xref: /linux/mm/hugetlb.c (revision 0d08df6c493898e679d9c517e77ea95c063d40ec)
1 /*
2  * Generic hugetlb support.
3  * (C) Nadia Yvette Chambers, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/mm.h>
8 #include <linux/seq_file.h>
9 #include <linux/sysctl.h>
10 #include <linux/highmem.h>
11 #include <linux/mmu_notifier.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/compiler.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24 #include <linux/page-isolation.h>
25 #include <linux/jhash.h>
26 
27 #include <asm/page.h>
28 #include <asm/pgtable.h>
29 #include <asm/tlb.h>
30 
31 #include <linux/io.h>
32 #include <linux/hugetlb.h>
33 #include <linux/hugetlb_cgroup.h>
34 #include <linux/node.h>
35 #include "internal.h"
36 
37 int hugepages_treat_as_movable;
38 
39 int hugetlb_max_hstate __read_mostly;
40 unsigned int default_hstate_idx;
41 struct hstate hstates[HUGE_MAX_HSTATE];
42 /*
43  * Minimum page order among possible hugepage sizes, set to a proper value
44  * at boot time.
45  */
46 static unsigned int minimum_order __read_mostly = UINT_MAX;
47 
48 __initdata LIST_HEAD(huge_boot_pages);
49 
50 /* for command line parsing */
51 static struct hstate * __initdata parsed_hstate;
52 static unsigned long __initdata default_hstate_max_huge_pages;
53 static unsigned long __initdata default_hstate_size;
54 static bool __initdata parsed_valid_hugepagesz = true;
55 
56 /*
57  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
58  * free_huge_pages, and surplus_huge_pages.
59  */
60 DEFINE_SPINLOCK(hugetlb_lock);
61 
62 /*
63  * Serializes faults on the same logical page.  This is used to
64  * prevent spurious OOMs when the hugepage pool is fully utilized.
65  */
66 static int num_fault_mutexes;
67 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
68 
69 /* Forward declaration */
70 static int hugetlb_acct_memory(struct hstate *h, long delta);
71 
72 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
73 {
74 	bool free = (spool->count == 0) && (spool->used_hpages == 0);
75 
76 	spin_unlock(&spool->lock);
77 
78 	/* If no pages are used, and no other handles to the subpool
79 	 * remain, give up any reservations mased on minimum size and
80 	 * free the subpool */
81 	if (free) {
82 		if (spool->min_hpages != -1)
83 			hugetlb_acct_memory(spool->hstate,
84 						-spool->min_hpages);
85 		kfree(spool);
86 	}
87 }
88 
89 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
90 						long min_hpages)
91 {
92 	struct hugepage_subpool *spool;
93 
94 	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
95 	if (!spool)
96 		return NULL;
97 
98 	spin_lock_init(&spool->lock);
99 	spool->count = 1;
100 	spool->max_hpages = max_hpages;
101 	spool->hstate = h;
102 	spool->min_hpages = min_hpages;
103 
104 	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
105 		kfree(spool);
106 		return NULL;
107 	}
108 	spool->rsv_hpages = min_hpages;
109 
110 	return spool;
111 }
112 
113 void hugepage_put_subpool(struct hugepage_subpool *spool)
114 {
115 	spin_lock(&spool->lock);
116 	BUG_ON(!spool->count);
117 	spool->count--;
118 	unlock_or_release_subpool(spool);
119 }
120 
121 /*
122  * Subpool accounting for allocating and reserving pages.
123  * Return -ENOMEM if there are not enough resources to satisfy the
124  * the request.  Otherwise, return the number of pages by which the
125  * global pools must be adjusted (upward).  The returned value may
126  * only be different than the passed value (delta) in the case where
127  * a subpool minimum size must be manitained.
128  */
129 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
130 				      long delta)
131 {
132 	long ret = delta;
133 
134 	if (!spool)
135 		return ret;
136 
137 	spin_lock(&spool->lock);
138 
139 	if (spool->max_hpages != -1) {		/* maximum size accounting */
140 		if ((spool->used_hpages + delta) <= spool->max_hpages)
141 			spool->used_hpages += delta;
142 		else {
143 			ret = -ENOMEM;
144 			goto unlock_ret;
145 		}
146 	}
147 
148 	/* minimum size accounting */
149 	if (spool->min_hpages != -1 && spool->rsv_hpages) {
150 		if (delta > spool->rsv_hpages) {
151 			/*
152 			 * Asking for more reserves than those already taken on
153 			 * behalf of subpool.  Return difference.
154 			 */
155 			ret = delta - spool->rsv_hpages;
156 			spool->rsv_hpages = 0;
157 		} else {
158 			ret = 0;	/* reserves already accounted for */
159 			spool->rsv_hpages -= delta;
160 		}
161 	}
162 
163 unlock_ret:
164 	spin_unlock(&spool->lock);
165 	return ret;
166 }
167 
168 /*
169  * Subpool accounting for freeing and unreserving pages.
170  * Return the number of global page reservations that must be dropped.
171  * The return value may only be different than the passed value (delta)
172  * in the case where a subpool minimum size must be maintained.
173  */
174 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
175 				       long delta)
176 {
177 	long ret = delta;
178 
179 	if (!spool)
180 		return delta;
181 
182 	spin_lock(&spool->lock);
183 
184 	if (spool->max_hpages != -1)		/* maximum size accounting */
185 		spool->used_hpages -= delta;
186 
187 	 /* minimum size accounting */
188 	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
189 		if (spool->rsv_hpages + delta <= spool->min_hpages)
190 			ret = 0;
191 		else
192 			ret = spool->rsv_hpages + delta - spool->min_hpages;
193 
194 		spool->rsv_hpages += delta;
195 		if (spool->rsv_hpages > spool->min_hpages)
196 			spool->rsv_hpages = spool->min_hpages;
197 	}
198 
199 	/*
200 	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
201 	 * quota reference, free it now.
202 	 */
203 	unlock_or_release_subpool(spool);
204 
205 	return ret;
206 }
207 
208 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
209 {
210 	return HUGETLBFS_SB(inode->i_sb)->spool;
211 }
212 
213 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
214 {
215 	return subpool_inode(file_inode(vma->vm_file));
216 }
217 
218 /*
219  * Region tracking -- allows tracking of reservations and instantiated pages
220  *                    across the pages in a mapping.
221  *
222  * The region data structures are embedded into a resv_map and protected
223  * by a resv_map's lock.  The set of regions within the resv_map represent
224  * reservations for huge pages, or huge pages that have already been
225  * instantiated within the map.  The from and to elements are huge page
226  * indicies into the associated mapping.  from indicates the starting index
227  * of the region.  to represents the first index past the end of  the region.
228  *
229  * For example, a file region structure with from == 0 and to == 4 represents
230  * four huge pages in a mapping.  It is important to note that the to element
231  * represents the first element past the end of the region. This is used in
232  * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
233  *
234  * Interval notation of the form [from, to) will be used to indicate that
235  * the endpoint from is inclusive and to is exclusive.
236  */
237 struct file_region {
238 	struct list_head link;
239 	long from;
240 	long to;
241 };
242 
243 /*
244  * Add the huge page range represented by [f, t) to the reserve
245  * map.  In the normal case, existing regions will be expanded
246  * to accommodate the specified range.  Sufficient regions should
247  * exist for expansion due to the previous call to region_chg
248  * with the same range.  However, it is possible that region_del
249  * could have been called after region_chg and modifed the map
250  * in such a way that no region exists to be expanded.  In this
251  * case, pull a region descriptor from the cache associated with
252  * the map and use that for the new range.
253  *
254  * Return the number of new huge pages added to the map.  This
255  * number is greater than or equal to zero.
256  */
257 static long region_add(struct resv_map *resv, long f, long t)
258 {
259 	struct list_head *head = &resv->regions;
260 	struct file_region *rg, *nrg, *trg;
261 	long add = 0;
262 
263 	spin_lock(&resv->lock);
264 	/* Locate the region we are either in or before. */
265 	list_for_each_entry(rg, head, link)
266 		if (f <= rg->to)
267 			break;
268 
269 	/*
270 	 * If no region exists which can be expanded to include the
271 	 * specified range, the list must have been modified by an
272 	 * interleving call to region_del().  Pull a region descriptor
273 	 * from the cache and use it for this range.
274 	 */
275 	if (&rg->link == head || t < rg->from) {
276 		VM_BUG_ON(resv->region_cache_count <= 0);
277 
278 		resv->region_cache_count--;
279 		nrg = list_first_entry(&resv->region_cache, struct file_region,
280 					link);
281 		list_del(&nrg->link);
282 
283 		nrg->from = f;
284 		nrg->to = t;
285 		list_add(&nrg->link, rg->link.prev);
286 
287 		add += t - f;
288 		goto out_locked;
289 	}
290 
291 	/* Round our left edge to the current segment if it encloses us. */
292 	if (f > rg->from)
293 		f = rg->from;
294 
295 	/* Check for and consume any regions we now overlap with. */
296 	nrg = rg;
297 	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
298 		if (&rg->link == head)
299 			break;
300 		if (rg->from > t)
301 			break;
302 
303 		/* If this area reaches higher then extend our area to
304 		 * include it completely.  If this is not the first area
305 		 * which we intend to reuse, free it. */
306 		if (rg->to > t)
307 			t = rg->to;
308 		if (rg != nrg) {
309 			/* Decrement return value by the deleted range.
310 			 * Another range will span this area so that by
311 			 * end of routine add will be >= zero
312 			 */
313 			add -= (rg->to - rg->from);
314 			list_del(&rg->link);
315 			kfree(rg);
316 		}
317 	}
318 
319 	add += (nrg->from - f);		/* Added to beginning of region */
320 	nrg->from = f;
321 	add += t - nrg->to;		/* Added to end of region */
322 	nrg->to = t;
323 
324 out_locked:
325 	resv->adds_in_progress--;
326 	spin_unlock(&resv->lock);
327 	VM_BUG_ON(add < 0);
328 	return add;
329 }
330 
331 /*
332  * Examine the existing reserve map and determine how many
333  * huge pages in the specified range [f, t) are NOT currently
334  * represented.  This routine is called before a subsequent
335  * call to region_add that will actually modify the reserve
336  * map to add the specified range [f, t).  region_chg does
337  * not change the number of huge pages represented by the
338  * map.  However, if the existing regions in the map can not
339  * be expanded to represent the new range, a new file_region
340  * structure is added to the map as a placeholder.  This is
341  * so that the subsequent region_add call will have all the
342  * regions it needs and will not fail.
343  *
344  * Upon entry, region_chg will also examine the cache of region descriptors
345  * associated with the map.  If there are not enough descriptors cached, one
346  * will be allocated for the in progress add operation.
347  *
348  * Returns the number of huge pages that need to be added to the existing
349  * reservation map for the range [f, t).  This number is greater or equal to
350  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
351  * is needed and can not be allocated.
352  */
353 static long region_chg(struct resv_map *resv, long f, long t)
354 {
355 	struct list_head *head = &resv->regions;
356 	struct file_region *rg, *nrg = NULL;
357 	long chg = 0;
358 
359 retry:
360 	spin_lock(&resv->lock);
361 retry_locked:
362 	resv->adds_in_progress++;
363 
364 	/*
365 	 * Check for sufficient descriptors in the cache to accommodate
366 	 * the number of in progress add operations.
367 	 */
368 	if (resv->adds_in_progress > resv->region_cache_count) {
369 		struct file_region *trg;
370 
371 		VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
372 		/* Must drop lock to allocate a new descriptor. */
373 		resv->adds_in_progress--;
374 		spin_unlock(&resv->lock);
375 
376 		trg = kmalloc(sizeof(*trg), GFP_KERNEL);
377 		if (!trg) {
378 			kfree(nrg);
379 			return -ENOMEM;
380 		}
381 
382 		spin_lock(&resv->lock);
383 		list_add(&trg->link, &resv->region_cache);
384 		resv->region_cache_count++;
385 		goto retry_locked;
386 	}
387 
388 	/* Locate the region we are before or in. */
389 	list_for_each_entry(rg, head, link)
390 		if (f <= rg->to)
391 			break;
392 
393 	/* If we are below the current region then a new region is required.
394 	 * Subtle, allocate a new region at the position but make it zero
395 	 * size such that we can guarantee to record the reservation. */
396 	if (&rg->link == head || t < rg->from) {
397 		if (!nrg) {
398 			resv->adds_in_progress--;
399 			spin_unlock(&resv->lock);
400 			nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
401 			if (!nrg)
402 				return -ENOMEM;
403 
404 			nrg->from = f;
405 			nrg->to   = f;
406 			INIT_LIST_HEAD(&nrg->link);
407 			goto retry;
408 		}
409 
410 		list_add(&nrg->link, rg->link.prev);
411 		chg = t - f;
412 		goto out_nrg;
413 	}
414 
415 	/* Round our left edge to the current segment if it encloses us. */
416 	if (f > rg->from)
417 		f = rg->from;
418 	chg = t - f;
419 
420 	/* Check for and consume any regions we now overlap with. */
421 	list_for_each_entry(rg, rg->link.prev, link) {
422 		if (&rg->link == head)
423 			break;
424 		if (rg->from > t)
425 			goto out;
426 
427 		/* We overlap with this area, if it extends further than
428 		 * us then we must extend ourselves.  Account for its
429 		 * existing reservation. */
430 		if (rg->to > t) {
431 			chg += rg->to - t;
432 			t = rg->to;
433 		}
434 		chg -= rg->to - rg->from;
435 	}
436 
437 out:
438 	spin_unlock(&resv->lock);
439 	/*  We already know we raced and no longer need the new region */
440 	kfree(nrg);
441 	return chg;
442 out_nrg:
443 	spin_unlock(&resv->lock);
444 	return chg;
445 }
446 
447 /*
448  * Abort the in progress add operation.  The adds_in_progress field
449  * of the resv_map keeps track of the operations in progress between
450  * calls to region_chg and region_add.  Operations are sometimes
451  * aborted after the call to region_chg.  In such cases, region_abort
452  * is called to decrement the adds_in_progress counter.
453  *
454  * NOTE: The range arguments [f, t) are not needed or used in this
455  * routine.  They are kept to make reading the calling code easier as
456  * arguments will match the associated region_chg call.
457  */
458 static void region_abort(struct resv_map *resv, long f, long t)
459 {
460 	spin_lock(&resv->lock);
461 	VM_BUG_ON(!resv->region_cache_count);
462 	resv->adds_in_progress--;
463 	spin_unlock(&resv->lock);
464 }
465 
466 /*
467  * Delete the specified range [f, t) from the reserve map.  If the
468  * t parameter is LONG_MAX, this indicates that ALL regions after f
469  * should be deleted.  Locate the regions which intersect [f, t)
470  * and either trim, delete or split the existing regions.
471  *
472  * Returns the number of huge pages deleted from the reserve map.
473  * In the normal case, the return value is zero or more.  In the
474  * case where a region must be split, a new region descriptor must
475  * be allocated.  If the allocation fails, -ENOMEM will be returned.
476  * NOTE: If the parameter t == LONG_MAX, then we will never split
477  * a region and possibly return -ENOMEM.  Callers specifying
478  * t == LONG_MAX do not need to check for -ENOMEM error.
479  */
480 static long region_del(struct resv_map *resv, long f, long t)
481 {
482 	struct list_head *head = &resv->regions;
483 	struct file_region *rg, *trg;
484 	struct file_region *nrg = NULL;
485 	long del = 0;
486 
487 retry:
488 	spin_lock(&resv->lock);
489 	list_for_each_entry_safe(rg, trg, head, link) {
490 		/*
491 		 * Skip regions before the range to be deleted.  file_region
492 		 * ranges are normally of the form [from, to).  However, there
493 		 * may be a "placeholder" entry in the map which is of the form
494 		 * (from, to) with from == to.  Check for placeholder entries
495 		 * at the beginning of the range to be deleted.
496 		 */
497 		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
498 			continue;
499 
500 		if (rg->from >= t)
501 			break;
502 
503 		if (f > rg->from && t < rg->to) { /* Must split region */
504 			/*
505 			 * Check for an entry in the cache before dropping
506 			 * lock and attempting allocation.
507 			 */
508 			if (!nrg &&
509 			    resv->region_cache_count > resv->adds_in_progress) {
510 				nrg = list_first_entry(&resv->region_cache,
511 							struct file_region,
512 							link);
513 				list_del(&nrg->link);
514 				resv->region_cache_count--;
515 			}
516 
517 			if (!nrg) {
518 				spin_unlock(&resv->lock);
519 				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
520 				if (!nrg)
521 					return -ENOMEM;
522 				goto retry;
523 			}
524 
525 			del += t - f;
526 
527 			/* New entry for end of split region */
528 			nrg->from = t;
529 			nrg->to = rg->to;
530 			INIT_LIST_HEAD(&nrg->link);
531 
532 			/* Original entry is trimmed */
533 			rg->to = f;
534 
535 			list_add(&nrg->link, &rg->link);
536 			nrg = NULL;
537 			break;
538 		}
539 
540 		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
541 			del += rg->to - rg->from;
542 			list_del(&rg->link);
543 			kfree(rg);
544 			continue;
545 		}
546 
547 		if (f <= rg->from) {	/* Trim beginning of region */
548 			del += t - rg->from;
549 			rg->from = t;
550 		} else {		/* Trim end of region */
551 			del += rg->to - f;
552 			rg->to = f;
553 		}
554 	}
555 
556 	spin_unlock(&resv->lock);
557 	kfree(nrg);
558 	return del;
559 }
560 
561 /*
562  * A rare out of memory error was encountered which prevented removal of
563  * the reserve map region for a page.  The huge page itself was free'ed
564  * and removed from the page cache.  This routine will adjust the subpool
565  * usage count, and the global reserve count if needed.  By incrementing
566  * these counts, the reserve map entry which could not be deleted will
567  * appear as a "reserved" entry instead of simply dangling with incorrect
568  * counts.
569  */
570 void hugetlb_fix_reserve_counts(struct inode *inode, bool restore_reserve)
571 {
572 	struct hugepage_subpool *spool = subpool_inode(inode);
573 	long rsv_adjust;
574 
575 	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
576 	if (restore_reserve && rsv_adjust) {
577 		struct hstate *h = hstate_inode(inode);
578 
579 		hugetlb_acct_memory(h, 1);
580 	}
581 }
582 
583 /*
584  * Count and return the number of huge pages in the reserve map
585  * that intersect with the range [f, t).
