buf, "%lukB\n", demote_size); 4293 } 4294 4295 static ssize_t demote_size_store(struct kobject *kobj, 4296 struct kobj_attribute *attr, 4297 const char *buf, size_t count) 4298 { 4299 struct hstate *h, *demote_hstate; 4300 unsigned long demote_size; 4301 unsigned int demote_order; 4302 4303 demote_size = (unsigned long)memparse(buf, NULL); 4304 4305 demote_hstate = size_to_hstate(demote_size); 4306 if (!demote_hstate) 4307 return -EINVAL; 4308 demote_order = demote_hstate->order; 4309 if (demote_order < HUGETLB_PAGE_ORDER) 4310 return -EINVAL; 4311 4312 /* demote order must be smaller than hstate order */ 4313 h = kobj_to_hstate(kobj, NULL); 4314 if (demote_order >= h->order) 4315 return -EINVAL; 4316 4317 /* resize_lock synchronizes access to demote size and writes */ 4318 mutex_lock(&h->resize_lock); 4319 h->demote_order = demote_order; 4320 mutex_unlock(&h->resize_lock); 4321 4322 return count; 4323 } 4324 HSTATE_ATTR(demote_size); 4325 4326 static struct attribute *hstate_attrs[] = { 4327 &nr_hugepages_attr.attr, 4328 &nr_overcommit_hugepages_attr.attr, 4329 &free_hugepages_attr.attr, 4330 &resv_hugepages_attr.attr, 4331 &surplus_hugepages_attr.attr, 4332 #ifdef CONFIG_NUMA 4333 &nr_hugepages_mempolicy_attr.attr, 4334 #endif 4335 NULL, 4336 }; 4337 4338 static const struct attribute_group hstate_attr_group = { 4339 .attrs = hstate_attrs, 4340 }; 4341 4342 static struct attribute *hstate_demote_attrs[] = { 4343 &demote_size_attr.attr, 4344 &demote_attr.attr, 4345 NULL, 4346 }; 4347 4348 static const struct attribute_group hstate_demote_attr_group = { 4349 .attrs = hstate_demote_attrs, 4350 }; 4351 4352 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent, 4353 struct kobject **hstate_kobjs, 4354 const struct attribute_group *hstate_attr_group) 4355 { 4356 int retval; 4357 int hi = hstate_index(h); 4358 4359 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent); 4360 if (!hstate_kobjs[hi]) 4361 return -ENOMEM; 4362 4363 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group); 4364 if (retval) { 4365 kobject_put(hstate_kobjs[hi]); 4366 hstate_kobjs[hi] = NULL; 4367 return retval; 4368 } 4369 4370 if (h->demote_order) { 4371 retval = sysfs_create_group(hstate_kobjs[hi], 4372 &hstate_demote_attr_group); 4373 if (retval) { 4374 pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name); 4375 sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group); 4376 kobject_put(hstate_kobjs[hi]); 4377 hstate_kobjs[hi] = NULL; 4378 return retval; 4379 } 4380 } 4381 4382 return 0; 4383 } 4384 4385 #ifdef CONFIG_NUMA 4386 static bool hugetlb_sysfs_initialized __ro_after_init; 4387 4388 /* 4389 * node_hstate/s - associate per node hstate attributes, via their kobjects, 4390 * with node devices in node_devices[] using a parallel array. The array 4391 * index of a node device or _hstate == node id. 4392 * This is here to avoid any static dependency of the node device driver, in 4393 * the base kernel, on the hugetlb module. 4394 */ 4395 struct node_hstate { 4396 struct kobject *hugepages_kobj; 4397 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 4398 }; 4399 static struct node_hstate node_hstates[MAX_NUMNODES]; 4400 4401 /* 4402 * A subset of global hstate attributes for node devices 4403 */ 4404 static struct attribute *per_node_hstate_attrs[] = { 4405 &nr_hugepages_attr.attr, 4406 &free_hugepages_attr.attr, 4407 &surplus_hugepages_attr.attr, 4408 NULL, 4409 }; 4410 4411 static const struct attribute_group per_node_hstate_attr_group = { 4412 .attrs = per_node_hstate_attrs, 4413 }; 4414 4415 /* 4416 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj. 4417 * Returns node id via non-NULL nidp. 4418 */ 4419 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 4420 { 4421 int nid; 4422 4423 for (nid = 0; nid < nr_node_ids; nid++) { 4424 struct node_hstate *nhs = &node_hstates[nid]; 4425 int i; 4426 for (i = 0; i < HUGE_MAX_HSTATE; i++) 4427 if (nhs->hstate_kobjs[i] == kobj) { 4428 if (nidp) 4429 *nidp = nid; 4430 return &hstates[i]; 4431 } 4432 } 4433 4434 BUG(); 4435 return NULL; 4436 } 4437 4438 /* 4439 * Unregister hstate attributes from a single node device. 4440 * No-op if no hstate attributes attached. 4441 */ 4442 void hugetlb_unregister_node(struct node *node) 4443 { 4444 struct hstate *h; 4445 struct node_hstate *nhs = &node_hstates[node->dev.id]; 4446 4447 if (!nhs->hugepages_kobj) 4448 return; /* no hstate attributes */ 4449 4450 for_each_hstate(h) { 4451 int idx = hstate_index(h); 4452 struct kobject *hstate_kobj = nhs->hstate_kobjs[idx]; 4453 4454 if (!hstate_kobj) 4455 continue; 4456 if (h->demote_order) 4457 sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group); 4458 sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group); 4459 kobject_put(hstate_kobj); 4460 nhs->hstate_kobjs[idx] = NULL; 4461 } 4462 4463 kobject_put(nhs->hugepages_kobj); 4464 nhs->hugepages_kobj = NULL; 4465 } 4466 4467 4468 /* 4469 * Register hstate attributes for a single node device. 4470 * No-op if attributes already registered. 4471 */ 4472 void hugetlb_register_node(struct node *node) 4473 { 4474 struct hstate *h; 4475 struct node_hstate *nhs = &node_hstates[node->dev.id]; 4476 int err; 4477 4478 if (!hugetlb_sysfs_initialized) 4479 return; 4480 4481 if (nhs->hugepages_kobj) 4482 return; /* already allocated */ 4483 4484 nhs->hugepages_kobj = kobject_create_and_add("hugepages", 4485 &node->dev.kobj); 4486 if (!nhs->hugepages_kobj) 4487 return; 4488 4489 for_each_hstate(h) { 4490 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj, 4491 nhs->hstate_kobjs, 4492 &per_node_hstate_attr_group); 4493 if (err) { 4494 pr_err("HugeTLB: Unable to add hstate %s for node %d\n", 4495 h->name, node->dev.id); 4496 hugetlb_unregister_node(node); 4497 break; 4498 } 4499 } 4500 } 4501 4502 /* 4503 * hugetlb init time: register hstate attributes for all registered node 4504 * devices of nodes that have memory. All on-line nodes should have 4505 * registered their associated device by this time. 4506 */ 4507 static void __init hugetlb_register_all_nodes(void) 4508 { 4509 int nid; 4510 4511 for_each_online_node(nid) 4512 hugetlb_register_node(node_devices[nid]); 4513 } 4514 #else /* !CONFIG_NUMA */ 4515 4516 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 4517 { 4518 BUG(); 4519 if (nidp) 4520 *nidp = -1; 4521 return NULL; 4522 } 4523 4524 static void hugetlb_register_all_nodes(void) { } 4525 4526 #endif 4527 4528 #ifdef CONFIG_CMA 4529 static void __init hugetlb_cma_check(void); 4530 #else 4531 static inline __init void hugetlb_cma_check(void) 4532 { 4533 } 4534 #endif 4535 4536 static void __init hugetlb_sysfs_init(void) 4537 { 4538 struct hstate *h; 4539 int err; 4540 4541 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); 4542 if (!hugepages_kobj) 4543 return; 4544 4545 for_each_hstate(h) { 4546 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj, 4547 hstate_kobjs, &hstate_attr_group); 4548 if (err) 4549 pr_err("HugeTLB: Unable to add hstate %s", h->name); 4550 } 4551 4552 #ifdef CONFIG_NUMA 4553 hugetlb_sysfs_initialized = true; 4554 #endif 4555 hugetlb_register_all_nodes(); 4556 } 4557 4558 #ifdef CONFIG_SYSCTL 4559 static void hugetlb_sysctl_init(void); 4560 #else 4561 static inline void hugetlb_sysctl_init(void) { } 4562 #endif 4563 4564 static int __init hugetlb_init(void) 4565 { 4566 int i; 4567 4568 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE < 4569 __NR_HPAGEFLAGS); 4570 4571 if (!hugepages_supported()) { 4572 if (hugetlb_max_hstate || default_hstate_max_huge_pages) 4573 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n"); 4574 return 0; 4575 } 4576 4577 /* 4578 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some 4579 * architectures depend on setup being done here. 4580 */ 4581 hugetlb_add_hstate(HUGETLB_PAGE_ORDER); 4582 if (!parsed_default_hugepagesz) { 4583 /* 4584 * If we did not parse a default huge page size, set 4585 * default_hstate_idx to HPAGE_SIZE hstate. And, if the 4586 * number of huge pages for this default size was implicitly 4587 * specified, set that here as well. 4588 * Note that the implicit setting will overwrite an explicit 4589 * setting. A warning will be printed in this case. 4590 */ 4591 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE)); 4592 if (default_hstate_max_huge_pages) { 4593 if (default_hstate.max_huge_pages) { 4594 char buf[32]; 4595 4596 string_get_size(huge_page_size(&default_hstate), 4597 1, STRING_UNITS_2, buf, 32); 4598 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n", 4599 default_hstate.max_huge_pages, buf); 4600 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n", 4601 default_hstate_max_huge_pages); 4602 } 4603 default_hstate.max_huge_pages = 4604 default_hstate_max_huge_pages; 4605 4606 for_each_online_node(i) 4607 default_hstate.max_huge_pages_node[i] = 4608 default_hugepages_in_node[i]; 4609 } 4610 } 4611 4612 hugetlb_cma_check(); 4613 hugetlb_init_hstates(); 4614 gather_bootmem_prealloc(); 4615 report_hugepages(); 4616 4617 hugetlb_sysfs_init(); 4618 hugetlb_cgroup_file_init(); 4619 hugetlb_sysctl_init(); 4620 4621 #ifdef CONFIG_SMP 4622 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus()); 4623 #else 4624 num_fault_mutexes = 1; 4625 #endif 4626 hugetlb_fault_mutex_table = 4627 kmalloc_array(num_fault_mutexes, sizeof(struct mutex), 4628 GFP_KERNEL); 4629 BUG_ON(!hugetlb_fault_mutex_table); 4630 4631 for (i = 0; i < num_fault_mutexes; i++) 4632 mutex_init(&hugetlb_fault_mutex_table[i]); 4633 return 0; 4634 } 4635 subsys_initcall(hugetlb_init); 4636 4637 /* Overwritten by architectures with more huge page sizes */ 4638 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size) 4639 { 4640 return size == HPAGE_SIZE; 4641 } 4642 4643 void __init hugetlb_add_hstate(unsigned int order) 4644 { 4645 struct hstate *h; 4646 unsigned long i; 4647 4648 if (size_to_hstate(PAGE_SIZE << order)) { 4649 return; 4650 } 4651 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE); 4652 BUG_ON(order < order_base_2(__NR_USED_SUBPAGE)); 4653 h = &hstates[hugetlb_max_hstate++]; 4654 mutex_init(&h->resize_lock); 4655 h->order = order; 4656 h->mask = ~(huge_page_size(h) - 1); 4657 for (i = 0; i < MAX_NUMNODES; ++i) 4658 INIT_LIST_HEAD(&h->hugepage_freelists[i]); 4659 INIT_LIST_HEAD(&h->hugepage_activelist); 4660 h->next_nid_to_alloc = first_memory_node; 4661 h->next_nid_to_free = first_memory_node; 4662 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", 4663 huge_page_size(h)/SZ_1K); 4664 4665 parsed_hstate = h; 4666 } 4667 4668 bool __init __weak hugetlb_node_alloc_supported(void) 4669 { 4670 return true; 4671 } 4672 4673 static void __init hugepages_clear_pages_in_node(void) 4674 { 4675 if (!hugetlb_max_hstate) { 4676 default_hstate_max_huge_pages = 0; 4677 memset(default_hugepages_in_node, 0, 4678 sizeof(default_hugepages_in_node)); 4679 } else { 4680 parsed_hstate->max_huge_pages = 0; 4681 memset(parsed_hstate->max_huge_pages_node, 0, 4682 sizeof(parsed_hstate->max_huge_pages_node)); 4683 } 4684 } 4685 4686 /* 4687 * hugepages command line processing 4688 * hugepages normally follows a valid hugepagsz or default_hugepagsz 4689 * specification. If not, ignore the hugepages value. hugepages can also 4690 * be the first huge page command line option in which case it implicitly 4691 * specifies the number of huge pages for the default size. 4692 */ 4693 static int __init hugepages_setup(char *s) 4694 { 4695 unsigned long *mhp; 4696 static unsigned long *last_mhp; 4697 int node = NUMA_NO_NODE; 4698 int count; 4699 unsigned long tmp; 4700 char *p = s; 4701 4702 if (!parsed_valid_hugepagesz) { 4703 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s); 4704 parsed_valid_hugepagesz = true; 4705 return 1; 4706 } 4707 4708 /* 4709 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter 4710 * yet, so this hugepages= parameter goes to the "default hstate". 4711 * Otherwise, it goes with the previously parsed hugepagesz or 4712 * default_hugepagesz. 4713 */ 4714 else if (!hugetlb_max_hstate) 4715 mhp = &default_hstate_max_huge_pages; 4716 else 4717 mhp = &parsed_hstate->max_huge_pages; 4718 4719 if (mhp == last_mhp) { 4720 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s); 4721 return 1; 4722 } 4723 4724 while (*p) { 4725 count = 0; 4726 if (sscanf(p, "%lu%n", &tmp, &count) != 1) 4727 goto invalid; 4728 /* Parameter is node format */ 4729 if (p[count] == ':') { 4730 if (!hugetlb_node_alloc_supported()) { 4731 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n"); 4732 return 1; 4733 } 4734 if (tmp >= MAX_NUMNODES || !node_online(tmp)) 4735 goto invalid; 4736 node = array_index_nospec(tmp, MAX_NUMNODES); 4737 p += count + 1; 4738 /* Parse hugepages */ 4739 if (sscanf(p, "%lu%n", &tmp, &count) != 1) 4740 goto invalid; 4741 if (!hugetlb_max_hstate) 4742 default_hugepages_in_node[node] = tmp; 4743 else 4744 parsed_hstate->max_huge_pages_node[node] = tmp; 4745 *mhp += tmp; 4746 /* Go to parse next node*/ 4747 if (p[count] == ',') 4748 p += count + 1; 4749 else 4750 break; 4751 } else { 4752 if (p != s) 4753 goto invalid; 4754 *mhp = tmp; 4755 break; 4756 } 4757 } 4758 4759 /* 4760 * Global state is always initialized later in hugetlb_init. 4761 * But we need to allocate gigantic hstates here early to still 4762 * use the bootmem allocator. 4763 */ 4764 if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate)) 4765 hugetlb_hstate_alloc_pages(parsed_hstate); 4766 4767 last_mhp = mhp; 4768 4769 return 1; 4770 4771 invalid: 4772 pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p); 4773 hugepages_clear_pages_in_node(); 4774 return 1; 4775 } 4776 __setup("hugepages=", hugepages_setup); 4777 4778 /* 4779 * hugepagesz command line processing 4780 * A specific huge page size can only be specified once with hugepagesz. 