xref: /linux/mm/hugetlb.c (revision 15a1fbdcfb519c2bd291ed01c6c94e0b89537a77)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/mmdebug.h>
23 #include <linux/sched/signal.h>
24 #include <linux/rmap.h>
25 #include <linux/string_helpers.h>
26 #include <linux/swap.h>
27 #include <linux/swapops.h>
28 #include <linux/jhash.h>
29 #include <linux/numa.h>
30 #include <linux/llist.h>
31 
32 #include <asm/page.h>
33 #include <asm/pgtable.h>
34 #include <asm/tlb.h>
35 
36 #include <linux/io.h>
37 #include <linux/hugetlb.h>
38 #include <linux/hugetlb_cgroup.h>
39 #include <linux/node.h>
40 #include <linux/userfaultfd_k.h>
41 #include <linux/page_owner.h>
42 #include "internal.h"
43 
44 int hugetlb_max_hstate __read_mostly;
45 unsigned int default_hstate_idx;
46 struct hstate hstates[HUGE_MAX_HSTATE];
47 /*
48  * Minimum page order among possible hugepage sizes, set to a proper value
49  * at boot time.
50  */
51 static unsigned int minimum_order __read_mostly = UINT_MAX;
52 
53 __initdata LIST_HEAD(huge_boot_pages);
54 
55 /* for command line parsing */
56 static struct hstate * __initdata parsed_hstate;
57 static unsigned long __initdata default_hstate_max_huge_pages;
58 static unsigned long __initdata default_hstate_size;
59 static bool __initdata parsed_valid_hugepagesz = true;
60 
61 /*
62  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
63  * free_huge_pages, and surplus_huge_pages.
64  */
65 DEFINE_SPINLOCK(hugetlb_lock);
66 
67 /*
68  * Serializes faults on the same logical page.  This is used to
69  * prevent spurious OOMs when the hugepage pool is fully utilized.
70  */
71 static int num_fault_mutexes;
72 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
73 
74 /* Forward declaration */
75 static int hugetlb_acct_memory(struct hstate *h, long delta);
76 
77 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
78 {
79 	bool free = (spool->count == 0) && (spool->used_hpages == 0);
80 
81 	spin_unlock(&spool->lock);
82 
83 	/* If no pages are used, and no other handles to the subpool
84 	 * remain, give up any reservations mased on minimum size and
85 	 * free the subpool */
86 	if (free) {
87 		if (spool->min_hpages != -1)
88 			hugetlb_acct_memory(spool->hstate,
89 						-spool->min_hpages);
90 		kfree(spool);
91 	}
92 }
93 
94 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
95 						long min_hpages)
96 {
97 	struct hugepage_subpool *spool;
98 
99 	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
100 	if (!spool)
101 		return NULL;
102 
103 	spin_lock_init(&spool->lock);
104 	spool->count = 1;
105 	spool->max_hpages = max_hpages;
106 	spool->hstate = h;
107 	spool->min_hpages = min_hpages;
108 
109 	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
110 		kfree(spool);
111 		return NULL;
112 	}
113 	spool->rsv_hpages = min_hpages;
114 
115 	return spool;
116 }
117 
118 void hugepage_put_subpool(struct hugepage_subpool *spool)
119 {
120 	spin_lock(&spool->lock);
121 	BUG_ON(!spool->count);
122 	spool->count--;
123 	unlock_or_release_subpool(spool);
124 }
125 
126 /*
127  * Subpool accounting for allocating and reserving pages.
128  * Return -ENOMEM if there are not enough resources to satisfy the
129  * the request.  Otherwise, return the number of pages by which the
130  * global pools must be adjusted (upward).  The returned value may
131  * only be different than the passed value (delta) in the case where
132  * a subpool minimum size must be manitained.
133  */
134 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
135 				      long delta)
136 {
137 	long ret = delta;
138 
139 	if (!spool)
140 		return ret;
141 
142 	spin_lock(&spool->lock);
143 
144 	if (spool->max_hpages != -1) {		/* maximum size accounting */
145 		if ((spool->used_hpages + delta) <= spool->max_hpages)
146 			spool->used_hpages += delta;
147 		else {
148 			ret = -ENOMEM;
149 			goto unlock_ret;
150 		}
151 	}
152 
153 	/* minimum size accounting */
154 	if (spool->min_hpages != -1 && spool->rsv_hpages) {
155 		if (delta > spool->rsv_hpages) {
156 			/*
157 			 * Asking for more reserves than those already taken on
158 			 * behalf of subpool.  Return difference.
159 			 */
160 			ret = delta - spool->rsv_hpages;
161 			spool->rsv_hpages = 0;
162 		} else {
163 			ret = 0;	/* reserves already accounted for */
164 			spool->rsv_hpages -= delta;
165 		}
166 	}
167 
168 unlock_ret:
169 	spin_unlock(&spool->lock);
170 	return ret;
171 }
172 
173 /*
174  * Subpool accounting for freeing and unreserving pages.
175  * Return the number of global page reservations that must be dropped.
176  * The return value may only be different than the passed value (delta)
177  * in the case where a subpool minimum size must be maintained.
178  */
179 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
180 				       long delta)
181 {
182 	long ret = delta;
183 
184 	if (!spool)
185 		return delta;
186 
187 	spin_lock(&spool->lock);
188 
189 	if (spool->max_hpages != -1)		/* maximum size accounting */
190 		spool->used_hpages -= delta;
191 
192 	 /* minimum size accounting */
193 	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
194 		if (spool->rsv_hpages + delta <= spool->min_hpages)
195 			ret = 0;
196 		else
197 			ret = spool->rsv_hpages + delta - spool->min_hpages;
198 
199 		spool->rsv_hpages += delta;
200 		if (spool->rsv_hpages > spool->min_hpages)
201 			spool->rsv_hpages = spool->min_hpages;
202 	}
203 
204 	/*
205 	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
206 	 * quota reference, free it now.
207 	 */
208 	unlock_or_release_subpool(spool);
209 
210 	return ret;
211 }
212 
213 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
214 {
215 	return HUGETLBFS_SB(inode->i_sb)->spool;
216 }
217 
218 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
219 {
220 	return subpool_inode(file_inode(vma->vm_file));
221 }
222 
223 /*
224  * Region tracking -- allows tracking of reservations and instantiated pages
225  *                    across the pages in a mapping.
226  *
227  * The region data structures are embedded into a resv_map and protected
228  * by a resv_map's lock.  The set of regions within the resv_map represent
229  * reservations for huge pages, or huge pages that have already been
230  * instantiated within the map.  The from and to elements are huge page
231  * indicies into the associated mapping.  from indicates the starting index
232  * of the region.  to represents the first index past the end of  the region.
233  *
234  * For example, a file region structure with from == 0 and to == 4 represents
235  * four huge pages in a mapping.  It is important to note that the to element
236  * represents the first element past the end of the region. This is used in
237  * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
238  *
239  * Interval notation of the form [from, to) will be used to indicate that
240  * the endpoint from is inclusive and to is exclusive.
241  */
242 struct file_region {
243 	struct list_head link;
244 	long from;
245 	long to;
246 };
247 
248 /* Must be called with resv->lock held. Calling this with count_only == true
249  * will count the number of pages to be added but will not modify the linked
250  * list.
251  */
252 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
253 				     bool count_only)
254 {
255 	long chg = 0;
256 	struct list_head *head = &resv->regions;
257 	struct file_region *rg = NULL, *trg = NULL, *nrg = NULL;
258 
259 	/* Locate the region we are before or in. */
260 	list_for_each_entry(rg, head, link)
261 		if (f <= rg->to)
262 			break;
263 
264 	/* Round our left edge to the current segment if it encloses us. */
265 	if (f > rg->from)
266 		f = rg->from;
267 
268 	chg = t - f;
269 
270 	/* Check for and consume any regions we now overlap with. */
271 	nrg = rg;
272 	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
273 		if (&rg->link == head)
274 			break;
275 		if (rg->from > t)
276 			break;
277 
278 		/* We overlap with this area, if it extends further than
279 		 * us then we must extend ourselves.  Account for its
280 		 * existing reservation.
281 		 */
282 		if (rg->to > t) {
283 			chg += rg->to - t;
284 			t = rg->to;
285 		}
286 		chg -= rg->to - rg->from;
287 
288 		if (!count_only && rg != nrg) {
289 			list_del(&rg->link);
290 			kfree(rg);
291 		}
292 	}
293 
294 	if (!count_only) {
295 		nrg->from = f;
296 		nrg->to = t;
297 	}
298 
299 	return chg;
300 }
301 
302 /*
303  * Add the huge page range represented by [f, t) to the reserve
304  * map.  Existing regions will be expanded to accommodate the specified
305  * range, or a region will be taken from the cache.  Sufficient regions
306  * must exist in the cache due to the previous call to region_chg with
307  * the same range.
308  *
309  * Return the number of new huge pages added to the map.  This
310  * number is greater than or equal to zero.
311  */
312 static long region_add(struct resv_map *resv, long f, long t)
313 {
314 	struct list_head *head = &resv->regions;
315 	struct file_region *rg, *nrg;
316 	long add = 0;
317 
318 	spin_lock(&resv->lock);
319 	/* Locate the region we are either in or before. */
320 	list_for_each_entry(rg, head, link)
321 		if (f <= rg->to)
322 			break;
323 
324 	/*
325 	 * If no region exists which can be expanded to include the
326 	 * specified range, pull a region descriptor from the cache
327 	 * and use it for this range.
328 	 */
329 	if (&rg->link == head || t < rg->from) {
330 		VM_BUG_ON(resv->region_cache_count <= 0);
331 
332 		resv->region_cache_count--;
333 		nrg = list_first_entry(&resv->region_cache, struct file_region,
334 					link);
335 		list_del(&nrg->link);
336 
337 		nrg->from = f;
338 		nrg->to = t;
339 		list_add(&nrg->link, rg->link.prev);
340 
341 		add += t - f;
342 		goto out_locked;
343 	}
344 
345 	add = add_reservation_in_range(resv, f, t, false);
346 
347 out_locked:
348 	resv->adds_in_progress--;
349 	spin_unlock(&resv->lock);
350 	VM_BUG_ON(add < 0);
351 	return add;
352 }
353 
354 /*
355  * Examine the existing reserve map and determine how many
356  * huge pages in the specified range [f, t) are NOT currently
357  * represented.  This routine is called before a subsequent
358  * call to region_add that will actually modify the reserve
359  * map to add the specified range [f, t).  region_chg does
360  * not change the number of huge pages represented by the
361  * map.  A new file_region structure is added to the cache
362  * as a placeholder, so that the subsequent region_add
363  * call will have all the regions it needs and will not fail.
364  *
365  * Returns the number of huge pages that need to be added to the existing
366  * reservation map for the range [f, t).  This number is greater or equal to
367  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
368  * is needed and can not be allocated.
369  */
370 static long region_chg(struct resv_map *resv, long f, long t)
371 {
372 	long chg = 0;
373 
374 	spin_lock(&resv->lock);
375 retry_locked:
376 	resv->adds_in_progress++;
377 
378 	/*
379 	 * Check for sufficient descriptors in the cache to accommodate
380 	 * the number of in progress add operations.
381 	 */
382 	if (resv->adds_in_progress > resv->region_cache_count) {
383 		struct file_region *trg;
384 
385 		VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
386 		/* Must drop lock to allocate a new descriptor. */
387 		resv->adds_in_progress--;
388 		spin_unlock(&resv->lock);
389 
390 		trg = kmalloc(sizeof(*trg), GFP_KERNEL);
391 		if (!trg)
392 			return -ENOMEM;
393 
394 		spin_lock(&resv->lock);
395 		list_add(&trg->link, &resv->region_cache);
396 		resv->region_cache_count++;
397 		goto retry_locked;
398 	}
399 
400 	chg = add_reservation_in_range(resv, f, t, true);
401 
402 	spin_unlock(&resv->lock);
403 	return chg;
404 }
405 
406 /*
407  * Abort the in progress add operation.  The adds_in_progress field
408  * of the resv_map keeps track of the operations in progress between
409  * calls to region_chg and region_add.  Operations are sometimes
410  * aborted after the call to region_chg.  In such cases, region_abort
411  * is called to decrement the adds_in_progress counter.
412  *
413  * NOTE: The range arguments [f, t) are not needed or used in this
414  * routine.  They are kept to make reading the calling code easier as
415  * arguments will match the associated region_chg call.
416  */
417 static void region_abort(struct resv_map *resv, long f, long t)
418 {
419 	spin_lock(&resv->lock);
420 	VM_BUG_ON(!resv->region_cache_count);
421 	resv->adds_in_progress--;
422 	spin_unlock(&resv->lock);
423 }
424 
425 /*
426  * Delete the specified range [f, t) from the reserve map.  If the
427  * t parameter is LONG_MAX, this indicates that ALL regions after f
428  * should be deleted.  Locate the regions which intersect [f, t)
429  * and either trim, delete or split the existing regions.
430  *
431  * Returns the number of huge pages deleted from the reserve map.
432  * In the normal case, the return value is zero or more.  In the
433  * case where a region must be split, a new region descriptor must
434  * be allocated.  If the allocation fails, -ENOMEM will be returned.
435  * NOTE: If the parameter t == LONG_MAX, then we will never split
436  * a region and possibly return -ENOMEM.  Callers specifying
437  * t == LONG_MAX do not need to check for -ENOMEM error.
438  */
439 static long region_del(struct resv_map *resv, long f, long t)
440 {
441 	struct list_head *head = &resv->regions;
442 	struct file_region *rg, *trg;
443 	struct file_region *nrg = NULL;
444 	long del = 0;
445 
446 retry:
447 	spin_lock(&resv->lock);
448 	list_for_each_entry_safe(rg, trg, head, link) {
449 		/*
450 		 * Skip regions before the range to be deleted.  file_region
451 		 * ranges are normally of the form [from, to).  However, there
452 		 * may be a "placeholder" entry in the map which is of the form
453 		 * (from, to) with from == to.  Check for placeholder entries
454 		 * at the beginning of the range to be deleted.
455 		 */
456 		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
457 			continue;
458 
459 		if (rg->from >= t)
460 			break;
461 
462 		if (f > rg->from && t < rg->to) { /* Must split region */
463 			/*
464 			 * Check for an entry in the cache before dropping
465 			 * lock and attempting allocation.
466 			 */
467 			if (!nrg &&
468 			    resv->region_cache_count > resv->adds_in_progress) {
469 				nrg = list_first_entry(&resv->region_cache,
470 							struct file_region,
471 							link);
472 				list_del(&nrg->link);
473 				resv->region_cache_count--;
474 			}
475 
476 			if (!nrg) {
477 				spin_unlock(&resv->lock);
478 				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
479 				if (!nrg)
480 					return -ENOMEM;
481 				goto retry;
482 			}
483 
484 			del += t - f;
485 
486 			/* New entry for end of split region */
487 			nrg->from = t;
488 			nrg->to = rg->to;
489 			INIT_LIST_HEAD(&nrg->link);
490 
491 			/* Original entry is trimmed */
492 			rg->to = f;
493 
494 			list_add(&nrg->link, &rg->link);
495 			nrg = NULL;
496 			break;
497 		}
498 
499 		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
500 			del += rg->to - rg->from;
501 			list_del(&rg->link);
502 			kfree(rg);
503 			continue;
504 		}
505 
506 		if (f <= rg->from) {	/* Trim beginning of region */
507 			del += t - rg->from;
508 			rg->from = t;
509 		} else {		/* Trim end of region */
510 			del += rg->to - f;
511 			rg->to = f;
512 		}
513 	}
514 
515 	spin_unlock(&resv->lock);
516 	kfree(nrg);
517 	return del;
518 }
519 
520 /*
521  * A rare out of memory error was encountered which prevented removal of
522  * the reserve map region for a page.  The huge page itself was free'ed
523  * and removed from the page cache.  This routine will adjust the subpool
524  * usage count, and the global reserve count if needed.  By incrementing
525  * these counts, the reserve map entry which could not be deleted will
526  * appear as a "reserved" entry instead of simply dangling with incorrect
527  * counts.
528  */
529 void hugetlb_fix_reserve_counts(struct inode *inode)
530 {
531 	struct hugepage_subpool *spool = subpool_inode(inode);
532 	long rsv_adjust;
533 
534 	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
535 	if (rsv_adjust) {
536 		struct hstate *h = hstate_inode(inode);
537 
538 		hugetlb_acct_memory(h, 1);
539 	}
540 }
541 
542 /*
543  * Count and return the number of huge pages in the reserve map
544  * that intersect with the range [f, t).
545  */
546 static long region_count(struct resv_map *resv, long f, long t)
547 {
548 	struct list_head *head = &resv->regions;
549 	struct file_region *rg;
550 	long chg = 0;
551 
552 	spin_lock(&resv->lock);
553 	/* Locate each segment we overlap with, and count that overlap. */
554 	list_for_each_entry(rg, head, link) {
555 		long seg_from;
556 		long seg_to;
557 
558 		if (rg->to <= f)
559 			continue;
560 		if (rg->from >= t)
561 			break;
562 
563 		seg_from = max(rg->from, f);
564 		seg_to = min(rg->to, t);
565 
566 		chg += seg_to - seg_from;
567 	}
568 	spin_unlock(&resv->lock);
569 
570 	return chg;
571 }
572 
573 /*
574  * Convert the address within this vma to the page offset within
575  * the mapping, in pagecache page units; huge pages here.
576  */
577 static pgoff_t vma_hugecache_offset(struct hstate *h,
578 			struct vm_area_struct *vma, unsigned long address)
579 {
580 	return ((address - vma->vm_start) >> huge_page_shift(h)) +
581 			(vma->vm_pgoff >> huge_page_order(h));
582 }
583 
584 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
585 				     unsigned long address)
586 {
587 	return vma_hugecache_offset(hstate_vma(vma), vma, address);
588 }
589 EXPORT_SYMBOL_GPL(linear_hugepage_index);
590 
591 /*
592  * Return the size of the pages allocated when backing a VMA. In the majority
593  * cases this will be same size as used by the page table entries.
594  */
595 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
596 {
597 	if (vma->vm_ops && vma->vm_ops->pagesize)
598 		return vma->vm_ops->pagesize(vma);
599 	return PAGE_SIZE;
600 }
601 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
602 
603 /*
604  * Return the page size being used by the MMU to back a VMA. In the majority
605  * of cases, the page size used by the kernel matches the MMU size. On
606  * architectures where it differs, an architecture-specific 'strong'
607  * version of this symbol is required.
608  */
609 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
610 {
611 	return vma_kernel_pagesize(vma);
612 }
613 
614 /*
615  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
616  * bits of the reservation map pointer, which are always clear due to
617  * alignment.
618  */
619 #define HPAGE_RESV_OWNER    (1UL << 0)
620 #define HPAGE_RESV_UNMAPPED (1UL << 1)
621 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
622 
623 /*
624  * These helpers are used to track how many pages are reserved for
625  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
626  * is guaranteed to have their future faults succeed.
627  *
628  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
629  * the reserve counters are updated with the hugetlb_lock held. It is safe
630  * to reset the VMA at fork() time as it is not in use yet and there is no
631  * chance of the global counters getting corrupted as a result of the values.
632  *
633  * The private mapping reservation is represented in a subtly different
634  * manner to a shared mapping.  A shared mapping has a region map associated
635  * with the underlying file, this region map represents the backing file
636  * pages which have ever had a reservation assigned which this persists even
637  * after the page is instantiated.  A private mapping has a region map
638  * associated with the original mmap which is attached to all VMAs which
639  * reference it, this region map represents those offsets which have consumed
640  * reservation ie. where pages have been instantiated.
641  */
642 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
643 {
644 	return (unsigned long)vma->vm_private_data;
645 }
646 
647 static void set_vma_private_data(struct vm_area_struct *vma,
648 							unsigned long value)
649 {
650 	vma->vm_private_data = (void *)value;
651 }
652 
653 struct resv_map *resv_map_alloc(void)
654 {
655 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
656 	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
657 
658 	if (!resv_map || !rg) {
659 		kfree(resv_map);
660 		kfree(rg);
661 		return NULL;
662 	}
663 
664 	kref_init(&resv_map->refs);
665 	spin_lock_init(&resv_map->lock);
666 	INIT_LIST_HEAD(&resv_map->regions);
667 
668 	resv_map->adds_in_progress = 0;
669 
670 	INIT_LIST_HEAD(&resv_map->region_cache);
671 	list_add(&rg->link, &resv_map->region_cache);
672 	resv_map->region_cache_count = 1;
673 
674 	return resv_map;
675 }
676 
677 void resv_map_release(struct kref *ref)
678 {
679 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
680 	struct list_head *head = &resv_map->region_cache;
681 	struct file_region *rg, *trg;
682 
683 	/* Clear out any active regions before we release the map. */
684 	region_del(resv_map, 0, LONG_MAX);
685 
686 	/* ... and any entries left in the cache */
687 	list_for_each_entry_safe(rg, trg, head, link) {
688 		list_del(&rg->link);
689 		kfree(rg);
690 	}
691 
692 	VM_BUG_ON(resv_map->adds_in_progress);
693 
694 	kfree(resv_map);
695 }
696 
697 static inline struct resv_map *inode_resv_map(struct inode *inode)
698 {
699 	/*
700 	 * At inode evict time, i_mapping may not point to the original
701 	 * address space within the inode.  This original address space
702 	 * contains the pointer to the resv_map.  So, always use the
703 	 * address space embedded within the inode.
