1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic hugetlb support. 4 * (C) Nadia Yvette Chambers, April 2004 5 */ 6 #include <linux/list.h> 7 #include <linux/init.h> 8 #include <linux/mm.h> 9 #include <linux/seq_file.h> 10 #include <linux/sysctl.h> 11 #include <linux/highmem.h> 12 #include <linux/mmu_notifier.h> 13 #include <linux/nodemask.h> 14 #include <linux/pagemap.h> 15 #include <linux/mempolicy.h> 16 #include <linux/compiler.h> 17 #include <linux/cpuset.h> 18 #include <linux/mutex.h> 19 #include <linux/memblock.h> 20 #include <linux/sysfs.h> 21 #include <linux/slab.h> 22 #include <linux/sched/mm.h> 23 #include <linux/mmdebug.h> 24 #include <linux/sched/signal.h> 25 #include <linux/rmap.h> 26 #include <linux/string_helpers.h> 27 #include <linux/swap.h> 28 #include <linux/swapops.h> 29 #include <linux/jhash.h> 30 #include <linux/numa.h> 31 #include <linux/llist.h> 32 #include <linux/cma.h> 33 #include <linux/migrate.h> 34 35 #include <asm/page.h> 36 #include <asm/pgalloc.h> 37 #include <asm/tlb.h> 38 39 #include <linux/io.h> 40 #include <linux/hugetlb.h> 41 #include <linux/hugetlb_cgroup.h> 42 #include <linux/node.h> 43 #include <linux/page_owner.h> 44 #include "internal.h" 45 #include "hugetlb_vmemmap.h" 46 47 int hugetlb_max_hstate __read_mostly; 48 unsigned int default_hstate_idx; 49 struct hstate hstates[HUGE_MAX_HSTATE]; 50 51 #ifdef CONFIG_CMA 52 static struct cma *hugetlb_cma[MAX_NUMNODES]; 53 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata; 54 static bool hugetlb_cma_page(struct page *page, unsigned int order) 55 { 56 return cma_pages_valid(hugetlb_cma[page_to_nid(page)], page, 57 1 << order); 58 } 59 #else 60 static bool hugetlb_cma_page(struct page *page, unsigned int order) 61 { 62 return false; 63 } 64 #endif 65 static unsigned long hugetlb_cma_size __initdata; 66 67 /* 68 * Minimum page order among possible hugepage sizes, set to a proper value 69 * at boot time. 70 */ 71 static unsigned int minimum_order __read_mostly = UINT_MAX; 72 73 __initdata LIST_HEAD(huge_boot_pages); 74 75 /* for command line parsing */ 76 static struct hstate * __initdata parsed_hstate; 77 static unsigned long __initdata default_hstate_max_huge_pages; 78 static bool __initdata parsed_valid_hugepagesz = true; 79 static bool __initdata parsed_default_hugepagesz; 80 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata; 81 82 /* 83 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages, 84 * free_huge_pages, and surplus_huge_pages. 85 */ 86 DEFINE_SPINLOCK(hugetlb_lock); 87 88 /* 89 * Serializes faults on the same logical page. This is used to 90 * prevent spurious OOMs when the hugepage pool is fully utilized. 91 */ 92 static int num_fault_mutexes; 93 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp; 94 95 /* Forward declaration */ 96 static int hugetlb_acct_memory(struct hstate *h, long delta); 97 98 static inline bool subpool_is_free(struct hugepage_subpool *spool) 99 { 100 if (spool->count) 101 return false; 102 if (spool->max_hpages != -1) 103 return spool->used_hpages == 0; 104 if (spool->min_hpages != -1) 105 return spool->rsv_hpages == spool->min_hpages; 106 107 return true; 108 } 109 110 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool, 111 unsigned long irq_flags) 112 { 113 spin_unlock_irqrestore(&spool->lock, irq_flags); 114 115 /* If no pages are used, and no other handles to the subpool 116 * remain, give up any reservations based on minimum size and 117 * free the subpool */ 118 if (subpool_is_free(spool)) { 119 if (spool->min_hpages != -1) 120 hugetlb_acct_memory(spool->hstate, 121 -spool->min_hpages); 122 kfree(spool); 123 } 124 } 125 126 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages, 127 long min_hpages) 128 { 129 struct hugepage_subpool *spool; 130 131 spool = kzalloc(sizeof(*spool), GFP_KERNEL); 132 if (!spool) 133 return NULL; 134 135 spin_lock_init(&spool->lock); 136 spool->count = 1; 137 spool->max_hpages = max_hpages; 138 spool->hstate = h; 139 spool->min_hpages = min_hpages; 140 141 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) { 142 kfree(spool); 143 return NULL; 144 } 145 spool->rsv_hpages = min_hpages; 146 147 return spool; 148 } 149 150 void hugepage_put_subpool(struct hugepage_subpool *spool) 151 { 152 unsigned long flags; 153 154 spin_lock_irqsave(&spool->lock, flags); 155 BUG_ON(!spool->count); 156 spool->count--; 157 unlock_or_release_subpool(spool, flags); 158 } 159 160 /* 161 * Subpool accounting for allocating and reserving pages. 162 * Return -ENOMEM if there are not enough resources to satisfy the 163 * request. Otherwise, return the number of pages by which the 164 * global pools must be adjusted (upward). The returned value may 165 * only be different than the passed value (delta) in the case where 166 * a subpool minimum size must be maintained. 167 */ 168 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool, 169 long delta) 170 { 171 long ret = delta; 172 173 if (!spool) 174 return ret; 175 176 spin_lock_irq(&spool->lock); 177 178 if (spool->max_hpages != -1) { /* maximum size accounting */ 179 if ((spool->used_hpages + delta) <= spool->max_hpages) 180 spool->used_hpages += delta; 181 else { 182 ret = -ENOMEM; 183 goto unlock_ret; 184 } 185 } 186 187 /* minimum size accounting */ 188 if (spool->min_hpages != -1 && spool->rsv_hpages) { 189 if (delta > spool->rsv_hpages) { 190 /* 191 * Asking for more reserves than those already taken on 192 * behalf of subpool. Return difference. 193 */ 194 ret = delta - spool->rsv_hpages; 195 spool->rsv_hpages = 0; 196 } else { 197 ret = 0; /* reserves already accounted for */ 198 spool->rsv_hpages -= delta; 199 } 200 } 201 202 unlock_ret: 203 spin_unlock_irq(&spool->lock); 204 return ret; 205 } 206 207 /* 208 * Subpool accounting for freeing and unreserving pages. 209 * Return the number of global page reservations that must be dropped. 210 * The return value may only be different than the passed value (delta) 211 * in the case where a subpool minimum size must be maintained. 212 */ 213 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool, 214 long delta) 215 { 216 long ret = delta; 217 unsigned long flags; 218 219 if (!spool) 220 return delta; 221 222 spin_lock_irqsave(&spool->lock, flags); 223 224 if (spool->max_hpages != -1) /* maximum size accounting */ 225 spool->used_hpages -= delta; 226 227 /* minimum size accounting */ 228 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) { 229 if (spool->rsv_hpages + delta <= spool->min_hpages) 230 ret = 0; 231 else 232 ret = spool->rsv_hpages + delta - spool->min_hpages; 233 234 spool->rsv_hpages += delta; 235 if (spool->rsv_hpages > spool->min_hpages) 236 spool->rsv_hpages = spool->min_hpages; 237 } 238 239 /* 240 * If hugetlbfs_put_super couldn't free spool due to an outstanding 241 * quota reference, free it now. 242 */ 243 unlock_or_release_subpool(spool, flags); 244 245 return ret; 246 } 247 248 static inline struct hugepage_subpool *subpool_inode(struct inode *inode) 249 { 250 return HUGETLBFS_SB(inode->i_sb)->spool; 251 } 252 253 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma) 254 { 255 return subpool_inode(file_inode(vma->vm_file)); 256 } 257 258 /* Helper that removes a struct file_region from the resv_map cache and returns 259 * it for use. 260 */ 261 static struct file_region * 262 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to) 263 { 264 struct file_region *nrg = NULL; 265 266 VM_BUG_ON(resv->region_cache_count <= 0); 267 268 resv->region_cache_count--; 269 nrg = list_first_entry(&resv->region_cache, struct file_region, link); 270 list_del(&nrg->link); 271 272 nrg->from = from; 273 nrg->to = to; 274 275 return nrg; 276 } 277 278 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg, 279 struct file_region *rg) 280 { 281 #ifdef CONFIG_CGROUP_HUGETLB 282 nrg->reservation_counter = rg->reservation_counter; 283 nrg->css = rg->css; 284 if (rg->css) 285 css_get(rg->css); 286 #endif 287 } 288 289 /* Helper that records hugetlb_cgroup uncharge info. */ 290 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg, 291 struct hstate *h, 292 struct resv_map *resv, 293 struct file_region *nrg) 294 { 295 #ifdef CONFIG_CGROUP_HUGETLB 296 if (h_cg) { 297 nrg->reservation_counter = 298 &h_cg->rsvd_hugepage[hstate_index(h)]; 299 nrg->css = &h_cg->css; 300 /* 301 * The caller will hold exactly one h_cg->css reference for the 302 * whole contiguous reservation region. But this area might be 303 * scattered when there are already some file_regions reside in 304 * it. As a result, many file_regions may share only one css 305 * reference. In order to ensure that one file_region must hold 306 * exactly one h_cg->css reference, we should do css_get for 307 * each file_region and leave the reference held by caller 308 * untouched. 309 */ 310 css_get(&h_cg->css); 311 if (!resv->pages_per_hpage) 312 resv->pages_per_hpage = pages_per_huge_page(h); 313 /* pages_per_hpage should be the same for all entries in 314 * a resv_map. 315 */ 316 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h)); 317 } else { 318 nrg->reservation_counter = NULL; 319 nrg->css = NULL; 320 } 321 #endif 322 } 323 324 static void put_uncharge_info(struct file_region *rg) 325 { 326 #ifdef CONFIG_CGROUP_HUGETLB 327 if (rg->css) 328 css_put(rg->css); 329 #endif 330 } 331 332 static bool has_same_uncharge_info(struct file_region *rg, 333 struct file_region *org) 334 { 335 #ifdef CONFIG_CGROUP_HUGETLB 336 return rg->reservation_counter == org->reservation_counter && 337 rg->css == org->css; 338 339 #else 340 return true; 341 #endif 342 } 343 344 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg) 345 { 346 struct file_region *nrg = NULL, *prg = NULL; 347 348 prg = list_prev_entry(rg, link); 349 if (&prg->link != &resv->regions && prg->to == rg->from && 350 has_same_uncharge_info(prg, rg)) { 351 prg->to = rg->to; 352 353 list_del(&rg->link); 354 put_uncharge_info(rg); 355 kfree(rg); 356 357 rg = prg; 358 } 359 360 nrg = list_next_entry(rg, link); 361 if (&nrg->link != &resv->regions && nrg->from == rg->to && 362 has_same_uncharge_info(nrg, rg)) { 363 nrg->from = rg->from; 364 365 list_del(&rg->link); 366 put_uncharge_info(rg); 367 kfree(rg); 368 } 369 } 370 371 static inline long 372 hugetlb_resv_map_add(struct resv_map *map, struct file_region *rg, long from, 373 long to, struct hstate *h, struct hugetlb_cgroup *cg, 374 long *regions_needed) 375 { 376 struct file_region *nrg; 377 378 if (!regions_needed) { 379 nrg = get_file_region_entry_from_cache(map, from, to); 380 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg); 381 list_add(&nrg->link, rg->link.prev); 382 coalesce_file_region(map, nrg); 383 } else 384 *regions_needed += 1; 385 386 return to - from; 387 } 388 389 /* 390 * Must be called with resv->lock held. 391 * 392 * Calling this with regions_needed != NULL will count the number of pages 393 * to be added but will not modify the linked list. And regions_needed will 394 * indicate the number of file_regions needed in the cache to carry out to add 395 * the regions for this range. 396 */ 397 static long add_reservation_in_range(struct resv_map *resv, long f, long t, 398 struct hugetlb_cgroup *h_cg, 399 struct hstate *h, long *regions_needed) 400 { 401 long add = 0; 402 struct list_head *head = &resv->regions; 403 long last_accounted_offset = f; 404 struct file_region *rg = NULL, *trg = NULL; 405 406 if (regions_needed) 407 *regions_needed = 0; 408 409 /* In this loop, we essentially handle an entry for the range 410 * [last_accounted_offset, rg->from), at every iteration, with some 411 * bounds checking. 412 */ 413 list_for_each_entry_safe(rg, trg, head, link) { 414 /* Skip irrelevant regions that start before our range. */ 415 if (rg->from < f) { 416 /* If this region ends after the last accounted offset, 417 * then we need to update last_accounted_offset. 418 */ 419 if (rg->to > last_accounted_offset) 420 last_accounted_offset = rg->to; 421 continue; 422 } 423 424 /* When we find a region that starts beyond our range, we've 425 * finished. 426 */ 427 if (rg->from >= t) 428 break; 429 430 /* Add an entry for last_accounted_offset -> rg->from, and 431 * update last_accounted_offset. 432 */ 433 if (rg->from > last_accounted_offset) 434 add += hugetlb_resv_map_add(resv, rg, 435 last_accounted_offset, 436 rg->from, h, h_cg, 437 regions_needed); 438 439 last_accounted_offset = rg->to; 440 } 441 442 /* Handle the case where our range extends beyond 443 * last_accounted_offset. 444 */ 445 if (last_accounted_offset < t) 446 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset, 447 t, h, h_cg, regions_needed); 448 449 return add; 450 } 451 452 /* Must be called with resv->lock acquired. Will drop lock to allocate entries. 453 */ 454 static int allocate_file_region_entries(struct resv_map *resv, 455 int regions_needed) 456 __must_hold(&resv->lock) 457 { 458 struct list_head allocated_regions; 459 int to_allocate = 0, i = 0; 460 struct file_region *trg = NULL, *rg = NULL; 461 462 VM_BUG_ON(regions_needed < 0); 463 464 INIT_LIST_HEAD(&allocated_regions); 465 466 /* 467 * Check for sufficient descriptors in the cache to accommodate 468 * the number of in progress add operations plus regions_needed. 469 * 470 * This is a while loop because when we drop the lock, some other call 471 * to region_add or region_del may have consumed some region_entries, 472 * so we keep looping here until we finally have enough entries for 473 * (adds_in_progress + regions_needed). 474 */ 475 while (resv->region_cache_count < 476 (resv->adds_in_progress + regions_needed)) { 477 to_allocate = resv->adds_in_progress + regions_needed - 478 resv->region_cache_count; 479 480 /* At this point, we should have enough entries in the cache 481 * for all the existing adds_in_progress. We should only be 482 * needing to allocate for regions_needed. 483 */ 484 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress); 485 486 spin_unlock(&resv->lock); 487 for (i = 0; i < to_allocate; i++) { 488 trg = kmalloc(sizeof(*trg), GFP_KERNEL); 489 if (!trg) 490 goto out_of_memory; 491 list_add(&trg->link, &allocated_regions); 492 } 493 494 spin_lock(&resv->lock); 495 496 list_splice(&allocated_regions, &resv->region_cache); 497 resv->region_cache_count += to_allocate; 498 } 499 500 return 0; 501 502 out_of_memory: 503 list_for_each_entry_safe(rg, trg, &allocated_regions, link) { 504 list_del(&rg->link); 505 kfree(rg); 506 } 507 return -ENOMEM; 508 } 509 510 /* 511 * Add the huge page range represented by [f, t) to the reserve 512 * map. Regions will be taken from the cache to fill in this range. 513 * Sufficient regions should exist in the cache due to the previous 514 * call to region_chg with the same range, but in some cases the cache will not 515 * have sufficient entries due to races with other code doing region_add or 516 * region_del. The extra needed entries will be allocated. 517 * 518 * regions_needed is the out value provided by a previous call to region_chg. 519 * 520 * Return the number of new huge pages added to the map. This number is greater 521 * than or equal to zero. If file_region entries needed to be allocated for 522 * this operation and we were not able to allocate, it returns -ENOMEM. 523 * region_add of regions of length 1 never allocate file_regions and cannot 524 * fail; region_chg will always allocate at least 1 entry and a region_add for 525 * 1 page will only require at most 1 entry. 526 */ 527 static long region_add(struct resv_map *resv, long f, long t, 528 long in_regions_needed, struct hstate *h, 529 struct hugetlb_cgroup *h_cg) 530 { 531 long add = 0, actual_regions_needed = 0; 532 533 spin_lock(&resv->lock); 534 retry: 535 536 /* Count how many regions are actually needed to execute this add. */ 537 add_reservation_in_range(resv, f, t, NULL, NULL, 538 &actual_regions_needed); 539 540 /* 541 * Check for sufficient descriptors in the cache to accommodate 542 * this add operation. Note that actual_regions_needed may be greater 543 * than in_regions_needed, as the resv_map may have been modified since 544 * the region_chg call. In this case, we need to make sure that we 545 * allocate extra entries, such that we have enough for all the 546 * existing adds_in_progress, plus the excess needed for this 547 * operation. 548 */ 549 if (actual_regions_needed > in_regions_needed && 550 resv->region_cache_count < 551 resv->adds_in_progress + 552 (actual_regions_needed - in_regions_needed)) { 553 /* region_add operation of range 1 should never need to 554 * allocate file_region entries. 555 */ 556 VM_BUG_ON(t - f <= 1); 557 558 if (allocate_file_region_entries( 559 resv, actual_regions_needed - in_regions_needed)) { 560 return -ENOMEM; 561 } 562 563 goto retry; 564 } 565 566 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL); 567 568 resv->adds_in_progress -= in_regions_needed; 569 570 spin_unlock(&resv->lock); 571 return add; 572 } 573 574 /* 575 * Examine the existing reserve map and determine how many 576 * huge pages in the specified range [f, t) are NOT currently 577 * represented. This routine is called before a subsequent 578 * call to region_add that will actually modify the reserve 579 * map to add the specified range [f, t). region_chg does 580 * not change the number of huge pages represented by the 581 * map. A number of new file_region structures is added to the cache as a 582 * placeholder, for the subsequent region_add call to use. At least 1 583 * file_region structure is added. 584 * 585 * out_regions_needed is the number of regions added to the 586 * resv->adds_in_progress. This value needs to be provided to a follow up call 587 * to region_add or region_abort for proper accounting. 588 * 589 * Returns the number of huge pages that need to be added to the existing 590 * reservation map for the range [f, t). This number is greater or equal to 591 * zero. -ENOMEM is returned if a new file_region structure or cache entry 592 * is needed and can not be allocated. 593 */ 594 static long region_chg(struct resv_map *resv, long f, long t, 595 long *out_regions_needed) 596 { 597 long chg = 0; 598 599 spin_lock(&resv->lock); 600 601 /* Count how many hugepages in this range are NOT represented. */ 602 chg = add_reservation_in_range(resv, f, t, NULL, NULL, 603 out_regions_needed); 604 605 if (*out_regions_needed == 0) 606 *out_regions_needed = 1; 607 608 if (allocate_file_region_entries(resv, *out_regions_needed)) 609 return -ENOMEM; 610 611 resv->adds_in_progress += *out_regions_needed; 612 613 spin_unlock(&resv->lock); 614 return chg; 615 } 616 617 /* 618 * Abort the in progress add operation. The adds_in_progress field 619 * of the resv_map keeps track of the operations in progress between 620 * calls to region_chg and region_add. Operations are sometimes 621 * aborted after the call to region_chg. In such cases, region_abort 622 * is called to decrement the adds_in_progress counter. regions_needed 623 * is the value returned by the region_chg call, it is used to decrement 624 * the adds_in_progress counter. 625 * 626 * NOTE: The range arguments [f, t) are not needed or used in this 627 * routine. They are kept to make reading the calling code easier as 628 * arguments will match the associated region_chg call. 629 */ 630 static void region_abort(struct resv_map *resv, long f, long t, 631 long regions_needed) 632 { 633 spin_lock(&resv->lock); 634 VM_BUG_ON(!resv->region_cache_count); 635 resv->adds_in_progress -= regions_needed; 636 spin_unlock(&resv->lock); 637 } 638 639 /* 640 * Delete the specified range [f, t) from the reserve map. If the 641 * t parameter is LONG_MAX, this indicates that ALL regions after f 642 * should be deleted. Locate the regions which intersect [f, t) 643 * and either trim, delete or split the existing regions. 644 * 645 * Returns the number of huge pages deleted from the reserve map. 646 * In the normal case, the return value is zero or more. In the 647 * case where a region must be split, a new region descriptor must 648 * be allocated. If the allocation fails, -ENOMEM will be returned. 649 * NOTE: If the parameter t == LONG_MAX, then we will never split 650 * a region and possibly return -ENOMEM. Callers specifying 651 * t == LONG_MAX do not need to check for -ENOMEM error. 652 */ 653 static long region_del(struct resv_map *resv, long f, long t) 654 { 655 struct list_head *head = &resv->regions; 656 struct file_region *rg, *trg; 657 struct file_region *nrg = NULL; 658 long del = 0; 659 660 retry: 661 spin_lock(&resv->lock); 662 list_for_each_entry_safe(rg, trg, head, link) { 663 /* 664 * Skip regions before the range to be deleted. file_region 665 * ranges are normally of the form [from, to). However, there 666 * may be a "placeholder" entry in the map which is of the form 667 * (from, to) with from == to. Check for placeholder entries 668 * at the beginning of the range to be deleted. 669 */ 670 if (rg->to <= f && (rg->to != rg->from || rg->to != f)) 671 continue; 672 673 if (rg->from >= t) 674 break; 675 676 if (f > rg->from && t < rg->to) { /* Must split region */ 677 /* 678 * Check for an entry in the cache before dropping 679 * lock and attempting allocation. 680 */ 681 if (!nrg && 682 resv->region_cache_count > resv->adds_in_progress) { 683 nrg = list_first_entry(&resv->region_cache, 684 struct file_region, 685 link); 686 list_del(&nrg->link); 687 resv->region_cache_count--; 688 } 689 690 if (!nrg) { 691 spin_unlock(&resv->lock); 692 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 693 if (!nrg) 694 return -ENOMEM; 695 goto retry; 696 } 697 698 del += t - f; 699 hugetlb_cgroup_uncharge_file_region( 700 resv, rg, t - f, false); 701 702 /* New entry for end of split region */ 703 nrg->from = t; 704 nrg->to = rg->to; 705 706 copy_hugetlb_cgroup_uncharge_info(nrg, rg); 707 708 INIT_LIST_HEAD(&nrg->link); 709 710 /* Original entry is trimmed */ 711 rg->to = f; 712 713 list_add(&nrg->link, &rg->link); 714 nrg = NULL; 715 break; 716 } 717 718 if (f <= rg->from && t >= rg->to) { /* Remove entire region */ 719 del += rg->to - rg->from; 720 hugetlb_cgroup_uncharge_file_region(resv, rg, 721 rg->to - rg->from, true); 722 list_del(&rg->link); 723 kfree(rg); 724 continue; 725 } 726 727 if (f <= rg->from) { /* Trim beginning of region */ 728 hugetlb_cgroup_uncharge_file_region(resv, rg, 729 t - rg->from, false); 730 731 del += t - rg->from; 732 rg->from = t; 733 } else { /* Trim end of region */ 734 hugetlb_cgroup_uncharge_file_region(resv, rg, 735 rg->to - f, false); 736 737 del += rg->to - f; 738 rg->to = f; 739 } 740 } 741 742 spin_unlock(&resv->lock); 743 kfree(nrg); 744 return del; 745 } 746 747 /* 748 * A rare out of memory error was encountered which prevented removal of 749 * the reserve map region for a page. The huge page itself was free'ed 750 * and removed from the page cache. This routine will adjust the subpool 751 * usage count, and the global reserve count if needed. By incrementing 752 * these counts, the reserve map entry which could not be deleted will 753 * appear as a "reserved" entry instead of simply dangling with incorrect 754 * counts. 755 */ 756 void hugetlb_fix_reserve_counts(struct inode *inode) 757 { 758 struct hugepage_subpool *spool = subpool_inode(inode); 759 long rsv_adjust; 760 bool reserved = false; 761 762 rsv_adjust = hugepage_subpool_get_pages(spool, 1); 763 if (rsv_adjust > 0) { 764 struct hstate *h = hstate_inode(inode); 765 766 if (!hugetlb_acct_memory(h, 1)) 767 reserved = true; 768 } else if (!rsv_adjust) { 769 reserved = true; 770 } 771 772 if (!reserved) 773 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n"); 774 } 775 776 /* 777 * Count and return the number of huge pages in the reserve map 778 * that intersect with the range [f, t). 779 */ 780 static long region_count(struct resv_map *resv, long f, long t) 781 { 782 struct list_head *head = &resv->regions; 783 struct file_region *rg; 784 long chg = 0; 785 786 spin_lock(&resv->lock); 787 /* Locate each segment we overlap with, and count that overlap. */ 788 list_for_each_entry(rg, head, link) { 789 long seg_from; 790 long seg_to; 791 792 if (rg->to <= f) 793 continue; 794 if (rg->from >= t) 795 break; 796 797 seg_from = max(rg->from, f); 798 seg_to = min(rg->to, t); 799 800 chg += seg_to - seg_from; 801 } 802 spin_unlock(&resv->lock); 803 804 return chg; 805 } 806 807 /* 808 * Convert the address within this vma to the page offset within 809 * the mapping, in pagecache page units; huge pages here. 810 */ 811 static pgoff_t vma_hugecache_offset(struct hstate *h, 812 struct vm_area_struct *vma, unsigned long address) 813 { 814 return ((address - vma->vm_start) >> huge_page_shift(h)) + 815 (vma->vm_pgoff >> huge_page_order(h)); 816 } 817 818 pgoff_t linear_hugepage_index(struct vm_area_struct *vma, 819 unsigned long address) 820 { 821 return vma_hugecache_offset(hstate_vma(vma), vma, address); 822 } 823 EXPORT_SYMBOL_GPL(linear_hugepage_index); 824 825 /* 826 * Return the size of the pages allocated when backing a VMA. In the majority 827 * cases this will be same size as used by the page table entries. 828 */ 829 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) 830 { 831 if (vma->vm_ops && vma->vm_ops->pagesize) 832 return vma->vm_ops->pagesize(vma); 833 return PAGE_SIZE; 834 } 835 EXPORT_SYMBOL_GPL(vma_kernel_pagesize); 836 837 /* 838 * Return the page size being used by the MMU to back a VMA. In the majority 839 * of cases, the page size used by the kernel matches the MMU size. On 840 * architectures where it differs, an architecture-specific 'strong' 841 * version of this symbol is required. 842 */ 843 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 844 { 845 return vma_kernel_pagesize(vma); 846 } 847 848 /* 849 * Flags for MAP_PRIVATE reservations. These are stored in the bottom 850 * bits of the reservation map pointer, which are always clear due to 851 * alignment. 852 */ 853 #define HPAGE_RESV_OWNER (1UL << 0) 854 #define HPAGE_RESV_UNMAPPED (1UL << 1) 855 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) 856 857 /* 858 * These helpers are used to track how many pages are reserved for 859 * faults in a MAP_PRIVATE mapping. Only the process that called mmap() 860 * is guaranteed to have their future faults succeed. 861 * 862 * With the exception of reset_vma_resv_huge_pages() which is called at fork(), 863 * the reserve counters are updated with the hugetlb_lock held. It is safe 864 * to reset the VMA at fork() time as it is not in use yet and there is no 865 * chance of the global counters getting corrupted as a result of the values. 866 * 867 * The private mapping reservation is represented in a subtly different 868 * manner to a shared mapping. A shared mapping has a region map associated 869 * with the underlying file, this region map represents the backing file 870 * pages which have ever had a reservation assigned which this persists even 871 * after the page is instantiated. A private mapping has a region map 872 * associated with the original mmap which is attached to all VMAs which 873 * reference it, this region map represents those offsets which have consumed 874 * reservation ie. where pages have been instantiated. 