4781 * hugepagesz is followed by hugepages on the command line. The global 4782 * variable 'parsed_valid_hugepagesz' is used to determine if prior 4783 * hugepagesz argument was valid. 4784 */ 4785 static int __init hugepagesz_setup(char *s) 4786 { 4787 unsigned long size; 4788 struct hstate *h; 4789 4790 parsed_valid_hugepagesz = false; 4791 size = (unsigned long)memparse(s, NULL); 4792 4793 if (!arch_hugetlb_valid_size(size)) { 4794 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s); 4795 return 1; 4796 } 4797 4798 h = size_to_hstate(size); 4799 if (h) { 4800 /* 4801 * hstate for this size already exists. This is normally 4802 * an error, but is allowed if the existing hstate is the 4803 * default hstate. More specifically, it is only allowed if 4804 * the number of huge pages for the default hstate was not 4805 * previously specified. 4806 */ 4807 if (!parsed_default_hugepagesz || h != &default_hstate || 4808 default_hstate.max_huge_pages) { 4809 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s); 4810 return 1; 4811 } 4812 4813 /* 4814 * No need to call hugetlb_add_hstate() as hstate already 4815 * exists. But, do set parsed_hstate so that a following 4816 * hugepages= parameter will be applied to this hstate. 4817 */ 4818 parsed_hstate = h; 4819 parsed_valid_hugepagesz = true; 4820 return 1; 4821 } 4822 4823 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); 4824 parsed_valid_hugepagesz = true; 4825 return 1; 4826 } 4827 __setup("hugepagesz=", hugepagesz_setup); 4828 4829 /* 4830 * default_hugepagesz command line input 4831 * Only one instance of default_hugepagesz allowed on command line. 4832 */ 4833 static int __init default_hugepagesz_setup(char *s) 4834 { 4835 unsigned long size; 4836 int i; 4837 4838 parsed_valid_hugepagesz = false; 4839 if (parsed_default_hugepagesz) { 4840 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s); 4841 return 1; 4842 } 4843 4844 size = (unsigned long)memparse(s, NULL); 4845 4846 if (!arch_hugetlb_valid_size(size)) { 4847 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s); 4848 return 1; 4849 } 4850 4851 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); 4852 parsed_valid_hugepagesz = true; 4853 parsed_default_hugepagesz = true; 4854 default_hstate_idx = hstate_index(size_to_hstate(size)); 4855 4856 /* 4857 * The number of default huge pages (for this size) could have been 4858 * specified as the first hugetlb parameter: hugepages=X. If so, 4859 * then default_hstate_max_huge_pages is set. If the default huge 4860 * page size is gigantic (> MAX_PAGE_ORDER), then the pages must be 4861 * allocated here from bootmem allocator. 4862 */ 4863 if (default_hstate_max_huge_pages) { 4864 default_hstate.max_huge_pages = default_hstate_max_huge_pages; 4865 for_each_online_node(i) 4866 default_hstate.max_huge_pages_node[i] = 4867 default_hugepages_in_node[i]; 4868 if (hstate_is_gigantic(&default_hstate)) 4869 hugetlb_hstate_alloc_pages(&default_hstate); 4870 default_hstate_max_huge_pages = 0; 4871 } 4872 4873 return 1; 4874 } 4875 __setup("default_hugepagesz=", default_hugepagesz_setup); 4876 4877 static nodemask_t *policy_mbind_nodemask(gfp_t gfp) 4878 { 4879 #ifdef CONFIG_NUMA 4880 struct mempolicy *mpol = get_task_policy(current); 4881 4882 /* 4883 * Only enforce MPOL_BIND policy which overlaps with cpuset policy 4884 * (from policy_nodemask) specifically for hugetlb case 4885 */ 4886 if (mpol->mode == MPOL_BIND && 4887 (apply_policy_zone(mpol, gfp_zone(gfp)) && 4888 cpuset_nodemask_valid_mems_allowed(&mpol->nodes))) 4889 return &mpol->nodes; 4890 #endif 4891 return NULL; 4892 } 4893 4894 static unsigned int allowed_mems_nr(struct hstate *h) 4895 { 4896 int node; 4897 unsigned int nr = 0; 4898 nodemask_t *mbind_nodemask; 4899 unsigned int *array = h->free_huge_pages_node; 4900 gfp_t gfp_mask = htlb_alloc_mask(h); 4901 4902 mbind_nodemask = policy_mbind_nodemask(gfp_mask); 4903 for_each_node_mask(node, cpuset_current_mems_allowed) { 4904 if (!mbind_nodemask || node_isset(node, *mbind_nodemask)) 4905 nr += array[node]; 4906 } 4907 4908 return nr; 4909 } 4910 4911 #ifdef CONFIG_SYSCTL 4912 static int proc_hugetlb_doulongvec_minmax(const struct ctl_table *table, int write, 4913 void *buffer, size_t *length, 4914 loff_t *ppos, unsigned long *out) 4915 { 4916 struct ctl_table dup_table; 4917 4918 /* 4919 * In order to avoid races with __do_proc_doulongvec_minmax(), we 4920 * can duplicate the @table and alter the duplicate of it. 4921 */ 4922 dup_table = *table; 4923 dup_table.data = out; 4924 4925 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos); 4926 } 4927 4928 static int hugetlb_sysctl_handler_common(bool obey_mempolicy, 4929 const struct ctl_table *table, int write, 4930 void *buffer, size_t *length, loff_t *ppos) 4931 { 4932 struct hstate *h = &default_hstate; 4933 unsigned long tmp = h->max_huge_pages; 4934 int ret; 4935 4936 if (!hugepages_supported()) 4937 return -EOPNOTSUPP; 4938 4939 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, 4940 &tmp); 4941 if (ret) 4942 goto out; 4943 4944 if (write) 4945 ret = __nr_hugepages_store_common(obey_mempolicy, h, 4946 NUMA_NO_NODE, tmp, *length); 4947 out: 4948 return ret; 4949 } 4950 4951 static int hugetlb_sysctl_handler(struct ctl_table *table, int write, 4952 void *buffer, size_t *length, loff_t *ppos) 4953 { 4954 4955 return hugetlb_sysctl_handler_common(false, table, write, 4956 buffer, length, ppos); 4957 } 4958 4959 #ifdef CONFIG_NUMA 4960 static int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write, 4961 void *buffer, size_t *length, loff_t *ppos) 4962 { 4963 return hugetlb_sysctl_handler_common(true, table, write, 4964 buffer, length, ppos); 4965 } 4966 #endif /* CONFIG_NUMA */ 4967 4968 static int hugetlb_overcommit_handler(struct ctl_table *table, int write, 4969 void *buffer, size_t *length, loff_t *ppos) 4970 { 4971 struct hstate *h = &default_hstate; 4972 unsigned long tmp; 4973 int ret; 4974 4975 if (!hugepages_supported()) 4976 return -EOPNOTSUPP; 4977 4978 tmp = h->nr_overcommit_huge_pages; 4979 4980 if (write && hstate_is_gigantic(h)) 4981 return -EINVAL; 4982 4983 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, 4984 &tmp); 4985 if (ret) 4986 goto out; 4987 4988 if (write) { 4989 spin_lock_irq(&hugetlb_lock); 4990 h->nr_overcommit_huge_pages = tmp; 4991 spin_unlock_irq(&hugetlb_lock); 4992 } 4993 out: 4994 return ret; 4995 } 4996 4997 static struct ctl_table hugetlb_table[] = { 4998 { 4999 .procname = "nr_hugepages", 5000 .data = NULL, 5001 .maxlen = sizeof(unsigned long), 5002 .mode = 0644, 5003 .proc_handler = hugetlb_sysctl_handler, 5004 }, 5005 #ifdef CONFIG_NUMA 5006 { 5007 .procname = "nr_hugepages_mempolicy", 5008 .data = NULL, 5009 .maxlen = sizeof(unsigned long), 5010 .mode = 0644, 5011 .proc_handler = &hugetlb_mempolicy_sysctl_handler, 5012 }, 5013 #endif 5014 { 5015 .procname = "hugetlb_shm_group", 5016 .data = &sysctl_hugetlb_shm_group, 5017 .maxlen = sizeof(gid_t), 5018 .mode = 0644, 5019 .proc_handler = proc_dointvec, 5020 }, 5021 { 5022 .procname = "nr_overcommit_hugepages", 5023 .data = NULL, 5024 .maxlen = sizeof(unsigned long), 5025 .mode = 0644, 5026 .proc_handler = hugetlb_overcommit_handler, 5027 }, 5028 }; 5029 5030 static void hugetlb_sysctl_init(void) 5031 { 5032 register_sysctl_init("vm", hugetlb_table); 5033 } 5034 #endif /* CONFIG_SYSCTL */ 5035 5036 void hugetlb_report_meminfo(struct seq_file *m) 5037 { 5038 struct hstate *h; 5039 unsigned long total = 0; 5040 5041 if (!hugepages_supported()) 5042 return; 5043 5044 for_each_hstate(h) { 5045 unsigned long count = h->nr_huge_pages; 5046 5047 total += huge_page_size(h) * count; 5048 5049 if (h == &default_hstate) 5050 seq_printf(m, 5051 "HugePages_Total: %5lu\n" 5052 "HugePages_Free: %5lu\n" 5053 "HugePages_Rsvd: %5lu\n" 5054 "HugePages_Surp: %5lu\n" 5055 "Hugepagesize: %8lu kB\n", 5056 count, 5057 h->free_huge_pages, 5058 h->resv_huge_pages, 5059 h->surplus_huge_pages, 5060 huge_page_size(h) / SZ_1K); 5061 } 5062 5063 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K); 5064 } 5065 5066 int hugetlb_report_node_meminfo(char *buf, int len, int nid) 5067 { 5068 struct hstate *h = &default_hstate; 5069 5070 if (!hugepages_supported()) 5071 return 0; 5072 5073 return sysfs_emit_at(buf, len, 5074 "Node %d HugePages_Total: %5u\n" 5075 "Node %d HugePages_Free: %5u\n" 5076 "Node %d HugePages_Surp: %5u\n", 5077 nid, h->nr_huge_pages_node[nid], 5078 nid, h->free_huge_pages_node[nid], 5079 nid, h->surplus_huge_pages_node[nid]); 5080 } 5081 5082 void hugetlb_show_meminfo_node(int nid) 5083 { 5084 struct hstate *h; 5085 5086 if (!hugepages_supported()) 5087 return; 5088 5089 for_each_hstate(h) 5090 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n", 5091 nid, 5092 h->nr_huge_pages_node[nid], 5093 h->free_huge_pages_node[nid], 5094 h->surplus_huge_pages_node[nid], 5095 huge_page_size(h) / SZ_1K); 5096 } 5097 5098 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm) 5099 { 5100 seq_printf(m, "HugetlbPages:\t%8lu kB\n", 5101 K(atomic_long_read(&mm->hugetlb_usage))); 5102 } 5103 5104 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ 5105 unsigned long hugetlb_total_pages(void) 5106 { 5107 struct hstate *h; 5108 unsigned long nr_total_pages = 0; 5109 5110 for_each_hstate(h) 5111 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h); 5112 return nr_total_pages; 5113 } 5114 5115 static int hugetlb_acct_memory(struct hstate *h, long delta) 5116 { 5117 int ret = -ENOMEM; 5118 5119 if (!delta) 5120 return 0; 5121 5122 spin_lock_irq(&hugetlb_lock); 5123 /* 5124 * When cpuset is configured, it breaks the strict hugetlb page 5125 * reservation as the accounting is done on a global variable. Such 5126 * reservation is completely rubbish in the presence of cpuset because 5127 * the reservation is not checked against page availability for the 5128 * current cpuset. Application can still potentially OOM'ed by kernel 5129 * with lack of free htlb page in cpuset that the task is in. 5130 * Attempt to enforce strict accounting with cpuset is almost 5131 * impossible (or too ugly) because cpuset is too fluid that 5132 * task or memory node can be dynamically moved between cpusets. 5133 * 5134 * The change of semantics for shared hugetlb mapping with cpuset is 5135 * undesirable. However, in order to preserve some of the semantics, 5136 * we fall back to check against current free page availability as 5137 * a best attempt and hopefully to minimize the impact of changing 5138 * semantics that cpuset has. 5139 * 5140 * Apart from cpuset, we also have memory policy mechanism that 5141 * also determines from which node the kernel will allocate memory 5142 * in a NUMA system. So similar to cpuset, we also should consider 5143 * the memory policy of the current task. Similar to the description 5144 * above. 5145 */ 5146 if (delta > 0) { 5147 if (gather_surplus_pages(h, delta) < 0) 5148 goto out; 5149 5150 if (delta > allowed_mems_nr(h)) { 5151 return_unused_surplus_pages(h, delta); 5152 goto out; 5153 } 5154 } 5155 5156 ret = 0; 5157 if (delta < 0) 5158 return_unused_surplus_pages(h, (unsigned long) -delta); 5159 5160 out: 5161 spin_unlock_irq(&hugetlb_lock); 5162 return ret; 5163 } 5164 5165 static void hugetlb_vm_op_open(struct vm_area_struct *vma) 5166 { 5167 struct resv_map *resv = vma_resv_map(vma); 5168 5169 /* 5170 * HPAGE_RESV_OWNER indicates a private mapping. 5171 * This new VMA should share its siblings reservation map if present. 5172 * The VMA will only ever have a valid reservation map pointer where 5173 * it is being copied for another still existing VMA. As that VMA 5174 * has a reference to the reservation map it cannot disappear until 5175 * after this open call completes. It is therefore safe to take a 5176 * new reference here without additional locking. 5177 */ 5178 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 5179 resv_map_dup_hugetlb_cgroup_uncharge_info(resv); 5180 kref_get(&resv->refs); 5181 } 5182 5183 /* 5184 * vma_lock structure for sharable mappings is vma specific. 5185 * Clear old pointer (if copied via vm_area_dup) and allocate 5186 * new structure. Before clearing, make sure vma_lock is not 5187 * for this vma. 5188 */ 5189 if (vma->vm_flags & VM_MAYSHARE) { 5190 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 5191 5192 if (vma_lock) { 5193 if (vma_lock->vma != vma) { 5194 vma->vm_private_data = NULL; 5195 hugetlb_vma_lock_alloc(vma); 5196 } else 5197 pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__); 5198 } else 5199 hugetlb_vma_lock_alloc(vma); 5200 } 5201 } 5202 5203 static void hugetlb_vm_op_close(struct vm_area_struct *vma) 5204 { 5205 struct hstate *h = hstate_vma(vma); 5206 struct resv_map *resv; 5207 struct hugepage_subpool *spool = subpool_vma(vma); 5208 unsigned long reserve, start, end; 5209 long gbl_reserve; 5210 5211 hugetlb_vma_lock_free(vma); 5212 5213 resv = vma_resv_map(vma); 5214 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 5215 return; 5216 5217 start = vma_hugecache_offset(h, vma, vma->vm_start); 5218 end = vma_hugecache_offset(h, vma, vma->vm_end); 5219 5220 reserve = (end - start) - region_count(resv, start, end); 5221 hugetlb_cgroup_uncharge_counter(resv, start, end); 5222 if (reserve) { 5223 /* 5224 * Decrement reserve counts. The global reserve count may be 5225 * adjusted if the subpool has a minimum size. 5226 */ 5227 gbl_reserve = hugepage_subpool_put_pages(spool, reserve); 5228 hugetlb_acct_memory(h, -gbl_reserve); 5229 } 5230 5231 kref_put(&resv->refs, resv_map_release); 5232 } 5233 5234 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr) 5235 { 5236 if (addr & ~(huge_page_mask(hstate_vma(vma)))) 5237 return -EINVAL; 5238 5239 /* 5240 * PMD sharing is only possible for PUD_SIZE-aligned address ranges 5241 * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this 5242 * split, unshare PMDs in the PUD_SIZE interval surrounding addr now. 5243 */ 5244 if (addr & ~PUD_MASK) { 5245 /* 5246 * hugetlb_vm_op_split is called right before we attempt to 5247 * split the VMA. We will need to unshare PMDs in the old and 5248 * new VMAs, so let's unshare before we split. 