704 	 * The VERY common case is inode->mapping == &inode->i_data but,
705 	 * this may not be true for device special inodes.
706 	 */
707 	return (struct resv_map *)(&inode->i_data)->private_data;
708 }
709 
710 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
711 {
712 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
713 	if (vma->vm_flags & VM_MAYSHARE) {
714 		struct address_space *mapping = vma->vm_file->f_mapping;
715 		struct inode *inode = mapping->host;
716 
717 		return inode_resv_map(inode);
718 
719 	} else {
720 		return (struct resv_map *)(get_vma_private_data(vma) &
721 							~HPAGE_RESV_MASK);
722 	}
723 }
724 
725 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
726 {
727 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
728 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
729 
730 	set_vma_private_data(vma, (get_vma_private_data(vma) &
731 				HPAGE_RESV_MASK) | (unsigned long)map);
732 }
733 
734 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
735 {
736 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
737 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
738 
739 	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
740 }
741 
742 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
743 {
744 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
745 
746 	return (get_vma_private_data(vma) & flag) != 0;
747 }
748 
749 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
750 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
751 {
752 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
753 	if (!(vma->vm_flags & VM_MAYSHARE))
754 		vma->vm_private_data = (void *)0;
755 }
756 
757 /* Returns true if the VMA has associated reserve pages */
758 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
759 {
760 	if (vma->vm_flags & VM_NORESERVE) {
761 		/*
762 		 * This address is already reserved by other process(chg == 0),
763 		 * so, we should decrement reserved count. Without decrementing,
764 		 * reserve count remains after releasing inode, because this
765 		 * allocated page will go into page cache and is regarded as
766 		 * coming from reserved pool in releasing step.  Currently, we
767 		 * don't have any other solution to deal with this situation
768 		 * properly, so add work-around here.
769 		 */
770 		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
771 			return true;
772 		else
773 			return false;
774 	}
775 
776 	/* Shared mappings always use reserves */
777 	if (vma->vm_flags & VM_MAYSHARE) {
778 		/*
779 		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
780 		 * be a region map for all pages.  The only situation where
781 		 * there is no region map is if a hole was punched via
782 		 * fallocate.  In this case, there really are no reverves to
783 		 * use.  This situation is indicated if chg != 0.
784 		 */
785 		if (chg)
786 			return false;
787 		else
788 			return true;
789 	}
790 
791 	/*
792 	 * Only the process that called mmap() has reserves for
793 	 * private mappings.
794 	 */
795 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
796 		/*
797 		 * Like the shared case above, a hole punch or truncate
798 		 * could have been performed on the private mapping.
799 		 * Examine the value of chg to determine if reserves
800 		 * actually exist or were previously consumed.
801 		 * Very Subtle - The value of chg comes from a previous
802 		 * call to vma_needs_reserves().  The reserve map for
803 		 * private mappings has different (opposite) semantics
804 		 * than that of shared mappings.  vma_needs_reserves()
805 		 * has already taken this difference in semantics into
806 		 * account.  Therefore, the meaning of chg is the same
807 		 * as in the shared case above.  Code could easily be
808 		 * combined, but keeping it separate draws attention to
809 		 * subtle differences.
810 		 */
811 		if (chg)
812 			return false;
813 		else
814 			return true;
815 	}
816 
817 	return false;
818 }
819 
820 static void enqueue_huge_page(struct hstate *h, struct page *page)
821 {
822 	int nid = page_to_nid(page);
823 	list_move(&page->lru, &h->hugepage_freelists[nid]);
824 	h->free_huge_pages++;
825 	h->free_huge_pages_node[nid]++;
826 }
827 
828 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
829 {
830 	struct page *page;
831 
832 	list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
833 		if (!PageHWPoison(page))
834 			break;
835 	/*
836 	 * if 'non-isolated free hugepage' not found on the list,
837 	 * the allocation fails.
838 	 */
839 	if (&h->hugepage_freelists[nid] == &page->lru)
840 		return NULL;
841 	list_move(&page->lru, &h->hugepage_activelist);
842 	set_page_refcounted(page);
843 	h->free_huge_pages--;
844 	h->free_huge_pages_node[nid]--;
845 	return page;
846 }
847 
848 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
849 		nodemask_t *nmask)
850 {
851 	unsigned int cpuset_mems_cookie;
852 	struct zonelist *zonelist;
853 	struct zone *zone;
854 	struct zoneref *z;
855 	int node = NUMA_NO_NODE;
856 
857 	zonelist = node_zonelist(nid, gfp_mask);
858 
859 retry_cpuset:
860 	cpuset_mems_cookie = read_mems_allowed_begin();
861 	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
862 		struct page *page;
863 
864 		if (!cpuset_zone_allowed(zone, gfp_mask))
865 			continue;
866 		/*
867 		 * no need to ask again on the same node. Pool is node rather than
868 		 * zone aware
869 		 */
870 		if (zone_to_nid(zone) == node)
871 			continue;
872 		node = zone_to_nid(zone);
873 
874 		page = dequeue_huge_page_node_exact(h, node);
875 		if (page)
876 			return page;
877 	}
878 	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
879 		goto retry_cpuset;
880 
881 	return NULL;
882 }
883 
884 /* Movability of hugepages depends on migration support. */
885 static inline gfp_t htlb_alloc_mask(struct hstate *h)
886 {
887 	if (hugepage_movable_supported(h))
888 		return GFP_HIGHUSER_MOVABLE;
889 	else
890 		return GFP_HIGHUSER;
891 }
892 
893 static struct page *dequeue_huge_page_vma(struct hstate *h,
894 				struct vm_area_struct *vma,
895 				unsigned long address, int avoid_reserve,
896 				long chg)
897 {
898 	struct page *page;
899 	struct mempolicy *mpol;
900 	gfp_t gfp_mask;
901 	nodemask_t *nodemask;
902 	int nid;
903 
904 	/*
905 	 * A child process with MAP_PRIVATE mappings created by their parent
906 	 * have no page reserves. This check ensures that reservations are
907 	 * not "stolen". The child may still get SIGKILLed
908 	 */
909 	if (!vma_has_reserves(vma, chg) &&
910 			h->free_huge_pages - h->resv_huge_pages == 0)
911 		goto err;
912 
913 	/* If reserves cannot be used, ensure enough pages are in the pool */
914 	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
915 		goto err;
916 
917 	gfp_mask = htlb_alloc_mask(h);
918 	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
919 	page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
920 	if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
921 		SetPagePrivate(page);
922 		h->resv_huge_pages--;
923 	}
924 
925 	mpol_cond_put(mpol);
926 	return page;
927 
928 err:
929 	return NULL;
930 }
931 
932 /*
933  * common helper functions for hstate_next_node_to_{alloc|free}.
934  * We may have allocated or freed a huge page based on a different
935  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
936  * be outside of *nodes_allowed.  Ensure that we use an allowed
937  * node for alloc or free.
938  */
939 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
940 {
941 	nid = next_node_in(nid, *nodes_allowed);
942 	VM_BUG_ON(nid >= MAX_NUMNODES);
943 
944 	return nid;
945 }
946 
947 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
948 {
949 	if (!node_isset(nid, *nodes_allowed))
950 		nid = next_node_allowed(nid, nodes_allowed);
951 	return nid;
952 }
953 
954 /*
955  * returns the previously saved node ["this node"] from which to
956  * allocate a persistent huge page for the pool and advance the
957  * next node from which to allocate, handling wrap at end of node
958  * mask.
959  */
960 static int hstate_next_node_to_alloc(struct hstate *h,
961 					nodemask_t *nodes_allowed)
962 {
963 	int nid;
964 
965 	VM_BUG_ON(!nodes_allowed);
966 
967 	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
968 	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
969 
970 	return nid;
971 }
972 
973 /*
974  * helper for free_pool_huge_page() - return the previously saved
975  * node ["this node"] from which to free a huge page.  Advance the
976  * next node id whether or not we find a free huge page to free so
977  * that the next attempt to free addresses the next node.
978  */
979 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
980 {
981 	int nid;
982 
983 	VM_BUG_ON(!nodes_allowed);
984 
985 	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
986 	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
987 
988 	return nid;
989 }
990 
991 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
992 	for (nr_nodes = nodes_weight(*mask);				\
993 		nr_nodes > 0 &&						\
994 		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
995 		nr_nodes--)
996 
997 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
998 	for (nr_nodes = nodes_weight(*mask);				\
999 		nr_nodes > 0 &&						\
1000 		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
1001 		nr_nodes--)
1002 
1003 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1004 static void destroy_compound_gigantic_page(struct page *page,
1005 					unsigned int order)
1006 {
1007 	int i;
1008 	int nr_pages = 1 << order;
1009 	struct page *p = page + 1;
1010 
1011 	atomic_set(compound_mapcount_ptr(page), 0);
1012 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1013 		clear_compound_head(p);
1014 		set_page_refcounted(p);
1015 	}
1016 
1017 	set_compound_order(page, 0);
1018 	__ClearPageHead(page);
1019 }
1020 
1021 static void free_gigantic_page(struct page *page, unsigned int order)
1022 {
1023 	free_contig_range(page_to_pfn(page), 1 << order);
1024 }
1025 
1026 #ifdef CONFIG_CONTIG_ALLOC
1027 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1028 		int nid, nodemask_t *nodemask)
1029 {
1030 	unsigned long nr_pages = 1UL << huge_page_order(h);
1031 
1032 	return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1033 }
1034 
1035 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1036 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1037 #else /* !CONFIG_CONTIG_ALLOC */
1038 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1039 					int nid, nodemask_t *nodemask)
1040 {
1041 	return NULL;
1042 }
1043 #endif /* CONFIG_CONTIG_ALLOC */
1044 
1045 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1046 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1047 					int nid, nodemask_t *nodemask)
1048 {
1049 	return NULL;
1050 }
1051 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1052 static inline void destroy_compound_gigantic_page(struct page *page,
1053 						unsigned int order) { }
1054 #endif
1055 
1056 static void update_and_free_page(struct hstate *h, struct page *page)
1057 {
1058 	int i;
1059 
1060 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1061 		return;
1062 
1063 	h->nr_huge_pages--;
1064 	h->nr_huge_pages_node[page_to_nid(page)]--;
1065 	for (i = 0; i < pages_per_huge_page(h); i++) {
1066 		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1067 				1 << PG_referenced | 1 << PG_dirty |
1068 				1 << PG_active | 1 << PG_private |
1069 				1 << PG_writeback);
1070 	}
1071 	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1072 	set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1073 	set_page_refcounted(page);
1074 	if (hstate_is_gigantic(h)) {
1075 		destroy_compound_gigantic_page(page, huge_page_order(h));
1076 		free_gigantic_page(page, huge_page_order(h));
1077 	} else {
1078 		__free_pages(page, huge_page_order(h));
1079 	}
1080 }
1081 
1082 struct hstate *size_to_hstate(unsigned long size)
1083 {
1084 	struct hstate *h;
1085 
1086 	for_each_hstate(h) {
1087 		if (huge_page_size(h) == size)
1088 			return h;
1089 	}
1090 	return NULL;
1091 }
1092 
1093 /*
1094  * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1095  * to hstate->hugepage_activelist.)
1096  *
1097  * This function can be called for tail pages, but never returns true for them.
1098  */
1099 bool page_huge_active(struct page *page)
1100 {
1101 	VM_BUG_ON_PAGE(!PageHuge(page), page);
1102 	return PageHead(page) && PagePrivate(&page[1]);
1103 }
1104 
1105 /* never called for tail page */
1106 static void set_page_huge_active(struct page *page)
1107 {
1108 	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1109 	SetPagePrivate(&page[1]);
1110 }
1111 
1112 static void clear_page_huge_active(struct page *page)
1113 {
1114 	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1115 	ClearPagePrivate(&page[1]);
1116 }
1117 
1118 /*
1119  * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1120  * code
1121  */
1122 static inline bool PageHugeTemporary(struct page *page)
1123 {
1124 	if (!PageHuge(page))
1125 		return false;
1126 
1127 	return (unsigned long)page[2].mapping == -1U;
1128 }
1129 
1130 static inline void SetPageHugeTemporary(struct page *page)
1131 {
1132 	page[2].mapping = (void *)-1U;
1133 }
1134 
1135 static inline void ClearPageHugeTemporary(struct page *page)
1136 {
1137 	page[2].mapping = NULL;
1138 }
1139 
1140 static void __free_huge_page(struct page *page)
1141 {
1142 	/*
1143 	 * Can't pass hstate in here because it is called from the
1144 	 * compound page destructor.
1145 	 */
1146 	struct hstate *h = page_hstate(page);
1147 	int nid = page_to_nid(page);
1148 	struct hugepage_subpool *spool =
1149 		(struct hugepage_subpool *)page_private(page);
1150 	bool restore_reserve;
1151 
1152 	VM_BUG_ON_PAGE(page_count(page), page);
1153 	VM_BUG_ON_PAGE(page_mapcount(page), page);
1154 
1155 	set_page_private(page, 0);
1156 	page->mapping = NULL;
1157 	restore_reserve = PagePrivate(page);
1158 	ClearPagePrivate(page);
1159 
1160 	/*
1161 	 * If PagePrivate() was set on page, page allocation consumed a
1162 	 * reservation.  If the page was associated with a subpool, there
1163 	 * would have been a page reserved in the subpool before allocation
1164 	 * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1165 	 * reservtion, do not call hugepage_subpool_put_pages() as this will
1166 	 * remove the reserved page from the subpool.
1167 	 */
1168 	if (!restore_reserve) {
1169 		/*
1170 		 * A return code of zero implies that the subpool will be
1171 		 * under its minimum size if the reservation is not restored
1172 		 * after page is free.  Therefore, force restore_reserve
1173 		 * operation.
1174 		 */
1175 		if (hugepage_subpool_put_pages(spool, 1) == 0)
1176 			restore_reserve = true;
1177 	}
1178 
1179 	spin_lock(&hugetlb_lock);
1180 	clear_page_huge_active(page);
1181 	hugetlb_cgroup_uncharge_page(hstate_index(h),
1182 				     pages_per_huge_page(h), page);
1183 	if (restore_reserve)
1184 		h->resv_huge_pages++;
1185 
1186 	if (PageHugeTemporary(page)) {
1187 		list_del(&page->lru);
1188 		ClearPageHugeTemporary(page);
1189 		update_and_free_page(h, page);
1190 	} else if (h->surplus_huge_pages_node[nid]) {
1191 		/* remove the page from active list */
1192 		list_del(&page->lru);
1193 		update_and_free_page(h, page);
1194 		h->surplus_huge_pages--;
1195 		h->surplus_huge_pages_node[nid]--;
1196 	} else {
1197 		arch_clear_hugepage_flags(page);
1198 		enqueue_huge_page(h, page);
1199 	}
1200 	spin_unlock(&hugetlb_lock);
1201 }
1202 
1203 /*
1204  * As free_huge_page() can be called from a non-task context, we have
1205  * to defer the actual freeing in a workqueue to prevent potential
1206  * hugetlb_lock deadlock.
1207  *
1208  * free_hpage_workfn() locklessly retrieves the linked list of pages to
1209  * be freed and frees them one-by-one. As the page->mapping pointer is
1210  * going to be cleared in __free_huge_page() anyway, it is reused as the
1211  * llist_node structure of a lockless linked list of huge pages to be freed.
1212  */
1213 static LLIST_HEAD(hpage_freelist);
1214 
1215 static void free_hpage_workfn(struct work_struct *work)
1216 {
1217 	struct llist_node *node;
1218 	struct page *page;
1219 
1220 	node = llist_del_all(&hpage_freelist);
1221 
1222 	while (node) {
1223 		page = container_of((struct address_space **)node,
1224 				     struct page, mapping);
1225 		node = node->next;
1226 		__free_huge_page(page);
1227 	}
1228 }
1229 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1230 
1231 void free_huge_page(struct page *page)
1232 {
1233 	/*
1234 	 * Defer freeing if in non-task context to avoid hugetlb_lock deadlock.
1235 	 */
1236 	if (!in_task()) {
1237 		/*
1238 		 * Only call schedule_work() if hpage_freelist is previously
1239 		 * empty. Otherwise, schedule_work() had been called but the
1240 		 * workfn hasn't retrieved the list yet.
1241 		 */
1242 		if (llist_add((struct llist_node *)&page->mapping,
1243 			      &hpage_freelist))
1244 			schedule_work(&free_hpage_work);
1245 		return;
1246 	}
1247 
1248 	__free_huge_page(page);
1249 }
1250 
1251 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1252 {
1253 	INIT_LIST_HEAD(&page->lru);
1254 	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1255 	spin_lock(&hugetlb_lock);
1256 	set_hugetlb_cgroup(page, NULL);
1257 	h->nr_huge_pages++;
1258 	h->nr_huge_pages_node[nid]++;
1259 	spin_unlock(&hugetlb_lock);
1260 }
1261 
1262 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1263 {
1264 	int i;
1265 	int nr_pages = 1 << order;
1266 	struct page *p = page + 1;
1267 
1268 	/* we rely on prep_new_huge_page to set the destructor */
1269 	set_compound_order(page, order);
1270 	__ClearPageReserved(page);
1271 	__SetPageHead(page);
1272 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1273 		/*
1274 		 * For gigantic hugepages allocated through bootmem at
1275 		 * boot, it's safer to be consistent with the not-gigantic
1276 		 * hugepages and clear the PG_reserved bit from all tail pages
1277 		 * too.  Otherwse drivers using get_user_pages() to access tail
1278 		 * pages may get the reference counting wrong if they see
1279 		 * PG_reserved set on a tail page (despite the head page not
1280 		 * having PG_reserved set).  Enforcing this consistency between
1281 		 * head and tail pages allows drivers to optimize away a check
1282 		 * on the head page when they need know if put_page() is needed
1283 		 * after get_user_pages().
1284 		 */
1285 		__ClearPageReserved(p);
1286 		set_page_count(p, 0);
1287 		set_compound_head(p, page);
1288 	}
1289 	atomic_set(compound_mapcount_ptr(page), -1);
1290 }
1291 
1292 /*
1293  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1294  * transparent huge pages.  See the PageTransHuge() documentation for more
1295  * details.
1296  */
1297 int PageHuge(struct page *page)
1298 {
1299 	if (!PageCompound(page))
1300 		return 0;
1301 
1302 	page = compound_head(page);
1303 	return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1304 }
1305 EXPORT_SYMBOL_GPL(PageHuge);
1306 
1307 /*
1308  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1309  * normal or transparent huge pages.
1310  */
1311 int PageHeadHuge(struct page *page_head)
1312 {
1313 	if (!PageHead(page_head))
1314 		return 0;
1315 
1316 	return get_compound_page_dtor(page_head) == free_huge_page;
1317 }
1318 
1319 pgoff_t __basepage_index(struct page *page)
1320 {
1321 	struct page *page_head = compound_head(page);
1322 	pgoff_t index = page_index(page_head);
1323 	unsigned long compound_idx;
1324 
1325 	if (!PageHuge(page_head))
1326 		return page_index(page);
1327 
1328 	if (compound_order(page_head) >= MAX_ORDER)
1329 		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1330 	else
1331 		compound_idx = page - page_head;
1332 
1333 	return (index << compound_order(page_head)) + compound_idx;
1334 }
1335 
1336 static struct page *alloc_buddy_huge_page(struct hstate *h,
1337 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
1338 		nodemask_t *node_alloc_noretry)
1339 {
1340 	int order = huge_page_order(h);
1341 	struct page *page;
1342 	bool alloc_try_hard = true;
1343 
1344 	/*
1345 	 * By default we always try hard to allocate the page with
1346 	 * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
1347 	 * a loop (to adjust global huge page counts) and previous allocation
1348 	 * failed, do not continue to try hard on the same node.  Use the
1349 	 * node_alloc_noretry bitmap to manage this state information.
1350 	 */
1351 	if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1352 		alloc_try_hard = false;
1353 	gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1354 	if (alloc_try_hard)
1355 		gfp_mask |= __GFP_RETRY_MAYFAIL;
1356 	if (nid == NUMA_NO_NODE)
1357 		nid = numa_mem_id();
1358 	page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1359 	if (page)
1360 		__count_vm_event(HTLB_BUDDY_PGALLOC);
1361 	else
1362 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1363 
1364 	/*
1365 	 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1366 	 * indicates an overall state change.  Clear bit so that we resume
1367 	 * normal 'try hard' allocations.
