xref: /linux/mm/hugetlb.c (revision 2277ab4a1df50e05bc732fe9488d4e902bb8399a)
1 /*
2  * Generic hugetlb support.
3  * (C) William Irwin, April 2004
4  */
5 #include <linux/gfp.h>
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/module.h>
9 #include <linux/mm.h>
10 #include <linux/seq_file.h>
11 #include <linux/sysctl.h>
12 #include <linux/highmem.h>
13 #include <linux/mmu_notifier.h>
14 #include <linux/nodemask.h>
15 #include <linux/pagemap.h>
16 #include <linux/mempolicy.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/bootmem.h>
20 #include <linux/sysfs.h>
21 
22 #include <asm/page.h>
23 #include <asm/pgtable.h>
24 #include <asm/io.h>
25 
26 #include <linux/hugetlb.h>
27 #include "internal.h"
28 
29 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
30 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
31 unsigned long hugepages_treat_as_movable;
32 
33 static int max_hstate;
34 unsigned int default_hstate_idx;
35 struct hstate hstates[HUGE_MAX_HSTATE];
36 
37 __initdata LIST_HEAD(huge_boot_pages);
38 
39 /* for command line parsing */
40 static struct hstate * __initdata parsed_hstate;
41 static unsigned long __initdata default_hstate_max_huge_pages;
42 static unsigned long __initdata default_hstate_size;
43 
44 #define for_each_hstate(h) \
45 	for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
46 
47 /*
48  * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
49  */
50 static DEFINE_SPINLOCK(hugetlb_lock);
51 
52 /*
53  * Region tracking -- allows tracking of reservations and instantiated pages
54  *                    across the pages in a mapping.
55  *
56  * The region data structures are protected by a combination of the mmap_sem
57  * and the hugetlb_instantion_mutex.  To access or modify a region the caller
58  * must either hold the mmap_sem for write, or the mmap_sem for read and
59  * the hugetlb_instantiation mutex:
60  *
61  * 	down_write(&mm->mmap_sem);
62  * or
63  * 	down_read(&mm->mmap_sem);
64  * 	mutex_lock(&hugetlb_instantiation_mutex);
65  */
66 struct file_region {
67 	struct list_head link;
68 	long from;
69 	long to;
70 };
71 
72 static long region_add(struct list_head *head, long f, long t)
73 {
74 	struct file_region *rg, *nrg, *trg;
75 
76 	/* Locate the region we are either in or before. */
77 	list_for_each_entry(rg, head, link)
78 		if (f <= rg->to)
79 			break;
80 
81 	/* Round our left edge to the current segment if it encloses us. */
82 	if (f > rg->from)
83 		f = rg->from;
84 
85 	/* Check for and consume any regions we now overlap with. */
86 	nrg = rg;
87 	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
88 		if (&rg->link == head)
89 			break;
90 		if (rg->from > t)
91 			break;
92 
93 		/* If this area reaches higher then extend our area to
94 		 * include it completely.  If this is not the first area
95 		 * which we intend to reuse, free it. */
96 		if (rg->to > t)
97 			t = rg->to;
98 		if (rg != nrg) {
99 			list_del(&rg->link);
100 			kfree(rg);
101 		}
102 	}
103 	nrg->from = f;
104 	nrg->to = t;
105 	return 0;
106 }
107 
108 static long region_chg(struct list_head *head, long f, long t)
109 {
110 	struct file_region *rg, *nrg;
111 	long chg = 0;
112 
113 	/* Locate the region we are before or in. */
114 	list_for_each_entry(rg, head, link)
115 		if (f <= rg->to)
116 			break;
117 
118 	/* If we are below the current region then a new region is required.
119 	 * Subtle, allocate a new region at the position but make it zero
120 	 * size such that we can guarantee to record the reservation. */
121 	if (&rg->link == head || t < rg->from) {
122 		nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
123 		if (!nrg)
124 			return -ENOMEM;
125 		nrg->from = f;
126 		nrg->to   = f;
127 		INIT_LIST_HEAD(&nrg->link);
128 		list_add(&nrg->link, rg->link.prev);
129 
130 		return t - f;
131 	}
132 
133 	/* Round our left edge to the current segment if it encloses us. */
134 	if (f > rg->from)
135 		f = rg->from;
136 	chg = t - f;
137 
138 	/* Check for and consume any regions we now overlap with. */
139 	list_for_each_entry(rg, rg->link.prev, link) {
140 		if (&rg->link == head)
141 			break;
142 		if (rg->from > t)
143 			return chg;
144 
145 		/* We overlap with this area, if it extends futher than
146 		 * us then we must extend ourselves.  Account for its
147 		 * existing reservation. */
148 		if (rg->to > t) {
149 			chg += rg->to - t;
150 			t = rg->to;
151 		}
152 		chg -= rg->to - rg->from;
153 	}
154 	return chg;
155 }
156 
157 static long region_truncate(struct list_head *head, long end)
158 {
159 	struct file_region *rg, *trg;
160 	long chg = 0;
161 
162 	/* Locate the region we are either in or before. */
163 	list_for_each_entry(rg, head, link)
164 		if (end <= rg->to)
165 			break;
166 	if (&rg->link == head)
167 		return 0;
168 
169 	/* If we are in the middle of a region then adjust it. */
170 	if (end > rg->from) {
171 		chg = rg->to - end;
172 		rg->to = end;
173 		rg = list_entry(rg->link.next, typeof(*rg), link);
174 	}
175 
176 	/* Drop any remaining regions. */
177 	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
178 		if (&rg->link == head)
179 			break;
180 		chg += rg->to - rg->from;
181 		list_del(&rg->link);
182 		kfree(rg);
183 	}
184 	return chg;
185 }
186 
187 static long region_count(struct list_head *head, long f, long t)
188 {
189 	struct file_region *rg;
190 	long chg = 0;
191 
192 	/* Locate each segment we overlap with, and count that overlap. */
193 	list_for_each_entry(rg, head, link) {
194 		int seg_from;
195 		int seg_to;
196 
197 		if (rg->to <= f)
198 			continue;
199 		if (rg->from >= t)
200 			break;
201 
202 		seg_from = max(rg->from, f);
203 		seg_to = min(rg->to, t);
204 
205 		chg += seg_to - seg_from;
206 	}
207 
208 	return chg;
209 }
210 
211 /*
212  * Convert the address within this vma to the page offset within
213  * the mapping, in pagecache page units; huge pages here.
214  */
215 static pgoff_t vma_hugecache_offset(struct hstate *h,
216 			struct vm_area_struct *vma, unsigned long address)
217 {
218 	return ((address - vma->vm_start) >> huge_page_shift(h)) +
219 			(vma->vm_pgoff >> huge_page_order(h));
220 }
221 
222 /*
223  * Return the size of the pages allocated when backing a VMA. In the majority
224  * cases this will be same size as used by the page table entries.
225  */
226 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
227 {
228 	struct hstate *hstate;
229 
230 	if (!is_vm_hugetlb_page(vma))
231 		return PAGE_SIZE;
232 
233 	hstate = hstate_vma(vma);
234 
235 	return 1UL << (hstate->order + PAGE_SHIFT);
236 }
237 
238 /*
239  * Return the page size being used by the MMU to back a VMA. In the majority
240  * of cases, the page size used by the kernel matches the MMU size. On
241  * architectures where it differs, an architecture-specific version of this
242  * function is required.
243  */
244 #ifndef vma_mmu_pagesize
245 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
246 {
247 	return vma_kernel_pagesize(vma);
248 }
249 #endif
250 
251 /*
252  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
253  * bits of the reservation map pointer, which are always clear due to
254  * alignment.
255  */
256 #define HPAGE_RESV_OWNER    (1UL << 0)
257 #define HPAGE_RESV_UNMAPPED (1UL << 1)
258 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
259 
260 /*
261  * These helpers are used to track how many pages are reserved for
262  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
263  * is guaranteed to have their future faults succeed.
264  *
265  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
266  * the reserve counters are updated with the hugetlb_lock held. It is safe
267  * to reset the VMA at fork() time as it is not in use yet and there is no
268  * chance of the global counters getting corrupted as a result of the values.
269  *
270  * The private mapping reservation is represented in a subtly different
271  * manner to a shared mapping.  A shared mapping has a region map associated
272  * with the underlying file, this region map represents the backing file
273  * pages which have ever had a reservation assigned which this persists even
274  * after the page is instantiated.  A private mapping has a region map
275  * associated with the original mmap which is attached to all VMAs which
276  * reference it, this region map represents those offsets which have consumed
277  * reservation ie. where pages have been instantiated.
278  */
279 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
280 {
281 	return (unsigned long)vma->vm_private_data;
282 }
283 
284 static void set_vma_private_data(struct vm_area_struct *vma,
285 							unsigned long value)
286 {
287 	vma->vm_private_data = (void *)value;
288 }
289 
290 struct resv_map {
291 	struct kref refs;
292 	struct list_head regions;
293 };
294 
295 static struct resv_map *resv_map_alloc(void)
296 {
297 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
298 	if (!resv_map)
299 		return NULL;
300 
301 	kref_init(&resv_map->refs);
302 	INIT_LIST_HEAD(&resv_map->regions);
303 
304 	return resv_map;
305 }
306 
307 static void resv_map_release(struct kref *ref)
308 {
309 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
310 
311 	/* Clear out any active regions before we release the map. */
312 	region_truncate(&resv_map->regions, 0);
313 	kfree(resv_map);
314 }
315 
316 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
317 {
318 	VM_BUG_ON(!is_vm_hugetlb_page(vma));
319 	if (!(vma->vm_flags & VM_MAYSHARE))
320 		return (struct resv_map *)(get_vma_private_data(vma) &
321 							~HPAGE_RESV_MASK);
322 	return NULL;
323 }
324 
325 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
326 {
327 	VM_BUG_ON(!is_vm_hugetlb_page(vma));
328 	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
329 
330 	set_vma_private_data(vma, (get_vma_private_data(vma) &
331 				HPAGE_RESV_MASK) | (unsigned long)map);
332 }
333 
334 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
335 {
336 	VM_BUG_ON(!is_vm_hugetlb_page(vma));
337 	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
338 
339 	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
340 }
341 
342 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
343 {
344 	VM_BUG_ON(!is_vm_hugetlb_page(vma));
345 
346 	return (get_vma_private_data(vma) & flag) != 0;
347 }
348 
349 /* Decrement the reserved pages in the hugepage pool by one */
350 static void decrement_hugepage_resv_vma(struct hstate *h,
351 			struct vm_area_struct *vma)
352 {
353 	if (vma->vm_flags & VM_NORESERVE)
354 		return;
355 
356 	if (vma->vm_flags & VM_MAYSHARE) {
357 		/* Shared mappings always use reserves */
358 		h->resv_huge_pages--;
359 	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
360 		/*
361 		 * Only the process that called mmap() has reserves for
362 		 * private mappings.
