1 /* 2 * Generic hugetlb support. 3 * (C) William Irwin, April 2004 4 */ 5 #include <linux/gfp.h> 6 #include <linux/list.h> 7 #include <linux/init.h> 8 #include <linux/module.h> 9 #include <linux/mm.h> 10 #include <linux/seq_file.h> 11 #include <linux/sysctl.h> 12 #include <linux/highmem.h> 13 #include <linux/mmu_notifier.h> 14 #include <linux/nodemask.h> 15 #include <linux/pagemap.h> 16 #include <linux/mempolicy.h> 17 #include <linux/cpuset.h> 18 #include <linux/mutex.h> 19 #include <linux/bootmem.h> 20 #include <linux/sysfs.h> 21 22 #include <asm/page.h> 23 #include <asm/pgtable.h> 24 #include <asm/io.h> 25 26 #include <linux/hugetlb.h> 27 #include "internal.h" 28 29 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL; 30 static gfp_t htlb_alloc_mask = GFP_HIGHUSER; 31 unsigned long hugepages_treat_as_movable; 32 33 static int max_hstate; 34 unsigned int default_hstate_idx; 35 struct hstate hstates[HUGE_MAX_HSTATE]; 36 37 __initdata LIST_HEAD(huge_boot_pages); 38 39 /* for command line parsing */ 40 static struct hstate * __initdata parsed_hstate; 41 static unsigned long __initdata default_hstate_max_huge_pages; 42 static unsigned long __initdata default_hstate_size; 43 44 #define for_each_hstate(h) \ 45 for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++) 46 47 /* 48 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages 49 */ 50 static DEFINE_SPINLOCK(hugetlb_lock); 51 52 /* 53 * Region tracking -- allows tracking of reservations and instantiated pages 54 * across the pages in a mapping. 55 * 56 * The region data structures are protected by a combination of the mmap_sem 57 * and the hugetlb_instantion_mutex. To access or modify a region the caller 58 * must either hold the mmap_sem for write, or the mmap_sem for read and 59 * the hugetlb_instantiation mutex: 60 * 61 * down_write(&mm->mmap_sem); 62 * or 63 * down_read(&mm->mmap_sem); 64 * mutex_lock(&hugetlb_instantiation_mutex); 65 */ 66 struct file_region { 67 struct list_head link; 68 long from; 69 long to; 70 }; 71 72 static long region_add(struct list_head *head, long f, long t) 73 { 74 struct file_region *rg, *nrg, *trg; 75 76 /* Locate the region we are either in or before. */ 77 list_for_each_entry(rg, head, link) 78 if (f <= rg->to) 79 break; 80 81 /* Round our left edge to the current segment if it encloses us. */ 82 if (f > rg->from) 83 f = rg->from; 84 85 /* Check for and consume any regions we now overlap with. */ 86 nrg = rg; 87 list_for_each_entry_safe(rg, trg, rg->link.prev, link) { 88 if (&rg->link == head) 89 break; 90 if (rg->from > t) 91 break; 92 93 /* If this area reaches higher then extend our area to 94 * include it completely. If this is not the first area 95 * which we intend to reuse, free it. */ 96 if (rg->to > t) 97 t = rg->to; 98 if (rg != nrg) { 99 list_del(&rg->link); 100 kfree(rg); 101 } 102 } 103 nrg->from = f; 104 nrg->to = t; 105 return 0; 106 } 107 108 static long region_chg(struct list_head *head, long f, long t) 109 { 110 struct file_region *rg, *nrg; 111 long chg = 0; 112 113 /* Locate the region we are before or in. */ 114 list_for_each_entry(rg, head, link) 115 if (f <= rg->to) 116 break; 117 118 /* If we are below the current region then a new region is required. 119 * Subtle, allocate a new region at the position but make it zero 120 * size such that we can guarantee to record the reservation. */ 121 if (&rg->link == head || t < rg->from) { 122 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 123 if (!nrg) 124 return -ENOMEM; 125 nrg->from = f; 126 nrg->to = f; 127 INIT_LIST_HEAD(&nrg->link); 128 list_add(&nrg->link, rg->link.prev); 129 130 return t - f; 131 } 132 133 /* Round our left edge to the current segment if it encloses us. */ 134 if (f > rg->from) 135 f = rg->from; 136 chg = t - f; 137 138 /* Check for and consume any regions we now overlap with. */ 139 list_for_each_entry(rg, rg->link.prev, link) { 140 if (&rg->link == head) 141 break; 142 if (rg->from > t) 143 return chg; 144 145 /* We overlap with this area, if it extends futher than 146 * us then we must extend ourselves. Account for its 147 * existing reservation. */ 148 if (rg->to > t) { 149 chg += rg->to - t; 150 t = rg->to; 151 } 152 chg -= rg->to - rg->from; 153 } 154 return chg; 155 } 156 157 static long region_truncate(struct list_head *head, long end) 158 { 159 struct file_region *rg, *trg; 160 long chg = 0; 161 162 /* Locate the region we are either in or before. */ 163 list_for_each_entry(rg, head, link) 164 if (end <= rg->to) 165 break; 166 if (&rg->link == head) 167 return 0; 168 169 /* If we are in the middle of a region then adjust it. */ 170 if (end > rg->from) { 171 chg = rg->to - end; 172 rg->to = end; 173 rg = list_entry(rg->link.next, typeof(*rg), link); 174 } 175 176 /* Drop any remaining regions. */ 177 list_for_each_entry_safe(rg, trg, rg->link.prev, link) { 178 if (&rg->link == head) 179 break; 180 chg += rg->to - rg->from; 181 list_del(&rg->link); 182 kfree(rg); 183 } 184 return chg; 185 } 186 187 static long region_count(struct list_head *head, long f, long t) 188 { 189 struct file_region *rg; 190 long chg = 0; 191 192 /* Locate each segment we overlap with, and count that overlap. */ 193 list_for_each_entry(rg, head, link) { 194 int seg_from; 195 int seg_to; 196 197 if (rg->to <= f) 198 continue; 199 if (rg->from >= t) 200 break; 201 202 seg_from = max(rg->from, f); 203 seg_to = min(rg->to, t); 204 205 chg += seg_to - seg_from; 206 } 207 208 return chg; 209 } 210 211 /* 212 * Convert the address within this vma to the page offset within 213 * the mapping, in pagecache page units; huge pages here. 214 */ 215 static pgoff_t vma_hugecache_offset(struct hstate *h, 216 struct vm_area_struct *vma, unsigned long address) 217 { 218 return ((address - vma->vm_start) >> huge_page_shift(h)) + 219 (vma->vm_pgoff >> huge_page_order(h)); 220 } 221 222 /* 223 * Return the size of the pages allocated when backing a VMA. In the majority 224 * cases this will be same size as used by the page table entries. 225 */ 226 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) 227 { 228 struct hstate *hstate; 229 230 if (!is_vm_hugetlb_page(vma)) 231 return PAGE_SIZE; 232 233 hstate = hstate_vma(vma); 234 235 return 1UL << (hstate->order + PAGE_SHIFT); 236 } 237 238 /* 239 * Return the page size being used by the MMU to back a VMA. In the majority 240 * of cases, the page size used by the kernel matches the MMU size. On 241 * architectures where it differs, an architecture-specific version of this 242 * function is required. 243 */ 244 #ifndef vma_mmu_pagesize 245 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 246 { 247 return vma_kernel_pagesize(vma); 248 } 249 #endif 250 251 /* 252 * Flags for MAP_PRIVATE reservations. These are stored in the bottom 253 * bits of the reservation map pointer, which are always clear due to 254 * alignment. 255 */ 256 #define HPAGE_RESV_OWNER (1UL << 0) 257 #define HPAGE_RESV_UNMAPPED (1UL << 1) 258 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) 259 260 /* 261 * These helpers are used to track how many pages are reserved for 262 * faults in a MAP_PRIVATE mapping. Only the process that called mmap() 263 * is guaranteed to have their future faults succeed. 264 * 265 * With the exception of reset_vma_resv_huge_pages() which is called at fork(), 266 * the reserve counters are updated with the hugetlb_lock held. It is safe 267 * to reset the VMA at fork() time as it is not in use yet and there is no 268 * chance of the global counters getting corrupted as a result of the values. 269 * 270 * The private mapping reservation is represented in a subtly different 271 * manner to a shared mapping. A shared mapping has a region map associated 272 * with the underlying file, this region map represents the backing file 273 * pages which have ever had a reservation assigned which this persists even 274 * after the page is instantiated. A private mapping has a region map 275 * associated with the original mmap which is attached to all VMAs which 276 * reference it, this region map represents those offsets which have consumed 277 * reservation ie. where pages have been instantiated. 278 */ 279 static unsigned long get_vma_private_data(struct vm_area_struct *vma) 280 { 281 return (unsigned long)vma->vm_private_data; 282 } 283 284 static void set_vma_private_data(struct vm_area_struct *vma, 285 unsigned long value) 286 { 287 vma->vm_private_data = (void *)value; 288 } 289 290 struct resv_map { 291 struct kref refs; 292 struct list_head regions; 293 }; 294 295 static struct resv_map *resv_map_alloc(void) 296 { 297 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); 298 if (!resv_map) 299 return NULL; 300 301 kref_init(&resv_map->refs); 302 INIT_LIST_HEAD(&resv_map->regions); 303 304 return resv_map; 305 } 306 307 static void resv_map_release(struct kref *ref) 308 { 309 struct resv_map *resv_map = container_of(ref, struct resv_map, refs); 310 311 /* Clear out any active regions before we release the map. */ 312 region_truncate(&resv_map->regions, 0); 313 kfree(resv_map); 314 } 315 316 static struct resv_map *vma_resv_map(struct vm_area_struct *vma) 317 { 318 VM_BUG_ON(!is_vm_hugetlb_page(vma)); 319 if (!