586  */
587 static long region_count(struct resv_map *resv, long f, long t)
588 {
589 	struct list_head *head = &resv->regions;
590 	struct file_region *rg;
591 	long chg = 0;
592 
593 	spin_lock(&resv->lock);
594 	/* Locate each segment we overlap with, and count that overlap. */
595 	list_for_each_entry(rg, head, link) {
596 		long seg_from;
597 		long seg_to;
598 
599 		if (rg->to <= f)
600 			continue;
601 		if (rg->from >= t)
602 			break;
603 
604 		seg_from = max(rg->from, f);
605 		seg_to = min(rg->to, t);
606 
607 		chg += seg_to - seg_from;
608 	}
609 	spin_unlock(&resv->lock);
610 
611 	return chg;
612 }
613 
614 /*
615  * Convert the address within this vma to the page offset within
616  * the mapping, in pagecache page units; huge pages here.
617  */
618 static pgoff_t vma_hugecache_offset(struct hstate *h,
619 			struct vm_area_struct *vma, unsigned long address)
620 {
621 	return ((address - vma->vm_start) >> huge_page_shift(h)) +
622 			(vma->vm_pgoff >> huge_page_order(h));
623 }
624 
625 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
626 				     unsigned long address)
627 {
628 	return vma_hugecache_offset(hstate_vma(vma), vma, address);
629 }
630 
631 /*
632  * Return the size of the pages allocated when backing a VMA. In the majority
633  * cases this will be same size as used by the page table entries.
634  */
635 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
636 {
637 	struct hstate *hstate;
638 
639 	if (!is_vm_hugetlb_page(vma))
640 		return PAGE_SIZE;
641 
642 	hstate = hstate_vma(vma);
643 
644 	return 1UL << huge_page_shift(hstate);
645 }
646 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
647 
648 /*
649  * Return the page size being used by the MMU to back a VMA. In the majority
650  * of cases, the page size used by the kernel matches the MMU size. On
651  * architectures where it differs, an architecture-specific version of this
652  * function is required.
653  */
654 #ifndef vma_mmu_pagesize
655 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
656 {
657 	return vma_kernel_pagesize(vma);
658 }
659 #endif
660 
661 /*
662  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
663  * bits of the reservation map pointer, which are always clear due to
664  * alignment.
665  */
666 #define HPAGE_RESV_OWNER    (1UL << 0)
667 #define HPAGE_RESV_UNMAPPED (1UL << 1)
668 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
669 
670 /*
671  * These helpers are used to track how many pages are reserved for
672  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
673  * is guaranteed to have their future faults succeed.
674  *
675  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
676  * the reserve counters are updated with the hugetlb_lock held. It is safe
677  * to reset the VMA at fork() time as it is not in use yet and there is no
678  * chance of the global counters getting corrupted as a result of the values.
679  *
680  * The private mapping reservation is represented in a subtly different
681  * manner to a shared mapping.  A shared mapping has a region map associated
682  * with the underlying file, this region map represents the backing file
683  * pages which have ever had a reservation assigned which this persists even
684  * after the page is instantiated.  A private mapping has a region map
685  * associated with the original mmap which is attached to all VMAs which
686  * reference it, this region map represents those offsets which have consumed
687  * reservation ie. where pages have been instantiated.
688  */
689 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
690 {
691 	return (unsigned long)vma->vm_private_data;
692 }
693 
694 static void set_vma_private_data(struct vm_area_struct *vma,
695 							unsigned long value)
696 {
697 	vma->vm_private_data = (void *)value;
698 }
699 
700 struct resv_map *resv_map_alloc(void)
701 {
702 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
703 	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
704 
705 	if (!resv_map || !rg) {
706 		kfree(resv_map);
707 		kfree(rg);
708 		return NULL;
709 	}
710 
711 	kref_init(&resv_map->refs);
712 	spin_lock_init(&resv_map->lock);
713 	INIT_LIST_HEAD(&resv_map->regions);
714 
715 	resv_map->adds_in_progress = 0;
716 
717 	INIT_LIST_HEAD(&resv_map->region_cache);
718 	list_add(&rg->link, &resv_map->region_cache);
719 	resv_map->region_cache_count = 1;
720 
721 	return resv_map;
722 }
723 
724 void resv_map_release(struct kref *ref)
725 {
726 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
727 	struct list_head *head = &resv_map->region_cache;
728 	struct file_region *rg, *trg;
729 
730 	/* Clear out any active regions before we release the map. */
731 	region_del(resv_map, 0, LONG_MAX);
732 
733 	/* ... and any entries left in the cache */
734 	list_for_each_entry_safe(rg, trg, head, link) {
735 		list_del(&rg->link);
736 		kfree(rg);
737 	}
738 
739 	VM_BUG_ON(resv_map->adds_in_progress);
740 
741 	kfree(resv_map);
742 }
743 
744 static inline struct resv_map *inode_resv_map(struct inode *inode)
745 {
746 	return inode->i_mapping->private_data;
747 }
748 
749 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
750 {
751 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
752 	if (vma->vm_flags & VM_MAYSHARE) {
753 		struct address_space *mapping = vma->vm_file->f_mapping;
754 		struct inode *inode = mapping->host;
755 
756 		return inode_resv_map(inode);
757 
758 	} else {
759 		return (struct resv_map *)(get_vma_private_data(vma) &
760 							~HPAGE_RESV_MASK);
761 	}
762 }
763 
764 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
765 {
766 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
767 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
768 
769 	set_vma_private_data(vma, (get_vma_private_data(vma) &
770 				HPAGE_RESV_MASK) | (unsigned long)map);
771 }
772 
773 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
774 {
775 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
776 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
777 
778 	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
779 }
780 
781 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
782 {
783 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
784 
785 	return (get_vma_private_data(vma) & flag) != 0;
786 }
787 
788 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
789 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
790 {
791 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
792 	if (!(vma->vm_flags & VM_MAYSHARE))
793 		vma->vm_private_data = (void *)0;
794 }
795 
796 /* Returns true if the VMA has associated reserve pages */
797 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
798 {
799 	if (vma->vm_flags & VM_NORESERVE) {
800 		/*
801 		 * This address is already reserved by other process(chg == 0),
802 		 * so, we should decrement reserved count. Without decrementing,
803 		 * reserve count remains after releasing inode, because this
804 		 * allocated page will go into page cache and is regarded as
805 		 * coming from reserved pool in releasing step.  Currently, we
806 		 * don't have any other solution to deal with this situation
807 		 * properly, so add work-around here.
808 		 */
809 		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
810 			return true;
811 		else
812 			return false;
813 	}
814 
815 	/* Shared mappings always use reserves */
816 	if (vma->vm_flags & VM_MAYSHARE) {
817 		/*
818 		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
819 		 * be a region map for all pages.  The only situation where
820 		 * there is no region map is if a hole was punched via
821 		 * fallocate.  In this case, there really are no reverves to
822 		 * use.  This situation is indicated if chg != 0.
823 		 */
824 		if (chg)
825 			return false;
826 		else
827 			return true;
828 	}
829 
830 	/*
831 	 * Only the process that called mmap() has reserves for
832 	 * private mappings.
833 	 */
834 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
835 		return true;
836 
837 	return false;
838 }
839 
840 static void enqueue_huge_page(struct hstate *h, struct page *page)
841 {
842 	int nid = page_to_nid(page);
843 	list_move(&page->lru, &h->hugepage_freelists[nid]);
844 	h->free_huge_pages++;
845 	h->free_huge_pages_node[nid]++;
846 }
847 
848 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
849 {
850 	struct page *page;
851 
852 	list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
853 		if (!is_migrate_isolate_page(page))
854 			break;
855 	/*
856 	 * if 'non-isolated free hugepage' not found on the list,
857 	 * the allocation fails.
858 	 */
859 	if (&h->hugepage_freelists[nid] == &page->lru)
860 		return NULL;
861 	list_move(&page->lru, &h->hugepage_activelist);
862 	set_page_refcounted(page);
863 	h->free_huge_pages--;
864 	h->free_huge_pages_node[nid]--;
865 	return page;
866 }
867 
868 /* Movability of hugepages depends on migration support. */
869 static inline gfp_t htlb_alloc_mask(struct hstate *h)
870 {
871 	if (hugepages_treat_as_movable || hugepage_migration_supported(h))
872 		return GFP_HIGHUSER_MOVABLE;
873 	else
874 		return GFP_HIGHUSER;
875 }
876 
877 static struct page *dequeue_huge_page_vma(struct hstate *h,
878 				struct vm_area_struct *vma,
879 				unsigned long address, int avoid_reserve,
880 				long chg)
881 {
882 	struct page *page = NULL;
883 	struct mempolicy *mpol;
884 	nodemask_t *nodemask;
885 	struct zonelist *zonelist;
886 	struct zone *zone;
887 	struct zoneref *z;
888 	unsigned int cpuset_mems_cookie;
889 
890 	/*
891 	 * A child process with MAP_PRIVATE mappings created by their parent
892 	 * have no page reserves. This check ensures that reservations are
893 	 * not "stolen". The child may still get SIGKILLed
894 	 */
895 	if (!vma_has_reserves(vma, chg) &&
896 			h->free_huge_pages - h->resv_huge_pages == 0)
897 		goto err;
898 
899 	/* If reserves cannot be used, ensure enough pages are in the pool */
900 	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
901 		goto err;
902 
903 retry_cpuset:
904 	cpuset_mems_cookie = read_mems_allowed_begin();
905 	zonelist = huge_zonelist(vma, address,
906 					htlb_alloc_mask(h), &mpol, &nodemask);
907 
908 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
909 						MAX_NR_ZONES - 1, nodemask) {
910 		if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) {
911 			page = dequeue_huge_page_node(h, zone_to_nid(zone));
912 			if (page) {
913 				if (avoid_reserve)
914 					break;
915 				if (!vma_has_reserves(vma, chg))
916 					break;
917 
918 				SetPagePrivate(page);
919 				h->resv_huge_pages--;
920 				break;
921 			}
922 		}
923 	}
924 
925 	mpol_cond_put(mpol);
926 	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
927 		goto retry_cpuset;
928 	return page;
929 
930 err:
931 	return NULL;
932 }
933 
934 /*
935  * common helper functions for hstate_next_node_to_{alloc|free}.
936  * We may have allocated or freed a huge page based on a different
937  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
938  * be outside of *nodes_allowed.  Ensure that we use an allowed
939  * node for alloc or free.
940  */
941 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
942 {
943 	nid = next_node_in(nid, *nodes_allowed);
944 	VM_BUG_ON(nid >= MAX_NUMNODES);
945 
946 	return nid;
947 }
948 
949 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
950 {
951 	if (!node_isset(nid, *nodes_allowed))
952 		nid = next_node_allowed(nid, nodes_allowed);
953 	return nid;
954 }
955 
956 /*
957  * returns the previously saved node ["this node"] from which to
958  * allocate a persistent huge page for the pool and advance the
959  * next node from which to allocate, handling wrap at end of node
960  * mask.
961  */
962 static int hstate_next_node_to_alloc(struct hstate *h,
963 					nodemask_t *nodes_allowed)
964 {
965 	int nid;
966 
967 	VM_BUG_ON(!nodes_allowed);
968 
969 	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
970 	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
971 
972 	return nid;
973 }
974 
975 /*
976  * helper for free_pool_huge_page() - return the previously saved
977  * node ["this node"] from which to free a huge page.  Advance the
978  * next node id whether or not we find a free huge page to free so
979  * that the next attempt to free addresses the next node.
980  */
981 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
982 {
983 	int nid;
984 
985 	VM_BUG_ON(!nodes_allowed);
986 
987 	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
988 	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
989 
990 	return nid;
991 }
992 
993 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
994 	for (nr_nodes = nodes_weight(*mask);				\
995 		nr_nodes > 0 &&						\
996 		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
997 		nr_nodes--)
998 
999 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
1000 	for (nr_nodes = nodes_weight(*mask);				\
1001 		nr_nodes > 0 &&						\
1002 		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
1003 		nr_nodes--)
1004 
1005 #if defined(CONFIG_X86_64) && ((defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA))
1006 static void destroy_compound_gigantic_page(struct page *page,
1007 					unsigned int order)
1008 {
1009 	int i;
1010 	int nr_pages = 1 << order;
1011 	struct page *p = page + 1;
1012 
1013 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1014 		clear_compound_head(p);
1015 		set_page_refcounted(p);
1016 	}
1017 
1018 	set_compound_order(page, 0);
1019 	__ClearPageHead(page);
1020 }
1021 
1022 static void free_gigantic_page(struct page *page, unsigned int order)
1023 {
1024 	free_contig_range(page_to_pfn(page), 1 << order);
1025 }
1026 
1027 static int __alloc_gigantic_page(unsigned long start_pfn,
1028 				unsigned long nr_pages)
1029 {
1030 	unsigned long end_pfn = start_pfn + nr_pages;
1031 	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1032 }
1033 
1034 static bool pfn_range_valid_gigantic(struct zone *z,
1035 			unsigned long start_pfn, unsigned long nr_pages)
1036 {
1037 	unsigned long i, end_pfn = start_pfn + nr_pages;
1038 	struct page *page;
1039 
1040 	for (i = start_pfn; i < end_pfn; i++) {
1041 		if (!pfn_valid(i))
1042 			return false;
1043 
1044 		page = pfn_to_page(i);
1045 
1046 		if (page_zone(page) != z)
1047 			return false;
1048 
1049 		if (PageReserved(page))
1050 			return false;
1051 
1052 		if (page_count(page) > 0)
1053 			return false;
1054 
1055 		if (PageHuge(page))
1056 			return false;
1057 	}
1058 
1059 	return true;
1060 }
1061 
1062 static bool zone_spans_last_pfn(const struct zone *zone,
1063 			unsigned long start_pfn, unsigned long nr_pages)
1064 {
1065 	unsigned long last_pfn = start_pfn + nr_pages - 1;
1066 	return zone_spans_pfn(zone, last_pfn);
1067 }
1068 
1069 static struct page *alloc_gigantic_page(int nid, unsigned int order)
1070 {
1071 	unsigned long nr_pages = 1 << order;
1072 	unsigned long ret, pfn, flags;
1073 	struct zone *z;
1074 
1075 	z = NODE_DATA(nid)->node_zones;
1076 	for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
1077 		spin_lock_irqsave(&z->lock, flags);
1078 
1079 		pfn = ALIGN(z->zone_start_pfn, nr_pages);
1080 		while (zone_spans_last_pfn(z, pfn, nr_pages)) {
1081 			if (pfn_range_valid_gigantic(z, pfn, nr_pages)) {
1082 				/*
1083 				 * We release the zone lock here because
1084 				 * alloc_contig_range() will also lock the zone
1085 				 * at some point. If there's an allocation
1086 				 * spinning on this lock, it may win the race
1087 				 * and cause alloc_contig_range() to fail...
1088 				 */
1089 				spin_unlock_irqrestore(&z->lock, flags);
1090 				ret = __alloc_gigantic_page(pfn, nr_pages);
1091 				if (!ret)
1092 					return pfn_to_page(pfn);
1093 				spin_lock_irqsave(&z->lock, flags);
1094 			}
1095 			pfn += nr_pages;
1096 		}
1097 
1098 		spin_unlock_irqrestore(&z->lock, flags);
1099 	}
1100 
1101 	return NULL;
1102 }
1103 
1104 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1105 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1106 
1107 static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
1108 {
1109 	struct page *page;
1110 
1111 	page = alloc_gigantic_page(nid, huge_page_order(h));
1112 	if (page) {
1113 		prep_compound_gigantic_page(page, huge_page_order(h));
1114 		prep_new_huge_page(h, page, nid);
1115 	}
1116 
1117 	return page;
1118 }
1119 
1120 static int alloc_fresh_gigantic_page(struct hstate *h,
1121 				nodemask_t *nodes_allowed)
1122 {
1123 	struct page *page = NULL;
1124 	int nr_nodes, node;
1125 
1126 	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1127 		page = alloc_fresh_gigantic_page_node(h, node);
1128 		if (page)
1129 			return 1;
1130 	}
1131 
1132 	return 0;
1133 }
1134 
1135 static inline bool gigantic_page_supported(void) { return true; }
1136 #else
1137 static inline bool gigantic_page_supported(void) { return false; }
1138 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1139 static inline void destroy_compound_gigantic_page(struct page *page,
1140 						unsigned int order) { }
1141 static inline int alloc_fresh_gigantic_page(struct hstate *h,
1142 					nodemask_t *nodes_allowed) { return 0; }
1143 #endif
1144 
1145 static void update_and_free_page(struct hstate *h, struct page *page)
1146 {
1147 	int i;
1148 
1149 	if (hstate_is_gigantic(h) && !gigantic_page_supported())
1150 		return;
1151 
1152 	h->nr_huge_pages--;
1153 	h->nr_huge_pages_node[page_to_nid(page)]--;
1154 	for (i = 0; i < pages_per_huge_page(h); i++) {
1155 		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1156 				1 << PG_referenced | 1 << PG_dirty |
1157 				1 << PG_active | 1 << PG_private |
1158 				1 << PG_writeback);
1159 	}
1160 	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1161 	set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1162 	set_page_refcounted(page);
1163 	if (hstate_is_gigantic(h)) {
1164 		destroy_compound_gigantic_page(page, huge_page_order(h));
1165 		free_gigantic_page(page, huge_page_order(h));
1166 	} else {
1167 		__free_pages(page, huge_page_order(h));
1168 	}
1169 }
1170 
1171 struct hstate *size_to_hstate(unsigned long size)
1172 {
1173 	struct hstate *h;
1174 
1175 	for_each_hstate(h) {
1176 		if (huge_page_size(h) == size)
1177 			return h;
1178 	}
1179 	return NULL;
1180 }
1181 
1182 /*
1183  * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1184  * to hstate->hugepage_activelist.)
1185  *
1186  * This function can be called for tail pages, but never returns true for them.
1187  */
1188 bool page_huge_active(struct page *page)
1189 {
1190 	VM_BUG_ON_PAGE(!PageHuge(page), page);
1191 	return PageHead(page) && PagePrivate(&page[1]);
1192 }
1193 
1194 /* never called for tail page */
1195 static void set_page_huge_active(struct page *page)
1196 {
1197 	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1198 	SetPagePrivate(&page[1]);
1199 }
1200 
1201 static void clear_page_huge_active(struct page *page)
1202 {
1203 	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1204 	ClearPagePrivate(&page[1]);
1205 }
1206 
1207 void free_huge_page(struct page *page)
1208 {
1209 	/*
1210 	 * Can't pass hstate in here because it is called from the
1211 	 * compound page destructor.