363 		 */
364 		h->resv_huge_pages--;
365 	}
366 }
367 
368 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
369 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
370 {
371 	VM_BUG_ON(!is_vm_hugetlb_page(vma));
372 	if (!(vma->vm_flags & VM_MAYSHARE))
373 		vma->vm_private_data = (void *)0;
374 }
375 
376 /* Returns true if the VMA has associated reserve pages */
377 static int vma_has_reserves(struct vm_area_struct *vma)
378 {
379 	if (vma->vm_flags & VM_MAYSHARE)
380 		return 1;
381 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
382 		return 1;
383 	return 0;
384 }
385 
386 static void clear_gigantic_page(struct page *page,
387 			unsigned long addr, unsigned long sz)
388 {
389 	int i;
390 	struct page *p = page;
391 
392 	might_sleep();
393 	for (i = 0; i < sz/PAGE_SIZE; i++, p = mem_map_next(p, page, i)) {
394 		cond_resched();
395 		clear_user_highpage(p, addr + i * PAGE_SIZE);
396 	}
397 }
398 static void clear_huge_page(struct page *page,
399 			unsigned long addr, unsigned long sz)
400 {
401 	int i;
402 
403 	if (unlikely(sz > MAX_ORDER_NR_PAGES)) {
404 		clear_gigantic_page(page, addr, sz);
405 		return;
406 	}
407 
408 	might_sleep();
409 	for (i = 0; i < sz/PAGE_SIZE; i++) {
410 		cond_resched();
411 		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
412 	}
413 }
414 
415 static void copy_gigantic_page(struct page *dst, struct page *src,
416 			   unsigned long addr, struct vm_area_struct *vma)
417 {
418 	int i;
419 	struct hstate *h = hstate_vma(vma);
420 	struct page *dst_base = dst;
421 	struct page *src_base = src;
422 	might_sleep();
423 	for (i = 0; i < pages_per_huge_page(h); ) {
424 		cond_resched();
425 		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
426 
427 		i++;
428 		dst = mem_map_next(dst, dst_base, i);
429 		src = mem_map_next(src, src_base, i);
430 	}
431 }
432 static void copy_huge_page(struct page *dst, struct page *src,
433 			   unsigned long addr, struct vm_area_struct *vma)
434 {
435 	int i;
436 	struct hstate *h = hstate_vma(vma);
437 
438 	if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
439 		copy_gigantic_page(dst, src, addr, vma);
440 		return;
441 	}
442 
443 	might_sleep();
444 	for (i = 0; i < pages_per_huge_page(h); i++) {
445 		cond_resched();
446 		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
447 	}
448 }
449 
450 static void enqueue_huge_page(struct hstate *h, struct page *page)
451 {
452 	int nid = page_to_nid(page);
453 	list_add(&page->lru, &h->hugepage_freelists[nid]);
454 	h->free_huge_pages++;
455 	h->free_huge_pages_node[nid]++;
456 }
457 
458 static struct page *dequeue_huge_page(struct hstate *h)
459 {
460 	int nid;
461 	struct page *page = NULL;
462 
463 	for (nid = 0; nid < MAX_NUMNODES; ++nid) {
464 		if (!list_empty(&h->hugepage_freelists[nid])) {
465 			page = list_entry(h->hugepage_freelists[nid].next,
466 					  struct page, lru);
467 			list_del(&page->lru);
468 			h->free_huge_pages--;
469 			h->free_huge_pages_node[nid]--;
470 			break;
471 		}
472 	}
473 	return page;
474 }
475 
476 static struct page *dequeue_huge_page_vma(struct hstate *h,
477 				struct vm_area_struct *vma,
478 				unsigned long address, int avoid_reserve)
479 {
480 	int nid;
481 	struct page *page = NULL;
482 	struct mempolicy *mpol;
483 	nodemask_t *nodemask;
484 	struct zonelist *zonelist = huge_zonelist(vma, address,
485 					htlb_alloc_mask, &mpol, &nodemask);
486 	struct zone *zone;
487 	struct zoneref *z;
488 
489 	/*
490 	 * A child process with MAP_PRIVATE mappings created by their parent
491 	 * have no page reserves. This check ensures that reservations are
492 	 * not "stolen". The child may still get SIGKILLed
493 	 */
494 	if (!vma_has_reserves(vma) &&
495 			h->free_huge_pages - h->resv_huge_pages == 0)
496 		return NULL;
497 
498 	/* If reserves cannot be used, ensure enough pages are in the pool */
499 	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
500 		return NULL;
501 
502 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
503 						MAX_NR_ZONES - 1, nodemask) {
504 		nid = zone_to_nid(zone);
505 		if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) &&
506 		    !list_empty(&h->hugepage_freelists[nid])) {
507 			page = list_entry(h->hugepage_freelists[nid].next,
508 					  struct page, lru);
509 			list_del(&page->lru);
510 			h->free_huge_pages--;
511 			h->free_huge_pages_node[nid]--;
512 
513 			if (!avoid_reserve)
514 				decrement_hugepage_resv_vma(h, vma);
515 
516 			break;
517 		}
518 	}
519 	mpol_cond_put(mpol);
520 	return page;
521 }
522 
523 static void update_and_free_page(struct hstate *h, struct page *page)
524 {
525 	int i;
526 
527 	VM_BUG_ON(h->order >= MAX_ORDER);
528 
529 	h->nr_huge_pages--;
530 	h->nr_huge_pages_node[page_to_nid(page)]--;
531 	for (i = 0; i < pages_per_huge_page(h); i++) {
532 		page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
533 				1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
534 				1 << PG_private | 1<< PG_writeback);
535 	}
536 	set_compound_page_dtor(page, NULL);
537 	set_page_refcounted(page);
538 	arch_release_hugepage(page);
539 	__free_pages(page, huge_page_order(h));
540 }
541 
542 struct hstate *size_to_hstate(unsigned long size)
543 {
544 	struct hstate *h;
545 
546 	for_each_hstate(h) {
547 		if (huge_page_size(h) == size)
548 			return h;
549 	}
550 	return NULL;
551 }
552 
553 static void free_huge_page(struct page *page)
554 {
555 	/*
556 	 * Can't pass hstate in here because it is called from the
557 	 * compound page destructor.
558 	 */
559 	struct hstate *h = page_hstate(page);
560 	int nid = page_to_nid(page);
561 	struct address_space *mapping;
562 
563 	mapping = (struct address_space *) page_private(page);
564 	set_page_private(page, 0);
565 	BUG_ON(page_count(page));
566 	INIT_LIST_HEAD(&page->lru);
567 
568 	spin_lock(&hugetlb_lock);
569 	if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
570 		update_and_free_page(h, page);
571 		h->surplus_huge_pages--;
572 		h->surplus_huge_pages_node[nid]--;
573 	} else {
574 		enqueue_huge_page(h, page);
575 	}
576 	spin_unlock(&hugetlb_lock);
577 	if (mapping)
578 		hugetlb_put_quota(mapping, 1);
579 }
580 
581 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
582 {
583 	set_compound_page_dtor(page, free_huge_page);
584 	spin_lock(&hugetlb_lock);
585 	h->nr_huge_pages++;
586 	h->nr_huge_pages_node[nid]++;
587 	spin_unlock(&hugetlb_lock);
588 	put_page(page); /* free it into the hugepage allocator */
589 }
590 
591 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
592 {
593 	int i;
594 	int nr_pages = 1 << order;
595 	struct page *p = page + 1;
596 
597 	/* we rely on prep_new_huge_page to set the destructor */
598 	set_compound_order(page, order);
599 	__SetPageHead(page);
600 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
601 		__SetPageTail(p);
602 		p->first_page = page;
603 	}
604 }
605 
606 int PageHuge(struct page *page)
607 {
608 	compound_page_dtor *dtor;
609 
610 	if (!PageCompound(page))
611 		return 0;
612 
613 	page = compound_head(page);
614 	dtor = get_compound_page_dtor(page);
615 
616 	return dtor == free_huge_page;
617 }
618 
619 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
620 {
621 	struct page *page;
622 
623 	if (h->order >= MAX_ORDER)
624 		return NULL;
625 
626 	page = alloc_pages_exact_node(nid,
627 		htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
628 						__GFP_REPEAT|__GFP_NOWARN,
629 		huge_page_order(h));
630 	if (page) {
631 		if (arch_prepare_hugepage(page)) {
632 			__free_pages(page, huge_page_order(h));
633 			return NULL;
634 		}
635 		prep_new_huge_page(h, page, nid);
636 	}
637 
638 	return page;
639 }
640 
641 /*
642  * Use a helper variable to find the next node and then
643  * copy it back to hugetlb_next_nid afterwards:
644  * otherwise there's a window in which a racer might
645  * pass invalid nid MAX_NUMNODES to alloc_pages_exact_node.
646  * But we don't need to use a spin_lock here: it really
647  * doesn't matter if occasionally a racer chooses the
648  * same nid as we do.  Move nid forward in the mask even
649  * if we just successfully allocated a hugepage so that
650  * the next caller gets hugepages on the next node.