(vma->vm_flags & VM_MAYSHARE)) 320 return (struct resv_map *)(get_vma_private_data(vma) & 321 ~HPAGE_RESV_MASK); 322 return NULL; 323 } 324 325 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) 326 { 327 VM_BUG_ON(!is_vm_hugetlb_page(vma)); 328 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE); 329 330 set_vma_private_data(vma, (get_vma_private_data(vma) & 331 HPAGE_RESV_MASK) | (unsigned long)map); 332 } 333 334 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) 335 { 336 VM_BUG_ON(!is_vm_hugetlb_page(vma)); 337 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE); 338 339 set_vma_private_data(vma, get_vma_private_data(vma) | flags); 340 } 341 342 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) 343 { 344 VM_BUG_ON(!is_vm_hugetlb_page(vma)); 345 346 return (get_vma_private_data(vma) & flag) != 0; 347 } 348 349 /* Decrement the reserved pages in the hugepage pool by one */ 350 static void decrement_hugepage_resv_vma(struct hstate *h, 351 struct vm_area_struct *vma) 352 { 353 if (vma->vm_flags & VM_NORESERVE) 354 return; 355 356 if (vma->vm_flags & VM_MAYSHARE) { 357 /* Shared mappings always use reserves */ 358 h->resv_huge_pages--; 359 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 360 /* 361 * Only the process that called mmap() has reserves for 362 * private mappings. 363 */ 364 h->resv_huge_pages--; 365 } 366 } 367 368 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */ 369 void reset_vma_resv_huge_pages(struct vm_area_struct *vma) 370 { 371 VM_BUG_ON(!is_vm_hugetlb_page(vma)); 372 if (!(vma->vm_flags & VM_MAYSHARE)) 373 vma->vm_private_data = (void *)0; 374 } 375 376 /* Returns true if the VMA has associated reserve pages */ 377 static int vma_has_reserves(struct vm_area_struct *vma) 378 { 379 if (vma->vm_flags & VM_MAYSHARE) 380 return 1; 381 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 382 return 1; 383 return 0; 384 } 385 386 static void clear_gigantic_page(struct page *page, 387 unsigned long addr, unsigned long sz) 388 { 389 int i; 390 struct page *p = page; 391 392 might_sleep(); 393 for (i = 0; i < sz/PAGE_SIZE; i++, p = mem_map_next(p, page, i)) { 394 cond_resched(); 395 clear_user_highpage(p, addr + i * PAGE_SIZE); 396 } 397 } 398 static void clear_huge_page(struct page *page, 399 unsigned long addr, unsigned long sz) 400 { 401 int i; 402 403 if (unlikely(sz > MAX_ORDER_NR_PAGES)) { 404 clear_gigantic_page(page, addr, sz); 405 return; 406 } 407 408 might_sleep(); 409 for (i = 0; i < sz/PAGE_SIZE; i++) { 410 cond_resched(); 411 clear_user_highpage(page + i, addr + i * PAGE_SIZE); 412 } 413 } 414 415 static void copy_gigantic_page(struct page *dst, struct page *src, 416 unsigned long addr, struct vm_area_struct *vma) 417 { 418 int i; 419 struct hstate *h = hstate_vma(vma); 420 struct page *dst_base = dst; 421 struct page *src_base = src; 422 might_sleep(); 423 for (i = 0; i < pages_per_huge_page(h); ) { 424 cond_resched(); 425 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma); 426 427 i++; 428 dst = mem_map_next(dst, dst_base, i); 429 src = mem_map_next(src, src_base, i); 430 } 431 } 432 static void copy_huge_page(struct page *dst, struct page *src, 433 unsigned long addr, struct vm_area_struct *vma) 434 { 435 int i; 436 struct hstate *h = hstate_vma(vma); 437 438 if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) { 439 copy_gigantic_page(dst, src, addr, vma); 440 return; 441 } 442 443 might_sleep(); 444 for (i = 0; i < pages_per_huge_page(h); i++) { 445 cond_resched(); 446 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma); 447 } 448 } 449 450 static void enqueue_huge_page(struct hstate *h, struct page *page) 451 { 452 int nid = page_to_nid(page); 453 list_add(&page->lru, &h->hugepage_freelists[nid]); 454 h->free_huge_pages++; 455 h->free_huge_pages_node[nid]++; 456 } 457 458 static struct page *dequeue_huge_page(struct hstate *h) 459 { 460 int nid; 461 struct page *page = NULL; 462 463 for (nid = 0; nid < MAX_NUMNODES; ++nid) { 464 if (!list_empty(&h->hugepage_freelists[nid])) { 465 page = list_entry(h->hugepage_freelists[nid].next, 466 struct page, lru); 467 list_del(&page->lru); 468 h->free_huge_pages--; 469 h->free_huge_pages_node[nid]--; 470 break; 471 } 472 } 473 return page; 474 } 475 476 static struct page *dequeue_huge_page_vma(struct hstate *h, 477 struct vm_area_struct *vma, 478 unsigned long address, int avoid_reserve) 479 { 480 int nid; 481 struct page *page = NULL; 482 struct mempolicy *mpol; 483 nodemask_t *nodemask; 484 struct zonelist *zonelist = huge_zonelist(vma, address, 485 htlb_alloc_mask, &mpol, &nodemask); 486 struct zone *zone; 487 struct zoneref *z; 488 489 /* 490 * A child process with MAP_PRIVATE mappings created by their parent 491 * have no page reserves. This check ensures that reservations are 492 * not "stolen". The child may still get SIGKILLed 493 */ 494 if (!vma_has_reserves(vma) && 495 h->free_huge_pages - h->resv_huge_pages == 0) 496 return NULL; 497 498 /* If reserves cannot be used, ensure enough pages are in the pool */ 499 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0) 500 return NULL; 501 502 for_each_zone_zonelist_nodemask(zone, z, zonelist, 503 MAX_NR_ZONES - 1, nodemask) { 504 nid = zone_to_nid(zone); 505 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) && 506 !list_empty(&h->hugepage_freelists[nid])) { 507 page = list_entry(h->hugepage_freelists[nid].next, 508 struct page, lru); 509 list_del(&page->lru); 510 h->free_huge_pages--; 511 h->free_huge_pages_node[nid]--; 512 513 if (!avoid_reserve) 514 decrement_hugepage_resv_vma(h, vma); 515 516 break; 517 } 518 } 519 mpol_cond_put(mpol); 520 return page; 521 } 522 523 static void update_and_free_page(struct hstate *h, struct page *page) 524 { 525 int i; 526 527 VM_BUG_ON(h->order >= MAX_ORDER); 528 529 h->nr_huge_pages--; 530 h->nr_huge_pages_node[page_to_nid(page)]--; 531 for (i = 0; i < pages_per_huge_page(h); i++) { 532 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced | 533 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved | 534 1 << PG_private | 1<< PG_writeback); 535 } 536 set_compound_page_dtor(page, NULL); 537 set_page_refcounted(page); 538 arch_release_hugepage(page); 539 __free_pages(page, huge_page_order(h)); 540 } 541 542 struct hstate *size_to_hstate(unsigned long size) 543 { 544 struct hstate *h; 545 546 for_each_hstate(h) { 547 if (huge_page_size(h) == size) 548 return h; 549 } 550 return NULL; 551 } 552 553 static void free_huge_page(struct page *page) 554 { 555 /* 556 * Can't pass hstate in here because it is called from the 557 * compound page destructor. 558 */ 559 struct hstate *h = page_hstate(page); 560 int nid = page_to_nid(page); 561 struct address_space *mapping; 562 563 mapping = (struct address_space *) page_private(page); 564 set_page_private(page, 0); 565 BUG_ON(page_count(page)); 566 INIT_LIST_HEAD(&page->lru); 567 568 spin_lock(&hugetlb_lock); 569 if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) { 570 update_and_free_page(h, page); 571 h->surplus_huge_pages--; 572 h->surplus_huge_pages_node[nid]--; 573 } else { 574 enqueue_huge_page(h, page); 575 } 576 spin_unlock(&hugetlb_lock); 577 if (mapping) 578 hugetlb_put_quota(mapping, 1); 579 } 580 581 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid) 582 { 583 set_compound_page_dtor(page, free_huge_page); 584 spin_lock(&hugetlb_lock); 585 h->nr_huge_pages++; 586 h->nr_huge_pages_node[nid]++; 587 spin_unlock(&hugetlb_lock); 588 put_page(page); /* free it into the hugepage allocator */ 589 } 590 591 static void prep_compound_gigantic_page(struct page *page, unsigned long order) 592 { 593 int i; 594 int nr_pages = 1 << order; 595 struct page *p = page + 1; 596 597 /* we rely on prep_new_huge_page to set the destructor */ 598 set_compound_order(page, order); 599 __SetPageHead(page); 600 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { 601 __SetPageTail(p); 602 p->first_page = page; 603 } 604 } 605 606 int PageHuge(struct page *page) 607 { 608 compound_page_dtor *dtor; 609 610 if (!PageCompound(page)) 611 return 0; 612 613 page = compound_head(page); 614 dtor = get_compound_page_dtor(page); 615 616 return dtor == free_huge_page; 617 } 618 619 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid) 620 { 621 struct page *page; 622 623 if (h->order >= MAX_ORDER) 624 return NULL; 625 