5249 */ 5250 unsigned long floor = addr & PUD_MASK; 5251 unsigned long ceil = floor + PUD_SIZE; 5252 5253 if (floor >= vma->vm_start && ceil <= vma->vm_end) 5254 hugetlb_unshare_pmds(vma, floor, ceil); 5255 } 5256 5257 return 0; 5258 } 5259 5260 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma) 5261 { 5262 return huge_page_size(hstate_vma(vma)); 5263 } 5264 5265 /* 5266 * We cannot handle pagefaults against hugetlb pages at all. They cause 5267 * handle_mm_fault() to try to instantiate regular-sized pages in the 5268 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get 5269 * this far. 5270 */ 5271 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf) 5272 { 5273 BUG(); 5274 return 0; 5275 } 5276 5277 /* 5278 * When a new function is introduced to vm_operations_struct and added 5279 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops. 5280 * This is because under System V memory model, mappings created via 5281 * shmget/shmat with "huge page" specified are backed by hugetlbfs files, 5282 * their original vm_ops are overwritten with shm_vm_ops. 5283 */ 5284 const struct vm_operations_struct hugetlb_vm_ops = { 5285 .fault = hugetlb_vm_op_fault, 5286 .open = hugetlb_vm_op_open, 5287 .close = hugetlb_vm_op_close, 5288 .may_split = hugetlb_vm_op_split, 5289 .pagesize = hugetlb_vm_op_pagesize, 5290 }; 5291 5292 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, 5293 int writable) 5294 { 5295 pte_t entry; 5296 unsigned int shift = huge_page_shift(hstate_vma(vma)); 5297 5298 if (writable) { 5299 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page, 5300 vma->vm_page_prot))); 5301 } else { 5302 entry = huge_pte_wrprotect(mk_huge_pte(page, 5303 vma->vm_page_prot)); 5304 } 5305 entry = pte_mkyoung(entry); 5306 entry = arch_make_huge_pte(entry, shift, vma->vm_flags); 5307 5308 return entry; 5309 } 5310 5311 static void set_huge_ptep_writable(struct vm_area_struct *vma, 5312 unsigned long address, pte_t *ptep) 5313 { 5314 pte_t entry; 5315 5316 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep))); 5317 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) 5318 update_mmu_cache(vma, address, ptep); 5319 } 5320 5321 bool is_hugetlb_entry_migration(pte_t pte) 5322 { 5323 swp_entry_t swp; 5324 5325 if (huge_pte_none(pte) || pte_present(pte)) 5326 return false; 5327 swp = pte_to_swp_entry(pte); 5328 if (is_migration_entry(swp)) 5329 return true; 5330 else 5331 return false; 5332 } 5333 5334 bool is_hugetlb_entry_hwpoisoned(pte_t pte) 5335 { 5336 swp_entry_t swp; 5337 5338 if (huge_pte_none(pte) || pte_present(pte)) 5339 return false; 5340 swp = pte_to_swp_entry(pte); 5341 if (is_hwpoison_entry(swp)) 5342 return true; 5343 else 5344 return false; 5345 } 5346 5347 static void 5348 hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr, 5349 struct folio *new_folio, pte_t old, unsigned long sz) 5350 { 5351 pte_t newpte = make_huge_pte(vma, &new_folio->page, 1); 5352 5353 __folio_mark_uptodate(new_folio); 5354 hugetlb_add_new_anon_rmap(new_folio, vma, addr); 5355 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(old)) 5356 newpte = huge_pte_mkuffd_wp(newpte); 5357 set_huge_pte_at(vma->vm_mm, addr, ptep, newpte, sz); 5358 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm); 5359 folio_set_hugetlb_migratable(new_folio); 5360 } 5361 5362 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, 5363 struct vm_area_struct *dst_vma, 5364 struct vm_area_struct *src_vma) 5365 { 5366 pte_t *src_pte, *dst_pte, entry; 5367 struct folio *pte_folio; 5368 unsigned long addr; 5369 bool cow = is_cow_mapping(src_vma->vm_flags); 5370 struct hstate *h = hstate_vma(src_vma); 5371 unsigned long sz = huge_page_size(h); 5372 unsigned long npages = pages_per_huge_page(h); 5373 struct mmu_notifier_range range; 5374 unsigned long last_addr_mask; 5375 int ret = 0; 5376 5377 if (cow) { 5378 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src, 5379 src_vma->vm_start, 5380 src_vma->vm_end); 5381 mmu_notifier_invalidate_range_start(&range); 5382 vma_assert_write_locked(src_vma); 5383 raw_write_seqcount_begin(&src->write_protect_seq); 5384 } else { 5385 /* 5386 * For shared mappings the vma lock must be held before 5387 * calling hugetlb_walk() in the src vma. Otherwise, the 5388 * returned ptep could go away if part of a shared pmd and 5389 * another thread calls huge_pmd_unshare. 5390 */ 5391 hugetlb_vma_lock_read(src_vma); 5392 } 5393 5394 last_addr_mask = hugetlb_mask_last_page(h); 5395 for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) { 5396 spinlock_t *src_ptl, *dst_ptl; 5397 src_pte = hugetlb_walk(src_vma, addr, sz); 5398 if (!src_pte) { 5399 addr |= last_addr_mask; 5400 continue; 5401 } 5402 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz); 5403 if (!dst_pte) { 5404 ret = -ENOMEM; 5405 break; 5406 } 5407 5408 /* 5409 * If the pagetables are shared don't copy or take references. 5410 * 5411 * dst_pte == src_pte is the common case of src/dest sharing. 5412 * However, src could have 'unshared' and dst shares with 5413 * another vma. So page_count of ptep page is checked instead 5414 * to reliably determine whether pte is shared. 5415 */ 5416 if (page_count(virt_to_page(dst_pte)) > 1) { 5417 addr |= last_addr_mask; 5418 continue; 5419 } 5420 5421 dst_ptl = huge_pte_lock(h, dst, dst_pte); 5422 src_ptl = huge_pte_lockptr(h, src, src_pte); 5423 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 5424 entry = huge_ptep_get(src_pte); 5425 again: 5426 if (huge_pte_none(entry)) { 5427 /* 5428 * Skip if src entry none. 5429 */ 5430 ; 5431 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) { 5432 if (!userfaultfd_wp(dst_vma)) 5433 entry = huge_pte_clear_uffd_wp(entry); 5434 set_huge_pte_at(dst, addr, dst_pte, entry, sz); 5435 } else if (unlikely(is_hugetlb_entry_migration(entry))) { 5436 swp_entry_t swp_entry = pte_to_swp_entry(entry); 5437 bool uffd_wp = pte_swp_uffd_wp(entry); 5438 5439 if (!is_readable_migration_entry(swp_entry) && cow) { 5440 /* 5441 * COW mappings require pages in both 5442 * parent and child to be set to read. 5443 */ 5444 swp_entry = make_readable_migration_entry( 5445 swp_offset(swp_entry)); 5446 entry = swp_entry_to_pte(swp_entry); 5447 if (userfaultfd_wp(src_vma) && uffd_wp) 5448 entry = pte_swp_mkuffd_wp(entry); 5449 set_huge_pte_at(src, addr, src_pte, entry, sz); 5450 } 5451 if (!userfaultfd_wp(dst_vma)) 5452 entry = huge_pte_clear_uffd_wp(entry); 5453 set_huge_pte_at(dst, addr, dst_pte, entry, sz); 5454 } else if (unlikely(is_pte_marker(entry))) { 5455 pte_marker marker = copy_pte_marker( 5456 pte_to_swp_entry(entry), dst_vma); 5457 5458 if (marker) 5459 set_huge_pte_at(dst, addr, dst_pte, 5460 make_pte_marker(marker), sz); 5461 } else { 5462 entry = huge_ptep_get(src_pte); 5463 pte_folio = page_folio(pte_page(entry)); 5464 folio_get(pte_folio); 5465 5466 /* 5467 * Failing to duplicate the anon rmap is a rare case 5468 * where we see pinned hugetlb pages while they're 5469 * prone to COW. We need to do the COW earlier during 5470 * fork. 5471 * 5472 * When pre-allocating the page or copying data, we 5473 * need to be without the pgtable locks since we could 5474 * sleep during the process. 5475 */ 5476 if (!folio_test_anon(pte_folio)) { 5477 hugetlb_add_file_rmap(pte_folio); 5478 } else if (hugetlb_try_dup_anon_rmap(pte_folio, src_vma)) { 5479 pte_t src_pte_old = entry; 5480 struct folio *new_folio; 5481 5482 spin_unlock(src_ptl); 5483 spin_unlock(dst_ptl); 5484 /* Do not use reserve as it's private owned */ 5485 new_folio = alloc_hugetlb_folio(dst_vma, addr, 1); 5486 if (IS_ERR(new_folio)) { 5487 folio_put(pte_folio); 5488 ret = PTR_ERR(new_folio); 5489 break; 5490 } 5491 ret = copy_user_large_folio(new_folio, 5492 pte_folio, 5493 addr, dst_vma); 5494 folio_put(pte_folio); 5495 if (ret) { 5496 folio_put(new_folio); 5497 break; 5498 } 5499 5500 /* Install the new hugetlb folio if src pte stable */ 5501 dst_ptl = huge_pte_lock(h, dst, dst_pte); 5502 src_ptl = huge_pte_lockptr(h, src, src_pte); 5503 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 5504 entry = huge_ptep_get(src_pte); 5505 if (!pte_same(src_pte_old, entry)) { 5506 restore_reserve_on_error(h, dst_vma, addr, 5507 new_folio); 5508 folio_put(new_folio); 5509 /* huge_ptep of dst_pte won't change as in child */ 5510 goto again; 5511 } 5512 hugetlb_install_folio(dst_vma, dst_pte, addr, 5513 new_folio, src_pte_old, sz); 5514 spin_unlock(src_ptl); 5515 spin_unlock(dst_ptl); 5516 continue; 5517 } 5518 5519 if (cow) { 5520 /* 5521 * No need to notify as we are downgrading page 5522 * table protection not changing it to point 5523 * to a new page. 5524 * 5525 * See Documentation/mm/mmu_notifier.rst 5526 */ 5527 huge_ptep_set_wrprotect(src, addr, src_pte); 5528 entry = huge_pte_wrprotect(entry); 5529 } 5530 5531 if (!userfaultfd_wp(dst_vma)) 5532 entry = huge_pte_clear_uffd_wp(entry); 5533 5534 set_huge_pte_at(dst, addr, dst_pte, entry, sz); 5535 hugetlb_count_add(npages, dst); 5536 } 5537 spin_unlock(src_ptl); 5538 spin_unlock(dst_ptl); 5539 } 5540 5541 if (cow) { 5542 raw_write_seqcount_end(&src->write_protect_seq); 5543 mmu_notifier_invalidate_range_end(&range); 5544 } else { 5545 hugetlb_vma_unlock_read(src_vma); 5546 } 5547 5548 return ret; 5549 } 5550 5551 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr, 5552 unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte, 5553 unsigned long sz) 5554 { 5555 struct hstate *h = hstate_vma(vma); 5556 struct mm_struct *mm = vma->vm_mm; 5557 spinlock_t *src_ptl, *dst_ptl; 5558 pte_t pte; 5559 5560 dst_ptl = huge_pte_lock(h, mm, dst_pte); 5561 src_ptl = huge_pte_lockptr(h, mm, src_pte); 5562 5563 /* 5564 * We don't have to worry about the ordering of src and dst ptlocks 5565 * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock. 5566 */ 5567 if (src_ptl != dst_ptl) 5568 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 5569 5570 pte = huge_ptep_get_and_clear(mm, old_addr, src_pte); 5571 set_huge_pte_at(mm, new_addr, dst_pte, pte, sz); 5572 5573 if (src_ptl != dst_ptl) 5574 spin_unlock(src_ptl); 5575 spin_unlock(dst_ptl); 5576 } 5577 5578 int move_hugetlb_page_tables(struct vm_area_struct *vma, 5579 struct vm_area_struct *new_vma, 5580 unsigned long old_addr, unsigned long new_addr, 5581 unsigned long len) 5582 { 5583 struct hstate *h = hstate_vma(vma); 5584 struct address_space *mapping = vma->vm_file->f_mapping; 5585 unsigned long sz = huge_page_size(h); 5586 struct mm_struct *mm = vma->vm_mm; 5587 unsigned long old_end = old_addr + len; 5588 unsigned long last_addr_mask; 5589 pte_t *src_pte, *dst_pte; 5590 struct mmu_notifier_range range; 5591 bool shared_pmd = false; 5592 5593 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr, 5594 old_end); 5595 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 5596 /* 5597 * In case of shared PMDs, we should cover the maximum possible 5598 * range. 5599 */ 5600 flush_cache_range(vma, range.start, range.end); 5601 5602 mmu_notifier_invalidate_range_start(&range); 5603 last_addr_mask = hugetlb_mask_last_page(h); 5604 /* Prevent race with file truncation */ 5605 hugetlb_vma_lock_write(vma); 5606 i_mmap_lock_write(mapping); 5607 for (; old_addr < old_end; old_addr += sz, new_addr += sz) { 5608 src_pte = hugetlb_walk(vma, old_addr, sz); 5609 if (!src_pte) { 5610 old_addr |= last_addr_mask; 5611 new_addr |= last_addr_mask; 5612 continue; 5613 } 5614 if (huge_pte_none(huge_ptep_get(src_pte))) 5615 continue; 5616 5617 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) { 5618 shared_pmd = true; 5619 old_addr |= last_addr_mask; 5620 new_addr |= last_addr_mask; 5621 continue; 5622 } 5623 5624 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz); 5625 if (!dst_pte) 5626 break; 5627 5628 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte, sz); 5629 } 5630 5631 if (shared_pmd) 5632 flush_hugetlb_tlb_range(vma, range.start, range.end); 5633 else 5634 flush_hugetlb_tlb_range(vma, old_end - len, old_end); 5635 mmu_notifier_invalidate_range_end(&range); 5636 i_mmap_unlock_write(mapping); 5637 hugetlb_vma_unlock_write(vma); 5638 5639 return len + old_addr - old_end; 5640 } 5641 5642 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma, 5643 unsigned long start, unsigned long end, 5644 struct page *ref_page, zap_flags_t zap_flags) 5645 { 5646 struct mm_struct *mm = vma->vm_mm; 5647 unsigned long address; 5648 pte_t *ptep; 5649 pte_t pte; 5650 spinlock_t *ptl; 5651 struct page *page; 5652 struct hstate *h = hstate_vma(vma); 5653 unsigned long sz = huge_page_size(h); 5654 bool adjust_reservation = false; 5655 unsigned long last_addr_mask; 5656 bool force_flush = false; 5657 5658 WARN_ON(!is_vm_hugetlb_page(vma)); 5659 BUG_ON(start & ~huge_page_mask(h)); 5660 BUG_ON(end & ~huge_page_mask(h)); 5661 5662 /* 5663 * This is a hugetlb vma, all the pte entries should point 5664 * to huge page. 5665 */ 5666 tlb_change_page_size(tlb, sz); 5667 tlb_start_vma(tlb, vma); 5668 5669 last_addr_mask = hugetlb_mask_last_page(h); 5670 address = start; 5671 for (; address < end; address += sz) { 5672 ptep = hugetlb_walk(vma, address, sz); 5673 if (!ptep) { 5674 address |= last_addr_mask; 5675 continue; 5676 } 5677 5678 ptl = huge_pte_lock(h, mm, ptep); 5679 if (huge_pmd_unshare(mm, vma, address, ptep)) { 5680 spin_unlock(ptl); 5681 tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE); 5682 force_flush = true; 5683 address |= last_addr_mask; 5684 continue; 5685 } 5686 5687 pte = huge_ptep_get(ptep); 5688 if (huge_pte_none(pte)) { 5689 spin_unlock(ptl); 5690 continue; 5691 } 5692 5693 /* 5694 * Migrating hugepage or HWPoisoned hugepage is already 5695 * unmapped and its refcount is dropped, so just clear pte here. 5696 */ 5697 if (unlikely(!pte_present(pte))) { 5698 /* 5699 * If the pte was wr-protected by uffd-wp in any of the 5700 * swap forms, meanwhile the caller does not want to 5701 * drop the uffd-wp bit in this zap, then replace the 5702 * pte with a marker. 