1368 	 */
1369 	if (node_alloc_noretry && page && !alloc_try_hard)
1370 		node_clear(nid, *node_alloc_noretry);
1371 
1372 	/*
1373 	 * If we tried hard to get a page but failed, set bit so that
1374 	 * subsequent attempts will not try as hard until there is an
1375 	 * overall state change.
1376 	 */
1377 	if (node_alloc_noretry && !page && alloc_try_hard)
1378 		node_set(nid, *node_alloc_noretry);
1379 
1380 	return page;
1381 }
1382 
1383 /*
1384  * Common helper to allocate a fresh hugetlb page. All specific allocators
1385  * should use this function to get new hugetlb pages
1386  */
1387 static struct page *alloc_fresh_huge_page(struct hstate *h,
1388 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
1389 		nodemask_t *node_alloc_noretry)
1390 {
1391 	struct page *page;
1392 
1393 	if (hstate_is_gigantic(h))
1394 		page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1395 	else
1396 		page = alloc_buddy_huge_page(h, gfp_mask,
1397 				nid, nmask, node_alloc_noretry);
1398 	if (!page)
1399 		return NULL;
1400 
1401 	if (hstate_is_gigantic(h))
1402 		prep_compound_gigantic_page(page, huge_page_order(h));
1403 	prep_new_huge_page(h, page, page_to_nid(page));
1404 
1405 	return page;
1406 }
1407 
1408 /*
1409  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1410  * manner.
1411  */
1412 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1413 				nodemask_t *node_alloc_noretry)
1414 {
1415 	struct page *page;
1416 	int nr_nodes, node;
1417 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1418 
1419 	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1420 		page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1421 						node_alloc_noretry);
1422 		if (page)
1423 			break;
1424 	}
1425 
1426 	if (!page)
1427 		return 0;
1428 
1429 	put_page(page); /* free it into the hugepage allocator */
1430 
1431 	return 1;
1432 }
1433 
1434 /*
1435  * Free huge page from pool from next node to free.
1436  * Attempt to keep persistent huge pages more or less
1437  * balanced over allowed nodes.
1438  * Called with hugetlb_lock locked.
1439  */
1440 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1441 							 bool acct_surplus)
1442 {
1443 	int nr_nodes, node;
1444 	int ret = 0;
1445 
1446 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1447 		/*
1448 		 * If we're returning unused surplus pages, only examine
1449 		 * nodes with surplus pages.
1450 		 */
1451 		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1452 		    !list_empty(&h->hugepage_freelists[node])) {
1453 			struct page *page =
1454 				list_entry(h->hugepage_freelists[node].next,
1455 					  struct page, lru);
1456 			list_del(&page->lru);
1457 			h->free_huge_pages--;
1458 			h->free_huge_pages_node[node]--;
1459 			if (acct_surplus) {
1460 				h->surplus_huge_pages--;
1461 				h->surplus_huge_pages_node[node]--;
1462 			}
1463 			update_and_free_page(h, page);
1464 			ret = 1;
1465 			break;
1466 		}
1467 	}
1468 
1469 	return ret;
1470 }
1471 
1472 /*
1473  * Dissolve a given free hugepage into free buddy pages. This function does
1474  * nothing for in-use hugepages and non-hugepages.
1475  * This function returns values like below:
1476  *
1477  *  -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1478  *          (allocated or reserved.)
1479  *       0: successfully dissolved free hugepages or the page is not a
1480  *          hugepage (considered as already dissolved)
1481  */
1482 int dissolve_free_huge_page(struct page *page)
1483 {
1484 	int rc = -EBUSY;
1485 
1486 	/* Not to disrupt normal path by vainly holding hugetlb_lock */
1487 	if (!PageHuge(page))
1488 		return 0;
1489 
1490 	spin_lock(&hugetlb_lock);
1491 	if (!PageHuge(page)) {
1492 		rc = 0;
1493 		goto out;
1494 	}
1495 
1496 	if (!page_count(page)) {
1497 		struct page *head = compound_head(page);
1498 		struct hstate *h = page_hstate(head);
1499 		int nid = page_to_nid(head);
1500 		if (h->free_huge_pages - h->resv_huge_pages == 0)
1501 			goto out;
1502 		/*
1503 		 * Move PageHWPoison flag from head page to the raw error page,
1504 		 * which makes any subpages rather than the error page reusable.
1505 		 */
1506 		if (PageHWPoison(head) && page != head) {
1507 			SetPageHWPoison(page);
1508 			ClearPageHWPoison(head);
1509 		}
1510 		list_del(&head->lru);
1511 		h->free_huge_pages--;
1512 		h->free_huge_pages_node[nid]--;
1513 		h->max_huge_pages--;
1514 		update_and_free_page(h, head);
1515 		rc = 0;
1516 	}
1517 out:
1518 	spin_unlock(&hugetlb_lock);
1519 	return rc;
1520 }
1521 
1522 /*
1523  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1524  * make specified memory blocks removable from the system.
1525  * Note that this will dissolve a free gigantic hugepage completely, if any
1526  * part of it lies within the given range.
1527  * Also note that if dissolve_free_huge_page() returns with an error, all
1528  * free hugepages that were dissolved before that error are lost.
1529  */
1530 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1531 {
1532 	unsigned long pfn;
1533 	struct page *page;
1534 	int rc = 0;
1535 
1536 	if (!hugepages_supported())
1537 		return rc;
1538 
1539 	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1540 		page = pfn_to_page(pfn);
1541 		rc = dissolve_free_huge_page(page);
1542 		if (rc)
1543 			break;
1544 	}
1545 
1546 	return rc;
1547 }
1548 
1549 /*
1550  * Allocates a fresh surplus page from the page allocator.
1551  */
1552 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1553 		int nid, nodemask_t *nmask)
1554 {
1555 	struct page *page = NULL;
1556 
1557 	if (hstate_is_gigantic(h))
1558 		return NULL;
1559 
1560 	spin_lock(&hugetlb_lock);
1561 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1562 		goto out_unlock;
1563 	spin_unlock(&hugetlb_lock);
1564 
1565 	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1566 	if (!page)
1567 		return NULL;
1568 
1569 	spin_lock(&hugetlb_lock);
1570 	/*
1571 	 * We could have raced with the pool size change.
1572 	 * Double check that and simply deallocate the new page
1573 	 * if we would end up overcommiting the surpluses. Abuse
1574 	 * temporary page to workaround the nasty free_huge_page
1575 	 * codeflow
1576 	 */
1577 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1578 		SetPageHugeTemporary(page);
1579 		spin_unlock(&hugetlb_lock);
1580 		put_page(page);
1581 		return NULL;
1582 	} else {
1583 		h->surplus_huge_pages++;
1584 		h->surplus_huge_pages_node[page_to_nid(page)]++;
1585 	}
1586 
1587 out_unlock:
1588 	spin_unlock(&hugetlb_lock);
1589 
1590 	return page;
1591 }
1592 
1593 struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1594 				     int nid, nodemask_t *nmask)
1595 {
1596 	struct page *page;
1597 
1598 	if (hstate_is_gigantic(h))
1599 		return NULL;
1600 
1601 	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1602 	if (!page)
1603 		return NULL;
1604 
1605 	/*
1606 	 * We do not account these pages as surplus because they are only
1607 	 * temporary and will be released properly on the last reference
1608 	 */
1609 	SetPageHugeTemporary(page);
1610 
1611 	return page;
1612 }
1613 
1614 /*
1615  * Use the VMA's mpolicy to allocate a huge page from the buddy.
1616  */
1617 static
1618 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1619 		struct vm_area_struct *vma, unsigned long addr)
1620 {
1621 	struct page *page;
1622 	struct mempolicy *mpol;
1623 	gfp_t gfp_mask = htlb_alloc_mask(h);
1624 	int nid;
1625 	nodemask_t *nodemask;
1626 
1627 	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1628 	page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1629 	mpol_cond_put(mpol);
1630 
1631 	return page;
1632 }
1633 
1634 /* page migration callback function */
1635 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1636 {
1637 	gfp_t gfp_mask = htlb_alloc_mask(h);
1638 	struct page *page = NULL;
1639 
1640 	if (nid != NUMA_NO_NODE)
1641 		gfp_mask |= __GFP_THISNODE;
1642 
1643 	spin_lock(&hugetlb_lock);
1644 	if (h->free_huge_pages - h->resv_huge_pages > 0)
1645 		page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL);
1646 	spin_unlock(&hugetlb_lock);
1647 
1648 	if (!page)
1649 		page = alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
1650 
1651 	return page;
1652 }
1653 
1654 /* page migration callback function */
1655 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1656 		nodemask_t *nmask)
1657 {
1658 	gfp_t gfp_mask = htlb_alloc_mask(h);
1659 
1660 	spin_lock(&hugetlb_lock);
1661 	if (h->free_huge_pages - h->resv_huge_pages > 0) {
1662 		struct page *page;
1663 
1664 		page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1665 		if (page) {
1666 			spin_unlock(&hugetlb_lock);
1667 			return page;
1668 		}
1669 	}
1670 	spin_unlock(&hugetlb_lock);
1671 
1672 	return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
1673 }
1674 
1675 /* mempolicy aware migration callback */
1676 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1677 		unsigned long address)
1678 {
1679 	struct mempolicy *mpol;
1680 	nodemask_t *nodemask;
1681 	struct page *page;
1682 	gfp_t gfp_mask;
1683 	int node;
1684 
1685 	gfp_mask = htlb_alloc_mask(h);
1686 	node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1687 	page = alloc_huge_page_nodemask(h, node, nodemask);
1688 	mpol_cond_put(mpol);
1689 
1690 	return page;
1691 }
1692 
1693 /*
1694  * Increase the hugetlb pool such that it can accommodate a reservation
1695  * of size 'delta'.
1696  */
1697 static int gather_surplus_pages(struct hstate *h, int delta)
1698 {
1699 	struct list_head surplus_list;
1700 	struct page *page, *tmp;
1701 	int ret, i;
1702 	int needed, allocated;
1703 	bool alloc_ok = true;
1704 
1705 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1706 	if (needed <= 0) {
1707 		h->resv_huge_pages += delta;
1708 		return 0;
1709 	}
1710 
1711 	allocated = 0;
1712 	INIT_LIST_HEAD(&surplus_list);
1713 
1714 	ret = -ENOMEM;
1715 retry:
1716 	spin_unlock(&hugetlb_lock);
1717 	for (i = 0; i < needed; i++) {
1718 		page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
1719 				NUMA_NO_NODE, NULL);
1720 		if (!page) {
1721 			alloc_ok = false;
1722 			break;
1723 		}
1724 		list_add(&page->lru, &surplus_list);
1725 		cond_resched();
1726 	}
1727 	allocated += i;
1728 
1729 	/*
1730 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
1731 	 * because either resv_huge_pages or free_huge_pages may have changed.
1732 	 */
1733 	spin_lock(&hugetlb_lock);
1734 	needed = (h->resv_huge_pages + delta) -
1735 			(h->free_huge_pages + allocated);
1736 	if (needed > 0) {
1737 		if (alloc_ok)
1738 			goto retry;
1739 		/*
1740 		 * We were not able to allocate enough pages to
1741 		 * satisfy the entire reservation so we free what
1742 		 * we've allocated so far.
1743 		 */
1744 		goto free;
1745 	}
1746 	/*
1747 	 * The surplus_list now contains _at_least_ the number of extra pages
1748 	 * needed to accommodate the reservation.  Add the appropriate number
1749 	 * of pages to the hugetlb pool and free the extras back to the buddy
1750 	 * allocator.  Commit the entire reservation here to prevent another
1751 	 * process from stealing the pages as they are added to the pool but
1752 	 * before they are reserved.
1753 	 */
1754 	needed += allocated;
1755 	h->resv_huge_pages += delta;
1756 	ret = 0;
1757 
1758 	/* Free the needed pages to the hugetlb pool */
1759 	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1760 		if ((--needed) < 0)
1761 			break;
1762 		/*
1763 		 * This page is now managed by the hugetlb allocator and has
1764 		 * no users -- drop the buddy allocator's reference.
1765 		 */
1766 		put_page_testzero(page);
1767 		VM_BUG_ON_PAGE(page_count(page), page);
1768 		enqueue_huge_page(h, page);
1769 	}
1770 free:
1771 	spin_unlock(&hugetlb_lock);
1772 
1773 	/* Free unnecessary surplus pages to the buddy allocator */
1774 	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1775 		put_page(page);
1776 	spin_lock(&hugetlb_lock);
1777 
1778 	return ret;
1779 }
1780 
1781 /*
1782  * This routine has two main purposes:
1783  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1784  *    in unused_resv_pages.  This corresponds to the prior adjustments made
1785  *    to the associated reservation map.
1786  * 2) Free any unused surplus pages that may have been allocated to satisfy
1787  *    the reservation.  As many as unused_resv_pages may be freed.
1788  *
1789  * Called with hugetlb_lock held.  However, the lock could be dropped (and
1790  * reacquired) during calls to cond_resched_lock.  Whenever dropping the lock,
1791  * we must make sure nobody else can claim pages we are in the process of
1792  * freeing.  Do this by ensuring resv_huge_page always is greater than the
1793  * number of huge pages we plan to free when dropping the lock.
1794  */
1795 static void return_unused_surplus_pages(struct hstate *h,
1796 					unsigned long unused_resv_pages)
1797 {
1798 	unsigned long nr_pages;
1799 
1800 	/* Cannot return gigantic pages currently */
1801 	if (hstate_is_gigantic(h))
1802 		goto out;
1803 
1804 	/*
1805 	 * Part (or even all) of the reservation could have been backed
1806 	 * by pre-allocated pages. Only free surplus pages.
1807 	 */
1808 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1809 
1810 	/*
1811 	 * We want to release as many surplus pages as possible, spread
1812 	 * evenly across all nodes with memory. Iterate across these nodes
1813 	 * until we can no longer free unreserved surplus pages. This occurs
1814 	 * when the nodes with surplus pages have no free pages.
1815 	 * free_pool_huge_page() will balance the the freed pages across the
1816 	 * on-line nodes with memory and will handle the hstate accounting.
1817 	 *
1818 	 * Note that we decrement resv_huge_pages as we free the pages.  If
1819 	 * we drop the lock, resv_huge_pages will still be sufficiently large
1820 	 * to cover subsequent pages we may free.
1821 	 */
1822 	while (nr_pages--) {
1823 		h->resv_huge_pages--;
1824 		unused_resv_pages--;
1825 		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1826 			goto out;
1827 		cond_resched_lock(&hugetlb_lock);
1828 	}
1829 
1830 out:
1831 	/* Fully uncommit the reservation */
1832 	h->resv_huge_pages -= unused_resv_pages;
1833 }
1834 
1835 
1836 /*
1837  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1838  * are used by the huge page allocation routines to manage reservations.
1839  *
1840  * vma_needs_reservation is called to determine if the huge page at addr
1841  * within the vma has an associated reservation.  If a reservation is
1842  * needed, the value 1 is returned.  The caller is then responsible for
1843  * managing the global reservation and subpool usage counts.  After
1844  * the huge page has been allocated, vma_commit_reservation is called
1845  * to add the page to the reservation map.  If the page allocation fails,
1846  * the reservation must be ended instead of committed.  vma_end_reservation
1847  * is called in such cases.
1848  *
1849  * In the normal case, vma_commit_reservation returns the same value
1850  * as the preceding vma_needs_reservation call.  The only time this
1851  * is not the case is if a reserve map was changed between calls.  It
1852  * is the responsibility of the caller to notice the difference and
1853  * take appropriate action.
1854  *
1855  * vma_add_reservation is used in error paths where a reservation must
1856  * be restored when a newly allocated huge page must be freed.  It is
1857  * to be called after calling vma_needs_reservation to determine if a
1858  * reservation exists.
1859  */
1860 enum vma_resv_mode {
1861 	VMA_NEEDS_RESV,
1862 	VMA_COMMIT_RESV,
1863 	VMA_END_RESV,
1864 	VMA_ADD_RESV,
1865 };
1866 static long __vma_reservation_common(struct hstate *h,
1867 				struct vm_area_struct *vma, unsigned long addr,
1868 				enum vma_resv_mode mode)
1869 {
1870 	struct resv_map *resv;
1871 	pgoff_t idx;
1872 	long ret;
1873 
1874 	resv = vma_resv_map(vma);
1875 	if (!resv)
1876 		return 1;
1877 
1878 	idx = vma_hugecache_offset(h, vma, addr);
1879 	switch (mode) {
1880 	case VMA_NEEDS_RESV:
1881 		ret = region_chg(resv, idx, idx + 1);
1882 		break;
1883 	case VMA_COMMIT_RESV:
1884 		ret = region_add(resv, idx, idx + 1);
1885 		break;
1886 	case VMA_END_RESV:
1887 		region_abort(resv, idx, idx + 1);
1888 		ret = 0;
1889 		break;
1890 	case VMA_ADD_RESV:
1891 		if (vma->vm_flags & VM_MAYSHARE)
1892 			ret = region_add(resv, idx, idx + 1);
1893 		else {
1894 			region_abort(resv, idx, idx + 1);
1895 			ret = region_del(resv, idx, idx + 1);
1896 		}
1897 		break;
1898 	default:
1899 		BUG();
1900 	}
1901 
1902 	if (vma->vm_flags & VM_MAYSHARE)
1903 		return ret;
1904 	else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1905 		/*
1906 		 * In most cases, reserves always exist for private mappings.
1907 		 * However, a file associated with mapping could have been
1908 		 * hole punched or truncated after reserves were consumed.
1909 		 * As subsequent fault on such a range will not use reserves.
1910 		 * Subtle - The reserve map for private mappings has the
1911 		 * opposite meaning than that of shared mappings.  If NO
1912 		 * entry is in the reserve map, it means a reservation exists.
1913 		 * If an entry exists in the reserve map, it means the
1914 		 * reservation has already been consumed.  As a result, the
1915 		 * return value of this routine is the opposite of the
1916 		 * value returned from reserve map manipulation routines above.
1917 		 */
1918 		if (ret)
1919 			return 0;
1920 		else
1921 			return 1;
1922 	}
1923 	else
1924 		return ret < 0 ? ret : 0;
1925 }
1926 
1927 static long vma_needs_reservation(struct hstate *h,
1928 			struct vm_area_struct *vma, unsigned long addr)
1929 {
1930 	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1931 }
1932 
1933 static long vma_commit_reservation(struct hstate *h,
1934 			struct vm_area_struct *vma, unsigned long addr)
1935 {
1936 	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1937 }
1938 
1939 static void vma_end_reservation(struct hstate *h,
1940 			struct vm_area_struct *vma, unsigned long addr)
1941 {
1942 	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1943 }
1944 
1945 static long vma_add_reservation(struct hstate *h,
1946 			struct vm_area_struct *vma, unsigned long addr)
1947 {
1948 	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
1949 }
1950 
1951 /*
1952  * This routine is called to restore a reservation on error paths.  In the
1953  * specific error paths, a huge page was allocated (via alloc_huge_page)
1954  * and is about to be freed.  If a reservation for the page existed,
1955  * alloc_huge_page would have consumed the reservation and set PagePrivate
1956  * in the newly allocated page.  When the page is freed via free_huge_page,
1957  * the global reservation count will be incremented if PagePrivate is set.
1958  * However, free_huge_page can not adjust the reserve map.  Adjust the
1959  * reserve map here to be consistent with global reserve count adjustments
1960  * to be made by free_huge_page.
1961  */
1962 static void restore_reserve_on_error(struct hstate *h,
1963 			struct vm_area_struct *vma, unsigned long address,
1964 			struct page *page)
1965 {
1966 	if (unlikely(PagePrivate(page))) {
1967 		long rc = vma_needs_reservation(h, vma, address);
1968 
1969 		if (unlikely(rc < 0)) {
1970 			/*
1971 			 * Rare out of memory condition in reserve map
1972 			 * manipulation.  Clear PagePrivate so that
1973 			 * global reserve count will not be incremented
1974 			 * by free_huge_page.  This will make it appear
1975 			 * as though the reservation for this page was
1976 			 * consumed.  This may prevent the task from
1977 			 * faulting in the page at a later time.  This
1978 			 * is better than inconsistent global huge page
1979 			 * accounting of reserve counts.
1980 			 */
1981 			ClearPagePrivate(page);
1982 		} else if (rc) {
1983 			rc = vma_add_reservation(h, vma, address);
1984 			if (unlikely(rc < 0))
1985 				/*
1986 				 * See above comment about rare out of
1987 				 * memory condition.
1988 				 */
1989 				ClearPagePrivate(page);
1990 		} else
1991 			vma_end_reservation(h, vma, address);
1992 	}
1993 }
1994 
1995 struct page *alloc_huge_page(struct vm_area_struct *vma,
1996 				    unsigned long addr, int avoid_reserve)
1997 {
1998 	struct hugepage_subpool *spool = subpool_vma(vma);
1999 	struct hstate *h = hstate_vma(vma);
2000 	struct page *page;
2001 	long map_chg, map_commit;
2002 	long gbl_chg;
2003 	int ret, idx;
2004 	struct hugetlb_cgroup *h_cg;
2005 
2006 	idx = hstate_index(h);
2007 	/*
2008 	 * Examine the region/reserve map to determine if the process
2009 	 * has a reservation for the page to be allocated.  A return
2010 	 * code of zero indicates a reservation exists (no change).