651  */
652 static int hstate_next_node(struct hstate *h)
653 {
654 	int next_nid;
655 	next_nid = next_node(h->hugetlb_next_nid, node_online_map);
656 	if (next_nid == MAX_NUMNODES)
657 		next_nid = first_node(node_online_map);
658 	h->hugetlb_next_nid = next_nid;
659 	return next_nid;
660 }
661 
662 static int alloc_fresh_huge_page(struct hstate *h)
663 {
664 	struct page *page;
665 	int start_nid;
666 	int next_nid;
667 	int ret = 0;
668 
669 	start_nid = h->hugetlb_next_nid;
670 
671 	do {
672 		page = alloc_fresh_huge_page_node(h, h->hugetlb_next_nid);
673 		if (page)
674 			ret = 1;
675 		next_nid = hstate_next_node(h);
676 	} while (!page && h->hugetlb_next_nid != start_nid);
677 
678 	if (ret)
679 		count_vm_event(HTLB_BUDDY_PGALLOC);
680 	else
681 		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
682 
683 	return ret;
684 }
685 
686 static struct page *alloc_buddy_huge_page(struct hstate *h,
687 			struct vm_area_struct *vma, unsigned long address)
688 {
689 	struct page *page;
690 	unsigned int nid;
691 
692 	if (h->order >= MAX_ORDER)
693 		return NULL;
694 
695 	/*
696 	 * Assume we will successfully allocate the surplus page to
697 	 * prevent racing processes from causing the surplus to exceed
698 	 * overcommit
699 	 *
700 	 * This however introduces a different race, where a process B
701 	 * tries to grow the static hugepage pool while alloc_pages() is
702 	 * called by process A. B will only examine the per-node
703 	 * counters in determining if surplus huge pages can be
704 	 * converted to normal huge pages in adjust_pool_surplus(). A
705 	 * won't be able to increment the per-node counter, until the
706 	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
707 	 * no more huge pages can be converted from surplus to normal
708 	 * state (and doesn't try to convert again). Thus, we have a
709 	 * case where a surplus huge page exists, the pool is grown, and
710 	 * the surplus huge page still exists after, even though it
711 	 * should just have been converted to a normal huge page. This
712 	 * does not leak memory, though, as the hugepage will be freed
713 	 * once it is out of use. It also does not allow the counters to
714 	 * go out of whack in adjust_pool_surplus() as we don't modify
715 	 * the node values until we've gotten the hugepage and only the
716 	 * per-node value is checked there.
717 	 */
718 	spin_lock(&hugetlb_lock);
719 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
720 		spin_unlock(&hugetlb_lock);
721 		return NULL;
722 	} else {
723 		h->nr_huge_pages++;
724 		h->surplus_huge_pages++;
725 	}
726 	spin_unlock(&hugetlb_lock);
727 
728 	page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
729 					__GFP_REPEAT|__GFP_NOWARN,
730 					huge_page_order(h));
731 
732 	if (page && arch_prepare_hugepage(page)) {
733 		__free_pages(page, huge_page_order(h));
734 		return NULL;
735 	}
736 
737 	spin_lock(&hugetlb_lock);
738 	if (page) {
739 		/*
740 		 * This page is now managed by the hugetlb allocator and has
741 		 * no users -- drop the buddy allocator's reference.
742 		 */
743 		put_page_testzero(page);
744 		VM_BUG_ON(page_count(page));
745 		nid = page_to_nid(page);
746 		set_compound_page_dtor(page, free_huge_page);
747 		/*
748 		 * We incremented the global counters already
749 		 */
750 		h->nr_huge_pages_node[nid]++;
751 		h->surplus_huge_pages_node[nid]++;
752 		__count_vm_event(HTLB_BUDDY_PGALLOC);
753 	} else {
754 		h->nr_huge_pages--;
755 		h->surplus_huge_pages--;
756 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
757 	}
758 	spin_unlock(&hugetlb_lock);
759 
760 	return page;
761 }
762 
763 /*
764  * Increase the hugetlb pool such that it can accomodate a reservation
765  * of size 'delta'.
766  */
767 static int gather_surplus_pages(struct hstate *h, int delta)
768 {
769 	struct list_head surplus_list;
770 	struct page *page, *tmp;
771 	int ret, i;
772 	int needed, allocated;
773 
774 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
775 	if (needed <= 0) {
776 		h->resv_huge_pages += delta;
777 		return 0;
778 	}
779 
780 	allocated = 0;
781 	INIT_LIST_HEAD(&surplus_list);
782 
783 	ret = -ENOMEM;
784 retry:
785 	spin_unlock(&hugetlb_lock);
786 	for (i = 0; i < needed; i++) {
787 		page = alloc_buddy_huge_page(h, NULL, 0);
788 		if (!page) {
789 			/*
790 			 * We were not able to allocate enough pages to
791 			 * satisfy the entire reservation so we free what
792 			 * we've allocated so far.
793 			 */
794 			spin_lock(&hugetlb_lock);
795 			needed = 0;
796 			goto free;
797 		}
798 
799 		list_add(&page->lru, &surplus_list);
800 	}
801 	allocated += needed;
802 
803 	/*
804 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
805 	 * because either resv_huge_pages or free_huge_pages may have changed.
806 	 */
807 	spin_lock(&hugetlb_lock);
808 	needed = (h->resv_huge_pages + delta) -
809 			(h->free_huge_pages + allocated);
810 	if (needed > 0)
811 		goto retry;
812 
813 	/*
814 	 * The surplus_list now contains _at_least_ the number of extra pages
815 	 * needed to accomodate the reservation.  Add the appropriate number
816 	 * of pages to the hugetlb pool and free the extras back to the buddy
817 	 * allocator.  Commit the entire reservation here to prevent another
818 	 * process from stealing the pages as they are added to the pool but
819 	 * before they are reserved.
820 	 */
821 	needed += allocated;
822 	h->resv_huge_pages += delta;
823 	ret = 0;
824 free:
825 	/* Free the needed pages to the hugetlb pool */
826 	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
827 		if ((--needed) < 0)
828 			break;
829 		list_del(&page->lru);
830 		enqueue_huge_page(h, page);
831 	}
832 
833 	/* Free unnecessary surplus pages to the buddy allocator */
834 	if (!list_empty(&surplus_list)) {
835 		spin_unlock(&hugetlb_lock);
836 		list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
837 			list_del(&page->lru);
838 			/*
839 			 * The page has a reference count of zero already, so
840 			 * call free_huge_page directly instead of using
841 			 * put_page.  This must be done with hugetlb_lock
842 			 * unlocked which is safe because free_huge_page takes
843 			 * hugetlb_lock before deciding how to free the page.
844 			 */
845 			free_huge_page(page);
846 		}
847 		spin_lock(&hugetlb_lock);
848 	}
849 
850 	return ret;
851 }
852 
853 /*
854  * When releasing a hugetlb pool reservation, any surplus pages that were
855  * allocated to satisfy the reservation must be explicitly freed if they were
856  * never used.
857  */
858 static void return_unused_surplus_pages(struct hstate *h,
859 					unsigned long unused_resv_pages)
860 {
861 	static int nid = -1;
862 	struct page *page;
863 	unsigned long nr_pages;
864 
865 	/*
866 	 * We want to release as many surplus pages as possible, spread
867 	 * evenly across all nodes. Iterate across all nodes until we
868 	 * can no longer free unreserved surplus pages. This occurs when
869 	 * the nodes with surplus pages have no free pages.
870 	 */
871 	unsigned long remaining_iterations = nr_online_nodes;
872 
873 	/* Uncommit the reservation */
874 	h->resv_huge_pages -= unused_resv_pages;
875 
876 	/* Cannot return gigantic pages currently */
877 	if (h->order >= MAX_ORDER)
878 		return;
879 
880 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
881 
882 	while (remaining_iterations-- && nr_pages) {
883 		nid = next_node(nid, node_online_map);
884 		if (nid == MAX_NUMNODES)
885 			nid = first_node(node_online_map);
886 
887 		if (!h->surplus_huge_pages_node[nid])
888 			continue;
889 
890 		if (!list_empty(&h->hugepage_freelists[nid])) {
891 			page = list_entry(h->hugepage_freelists[nid].next,
892 					  struct page, lru);
893 			list_del(&page->lru);
894 			update_and_free_page(h, page);
895 			h->free_huge_pages--;
896 			h->free_huge_pages_node[nid]--;
897 			h->surplus_huge_pages--;
898 			h->surplus_huge_pages_node[nid]--;
899 			nr_pages--;
900 			remaining_iterations = nr_online_nodes;
901 		}
902 	}
903 }
904 
905 /*
906  * Determine if the huge page at addr within the vma has an associated
907  * reservation.  Where it does not we will need to logically increase
908  * reservation and actually increase quota before an allocation can occur.
909  * Where any new reservation would be required the reservation change is
910  * prepared, but not committed.  Once the page has been quota'd allocated
911  * an instantiated the change should be committed via vma_commit_reservation.
912  * No action is required on failure.
913  */
914 static long vma_needs_reservation(struct hstate *h,
915 			struct vm_area_struct *vma, unsigned long addr)
916 {
917 	struct address_space *mapping = vma->vm_file->f_mapping;
918 	struct inode *inode = mapping->host;
919 
920 	if (vma->vm_flags & VM_MAYSHARE) {
921 		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
922 		return region_chg(&inode->i_mapping->private_list,
923 							idx, idx + 1);
924 
925 	} else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
926 		return 1;
927 
928 	} else  {
929 		long err;
930 		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
931 		struct resv_map *reservations = vma_resv_map(vma);
932 
933 		err = region_chg(&reservations->regions, idx, idx + 1);
934 		if (err < 0)
935 			return err;
936 		return 0;
937 	}
938 }
939 static void vma_commit_reservation(struct hstate *h,
940 			struct vm_area_struct *vma, unsigned long addr)
941 {
942 	struct address_space *mapping = vma->vm_file->f_mapping;
943 	struct inode *inode = mapping->host;
944 
945 	if (vma->vm_flags & VM_MAYSHARE) {
946 		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
947 		region_add(&inode->i_mapping->private_list, idx, idx + 1);
948 
949 	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
950 		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
951 		struct resv_map *reservations = vma_resv_map(vma);
952 
953 		/* Mark this page used in the map. */
954 		region_add(&reservations->regions, idx, idx + 1);
955 	}
956 }
957 
958 static struct page *alloc_huge_page(struct vm_area_struct *vma,
959 				    unsigned long addr, int avoid_reserve)
960 {
961 	struct hstate *h = hstate_vma(vma);
962 	struct page *page;
963 	struct address_space *mapping = vma->vm_file->f_mapping;
964 	struct inode *inode = mapping->host;
965 	long chg;
966 
967 	/*
968 	 * Processes that did not create the mapping will have no reserves and
969 	 * will not have accounted against quota. Check that the quota can be
970 	 * made before satisfying the allocation
971 	 * MAP_NORESERVE mappings may also need pages and quota allocated
972 	 * if no reserve mapping overlaps.