5703 */ 5704 if (pte_swp_uffd_wp_any(pte) && 5705 !(zap_flags & ZAP_FLAG_DROP_MARKER)) 5706 set_huge_pte_at(mm, address, ptep, 5707 make_pte_marker(PTE_MARKER_UFFD_WP), 5708 sz); 5709 else 5710 huge_pte_clear(mm, address, ptep, sz); 5711 spin_unlock(ptl); 5712 continue; 5713 } 5714 5715 page = pte_page(pte); 5716 /* 5717 * If a reference page is supplied, it is because a specific 5718 * page is being unmapped, not a range. Ensure the page we 5719 * are about to unmap is the actual page of interest. 5720 */ 5721 if (ref_page) { 5722 if (page != ref_page) { 5723 spin_unlock(ptl); 5724 continue; 5725 } 5726 /* 5727 * Mark the VMA as having unmapped its page so that 5728 * future faults in this VMA will fail rather than 5729 * looking like data was lost 5730 */ 5731 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); 5732 } 5733 5734 pte = huge_ptep_get_and_clear(mm, address, ptep); 5735 tlb_remove_huge_tlb_entry(h, tlb, ptep, address); 5736 if (huge_pte_dirty(pte)) 5737 set_page_dirty(page); 5738 /* Leave a uffd-wp pte marker if needed */ 5739 if (huge_pte_uffd_wp(pte) && 5740 !(zap_flags & ZAP_FLAG_DROP_MARKER)) 5741 set_huge_pte_at(mm, address, ptep, 5742 make_pte_marker(PTE_MARKER_UFFD_WP), 5743 sz); 5744 hugetlb_count_sub(pages_per_huge_page(h), mm); 5745 hugetlb_remove_rmap(page_folio(page)); 5746 5747 /* 5748 * Restore the reservation for anonymous page, otherwise the 5749 * backing page could be stolen by someone. 5750 * If there we are freeing a surplus, do not set the restore 5751 * reservation bit. 5752 */ 5753 if (!h->surplus_huge_pages && __vma_private_lock(vma) && 5754 folio_test_anon(page_folio(page))) { 5755 folio_set_hugetlb_restore_reserve(page_folio(page)); 5756 /* Reservation to be adjusted after the spin lock */ 5757 adjust_reservation = true; 5758 } 5759 5760 spin_unlock(ptl); 5761 5762 /* 5763 * Adjust the reservation for the region that will have the 5764 * reserve restored. Keep in mind that vma_needs_reservation() changes 5765 * resv->adds_in_progress if it succeeds. If this is not done, 5766 * do_exit() will not see it, and will keep the reservation 5767 * forever. 5768 */ 5769 if (adjust_reservation) { 5770 int rc = vma_needs_reservation(h, vma, address); 5771 5772 if (rc < 0) 5773 /* Pressumably allocate_file_region_entries failed 5774 * to allocate a file_region struct. Clear 5775 * hugetlb_restore_reserve so that global reserve 5776 * count will not be incremented by free_huge_folio. 5777 * Act as if we consumed the reservation. 5778 */ 5779 folio_clear_hugetlb_restore_reserve(page_folio(page)); 5780 else if (rc) 5781 vma_add_reservation(h, vma, address); 5782 } 5783 5784 tlb_remove_page_size(tlb, page, huge_page_size(h)); 5785 /* 5786 * Bail out after unmapping reference page if supplied 5787 */ 5788 if (ref_page) 5789 break; 5790 } 5791 tlb_end_vma(tlb, vma); 5792 5793 /* 5794 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We 5795 * could defer the flush until now, since by holding i_mmap_rwsem we 5796 * guaranteed that the last refernece would not be dropped. But we must 5797 * do the flushing before we return, as otherwise i_mmap_rwsem will be 5798 * dropped and the last reference to the shared PMDs page might be 5799 * dropped as well. 5800 * 5801 * In theory we could defer the freeing of the PMD pages as well, but 5802 * huge_pmd_unshare() relies on the exact page_count for the PMD page to 5803 * detect sharing, so we cannot defer the release of the page either. 5804 * Instead, do flush now. 5805 */ 5806 if (force_flush) 5807 tlb_flush_mmu_tlbonly(tlb); 5808 } 5809 5810 void __hugetlb_zap_begin(struct vm_area_struct *vma, 5811 unsigned long *start, unsigned long *end) 5812 { 5813 if (!vma->vm_file) /* hugetlbfs_file_mmap error */ 5814 return; 5815 5816 adjust_range_if_pmd_sharing_possible(vma, start, end); 5817 hugetlb_vma_lock_write(vma); 5818 if (vma->vm_file) 5819 i_mmap_lock_write(vma->vm_file->f_mapping); 5820 } 5821 5822 void __hugetlb_zap_end(struct vm_area_struct *vma, 5823 struct zap_details *details) 5824 { 5825 zap_flags_t zap_flags = details ? details->zap_flags : 0; 5826 5827 if (!vma->vm_file) /* hugetlbfs_file_mmap error */ 5828 return; 5829 5830 if (zap_flags & ZAP_FLAG_UNMAP) { /* final unmap */ 5831 /* 5832 * Unlock and free the vma lock before releasing i_mmap_rwsem. 5833 * When the vma_lock is freed, this makes the vma ineligible 5834 * for pmd sharing. And, i_mmap_rwsem is required to set up 5835 * pmd sharing. This is important as page tables for this 5836 * unmapped range will be asynchrously deleted. If the page 5837 * tables are shared, there will be issues when accessed by 5838 * someone else. 5839 */ 5840 __hugetlb_vma_unlock_write_free(vma); 5841 } else { 5842 hugetlb_vma_unlock_write(vma); 5843 } 5844 5845 if (vma->vm_file) 5846 i_mmap_unlock_write(vma->vm_file->f_mapping); 5847 } 5848 5849 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, 5850 unsigned long end, struct page *ref_page, 5851 zap_flags_t zap_flags) 5852 { 5853 struct mmu_notifier_range range; 5854 struct mmu_gather tlb; 5855 5856 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 5857 start, end); 5858 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 5859 mmu_notifier_invalidate_range_start(&range); 5860 tlb_gather_mmu(&tlb, vma->vm_mm); 5861 5862 __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags); 5863 5864 mmu_notifier_invalidate_range_end(&range); 5865 tlb_finish_mmu(&tlb); 5866 } 5867 5868 /* 5869 * This is called when the original mapper is failing to COW a MAP_PRIVATE 5870 * mapping it owns the reserve page for. The intention is to unmap the page 5871 * from other VMAs and let the children be SIGKILLed if they are faulting the 5872 * same region. 5873 */ 5874 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, 5875 struct page *page, unsigned long address) 5876 { 5877 struct hstate *h = hstate_vma(vma); 5878 struct vm_area_struct *iter_vma; 5879 struct address_space *mapping; 5880 pgoff_t pgoff; 5881 5882 /* 5883 * vm_pgoff is in PAGE_SIZE units, hence the different calculation 5884 * from page cache lookup which is in HPAGE_SIZE units. 5885 */ 5886 address = address & huge_page_mask(h); 5887 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + 5888 vma->vm_pgoff; 5889 mapping = vma->vm_file->f_mapping; 5890 5891 /* 5892 * Take the mapping lock for the duration of the table walk. As 5893 * this mapping should be shared between all the VMAs, 5894 * __unmap_hugepage_range() is called as the lock is already held 5895 */ 5896 i_mmap_lock_write(mapping); 5897 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) { 5898 /* Do not unmap the current VMA */ 5899 if (iter_vma == vma) 5900 continue; 5901 5902 /* 5903 * Shared VMAs have their own reserves and do not affect 5904 * MAP_PRIVATE accounting but it is possible that a shared 5905 * VMA is using the same page so check and skip such VMAs. 5906 */ 5907 if (iter_vma->vm_flags & VM_MAYSHARE) 5908 continue; 5909 5910 /* 5911 * Unmap the page from other VMAs without their own reserves. 5912 * They get marked to be SIGKILLed if they fault in these 5913 * areas. This is because a future no-page fault on this VMA 5914 * could insert a zeroed page instead of the data existing 5915 * from the time of fork. This would look like data corruption 5916 */ 5917 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) 5918 unmap_hugepage_range(iter_vma, address, 5919 address + huge_page_size(h), page, 0); 5920 } 5921 i_mmap_unlock_write(mapping); 5922 } 5923 5924 /* 5925 * hugetlb_wp() should be called with page lock of the original hugepage held. 5926 * Called with hugetlb_fault_mutex_table held and pte_page locked so we 5927 * cannot race with other handlers or page migration. 5928 * Keep the pte_same checks anyway to make transition from the mutex easier. 5929 */ 5930 static vm_fault_t hugetlb_wp(struct folio *pagecache_folio, 5931 struct vm_fault *vmf) 5932 { 5933 struct vm_area_struct *vma = vmf->vma; 5934 struct mm_struct *mm = vma->vm_mm; 5935 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 5936 pte_t pte = huge_ptep_get(vmf->pte); 5937 struct hstate *h = hstate_vma(vma); 5938 struct folio *old_folio; 5939 struct folio *new_folio; 5940 int outside_reserve = 0; 5941 vm_fault_t ret = 0; 5942 struct mmu_notifier_range range; 5943 5944 /* 5945 * Never handle CoW for uffd-wp protected pages. It should be only 5946 * handled when the uffd-wp protection is removed. 5947 * 5948 * Note that only the CoW optimization path (in hugetlb_no_page()) 5949 * can trigger this, because hugetlb_fault() will always resolve 5950 * uffd-wp bit first. 5951 */ 5952 if (!unshare && huge_pte_uffd_wp(pte)) 5953 return 0; 5954 5955 /* 5956 * hugetlb does not support FOLL_FORCE-style write faults that keep the 5957 * PTE mapped R/O such as maybe_mkwrite() would do. 5958 */ 5959 if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE))) 5960 return VM_FAULT_SIGSEGV; 5961 5962 /* Let's take out MAP_SHARED mappings first. */ 5963 if (vma->vm_flags & VM_MAYSHARE) { 5964 set_huge_ptep_writable(vma, vmf->address, vmf->pte); 5965 return 0; 5966 } 5967 5968 old_folio = page_folio(pte_page(pte)); 5969 5970 delayacct_wpcopy_start(); 5971 5972 retry_avoidcopy: 5973 /* 5974 * If no-one else is actually using this page, we're the exclusive 5975 * owner and can reuse this page. 5976 * 5977 * Note that we don't rely on the (safer) folio refcount here, because 5978 * copying the hugetlb folio when there are unexpected (temporary) 5979 * folio references could harm simple fork()+exit() users when 5980 * we run out of free hugetlb folios: we would have to kill processes 5981 * in scenarios that used to work. As a side effect, there can still 5982 * be leaks between processes, for example, with FOLL_GET users. 5983 */ 5984 if (folio_mapcount(old_folio) == 1 && folio_test_anon(old_folio)) { 5985 if (!PageAnonExclusive(&old_folio->page)) { 5986 folio_move_anon_rmap(old_folio, vma); 5987 SetPageAnonExclusive(&old_folio->page); 5988 } 5989 if (likely(!unshare)) 5990 set_huge_ptep_writable(vma, vmf->address, vmf->pte); 5991 5992 delayacct_wpcopy_end(); 5993 return 0; 5994 } 5995 VM_BUG_ON_PAGE(folio_test_anon(old_folio) && 5996 PageAnonExclusive(&old_folio->page), &old_folio->page); 5997 5998 /* 5999 * If the process that created a MAP_PRIVATE mapping is about to 6000 * perform a COW due to a shared page count, attempt to satisfy 6001 * the allocation without using the existing reserves. The pagecache 6002 * page is used to determine if the reserve at this address was 6003 * consumed or not. If reserves were used, a partial faulted mapping 6004 * at the time of fork() could consume its reserves on COW instead 6005 * of the full address range. 6006 */ 6007 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && 6008 old_folio != pagecache_folio) 6009 outside_reserve = 1; 6010 6011 folio_get(old_folio); 6012 6013 /* 6014 * Drop page table lock as buddy allocator may be called. It will 6015 * be acquired again before returning to the caller, as expected. 6016 */ 6017 spin_unlock(vmf->ptl); 6018 new_folio = alloc_hugetlb_folio(vma, vmf->address, outside_reserve); 6019 6020 if (IS_ERR(new_folio)) { 6021 /* 6022 * If a process owning a MAP_PRIVATE mapping fails to COW, 6023 * it is due to references held by a child and an insufficient 6024 * huge page pool. To guarantee the original mappers 6025 * reliability, unmap the page from child processes. The child 6026 * may get SIGKILLed if it later faults. 6027 */ 6028 if (outside_reserve) { 6029 struct address_space *mapping = vma->vm_file->f_mapping; 6030 pgoff_t idx; 6031 u32 hash; 6032 6033 folio_put(old_folio); 6034 /* 6035 * Drop hugetlb_fault_mutex and vma_lock before 6036 * unmapping. unmapping needs to hold vma_lock 6037 * in write mode. Dropping vma_lock in read mode 6038 * here is OK as COW mappings do not interact with 6039 * PMD sharing. 6040 * 6041 * Reacquire both after unmap operation. 6042 */ 6043 idx = vma_hugecache_offset(h, vma, vmf->address); 6044 hash = hugetlb_fault_mutex_hash(mapping, idx); 6045 hugetlb_vma_unlock_read(vma); 6046 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6047 6048 unmap_ref_private(mm, vma, &old_folio->page, 6049 vmf->address); 6050 6051 mutex_lock(&hugetlb_fault_mutex_table[hash]); 6052 hugetlb_vma_lock_read(vma); 6053 spin_lock(vmf->ptl); 6054 vmf->pte = hugetlb_walk(vma, vmf->address, 6055 huge_page_size(h)); 6056 if (likely(vmf->pte && 6057 pte_same(huge_ptep_get(vmf->pte), pte))) 6058 goto retry_avoidcopy; 6059 /* 6060 * race occurs while re-acquiring page table 6061 * lock, and our job is done. 6062 */ 6063 delayacct_wpcopy_end(); 6064 return 0; 6065 } 6066 6067 ret = vmf_error(PTR_ERR(new_folio)); 6068 goto out_release_old; 6069 } 6070 6071 /* 6072 * When the original hugepage is shared one, it does not have 6073 * anon_vma prepared. 