2011 	 */
2012 	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2013 	if (map_chg < 0)
2014 		return ERR_PTR(-ENOMEM);
2015 
2016 	/*
2017 	 * Processes that did not create the mapping will have no
2018 	 * reserves as indicated by the region/reserve map. Check
2019 	 * that the allocation will not exceed the subpool limit.
2020 	 * Allocations for MAP_NORESERVE mappings also need to be
2021 	 * checked against any subpool limit.
2022 	 */
2023 	if (map_chg || avoid_reserve) {
2024 		gbl_chg = hugepage_subpool_get_pages(spool, 1);
2025 		if (gbl_chg < 0) {
2026 			vma_end_reservation(h, vma, addr);
2027 			return ERR_PTR(-ENOSPC);
2028 		}
2029 
2030 		/*
2031 		 * Even though there was no reservation in the region/reserve
2032 		 * map, there could be reservations associated with the
2033 		 * subpool that can be used.  This would be indicated if the
2034 		 * return value of hugepage_subpool_get_pages() is zero.
2035 		 * However, if avoid_reserve is specified we still avoid even
2036 		 * the subpool reservations.
2037 		 */
2038 		if (avoid_reserve)
2039 			gbl_chg = 1;
2040 	}
2041 
2042 	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2043 	if (ret)
2044 		goto out_subpool_put;
2045 
2046 	spin_lock(&hugetlb_lock);
2047 	/*
2048 	 * glb_chg is passed to indicate whether or not a page must be taken
2049 	 * from the global free pool (global change).  gbl_chg == 0 indicates
2050 	 * a reservation exists for the allocation.
2051 	 */
2052 	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2053 	if (!page) {
2054 		spin_unlock(&hugetlb_lock);
2055 		page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2056 		if (!page)
2057 			goto out_uncharge_cgroup;
2058 		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2059 			SetPagePrivate(page);
2060 			h->resv_huge_pages--;
2061 		}
2062 		spin_lock(&hugetlb_lock);
2063 		list_move(&page->lru, &h->hugepage_activelist);
2064 		/* Fall through */
2065 	}
2066 	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2067 	spin_unlock(&hugetlb_lock);
2068 
2069 	set_page_private(page, (unsigned long)spool);
2070 
2071 	map_commit = vma_commit_reservation(h, vma, addr);
2072 	if (unlikely(map_chg > map_commit)) {
2073 		/*
2074 		 * The page was added to the reservation map between
2075 		 * vma_needs_reservation and vma_commit_reservation.
2076 		 * This indicates a race with hugetlb_reserve_pages.
2077 		 * Adjust for the subpool count incremented above AND
2078 		 * in hugetlb_reserve_pages for the same page.  Also,
2079 		 * the reservation count added in hugetlb_reserve_pages
2080 		 * no longer applies.
2081 		 */
2082 		long rsv_adjust;
2083 
2084 		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2085 		hugetlb_acct_memory(h, -rsv_adjust);
2086 	}
2087 	return page;
2088 
2089 out_uncharge_cgroup:
2090 	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2091 out_subpool_put:
2092 	if (map_chg || avoid_reserve)
2093 		hugepage_subpool_put_pages(spool, 1);
2094 	vma_end_reservation(h, vma, addr);
2095 	return ERR_PTR(-ENOSPC);
2096 }
2097 
2098 int alloc_bootmem_huge_page(struct hstate *h)
2099 	__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2100 int __alloc_bootmem_huge_page(struct hstate *h)
2101 {
2102 	struct huge_bootmem_page *m;
2103 	int nr_nodes, node;
2104 
2105 	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2106 		void *addr;
2107 
2108 		addr = memblock_alloc_try_nid_raw(
2109 				huge_page_size(h), huge_page_size(h),
2110 				0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2111 		if (addr) {
2112 			/*
2113 			 * Use the beginning of the huge page to store the
2114 			 * huge_bootmem_page struct (until gather_bootmem
2115 			 * puts them into the mem_map).
2116 			 */
2117 			m = addr;
2118 			goto found;
2119 		}
2120 	}
2121 	return 0;
2122 
2123 found:
2124 	BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2125 	/* Put them into a private list first because mem_map is not up yet */
2126 	INIT_LIST_HEAD(&m->list);
2127 	list_add(&m->list, &huge_boot_pages);
2128 	m->hstate = h;
2129 	return 1;
2130 }
2131 
2132 static void __init prep_compound_huge_page(struct page *page,
2133 		unsigned int order)
2134 {
2135 	if (unlikely(order > (MAX_ORDER - 1)))
2136 		prep_compound_gigantic_page(page, order);
2137 	else
2138 		prep_compound_page(page, order);
2139 }
2140 
2141 /* Put bootmem huge pages into the standard lists after mem_map is up */
2142 static void __init gather_bootmem_prealloc(void)
2143 {
2144 	struct huge_bootmem_page *m;
2145 
2146 	list_for_each_entry(m, &huge_boot_pages, list) {
2147 		struct page *page = virt_to_page(m);
2148 		struct hstate *h = m->hstate;
2149 
2150 		WARN_ON(page_count(page) != 1);
2151 		prep_compound_huge_page(page, h->order);
2152 		WARN_ON(PageReserved(page));
2153 		prep_new_huge_page(h, page, page_to_nid(page));
2154 		put_page(page); /* free it into the hugepage allocator */
2155 
2156 		/*
2157 		 * If we had gigantic hugepages allocated at boot time, we need
2158 		 * to restore the 'stolen' pages to totalram_pages in order to
2159 		 * fix confusing memory reports from free(1) and another
2160 		 * side-effects, like CommitLimit going negative.
2161 		 */
2162 		if (hstate_is_gigantic(h))
2163 			adjust_managed_page_count(page, 1 << h->order);
2164 		cond_resched();
2165 	}
2166 }
2167 
2168 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2169 {
2170 	unsigned long i;
2171 	nodemask_t *node_alloc_noretry;
2172 
2173 	if (!hstate_is_gigantic(h)) {
2174 		/*
2175 		 * Bit mask controlling how hard we retry per-node allocations.
2176 		 * Ignore errors as lower level routines can deal with
2177 		 * node_alloc_noretry == NULL.  If this kmalloc fails at boot
2178 		 * time, we are likely in bigger trouble.
2179 		 */
2180 		node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2181 						GFP_KERNEL);
2182 	} else {
2183 		/* allocations done at boot time */
2184 		node_alloc_noretry = NULL;
2185 	}
2186 
2187 	/* bit mask controlling how hard we retry per-node allocations */
2188 	if (node_alloc_noretry)
2189 		nodes_clear(*node_alloc_noretry);
2190 
2191 	for (i = 0; i < h->max_huge_pages; ++i) {
2192 		if (hstate_is_gigantic(h)) {
2193 			if (!alloc_bootmem_huge_page(h))
2194 				break;
2195 		} else if (!alloc_pool_huge_page(h,
2196 					 &node_states[N_MEMORY],
2197 					 node_alloc_noretry))
2198 			break;
2199 		cond_resched();
2200 	}
2201 	if (i < h->max_huge_pages) {
2202 		char buf[32];
2203 
2204 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2205 		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
2206 			h->max_huge_pages, buf, i);
2207 		h->max_huge_pages = i;
2208 	}
2209 
2210 	kfree(node_alloc_noretry);
2211 }
2212 
2213 static void __init hugetlb_init_hstates(void)
2214 {
2215 	struct hstate *h;
2216 
2217 	for_each_hstate(h) {
2218 		if (minimum_order > huge_page_order(h))
2219 			minimum_order = huge_page_order(h);
2220 
2221 		/* oversize hugepages were init'ed in early boot */
2222 		if (!hstate_is_gigantic(h))
2223 			hugetlb_hstate_alloc_pages(h);
2224 	}
2225 	VM_BUG_ON(minimum_order == UINT_MAX);
2226 }
2227 
2228 static void __init report_hugepages(void)
2229 {
2230 	struct hstate *h;
2231 
2232 	for_each_hstate(h) {
2233 		char buf[32];
2234 
2235 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2236 		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2237 			buf, h->free_huge_pages);
2238 	}
2239 }
2240 
2241 #ifdef CONFIG_HIGHMEM
2242 static void try_to_free_low(struct hstate *h, unsigned long count,
2243 						nodemask_t *nodes_allowed)
2244 {
2245 	int i;
2246 
2247 	if (hstate_is_gigantic(h))
2248 		return;
2249 
2250 	for_each_node_mask(i, *nodes_allowed) {
2251 		struct page *page, *next;
2252 		struct list_head *freel = &h->hugepage_freelists[i];
2253 		list_for_each_entry_safe(page, next, freel, lru) {
2254 			if (count >= h->nr_huge_pages)
2255 				return;
2256 			if (PageHighMem(page))
2257 				continue;
2258 			list_del(&page->lru);
2259 			update_and_free_page(h, page);
2260 			h->free_huge_pages--;
2261 			h->free_huge_pages_node[page_to_nid(page)]--;
2262 		}
2263 	}
2264 }
2265 #else
2266 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2267 						nodemask_t *nodes_allowed)
2268 {
2269 }
2270 #endif
2271 
2272 /*
2273  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2274  * balanced by operating on them in a round-robin fashion.
2275  * Returns 1 if an adjustment was made.
2276  */
2277 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2278 				int delta)
2279 {
2280 	int nr_nodes, node;
2281 
2282 	VM_BUG_ON(delta != -1 && delta != 1);
2283 
2284 	if (delta < 0) {
2285 		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2286 			if (h->surplus_huge_pages_node[node])
2287 				goto found;
2288 		}
2289 	} else {
2290 		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2291 			if (h->surplus_huge_pages_node[node] <
2292 					h->nr_huge_pages_node[node])
2293 				goto found;
2294 		}
2295 	}
2296 	return 0;
2297 
2298 found:
2299 	h->surplus_huge_pages += delta;
2300 	h->surplus_huge_pages_node[node] += delta;
2301 	return 1;
2302 }
2303 
2304 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2305 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
2306 			      nodemask_t *nodes_allowed)
2307 {
2308 	unsigned long min_count, ret;
2309 	NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
2310 
2311 	/*
2312 	 * Bit mask controlling how hard we retry per-node allocations.
2313 	 * If we can not allocate the bit mask, do not attempt to allocate
2314 	 * the requested huge pages.
2315 	 */
2316 	if (node_alloc_noretry)
2317 		nodes_clear(*node_alloc_noretry);
2318 	else
2319 		return -ENOMEM;
2320 
2321 	spin_lock(&hugetlb_lock);
2322 
2323 	/*
2324 	 * Check for a node specific request.
2325 	 * Changing node specific huge page count may require a corresponding
2326 	 * change to the global count.  In any case, the passed node mask
2327 	 * (nodes_allowed) will restrict alloc/free to the specified node.
2328 	 */
2329 	if (nid != NUMA_NO_NODE) {
2330 		unsigned long old_count = count;
2331 
2332 		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2333 		/*
2334 		 * User may have specified a large count value which caused the
2335 		 * above calculation to overflow.  In this case, they wanted
2336 		 * to allocate as many huge pages as possible.  Set count to
2337 		 * largest possible value to align with their intention.
2338 		 */
2339 		if (count < old_count)
2340 			count = ULONG_MAX;
2341 	}
2342 
2343 	/*
2344 	 * Gigantic pages runtime allocation depend on the capability for large
2345 	 * page range allocation.
2346 	 * If the system does not provide this feature, return an error when
2347 	 * the user tries to allocate gigantic pages but let the user free the
2348 	 * boottime allocated gigantic pages.
2349 	 */
2350 	if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2351 		if (count > persistent_huge_pages(h)) {
2352 			spin_unlock(&hugetlb_lock);
2353 			NODEMASK_FREE(node_alloc_noretry);
2354 			return -EINVAL;
2355 		}
2356 		/* Fall through to decrease pool */
2357 	}
2358 
2359 	/*
2360 	 * Increase the pool size
2361 	 * First take pages out of surplus state.  Then make up the
2362 	 * remaining difference by allocating fresh huge pages.
2363 	 *
2364 	 * We might race with alloc_surplus_huge_page() here and be unable
2365 	 * to convert a surplus huge page to a normal huge page. That is
2366 	 * not critical, though, it just means the overall size of the
2367 	 * pool might be one hugepage larger than it needs to be, but
2368 	 * within all the constraints specified by the sysctls.
2369 	 */
2370 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2371 		if (!adjust_pool_surplus(h, nodes_allowed, -1))
2372 			break;
2373 	}
2374 
2375 	while (count > persistent_huge_pages(h)) {
2376 		/*
2377 		 * If this allocation races such that we no longer need the
2378 		 * page, free_huge_page will handle it by freeing the page
2379 		 * and reducing the surplus.
2380 		 */
2381 		spin_unlock(&hugetlb_lock);
2382 
2383 		/* yield cpu to avoid soft lockup */
2384 		cond_resched();
2385 
2386 		ret = alloc_pool_huge_page(h, nodes_allowed,
2387 						node_alloc_noretry);
2388 		spin_lock(&hugetlb_lock);
2389 		if (!ret)
2390 			goto out;
2391 
2392 		/* Bail for signals. Probably ctrl-c from user */
2393 		if (signal_pending(current))
2394 			goto out;
2395 	}
2396 
2397 	/*
2398 	 * Decrease the pool size
2399 	 * First return free pages to the buddy allocator (being careful
2400 	 * to keep enough around to satisfy reservations).  Then place
2401 	 * pages into surplus state as needed so the pool will shrink
2402 	 * to the desired size as pages become free.
2403 	 *
2404 	 * By placing pages into the surplus state independent of the
2405 	 * overcommit value, we are allowing the surplus pool size to
2406 	 * exceed overcommit. There are few sane options here. Since
2407 	 * alloc_surplus_huge_page() is checking the global counter,
2408 	 * though, we'll note that we're not allowed to exceed surplus
2409 	 * and won't grow the pool anywhere else. Not until one of the
2410 	 * sysctls are changed, or the surplus pages go out of use.
2411 	 */
2412 	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2413 	min_count = max(count, min_count);
2414 	try_to_free_low(h, min_count, nodes_allowed);
2415 	while (min_count < persistent_huge_pages(h)) {
2416 		if (!free_pool_huge_page(h, nodes_allowed, 0))
2417 			break;
2418 		cond_resched_lock(&hugetlb_lock);
2419 	}
2420 	while (count < persistent_huge_pages(h)) {
2421 		if (!adjust_pool_surplus(h, nodes_allowed, 1))
2422 			break;
2423 	}
2424 out:
2425 	h->max_huge_pages = persistent_huge_pages(h);
2426 	spin_unlock(&hugetlb_lock);
2427 
2428 	NODEMASK_FREE(node_alloc_noretry);
2429 
2430 	return 0;
2431 }
2432 
2433 #define HSTATE_ATTR_RO(_name) \
2434 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2435 
2436 #define HSTATE_ATTR(_name) \
2437 	static struct kobj_attribute _name##_attr = \
2438 		__ATTR(_name, 0644, _name##_show, _name##_store)
2439 
2440 static struct kobject *hugepages_kobj;
2441 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2442 
2443 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2444 
2445 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2446 {
2447 	int i;
2448 
2449 	for (i = 0; i < HUGE_MAX_HSTATE; i++)
2450 		if (hstate_kobjs[i] == kobj) {
2451 			if (nidp)
2452 				*nidp = NUMA_NO_NODE;
2453 			return &hstates[i];
2454 		}
2455 
2456 	return kobj_to_node_hstate(kobj, nidp);
2457 }
2458 
2459 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2460 					struct kobj_attribute *attr, char *buf)
2461 {
2462 	struct hstate *h;
2463 	unsigned long nr_huge_pages;
2464 	int nid;
2465 
2466 	h = kobj_to_hstate(kobj, &nid);
2467 	if (nid == NUMA_NO_NODE)
2468 		nr_huge_pages = h->nr_huge_pages;
2469 	else
2470 		nr_huge_pages = h->nr_huge_pages_node[nid];
2471 
2472 	return sprintf(buf, "%lu\n", nr_huge_pages);
2473 }
2474 
2475 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2476 					   struct hstate *h, int nid,
2477 					   unsigned long count, size_t len)
2478 {
2479 	int err;
2480 	nodemask_t nodes_allowed, *n_mask;
2481 
2482 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2483 		return -EINVAL;
2484 
2485 	if (nid == NUMA_NO_NODE) {
2486 		/*
2487 		 * global hstate attribute
2488 		 */
2489 		if (!(obey_mempolicy &&
2490 				init_nodemask_of_mempolicy(&nodes_allowed)))
2491 			n_mask = &node_states[N_MEMORY];
2492 		else
2493 			n_mask = &nodes_allowed;
2494 	} else {
2495 		/*
2496 		 * Node specific request.  count adjustment happens in
2497 		 * set_max_huge_pages() after acquiring hugetlb_lock.
2498 		 */
2499 		init_nodemask_of_node(&nodes_allowed, nid);
2500 		n_mask = &nodes_allowed;
2501 	}
2502 
2503 	err = set_max_huge_pages(h, count, nid, n_mask);
2504 
2505 	return err ? err : len;
2506 }
2507 
2508 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2509 					 struct kobject *kobj, const char *buf,
2510 					 size_t len)
2511 {
2512 	struct hstate *h;
2513 	unsigned long count;
2514 	int nid;
2515 	int err;
2516 
2517 	err = kstrtoul(buf, 10, &count);
2518 	if (err)
2519 		return err;
2520 
2521 	h = kobj_to_hstate(kobj, &nid);
2522 	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2523 }
2524 
2525 static ssize_t nr_hugepages_show(struct kobject *kobj,
2526 				       struct kobj_attribute *attr, char *buf)
2527 {
2528 	return nr_hugepages_show_common(kobj, attr, buf);
2529 }
2530 
2531 static ssize_t nr_hugepages_store(struct kobject *kobj,
2532 	       struct kobj_attribute *attr, const char *buf, size_t len)
2533 {
2534 	return nr_hugepages_store_common(false, kobj, buf, len);
2535 }
2536 HSTATE_ATTR(nr_hugepages);
2537 
2538 #ifdef CONFIG_NUMA
2539 
2540 /*
2541  * hstate attribute for optionally mempolicy-based constraint on persistent
2542  * huge page alloc/free.
2543  */
2544 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2545 				       struct kobj_attribute *attr, char *buf)
2546 {
2547 	return nr_hugepages_show_common(kobj, attr, buf);
2548 }
2549 
2550 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2551 	       struct kobj_attribute *attr, const char *buf, size_t len)
2552 {
2553 	return nr_hugepages_store_common(true, kobj, buf, len);
2554 }
2555 HSTATE_ATTR(nr_hugepages_mempolicy);
2556 #endif
2557 
2558 
2559 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2560 					struct kobj_attribute *attr, char *buf)
2561 {
2562 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2563 	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2564 }
2565 
2566 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2567 		struct kobj_attribute *attr, const char *buf, size_t count)
2568 {
2569 	int err;
2570 	unsigned long input;
2571 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2572 
2573 	if (hstate_is_gigantic(h))
2574 		return -EINVAL;
2575 
2576 	err = kstrtoul(buf, 10, &input);
2577 	if (err)
2578 		return err;
2579 
2580 	spin_lock(&hugetlb_lock);
2581 	h->nr_overcommit_huge_pages = input;
2582 	spin_unlock(&hugetlb_lock);
2583 
2584 	return count;
2585 }
2586 HSTATE_ATTR(nr_overcommit_hugepages);
2587 
2588 static ssize_t free_hugepages_show(struct kobject *kobj,
2589 					struct kobj_attribute *attr, char *buf)
2590 {
2591 	struct hstate *h;
2592 	unsigned long free_huge_pages;
2593 	int nid;
2594 
2595 	h = kobj_to_hstate(kobj, &nid);
2596 	if (nid == NUMA_NO_NODE)
2597 		free_huge_pages = h->free_huge_pages;
2598 	else
2599 		free_huge_pages = h->free_huge_pages_node[nid];
2600 
2601 	return sprintf(buf, "%lu\n", free_huge_pages);
2602 }
2603 HSTATE_ATTR_RO(free_hugepages);
2604 
2605 static ssize_t resv_hugepages_show(struct kobject *kobj,
2606 					struct kobj_attribute *attr, char *buf)
2607 {
2608 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2609 	return sprintf(buf, "%lu\n", h->resv_huge_pages);
2610 }
2611 HSTATE_ATTR_RO(resv_hugepages);
2612 
2613 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2614 					struct kobj_attribute *attr, char *buf)
2615 {
2616 	struct hstate *h;
2617 	unsigned long surplus_huge_pages;
2618 	int nid;
2619 
2620 	h = kobj_to_hstate(kobj, &nid);
2621 	if (nid == NUMA_NO_NODE)
2622 		surplus_huge_pages = h->surplus_huge_pages;
2623 	else
2624 		surplus_huge_pages = h->surplus_huge_pages_node[nid];
2625 
2626 	return sprintf(buf, "%lu\n", surplus_huge_pages);
2627 }
2628 HSTATE_ATTR_RO(surplus_hugepages);
2629 
2630 static struct attribute *hstate_attrs[] = {
2631 	&nr_hugepages_attr.attr,
2632 	&nr_overcommit_hugepages_attr.attr,
2633 	&free_hugepages_attr.attr,
2634 	&resv_hugepages_attr.attr,
2635 	&surplus_hugepages_attr.attr,
2636 #ifdef CONFIG_NUMA
2637 	&nr_hugepages_mempolicy_attr.attr,
2638 #endif
2639 	NULL,
2640 };
2641 
2642 static const struct attribute_group hstate_attr_group = {
2643 	.attrs = hstate_attrs,
2644 };
2645 
2646 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2647 				    struct kobject **hstate_kobjs,
2648 				    const struct attribute_group *hstate_attr_group)
2649 {
2650 	int retval;
2651 	int hi = hstate_index(h);
2652 
2653 	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2654 	if (!hstate_kobjs[hi])
2655 		return -ENOMEM;
2656 
2657 	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2658 	if (retval)
2659 		kobject_put(hstate_kobjs[hi]);
2660 
2661 	return retval;
2662 }
2663 
2664 static void __init hugetlb_sysfs_init(void)
2665 {
2666 	struct hstate *h;
2667 	int err;
2668 
2669 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2670 	if (!hugepages_kobj)
2671 		return;
2672 
2673 	for_each_hstate(h) {
2674 		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2675 					 hstate_kobjs, &hstate_attr_group);
2676 		if (err)
2677 			pr_err("Hugetlb: Unable to add hstate %s", h->name);
2678 	}
2679 }
2680 
2681 #ifdef CONFIG_NUMA
2682 
2683 /*
2684  * node_hstate/s - associate per node hstate attributes, via their kobjects,
2685  * with node devices in node_devices[] using a parallel array.  The array
2686  * index of a node device or _hstate == node id.