973 	 */
974 	chg = vma_needs_reservation(h, vma, addr);
975 	if (chg < 0)
976 		return ERR_PTR(chg);
977 	if (chg)
978 		if (hugetlb_get_quota(inode->i_mapping, chg))
979 			return ERR_PTR(-ENOSPC);
980 
981 	spin_lock(&hugetlb_lock);
982 	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
983 	spin_unlock(&hugetlb_lock);
984 
985 	if (!page) {
986 		page = alloc_buddy_huge_page(h, vma, addr);
987 		if (!page) {
988 			hugetlb_put_quota(inode->i_mapping, chg);
989 			return ERR_PTR(-VM_FAULT_OOM);
990 		}
991 	}
992 
993 	set_page_refcounted(page);
994 	set_page_private(page, (unsigned long) mapping);
995 
996 	vma_commit_reservation(h, vma, addr);
997 
998 	return page;
999 }
1000 
1001 int __weak alloc_bootmem_huge_page(struct hstate *h)
1002 {
1003 	struct huge_bootmem_page *m;
1004 	int nr_nodes = nodes_weight(node_online_map);
1005 
1006 	while (nr_nodes) {
1007 		void *addr;
1008 
1009 		addr = __alloc_bootmem_node_nopanic(
1010 				NODE_DATA(h->hugetlb_next_nid),
1011 				huge_page_size(h), huge_page_size(h), 0);
1012 
1013 		if (addr) {
1014 			/*
1015 			 * Use the beginning of the huge page to store the
1016 			 * huge_bootmem_page struct (until gather_bootmem
1017 			 * puts them into the mem_map).
1018 			 */
1019 			m = addr;
1020 			goto found;
1021 		}
1022 		hstate_next_node(h);
1023 		nr_nodes--;
1024 	}
1025 	return 0;
1026 
1027 found:
1028 	BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1029 	/* Put them into a private list first because mem_map is not up yet */
1030 	list_add(&m->list, &huge_boot_pages);
1031 	m->hstate = h;
1032 	return 1;
1033 }
1034 
1035 static void prep_compound_huge_page(struct page *page, int order)
1036 {
1037 	if (unlikely(order > (MAX_ORDER - 1)))
1038 		prep_compound_gigantic_page(page, order);
1039 	else
1040 		prep_compound_page(page, order);
1041 }
1042 
1043 /* Put bootmem huge pages into the standard lists after mem_map is up */
1044 static void __init gather_bootmem_prealloc(void)
1045 {
1046 	struct huge_bootmem_page *m;
1047 
1048 	list_for_each_entry(m, &huge_boot_pages, list) {
1049 		struct page *page = virt_to_page(m);
1050 		struct hstate *h = m->hstate;
1051 		__ClearPageReserved(page);
1052 		WARN_ON(page_count(page) != 1);
1053 		prep_compound_huge_page(page, h->order);
1054 		prep_new_huge_page(h, page, page_to_nid(page));
1055 	}
1056 }
1057 
1058 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1059 {
1060 	unsigned long i;
1061 
1062 	for (i = 0; i < h->max_huge_pages; ++i) {
1063 		if (h->order >= MAX_ORDER) {
1064 			if (!alloc_bootmem_huge_page(h))
1065 				break;
1066 		} else if (!alloc_fresh_huge_page(h))
1067 			break;
1068 	}
1069 	h->max_huge_pages = i;
1070 }
1071 
1072 static void __init hugetlb_init_hstates(void)
1073 {
1074 	struct hstate *h;
1075 
1076 	for_each_hstate(h) {
1077 		/* oversize hugepages were init'ed in early boot */
1078 		if (h->order < MAX_ORDER)
1079 			hugetlb_hstate_alloc_pages(h);
1080 	}
1081 }
1082 
1083 static char * __init memfmt(char *buf, unsigned long n)
1084 {
1085 	if (n >= (1UL << 30))
1086 		sprintf(buf, "%lu GB", n >> 30);
1087 	else if (n >= (1UL << 20))
1088 		sprintf(buf, "%lu MB", n >> 20);
1089 	else
1090 		sprintf(buf, "%lu KB", n >> 10);
1091 	return buf;
1092 }
1093 
1094 static void __init report_hugepages(void)
1095 {
1096 	struct hstate *h;
1097 
1098 	for_each_hstate(h) {
1099 		char buf[32];
1100 		printk(KERN_INFO "HugeTLB registered %s page size, "
1101 				 "pre-allocated %ld pages\n",
1102 			memfmt(buf, huge_page_size(h)),
1103 			h->free_huge_pages);
1104 	}
1105 }
1106 
1107 #ifdef CONFIG_HIGHMEM
1108 static void try_to_free_low(struct hstate *h, unsigned long count)
1109 {
1110 	int i;
1111 
1112 	if (h->order >= MAX_ORDER)
1113 		return;
1114 
1115 	for (i = 0; i < MAX_NUMNODES; ++i) {
1116 		struct page *page, *next;
1117 		struct list_head *freel = &h->hugepage_freelists[i];
1118 		list_for_each_entry_safe(page, next, freel, lru) {
1119 			if (count >= h->nr_huge_pages)
1120 				return;
1121 			if (PageHighMem(page))
1122 				continue;
1123 			list_del(&page->lru);
1124 			update_and_free_page(h, page);
1125 			h->free_huge_pages--;
1126 			h->free_huge_pages_node[page_to_nid(page)]--;
1127 		}
1128 	}
1129 }
1130 #else
1131 static inline void try_to_free_low(struct hstate *h, unsigned long count)
1132 {
1133 }
1134 #endif
1135 
1136 /*
1137  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
1138  * balanced by operating on them in a round-robin fashion.
1139  * Returns 1 if an adjustment was made.
1140  */
1141 static int adjust_pool_surplus(struct hstate *h, int delta)
1142 {
1143 	static int prev_nid;
1144 	int nid = prev_nid;
1145 	int ret = 0;
1146 
1147 	VM_BUG_ON(delta != -1 && delta != 1);
1148 	do {
1149 		nid = next_node(nid, node_online_map);
1150 		if (nid == MAX_NUMNODES)
1151 			nid = first_node(node_online_map);
1152 
1153 		/* To shrink on this node, there must be a surplus page */
1154 		if (delta < 0 && !h->surplus_huge_pages_node[nid])
1155 			continue;
1156 		/* Surplus cannot exceed the total number of pages */
1157 		if (delta > 0 && h->surplus_huge_pages_node[nid] >=
1158 						h->nr_huge_pages_node[nid])
1159 			continue;
1160 
1161 		h->surplus_huge_pages += delta;
1162 		h->surplus_huge_pages_node[nid] += delta;
1163 		ret = 1;
1164 		break;
1165 	} while (nid != prev_nid);
1166 
1167 	prev_nid = nid;
1168 	return ret;
1169 }
1170 
1171 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1172 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count)
1173 {
1174 	unsigned long min_count, ret;
1175 
1176 	if (h->order >= MAX_ORDER)
1177 		return h->max_huge_pages;
1178 
1179 	/*
1180 	 * Increase the pool size
1181 	 * First take pages out of surplus state.  Then make up the
1182 	 * remaining difference by allocating fresh huge pages.
1183 	 *
1184 	 * We might race with alloc_buddy_huge_page() here and be unable
1185 	 * to convert a surplus huge page to a normal huge page. That is
1186 	 * not critical, though, it just means the overall size of the
1187 	 * pool might be one hugepage larger than it needs to be, but
1188 	 * within all the constraints specified by the sysctls.
1189 	 */
1190 	spin_lock(&hugetlb_lock);
1191 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1192 		if (!adjust_pool_surplus(h, -1))
1193 			break;
1194 	}
1195 
1196 	while (count > persistent_huge_pages(h)) {
1197 		/*
1198 		 * If this allocation races such that we no longer need the
1199 		 * page, free_huge_page will handle it by freeing the page
1200 		 * and reducing the surplus.
1201 		 */
1202 		spin_unlock(&hugetlb_lock);
1203 		ret = alloc_fresh_huge_page(h);
1204 		spin_lock(&hugetlb_lock);
1205 		if (!ret)
1206 			goto out;
1207 
1208 	}
1209 
1210 	/*
1211 	 * Decrease the pool size
1212 	 * First return free pages to the buddy allocator (being careful
1213 	 * to keep enough around to satisfy reservations).  Then place
1214 	 * pages into surplus state as needed so the pool will shrink
1215 	 * to the desired size as pages become free.
1216 	 *
1217 	 * By placing pages into the surplus state independent of the
1218 	 * overcommit value, we are allowing the surplus pool size to
1219 	 * exceed overcommit. There are few sane options here. Since
1220 	 * alloc_buddy_huge_page() is checking the global counter,
1221 	 * though, we'll note that we're not allowed to exceed surplus
1222 	 * and won't grow the pool anywhere else. Not until one of the
1223 	 * sysctls are changed, or the surplus pages go out of use.