6074 */ 6075 ret = vmf_anon_prepare(vmf); 6076 if (unlikely(ret)) 6077 goto out_release_all; 6078 6079 if (copy_user_large_folio(new_folio, old_folio, vmf->real_address, vma)) { 6080 ret = VM_FAULT_HWPOISON_LARGE | VM_FAULT_SET_HINDEX(hstate_index(h)); 6081 goto out_release_all; 6082 } 6083 __folio_mark_uptodate(new_folio); 6084 6085 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, vmf->address, 6086 vmf->address + huge_page_size(h)); 6087 mmu_notifier_invalidate_range_start(&range); 6088 6089 /* 6090 * Retake the page table lock to check for racing updates 6091 * before the page tables are altered 6092 */ 6093 spin_lock(vmf->ptl); 6094 vmf->pte = hugetlb_walk(vma, vmf->address, huge_page_size(h)); 6095 if (likely(vmf->pte && pte_same(huge_ptep_get(vmf->pte), pte))) { 6096 pte_t newpte = make_huge_pte(vma, &new_folio->page, !unshare); 6097 6098 /* Break COW or unshare */ 6099 huge_ptep_clear_flush(vma, vmf->address, vmf->pte); 6100 hugetlb_remove_rmap(old_folio); 6101 hugetlb_add_new_anon_rmap(new_folio, vma, vmf->address); 6102 if (huge_pte_uffd_wp(pte)) 6103 newpte = huge_pte_mkuffd_wp(newpte); 6104 set_huge_pte_at(mm, vmf->address, vmf->pte, newpte, 6105 huge_page_size(h)); 6106 folio_set_hugetlb_migratable(new_folio); 6107 /* Make the old page be freed below */ 6108 new_folio = old_folio; 6109 } 6110 spin_unlock(vmf->ptl); 6111 mmu_notifier_invalidate_range_end(&range); 6112 out_release_all: 6113 /* 6114 * No restore in case of successful pagetable update (Break COW or 6115 * unshare) 6116 */ 6117 if (new_folio != old_folio) 6118 restore_reserve_on_error(h, vma, vmf->address, new_folio); 6119 folio_put(new_folio); 6120 out_release_old: 6121 folio_put(old_folio); 6122 6123 spin_lock(vmf->ptl); /* Caller expects lock to be held */ 6124 6125 delayacct_wpcopy_end(); 6126 return ret; 6127 } 6128 6129 /* 6130 * Return whether there is a pagecache page to back given address within VMA. 6131 */ 6132 bool hugetlbfs_pagecache_present(struct hstate *h, 6133 struct vm_area_struct *vma, unsigned long address) 6134 { 6135 struct address_space *mapping = vma->vm_file->f_mapping; 6136 pgoff_t idx = linear_page_index(vma, address); 6137 struct folio *folio; 6138 6139 folio = filemap_get_folio(mapping, idx); 6140 if (IS_ERR(folio)) 6141 return false; 6142 folio_put(folio); 6143 return true; 6144 } 6145 6146 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping, 6147 pgoff_t idx) 6148 { 6149 struct inode *inode = mapping->host; 6150 struct hstate *h = hstate_inode(inode); 6151 int err; 6152 6153 idx <<= huge_page_order(h); 6154 __folio_set_locked(folio); 6155 err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL); 6156 6157 if (unlikely(err)) { 6158 __folio_clear_locked(folio); 6159 return err; 6160 } 6161 folio_clear_hugetlb_restore_reserve(folio); 6162 6163 /* 6164 * mark folio dirty so that it will not be removed from cache/file 6165 * by non-hugetlbfs specific code paths. 6166 */ 6167 folio_mark_dirty(folio); 6168 6169 spin_lock(&inode->i_lock); 6170 inode->i_blocks += blocks_per_huge_page(h); 6171 spin_unlock(&inode->i_lock); 6172 return 0; 6173 } 6174 6175 static inline vm_fault_t hugetlb_handle_userfault(struct vm_fault *vmf, 6176 struct address_space *mapping, 6177 unsigned long reason) 6178 { 6179 u32 hash; 6180 6181 /* 6182 * vma_lock and hugetlb_fault_mutex must be dropped before handling 6183 * userfault. Also mmap_lock could be dropped due to handling 6184 * userfault, any vma operation should be careful from here. 6185 */ 6186 hugetlb_vma_unlock_read(vmf->vma); 6187 hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff); 6188 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6189 return handle_userfault(vmf, reason); 6190 } 6191 6192 /* 6193 * Recheck pte with pgtable lock. Returns true if pte didn't change, or 6194 * false if pte changed or is changing. 6195 */ 6196 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm, 6197 pte_t *ptep, pte_t old_pte) 6198 { 6199 spinlock_t *ptl; 6200 bool same; 6201 6202 ptl = huge_pte_lock(h, mm, ptep); 6203 same = pte_same(huge_ptep_get(ptep), old_pte); 6204 spin_unlock(ptl); 6205 6206 return same; 6207 } 6208 6209 static vm_fault_t hugetlb_no_page(struct address_space *mapping, 6210 struct vm_fault *vmf) 6211 { 6212 struct vm_area_struct *vma = vmf->vma; 6213 struct mm_struct *mm = vma->vm_mm; 6214 struct hstate *h = hstate_vma(vma); 6215 vm_fault_t ret = VM_FAULT_SIGBUS; 6216 int anon_rmap = 0; 6217 unsigned long size; 6218 struct folio *folio; 6219 pte_t new_pte; 6220 bool new_folio, new_pagecache_folio = false; 6221 u32 hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff); 6222 6223 /* 6224 * Currently, we are forced to kill the process in the event the 6225 * original mapper has unmapped pages from the child due to a failed 6226 * COW/unsharing. Warn that such a situation has occurred as it may not 6227 * be obvious. 6228 */ 6229 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { 6230 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n", 6231 current->pid); 6232 goto out; 6233 } 6234 6235 /* 6236 * Use page lock to guard against racing truncation 6237 * before we get page_table_lock. 6238 */ 6239 new_folio = false; 6240 folio = filemap_lock_hugetlb_folio(h, mapping, vmf->pgoff); 6241 if (IS_ERR(folio)) { 6242 size = i_size_read(mapping->host) >> huge_page_shift(h); 6243 if (vmf->pgoff >= size) 6244 goto out; 6245 /* Check for page in userfault range */ 6246 if (userfaultfd_missing(vma)) { 6247 /* 6248 * Since hugetlb_no_page() was examining pte 6249 * without pgtable lock, we need to re-test under 6250 * lock because the pte may not be stable and could 6251 * have changed from under us. Try to detect 6252 * either changed or during-changing ptes and retry 6253 * properly when needed. 6254 * 6255 * Note that userfaultfd is actually fine with 6256 * false positives (e.g. caused by pte changed), 6257 * but not wrong logical events (e.g. caused by 6258 * reading a pte during changing). The latter can 6259 * confuse the userspace, so the strictness is very 6260 * much preferred. E.g., MISSING event should 6261 * never happen on the page after UFFDIO_COPY has 6262 * correctly installed the page and returned. 6263 */ 6264 if (!hugetlb_pte_stable(h, mm, vmf->pte, vmf->orig_pte)) { 6265 ret = 0; 6266 goto out; 6267 } 6268 6269 return hugetlb_handle_userfault(vmf, mapping, 6270 VM_UFFD_MISSING); 6271 } 6272 6273 if (!(vma->vm_flags & VM_MAYSHARE)) { 6274 ret = vmf_anon_prepare(vmf); 6275 if (unlikely(ret)) 6276 goto out; 6277 } 6278 6279 folio = alloc_hugetlb_folio(vma, vmf->address, 0); 6280 if (IS_ERR(folio)) { 6281 /* 6282 * Returning error will result in faulting task being 6283 * sent SIGBUS. The hugetlb fault mutex prevents two 6284 * tasks from racing to fault in the same page which 6285 * could result in false unable to allocate errors. 6286 * Page migration does not take the fault mutex, but 6287 * does a clear then write of pte's under page table 6288 * lock. Page fault code could race with migration, 6289 * notice the clear pte and try to allocate a page 6290 * here. Before returning error, get ptl and make 6291 * sure there really is no pte entry. 6292 */ 6293 if (hugetlb_pte_stable(h, mm, vmf->pte, vmf->orig_pte)) 6294 ret = vmf_error(PTR_ERR(folio)); 6295 else 6296 ret = 0; 6297 goto out; 6298 } 6299 clear_huge_page(&folio->page, vmf->real_address, 6300 pages_per_huge_page(h)); 6301 __folio_mark_uptodate(folio); 6302 new_folio = true; 6303 6304 if (vma->vm_flags & VM_MAYSHARE) { 6305 int err = hugetlb_add_to_page_cache(folio, mapping, 6306 vmf->pgoff); 6307 if (err) { 6308 /* 6309 * err can't be -EEXIST which implies someone 6310 * else consumed the reservation since hugetlb 6311 * fault mutex is held when add a hugetlb page 6312 * to the page cache. So it's safe to call 6313 * restore_reserve_on_error() here. 6314 */ 6315 restore_reserve_on_error(h, vma, vmf->address, 6316 folio); 6317 folio_put(folio); 6318 ret = VM_FAULT_SIGBUS; 6319 goto out; 6320 } 6321 new_pagecache_folio = true; 6322 } else { 6323 folio_lock(folio); 6324 anon_rmap = 1; 6325 } 6326 } else { 6327 /* 6328 * If memory error occurs between mmap() and fault, some process 6329 * don't have hwpoisoned swap entry for errored virtual address. 6330 * So we need to block hugepage fault by PG_hwpoison bit check. 6331 */ 6332 if (unlikely(folio_test_hwpoison(folio))) { 6333 ret = VM_FAULT_HWPOISON_LARGE | 6334 VM_FAULT_SET_HINDEX(hstate_index(h)); 6335 goto backout_unlocked; 6336 } 6337 6338 /* Check for page in userfault range. */ 6339 if (userfaultfd_minor(vma)) { 6340 folio_unlock(folio); 6341 folio_put(folio); 6342 /* See comment in userfaultfd_missing() block above */ 6343 if (!hugetlb_pte_stable(h, mm, vmf->pte, vmf->orig_pte)) { 6344 ret = 0; 6345 goto out; 6346 } 6347 return hugetlb_handle_userfault(vmf, mapping, 6348 VM_UFFD_MINOR); 6349 } 6350 } 6351 6352 /* 6353 * If we are going to COW a private mapping later, we examine the 6354 * pending reservations for this page now. This will ensure that 6355 * any allocations necessary to record that reservation occur outside 6356 * the spinlock. 6357 */ 6358 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 6359 if (vma_needs_reservation(h, vma, vmf->address) < 0) { 6360 ret = VM_FAULT_OOM; 6361 goto backout_unlocked; 6362 } 6363 /* Just decrements count, does not deallocate */ 6364 vma_end_reservation(h, vma, vmf->address); 6365 } 6366 6367 vmf->ptl = huge_pte_lock(h, mm, vmf->pte); 6368 ret = 0; 6369 /* If pte changed from under us, retry */ 6370 if (!pte_same(huge_ptep_get(vmf->pte), vmf->orig_pte)) 6371 goto backout; 6372 6373 if (anon_rmap) 6374 hugetlb_add_new_anon_rmap(folio, vma, vmf->address); 6375 else 6376 hugetlb_add_file_rmap(folio); 6377 new_pte = make_huge_pte(vma, &folio->page, ((vma->vm_flags & VM_WRITE) 6378 && (vma->vm_flags & VM_SHARED))); 6379 /* 6380 * If this pte was previously wr-protected, keep it wr-protected even 6381 * if populated. 6382 */ 6383 if (unlikely(pte_marker_uffd_wp(vmf->orig_pte))) 6384 new_pte = huge_pte_mkuffd_wp(new_pte); 6385 set_huge_pte_at(mm, vmf->address, vmf->pte, new_pte, huge_page_size(h)); 6386 6387 hugetlb_count_add(pages_per_huge_page(h), mm); 6388 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 6389 /* Optimization, do the COW without a second fault */ 6390 ret = hugetlb_wp(folio, vmf); 6391 } 6392 6393 spin_unlock(vmf->ptl); 6394 6395 /* 6396 * Only set hugetlb_migratable in newly allocated pages. Existing pages 6397 * found in the pagecache may not have hugetlb_migratable if they have 6398 * been isolated for migration. 6399 */ 6400 if (new_folio) 6401 folio_set_hugetlb_migratable(folio); 6402 6403 folio_unlock(folio); 6404 out: 6405 hugetlb_vma_unlock_read(vma); 6406 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6407 return ret; 6408 6409 backout: 6410 spin_unlock(vmf->ptl); 6411 backout_unlocked: 6412 if (new_folio && !new_pagecache_folio) 6413 restore_reserve_on_error(h, vma, vmf->address, folio); 6414 6415 folio_unlock(folio); 6416 folio_put(folio); 6417 goto out; 6418 } 6419 6420 #ifdef CONFIG_SMP 6421 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 6422 { 6423 unsigned long key[2]; 6424 u32 hash; 6425 6426 key[0] = (unsigned long) mapping; 6427 key[1] = idx; 6428 6429 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0); 6430 6431 return hash & (num_fault_mutexes - 1); 6432 } 6433 #else 6434 /* 6435 * For uniprocessor systems we always use a single mutex, so just 6436 * return 0 and avoid the hashing overhead. 6437 */ 6438 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 6439 { 6440 return 0; 6441 } 6442 #endif 6443 6444 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, 6445 unsigned long address, unsigned int flags) 6446 { 6447 vm_fault_t ret; 6448 u32 hash; 6449 struct folio *folio = NULL; 6450 struct folio *pagecache_folio = NULL; 6451 struct hstate *h = hstate_vma(vma); 6452 struct address_space *mapping; 6453 int need_wait_lock = 0; 6454 struct vm_fault vmf = { 6455 .vma = vma, 6456 .address = address & huge_page_mask(h), 6457 .real_address = address, 6458 .flags = flags, 6459 .pgoff = vma_hugecache_offset(h, vma, 6460 address & huge_page_mask(h)), 6461 /* TODO: Track hugetlb faults using vm_fault */ 6462 6463 /* 6464 * Some fields may not be initialized, be careful as it may 6465 * be hard to debug if called functions make assumptions 6466 */ 6467 }; 6468 6469 /* 6470 * Serialize hugepage allocation and instantiation, so that we don't 6471 * get spurious allocation failures if two CPUs race to instantiate 6472 * the same page in the page cache. 6473 */ 6474 mapping = vma->vm_file->f_mapping; 6475 hash = hugetlb_fault_mutex_hash(mapping, vmf.pgoff); 6476 mutex_lock(&hugetlb_fault_mutex_table[hash]); 6477 6478 /* 6479 * Acquire vma lock before calling huge_pte_alloc and hold 6480 * until finished with vmf.pte. This prevents huge_pmd_unshare from 6481 * being called elsewhere and making the vmf.pte no longer valid. 6482 */ 6483 hugetlb_vma_lock_read(vma); 6484 vmf.pte = huge_pte_alloc(mm, vma, vmf.address, huge_page_size(h)); 6485 if (!vmf.pte) { 6486 hugetlb_vma_unlock_read(vma); 6487 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6488 return VM_FAULT_OOM; 6489 } 6490 6491 vmf.orig_pte = huge_ptep_get(vmf.pte); 6492 if (huge_pte_none_mostly(vmf.orig_pte)) { 6493 if (is_pte_marker(vmf.orig_pte)) { 6494 pte_marker marker = 6495 pte_marker_get(pte_to_swp_entry(vmf.orig_pte)); 6496 6497 if (marker & PTE_MARKER_POISONED) { 6498 ret = VM_FAULT_HWPOISON_LARGE | 6499 VM_FAULT_SET_HINDEX(hstate_index(h)); 6500 goto out_mutex; 6501 } 6502 } 6503 6504 /* 6505 * Other PTE markers should be handled the same way as none PTE. 6506 * 6507 * hugetlb_no_page will drop vma lock and hugetlb fault 6508 * mutex internally, which make us return immediately. 