2687  * This is here to avoid any static dependency of the node device driver, in
2688  * the base kernel, on the hugetlb module.
2689  */
2690 struct node_hstate {
2691 	struct kobject		*hugepages_kobj;
2692 	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
2693 };
2694 static struct node_hstate node_hstates[MAX_NUMNODES];
2695 
2696 /*
2697  * A subset of global hstate attributes for node devices
2698  */
2699 static struct attribute *per_node_hstate_attrs[] = {
2700 	&nr_hugepages_attr.attr,
2701 	&free_hugepages_attr.attr,
2702 	&surplus_hugepages_attr.attr,
2703 	NULL,
2704 };
2705 
2706 static const struct attribute_group per_node_hstate_attr_group = {
2707 	.attrs = per_node_hstate_attrs,
2708 };
2709 
2710 /*
2711  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2712  * Returns node id via non-NULL nidp.
2713  */
2714 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2715 {
2716 	int nid;
2717 
2718 	for (nid = 0; nid < nr_node_ids; nid++) {
2719 		struct node_hstate *nhs = &node_hstates[nid];
2720 		int i;
2721 		for (i = 0; i < HUGE_MAX_HSTATE; i++)
2722 			if (nhs->hstate_kobjs[i] == kobj) {
2723 				if (nidp)
2724 					*nidp = nid;
2725 				return &hstates[i];
2726 			}
2727 	}
2728 
2729 	BUG();
2730 	return NULL;
2731 }
2732 
2733 /*
2734  * Unregister hstate attributes from a single node device.
2735  * No-op if no hstate attributes attached.
2736  */
2737 static void hugetlb_unregister_node(struct node *node)
2738 {
2739 	struct hstate *h;
2740 	struct node_hstate *nhs = &node_hstates[node->dev.id];
2741 
2742 	if (!nhs->hugepages_kobj)
2743 		return;		/* no hstate attributes */
2744 
2745 	for_each_hstate(h) {
2746 		int idx = hstate_index(h);
2747 		if (nhs->hstate_kobjs[idx]) {
2748 			kobject_put(nhs->hstate_kobjs[idx]);
2749 			nhs->hstate_kobjs[idx] = NULL;
2750 		}
2751 	}
2752 
2753 	kobject_put(nhs->hugepages_kobj);
2754 	nhs->hugepages_kobj = NULL;
2755 }
2756 
2757 
2758 /*
2759  * Register hstate attributes for a single node device.
2760  * No-op if attributes already registered.
2761  */
2762 static void hugetlb_register_node(struct node *node)
2763 {
2764 	struct hstate *h;
2765 	struct node_hstate *nhs = &node_hstates[node->dev.id];
2766 	int err;
2767 
2768 	if (nhs->hugepages_kobj)
2769 		return;		/* already allocated */
2770 
2771 	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2772 							&node->dev.kobj);
2773 	if (!nhs->hugepages_kobj)
2774 		return;
2775 
2776 	for_each_hstate(h) {
2777 		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2778 						nhs->hstate_kobjs,
2779 						&per_node_hstate_attr_group);
2780 		if (err) {
2781 			pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2782 				h->name, node->dev.id);
2783 			hugetlb_unregister_node(node);
2784 			break;
2785 		}
2786 	}
2787 }
2788 
2789 /*
2790  * hugetlb init time:  register hstate attributes for all registered node
2791  * devices of nodes that have memory.  All on-line nodes should have
2792  * registered their associated device by this time.
2793  */
2794 static void __init hugetlb_register_all_nodes(void)
2795 {
2796 	int nid;
2797 
2798 	for_each_node_state(nid, N_MEMORY) {
2799 		struct node *node = node_devices[nid];
2800 		if (node->dev.id == nid)
2801 			hugetlb_register_node(node);
2802 	}
2803 
2804 	/*
2805 	 * Let the node device driver know we're here so it can
2806 	 * [un]register hstate attributes on node hotplug.
2807 	 */
2808 	register_hugetlbfs_with_node(hugetlb_register_node,
2809 				     hugetlb_unregister_node);
2810 }
2811 #else	/* !CONFIG_NUMA */
2812 
2813 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2814 {
2815 	BUG();
2816 	if (nidp)
2817 		*nidp = -1;
2818 	return NULL;
2819 }
2820 
2821 static void hugetlb_register_all_nodes(void) { }
2822 
2823 #endif
2824 
2825 static int __init hugetlb_init(void)
2826 {
2827 	int i;
2828 
2829 	if (!hugepages_supported())
2830 		return 0;
2831 
2832 	if (!size_to_hstate(default_hstate_size)) {
2833 		if (default_hstate_size != 0) {
2834 			pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
2835 			       default_hstate_size, HPAGE_SIZE);
2836 		}
2837 
2838 		default_hstate_size = HPAGE_SIZE;
2839 		if (!size_to_hstate(default_hstate_size))
2840 			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2841 	}
2842 	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2843 	if (default_hstate_max_huge_pages) {
2844 		if (!default_hstate.max_huge_pages)
2845 			default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2846 	}
2847 
2848 	hugetlb_init_hstates();
2849 	gather_bootmem_prealloc();
2850 	report_hugepages();
2851 
2852 	hugetlb_sysfs_init();
2853 	hugetlb_register_all_nodes();
2854 	hugetlb_cgroup_file_init();
2855 
2856 #ifdef CONFIG_SMP
2857 	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2858 #else
2859 	num_fault_mutexes = 1;
2860 #endif
2861 	hugetlb_fault_mutex_table =
2862 		kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
2863 			      GFP_KERNEL);
2864 	BUG_ON(!hugetlb_fault_mutex_table);
2865 
2866 	for (i = 0; i < num_fault_mutexes; i++)
2867 		mutex_init(&hugetlb_fault_mutex_table[i]);
2868 	return 0;
2869 }
2870 subsys_initcall(hugetlb_init);
2871 
2872 /* Should be called on processing a hugepagesz=... option */
2873 void __init hugetlb_bad_size(void)
2874 {
2875 	parsed_valid_hugepagesz = false;
2876 }
2877 
2878 void __init hugetlb_add_hstate(unsigned int order)
2879 {
2880 	struct hstate *h;
2881 	unsigned long i;
2882 
2883 	if (size_to_hstate(PAGE_SIZE << order)) {
2884 		pr_warn("hugepagesz= specified twice, ignoring\n");
2885 		return;
2886 	}
2887 	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2888 	BUG_ON(order == 0);
2889 	h = &hstates[hugetlb_max_hstate++];
2890 	h->order = order;
2891 	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2892 	h->nr_huge_pages = 0;
2893 	h->free_huge_pages = 0;
2894 	for (i = 0; i < MAX_NUMNODES; ++i)
2895 		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2896 	INIT_LIST_HEAD(&h->hugepage_activelist);
2897 	h->next_nid_to_alloc = first_memory_node;
2898 	h->next_nid_to_free = first_memory_node;
2899 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2900 					huge_page_size(h)/1024);
2901 
2902 	parsed_hstate = h;
2903 }
2904 
2905 static int __init hugetlb_nrpages_setup(char *s)
2906 {
2907 	unsigned long *mhp;
2908 	static unsigned long *last_mhp;
2909 
2910 	if (!parsed_valid_hugepagesz) {
2911 		pr_warn("hugepages = %s preceded by "
2912 			"an unsupported hugepagesz, ignoring\n", s);
2913 		parsed_valid_hugepagesz = true;
2914 		return 1;
2915 	}
2916 	/*
2917 	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2918 	 * so this hugepages= parameter goes to the "default hstate".
2919 	 */
2920 	else if (!hugetlb_max_hstate)
2921 		mhp = &default_hstate_max_huge_pages;
2922 	else
2923 		mhp = &parsed_hstate->max_huge_pages;
2924 
2925 	if (mhp == last_mhp) {
2926 		pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2927 		return 1;
2928 	}
2929 
2930 	if (sscanf(s, "%lu", mhp) <= 0)
2931 		*mhp = 0;
2932 
2933 	/*
2934 	 * Global state is always initialized later in hugetlb_init.
2935 	 * But we need to allocate >= MAX_ORDER hstates here early to still
2936 	 * use the bootmem allocator.
2937 	 */
2938 	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2939 		hugetlb_hstate_alloc_pages(parsed_hstate);
2940 
2941 	last_mhp = mhp;
2942 
2943 	return 1;
2944 }
2945 __setup("hugepages=", hugetlb_nrpages_setup);
2946 
2947 static int __init hugetlb_default_setup(char *s)
2948 {
2949 	default_hstate_size = memparse(s, &s);
2950 	return 1;
2951 }
2952 __setup("default_hugepagesz=", hugetlb_default_setup);
2953 
2954 static unsigned int cpuset_mems_nr(unsigned int *array)
2955 {
2956 	int node;
2957 	unsigned int nr = 0;
2958 
2959 	for_each_node_mask(node, cpuset_current_mems_allowed)
2960 		nr += array[node];
2961 
2962 	return nr;
2963 }
2964 
2965 #ifdef CONFIG_SYSCTL
2966 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2967 			 struct ctl_table *table, int write,
2968 			 void __user *buffer, size_t *length, loff_t *ppos)
2969 {
2970 	struct hstate *h = &default_hstate;
2971 	unsigned long tmp = h->max_huge_pages;
2972 	int ret;
2973 
2974 	if (!hugepages_supported())
2975 		return -EOPNOTSUPP;
2976 
2977 	table->data = &tmp;
2978 	table->maxlen = sizeof(unsigned long);
2979 	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2980 	if (ret)
2981 		goto out;
2982 
2983 	if (write)
2984 		ret = __nr_hugepages_store_common(obey_mempolicy, h,
2985 						  NUMA_NO_NODE, tmp, *length);
2986 out:
2987 	return ret;
2988 }
2989 
2990 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2991 			  void __user *buffer, size_t *length, loff_t *ppos)
2992 {
2993 
2994 	return hugetlb_sysctl_handler_common(false, table, write,
2995 							buffer, length, ppos);
2996 }
2997 
2998 #ifdef CONFIG_NUMA
2999 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3000 			  void __user *buffer, size_t *length, loff_t *ppos)
3001 {
3002 	return hugetlb_sysctl_handler_common(true, table, write,
3003 							buffer, length, ppos);
3004 }
3005 #endif /* CONFIG_NUMA */
3006 
3007 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
3008 			void __user *buffer,
3009 			size_t *length, loff_t *ppos)
3010 {
3011 	struct hstate *h = &default_hstate;
3012 	unsigned long tmp;
3013 	int ret;
3014 
3015 	if (!hugepages_supported())
3016 		return -EOPNOTSUPP;
3017 
3018 	tmp = h->nr_overcommit_huge_pages;
3019 
3020 	if (write && hstate_is_gigantic(h))
3021 		return -EINVAL;
3022 
3023 	table->data = &tmp;
3024 	table->maxlen = sizeof(unsigned long);
3025 	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
3026 	if (ret)
3027 		goto out;
3028 
3029 	if (write) {
3030 		spin_lock(&hugetlb_lock);
3031 		h->nr_overcommit_huge_pages = tmp;
3032 		spin_unlock(&hugetlb_lock);
3033 	}
3034 out:
3035 	return ret;
3036 }
3037 
3038 #endif /* CONFIG_SYSCTL */
3039 
3040 void hugetlb_report_meminfo(struct seq_file *m)
3041 {
3042 	struct hstate *h;
3043 	unsigned long total = 0;
3044 
3045 	if (!hugepages_supported())
3046 		return;
3047 
3048 	for_each_hstate(h) {
3049 		unsigned long count = h->nr_huge_pages;
3050 
3051 		total += (PAGE_SIZE << huge_page_order(h)) * count;
3052 
3053 		if (h == &default_hstate)
3054 			seq_printf(m,
3055 				   "HugePages_Total:   %5lu\n"
3056 				   "HugePages_Free:    %5lu\n"
3057 				   "HugePages_Rsvd:    %5lu\n"
3058 				   "HugePages_Surp:    %5lu\n"
3059 				   "Hugepagesize:   %8lu kB\n",
3060 				   count,
3061 				   h->free_huge_pages,
3062 				   h->resv_huge_pages,
3063 				   h->surplus_huge_pages,
3064 				   (PAGE_SIZE << huge_page_order(h)) / 1024);
3065 	}
3066 
3067 	seq_printf(m, "Hugetlb:        %8lu kB\n", total / 1024);
3068 }
3069 
3070 int hugetlb_report_node_meminfo(int nid, char *buf)
3071 {
3072 	struct hstate *h = &default_hstate;
3073 	if (!hugepages_supported())
3074 		return 0;
3075 	return sprintf(buf,
3076 		"Node %d HugePages_Total: %5u\n"
3077 		"Node %d HugePages_Free:  %5u\n"
3078 		"Node %d HugePages_Surp:  %5u\n",
3079 		nid, h->nr_huge_pages_node[nid],
3080 		nid, h->free_huge_pages_node[nid],
3081 		nid, h->surplus_huge_pages_node[nid]);
3082 }
3083 
3084 void hugetlb_show_meminfo(void)
3085 {
3086 	struct hstate *h;
3087 	int nid;
3088 
3089 	if (!hugepages_supported())
3090 		return;
3091 
3092 	for_each_node_state(nid, N_MEMORY)
3093 		for_each_hstate(h)
3094 			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3095 				nid,
3096 				h->nr_huge_pages_node[nid],
3097 				h->free_huge_pages_node[nid],
3098 				h->surplus_huge_pages_node[nid],
3099 				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3100 }
3101 
3102 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3103 {
3104 	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3105 		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3106 }
3107 
3108 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3109 unsigned long hugetlb_total_pages(void)
3110 {
3111 	struct hstate *h;
3112 	unsigned long nr_total_pages = 0;
3113 
3114 	for_each_hstate(h)
3115 		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3116 	return nr_total_pages;
3117 }
3118 
3119 static int hugetlb_acct_memory(struct hstate *h, long delta)
3120 {
3121 	int ret = -ENOMEM;
3122 
3123 	spin_lock(&hugetlb_lock);
3124 	/*
3125 	 * When cpuset is configured, it breaks the strict hugetlb page
3126 	 * reservation as the accounting is done on a global variable. Such
3127 	 * reservation is completely rubbish in the presence of cpuset because
3128 	 * the reservation is not checked against page availability for the
3129 	 * current cpuset. Application can still potentially OOM'ed by kernel
3130 	 * with lack of free htlb page in cpuset that the task is in.
3131 	 * Attempt to enforce strict accounting with cpuset is almost
3132 	 * impossible (or too ugly) because cpuset is too fluid that
3133 	 * task or memory node can be dynamically moved between cpusets.
3134 	 *
3135 	 * The change of semantics for shared hugetlb mapping with cpuset is
3136 	 * undesirable. However, in order to preserve some of the semantics,
3137 	 * we fall back to check against current free page availability as
3138 	 * a best attempt and hopefully to minimize the impact of changing
3139 	 * semantics that cpuset has.
3140 	 */
3141 	if (delta > 0) {
3142 		if (gather_surplus_pages(h, delta) < 0)
3143 			goto out;
3144 
3145 		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3146 			return_unused_surplus_pages(h, delta);
3147 			goto out;
3148 		}
3149 	}
3150 
3151 	ret = 0;
3152 	if (delta < 0)
3153 		return_unused_surplus_pages(h, (unsigned long) -delta);
3154 
3155 out:
3156 	spin_unlock(&hugetlb_lock);
3157 	return ret;
3158 }
3159 
3160 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3161 {
3162 	struct resv_map *resv = vma_resv_map(vma);
3163 
3164 	/*
3165 	 * This new VMA should share its siblings reservation map if present.
3166 	 * The VMA will only ever have a valid reservation map pointer where
3167 	 * it is being copied for another still existing VMA.  As that VMA
3168 	 * has a reference to the reservation map it cannot disappear until
3169 	 * after this open call completes.  It is therefore safe to take a
3170 	 * new reference here without additional locking.
3171 	 */
3172 	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3173 		kref_get(&resv->refs);
3174 }
3175 
3176 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3177 {
3178 	struct hstate *h = hstate_vma(vma);
3179 	struct resv_map *resv = vma_resv_map(vma);
3180 	struct hugepage_subpool *spool = subpool_vma(vma);
3181 	unsigned long reserve, start, end;
3182 	long gbl_reserve;
3183 
3184 	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3185 		return;
3186 
3187 	start = vma_hugecache_offset(h, vma, vma->vm_start);
3188 	end = vma_hugecache_offset(h, vma, vma->vm_end);
3189 
3190 	reserve = (end - start) - region_count(resv, start, end);
3191 
3192 	kref_put(&resv->refs, resv_map_release);
3193 
3194 	if (reserve) {
3195 		/*
3196 		 * Decrement reserve counts.  The global reserve count may be
3197 		 * adjusted if the subpool has a minimum size.
3198 		 */
3199 		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3200 		hugetlb_acct_memory(h, -gbl_reserve);
3201 	}
3202 }
3203 
3204 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3205 {
3206 	if (addr & ~(huge_page_mask(hstate_vma(vma))))
3207 		return -EINVAL;
3208 	return 0;
3209 }
3210 
3211 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3212 {
3213 	struct hstate *hstate = hstate_vma(vma);
3214 
3215 	return 1UL << huge_page_shift(hstate);
3216 }
3217 
3218 /*
3219  * We cannot handle pagefaults against hugetlb pages at all.  They cause
3220  * handle_mm_fault() to try to instantiate regular-sized pages in the
3221  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
3222  * this far.
3223  */
3224 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
3225 {
3226 	BUG();
3227 	return 0;
3228 }
3229 
3230 /*
3231  * When a new function is introduced to vm_operations_struct and added
3232  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3233  * This is because under System V memory model, mappings created via
3234  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3235  * their original vm_ops are overwritten with shm_vm_ops.
