1 /* 2 * Generic hugetlb support. 3 * (C) Nadia Yvette Chambers, April 2004 4 */ 5 #include <linux/list.h> 6 #include <linux/init.h> 7 #include <linux/mm.h> 8 #include <linux/seq_file.h> 9 #include <linux/sysctl.h> 10 #include <linux/highmem.h> 11 #include <linux/mmu_notifier.h> 12 #include <linux/nodemask.h> 13 #include <linux/pagemap.h> 14 #include <linux/mempolicy.h> 15 #include <linux/compiler.h> 16 #include <linux/cpuset.h> 17 #include <linux/mutex.h> 18 #include <linux/bootmem.h> 19 #include <linux/sysfs.h> 20 #include <linux/slab.h> 21 #include <linux/rmap.h> 22 #include <linux/swap.h> 23 #include <linux/swapops.h> 24 #include <linux/page-isolation.h> 25 #include <linux/jhash.h> 26 27 #include <asm/page.h> 28 #include <asm/pgtable.h> 29 #include <asm/tlb.h> 30 31 #include <linux/io.h> 32 #include <linux/hugetlb.h> 33 #include <linux/hugetlb_cgroup.h> 34 #include <linux/node.h> 35 #include "internal.h" 36 37 int hugepages_treat_as_movable; 38 39 int hugetlb_max_hstate __read_mostly; 40 unsigned int default_hstate_idx; 41 struct hstate hstates[HUGE_MAX_HSTATE]; 42 /* 43 * Minimum page order among possible hugepage sizes, set to a proper value 44 * at boot time. 45 */ 46 static unsigned int minimum_order __read_mostly = UINT_MAX; 47 48 __initdata LIST_HEAD(huge_boot_pages); 49 50 /* for command line parsing */ 51 static struct hstate * __initdata parsed_hstate; 52 static unsigned long __initdata default_hstate_max_huge_pages; 53 static unsigned long __initdata default_hstate_size; 54 static bool __initdata parsed_valid_hugepagesz = true; 55 56 /* 57 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages, 58 * free_huge_pages, and surplus_huge_pages. 59 */ 60 DEFINE_SPINLOCK(hugetlb_lock); 61 62 /* 63 * Serializes faults on the same logical page. This is used to 64 * prevent spurious OOMs when the hugepage pool is fully utilized. 65 */ 66 static int num_fault_mutexes; 67 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp; 68 69 /* Forward declaration */ 70 static int hugetlb_acct_memory(struct hstate *h, long delta); 71 72 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool) 73 { 74 bool free = (spool->count == 0) && (spool->used_hpages == 0); 75 76 spin_unlock(&spool->lock); 77 78 /* If no pages are used, and no other handles to the subpool 79 * remain, give up any reservations mased on minimum size and 80 * free the subpool */ 81 if (free) { 82 if (spool->min_hpages != -1) 83 hugetlb_acct_memory(spool->hstate, 84 -spool->min_hpages); 85 kfree(spool); 86 } 87 } 88 89 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages, 90 long min_hpages) 91 { 92 struct hugepage_subpool *spool; 93 94 spool = kzalloc(sizeof(*spool), GFP_KERNEL); 95 if (!spool) 96 return NULL; 97 98 spin_lock_init(&spool->lock); 99 spool->count = 1; 100 spool->max_hpages = max_hpages; 101 spool->hstate = h; 102 spool->min_hpages = min_hpages; 103 104 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) { 105 kfree(spool); 106 return NULL; 107 } 108 spool->rsv_hpages = min_hpages; 109 110 return spool; 111 } 112 113 void hugepage_put_subpool(struct hugepage_subpool *spool) 114 { 115 spin_lock(&spool->lock); 116 BUG_ON(!spool->count); 117 spool->count--; 118 unlock_or_release_subpool(spool); 119 } 120 121 /* 122 * Subpool accounting for allocating and reserving pages. 123 * Return -ENOMEM if there are not enough resources to satisfy the 124 * the request. Otherwise, return the number of pages by which the 125 * global pools must be adjusted (upward). The returned value may 126 * only be different than the passed value (delta) in the case where 127 * a subpool minimum size must be manitained. 128 */ 129 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool, 130 long delta) 131 { 132 long ret = delta; 133 134 if (!spool) 135 return ret; 136 137 spin_lock(&spool->lock); 138 139 if (spool->max_hpages != -1) { /* maximum size accounting */ 140 if ((spool->used_hpages + delta) <= spool->max_hpages) 141 spool->used_hpages += delta; 142 else { 143 ret = -ENOMEM; 144 goto unlock_ret; 145 } 146 } 147 148 /* minimum size accounting */ 149 if (spool->min_hpages != -1 && spool->rsv_hpages) { 150 if (delta > spool->rsv_hpages) { 151 /* 152 * Asking for more reserves than those already taken on 153 * behalf of subpool. Return difference. 154 */ 155 ret = delta - spool->rsv_hpages; 156 spool->rsv_hpages = 0; 157 } else { 158 ret = 0; /* reserves already accounted for */ 159 spool->rsv_hpages -= delta; 160 } 161 } 162 163 unlock_ret: 164 spin_unlock(&spool->lock); 165 return ret; 166 } 167 168 /* 169 * Subpool accounting for freeing and unreserving pages. 170 * Return the number of global page reservations that must be dropped. 171 * The return value may only be different than the passed value (delta) 172 * in the case where a subpool minimum size must be maintained. 173 */ 174 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool, 175 long delta) 176 { 177 long ret = delta; 178 179 if (!spool) 180 return delta; 181 182 spin_lock(&spool->lock); 183 184 if (spool->max_hpages != -1) /* maximum size accounting */ 185 spool->used_hpages -= delta; 186 187 /* minimum size accounting */ 188 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) { 189 if (spool->rsv_hpages + delta <= spool->min_hpages) 190 ret = 0; 191 else 192 ret = spool->rsv_hpages + delta - spool->min_hpages; 193 194 spool->rsv_hpages += delta; 195 if (spool->rsv_hpages > spool->min_hpages) 196 spool->rsv_hpages = spool->min_hpages; 197 } 198 199 /* 200 * If hugetlbfs_put_super couldn't free spool due to an outstanding 201 * quota reference, free it now. 202 */ 203 unlock_or_release_subpool(spool); 204 205 return ret; 206 } 207 208 static inline struct hugepage_subpool *subpool_inode(struct inode *inode) 209 { 210 return HUGETLBFS_SB(inode->i_sb)->spool; 211 } 212 213 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma) 214 { 215 return subpool_inode(file_inode(vma->vm_file)); 216 } 217 218 /* 219 * Region tracking -- allows tracking of reservations and instantiated pages 220 * across the pages in a mapping. 221 * 222 * The region data structures are embedded into a resv_map and protected 223 * by a resv_map's lock. The set of regions within the resv_map represent 224 * reservations for huge pages, or huge pages that have already been 225 * instantiated within the map. The from and to elements are huge page 226 * indicies into the associated mapping. from indicates the starting index 227 * of the region. to represents the first index past the end of the region. 228 * 229 * For example, a file region structure with from == 0 and to == 4 represents 230 * four huge pages in a mapping. It is important to note that the to element 231 * represents the first element past the end of the region. This is used in 232 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region. 233 * 234 * Interval notation of the form [from, to) will be used to indicate that 235 * the endpoint from is inclusive and to is exclusive. 236 */ 237 struct file_region { 238 struct list_head link; 239 long from; 240 long to; 241 }; 242 243 /* 244 * Add the huge page range represented by [f, t) to the reserve 245 * map. In the normal case, existing regions will be expanded 246 * to accommodate the specified range. Sufficient regions should 247 * exist for expansion due to the previous call to region_chg 248 * with the same range. However, it is possible that region_del 249 * could have been called after region_chg and modifed the map 250 * in such a way that no region exists to be expanded. In this 251 * case, pull a region descriptor from the cache associated with 252 * the map and use that for the new range. 253 * 254 * Return the number of new huge pages added to the map. This 255 * number is greater than or equal to zero. 256 */ 257 static long region_add(struct resv_map *resv, long f, long t) 258 { 259 struct list_head *head = &resv->regions; 260 struct file_region *rg, *nrg, *trg; 261 long add = 0; 262 263 spin_lock(&resv->lock); 264 /* Locate the region we are either in or before. */ 265 list_for_each_entry(rg, head, link) 266 if (f <= rg->to) 267 break; 268 269 /* 270 * If no region exists which can be expanded to include the 271 * specified range, the list must have been modified by an 272 * interleving call to region_del(). Pull a region descriptor 273 * from the cache and use it for this range. 274 */ 275 if (&rg->link == head || t < rg->from) { 276 VM_BUG_ON(resv->region_cache_count <= 0); 277 278 resv->region_cache_count--; 279 nrg = list_first_entry(&resv->region_cache, struct file_region, 280 link); 281 list_del(&nrg->link); 282 283 nrg->from = f; 284 nrg->to = t; 285 list_add(&nrg->link, rg->link.prev); 286 287 add += t - f; 288 goto out_locked; 289 } 290 291 /* Round our left edge to the current segment if it encloses us. */ 292 if (f > rg->from) 293 f = rg->from; 294 295 /* Check for and consume any regions we now overlap with. */ 296 nrg = rg; 297 list_for_each_entry_safe(rg, trg, rg->link.prev, link) { 298 if (&rg->link == head) 299 break; 300 if (rg->from > t) 301 break; 302 303 /* If this area reaches higher then extend our area to 304 * include it completely. If this is not the first area 305 * which we intend to reuse, free it. */ 306 if (rg->to > t) 307 t = rg->to; 308 if (rg != nrg) { 309 /* Decrement return value by the deleted range. 310 * Another range will span this area so that by 311 * end of routine add will be >= zero 312 */ 313 add -= (rg->to - rg->from); 314 list_del(&rg->link); 315 kfree(rg); 316 } 317 } 318 319 add += (nrg->from - f); /* Added to beginning of region */ 320 nrg->from = f; 321 add += t - nrg->to; /* Added to end of region */ 322 nrg->to = t; 323 324 out_locked: 325 resv->adds_in_progress--; 326 spin_unlock(&resv->lock); 327 VM_BUG_ON(add < 0); 328 return add; 329 } 330 331 /* 332 * Examine the existing reserve map and determine how many 333 * huge pages in the specified range [f, t) are NOT currently 334 * represented. This routine is called before a subsequent 335 * call to region_add that will actually modify the reserve 336 * map to add the specified range [f, t). region_chg does 337 * not change the number of huge pages represented by the 338 * map. However, if the existing regions in the map can not 339 * be expanded to represent the new range, a new file_region 340 * structure is added to the map as a placeholder. This is 341 * so that the subsequent region_add call will have all the 342 * regions it needs and will not fail. 343 * 344 * Upon entry, region_chg will also examine the cache of region descriptors 345 * associated with the map. If there are not enough descriptors cached, one 346 * will be allocated for the in progress add operation. 347 * 348 * Returns the number of huge pages that need to be added to the existing 349 * reservation map for the range [f, t). This number is greater or equal to 350 * zero. -ENOMEM is returned if a new file_region structure or cache entry 351 * is needed and can not be allocated. 352 */ 353 static long region_chg(struct resv_map *resv, long f, long t) 354 { 355 struct list_head *head = &resv->regions; 356 struct file_region *rg, *nrg = NULL; 357 long chg = 0; 358 359 retry: 360 spin_lock(&resv->lock); 361 retry_locked: 362 resv->adds_in_progress++; 363 364 /* 365 * Check for sufficient descriptors in the cache to accommodate 366 * the number of in progress add operations. 367 */ 368 if (resv->adds_in_progress > resv->region_cache_count) { 369 struct file_region *trg; 370 371 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1); 372 /* Must drop lock to allocate a new descriptor. */ 373 resv->adds_in_progress--; 374 spin_unlock(&resv->lock); 375 376 trg = kmalloc(sizeof(*trg), GFP_KERNEL); 377 if (!trg) { 378 kfree(nrg); 379 return -ENOMEM; 380 } 381 382 spin_lock(&resv->lock); 383 list_add(&trg->link, &resv->region_cache); 384 resv->region_cache_count++; 385 goto retry_locked; 386 } 387 388 /* Locate the region we are before or in. */ 389 list_for_each_entry(rg, head, link) 390 if (f <= rg->to) 391 break; 392 393 /* If we are below the current region then a new region is required. 394 * Subtle, allocate a new region at the position but make it zero 395 * size such that we can guarantee to record the reservation. */ 396 if (&rg->link == head || t < rg->from) { 397 if (!nrg) { 398 resv->adds_in_progress--; 399 spin_unlock(&resv->lock); 400 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 401 if (!nrg) 402 return -ENOMEM; 403 404 nrg->from = f; 405 nrg->to = f; 406 INIT_LIST_HEAD(&nrg->link); 407 goto retry; 408 } 409 410 list_add(&nrg->link, rg->link.prev); 411 chg = t - f; 412 goto out_nrg; 413 } 414 415 /* Round our left edge to the current segment if it encloses us. */ 416 if (f > rg->from) 417 f = rg->from; 418 chg = t - f; 419 420 /* Check for and consume any regions we now overlap with. */ 421 list_for_each_entry(rg, rg->link.prev, link) { 422 if (&rg->link == head) 423 break; 424 if (rg->from > t) 425 goto out; 426 427 /* We overlap with this area, if it extends further than 428 * us then we must extend ourselves. Account for its 429 * existing reservation. */ 430 if (rg->to > t) { 431 chg += rg->to - t; 432 t = rg->to; 433 } 434 chg -= rg->to - rg->from; 435 } 436 437 out: 438 spin_unlock(&resv->lock); 439 /* We already know we raced and no longer need the new region */ 440 kfree(nrg); 441 return chg; 442 out_nrg: 443 spin_unlock(&resv->lock); 444 return chg; 445 } 446 447 /* 448 * Abort the in progress add operation. The adds_in_progress field 449 * of the resv_map keeps track of the operations in progress between 450 * calls to region_chg and region_add. Operations are sometimes 451 * aborted after the call to region_chg. In such cases, region_abort 452 * is called to decrement the adds_in_progress counter. 453 * 454 * NOTE: The range arguments [f, t) are not needed or used in this 455 * routine. They are kept to make reading the calling code easier as 456 * arguments will match the associated region_chg call. 457 */ 458 static void region_abort(struct resv_map *resv, long f, long t) 459 { 460 spin_lock(&resv->lock); 461 VM_BUG_ON(!resv->region_cache_count); 462 resv->adds_in_progress--; 463 spin_unlock(&resv->lock); 464 } 465 466 /* 467 * Delete the specified range [f, t) from the reserve map. If the 468 * t parameter is LONG_MAX, this indicates that ALL regions after f 469 * should be deleted. Locate the regions which intersect [f, t) 470 * and either trim, delete or split the existing regions. 471 * 472 * Returns the number of huge pages deleted from the reserve map. 473 * In the normal case, the return value is zero or more. In the 474 * case where a region must be split, a new region descriptor must 475 * be allocated. If the allocation fails, -ENOMEM will be returned. 476 * NOTE: If the parameter t == LONG_MAX, then we will never split 477 * a region and possibly return -ENOMEM. Callers specifying 478 * t == LONG_MAX do not need to check for -ENOMEM error. 479 */ 480 static long region_del(struct resv_map *resv, long f, long t) 481 { 482 struct list_head *head = &resv->regions; 483 struct file_region *rg, *trg; 484 struct file_region *nrg = NULL; 485 long del = 0; 486 487 retry: 488 spin_lock(&resv->lock); 489 list_for_each_entry_safe(rg, trg, head, link) { 490 /* 491 * Skip regions before the range to be deleted. file_region 492 * ranges are normally of the form [from, to). However, there 493 * may be a "placeholder" entry in the map which is of the form 494 * (from, to) with from == to. Check for placeholder entries 495 * at the beginning of the range to be deleted. 496 */ 497 if (rg->to <= f && (rg->to != rg->from || rg->to != f)) 498 continue; 499 500 if (rg->from >= t) 501 break; 502 503 if (f > rg->from && t < rg->to) { /* Must split region */ 504 /* 505 * Check for an entry in the cache before dropping 506 * lock and attempting allocation. 507 */ 508 if (!nrg && 509 resv->region_cache_count > resv->adds_in_progress) { 510 nrg = list_first_entry(&resv->region_cache, 511 struct file_region, 512 link); 513 list_del(&nrg->link); 514 resv->region_cache_count--; 515 } 516 517 if (!nrg) { 518 spin_unlock(&resv->lock); 519 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 520 if (!nrg) 521 return -ENOMEM; 522 goto retry; 523 } 524 525 del += t - f; 526 527 /* New entry for end of split region */ 528 nrg->from = t; 529 nrg->to = rg->to; 530 INIT_LIST_HEAD(&nrg->link); 531 532 /* Original entry is trimmed */ 533 rg->to = f; 534 535 list_add(&nrg->link, &rg->link); 536 nrg = NULL; 537 break; 538 } 539 540 if (f <= rg->from && t >= rg->to) { /* Remove entire region */ 541 del += rg->to - rg->from; 542 list_del(&rg->link); 543 kfree(rg); 544 continue; 545 } 546 547 if (f <= rg->from) { /* Trim beginning of region */ 548 del += t - rg->from; 549 rg->from = t; 550 } else { /* Trim end of region */ 551 del += rg->to - f; 552 rg->to = f; 553 } 554 } 555 556 spin_unlock(&resv->lock); 557 kfree(nrg); 558 return del; 559 } 560 561 /* 562 * A rare out of memory error was encountered which prevented removal of 563 * the reserve map region for a page. The huge page itself was free'ed 564 * and removed from the page cache. This routine will adjust the subpool 565 * usage count, and the global reserve count if needed. By incrementing 566 * these counts, the reserve map entry which could not be deleted will 567 * appear as a "reserved" entry instead of simply dangling with incorrect 568 * counts. 