626 page = alloc_pages_exact_node(nid, 627 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE| 628 __GFP_REPEAT|__GFP_NOWARN, 629 huge_page_order(h)); 630 if (page) { 631 if (arch_prepare_hugepage(page)) { 632 __free_pages(page, huge_page_order(h)); 633 return NULL; 634 } 635 prep_new_huge_page(h, page, nid); 636 } 637 638 return page; 639 } 640 641 /* 642 * Use a helper variable to find the next node and then 643 * copy it back to hugetlb_next_nid afterwards: 644 * otherwise there's a window in which a racer might 645 * pass invalid nid MAX_NUMNODES to alloc_pages_exact_node. 646 * But we don't need to use a spin_lock here: it really 647 * doesn't matter if occasionally a racer chooses the 648 * same nid as we do. Move nid forward in the mask even 649 * if we just successfully allocated a hugepage so that 650 * the next caller gets hugepages on the next node. 651 */ 652 static int hstate_next_node(struct hstate *h) 653 { 654 int next_nid; 655 next_nid = next_node(h->hugetlb_next_nid, node_online_map); 656 if (next_nid == MAX_NUMNODES) 657 next_nid = first_node(node_online_map); 658 h->hugetlb_next_nid = next_nid; 659 return next_nid; 660 } 661 662 static int alloc_fresh_huge_page(struct hstate *h) 663 { 664 struct page *page; 665 int start_nid; 666 int next_nid; 667 int ret = 0; 668 669 start_nid = h->hugetlb_next_nid; 670 671 do { 672 page = alloc_fresh_huge_page_node(h, h->hugetlb_next_nid); 673 if (page) 674 ret = 1; 675 next_nid = hstate_next_node(h); 676 } while (!page && h->hugetlb_next_nid != start_nid); 677 678 if (ret) 679 count_vm_event(HTLB_BUDDY_PGALLOC); 680 else 681 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 682 683 return ret; 684 } 685 686 static struct page *alloc_buddy_huge_page(struct hstate *h, 687 struct vm_area_struct *vma, unsigned long address) 688 { 689 struct page *page; 690 unsigned int nid; 691 692 if (h->order >= MAX_ORDER) 693 return NULL; 694 695 /* 696 * Assume we will successfully allocate the surplus page to 697 * prevent racing processes from causing the surplus to exceed 698 * overcommit 699 * 700 * This however introduces a different race, where a process B 701 * tries to grow the static hugepage pool while alloc_pages() is 702 * called by process A. B will only examine the per-node 703 * counters in determining if surplus huge pages can be 704 * converted to normal huge pages in adjust_pool_surplus(). A 705 * won't be able to increment the per-node counter, until the 706 * lock is dropped by B, but B doesn't drop hugetlb_lock until 707 * no more huge pages can be converted from surplus to normal 708 * state (and doesn't try to convert again). Thus, we have a 709 * case where a surplus huge page exists, the pool is grown, and 710 * the surplus huge page still exists after, even though it 711 * should just have been converted to a normal huge page. This 712 * does not leak memory, though, as the hugepage will be freed 713 * once it is out of use. It also does not allow the counters to 714 * go out of whack in adjust_pool_surplus() as we don't modify 715 * the node values until we've gotten the hugepage and only the 716 * per-node value is checked there. 717 */ 718 spin_lock(&hugetlb_lock); 719 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { 720 spin_unlock(&hugetlb_lock); 721 return NULL; 722 } else { 723 h->nr_huge_pages++; 724 h->surplus_huge_pages++; 725 } 726 spin_unlock(&hugetlb_lock); 727 728 page = alloc_pages(htlb_alloc_mask|__GFP_COMP| 729 __GFP_REPEAT|__GFP_NOWARN, 730 huge_page_order(h)); 731 732 if (page && arch_prepare_hugepage(page)) { 733 __free_pages(page, huge_page_order(h)); 734 return NULL; 735 } 736 737 spin_lock(&hugetlb_lock); 738 if (page) { 739 /* 740 * This page is now managed by the hugetlb allocator and has 741 * no users -- drop the buddy allocator's reference. 742 */ 743 put_page_testzero(page); 744 VM_BUG_ON(page_count(page)); 745 nid = page_to_nid(page); 746 set_compound_page_dtor(page, free_huge_page); 747 /* 748 * We incremented the global counters already 749 */ 750 h->nr_huge_pages_node[nid]++; 751 h->surplus_huge_pages_node[nid]++; 752 __count_vm_event(HTLB_BUDDY_PGALLOC); 753 } else { 754 h->nr_huge_pages--; 755 h->surplus_huge_pages--; 756 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 757 } 758 spin_unlock(&hugetlb_lock); 759 760 return page; 761 } 762 763 /* 764 * Increase the hugetlb pool such that it can accomodate a reservation 765 * of size 'delta'. 766 */ 767 static int gather_surplus_pages(struct hstate *h, int delta) 768 { 769 struct list_head surplus_list; 770 struct page *page, *tmp; 771 int ret, i; 772 int needed, allocated; 773 774 needed = (h->resv_huge_pages + delta) - h->free_huge_pages; 775 if (needed <= 0) { 776 h->resv_huge_pages += delta; 777 return 0; 778 } 779 780 allocated = 0; 781 INIT_LIST_HEAD(&surplus_list); 782 783 ret = -ENOMEM; 784 retry: 785 spin_unlock(&hugetlb_lock); 786 for (i = 0; i < needed; i++) { 787 page = alloc_buddy_huge_page(h, NULL, 0); 788 if (!page) { 789 /* 790 * We were not able to allocate enough pages to 791 * satisfy the entire reservation so we free what 792 * we've allocated so far. 793 */ 794 spin_lock(&hugetlb_lock); 795 needed = 0; 796 goto free; 797 } 798 799 list_add(&page->lru, &surplus_list); 800 } 801 allocated += needed; 802 803 /* 804 * After retaking hugetlb_lock, we need to recalculate 'needed' 805 * because either resv_huge_pages or free_huge_pages may have changed. 806 */ 807 spin_lock(&hugetlb_lock); 808 needed = (h->resv_huge_pages + delta) - 809 (h->free_huge_pages + allocated); 810 if (needed > 0) 811 goto retry; 812 813 /* 814 * The surplus_list now contains _at_least_ the number of extra pages 815 * needed to accomodate the reservation. Add the appropriate number 816 * of pages to the hugetlb pool and free the extras back to the buddy 817 * allocator. Commit the entire reservation here to prevent another 818 * process from stealing the pages as they are added to the pool but 819 * before they are reserved. 820 */ 821 needed += allocated; 822 h->resv_huge_pages += delta; 823 ret = 0; 824 free: 825 /* Free the needed pages to the hugetlb pool */ 826 list_for_each_entry_safe(page, tmp, &surplus_list, lru) { 827 if ((--needed) < 0) 828 break; 829 list_del(&page->lru); 830 enqueue_huge_page(h, page); 831 } 832 833 /* Free unnecessary surplus pages to the buddy allocator */ 834 if (!list_empty(&surplus_list)) { 835 spin_unlock(&hugetlb_lock); 836 list_for_each_entry_safe(page, tmp, &surplus_list, lru) { 837 list_del(&page->lru); 838 /* 839 * The page has a reference count of zero already, so 840 * call free_huge_page directly instead of using 841 * put_page. This must be done with hugetlb_lock 842 * unlocked which is safe because free_huge_page takes 843 * hugetlb_lock before deciding how to free the page. 844 */ 845 free_huge_page(page); 846 } 847 spin_lock(&hugetlb_lock); 848 } 849 850 return ret; 851 } 852 853 /* 854 * When releasing a hugetlb pool reservation, any surplus pages that were 855 * allocated to satisfy the reservation must be explicitly freed if they were 856 * never used. 857 */ 858 static void return_unused_surplus_pages(struct hstate *h, 859 unsigned long unused_resv_pages) 860 { 861 static int nid = -1; 862 struct page *page; 863 unsigned long nr_pages; 864 865 /* 866 * We want to release as many surplus pages as possible, spread 867 * evenly across all nodes. Iterate across all nodes until we 868 * can no longer free unreserved surplus pages. This occurs when 869 * the nodes with surplus pages have no free pages. 870 */ 871 unsigned long remaining_iterations = nr_online_nodes; 872 873 /* Uncommit the reservation */ 874 h->resv_huge_pages -= unused_resv_pages; 875 876 /* Cannot return gigantic pages currently */ 877 if (h->order >= MAX_ORDER) 878 return; 879 880 nr_pages = min(unused_resv_pages, h->surplus_huge_pages); 881 882 while (remaining_iterations-- && nr_pages) { 883 nid = next_node(nid, node_online_map); 884 if (nid == MAX_NUMNODES) 885 nid = first_node(node_online_map); 886 887 if (!h->surplus_huge_pages_node[nid]) 888 continue; 889 890 if (!list_empty(&h->hugepage_freelists[nid])) { 891 page = list_entry(h->hugepage_freelists[nid].next, 892 struct page, lru); 893 list_del(&page->lru); 894 update_and_free_page(h, page); 895 h->free_huge_pages--; 896 h->free_huge_pages_node[nid]--; 897 h->surplus_huge_pages--; 898 h->surplus_huge_pages_node[nid]--; 899 nr_pages--; 900 remaining_iterations = nr_online_nodes; 901 } 902 } 903 } 904 905 /* 906 * Determine if the huge page at addr within the vma has an associated 907 * reservation. Where it does not we will need to logically increase 908 * reservation and actually increase quota before an allocation can occur. 