875 */ 876 static unsigned long get_vma_private_data(struct vm_area_struct *vma) 877 { 878 return (unsigned long)vma->vm_private_data; 879 } 880 881 static void set_vma_private_data(struct vm_area_struct *vma, 882 unsigned long value) 883 { 884 vma->vm_private_data = (void *)value; 885 } 886 887 static void 888 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map, 889 struct hugetlb_cgroup *h_cg, 890 struct hstate *h) 891 { 892 #ifdef CONFIG_CGROUP_HUGETLB 893 if (!h_cg || !h) { 894 resv_map->reservation_counter = NULL; 895 resv_map->pages_per_hpage = 0; 896 resv_map->css = NULL; 897 } else { 898 resv_map->reservation_counter = 899 &h_cg->rsvd_hugepage[hstate_index(h)]; 900 resv_map->pages_per_hpage = pages_per_huge_page(h); 901 resv_map->css = &h_cg->css; 902 } 903 #endif 904 } 905 906 struct resv_map *resv_map_alloc(void) 907 { 908 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); 909 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL); 910 911 if (!resv_map || !rg) { 912 kfree(resv_map); 913 kfree(rg); 914 return NULL; 915 } 916 917 kref_init(&resv_map->refs); 918 spin_lock_init(&resv_map->lock); 919 INIT_LIST_HEAD(&resv_map->regions); 920 921 resv_map->adds_in_progress = 0; 922 /* 923 * Initialize these to 0. On shared mappings, 0's here indicate these 924 * fields don't do cgroup accounting. On private mappings, these will be 925 * re-initialized to the proper values, to indicate that hugetlb cgroup 926 * reservations are to be un-charged from here. 927 */ 928 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL); 929 930 INIT_LIST_HEAD(&resv_map->region_cache); 931 list_add(&rg->link, &resv_map->region_cache); 932 resv_map->region_cache_count = 1; 933 934 return resv_map; 935 } 936 937 void resv_map_release(struct kref *ref) 938 { 939 struct resv_map *resv_map = container_of(ref, struct resv_map, refs); 940 struct list_head *head = &resv_map->region_cache; 941 struct file_region *rg, *trg; 942 943 /* Clear out any active regions before we release the map. */ 944 region_del(resv_map, 0, LONG_MAX); 945 946 /* ... and any entries left in the cache */ 947 list_for_each_entry_safe(rg, trg, head, link) { 948 list_del(&rg->link); 949 kfree(rg); 950 } 951 952 VM_BUG_ON(resv_map->adds_in_progress); 953 954 kfree(resv_map); 955 } 956 957 static inline struct resv_map *inode_resv_map(struct inode *inode) 958 { 959 /* 960 * At inode evict time, i_mapping may not point to the original 961 * address space within the inode. This original address space 962 * contains the pointer to the resv_map. So, always use the 963 * address space embedded within the inode. 964 * The VERY common case is inode->mapping == &inode->i_data but, 965 * this may not be true for device special inodes. 966 */ 967 return (struct resv_map *)(&inode->i_data)->private_data; 968 } 969 970 static struct resv_map *vma_resv_map(struct vm_area_struct *vma) 971 { 972 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 973 if (vma->vm_flags & VM_MAYSHARE) { 974 struct address_space *mapping = vma->vm_file->f_mapping; 975 struct inode *inode = mapping->host; 976 977 return inode_resv_map(inode); 978 979 } else { 980 return (struct resv_map *)(get_vma_private_data(vma) & 981 ~HPAGE_RESV_MASK); 982 } 983 } 984 985 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) 986 { 987 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 988 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 989 990 set_vma_private_data(vma, (get_vma_private_data(vma) & 991 HPAGE_RESV_MASK) | (unsigned long)map); 992 } 993 994 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) 995 { 996 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 997 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 998 999 set_vma_private_data(vma, get_vma_private_data(vma) | flags); 1000 } 1001 1002 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) 1003 { 1004 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1005 1006 return (get_vma_private_data(vma) & flag) != 0; 1007 } 1008 1009 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */ 1010 void reset_vma_resv_huge_pages(struct vm_area_struct *vma) 1011 { 1012 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1013 if (!(vma->vm_flags & VM_MAYSHARE)) 1014 vma->vm_private_data = (void *)0; 1015 } 1016 1017 /* 1018 * Reset and decrement one ref on hugepage private reservation. 1019 * Called with mm->mmap_sem writer semaphore held. 1020 * This function should be only used by move_vma() and operate on 1021 * same sized vma. It should never come here with last ref on the 1022 * reservation. 1023 */ 1024 void clear_vma_resv_huge_pages(struct vm_area_struct *vma) 1025 { 1026 /* 1027 * Clear the old hugetlb private page reservation. 1028 * It has already been transferred to new_vma. 1029 * 1030 * During a mremap() operation of a hugetlb vma we call move_vma() 1031 * which copies vma into new_vma and unmaps vma. After the copy 1032 * operation both new_vma and vma share a reference to the resv_map 1033 * struct, and at that point vma is about to be unmapped. We don't 1034 * want to return the reservation to the pool at unmap of vma because 1035 * the reservation still lives on in new_vma, so simply decrement the 1036 * ref here and remove the resv_map reference from this vma. 1037 */ 1038 struct resv_map *reservations = vma_resv_map(vma); 1039 1040 if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 1041 resv_map_put_hugetlb_cgroup_uncharge_info(reservations); 1042 kref_put(&reservations->refs, resv_map_release); 1043 } 1044 1045 reset_vma_resv_huge_pages(vma); 1046 } 1047 1048 /* Returns true if the VMA has associated reserve pages */ 1049 static bool vma_has_reserves(struct vm_area_struct *vma, long chg) 1050 { 1051 if (vma->vm_flags & VM_NORESERVE) { 1052 /* 1053 * This address is already reserved by other process(chg == 0), 1054 * so, we should decrement reserved count. Without decrementing, 1055 * reserve count remains after releasing inode, because this 1056 * allocated page will go into page cache and is regarded as 1057 * coming from reserved pool in releasing step. Currently, we 1058 * don't have any other solution to deal with this situation 1059 * properly, so add work-around here. 1060 */ 1061 if (vma->vm_flags & VM_MAYSHARE && chg == 0) 1062 return true; 1063 else 1064 return false; 1065 } 1066 1067 /* Shared mappings always use reserves */ 1068 if (vma->vm_flags & VM_MAYSHARE) { 1069 /* 1070 * We know VM_NORESERVE is not set. Therefore, there SHOULD 1071 * be a region map for all pages. The only situation where 1072 * there is no region map is if a hole was punched via 1073 * fallocate. In this case, there really are no reserves to 1074 * use. This situation is indicated if chg != 0. 1075 */ 1076 if (chg) 1077 return false; 1078 else 1079 return true; 1080 } 1081 1082 /* 1083 * Only the process that called mmap() has reserves for 1084 * private mappings. 1085 */ 1086 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 1087 /* 1088 * Like the shared case above, a hole punch or truncate 1089 * could have been performed on the private mapping. 1090 * Examine the value of chg to determine if reserves 1091 * actually exist or were previously consumed. 1092 * Very Subtle - The value of chg comes from a previous 1093 * call to vma_needs_reserves(). The reserve map for 1094 * private mappings has different (opposite) semantics 1095 * than that of shared mappings. vma_needs_reserves() 1096 * has already taken this difference in semantics into 1097 * account. Therefore, the meaning of chg is the same 1098 * as in the shared case above. Code could easily be 1099 * combined, but keeping it separate draws attention to 1100 * subtle differences. 1101 */ 1102 if (chg) 1103 return false; 1104 else 1105 return true; 1106 } 1107 1108 return false; 1109 } 1110 1111 static void enqueue_huge_page(struct hstate *h, struct page *page) 1112 { 1113 int nid = page_to_nid(page); 1114 1115 lockdep_assert_held(&hugetlb_lock); 1116 VM_BUG_ON_PAGE(page_count(page), page); 1117 1118 list_move(&page->lru, &h->hugepage_freelists[nid]); 1119 h->free_huge_pages++; 1120 h->free_huge_pages_node[nid]++; 1121 SetHPageFreed(page); 1122 } 1123 1124 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid) 1125 { 1126 struct page *page; 1127 bool pin = !!(current->flags & PF_MEMALLOC_PIN); 1128 1129 lockdep_assert_held(&hugetlb_lock); 1130 list_for_each_entry(page, &h->hugepage_freelists[nid], lru) { 1131 if (pin && !is_pinnable_page(page)) 1132 continue; 1133 1134 if (PageHWPoison(page)) 1135 continue; 1136 1137 list_move(&page->lru, &h->hugepage_activelist); 1138 set_page_refcounted(page); 1139 ClearHPageFreed(page); 1140 h->free_huge_pages--; 1141 h->free_huge_pages_node[nid]--; 1142 return page; 1143 } 1144 1145 return NULL; 1146 } 1147 1148 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid, 1149 nodemask_t *nmask) 1150 { 1151 unsigned int cpuset_mems_cookie; 1152 struct zonelist *zonelist; 1153 struct zone *zone; 1154 struct zoneref *z; 1155 int node = NUMA_NO_NODE; 1156 1157 zonelist = node_zonelist(nid, gfp_mask); 1158 1159 retry_cpuset: 1160 cpuset_mems_cookie = read_mems_allowed_begin(); 1161 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) { 1162 struct page *page; 1163 1164 if (!cpuset_zone_allowed(zone, gfp_mask)) 1165 continue; 1166 /* 1167 * no need to ask again on the same node. Pool is node rather than 1168 * zone aware 1169 */ 1170 if (zone_to_nid(zone) == node) 1171 continue; 1172 node = zone_to_nid(zone); 1173 1174 page = dequeue_huge_page_node_exact(h, node); 1175 if (page) 1176 return page; 1177 } 1178 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie))) 1179 goto retry_cpuset; 1180 1181 return NULL; 1182 } 1183 1184 static struct page *dequeue_huge_page_vma(struct hstate *h, 1185 struct vm_area_struct *vma, 1186 unsigned long address, int avoid_reserve, 1187 long chg) 1188 { 1189 struct page *page = NULL; 1190 struct mempolicy *mpol; 1191 gfp_t gfp_mask; 1192 nodemask_t *nodemask; 1193 int nid; 1194 1195 /* 1196 * A child process with MAP_PRIVATE mappings created by their parent 1197 * have no page reserves. This check ensures that reservations are 1198 * not "stolen". The child may still get SIGKILLed 1199 */ 1200 if (!vma_has_reserves(vma, chg) && 1201 h->free_huge_pages - h->resv_huge_pages == 0) 1202 goto err; 1203 1204 /* If reserves cannot be used, ensure enough pages are in the pool */ 1205 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0) 1206 goto err; 1207 1208 gfp_mask = htlb_alloc_mask(h); 1209 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 1210 1211 if (mpol_is_preferred_many(mpol)) { 1212 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask); 1213 1214 /* Fallback to all nodes if page==NULL */ 1215 nodemask = NULL; 1216 } 1217 1218 if (!page) 1219 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask); 1220 1221 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) { 1222 SetHPageRestoreReserve(page); 1223 h->resv_huge_pages--; 1224 } 1225 1226 mpol_cond_put(mpol); 1227 return page; 1228 1229 err: 1230 return NULL; 1231 } 1232 1233 /* 1234 * common helper functions for hstate_next_node_to_{alloc|free}. 1235 * We may have allocated or freed a huge page based on a different 1236 * nodes_allowed previously, so h->next_node_to_{alloc|free} might 1237 * be outside of *nodes_allowed. Ensure that we use an allowed 1238 * node for alloc or free. 1239 */ 1240 static int next_node_allowed(int nid, nodemask_t *nodes_allowed) 1241 { 1242 nid = next_node_in(nid, *nodes_allowed); 1243 VM_BUG_ON(nid >= MAX_NUMNODES); 1244 1245 return nid; 1246 } 1247 1248 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed) 1249 { 1250 if (!node_isset(nid, *nodes_allowed)) 1251 nid = next_node_allowed(nid, nodes_allowed); 1252 return nid; 1253 } 1254 1255 /* 1256 * returns the previously saved node ["this node"] from which to 1257 * allocate a persistent huge page for the pool and advance the 1258 * next node from which to allocate, handling wrap at end of node 1259 * mask. 1260 */ 1261 static int hstate_next_node_to_alloc(struct hstate *h, 1262 nodemask_t *nodes_allowed) 1263 { 1264 int nid; 1265 1266 VM_BUG_ON(!nodes_allowed); 1267 1268 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed); 1269 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed); 1270 1271 return nid; 1272 } 1273 1274 /* 1275 * helper for remove_pool_huge_page() - return the previously saved 1276 * node ["this node"] from which to free a huge page. Advance the 1277 * next node id whether or not we find a free huge page to free so 1278 * that the next attempt to free addresses the next node. 1279 */ 1280 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed) 1281 { 1282 int nid; 1283 1284 VM_BUG_ON(!nodes_allowed); 1285 1286 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed); 1287 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed); 1288 1289 return nid; 1290 } 1291 1292 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \ 1293 for (nr_nodes = nodes_weight(*mask); \ 1294 nr_nodes > 0 && \ 1295 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \ 1296 nr_nodes--) 1297 1298 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \ 1299 for (nr_nodes = nodes_weight(*mask); \ 1300 nr_nodes > 0 && \ 1301 ((node = hstate_next_node_to_free(hs, mask)) || 1); \ 1302 nr_nodes--) 1303 1304 /* used to demote non-gigantic_huge pages as well */ 1305 static void __destroy_compound_gigantic_page(struct page *page, 1306 unsigned int order, bool demote) 1307 { 1308 int i; 1309 int nr_pages = 1 << order; 1310 struct page *p = page + 1; 1311 1312 atomic_set(compound_mapcount_ptr(page), 0); 1313 atomic_set(compound_pincount_ptr(page), 0); 1314 1315 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { 1316 p->mapping = NULL; 1317 clear_compound_head(p); 1318 if (!demote) 1319 set_page_refcounted(p); 1320 } 1321 1322 set_compound_order(page, 0); 1323 page[1].compound_nr = 0; 1324 __ClearPageHead(page); 1325 } 1326 1327 static void destroy_compound_hugetlb_page_for_demote(struct page *page, 1328 unsigned int order) 1329 { 1330 __destroy_compound_gigantic_page(page, order, true); 1331 } 1332 1333 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE 1334 static void destroy_compound_gigantic_page(struct page *page, 1335 unsigned int order) 1336 { 1337 __destroy_compound_gigantic_page(page, order, false); 1338 } 1339 1340 static void free_gigantic_page(struct page *page, unsigned int order) 1341 { 1342 /* 1343 * If the page isn't allocated using the cma allocator, 1344 * cma_release() returns false. 1345 */ 1346 #ifdef CONFIG_CMA 1347 if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order)) 1348 return; 1349 #endif 1350 1351 free_contig_range(page_to_pfn(page), 1 << order); 1352 } 1353 1354 #ifdef CONFIG_CONTIG_ALLOC 1355 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, 1356 int nid, nodemask_t *nodemask) 1357 { 1358 unsigned long nr_pages = pages_per_huge_page(h); 1359 if (nid == NUMA_NO_NODE) 1360 nid = numa_mem_id(); 1361 1362 #ifdef CONFIG_CMA 1363 { 1364 struct page *page; 1365 int node; 1366 1367 if (hugetlb_cma[nid]) { 1368 page = cma_alloc(hugetlb_cma[nid], nr_pages, 1369 huge_page_order(h), true); 1370 if (page) 1371 return page; 1372 } 1373 1374 if (!(gfp_mask & __GFP_THISNODE)) { 1375 for_each_node_mask(node, *nodemask) { 1376 if (node == nid || !hugetlb_cma[node]) 1377 continue; 1378 1379 page = cma_alloc(hugetlb_cma[node], nr_pages, 1380 huge_page_order(h), true); 1381 if (page) 1382 return page; 1383 } 1384 } 1385 } 1386 #endif 1387 1388 return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask); 1389 } 1390 1391 #else /* !CONFIG_CONTIG_ALLOC */ 1392 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, 1393 int nid, nodemask_t *nodemask) 1394 { 1395 return NULL; 1396 } 1397 #endif /* CONFIG_CONTIG_ALLOC */ 1398 1399 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */ 1400 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, 1401 int nid, nodemask_t *nodemask) 1402 { 1403 return NULL; 1404 } 1405 static inline void free_gigantic_page(struct page *page, unsigned int order) { } 1406 static inline void destroy_compound_gigantic_page(struct page *page, 1407 unsigned int order) { } 1408 #endif 1409 1410 /* 1411 * Remove hugetlb page from lists, and update dtor so that page appears 1412 * as just a compound page. 1413 * 1414 * A reference is held on the page, except in the case of demote. 1415 * 1416 * Must be called with hugetlb lock held. 1417 */ 1418 static void __remove_hugetlb_page(struct hstate *h, struct page *page, 1419 bool adjust_surplus, 1420 bool demote) 1421 { 1422 int nid = page_to_nid(page); 1423 1424 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page); 1425 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page); 1426 1427 lockdep_assert_held(&hugetlb_lock); 1428 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 1429 return; 1430 1431 list_del(&page->lru); 1432 1433 if (HPageFreed(page)) { 1434 h->free_huge_pages--; 1435 h->free_huge_pages_node[nid]--; 1436 } 1437 if (adjust_surplus) { 1438 h->surplus_huge_pages--; 1439 h->surplus_huge_pages_node[nid]--; 1440 } 1441 1442 /* 1443 * Very subtle 1444 * 1445 * For non-gigantic pages set the destructor to the normal compound 1446 * page dtor. This is needed in case someone takes an additional 1447 * temporary ref to the page, and freeing is delayed until they drop 1448 * their reference. 1449 * 1450 * For gigantic pages set the destructor to the null dtor. This 1451 * destructor will never be called. Before freeing the gigantic 1452 * page destroy_compound_gigantic_page will turn the compound page 1453 * into a simple group of pages. After this the destructor does not 1454 * apply. 1455 * 1456 * This handles the case where more than one ref is held when and 1457 * after update_and_free_page is called. 1458 * 1459 * In the case of demote we do not ref count the page as it will soon 1460 * be turned into a page of smaller size. 1461 */ 1462 if (!demote) 1463 set_page_refcounted(page); 1464 if (hstate_is_gigantic(h)) 1465 set_compound_page_dtor(page, NULL_COMPOUND_DTOR); 1466 else 1467 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR); 1468 1469 h->nr_huge_pages--; 1470 h->nr_huge_pages_node[nid]--; 1471 } 1472 1473 static void remove_hugetlb_page(struct hstate *h, struct page *page, 1474 bool adjust_surplus) 1475 { 1476 __remove_hugetlb_page(h, page, adjust_surplus, false); 1477 } 1478 1479 static void remove_hugetlb_page_for_demote(struct hstate *h, struct page *page, 1480 bool adjust_surplus) 1481 { 1482 __remove_hugetlb_page(h, page, adjust_surplus, true); 1483 } 1484 1485 static void add_hugetlb_page(struct hstate *h, struct page *page, 1486 bool adjust_surplus) 1487 { 1488 int zeroed; 1489 int nid = page_to_nid(page); 1490 1491 VM_BUG_ON_PAGE(!HPageVmemmapOptimized(page), page); 1492 1493 lockdep_assert_held(&hugetlb_lock); 1494 1495 INIT_LIST_HEAD(&page->lru); 1496 h->nr_huge_pages++; 1497 h->nr_huge_pages_node[nid]++; 1498 1499 if (adjust_surplus) { 1500 h->surplus_huge_pages++; 1501 h->surplus_huge_pages_node[nid]++; 1502 } 1503 1504 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR); 1505 set_page_private(page, 0); 1506 SetHPageVmemmapOptimized(page); 1507 1508 /* 1509 * This page is about to be managed by the hugetlb allocator and 1510 * should have no users. Drop our reference, and check for others 1511 * just in case. 1512 */ 1513 zeroed = put_page_testzero(page); 1514 if (!zeroed) 1515 /* 1516 * It is VERY unlikely soneone else has taken a ref on 1517 * the page. In this case, we simply return as the 1518 * hugetlb destructor (free_huge_page) will be called 1519 * when this other ref is dropped. 1520 */ 1521 return; 1522 1523 arch_clear_hugepage_flags(page); 1524 enqueue_huge_page(h, page); 1525 } 1526 1527 static void __update_and_free_page(struct hstate *h, struct page *page) 1528 { 1529 int i; 1530 struct page *subpage = page; 1531 1532 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 1533 return; 1534 1535 if (alloc_huge_page_vmemmap(h, page)) { 1536 spin_lock_irq(&hugetlb_lock); 1537 /* 1538 * If we cannot allocate vmemmap pages, just refuse to free the 1539 * page and put the page back on the hugetlb free list and treat 1540 * as a surplus page. 1541 */ 1542 add_hugetlb_page(h, page, true); 1543 spin_unlock_irq(&hugetlb_lock); 1544 return; 1545 } 1546 1547 for (i = 0; i < pages_per_huge_page(h); 1548 i++, subpage = mem_map_next(subpage, page, i)) { 1549 subpage->flags &= ~(1 << PG_locked | 1 << PG_error | 1550 1 << PG_referenced | 1 << PG_dirty | 1551 1 << PG_active | 1 << PG_private | 1552 1 << PG_writeback); 1553 } 1554 1555 /* 1556 * Non-gigantic pages demoted from CMA allocated gigantic pages 1557 * need to be given back to CMA in free_gigantic_page. 1558 */ 1559 if (hstate_is_gigantic(h) || 1560 hugetlb_cma_page(page, huge_page_order(h))) { 1561 destroy_compound_gigantic_page(page, huge_page_order(h)); 1562 free_gigantic_page(page, huge_page_order(h)); 1563 } else { 1564 __free_pages(page, huge_page_order(h)); 1565 } 1566 } 1567 1568 /* 1569 * As update_and_free_page() can be called under any context, so we cannot 1570 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the 1571 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate 1572 * the vmemmap pages. 1573 * 1574 * free_hpage_workfn() locklessly retrieves the linked list of pages to be 1575 * freed and frees them one-by-one. As the page->mapping pointer is going 1576 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node 1577 * structure of a lockless linked list of huge pages to be freed. 1578 */ 1579 static LLIST_HEAD(hpage_freelist); 1580 1581 static void free_hpage_workfn(struct work_struct *work) 1582 { 1583 struct llist_node *node; 1584 1585 node = llist_del_all(&hpage_freelist); 1586 1587 while (node) { 1588 struct page *page; 1589 struct hstate *h; 1590 1591 page = container_of((struct address_space **)node, 1592 struct page, mapping); 1593 node = node->next; 1594 page->mapping = NULL; 1595 /* 1596 * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate() 1597 * is going to trigger because a previous call to 1598 * remove_hugetlb_page() will set_compound_page_dtor(page, 1599 * NULL_COMPOUND_DTOR), so do not use page_hstate() directly. 1600 */ 1601 h = size_to_hstate(page_size(page)); 1602 1603 __update_and_free_page(h, page); 1604 1605 cond_resched(); 1606 } 1607 } 1608 static DECLARE_WORK(free_hpage_work, free_hpage_workfn); 1609 1610 static inline void flush_free_hpage_work(struct hstate *h) 1611 { 1612 if (free_vmemmap_pages_per_hpage(h)) 1613 flush_work(&free_hpage_work); 1614 } 1615 1616 static void update_and_free_page(struct hstate *h, struct page *page, 1617 bool atomic) 1618 { 1619 if (!HPageVmemmapOptimized(page) || !atomic) { 1620 __update_and_free_page(h, page); 1621 return; 1622 } 1623 1624 /* 1625 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages. 1626 * 1627 * Only call schedule_work() if hpage_freelist is previously 1628 * empty. Otherwise, schedule_work() had been called but the workfn 1629 * hasn't retrieved the list yet. 1630 */ 1631 if (llist_add((struct llist_node *)&page->mapping, &hpage_freelist)) 1632 schedule_work(&free_hpage_work); 1633 } 1634 1635 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list) 1636 { 1637 struct page *page, *t_page; 1638 1639 list_for_each_entry_safe(page, t_page, list, lru) { 1640 update_and_free_page(h, page, false); 1641 cond_resched(); 1642 } 1643 } 1644 1645 struct hstate *size_to_hstate(unsigned long size) 1646 { 1647 struct hstate *h; 1648 1649 for_each_hstate(h) { 1650 if (huge_page_size(h) == size) 1651 return h; 1652 } 1653 return NULL; 1654 } 1655 1656 void free_huge_page(struct page *page) 1657 { 1658 /* 1659 * Can't pass hstate in here because it is called from the 1660 * compound page destructor. 1661 */ 1662 struct hstate *h = page_hstate(page); 1663 int nid = page_to_nid(page); 1664 struct hugepage_subpool *spool = hugetlb_page_subpool(page); 1665 bool restore_reserve; 1666 unsigned long flags; 1667 1668 VM_BUG_ON_PAGE(page_count(page), page); 1669 VM_BUG_ON_PAGE(page_mapcount(page), page); 1670 1671 hugetlb_set_page_subpool(page, NULL); 1672 page->mapping = NULL; 1673 restore_reserve = HPageRestoreReserve(page); 1674 ClearHPageRestoreReserve(page); 1675 1676 /* 1677 * If HPageRestoreReserve was set on page, page allocation consumed a 1678 * reservation. If the page was associated with a subpool, there 1679 * would have been a page reserved in the subpool before allocation 1680 * via hugepage_subpool_get_pages(). Since we are 'restoring' the 1681 * reservation, do not call hugepage_subpool_put_pages() as this will 1682 * remove the reserved page from the subpool. 1683 */ 1684 if (!restore_reserve) { 1685 /* 1686 * A return code of zero implies that the subpool will be 1687 * under its minimum size if the reservation is not restored 1688 * after page is free. Therefore, force restore_reserve 1689 * operation. 1690 */ 1691 if (hugepage_subpool_put_pages(spool, 1) == 0) 1692 restore_reserve = true; 1693 } 1694 1695 spin_lock_irqsave(&hugetlb_lock, flags); 1696 ClearHPageMigratable(page); 1697 hugetlb_cgroup_uncharge_page(hstate_index(h), 1698 pages_per_huge_page(h), page); 1699 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h), 1700 pages_per_huge_page(h), page); 1701 if (restore_reserve) 1702 h->resv_huge_pages++; 1703 1704 if (HPageTemporary(page)) { 1705 remove_hugetlb_page(h, page, false); 1706 spin_unlock_irqrestore(&hugetlb_lock, flags); 1707 update_and_free_page(h, page, true); 1708 } else if (h->surplus_huge_pages_node[nid]) { 1709 /* remove the page from active list */ 1710 remove_hugetlb_page(h, page, true); 1711 spin_unlock_irqrestore(&hugetlb_lock, flags); 1712 update_and_free_page(h, page, true); 1713 } else { 1714 arch_clear_hugepage_flags(page); 1715 enqueue_huge_page(h, page); 1716 spin_unlock_irqrestore(&hugetlb_lock, flags); 1717 } 1718 } 1719 1720 /* 1721 * Must be called with the hugetlb lock held 1722 */ 1723 static void __prep_account_new_huge_page(struct hstate *h, int nid) 1724 { 1725 lockdep_assert_held(&hugetlb_lock); 1726 h->nr_huge_pages++; 1727 h->nr_huge_pages_node[nid]++; 1728 } 1729 1730 static void __prep_new_huge_page(struct hstate *h, struct page *page) 1731 { 1732 free_huge_page_vmemmap(h, page); 1733 INIT_LIST_HEAD(&page->lru); 1734 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR); 1735 hugetlb_set_page_subpool(page, NULL); 1736 set_hugetlb_cgroup(page, NULL); 1737 set_hugetlb_cgroup_rsvd(page, NULL); 1738 } 1739 1740 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid) 1741 { 1742 __prep_new_huge_page(h, page); 1743 spin_lock_irq(&hugetlb_lock); 1744 __prep_account_new_huge_page(h, nid); 1745 spin_unlock_irq(&hugetlb_lock); 1746 } 1747 1748 static bool __prep_compound_gigantic_page(struct page *page, unsigned int order, 1749 bool demote) 1750 { 1751 int i, j; 1752 int nr_pages = 1 << order; 1753 struct page *p = page + 1; 1754 1755 /* we rely on prep_new_huge_page to set the destructor */ 1756 set_compound_order(page, order); 1757 __ClearPageReserved(page); 1758 __SetPageHead(page); 1759 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { 1760 /* 1761 * For gigantic hugepages allocated through bootmem at 1762 * boot, it's safer to be consistent with the not-gigantic 1763 * hugepages and clear the PG_reserved bit from all tail pages 1764 * too. Otherwise drivers using get_user_pages() to access tail 1765 * pages may get the reference counting wrong if they see 1766 * PG_reserved set on a tail page (despite the head page not 1767 * having PG_reserved set). Enforcing this consistency between 1768 * head and tail pages allows drivers to optimize away a check 1769 * on the head page when they need know if put_page() is needed 1770 * after get_user_pages(). 