1212 	 */
1213 	struct hstate *h = page_hstate(page);
1214 	int nid = page_to_nid(page);
1215 	struct hugepage_subpool *spool =
1216 		(struct hugepage_subpool *)page_private(page);
1217 	bool restore_reserve;
1218 
1219 	set_page_private(page, 0);
1220 	page->mapping = NULL;
1221 	VM_BUG_ON_PAGE(page_count(page), page);
1222 	VM_BUG_ON_PAGE(page_mapcount(page), page);
1223 	restore_reserve = PagePrivate(page);
1224 	ClearPagePrivate(page);
1225 
1226 	/*
1227 	 * A return code of zero implies that the subpool will be under its
1228 	 * minimum size if the reservation is not restored after page is free.
1229 	 * Therefore, force restore_reserve operation.
1230 	 */
1231 	if (hugepage_subpool_put_pages(spool, 1) == 0)
1232 		restore_reserve = true;
1233 
1234 	spin_lock(&hugetlb_lock);
1235 	clear_page_huge_active(page);
1236 	hugetlb_cgroup_uncharge_page(hstate_index(h),
1237 				     pages_per_huge_page(h), page);
1238 	if (restore_reserve)
1239 		h->resv_huge_pages++;
1240 
1241 	if (h->surplus_huge_pages_node[nid]) {
1242 		/* remove the page from active list */
1243 		list_del(&page->lru);
1244 		update_and_free_page(h, page);
1245 		h->surplus_huge_pages--;
1246 		h->surplus_huge_pages_node[nid]--;
1247 	} else {
1248 		arch_clear_hugepage_flags(page);
1249 		enqueue_huge_page(h, page);
1250 	}
1251 	spin_unlock(&hugetlb_lock);
1252 }
1253 
1254 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1255 {
1256 	INIT_LIST_HEAD(&page->lru);
1257 	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1258 	spin_lock(&hugetlb_lock);
1259 	set_hugetlb_cgroup(page, NULL);
1260 	h->nr_huge_pages++;
1261 	h->nr_huge_pages_node[nid]++;
1262 	spin_unlock(&hugetlb_lock);
1263 	put_page(page); /* free it into the hugepage allocator */
1264 }
1265 
1266 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1267 {
1268 	int i;
1269 	int nr_pages = 1 << order;
1270 	struct page *p = page + 1;
1271 
1272 	/* we rely on prep_new_huge_page to set the destructor */
1273 	set_compound_order(page, order);
1274 	__ClearPageReserved(page);
1275 	__SetPageHead(page);
1276 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1277 		/*
1278 		 * For gigantic hugepages allocated through bootmem at
1279 		 * boot, it's safer to be consistent with the not-gigantic
1280 		 * hugepages and clear the PG_reserved bit from all tail pages
1281 		 * too.  Otherwse drivers using get_user_pages() to access tail
1282 		 * pages may get the reference counting wrong if they see
1283 		 * PG_reserved set on a tail page (despite the head page not
1284 		 * having PG_reserved set).  Enforcing this consistency between
1285 		 * head and tail pages allows drivers to optimize away a check
1286 		 * on the head page when they need know if put_page() is needed
1287 		 * after get_user_pages().
1288 		 */
1289 		__ClearPageReserved(p);
1290 		set_page_count(p, 0);
1291 		set_compound_head(p, page);
1292 	}
1293 	atomic_set(compound_mapcount_ptr(page), -1);
1294 }
1295 
1296 /*
1297  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1298  * transparent huge pages.  See the PageTransHuge() documentation for more
1299  * details.
1300  */
1301 int PageHuge(struct page *page)
1302 {
1303 	if (!PageCompound(page))
1304 		return 0;
1305 
1306 	page = compound_head(page);
1307 	return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1308 }
1309 EXPORT_SYMBOL_GPL(PageHuge);
1310 
1311 /*
1312  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1313  * normal or transparent huge pages.
1314  */
1315 int PageHeadHuge(struct page *page_head)
1316 {
1317 	if (!PageHead(page_head))
1318 		return 0;
1319 
1320 	return get_compound_page_dtor(page_head) == free_huge_page;
1321 }
1322 
1323 pgoff_t __basepage_index(struct page *page)
1324 {
1325 	struct page *page_head = compound_head(page);
1326 	pgoff_t index = page_index(page_head);
1327 	unsigned long compound_idx;
1328 
1329 	if (!PageHuge(page_head))
1330 		return page_index(page);
1331 
1332 	if (compound_order(page_head) >= MAX_ORDER)
1333 		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1334 	else
1335 		compound_idx = page - page_head;
1336 
1337 	return (index << compound_order(page_head)) + compound_idx;
1338 }
1339 
1340 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1341 {
1342 	struct page *page;
1343 
1344 	page = __alloc_pages_node(nid,
1345 		htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1346 						__GFP_REPEAT|__GFP_NOWARN,
1347 		huge_page_order(h));
1348 	if (page) {
1349 		prep_new_huge_page(h, page, nid);
1350 	}
1351 
1352 	return page;
1353 }
1354 
1355 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1356 {
1357 	struct page *page;
1358 	int nr_nodes, node;
1359 	int ret = 0;
1360 
1361 	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1362 		page = alloc_fresh_huge_page_node(h, node);
1363 		if (page) {
1364 			ret = 1;
1365 			break;
1366 		}
1367 	}
1368 
1369 	if (ret)
1370 		count_vm_event(HTLB_BUDDY_PGALLOC);
1371 	else
1372 		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1373 
1374 	return ret;
1375 }
1376 
1377 /*
1378  * Free huge page from pool from next node to free.
1379  * Attempt to keep persistent huge pages more or less
1380  * balanced over allowed nodes.
1381  * Called with hugetlb_lock locked.
1382  */
1383 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1384 							 bool acct_surplus)
1385 {
1386 	int nr_nodes, node;
1387 	int ret = 0;
1388 
1389 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1390 		/*
1391 		 * If we're returning unused surplus pages, only examine
1392 		 * nodes with surplus pages.
1393 		 */
1394 		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1395 		    !list_empty(&h->hugepage_freelists[node])) {
1396 			struct page *page =
1397 				list_entry(h->hugepage_freelists[node].next,
1398 					  struct page, lru);
1399 			list_del(&page->lru);
1400 			h->free_huge_pages--;
1401 			h->free_huge_pages_node[node]--;
1402 			if (acct_surplus) {
1403 				h->surplus_huge_pages--;
1404 				h->surplus_huge_pages_node[node]--;
1405 			}
1406 			update_and_free_page(h, page);
1407 			ret = 1;
1408 			break;
1409 		}
1410 	}
1411 
1412 	return ret;
1413 }
1414 
1415 /*
1416  * Dissolve a given free hugepage into free buddy pages. This function does
1417  * nothing for in-use (including surplus) hugepages.
1418  */
1419 static void dissolve_free_huge_page(struct page *page)
1420 {
1421 	spin_lock(&hugetlb_lock);
1422 	if (PageHuge(page) && !page_count(page)) {
1423 		struct hstate *h = page_hstate(page);
1424 		int nid = page_to_nid(page);
1425 		list_del(&page->lru);
1426 		h->free_huge_pages--;
1427 		h->free_huge_pages_node[nid]--;
1428 		update_and_free_page(h, page);
1429 	}
1430 	spin_unlock(&hugetlb_lock);
1431 }
1432 
1433 /*
1434  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1435  * make specified memory blocks removable from the system.
1436  * Note that start_pfn should aligned with (minimum) hugepage size.
1437  */
1438 void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1439 {
1440 	unsigned long pfn;
1441 
1442 	if (!hugepages_supported())
1443 		return;
1444 
1445 	VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << minimum_order));
1446 	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order)
1447 		dissolve_free_huge_page(pfn_to_page(pfn));
1448 }
1449 
1450 /*
1451  * There are 3 ways this can get called:
1452  * 1. With vma+addr: we use the VMA's memory policy
1453  * 2. With !vma, but nid=NUMA_NO_NODE:  We try to allocate a huge
1454  *    page from any node, and let the buddy allocator itself figure
1455  *    it out.
1456  * 3. With !vma, but nid!=NUMA_NO_NODE.  We allocate a huge page
1457  *    strictly from 'nid'
1458  */
1459 static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h,
1460 		struct vm_area_struct *vma, unsigned long addr, int nid)
1461 {
1462 	int order = huge_page_order(h);
1463 	gfp_t gfp = htlb_alloc_mask(h)|__GFP_COMP|__GFP_REPEAT|__GFP_NOWARN;
1464 	unsigned int cpuset_mems_cookie;
1465 
1466 	/*
1467 	 * We need a VMA to get a memory policy.  If we do not
1468 	 * have one, we use the 'nid' argument.
1469 	 *
1470 	 * The mempolicy stuff below has some non-inlined bits
1471 	 * and calls ->vm_ops.  That makes it hard to optimize at
1472 	 * compile-time, even when NUMA is off and it does
1473 	 * nothing.  This helps the compiler optimize it out.
1474 	 */
1475 	if (!IS_ENABLED(CONFIG_NUMA) || !vma) {
1476 		/*
1477 		 * If a specific node is requested, make sure to
1478 		 * get memory from there, but only when a node
1479 		 * is explicitly specified.
1480 		 */
1481 		if (nid != NUMA_NO_NODE)
1482 			gfp |= __GFP_THISNODE;
1483 		/*
1484 		 * Make sure to call something that can handle
1485 		 * nid=NUMA_NO_NODE
1486 		 */
1487 		return alloc_pages_node(nid, gfp, order);
1488 	}
1489 
1490 	/*
1491 	 * OK, so we have a VMA.  Fetch the mempolicy and try to
1492 	 * allocate a huge page with it.  We will only reach this
1493 	 * when CONFIG_NUMA=y.
1494 	 */
1495 	do {
1496 		struct page *page;
1497 		struct mempolicy *mpol;
1498 		struct zonelist *zl;
1499 		nodemask_t *nodemask;
1500 
1501 		cpuset_mems_cookie = read_mems_allowed_begin();
1502 		zl = huge_zonelist(vma, addr, gfp, &mpol, &nodemask);
1503 		mpol_cond_put(mpol);
1504 		page = __alloc_pages_nodemask(gfp, order, zl, nodemask);
1505 		if (page)
1506 			return page;
1507 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
1508 
1509 	return NULL;
1510 }
1511 
1512 /*
1513  * There are two ways to allocate a huge page:
1514  * 1. When you have a VMA and an address (like a fault)
1515  * 2. When you have no VMA (like when setting /proc/.../nr_hugepages)
1516  *
1517  * 'vma' and 'addr' are only for (1).  'nid' is always NUMA_NO_NODE in
1518  * this case which signifies that the allocation should be done with
1519  * respect for the VMA's memory policy.
1520  *
1521  * For (2), we ignore 'vma' and 'addr' and use 'nid' exclusively. This
1522  * implies that memory policies will not be taken in to account.
1523  */
1524 static struct page *__alloc_buddy_huge_page(struct hstate *h,
1525 		struct vm_area_struct *vma, unsigned long addr, int nid)
1526 {
1527 	struct page *page;
1528 	unsigned int r_nid;
1529 
1530 	if (hstate_is_gigantic(h))
1531 		return NULL;
1532 
1533 	/*
1534 	 * Make sure that anyone specifying 'nid' is not also specifying a VMA.
1535 	 * This makes sure the caller is picking _one_ of the modes with which
1536 	 * we can call this function, not both.
1537 	 */
1538 	if (vma || (addr != -1)) {
1539 		VM_WARN_ON_ONCE(addr == -1);
1540 		VM_WARN_ON_ONCE(nid != NUMA_NO_NODE);
1541 	}
1542 	/*
1543 	 * Assume we will successfully allocate the surplus page to
1544 	 * prevent racing processes from causing the surplus to exceed
1545 	 * overcommit
1546 	 *
1547 	 * This however introduces a different race, where a process B
1548 	 * tries to grow the static hugepage pool while alloc_pages() is
1549 	 * called by process A. B will only examine the per-node
1550 	 * counters in determining if surplus huge pages can be
1551 	 * converted to normal huge pages in adjust_pool_surplus(). A
1552 	 * won't be able to increment the per-node counter, until the
1553 	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
1554 	 * no more huge pages can be converted from surplus to normal
1555 	 * state (and doesn't try to convert again). Thus, we have a
1556 	 * case where a surplus huge page exists, the pool is grown, and
1557 	 * the surplus huge page still exists after, even though it
1558 	 * should just have been converted to a normal huge page. This
1559 	 * does not leak memory, though, as the hugepage will be freed
1560 	 * once it is out of use. It also does not allow the counters to
1561 	 * go out of whack in adjust_pool_surplus() as we don't modify
1562 	 * the node values until we've gotten the hugepage and only the
1563 	 * per-node value is checked there.
1564 	 */
1565 	spin_lock(&hugetlb_lock);
1566 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1567 		spin_unlock(&hugetlb_lock);
1568 		return NULL;
1569 	} else {
1570 		h->nr_huge_pages++;
1571 		h->surplus_huge_pages++;
1572 	}
1573 	spin_unlock(&hugetlb_lock);
1574 
1575 	page = __hugetlb_alloc_buddy_huge_page(h, vma, addr, nid);
1576 
1577 	spin_lock(&hugetlb_lock);
1578 	if (page) {
1579 		INIT_LIST_HEAD(&page->lru);
1580 		r_nid = page_to_nid(page);
1581 		set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1582 		set_hugetlb_cgroup(page, NULL);
1583 		/*
1584 		 * We incremented the global counters already
1585 		 */
1586 		h->nr_huge_pages_node[r_nid]++;
1587 		h->surplus_huge_pages_node[r_nid]++;
1588 		__count_vm_event(HTLB_BUDDY_PGALLOC);
1589 	} else {
1590 		h->nr_huge_pages--;
1591 		h->surplus_huge_pages--;
1592 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1593 	}
1594 	spin_unlock(&hugetlb_lock);
1595 
1596 	return page;
1597 }
1598 
1599 /*
1600  * Allocate a huge page from 'nid'.  Note, 'nid' may be
1601  * NUMA_NO_NODE, which means that it may be allocated
1602  * anywhere.
1603  */
1604 static
1605 struct page *__alloc_buddy_huge_page_no_mpol(struct hstate *h, int nid)
1606 {
1607 	unsigned long addr = -1;
1608 
1609 	return __alloc_buddy_huge_page(h, NULL, addr, nid);
1610 }
1611 
1612 /*
1613  * Use the VMA's mpolicy to allocate a huge page from the buddy.
1614  */
1615 static
1616 struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h,
1617 		struct vm_area_struct *vma, unsigned long addr)
1618 {
1619 	return __alloc_buddy_huge_page(h, vma, addr, NUMA_NO_NODE);
1620 }
1621 
1622 /*
1623  * This allocation function is useful in the context where vma is irrelevant.
1624  * E.g. soft-offlining uses this function because it only cares physical
1625  * address of error page.
1626  */
1627 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1628 {
1629 	struct page *page = NULL;
1630 
1631 	spin_lock(&hugetlb_lock);
1632 	if (h->free_huge_pages - h->resv_huge_pages > 0)
1633 		page = dequeue_huge_page_node(h, nid);
1634 	spin_unlock(&hugetlb_lock);
1635 
1636 	if (!page)
1637 		page = __alloc_buddy_huge_page_no_mpol(h, nid);
1638 
1639 	return page;
1640 }
1641 
1642 /*
1643  * Increase the hugetlb pool such that it can accommodate a reservation
1644  * of size 'delta'.
1645  */
1646 static int gather_surplus_pages(struct hstate *h, int delta)
1647 {
1648 	struct list_head surplus_list;
1649 	struct page *page, *tmp;
1650 	int ret, i;
1651 	int needed, allocated;
1652 	bool alloc_ok = true;
1653 
1654 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1655 	if (needed <= 0) {
1656 		h->resv_huge_pages += delta;
1657 		return 0;
1658 	}
1659 
1660 	allocated = 0;
1661 	INIT_LIST_HEAD(&surplus_list);
1662 
1663 	ret = -ENOMEM;
1664 retry:
1665 	spin_unlock(&hugetlb_lock);
1666 	for (i = 0; i < needed; i++) {
1667 		page = __alloc_buddy_huge_page_no_mpol(h, NUMA_NO_NODE);
1668 		if (!page) {
1669 			alloc_ok = false;
1670 			break;
1671 		}
1672 		list_add(&page->lru, &surplus_list);
1673 	}
1674 	allocated += i;
1675 
1676 	/*
1677 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
1678 	 * because either resv_huge_pages or free_huge_pages may have changed.
1679 	 */
1680 	spin_lock(&hugetlb_lock);
1681 	needed = (h->resv_huge_pages + delta) -
1682 			(h->free_huge_pages + allocated);
1683 	if (needed > 0) {
1684 		if (alloc_ok)
1685 			goto retry;
1686 		/*
1687 		 * We were not able to allocate enough pages to
1688 		 * satisfy the entire reservation so we free what
1689 		 * we've allocated so far.
1690 		 */
1691 		goto free;
1692 	}
1693 	/*
1694 	 * The surplus_list now contains _at_least_ the number of extra pages
1695 	 * needed to accommodate the reservation.  Add the appropriate number
1696 	 * of pages to the hugetlb pool and free the extras back to the buddy
1697 	 * allocator.  Commit the entire reservation here to prevent another
1698 	 * process from stealing the pages as they are added to the pool but
1699 	 * before they are reserved.
1700 	 */
1701 	needed += allocated;
1702 	h->resv_huge_pages += delta;
1703 	ret = 0;
1704 
1705 	/* Free the needed pages to the hugetlb pool */
1706 	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1707 		if ((--needed) < 0)
1708 			break;
1709 		/*
1710 		 * This page is now managed by the hugetlb allocator and has
1711 		 * no users -- drop the buddy allocator's reference.
1712 		 */
1713 		put_page_testzero(page);
1714 		VM_BUG_ON_PAGE(page_count(page), page);
1715 		enqueue_huge_page(h, page);
1716 	}
1717 free:
1718 	spin_unlock(&hugetlb_lock);
1719 
1720 	/* Free unnecessary surplus pages to the buddy allocator */
1721 	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1722 		put_page(page);
1723 	spin_lock(&hugetlb_lock);
1724 
1725 	return ret;
1726 }
1727 
1728 /*
1729  * When releasing a hugetlb pool reservation, any surplus pages that were
1730  * allocated to satisfy the reservation must be explicitly freed if they were
1731  * never used.