6509 */ 6510 return hugetlb_no_page(mapping, &vmf); 6511 } 6512 6513 ret = 0; 6514 6515 /* 6516 * vmf.orig_pte could be a migration/hwpoison vmf.orig_pte at this 6517 * point, so this check prevents the kernel from going below assuming 6518 * that we have an active hugepage in pagecache. This goto expects 6519 * the 2nd page fault, and is_hugetlb_entry_(migration|hwpoisoned) 6520 * check will properly handle it. 6521 */ 6522 if (!pte_present(vmf.orig_pte)) { 6523 if (unlikely(is_hugetlb_entry_migration(vmf.orig_pte))) { 6524 /* 6525 * Release the hugetlb fault lock now, but retain 6526 * the vma lock, because it is needed to guard the 6527 * huge_pte_lockptr() later in 6528 * migration_entry_wait_huge(). The vma lock will 6529 * be released there. 6530 */ 6531 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6532 migration_entry_wait_huge(vma, vmf.pte); 6533 return 0; 6534 } else if (unlikely(is_hugetlb_entry_hwpoisoned(vmf.orig_pte))) 6535 ret = VM_FAULT_HWPOISON_LARGE | 6536 VM_FAULT_SET_HINDEX(hstate_index(h)); 6537 goto out_mutex; 6538 } 6539 6540 /* 6541 * If we are going to COW/unshare the mapping later, we examine the 6542 * pending reservations for this page now. This will ensure that any 6543 * allocations necessary to record that reservation occur outside the 6544 * spinlock. Also lookup the pagecache page now as it is used to 6545 * determine if a reservation has been consumed. 6546 */ 6547 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) && 6548 !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(vmf.orig_pte)) { 6549 if (vma_needs_reservation(h, vma, vmf.address) < 0) { 6550 ret = VM_FAULT_OOM; 6551 goto out_mutex; 6552 } 6553 /* Just decrements count, does not deallocate */ 6554 vma_end_reservation(h, vma, vmf.address); 6555 6556 pagecache_folio = filemap_lock_hugetlb_folio(h, mapping, 6557 vmf.pgoff); 6558 if (IS_ERR(pagecache_folio)) 6559 pagecache_folio = NULL; 6560 } 6561 6562 vmf.ptl = huge_pte_lock(h, mm, vmf.pte); 6563 6564 /* Check for a racing update before calling hugetlb_wp() */ 6565 if (unlikely(!pte_same(vmf.orig_pte, huge_ptep_get(vmf.pte)))) 6566 goto out_ptl; 6567 6568 /* Handle userfault-wp first, before trying to lock more pages */ 6569 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(vmf.pte)) && 6570 (flags & FAULT_FLAG_WRITE) && !huge_pte_write(vmf.orig_pte)) { 6571 if (!userfaultfd_wp_async(vma)) { 6572 spin_unlock(vmf.ptl); 6573 if (pagecache_folio) { 6574 folio_unlock(pagecache_folio); 6575 folio_put(pagecache_folio); 6576 } 6577 hugetlb_vma_unlock_read(vma); 6578 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6579 return handle_userfault(&vmf, VM_UFFD_WP); 6580 } 6581 6582 vmf.orig_pte = huge_pte_clear_uffd_wp(vmf.orig_pte); 6583 set_huge_pte_at(mm, vmf.address, vmf.pte, vmf.orig_pte, 6584 huge_page_size(hstate_vma(vma))); 6585 /* Fallthrough to CoW */ 6586 } 6587 6588 /* 6589 * hugetlb_wp() requires page locks of pte_page(vmf.orig_pte) and 6590 * pagecache_folio, so here we need take the former one 6591 * when folio != pagecache_folio or !pagecache_folio. 6592 */ 6593 folio = page_folio(pte_page(vmf.orig_pte)); 6594 if (folio != pagecache_folio) 6595 if (!folio_trylock(folio)) { 6596 need_wait_lock = 1; 6597 goto out_ptl; 6598 } 6599 6600 folio_get(folio); 6601 6602 if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) { 6603 if (!huge_pte_write(vmf.orig_pte)) { 6604 ret = hugetlb_wp(pagecache_folio, &vmf); 6605 goto out_put_page; 6606 } else if (likely(flags & FAULT_FLAG_WRITE)) { 6607 vmf.orig_pte = huge_pte_mkdirty(vmf.orig_pte); 6608 } 6609 } 6610 vmf.orig_pte = pte_mkyoung(vmf.orig_pte); 6611 if (huge_ptep_set_access_flags(vma, vmf.address, vmf.pte, vmf.orig_pte, 6612 flags & FAULT_FLAG_WRITE)) 6613 update_mmu_cache(vma, vmf.address, vmf.pte); 6614 out_put_page: 6615 if (folio != pagecache_folio) 6616 folio_unlock(folio); 6617 folio_put(folio); 6618 out_ptl: 6619 spin_unlock(vmf.ptl); 6620 6621 if (pagecache_folio) { 6622 folio_unlock(pagecache_folio); 6623 folio_put(pagecache_folio); 6624 } 6625 out_mutex: 6626 hugetlb_vma_unlock_read(vma); 6627 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6628 /* 6629 * Generally it's safe to hold refcount during waiting page lock. But 6630 * here we just wait to defer the next page fault to avoid busy loop and 6631 * the page is not used after unlocked before returning from the current 6632 * page fault. So we are safe from accessing freed page, even if we wait 6633 * here without taking refcount. 6634 */ 6635 if (need_wait_lock) 6636 folio_wait_locked(folio); 6637 return ret; 6638 } 6639 6640 #ifdef CONFIG_USERFAULTFD 6641 /* 6642 * Can probably be eliminated, but still used by hugetlb_mfill_atomic_pte(). 6643 */ 6644 static struct folio *alloc_hugetlb_folio_vma(struct hstate *h, 6645 struct vm_area_struct *vma, unsigned long address) 6646 { 6647 struct mempolicy *mpol; 6648 nodemask_t *nodemask; 6649 struct folio *folio; 6650 gfp_t gfp_mask; 6651 int node; 6652 6653 gfp_mask = htlb_alloc_mask(h); 6654 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 6655 /* 6656 * This is used to allocate a temporary hugetlb to hold the copied 6657 * content, which will then be copied again to the final hugetlb 6658 * consuming a reservation. Set the alloc_fallback to false to indicate 6659 * that breaking the per-node hugetlb pool is not allowed in this case. 6660 */ 6661 folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask, false); 6662 mpol_cond_put(mpol); 6663 6664 return folio; 6665 } 6666 6667 /* 6668 * Used by userfaultfd UFFDIO_* ioctls. Based on userfaultfd's mfill_atomic_pte 6669 * with modifications for hugetlb pages. 6670 */ 6671 int hugetlb_mfill_atomic_pte(pte_t *dst_pte, 6672 struct vm_area_struct *dst_vma, 6673 unsigned long dst_addr, 6674 unsigned long src_addr, 6675 uffd_flags_t flags, 6676 struct folio **foliop) 6677 { 6678 struct mm_struct *dst_mm = dst_vma->vm_mm; 6679 bool is_continue = uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE); 6680 bool wp_enabled = (flags & MFILL_ATOMIC_WP); 6681 struct hstate *h = hstate_vma(dst_vma); 6682 struct address_space *mapping = dst_vma->vm_file->f_mapping; 6683 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr); 6684 unsigned long size; 6685 int vm_shared = dst_vma->vm_flags & VM_SHARED; 6686 pte_t _dst_pte; 6687 spinlock_t *ptl; 6688 int ret = -ENOMEM; 6689 struct folio *folio; 6690 int writable; 6691 bool folio_in_pagecache = false; 6692 6693 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_POISON)) { 6694 ptl = huge_pte_lock(h, dst_mm, dst_pte); 6695 6696 /* Don't overwrite any existing PTEs (even markers) */ 6697 if (!huge_pte_none(huge_ptep_get(dst_pte))) { 6698 spin_unlock(ptl); 6699 return -EEXIST; 6700 } 6701 6702 _dst_pte = make_pte_marker(PTE_MARKER_POISONED); 6703 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, 6704 huge_page_size(h)); 6705 6706 /* No need to invalidate - it was non-present before */ 6707 update_mmu_cache(dst_vma, dst_addr, dst_pte); 6708 6709 spin_unlock(ptl); 6710 return 0; 6711 } 6712 6713 if (is_continue) { 6714 ret = -EFAULT; 6715 folio = filemap_lock_hugetlb_folio(h, mapping, idx); 6716 if (IS_ERR(folio)) 6717 goto out; 6718 folio_in_pagecache = true; 6719 } else if (!*foliop) { 6720 /* If a folio already exists, then it's UFFDIO_COPY for 6721 * a non-missing case. Return -EEXIST. 6722 */ 6723 if (vm_shared && 6724 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) { 6725 ret = -EEXIST; 6726 goto out; 6727 } 6728 6729 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0); 6730 if (IS_ERR(folio)) { 6731 ret = -ENOMEM; 6732 goto out; 6733 } 6734 6735 ret = copy_folio_from_user(folio, (const void __user *) src_addr, 6736 false); 6737 6738 /* fallback to copy_from_user outside mmap_lock */ 6739 if (unlikely(ret)) { 6740 ret = -ENOENT; 6741 /* Free the allocated folio which may have 6742 * consumed a reservation. 6743 */ 6744 restore_reserve_on_error(h, dst_vma, dst_addr, folio); 6745 folio_put(folio); 6746 6747 /* Allocate a temporary folio to hold the copied 6748 * contents. 6749 */ 6750 folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr); 6751 if (!folio) { 6752 ret = -ENOMEM; 6753 goto out; 6754 } 6755 *foliop = folio; 6756 /* Set the outparam foliop and return to the caller to 6757 * copy the contents outside the lock. Don't free the 6758 * folio. 6759 */ 6760 goto out; 6761 } 6762 } else { 6763 if (vm_shared && 6764 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) { 6765 folio_put(*foliop); 6766 ret = -EEXIST; 6767 *foliop = NULL; 6768 goto out; 6769 } 6770 6771 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0); 6772 if (IS_ERR(folio)) { 6773 folio_put(*foliop); 6774 ret = -ENOMEM; 6775 *foliop = NULL; 6776 goto out; 6777 } 6778 ret = copy_user_large_folio(folio, *foliop, dst_addr, dst_vma); 6779 folio_put(*foliop); 6780 *foliop = NULL; 6781 if (ret) { 6782 folio_put(folio); 6783 goto out; 6784 } 6785 } 6786 6787 /* 6788 * If we just allocated a new page, we need a memory barrier to ensure 6789 * that preceding stores to the page become visible before the 6790 * set_pte_at() write. The memory barrier inside __folio_mark_uptodate 6791 * is what we need. 6792 * 6793 * In the case where we have not allocated a new page (is_continue), 6794 * the page must already be uptodate. UFFDIO_CONTINUE already includes 6795 * an earlier smp_wmb() to ensure that prior stores will be visible 6796 * before the set_pte_at() write. 6797 */ 6798 if (!is_continue) 6799 __folio_mark_uptodate(folio); 6800 else 6801 WARN_ON_ONCE(!folio_test_uptodate(folio)); 6802 6803 /* Add shared, newly allocated pages to the page cache. */ 6804 if (vm_shared && !is_continue) { 6805 size = i_size_read(mapping->host) >> huge_page_shift(h); 6806 ret = -EFAULT; 6807 if (idx >= size) 6808 goto out_release_nounlock; 6809 6810 /* 6811 * Serialization between remove_inode_hugepages() and 6812 * hugetlb_add_to_page_cache() below happens through the 6813 * hugetlb_fault_mutex_table that here must be hold by 6814 * the caller. 6815 */ 6816 ret = hugetlb_add_to_page_cache(folio, mapping, idx); 6817 if (ret) 6818 goto out_release_nounlock; 6819 folio_in_pagecache = true; 6820 } 6821 6822 ptl = huge_pte_lock(h, dst_mm, dst_pte); 6823 6824 ret = -EIO; 6825 if (folio_test_hwpoison(folio)) 6826 goto out_release_unlock; 6827 6828 /* 6829 * We allow to overwrite a pte marker: consider when both MISSING|WP 6830 * registered, we firstly wr-protect a none pte which has no page cache 6831 * page backing it, then access the page. 6832 */ 6833 ret = -EEXIST; 6834 if (!huge_pte_none_mostly(huge_ptep_get(dst_pte))) 6835 goto out_release_unlock; 6836 6837 if (folio_in_pagecache) 6838 hugetlb_add_file_rmap(folio); 6839 else 6840 hugetlb_add_new_anon_rmap(folio, dst_vma, dst_addr); 6841 6842 /* 6843 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY 6844 * with wp flag set, don't set pte write bit. 6845 */ 6846 if (wp_enabled || (is_continue && !vm_shared)) 6847 writable = 0; 6848 else 6849 writable = dst_vma->vm_flags & VM_WRITE; 6850 6851 _dst_pte = make_huge_pte(dst_vma, &folio->page, writable); 6852 /* 6853 * Always mark UFFDIO_COPY page dirty; note that this may not be 6854 * extremely important for hugetlbfs for now since swapping is not 6855 * supported, but we should still be clear in that this page cannot be 6856 * thrown away at will, even if write bit not set. 6857 */ 6858 _dst_pte = huge_pte_mkdirty(_dst_pte); 6859 _dst_pte = pte_mkyoung(_dst_pte); 6860 6861 if (wp_enabled) 6862 _dst_pte = huge_pte_mkuffd_wp(_dst_pte); 6863 6864 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, huge_page_size(h)); 6865 6866 hugetlb_count_add(pages_per_huge_page(h), dst_mm); 6867 6868 /* No need to invalidate - it was non-present before */ 6869 update_mmu_cache(dst_vma, dst_addr, dst_pte); 6870 6871 spin_unlock(ptl); 6872 if (!is_continue) 6873 folio_set_hugetlb_migratable(folio); 6874 if (vm_shared || is_continue) 6875 folio_unlock(folio); 6876 ret = 0; 6877 out: 6878 return ret; 6879 out_release_unlock: 6880 spin_unlock(ptl); 6881 if (vm_shared || is_continue) 6882 folio_unlock(folio); 6883 out_release_nounlock: 6884 if (!folio_in_pagecache) 6885 restore_reserve_on_error(h, dst_vma, dst_addr, folio); 6886 folio_put(folio); 6887 goto out; 6888 } 6889 #endif /* CONFIG_USERFAULTFD */ 6890 6891 long hugetlb_change_protection(struct vm_area_struct *vma, 6892 unsigned long address, unsigned long end, 6893 pgprot_t newprot, unsigned long cp_flags) 6894 { 6895 struct mm_struct *mm = vma->vm_mm; 6896 unsigned long start = address; 6897 pte_t *ptep; 6898 pte_t pte; 6899 struct hstate *h = hstate_vma(vma); 6900 long pages = 0, psize = huge_page_size(h); 6901 bool shared_pmd = false; 6902 struct mmu_notifier_range range; 6903 unsigned long last_addr_mask; 6904 bool uffd_wp = cp_flags & MM_CP_UFFD_WP; 6905 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE; 6906 6907 /* 6908 * In the case of shared PMDs, the area to flush could be beyond 6909 * start/end. Set range.start/range.end to cover the maximum possible 6910 * range if PMD sharing is possible. 6911 */ 6912 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA, 6913 0, mm, start, end); 6914 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 6915 6916 BUG_ON(address >= end); 6917 flush_cache_range(vma, range.start, range.end); 6918 6919 mmu_notifier_invalidate_range_start(&range); 6920 hugetlb_vma_lock_write(vma); 6921 i_mmap_lock_write(vma->vm_file->f_mapping); 6922 last_addr_mask = hugetlb_mask_last_page(h); 6923 for (; address < end; address += psize) { 6924 spinlock_t *ptl; 6925 ptep = hugetlb_walk(vma, address, psize); 6926 if (!ptep) { 6927 if (!uffd_wp) { 6928 address |= last_addr_mask; 6929 continue; 6930 } 6931 /* 6932 * Userfaultfd wr-protect requires pgtable 6933 * pre-allocations to install pte markers. 6934 */ 6935 ptep = huge_pte_alloc(mm, vma, address, psize); 6936 if (!ptep) { 6937 pages = -ENOMEM; 6938 break; 6939 } 6940 } 6941 ptl = huge_pte_lock(h, mm, ptep); 6942 if (huge_pmd_unshare(mm, vma, address, ptep)) { 6943 /* 6944 * When uffd-wp is enabled on the vma, unshare 6945 * shouldn't happen at all. Warn about it if it 6946 * happened due to some reason. 