909 * Where any new reservation would be required the reservation change is 910 * prepared, but not committed. Once the page has been quota'd allocated 911 * an instantiated the change should be committed via vma_commit_reservation. 912 * No action is required on failure. 913 */ 914 static long vma_needs_reservation(struct hstate *h, 915 struct vm_area_struct *vma, unsigned long addr) 916 { 917 struct address_space *mapping = vma->vm_file->f_mapping; 918 struct inode *inode = mapping->host; 919 920 if (vma->vm_flags & VM_MAYSHARE) { 921 pgoff_t idx = vma_hugecache_offset(h, vma, addr); 922 return region_chg(&inode->i_mapping->private_list, 923 idx, idx + 1); 924 925 } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 926 return 1; 927 928 } else { 929 long err; 930 pgoff_t idx = vma_hugecache_offset(h, vma, addr); 931 struct resv_map *reservations = vma_resv_map(vma); 932 933 err = region_chg(&reservations->regions, idx, idx + 1); 934 if (err < 0) 935 return err; 936 return 0; 937 } 938 } 939 static void vma_commit_reservation(struct hstate *h, 940 struct vm_area_struct *vma, unsigned long addr) 941 { 942 struct address_space *mapping = vma->vm_file->f_mapping; 943 struct inode *inode = mapping->host; 944 945 if (vma->vm_flags & VM_MAYSHARE) { 946 pgoff_t idx = vma_hugecache_offset(h, vma, addr); 947 region_add(&inode->i_mapping->private_list, idx, idx + 1); 948 949 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 950 pgoff_t idx = vma_hugecache_offset(h, vma, addr); 951 struct resv_map *reservations = vma_resv_map(vma); 952 953 /* Mark this page used in the map. */ 954 region_add(&reservations->regions, idx, idx + 1); 955 } 956 } 957 958 static struct page *alloc_huge_page(struct vm_area_struct *vma, 959 unsigned long addr, int avoid_reserve) 960 { 961 struct hstate *h = hstate_vma(vma); 962 struct page *page; 963 struct address_space *mapping = vma->vm_file->f_mapping; 964 struct inode *inode = mapping->host; 965 long chg; 966 967 /* 968 * Processes that did not create the mapping will have no reserves and 969 * will not have accounted against quota. Check that the quota can be 970 * made before satisfying the allocation 971 * MAP_NORESERVE mappings may also need pages and quota allocated 972 * if no reserve mapping overlaps. 973 */ 974 chg = vma_needs_reservation(h, vma, addr); 975 if (chg < 0) 976 return ERR_PTR(chg); 977 if (chg) 978 if (hugetlb_get_quota(inode->i_mapping, chg)) 979 return ERR_PTR(-ENOSPC); 980 981 spin_lock(&hugetlb_lock); 982 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve); 983 spin_unlock(&hugetlb_lock); 984 985 if (!page) { 986 page = alloc_buddy_huge_page(h, vma, addr); 987 if (!page) { 988 hugetlb_put_quota(inode->i_mapping, chg); 989 return ERR_PTR(-VM_FAULT_OOM); 990 } 991 } 992 993 set_page_refcounted(page); 994 set_page_private(page, (unsigned long) mapping); 995 996 vma_commit_reservation(h, vma, addr); 997 998 return page; 999 } 1000 1001 int __weak alloc_bootmem_huge_page(struct hstate *h) 1002 { 1003 struct huge_bootmem_page *m; 1004 int nr_nodes = nodes_weight(node_online_map); 1005 1006 while (nr_nodes) { 1007 void *addr; 1008 1009 addr = __alloc_bootmem_node_nopanic( 1010 NODE_DATA(h->hugetlb_next_nid), 1011 huge_page_size(h), huge_page_size(h), 0); 1012 1013 if (addr) { 1014 /* 1015 * Use the beginning of the huge page to store the 1016 * huge_bootmem_page struct (until gather_bootmem 1017 * puts them into the mem_map). 1018 */ 1019 m = addr; 1020 goto found; 1021 } 1022 hstate_next_node(h); 1023 nr_nodes--; 1024 } 1025 return 0; 1026 1027 found: 1028 BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1)); 1029 /* Put them into a private list first because mem_map is not up yet */ 1030 list_add(&m->list, &huge_boot_pages); 1031 m->hstate = h; 1032 return 1; 1033 } 1034 1035 static void prep_compound_huge_page(struct page *page, int order) 1036 { 1037 if (unlikely(order > (MAX_ORDER - 1))) 1038 prep_compound_gigantic_page(page, order); 1039 else 1040 prep_compound_page(page, order); 1041 } 1042 1043 /* Put bootmem huge pages into the standard lists after mem_map is up */ 1044 static void __init gather_bootmem_prealloc(void) 1045 { 1046 struct huge_bootmem_page *m; 1047 1048 list_for_each_entry(m, &huge_boot_pages, list) { 1049 struct page *page = virt_to_page(m); 1050 struct hstate *h = m->hstate; 1051 __ClearPageReserved(page); 1052 WARN_ON(page_count(page) != 1); 1053 prep_compound_huge_page(page, h->order); 1054 prep_new_huge_page(h, page, page_to_nid(page)); 1055 } 1056 } 1057 1058 static void __init hugetlb_hstate_alloc_pages(struct hstate *h) 1059 { 1060 unsigned long i; 1061 1062 for (i = 0; i < h->max_huge_pages; ++i) { 1063 if (h->order >= MAX_ORDER) { 1064 if (!alloc_bootmem_huge_page(h)) 1065 break; 1066 } else if (!alloc_fresh_huge_page(h)) 1067 break; 1068 } 1069 h->max_huge_pages = i; 1070 } 1071 1072 static void __init hugetlb_init_hstates(void) 1073 { 1074 struct hstate *h; 1075 1076 for_each_hstate(h) { 1077 /* oversize hugepages were init'ed in early boot */ 1078 if (h->order < MAX_ORDER) 1079 hugetlb_hstate_alloc_pages(h); 1080 } 1081 } 1082 1083 static char * __init memfmt(char *buf, unsigned long n) 1084 { 1085 if (n >= (1UL << 30)) 1086 sprintf(buf, "%lu GB", n >> 30); 1087 else if (n >= (1UL << 20)) 1088 sprintf(buf, "%lu MB", n >> 20); 1089 else 1090 sprintf(buf, "%lu KB", n >> 10); 1091 return buf; 1092 } 1093 1094 static void __init report_hugepages(void) 1095 { 1096 struct hstate *h; 1097 1098 for_each_hstate(h) { 1099 char buf[32]; 1100 printk(KERN_INFO "HugeTLB registered %s page size, " 1101 "pre-allocated %ld pages\n", 1102 memfmt(buf, huge_page_size(h)), 1103 h->free_huge_pages); 1104 } 1105 } 1106 1107 #ifdef CONFIG_HIGHMEM 1108 static void try_to_free_low(struct hstate *h, unsigned long count) 1109 { 1110 int i; 1111 1112 if (h->order >= MAX_ORDER) 1113 return; 1114 1115 for (i = 0; i < MAX_NUMNODES; ++i) { 1116 struct page *page, *next; 1117 struct list_head *freel = &h->hugepage_freelists[i]; 1118 list_for_each_entry_safe(page, next, freel, lru) { 1119 if (count >= h->nr_huge_pages) 1120 return; 1121 if (PageHighMem(page)) 1122 continue; 1123 list_del(&page->lru); 1124 update_and_free_page(h, page); 1125 h->free_huge_pages--; 1126 h->free_huge_pages_node[page_to_nid(page)]--; 1127 } 1128 } 1129 } 1130 #else 1131 static inline void try_to_free_low(struct hstate *h, unsigned long count) 1132 { 1133 } 1134 #endif 1135 1136 /* 1137 * Increment or decrement surplus_huge_pages. Keep node-specific counters 1138 * balanced by operating on them in a round-robin fashion. 1139 * Returns 1 if an adjustment was made. 1140 */ 1141 static int adjust_pool_surplus(struct hstate *h, int delta) 1142 { 1143 static int prev_nid; 1144 int nid = prev_nid; 1145 int ret = 0; 1146 1147 VM_BUG_ON(delta != -1 && delta != 1); 1148 do { 1149 nid = next_node(nid, node_online_map); 1150 if (nid == MAX_NUMNODES) 1151 nid = first_node(node_online_map); 1152 1153 /* To shrink on this node, there must be a surplus page */ 1154 if (delta < 0 && !h->surplus_huge_pages_node[nid]) 1155 continue; 1156 /* Surplus cannot exceed the total number of pages */ 1157 if (delta > 0 && h->surplus_huge_pages_node[nid] >= 1158 h->nr_huge_pages_node[nid]) 1159 continue; 1160 1161 h->surplus_huge_pages += delta; 1162 h->surplus_huge_pages_node[nid] += delta; 1163 ret = 1; 1164 break; 1165 } while (nid != prev_nid); 1166 1167 prev_nid = nid; 1168 return ret; 1169 } 1170 1171 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) 1172 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count) 1173 { 1174 unsigned long min_count, ret; 1175 1176 if (h->order >= MAX_ORDER) 1177 return h->max_huge_pages; 1178 1179 /* 1180 * Increase the pool size 1181 * First take pages out of surplus state. Then make up the 1182 * remaining difference by allocating fresh huge pages. 1183 * 1184 * We might race with alloc_buddy_huge_page() here and be unable 1185 * to convert a surplus huge page to a normal huge page. That is 1186 * not critical, though, it just means the overall size of the 1187 * pool might be one hugepage larger than it needs to be, but 1188 * within all the constraints specified by the sysctls. 1189 */ 1190 spin_lock(&hugetlb_lock); 1191 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { 1192 if (!adjust_pool_surplus(h, -1)) 1193 break; 1194 } 1195 1196 while (count > persistent_huge_pages(h)) { 1197 /* 1198 * If this allocation races such that we no longer need the 1199 * page, free_huge_page will handle it by freeing the page 1200 * and reducing the surplus. 