1732  * Called with hugetlb_lock held.
1733  */
1734 static void return_unused_surplus_pages(struct hstate *h,
1735 					unsigned long unused_resv_pages)
1736 {
1737 	unsigned long nr_pages;
1738 
1739 	/* Uncommit the reservation */
1740 	h->resv_huge_pages -= unused_resv_pages;
1741 
1742 	/* Cannot return gigantic pages currently */
1743 	if (hstate_is_gigantic(h))
1744 		return;
1745 
1746 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1747 
1748 	/*
1749 	 * We want to release as many surplus pages as possible, spread
1750 	 * evenly across all nodes with memory. Iterate across these nodes
1751 	 * until we can no longer free unreserved surplus pages. This occurs
1752 	 * when the nodes with surplus pages have no free pages.
1753 	 * free_pool_huge_page() will balance the the freed pages across the
1754 	 * on-line nodes with memory and will handle the hstate accounting.
1755 	 */
1756 	while (nr_pages--) {
1757 		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1758 			break;
1759 		cond_resched_lock(&hugetlb_lock);
1760 	}
1761 }
1762 
1763 
1764 /*
1765  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1766  * are used by the huge page allocation routines to manage reservations.
1767  *
1768  * vma_needs_reservation is called to determine if the huge page at addr
1769  * within the vma has an associated reservation.  If a reservation is
1770  * needed, the value 1 is returned.  The caller is then responsible for
1771  * managing the global reservation and subpool usage counts.  After
1772  * the huge page has been allocated, vma_commit_reservation is called
1773  * to add the page to the reservation map.  If the page allocation fails,
1774  * the reservation must be ended instead of committed.  vma_end_reservation
1775  * is called in such cases.
1776  *
1777  * In the normal case, vma_commit_reservation returns the same value
1778  * as the preceding vma_needs_reservation call.  The only time this
1779  * is not the case is if a reserve map was changed between calls.  It
1780  * is the responsibility of the caller to notice the difference and
1781  * take appropriate action.
1782  */
1783 enum vma_resv_mode {
1784 	VMA_NEEDS_RESV,
1785 	VMA_COMMIT_RESV,
1786 	VMA_END_RESV,
1787 };
1788 static long __vma_reservation_common(struct hstate *h,
1789 				struct vm_area_struct *vma, unsigned long addr,
1790 				enum vma_resv_mode mode)
1791 {
1792 	struct resv_map *resv;
1793 	pgoff_t idx;
1794 	long ret;
1795 
1796 	resv = vma_resv_map(vma);
1797 	if (!resv)
1798 		return 1;
1799 
1800 	idx = vma_hugecache_offset(h, vma, addr);
1801 	switch (mode) {
1802 	case VMA_NEEDS_RESV:
1803 		ret = region_chg(resv, idx, idx + 1);
1804 		break;
1805 	case VMA_COMMIT_RESV:
1806 		ret = region_add(resv, idx, idx + 1);
1807 		break;
1808 	case VMA_END_RESV:
1809 		region_abort(resv, idx, idx + 1);
1810 		ret = 0;
1811 		break;
1812 	default:
1813 		BUG();
1814 	}
1815 
1816 	if (vma->vm_flags & VM_MAYSHARE)
1817 		return ret;
1818 	else
1819 		return ret < 0 ? ret : 0;
1820 }
1821 
1822 static long vma_needs_reservation(struct hstate *h,
1823 			struct vm_area_struct *vma, unsigned long addr)
1824 {
1825 	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1826 }
1827 
1828 static long vma_commit_reservation(struct hstate *h,
1829 			struct vm_area_struct *vma, unsigned long addr)
1830 {
1831 	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1832 }
1833 
1834 static void vma_end_reservation(struct hstate *h,
1835 			struct vm_area_struct *vma, unsigned long addr)
1836 {
1837 	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1838 }
1839 
1840 struct page *alloc_huge_page(struct vm_area_struct *vma,
1841 				    unsigned long addr, int avoid_reserve)
1842 {
1843 	struct hugepage_subpool *spool = subpool_vma(vma);
1844 	struct hstate *h = hstate_vma(vma);
1845 	struct page *page;
1846 	long map_chg, map_commit;
1847 	long gbl_chg;
1848 	int ret, idx;
1849 	struct hugetlb_cgroup *h_cg;
1850 
1851 	idx = hstate_index(h);
1852 	/*
1853 	 * Examine the region/reserve map to determine if the process
1854 	 * has a reservation for the page to be allocated.  A return
1855 	 * code of zero indicates a reservation exists (no change).
1856 	 */
1857 	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
1858 	if (map_chg < 0)
1859 		return ERR_PTR(-ENOMEM);
1860 
1861 	/*
1862 	 * Processes that did not create the mapping will have no
1863 	 * reserves as indicated by the region/reserve map. Check
1864 	 * that the allocation will not exceed the subpool limit.
1865 	 * Allocations for MAP_NORESERVE mappings also need to be
1866 	 * checked against any subpool limit.
1867 	 */
1868 	if (map_chg || avoid_reserve) {
1869 		gbl_chg = hugepage_subpool_get_pages(spool, 1);
1870 		if (gbl_chg < 0) {
1871 			vma_end_reservation(h, vma, addr);
1872 			return ERR_PTR(-ENOSPC);
1873 		}
1874 
1875 		/*
1876 		 * Even though there was no reservation in the region/reserve
1877 		 * map, there could be reservations associated with the
1878 		 * subpool that can be used.  This would be indicated if the
1879 		 * return value of hugepage_subpool_get_pages() is zero.
1880 		 * However, if avoid_reserve is specified we still avoid even
1881 		 * the subpool reservations.
1882 		 */
1883 		if (avoid_reserve)
1884 			gbl_chg = 1;
1885 	}
1886 
1887 	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1888 	if (ret)
1889 		goto out_subpool_put;
1890 
1891 	spin_lock(&hugetlb_lock);
1892 	/*
1893 	 * glb_chg is passed to indicate whether or not a page must be taken
1894 	 * from the global free pool (global change).  gbl_chg == 0 indicates
1895 	 * a reservation exists for the allocation.
1896 	 */
1897 	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
1898 	if (!page) {
1899 		spin_unlock(&hugetlb_lock);
1900 		page = __alloc_buddy_huge_page_with_mpol(h, vma, addr);
1901 		if (!page)
1902 			goto out_uncharge_cgroup;
1903 		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
1904 			SetPagePrivate(page);
1905 			h->resv_huge_pages--;
1906 		}
1907 		spin_lock(&hugetlb_lock);
1908 		list_move(&page->lru, &h->hugepage_activelist);
1909 		/* Fall through */
1910 	}
1911 	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1912 	spin_unlock(&hugetlb_lock);
1913 
1914 	set_page_private(page, (unsigned long)spool);
1915 
1916 	map_commit = vma_commit_reservation(h, vma, addr);
1917 	if (unlikely(map_chg > map_commit)) {
1918 		/*
1919 		 * The page was added to the reservation map between
1920 		 * vma_needs_reservation and vma_commit_reservation.
1921 		 * This indicates a race with hugetlb_reserve_pages.
1922 		 * Adjust for the subpool count incremented above AND
1923 		 * in hugetlb_reserve_pages for the same page.  Also,
1924 		 * the reservation count added in hugetlb_reserve_pages
1925 		 * no longer applies.
1926 		 */
1927 		long rsv_adjust;
1928 
1929 		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
1930 		hugetlb_acct_memory(h, -rsv_adjust);
1931 	}
1932 	return page;
1933 
1934 out_uncharge_cgroup:
1935 	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
1936 out_subpool_put:
1937 	if (map_chg || avoid_reserve)
1938 		hugepage_subpool_put_pages(spool, 1);
1939 	vma_end_reservation(h, vma, addr);
1940 	return ERR_PTR(-ENOSPC);
1941 }
1942 
1943 /*
1944  * alloc_huge_page()'s wrapper which simply returns the page if allocation
1945  * succeeds, otherwise NULL. This function is called from new_vma_page(),
1946  * where no ERR_VALUE is expected to be returned.
1947  */
1948 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1949 				unsigned long addr, int avoid_reserve)
1950 {
1951 	struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1952 	if (IS_ERR(page))
1953 		page = NULL;
1954 	return page;
1955 }
1956 
1957 int __weak alloc_bootmem_huge_page(struct hstate *h)
1958 {
1959 	struct huge_bootmem_page *m;
1960 	int nr_nodes, node;
1961 
1962 	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1963 		void *addr;
1964 
1965 		addr = memblock_virt_alloc_try_nid_nopanic(
1966 				huge_page_size(h), huge_page_size(h),
1967 				0, BOOTMEM_ALLOC_ACCESSIBLE, node);
1968 		if (addr) {
1969 			/*
1970 			 * Use the beginning of the huge page to store the
1971 			 * huge_bootmem_page struct (until gather_bootmem
1972 			 * puts them into the mem_map).
1973 			 */
1974 			m = addr;
1975 			goto found;
1976 		}
1977 	}
1978 	return 0;
1979 
1980 found:
1981 	BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
1982 	/* Put them into a private list first because mem_map is not up yet */
1983 	list_add(&m->list, &huge_boot_pages);
1984 	m->hstate = h;
1985 	return 1;
1986 }
1987 
1988 static void __init prep_compound_huge_page(struct page *page,
1989 		unsigned int order)
1990 {
1991 	if (unlikely(order > (MAX_ORDER - 1)))
1992 		prep_compound_gigantic_page(page, order);
1993 	else
1994 		prep_compound_page(page, order);
1995 }
1996 
1997 /* Put bootmem huge pages into the standard lists after mem_map is up */
1998 static void __init gather_bootmem_prealloc(void)
1999 {
2000 	struct huge_bootmem_page *m;
2001 
2002 	list_for_each_entry(m, &huge_boot_pages, list) {
2003 		struct hstate *h = m->hstate;
2004 		struct page *page;
2005 
2006 #ifdef CONFIG_HIGHMEM
2007 		page = pfn_to_page(m->phys >> PAGE_SHIFT);
2008 		memblock_free_late(__pa(m),
2009 				   sizeof(struct huge_bootmem_page));
2010 #else
2011 		page = virt_to_page(m);
2012 #endif
2013 		WARN_ON(page_count(page) != 1);
2014 		prep_compound_huge_page(page, h->order);
2015 		WARN_ON(PageReserved(page));
2016 		prep_new_huge_page(h, page, page_to_nid(page));
2017 		/*
2018 		 * If we had gigantic hugepages allocated at boot time, we need
2019 		 * to restore the 'stolen' pages to totalram_pages in order to
2020 		 * fix confusing memory reports from free(1) and another
2021 		 * side-effects, like CommitLimit going negative.
2022 		 */
2023 		if (hstate_is_gigantic(h))
2024 			adjust_managed_page_count(page, 1 << h->order);
2025 	}
2026 }
2027 
2028 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2029 {
2030 	unsigned long i;
2031 
2032 	for (i = 0; i < h->max_huge_pages; ++i) {
2033 		if (hstate_is_gigantic(h)) {
2034 			if (!alloc_bootmem_huge_page(h))
2035 				break;
2036 		} else if (!alloc_fresh_huge_page(h,
2037 					 &node_states[N_MEMORY]))
2038 			break;
2039 	}
2040 	h->max_huge_pages = i;
2041 }
2042 
2043 static void __init hugetlb_init_hstates(void)
2044 {
2045 	struct hstate *h;
2046 
2047 	for_each_hstate(h) {
2048 		if (minimum_order > huge_page_order(h))
2049 			minimum_order = huge_page_order(h);
2050 
2051 		/* oversize hugepages were init'ed in early boot */
2052 		if (!hstate_is_gigantic(h))
2053 			hugetlb_hstate_alloc_pages(h);
2054 	}
2055 	VM_BUG_ON(minimum_order == UINT_MAX);
2056 }
2057 
2058 static char * __init memfmt(char *buf, unsigned long n)
2059 {
2060 	if (n >= (1UL << 30))
2061 		sprintf(buf, "%lu GB", n >> 30);
2062 	else if (n >= (1UL << 20))
2063 		sprintf(buf, "%lu MB", n >> 20);
2064 	else
2065 		sprintf(buf, "%lu KB", n >> 10);
2066 	return buf;
2067 }
2068 
2069 static void __init report_hugepages(void)
2070 {
2071 	struct hstate *h;
2072 
2073 	for_each_hstate(h) {
2074 		char buf[32];
2075 		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2076 			memfmt(buf, huge_page_size(h)),
2077 			h->free_huge_pages);
2078 	}
2079 }
2080 
2081 #ifdef CONFIG_HIGHMEM
2082 static void try_to_free_low(struct hstate *h, unsigned long count,
2083 						nodemask_t *nodes_allowed)
2084 {
2085 	int i;
2086 
2087 	if (hstate_is_gigantic(h))
2088 		return;
2089 
2090 	for_each_node_mask(i, *nodes_allowed) {
2091 		struct page *page, *next;
2092 		struct list_head *freel = &h->hugepage_freelists[i];
2093 		list_for_each_entry_safe(page, next, freel, lru) {
2094 			if (count >= h->nr_huge_pages)
2095 				return;
2096 			if (PageHighMem(page))
2097 				continue;
2098 			list_del(&page->lru);
2099 			update_and_free_page(h, page);
2100 			h->free_huge_pages--;
2101 			h->free_huge_pages_node[page_to_nid(page)]--;
2102 		}
2103 	}
2104 }
2105 #else
2106 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2107 						nodemask_t *nodes_allowed)
2108 {
2109 }
2110 #endif
2111 
2112 /*
2113  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2114  * balanced by operating on them in a round-robin fashion.
2115  * Returns 1 if an adjustment was made.
2116  */
2117 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2118 				int delta)
2119 {
2120 	int nr_nodes, node;
2121 
2122 	VM_BUG_ON(delta != -1 && delta != 1);
2123 
2124 	if (delta < 0) {
2125 		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2126 			if (h->surplus_huge_pages_node[node])
2127 				goto found;
2128 		}
2129 	} else {
2130 		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2131 			if (h->surplus_huge_pages_node[node] <
2132 					h->nr_huge_pages_node[node])
2133 				goto found;
2134 		}
2135 	}
2136 	return 0;
2137 
2138 found:
2139 	h->surplus_huge_pages += delta;
2140 	h->surplus_huge_pages_node[node] += delta;
2141 	return 1;
2142 }
2143 
2144 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2145 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2146 						nodemask_t *nodes_allowed)
2147 {
2148 	unsigned long min_count, ret;
2149 
2150 	if (hstate_is_gigantic(h) && !gigantic_page_supported())
2151 		return h->max_huge_pages;
2152 
2153 	/*
2154 	 * Increase the pool size
2155 	 * First take pages out of surplus state.  Then make up the
2156 	 * remaining difference by allocating fresh huge pages.
2157 	 *
2158 	 * We might race with __alloc_buddy_huge_page() here and be unable
2159 	 * to convert a surplus huge page to a normal huge page. That is
2160 	 * not critical, though, it just means the overall size of the
2161 	 * pool might be one hugepage larger than it needs to be, but
2162 	 * within all the constraints specified by the sysctls.
2163 	 */
2164 	spin_lock(&hugetlb_lock);
2165 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2166 		if (!adjust_pool_surplus(h, nodes_allowed, -1))
2167 			break;
2168 	}
2169 
2170 	while (count > persistent_huge_pages(h)) {
2171 		/*
2172 		 * If this allocation races such that we no longer need the
2173 		 * page, free_huge_page will handle it by freeing the page
2174 		 * and reducing the surplus.
2175 		 */
2176 		spin_unlock(&hugetlb_lock);
2177 		if (hstate_is_gigantic(h))
2178 			ret = alloc_fresh_gigantic_page(h, nodes_allowed);
2179 		else
2180 			ret = alloc_fresh_huge_page(h, nodes_allowed);
2181 		spin_lock(&hugetlb_lock);
2182 		if (!ret)
2183 			goto out;
2184 
2185 		/* Bail for signals. Probably ctrl-c from user */
2186 		if (signal_pending(current))
2187 			goto out;
2188 	}
2189 
2190 	/*
2191 	 * Decrease the pool size
2192 	 * First return free pages to the buddy allocator (being careful
2193 	 * to keep enough around to satisfy reservations).  Then place
2194 	 * pages into surplus state as needed so the pool will shrink
2195 	 * to the desired size as pages become free.
2196 	 *
2197 	 * By placing pages into the surplus state independent of the
2198 	 * overcommit value, we are allowing the surplus pool size to
2199 	 * exceed overcommit. There are few sane options here. Since
2200 	 * __alloc_buddy_huge_page() is checking the global counter,
2201 	 * though, we'll note that we're not allowed to exceed surplus
2202 	 * and won't grow the pool anywhere else. Not until one of the
2203 	 * sysctls are changed, or the surplus pages go out of use.
2204 	 */
2205 	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2206 	min_count = max(count, min_count);
2207 	try_to_free_low(h, min_count, nodes_allowed);
2208 	while (min_count < persistent_huge_pages(h)) {
2209 		if (!free_pool_huge_page(h, nodes_allowed, 0))
2210 			break;
2211 		cond_resched_lock(&hugetlb_lock);
2212 	}
2213 	while (count < persistent_huge_pages(h)) {
2214 		if (!adjust_pool_surplus(h, nodes_allowed, 1))
2215 			break;
2216 	}
2217 out:
2218 	ret = persistent_huge_pages(h);
2219 	spin_unlock(&hugetlb_lock);
2220 	return ret;
2221 }
2222 
2223 #define HSTATE_ATTR_RO(_name) \
2224 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2225 
2226 #define HSTATE_ATTR(_name) \
2227 	static struct kobj_attribute _name##_attr = \
2228 		__ATTR(_name, 0644, _name##_show, _name##_store)
2229 
2230 static struct kobject *hugepages_kobj;
2231 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2232 
2233 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2234 
2235 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2236 {
2237 	int i;
2238 
2239 	for (i = 0; i < HUGE_MAX_HSTATE; i++)
2240 		if (hstate_kobjs[i] == kobj) {
2241 			if (nidp)
2242 				*nidp = NUMA_NO_NODE;
2243 			return &hstates[i];
2244 		}
2245 
2246 	return kobj_to_node_hstate(kobj, nidp);
2247 }
2248 
2249 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2250 					struct kobj_attribute *attr, char *buf)
2251 {
2252 	struct hstate *h;
2253 	unsigned long nr_huge_pages;
2254 	int nid;
2255 
2256 	h = kobj_to_hstate(kobj, &nid);
2257 	if (nid == NUMA_NO_NODE)
2258 		nr_huge_pages = h->nr_huge_pages;
2259 	else
2260 		nr_huge_pages = h->nr_huge_pages_node[nid];
2261 
2262 	return sprintf(buf, "%lu\n", nr_huge_pages);
2263 }
2264 
2265 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2266 					   struct hstate *h, int nid,
2267 					   unsigned long count, size_t len)
2268 {
2269 	int err;
2270 	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2271 
2272 	if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2273 		err = -EINVAL;
2274 		goto out;
2275 	}
2276 
2277 	if (nid == NUMA_NO_NODE) {
2278 		/*
2279 		 * global hstate attribute
2280 		 */
2281 		if (!(obey_mempolicy &&
2282 				init_nodemask_of_mempolicy(nodes_allowed))) {
2283 			NODEMASK_FREE(nodes_allowed);
2284 			nodes_allowed = &node_states[N_MEMORY];
2285 		}
2286 	} else if (nodes_allowed) {
2287 		/*
2288 		 * per node hstate attribute: adjust count to global,
2289 		 * but restrict alloc/free to the specified node.