569 */ 570 void hugetlb_fix_reserve_counts(struct inode *inode, bool restore_reserve) 571 { 572 struct hugepage_subpool *spool = subpool_inode(inode); 573 long rsv_adjust; 574 575 rsv_adjust = hugepage_subpool_get_pages(spool, 1); 576 if (restore_reserve && rsv_adjust) { 577 struct hstate *h = hstate_inode(inode); 578 579 hugetlb_acct_memory(h, 1); 580 } 581 } 582 583 /* 584 * Count and return the number of huge pages in the reserve map 585 * that intersect with the range [f, t). 586 */ 587 static long region_count(struct resv_map *resv, long f, long t) 588 { 589 struct list_head *head = &resv->regions; 590 struct file_region *rg; 591 long chg = 0; 592 593 spin_lock(&resv->lock); 594 /* Locate each segment we overlap with, and count that overlap. */ 595 list_for_each_entry(rg, head, link) { 596 long seg_from; 597 long seg_to; 598 599 if (rg->to <= f) 600 continue; 601 if (rg->from >= t) 602 break; 603 604 seg_from = max(rg->from, f); 605 seg_to = min(rg->to, t); 606 607 chg += seg_to - seg_from; 608 } 609 spin_unlock(&resv->lock); 610 611 return chg; 612 } 613 614 /* 615 * Convert the address within this vma to the page offset within 616 * the mapping, in pagecache page units; huge pages here. 617 */ 618 static pgoff_t vma_hugecache_offset(struct hstate *h, 619 struct vm_area_struct *vma, unsigned long address) 620 { 621 return ((address - vma->vm_start) >> huge_page_shift(h)) + 622 (vma->vm_pgoff >> huge_page_order(h)); 623 } 624 625 pgoff_t linear_hugepage_index(struct vm_area_struct *vma, 626 unsigned long address) 627 { 628 return vma_hugecache_offset(hstate_vma(vma), vma, address); 629 } 630 631 /* 632 * Return the size of the pages allocated when backing a VMA. In the majority 633 * cases this will be same size as used by the page table entries. 634 */ 635 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) 636 { 637 struct hstate *hstate; 638 639 if (!is_vm_hugetlb_page(vma)) 640 return PAGE_SIZE; 641 642 hstate = hstate_vma(vma); 643 644 return 1UL << huge_page_shift(hstate); 645 } 646 EXPORT_SYMBOL_GPL(vma_kernel_pagesize); 647 648 /* 649 * Return the page size being used by the MMU to back a VMA. In the majority 650 * of cases, the page size used by the kernel matches the MMU size. On 651 * architectures where it differs, an architecture-specific version of this 652 * function is required. 653 */ 654 #ifndef vma_mmu_pagesize 655 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 656 { 657 return vma_kernel_pagesize(vma); 658 } 659 #endif 660 661 /* 662 * Flags for MAP_PRIVATE reservations. These are stored in the bottom 663 * bits of the reservation map pointer, which are always clear due to 664 * alignment. 665 */ 666 #define HPAGE_RESV_OWNER (1UL << 0) 667 #define HPAGE_RESV_UNMAPPED (1UL << 1) 668 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) 669 670 /* 671 * These helpers are used to track how many pages are reserved for 672 * faults in a MAP_PRIVATE mapping. Only the process that called mmap() 673 * is guaranteed to have their future faults succeed. 674 * 675 * With the exception of reset_vma_resv_huge_pages() which is called at fork(), 676 * the reserve counters are updated with the hugetlb_lock held. It is safe 677 * to reset the VMA at fork() time as it is not in use yet and there is no 678 * chance of the global counters getting corrupted as a result of the values. 679 * 680 * The private mapping reservation is represented in a subtly different 681 * manner to a shared mapping. A shared mapping has a region map associated 682 * with the underlying file, this region map represents the backing file 683 * pages which have ever had a reservation assigned which this persists even 684 * after the page is instantiated. A private mapping has a region map 685 * associated with the original mmap which is attached to all VMAs which 686 * reference it, this region map represents those offsets which have consumed 687 * reservation ie. where pages have been instantiated. 688 */ 689 static unsigned long get_vma_private_data(struct vm_area_struct *vma) 690 { 691 return (unsigned long)vma->vm_private_data; 692 } 693 694 static void set_vma_private_data(struct vm_area_struct *vma, 695 unsigned long value) 696 { 697 vma->vm_private_data = (void *)value; 698 } 699 700 struct resv_map *resv_map_alloc(void) 701 { 702 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); 703 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL); 704 705 if (!resv_map || !rg) { 706 kfree(resv_map); 707 kfree(rg); 708 return NULL; 709 } 710 711 kref_init(&resv_map->refs); 712 spin_lock_init(&resv_map->lock); 713 INIT_LIST_HEAD(&resv_map->regions); 714 715 resv_map->adds_in_progress = 0; 716 717 INIT_LIST_HEAD(&resv_map->region_cache); 718 list_add(&rg->link, &resv_map->region_cache); 719 resv_map->region_cache_count = 1; 720 721 return resv_map; 722 } 723 724 void resv_map_release(struct kref *ref) 725 { 726 struct resv_map *resv_map = container_of(ref, struct resv_map, refs); 727 struct list_head *head = &resv_map->region_cache; 728 struct file_region *rg, *trg; 729 730 /* Clear out any active regions before we release the map. */ 731 region_del(resv_map, 0, LONG_MAX); 732 733 /* ... and any entries left in the cache */ 734 list_for_each_entry_safe(rg, trg, head, link) { 735 list_del(&rg->link); 736 kfree(rg); 737 } 738 739 VM_BUG_ON(resv_map->adds_in_progress); 740 741 kfree(resv_map); 742 } 743 744 static inline struct resv_map *inode_resv_map(struct inode *inode) 745 { 746 return inode->i_mapping->private_data; 747 } 748 749 static struct resv_map *vma_resv_map(struct vm_area_struct *vma) 750 { 751 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 752 if (vma->vm_flags & VM_MAYSHARE) { 753 struct address_space *mapping = vma->vm_file->f_mapping; 754 struct inode *inode = mapping->host; 755 756 return inode_resv_map(inode); 757 758 } else { 759 return (struct resv_map *)(get_vma_private_data(vma) & 760 ~HPAGE_RESV_MASK); 761 } 762 } 763 764 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) 765 { 766 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 767 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 768 769 set_vma_private_data(vma, (get_vma_private_data(vma) & 770 HPAGE_RESV_MASK) | (unsigned long)map); 771 } 772 773 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) 774 { 775 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 776 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 777 778 set_vma_private_data(vma, get_vma_private_data(vma) | flags); 779 } 780 781 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) 782 { 783 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 784 785 return (get_vma_private_data(vma) & flag) != 0; 786 } 787 788 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */ 789 void reset_vma_resv_huge_pages(struct vm_area_struct *vma) 790 { 791 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 792 if (!(vma->vm_flags & VM_MAYSHARE)) 793 vma->vm_private_data = (void *)0; 794 } 795 796 /* Returns true if the VMA has associated reserve pages */ 797 static bool vma_has_reserves(struct vm_area_struct *vma, long chg) 798 { 799 if (vma->vm_flags & VM_NORESERVE) { 800 /* 801 * This address is already reserved by other process(chg == 0), 802 * so, we should decrement reserved count. Without decrementing, 803 * reserve count remains after releasing inode, because this 804 * allocated page will go into page cache and is regarded as 805 * coming from reserved pool in releasing step. Currently, we 806 * don't have any other solution to deal with this situation 807 * properly, so add work-around here. 808 */ 809 if (vma->vm_flags & VM_MAYSHARE && chg == 0) 810 return true; 811 else 812 return false; 813 } 814 815 /* Shared mappings always use reserves */ 816 if (vma->vm_flags & VM_MAYSHARE) { 817 /* 818 * We know VM_NORESERVE is not set. Therefore, there SHOULD 819 * be a region map for all pages. The only situation where 820 * there is no region map is if a hole was punched via 821 * fallocate. In this case, there really are no reverves to 822 * use. This situation is indicated if chg != 0. 823 */ 824 if (chg) 825 return false; 826 else 827 return true; 828 } 829 830 /* 831 * Only the process that called mmap() has reserves for 832 * private mappings. 833 */ 834 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 835 return true; 836 837 return false; 838 } 839 840 static void enqueue_huge_page(struct hstate *h, struct page *page) 841 { 842 int nid = page_to_nid(page); 843 list_move(&page->lru, &h->hugepage_freelists[nid]); 844 h->free_huge_pages++; 845 h->free_huge_pages_node[nid]++; 846 } 847 848 static struct page *dequeue_huge_page_node(struct hstate *h, int nid) 849 { 850 struct page *page; 851 852 list_for_each_entry(page, &h->hugepage_freelists[nid], lru) 853 if (!is_migrate_isolate_page(page)) 854 break; 855 /* 856 * if 'non-isolated free hugepage' not found on the list, 857 * the allocation fails. 858 */ 859 if (&h->hugepage_freelists[nid] == &page->lru) 860 return NULL; 861 list_move(&page->lru, &h->hugepage_activelist); 862 set_page_refcounted(page); 863 h->free_huge_pages--; 864 h->free_huge_pages_node[nid]--; 865 return page; 866 } 867 868 /* Movability of hugepages depends on migration support. */ 869 static inline gfp_t htlb_alloc_mask(struct hstate *h) 870 { 871 if (hugepages_treat_as_movable || hugepage_migration_supported(h)) 872 return GFP_HIGHUSER_MOVABLE; 873 else 874 return GFP_HIGHUSER; 875 } 876 877 static struct page *dequeue_huge_page_vma(struct hstate *h, 878 struct vm_area_struct *vma, 879 unsigned long address, int avoid_reserve, 880 long chg) 881 { 882 struct page *page = NULL; 883 struct mempolicy *mpol; 884 nodemask_t *nodemask; 885 struct zonelist *zonelist; 886 struct zone *zone; 887 struct zoneref *z; 888 unsigned int cpuset_mems_cookie; 889 890 /* 891 * A child process with MAP_PRIVATE mappings created by their parent 892 * have no page reserves. This check ensures that reservations are 893 * not "stolen". The child may still get SIGKILLed 894 */ 895 if (!vma_has_reserves(vma, chg) && 896 h->free_huge_pages - h->resv_huge_pages == 0) 897 goto err; 898 899 /* If reserves cannot be used, ensure enough pages are in the pool */ 900 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0) 901 goto err; 902 903 retry_cpuset: 904 cpuset_mems_cookie = read_mems_allowed_begin(); 905 zonelist = huge_zonelist(vma, address, 906 htlb_alloc_mask(h), &mpol, &nodemask); 907 908 for_each_zone_zonelist_nodemask(zone, z, zonelist, 909 MAX_NR_ZONES - 1, nodemask) { 910 if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) { 911 page = dequeue_huge_page_node(h, zone_to_nid(zone)); 912 if (page) { 913 if (avoid_reserve) 914 break; 915 if (!vma_has_reserves(vma, chg)) 916 break; 917 918 SetPagePrivate(page); 919 h->resv_huge_pages--; 920 break; 921 } 922 } 923 } 924 925 mpol_cond_put(mpol); 926 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) 927 goto retry_cpuset; 928 return page; 929 930 err: 931 return NULL; 932 } 933 934 /* 935 * common helper functions for hstate_next_node_to_{alloc|free}. 936 * We may have allocated or freed a huge page based on a different 937 * nodes_allowed previously, so h->next_node_to_{alloc|free} might 938 * be outside of *nodes_allowed. Ensure that we use an allowed 939 * node for alloc or free. 940 */ 941 static int next_node_allowed(int nid, nodemask_t *nodes_allowed) 942 { 943 nid = next_node_in(nid, *nodes_allowed); 944 VM_BUG_ON(nid >= MAX_NUMNODES); 945 946 return nid; 947 } 948 949 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed) 950 { 951 if (!node_isset(nid, *nodes_allowed)) 952 nid = next_node_allowed(nid, nodes_allowed); 953 return nid; 954 } 955 956 /* 957 * returns the previously saved node ["this node"] from which to 958 * allocate a persistent huge page for the pool and advance the 959 * next node from which to allocate, handling wrap at end of node 960 * mask. 961 */ 962 static int hstate_next_node_to_alloc(struct hstate *h, 963 nodemask_t *nodes_allowed) 964 { 965 int nid; 966 967 VM_BUG_ON(!nodes_allowed); 968 969 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed); 970 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed); 971 972 return nid; 973 } 974 975 /* 976 * helper for free_pool_huge_page() - return the previously saved 977 * node ["this node"] from which to free a huge page. Advance the 978 * next node id whether or not we find a free huge page to free so 979 * that the next attempt to free addresses the next node. 980 */ 981 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed) 982 { 983 int nid; 984 985 VM_BUG_ON(!nodes_allowed); 986 987 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed); 988 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed); 989 990 return nid; 991 } 992 993 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \ 994 for (nr_nodes = nodes_weight(*mask); \ 995 nr_nodes > 0 && \ 996 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \ 997 nr_nodes--) 998 999 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \ 1000 for (nr_nodes = nodes_weight(*mask); \ 1001 nr_nodes > 0 && \ 1002 ((node = hstate_next_node_to_free(hs, mask)) || 1); \ 1003 nr_nodes--) 1004 1005 #if defined(CONFIG_X86_64) && ((defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)) 1006 static void destroy_compound_gigantic_page(struct page *page, 1007 unsigned int order) 1008 { 1009 int i; 1010 int nr_pages = 1 << order; 1011 struct page *p = page + 1; 1012 1013 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { 1014 clear_compound_head(p); 1015 set_page_refcounted(p); 1016 } 1017 1018 set_compound_order(page, 0); 1019 __ClearPageHead(page); 1020 } 1021 1022 static void free_gigantic_page(struct page *page, unsigned int order) 1023 { 1024 free_contig_range(page_to_pfn(page), 1 << order); 1025 } 1026 1027 static int __alloc_gigantic_page(unsigned long start_pfn, 1028 unsigned long nr_pages) 1029 { 1030 unsigned long end_pfn = start_pfn + nr_pages; 1031 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE); 1032 } 1033 1034 static bool pfn_range_valid_gigantic(struct zone *z, 1035 unsigned long start_pfn, unsigned long nr_pages) 1036 { 1037 unsigned long i, end_pfn = start_pfn + nr_pages; 1038 struct page *page; 1039 1040 for (i = start_pfn; i < end_pfn; i++) { 1041 if (!pfn_valid(i)) 1042 return false; 1043 1044 page = pfn_to_page(i); 1045 1046 if (page_zone(page) != z) 1047 return false; 1048 1049 if (PageReserved(page)) 1050 return false; 1051 1052 if (page_count(page) > 0) 1053 return false; 1054 1055 if (PageHuge(page)) 1056 return false; 1057 } 1058 1059 return true; 1060 } 1061 1062 static bool zone_spans_last_pfn(const struct zone *zone, 1063 unsigned long start_pfn, unsigned long nr_pages) 1064 { 1065 unsigned long last_pfn = start_pfn + nr_pages - 1; 1066 return zone_spans_pfn(zone, last_pfn); 1067 } 1068 1069 static struct page *alloc_gigantic_page(int nid, unsigned int order) 1070 { 1071 unsigned long nr_pages = 1 << order; 1072 unsigned long ret, pfn, flags; 1073 struct zone *z; 1074 1075 z = NODE_DATA(nid)->node_zones; 1076 for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) { 1077 spin_lock_irqsave(&z->lock, flags); 1078 1079 pfn = ALIGN(z->zone_start_pfn, nr_pages); 1080 while (zone_spans_last_pfn(z, pfn, nr_pages)) { 1081 if (pfn_range_valid_gigantic(z, pfn, nr_pages)) { 1082 /* 1083 * We release the zone lock here because 1084 * alloc_contig_range() will also lock the zone 1085 * at some point. If there's an allocation 1086 * spinning on this lock, it may win the race 1087 * and cause alloc_contig_range() to fail... 1088 */ 1089 spin_unlock_irqrestore(&z->lock, flags); 1090 ret = __alloc_gigantic_page(pfn, nr_pages); 1091 if (!ret) 1092 return pfn_to_page(pfn); 1093 spin_lock_irqsave(&z->lock, flags); 1094 } 1095 pfn += nr_pages; 1096 } 1097 1098 spin_unlock_irqrestore(&z->lock, flags); 1099 } 1100 1101 return NULL; 1102 } 1103 1104 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid); 1105 static void prep_compound_gigantic_page(struct page *page, unsigned int order); 1106 1107 static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid) 1108 { 1109 struct page *page; 1110 1111 page = alloc_gigantic_page(nid, huge_page_order(h)); 1112 if (page) { 1113 prep_compound_gigantic_page(page, huge_page_order(h)); 1114 prep_new_huge_page(h, page, nid); 1115 } 1116 1117 return page; 1118 } 1119 1120 static int alloc_fresh_gigantic_page(struct hstate *h, 1121 nodemask_t *nodes_allowed) 1122 { 1123 struct page *page = NULL; 1124 int nr_nodes, node; 1125 1126 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 1127 page = alloc_fresh_gigantic_page_node(h, node); 1128 if (page) 1129 return 1; 1130 } 1131 1132 return 0; 1133 } 1134 1135 static inline bool gigantic_page_supported(void) { return true; } 1136 #else 1137 static inline bool gigantic_page_supported(void) { return false; } 1138 static inline void free_gigantic_page(struct page *page, unsigned int order) { } 1139 static inline void destroy_compound_gigantic_page(struct page *page, 1140 unsigned int order) { } 1141 static inline int alloc_fresh_gigantic_page(struct hstate *h, 1142 nodemask_t *nodes_allowed) { return 0; } 1143 #endif 1144 1145 static void update_and_free_page(struct hstate *h, struct page *page) 1146 { 1147 int i; 1148 1149 if (hstate_is_gigantic(h) && !gigantic_page_supported()) 1150 return; 1151 1152 h->nr_huge_pages--; 1153 h->nr_huge_pages_node[page_to_nid(page)]--; 1154 for (i = 0; i < pages_per_huge_page(h); i++) { 1155 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1156 1 << PG_referenced | 1 << PG_dirty | 1157 1 << PG_active | 1 << PG_private | 1158 1 << PG_writeback); 1159 } 1160 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page); 1161 set_compound_page_dtor(page, NULL_COMPOUND_DTOR); 1162 set_page_refcounted(page); 1163 if (hstate_is_gigantic(h)) { 1164 destroy_compound_gigantic_page(page, huge_page_order(h)); 1165 free_gigantic_page(page, huge_page_order(h)); 1166 } else { 1167 __free_pages(page, huge_page_order(h)); 1168 } 1169 } 1170 1171 struct hstate *size_to_hstate(unsigned long size) 1172 { 1173 struct hstate *h; 1174 1175 for_each_hstate(h) { 1176 if (huge_page_size(h) == size) 1177 return h; 1178 } 1179 return NULL; 1180 } 1181 1182 /* 1183 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked 1184 * to hstate->hugepage_activelist.) 