3236  */
3237 const struct vm_operations_struct hugetlb_vm_ops = {
3238 	.fault = hugetlb_vm_op_fault,
3239 	.open = hugetlb_vm_op_open,
3240 	.close = hugetlb_vm_op_close,
3241 	.split = hugetlb_vm_op_split,
3242 	.pagesize = hugetlb_vm_op_pagesize,
3243 };
3244 
3245 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3246 				int writable)
3247 {
3248 	pte_t entry;
3249 
3250 	if (writable) {
3251 		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3252 					 vma->vm_page_prot)));
3253 	} else {
3254 		entry = huge_pte_wrprotect(mk_huge_pte(page,
3255 					   vma->vm_page_prot));
3256 	}
3257 	entry = pte_mkyoung(entry);
3258 	entry = pte_mkhuge(entry);
3259 	entry = arch_make_huge_pte(entry, vma, page, writable);
3260 
3261 	return entry;
3262 }
3263 
3264 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3265 				   unsigned long address, pte_t *ptep)
3266 {
3267 	pte_t entry;
3268 
3269 	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3270 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3271 		update_mmu_cache(vma, address, ptep);
3272 }
3273 
3274 bool is_hugetlb_entry_migration(pte_t pte)
3275 {
3276 	swp_entry_t swp;
3277 
3278 	if (huge_pte_none(pte) || pte_present(pte))
3279 		return false;
3280 	swp = pte_to_swp_entry(pte);
3281 	if (non_swap_entry(swp) && is_migration_entry(swp))
3282 		return true;
3283 	else
3284 		return false;
3285 }
3286 
3287 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3288 {
3289 	swp_entry_t swp;
3290 
3291 	if (huge_pte_none(pte) || pte_present(pte))
3292 		return 0;
3293 	swp = pte_to_swp_entry(pte);
3294 	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3295 		return 1;
3296 	else
3297 		return 0;
3298 }
3299 
3300 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3301 			    struct vm_area_struct *vma)
3302 {
3303 	pte_t *src_pte, *dst_pte, entry, dst_entry;
3304 	struct page *ptepage;
3305 	unsigned long addr;
3306 	int cow;
3307 	struct hstate *h = hstate_vma(vma);
3308 	unsigned long sz = huge_page_size(h);
3309 	struct mmu_notifier_range range;
3310 	int ret = 0;
3311 
3312 	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3313 
3314 	if (cow) {
3315 		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
3316 					vma->vm_start,
3317 					vma->vm_end);
3318 		mmu_notifier_invalidate_range_start(&range);
3319 	}
3320 
3321 	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3322 		spinlock_t *src_ptl, *dst_ptl;
3323 		src_pte = huge_pte_offset(src, addr, sz);
3324 		if (!src_pte)
3325 			continue;
3326 		dst_pte = huge_pte_alloc(dst, addr, sz);
3327 		if (!dst_pte) {
3328 			ret = -ENOMEM;
3329 			break;
3330 		}
3331 
3332 		/*
3333 		 * If the pagetables are shared don't copy or take references.
3334 		 * dst_pte == src_pte is the common case of src/dest sharing.
3335 		 *
3336 		 * However, src could have 'unshared' and dst shares with
3337 		 * another vma.  If dst_pte !none, this implies sharing.
3338 		 * Check here before taking page table lock, and once again
3339 		 * after taking the lock below.
3340 		 */
3341 		dst_entry = huge_ptep_get(dst_pte);
3342 		if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3343 			continue;
3344 
3345 		dst_ptl = huge_pte_lock(h, dst, dst_pte);
3346 		src_ptl = huge_pte_lockptr(h, src, src_pte);
3347 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3348 		entry = huge_ptep_get(src_pte);
3349 		dst_entry = huge_ptep_get(dst_pte);
3350 		if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3351 			/*
3352 			 * Skip if src entry none.  Also, skip in the
3353 			 * unlikely case dst entry !none as this implies
3354 			 * sharing with another vma.
3355 			 */
3356 			;
3357 		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
3358 				    is_hugetlb_entry_hwpoisoned(entry))) {
3359 			swp_entry_t swp_entry = pte_to_swp_entry(entry);
3360 
3361 			if (is_write_migration_entry(swp_entry) && cow) {
3362 				/*
3363 				 * COW mappings require pages in both
3364 				 * parent and child to be set to read.
3365 				 */
3366 				make_migration_entry_read(&swp_entry);
3367 				entry = swp_entry_to_pte(swp_entry);
3368 				set_huge_swap_pte_at(src, addr, src_pte,
3369 						     entry, sz);
3370 			}
3371 			set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3372 		} else {
3373 			if (cow) {
3374 				/*
3375 				 * No need to notify as we are downgrading page
3376 				 * table protection not changing it to point
3377 				 * to a new page.
3378 				 *
3379 				 * See Documentation/vm/mmu_notifier.rst
3380 				 */
3381 				huge_ptep_set_wrprotect(src, addr, src_pte);
3382 			}
3383 			entry = huge_ptep_get(src_pte);
3384 			ptepage = pte_page(entry);
3385 			get_page(ptepage);
3386 			page_dup_rmap(ptepage, true);
3387 			set_huge_pte_at(dst, addr, dst_pte, entry);
3388 			hugetlb_count_add(pages_per_huge_page(h), dst);
3389 		}
3390 		spin_unlock(src_ptl);
3391 		spin_unlock(dst_ptl);
3392 	}
3393 
3394 	if (cow)
3395 		mmu_notifier_invalidate_range_end(&range);
3396 
3397 	return ret;
3398 }
3399 
3400 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3401 			    unsigned long start, unsigned long end,
3402 			    struct page *ref_page)
3403 {
3404 	struct mm_struct *mm = vma->vm_mm;
3405 	unsigned long address;
3406 	pte_t *ptep;
3407 	pte_t pte;
3408 	spinlock_t *ptl;
3409 	struct page *page;
3410 	struct hstate *h = hstate_vma(vma);
3411 	unsigned long sz = huge_page_size(h);
3412 	struct mmu_notifier_range range;
3413 
3414 	WARN_ON(!is_vm_hugetlb_page(vma));
3415 	BUG_ON(start & ~huge_page_mask(h));
3416 	BUG_ON(end & ~huge_page_mask(h));
3417 
3418 	/*
3419 	 * This is a hugetlb vma, all the pte entries should point
3420 	 * to huge page.
3421 	 */
3422 	tlb_change_page_size(tlb, sz);
3423 	tlb_start_vma(tlb, vma);
3424 
3425 	/*
3426 	 * If sharing possible, alert mmu notifiers of worst case.
3427 	 */
3428 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
3429 				end);
3430 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3431 	mmu_notifier_invalidate_range_start(&range);
3432 	address = start;
3433 	for (; address < end; address += sz) {
3434 		ptep = huge_pte_offset(mm, address, sz);
3435 		if (!ptep)
3436 			continue;
3437 
3438 		ptl = huge_pte_lock(h, mm, ptep);
3439 		if (huge_pmd_unshare(mm, &address, ptep)) {
3440 			spin_unlock(ptl);
3441 			/*
3442 			 * We just unmapped a page of PMDs by clearing a PUD.
3443 			 * The caller's TLB flush range should cover this area.
3444 			 */
3445 			continue;
3446 		}
3447 
3448 		pte = huge_ptep_get(ptep);
3449 		if (huge_pte_none(pte)) {
3450 			spin_unlock(ptl);
3451 			continue;
3452 		}
3453 
3454 		/*
3455 		 * Migrating hugepage or HWPoisoned hugepage is already
3456 		 * unmapped and its refcount is dropped, so just clear pte here.
3457 		 */
3458 		if (unlikely(!pte_present(pte))) {
3459 			huge_pte_clear(mm, address, ptep, sz);
3460 			spin_unlock(ptl);
3461 			continue;
3462 		}
3463 
3464 		page = pte_page(pte);
3465 		/*
3466 		 * If a reference page is supplied, it is because a specific
3467 		 * page is being unmapped, not a range. Ensure the page we
3468 		 * are about to unmap is the actual page of interest.
3469 		 */
3470 		if (ref_page) {
3471 			if (page != ref_page) {
3472 				spin_unlock(ptl);
3473 				continue;
3474 			}
3475 			/*
3476 			 * Mark the VMA as having unmapped its page so that
3477 			 * future faults in this VMA will fail rather than
3478 			 * looking like data was lost
3479 			 */
3480 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3481 		}
3482 
3483 		pte = huge_ptep_get_and_clear(mm, address, ptep);
3484 		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3485 		if (huge_pte_dirty(pte))
3486 			set_page_dirty(page);
3487 
3488 		hugetlb_count_sub(pages_per_huge_page(h), mm);
3489 		page_remove_rmap(page, true);
3490 
3491 		spin_unlock(ptl);
3492 		tlb_remove_page_size(tlb, page, huge_page_size(h));
3493 		/*
3494 		 * Bail out after unmapping reference page if supplied
3495 		 */
3496 		if (ref_page)
3497 			break;
3498 	}
3499 	mmu_notifier_invalidate_range_end(&range);
3500 	tlb_end_vma(tlb, vma);
3501 }
3502 
3503 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3504 			  struct vm_area_struct *vma, unsigned long start,
3505 			  unsigned long end, struct page *ref_page)
3506 {
3507 	__unmap_hugepage_range(tlb, vma, start, end, ref_page);
3508 
3509 	/*
3510 	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3511 	 * test will fail on a vma being torn down, and not grab a page table
3512 	 * on its way out.  We're lucky that the flag has such an appropriate
3513 	 * name, and can in fact be safely cleared here. We could clear it
3514 	 * before the __unmap_hugepage_range above, but all that's necessary
3515 	 * is to clear it before releasing the i_mmap_rwsem. This works
3516 	 * because in the context this is called, the VMA is about to be
3517 	 * destroyed and the i_mmap_rwsem is held.
3518 	 */
3519 	vma->vm_flags &= ~VM_MAYSHARE;
3520 }
3521 
3522 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3523 			  unsigned long end, struct page *ref_page)
3524 {
3525 	struct mm_struct *mm;
3526 	struct mmu_gather tlb;
3527 	unsigned long tlb_start = start;
3528 	unsigned long tlb_end = end;
3529 
3530 	/*
3531 	 * If shared PMDs were possibly used within this vma range, adjust
3532 	 * start/end for worst case tlb flushing.
3533 	 * Note that we can not be sure if PMDs are shared until we try to
3534 	 * unmap pages.  However, we want to make sure TLB flushing covers
3535 	 * the largest possible range.
3536 	 */
3537 	adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end);
3538 
3539 	mm = vma->vm_mm;
3540 
3541 	tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end);
3542 	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3543 	tlb_finish_mmu(&tlb, tlb_start, tlb_end);
3544 }
3545 
3546 /*
3547  * This is called when the original mapper is failing to COW a MAP_PRIVATE
3548  * mappping it owns the reserve page for. The intention is to unmap the page
3549  * from other VMAs and let the children be SIGKILLed if they are faulting the
3550  * same region.
3551  */
3552 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3553 			      struct page *page, unsigned long address)
3554 {
3555 	struct hstate *h = hstate_vma(vma);
3556 	struct vm_area_struct *iter_vma;
3557 	struct address_space *mapping;
3558 	pgoff_t pgoff;
3559 
3560 	/*
3561 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3562 	 * from page cache lookup which is in HPAGE_SIZE units.
3563 	 */
3564 	address = address & huge_page_mask(h);
3565 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3566 			vma->vm_pgoff;
3567 	mapping = vma->vm_file->f_mapping;
3568 
3569 	/*
3570 	 * Take the mapping lock for the duration of the table walk. As
3571 	 * this mapping should be shared between all the VMAs,
3572 	 * __unmap_hugepage_range() is called as the lock is already held
3573 	 */
3574 	i_mmap_lock_write(mapping);
3575 	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3576 		/* Do not unmap the current VMA */
3577 		if (iter_vma == vma)
3578 			continue;
3579 
3580 		/*
3581 		 * Shared VMAs have their own reserves and do not affect
3582 		 * MAP_PRIVATE accounting but it is possible that a shared
3583 		 * VMA is using the same page so check and skip such VMAs.
3584 		 */
3585 		if (iter_vma->vm_flags & VM_MAYSHARE)
3586 			continue;
3587 
3588 		/*
3589 		 * Unmap the page from other VMAs without their own reserves.
3590 		 * They get marked to be SIGKILLed if they fault in these
3591 		 * areas. This is because a future no-page fault on this VMA
3592 		 * could insert a zeroed page instead of the data existing
3593 		 * from the time of fork. This would look like data corruption
3594 		 */
3595 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3596 			unmap_hugepage_range(iter_vma, address,
3597 					     address + huge_page_size(h), page);
3598 	}
3599 	i_mmap_unlock_write(mapping);
3600 }
3601 
3602 /*
3603  * Hugetlb_cow() should be called with page lock of the original hugepage held.
3604  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3605  * cannot race with other handlers or page migration.
3606  * Keep the pte_same checks anyway to make transition from the mutex easier.
3607  */
3608 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3609 		       unsigned long address, pte_t *ptep,
3610 		       struct page *pagecache_page, spinlock_t *ptl)
3611 {
3612 	pte_t pte;
3613 	struct hstate *h = hstate_vma(vma);
3614 	struct page *old_page, *new_page;
3615 	int outside_reserve = 0;
3616 	vm_fault_t ret = 0;
3617 	unsigned long haddr = address & huge_page_mask(h);
3618 	struct mmu_notifier_range range;
3619 
3620 	pte = huge_ptep_get(ptep);
3621 	old_page = pte_page(pte);
3622 
3623 retry_avoidcopy:
3624 	/* If no-one else is actually using this page, avoid the copy
3625 	 * and just make the page writable */
3626 	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3627 		page_move_anon_rmap(old_page, vma);
3628 		set_huge_ptep_writable(vma, haddr, ptep);
3629 		return 0;
3630 	}
3631 
3632 	/*
3633 	 * If the process that created a MAP_PRIVATE mapping is about to
3634 	 * perform a COW due to a shared page count, attempt to satisfy
3635 	 * the allocation without using the existing reserves. The pagecache
3636 	 * page is used to determine if the reserve at this address was
3637 	 * consumed or not. If reserves were used, a partial faulted mapping
3638 	 * at the time of fork() could consume its reserves on COW instead
3639 	 * of the full address range.
3640 	 */
3641 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3642 			old_page != pagecache_page)
3643 		outside_reserve = 1;
3644 
3645 	get_page(old_page);
3646 
3647 	/*
3648 	 * Drop page table lock as buddy allocator may be called. It will
3649 	 * be acquired again before returning to the caller, as expected.
3650 	 */
3651 	spin_unlock(ptl);
3652 	new_page = alloc_huge_page(vma, haddr, outside_reserve);
3653 
3654 	if (IS_ERR(new_page)) {
3655 		/*
3656 		 * If a process owning a MAP_PRIVATE mapping fails to COW,
3657 		 * it is due to references held by a child and an insufficient
3658 		 * huge page pool. To guarantee the original mappers
3659 		 * reliability, unmap the page from child processes. The child
3660 		 * may get SIGKILLed if it later faults.
3661 		 */
3662 		if (outside_reserve) {
3663 			put_page(old_page);
3664 			BUG_ON(huge_pte_none(pte));
3665 			unmap_ref_private(mm, vma, old_page, haddr);
3666 			BUG_ON(huge_pte_none(pte));
3667 			spin_lock(ptl);
3668 			ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3669 			if (likely(ptep &&
3670 				   pte_same(huge_ptep_get(ptep), pte)))
3671 				goto retry_avoidcopy;
3672 			/*
3673 			 * race occurs while re-acquiring page table
3674 			 * lock, and our job is done.
3675 			 */
3676 			return 0;
3677 		}
3678 
3679 		ret = vmf_error(PTR_ERR(new_page));
3680 		goto out_release_old;
3681 	}
3682 
3683 	/*
3684 	 * When the original hugepage is shared one, it does not have
3685 	 * anon_vma prepared.
3686 	 */
3687 	if (unlikely(anon_vma_prepare(vma))) {
3688 		ret = VM_FAULT_OOM;
3689 		goto out_release_all;
3690 	}
3691 
3692 	copy_user_huge_page(new_page, old_page, address, vma,
3693 			    pages_per_huge_page(h));
3694 	__SetPageUptodate(new_page);
3695 
3696 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
3697 				haddr + huge_page_size(h));
3698 	mmu_notifier_invalidate_range_start(&range);
3699 
3700 	/*
3701 	 * Retake the page table lock to check for racing updates
3702 	 * before the page tables are altered
3703 	 */
3704 	spin_lock(ptl);
3705 	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3706 	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3707 		ClearPagePrivate(new_page);
3708 
3709 		/* Break COW */
3710 		huge_ptep_clear_flush(vma, haddr, ptep);
3711 		mmu_notifier_invalidate_range(mm, range.start, range.end);
3712 		set_huge_pte_at(mm, haddr, ptep,
3713 				make_huge_pte(vma, new_page, 1));
3714 		page_remove_rmap(old_page, true);
3715 		hugepage_add_new_anon_rmap(new_page, vma, haddr);
3716 		set_page_huge_active(new_page);
3717 		/* Make the old page be freed below */
3718 		new_page = old_page;
3719 	}
3720 	spin_unlock(ptl);
3721 	mmu_notifier_invalidate_range_end(&range);
3722 out_release_all:
3723 	restore_reserve_on_error(h, vma, haddr, new_page);
3724 	put_page(new_page);
3725 out_release_old:
3726 	put_page(old_page);
3727 
3728 	spin_lock(ptl); /* Caller expects lock to be held */
3729 	return ret;
3730 }
3731 
3732 /* Return the pagecache page at a given address within a VMA */
3733 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3734 			struct vm_area_struct *vma, unsigned long address)
3735 {
3736 	struct address_space *mapping;
3737 	pgoff_t idx;
3738 
3739 	mapping = vma->vm_file->f_mapping;
3740 	idx = vma_hugecache_offset(h, vma, address);
3741 
3742 	return find_lock_page(mapping, idx);
3743 }
3744 
3745 /*
3746  * Return whether there is a pagecache page to back given address within VMA.
3747  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3748  */
3749 static bool hugetlbfs_pagecache_present(struct hstate *h,
3750 			struct vm_area_struct *vma, unsigned long address)
3751 {
3752 	struct address_space *mapping;
3753 	pgoff_t idx;
3754 	struct page *page;
3755 
3756 	mapping = vma->vm_file->f_mapping;
3757 	idx = vma_hugecache_offset(h, vma, address);
3758 
3759 	page = find_get_page(mapping, idx);
3760 	if (page)
3761 		put_page(page);
3762 	return page != NULL;
3763 }
3764 
3765 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3766 			   pgoff_t idx)
3767 {
3768 	struct inode *inode = mapping->host;
3769 	struct hstate *h = hstate_inode(inode);
3770 	int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3771 
3772 	if (err)
3773 		return err;
3774 	ClearPagePrivate(page);
3775 
3776 	/*
3777 	 * set page dirty so that it will not be removed from cache/file
3778 	 * by non-hugetlbfs specific code paths.
3779 	 */
3780 	set_page_dirty(page);
3781 
3782 	spin_lock(&inode->i_lock);
3783 	inode->i_blocks += blocks_per_huge_page(h);
3784 	spin_unlock(&inode->i_lock);
3785 	return 0;
3786 }
3787 
3788 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
3789 			struct vm_area_struct *vma,
3790 			struct address_space *mapping, pgoff_t idx,
3791 			unsigned long address, pte_t *ptep, unsigned int flags)
3792 {
3793 	struct hstate *h = hstate_vma(vma);
3794 	vm_fault_t ret = VM_FAULT_SIGBUS;
3795 	int anon_rmap = 0;
3796 	unsigned long size;
3797 	struct page *page;
3798 	pte_t new_pte;
3799 	spinlock_t *ptl;
3800 	unsigned long haddr = address & huge_page_mask(h);
3801 	bool new_page = false;
3802 
3803 	/*
3804 	 * Currently, we are forced to kill the process in the event the
3805 	 * original mapper has unmapped pages from the child due to a failed
3806 	 * COW. Warn that such a situation has occurred as it may not be obvious
3807 	 */
3808 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3809 		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3810 			   current->pid);
3811 		return ret;
3812 	}
3813 
3814 	/*
3815 	 * Use page lock to guard against racing truncation
3816 	 * before we get page_table_lock.
3817 	 */
3818 retry:
3819 	page = find_lock_page(mapping, idx);
3820 	if (!page) {
3821 		size = i_size_read(mapping->host) >> huge_page_shift(h);
3822 		if (idx >= size)
3823 			goto out;
3824 
3825 		/*
3826 		 * Check for page in userfault range
3827 		 */
3828 		if (userfaultfd_missing(vma)) {
3829 			u32 hash;
3830 			struct vm_fault vmf = {
3831 				.vma = vma,
3832 				.address = haddr,
3833 				.flags = flags,
3834 				/*
3835 				 * Hard to debug if it ends up being
3836 				 * used by a callee that assumes
3837 				 * something about the other
3838 				 * uninitialized fields... same as in
3839 				 * memory.c
3840 				 */
3841 			};
3842 
3843 			/*
3844 			 * hugetlb_fault_mutex must be dropped before
3845 			 * handling userfault.  Reacquire after handling
3846 			 * fault to make calling code simpler.
3847 			 */
3848 			hash = hugetlb_fault_mutex_hash(mapping, idx);
3849 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3850 			ret = handle_userfault(&vmf, VM_UFFD_MISSING);
3851 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
3852 			goto out;
3853 		}
3854 
3855 		page = alloc_huge_page(vma, haddr, 0);
3856 		if (IS_ERR(page)) {
3857 			/*
3858 			 * Returning error will result in faulting task being
3859 			 * sent SIGBUS.  The hugetlb fault mutex prevents two
3860 			 * tasks from racing to fault in the same page which
3861 			 * could result in false unable to allocate errors.