1201 */ 1202 spin_unlock(&hugetlb_lock); 1203 ret = alloc_fresh_huge_page(h); 1204 spin_lock(&hugetlb_lock); 1205 if (!ret) 1206 goto out; 1207 1208 } 1209 1210 /* 1211 * Decrease the pool size 1212 * First return free pages to the buddy allocator (being careful 1213 * to keep enough around to satisfy reservations). Then place 1214 * pages into surplus state as needed so the pool will shrink 1215 * to the desired size as pages become free. 1216 * 1217 * By placing pages into the surplus state independent of the 1218 * overcommit value, we are allowing the surplus pool size to 1219 * exceed overcommit. There are few sane options here. Since 1220 * alloc_buddy_huge_page() is checking the global counter, 1221 * though, we'll note that we're not allowed to exceed surplus 1222 * and won't grow the pool anywhere else. Not until one of the 1223 * sysctls are changed, or the surplus pages go out of use. 1224 */ 1225 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages; 1226 min_count = max(count, min_count); 1227 try_to_free_low(h, min_count); 1228 while (min_count < persistent_huge_pages(h)) { 1229 struct page *page = dequeue_huge_page(h); 1230 if (!page) 1231 break; 1232 update_and_free_page(h, page); 1233 } 1234 while (count < persistent_huge_pages(h)) { 1235 if (!adjust_pool_surplus(h, 1)) 1236 break; 1237 } 1238 out: 1239 ret = persistent_huge_pages(h); 1240 spin_unlock(&hugetlb_lock); 1241 return ret; 1242 } 1243 1244 #define HSTATE_ATTR_RO(_name) \ 1245 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 1246 1247 #define HSTATE_ATTR(_name) \ 1248 static struct kobj_attribute _name##_attr = \ 1249 __ATTR(_name, 0644, _name##_show, _name##_store) 1250 1251 static struct kobject *hugepages_kobj; 1252 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 1253 1254 static struct hstate *kobj_to_hstate(struct kobject *kobj) 1255 { 1256 int i; 1257 for (i = 0; i < HUGE_MAX_HSTATE; i++) 1258 if (hstate_kobjs[i] == kobj) 1259 return &hstates[i]; 1260 BUG(); 1261 return NULL; 1262 } 1263 1264 static ssize_t nr_hugepages_show(struct kobject *kobj, 1265 struct kobj_attribute *attr, char *buf) 1266 { 1267 struct hstate *h = kobj_to_hstate(kobj); 1268 return sprintf(buf, "%lu\n", h->nr_huge_pages); 1269 } 1270 static ssize_t nr_hugepages_store(struct kobject *kobj, 1271 struct kobj_attribute *attr, const char *buf, size_t count) 1272 { 1273 int err; 1274 unsigned long input; 1275 struct hstate *h = kobj_to_hstate(kobj); 1276 1277 err = strict_strtoul(buf, 10, &input); 1278 if (err) 1279 return 0; 1280 1281 h->max_huge_pages = set_max_huge_pages(h, input); 1282 1283 return count; 1284 } 1285 HSTATE_ATTR(nr_hugepages); 1286 1287 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, 1288 struct kobj_attribute *attr, char *buf) 1289 { 1290 struct hstate *h = kobj_to_hstate(kobj); 1291 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages); 1292 } 1293 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, 1294 struct kobj_attribute *attr, const char *buf, size_t count) 1295 { 1296 int err; 1297 unsigned long input; 1298 struct hstate *h = kobj_to_hstate(kobj); 1299 1300 err = strict_strtoul(buf, 10, &input); 1301 if (err) 1302 return 0; 1303 1304 spin_lock(&hugetlb_lock); 1305 h->nr_overcommit_huge_pages = input; 1306 spin_unlock(&hugetlb_lock); 1307 1308 return count; 1309 } 1310 HSTATE_ATTR(nr_overcommit_hugepages); 1311 1312 static ssize_t free_hugepages_show(struct kobject *kobj, 1313 struct kobj_attribute *attr, char *buf) 1314 { 1315 struct hstate *h = kobj_to_hstate(kobj); 1316 return sprintf(buf, "%lu\n", h->free_huge_pages); 1317 } 1318 HSTATE_ATTR_RO(free_hugepages); 1319 1320 static ssize_t resv_hugepages_show(struct kobject *kobj, 1321 struct kobj_attribute *attr, char *buf) 1322 { 1323 struct hstate *h = kobj_to_hstate(kobj); 1324 return sprintf(buf, "%lu\n", h->resv_huge_pages); 1325 } 1326 HSTATE_ATTR_RO(resv_hugepages); 1327 1328 static ssize_t surplus_hugepages_show(struct kobject *kobj, 1329 struct kobj_attribute *attr, char *buf) 1330 { 1331 struct hstate *h = kobj_to_hstate(kobj); 1332 return sprintf(buf, "%lu\n", h->surplus_huge_pages); 1333 } 1334 HSTATE_ATTR_RO(surplus_hugepages); 1335 1336 static struct attribute *hstate_attrs[] = { 1337 &nr_hugepages_attr.attr, 1338 &nr_overcommit_hugepages_attr.attr, 1339 &free_hugepages_attr.attr, 1340 &resv_hugepages_attr.attr, 1341 &surplus_hugepages_attr.attr, 1342 NULL, 1343 }; 1344 1345 static struct attribute_group hstate_attr_group = { 1346 .attrs = hstate_attrs, 1347 }; 1348 1349 static int __init hugetlb_sysfs_add_hstate(struct hstate *h) 1350 { 1351 int retval; 1352 1353 hstate_kobjs[h - hstates] = kobject_create_and_add(h->name, 1354 hugepages_kobj); 1355 if (!hstate_kobjs[h - hstates]) 1356 return -ENOMEM; 1357 1358 retval = sysfs_create_group(hstate_kobjs[h - hstates], 1359 &hstate_attr_group); 1360 if (retval) 1361 kobject_put(hstate_kobjs[h - hstates]); 1362 1363 return retval; 1364 } 1365 1366 static void __init hugetlb_sysfs_init(void) 1367 { 1368 struct hstate *h; 1369 int err; 1370 1371 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); 1372 if (!hugepages_kobj) 1373 return; 1374 1375 for_each_hstate(h) { 1376 err = hugetlb_sysfs_add_hstate(h); 1377 if (err) 1378 printk(KERN_ERR "Hugetlb: Unable to add hstate %s", 1379 h->name); 1380 } 1381 } 1382 1383 static void __exit hugetlb_exit(void) 1384 { 1385 struct hstate *h; 1386 1387 for_each_hstate(h) { 1388 kobject_put(hstate_kobjs[h - hstates]); 1389 } 1390 1391 kobject_put(hugepages_kobj); 1392 } 1393 module_exit(hugetlb_exit); 1394 1395 static int __init hugetlb_init(void) 1396 { 1397 /* Some platform decide whether they support huge pages at boot 1398 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when 1399 * there is no such support 1400 */ 1401 if (HPAGE_SHIFT == 0) 1402 return 0; 1403 1404 if (!size_to_hstate(default_hstate_size)) { 1405 default_hstate_size = HPAGE_SIZE; 1406 if (!size_to_hstate(default_hstate_size)) 1407 hugetlb_add_hstate(HUGETLB_PAGE_ORDER); 1408 } 1409 default_hstate_idx = size_to_hstate(default_hstate_size) - hstates; 1410 if (default_hstate_max_huge_pages) 1411 default_hstate.max_huge_pages = default_hstate_max_huge_pages; 1412 1413 hugetlb_init_hstates(); 1414 1415 gather_bootmem_prealloc(); 1416 1417 report_hugepages(); 1418 1419 hugetlb_sysfs_init(); 1420 1421 return 0; 1422 } 1423 module_init(hugetlb_init); 1424 1425 /* Should be called on processing a hugepagesz=... option */ 1426 void __init hugetlb_add_hstate(unsigned order) 1427 { 1428 struct hstate *h; 1429 unsigned long i; 1430 1431 if (size_to_hstate(PAGE_SIZE << order)) { 1432 printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n"); 1433 return; 1434 } 1435 BUG_ON(max_hstate >= HUGE_MAX_HSTATE); 1436 BUG_ON(order == 0); 1437 h = &hstates[max_hstate++]; 1438 h->order = order; 1439 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1); 1440 h->nr_huge_pages = 0; 1441 h->free_huge_pages = 0; 1442 for (i = 0; i < MAX_NUMNODES; ++i) 1443 INIT_LIST_HEAD(&h->hugepage_freelists[i]); 1444 h->hugetlb_next_nid = first_node(node_online_map); 1445 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", 1446 huge_page_size(h)/1024); 1447 1448 parsed_hstate = h; 1449 } 1450 1451 static int __init hugetlb_nrpages_setup(char *s) 1452 { 1453 unsigned long *mhp; 1454 static unsigned long *last_mhp; 1455 1456 /* 1457 * !max_hstate means we haven't parsed a hugepagesz= parameter yet, 1458 * so this hugepages= parameter goes to the "default hstate". 1459 */ 1460 if (!max_hstate) 1461 mhp = &default_hstate_max_huge_pages; 1462 else 1463 mhp = &parsed_hstate->max_huge_pages; 1464 1465 if (mhp == last_mhp) { 1466 printk(KERN_WARNING "hugepages= specified twice without " 1467 "interleaving hugepagesz=, ignoring\n"); 1468 return 1; 1469 } 1470 1471 if (sscanf(s, "%lu", mhp) <= 0) 1472 *mhp = 0; 1473 1474 /* 1475 * Global state is always initialized later in hugetlb_init. 1476 * But we need to allocate >= MAX_ORDER hstates here early to still 1477 * use the bootmem allocator. 