1185 * 1186 * This function can be called for tail pages, but never returns true for them. 1187 */ 1188 bool page_huge_active(struct page *page) 1189 { 1190 VM_BUG_ON_PAGE(!PageHuge(page), page); 1191 return PageHead(page) && PagePrivate(&page[1]); 1192 } 1193 1194 /* never called for tail page */ 1195 static void set_page_huge_active(struct page *page) 1196 { 1197 VM_BUG_ON_PAGE(!PageHeadHuge(page), page); 1198 SetPagePrivate(&page[1]); 1199 } 1200 1201 static void clear_page_huge_active(struct page *page) 1202 { 1203 VM_BUG_ON_PAGE(!PageHeadHuge(page), page); 1204 ClearPagePrivate(&page[1]); 1205 } 1206 1207 void free_huge_page(struct page *page) 1208 { 1209 /* 1210 * Can't pass hstate in here because it is called from the 1211 * compound page destructor. 1212 */ 1213 struct hstate *h = page_hstate(page); 1214 int nid = page_to_nid(page); 1215 struct hugepage_subpool *spool = 1216 (struct hugepage_subpool *)page_private(page); 1217 bool restore_reserve; 1218 1219 set_page_private(page, 0); 1220 page->mapping = NULL; 1221 VM_BUG_ON_PAGE(page_count(page), page); 1222 VM_BUG_ON_PAGE(page_mapcount(page), page); 1223 restore_reserve = PagePrivate(page); 1224 ClearPagePrivate(page); 1225 1226 /* 1227 * A return code of zero implies that the subpool will be under its 1228 * minimum size if the reservation is not restored after page is free. 1229 * Therefore, force restore_reserve operation. 1230 */ 1231 if (hugepage_subpool_put_pages(spool, 1) == 0) 1232 restore_reserve = true; 1233 1234 spin_lock(&hugetlb_lock); 1235 clear_page_huge_active(page); 1236 hugetlb_cgroup_uncharge_page(hstate_index(h), 1237 pages_per_huge_page(h), page); 1238 if (restore_reserve) 1239 h->resv_huge_pages++; 1240 1241 if (h->surplus_huge_pages_node[nid]) { 1242 /* remove the page from active list */ 1243 list_del(&page->lru); 1244 update_and_free_page(h, page); 1245 h->surplus_huge_pages--; 1246 h->surplus_huge_pages_node[nid]--; 1247 } else { 1248 arch_clear_hugepage_flags(page); 1249 enqueue_huge_page(h, page); 1250 } 1251 spin_unlock(&hugetlb_lock); 1252 } 1253 1254 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid) 1255 { 1256 INIT_LIST_HEAD(&page->lru); 1257 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR); 1258 spin_lock(&hugetlb_lock); 1259 set_hugetlb_cgroup(page, NULL); 1260 h->nr_huge_pages++; 1261 h->nr_huge_pages_node[nid]++; 1262 spin_unlock(&hugetlb_lock); 1263 put_page(page); /* free it into the hugepage allocator */ 1264 } 1265 1266 static void prep_compound_gigantic_page(struct page *page, unsigned int order) 1267 { 1268 int i; 1269 int nr_pages = 1 << order; 1270 struct page *p = page + 1; 1271 1272 /* we rely on prep_new_huge_page to set the destructor */ 1273 set_compound_order(page, order); 1274 __ClearPageReserved(page); 1275 __SetPageHead(page); 1276 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { 1277 /* 1278 * For gigantic hugepages allocated through bootmem at 1279 * boot, it's safer to be consistent with the not-gigantic 1280 * hugepages and clear the PG_reserved bit from all tail pages 1281 * too. Otherwse drivers using get_user_pages() to access tail 1282 * pages may get the reference counting wrong if they see 1283 * PG_reserved set on a tail page (despite the head page not 1284 * having PG_reserved set). Enforcing this consistency between 1285 * head and tail pages allows drivers to optimize away a check 1286 * on the head page when they need know if put_page() is needed 1287 * after get_user_pages(). 1288 */ 1289 __ClearPageReserved(p); 1290 set_page_count(p, 0); 1291 set_compound_head(p, page); 1292 } 1293 atomic_set(compound_mapcount_ptr(page), -1); 1294 } 1295 1296 /* 1297 * PageHuge() only returns true for hugetlbfs pages, but not for normal or 1298 * transparent huge pages. See the PageTransHuge() documentation for more 1299 * details. 1300 */ 1301 int PageHuge(struct page *page) 1302 { 1303 if (!PageCompound(page)) 1304 return 0; 1305 1306 page = compound_head(page); 1307 return page[1].compound_dtor == HUGETLB_PAGE_DTOR; 1308 } 1309 EXPORT_SYMBOL_GPL(PageHuge); 1310 1311 /* 1312 * PageHeadHuge() only returns true for hugetlbfs head page, but not for 1313 * normal or transparent huge pages. 1314 */ 1315 int PageHeadHuge(struct page *page_head) 1316 { 1317 if (!PageHead(page_head)) 1318 return 0; 1319 1320 return get_compound_page_dtor(page_head) == free_huge_page; 1321 } 1322 1323 pgoff_t __basepage_index(struct page *page) 1324 { 1325 struct page *page_head = compound_head(page); 1326 pgoff_t index = page_index(page_head); 1327 unsigned long compound_idx; 1328 1329 if (!PageHuge(page_head)) 1330 return page_index(page); 1331 1332 if (compound_order(page_head) >= MAX_ORDER) 1333 compound_idx = page_to_pfn(page) - page_to_pfn(page_head); 1334 else 1335 compound_idx = page - page_head; 1336 1337 return (index << compound_order(page_head)) + compound_idx; 1338 } 1339 1340 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid) 1341 { 1342 struct page *page; 1343 1344 page = __alloc_pages_node(nid, 1345 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE| 1346 __GFP_REPEAT|__GFP_NOWARN, 1347 huge_page_order(h)); 1348 if (page) { 1349 prep_new_huge_page(h, page, nid); 1350 } 1351 1352 return page; 1353 } 1354 1355 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed) 1356 { 1357 struct page *page; 1358 int nr_nodes, node; 1359 int ret = 0; 1360 1361 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 1362 page = alloc_fresh_huge_page_node(h, node); 1363 if (page) { 1364 ret = 1; 1365 break; 1366 } 1367 } 1368 1369 if (ret) 1370 count_vm_event(HTLB_BUDDY_PGALLOC); 1371 else 1372 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 1373 1374 return ret; 1375 } 1376 1377 /* 1378 * Free huge page from pool from next node to free. 1379 * Attempt to keep persistent huge pages more or less 1380 * balanced over allowed nodes. 1381 * Called with hugetlb_lock locked. 1382 */ 1383 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed, 1384 bool acct_surplus) 1385 { 1386 int nr_nodes, node; 1387 int ret = 0; 1388 1389 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 1390 /* 1391 * If we're returning unused surplus pages, only examine 1392 * nodes with surplus pages. 1393 */ 1394 if ((!acct_surplus || h->surplus_huge_pages_node[node]) && 1395 !list_empty(&h->hugepage_freelists[node])) { 1396 struct page *page = 1397 list_entry(h->hugepage_freelists[node].next, 1398 struct page, lru); 1399 list_del(&page->lru); 1400 h->free_huge_pages--; 1401 h->free_huge_pages_node[node]--; 1402 if (acct_surplus) { 1403 h->surplus_huge_pages--; 1404 h->surplus_huge_pages_node[node]--; 1405 } 1406 update_and_free_page(h, page); 1407 ret = 1; 1408 break; 1409 } 1410 } 1411 1412 return ret; 1413 } 1414 1415 /* 1416 * Dissolve a given free hugepage into free buddy pages. This function does 1417 * nothing for in-use (including surplus) hugepages. 1418 */ 1419 static void dissolve_free_huge_page(struct page *page) 1420 { 1421 spin_lock(&hugetlb_lock); 1422 if (PageHuge(page) && !page_count(page)) { 1423 struct hstate *h = page_hstate(page); 1424 int nid = page_to_nid(page); 1425 list_del(&page->lru); 1426 h->free_huge_pages--; 1427 h->free_huge_pages_node[nid]--; 1428 update_and_free_page(h, page); 1429 } 1430 spin_unlock(&hugetlb_lock); 1431 } 1432 1433 /* 1434 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to 1435 * make specified memory blocks removable from the system. 1436 * Note that start_pfn should aligned with (minimum) hugepage size. 1437 */ 1438 void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn) 1439 { 1440 unsigned long pfn; 1441 1442 if (!hugepages_supported()) 1443 return; 1444 1445 VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << minimum_order)); 1446 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) 1447 dissolve_free_huge_page(pfn_to_page(pfn)); 1448 } 1449 1450 /* 1451 * There are 3 ways this can get called: 1452 * 1. With vma+addr: we use the VMA's memory policy 1453 * 2. With !vma, but nid=NUMA_NO_NODE: We try to allocate a huge 1454 * page from any node, and let the buddy allocator itself figure 1455 * it out. 1456 * 3. With !vma, but nid!=NUMA_NO_NODE. We allocate a huge page 1457 * strictly from 'nid' 1458 */ 1459 static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h, 1460 struct vm_area_struct *vma, unsigned long addr, int nid) 1461 { 1462 int order = huge_page_order(h); 1463 gfp_t gfp = htlb_alloc_mask(h)|__GFP_COMP|__GFP_REPEAT|__GFP_NOWARN; 1464 unsigned int cpuset_mems_cookie; 1465 1466 /* 1467 * We need a VMA to get a memory policy. If we do not 1468 * have one, we use the 'nid' argument. 1469 * 1470 * The mempolicy stuff below has some non-inlined bits 1471 * and calls ->vm_ops. That makes it hard to optimize at 1472 * compile-time, even when NUMA is off and it does 1473 * nothing. This helps the compiler optimize it out. 1474 */ 1475 if (!IS_ENABLED(CONFIG_NUMA) || !vma) { 1476 /* 1477 * If a specific node is requested, make sure to 1478 * get memory from there, but only when a node 1479 * is explicitly specified. 1480 */ 1481 if (nid != NUMA_NO_NODE) 1482 gfp |= __GFP_THISNODE; 1483 /* 1484 * Make sure to call something that can handle 1485 * nid=NUMA_NO_NODE 1486 */ 1487 return alloc_pages_node(nid, gfp, order); 1488 } 1489 1490 /* 1491 * OK, so we have a VMA. Fetch the mempolicy and try to 1492 * allocate a huge page with it. We will only reach this 1493 * when CONFIG_NUMA=y. 1494 */ 1495 do { 1496 struct page *page; 1497 struct mempolicy *mpol; 1498 struct zonelist *zl; 1499 nodemask_t *nodemask; 1500 1501 cpuset_mems_cookie = read_mems_allowed_begin(); 1502 zl = huge_zonelist(vma, addr, gfp, &mpol, &nodemask); 1503 mpol_cond_put(mpol); 1504 page = __alloc_pages_nodemask(gfp, order, zl, nodemask); 1505 if (page) 1506 return page; 1507 } while (read_mems_allowed_retry(cpuset_mems_cookie)); 1508 1509 return NULL; 1510 } 1511 1512 /* 1513 * There are two ways to allocate a huge page: 1514 * 1. When you have a VMA and an address (like a fault) 1515 * 2. When you have no VMA (like when setting /proc/.../nr_hugepages) 1516 * 1517 * 'vma' and 'addr' are only for (1). 'nid' is always NUMA_NO_NODE in 1518 * this case which signifies that the allocation should be done with 1519 * respect for the VMA's memory policy. 1520 * 1521 * For (2), we ignore 'vma' and 'addr' and use 'nid' exclusively. This 1522 * implies that memory policies will not be taken in to account. 1523 */ 1524 static struct page *__alloc_buddy_huge_page(struct hstate *h, 1525 struct vm_area_struct *vma, unsigned long addr, int nid) 1526 { 1527 struct page *page; 1528 unsigned int r_nid; 1529 1530 if (hstate_is_gigantic(h)) 1531 return NULL; 1532 1533 /* 1534 * Make sure that anyone specifying 'nid' is not also specifying a VMA. 1535 * This makes sure the caller is picking _one_ of the modes with which 1536 * we can call this function, not both. 1537 */ 1538 if (vma || (addr != -1)) { 1539 VM_WARN_ON_ONCE(addr == -1); 1540 VM_WARN_ON_ONCE(nid != NUMA_NO_NODE); 1541 } 1542 /* 1543 * Assume we will successfully allocate the surplus page to 1544 * prevent racing processes from causing the surplus to exceed 1545 * overcommit 1546 * 1547 * This however introduces a different race, where a process B 1548 * tries to grow the static hugepage pool while alloc_pages() is 1549 * called by process A. B will only examine the per-node 1550 * counters in determining if surplus huge pages can be 1551 * converted to normal huge pages in adjust_pool_surplus(). A 1552 * won't be able to increment the per-node counter, until the 1553 * lock is dropped by B, but B doesn't drop hugetlb_lock until 1554 * no more huge pages can be converted from surplus to normal 1555 * state (and doesn't try to convert again). Thus, we have a 1556 * case where a surplus huge page exists, the pool is grown, and 1557 * the surplus huge page still exists after, even though it 1558 * should just have been converted to a normal huge page. This 1559 * does not leak memory, though, as the hugepage will be freed 1560 * once it is out of use. It also does not allow the counters to 1561 * go out of whack in adjust_pool_surplus() as we don't modify 1562 * the node values until we've gotten the hugepage and only the 1563 * per-node value is checked there. 1564 */ 1565 spin_lock(&hugetlb_lock); 1566 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { 1567 spin_unlock(&hugetlb_lock); 1568 return NULL; 1569 } else { 1570 h->nr_huge_pages++; 1571 h->surplus_huge_pages++; 1572 } 1573 spin_unlock(&hugetlb_lock); 1574 1575 page = __hugetlb_alloc_buddy_huge_page(h, vma, addr, nid); 1576 1577 spin_lock(&hugetlb_lock); 1578 if (page) { 1579 INIT_LIST_HEAD(&page->lru); 1580 r_nid = page_to_nid(page); 1581 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR); 1582 set_hugetlb_cgroup(page, NULL); 1583 /* 1584 * We incremented the global counters already 1585 */ 1586 h->nr_huge_pages_node[r_nid]++; 1587 h->surplus_huge_pages_node[r_nid]++; 1588 __count_vm_event(HTLB_BUDDY_PGALLOC); 1589 } else { 1590 h->nr_huge_pages--; 1591 h->surplus_huge_pages--; 1592 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 1593 } 1594 spin_unlock(&hugetlb_lock); 1595 1596 return page; 1597 } 1598 1599 /* 1600 * Allocate a huge page from 'nid'. Note, 'nid' may be 1601 * NUMA_NO_NODE, which means that it may be allocated 1602 * anywhere. 1603 */ 1604 static 1605 struct page *__alloc_buddy_huge_page_no_mpol(struct hstate *h, int nid) 1606 { 1607 unsigned long addr = -1; 1608 1609 return __alloc_buddy_huge_page(h, NULL, addr, nid); 1610 } 1611 1612 /* 1613 * Use the VMA's mpolicy to allocate a huge page from the buddy. 1614 */ 1615 static 1616 struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h, 1617 struct vm_area_struct *vma, unsigned long addr) 1618 { 1619 return __alloc_buddy_huge_page(h, vma, addr, NUMA_NO_NODE); 1620 } 1621 1622 /* 1623 * This allocation function is useful in the context where vma is irrelevant. 1624 * E.g. soft-offlining uses this function because it only cares physical 1625 * address of error page. 1626 */ 1627 struct page *alloc_huge_page_node(struct hstate *h, int nid) 1628 { 1629 struct page *page = NULL; 1630 1631 spin_lock(&hugetlb_lock); 1632 if (h->free_huge_pages - h->resv_huge_pages > 0) 1633 page = dequeue_huge_page_node(h, nid); 1634 spin_unlock(&hugetlb_lock); 1635 1636 if (!page) 1637 page = __alloc_buddy_huge_page_no_mpol(h, nid); 1638 1639 return page; 1640 } 1641 1642 /* 1643 * Increase the hugetlb pool such that it can accommodate a reservation 1644 * of size 'delta'. 