3862 			 * Page migration does not take the fault mutex, but
3863 			 * does a clear then write of pte's under page table
3864 			 * lock.  Page fault code could race with migration,
3865 			 * notice the clear pte and try to allocate a page
3866 			 * here.  Before returning error, get ptl and make
3867 			 * sure there really is no pte entry.
3868 			 */
3869 			ptl = huge_pte_lock(h, mm, ptep);
3870 			if (!huge_pte_none(huge_ptep_get(ptep))) {
3871 				ret = 0;
3872 				spin_unlock(ptl);
3873 				goto out;
3874 			}
3875 			spin_unlock(ptl);
3876 			ret = vmf_error(PTR_ERR(page));
3877 			goto out;
3878 		}
3879 		clear_huge_page(page, address, pages_per_huge_page(h));
3880 		__SetPageUptodate(page);
3881 		new_page = true;
3882 
3883 		if (vma->vm_flags & VM_MAYSHARE) {
3884 			int err = huge_add_to_page_cache(page, mapping, idx);
3885 			if (err) {
3886 				put_page(page);
3887 				if (err == -EEXIST)
3888 					goto retry;
3889 				goto out;
3890 			}
3891 		} else {
3892 			lock_page(page);
3893 			if (unlikely(anon_vma_prepare(vma))) {
3894 				ret = VM_FAULT_OOM;
3895 				goto backout_unlocked;
3896 			}
3897 			anon_rmap = 1;
3898 		}
3899 	} else {
3900 		/*
3901 		 * If memory error occurs between mmap() and fault, some process
3902 		 * don't have hwpoisoned swap entry for errored virtual address.
3903 		 * So we need to block hugepage fault by PG_hwpoison bit check.
3904 		 */
3905 		if (unlikely(PageHWPoison(page))) {
3906 			ret = VM_FAULT_HWPOISON |
3907 				VM_FAULT_SET_HINDEX(hstate_index(h));
3908 			goto backout_unlocked;
3909 		}
3910 	}
3911 
3912 	/*
3913 	 * If we are going to COW a private mapping later, we examine the
3914 	 * pending reservations for this page now. This will ensure that
3915 	 * any allocations necessary to record that reservation occur outside
3916 	 * the spinlock.
3917 	 */
3918 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3919 		if (vma_needs_reservation(h, vma, haddr) < 0) {
3920 			ret = VM_FAULT_OOM;
3921 			goto backout_unlocked;
3922 		}
3923 		/* Just decrements count, does not deallocate */
3924 		vma_end_reservation(h, vma, haddr);
3925 	}
3926 
3927 	ptl = huge_pte_lock(h, mm, ptep);
3928 	size = i_size_read(mapping->host) >> huge_page_shift(h);
3929 	if (idx >= size)
3930 		goto backout;
3931 
3932 	ret = 0;
3933 	if (!huge_pte_none(huge_ptep_get(ptep)))
3934 		goto backout;
3935 
3936 	if (anon_rmap) {
3937 		ClearPagePrivate(page);
3938 		hugepage_add_new_anon_rmap(page, vma, haddr);
3939 	} else
3940 		page_dup_rmap(page, true);
3941 	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3942 				&& (vma->vm_flags & VM_SHARED)));
3943 	set_huge_pte_at(mm, haddr, ptep, new_pte);
3944 
3945 	hugetlb_count_add(pages_per_huge_page(h), mm);
3946 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3947 		/* Optimization, do the COW without a second fault */
3948 		ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
3949 	}
3950 
3951 	spin_unlock(ptl);
3952 
3953 	/*
3954 	 * Only make newly allocated pages active.  Existing pages found
3955 	 * in the pagecache could be !page_huge_active() if they have been
3956 	 * isolated for migration.
3957 	 */
3958 	if (new_page)
3959 		set_page_huge_active(page);
3960 
3961 	unlock_page(page);
3962 out:
3963 	return ret;
3964 
3965 backout:
3966 	spin_unlock(ptl);
3967 backout_unlocked:
3968 	unlock_page(page);
3969 	restore_reserve_on_error(h, vma, haddr, page);
3970 	put_page(page);
3971 	goto out;
3972 }
3973 
3974 #ifdef CONFIG_SMP
3975 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
3976 {
3977 	unsigned long key[2];
3978 	u32 hash;
3979 
3980 	key[0] = (unsigned long) mapping;
3981 	key[1] = idx;
3982 
3983 	hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
3984 
3985 	return hash & (num_fault_mutexes - 1);
3986 }
3987 #else
3988 /*
3989  * For uniprocesor systems we always use a single mutex, so just
3990  * return 0 and avoid the hashing overhead.
3991  */
3992 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
3993 {
3994 	return 0;
3995 }
3996 #endif
3997 
3998 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3999 			unsigned long address, unsigned int flags)
4000 {
4001 	pte_t *ptep, entry;
4002 	spinlock_t *ptl;
4003 	vm_fault_t ret;
4004 	u32 hash;
4005 	pgoff_t idx;
4006 	struct page *page = NULL;
4007 	struct page *pagecache_page = NULL;
4008 	struct hstate *h = hstate_vma(vma);
4009 	struct address_space *mapping;
4010 	int need_wait_lock = 0;
4011 	unsigned long haddr = address & huge_page_mask(h);
4012 
4013 	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4014 	if (ptep) {
4015 		entry = huge_ptep_get(ptep);
4016 		if (unlikely(is_hugetlb_entry_migration(entry))) {
4017 			migration_entry_wait_huge(vma, mm, ptep);
4018 			return 0;
4019 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
4020 			return VM_FAULT_HWPOISON_LARGE |
4021 				VM_FAULT_SET_HINDEX(hstate_index(h));
4022 	} else {
4023 		ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
4024 		if (!ptep)
4025 			return VM_FAULT_OOM;
4026 	}
4027 
4028 	mapping = vma->vm_file->f_mapping;
4029 	idx = vma_hugecache_offset(h, vma, haddr);
4030 
4031 	/*
4032 	 * Serialize hugepage allocation and instantiation, so that we don't
4033 	 * get spurious allocation failures if two CPUs race to instantiate
4034 	 * the same page in the page cache.
4035 	 */
4036 	hash = hugetlb_fault_mutex_hash(mapping, idx);
4037 	mutex_lock(&hugetlb_fault_mutex_table[hash]);
4038 
4039 	entry = huge_ptep_get(ptep);
4040 	if (huge_pte_none(entry)) {
4041 		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
4042 		goto out_mutex;
4043 	}
4044 
4045 	ret = 0;
4046 
4047 	/*
4048 	 * entry could be a migration/hwpoison entry at this point, so this
4049 	 * check prevents the kernel from going below assuming that we have
4050 	 * a active hugepage in pagecache. This goto expects the 2nd page fault,
4051 	 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
4052 	 * handle it.
4053 	 */
4054 	if (!pte_present(entry))
4055 		goto out_mutex;
4056 
4057 	/*
4058 	 * If we are going to COW the mapping later, we examine the pending
4059 	 * reservations for this page now. This will ensure that any
4060 	 * allocations necessary to record that reservation occur outside the
4061 	 * spinlock. For private mappings, we also lookup the pagecache
4062 	 * page now as it is used to determine if a reservation has been
4063 	 * consumed.
4064 	 */
4065 	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
4066 		if (vma_needs_reservation(h, vma, haddr) < 0) {
4067 			ret = VM_FAULT_OOM;
4068 			goto out_mutex;
4069 		}
4070 		/* Just decrements count, does not deallocate */
4071 		vma_end_reservation(h, vma, haddr);
4072 
4073 		if (!(vma->vm_flags & VM_MAYSHARE))
4074 			pagecache_page = hugetlbfs_pagecache_page(h,
4075 								vma, haddr);
4076 	}
4077 
4078 	ptl = huge_pte_lock(h, mm, ptep);
4079 
4080 	/* Check for a racing update before calling hugetlb_cow */
4081 	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4082 		goto out_ptl;
4083 
4084 	/*
4085 	 * hugetlb_cow() requires page locks of pte_page(entry) and
4086 	 * pagecache_page, so here we need take the former one
4087 	 * when page != pagecache_page or !pagecache_page.
4088 	 */
4089 	page = pte_page(entry);
4090 	if (page != pagecache_page)
4091 		if (!trylock_page(page)) {
4092 			need_wait_lock = 1;
4093 			goto out_ptl;
4094 		}
4095 
4096 	get_page(page);
4097 
4098 	if (flags & FAULT_FLAG_WRITE) {
4099 		if (!huge_pte_write(entry)) {
4100 			ret = hugetlb_cow(mm, vma, address, ptep,
4101 					  pagecache_page, ptl);
4102 			goto out_put_page;
4103 		}
4104 		entry = huge_pte_mkdirty(entry);
4105 	}
4106 	entry = pte_mkyoung(entry);
4107 	if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
4108 						flags & FAULT_FLAG_WRITE))
4109 		update_mmu_cache(vma, haddr, ptep);
4110 out_put_page:
4111 	if (page != pagecache_page)
4112 		unlock_page(page);
4113 	put_page(page);
4114 out_ptl:
4115 	spin_unlock(ptl);
4116 
4117 	if (pagecache_page) {
4118 		unlock_page(pagecache_page);
4119 		put_page(pagecache_page);
4120 	}
4121 out_mutex:
4122 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4123 	/*
4124 	 * Generally it's safe to hold refcount during waiting page lock. But
4125 	 * here we just wait to defer the next page fault to avoid busy loop and
4126 	 * the page is not used after unlocked before returning from the current
4127 	 * page fault. So we are safe from accessing freed page, even if we wait
4128 	 * here without taking refcount.
4129 	 */
4130 	if (need_wait_lock)
4131 		wait_on_page_locked(page);
4132 	return ret;
4133 }
4134 
4135 /*
4136  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
4137  * modifications for huge pages.
4138  */
4139 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4140 			    pte_t *dst_pte,
4141 			    struct vm_area_struct *dst_vma,
4142 			    unsigned long dst_addr,
4143 			    unsigned long src_addr,
4144 			    struct page **pagep)
4145 {
4146 	struct address_space *mapping;
4147 	pgoff_t idx;
4148 	unsigned long size;
4149 	int vm_shared = dst_vma->vm_flags & VM_SHARED;
4150 	struct hstate *h = hstate_vma(dst_vma);
4151 	pte_t _dst_pte;
4152 	spinlock_t *ptl;
4153 	int ret;
4154 	struct page *page;
4155 
4156 	if (!*pagep) {
4157 		ret = -ENOMEM;
4158 		page = alloc_huge_page(dst_vma, dst_addr, 0);
4159 		if (IS_ERR(page))
4160 			goto out;
4161 
4162 		ret = copy_huge_page_from_user(page,
4163 						(const void __user *) src_addr,
4164 						pages_per_huge_page(h), false);
4165 
4166 		/* fallback to copy_from_user outside mmap_sem */
4167 		if (unlikely(ret)) {
4168 			ret = -ENOENT;
4169 			*pagep = page;
4170 			/* don't free the page */
4171 			goto out;
4172 		}
4173 	} else {
4174 		page = *pagep;
4175 		*pagep = NULL;
4176 	}
4177 
4178 	/*
4179 	 * The memory barrier inside __SetPageUptodate makes sure that
4180 	 * preceding stores to the page contents become visible before
4181 	 * the set_pte_at() write.
4182 	 */
4183 	__SetPageUptodate(page);
4184 
4185 	mapping = dst_vma->vm_file->f_mapping;
4186 	idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4187 
4188 	/*
4189 	 * If shared, add to page cache
4190 	 */
4191 	if (vm_shared) {
4192 		size = i_size_read(mapping->host) >> huge_page_shift(h);
4193 		ret = -EFAULT;
4194 		if (idx >= size)
4195 			goto out_release_nounlock;
4196 
4197 		/*
4198 		 * Serialization between remove_inode_hugepages() and
4199 		 * huge_add_to_page_cache() below happens through the
4200 		 * hugetlb_fault_mutex_table that here must be hold by
4201 		 * the caller.
4202 		 */
4203 		ret = huge_add_to_page_cache(page, mapping, idx);
4204 		if (ret)
4205 			goto out_release_nounlock;
4206 	}
4207 
4208 	ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4209 	spin_lock(ptl);
4210 
4211 	/*
4212 	 * Recheck the i_size after holding PT lock to make sure not
4213 	 * to leave any page mapped (as page_mapped()) beyond the end
4214 	 * of the i_size (remove_inode_hugepages() is strict about
4215 	 * enforcing that). If we bail out here, we'll also leave a
4216 	 * page in the radix tree in the vm_shared case beyond the end
4217 	 * of the i_size, but remove_inode_hugepages() will take care
4218 	 * of it as soon as we drop the hugetlb_fault_mutex_table.
4219 	 */
4220 	size = i_size_read(mapping->host) >> huge_page_shift(h);
4221 	ret = -EFAULT;
4222 	if (idx >= size)
4223 		goto out_release_unlock;
4224 
4225 	ret = -EEXIST;
4226 	if (!huge_pte_none(huge_ptep_get(dst_pte)))
4227 		goto out_release_unlock;
4228 
4229 	if (vm_shared) {
4230 		page_dup_rmap(page, true);
4231 	} else {
4232 		ClearPagePrivate(page);
4233 		hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4234 	}
4235 
4236 	_dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4237 	if (dst_vma->vm_flags & VM_WRITE)
4238 		_dst_pte = huge_pte_mkdirty(_dst_pte);
4239 	_dst_pte = pte_mkyoung(_dst_pte);
4240 
4241 	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4242 
4243 	(void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4244 					dst_vma->vm_flags & VM_WRITE);
4245 	hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4246 
4247 	/* No need to invalidate - it was non-present before */
4248 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
4249 
4250 	spin_unlock(ptl);
4251 	set_page_huge_active(page);
4252 	if (vm_shared)
4253 		unlock_page(page);
4254 	ret = 0;
4255 out:
4256 	return ret;
4257 out_release_unlock:
4258 	spin_unlock(ptl);
4259 	if (vm_shared)
4260 		unlock_page(page);
4261 out_release_nounlock:
4262 	put_page(page);
4263 	goto out;
4264 }
4265 
4266 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4267 			 struct page **pages, struct vm_area_struct **vmas,
4268 			 unsigned long *position, unsigned long *nr_pages,
4269 			 long i, unsigned int flags, int *nonblocking)
4270 {
4271 	unsigned long pfn_offset;
4272 	unsigned long vaddr = *position;
4273 	unsigned long remainder = *nr_pages;
4274 	struct hstate *h = hstate_vma(vma);
4275 	int err = -EFAULT;
4276 
4277 	while (vaddr < vma->vm_end && remainder) {
4278 		pte_t *pte;
4279 		spinlock_t *ptl = NULL;
4280 		int absent;
4281 		struct page *page;
4282 
4283 		/*
4284 		 * If we have a pending SIGKILL, don't keep faulting pages and
4285 		 * potentially allocating memory.
4286 		 */
4287 		if (fatal_signal_pending(current)) {
4288 			remainder = 0;
4289 			break;
4290 		}
4291 
4292 		/*
4293 		 * Some archs (sparc64, sh*) have multiple pte_ts to
4294 		 * each hugepage.  We have to make sure we get the
4295 		 * first, for the page indexing below to work.
4296 		 *
4297 		 * Note that page table lock is not held when pte is null.
4298 		 */
4299 		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4300 				      huge_page_size(h));
4301 		if (pte)
4302 			ptl = huge_pte_lock(h, mm, pte);
4303 		absent = !pte || huge_pte_none(huge_ptep_get(pte));
4304 
4305 		/*
4306 		 * When coredumping, it suits get_dump_page if we just return
4307 		 * an error where there's an empty slot with no huge pagecache
4308 		 * to back it.  This way, we avoid allocating a hugepage, and
4309 		 * the sparse dumpfile avoids allocating disk blocks, but its
4310 		 * huge holes still show up with zeroes where they need to be.
4311 		 */
4312 		if (absent && (flags & FOLL_DUMP) &&
4313 		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4314 			if (pte)
4315 				spin_unlock(ptl);
4316 			remainder = 0;
4317 			break;
4318 		}
4319 
4320 		/*
4321 		 * We need call hugetlb_fault for both hugepages under migration
4322 		 * (in which case hugetlb_fault waits for the migration,) and
4323 		 * hwpoisoned hugepages (in which case we need to prevent the
4324 		 * caller from accessing to them.) In order to do this, we use
4325 		 * here is_swap_pte instead of is_hugetlb_entry_migration and
4326 		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4327 		 * both cases, and because we can't follow correct pages
4328 		 * directly from any kind of swap entries.
4329 		 */
4330 		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4331 		    ((flags & FOLL_WRITE) &&
4332 		      !huge_pte_write(huge_ptep_get(pte)))) {
4333 			vm_fault_t ret;
4334 			unsigned int fault_flags = 0;
4335 
4336 			if (pte)
4337 				spin_unlock(ptl);
4338 			if (flags & FOLL_WRITE)
4339 				fault_flags |= FAULT_FLAG_WRITE;
4340 			if (nonblocking)
4341 				fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4342 			if (flags & FOLL_NOWAIT)
4343 				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4344 					FAULT_FLAG_RETRY_NOWAIT;
4345 			if (flags & FOLL_TRIED) {
4346 				VM_WARN_ON_ONCE(fault_flags &
4347 						FAULT_FLAG_ALLOW_RETRY);
4348 				fault_flags |= FAULT_FLAG_TRIED;
4349 			}
4350 			ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4351 			if (ret & VM_FAULT_ERROR) {
4352 				err = vm_fault_to_errno(ret, flags);
4353 				remainder = 0;
4354 				break;
4355 			}
4356 			if (ret & VM_FAULT_RETRY) {
4357 				if (nonblocking &&
4358 				    !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4359 					*nonblocking = 0;
4360 				*nr_pages = 0;
4361 				/*
4362 				 * VM_FAULT_RETRY must not return an
4363 				 * error, it will return zero
4364 				 * instead.
4365 				 *
4366 				 * No need to update "position" as the
4367 				 * caller will not check it after
4368 				 * *nr_pages is set to 0.
4369 				 */
4370 				return i;
4371 			}
4372 			continue;
4373 		}
4374 
4375 		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4376 		page = pte_page(huge_ptep_get(pte));
4377 
4378 		/*
4379 		 * Instead of doing 'try_get_page()' below in the same_page
4380 		 * loop, just check the count once here.
4381 		 */
4382 		if (unlikely(page_count(page) <= 0)) {
4383 			if (pages) {
4384 				spin_unlock(ptl);
4385 				remainder = 0;
4386 				err = -ENOMEM;
4387 				break;
4388 			}
4389 		}
4390 
4391 		/*
4392 		 * If subpage information not requested, update counters
4393 		 * and skip the same_page loop below.
4394 		 */
4395 		if (!pages && !vmas && !pfn_offset &&
4396 		    (vaddr + huge_page_size(h) < vma->vm_end) &&
4397 		    (remainder >= pages_per_huge_page(h))) {
4398 			vaddr += huge_page_size(h);
4399 			remainder -= pages_per_huge_page(h);
4400 			i += pages_per_huge_page(h);
4401 			spin_unlock(ptl);
4402 			continue;
4403 		}
4404 
4405 same_page:
4406 		if (pages) {
4407 			pages[i] = mem_map_offset(page, pfn_offset);
4408 			get_page(pages[i]);
4409 		}
4410 
4411 		if (vmas)
4412 			vmas[i] = vma;
4413 
4414 		vaddr += PAGE_SIZE;
4415 		++pfn_offset;
4416 		--remainder;
4417 		++i;
4418 		if (vaddr < vma->vm_end && remainder &&
4419 				pfn_offset < pages_per_huge_page(h)) {
4420 			/*
4421 			 * We use pfn_offset to avoid touching the pageframes
4422 			 * of this compound page.
4423 			 */
4424 			goto same_page;
4425 		}
4426 		spin_unlock(ptl);
4427 	}
4428 	*nr_pages = remainder;
4429 	/*
4430 	 * setting position is actually required only if remainder is
4431 	 * not zero but it's faster not to add a "if (remainder)"
4432 	 * branch.
4433 	 */
4434 	*position = vaddr;
4435 
4436 	return i ? i : err;
4437 }
4438 
4439 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4440 /*
4441  * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4442  * implement this.
4443  */
4444 #define flush_hugetlb_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
4445 #endif
4446 
4447 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4448 		unsigned long address, unsigned long end, pgprot_t newprot)
4449 {
4450 	struct mm_struct *mm = vma->vm_mm;
4451 	unsigned long start = address;
4452 	pte_t *ptep;
4453 	pte_t pte;
4454 	struct hstate *h = hstate_vma(vma);
4455 	unsigned long pages = 0;
4456 	bool shared_pmd = false;
4457 	struct mmu_notifier_range range;
4458 
4459 	/*
4460 	 * In the case of shared PMDs, the area to flush could be beyond
4461 	 * start/end.  Set range.start/range.end to cover the maximum possible
4462 	 * range if PMD sharing is possible.