6947 */ 6948 WARN_ON_ONCE(uffd_wp || uffd_wp_resolve); 6949 pages++; 6950 spin_unlock(ptl); 6951 shared_pmd = true; 6952 address |= last_addr_mask; 6953 continue; 6954 } 6955 pte = huge_ptep_get(ptep); 6956 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) { 6957 /* Nothing to do. */ 6958 } else if (unlikely(is_hugetlb_entry_migration(pte))) { 6959 swp_entry_t entry = pte_to_swp_entry(pte); 6960 struct page *page = pfn_swap_entry_to_page(entry); 6961 pte_t newpte = pte; 6962 6963 if (is_writable_migration_entry(entry)) { 6964 if (PageAnon(page)) 6965 entry = make_readable_exclusive_migration_entry( 6966 swp_offset(entry)); 6967 else 6968 entry = make_readable_migration_entry( 6969 swp_offset(entry)); 6970 newpte = swp_entry_to_pte(entry); 6971 pages++; 6972 } 6973 6974 if (uffd_wp) 6975 newpte = pte_swp_mkuffd_wp(newpte); 6976 else if (uffd_wp_resolve) 6977 newpte = pte_swp_clear_uffd_wp(newpte); 6978 if (!pte_same(pte, newpte)) 6979 set_huge_pte_at(mm, address, ptep, newpte, psize); 6980 } else if (unlikely(is_pte_marker(pte))) { 6981 /* 6982 * Do nothing on a poison marker; page is 6983 * corrupted, permissons do not apply. Here 6984 * pte_marker_uffd_wp()==true implies !poison 6985 * because they're mutual exclusive. 6986 */ 6987 if (pte_marker_uffd_wp(pte) && uffd_wp_resolve) 6988 /* Safe to modify directly (non-present->none). */ 6989 huge_pte_clear(mm, address, ptep, psize); 6990 } else if (!huge_pte_none(pte)) { 6991 pte_t old_pte; 6992 unsigned int shift = huge_page_shift(hstate_vma(vma)); 6993 6994 old_pte = huge_ptep_modify_prot_start(vma, address, ptep); 6995 pte = huge_pte_modify(old_pte, newprot); 6996 pte = arch_make_huge_pte(pte, shift, vma->vm_flags); 6997 if (uffd_wp) 6998 pte = huge_pte_mkuffd_wp(pte); 6999 else if (uffd_wp_resolve) 7000 pte = huge_pte_clear_uffd_wp(pte); 7001 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte); 7002 pages++; 7003 } else { 7004 /* None pte */ 7005 if (unlikely(uffd_wp)) 7006 /* Safe to modify directly (none->non-present). */ 7007 set_huge_pte_at(mm, address, ptep, 7008 make_pte_marker(PTE_MARKER_UFFD_WP), 7009 psize); 7010 } 7011 spin_unlock(ptl); 7012 } 7013 /* 7014 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare 7015 * may have cleared our pud entry and done put_page on the page table: 7016 * once we release i_mmap_rwsem, another task can do the final put_page 7017 * and that page table be reused and filled with junk. If we actually 7018 * did unshare a page of pmds, flush the range corresponding to the pud. 7019 */ 7020 if (shared_pmd) 7021 flush_hugetlb_tlb_range(vma, range.start, range.end); 7022 else 7023 flush_hugetlb_tlb_range(vma, start, end); 7024 /* 7025 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs() we are 7026 * downgrading page table protection not changing it to point to a new 7027 * page. 7028 * 7029 * See Documentation/mm/mmu_notifier.rst 7030 */ 7031 i_mmap_unlock_write(vma->vm_file->f_mapping); 7032 hugetlb_vma_unlock_write(vma); 7033 mmu_notifier_invalidate_range_end(&range); 7034 7035 return pages > 0 ? (pages << h->order) : pages; 7036 } 7037 7038 /* Return true if reservation was successful, false otherwise. */ 7039 bool hugetlb_reserve_pages(struct inode *inode, 7040 long from, long to, 7041 struct vm_area_struct *vma, 7042 vm_flags_t vm_flags) 7043 { 7044 long chg = -1, add = -1; 7045 struct hstate *h = hstate_inode(inode); 7046 struct hugepage_subpool *spool = subpool_inode(inode); 7047 struct resv_map *resv_map; 7048 struct hugetlb_cgroup *h_cg = NULL; 7049 long gbl_reserve, regions_needed = 0; 7050 7051 /* This should never happen */ 7052 if (from > to) { 7053 VM_WARN(1, "%s called with a negative range\n", __func__); 7054 return false; 7055 } 7056 7057 /* 7058 * vma specific semaphore used for pmd sharing and fault/truncation 7059 * synchronization 7060 */ 7061 hugetlb_vma_lock_alloc(vma); 7062 7063 /* 7064 * Only apply hugepage reservation if asked. At fault time, an 7065 * attempt will be made for VM_NORESERVE to allocate a page 7066 * without using reserves 7067 */ 7068 if (vm_flags & VM_NORESERVE) 7069 return true; 7070 7071 /* 7072 * Shared mappings base their reservation on the number of pages that 7073 * are already allocated on behalf of the file. Private mappings need 7074 * to reserve the full area even if read-only as mprotect() may be 7075 * called to make the mapping read-write. Assume !vma is a shm mapping 7076 */ 7077 if (!vma || vma->vm_flags & VM_MAYSHARE) { 7078 /* 7079 * resv_map can not be NULL as hugetlb_reserve_pages is only 7080 * called for inodes for which resv_maps were created (see 7081 * hugetlbfs_get_inode). 7082 */ 7083 resv_map = inode_resv_map(inode); 7084 7085 chg = region_chg(resv_map, from, to, ®ions_needed); 7086 } else { 7087 /* Private mapping. */ 7088 resv_map = resv_map_alloc(); 7089 if (!resv_map) 7090 goto out_err; 7091 7092 chg = to - from; 7093 7094 set_vma_resv_map(vma, resv_map); 7095 set_vma_resv_flags(vma, HPAGE_RESV_OWNER); 7096 } 7097 7098 if (chg < 0) 7099 goto out_err; 7100 7101 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h), 7102 chg * pages_per_huge_page(h), &h_cg) < 0) 7103 goto out_err; 7104 7105 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) { 7106 /* For private mappings, the hugetlb_cgroup uncharge info hangs 7107 * of the resv_map. 7108 */ 7109 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h); 7110 } 7111 7112 /* 7113 * There must be enough pages in the subpool for the mapping. If 7114 * the subpool has a minimum size, there may be some global 7115 * reservations already in place (gbl_reserve). 7116 */ 7117 gbl_reserve = hugepage_subpool_get_pages(spool, chg); 7118 if (gbl_reserve < 0) 7119 goto out_uncharge_cgroup; 7120 7121 /* 7122 * Check enough hugepages are available for the reservation. 7123 * Hand the pages back to the subpool if there are not 7124 */ 7125 if (hugetlb_acct_memory(h, gbl_reserve) < 0) 7126 goto out_put_pages; 7127 7128 /* 7129 * Account for the reservations made. Shared mappings record regions 7130 * that have reservations as they are shared by multiple VMAs. 7131 * When the last VMA disappears, the region map says how much 7132 * the reservation was and the page cache tells how much of 7133 * the reservation was consumed. Private mappings are per-VMA and 7134 * only the consumed reservations are tracked. When the VMA 7135 * disappears, the original reservation is the VMA size and the 7136 * consumed reservations are stored in the map. Hence, nothing 7137 * else has to be done for private mappings here 7138 */ 7139 if (!vma || vma->vm_flags & VM_MAYSHARE) { 7140 add = region_add(resv_map, from, to, regions_needed, h, h_cg); 7141 7142 if (unlikely(add < 0)) { 7143 hugetlb_acct_memory(h, -gbl_reserve); 7144 goto out_put_pages; 7145 } else if (unlikely(chg > add)) { 7146 /* 7147 * pages in this range were added to the reserve 7148 * map between region_chg and region_add. This 7149 * indicates a race with alloc_hugetlb_folio. Adjust 7150 * the subpool and reserve counts modified above 7151 * based on the difference. 7152 */ 7153 long rsv_adjust; 7154 7155 /* 7156 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the 7157 * reference to h_cg->css. See comment below for detail. 7158 */ 7159 hugetlb_cgroup_uncharge_cgroup_rsvd( 7160 hstate_index(h), 7161 (chg - add) * pages_per_huge_page(h), h_cg); 7162 7163 rsv_adjust = hugepage_subpool_put_pages(spool, 7164 chg - add); 7165 hugetlb_acct_memory(h, -rsv_adjust); 7166 } else if (h_cg) { 7167 /* 7168 * The file_regions will hold their own reference to 7169 * h_cg->css. So we should release the reference held 7170 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are 7171 * done. 7172 */ 7173 hugetlb_cgroup_put_rsvd_cgroup(h_cg); 7174 } 7175 } 7176 return true; 7177 7178 out_put_pages: 7179 /* put back original number of pages, chg */ 7180 (void)hugepage_subpool_put_pages(spool, chg); 7181 out_uncharge_cgroup: 7182 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h), 7183 chg * pages_per_huge_page(h), h_cg); 7184 out_err: 7185 hugetlb_vma_lock_free(vma); 7186 if (!vma || vma->vm_flags & VM_MAYSHARE) 7187 /* Only call region_abort if the region_chg succeeded but the 7188 * region_add failed or didn't run. 7189 */ 7190 if (chg >= 0 && add < 0) 7191 region_abort(resv_map, from, to, regions_needed); 7192 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 7193 kref_put(&resv_map->refs, resv_map_release); 7194 set_vma_resv_map(vma, NULL); 7195 } 7196 return false; 7197 } 7198 7199 long hugetlb_unreserve_pages(struct inode *inode, long start, long end, 7200 long freed) 7201 { 7202 struct hstate *h = hstate_inode(inode); 7203 struct resv_map *resv_map = inode_resv_map(inode); 7204 long chg = 0; 7205 struct hugepage_subpool *spool = subpool_inode(inode); 7206 long gbl_reserve; 7207 7208 /* 7209 * Since this routine can be called in the evict inode path for all 7210 * hugetlbfs inodes, resv_map could be NULL. 7211 */ 7212 if (resv_map) { 7213 chg = region_del(resv_map, start, end); 7214 /* 7215 * region_del() can fail in the rare case where a region 7216 * must be split and another region descriptor can not be 7217 * allocated. If end == LONG_MAX, it will not fail. 7218 */ 7219 if (chg < 0) 7220 return chg; 7221 } 7222 7223 spin_lock(&inode->i_lock); 7224 inode->i_blocks -= (blocks_per_huge_page(h) * freed); 7225 spin_unlock(&inode->i_lock); 7226 7227 /* 7228 * If the subpool has a minimum size, the number of global 7229 * reservations to be released may be adjusted. 7230 * 7231 * Note that !resv_map implies freed == 0. So (chg - freed) 7232 * won't go negative. 7233 */ 7234 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed)); 7235 hugetlb_acct_memory(h, -gbl_reserve); 7236 7237 return 0; 7238 } 7239 7240 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE 7241 static unsigned long page_table_shareable(struct vm_area_struct *svma, 7242 struct vm_area_struct *vma, 7243 unsigned long addr, pgoff_t idx) 7244 { 7245 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) + 7246 svma->vm_start; 7247 unsigned long sbase = saddr & PUD_MASK; 7248 unsigned long s_end = sbase + PUD_SIZE; 7249 7250 /* Allow segments to share if only one is marked locked */ 7251 unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED_MASK; 7252 unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED_MASK; 7253 7254 /* 7255 * match the virtual addresses, permission and the alignment of the 7256 * page table page. 7257 * 7258 * Also, vma_lock (vm_private_data) is required for sharing. 7259 */ 7260 if (pmd_index(addr) != pmd_index(saddr) || 7261 vm_flags != svm_flags || 7262 !range_in_vma(svma, sbase, s_end) || 7263 !svma->vm_private_data) 7264 return 0; 7265 7266 return saddr; 7267 } 7268 7269 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr) 7270 { 7271 unsigned long start = addr & PUD_MASK; 7272 unsigned long end = start + PUD_SIZE; 7273 7274 #ifdef CONFIG_USERFAULTFD 7275 if (uffd_disable_huge_pmd_share(vma)) 7276 return false; 7277 #endif 7278 /* 7279 * check on proper vm_flags and page table alignment 7280 */ 7281 if (!(vma->vm_flags & VM_MAYSHARE)) 7282 return false; 7283 if (!vma->vm_private_data) /* vma lock required for sharing */ 7284 return false; 7285 if (!range_in_vma(vma, start, end)) 7286 return false; 7287 return true; 7288 } 7289 7290 /* 7291 * Determine if start,end range within vma could be mapped by shared pmd. 7292 * If yes, adjust start and end to cover range associated with possible 7293 * shared pmd mappings. 7294 */ 7295 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 7296 unsigned long *start, unsigned long *end) 7297 { 7298 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE), 7299 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE); 7300 7301 /* 7302 * vma needs to span at least one aligned PUD size, and the range 7303 * must be at least partially within in. 7304 */ 7305 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) || 7306 (*end <= v_start) || (*start >= v_end)) 7307 return; 7308 7309 /* Extend the range to be PUD aligned for a worst case scenario */ 7310 if (*start > v_start) 7311 *start = ALIGN_DOWN(*start, PUD_SIZE); 7312 7313 if (*end < v_end) 7314 *end = ALIGN(*end, PUD_SIZE); 7315 } 7316 7317 /* 7318 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc() 7319 * and returns the corresponding pte. While this is not necessary for the 7320 * !shared pmd case because we can allocate the pmd later as well, it makes the 7321 * code much cleaner. pmd allocation is essential for the shared case because 7322 * pud has to be populated inside the same i_mmap_rwsem section - otherwise 7323 * racing tasks could either miss the sharing (see huge_pte_offset) or select a 7324 * bad pmd for sharing. 7325 */ 7326 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, 7327 unsigned long addr, pud_t *pud) 7328 { 7329 struct address_space *mapping = vma->vm_file->f_mapping; 7330 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + 7331 vma->vm_pgoff; 7332 struct vm_area_struct *svma; 7333 unsigned long saddr; 7334 pte_t *spte = NULL; 7335 pte_t *pte; 7336 7337 i_mmap_lock_read(mapping); 7338 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) { 7339 if (svma == vma) 7340 continue; 7341 7342 saddr = page_table_shareable(svma, vma, addr, idx); 7343 if (saddr) { 7344 spte = hugetlb_walk(svma, saddr, 7345 vma_mmu_pagesize(svma)); 7346 if (spte) { 7347 get_page(virt_to_page(spte)); 7348 break; 7349 } 7350 } 7351 } 7352 7353 if (!spte) 7354 goto out; 7355 7356 spin_lock(&mm->page_table_lock); 7357 if (pud_none(*pud)) { 7358 pud_populate(mm, pud, 7359 (pmd_t *)((unsigned long)spte & PAGE_MASK)); 7360 mm_inc_nr_pmds(mm); 7361 } else { 7362 put_page(virt_to_page(spte)); 7363 } 7364 spin_unlock(&mm->page_table_lock); 7365 out: 7366 pte = (pte_t *)pmd_alloc(mm, pud, addr); 7367 i_mmap_unlock_read(mapping); 7368 return pte; 7369 } 7370 7371 /* 7372 * unmap huge page backed by shared pte. 7373 * 7374 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared 7375 * indicated by page_count > 1, unmap is achieved by clearing pud and 7376 * decrementing the ref count. If count == 1, the pte page is not shared. 