1771 */ 1772 __ClearPageReserved(p); 1773 /* 1774 * Subtle and very unlikely 1775 * 1776 * Gigantic 'page allocators' such as memblock or cma will 1777 * return a set of pages with each page ref counted. We need 1778 * to turn this set of pages into a compound page with tail 1779 * page ref counts set to zero. Code such as speculative page 1780 * cache adding could take a ref on a 'to be' tail page. 1781 * We need to respect any increased ref count, and only set 1782 * the ref count to zero if count is currently 1. If count 1783 * is not 1, we return an error. An error return indicates 1784 * the set of pages can not be converted to a gigantic page. 1785 * The caller who allocated the pages should then discard the 1786 * pages using the appropriate free interface. 1787 * 1788 * In the case of demote, the ref count will be zero. 1789 */ 1790 if (!demote) { 1791 if (!page_ref_freeze(p, 1)) { 1792 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n"); 1793 goto out_error; 1794 } 1795 } else { 1796 VM_BUG_ON_PAGE(page_count(p), p); 1797 } 1798 set_compound_head(p, page); 1799 } 1800 atomic_set(compound_mapcount_ptr(page), -1); 1801 atomic_set(compound_pincount_ptr(page), 0); 1802 return true; 1803 1804 out_error: 1805 /* undo tail page modifications made above */ 1806 p = page + 1; 1807 for (j = 1; j < i; j++, p = mem_map_next(p, page, j)) { 1808 clear_compound_head(p); 1809 set_page_refcounted(p); 1810 } 1811 /* need to clear PG_reserved on remaining tail pages */ 1812 for (; j < nr_pages; j++, p = mem_map_next(p, page, j)) 1813 __ClearPageReserved(p); 1814 set_compound_order(page, 0); 1815 page[1].compound_nr = 0; 1816 __ClearPageHead(page); 1817 return false; 1818 } 1819 1820 static bool prep_compound_gigantic_page(struct page *page, unsigned int order) 1821 { 1822 return __prep_compound_gigantic_page(page, order, false); 1823 } 1824 1825 static bool prep_compound_gigantic_page_for_demote(struct page *page, 1826 unsigned int order) 1827 { 1828 return __prep_compound_gigantic_page(page, order, true); 1829 } 1830 1831 /* 1832 * PageHuge() only returns true for hugetlbfs pages, but not for normal or 1833 * transparent huge pages. See the PageTransHuge() documentation for more 1834 * details. 1835 */ 1836 int PageHuge(struct page *page) 1837 { 1838 if (!PageCompound(page)) 1839 return 0; 1840 1841 page = compound_head(page); 1842 return page[1].compound_dtor == HUGETLB_PAGE_DTOR; 1843 } 1844 EXPORT_SYMBOL_GPL(PageHuge); 1845 1846 /* 1847 * PageHeadHuge() only returns true for hugetlbfs head page, but not for 1848 * normal or transparent huge pages. 1849 */ 1850 int PageHeadHuge(struct page *page_head) 1851 { 1852 if (!PageHead(page_head)) 1853 return 0; 1854 1855 return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR; 1856 } 1857 1858 /* 1859 * Find and lock address space (mapping) in write mode. 1860 * 1861 * Upon entry, the page is locked which means that page_mapping() is 1862 * stable. Due to locking order, we can only trylock_write. If we can 1863 * not get the lock, simply return NULL to caller. 1864 */ 1865 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage) 1866 { 1867 struct address_space *mapping = page_mapping(hpage); 1868 1869 if (!mapping) 1870 return mapping; 1871 1872 if (i_mmap_trylock_write(mapping)) 1873 return mapping; 1874 1875 return NULL; 1876 } 1877 1878 pgoff_t hugetlb_basepage_index(struct page *page) 1879 { 1880 struct page *page_head = compound_head(page); 1881 pgoff_t index = page_index(page_head); 1882 unsigned long compound_idx; 1883 1884 if (compound_order(page_head) >= MAX_ORDER) 1885 compound_idx = page_to_pfn(page) - page_to_pfn(page_head); 1886 else 1887 compound_idx = page - page_head; 1888 1889 return (index << compound_order(page_head)) + compound_idx; 1890 } 1891 1892 static struct page *alloc_buddy_huge_page(struct hstate *h, 1893 gfp_t gfp_mask, int nid, nodemask_t *nmask, 1894 nodemask_t *node_alloc_noretry) 1895 { 1896 int order = huge_page_order(h); 1897 struct page *page; 1898 bool alloc_try_hard = true; 1899 1900 /* 1901 * By default we always try hard to allocate the page with 1902 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in 1903 * a loop (to adjust global huge page counts) and previous allocation 1904 * failed, do not continue to try hard on the same node. Use the 1905 * node_alloc_noretry bitmap to manage this state information. 1906 */ 1907 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry)) 1908 alloc_try_hard = false; 1909 gfp_mask |= __GFP_COMP|__GFP_NOWARN; 1910 if (alloc_try_hard) 1911 gfp_mask |= __GFP_RETRY_MAYFAIL; 1912 if (nid == NUMA_NO_NODE) 1913 nid = numa_mem_id(); 1914 page = __alloc_pages(gfp_mask, order, nid, nmask); 1915 if (page) 1916 __count_vm_event(HTLB_BUDDY_PGALLOC); 1917 else 1918 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 1919 1920 /* 1921 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this 1922 * indicates an overall state change. Clear bit so that we resume 1923 * normal 'try hard' allocations. 1924 */ 1925 if (node_alloc_noretry && page && !alloc_try_hard) 1926 node_clear(nid, *node_alloc_noretry); 1927 1928 /* 1929 * If we tried hard to get a page but failed, set bit so that 1930 * subsequent attempts will not try as hard until there is an 1931 * overall state change. 1932 */ 1933 if (node_alloc_noretry && !page && alloc_try_hard) 1934 node_set(nid, *node_alloc_noretry); 1935 1936 return page; 1937 } 1938 1939 /* 1940 * Common helper to allocate a fresh hugetlb page. All specific allocators 1941 * should use this function to get new hugetlb pages 1942 */ 1943 static struct page *alloc_fresh_huge_page(struct hstate *h, 1944 gfp_t gfp_mask, int nid, nodemask_t *nmask, 1945 nodemask_t *node_alloc_noretry) 1946 { 1947 struct page *page; 1948 bool retry = false; 1949 1950 retry: 1951 if (hstate_is_gigantic(h)) 1952 page = alloc_gigantic_page(h, gfp_mask, nid, nmask); 1953 else 1954 page = alloc_buddy_huge_page(h, gfp_mask, 1955 nid, nmask, node_alloc_noretry); 1956 if (!page) 1957 return NULL; 1958 1959 if (hstate_is_gigantic(h)) { 1960 if (!prep_compound_gigantic_page(page, huge_page_order(h))) { 1961 /* 1962 * Rare failure to convert pages to compound page. 1963 * Free pages and try again - ONCE! 1964 */ 1965 free_gigantic_page(page, huge_page_order(h)); 1966 if (!retry) { 1967 retry = true; 1968 goto retry; 1969 } 1970 return NULL; 1971 } 1972 } 1973 prep_new_huge_page(h, page, page_to_nid(page)); 1974 1975 return page; 1976 } 1977 1978 /* 1979 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved 1980 * manner. 1981 */ 1982 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed, 1983 nodemask_t *node_alloc_noretry) 1984 { 1985 struct page *page; 1986 int nr_nodes, node; 1987 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 1988 1989 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 1990 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed, 1991 node_alloc_noretry); 1992 if (page) 1993 break; 1994 } 1995 1996 if (!page) 1997 return 0; 1998 1999 put_page(page); /* free it into the hugepage allocator */ 2000 2001 return 1; 2002 } 2003 2004 /* 2005 * Remove huge page from pool from next node to free. Attempt to keep 2006 * persistent huge pages more or less balanced over allowed nodes. 2007 * This routine only 'removes' the hugetlb page. The caller must make 2008 * an additional call to free the page to low level allocators. 2009 * Called with hugetlb_lock locked. 2010 */ 2011 static struct page *remove_pool_huge_page(struct hstate *h, 2012 nodemask_t *nodes_allowed, 2013 bool acct_surplus) 2014 { 2015 int nr_nodes, node; 2016 struct page *page = NULL; 2017 2018 lockdep_assert_held(&hugetlb_lock); 2019 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 2020 /* 2021 * If we're returning unused surplus pages, only examine 2022 * nodes with surplus pages. 2023 */ 2024 if ((!acct_surplus || h->surplus_huge_pages_node[node]) && 2025 !list_empty(&h->hugepage_freelists[node])) { 2026 page = list_entry(h->hugepage_freelists[node].next, 2027 struct page, lru); 2028 remove_hugetlb_page(h, page, acct_surplus); 2029 break; 2030 } 2031 } 2032 2033 return page; 2034 } 2035 2036 /* 2037 * Dissolve a given free hugepage into free buddy pages. This function does 2038 * nothing for in-use hugepages and non-hugepages. 2039 * This function returns values like below: 2040 * 2041 * -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages 2042 * when the system is under memory pressure and the feature of 2043 * freeing unused vmemmap pages associated with each hugetlb page 2044 * is enabled. 2045 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use 2046 * (allocated or reserved.) 2047 * 0: successfully dissolved free hugepages or the page is not a 2048 * hugepage (considered as already dissolved) 2049 */ 2050 int dissolve_free_huge_page(struct page *page) 2051 { 2052 int rc = -EBUSY; 2053 2054 retry: 2055 /* Not to disrupt normal path by vainly holding hugetlb_lock */ 2056 if (!PageHuge(page)) 2057 return 0; 2058 2059 spin_lock_irq(&hugetlb_lock); 2060 if (!PageHuge(page)) { 2061 rc = 0; 2062 goto out; 2063 } 2064 2065 if (!page_count(page)) { 2066 struct page *head = compound_head(page); 2067 struct hstate *h = page_hstate(head); 2068 if (h->free_huge_pages - h->resv_huge_pages == 0) 2069 goto out; 2070 2071 /* 2072 * We should make sure that the page is already on the free list 2073 * when it is dissolved. 2074 */ 2075 if (unlikely(!HPageFreed(head))) { 2076 spin_unlock_irq(&hugetlb_lock); 2077 cond_resched(); 2078 2079 /* 2080 * Theoretically, we should return -EBUSY when we 2081 * encounter this race. In fact, we have a chance 2082 * to successfully dissolve the page if we do a 2083 * retry. Because the race window is quite small. 2084 * If we seize this opportunity, it is an optimization 2085 * for increasing the success rate of dissolving page. 2086 */ 2087 goto retry; 2088 } 2089 2090 remove_hugetlb_page(h, head, false); 2091 h->max_huge_pages--; 2092 spin_unlock_irq(&hugetlb_lock); 2093 2094 /* 2095 * Normally update_and_free_page will allocate required vmemmmap 2096 * before freeing the page. update_and_free_page will fail to 2097 * free the page if it can not allocate required vmemmap. We 2098 * need to adjust max_huge_pages if the page is not freed. 2099 * Attempt to allocate vmemmmap here so that we can take 2100 * appropriate action on failure. 2101 */ 2102 rc = alloc_huge_page_vmemmap(h, head); 2103 if (!rc) { 2104 /* 2105 * Move PageHWPoison flag from head page to the raw 2106 * error page, which makes any subpages rather than 2107 * the error page reusable. 2108 */ 2109 if (PageHWPoison(head) && page != head) { 2110 SetPageHWPoison(page); 2111 ClearPageHWPoison(head); 2112 } 2113 update_and_free_page(h, head, false); 2114 } else { 2115 spin_lock_irq(&hugetlb_lock); 2116 add_hugetlb_page(h, head, false); 2117 h->max_huge_pages++; 2118 spin_unlock_irq(&hugetlb_lock); 2119 } 2120 2121 return rc; 2122 } 2123 out: 2124 spin_unlock_irq(&hugetlb_lock); 2125 return rc; 2126 } 2127 2128 /* 2129 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to 2130 * make specified memory blocks removable from the system. 2131 * Note that this will dissolve a free gigantic hugepage completely, if any 2132 * part of it lies within the given range. 2133 * Also note that if dissolve_free_huge_page() returns with an error, all 2134 * free hugepages that were dissolved before that error are lost. 2135 */ 2136 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn) 2137 { 2138 unsigned long pfn; 2139 struct page *page; 2140 int rc = 0; 2141 2142 if (!hugepages_supported()) 2143 return rc; 2144 2145 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) { 2146 page = pfn_to_page(pfn); 2147 rc = dissolve_free_huge_page(page); 2148 if (rc) 2149 break; 2150 } 2151 2152 return rc; 2153 } 2154 2155 /* 2156 * Allocates a fresh surplus page from the page allocator. 2157 */ 2158 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask, 2159 int nid, nodemask_t *nmask, bool zero_ref) 2160 { 2161 struct page *page = NULL; 2162 bool retry = false; 2163 2164 if (hstate_is_gigantic(h)) 2165 return NULL; 2166 2167 spin_lock_irq(&hugetlb_lock); 2168 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) 2169 goto out_unlock; 2170 spin_unlock_irq(&hugetlb_lock); 2171 2172 retry: 2173 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL); 2174 if (!page) 2175 return NULL; 2176 2177 spin_lock_irq(&hugetlb_lock); 2178 /* 2179 * We could have raced with the pool size change. 2180 * Double check that and simply deallocate the new page 2181 * if we would end up overcommiting the surpluses. Abuse 2182 * temporary page to workaround the nasty free_huge_page 2183 * codeflow 2184 */ 2185 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { 2186 SetHPageTemporary(page); 2187 spin_unlock_irq(&hugetlb_lock); 2188 put_page(page); 2189 return NULL; 2190 } 2191 2192 if (zero_ref) { 2193 /* 2194 * Caller requires a page with zero ref count. 2195 * We will drop ref count here. If someone else is holding 2196 * a ref, the page will be freed when they drop it. Abuse 2197 * temporary page flag to accomplish this. 2198 */ 2199 SetHPageTemporary(page); 2200 if (!put_page_testzero(page)) { 2201 /* 2202 * Unexpected inflated ref count on freshly allocated 2203 * huge. Retry once. 2204 */ 2205 pr_info("HugeTLB unexpected inflated ref count on freshly allocated page\n"); 2206 spin_unlock_irq(&hugetlb_lock); 2207 if (retry) 2208 return NULL; 2209 2210 retry = true; 2211 goto retry; 2212 } 2213 ClearHPageTemporary(page); 2214 } 2215 2216 h->surplus_huge_pages++; 2217 h->surplus_huge_pages_node[page_to_nid(page)]++; 2218 2219 out_unlock: 2220 spin_unlock_irq(&hugetlb_lock); 2221 2222 return page; 2223 } 2224 2225 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask, 2226 int nid, nodemask_t *nmask) 2227 { 2228 struct page *page; 2229 2230 if (hstate_is_gigantic(h)) 2231 return NULL; 2232 2233 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL); 2234 if (!page) 2235 return NULL; 2236 2237 /* 2238 * We do not account these pages as surplus because they are only 2239 * temporary and will be released properly on the last reference 2240 */ 2241 SetHPageTemporary(page); 2242 2243 return page; 2244 } 2245 2246 /* 2247 * Use the VMA's mpolicy to allocate a huge page from the buddy. 2248 */ 2249 static 2250 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h, 2251 struct vm_area_struct *vma, unsigned long addr) 2252 { 2253 struct page *page = NULL; 2254 struct mempolicy *mpol; 2255 gfp_t gfp_mask = htlb_alloc_mask(h); 2256 int nid; 2257 nodemask_t *nodemask; 2258 2259 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask); 2260 if (mpol_is_preferred_many(mpol)) { 2261 gfp_t gfp = gfp_mask | __GFP_NOWARN; 2262 2263 gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL); 2264 page = alloc_surplus_huge_page(h, gfp, nid, nodemask, false); 2265 2266 /* Fallback to all nodes if page==NULL */ 2267 nodemask = NULL; 2268 } 2269 2270 if (!page) 2271 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask, false); 2272 mpol_cond_put(mpol); 2273 return page; 2274 } 2275 2276 /* page migration callback function */ 2277 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid, 2278 nodemask_t *nmask, gfp_t gfp_mask) 2279 { 2280 spin_lock_irq(&hugetlb_lock); 2281 if (h->free_huge_pages - h->resv_huge_pages > 0) { 2282 struct page *page; 2283 2284 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask); 2285 if (page) { 2286 spin_unlock_irq(&hugetlb_lock); 2287 return page; 2288 } 2289 } 2290 spin_unlock_irq(&hugetlb_lock); 2291 2292 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask); 2293 } 2294 2295 /* mempolicy aware migration callback */ 2296 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma, 2297 unsigned long address) 2298 { 2299 struct mempolicy *mpol; 2300 nodemask_t *nodemask; 2301 struct page *page; 2302 gfp_t gfp_mask; 2303 int node; 2304 2305 gfp_mask = htlb_alloc_mask(h); 2306 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 2307 page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask); 2308 mpol_cond_put(mpol); 2309 2310 return page; 2311 } 2312 2313 /* 2314 * Increase the hugetlb pool such that it can accommodate a reservation 2315 * of size 'delta'. 2316 */ 2317 static int gather_surplus_pages(struct hstate *h, long delta) 2318 __must_hold(&hugetlb_lock) 2319 { 2320 struct list_head surplus_list; 2321 struct page *page, *tmp; 2322 int ret; 2323 long i; 2324 long needed, allocated; 2325 bool alloc_ok = true; 2326 2327 lockdep_assert_held(&hugetlb_lock); 2328 needed = (h->resv_huge_pages + delta) - h->free_huge_pages; 2329 if (needed <= 0) { 2330 h->resv_huge_pages += delta; 2331 return 0; 2332 } 2333 2334 allocated = 0; 2335 INIT_LIST_HEAD(&surplus_list); 2336 2337 ret = -ENOMEM; 2338 retry: 2339 spin_unlock_irq(&hugetlb_lock); 2340 for (i = 0; i < needed; i++) { 2341 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h), 2342 NUMA_NO_NODE, NULL, true); 2343 if (!page) { 2344 alloc_ok = false; 2345 break; 2346 } 2347 list_add(&page->lru, &surplus_list); 2348 cond_resched(); 2349 } 2350 allocated += i; 2351 2352 /* 2353 * After retaking hugetlb_lock, we need to recalculate 'needed' 2354 * because either resv_huge_pages or free_huge_pages may have changed. 2355 */ 2356 spin_lock_irq(&hugetlb_lock); 2357 needed = (h->resv_huge_pages + delta) - 2358 (h->free_huge_pages + allocated); 2359 if (needed > 0) { 2360 if (alloc_ok) 2361 goto retry; 2362 /* 2363 * We were not able to allocate enough pages to 2364 * satisfy the entire reservation so we free what 2365 * we've allocated so far. 2366 */ 2367 goto free; 2368 } 2369 /* 2370 * The surplus_list now contains _at_least_ the number of extra pages 2371 * needed to accommodate the reservation. Add the appropriate number 2372 * of pages to the hugetlb pool and free the extras back to the buddy 2373 * allocator. Commit the entire reservation here to prevent another 2374 * process from stealing the pages as they are added to the pool but 2375 * before they are reserved. 2376 */ 2377 needed += allocated; 2378 h->resv_huge_pages += delta; 2379 ret = 0; 2380 2381 /* Free the needed pages to the hugetlb pool */ 2382 list_for_each_entry_safe(page, tmp, &surplus_list, lru) { 2383 if ((--needed) < 0) 2384 break; 2385 /* Add the page to the hugetlb allocator */ 2386 enqueue_huge_page(h, page); 2387 } 2388 free: 2389 spin_unlock_irq(&hugetlb_lock); 2390 2391 /* 2392 * Free unnecessary surplus pages to the buddy allocator. 2393 * Pages have no ref count, call free_huge_page directly. 2394 */ 2395 list_for_each_entry_safe(page, tmp, &surplus_list, lru) 2396 free_huge_page(page); 2397 spin_lock_irq(&hugetlb_lock); 2398 2399 return ret; 2400 } 2401 2402 /* 2403 * This routine has two main purposes: 2404 * 1) Decrement the reservation count (resv_huge_pages) by the value passed 2405 * in unused_resv_pages. This corresponds to the prior adjustments made 2406 * to the associated reservation map. 2407 * 2) Free any unused surplus pages that may have been allocated to satisfy 2408 * the reservation. As many as unused_resv_pages may be freed. 2409 */ 2410 static void return_unused_surplus_pages(struct hstate *h, 2411 unsigned long unused_resv_pages) 2412 { 2413 unsigned long nr_pages; 2414 struct page *page; 2415 LIST_HEAD(page_list); 2416 2417 lockdep_assert_held(&hugetlb_lock); 2418 /* Uncommit the reservation */ 2419 h->resv_huge_pages -= unused_resv_pages; 2420 2421 /* Cannot return gigantic pages currently */ 2422 if (hstate_is_gigantic(h)) 2423 goto out; 2424 2425 /* 2426 * Part (or even all) of the reservation could have been backed 2427 * by pre-allocated pages. Only free surplus pages. 2428 */ 2429 nr_pages = min(unused_resv_pages, h->surplus_huge_pages); 2430 2431 /* 2432 * We want to release as many surplus pages as possible, spread 2433 * evenly across all nodes with memory. Iterate across these nodes 2434 * until we can no longer free unreserved surplus pages. This occurs 2435 * when the nodes with surplus pages have no free pages. 2436 * remove_pool_huge_page() will balance the freed pages across the 2437 * on-line nodes with memory and will handle the hstate accounting. 2438 */ 2439 while (nr_pages--) { 2440 page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1); 2441 if (!page) 2442 goto out; 2443 2444 list_add(&page->lru, &page_list); 2445 } 2446 2447 out: 2448 spin_unlock_irq(&hugetlb_lock); 2449 update_and_free_pages_bulk(h, &page_list); 2450 spin_lock_irq(&hugetlb_lock); 2451 } 2452 2453 2454 /* 2455 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation 2456 * are used by the huge page allocation routines to manage reservations. 2457 * 2458 * vma_needs_reservation is called to determine if the huge page at addr 2459 * within the vma has an associated reservation. If a reservation is 2460 * needed, the value 1 is returned. The caller is then responsible for 2461 * managing the global reservation and subpool usage counts. After 2462 * the huge page has been allocated, vma_commit_reservation is called 2463 * to add the page to the reservation map. If the page allocation fails, 2464 * the reservation must be ended instead of committed. vma_end_reservation 2465 * is called in such cases. 2466 * 2467 * In the normal case, vma_commit_reservation returns the same value 2468 * as the preceding vma_needs_reservation call. The only time this 2469 * is not the case is if a reserve map was changed between calls. It 2470 * is the responsibility of the caller to notice the difference and 2471 * take appropriate action. 2472 * 2473 * vma_add_reservation is used in error paths where a reservation must 2474 * be restored when a newly allocated huge page must be freed. It is 2475 * to be called after calling vma_needs_reservation to determine if a 2476 * reservation exists. 2477 * 2478 * vma_del_reservation is used in error paths where an entry in the reserve 2479 * map was created during huge page allocation and must be removed. It is to 2480 * be called after calling vma_needs_reservation to determine if a reservation 2481 * exists. 2482 */ 2483 enum vma_resv_mode { 2484 VMA_NEEDS_RESV, 2485 VMA_COMMIT_RESV, 2486 VMA_END_RESV, 2487 VMA_ADD_RESV, 2488 VMA_DEL_RESV, 2489 }; 2490 static long __vma_reservation_common(struct hstate *h, 2491 struct vm_area_struct *vma, unsigned long addr, 2492 enum vma_resv_mode mode) 2493 { 2494 struct resv_map *resv; 2495 pgoff_t idx; 2496 long ret; 2497 long dummy_out_regions_needed; 2498 2499 resv = vma_resv_map(vma); 2500 if (!resv) 2501 return 1; 2502 2503 idx = vma_hugecache_offset(h, vma, addr); 2504 switch (mode) { 2505 case VMA_NEEDS_RESV: 2506 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed); 2507 /* We assume that vma_reservation_* routines always operate on 2508 * 1 page, and that adding to resv map a 1 page entry can only 2509 * ever require 1 region. 2510 */ 2511 VM_BUG_ON(dummy_out_regions_needed != 1); 2512 break; 2513 case VMA_COMMIT_RESV: 2514 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2515 /* region_add calls of range 1 should never fail. */ 2516 VM_BUG_ON(ret < 0); 2517 break; 2518 case VMA_END_RESV: 2519 region_abort(resv, idx, idx + 1, 1); 2520 ret = 0; 2521 break; 2522 case VMA_ADD_RESV: 2523 if (vma->vm_flags & VM_MAYSHARE) { 2524 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2525 /* region_add calls of range 1 should never fail. */ 2526 VM_BUG_ON(ret < 0); 2527 } else { 2528 region_abort(resv, idx, idx + 1, 1); 2529 ret = region_del(resv, idx, idx + 1); 2530 } 2531 break; 2532 case VMA_DEL_RESV: 2533 if (vma->vm_flags & VM_MAYSHARE) { 2534 region_abort(resv, idx, idx + 1, 1); 2535 ret = region_del(resv, idx, idx + 1); 2536 } else { 2537 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2538 /* region_add calls of range 1 should never fail. */ 2539 VM_BUG_ON(ret < 0); 2540 } 2541 break; 2542 default: 2543 BUG(); 2544 } 2545 2546 if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV) 2547 return ret; 2548 /* 2549 * We know private mapping must have HPAGE_RESV_OWNER set. 2550 * 2551 * In most cases, reserves always exist for private mappings. 2552 * However, a file associated with mapping could have been 2553 * hole punched or truncated after reserves were consumed. 2554 * As subsequent fault on such a range will not use reserves. 2555 * Subtle - The reserve map for private mappings has the 2556 * opposite meaning than that of shared mappings. If NO 2557 * entry is in the reserve map, it means a reservation exists. 2558 * If an entry exists in the reserve map, it means the 2559 * reservation has already been consumed. As a result, the 2560 * return value of this routine is the opposite of the 2561 * value returned from reserve map manipulation routines above. 2562 */ 2563 if (ret > 0) 2564 return 0; 2565 if (ret == 0) 2566 return 1; 2567 return ret; 2568 } 2569 2570 static long vma_needs_reservation(struct hstate *h, 2571 struct vm_area_struct *vma, unsigned long addr) 2572 { 2573 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV); 2574 } 2575 2576 static long vma_commit_reservation(struct hstate *h, 2577 struct vm_area_struct *vma, unsigned long addr) 2578 { 2579 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV); 2580 } 2581 2582 static void vma_end_reservation(struct hstate *h, 2583 struct vm_area_struct *vma, unsigned long addr) 2584 { 2585 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV); 2586 } 2587 2588 static long vma_add_reservation(struct hstate *h, 2589 struct vm_area_struct *vma, unsigned long addr) 2590 { 2591 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV); 2592 } 2593 2594 static long vma_del_reservation(struct hstate *h, 2595 struct vm_area_struct *vma, unsigned long addr) 2596 { 2597 return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV); 2598 } 2599 2600 /* 2601 * This routine is called to restore reservation information on error paths. 2602 * It should ONLY be called for pages allocated via alloc_huge_page(), and 2603 * the hugetlb mutex should remain held when calling this routine. 2604 * 2605 * It handles two specific cases: 2606 * 1) A reservation was in place and the page consumed the reservation. 