1224 	 */
1225 	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1226 	min_count = max(count, min_count);
1227 	try_to_free_low(h, min_count);
1228 	while (min_count < persistent_huge_pages(h)) {
1229 		struct page *page = dequeue_huge_page(h);
1230 		if (!page)
1231 			break;
1232 		update_and_free_page(h, page);
1233 	}
1234 	while (count < persistent_huge_pages(h)) {
1235 		if (!adjust_pool_surplus(h, 1))
1236 			break;
1237 	}
1238 out:
1239 	ret = persistent_huge_pages(h);
1240 	spin_unlock(&hugetlb_lock);
1241 	return ret;
1242 }
1243 
1244 #define HSTATE_ATTR_RO(_name) \
1245 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1246 
1247 #define HSTATE_ATTR(_name) \
1248 	static struct kobj_attribute _name##_attr = \
1249 		__ATTR(_name, 0644, _name##_show, _name##_store)
1250 
1251 static struct kobject *hugepages_kobj;
1252 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1253 
1254 static struct hstate *kobj_to_hstate(struct kobject *kobj)
1255 {
1256 	int i;
1257 	for (i = 0; i < HUGE_MAX_HSTATE; i++)
1258 		if (hstate_kobjs[i] == kobj)
1259 			return &hstates[i];
1260 	BUG();
1261 	return NULL;
1262 }
1263 
1264 static ssize_t nr_hugepages_show(struct kobject *kobj,
1265 					struct kobj_attribute *attr, char *buf)
1266 {
1267 	struct hstate *h = kobj_to_hstate(kobj);
1268 	return sprintf(buf, "%lu\n", h->nr_huge_pages);
1269 }
1270 static ssize_t nr_hugepages_store(struct kobject *kobj,
1271 		struct kobj_attribute *attr, const char *buf, size_t count)
1272 {
1273 	int err;
1274 	unsigned long input;
1275 	struct hstate *h = kobj_to_hstate(kobj);
1276 
1277 	err = strict_strtoul(buf, 10, &input);
1278 	if (err)
1279 		return 0;
1280 
1281 	h->max_huge_pages = set_max_huge_pages(h, input);
1282 
1283 	return count;
1284 }
1285 HSTATE_ATTR(nr_hugepages);
1286 
1287 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1288 					struct kobj_attribute *attr, char *buf)
1289 {
1290 	struct hstate *h = kobj_to_hstate(kobj);
1291 	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1292 }
1293 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1294 		struct kobj_attribute *attr, const char *buf, size_t count)
1295 {
1296 	int err;
1297 	unsigned long input;
1298 	struct hstate *h = kobj_to_hstate(kobj);
1299 
1300 	err = strict_strtoul(buf, 10, &input);
1301 	if (err)
1302 		return 0;
1303 
1304 	spin_lock(&hugetlb_lock);
1305 	h->nr_overcommit_huge_pages = input;
1306 	spin_unlock(&hugetlb_lock);
1307 
1308 	return count;
1309 }
1310 HSTATE_ATTR(nr_overcommit_hugepages);
1311 
1312 static ssize_t free_hugepages_show(struct kobject *kobj,
1313 					struct kobj_attribute *attr, char *buf)
1314 {
1315 	struct hstate *h = kobj_to_hstate(kobj);
1316 	return sprintf(buf, "%lu\n", h->free_huge_pages);
1317 }
1318 HSTATE_ATTR_RO(free_hugepages);
1319 
1320 static ssize_t resv_hugepages_show(struct kobject *kobj,
1321 					struct kobj_attribute *attr, char *buf)
1322 {
1323 	struct hstate *h = kobj_to_hstate(kobj);
1324 	return sprintf(buf, "%lu\n", h->resv_huge_pages);
1325 }
1326 HSTATE_ATTR_RO(resv_hugepages);
1327 
1328 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1329 					struct kobj_attribute *attr, char *buf)
1330 {
1331 	struct hstate *h = kobj_to_hstate(kobj);
1332 	return sprintf(buf, "%lu\n", h->surplus_huge_pages);
1333 }
1334 HSTATE_ATTR_RO(surplus_hugepages);
1335 
1336 static struct attribute *hstate_attrs[] = {
1337 	&nr_hugepages_attr.attr,
1338 	&nr_overcommit_hugepages_attr.attr,
1339 	&free_hugepages_attr.attr,
1340 	&resv_hugepages_attr.attr,
1341 	&surplus_hugepages_attr.attr,
1342 	NULL,
1343 };
1344 
1345 static struct attribute_group hstate_attr_group = {
1346 	.attrs = hstate_attrs,
1347 };
1348 
1349 static int __init hugetlb_sysfs_add_hstate(struct hstate *h)
1350 {
1351 	int retval;
1352 
1353 	hstate_kobjs[h - hstates] = kobject_create_and_add(h->name,
1354 							hugepages_kobj);
1355 	if (!hstate_kobjs[h - hstates])
1356 		return -ENOMEM;
1357 
1358 	retval = sysfs_create_group(hstate_kobjs[h - hstates],
1359 							&hstate_attr_group);
1360 	if (retval)
1361 		kobject_put(hstate_kobjs[h - hstates]);
1362 
1363 	return retval;
1364 }
1365 
1366 static void __init hugetlb_sysfs_init(void)
1367 {
1368 	struct hstate *h;
1369 	int err;
1370 
1371 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1372 	if (!hugepages_kobj)
1373 		return;
1374 
1375 	for_each_hstate(h) {
1376 		err = hugetlb_sysfs_add_hstate(h);
1377 		if (err)
1378 			printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1379 								h->name);
1380 	}
1381 }
1382 
1383 static void __exit hugetlb_exit(void)
1384 {
1385 	struct hstate *h;
1386 
1387 	for_each_hstate(h) {
1388 		kobject_put(hstate_kobjs[h - hstates]);
1389 	}
1390 
1391 	kobject_put(hugepages_kobj);
1392 }
1393 module_exit(hugetlb_exit);
1394 
1395 static int __init hugetlb_init(void)
1396 {
1397 	/* Some platform decide whether they support huge pages at boot
1398 	 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1399 	 * there is no such support
1400 	 */
1401 	if (HPAGE_SHIFT == 0)
1402 		return 0;
1403 
1404 	if (!size_to_hstate(default_hstate_size)) {
1405 		default_hstate_size = HPAGE_SIZE;
1406 		if (!size_to_hstate(default_hstate_size))
1407 			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1408 	}
1409 	default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
1410 	if (default_hstate_max_huge_pages)
1411 		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1412 
1413 	hugetlb_init_hstates();
1414 
1415 	gather_bootmem_prealloc();
1416 
1417 	report_hugepages();
1418 
1419 	hugetlb_sysfs_init();
1420 
1421 	return 0;
1422 }
1423 module_init(hugetlb_init);
1424 
1425 /* Should be called on processing a hugepagesz=... option */
1426 void __init hugetlb_add_hstate(unsigned order)
1427 {
1428 	struct hstate *h;
1429 	unsigned long i;
1430 
1431 	if (size_to_hstate(PAGE_SIZE << order)) {
1432 		printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1433 		return;
1434 	}
1435 	BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
1436 	BUG_ON(order == 0);
1437 	h = &hstates[max_hstate++];
1438 	h->order = order;
1439 	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1440 	h->nr_huge_pages = 0;
1441 	h->free_huge_pages = 0;
1442 	for (i = 0; i < MAX_NUMNODES; ++i)
1443 		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1444 	h->hugetlb_next_nid = first_node(node_online_map);
1445 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1446 					huge_page_size(h)/1024);
1447 
1448 	parsed_hstate = h;
1449 }
1450 
1451 static int __init hugetlb_nrpages_setup(char *s)
1452 {
1453 	unsigned long *mhp;
1454 	static unsigned long *last_mhp;
1455 
1456 	/*
1457 	 * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
1458 	 * so this hugepages= parameter goes to the "default hstate".
1459 	 */
1460 	if (!max_hstate)
1461 		mhp = &default_hstate_max_huge_pages;
1462 	else
1463 		mhp = &parsed_hstate->max_huge_pages;
1464 
1465 	if (mhp == last_mhp) {
1466 		printk(KERN_WARNING "hugepages= specified twice without "
1467 			"interleaving hugepagesz=, ignoring\n");
1468 		return 1;
1469 	}
1470 
1471 	if (sscanf(s, "%lu", mhp) <= 0)
1472 		*mhp = 0;
1473 
1474 	/*
1475 	 * Global state is always initialized later in hugetlb_init.
1476 	 * But we need to allocate >= MAX_ORDER hstates here early to still
1477 	 * use the bootmem allocator.
