1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic hugetlb support. 4 * (C) Nadia Yvette Chambers, April 2004 5 */ 6 #include <linux/list.h> 7 #include <linux/init.h> 8 #include <linux/mm.h> 9 #include <linux/seq_file.h> 10 #include <linux/sysctl.h> 11 #include <linux/highmem.h> 12 #include <linux/mmu_notifier.h> 13 #include <linux/nodemask.h> 14 #include <linux/pagemap.h> 15 #include <linux/mempolicy.h> 16 #include <linux/compiler.h> 17 #include <linux/cpumask.h> 18 #include <linux/cpuset.h> 19 #include <linux/mutex.h> 20 #include <linux/memblock.h> 21 #include <linux/minmax.h> 22 #include <linux/sysfs.h> 23 #include <linux/slab.h> 24 #include <linux/sched/mm.h> 25 #include <linux/mmdebug.h> 26 #include <linux/sched/signal.h> 27 #include <linux/rmap.h> 28 #include <linux/string_helpers.h> 29 #include <linux/swap.h> 30 #include <linux/swapops.h> 31 #include <linux/jhash.h> 32 #include <linux/numa.h> 33 #include <linux/llist.h> 34 #include <linux/cma.h> 35 #include <linux/migrate.h> 36 #include <linux/nospec.h> 37 #include <linux/delayacct.h> 38 #include <linux/memory.h> 39 #include <linux/mm_inline.h> 40 #include <linux/padata.h> 41 42 #include <asm/page.h> 43 #include <asm/pgalloc.h> 44 #include <asm/tlb.h> 45 #include <asm/setup.h> 46 47 #include <linux/io.h> 48 #include <linux/hugetlb.h> 49 #include <linux/hugetlb_cgroup.h> 50 #include <linux/node.h> 51 #include <linux/page_owner.h> 52 #include "internal.h" 53 #include "hugetlb_vmemmap.h" 54 #include "hugetlb_cma.h" 55 #include <linux/page-isolation.h> 56 57 int hugetlb_max_hstate __read_mostly; 58 unsigned int default_hstate_idx; 59 struct hstate hstates[HUGE_MAX_HSTATE]; 60 61 __initdata struct list_head huge_boot_pages[MAX_NUMNODES]; 62 static unsigned long hstate_boot_nrinvalid[HUGE_MAX_HSTATE] __initdata; 63 64 /* 65 * Due to ordering constraints across the init code for various 66 * architectures, hugetlb hstate cmdline parameters can't simply 67 * be early_param. early_param might call the setup function 68 * before valid hugetlb page sizes are determined, leading to 69 * incorrect rejection of valid hugepagesz= options. 70 * 71 * So, record the parameters early and consume them whenever the 72 * init code is ready for them, by calling hugetlb_parse_params(). 73 */ 74 75 /* one (hugepagesz=,hugepages=) pair per hstate, one default_hugepagesz */ 76 #define HUGE_MAX_CMDLINE_ARGS (2 * HUGE_MAX_HSTATE + 1) 77 struct hugetlb_cmdline { 78 char *val; 79 int (*setup)(char *val); 80 }; 81 82 /* for command line parsing */ 83 static struct hstate * __initdata parsed_hstate; 84 static unsigned long __initdata default_hstate_max_huge_pages; 85 static bool __initdata parsed_valid_hugepagesz = true; 86 static bool __initdata parsed_default_hugepagesz; 87 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata; 88 static unsigned long hugepage_allocation_threads __initdata; 89 90 static char hstate_cmdline_buf[COMMAND_LINE_SIZE] __initdata; 91 static int hstate_cmdline_index __initdata; 92 static struct hugetlb_cmdline hugetlb_params[HUGE_MAX_CMDLINE_ARGS] __initdata; 93 static int hugetlb_param_index __initdata; 94 static __init int hugetlb_add_param(char *s, int (*setup)(char *val)); 95 static __init void hugetlb_parse_params(void); 96 97 #define hugetlb_early_param(str, func) \ 98 static __init int func##args(char *s) \ 99 { \ 100 return hugetlb_add_param(s, func); \ 101 } \ 102 early_param(str, func##args) 103 104 /* 105 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages, 106 * free_huge_pages, and surplus_huge_pages. 107 */ 108 __cacheline_aligned_in_smp DEFINE_SPINLOCK(hugetlb_lock); 109 110 /* 111 * Serializes faults on the same logical page. This is used to 112 * prevent spurious OOMs when the hugepage pool is fully utilized. 113 */ 114 static int num_fault_mutexes __ro_after_init; 115 struct mutex *hugetlb_fault_mutex_table __ro_after_init; 116 117 /* Forward declaration */ 118 static int hugetlb_acct_memory(struct hstate *h, long delta); 119 static void hugetlb_vma_lock_free(struct vm_area_struct *vma); 120 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma); 121 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma); 122 static void hugetlb_unshare_pmds(struct vm_area_struct *vma, 123 unsigned long start, unsigned long end); 124 static struct resv_map *vma_resv_map(struct vm_area_struct *vma); 125 126 static void hugetlb_free_folio(struct folio *folio) 127 { 128 if (folio_test_hugetlb_cma(folio)) { 129 hugetlb_cma_free_folio(folio); 130 return; 131 } 132 133 folio_put(folio); 134 } 135 136 static inline bool subpool_is_free(struct hugepage_subpool *spool) 137 { 138 if (spool->count) 139 return false; 140 if (spool->max_hpages != -1) 141 return spool->used_hpages == 0; 142 if (spool->min_hpages != -1) 143 return spool->rsv_hpages == spool->min_hpages; 144 145 return true; 146 } 147 148 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool, 149 unsigned long irq_flags) 150 { 151 spin_unlock_irqrestore(&spool->lock, irq_flags); 152 153 /* If no pages are used, and no other handles to the subpool 154 * remain, give up any reservations based on minimum size and 155 * free the subpool */ 156 if (subpool_is_free(spool)) { 157 if (spool->min_hpages != -1) 158 hugetlb_acct_memory(spool->hstate, 159 -spool->min_hpages); 160 kfree(spool); 161 } 162 } 163 164 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages, 165 long min_hpages) 166 { 167 struct hugepage_subpool *spool; 168 169 spool = kzalloc(sizeof(*spool), GFP_KERNEL); 170 if (!spool) 171 return NULL; 172 173 spin_lock_init(&spool->lock); 174 spool->count = 1; 175 spool->max_hpages = max_hpages; 176 spool->hstate = h; 177 spool->min_hpages = min_hpages; 178 179 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) { 180 kfree(spool); 181 return NULL; 182 } 183 spool->rsv_hpages = min_hpages; 184 185 return spool; 186 } 187 188 void hugepage_put_subpool(struct hugepage_subpool *spool) 189 { 190 unsigned long flags; 191 192 spin_lock_irqsave(&spool->lock, flags); 193 BUG_ON(!spool->count); 194 spool->count--; 195 unlock_or_release_subpool(spool, flags); 196 } 197 198 /* 199 * Subpool accounting for allocating and reserving pages. 200 * Return -ENOMEM if there are not enough resources to satisfy the 201 * request. Otherwise, return the number of pages by which the 202 * global pools must be adjusted (upward). The returned value may 203 * only be different than the passed value (delta) in the case where 204 * a subpool minimum size must be maintained. 205 */ 206 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool, 207 long delta) 208 { 209 long ret = delta; 210 211 if (!spool) 212 return ret; 213 214 spin_lock_irq(&spool->lock); 215 216 if (spool->max_hpages != -1) { /* maximum size accounting */ 217 if ((spool->used_hpages + delta) <= spool->max_hpages) 218 spool->used_hpages += delta; 219 else { 220 ret = -ENOMEM; 221 goto unlock_ret; 222 } 223 } 224 225 /* minimum size accounting */ 226 if (spool->min_hpages != -1 && spool->rsv_hpages) { 227 if (delta > spool->rsv_hpages) { 228 /* 229 * Asking for more reserves than those already taken on 230 * behalf of subpool. Return difference. 231 */ 232 ret = delta - spool->rsv_hpages; 233 spool->rsv_hpages = 0; 234 } else { 235 ret = 0; /* reserves already accounted for */ 236 spool->rsv_hpages -= delta; 237 } 238 } 239 240 unlock_ret: 241 spin_unlock_irq(&spool->lock); 242 return ret; 243 } 244 245 /* 246 * Subpool accounting for freeing and unreserving pages. 247 * Return the number of global page reservations that must be dropped. 248 * The return value may only be different than the passed value (delta) 249 * in the case where a subpool minimum size must be maintained. 250 */ 251 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool, 252 long delta) 253 { 254 long ret = delta; 255 unsigned long flags; 256 257 if (!spool) 258 return delta; 259 260 spin_lock_irqsave(&spool->lock, flags); 261 262 if (spool->max_hpages != -1) /* maximum size accounting */ 263 spool->used_hpages -= delta; 264 265 /* minimum size accounting */ 266 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) { 267 if (spool->rsv_hpages + delta <= spool->min_hpages) 268 ret = 0; 269 else 270 ret = spool->rsv_hpages + delta - spool->min_hpages; 271 272 spool->rsv_hpages += delta; 273 if (spool->rsv_hpages > spool->min_hpages) 274 spool->rsv_hpages = spool->min_hpages; 275 } 276 277 /* 278 * If hugetlbfs_put_super couldn't free spool due to an outstanding 279 * quota reference, free it now. 280 */ 281 unlock_or_release_subpool(spool, flags); 282 283 return ret; 284 } 285 286 static inline struct hugepage_subpool *subpool_inode(struct inode *inode) 287 { 288 return HUGETLBFS_SB(inode->i_sb)->spool; 289 } 290 291 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma) 292 { 293 return subpool_inode(file_inode(vma->vm_file)); 294 } 295 296 /* 297 * hugetlb vma_lock helper routines 298 */ 299 void hugetlb_vma_lock_read(struct vm_area_struct *vma) 300 { 301 if (__vma_shareable_lock(vma)) { 302 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 303 304 down_read(&vma_lock->rw_sema); 305 } else if (__vma_private_lock(vma)) { 306 struct resv_map *resv_map = vma_resv_map(vma); 307 308 down_read(&resv_map->rw_sema); 309 } 310 } 311 312 void hugetlb_vma_unlock_read(struct vm_area_struct *vma) 313 { 314 if (__vma_shareable_lock(vma)) { 315 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 316 317 up_read(&vma_lock->rw_sema); 318 } else if (__vma_private_lock(vma)) { 319 struct resv_map *resv_map = vma_resv_map(vma); 320 321 up_read(&resv_map->rw_sema); 322 } 323 } 324 325 void hugetlb_vma_lock_write(struct vm_area_struct *vma) 326 { 327 if (__vma_shareable_lock(vma)) { 328 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 329 330 down_write(&vma_lock->rw_sema); 331 } else if (__vma_private_lock(vma)) { 332 struct resv_map *resv_map = vma_resv_map(vma); 333 334 down_write(&resv_map->rw_sema); 335 } 336 } 337 338 void hugetlb_vma_unlock_write(struct vm_area_struct *vma) 339 { 340 if (__vma_shareable_lock(vma)) { 341 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 342 343 up_write(&vma_lock->rw_sema); 344 } else if (__vma_private_lock(vma)) { 345 struct resv_map *resv_map = vma_resv_map(vma); 346 347 up_write(&resv_map->rw_sema); 348 } 349 } 350 351 int hugetlb_vma_trylock_write(struct vm_area_struct *vma) 352 { 353 354 if (__vma_shareable_lock(vma)) { 355 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 356 357 return down_write_trylock(&vma_lock->rw_sema); 358 } else if (__vma_private_lock(vma)) { 359 struct resv_map *resv_map = vma_resv_map(vma); 360 361 return down_write_trylock(&resv_map->rw_sema); 362 } 363 364 return 1; 365 } 366 367 void hugetlb_vma_assert_locked(struct vm_area_struct *vma) 368 { 369 if (__vma_shareable_lock(vma)) { 370 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 371 372 lockdep_assert_held(&vma_lock->rw_sema); 373 } else if (__vma_private_lock(vma)) { 374 struct resv_map *resv_map = vma_resv_map(vma); 375 376 lockdep_assert_held(&resv_map->rw_sema); 377 } 378 } 379 380 void hugetlb_vma_lock_release(struct kref *kref) 381 { 382 struct hugetlb_vma_lock *vma_lock = container_of(kref, 383 struct hugetlb_vma_lock, refs); 384 385 kfree(vma_lock); 386 } 387 388 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock) 389 { 390 struct vm_area_struct *vma = vma_lock->vma; 391 392 /* 393 * vma_lock structure may or not be released as a result of put, 394 * it certainly will no longer be attached to vma so clear pointer. 395 * Semaphore synchronizes access to vma_lock->vma field. 396 */ 397 vma_lock->vma = NULL; 398 vma->vm_private_data = NULL; 399 up_write(&vma_lock->rw_sema); 400 kref_put(&vma_lock->refs, hugetlb_vma_lock_release); 401 } 402 403 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma) 404 { 405 if (__vma_shareable_lock(vma)) { 406 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 407 408 __hugetlb_vma_unlock_write_put(vma_lock); 409 } else if (__vma_private_lock(vma)) { 410 struct resv_map *resv_map = vma_resv_map(vma); 411 412 /* no free for anon vmas, but still need to unlock */ 413 up_write(&resv_map->rw_sema); 414 } 415 } 416 417 static void hugetlb_vma_lock_free(struct vm_area_struct *vma) 418 { 419 /* 420 * Only present in sharable vmas. 421 */ 422 if (!vma || !__vma_shareable_lock(vma)) 423 return; 424 425 if (vma->vm_private_data) { 426 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 427 428 down_write(&vma_lock->rw_sema); 429 __hugetlb_vma_unlock_write_put(vma_lock); 430 } 431 } 432 433 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma) 434 { 435 struct hugetlb_vma_lock *vma_lock; 436 437 /* Only establish in (flags) sharable vmas */ 438 if (!vma || !(vma->vm_flags & VM_MAYSHARE)) 439 return; 440 441 /* Should never get here with non-NULL vm_private_data */ 442 if (vma->vm_private_data) 443 return; 444 445 vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL); 446 if (!vma_lock) { 447 /* 448 * If we can not allocate structure, then vma can not 449 * participate in pmd sharing. This is only a possible 450 * performance enhancement and memory saving issue. 451 * However, the lock is also used to synchronize page 452 * faults with truncation. If the lock is not present, 453 * unlikely races could leave pages in a file past i_size 454 * until the file is removed. Warn in the unlikely case of 455 * allocation failure. 456 */ 457 pr_warn_once("HugeTLB: unable to allocate vma specific lock\n"); 458 return; 459 } 460 461 kref_init(&vma_lock->refs); 462 init_rwsem(&vma_lock->rw_sema); 463 vma_lock->vma = vma; 464 vma->vm_private_data = vma_lock; 465 } 466 467 /* Helper that removes a struct file_region from the resv_map cache and returns 468 * it for use. 469 */ 470 static struct file_region * 471 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to) 472 { 473 struct file_region *nrg; 474 475 VM_BUG_ON(resv->region_cache_count <= 0); 476 477 resv->region_cache_count--; 478 nrg = list_first_entry(&resv->region_cache, struct file_region, link); 479 list_del(&nrg->link); 480 481 nrg->from = from; 482 nrg->to = to; 483 484 return nrg; 485 } 486 487 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg, 488 struct file_region *rg) 489 { 490 #ifdef CONFIG_CGROUP_HUGETLB 491 nrg->reservation_counter = rg->reservation_counter; 492 nrg->css = rg->css; 493 if (rg->css) 494 css_get(rg->css); 495 #endif 496 } 497 498 /* Helper that records hugetlb_cgroup uncharge info. */ 499 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg, 500 struct hstate *h, 501 struct resv_map *resv, 502 struct file_region *nrg) 503 { 504 #ifdef CONFIG_CGROUP_HUGETLB 505 if (h_cg) { 506 nrg->reservation_counter = 507 &h_cg->rsvd_hugepage[hstate_index(h)]; 508 nrg->css = &h_cg->css; 509 /* 510 * The caller will hold exactly one h_cg->css reference for the 511 * whole contiguous reservation region. But this area might be 512 * scattered when there are already some file_regions reside in 513 * it. As a result, many file_regions may share only one css 514 * reference. In order to ensure that one file_region must hold 515 * exactly one h_cg->css reference, we should do css_get for 516 * each file_region and leave the reference held by caller 517 * untouched. 518 */ 519 css_get(&h_cg->css); 520 if (!resv->pages_per_hpage) 521 resv->pages_per_hpage = pages_per_huge_page(h); 522 /* pages_per_hpage should be the same for all entries in 523 * a resv_map. 524 */ 525 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h)); 526 } else { 527 nrg->reservation_counter = NULL; 528 nrg->css = NULL; 529 } 530 #endif 531 } 532 533 static void put_uncharge_info(struct file_region *rg) 534 { 535 #ifdef CONFIG_CGROUP_HUGETLB 536 if (rg->css) 537 css_put(rg->css); 538 #endif 539 } 540 541 static bool has_same_uncharge_info(struct file_region *rg, 542 struct file_region *org) 543 { 544 #ifdef CONFIG_CGROUP_HUGETLB 545 return rg->reservation_counter == org->reservation_counter && 546 rg->css == org->css; 547 548 #else 549 return true; 550 #endif 551 } 552 553 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg) 554 { 555 struct file_region *nrg, *prg; 556 557 prg = list_prev_entry(rg, link); 558 if (&prg->link != &resv->regions && prg->to == rg->from && 559 has_same_uncharge_info(prg, rg)) { 560 prg->to = rg->to; 561 562 list_del(&rg->link); 563 put_uncharge_info(rg); 564 kfree(rg); 565 566 rg = prg; 567 } 568 569 nrg = list_next_entry(rg, link); 570 if (&nrg->link != &resv->regions && nrg->from == rg->to && 571 has_same_uncharge_info(nrg, rg)) { 572 nrg->from = rg->from; 573 574 list_del(&rg->link); 575 put_uncharge_info(rg); 576 kfree(rg); 577 } 578 } 579 580 static inline long 581 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from, 582 long to, struct hstate *h, struct hugetlb_cgroup *cg, 583 long *regions_needed) 584 { 585 struct file_region *nrg; 586 587 if (!regions_needed) { 588 nrg = get_file_region_entry_from_cache(map, from, to); 589 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg); 590 list_add(&nrg->link, rg); 591 coalesce_file_region(map, nrg); 592 } else 593 *regions_needed += 1; 594 595 return to - from; 596 } 597 598 /* 599 * Must be called with resv->lock held. 600 * 601 * Calling this with regions_needed != NULL will count the number of pages 602 * to be added but will not modify the linked list. And regions_needed will 603 * indicate the number of file_regions needed in the cache to carry out to add 604 * the regions for this range. 605 */ 606 static long add_reservation_in_range(struct resv_map *resv, long f, long t, 607 struct hugetlb_cgroup *h_cg, 608 struct hstate *h, long *regions_needed) 609 { 610 long add = 0; 611 struct list_head *head = &resv->regions; 612 long last_accounted_offset = f; 613 struct file_region *iter, *trg = NULL; 614 struct list_head *rg = NULL; 615 616 if (regions_needed) 617 *regions_needed = 0; 618 619 /* In this loop, we essentially handle an entry for the range 620 * [last_accounted_offset, iter->from), at every iteration, with some 621 * bounds checking. 622 */ 623 list_for_each_entry_safe(iter, trg, head, link) { 624 /* Skip irrelevant regions that start before our range. */ 625 if (iter->from < f) { 626 /* If this region ends after the last accounted offset, 627 * then we need to update last_accounted_offset. 628 */ 629 if (iter->to > last_accounted_offset) 630 last_accounted_offset = iter->to; 631 continue; 632 } 633 634 /* When we find a region that starts beyond our range, we've 635 * finished. 636 */ 637 if (iter->from >= t) { 638 rg = iter->link.prev; 639 break; 640 } 641 642 /* Add an entry for last_accounted_offset -> iter->from, and 643 * update last_accounted_offset. 644 */ 645 if (iter->from > last_accounted_offset) 646 add += hugetlb_resv_map_add(resv, iter->link.prev, 647 last_accounted_offset, 648 iter->from, h, h_cg, 649 regions_needed); 650 651 last_accounted_offset = iter->to; 652 } 653 654 /* Handle the case where our range extends beyond 655 * last_accounted_offset. 656 */ 657 if (!rg) 658 rg = head->prev; 659 if (last_accounted_offset < t) 660 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset, 661 t, h, h_cg, regions_needed); 662 663 return add; 664 } 665 666 /* Must be called with resv->lock acquired. Will drop lock to allocate entries. 667 */ 668 static int allocate_file_region_entries(struct resv_map *resv, 669 int regions_needed) 670 __must_hold(&resv->lock) 671 { 672 LIST_HEAD(allocated_regions); 673 int to_allocate = 0, i = 0; 674 struct file_region *trg = NULL, *rg = NULL; 675 676 VM_BUG_ON(regions_needed < 0); 677 678 /* 679 * Check for sufficient descriptors in the cache to accommodate 680 * the number of in progress add operations plus regions_needed. 681 * 682 * This is a while loop because when we drop the lock, some other call 683 * to region_add or region_del may have consumed some region_entries, 684 * so we keep looping here until we finally have enough entries for 685 * (adds_in_progress + regions_needed). 686 */ 687 while (resv->region_cache_count < 688 (resv->adds_in_progress + regions_needed)) { 689 to_allocate = resv->adds_in_progress + regions_needed - 690 resv->region_cache_count; 691 692 /* At this point, we should have enough entries in the cache 693 * for all the existing adds_in_progress. We should only be 694 * needing to allocate for regions_needed. 695 */ 696 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress); 697 698 spin_unlock(&resv->lock); 699 for (i = 0; i < to_allocate; i++) { 700 trg = kmalloc(sizeof(*trg), GFP_KERNEL); 701 if (!trg) 702 goto out_of_memory; 703 list_add(&trg->link, &allocated_regions); 704 } 705 706 spin_lock(&resv->lock); 707 708 list_splice(&allocated_regions, &resv->region_cache); 709 resv->region_cache_count += to_allocate; 710 } 711 712 return 0; 713 714 out_of_memory: 715 list_for_each_entry_safe(rg, trg, &allocated_regions, link) { 716 list_del(&rg->link); 717 kfree(rg); 718 } 719 return -ENOMEM; 720 } 721 722 /* 723 * Add the huge page range represented by [f, t) to the reserve 724 * map. Regions will be taken from the cache to fill in this range. 725 * Sufficient regions should exist in the cache due to the previous 726 * call to region_chg with the same range, but in some cases the cache will not 727 * have sufficient entries due to races with other code doing region_add or 728 * region_del. The extra needed entries will be allocated. 729 * 730 * regions_needed is the out value provided by a previous call to region_chg. 731 * 732 * Return the number of new huge pages added to the map. This number is greater 733 * than or equal to zero. If file_region entries needed to be allocated for 734 * this operation and we were not able to allocate, it returns -ENOMEM. 735 * region_add of regions of length 1 never allocate file_regions and cannot 736 * fail; region_chg will always allocate at least 1 entry and a region_add for 737 * 1 page will only require at most 1 entry. 738 */ 739 static long region_add(struct resv_map *resv, long f, long t, 740 long in_regions_needed, struct hstate *h, 741 struct hugetlb_cgroup *h_cg) 742 { 743 long add = 0, actual_regions_needed = 0; 744 745 spin_lock(&resv->lock); 746 retry: 747 748 /* Count how many regions are actually needed to execute this add. */ 749 add_reservation_in_range(resv, f, t, NULL, NULL, 750 &actual_regions_needed); 751 752 /* 753 * Check for sufficient descriptors in the cache to accommodate 754 * this add operation. Note that actual_regions_needed may be greater 755 * than in_regions_needed, as the resv_map may have been modified since 756 * the region_chg call. In this case, we need to make sure that we 757 * allocate extra entries, such that we have enough for all the 758 * existing adds_in_progress, plus the excess needed for this 759 * operation. 760 */ 761 if (actual_regions_needed > in_regions_needed && 762 resv->region_cache_count < 763 resv->adds_in_progress + 764 (actual_regions_needed - in_regions_needed)) { 765 /* region_add operation of range 1 should never need to 766 * allocate file_region entries. 767 */ 768 VM_BUG_ON(t - f <= 1); 769 770 if (allocate_file_region_entries( 771 resv, actual_regions_needed - in_regions_needed)) { 772 return -ENOMEM; 773 } 774 775 goto retry; 776 } 777 778 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL); 779 780 resv->adds_in_progress -= in_regions_needed; 781 782 spin_unlock(&resv->lock); 783 return add; 784 } 785 786 /* 787 * Examine the existing reserve map and determine how many 788 * huge pages in the specified range [f, t) are NOT currently 789 * represented. This routine is called before a subsequent 790 * call to region_add that will actually modify the reserve 791 * map to add the specified range [f, t). region_chg does 792 * not change the number of huge pages represented by the 793 * map. A number of new file_region structures is added to the cache as a 794 * placeholder, for the subsequent region_add call to use. At least 1 795 * file_region structure is added. 796 * 797 * out_regions_needed is the number of regions added to the 798 * resv->adds_in_progress. This value needs to be provided to a follow up call 799 * to region_add or region_abort for proper accounting. 800 * 801 * Returns the number of huge pages that need to be added to the existing 802 * reservation map for the range [f, t). This number is greater or equal to 803 * zero. -ENOMEM is returned if a new file_region structure or cache entry 804 * is needed and can not be allocated. 805 */ 806 static long region_chg(struct resv_map *resv, long f, long t, 807 long *out_regions_needed) 808 { 809 long chg = 0; 810 811 spin_lock(&resv->lock); 812 813 /* Count how many hugepages in this range are NOT represented. */ 814 chg = add_reservation_in_range(resv, f, t, NULL, NULL, 815 out_regions_needed); 816 817 if (*out_regions_needed == 0) 818 *out_regions_needed = 1; 819 820 if (allocate_file_region_entries(resv, *out_regions_needed)) 821 return -ENOMEM; 822 823 resv->adds_in_progress += *out_regions_needed; 824 825 spin_unlock(&resv->lock); 826 return chg; 827 } 828 829 /* 830 * Abort the in progress add operation. The adds_in_progress field 831 * of the resv_map keeps track of the operations in progress between 832 * calls to region_chg and region_add. Operations are sometimes 833 * aborted after the call to region_chg. In such cases, region_abort 834 * is called to decrement the adds_in_progress counter. regions_needed 835 * is the value returned by the region_chg call, it is used to decrement 836 * the adds_in_progress counter. 837 * 838 * NOTE: The range arguments [f, t) are not needed or used in this 839 * routine. They are kept to make reading the calling code easier as 840 * arguments will match the associated region_chg call. 841 */ 842 static void region_abort(struct resv_map *resv, long f, long t, 843 long regions_needed) 844 { 845 spin_lock(&resv->lock); 846 VM_BUG_ON(!resv->region_cache_count); 847 resv->adds_in_progress -= regions_needed; 848 spin_unlock(&resv->lock); 849 } 850 851 /* 852 * Delete the specified range [f, t) from the reserve map. If the 853 * t parameter is LONG_MAX, this indicates that ALL regions after f 854 * should be deleted. Locate the regions which intersect [f, t) 855 * and either trim, delete or split the existing regions. 856 * 857 * Returns the number of huge pages deleted from the reserve map. 858 * In the normal case, the return value is zero or more. In the 859 * case where a region must be split, a new region descriptor must 860 * be allocated. If the allocation fails, -ENOMEM will be returned. 861 * NOTE: If the parameter t == LONG_MAX, then we will never split 862 * a region and possibly return -ENOMEM. Callers specifying 863 * t == LONG_MAX do not need to check for -ENOMEM error. 864 */ 865 static long region_del(struct resv_map *resv, long f, long t) 866 { 867 struct list_head *head = &resv->regions; 868 struct file_region *rg, *trg; 869 struct file_region *nrg = NULL; 870 long del = 0; 871 872 retry: 873 spin_lock(&resv->lock); 874 list_for_each_entry_safe(rg, trg, head, link) { 875 /* 876 * Skip regions before the range to be deleted. file_region 877 * ranges are normally of the form [from, to). However, there 878 * may be a "placeholder" entry in the map which is of the form 879 * (from, to) with from == to. Check for placeholder entries 880 * at the beginning of the range to be deleted. 881 */ 882 if (rg->to <= f && (rg->to != rg->from || rg->to != f)) 883 continue; 884 885 if (rg->from >= t) 886 break; 887 888 if (f > rg->from && t < rg->to) { /* Must split region */ 889 /* 890 * Check for an entry in the cache before dropping 891 * lock and attempting allocation. 892 */ 893 if (!nrg && 894 resv->region_cache_count > resv->adds_in_progress) { 895 nrg = list_first_entry(&resv->region_cache, 896 struct file_region, 897 link); 898 list_del(&nrg->link); 899 resv->region_cache_count--; 900 } 901 902 if (!nrg) { 903 spin_unlock(&resv->lock); 904 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 905 if (!nrg) 906 return -ENOMEM; 907 goto retry; 908 } 909 910 del += t - f; 911 hugetlb_cgroup_uncharge_file_region( 912 resv, rg, t - f, false); 913 914 /* New entry for end of split region */ 915 nrg->from = t; 916 nrg->to = rg->to; 917 918 copy_hugetlb_cgroup_uncharge_info(nrg, rg); 919 920 INIT_LIST_HEAD(&nrg->link); 921 922 /* Original entry is trimmed */ 923 rg->to = f; 924 925 list_add(&nrg->link, &rg->link); 926 nrg = NULL; 927 break; 928 } 929 930 if (f <= rg->from && t >= rg->to) { /* Remove entire region */ 931 del += rg->to - rg->from; 932 hugetlb_cgroup_uncharge_file_region(resv, rg, 933 rg->to - rg->from, true); 934 list_del(&rg->link); 935 kfree(rg); 936 continue; 937 } 938 939 if (f <= rg->from) { /* Trim beginning of region */ 940 hugetlb_cgroup_uncharge_file_region(resv, rg, 941 t - rg->from, false); 942 943 del += t - rg->from; 944 rg->from = t; 945 } else { /* Trim end of region */ 946 hugetlb_cgroup_uncharge_file_region(resv, rg, 947 rg->to - f, false); 948 949 del += rg->to - f; 950 rg->to = f; 951 } 952 } 953 954 spin_unlock(&resv->lock); 955 kfree(nrg); 956 return del; 957 } 958 959 /* 960 * A rare out of memory error was encountered which prevented removal of 961 * the reserve map region for a page. The huge page itself was free'ed 962 * and removed from the page cache. This routine will adjust the subpool 963 * usage count, and the global reserve count if needed. By incrementing 964 * these counts, the reserve map entry which could not be deleted will 965 * appear as a "reserved" entry instead of simply dangling with incorrect 966 * counts. 967 */ 968 void hugetlb_fix_reserve_counts(struct inode *inode) 969 { 970 struct hugepage_subpool *spool = subpool_inode(inode); 971 long rsv_adjust; 972 bool reserved = false; 973 974 rsv_adjust = hugepage_subpool_get_pages(spool, 1); 975 if (rsv_adjust > 0) { 976 struct hstate *h = hstate_inode(inode); 977 978 if (!hugetlb_acct_memory(h, 1)) 979 reserved = true; 980 } else if (!rsv_adjust) { 981 reserved = true; 982 } 983 984 if (!reserved) 985 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n"); 986 } 987 988 /* 989 * Count and return the number of huge pages in the reserve map 990 * that intersect with the range [f, t). 991 */ 992 static long region_count(struct resv_map *resv, long f, long t) 993 { 994 struct list_head *head = &resv->regions; 995 struct file_region *rg; 996 long chg = 0; 997 998 spin_lock(&resv->lock); 999 /* Locate each segment we overlap with, and count that overlap. */ 1000 list_for_each_entry(rg, head, link) { 1001 long seg_from; 1002 long seg_to; 1003 1004 if (rg->to <= f) 1005 continue; 1006 if (rg->from >= t) 1007 break; 1008 1009 seg_from = max(rg->from, f); 1010 seg_to = min(rg->to, t); 1011 1012 chg += seg_to - seg_from; 1013 } 1014 spin_unlock(&resv->lock); 1015 1016 return chg; 1017 } 1018 1019 /* 1020 * Convert the address within this vma to the page offset within 1021 * the mapping, huge page units here. 1022 */ 1023 static pgoff_t vma_hugecache_offset(struct hstate *h, 1024 struct vm_area_struct *vma, unsigned long address) 1025 { 1026 return ((address - vma->vm_start) >> huge_page_shift(h)) + 1027 (vma->vm_pgoff >> huge_page_order(h)); 1028 } 1029 1030 /** 1031 * vma_kernel_pagesize - Page size granularity for this VMA. 1032 * @vma: The user mapping. 