2607 * HPageRestoreReserve is set in the page. 2608 * 2) No reservation was in place for the page, so HPageRestoreReserve is 2609 * not set. However, alloc_huge_page always updates the reserve map. 2610 * 2611 * In case 1, free_huge_page later in the error path will increment the 2612 * global reserve count. But, free_huge_page does not have enough context 2613 * to adjust the reservation map. This case deals primarily with private 2614 * mappings. Adjust the reserve map here to be consistent with global 2615 * reserve count adjustments to be made by free_huge_page. Make sure the 2616 * reserve map indicates there is a reservation present. 2617 * 2618 * In case 2, simply undo reserve map modifications done by alloc_huge_page. 2619 */ 2620 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma, 2621 unsigned long address, struct page *page) 2622 { 2623 long rc = vma_needs_reservation(h, vma, address); 2624 2625 if (HPageRestoreReserve(page)) { 2626 if (unlikely(rc < 0)) 2627 /* 2628 * Rare out of memory condition in reserve map 2629 * manipulation. Clear HPageRestoreReserve so that 2630 * global reserve count will not be incremented 2631 * by free_huge_page. This will make it appear 2632 * as though the reservation for this page was 2633 * consumed. This may prevent the task from 2634 * faulting in the page at a later time. This 2635 * is better than inconsistent global huge page 2636 * accounting of reserve counts. 2637 */ 2638 ClearHPageRestoreReserve(page); 2639 else if (rc) 2640 (void)vma_add_reservation(h, vma, address); 2641 else 2642 vma_end_reservation(h, vma, address); 2643 } else { 2644 if (!rc) { 2645 /* 2646 * This indicates there is an entry in the reserve map 2647 * not added by alloc_huge_page. We know it was added 2648 * before the alloc_huge_page call, otherwise 2649 * HPageRestoreReserve would be set on the page. 2650 * Remove the entry so that a subsequent allocation 2651 * does not consume a reservation. 2652 */ 2653 rc = vma_del_reservation(h, vma, address); 2654 if (rc < 0) 2655 /* 2656 * VERY rare out of memory condition. Since 2657 * we can not delete the entry, set 2658 * HPageRestoreReserve so that the reserve 2659 * count will be incremented when the page 2660 * is freed. This reserve will be consumed 2661 * on a subsequent allocation. 2662 */ 2663 SetHPageRestoreReserve(page); 2664 } else if (rc < 0) { 2665 /* 2666 * Rare out of memory condition from 2667 * vma_needs_reservation call. Memory allocation is 2668 * only attempted if a new entry is needed. Therefore, 2669 * this implies there is not an entry in the 2670 * reserve map. 2671 * 2672 * For shared mappings, no entry in the map indicates 2673 * no reservation. We are done. 2674 */ 2675 if (!(vma->vm_flags & VM_MAYSHARE)) 2676 /* 2677 * For private mappings, no entry indicates 2678 * a reservation is present. Since we can 2679 * not add an entry, set SetHPageRestoreReserve 2680 * on the page so reserve count will be 2681 * incremented when freed. This reserve will 2682 * be consumed on a subsequent allocation. 2683 */ 2684 SetHPageRestoreReserve(page); 2685 } else 2686 /* 2687 * No reservation present, do nothing 2688 */ 2689 vma_end_reservation(h, vma, address); 2690 } 2691 } 2692 2693 /* 2694 * alloc_and_dissolve_huge_page - Allocate a new page and dissolve the old one 2695 * @h: struct hstate old page belongs to 2696 * @old_page: Old page to dissolve 2697 * @list: List to isolate the page in case we need to 2698 * Returns 0 on success, otherwise negated error. 2699 */ 2700 static int alloc_and_dissolve_huge_page(struct hstate *h, struct page *old_page, 2701 struct list_head *list) 2702 { 2703 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 2704 int nid = page_to_nid(old_page); 2705 bool alloc_retry = false; 2706 struct page *new_page; 2707 int ret = 0; 2708 2709 /* 2710 * Before dissolving the page, we need to allocate a new one for the 2711 * pool to remain stable. Here, we allocate the page and 'prep' it 2712 * by doing everything but actually updating counters and adding to 2713 * the pool. This simplifies and let us do most of the processing 2714 * under the lock. 2715 */ 2716 alloc_retry: 2717 new_page = alloc_buddy_huge_page(h, gfp_mask, nid, NULL, NULL); 2718 if (!new_page) 2719 return -ENOMEM; 2720 /* 2721 * If all goes well, this page will be directly added to the free 2722 * list in the pool. For this the ref count needs to be zero. 2723 * Attempt to drop now, and retry once if needed. It is VERY 2724 * unlikely there is another ref on the page. 2725 * 2726 * If someone else has a reference to the page, it will be freed 2727 * when they drop their ref. Abuse temporary page flag to accomplish 2728 * this. Retry once if there is an inflated ref count. 2729 */ 2730 SetHPageTemporary(new_page); 2731 if (!put_page_testzero(new_page)) { 2732 if (alloc_retry) 2733 return -EBUSY; 2734 2735 alloc_retry = true; 2736 goto alloc_retry; 2737 } 2738 ClearHPageTemporary(new_page); 2739 2740 __prep_new_huge_page(h, new_page); 2741 2742 retry: 2743 spin_lock_irq(&hugetlb_lock); 2744 if (!PageHuge(old_page)) { 2745 /* 2746 * Freed from under us. Drop new_page too. 2747 */ 2748 goto free_new; 2749 } else if (page_count(old_page)) { 2750 /* 2751 * Someone has grabbed the page, try to isolate it here. 2752 * Fail with -EBUSY if not possible. 2753 */ 2754 spin_unlock_irq(&hugetlb_lock); 2755 if (!isolate_huge_page(old_page, list)) 2756 ret = -EBUSY; 2757 spin_lock_irq(&hugetlb_lock); 2758 goto free_new; 2759 } else if (!HPageFreed(old_page)) { 2760 /* 2761 * Page's refcount is 0 but it has not been enqueued in the 2762 * freelist yet. Race window is small, so we can succeed here if 2763 * we retry. 2764 */ 2765 spin_unlock_irq(&hugetlb_lock); 2766 cond_resched(); 2767 goto retry; 2768 } else { 2769 /* 2770 * Ok, old_page is still a genuine free hugepage. Remove it from 2771 * the freelist and decrease the counters. These will be 2772 * incremented again when calling __prep_account_new_huge_page() 2773 * and enqueue_huge_page() for new_page. The counters will remain 2774 * stable since this happens under the lock. 2775 */ 2776 remove_hugetlb_page(h, old_page, false); 2777 2778 /* 2779 * Ref count on new page is already zero as it was dropped 2780 * earlier. It can be directly added to the pool free list. 2781 */ 2782 __prep_account_new_huge_page(h, nid); 2783 enqueue_huge_page(h, new_page); 2784 2785 /* 2786 * Pages have been replaced, we can safely free the old one. 2787 */ 2788 spin_unlock_irq(&hugetlb_lock); 2789 update_and_free_page(h, old_page, false); 2790 } 2791 2792 return ret; 2793 2794 free_new: 2795 spin_unlock_irq(&hugetlb_lock); 2796 /* Page has a zero ref count, but needs a ref to be freed */ 2797 set_page_refcounted(new_page); 2798 update_and_free_page(h, new_page, false); 2799 2800 return ret; 2801 } 2802 2803 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list) 2804 { 2805 struct hstate *h; 2806 struct page *head; 2807 int ret = -EBUSY; 2808 2809 /* 2810 * The page might have been dissolved from under our feet, so make sure 2811 * to carefully check the state under the lock. 2812 * Return success when racing as if we dissolved the page ourselves. 2813 */ 2814 spin_lock_irq(&hugetlb_lock); 2815 if (PageHuge(page)) { 2816 head = compound_head(page); 2817 h = page_hstate(head); 2818 } else { 2819 spin_unlock_irq(&hugetlb_lock); 2820 return 0; 2821 } 2822 spin_unlock_irq(&hugetlb_lock); 2823 2824 /* 2825 * Fence off gigantic pages as there is a cyclic dependency between 2826 * alloc_contig_range and them. Return -ENOMEM as this has the effect 2827 * of bailing out right away without further retrying. 2828 */ 2829 if (hstate_is_gigantic(h)) 2830 return -ENOMEM; 2831 2832 if (page_count(head) && isolate_huge_page(head, list)) 2833 ret = 0; 2834 else if (!page_count(head)) 2835 ret = alloc_and_dissolve_huge_page(h, head, list); 2836 2837 return ret; 2838 } 2839 2840 struct page *alloc_huge_page(struct vm_area_struct *vma, 2841 unsigned long addr, int avoid_reserve) 2842 { 2843 struct hugepage_subpool *spool = subpool_vma(vma); 2844 struct hstate *h = hstate_vma(vma); 2845 struct page *page; 2846 long map_chg, map_commit; 2847 long gbl_chg; 2848 int ret, idx; 2849 struct hugetlb_cgroup *h_cg; 2850 bool deferred_reserve; 2851 2852 idx = hstate_index(h); 2853 /* 2854 * Examine the region/reserve map to determine if the process 2855 * has a reservation for the page to be allocated. A return 2856 * code of zero indicates a reservation exists (no change). 2857 */ 2858 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr); 2859 if (map_chg < 0) 2860 return ERR_PTR(-ENOMEM); 2861 2862 /* 2863 * Processes that did not create the mapping will have no 2864 * reserves as indicated by the region/reserve map. Check 2865 * that the allocation will not exceed the subpool limit. 2866 * Allocations for MAP_NORESERVE mappings also need to be 2867 * checked against any subpool limit. 2868 */ 2869 if (map_chg || avoid_reserve) { 2870 gbl_chg = hugepage_subpool_get_pages(spool, 1); 2871 if (gbl_chg < 0) { 2872 vma_end_reservation(h, vma, addr); 2873 return ERR_PTR(-ENOSPC); 2874 } 2875 2876 /* 2877 * Even though there was no reservation in the region/reserve 2878 * map, there could be reservations associated with the 2879 * subpool that can be used. This would be indicated if the 2880 * return value of hugepage_subpool_get_pages() is zero. 2881 * However, if avoid_reserve is specified we still avoid even 2882 * the subpool reservations. 2883 */ 2884 if (avoid_reserve) 2885 gbl_chg = 1; 2886 } 2887 2888 /* If this allocation is not consuming a reservation, charge it now. 2889 */ 2890 deferred_reserve = map_chg || avoid_reserve; 2891 if (deferred_reserve) { 2892 ret = hugetlb_cgroup_charge_cgroup_rsvd( 2893 idx, pages_per_huge_page(h), &h_cg); 2894 if (ret) 2895 goto out_subpool_put; 2896 } 2897 2898 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg); 2899 if (ret) 2900 goto out_uncharge_cgroup_reservation; 2901 2902 spin_lock_irq(&hugetlb_lock); 2903 /* 2904 * glb_chg is passed to indicate whether or not a page must be taken 2905 * from the global free pool (global change). gbl_chg == 0 indicates 2906 * a reservation exists for the allocation. 2907 */ 2908 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg); 2909 if (!page) { 2910 spin_unlock_irq(&hugetlb_lock); 2911 page = alloc_buddy_huge_page_with_mpol(h, vma, addr); 2912 if (!page) 2913 goto out_uncharge_cgroup; 2914 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) { 2915 SetHPageRestoreReserve(page); 2916 h->resv_huge_pages--; 2917 } 2918 spin_lock_irq(&hugetlb_lock); 2919 list_add(&page->lru, &h->hugepage_activelist); 2920 /* Fall through */ 2921 } 2922 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page); 2923 /* If allocation is not consuming a reservation, also store the 2924 * hugetlb_cgroup pointer on the page. 2925 */ 2926 if (deferred_reserve) { 2927 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h), 2928 h_cg, page); 2929 } 2930 2931 spin_unlock_irq(&hugetlb_lock); 2932 2933 hugetlb_set_page_subpool(page, spool); 2934 2935 map_commit = vma_commit_reservation(h, vma, addr); 2936 if (unlikely(map_chg > map_commit)) { 2937 /* 2938 * The page was added to the reservation map between 2939 * vma_needs_reservation and vma_commit_reservation. 2940 * This indicates a race with hugetlb_reserve_pages. 2941 * Adjust for the subpool count incremented above AND 2942 * in hugetlb_reserve_pages for the same page. Also, 2943 * the reservation count added in hugetlb_reserve_pages 2944 * no longer applies. 2945 */ 2946 long rsv_adjust; 2947 2948 rsv_adjust = hugepage_subpool_put_pages(spool, 1); 2949 hugetlb_acct_memory(h, -rsv_adjust); 2950 if (deferred_reserve) 2951 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h), 2952 pages_per_huge_page(h), page); 2953 } 2954 return page; 2955 2956 out_uncharge_cgroup: 2957 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg); 2958 out_uncharge_cgroup_reservation: 2959 if (deferred_reserve) 2960 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h), 2961 h_cg); 2962 out_subpool_put: 2963 if (map_chg || avoid_reserve) 2964 hugepage_subpool_put_pages(spool, 1); 2965 vma_end_reservation(h, vma, addr); 2966 return ERR_PTR(-ENOSPC); 2967 } 2968 2969 int alloc_bootmem_huge_page(struct hstate *h, int nid) 2970 __attribute__ ((weak, alias("__alloc_bootmem_huge_page"))); 2971 int __alloc_bootmem_huge_page(struct hstate *h, int nid) 2972 { 2973 struct huge_bootmem_page *m = NULL; /* initialize for clang */ 2974 int nr_nodes, node; 2975 2976 if (nid != NUMA_NO_NODE && nid >= nr_online_nodes) 2977 return 0; 2978 /* do node specific alloc */ 2979 if (nid != NUMA_NO_NODE) { 2980 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h), 2981 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid); 2982 if (!m) 2983 return 0; 2984 goto found; 2985 } 2986 /* allocate from next node when distributing huge pages */ 2987 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) { 2988 m = memblock_alloc_try_nid_raw( 2989 huge_page_size(h), huge_page_size(h), 2990 0, MEMBLOCK_ALLOC_ACCESSIBLE, node); 2991 /* 2992 * Use the beginning of the huge page to store the 2993 * huge_bootmem_page struct (until gather_bootmem 2994 * puts them into the mem_map). 2995 */ 2996 if (!m) 2997 return 0; 2998 goto found; 2999 } 3000 3001 found: 3002 /* Put them into a private list first because mem_map is not up yet */ 3003 INIT_LIST_HEAD(&m->list); 3004 list_add(&m->list, &huge_boot_pages); 3005 m->hstate = h; 3006 return 1; 3007 } 3008 3009 /* 3010 * Put bootmem huge pages into the standard lists after mem_map is up. 3011 * Note: This only applies to gigantic (order > MAX_ORDER) pages. 3012 */ 3013 static void __init gather_bootmem_prealloc(void) 3014 { 3015 struct huge_bootmem_page *m; 3016 3017 list_for_each_entry(m, &huge_boot_pages, list) { 3018 struct page *page = virt_to_page(m); 3019 struct hstate *h = m->hstate; 3020 3021 VM_BUG_ON(!hstate_is_gigantic(h)); 3022 WARN_ON(page_count(page) != 1); 3023 if (prep_compound_gigantic_page(page, huge_page_order(h))) { 3024 WARN_ON(PageReserved(page)); 3025 prep_new_huge_page(h, page, page_to_nid(page)); 3026 put_page(page); /* add to the hugepage allocator */ 3027 } else { 3028 /* VERY unlikely inflated ref count on a tail page */ 3029 free_gigantic_page(page, huge_page_order(h)); 3030 } 3031 3032 /* 3033 * We need to restore the 'stolen' pages to totalram_pages 3034 * in order to fix confusing memory reports from free(1) and 3035 * other side-effects, like CommitLimit going negative. 3036 */ 3037 adjust_managed_page_count(page, pages_per_huge_page(h)); 3038 cond_resched(); 3039 } 3040 } 3041 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid) 3042 { 3043 unsigned long i; 3044 char buf[32]; 3045 3046 for (i = 0; i < h->max_huge_pages_node[nid]; ++i) { 3047 if (hstate_is_gigantic(h)) { 3048 if (!alloc_bootmem_huge_page(h, nid)) 3049 break; 3050 } else { 3051 struct page *page; 3052 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 3053 3054 page = alloc_fresh_huge_page(h, gfp_mask, nid, 3055 &node_states[N_MEMORY], NULL); 3056 if (!page) 3057 break; 3058 put_page(page); /* free it into the hugepage allocator */ 3059 } 3060 cond_resched(); 3061 } 3062 if (i == h->max_huge_pages_node[nid]) 3063 return; 3064 3065 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3066 pr_warn("HugeTLB: allocating %u of page size %s failed node%d. Only allocated %lu hugepages.\n", 3067 h->max_huge_pages_node[nid], buf, nid, i); 3068 h->max_huge_pages -= (h->max_huge_pages_node[nid] - i); 3069 h->max_huge_pages_node[nid] = i; 3070 } 3071 3072 static void __init hugetlb_hstate_alloc_pages(struct hstate *h) 3073 { 3074 unsigned long i; 3075 nodemask_t *node_alloc_noretry; 3076 bool node_specific_alloc = false; 3077 3078 /* skip gigantic hugepages allocation if hugetlb_cma enabled */ 3079 if (hstate_is_gigantic(h) && hugetlb_cma_size) { 3080 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n"); 3081 return; 3082 } 3083 3084 /* do node specific alloc */ 3085 for (i = 0; i < nr_online_nodes; i++) { 3086 if (h->max_huge_pages_node[i] > 0) { 3087 hugetlb_hstate_alloc_pages_onenode(h, i); 3088 node_specific_alloc = true; 3089 } 3090 } 3091 3092 if (node_specific_alloc) 3093 return; 3094 3095 /* below will do all node balanced alloc */ 3096 if (!hstate_is_gigantic(h)) { 3097 /* 3098 * Bit mask controlling how hard we retry per-node allocations. 3099 * Ignore errors as lower level routines can deal with 3100 * node_alloc_noretry == NULL. If this kmalloc fails at boot 3101 * time, we are likely in bigger trouble. 3102 */ 3103 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry), 3104 GFP_KERNEL); 3105 } else { 3106 /* allocations done at boot time */ 3107 node_alloc_noretry = NULL; 3108 } 3109 3110 /* bit mask controlling how hard we retry per-node allocations */ 3111 if (node_alloc_noretry) 3112 nodes_clear(*node_alloc_noretry); 3113 3114 for (i = 0; i < h->max_huge_pages; ++i) { 3115 if (hstate_is_gigantic(h)) { 3116 if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE)) 3117 break; 3118 } else if (!alloc_pool_huge_page(h, 3119 &node_states[N_MEMORY], 3120 node_alloc_noretry)) 3121 break; 3122 cond_resched(); 3123 } 3124 if (i < h->max_huge_pages) { 3125 char buf[32]; 3126 3127 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3128 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n", 3129 h->max_huge_pages, buf, i); 3130 h->max_huge_pages = i; 3131 } 3132 kfree(node_alloc_noretry); 3133 } 3134 3135 static void __init hugetlb_init_hstates(void) 3136 { 3137 struct hstate *h, *h2; 3138 3139 for_each_hstate(h) { 3140 if (minimum_order > huge_page_order(h)) 3141 minimum_order = huge_page_order(h); 3142 3143 /* oversize hugepages were init'ed in early boot */ 3144 if (!hstate_is_gigantic(h)) 3145 hugetlb_hstate_alloc_pages(h); 3146 3147 /* 3148 * Set demote order for each hstate. Note that 3149 * h->demote_order is initially 0. 3150 * - We can not demote gigantic pages if runtime freeing 3151 * is not supported, so skip this. 3152 * - If CMA allocation is possible, we can not demote 3153 * HUGETLB_PAGE_ORDER or smaller size pages. 3154 */ 3155 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 3156 continue; 3157 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER) 3158 continue; 3159 for_each_hstate(h2) { 3160 if (h2 == h) 3161 continue; 3162 if (h2->order < h->order && 3163 h2->order > h->demote_order) 3164 h->demote_order = h2->order; 3165 } 3166 } 3167 VM_BUG_ON(minimum_order == UINT_MAX); 3168 } 3169 3170 static void __init report_hugepages(void) 3171 { 3172 struct hstate *h; 3173 3174 for_each_hstate(h) { 3175 char buf[32]; 3176 3177 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3178 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n", 3179 buf, h->free_huge_pages); 3180 } 3181 } 3182 3183 #ifdef CONFIG_HIGHMEM 3184 static void try_to_free_low(struct hstate *h, unsigned long count, 3185 nodemask_t *nodes_allowed) 3186 { 3187 int i; 3188 LIST_HEAD(page_list); 3189 3190 lockdep_assert_held(&hugetlb_lock); 3191 if (hstate_is_gigantic(h)) 3192 return; 3193 3194 /* 3195 * Collect pages to be freed on a list, and free after dropping lock 3196 */ 3197 for_each_node_mask(i, *nodes_allowed) { 3198 struct page *page, *next; 3199 struct list_head *freel = &h->hugepage_freelists[i]; 3200 list_for_each_entry_safe(page, next, freel, lru) { 3201 if (count >= h->nr_huge_pages) 3202 goto out; 3203 if (PageHighMem(page)) 3204 continue; 3205 remove_hugetlb_page(h, page, false); 3206 list_add(&page->lru, &page_list); 3207 } 3208 } 3209 3210 out: 3211 spin_unlock_irq(&hugetlb_lock); 3212 update_and_free_pages_bulk(h, &page_list); 3213 spin_lock_irq(&hugetlb_lock); 3214 } 3215 #else 3216 static inline void try_to_free_low(struct hstate *h, unsigned long count, 3217 nodemask_t *nodes_allowed) 3218 { 3219 } 3220 #endif 3221 3222 /* 3223 * Increment or decrement surplus_huge_pages. Keep node-specific counters 3224 * balanced by operating on them in a round-robin fashion. 3225 * Returns 1 if an adjustment was made. 3226 */ 3227 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed, 3228 int delta) 3229 { 3230 int nr_nodes, node; 3231 3232 lockdep_assert_held(&hugetlb_lock); 3233 VM_BUG_ON(delta != -1 && delta != 1); 3234 3235 if (delta < 0) { 3236 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 3237 if (h->surplus_huge_pages_node[node]) 3238 goto found; 3239 } 3240 } else { 3241 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 3242 if (h->surplus_huge_pages_node[node] < 3243 h->nr_huge_pages_node[node]) 3244 goto found; 3245 } 3246 } 3247 return 0; 3248 3249 found: 3250 h->surplus_huge_pages += delta; 3251 h->surplus_huge_pages_node[node] += delta; 3252 return 1; 3253 } 3254 3255 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) 3256 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid, 3257 nodemask_t *nodes_allowed) 3258 { 3259 unsigned long min_count, ret; 3260 struct page *page; 3261 LIST_HEAD(page_list); 3262 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL); 3263 3264 /* 3265 * Bit mask controlling how hard we retry per-node allocations. 3266 * If we can not allocate the bit mask, do not attempt to allocate 3267 * the requested huge pages. 3268 */ 3269 if (node_alloc_noretry) 3270 nodes_clear(*node_alloc_noretry); 3271 else 3272 return -ENOMEM; 3273 3274 /* 3275 * resize_lock mutex prevents concurrent adjustments to number of 3276 * pages in hstate via the proc/sysfs interfaces. 3277 */ 3278 mutex_lock(&h->resize_lock); 3279 flush_free_hpage_work(h); 3280 spin_lock_irq(&hugetlb_lock); 3281 3282 /* 3283 * Check for a node specific request. 3284 * Changing node specific huge page count may require a corresponding 3285 * change to the global count. In any case, the passed node mask 3286 * (nodes_allowed) will restrict alloc/free to the specified node. 3287 */ 3288 if (nid != NUMA_NO_NODE) { 3289 unsigned long old_count = count; 3290 3291 count += h->nr_huge_pages - h->nr_huge_pages_node[nid]; 3292 /* 3293 * User may have specified a large count value which caused the 3294 * above calculation to overflow. In this case, they wanted 3295 * to allocate as many huge pages as possible. Set count to 3296 * largest possible value to align with their intention. 3297 */ 3298 if (count < old_count) 3299 count = ULONG_MAX; 3300 } 3301 3302 /* 3303 * Gigantic pages runtime allocation depend on the capability for large 3304 * page range allocation. 3305 * If the system does not provide this feature, return an error when 3306 * the user tries to allocate gigantic pages but let the user free the 3307 * boottime allocated gigantic pages. 3308 */ 3309 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) { 3310 if (count > persistent_huge_pages(h)) { 3311 spin_unlock_irq(&hugetlb_lock); 3312 mutex_unlock(&h->resize_lock); 3313 NODEMASK_FREE(node_alloc_noretry); 3314 return -EINVAL; 3315 } 3316 /* Fall through to decrease pool */ 3317 } 3318 3319 /* 3320 * Increase the pool size 3321 * First take pages out of surplus state. Then make up the 3322 * remaining difference by allocating fresh huge pages. 3323 * 3324 * We might race with alloc_surplus_huge_page() here and be unable 3325 * to convert a surplus huge page to a normal huge page. That is 3326 * not critical, though, it just means the overall size of the 3327 * pool might be one hugepage larger than it needs to be, but 3328 * within all the constraints specified by the sysctls. 3329 */ 3330 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { 3331 if (!adjust_pool_surplus(h, nodes_allowed, -1)) 3332 break; 3333 } 3334 3335 while (count > persistent_huge_pages(h)) { 3336 /* 3337 * If this allocation races such that we no longer need the 3338 * page, free_huge_page will handle it by freeing the page 3339 * and reducing the surplus. 3340 */ 3341 spin_unlock_irq(&hugetlb_lock); 3342 3343 /* yield cpu to avoid soft lockup */ 3344 cond_resched(); 3345 3346 ret = alloc_pool_huge_page(h, nodes_allowed, 3347 node_alloc_noretry); 3348 spin_lock_irq(&hugetlb_lock); 3349 if (!ret) 3350 goto out; 3351 3352 /* Bail for signals. Probably ctrl-c from user */ 3353 if (signal_pending(current)) 3354 goto out; 3355 } 3356 3357 /* 3358 * Decrease the pool size 3359 * First return free pages to the buddy allocator (being careful 3360 * to keep enough around to satisfy reservations). Then place 3361 * pages into surplus state as needed so the pool will shrink 3362 * to the desired size as pages become free. 3363 * 3364 * By placing pages into the surplus state independent of the 3365 * overcommit value, we are allowing the surplus pool size to 3366 * exceed overcommit. There are few sane options here. Since 3367 * alloc_surplus_huge_page() is checking the global counter, 3368 * though, we'll note that we're not allowed to exceed surplus 3369 * and won't grow the pool anywhere else. Not until one of the 3370 * sysctls are changed, or the surplus pages go out of use. 3371 */ 3372 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages; 3373 min_count = max(count, min_count); 3374 try_to_free_low(h, min_count, nodes_allowed); 3375 3376 /* 3377 * Collect pages to be removed on list without dropping lock 3378 */ 3379 while (min_count < persistent_huge_pages(h)) { 3380 page = remove_pool_huge_page(h, nodes_allowed, 0); 3381 if (!page) 3382 break; 3383 3384 list_add(&page->lru, &page_list); 3385 } 3386 /* free the pages after dropping lock */ 3387 spin_unlock_irq(&hugetlb_lock); 3388 update_and_free_pages_bulk(h, &page_list); 3389 flush_free_hpage_work(h); 3390 spin_lock_irq(&hugetlb_lock); 3391 3392 while (count < persistent_huge_pages(h)) { 3393 if (!adjust_pool_surplus(h, nodes_allowed, 1)) 3394 break; 3395 } 3396 out: 3397 h->max_huge_pages = persistent_huge_pages(h); 3398 spin_unlock_irq(&hugetlb_lock); 3399 mutex_unlock(&h->resize_lock); 3400 3401 NODEMASK_FREE(node_alloc_noretry); 3402 3403 return 0; 3404 } 3405 3406 static int demote_free_huge_page(struct hstate *h, struct page *page) 3407 { 3408 int i, nid = page_to_nid(page); 3409 struct hstate *target_hstate; 3410 int rc = 0; 3411 3412 target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order); 3413 3414 remove_hugetlb_page_for_demote(h, page, false); 3415 spin_unlock_irq(&hugetlb_lock); 3416 3417 rc = alloc_huge_page_vmemmap(h, page); 3418 if (rc) { 3419 /* Allocation of vmemmmap failed, we can not demote page */ 3420 spin_lock_irq(&hugetlb_lock); 3421 set_page_refcounted(page); 3422 add_hugetlb_page(h, page, false); 3423 return rc; 3424 } 3425 3426 /* 3427 * Use destroy_compound_hugetlb_page_for_demote for all huge page 3428 * sizes as it will not ref count pages. 3429 */ 3430 destroy_compound_hugetlb_page_for_demote(page, huge_page_order(h)); 3431 3432 /* 3433 * Taking target hstate mutex synchronizes with set_max_huge_pages. 3434 * Without the mutex, pages added to target hstate could be marked 3435 * as surplus. 3436 * 3437 * Note that we already hold h->resize_lock. To prevent deadlock, 3438 * use the convention of always taking larger size hstate mutex first. 