1478 */ 1479 if (max_hstate && parsed_hstate->order >= MAX_ORDER) 1480 hugetlb_hstate_alloc_pages(parsed_hstate); 1481 1482 last_mhp = mhp; 1483 1484 return 1; 1485 } 1486 __setup("hugepages=", hugetlb_nrpages_setup); 1487 1488 static int __init hugetlb_default_setup(char *s) 1489 { 1490 default_hstate_size = memparse(s, &s); 1491 return 1; 1492 } 1493 __setup("default_hugepagesz=", hugetlb_default_setup); 1494 1495 static unsigned int cpuset_mems_nr(unsigned int *array) 1496 { 1497 int node; 1498 unsigned int nr = 0; 1499 1500 for_each_node_mask(node, cpuset_current_mems_allowed) 1501 nr += array[node]; 1502 1503 return nr; 1504 } 1505 1506 #ifdef CONFIG_SYSCTL 1507 int hugetlb_sysctl_handler(struct ctl_table *table, int write, 1508 struct file *file, void __user *buffer, 1509 size_t *length, loff_t *ppos) 1510 { 1511 struct hstate *h = &default_hstate; 1512 unsigned long tmp; 1513 1514 if (!write) 1515 tmp = h->max_huge_pages; 1516 1517 table->data = &tmp; 1518 table->maxlen = sizeof(unsigned long); 1519 proc_doulongvec_minmax(table, write, file, buffer, length, ppos); 1520 1521 if (write) 1522 h->max_huge_pages = set_max_huge_pages(h, tmp); 1523 1524 return 0; 1525 } 1526 1527 int hugetlb_treat_movable_handler(struct ctl_table *table, int write, 1528 struct file *file, void __user *buffer, 1529 size_t *length, loff_t *ppos) 1530 { 1531 proc_dointvec(table, write, file, buffer, length, ppos); 1532 if (hugepages_treat_as_movable) 1533 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE; 1534 else 1535 htlb_alloc_mask = GFP_HIGHUSER; 1536 return 0; 1537 } 1538 1539 int hugetlb_overcommit_handler(struct ctl_table *table, int write, 1540 struct file *file, void __user *buffer, 1541 size_t *length, loff_t *ppos) 1542 { 1543 struct hstate *h = &default_hstate; 1544 unsigned long tmp; 1545 1546 if (!write) 1547 tmp = h->nr_overcommit_huge_pages; 1548 1549 table->data = &tmp; 1550 table->maxlen = sizeof(unsigned long); 1551 proc_doulongvec_minmax(table, write, file, buffer, length, ppos); 1552 1553 if (write) { 1554 spin_lock(&hugetlb_lock); 1555 h->nr_overcommit_huge_pages = tmp; 1556 spin_unlock(&hugetlb_lock); 1557 } 1558 1559 return 0; 1560 } 1561 1562 #endif /* CONFIG_SYSCTL */ 1563 1564 void hugetlb_report_meminfo(struct seq_file *m) 1565 { 1566 struct hstate *h = &default_hstate; 1567 seq_printf(m, 1568 "HugePages_Total: %5lu\n" 1569 "HugePages_Free: %5lu\n" 1570 "HugePages_Rsvd: %5lu\n" 1571 "HugePages_Surp: %5lu\n" 1572 "Hugepagesize: %8lu kB\n", 1573 h->nr_huge_pages, 1574 h->free_huge_pages, 1575 h->resv_huge_pages, 1576 h->surplus_huge_pages, 1577 1UL << (huge_page_order(h) + PAGE_SHIFT - 10)); 1578 } 1579 1580 int hugetlb_report_node_meminfo(int nid, char *buf) 1581 { 1582 struct hstate *h = &default_hstate; 1583 return sprintf(buf, 1584 "Node %d HugePages_Total: %5u\n" 1585 "Node %d HugePages_Free: %5u\n" 1586 "Node %d HugePages_Surp: %5u\n", 1587 nid, h->nr_huge_pages_node[nid], 1588 nid, h->free_huge_pages_node[nid], 1589 nid, h->surplus_huge_pages_node[nid]); 1590 } 1591 1592 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ 1593 unsigned long hugetlb_total_pages(void) 1594 { 1595 struct hstate *h = &default_hstate; 1596 return h->nr_huge_pages * pages_per_huge_page(h); 1597 } 1598 1599 static int hugetlb_acct_memory(struct hstate *h, long delta) 1600 { 1601 int ret = -ENOMEM; 1602 1603 spin_lock(&hugetlb_lock); 1604 /* 1605 * When cpuset is configured, it breaks the strict hugetlb page 1606 * reservation as the accounting is done on a global variable. Such 1607 * reservation is completely rubbish in the presence of cpuset because 1608 * the reservation is not checked against page availability for the 1609 * current cpuset. Application can still potentially OOM'ed by kernel 1610 * with lack of free htlb page in cpuset that the task is in. 1611 * Attempt to enforce strict accounting with cpuset is almost 1612 * impossible (or too ugly) because cpuset is too fluid that 1613 * task or memory node can be dynamically moved between cpusets. 1614 * 1615 * The change of semantics for shared hugetlb mapping with cpuset is 1616 * undesirable. However, in order to preserve some of the semantics, 1617 * we fall back to check against current free page availability as 1618 * a best attempt and hopefully to minimize the impact of changing 1619 * semantics that cpuset has. 1620 */ 1621 if (delta > 0) { 1622 if (gather_surplus_pages(h, delta) < 0) 1623 goto out; 1624 1625 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) { 1626 return_unused_surplus_pages(h, delta); 1627 goto out; 1628 } 1629 } 1630 1631 ret = 0; 1632 if (delta < 0) 1633 return_unused_surplus_pages(h, (unsigned long) -delta); 1634 1635 out: 1636 spin_unlock(&hugetlb_lock); 1637 return ret; 1638 } 1639 1640 static void hugetlb_vm_op_open(struct vm_area_struct *vma) 1641 { 1642 struct resv_map *reservations = vma_resv_map(vma); 1643 1644 /* 1645 * This new VMA should share its siblings reservation map if present. 1646 * The VMA will only ever have a valid reservation map pointer where 1647 * it is being copied for another still existing VMA. As that VMA 1648 * has a reference to the reservation map it cannot dissappear until 1649 * after this open call completes. It is therefore safe to take a 1650 * new reference here without additional locking. 1651 */ 1652 if (reservations) 1653 kref_get(&reservations->refs); 1654 } 1655 1656 static void hugetlb_vm_op_close(struct vm_area_struct *vma) 1657 { 1658 struct hstate *h = hstate_vma(vma); 1659 struct resv_map *reservations = vma_resv_map(vma); 1660 unsigned long reserve; 1661 unsigned long start; 1662 unsigned long end; 1663 1664 if (reservations) { 1665 start = vma_hugecache_offset(h, vma, vma->vm_start); 1666 end = vma_hugecache_offset(h, vma, vma->vm_end); 1667 1668 reserve = (end - start) - 1669 region_count(&reservations->regions, start, end); 1670 1671 kref_put(&reservations->refs, resv_map_release); 1672 1673 if (reserve) { 1674 hugetlb_acct_memory(h, -reserve); 1675 hugetlb_put_quota(vma->vm_file->f_mapping, reserve); 1676 } 1677 } 1678 } 1679 1680 /* 1681 * We cannot handle pagefaults against hugetlb pages at all. They cause 1682 * handle_mm_fault() to try to instantiate regular-sized pages in the 1683 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get 1684 * this far. 1685 */ 1686 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1687 { 1688 BUG(); 1689 return 0; 1690 } 1691 1692 struct vm_operations_struct hugetlb_vm_ops = { 1693 .fault = hugetlb_vm_op_fault, 1694 .open = hugetlb_vm_op_open, 1695 .close = hugetlb_vm_op_close, 1696 }; 1697 1698 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, 1699 int writable) 1700 { 1701 pte_t entry; 1702 1703 if (writable) { 1704 entry = 1705 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot))); 1706 } else { 1707 entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot)); 1708 } 1709 entry = pte_mkyoung(entry); 1710 entry = pte_mkhuge(entry); 1711 1712 return entry; 1713 } 1714 1715 static void set_huge_ptep_writable(struct vm_area_struct *vma, 1716 unsigned long address, pte_t *ptep) 1717 { 1718 pte_t entry; 1719 1720 entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep))); 1721 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) { 1722 update_mmu_cache(vma, address, entry); 1723 } 1724 } 1725 1726 1727 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, 1728 struct vm_area_struct *vma) 1729 { 1730 pte_t *src_pte, *dst_pte, entry; 1731 struct page *ptepage; 1732 unsigned long addr; 1733 int cow; 1734 struct hstate *h = hstate_vma(vma); 1735 unsigned long sz = huge_page_size(h); 1736 1737 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 1738 1739 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) { 1740 src_pte = huge_pte_offset(src, addr); 1741 if (!src_pte) 1742 continue; 1743 dst_pte = huge_pte_alloc(dst, addr, sz); 1744 if (!dst_pte) 1745 goto nomem; 1746 1747 /* If the pagetables are shared don't copy or take references */ 1748 if (dst_pte == src_pte) 1749 continue; 1750 1751 spin_lock(&dst->page_table_lock); 1752 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING); 1753 if (!huge_pte_none(huge_ptep_get(src_pte))) { 1754 if (cow) 1755 huge_ptep_set_wrprotect(src, addr, src_pte); 1756 entry = huge_ptep_get(src_pte); 1757 ptepage = pte_page(entry); 1758 get_page(ptepage); 1759 set_huge_pte_at(dst, addr, dst_pte, entry); 1760 } 1761 spin_unlock(&src->page_table_lock); 1762 spin_unlock(&dst->page_table_lock); 1763 } 1764 return 0; 1765 1766 nomem: 1767 return -ENOMEM; 1768 } 1769 1770 void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, 1771 unsigned long end, struct page *ref_page) 1772 { 1773 struct mm_struct *mm = vma->vm_mm; 1774 unsigned long address; 1775 pte_t *ptep; 1776 pte_t pte; 1777 struct page *page; 1778 struct page *tmp; 1779 struct hstate *h = hstate_vma(vma); 1780 unsigned long sz = huge_page_size(h); 1781 1782 /* 1783 * A page gathering list, protected by per file i_mmap_lock. The 1784 * lock is used to avoid list corruption from multiple unmapping 1785 * of the same page since we are using page->lru. 1786 */ 1787 LIST_HEAD(page_list); 1788 1789 WARN_ON(!is_vm_hugetlb_page(vma)); 1790 BUG_ON(start & ~huge_page_mask(h)); 1791 BUG_ON(end & ~huge_page_mask(h)); 1792 1793 mmu_notifier_invalidate_range_start(mm, start, end); 1794 spin_lock(&mm->page_table_lock); 1795 for (address = start; address < end; address += sz) { 1796 ptep = huge_pte_offset(mm, address); 1797 if (!ptep) 1798 continue; 1799 1800 if (huge_pmd_unshare(mm, &address, ptep)) 1801 continue; 1802 1803 /* 1804 * If a reference page is supplied, it is because a specific 1805 * page is being unmapped, not a range. Ensure the page we 1806 * are about to unmap is the actual page of interest. 