1033 * 1034 * Folios in this VMA will be aligned to, and at least the size of the 1035 * number of bytes returned by this function. 1036 * 1037 * Return: The default size of the folios allocated when backing a VMA. 1038 */ 1039 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) 1040 { 1041 if (vma->vm_ops && vma->vm_ops->pagesize) 1042 return vma->vm_ops->pagesize(vma); 1043 return PAGE_SIZE; 1044 } 1045 EXPORT_SYMBOL_GPL(vma_kernel_pagesize); 1046 1047 /* 1048 * Return the page size being used by the MMU to back a VMA. In the majority 1049 * of cases, the page size used by the kernel matches the MMU size. On 1050 * architectures where it differs, an architecture-specific 'strong' 1051 * version of this symbol is required. 1052 */ 1053 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 1054 { 1055 return vma_kernel_pagesize(vma); 1056 } 1057 1058 /* 1059 * Flags for MAP_PRIVATE reservations. These are stored in the bottom 1060 * bits of the reservation map pointer, which are always clear due to 1061 * alignment. 1062 */ 1063 #define HPAGE_RESV_OWNER (1UL << 0) 1064 #define HPAGE_RESV_UNMAPPED (1UL << 1) 1065 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) 1066 1067 /* 1068 * These helpers are used to track how many pages are reserved for 1069 * faults in a MAP_PRIVATE mapping. Only the process that called mmap() 1070 * is guaranteed to have their future faults succeed. 1071 * 1072 * With the exception of hugetlb_dup_vma_private() which is called at fork(), 1073 * the reserve counters are updated with the hugetlb_lock held. It is safe 1074 * to reset the VMA at fork() time as it is not in use yet and there is no 1075 * chance of the global counters getting corrupted as a result of the values. 1076 * 1077 * The private mapping reservation is represented in a subtly different 1078 * manner to a shared mapping. A shared mapping has a region map associated 1079 * with the underlying file, this region map represents the backing file 1080 * pages which have ever had a reservation assigned which this persists even 1081 * after the page is instantiated. A private mapping has a region map 1082 * associated with the original mmap which is attached to all VMAs which 1083 * reference it, this region map represents those offsets which have consumed 1084 * reservation ie. where pages have been instantiated. 1085 */ 1086 static unsigned long get_vma_private_data(struct vm_area_struct *vma) 1087 { 1088 return (unsigned long)vma->vm_private_data; 1089 } 1090 1091 static void set_vma_private_data(struct vm_area_struct *vma, 1092 unsigned long value) 1093 { 1094 vma->vm_private_data = (void *)value; 1095 } 1096 1097 static void 1098 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map, 1099 struct hugetlb_cgroup *h_cg, 1100 struct hstate *h) 1101 { 1102 #ifdef CONFIG_CGROUP_HUGETLB 1103 if (!h_cg || !h) { 1104 resv_map->reservation_counter = NULL; 1105 resv_map->pages_per_hpage = 0; 1106 resv_map->css = NULL; 1107 } else { 1108 resv_map->reservation_counter = 1109 &h_cg->rsvd_hugepage[hstate_index(h)]; 1110 resv_map->pages_per_hpage = pages_per_huge_page(h); 1111 resv_map->css = &h_cg->css; 1112 } 1113 #endif 1114 } 1115 1116 struct resv_map *resv_map_alloc(void) 1117 { 1118 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); 1119 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL); 1120 1121 if (!resv_map || !rg) { 1122 kfree(resv_map); 1123 kfree(rg); 1124 return NULL; 1125 } 1126 1127 kref_init(&resv_map->refs); 1128 spin_lock_init(&resv_map->lock); 1129 INIT_LIST_HEAD(&resv_map->regions); 1130 init_rwsem(&resv_map->rw_sema); 1131 1132 resv_map->adds_in_progress = 0; 1133 /* 1134 * Initialize these to 0. On shared mappings, 0's here indicate these 1135 * fields don't do cgroup accounting. On private mappings, these will be 1136 * re-initialized to the proper values, to indicate that hugetlb cgroup 1137 * reservations are to be un-charged from here. 1138 */ 1139 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL); 1140 1141 INIT_LIST_HEAD(&resv_map->region_cache); 1142 list_add(&rg->link, &resv_map->region_cache); 1143 resv_map->region_cache_count = 1; 1144 1145 return resv_map; 1146 } 1147 1148 void resv_map_release(struct kref *ref) 1149 { 1150 struct resv_map *resv_map = container_of(ref, struct resv_map, refs); 1151 struct list_head *head = &resv_map->region_cache; 1152 struct file_region *rg, *trg; 1153 1154 /* Clear out any active regions before we release the map. */ 1155 region_del(resv_map, 0, LONG_MAX); 1156 1157 /* ... and any entries left in the cache */ 1158 list_for_each_entry_safe(rg, trg, head, link) { 1159 list_del(&rg->link); 1160 kfree(rg); 1161 } 1162 1163 VM_BUG_ON(resv_map->adds_in_progress); 1164 1165 kfree(resv_map); 1166 } 1167 1168 static inline struct resv_map *inode_resv_map(struct inode *inode) 1169 { 1170 /* 1171 * At inode evict time, i_mapping may not point to the original 1172 * address space within the inode. This original address space 1173 * contains the pointer to the resv_map. So, always use the 1174 * address space embedded within the inode. 1175 * The VERY common case is inode->mapping == &inode->i_data but, 1176 * this may not be true for device special inodes. 1177 */ 1178 return (struct resv_map *)(&inode->i_data)->i_private_data; 1179 } 1180 1181 static struct resv_map *vma_resv_map(struct vm_area_struct *vma) 1182 { 1183 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1184 if (vma->vm_flags & VM_MAYSHARE) { 1185 struct address_space *mapping = vma->vm_file->f_mapping; 1186 struct inode *inode = mapping->host; 1187 1188 return inode_resv_map(inode); 1189 1190 } else { 1191 return (struct resv_map *)(get_vma_private_data(vma) & 1192 ~HPAGE_RESV_MASK); 1193 } 1194 } 1195 1196 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) 1197 { 1198 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1199 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 1200 1201 set_vma_private_data(vma, (unsigned long)map); 1202 } 1203 1204 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) 1205 { 1206 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1207 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 1208 1209 set_vma_private_data(vma, get_vma_private_data(vma) | flags); 1210 } 1211 1212 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) 1213 { 1214 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1215 1216 return (get_vma_private_data(vma) & flag) != 0; 1217 } 1218 1219 bool __vma_private_lock(struct vm_area_struct *vma) 1220 { 1221 return !(vma->vm_flags & VM_MAYSHARE) && 1222 get_vma_private_data(vma) & ~HPAGE_RESV_MASK && 1223 is_vma_resv_set(vma, HPAGE_RESV_OWNER); 1224 } 1225 1226 void hugetlb_dup_vma_private(struct vm_area_struct *vma) 1227 { 1228 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1229 /* 1230 * Clear vm_private_data 1231 * - For shared mappings this is a per-vma semaphore that may be 1232 * allocated in a subsequent call to hugetlb_vm_op_open. 1233 * Before clearing, make sure pointer is not associated with vma 1234 * as this will leak the structure. This is the case when called 1235 * via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already 1236 * been called to allocate a new structure. 1237 * - For MAP_PRIVATE mappings, this is the reserve map which does 1238 * not apply to children. Faults generated by the children are 1239 * not guaranteed to succeed, even if read-only. 1240 */ 1241 if (vma->vm_flags & VM_MAYSHARE) { 1242 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 1243 1244 if (vma_lock && vma_lock->vma != vma) 1245 vma->vm_private_data = NULL; 1246 } else 1247 vma->vm_private_data = NULL; 1248 } 1249 1250 /* 1251 * Reset and decrement one ref on hugepage private reservation. 1252 * Called with mm->mmap_lock writer semaphore held. 1253 * This function should be only used by move_vma() and operate on 1254 * same sized vma. It should never come here with last ref on the 1255 * reservation. 1256 */ 1257 void clear_vma_resv_huge_pages(struct vm_area_struct *vma) 1258 { 1259 /* 1260 * Clear the old hugetlb private page reservation. 1261 * It has already been transferred to new_vma. 1262 * 1263 * During a mremap() operation of a hugetlb vma we call move_vma() 1264 * which copies vma into new_vma and unmaps vma. After the copy 1265 * operation both new_vma and vma share a reference to the resv_map 1266 * struct, and at that point vma is about to be unmapped. We don't 1267 * want to return the reservation to the pool at unmap of vma because 1268 * the reservation still lives on in new_vma, so simply decrement the 1269 * ref here and remove the resv_map reference from this vma. 1270 */ 1271 struct resv_map *reservations = vma_resv_map(vma); 1272 1273 if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 1274 resv_map_put_hugetlb_cgroup_uncharge_info(reservations); 1275 kref_put(&reservations->refs, resv_map_release); 1276 } 1277 1278 hugetlb_dup_vma_private(vma); 1279 } 1280 1281 static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio) 1282 { 1283 int nid = folio_nid(folio); 1284 1285 lockdep_assert_held(&hugetlb_lock); 1286 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio); 1287 1288 list_move(&folio->lru, &h->hugepage_freelists[nid]); 1289 h->free_huge_pages++; 1290 h->free_huge_pages_node[nid]++; 1291 folio_set_hugetlb_freed(folio); 1292 } 1293 1294 static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h, 1295 int nid) 1296 { 1297 struct folio *folio; 1298 bool pin = !!(current->flags & PF_MEMALLOC_PIN); 1299 1300 lockdep_assert_held(&hugetlb_lock); 1301 list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) { 1302 if (pin && !folio_is_longterm_pinnable(folio)) 1303 continue; 1304 1305 if (folio_test_hwpoison(folio)) 1306 continue; 1307 1308 if (is_migrate_isolate_page(&folio->page)) 1309 continue; 1310 1311 list_move(&folio->lru, &h->hugepage_activelist); 1312 folio_ref_unfreeze(folio, 1); 1313 folio_clear_hugetlb_freed(folio); 1314 h->free_huge_pages--; 1315 h->free_huge_pages_node[nid]--; 1316 return folio; 1317 } 1318 1319 return NULL; 1320 } 1321 1322 static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask, 1323 int nid, nodemask_t *nmask) 1324 { 1325 unsigned int cpuset_mems_cookie; 1326 struct zonelist *zonelist; 1327 struct zone *zone; 1328 struct zoneref *z; 1329 int node = NUMA_NO_NODE; 1330 1331 /* 'nid' should not be NUMA_NO_NODE. Try to catch any misuse of it and rectifiy. */ 1332 if (nid == NUMA_NO_NODE) 1333 nid = numa_node_id(); 1334 1335 zonelist = node_zonelist(nid, gfp_mask); 1336 1337 retry_cpuset: 1338 cpuset_mems_cookie = read_mems_allowed_begin(); 1339 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) { 1340 struct folio *folio; 1341 1342 if (!cpuset_zone_allowed(zone, gfp_mask)) 1343 continue; 1344 /* 1345 * no need to ask again on the same node. Pool is node rather than 1346 * zone aware 1347 */ 1348 if (zone_to_nid(zone) == node) 1349 continue; 1350 node = zone_to_nid(zone); 1351 1352 folio = dequeue_hugetlb_folio_node_exact(h, node); 1353 if (folio) 1354 return folio; 1355 } 1356 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie))) 1357 goto retry_cpuset; 1358 1359 return NULL; 1360 } 1361 1362 static unsigned long available_huge_pages(struct hstate *h) 1363 { 1364 return h->free_huge_pages - h->resv_huge_pages; 1365 } 1366 1367 static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h, 1368 struct vm_area_struct *vma, 1369 unsigned long address, long gbl_chg) 1370 { 1371 struct folio *folio = NULL; 1372 struct mempolicy *mpol; 1373 gfp_t gfp_mask; 1374 nodemask_t *nodemask; 1375 int nid; 1376 1377 /* 1378 * gbl_chg==1 means the allocation requires a new page that was not 1379 * reserved before. Making sure there's at least one free page. 1380 */ 1381 if (gbl_chg && !available_huge_pages(h)) 1382 goto err; 1383 1384 gfp_mask = htlb_alloc_mask(h); 1385 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 1386 1387 if (mpol_is_preferred_many(mpol)) { 1388 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, 1389 nid, nodemask); 1390 1391 /* Fallback to all nodes if page==NULL */ 1392 nodemask = NULL; 1393 } 1394 1395 if (!folio) 1396 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, 1397 nid, nodemask); 1398 1399 mpol_cond_put(mpol); 1400 return folio; 1401 1402 err: 1403 return NULL; 1404 } 1405 1406 /* 1407 * common helper functions for hstate_next_node_to_{alloc|free}. 1408 * We may have allocated or freed a huge page based on a different 1409 * nodes_allowed previously, so h->next_node_to_{alloc|free} might 1410 * be outside of *nodes_allowed. Ensure that we use an allowed 1411 * node for alloc or free. 1412 */ 1413 static int next_node_allowed(int nid, nodemask_t *nodes_allowed) 1414 { 1415 nid = next_node_in(nid, *nodes_allowed); 1416 VM_BUG_ON(nid >= MAX_NUMNODES); 1417 1418 return nid; 1419 } 1420 1421 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed) 1422 { 1423 if (!node_isset(nid, *nodes_allowed)) 1424 nid = next_node_allowed(nid, nodes_allowed); 1425 return nid; 1426 } 1427 1428 /* 1429 * returns the previously saved node ["this node"] from which to 1430 * allocate a persistent huge page for the pool and advance the 1431 * next node from which to allocate, handling wrap at end of node 1432 * mask. 1433 */ 1434 static int hstate_next_node_to_alloc(int *next_node, 1435 nodemask_t *nodes_allowed) 1436 { 1437 int nid; 1438 1439 VM_BUG_ON(!nodes_allowed); 1440 1441 nid = get_valid_node_allowed(*next_node, nodes_allowed); 1442 *next_node = next_node_allowed(nid, nodes_allowed); 1443 1444 return nid; 1445 } 1446 1447 /* 1448 * helper for remove_pool_hugetlb_folio() - return the previously saved 1449 * node ["this node"] from which to free a huge page. Advance the 1450 * next node id whether or not we find a free huge page to free so 1451 * that the next attempt to free addresses the next node. 1452 */ 1453 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed) 1454 { 1455 int nid; 1456 1457 VM_BUG_ON(!nodes_allowed); 1458 1459 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed); 1460 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed); 1461 1462 return nid; 1463 } 1464 1465 #define for_each_node_mask_to_alloc(next_node, nr_nodes, node, mask) \ 1466 for (nr_nodes = nodes_weight(*mask); \ 1467 nr_nodes > 0 && \ 1468 ((node = hstate_next_node_to_alloc(next_node, mask)) || 1); \ 1469 nr_nodes--) 1470 1471 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \ 1472 for (nr_nodes = nodes_weight(*mask); \ 1473 nr_nodes > 0 && \ 1474 ((node = hstate_next_node_to_free(hs, mask)) || 1); \ 1475 nr_nodes--) 1476 1477 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE 1478 #ifdef CONFIG_CONTIG_ALLOC 1479 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask, 1480 int nid, nodemask_t *nodemask) 1481 { 1482 struct folio *folio; 1483 int order = huge_page_order(h); 1484 bool retried = false; 1485 1486 if (nid == NUMA_NO_NODE) 1487 nid = numa_mem_id(); 1488 retry: 1489 folio = hugetlb_cma_alloc_folio(h, gfp_mask, nid, nodemask); 1490 if (!folio) { 1491 if (hugetlb_cma_exclusive_alloc()) 1492 return NULL; 1493 1494 folio = folio_alloc_gigantic(order, gfp_mask, nid, nodemask); 1495 if (!folio) 1496 return NULL; 1497 } 1498 1499 if (folio_ref_freeze(folio, 1)) 1500 return folio; 1501 1502 pr_warn("HugeTLB: unexpected refcount on PFN %lu\n", folio_pfn(folio)); 1503 hugetlb_free_folio(folio); 1504 if (!retried) { 1505 retried = true; 1506 goto retry; 1507 } 1508 return NULL; 1509 } 1510 1511 #else /* !CONFIG_CONTIG_ALLOC */ 1512 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask, 1513 int nid, nodemask_t *nodemask) 1514 { 1515 return NULL; 1516 } 1517 #endif /* CONFIG_CONTIG_ALLOC */ 1518 1519 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */ 1520 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask, 1521 int nid, nodemask_t *nodemask) 1522 { 1523 return NULL; 1524 } 1525 #endif 1526 1527 /* 1528 * Remove hugetlb folio from lists. 1529 * If vmemmap exists for the folio, clear the hugetlb flag so that the 1530 * folio appears as just a compound page. Otherwise, wait until after 1531 * allocating vmemmap to clear the flag. 1532 * 1533 * Must be called with hugetlb lock held. 1534 */ 1535 static void remove_hugetlb_folio(struct hstate *h, struct folio *folio, 1536 bool adjust_surplus) 1537 { 1538 int nid = folio_nid(folio); 1539 1540 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio); 1541 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio); 1542 1543 lockdep_assert_held(&hugetlb_lock); 1544 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 1545 return; 1546 1547 list_del(&folio->lru); 1548 1549 if (folio_test_hugetlb_freed(folio)) { 1550 folio_clear_hugetlb_freed(folio); 1551 h->free_huge_pages--; 1552 h->free_huge_pages_node[nid]--; 1553 } 1554 if (adjust_surplus) { 1555 h->surplus_huge_pages--; 1556 h->surplus_huge_pages_node[nid]--; 1557 } 1558 1559 /* 1560 * We can only clear the hugetlb flag after allocating vmemmap 1561 * pages. Otherwise, someone (memory error handling) may try to write 1562 * to tail struct pages. 1563 */ 1564 if (!folio_test_hugetlb_vmemmap_optimized(folio)) 1565 __folio_clear_hugetlb(folio); 1566 1567 h->nr_huge_pages--; 1568 h->nr_huge_pages_node[nid]--; 1569 } 1570 1571 static void add_hugetlb_folio(struct hstate *h, struct folio *folio, 1572 bool adjust_surplus) 1573 { 1574 int nid = folio_nid(folio); 1575 1576 VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio); 1577 1578 lockdep_assert_held(&hugetlb_lock); 1579 1580 INIT_LIST_HEAD(&folio->lru); 1581 h->nr_huge_pages++; 1582 h->nr_huge_pages_node[nid]++; 1583 1584 if (adjust_surplus) { 1585 h->surplus_huge_pages++; 1586 h->surplus_huge_pages_node[nid]++; 1587 } 1588 1589 __folio_set_hugetlb(folio); 1590 folio_change_private(folio, NULL); 1591 /* 1592 * We have to set hugetlb_vmemmap_optimized again as above 1593 * folio_change_private(folio, NULL) cleared it. 1594 */ 1595 folio_set_hugetlb_vmemmap_optimized(folio); 1596 1597 arch_clear_hugetlb_flags(folio); 1598 enqueue_hugetlb_folio(h, folio); 1599 } 1600 1601 static void __update_and_free_hugetlb_folio(struct hstate *h, 1602 struct folio *folio) 1603 { 1604 bool clear_flag = folio_test_hugetlb_vmemmap_optimized(folio); 1605 1606 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 1607 return; 1608 1609 /* 1610 * If we don't know which subpages are hwpoisoned, we can't free 1611 * the hugepage, so it's leaked intentionally. 1612 */ 1613 if (folio_test_hugetlb_raw_hwp_unreliable(folio)) 1614 return; 1615 1616 /* 1617 * If folio is not vmemmap optimized (!clear_flag), then the folio 1618 * is no longer identified as a hugetlb page. hugetlb_vmemmap_restore_folio 1619 * can only be passed hugetlb pages and will BUG otherwise. 1620 */ 1621 if (clear_flag && hugetlb_vmemmap_restore_folio(h, folio)) { 1622 spin_lock_irq(&hugetlb_lock); 1623 /* 1624 * If we cannot allocate vmemmap pages, just refuse to free the 1625 * page and put the page back on the hugetlb free list and treat 1626 * as a surplus page. 1627 */ 1628 add_hugetlb_folio(h, folio, true); 1629 spin_unlock_irq(&hugetlb_lock); 1630 return; 1631 } 1632 1633 /* 1634 * If vmemmap pages were allocated above, then we need to clear the 1635 * hugetlb flag under the hugetlb lock. 1636 */ 1637 if (folio_test_hugetlb(folio)) { 1638 spin_lock_irq(&hugetlb_lock); 1639 __folio_clear_hugetlb(folio); 1640 spin_unlock_irq(&hugetlb_lock); 1641 } 1642 1643 /* 1644 * Move PageHWPoison flag from head page to the raw error pages, 1645 * which makes any healthy subpages reusable. 1646 */ 1647 if (unlikely(folio_test_hwpoison(folio))) 1648 folio_clear_hugetlb_hwpoison(folio); 1649 1650 folio_ref_unfreeze(folio, 1); 1651 1652 hugetlb_free_folio(folio); 1653 } 1654 1655 /* 1656 * As update_and_free_hugetlb_folio() can be called under any context, so we cannot 1657 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the 1658 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate 1659 * the vmemmap pages. 1660 * 1661 * free_hpage_workfn() locklessly retrieves the linked list of pages to be 1662 * freed and frees them one-by-one. As the page->mapping pointer is going 1663 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node 1664 * structure of a lockless linked list of huge pages to be freed. 1665 */ 1666 static LLIST_HEAD(hpage_freelist); 1667 1668 static void free_hpage_workfn(struct work_struct *work) 1669 { 1670 struct llist_node *node; 1671 1672 node = llist_del_all(&hpage_freelist); 1673 1674 while (node) { 1675 struct folio *folio; 1676 struct hstate *h; 1677 1678 folio = container_of((struct address_space **)node, 1679 struct folio, mapping); 1680 node = node->next; 1681 folio->mapping = NULL; 1682 /* 1683 * The VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio) in 1684 * folio_hstate() is going to trigger because a previous call to 1685 * remove_hugetlb_folio() will clear the hugetlb bit, so do 1686 * not use folio_hstate() directly. 1687 */ 1688 h = size_to_hstate(folio_size(folio)); 1689 1690 __update_and_free_hugetlb_folio(h, folio); 1691 1692 cond_resched(); 1693 } 1694 } 1695 static DECLARE_WORK(free_hpage_work, free_hpage_workfn); 1696 1697 static inline void flush_free_hpage_work(struct hstate *h) 1698 { 1699 if (hugetlb_vmemmap_optimizable(h)) 1700 flush_work(&free_hpage_work); 1701 } 1702 1703 static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio, 1704 bool atomic) 1705 { 1706 if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) { 1707 __update_and_free_hugetlb_folio(h, folio); 1708 return; 1709 } 1710 1711 /* 1712 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages. 1713 * 1714 * Only call schedule_work() if hpage_freelist is previously 1715 * empty. Otherwise, schedule_work() had been called but the workfn 1716 * hasn't retrieved the list yet. 1717 */ 1718 if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist)) 1719 schedule_work(&free_hpage_work); 1720 } 1721 1722 static void bulk_vmemmap_restore_error(struct hstate *h, 1723 struct list_head *folio_list, 1724 struct list_head *non_hvo_folios) 1725 { 1726 struct folio *folio, *t_folio; 1727 1728 if (!list_empty(non_hvo_folios)) { 1729 /* 1730 * Free any restored hugetlb pages so that restore of the 1731 * entire list can be retried. 1732 * The idea is that in the common case of ENOMEM errors freeing 1733 * hugetlb pages with vmemmap we will free up memory so that we 1734 * can allocate vmemmap for more hugetlb pages. 1735 */ 1736 list_for_each_entry_safe(folio, t_folio, non_hvo_folios, lru) { 1737 list_del(&folio->lru); 1738 spin_lock_irq(&hugetlb_lock); 1739 __folio_clear_hugetlb(folio); 1740 spin_unlock_irq(&hugetlb_lock); 1741 update_and_free_hugetlb_folio(h, folio, false); 1742 cond_resched(); 1743 } 1744 } else { 1745 /* 1746 * In the case where there are no folios which can be 1747 * immediately freed, we loop through the list trying to restore 1748 * vmemmap individually in the hope that someone elsewhere may 1749 * have done something to cause success (such as freeing some 1750 * memory). If unable to restore a hugetlb page, the hugetlb 1751 * page is made a surplus page and removed from the list. 1752 * If are able to restore vmemmap and free one hugetlb page, we 1753 * quit processing the list to retry the bulk operation. 1754 */ 1755 list_for_each_entry_safe(folio, t_folio, folio_list, lru) 1756 if (hugetlb_vmemmap_restore_folio(h, folio)) { 1757 list_del(&folio->lru); 1758 spin_lock_irq(&hugetlb_lock); 1759 add_hugetlb_folio(h, folio, true); 1760 spin_unlock_irq(&hugetlb_lock); 1761 } else { 1762 list_del(&folio->lru); 1763 spin_lock_irq(&hugetlb_lock); 1764 __folio_clear_hugetlb(folio); 1765 spin_unlock_irq(&hugetlb_lock); 1766 update_and_free_hugetlb_folio(h, folio, false); 1767 cond_resched(); 1768 break; 1769 } 1770 } 1771 } 1772 1773 static void update_and_free_pages_bulk(struct hstate *h, 1774 struct list_head *folio_list) 1775 { 1776 long ret; 1777 struct folio *folio, *t_folio; 1778 LIST_HEAD(non_hvo_folios); 1779 1780 /* 1781 * First allocate required vmemmmap (if necessary) for all folios. 1782 * Carefully handle errors and free up any available hugetlb pages 1783 * in an effort to make forward progress. 1784 */ 1785 retry: 1786 ret = hugetlb_vmemmap_restore_folios(h, folio_list, &non_hvo_folios); 1787 if (ret < 0) { 1788 bulk_vmemmap_restore_error(h, folio_list, &non_hvo_folios); 1789 goto retry; 1790 } 1791 1792 /* 1793 * At this point, list should be empty, ret should be >= 0 and there 1794 * should only be pages on the non_hvo_folios list. 1795 * Do note that the non_hvo_folios list could be empty. 1796 * Without HVO enabled, ret will be 0 and there is no need to call 1797 * __folio_clear_hugetlb as this was done previously. 1798 */ 1799 VM_WARN_ON(!list_empty(folio_list)); 1800 VM_WARN_ON(ret < 0); 1801 if (!list_empty(&non_hvo_folios) && ret) { 1802 spin_lock_irq(&hugetlb_lock); 1803 list_for_each_entry(folio, &non_hvo_folios, lru) 1804 __folio_clear_hugetlb(folio); 1805 spin_unlock_irq(&hugetlb_lock); 1806 } 1807 1808 list_for_each_entry_safe(folio, t_folio, &non_hvo_folios, lru) { 1809 update_and_free_hugetlb_folio(h, folio, false); 1810 cond_resched(); 1811 } 1812 } 1813 1814 struct hstate *size_to_hstate(unsigned long size) 1815 { 1816 struct hstate *h; 1817 1818 for_each_hstate(h) { 1819 if (huge_page_size(h) == size) 1820 return h; 1821 } 1822 return NULL; 1823 } 1824 1825 void free_huge_folio(struct folio *folio) 1826 { 1827 /* 1828 * Can't pass hstate in here because it is called from the 1829 * generic mm code. 1830 */ 1831 struct hstate *h = folio_hstate(folio); 1832 int nid = folio_nid(folio); 1833 struct hugepage_subpool *spool = hugetlb_folio_subpool(folio); 1834 bool restore_reserve; 1835 unsigned long flags; 1836 1837 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio); 1838 VM_BUG_ON_FOLIO(folio_mapcount(folio), folio); 1839 1840 hugetlb_set_folio_subpool(folio, NULL); 1841 if (folio_test_anon(folio)) 1842 __ClearPageAnonExclusive(&folio->page); 1843 folio->mapping = NULL; 1844 restore_reserve = folio_test_hugetlb_restore_reserve(folio); 1845 folio_clear_hugetlb_restore_reserve(folio); 1846 1847 /* 1848 * If HPageRestoreReserve was set on page, page allocation consumed a 1849 * reservation. If the page was associated with a subpool, there 1850 * would have been a page reserved in the subpool before allocation 1851 * via hugepage_subpool_get_pages(). Since we are 'restoring' the 1852 * reservation, do not call hugepage_subpool_put_pages() as this will 1853 * remove the reserved page from the subpool. 1854 */ 1855 if (!restore_reserve) { 1856 /* 1857 * A return code of zero implies that the subpool will be 1858 * under its minimum size if the reservation is not restored 1859 * after page is free. Therefore, force restore_reserve 1860 * operation. 1861 */ 1862 if (hugepage_subpool_put_pages(spool, 1) == 0) 1863 restore_reserve = true; 1864 } 1865 1866 spin_lock_irqsave(&hugetlb_lock, flags); 1867 folio_clear_hugetlb_migratable(folio); 1868 hugetlb_cgroup_uncharge_folio(hstate_index(h), 1869 pages_per_huge_page(h), folio); 1870 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h), 1871 pages_per_huge_page(h), folio); 1872 lruvec_stat_mod_folio(folio, NR_HUGETLB, -pages_per_huge_page(h)); 1873 mem_cgroup_uncharge(folio); 1874 if (restore_reserve) 1875 h->resv_huge_pages++; 1876 1877 if (folio_test_hugetlb_temporary(folio)) { 1878 remove_hugetlb_folio(h, folio, false); 1879 spin_unlock_irqrestore(&hugetlb_lock, flags); 1880 update_and_free_hugetlb_folio(h, folio, true); 1881 } else if (h->surplus_huge_pages_node[nid]) { 1882 /* remove the page from active list */ 1883 remove_hugetlb_folio(h, folio, true); 1884 spin_unlock_irqrestore(&hugetlb_lock, flags); 1885 update_and_free_hugetlb_folio(h, folio, true); 1886 } else { 1887 arch_clear_hugetlb_flags(folio); 1888 enqueue_hugetlb_folio(h, folio); 1889 spin_unlock_irqrestore(&hugetlb_lock, flags); 1890 } 1891 } 1892 1893 /* 1894 * Must be called with the hugetlb lock held 1895 */ 1896 static void __prep_account_new_huge_page(struct hstate *h, int nid) 1897 { 1898 lockdep_assert_held(&hugetlb_lock); 1899 h->nr_huge_pages++; 1900 h->nr_huge_pages_node[nid]++; 1901 } 1902 1903 static void init_new_hugetlb_folio(struct hstate *h, struct folio *folio) 1904 { 1905 __folio_set_hugetlb(folio); 1906 INIT_LIST_HEAD(&folio->lru); 1907 hugetlb_set_folio_subpool(folio, NULL); 1908 set_hugetlb_cgroup(folio, NULL); 1909 set_hugetlb_cgroup_rsvd(folio, NULL); 1910 } 1911 1912 static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio) 1913 { 1914 init_new_hugetlb_folio(h, folio); 1915 hugetlb_vmemmap_optimize_folio(h, folio); 1916 } 1917 1918 static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid) 1919 { 1920 __prep_new_hugetlb_folio(h, folio); 1921 spin_lock_irq(&hugetlb_lock); 1922 __prep_account_new_huge_page(h, nid); 1923 spin_unlock_irq(&hugetlb_lock); 1924 } 1925 1926 /* 1927 * Find and lock address space (mapping) in write mode. 1928 * 1929 * Upon entry, the folio is locked which means that folio_mapping() is 1930 * stable. Due to locking order, we can only trylock_write. If we can 1931 * not get the lock, simply return NULL to caller. 1932 */ 1933 struct address_space *hugetlb_folio_mapping_lock_write(struct folio *folio) 1934 { 1935 struct address_space *mapping = folio_mapping(folio); 1936 1937 if (!mapping) 1938 return mapping; 1939 1940 if (i_mmap_trylock_write(mapping)) 1941 return mapping; 1942 1943 return NULL; 1944 } 1945 1946 static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h, 1947 gfp_t gfp_mask, int nid, nodemask_t *nmask, 1948 nodemask_t *node_alloc_noretry) 1949 { 1950 int order = huge_page_order(h); 1951 struct folio *folio; 1952 bool alloc_try_hard = true; 1953 bool retry = true; 1954 1955 /* 1956 * By default we always try hard to allocate the folio with 1957 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating folios in 1958 * a loop (to adjust global huge page counts) and previous allocation 1959 * failed, do not continue to try hard on the same node. Use the 1960 * node_alloc_noretry bitmap to manage this state information. 1961 */ 1962 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry)) 1963 alloc_try_hard = false; 1964 if (alloc_try_hard) 1965 gfp_mask |= __GFP_RETRY_MAYFAIL; 1966 if (nid == NUMA_NO_NODE) 1967 nid = numa_mem_id(); 1968 retry: 1969 folio = __folio_alloc(gfp_mask, order, nid, nmask); 1970 /* Ensure hugetlb folio won't have large_rmappable flag set. */ 1971 if (folio) 1972 folio_clear_large_rmappable(folio); 1973 1974 if (folio && !folio_ref_freeze(folio, 1)) { 1975 folio_put(folio); 1976 if (retry) { /* retry once */ 1977 retry = false; 1978 goto retry; 1979 } 1980 /* WOW! twice in a row. */ 1981 pr_warn("HugeTLB unexpected inflated folio ref count\n"); 1982 folio = NULL; 1983 } 1984 1985 /* 1986 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a 1987 * folio this indicates an overall state change. Clear bit so 1988 * that we resume normal 'try hard' allocations. 