3439 */ 3440 mutex_lock(&target_hstate->resize_lock); 3441 for (i = 0; i < pages_per_huge_page(h); 3442 i += pages_per_huge_page(target_hstate)) { 3443 if (hstate_is_gigantic(target_hstate)) 3444 prep_compound_gigantic_page_for_demote(page + i, 3445 target_hstate->order); 3446 else 3447 prep_compound_page(page + i, target_hstate->order); 3448 set_page_private(page + i, 0); 3449 set_page_refcounted(page + i); 3450 prep_new_huge_page(target_hstate, page + i, nid); 3451 put_page(page + i); 3452 } 3453 mutex_unlock(&target_hstate->resize_lock); 3454 3455 spin_lock_irq(&hugetlb_lock); 3456 3457 /* 3458 * Not absolutely necessary, but for consistency update max_huge_pages 3459 * based on pool changes for the demoted page. 3460 */ 3461 h->max_huge_pages--; 3462 target_hstate->max_huge_pages += pages_per_huge_page(h); 3463 3464 return rc; 3465 } 3466 3467 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed) 3468 __must_hold(&hugetlb_lock) 3469 { 3470 int nr_nodes, node; 3471 struct page *page; 3472 int rc = 0; 3473 3474 lockdep_assert_held(&hugetlb_lock); 3475 3476 /* We should never get here if no demote order */ 3477 if (!h->demote_order) { 3478 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n"); 3479 return -EINVAL; /* internal error */ 3480 } 3481 3482 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 3483 if (!list_empty(&h->hugepage_freelists[node])) { 3484 page = list_entry(h->hugepage_freelists[node].next, 3485 struct page, lru); 3486 rc = demote_free_huge_page(h, page); 3487 break; 3488 } 3489 } 3490 3491 return rc; 3492 } 3493 3494 #define HSTATE_ATTR_RO(_name) \ 3495 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 3496 3497 #define HSTATE_ATTR_WO(_name) \ 3498 static struct kobj_attribute _name##_attr = __ATTR_WO(_name) 3499 3500 #define HSTATE_ATTR(_name) \ 3501 static struct kobj_attribute _name##_attr = \ 3502 __ATTR(_name, 0644, _name##_show, _name##_store) 3503 3504 static struct kobject *hugepages_kobj; 3505 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 3506 3507 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp); 3508 3509 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp) 3510 { 3511 int i; 3512 3513 for (i = 0; i < HUGE_MAX_HSTATE; i++) 3514 if (hstate_kobjs[i] == kobj) { 3515 if (nidp) 3516 *nidp = NUMA_NO_NODE; 3517 return &hstates[i]; 3518 } 3519 3520 return kobj_to_node_hstate(kobj, nidp); 3521 } 3522 3523 static ssize_t nr_hugepages_show_common(struct kobject *kobj, 3524 struct kobj_attribute *attr, char *buf) 3525 { 3526 struct hstate *h; 3527 unsigned long nr_huge_pages; 3528 int nid; 3529 3530 h = kobj_to_hstate(kobj, &nid); 3531 if (nid == NUMA_NO_NODE) 3532 nr_huge_pages = h->nr_huge_pages; 3533 else 3534 nr_huge_pages = h->nr_huge_pages_node[nid]; 3535 3536 return sysfs_emit(buf, "%lu\n", nr_huge_pages); 3537 } 3538 3539 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy, 3540 struct hstate *h, int nid, 3541 unsigned long count, size_t len) 3542 { 3543 int err; 3544 nodemask_t nodes_allowed, *n_mask; 3545 3546 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 3547 return -EINVAL; 3548 3549 if (nid == NUMA_NO_NODE) { 3550 /* 3551 * global hstate attribute 3552 */ 3553 if (!(obey_mempolicy && 3554 init_nodemask_of_mempolicy(&nodes_allowed))) 3555 n_mask = &node_states[N_MEMORY]; 3556 else 3557 n_mask = &nodes_allowed; 3558 } else { 3559 /* 3560 * Node specific request. count adjustment happens in 3561 * set_max_huge_pages() after acquiring hugetlb_lock. 3562 */ 3563 init_nodemask_of_node(&nodes_allowed, nid); 3564 n_mask = &nodes_allowed; 3565 } 3566 3567 err = set_max_huge_pages(h, count, nid, n_mask); 3568 3569 return err ? err : len; 3570 } 3571 3572 static ssize_t nr_hugepages_store_common(bool obey_mempolicy, 3573 struct kobject *kobj, const char *buf, 3574 size_t len) 3575 { 3576 struct hstate *h; 3577 unsigned long count; 3578 int nid; 3579 int err; 3580 3581 err = kstrtoul(buf, 10, &count); 3582 if (err) 3583 return err; 3584 3585 h = kobj_to_hstate(kobj, &nid); 3586 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len); 3587 } 3588 3589 static ssize_t nr_hugepages_show(struct kobject *kobj, 3590 struct kobj_attribute *attr, char *buf) 3591 { 3592 return nr_hugepages_show_common(kobj, attr, buf); 3593 } 3594 3595 static ssize_t nr_hugepages_store(struct kobject *kobj, 3596 struct kobj_attribute *attr, const char *buf, size_t len) 3597 { 3598 return nr_hugepages_store_common(false, kobj, buf, len); 3599 } 3600 HSTATE_ATTR(nr_hugepages); 3601 3602 #ifdef CONFIG_NUMA 3603 3604 /* 3605 * hstate attribute for optionally mempolicy-based constraint on persistent 3606 * huge page alloc/free. 3607 */ 3608 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj, 3609 struct kobj_attribute *attr, 3610 char *buf) 3611 { 3612 return nr_hugepages_show_common(kobj, attr, buf); 3613 } 3614 3615 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj, 3616 struct kobj_attribute *attr, const char *buf, size_t len) 3617 { 3618 return nr_hugepages_store_common(true, kobj, buf, len); 3619 } 3620 HSTATE_ATTR(nr_hugepages_mempolicy); 3621 #endif 3622 3623 3624 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, 3625 struct kobj_attribute *attr, char *buf) 3626 { 3627 struct hstate *h = kobj_to_hstate(kobj, NULL); 3628 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages); 3629 } 3630 3631 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, 3632 struct kobj_attribute *attr, const char *buf, size_t count) 3633 { 3634 int err; 3635 unsigned long input; 3636 struct hstate *h = kobj_to_hstate(kobj, NULL); 3637 3638 if (hstate_is_gigantic(h)) 3639 return -EINVAL; 3640 3641 err = kstrtoul(buf, 10, &input); 3642 if (err) 3643 return err; 3644 3645 spin_lock_irq(&hugetlb_lock); 3646 h->nr_overcommit_huge_pages = input; 3647 spin_unlock_irq(&hugetlb_lock); 3648 3649 return count; 3650 } 3651 HSTATE_ATTR(nr_overcommit_hugepages); 3652 3653 static ssize_t free_hugepages_show(struct kobject *kobj, 3654 struct kobj_attribute *attr, char *buf) 3655 { 3656 struct hstate *h; 3657 unsigned long free_huge_pages; 3658 int nid; 3659 3660 h = kobj_to_hstate(kobj, &nid); 3661 if (nid == NUMA_NO_NODE) 3662 free_huge_pages = h->free_huge_pages; 3663 else 3664 free_huge_pages = h->free_huge_pages_node[nid]; 3665 3666 return sysfs_emit(buf, "%lu\n", free_huge_pages); 3667 } 3668 HSTATE_ATTR_RO(free_hugepages); 3669 3670 static ssize_t resv_hugepages_show(struct kobject *kobj, 3671 struct kobj_attribute *attr, char *buf) 3672 { 3673 struct hstate *h = kobj_to_hstate(kobj, NULL); 3674 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages); 3675 } 3676 HSTATE_ATTR_RO(resv_hugepages); 3677 3678 static ssize_t surplus_hugepages_show(struct kobject *kobj, 3679 struct kobj_attribute *attr, char *buf) 3680 { 3681 struct hstate *h; 3682 unsigned long surplus_huge_pages; 3683 int nid; 3684 3685 h = kobj_to_hstate(kobj, &nid); 3686 if (nid == NUMA_NO_NODE) 3687 surplus_huge_pages = h->surplus_huge_pages; 3688 else 3689 surplus_huge_pages = h->surplus_huge_pages_node[nid]; 3690 3691 return sysfs_emit(buf, "%lu\n", surplus_huge_pages); 3692 } 3693 HSTATE_ATTR_RO(surplus_hugepages); 3694 3695 static ssize_t demote_store(struct kobject *kobj, 3696 struct kobj_attribute *attr, const char *buf, size_t len) 3697 { 3698 unsigned long nr_demote; 3699 unsigned long nr_available; 3700 nodemask_t nodes_allowed, *n_mask; 3701 struct hstate *h; 3702 int err = 0; 3703 int nid; 3704 3705 err = kstrtoul(buf, 10, &nr_demote); 3706 if (err) 3707 return err; 3708 h = kobj_to_hstate(kobj, &nid); 3709 3710 if (nid != NUMA_NO_NODE) { 3711 init_nodemask_of_node(&nodes_allowed, nid); 3712 n_mask = &nodes_allowed; 3713 } else { 3714 n_mask = &node_states[N_MEMORY]; 3715 } 3716 3717 /* Synchronize with other sysfs operations modifying huge pages */ 3718 mutex_lock(&h->resize_lock); 3719 spin_lock_irq(&hugetlb_lock); 3720 3721 while (nr_demote) { 3722 /* 3723 * Check for available pages to demote each time thorough the 3724 * loop as demote_pool_huge_page will drop hugetlb_lock. 3725 */ 3726 if (nid != NUMA_NO_NODE) 3727 nr_available = h->free_huge_pages_node[nid]; 3728 else 3729 nr_available = h->free_huge_pages; 3730 nr_available -= h->resv_huge_pages; 3731 if (!nr_available) 3732 break; 3733 3734 err = demote_pool_huge_page(h, n_mask); 3735 if (err) 3736 break; 3737 3738 nr_demote--; 3739 } 3740 3741 spin_unlock_irq(&hugetlb_lock); 3742 mutex_unlock(&h->resize_lock); 3743 3744 if (err) 3745 return err; 3746 return len; 3747 } 3748 HSTATE_ATTR_WO(demote); 3749 3750 static ssize_t demote_size_show(struct kobject *kobj, 3751 struct kobj_attribute *attr, char *buf) 3752 { 3753 int nid; 3754 struct hstate *h = kobj_to_hstate(kobj, &nid); 3755 unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K; 3756 3757 return sysfs_emit(buf, "%lukB\n", demote_size); 3758 } 3759 3760 static ssize_t demote_size_store(struct kobject *kobj, 3761 struct kobj_attribute *attr, 3762 const char *buf, size_t count) 3763 { 3764 struct hstate *h, *demote_hstate; 3765 unsigned long demote_size; 3766 unsigned int demote_order; 3767 int nid; 3768 3769 demote_size = (unsigned long)memparse(buf, NULL); 3770 3771 demote_hstate = size_to_hstate(demote_size); 3772 if (!demote_hstate) 3773 return -EINVAL; 3774 demote_order = demote_hstate->order; 3775 if (demote_order < HUGETLB_PAGE_ORDER) 3776 return -EINVAL; 3777 3778 /* demote order must be smaller than hstate order */ 3779 h = kobj_to_hstate(kobj, &nid); 3780 if (demote_order >= h->order) 3781 return -EINVAL; 3782 3783 /* resize_lock synchronizes access to demote size and writes */ 3784 mutex_lock(&h->resize_lock); 3785 h->demote_order = demote_order; 3786 mutex_unlock(&h->resize_lock); 3787 3788 return count; 3789 } 3790 HSTATE_ATTR(demote_size); 3791 3792 static struct attribute *hstate_attrs[] = { 3793 &nr_hugepages_attr.attr, 3794 &nr_overcommit_hugepages_attr.attr, 3795 &free_hugepages_attr.attr, 3796 &resv_hugepages_attr.attr, 3797 &surplus_hugepages_attr.attr, 3798 #ifdef CONFIG_NUMA 3799 &nr_hugepages_mempolicy_attr.attr, 3800 #endif 3801 NULL, 3802 }; 3803 3804 static const struct attribute_group hstate_attr_group = { 3805 .attrs = hstate_attrs, 3806 }; 3807 3808 static struct attribute *hstate_demote_attrs[] = { 3809 &demote_size_attr.attr, 3810 &demote_attr.attr, 3811 NULL, 3812 }; 3813 3814 static const struct attribute_group hstate_demote_attr_group = { 3815 .attrs = hstate_demote_attrs, 3816 }; 3817 3818 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent, 3819 struct kobject **hstate_kobjs, 3820 const struct attribute_group *hstate_attr_group) 3821 { 3822 int retval; 3823 int hi = hstate_index(h); 3824 3825 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent); 3826 if (!hstate_kobjs[hi]) 3827 return -ENOMEM; 3828 3829 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group); 3830 if (retval) { 3831 kobject_put(hstate_kobjs[hi]); 3832 hstate_kobjs[hi] = NULL; 3833 } 3834 3835 if (h->demote_order) { 3836 if (sysfs_create_group(hstate_kobjs[hi], 3837 &hstate_demote_attr_group)) 3838 pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name); 3839 } 3840 3841 return retval; 3842 } 3843 3844 static void __init hugetlb_sysfs_init(void) 3845 { 3846 struct hstate *h; 3847 int err; 3848 3849 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); 3850 if (!hugepages_kobj) 3851 return; 3852 3853 for_each_hstate(h) { 3854 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj, 3855 hstate_kobjs, &hstate_attr_group); 3856 if (err) 3857 pr_err("HugeTLB: Unable to add hstate %s", h->name); 3858 } 3859 } 3860 3861 #ifdef CONFIG_NUMA 3862 3863 /* 3864 * node_hstate/s - associate per node hstate attributes, via their kobjects, 3865 * with node devices in node_devices[] using a parallel array. The array 3866 * index of a node device or _hstate == node id. 3867 * This is here to avoid any static dependency of the node device driver, in 3868 * the base kernel, on the hugetlb module. 3869 */ 3870 struct node_hstate { 3871 struct kobject *hugepages_kobj; 3872 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 3873 }; 3874 static struct node_hstate node_hstates[MAX_NUMNODES]; 3875 3876 /* 3877 * A subset of global hstate attributes for node devices 3878 */ 3879 static struct attribute *per_node_hstate_attrs[] = { 3880 &nr_hugepages_attr.attr, 3881 &free_hugepages_attr.attr, 3882 &surplus_hugepages_attr.attr, 3883 NULL, 3884 }; 3885 3886 static const struct attribute_group per_node_hstate_attr_group = { 3887 .attrs = per_node_hstate_attrs, 3888 }; 3889 3890 /* 3891 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj. 3892 * Returns node id via non-NULL nidp. 3893 */ 3894 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 3895 { 3896 int nid; 3897 3898 for (nid = 0; nid < nr_node_ids; nid++) { 3899 struct node_hstate *nhs = &node_hstates[nid]; 3900 int i; 3901 for (i = 0; i < HUGE_MAX_HSTATE; i++) 3902 if (nhs->hstate_kobjs[i] == kobj) { 3903 if (nidp) 3904 *nidp = nid; 3905 return &hstates[i]; 3906 } 3907 } 3908 3909 BUG(); 3910 return NULL; 3911 } 3912 3913 /* 3914 * Unregister hstate attributes from a single node device. 3915 * No-op if no hstate attributes attached. 3916 */ 3917 static void hugetlb_unregister_node(struct node *node) 3918 { 3919 struct hstate *h; 3920 struct node_hstate *nhs = &node_hstates[node->dev.id]; 3921 3922 if (!nhs->hugepages_kobj) 3923 return; /* no hstate attributes */ 3924 3925 for_each_hstate(h) { 3926 int idx = hstate_index(h); 3927 if (nhs->hstate_kobjs[idx]) { 3928 kobject_put(nhs->hstate_kobjs[idx]); 3929 nhs->hstate_kobjs[idx] = NULL; 3930 } 3931 } 3932 3933 kobject_put(nhs->hugepages_kobj); 3934 nhs->hugepages_kobj = NULL; 3935 } 3936 3937 3938 /* 3939 * Register hstate attributes for a single node device. 3940 * No-op if attributes already registered. 3941 */ 3942 static void hugetlb_register_node(struct node *node) 3943 { 3944 struct hstate *h; 3945 struct node_hstate *nhs = &node_hstates[node->dev.id]; 3946 int err; 3947 3948 if (nhs->hugepages_kobj) 3949 return; /* already allocated */ 3950 3951 nhs->hugepages_kobj = kobject_create_and_add("hugepages", 3952 &node->dev.kobj); 3953 if (!nhs->hugepages_kobj) 3954 return; 3955 3956 for_each_hstate(h) { 3957 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj, 3958 nhs->hstate_kobjs, 3959 &per_node_hstate_attr_group); 3960 if (err) { 3961 pr_err("HugeTLB: Unable to add hstate %s for node %d\n", 3962 h->name, node->dev.id); 3963 hugetlb_unregister_node(node); 3964 break; 3965 } 3966 } 3967 } 3968 3969 /* 3970 * hugetlb init time: register hstate attributes for all registered node 3971 * devices of nodes that have memory. All on-line nodes should have 3972 * registered their associated device by this time. 3973 */ 3974 static void __init hugetlb_register_all_nodes(void) 3975 { 3976 int nid; 3977 3978 for_each_node_state(nid, N_MEMORY) { 3979 struct node *node = node_devices[nid]; 3980 if (node->dev.id == nid) 3981 hugetlb_register_node(node); 3982 } 3983 3984 /* 3985 * Let the node device driver know we're here so it can 3986 * [un]register hstate attributes on node hotplug. 3987 */ 3988 register_hugetlbfs_with_node(hugetlb_register_node, 3989 hugetlb_unregister_node); 3990 } 3991 #else /* !CONFIG_NUMA */ 3992 3993 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 3994 { 3995 BUG(); 3996 if (nidp) 3997 *nidp = -1; 3998 return NULL; 3999 } 4000 4001 static void hugetlb_register_all_nodes(void) { } 4002 4003 #endif 4004 4005 static int __init hugetlb_init(void) 4006 { 4007 int i; 4008 4009 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE < 4010 __NR_HPAGEFLAGS); 4011 4012 if (!hugepages_supported()) { 4013 if (hugetlb_max_hstate || default_hstate_max_huge_pages) 4014 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n"); 4015 return 0; 4016 } 4017 4018 /* 4019 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some 4020 * architectures depend on setup being done here. 4021 */ 4022 hugetlb_add_hstate(HUGETLB_PAGE_ORDER); 4023 if (!parsed_default_hugepagesz) { 4024 /* 4025 * If we did not parse a default huge page size, set 4026 * default_hstate_idx to HPAGE_SIZE hstate. And, if the 4027 * number of huge pages for this default size was implicitly 4028 * specified, set that here as well. 4029 * Note that the implicit setting will overwrite an explicit 4030 * setting. A warning will be printed in this case. 4031 */ 4032 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE)); 4033 if (default_hstate_max_huge_pages) { 4034 if (default_hstate.max_huge_pages) { 4035 char buf[32]; 4036 4037 string_get_size(huge_page_size(&default_hstate), 4038 1, STRING_UNITS_2, buf, 32); 4039 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n", 4040 default_hstate.max_huge_pages, buf); 4041 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n", 4042 default_hstate_max_huge_pages); 4043 } 4044 default_hstate.max_huge_pages = 4045 default_hstate_max_huge_pages; 4046 4047 for (i = 0; i < nr_online_nodes; i++) 4048 default_hstate.max_huge_pages_node[i] = 4049 default_hugepages_in_node[i]; 4050 } 4051 } 4052 4053 hugetlb_cma_check(); 4054 hugetlb_init_hstates(); 4055 gather_bootmem_prealloc(); 4056 report_hugepages(); 4057 4058 hugetlb_sysfs_init(); 4059 hugetlb_register_all_nodes(); 4060 hugetlb_cgroup_file_init(); 4061 4062 #ifdef CONFIG_SMP 4063 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus()); 4064 #else 4065 num_fault_mutexes = 1; 4066 #endif 4067 hugetlb_fault_mutex_table = 4068 kmalloc_array(num_fault_mutexes, sizeof(struct mutex), 4069 GFP_KERNEL); 4070 BUG_ON(!hugetlb_fault_mutex_table); 4071 4072 for (i = 0; i < num_fault_mutexes; i++) 4073 mutex_init(&hugetlb_fault_mutex_table[i]); 4074 return 0; 4075 } 4076 subsys_initcall(hugetlb_init); 4077 4078 /* Overwritten by architectures with more huge page sizes */ 4079 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size) 4080 { 4081 return size == HPAGE_SIZE; 4082 } 4083 4084 void __init hugetlb_add_hstate(unsigned int order) 4085 { 4086 struct hstate *h; 4087 unsigned long i; 4088 4089 if (size_to_hstate(PAGE_SIZE << order)) { 4090 return; 4091 } 4092 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE); 4093 BUG_ON(order == 0); 4094 h = &hstates[hugetlb_max_hstate++]; 4095 mutex_init(&h->resize_lock); 4096 h->order = order; 4097 h->mask = ~(huge_page_size(h) - 1); 4098 for (i = 0; i < MAX_NUMNODES; ++i) 4099 INIT_LIST_HEAD(&h->hugepage_freelists[i]); 4100 INIT_LIST_HEAD(&h->hugepage_activelist); 4101 h->next_nid_to_alloc = first_memory_node; 4102 h->next_nid_to_free = first_memory_node; 4103 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", 4104 huge_page_size(h)/1024); 4105 hugetlb_vmemmap_init(h); 4106 4107 parsed_hstate = h; 4108 } 4109 4110 bool __init __weak hugetlb_node_alloc_supported(void) 4111 { 4112 return true; 4113 } 4114 /* 4115 * hugepages command line processing 4116 * hugepages normally follows a valid hugepagsz or default_hugepagsz 4117 * specification. If not, ignore the hugepages value. hugepages can also 4118 * be the first huge page command line option in which case it implicitly 4119 * specifies the number of huge pages for the default size. 4120 */ 4121 static int __init hugepages_setup(char *s) 4122 { 4123 unsigned long *mhp; 4124 static unsigned long *last_mhp; 4125 int node = NUMA_NO_NODE; 4126 int count; 4127 unsigned long tmp; 4128 char *p = s; 4129 4130 if (!parsed_valid_hugepagesz) { 4131 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s); 4132 parsed_valid_hugepagesz = true; 4133 return 0; 4134 } 4135 4136 /* 4137 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter 4138 * yet, so this hugepages= parameter goes to the "default hstate". 4139 * Otherwise, it goes with the previously parsed hugepagesz or 4140 * default_hugepagesz. 4141 */ 4142 else if (!hugetlb_max_hstate) 4143 mhp = &default_hstate_max_huge_pages; 4144 else 4145 mhp = &parsed_hstate->max_huge_pages; 4146 4147 if (mhp == last_mhp) { 4148 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s); 4149 return 0; 4150 } 4151 4152 while (*p) { 4153 count = 0; 4154 if (sscanf(p, "%lu%n", &tmp, &count) != 1) 4155 goto invalid; 4156 /* Parameter is node format */ 4157 if (p[count] == ':') { 4158 if (!hugetlb_node_alloc_supported()) { 4159 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n"); 4160 return 0; 4161 } 4162 node = tmp; 4163 p += count + 1; 4164 if (node < 0 || node >= nr_online_nodes) 4165 goto invalid; 4166 /* Parse hugepages */ 4167 if (sscanf(p, "%lu%n", &tmp, &count) != 1) 4168 goto invalid; 4169 if (!hugetlb_max_hstate) 4170 default_hugepages_in_node[node] = tmp; 4171 else 4172 parsed_hstate->max_huge_pages_node[node] = tmp; 4173 *mhp += tmp; 4174 /* Go to parse next node*/ 4175 if (p[count] == ',') 4176 p += count + 1; 4177 else 4178 break; 4179 } else { 4180 if (p != s) 4181 goto invalid; 4182 *mhp = tmp; 4183 break; 4184 } 4185 } 4186 4187 /* 4188 * Global state is always initialized later in hugetlb_init. 4189 * But we need to allocate gigantic hstates here early to still 4190 * use the bootmem allocator. 4191 */ 4192 if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate)) 4193 hugetlb_hstate_alloc_pages(parsed_hstate); 4194 4195 last_mhp = mhp; 4196 4197 return 1; 4198 4199 invalid: 4200 pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p); 4201 return 0; 4202 } 4203 __setup("hugepages=", hugepages_setup); 4204 4205 /* 4206 * hugepagesz command line processing 4207 * A specific huge page size can only be specified once with hugepagesz. 4208 * hugepagesz is followed by hugepages on the command line. The global 4209 * variable 'parsed_valid_hugepagesz' is used to determine if prior 4210 * hugepagesz argument was valid. 4211 */ 4212 static int __init hugepagesz_setup(char *s) 4213 { 4214 unsigned long size; 4215 struct hstate *h; 4216 4217 parsed_valid_hugepagesz = false; 4218 size = (unsigned long)memparse(s, NULL); 4219 4220 if (!arch_hugetlb_valid_size(size)) { 4221 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s); 4222 return 0; 4223 } 4224 4225 h = size_to_hstate(size); 4226 if (h) { 4227 /* 4228 * hstate for this size already exists. This is normally 4229 * an error, but is allowed if the existing hstate is the 4230 * default hstate. More specifically, it is only allowed if 4231 * the number of huge pages for the default hstate was not 4232 * previously specified. 4233 */ 4234 if (!parsed_default_hugepagesz || h != &default_hstate || 4235 default_hstate.max_huge_pages) { 4236 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s); 4237 return 0; 4238 } 4239 4240 /* 4241 * No need to call hugetlb_add_hstate() as hstate already 4242 * exists. But, do set parsed_hstate so that a following 4243 * hugepages= parameter will be applied to this hstate. 4244 */ 4245 parsed_hstate = h; 4246 parsed_valid_hugepagesz = true; 4247 return 1; 4248 } 4249 4250 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); 4251 parsed_valid_hugepagesz = true; 4252 return 1; 4253 } 4254 __setup("hugepagesz=", hugepagesz_setup); 4255 4256 /* 4257 * default_hugepagesz command line input 4258 * Only one instance of default_hugepagesz allowed on command line. 4259 */ 4260 static int __init default_hugepagesz_setup(char *s) 4261 { 4262 unsigned long size; 4263 int i; 4264 4265 parsed_valid_hugepagesz = false; 4266 if (parsed_default_hugepagesz) { 4267 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s); 4268 return 0; 4269 } 4270 4271 size = (unsigned long)memparse(s, NULL); 4272 4273 if (!arch_hugetlb_valid_size(size)) { 4274 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s); 4275 return 0; 4276 } 4277 4278 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); 4279 parsed_valid_hugepagesz = true; 4280 parsed_default_hugepagesz = true; 4281 default_hstate_idx = hstate_index(size_to_hstate(size)); 4282 4283 /* 4284 * The number of default huge pages (for this size) could have been 4285 * specified as the first hugetlb parameter: hugepages=X. If so, 4286 * then default_hstate_max_huge_pages is set. If the default huge 4287 * page size is gigantic (>= MAX_ORDER), then the pages must be 4288 * allocated here from bootmem allocator. 