1478 	 */
1479 	if (max_hstate && parsed_hstate->order >= MAX_ORDER)
1480 		hugetlb_hstate_alloc_pages(parsed_hstate);
1481 
1482 	last_mhp = mhp;
1483 
1484 	return 1;
1485 }
1486 __setup("hugepages=", hugetlb_nrpages_setup);
1487 
1488 static int __init hugetlb_default_setup(char *s)
1489 {
1490 	default_hstate_size = memparse(s, &s);
1491 	return 1;
1492 }
1493 __setup("default_hugepagesz=", hugetlb_default_setup);
1494 
1495 static unsigned int cpuset_mems_nr(unsigned int *array)
1496 {
1497 	int node;
1498 	unsigned int nr = 0;
1499 
1500 	for_each_node_mask(node, cpuset_current_mems_allowed)
1501 		nr += array[node];
1502 
1503 	return nr;
1504 }
1505 
1506 #ifdef CONFIG_SYSCTL
1507 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
1508 			   struct file *file, void __user *buffer,
1509 			   size_t *length, loff_t *ppos)
1510 {
1511 	struct hstate *h = &default_hstate;
1512 	unsigned long tmp;
1513 
1514 	if (!write)
1515 		tmp = h->max_huge_pages;
1516 
1517 	table->data = &tmp;
1518 	table->maxlen = sizeof(unsigned long);
1519 	proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
1520 
1521 	if (write)
1522 		h->max_huge_pages = set_max_huge_pages(h, tmp);
1523 
1524 	return 0;
1525 }
1526 
1527 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
1528 			struct file *file, void __user *buffer,
1529 			size_t *length, loff_t *ppos)
1530 {
1531 	proc_dointvec(table, write, file, buffer, length, ppos);
1532 	if (hugepages_treat_as_movable)
1533 		htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
1534 	else
1535 		htlb_alloc_mask = GFP_HIGHUSER;
1536 	return 0;
1537 }
1538 
1539 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
1540 			struct file *file, void __user *buffer,
1541 			size_t *length, loff_t *ppos)
1542 {
1543 	struct hstate *h = &default_hstate;
1544 	unsigned long tmp;
1545 
1546 	if (!write)
1547 		tmp = h->nr_overcommit_huge_pages;
1548 
1549 	table->data = &tmp;
1550 	table->maxlen = sizeof(unsigned long);
1551 	proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
1552 
1553 	if (write) {
1554 		spin_lock(&hugetlb_lock);
1555 		h->nr_overcommit_huge_pages = tmp;
1556 		spin_unlock(&hugetlb_lock);
1557 	}
1558 
1559 	return 0;
1560 }
1561 
1562 #endif /* CONFIG_SYSCTL */
1563 
1564 void hugetlb_report_meminfo(struct seq_file *m)
1565 {
1566 	struct hstate *h = &default_hstate;
1567 	seq_printf(m,
1568 			"HugePages_Total:   %5lu\n"
1569 			"HugePages_Free:    %5lu\n"
1570 			"HugePages_Rsvd:    %5lu\n"
1571 			"HugePages_Surp:    %5lu\n"
1572 			"Hugepagesize:   %8lu kB\n",
1573 			h->nr_huge_pages,
1574 			h->free_huge_pages,
1575 			h->resv_huge_pages,
1576 			h->surplus_huge_pages,
1577 			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1578 }
1579 
1580 int hugetlb_report_node_meminfo(int nid, char *buf)
1581 {
1582 	struct hstate *h = &default_hstate;
1583 	return sprintf(buf,
1584 		"Node %d HugePages_Total: %5u\n"
1585 		"Node %d HugePages_Free:  %5u\n"
1586 		"Node %d HugePages_Surp:  %5u\n",
1587 		nid, h->nr_huge_pages_node[nid],
1588 		nid, h->free_huge_pages_node[nid],
1589 		nid, h->surplus_huge_pages_node[nid]);
1590 }
1591 
1592 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
1593 unsigned long hugetlb_total_pages(void)
1594 {
1595 	struct hstate *h = &default_hstate;
1596 	return h->nr_huge_pages * pages_per_huge_page(h);
1597 }
1598 
1599 static int hugetlb_acct_memory(struct hstate *h, long delta)
1600 {
1601 	int ret = -ENOMEM;
1602 
1603 	spin_lock(&hugetlb_lock);
1604 	/*
1605 	 * When cpuset is configured, it breaks the strict hugetlb page
1606 	 * reservation as the accounting is done on a global variable. Such
1607 	 * reservation is completely rubbish in the presence of cpuset because
1608 	 * the reservation is not checked against page availability for the
1609 	 * current cpuset. Application can still potentially OOM'ed by kernel
1610 	 * with lack of free htlb page in cpuset that the task is in.
1611 	 * Attempt to enforce strict accounting with cpuset is almost
1612 	 * impossible (or too ugly) because cpuset is too fluid that
1613 	 * task or memory node can be dynamically moved between cpusets.
1614 	 *
1615 	 * The change of semantics for shared hugetlb mapping with cpuset is
1616 	 * undesirable. However, in order to preserve some of the semantics,
1617 	 * we fall back to check against current free page availability as
1618 	 * a best attempt and hopefully to minimize the impact of changing
1619 	 * semantics that cpuset has.
1620 	 */
1621 	if (delta > 0) {
1622 		if (gather_surplus_pages(h, delta) < 0)
1623 			goto out;
1624 
1625 		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
1626 			return_unused_surplus_pages(h, delta);
1627 			goto out;
1628 		}
1629 	}
1630 
1631 	ret = 0;
1632 	if (delta < 0)
1633 		return_unused_surplus_pages(h, (unsigned long) -delta);
1634 
1635 out:
1636 	spin_unlock(&hugetlb_lock);
1637 	return ret;
1638 }
1639 
1640 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
1641 {
1642 	struct resv_map *reservations = vma_resv_map(vma);
1643 
1644 	/*
1645 	 * This new VMA should share its siblings reservation map if present.
1646 	 * The VMA will only ever have a valid reservation map pointer where
1647 	 * it is being copied for another still existing VMA.  As that VMA
1648 	 * has a reference to the reservation map it cannot dissappear until
1649 	 * after this open call completes.  It is therefore safe to take a
1650 	 * new reference here without additional locking.
1651 	 */
1652 	if (reservations)
1653 		kref_get(&reservations->refs);
1654 }
1655 
1656 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
1657 {
1658 	struct hstate *h = hstate_vma(vma);
1659 	struct resv_map *reservations = vma_resv_map(vma);
1660 	unsigned long reserve;
1661 	unsigned long start;
1662 	unsigned long end;
1663 
1664 	if (reservations) {
1665 		start = vma_hugecache_offset(h, vma, vma->vm_start);
1666 		end = vma_hugecache_offset(h, vma, vma->vm_end);
1667 
1668 		reserve = (end - start) -
1669 			region_count(&reservations->regions, start, end);
1670 
1671 		kref_put(&reservations->refs, resv_map_release);
1672 
1673 		if (reserve) {
1674 			hugetlb_acct_memory(h, -reserve);
1675 			hugetlb_put_quota(vma->vm_file->f_mapping, reserve);
1676 		}
1677 	}
1678 }
1679 
1680 /*
1681  * We cannot handle pagefaults against hugetlb pages at all.  They cause
1682  * handle_mm_fault() to try to instantiate regular-sized pages in the
1683  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
1684  * this far.
1685  */
1686 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1687 {
1688 	BUG();
1689 	return 0;
1690 }
1691 
1692 struct vm_operations_struct hugetlb_vm_ops = {
1693 	.fault = hugetlb_vm_op_fault,
1694 	.open = hugetlb_vm_op_open,
1695 	.close = hugetlb_vm_op_close,
1696 };
1697 
1698 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
1699 				int writable)
1700 {
1701 	pte_t entry;
1702 
1703 	if (writable) {
1704 		entry =
1705 		    pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
1706 	} else {
1707 		entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
1708 	}
1709 	entry = pte_mkyoung(entry);
1710 	entry = pte_mkhuge(entry);
1711 
1712 	return entry;
1713 }
1714 
1715 static void set_huge_ptep_writable(struct vm_area_struct *vma,
1716 				   unsigned long address, pte_t *ptep)
1717 {
1718 	pte_t entry;
1719 
1720 	entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
1721 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) {
1722 		update_mmu_cache(vma, address, entry);
1723 	}
1724 }
1725 
1726 
1727 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
1728 			    struct vm_area_struct *vma)
1729 {
1730 	pte_t *src_pte, *dst_pte, entry;
1731 	struct page *ptepage;
1732 	unsigned long addr;
1733 	int cow;
1734 	struct hstate *h = hstate_vma(vma);
1735 	unsigned long sz = huge_page_size(h);
1736 
1737 	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1738 
1739 	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
1740 		src_pte = huge_pte_offset(src, addr);
1741 		if (!src_pte)
1742 			continue;
1743 		dst_pte = huge_pte_alloc(dst, addr, sz);
1744 		if (!dst_pte)
1745 			goto nomem;
1746 
1747 		/* If the pagetables are shared don't copy or take references */
1748 		if (dst_pte == src_pte)
1749 			continue;
1750 
1751 		spin_lock(&dst->page_table_lock);
1752 		spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
1753 		if (!huge_pte_none(huge_ptep_get(src_pte))) {
1754 			if (cow)
1755 				huge_ptep_set_wrprotect(src, addr, src_pte);
1756 			entry = huge_ptep_get(src_pte);
1757 			ptepage = pte_page(entry);
1758 			get_page(ptepage);
1759 			set_huge_pte_at(dst, addr, dst_pte, entry);
1760 		}
1761 		spin_unlock(&src->page_table_lock);
1762 		spin_unlock(&dst->page_table_lock);
1763 	}
1764 	return 0;
1765 
1766 nomem:
1767 	return -ENOMEM;
1768 }
1769 
1770 void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
1771 			    unsigned long end, struct page *ref_page)
1772 {
1773 	struct mm_struct *mm = vma->vm_mm;
1774 	unsigned long address;
1775 	pte_t *ptep;
1776 	pte_t pte;
1777 	struct page *page;
1778 	struct page *tmp;
1779 	struct hstate *h = hstate_vma(vma);
1780 	unsigned long sz = huge_page_size(h);
1781 
1782 	/*
1783 	 * A page gathering list, protected by per file i_mmap_lock. The
1784 	 * lock is used to avoid list corruption from multiple unmapping
1785 	 * of the same page since we are using page->lru.
1786 	 */
1787 	LIST_HEAD(page_list);
1788 
1789 	WARN_ON(!is_vm_hugetlb_page(vma));
1790 	BUG_ON(start & ~huge_page_mask(h));
1791 	BUG_ON(end & ~huge_page_mask(h));
1792 
1793 	mmu_notifier_invalidate_range_start(mm, start, end);
1794 	spin_lock(&mm->page_table_lock);
1795 	for (address = start; address < end; address += sz) {
1796 		ptep = huge_pte_offset(mm, address);
1797 		if (!ptep)
1798 			continue;
1799 
1800 		if (huge_pmd_unshare(mm, &address, ptep))
1801 			continue;
1802 
1803 		/*
1804 		 * If a reference page is supplied, it is because a specific
1805 		 * page is being unmapped, not a range. Ensure the page we
1806 		 * are about to unmap is the actual page of interest.