1645 */ 1646 static int gather_surplus_pages(struct hstate *h, int delta) 1647 { 1648 struct list_head surplus_list; 1649 struct page *page, *tmp; 1650 int ret, i; 1651 int needed, allocated; 1652 bool alloc_ok = true; 1653 1654 needed = (h->resv_huge_pages + delta) - h->free_huge_pages; 1655 if (needed <= 0) { 1656 h->resv_huge_pages += delta; 1657 return 0; 1658 } 1659 1660 allocated = 0; 1661 INIT_LIST_HEAD(&surplus_list); 1662 1663 ret = -ENOMEM; 1664 retry: 1665 spin_unlock(&hugetlb_lock); 1666 for (i = 0; i < needed; i++) { 1667 page = __alloc_buddy_huge_page_no_mpol(h, NUMA_NO_NODE); 1668 if (!page) { 1669 alloc_ok = false; 1670 break; 1671 } 1672 list_add(&page->lru, &surplus_list); 1673 } 1674 allocated += i; 1675 1676 /* 1677 * After retaking hugetlb_lock, we need to recalculate 'needed' 1678 * because either resv_huge_pages or free_huge_pages may have changed. 1679 */ 1680 spin_lock(&hugetlb_lock); 1681 needed = (h->resv_huge_pages + delta) - 1682 (h->free_huge_pages + allocated); 1683 if (needed > 0) { 1684 if (alloc_ok) 1685 goto retry; 1686 /* 1687 * We were not able to allocate enough pages to 1688 * satisfy the entire reservation so we free what 1689 * we've allocated so far. 1690 */ 1691 goto free; 1692 } 1693 /* 1694 * The surplus_list now contains _at_least_ the number of extra pages 1695 * needed to accommodate the reservation. Add the appropriate number 1696 * of pages to the hugetlb pool and free the extras back to the buddy 1697 * allocator. Commit the entire reservation here to prevent another 1698 * process from stealing the pages as they are added to the pool but 1699 * before they are reserved. 1700 */ 1701 needed += allocated; 1702 h->resv_huge_pages += delta; 1703 ret = 0; 1704 1705 /* Free the needed pages to the hugetlb pool */ 1706 list_for_each_entry_safe(page, tmp, &surplus_list, lru) { 1707 if ((--needed) < 0) 1708 break; 1709 /* 1710 * This page is now managed by the hugetlb allocator and has 1711 * no users -- drop the buddy allocator's reference. 1712 */ 1713 put_page_testzero(page); 1714 VM_BUG_ON_PAGE(page_count(page), page); 1715 enqueue_huge_page(h, page); 1716 } 1717 free: 1718 spin_unlock(&hugetlb_lock); 1719 1720 /* Free unnecessary surplus pages to the buddy allocator */ 1721 list_for_each_entry_safe(page, tmp, &surplus_list, lru) 1722 put_page(page); 1723 spin_lock(&hugetlb_lock); 1724 1725 return ret; 1726 } 1727 1728 /* 1729 * When releasing a hugetlb pool reservation, any surplus pages that were 1730 * allocated to satisfy the reservation must be explicitly freed if they were 1731 * never used. 1732 * Called with hugetlb_lock held. 1733 */ 1734 static void return_unused_surplus_pages(struct hstate *h, 1735 unsigned long unused_resv_pages) 1736 { 1737 unsigned long nr_pages; 1738 1739 /* Uncommit the reservation */ 1740 h->resv_huge_pages -= unused_resv_pages; 1741 1742 /* Cannot return gigantic pages currently */ 1743 if (hstate_is_gigantic(h)) 1744 return; 1745 1746 nr_pages = min(unused_resv_pages, h->surplus_huge_pages); 1747 1748 /* 1749 * We want to release as many surplus pages as possible, spread 1750 * evenly across all nodes with memory. Iterate across these nodes 1751 * until we can no longer free unreserved surplus pages. This occurs 1752 * when the nodes with surplus pages have no free pages. 1753 * free_pool_huge_page() will balance the the freed pages across the 1754 * on-line nodes with memory and will handle the hstate accounting. 1755 */ 1756 while (nr_pages--) { 1757 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1)) 1758 break; 1759 cond_resched_lock(&hugetlb_lock); 1760 } 1761 } 1762 1763 1764 /* 1765 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation 1766 * are used by the huge page allocation routines to manage reservations. 1767 * 1768 * vma_needs_reservation is called to determine if the huge page at addr 1769 * within the vma has an associated reservation. If a reservation is 1770 * needed, the value 1 is returned. The caller is then responsible for 1771 * managing the global reservation and subpool usage counts. After 1772 * the huge page has been allocated, vma_commit_reservation is called 1773 * to add the page to the reservation map. If the page allocation fails, 1774 * the reservation must be ended instead of committed. vma_end_reservation 1775 * is called in such cases. 1776 * 1777 * In the normal case, vma_commit_reservation returns the same value 1778 * as the preceding vma_needs_reservation call. The only time this 1779 * is not the case is if a reserve map was changed between calls. It 1780 * is the responsibility of the caller to notice the difference and 1781 * take appropriate action. 1782 */ 1783 enum vma_resv_mode { 1784 VMA_NEEDS_RESV, 1785 VMA_COMMIT_RESV, 1786 VMA_END_RESV, 1787 }; 1788 static long __vma_reservation_common(struct hstate *h, 1789 struct vm_area_struct *vma, unsigned long addr, 1790 enum vma_resv_mode mode) 1791 { 1792 struct resv_map *resv; 1793 pgoff_t idx; 1794 long ret; 1795 1796 resv = vma_resv_map(vma); 1797 if (!resv) 1798 return 1; 1799 1800 idx = vma_hugecache_offset(h, vma, addr); 1801 switch (mode) { 1802 case VMA_NEEDS_RESV: 1803 ret = region_chg(resv, idx, idx + 1); 1804 break; 1805 case VMA_COMMIT_RESV: 1806 ret = region_add(resv, idx, idx + 1); 1807 break; 1808 case VMA_END_RESV: 1809 region_abort(resv, idx, idx + 1); 1810 ret = 0; 1811 break; 1812 default: 1813 BUG(); 1814 } 1815 1816 if (vma->vm_flags & VM_MAYSHARE) 1817 return ret; 1818 else 1819 return ret < 0 ? ret : 0; 1820 } 1821 1822 static long vma_needs_reservation(struct hstate *h, 1823 struct vm_area_struct *vma, unsigned long addr) 1824 { 1825 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV); 1826 } 1827 1828 static long vma_commit_reservation(struct hstate *h, 1829 struct vm_area_struct *vma, unsigned long addr) 1830 { 1831 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV); 1832 } 1833 1834 static void vma_end_reservation(struct hstate *h, 1835 struct vm_area_struct *vma, unsigned long addr) 1836 { 1837 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV); 1838 } 1839 1840 struct page *alloc_huge_page(struct vm_area_struct *vma, 1841 unsigned long addr, int avoid_reserve) 1842 { 1843 struct hugepage_subpool *spool = subpool_vma(vma); 1844 struct hstate *h = hstate_vma(vma); 1845 struct page *page; 1846 long map_chg, map_commit; 1847 long gbl_chg; 1848 int ret, idx; 1849 struct hugetlb_cgroup *h_cg; 1850 1851 idx = hstate_index(h); 1852 /* 1853 * Examine the region/reserve map to determine if the process 1854 * has a reservation for the page to be allocated. A return 1855 * code of zero indicates a reservation exists (no change). 1856 */ 1857 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr); 1858 if (map_chg < 0) 1859 return ERR_PTR(-ENOMEM); 1860 1861 /* 1862 * Processes that did not create the mapping will have no 1863 * reserves as indicated by the region/reserve map. Check 1864 * that the allocation will not exceed the subpool limit. 1865 * Allocations for MAP_NORESERVE mappings also need to be 1866 * checked against any subpool limit. 1867 */ 1868 if (map_chg || avoid_reserve) { 1869 gbl_chg = hugepage_subpool_get_pages(spool, 1); 1870 if (gbl_chg < 0) { 1871 vma_end_reservation(h, vma, addr); 1872 return ERR_PTR(-ENOSPC); 1873 } 1874 1875 /* 1876 * Even though there was no reservation in the region/reserve 1877 * map, there could be reservations associated with the 1878 * subpool that can be used. This would be indicated if the 1879 * return value of hugepage_subpool_get_pages() is zero. 1880 * However, if avoid_reserve is specified we still avoid even 1881 * the subpool reservations. 1882 */ 1883 if (avoid_reserve) 1884 gbl_chg = 1; 1885 } 1886 1887 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg); 1888 if (ret) 1889 goto out_subpool_put; 1890 1891 spin_lock(&hugetlb_lock); 1892 /* 1893 * glb_chg is passed to indicate whether or not a page must be taken 1894 * from the global free pool (global change). gbl_chg == 0 indicates 1895 * a reservation exists for the allocation. 1896 */ 1897 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg); 1898 if (!page) { 1899 spin_unlock(&hugetlb_lock); 1900 page = __alloc_buddy_huge_page_with_mpol(h, vma, addr); 1901 if (!page) 1902 goto out_uncharge_cgroup; 1903 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) { 1904 SetPagePrivate(page); 1905 h->resv_huge_pages--; 1906 } 1907 spin_lock(&hugetlb_lock); 1908 list_move(&page->lru, &h->hugepage_activelist); 1909 /* Fall through */ 1910 } 1911 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page); 1912 spin_unlock(&hugetlb_lock); 1913 1914 set_page_private(page, (unsigned long)spool); 1915 1916 map_commit = vma_commit_reservation(h, vma, addr); 1917 if (unlikely(map_chg > map_commit)) { 1918 /* 1919 * The page was added to the reservation map between 1920 * vma_needs_reservation and vma_commit_reservation. 1921 * This indicates a race with hugetlb_reserve_pages. 1922 * Adjust for the subpool count incremented above AND 1923 * in hugetlb_reserve_pages for the same page. Also, 1924 * the reservation count added in hugetlb_reserve_pages 1925 * no longer applies. 1926 */ 1927 long rsv_adjust; 1928 1929 rsv_adjust = hugepage_subpool_put_pages(spool, 1); 1930 hugetlb_acct_memory(h, -rsv_adjust); 1931 } 1932 return page; 1933 1934 out_uncharge_cgroup: 1935 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg); 1936 out_subpool_put: 1937 if (map_chg || avoid_reserve) 1938 hugepage_subpool_put_pages(spool, 1); 1939 vma_end_reservation(h, vma, addr); 1940 return ERR_PTR(-ENOSPC); 1941 } 1942 1943 /* 1944 * alloc_huge_page()'s wrapper which simply returns the page if allocation 1945 * succeeds, otherwise NULL. This function is called from new_vma_page(), 1946 * where no ERR_VALUE is expected to be returned. 1947 */ 1948 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma, 1949 unsigned long addr, int avoid_reserve) 1950 { 1951 struct page *page = alloc_huge_page(vma, addr, avoid_reserve); 1952 if (IS_ERR(page)) 1953 page = NULL; 1954 return page; 1955 } 1956 1957 int __weak alloc_bootmem_huge_page(struct hstate *h) 1958 { 1959 struct huge_bootmem_page *m; 1960 int nr_nodes, node; 1961 1962 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) { 1963 void *addr; 1964 1965 addr = memblock_virt_alloc_try_nid_nopanic( 1966 huge_page_size(h), huge_page_size(h), 1967 0, BOOTMEM_ALLOC_ACCESSIBLE, node); 1968 if (addr) { 1969 /* 1970 * Use the beginning of the huge page to store the 1971 * huge_bootmem_page struct (until gather_bootmem 1972 * puts them into the mem_map). 1973 */ 1974 m = addr; 1975 goto found; 1976 } 1977 } 1978 return 0; 1979 1980 found: 1981 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h))); 1982 /* Put them into a private list first because mem_map is not up yet */ 1983 list_add(&m->list, &huge_boot_pages); 1984 m->hstate = h; 1985 return 1; 1986 } 1987 1988 static void __init prep_compound_huge_page(struct page *page, 1989 unsigned int order) 1990 { 1991 if (unlikely(order > (MAX_ORDER - 1))) 1992 prep_compound_gigantic_page(page, order); 1993 else 1994 prep_compound_page(page, order); 1995 } 1996 1997 /* Put bootmem huge pages into the standard lists after mem_map is up */ 1998 static void __init gather_bootmem_prealloc(void) 1999 { 2000 struct huge_bootmem_page *m; 2001 2002 list_for_each_entry(m, &huge_boot_pages, list) { 2003 struct hstate *h = m->hstate; 2004 struct page *page; 2005 2006 #ifdef CONFIG_HIGHMEM 2007 page = pfn_to_page(m->phys >> PAGE_SHIFT); 2008 memblock_free_late(__pa(m), 2009 sizeof(struct huge_bootmem_page)); 2010 #else 2011 page = virt_to_page(m); 2012 #endif 2013 WARN_ON(page_count(page) != 1); 2014 prep_compound_huge_page(page, h->order); 2015 WARN_ON(PageReserved(page)); 2016 prep_new_huge_page(h, page, page_to_nid(page)); 2017 /* 2018 * If we had gigantic hugepages allocated at boot time, we need 2019 * to restore the 'stolen' pages to totalram_pages in order to 2020 * fix confusing memory reports from free(1) and another 2021 * side-effects, like CommitLimit going negative. 2022 */ 2023 if (hstate_is_gigantic(h)) 2024 adjust_managed_page_count(page, 1 << h->order); 2025 } 2026 } 2027 2028 static void __init hugetlb_hstate_alloc_pages(struct hstate *h) 2029 { 2030 unsigned long i; 2031 2032 for (i = 0; i < h->max_huge_pages; ++i) { 2033 if (hstate_is_gigantic(h)) { 2034 if (!alloc_bootmem_huge_page(h)) 2035 break; 2036 } else if (!alloc_fresh_huge_page(h, 2037 &node_states[N_MEMORY])) 2038 break; 2039 } 2040 h->max_huge_pages = i; 2041 } 2042 2043 static void __init hugetlb_init_hstates(void) 2044 { 2045 struct hstate *h; 2046 2047 for_each_hstate(h) { 2048 if (minimum_order > huge_page_order(h)) 2049 minimum_order = huge_page_order(h); 2050 2051 /* oversize hugepages were init'ed in early boot */ 2052 if (!hstate_is_gigantic(h)) 2053 hugetlb_hstate_alloc_pages(h); 2054 } 2055 VM_BUG_ON(minimum_order == UINT_MAX); 2056 } 2057 2058 static char * __init memfmt(char *buf, unsigned long n) 2059 { 2060 if (n >= (1UL << 30)) 2061 sprintf(buf, "%lu GB", n >> 30); 2062 else if (n >= (1UL << 20)) 2063 sprintf(buf, "%lu MB", n >> 20); 2064 else 2065 sprintf(buf, "%lu KB", n >> 10); 2066 return buf; 2067 } 2068 2069 static void __init report_hugepages(void) 2070 { 2071 struct hstate *h; 2072 2073 for_each_hstate(h) { 2074 char buf[32]; 2075 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n", 2076 memfmt(buf, huge_page_size(h)), 2077 h->free_huge_pages); 2078 } 2079 } 2080 2081 #ifdef CONFIG_HIGHMEM 2082 static void try_to_free_low(struct hstate *h, unsigned long count, 2083 nodemask_t *nodes_allowed) 2084 { 2085 int i; 2086 2087 if (hstate_is_gigantic(h)) 2088 return; 2089 2090 for_each_node_mask(i, *nodes_allowed) { 2091 struct page *page, *next; 2092 struct list_head *freel = &h->hugepage_freelists[i]; 2093 list_for_each_entry_safe(page, next, freel, lru) { 2094 if (count >= h->nr_huge_pages) 2095 return; 2096 if (PageHighMem(page)) 2097 continue; 2098 list_del(&page->lru); 2099 update_and_free_page(h, page); 2100 h->free_huge_pages--; 2101 h->free_huge_pages_node[page_to_nid(page)]--; 2102 } 2103 } 2104 } 2105 #else 2106 static inline void try_to_free_low(struct hstate *h, unsigned long count, 2107 nodemask_t *nodes_allowed) 2108 { 2109 } 2110 #endif 2111 2112 /* 2113 * Increment or decrement surplus_huge_pages. Keep node-specific counters 2114 * balanced by operating on them in a round-robin fashion. 2115 * Returns 1 if an adjustment was made. 2116 */ 2117 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed, 2118 int delta) 2119 { 2120 int nr_nodes, node; 2121 2122 VM_BUG_ON(delta != -1 && delta != 1); 2123 2124 if (delta < 0) { 2125 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 2126 if (h->surplus_huge_pages_node[node]) 2127 goto found; 2128 } 2129 } else { 2130 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 2131 if (h->surplus_huge_pages_node[node] < 2132 h->nr_huge_pages_node[node]) 2133 goto found; 2134 } 2135 } 2136 return 0; 2137 2138 found: 2139 h->surplus_huge_pages += delta; 2140 h->surplus_huge_pages_node[node] += delta; 2141 return 1; 2142 } 2143 2144 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) 2145 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count, 2146 nodemask_t *nodes_allowed) 2147 { 2148 unsigned long min_count, ret; 2149 2150 if (hstate_is_gigantic(h) && !gigantic_page_supported()) 2151 return h->max_huge_pages; 2152 2153 /* 2154 * Increase the pool size 2155 * First take pages out of surplus state. Then make up the 2156 * remaining difference by allocating fresh huge pages. 2157 * 2158 * We might race with __alloc_buddy_huge_page() here and be unable 2159 * to convert a surplus huge page to a normal huge page. That is 2160 * not critical, though, it just means the overall size of the 2161 * pool might be one hugepage larger than it needs to be, but 2162 * within all the constraints specified by the sysctls. 2163 */ 2164 spin_lock(&hugetlb_lock); 2165 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { 2166 if (!adjust_pool_surplus(h, nodes_allowed, -1)) 2167 break; 2168 } 2169 2170 while (count > persistent_huge_pages(h)) { 2171 /* 2172 * If this allocation races such that we no longer need the 2173 * page, free_huge_page will handle it by freeing the page 2174 * and reducing the surplus. 