4289 */ 4290 if (default_hstate_max_huge_pages) { 4291 default_hstate.max_huge_pages = default_hstate_max_huge_pages; 4292 for (i = 0; i < nr_online_nodes; i++) 4293 default_hstate.max_huge_pages_node[i] = 4294 default_hugepages_in_node[i]; 4295 if (hstate_is_gigantic(&default_hstate)) 4296 hugetlb_hstate_alloc_pages(&default_hstate); 4297 default_hstate_max_huge_pages = 0; 4298 } 4299 4300 return 1; 4301 } 4302 __setup("default_hugepagesz=", default_hugepagesz_setup); 4303 4304 static unsigned int allowed_mems_nr(struct hstate *h) 4305 { 4306 int node; 4307 unsigned int nr = 0; 4308 nodemask_t *mpol_allowed; 4309 unsigned int *array = h->free_huge_pages_node; 4310 gfp_t gfp_mask = htlb_alloc_mask(h); 4311 4312 mpol_allowed = policy_nodemask_current(gfp_mask); 4313 4314 for_each_node_mask(node, cpuset_current_mems_allowed) { 4315 if (!mpol_allowed || node_isset(node, *mpol_allowed)) 4316 nr += array[node]; 4317 } 4318 4319 return nr; 4320 } 4321 4322 #ifdef CONFIG_SYSCTL 4323 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write, 4324 void *buffer, size_t *length, 4325 loff_t *ppos, unsigned long *out) 4326 { 4327 struct ctl_table dup_table; 4328 4329 /* 4330 * In order to avoid races with __do_proc_doulongvec_minmax(), we 4331 * can duplicate the @table and alter the duplicate of it. 4332 */ 4333 dup_table = *table; 4334 dup_table.data = out; 4335 4336 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos); 4337 } 4338 4339 static int hugetlb_sysctl_handler_common(bool obey_mempolicy, 4340 struct ctl_table *table, int write, 4341 void *buffer, size_t *length, loff_t *ppos) 4342 { 4343 struct hstate *h = &default_hstate; 4344 unsigned long tmp = h->max_huge_pages; 4345 int ret; 4346 4347 if (!hugepages_supported()) 4348 return -EOPNOTSUPP; 4349 4350 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, 4351 &tmp); 4352 if (ret) 4353 goto out; 4354 4355 if (write) 4356 ret = __nr_hugepages_store_common(obey_mempolicy, h, 4357 NUMA_NO_NODE, tmp, *length); 4358 out: 4359 return ret; 4360 } 4361 4362 int hugetlb_sysctl_handler(struct ctl_table *table, int write, 4363 void *buffer, size_t *length, loff_t *ppos) 4364 { 4365 4366 return hugetlb_sysctl_handler_common(false, table, write, 4367 buffer, length, ppos); 4368 } 4369 4370 #ifdef CONFIG_NUMA 4371 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write, 4372 void *buffer, size_t *length, loff_t *ppos) 4373 { 4374 return hugetlb_sysctl_handler_common(true, table, write, 4375 buffer, length, ppos); 4376 } 4377 #endif /* CONFIG_NUMA */ 4378 4379 int hugetlb_overcommit_handler(struct ctl_table *table, int write, 4380 void *buffer, size_t *length, loff_t *ppos) 4381 { 4382 struct hstate *h = &default_hstate; 4383 unsigned long tmp; 4384 int ret; 4385 4386 if (!hugepages_supported()) 4387 return -EOPNOTSUPP; 4388 4389 tmp = h->nr_overcommit_huge_pages; 4390 4391 if (write && hstate_is_gigantic(h)) 4392 return -EINVAL; 4393 4394 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, 4395 &tmp); 4396 if (ret) 4397 goto out; 4398 4399 if (write) { 4400 spin_lock_irq(&hugetlb_lock); 4401 h->nr_overcommit_huge_pages = tmp; 4402 spin_unlock_irq(&hugetlb_lock); 4403 } 4404 out: 4405 return ret; 4406 } 4407 4408 #endif /* CONFIG_SYSCTL */ 4409 4410 void hugetlb_report_meminfo(struct seq_file *m) 4411 { 4412 struct hstate *h; 4413 unsigned long total = 0; 4414 4415 if (!hugepages_supported()) 4416 return; 4417 4418 for_each_hstate(h) { 4419 unsigned long count = h->nr_huge_pages; 4420 4421 total += huge_page_size(h) * count; 4422 4423 if (h == &default_hstate) 4424 seq_printf(m, 4425 "HugePages_Total: %5lu\n" 4426 "HugePages_Free: %5lu\n" 4427 "HugePages_Rsvd: %5lu\n" 4428 "HugePages_Surp: %5lu\n" 4429 "Hugepagesize: %8lu kB\n", 4430 count, 4431 h->free_huge_pages, 4432 h->resv_huge_pages, 4433 h->surplus_huge_pages, 4434 huge_page_size(h) / SZ_1K); 4435 } 4436 4437 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K); 4438 } 4439 4440 int hugetlb_report_node_meminfo(char *buf, int len, int nid) 4441 { 4442 struct hstate *h = &default_hstate; 4443 4444 if (!hugepages_supported()) 4445 return 0; 4446 4447 return sysfs_emit_at(buf, len, 4448 "Node %d HugePages_Total: %5u\n" 4449 "Node %d HugePages_Free: %5u\n" 4450 "Node %d HugePages_Surp: %5u\n", 4451 nid, h->nr_huge_pages_node[nid], 4452 nid, h->free_huge_pages_node[nid], 4453 nid, h->surplus_huge_pages_node[nid]); 4454 } 4455 4456 void hugetlb_show_meminfo(void) 4457 { 4458 struct hstate *h; 4459 int nid; 4460 4461 if (!hugepages_supported()) 4462 return; 4463 4464 for_each_node_state(nid, N_MEMORY) 4465 for_each_hstate(h) 4466 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n", 4467 nid, 4468 h->nr_huge_pages_node[nid], 4469 h->free_huge_pages_node[nid], 4470 h->surplus_huge_pages_node[nid], 4471 huge_page_size(h) / SZ_1K); 4472 } 4473 4474 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm) 4475 { 4476 seq_printf(m, "HugetlbPages:\t%8lu kB\n", 4477 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10)); 4478 } 4479 4480 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ 4481 unsigned long hugetlb_total_pages(void) 4482 { 4483 struct hstate *h; 4484 unsigned long nr_total_pages = 0; 4485 4486 for_each_hstate(h) 4487 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h); 4488 return nr_total_pages; 4489 } 4490 4491 static int hugetlb_acct_memory(struct hstate *h, long delta) 4492 { 4493 int ret = -ENOMEM; 4494 4495 if (!delta) 4496 return 0; 4497 4498 spin_lock_irq(&hugetlb_lock); 4499 /* 4500 * When cpuset is configured, it breaks the strict hugetlb page 4501 * reservation as the accounting is done on a global variable. Such 4502 * reservation is completely rubbish in the presence of cpuset because 4503 * the reservation is not checked against page availability for the 4504 * current cpuset. Application can still potentially OOM'ed by kernel 4505 * with lack of free htlb page in cpuset that the task is in. 4506 * Attempt to enforce strict accounting with cpuset is almost 4507 * impossible (or too ugly) because cpuset is too fluid that 4508 * task or memory node can be dynamically moved between cpusets. 4509 * 4510 * The change of semantics for shared hugetlb mapping with cpuset is 4511 * undesirable. However, in order to preserve some of the semantics, 4512 * we fall back to check against current free page availability as 4513 * a best attempt and hopefully to minimize the impact of changing 4514 * semantics that cpuset has. 4515 * 4516 * Apart from cpuset, we also have memory policy mechanism that 4517 * also determines from which node the kernel will allocate memory 4518 * in a NUMA system. So similar to cpuset, we also should consider 4519 * the memory policy of the current task. Similar to the description 4520 * above. 4521 */ 4522 if (delta > 0) { 4523 if (gather_surplus_pages(h, delta) < 0) 4524 goto out; 4525 4526 if (delta > allowed_mems_nr(h)) { 4527 return_unused_surplus_pages(h, delta); 4528 goto out; 4529 } 4530 } 4531 4532 ret = 0; 4533 if (delta < 0) 4534 return_unused_surplus_pages(h, (unsigned long) -delta); 4535 4536 out: 4537 spin_unlock_irq(&hugetlb_lock); 4538 return ret; 4539 } 4540 4541 static void hugetlb_vm_op_open(struct vm_area_struct *vma) 4542 { 4543 struct resv_map *resv = vma_resv_map(vma); 4544 4545 /* 4546 * This new VMA should share its siblings reservation map if present. 4547 * The VMA will only ever have a valid reservation map pointer where 4548 * it is being copied for another still existing VMA. As that VMA 4549 * has a reference to the reservation map it cannot disappear until 4550 * after this open call completes. It is therefore safe to take a 4551 * new reference here without additional locking. 4552 */ 4553 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 4554 resv_map_dup_hugetlb_cgroup_uncharge_info(resv); 4555 kref_get(&resv->refs); 4556 } 4557 } 4558 4559 static void hugetlb_vm_op_close(struct vm_area_struct *vma) 4560 { 4561 struct hstate *h = hstate_vma(vma); 4562 struct resv_map *resv = vma_resv_map(vma); 4563 struct hugepage_subpool *spool = subpool_vma(vma); 4564 unsigned long reserve, start, end; 4565 long gbl_reserve; 4566 4567 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 4568 return; 4569 4570 start = vma_hugecache_offset(h, vma, vma->vm_start); 4571 end = vma_hugecache_offset(h, vma, vma->vm_end); 4572 4573 reserve = (end - start) - region_count(resv, start, end); 4574 hugetlb_cgroup_uncharge_counter(resv, start, end); 4575 if (reserve) { 4576 /* 4577 * Decrement reserve counts. The global reserve count may be 4578 * adjusted if the subpool has a minimum size. 4579 */ 4580 gbl_reserve = hugepage_subpool_put_pages(spool, reserve); 4581 hugetlb_acct_memory(h, -gbl_reserve); 4582 } 4583 4584 kref_put(&resv->refs, resv_map_release); 4585 } 4586 4587 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr) 4588 { 4589 if (addr & ~(huge_page_mask(hstate_vma(vma)))) 4590 return -EINVAL; 4591 return 0; 4592 } 4593 4594 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma) 4595 { 4596 return huge_page_size(hstate_vma(vma)); 4597 } 4598 4599 /* 4600 * We cannot handle pagefaults against hugetlb pages at all. They cause 4601 * handle_mm_fault() to try to instantiate regular-sized pages in the 4602 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get 4603 * this far. 4604 */ 4605 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf) 4606 { 4607 BUG(); 4608 return 0; 4609 } 4610 4611 /* 4612 * When a new function is introduced to vm_operations_struct and added 4613 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops. 4614 * This is because under System V memory model, mappings created via 4615 * shmget/shmat with "huge page" specified are backed by hugetlbfs files, 4616 * their original vm_ops are overwritten with shm_vm_ops. 4617 */ 4618 const struct vm_operations_struct hugetlb_vm_ops = { 4619 .fault = hugetlb_vm_op_fault, 4620 .open = hugetlb_vm_op_open, 4621 .close = hugetlb_vm_op_close, 4622 .may_split = hugetlb_vm_op_split, 4623 .pagesize = hugetlb_vm_op_pagesize, 4624 }; 4625 4626 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, 4627 int writable) 4628 { 4629 pte_t entry; 4630 unsigned int shift = huge_page_shift(hstate_vma(vma)); 4631 4632 if (writable) { 4633 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page, 4634 vma->vm_page_prot))); 4635 } else { 4636 entry = huge_pte_wrprotect(mk_huge_pte(page, 4637 vma->vm_page_prot)); 4638 } 4639 entry = pte_mkyoung(entry); 4640 entry = pte_mkhuge(entry); 4641 entry = arch_make_huge_pte(entry, shift, vma->vm_flags); 4642 4643 return entry; 4644 } 4645 4646 static void set_huge_ptep_writable(struct vm_area_struct *vma, 4647 unsigned long address, pte_t *ptep) 4648 { 4649 pte_t entry; 4650 4651 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep))); 4652 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) 4653 update_mmu_cache(vma, address, ptep); 4654 } 4655 4656 bool is_hugetlb_entry_migration(pte_t pte) 4657 { 4658 swp_entry_t swp; 4659 4660 if (huge_pte_none(pte) || pte_present(pte)) 4661 return false; 4662 swp = pte_to_swp_entry(pte); 4663 if (is_migration_entry(swp)) 4664 return true; 4665 else 4666 return false; 4667 } 4668 4669 static bool is_hugetlb_entry_hwpoisoned(pte_t pte) 4670 { 4671 swp_entry_t swp; 4672 4673 if (huge_pte_none(pte) || pte_present(pte)) 4674 return false; 4675 swp = pte_to_swp_entry(pte); 4676 if (is_hwpoison_entry(swp)) 4677 return true; 4678 else 4679 return false; 4680 } 4681 4682 static void 4683 hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr, 4684 struct page *new_page) 4685 { 4686 __SetPageUptodate(new_page); 4687 hugepage_add_new_anon_rmap(new_page, vma, addr); 4688 set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1)); 4689 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm); 4690 ClearHPageRestoreReserve(new_page); 4691 SetHPageMigratable(new_page); 4692 } 4693 4694 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, 4695 struct vm_area_struct *vma) 4696 { 4697 pte_t *src_pte, *dst_pte, entry, dst_entry; 4698 struct page *ptepage; 4699 unsigned long addr; 4700 bool cow = is_cow_mapping(vma->vm_flags); 4701 struct hstate *h = hstate_vma(vma); 4702 unsigned long sz = huge_page_size(h); 4703 unsigned long npages = pages_per_huge_page(h); 4704 struct address_space *mapping = vma->vm_file->f_mapping; 4705 struct mmu_notifier_range range; 4706 int ret = 0; 4707 4708 if (cow) { 4709 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src, 4710 vma->vm_start, 4711 vma->vm_end); 4712 mmu_notifier_invalidate_range_start(&range); 4713 } else { 4714 /* 4715 * For shared mappings i_mmap_rwsem must be held to call 4716 * huge_pte_alloc, otherwise the returned ptep could go 4717 * away if part of a shared pmd and another thread calls 4718 * huge_pmd_unshare. 4719 */ 4720 i_mmap_lock_read(mapping); 4721 } 4722 4723 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) { 4724 spinlock_t *src_ptl, *dst_ptl; 4725 src_pte = huge_pte_offset(src, addr, sz); 4726 if (!src_pte) 4727 continue; 4728 dst_pte = huge_pte_alloc(dst, vma, addr, sz); 4729 if (!dst_pte) { 4730 ret = -ENOMEM; 4731 break; 4732 } 4733 4734 /* 4735 * If the pagetables are shared don't copy or take references. 4736 * dst_pte == src_pte is the common case of src/dest sharing. 4737 * 4738 * However, src could have 'unshared' and dst shares with 4739 * another vma. If dst_pte !none, this implies sharing. 4740 * Check here before taking page table lock, and once again 4741 * after taking the lock below. 4742 */ 4743 dst_entry = huge_ptep_get(dst_pte); 4744 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry)) 4745 continue; 4746 4747 dst_ptl = huge_pte_lock(h, dst, dst_pte); 4748 src_ptl = huge_pte_lockptr(h, src, src_pte); 4749 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 4750 entry = huge_ptep_get(src_pte); 4751 dst_entry = huge_ptep_get(dst_pte); 4752 again: 4753 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) { 4754 /* 4755 * Skip if src entry none. Also, skip in the 4756 * unlikely case dst entry !none as this implies 4757 * sharing with another vma. 4758 */ 4759 ; 4760 } else if (unlikely(is_hugetlb_entry_migration(entry) || 4761 is_hugetlb_entry_hwpoisoned(entry))) { 4762 swp_entry_t swp_entry = pte_to_swp_entry(entry); 4763 4764 if (is_writable_migration_entry(swp_entry) && cow) { 4765 /* 4766 * COW mappings require pages in both 4767 * parent and child to be set to read. 4768 */ 4769 swp_entry = make_readable_migration_entry( 4770 swp_offset(swp_entry)); 4771 entry = swp_entry_to_pte(swp_entry); 4772 set_huge_swap_pte_at(src, addr, src_pte, 4773 entry, sz); 4774 } 4775 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz); 4776 } else { 4777 entry = huge_ptep_get(src_pte); 4778 ptepage = pte_page(entry); 4779 get_page(ptepage); 4780 4781 /* 4782 * This is a rare case where we see pinned hugetlb 4783 * pages while they're prone to COW. We need to do the 4784 * COW earlier during fork. 4785 * 4786 * When pre-allocating the page or copying data, we 4787 * need to be without the pgtable locks since we could 4788 * sleep during the process. 4789 */ 4790 if (unlikely(page_needs_cow_for_dma(vma, ptepage))) { 4791 pte_t src_pte_old = entry; 4792 struct page *new; 4793 4794 spin_unlock(src_ptl); 4795 spin_unlock(dst_ptl); 4796 /* Do not use reserve as it's private owned */ 4797 new = alloc_huge_page(vma, addr, 1); 4798 if (IS_ERR(new)) { 4799 put_page(ptepage); 4800 ret = PTR_ERR(new); 4801 break; 4802 } 4803 copy_user_huge_page(new, ptepage, addr, vma, 4804 npages); 4805 put_page(ptepage); 4806 4807 /* Install the new huge page if src pte stable */ 4808 dst_ptl = huge_pte_lock(h, dst, dst_pte); 4809 src_ptl = huge_pte_lockptr(h, src, src_pte); 4810 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 4811 entry = huge_ptep_get(src_pte); 4812 if (!pte_same(src_pte_old, entry)) { 4813 restore_reserve_on_error(h, vma, addr, 4814 new); 4815 put_page(new); 4816 /* dst_entry won't change as in child */ 4817 goto again; 4818 } 4819 hugetlb_install_page(vma, dst_pte, addr, new); 4820 spin_unlock(src_ptl); 4821 spin_unlock(dst_ptl); 4822 continue; 4823 } 4824 4825 if (cow) { 4826 /* 4827 * No need to notify as we are downgrading page 4828 * table protection not changing it to point 4829 * to a new page. 4830 * 4831 * See Documentation/vm/mmu_notifier.rst 4832 */ 4833 huge_ptep_set_wrprotect(src, addr, src_pte); 4834 entry = huge_pte_wrprotect(entry); 4835 } 4836 4837 page_dup_rmap(ptepage, true); 4838 set_huge_pte_at(dst, addr, dst_pte, entry); 4839 hugetlb_count_add(npages, dst); 4840 } 4841 spin_unlock(src_ptl); 4842 spin_unlock(dst_ptl); 4843 } 4844 4845 if (cow) 4846 mmu_notifier_invalidate_range_end(&range); 4847 else 4848 i_mmap_unlock_read(mapping); 4849 4850 return ret; 4851 } 4852 4853 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr, 4854 unsigned long new_addr, pte_t *src_pte) 4855 { 4856 struct hstate *h = hstate_vma(vma); 4857 struct mm_struct *mm = vma->vm_mm; 4858 pte_t *dst_pte, pte; 4859 spinlock_t *src_ptl, *dst_ptl; 4860 4861 dst_pte = huge_pte_offset(mm, new_addr, huge_page_size(h)); 4862 dst_ptl = huge_pte_lock(h, mm, dst_pte); 4863 src_ptl = huge_pte_lockptr(h, mm, src_pte); 4864 4865 /* 4866 * We don't have to worry about the ordering of src and dst ptlocks 4867 * because exclusive mmap_sem (or the i_mmap_lock) prevents deadlock. 4868 */ 4869 if (src_ptl != dst_ptl) 4870 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 4871 4872 pte = huge_ptep_get_and_clear(mm, old_addr, src_pte); 4873 set_huge_pte_at(mm, new_addr, dst_pte, pte); 4874 4875 if (src_ptl != dst_ptl) 4876 spin_unlock(src_ptl); 4877 spin_unlock(dst_ptl); 4878 } 4879 4880 int move_hugetlb_page_tables(struct vm_area_struct *vma, 4881 struct vm_area_struct *new_vma, 4882 unsigned long old_addr, unsigned long new_addr, 4883 unsigned long len) 4884 { 4885 struct hstate *h = hstate_vma(vma); 4886 struct address_space *mapping = vma->vm_file->f_mapping; 4887 unsigned long sz = huge_page_size(h); 4888 struct mm_struct *mm = vma->vm_mm; 4889 unsigned long old_end = old_addr + len; 4890 unsigned long old_addr_copy; 4891 pte_t *src_pte, *dst_pte; 4892 struct mmu_notifier_range range; 4893 4894 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, old_addr, 4895 old_end); 4896 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 4897 mmu_notifier_invalidate_range_start(&range); 4898 /* Prevent race with file truncation */ 4899 i_mmap_lock_write(mapping); 4900 for (; old_addr < old_end; old_addr += sz, new_addr += sz) { 4901 src_pte = huge_pte_offset(mm, old_addr, sz); 4902 if (!src_pte) 4903 continue; 4904 if (huge_pte_none(huge_ptep_get(src_pte))) 4905 continue; 4906 4907 /* old_addr arg to huge_pmd_unshare() is a pointer and so the 4908 * arg may be modified. Pass a copy instead to preserve the 4909 * value in old_addr. 4910 */ 4911 old_addr_copy = old_addr; 4912 4913 if (huge_pmd_unshare(mm, vma, &old_addr_copy, src_pte)) 4914 continue; 4915 4916 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz); 4917 if (!dst_pte) 4918 break; 4919 4920 move_huge_pte(vma, old_addr, new_addr, src_pte); 4921 } 4922 flush_tlb_range(vma, old_end - len, old_end); 4923 mmu_notifier_invalidate_range_end(&range); 4924 i_mmap_unlock_write(mapping); 4925 4926 return len + old_addr - old_end; 4927 } 4928 4929 static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma, 4930 unsigned long start, unsigned long end, 4931 struct page *ref_page) 4932 { 4933 struct mm_struct *mm = vma->vm_mm; 4934 unsigned long address; 4935 pte_t *ptep; 4936 pte_t pte; 4937 spinlock_t *ptl; 4938 struct page *page; 4939 struct hstate *h = hstate_vma(vma); 4940 unsigned long sz = huge_page_size(h); 4941 struct mmu_notifier_range range; 4942 bool force_flush = false; 4943 4944 WARN_ON(!is_vm_hugetlb_page(vma)); 4945 BUG_ON(start & ~huge_page_mask(h)); 4946 BUG_ON(end & ~huge_page_mask(h)); 4947 4948 /* 4949 * This is a hugetlb vma, all the pte entries should point 4950 * to huge page. 4951 */ 4952 tlb_change_page_size(tlb, sz); 4953 tlb_start_vma(tlb, vma); 4954 4955 /* 4956 * If sharing possible, alert mmu notifiers of worst case. 4957 */ 4958 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start, 4959 end); 4960 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 4961 mmu_notifier_invalidate_range_start(&range); 4962 address = start; 4963 for (; address < end; address += sz) { 4964 ptep = huge_pte_offset(mm, address, sz); 4965 if (!ptep) 4966 continue; 4967 4968 ptl = huge_pte_lock(h, mm, ptep); 4969 if (huge_pmd_unshare(mm, vma, &address, ptep)) { 4970 spin_unlock(ptl); 4971 tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE); 4972 force_flush = true; 4973 continue; 4974 } 4975 4976 pte = huge_ptep_get(ptep); 4977 if (huge_pte_none(pte)) { 4978 spin_unlock(ptl); 4979 continue; 4980 } 4981 4982 /* 4983 * Migrating hugepage or HWPoisoned hugepage is already 4984 * unmapped and its refcount is dropped, so just clear pte here. 4985 */ 4986 if (unlikely(!pte_present(pte))) { 4987 huge_pte_clear(mm, address, ptep, sz); 4988 spin_unlock(ptl); 4989 continue; 4990 } 4991 4992 page = pte_page(pte); 4993 /* 4994 * If a reference page is supplied, it is because a specific 4995 * page is being unmapped, not a range. Ensure the page we 4996 * are about to unmap is the actual page of interest. 4997 */ 4998 if (ref_page) { 4999 if (page != ref_page) { 5000 spin_unlock(ptl); 5001 continue; 5002 } 5003 /* 5004 * Mark the VMA as having unmapped its page so that 5005 * future faults in this VMA will fail rather than 5006 * looking like data was lost 5007 */ 5008 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); 5009 } 5010 5011 pte = huge_ptep_get_and_clear(mm, address, ptep); 5012 tlb_remove_huge_tlb_entry(h, tlb, ptep, address); 5013 if (huge_pte_dirty(pte)) 5014 set_page_dirty(page); 5015 5016 hugetlb_count_sub(pages_per_huge_page(h), mm); 5017 page_remove_rmap(page, true); 5018 5019 spin_unlock(ptl); 5020 tlb_remove_page_size(tlb, page, huge_page_size(h)); 5021 /* 5022 * Bail out after unmapping reference page if supplied 5023 */ 5024 if (ref_page) 5025 break; 5026 } 5027 mmu_notifier_invalidate_range_end(&range); 5028 tlb_end_vma(tlb, vma); 5029 5030 /* 5031 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We 5032 * could defer the flush until now, since by holding i_mmap_rwsem we 5033 * guaranteed that the last refernece would not be dropped. But we must 5034 * do the flushing before we return, as otherwise i_mmap_rwsem will be 5035 * dropped and the last reference to the shared PMDs page might be 5036 * dropped as well. 5037 * 5038 * In theory we could defer the freeing of the PMD pages as well, but 5039 * huge_pmd_unshare() relies on the exact page_count for the PMD page to 5040 * detect sharing, so we cannot defer the release of the page either. 5041 * Instead, do flush now. 5042 */ 5043 if (force_flush) 5044 tlb_flush_mmu_tlbonly(tlb); 5045 } 5046 5047 void __unmap_hugepage_range_final(struct mmu_gather *tlb, 5048 struct vm_area_struct *vma, unsigned long start, 5049 unsigned long end, struct page *ref_page) 5050 { 5051 __unmap_hugepage_range(tlb, vma, start, end, ref_page); 5052 5053 /* 5054 * Clear this flag so that x86's huge_pmd_share page_table_shareable 5055 * test will fail on a vma being torn down, and not grab a page table 5056 * on its way out. We're lucky that the flag has such an appropriate 5057 * name, and can in fact be safely cleared here. We could clear it 5058 * before the __unmap_hugepage_range above, but all that's necessary 5059 * is to clear it before releasing the i_mmap_rwsem. This works 5060 * because in the context this is called, the VMA is about to be 5061 * destroyed and the i_mmap_rwsem is held. 5062 */ 5063 vma->vm_flags &= ~VM_MAYSHARE; 5064 } 5065 5066 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, 5067 unsigned long end, struct page *ref_page) 5068 { 5069 struct mmu_gather tlb; 5070 5071 tlb_gather_mmu(&tlb, vma->vm_mm); 5072 __unmap_hugepage_range(&tlb, vma, start, end, ref_page); 5073 tlb_finish_mmu(&tlb); 5074 } 5075 5076 /* 5077 * This is called when the original mapper is failing to COW a MAP_PRIVATE 5078 * mapping it owns the reserve page for. The intention is to unmap the page 5079 * from other VMAs and let the children be SIGKILLed if they are faulting the 5080 * same region. 5081 */ 5082 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, 5083 struct page *page, unsigned long address) 5084 { 5085 struct hstate *h = hstate_vma(vma); 5086 struct vm_area_struct *iter_vma; 5087 struct address_space *mapping; 5088 pgoff_t pgoff; 5089 5090 /* 5091 * vm_pgoff is in PAGE_SIZE units, hence the different calculation 5092 * from page cache lookup which is in HPAGE_SIZE units. 5093 */ 5094 address = address & huge_page_mask(h); 5095 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + 5096 vma->vm_pgoff; 5097 mapping = vma->vm_file->f_mapping; 5098 5099 /* 5100 * Take the mapping lock for the duration of the table walk. As 5101 * this mapping should be shared between all the VMAs, 5102 * __unmap_hugepage_range() is called as the lock is already held 5103 */ 5104 i_mmap_lock_write(mapping); 5105 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) { 5106 /* Do not unmap the current VMA */ 5107 if (iter_vma == vma) 5108 continue; 5109 5110 /* 5111 * Shared VMAs have their own reserves and do not affect 5112 * MAP_PRIVATE accounting but it is possible that a shared 5113 * VMA is using the same page so check and skip such VMAs. 5114 */ 5115 if (iter_vma->vm_flags & VM_MAYSHARE) 5116 continue; 5117 5118 /* 5119 * Unmap the page from other VMAs without their own reserves. 5120 * They get marked to be SIGKILLed if they fault in these 5121 * areas. This is because a future no-page fault on this VMA 5122 * could insert a zeroed page instead of the data existing 5123 * from the time of fork. This would look like data corruption 5124 */ 5125 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) 5126 unmap_hugepage_range(iter_vma, address, 5127 address + huge_page_size(h), page); 5128 } 5129 i_mmap_unlock_write(mapping); 5130 } 5131 5132 /* 5133 * Hugetlb_cow() should be called with page lock of the original hugepage held. 5134 * Called with hugetlb_fault_mutex_table held and pte_page locked so we 5135 * cannot race with other handlers or page migration. 5136 * Keep the pte_same checks anyway to make transition from the mutex easier. 5137 */ 5138 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma, 5139 unsigned long address, pte_t *ptep, 5140 struct page *pagecache_page, spinlock_t *ptl) 5141 { 5142 pte_t pte; 5143 struct hstate *h = hstate_vma(vma); 5144 struct page *old_page, *new_page; 5145 int outside_reserve = 0; 5146 vm_fault_t ret = 0; 5147 unsigned long haddr = address & huge_page_mask(h); 5148 struct mmu_notifier_range range; 5149 5150 pte = huge_ptep_get(ptep); 5151 old_page = pte_page(pte); 5152 5153 retry_avoidcopy: 5154 /* If no-one else is actually using this page, avoid the copy 5155 * and just make the page writable */ 5156 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) { 5157 page_move_anon_rmap(old_page, vma); 5158 set_huge_ptep_writable(vma, haddr, ptep); 5159 return 0; 5160 } 5161 5162 /* 5163 * If the process that created a MAP_PRIVATE mapping is about to 5164 * perform a COW due to a shared page count, attempt to satisfy 5165 * the allocation without using the existing reserves. The pagecache 5166 * page is used to determine if the reserve at this address was 5167 * consumed or not. If reserves were used, a partial faulted mapping 5168 * at the time of fork() could consume its reserves on COW instead 5169 * of the full address range. 5170 */ 5171 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && 5172 old_page != pagecache_page) 5173 outside_reserve = 1; 5174 5175 get_page(old_page); 5176 5177 /* 5178 * Drop page table lock as buddy allocator may be called. It will 5179 * be acquired again before returning to the caller, as expected. 5180 */ 5181 spin_unlock(ptl); 5182 new_page = alloc_huge_page(vma, haddr, outside_reserve); 5183 5184 if (IS_ERR(new_page)) { 5185 /* 5186 * If a process owning a MAP_PRIVATE mapping fails to COW, 5187 * it is due to references held by a child and an insufficient 5188 * huge page pool. To guarantee the original mappers 5189 * reliability, unmap the page from child processes. The child 5190 * may get SIGKILLed if it later faults. 5191 */ 5192 if (outside_reserve) { 5193 struct address_space *mapping = vma->vm_file->f_mapping; 5194 pgoff_t idx; 5195 u32 hash; 5196 5197 put_page(old_page); 5198 BUG_ON(huge_pte_none(pte)); 5199 /* 5200 * Drop hugetlb_fault_mutex and i_mmap_rwsem before 5201 * unmapping. unmapping needs to hold i_mmap_rwsem 5202 * in write mode. Dropping i_mmap_rwsem in read mode 5203 * here is OK as COW mappings do not interact with 5204 * PMD sharing. 5205 * 5206 * Reacquire both after unmap operation. 5207 */ 5208 idx = vma_hugecache_offset(h, vma, haddr); 5209 hash = hugetlb_fault_mutex_hash(mapping, idx); 5210 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 5211 i_mmap_unlock_read(mapping); 5212 5213 unmap_ref_private(mm, vma, old_page, haddr); 5214 5215 i_mmap_lock_read(mapping); 5216 mutex_lock(&hugetlb_fault_mutex_table[hash]); 5217 spin_lock(ptl); 5218 ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); 5219 if (likely(ptep && 5220 pte_same(huge_ptep_get(ptep), pte))) 5221 goto retry_avoidcopy; 5222 /* 5223 * race occurs while re-acquiring page table 5224 * lock, and our job is done. 5225 */ 5226 return 0; 5227 } 5228 5229 ret = vmf_error(PTR_ERR(new_page)); 5230 goto out_release_old; 5231 } 5232 5233 /* 5234 * When the original hugepage is shared one, it does not have 5235 * anon_vma prepared. 