1807 */ 1808 if (ref_page) { 1809 pte = huge_ptep_get(ptep); 1810 if (huge_pte_none(pte)) 1811 continue; 1812 page = pte_page(pte); 1813 if (page != ref_page) 1814 continue; 1815 1816 /* 1817 * Mark the VMA as having unmapped its page so that 1818 * future faults in this VMA will fail rather than 1819 * looking like data was lost 1820 */ 1821 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); 1822 } 1823 1824 pte = huge_ptep_get_and_clear(mm, address, ptep); 1825 if (huge_pte_none(pte)) 1826 continue; 1827 1828 page = pte_page(pte); 1829 if (pte_dirty(pte)) 1830 set_page_dirty(page); 1831 list_add(&page->lru, &page_list); 1832 } 1833 spin_unlock(&mm->page_table_lock); 1834 flush_tlb_range(vma, start, end); 1835 mmu_notifier_invalidate_range_end(mm, start, end); 1836 list_for_each_entry_safe(page, tmp, &page_list, lru) { 1837 list_del(&page->lru); 1838 put_page(page); 1839 } 1840 } 1841 1842 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, 1843 unsigned long end, struct page *ref_page) 1844 { 1845 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock); 1846 __unmap_hugepage_range(vma, start, end, ref_page); 1847 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock); 1848 } 1849 1850 /* 1851 * This is called when the original mapper is failing to COW a MAP_PRIVATE 1852 * mappping it owns the reserve page for. The intention is to unmap the page 1853 * from other VMAs and let the children be SIGKILLed if they are faulting the 1854 * same region. 1855 */ 1856 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, 1857 struct page *page, unsigned long address) 1858 { 1859 struct hstate *h = hstate_vma(vma); 1860 struct vm_area_struct *iter_vma; 1861 struct address_space *mapping; 1862 struct prio_tree_iter iter; 1863 pgoff_t pgoff; 1864 1865 /* 1866 * vm_pgoff is in PAGE_SIZE units, hence the different calculation 1867 * from page cache lookup which is in HPAGE_SIZE units. 1868 */ 1869 address = address & huge_page_mask(h); 1870 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) 1871 + (vma->vm_pgoff >> PAGE_SHIFT); 1872 mapping = (struct address_space *)page_private(page); 1873 1874 vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) { 1875 /* Do not unmap the current VMA */ 1876 if (iter_vma == vma) 1877 continue; 1878 1879 /* 1880 * Unmap the page from other VMAs without their own reserves. 1881 * They get marked to be SIGKILLed if they fault in these 1882 * areas. This is because a future no-page fault on this VMA 1883 * could insert a zeroed page instead of the data existing 1884 * from the time of fork. This would look like data corruption 1885 */ 1886 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) 1887 unmap_hugepage_range(iter_vma, 1888 address, address + huge_page_size(h), 1889 page); 1890 } 1891 1892 return 1; 1893 } 1894 1895 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma, 1896 unsigned long address, pte_t *ptep, pte_t pte, 1897 struct page *pagecache_page) 1898 { 1899 struct hstate *h = hstate_vma(vma); 1900 struct page *old_page, *new_page; 1901 int avoidcopy; 1902 int outside_reserve = 0; 1903 1904 old_page = pte_page(pte); 1905 1906 retry_avoidcopy: 1907 /* If no-one else is actually using this page, avoid the copy 1908 * and just make the page writable */ 1909 avoidcopy = (page_count(old_page) == 1); 1910 if (avoidcopy) { 1911 set_huge_ptep_writable(vma, address, ptep); 1912 return 0; 1913 } 1914 1915 /* 1916 * If the process that created a MAP_PRIVATE mapping is about to 1917 * perform a COW due to a shared page count, attempt to satisfy 1918 * the allocation without using the existing reserves. The pagecache 1919 * page is used to determine if the reserve at this address was 1920 * consumed or not. If reserves were used, a partial faulted mapping 1921 * at the time of fork() could consume its reserves on COW instead 1922 * of the full address range. 1923 */ 1924 if (!(vma->vm_flags & VM_MAYSHARE) && 1925 is_vma_resv_set(vma, HPAGE_RESV_OWNER) && 1926 old_page != pagecache_page) 1927 outside_reserve = 1; 1928 1929 page_cache_get(old_page); 1930 new_page = alloc_huge_page(vma, address, outside_reserve); 1931 1932 if (IS_ERR(new_page)) { 1933 page_cache_release(old_page); 1934 1935 /* 1936 * If a process owning a MAP_PRIVATE mapping fails to COW, 1937 * it is due to references held by a child and an insufficient 1938 * huge page pool. To guarantee the original mappers 1939 * reliability, unmap the page from child processes. The child 1940 * may get SIGKILLed if it later faults. 1941 */ 1942 if (outside_reserve) { 1943 BUG_ON(huge_pte_none(pte)); 1944 if (unmap_ref_private(mm, vma, old_page, address)) { 1945 BUG_ON(page_count(old_page) != 1); 1946 BUG_ON(huge_pte_none(pte)); 1947 goto retry_avoidcopy; 1948 } 1949 WARN_ON_ONCE(1); 1950 } 1951 1952 return -PTR_ERR(new_page); 1953 } 1954 1955 spin_unlock(&mm->page_table_lock); 1956 copy_huge_page(new_page, old_page, address, vma); 1957 __SetPageUptodate(new_page); 1958 spin_lock(&mm->page_table_lock); 1959 1960 ptep = huge_pte_offset(mm, address & huge_page_mask(h)); 1961 if (likely(pte_same(huge_ptep_get(ptep), pte))) { 1962 /* Break COW */ 1963 huge_ptep_clear_flush(vma, address, ptep); 1964 set_huge_pte_at(mm, address, ptep, 1965 make_huge_pte(vma, new_page, 1)); 1966 /* Make the old page be freed below */ 1967 new_page = old_page; 1968 } 1969 page_cache_release(new_page); 1970 page_cache_release(old_page); 1971 return 0; 1972 } 1973 1974 /* Return the pagecache page at a given address within a VMA */ 1975 static struct page *hugetlbfs_pagecache_page(struct hstate *h, 1976 struct vm_area_struct *vma, unsigned long address) 1977 { 1978 struct address_space *mapping; 1979 pgoff_t idx; 1980 1981 mapping = vma->vm_file->f_mapping; 1982 idx = vma_hugecache_offset(h, vma, address); 1983 1984 return find_lock_page(mapping, idx); 1985 } 1986 1987 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma, 1988 unsigned long address, pte_t *ptep, unsigned int flags) 1989 { 1990 struct hstate *h = hstate_vma(vma); 1991 int ret = VM_FAULT_SIGBUS; 1992 pgoff_t idx; 1993 unsigned long size; 1994 struct page *page; 1995 struct address_space *mapping; 1996 pte_t new_pte; 1997 1998 /* 1999 * Currently, we are forced to kill the process in the event the 2000 * original mapper has unmapped pages from the child due to a failed 2001 * COW. Warn that such a situation has occured as it may not be obvious 2002 */ 2003 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { 2004 printk(KERN_WARNING 2005 "PID %d killed due to inadequate hugepage pool\n", 2006 current->pid); 2007 return ret; 2008 } 2009 2010 mapping = vma->vm_file->f_mapping; 2011 idx = vma_hugecache_offset(h, vma, address); 2012 2013 /* 2014 * Use page lock to guard against racing truncation 2015 * before we get page_table_lock. 2016 */ 2017 retry: 2018 page = find_lock_page(mapping, idx); 2019 if (!page) { 2020 size = i_size_read(mapping->host) >> huge_page_shift(h); 2021 if (idx >= size) 2022 goto out; 2023 page = alloc_huge_page(vma, address, 0); 2024 if (IS_ERR(page)) { 2025 ret = -PTR_ERR(page); 2026 goto out; 2027 } 2028 clear_huge_page(page, address, huge_page_size(h)); 2029 __SetPageUptodate(page); 2030 2031 if (vma->vm_flags & VM_MAYSHARE) { 2032 int err; 2033 struct inode *inode = mapping->host; 2034 2035 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL); 2036 if (err) { 2037 put_page(page); 2038 if (err == -EEXIST) 2039 goto retry; 2040 goto out; 2041 } 2042 2043 spin_lock(&inode->i_lock); 2044 inode->i_blocks += blocks_per_huge_page(h); 2045 spin_unlock(&inode->i_lock); 2046 } else 2047 lock_page(page); 2048 } 2049 2050 /* 2051 * If we are going to COW a private mapping later, we examine the 2052 * pending reservations for this page now. This will ensure that 2053 * any allocations necessary to record that reservation occur outside 2054 * the spinlock. 2055 */ 2056 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) 2057 if (vma_needs_reservation(h, vma, address) < 0) { 2058 ret = VM_FAULT_OOM; 2059 goto backout_unlocked; 2060 } 2061 2062 spin_lock(&mm->page_table_lock); 2063 size = i_size_read(mapping->host) >> huge_page_shift(h); 2064 if (idx >= size) 2065 goto backout; 2066 2067 ret = 0; 2068 if (!huge_pte_none(huge_ptep_get(ptep))) 2069 goto backout; 2070 2071 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE) 2072 && (vma->vm_flags & VM_SHARED))); 2073 set_huge_pte_at(mm, address, ptep, new_pte); 2074 2075 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 2076 /* Optimization, do the COW without a second fault */ 2077 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page); 2078 } 2079 2080 spin_unlock(&mm->page_table_lock); 2081 unlock_page(page); 2082 out: 2083 return ret; 2084 2085 backout: 2086 spin_unlock(&mm->page_table_lock); 2087 backout_unlocked: 2088 unlock_page(page); 2089 put_page(page); 2090 goto out; 2091 } 2092 2093 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, 2094 unsigned long address, unsigned int flags) 2095 { 2096 pte_t *ptep; 2097 pte_t entry; 2098 int ret; 2099 struct page *pagecache_page = NULL; 2100 static DEFINE_MUTEX(hugetlb_instantiation_mutex); 2101 struct hstate *h = hstate_vma(vma); 2102 2103 ptep = huge_pte_alloc(mm, address, huge_page_size(h)); 2104 if (!ptep) 2105 return VM_FAULT_OOM; 2106 2107 /* 2108 * Serialize hugepage allocation and instantiation, so that we don't 2109 * get spurious allocation failures if two CPUs race to instantiate 2110 * the same page in the page cache. 