1989 */ 1990 if (node_alloc_noretry && folio && !alloc_try_hard) 1991 node_clear(nid, *node_alloc_noretry); 1992 1993 /* 1994 * If we tried hard to get a folio but failed, set bit so that 1995 * subsequent attempts will not try as hard until there is an 1996 * overall state change. 1997 */ 1998 if (node_alloc_noretry && !folio && alloc_try_hard) 1999 node_set(nid, *node_alloc_noretry); 2000 2001 if (!folio) { 2002 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 2003 return NULL; 2004 } 2005 2006 __count_vm_event(HTLB_BUDDY_PGALLOC); 2007 return folio; 2008 } 2009 2010 static struct folio *only_alloc_fresh_hugetlb_folio(struct hstate *h, 2011 gfp_t gfp_mask, int nid, nodemask_t *nmask, 2012 nodemask_t *node_alloc_noretry) 2013 { 2014 struct folio *folio; 2015 2016 if (hstate_is_gigantic(h)) 2017 folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask); 2018 else 2019 folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, nmask, node_alloc_noretry); 2020 if (folio) 2021 init_new_hugetlb_folio(h, folio); 2022 return folio; 2023 } 2024 2025 /* 2026 * Common helper to allocate a fresh hugetlb page. All specific allocators 2027 * should use this function to get new hugetlb pages 2028 * 2029 * Note that returned page is 'frozen': ref count of head page and all tail 2030 * pages is zero. 2031 */ 2032 static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h, 2033 gfp_t gfp_mask, int nid, nodemask_t *nmask) 2034 { 2035 struct folio *folio; 2036 2037 if (hstate_is_gigantic(h)) 2038 folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask); 2039 else 2040 folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, nmask, NULL); 2041 if (!folio) 2042 return NULL; 2043 2044 prep_new_hugetlb_folio(h, folio, folio_nid(folio)); 2045 return folio; 2046 } 2047 2048 static void prep_and_add_allocated_folios(struct hstate *h, 2049 struct list_head *folio_list) 2050 { 2051 unsigned long flags; 2052 struct folio *folio, *tmp_f; 2053 2054 /* Send list for bulk vmemmap optimization processing */ 2055 hugetlb_vmemmap_optimize_folios(h, folio_list); 2056 2057 /* Add all new pool pages to free lists in one lock cycle */ 2058 spin_lock_irqsave(&hugetlb_lock, flags); 2059 list_for_each_entry_safe(folio, tmp_f, folio_list, lru) { 2060 __prep_account_new_huge_page(h, folio_nid(folio)); 2061 enqueue_hugetlb_folio(h, folio); 2062 } 2063 spin_unlock_irqrestore(&hugetlb_lock, flags); 2064 } 2065 2066 /* 2067 * Allocates a fresh hugetlb page in a node interleaved manner. The page 2068 * will later be added to the appropriate hugetlb pool. 2069 */ 2070 static struct folio *alloc_pool_huge_folio(struct hstate *h, 2071 nodemask_t *nodes_allowed, 2072 nodemask_t *node_alloc_noretry, 2073 int *next_node) 2074 { 2075 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 2076 int nr_nodes, node; 2077 2078 for_each_node_mask_to_alloc(next_node, nr_nodes, node, nodes_allowed) { 2079 struct folio *folio; 2080 2081 folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, node, 2082 nodes_allowed, node_alloc_noretry); 2083 if (folio) 2084 return folio; 2085 } 2086 2087 return NULL; 2088 } 2089 2090 /* 2091 * Remove huge page from pool from next node to free. Attempt to keep 2092 * persistent huge pages more or less balanced over allowed nodes. 2093 * This routine only 'removes' the hugetlb page. The caller must make 2094 * an additional call to free the page to low level allocators. 2095 * Called with hugetlb_lock locked. 2096 */ 2097 static struct folio *remove_pool_hugetlb_folio(struct hstate *h, 2098 nodemask_t *nodes_allowed, bool acct_surplus) 2099 { 2100 int nr_nodes, node; 2101 struct folio *folio = NULL; 2102 2103 lockdep_assert_held(&hugetlb_lock); 2104 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 2105 /* 2106 * If we're returning unused surplus pages, only examine 2107 * nodes with surplus pages. 2108 */ 2109 if ((!acct_surplus || h->surplus_huge_pages_node[node]) && 2110 !list_empty(&h->hugepage_freelists[node])) { 2111 folio = list_entry(h->hugepage_freelists[node].next, 2112 struct folio, lru); 2113 remove_hugetlb_folio(h, folio, acct_surplus); 2114 break; 2115 } 2116 } 2117 2118 return folio; 2119 } 2120 2121 /* 2122 * Dissolve a given free hugetlb folio into free buddy pages. This function 2123 * does nothing for in-use hugetlb folios and non-hugetlb folios. 2124 * This function returns values like below: 2125 * 2126 * -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages 2127 * when the system is under memory pressure and the feature of 2128 * freeing unused vmemmap pages associated with each hugetlb page 2129 * is enabled. 2130 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use 2131 * (allocated or reserved.) 2132 * 0: successfully dissolved free hugepages or the page is not a 2133 * hugepage (considered as already dissolved) 2134 */ 2135 int dissolve_free_hugetlb_folio(struct folio *folio) 2136 { 2137 int rc = -EBUSY; 2138 2139 retry: 2140 /* Not to disrupt normal path by vainly holding hugetlb_lock */ 2141 if (!folio_test_hugetlb(folio)) 2142 return 0; 2143 2144 spin_lock_irq(&hugetlb_lock); 2145 if (!folio_test_hugetlb(folio)) { 2146 rc = 0; 2147 goto out; 2148 } 2149 2150 if (!folio_ref_count(folio)) { 2151 struct hstate *h = folio_hstate(folio); 2152 bool adjust_surplus = false; 2153 2154 if (!available_huge_pages(h)) 2155 goto out; 2156 2157 /* 2158 * We should make sure that the page is already on the free list 2159 * when it is dissolved. 2160 */ 2161 if (unlikely(!folio_test_hugetlb_freed(folio))) { 2162 spin_unlock_irq(&hugetlb_lock); 2163 cond_resched(); 2164 2165 /* 2166 * Theoretically, we should return -EBUSY when we 2167 * encounter this race. In fact, we have a chance 2168 * to successfully dissolve the page if we do a 2169 * retry. Because the race window is quite small. 2170 * If we seize this opportunity, it is an optimization 2171 * for increasing the success rate of dissolving page. 2172 */ 2173 goto retry; 2174 } 2175 2176 if (h->surplus_huge_pages_node[folio_nid(folio)]) 2177 adjust_surplus = true; 2178 remove_hugetlb_folio(h, folio, adjust_surplus); 2179 h->max_huge_pages--; 2180 spin_unlock_irq(&hugetlb_lock); 2181 2182 /* 2183 * Normally update_and_free_hugtlb_folio will allocate required vmemmmap 2184 * before freeing the page. update_and_free_hugtlb_folio will fail to 2185 * free the page if it can not allocate required vmemmap. We 2186 * need to adjust max_huge_pages if the page is not freed. 2187 * Attempt to allocate vmemmmap here so that we can take 2188 * appropriate action on failure. 2189 * 2190 * The folio_test_hugetlb check here is because 2191 * remove_hugetlb_folio will clear hugetlb folio flag for 2192 * non-vmemmap optimized hugetlb folios. 2193 */ 2194 if (folio_test_hugetlb(folio)) { 2195 rc = hugetlb_vmemmap_restore_folio(h, folio); 2196 if (rc) { 2197 spin_lock_irq(&hugetlb_lock); 2198 add_hugetlb_folio(h, folio, adjust_surplus); 2199 h->max_huge_pages++; 2200 goto out; 2201 } 2202 } else 2203 rc = 0; 2204 2205 update_and_free_hugetlb_folio(h, folio, false); 2206 return rc; 2207 } 2208 out: 2209 spin_unlock_irq(&hugetlb_lock); 2210 return rc; 2211 } 2212 2213 /* 2214 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to 2215 * make specified memory blocks removable from the system. 2216 * Note that this will dissolve a free gigantic hugepage completely, if any 2217 * part of it lies within the given range. 2218 * Also note that if dissolve_free_hugetlb_folio() returns with an error, all 2219 * free hugetlb folios that were dissolved before that error are lost. 2220 */ 2221 int dissolve_free_hugetlb_folios(unsigned long start_pfn, unsigned long end_pfn) 2222 { 2223 unsigned long pfn; 2224 struct folio *folio; 2225 int rc = 0; 2226 unsigned int order; 2227 struct hstate *h; 2228 2229 if (!hugepages_supported()) 2230 return rc; 2231 2232 order = huge_page_order(&default_hstate); 2233 for_each_hstate(h) 2234 order = min(order, huge_page_order(h)); 2235 2236 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) { 2237 folio = pfn_folio(pfn); 2238 rc = dissolve_free_hugetlb_folio(folio); 2239 if (rc) 2240 break; 2241 } 2242 2243 return rc; 2244 } 2245 2246 /* 2247 * Allocates a fresh surplus page from the page allocator. 2248 */ 2249 static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h, 2250 gfp_t gfp_mask, int nid, nodemask_t *nmask) 2251 { 2252 struct folio *folio = NULL; 2253 2254 if (hstate_is_gigantic(h)) 2255 return NULL; 2256 2257 spin_lock_irq(&hugetlb_lock); 2258 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) 2259 goto out_unlock; 2260 spin_unlock_irq(&hugetlb_lock); 2261 2262 folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL); 2263 if (!folio) 2264 return NULL; 2265 2266 hugetlb_vmemmap_optimize_folio(h, folio); 2267 2268 spin_lock_irq(&hugetlb_lock); 2269 /* 2270 * nr_huge_pages needs to be adjusted within the same lock cycle 2271 * as surplus_pages, otherwise it might confuse 2272 * persistent_huge_pages() momentarily. 2273 */ 2274 __prep_account_new_huge_page(h, folio_nid(folio)); 2275 2276 /* 2277 * We could have raced with the pool size change. 2278 * Double check that and simply deallocate the new page 2279 * if we would end up overcommiting the surpluses. Abuse 2280 * temporary page to workaround the nasty free_huge_folio 2281 * codeflow 2282 */ 2283 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { 2284 folio_set_hugetlb_temporary(folio); 2285 spin_unlock_irq(&hugetlb_lock); 2286 free_huge_folio(folio); 2287 return NULL; 2288 } 2289 2290 h->surplus_huge_pages++; 2291 h->surplus_huge_pages_node[folio_nid(folio)]++; 2292 2293 out_unlock: 2294 spin_unlock_irq(&hugetlb_lock); 2295 2296 return folio; 2297 } 2298 2299 static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask, 2300 int nid, nodemask_t *nmask) 2301 { 2302 struct folio *folio; 2303 2304 if (hstate_is_gigantic(h)) 2305 return NULL; 2306 2307 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask); 2308 if (!folio) 2309 return NULL; 2310 2311 /* fresh huge pages are frozen */ 2312 folio_ref_unfreeze(folio, 1); 2313 /* 2314 * We do not account these pages as surplus because they are only 2315 * temporary and will be released properly on the last reference 2316 */ 2317 folio_set_hugetlb_temporary(folio); 2318 2319 return folio; 2320 } 2321 2322 /* 2323 * Use the VMA's mpolicy to allocate a huge page from the buddy. 2324 */ 2325 static 2326 struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h, 2327 struct vm_area_struct *vma, unsigned long addr) 2328 { 2329 struct folio *folio = NULL; 2330 struct mempolicy *mpol; 2331 gfp_t gfp_mask = htlb_alloc_mask(h); 2332 int nid; 2333 nodemask_t *nodemask; 2334 2335 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask); 2336 if (mpol_is_preferred_many(mpol)) { 2337 gfp_t gfp = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL); 2338 2339 folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask); 2340 2341 /* Fallback to all nodes if page==NULL */ 2342 nodemask = NULL; 2343 } 2344 2345 if (!folio) 2346 folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask); 2347 mpol_cond_put(mpol); 2348 return folio; 2349 } 2350 2351 struct folio *alloc_hugetlb_folio_reserve(struct hstate *h, int preferred_nid, 2352 nodemask_t *nmask, gfp_t gfp_mask) 2353 { 2354 struct folio *folio; 2355 2356 spin_lock_irq(&hugetlb_lock); 2357 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, preferred_nid, 2358 nmask); 2359 if (folio) { 2360 VM_BUG_ON(!h->resv_huge_pages); 2361 h->resv_huge_pages--; 2362 } 2363 2364 spin_unlock_irq(&hugetlb_lock); 2365 return folio; 2366 } 2367 2368 /* folio migration callback function */ 2369 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid, 2370 nodemask_t *nmask, gfp_t gfp_mask, bool allow_alloc_fallback) 2371 { 2372 spin_lock_irq(&hugetlb_lock); 2373 if (available_huge_pages(h)) { 2374 struct folio *folio; 2375 2376 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, 2377 preferred_nid, nmask); 2378 if (folio) { 2379 spin_unlock_irq(&hugetlb_lock); 2380 return folio; 2381 } 2382 } 2383 spin_unlock_irq(&hugetlb_lock); 2384 2385 /* We cannot fallback to other nodes, as we could break the per-node pool. */ 2386 if (!allow_alloc_fallback) 2387 gfp_mask |= __GFP_THISNODE; 2388 2389 return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask); 2390 } 2391 2392 static nodemask_t *policy_mbind_nodemask(gfp_t gfp) 2393 { 2394 #ifdef CONFIG_NUMA 2395 struct mempolicy *mpol = get_task_policy(current); 2396 2397 /* 2398 * Only enforce MPOL_BIND policy which overlaps with cpuset policy 2399 * (from policy_nodemask) specifically for hugetlb case 2400 */ 2401 if (mpol->mode == MPOL_BIND && 2402 (apply_policy_zone(mpol, gfp_zone(gfp)) && 2403 cpuset_nodemask_valid_mems_allowed(&mpol->nodes))) 2404 return &mpol->nodes; 2405 #endif 2406 return NULL; 2407 } 2408 2409 /* 2410 * Increase the hugetlb pool such that it can accommodate a reservation 2411 * of size 'delta'. 2412 */ 2413 static int gather_surplus_pages(struct hstate *h, long delta) 2414 __must_hold(&hugetlb_lock) 2415 { 2416 LIST_HEAD(surplus_list); 2417 struct folio *folio, *tmp; 2418 int ret; 2419 long i; 2420 long needed, allocated; 2421 bool alloc_ok = true; 2422 int node; 2423 nodemask_t *mbind_nodemask, alloc_nodemask; 2424 2425 mbind_nodemask = policy_mbind_nodemask(htlb_alloc_mask(h)); 2426 if (mbind_nodemask) 2427 nodes_and(alloc_nodemask, *mbind_nodemask, cpuset_current_mems_allowed); 2428 else 2429 alloc_nodemask = cpuset_current_mems_allowed; 2430 2431 lockdep_assert_held(&hugetlb_lock); 2432 needed = (h->resv_huge_pages + delta) - h->free_huge_pages; 2433 if (needed <= 0) { 2434 h->resv_huge_pages += delta; 2435 return 0; 2436 } 2437 2438 allocated = 0; 2439 2440 ret = -ENOMEM; 2441 retry: 2442 spin_unlock_irq(&hugetlb_lock); 2443 for (i = 0; i < needed; i++) { 2444 folio = NULL; 2445 2446 /* Prioritize current node */ 2447 if (node_isset(numa_mem_id(), alloc_nodemask)) 2448 folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h), 2449 numa_mem_id(), NULL); 2450 2451 if (!folio) { 2452 for_each_node_mask(node, alloc_nodemask) { 2453 if (node == numa_mem_id()) 2454 continue; 2455 folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h), 2456 node, NULL); 2457 if (folio) 2458 break; 2459 } 2460 } 2461 if (!folio) { 2462 alloc_ok = false; 2463 break; 2464 } 2465 list_add(&folio->lru, &surplus_list); 2466 cond_resched(); 2467 } 2468 allocated += i; 2469 2470 /* 2471 * After retaking hugetlb_lock, we need to recalculate 'needed' 2472 * because either resv_huge_pages or free_huge_pages may have changed. 2473 */ 2474 spin_lock_irq(&hugetlb_lock); 2475 needed = (h->resv_huge_pages + delta) - 2476 (h->free_huge_pages + allocated); 2477 if (needed > 0) { 2478 if (alloc_ok) 2479 goto retry; 2480 /* 2481 * We were not able to allocate enough pages to 2482 * satisfy the entire reservation so we free what 2483 * we've allocated so far. 2484 */ 2485 goto free; 2486 } 2487 /* 2488 * The surplus_list now contains _at_least_ the number of extra pages 2489 * needed to accommodate the reservation. Add the appropriate number 2490 * of pages to the hugetlb pool and free the extras back to the buddy 2491 * allocator. Commit the entire reservation here to prevent another 2492 * process from stealing the pages as they are added to the pool but 2493 * before they are reserved. 2494 */ 2495 needed += allocated; 2496 h->resv_huge_pages += delta; 2497 ret = 0; 2498 2499 /* Free the needed pages to the hugetlb pool */ 2500 list_for_each_entry_safe(folio, tmp, &surplus_list, lru) { 2501 if ((--needed) < 0) 2502 break; 2503 /* Add the page to the hugetlb allocator */ 2504 enqueue_hugetlb_folio(h, folio); 2505 } 2506 free: 2507 spin_unlock_irq(&hugetlb_lock); 2508 2509 /* 2510 * Free unnecessary surplus pages to the buddy allocator. 2511 * Pages have no ref count, call free_huge_folio directly. 2512 */ 2513 list_for_each_entry_safe(folio, tmp, &surplus_list, lru) 2514 free_huge_folio(folio); 2515 spin_lock_irq(&hugetlb_lock); 2516 2517 return ret; 2518 } 2519 2520 /* 2521 * This routine has two main purposes: 2522 * 1) Decrement the reservation count (resv_huge_pages) by the value passed 2523 * in unused_resv_pages. This corresponds to the prior adjustments made 2524 * to the associated reservation map. 2525 * 2) Free any unused surplus pages that may have been allocated to satisfy 2526 * the reservation. As many as unused_resv_pages may be freed. 2527 */ 2528 static void return_unused_surplus_pages(struct hstate *h, 2529 unsigned long unused_resv_pages) 2530 { 2531 unsigned long nr_pages; 2532 LIST_HEAD(page_list); 2533 2534 lockdep_assert_held(&hugetlb_lock); 2535 /* Uncommit the reservation */ 2536 h->resv_huge_pages -= unused_resv_pages; 2537 2538 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 2539 goto out; 2540 2541 /* 2542 * Part (or even all) of the reservation could have been backed 2543 * by pre-allocated pages. Only free surplus pages. 2544 */ 2545 nr_pages = min(unused_resv_pages, h->surplus_huge_pages); 2546 2547 /* 2548 * We want to release as many surplus pages as possible, spread 2549 * evenly across all nodes with memory. Iterate across these nodes 2550 * until we can no longer free unreserved surplus pages. This occurs 2551 * when the nodes with surplus pages have no free pages. 2552 * remove_pool_hugetlb_folio() will balance the freed pages across the 2553 * on-line nodes with memory and will handle the hstate accounting. 2554 */ 2555 while (nr_pages--) { 2556 struct folio *folio; 2557 2558 folio = remove_pool_hugetlb_folio(h, &node_states[N_MEMORY], 1); 2559 if (!folio) 2560 goto out; 2561 2562 list_add(&folio->lru, &page_list); 2563 } 2564 2565 out: 2566 spin_unlock_irq(&hugetlb_lock); 2567 update_and_free_pages_bulk(h, &page_list); 2568 spin_lock_irq(&hugetlb_lock); 2569 } 2570 2571 2572 /* 2573 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation 2574 * are used by the huge page allocation routines to manage reservations. 2575 * 2576 * vma_needs_reservation is called to determine if the huge page at addr 2577 * within the vma has an associated reservation. If a reservation is 2578 * needed, the value 1 is returned. The caller is then responsible for 2579 * managing the global reservation and subpool usage counts. After 2580 * the huge page has been allocated, vma_commit_reservation is called 2581 * to add the page to the reservation map. If the page allocation fails, 2582 * the reservation must be ended instead of committed. vma_end_reservation 2583 * is called in such cases. 2584 * 2585 * In the normal case, vma_commit_reservation returns the same value 2586 * as the preceding vma_needs_reservation call. The only time this 2587 * is not the case is if a reserve map was changed between calls. It 2588 * is the responsibility of the caller to notice the difference and 2589 * take appropriate action. 2590 * 2591 * vma_add_reservation is used in error paths where a reservation must 2592 * be restored when a newly allocated huge page must be freed. It is 2593 * to be called after calling vma_needs_reservation to determine if a 2594 * reservation exists. 2595 * 2596 * vma_del_reservation is used in error paths where an entry in the reserve 2597 * map was created during huge page allocation and must be removed. It is to 2598 * be called after calling vma_needs_reservation to determine if a reservation 2599 * exists. 2600 */ 2601 enum vma_resv_mode { 2602 VMA_NEEDS_RESV, 2603 VMA_COMMIT_RESV, 2604 VMA_END_RESV, 2605 VMA_ADD_RESV, 2606 VMA_DEL_RESV, 2607 }; 2608 static long __vma_reservation_common(struct hstate *h, 2609 struct vm_area_struct *vma, unsigned long addr, 2610 enum vma_resv_mode mode) 2611 { 2612 struct resv_map *resv; 2613 pgoff_t idx; 2614 long ret; 2615 long dummy_out_regions_needed; 2616 2617 resv = vma_resv_map(vma); 2618 if (!resv) 2619 return 1; 2620 2621 idx = vma_hugecache_offset(h, vma, addr); 2622 switch (mode) { 2623 case VMA_NEEDS_RESV: 2624 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed); 2625 /* We assume that vma_reservation_* routines always operate on 2626 * 1 page, and that adding to resv map a 1 page entry can only 2627 * ever require 1 region. 2628 */ 2629 VM_BUG_ON(dummy_out_regions_needed != 1); 2630 break; 2631 case VMA_COMMIT_RESV: 2632 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2633 /* region_add calls of range 1 should never fail. */ 2634 VM_BUG_ON(ret < 0); 2635 break; 2636 case VMA_END_RESV: 2637 region_abort(resv, idx, idx + 1, 1); 2638 ret = 0; 2639 break; 2640 case VMA_ADD_RESV: 2641 if (vma->vm_flags & VM_MAYSHARE) { 2642 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2643 /* region_add calls of range 1 should never fail. */ 2644 VM_BUG_ON(ret < 0); 2645 } else { 2646 region_abort(resv, idx, idx + 1, 1); 2647 ret = region_del(resv, idx, idx + 1); 2648 } 2649 break; 2650 case VMA_DEL_RESV: 2651 if (vma->vm_flags & VM_MAYSHARE) { 2652 region_abort(resv, idx, idx + 1, 1); 2653 ret = region_del(resv, idx, idx + 1); 2654 } else { 2655 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2656 /* region_add calls of range 1 should never fail. */ 2657 VM_BUG_ON(ret < 0); 2658 } 2659 break; 2660 default: 2661 BUG(); 2662 } 2663 2664 if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV) 2665 return ret; 2666 /* 2667 * We know private mapping must have HPAGE_RESV_OWNER set. 2668 * 2669 * In most cases, reserves always exist for private mappings. 2670 * However, a file associated with mapping could have been 2671 * hole punched or truncated after reserves were consumed. 2672 * As subsequent fault on such a range will not use reserves. 2673 * Subtle - The reserve map for private mappings has the 2674 * opposite meaning than that of shared mappings. If NO 2675 * entry is in the reserve map, it means a reservation exists. 2676 * If an entry exists in the reserve map, it means the 2677 * reservation has already been consumed. As a result, the 2678 * return value of this routine is the opposite of the 2679 * value returned from reserve map manipulation routines above. 2680 */ 2681 if (ret > 0) 2682 return 0; 2683 if (ret == 0) 2684 return 1; 2685 return ret; 2686 } 2687 2688 static long vma_needs_reservation(struct hstate *h, 2689 struct vm_area_struct *vma, unsigned long addr) 2690 { 2691 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV); 2692 } 2693 2694 static long vma_commit_reservation(struct hstate *h, 2695 struct vm_area_struct *vma, unsigned long addr) 2696 { 2697 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV); 2698 } 2699 2700 static void vma_end_reservation(struct hstate *h, 2701 struct vm_area_struct *vma, unsigned long addr) 2702 { 2703 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV); 2704 } 2705 2706 static long vma_add_reservation(struct hstate *h, 2707 struct vm_area_struct *vma, unsigned long addr) 2708 { 2709 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV); 2710 } 2711 2712 static long vma_del_reservation(struct hstate *h, 2713 struct vm_area_struct *vma, unsigned long addr) 2714 { 2715 return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV); 2716 } 2717 2718 /* 2719 * This routine is called to restore reservation information on error paths. 2720 * It should ONLY be called for folios allocated via alloc_hugetlb_folio(), 2721 * and the hugetlb mutex should remain held when calling this routine. 2722 * 2723 * It handles two specific cases: 2724 * 1) A reservation was in place and the folio consumed the reservation. 2725 * hugetlb_restore_reserve is set in the folio. 2726 * 2) No reservation was in place for the page, so hugetlb_restore_reserve is 2727 * not set. However, alloc_hugetlb_folio always updates the reserve map. 2728 * 2729 * In case 1, free_huge_folio later in the error path will increment the 2730 * global reserve count. But, free_huge_folio does not have enough context 2731 * to adjust the reservation map. This case deals primarily with private 2732 * mappings. Adjust the reserve map here to be consistent with global 2733 * reserve count adjustments to be made by free_huge_folio. Make sure the 2734 * reserve map indicates there is a reservation present. 2735 * 2736 * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio. 2737 */ 2738 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma, 2739 unsigned long address, struct folio *folio) 2740 { 2741 long rc = vma_needs_reservation(h, vma, address); 2742 2743 if (folio_test_hugetlb_restore_reserve(folio)) { 2744 if (unlikely(rc < 0)) 2745 /* 2746 * Rare out of memory condition in reserve map 2747 * manipulation. Clear hugetlb_restore_reserve so 2748 * that global reserve count will not be incremented 2749 * by free_huge_folio. This will make it appear 2750 * as though the reservation for this folio was 2751 * consumed. This may prevent the task from 2752 * faulting in the folio at a later time. This 2753 * is better than inconsistent global huge page 2754 * accounting of reserve counts. 2755 */ 2756 folio_clear_hugetlb_restore_reserve(folio); 2757 else if (rc) 2758 (void)vma_add_reservation(h, vma, address); 2759 else 2760 vma_end_reservation(h, vma, address); 2761 } else { 2762 if (!rc) { 2763 /* 2764 * This indicates there is an entry in the reserve map 2765 * not added by alloc_hugetlb_folio. We know it was added 2766 * before the alloc_hugetlb_folio call, otherwise 2767 * hugetlb_restore_reserve would be set on the folio. 2768 * Remove the entry so that a subsequent allocation 2769 * does not consume a reservation. 2770 */ 2771 rc = vma_del_reservation(h, vma, address); 2772 if (rc < 0) 2773 /* 2774 * VERY rare out of memory condition. Since 2775 * we can not delete the entry, set 2776 * hugetlb_restore_reserve so that the reserve 2777 * count will be incremented when the folio 2778 * is freed. This reserve will be consumed 2779 * on a subsequent allocation. 2780 */ 2781 folio_set_hugetlb_restore_reserve(folio); 2782 } else if (rc < 0) { 2783 /* 2784 * Rare out of memory condition from 2785 * vma_needs_reservation call. Memory allocation is 2786 * only attempted if a new entry is needed. Therefore, 2787 * this implies there is not an entry in the 2788 * reserve map. 2789 * 2790 * For shared mappings, no entry in the map indicates 2791 * no reservation. We are done. 2792 */ 2793 if (!(vma->vm_flags & VM_MAYSHARE)) 2794 /* 2795 * For private mappings, no entry indicates 2796 * a reservation is present. Since we can 2797 * not add an entry, set hugetlb_restore_reserve 2798 * on the folio so reserve count will be 2799 * incremented when freed. This reserve will 2800 * be consumed on a subsequent allocation. 2801 */ 2802 folio_set_hugetlb_restore_reserve(folio); 2803 } else 2804 /* 2805 * No reservation present, do nothing 2806 */ 2807 vma_end_reservation(h, vma, address); 2808 } 2809 } 2810 2811 /* 2812 * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve 2813 * the old one 2814 * @h: struct hstate old page belongs to 2815 * @old_folio: Old folio to dissolve 2816 * @list: List to isolate the page in case we need to 2817 * Returns 0 on success, otherwise negated error. 2818 */ 2819 static int alloc_and_dissolve_hugetlb_folio(struct hstate *h, 2820 struct folio *old_folio, struct list_head *list) 2821 { 2822 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 2823 int nid = folio_nid(old_folio); 2824 struct folio *new_folio = NULL; 2825 int ret = 0; 2826 2827 retry: 2828 spin_lock_irq(&hugetlb_lock); 2829 if (!folio_test_hugetlb(old_folio)) { 2830 /* 2831 * Freed from under us. Drop new_folio too. 2832 */ 2833 goto free_new; 2834 } else if (folio_ref_count(old_folio)) { 2835 bool isolated; 2836 2837 /* 2838 * Someone has grabbed the folio, try to isolate it here. 2839 * Fail with -EBUSY if not possible. 2840 */ 2841 spin_unlock_irq(&hugetlb_lock); 2842 isolated = folio_isolate_hugetlb(old_folio, list); 2843 ret = isolated ? 0 : -EBUSY; 2844 spin_lock_irq(&hugetlb_lock); 2845 goto free_new; 2846 } else if (!folio_test_hugetlb_freed(old_folio)) { 2847 /* 2848 * Folio's refcount is 0 but it has not been enqueued in the 2849 * freelist yet. Race window is small, so we can succeed here if 2850 * we retry. 2851 */ 2852 spin_unlock_irq(&hugetlb_lock); 2853 cond_resched(); 2854 goto retry; 2855 } else { 2856 if (!new_folio) { 2857 spin_unlock_irq(&hugetlb_lock); 2858 new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, 2859 NULL, NULL); 2860 if (!new_folio) 2861 return -ENOMEM; 2862 __prep_new_hugetlb_folio(h, new_folio); 2863 goto retry; 2864 } 2865 2866 /* 2867 * Ok, old_folio is still a genuine free hugepage. Remove it from 2868 * the freelist and decrease the counters. These will be 2869 * incremented again when calling __prep_account_new_huge_page() 2870 * and enqueue_hugetlb_folio() for new_folio. The counters will 2871 * remain stable since this happens under the lock. 2872 */ 2873 remove_hugetlb_folio(h, old_folio, false); 2874 2875 /* 2876 * Ref count on new_folio is already zero as it was dropped 2877 * earlier. It can be directly added to the pool free list. 2878 */ 2879 __prep_account_new_huge_page(h, nid); 2880 enqueue_hugetlb_folio(h, new_folio); 2881 2882 /* 2883 * Folio has been replaced, we can safely free the old one. 2884 */ 2885 spin_unlock_irq(&hugetlb_lock); 2886 update_and_free_hugetlb_folio(h, old_folio, false); 2887 } 2888 2889 return ret; 2890 2891 free_new: 2892 spin_unlock_irq(&hugetlb_lock); 2893 if (new_folio) 2894 update_and_free_hugetlb_folio(h, new_folio, false); 2895 2896 return ret; 2897 } 2898 2899 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list) 2900 { 2901 struct hstate *h; 2902 struct folio *folio = page_folio(page); 2903 int ret = -EBUSY; 2904 2905 /* 2906 * The page might have been dissolved from under our feet, so make sure 2907 * to carefully check the state under the lock. 2908 * Return success when racing as if we dissolved the page ourselves. 2909 */ 2910 spin_lock_irq(&hugetlb_lock); 2911 if (folio_test_hugetlb(folio)) { 2912 h = folio_hstate(folio); 2913 } else { 2914 spin_unlock_irq(&hugetlb_lock); 2915 return 0; 2916 } 2917 spin_unlock_irq(&hugetlb_lock); 2918 2919 /* 2920 * Fence off gigantic pages as there is a cyclic dependency between 2921 * alloc_contig_range and them. Return -ENOMEM as this has the effect 2922 * of bailing out right away without further retrying. 2923 */ 2924 if (hstate_is_gigantic(h)) 2925 return -ENOMEM; 2926 2927 if (folio_ref_count(folio) && folio_isolate_hugetlb(folio, list)) 2928 ret = 0; 2929 else if (!folio_ref_count(folio)) 2930 ret = alloc_and_dissolve_hugetlb_folio(h, folio, list); 2931 2932 return ret; 2933 } 2934 2935 /* 2936 * replace_free_hugepage_folios - Replace free hugepage folios in a given pfn 2937 * range with new folios. 