5236 */ 5237 if (unlikely(anon_vma_prepare(vma))) { 5238 ret = VM_FAULT_OOM; 5239 goto out_release_all; 5240 } 5241 5242 copy_user_huge_page(new_page, old_page, address, vma, 5243 pages_per_huge_page(h)); 5244 __SetPageUptodate(new_page); 5245 5246 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr, 5247 haddr + huge_page_size(h)); 5248 mmu_notifier_invalidate_range_start(&range); 5249 5250 /* 5251 * Retake the page table lock to check for racing updates 5252 * before the page tables are altered 5253 */ 5254 spin_lock(ptl); 5255 ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); 5256 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) { 5257 ClearHPageRestoreReserve(new_page); 5258 5259 /* Break COW */ 5260 huge_ptep_clear_flush(vma, haddr, ptep); 5261 mmu_notifier_invalidate_range(mm, range.start, range.end); 5262 page_remove_rmap(old_page, true); 5263 hugepage_add_new_anon_rmap(new_page, vma, haddr); 5264 set_huge_pte_at(mm, haddr, ptep, 5265 make_huge_pte(vma, new_page, 1)); 5266 SetHPageMigratable(new_page); 5267 /* Make the old page be freed below */ 5268 new_page = old_page; 5269 } 5270 spin_unlock(ptl); 5271 mmu_notifier_invalidate_range_end(&range); 5272 out_release_all: 5273 /* No restore in case of successful pagetable update (Break COW) */ 5274 if (new_page != old_page) 5275 restore_reserve_on_error(h, vma, haddr, new_page); 5276 put_page(new_page); 5277 out_release_old: 5278 put_page(old_page); 5279 5280 spin_lock(ptl); /* Caller expects lock to be held */ 5281 return ret; 5282 } 5283 5284 /* Return the pagecache page at a given address within a VMA */ 5285 static struct page *hugetlbfs_pagecache_page(struct hstate *h, 5286 struct vm_area_struct *vma, unsigned long address) 5287 { 5288 struct address_space *mapping; 5289 pgoff_t idx; 5290 5291 mapping = vma->vm_file->f_mapping; 5292 idx = vma_hugecache_offset(h, vma, address); 5293 5294 return find_lock_page(mapping, idx); 5295 } 5296 5297 /* 5298 * Return whether there is a pagecache page to back given address within VMA. 5299 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page. 5300 */ 5301 static bool hugetlbfs_pagecache_present(struct hstate *h, 5302 struct vm_area_struct *vma, unsigned long address) 5303 { 5304 struct address_space *mapping; 5305 pgoff_t idx; 5306 struct page *page; 5307 5308 mapping = vma->vm_file->f_mapping; 5309 idx = vma_hugecache_offset(h, vma, address); 5310 5311 page = find_get_page(mapping, idx); 5312 if (page) 5313 put_page(page); 5314 return page != NULL; 5315 } 5316 5317 int huge_add_to_page_cache(struct page *page, struct address_space *mapping, 5318 pgoff_t idx) 5319 { 5320 struct inode *inode = mapping->host; 5321 struct hstate *h = hstate_inode(inode); 5322 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL); 5323 5324 if (err) 5325 return err; 5326 ClearHPageRestoreReserve(page); 5327 5328 /* 5329 * set page dirty so that it will not be removed from cache/file 5330 * by non-hugetlbfs specific code paths. 5331 */ 5332 set_page_dirty(page); 5333 5334 spin_lock(&inode->i_lock); 5335 inode->i_blocks += blocks_per_huge_page(h); 5336 spin_unlock(&inode->i_lock); 5337 return 0; 5338 } 5339 5340 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma, 5341 struct address_space *mapping, 5342 pgoff_t idx, 5343 unsigned int flags, 5344 unsigned long haddr, 5345 unsigned long reason) 5346 { 5347 vm_fault_t ret; 5348 u32 hash; 5349 struct vm_fault vmf = { 5350 .vma = vma, 5351 .address = haddr, 5352 .flags = flags, 5353 5354 /* 5355 * Hard to debug if it ends up being 5356 * used by a callee that assumes 5357 * something about the other 5358 * uninitialized fields... same as in 5359 * memory.c 5360 */ 5361 }; 5362 5363 /* 5364 * hugetlb_fault_mutex and i_mmap_rwsem must be 5365 * dropped before handling userfault. Reacquire 5366 * after handling fault to make calling code simpler. 5367 */ 5368 hash = hugetlb_fault_mutex_hash(mapping, idx); 5369 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 5370 i_mmap_unlock_read(mapping); 5371 ret = handle_userfault(&vmf, reason); 5372 i_mmap_lock_read(mapping); 5373 mutex_lock(&hugetlb_fault_mutex_table[hash]); 5374 5375 return ret; 5376 } 5377 5378 static vm_fault_t hugetlb_no_page(struct mm_struct *mm, 5379 struct vm_area_struct *vma, 5380 struct address_space *mapping, pgoff_t idx, 5381 unsigned long address, pte_t *ptep, unsigned int flags) 5382 { 5383 struct hstate *h = hstate_vma(vma); 5384 vm_fault_t ret = VM_FAULT_SIGBUS; 5385 int anon_rmap = 0; 5386 unsigned long size; 5387 struct page *page; 5388 pte_t new_pte; 5389 spinlock_t *ptl; 5390 unsigned long haddr = address & huge_page_mask(h); 5391 bool new_page, new_pagecache_page = false; 5392 5393 /* 5394 * Currently, we are forced to kill the process in the event the 5395 * original mapper has unmapped pages from the child due to a failed 5396 * COW. Warn that such a situation has occurred as it may not be obvious 5397 */ 5398 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { 5399 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n", 5400 current->pid); 5401 return ret; 5402 } 5403 5404 /* 5405 * We can not race with truncation due to holding i_mmap_rwsem. 5406 * i_size is modified when holding i_mmap_rwsem, so check here 5407 * once for faults beyond end of file. 5408 */ 5409 size = i_size_read(mapping->host) >> huge_page_shift(h); 5410 if (idx >= size) 5411 goto out; 5412 5413 retry: 5414 new_page = false; 5415 page = find_lock_page(mapping, idx); 5416 if (!page) { 5417 /* Check for page in userfault range */ 5418 if (userfaultfd_missing(vma)) { 5419 ret = hugetlb_handle_userfault(vma, mapping, idx, 5420 flags, haddr, 5421 VM_UFFD_MISSING); 5422 goto out; 5423 } 5424 5425 page = alloc_huge_page(vma, haddr, 0); 5426 if (IS_ERR(page)) { 5427 /* 5428 * Returning error will result in faulting task being 5429 * sent SIGBUS. The hugetlb fault mutex prevents two 5430 * tasks from racing to fault in the same page which 5431 * could result in false unable to allocate errors. 5432 * Page migration does not take the fault mutex, but 5433 * does a clear then write of pte's under page table 5434 * lock. Page fault code could race with migration, 5435 * notice the clear pte and try to allocate a page 5436 * here. Before returning error, get ptl and make 5437 * sure there really is no pte entry. 5438 */ 5439 ptl = huge_pte_lock(h, mm, ptep); 5440 ret = 0; 5441 if (huge_pte_none(huge_ptep_get(ptep))) 5442 ret = vmf_error(PTR_ERR(page)); 5443 spin_unlock(ptl); 5444 goto out; 5445 } 5446 clear_huge_page(page, address, pages_per_huge_page(h)); 5447 __SetPageUptodate(page); 5448 new_page = true; 5449 5450 if (vma->vm_flags & VM_MAYSHARE) { 5451 int err = huge_add_to_page_cache(page, mapping, idx); 5452 if (err) { 5453 put_page(page); 5454 if (err == -EEXIST) 5455 goto retry; 5456 goto out; 5457 } 5458 new_pagecache_page = true; 5459 } else { 5460 lock_page(page); 5461 if (unlikely(anon_vma_prepare(vma))) { 5462 ret = VM_FAULT_OOM; 5463 goto backout_unlocked; 5464 } 5465 anon_rmap = 1; 5466 } 5467 } else { 5468 /* 5469 * If memory error occurs between mmap() and fault, some process 5470 * don't have hwpoisoned swap entry for errored virtual address. 5471 * So we need to block hugepage fault by PG_hwpoison bit check. 5472 */ 5473 if (unlikely(PageHWPoison(page))) { 5474 ret = VM_FAULT_HWPOISON_LARGE | 5475 VM_FAULT_SET_HINDEX(hstate_index(h)); 5476 goto backout_unlocked; 5477 } 5478 5479 /* Check for page in userfault range. */ 5480 if (userfaultfd_minor(vma)) { 5481 unlock_page(page); 5482 put_page(page); 5483 ret = hugetlb_handle_userfault(vma, mapping, idx, 5484 flags, haddr, 5485 VM_UFFD_MINOR); 5486 goto out; 5487 } 5488 } 5489 5490 /* 5491 * If we are going to COW a private mapping later, we examine the 5492 * pending reservations for this page now. This will ensure that 5493 * any allocations necessary to record that reservation occur outside 5494 * the spinlock. 5495 */ 5496 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 5497 if (vma_needs_reservation(h, vma, haddr) < 0) { 5498 ret = VM_FAULT_OOM; 5499 goto backout_unlocked; 5500 } 5501 /* Just decrements count, does not deallocate */ 5502 vma_end_reservation(h, vma, haddr); 5503 } 5504 5505 ptl = huge_pte_lock(h, mm, ptep); 5506 ret = 0; 5507 if (!huge_pte_none(huge_ptep_get(ptep))) 5508 goto backout; 5509 5510 if (anon_rmap) { 5511 ClearHPageRestoreReserve(page); 5512 hugepage_add_new_anon_rmap(page, vma, haddr); 5513 } else 5514 page_dup_rmap(page, true); 5515 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE) 5516 && (vma->vm_flags & VM_SHARED))); 5517 set_huge_pte_at(mm, haddr, ptep, new_pte); 5518 5519 hugetlb_count_add(pages_per_huge_page(h), mm); 5520 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 5521 /* Optimization, do the COW without a second fault */ 5522 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl); 5523 } 5524 5525 spin_unlock(ptl); 5526 5527 /* 5528 * Only set HPageMigratable in newly allocated pages. Existing pages 5529 * found in the pagecache may not have HPageMigratableset if they have 5530 * been isolated for migration. 5531 */ 5532 if (new_page) 5533 SetHPageMigratable(page); 5534 5535 unlock_page(page); 5536 out: 5537 return ret; 5538 5539 backout: 5540 spin_unlock(ptl); 5541 backout_unlocked: 5542 unlock_page(page); 5543 /* restore reserve for newly allocated pages not in page cache */ 5544 if (new_page && !new_pagecache_page) 5545 restore_reserve_on_error(h, vma, haddr, page); 5546 put_page(page); 5547 goto out; 5548 } 5549 5550 #ifdef CONFIG_SMP 5551 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 5552 { 5553 unsigned long key[2]; 5554 u32 hash; 5555 5556 key[0] = (unsigned long) mapping; 5557 key[1] = idx; 5558 5559 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0); 5560 5561 return hash & (num_fault_mutexes - 1); 5562 } 5563 #else 5564 /* 5565 * For uniprocessor systems we always use a single mutex, so just 5566 * return 0 and avoid the hashing overhead. 5567 */ 5568 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 5569 { 5570 return 0; 5571 } 5572 #endif 5573 5574 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, 5575 unsigned long address, unsigned int flags) 5576 { 5577 pte_t *ptep, entry; 5578 spinlock_t *ptl; 5579 vm_fault_t ret; 5580 u32 hash; 5581 pgoff_t idx; 5582 struct page *page = NULL; 5583 struct page *pagecache_page = NULL; 5584 struct hstate *h = hstate_vma(vma); 5585 struct address_space *mapping; 5586 int need_wait_lock = 0; 5587 unsigned long haddr = address & huge_page_mask(h); 5588 5589 ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); 5590 if (ptep) { 5591 /* 5592 * Since we hold no locks, ptep could be stale. That is 5593 * OK as we are only making decisions based on content and 5594 * not actually modifying content here. 5595 */ 5596 entry = huge_ptep_get(ptep); 5597 if (unlikely(is_hugetlb_entry_migration(entry))) { 5598 migration_entry_wait_huge(vma, mm, ptep); 5599 return 0; 5600 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) 5601 return VM_FAULT_HWPOISON_LARGE | 5602 VM_FAULT_SET_HINDEX(hstate_index(h)); 5603 } 5604 5605 /* 5606 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold 5607 * until finished with ptep. This serves two purposes: 5608 * 1) It prevents huge_pmd_unshare from being called elsewhere 5609 * and making the ptep no longer valid. 5610 * 2) It synchronizes us with i_size modifications during truncation. 5611 * 5612 * ptep could have already be assigned via huge_pte_offset. That 5613 * is OK, as huge_pte_alloc will return the same value unless 5614 * something has changed. 5615 */ 5616 mapping = vma->vm_file->f_mapping; 5617 i_mmap_lock_read(mapping); 5618 ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h)); 5619 if (!ptep) { 5620 i_mmap_unlock_read(mapping); 5621 return VM_FAULT_OOM; 5622 } 5623 5624 /* 5625 * Serialize hugepage allocation and instantiation, so that we don't 5626 * get spurious allocation failures if two CPUs race to instantiate 5627 * the same page in the page cache. 5628 */ 5629 idx = vma_hugecache_offset(h, vma, haddr); 5630 hash = hugetlb_fault_mutex_hash(mapping, idx); 5631 mutex_lock(&hugetlb_fault_mutex_table[hash]); 5632 5633 entry = huge_ptep_get(ptep); 5634 if (huge_pte_none(entry)) { 5635 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags); 5636 goto out_mutex; 5637 } 5638 5639 ret = 0; 5640 5641 /* 5642 * entry could be a migration/hwpoison entry at this point, so this 5643 * check prevents the kernel from going below assuming that we have 5644 * an active hugepage in pagecache. This goto expects the 2nd page 5645 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will 5646 * properly handle it. 5647 */ 5648 if (!pte_present(entry)) 5649 goto out_mutex; 5650 5651 /* 5652 * If we are going to COW the mapping later, we examine the pending 5653 * reservations for this page now. This will ensure that any 5654 * allocations necessary to record that reservation occur outside the 5655 * spinlock. For private mappings, we also lookup the pagecache 5656 * page now as it is used to determine if a reservation has been 5657 * consumed. 5658 */ 5659 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) { 5660 if (vma_needs_reservation(h, vma, haddr) < 0) { 5661 ret = VM_FAULT_OOM; 5662 goto out_mutex; 5663 } 5664 /* Just decrements count, does not deallocate */ 5665 vma_end_reservation(h, vma, haddr); 5666 5667 if (!(vma->vm_flags & VM_MAYSHARE)) 5668 pagecache_page = hugetlbfs_pagecache_page(h, 5669 vma, haddr); 5670 } 5671 5672 ptl = huge_pte_lock(h, mm, ptep); 5673 5674 /* Check for a racing update before calling hugetlb_cow */ 5675 if (unlikely(!pte_same(entry, huge_ptep_get(ptep)))) 5676 goto out_ptl; 5677 5678 /* 5679 * hugetlb_cow() requires page locks of pte_page(entry) and 5680 * pagecache_page, so here we need take the former one 5681 * when page != pagecache_page or !pagecache_page. 5682 */ 5683 page = pte_page(entry); 5684 if (page != pagecache_page) 5685 if (!trylock_page(page)) { 5686 need_wait_lock = 1; 5687 goto out_ptl; 5688 } 5689 5690 get_page(page); 5691 5692 if (flags & FAULT_FLAG_WRITE) { 5693 if (!huge_pte_write(entry)) { 5694 ret = hugetlb_cow(mm, vma, address, ptep, 5695 pagecache_page, ptl); 5696 goto out_put_page; 5697 } 5698 entry = huge_pte_mkdirty(entry); 5699 } 5700 entry = pte_mkyoung(entry); 5701 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry, 5702 flags & FAULT_FLAG_WRITE)) 5703 update_mmu_cache(vma, haddr, ptep); 5704 out_put_page: 5705 if (page != pagecache_page) 5706 unlock_page(page); 5707 put_page(page); 5708 out_ptl: 5709 spin_unlock(ptl); 5710 5711 if (pagecache_page) { 5712 unlock_page(pagecache_page); 5713 put_page(pagecache_page); 5714 } 5715 out_mutex: 5716 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 5717 i_mmap_unlock_read(mapping); 5718 /* 5719 * Generally it's safe to hold refcount during waiting page lock. But 5720 * here we just wait to defer the next page fault to avoid busy loop and 5721 * the page is not used after unlocked before returning from the current 5722 * page fault. So we are safe from accessing freed page, even if we wait 5723 * here without taking refcount. 5724 */ 5725 if (need_wait_lock) 5726 wait_on_page_locked(page); 5727 return ret; 5728 } 5729 5730 #ifdef CONFIG_USERFAULTFD 5731 /* 5732 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with 5733 * modifications for huge pages. 5734 */ 5735 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm, 5736 pte_t *dst_pte, 5737 struct vm_area_struct *dst_vma, 5738 unsigned long dst_addr, 5739 unsigned long src_addr, 5740 enum mcopy_atomic_mode mode, 5741 struct page **pagep) 5742 { 5743 bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE); 5744 struct hstate *h = hstate_vma(dst_vma); 5745 struct address_space *mapping = dst_vma->vm_file->f_mapping; 5746 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr); 5747 unsigned long size; 5748 int vm_shared = dst_vma->vm_flags & VM_SHARED; 5749 pte_t _dst_pte; 5750 spinlock_t *ptl; 5751 int ret = -ENOMEM; 5752 struct page *page; 5753 int writable; 5754 bool page_in_pagecache = false; 5755 5756 if (is_continue) { 5757 ret = -EFAULT; 5758 page = find_lock_page(mapping, idx); 5759 if (!page) 5760 goto out; 5761 page_in_pagecache = true; 5762 } else if (!*pagep) { 5763 /* If a page already exists, then it's UFFDIO_COPY for 5764 * a non-missing case. Return -EEXIST. 5765 */ 5766 if (vm_shared && 5767 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) { 5768 ret = -EEXIST; 5769 goto out; 5770 } 5771 5772 page = alloc_huge_page(dst_vma, dst_addr, 0); 5773 if (IS_ERR(page)) { 5774 ret = -ENOMEM; 5775 goto out; 5776 } 5777 5778 ret = copy_huge_page_from_user(page, 5779 (const void __user *) src_addr, 5780 pages_per_huge_page(h), false); 5781 5782 /* fallback to copy_from_user outside mmap_lock */ 5783 if (unlikely(ret)) { 5784 ret = -ENOENT; 5785 /* Free the allocated page which may have 5786 * consumed a reservation. 5787 */ 5788 restore_reserve_on_error(h, dst_vma, dst_addr, page); 5789 put_page(page); 5790 5791 /* Allocate a temporary page to hold the copied 5792 * contents. 5793 */ 5794 page = alloc_huge_page_vma(h, dst_vma, dst_addr); 5795 if (!page) { 5796 ret = -ENOMEM; 5797 goto out; 5798 } 5799 *pagep = page; 5800 /* Set the outparam pagep and return to the caller to 5801 * copy the contents outside the lock. Don't free the 5802 * page. 5803 */ 5804 goto out; 5805 } 5806 } else { 5807 if (vm_shared && 5808 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) { 5809 put_page(*pagep); 5810 ret = -EEXIST; 5811 *pagep = NULL; 5812 goto out; 5813 } 5814 5815 page = alloc_huge_page(dst_vma, dst_addr, 0); 5816 if (IS_ERR(page)) { 5817 ret = -ENOMEM; 5818 *pagep = NULL; 5819 goto out; 5820 } 5821 folio_copy(page_folio(page), page_folio(*pagep)); 5822 put_page(*pagep); 5823 *pagep = NULL; 5824 } 5825 5826 /* 5827 * The memory barrier inside __SetPageUptodate makes sure that 5828 * preceding stores to the page contents become visible before 5829 * the set_pte_at() write. 5830 */ 5831 __SetPageUptodate(page); 5832 5833 /* Add shared, newly allocated pages to the page cache. */ 5834 if (vm_shared && !is_continue) { 5835 size = i_size_read(mapping->host) >> huge_page_shift(h); 5836 ret = -EFAULT; 5837 if (idx >= size) 5838 goto out_release_nounlock; 5839 5840 /* 5841 * Serialization between remove_inode_hugepages() and 5842 * huge_add_to_page_cache() below happens through the 5843 * hugetlb_fault_mutex_table that here must be hold by 5844 * the caller. 5845 */ 5846 ret = huge_add_to_page_cache(page, mapping, idx); 5847 if (ret) 5848 goto out_release_nounlock; 5849 page_in_pagecache = true; 5850 } 5851 5852 ptl = huge_pte_lockptr(h, dst_mm, dst_pte); 5853 spin_lock(ptl); 5854 5855 /* 5856 * Recheck the i_size after holding PT lock to make sure not 5857 * to leave any page mapped (as page_mapped()) beyond the end 5858 * of the i_size (remove_inode_hugepages() is strict about 5859 * enforcing that). If we bail out here, we'll also leave a 5860 * page in the radix tree in the vm_shared case beyond the end 5861 * of the i_size, but remove_inode_hugepages() will take care 5862 * of it as soon as we drop the hugetlb_fault_mutex_table. 5863 */ 5864 size = i_size_read(mapping->host) >> huge_page_shift(h); 5865 ret = -EFAULT; 5866 if (idx >= size) 5867 goto out_release_unlock; 5868 5869 ret = -EEXIST; 5870 if (!huge_pte_none(huge_ptep_get(dst_pte))) 5871 goto out_release_unlock; 5872 5873 if (vm_shared) { 5874 page_dup_rmap(page, true); 5875 } else { 5876 ClearHPageRestoreReserve(page); 5877 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr); 5878 } 5879 5880 /* For CONTINUE on a non-shared VMA, don't set VM_WRITE for CoW. */ 5881 if (is_continue && !vm_shared) 5882 writable = 0; 5883 else 5884 writable = dst_vma->vm_flags & VM_WRITE; 5885 5886 _dst_pte = make_huge_pte(dst_vma, page, writable); 5887 if (writable) 5888 _dst_pte = huge_pte_mkdirty(_dst_pte); 5889 _dst_pte = pte_mkyoung(_dst_pte); 5890 5891 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte); 5892 5893 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte, 5894 dst_vma->vm_flags & VM_WRITE); 5895 hugetlb_count_add(pages_per_huge_page(h), dst_mm); 5896 5897 /* No need to invalidate - it was non-present before */ 5898 update_mmu_cache(dst_vma, dst_addr, dst_pte); 5899 5900 spin_unlock(ptl); 5901 if (!is_continue) 5902 SetHPageMigratable(page); 5903 if (vm_shared || is_continue) 5904 unlock_page(page); 5905 ret = 0; 5906 out: 5907 return ret; 5908 out_release_unlock: 5909 spin_unlock(ptl); 5910 if (vm_shared || is_continue) 5911 unlock_page(page); 5912 out_release_nounlock: 5913 if (!page_in_pagecache) 5914 restore_reserve_on_error(h, dst_vma, dst_addr, page); 5915 put_page(page); 5916 goto out; 5917 } 5918 #endif /* CONFIG_USERFAULTFD */ 5919 5920 static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma, 5921 int refs, struct page **pages, 5922 struct vm_area_struct **vmas) 5923 { 5924 int nr; 5925 5926 for (nr = 0; nr < refs; nr++) { 5927 if (likely(pages)) 5928 pages[nr] = mem_map_offset(page, nr); 5929 if (vmas) 5930 vmas[nr] = vma; 5931 } 5932 } 5933 5934 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, 5935 struct page **pages, struct vm_area_struct **vmas, 5936 unsigned long *position, unsigned long *nr_pages, 5937 long i, unsigned int flags, int *locked) 5938 { 5939 unsigned long pfn_offset; 5940 unsigned long vaddr = *position; 5941 unsigned long remainder = *nr_pages; 5942 struct hstate *h = hstate_vma(vma); 5943 int err = -EFAULT, refs; 5944 5945 while (vaddr < vma->vm_end && remainder) { 5946 pte_t *pte; 5947 spinlock_t *ptl = NULL; 5948 int absent; 5949 struct page *page; 5950 5951 /* 5952 * If we have a pending SIGKILL, don't keep faulting pages and 5953 * potentially allocating memory. 5954 */ 5955 if (fatal_signal_pending(current)) { 5956 remainder = 0; 5957 break; 5958 } 5959 5960 /* 5961 * Some archs (sparc64, sh*) have multiple pte_ts to 5962 * each hugepage. We have to make sure we get the 5963 * first, for the page indexing below to work. 5964 * 5965 * Note that page table lock is not held when pte is null. 5966 */ 5967 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h), 5968 huge_page_size(h)); 5969 if (pte) 5970 ptl = huge_pte_lock(h, mm, pte); 5971 absent = !pte || huge_pte_none(huge_ptep_get(pte)); 5972 5973 /* 5974 * When coredumping, it suits get_dump_page if we just return 5975 * an error where there's an empty slot with no huge pagecache 5976 * to back it. This way, we avoid allocating a hugepage, and 5977 * the sparse dumpfile avoids allocating disk blocks, but its 5978 * huge holes still show up with zeroes where they need to be. 5979 */ 5980 if (absent && (flags & FOLL_DUMP) && 5981 !hugetlbfs_pagecache_present(h, vma, vaddr)) { 5982 if (pte) 5983 spin_unlock(ptl); 5984 remainder = 0; 5985 break; 5986 } 5987 5988 /* 5989 * We need call hugetlb_fault for both hugepages under migration 5990 * (in which case hugetlb_fault waits for the migration,) and 5991 * hwpoisoned hugepages (in which case we need to prevent the 5992 * caller from accessing to them.) In order to do this, we use 5993 * here is_swap_pte instead of is_hugetlb_entry_migration and 5994 * is_hugetlb_entry_hwpoisoned. This is because it simply covers 5995 * both cases, and because we can't follow correct pages 5996 * directly from any kind of swap entries. 5997 */ 5998 if (absent || is_swap_pte(huge_ptep_get(pte)) || 5999 ((flags & FOLL_WRITE) && 6000 !huge_pte_write(huge_ptep_get(pte)))) { 6001 vm_fault_t ret; 6002 unsigned int fault_flags = 0; 6003 6004 if (pte) 6005 spin_unlock(ptl); 6006 if (flags & FOLL_WRITE) 6007 fault_flags |= FAULT_FLAG_WRITE; 6008 if (locked) 6009 fault_flags |= FAULT_FLAG_ALLOW_RETRY | 6010 FAULT_FLAG_KILLABLE; 6011 if (flags & FOLL_NOWAIT) 6012 fault_flags |= FAULT_FLAG_ALLOW_RETRY | 6013 FAULT_FLAG_RETRY_NOWAIT; 6014 if (flags & FOLL_TRIED) { 6015 /* 6016 * Note: FAULT_FLAG_ALLOW_RETRY and 6017 * FAULT_FLAG_TRIED can co-exist 6018 */ 6019 fault_flags |= FAULT_FLAG_TRIED; 6020 } 6021 ret = hugetlb_fault(mm, vma, vaddr, fault_flags); 6022 if (ret & VM_FAULT_ERROR) { 6023 err = vm_fault_to_errno(ret, flags); 6024 remainder = 0; 6025 break; 6026 } 6027 if (ret & VM_FAULT_RETRY) { 6028 if (locked && 6029 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) 6030 *locked = 0; 6031 *nr_pages = 0; 6032 /* 6033 * VM_FAULT_RETRY must not return an 6034 * error, it will return zero 6035 * instead. 6036 * 6037 * No need to update "position" as the 6038 * caller will not check it after 6039 * *nr_pages is set to 0. 6040 */ 6041 return i; 6042 } 6043 continue; 6044 } 6045 6046 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT; 6047 page = pte_page(huge_ptep_get(pte)); 6048 6049 /* 6050 * If subpage information not requested, update counters 6051 * and skip the same_page loop below. 6052 */ 6053 if (!pages && !vmas && !pfn_offset && 6054 (vaddr + huge_page_size(h) < vma->vm_end) && 6055 (remainder >= pages_per_huge_page(h))) { 6056 vaddr += huge_page_size(h); 6057 remainder -= pages_per_huge_page(h); 6058 i += pages_per_huge_page(h); 6059 spin_unlock(ptl); 6060 continue; 6061 } 6062 6063 /* vaddr may not be aligned to PAGE_SIZE */ 6064 refs = min3(pages_per_huge_page(h) - pfn_offset, remainder, 6065 (vma->vm_end - ALIGN_DOWN(vaddr, PAGE_SIZE)) >> PAGE_SHIFT); 6066 6067 if (pages || vmas) 6068 record_subpages_vmas(mem_map_offset(page, pfn_offset), 6069 vma, refs, 6070 likely(pages) ? pages + i : NULL, 6071 vmas ? vmas + i : NULL); 6072 6073 if (pages) { 6074 /* 6075 * try_grab_compound_head() should always succeed here, 6076 * because: a) we hold the ptl lock, and b) we've just 6077 * checked that the huge page is present in the page 6078 * tables. If the huge page is present, then the tail 6079 * pages must also be present. The ptl prevents the 6080 * head page and tail pages from being rearranged in 6081 * any way. So this page must be available at this 6082 * point, unless the page refcount overflowed: 6083 */ 6084 if (WARN_ON_ONCE(!try_grab_compound_head(pages[i], 6085 refs, 6086 flags))) { 6087 spin_unlock(ptl); 6088 remainder = 0; 6089 err = -ENOMEM; 6090 break; 6091 } 6092 } 6093 6094 vaddr += (refs << PAGE_SHIFT); 6095 remainder -= refs; 6096 i += refs; 6097 6098 spin_unlock(ptl); 6099 } 6100 *nr_pages = remainder; 6101 /* 6102 * setting position is actually required only if remainder is 6103 * not zero but it's faster not to add a "if (remainder)" 6104 * branch. 6105 */ 6106 *position = vaddr; 6107 6108 return i ? i : err; 6109 } 6110 6111 unsigned long hugetlb_change_protection(struct vm_area_struct *vma, 6112 unsigned long address, unsigned long end, pgprot_t newprot) 6113 { 6114 struct mm_struct *mm = vma->vm_mm; 6115 unsigned long start = address; 6116 pte_t *ptep; 6117 pte_t pte; 6118 struct hstate *h = hstate_vma(vma); 6119 unsigned long pages = 0; 6120 bool shared_pmd = false; 6121 struct mmu_notifier_range range; 6122 6123 /* 6124 * In the case of shared PMDs, the area to flush could be beyond 6125 * start/end. Set range.start/range.end to cover the maximum possible 6126 * range if PMD sharing is possible. 