1807 		 */
1808 		if (ref_page) {
1809 			pte = huge_ptep_get(ptep);
1810 			if (huge_pte_none(pte))
1811 				continue;
1812 			page = pte_page(pte);
1813 			if (page != ref_page)
1814 				continue;
1815 
1816 			/*
1817 			 * Mark the VMA as having unmapped its page so that
1818 			 * future faults in this VMA will fail rather than
1819 			 * looking like data was lost
1820 			 */
1821 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
1822 		}
1823 
1824 		pte = huge_ptep_get_and_clear(mm, address, ptep);
1825 		if (huge_pte_none(pte))
1826 			continue;
1827 
1828 		page = pte_page(pte);
1829 		if (pte_dirty(pte))
1830 			set_page_dirty(page);
1831 		list_add(&page->lru, &page_list);
1832 	}
1833 	spin_unlock(&mm->page_table_lock);
1834 	flush_tlb_range(vma, start, end);
1835 	mmu_notifier_invalidate_range_end(mm, start, end);
1836 	list_for_each_entry_safe(page, tmp, &page_list, lru) {
1837 		list_del(&page->lru);
1838 		put_page(page);
1839 	}
1840 }
1841 
1842 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
1843 			  unsigned long end, struct page *ref_page)
1844 {
1845 	spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
1846 	__unmap_hugepage_range(vma, start, end, ref_page);
1847 	spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
1848 }
1849 
1850 /*
1851  * This is called when the original mapper is failing to COW a MAP_PRIVATE
1852  * mappping it owns the reserve page for. The intention is to unmap the page
1853  * from other VMAs and let the children be SIGKILLed if they are faulting the
1854  * same region.
1855  */
1856 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
1857 				struct page *page, unsigned long address)
1858 {
1859 	struct hstate *h = hstate_vma(vma);
1860 	struct vm_area_struct *iter_vma;
1861 	struct address_space *mapping;
1862 	struct prio_tree_iter iter;
1863 	pgoff_t pgoff;
1864 
1865 	/*
1866 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
1867 	 * from page cache lookup which is in HPAGE_SIZE units.
1868 	 */
1869 	address = address & huge_page_mask(h);
1870 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT)
1871 		+ (vma->vm_pgoff >> PAGE_SHIFT);
1872 	mapping = (struct address_space *)page_private(page);
1873 
1874 	vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1875 		/* Do not unmap the current VMA */
1876 		if (iter_vma == vma)
1877 			continue;
1878 
1879 		/*
1880 		 * Unmap the page from other VMAs without their own reserves.
1881 		 * They get marked to be SIGKILLed if they fault in these
1882 		 * areas. This is because a future no-page fault on this VMA
1883 		 * could insert a zeroed page instead of the data existing
1884 		 * from the time of fork. This would look like data corruption
1885 		 */
1886 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
1887 			unmap_hugepage_range(iter_vma,
1888 				address, address + huge_page_size(h),
1889 				page);
1890 	}
1891 
1892 	return 1;
1893 }
1894 
1895 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
1896 			unsigned long address, pte_t *ptep, pte_t pte,
1897 			struct page *pagecache_page)
1898 {
1899 	struct hstate *h = hstate_vma(vma);
1900 	struct page *old_page, *new_page;
1901 	int avoidcopy;
1902 	int outside_reserve = 0;
1903 
1904 	old_page = pte_page(pte);
1905 
1906 retry_avoidcopy:
1907 	/* If no-one else is actually using this page, avoid the copy
1908 	 * and just make the page writable */
1909 	avoidcopy = (page_count(old_page) == 1);
1910 	if (avoidcopy) {
1911 		set_huge_ptep_writable(vma, address, ptep);
1912 		return 0;
1913 	}
1914 
1915 	/*
1916 	 * If the process that created a MAP_PRIVATE mapping is about to
1917 	 * perform a COW due to a shared page count, attempt to satisfy
1918 	 * the allocation without using the existing reserves. The pagecache
1919 	 * page is used to determine if the reserve at this address was
1920 	 * consumed or not. If reserves were used, a partial faulted mapping
1921 	 * at the time of fork() could consume its reserves on COW instead
1922 	 * of the full address range.
1923 	 */
1924 	if (!(vma->vm_flags & VM_MAYSHARE) &&
1925 			is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
1926 			old_page != pagecache_page)
1927 		outside_reserve = 1;
1928 
1929 	page_cache_get(old_page);
1930 	new_page = alloc_huge_page(vma, address, outside_reserve);
1931 
1932 	if (IS_ERR(new_page)) {
1933 		page_cache_release(old_page);
1934 
1935 		/*
1936 		 * If a process owning a MAP_PRIVATE mapping fails to COW,
1937 		 * it is due to references held by a child and an insufficient
1938 		 * huge page pool. To guarantee the original mappers
1939 		 * reliability, unmap the page from child processes. The child
1940 		 * may get SIGKILLed if it later faults.
1941 		 */
1942 		if (outside_reserve) {
1943 			BUG_ON(huge_pte_none(pte));
1944 			if (unmap_ref_private(mm, vma, old_page, address)) {
1945 				BUG_ON(page_count(old_page) != 1);
1946 				BUG_ON(huge_pte_none(pte));
1947 				goto retry_avoidcopy;
1948 			}
1949 			WARN_ON_ONCE(1);
1950 		}
1951 
1952 		return -PTR_ERR(new_page);
1953 	}
1954 
1955 	spin_unlock(&mm->page_table_lock);
1956 	copy_huge_page(new_page, old_page, address, vma);
1957 	__SetPageUptodate(new_page);
1958 	spin_lock(&mm->page_table_lock);
1959 
1960 	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
1961 	if (likely(pte_same(huge_ptep_get(ptep), pte))) {
1962 		/* Break COW */
1963 		huge_ptep_clear_flush(vma, address, ptep);
1964 		set_huge_pte_at(mm, address, ptep,
1965 				make_huge_pte(vma, new_page, 1));
1966 		/* Make the old page be freed below */
1967 		new_page = old_page;
1968 	}
1969 	page_cache_release(new_page);
1970 	page_cache_release(old_page);
1971 	return 0;
1972 }
1973 
1974 /* Return the pagecache page at a given address within a VMA */
1975 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
1976 			struct vm_area_struct *vma, unsigned long address)
1977 {
1978 	struct address_space *mapping;
1979 	pgoff_t idx;
1980 
1981 	mapping = vma->vm_file->f_mapping;
1982 	idx = vma_hugecache_offset(h, vma, address);
1983 
1984 	return find_lock_page(mapping, idx);
1985 }
1986 
1987 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
1988 			unsigned long address, pte_t *ptep, unsigned int flags)
1989 {
1990 	struct hstate *h = hstate_vma(vma);
1991 	int ret = VM_FAULT_SIGBUS;
1992 	pgoff_t idx;
1993 	unsigned long size;
1994 	struct page *page;
1995 	struct address_space *mapping;
1996 	pte_t new_pte;
1997 
1998 	/*
1999 	 * Currently, we are forced to kill the process in the event the
2000 	 * original mapper has unmapped pages from the child due to a failed
2001 	 * COW. Warn that such a situation has occured as it may not be obvious
2002 	 */
2003 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2004 		printk(KERN_WARNING
2005 			"PID %d killed due to inadequate hugepage pool\n",
2006 			current->pid);
2007 		return ret;
2008 	}
2009 
2010 	mapping = vma->vm_file->f_mapping;
2011 	idx = vma_hugecache_offset(h, vma, address);
2012 
2013 	/*
2014 	 * Use page lock to guard against racing truncation
2015 	 * before we get page_table_lock.
2016 	 */
2017 retry:
2018 	page = find_lock_page(mapping, idx);
2019 	if (!page) {
2020 		size = i_size_read(mapping->host) >> huge_page_shift(h);
2021 		if (idx >= size)
2022 			goto out;
2023 		page = alloc_huge_page(vma, address, 0);
2024 		if (IS_ERR(page)) {
2025 			ret = -PTR_ERR(page);
2026 			goto out;
2027 		}
2028 		clear_huge_page(page, address, huge_page_size(h));
2029 		__SetPageUptodate(page);
2030 
2031 		if (vma->vm_flags & VM_MAYSHARE) {
2032 			int err;
2033 			struct inode *inode = mapping->host;
2034 
2035 			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2036 			if (err) {
2037 				put_page(page);
2038 				if (err == -EEXIST)
2039 					goto retry;
2040 				goto out;
2041 			}
2042 
2043 			spin_lock(&inode->i_lock);
2044 			inode->i_blocks += blocks_per_huge_page(h);
2045 			spin_unlock(&inode->i_lock);
2046 		} else
2047 			lock_page(page);
2048 	}
2049 
2050 	/*
2051 	 * If we are going to COW a private mapping later, we examine the
2052 	 * pending reservations for this page now. This will ensure that
2053 	 * any allocations necessary to record that reservation occur outside
2054 	 * the spinlock.
2055 	 */
2056 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2057 		if (vma_needs_reservation(h, vma, address) < 0) {
2058 			ret = VM_FAULT_OOM;
2059 			goto backout_unlocked;
2060 		}
2061 
2062 	spin_lock(&mm->page_table_lock);
2063 	size = i_size_read(mapping->host) >> huge_page_shift(h);
2064 	if (idx >= size)
2065 		goto backout;
2066 
2067 	ret = 0;
2068 	if (!huge_pte_none(huge_ptep_get(ptep)))
2069 		goto backout;
2070 
2071 	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2072 				&& (vma->vm_flags & VM_SHARED)));
2073 	set_huge_pte_at(mm, address, ptep, new_pte);
2074 
2075 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2076 		/* Optimization, do the COW without a second fault */
2077 		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2078 	}
2079 
2080 	spin_unlock(&mm->page_table_lock);
2081 	unlock_page(page);
2082 out:
2083 	return ret;
2084 
2085 backout:
2086 	spin_unlock(&mm->page_table_lock);
2087 backout_unlocked:
2088 	unlock_page(page);
2089 	put_page(page);
2090 	goto out;
2091 }
2092 
2093 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2094 			unsigned long address, unsigned int flags)
2095 {
2096 	pte_t *ptep;
2097 	pte_t entry;
2098 	int ret;
2099 	struct page *pagecache_page = NULL;
2100 	static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2101 	struct hstate *h = hstate_vma(vma);
2102 
2103 	ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2104 	if (!ptep)
2105 		return VM_FAULT_OOM;
2106 
2107 	/*
2108 	 * Serialize hugepage allocation and instantiation, so that we don't
2109 	 * get spurious allocation failures if two CPUs race to instantiate
2110 	 * the same page in the page cache.