2938 * @start_pfn: start pfn of the given pfn range 2939 * @end_pfn: end pfn of the given pfn range 2940 * Returns 0 on success, otherwise negated error. 2941 */ 2942 int replace_free_hugepage_folios(unsigned long start_pfn, unsigned long end_pfn) 2943 { 2944 struct hstate *h; 2945 struct folio *folio; 2946 int ret = 0; 2947 2948 LIST_HEAD(isolate_list); 2949 2950 while (start_pfn < end_pfn) { 2951 folio = pfn_folio(start_pfn); 2952 if (folio_test_hugetlb(folio)) { 2953 h = folio_hstate(folio); 2954 } else { 2955 start_pfn++; 2956 continue; 2957 } 2958 2959 if (!folio_ref_count(folio)) { 2960 ret = alloc_and_dissolve_hugetlb_folio(h, folio, 2961 &isolate_list); 2962 if (ret) 2963 break; 2964 2965 putback_movable_pages(&isolate_list); 2966 } 2967 start_pfn++; 2968 } 2969 2970 return ret; 2971 } 2972 2973 void wait_for_freed_hugetlb_folios(void) 2974 { 2975 if (llist_empty(&hpage_freelist)) 2976 return; 2977 2978 flush_work(&free_hpage_work); 2979 } 2980 2981 typedef enum { 2982 /* 2983 * For either 0/1: we checked the per-vma resv map, and one resv 2984 * count either can be reused (0), or an extra needed (1). 2985 */ 2986 MAP_CHG_REUSE = 0, 2987 MAP_CHG_NEEDED = 1, 2988 /* 2989 * Cannot use per-vma resv count can be used, hence a new resv 2990 * count is enforced. 2991 * 2992 * NOTE: This is mostly identical to MAP_CHG_NEEDED, except 2993 * that currently vma_needs_reservation() has an unwanted side 2994 * effect to either use end() or commit() to complete the 2995 * transaction. Hence it needs to differenciate from NEEDED. 2996 */ 2997 MAP_CHG_ENFORCED = 2, 2998 } map_chg_state; 2999 3000 /* 3001 * NOTE! "cow_from_owner" represents a very hacky usage only used in CoW 3002 * faults of hugetlb private mappings on top of a non-page-cache folio (in 3003 * which case even if there's a private vma resv map it won't cover such 3004 * allocation). New call sites should (probably) never set it to true!! 3005 * When it's set, the allocation will bypass all vma level reservations. 3006 */ 3007 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma, 3008 unsigned long addr, bool cow_from_owner) 3009 { 3010 struct hugepage_subpool *spool = subpool_vma(vma); 3011 struct hstate *h = hstate_vma(vma); 3012 struct folio *folio; 3013 long retval, gbl_chg, gbl_reserve; 3014 map_chg_state map_chg; 3015 int ret, idx; 3016 struct hugetlb_cgroup *h_cg = NULL; 3017 gfp_t gfp = htlb_alloc_mask(h) | __GFP_RETRY_MAYFAIL; 3018 3019 idx = hstate_index(h); 3020 3021 /* Whether we need a separate per-vma reservation? */ 3022 if (cow_from_owner) { 3023 /* 3024 * Special case! Since it's a CoW on top of a reserved 3025 * page, the private resv map doesn't count. So it cannot 3026 * consume the per-vma resv map even if it's reserved. 3027 */ 3028 map_chg = MAP_CHG_ENFORCED; 3029 } else { 3030 /* 3031 * Examine the region/reserve map to determine if the process 3032 * has a reservation for the page to be allocated. A return 3033 * code of zero indicates a reservation exists (no change). 3034 */ 3035 retval = vma_needs_reservation(h, vma, addr); 3036 if (retval < 0) 3037 return ERR_PTR(-ENOMEM); 3038 map_chg = retval ? MAP_CHG_NEEDED : MAP_CHG_REUSE; 3039 } 3040 3041 /* 3042 * Whether we need a separate global reservation? 3043 * 3044 * Processes that did not create the mapping will have no 3045 * reserves as indicated by the region/reserve map. Check 3046 * that the allocation will not exceed the subpool limit. 3047 * Or if it can get one from the pool reservation directly. 3048 */ 3049 if (map_chg) { 3050 gbl_chg = hugepage_subpool_get_pages(spool, 1); 3051 if (gbl_chg < 0) 3052 goto out_end_reservation; 3053 } else { 3054 /* 3055 * If we have the vma reservation ready, no need for extra 3056 * global reservation. 3057 */ 3058 gbl_chg = 0; 3059 } 3060 3061 /* 3062 * If this allocation is not consuming a per-vma reservation, 3063 * charge the hugetlb cgroup now. 3064 */ 3065 if (map_chg) { 3066 ret = hugetlb_cgroup_charge_cgroup_rsvd( 3067 idx, pages_per_huge_page(h), &h_cg); 3068 if (ret) 3069 goto out_subpool_put; 3070 } 3071 3072 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg); 3073 if (ret) 3074 goto out_uncharge_cgroup_reservation; 3075 3076 spin_lock_irq(&hugetlb_lock); 3077 /* 3078 * glb_chg is passed to indicate whether or not a page must be taken 3079 * from the global free pool (global change). gbl_chg == 0 indicates 3080 * a reservation exists for the allocation. 3081 */ 3082 folio = dequeue_hugetlb_folio_vma(h, vma, addr, gbl_chg); 3083 if (!folio) { 3084 spin_unlock_irq(&hugetlb_lock); 3085 folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr); 3086 if (!folio) 3087 goto out_uncharge_cgroup; 3088 spin_lock_irq(&hugetlb_lock); 3089 list_add(&folio->lru, &h->hugepage_activelist); 3090 folio_ref_unfreeze(folio, 1); 3091 /* Fall through */ 3092 } 3093 3094 /* 3095 * Either dequeued or buddy-allocated folio needs to add special 3096 * mark to the folio when it consumes a global reservation. 3097 */ 3098 if (!gbl_chg) { 3099 folio_set_hugetlb_restore_reserve(folio); 3100 h->resv_huge_pages--; 3101 } 3102 3103 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio); 3104 /* If allocation is not consuming a reservation, also store the 3105 * hugetlb_cgroup pointer on the page. 3106 */ 3107 if (map_chg) { 3108 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h), 3109 h_cg, folio); 3110 } 3111 3112 spin_unlock_irq(&hugetlb_lock); 3113 3114 hugetlb_set_folio_subpool(folio, spool); 3115 3116 if (map_chg != MAP_CHG_ENFORCED) { 3117 /* commit() is only needed if the map_chg is not enforced */ 3118 retval = vma_commit_reservation(h, vma, addr); 3119 /* 3120 * Check for possible race conditions. When it happens.. 3121 * The page was added to the reservation map between 3122 * vma_needs_reservation and vma_commit_reservation. 3123 * This indicates a race with hugetlb_reserve_pages. 3124 * Adjust for the subpool count incremented above AND 3125 * in hugetlb_reserve_pages for the same page. Also, 3126 * the reservation count added in hugetlb_reserve_pages 3127 * no longer applies. 3128 */ 3129 if (unlikely(map_chg == MAP_CHG_NEEDED && retval == 0)) { 3130 long rsv_adjust; 3131 3132 rsv_adjust = hugepage_subpool_put_pages(spool, 1); 3133 hugetlb_acct_memory(h, -rsv_adjust); 3134 if (map_chg) { 3135 spin_lock_irq(&hugetlb_lock); 3136 hugetlb_cgroup_uncharge_folio_rsvd( 3137 hstate_index(h), pages_per_huge_page(h), 3138 folio); 3139 spin_unlock_irq(&hugetlb_lock); 3140 } 3141 } 3142 } 3143 3144 ret = mem_cgroup_charge_hugetlb(folio, gfp); 3145 /* 3146 * Unconditionally increment NR_HUGETLB here. If it turns out that 3147 * mem_cgroup_charge_hugetlb failed, then immediately free the page and 3148 * decrement NR_HUGETLB. 3149 */ 3150 lruvec_stat_mod_folio(folio, NR_HUGETLB, pages_per_huge_page(h)); 3151 3152 if (ret == -ENOMEM) { 3153 free_huge_folio(folio); 3154 return ERR_PTR(-ENOMEM); 3155 } 3156 3157 return folio; 3158 3159 out_uncharge_cgroup: 3160 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg); 3161 out_uncharge_cgroup_reservation: 3162 if (map_chg) 3163 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h), 3164 h_cg); 3165 out_subpool_put: 3166 /* 3167 * put page to subpool iff the quota of subpool's rsv_hpages is used 3168 * during hugepage_subpool_get_pages. 3169 */ 3170 if (map_chg && !gbl_chg) { 3171 gbl_reserve = hugepage_subpool_put_pages(spool, 1); 3172 hugetlb_acct_memory(h, -gbl_reserve); 3173 } 3174 3175 3176 out_end_reservation: 3177 if (map_chg != MAP_CHG_ENFORCED) 3178 vma_end_reservation(h, vma, addr); 3179 return ERR_PTR(-ENOSPC); 3180 } 3181 3182 static __init void *alloc_bootmem(struct hstate *h, int nid, bool node_exact) 3183 { 3184 struct huge_bootmem_page *m; 3185 int listnode = nid; 3186 3187 if (hugetlb_early_cma(h)) 3188 m = hugetlb_cma_alloc_bootmem(h, &listnode, node_exact); 3189 else { 3190 if (node_exact) 3191 m = memblock_alloc_exact_nid_raw(huge_page_size(h), 3192 huge_page_size(h), 0, 3193 MEMBLOCK_ALLOC_ACCESSIBLE, nid); 3194 else { 3195 m = memblock_alloc_try_nid_raw(huge_page_size(h), 3196 huge_page_size(h), 0, 3197 MEMBLOCK_ALLOC_ACCESSIBLE, nid); 3198 /* 3199 * For pre-HVO to work correctly, pages need to be on 3200 * the list for the node they were actually allocated 3201 * from. That node may be different in the case of 3202 * fallback by memblock_alloc_try_nid_raw. So, 3203 * extract the actual node first. 3204 */ 3205 if (m) 3206 listnode = early_pfn_to_nid(PHYS_PFN(virt_to_phys(m))); 3207 } 3208 3209 if (m) { 3210 m->flags = 0; 3211 m->cma = NULL; 3212 } 3213 } 3214 3215 if (m) { 3216 /* 3217 * Use the beginning of the huge page to store the 3218 * huge_bootmem_page struct (until gather_bootmem 3219 * puts them into the mem_map). 3220 * 3221 * Put them into a private list first because mem_map 3222 * is not up yet. 3223 */ 3224 INIT_LIST_HEAD(&m->list); 3225 list_add(&m->list, &huge_boot_pages[listnode]); 3226 m->hstate = h; 3227 } 3228 3229 return m; 3230 } 3231 3232 int alloc_bootmem_huge_page(struct hstate *h, int nid) 3233 __attribute__ ((weak, alias("__alloc_bootmem_huge_page"))); 3234 int __alloc_bootmem_huge_page(struct hstate *h, int nid) 3235 { 3236 struct huge_bootmem_page *m = NULL; /* initialize for clang */ 3237 int nr_nodes, node = nid; 3238 3239 /* do node specific alloc */ 3240 if (nid != NUMA_NO_NODE) { 3241 m = alloc_bootmem(h, node, true); 3242 if (!m) 3243 return 0; 3244 goto found; 3245 } 3246 3247 /* allocate from next node when distributing huge pages */ 3248 for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, &node_states[N_ONLINE]) { 3249 m = alloc_bootmem(h, node, false); 3250 if (!m) 3251 return 0; 3252 goto found; 3253 } 3254 3255 found: 3256 3257 /* 3258 * Only initialize the head struct page in memmap_init_reserved_pages, 3259 * rest of the struct pages will be initialized by the HugeTLB 3260 * subsystem itself. 3261 * The head struct page is used to get folio information by the HugeTLB 3262 * subsystem like zone id and node id. 3263 */ 3264 memblock_reserved_mark_noinit(virt_to_phys((void *)m + PAGE_SIZE), 3265 huge_page_size(h) - PAGE_SIZE); 3266 3267 return 1; 3268 } 3269 3270 /* Initialize [start_page:end_page_number] tail struct pages of a hugepage */ 3271 static void __init hugetlb_folio_init_tail_vmemmap(struct folio *folio, 3272 unsigned long start_page_number, 3273 unsigned long end_page_number) 3274 { 3275 enum zone_type zone = zone_idx(folio_zone(folio)); 3276 int nid = folio_nid(folio); 3277 unsigned long head_pfn = folio_pfn(folio); 3278 unsigned long pfn, end_pfn = head_pfn + end_page_number; 3279 int ret; 3280 3281 for (pfn = head_pfn + start_page_number; pfn < end_pfn; pfn++) { 3282 struct page *page = pfn_to_page(pfn); 3283 3284 __init_single_page(page, pfn, zone, nid); 3285 prep_compound_tail((struct page *)folio, pfn - head_pfn); 3286 ret = page_ref_freeze(page, 1); 3287 VM_BUG_ON(!ret); 3288 } 3289 } 3290 3291 static void __init hugetlb_folio_init_vmemmap(struct folio *folio, 3292 struct hstate *h, 3293 unsigned long nr_pages) 3294 { 3295 int ret; 3296 3297 /* Prepare folio head */ 3298 __folio_clear_reserved(folio); 3299 __folio_set_head(folio); 3300 ret = folio_ref_freeze(folio, 1); 3301 VM_BUG_ON(!ret); 3302 /* Initialize the necessary tail struct pages */ 3303 hugetlb_folio_init_tail_vmemmap(folio, 1, nr_pages); 3304 prep_compound_head((struct page *)folio, huge_page_order(h)); 3305 } 3306 3307 static bool __init hugetlb_bootmem_page_prehvo(struct huge_bootmem_page *m) 3308 { 3309 return m->flags & HUGE_BOOTMEM_HVO; 3310 } 3311 3312 static bool __init hugetlb_bootmem_page_earlycma(struct huge_bootmem_page *m) 3313 { 3314 return m->flags & HUGE_BOOTMEM_CMA; 3315 } 3316 3317 /* 3318 * memblock-allocated pageblocks might not have the migrate type set 3319 * if marked with the 'noinit' flag. Set it to the default (MIGRATE_MOVABLE) 3320 * here, or MIGRATE_CMA if this was a page allocated through an early CMA 3321 * reservation. 3322 * 3323 * In case of vmemmap optimized folios, the tail vmemmap pages are mapped 3324 * read-only, but that's ok - for sparse vmemmap this does not write to 3325 * the page structure. 3326 */ 3327 static void __init hugetlb_bootmem_init_migratetype(struct folio *folio, 3328 struct hstate *h) 3329 { 3330 unsigned long nr_pages = pages_per_huge_page(h), i; 3331 3332 WARN_ON_ONCE(!pageblock_aligned(folio_pfn(folio))); 3333 3334 for (i = 0; i < nr_pages; i += pageblock_nr_pages) { 3335 if (folio_test_hugetlb_cma(folio)) 3336 init_cma_pageblock(folio_page(folio, i)); 3337 else 3338 set_pageblock_migratetype(folio_page(folio, i), 3339 MIGRATE_MOVABLE); 3340 } 3341 } 3342 3343 static void __init prep_and_add_bootmem_folios(struct hstate *h, 3344 struct list_head *folio_list) 3345 { 3346 unsigned long flags; 3347 struct folio *folio, *tmp_f; 3348 3349 /* Send list for bulk vmemmap optimization processing */ 3350 hugetlb_vmemmap_optimize_bootmem_folios(h, folio_list); 3351 3352 list_for_each_entry_safe(folio, tmp_f, folio_list, lru) { 3353 if (!folio_test_hugetlb_vmemmap_optimized(folio)) { 3354 /* 3355 * If HVO fails, initialize all tail struct pages 3356 * We do not worry about potential long lock hold 3357 * time as this is early in boot and there should 3358 * be no contention. 3359 */ 3360 hugetlb_folio_init_tail_vmemmap(folio, 3361 HUGETLB_VMEMMAP_RESERVE_PAGES, 3362 pages_per_huge_page(h)); 3363 } 3364 hugetlb_bootmem_init_migratetype(folio, h); 3365 /* Subdivide locks to achieve better parallel performance */ 3366 spin_lock_irqsave(&hugetlb_lock, flags); 3367 __prep_account_new_huge_page(h, folio_nid(folio)); 3368 enqueue_hugetlb_folio(h, folio); 3369 spin_unlock_irqrestore(&hugetlb_lock, flags); 3370 } 3371 } 3372 3373 bool __init hugetlb_bootmem_page_zones_valid(int nid, 3374 struct huge_bootmem_page *m) 3375 { 3376 unsigned long start_pfn; 3377 bool valid; 3378 3379 if (m->flags & HUGE_BOOTMEM_ZONES_VALID) { 3380 /* 3381 * Already validated, skip check. 3382 */ 3383 return true; 3384 } 3385 3386 if (hugetlb_bootmem_page_earlycma(m)) { 3387 valid = cma_validate_zones(m->cma); 3388 goto out; 3389 } 3390 3391 start_pfn = virt_to_phys(m) >> PAGE_SHIFT; 3392 3393 valid = !pfn_range_intersects_zones(nid, start_pfn, 3394 pages_per_huge_page(m->hstate)); 3395 out: 3396 if (!valid) 3397 hstate_boot_nrinvalid[hstate_index(m->hstate)]++; 3398 3399 return valid; 3400 } 3401 3402 /* 3403 * Free a bootmem page that was found to be invalid (intersecting with 3404 * multiple zones). 3405 * 3406 * Since it intersects with multiple zones, we can't just do a free 3407 * operation on all pages at once, but instead have to walk all 3408 * pages, freeing them one by one. 3409 */ 3410 static void __init hugetlb_bootmem_free_invalid_page(int nid, struct page *page, 3411 struct hstate *h) 3412 { 3413 unsigned long npages = pages_per_huge_page(h); 3414 unsigned long pfn; 3415 3416 while (npages--) { 3417 pfn = page_to_pfn(page); 3418 __init_page_from_nid(pfn, nid); 3419 free_reserved_page(page); 3420 page++; 3421 } 3422 } 3423 3424 /* 3425 * Put bootmem huge pages into the standard lists after mem_map is up. 3426 * Note: This only applies to gigantic (order > MAX_PAGE_ORDER) pages. 3427 */ 3428 static void __init gather_bootmem_prealloc_node(unsigned long nid) 3429 { 3430 LIST_HEAD(folio_list); 3431 struct huge_bootmem_page *m, *tm; 3432 struct hstate *h = NULL, *prev_h = NULL; 3433 3434 list_for_each_entry_safe(m, tm, &huge_boot_pages[nid], list) { 3435 struct page *page = virt_to_page(m); 3436 struct folio *folio = (void *)page; 3437 3438 h = m->hstate; 3439 if (!hugetlb_bootmem_page_zones_valid(nid, m)) { 3440 /* 3441 * Can't use this page. Initialize the 3442 * page structures if that hasn't already 3443 * been done, and give them to the page 3444 * allocator. 3445 */ 3446 hugetlb_bootmem_free_invalid_page(nid, page, h); 3447 continue; 3448 } 3449 3450 /* 3451 * It is possible to have multiple huge page sizes (hstates) 3452 * in this list. If so, process each size separately. 3453 */ 3454 if (h != prev_h && prev_h != NULL) 3455 prep_and_add_bootmem_folios(prev_h, &folio_list); 3456 prev_h = h; 3457 3458 VM_BUG_ON(!hstate_is_gigantic(h)); 3459 WARN_ON(folio_ref_count(folio) != 1); 3460 3461 hugetlb_folio_init_vmemmap(folio, h, 3462 HUGETLB_VMEMMAP_RESERVE_PAGES); 3463 init_new_hugetlb_folio(h, folio); 3464 3465 if (hugetlb_bootmem_page_prehvo(m)) 3466 /* 3467 * If pre-HVO was done, just set the 3468 * flag, the HVO code will then skip 3469 * this folio. 3470 */ 3471 folio_set_hugetlb_vmemmap_optimized(folio); 3472 3473 if (hugetlb_bootmem_page_earlycma(m)) 3474 folio_set_hugetlb_cma(folio); 3475 3476 list_add(&folio->lru, &folio_list); 3477 3478 /* 3479 * We need to restore the 'stolen' pages to totalram_pages 3480 * in order to fix confusing memory reports from free(1) and 3481 * other side-effects, like CommitLimit going negative. 3482 * 3483 * For CMA pages, this is done in init_cma_pageblock 3484 * (via hugetlb_bootmem_init_migratetype), so skip it here. 3485 */ 3486 if (!folio_test_hugetlb_cma(folio)) 3487 adjust_managed_page_count(page, pages_per_huge_page(h)); 3488 cond_resched(); 3489 } 3490 3491 prep_and_add_bootmem_folios(h, &folio_list); 3492 } 3493 3494 static void __init gather_bootmem_prealloc_parallel(unsigned long start, 3495 unsigned long end, void *arg) 3496 { 3497 int nid; 3498 3499 for (nid = start; nid < end; nid++) 3500 gather_bootmem_prealloc_node(nid); 3501 } 3502 3503 static void __init gather_bootmem_prealloc(void) 3504 { 3505 struct padata_mt_job job = { 3506 .thread_fn = gather_bootmem_prealloc_parallel, 3507 .fn_arg = NULL, 3508 .start = 0, 3509 .size = nr_node_ids, 3510 .align = 1, 3511 .min_chunk = 1, 3512 .max_threads = num_node_state(N_MEMORY), 3513 .numa_aware = true, 3514 }; 3515 3516 padata_do_multithreaded(&job); 3517 } 3518 3519 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid) 3520 { 3521 unsigned long i; 3522 char buf[32]; 3523 LIST_HEAD(folio_list); 3524 3525 for (i = 0; i < h->max_huge_pages_node[nid]; ++i) { 3526 if (hstate_is_gigantic(h)) { 3527 if (!alloc_bootmem_huge_page(h, nid)) 3528 break; 3529 } else { 3530 struct folio *folio; 3531 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 3532 3533 folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, nid, 3534 &node_states[N_MEMORY], NULL); 3535 if (!folio) 3536 break; 3537 list_add(&folio->lru, &folio_list); 3538 } 3539 cond_resched(); 3540 } 3541 3542 if (!list_empty(&folio_list)) 3543 prep_and_add_allocated_folios(h, &folio_list); 3544 3545 if (i == h->max_huge_pages_node[nid]) 3546 return; 3547 3548 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3549 pr_warn("HugeTLB: allocating %u of page size %s failed node%d. Only allocated %lu hugepages.\n", 3550 h->max_huge_pages_node[nid], buf, nid, i); 3551 h->max_huge_pages -= (h->max_huge_pages_node[nid] - i); 3552 h->max_huge_pages_node[nid] = i; 3553 } 3554 3555 static bool __init hugetlb_hstate_alloc_pages_specific_nodes(struct hstate *h) 3556 { 3557 int i; 3558 bool node_specific_alloc = false; 3559 3560 for_each_online_node(i) { 3561 if (h->max_huge_pages_node[i] > 0) { 3562 hugetlb_hstate_alloc_pages_onenode(h, i); 3563 node_specific_alloc = true; 3564 } 3565 } 3566 3567 return node_specific_alloc; 3568 } 3569 3570 static void __init hugetlb_hstate_alloc_pages_errcheck(unsigned long allocated, struct hstate *h) 3571 { 3572 if (allocated < h->max_huge_pages) { 3573 char buf[32]; 3574 3575 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3576 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n", 3577 h->max_huge_pages, buf, allocated); 3578 h->max_huge_pages = allocated; 3579 } 3580 } 3581 3582 static void __init hugetlb_pages_alloc_boot_node(unsigned long start, unsigned long end, void *arg) 3583 { 3584 struct hstate *h = (struct hstate *)arg; 3585 int i, num = end - start; 3586 nodemask_t node_alloc_noretry; 3587 LIST_HEAD(folio_list); 3588 int next_node = first_online_node; 3589 3590 /* Bit mask controlling how hard we retry per-node allocations.*/ 3591 nodes_clear(node_alloc_noretry); 3592 3593 for (i = 0; i < num; ++i) { 3594 struct folio *folio = alloc_pool_huge_folio(h, &node_states[N_MEMORY], 3595 &node_alloc_noretry, &next_node); 3596 if (!folio) 3597 break; 3598 3599 list_move(&folio->lru, &folio_list); 3600 cond_resched(); 3601 } 3602 3603 prep_and_add_allocated_folios(h, &folio_list); 3604 } 3605 3606 static unsigned long __init hugetlb_gigantic_pages_alloc_boot(struct hstate *h) 3607 { 3608 unsigned long i; 3609 3610 for (i = 0; i < h->max_huge_pages; ++i) { 3611 if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE)) 3612 break; 3613 cond_resched(); 3614 } 3615 3616 return i; 3617 } 3618 3619 static unsigned long __init hugetlb_pages_alloc_boot(struct hstate *h) 3620 { 3621 struct padata_mt_job job = { 3622 .fn_arg = h, 3623 .align = 1, 3624 .numa_aware = true 3625 }; 3626 3627 unsigned long jiffies_start; 3628 unsigned long jiffies_end; 3629 3630 job.thread_fn = hugetlb_pages_alloc_boot_node; 3631 job.start = 0; 3632 job.size = h->max_huge_pages; 3633 3634 /* 3635 * job.max_threads is 25% of the available cpu threads by default. 3636 * 3637 * On large servers with terabytes of memory, huge page allocation 3638 * can consume a considerably amount of time. 3639 * 3640 * Tests below show how long it takes to allocate 1 TiB of memory with 2MiB huge pages. 3641 * 2MiB huge pages. Using more threads can significantly improve allocation time. 3642 * 3643 * +-----------------------+-------+-------+-------+-------+-------+ 3644 * | threads | 8 | 16 | 32 | 64 | 128 | 3645 * +-----------------------+-------+-------+-------+-------+-------+ 3646 * | skylake 144 cpus | 44s | 22s | 16s | 19s | 20s | 3647 * | cascade lake 192 cpus | 39s | 20s | 11s | 10s | 9s | 3648 * +-----------------------+-------+-------+-------+-------+-------+ 3649 */ 3650 if (hugepage_allocation_threads == 0) { 3651 hugepage_allocation_threads = num_online_cpus() / 4; 3652 hugepage_allocation_threads = max(hugepage_allocation_threads, 1); 3653 } 3654 3655 job.max_threads = hugepage_allocation_threads; 3656 job.min_chunk = h->max_huge_pages / hugepage_allocation_threads; 3657 3658 jiffies_start = jiffies; 3659 padata_do_multithreaded(&job); 3660 jiffies_end = jiffies; 3661 3662 pr_info("HugeTLB: allocation took %dms with hugepage_allocation_threads=%ld\n", 3663 jiffies_to_msecs(jiffies_end - jiffies_start), 3664 hugepage_allocation_threads); 3665 3666 return h->nr_huge_pages; 3667 } 3668 3669 /* 3670 * NOTE: this routine is called in different contexts for gigantic and 3671 * non-gigantic pages. 3672 * - For gigantic pages, this is called early in the boot process and 3673 * pages are allocated from memblock allocated or something similar. 3674 * Gigantic pages are actually added to pools later with the routine 3675 * gather_bootmem_prealloc. 3676 * - For non-gigantic pages, this is called later in the boot process after 3677 * all of mm is up and functional. Pages are allocated from buddy and 3678 * then added to hugetlb pools. 3679 */ 3680 static void __init hugetlb_hstate_alloc_pages(struct hstate *h) 3681 { 3682 unsigned long allocated; 3683 3684 /* 3685 * Skip gigantic hugepages allocation if early CMA 3686 * reservations are not available. 3687 */ 3688 if (hstate_is_gigantic(h) && hugetlb_cma_total_size() && 3689 !hugetlb_early_cma(h)) { 3690 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n"); 3691 return; 3692 } 3693 3694 /* do node specific alloc */ 3695 if (hugetlb_hstate_alloc_pages_specific_nodes(h)) 3696 return; 3697 3698 /* below will do all node balanced alloc */ 3699 if (hstate_is_gigantic(h)) 3700 allocated = hugetlb_gigantic_pages_alloc_boot(h); 3701 else 3702 allocated = hugetlb_pages_alloc_boot(h); 3703 3704 hugetlb_hstate_alloc_pages_errcheck(allocated, h); 3705 } 3706 3707 static void __init hugetlb_init_hstates(void) 3708 { 3709 struct hstate *h, *h2; 3710 3711 for_each_hstate(h) { 3712 /* oversize hugepages were init'ed in early boot */ 3713 if (!hstate_is_gigantic(h)) 3714 hugetlb_hstate_alloc_pages(h); 3715 3716 /* 3717 * Set demote order for each hstate. Note that 3718 * h->demote_order is initially 0. 3719 * - We can not demote gigantic pages if runtime freeing 3720 * is not supported, so skip this. 3721 * - If CMA allocation is possible, we can not demote 3722 * HUGETLB_PAGE_ORDER or smaller size pages. 3723 */ 3724 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 3725 continue; 3726 if (hugetlb_cma_total_size() && h->order <= HUGETLB_PAGE_ORDER) 3727 continue; 3728 for_each_hstate(h2) { 3729 if (h2 == h) 3730 continue; 3731 if (h2->order < h->order && 3732 h2->order > h->demote_order) 3733 h->demote_order = h2->order; 3734 } 3735 } 3736 } 3737 3738 static void __init report_hugepages(void) 3739 { 3740 struct hstate *h; 3741 unsigned long nrinvalid; 3742 3743 for_each_hstate(h) { 3744 char buf[32]; 3745 3746 nrinvalid = hstate_boot_nrinvalid[hstate_index(h)]; 3747 h->max_huge_pages -= nrinvalid; 3748 3749 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3750 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n", 3751 buf, h->free_huge_pages); 3752 if (nrinvalid) 3753 pr_info("HugeTLB: %s page size: %lu invalid page%s discarded\n", 3754 buf, nrinvalid, nrinvalid > 1 ? "s" : ""); 3755 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n", 3756 hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf); 3757 } 3758 } 3759 3760 #ifdef CONFIG_HIGHMEM 3761 static void try_to_free_low(struct hstate *h, unsigned long count, 3762 nodemask_t *nodes_allowed) 3763 { 3764 int i; 3765 LIST_HEAD(page_list); 3766 3767 lockdep_assert_held(&hugetlb_lock); 3768 if (hstate_is_gigantic(h)) 3769 return; 3770 3771 /* 3772 * Collect pages to be freed on a list, and free after dropping lock 3773 */ 3774 for_each_node_mask(i, *nodes_allowed) { 3775 struct folio *folio, *next; 3776 struct list_head *freel = &h->hugepage_freelists[i]; 3777 list_for_each_entry_safe(folio, next, freel, lru) { 3778 if (count >= h->nr_huge_pages) 3779 goto out; 3780 if (folio_test_highmem(folio)) 3781 continue; 3782 remove_hugetlb_folio(h, folio, false); 3783 list_add(&folio->lru, &page_list); 3784 } 3785 } 3786 3787 out: 3788 spin_unlock_irq(&hugetlb_lock); 3789 update_and_free_pages_bulk(h, &page_list); 3790 spin_lock_irq(&hugetlb_lock); 3791 } 3792 #else 3793 static inline void try_to_free_low(struct hstate *h, unsigned long count, 3794 nodemask_t *nodes_allowed) 3795 { 3796 } 3797 #endif 3798 3799 /* 3800 * Increment or decrement surplus_huge_pages. Keep node-specific counters 3801 * balanced by operating on them in a round-robin fashion. 3802 * Returns 1 if an adjustment was made. 3803 */ 3804 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed, 3805 int delta) 3806 { 3807 int nr_nodes, node; 3808 3809 lockdep_assert_held(&hugetlb_lock); 3810 VM_BUG_ON(delta != -1 && delta != 1); 3811 3812 if (delta < 0) { 3813 for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, nodes_allowed) { 3814 if (h->surplus_huge_pages_node[node]) 3815 goto found; 3816 } 3817 } else { 3818 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 3819 if (h->surplus_huge_pages_node[node] < 3820 h->nr_huge_pages_node[node]) 3821 goto found; 3822 } 3823 } 3824 return 0; 3825 3826 found: 3827 h->surplus_huge_pages += delta; 3828 h->surplus_huge_pages_node[node] += delta; 3829 return 1; 3830 } 3831 3832 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) 3833 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid, 3834 nodemask_t *nodes_allowed) 3835 { 3836 unsigned long persistent_free_count; 3837 unsigned long min_count; 3838 unsigned long allocated; 3839 struct folio *folio; 3840 LIST_HEAD(page_list); 3841 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL); 3842 3843 /* 3844 * Bit mask controlling how hard we retry per-node allocations. 3845 * If we can not allocate the bit mask, do not attempt to allocate 3846 * the requested huge pages. 3847 */ 3848 if (node_alloc_noretry) 3849 nodes_clear(*node_alloc_noretry); 3850 else 3851 return -ENOMEM; 3852 3853 /* 3854 * resize_lock mutex prevents concurrent adjustments to number of 3855 * pages in hstate via the proc/sysfs interfaces. 3856 */ 3857 mutex_lock(&h->resize_lock); 3858 flush_free_hpage_work(h); 3859 spin_lock_irq(&hugetlb_lock); 3860 3861 /* 3862 * Check for a node specific request. 3863 * Changing node specific huge page count may require a corresponding 3864 * change to the global count. In any case, the passed node mask 3865 * (nodes_allowed) will restrict alloc/free to the specified node. 3866 */ 3867 if (nid != NUMA_NO_NODE) { 3868 unsigned long old_count = count; 3869 3870 count += persistent_huge_pages(h) - 3871 (h->nr_huge_pages_node[nid] - 3872 h->surplus_huge_pages_node[nid]); 3873 /* 3874 * User may have specified a large count value which caused the 3875 * above calculation to overflow. In this case, they wanted 3876 * to allocate as many huge pages as possible. Set count to 3877 * largest possible value to align with their intention. 3878 */ 3879 if (count < old_count) 3880 count = ULONG_MAX; 3881 } 3882 3883 /* 3884 * Gigantic pages runtime allocation depend on the capability for large 3885 * page range allocation. 3886 * If the system does not provide this feature, return an error when 3887 * the user tries to allocate gigantic pages but let the user free the 3888 * boottime allocated gigantic pages. 3889 */ 3890 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) { 3891 if (count > persistent_huge_pages(h)) { 3892 spin_unlock_irq(&hugetlb_lock); 3893 mutex_unlock(&h->resize_lock); 3894 NODEMASK_FREE(node_alloc_noretry); 3895 return -EINVAL; 3896 } 3897 /* Fall through to decrease pool */ 3898 } 3899 3900 /* 3901 * Increase the pool size 3902 * First take pages out of surplus state. Then make up the 3903 * remaining difference by allocating fresh huge pages. 3904 * 3905 * We might race with alloc_surplus_hugetlb_folio() here and be unable 3906 * to convert a surplus huge page to a normal huge page. That is 3907 * not critical, though, it just means the overall size of the 3908 * pool might be one hugepage larger than it needs to be, but 3909 * within all the constraints specified by the sysctls. 3910 */ 3911 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { 3912 if (!adjust_pool_surplus(h, nodes_allowed, -1)) 3913 break; 3914 } 3915 3916 allocated = 0; 3917 while (count > (persistent_huge_pages(h) + allocated)) { 3918 /* 3919 * If this allocation races such that we no longer need the 3920 * page, free_huge_folio will handle it by freeing the page 3921 * and reducing the surplus. 