2290 		 */
2291 		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2292 		init_nodemask_of_node(nodes_allowed, nid);
2293 	} else
2294 		nodes_allowed = &node_states[N_MEMORY];
2295 
2296 	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2297 
2298 	if (nodes_allowed != &node_states[N_MEMORY])
2299 		NODEMASK_FREE(nodes_allowed);
2300 
2301 	return len;
2302 out:
2303 	NODEMASK_FREE(nodes_allowed);
2304 	return err;
2305 }
2306 
2307 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2308 					 struct kobject *kobj, const char *buf,
2309 					 size_t len)
2310 {
2311 	struct hstate *h;
2312 	unsigned long count;
2313 	int nid;
2314 	int err;
2315 
2316 	err = kstrtoul(buf, 10, &count);
2317 	if (err)
2318 		return err;
2319 
2320 	h = kobj_to_hstate(kobj, &nid);
2321 	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2322 }
2323 
2324 static ssize_t nr_hugepages_show(struct kobject *kobj,
2325 				       struct kobj_attribute *attr, char *buf)
2326 {
2327 	return nr_hugepages_show_common(kobj, attr, buf);
2328 }
2329 
2330 static ssize_t nr_hugepages_store(struct kobject *kobj,
2331 	       struct kobj_attribute *attr, const char *buf, size_t len)
2332 {
2333 	return nr_hugepages_store_common(false, kobj, buf, len);
2334 }
2335 HSTATE_ATTR(nr_hugepages);
2336 
2337 #ifdef CONFIG_NUMA
2338 
2339 /*
2340  * hstate attribute for optionally mempolicy-based constraint on persistent
2341  * huge page alloc/free.
2342  */
2343 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2344 				       struct kobj_attribute *attr, char *buf)
2345 {
2346 	return nr_hugepages_show_common(kobj, attr, buf);
2347 }
2348 
2349 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2350 	       struct kobj_attribute *attr, const char *buf, size_t len)
2351 {
2352 	return nr_hugepages_store_common(true, kobj, buf, len);
2353 }
2354 HSTATE_ATTR(nr_hugepages_mempolicy);
2355 #endif
2356 
2357 
2358 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2359 					struct kobj_attribute *attr, char *buf)
2360 {
2361 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2362 	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2363 }
2364 
2365 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2366 		struct kobj_attribute *attr, const char *buf, size_t count)
2367 {
2368 	int err;
2369 	unsigned long input;
2370 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2371 
2372 	if (hstate_is_gigantic(h))
2373 		return -EINVAL;
2374 
2375 	err = kstrtoul(buf, 10, &input);
2376 	if (err)
2377 		return err;
2378 
2379 	spin_lock(&hugetlb_lock);
2380 	h->nr_overcommit_huge_pages = input;
2381 	spin_unlock(&hugetlb_lock);
2382 
2383 	return count;
2384 }
2385 HSTATE_ATTR(nr_overcommit_hugepages);
2386 
2387 static ssize_t free_hugepages_show(struct kobject *kobj,
2388 					struct kobj_attribute *attr, char *buf)
2389 {
2390 	struct hstate *h;
2391 	unsigned long free_huge_pages;
2392 	int nid;
2393 
2394 	h = kobj_to_hstate(kobj, &nid);
2395 	if (nid == NUMA_NO_NODE)
2396 		free_huge_pages = h->free_huge_pages;
2397 	else
2398 		free_huge_pages = h->free_huge_pages_node[nid];
2399 
2400 	return sprintf(buf, "%lu\n", free_huge_pages);
2401 }
2402 HSTATE_ATTR_RO(free_hugepages);
2403 
2404 static ssize_t resv_hugepages_show(struct kobject *kobj,
2405 					struct kobj_attribute *attr, char *buf)
2406 {
2407 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2408 	return sprintf(buf, "%lu\n", h->resv_huge_pages);
2409 }
2410 HSTATE_ATTR_RO(resv_hugepages);
2411 
2412 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2413 					struct kobj_attribute *attr, char *buf)
2414 {
2415 	struct hstate *h;
2416 	unsigned long surplus_huge_pages;
2417 	int nid;
2418 
2419 	h = kobj_to_hstate(kobj, &nid);
2420 	if (nid == NUMA_NO_NODE)
2421 		surplus_huge_pages = h->surplus_huge_pages;
2422 	else
2423 		surplus_huge_pages = h->surplus_huge_pages_node[nid];
2424 
2425 	return sprintf(buf, "%lu\n", surplus_huge_pages);
2426 }
2427 HSTATE_ATTR_RO(surplus_hugepages);
2428 
2429 static struct attribute *hstate_attrs[] = {
2430 	&nr_hugepages_attr.attr,
2431 	&nr_overcommit_hugepages_attr.attr,
2432 	&free_hugepages_attr.attr,
2433 	&resv_hugepages_attr.attr,
2434 	&surplus_hugepages_attr.attr,
2435 #ifdef CONFIG_NUMA
2436 	&nr_hugepages_mempolicy_attr.attr,
2437 #endif
2438 	NULL,
2439 };
2440 
2441 static struct attribute_group hstate_attr_group = {
2442 	.attrs = hstate_attrs,
2443 };
2444 
2445 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2446 				    struct kobject **hstate_kobjs,
2447 				    struct attribute_group *hstate_attr_group)
2448 {
2449 	int retval;
2450 	int hi = hstate_index(h);
2451 
2452 	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2453 	if (!hstate_kobjs[hi])
2454 		return -ENOMEM;
2455 
2456 	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2457 	if (retval)
2458 		kobject_put(hstate_kobjs[hi]);
2459 
2460 	return retval;
2461 }
2462 
2463 static void __init hugetlb_sysfs_init(void)
2464 {
2465 	struct hstate *h;
2466 	int err;
2467 
2468 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2469 	if (!hugepages_kobj)
2470 		return;
2471 
2472 	for_each_hstate(h) {
2473 		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2474 					 hstate_kobjs, &hstate_attr_group);
2475 		if (err)
2476 			pr_err("Hugetlb: Unable to add hstate %s", h->name);
2477 	}
2478 }
2479 
2480 #ifdef CONFIG_NUMA
2481 
2482 /*
2483  * node_hstate/s - associate per node hstate attributes, via their kobjects,
2484  * with node devices in node_devices[] using a parallel array.  The array
2485  * index of a node device or _hstate == node id.
2486  * This is here to avoid any static dependency of the node device driver, in
2487  * the base kernel, on the hugetlb module.
2488  */
2489 struct node_hstate {
2490 	struct kobject		*hugepages_kobj;
2491 	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
2492 };
2493 static struct node_hstate node_hstates[MAX_NUMNODES];
2494 
2495 /*
2496  * A subset of global hstate attributes for node devices
2497  */
2498 static struct attribute *per_node_hstate_attrs[] = {
2499 	&nr_hugepages_attr.attr,
2500 	&free_hugepages_attr.attr,
2501 	&surplus_hugepages_attr.attr,
2502 	NULL,
2503 };
2504 
2505 static struct attribute_group per_node_hstate_attr_group = {
2506 	.attrs = per_node_hstate_attrs,
2507 };
2508 
2509 /*
2510  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2511  * Returns node id via non-NULL nidp.
2512  */
2513 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2514 {
2515 	int nid;
2516 
2517 	for (nid = 0; nid < nr_node_ids; nid++) {
2518 		struct node_hstate *nhs = &node_hstates[nid];
2519 		int i;
2520 		for (i = 0; i < HUGE_MAX_HSTATE; i++)
2521 			if (nhs->hstate_kobjs[i] == kobj) {
2522 				if (nidp)
2523 					*nidp = nid;
2524 				return &hstates[i];
2525 			}
2526 	}
2527 
2528 	BUG();
2529 	return NULL;
2530 }
2531 
2532 /*
2533  * Unregister hstate attributes from a single node device.
2534  * No-op if no hstate attributes attached.
2535  */
2536 static void hugetlb_unregister_node(struct node *node)
2537 {
2538 	struct hstate *h;
2539 	struct node_hstate *nhs = &node_hstates[node->dev.id];
2540 
2541 	if (!nhs->hugepages_kobj)
2542 		return;		/* no hstate attributes */
2543 
2544 	for_each_hstate(h) {
2545 		int idx = hstate_index(h);
2546 		if (nhs->hstate_kobjs[idx]) {
2547 			kobject_put(nhs->hstate_kobjs[idx]);
2548 			nhs->hstate_kobjs[idx] = NULL;
2549 		}
2550 	}
2551 
2552 	kobject_put(nhs->hugepages_kobj);
2553 	nhs->hugepages_kobj = NULL;
2554 }
2555 
2556 
2557 /*
2558  * Register hstate attributes for a single node device.
2559  * No-op if attributes already registered.
2560  */
2561 static void hugetlb_register_node(struct node *node)
2562 {
2563 	struct hstate *h;
2564 	struct node_hstate *nhs = &node_hstates[node->dev.id];
2565 	int err;
2566 
2567 	if (nhs->hugepages_kobj)
2568 		return;		/* already allocated */
2569 
2570 	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2571 							&node->dev.kobj);
2572 	if (!nhs->hugepages_kobj)
2573 		return;
2574 
2575 	for_each_hstate(h) {
2576 		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2577 						nhs->hstate_kobjs,
2578 						&per_node_hstate_attr_group);
2579 		if (err) {
2580 			pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2581 				h->name, node->dev.id);
2582 			hugetlb_unregister_node(node);
2583 			break;
2584 		}
2585 	}
2586 }
2587 
2588 /*
2589  * hugetlb init time:  register hstate attributes for all registered node
2590  * devices of nodes that have memory.  All on-line nodes should have
2591  * registered their associated device by this time.
2592  */
2593 static void __init hugetlb_register_all_nodes(void)
2594 {
2595 	int nid;
2596 
2597 	for_each_node_state(nid, N_MEMORY) {
2598 		struct node *node = node_devices[nid];
2599 		if (node->dev.id == nid)
2600 			hugetlb_register_node(node);
2601 	}
2602 
2603 	/*
2604 	 * Let the node device driver know we're here so it can
2605 	 * [un]register hstate attributes on node hotplug.
2606 	 */
2607 	register_hugetlbfs_with_node(hugetlb_register_node,
2608 				     hugetlb_unregister_node);
2609 }
2610 #else	/* !CONFIG_NUMA */
2611 
2612 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2613 {
2614 	BUG();
2615 	if (nidp)
2616 		*nidp = -1;
2617 	return NULL;
2618 }
2619 
2620 static void hugetlb_register_all_nodes(void) { }
2621 
2622 #endif
2623 
2624 static int __init hugetlb_init(void)
2625 {
2626 	int i;
2627 
2628 	if (!hugepages_supported())
2629 		return 0;
2630 
2631 	if (!size_to_hstate(default_hstate_size)) {
2632 		default_hstate_size = HPAGE_SIZE;
2633 		if (!size_to_hstate(default_hstate_size))
2634 			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2635 	}
2636 	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2637 	if (default_hstate_max_huge_pages) {
2638 		if (!default_hstate.max_huge_pages)
2639 			default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2640 	}
2641 
2642 	hugetlb_init_hstates();
2643 	gather_bootmem_prealloc();
2644 	report_hugepages();
2645 
2646 	hugetlb_sysfs_init();
2647 	hugetlb_register_all_nodes();
2648 	hugetlb_cgroup_file_init();
2649 
2650 #ifdef CONFIG_SMP
2651 	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2652 #else
2653 	num_fault_mutexes = 1;
2654 #endif
2655 	hugetlb_fault_mutex_table =
2656 		kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2657 	BUG_ON(!hugetlb_fault_mutex_table);
2658 
2659 	for (i = 0; i < num_fault_mutexes; i++)
2660 		mutex_init(&hugetlb_fault_mutex_table[i]);
2661 	return 0;
2662 }
2663 subsys_initcall(hugetlb_init);
2664 
2665 /* Should be called on processing a hugepagesz=... option */
2666 void __init hugetlb_bad_size(void)
2667 {
2668 	parsed_valid_hugepagesz = false;
2669 }
2670 
2671 void __init hugetlb_add_hstate(unsigned int order)
2672 {
2673 	struct hstate *h;
2674 	unsigned long i;
2675 
2676 	if (size_to_hstate(PAGE_SIZE << order)) {
2677 		pr_warn("hugepagesz= specified twice, ignoring\n");
2678 		return;
2679 	}
2680 	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2681 	BUG_ON(order == 0);
2682 	h = &hstates[hugetlb_max_hstate++];
2683 	h->order = order;
2684 	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2685 	h->nr_huge_pages = 0;
2686 	h->free_huge_pages = 0;
2687 	for (i = 0; i < MAX_NUMNODES; ++i)
2688 		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2689 	INIT_LIST_HEAD(&h->hugepage_activelist);
2690 	h->next_nid_to_alloc = first_memory_node;
2691 	h->next_nid_to_free = first_memory_node;
2692 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2693 					huge_page_size(h)/1024);
2694 
2695 	parsed_hstate = h;
2696 }
2697 
2698 static int __init hugetlb_nrpages_setup(char *s)
2699 {
2700 	unsigned long *mhp;
2701 	static unsigned long *last_mhp;
2702 
2703 	if (!parsed_valid_hugepagesz) {
2704 		pr_warn("hugepages = %s preceded by "
2705 			"an unsupported hugepagesz, ignoring\n", s);
2706 		parsed_valid_hugepagesz = true;
2707 		return 1;
2708 	}
2709 	/*
2710 	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2711 	 * so this hugepages= parameter goes to the "default hstate".
2712 	 */
2713 	else if (!hugetlb_max_hstate)
2714 		mhp = &default_hstate_max_huge_pages;
2715 	else
2716 		mhp = &parsed_hstate->max_huge_pages;
2717 
2718 	if (mhp == last_mhp) {
2719 		pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2720 		return 1;
2721 	}
2722 
2723 	if (sscanf(s, "%lu", mhp) <= 0)
2724 		*mhp = 0;
2725 
2726 	/*
2727 	 * Global state is always initialized later in hugetlb_init.
2728 	 * But we need to allocate >= MAX_ORDER hstates here early to still
2729 	 * use the bootmem allocator.
2730 	 */
2731 	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2732 		hugetlb_hstate_alloc_pages(parsed_hstate);
2733 
2734 	last_mhp = mhp;
2735 
2736 	return 1;
2737 }
2738 __setup("hugepages=", hugetlb_nrpages_setup);
2739 
2740 static int __init hugetlb_default_setup(char *s)
2741 {
2742 	default_hstate_size = memparse(s, &s);
2743 	return 1;
2744 }
2745 __setup("default_hugepagesz=", hugetlb_default_setup);
2746 
2747 static unsigned int cpuset_mems_nr(unsigned int *array)
2748 {
2749 	int node;
2750 	unsigned int nr = 0;
2751 
2752 	for_each_node_mask(node, cpuset_current_mems_allowed)
2753 		nr += array[node];
2754 
2755 	return nr;
2756 }
2757 
2758 #ifdef CONFIG_SYSCTL
2759 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2760 			 struct ctl_table *table, int write,
2761 			 void __user *buffer, size_t *length, loff_t *ppos)
2762 {
2763 	struct hstate *h = &default_hstate;
2764 	unsigned long tmp = h->max_huge_pages;
2765 	int ret;
2766 
2767 	if (!hugepages_supported())
2768 		return -EOPNOTSUPP;
2769 
2770 	table->data = &tmp;
2771 	table->maxlen = sizeof(unsigned long);
2772 	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2773 	if (ret)
2774 		goto out;
2775 
2776 	if (write)
2777 		ret = __nr_hugepages_store_common(obey_mempolicy, h,
2778 						  NUMA_NO_NODE, tmp, *length);
2779 out:
2780 	return ret;
2781 }
2782 
2783 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2784 			  void __user *buffer, size_t *length, loff_t *ppos)
2785 {
2786 
2787 	return hugetlb_sysctl_handler_common(false, table, write,
2788 							buffer, length, ppos);
2789 }
2790 
2791 #ifdef CONFIG_NUMA
2792 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2793 			  void __user *buffer, size_t *length, loff_t *ppos)
2794 {
2795 	return hugetlb_sysctl_handler_common(true, table, write,
2796 							buffer, length, ppos);
2797 }
2798 #endif /* CONFIG_NUMA */
2799 
2800 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2801 			void __user *buffer,
2802 			size_t *length, loff_t *ppos)
2803 {
2804 	struct hstate *h = &default_hstate;
2805 	unsigned long tmp;
2806 	int ret;
2807 
2808 	if (!hugepages_supported())
2809 		return -EOPNOTSUPP;
2810 
2811 	tmp = h->nr_overcommit_huge_pages;
2812 
2813 	if (write && hstate_is_gigantic(h))
2814 		return -EINVAL;
2815 
2816 	table->data = &tmp;
2817 	table->maxlen = sizeof(unsigned long);
2818 	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2819 	if (ret)
2820 		goto out;
2821 
2822 	if (write) {
2823 		spin_lock(&hugetlb_lock);
2824 		h->nr_overcommit_huge_pages = tmp;
2825 		spin_unlock(&hugetlb_lock);
2826 	}
2827 out:
2828 	return ret;
2829 }
2830 
2831 #endif /* CONFIG_SYSCTL */
2832 
2833 void hugetlb_report_meminfo(struct seq_file *m)
2834 {
2835 	struct hstate *h = &default_hstate;
2836 	if (!hugepages_supported())
2837 		return;
2838 	seq_printf(m,
2839 			"HugePages_Total:   %5lu\n"
2840 			"HugePages_Free:    %5lu\n"
2841 			"HugePages_Rsvd:    %5lu\n"
2842 			"HugePages_Surp:    %5lu\n"
2843 			"Hugepagesize:   %8lu kB\n",
2844 			h->nr_huge_pages,
2845 			h->free_huge_pages,
2846 			h->resv_huge_pages,
2847 			h->surplus_huge_pages,
2848 			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2849 }
2850 
2851 int hugetlb_report_node_meminfo(int nid, char *buf)
2852 {
2853 	struct hstate *h = &default_hstate;
2854 	if (!hugepages_supported())
2855 		return 0;
2856 	return sprintf(buf,
2857 		"Node %d HugePages_Total: %5u\n"
2858 		"Node %d HugePages_Free:  %5u\n"
2859 		"Node %d HugePages_Surp:  %5u\n",
2860 		nid, h->nr_huge_pages_node[nid],
2861 		nid, h->free_huge_pages_node[nid],
2862 		nid, h->surplus_huge_pages_node[nid]);
2863 }
2864 
2865 void hugetlb_show_meminfo(void)
2866 {
2867 	struct hstate *h;
2868 	int nid;
2869 
2870 	if (!hugepages_supported())
2871 		return;
2872 
2873 	for_each_node_state(nid, N_MEMORY)
2874 		for_each_hstate(h)
2875 			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2876 				nid,
2877 				h->nr_huge_pages_node[nid],
2878 				h->free_huge_pages_node[nid],
2879 				h->surplus_huge_pages_node[nid],
2880 				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2881 }
2882 
2883 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
2884 {
2885 	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
2886 		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
2887 }
2888 
2889 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2890 unsigned long hugetlb_total_pages(void)
2891 {
2892 	struct hstate *h;
2893 	unsigned long nr_total_pages = 0;
2894 
2895 	for_each_hstate(h)
2896 		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2897 	return nr_total_pages;
2898 }
2899 
2900 static int hugetlb_acct_memory(struct hstate *h, long delta)
2901 {
2902 	int ret = -ENOMEM;
2903 
2904 	spin_lock(&hugetlb_lock);
2905 	/*
2906 	 * When cpuset is configured, it breaks the strict hugetlb page
2907 	 * reservation as the accounting is done on a global variable. Such
2908 	 * reservation is completely rubbish in the presence of cpuset because
2909 	 * the reservation is not checked against page availability for the
2910 	 * current cpuset. Application can still potentially OOM'ed by kernel
2911 	 * with lack of free htlb page in cpuset that the task is in.