2175 */ 2176 spin_unlock(&hugetlb_lock); 2177 if (hstate_is_gigantic(h)) 2178 ret = alloc_fresh_gigantic_page(h, nodes_allowed); 2179 else 2180 ret = alloc_fresh_huge_page(h, nodes_allowed); 2181 spin_lock(&hugetlb_lock); 2182 if (!ret) 2183 goto out; 2184 2185 /* Bail for signals. Probably ctrl-c from user */ 2186 if (signal_pending(current)) 2187 goto out; 2188 } 2189 2190 /* 2191 * Decrease the pool size 2192 * First return free pages to the buddy allocator (being careful 2193 * to keep enough around to satisfy reservations). Then place 2194 * pages into surplus state as needed so the pool will shrink 2195 * to the desired size as pages become free. 2196 * 2197 * By placing pages into the surplus state independent of the 2198 * overcommit value, we are allowing the surplus pool size to 2199 * exceed overcommit. There are few sane options here. Since 2200 * __alloc_buddy_huge_page() is checking the global counter, 2201 * though, we'll note that we're not allowed to exceed surplus 2202 * and won't grow the pool anywhere else. Not until one of the 2203 * sysctls are changed, or the surplus pages go out of use. 2204 */ 2205 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages; 2206 min_count = max(count, min_count); 2207 try_to_free_low(h, min_count, nodes_allowed); 2208 while (min_count < persistent_huge_pages(h)) { 2209 if (!free_pool_huge_page(h, nodes_allowed, 0)) 2210 break; 2211 cond_resched_lock(&hugetlb_lock); 2212 } 2213 while (count < persistent_huge_pages(h)) { 2214 if (!adjust_pool_surplus(h, nodes_allowed, 1)) 2215 break; 2216 } 2217 out: 2218 ret = persistent_huge_pages(h); 2219 spin_unlock(&hugetlb_lock); 2220 return ret; 2221 } 2222 2223 #define HSTATE_ATTR_RO(_name) \ 2224 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 2225 2226 #define HSTATE_ATTR(_name) \ 2227 static struct kobj_attribute _name##_attr = \ 2228 __ATTR(_name, 0644, _name##_show, _name##_store) 2229 2230 static struct kobject *hugepages_kobj; 2231 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 2232 2233 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp); 2234 2235 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp) 2236 { 2237 int i; 2238 2239 for (i = 0; i < HUGE_MAX_HSTATE; i++) 2240 if (hstate_kobjs[i] == kobj) { 2241 if (nidp) 2242 *nidp = NUMA_NO_NODE; 2243 return &hstates[i]; 2244 } 2245 2246 return kobj_to_node_hstate(kobj, nidp); 2247 } 2248 2249 static ssize_t nr_hugepages_show_common(struct kobject *kobj, 2250 struct kobj_attribute *attr, char *buf) 2251 { 2252 struct hstate *h; 2253 unsigned long nr_huge_pages; 2254 int nid; 2255 2256 h = kobj_to_hstate(kobj, &nid); 2257 if (nid == NUMA_NO_NODE) 2258 nr_huge_pages = h->nr_huge_pages; 2259 else 2260 nr_huge_pages = h->nr_huge_pages_node[nid]; 2261 2262 return sprintf(buf, "%lu\n", nr_huge_pages); 2263 } 2264 2265 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy, 2266 struct hstate *h, int nid, 2267 unsigned long count, size_t len) 2268 { 2269 int err; 2270 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY); 2271 2272 if (hstate_is_gigantic(h) && !gigantic_page_supported()) { 2273 err = -EINVAL; 2274 goto out; 2275 } 2276 2277 if (nid == NUMA_NO_NODE) { 2278 /* 2279 * global hstate attribute 2280 */ 2281 if (!(obey_mempolicy && 2282 init_nodemask_of_mempolicy(nodes_allowed))) { 2283 NODEMASK_FREE(nodes_allowed); 2284 nodes_allowed = &node_states[N_MEMORY]; 2285 } 2286 } else if (nodes_allowed) { 2287 /* 2288 * per node hstate attribute: adjust count to global, 2289 * but restrict alloc/free to the specified node. 2290 */ 2291 count += h->nr_huge_pages - h->nr_huge_pages_node[nid]; 2292 init_nodemask_of_node(nodes_allowed, nid); 2293 } else 2294 nodes_allowed = &node_states[N_MEMORY]; 2295 2296 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed); 2297 2298 if (nodes_allowed != &node_states[N_MEMORY]) 2299 NODEMASK_FREE(nodes_allowed); 2300 2301 return len; 2302 out: 2303 NODEMASK_FREE(nodes_allowed); 2304 return err; 2305 } 2306 2307 static ssize_t nr_hugepages_store_common(bool obey_mempolicy, 2308 struct kobject *kobj, const char *buf, 2309 size_t len) 2310 { 2311 struct hstate *h; 2312 unsigned long count; 2313 int nid; 2314 int err; 2315 2316 err = kstrtoul(buf, 10, &count); 2317 if (err) 2318 return err; 2319 2320 h = kobj_to_hstate(kobj, &nid); 2321 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len); 2322 } 2323 2324 static ssize_t nr_hugepages_show(struct kobject *kobj, 2325 struct kobj_attribute *attr, char *buf) 2326 { 2327 return nr_hugepages_show_common(kobj, attr, buf); 2328 } 2329 2330 static ssize_t nr_hugepages_store(struct kobject *kobj, 2331 struct kobj_attribute *attr, const char *buf, size_t len) 2332 { 2333 return nr_hugepages_store_common(false, kobj, buf, len); 2334 } 2335 HSTATE_ATTR(nr_hugepages); 2336 2337 #ifdef CONFIG_NUMA 2338 2339 /* 2340 * hstate attribute for optionally mempolicy-based constraint on persistent 2341 * huge page alloc/free. 2342 */ 2343 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj, 2344 struct kobj_attribute *attr, char *buf) 2345 { 2346 return nr_hugepages_show_common(kobj, attr, buf); 2347 } 2348 2349 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj, 2350 struct kobj_attribute *attr, const char *buf, size_t len) 2351 { 2352 return nr_hugepages_store_common(true, kobj, buf, len); 2353 } 2354 HSTATE_ATTR(nr_hugepages_mempolicy); 2355 #endif 2356 2357 2358 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, 2359 struct kobj_attribute *attr, char *buf) 2360 { 2361 struct hstate *h = kobj_to_hstate(kobj, NULL); 2362 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages); 2363 } 2364 2365 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, 2366 struct kobj_attribute *attr, const char *buf, size_t count) 2367 { 2368 int err; 2369 unsigned long input; 2370 struct hstate *h = kobj_to_hstate(kobj, NULL); 2371 2372 if (hstate_is_gigantic(h)) 2373 return -EINVAL; 2374 2375 err = kstrtoul(buf, 10, &input); 2376 if (err) 2377 return err; 2378 2379 spin_lock(&hugetlb_lock); 2380 h->nr_overcommit_huge_pages = input; 2381 spin_unlock(&hugetlb_lock); 2382 2383 return count; 2384 } 2385 HSTATE_ATTR(nr_overcommit_hugepages); 2386 2387 static ssize_t free_hugepages_show(struct kobject *kobj, 2388 struct kobj_attribute *attr, char *buf) 2389 { 2390 struct hstate *h; 2391 unsigned long free_huge_pages; 2392 int nid; 2393 2394 h = kobj_to_hstate(kobj, &nid); 2395 if (nid == NUMA_NO_NODE) 2396 free_huge_pages = h->free_huge_pages; 2397 else 2398 free_huge_pages = h->free_huge_pages_node[nid]; 2399 2400 return sprintf(buf, "%lu\n", free_huge_pages); 2401 } 2402 HSTATE_ATTR_RO(free_hugepages); 2403 2404 static ssize_t resv_hugepages_show(struct kobject *kobj, 2405 struct kobj_attribute *attr, char *buf) 2406 { 2407 struct hstate *h = kobj_to_hstate(kobj, NULL); 2408 return sprintf(buf, "%lu\n", h->resv_huge_pages); 2409 } 2410 HSTATE_ATTR_RO(resv_hugepages); 2411 2412 static ssize_t surplus_hugepages_show(struct kobject *kobj, 2413 struct kobj_attribute *attr, char *buf) 2414 { 2415 struct hstate *h; 2416 unsigned long surplus_huge_pages; 2417 int nid; 2418 2419 h = kobj_to_hstate(kobj, &nid); 2420 if (nid == NUMA_NO_NODE) 2421 surplus_huge_pages = h->surplus_huge_pages; 2422 else 2423 surplus_huge_pages = h->surplus_huge_pages_node[nid]; 2424 2425 return sprintf(buf, "%lu\n", surplus_huge_pages); 2426 } 2427 HSTATE_ATTR_RO(surplus_hugepages); 2428 2429 static struct attribute *hstate_attrs[] = { 2430 &nr_hugepages_attr.attr, 2431 &nr_overcommit_hugepages_attr.attr, 2432 &free_hugepages_attr.attr, 2433 &resv_hugepages_attr.attr, 2434 &surplus_hugepages_attr.attr, 2435 #ifdef CONFIG_NUMA 2436 &nr_hugepages_mempolicy_attr.attr, 2437 #endif 2438 NULL, 2439 }; 2440 2441 static struct attribute_group hstate_attr_group = { 2442 .attrs = hstate_attrs, 2443 }; 2444 2445 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent, 2446 struct kobject **hstate_kobjs, 2447 struct attribute_group *hstate_attr_group) 2448 { 2449 int retval; 2450 int hi = hstate_index(h); 2451 2452 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent); 2453 if (!hstate_kobjs[hi]) 2454 return -ENOMEM; 2455 2456 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group); 2457 if (retval) 2458 kobject_put(hstate_kobjs[hi]); 2459 2460 return retval; 2461 } 2462 2463 static void __init hugetlb_sysfs_init(void) 2464 { 2465 struct hstate *h; 2466 int err; 2467 2468 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); 2469 if (!hugepages_kobj) 2470 return; 2471 2472 for_each_hstate(h) { 2473 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj, 2474 hstate_kobjs, &hstate_attr_group); 2475 if (err) 2476 pr_err("Hugetlb: Unable to add hstate %s", h->name); 2477 } 2478 } 2479 2480 #ifdef CONFIG_NUMA 2481 2482 /* 2483 * node_hstate/s - associate per node hstate attributes, via their kobjects, 2484 * with node devices in node_devices[] using a parallel array. The array 2485 * index of a node device or _hstate == node id. 2486 * This is here to avoid any static dependency of the node device driver, in 2487 * the base kernel, on the hugetlb module. 2488 */ 2489 struct node_hstate { 2490 struct kobject *hugepages_kobj; 2491 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 2492 }; 2493 static struct node_hstate node_hstates[MAX_NUMNODES]; 2494 2495 /* 2496 * A subset of global hstate attributes for node devices 2497 */ 2498 static struct attribute *per_node_hstate_attrs[] = { 2499 &nr_hugepages_attr.attr, 2500 &free_hugepages_attr.attr, 2501 &surplus_hugepages_attr.attr, 2502 NULL, 2503 }; 2504 2505 static struct attribute_group per_node_hstate_attr_group = { 2506 .attrs = per_node_hstate_attrs, 2507 }; 2508 2509 /* 2510 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj. 2511 * Returns node id via non-NULL nidp. 2512 */ 2513 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 2514 { 2515 int nid; 2516 2517 for (nid = 0; nid < nr_node_ids; nid++) { 2518 struct node_hstate *nhs = &node_hstates[nid]; 2519 int i; 2520 for (i = 0; i < HUGE_MAX_HSTATE; i++) 2521 if (nhs->hstate_kobjs[i] == kobj) { 2522 if (nidp) 2523 *nidp = nid; 2524 return &hstates[i]; 2525 } 2526 } 2527 2528 BUG(); 2529 return NULL; 2530 } 2531 2532 /* 2533 * Unregister hstate attributes from a single node device. 2534 * No-op if no hstate attributes attached. 2535 */ 2536 static void hugetlb_unregister_node(struct node *node) 2537 { 2538 struct hstate *h; 2539 struct node_hstate *nhs = &node_hstates[node->dev.id]; 2540 2541 if (!nhs->hugepages_kobj) 2542 return; /* no hstate attributes */ 2543 2544 for_each_hstate(h) { 2545 int idx = hstate_index(h); 2546 if (nhs->hstate_kobjs[idx]) { 2547 kobject_put(nhs->hstate_kobjs[idx]); 2548 nhs->hstate_kobjs[idx] = NULL; 2549 } 2550 } 2551 2552 kobject_put(nhs->hugepages_kobj); 2553 nhs->hugepages_kobj = NULL; 2554 } 2555 2556 2557 /* 2558 * Register hstate attributes for a single node device. 2559 * No-op if attributes already registered. 2560 */ 2561 static void hugetlb_register_node(struct node *node) 2562 { 2563 struct hstate *h; 2564 struct node_hstate *nhs = &node_hstates[node->dev.id]; 2565 int err; 2566 2567 if (nhs->hugepages_kobj) 2568 return; /* already allocated */ 2569 2570 nhs->hugepages_kobj = kobject_create_and_add("hugepages", 2571 &node->dev.kobj); 2572 if (!nhs->hugepages_kobj) 2573 return; 2574 2575 for_each_hstate(h) { 2576 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj, 2577 nhs->hstate_kobjs, 2578 &per_node_hstate_attr_group); 2579 if (err) { 2580 pr_err("Hugetlb: Unable to add hstate %s for node %d\n", 2581 h->name, node->dev.id); 2582 hugetlb_unregister_node(node); 2583 break; 2584 } 2585 } 2586 } 2587 2588 /* 2589 * hugetlb init time: register hstate attributes for all registered node 2590 * devices of nodes that have memory. All on-line nodes should have 2591 * registered their associated device by this time. 2592 */ 2593 static void __init hugetlb_register_all_nodes(void) 2594 { 2595 int nid; 2596 2597 for_each_node_state(nid, N_MEMORY) { 2598 struct node *node = node_devices[nid]; 2599 if (node->dev.id == nid) 2600 hugetlb_register_node(node); 2601 } 2602 2603 /* 2604 * Let the node device driver know we're here so it can 2605 * [un]register hstate attributes on node hotplug. 2606 */ 2607 register_hugetlbfs_with_node(hugetlb_register_node, 2608 hugetlb_unregister_node); 2609 } 2610 #else /* !CONFIG_NUMA */ 2611 2612 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 2613 { 2614 BUG(); 2615 if (nidp) 2616 *nidp = -1; 2617 return NULL; 2618 } 2619 2620 static void hugetlb_register_all_nodes(void) { } 2621 2622 #endif 2623 2624 static int __init hugetlb_init(void) 2625 { 2626 int i; 2627 2628 if (!hugepages_supported()) 2629 return 0; 2630 2631 if (!size_to_hstate(default_hstate_size)) { 2632 default_hstate_size = HPAGE_SIZE; 2633 if (!size_to_hstate(default_hstate_size)) 2634 hugetlb_add_hstate(HUGETLB_PAGE_ORDER); 2635 } 2636 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size)); 2637 if (default_hstate_max_huge_pages) { 2638 if (!default_hstate.max_huge_pages) 2639 default_hstate.max_huge_pages = default_hstate_max_huge_pages; 2640 } 2641 2642 hugetlb_init_hstates(); 2643 gather_bootmem_prealloc(); 2644 report_hugepages(); 2645 2646 hugetlb_sysfs_init(); 2647 hugetlb_register_all_nodes(); 2648 hugetlb_cgroup_file_init(); 2649 2650 #ifdef CONFIG_SMP 2651 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus()); 2652 #else 2653 num_fault_mutexes = 1; 2654 #endif 2655 hugetlb_fault_mutex_table = 2656 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL); 2657 BUG_ON(!hugetlb_fault_mutex_table); 2658 2659 for (i = 0; i < num_fault_mutexes; i++) 2660 mutex_init(&hugetlb_fault_mutex_table[i]); 2661 return 0; 2662 } 2663 subsys_initcall(hugetlb_init); 2664 2665 /* Should be called on processing a hugepagesz=... option */ 2666 void __init hugetlb_bad_size(void) 2667 { 2668 parsed_valid_hugepagesz = false; 2669 } 2670 2671 void __init hugetlb_add_hstate(unsigned int order) 2672 { 2673 struct hstate *h; 2674 unsigned long i; 2675 2676 if (size_to_hstate(PAGE_SIZE << order)) { 2677 pr_warn("hugepagesz= specified twice, ignoring\n"); 2678 return; 2679 } 2680 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE); 2681 BUG_ON(order == 0); 2682 h = &hstates[hugetlb_max_hstate++]; 2683 h->order = order; 2684 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1); 2685 h->nr_huge_pages = 0; 2686 h->free_huge_pages = 0; 2687 for (i = 0; i < MAX_NUMNODES; ++i) 2688 INIT_LIST_HEAD(&h->hugepage_freelists[i]); 2689 INIT_LIST_HEAD(&h->hugepage_activelist); 2690 h->next_nid_to_alloc = first_memory_node; 2691 h->next_nid_to_free = first_memory_node; 2692 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", 2693 huge_page_size(h)/1024); 2694 2695 parsed_hstate = h; 2696 } 2697 2698 static int __init hugetlb_nrpages_setup(char *s) 2699 { 2700 unsigned long *mhp; 2701 static unsigned long *last_mhp; 2702 2703 if (!parsed_valid_hugepagesz) { 2704 pr_warn("hugepages = %s preceded by " 2705 "an unsupported hugepagesz, ignoring\n", s); 2706 parsed_valid_hugepagesz = true; 2707 return 1; 2708 } 2709 /* 2710 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet, 2711 * so this hugepages= parameter goes to the "default hstate". 2712 */ 2713 else if (!hugetlb_max_hstate) 2714 mhp = &default_hstate_max_huge_pages; 2715 else 2716 mhp = &parsed_hstate->max_huge_pages; 2717 2718 if (mhp == last_mhp) { 2719 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n"); 2720 return 1; 2721 } 2722 2723 if (sscanf(s, "%lu", mhp) <= 0) 2724 *mhp = 0; 2725 2726 /* 2727 * Global state is always initialized later in hugetlb_init. 2728 * But we need to allocate >= MAX_ORDER hstates here early to still 2729 * use the bootmem allocator. 