7377 * 7378 * Called with page table lock held. 7379 * 7380 * returns: 1 successfully unmapped a shared pte page 7381 * 0 the underlying pte page is not shared, or it is the last user 7382 */ 7383 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, 7384 unsigned long addr, pte_t *ptep) 7385 { 7386 pgd_t *pgd = pgd_offset(mm, addr); 7387 p4d_t *p4d = p4d_offset(pgd, addr); 7388 pud_t *pud = pud_offset(p4d, addr); 7389 7390 i_mmap_assert_write_locked(vma->vm_file->f_mapping); 7391 hugetlb_vma_assert_locked(vma); 7392 BUG_ON(page_count(virt_to_page(ptep)) == 0); 7393 if (page_count(virt_to_page(ptep)) == 1) 7394 return 0; 7395 7396 pud_clear(pud); 7397 put_page(virt_to_page(ptep)); 7398 mm_dec_nr_pmds(mm); 7399 return 1; 7400 } 7401 7402 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 7403 7404 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, 7405 unsigned long addr, pud_t *pud) 7406 { 7407 return NULL; 7408 } 7409 7410 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, 7411 unsigned long addr, pte_t *ptep) 7412 { 7413 return 0; 7414 } 7415 7416 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 7417 unsigned long *start, unsigned long *end) 7418 { 7419 } 7420 7421 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr) 7422 { 7423 return false; 7424 } 7425 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 7426 7427 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB 7428 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 7429 unsigned long addr, unsigned long sz) 7430 { 7431 pgd_t *pgd; 7432 p4d_t *p4d; 7433 pud_t *pud; 7434 pte_t *pte = NULL; 7435 7436 pgd = pgd_offset(mm, addr); 7437 p4d = p4d_alloc(mm, pgd, addr); 7438 if (!p4d) 7439 return NULL; 7440 pud = pud_alloc(mm, p4d, addr); 7441 if (pud) { 7442 if (sz == PUD_SIZE) { 7443 pte = (pte_t *)pud; 7444 } else { 7445 BUG_ON(sz != PMD_SIZE); 7446 if (want_pmd_share(vma, addr) && pud_none(*pud)) 7447 pte = huge_pmd_share(mm, vma, addr, pud); 7448 else 7449 pte = (pte_t *)pmd_alloc(mm, pud, addr); 7450 } 7451 } 7452 7453 if (pte) { 7454 pte_t pteval = ptep_get_lockless(pte); 7455 7456 BUG_ON(pte_present(pteval) && !pte_huge(pteval)); 7457 } 7458 7459 return pte; 7460 } 7461 7462 /* 7463 * huge_pte_offset() - Walk the page table to resolve the hugepage 7464 * entry at address @addr 7465 * 7466 * Return: Pointer to page table entry (PUD or PMD) for 7467 * address @addr, or NULL if a !p*d_present() entry is encountered and the 7468 * size @sz doesn't match the hugepage size at this level of the page 7469 * table. 7470 */ 7471 pte_t *huge_pte_offset(struct mm_struct *mm, 7472 unsigned long addr, unsigned long sz) 7473 { 7474 pgd_t *pgd; 7475 p4d_t *p4d; 7476 pud_t *pud; 7477 pmd_t *pmd; 7478 7479 pgd = pgd_offset(mm, addr); 7480 if (!pgd_present(*pgd)) 7481 return NULL; 7482 p4d = p4d_offset(pgd, addr); 7483 if (!p4d_present(*p4d)) 7484 return NULL; 7485 7486 pud = pud_offset(p4d, addr); 7487 if (sz == PUD_SIZE) 7488 /* must be pud huge, non-present or none */ 7489 return (pte_t *)pud; 7490 if (!pud_present(*pud)) 7491 return NULL; 7492 /* must have a valid entry and size to go further */ 7493 7494 pmd = pmd_offset(pud, addr); 7495 /* must be pmd huge, non-present or none */ 7496 return (pte_t *)pmd; 7497 } 7498 7499 /* 7500 * Return a mask that can be used to update an address to the last huge 7501 * page in a page table page mapping size. Used to skip non-present 7502 * page table entries when linearly scanning address ranges. Architectures 7503 * with unique huge page to page table relationships can define their own 7504 * version of this routine. 7505 */ 7506 unsigned long hugetlb_mask_last_page(struct hstate *h) 7507 { 7508 unsigned long hp_size = huge_page_size(h); 7509 7510 if (hp_size == PUD_SIZE) 7511 return P4D_SIZE - PUD_SIZE; 7512 else if (hp_size == PMD_SIZE) 7513 return PUD_SIZE - PMD_SIZE; 7514 else 7515 return 0UL; 7516 } 7517 7518 #else 7519 7520 /* See description above. Architectures can provide their own version. */ 7521 __weak unsigned long hugetlb_mask_last_page(struct hstate *h) 7522 { 7523 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE 7524 if (huge_page_size(h) == PMD_SIZE) 7525 return PUD_SIZE - PMD_SIZE; 7526 #endif 7527 return 0UL; 7528 } 7529 7530 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */ 7531 7532 /* 7533 * These functions are overwritable if your architecture needs its own 7534 * behavior. 7535 */ 7536 bool isolate_hugetlb(struct folio *folio, struct list_head *list) 7537 { 7538 bool ret = true; 7539 7540 spin_lock_irq(&hugetlb_lock); 7541 if (!folio_test_hugetlb(folio) || 7542 !folio_test_hugetlb_migratable(folio) || 7543 !folio_try_get(folio)) { 7544 ret = false; 7545 goto unlock; 7546 } 7547 folio_clear_hugetlb_migratable(folio); 7548 list_move_tail(&folio->lru, list); 7549 unlock: 7550 spin_unlock_irq(&hugetlb_lock); 7551 return ret; 7552 } 7553 7554 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison) 7555 { 7556 int ret = 0; 7557 7558 *hugetlb = false; 7559 spin_lock_irq(&hugetlb_lock); 7560 if (folio_test_hugetlb(folio)) { 7561 *hugetlb = true; 7562 if (folio_test_hugetlb_freed(folio)) 7563 ret = 0; 7564 else if (folio_test_hugetlb_migratable(folio) || unpoison) 7565 ret = folio_try_get(folio); 7566 else 7567 ret = -EBUSY; 7568 } 7569 spin_unlock_irq(&hugetlb_lock); 7570 return ret; 7571 } 7572 7573 int get_huge_page_for_hwpoison(unsigned long pfn, int flags, 7574 bool *migratable_cleared) 7575 { 7576 int ret; 7577 7578 spin_lock_irq(&hugetlb_lock); 7579 ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared); 7580 spin_unlock_irq(&hugetlb_lock); 7581 return ret; 7582 } 7583 7584 void folio_putback_active_hugetlb(struct folio *folio) 7585 { 7586 spin_lock_irq(&hugetlb_lock); 7587 folio_set_hugetlb_migratable(folio); 7588 list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist); 7589 spin_unlock_irq(&hugetlb_lock); 7590 folio_put(folio); 7591 } 7592 7593 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason) 7594 { 7595 struct hstate *h = folio_hstate(old_folio); 7596 7597 hugetlb_cgroup_migrate(old_folio, new_folio); 7598 set_page_owner_migrate_reason(&new_folio->page, reason); 7599 7600 /* 7601 * transfer temporary state of the new hugetlb folio. This is 7602 * reverse to other transitions because the newpage is going to 7603 * be final while the old one will be freed so it takes over 7604 * the temporary status. 7605 * 7606 * Also note that we have to transfer the per-node surplus state 7607 * here as well otherwise the global surplus count will not match 7608 * the per-node's. 7609 */ 7610 if (folio_test_hugetlb_temporary(new_folio)) { 7611 int old_nid = folio_nid(old_folio); 7612 int new_nid = folio_nid(new_folio); 7613 7614 folio_set_hugetlb_temporary(old_folio); 7615 folio_clear_hugetlb_temporary(new_folio); 7616 7617 7618 /* 7619 * There is no need to transfer the per-node surplus state 7620 * when we do not cross the node. 7621 */ 7622 if (new_nid == old_nid) 7623 return; 7624 spin_lock_irq(&hugetlb_lock); 7625 if (h->surplus_huge_pages_node[old_nid]) { 7626 h->surplus_huge_pages_node[old_nid]--; 7627 h->surplus_huge_pages_node[new_nid]++; 7628 } 7629 spin_unlock_irq(&hugetlb_lock); 7630 } 7631 } 7632 7633 static void hugetlb_unshare_pmds(struct vm_area_struct *vma, 7634 unsigned long start, 7635 unsigned long end) 7636 { 7637 struct hstate *h = hstate_vma(vma); 7638 unsigned long sz = huge_page_size(h); 7639 struct mm_struct *mm = vma->vm_mm; 7640 struct mmu_notifier_range range; 7641 unsigned long address; 7642 spinlock_t *ptl; 7643 pte_t *ptep; 7644 7645 if (!(vma->vm_flags & VM_MAYSHARE)) 7646 return; 7647 7648 if (start >= end) 7649 return; 7650 7651 flush_cache_range(vma, start, end); 7652 /* 7653 * No need to call adjust_range_if_pmd_sharing_possible(), because 7654 * we have already done the PUD_SIZE alignment. 7655 */ 7656 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 7657 start, end); 7658 mmu_notifier_invalidate_range_start(&range); 7659 hugetlb_vma_lock_write(vma); 7660 i_mmap_lock_write(vma->vm_file->f_mapping); 7661 for (address = start; address < end; address += PUD_SIZE) { 7662 ptep = hugetlb_walk(vma, address, sz); 7663 if (!ptep) 7664 continue; 7665 ptl = huge_pte_lock(h, mm, ptep); 7666 huge_pmd_unshare(mm, vma, address, ptep); 7667 spin_unlock(ptl); 7668 } 7669 flush_hugetlb_tlb_range(vma, start, end); 7670 i_mmap_unlock_write(vma->vm_file->f_mapping); 7671 hugetlb_vma_unlock_write(vma); 7672 /* 7673 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs(), see 7674 * Documentation/mm/mmu_notifier.rst. 7675 */ 7676 mmu_notifier_invalidate_range_end(&range); 7677 } 7678 7679 /* 7680 * This function will unconditionally remove all the shared pmd pgtable entries 7681 * within the specific vma for a hugetlbfs memory range. 7682 */ 7683 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma) 7684 { 7685 hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE), 7686 ALIGN_DOWN(vma->vm_end, PUD_SIZE)); 7687 } 7688 7689 #ifdef CONFIG_CMA 7690 static bool cma_reserve_called __initdata; 7691 7692 static int __init cmdline_parse_hugetlb_cma(char *p) 7693 { 7694 int nid, count = 0; 7695 unsigned long tmp; 7696 char *s = p; 7697 7698 while (*s) { 7699 if (sscanf(s, "%lu%n", &tmp, &count) != 1) 7700 break; 7701 7702 if (s[count] == ':') { 7703 if (tmp >= MAX_NUMNODES) 7704 break; 7705 nid = array_index_nospec(tmp, MAX_NUMNODES); 7706 7707 s += count + 1; 7708 tmp = memparse(s, &s); 7709 hugetlb_cma_size_in_node[nid] = tmp; 7710 hugetlb_cma_size += tmp; 7711 7712 /* 7713 * Skip the separator if have one, otherwise 7714 * break the parsing. 7715 */ 7716 if (*s == ',') 7717 s++; 7718 else 7719 break; 7720 } else { 7721 hugetlb_cma_size = memparse(p, &p); 7722 break; 7723 } 7724 } 7725 7726 return 0; 7727 } 7728 7729 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma); 7730 7731 void __init hugetlb_cma_reserve(int order) 7732 { 7733 unsigned long size, reserved, per_node; 7734 bool node_specific_cma_alloc = false; 7735 int nid; 7736 7737 /* 7738 * HugeTLB CMA reservation is required for gigantic 7739 * huge pages which could not be allocated via the 7740 * page allocator. Just warn if there is any change 7741 * breaking this assumption. 7742 */ 7743 VM_WARN_ON(order <= MAX_PAGE_ORDER); 7744 cma_reserve_called = true; 7745 7746 if (!hugetlb_cma_size) 7747 return; 7748 7749 for (nid = 0; nid < MAX_NUMNODES; nid++) { 7750 if (hugetlb_cma_size_in_node[nid] == 0) 7751 continue; 7752 7753 if (!node_online(nid)) { 7754 pr_warn("hugetlb_cma: invalid node %d specified\n", nid); 7755 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid]; 7756 hugetlb_cma_size_in_node[nid] = 0; 7757 continue; 7758 } 7759 7760 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) { 7761 pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n", 7762 nid, (PAGE_SIZE << order) / SZ_1M); 7763 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid]; 7764 hugetlb_cma_size_in_node[nid] = 0; 7765 } else { 7766 node_specific_cma_alloc = true; 7767 } 7768 } 7769 7770 /* Validate the CMA size again in case some invalid nodes specified. */ 7771 if (!hugetlb_cma_size) 7772 return; 7773 7774 if (hugetlb_cma_size < (PAGE_SIZE << order)) { 7775 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n", 7776 (PAGE_SIZE << order) / SZ_1M); 7777 hugetlb_cma_size = 0; 7778 return; 7779 } 7780 7781 if (!node_specific_cma_alloc) { 7782 /* 7783 * If 3 GB area is requested on a machine with 4 numa nodes, 7784 * let's allocate 1 GB on first three nodes and ignore the last one. 7785 */ 7786 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes); 7787 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n", 7788 hugetlb_cma_size / SZ_1M, per_node / SZ_1M); 7789 } 7790 7791 reserved = 0; 7792 for_each_online_node(nid) { 7793 int res; 7794 char name[CMA_MAX_NAME]; 7795 7796 if (node_specific_cma_alloc) { 7797 if (hugetlb_cma_size_in_node[nid] == 0) 7798 continue; 7799 7800 size = hugetlb_cma_size_in_node[nid]; 7801 } else { 7802 size = min(per_node, hugetlb_cma_size - reserved); 7803 } 7804 7805 size = round_up(size, PAGE_SIZE << order); 7806 7807 snprintf(name, sizeof(name), "hugetlb%d", nid); 7808 /* 7809 * Note that 'order per bit' is based on smallest size that 7810 * may be returned to CMA allocator in the case of 7811 * huge page demotion. 7812 */ 7813 res = cma_declare_contiguous_nid(0, size, 0, 7814 PAGE_SIZE << order, 7815 HUGETLB_PAGE_ORDER, false, name, 7816 &hugetlb_cma[nid], nid); 7817 if (res) { 7818 pr_warn("hugetlb_cma: reservation failed: err %d, node %d", 7819 res, nid); 7820 continue; 7821 } 7822 7823 reserved += size; 7824 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n", 7825 size / SZ_1M, nid); 7826 7827 if (reserved >= hugetlb_cma_size) 7828 break; 7829 } 7830 7831 if (!reserved) 7832 /* 7833 * hugetlb_cma_size is used to determine if allocations from 7834 * cma are possible. Set to zero if no cma regions are set up. 7835 */ 7836 hugetlb_cma_size = 0; 7837 } 7838 7839 static void __init hugetlb_cma_check(void) 7840 { 7841 if (!hugetlb_cma_size || cma_reserve_called) 7842 return; 7843 7844 pr_warn("hugetlb_cma: the option isn't supported by current arch\n"); 7845 } 7846 7847 #endif /* CONFIG_CMA */ 7848