2912 	 * Attempt to enforce strict accounting with cpuset is almost
2913 	 * impossible (or too ugly) because cpuset is too fluid that
2914 	 * task or memory node can be dynamically moved between cpusets.
2915 	 *
2916 	 * The change of semantics for shared hugetlb mapping with cpuset is
2917 	 * undesirable. However, in order to preserve some of the semantics,
2918 	 * we fall back to check against current free page availability as
2919 	 * a best attempt and hopefully to minimize the impact of changing
2920 	 * semantics that cpuset has.
2921 	 */
2922 	if (delta > 0) {
2923 		if (gather_surplus_pages(h, delta) < 0)
2924 			goto out;
2925 
2926 		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2927 			return_unused_surplus_pages(h, delta);
2928 			goto out;
2929 		}
2930 	}
2931 
2932 	ret = 0;
2933 	if (delta < 0)
2934 		return_unused_surplus_pages(h, (unsigned long) -delta);
2935 
2936 out:
2937 	spin_unlock(&hugetlb_lock);
2938 	return ret;
2939 }
2940 
2941 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2942 {
2943 	struct resv_map *resv = vma_resv_map(vma);
2944 
2945 	/*
2946 	 * This new VMA should share its siblings reservation map if present.
2947 	 * The VMA will only ever have a valid reservation map pointer where
2948 	 * it is being copied for another still existing VMA.  As that VMA
2949 	 * has a reference to the reservation map it cannot disappear until
2950 	 * after this open call completes.  It is therefore safe to take a
2951 	 * new reference here without additional locking.
2952 	 */
2953 	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2954 		kref_get(&resv->refs);
2955 }
2956 
2957 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2958 {
2959 	struct hstate *h = hstate_vma(vma);
2960 	struct resv_map *resv = vma_resv_map(vma);
2961 	struct hugepage_subpool *spool = subpool_vma(vma);
2962 	unsigned long reserve, start, end;
2963 	long gbl_reserve;
2964 
2965 	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2966 		return;
2967 
2968 	start = vma_hugecache_offset(h, vma, vma->vm_start);
2969 	end = vma_hugecache_offset(h, vma, vma->vm_end);
2970 
2971 	reserve = (end - start) - region_count(resv, start, end);
2972 
2973 	kref_put(&resv->refs, resv_map_release);
2974 
2975 	if (reserve) {
2976 		/*
2977 		 * Decrement reserve counts.  The global reserve count may be
2978 		 * adjusted if the subpool has a minimum size.
2979 		 */
2980 		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
2981 		hugetlb_acct_memory(h, -gbl_reserve);
2982 	}
2983 }
2984 
2985 /*
2986  * We cannot handle pagefaults against hugetlb pages at all.  They cause
2987  * handle_mm_fault() to try to instantiate regular-sized pages in the
2988  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
2989  * this far.
2990  */
2991 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2992 {
2993 	BUG();
2994 	return 0;
2995 }
2996 
2997 const struct vm_operations_struct hugetlb_vm_ops = {
2998 	.fault = hugetlb_vm_op_fault,
2999 	.open = hugetlb_vm_op_open,
3000 	.close = hugetlb_vm_op_close,
3001 };
3002 
3003 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3004 				int writable)
3005 {
3006 	pte_t entry;
3007 
3008 	if (writable) {
3009 		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3010 					 vma->vm_page_prot)));
3011 	} else {
3012 		entry = huge_pte_wrprotect(mk_huge_pte(page,
3013 					   vma->vm_page_prot));
3014 	}
3015 	entry = pte_mkyoung(entry);
3016 	entry = pte_mkhuge(entry);
3017 	entry = arch_make_huge_pte(entry, vma, page, writable);
3018 
3019 	return entry;
3020 }
3021 
3022 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3023 				   unsigned long address, pte_t *ptep)
3024 {
3025 	pte_t entry;
3026 
3027 	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3028 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3029 		update_mmu_cache(vma, address, ptep);
3030 }
3031 
3032 static int is_hugetlb_entry_migration(pte_t pte)
3033 {
3034 	swp_entry_t swp;
3035 
3036 	if (huge_pte_none(pte) || pte_present(pte))
3037 		return 0;
3038 	swp = pte_to_swp_entry(pte);
3039 	if (non_swap_entry(swp) && is_migration_entry(swp))
3040 		return 1;
3041 	else
3042 		return 0;
3043 }
3044 
3045 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3046 {
3047 	swp_entry_t swp;
3048 
3049 	if (huge_pte_none(pte) || pte_present(pte))
3050 		return 0;
3051 	swp = pte_to_swp_entry(pte);
3052 	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3053 		return 1;
3054 	else
3055 		return 0;
3056 }
3057 
3058 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3059 			    struct vm_area_struct *vma)
3060 {
3061 	pte_t *src_pte, *dst_pte, entry;
3062 	struct page *ptepage;
3063 	unsigned long addr;
3064 	int cow;
3065 	struct hstate *h = hstate_vma(vma);
3066 	unsigned long sz = huge_page_size(h);
3067 	unsigned long mmun_start;	/* For mmu_notifiers */
3068 	unsigned long mmun_end;		/* For mmu_notifiers */
3069 	int ret = 0;
3070 
3071 	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3072 
3073 	mmun_start = vma->vm_start;
3074 	mmun_end = vma->vm_end;
3075 	if (cow)
3076 		mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
3077 
3078 	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3079 		spinlock_t *src_ptl, *dst_ptl;
3080 		src_pte = huge_pte_offset(src, addr);
3081 		if (!src_pte)
3082 			continue;
3083 		dst_pte = huge_pte_alloc(dst, addr, sz);
3084 		if (!dst_pte) {
3085 			ret = -ENOMEM;
3086 			break;
3087 		}
3088 
3089 		/* If the pagetables are shared don't copy or take references */
3090 		if (dst_pte == src_pte)
3091 			continue;
3092 
3093 		dst_ptl = huge_pte_lock(h, dst, dst_pte);
3094 		src_ptl = huge_pte_lockptr(h, src, src_pte);
3095 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3096 		entry = huge_ptep_get(src_pte);
3097 		if (huge_pte_none(entry)) { /* skip none entry */
3098 			;
3099 		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
3100 				    is_hugetlb_entry_hwpoisoned(entry))) {
3101 			swp_entry_t swp_entry = pte_to_swp_entry(entry);
3102 
3103 			if (is_write_migration_entry(swp_entry) && cow) {
3104 				/*
3105 				 * COW mappings require pages in both
3106 				 * parent and child to be set to read.
3107 				 */
3108 				make_migration_entry_read(&swp_entry);
3109 				entry = swp_entry_to_pte(swp_entry);
3110 				set_huge_pte_at(src, addr, src_pte, entry);
3111 			}
3112 			set_huge_pte_at(dst, addr, dst_pte, entry);
3113 		} else {
3114 			if (cow) {
3115 				huge_ptep_set_wrprotect(src, addr, src_pte);
3116 				mmu_notifier_invalidate_range(src, mmun_start,
3117 								   mmun_end);
3118 			}
3119 			entry = huge_ptep_get(src_pte);
3120 			ptepage = pte_page(entry);
3121 			get_page(ptepage);
3122 			page_dup_rmap(ptepage, true);
3123 			set_huge_pte_at(dst, addr, dst_pte, entry);
3124 			hugetlb_count_add(pages_per_huge_page(h), dst);
3125 		}
3126 		spin_unlock(src_ptl);
3127 		spin_unlock(dst_ptl);
3128 	}
3129 
3130 	if (cow)
3131 		mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3132 
3133 	return ret;
3134 }
3135 
3136 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3137 			    unsigned long start, unsigned long end,
3138 			    struct page *ref_page)
3139 {
3140 	int force_flush = 0;
3141 	struct mm_struct *mm = vma->vm_mm;
3142 	unsigned long address;
3143 	pte_t *ptep;
3144 	pte_t pte;
3145 	spinlock_t *ptl;
3146 	struct page *page;
3147 	struct hstate *h = hstate_vma(vma);
3148 	unsigned long sz = huge_page_size(h);
3149 	const unsigned long mmun_start = start;	/* For mmu_notifiers */
3150 	const unsigned long mmun_end   = end;	/* For mmu_notifiers */
3151 
3152 	WARN_ON(!is_vm_hugetlb_page(vma));
3153 	BUG_ON(start & ~huge_page_mask(h));
3154 	BUG_ON(end & ~huge_page_mask(h));
3155 
3156 	tlb_start_vma(tlb, vma);
3157 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3158 	address = start;
3159 again:
3160 	for (; address < end; address += sz) {
3161 		ptep = huge_pte_offset(mm, address);
3162 		if (!ptep)
3163 			continue;
3164 
3165 		ptl = huge_pte_lock(h, mm, ptep);
3166 		if (huge_pmd_unshare(mm, &address, ptep))
3167 			goto unlock;
3168 
3169 		pte = huge_ptep_get(ptep);
3170 		if (huge_pte_none(pte))
3171 			goto unlock;
3172 
3173 		/*
3174 		 * Migrating hugepage or HWPoisoned hugepage is already
3175 		 * unmapped and its refcount is dropped, so just clear pte here.
3176 		 */
3177 		if (unlikely(!pte_present(pte))) {
3178 			huge_pte_clear(mm, address, ptep);
3179 			goto unlock;
3180 		}
3181 
3182 		page = pte_page(pte);
3183 		/*
3184 		 * If a reference page is supplied, it is because a specific
3185 		 * page is being unmapped, not a range. Ensure the page we
3186 		 * are about to unmap is the actual page of interest.
3187 		 */
3188 		if (ref_page) {
3189 			if (page != ref_page)
3190 				goto unlock;
3191 
3192 			/*
3193 			 * Mark the VMA as having unmapped its page so that
3194 			 * future faults in this VMA will fail rather than
3195 			 * looking like data was lost
3196 			 */
3197 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3198 		}
3199 
3200 		pte = huge_ptep_get_and_clear(mm, address, ptep);
3201 		tlb_remove_tlb_entry(tlb, ptep, address);
3202 		if (huge_pte_dirty(pte))
3203 			set_page_dirty(page);
3204 
3205 		hugetlb_count_sub(pages_per_huge_page(h), mm);
3206 		page_remove_rmap(page, true);
3207 		force_flush = !__tlb_remove_page(tlb, page);
3208 		if (force_flush) {
3209 			address += sz;
3210 			spin_unlock(ptl);
3211 			break;
3212 		}
3213 		/* Bail out after unmapping reference page if supplied */
3214 		if (ref_page) {
3215 			spin_unlock(ptl);
3216 			break;
3217 		}
3218 unlock:
3219 		spin_unlock(ptl);
3220 	}
3221 	/*
3222 	 * mmu_gather ran out of room to batch pages, we break out of
3223 	 * the PTE lock to avoid doing the potential expensive TLB invalidate
3224 	 * and page-free while holding it.
3225 	 */
3226 	if (force_flush) {
3227 		force_flush = 0;
3228 		tlb_flush_mmu(tlb);
3229 		if (address < end && !ref_page)
3230 			goto again;
3231 	}
3232 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3233 	tlb_end_vma(tlb, vma);
3234 }
3235 
3236 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3237 			  struct vm_area_struct *vma, unsigned long start,
3238 			  unsigned long end, struct page *ref_page)
3239 {
3240 	__unmap_hugepage_range(tlb, vma, start, end, ref_page);
3241 
3242 	/*
3243 	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3244 	 * test will fail on a vma being torn down, and not grab a page table
3245 	 * on its way out.  We're lucky that the flag has such an appropriate
3246 	 * name, and can in fact be safely cleared here. We could clear it
3247 	 * before the __unmap_hugepage_range above, but all that's necessary
3248 	 * is to clear it before releasing the i_mmap_rwsem. This works
3249 	 * because in the context this is called, the VMA is about to be
3250 	 * destroyed and the i_mmap_rwsem is held.
3251 	 */
3252 	vma->vm_flags &= ~VM_MAYSHARE;
3253 }
3254 
3255 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3256 			  unsigned long end, struct page *ref_page)
3257 {
3258 	struct mm_struct *mm;
3259 	struct mmu_gather tlb;
3260 
3261 	mm = vma->vm_mm;
3262 
3263 	tlb_gather_mmu(&tlb, mm, start, end);
3264 	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3265 	tlb_finish_mmu(&tlb, start, end);
3266 }
3267 
3268 /*
3269  * This is called when the original mapper is failing to COW a MAP_PRIVATE
3270  * mappping it owns the reserve page for. The intention is to unmap the page
3271  * from other VMAs and let the children be SIGKILLed if they are faulting the
3272  * same region.
3273  */
3274 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3275 			      struct page *page, unsigned long address)
3276 {
3277 	struct hstate *h = hstate_vma(vma);
3278 	struct vm_area_struct *iter_vma;
3279 	struct address_space *mapping;
3280 	pgoff_t pgoff;
3281 
3282 	/*
3283 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3284 	 * from page cache lookup which is in HPAGE_SIZE units.
3285 	 */
3286 	address = address & huge_page_mask(h);
3287 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3288 			vma->vm_pgoff;
3289 	mapping = file_inode(vma->vm_file)->i_mapping;
3290 
3291 	/*
3292 	 * Take the mapping lock for the duration of the table walk. As
3293 	 * this mapping should be shared between all the VMAs,
3294 	 * __unmap_hugepage_range() is called as the lock is already held
3295 	 */
3296 	i_mmap_lock_write(mapping);
3297 	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3298 		/* Do not unmap the current VMA */
3299 		if (iter_vma == vma)
3300 			continue;
3301 
3302 		/*
3303 		 * Shared VMAs have their own reserves and do not affect
3304 		 * MAP_PRIVATE accounting but it is possible that a shared
3305 		 * VMA is using the same page so check and skip such VMAs.
3306 		 */
3307 		if (iter_vma->vm_flags & VM_MAYSHARE)
3308 			continue;
3309 
3310 		/*
3311 		 * Unmap the page from other VMAs without their own reserves.
3312 		 * They get marked to be SIGKILLed if they fault in these
3313 		 * areas. This is because a future no-page fault on this VMA
3314 		 * could insert a zeroed page instead of the data existing
3315 		 * from the time of fork. This would look like data corruption
3316 		 */
3317 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3318 			unmap_hugepage_range(iter_vma, address,
3319 					     address + huge_page_size(h), page);
3320 	}
3321 	i_mmap_unlock_write(mapping);
3322 }
3323 
3324 /*
3325  * Hugetlb_cow() should be called with page lock of the original hugepage held.
3326  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3327  * cannot race with other handlers or page migration.
3328  * Keep the pte_same checks anyway to make transition from the mutex easier.
3329  */
3330 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3331 			unsigned long address, pte_t *ptep, pte_t pte,
3332 			struct page *pagecache_page, spinlock_t *ptl)
3333 {
3334 	struct hstate *h = hstate_vma(vma);
3335 	struct page *old_page, *new_page;
3336 	int ret = 0, outside_reserve = 0;
3337 	unsigned long mmun_start;	/* For mmu_notifiers */
3338 	unsigned long mmun_end;		/* For mmu_notifiers */
3339 
3340 	old_page = pte_page(pte);
3341 
3342 retry_avoidcopy:
3343 	/* If no-one else is actually using this page, avoid the copy
3344 	 * and just make the page writable */
3345 	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3346 		page_move_anon_rmap(old_page, vma, address);
3347 		set_huge_ptep_writable(vma, address, ptep);
3348 		return 0;
3349 	}
3350 
3351 	/*
3352 	 * If the process that created a MAP_PRIVATE mapping is about to
3353 	 * perform a COW due to a shared page count, attempt to satisfy
3354 	 * the allocation without using the existing reserves. The pagecache
3355 	 * page is used to determine if the reserve at this address was
3356 	 * consumed or not. If reserves were used, a partial faulted mapping
3357 	 * at the time of fork() could consume its reserves on COW instead
3358 	 * of the full address range.