2730 */ 2731 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER) 2732 hugetlb_hstate_alloc_pages(parsed_hstate); 2733 2734 last_mhp = mhp; 2735 2736 return 1; 2737 } 2738 __setup("hugepages=", hugetlb_nrpages_setup); 2739 2740 static int __init hugetlb_default_setup(char *s) 2741 { 2742 default_hstate_size = memparse(s, &s); 2743 return 1; 2744 } 2745 __setup("default_hugepagesz=", hugetlb_default_setup); 2746 2747 static unsigned int cpuset_mems_nr(unsigned int *array) 2748 { 2749 int node; 2750 unsigned int nr = 0; 2751 2752 for_each_node_mask(node, cpuset_current_mems_allowed) 2753 nr += array[node]; 2754 2755 return nr; 2756 } 2757 2758 #ifdef CONFIG_SYSCTL 2759 static int hugetlb_sysctl_handler_common(bool obey_mempolicy, 2760 struct ctl_table *table, int write, 2761 void __user *buffer, size_t *length, loff_t *ppos) 2762 { 2763 struct hstate *h = &default_hstate; 2764 unsigned long tmp = h->max_huge_pages; 2765 int ret; 2766 2767 if (!hugepages_supported()) 2768 return -EOPNOTSUPP; 2769 2770 table->data = &tmp; 2771 table->maxlen = sizeof(unsigned long); 2772 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos); 2773 if (ret) 2774 goto out; 2775 2776 if (write) 2777 ret = __nr_hugepages_store_common(obey_mempolicy, h, 2778 NUMA_NO_NODE, tmp, *length); 2779 out: 2780 return ret; 2781 } 2782 2783 int hugetlb_sysctl_handler(struct ctl_table *table, int write, 2784 void __user *buffer, size_t *length, loff_t *ppos) 2785 { 2786 2787 return hugetlb_sysctl_handler_common(false, table, write, 2788 buffer, length, ppos); 2789 } 2790 2791 #ifdef CONFIG_NUMA 2792 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write, 2793 void __user *buffer, size_t *length, loff_t *ppos) 2794 { 2795 return hugetlb_sysctl_handler_common(true, table, write, 2796 buffer, length, ppos); 2797 } 2798 #endif /* CONFIG_NUMA */ 2799 2800 int hugetlb_overcommit_handler(struct ctl_table *table, int write, 2801 void __user *buffer, 2802 size_t *length, loff_t *ppos) 2803 { 2804 struct hstate *h = &default_hstate; 2805 unsigned long tmp; 2806 int ret; 2807 2808 if (!hugepages_supported()) 2809 return -EOPNOTSUPP; 2810 2811 tmp = h->nr_overcommit_huge_pages; 2812 2813 if (write && hstate_is_gigantic(h)) 2814 return -EINVAL; 2815 2816 table->data = &tmp; 2817 table->maxlen = sizeof(unsigned long); 2818 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos); 2819 if (ret) 2820 goto out; 2821 2822 if (write) { 2823 spin_lock(&hugetlb_lock); 2824 h->nr_overcommit_huge_pages = tmp; 2825 spin_unlock(&hugetlb_lock); 2826 } 2827 out: 2828 return ret; 2829 } 2830 2831 #endif /* CONFIG_SYSCTL */ 2832 2833 void hugetlb_report_meminfo(struct seq_file *m) 2834 { 2835 struct hstate *h = &default_hstate; 2836 if (!hugepages_supported()) 2837 return; 2838 seq_printf(m, 2839 "HugePages_Total: %5lu\n" 2840 "HugePages_Free: %5lu\n" 2841 "HugePages_Rsvd: %5lu\n" 2842 "HugePages_Surp: %5lu\n" 2843 "Hugepagesize: %8lu kB\n", 2844 h->nr_huge_pages, 2845 h->free_huge_pages, 2846 h->resv_huge_pages, 2847 h->surplus_huge_pages, 2848 1UL << (huge_page_order(h) + PAGE_SHIFT - 10)); 2849 } 2850 2851 int hugetlb_report_node_meminfo(int nid, char *buf) 2852 { 2853 struct hstate *h = &default_hstate; 2854 if (!hugepages_supported()) 2855 return 0; 2856 return sprintf(buf, 2857 "Node %d HugePages_Total: %5u\n" 2858 "Node %d HugePages_Free: %5u\n" 2859 "Node %d HugePages_Surp: %5u\n", 2860 nid, h->nr_huge_pages_node[nid], 2861 nid, h->free_huge_pages_node[nid], 2862 nid, h->surplus_huge_pages_node[nid]); 2863 } 2864 2865 void hugetlb_show_meminfo(void) 2866 { 2867 struct hstate *h; 2868 int nid; 2869 2870 if (!hugepages_supported()) 2871 return; 2872 2873 for_each_node_state(nid, N_MEMORY) 2874 for_each_hstate(h) 2875 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n", 2876 nid, 2877 h->nr_huge_pages_node[nid], 2878 h->free_huge_pages_node[nid], 2879 h->surplus_huge_pages_node[nid], 2880 1UL << (huge_page_order(h) + PAGE_SHIFT - 10)); 2881 } 2882 2883 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm) 2884 { 2885 seq_printf(m, "HugetlbPages:\t%8lu kB\n", 2886 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10)); 2887 } 2888 2889 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ 2890 unsigned long hugetlb_total_pages(void) 2891 { 2892 struct hstate *h; 2893 unsigned long nr_total_pages = 0; 2894 2895 for_each_hstate(h) 2896 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h); 2897 return nr_total_pages; 2898 } 2899 2900 static int hugetlb_acct_memory(struct hstate *h, long delta) 2901 { 2902 int ret = -ENOMEM; 2903 2904 spin_lock(&hugetlb_lock); 2905 /* 2906 * When cpuset is configured, it breaks the strict hugetlb page 2907 * reservation as the accounting is done on a global variable. Such 2908 * reservation is completely rubbish in the presence of cpuset because 2909 * the reservation is not checked against page availability for the 2910 * current cpuset. Application can still potentially OOM'ed by kernel 2911 * with lack of free htlb page in cpuset that the task is in. 2912 * Attempt to enforce strict accounting with cpuset is almost 2913 * impossible (or too ugly) because cpuset is too fluid that 2914 * task or memory node can be dynamically moved between cpusets. 2915 * 2916 * The change of semantics for shared hugetlb mapping with cpuset is 2917 * undesirable. However, in order to preserve some of the semantics, 2918 * we fall back to check against current free page availability as 2919 * a best attempt and hopefully to minimize the impact of changing 2920 * semantics that cpuset has. 2921 */ 2922 if (delta > 0) { 2923 if (gather_surplus_pages(h, delta) < 0) 2924 goto out; 2925 2926 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) { 2927 return_unused_surplus_pages(h, delta); 2928 goto out; 2929 } 2930 } 2931 2932 ret = 0; 2933 if (delta < 0) 2934 return_unused_surplus_pages(h, (unsigned long) -delta); 2935 2936 out: 2937 spin_unlock(&hugetlb_lock); 2938 return ret; 2939 } 2940 2941 static void hugetlb_vm_op_open(struct vm_area_struct *vma) 2942 { 2943 struct resv_map *resv = vma_resv_map(vma); 2944 2945 /* 2946 * This new VMA should share its siblings reservation map if present. 2947 * The VMA will only ever have a valid reservation map pointer where 2948 * it is being copied for another still existing VMA. As that VMA 2949 * has a reference to the reservation map it cannot disappear until 2950 * after this open call completes. It is therefore safe to take a 2951 * new reference here without additional locking. 2952 */ 2953 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 2954 kref_get(&resv->refs); 2955 } 2956 2957 static void hugetlb_vm_op_close(struct vm_area_struct *vma) 2958 { 2959 struct hstate *h = hstate_vma(vma); 2960 struct resv_map *resv = vma_resv_map(vma); 2961 struct hugepage_subpool *spool = subpool_vma(vma); 2962 unsigned long reserve, start, end; 2963 long gbl_reserve; 2964 2965 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 2966 return; 2967 2968 start = vma_hugecache_offset(h, vma, vma->vm_start); 2969 end = vma_hugecache_offset(h, vma, vma->vm_end); 2970 2971 reserve = (end - start) - region_count(resv, start, end); 2972 2973 kref_put(&resv->refs, resv_map_release); 2974 2975 if (reserve) { 2976 /* 2977 * Decrement reserve counts. The global reserve count may be 2978 * adjusted if the subpool has a minimum size. 2979 */ 2980 gbl_reserve = hugepage_subpool_put_pages(spool, reserve); 2981 hugetlb_acct_memory(h, -gbl_reserve); 2982 } 2983 } 2984 2985 /* 2986 * We cannot handle pagefaults against hugetlb pages at all. They cause 2987 * handle_mm_fault() to try to instantiate regular-sized pages in the 2988 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get 2989 * this far. 2990 */ 2991 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 2992 { 2993 BUG(); 2994 return 0; 2995 } 2996 2997 const struct vm_operations_struct hugetlb_vm_ops = { 2998 .fault = hugetlb_vm_op_fault, 2999 .open = hugetlb_vm_op_open, 3000 .close = hugetlb_vm_op_close, 3001 }; 3002 3003 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, 3004 int writable) 3005 { 3006 pte_t entry; 3007 3008 if (writable) { 3009 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page, 3010 vma->vm_page_prot))); 3011 } else { 3012 entry = huge_pte_wrprotect(mk_huge_pte(page, 3013 vma->vm_page_prot)); 3014 } 3015 entry = pte_mkyoung(entry); 3016 entry = pte_mkhuge(entry); 3017 entry = arch_make_huge_pte(entry, vma, page, writable); 3018 3019 return entry; 3020 } 3021 3022 static void set_huge_ptep_writable(struct vm_area_struct *vma, 3023 unsigned long address, pte_t *ptep) 3024 { 3025 pte_t entry; 3026 3027 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep))); 3028 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) 3029 update_mmu_cache(vma, address, ptep); 3030 } 3031 3032 static int is_hugetlb_entry_migration(pte_t pte) 3033 { 3034 swp_entry_t swp; 3035 3036 if (huge_pte_none(pte) || pte_present(pte)) 3037 return 0; 3038 swp = pte_to_swp_entry(pte); 3039 if (non_swap_entry(swp) && is_migration_entry(swp)) 3040 return 1; 3041 else 3042 return 0; 3043 } 3044 3045 static int is_hugetlb_entry_hwpoisoned(pte_t pte) 3046 { 3047 swp_entry_t swp; 3048 3049 if (huge_pte_none(pte) || pte_present(pte)) 3050 return 0; 3051 swp = pte_to_swp_entry(pte); 3052 if (non_swap_entry(swp) && is_hwpoison_entry(swp)) 3053 return 1; 3054 else 3055 return 0; 3056 } 3057 3058 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, 3059 struct vm_area_struct *vma) 3060 { 3061 pte_t *src_pte, *dst_pte, entry; 3062 struct page *ptepage; 3063 unsigned long addr; 3064 int cow; 3065 struct hstate *h = hstate_vma(vma); 3066 unsigned long sz = huge_page_size(h); 3067 unsigned long mmun_start; /* For mmu_notifiers */ 3068 unsigned long mmun_end; /* For mmu_notifiers */ 3069 int ret = 0; 3070 3071 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 3072 3073 mmun_start = vma->vm_start; 3074 mmun_end = vma->vm_end; 3075 if (cow) 3076 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end); 3077 3078 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) { 3079 spinlock_t *src_ptl, *dst_ptl; 3080 src_pte = huge_pte_offset(src, addr); 3081 if (!src_pte) 3082 continue; 3083 dst_pte = huge_pte_alloc(dst, addr, sz); 3084 if (!dst_pte) { 3085 ret = -ENOMEM; 3086 break; 3087 } 3088 3089 /* If the pagetables are shared don't copy or take references */ 3090 if (dst_pte == src_pte) 3091 continue; 3092 3093 dst_ptl = huge_pte_lock(h, dst, dst_pte); 3094 src_ptl = huge_pte_lockptr(h, src, src_pte); 3095 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 3096 entry = huge_ptep_get(src_pte); 3097 if (huge_pte_none(entry)) { /* skip none entry */ 3098 ; 3099 } else if (unlikely(is_hugetlb_entry_migration(entry) || 3100 is_hugetlb_entry_hwpoisoned(entry))) { 3101 swp_entry_t swp_entry = pte_to_swp_entry(entry); 3102 3103 if (is_write_migration_entry(swp_entry) && cow) { 3104 /* 3105 * COW mappings require pages in both 3106 * parent and child to be set to read. 3107 */ 3108 make_migration_entry_read(&swp_entry); 3109 entry = swp_entry_to_pte(swp_entry); 3110 set_huge_pte_at(src, addr, src_pte, entry); 3111 } 3112 set_huge_pte_at(dst, addr, dst_pte, entry); 3113 } else { 3114 if (cow) { 3115 huge_ptep_set_wrprotect(src, addr, src_pte); 3116 mmu_notifier_invalidate_range(src, mmun_start, 3117 mmun_end); 3118 } 3119 entry = huge_ptep_get(src_pte); 3120 ptepage = pte_page(entry); 3121 get_page(ptepage); 3122 page_dup_rmap(ptepage, true); 3123 set_huge_pte_at(dst, addr, dst_pte, entry); 3124 hugetlb_count_add(pages_per_huge_page(h), dst); 3125 } 3126 spin_unlock(src_ptl); 3127 spin_unlock(dst_ptl); 3128 } 3129 3130 if (cow) 3131 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end); 3132 3133 return ret; 3134 } 3135 3136 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma, 3137 unsigned long start, unsigned long end, 3138 struct page *ref_page) 3139 { 3140 int force_flush = 0; 3141 struct mm_struct *mm = vma->vm_mm; 3142 unsigned long address; 3143 pte_t *ptep; 3144 pte_t pte; 3145 spinlock_t *ptl; 3146 struct page *page; 3147 struct hstate *h = hstate_vma(vma); 3148 unsigned long sz = huge_page_size(h); 3149 const unsigned long mmun_start = start; /* For mmu_notifiers */ 3150 const unsigned long mmun_end = end; /* For mmu_notifiers */ 3151 3152 WARN_ON(!is_vm_hugetlb_page(vma)); 3153 BUG_ON(start & ~huge_page_mask(h)); 3154 BUG_ON(end & ~huge_page_mask(h)); 3155 3156 tlb_start_vma(tlb, vma); 3157 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 3158 address = start; 3159 again: 3160 for (; address < end; address += sz) { 3161 ptep = huge_pte_offset(mm, address); 3162 if (!ptep) 3163 continue; 3164 3165 ptl = huge_pte_lock(h, mm, ptep); 3166 if (huge_pmd_unshare(mm, &address, ptep)) 3167 goto unlock; 3168 3169 pte = huge_ptep_get(ptep); 3170 if (huge_pte_none(pte)) 3171 goto unlock; 3172 3173 /* 3174 * Migrating hugepage or HWPoisoned hugepage is already 3175 * unmapped and its refcount is dropped, so just clear pte here. 3176 */ 3177 if (unlikely(!pte_present(pte))) { 3178 huge_pte_clear(mm, address, ptep); 3179 goto unlock; 3180 } 3181 3182 page = pte_page(pte); 3183 /* 3184 * If a reference page is supplied, it is because a specific 3185 * page is being unmapped, not a range. Ensure the page we 3186 * are about to unmap is the actual page of interest. 3187 */ 3188 if (ref_page) { 3189 if (page != ref_page) 3190 goto unlock; 3191 3192 /* 3193 * Mark the VMA as having unmapped its page so that 3194 * future faults in this VMA will fail rather than 3195 * looking like data was lost 3196 */ 3197 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); 3198 } 3199 3200 pte = huge_ptep_get_and_clear(mm, address, ptep); 3201 tlb_remove_tlb_entry(tlb, ptep, address); 3202 if (huge_pte_dirty(pte)) 3203 set_page_dirty(page); 3204 3205 hugetlb_count_sub(pages_per_huge_page(h), mm); 3206 page_remove_rmap(page, true); 3207 force_flush = !__tlb_remove_page(tlb, page); 3208 if (force_flush) { 3209 address += sz; 3210 spin_unlock(ptl); 3211 break; 3212 } 3213 /* Bail out after unmapping reference page if supplied */ 3214 if (ref_page) { 3215 spin_unlock(ptl); 3216 break; 3217 } 3218 unlock: 3219 spin_unlock(ptl); 3220 } 3221 /* 3222 * mmu_gather ran out of room to batch pages, we break out of 3223 * the PTE lock to avoid doing the potential expensive TLB invalidate 3224 * and page-free while holding it. 3225 */ 3226 if (force_flush) { 3227 force_flush = 0; 3228 tlb_flush_mmu(tlb); 3229 if (address < end && !ref_page) 3230 goto again; 3231 } 3232 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 3233 tlb_end_vma(tlb, vma); 3234 } 3235 3236 void __unmap_hugepage_range_final(struct mmu_gather *tlb, 3237 struct vm_area_struct *vma, unsigned long start, 3238 unsigned long end, struct page *ref_page) 3239 { 3240 __unmap_hugepage_range(tlb, vma, start, end, ref_page); 3241 3242 /* 3243 * Clear this flag so that x86's huge_pmd_share page_table_shareable 3244 * test will fail on a vma being torn down, and not grab a page table 3245 * on its way out. We're lucky that the flag has such an appropriate 3246 * name, and can in fact be safely cleared here. We could clear it 3247 * before the __unmap_hugepage_range above, but all that's necessary 3248 * is to clear it before releasing the i_mmap_rwsem. This works 3249 * because in the context this is called, the VMA is about to be 3250 * destroyed and the i_mmap_rwsem is held. 3251 */ 3252 vma->vm_flags &= ~VM_MAYSHARE; 3253 } 3254 3255 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, 3256 unsigned long end, struct page *ref_page) 3257 { 3258 struct mm_struct *mm; 3259 struct mmu_gather tlb; 3260 3261 mm = vma->vm_mm; 3262 3263 tlb_gather_mmu(&tlb, mm, start, end); 3264 __unmap_hugepage_range(&tlb, vma, start, end, ref_page); 3265 tlb_finish_mmu(&tlb, start, end); 3266 } 3267 3268 /* 3269 * This is called when the original mapper is failing to COW a MAP_PRIVATE 3270 * mappping it owns the reserve page for. The intention is to unmap the page 3271 * from other VMAs and let the children be SIGKILLed if they are faulting the 3272 * same region. 3273 */ 3274 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, 3275 struct page *page, unsigned long address) 3276 { 3277 struct hstate *h = hstate_vma(vma); 3278 struct vm_area_struct *iter_vma; 3279 struct address_space *mapping; 3280 pgoff_t pgoff; 3281 3282 /* 3283 * vm_pgoff is in PAGE_SIZE units, hence the different calculation 3284 * from page cache lookup which is in HPAGE_SIZE units. 3285 */ 3286 address = address & huge_page_mask(h); 3287 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + 3288 vma->vm_pgoff; 3289 mapping = file_inode(vma->vm_file)->i_mapping; 3290 3291 /* 3292 * Take the mapping lock for the duration of the table walk. As 3293 * this mapping should be shared between all the VMAs, 3294 * __unmap_hugepage_range() is called as the lock is already held 3295 */ 3296 i_mmap_lock_write(mapping); 3297 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) { 3298 /* Do not unmap the current VMA */ 3299 if (iter_vma == vma) 3300 continue; 3301 3302 /* 3303 * Shared VMAs have their own reserves and do not affect 3304 * MAP_PRIVATE accounting but it is possible that a shared 3305 * VMA is using the same page so check and skip such VMAs. 3306 */ 3307 if (iter_vma->vm_flags & VM_MAYSHARE) 3308 continue; 3309 3310 /* 3311 * Unmap the page from other VMAs without their own reserves. 3312 * They get marked to be SIGKILLed if they fault in these 3313 * areas. This is because a future no-page fault on this VMA 3314 * could insert a zeroed page instead of the data existing 3315 * from the time of fork. This would look like data corruption 3316 */ 3317 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) 3318 unmap_hugepage_range(iter_vma, address, 3319 address + huge_page_size(h), page); 3320 } 3321 i_mmap_unlock_write(mapping); 3322 } 3323 3324 /* 3325 * Hugetlb_cow() should be called with page lock of the original hugepage held. 3326 * Called with hugetlb_instantiation_mutex held and pte_page locked so we 3327 * cannot race with other handlers or page migration. 