4463 	 */
4464 	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
4465 				0, vma, mm, start, end);
4466 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4467 
4468 	BUG_ON(address >= end);
4469 	flush_cache_range(vma, range.start, range.end);
4470 
4471 	mmu_notifier_invalidate_range_start(&range);
4472 	i_mmap_lock_write(vma->vm_file->f_mapping);
4473 	for (; address < end; address += huge_page_size(h)) {
4474 		spinlock_t *ptl;
4475 		ptep = huge_pte_offset(mm, address, huge_page_size(h));
4476 		if (!ptep)
4477 			continue;
4478 		ptl = huge_pte_lock(h, mm, ptep);
4479 		if (huge_pmd_unshare(mm, &address, ptep)) {
4480 			pages++;
4481 			spin_unlock(ptl);
4482 			shared_pmd = true;
4483 			continue;
4484 		}
4485 		pte = huge_ptep_get(ptep);
4486 		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4487 			spin_unlock(ptl);
4488 			continue;
4489 		}
4490 		if (unlikely(is_hugetlb_entry_migration(pte))) {
4491 			swp_entry_t entry = pte_to_swp_entry(pte);
4492 
4493 			if (is_write_migration_entry(entry)) {
4494 				pte_t newpte;
4495 
4496 				make_migration_entry_read(&entry);
4497 				newpte = swp_entry_to_pte(entry);
4498 				set_huge_swap_pte_at(mm, address, ptep,
4499 						     newpte, huge_page_size(h));
4500 				pages++;
4501 			}
4502 			spin_unlock(ptl);
4503 			continue;
4504 		}
4505 		if (!huge_pte_none(pte)) {
4506 			pte_t old_pte;
4507 
4508 			old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
4509 			pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
4510 			pte = arch_make_huge_pte(pte, vma, NULL, 0);
4511 			huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
4512 			pages++;
4513 		}
4514 		spin_unlock(ptl);
4515 	}
4516 	/*
4517 	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4518 	 * may have cleared our pud entry and done put_page on the page table:
4519 	 * once we release i_mmap_rwsem, another task can do the final put_page
4520 	 * and that page table be reused and filled with junk.  If we actually
4521 	 * did unshare a page of pmds, flush the range corresponding to the pud.
4522 	 */
4523 	if (shared_pmd)
4524 		flush_hugetlb_tlb_range(vma, range.start, range.end);
4525 	else
4526 		flush_hugetlb_tlb_range(vma, start, end);
4527 	/*
4528 	 * No need to call mmu_notifier_invalidate_range() we are downgrading
4529 	 * page table protection not changing it to point to a new page.
4530 	 *
4531 	 * See Documentation/vm/mmu_notifier.rst
4532 	 */
4533 	i_mmap_unlock_write(vma->vm_file->f_mapping);
4534 	mmu_notifier_invalidate_range_end(&range);
4535 
4536 	return pages << h->order;
4537 }
4538 
4539 int hugetlb_reserve_pages(struct inode *inode,
4540 					long from, long to,
4541 					struct vm_area_struct *vma,
4542 					vm_flags_t vm_flags)
4543 {
4544 	long ret, chg;
4545 	struct hstate *h = hstate_inode(inode);
4546 	struct hugepage_subpool *spool = subpool_inode(inode);
4547 	struct resv_map *resv_map;
4548 	long gbl_reserve;
4549 
4550 	/* This should never happen */
4551 	if (from > to) {
4552 		VM_WARN(1, "%s called with a negative range\n", __func__);
4553 		return -EINVAL;
4554 	}
4555 
4556 	/*
4557 	 * Only apply hugepage reservation if asked. At fault time, an
4558 	 * attempt will be made for VM_NORESERVE to allocate a page
4559 	 * without using reserves
4560 	 */
4561 	if (vm_flags & VM_NORESERVE)
4562 		return 0;
4563 
4564 	/*
4565 	 * Shared mappings base their reservation on the number of pages that
4566 	 * are already allocated on behalf of the file. Private mappings need
4567 	 * to reserve the full area even if read-only as mprotect() may be
4568 	 * called to make the mapping read-write. Assume !vma is a shm mapping
4569 	 */
4570 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
4571 		/*
4572 		 * resv_map can not be NULL as hugetlb_reserve_pages is only
4573 		 * called for inodes for which resv_maps were created (see
4574 		 * hugetlbfs_get_inode).
4575 		 */
4576 		resv_map = inode_resv_map(inode);
4577 
4578 		chg = region_chg(resv_map, from, to);
4579 
4580 	} else {
4581 		resv_map = resv_map_alloc();
4582 		if (!resv_map)
4583 			return -ENOMEM;
4584 
4585 		chg = to - from;
4586 
4587 		set_vma_resv_map(vma, resv_map);
4588 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4589 	}
4590 
4591 	if (chg < 0) {
4592 		ret = chg;
4593 		goto out_err;
4594 	}
4595 
4596 	/*
4597 	 * There must be enough pages in the subpool for the mapping. If
4598 	 * the subpool has a minimum size, there may be some global
4599 	 * reservations already in place (gbl_reserve).
4600 	 */
4601 	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4602 	if (gbl_reserve < 0) {
4603 		ret = -ENOSPC;
4604 		goto out_err;
4605 	}
4606 
4607 	/*
4608 	 * Check enough hugepages are available for the reservation.
4609 	 * Hand the pages back to the subpool if there are not
4610 	 */
4611 	ret = hugetlb_acct_memory(h, gbl_reserve);
4612 	if (ret < 0) {
4613 		/* put back original number of pages, chg */
4614 		(void)hugepage_subpool_put_pages(spool, chg);
4615 		goto out_err;
4616 	}
4617 
4618 	/*
4619 	 * Account for the reservations made. Shared mappings record regions
4620 	 * that have reservations as they are shared by multiple VMAs.
4621 	 * When the last VMA disappears, the region map says how much
4622 	 * the reservation was and the page cache tells how much of
4623 	 * the reservation was consumed. Private mappings are per-VMA and
4624 	 * only the consumed reservations are tracked. When the VMA
4625 	 * disappears, the original reservation is the VMA size and the
4626 	 * consumed reservations are stored in the map. Hence, nothing
4627 	 * else has to be done for private mappings here
4628 	 */
4629 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
4630 		long add = region_add(resv_map, from, to);
4631 
4632 		if (unlikely(chg > add)) {
4633 			/*
4634 			 * pages in this range were added to the reserve
4635 			 * map between region_chg and region_add.  This
4636 			 * indicates a race with alloc_huge_page.  Adjust
4637 			 * the subpool and reserve counts modified above
4638 			 * based on the difference.
4639 			 */
4640 			long rsv_adjust;
4641 
4642 			rsv_adjust = hugepage_subpool_put_pages(spool,
4643 								chg - add);
4644 			hugetlb_acct_memory(h, -rsv_adjust);
4645 		}
4646 	}
4647 	return 0;
4648 out_err:
4649 	if (!vma || vma->vm_flags & VM_MAYSHARE)
4650 		/* Don't call region_abort if region_chg failed */
4651 		if (chg >= 0)
4652 			region_abort(resv_map, from, to);
4653 	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4654 		kref_put(&resv_map->refs, resv_map_release);
4655 	return ret;
4656 }
4657 
4658 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4659 								long freed)
4660 {
4661 	struct hstate *h = hstate_inode(inode);
4662 	struct resv_map *resv_map = inode_resv_map(inode);
4663 	long chg = 0;
4664 	struct hugepage_subpool *spool = subpool_inode(inode);
4665 	long gbl_reserve;
4666 
4667 	/*
4668 	 * Since this routine can be called in the evict inode path for all
4669 	 * hugetlbfs inodes, resv_map could be NULL.
4670 	 */
4671 	if (resv_map) {
4672 		chg = region_del(resv_map, start, end);
4673 		/*
4674 		 * region_del() can fail in the rare case where a region
4675 		 * must be split and another region descriptor can not be
4676 		 * allocated.  If end == LONG_MAX, it will not fail.
4677 		 */
4678 		if (chg < 0)
4679 			return chg;
4680 	}
4681 
4682 	spin_lock(&inode->i_lock);
4683 	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4684 	spin_unlock(&inode->i_lock);
4685 
4686 	/*
4687 	 * If the subpool has a minimum size, the number of global
4688 	 * reservations to be released may be adjusted.
4689 	 */
4690 	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4691 	hugetlb_acct_memory(h, -gbl_reserve);
4692 
4693 	return 0;
4694 }
4695 
4696 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4697 static unsigned long page_table_shareable(struct vm_area_struct *svma,
4698 				struct vm_area_struct *vma,
4699 				unsigned long addr, pgoff_t idx)
4700 {
4701 	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4702 				svma->vm_start;
4703 	unsigned long sbase = saddr & PUD_MASK;
4704 	unsigned long s_end = sbase + PUD_SIZE;
4705 
4706 	/* Allow segments to share if only one is marked locked */
4707 	unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4708 	unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4709 
4710 	/*
4711 	 * match the virtual addresses, permission and the alignment of the
4712 	 * page table page.
4713 	 */
4714 	if (pmd_index(addr) != pmd_index(saddr) ||
4715 	    vm_flags != svm_flags ||
4716 	    sbase < svma->vm_start || svma->vm_end < s_end)
4717 		return 0;
4718 
4719 	return saddr;
4720 }
4721 
4722 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4723 {
4724 	unsigned long base = addr & PUD_MASK;
4725 	unsigned long end = base + PUD_SIZE;
4726 
4727 	/*
4728 	 * check on proper vm_flags and page table alignment
4729 	 */
4730 	if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
4731 		return true;
4732 	return false;
4733 }
4734 
4735 /*
4736  * Determine if start,end range within vma could be mapped by shared pmd.
4737  * If yes, adjust start and end to cover range associated with possible
4738  * shared pmd mappings.
4739  */
4740 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4741 				unsigned long *start, unsigned long *end)
4742 {
4743 	unsigned long check_addr = *start;
4744 
4745 	if (!(vma->vm_flags & VM_MAYSHARE))
4746 		return;
4747 
4748 	for (check_addr = *start; check_addr < *end; check_addr += PUD_SIZE) {
4749 		unsigned long a_start = check_addr & PUD_MASK;
4750 		unsigned long a_end = a_start + PUD_SIZE;
4751 
4752 		/*
4753 		 * If sharing is possible, adjust start/end if necessary.
4754 		 */
4755 		if (range_in_vma(vma, a_start, a_end)) {
4756 			if (a_start < *start)
4757 				*start = a_start;
4758 			if (a_end > *end)
4759 				*end = a_end;
4760 		}
4761 	}
4762 }
4763 
4764 /*
4765  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4766  * and returns the corresponding pte. While this is not necessary for the
4767  * !shared pmd case because we can allocate the pmd later as well, it makes the
4768  * code much cleaner. pmd allocation is essential for the shared case because
4769  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4770  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4771  * bad pmd for sharing.
4772  */
4773 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4774 {
4775 	struct vm_area_struct *vma = find_vma(mm, addr);
4776 	struct address_space *mapping = vma->vm_file->f_mapping;
4777 	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4778 			vma->vm_pgoff;
4779 	struct vm_area_struct *svma;
4780 	unsigned long saddr;
4781 	pte_t *spte = NULL;
4782 	pte_t *pte;
4783 	spinlock_t *ptl;
4784 
4785 	if (!vma_shareable(vma, addr))
4786 		return (pte_t *)pmd_alloc(mm, pud, addr);
4787 
4788 	i_mmap_lock_read(mapping);
4789 	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4790 		if (svma == vma)
4791 			continue;
4792 
4793 		saddr = page_table_shareable(svma, vma, addr, idx);
4794 		if (saddr) {
4795 			spte = huge_pte_offset(svma->vm_mm, saddr,
4796 					       vma_mmu_pagesize(svma));
4797 			if (spte) {
4798 				get_page(virt_to_page(spte));
4799 				break;
4800 			}
4801 		}
4802 	}
4803 
4804 	if (!spte)
4805 		goto out;
4806 
4807 	ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
4808 	if (pud_none(*pud)) {
4809 		pud_populate(mm, pud,
4810 				(pmd_t *)((unsigned long)spte & PAGE_MASK));
4811 		mm_inc_nr_pmds(mm);
4812 	} else {
4813 		put_page(virt_to_page(spte));
4814 	}
4815 	spin_unlock(ptl);
4816 out:
4817 	pte = (pte_t *)pmd_alloc(mm, pud, addr);
4818 	i_mmap_unlock_read(mapping);
4819 	return pte;
4820 }
4821 
4822 /*
4823  * unmap huge page backed by shared pte.
4824  *
4825  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
4826  * indicated by page_count > 1, unmap is achieved by clearing pud and
4827  * decrementing the ref count. If count == 1, the pte page is not shared.
4828  *
4829  * called with page table lock held.
4830  *
4831  * returns: 1 successfully unmapped a shared pte page
4832  *	    0 the underlying pte page is not shared, or it is the last user
4833  */
4834 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4835 {
4836 	pgd_t *pgd = pgd_offset(mm, *addr);
4837 	p4d_t *p4d = p4d_offset(pgd, *addr);
4838 	pud_t *pud = pud_offset(p4d, *addr);
4839 
4840 	BUG_ON(page_count(virt_to_page(ptep)) == 0);
4841 	if (page_count(virt_to_page(ptep)) == 1)
4842 		return 0;
4843 
4844 	pud_clear(pud);
4845 	put_page(virt_to_page(ptep));
4846 	mm_dec_nr_pmds(mm);
4847 	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4848 	return 1;
4849 }
4850 #define want_pmd_share()	(1)
4851 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4852 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4853 {
4854 	return NULL;
4855 }
4856 
4857 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4858 {
4859 	return 0;
4860 }
4861 
4862 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4863 				unsigned long *start, unsigned long *end)
4864 {
4865 }
4866 #define want_pmd_share()	(0)
4867 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4868 
4869 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4870 pte_t *huge_pte_alloc(struct mm_struct *mm,
4871 			unsigned long addr, unsigned long sz)
4872 {
4873 	pgd_t *pgd;
4874 	p4d_t *p4d;
4875 	pud_t *pud;
4876 	pte_t *pte = NULL;
4877 
4878 	pgd = pgd_offset(mm, addr);
4879 	p4d = p4d_alloc(mm, pgd, addr);
4880 	if (!p4d)
4881 		return NULL;
4882 	pud = pud_alloc(mm, p4d, addr);
4883 	if (pud) {
4884 		if (sz == PUD_SIZE) {
4885 			pte = (pte_t *)pud;
4886 		} else {
4887 			BUG_ON(sz != PMD_SIZE);
4888 			if (want_pmd_share() && pud_none(*pud))
4889 				pte = huge_pmd_share(mm, addr, pud);
4890 			else
4891 				pte = (pte_t *)pmd_alloc(mm, pud, addr);
4892 		}
4893 	}
4894 	BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
4895 
4896 	return pte;
4897 }
4898 
4899 /*
4900  * huge_pte_offset() - Walk the page table to resolve the hugepage
4901  * entry at address @addr
4902  *
4903  * Return: Pointer to page table or swap entry (PUD or PMD) for
4904  * address @addr, or NULL if a p*d_none() entry is encountered and the
4905  * size @sz doesn't match the hugepage size at this level of the page
4906  * table.
4907  */
4908 pte_t *huge_pte_offset(struct mm_struct *mm,
4909 		       unsigned long addr, unsigned long sz)
4910 {
4911 	pgd_t *pgd;
4912 	p4d_t *p4d;
4913 	pud_t *pud;
4914 	pmd_t *pmd;
4915 
4916 	pgd = pgd_offset(mm, addr);
4917 	if (!pgd_present(*pgd))
4918 		return NULL;
4919 	p4d = p4d_offset(pgd, addr);
4920 	if (!p4d_present(*p4d))
4921 		return NULL;
4922 
4923 	pud = pud_offset(p4d, addr);
4924 	if (sz != PUD_SIZE && pud_none(*pud))
4925 		return NULL;
4926 	/* hugepage or swap? */
4927 	if (pud_huge(*pud) || !pud_present(*pud))
4928 		return (pte_t *)pud;
4929 
4930 	pmd = pmd_offset(pud, addr);
4931 	if (sz != PMD_SIZE && pmd_none(*pmd))
4932 		return NULL;
4933 	/* hugepage or swap? */
4934 	if (pmd_huge(*pmd) || !pmd_present(*pmd))
4935 		return (pte_t *)pmd;
4936 
4937 	return NULL;
4938 }
4939 
4940 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4941 
4942 /*
4943  * These functions are overwritable if your architecture needs its own
4944  * behavior.
4945  */
4946 struct page * __weak
4947 follow_huge_addr(struct mm_struct *mm, unsigned long address,
4948 			      int write)
4949 {
4950 	return ERR_PTR(-EINVAL);
4951 }
4952 
4953 struct page * __weak
4954 follow_huge_pd(struct vm_area_struct *vma,
4955 	       unsigned long address, hugepd_t hpd, int flags, int pdshift)
4956 {
4957 	WARN(1, "hugepd follow called with no support for hugepage directory format\n");
4958 	return NULL;
4959 }
4960 
4961 struct page * __weak
4962 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4963 		pmd_t *pmd, int flags)
4964 {
4965 	struct page *page = NULL;
4966 	spinlock_t *ptl;
4967 	pte_t pte;
4968 retry:
4969 	ptl = pmd_lockptr(mm, pmd);
4970 	spin_lock(ptl);
4971 	/*
4972 	 * make sure that the address range covered by this pmd is not
4973 	 * unmapped from other threads.
4974 	 */
4975 	if (!pmd_huge(*pmd))
4976 		goto out;
4977 	pte = huge_ptep_get((pte_t *)pmd);
4978 	if (pte_present(pte)) {
4979 		page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4980 		if (flags & FOLL_GET)
4981 			get_page(page);
4982 	} else {
4983 		if (is_hugetlb_entry_migration(pte)) {
4984 			spin_unlock(ptl);
4985 			__migration_entry_wait(mm, (pte_t *)pmd, ptl);
4986 			goto retry;
4987 		}
4988 		/*
4989 		 * hwpoisoned entry is treated as no_page_table in
4990 		 * follow_page_mask().
4991 		 */
4992 	}
4993 out:
4994 	spin_unlock(ptl);
4995 	return page;
4996 }
4997 
4998 struct page * __weak
4999 follow_huge_pud(struct mm_struct *mm, unsigned long address,
5000 		pud_t *pud, int flags)
5001 {
5002 	if (flags & FOLL_GET)
5003 		return NULL;
5004 
5005 	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
5006 }
5007 
5008 struct page * __weak
5009 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
5010 {
5011 	if (flags & FOLL_GET)
5012 		return NULL;
5013 
5014 	return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
5015 }
5016 
5017 bool isolate_huge_page(struct page *page, struct list_head *list)
5018 {
5019 	bool ret = true;
5020 
5021 	VM_BUG_ON_PAGE(!PageHead(page), page);
5022 	spin_lock(&hugetlb_lock);
5023 	if (!page_huge_active(page) || !get_page_unless_zero(page)) {
5024 		ret = false;
5025 		goto unlock;
5026 	}
5027 	clear_page_huge_active(page);
5028 	list_move_tail(&page->lru, list);
5029 unlock:
5030 	spin_unlock(&hugetlb_lock);
5031 	return ret;
5032 }
5033 
5034 void putback_active_hugepage(struct page *page)
5035 {
5036 	VM_BUG_ON_PAGE(!PageHead(page), page);
5037 	spin_lock(&hugetlb_lock);
5038 	set_page_huge_active(page);
5039 	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
5040 	spin_unlock(&hugetlb_lock);
5041 	put_page(page);
5042 }
5043 
5044 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
5045 {
5046 	struct hstate *h = page_hstate(oldpage);
5047 
5048 	hugetlb_cgroup_migrate(oldpage, newpage);
5049 	set_page_owner_migrate_reason(newpage, reason);
5050 
5051 	/*
5052 	 * transfer temporary state of the new huge page. This is
5053 	 * reverse to other transitions because the newpage is going to
5054 	 * be final while the old one will be freed so it takes over
5055 	 * the temporary status.
5056 	 *
5057 	 * Also note that we have to transfer the per-node surplus state
5058 	 * here as well otherwise the global surplus count will not match
5059 	 * the per-node's.
5060 	 */
5061 	if (PageHugeTemporary(newpage)) {
5062 		int old_nid = page_to_nid(oldpage);
5063 		int new_nid = page_to_nid(newpage);
5064 
5065 		SetPageHugeTemporary(oldpage);
5066 		ClearPageHugeTemporary(newpage);
5067 
5068 		spin_lock(&hugetlb_lock);
5069 		if (h->surplus_huge_pages_node[old_nid]) {
5070 			h->surplus_huge_pages_node[old_nid]--;
5071 			h->surplus_huge_pages_node[new_nid]++;
5072 		}
5073 		spin_unlock(&hugetlb_lock);
5074 	}
5075 }
5076