3359 	 */
3360 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3361 			old_page != pagecache_page)
3362 		outside_reserve = 1;
3363 
3364 	get_page(old_page);
3365 
3366 	/*
3367 	 * Drop page table lock as buddy allocator may be called. It will
3368 	 * be acquired again before returning to the caller, as expected.
3369 	 */
3370 	spin_unlock(ptl);
3371 	new_page = alloc_huge_page(vma, address, outside_reserve);
3372 
3373 	if (IS_ERR(new_page)) {
3374 		/*
3375 		 * If a process owning a MAP_PRIVATE mapping fails to COW,
3376 		 * it is due to references held by a child and an insufficient
3377 		 * huge page pool. To guarantee the original mappers
3378 		 * reliability, unmap the page from child processes. The child
3379 		 * may get SIGKILLed if it later faults.
3380 		 */
3381 		if (outside_reserve) {
3382 			put_page(old_page);
3383 			BUG_ON(huge_pte_none(pte));
3384 			unmap_ref_private(mm, vma, old_page, address);
3385 			BUG_ON(huge_pte_none(pte));
3386 			spin_lock(ptl);
3387 			ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3388 			if (likely(ptep &&
3389 				   pte_same(huge_ptep_get(ptep), pte)))
3390 				goto retry_avoidcopy;
3391 			/*
3392 			 * race occurs while re-acquiring page table
3393 			 * lock, and our job is done.
3394 			 */
3395 			return 0;
3396 		}
3397 
3398 		ret = (PTR_ERR(new_page) == -ENOMEM) ?
3399 			VM_FAULT_OOM : VM_FAULT_SIGBUS;
3400 		goto out_release_old;
3401 	}
3402 
3403 	/*
3404 	 * When the original hugepage is shared one, it does not have
3405 	 * anon_vma prepared.
3406 	 */
3407 	if (unlikely(anon_vma_prepare(vma))) {
3408 		ret = VM_FAULT_OOM;
3409 		goto out_release_all;
3410 	}
3411 
3412 	copy_user_huge_page(new_page, old_page, address, vma,
3413 			    pages_per_huge_page(h));
3414 	__SetPageUptodate(new_page);
3415 	set_page_huge_active(new_page);
3416 
3417 	mmun_start = address & huge_page_mask(h);
3418 	mmun_end = mmun_start + huge_page_size(h);
3419 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3420 
3421 	/*
3422 	 * Retake the page table lock to check for racing updates
3423 	 * before the page tables are altered
3424 	 */
3425 	spin_lock(ptl);
3426 	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3427 	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3428 		ClearPagePrivate(new_page);
3429 
3430 		/* Break COW */
3431 		huge_ptep_clear_flush(vma, address, ptep);
3432 		mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3433 		set_huge_pte_at(mm, address, ptep,
3434 				make_huge_pte(vma, new_page, 1));
3435 		page_remove_rmap(old_page, true);
3436 		hugepage_add_new_anon_rmap(new_page, vma, address);
3437 		/* Make the old page be freed below */
3438 		new_page = old_page;
3439 	}
3440 	spin_unlock(ptl);
3441 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3442 out_release_all:
3443 	put_page(new_page);
3444 out_release_old:
3445 	put_page(old_page);
3446 
3447 	spin_lock(ptl); /* Caller expects lock to be held */
3448 	return ret;
3449 }
3450 
3451 /* Return the pagecache page at a given address within a VMA */
3452 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3453 			struct vm_area_struct *vma, unsigned long address)
3454 {
3455 	struct address_space *mapping;
3456 	pgoff_t idx;
3457 
3458 	mapping = vma->vm_file->f_mapping;
3459 	idx = vma_hugecache_offset(h, vma, address);
3460 
3461 	return find_lock_page(mapping, idx);
3462 }
3463 
3464 /*
3465  * Return whether there is a pagecache page to back given address within VMA.
3466  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3467  */
3468 static bool hugetlbfs_pagecache_present(struct hstate *h,
3469 			struct vm_area_struct *vma, unsigned long address)
3470 {
3471 	struct address_space *mapping;
3472 	pgoff_t idx;
3473 	struct page *page;
3474 
3475 	mapping = vma->vm_file->f_mapping;
3476 	idx = vma_hugecache_offset(h, vma, address);
3477 
3478 	page = find_get_page(mapping, idx);
3479 	if (page)
3480 		put_page(page);
3481 	return page != NULL;
3482 }
3483 
3484 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3485 			   pgoff_t idx)
3486 {
3487 	struct inode *inode = mapping->host;
3488 	struct hstate *h = hstate_inode(inode);
3489 	int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3490 
3491 	if (err)
3492 		return err;
3493 	ClearPagePrivate(page);
3494 
3495 	spin_lock(&inode->i_lock);
3496 	inode->i_blocks += blocks_per_huge_page(h);
3497 	spin_unlock(&inode->i_lock);
3498 	return 0;
3499 }
3500 
3501 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3502 			   struct address_space *mapping, pgoff_t idx,
3503 			   unsigned long address, pte_t *ptep, unsigned int flags)
3504 {
3505 	struct hstate *h = hstate_vma(vma);
3506 	int ret = VM_FAULT_SIGBUS;
3507 	int anon_rmap = 0;
3508 	unsigned long size;
3509 	struct page *page;
3510 	pte_t new_pte;
3511 	spinlock_t *ptl;
3512 
3513 	/*
3514 	 * Currently, we are forced to kill the process in the event the
3515 	 * original mapper has unmapped pages from the child due to a failed
3516 	 * COW. Warn that such a situation has occurred as it may not be obvious
3517 	 */
3518 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3519 		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3520 			   current->pid);
3521 		return ret;
3522 	}
3523 
3524 	/*
3525 	 * Use page lock to guard against racing truncation
3526 	 * before we get page_table_lock.
3527 	 */
3528 retry:
3529 	page = find_lock_page(mapping, idx);
3530 	if (!page) {
3531 		size = i_size_read(mapping->host) >> huge_page_shift(h);
3532 		if (idx >= size)
3533 			goto out;
3534 		page = alloc_huge_page(vma, address, 0);
3535 		if (IS_ERR(page)) {
3536 			ret = PTR_ERR(page);
3537 			if (ret == -ENOMEM)
3538 				ret = VM_FAULT_OOM;
3539 			else
3540 				ret = VM_FAULT_SIGBUS;
3541 			goto out;
3542 		}
3543 		clear_huge_page(page, address, pages_per_huge_page(h));
3544 		__SetPageUptodate(page);
3545 		set_page_huge_active(page);
3546 
3547 		if (vma->vm_flags & VM_MAYSHARE) {
3548 			int err = huge_add_to_page_cache(page, mapping, idx);
3549 			if (err) {
3550 				put_page(page);
3551 				if (err == -EEXIST)
3552 					goto retry;
3553 				goto out;
3554 			}
3555 		} else {
3556 			lock_page(page);
3557 			if (unlikely(anon_vma_prepare(vma))) {
3558 				ret = VM_FAULT_OOM;
3559 				goto backout_unlocked;
3560 			}
3561 			anon_rmap = 1;
3562 		}
3563 	} else {
3564 		/*
3565 		 * If memory error occurs between mmap() and fault, some process
3566 		 * don't have hwpoisoned swap entry for errored virtual address.
3567 		 * So we need to block hugepage fault by PG_hwpoison bit check.
3568 		 */
3569 		if (unlikely(PageHWPoison(page))) {
3570 			ret = VM_FAULT_HWPOISON |
3571 				VM_FAULT_SET_HINDEX(hstate_index(h));
3572 			goto backout_unlocked;
3573 		}
3574 	}
3575 
3576 	/*
3577 	 * If we are going to COW a private mapping later, we examine the
3578 	 * pending reservations for this page now. This will ensure that
3579 	 * any allocations necessary to record that reservation occur outside
3580 	 * the spinlock.
3581 	 */
3582 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3583 		if (vma_needs_reservation(h, vma, address) < 0) {
3584 			ret = VM_FAULT_OOM;
3585 			goto backout_unlocked;
3586 		}
3587 		/* Just decrements count, does not deallocate */
3588 		vma_end_reservation(h, vma, address);
3589 	}
3590 
3591 	ptl = huge_pte_lockptr(h, mm, ptep);
3592 	spin_lock(ptl);
3593 	size = i_size_read(mapping->host) >> huge_page_shift(h);
3594 	if (idx >= size)
3595 		goto backout;
3596 
3597 	ret = 0;
3598 	if (!huge_pte_none(huge_ptep_get(ptep)))
3599 		goto backout;
3600 
3601 	if (anon_rmap) {
3602 		ClearPagePrivate(page);
3603 		hugepage_add_new_anon_rmap(page, vma, address);
3604 	} else
3605 		page_dup_rmap(page, true);
3606 	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3607 				&& (vma->vm_flags & VM_SHARED)));
3608 	set_huge_pte_at(mm, address, ptep, new_pte);
3609 
3610 	hugetlb_count_add(pages_per_huge_page(h), mm);
3611 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3612 		/* Optimization, do the COW without a second fault */
3613 		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
3614 	}
3615 
3616 	spin_unlock(ptl);
3617 	unlock_page(page);
3618 out:
3619 	return ret;
3620 
3621 backout:
3622 	spin_unlock(ptl);
3623 backout_unlocked:
3624 	unlock_page(page);
3625 	put_page(page);
3626 	goto out;
3627 }
3628 
3629 #ifdef CONFIG_SMP
3630 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3631 			    struct vm_area_struct *vma,
3632 			    struct address_space *mapping,
3633 			    pgoff_t idx, unsigned long address)
3634 {
3635 	unsigned long key[2];
3636 	u32 hash;
3637 
3638 	if (vma->vm_flags & VM_SHARED) {
3639 		key[0] = (unsigned long) mapping;
3640 		key[1] = idx;
3641 	} else {
3642 		key[0] = (unsigned long) mm;
3643 		key[1] = address >> huge_page_shift(h);
3644 	}
3645 
3646 	hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3647 
3648 	return hash & (num_fault_mutexes - 1);
3649 }
3650 #else
3651 /*
3652  * For uniprocesor systems we always use a single mutex, so just
3653  * return 0 and avoid the hashing overhead.
3654  */
3655 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3656 			    struct vm_area_struct *vma,
3657 			    struct address_space *mapping,
3658 			    pgoff_t idx, unsigned long address)
3659 {
3660 	return 0;
3661 }
3662 #endif
3663 
3664 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3665 			unsigned long address, unsigned int flags)
3666 {
3667 	pte_t *ptep, entry;
3668 	spinlock_t *ptl;
3669 	int ret;
3670 	u32 hash;
3671 	pgoff_t idx;
3672 	struct page *page = NULL;
3673 	struct page *pagecache_page = NULL;
3674 	struct hstate *h = hstate_vma(vma);
3675 	struct address_space *mapping;
3676 	int need_wait_lock = 0;
3677 
3678 	address &= huge_page_mask(h);
3679 
3680 	ptep = huge_pte_offset(mm, address);
3681 	if (ptep) {
3682 		entry = huge_ptep_get(ptep);
3683 		if (unlikely(is_hugetlb_entry_migration(entry))) {
3684 			migration_entry_wait_huge(vma, mm, ptep);
3685 			return 0;
3686 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3687 			return VM_FAULT_HWPOISON_LARGE |
3688 				VM_FAULT_SET_HINDEX(hstate_index(h));
3689 	} else {
3690 		ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3691 		if (!ptep)
3692 			return VM_FAULT_OOM;
3693 	}
3694 
3695 	mapping = vma->vm_file->f_mapping;
3696 	idx = vma_hugecache_offset(h, vma, address);
3697 
3698 	/*
3699 	 * Serialize hugepage allocation and instantiation, so that we don't
3700 	 * get spurious allocation failures if two CPUs race to instantiate
3701 	 * the same page in the page cache.
3702 	 */
3703 	hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
3704 	mutex_lock(&hugetlb_fault_mutex_table[hash]);
3705 
3706 	entry = huge_ptep_get(ptep);
3707 	if (huge_pte_none(entry)) {
3708 		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3709 		goto out_mutex;
3710 	}
3711 
3712 	ret = 0;
3713 
3714 	/*
3715 	 * entry could be a migration/hwpoison entry at this point, so this
3716 	 * check prevents the kernel from going below assuming that we have
3717 	 * a active hugepage in pagecache. This goto expects the 2nd page fault,
3718 	 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3719 	 * handle it.
3720 	 */
3721 	if (!pte_present(entry))
3722 		goto out_mutex;
3723 
3724 	/*
3725 	 * If we are going to COW the mapping later, we examine the pending
3726 	 * reservations for this page now. This will ensure that any
3727 	 * allocations necessary to record that reservation occur outside the
3728 	 * spinlock. For private mappings, we also lookup the pagecache
3729 	 * page now as it is used to determine if a reservation has been
3730 	 * consumed.
3731 	 */
3732 	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3733 		if (vma_needs_reservation(h, vma, address) < 0) {
3734 			ret = VM_FAULT_OOM;
3735 			goto out_mutex;
3736 		}
3737 		/* Just decrements count, does not deallocate */
3738 		vma_end_reservation(h, vma, address);
3739 
3740 		if (!(vma->vm_flags & VM_MAYSHARE))
3741 			pagecache_page = hugetlbfs_pagecache_page(h,
3742 								vma, address);
3743 	}
3744 
3745 	ptl = huge_pte_lock(h, mm, ptep);
3746 
3747 	/* Check for a racing update before calling hugetlb_cow */
3748 	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3749 		goto out_ptl;
3750 
3751 	/*
3752 	 * hugetlb_cow() requires page locks of pte_page(entry) and
3753 	 * pagecache_page, so here we need take the former one
3754 	 * when page != pagecache_page or !pagecache_page.
3755 	 */
3756 	page = pte_page(entry);
3757 	if (page != pagecache_page)
3758 		if (!trylock_page(page)) {
3759 			need_wait_lock = 1;
3760 			goto out_ptl;
3761 		}
3762 
3763 	get_page(page);
3764 
3765 	if (flags & FAULT_FLAG_WRITE) {
3766 		if (!huge_pte_write(entry)) {
3767 			ret = hugetlb_cow(mm, vma, address, ptep, entry,
3768 					pagecache_page, ptl);
3769 			goto out_put_page;
3770 		}
3771 		entry = huge_pte_mkdirty(entry);
3772 	}
3773 	entry = pte_mkyoung(entry);
3774 	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3775 						flags & FAULT_FLAG_WRITE))
3776 		update_mmu_cache(vma, address, ptep);
3777 out_put_page:
3778 	if (page != pagecache_page)
3779 		unlock_page(page);
3780 	put_page(page);
3781 out_ptl:
3782 	spin_unlock(ptl);
3783 
3784 	if (pagecache_page) {
3785 		unlock_page(pagecache_page);
3786 		put_page(pagecache_page);
3787 	}
3788 out_mutex:
3789 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3790 	/*
3791 	 * Generally it's safe to hold refcount during waiting page lock. But
3792 	 * here we just wait to defer the next page fault to avoid busy loop and
3793 	 * the page is not used after unlocked before returning from the current
3794 	 * page fault. So we are safe from accessing freed page, even if we wait
3795 	 * here without taking refcount.
3796 	 */
3797 	if (need_wait_lock)
3798 		wait_on_page_locked(page);
3799 	return ret;
3800 }
3801 
3802 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3803 			 struct page **pages, struct vm_area_struct **vmas,
3804 			 unsigned long *position, unsigned long *nr_pages,
3805 			 long i, unsigned int flags)
3806 {
3807 	unsigned long pfn_offset;
3808 	unsigned long vaddr = *position;
3809 	unsigned long remainder = *nr_pages;
3810 	struct hstate *h = hstate_vma(vma);
3811 
3812 	while (vaddr < vma->vm_end && remainder) {
3813 		pte_t *pte;
3814 		spinlock_t *ptl = NULL;
3815 		int absent;
3816 		struct page *page;
3817 
3818 		/*
3819 		 * If we have a pending SIGKILL, don't keep faulting pages and
3820 		 * potentially allocating memory.
3821 		 */
3822 		if (unlikely(fatal_signal_pending(current))) {
3823 			remainder = 0;
3824 			break;
3825 		}
3826 
3827 		/*
3828 		 * Some archs (sparc64, sh*) have multiple pte_ts to
3829 		 * each hugepage.  We have to make sure we get the
3830 		 * first, for the page indexing below to work.
3831 		 *
3832 		 * Note that page table lock is not held when pte is null.
3833 		 */
3834 		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3835 		if (pte)
3836 			ptl = huge_pte_lock(h, mm, pte);
3837 		absent = !pte || huge_pte_none(huge_ptep_get(pte));
3838 
3839 		/*
3840 		 * When coredumping, it suits get_dump_page if we just return
3841 		 * an error where there's an empty slot with no huge pagecache
3842 		 * to back it.  This way, we avoid allocating a hugepage, and
3843 		 * the sparse dumpfile avoids allocating disk blocks, but its
3844 		 * huge holes still show up with zeroes where they need to be.
3845 		 */
3846 		if (absent && (flags & FOLL_DUMP) &&
3847 		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3848 			if (pte)
3849 				spin_unlock(ptl);
3850 			remainder = 0;
3851 			break;
3852 		}
3853 
3854 		/*
3855 		 * We need call hugetlb_fault for both hugepages under migration
3856 		 * (in which case hugetlb_fault waits for the migration,) and
3857 		 * hwpoisoned hugepages (in which case we need to prevent the
3858 		 * caller from accessing to them.) In order to do this, we use
3859 		 * here is_swap_pte instead of is_hugetlb_entry_migration and
3860 		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3861 		 * both cases, and because we can't follow correct pages
3862 		 * directly from any kind of swap entries.