2111 	 */
2112 	mutex_lock(&hugetlb_instantiation_mutex);
2113 	entry = huge_ptep_get(ptep);
2114 	if (huge_pte_none(entry)) {
2115 		ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2116 		goto out_mutex;
2117 	}
2118 
2119 	ret = 0;
2120 
2121 	/*
2122 	 * If we are going to COW the mapping later, we examine the pending
2123 	 * reservations for this page now. This will ensure that any
2124 	 * allocations necessary to record that reservation occur outside the
2125 	 * spinlock. For private mappings, we also lookup the pagecache
2126 	 * page now as it is used to determine if a reservation has been
2127 	 * consumed.
2128 	 */
2129 	if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2130 		if (vma_needs_reservation(h, vma, address) < 0) {
2131 			ret = VM_FAULT_OOM;
2132 			goto out_mutex;
2133 		}
2134 
2135 		if (!(vma->vm_flags & VM_MAYSHARE))
2136 			pagecache_page = hugetlbfs_pagecache_page(h,
2137 								vma, address);
2138 	}
2139 
2140 	spin_lock(&mm->page_table_lock);
2141 	/* Check for a racing update before calling hugetlb_cow */
2142 	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2143 		goto out_page_table_lock;
2144 
2145 
2146 	if (flags & FAULT_FLAG_WRITE) {
2147 		if (!pte_write(entry)) {
2148 			ret = hugetlb_cow(mm, vma, address, ptep, entry,
2149 							pagecache_page);
2150 			goto out_page_table_lock;
2151 		}
2152 		entry = pte_mkdirty(entry);
2153 	}
2154 	entry = pte_mkyoung(entry);
2155 	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2156 						flags & FAULT_FLAG_WRITE))
2157 		update_mmu_cache(vma, address, entry);
2158 
2159 out_page_table_lock:
2160 	spin_unlock(&mm->page_table_lock);
2161 
2162 	if (pagecache_page) {
2163 		unlock_page(pagecache_page);
2164 		put_page(pagecache_page);
2165 	}
2166 
2167 out_mutex:
2168 	mutex_unlock(&hugetlb_instantiation_mutex);
2169 
2170 	return ret;
2171 }
2172 
2173 /* Can be overriden by architectures */
2174 __attribute__((weak)) struct page *
2175 follow_huge_pud(struct mm_struct *mm, unsigned long address,
2176 	       pud_t *pud, int write)
2177 {
2178 	BUG();
2179 	return NULL;
2180 }
2181 
2182 static int huge_zeropage_ok(pte_t *ptep, int write, int shared)
2183 {
2184 	if (!ptep || write || shared)
2185 		return 0;
2186 	else
2187 		return huge_pte_none(huge_ptep_get(ptep));
2188 }
2189 
2190 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2191 			struct page **pages, struct vm_area_struct **vmas,
2192 			unsigned long *position, int *length, int i,
2193 			int write)
2194 {
2195 	unsigned long pfn_offset;
2196 	unsigned long vaddr = *position;
2197 	int remainder = *length;
2198 	struct hstate *h = hstate_vma(vma);
2199 	int zeropage_ok = 0;
2200 	int shared = vma->vm_flags & VM_SHARED;
2201 
2202 	spin_lock(&mm->page_table_lock);
2203 	while (vaddr < vma->vm_end && remainder) {
2204 		pte_t *pte;
2205 		struct page *page;
2206 
2207 		/*
2208 		 * Some archs (sparc64, sh*) have multiple pte_ts to
2209 		 * each hugepage.  We have to make * sure we get the
2210 		 * first, for the page indexing below to work.
2211 		 */
2212 		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2213 		if (huge_zeropage_ok(pte, write, shared))
2214 			zeropage_ok = 1;
2215 
2216 		if (!pte ||
2217 		    (huge_pte_none(huge_ptep_get(pte)) && !zeropage_ok) ||
2218 		    (write && !pte_write(huge_ptep_get(pte)))) {
2219 			int ret;
2220 
2221 			spin_unlock(&mm->page_table_lock);
2222 			ret = hugetlb_fault(mm, vma, vaddr, write);
2223 			spin_lock(&mm->page_table_lock);
2224 			if (!(ret & VM_FAULT_ERROR))
2225 				continue;
2226 
2227 			remainder = 0;
2228 			if (!i)
2229 				i = -EFAULT;
2230 			break;
2231 		}
2232 
2233 		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2234 		page = pte_page(huge_ptep_get(pte));
2235 same_page:
2236 		if (pages) {
2237 			if (zeropage_ok)
2238 				pages[i] = ZERO_PAGE(0);
2239 			else
2240 				pages[i] = mem_map_offset(page, pfn_offset);
2241 			get_page(pages[i]);
2242 		}
2243 
2244 		if (vmas)
2245 			vmas[i] = vma;
2246 
2247 		vaddr += PAGE_SIZE;
2248 		++pfn_offset;
2249 		--remainder;
2250 		++i;
2251 		if (vaddr < vma->vm_end && remainder &&
2252 				pfn_offset < pages_per_huge_page(h)) {
2253 			/*
2254 			 * We use pfn_offset to avoid touching the pageframes
2255 			 * of this compound page.
2256 			 */
2257 			goto same_page;
2258 		}
2259 	}
2260 	spin_unlock(&mm->page_table_lock);
2261 	*length = remainder;
2262 	*position = vaddr;
2263 
2264 	return i;
2265 }
2266 
2267 void hugetlb_change_protection(struct vm_area_struct *vma,
2268 		unsigned long address, unsigned long end, pgprot_t newprot)
2269 {
2270 	struct mm_struct *mm = vma->vm_mm;
2271 	unsigned long start = address;
2272 	pte_t *ptep;
2273 	pte_t pte;
2274 	struct hstate *h = hstate_vma(vma);
2275 
2276 	BUG_ON(address >= end);
2277 	flush_cache_range(vma, address, end);
2278 
2279 	spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
2280 	spin_lock(&mm->page_table_lock);
2281 	for (; address < end; address += huge_page_size(h)) {
2282 		ptep = huge_pte_offset(mm, address);
2283 		if (!ptep)
2284 			continue;
2285 		if (huge_pmd_unshare(mm, &address, ptep))
2286 			continue;
2287 		if (!huge_pte_none(huge_ptep_get(ptep))) {
2288 			pte = huge_ptep_get_and_clear(mm, address, ptep);
2289 			pte = pte_mkhuge(pte_modify(pte, newprot));
2290 			set_huge_pte_at(mm, address, ptep, pte);
2291 		}
2292 	}
2293 	spin_unlock(&mm->page_table_lock);
2294 	spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
2295 
2296 	flush_tlb_range(vma, start, end);
2297 }
2298 
2299 int hugetlb_reserve_pages(struct inode *inode,
2300 					long from, long to,
2301 					struct vm_area_struct *vma,
2302 					int acctflag)
2303 {
2304 	long ret, chg;
2305 	struct hstate *h = hstate_inode(inode);
2306 
2307 	/*
2308 	 * Only apply hugepage reservation if asked. At fault time, an
2309 	 * attempt will be made for VM_NORESERVE to allocate a page
2310 	 * and filesystem quota without using reserves
2311 	 */
2312 	if (acctflag & VM_NORESERVE)
2313 		return 0;
2314 
2315 	/*
2316 	 * Shared mappings base their reservation on the number of pages that
2317 	 * are already allocated on behalf of the file. Private mappings need
2318 	 * to reserve the full area even if read-only as mprotect() may be
2319 	 * called to make the mapping read-write. Assume !vma is a shm mapping
2320 	 */
2321 	if (!vma || vma->vm_flags & VM_MAYSHARE)
2322 		chg = region_chg(&inode->i_mapping->private_list, from, to);
2323 	else {
2324 		struct resv_map *resv_map = resv_map_alloc();
2325 		if (!resv_map)
2326 			return -ENOMEM;
2327 
2328 		chg = to - from;
2329 
2330 		set_vma_resv_map(vma, resv_map);
2331 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
2332 	}
2333 
2334 	if (chg < 0)
2335 		return chg;
2336 
2337 	/* There must be enough filesystem quota for the mapping */
2338 	if (hugetlb_get_quota(inode->i_mapping, chg))
2339 		return -ENOSPC;
2340 
2341 	/*
2342 	 * Check enough hugepages are available for the reservation.
2343 	 * Hand back the quota if there are not
2344 	 */
2345 	ret = hugetlb_acct_memory(h, chg);
2346 	if (ret < 0) {
2347 		hugetlb_put_quota(inode->i_mapping, chg);
2348 		return ret;
2349 	}
2350 
2351 	/*
2352 	 * Account for the reservations made. Shared mappings record regions
2353 	 * that have reservations as they are shared by multiple VMAs.
2354 	 * When the last VMA disappears, the region map says how much
2355 	 * the reservation was and the page cache tells how much of
2356 	 * the reservation was consumed. Private mappings are per-VMA and
2357 	 * only the consumed reservations are tracked. When the VMA
2358 	 * disappears, the original reservation is the VMA size and the
2359 	 * consumed reservations are stored in the map. Hence, nothing
2360 	 * else has to be done for private mappings here
2361 	 */
2362 	if (!vma || vma->vm_flags & VM_MAYSHARE)
2363 		region_add(&inode->i_mapping->private_list, from, to);
2364 	return 0;
2365 }
2366 
2367 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
2368 {
2369 	struct hstate *h = hstate_inode(inode);
2370 	long chg = region_truncate(&inode->i_mapping->private_list, offset);
2371 
2372 	spin_lock(&inode->i_lock);
2373 	inode->i_blocks -= blocks_per_huge_page(h);
2374 	spin_unlock(&inode->i_lock);
2375 
2376 	hugetlb_put_quota(inode->i_mapping, (chg - freed));
2377 	hugetlb_acct_memory(h, -(chg - freed));
2378 }
2379