6127 */ 6128 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA, 6129 0, vma, mm, start, end); 6130 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 6131 6132 BUG_ON(address >= end); 6133 flush_cache_range(vma, range.start, range.end); 6134 6135 mmu_notifier_invalidate_range_start(&range); 6136 i_mmap_lock_write(vma->vm_file->f_mapping); 6137 for (; address < end; address += huge_page_size(h)) { 6138 spinlock_t *ptl; 6139 ptep = huge_pte_offset(mm, address, huge_page_size(h)); 6140 if (!ptep) 6141 continue; 6142 ptl = huge_pte_lock(h, mm, ptep); 6143 if (huge_pmd_unshare(mm, vma, &address, ptep)) { 6144 pages++; 6145 spin_unlock(ptl); 6146 shared_pmd = true; 6147 continue; 6148 } 6149 pte = huge_ptep_get(ptep); 6150 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) { 6151 spin_unlock(ptl); 6152 continue; 6153 } 6154 if (unlikely(is_hugetlb_entry_migration(pte))) { 6155 swp_entry_t entry = pte_to_swp_entry(pte); 6156 6157 if (is_writable_migration_entry(entry)) { 6158 pte_t newpte; 6159 6160 entry = make_readable_migration_entry( 6161 swp_offset(entry)); 6162 newpte = swp_entry_to_pte(entry); 6163 set_huge_swap_pte_at(mm, address, ptep, 6164 newpte, huge_page_size(h)); 6165 pages++; 6166 } 6167 spin_unlock(ptl); 6168 continue; 6169 } 6170 if (!huge_pte_none(pte)) { 6171 pte_t old_pte; 6172 unsigned int shift = huge_page_shift(hstate_vma(vma)); 6173 6174 old_pte = huge_ptep_modify_prot_start(vma, address, ptep); 6175 pte = pte_mkhuge(huge_pte_modify(old_pte, newprot)); 6176 pte = arch_make_huge_pte(pte, shift, vma->vm_flags); 6177 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte); 6178 pages++; 6179 } 6180 spin_unlock(ptl); 6181 } 6182 /* 6183 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare 6184 * may have cleared our pud entry and done put_page on the page table: 6185 * once we release i_mmap_rwsem, another task can do the final put_page 6186 * and that page table be reused and filled with junk. If we actually 6187 * did unshare a page of pmds, flush the range corresponding to the pud. 6188 */ 6189 if (shared_pmd) 6190 flush_hugetlb_tlb_range(vma, range.start, range.end); 6191 else 6192 flush_hugetlb_tlb_range(vma, start, end); 6193 /* 6194 * No need to call mmu_notifier_invalidate_range() we are downgrading 6195 * page table protection not changing it to point to a new page. 6196 * 6197 * See Documentation/vm/mmu_notifier.rst 6198 */ 6199 i_mmap_unlock_write(vma->vm_file->f_mapping); 6200 mmu_notifier_invalidate_range_end(&range); 6201 6202 return pages << h->order; 6203 } 6204 6205 /* Return true if reservation was successful, false otherwise. */ 6206 bool hugetlb_reserve_pages(struct inode *inode, 6207 long from, long to, 6208 struct vm_area_struct *vma, 6209 vm_flags_t vm_flags) 6210 { 6211 long chg, add = -1; 6212 struct hstate *h = hstate_inode(inode); 6213 struct hugepage_subpool *spool = subpool_inode(inode); 6214 struct resv_map *resv_map; 6215 struct hugetlb_cgroup *h_cg = NULL; 6216 long gbl_reserve, regions_needed = 0; 6217 6218 /* This should never happen */ 6219 if (from > to) { 6220 VM_WARN(1, "%s called with a negative range\n", __func__); 6221 return false; 6222 } 6223 6224 /* 6225 * Only apply hugepage reservation if asked. At fault time, an 6226 * attempt will be made for VM_NORESERVE to allocate a page 6227 * without using reserves 6228 */ 6229 if (vm_flags & VM_NORESERVE) 6230 return true; 6231 6232 /* 6233 * Shared mappings base their reservation on the number of pages that 6234 * are already allocated on behalf of the file. Private mappings need 6235 * to reserve the full area even if read-only as mprotect() may be 6236 * called to make the mapping read-write. Assume !vma is a shm mapping 6237 */ 6238 if (!vma || vma->vm_flags & VM_MAYSHARE) { 6239 /* 6240 * resv_map can not be NULL as hugetlb_reserve_pages is only 6241 * called for inodes for which resv_maps were created (see 6242 * hugetlbfs_get_inode). 6243 */ 6244 resv_map = inode_resv_map(inode); 6245 6246 chg = region_chg(resv_map, from, to, ®ions_needed); 6247 6248 } else { 6249 /* Private mapping. */ 6250 resv_map = resv_map_alloc(); 6251 if (!resv_map) 6252 return false; 6253 6254 chg = to - from; 6255 6256 set_vma_resv_map(vma, resv_map); 6257 set_vma_resv_flags(vma, HPAGE_RESV_OWNER); 6258 } 6259 6260 if (chg < 0) 6261 goto out_err; 6262 6263 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h), 6264 chg * pages_per_huge_page(h), &h_cg) < 0) 6265 goto out_err; 6266 6267 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) { 6268 /* For private mappings, the hugetlb_cgroup uncharge info hangs 6269 * of the resv_map. 6270 */ 6271 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h); 6272 } 6273 6274 /* 6275 * There must be enough pages in the subpool for the mapping. If 6276 * the subpool has a minimum size, there may be some global 6277 * reservations already in place (gbl_reserve). 6278 */ 6279 gbl_reserve = hugepage_subpool_get_pages(spool, chg); 6280 if (gbl_reserve < 0) 6281 goto out_uncharge_cgroup; 6282 6283 /* 6284 * Check enough hugepages are available for the reservation. 6285 * Hand the pages back to the subpool if there are not 6286 */ 6287 if (hugetlb_acct_memory(h, gbl_reserve) < 0) 6288 goto out_put_pages; 6289 6290 /* 6291 * Account for the reservations made. Shared mappings record regions 6292 * that have reservations as they are shared by multiple VMAs. 6293 * When the last VMA disappears, the region map says how much 6294 * the reservation was and the page cache tells how much of 6295 * the reservation was consumed. Private mappings are per-VMA and 6296 * only the consumed reservations are tracked. When the VMA 6297 * disappears, the original reservation is the VMA size and the 6298 * consumed reservations are stored in the map. Hence, nothing 6299 * else has to be done for private mappings here 6300 */ 6301 if (!vma || vma->vm_flags & VM_MAYSHARE) { 6302 add = region_add(resv_map, from, to, regions_needed, h, h_cg); 6303 6304 if (unlikely(add < 0)) { 6305 hugetlb_acct_memory(h, -gbl_reserve); 6306 goto out_put_pages; 6307 } else if (unlikely(chg > add)) { 6308 /* 6309 * pages in this range were added to the reserve 6310 * map between region_chg and region_add. This 6311 * indicates a race with alloc_huge_page. Adjust 6312 * the subpool and reserve counts modified above 6313 * based on the difference. 6314 */ 6315 long rsv_adjust; 6316 6317 /* 6318 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the 6319 * reference to h_cg->css. See comment below for detail. 6320 */ 6321 hugetlb_cgroup_uncharge_cgroup_rsvd( 6322 hstate_index(h), 6323 (chg - add) * pages_per_huge_page(h), h_cg); 6324 6325 rsv_adjust = hugepage_subpool_put_pages(spool, 6326 chg - add); 6327 hugetlb_acct_memory(h, -rsv_adjust); 6328 } else if (h_cg) { 6329 /* 6330 * The file_regions will hold their own reference to 6331 * h_cg->css. So we should release the reference held 6332 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are 6333 * done. 6334 */ 6335 hugetlb_cgroup_put_rsvd_cgroup(h_cg); 6336 } 6337 } 6338 return true; 6339 6340 out_put_pages: 6341 /* put back original number of pages, chg */ 6342 (void)hugepage_subpool_put_pages(spool, chg); 6343 out_uncharge_cgroup: 6344 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h), 6345 chg * pages_per_huge_page(h), h_cg); 6346 out_err: 6347 if (!vma || vma->vm_flags & VM_MAYSHARE) 6348 /* Only call region_abort if the region_chg succeeded but the 6349 * region_add failed or didn't run. 6350 */ 6351 if (chg >= 0 && add < 0) 6352 region_abort(resv_map, from, to, regions_needed); 6353 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 6354 kref_put(&resv_map->refs, resv_map_release); 6355 return false; 6356 } 6357 6358 long hugetlb_unreserve_pages(struct inode *inode, long start, long end, 6359 long freed) 6360 { 6361 struct hstate *h = hstate_inode(inode); 6362 struct resv_map *resv_map = inode_resv_map(inode); 6363 long chg = 0; 6364 struct hugepage_subpool *spool = subpool_inode(inode); 6365 long gbl_reserve; 6366 6367 /* 6368 * Since this routine can be called in the evict inode path for all 6369 * hugetlbfs inodes, resv_map could be NULL. 6370 */ 6371 if (resv_map) { 6372 chg = region_del(resv_map, start, end); 6373 /* 6374 * region_del() can fail in the rare case where a region 6375 * must be split and another region descriptor can not be 6376 * allocated. If end == LONG_MAX, it will not fail. 6377 */ 6378 if (chg < 0) 6379 return chg; 6380 } 6381 6382 spin_lock(&inode->i_lock); 6383 inode->i_blocks -= (blocks_per_huge_page(h) * freed); 6384 spin_unlock(&inode->i_lock); 6385 6386 /* 6387 * If the subpool has a minimum size, the number of global 6388 * reservations to be released may be adjusted. 6389 * 6390 * Note that !resv_map implies freed == 0. So (chg - freed) 6391 * won't go negative. 6392 */ 6393 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed)); 6394 hugetlb_acct_memory(h, -gbl_reserve); 6395 6396 return 0; 6397 } 6398 6399 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE 6400 static unsigned long page_table_shareable(struct vm_area_struct *svma, 6401 struct vm_area_struct *vma, 6402 unsigned long addr, pgoff_t idx) 6403 { 6404 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) + 6405 svma->vm_start; 6406 unsigned long sbase = saddr & PUD_MASK; 6407 unsigned long s_end = sbase + PUD_SIZE; 6408 6409 /* Allow segments to share if only one is marked locked */ 6410 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK; 6411 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK; 6412 6413 /* 6414 * match the virtual addresses, permission and the alignment of the 6415 * page table page. 6416 */ 6417 if (pmd_index(addr) != pmd_index(saddr) || 6418 vm_flags != svm_flags || 6419 !range_in_vma(svma, sbase, s_end)) 6420 return 0; 6421 6422 return saddr; 6423 } 6424 6425 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr) 6426 { 6427 unsigned long base = addr & PUD_MASK; 6428 unsigned long end = base + PUD_SIZE; 6429 6430 /* 6431 * check on proper vm_flags and page table alignment 6432 */ 6433 if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end)) 6434 return true; 6435 return false; 6436 } 6437 6438 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr) 6439 { 6440 #ifdef CONFIG_USERFAULTFD 6441 if (uffd_disable_huge_pmd_share(vma)) 6442 return false; 6443 #endif 6444 return vma_shareable(vma, addr); 6445 } 6446 6447 /* 6448 * Determine if start,end range within vma could be mapped by shared pmd. 6449 * If yes, adjust start and end to cover range associated with possible 6450 * shared pmd mappings. 6451 */ 6452 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 6453 unsigned long *start, unsigned long *end) 6454 { 6455 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE), 6456 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE); 6457 6458 /* 6459 * vma needs to span at least one aligned PUD size, and the range 6460 * must be at least partially within in. 6461 */ 6462 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) || 6463 (*end <= v_start) || (*start >= v_end)) 6464 return; 6465 6466 /* Extend the range to be PUD aligned for a worst case scenario */ 6467 if (*start > v_start) 6468 *start = ALIGN_DOWN(*start, PUD_SIZE); 6469 6470 if (*end < v_end) 6471 *end = ALIGN(*end, PUD_SIZE); 6472 } 6473 6474 /* 6475 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc() 6476 * and returns the corresponding pte. While this is not necessary for the 6477 * !shared pmd case because we can allocate the pmd later as well, it makes the 6478 * code much cleaner. 6479 * 6480 * This routine must be called with i_mmap_rwsem held in at least read mode if 6481 * sharing is possible. For hugetlbfs, this prevents removal of any page 6482 * table entries associated with the address space. This is important as we 6483 * are setting up sharing based on existing page table entries (mappings). 6484 */ 6485 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, 6486 unsigned long addr, pud_t *pud) 6487 { 6488 struct address_space *mapping = vma->vm_file->f_mapping; 6489 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + 6490 vma->vm_pgoff; 6491 struct vm_area_struct *svma; 6492 unsigned long saddr; 6493 pte_t *spte = NULL; 6494 pte_t *pte; 6495 spinlock_t *ptl; 6496 6497 i_mmap_assert_locked(mapping); 6498 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) { 6499 if (svma == vma) 6500 continue; 6501 6502 saddr = page_table_shareable(svma, vma, addr, idx); 6503 if (saddr) { 6504 spte = huge_pte_offset(svma->vm_mm, saddr, 6505 vma_mmu_pagesize(svma)); 6506 if (spte) { 6507 get_page(virt_to_page(spte)); 6508 break; 6509 } 6510 } 6511 } 6512 6513 if (!spte) 6514 goto out; 6515 6516 ptl = huge_pte_lock(hstate_vma(vma), mm, spte); 6517 if (pud_none(*pud)) { 6518 pud_populate(mm, pud, 6519 (pmd_t *)((unsigned long)spte & PAGE_MASK)); 6520 mm_inc_nr_pmds(mm); 6521 } else { 6522 put_page(virt_to_page(spte)); 6523 } 6524 spin_unlock(ptl); 6525 out: 6526 pte = (pte_t *)pmd_alloc(mm, pud, addr); 6527 return pte; 6528 } 6529 6530 /* 6531 * unmap huge page backed by shared pte. 6532 * 6533 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared 6534 * indicated by page_count > 1, unmap is achieved by clearing pud and 6535 * decrementing the ref count. If count == 1, the pte page is not shared. 6536 * 6537 * Called with page table lock held and i_mmap_rwsem held in write mode. 6538 * 6539 * returns: 1 successfully unmapped a shared pte page 6540 * 0 the underlying pte page is not shared, or it is the last user 6541 */ 6542 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, 6543 unsigned long *addr, pte_t *ptep) 6544 { 6545 pgd_t *pgd = pgd_offset(mm, *addr); 6546 p4d_t *p4d = p4d_offset(pgd, *addr); 6547 pud_t *pud = pud_offset(p4d, *addr); 6548 6549 i_mmap_assert_write_locked(vma->vm_file->f_mapping); 6550 BUG_ON(page_count(virt_to_page(ptep)) == 0); 6551 if (page_count(virt_to_page(ptep)) == 1) 6552 return 0; 6553 6554 pud_clear(pud); 6555 put_page(virt_to_page(ptep)); 6556 mm_dec_nr_pmds(mm); 6557 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE; 6558 return 1; 6559 } 6560 6561 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 6562 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, 6563 unsigned long addr, pud_t *pud) 6564 { 6565 return NULL; 6566 } 6567 6568 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, 6569 unsigned long *addr, pte_t *ptep) 6570 { 6571 return 0; 6572 } 6573 6574 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 6575 unsigned long *start, unsigned long *end) 6576 { 6577 } 6578 6579 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr) 6580 { 6581 return false; 6582 } 6583 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 6584 6585 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB 6586 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 6587 unsigned long addr, unsigned long sz) 6588 { 6589 pgd_t *pgd; 6590 p4d_t *p4d; 6591 pud_t *pud; 6592 pte_t *pte = NULL; 6593 6594 pgd = pgd_offset(mm, addr); 6595 p4d = p4d_alloc(mm, pgd, addr); 6596 if (!p4d) 6597 return NULL; 6598 pud = pud_alloc(mm, p4d, addr); 6599 if (pud) { 6600 if (sz == PUD_SIZE) { 6601 pte = (pte_t *)pud; 6602 } else { 6603 BUG_ON(sz != PMD_SIZE); 6604 if (want_pmd_share(vma, addr) && pud_none(*pud)) 6605 pte = huge_pmd_share(mm, vma, addr, pud); 6606 else 6607 pte = (pte_t *)pmd_alloc(mm, pud, addr); 6608 } 6609 } 6610 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte)); 6611 6612 return pte; 6613 } 6614 6615 /* 6616 * huge_pte_offset() - Walk the page table to resolve the hugepage 6617 * entry at address @addr 6618 * 6619 * Return: Pointer to page table entry (PUD or PMD) for 6620 * address @addr, or NULL if a !p*d_present() entry is encountered and the 6621 * size @sz doesn't match the hugepage size at this level of the page 6622 * table. 6623 */ 6624 pte_t *huge_pte_offset(struct mm_struct *mm, 6625 unsigned long addr, unsigned long sz) 6626 { 6627 pgd_t *pgd; 6628 p4d_t *p4d; 6629 pud_t *pud; 6630 pmd_t *pmd; 6631 6632 pgd = pgd_offset(mm, addr); 6633 if (!pgd_present(*pgd)) 6634 return NULL; 6635 p4d = p4d_offset(pgd, addr); 6636 if (!p4d_present(*p4d)) 6637 return NULL; 6638 6639 pud = pud_offset(p4d, addr); 6640 if (sz == PUD_SIZE) 6641 /* must be pud huge, non-present or none */ 6642 return (pte_t *)pud; 6643 if (!pud_present(*pud)) 6644 return NULL; 6645 /* must have a valid entry and size to go further */ 6646 6647 pmd = pmd_offset(pud, addr); 6648 /* must be pmd huge, non-present or none */ 6649 return (pte_t *)pmd; 6650 } 6651 6652 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */ 6653 6654 /* 6655 * These functions are overwritable if your architecture needs its own 6656 * behavior. 6657 */ 6658 struct page * __weak 6659 follow_huge_addr(struct mm_struct *mm, unsigned long address, 6660 int write) 6661 { 6662 return ERR_PTR(-EINVAL); 6663 } 6664 6665 struct page * __weak 6666 follow_huge_pd(struct vm_area_struct *vma, 6667 unsigned long address, hugepd_t hpd, int flags, int pdshift) 6668 { 6669 WARN(1, "hugepd follow called with no support for hugepage directory format\n"); 6670 return NULL; 6671 } 6672 6673 struct page * __weak 6674 follow_huge_pmd(struct mm_struct *mm, unsigned long address, 6675 pmd_t *pmd, int flags) 6676 { 6677 struct page *page = NULL; 6678 spinlock_t *ptl; 6679 pte_t pte; 6680 6681 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 6682 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) == 6683 (FOLL_PIN | FOLL_GET))) 6684 return NULL; 6685 6686 retry: 6687 ptl = pmd_lockptr(mm, pmd); 6688 spin_lock(ptl); 6689 /* 6690 * make sure that the address range covered by this pmd is not 6691 * unmapped from other threads. 6692 */ 6693 if (!pmd_huge(*pmd)) 6694 goto out; 6695 pte = huge_ptep_get((pte_t *)pmd); 6696 if (pte_present(pte)) { 6697 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT); 6698 /* 6699 * try_grab_page() should always succeed here, because: a) we 6700 * hold the pmd (ptl) lock, and b) we've just checked that the 6701 * huge pmd (head) page is present in the page tables. The ptl 6702 * prevents the head page and tail pages from being rearranged 6703 * in any way. So this page must be available at this point, 6704 * unless the page refcount overflowed: 6705 */ 6706 if (WARN_ON_ONCE(!try_grab_page(page, flags))) { 6707 page = NULL; 6708 goto out; 6709 } 6710 } else { 6711 if (is_hugetlb_entry_migration(pte)) { 6712 spin_unlock(ptl); 6713 __migration_entry_wait(mm, (pte_t *)pmd, ptl); 6714 goto retry; 6715 } 6716 /* 6717 * hwpoisoned entry is treated as no_page_table in 6718 * follow_page_mask(). 6719 */ 6720 } 6721 out: 6722 spin_unlock(ptl); 6723 return page; 6724 } 6725 6726 struct page * __weak 6727 follow_huge_pud(struct mm_struct *mm, unsigned long address, 6728 pud_t *pud, int flags) 6729 { 6730 if (flags & (FOLL_GET | FOLL_PIN)) 6731 return NULL; 6732 6733 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT); 6734 } 6735 6736 struct page * __weak 6737 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags) 6738 { 6739 if (flags & (FOLL_GET | FOLL_PIN)) 6740 return NULL; 6741 6742 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT); 6743 } 6744 6745 bool isolate_huge_page(struct page *page, struct list_head *list) 6746 { 6747 bool ret = true; 6748 6749 spin_lock_irq(&hugetlb_lock); 6750 if (!PageHeadHuge(page) || 6751 !HPageMigratable(page) || 6752 !get_page_unless_zero(page)) { 6753 ret = false; 6754 goto unlock; 6755 } 6756 ClearHPageMigratable(page); 6757 list_move_tail(&page->lru, list); 6758 unlock: 6759 spin_unlock_irq(&hugetlb_lock); 6760 return ret; 6761 } 6762 6763 int get_hwpoison_huge_page(struct page *page, bool *hugetlb) 6764 { 6765 int ret = 0; 6766 6767 *hugetlb = false; 6768 spin_lock_irq(&hugetlb_lock); 6769 if (PageHeadHuge(page)) { 6770 *hugetlb = true; 6771 if (HPageFreed(page) || HPageMigratable(page)) 6772 ret = get_page_unless_zero(page); 6773 else 6774 ret = -EBUSY; 6775 } 6776 spin_unlock_irq(&hugetlb_lock); 6777 return ret; 6778 } 6779 6780 void putback_active_hugepage(struct page *page) 6781 { 6782 spin_lock_irq(&hugetlb_lock); 6783 SetHPageMigratable(page); 6784 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist); 6785 spin_unlock_irq(&hugetlb_lock); 6786 put_page(page); 6787 } 6788 6789 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason) 6790 { 6791 struct hstate *h = page_hstate(oldpage); 6792 6793 hugetlb_cgroup_migrate(oldpage, newpage); 6794 set_page_owner_migrate_reason(newpage, reason); 6795 6796 /* 6797 * transfer temporary state of the new huge page. This is 6798 * reverse to other transitions because the newpage is going to 6799 * be final while the old one will be freed so it takes over 6800 * the temporary status. 6801 * 6802 * Also note that we have to transfer the per-node surplus state 6803 * here as well otherwise the global surplus count will not match 6804 * the per-node's. 6805 */ 6806 if (HPageTemporary(newpage)) { 6807 int old_nid = page_to_nid(oldpage); 6808 int new_nid = page_to_nid(newpage); 6809 6810 SetHPageTemporary(oldpage); 6811 ClearHPageTemporary(newpage); 6812 6813 /* 6814 * There is no need to transfer the per-node surplus state 6815 * when we do not cross the node. 6816 */ 6817 if (new_nid == old_nid) 6818 return; 6819 spin_lock_irq(&hugetlb_lock); 6820 if (h->surplus_huge_pages_node[old_nid]) { 6821 h->surplus_huge_pages_node[old_nid]--; 6822 h->surplus_huge_pages_node[new_nid]++; 6823 } 6824 spin_unlock_irq(&hugetlb_lock); 6825 } 6826 } 6827 6828 /* 6829 * This function will unconditionally remove all the shared pmd pgtable entries 6830 * within the specific vma for a hugetlbfs memory range. 6831 */ 6832 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma) 6833 { 6834 struct hstate *h = hstate_vma(vma); 6835 unsigned long sz = huge_page_size(h); 6836 struct mm_struct *mm = vma->vm_mm; 6837 struct mmu_notifier_range range; 6838 unsigned long address, start, end; 6839 spinlock_t *ptl; 6840 pte_t *ptep; 6841 6842 if (!(vma->vm_flags & VM_MAYSHARE)) 6843 return; 6844 6845 start = ALIGN(vma->vm_start, PUD_SIZE); 6846 end = ALIGN_DOWN(vma->vm_end, PUD_SIZE); 6847 6848 if (start >= end) 6849 return; 6850 6851 /* 6852 * No need to call adjust_range_if_pmd_sharing_possible(), because 6853 * we have already done the PUD_SIZE alignment. 6854 */ 6855 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, 6856 start, end); 6857 mmu_notifier_invalidate_range_start(&range); 6858 i_mmap_lock_write(vma->vm_file->f_mapping); 6859 for (address = start; address < end; address += PUD_SIZE) { 6860 unsigned long tmp = address; 6861 6862 ptep = huge_pte_offset(mm, address, sz); 6863 if (!ptep) 6864 continue; 6865 ptl = huge_pte_lock(h, mm, ptep); 6866 /* We don't want 'address' to be changed */ 6867 huge_pmd_unshare(mm, vma, &tmp, ptep); 6868 spin_unlock(ptl); 6869 } 6870 flush_hugetlb_tlb_range(vma, start, end); 6871 i_mmap_unlock_write(vma->vm_file->f_mapping); 6872 /* 6873 * No need to call mmu_notifier_invalidate_range(), see 6874 * Documentation/vm/mmu_notifier.rst. 6875 */ 6876 mmu_notifier_invalidate_range_end(&range); 6877 } 6878 6879 #ifdef CONFIG_CMA 6880 static bool cma_reserve_called __initdata; 6881 6882 static int __init cmdline_parse_hugetlb_cma(char *p) 6883 { 6884 int nid, count = 0; 6885 unsigned long tmp; 6886 char *s = p; 6887 6888 while (*s) { 6889 if (sscanf(s, "%lu%n", &tmp, &count) != 1) 6890 break; 6891 6892 if (s[count] == ':') { 6893 nid = tmp; 6894 if (nid < 0 || nid >= MAX_NUMNODES) 6895 break; 6896 6897 s += count + 1; 6898 tmp = memparse(s, &s); 6899 hugetlb_cma_size_in_node[nid] = tmp; 6900 hugetlb_cma_size += tmp; 6901 6902 /* 6903 * Skip the separator if have one, otherwise 6904 * break the parsing. 6905 */ 6906 if (*s == ',') 6907 s++; 6908 else 6909 break; 6910 } else { 6911 hugetlb_cma_size = memparse(p, &p); 6912 break; 6913 } 6914 } 6915 6916 return 0; 6917 } 6918 6919 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma); 6920 6921 void __init hugetlb_cma_reserve(int order) 6922 { 6923 unsigned long size, reserved, per_node; 6924 bool node_specific_cma_alloc = false; 6925 int nid; 6926 6927 cma_reserve_called = true; 6928 6929 if (!hugetlb_cma_size) 6930 return; 6931 6932 for (nid = 0; nid < MAX_NUMNODES; nid++) { 6933 if (hugetlb_cma_size_in_node[nid] == 0) 6934 continue; 6935 6936 if (!node_state(nid, N_ONLINE)) { 6937 pr_warn("hugetlb_cma: invalid node %d specified\n", nid); 6938 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid]; 6939 hugetlb_cma_size_in_node[nid] = 0; 6940 continue; 6941 } 6942 6943 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) { 6944 pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n", 6945 nid, (PAGE_SIZE << order) / SZ_1M); 6946 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid]; 6947 hugetlb_cma_size_in_node[nid] = 0; 6948 } else { 6949 node_specific_cma_alloc = true; 6950 } 6951 } 6952 6953 /* Validate the CMA size again in case some invalid nodes specified. */ 6954 if (!hugetlb_cma_size) 6955 return; 6956 6957 if (hugetlb_cma_size < (PAGE_SIZE << order)) { 6958 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n", 6959 (PAGE_SIZE << order) / SZ_1M); 6960 hugetlb_cma_size = 0; 6961 return; 6962 } 6963 6964 if (!node_specific_cma_alloc) { 6965 /* 6966 * If 3 GB area is requested on a machine with 4 numa nodes, 6967 * let's allocate 1 GB on first three nodes and ignore the last one. 6968 */ 6969 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes); 6970 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n", 6971 hugetlb_cma_size / SZ_1M, per_node / SZ_1M); 6972 } 6973 6974 reserved = 0; 6975 for_each_node_state(nid, N_ONLINE) { 6976 int res; 6977 char name[CMA_MAX_NAME]; 6978 6979 if (node_specific_cma_alloc) { 6980 if (hugetlb_cma_size_in_node[nid] == 0) 6981 continue; 6982 6983 size = hugetlb_cma_size_in_node[nid]; 6984 } else { 6985 size = min(per_node, hugetlb_cma_size - reserved); 6986 } 6987 6988 size = round_up(size, PAGE_SIZE << order); 6989 6990 snprintf(name, sizeof(name), "hugetlb%d", nid); 6991 /* 6992 * Note that 'order per bit' is based on smallest size that 6993 * may be returned to CMA allocator in the case of 6994 * huge page demotion. 6995 */ 6996 res = cma_declare_contiguous_nid(0, size, 0, 6997 PAGE_SIZE << HUGETLB_PAGE_ORDER, 6998 0, false, name, 6999 &hugetlb_cma[nid], nid); 7000 if (res) { 7001 pr_warn("hugetlb_cma: reservation failed: err %d, node %d", 7002 res, nid); 7003 continue; 7004 } 7005 7006 reserved += size; 7007 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n", 7008 size / SZ_1M, nid); 7009 7010 if (reserved >= hugetlb_cma_size) 7011 break; 7012 } 7013 7014 if (!reserved) 7015 /* 7016 * hugetlb_cma_size is used to determine if allocations from 7017 * cma are possible. Set to zero if no cma regions are set up. 7018 */ 7019 hugetlb_cma_size = 0; 7020 } 7021 7022 void __init hugetlb_cma_check(void) 7023 { 7024 if (!hugetlb_cma_size || cma_reserve_called) 7025 return; 7026 7027 pr_warn("hugetlb_cma: the option isn't supported by current arch\n"); 7028 } 7029 7030 #endif /* CONFIG_CMA */ 7031