3863 		 */
3864 		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3865 		    ((flags & FOLL_WRITE) &&
3866 		      !huge_pte_write(huge_ptep_get(pte)))) {
3867 			int ret;
3868 
3869 			if (pte)
3870 				spin_unlock(ptl);
3871 			ret = hugetlb_fault(mm, vma, vaddr,
3872 				(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3873 			if (!(ret & VM_FAULT_ERROR))
3874 				continue;
3875 
3876 			remainder = 0;
3877 			break;
3878 		}
3879 
3880 		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3881 		page = pte_page(huge_ptep_get(pte));
3882 same_page:
3883 		if (pages) {
3884 			pages[i] = mem_map_offset(page, pfn_offset);
3885 			get_page(pages[i]);
3886 		}
3887 
3888 		if (vmas)
3889 			vmas[i] = vma;
3890 
3891 		vaddr += PAGE_SIZE;
3892 		++pfn_offset;
3893 		--remainder;
3894 		++i;
3895 		if (vaddr < vma->vm_end && remainder &&
3896 				pfn_offset < pages_per_huge_page(h)) {
3897 			/*
3898 			 * We use pfn_offset to avoid touching the pageframes
3899 			 * of this compound page.
3900 			 */
3901 			goto same_page;
3902 		}
3903 		spin_unlock(ptl);
3904 	}
3905 	*nr_pages = remainder;
3906 	*position = vaddr;
3907 
3908 	return i ? i : -EFAULT;
3909 }
3910 
3911 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3912 		unsigned long address, unsigned long end, pgprot_t newprot)
3913 {
3914 	struct mm_struct *mm = vma->vm_mm;
3915 	unsigned long start = address;
3916 	pte_t *ptep;
3917 	pte_t pte;
3918 	struct hstate *h = hstate_vma(vma);
3919 	unsigned long pages = 0;
3920 
3921 	BUG_ON(address >= end);
3922 	flush_cache_range(vma, address, end);
3923 
3924 	mmu_notifier_invalidate_range_start(mm, start, end);
3925 	i_mmap_lock_write(vma->vm_file->f_mapping);
3926 	for (; address < end; address += huge_page_size(h)) {
3927 		spinlock_t *ptl;
3928 		ptep = huge_pte_offset(mm, address);
3929 		if (!ptep)
3930 			continue;
3931 		ptl = huge_pte_lock(h, mm, ptep);
3932 		if (huge_pmd_unshare(mm, &address, ptep)) {
3933 			pages++;
3934 			spin_unlock(ptl);
3935 			continue;
3936 		}
3937 		pte = huge_ptep_get(ptep);
3938 		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
3939 			spin_unlock(ptl);
3940 			continue;
3941 		}
3942 		if (unlikely(is_hugetlb_entry_migration(pte))) {
3943 			swp_entry_t entry = pte_to_swp_entry(pte);
3944 
3945 			if (is_write_migration_entry(entry)) {
3946 				pte_t newpte;
3947 
3948 				make_migration_entry_read(&entry);
3949 				newpte = swp_entry_to_pte(entry);
3950 				set_huge_pte_at(mm, address, ptep, newpte);
3951 				pages++;
3952 			}
3953 			spin_unlock(ptl);
3954 			continue;
3955 		}
3956 		if (!huge_pte_none(pte)) {
3957 			pte = huge_ptep_get_and_clear(mm, address, ptep);
3958 			pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3959 			pte = arch_make_huge_pte(pte, vma, NULL, 0);
3960 			set_huge_pte_at(mm, address, ptep, pte);
3961 			pages++;
3962 		}
3963 		spin_unlock(ptl);
3964 	}
3965 	/*
3966 	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
3967 	 * may have cleared our pud entry and done put_page on the page table:
3968 	 * once we release i_mmap_rwsem, another task can do the final put_page
3969 	 * and that page table be reused and filled with junk.
3970 	 */
3971 	flush_tlb_range(vma, start, end);
3972 	mmu_notifier_invalidate_range(mm, start, end);
3973 	i_mmap_unlock_write(vma->vm_file->f_mapping);
3974 	mmu_notifier_invalidate_range_end(mm, start, end);
3975 
3976 	return pages << h->order;
3977 }
3978 
3979 int hugetlb_reserve_pages(struct inode *inode,
3980 					long from, long to,
3981 					struct vm_area_struct *vma,
3982 					vm_flags_t vm_flags)
3983 {
3984 	long ret, chg;
3985 	struct hstate *h = hstate_inode(inode);
3986 	struct hugepage_subpool *spool = subpool_inode(inode);
3987 	struct resv_map *resv_map;
3988 	long gbl_reserve;
3989 
3990 	/*
3991 	 * Only apply hugepage reservation if asked. At fault time, an
3992 	 * attempt will be made for VM_NORESERVE to allocate a page
3993 	 * without using reserves
3994 	 */
3995 	if (vm_flags & VM_NORESERVE)
3996 		return 0;
3997 
3998 	/*
3999 	 * Shared mappings base their reservation on the number of pages that
4000 	 * are already allocated on behalf of the file. Private mappings need
4001 	 * to reserve the full area even if read-only as mprotect() may be
4002 	 * called to make the mapping read-write. Assume !vma is a shm mapping
4003 	 */
4004 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
4005 		resv_map = inode_resv_map(inode);
4006 
4007 		chg = region_chg(resv_map, from, to);
4008 
4009 	} else {
4010 		resv_map = resv_map_alloc();
4011 		if (!resv_map)
4012 			return -ENOMEM;
4013 
4014 		chg = to - from;
4015 
4016 		set_vma_resv_map(vma, resv_map);
4017 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4018 	}
4019 
4020 	if (chg < 0) {
4021 		ret = chg;
4022 		goto out_err;
4023 	}
4024 
4025 	/*
4026 	 * There must be enough pages in the subpool for the mapping. If
4027 	 * the subpool has a minimum size, there may be some global
4028 	 * reservations already in place (gbl_reserve).
4029 	 */
4030 	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4031 	if (gbl_reserve < 0) {
4032 		ret = -ENOSPC;
4033 		goto out_err;
4034 	}
4035 
4036 	/*
4037 	 * Check enough hugepages are available for the reservation.
4038 	 * Hand the pages back to the subpool if there are not
4039 	 */
4040 	ret = hugetlb_acct_memory(h, gbl_reserve);
4041 	if (ret < 0) {
4042 		/* put back original number of pages, chg */
4043 		(void)hugepage_subpool_put_pages(spool, chg);
4044 		goto out_err;
4045 	}
4046 
4047 	/*
4048 	 * Account for the reservations made. Shared mappings record regions
4049 	 * that have reservations as they are shared by multiple VMAs.
4050 	 * When the last VMA disappears, the region map says how much
4051 	 * the reservation was and the page cache tells how much of
4052 	 * the reservation was consumed. Private mappings are per-VMA and
4053 	 * only the consumed reservations are tracked. When the VMA
4054 	 * disappears, the original reservation is the VMA size and the
4055 	 * consumed reservations are stored in the map. Hence, nothing
4056 	 * else has to be done for private mappings here
4057 	 */
4058 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
4059 		long add = region_add(resv_map, from, to);
4060 
4061 		if (unlikely(chg > add)) {
4062 			/*
4063 			 * pages in this range were added to the reserve
4064 			 * map between region_chg and region_add.  This
4065 			 * indicates a race with alloc_huge_page.  Adjust
4066 			 * the subpool and reserve counts modified above
4067 			 * based on the difference.
4068 			 */
4069 			long rsv_adjust;
4070 
4071 			rsv_adjust = hugepage_subpool_put_pages(spool,
4072 								chg - add);
4073 			hugetlb_acct_memory(h, -rsv_adjust);
4074 		}
4075 	}
4076 	return 0;
4077 out_err:
4078 	if (!vma || vma->vm_flags & VM_MAYSHARE)
4079 		region_abort(resv_map, from, to);
4080 	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4081 		kref_put(&resv_map->refs, resv_map_release);
4082 	return ret;
4083 }
4084 
4085 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4086 								long freed)
4087 {
4088 	struct hstate *h = hstate_inode(inode);
4089 	struct resv_map *resv_map = inode_resv_map(inode);
4090 	long chg = 0;
4091 	struct hugepage_subpool *spool = subpool_inode(inode);
4092 	long gbl_reserve;
4093 
4094 	if (resv_map) {
4095 		chg = region_del(resv_map, start, end);
4096 		/*
4097 		 * region_del() can fail in the rare case where a region
4098 		 * must be split and another region descriptor can not be
4099 		 * allocated.  If end == LONG_MAX, it will not fail.
4100 		 */
4101 		if (chg < 0)
4102 			return chg;
4103 	}
4104 
4105 	spin_lock(&inode->i_lock);
4106 	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4107 	spin_unlock(&inode->i_lock);
4108 
4109 	/*
4110 	 * If the subpool has a minimum size, the number of global
4111 	 * reservations to be released may be adjusted.
4112 	 */
4113 	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4114 	hugetlb_acct_memory(h, -gbl_reserve);
4115 
4116 	return 0;
4117 }
4118 
4119 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4120 static unsigned long page_table_shareable(struct vm_area_struct *svma,
4121 				struct vm_area_struct *vma,
4122 				unsigned long addr, pgoff_t idx)
4123 {
4124 	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4125 				svma->vm_start;
4126 	unsigned long sbase = saddr & PUD_MASK;
4127 	unsigned long s_end = sbase + PUD_SIZE;
4128 
4129 	/* Allow segments to share if only one is marked locked */
4130 	unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4131 	unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4132 
4133 	/*
4134 	 * match the virtual addresses, permission and the alignment of the
4135 	 * page table page.
4136 	 */
4137 	if (pmd_index(addr) != pmd_index(saddr) ||
4138 	    vm_flags != svm_flags ||
4139 	    sbase < svma->vm_start || svma->vm_end < s_end)
4140 		return 0;
4141 
4142 	return saddr;
4143 }
4144 
4145 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4146 {
4147 	unsigned long base = addr & PUD_MASK;
4148 	unsigned long end = base + PUD_SIZE;
4149 
4150 	/*
4151 	 * check on proper vm_flags and page table alignment
4152 	 */
4153 	if (vma->vm_flags & VM_MAYSHARE &&
4154 	    vma->vm_start <= base && end <= vma->vm_end)
4155 		return true;
4156 	return false;
4157 }
4158 
4159 /*
4160  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4161  * and returns the corresponding pte. While this is not necessary for the
4162  * !shared pmd case because we can allocate the pmd later as well, it makes the
4163  * code much cleaner. pmd allocation is essential for the shared case because
4164  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4165  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4166  * bad pmd for sharing.
4167  */
4168 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4169 {
4170 	struct vm_area_struct *vma = find_vma(mm, addr);
4171 	struct address_space *mapping = vma->vm_file->f_mapping;
4172 	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4173 			vma->vm_pgoff;
4174 	struct vm_area_struct *svma;
4175 	unsigned long saddr;
4176 	pte_t *spte = NULL;
4177 	pte_t *pte;
4178 	spinlock_t *ptl;
4179 
4180 	if (!vma_shareable(vma, addr))
4181 		return (pte_t *)pmd_alloc(mm, pud, addr);
4182 
4183 	i_mmap_lock_write(mapping);
4184 	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4185 		if (svma == vma)
4186 			continue;
4187 
4188 		saddr = page_table_shareable(svma, vma, addr, idx);
4189 		if (saddr) {
4190 			spte = huge_pte_offset(svma->vm_mm, saddr);
4191 			if (spte) {
4192 				mm_inc_nr_pmds(mm);
4193 				get_page(virt_to_page(spte));
4194 				break;
4195 			}
4196 		}
4197 	}
4198 
4199 	if (!spte)
4200 		goto out;
4201 
4202 	ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
4203 	spin_lock(ptl);
4204 	if (pud_none(*pud)) {
4205 		pud_populate(mm, pud,
4206 				(pmd_t *)((unsigned long)spte & PAGE_MASK));
4207 	} else {
4208 		put_page(virt_to_page(spte));
4209 		mm_inc_nr_pmds(mm);
4210 	}
4211 	spin_unlock(ptl);
4212 out:
4213 	pte = (pte_t *)pmd_alloc(mm, pud, addr);
4214 	i_mmap_unlock_write(mapping);
4215 	return pte;
4216 }
4217 
4218 /*
4219  * unmap huge page backed by shared pte.
4220  *
4221  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
4222  * indicated by page_count > 1, unmap is achieved by clearing pud and
4223  * decrementing the ref count. If count == 1, the pte page is not shared.
4224  *
4225  * called with page table lock held.
4226  *
4227  * returns: 1 successfully unmapped a shared pte page
4228  *	    0 the underlying pte page is not shared, or it is the last user
4229  */
4230 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4231 {
4232 	pgd_t *pgd = pgd_offset(mm, *addr);
4233 	pud_t *pud = pud_offset(pgd, *addr);
4234 
4235 	BUG_ON(page_count(virt_to_page(ptep)) == 0);
4236 	if (page_count(virt_to_page(ptep)) == 1)
4237 		return 0;
4238 
4239 	pud_clear(pud);
4240 	put_page(virt_to_page(ptep));
4241 	mm_dec_nr_pmds(mm);
4242 	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4243 	return 1;
4244 }
4245 #define want_pmd_share()	(1)
4246 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4247 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4248 {
4249 	return NULL;
4250 }
4251 
4252 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4253 {
4254 	return 0;
4255 }
4256 #define want_pmd_share()	(0)
4257 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4258 
4259 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4260 pte_t *huge_pte_alloc(struct mm_struct *mm,
4261 			unsigned long addr, unsigned long sz)
4262 {
4263 	pgd_t *pgd;
4264 	pud_t *pud;
4265 	pte_t *pte = NULL;
4266 
4267 	pgd = pgd_offset(mm, addr);
4268 	pud = pud_alloc(mm, pgd, addr);
4269 	if (pud) {
4270 		if (sz == PUD_SIZE) {
4271 			pte = (pte_t *)pud;
4272 		} else {
4273 			BUG_ON(sz != PMD_SIZE);
4274 			if (want_pmd_share() && pud_none(*pud))
4275 				pte = huge_pmd_share(mm, addr, pud);
4276 			else
4277 				pte = (pte_t *)pmd_alloc(mm, pud, addr);
4278 		}
4279 	}
4280 	BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
4281 
4282 	return pte;
4283 }
4284 
4285 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
4286 {
4287 	pgd_t *pgd;
4288 	pud_t *pud;
4289 	pmd_t *pmd = NULL;
4290 
4291 	pgd = pgd_offset(mm, addr);
4292 	if (pgd_present(*pgd)) {
4293 		pud = pud_offset(pgd, addr);
4294 		if (pud_present(*pud)) {
4295 			if (pud_huge(*pud))
4296 				return (pte_t *)pud;
4297 			pmd = pmd_offset(pud, addr);
4298 		}
4299 	}
4300 	return (pte_t *) pmd;
4301 }
4302 
4303 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4304 
4305 /*
4306  * These functions are overwritable if your architecture needs its own
4307  * behavior.
4308  */
4309 struct page * __weak
4310 follow_huge_addr(struct mm_struct *mm, unsigned long address,
4311 			      int write)
4312 {
4313 	return ERR_PTR(-EINVAL);
4314 }
4315 
4316 struct page * __weak
4317 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4318 		pmd_t *pmd, int flags)
4319 {
4320 	struct page *page = NULL;
4321 	spinlock_t *ptl;
4322 retry:
4323 	ptl = pmd_lockptr(mm, pmd);
4324 	spin_lock(ptl);
4325 	/*
4326 	 * make sure that the address range covered by this pmd is not
4327 	 * unmapped from other threads.
4328 	 */
4329 	if (!pmd_huge(*pmd))
4330 		goto out;
4331 	if (pmd_present(*pmd)) {
4332 		page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4333 		if (flags & FOLL_GET)
4334 			get_page(page);
4335 	} else {
4336 		if (is_hugetlb_entry_migration(huge_ptep_get((pte_t *)pmd))) {
4337 			spin_unlock(ptl);
4338 			__migration_entry_wait(mm, (pte_t *)pmd, ptl);
4339 			goto retry;
4340 		}
4341 		/*
4342 		 * hwpoisoned entry is treated as no_page_table in
4343 		 * follow_page_mask().
4344 		 */
4345 	}
4346 out:
4347 	spin_unlock(ptl);
4348 	return page;
4349 }
4350 
4351 struct page * __weak
4352 follow_huge_pud(struct mm_struct *mm, unsigned long address,
4353 		pud_t *pud, int flags)
4354 {
4355 	if (flags & FOLL_GET)
4356 		return NULL;
4357 
4358 	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4359 }
4360 
4361 #ifdef CONFIG_MEMORY_FAILURE
4362 
4363 /*
4364  * This function is called from memory failure code.
4365  * Assume the caller holds page lock of the head page.
4366  */
4367 int dequeue_hwpoisoned_huge_page(struct page *hpage)
4368 {
4369 	struct hstate *h = page_hstate(hpage);
4370 	int nid = page_to_nid(hpage);
4371 	int ret = -EBUSY;
4372 
4373 	spin_lock(&hugetlb_lock);
4374 	/*
4375 	 * Just checking !page_huge_active is not enough, because that could be
4376 	 * an isolated/hwpoisoned hugepage (which have >0 refcount).
4377 	 */
4378 	if (!page_huge_active(hpage) && !page_count(hpage)) {
4379 		/*
4380 		 * Hwpoisoned hugepage isn't linked to activelist or freelist,
4381 		 * but dangling hpage->lru can trigger list-debug warnings
4382 		 * (this happens when we call unpoison_memory() on it),
4383 		 * so let it point to itself with list_del_init().
4384 		 */
4385 		list_del_init(&hpage->lru);
4386 		set_page_refcounted(hpage);
4387 		h->free_huge_pages--;
4388 		h->free_huge_pages_node[nid]--;
4389 		ret = 0;
4390 	}
4391 	spin_unlock(&hugetlb_lock);
4392 	return ret;
4393 }
4394 #endif
4395 
4396 bool isolate_huge_page(struct page *page, struct list_head *list)
4397 {
4398 	bool ret = true;
4399 
4400 	VM_BUG_ON_PAGE(!PageHead(page), page);
4401 	spin_lock(&hugetlb_lock);
4402 	if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4403 		ret = false;
4404 		goto unlock;
4405 	}
4406 	clear_page_huge_active(page);
4407 	list_move_tail(&page->lru, list);
4408 unlock:
4409 	spin_unlock(&hugetlb_lock);
4410 	return ret;
4411 }
4412 
4413 void putback_active_hugepage(struct page *page)
4414 {
4415 	VM_BUG_ON_PAGE(!PageHead(page), page);
4416 	spin_lock(&hugetlb_lock);
4417 	set_page_huge_active(page);
4418 	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4419 	spin_unlock(&hugetlb_lock);
4420 	put_page(page);
4421 }
4422