2111 */ 2112 mutex_lock(&hugetlb_instantiation_mutex); 2113 entry = huge_ptep_get(ptep); 2114 if (huge_pte_none(entry)) { 2115 ret = hugetlb_no_page(mm, vma, address, ptep, flags); 2116 goto out_mutex; 2117 } 2118 2119 ret = 0; 2120 2121 /* 2122 * If we are going to COW the mapping later, we examine the pending 2123 * reservations for this page now. This will ensure that any 2124 * allocations necessary to record that reservation occur outside the 2125 * spinlock. For private mappings, we also lookup the pagecache 2126 * page now as it is used to determine if a reservation has been 2127 * consumed. 2128 */ 2129 if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) { 2130 if (vma_needs_reservation(h, vma, address) < 0) { 2131 ret = VM_FAULT_OOM; 2132 goto out_mutex; 2133 } 2134 2135 if (!(vma->vm_flags & VM_MAYSHARE)) 2136 pagecache_page = hugetlbfs_pagecache_page(h, 2137 vma, address); 2138 } 2139 2140 spin_lock(&mm->page_table_lock); 2141 /* Check for a racing update before calling hugetlb_cow */ 2142 if (unlikely(!pte_same(entry, huge_ptep_get(ptep)))) 2143 goto out_page_table_lock; 2144 2145 2146 if (flags & FAULT_FLAG_WRITE) { 2147 if (!pte_write(entry)) { 2148 ret = hugetlb_cow(mm, vma, address, ptep, entry, 2149 pagecache_page); 2150 goto out_page_table_lock; 2151 } 2152 entry = pte_mkdirty(entry); 2153 } 2154 entry = pte_mkyoung(entry); 2155 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 2156 flags & FAULT_FLAG_WRITE)) 2157 update_mmu_cache(vma, address, entry); 2158 2159 out_page_table_lock: 2160 spin_unlock(&mm->page_table_lock); 2161 2162 if (pagecache_page) { 2163 unlock_page(pagecache_page); 2164 put_page(pagecache_page); 2165 } 2166 2167 out_mutex: 2168 mutex_unlock(&hugetlb_instantiation_mutex); 2169 2170 return ret; 2171 } 2172 2173 /* Can be overriden by architectures */ 2174 __attribute__((weak)) struct page * 2175 follow_huge_pud(struct mm_struct *mm, unsigned long address, 2176 pud_t *pud, int write) 2177 { 2178 BUG(); 2179 return NULL; 2180 } 2181 2182 static int huge_zeropage_ok(pte_t *ptep, int write, int shared) 2183 { 2184 if (!ptep || write || shared) 2185 return 0; 2186 else 2187 return huge_pte_none(huge_ptep_get(ptep)); 2188 } 2189 2190 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, 2191 struct page **pages, struct vm_area_struct **vmas, 2192 unsigned long *position, int *length, int i, 2193 int write) 2194 { 2195 unsigned long pfn_offset; 2196 unsigned long vaddr = *position; 2197 int remainder = *length; 2198 struct hstate *h = hstate_vma(vma); 2199 int zeropage_ok = 0; 2200 int shared = vma->vm_flags & VM_SHARED; 2201 2202 spin_lock(&mm->page_table_lock); 2203 while (vaddr < vma->vm_end && remainder) { 2204 pte_t *pte; 2205 struct page *page; 2206 2207 /* 2208 * Some archs (sparc64, sh*) have multiple pte_ts to 2209 * each hugepage. We have to make * sure we get the 2210 * first, for the page indexing below to work. 2211 */ 2212 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h)); 2213 if (huge_zeropage_ok(pte, write, shared)) 2214 zeropage_ok = 1; 2215 2216 if (!pte || 2217 (huge_pte_none(huge_ptep_get(pte)) && !zeropage_ok) || 2218 (write && !pte_write(huge_ptep_get(pte)))) { 2219 int ret; 2220 2221 spin_unlock(&mm->page_table_lock); 2222 ret = hugetlb_fault(mm, vma, vaddr, write); 2223 spin_lock(&mm->page_table_lock); 2224 if (!(ret & VM_FAULT_ERROR)) 2225 continue; 2226 2227 remainder = 0; 2228 if (!i) 2229 i = -EFAULT; 2230 break; 2231 } 2232 2233 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT; 2234 page = pte_page(huge_ptep_get(pte)); 2235 same_page: 2236 if (pages) { 2237 if (zeropage_ok) 2238 pages[i] = ZERO_PAGE(0); 2239 else 2240 pages[i] = mem_map_offset(page, pfn_offset); 2241 get_page(pages[i]); 2242 } 2243 2244 if (vmas) 2245 vmas[i] = vma; 2246 2247 vaddr += PAGE_SIZE; 2248 ++pfn_offset; 2249 --remainder; 2250 ++i; 2251 if (vaddr < vma->vm_end && remainder && 2252 pfn_offset < pages_per_huge_page(h)) { 2253 /* 2254 * We use pfn_offset to avoid touching the pageframes 2255 * of this compound page. 2256 */ 2257 goto same_page; 2258 } 2259 } 2260 spin_unlock(&mm->page_table_lock); 2261 *length = remainder; 2262 *position = vaddr; 2263 2264 return i; 2265 } 2266 2267 void hugetlb_change_protection(struct vm_area_struct *vma, 2268 unsigned long address, unsigned long end, pgprot_t newprot) 2269 { 2270 struct mm_struct *mm = vma->vm_mm; 2271 unsigned long start = address; 2272 pte_t *ptep; 2273 pte_t pte; 2274 struct hstate *h = hstate_vma(vma); 2275 2276 BUG_ON(address >= end); 2277 flush_cache_range(vma, address, end); 2278 2279 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock); 2280 spin_lock(&mm->page_table_lock); 2281 for (; address < end; address += huge_page_size(h)) { 2282 ptep = huge_pte_offset(mm, address); 2283 if (!ptep) 2284 continue; 2285 if (huge_pmd_unshare(mm, &address, ptep)) 2286 continue; 2287 if (!huge_pte_none(huge_ptep_get(ptep))) { 2288 pte = huge_ptep_get_and_clear(mm, address, ptep); 2289 pte = pte_mkhuge(pte_modify(pte, newprot)); 2290 set_huge_pte_at(mm, address, ptep, pte); 2291 } 2292 } 2293 spin_unlock(&mm->page_table_lock); 2294 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock); 2295 2296 flush_tlb_range(vma, start, end); 2297 } 2298 2299 int hugetlb_reserve_pages(struct inode *inode, 2300 long from, long to, 2301 struct vm_area_struct *vma, 2302 int acctflag) 2303 { 2304 long ret, chg; 2305 struct hstate *h = hstate_inode(inode); 2306 2307 /* 2308 * Only apply hugepage reservation if asked. At fault time, an 2309 * attempt will be made for VM_NORESERVE to allocate a page 2310 * and filesystem quota without using reserves 2311 */ 2312 if (acctflag & VM_NORESERVE) 2313 return 0; 2314 2315 /* 2316 * Shared mappings base their reservation on the number of pages that 2317 * are already allocated on behalf of the file. Private mappings need 2318 * to reserve the full area even if read-only as mprotect() may be 2319 * called to make the mapping read-write. Assume !vma is a shm mapping 2320 */ 2321 if (!vma || vma->vm_flags & VM_MAYSHARE) 2322 chg = region_chg(&inode->i_mapping->private_list, from, to); 2323 else { 2324 struct resv_map *resv_map = resv_map_alloc(); 2325 if (!resv_map) 2326 return -ENOMEM; 2327 2328 chg = to - from; 2329 2330 set_vma_resv_map(vma, resv_map); 2331 set_vma_resv_flags(vma, HPAGE_RESV_OWNER); 2332 } 2333 2334 if (chg < 0) 2335 return chg; 2336 2337 /* There must be enough filesystem quota for the mapping */ 2338 if (hugetlb_get_quota(inode->i_mapping, chg)) 2339 return -ENOSPC; 2340 2341 /* 2342 * Check enough hugepages are available for the reservation. 2343 * Hand back the quota if there are not 2344 */ 2345 ret = hugetlb_acct_memory(h, chg); 2346 if (ret < 0) { 2347 hugetlb_put_quota(inode->i_mapping, chg); 2348 return ret; 2349 } 2350 2351 /* 2352 * Account for the reservations made. Shared mappings record regions 2353 * that have reservations as they are shared by multiple VMAs. 2354 * When the last VMA disappears, the region map says how much 2355 * the reservation was and the page cache tells how much of 2356 * the reservation was consumed. Private mappings are per-VMA and 2357 * only the consumed reservations are tracked. When the VMA 2358 * disappears, the original reservation is the VMA size and the 2359 * consumed reservations are stored in the map. Hence, nothing 2360 * else has to be done for private mappings here 2361 */ 2362 if (!vma || vma->vm_flags & VM_MAYSHARE) 2363 region_add(&inode->i_mapping->private_list, from, to); 2364 return 0; 2365 } 2366 2367 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed) 2368 { 2369 struct hstate *h = hstate_inode(inode); 2370 long chg = region_truncate(&inode->i_mapping->private_list, offset); 2371 2372 spin_lock(&inode->i_lock); 2373 inode->i_blocks -= blocks_per_huge_page(h); 2374 spin_unlock(&inode->i_lock); 2375 2376 hugetlb_put_quota(inode->i_mapping, (chg - freed)); 2377 hugetlb_acct_memory(h, -(chg - freed)); 2378 } 2379