3328 * Keep the pte_same checks anyway to make transition from the mutex easier. 3329 */ 3330 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma, 3331 unsigned long address, pte_t *ptep, pte_t pte, 3332 struct page *pagecache_page, spinlock_t *ptl) 3333 { 3334 struct hstate *h = hstate_vma(vma); 3335 struct page *old_page, *new_page; 3336 int ret = 0, outside_reserve = 0; 3337 unsigned long mmun_start; /* For mmu_notifiers */ 3338 unsigned long mmun_end; /* For mmu_notifiers */ 3339 3340 old_page = pte_page(pte); 3341 3342 retry_avoidcopy: 3343 /* If no-one else is actually using this page, avoid the copy 3344 * and just make the page writable */ 3345 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) { 3346 page_move_anon_rmap(old_page, vma, address); 3347 set_huge_ptep_writable(vma, address, ptep); 3348 return 0; 3349 } 3350 3351 /* 3352 * If the process that created a MAP_PRIVATE mapping is about to 3353 * perform a COW due to a shared page count, attempt to satisfy 3354 * the allocation without using the existing reserves. The pagecache 3355 * page is used to determine if the reserve at this address was 3356 * consumed or not. If reserves were used, a partial faulted mapping 3357 * at the time of fork() could consume its reserves on COW instead 3358 * of the full address range. 3359 */ 3360 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && 3361 old_page != pagecache_page) 3362 outside_reserve = 1; 3363 3364 get_page(old_page); 3365 3366 /* 3367 * Drop page table lock as buddy allocator may be called. It will 3368 * be acquired again before returning to the caller, as expected. 3369 */ 3370 spin_unlock(ptl); 3371 new_page = alloc_huge_page(vma, address, outside_reserve); 3372 3373 if (IS_ERR(new_page)) { 3374 /* 3375 * If a process owning a MAP_PRIVATE mapping fails to COW, 3376 * it is due to references held by a child and an insufficient 3377 * huge page pool. To guarantee the original mappers 3378 * reliability, unmap the page from child processes. The child 3379 * may get SIGKILLed if it later faults. 3380 */ 3381 if (outside_reserve) { 3382 put_page(old_page); 3383 BUG_ON(huge_pte_none(pte)); 3384 unmap_ref_private(mm, vma, old_page, address); 3385 BUG_ON(huge_pte_none(pte)); 3386 spin_lock(ptl); 3387 ptep = huge_pte_offset(mm, address & huge_page_mask(h)); 3388 if (likely(ptep && 3389 pte_same(huge_ptep_get(ptep), pte))) 3390 goto retry_avoidcopy; 3391 /* 3392 * race occurs while re-acquiring page table 3393 * lock, and our job is done. 3394 */ 3395 return 0; 3396 } 3397 3398 ret = (PTR_ERR(new_page) == -ENOMEM) ? 3399 VM_FAULT_OOM : VM_FAULT_SIGBUS; 3400 goto out_release_old; 3401 } 3402 3403 /* 3404 * When the original hugepage is shared one, it does not have 3405 * anon_vma prepared. 3406 */ 3407 if (unlikely(anon_vma_prepare(vma))) { 3408 ret = VM_FAULT_OOM; 3409 goto out_release_all; 3410 } 3411 3412 copy_user_huge_page(new_page, old_page, address, vma, 3413 pages_per_huge_page(h)); 3414 __SetPageUptodate(new_page); 3415 set_page_huge_active(new_page); 3416 3417 mmun_start = address & huge_page_mask(h); 3418 mmun_end = mmun_start + huge_page_size(h); 3419 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 3420 3421 /* 3422 * Retake the page table lock to check for racing updates 3423 * before the page tables are altered 3424 */ 3425 spin_lock(ptl); 3426 ptep = huge_pte_offset(mm, address & huge_page_mask(h)); 3427 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) { 3428 ClearPagePrivate(new_page); 3429 3430 /* Break COW */ 3431 huge_ptep_clear_flush(vma, address, ptep); 3432 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end); 3433 set_huge_pte_at(mm, address, ptep, 3434 make_huge_pte(vma, new_page, 1)); 3435 page_remove_rmap(old_page, true); 3436 hugepage_add_new_anon_rmap(new_page, vma, address); 3437 /* Make the old page be freed below */ 3438 new_page = old_page; 3439 } 3440 spin_unlock(ptl); 3441 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 3442 out_release_all: 3443 put_page(new_page); 3444 out_release_old: 3445 put_page(old_page); 3446 3447 spin_lock(ptl); /* Caller expects lock to be held */ 3448 return ret; 3449 } 3450 3451 /* Return the pagecache page at a given address within a VMA */ 3452 static struct page *hugetlbfs_pagecache_page(struct hstate *h, 3453 struct vm_area_struct *vma, unsigned long address) 3454 { 3455 struct address_space *mapping; 3456 pgoff_t idx; 3457 3458 mapping = vma->vm_file->f_mapping; 3459 idx = vma_hugecache_offset(h, vma, address); 3460 3461 return find_lock_page(mapping, idx); 3462 } 3463 3464 /* 3465 * Return whether there is a pagecache page to back given address within VMA. 3466 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page. 3467 */ 3468 static bool hugetlbfs_pagecache_present(struct hstate *h, 3469 struct vm_area_struct *vma, unsigned long address) 3470 { 3471 struct address_space *mapping; 3472 pgoff_t idx; 3473 struct page *page; 3474 3475 mapping = vma->vm_file->f_mapping; 3476 idx = vma_hugecache_offset(h, vma, address); 3477 3478 page = find_get_page(mapping, idx); 3479 if (page) 3480 put_page(page); 3481 return page != NULL; 3482 } 3483 3484 int huge_add_to_page_cache(struct page *page, struct address_space *mapping, 3485 pgoff_t idx) 3486 { 3487 struct inode *inode = mapping->host; 3488 struct hstate *h = hstate_inode(inode); 3489 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL); 3490 3491 if (err) 3492 return err; 3493 ClearPagePrivate(page); 3494 3495 spin_lock(&inode->i_lock); 3496 inode->i_blocks += blocks_per_huge_page(h); 3497 spin_unlock(&inode->i_lock); 3498 return 0; 3499 } 3500 3501 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma, 3502 struct address_space *mapping, pgoff_t idx, 3503 unsigned long address, pte_t *ptep, unsigned int flags) 3504 { 3505 struct hstate *h = hstate_vma(vma); 3506 int ret = VM_FAULT_SIGBUS; 3507 int anon_rmap = 0; 3508 unsigned long size; 3509 struct page *page; 3510 pte_t new_pte; 3511 spinlock_t *ptl; 3512 3513 /* 3514 * Currently, we are forced to kill the process in the event the 3515 * original mapper has unmapped pages from the child due to a failed 3516 * COW. Warn that such a situation has occurred as it may not be obvious 3517 */ 3518 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { 3519 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n", 3520 current->pid); 3521 return ret; 3522 } 3523 3524 /* 3525 * Use page lock to guard against racing truncation 3526 * before we get page_table_lock. 3527 */ 3528 retry: 3529 page = find_lock_page(mapping, idx); 3530 if (!page) { 3531 size = i_size_read(mapping->host) >> huge_page_shift(h); 3532 if (idx >= size) 3533 goto out; 3534 page = alloc_huge_page(vma, address, 0); 3535 if (IS_ERR(page)) { 3536 ret = PTR_ERR(page); 3537 if (ret == -ENOMEM) 3538 ret = VM_FAULT_OOM; 3539 else 3540 ret = VM_FAULT_SIGBUS; 3541 goto out; 3542 } 3543 clear_huge_page(page, address, pages_per_huge_page(h)); 3544 __SetPageUptodate(page); 3545 set_page_huge_active(page); 3546 3547 if (vma->vm_flags & VM_MAYSHARE) { 3548 int err = huge_add_to_page_cache(page, mapping, idx); 3549 if (err) { 3550 put_page(page); 3551 if (err == -EEXIST) 3552 goto retry; 3553 goto out; 3554 } 3555 } else { 3556 lock_page(page); 3557 if (unlikely(anon_vma_prepare(vma))) { 3558 ret = VM_FAULT_OOM; 3559 goto backout_unlocked; 3560 } 3561 anon_rmap = 1; 3562 } 3563 } else { 3564 /* 3565 * If memory error occurs between mmap() and fault, some process 3566 * don't have hwpoisoned swap entry for errored virtual address. 3567 * So we need to block hugepage fault by PG_hwpoison bit check. 3568 */ 3569 if (unlikely(PageHWPoison(page))) { 3570 ret = VM_FAULT_HWPOISON | 3571 VM_FAULT_SET_HINDEX(hstate_index(h)); 3572 goto backout_unlocked; 3573 } 3574 } 3575 3576 /* 3577 * If we are going to COW a private mapping later, we examine the 3578 * pending reservations for this page now. This will ensure that 3579 * any allocations necessary to record that reservation occur outside 3580 * the spinlock. 3581 */ 3582 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 3583 if (vma_needs_reservation(h, vma, address) < 0) { 3584 ret = VM_FAULT_OOM; 3585 goto backout_unlocked; 3586 } 3587 /* Just decrements count, does not deallocate */ 3588 vma_end_reservation(h, vma, address); 3589 } 3590 3591 ptl = huge_pte_lockptr(h, mm, ptep); 3592 spin_lock(ptl); 3593 size = i_size_read(mapping->host) >> huge_page_shift(h); 3594 if (idx >= size) 3595 goto backout; 3596 3597 ret = 0; 3598 if (!huge_pte_none(huge_ptep_get(ptep))) 3599 goto backout; 3600 3601 if (anon_rmap) { 3602 ClearPagePrivate(page); 3603 hugepage_add_new_anon_rmap(page, vma, address); 3604 } else 3605 page_dup_rmap(page, true); 3606 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE) 3607 && (vma->vm_flags & VM_SHARED))); 3608 set_huge_pte_at(mm, address, ptep, new_pte); 3609 3610 hugetlb_count_add(pages_per_huge_page(h), mm); 3611 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 3612 /* Optimization, do the COW without a second fault */ 3613 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl); 3614 } 3615 3616 spin_unlock(ptl); 3617 unlock_page(page); 3618 out: 3619 return ret; 3620 3621 backout: 3622 spin_unlock(ptl); 3623 backout_unlocked: 3624 unlock_page(page); 3625 put_page(page); 3626 goto out; 3627 } 3628 3629 #ifdef CONFIG_SMP 3630 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm, 3631 struct vm_area_struct *vma, 3632 struct address_space *mapping, 3633 pgoff_t idx, unsigned long address) 3634 { 3635 unsigned long key[2]; 3636 u32 hash; 3637 3638 if (vma->vm_flags & VM_SHARED) { 3639 key[0] = (unsigned long) mapping; 3640 key[1] = idx; 3641 } else { 3642 key[0] = (unsigned long) mm; 3643 key[1] = address >> huge_page_shift(h); 3644 } 3645 3646 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0); 3647 3648 return hash & (num_fault_mutexes - 1); 3649 } 3650 #else 3651 /* 3652 * For uniprocesor systems we always use a single mutex, so just 3653 * return 0 and avoid the hashing overhead. 3654 */ 3655 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm, 3656 struct vm_area_struct *vma, 3657 struct address_space *mapping, 3658 pgoff_t idx, unsigned long address) 3659 { 3660 return 0; 3661 } 3662 #endif 3663 3664 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3665 unsigned long address, unsigned int flags) 3666 { 3667 pte_t *ptep, entry; 3668 spinlock_t *ptl; 3669 int ret; 3670 u32 hash; 3671 pgoff_t idx; 3672 struct page *page = NULL; 3673 struct page *pagecache_page = NULL; 3674 struct hstate *h = hstate_vma(vma); 3675 struct address_space *mapping; 3676 int need_wait_lock = 0; 3677 3678 address &= huge_page_mask(h); 3679 3680 ptep = huge_pte_offset(mm, address); 3681 if (ptep) { 3682 entry = huge_ptep_get(ptep); 3683 if (unlikely(is_hugetlb_entry_migration(entry))) { 3684 migration_entry_wait_huge(vma, mm, ptep); 3685 return 0; 3686 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) 3687 return VM_FAULT_HWPOISON_LARGE | 3688 VM_FAULT_SET_HINDEX(hstate_index(h)); 3689 } else { 3690 ptep = huge_pte_alloc(mm, address, huge_page_size(h)); 3691 if (!ptep) 3692 return VM_FAULT_OOM; 3693 } 3694 3695 mapping = vma->vm_file->f_mapping; 3696 idx = vma_hugecache_offset(h, vma, address); 3697 3698 /* 3699 * Serialize hugepage allocation and instantiation, so that we don't 3700 * get spurious allocation failures if two CPUs race to instantiate 3701 * the same page in the page cache. 3702 */ 3703 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address); 3704 mutex_lock(&hugetlb_fault_mutex_table[hash]); 3705 3706 entry = huge_ptep_get(ptep); 3707 if (huge_pte_none(entry)) { 3708 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags); 3709 goto out_mutex; 3710 } 3711 3712 ret = 0; 3713 3714 /* 3715 * entry could be a migration/hwpoison entry at this point, so this 3716 * check prevents the kernel from going below assuming that we have 3717 * a active hugepage in pagecache. This goto expects the 2nd page fault, 3718 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly 3719 * handle it. 3720 */ 3721 if (!pte_present(entry)) 3722 goto out_mutex; 3723 3724 /* 3725 * If we are going to COW the mapping later, we examine the pending 3726 * reservations for this page now. This will ensure that any 3727 * allocations necessary to record that reservation occur outside the 3728 * spinlock. For private mappings, we also lookup the pagecache 3729 * page now as it is used to determine if a reservation has been 3730 * consumed. 3731 */ 3732 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) { 3733 if (vma_needs_reservation(h, vma, address) < 0) { 3734 ret = VM_FAULT_OOM; 3735 goto out_mutex; 3736 } 3737 /* Just decrements count, does not deallocate */ 3738 vma_end_reservation(h, vma, address); 3739 3740 if (!(vma->vm_flags & VM_MAYSHARE)) 3741 pagecache_page = hugetlbfs_pagecache_page(h, 3742 vma, address); 3743 } 3744 3745 ptl = huge_pte_lock(h, mm, ptep); 3746 3747 /* Check for a racing update before calling hugetlb_cow */ 3748 if (unlikely(!pte_same(entry, huge_ptep_get(ptep)))) 3749 goto out_ptl; 3750 3751 /* 3752 * hugetlb_cow() requires page locks of pte_page(entry) and 3753 * pagecache_page, so here we need take the former one 3754 * when page != pagecache_page or !pagecache_page. 3755 */ 3756 page = pte_page(entry); 3757 if (page != pagecache_page) 3758 if (!trylock_page(page)) { 3759 need_wait_lock = 1; 3760 goto out_ptl; 3761 } 3762 3763 get_page(page); 3764 3765 if (flags & FAULT_FLAG_WRITE) { 3766 if (!huge_pte_write(entry)) { 3767 ret = hugetlb_cow(mm, vma, address, ptep, entry, 3768 pagecache_page, ptl); 3769 goto out_put_page; 3770 } 3771 entry = huge_pte_mkdirty(entry); 3772 } 3773 entry = pte_mkyoung(entry); 3774 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 3775 flags & FAULT_FLAG_WRITE)) 3776 update_mmu_cache(vma, address, ptep); 3777 out_put_page: 3778 if (page != pagecache_page) 3779 unlock_page(page); 3780 put_page(page); 3781 out_ptl: 3782 spin_unlock(ptl); 3783 3784 if (pagecache_page) { 3785 unlock_page(pagecache_page); 3786 put_page(pagecache_page); 3787 } 3788 out_mutex: 3789 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 3790 /* 3791 * Generally it's safe to hold refcount during waiting page lock. But 3792 * here we just wait to defer the next page fault to avoid busy loop and 3793 * the page is not used after unlocked before returning from the current 3794 * page fault. So we are safe from accessing freed page, even if we wait 3795 * here without taking refcount. 3796 */ 3797 if (need_wait_lock) 3798 wait_on_page_locked(page); 3799 return ret; 3800 } 3801 3802 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, 3803 struct page **pages, struct vm_area_struct **vmas, 3804 unsigned long *position, unsigned long *nr_pages, 3805 long i, unsigned int flags) 3806 { 3807 unsigned long pfn_offset; 3808 unsigned long vaddr = *position; 3809 unsigned long remainder = *nr_pages; 3810 struct hstate *h = hstate_vma(vma); 3811 3812 while (vaddr < vma->vm_end && remainder) { 3813 pte_t *pte; 3814 spinlock_t *ptl = NULL; 3815 int absent; 3816 struct page *page; 3817 3818 /* 3819 * If we have a pending SIGKILL, don't keep faulting pages and 3820 * potentially allocating memory. 3821 */ 3822 if (unlikely(fatal_signal_pending(current))) { 3823 remainder = 0; 3824 break; 3825 } 3826 3827 /* 3828 * Some archs (sparc64, sh*) have multiple pte_ts to 3829 * each hugepage. We have to make sure we get the 3830 * first, for the page indexing below to work. 3831 * 3832 * Note that page table lock is not held when pte is null. 3833 */ 3834 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h)); 3835 if (pte) 3836 ptl = huge_pte_lock(h, mm, pte); 3837 absent = !pte || huge_pte_none(huge_ptep_get(pte)); 3838 3839 /* 3840 * When coredumping, it suits get_dump_page if we just return 3841 * an error where there's an empty slot with no huge pagecache 3842 * to back it. This way, we avoid allocating a hugepage, and 3843 * the sparse dumpfile avoids allocating disk blocks, but its 3844 * huge holes still show up with zeroes where they need to be. 3845 */ 3846 if (absent && (flags & FOLL_DUMP) && 3847 !hugetlbfs_pagecache_present(h, vma, vaddr)) { 3848 if (pte) 3849 spin_unlock(ptl); 3850 remainder = 0; 3851 break; 3852 } 3853 3854 /* 3855 * We need call hugetlb_fault for both hugepages under migration 3856 * (in which case hugetlb_fault waits for the migration,) and 3857 * hwpoisoned hugepages (in which case we need to prevent the 3858 * caller from accessing to them.) In order to do this, we use 3859 * here is_swap_pte instead of is_hugetlb_entry_migration and 3860 * is_hugetlb_entry_hwpoisoned. This is because it simply covers 3861 * both cases, and because we can't follow correct pages 3862 * directly from any kind of swap entries. 