3922 */ 3923 spin_unlock_irq(&hugetlb_lock); 3924 3925 /* yield cpu to avoid soft lockup */ 3926 cond_resched(); 3927 3928 folio = alloc_pool_huge_folio(h, nodes_allowed, 3929 node_alloc_noretry, 3930 &h->next_nid_to_alloc); 3931 if (!folio) { 3932 prep_and_add_allocated_folios(h, &page_list); 3933 spin_lock_irq(&hugetlb_lock); 3934 goto out; 3935 } 3936 3937 list_add(&folio->lru, &page_list); 3938 allocated++; 3939 3940 /* Bail for signals. Probably ctrl-c from user */ 3941 if (signal_pending(current)) { 3942 prep_and_add_allocated_folios(h, &page_list); 3943 spin_lock_irq(&hugetlb_lock); 3944 goto out; 3945 } 3946 3947 spin_lock_irq(&hugetlb_lock); 3948 } 3949 3950 /* Add allocated pages to the pool */ 3951 if (!list_empty(&page_list)) { 3952 spin_unlock_irq(&hugetlb_lock); 3953 prep_and_add_allocated_folios(h, &page_list); 3954 spin_lock_irq(&hugetlb_lock); 3955 } 3956 3957 /* 3958 * Decrease the pool size 3959 * First return free pages to the buddy allocator (being careful 3960 * to keep enough around to satisfy reservations). Then place 3961 * pages into surplus state as needed so the pool will shrink 3962 * to the desired size as pages become free. 3963 * 3964 * By placing pages into the surplus state independent of the 3965 * overcommit value, we are allowing the surplus pool size to 3966 * exceed overcommit. There are few sane options here. Since 3967 * alloc_surplus_hugetlb_folio() is checking the global counter, 3968 * though, we'll note that we're not allowed to exceed surplus 3969 * and won't grow the pool anywhere else. Not until one of the 3970 * sysctls are changed, or the surplus pages go out of use. 3971 * 3972 * min_count is the expected number of persistent pages, we 3973 * shouldn't calculate min_count by using 3974 * resv_huge_pages + persistent_huge_pages() - free_huge_pages, 3975 * because there may exist free surplus huge pages, and this will 3976 * lead to subtracting twice. Free surplus huge pages come from HVO 3977 * failing to restore vmemmap, see comments in the callers of 3978 * hugetlb_vmemmap_restore_folio(). Thus, we should calculate 3979 * persistent free count first. 3980 */ 3981 persistent_free_count = h->free_huge_pages; 3982 if (h->free_huge_pages > persistent_huge_pages(h)) { 3983 if (h->free_huge_pages > h->surplus_huge_pages) 3984 persistent_free_count -= h->surplus_huge_pages; 3985 else 3986 persistent_free_count = 0; 3987 } 3988 min_count = h->resv_huge_pages + persistent_huge_pages(h) - persistent_free_count; 3989 min_count = max(count, min_count); 3990 try_to_free_low(h, min_count, nodes_allowed); 3991 3992 /* 3993 * Collect pages to be removed on list without dropping lock 3994 */ 3995 while (min_count < persistent_huge_pages(h)) { 3996 folio = remove_pool_hugetlb_folio(h, nodes_allowed, 0); 3997 if (!folio) 3998 break; 3999 4000 list_add(&folio->lru, &page_list); 4001 } 4002 /* free the pages after dropping lock */ 4003 spin_unlock_irq(&hugetlb_lock); 4004 update_and_free_pages_bulk(h, &page_list); 4005 flush_free_hpage_work(h); 4006 spin_lock_irq(&hugetlb_lock); 4007 4008 while (count < persistent_huge_pages(h)) { 4009 if (!adjust_pool_surplus(h, nodes_allowed, 1)) 4010 break; 4011 } 4012 out: 4013 h->max_huge_pages = persistent_huge_pages(h); 4014 spin_unlock_irq(&hugetlb_lock); 4015 mutex_unlock(&h->resize_lock); 4016 4017 NODEMASK_FREE(node_alloc_noretry); 4018 4019 return 0; 4020 } 4021 4022 static long demote_free_hugetlb_folios(struct hstate *src, struct hstate *dst, 4023 struct list_head *src_list) 4024 { 4025 long rc; 4026 struct folio *folio, *next; 4027 LIST_HEAD(dst_list); 4028 LIST_HEAD(ret_list); 4029 4030 rc = hugetlb_vmemmap_restore_folios(src, src_list, &ret_list); 4031 list_splice_init(&ret_list, src_list); 4032 4033 /* 4034 * Taking target hstate mutex synchronizes with set_max_huge_pages. 4035 * Without the mutex, pages added to target hstate could be marked 4036 * as surplus. 4037 * 4038 * Note that we already hold src->resize_lock. To prevent deadlock, 4039 * use the convention of always taking larger size hstate mutex first. 4040 */ 4041 mutex_lock(&dst->resize_lock); 4042 4043 list_for_each_entry_safe(folio, next, src_list, lru) { 4044 int i; 4045 bool cma; 4046 4047 if (folio_test_hugetlb_vmemmap_optimized(folio)) 4048 continue; 4049 4050 cma = folio_test_hugetlb_cma(folio); 4051 4052 list_del(&folio->lru); 4053 4054 split_page_owner(&folio->page, huge_page_order(src), huge_page_order(dst)); 4055 pgalloc_tag_split(folio, huge_page_order(src), huge_page_order(dst)); 4056 4057 for (i = 0; i < pages_per_huge_page(src); i += pages_per_huge_page(dst)) { 4058 struct page *page = folio_page(folio, i); 4059 /* Careful: see __split_huge_page_tail() */ 4060 struct folio *new_folio = (struct folio *)page; 4061 4062 clear_compound_head(page); 4063 prep_compound_page(page, dst->order); 4064 4065 new_folio->mapping = NULL; 4066 init_new_hugetlb_folio(dst, new_folio); 4067 /* Copy the CMA flag so that it is freed correctly */ 4068 if (cma) 4069 folio_set_hugetlb_cma(new_folio); 4070 list_add(&new_folio->lru, &dst_list); 4071 } 4072 } 4073 4074 prep_and_add_allocated_folios(dst, &dst_list); 4075 4076 mutex_unlock(&dst->resize_lock); 4077 4078 return rc; 4079 } 4080 4081 static long demote_pool_huge_page(struct hstate *src, nodemask_t *nodes_allowed, 4082 unsigned long nr_to_demote) 4083 __must_hold(&hugetlb_lock) 4084 { 4085 int nr_nodes, node; 4086 struct hstate *dst; 4087 long rc = 0; 4088 long nr_demoted = 0; 4089 4090 lockdep_assert_held(&hugetlb_lock); 4091 4092 /* We should never get here if no demote order */ 4093 if (!src->demote_order) { 4094 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n"); 4095 return -EINVAL; /* internal error */ 4096 } 4097 dst = size_to_hstate(PAGE_SIZE << src->demote_order); 4098 4099 for_each_node_mask_to_free(src, nr_nodes, node, nodes_allowed) { 4100 LIST_HEAD(list); 4101 struct folio *folio, *next; 4102 4103 list_for_each_entry_safe(folio, next, &src->hugepage_freelists[node], lru) { 4104 if (folio_test_hwpoison(folio)) 4105 continue; 4106 4107 remove_hugetlb_folio(src, folio, false); 4108 list_add(&folio->lru, &list); 4109 4110 if (++nr_demoted == nr_to_demote) 4111 break; 4112 } 4113 4114 spin_unlock_irq(&hugetlb_lock); 4115 4116 rc = demote_free_hugetlb_folios(src, dst, &list); 4117 4118 spin_lock_irq(&hugetlb_lock); 4119 4120 list_for_each_entry_safe(folio, next, &list, lru) { 4121 list_del(&folio->lru); 4122 add_hugetlb_folio(src, folio, false); 4123 4124 nr_demoted--; 4125 } 4126 4127 if (rc < 0 || nr_demoted == nr_to_demote) 4128 break; 4129 } 4130 4131 /* 4132 * Not absolutely necessary, but for consistency update max_huge_pages 4133 * based on pool changes for the demoted page. 4134 */ 4135 src->max_huge_pages -= nr_demoted; 4136 dst->max_huge_pages += nr_demoted << (huge_page_order(src) - huge_page_order(dst)); 4137 4138 if (rc < 0) 4139 return rc; 4140 4141 if (nr_demoted) 4142 return nr_demoted; 4143 /* 4144 * Only way to get here is if all pages on free lists are poisoned. 4145 * Return -EBUSY so that caller will not retry. 4146 */ 4147 return -EBUSY; 4148 } 4149 4150 #define HSTATE_ATTR_RO(_name) \ 4151 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 4152 4153 #define HSTATE_ATTR_WO(_name) \ 4154 static struct kobj_attribute _name##_attr = __ATTR_WO(_name) 4155 4156 #define HSTATE_ATTR(_name) \ 4157 static struct kobj_attribute _name##_attr = __ATTR_RW(_name) 4158 4159 static struct kobject *hugepages_kobj; 4160 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 4161 4162 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp); 4163 4164 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp) 4165 { 4166 int i; 4167 4168 for (i = 0; i < HUGE_MAX_HSTATE; i++) 4169 if (hstate_kobjs[i] == kobj) { 4170 if (nidp) 4171 *nidp = NUMA_NO_NODE; 4172 return &hstates[i]; 4173 } 4174 4175 return kobj_to_node_hstate(kobj, nidp); 4176 } 4177 4178 static ssize_t nr_hugepages_show_common(struct kobject *kobj, 4179 struct kobj_attribute *attr, char *buf) 4180 { 4181 struct hstate *h; 4182 unsigned long nr_huge_pages; 4183 int nid; 4184 4185 h = kobj_to_hstate(kobj, &nid); 4186 if (nid == NUMA_NO_NODE) 4187 nr_huge_pages = h->nr_huge_pages; 4188 else 4189 nr_huge_pages = h->nr_huge_pages_node[nid]; 4190 4191 return sysfs_emit(buf, "%lu\n", nr_huge_pages); 4192 } 4193 4194 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy, 4195 struct hstate *h, int nid, 4196 unsigned long count, size_t len) 4197 { 4198 int err; 4199 nodemask_t nodes_allowed, *n_mask; 4200 4201 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 4202 return -EINVAL; 4203 4204 if (nid == NUMA_NO_NODE) { 4205 /* 4206 * global hstate attribute 4207 */ 4208 if (!(obey_mempolicy && 4209 init_nodemask_of_mempolicy(&nodes_allowed))) 4210 n_mask = &node_states[N_MEMORY]; 4211 else 4212 n_mask = &nodes_allowed; 4213 } else { 4214 /* 4215 * Node specific request. count adjustment happens in 4216 * set_max_huge_pages() after acquiring hugetlb_lock. 4217 */ 4218 init_nodemask_of_node(&nodes_allowed, nid); 4219 n_mask = &nodes_allowed; 4220 } 4221 4222 err = set_max_huge_pages(h, count, nid, n_mask); 4223 4224 return err ? err : len; 4225 } 4226 4227 static ssize_t nr_hugepages_store_common(bool obey_mempolicy, 4228 struct kobject *kobj, const char *buf, 4229 size_t len) 4230 { 4231 struct hstate *h; 4232 unsigned long count; 4233 int nid; 4234 int err; 4235 4236 err = kstrtoul(buf, 10, &count); 4237 if (err) 4238 return err; 4239 4240 h = kobj_to_hstate(kobj, &nid); 4241 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len); 4242 } 4243 4244 static ssize_t nr_hugepages_show(struct kobject *kobj, 4245 struct kobj_attribute *attr, char *buf) 4246 { 4247 return nr_hugepages_show_common(kobj, attr, buf); 4248 } 4249 4250 static ssize_t nr_hugepages_store(struct kobject *kobj, 4251 struct kobj_attribute *attr, const char *buf, size_t len) 4252 { 4253 return nr_hugepages_store_common(false, kobj, buf, len); 4254 } 4255 HSTATE_ATTR(nr_hugepages); 4256 4257 #ifdef CONFIG_NUMA 4258 4259 /* 4260 * hstate attribute for optionally mempolicy-based constraint on persistent 4261 * huge page alloc/free. 4262 */ 4263 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj, 4264 struct kobj_attribute *attr, 4265 char *buf) 4266 { 4267 return nr_hugepages_show_common(kobj, attr, buf); 4268 } 4269 4270 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj, 4271 struct kobj_attribute *attr, const char *buf, size_t len) 4272 { 4273 return nr_hugepages_store_common(true, kobj, buf, len); 4274 } 4275 HSTATE_ATTR(nr_hugepages_mempolicy); 4276 #endif 4277 4278 4279 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, 4280 struct kobj_attribute *attr, char *buf) 4281 { 4282 struct hstate *h = kobj_to_hstate(kobj, NULL); 4283 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages); 4284 } 4285 4286 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, 4287 struct kobj_attribute *attr, const char *buf, size_t count) 4288 { 4289 int err; 4290 unsigned long input; 4291 struct hstate *h = kobj_to_hstate(kobj, NULL); 4292 4293 if (hstate_is_gigantic(h)) 4294 return -EINVAL; 4295 4296 err = kstrtoul(buf, 10, &input); 4297 if (err) 4298 return err; 4299 4300 spin_lock_irq(&hugetlb_lock); 4301 h->nr_overcommit_huge_pages = input; 4302 spin_unlock_irq(&hugetlb_lock); 4303 4304 return count; 4305 } 4306 HSTATE_ATTR(nr_overcommit_hugepages); 4307 4308 static ssize_t free_hugepages_show(struct kobject *kobj, 4309 struct kobj_attribute *attr, char *buf) 4310 { 4311 struct hstate *h; 4312 unsigned long free_huge_pages; 4313 int nid; 4314 4315 h = kobj_to_hstate(kobj, &nid); 4316 if (nid == NUMA_NO_NODE) 4317 free_huge_pages = h->free_huge_pages; 4318 else 4319 free_huge_pages = h->free_huge_pages_node[nid]; 4320 4321 return sysfs_emit(buf, "%lu\n", free_huge_pages); 4322 } 4323 HSTATE_ATTR_RO(free_hugepages); 4324 4325 static ssize_t resv_hugepages_show(struct kobject *kobj, 4326 struct kobj_attribute *attr, char *buf) 4327 { 4328 struct hstate *h = kobj_to_hstate(kobj, NULL); 4329 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages); 4330 } 4331 HSTATE_ATTR_RO(resv_hugepages); 4332 4333 static ssize_t surplus_hugepages_show(struct kobject *kobj, 4334 struct kobj_attribute *attr, char *buf) 4335 { 4336 struct hstate *h; 4337 unsigned long surplus_huge_pages; 4338 int nid; 4339 4340 h = kobj_to_hstate(kobj, &nid); 4341 if (nid == NUMA_NO_NODE) 4342 surplus_huge_pages = h->surplus_huge_pages; 4343 else 4344 surplus_huge_pages = h->surplus_huge_pages_node[nid]; 4345 4346 return sysfs_emit(buf, "%lu\n", surplus_huge_pages); 4347 } 4348 HSTATE_ATTR_RO(surplus_hugepages); 4349 4350 static ssize_t demote_store(struct kobject *kobj, 4351 struct kobj_attribute *attr, const char *buf, size_t len) 4352 { 4353 unsigned long nr_demote; 4354 unsigned long nr_available; 4355 nodemask_t nodes_allowed, *n_mask; 4356 struct hstate *h; 4357 int err; 4358 int nid; 4359 4360 err = kstrtoul(buf, 10, &nr_demote); 4361 if (err) 4362 return err; 4363 h = kobj_to_hstate(kobj, &nid); 4364 4365 if (nid != NUMA_NO_NODE) { 4366 init_nodemask_of_node(&nodes_allowed, nid); 4367 n_mask = &nodes_allowed; 4368 } else { 4369 n_mask = &node_states[N_MEMORY]; 4370 } 4371 4372 /* Synchronize with other sysfs operations modifying huge pages */ 4373 mutex_lock(&h->resize_lock); 4374 spin_lock_irq(&hugetlb_lock); 4375 4376 while (nr_demote) { 4377 long rc; 4378 4379 /* 4380 * Check for available pages to demote each time thorough the 4381 * loop as demote_pool_huge_page will drop hugetlb_lock. 4382 */ 4383 if (nid != NUMA_NO_NODE) 4384 nr_available = h->free_huge_pages_node[nid]; 4385 else 4386 nr_available = h->free_huge_pages; 4387 nr_available -= h->resv_huge_pages; 4388 if (!nr_available) 4389 break; 4390 4391 rc = demote_pool_huge_page(h, n_mask, nr_demote); 4392 if (rc < 0) { 4393 err = rc; 4394 break; 4395 } 4396 4397 nr_demote -= rc; 4398 } 4399 4400 spin_unlock_irq(&hugetlb_lock); 4401 mutex_unlock(&h->resize_lock); 4402 4403 if (err) 4404 return err; 4405 return len; 4406 } 4407 HSTATE_ATTR_WO(demote); 4408 4409 static ssize_t demote_size_show(struct kobject *kobj, 4410 struct kobj_attribute *attr, char *buf) 4411 { 4412 struct hstate *h = kobj_to_hstate(kobj, NULL); 4413 unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K; 4414 4415 return sysfs_emit(buf, "%lukB\n", demote_size); 4416 } 4417 4418 static ssize_t demote_size_store(struct kobject *kobj, 4419 struct kobj_attribute *attr, 4420 const char *buf, size_t count) 4421 { 4422 struct hstate *h, *demote_hstate; 4423 unsigned long demote_size; 4424 unsigned int demote_order; 4425 4426 demote_size = (unsigned long)memparse(buf, NULL); 4427 4428 demote_hstate = size_to_hstate(demote_size); 4429 if (!demote_hstate) 4430 return -EINVAL; 4431 demote_order = demote_hstate->order; 4432 if (demote_order < HUGETLB_PAGE_ORDER) 4433 return -EINVAL; 4434 4435 /* demote order must be smaller than hstate order */ 4436 h = kobj_to_hstate(kobj, NULL); 4437 if (demote_order >= h->order) 4438 return -EINVAL; 4439 4440 /* resize_lock synchronizes access to demote size and writes */ 4441 mutex_lock(&h->resize_lock); 4442 h->demote_order = demote_order; 4443 mutex_unlock(&h->resize_lock); 4444 4445 return count; 4446 } 4447 HSTATE_ATTR(demote_size); 4448 4449 static struct attribute *hstate_attrs[] = { 4450 &nr_hugepages_attr.attr, 4451 &nr_overcommit_hugepages_attr.attr, 4452 &free_hugepages_attr.attr, 4453 &resv_hugepages_attr.attr, 4454 &surplus_hugepages_attr.attr, 4455 #ifdef CONFIG_NUMA 4456 &nr_hugepages_mempolicy_attr.attr, 4457 #endif 4458 NULL, 4459 }; 4460 4461 static const struct attribute_group hstate_attr_group = { 4462 .attrs = hstate_attrs, 4463 }; 4464 4465 static struct attribute *hstate_demote_attrs[] = { 4466 &demote_size_attr.attr, 4467 &demote_attr.attr, 4468 NULL, 4469 }; 4470 4471 static const struct attribute_group hstate_demote_attr_group = { 4472 .attrs = hstate_demote_attrs, 4473 }; 4474 4475 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent, 4476 struct kobject **hstate_kobjs, 4477 const struct attribute_group *hstate_attr_group) 4478 { 4479 int retval; 4480 int hi = hstate_index(h); 4481 4482 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent); 4483 if (!hstate_kobjs[hi]) 4484 return -ENOMEM; 4485 4486 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group); 4487 if (retval) { 4488 kobject_put(hstate_kobjs[hi]); 4489 hstate_kobjs[hi] = NULL; 4490 return retval; 4491 } 4492 4493 if (h->demote_order) { 4494 retval = sysfs_create_group(hstate_kobjs[hi], 4495 &hstate_demote_attr_group); 4496 if (retval) { 4497 pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name); 4498 sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group); 4499 kobject_put(hstate_kobjs[hi]); 4500 hstate_kobjs[hi] = NULL; 4501 return retval; 4502 } 4503 } 4504 4505 return 0; 4506 } 4507 4508 #ifdef CONFIG_NUMA 4509 static bool hugetlb_sysfs_initialized __ro_after_init; 4510 4511 /* 4512 * node_hstate/s - associate per node hstate attributes, via their kobjects, 4513 * with node devices in node_devices[] using a parallel array. The array 4514 * index of a node device or _hstate == node id. 4515 * This is here to avoid any static dependency of the node device driver, in 4516 * the base kernel, on the hugetlb module. 4517 */ 4518 struct node_hstate { 4519 struct kobject *hugepages_kobj; 4520 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 4521 }; 4522 static struct node_hstate node_hstates[MAX_NUMNODES]; 4523 4524 /* 4525 * A subset of global hstate attributes for node devices 4526 */ 4527 static struct attribute *per_node_hstate_attrs[] = { 4528 &nr_hugepages_attr.attr, 4529 &free_hugepages_attr.attr, 4530 &surplus_hugepages_attr.attr, 4531 NULL, 4532 }; 4533 4534 static const struct attribute_group per_node_hstate_attr_group = { 4535 .attrs = per_node_hstate_attrs, 4536 }; 4537 4538 /* 4539 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj. 4540 * Returns node id via non-NULL nidp. 4541 */ 4542 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 4543 { 4544 int nid; 4545 4546 for (nid = 0; nid < nr_node_ids; nid++) { 4547 struct node_hstate *nhs = &node_hstates[nid]; 4548 int i; 4549 for (i = 0; i < HUGE_MAX_HSTATE; i++) 4550 if (nhs->hstate_kobjs[i] == kobj) { 4551 if (nidp) 4552 *nidp = nid; 4553 return &hstates[i]; 4554 } 4555 } 4556 4557 BUG(); 4558 return NULL; 4559 } 4560 4561 /* 4562 * Unregister hstate attributes from a single node device. 4563 * No-op if no hstate attributes attached. 4564 */ 4565 void hugetlb_unregister_node(struct node *node) 4566 { 4567 struct hstate *h; 4568 struct node_hstate *nhs = &node_hstates[node->dev.id]; 4569 4570 if (!nhs->hugepages_kobj) 4571 return; /* no hstate attributes */ 4572 4573 for_each_hstate(h) { 4574 int idx = hstate_index(h); 4575 struct kobject *hstate_kobj = nhs->hstate_kobjs[idx]; 4576 4577 if (!hstate_kobj) 4578 continue; 4579 if (h->demote_order) 4580 sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group); 4581 sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group); 4582 kobject_put(hstate_kobj); 4583 nhs->hstate_kobjs[idx] = NULL; 4584 } 4585 4586 kobject_put(nhs->hugepages_kobj); 4587 nhs->hugepages_kobj = NULL; 4588 } 4589 4590 4591 /* 4592 * Register hstate attributes for a single node device. 4593 * No-op if attributes already registered. 4594 */ 4595 void hugetlb_register_node(struct node *node) 4596 { 4597 struct hstate *h; 4598 struct node_hstate *nhs = &node_hstates[node->dev.id]; 4599 int err; 4600 4601 if (!hugetlb_sysfs_initialized) 4602 return; 4603 4604 if (nhs->hugepages_kobj) 4605 return; /* already allocated */ 4606 4607 nhs->hugepages_kobj = kobject_create_and_add("hugepages", 4608 &node->dev.kobj); 4609 if (!nhs->hugepages_kobj) 4610 return; 4611 4612 for_each_hstate(h) { 4613 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj, 4614 nhs->hstate_kobjs, 4615 &per_node_hstate_attr_group); 4616 if (err) { 4617 pr_err("HugeTLB: Unable to add hstate %s for node %d\n", 4618 h->name, node->dev.id); 4619 hugetlb_unregister_node(node); 4620 break; 4621 } 4622 } 4623 } 4624 4625 /* 4626 * hugetlb init time: register hstate attributes for all registered node 4627 * devices of nodes that have memory. All on-line nodes should have 4628 * registered their associated device by this time. 4629 */ 4630 static void __init hugetlb_register_all_nodes(void) 4631 { 4632 int nid; 4633 4634 for_each_online_node(nid) 4635 hugetlb_register_node(node_devices[nid]); 4636 } 4637 #else /* !CONFIG_NUMA */ 4638 4639 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 4640 { 4641 BUG(); 4642 if (nidp) 4643 *nidp = -1; 4644 return NULL; 4645 } 4646 4647 static void hugetlb_register_all_nodes(void) { } 4648 4649 #endif 4650 4651 static void __init hugetlb_sysfs_init(void) 4652 { 4653 struct hstate *h; 4654 int err; 4655 4656 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); 4657 if (!hugepages_kobj) 4658 return; 4659 4660 for_each_hstate(h) { 4661 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj, 4662 hstate_kobjs, &hstate_attr_group); 4663 if (err) 4664 pr_err("HugeTLB: Unable to add hstate %s\n", h->name); 4665 } 4666 4667 #ifdef CONFIG_NUMA 4668 hugetlb_sysfs_initialized = true; 4669 #endif 4670 hugetlb_register_all_nodes(); 4671 } 4672 4673 #ifdef CONFIG_SYSCTL 4674 static void hugetlb_sysctl_init(void); 4675 #else 4676 static inline void hugetlb_sysctl_init(void) { } 4677 #endif 4678 4679 static int __init hugetlb_init(void) 4680 { 4681 int i; 4682 4683 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE < 4684 __NR_HPAGEFLAGS); 4685 4686 if (!hugepages_supported()) { 4687 if (hugetlb_max_hstate || default_hstate_max_huge_pages) 4688 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n"); 4689 return 0; 4690 } 4691 4692 /* 4693 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some 4694 * architectures depend on setup being done here. 4695 */ 4696 hugetlb_add_hstate(HUGETLB_PAGE_ORDER); 4697 if (!parsed_default_hugepagesz) { 4698 /* 4699 * If we did not parse a default huge page size, set 4700 * default_hstate_idx to HPAGE_SIZE hstate. And, if the 4701 * number of huge pages for this default size was implicitly 4702 * specified, set that here as well. 4703 * Note that the implicit setting will overwrite an explicit 4704 * setting. A warning will be printed in this case. 4705 */ 4706 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE)); 4707 if (default_hstate_max_huge_pages) { 4708 if (default_hstate.max_huge_pages) { 4709 char buf[32]; 4710 4711 string_get_size(huge_page_size(&default_hstate), 4712 1, STRING_UNITS_2, buf, 32); 4713 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n", 4714 default_hstate.max_huge_pages, buf); 4715 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n", 4716 default_hstate_max_huge_pages); 4717 } 4718 default_hstate.max_huge_pages = 4719 default_hstate_max_huge_pages; 4720 4721 for_each_online_node(i) 4722 default_hstate.max_huge_pages_node[i] = 4723 default_hugepages_in_node[i]; 4724 } 4725 } 4726 4727 hugetlb_cma_check(); 4728 hugetlb_init_hstates(); 4729 gather_bootmem_prealloc(); 4730 report_hugepages(); 4731 4732 hugetlb_sysfs_init(); 4733 hugetlb_cgroup_file_init(); 4734 hugetlb_sysctl_init(); 4735 4736 #ifdef CONFIG_SMP 4737 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus()); 4738 #else 4739 num_fault_mutexes = 1; 4740 #endif 4741 hugetlb_fault_mutex_table = 4742 kmalloc_array(num_fault_mutexes, sizeof(struct mutex), 4743 GFP_KERNEL); 4744 BUG_ON(!hugetlb_fault_mutex_table); 4745 4746 for (i = 0; i < num_fault_mutexes; i++) 4747 mutex_init(&hugetlb_fault_mutex_table[i]); 4748 return 0; 4749 } 4750 subsys_initcall(hugetlb_init); 4751 4752 /* Overwritten by architectures with more huge page sizes */ 4753 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size) 4754 { 4755 return size == HPAGE_SIZE; 4756 } 4757 4758 void __init hugetlb_add_hstate(unsigned int order) 4759 { 4760 struct hstate *h; 4761 unsigned long i; 4762 4763 if (size_to_hstate(PAGE_SIZE << order)) { 4764 return; 4765 } 4766 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE); 4767 BUG_ON(order < order_base_2(__NR_USED_SUBPAGE)); 4768 h = &hstates[hugetlb_max_hstate++]; 4769 __mutex_init(&h->resize_lock, "resize mutex", &h->resize_key); 4770 h->order = order; 4771 h->mask = ~(huge_page_size(h) - 1); 4772 for (i = 0; i < MAX_NUMNODES; ++i) 4773 INIT_LIST_HEAD(&h->hugepage_freelists[i]); 4774 INIT_LIST_HEAD(&h->hugepage_activelist); 4775 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", 4776 huge_page_size(h)/SZ_1K); 4777 4778 parsed_hstate = h; 4779 } 4780 4781 bool __init __weak hugetlb_node_alloc_supported(void) 4782 { 4783 return true; 4784 } 4785 4786 static void __init hugepages_clear_pages_in_node(void) 4787 { 4788 if (!hugetlb_max_hstate) { 4789 default_hstate_max_huge_pages = 0; 4790 memset(default_hugepages_in_node, 0, 4791 sizeof(default_hugepages_in_node)); 4792 } else { 4793 parsed_hstate->max_huge_pages = 0; 4794 memset(parsed_hstate->max_huge_pages_node, 0, 4795 sizeof(parsed_hstate->max_huge_pages_node)); 4796 } 4797 } 4798 4799 static __init int hugetlb_add_param(char *s, int (*setup)(char *)) 4800 { 4801 size_t len; 4802 char *p; 4803 4804 if (hugetlb_param_index >= HUGE_MAX_CMDLINE_ARGS) 4805 return -EINVAL; 4806 4807 len = strlen(s) + 1; 4808 if (len + hstate_cmdline_index > sizeof(hstate_cmdline_buf)) 4809 return -EINVAL; 4810 4811 p = &hstate_cmdline_buf[hstate_cmdline_index]; 4812 memcpy(p, s, len); 4813 hstate_cmdline_index += len; 4814 4815 hugetlb_params[hugetlb_param_index].val = p; 4816 hugetlb_params[hugetlb_param_index].setup = setup; 4817 4818 hugetlb_param_index++; 4819 4820 return 0; 4821 } 4822 4823 static __init void hugetlb_parse_params(void) 4824 { 4825 int i; 4826 struct hugetlb_cmdline *hcp; 4827 4828 for (i = 0; i < hugetlb_param_index; i++) { 4829 hcp = &hugetlb_params[i]; 4830 4831 hcp->setup(hcp->val); 4832 } 4833 4834 hugetlb_cma_validate_params(); 4835 } 4836 4837 /* 4838 * hugepages command line processing 4839 * hugepages normally follows a valid hugepagsz or default_hugepagsz 4840 * specification. If not, ignore the hugepages value. hugepages can also 4841 * be the first huge page command line option in which case it implicitly 4842 * specifies the number of huge pages for the default size. 4843 */ 4844 static int __init hugepages_setup(char *s) 4845 { 4846 unsigned long *mhp; 4847 static unsigned long *last_mhp; 4848 int node = NUMA_NO_NODE; 4849 int count; 4850 unsigned long tmp; 4851 char *p = s; 4852 4853 if (!parsed_valid_hugepagesz) { 4854 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s); 4855 parsed_valid_hugepagesz = true; 4856 return -EINVAL; 4857 } 4858 4859 /* 4860 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter 4861 * yet, so this hugepages= parameter goes to the "default hstate". 4862 * Otherwise, it goes with the previously parsed hugepagesz or 4863 * default_hugepagesz. 4864 */ 4865 else if (!hugetlb_max_hstate) 4866 mhp = &default_hstate_max_huge_pages; 4867 else 4868 mhp = &parsed_hstate->max_huge_pages; 4869 4870 if (mhp == last_mhp) { 4871 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s); 4872 return 1; 4873 } 4874 4875 while (*p) { 4876 count = 0; 4877 if (sscanf(p, "%lu%n", &tmp, &count) != 1) 4878 goto invalid; 4879 /* Parameter is node format */ 4880 if (p[count] == ':') { 4881 if (!hugetlb_node_alloc_supported()) { 4882 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n"); 4883 return 1; 4884 } 4885 if (tmp >= MAX_NUMNODES || !node_online(tmp)) 4886 goto invalid; 4887 node = array_index_nospec(tmp, MAX_NUMNODES); 4888 p += count + 1; 4889 /* Parse hugepages */ 4890 if (sscanf(p, "%lu%n", &tmp, &count) != 1) 4891 goto invalid; 4892 if (!hugetlb_max_hstate) 4893 default_hugepages_in_node[node] = tmp; 4894 else 4895 parsed_hstate->max_huge_pages_node[node] = tmp; 4896 *mhp += tmp; 4897 /* Go to parse next node*/ 4898 if (p[count] == ',') 4899 p += count + 1; 4900 else 4901 break; 4902 } else { 4903 if (p != s) 4904 goto invalid; 4905 *mhp = tmp; 4906 break; 4907 } 4908 } 4909 4910 last_mhp = mhp; 4911 4912 return 0; 4913 4914 invalid: 4915 pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p); 4916 hugepages_clear_pages_in_node(); 4917 return -EINVAL; 4918 } 4919 hugetlb_early_param("hugepages", hugepages_setup); 4920 4921 /* 4922 * hugepagesz command line processing 4923 * A specific huge page size can only be specified once with hugepagesz. 4924 * hugepagesz is followed by hugepages on the command line. The global 4925 * variable 'parsed_valid_hugepagesz' is used to determine if prior 4926 * hugepagesz argument was valid. 4927 */ 4928 static int __init hugepagesz_setup(char *s) 4929 { 4930 unsigned long size; 4931 struct hstate *h; 4932 4933 parsed_valid_hugepagesz = false; 4934 size = (unsigned long)memparse(s, NULL); 4935 4936 if (!arch_hugetlb_valid_size(size)) { 4937 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s); 4938 return -EINVAL; 4939 } 4940 4941 h = size_to_hstate(size); 4942 if (h) { 4943 /* 4944 * hstate for this size already exists. This is normally 4945 * an error, but is allowed if the existing hstate is the 4946 * default hstate. More specifically, it is only allowed if 4947 * the number of huge pages for the default hstate was not 4948 * previously specified. 4949 */ 4950 if (!parsed_default_hugepagesz || h != &default_hstate || 4951 default_hstate.max_huge_pages) { 4952 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s); 4953 return -EINVAL; 4954 } 4955 4956 /* 4957 * No need to call hugetlb_add_hstate() as hstate already 4958 * exists. But, do set parsed_hstate so that a following 4959 * hugepages= parameter will be applied to this hstate. 4960 */ 4961 parsed_hstate = h; 4962 parsed_valid_hugepagesz = true; 4963 return 0; 4964 } 4965 4966 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); 4967 parsed_valid_hugepagesz = true; 4968 return 0; 4969 } 4970 hugetlb_early_param("hugepagesz", hugepagesz_setup); 4971 4972 /* 4973 * default_hugepagesz command line input 4974 * Only one instance of default_hugepagesz allowed on command line. 4975 */ 4976 static int __init default_hugepagesz_setup(char *s) 4977 { 4978 unsigned long size; 4979 int i; 4980 4981 parsed_valid_hugepagesz = false; 4982 if (parsed_default_hugepagesz) { 4983 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s); 4984 return -EINVAL; 4985 } 4986 4987 size = (unsigned long)memparse(s, NULL); 4988 4989 if (!arch_hugetlb_valid_size(size)) { 4990 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s); 4991 return -EINVAL; 4992 } 4993 4994 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); 4995 parsed_valid_hugepagesz = true; 4996 parsed_default_hugepagesz = true; 4997 default_hstate_idx = hstate_index(size_to_hstate(size)); 4998 4999 /* 5000 * The number of default huge pages (for this size) could have been 5001 * specified as the first hugetlb parameter: hugepages=X. If so, 5002 * then default_hstate_max_huge_pages is set. If the default huge 5003 * page size is gigantic (> MAX_PAGE_ORDER), then the pages must be 5004 * allocated here from bootmem allocator. 