3863 */ 3864 if (absent || is_swap_pte(huge_ptep_get(pte)) || 3865 ((flags & FOLL_WRITE) && 3866 !huge_pte_write(huge_ptep_get(pte)))) { 3867 int ret; 3868 3869 if (pte) 3870 spin_unlock(ptl); 3871 ret = hugetlb_fault(mm, vma, vaddr, 3872 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0); 3873 if (!(ret & VM_FAULT_ERROR)) 3874 continue; 3875 3876 remainder = 0; 3877 break; 3878 } 3879 3880 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT; 3881 page = pte_page(huge_ptep_get(pte)); 3882 same_page: 3883 if (pages) { 3884 pages[i] = mem_map_offset(page, pfn_offset); 3885 get_page(pages[i]); 3886 } 3887 3888 if (vmas) 3889 vmas[i] = vma; 3890 3891 vaddr += PAGE_SIZE; 3892 ++pfn_offset; 3893 --remainder; 3894 ++i; 3895 if (vaddr < vma->vm_end && remainder && 3896 pfn_offset < pages_per_huge_page(h)) { 3897 /* 3898 * We use pfn_offset to avoid touching the pageframes 3899 * of this compound page. 3900 */ 3901 goto same_page; 3902 } 3903 spin_unlock(ptl); 3904 } 3905 *nr_pages = remainder; 3906 *position = vaddr; 3907 3908 return i ? i : -EFAULT; 3909 } 3910 3911 unsigned long hugetlb_change_protection(struct vm_area_struct *vma, 3912 unsigned long address, unsigned long end, pgprot_t newprot) 3913 { 3914 struct mm_struct *mm = vma->vm_mm; 3915 unsigned long start = address; 3916 pte_t *ptep; 3917 pte_t pte; 3918 struct hstate *h = hstate_vma(vma); 3919 unsigned long pages = 0; 3920 3921 BUG_ON(address >= end); 3922 flush_cache_range(vma, address, end); 3923 3924 mmu_notifier_invalidate_range_start(mm, start, end); 3925 i_mmap_lock_write(vma->vm_file->f_mapping); 3926 for (; address < end; address += huge_page_size(h)) { 3927 spinlock_t *ptl; 3928 ptep = huge_pte_offset(mm, address); 3929 if (!ptep) 3930 continue; 3931 ptl = huge_pte_lock(h, mm, ptep); 3932 if (huge_pmd_unshare(mm, &address, ptep)) { 3933 pages++; 3934 spin_unlock(ptl); 3935 continue; 3936 } 3937 pte = huge_ptep_get(ptep); 3938 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) { 3939 spin_unlock(ptl); 3940 continue; 3941 } 3942 if (unlikely(is_hugetlb_entry_migration(pte))) { 3943 swp_entry_t entry = pte_to_swp_entry(pte); 3944 3945 if (is_write_migration_entry(entry)) { 3946 pte_t newpte; 3947 3948 make_migration_entry_read(&entry); 3949 newpte = swp_entry_to_pte(entry); 3950 set_huge_pte_at(mm, address, ptep, newpte); 3951 pages++; 3952 } 3953 spin_unlock(ptl); 3954 continue; 3955 } 3956 if (!huge_pte_none(pte)) { 3957 pte = huge_ptep_get_and_clear(mm, address, ptep); 3958 pte = pte_mkhuge(huge_pte_modify(pte, newprot)); 3959 pte = arch_make_huge_pte(pte, vma, NULL, 0); 3960 set_huge_pte_at(mm, address, ptep, pte); 3961 pages++; 3962 } 3963 spin_unlock(ptl); 3964 } 3965 /* 3966 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare 3967 * may have cleared our pud entry and done put_page on the page table: 3968 * once we release i_mmap_rwsem, another task can do the final put_page 3969 * and that page table be reused and filled with junk. 3970 */ 3971 flush_tlb_range(vma, start, end); 3972 mmu_notifier_invalidate_range(mm, start, end); 3973 i_mmap_unlock_write(vma->vm_file->f_mapping); 3974 mmu_notifier_invalidate_range_end(mm, start, end); 3975 3976 return pages << h->order; 3977 } 3978 3979 int hugetlb_reserve_pages(struct inode *inode, 3980 long from, long to, 3981 struct vm_area_struct *vma, 3982 vm_flags_t vm_flags) 3983 { 3984 long ret, chg; 3985 struct hstate *h = hstate_inode(inode); 3986 struct hugepage_subpool *spool = subpool_inode(inode); 3987 struct resv_map *resv_map; 3988 long gbl_reserve; 3989 3990 /* 3991 * Only apply hugepage reservation if asked. At fault time, an 3992 * attempt will be made for VM_NORESERVE to allocate a page 3993 * without using reserves 3994 */ 3995 if (vm_flags & VM_NORESERVE) 3996 return 0; 3997 3998 /* 3999 * Shared mappings base their reservation on the number of pages that 4000 * are already allocated on behalf of the file. Private mappings need 4001 * to reserve the full area even if read-only as mprotect() may be 4002 * called to make the mapping read-write. Assume !vma is a shm mapping 4003 */ 4004 if (!vma || vma->vm_flags & VM_MAYSHARE) { 4005 resv_map = inode_resv_map(inode); 4006 4007 chg = region_chg(resv_map, from, to); 4008 4009 } else { 4010 resv_map = resv_map_alloc(); 4011 if (!resv_map) 4012 return -ENOMEM; 4013 4014 chg = to - from; 4015 4016 set_vma_resv_map(vma, resv_map); 4017 set_vma_resv_flags(vma, HPAGE_RESV_OWNER); 4018 } 4019 4020 if (chg < 0) { 4021 ret = chg; 4022 goto out_err; 4023 } 4024 4025 /* 4026 * There must be enough pages in the subpool for the mapping. If 4027 * the subpool has a minimum size, there may be some global 4028 * reservations already in place (gbl_reserve). 4029 */ 4030 gbl_reserve = hugepage_subpool_get_pages(spool, chg); 4031 if (gbl_reserve < 0) { 4032 ret = -ENOSPC; 4033 goto out_err; 4034 } 4035 4036 /* 4037 * Check enough hugepages are available for the reservation. 4038 * Hand the pages back to the subpool if there are not 4039 */ 4040 ret = hugetlb_acct_memory(h, gbl_reserve); 4041 if (ret < 0) { 4042 /* put back original number of pages, chg */ 4043 (void)hugepage_subpool_put_pages(spool, chg); 4044 goto out_err; 4045 } 4046 4047 /* 4048 * Account for the reservations made. Shared mappings record regions 4049 * that have reservations as they are shared by multiple VMAs. 4050 * When the last VMA disappears, the region map says how much 4051 * the reservation was and the page cache tells how much of 4052 * the reservation was consumed. Private mappings are per-VMA and 4053 * only the consumed reservations are tracked. When the VMA 4054 * disappears, the original reservation is the VMA size and the 4055 * consumed reservations are stored in the map. Hence, nothing 4056 * else has to be done for private mappings here 4057 */ 4058 if (!vma || vma->vm_flags & VM_MAYSHARE) { 4059 long add = region_add(resv_map, from, to); 4060 4061 if (unlikely(chg > add)) { 4062 /* 4063 * pages in this range were added to the reserve 4064 * map between region_chg and region_add. This 4065 * indicates a race with alloc_huge_page. Adjust 4066 * the subpool and reserve counts modified above 4067 * based on the difference. 4068 */ 4069 long rsv_adjust; 4070 4071 rsv_adjust = hugepage_subpool_put_pages(spool, 4072 chg - add); 4073 hugetlb_acct_memory(h, -rsv_adjust); 4074 } 4075 } 4076 return 0; 4077 out_err: 4078 if (!vma || vma->vm_flags & VM_MAYSHARE) 4079 region_abort(resv_map, from, to); 4080 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 4081 kref_put(&resv_map->refs, resv_map_release); 4082 return ret; 4083 } 4084 4085 long hugetlb_unreserve_pages(struct inode *inode, long start, long end, 4086 long freed) 4087 { 4088 struct hstate *h = hstate_inode(inode); 4089 struct resv_map *resv_map = inode_resv_map(inode); 4090 long chg = 0; 4091 struct hugepage_subpool *spool = subpool_inode(inode); 4092 long gbl_reserve; 4093 4094 if (resv_map) { 4095 chg = region_del(resv_map, start, end); 4096 /* 4097 * region_del() can fail in the rare case where a region 4098 * must be split and another region descriptor can not be 4099 * allocated. If end == LONG_MAX, it will not fail. 4100 */ 4101 if (chg < 0) 4102 return chg; 4103 } 4104 4105 spin_lock(&inode->i_lock); 4106 inode->i_blocks -= (blocks_per_huge_page(h) * freed); 4107 spin_unlock(&inode->i_lock); 4108 4109 /* 4110 * If the subpool has a minimum size, the number of global 4111 * reservations to be released may be adjusted. 4112 */ 4113 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed)); 4114 hugetlb_acct_memory(h, -gbl_reserve); 4115 4116 return 0; 4117 } 4118 4119 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE 4120 static unsigned long page_table_shareable(struct vm_area_struct *svma, 4121 struct vm_area_struct *vma, 4122 unsigned long addr, pgoff_t idx) 4123 { 4124 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) + 4125 svma->vm_start; 4126 unsigned long sbase = saddr & PUD_MASK; 4127 unsigned long s_end = sbase + PUD_SIZE; 4128 4129 /* Allow segments to share if only one is marked locked */ 4130 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK; 4131 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK; 4132 4133 /* 4134 * match the virtual addresses, permission and the alignment of the 4135 * page table page. 4136 */ 4137 if (pmd_index(addr) != pmd_index(saddr) || 4138 vm_flags != svm_flags || 4139 sbase < svma->vm_start || svma->vm_end < s_end) 4140 return 0; 4141 4142 return saddr; 4143 } 4144 4145 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr) 4146 { 4147 unsigned long base = addr & PUD_MASK; 4148 unsigned long end = base + PUD_SIZE; 4149 4150 /* 4151 * check on proper vm_flags and page table alignment 4152 */ 4153 if (vma->vm_flags & VM_MAYSHARE && 4154 vma->vm_start <= base && end <= vma->vm_end) 4155 return true; 4156 return false; 4157 } 4158 4159 /* 4160 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc() 4161 * and returns the corresponding pte. While this is not necessary for the 4162 * !shared pmd case because we can allocate the pmd later as well, it makes the 4163 * code much cleaner. pmd allocation is essential for the shared case because 4164 * pud has to be populated inside the same i_mmap_rwsem section - otherwise 4165 * racing tasks could either miss the sharing (see huge_pte_offset) or select a 4166 * bad pmd for sharing. 4167 */ 4168 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud) 4169 { 4170 struct vm_area_struct *vma = find_vma(mm, addr); 4171 struct address_space *mapping = vma->vm_file->f_mapping; 4172 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + 4173 vma->vm_pgoff; 4174 struct vm_area_struct *svma; 4175 unsigned long saddr; 4176 pte_t *spte = NULL; 4177 pte_t *pte; 4178 spinlock_t *ptl; 4179 4180 if (!vma_shareable(vma, addr)) 4181 return (pte_t *)pmd_alloc(mm, pud, addr); 4182 4183 i_mmap_lock_write(mapping); 4184 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) { 4185 if (svma == vma) 4186 continue; 4187 4188 saddr = page_table_shareable(svma, vma, addr, idx); 4189 if (saddr) { 4190 spte = huge_pte_offset(svma->vm_mm, saddr); 4191 if (spte) { 4192 mm_inc_nr_pmds(mm); 4193 get_page(virt_to_page(spte)); 4194 break; 4195 } 4196 } 4197 } 4198 4199 if (!spte) 4200 goto out; 4201 4202 ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte); 4203 spin_lock(ptl); 4204 if (pud_none(*pud)) { 4205 pud_populate(mm, pud, 4206 (pmd_t *)((unsigned long)spte & PAGE_MASK)); 4207 } else { 4208 put_page(virt_to_page(spte)); 4209 mm_inc_nr_pmds(mm); 4210 } 4211 spin_unlock(ptl); 4212 out: 4213 pte = (pte_t *)pmd_alloc(mm, pud, addr); 4214 i_mmap_unlock_write(mapping); 4215 return pte; 4216 } 4217 4218 /* 4219 * unmap huge page backed by shared pte. 4220 * 4221 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared 4222 * indicated by page_count > 1, unmap is achieved by clearing pud and 4223 * decrementing the ref count. If count == 1, the pte page is not shared. 4224 * 4225 * called with page table lock held. 4226 * 4227 * returns: 1 successfully unmapped a shared pte page 4228 * 0 the underlying pte page is not shared, or it is the last user 4229 */ 4230 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep) 4231 { 4232 pgd_t *pgd = pgd_offset(mm, *addr); 4233 pud_t *pud = pud_offset(pgd, *addr); 4234 4235 BUG_ON(page_count(virt_to_page(ptep)) == 0); 4236 if (page_count(virt_to_page(ptep)) == 1) 4237 return 0; 4238 4239 pud_clear(pud); 4240 put_page(virt_to_page(ptep)); 4241 mm_dec_nr_pmds(mm); 4242 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE; 4243 return 1; 4244 } 4245 #define want_pmd_share() (1) 4246 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 4247 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud) 4248 { 4249 return NULL; 4250 } 4251 4252 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep) 4253 { 4254 return 0; 4255 } 4256 #define want_pmd_share() (0) 4257 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 4258 4259 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB 4260 pte_t *huge_pte_alloc(struct mm_struct *mm, 4261 unsigned long addr, unsigned long sz) 4262 { 4263 pgd_t *pgd; 4264 pud_t *pud; 4265 pte_t *pte = NULL; 4266 4267 pgd = pgd_offset(mm, addr); 4268 pud = pud_alloc(mm, pgd, addr); 4269 if (pud) { 4270 if (sz == PUD_SIZE) { 4271 pte = (pte_t *)pud; 4272 } else { 4273 BUG_ON(sz != PMD_SIZE); 4274 if (want_pmd_share() && pud_none(*pud)) 4275 pte = huge_pmd_share(mm, addr, pud); 4276 else 4277 pte = (pte_t *)pmd_alloc(mm, pud, addr); 4278 } 4279 } 4280 BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte)); 4281 4282 return pte; 4283 } 4284 4285 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr) 4286 { 4287 pgd_t *pgd; 4288 pud_t *pud; 4289 pmd_t *pmd = NULL; 4290 4291 pgd = pgd_offset(mm, addr); 4292 if (pgd_present(*pgd)) { 4293 pud = pud_offset(pgd, addr); 4294 if (pud_present(*pud)) { 4295 if (pud_huge(*pud)) 4296 return (pte_t *)pud; 4297 pmd = pmd_offset(pud, addr); 4298 } 4299 } 4300 return (pte_t *) pmd; 4301 } 4302 4303 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */ 4304 4305 /* 4306 * These functions are overwritable if your architecture needs its own 4307 * behavior. 4308 */ 4309 struct page * __weak 4310 follow_huge_addr(struct mm_struct *mm, unsigned long address, 4311 int write) 4312 { 4313 return ERR_PTR(-EINVAL); 4314 } 4315 4316 struct page * __weak 4317 follow_huge_pmd(struct mm_struct *mm, unsigned long address, 4318 pmd_t *pmd, int flags) 4319 { 4320 struct page *page = NULL; 4321 spinlock_t *ptl; 4322 retry: 4323 ptl = pmd_lockptr(mm, pmd); 4324 spin_lock(ptl); 4325 /* 4326 * make sure that the address range covered by this pmd is not 4327 * unmapped from other threads. 4328 */ 4329 if (!pmd_huge(*pmd)) 4330 goto out; 4331 if (pmd_present(*pmd)) { 4332 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT); 4333 if (flags & FOLL_GET) 4334 get_page(page); 4335 } else { 4336 if (is_hugetlb_entry_migration(huge_ptep_get((pte_t *)pmd))) { 4337 spin_unlock(ptl); 4338 __migration_entry_wait(mm, (pte_t *)pmd, ptl); 4339 goto retry; 4340 } 4341 /* 4342 * hwpoisoned entry is treated as no_page_table in 4343 * follow_page_mask(). 4344 */ 4345 } 4346 out: 4347 spin_unlock(ptl); 4348 return page; 4349 } 4350 4351 struct page * __weak 4352 follow_huge_pud(struct mm_struct *mm, unsigned long address, 4353 pud_t *pud, int flags) 4354 { 4355 if (flags & FOLL_GET) 4356 return NULL; 4357 4358 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT); 4359 } 4360 4361 #ifdef CONFIG_MEMORY_FAILURE 4362 4363 /* 4364 * This function is called from memory failure code. 4365 * Assume the caller holds page lock of the head page. 4366 */ 4367 int dequeue_hwpoisoned_huge_page(struct page *hpage) 4368 { 4369 struct hstate *h = page_hstate(hpage); 4370 int nid = page_to_nid(hpage); 4371 int ret = -EBUSY; 4372 4373 spin_lock(&hugetlb_lock); 4374 /* 4375 * Just checking !page_huge_active is not enough, because that could be 4376 * an isolated/hwpoisoned hugepage (which have >0 refcount). 4377 */ 4378 if (!page_huge_active(hpage) && !page_count(hpage)) { 4379 /* 4380 * Hwpoisoned hugepage isn't linked to activelist or freelist, 4381 * but dangling hpage->lru can trigger list-debug warnings 4382 * (this happens when we call unpoison_memory() on it), 4383 * so let it point to itself with list_del_init(). 4384 */ 4385 list_del_init(&hpage->lru); 4386 set_page_refcounted(hpage); 4387 h->free_huge_pages--; 4388 h->free_huge_pages_node[nid]--; 4389 ret = 0; 4390 } 4391 spin_unlock(&hugetlb_lock); 4392 return ret; 4393 } 4394 #endif 4395 4396 bool isolate_huge_page(struct page *page, struct list_head *list) 4397 { 4398 bool ret = true; 4399 4400 VM_BUG_ON_PAGE(!PageHead(page), page); 4401 spin_lock(&hugetlb_lock); 4402 if (!page_huge_active(page) || !get_page_unless_zero(page)) { 4403 ret = false; 4404 goto unlock; 4405 } 4406 clear_page_huge_active(page); 4407 list_move_tail(&page->lru, list); 4408 unlock: 4409 spin_unlock(&hugetlb_lock); 4410 return ret; 4411 } 4412 4413 void putback_active_hugepage(struct page *page) 4414 { 4415 VM_BUG_ON_PAGE(!PageHead(page), page); 4416 spin_lock(&hugetlb_lock); 4417 set_page_huge_active(page); 4418 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist); 4419 spin_unlock(&hugetlb_lock); 4420 put_page(page); 4421 } 4422