5005 */ 5006 if (default_hstate_max_huge_pages) { 5007 default_hstate.max_huge_pages = default_hstate_max_huge_pages; 5008 /* 5009 * Since this is an early parameter, we can't check 5010 * NUMA node state yet, so loop through MAX_NUMNODES. 5011 */ 5012 for (i = 0; i < MAX_NUMNODES; i++) { 5013 if (default_hugepages_in_node[i] != 0) 5014 default_hstate.max_huge_pages_node[i] = 5015 default_hugepages_in_node[i]; 5016 } 5017 default_hstate_max_huge_pages = 0; 5018 } 5019 5020 return 0; 5021 } 5022 hugetlb_early_param("default_hugepagesz", default_hugepagesz_setup); 5023 5024 static bool __hugetlb_bootmem_allocated __initdata; 5025 5026 bool __init hugetlb_bootmem_allocated(void) 5027 { 5028 return __hugetlb_bootmem_allocated; 5029 } 5030 5031 void __init hugetlb_bootmem_alloc(void) 5032 { 5033 struct hstate *h; 5034 int i; 5035 5036 if (__hugetlb_bootmem_allocated) 5037 return; 5038 5039 for (i = 0; i < MAX_NUMNODES; i++) 5040 INIT_LIST_HEAD(&huge_boot_pages[i]); 5041 5042 hugetlb_parse_params(); 5043 5044 for_each_hstate(h) { 5045 h->next_nid_to_alloc = first_online_node; 5046 h->next_nid_to_free = first_online_node; 5047 5048 if (hstate_is_gigantic(h)) 5049 hugetlb_hstate_alloc_pages(h); 5050 } 5051 5052 __hugetlb_bootmem_allocated = true; 5053 } 5054 5055 /* 5056 * hugepage_alloc_threads command line parsing. 5057 * 5058 * When set, use this specific number of threads for the boot 5059 * allocation of hugepages. 5060 */ 5061 static int __init hugepage_alloc_threads_setup(char *s) 5062 { 5063 unsigned long allocation_threads; 5064 5065 if (kstrtoul(s, 0, &allocation_threads) != 0) 5066 return 1; 5067 5068 if (allocation_threads == 0) 5069 return 1; 5070 5071 hugepage_allocation_threads = allocation_threads; 5072 5073 return 1; 5074 } 5075 __setup("hugepage_alloc_threads=", hugepage_alloc_threads_setup); 5076 5077 static unsigned int allowed_mems_nr(struct hstate *h) 5078 { 5079 int node; 5080 unsigned int nr = 0; 5081 nodemask_t *mbind_nodemask; 5082 unsigned int *array = h->free_huge_pages_node; 5083 gfp_t gfp_mask = htlb_alloc_mask(h); 5084 5085 mbind_nodemask = policy_mbind_nodemask(gfp_mask); 5086 for_each_node_mask(node, cpuset_current_mems_allowed) { 5087 if (!mbind_nodemask || node_isset(node, *mbind_nodemask)) 5088 nr += array[node]; 5089 } 5090 5091 return nr; 5092 } 5093 5094 #ifdef CONFIG_SYSCTL 5095 static int proc_hugetlb_doulongvec_minmax(const struct ctl_table *table, int write, 5096 void *buffer, size_t *length, 5097 loff_t *ppos, unsigned long *out) 5098 { 5099 struct ctl_table dup_table; 5100 5101 /* 5102 * In order to avoid races with __do_proc_doulongvec_minmax(), we 5103 * can duplicate the @table and alter the duplicate of it. 5104 */ 5105 dup_table = *table; 5106 dup_table.data = out; 5107 5108 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos); 5109 } 5110 5111 static int hugetlb_sysctl_handler_common(bool obey_mempolicy, 5112 const struct ctl_table *table, int write, 5113 void *buffer, size_t *length, loff_t *ppos) 5114 { 5115 struct hstate *h = &default_hstate; 5116 unsigned long tmp = h->max_huge_pages; 5117 int ret; 5118 5119 if (!hugepages_supported()) 5120 return -EOPNOTSUPP; 5121 5122 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, 5123 &tmp); 5124 if (ret) 5125 goto out; 5126 5127 if (write) 5128 ret = __nr_hugepages_store_common(obey_mempolicy, h, 5129 NUMA_NO_NODE, tmp, *length); 5130 out: 5131 return ret; 5132 } 5133 5134 static int hugetlb_sysctl_handler(const struct ctl_table *table, int write, 5135 void *buffer, size_t *length, loff_t *ppos) 5136 { 5137 5138 return hugetlb_sysctl_handler_common(false, table, write, 5139 buffer, length, ppos); 5140 } 5141 5142 #ifdef CONFIG_NUMA 5143 static int hugetlb_mempolicy_sysctl_handler(const struct ctl_table *table, int write, 5144 void *buffer, size_t *length, loff_t *ppos) 5145 { 5146 return hugetlb_sysctl_handler_common(true, table, write, 5147 buffer, length, ppos); 5148 } 5149 #endif /* CONFIG_NUMA */ 5150 5151 static int hugetlb_overcommit_handler(const struct ctl_table *table, int write, 5152 void *buffer, size_t *length, loff_t *ppos) 5153 { 5154 struct hstate *h = &default_hstate; 5155 unsigned long tmp; 5156 int ret; 5157 5158 if (!hugepages_supported()) 5159 return -EOPNOTSUPP; 5160 5161 tmp = h->nr_overcommit_huge_pages; 5162 5163 if (write && hstate_is_gigantic(h)) 5164 return -EINVAL; 5165 5166 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, 5167 &tmp); 5168 if (ret) 5169 goto out; 5170 5171 if (write) { 5172 spin_lock_irq(&hugetlb_lock); 5173 h->nr_overcommit_huge_pages = tmp; 5174 spin_unlock_irq(&hugetlb_lock); 5175 } 5176 out: 5177 return ret; 5178 } 5179 5180 static const struct ctl_table hugetlb_table[] = { 5181 { 5182 .procname = "nr_hugepages", 5183 .data = NULL, 5184 .maxlen = sizeof(unsigned long), 5185 .mode = 0644, 5186 .proc_handler = hugetlb_sysctl_handler, 5187 }, 5188 #ifdef CONFIG_NUMA 5189 { 5190 .procname = "nr_hugepages_mempolicy", 5191 .data = NULL, 5192 .maxlen = sizeof(unsigned long), 5193 .mode = 0644, 5194 .proc_handler = &hugetlb_mempolicy_sysctl_handler, 5195 }, 5196 #endif 5197 { 5198 .procname = "hugetlb_shm_group", 5199 .data = &sysctl_hugetlb_shm_group, 5200 .maxlen = sizeof(gid_t), 5201 .mode = 0644, 5202 .proc_handler = proc_dointvec, 5203 }, 5204 { 5205 .procname = "nr_overcommit_hugepages", 5206 .data = NULL, 5207 .maxlen = sizeof(unsigned long), 5208 .mode = 0644, 5209 .proc_handler = hugetlb_overcommit_handler, 5210 }, 5211 }; 5212 5213 static void __init hugetlb_sysctl_init(void) 5214 { 5215 register_sysctl_init("vm", hugetlb_table); 5216 } 5217 #endif /* CONFIG_SYSCTL */ 5218 5219 void hugetlb_report_meminfo(struct seq_file *m) 5220 { 5221 struct hstate *h; 5222 unsigned long total = 0; 5223 5224 if (!hugepages_supported()) 5225 return; 5226 5227 for_each_hstate(h) { 5228 unsigned long count = h->nr_huge_pages; 5229 5230 total += huge_page_size(h) * count; 5231 5232 if (h == &default_hstate) 5233 seq_printf(m, 5234 "HugePages_Total: %5lu\n" 5235 "HugePages_Free: %5lu\n" 5236 "HugePages_Rsvd: %5lu\n" 5237 "HugePages_Surp: %5lu\n" 5238 "Hugepagesize: %8lu kB\n", 5239 count, 5240 h->free_huge_pages, 5241 h->resv_huge_pages, 5242 h->surplus_huge_pages, 5243 huge_page_size(h) / SZ_1K); 5244 } 5245 5246 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K); 5247 } 5248 5249 int hugetlb_report_node_meminfo(char *buf, int len, int nid) 5250 { 5251 struct hstate *h = &default_hstate; 5252 5253 if (!hugepages_supported()) 5254 return 0; 5255 5256 return sysfs_emit_at(buf, len, 5257 "Node %d HugePages_Total: %5u\n" 5258 "Node %d HugePages_Free: %5u\n" 5259 "Node %d HugePages_Surp: %5u\n", 5260 nid, h->nr_huge_pages_node[nid], 5261 nid, h->free_huge_pages_node[nid], 5262 nid, h->surplus_huge_pages_node[nid]); 5263 } 5264 5265 void hugetlb_show_meminfo_node(int nid) 5266 { 5267 struct hstate *h; 5268 5269 if (!hugepages_supported()) 5270 return; 5271 5272 for_each_hstate(h) 5273 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n", 5274 nid, 5275 h->nr_huge_pages_node[nid], 5276 h->free_huge_pages_node[nid], 5277 h->surplus_huge_pages_node[nid], 5278 huge_page_size(h) / SZ_1K); 5279 } 5280 5281 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm) 5282 { 5283 seq_printf(m, "HugetlbPages:\t%8lu kB\n", 5284 K(atomic_long_read(&mm->hugetlb_usage))); 5285 } 5286 5287 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ 5288 unsigned long hugetlb_total_pages(void) 5289 { 5290 struct hstate *h; 5291 unsigned long nr_total_pages = 0; 5292 5293 for_each_hstate(h) 5294 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h); 5295 return nr_total_pages; 5296 } 5297 5298 static int hugetlb_acct_memory(struct hstate *h, long delta) 5299 { 5300 int ret = -ENOMEM; 5301 5302 if (!delta) 5303 return 0; 5304 5305 spin_lock_irq(&hugetlb_lock); 5306 /* 5307 * When cpuset is configured, it breaks the strict hugetlb page 5308 * reservation as the accounting is done on a global variable. Such 5309 * reservation is completely rubbish in the presence of cpuset because 5310 * the reservation is not checked against page availability for the 5311 * current cpuset. Application can still potentially OOM'ed by kernel 5312 * with lack of free htlb page in cpuset that the task is in. 5313 * Attempt to enforce strict accounting with cpuset is almost 5314 * impossible (or too ugly) because cpuset is too fluid that 5315 * task or memory node can be dynamically moved between cpusets. 5316 * 5317 * The change of semantics for shared hugetlb mapping with cpuset is 5318 * undesirable. However, in order to preserve some of the semantics, 5319 * we fall back to check against current free page availability as 5320 * a best attempt and hopefully to minimize the impact of changing 5321 * semantics that cpuset has. 5322 * 5323 * Apart from cpuset, we also have memory policy mechanism that 5324 * also determines from which node the kernel will allocate memory 5325 * in a NUMA system. So similar to cpuset, we also should consider 5326 * the memory policy of the current task. Similar to the description 5327 * above. 5328 */ 5329 if (delta > 0) { 5330 if (gather_surplus_pages(h, delta) < 0) 5331 goto out; 5332 5333 if (delta > allowed_mems_nr(h)) { 5334 return_unused_surplus_pages(h, delta); 5335 goto out; 5336 } 5337 } 5338 5339 ret = 0; 5340 if (delta < 0) 5341 return_unused_surplus_pages(h, (unsigned long) -delta); 5342 5343 out: 5344 spin_unlock_irq(&hugetlb_lock); 5345 return ret; 5346 } 5347 5348 static void hugetlb_vm_op_open(struct vm_area_struct *vma) 5349 { 5350 struct resv_map *resv = vma_resv_map(vma); 5351 5352 /* 5353 * HPAGE_RESV_OWNER indicates a private mapping. 5354 * This new VMA should share its siblings reservation map if present. 5355 * The VMA will only ever have a valid reservation map pointer where 5356 * it is being copied for another still existing VMA. As that VMA 5357 * has a reference to the reservation map it cannot disappear until 5358 * after this open call completes. It is therefore safe to take a 5359 * new reference here without additional locking. 5360 */ 5361 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 5362 resv_map_dup_hugetlb_cgroup_uncharge_info(resv); 5363 kref_get(&resv->refs); 5364 } 5365 5366 /* 5367 * vma_lock structure for sharable mappings is vma specific. 5368 * Clear old pointer (if copied via vm_area_dup) and allocate 5369 * new structure. Before clearing, make sure vma_lock is not 5370 * for this vma. 5371 */ 5372 if (vma->vm_flags & VM_MAYSHARE) { 5373 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 5374 5375 if (vma_lock) { 5376 if (vma_lock->vma != vma) { 5377 vma->vm_private_data = NULL; 5378 hugetlb_vma_lock_alloc(vma); 5379 } else 5380 pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__); 5381 } else 5382 hugetlb_vma_lock_alloc(vma); 5383 } 5384 } 5385 5386 static void hugetlb_vm_op_close(struct vm_area_struct *vma) 5387 { 5388 struct hstate *h = hstate_vma(vma); 5389 struct resv_map *resv; 5390 struct hugepage_subpool *spool = subpool_vma(vma); 5391 unsigned long reserve, start, end; 5392 long gbl_reserve; 5393 5394 hugetlb_vma_lock_free(vma); 5395 5396 resv = vma_resv_map(vma); 5397 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 5398 return; 5399 5400 start = vma_hugecache_offset(h, vma, vma->vm_start); 5401 end = vma_hugecache_offset(h, vma, vma->vm_end); 5402 5403 reserve = (end - start) - region_count(resv, start, end); 5404 hugetlb_cgroup_uncharge_counter(resv, start, end); 5405 if (reserve) { 5406 /* 5407 * Decrement reserve counts. The global reserve count may be 5408 * adjusted if the subpool has a minimum size. 5409 */ 5410 gbl_reserve = hugepage_subpool_put_pages(spool, reserve); 5411 hugetlb_acct_memory(h, -gbl_reserve); 5412 } 5413 5414 kref_put(&resv->refs, resv_map_release); 5415 } 5416 5417 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr) 5418 { 5419 if (addr & ~(huge_page_mask(hstate_vma(vma)))) 5420 return -EINVAL; 5421 5422 /* 5423 * PMD sharing is only possible for PUD_SIZE-aligned address ranges 5424 * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this 5425 * split, unshare PMDs in the PUD_SIZE interval surrounding addr now. 5426 */ 5427 if (addr & ~PUD_MASK) { 5428 /* 5429 * hugetlb_vm_op_split is called right before we attempt to 5430 * split the VMA. We will need to unshare PMDs in the old and 5431 * new VMAs, so let's unshare before we split. 5432 */ 5433 unsigned long floor = addr & PUD_MASK; 5434 unsigned long ceil = floor + PUD_SIZE; 5435 5436 if (floor >= vma->vm_start && ceil <= vma->vm_end) 5437 hugetlb_unshare_pmds(vma, floor, ceil); 5438 } 5439 5440 return 0; 5441 } 5442 5443 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma) 5444 { 5445 return huge_page_size(hstate_vma(vma)); 5446 } 5447 5448 /* 5449 * We cannot handle pagefaults against hugetlb pages at all. They cause 5450 * handle_mm_fault() to try to instantiate regular-sized pages in the 5451 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get 5452 * this far. 5453 */ 5454 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf) 5455 { 5456 BUG(); 5457 return 0; 5458 } 5459 5460 /* 5461 * When a new function is introduced to vm_operations_struct and added 5462 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops. 5463 * This is because under System V memory model, mappings created via 5464 * shmget/shmat with "huge page" specified are backed by hugetlbfs files, 5465 * their original vm_ops are overwritten with shm_vm_ops. 5466 */ 5467 const struct vm_operations_struct hugetlb_vm_ops = { 5468 .fault = hugetlb_vm_op_fault, 5469 .open = hugetlb_vm_op_open, 5470 .close = hugetlb_vm_op_close, 5471 .may_split = hugetlb_vm_op_split, 5472 .pagesize = hugetlb_vm_op_pagesize, 5473 }; 5474 5475 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, 5476 bool try_mkwrite) 5477 { 5478 pte_t entry; 5479 unsigned int shift = huge_page_shift(hstate_vma(vma)); 5480 5481 if (try_mkwrite && (vma->vm_flags & VM_WRITE)) { 5482 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page, 5483 vma->vm_page_prot))); 5484 } else { 5485 entry = huge_pte_wrprotect(mk_huge_pte(page, 5486 vma->vm_page_prot)); 5487 } 5488 entry = pte_mkyoung(entry); 5489 entry = arch_make_huge_pte(entry, shift, vma->vm_flags); 5490 5491 return entry; 5492 } 5493 5494 static void set_huge_ptep_writable(struct vm_area_struct *vma, 5495 unsigned long address, pte_t *ptep) 5496 { 5497 pte_t entry; 5498 5499 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(vma->vm_mm, address, ptep))); 5500 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) 5501 update_mmu_cache(vma, address, ptep); 5502 } 5503 5504 static void set_huge_ptep_maybe_writable(struct vm_area_struct *vma, 5505 unsigned long address, pte_t *ptep) 5506 { 5507 if (vma->vm_flags & VM_WRITE) 5508 set_huge_ptep_writable(vma, address, ptep); 5509 } 5510 5511 bool is_hugetlb_entry_migration(pte_t pte) 5512 { 5513 swp_entry_t swp; 5514 5515 if (huge_pte_none(pte) || pte_present(pte)) 5516 return false; 5517 swp = pte_to_swp_entry(pte); 5518 if (is_migration_entry(swp)) 5519 return true; 5520 else 5521 return false; 5522 } 5523 5524 bool is_hugetlb_entry_hwpoisoned(pte_t pte) 5525 { 5526 swp_entry_t swp; 5527 5528 if (huge_pte_none(pte) || pte_present(pte)) 5529 return false; 5530 swp = pte_to_swp_entry(pte); 5531 if (is_hwpoison_entry(swp)) 5532 return true; 5533 else 5534 return false; 5535 } 5536 5537 static void 5538 hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr, 5539 struct folio *new_folio, pte_t old, unsigned long sz) 5540 { 5541 pte_t newpte = make_huge_pte(vma, &new_folio->page, true); 5542 5543 __folio_mark_uptodate(new_folio); 5544 hugetlb_add_new_anon_rmap(new_folio, vma, addr); 5545 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(old)) 5546 newpte = huge_pte_mkuffd_wp(newpte); 5547 set_huge_pte_at(vma->vm_mm, addr, ptep, newpte, sz); 5548 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm); 5549 folio_set_hugetlb_migratable(new_folio); 5550 } 5551 5552 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, 5553 struct vm_area_struct *dst_vma, 5554 struct vm_area_struct *src_vma) 5555 { 5556 pte_t *src_pte, *dst_pte, entry; 5557 struct folio *pte_folio; 5558 unsigned long addr; 5559 bool cow = is_cow_mapping(src_vma->vm_flags); 5560 struct hstate *h = hstate_vma(src_vma); 5561 unsigned long sz = huge_page_size(h); 5562 unsigned long npages = pages_per_huge_page(h); 5563 struct mmu_notifier_range range; 5564 unsigned long last_addr_mask; 5565 int ret = 0; 5566 5567 if (cow) { 5568 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src, 5569 src_vma->vm_start, 5570 src_vma->vm_end); 5571 mmu_notifier_invalidate_range_start(&range); 5572 vma_assert_write_locked(src_vma); 5573 raw_write_seqcount_begin(&src->write_protect_seq); 5574 } else { 5575 /* 5576 * For shared mappings the vma lock must be held before 5577 * calling hugetlb_walk() in the src vma. Otherwise, the 5578 * returned ptep could go away if part of a shared pmd and 5579 * another thread calls huge_pmd_unshare. 5580 */ 5581 hugetlb_vma_lock_read(src_vma); 5582 } 5583 5584 last_addr_mask = hugetlb_mask_last_page(h); 5585 for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) { 5586 spinlock_t *src_ptl, *dst_ptl; 5587 src_pte = hugetlb_walk(src_vma, addr, sz); 5588 if (!src_pte) { 5589 addr |= last_addr_mask; 5590 continue; 5591 } 5592 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz); 5593 if (!dst_pte) { 5594 ret = -ENOMEM; 5595 break; 5596 } 5597 5598 /* 5599 * If the pagetables are shared don't copy or take references. 5600 * 5601 * dst_pte == src_pte is the common case of src/dest sharing. 5602 * However, src could have 'unshared' and dst shares with 5603 * another vma. So page_count of ptep page is checked instead 5604 * to reliably determine whether pte is shared. 5605 */ 5606 if (page_count(virt_to_page(dst_pte)) > 1) { 5607 addr |= last_addr_mask; 5608 continue; 5609 } 5610 5611 dst_ptl = huge_pte_lock(h, dst, dst_pte); 5612 src_ptl = huge_pte_lockptr(h, src, src_pte); 5613 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 5614 entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte); 5615 again: 5616 if (huge_pte_none(entry)) { 5617 /* 5618 * Skip if src entry none. 5619 */ 5620 ; 5621 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) { 5622 if (!userfaultfd_wp(dst_vma)) 5623 entry = huge_pte_clear_uffd_wp(entry); 5624 set_huge_pte_at(dst, addr, dst_pte, entry, sz); 5625 } else if (unlikely(is_hugetlb_entry_migration(entry))) { 5626 swp_entry_t swp_entry = pte_to_swp_entry(entry); 5627 bool uffd_wp = pte_swp_uffd_wp(entry); 5628 5629 if (!is_readable_migration_entry(swp_entry) && cow) { 5630 /* 5631 * COW mappings require pages in both 5632 * parent and child to be set to read. 5633 */ 5634 swp_entry = make_readable_migration_entry( 5635 swp_offset(swp_entry)); 5636 entry = swp_entry_to_pte(swp_entry); 5637 if (userfaultfd_wp(src_vma) && uffd_wp) 5638 entry = pte_swp_mkuffd_wp(entry); 5639 set_huge_pte_at(src, addr, src_pte, entry, sz); 5640 } 5641 if (!userfaultfd_wp(dst_vma)) 5642 entry = huge_pte_clear_uffd_wp(entry); 5643 set_huge_pte_at(dst, addr, dst_pte, entry, sz); 5644 } else if (unlikely(is_pte_marker(entry))) { 5645 pte_marker marker = copy_pte_marker( 5646 pte_to_swp_entry(entry), dst_vma); 5647 5648 if (marker) 5649 set_huge_pte_at(dst, addr, dst_pte, 5650 make_pte_marker(marker), sz); 5651 } else { 5652 entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte); 5653 pte_folio = page_folio(pte_page(entry)); 5654 folio_get(pte_folio); 5655 5656 /* 5657 * Failing to duplicate the anon rmap is a rare case 5658 * where we see pinned hugetlb pages while they're 5659 * prone to COW. We need to do the COW earlier during 5660 * fork. 5661 * 5662 * When pre-allocating the page or copying data, we 5663 * need to be without the pgtable locks since we could 5664 * sleep during the process. 5665 */ 5666 if (!folio_test_anon(pte_folio)) { 5667 hugetlb_add_file_rmap(pte_folio); 5668 } else if (hugetlb_try_dup_anon_rmap(pte_folio, src_vma)) { 5669 pte_t src_pte_old = entry; 5670 struct folio *new_folio; 5671 5672 spin_unlock(src_ptl); 5673 spin_unlock(dst_ptl); 5674 /* Do not use reserve as it's private owned */ 5675 new_folio = alloc_hugetlb_folio(dst_vma, addr, false); 5676 if (IS_ERR(new_folio)) { 5677 folio_put(pte_folio); 5678 ret = PTR_ERR(new_folio); 5679 break; 5680 } 5681 ret = copy_user_large_folio(new_folio, pte_folio, 5682 addr, dst_vma); 5683 folio_put(pte_folio); 5684 if (ret) { 5685 folio_put(new_folio); 5686 break; 5687 } 5688 5689 /* Install the new hugetlb folio if src pte stable */ 5690 dst_ptl = huge_pte_lock(h, dst, dst_pte); 5691 src_ptl = huge_pte_lockptr(h, src, src_pte); 5692 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 5693 entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte); 5694 if (!pte_same(src_pte_old, entry)) { 5695 restore_reserve_on_error(h, dst_vma, addr, 5696 new_folio); 5697 folio_put(new_folio); 5698 /* huge_ptep of dst_pte won't change as in child */ 5699 goto again; 5700 } 5701 hugetlb_install_folio(dst_vma, dst_pte, addr, 5702 new_folio, src_pte_old, sz); 5703 spin_unlock(src_ptl); 5704 spin_unlock(dst_ptl); 5705 continue; 5706 } 5707 5708 if (cow) { 5709 /* 5710 * No need to notify as we are downgrading page 5711 * table protection not changing it to point 5712 * to a new page. 5713 * 5714 * See Documentation/mm/mmu_notifier.rst 5715 */ 5716 huge_ptep_set_wrprotect(src, addr, src_pte); 5717 entry = huge_pte_wrprotect(entry); 5718 } 5719 5720 if (!userfaultfd_wp(dst_vma)) 5721 entry = huge_pte_clear_uffd_wp(entry); 5722 5723 set_huge_pte_at(dst, addr, dst_pte, entry, sz); 5724 hugetlb_count_add(npages, dst); 5725 } 5726 spin_unlock(src_ptl); 5727 spin_unlock(dst_ptl); 5728 } 5729 5730 if (cow) { 5731 raw_write_seqcount_end(&src->write_protect_seq); 5732 mmu_notifier_invalidate_range_end(&range); 5733 } else { 5734 hugetlb_vma_unlock_read(src_vma); 5735 } 5736 5737 return ret; 5738 } 5739 5740 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr, 5741 unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte, 5742 unsigned long sz) 5743 { 5744 bool need_clear_uffd_wp = vma_has_uffd_without_event_remap(vma); 5745 struct hstate *h = hstate_vma(vma); 5746 struct mm_struct *mm = vma->vm_mm; 5747 spinlock_t *src_ptl, *dst_ptl; 5748 pte_t pte; 5749 5750 dst_ptl = huge_pte_lock(h, mm, dst_pte); 5751 src_ptl = huge_pte_lockptr(h, mm, src_pte); 5752 5753 /* 5754 * We don't have to worry about the ordering of src and dst ptlocks 5755 * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock. 5756 */ 5757 if (src_ptl != dst_ptl) 5758 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 5759 5760 pte = huge_ptep_get_and_clear(mm, old_addr, src_pte, sz); 5761 5762 if (need_clear_uffd_wp && pte_marker_uffd_wp(pte)) 5763 huge_pte_clear(mm, new_addr, dst_pte, sz); 5764 else { 5765 if (need_clear_uffd_wp) { 5766 if (pte_present(pte)) 5767 pte = huge_pte_clear_uffd_wp(pte); 5768 else if (is_swap_pte(pte)) 5769 pte = pte_swp_clear_uffd_wp(pte); 5770 } 5771 set_huge_pte_at(mm, new_addr, dst_pte, pte, sz); 5772 } 5773 5774 if (src_ptl != dst_ptl) 5775 spin_unlock(src_ptl); 5776 spin_unlock(dst_ptl); 5777 } 5778 5779 int move_hugetlb_page_tables(struct vm_area_struct *vma, 5780 struct vm_area_struct *new_vma, 5781 unsigned long old_addr, unsigned long new_addr, 5782 unsigned long len) 5783 { 5784 struct hstate *h = hstate_vma(vma); 5785 struct address_space *mapping = vma->vm_file->f_mapping; 5786 unsigned long sz = huge_page_size(h); 5787 struct mm_struct *mm = vma->vm_mm; 5788 unsigned long old_end = old_addr + len; 5789 unsigned long last_addr_mask; 5790 pte_t *src_pte, *dst_pte; 5791 struct mmu_notifier_range range; 5792 bool shared_pmd = false; 5793 5794 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr, 5795 old_end); 5796 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 5797 /* 5798 * In case of shared PMDs, we should cover the maximum possible 5799 * range. 5800 */ 5801 flush_cache_range(vma, range.start, range.end); 5802 5803 mmu_notifier_invalidate_range_start(&range); 5804 last_addr_mask = hugetlb_mask_last_page(h); 5805 /* Prevent race with file truncation */ 5806 hugetlb_vma_lock_write(vma); 5807 i_mmap_lock_write(mapping); 5808 for (; old_addr < old_end; old_addr += sz, new_addr += sz) { 5809 src_pte = hugetlb_walk(vma, old_addr, sz); 5810 if (!src_pte) { 5811 old_addr |= last_addr_mask; 5812 new_addr |= last_addr_mask; 5813 continue; 5814 } 5815 if (huge_pte_none(huge_ptep_get(mm, old_addr, src_pte))) 5816 continue; 5817 5818 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) { 5819 shared_pmd = true; 5820 old_addr |= last_addr_mask; 5821 new_addr |= last_addr_mask; 5822 continue; 5823 } 5824 5825 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz); 5826 if (!dst_pte) 5827 break; 5828 5829 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte, sz); 5830 } 5831 5832 if (shared_pmd) 5833 flush_hugetlb_tlb_range(vma, range.start, range.end); 5834 else 5835 flush_hugetlb_tlb_range(vma, old_end - len, old_end); 5836 mmu_notifier_invalidate_range_end(&range); 5837 i_mmap_unlock_write(mapping); 5838 hugetlb_vma_unlock_write(vma); 5839 5840 return len + old_addr - old_end; 5841 } 5842 5843 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma, 5844 unsigned long start, unsigned long end, 5845 struct page *ref_page, zap_flags_t zap_flags) 5846 { 5847 struct mm_struct *mm = vma->vm_mm; 5848 unsigned long address; 5849 pte_t *ptep; 5850 pte_t pte; 5851 spinlock_t *ptl; 5852 struct page *page; 5853 struct hstate *h = hstate_vma(vma); 5854 unsigned long sz = huge_page_size(h); 5855 bool adjust_reservation = false; 5856 unsigned long last_addr_mask; 5857 bool force_flush = false; 5858 5859 WARN_ON(!is_vm_hugetlb_page(vma)); 5860 BUG_ON(start & ~huge_page_mask(h)); 5861 BUG_ON(end & ~huge_page_mask(h)); 5862 5863 /* 5864 * This is a hugetlb vma, all the pte entries should point 5865 * to huge page. 5866 */ 5867 tlb_change_page_size(tlb, sz); 5868 tlb_start_vma(tlb, vma); 5869 5870 last_addr_mask = hugetlb_mask_last_page(h); 5871 address = start; 5872 for (; address < end; address += sz) { 5873 ptep = hugetlb_walk(vma, address, sz); 5874 if (!ptep) { 5875 address |= last_addr_mask; 5876 continue; 5877 } 5878 5879 ptl = huge_pte_lock(h, mm, ptep); 5880 if (huge_pmd_unshare(mm, vma, address, ptep)) { 5881 spin_unlock(ptl); 5882 tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE); 5883 force_flush = true; 5884 address |= last_addr_mask; 5885 continue; 5886 } 5887 5888 pte = huge_ptep_get(mm, address, ptep); 5889 if (huge_pte_none(pte)) { 5890 spin_unlock(ptl); 5891 continue; 5892 } 5893 5894 /* 5895 * Migrating hugepage or HWPoisoned hugepage is already 5896 * unmapped and its refcount is dropped, so just clear pte here. 5897 */ 5898 if (unlikely(!pte_present(pte))) { 5899 /* 5900 * If the pte was wr-protected by uffd-wp in any of the 5901 * swap forms, meanwhile the caller does not want to 5902 * drop the uffd-wp bit in this zap, then replace the 5903 * pte with a marker. 5904 */ 5905 if (pte_swp_uffd_wp_any(pte) && 5906 !(zap_flags & ZAP_FLAG_DROP_MARKER)) 5907 set_huge_pte_at(mm, address, ptep, 5908 make_pte_marker(PTE_MARKER_UFFD_WP), 5909 sz); 5910 else 5911 huge_pte_clear(mm, address, ptep, sz); 5912 spin_unlock(ptl); 5913 continue; 5914 } 5915 5916 page = pte_page(pte); 5917 /* 5918 * If a reference page is supplied, it is because a specific 5919 * page is being unmapped, not a range. Ensure the page we 5920 * are about to unmap is the actual page of interest. 5921 */ 5922 if (ref_page) { 5923 if (page != ref_page) { 5924 spin_unlock(ptl); 5925 continue; 5926 } 5927 /* 5928 * Mark the VMA as having unmapped its page so that 5929 * future faults in this VMA will fail rather than 5930 * looking like data was lost 5931 */ 5932 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); 5933 } 5934 5935 pte = huge_ptep_get_and_clear(mm, address, ptep, sz); 5936 tlb_remove_huge_tlb_entry(h, tlb, ptep, address); 5937 if (huge_pte_dirty(pte)) 5938 set_page_dirty(page); 5939 /* Leave a uffd-wp pte marker if needed */ 5940 if (huge_pte_uffd_wp(pte) && 5941 !(zap_flags & ZAP_FLAG_DROP_MARKER)) 5942 set_huge_pte_at(mm, address, ptep, 5943 make_pte_marker(PTE_MARKER_UFFD_WP), 5944 sz); 5945 hugetlb_count_sub(pages_per_huge_page(h), mm); 5946 hugetlb_remove_rmap(page_folio(page)); 5947 5948 /* 5949 * Restore the reservation for anonymous page, otherwise the 5950 * backing page could be stolen by someone. 5951 * If there we are freeing a surplus, do not set the restore 5952 * reservation bit. 5953 */ 5954 if (!h->surplus_huge_pages && __vma_private_lock(vma) && 5955 folio_test_anon(page_folio(page))) { 5956 folio_set_hugetlb_restore_reserve(page_folio(page)); 5957 /* Reservation to be adjusted after the spin lock */ 5958 adjust_reservation = true; 5959 } 5960 5961 spin_unlock(ptl); 5962 5963 /* 5964 * Adjust the reservation for the region that will have the 5965 * reserve restored. Keep in mind that vma_needs_reservation() changes 5966 * resv->adds_in_progress if it succeeds. If this is not done, 5967 * do_exit() will not see it, and will keep the reservation 5968 * forever. 5969 */ 5970 if (adjust_reservation) { 5971 int rc = vma_needs_reservation(h, vma, address); 5972 5973 if (rc < 0) 5974 /* Pressumably allocate_file_region_entries failed 5975 * to allocate a file_region struct. Clear 5976 * hugetlb_restore_reserve so that global reserve 5977 * count will not be incremented by free_huge_folio. 5978 * Act as if we consumed the reservation. 5979 */ 5980 folio_clear_hugetlb_restore_reserve(page_folio(page)); 5981 else if (rc) 5982 vma_add_reservation(h, vma, address); 5983 } 5984 5985 tlb_remove_page_size(tlb, page, huge_page_size(h)); 5986 /* 5987 * Bail out after unmapping reference page if supplied 5988 */ 5989 if (ref_page) 5990 break; 5991 } 5992 tlb_end_vma(tlb, vma); 5993 5994 /* 5995 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We 5996 * could defer the flush until now, since by holding i_mmap_rwsem we 5997 * guaranteed that the last refernece would not be dropped. But we must 5998 * do the flushing before we return, as otherwise i_mmap_rwsem will be 5999 * dropped and the last reference to the shared PMDs page might be 6000 * dropped as well. 6001 * 6002 * In theory we could defer the freeing of the PMD pages as well, but 6003 * huge_pmd_unshare() relies on the exact page_count for the PMD page to 6004 * detect sharing, so we cannot defer the release of the page either. 6005 * Instead, do flush now. 6006 */ 6007 if (force_flush) 6008 tlb_flush_mmu_tlbonly(tlb); 6009 } 6010 6011 void __hugetlb_zap_begin(struct vm_area_struct *vma, 6012 unsigned long *start, unsigned long *end) 6013 { 6014 if (!vma->vm_file) /* hugetlbfs_file_mmap error */ 6015 return; 6016 6017 adjust_range_if_pmd_sharing_possible(vma, start, end); 6018 hugetlb_vma_lock_write(vma); 6019 if (vma->vm_file) 6020 i_mmap_lock_write(vma->vm_file->f_mapping); 6021 } 6022 6023 void __hugetlb_zap_end(struct vm_area_struct *vma, 6024 struct zap_details *details) 6025 { 6026 zap_flags_t zap_flags = details ? details->zap_flags : 0; 6027 6028 if (!vma->vm_file) /* hugetlbfs_file_mmap error */ 6029 return; 6030 6031 if (zap_flags & ZAP_FLAG_UNMAP) { /* final unmap */ 6032 /* 6033 * Unlock and free the vma lock before releasing i_mmap_rwsem. 6034 * When the vma_lock is freed, this makes the vma ineligible 6035 * for pmd sharing. And, i_mmap_rwsem is required to set up 6036 * pmd sharing. This is important as page tables for this 6037 * unmapped range will be asynchrously deleted. If the page 6038 * tables are shared, there will be issues when accessed by 6039 * someone else. 6040 */ 6041 __hugetlb_vma_unlock_write_free(vma); 6042 } else { 6043 hugetlb_vma_unlock_write(vma); 6044 } 6045 6046 if (vma->vm_file) 6047 i_mmap_unlock_write(vma->vm_file->f_mapping); 6048 } 6049 6050 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, 6051 unsigned long end, struct page *ref_page, 6052 zap_flags_t zap_flags) 6053 { 6054 struct mmu_notifier_range range; 6055 struct mmu_gather tlb; 6056 6057 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 6058 start, end); 6059 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 6060 mmu_notifier_invalidate_range_start(&range); 6061 tlb_gather_mmu(&tlb, vma->vm_mm); 6062 6063 __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags); 6064 6065 mmu_notifier_invalidate_range_end(&range); 6066 tlb_finish_mmu(&tlb); 6067 } 6068 6069 /* 6070 * This is called when the original mapper is failing to COW a MAP_PRIVATE 6071 * mapping it owns the reserve page for. The intention is to unmap the page 6072 * from other VMAs and let the children be SIGKILLed if they are faulting the 6073 * same region. 6074 */ 6075 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, 6076 struct page *page, unsigned long address) 6077 { 6078 struct hstate *h = hstate_vma(vma); 6079 struct vm_area_struct *iter_vma; 6080 struct address_space *mapping; 6081 pgoff_t pgoff; 6082 6083 /* 6084 * vm_pgoff is in PAGE_SIZE units, hence the different calculation 6085 * from page cache lookup which is in HPAGE_SIZE units. 6086 */ 6087 address = address & huge_page_mask(h); 6088 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + 6089 vma->vm_pgoff; 6090 mapping = vma->vm_file->f_mapping; 6091 6092 /* 6093 * Take the mapping lock for the duration of the table walk. As 6094 * this mapping should be shared between all the VMAs, 6095 * __unmap_hugepage_range() is called as the lock is already held 6096 */ 6097 i_mmap_lock_write(mapping); 6098 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) { 6099 /* Do not unmap the current VMA */ 6100 if (iter_vma == vma) 6101 continue; 6102 6103 /* 6104 * Shared VMAs have their own reserves and do not affect 6105 * MAP_PRIVATE accounting but it is possible that a shared 6106 * VMA is using the same page so check and skip such VMAs. 6107 */ 6108 if (iter_vma->vm_flags & VM_MAYSHARE) 6109 continue; 6110 6111 /* 6112 * Unmap the page from other VMAs without their own reserves. 6113 * They get marked to be SIGKILLed if they fault in these 6114 * areas. This is because a future no-page fault on this VMA 6115 * could insert a zeroed page instead of the data existing 6116 * from the time of fork. This would look like data corruption 6117 */ 6118 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) 6119 unmap_hugepage_range(iter_vma, address, 6120 address + huge_page_size(h), page, 0); 6121 } 6122 i_mmap_unlock_write(mapping); 6123 } 6124 6125 /* 6126 * hugetlb_wp() should be called with page lock of the original hugepage held. 6127 * Called with hugetlb_fault_mutex_table held and pte_page locked so we 6128 * cannot race with other handlers or page migration. 6129 * Keep the pte_same checks anyway to make transition from the mutex easier. 6130 */ 6131 static vm_fault_t hugetlb_wp(struct folio *pagecache_folio, 6132 struct vm_fault *vmf) 6133 { 6134 struct vm_area_struct *vma = vmf->vma; 6135 struct mm_struct *mm = vma->vm_mm; 6136 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 6137 pte_t pte = huge_ptep_get(mm, vmf->address, vmf->pte); 6138 struct hstate *h = hstate_vma(vma); 6139 struct folio *old_folio; 6140 struct folio *new_folio; 6141 bool cow_from_owner = 0; 6142 vm_fault_t ret = 0; 6143 struct mmu_notifier_range range; 6144 6145 /* 6146 * Never handle CoW for uffd-wp protected pages. It should be only 6147 * handled when the uffd-wp protection is removed. 6148 * 6149 * Note that only the CoW optimization path (in hugetlb_no_page()) 6150 * can trigger this, because hugetlb_fault() will always resolve 6151 * uffd-wp bit first. 6152 */ 6153 if (!unshare && huge_pte_uffd_wp(pte)) 6154 return 0; 6155 6156 /* Let's take out MAP_SHARED mappings first. */ 6157 if (vma->vm_flags & VM_MAYSHARE) { 6158 set_huge_ptep_writable(vma, vmf->address, vmf->pte); 6159 return 0; 6160 } 6161 6162 old_folio = page_folio(pte_page(pte)); 6163 6164 delayacct_wpcopy_start(); 6165 6166 retry_avoidcopy: 6167 /* 6168 * If no-one else is actually using this page, we're the exclusive 6169 * owner and can reuse this page. 6170 * 6171 * Note that we don't rely on the (safer) folio refcount here, because 6172 * copying the hugetlb folio when there are unexpected (temporary) 6173 * folio references could harm simple fork()+exit() users when 6174 * we run out of free hugetlb folios: we would have to kill processes 6175 * in scenarios that used to work. As a side effect, there can still 6176 * be leaks between processes, for example, with FOLL_GET users. 6177 */ 6178 if (folio_mapcount(old_folio) == 1 && folio_test_anon(old_folio)) { 6179 if (!PageAnonExclusive(&old_folio->page)) { 6180 folio_move_anon_rmap(old_folio, vma); 6181 SetPageAnonExclusive(&old_folio->page); 6182 } 6183 if (likely(!unshare)) 6184 set_huge_ptep_maybe_writable(vma, vmf->address, 6185 vmf->pte); 6186 6187 delayacct_wpcopy_end(); 6188 return 0; 6189 } 6190 VM_BUG_ON_PAGE(folio_test_anon(old_folio) && 6191 PageAnonExclusive(&old_folio->page), &old_folio->page); 6192 6193 /* 6194 * If the process that created a MAP_PRIVATE mapping is about to 6195 * perform a COW due to a shared page count, attempt to satisfy 6196 * the allocation without using the existing reserves. The pagecache 6197 * page is used to determine if the reserve at this address was 6198 * consumed or not. If reserves were used, a partial faulted mapping 6199 * at the time of fork() could consume its reserves on COW instead 6200 * of the full address range. 6201 */ 6202 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && 6203 old_folio != pagecache_folio) 6204 cow_from_owner = true; 6205 6206 folio_get(old_folio); 6207 6208 /* 6209 * Drop page table lock as buddy allocator may be called. It will 6210 * be acquired again before returning to the caller, as expected. 6211 */ 6212 spin_unlock(vmf->ptl); 6213 new_folio = alloc_hugetlb_folio(vma, vmf->address, cow_from_owner); 6214 6215 if (IS_ERR(new_folio)) { 6216 /* 6217 * If a process owning a MAP_PRIVATE mapping fails to COW, 6218 * it is due to references held by a child and an insufficient 6219 * huge page pool. To guarantee the original mappers 6220 * reliability, unmap the page from child processes. The child 6221 * may get SIGKILLed if it later faults. 6222 */ 6223 if (cow_from_owner) { 6224 struct address_space *mapping = vma->vm_file->f_mapping; 6225 pgoff_t idx; 6226 u32 hash; 6227 6228 folio_put(old_folio); 6229 /* 6230 * Drop hugetlb_fault_mutex and vma_lock before 6231 * unmapping. unmapping needs to hold vma_lock 6232 * in write mode. Dropping vma_lock in read mode 6233 * here is OK as COW mappings do not interact with 6234 * PMD sharing. 6235 * 6236 * Reacquire both after unmap operation. 6237 */ 6238 idx = vma_hugecache_offset(h, vma, vmf->address); 6239 hash = hugetlb_fault_mutex_hash(mapping, idx); 6240 hugetlb_vma_unlock_read(vma); 6241 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6242 6243 unmap_ref_private(mm, vma, &old_folio->page, 6244 vmf->address); 6245 6246 mutex_lock(&hugetlb_fault_mutex_table[hash]); 6247 hugetlb_vma_lock_read(vma); 6248 spin_lock(vmf->ptl); 6249 vmf->pte = hugetlb_walk(vma, vmf->address, 6250 huge_page_size(h)); 6251 if (likely(vmf->pte && 6252 pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), pte))) 6253 goto retry_avoidcopy; 6254 /* 6255 * race occurs while re-acquiring page table 6256 * lock, and our job is done. 6257 */ 6258 delayacct_wpcopy_end(); 6259 return 0; 6260 } 6261 6262 ret = vmf_error(PTR_ERR(new_folio)); 6263 goto out_release_old; 6264 } 6265 6266 /* 6267 * When the original hugepage is shared one, it does not have 6268 * anon_vma prepared. 6269 */ 6270 ret = __vmf_anon_prepare(vmf); 6271 if (unlikely(ret)) 6272 goto out_release_all; 6273 6274 if (copy_user_large_folio(new_folio, old_folio, vmf->real_address, vma)) { 6275 ret = VM_FAULT_HWPOISON_LARGE | VM_FAULT_SET_HINDEX(hstate_index(h)); 6276 goto out_release_all; 6277 } 6278 __folio_mark_uptodate(new_folio); 6279 6280 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, vmf->address, 6281 vmf->address + huge_page_size(h)); 6282 mmu_notifier_invalidate_range_start(&range); 6283 6284 /* 6285 * Retake the page table lock to check for racing updates 6286 * before the page tables are altered 6287 */ 6288 spin_lock(vmf->ptl); 6289 vmf->pte = hugetlb_walk(vma, vmf->address, huge_page_size(h)); 6290 if (likely(vmf->pte && pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), pte))) { 6291 pte_t newpte = make_huge_pte(vma, &new_folio->page, !unshare); 6292 6293 /* Break COW or unshare */ 6294 huge_ptep_clear_flush(vma, vmf->address, vmf->pte); 6295 hugetlb_remove_rmap(old_folio); 6296 hugetlb_add_new_anon_rmap(new_folio, vma, vmf->address); 6297 if (huge_pte_uffd_wp(pte)) 6298 newpte = huge_pte_mkuffd_wp(newpte); 6299 set_huge_pte_at(mm, vmf->address, vmf->pte, newpte, 6300 huge_page_size(h)); 6301 folio_set_hugetlb_migratable(new_folio); 6302 /* Make the old page be freed below */ 6303 new_folio = old_folio; 6304 } 6305 spin_unlock(vmf->ptl); 6306 mmu_notifier_invalidate_range_end(&range); 6307 out_release_all: 6308 /* 6309 * No restore in case of successful pagetable update (Break COW or 6310 * unshare) 6311 */ 6312 if (new_folio != old_folio) 6313 restore_reserve_on_error(h, vma, vmf->address, new_folio); 6314 folio_put(new_folio); 6315 out_release_old: 6316 folio_put(old_folio); 6317 6318 spin_lock(vmf->ptl); /* Caller expects lock to be held */ 6319 6320 delayacct_wpcopy_end(); 6321 return ret; 6322 } 6323 6324 /* 6325 * Return whether there is a pagecache page to back given address within VMA. 6326 */ 6327 bool hugetlbfs_pagecache_present(struct hstate *h, 6328 struct vm_area_struct *vma, unsigned long address) 6329 { 6330 struct address_space *mapping = vma->vm_file->f_mapping; 6331 pgoff_t idx = linear_page_index(vma, address); 6332 struct folio *folio; 6333 6334 folio = filemap_get_folio(mapping, idx); 6335 if (IS_ERR(folio)) 6336 return false; 6337 folio_put(folio); 6338 return true; 6339 } 6340 6341 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping, 6342 pgoff_t idx) 6343 { 6344 struct inode *inode = mapping->host; 6345 struct hstate *h = hstate_inode(inode); 6346 int err; 6347 6348 idx <<= huge_page_order(h); 6349 __folio_set_locked(folio); 6350 err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL); 6351 6352 if (unlikely(err)) { 6353 __folio_clear_locked(folio); 6354 return err; 6355 } 6356 folio_clear_hugetlb_restore_reserve(folio); 6357 6358 /* 6359 * mark folio dirty so that it will not be removed from cache/file 6360 * by non-hugetlbfs specific code paths. 6361 */ 6362 folio_mark_dirty(folio); 6363 6364 spin_lock(&inode->i_lock); 6365 inode->i_blocks += blocks_per_huge_page(h); 6366 spin_unlock(&inode->i_lock); 6367 return 0; 6368 } 6369 6370 static inline vm_fault_t hugetlb_handle_userfault(struct vm_fault *vmf, 6371 struct address_space *mapping, 6372 unsigned long reason) 6373 { 6374 u32 hash; 6375 6376 /* 6377 * vma_lock and hugetlb_fault_mutex must be dropped before handling 6378 * userfault. Also mmap_lock could be dropped due to handling 6379 * userfault, any vma operation should be careful from here. 6380 */ 6381 hugetlb_vma_unlock_read(vmf->vma); 6382 hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff); 6383 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6384 return handle_userfault(vmf, reason); 6385 } 6386 6387 /* 6388 * Recheck pte with pgtable lock. Returns true if pte didn't change, or 6389 * false if pte changed or is changing. 6390 */ 6391 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm, unsigned long addr, 6392 pte_t *ptep, pte_t old_pte) 6393 { 6394 spinlock_t *ptl; 6395 bool same; 6396 6397 ptl = huge_pte_lock(h, mm, ptep); 6398 same = pte_same(huge_ptep_get(mm, addr, ptep), old_pte); 6399 spin_unlock(ptl); 6400 6401 return same; 6402 } 6403 6404 static vm_fault_t hugetlb_no_page(struct address_space *mapping, 6405 struct vm_fault *vmf) 6406 { 6407 struct vm_area_struct *vma = vmf->vma; 6408 struct mm_struct *mm = vma->vm_mm; 6409 struct hstate *h = hstate_vma(vma); 6410 vm_fault_t ret = VM_FAULT_SIGBUS; 6411 int anon_rmap = 0; 6412 unsigned long size; 6413 struct folio *folio; 6414 pte_t new_pte; 6415 bool new_folio, new_pagecache_folio = false; 6416 u32 hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff); 6417 6418 /* 6419 * Currently, we are forced to kill the process in the event the 6420 * original mapper has unmapped pages from the child due to a failed 6421 * COW/unsharing. Warn that such a situation has occurred as it may not 6422 * be obvious. 6423 */ 6424 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { 6425 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n", 6426 current->pid); 6427 goto out; 6428 } 6429 6430 /* 6431 * Use page lock to guard against racing truncation 6432 * before we get page_table_lock. 6433 */ 6434 new_folio = false; 6435 folio = filemap_lock_hugetlb_folio(h, mapping, vmf->pgoff); 6436 if (IS_ERR(folio)) { 6437 size = i_size_read(mapping->host) >> huge_page_shift(h); 6438 if (vmf->pgoff >= size) 6439 goto out; 6440 /* Check for page in userfault range */ 6441 if (userfaultfd_missing(vma)) { 6442 /* 6443 * Since hugetlb_no_page() was examining pte 6444 * without pgtable lock, we need to re-test under 6445 * lock because the pte may not be stable and could 6446 * have changed from under us. Try to detect 6447 * either changed or during-changing ptes and retry 6448 * properly when needed. 6449 * 6450 * Note that userfaultfd is actually fine with 6451 * false positives (e.g. caused by pte changed), 6452 * but not wrong logical events (e.g. caused by 6453 * reading a pte during changing). The latter can 6454 * confuse the userspace, so the strictness is very 6455 * much preferred. E.g., MISSING event should 6456 * never happen on the page after UFFDIO_COPY has 6457 * correctly installed the page and returned. 6458 */ 6459 if (!hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte)) { 6460 ret = 0; 6461 goto out; 6462 } 6463 6464 return hugetlb_handle_userfault(vmf, mapping, 6465 VM_UFFD_MISSING); 6466 } 6467 6468 if (!(vma->vm_flags & VM_MAYSHARE)) { 6469 ret = __vmf_anon_prepare(vmf); 6470 if (unlikely(ret)) 6471 goto out; 6472 } 6473 6474 folio = alloc_hugetlb_folio(vma, vmf->address, false); 6475 if (IS_ERR(folio)) { 6476 /* 6477 * Returning error will result in faulting task being 6478 * sent SIGBUS. The hugetlb fault mutex prevents two 6479 * tasks from racing to fault in the same page which 6480 * could result in false unable to allocate errors. 6481 * Page migration does not take the fault mutex, but 6482 * does a clear then write of pte's under page table 6483 * lock. Page fault code could race with migration, 6484 * notice the clear pte and try to allocate a page 6485 * here. Before returning error, get ptl and make 6486 * sure there really is no pte entry. 6487 */ 6488 if (hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte)) 6489 ret = vmf_error(PTR_ERR(folio)); 6490 else 6491 ret = 0; 6492 goto out; 6493 } 6494 folio_zero_user(folio, vmf->real_address); 6495 __folio_mark_uptodate(folio); 6496 new_folio = true; 6497 6498 if (vma->vm_flags & VM_MAYSHARE) { 6499 int err = hugetlb_add_to_page_cache(folio, mapping, 6500 vmf->pgoff); 6501 if (err) { 6502 /* 6503 * err can't be -EEXIST which implies someone 6504 * else consumed the reservation since hugetlb 6505 * fault mutex is held when add a hugetlb page 6506 * to the page cache. So it's safe to call 6507 * restore_reserve_on_error() here. 6508 */ 6509 restore_reserve_on_error(h, vma, vmf->address, 6510 folio); 6511 folio_put(folio); 6512 ret = VM_FAULT_SIGBUS; 6513 goto out; 6514 } 6515 new_pagecache_folio = true; 6516 } else { 6517 folio_lock(folio); 6518 anon_rmap = 1; 6519 } 6520 } else { 6521 /* 6522 * If memory error occurs between mmap() and fault, some process 6523 * don't have hwpoisoned swap entry for errored virtual address. 6524 * So we need to block hugepage fault by PG_hwpoison bit check. 6525 */ 6526 if (unlikely(folio_test_hwpoison(folio))) { 6527 ret = VM_FAULT_HWPOISON_LARGE | 6528 VM_FAULT_SET_HINDEX(hstate_index(h)); 6529 goto backout_unlocked; 6530 } 6531 6532 /* Check for page in userfault range. */ 6533 if (userfaultfd_minor(vma)) { 6534 folio_unlock(folio); 6535 folio_put(folio); 6536 /* See comment in userfaultfd_missing() block above */ 6537 if (!hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte)) { 6538 ret = 0; 6539 goto out; 6540 } 6541 return hugetlb_handle_userfault(vmf, mapping, 6542 VM_UFFD_MINOR); 6543 } 6544 } 6545 6546 /* 6547 * If we are going to COW a private mapping later, we examine the 6548 * pending reservations for this page now. This will ensure that 6549 * any allocations necessary to record that reservation occur outside 6550 * the spinlock. 6551 */ 6552 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 6553 if (vma_needs_reservation(h, vma, vmf->address) < 0) { 6554 ret = VM_FAULT_OOM; 6555 goto backout_unlocked; 6556 } 6557 /* Just decrements count, does not deallocate */ 6558 vma_end_reservation(h, vma, vmf->address); 6559 } 6560 6561 vmf->ptl = huge_pte_lock(h, mm, vmf->pte); 6562 ret = 0; 6563 /* If pte changed from under us, retry */ 6564 if (!pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), vmf->orig_pte)) 6565 goto backout; 6566 6567 if (anon_rmap) 6568 hugetlb_add_new_anon_rmap(folio, vma, vmf->address); 6569 else 6570 hugetlb_add_file_rmap(folio); 6571 new_pte = make_huge_pte(vma, &folio->page, vma->vm_flags & VM_SHARED); 6572 /* 6573 * If this pte was previously wr-protected, keep it wr-protected even 6574 * if populated. 6575 */ 6576 if (unlikely(pte_marker_uffd_wp(vmf->orig_pte))) 6577 new_pte = huge_pte_mkuffd_wp(new_pte); 6578 set_huge_pte_at(mm, vmf->address, vmf->pte, new_pte, huge_page_size(h)); 6579 6580 hugetlb_count_add(pages_per_huge_page(h), mm); 6581 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 6582 /* Optimization, do the COW without a second fault */ 6583 ret = hugetlb_wp(folio, vmf); 6584 } 6585 6586 spin_unlock(vmf->ptl); 6587 6588 /* 6589 * Only set hugetlb_migratable in newly allocated pages. Existing pages 6590 * found in the pagecache may not have hugetlb_migratable if they have 6591 * been isolated for migration. 6592 */ 6593 if (new_folio) 6594 folio_set_hugetlb_migratable(folio); 6595 6596 folio_unlock(folio); 6597 out: 6598 hugetlb_vma_unlock_read(vma); 6599 6600 /* 6601 * We must check to release the per-VMA lock. __vmf_anon_prepare() is 6602 * the only way ret can be set to VM_FAULT_RETRY. 6603 */ 6604 if (unlikely(ret & VM_FAULT_RETRY)) 6605 vma_end_read(vma); 6606 6607 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6608 return ret; 6609 6610 backout: 6611 spin_unlock(vmf->ptl); 6612 backout_unlocked: 6613 if (new_folio && !new_pagecache_folio) 6614 restore_reserve_on_error(h, vma, vmf->address, folio); 6615 6616 folio_unlock(folio); 6617 folio_put(folio); 6618 goto out; 6619 } 6620 6621 #ifdef CONFIG_SMP 6622 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 6623 { 6624 unsigned long key[2]; 6625 u32 hash; 6626 6627 key[0] = (unsigned long) mapping; 6628 key[1] = idx; 6629 6630 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0); 6631 6632 return hash & (num_fault_mutexes - 1); 6633 } 6634 #else 6635 /* 6636 * For uniprocessor systems we always use a single mutex, so just 6637 * return 0 and avoid the hashing overhead. 6638 */ 6639 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 6640 { 6641 return 0; 6642 } 6643 #endif 6644 6645 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, 6646 unsigned long address, unsigned int flags) 6647 { 6648 vm_fault_t ret; 6649 u32 hash; 6650 struct folio *folio = NULL; 6651 struct folio *pagecache_folio = NULL; 6652 struct hstate *h = hstate_vma(vma); 6653 struct address_space *mapping; 6654 int need_wait_lock = 0; 6655 struct vm_fault vmf = { 6656 .vma = vma, 6657 .address = address & huge_page_mask(h), 6658 .real_address = address, 6659 .flags = flags, 6660 .pgoff = vma_hugecache_offset(h, vma, 6661 address & huge_page_mask(h)), 6662 /* TODO: Track hugetlb faults using vm_fault */ 6663 6664 /* 6665 * Some fields may not be initialized, be careful as it may 6666 * be hard to debug if called functions make assumptions 6667 */ 6668 }; 6669 6670 /* 6671 * Serialize hugepage allocation and instantiation, so that we don't 6672 * get spurious allocation failures if two CPUs race to instantiate 6673 * the same page in the page cache. 6674 */ 6675 mapping = vma->vm_file->f_mapping; 6676 hash = hugetlb_fault_mutex_hash(mapping, vmf.pgoff); 6677 mutex_lock(&hugetlb_fault_mutex_table[hash]); 6678 6679 /* 6680 * Acquire vma lock before calling huge_pte_alloc and hold 6681 * until finished with vmf.pte. This prevents huge_pmd_unshare from 6682 * being called elsewhere and making the vmf.pte no longer valid. 6683 */ 6684 hugetlb_vma_lock_read(vma); 6685 vmf.pte = huge_pte_alloc(mm, vma, vmf.address, huge_page_size(h)); 6686 if (!vmf.pte) { 6687 hugetlb_vma_unlock_read(vma); 6688 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6689 return VM_FAULT_OOM; 6690 } 6691 6692 vmf.orig_pte = huge_ptep_get(mm, vmf.address, vmf.pte); 6693 if (huge_pte_none_mostly(vmf.orig_pte)) { 6694 if (is_pte_marker(vmf.orig_pte)) { 6695 pte_marker marker = 6696 pte_marker_get(pte_to_swp_entry(vmf.orig_pte)); 6697 6698 if (marker & PTE_MARKER_POISONED) { 6699 ret = VM_FAULT_HWPOISON_LARGE | 6700 VM_FAULT_SET_HINDEX(hstate_index(h)); 6701 goto out_mutex; 6702 } else if (WARN_ON_ONCE(marker & PTE_MARKER_GUARD)) { 6703 /* This isn't supported in hugetlb. */ 6704 ret = VM_FAULT_SIGSEGV; 6705 goto out_mutex; 6706 } 6707 } 6708 6709 /* 6710 * Other PTE markers should be handled the same way as none PTE. 6711 * 6712 * hugetlb_no_page will drop vma lock and hugetlb fault 6713 * mutex internally, which make us return immediately. 6714 */ 6715 return hugetlb_no_page(mapping, &vmf); 6716 } 6717 6718 ret = 0; 6719 6720 /* 6721 * vmf.orig_pte could be a migration/hwpoison vmf.orig_pte at this 6722 * point, so this check prevents the kernel from going below assuming 6723 * that we have an active hugepage in pagecache. This goto expects 6724 * the 2nd page fault, and is_hugetlb_entry_(migration|hwpoisoned) 6725 * check will properly handle it. 6726 */ 6727 if (!pte_present(vmf.orig_pte)) { 6728 if (unlikely(is_hugetlb_entry_migration(vmf.orig_pte))) { 6729 /* 6730 * Release the hugetlb fault lock now, but retain 6731 * the vma lock, because it is needed to guard the 6732 * huge_pte_lockptr() later in 6733 * migration_entry_wait_huge(). The vma lock will 6734 * be released there. 6735 */ 6736 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6737 migration_entry_wait_huge(vma, vmf.address, vmf.pte); 6738 return 0; 6739 } else if (unlikely(is_hugetlb_entry_hwpoisoned(vmf.orig_pte))) 6740 ret = VM_FAULT_HWPOISON_LARGE | 6741 VM_FAULT_SET_HINDEX(hstate_index(h)); 6742 goto out_mutex; 6743 } 6744 6745 /* 6746 * If we are going to COW/unshare the mapping later, we examine the 6747 * pending reservations for this page now. This will ensure that any 6748 * allocations necessary to record that reservation occur outside the 6749 * spinlock. Also lookup the pagecache page now as it is used to 6750 * determine if a reservation has been consumed. 6751 */ 6752 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) && 6753 !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(vmf.orig_pte)) { 6754 if (vma_needs_reservation(h, vma, vmf.address) < 0) { 6755 ret = VM_FAULT_OOM; 6756 goto out_mutex; 6757 } 6758 /* Just decrements count, does not deallocate */ 6759 vma_end_reservation(h, vma, vmf.address); 6760 6761 pagecache_folio = filemap_lock_hugetlb_folio(h, mapping, 6762 vmf.pgoff); 6763 if (IS_ERR(pagecache_folio)) 6764 pagecache_folio = NULL; 6765 } 6766 6767 vmf.ptl = huge_pte_lock(h, mm, vmf.pte); 6768 6769 /* Check for a racing update before calling hugetlb_wp() */ 6770 if (unlikely(!pte_same(vmf.orig_pte, huge_ptep_get(mm, vmf.address, vmf.pte)))) 6771 goto out_ptl; 6772 6773 /* Handle userfault-wp first, before trying to lock more pages */ 6774 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(mm, vmf.address, vmf.pte)) && 6775 (flags & FAULT_FLAG_WRITE) && !huge_pte_write(vmf.orig_pte)) { 6776 if (!userfaultfd_wp_async(vma)) { 6777 spin_unlock(vmf.ptl); 6778 if (pagecache_folio) { 6779 folio_unlock(pagecache_folio); 6780 folio_put(pagecache_folio); 6781 } 6782 hugetlb_vma_unlock_read(vma); 6783 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6784 return handle_userfault(&vmf, VM_UFFD_WP); 6785 } 6786 6787 vmf.orig_pte = huge_pte_clear_uffd_wp(vmf.orig_pte); 6788 set_huge_pte_at(mm, vmf.address, vmf.pte, vmf.orig_pte, 6789 huge_page_size(hstate_vma(vma))); 6790 /* Fallthrough to CoW */ 6791 } 6792 6793 /* 6794 * hugetlb_wp() requires page locks of pte_page(vmf.orig_pte) and 6795 * pagecache_folio, so here we need take the former one 6796 * when folio != pagecache_folio or !pagecache_folio. 6797 */ 6798 folio = page_folio(pte_page(vmf.orig_pte)); 6799 if (folio != pagecache_folio) 6800 if (!folio_trylock(folio)) { 6801 need_wait_lock = 1; 6802 goto out_ptl; 6803 } 6804 6805 folio_get(folio); 6806 6807 if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) { 6808 if (!huge_pte_write(vmf.orig_pte)) { 6809 ret = hugetlb_wp(pagecache_folio, &vmf); 6810 goto out_put_page; 6811 } else if (likely(flags & FAULT_FLAG_WRITE)) { 6812 vmf.orig_pte = huge_pte_mkdirty(vmf.orig_pte); 6813 } 6814 } 6815 vmf.orig_pte = pte_mkyoung(vmf.orig_pte); 6816 if (huge_ptep_set_access_flags(vma, vmf.address, vmf.pte, vmf.orig_pte, 6817 flags & FAULT_FLAG_WRITE)) 6818 update_mmu_cache(vma, vmf.address, vmf.pte); 6819 out_put_page: 6820 if (folio != pagecache_folio) 6821 folio_unlock(folio); 6822 folio_put(folio); 6823 out_ptl: 6824 spin_unlock(vmf.ptl); 6825 6826 if (pagecache_folio) { 6827 folio_unlock(pagecache_folio); 6828 folio_put(pagecache_folio); 6829 } 6830 out_mutex: 6831 hugetlb_vma_unlock_read(vma); 6832 6833 /* 6834 * We must check to release the per-VMA lock. __vmf_anon_prepare() in 6835 * hugetlb_wp() is the only way ret can be set to VM_FAULT_RETRY. 6836 */ 6837 if (unlikely(ret & VM_FAULT_RETRY)) 6838 vma_end_read(vma); 6839 6840 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6841 /* 6842 * Generally it's safe to hold refcount during waiting page lock. But 6843 * here we just wait to defer the next page fault to avoid busy loop and 6844 * the page is not used after unlocked before returning from the current 6845 * page fault. So we are safe from accessing freed page, even if we wait 6846 * here without taking refcount. 6847 */ 6848 if (need_wait_lock) 6849 folio_wait_locked(folio); 6850 return ret; 6851 } 6852 6853 #ifdef CONFIG_USERFAULTFD 6854 /* 6855 * Can probably be eliminated, but still used by hugetlb_mfill_atomic_pte(). 6856 */ 6857 static struct folio *alloc_hugetlb_folio_vma(struct hstate *h, 6858 struct vm_area_struct *vma, unsigned long address) 6859 { 6860 struct mempolicy *mpol; 6861 nodemask_t *nodemask; 6862 struct folio *folio; 6863 gfp_t gfp_mask; 6864 int node; 6865 6866 gfp_mask = htlb_alloc_mask(h); 6867 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 6868 /* 6869 * This is used to allocate a temporary hugetlb to hold the copied 6870 * content, which will then be copied again to the final hugetlb 6871 * consuming a reservation. Set the alloc_fallback to false to indicate 6872 * that breaking the per-node hugetlb pool is not allowed in this case. 6873 */ 6874 folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask, false); 6875 mpol_cond_put(mpol); 6876 6877 return folio; 6878 } 6879 6880 /* 6881 * Used by userfaultfd UFFDIO_* ioctls. Based on userfaultfd's mfill_atomic_pte 6882 * with modifications for hugetlb pages. 6883 */ 6884 int hugetlb_mfill_atomic_pte(pte_t *dst_pte, 6885 struct vm_area_struct *dst_vma, 6886 unsigned long dst_addr, 6887 unsigned long src_addr, 6888 uffd_flags_t flags, 6889 struct folio **foliop) 6890 { 6891 struct mm_struct *dst_mm = dst_vma->vm_mm; 6892 bool is_continue = uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE); 6893 bool wp_enabled = (flags & MFILL_ATOMIC_WP); 6894 struct hstate *h = hstate_vma(dst_vma); 6895 struct address_space *mapping = dst_vma->vm_file->f_mapping; 6896 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr); 6897 unsigned long size = huge_page_size(h); 6898 int vm_shared = dst_vma->vm_flags & VM_SHARED; 6899 pte_t _dst_pte; 6900 spinlock_t *ptl; 6901 int ret = -ENOMEM; 6902 struct folio *folio; 6903 bool folio_in_pagecache = false; 6904 6905 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_POISON)) { 6906 ptl = huge_pte_lock(h, dst_mm, dst_pte); 6907 6908 /* Don't overwrite any existing PTEs (even markers) */ 6909 if (!huge_pte_none(huge_ptep_get(dst_mm, dst_addr, dst_pte))) { 6910 spin_unlock(ptl); 6911 return -EEXIST; 6912 } 6913 6914 _dst_pte = make_pte_marker(PTE_MARKER_POISONED); 6915 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, size); 6916 6917 /* No need to invalidate - it was non-present before */ 6918 update_mmu_cache(dst_vma, dst_addr, dst_pte); 6919 6920 spin_unlock(ptl); 6921 return 0; 6922 } 6923 6924 if (is_continue) { 6925 ret = -EFAULT; 6926 folio = filemap_lock_hugetlb_folio(h, mapping, idx); 6927 if (IS_ERR(folio)) 6928 goto out; 6929 folio_in_pagecache = true; 6930 } else if (!*foliop) { 6931 /* If a folio already exists, then it's UFFDIO_COPY for 6932 * a non-missing case. Return -EEXIST. 6933 */ 6934 if (vm_shared && 6935 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) { 6936 ret = -EEXIST; 6937 goto out; 6938 } 6939 6940 folio = alloc_hugetlb_folio(dst_vma, dst_addr, false); 6941 if (IS_ERR(folio)) { 6942 ret = -ENOMEM; 6943 goto out; 6944 } 6945 6946 ret = copy_folio_from_user(folio, (const void __user *) src_addr, 6947 false); 6948 6949 /* fallback to copy_from_user outside mmap_lock */ 6950 if (unlikely(ret)) { 6951 ret = -ENOENT; 6952 /* Free the allocated folio which may have 6953 * consumed a reservation. 6954 */ 6955 restore_reserve_on_error(h, dst_vma, dst_addr, folio); 6956 folio_put(folio); 6957 6958 /* Allocate a temporary folio to hold the copied 6959 * contents. 6960 */ 6961 folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr); 6962 if (!folio) { 6963 ret = -ENOMEM; 6964 goto out; 6965 } 6966 *foliop = folio; 6967 /* Set the outparam foliop and return to the caller to 6968 * copy the contents outside the lock. Don't free the 6969 * folio. 6970 */ 6971 goto out; 6972 } 6973 } else { 6974 if (vm_shared && 6975 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) { 6976 folio_put(*foliop); 6977 ret = -EEXIST; 6978 *foliop = NULL; 6979 goto out; 6980 } 6981 6982 folio = alloc_hugetlb_folio(dst_vma, dst_addr, false); 6983 if (IS_ERR(folio)) { 6984 folio_put(*foliop); 6985 ret = -ENOMEM; 6986 *foliop = NULL; 6987 goto out; 6988 } 6989 ret = copy_user_large_folio(folio, *foliop, dst_addr, dst_vma); 6990 folio_put(*foliop); 6991 *foliop = NULL; 6992 if (ret) { 6993 folio_put(folio); 6994 goto out; 6995 } 6996 } 6997 6998 /* 6999 * If we just allocated a new page, we need a memory barrier to ensure 7000 * that preceding stores to the page become visible before the 7001 * set_pte_at() write. The memory barrier inside __folio_mark_uptodate 7002 * is what we need. 7003 * 7004 * In the case where we have not allocated a new page (is_continue), 7005 * the page must already be uptodate. UFFDIO_CONTINUE already includes 7006 * an earlier smp_wmb() to ensure that prior stores will be visible 7007 * before the set_pte_at() write. 7008 */ 7009 if (!is_continue) 7010 __folio_mark_uptodate(folio); 7011 else 7012 WARN_ON_ONCE(!folio_test_uptodate(folio)); 7013 7014 /* Add shared, newly allocated pages to the page cache. */ 7015 if (vm_shared && !is_continue) { 7016 ret = -EFAULT; 7017 if (idx >= (i_size_read(mapping->host) >> huge_page_shift(h))) 7018 goto out_release_nounlock; 7019 7020 /* 7021 * Serialization between remove_inode_hugepages() and 7022 * hugetlb_add_to_page_cache() below happens through the 7023 * hugetlb_fault_mutex_table that here must be hold by 7024 * the caller. 7025 */ 7026 ret = hugetlb_add_to_page_cache(folio, mapping, idx); 7027 if (ret) 7028 goto out_release_nounlock; 7029 folio_in_pagecache = true; 7030 } 7031 7032 ptl = huge_pte_lock(h, dst_mm, dst_pte); 7033 7034 ret = -EIO; 7035 if (folio_test_hwpoison(folio)) 7036 goto out_release_unlock; 7037 7038 /* 7039 * We allow to overwrite a pte marker: consider when both MISSING|WP 7040 * registered, we firstly wr-protect a none pte which has no page cache 7041 * page backing it, then access the page. 7042 */ 7043 ret = -EEXIST; 7044 if (!huge_pte_none_mostly(huge_ptep_get(dst_mm, dst_addr, dst_pte))) 7045 goto out_release_unlock; 7046 7047 if (folio_in_pagecache) 7048 hugetlb_add_file_rmap(folio); 7049 else 7050 hugetlb_add_new_anon_rmap(folio, dst_vma, dst_addr); 7051 7052 /* 7053 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY 7054 * with wp flag set, don't set pte write bit. 7055 */ 7056 _dst_pte = make_huge_pte(dst_vma, &folio->page, 7057 !wp_enabled && !(is_continue && !vm_shared)); 7058 /* 7059 * Always mark UFFDIO_COPY page dirty; note that this may not be 7060 * extremely important for hugetlbfs for now since swapping is not 7061 * supported, but we should still be clear in that this page cannot be 7062 * thrown away at will, even if write bit not set. 7063 */ 7064 _dst_pte = huge_pte_mkdirty(_dst_pte); 7065 _dst_pte = pte_mkyoung(_dst_pte); 7066 7067 if (wp_enabled) 7068 _dst_pte = huge_pte_mkuffd_wp(_dst_pte); 7069 7070 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, size); 7071 7072 hugetlb_count_add(pages_per_huge_page(h), dst_mm); 7073 7074 /* No need to invalidate - it was non-present before */ 7075 update_mmu_cache(dst_vma, dst_addr, dst_pte); 7076 7077 spin_unlock(ptl); 7078 if (!is_continue) 7079 folio_set_hugetlb_migratable(folio); 7080 if (vm_shared || is_continue) 7081 folio_unlock(folio); 7082 ret = 0; 7083 out: 7084 return ret; 7085 out_release_unlock: 7086 spin_unlock(ptl); 7087 if (vm_shared || is_continue) 7088 folio_unlock(folio); 7089 out_release_nounlock: 7090 if (!folio_in_pagecache) 7091 restore_reserve_on_error(h, dst_vma, dst_addr, folio); 7092 folio_put(folio); 7093 goto out; 7094 } 7095 #endif /* CONFIG_USERFAULTFD */ 7096 7097 long hugetlb_change_protection(struct vm_area_struct *vma, 7098 unsigned long address, unsigned long end, 7099 pgprot_t newprot, unsigned long cp_flags) 7100 { 7101 struct mm_struct *mm = vma->vm_mm; 7102 unsigned long start = address; 7103 pte_t *ptep; 7104 pte_t pte; 7105 struct hstate *h = hstate_vma(vma); 7106 long pages = 0, psize = huge_page_size(h); 7107 bool shared_pmd = false; 7108 struct mmu_notifier_range range; 7109 unsigned long last_addr_mask; 7110 bool uffd_wp = cp_flags & MM_CP_UFFD_WP; 7111 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE; 7112 7113 /* 7114 * In the case of shared PMDs, the area to flush could be beyond 7115 * start/end. Set range.start/range.end to cover the maximum possible 7116 * range if PMD sharing is possible. 7117 */ 7118 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA, 7119 0, mm, start, end); 7120 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 7121 7122 BUG_ON(address >= end); 7123 flush_cache_range(vma, range.start, range.end); 7124 7125 mmu_notifier_invalidate_range_start(&range); 7126 hugetlb_vma_lock_write(vma); 7127 i_mmap_lock_write(vma->vm_file->f_mapping); 7128 last_addr_mask = hugetlb_mask_last_page(h); 7129 for (; address < end; address += psize) { 7130 spinlock_t *ptl; 7131 ptep = hugetlb_walk(vma, address, psize); 7132 if (!ptep) { 7133 if (!uffd_wp) { 7134 address |= last_addr_mask; 7135 continue; 7136 } 7137 /* 7138 * Userfaultfd wr-protect requires pgtable 7139 * pre-allocations to install pte markers. 7140 */ 7141 ptep = huge_pte_alloc(mm, vma, address, psize); 7142 if (!ptep) { 7143 pages = -ENOMEM; 7144 break; 7145 } 7146 } 7147 ptl = huge_pte_lock(h, mm, ptep); 7148 if (huge_pmd_unshare(mm, vma, address, ptep)) { 7149 /* 7150 * When uffd-wp is enabled on the vma, unshare 7151 * shouldn't happen at all. Warn about it if it 7152 * happened due to some reason. 7153 */ 7154 WARN_ON_ONCE(uffd_wp || uffd_wp_resolve); 7155 pages++; 7156 spin_unlock(ptl); 7157 shared_pmd = true; 7158 address |= last_addr_mask; 7159 continue; 7160 } 7161 pte = huge_ptep_get(mm, address, ptep); 7162 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) { 7163 /* Nothing to do. */ 7164 } else if (unlikely(is_hugetlb_entry_migration(pte))) { 7165 swp_entry_t entry = pte_to_swp_entry(pte); 7166 struct page *page = pfn_swap_entry_to_page(entry); 7167 pte_t newpte = pte; 7168 7169 if (is_writable_migration_entry(entry)) { 7170 if (PageAnon(page)) 7171 entry = make_readable_exclusive_migration_entry( 7172 swp_offset(entry)); 7173 else 7174 entry = make_readable_migration_entry( 7175 swp_offset(entry)); 7176 newpte = swp_entry_to_pte(entry); 7177 pages++; 7178 } 7179 7180 if (uffd_wp) 7181 newpte = pte_swp_mkuffd_wp(newpte); 7182 else if (uffd_wp_resolve) 7183 newpte = pte_swp_clear_uffd_wp(newpte); 7184 if (!pte_same(pte, newpte)) 7185 set_huge_pte_at(mm, address, ptep, newpte, psize); 7186 } else if (unlikely(is_pte_marker(pte))) { 7187 /* 7188 * Do nothing on a poison marker; page is 7189 * corrupted, permissons do not apply. Here 7190 * pte_marker_uffd_wp()==true implies !poison 7191 * because they're mutual exclusive. 7192 */ 7193 if (pte_marker_uffd_wp(pte) && uffd_wp_resolve) 7194 /* Safe to modify directly (non-present->none). */ 7195 huge_pte_clear(mm, address, ptep, psize); 7196 } else if (!huge_pte_none(pte)) { 7197 pte_t old_pte; 7198 unsigned int shift = huge_page_shift(hstate_vma(vma)); 7199 7200 old_pte = huge_ptep_modify_prot_start(vma, address, ptep); 7201 pte = huge_pte_modify(old_pte, newprot); 7202 pte = arch_make_huge_pte(pte, shift, vma->vm_flags); 7203 if (uffd_wp) 7204 pte = huge_pte_mkuffd_wp(pte); 7205 else if (uffd_wp_resolve) 7206 pte = huge_pte_clear_uffd_wp(pte); 7207 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte); 7208 pages++; 7209 } else { 7210 /* None pte */ 7211 if (unlikely(uffd_wp)) 7212 /* Safe to modify directly (none->non-present). */ 7213 set_huge_pte_at(mm, address, ptep, 7214 make_pte_marker(PTE_MARKER_UFFD_WP), 7215 psize); 7216 } 7217 spin_unlock(ptl); 7218 } 7219 /* 7220 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare 7221 * may have cleared our pud entry and done put_page on the page table: 7222 * once we release i_mmap_rwsem, another task can do the final put_page 7223 * and that page table be reused and filled with junk. If we actually 7224 * did unshare a page of pmds, flush the range corresponding to the pud. 7225 */ 7226 if (shared_pmd) 7227 flush_hugetlb_tlb_range(vma, range.start, range.end); 7228 else 7229 flush_hugetlb_tlb_range(vma, start, end); 7230 /* 7231 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs() we are 7232 * downgrading page table protection not changing it to point to a new 7233 * page. 7234 * 7235 * See Documentation/mm/mmu_notifier.rst 7236 */ 7237 i_mmap_unlock_write(vma->vm_file->f_mapping); 7238 hugetlb_vma_unlock_write(vma); 7239 mmu_notifier_invalidate_range_end(&range); 7240 7241 return pages > 0 ? (pages << h->order) : pages; 7242 } 7243 7244 /* Return true if reservation was successful, false otherwise. */ 7245 bool hugetlb_reserve_pages(struct inode *inode, 7246 long from, long to, 7247 struct vm_area_struct *vma, 7248 vm_flags_t vm_flags) 7249 { 7250 long chg = -1, add = -1, spool_resv, gbl_resv; 7251 struct hstate *h = hstate_inode(inode); 7252 struct hugepage_subpool *spool = subpool_inode(inode); 7253 struct resv_map *resv_map; 7254 struct hugetlb_cgroup *h_cg = NULL; 7255 long gbl_reserve, regions_needed = 0; 7256 7257 /* This should never happen */ 7258 if (from > to) { 7259 VM_WARN(1, "%s called with a negative range\n", __func__); 7260 return false; 7261 } 7262 7263 /* 7264 * vma specific semaphore used for pmd sharing and fault/truncation 7265 * synchronization 7266 */ 7267 hugetlb_vma_lock_alloc(vma); 7268 7269 /* 7270 * Only apply hugepage reservation if asked. At fault time, an 7271 * attempt will be made for VM_NORESERVE to allocate a page 7272 * without using reserves 7273 */ 7274 if (vm_flags & VM_NORESERVE) 7275 return true; 7276 7277 /* 7278 * Shared mappings base their reservation on the number of pages that 7279 * are already allocated on behalf of the file. Private mappings need 7280 * to reserve the full area even if read-only as mprotect() may be 7281 * called to make the mapping read-write. Assume !vma is a shm mapping 7282 */ 7283 if (!vma || vma->vm_flags & VM_MAYSHARE) { 7284 /* 7285 * resv_map can not be NULL as hugetlb_reserve_pages is only 7286 * called for inodes for which resv_maps were created (see 7287 * hugetlbfs_get_inode). 7288 */ 7289 resv_map = inode_resv_map(inode); 7290 7291 chg = region_chg(resv_map, from, to, ®ions_needed); 7292 } else { 7293 /* Private mapping. */ 7294 resv_map = resv_map_alloc(); 7295 if (!resv_map) 7296 goto out_err; 7297 7298 chg = to - from; 7299 7300 set_vma_resv_map(vma, resv_map); 7301 set_vma_resv_flags(vma, HPAGE_RESV_OWNER); 7302 } 7303 7304 if (chg < 0) 7305 goto out_err; 7306 7307 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h), 7308 chg * pages_per_huge_page(h), &h_cg) < 0) 7309 goto out_err; 7310 7311 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) { 7312 /* For private mappings, the hugetlb_cgroup uncharge info hangs 7313 * of the resv_map. 7314 */ 7315 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h); 7316 } 7317 7318 /* 7319 * There must be enough pages in the subpool for the mapping. If 7320 * the subpool has a minimum size, there may be some global 7321 * reservations already in place (gbl_reserve). 7322 */ 7323 gbl_reserve = hugepage_subpool_get_pages(spool, chg); 7324 if (gbl_reserve < 0) 7325 goto out_uncharge_cgroup; 7326 7327 /* 7328 * Check enough hugepages are available for the reservation. 7329 * Hand the pages back to the subpool if there are not 7330 */ 7331 if (hugetlb_acct_memory(h, gbl_reserve) < 0) 7332 goto out_put_pages; 7333 7334 /* 7335 * Account for the reservations made. Shared mappings record regions 7336 * that have reservations as they are shared by multiple VMAs. 7337 * When the last VMA disappears, the region map says how much 7338 * the reservation was and the page cache tells how much of 7339 * the reservation was consumed. Private mappings are per-VMA and 7340 * only the consumed reservations are tracked. When the VMA 7341 * disappears, the original reservation is the VMA size and the 7342 * consumed reservations are stored in the map. Hence, nothing 7343 * else has to be done for private mappings here 7344 */ 7345 if (!vma || vma->vm_flags & VM_MAYSHARE) { 7346 add = region_add(resv_map, from, to, regions_needed, h, h_cg); 7347 7348 if (unlikely(add < 0)) { 7349 hugetlb_acct_memory(h, -gbl_reserve); 7350 goto out_put_pages; 7351 } else if (unlikely(chg > add)) { 7352 /* 7353 * pages in this range were added to the reserve 7354 * map between region_chg and region_add. This 7355 * indicates a race with alloc_hugetlb_folio. Adjust 7356 * the subpool and reserve counts modified above 7357 * based on the difference. 7358 */ 7359 long rsv_adjust; 7360 7361 /* 7362 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the 7363 * reference to h_cg->css. See comment below for detail. 7364 */ 7365 hugetlb_cgroup_uncharge_cgroup_rsvd( 7366 hstate_index(h), 7367 (chg - add) * pages_per_huge_page(h), h_cg); 7368 7369 rsv_adjust = hugepage_subpool_put_pages(spool, 7370 chg - add); 7371 hugetlb_acct_memory(h, -rsv_adjust); 7372 } else if (h_cg) { 7373 /* 7374 * The file_regions will hold their own reference to 7375 * h_cg->css. So we should release the reference held 7376 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are 7377 * done. 7378 */ 7379 hugetlb_cgroup_put_rsvd_cgroup(h_cg); 7380 } 7381 } 7382 return true; 7383 7384 out_put_pages: 7385 spool_resv = chg - gbl_reserve; 7386 if (spool_resv) { 7387 /* put sub pool's reservation back, chg - gbl_reserve */ 7388 gbl_resv = hugepage_subpool_put_pages(spool, spool_resv); 7389 /* 7390 * subpool's reserved pages can not be put back due to race, 7391 * return to hstate. 7392 */ 7393 hugetlb_acct_memory(h, -gbl_resv); 7394 } 7395 out_uncharge_cgroup: 7396 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h), 7397 chg * pages_per_huge_page(h), h_cg); 7398 out_err: 7399 hugetlb_vma_lock_free(vma); 7400 if (!vma || vma->vm_flags & VM_MAYSHARE) 7401 /* Only call region_abort if the region_chg succeeded but the 7402 * region_add failed or didn't run. 7403 */ 7404 if (chg >= 0 && add < 0) 7405 region_abort(resv_map, from, to, regions_needed); 7406 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 7407 kref_put(&resv_map->refs, resv_map_release); 7408 set_vma_resv_map(vma, NULL); 7409 } 7410 return false; 7411 } 7412 7413 long hugetlb_unreserve_pages(struct inode *inode, long start, long end, 7414 long freed) 7415 { 7416 struct hstate *h = hstate_inode(inode); 7417 struct resv_map *resv_map = inode_resv_map(inode); 7418 long chg = 0; 7419 struct hugepage_subpool *spool = subpool_inode(inode); 7420 long gbl_reserve; 7421 7422 /* 7423 * Since this routine can be called in the evict inode path for all 7424 * hugetlbfs inodes, resv_map could be NULL. 7425 */ 7426 if (resv_map) { 7427 chg = region_del(resv_map, start, end); 7428 /* 7429 * region_del() can fail in the rare case where a region 7430 * must be split and another region descriptor can not be 7431 * allocated. If end == LONG_MAX, it will not fail. 7432 */ 7433 if (chg < 0) 7434 return chg; 7435 } 7436 7437 spin_lock(&inode->i_lock); 7438 inode->i_blocks -= (blocks_per_huge_page(h) * freed); 7439 spin_unlock(&inode->i_lock); 7440 7441 /* 7442 * If the subpool has a minimum size, the number of global 7443 * reservations to be released may be adjusted. 7444 * 7445 * Note that !resv_map implies freed == 0. So (chg - freed) 7446 * won't go negative. 7447 */ 7448 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed)); 7449 hugetlb_acct_memory(h, -gbl_reserve); 7450 7451 return 0; 7452 } 7453 7454 #ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING 7455 static unsigned long page_table_shareable(struct vm_area_struct *svma, 7456 struct vm_area_struct *vma, 7457 unsigned long addr, pgoff_t idx) 7458 { 7459 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) + 7460 svma->vm_start; 7461 unsigned long sbase = saddr & PUD_MASK; 7462 unsigned long s_end = sbase + PUD_SIZE; 7463 7464 /* Allow segments to share if only one is marked locked */ 7465 unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED_MASK; 7466 unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED_MASK; 7467 7468 /* 7469 * match the virtual addresses, permission and the alignment of the 7470 * page table page. 7471 * 7472 * Also, vma_lock (vm_private_data) is required for sharing. 7473 */ 7474 if (pmd_index(addr) != pmd_index(saddr) || 7475 vm_flags != svm_flags || 7476 !range_in_vma(svma, sbase, s_end) || 7477 !svma->vm_private_data) 7478 return 0; 7479 7480 return saddr; 7481 } 7482 7483 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr) 7484 { 7485 unsigned long start = addr & PUD_MASK; 7486 unsigned long end = start + PUD_SIZE; 7487 7488 #ifdef CONFIG_USERFAULTFD 7489 if (uffd_disable_huge_pmd_share(vma)) 7490 return false; 7491 #endif 7492 /* 7493 * check on proper vm_flags and page table alignment 7494 */ 7495 if (!(vma->vm_flags & VM_MAYSHARE)) 7496 return false; 7497 if (!vma->vm_private_data) /* vma lock required for sharing */ 7498 return false; 7499 if (!range_in_vma(vma, start, end)) 7500 return false; 7501 return true; 7502 } 7503 7504 /* 7505 * Determine if start,end range within vma could be mapped by shared pmd. 7506 * If yes, adjust start and end to cover range associated with possible 7507 * shared pmd mappings. 7508 */ 7509 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 7510 unsigned long *start, unsigned long *end) 7511 { 7512 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE), 7513 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE); 7514 7515 /* 7516 * vma needs to span at least one aligned PUD size, and the range 7517 * must be at least partially within in. 7518 */ 7519 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) || 7520 (*end <= v_start) || (*start >= v_end)) 7521 return; 7522 7523 /* Extend the range to be PUD aligned for a worst case scenario */ 7524 if (*start > v_start) 7525 *start = ALIGN_DOWN(*start, PUD_SIZE); 7526 7527 if (*end < v_end) 7528 *end = ALIGN(*end, PUD_SIZE); 7529 } 7530 7531 /* 7532 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc() 7533 * and returns the corresponding pte. While this is not necessary for the 7534 * !shared pmd case because we can allocate the pmd later as well, it makes the 7535 * code much cleaner. pmd allocation is essential for the shared case because 7536 * pud has to be populated inside the same i_mmap_rwsem section - otherwise 7537 * racing tasks could either miss the sharing (see huge_pte_offset) or select a 7538 * bad pmd for sharing. 7539 */ 7540 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, 7541 unsigned long addr, pud_t *pud) 7542 { 7543 struct address_space *mapping = vma->vm_file->f_mapping; 7544 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + 7545 vma->vm_pgoff; 7546 struct vm_area_struct *svma; 7547 unsigned long saddr; 7548 pte_t *spte = NULL; 7549 pte_t *pte; 7550 7551 i_mmap_lock_read(mapping); 7552 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) { 7553 if (svma == vma) 7554 continue; 7555 7556 saddr = page_table_shareable(svma, vma, addr, idx); 7557 if (saddr) { 7558 spte = hugetlb_walk(svma, saddr, 7559 vma_mmu_pagesize(svma)); 7560 if (spte) { 7561 ptdesc_pmd_pts_inc(virt_to_ptdesc(spte)); 7562 break; 7563 } 7564 } 7565 } 7566 7567 if (!spte) 7568 goto out; 7569 7570 spin_lock(&mm->page_table_lock); 7571 if (pud_none(*pud)) { 7572 pud_populate(mm, pud, 7573 (pmd_t *)((unsigned long)spte & PAGE_MASK)); 7574 mm_inc_nr_pmds(mm); 7575 } else { 7576 ptdesc_pmd_pts_dec(virt_to_ptdesc(spte)); 7577 } 7578 spin_unlock(&mm->page_table_lock); 7579 out: 7580 pte = (pte_t *)pmd_alloc(mm, pud, addr); 7581 i_mmap_unlock_read(mapping); 7582 return pte; 7583 } 7584 7585 /* 7586 * unmap huge page backed by shared pte. 7587 * 7588 * Called with page table lock held. 7589 * 7590 * returns: 1 successfully unmapped a shared pte page 7591 * 0 the underlying pte page is not shared, or it is the last user 7592 */ 7593 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, 7594 unsigned long addr, pte_t *ptep) 7595 { 7596 unsigned long sz = huge_page_size(hstate_vma(vma)); 7597 pgd_t *pgd = pgd_offset(mm, addr); 7598 p4d_t *p4d = p4d_offset(pgd, addr); 7599 pud_t *pud = pud_offset(p4d, addr); 7600 7601 i_mmap_assert_write_locked(vma->vm_file->f_mapping); 7602 hugetlb_vma_assert_locked(vma); 7603 if (sz != PMD_SIZE) 7604 return 0; 7605 if (!ptdesc_pmd_pts_count(virt_to_ptdesc(ptep))) 7606 return 0; 7607 7608 pud_clear(pud); 7609 ptdesc_pmd_pts_dec(virt_to_ptdesc(ptep)); 7610 mm_dec_nr_pmds(mm); 7611 return 1; 7612 } 7613 7614 #else /* !CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING */ 7615 7616 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, 7617 unsigned long addr, pud_t *pud) 7618 { 7619 return NULL; 7620 } 7621 7622 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, 7623 unsigned long addr, pte_t *ptep) 7624 { 7625 return 0; 7626 } 7627 7628 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 7629 unsigned long *start, unsigned long *end) 7630 { 7631 } 7632 7633 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr) 7634 { 7635 return false; 7636 } 7637 #endif /* CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING */ 7638 7639 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB 7640 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 7641 unsigned long addr, unsigned long sz) 7642 { 7643 pgd_t *pgd; 7644 p4d_t *p4d; 7645 pud_t *pud; 7646 pte_t *pte = NULL; 7647 7648 pgd = pgd_offset(mm, addr); 7649 p4d = p4d_alloc(mm, pgd, addr); 7650 if (!p4d) 7651 return NULL; 7652 pud = pud_alloc(mm, p4d, addr); 7653 if (pud) { 7654 if (sz == PUD_SIZE) { 7655 pte = (pte_t *)pud; 7656 } else { 7657 BUG_ON(sz != PMD_SIZE); 7658 if (want_pmd_share(vma, addr) && pud_none(*pud)) 7659 pte = huge_pmd_share(mm, vma, addr, pud); 7660 else 7661 pte = (pte_t *)pmd_alloc(mm, pud, addr); 7662 } 7663 } 7664 7665 if (pte) { 7666 pte_t pteval = ptep_get_lockless(pte); 7667 7668 BUG_ON(pte_present(pteval) && !pte_huge(pteval)); 7669 } 7670 7671 return pte; 7672 } 7673 7674 /* 7675 * huge_pte_offset() - Walk the page table to resolve the hugepage 7676 * entry at address @addr 7677 * 7678 * Return: Pointer to page table entry (PUD or PMD) for 7679 * address @addr, or NULL if a !p*d_present() entry is encountered and the 7680 * size @sz doesn't match the hugepage size at this level of the page 7681 * table. 7682 */ 7683 pte_t *huge_pte_offset(struct mm_struct *mm, 7684 unsigned long addr, unsigned long sz) 7685 { 7686 pgd_t *pgd; 7687 p4d_t *p4d; 7688 pud_t *pud; 7689 pmd_t *pmd; 7690 7691 pgd = pgd_offset(mm, addr); 7692 if (!pgd_present(*pgd)) 7693 return NULL; 7694 p4d = p4d_offset(pgd, addr); 7695 if (!p4d_present(*p4d)) 7696 return NULL; 7697 7698 pud = pud_offset(p4d, addr); 7699 if (sz == PUD_SIZE) 7700 /* must be pud huge, non-present or none */ 7701 return (pte_t *)pud; 7702 if (!pud_present(*pud)) 7703 return NULL; 7704 /* must have a valid entry and size to go further */ 7705 7706 pmd = pmd_offset(pud, addr); 7707 /* must be pmd huge, non-present or none */ 7708 return (pte_t *)pmd; 7709 } 7710 7711 /* 7712 * Return a mask that can be used to update an address to the last huge 7713 * page in a page table page mapping size. Used to skip non-present 7714 * page table entries when linearly scanning address ranges. Architectures 7715 * with unique huge page to page table relationships can define their own 7716 * version of this routine. 7717 */ 7718 unsigned long hugetlb_mask_last_page(struct hstate *h) 7719 { 7720 unsigned long hp_size = huge_page_size(h); 7721 7722 if (hp_size == PUD_SIZE) 7723 return P4D_SIZE - PUD_SIZE; 7724 else if (hp_size == PMD_SIZE) 7725 return PUD_SIZE - PMD_SIZE; 7726 else 7727 return 0UL; 7728 } 7729 7730 #else 7731 7732 /* See description above. Architectures can provide their own version. */ 7733 __weak unsigned long hugetlb_mask_last_page(struct hstate *h) 7734 { 7735 #ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING 7736 if (huge_page_size(h) == PMD_SIZE) 7737 return PUD_SIZE - PMD_SIZE; 7738 #endif 7739 return 0UL; 7740 } 7741 7742 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */ 7743 7744 /** 7745 * folio_isolate_hugetlb - try to isolate an allocated hugetlb folio 7746 * @folio: the folio to isolate 7747 * @list: the list to add the folio to on success 7748 * 7749 * Isolate an allocated (refcount > 0) hugetlb folio, marking it as 7750 * isolated/non-migratable, and moving it from the active list to the 7751 * given list. 7752 * 7753 * Isolation will fail if @folio is not an allocated hugetlb folio, or if 7754 * it is already isolated/non-migratable. 7755 * 7756 * On success, an additional folio reference is taken that must be dropped 7757 * using folio_putback_hugetlb() to undo the isolation. 7758 * 7759 * Return: True if isolation worked, otherwise False. 7760 */ 7761 bool folio_isolate_hugetlb(struct folio *folio, struct list_head *list) 7762 { 7763 bool ret = true; 7764 7765 spin_lock_irq(&hugetlb_lock); 7766 if (!folio_test_hugetlb(folio) || 7767 !folio_test_hugetlb_migratable(folio) || 7768 !folio_try_get(folio)) { 7769 ret = false; 7770 goto unlock; 7771 } 7772 folio_clear_hugetlb_migratable(folio); 7773 list_move_tail(&folio->lru, list); 7774 unlock: 7775 spin_unlock_irq(&hugetlb_lock); 7776 return ret; 7777 } 7778 7779 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison) 7780 { 7781 int ret = 0; 7782 7783 *hugetlb = false; 7784 spin_lock_irq(&hugetlb_lock); 7785 if (folio_test_hugetlb(folio)) { 7786 *hugetlb = true; 7787 if (folio_test_hugetlb_freed(folio)) 7788 ret = 0; 7789 else if (folio_test_hugetlb_migratable(folio) || unpoison) 7790 ret = folio_try_get(folio); 7791 else 7792 ret = -EBUSY; 7793 } 7794 spin_unlock_irq(&hugetlb_lock); 7795 return ret; 7796 } 7797 7798 int get_huge_page_for_hwpoison(unsigned long pfn, int flags, 7799 bool *migratable_cleared) 7800 { 7801 int ret; 7802 7803 spin_lock_irq(&hugetlb_lock); 7804 ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared); 7805 spin_unlock_irq(&hugetlb_lock); 7806 return ret; 7807 } 7808 7809 /** 7810 * folio_putback_hugetlb - unisolate a hugetlb folio 7811 * @folio: the isolated hugetlb folio 7812 * 7813 * Putback/un-isolate the hugetlb folio that was previous isolated using 7814 * folio_isolate_hugetlb(): marking it non-isolated/migratable and putting it 7815 * back onto the active list. 7816 * 7817 * Will drop the additional folio reference obtained through 7818 * folio_isolate_hugetlb(). 7819 */ 7820 void folio_putback_hugetlb(struct folio *folio) 7821 { 7822 spin_lock_irq(&hugetlb_lock); 7823 folio_set_hugetlb_migratable(folio); 7824 list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist); 7825 spin_unlock_irq(&hugetlb_lock); 7826 folio_put(folio); 7827 } 7828 7829 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason) 7830 { 7831 struct hstate *h = folio_hstate(old_folio); 7832 7833 hugetlb_cgroup_migrate(old_folio, new_folio); 7834 set_page_owner_migrate_reason(&new_folio->page, reason); 7835 7836 /* 7837 * transfer temporary state of the new hugetlb folio. This is 7838 * reverse to other transitions because the newpage is going to 7839 * be final while the old one will be freed so it takes over 7840 * the temporary status. 7841 * 7842 * Also note that we have to transfer the per-node surplus state 7843 * here as well otherwise the global surplus count will not match 7844 * the per-node's. 7845 */ 7846 if (folio_test_hugetlb_temporary(new_folio)) { 7847 int old_nid = folio_nid(old_folio); 7848 int new_nid = folio_nid(new_folio); 7849 7850 folio_set_hugetlb_temporary(old_folio); 7851 folio_clear_hugetlb_temporary(new_folio); 7852 7853 7854 /* 7855 * There is no need to transfer the per-node surplus state 7856 * when we do not cross the node. 7857 */ 7858 if (new_nid == old_nid) 7859 return; 7860 spin_lock_irq(&hugetlb_lock); 7861 if (h->surplus_huge_pages_node[old_nid]) { 7862 h->surplus_huge_pages_node[old_nid]--; 7863 h->surplus_huge_pages_node[new_nid]++; 7864 } 7865 spin_unlock_irq(&hugetlb_lock); 7866 } 7867 7868 /* 7869 * Our old folio is isolated and has "migratable" cleared until it 7870 * is putback. As migration succeeded, set the new folio "migratable" 7871 * and add it to the active list. 7872 */ 7873 spin_lock_irq(&hugetlb_lock); 7874 folio_set_hugetlb_migratable(new_folio); 7875 list_move_tail(&new_folio->lru, &(folio_hstate(new_folio))->hugepage_activelist); 7876 spin_unlock_irq(&hugetlb_lock); 7877 } 7878 7879 static void hugetlb_unshare_pmds(struct vm_area_struct *vma, 7880 unsigned long start, 7881 unsigned long end) 7882 { 7883 struct hstate *h = hstate_vma(vma); 7884 unsigned long sz = huge_page_size(h); 7885 struct mm_struct *mm = vma->vm_mm; 7886 struct mmu_notifier_range range; 7887 unsigned long address; 7888 spinlock_t *ptl; 7889 pte_t *ptep; 7890 7891 if (!(vma->vm_flags & VM_MAYSHARE)) 7892 return; 7893 7894 if (start >= end) 7895 return; 7896 7897 flush_cache_range(vma, start, end); 7898 /* 7899 * No need to call adjust_range_if_pmd_sharing_possible(), because 7900 * we have already done the PUD_SIZE alignment. 7901 */ 7902 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 7903 start, end); 7904 mmu_notifier_invalidate_range_start(&range); 7905 hugetlb_vma_lock_write(vma); 7906 i_mmap_lock_write(vma->vm_file->f_mapping); 7907 for (address = start; address < end; address += PUD_SIZE) { 7908 ptep = hugetlb_walk(vma, address, sz); 7909 if (!ptep) 7910 continue; 7911 ptl = huge_pte_lock(h, mm, ptep); 7912 huge_pmd_unshare(mm, vma, address, ptep); 7913 spin_unlock(ptl); 7914 } 7915 flush_hugetlb_tlb_range(vma, start, end); 7916 i_mmap_unlock_write(vma->vm_file->f_mapping); 7917 hugetlb_vma_unlock_write(vma); 7918 /* 7919 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs(), see 7920 * Documentation/mm/mmu_notifier.rst. 7921 */ 7922 mmu_notifier_invalidate_range_end(&range); 7923 } 7924 7925 /* 7926 * This function will unconditionally remove all the shared pmd pgtable entries 7927 * within the specific vma for a hugetlbfs memory range. 7928 */ 7929 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma) 7930 { 7931 hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE), 7932 ALIGN_DOWN(vma->vm_end, PUD_SIZE)); 7933 } 7934